xref: /freebsd/sys/dev/bxe/bxe.c (revision 86390f9444433b00296741d03d069a587ad8e4bf)
1 /*-
2  * Copyright (c) 2007-2013 Broadcom Corporation. All rights reserved.
3  *
4  * Eric Davis        <edavis@broadcom.com>
5  * David Christensen <davidch@broadcom.com>
6  * Gary Zambrano     <zambrano@broadcom.com>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written consent.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #define BXE_DRIVER_VERSION "1.78.75"
38 
39 #include "bxe.h"
40 #include "ecore_sp.h"
41 #include "ecore_init.h"
42 #include "ecore_init_ops.h"
43 
44 #include "57710_int_offsets.h"
45 #include "57711_int_offsets.h"
46 #include "57712_int_offsets.h"
47 
48 /*
49  * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
50  * explicitly here for older kernels that don't include this changeset.
51  */
52 #ifndef CTLTYPE_U64
53 #define CTLTYPE_U64      CTLTYPE_QUAD
54 #define sysctl_handle_64 sysctl_handle_quad
55 #endif
56 
57 /*
58  * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
59  * here as zero(0) for older kernels that don't include this changeset
60  * thereby masking the functionality.
61  */
62 #ifndef CSUM_TCP_IPV6
63 #define CSUM_TCP_IPV6 0
64 #define CSUM_UDP_IPV6 0
65 #endif
66 
67 /*
68  * pci_find_cap was added in r219865. Re-define this at pci_find_extcap
69  * for older kernels that don't include this changeset.
70  */
71 #if __FreeBSD_version < 900035
72 #define pci_find_cap pci_find_extcap
73 #endif
74 
75 #define BXE_DEF_SB_ATT_IDX 0x0001
76 #define BXE_DEF_SB_IDX     0x0002
77 
78 /*
79  * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
80  * function HW initialization.
81  */
82 #define FLR_WAIT_USEC     10000 /* 10 msecs */
83 #define FLR_WAIT_INTERVAL 50    /* usecs */
84 #define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
85 
86 struct pbf_pN_buf_regs {
87     int pN;
88     uint32_t init_crd;
89     uint32_t crd;
90     uint32_t crd_freed;
91 };
92 
93 struct pbf_pN_cmd_regs {
94     int pN;
95     uint32_t lines_occup;
96     uint32_t lines_freed;
97 };
98 
99 /*
100  * PCI Device ID Table used by bxe_probe().
101  */
102 #define BXE_DEVDESC_MAX 64
103 static struct bxe_device_type bxe_devs[] = {
104     {
105         BRCM_VENDORID,
106         CHIP_NUM_57710,
107         PCI_ANY_ID, PCI_ANY_ID,
108         "Broadcom NetXtreme II BCM57710 10GbE"
109     },
110     {
111         BRCM_VENDORID,
112         CHIP_NUM_57711,
113         PCI_ANY_ID, PCI_ANY_ID,
114         "Broadcom NetXtreme II BCM57711 10GbE"
115     },
116     {
117         BRCM_VENDORID,
118         CHIP_NUM_57711E,
119         PCI_ANY_ID, PCI_ANY_ID,
120         "Broadcom NetXtreme II BCM57711E 10GbE"
121     },
122     {
123         BRCM_VENDORID,
124         CHIP_NUM_57712,
125         PCI_ANY_ID, PCI_ANY_ID,
126         "Broadcom NetXtreme II BCM57712 10GbE"
127     },
128     {
129         BRCM_VENDORID,
130         CHIP_NUM_57712_MF,
131         PCI_ANY_ID, PCI_ANY_ID,
132         "Broadcom NetXtreme II BCM57712 MF 10GbE"
133     },
134 #if 0
135     {
136         BRCM_VENDORID,
137         CHIP_NUM_57712_VF,
138         PCI_ANY_ID, PCI_ANY_ID,
139         "Broadcom NetXtreme II BCM57712 VF 10GbE"
140     },
141 #endif
142     {
143         BRCM_VENDORID,
144         CHIP_NUM_57800,
145         PCI_ANY_ID, PCI_ANY_ID,
146         "Broadcom NetXtreme II BCM57800 10GbE"
147     },
148     {
149         BRCM_VENDORID,
150         CHIP_NUM_57800_MF,
151         PCI_ANY_ID, PCI_ANY_ID,
152         "Broadcom NetXtreme II BCM57800 MF 10GbE"
153     },
154 #if 0
155     {
156         BRCM_VENDORID,
157         CHIP_NUM_57800_VF,
158         PCI_ANY_ID, PCI_ANY_ID,
159         "Broadcom NetXtreme II BCM57800 VF 10GbE"
160     },
161 #endif
162     {
163         BRCM_VENDORID,
164         CHIP_NUM_57810,
165         PCI_ANY_ID, PCI_ANY_ID,
166         "Broadcom NetXtreme II BCM57810 10GbE"
167     },
168     {
169         BRCM_VENDORID,
170         CHIP_NUM_57810_MF,
171         PCI_ANY_ID, PCI_ANY_ID,
172         "Broadcom NetXtreme II BCM57810 MF 10GbE"
173     },
174 #if 0
175     {
176         BRCM_VENDORID,
177         CHIP_NUM_57810_VF,
178         PCI_ANY_ID, PCI_ANY_ID,
179         "Broadcom NetXtreme II BCM57810 VF 10GbE"
180     },
181 #endif
182     {
183         BRCM_VENDORID,
184         CHIP_NUM_57811,
185         PCI_ANY_ID, PCI_ANY_ID,
186         "Broadcom NetXtreme II BCM57811 10GbE"
187     },
188     {
189         BRCM_VENDORID,
190         CHIP_NUM_57811_MF,
191         PCI_ANY_ID, PCI_ANY_ID,
192         "Broadcom NetXtreme II BCM57811 MF 10GbE"
193     },
194 #if 0
195     {
196         BRCM_VENDORID,
197         CHIP_NUM_57811_VF,
198         PCI_ANY_ID, PCI_ANY_ID,
199         "Broadcom NetXtreme II BCM57811 VF 10GbE"
200     },
201 #endif
202     {
203         BRCM_VENDORID,
204         CHIP_NUM_57840_4_10,
205         PCI_ANY_ID, PCI_ANY_ID,
206         "Broadcom NetXtreme II BCM57840 4x10GbE"
207     },
208 #if 0
209     {
210         BRCM_VENDORID,
211         CHIP_NUM_57840_2_20,
212         PCI_ANY_ID, PCI_ANY_ID,
213         "Broadcom NetXtreme II BCM57840 2x20GbE"
214     },
215 #endif
216     {
217         BRCM_VENDORID,
218         CHIP_NUM_57840_MF,
219         PCI_ANY_ID, PCI_ANY_ID,
220         "Broadcom NetXtreme II BCM57840 MF 10GbE"
221     },
222 #if 0
223     {
224         BRCM_VENDORID,
225         CHIP_NUM_57840_VF,
226         PCI_ANY_ID, PCI_ANY_ID,
227         "Broadcom NetXtreme II BCM57840 VF 10GbE"
228     },
229 #endif
230     {
231         0, 0, 0, 0, NULL
232     }
233 };
234 
235 MALLOC_DECLARE(M_BXE_ILT);
236 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
237 
238 /*
239  * FreeBSD device entry points.
240  */
241 static int bxe_probe(device_t);
242 static int bxe_attach(device_t);
243 static int bxe_detach(device_t);
244 static int bxe_shutdown(device_t);
245 
246 /*
247  * FreeBSD KLD module/device interface event handler method.
248  */
249 static device_method_t bxe_methods[] = {
250     /* Device interface (device_if.h) */
251     DEVMETHOD(device_probe,     bxe_probe),
252     DEVMETHOD(device_attach,    bxe_attach),
253     DEVMETHOD(device_detach,    bxe_detach),
254     DEVMETHOD(device_shutdown,  bxe_shutdown),
255 #if 0
256     DEVMETHOD(device_suspend,   bxe_suspend),
257     DEVMETHOD(device_resume,    bxe_resume),
258 #endif
259     /* Bus interface (bus_if.h) */
260     DEVMETHOD(bus_print_child,  bus_generic_print_child),
261     DEVMETHOD(bus_driver_added, bus_generic_driver_added),
262     KOBJMETHOD_END
263 };
264 
265 /*
266  * FreeBSD KLD Module data declaration
267  */
268 static driver_t bxe_driver = {
269     "bxe",                   /* module name */
270     bxe_methods,             /* event handler */
271     sizeof(struct bxe_softc) /* extra data */
272 };
273 
274 /*
275  * FreeBSD dev class is needed to manage dev instances and
276  * to associate with a bus type
277  */
278 static devclass_t bxe_devclass;
279 
280 MODULE_DEPEND(bxe, pci, 1, 1, 1);
281 MODULE_DEPEND(bxe, ether, 1, 1, 1);
282 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0);
283 
284 /* resources needed for unloading a previously loaded device */
285 
286 #define BXE_PREV_WAIT_NEEDED 1
287 struct mtx bxe_prev_mtx;
288 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
289 struct bxe_prev_list_node {
290     LIST_ENTRY(bxe_prev_list_node) node;
291     uint8_t bus;
292     uint8_t slot;
293     uint8_t path;
294     uint8_t aer; /* XXX automatic error recovery */
295     uint8_t undi;
296 };
297 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
298 
299 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
300 
301 /* Tunable device values... */
302 
303 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters");
304 
305 /* Debug */
306 unsigned long bxe_debug = 0;
307 TUNABLE_ULONG("hw.bxe.debug", &bxe_debug);
308 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, (CTLFLAG_RDTUN),
309              &bxe_debug, 0, "Debug logging mode");
310 
311 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
312 static int bxe_interrupt_mode = INTR_MODE_MSIX;
313 TUNABLE_INT("hw.bxe.interrupt_mode", &bxe_interrupt_mode);
314 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
315            &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
316 
317 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
318 static int bxe_queue_count = 4;
319 TUNABLE_INT("hw.bxe.queue_count", &bxe_queue_count);
320 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
321            &bxe_queue_count, 0, "Multi-Queue queue count");
322 
323 /* max number of buffers per queue (default RX_BD_USABLE) */
324 static int bxe_max_rx_bufs = 0;
325 TUNABLE_INT("hw.bxe.max_rx_bufs", &bxe_max_rx_bufs);
326 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
327            &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
328 
329 /* Host interrupt coalescing RX tick timer (usecs) */
330 static int bxe_hc_rx_ticks = 25;
331 TUNABLE_INT("hw.bxe.hc_rx_ticks", &bxe_hc_rx_ticks);
332 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
333            &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
334 
335 /* Host interrupt coalescing TX tick timer (usecs) */
336 static int bxe_hc_tx_ticks = 50;
337 TUNABLE_INT("hw.bxe.hc_tx_ticks", &bxe_hc_tx_ticks);
338 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
339            &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
340 
341 /* Maximum number of Rx packets to process at a time */
342 static int bxe_rx_budget = 0xffffffff;
343 TUNABLE_INT("hw.bxe.rx_budget", &bxe_rx_budget);
344 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
345            &bxe_rx_budget, 0, "Rx processing budget");
346 
347 /* Maximum LRO aggregation size */
348 static int bxe_max_aggregation_size = 0;
349 TUNABLE_INT("hw.bxe.max_aggregation_size", &bxe_max_aggregation_size);
350 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
351            &bxe_max_aggregation_size, 0, "max aggregation size");
352 
353 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
354 static int bxe_mrrs = -1;
355 TUNABLE_INT("hw.bxe.mrrs", &bxe_mrrs);
356 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
357            &bxe_mrrs, 0, "PCIe maximum read request size");
358 
359 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
360 static int bxe_autogreeen = 0;
361 TUNABLE_INT("hw.bxe.autogreeen", &bxe_autogreeen);
362 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
363            &bxe_autogreeen, 0, "AutoGrEEEn support");
364 
365 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
366 static int bxe_udp_rss = 0;
367 TUNABLE_INT("hw.bxe.udp_rss", &bxe_udp_rss);
368 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
369            &bxe_udp_rss, 0, "UDP RSS support");
370 
371 
372 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
373 
374 #define STATS_OFFSET32(stat_name)                   \
375     (offsetof(struct bxe_eth_stats, stat_name) / 4)
376 
377 #define Q_STATS_OFFSET32(stat_name)                   \
378     (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
379 
380 static const struct {
381     uint32_t offset;
382     uint32_t size;
383     uint32_t flags;
384 #define STATS_FLAGS_PORT  1
385 #define STATS_FLAGS_FUNC  2 /* MF only cares about function stats */
386 #define STATS_FLAGS_BOTH  (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
387     char string[STAT_NAME_LEN];
388 } bxe_eth_stats_arr[] = {
389     { STATS_OFFSET32(total_bytes_received_hi),
390                 8, STATS_FLAGS_BOTH, "rx_bytes" },
391     { STATS_OFFSET32(error_bytes_received_hi),
392                 8, STATS_FLAGS_BOTH, "rx_error_bytes" },
393     { STATS_OFFSET32(total_unicast_packets_received_hi),
394                 8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
395     { STATS_OFFSET32(total_multicast_packets_received_hi),
396                 8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
397     { STATS_OFFSET32(total_broadcast_packets_received_hi),
398                 8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
399     { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
400                 8, STATS_FLAGS_PORT, "rx_crc_errors" },
401     { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
402                 8, STATS_FLAGS_PORT, "rx_align_errors" },
403     { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
404                 8, STATS_FLAGS_PORT, "rx_undersize_packets" },
405     { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
406                 8, STATS_FLAGS_PORT, "rx_oversize_packets" },
407     { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
408                 8, STATS_FLAGS_PORT, "rx_fragments" },
409     { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
410                 8, STATS_FLAGS_PORT, "rx_jabbers" },
411     { STATS_OFFSET32(no_buff_discard_hi),
412                 8, STATS_FLAGS_BOTH, "rx_discards" },
413     { STATS_OFFSET32(mac_filter_discard),
414                 4, STATS_FLAGS_PORT, "rx_filtered_packets" },
415     { STATS_OFFSET32(mf_tag_discard),
416                 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
417     { STATS_OFFSET32(pfc_frames_received_hi),
418                 8, STATS_FLAGS_PORT, "pfc_frames_received" },
419     { STATS_OFFSET32(pfc_frames_sent_hi),
420                 8, STATS_FLAGS_PORT, "pfc_frames_sent" },
421     { STATS_OFFSET32(brb_drop_hi),
422                 8, STATS_FLAGS_PORT, "rx_brb_discard" },
423     { STATS_OFFSET32(brb_truncate_hi),
424                 8, STATS_FLAGS_PORT, "rx_brb_truncate" },
425     { STATS_OFFSET32(pause_frames_received_hi),
426                 8, STATS_FLAGS_PORT, "rx_pause_frames" },
427     { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
428                 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
429     { STATS_OFFSET32(nig_timer_max),
430                 4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
431     { STATS_OFFSET32(total_bytes_transmitted_hi),
432                 8, STATS_FLAGS_BOTH, "tx_bytes" },
433     { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
434                 8, STATS_FLAGS_PORT, "tx_error_bytes" },
435     { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
436                 8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
437     { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
438                 8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
439     { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
440                 8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
441     { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
442                 8, STATS_FLAGS_PORT, "tx_mac_errors" },
443     { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
444                 8, STATS_FLAGS_PORT, "tx_carrier_errors" },
445     { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
446                 8, STATS_FLAGS_PORT, "tx_single_collisions" },
447     { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
448                 8, STATS_FLAGS_PORT, "tx_multi_collisions" },
449     { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
450                 8, STATS_FLAGS_PORT, "tx_deferred" },
451     { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
452                 8, STATS_FLAGS_PORT, "tx_excess_collisions" },
453     { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
454                 8, STATS_FLAGS_PORT, "tx_late_collisions" },
455     { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
456                 8, STATS_FLAGS_PORT, "tx_total_collisions" },
457     { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
458                 8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
459     { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
460                 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
461     { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
462                 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
463     { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
464                 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
465     { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
466                 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
467     { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
468                 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
469     { STATS_OFFSET32(etherstatspktsover1522octets_hi),
470                 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
471     { STATS_OFFSET32(pause_frames_sent_hi),
472                 8, STATS_FLAGS_PORT, "tx_pause_frames" },
473     { STATS_OFFSET32(total_tpa_aggregations_hi),
474                 8, STATS_FLAGS_FUNC, "tpa_aggregations" },
475     { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
476                 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
477     { STATS_OFFSET32(total_tpa_bytes_hi),
478                 8, STATS_FLAGS_FUNC, "tpa_bytes"},
479 #if 0
480     { STATS_OFFSET32(recoverable_error),
481                 4, STATS_FLAGS_FUNC, "recoverable_errors" },
482     { STATS_OFFSET32(unrecoverable_error),
483                 4, STATS_FLAGS_FUNC, "unrecoverable_errors" },
484 #endif
485     { STATS_OFFSET32(eee_tx_lpi),
486                 4, STATS_FLAGS_PORT, "eee_tx_lpi"},
487     { STATS_OFFSET32(rx_calls),
488                 4, STATS_FLAGS_FUNC, "rx_calls"},
489     { STATS_OFFSET32(rx_pkts),
490                 4, STATS_FLAGS_FUNC, "rx_pkts"},
491     { STATS_OFFSET32(rx_tpa_pkts),
492                 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
493     { STATS_OFFSET32(rx_soft_errors),
494                 4, STATS_FLAGS_FUNC, "rx_soft_errors"},
495     { STATS_OFFSET32(rx_hw_csum_errors),
496                 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
497     { STATS_OFFSET32(rx_ofld_frames_csum_ip),
498                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
499     { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
500                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
501     { STATS_OFFSET32(rx_budget_reached),
502                 4, STATS_FLAGS_FUNC, "rx_budget_reached"},
503     { STATS_OFFSET32(tx_pkts),
504                 4, STATS_FLAGS_FUNC, "tx_pkts"},
505     { STATS_OFFSET32(tx_soft_errors),
506                 4, STATS_FLAGS_FUNC, "tx_soft_errors"},
507     { STATS_OFFSET32(tx_ofld_frames_csum_ip),
508                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
509     { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
510                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
511     { STATS_OFFSET32(tx_ofld_frames_csum_udp),
512                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
513     { STATS_OFFSET32(tx_ofld_frames_lso),
514                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
515     { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
516                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
517     { STATS_OFFSET32(tx_encap_failures),
518                 4, STATS_FLAGS_FUNC, "tx_encap_failures"},
519     { STATS_OFFSET32(tx_hw_queue_full),
520                 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
521     { STATS_OFFSET32(tx_hw_max_queue_depth),
522                 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
523     { STATS_OFFSET32(tx_dma_mapping_failure),
524                 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
525     { STATS_OFFSET32(tx_max_drbr_queue_depth),
526                 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
527     { STATS_OFFSET32(tx_window_violation_std),
528                 4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
529     { STATS_OFFSET32(tx_window_violation_tso),
530                 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
531 #if 0
532     { STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
533                 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_ipv6"},
534     { STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
535                 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_not_tcp"},
536 #endif
537     { STATS_OFFSET32(tx_chain_lost_mbuf),
538                 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
539     { STATS_OFFSET32(tx_frames_deferred),
540                 4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
541     { STATS_OFFSET32(tx_queue_xoff),
542                 4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
543     { STATS_OFFSET32(mbuf_defrag_attempts),
544                 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
545     { STATS_OFFSET32(mbuf_defrag_failures),
546                 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
547     { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
548                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
549     { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
550                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
551     { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
552                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
553     { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
554                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
555     { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
556                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
557     { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
558                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
559     { STATS_OFFSET32(mbuf_alloc_tx),
560                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
561     { STATS_OFFSET32(mbuf_alloc_rx),
562                 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
563     { STATS_OFFSET32(mbuf_alloc_sge),
564                 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
565     { STATS_OFFSET32(mbuf_alloc_tpa),
566                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}
567 };
568 
569 static const struct {
570     uint32_t offset;
571     uint32_t size;
572     char string[STAT_NAME_LEN];
573 } bxe_eth_q_stats_arr[] = {
574     { Q_STATS_OFFSET32(total_bytes_received_hi),
575                 8, "rx_bytes" },
576     { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
577                 8, "rx_ucast_packets" },
578     { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
579                 8, "rx_mcast_packets" },
580     { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
581                 8, "rx_bcast_packets" },
582     { Q_STATS_OFFSET32(no_buff_discard_hi),
583                 8, "rx_discards" },
584     { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
585                 8, "tx_bytes" },
586     { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
587                 8, "tx_ucast_packets" },
588     { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
589                 8, "tx_mcast_packets" },
590     { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
591                 8, "tx_bcast_packets" },
592     { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
593                 8, "tpa_aggregations" },
594     { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
595                 8, "tpa_aggregated_frames"},
596     { Q_STATS_OFFSET32(total_tpa_bytes_hi),
597                 8, "tpa_bytes"},
598     { Q_STATS_OFFSET32(rx_calls),
599                 4, "rx_calls"},
600     { Q_STATS_OFFSET32(rx_pkts),
601                 4, "rx_pkts"},
602     { Q_STATS_OFFSET32(rx_tpa_pkts),
603                 4, "rx_tpa_pkts"},
604     { Q_STATS_OFFSET32(rx_soft_errors),
605                 4, "rx_soft_errors"},
606     { Q_STATS_OFFSET32(rx_hw_csum_errors),
607                 4, "rx_hw_csum_errors"},
608     { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
609                 4, "rx_ofld_frames_csum_ip"},
610     { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
611                 4, "rx_ofld_frames_csum_tcp_udp"},
612     { Q_STATS_OFFSET32(rx_budget_reached),
613                 4, "rx_budget_reached"},
614     { Q_STATS_OFFSET32(tx_pkts),
615                 4, "tx_pkts"},
616     { Q_STATS_OFFSET32(tx_soft_errors),
617                 4, "tx_soft_errors"},
618     { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
619                 4, "tx_ofld_frames_csum_ip"},
620     { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
621                 4, "tx_ofld_frames_csum_tcp"},
622     { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
623                 4, "tx_ofld_frames_csum_udp"},
624     { Q_STATS_OFFSET32(tx_ofld_frames_lso),
625                 4, "tx_ofld_frames_lso"},
626     { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
627                 4, "tx_ofld_frames_lso_hdr_splits"},
628     { Q_STATS_OFFSET32(tx_encap_failures),
629                 4, "tx_encap_failures"},
630     { Q_STATS_OFFSET32(tx_hw_queue_full),
631                 4, "tx_hw_queue_full"},
632     { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
633                 4, "tx_hw_max_queue_depth"},
634     { Q_STATS_OFFSET32(tx_dma_mapping_failure),
635                 4, "tx_dma_mapping_failure"},
636     { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
637                 4, "tx_max_drbr_queue_depth"},
638     { Q_STATS_OFFSET32(tx_window_violation_std),
639                 4, "tx_window_violation_std"},
640     { Q_STATS_OFFSET32(tx_window_violation_tso),
641                 4, "tx_window_violation_tso"},
642 #if 0
643     { Q_STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
644                 4, "tx_unsupported_tso_request_ipv6"},
645     { Q_STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
646                 4, "tx_unsupported_tso_request_not_tcp"},
647 #endif
648     { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
649                 4, "tx_chain_lost_mbuf"},
650     { Q_STATS_OFFSET32(tx_frames_deferred),
651                 4, "tx_frames_deferred"},
652     { Q_STATS_OFFSET32(tx_queue_xoff),
653                 4, "tx_queue_xoff"},
654     { Q_STATS_OFFSET32(mbuf_defrag_attempts),
655                 4, "mbuf_defrag_attempts"},
656     { Q_STATS_OFFSET32(mbuf_defrag_failures),
657                 4, "mbuf_defrag_failures"},
658     { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
659                 4, "mbuf_rx_bd_alloc_failed"},
660     { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
661                 4, "mbuf_rx_bd_mapping_failed"},
662     { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
663                 4, "mbuf_rx_tpa_alloc_failed"},
664     { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
665                 4, "mbuf_rx_tpa_mapping_failed"},
666     { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
667                 4, "mbuf_rx_sge_alloc_failed"},
668     { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
669                 4, "mbuf_rx_sge_mapping_failed"},
670     { Q_STATS_OFFSET32(mbuf_alloc_tx),
671                 4, "mbuf_alloc_tx"},
672     { Q_STATS_OFFSET32(mbuf_alloc_rx),
673                 4, "mbuf_alloc_rx"},
674     { Q_STATS_OFFSET32(mbuf_alloc_sge),
675                 4, "mbuf_alloc_sge"},
676     { Q_STATS_OFFSET32(mbuf_alloc_tpa),
677                 4, "mbuf_alloc_tpa"}
678 };
679 
680 #define BXE_NUM_ETH_STATS   ARRAY_SIZE(bxe_eth_stats_arr)
681 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
682 
683 
684 static void    bxe_cmng_fns_init(struct bxe_softc *sc,
685                                  uint8_t          read_cfg,
686                                  uint8_t          cmng_type);
687 static int     bxe_get_cmng_fns_mode(struct bxe_softc *sc);
688 static void    storm_memset_cmng(struct bxe_softc *sc,
689                                  struct cmng_init *cmng,
690                                  uint8_t          port);
691 static void    bxe_set_reset_global(struct bxe_softc *sc);
692 static void    bxe_set_reset_in_progress(struct bxe_softc *sc);
693 static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
694                                  int              engine);
695 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
696 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
697                                    uint8_t          *global,
698                                    uint8_t          print);
699 static void    bxe_int_disable(struct bxe_softc *sc);
700 static int     bxe_release_leader_lock(struct bxe_softc *sc);
701 static void    bxe_pf_disable(struct bxe_softc *sc);
702 static void    bxe_free_fp_buffers(struct bxe_softc *sc);
703 static inline void bxe_update_rx_prod(struct bxe_softc    *sc,
704                                       struct bxe_fastpath *fp,
705                                       uint16_t            rx_bd_prod,
706                                       uint16_t            rx_cq_prod,
707                                       uint16_t            rx_sge_prod);
708 static void    bxe_link_report_locked(struct bxe_softc *sc);
709 static void    bxe_link_report(struct bxe_softc *sc);
710 static void    bxe_link_status_update(struct bxe_softc *sc);
711 static void    bxe_periodic_callout_func(void *xsc);
712 static void    bxe_periodic_start(struct bxe_softc *sc);
713 static void    bxe_periodic_stop(struct bxe_softc *sc);
714 static int     bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
715                                     uint16_t prev_index,
716                                     uint16_t index);
717 static int     bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
718                                      int                 queue);
719 static int     bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
720                                      uint16_t            index);
721 static uint8_t bxe_txeof(struct bxe_softc *sc,
722                          struct bxe_fastpath *fp);
723 static void    bxe_task_fp(struct bxe_fastpath *fp);
724 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
725                                      struct mbuf      *m,
726                                      uint8_t          contents);
727 static int     bxe_alloc_mem(struct bxe_softc *sc);
728 static void    bxe_free_mem(struct bxe_softc *sc);
729 static int     bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
730 static void    bxe_free_fw_stats_mem(struct bxe_softc *sc);
731 static int     bxe_interrupt_attach(struct bxe_softc *sc);
732 static void    bxe_interrupt_detach(struct bxe_softc *sc);
733 static void    bxe_set_rx_mode(struct bxe_softc *sc);
734 static int     bxe_init_locked(struct bxe_softc *sc);
735 static int     bxe_stop_locked(struct bxe_softc *sc);
736 static __noinline int bxe_nic_load(struct bxe_softc *sc,
737                                    int              load_mode);
738 static __noinline int bxe_nic_unload(struct bxe_softc *sc,
739                                      uint32_t         unload_mode,
740                                      uint8_t          keep_link);
741 
742 static void bxe_handle_sp_tq(void *context, int pending);
743 static void bxe_handle_rx_mode_tq(void *context, int pending);
744 static void bxe_handle_fp_tq(void *context, int pending);
745 
746 
747 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
748 uint32_t
749 calc_crc32(uint8_t  *crc32_packet,
750            uint32_t crc32_length,
751            uint32_t crc32_seed,
752            uint8_t  complement)
753 {
754    uint32_t byte         = 0;
755    uint32_t bit          = 0;
756    uint8_t  msb          = 0;
757    uint32_t temp         = 0;
758    uint32_t shft         = 0;
759    uint8_t  current_byte = 0;
760    uint32_t crc32_result = crc32_seed;
761    const uint32_t CRC32_POLY = 0x1edc6f41;
762 
763    if ((crc32_packet == NULL) ||
764        (crc32_length == 0) ||
765        ((crc32_length % 8) != 0))
766     {
767         return (crc32_result);
768     }
769 
770     for (byte = 0; byte < crc32_length; byte = byte + 1)
771     {
772         current_byte = crc32_packet[byte];
773         for (bit = 0; bit < 8; bit = bit + 1)
774         {
775             /* msb = crc32_result[31]; */
776             msb = (uint8_t)(crc32_result >> 31);
777 
778             crc32_result = crc32_result << 1;
779 
780             /* it (msb != current_byte[bit]) */
781             if (msb != (0x1 & (current_byte >> bit)))
782             {
783                 crc32_result = crc32_result ^ CRC32_POLY;
784                 /* crc32_result[0] = 1 */
785                 crc32_result |= 1;
786             }
787         }
788     }
789 
790     /* Last step is to:
791      * 1. "mirror" every bit
792      * 2. swap the 4 bytes
793      * 3. complement each bit
794      */
795 
796     /* Mirror */
797     temp = crc32_result;
798     shft = sizeof(crc32_result) * 8 - 1;
799 
800     for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
801     {
802         temp <<= 1;
803         temp |= crc32_result & 1;
804         shft-- ;
805     }
806 
807     /* temp[31-bit] = crc32_result[bit] */
808     temp <<= shft;
809 
810     /* Swap */
811     /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
812     {
813         uint32_t t0, t1, t2, t3;
814         t0 = (0x000000ff & (temp >> 24));
815         t1 = (0x0000ff00 & (temp >> 8));
816         t2 = (0x00ff0000 & (temp << 8));
817         t3 = (0xff000000 & (temp << 24));
818         crc32_result = t0 | t1 | t2 | t3;
819     }
820 
821     /* Complement */
822     if (complement)
823     {
824         crc32_result = ~crc32_result;
825     }
826 
827     return (crc32_result);
828 }
829 
830 int
831 bxe_test_bit(int                    nr,
832              volatile unsigned long *addr)
833 {
834     return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
835 }
836 
837 void
838 bxe_set_bit(unsigned int           nr,
839             volatile unsigned long *addr)
840 {
841     atomic_set_acq_long(addr, (1 << nr));
842 }
843 
844 void
845 bxe_clear_bit(int                    nr,
846               volatile unsigned long *addr)
847 {
848     atomic_clear_acq_long(addr, (1 << nr));
849 }
850 
851 int
852 bxe_test_and_set_bit(int                    nr,
853                        volatile unsigned long *addr)
854 {
855     unsigned long x;
856     nr = (1 << nr);
857     do {
858         x = *addr;
859     } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
860     // if (x & nr) bit_was_set; else bit_was_not_set;
861     return (x & nr);
862 }
863 
864 int
865 bxe_test_and_clear_bit(int                    nr,
866                        volatile unsigned long *addr)
867 {
868     unsigned long x;
869     nr = (1 << nr);
870     do {
871         x = *addr;
872     } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
873     // if (x & nr) bit_was_set; else bit_was_not_set;
874     return (x & nr);
875 }
876 
877 int
878 bxe_cmpxchg(volatile int *addr,
879             int          old,
880             int          new)
881 {
882     int x;
883     do {
884         x = *addr;
885     } while (atomic_cmpset_acq_int(addr, old, new) == 0);
886     return (x);
887 }
888 
889 /*
890  * Get DMA memory from the OS.
891  *
892  * Validates that the OS has provided DMA buffers in response to a
893  * bus_dmamap_load call and saves the physical address of those buffers.
894  * When the callback is used the OS will return 0 for the mapping function
895  * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
896  * failures back to the caller.
897  *
898  * Returns:
899  *   Nothing.
900  */
901 static void
902 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
903 {
904     struct bxe_dma *dma = arg;
905 
906     if (error) {
907         dma->paddr = 0;
908         dma->nseg  = 0;
909         BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
910     } else {
911         dma->paddr = segs->ds_addr;
912         dma->nseg  = nseg;
913 #if 0
914         BLOGD(dma->sc, DBG_LOAD,,
915               "DMA alloc '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
916               dma->msg, dma->vaddr, (void *)dma->paddr,
917               dma->nseg, dma->size);
918 #endif
919     }
920 }
921 
922 /*
923  * Allocate a block of memory and map it for DMA. No partial completions
924  * allowed and release any resources acquired if we can't acquire all
925  * resources.
926  *
927  * Returns:
928  *   0 = Success, !0 = Failure
929  */
930 int
931 bxe_dma_alloc(struct bxe_softc *sc,
932               bus_size_t       size,
933               struct bxe_dma   *dma,
934               const char       *msg)
935 {
936     int rc;
937 
938     if (dma->size > 0) {
939         BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
940               (unsigned long)dma->size);
941         return (1);
942     }
943 
944     memset(dma, 0, sizeof(*dma)); /* sanity */
945     dma->sc   = sc;
946     dma->size = size;
947     snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
948 
949     rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
950                             BCM_PAGE_SIZE,      /* alignment */
951                             0,                  /* boundary limit */
952                             BUS_SPACE_MAXADDR,  /* restricted low */
953                             BUS_SPACE_MAXADDR,  /* restricted hi */
954                             NULL,               /* addr filter() */
955                             NULL,               /* addr filter() arg */
956                             size,               /* max map size */
957                             1,                  /* num discontinuous */
958                             size,               /* max seg size */
959                             BUS_DMA_ALLOCNOW,   /* flags */
960                             NULL,               /* lock() */
961                             NULL,               /* lock() arg */
962                             &dma->tag);         /* returned dma tag */
963     if (rc != 0) {
964         BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
965         memset(dma, 0, sizeof(*dma));
966         return (1);
967     }
968 
969     rc = bus_dmamem_alloc(dma->tag,
970                           (void **)&dma->vaddr,
971                           (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
972                           &dma->map);
973     if (rc != 0) {
974         BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
975         bus_dma_tag_destroy(dma->tag);
976         memset(dma, 0, sizeof(*dma));
977         return (1);
978     }
979 
980     rc = bus_dmamap_load(dma->tag,
981                          dma->map,
982                          dma->vaddr,
983                          size,
984                          bxe_dma_map_addr, /* BLOGD in here */
985                          dma,
986                          BUS_DMA_NOWAIT);
987     if (rc != 0) {
988         BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
989         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
990         bus_dma_tag_destroy(dma->tag);
991         memset(dma, 0, sizeof(*dma));
992         return (1);
993     }
994 
995     return (0);
996 }
997 
998 void
999 bxe_dma_free(struct bxe_softc *sc,
1000              struct bxe_dma   *dma)
1001 {
1002     if (dma->size > 0) {
1003 #if 0
1004         BLOGD(sc, DBG_LOAD,
1005               "DMA free '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
1006               dma->msg, dma->vaddr, (void *)dma->paddr,
1007               dma->nseg, dma->size);
1008 #endif
1009 
1010         DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
1011 
1012         bus_dmamap_sync(dma->tag, dma->map,
1013                         (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
1014         bus_dmamap_unload(dma->tag, dma->map);
1015         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1016         bus_dma_tag_destroy(dma->tag);
1017     }
1018 
1019     memset(dma, 0, sizeof(*dma));
1020 }
1021 
1022 /*
1023  * These indirect read and write routines are only during init.
1024  * The locking is handled by the MCP.
1025  */
1026 
1027 void
1028 bxe_reg_wr_ind(struct bxe_softc *sc,
1029                uint32_t         addr,
1030                uint32_t         val)
1031 {
1032     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1033     pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
1034     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1035 }
1036 
1037 uint32_t
1038 bxe_reg_rd_ind(struct bxe_softc *sc,
1039                uint32_t         addr)
1040 {
1041     uint32_t val;
1042 
1043     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1044     val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
1045     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1046 
1047     return (val);
1048 }
1049 
1050 #if 0
1051 void bxe_dp_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int msglvl)
1052 {
1053     uint32_t src_type = dmae->opcode & DMAE_COMMAND_SRC;
1054 
1055     switch (dmae->opcode & DMAE_COMMAND_DST) {
1056     case DMAE_CMD_DST_PCI:
1057         if (src_type == DMAE_CMD_SRC_PCI)
1058             DP(msglvl, "DMAE: opcode 0x%08x\n"
1059                "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
1060                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1061                dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1062                dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1063                dmae->comp_addr_hi, dmae->comp_addr_lo,
1064                dmae->comp_val);
1065         else
1066             DP(msglvl, "DMAE: opcode 0x%08x\n"
1067                "src [%08x], len [%d*4], dst [%x:%08x]\n"
1068                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1069                dmae->opcode, dmae->src_addr_lo >> 2,
1070                dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1071                dmae->comp_addr_hi, dmae->comp_addr_lo,
1072                dmae->comp_val);
1073         break;
1074     case DMAE_CMD_DST_GRC:
1075         if (src_type == DMAE_CMD_SRC_PCI)
1076             DP(msglvl, "DMAE: opcode 0x%08x\n"
1077                "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
1078                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1079                dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1080                dmae->len, dmae->dst_addr_lo >> 2,
1081                dmae->comp_addr_hi, dmae->comp_addr_lo,
1082                dmae->comp_val);
1083         else
1084             DP(msglvl, "DMAE: opcode 0x%08x\n"
1085                "src [%08x], len [%d*4], dst [%08x]\n"
1086                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1087                dmae->opcode, dmae->src_addr_lo >> 2,
1088                dmae->len, dmae->dst_addr_lo >> 2,
1089                dmae->comp_addr_hi, dmae->comp_addr_lo,
1090                dmae->comp_val);
1091         break;
1092     default:
1093         if (src_type == DMAE_CMD_SRC_PCI)
1094             DP(msglvl, "DMAE: opcode 0x%08x\n"
1095                "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
1096                "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1097                dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1098                dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1099                dmae->comp_val);
1100         else
1101             DP(msglvl, "DMAE: opcode 0x%08x\n"
1102                "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
1103                "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1104                dmae->opcode, dmae->src_addr_lo >> 2,
1105                dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1106                dmae->comp_val);
1107         break;
1108     }
1109 
1110 }
1111 #endif
1112 
1113 static int
1114 bxe_acquire_hw_lock(struct bxe_softc *sc,
1115                     uint32_t         resource)
1116 {
1117     uint32_t lock_status;
1118     uint32_t resource_bit = (1 << resource);
1119     int func = SC_FUNC(sc);
1120     uint32_t hw_lock_control_reg;
1121     int cnt;
1122 
1123     /* validate the resource is within range */
1124     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1125         BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1126         return (-1);
1127     }
1128 
1129     if (func <= 5) {
1130         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1131     } else {
1132         hw_lock_control_reg =
1133                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1134     }
1135 
1136     /* validate the resource is not already taken */
1137     lock_status = REG_RD(sc, hw_lock_control_reg);
1138     if (lock_status & resource_bit) {
1139         BLOGE(sc, "resource in use (status 0x%x bit 0x%x)\n",
1140               lock_status, resource_bit);
1141         return (-1);
1142     }
1143 
1144     /* try every 5ms for 5 seconds */
1145     for (cnt = 0; cnt < 1000; cnt++) {
1146         REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1147         lock_status = REG_RD(sc, hw_lock_control_reg);
1148         if (lock_status & resource_bit) {
1149             return (0);
1150         }
1151         DELAY(5000);
1152     }
1153 
1154     BLOGE(sc, "Resource lock timeout!\n");
1155     return (-1);
1156 }
1157 
1158 static int
1159 bxe_release_hw_lock(struct bxe_softc *sc,
1160                     uint32_t         resource)
1161 {
1162     uint32_t lock_status;
1163     uint32_t resource_bit = (1 << resource);
1164     int func = SC_FUNC(sc);
1165     uint32_t hw_lock_control_reg;
1166 
1167     /* validate the resource is within range */
1168     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1169         BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1170         return (-1);
1171     }
1172 
1173     if (func <= 5) {
1174         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1175     } else {
1176         hw_lock_control_reg =
1177                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1178     }
1179 
1180     /* validate the resource is currently taken */
1181     lock_status = REG_RD(sc, hw_lock_control_reg);
1182     if (!(lock_status & resource_bit)) {
1183         BLOGE(sc, "resource not in use (status 0x%x bit 0x%x)\n",
1184               lock_status, resource_bit);
1185         return (-1);
1186     }
1187 
1188     REG_WR(sc, hw_lock_control_reg, resource_bit);
1189     return (0);
1190 }
1191 
1192 /*
1193  * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1194  * had we done things the other way around, if two pfs from the same port
1195  * would attempt to access nvram at the same time, we could run into a
1196  * scenario such as:
1197  * pf A takes the port lock.
1198  * pf B succeeds in taking the same lock since they are from the same port.
1199  * pf A takes the per pf misc lock. Performs eeprom access.
1200  * pf A finishes. Unlocks the per pf misc lock.
1201  * Pf B takes the lock and proceeds to perform it's own access.
1202  * pf A unlocks the per port lock, while pf B is still working (!).
1203  * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1204  * access corrupted by pf B).*
1205  */
1206 static int
1207 bxe_acquire_nvram_lock(struct bxe_softc *sc)
1208 {
1209     int port = SC_PORT(sc);
1210     int count, i;
1211     uint32_t val = 0;
1212 
1213     /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1214     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1215 
1216     /* adjust timeout for emulation/FPGA */
1217     count = NVRAM_TIMEOUT_COUNT;
1218     if (CHIP_REV_IS_SLOW(sc)) {
1219         count *= 100;
1220     }
1221 
1222     /* request access to nvram interface */
1223     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1224            (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1225 
1226     for (i = 0; i < count*10; i++) {
1227         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1228         if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1229             break;
1230         }
1231 
1232         DELAY(5);
1233     }
1234 
1235     if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1236         BLOGE(sc, "Cannot get access to nvram interface\n");
1237         return (-1);
1238     }
1239 
1240     return (0);
1241 }
1242 
1243 static int
1244 bxe_release_nvram_lock(struct bxe_softc *sc)
1245 {
1246     int port = SC_PORT(sc);
1247     int count, i;
1248     uint32_t val = 0;
1249 
1250     /* adjust timeout for emulation/FPGA */
1251     count = NVRAM_TIMEOUT_COUNT;
1252     if (CHIP_REV_IS_SLOW(sc)) {
1253         count *= 100;
1254     }
1255 
1256     /* relinquish nvram interface */
1257     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1258            (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1259 
1260     for (i = 0; i < count*10; i++) {
1261         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1262         if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1263             break;
1264         }
1265 
1266         DELAY(5);
1267     }
1268 
1269     if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1270         BLOGE(sc, "Cannot free access to nvram interface\n");
1271         return (-1);
1272     }
1273 
1274     /* release HW lock: protect against other PFs in PF Direct Assignment */
1275     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1276 
1277     return (0);
1278 }
1279 
1280 static void
1281 bxe_enable_nvram_access(struct bxe_softc *sc)
1282 {
1283     uint32_t val;
1284 
1285     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1286 
1287     /* enable both bits, even on read */
1288     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1289            (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1290 }
1291 
1292 static void
1293 bxe_disable_nvram_access(struct bxe_softc *sc)
1294 {
1295     uint32_t val;
1296 
1297     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1298 
1299     /* disable both bits, even after read */
1300     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1301            (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1302                     MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1303 }
1304 
1305 static int
1306 bxe_nvram_read_dword(struct bxe_softc *sc,
1307                      uint32_t         offset,
1308                      uint32_t         *ret_val,
1309                      uint32_t         cmd_flags)
1310 {
1311     int count, i, rc;
1312     uint32_t val;
1313 
1314     /* build the command word */
1315     cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1316 
1317     /* need to clear DONE bit separately */
1318     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1319 
1320     /* address of the NVRAM to read from */
1321     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1322            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1323 
1324     /* issue a read command */
1325     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1326 
1327     /* adjust timeout for emulation/FPGA */
1328     count = NVRAM_TIMEOUT_COUNT;
1329     if (CHIP_REV_IS_SLOW(sc)) {
1330         count *= 100;
1331     }
1332 
1333     /* wait for completion */
1334     *ret_val = 0;
1335     rc = -1;
1336     for (i = 0; i < count; i++) {
1337         DELAY(5);
1338         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1339 
1340         if (val & MCPR_NVM_COMMAND_DONE) {
1341             val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1342             /* we read nvram data in cpu order
1343              * but ethtool sees it as an array of bytes
1344              * converting to big-endian will do the work
1345              */
1346             *ret_val = htobe32(val);
1347             rc = 0;
1348             break;
1349         }
1350     }
1351 
1352     if (rc == -1) {
1353         BLOGE(sc, "nvram read timeout expired\n");
1354     }
1355 
1356     return (rc);
1357 }
1358 
1359 static int
1360 bxe_nvram_read(struct bxe_softc *sc,
1361                uint32_t         offset,
1362                uint8_t          *ret_buf,
1363                int              buf_size)
1364 {
1365     uint32_t cmd_flags;
1366     uint32_t val;
1367     int rc;
1368 
1369     if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1370         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1371               offset, buf_size);
1372         return (-1);
1373     }
1374 
1375     if ((offset + buf_size) > sc->devinfo.flash_size) {
1376         BLOGE(sc, "Invalid parameter, "
1377                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1378               offset, buf_size, sc->devinfo.flash_size);
1379         return (-1);
1380     }
1381 
1382     /* request access to nvram interface */
1383     rc = bxe_acquire_nvram_lock(sc);
1384     if (rc) {
1385         return (rc);
1386     }
1387 
1388     /* enable access to nvram interface */
1389     bxe_enable_nvram_access(sc);
1390 
1391     /* read the first word(s) */
1392     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1393     while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1394         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1395         memcpy(ret_buf, &val, 4);
1396 
1397         /* advance to the next dword */
1398         offset += sizeof(uint32_t);
1399         ret_buf += sizeof(uint32_t);
1400         buf_size -= sizeof(uint32_t);
1401         cmd_flags = 0;
1402     }
1403 
1404     if (rc == 0) {
1405         cmd_flags |= MCPR_NVM_COMMAND_LAST;
1406         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1407         memcpy(ret_buf, &val, 4);
1408     }
1409 
1410     /* disable access to nvram interface */
1411     bxe_disable_nvram_access(sc);
1412     bxe_release_nvram_lock(sc);
1413 
1414     return (rc);
1415 }
1416 
1417 static int
1418 bxe_nvram_write_dword(struct bxe_softc *sc,
1419                       uint32_t         offset,
1420                       uint32_t         val,
1421                       uint32_t         cmd_flags)
1422 {
1423     int count, i, rc;
1424 
1425     /* build the command word */
1426     cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1427 
1428     /* need to clear DONE bit separately */
1429     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1430 
1431     /* write the data */
1432     REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1433 
1434     /* address of the NVRAM to write to */
1435     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1436            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1437 
1438     /* issue the write command */
1439     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1440 
1441     /* adjust timeout for emulation/FPGA */
1442     count = NVRAM_TIMEOUT_COUNT;
1443     if (CHIP_REV_IS_SLOW(sc)) {
1444         count *= 100;
1445     }
1446 
1447     /* wait for completion */
1448     rc = -1;
1449     for (i = 0; i < count; i++) {
1450         DELAY(5);
1451         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1452         if (val & MCPR_NVM_COMMAND_DONE) {
1453             rc = 0;
1454             break;
1455         }
1456     }
1457 
1458     if (rc == -1) {
1459         BLOGE(sc, "nvram write timeout expired\n");
1460     }
1461 
1462     return (rc);
1463 }
1464 
1465 #define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1466 
1467 static int
1468 bxe_nvram_write1(struct bxe_softc *sc,
1469                  uint32_t         offset,
1470                  uint8_t          *data_buf,
1471                  int              buf_size)
1472 {
1473     uint32_t cmd_flags;
1474     uint32_t align_offset;
1475     uint32_t val;
1476     int rc;
1477 
1478     if ((offset + buf_size) > sc->devinfo.flash_size) {
1479         BLOGE(sc, "Invalid parameter, "
1480                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1481               offset, buf_size, sc->devinfo.flash_size);
1482         return (-1);
1483     }
1484 
1485     /* request access to nvram interface */
1486     rc = bxe_acquire_nvram_lock(sc);
1487     if (rc) {
1488         return (rc);
1489     }
1490 
1491     /* enable access to nvram interface */
1492     bxe_enable_nvram_access(sc);
1493 
1494     cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1495     align_offset = (offset & ~0x03);
1496     rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1497 
1498     if (rc == 0) {
1499         val &= ~(0xff << BYTE_OFFSET(offset));
1500         val |= (*data_buf << BYTE_OFFSET(offset));
1501 
1502         /* nvram data is returned as an array of bytes
1503          * convert it back to cpu order
1504          */
1505         val = be32toh(val);
1506 
1507         rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1508     }
1509 
1510     /* disable access to nvram interface */
1511     bxe_disable_nvram_access(sc);
1512     bxe_release_nvram_lock(sc);
1513 
1514     return (rc);
1515 }
1516 
1517 static int
1518 bxe_nvram_write(struct bxe_softc *sc,
1519                 uint32_t         offset,
1520                 uint8_t          *data_buf,
1521                 int              buf_size)
1522 {
1523     uint32_t cmd_flags;
1524     uint32_t val;
1525     uint32_t written_so_far;
1526     int rc;
1527 
1528     if (buf_size == 1) {
1529         return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1530     }
1531 
1532     if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1533         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1534               offset, buf_size);
1535         return (-1);
1536     }
1537 
1538     if (buf_size == 0) {
1539         return (0); /* nothing to do */
1540     }
1541 
1542     if ((offset + buf_size) > sc->devinfo.flash_size) {
1543         BLOGE(sc, "Invalid parameter, "
1544                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1545               offset, buf_size, sc->devinfo.flash_size);
1546         return (-1);
1547     }
1548 
1549     /* request access to nvram interface */
1550     rc = bxe_acquire_nvram_lock(sc);
1551     if (rc) {
1552         return (rc);
1553     }
1554 
1555     /* enable access to nvram interface */
1556     bxe_enable_nvram_access(sc);
1557 
1558     written_so_far = 0;
1559     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1560     while ((written_so_far < buf_size) && (rc == 0)) {
1561         if (written_so_far == (buf_size - sizeof(uint32_t))) {
1562             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1563         } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1564             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1565         } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1566             cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1567         }
1568 
1569         memcpy(&val, data_buf, 4);
1570 
1571         rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1572 
1573         /* advance to the next dword */
1574         offset += sizeof(uint32_t);
1575         data_buf += sizeof(uint32_t);
1576         written_so_far += sizeof(uint32_t);
1577         cmd_flags = 0;
1578     }
1579 
1580     /* disable access to nvram interface */
1581     bxe_disable_nvram_access(sc);
1582     bxe_release_nvram_lock(sc);
1583 
1584     return (rc);
1585 }
1586 
1587 /* copy command into DMAE command memory and set DMAE command Go */
1588 void
1589 bxe_post_dmae(struct bxe_softc    *sc,
1590               struct dmae_command *dmae,
1591               int                 idx)
1592 {
1593     uint32_t cmd_offset;
1594     int i;
1595 
1596     cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx));
1597     for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) {
1598         REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1599     }
1600 
1601     REG_WR(sc, dmae_reg_go_c[idx], 1);
1602 }
1603 
1604 uint32_t
1605 bxe_dmae_opcode_add_comp(uint32_t opcode,
1606                          uint8_t  comp_type)
1607 {
1608     return (opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
1609                       DMAE_COMMAND_C_TYPE_ENABLE));
1610 }
1611 
1612 uint32_t
1613 bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1614 {
1615     return (opcode & ~DMAE_COMMAND_SRC_RESET);
1616 }
1617 
1618 uint32_t
1619 bxe_dmae_opcode(struct bxe_softc *sc,
1620                 uint8_t          src_type,
1621                 uint8_t          dst_type,
1622                 uint8_t          with_comp,
1623                 uint8_t          comp_type)
1624 {
1625     uint32_t opcode = 0;
1626 
1627     opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
1628                (dst_type << DMAE_COMMAND_DST_SHIFT));
1629 
1630     opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET);
1631 
1632     opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1633 
1634     opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) |
1635                (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT));
1636 
1637     opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
1638 
1639 #ifdef __BIG_ENDIAN
1640     opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1641 #else
1642     opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1643 #endif
1644 
1645     if (with_comp) {
1646         opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1647     }
1648 
1649     return (opcode);
1650 }
1651 
1652 static void
1653 bxe_prep_dmae_with_comp(struct bxe_softc    *sc,
1654                         struct dmae_command *dmae,
1655                         uint8_t             src_type,
1656                         uint8_t             dst_type)
1657 {
1658     memset(dmae, 0, sizeof(struct dmae_command));
1659 
1660     /* set the opcode */
1661     dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1662                                    TRUE, DMAE_COMP_PCI);
1663 
1664     /* fill in the completion parameters */
1665     dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1666     dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1667     dmae->comp_val     = DMAE_COMP_VAL;
1668 }
1669 
1670 /* issue a DMAE command over the init channel and wait for completion */
1671 static int
1672 bxe_issue_dmae_with_comp(struct bxe_softc    *sc,
1673                          struct dmae_command *dmae)
1674 {
1675     uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1676     int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1677 
1678     BXE_DMAE_LOCK(sc);
1679 
1680     /* reset completion */
1681     *wb_comp = 0;
1682 
1683     /* post the command on the channel used for initializations */
1684     bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1685 
1686     /* wait for completion */
1687     DELAY(5);
1688 
1689     while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1690         if (!timeout ||
1691             (sc->recovery_state != BXE_RECOVERY_DONE &&
1692              sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1693             BLOGE(sc, "DMAE timeout!\n");
1694             BXE_DMAE_UNLOCK(sc);
1695             return (DMAE_TIMEOUT);
1696         }
1697 
1698         timeout--;
1699         DELAY(50);
1700     }
1701 
1702     if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1703         BLOGE(sc, "DMAE PCI error!\n");
1704         BXE_DMAE_UNLOCK(sc);
1705         return (DMAE_PCI_ERROR);
1706     }
1707 
1708     BXE_DMAE_UNLOCK(sc);
1709     return (0);
1710 }
1711 
1712 void
1713 bxe_read_dmae(struct bxe_softc *sc,
1714               uint32_t         src_addr,
1715               uint32_t         len32)
1716 {
1717     struct dmae_command dmae;
1718     uint32_t *data;
1719     int i, rc;
1720 
1721     DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1722 
1723     if (!sc->dmae_ready) {
1724         data = BXE_SP(sc, wb_data[0]);
1725 
1726         for (i = 0; i < len32; i++) {
1727             data[i] = (CHIP_IS_E1(sc)) ?
1728                           bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1729                           REG_RD(sc, (src_addr + (i * 4)));
1730         }
1731 
1732         return;
1733     }
1734 
1735     /* set opcode and fixed command fields */
1736     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1737 
1738     /* fill in addresses and len */
1739     dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1740     dmae.src_addr_hi = 0;
1741     dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1742     dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1743     dmae.len         = len32;
1744 
1745     /* issue the command and wait for completion */
1746     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1747         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1748     };
1749 }
1750 
1751 void
1752 bxe_write_dmae(struct bxe_softc *sc,
1753                bus_addr_t       dma_addr,
1754                uint32_t         dst_addr,
1755                uint32_t         len32)
1756 {
1757     struct dmae_command dmae;
1758     int rc;
1759 
1760     if (!sc->dmae_ready) {
1761         DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1762 
1763         if (CHIP_IS_E1(sc)) {
1764             ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1765         } else {
1766             ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1767         }
1768 
1769         return;
1770     }
1771 
1772     /* set opcode and fixed command fields */
1773     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1774 
1775     /* fill in addresses and len */
1776     dmae.src_addr_lo = U64_LO(dma_addr);
1777     dmae.src_addr_hi = U64_HI(dma_addr);
1778     dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1779     dmae.dst_addr_hi = 0;
1780     dmae.len         = len32;
1781 
1782     /* issue the command and wait for completion */
1783     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1784         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1785     }
1786 }
1787 
1788 void
1789 bxe_write_dmae_phys_len(struct bxe_softc *sc,
1790                         bus_addr_t       phys_addr,
1791                         uint32_t         addr,
1792                         uint32_t         len)
1793 {
1794     int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1795     int offset = 0;
1796 
1797     while (len > dmae_wr_max) {
1798         bxe_write_dmae(sc,
1799                        (phys_addr + offset), /* src DMA address */
1800                        (addr + offset),      /* dst GRC address */
1801                        dmae_wr_max);
1802         offset += (dmae_wr_max * 4);
1803         len -= dmae_wr_max;
1804     }
1805 
1806     bxe_write_dmae(sc,
1807                    (phys_addr + offset), /* src DMA address */
1808                    (addr + offset),      /* dst GRC address */
1809                    len);
1810 }
1811 
1812 void
1813 bxe_set_ctx_validation(struct bxe_softc   *sc,
1814                        struct eth_context *cxt,
1815                        uint32_t           cid)
1816 {
1817     /* ustorm cxt validation */
1818     cxt->ustorm_ag_context.cdu_usage =
1819         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1820             CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1821     /* xcontext validation */
1822     cxt->xstorm_ag_context.cdu_reserved =
1823         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1824             CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1825 }
1826 
1827 static void
1828 bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1829                             uint8_t          port,
1830                             uint8_t          fw_sb_id,
1831                             uint8_t          sb_index,
1832                             uint8_t          ticks)
1833 {
1834     uint32_t addr =
1835         (BAR_CSTRORM_INTMEM +
1836          CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1837 
1838     REG_WR8(sc, addr, ticks);
1839 
1840     BLOGD(sc, DBG_LOAD,
1841           "port %d fw_sb_id %d sb_index %d ticks %d\n",
1842           port, fw_sb_id, sb_index, ticks);
1843 }
1844 
1845 static void
1846 bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1847                             uint8_t          port,
1848                             uint16_t         fw_sb_id,
1849                             uint8_t          sb_index,
1850                             uint8_t          disable)
1851 {
1852     uint32_t enable_flag =
1853         (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1854     uint32_t addr =
1855         (BAR_CSTRORM_INTMEM +
1856          CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1857     uint8_t flags;
1858 
1859     /* clear and set */
1860     flags = REG_RD8(sc, addr);
1861     flags &= ~HC_INDEX_DATA_HC_ENABLED;
1862     flags |= enable_flag;
1863     REG_WR8(sc, addr, flags);
1864 
1865     BLOGD(sc, DBG_LOAD,
1866           "port %d fw_sb_id %d sb_index %d disable %d\n",
1867           port, fw_sb_id, sb_index, disable);
1868 }
1869 
1870 void
1871 bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1872                              uint8_t          fw_sb_id,
1873                              uint8_t          sb_index,
1874                              uint8_t          disable,
1875                              uint16_t         usec)
1876 {
1877     int port = SC_PORT(sc);
1878     uint8_t ticks = (usec / 4); /* XXX ??? */
1879 
1880     bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1881 
1882     disable = (disable) ? 1 : ((usec) ? 0 : 1);
1883     bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1884 }
1885 
1886 void
1887 elink_cb_udelay(struct bxe_softc *sc,
1888                 uint32_t         usecs)
1889 {
1890     DELAY(usecs);
1891 }
1892 
1893 uint32_t
1894 elink_cb_reg_read(struct bxe_softc *sc,
1895                   uint32_t         reg_addr)
1896 {
1897     return (REG_RD(sc, reg_addr));
1898 }
1899 
1900 void
1901 elink_cb_reg_write(struct bxe_softc *sc,
1902                    uint32_t         reg_addr,
1903                    uint32_t         val)
1904 {
1905     REG_WR(sc, reg_addr, val);
1906 }
1907 
1908 void
1909 elink_cb_reg_wb_write(struct bxe_softc *sc,
1910                       uint32_t         offset,
1911                       uint32_t         *wb_write,
1912                       uint16_t         len)
1913 {
1914     REG_WR_DMAE(sc, offset, wb_write, len);
1915 }
1916 
1917 void
1918 elink_cb_reg_wb_read(struct bxe_softc *sc,
1919                      uint32_t         offset,
1920                      uint32_t         *wb_write,
1921                      uint16_t         len)
1922 {
1923     REG_RD_DMAE(sc, offset, wb_write, len);
1924 }
1925 
1926 uint8_t
1927 elink_cb_path_id(struct bxe_softc *sc)
1928 {
1929     return (SC_PATH(sc));
1930 }
1931 
1932 void
1933 elink_cb_event_log(struct bxe_softc     *sc,
1934                    const elink_log_id_t elink_log_id,
1935                    ...)
1936 {
1937     /* XXX */
1938 #if 0
1939     //va_list ap;
1940     va_start(ap, elink_log_id);
1941     _XXX_(sc, lm_log_id, ap);
1942     va_end(ap);
1943 #endif
1944     BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1945 }
1946 
1947 static int
1948 bxe_set_spio(struct bxe_softc *sc,
1949              int              spio,
1950              uint32_t         mode)
1951 {
1952     uint32_t spio_reg;
1953 
1954     /* Only 2 SPIOs are configurable */
1955     if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1956         BLOGE(sc, "Invalid SPIO 0x%x\n", spio);
1957         return (-1);
1958     }
1959 
1960     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1961 
1962     /* read SPIO and mask except the float bits */
1963     spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1964 
1965     switch (mode) {
1966     case MISC_SPIO_OUTPUT_LOW:
1967         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1968         /* clear FLOAT and set CLR */
1969         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1970         spio_reg |=  (spio << MISC_SPIO_CLR_POS);
1971         break;
1972 
1973     case MISC_SPIO_OUTPUT_HIGH:
1974         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1975         /* clear FLOAT and set SET */
1976         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1977         spio_reg |=  (spio << MISC_SPIO_SET_POS);
1978         break;
1979 
1980     case MISC_SPIO_INPUT_HI_Z:
1981         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1982         /* set FLOAT */
1983         spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1984         break;
1985 
1986     default:
1987         break;
1988     }
1989 
1990     REG_WR(sc, MISC_REG_SPIO, spio_reg);
1991     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1992 
1993     return (0);
1994 }
1995 
1996 static int
1997 bxe_gpio_read(struct bxe_softc *sc,
1998               int              gpio_num,
1999               uint8_t          port)
2000 {
2001     /* The GPIO should be swapped if swap register is set and active */
2002     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2003                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2004     int gpio_shift = (gpio_num +
2005                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2006     uint32_t gpio_mask = (1 << gpio_shift);
2007     uint32_t gpio_reg;
2008 
2009     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2010         BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2011         return (-1);
2012     }
2013 
2014     /* read GPIO value */
2015     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2016 
2017     /* get the requested pin value */
2018     return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
2019 }
2020 
2021 static int
2022 bxe_gpio_write(struct bxe_softc *sc,
2023                int              gpio_num,
2024                uint32_t         mode,
2025                uint8_t          port)
2026 {
2027     /* The GPIO should be swapped if swap register is set and active */
2028     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2029                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2030     int gpio_shift = (gpio_num +
2031                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2032     uint32_t gpio_mask = (1 << gpio_shift);
2033     uint32_t gpio_reg;
2034 
2035     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2036         BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2037         return (-1);
2038     }
2039 
2040     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2041 
2042     /* read GPIO and mask except the float bits */
2043     gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2044 
2045     switch (mode) {
2046     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2047         BLOGD(sc, DBG_PHY,
2048               "Set GPIO %d (shift %d) -> output low\n",
2049               gpio_num, gpio_shift);
2050         /* clear FLOAT and set CLR */
2051         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2052         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2053         break;
2054 
2055     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2056         BLOGD(sc, DBG_PHY,
2057               "Set GPIO %d (shift %d) -> output high\n",
2058               gpio_num, gpio_shift);
2059         /* clear FLOAT and set SET */
2060         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2061         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2062         break;
2063 
2064     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2065         BLOGD(sc, DBG_PHY,
2066               "Set GPIO %d (shift %d) -> input\n",
2067               gpio_num, gpio_shift);
2068         /* set FLOAT */
2069         gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2070         break;
2071 
2072     default:
2073         break;
2074     }
2075 
2076     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2077     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2078 
2079     return (0);
2080 }
2081 
2082 static int
2083 bxe_gpio_mult_write(struct bxe_softc *sc,
2084                     uint8_t          pins,
2085                     uint32_t         mode)
2086 {
2087     uint32_t gpio_reg;
2088 
2089     /* any port swapping should be handled by caller */
2090 
2091     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2092 
2093     /* read GPIO and mask except the float bits */
2094     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2095     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2096     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2097     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2098 
2099     switch (mode) {
2100     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2101         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
2102         /* set CLR */
2103         gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2104         break;
2105 
2106     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2107         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
2108         /* set SET */
2109         gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2110         break;
2111 
2112     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2113         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
2114         /* set FLOAT */
2115         gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2116         break;
2117 
2118     default:
2119         BLOGE(sc, "Invalid GPIO mode assignment %d\n", mode);
2120         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2121         return (-1);
2122     }
2123 
2124     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2125     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2126 
2127     return (0);
2128 }
2129 
2130 static int
2131 bxe_gpio_int_write(struct bxe_softc *sc,
2132                    int              gpio_num,
2133                    uint32_t         mode,
2134                    uint8_t          port)
2135 {
2136     /* The GPIO should be swapped if swap register is set and active */
2137     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2138                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2139     int gpio_shift = (gpio_num +
2140                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2141     uint32_t gpio_mask = (1 << gpio_shift);
2142     uint32_t gpio_reg;
2143 
2144     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2145         BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2146         return (-1);
2147     }
2148 
2149     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2150 
2151     /* read GPIO int */
2152     gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2153 
2154     switch (mode) {
2155     case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2156         BLOGD(sc, DBG_PHY,
2157               "Clear GPIO INT %d (shift %d) -> output low\n",
2158               gpio_num, gpio_shift);
2159         /* clear SET and set CLR */
2160         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2161         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2162         break;
2163 
2164     case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2165         BLOGD(sc, DBG_PHY,
2166               "Set GPIO INT %d (shift %d) -> output high\n",
2167               gpio_num, gpio_shift);
2168         /* clear CLR and set SET */
2169         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2170         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2171         break;
2172 
2173     default:
2174         break;
2175     }
2176 
2177     REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2178     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2179 
2180     return (0);
2181 }
2182 
2183 uint32_t
2184 elink_cb_gpio_read(struct bxe_softc *sc,
2185                    uint16_t         gpio_num,
2186                    uint8_t          port)
2187 {
2188     return (bxe_gpio_read(sc, gpio_num, port));
2189 }
2190 
2191 uint8_t
2192 elink_cb_gpio_write(struct bxe_softc *sc,
2193                     uint16_t         gpio_num,
2194                     uint8_t          mode, /* 0=low 1=high */
2195                     uint8_t          port)
2196 {
2197     return (bxe_gpio_write(sc, gpio_num, mode, port));
2198 }
2199 
2200 uint8_t
2201 elink_cb_gpio_mult_write(struct bxe_softc *sc,
2202                          uint8_t          pins,
2203                          uint8_t          mode) /* 0=low 1=high */
2204 {
2205     return (bxe_gpio_mult_write(sc, pins, mode));
2206 }
2207 
2208 uint8_t
2209 elink_cb_gpio_int_write(struct bxe_softc *sc,
2210                         uint16_t         gpio_num,
2211                         uint8_t          mode, /* 0=low 1=high */
2212                         uint8_t          port)
2213 {
2214     return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2215 }
2216 
2217 void
2218 elink_cb_notify_link_changed(struct bxe_softc *sc)
2219 {
2220     REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2221                 (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2222 }
2223 
2224 /* send the MCP a request, block until there is a reply */
2225 uint32_t
2226 elink_cb_fw_command(struct bxe_softc *sc,
2227                     uint32_t         command,
2228                     uint32_t         param)
2229 {
2230     int mb_idx = SC_FW_MB_IDX(sc);
2231     uint32_t seq;
2232     uint32_t rc = 0;
2233     uint32_t cnt = 1;
2234     uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2235 
2236     BXE_FWMB_LOCK(sc);
2237 
2238     seq = ++sc->fw_seq;
2239     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2240     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2241 
2242     BLOGD(sc, DBG_PHY,
2243           "wrote command 0x%08x to FW MB param 0x%08x\n",
2244           (command | seq), param);
2245 
2246     /* Let the FW do it's magic. GIve it up to 5 seconds... */
2247     do {
2248         DELAY(delay * 1000);
2249         rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2250     } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2251 
2252     BLOGD(sc, DBG_PHY,
2253           "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2254           cnt*delay, rc, seq);
2255 
2256     /* is this a reply to our command? */
2257     if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2258         rc &= FW_MSG_CODE_MASK;
2259     } else {
2260         /* Ruh-roh! */
2261         BLOGE(sc, "FW failed to respond!\n");
2262         // XXX bxe_fw_dump(sc);
2263         rc = 0;
2264     }
2265 
2266     BXE_FWMB_UNLOCK(sc);
2267     return (rc);
2268 }
2269 
2270 static uint32_t
2271 bxe_fw_command(struct bxe_softc *sc,
2272                uint32_t         command,
2273                uint32_t         param)
2274 {
2275     return (elink_cb_fw_command(sc, command, param));
2276 }
2277 
2278 static void
2279 __storm_memset_dma_mapping(struct bxe_softc *sc,
2280                            uint32_t         addr,
2281                            bus_addr_t       mapping)
2282 {
2283     REG_WR(sc, addr, U64_LO(mapping));
2284     REG_WR(sc, (addr + 4), U64_HI(mapping));
2285 }
2286 
2287 static void
2288 storm_memset_spq_addr(struct bxe_softc *sc,
2289                       bus_addr_t       mapping,
2290                       uint16_t         abs_fid)
2291 {
2292     uint32_t addr = (XSEM_REG_FAST_MEMORY +
2293                      XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2294     __storm_memset_dma_mapping(sc, addr, mapping);
2295 }
2296 
2297 static void
2298 storm_memset_vf_to_pf(struct bxe_softc *sc,
2299                       uint16_t         abs_fid,
2300                       uint16_t         pf_id)
2301 {
2302     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2303     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2304     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2305     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2306 }
2307 
2308 static void
2309 storm_memset_func_en(struct bxe_softc *sc,
2310                      uint16_t         abs_fid,
2311                      uint8_t          enable)
2312 {
2313     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2314     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2315     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2316     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2317 }
2318 
2319 static void
2320 storm_memset_eq_data(struct bxe_softc       *sc,
2321                      struct event_ring_data *eq_data,
2322                      uint16_t               pfid)
2323 {
2324     uint32_t addr;
2325     size_t size;
2326 
2327     addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2328     size = sizeof(struct event_ring_data);
2329     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2330 }
2331 
2332 static void
2333 storm_memset_eq_prod(struct bxe_softc *sc,
2334                      uint16_t         eq_prod,
2335                      uint16_t         pfid)
2336 {
2337     uint32_t addr = (BAR_CSTRORM_INTMEM +
2338                      CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2339     REG_WR16(sc, addr, eq_prod);
2340 }
2341 
2342 /*
2343  * Post a slowpath command.
2344  *
2345  * A slowpath command is used to propogate a configuration change through
2346  * the controller in a controlled manner, allowing each STORM processor and
2347  * other H/W blocks to phase in the change.  The commands sent on the
2348  * slowpath are referred to as ramrods.  Depending on the ramrod used the
2349  * completion of the ramrod will occur in different ways.  Here's a
2350  * breakdown of ramrods and how they complete:
2351  *
2352  * RAMROD_CMD_ID_ETH_PORT_SETUP
2353  *   Used to setup the leading connection on a port.  Completes on the
2354  *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
2355  *
2356  * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2357  *   Used to setup an additional connection on a port.  Completes on the
2358  *   RCQ of the multi-queue/RSS connection being initialized.
2359  *
2360  * RAMROD_CMD_ID_ETH_STAT_QUERY
2361  *   Used to force the storm processors to update the statistics database
2362  *   in host memory.  This ramrod is send on the leading connection CID and
2363  *   completes as an index increment of the CSTORM on the default status
2364  *   block.
2365  *
2366  * RAMROD_CMD_ID_ETH_UPDATE
2367  *   Used to update the state of the leading connection, usually to udpate
2368  *   the RSS indirection table.  Completes on the RCQ of the leading
2369  *   connection. (Not currently used under FreeBSD until OS support becomes
2370  *   available.)
2371  *
2372  * RAMROD_CMD_ID_ETH_HALT
2373  *   Used when tearing down a connection prior to driver unload.  Completes
2374  *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
2375  *   use this on the leading connection.
2376  *
2377  * RAMROD_CMD_ID_ETH_SET_MAC
2378  *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
2379  *   the RCQ of the leading connection.
2380  *
2381  * RAMROD_CMD_ID_ETH_CFC_DEL
2382  *   Used when tearing down a conneciton prior to driver unload.  Completes
2383  *   on the RCQ of the leading connection (since the current connection
2384  *   has been completely removed from controller memory).
2385  *
2386  * RAMROD_CMD_ID_ETH_PORT_DEL
2387  *   Used to tear down the leading connection prior to driver unload,
2388  *   typically fp[0].  Completes as an index increment of the CSTORM on the
2389  *   default status block.
2390  *
2391  * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2392  *   Used for connection offload.  Completes on the RCQ of the multi-queue
2393  *   RSS connection that is being offloaded.  (Not currently used under
2394  *   FreeBSD.)
2395  *
2396  * There can only be one command pending per function.
2397  *
2398  * Returns:
2399  *   0 = Success, !0 = Failure.
2400  */
2401 
2402 /* must be called under the spq lock */
2403 static inline
2404 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2405 {
2406     struct eth_spe *next_spe = sc->spq_prod_bd;
2407 
2408     if (sc->spq_prod_bd == sc->spq_last_bd) {
2409         /* wrap back to the first eth_spq */
2410         sc->spq_prod_bd = sc->spq;
2411         sc->spq_prod_idx = 0;
2412     } else {
2413         sc->spq_prod_bd++;
2414         sc->spq_prod_idx++;
2415     }
2416 
2417     return (next_spe);
2418 }
2419 
2420 /* must be called under the spq lock */
2421 static inline
2422 void bxe_sp_prod_update(struct bxe_softc *sc)
2423 {
2424     int func = SC_FUNC(sc);
2425 
2426     /*
2427      * Make sure that BD data is updated before writing the producer.
2428      * BD data is written to the memory, the producer is read from the
2429      * memory, thus we need a full memory barrier to ensure the ordering.
2430      */
2431     mb();
2432 
2433     REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2434              sc->spq_prod_idx);
2435 
2436     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2437                       BUS_SPACE_BARRIER_WRITE);
2438 }
2439 
2440 /**
2441  * bxe_is_contextless_ramrod - check if the current command ends on EQ
2442  *
2443  * @cmd:      command to check
2444  * @cmd_type: command type
2445  */
2446 static inline
2447 int bxe_is_contextless_ramrod(int cmd,
2448                               int cmd_type)
2449 {
2450     if ((cmd_type == NONE_CONNECTION_TYPE) ||
2451         (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2452         (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2453         (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2454         (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2455         (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2456         (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2457         return (TRUE);
2458     } else {
2459         return (FALSE);
2460     }
2461 }
2462 
2463 /**
2464  * bxe_sp_post - place a single command on an SP ring
2465  *
2466  * @sc:         driver handle
2467  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
2468  * @cid:        SW CID the command is related to
2469  * @data_hi:    command private data address (high 32 bits)
2470  * @data_lo:    command private data address (low 32 bits)
2471  * @cmd_type:   command type (e.g. NONE, ETH)
2472  *
2473  * SP data is handled as if it's always an address pair, thus data fields are
2474  * not swapped to little endian in upper functions. Instead this function swaps
2475  * data as if it's two uint32 fields.
2476  */
2477 int
2478 bxe_sp_post(struct bxe_softc *sc,
2479             int              command,
2480             int              cid,
2481             uint32_t         data_hi,
2482             uint32_t         data_lo,
2483             int              cmd_type)
2484 {
2485     struct eth_spe *spe;
2486     uint16_t type;
2487     int common;
2488 
2489     common = bxe_is_contextless_ramrod(command, cmd_type);
2490 
2491     BXE_SP_LOCK(sc);
2492 
2493     if (common) {
2494         if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2495             BLOGE(sc, "EQ ring is full!\n");
2496             BXE_SP_UNLOCK(sc);
2497             return (-1);
2498         }
2499     } else {
2500         if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2501             BLOGE(sc, "SPQ ring is full!\n");
2502             BXE_SP_UNLOCK(sc);
2503             return (-1);
2504         }
2505     }
2506 
2507     spe = bxe_sp_get_next(sc);
2508 
2509     /* CID needs port number to be encoded int it */
2510     spe->hdr.conn_and_cmd_data =
2511         htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid));
2512 
2513     type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
2514 
2515     /* TBD: Check if it works for VFs */
2516     type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) &
2517              SPE_HDR_FUNCTION_ID);
2518 
2519     spe->hdr.type = htole16(type);
2520 
2521     spe->data.update_data_addr.hi = htole32(data_hi);
2522     spe->data.update_data_addr.lo = htole32(data_lo);
2523 
2524     /*
2525      * It's ok if the actual decrement is issued towards the memory
2526      * somewhere between the lock and unlock. Thus no more explict
2527      * memory barrier is needed.
2528      */
2529     if (common) {
2530         atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2531     } else {
2532         atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2533     }
2534 
2535     BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2536     BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2537           BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2538     BLOGD(sc, DBG_SP,
2539           "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2540           sc->spq_prod_idx,
2541           (uint32_t)U64_HI(sc->spq_dma.paddr),
2542           (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2543           command,
2544           common,
2545           HW_CID(sc, cid),
2546           data_hi,
2547           data_lo,
2548           type,
2549           atomic_load_acq_long(&sc->cq_spq_left),
2550           atomic_load_acq_long(&sc->eq_spq_left));
2551 
2552     bxe_sp_prod_update(sc);
2553 
2554     BXE_SP_UNLOCK(sc);
2555     return (0);
2556 }
2557 
2558 /**
2559  * bxe_debug_print_ind_table - prints the indirection table configuration.
2560  *
2561  * @sc: driver hanlde
2562  * @p:  pointer to rss configuration
2563  */
2564 #if 0
2565 static void
2566 bxe_debug_print_ind_table(struct bxe_softc               *sc,
2567                           struct ecore_config_rss_params *p)
2568 {
2569     int i;
2570 
2571     BLOGD(sc, DBG_LOAD, "Setting indirection table to:\n");
2572     BLOGD(sc, DBG_LOAD, "    0x0000: ");
2573     for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
2574         BLOGD(sc, DBG_LOAD, "0x%02x ", p->ind_table[i]);
2575 
2576         /* Print 4 bytes in a line */
2577         if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) &&
2578             (((i + 1) & 0x3) == 0)) {
2579             BLOGD(sc, DBG_LOAD, "\n");
2580             BLOGD(sc, DBG_LOAD, "0x%04x: ", i + 1);
2581         }
2582     }
2583 
2584     BLOGD(sc, DBG_LOAD, "\n");
2585 }
2586 #endif
2587 
2588 /*
2589  * FreeBSD Device probe function.
2590  *
2591  * Compares the device found to the driver's list of supported devices and
2592  * reports back to the bsd loader whether this is the right driver for the device.
2593  * This is the driver entry function called from the "kldload" command.
2594  *
2595  * Returns:
2596  *   BUS_PROBE_DEFAULT on success, positive value on failure.
2597  */
2598 static int
2599 bxe_probe(device_t dev)
2600 {
2601     struct bxe_softc *sc;
2602     struct bxe_device_type *t;
2603     char *descbuf;
2604     uint16_t did, sdid, svid, vid;
2605 
2606     /* Find our device structure */
2607     sc = device_get_softc(dev);
2608     sc->dev = dev;
2609     t = bxe_devs;
2610 
2611     /* Get the data for the device to be probed. */
2612     vid  = pci_get_vendor(dev);
2613     did  = pci_get_device(dev);
2614     svid = pci_get_subvendor(dev);
2615     sdid = pci_get_subdevice(dev);
2616 
2617     BLOGD(sc, DBG_LOAD,
2618           "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
2619           "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
2620 
2621     /* Look through the list of known devices for a match. */
2622     while (t->bxe_name != NULL) {
2623         if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2624             ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2625             ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2626             descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
2627             if (descbuf == NULL)
2628                 return (ENOMEM);
2629 
2630             /* Print out the device identity. */
2631             snprintf(descbuf, BXE_DEVDESC_MAX,
2632                      "%s (%c%d) BXE v:%s\n", t->bxe_name,
2633                      (((pci_read_config(dev, PCIR_REVID, 4) &
2634                         0xf0) >> 4) + 'A'),
2635                      (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2636                      BXE_DRIVER_VERSION);
2637 
2638             device_set_desc_copy(dev, descbuf);
2639             free(descbuf, M_TEMP);
2640             return (BUS_PROBE_DEFAULT);
2641         }
2642         t++;
2643     }
2644 
2645     return (ENXIO);
2646 }
2647 
2648 static void
2649 bxe_init_mutexes(struct bxe_softc *sc)
2650 {
2651 #ifdef BXE_CORE_LOCK_SX
2652     snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2653              "bxe%d_core_lock", sc->unit);
2654     sx_init(&sc->core_sx, sc->core_sx_name);
2655 #else
2656     snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2657              "bxe%d_core_lock", sc->unit);
2658     mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2659 #endif
2660 
2661     snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2662              "bxe%d_sp_lock", sc->unit);
2663     mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2664 
2665     snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2666              "bxe%d_dmae_lock", sc->unit);
2667     mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2668 
2669     snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2670              "bxe%d_phy_lock", sc->unit);
2671     mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2672 
2673     snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2674              "bxe%d_fwmb_lock", sc->unit);
2675     mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2676 
2677     snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2678              "bxe%d_print_lock", sc->unit);
2679     mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2680 
2681     snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2682              "bxe%d_stats_lock", sc->unit);
2683     mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2684 
2685     snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2686              "bxe%d_mcast_lock", sc->unit);
2687     mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2688 }
2689 
2690 static void
2691 bxe_release_mutexes(struct bxe_softc *sc)
2692 {
2693 #ifdef BXE_CORE_LOCK_SX
2694     sx_destroy(&sc->core_sx);
2695 #else
2696     if (mtx_initialized(&sc->core_mtx)) {
2697         mtx_destroy(&sc->core_mtx);
2698     }
2699 #endif
2700 
2701     if (mtx_initialized(&sc->sp_mtx)) {
2702         mtx_destroy(&sc->sp_mtx);
2703     }
2704 
2705     if (mtx_initialized(&sc->dmae_mtx)) {
2706         mtx_destroy(&sc->dmae_mtx);
2707     }
2708 
2709     if (mtx_initialized(&sc->port.phy_mtx)) {
2710         mtx_destroy(&sc->port.phy_mtx);
2711     }
2712 
2713     if (mtx_initialized(&sc->fwmb_mtx)) {
2714         mtx_destroy(&sc->fwmb_mtx);
2715     }
2716 
2717     if (mtx_initialized(&sc->print_mtx)) {
2718         mtx_destroy(&sc->print_mtx);
2719     }
2720 
2721     if (mtx_initialized(&sc->stats_mtx)) {
2722         mtx_destroy(&sc->stats_mtx);
2723     }
2724 
2725     if (mtx_initialized(&sc->mcast_mtx)) {
2726         mtx_destroy(&sc->mcast_mtx);
2727     }
2728 }
2729 
2730 static void
2731 bxe_tx_disable(struct bxe_softc* sc)
2732 {
2733     struct ifnet *ifp = sc->ifnet;
2734 
2735     /* tell the stack the driver is stopped and TX queue is full */
2736     if (ifp != NULL) {
2737         ifp->if_drv_flags = 0;
2738     }
2739 }
2740 
2741 static void
2742 bxe_drv_pulse(struct bxe_softc *sc)
2743 {
2744     SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2745              sc->fw_drv_pulse_wr_seq);
2746 }
2747 
2748 static inline uint16_t
2749 bxe_tx_avail(struct bxe_softc *sc,
2750              struct bxe_fastpath *fp)
2751 {
2752     int16_t  used;
2753     uint16_t prod;
2754     uint16_t cons;
2755 
2756     prod = fp->tx_bd_prod;
2757     cons = fp->tx_bd_cons;
2758 
2759     used = SUB_S16(prod, cons);
2760 
2761 #if 0
2762     KASSERT((used < 0), ("used tx bds < 0"));
2763     KASSERT((used > sc->tx_ring_size), ("used tx bds > tx_ring_size"));
2764     KASSERT(((sc->tx_ring_size - used) > MAX_TX_AVAIL),
2765             ("invalid number of tx bds used"));
2766 #endif
2767 
2768     return (int16_t)(sc->tx_ring_size) - used;
2769 }
2770 
2771 static inline int
2772 bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2773 {
2774     uint16_t hw_cons;
2775 
2776     mb(); /* status block fields can change */
2777     hw_cons = le16toh(*fp->tx_cons_sb);
2778     return (hw_cons != fp->tx_pkt_cons);
2779 }
2780 
2781 static inline uint8_t
2782 bxe_has_tx_work(struct bxe_fastpath *fp)
2783 {
2784     /* expand this for multi-cos if ever supported */
2785     return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2786 }
2787 
2788 static inline int
2789 bxe_has_rx_work(struct bxe_fastpath *fp)
2790 {
2791     uint16_t rx_cq_cons_sb;
2792 
2793     mb(); /* status block fields can change */
2794     rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2795     if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2796         rx_cq_cons_sb++;
2797     return (fp->rx_cq_cons != rx_cq_cons_sb);
2798 }
2799 
2800 static void
2801 bxe_sp_event(struct bxe_softc    *sc,
2802              struct bxe_fastpath *fp,
2803              union eth_rx_cqe    *rr_cqe)
2804 {
2805     int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2806     int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2807     enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2808     struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2809 
2810     BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2811           fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2812 
2813 #if 0
2814     /*
2815      * If cid is within VF range, replace the slowpath object with the
2816      * one corresponding to this VF
2817      */
2818     if ((cid >= BXE_FIRST_VF_CID) && (cid < BXE_FIRST_VF_CID + BXE_VF_CIDS)) {
2819         bxe_iov_set_queue_sp_obj(sc, cid, &q_obj);
2820     }
2821 #endif
2822 
2823     switch (command) {
2824     case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2825         BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2826         drv_cmd = ECORE_Q_CMD_UPDATE;
2827         break;
2828 
2829     case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2830         BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2831         drv_cmd = ECORE_Q_CMD_SETUP;
2832         break;
2833 
2834     case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2835         BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2836         drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2837         break;
2838 
2839     case (RAMROD_CMD_ID_ETH_HALT):
2840         BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2841         drv_cmd = ECORE_Q_CMD_HALT;
2842         break;
2843 
2844     case (RAMROD_CMD_ID_ETH_TERMINATE):
2845         BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2846         drv_cmd = ECORE_Q_CMD_TERMINATE;
2847         break;
2848 
2849     case (RAMROD_CMD_ID_ETH_EMPTY):
2850         BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2851         drv_cmd = ECORE_Q_CMD_EMPTY;
2852         break;
2853 
2854     default:
2855         BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2856               command, fp->index);
2857         return;
2858     }
2859 
2860     if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2861         q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2862         /*
2863          * q_obj->complete_cmd() failure means that this was
2864          * an unexpected completion.
2865          *
2866          * In this case we don't want to increase the sc->spq_left
2867          * because apparently we haven't sent this command the first
2868          * place.
2869          */
2870         // bxe_panic(sc, ("Unexpected SP completion\n"));
2871         return;
2872     }
2873 
2874 #if 0
2875     /* SRIOV: reschedule any 'in_progress' operations */
2876     bxe_iov_sp_event(sc, cid, TRUE);
2877 #endif
2878 
2879     atomic_add_acq_long(&sc->cq_spq_left, 1);
2880 
2881     BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2882           atomic_load_acq_long(&sc->cq_spq_left));
2883 
2884 #if 0
2885     if ((drv_cmd == ECORE_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
2886         (!!bxe_test_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state))) {
2887         /*
2888          * If Queue update ramrod is completed for last Queue in AFEX VIF set
2889          * flow, then ACK MCP at the end. Mark pending ACK to MCP bit to
2890          * prevent case that both bits are cleared. At the end of load/unload
2891          * driver checks that sp_state is cleared and this order prevents
2892          * races.
2893          */
2894         bxe_set_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, &sc->sp_state);
2895         wmb();
2896         bxe_clear_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state);
2897 
2898         /* schedule the sp task as MCP ack is required */
2899         bxe_schedule_sp_task(sc);
2900     }
2901 #endif
2902 }
2903 
2904 /*
2905  * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2906  * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2907  * the current aggregation queue as in-progress.
2908  */
2909 static void
2910 bxe_tpa_start(struct bxe_softc            *sc,
2911               struct bxe_fastpath         *fp,
2912               uint16_t                    queue,
2913               uint16_t                    cons,
2914               uint16_t                    prod,
2915               struct eth_fast_path_rx_cqe *cqe)
2916 {
2917     struct bxe_sw_rx_bd tmp_bd;
2918     struct bxe_sw_rx_bd *rx_buf;
2919     struct eth_rx_bd *rx_bd;
2920     int max_agg_queues;
2921     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2922     uint16_t index;
2923 
2924     BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2925                        "cons=%d prod=%d\n",
2926           fp->index, queue, cons, prod);
2927 
2928     max_agg_queues = MAX_AGG_QS(sc);
2929 
2930     KASSERT((queue < max_agg_queues),
2931             ("fp[%02d] invalid aggr queue (%d >= %d)!",
2932              fp->index, queue, max_agg_queues));
2933 
2934     KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2935             ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2936              fp->index, queue));
2937 
2938     /* copy the existing mbuf and mapping from the TPA pool */
2939     tmp_bd = tpa_info->bd;
2940 
2941     if (tmp_bd.m == NULL) {
2942         BLOGE(sc, "fp[%02d].tpa[%02d] mbuf not allocated!\n",
2943               fp->index, queue);
2944         /* XXX Error handling? */
2945         return;
2946     }
2947 
2948     /* change the TPA queue to the start state */
2949     tpa_info->state            = BXE_TPA_STATE_START;
2950     tpa_info->placement_offset = cqe->placement_offset;
2951     tpa_info->parsing_flags    = le16toh(cqe->pars_flags.flags);
2952     tpa_info->vlan_tag         = le16toh(cqe->vlan_tag);
2953     tpa_info->len_on_bd        = le16toh(cqe->len_on_bd);
2954 
2955     fp->rx_tpa_queue_used |= (1 << queue);
2956 
2957     /*
2958      * If all the buffer descriptors are filled with mbufs then fill in
2959      * the current consumer index with a new BD. Else if a maximum Rx
2960      * buffer limit is imposed then fill in the next producer index.
2961      */
2962     index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2963                 prod : cons;
2964 
2965     /* move the received mbuf and mapping to TPA pool */
2966     tpa_info->bd = fp->rx_mbuf_chain[cons];
2967 
2968     /* release any existing RX BD mbuf mappings */
2969     if (cons != index) {
2970         rx_buf = &fp->rx_mbuf_chain[cons];
2971 
2972         if (rx_buf->m_map != NULL) {
2973             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2974                             BUS_DMASYNC_POSTREAD);
2975             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2976         }
2977 
2978         /*
2979          * We get here when the maximum number of rx buffers is less than
2980          * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2981          * it out here without concern of a memory leak.
2982          */
2983         fp->rx_mbuf_chain[cons].m = NULL;
2984     }
2985 
2986     /* update the Rx SW BD with the mbuf info from the TPA pool */
2987     fp->rx_mbuf_chain[index] = tmp_bd;
2988 
2989     /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2990     rx_bd = &fp->rx_chain[index];
2991     rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2992     rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
2993 }
2994 
2995 /*
2996  * When a TPA aggregation is completed, loop through the individual mbufs
2997  * of the aggregation, combining them into a single mbuf which will be sent
2998  * up the stack. Refill all freed SGEs with mbufs as we go along.
2999  */
3000 static int
3001 bxe_fill_frag_mbuf(struct bxe_softc          *sc,
3002                    struct bxe_fastpath       *fp,
3003                    struct bxe_sw_tpa_info    *tpa_info,
3004                    uint16_t                  queue,
3005                    uint16_t                  pages,
3006                    struct mbuf               *m,
3007 			       struct eth_end_agg_rx_cqe *cqe,
3008                    uint16_t                  cqe_idx)
3009 {
3010     struct mbuf *m_frag;
3011     uint32_t frag_len, frag_size, i;
3012     uint16_t sge_idx;
3013     int rc = 0;
3014     int j;
3015 
3016     frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
3017 
3018     BLOGD(sc, DBG_LRO,
3019           "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
3020           fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
3021 
3022     /* make sure the aggregated frame is not too big to handle */
3023     if (pages > 8 * PAGES_PER_SGE) {
3024         BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
3025                   "pkt_len=%d len_on_bd=%d frag_size=%d\n",
3026               fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
3027               tpa_info->len_on_bd, frag_size);
3028         bxe_panic(sc, ("sge page count error\n"));
3029         return (EINVAL);
3030     }
3031 
3032     /*
3033      * Scan through the scatter gather list pulling individual mbufs into a
3034      * single mbuf for the host stack.
3035      */
3036     for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
3037         sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
3038 
3039         /*
3040          * Firmware gives the indices of the SGE as if the ring is an array
3041          * (meaning that the "next" element will consume 2 indices).
3042          */
3043         frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
3044 
3045         BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
3046                            "sge_idx=%d frag_size=%d frag_len=%d\n",
3047               fp->index, queue, i, j, sge_idx, frag_size, frag_len);
3048 
3049         m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3050 
3051         /* allocate a new mbuf for the SGE */
3052         rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3053         if (rc) {
3054             /* Leave all remaining SGEs in the ring! */
3055             return (rc);
3056         }
3057 
3058         /* update the fragment length */
3059         m_frag->m_len = frag_len;
3060 
3061         /* concatenate the fragment to the head mbuf */
3062         m_cat(m, m_frag);
3063         fp->eth_q_stats.mbuf_alloc_sge--;
3064 
3065         /* update the TPA mbuf size and remaining fragment size */
3066         m->m_pkthdr.len += frag_len;
3067         frag_size -= frag_len;
3068     }
3069 
3070     BLOGD(sc, DBG_LRO,
3071           "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
3072           fp->index, queue, frag_size);
3073 
3074     return (rc);
3075 }
3076 
3077 static inline void
3078 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
3079 {
3080     int i, j;
3081 
3082     for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
3083         int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
3084 
3085         for (j = 0; j < 2; j++) {
3086             BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
3087             idx--;
3088         }
3089     }
3090 }
3091 
3092 static inline void
3093 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
3094 {
3095     /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
3096     memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
3097 
3098     /*
3099      * Clear the two last indices in the page to 1. These are the indices that
3100      * correspond to the "next" element, hence will never be indicated and
3101      * should be removed from the calculations.
3102      */
3103     bxe_clear_sge_mask_next_elems(fp);
3104 }
3105 
3106 static inline void
3107 bxe_update_last_max_sge(struct bxe_fastpath *fp,
3108                         uint16_t            idx)
3109 {
3110     uint16_t last_max = fp->last_max_sge;
3111 
3112     if (SUB_S16(idx, last_max) > 0) {
3113         fp->last_max_sge = idx;
3114     }
3115 }
3116 
3117 static inline void
3118 bxe_update_sge_prod(struct bxe_softc          *sc,
3119                     struct bxe_fastpath       *fp,
3120                     uint16_t                  sge_len,
3121                     struct eth_end_agg_rx_cqe *cqe)
3122 {
3123     uint16_t last_max, last_elem, first_elem;
3124     uint16_t delta = 0;
3125     uint16_t i;
3126 
3127     if (!sge_len) {
3128         return;
3129     }
3130 
3131     /* first mark all used pages */
3132     for (i = 0; i < sge_len; i++) {
3133         BIT_VEC64_CLEAR_BIT(fp->sge_mask,
3134                             RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[i])));
3135     }
3136 
3137     BLOGD(sc, DBG_LRO,
3138           "fp[%02d] fp_cqe->sgl[%d] = %d\n",
3139           fp->index, sge_len - 1,
3140           le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
3141 
3142     /* assume that the last SGE index is the biggest */
3143     bxe_update_last_max_sge(fp,
3144                             le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
3145 
3146     last_max = RX_SGE(fp->last_max_sge);
3147     last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
3148     first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
3149 
3150     /* if ring is not full */
3151     if (last_elem + 1 != first_elem) {
3152         last_elem++;
3153     }
3154 
3155     /* now update the prod */
3156     for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
3157         if (__predict_true(fp->sge_mask[i])) {
3158             break;
3159         }
3160 
3161         fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
3162         delta += BIT_VEC64_ELEM_SZ;
3163     }
3164 
3165     if (delta > 0) {
3166         fp->rx_sge_prod += delta;
3167         /* clear page-end entries */
3168         bxe_clear_sge_mask_next_elems(fp);
3169     }
3170 
3171     BLOGD(sc, DBG_LRO,
3172           "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
3173           fp->index, fp->last_max_sge, fp->rx_sge_prod);
3174 }
3175 
3176 /*
3177  * The aggregation on the current TPA queue has completed. Pull the individual
3178  * mbuf fragments together into a single mbuf, perform all necessary checksum
3179  * calculations, and send the resuting mbuf to the stack.
3180  */
3181 static void
3182 bxe_tpa_stop(struct bxe_softc          *sc,
3183              struct bxe_fastpath       *fp,
3184              struct bxe_sw_tpa_info    *tpa_info,
3185              uint16_t                  queue,
3186              uint16_t                  pages,
3187 			 struct eth_end_agg_rx_cqe *cqe,
3188              uint16_t                  cqe_idx)
3189 {
3190     struct ifnet *ifp = sc->ifnet;
3191     struct mbuf *m;
3192     int rc = 0;
3193 
3194     BLOGD(sc, DBG_LRO,
3195           "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3196           fp->index, queue, tpa_info->placement_offset,
3197           le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3198 
3199     m = tpa_info->bd.m;
3200 
3201     /* allocate a replacement before modifying existing mbuf */
3202     rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3203     if (rc) {
3204         /* drop the frame and log an error */
3205         fp->eth_q_stats.rx_soft_errors++;
3206         goto bxe_tpa_stop_exit;
3207     }
3208 
3209     /* we have a replacement, fixup the current mbuf */
3210     m_adj(m, tpa_info->placement_offset);
3211     m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3212 
3213     /* mark the checksums valid (taken care of by the firmware) */
3214     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3215     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3216     m->m_pkthdr.csum_data = 0xffff;
3217     m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3218                                CSUM_IP_VALID   |
3219                                CSUM_DATA_VALID |
3220                                CSUM_PSEUDO_HDR);
3221 
3222     /* aggregate all of the SGEs into a single mbuf */
3223     rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3224     if (rc) {
3225         /* drop the packet and log an error */
3226         fp->eth_q_stats.rx_soft_errors++;
3227         m_freem(m);
3228     } else {
3229         if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) {
3230             m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3231             m->m_flags |= M_VLANTAG;
3232         }
3233 
3234         /* assign packet to this interface interface */
3235         m->m_pkthdr.rcvif = ifp;
3236 
3237 #if __FreeBSD_version >= 800000
3238         /* specify what RSS queue was used for this flow */
3239         m->m_pkthdr.flowid = fp->index;
3240         m->m_flags |= M_FLOWID;
3241 #endif
3242 
3243         ifp->if_ipackets++;
3244         fp->eth_q_stats.rx_tpa_pkts++;
3245 
3246         /* pass the frame to the stack */
3247         (*ifp->if_input)(ifp, m);
3248     }
3249 
3250     /* we passed an mbuf up the stack or dropped the frame */
3251     fp->eth_q_stats.mbuf_alloc_tpa--;
3252 
3253 bxe_tpa_stop_exit:
3254 
3255     fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3256     fp->rx_tpa_queue_used &= ~(1 << queue);
3257 }
3258 
3259 static uint8_t
3260 bxe_rxeof(struct bxe_softc    *sc,
3261           struct bxe_fastpath *fp)
3262 {
3263     struct ifnet *ifp = sc->ifnet;
3264     uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3265     uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3266     int rx_pkts = 0;
3267     int rc;
3268 
3269     BXE_FP_RX_LOCK(fp);
3270 
3271     /* CQ "next element" is of the size of the regular element */
3272     hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3273     if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3274         hw_cq_cons++;
3275     }
3276 
3277     bd_cons = fp->rx_bd_cons;
3278     bd_prod = fp->rx_bd_prod;
3279     bd_prod_fw = bd_prod;
3280     sw_cq_cons = fp->rx_cq_cons;
3281     sw_cq_prod = fp->rx_cq_prod;
3282 
3283     /*
3284      * Memory barrier necessary as speculative reads of the rx
3285      * buffer can be ahead of the index in the status block
3286      */
3287     rmb();
3288 
3289     BLOGD(sc, DBG_RX,
3290           "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3291           fp->index, hw_cq_cons, sw_cq_cons);
3292 
3293     while (sw_cq_cons != hw_cq_cons) {
3294         struct bxe_sw_rx_bd *rx_buf = NULL;
3295         union eth_rx_cqe *cqe;
3296         struct eth_fast_path_rx_cqe *cqe_fp;
3297         uint8_t cqe_fp_flags;
3298         enum eth_rx_cqe_type cqe_fp_type;
3299         uint16_t len, pad;
3300         struct mbuf *m = NULL;
3301 
3302         comp_ring_cons = RCQ(sw_cq_cons);
3303         bd_prod = RX_BD(bd_prod);
3304         bd_cons = RX_BD(bd_cons);
3305 
3306         cqe          = &fp->rcq_chain[comp_ring_cons];
3307         cqe_fp       = &cqe->fast_path_cqe;
3308         cqe_fp_flags = cqe_fp->type_error_flags;
3309         cqe_fp_type  = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3310 
3311         BLOGD(sc, DBG_RX,
3312               "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3313               "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3314               "status=0x%x rss_hash=0x%x vlan=0x%x len=%u\n",
3315               fp->index,
3316               hw_cq_cons,
3317               sw_cq_cons,
3318               bd_prod,
3319               bd_cons,
3320               CQE_TYPE(cqe_fp_flags),
3321               cqe_fp_flags,
3322               cqe_fp->status_flags,
3323               le32toh(cqe_fp->rss_hash_result),
3324               le16toh(cqe_fp->vlan_tag),
3325               le16toh(cqe_fp->pkt_len_or_gro_seg_len));
3326 
3327         /* is this a slowpath msg? */
3328         if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3329             bxe_sp_event(sc, fp, cqe);
3330             goto next_cqe;
3331         }
3332 
3333         rx_buf = &fp->rx_mbuf_chain[bd_cons];
3334 
3335         if (!CQE_TYPE_FAST(cqe_fp_type)) {
3336             struct bxe_sw_tpa_info *tpa_info;
3337             uint16_t frag_size, pages;
3338             uint8_t queue;
3339 
3340 #if 0
3341             /* sanity check */
3342             if (!fp->tpa_enable &&
3343                 (CQE_TYPE_START(cqe_fp_type) || CQE_TYPE_STOP(cqe_fp_type))) {
3344                 BLOGE(sc, "START/STOP packet while !tpa_enable type (0x%x)\n",
3345                       CQE_TYPE(cqe_fp_type));
3346             }
3347 #endif
3348 
3349             if (CQE_TYPE_START(cqe_fp_type)) {
3350                 bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3351                               bd_cons, bd_prod, cqe_fp);
3352                 m = NULL; /* packet not ready yet */
3353                 goto next_rx;
3354             }
3355 
3356             KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3357                     ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3358 
3359             queue = cqe->end_agg_cqe.queue_index;
3360             tpa_info = &fp->rx_tpa_info[queue];
3361 
3362             BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3363                   fp->index, queue);
3364 
3365             frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3366                          tpa_info->len_on_bd);
3367             pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3368 
3369             bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3370                          &cqe->end_agg_cqe, comp_ring_cons);
3371 
3372             bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe);
3373 
3374             goto next_cqe;
3375         }
3376 
3377         /* non TPA */
3378 
3379         /* is this an error packet? */
3380         if (__predict_false(cqe_fp_flags &
3381                             ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3382             BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3383             fp->eth_q_stats.rx_soft_errors++;
3384             goto next_rx;
3385         }
3386 
3387         len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3388         pad = cqe_fp->placement_offset;
3389 
3390         m = rx_buf->m;
3391 
3392         if (__predict_false(m == NULL)) {
3393             BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3394                   bd_cons, fp->index);
3395             goto next_rx;
3396         }
3397 
3398         /* XXX double copy if packet length under a threshold */
3399 
3400         /*
3401          * If all the buffer descriptors are filled with mbufs then fill in
3402          * the current consumer index with a new BD. Else if a maximum Rx
3403          * buffer limit is imposed then fill in the next producer index.
3404          */
3405         rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3406                                   (sc->max_rx_bufs != RX_BD_USABLE) ?
3407                                       bd_prod : bd_cons);
3408         if (rc != 0) {
3409             BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3410                   fp->index, rc);
3411             fp->eth_q_stats.rx_soft_errors++;
3412 
3413             if (sc->max_rx_bufs != RX_BD_USABLE) {
3414                 /* copy this consumer index to the producer index */
3415                 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3416                        sizeof(struct bxe_sw_rx_bd));
3417                 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3418             }
3419 
3420             goto next_rx;
3421         }
3422 
3423         /* current mbuf was detached from the bd */
3424         fp->eth_q_stats.mbuf_alloc_rx--;
3425 
3426         /* we allocated a replacement mbuf, fixup the current one */
3427         m_adj(m, pad);
3428         m->m_pkthdr.len = m->m_len = len;
3429 
3430         /* assign packet to this interface interface */
3431         m->m_pkthdr.rcvif = ifp;
3432 
3433         /* assume no hardware checksum has complated */
3434         m->m_pkthdr.csum_flags = 0;
3435 
3436         /* validate checksum if offload enabled */
3437         if (ifp->if_capenable & IFCAP_RXCSUM) {
3438             /* check for a valid IP frame */
3439             if (!(cqe->fast_path_cqe.status_flags &
3440                   ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3441                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3442                 if (__predict_false(cqe_fp_flags &
3443                                     ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3444                     fp->eth_q_stats.rx_hw_csum_errors++;
3445                 } else {
3446                     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3447                     m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3448                 }
3449             }
3450 
3451             /* check for a valid TCP/UDP frame */
3452             if (!(cqe->fast_path_cqe.status_flags &
3453                   ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3454                 if (__predict_false(cqe_fp_flags &
3455                                     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3456                     fp->eth_q_stats.rx_hw_csum_errors++;
3457                 } else {
3458                     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3459                     m->m_pkthdr.csum_data = 0xFFFF;
3460                     m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3461                                                CSUM_PSEUDO_HDR);
3462                 }
3463             }
3464         }
3465 
3466         /* if there is a VLAN tag then flag that info */
3467         if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_VLAN) {
3468             m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3469             m->m_flags |= M_VLANTAG;
3470         }
3471 
3472 #if __FreeBSD_version >= 800000
3473         /* specify what RSS queue was used for this flow */
3474         m->m_pkthdr.flowid = fp->index;
3475         m->m_flags |= M_FLOWID;
3476 #endif
3477 
3478 next_rx:
3479 
3480         bd_cons    = RX_BD_NEXT(bd_cons);
3481         bd_prod    = RX_BD_NEXT(bd_prod);
3482         bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3483 
3484         /* pass the frame to the stack */
3485         if (__predict_true(m != NULL)) {
3486             ifp->if_ipackets++;
3487             rx_pkts++;
3488             (*ifp->if_input)(ifp, m);
3489         }
3490 
3491 next_cqe:
3492 
3493         sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3494         sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3495 
3496         /* limit spinning on the queue */
3497         if (rx_pkts == sc->rx_budget) {
3498             fp->eth_q_stats.rx_budget_reached++;
3499             break;
3500         }
3501     } /* while work to do */
3502 
3503     fp->rx_bd_cons = bd_cons;
3504     fp->rx_bd_prod = bd_prod_fw;
3505     fp->rx_cq_cons = sw_cq_cons;
3506     fp->rx_cq_prod = sw_cq_prod;
3507 
3508     /* Update producers */
3509     bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3510 
3511     fp->eth_q_stats.rx_pkts += rx_pkts;
3512     fp->eth_q_stats.rx_calls++;
3513 
3514     BXE_FP_RX_UNLOCK(fp);
3515 
3516     return (sw_cq_cons != hw_cq_cons);
3517 }
3518 
3519 static uint16_t
3520 bxe_free_tx_pkt(struct bxe_softc    *sc,
3521                 struct bxe_fastpath *fp,
3522                 uint16_t            idx)
3523 {
3524     struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3525     struct eth_tx_start_bd *tx_start_bd;
3526     uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3527     uint16_t new_cons;
3528     int nbd;
3529 
3530     /* unmap the mbuf from non-paged memory */
3531     bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3532 
3533     tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3534     nbd = le16toh(tx_start_bd->nbd) - 1;
3535 
3536 #if 0
3537     if ((nbd - 1) > (MAX_MBUF_FRAGS + 2)) {
3538         bxe_panic(sc, ("BAD nbd!\n"));
3539     }
3540 #endif
3541 
3542     new_cons = (tx_buf->first_bd + nbd);
3543 
3544 #if 0
3545     struct eth_tx_bd *tx_data_bd;
3546 
3547     /*
3548      * The following code doesn't do anything but is left here
3549      * for clarity on what the new value of new_cons skipped.
3550      */
3551 
3552     /* get the next bd */
3553     bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3554 
3555     /* skip the parse bd */
3556     --nbd;
3557     bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3558 
3559     /* skip the TSO split header bd since they have no mapping */
3560     if (tx_buf->flags & BXE_TSO_SPLIT_BD) {
3561         --nbd;
3562         bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3563     }
3564 
3565     /* now free frags */
3566     while (nbd > 0) {
3567         tx_data_bd = &fp->tx_chain[bd_idx].reg_bd;
3568         if (--nbd) {
3569             bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3570         }
3571     }
3572 #endif
3573 
3574     /* free the mbuf */
3575     if (__predict_true(tx_buf->m != NULL)) {
3576         m_freem(tx_buf->m);
3577         fp->eth_q_stats.mbuf_alloc_tx--;
3578     } else {
3579         fp->eth_q_stats.tx_chain_lost_mbuf++;
3580     }
3581 
3582     tx_buf->m = NULL;
3583     tx_buf->first_bd = 0;
3584 
3585     return (new_cons);
3586 }
3587 
3588 /* transmit timeout watchdog */
3589 static int
3590 bxe_watchdog(struct bxe_softc    *sc,
3591              struct bxe_fastpath *fp)
3592 {
3593     BXE_FP_TX_LOCK(fp);
3594 
3595     if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3596         BXE_FP_TX_UNLOCK(fp);
3597         return (0);
3598     }
3599 
3600     BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3601 
3602     BXE_FP_TX_UNLOCK(fp);
3603 
3604     atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
3605     taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
3606 
3607     return (-1);
3608 }
3609 
3610 /* processes transmit completions */
3611 static uint8_t
3612 bxe_txeof(struct bxe_softc    *sc,
3613           struct bxe_fastpath *fp)
3614 {
3615     struct ifnet *ifp = sc->ifnet;
3616     uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3617     uint16_t tx_bd_avail;
3618 
3619     BXE_FP_TX_LOCK_ASSERT(fp);
3620 
3621     bd_cons = fp->tx_bd_cons;
3622     hw_cons = le16toh(*fp->tx_cons_sb);
3623     sw_cons = fp->tx_pkt_cons;
3624 
3625     while (sw_cons != hw_cons) {
3626         pkt_cons = TX_BD(sw_cons);
3627 
3628         BLOGD(sc, DBG_TX,
3629               "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3630               fp->index, hw_cons, sw_cons, pkt_cons);
3631 
3632         bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3633 
3634         sw_cons++;
3635     }
3636 
3637     fp->tx_pkt_cons = sw_cons;
3638     fp->tx_bd_cons  = bd_cons;
3639 
3640     BLOGD(sc, DBG_TX,
3641           "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3642           fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3643 
3644     mb();
3645 
3646     tx_bd_avail = bxe_tx_avail(sc, fp);
3647 
3648     if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3649         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3650     } else {
3651         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3652     }
3653 
3654     if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3655         /* reset the watchdog timer if there are pending transmits */
3656         fp->watchdog_timer = BXE_TX_TIMEOUT;
3657         return (TRUE);
3658     } else {
3659         /* clear watchdog when there are no pending transmits */
3660         fp->watchdog_timer = 0;
3661         return (FALSE);
3662     }
3663 }
3664 
3665 static void
3666 bxe_drain_tx_queues(struct bxe_softc *sc)
3667 {
3668     struct bxe_fastpath *fp;
3669     int i, count;
3670 
3671     /* wait until all TX fastpath tasks have completed */
3672     for (i = 0; i < sc->num_queues; i++) {
3673         fp = &sc->fp[i];
3674 
3675         count = 1000;
3676 
3677         while (bxe_has_tx_work(fp)) {
3678 
3679             BXE_FP_TX_LOCK(fp);
3680             bxe_txeof(sc, fp);
3681             BXE_FP_TX_UNLOCK(fp);
3682 
3683             if (count == 0) {
3684                 BLOGE(sc, "Timeout waiting for fp[%d] "
3685                           "transmits to complete!\n", i);
3686                 bxe_panic(sc, ("tx drain failure\n"));
3687                 return;
3688             }
3689 
3690             count--;
3691             DELAY(1000);
3692             rmb();
3693         }
3694     }
3695 
3696     return;
3697 }
3698 
3699 static int
3700 bxe_del_all_macs(struct bxe_softc          *sc,
3701                  struct ecore_vlan_mac_obj *mac_obj,
3702                  int                       mac_type,
3703                  uint8_t                   wait_for_comp)
3704 {
3705     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3706     int rc;
3707 
3708     /* wait for completion of requested */
3709     if (wait_for_comp) {
3710         bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3711     }
3712 
3713     /* Set the mac type of addresses we want to clear */
3714     bxe_set_bit(mac_type, &vlan_mac_flags);
3715 
3716     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3717     if (rc < 0) {
3718         BLOGE(sc, "Failed to delete MACs (%d)\n", rc);
3719     }
3720 
3721     return (rc);
3722 }
3723 
3724 static int
3725 bxe_fill_accept_flags(struct bxe_softc *sc,
3726                       uint32_t         rx_mode,
3727                       unsigned long    *rx_accept_flags,
3728                       unsigned long    *tx_accept_flags)
3729 {
3730     /* Clear the flags first */
3731     *rx_accept_flags = 0;
3732     *tx_accept_flags = 0;
3733 
3734     switch (rx_mode) {
3735     case BXE_RX_MODE_NONE:
3736         /*
3737          * 'drop all' supersedes any accept flags that may have been
3738          * passed to the function.
3739          */
3740         break;
3741 
3742     case BXE_RX_MODE_NORMAL:
3743         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3744         bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3745         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3746 
3747         /* internal switching mode */
3748         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3749         bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3750         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3751 
3752         break;
3753 
3754     case BXE_RX_MODE_ALLMULTI:
3755         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3756         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3757         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3758 
3759         /* internal switching mode */
3760         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3761         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3762         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3763 
3764         break;
3765 
3766     case BXE_RX_MODE_PROMISC:
3767         /*
3768          * According to deffinition of SI mode, iface in promisc mode
3769          * should receive matched and unmatched (in resolution of port)
3770          * unicast packets.
3771          */
3772         bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3773         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3774         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3775         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3776 
3777         /* internal switching mode */
3778         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3779         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3780 
3781         if (IS_MF_SI(sc)) {
3782             bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3783         } else {
3784             bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3785         }
3786 
3787         break;
3788 
3789     default:
3790         BLOGE(sc, "Unknown rx_mode (%d)\n", rx_mode);
3791         return (-1);
3792     }
3793 
3794     /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3795     if (rx_mode != BXE_RX_MODE_NONE) {
3796         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3797         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3798     }
3799 
3800     return (0);
3801 }
3802 
3803 static int
3804 bxe_set_q_rx_mode(struct bxe_softc *sc,
3805                   uint8_t          cl_id,
3806                   unsigned long    rx_mode_flags,
3807                   unsigned long    rx_accept_flags,
3808                   unsigned long    tx_accept_flags,
3809                   unsigned long    ramrod_flags)
3810 {
3811     struct ecore_rx_mode_ramrod_params ramrod_param;
3812     int rc;
3813 
3814     memset(&ramrod_param, 0, sizeof(ramrod_param));
3815 
3816     /* Prepare ramrod parameters */
3817     ramrod_param.cid = 0;
3818     ramrod_param.cl_id = cl_id;
3819     ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3820     ramrod_param.func_id = SC_FUNC(sc);
3821 
3822     ramrod_param.pstate = &sc->sp_state;
3823     ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3824 
3825     ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3826     ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3827 
3828     bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3829 
3830     ramrod_param.ramrod_flags = ramrod_flags;
3831     ramrod_param.rx_mode_flags = rx_mode_flags;
3832 
3833     ramrod_param.rx_accept_flags = rx_accept_flags;
3834     ramrod_param.tx_accept_flags = tx_accept_flags;
3835 
3836     rc = ecore_config_rx_mode(sc, &ramrod_param);
3837     if (rc < 0) {
3838         BLOGE(sc, "Set rx_mode %d failed\n", sc->rx_mode);
3839         return (rc);
3840     }
3841 
3842     return (0);
3843 }
3844 
3845 static int
3846 bxe_set_storm_rx_mode(struct bxe_softc *sc)
3847 {
3848     unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3849     unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3850     int rc;
3851 
3852     rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3853                                &tx_accept_flags);
3854     if (rc) {
3855         return (rc);
3856     }
3857 
3858     bxe_set_bit(RAMROD_RX, &ramrod_flags);
3859     bxe_set_bit(RAMROD_TX, &ramrod_flags);
3860 
3861     /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3862     return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3863                               rx_accept_flags, tx_accept_flags,
3864                               ramrod_flags));
3865 }
3866 
3867 /* returns the "mcp load_code" according to global load_count array */
3868 static int
3869 bxe_nic_load_no_mcp(struct bxe_softc *sc)
3870 {
3871     int path = SC_PATH(sc);
3872     int port = SC_PORT(sc);
3873 
3874     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3875           path, load_count[path][0], load_count[path][1],
3876           load_count[path][2]);
3877     load_count[path][0]++;
3878     load_count[path][1 + port]++;
3879     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3880           path, load_count[path][0], load_count[path][1],
3881           load_count[path][2]);
3882     if (load_count[path][0] == 1) {
3883         return (FW_MSG_CODE_DRV_LOAD_COMMON);
3884     } else if (load_count[path][1 + port] == 1) {
3885         return (FW_MSG_CODE_DRV_LOAD_PORT);
3886     } else {
3887         return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3888     }
3889 }
3890 
3891 /* returns the "mcp load_code" according to global load_count array */
3892 static int
3893 bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3894 {
3895     int port = SC_PORT(sc);
3896     int path = SC_PATH(sc);
3897 
3898     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3899           path, load_count[path][0], load_count[path][1],
3900           load_count[path][2]);
3901     load_count[path][0]--;
3902     load_count[path][1 + port]--;
3903     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3904           path, load_count[path][0], load_count[path][1],
3905           load_count[path][2]);
3906     if (load_count[path][0] == 0) {
3907         return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3908     } else if (load_count[path][1 + port] == 0) {
3909         return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3910     } else {
3911         return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3912     }
3913 }
3914 
3915 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3916 static uint32_t
3917 bxe_send_unload_req(struct bxe_softc *sc,
3918                     int              unload_mode)
3919 {
3920     uint32_t reset_code = 0;
3921 #if 0
3922     int port = SC_PORT(sc);
3923     int path = SC_PATH(sc);
3924 #endif
3925 
3926     /* Select the UNLOAD request mode */
3927     if (unload_mode == UNLOAD_NORMAL) {
3928         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3929     }
3930 #if 0
3931     else if (sc->flags & BXE_NO_WOL_FLAG) {
3932         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
3933     } else if (sc->wol) {
3934         uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
3935         uint8_t *mac_addr = sc->dev->dev_addr;
3936         uint32_t val;
3937         uint16_t pmc;
3938 
3939         /*
3940          * The mac address is written to entries 1-4 to
3941          * preserve entry 0 which is used by the PMF
3942          */
3943         uint8_t entry = (SC_VN(sc) + 1)*8;
3944 
3945         val = (mac_addr[0] << 8) | mac_addr[1];
3946         EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry, val);
3947 
3948         val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3949               (mac_addr[4] << 8) | mac_addr[5];
3950         EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
3951 
3952         /* Enable the PME and clear the status */
3953         pmc = pci_read_config(sc->dev,
3954                               (sc->devinfo.pcie_pm_cap_reg +
3955                                PCIR_POWER_STATUS),
3956                               2);
3957         pmc |= PCIM_PSTAT_PMEENABLE | PCIM_PSTAT_PME;
3958         pci_write_config(sc->dev,
3959                          (sc->devinfo.pcie_pm_cap_reg +
3960                           PCIR_POWER_STATUS),
3961                          pmc, 4);
3962 
3963         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
3964     }
3965 #endif
3966     else {
3967         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3968     }
3969 
3970     /* Send the request to the MCP */
3971     if (!BXE_NOMCP(sc)) {
3972         reset_code = bxe_fw_command(sc, reset_code, 0);
3973     } else {
3974         reset_code = bxe_nic_unload_no_mcp(sc);
3975     }
3976 
3977     return (reset_code);
3978 }
3979 
3980 /* send UNLOAD_DONE command to the MCP */
3981 static void
3982 bxe_send_unload_done(struct bxe_softc *sc,
3983                      uint8_t          keep_link)
3984 {
3985     uint32_t reset_param =
3986         keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
3987 
3988     /* Report UNLOAD_DONE to MCP */
3989     if (!BXE_NOMCP(sc)) {
3990         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
3991     }
3992 }
3993 
3994 static int
3995 bxe_func_wait_started(struct bxe_softc *sc)
3996 {
3997     int tout = 50;
3998 
3999     if (!sc->port.pmf) {
4000         return (0);
4001     }
4002 
4003     /*
4004      * (assumption: No Attention from MCP at this stage)
4005      * PMF probably in the middle of TX disable/enable transaction
4006      * 1. Sync IRS for default SB
4007      * 2. Sync SP queue - this guarantees us that attention handling started
4008      * 3. Wait, that TX disable/enable transaction completes
4009      *
4010      * 1+2 guarantee that if DCBX attention was scheduled it already changed
4011      * pending bit of transaction from STARTED-->TX_STOPPED, if we already
4012      * received completion for the transaction the state is TX_STOPPED.
4013      * State will return to STARTED after completion of TX_STOPPED-->STARTED
4014      * transaction.
4015      */
4016 
4017     /* XXX make sure default SB ISR is done */
4018     /* need a way to synchronize an irq (intr_mtx?) */
4019 
4020     /* XXX flush any work queues */
4021 
4022     while (ecore_func_get_state(sc, &sc->func_obj) !=
4023            ECORE_F_STATE_STARTED && tout--) {
4024         DELAY(20000);
4025     }
4026 
4027     if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
4028         /*
4029          * Failed to complete the transaction in a "good way"
4030          * Force both transactions with CLR bit.
4031          */
4032         struct ecore_func_state_params func_params = { NULL };
4033 
4034         BLOGE(sc, "Unexpected function state! "
4035                   "Forcing STARTED-->TX_STOPPED-->STARTED\n");
4036 
4037         func_params.f_obj = &sc->func_obj;
4038         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4039 
4040         /* STARTED-->TX_STOPPED */
4041         func_params.cmd = ECORE_F_CMD_TX_STOP;
4042         ecore_func_state_change(sc, &func_params);
4043 
4044         /* TX_STOPPED-->STARTED */
4045         func_params.cmd = ECORE_F_CMD_TX_START;
4046         return (ecore_func_state_change(sc, &func_params));
4047     }
4048 
4049     return (0);
4050 }
4051 
4052 static int
4053 bxe_stop_queue(struct bxe_softc *sc,
4054                int              index)
4055 {
4056     struct bxe_fastpath *fp = &sc->fp[index];
4057     struct ecore_queue_state_params q_params = { NULL };
4058     int rc;
4059 
4060     BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
4061 
4062     q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
4063     /* We want to wait for completion in this context */
4064     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
4065 
4066     /* Stop the primary connection: */
4067 
4068     /* ...halt the connection */
4069     q_params.cmd = ECORE_Q_CMD_HALT;
4070     rc = ecore_queue_state_change(sc, &q_params);
4071     if (rc) {
4072         return (rc);
4073     }
4074 
4075     /* ...terminate the connection */
4076     q_params.cmd = ECORE_Q_CMD_TERMINATE;
4077     memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
4078     q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
4079     rc = ecore_queue_state_change(sc, &q_params);
4080     if (rc) {
4081         return (rc);
4082     }
4083 
4084     /* ...delete cfc entry */
4085     q_params.cmd = ECORE_Q_CMD_CFC_DEL;
4086     memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
4087     q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
4088     return (ecore_queue_state_change(sc, &q_params));
4089 }
4090 
4091 /* wait for the outstanding SP commands */
4092 static inline uint8_t
4093 bxe_wait_sp_comp(struct bxe_softc *sc,
4094                  unsigned long    mask)
4095 {
4096     unsigned long tmp;
4097     int tout = 5000; /* wait for 5 secs tops */
4098 
4099     while (tout--) {
4100         mb();
4101         if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
4102             return (TRUE);
4103         }
4104 
4105         DELAY(1000);
4106     }
4107 
4108     mb();
4109 
4110     tmp = atomic_load_acq_long(&sc->sp_state);
4111     if (tmp & mask) {
4112         BLOGE(sc, "Filtering completion timed out: "
4113                   "sp_state 0x%lx, mask 0x%lx\n",
4114               tmp, mask);
4115         return (FALSE);
4116     }
4117 
4118     return (FALSE);
4119 }
4120 
4121 static int
4122 bxe_func_stop(struct bxe_softc *sc)
4123 {
4124     struct ecore_func_state_params func_params = { NULL };
4125     int rc;
4126 
4127     /* prepare parameters for function state transitions */
4128     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4129     func_params.f_obj = &sc->func_obj;
4130     func_params.cmd = ECORE_F_CMD_STOP;
4131 
4132     /*
4133      * Try to stop the function the 'good way'. If it fails (in case
4134      * of a parity error during bxe_chip_cleanup()) and we are
4135      * not in a debug mode, perform a state transaction in order to
4136      * enable further HW_RESET transaction.
4137      */
4138     rc = ecore_func_state_change(sc, &func_params);
4139     if (rc) {
4140         BLOGE(sc, "FUNC_STOP ramrod failed. "
4141                   "Running a dry transaction\n");
4142         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4143         return (ecore_func_state_change(sc, &func_params));
4144     }
4145 
4146     return (0);
4147 }
4148 
4149 static int
4150 bxe_reset_hw(struct bxe_softc *sc,
4151              uint32_t         load_code)
4152 {
4153     struct ecore_func_state_params func_params = { NULL };
4154 
4155     /* Prepare parameters for function state transitions */
4156     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4157 
4158     func_params.f_obj = &sc->func_obj;
4159     func_params.cmd = ECORE_F_CMD_HW_RESET;
4160 
4161     func_params.params.hw_init.load_phase = load_code;
4162 
4163     return (ecore_func_state_change(sc, &func_params));
4164 }
4165 
4166 static void
4167 bxe_int_disable_sync(struct bxe_softc *sc,
4168                      int              disable_hw)
4169 {
4170     if (disable_hw) {
4171         /* prevent the HW from sending interrupts */
4172         bxe_int_disable(sc);
4173     }
4174 
4175     /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
4176     /* make sure all ISRs are done */
4177 
4178     /* XXX make sure sp_task is not running */
4179     /* cancel and flush work queues */
4180 }
4181 
4182 static void
4183 bxe_chip_cleanup(struct bxe_softc *sc,
4184                  uint32_t         unload_mode,
4185                  uint8_t          keep_link)
4186 {
4187     int port = SC_PORT(sc);
4188     struct ecore_mcast_ramrod_params rparam = { NULL };
4189     uint32_t reset_code;
4190     int i, rc = 0;
4191 
4192     bxe_drain_tx_queues(sc);
4193 
4194     /* give HW time to discard old tx messages */
4195     DELAY(1000);
4196 
4197     /* Clean all ETH MACs */
4198     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4199     if (rc < 0) {
4200         BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4201     }
4202 
4203     /* Clean up UC list  */
4204     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4205     if (rc < 0) {
4206         BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4207     }
4208 
4209     /* Disable LLH */
4210     if (!CHIP_IS_E1(sc)) {
4211         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4212     }
4213 
4214     /* Set "drop all" to stop Rx */
4215 
4216     /*
4217      * We need to take the BXE_MCAST_LOCK() here in order to prevent
4218      * a race between the completion code and this code.
4219      */
4220     BXE_MCAST_LOCK(sc);
4221 
4222     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4223         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4224     } else {
4225         bxe_set_storm_rx_mode(sc);
4226     }
4227 
4228     /* Clean up multicast configuration */
4229     rparam.mcast_obj = &sc->mcast_obj;
4230     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4231     if (rc < 0) {
4232         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4233     }
4234 
4235     BXE_MCAST_UNLOCK(sc);
4236 
4237     // XXX bxe_iov_chip_cleanup(sc);
4238 
4239     /*
4240      * Send the UNLOAD_REQUEST to the MCP. This will return if
4241      * this function should perform FUNCTION, PORT, or COMMON HW
4242      * reset.
4243      */
4244     reset_code = bxe_send_unload_req(sc, unload_mode);
4245 
4246     /*
4247      * (assumption: No Attention from MCP at this stage)
4248      * PMF probably in the middle of TX disable/enable transaction
4249      */
4250     rc = bxe_func_wait_started(sc);
4251     if (rc) {
4252         BLOGE(sc, "bxe_func_wait_started failed\n");
4253     }
4254 
4255     /*
4256      * Close multi and leading connections
4257      * Completions for ramrods are collected in a synchronous way
4258      */
4259     for (i = 0; i < sc->num_queues; i++) {
4260         if (bxe_stop_queue(sc, i)) {
4261             goto unload_error;
4262         }
4263     }
4264 
4265     /*
4266      * If SP settings didn't get completed so far - something
4267      * very wrong has happen.
4268      */
4269     if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4270         BLOGE(sc, "Common slow path ramrods got stuck!\n");
4271     }
4272 
4273 unload_error:
4274 
4275     rc = bxe_func_stop(sc);
4276     if (rc) {
4277         BLOGE(sc, "Function stop failed!\n");
4278     }
4279 
4280     /* disable HW interrupts */
4281     bxe_int_disable_sync(sc, TRUE);
4282 
4283     /* detach interrupts */
4284     bxe_interrupt_detach(sc);
4285 
4286     /* Reset the chip */
4287     rc = bxe_reset_hw(sc, reset_code);
4288     if (rc) {
4289         BLOGE(sc, "Hardware reset failed\n");
4290     }
4291 
4292     /* Report UNLOAD_DONE to MCP */
4293     bxe_send_unload_done(sc, keep_link);
4294 }
4295 
4296 static void
4297 bxe_disable_close_the_gate(struct bxe_softc *sc)
4298 {
4299     uint32_t val;
4300     int port = SC_PORT(sc);
4301 
4302     BLOGD(sc, DBG_LOAD,
4303           "Disabling 'close the gates'\n");
4304 
4305     if (CHIP_IS_E1(sc)) {
4306         uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4307                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
4308         val = REG_RD(sc, addr);
4309         val &= ~(0x300);
4310         REG_WR(sc, addr, val);
4311     } else {
4312         val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4313         val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4314                  MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4315         REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4316     }
4317 }
4318 
4319 /*
4320  * Cleans the object that have internal lists without sending
4321  * ramrods. Should be run when interrutps are disabled.
4322  */
4323 static void
4324 bxe_squeeze_objects(struct bxe_softc *sc)
4325 {
4326     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4327     struct ecore_mcast_ramrod_params rparam = { NULL };
4328     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4329     int rc;
4330 
4331     /* Cleanup MACs' object first... */
4332 
4333     /* Wait for completion of requested */
4334     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4335     /* Perform a dry cleanup */
4336     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4337 
4338     /* Clean ETH primary MAC */
4339     bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4340     rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4341                              &ramrod_flags);
4342     if (rc != 0) {
4343         BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4344     }
4345 
4346     /* Cleanup UC list */
4347     vlan_mac_flags = 0;
4348     bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4349     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4350                              &ramrod_flags);
4351     if (rc != 0) {
4352         BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4353     }
4354 
4355     /* Now clean mcast object... */
4356 
4357     rparam.mcast_obj = &sc->mcast_obj;
4358     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4359 
4360     /* Add a DEL command... */
4361     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4362     if (rc < 0) {
4363         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4364     }
4365 
4366     /* now wait until all pending commands are cleared */
4367 
4368     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4369     while (rc != 0) {
4370         if (rc < 0) {
4371             BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4372             return;
4373         }
4374 
4375         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4376     }
4377 }
4378 
4379 /* stop the controller */
4380 static __noinline int
4381 bxe_nic_unload(struct bxe_softc *sc,
4382                uint32_t         unload_mode,
4383                uint8_t          keep_link)
4384 {
4385     uint8_t global = FALSE;
4386     uint32_t val;
4387 
4388     BXE_CORE_LOCK_ASSERT(sc);
4389 
4390     BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4391 
4392     /* mark driver as unloaded in shmem2 */
4393     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4394         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4395         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4396                   val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4397     }
4398 
4399     if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4400         (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4401         /*
4402          * We can get here if the driver has been unloaded
4403          * during parity error recovery and is either waiting for a
4404          * leader to complete or for other functions to unload and
4405          * then ifconfig down has been issued. In this case we want to
4406          * unload and let other functions to complete a recovery
4407          * process.
4408          */
4409         sc->recovery_state = BXE_RECOVERY_DONE;
4410         sc->is_leader = 0;
4411         bxe_release_leader_lock(sc);
4412         mb();
4413 
4414         BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4415         BLOGE(sc, "Can't unload in closed or error state\n");
4416         return (-1);
4417     }
4418 
4419     /*
4420      * Nothing to do during unload if previous bxe_nic_load()
4421      * did not completed succesfully - all resourses are released.
4422      */
4423     if ((sc->state == BXE_STATE_CLOSED) ||
4424         (sc->state == BXE_STATE_ERROR)) {
4425         return (0);
4426     }
4427 
4428     sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4429     mb();
4430 
4431     /* stop tx */
4432     bxe_tx_disable(sc);
4433 
4434     sc->rx_mode = BXE_RX_MODE_NONE;
4435     /* XXX set rx mode ??? */
4436 
4437     if (IS_PF(sc)) {
4438         /* set ALWAYS_ALIVE bit in shmem */
4439         sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4440 
4441         bxe_drv_pulse(sc);
4442 
4443         bxe_stats_handle(sc, STATS_EVENT_STOP);
4444         bxe_save_statistics(sc);
4445     }
4446 
4447     /* wait till consumers catch up with producers in all queues */
4448     bxe_drain_tx_queues(sc);
4449 
4450     /* if VF indicate to PF this function is going down (PF will delete sp
4451      * elements and clear initializations
4452      */
4453     if (IS_VF(sc)) {
4454         ; /* bxe_vfpf_close_vf(sc); */
4455     } else if (unload_mode != UNLOAD_RECOVERY) {
4456         /* if this is a normal/close unload need to clean up chip */
4457         bxe_chip_cleanup(sc, unload_mode, keep_link);
4458     } else {
4459         /* Send the UNLOAD_REQUEST to the MCP */
4460         bxe_send_unload_req(sc, unload_mode);
4461 
4462         /*
4463          * Prevent transactions to host from the functions on the
4464          * engine that doesn't reset global blocks in case of global
4465          * attention once gloabl blocks are reset and gates are opened
4466          * (the engine which leader will perform the recovery
4467          * last).
4468          */
4469         if (!CHIP_IS_E1x(sc)) {
4470             bxe_pf_disable(sc);
4471         }
4472 
4473         /* disable HW interrupts */
4474         bxe_int_disable_sync(sc, TRUE);
4475 
4476         /* detach interrupts */
4477         bxe_interrupt_detach(sc);
4478 
4479         /* Report UNLOAD_DONE to MCP */
4480         bxe_send_unload_done(sc, FALSE);
4481     }
4482 
4483     /*
4484      * At this stage no more interrupts will arrive so we may safely clean
4485      * the queue'able objects here in case they failed to get cleaned so far.
4486      */
4487     if (IS_PF(sc)) {
4488         bxe_squeeze_objects(sc);
4489     }
4490 
4491     /* There should be no more pending SP commands at this stage */
4492     sc->sp_state = 0;
4493 
4494     sc->port.pmf = 0;
4495 
4496     bxe_free_fp_buffers(sc);
4497 
4498     if (IS_PF(sc)) {
4499         bxe_free_mem(sc);
4500     }
4501 
4502     bxe_free_fw_stats_mem(sc);
4503 
4504     sc->state = BXE_STATE_CLOSED;
4505 
4506     /*
4507      * Check if there are pending parity attentions. If there are - set
4508      * RECOVERY_IN_PROGRESS.
4509      */
4510     if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4511         bxe_set_reset_in_progress(sc);
4512 
4513         /* Set RESET_IS_GLOBAL if needed */
4514         if (global) {
4515             bxe_set_reset_global(sc);
4516         }
4517     }
4518 
4519     /*
4520      * The last driver must disable a "close the gate" if there is no
4521      * parity attention or "process kill" pending.
4522      */
4523     if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4524         bxe_reset_is_done(sc, SC_PATH(sc))) {
4525         bxe_disable_close_the_gate(sc);
4526     }
4527 
4528     BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4529 
4530     return (0);
4531 }
4532 
4533 /*
4534  * Called by the OS to set various media options (i.e. link, speed, etc.) when
4535  * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4536  */
4537 static int
4538 bxe_ifmedia_update(struct ifnet *ifp)
4539 {
4540     struct bxe_softc *sc = (struct bxe_softc *)ifp->if_softc;
4541     struct ifmedia *ifm;
4542 
4543     ifm = &sc->ifmedia;
4544 
4545     /* We only support Ethernet media type. */
4546     if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4547         return (EINVAL);
4548     }
4549 
4550     switch (IFM_SUBTYPE(ifm->ifm_media)) {
4551     case IFM_AUTO:
4552          break;
4553     case IFM_10G_CX4:
4554     case IFM_10G_SR:
4555     case IFM_10G_T:
4556     case IFM_10G_TWINAX:
4557     default:
4558         /* We don't support changing the media type. */
4559         BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4560               IFM_SUBTYPE(ifm->ifm_media));
4561         return (EINVAL);
4562     }
4563 
4564     return (0);
4565 }
4566 
4567 /*
4568  * Called by the OS to get the current media status (i.e. link, speed, etc.).
4569  */
4570 static void
4571 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
4572 {
4573     struct bxe_softc *sc = ifp->if_softc;
4574 
4575     /* Report link down if the driver isn't running. */
4576     if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4577         ifmr->ifm_active |= IFM_NONE;
4578         return;
4579     }
4580 
4581     /* Setup the default interface info. */
4582     ifmr->ifm_status = IFM_AVALID;
4583     ifmr->ifm_active = IFM_ETHER;
4584 
4585     if (sc->link_vars.link_up) {
4586         ifmr->ifm_status |= IFM_ACTIVE;
4587     } else {
4588         ifmr->ifm_active |= IFM_NONE;
4589         return;
4590     }
4591 
4592     ifmr->ifm_active |= sc->media;
4593 
4594     if (sc->link_vars.duplex == DUPLEX_FULL) {
4595         ifmr->ifm_active |= IFM_FDX;
4596     } else {
4597         ifmr->ifm_active |= IFM_HDX;
4598     }
4599 }
4600 
4601 static int
4602 bxe_ioctl_nvram(struct bxe_softc *sc,
4603                 uint32_t         priv_op,
4604                 struct ifreq     *ifr)
4605 {
4606     struct bxe_nvram_data nvdata_base;
4607     struct bxe_nvram_data *nvdata;
4608     int len;
4609     int error = 0;
4610 
4611     copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base));
4612 
4613     len = (sizeof(struct bxe_nvram_data) +
4614            nvdata_base.len -
4615            sizeof(uint32_t));
4616 
4617     if (len > sizeof(struct bxe_nvram_data)) {
4618         if ((nvdata = (struct bxe_nvram_data *)
4619                  malloc(len, M_DEVBUF,
4620                         (M_NOWAIT | M_ZERO))) == NULL) {
4621             BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed\n");
4622             return (1);
4623         }
4624         memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data));
4625     } else {
4626         nvdata = &nvdata_base;
4627     }
4628 
4629     if (priv_op == BXE_IOC_RD_NVRAM) {
4630         BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n",
4631               nvdata->offset, nvdata->len);
4632         error = bxe_nvram_read(sc,
4633                                nvdata->offset,
4634                                (uint8_t *)nvdata->value,
4635                                nvdata->len);
4636         copyout(nvdata, ifr->ifr_data, len);
4637     } else { /* BXE_IOC_WR_NVRAM */
4638         BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n",
4639               nvdata->offset, nvdata->len);
4640         copyin(ifr->ifr_data, nvdata, len);
4641         error = bxe_nvram_write(sc,
4642                                 nvdata->offset,
4643                                 (uint8_t *)nvdata->value,
4644                                 nvdata->len);
4645     }
4646 
4647     if (len > sizeof(struct bxe_nvram_data)) {
4648         free(nvdata, M_DEVBUF);
4649     }
4650 
4651     return (error);
4652 }
4653 
4654 static int
4655 bxe_ioctl_stats_show(struct bxe_softc *sc,
4656                      uint32_t         priv_op,
4657                      struct ifreq     *ifr)
4658 {
4659     const size_t str_size   = (BXE_NUM_ETH_STATS * STAT_NAME_LEN);
4660     const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t));
4661     caddr_t p_tmp;
4662     uint32_t *offset;
4663     int i;
4664 
4665     switch (priv_op)
4666     {
4667     case BXE_IOC_STATS_SHOW_NUM:
4668         memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data));
4669         ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num =
4670             BXE_NUM_ETH_STATS;
4671         ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len =
4672             STAT_NAME_LEN;
4673         return (0);
4674 
4675     case BXE_IOC_STATS_SHOW_STR:
4676         memset(ifr->ifr_data, 0, str_size);
4677         p_tmp = ifr->ifr_data;
4678         for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4679             strcpy(p_tmp, bxe_eth_stats_arr[i].string);
4680             p_tmp += STAT_NAME_LEN;
4681         }
4682         return (0);
4683 
4684     case BXE_IOC_STATS_SHOW_CNT:
4685         memset(ifr->ifr_data, 0, stats_size);
4686         p_tmp = ifr->ifr_data;
4687         for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4688             offset = ((uint32_t *)&sc->eth_stats +
4689                       bxe_eth_stats_arr[i].offset);
4690             switch (bxe_eth_stats_arr[i].size) {
4691             case 4:
4692                 *((uint64_t *)p_tmp) = (uint64_t)*offset;
4693                 break;
4694             case 8:
4695                 *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1));
4696                 break;
4697             default:
4698                 *((uint64_t *)p_tmp) = 0;
4699             }
4700             p_tmp += sizeof(uint64_t);
4701         }
4702         return (0);
4703 
4704     default:
4705         return (-1);
4706     }
4707 }
4708 
4709 static void
4710 bxe_handle_chip_tq(void *context,
4711                    int  pending)
4712 {
4713     struct bxe_softc *sc = (struct bxe_softc *)context;
4714     long work = atomic_load_acq_long(&sc->chip_tq_flags);
4715 
4716     switch (work)
4717     {
4718     case CHIP_TQ_START:
4719         if ((sc->ifnet->if_flags & IFF_UP) &&
4720             !(sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
4721             /* start the interface */
4722             BLOGD(sc, DBG_LOAD, "Starting the interface...\n");
4723             BXE_CORE_LOCK(sc);
4724             bxe_init_locked(sc);
4725             BXE_CORE_UNLOCK(sc);
4726         }
4727         break;
4728 
4729     case CHIP_TQ_STOP:
4730         if (!(sc->ifnet->if_flags & IFF_UP) &&
4731             (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
4732             /* bring down the interface */
4733             BLOGD(sc, DBG_LOAD, "Stopping the interface...\n");
4734             bxe_periodic_stop(sc);
4735             BXE_CORE_LOCK(sc);
4736             bxe_stop_locked(sc);
4737             BXE_CORE_UNLOCK(sc);
4738         }
4739         break;
4740 
4741     case CHIP_TQ_REINIT:
4742         if (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING) {
4743             /* restart the interface */
4744             BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4745             bxe_periodic_stop(sc);
4746             BXE_CORE_LOCK(sc);
4747             bxe_stop_locked(sc);
4748             bxe_init_locked(sc);
4749             BXE_CORE_UNLOCK(sc);
4750         }
4751         break;
4752 
4753     default:
4754         break;
4755     }
4756 }
4757 
4758 /*
4759  * Handles any IOCTL calls from the operating system.
4760  *
4761  * Returns:
4762  *   0 = Success, >0 Failure
4763  */
4764 static int
4765 bxe_ioctl(struct ifnet *ifp,
4766           u_long       command,
4767           caddr_t      data)
4768 {
4769     struct bxe_softc *sc = ifp->if_softc;
4770     struct ifreq *ifr = (struct ifreq *)data;
4771     struct bxe_nvram_data *nvdata;
4772     uint32_t priv_op;
4773     int mask = 0;
4774     int reinit = 0;
4775     int error = 0;
4776 
4777     int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4778     int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4779 
4780     switch (command)
4781     {
4782     case SIOCSIFMTU:
4783         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4784               ifr->ifr_mtu);
4785 
4786         if (sc->mtu == ifr->ifr_mtu) {
4787             /* nothing to change */
4788             break;
4789         }
4790 
4791         if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4792             BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4793                   ifr->ifr_mtu, mtu_min, mtu_max);
4794             error = EINVAL;
4795             break;
4796         }
4797 
4798         atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4799                              (unsigned long)ifr->ifr_mtu);
4800         atomic_store_rel_long((volatile unsigned long *)&ifp->if_mtu,
4801                               (unsigned long)ifr->ifr_mtu);
4802 
4803         reinit = 1;
4804         break;
4805 
4806     case SIOCSIFFLAGS:
4807         /* toggle the interface state up or down */
4808         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4809 
4810         /* check if the interface is up */
4811         if (ifp->if_flags & IFF_UP) {
4812             if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4813                 /* set the receive mode flags */
4814                 bxe_set_rx_mode(sc);
4815             } else {
4816                 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_START);
4817                 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4818             }
4819         } else {
4820             if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4821                 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_STOP);
4822                 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4823             }
4824         }
4825 
4826         break;
4827 
4828     case SIOCADDMULTI:
4829     case SIOCDELMULTI:
4830         /* add/delete multicast addresses */
4831         BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4832 
4833         /* check if the interface is up */
4834         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4835             /* set the receive mode flags */
4836             bxe_set_rx_mode(sc);
4837         }
4838 
4839         break;
4840 
4841     case SIOCSIFCAP:
4842         /* find out which capabilities have changed */
4843         mask = (ifr->ifr_reqcap ^ ifp->if_capenable);
4844 
4845         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4846               mask);
4847 
4848         /* toggle the LRO capabilites enable flag */
4849         if (mask & IFCAP_LRO) {
4850             ifp->if_capenable ^= IFCAP_LRO;
4851             BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4852                   (ifp->if_capenable & IFCAP_LRO) ? "ON" : "OFF");
4853             reinit = 1;
4854         }
4855 
4856         /* toggle the TXCSUM checksum capabilites enable flag */
4857         if (mask & IFCAP_TXCSUM) {
4858             ifp->if_capenable ^= IFCAP_TXCSUM;
4859             BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4860                   (ifp->if_capenable & IFCAP_TXCSUM) ? "ON" : "OFF");
4861             if (ifp->if_capenable & IFCAP_TXCSUM) {
4862                 ifp->if_hwassist = (CSUM_IP       |
4863                                     CSUM_TCP      |
4864                                     CSUM_UDP      |
4865                                     CSUM_TSO      |
4866                                     CSUM_TCP_IPV6 |
4867                                     CSUM_UDP_IPV6);
4868             } else {
4869                 ifp->if_hwassist = 0;
4870             }
4871         }
4872 
4873         /* toggle the RXCSUM checksum capabilities enable flag */
4874         if (mask & IFCAP_RXCSUM) {
4875             ifp->if_capenable ^= IFCAP_RXCSUM;
4876             BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4877                   (ifp->if_capenable & IFCAP_RXCSUM) ? "ON" : "OFF");
4878             if (ifp->if_capenable & IFCAP_RXCSUM) {
4879                 ifp->if_hwassist = (CSUM_IP       |
4880                                     CSUM_TCP      |
4881                                     CSUM_UDP      |
4882                                     CSUM_TSO      |
4883                                     CSUM_TCP_IPV6 |
4884                                     CSUM_UDP_IPV6);
4885             } else {
4886                 ifp->if_hwassist = 0;
4887             }
4888         }
4889 
4890         /* toggle TSO4 capabilities enabled flag */
4891         if (mask & IFCAP_TSO4) {
4892             ifp->if_capenable ^= IFCAP_TSO4;
4893             BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4894                   (ifp->if_capenable & IFCAP_TSO4) ? "ON" : "OFF");
4895         }
4896 
4897         /* toggle TSO6 capabilities enabled flag */
4898         if (mask & IFCAP_TSO6) {
4899             ifp->if_capenable ^= IFCAP_TSO6;
4900             BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4901                   (ifp->if_capenable & IFCAP_TSO6) ? "ON" : "OFF");
4902         }
4903 
4904         /* toggle VLAN_HWTSO capabilities enabled flag */
4905         if (mask & IFCAP_VLAN_HWTSO) {
4906             ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
4907             BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4908                   (ifp->if_capenable & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4909         }
4910 
4911         /* toggle VLAN_HWCSUM capabilities enabled flag */
4912         if (mask & IFCAP_VLAN_HWCSUM) {
4913             /* XXX investigate this... */
4914             BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4915             error = EINVAL;
4916         }
4917 
4918         /* toggle VLAN_MTU capabilities enable flag */
4919         if (mask & IFCAP_VLAN_MTU) {
4920             /* XXX investigate this... */
4921             BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4922             error = EINVAL;
4923         }
4924 
4925         /* toggle VLAN_HWTAGGING capabilities enabled flag */
4926         if (mask & IFCAP_VLAN_HWTAGGING) {
4927             /* XXX investigate this... */
4928             BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4929             error = EINVAL;
4930         }
4931 
4932         /* toggle VLAN_HWFILTER capabilities enabled flag */
4933         if (mask & IFCAP_VLAN_HWFILTER) {
4934             /* XXX investigate this... */
4935             BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4936             error = EINVAL;
4937         }
4938 
4939         /* XXX not yet...
4940          * IFCAP_WOL_MAGIC
4941          */
4942 
4943         break;
4944 
4945     case SIOCSIFMEDIA:
4946     case SIOCGIFMEDIA:
4947         /* set/get interface media */
4948         BLOGD(sc, DBG_IOCTL,
4949               "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4950               (command & 0xff));
4951         error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
4952         break;
4953 
4954     case SIOCGPRIVATE_0:
4955         copyin(ifr->ifr_data, &priv_op, sizeof(priv_op));
4956 
4957         switch (priv_op)
4958         {
4959         case BXE_IOC_RD_NVRAM:
4960         case BXE_IOC_WR_NVRAM:
4961             nvdata = (struct bxe_nvram_data *)ifr->ifr_data;
4962             BLOGD(sc, DBG_IOCTL,
4963                   "Received Private NVRAM ioctl addr=0x%x size=%u\n",
4964                   nvdata->offset, nvdata->len);
4965             error = bxe_ioctl_nvram(sc, priv_op, ifr);
4966             break;
4967 
4968         case BXE_IOC_STATS_SHOW_NUM:
4969         case BXE_IOC_STATS_SHOW_STR:
4970         case BXE_IOC_STATS_SHOW_CNT:
4971             BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n",
4972                   priv_op);
4973             error = bxe_ioctl_stats_show(sc, priv_op, ifr);
4974             break;
4975 
4976         default:
4977             BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op);
4978             error = EINVAL;
4979             break;
4980         }
4981 
4982         break;
4983 
4984     default:
4985         BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
4986               (command & 0xff));
4987         error = ether_ioctl(ifp, command, data);
4988         break;
4989     }
4990 
4991     if (reinit && (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
4992         BLOGD(sc, DBG_LOAD | DBG_IOCTL,
4993               "Re-initializing hardware from IOCTL change\n");
4994         atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
4995         taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4996     }
4997 
4998     return (error);
4999 }
5000 
5001 static __noinline void
5002 bxe_dump_mbuf(struct bxe_softc *sc,
5003               struct mbuf      *m,
5004               uint8_t          contents)
5005 {
5006     char * type;
5007 
5008     if (!(sc->debug & DBG_MBUF)) {
5009         return;
5010     }
5011 
5012     if (m == NULL) {
5013         BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
5014         return;
5015     }
5016 
5017     while (m) {
5018         BLOGD(sc, DBG_MBUF,
5019               "mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
5020               m, m->m_len, m->m_flags,
5021               "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", m->m_data);
5022 
5023         if (m->m_flags & M_PKTHDR) {
5024              BLOGD(sc, DBG_MBUF,
5025                    "- m_pkthdr: len=%d flags=0x%b csum_flags=%b\n",
5026                    m->m_pkthdr.len, m->m_flags,
5027                    "\20\12M_BCAST\13M_MCAST\14M_FRAG"
5028                    "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG"
5029                    "\22M_PROMISC\23M_NOFREE",
5030                    (int)m->m_pkthdr.csum_flags,
5031                    "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS"
5032                    "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
5033                    "\12CSUM_IP_VALID\13CSUM_DATA_VALID"
5034                    "\14CSUM_PSEUDO_HDR");
5035         }
5036 
5037         if (m->m_flags & M_EXT) {
5038             switch (m->m_ext.ext_type) {
5039             case EXT_CLUSTER:    type = "EXT_CLUSTER";    break;
5040             case EXT_SFBUF:      type = "EXT_SFBUF";      break;
5041             case EXT_JUMBO9:     type = "EXT_JUMBO9";     break;
5042             case EXT_JUMBO16:    type = "EXT_JUMBO16";    break;
5043             case EXT_PACKET:     type = "EXT_PACKET";     break;
5044             case EXT_MBUF:       type = "EXT_MBUF";       break;
5045             case EXT_NET_DRV:    type = "EXT_NET_DRV";    break;
5046             case EXT_MOD_TYPE:   type = "EXT_MOD_TYPE";   break;
5047             case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
5048             case EXT_EXTREF:     type = "EXT_EXTREF";     break;
5049             default:             type = "UNKNOWN";        break;
5050             }
5051 
5052             BLOGD(sc, DBG_MBUF,
5053                   "- m_ext: %p ext_size=%d, type=%s\n",
5054                   m->m_ext.ext_buf, m->m_ext.ext_size, type);
5055         }
5056 
5057         if (contents) {
5058             bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
5059         }
5060 
5061         m = m->m_next;
5062     }
5063 }
5064 
5065 /*
5066  * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
5067  * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
5068  * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
5069  * The headers comes in a seperate bd in FreeBSD so 13-3=10.
5070  * Returns: 0 if OK to send, 1 if packet needs further defragmentation
5071  */
5072 static int
5073 bxe_chktso_window(struct bxe_softc  *sc,
5074                   int               nsegs,
5075                   bus_dma_segment_t *segs,
5076                   struct mbuf       *m)
5077 {
5078     uint32_t num_wnds, wnd_size, wnd_sum;
5079     int32_t frag_idx, wnd_idx;
5080     unsigned short lso_mss;
5081     int defrag;
5082 
5083     defrag = 0;
5084     wnd_sum = 0;
5085     wnd_size = 10;
5086     num_wnds = nsegs - wnd_size;
5087     lso_mss = htole16(m->m_pkthdr.tso_segsz);
5088 
5089     /*
5090      * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
5091      * first window sum of data while skipping the first assuming it is the
5092      * header in FreeBSD.
5093      */
5094     for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
5095         wnd_sum += htole16(segs[frag_idx].ds_len);
5096     }
5097 
5098     /* check the first 10 bd window size */
5099     if (wnd_sum < lso_mss) {
5100         return (1);
5101     }
5102 
5103     /* run through the windows */
5104     for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
5105         /* subtract the first mbuf->m_len of the last wndw(-header) */
5106         wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
5107         /* add the next mbuf len to the len of our new window */
5108         wnd_sum += htole16(segs[frag_idx].ds_len);
5109         if (wnd_sum < lso_mss) {
5110             return (1);
5111         }
5112     }
5113 
5114     return (0);
5115 }
5116 
5117 static uint8_t
5118 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
5119                     struct mbuf         *m,
5120                     uint32_t            *parsing_data)
5121 {
5122     struct ether_vlan_header *eh = NULL;
5123     struct ip *ip4 = NULL;
5124     struct ip6_hdr *ip6 = NULL;
5125     caddr_t ip = NULL;
5126     struct tcphdr *th = NULL;
5127     int e_hlen, ip_hlen, l4_off;
5128     uint16_t proto;
5129 
5130     if (m->m_pkthdr.csum_flags == CSUM_IP) {
5131         /* no L4 checksum offload needed */
5132         return (0);
5133     }
5134 
5135     /* get the Ethernet header */
5136     eh = mtod(m, struct ether_vlan_header *);
5137 
5138     /* handle VLAN encapsulation if present */
5139     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5140         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5141         proto  = ntohs(eh->evl_proto);
5142     } else {
5143         e_hlen = ETHER_HDR_LEN;
5144         proto  = ntohs(eh->evl_encap_proto);
5145     }
5146 
5147     switch (proto) {
5148     case ETHERTYPE_IP:
5149         /* get the IP header, if mbuf len < 20 then header in next mbuf */
5150         ip4 = (m->m_len < sizeof(struct ip)) ?
5151                   (struct ip *)m->m_next->m_data :
5152                   (struct ip *)(m->m_data + e_hlen);
5153         /* ip_hl is number of 32-bit words */
5154         ip_hlen = (ip4->ip_hl << 2);
5155         ip = (caddr_t)ip4;
5156         break;
5157     case ETHERTYPE_IPV6:
5158         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5159         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5160                   (struct ip6_hdr *)m->m_next->m_data :
5161                   (struct ip6_hdr *)(m->m_data + e_hlen);
5162         /* XXX cannot support offload with IPv6 extensions */
5163         ip_hlen = sizeof(struct ip6_hdr);
5164         ip = (caddr_t)ip6;
5165         break;
5166     default:
5167         /* We can't offload in this case... */
5168         /* XXX error stat ??? */
5169         return (0);
5170     }
5171 
5172     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5173     l4_off = (e_hlen + ip_hlen);
5174 
5175     *parsing_data |=
5176         (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
5177          ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
5178 
5179     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5180                                   CSUM_TSO |
5181                                   CSUM_TCP_IPV6)) {
5182         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5183         th = (struct tcphdr *)(ip + ip_hlen);
5184         /* th_off is number of 32-bit words */
5185         *parsing_data |= ((th->th_off <<
5186                            ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
5187                           ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
5188         return (l4_off + (th->th_off << 2)); /* entire header length */
5189     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5190                                          CSUM_UDP_IPV6)) {
5191         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5192         return (l4_off + sizeof(struct udphdr)); /* entire header length */
5193     } else {
5194         /* XXX error stat ??? */
5195         return (0);
5196     }
5197 }
5198 
5199 static uint8_t
5200 bxe_set_pbd_csum(struct bxe_fastpath        *fp,
5201                  struct mbuf                *m,
5202                  struct eth_tx_parse_bd_e1x *pbd)
5203 {
5204     struct ether_vlan_header *eh = NULL;
5205     struct ip *ip4 = NULL;
5206     struct ip6_hdr *ip6 = NULL;
5207     caddr_t ip = NULL;
5208     struct tcphdr *th = NULL;
5209     struct udphdr *uh = NULL;
5210     int e_hlen, ip_hlen;
5211     uint16_t proto;
5212     uint8_t hlen;
5213     uint16_t tmp_csum;
5214     uint32_t *tmp_uh;
5215 
5216     /* get the Ethernet header */
5217     eh = mtod(m, struct ether_vlan_header *);
5218 
5219     /* handle VLAN encapsulation if present */
5220     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5221         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5222         proto  = ntohs(eh->evl_proto);
5223     } else {
5224         e_hlen = ETHER_HDR_LEN;
5225         proto  = ntohs(eh->evl_encap_proto);
5226     }
5227 
5228     switch (proto) {
5229     case ETHERTYPE_IP:
5230         /* get the IP header, if mbuf len < 20 then header in next mbuf */
5231         ip4 = (m->m_len < sizeof(struct ip)) ?
5232                   (struct ip *)m->m_next->m_data :
5233                   (struct ip *)(m->m_data + e_hlen);
5234         /* ip_hl is number of 32-bit words */
5235         ip_hlen = (ip4->ip_hl << 1);
5236         ip = (caddr_t)ip4;
5237         break;
5238     case ETHERTYPE_IPV6:
5239         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5240         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5241                   (struct ip6_hdr *)m->m_next->m_data :
5242                   (struct ip6_hdr *)(m->m_data + e_hlen);
5243         /* XXX cannot support offload with IPv6 extensions */
5244         ip_hlen = (sizeof(struct ip6_hdr) >> 1);
5245         ip = (caddr_t)ip6;
5246         break;
5247     default:
5248         /* We can't offload in this case... */
5249         /* XXX error stat ??? */
5250         return (0);
5251     }
5252 
5253     hlen = (e_hlen >> 1);
5254 
5255     /* note that rest of global_data is indirectly zeroed here */
5256     if (m->m_flags & M_VLANTAG) {
5257         pbd->global_data =
5258             htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
5259     } else {
5260         pbd->global_data = htole16(hlen);
5261     }
5262 
5263     pbd->ip_hlen_w = ip_hlen;
5264 
5265     hlen += pbd->ip_hlen_w;
5266 
5267     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5268 
5269     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5270                                   CSUM_TSO |
5271                                   CSUM_TCP_IPV6)) {
5272         th = (struct tcphdr *)(ip + (ip_hlen << 1));
5273         /* th_off is number of 32-bit words */
5274         hlen += (uint16_t)(th->th_off << 1);
5275     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5276                                          CSUM_UDP_IPV6)) {
5277         uh = (struct udphdr *)(ip + (ip_hlen << 1));
5278         hlen += (sizeof(struct udphdr) / 2);
5279     } else {
5280         /* valid case as only CSUM_IP was set */
5281         return (0);
5282     }
5283 
5284     pbd->total_hlen_w = htole16(hlen);
5285 
5286     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5287                                   CSUM_TSO |
5288                                   CSUM_TCP_IPV6)) {
5289         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5290         pbd->tcp_pseudo_csum = ntohs(th->th_sum);
5291     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5292                                          CSUM_UDP_IPV6)) {
5293         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5294 
5295         /*
5296          * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
5297          * checksums and does not know anything about the UDP header and where
5298          * the checksum field is located. It only knows about TCP. Therefore
5299          * we "lie" to the hardware for outgoing UDP packets w/ checksum
5300          * offload. Since the checksum field offset for TCP is 16 bytes and
5301          * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
5302          * bytes less than the start of the UDP header. This allows the
5303          * hardware to write the checksum in the correct spot. But the
5304          * hardware will compute a checksum which includes the last 10 bytes
5305          * of the IP header. To correct this we tweak the stack computed
5306          * pseudo checksum by folding in the calculation of the inverse
5307          * checksum for those final 10 bytes of the IP header. This allows
5308          * the correct checksum to be computed by the hardware.
5309          */
5310 
5311         /* set pointer 10 bytes before UDP header */
5312         tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5313 
5314         /* calculate a pseudo header checksum over the first 10 bytes */
5315         tmp_csum = in_pseudo(*tmp_uh,
5316                              *(tmp_uh + 1),
5317                              *(uint16_t *)(tmp_uh + 2));
5318 
5319         pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5320     }
5321 
5322     return (hlen * 2); /* entire header length, number of bytes */
5323 }
5324 
5325 static void
5326 bxe_set_pbd_lso_e2(struct mbuf *m,
5327                    uint32_t    *parsing_data)
5328 {
5329     *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5330                        ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5331                       ETH_TX_PARSE_BD_E2_LSO_MSS);
5332 
5333     /* XXX test for IPv6 with extension header... */
5334 #if 0
5335     struct ip6_hdr *ip6;
5336     if (ip6 && ip6->ip6_nxt == 'some ipv6 extension header')
5337         *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
5338 #endif
5339 }
5340 
5341 static void
5342 bxe_set_pbd_lso(struct mbuf                *m,
5343                 struct eth_tx_parse_bd_e1x *pbd)
5344 {
5345     struct ether_vlan_header *eh = NULL;
5346     struct ip *ip = NULL;
5347     struct tcphdr *th = NULL;
5348     int e_hlen;
5349 
5350     /* get the Ethernet header */
5351     eh = mtod(m, struct ether_vlan_header *);
5352 
5353     /* handle VLAN encapsulation if present */
5354     e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5355                  (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5356 
5357     /* get the IP and TCP header, with LSO entire header in first mbuf */
5358     /* XXX assuming IPv4 */
5359     ip = (struct ip *)(m->m_data + e_hlen);
5360     th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5361 
5362     pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5363     pbd->tcp_send_seq = ntohl(th->th_seq);
5364     pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5365 
5366 #if 1
5367         /* XXX IPv4 */
5368         pbd->ip_id = ntohs(ip->ip_id);
5369         pbd->tcp_pseudo_csum =
5370             ntohs(in_pseudo(ip->ip_src.s_addr,
5371                             ip->ip_dst.s_addr,
5372                             htons(IPPROTO_TCP)));
5373 #else
5374         /* XXX IPv6 */
5375         pbd->tcp_pseudo_csum =
5376             ntohs(in_pseudo(&ip6->ip6_src,
5377                             &ip6->ip6_dst,
5378                             htons(IPPROTO_TCP)));
5379 #endif
5380 
5381     pbd->global_data |=
5382         htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5383 }
5384 
5385 /*
5386  * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5387  * visible to the controller.
5388  *
5389  * If an mbuf is submitted to this routine and cannot be given to the
5390  * controller (e.g. it has too many fragments) then the function may free
5391  * the mbuf and return to the caller.
5392  *
5393  * Returns:
5394  *   0 = Success, !0 = Failure
5395  *   Note the side effect that an mbuf may be freed if it causes a problem.
5396  */
5397 static int
5398 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5399 {
5400     bus_dma_segment_t segs[32];
5401     struct mbuf *m0;
5402     struct bxe_sw_tx_bd *tx_buf;
5403     struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5404     struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5405     /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5406     struct eth_tx_bd *tx_data_bd;
5407     struct eth_tx_bd *tx_total_pkt_size_bd;
5408     struct eth_tx_start_bd *tx_start_bd;
5409     uint16_t bd_prod, pkt_prod, total_pkt_size;
5410     uint8_t mac_type;
5411     int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5412     struct bxe_softc *sc;
5413     uint16_t tx_bd_avail;
5414     struct ether_vlan_header *eh;
5415     uint32_t pbd_e2_parsing_data = 0;
5416     uint8_t hlen = 0;
5417     int tmp_bd;
5418     int i;
5419 
5420     sc = fp->sc;
5421 
5422     M_ASSERTPKTHDR(*m_head);
5423 
5424     m0 = *m_head;
5425     rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5426     tx_start_bd = NULL;
5427     tx_data_bd = NULL;
5428     tx_total_pkt_size_bd = NULL;
5429 
5430     /* get the H/W pointer for packets and BDs */
5431     pkt_prod = fp->tx_pkt_prod;
5432     bd_prod = fp->tx_bd_prod;
5433 
5434     mac_type = UNICAST_ADDRESS;
5435 
5436     /* map the mbuf into the next open DMAable memory */
5437     tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5438     error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5439                                     tx_buf->m_map, m0,
5440                                     segs, &nsegs, BUS_DMA_NOWAIT);
5441 
5442     /* mapping errors */
5443     if(__predict_false(error != 0)) {
5444         fp->eth_q_stats.tx_dma_mapping_failure++;
5445         if (error == ENOMEM) {
5446             /* resource issue, try again later */
5447             rc = ENOMEM;
5448         } else if (error == EFBIG) {
5449             /* possibly recoverable with defragmentation */
5450             fp->eth_q_stats.mbuf_defrag_attempts++;
5451             m0 = m_defrag(*m_head, M_DONTWAIT);
5452             if (m0 == NULL) {
5453                 fp->eth_q_stats.mbuf_defrag_failures++;
5454                 rc = ENOBUFS;
5455             } else {
5456                 /* defrag successful, try mapping again */
5457                 *m_head = m0;
5458                 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5459                                                 tx_buf->m_map, m0,
5460                                                 segs, &nsegs, BUS_DMA_NOWAIT);
5461                 if (error) {
5462                     fp->eth_q_stats.tx_dma_mapping_failure++;
5463                     rc = error;
5464                 }
5465             }
5466         } else {
5467             /* unknown, unrecoverable mapping error */
5468             BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5469             bxe_dump_mbuf(sc, m0, FALSE);
5470             rc = error;
5471         }
5472 
5473         goto bxe_tx_encap_continue;
5474     }
5475 
5476     tx_bd_avail = bxe_tx_avail(sc, fp);
5477 
5478     /* make sure there is enough room in the send queue */
5479     if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5480         /* Recoverable, try again later. */
5481         fp->eth_q_stats.tx_hw_queue_full++;
5482         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5483         rc = ENOMEM;
5484         goto bxe_tx_encap_continue;
5485     }
5486 
5487     /* capture the current H/W TX chain high watermark */
5488     if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5489                         (TX_BD_USABLE - tx_bd_avail))) {
5490         fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5491     }
5492 
5493     /* make sure it fits in the packet window */
5494     if (__predict_false(nsegs > 12)) {
5495         /*
5496          * The mbuf may be to big for the controller to handle. If the frame
5497          * is a TSO frame we'll need to do an additional check.
5498          */
5499         if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5500             if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5501                 goto bxe_tx_encap_continue; /* OK to send */
5502             } else {
5503                 fp->eth_q_stats.tx_window_violation_tso++;
5504             }
5505         } else {
5506             fp->eth_q_stats.tx_window_violation_std++;
5507         }
5508 
5509         /* XXX I don't like this, change to double copy packet */
5510 
5511         /* no sense trying to defrag again, just drop the frame */
5512         rc = ENODEV;
5513     }
5514 
5515 bxe_tx_encap_continue:
5516 
5517     /* Check for errors */
5518     if (rc) {
5519         if (rc == ENOMEM) {
5520             /* recoverable try again later  */
5521         } else {
5522             fp->eth_q_stats.tx_soft_errors++;
5523             fp->eth_q_stats.mbuf_alloc_tx--;
5524             m_freem(*m_head);
5525             *m_head = NULL;
5526         }
5527 
5528         return (rc);
5529     }
5530 
5531     /* set flag according to packet type (UNICAST_ADDRESS is default) */
5532     if (m0->m_flags & M_BCAST) {
5533         mac_type = BROADCAST_ADDRESS;
5534     } else if (m0->m_flags & M_MCAST) {
5535         mac_type = MULTICAST_ADDRESS;
5536     }
5537 
5538     /* store the mbuf into the mbuf ring */
5539     tx_buf->m        = m0;
5540     tx_buf->first_bd = fp->tx_bd_prod;
5541     tx_buf->flags    = 0;
5542 
5543     /* prepare the first transmit (start) BD for the mbuf */
5544     tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5545 
5546     BLOGD(sc, DBG_TX,
5547           "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5548           pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5549 
5550     tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5551     tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5552     tx_start_bd->nbytes  = htole16(segs[0].ds_len);
5553     total_pkt_size += tx_start_bd->nbytes;
5554     tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5555 
5556     tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5557 
5558     /* all frames have at least Start BD + Parsing BD */
5559     nbds = nsegs + 1;
5560     tx_start_bd->nbd = htole16(nbds);
5561 
5562     if (m0->m_flags & M_VLANTAG) {
5563         tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5564         tx_start_bd->bd_flags.as_bitfield |=
5565             (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5566     } else {
5567         /* vf tx, start bd must hold the ethertype for fw to enforce it */
5568         if (IS_VF(sc)) {
5569             /* map ethernet header to find type and header length */
5570             eh = mtod(m0, struct ether_vlan_header *);
5571             tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5572         } else {
5573             /* used by FW for packet accounting */
5574             tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5575 #if 0
5576             /*
5577              * If NPAR-SD is active then FW should do the tagging regardless
5578              * of value of priority. Otherwise, if priority indicates this is
5579              * a control packet we need to indicate to FW to avoid tagging.
5580              */
5581             if (!IS_MF_AFEX(sc) && (mbuf priority == PRIO_CONTROL)) {
5582                 SET_FLAG(tx_start_bd->general_data,
5583                          ETH_TX_START_BD_FORCE_VLAN_MODE, 1);
5584             }
5585 #endif
5586         }
5587     }
5588 
5589     /*
5590      * add a parsing BD from the chain. The parsing BD is always added
5591      * though it is only used for TSO and chksum
5592      */
5593     bd_prod = TX_BD_NEXT(bd_prod);
5594 
5595     if (m0->m_pkthdr.csum_flags) {
5596         if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5597             fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5598             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5599         }
5600 
5601         if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5602             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5603                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5604         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5605             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6   |
5606                                                   ETH_TX_BD_FLAGS_IS_UDP |
5607                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5608         } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5609                    (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5610             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5611         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5612             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5613                                                   ETH_TX_BD_FLAGS_IS_UDP);
5614         }
5615     }
5616 
5617     if (!CHIP_IS_E1x(sc)) {
5618         pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5619         memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5620 
5621         if (m0->m_pkthdr.csum_flags) {
5622             hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5623         }
5624 
5625 #if 0
5626         /*
5627          * Add the MACs to the parsing BD if the module param was
5628          * explicitly set, if this is a vf, or in switch independent
5629          * mode.
5630          */
5631         if (sc->flags & BXE_TX_SWITCHING || IS_VF(sc) || IS_MF_SI(sc)) {
5632             eh = mtod(m0, struct ether_vlan_header *);
5633             bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
5634                                 &pbd_e2->data.mac_addr.src_mid,
5635                                 &pbd_e2->data.mac_addr.src_lo,
5636                                 eh->evl_shost);
5637             bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
5638                                 &pbd_e2->data.mac_addr.dst_mid,
5639                                 &pbd_e2->data.mac_addr.dst_lo,
5640                                 eh->evl_dhost);
5641         }
5642 #endif
5643 
5644         SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5645                  mac_type);
5646     } else {
5647         uint16_t global_data = 0;
5648 
5649         pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5650         memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5651 
5652         if (m0->m_pkthdr.csum_flags) {
5653             hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5654         }
5655 
5656         SET_FLAG(global_data,
5657                  ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5658         pbd_e1x->global_data |= htole16(global_data);
5659     }
5660 
5661     /* setup the parsing BD with TSO specific info */
5662     if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5663         fp->eth_q_stats.tx_ofld_frames_lso++;
5664         tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5665 
5666         if (__predict_false(tx_start_bd->nbytes > hlen)) {
5667             fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5668 
5669             /* split the first BD into header/data making the fw job easy */
5670             nbds++;
5671             tx_start_bd->nbd = htole16(nbds);
5672 
5673             bd_prod = TX_BD_NEXT(bd_prod);
5674 
5675             /* new transmit BD after the tx_parse_bd */
5676             tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5677             tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5678             tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5679             tx_data_bd->nbytes  = htole16(segs[0].ds_len - hlen);
5680             if (tx_total_pkt_size_bd == NULL) {
5681                 tx_total_pkt_size_bd = tx_data_bd;
5682             }
5683 
5684             BLOGD(sc, DBG_TX,
5685                   "TSO split header size is %d (%x:%x) nbds %d\n",
5686                   le16toh(tx_start_bd->nbytes),
5687                   le32toh(tx_start_bd->addr_hi),
5688                   le32toh(tx_start_bd->addr_lo),
5689                   nbds);
5690         }
5691 
5692         if (!CHIP_IS_E1x(sc)) {
5693             bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5694         } else {
5695             bxe_set_pbd_lso(m0, pbd_e1x);
5696         }
5697     }
5698 
5699     if (pbd_e2_parsing_data) {
5700         pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5701     }
5702 
5703     /* prepare remaining BDs, start tx bd contains first seg/frag */
5704     for (i = 1; i < nsegs ; i++) {
5705         bd_prod = TX_BD_NEXT(bd_prod);
5706         tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5707         tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5708         tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5709         tx_data_bd->nbytes  = htole16(segs[i].ds_len);
5710         if (tx_total_pkt_size_bd == NULL) {
5711             tx_total_pkt_size_bd = tx_data_bd;
5712         }
5713         total_pkt_size += tx_data_bd->nbytes;
5714     }
5715 
5716     BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5717 
5718     if (tx_total_pkt_size_bd != NULL) {
5719         tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5720     }
5721 
5722     if (__predict_false(sc->debug & DBG_TX)) {
5723         tmp_bd = tx_buf->first_bd;
5724         for (i = 0; i < nbds; i++)
5725         {
5726             if (i == 0) {
5727                 BLOGD(sc, DBG_TX,
5728                       "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5729                       "bd_flags=0x%x hdr_nbds=%d\n",
5730                       tx_start_bd,
5731                       tmp_bd,
5732                       le16toh(tx_start_bd->nbd),
5733                       le16toh(tx_start_bd->vlan_or_ethertype),
5734                       tx_start_bd->bd_flags.as_bitfield,
5735                       (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5736             } else if (i == 1) {
5737                 if (pbd_e1x) {
5738                     BLOGD(sc, DBG_TX,
5739                           "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5740                           "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5741                           "tcp_seq=%u total_hlen_w=%u\n",
5742                           pbd_e1x,
5743                           tmp_bd,
5744                           pbd_e1x->global_data,
5745                           pbd_e1x->ip_hlen_w,
5746                           pbd_e1x->ip_id,
5747                           pbd_e1x->lso_mss,
5748                           pbd_e1x->tcp_flags,
5749                           pbd_e1x->tcp_pseudo_csum,
5750                           pbd_e1x->tcp_send_seq,
5751                           le16toh(pbd_e1x->total_hlen_w));
5752                 } else { /* if (pbd_e2) */
5753                     BLOGD(sc, DBG_TX,
5754                           "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5755                           "src=%02x:%02x:%02x parsing_data=0x%x\n",
5756                           pbd_e2,
5757                           tmp_bd,
5758                           pbd_e2->data.mac_addr.dst_hi,
5759                           pbd_e2->data.mac_addr.dst_mid,
5760                           pbd_e2->data.mac_addr.dst_lo,
5761                           pbd_e2->data.mac_addr.src_hi,
5762                           pbd_e2->data.mac_addr.src_mid,
5763                           pbd_e2->data.mac_addr.src_lo,
5764                           pbd_e2->parsing_data);
5765                 }
5766             }
5767 
5768             if (i != 1) { /* skip parse db as it doesn't hold data */
5769                 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5770                 BLOGD(sc, DBG_TX,
5771                       "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5772                       tx_data_bd,
5773                       tmp_bd,
5774                       le16toh(tx_data_bd->nbytes),
5775                       le32toh(tx_data_bd->addr_hi),
5776                       le32toh(tx_data_bd->addr_lo));
5777             }
5778 
5779             tmp_bd = TX_BD_NEXT(tmp_bd);
5780         }
5781     }
5782 
5783     BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5784 
5785     /* update TX BD producer index value for next TX */
5786     bd_prod = TX_BD_NEXT(bd_prod);
5787 
5788     /*
5789      * If the chain of tx_bd's describing this frame is adjacent to or spans
5790      * an eth_tx_next_bd element then we need to increment the nbds value.
5791      */
5792     if (TX_BD_IDX(bd_prod) < nbds) {
5793         nbds++;
5794     }
5795 
5796     /* don't allow reordering of writes for nbd and packets */
5797     mb();
5798 
5799     fp->tx_db.data.prod += nbds;
5800 
5801     /* producer points to the next free tx_bd at this point */
5802     fp->tx_pkt_prod++;
5803     fp->tx_bd_prod = bd_prod;
5804 
5805     DOORBELL(sc, fp->index, fp->tx_db.raw);
5806 
5807     fp->eth_q_stats.tx_pkts++;
5808 
5809     /* Prevent speculative reads from getting ahead of the status block. */
5810     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5811                       0, 0, BUS_SPACE_BARRIER_READ);
5812 
5813     /* Prevent speculative reads from getting ahead of the doorbell. */
5814     bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5815                       0, 0, BUS_SPACE_BARRIER_READ);
5816 
5817     return (0);
5818 }
5819 
5820 static void
5821 bxe_tx_start_locked(struct bxe_softc    *sc,
5822                     struct ifnet        *ifp,
5823                     struct bxe_fastpath *fp)
5824 {
5825     struct mbuf *m = NULL;
5826     int tx_count = 0;
5827     uint16_t tx_bd_avail;
5828 
5829     BXE_FP_TX_LOCK_ASSERT(fp);
5830 
5831     /* keep adding entries while there are frames to send */
5832     while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
5833 
5834         /*
5835          * check for any frames to send
5836          * dequeue can still be NULL even if queue is not empty
5837          */
5838         IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
5839         if (__predict_false(m == NULL)) {
5840             break;
5841         }
5842 
5843         /* the mbuf now belongs to us */
5844         fp->eth_q_stats.mbuf_alloc_tx++;
5845 
5846         /*
5847          * Put the frame into the transmit ring. If we don't have room,
5848          * place the mbuf back at the head of the TX queue, set the
5849          * OACTIVE flag, and wait for the NIC to drain the chain.
5850          */
5851         if (__predict_false(bxe_tx_encap(fp, &m))) {
5852             fp->eth_q_stats.tx_encap_failures++;
5853             if (m != NULL) {
5854                 /* mark the TX queue as full and return the frame */
5855                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5856                 IFQ_DRV_PREPEND(&ifp->if_snd, m);
5857                 fp->eth_q_stats.mbuf_alloc_tx--;
5858                 fp->eth_q_stats.tx_queue_xoff++;
5859             }
5860 
5861             /* stop looking for more work */
5862             break;
5863         }
5864 
5865         /* the frame was enqueued successfully */
5866         tx_count++;
5867 
5868         /* send a copy of the frame to any BPF listeners. */
5869         BPF_MTAP(ifp, m);
5870 
5871         tx_bd_avail = bxe_tx_avail(sc, fp);
5872 
5873         /* handle any completions if we're running low */
5874         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5875             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5876             bxe_txeof(sc, fp);
5877             if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
5878                 break;
5879             }
5880         }
5881     }
5882 
5883     /* all TX packets were dequeued and/or the tx ring is full */
5884     if (tx_count > 0) {
5885         /* reset the TX watchdog timeout timer */
5886         fp->watchdog_timer = BXE_TX_TIMEOUT;
5887     }
5888 }
5889 
5890 /* Legacy (non-RSS) dispatch routine */
5891 static void
5892 bxe_tx_start(struct ifnet *ifp)
5893 {
5894     struct bxe_softc *sc;
5895     struct bxe_fastpath *fp;
5896 
5897     sc = ifp->if_softc;
5898 
5899     if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
5900         BLOGW(sc, "Interface not running, ignoring transmit request\n");
5901         return;
5902     }
5903 
5904     if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
5905         BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
5906         return;
5907     }
5908 
5909     if (!sc->link_vars.link_up) {
5910         BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5911         return;
5912     }
5913 
5914     fp = &sc->fp[0];
5915 
5916     BXE_FP_TX_LOCK(fp);
5917     bxe_tx_start_locked(sc, ifp, fp);
5918     BXE_FP_TX_UNLOCK(fp);
5919 }
5920 
5921 #if __FreeBSD_version >= 800000
5922 
5923 static int
5924 bxe_tx_mq_start_locked(struct bxe_softc    *sc,
5925                        struct ifnet        *ifp,
5926                        struct bxe_fastpath *fp,
5927                        struct mbuf         *m)
5928 {
5929     struct buf_ring *tx_br = fp->tx_br;
5930     struct mbuf *next;
5931     int depth, rc, tx_count;
5932     uint16_t tx_bd_avail;
5933 
5934     rc = tx_count = 0;
5935 
5936     if (!tx_br) {
5937         BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
5938         return (EINVAL);
5939     }
5940 
5941     /* fetch the depth of the driver queue */
5942     depth = drbr_inuse(ifp, tx_br);
5943     if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
5944         fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
5945     }
5946 
5947     BXE_FP_TX_LOCK_ASSERT(fp);
5948 
5949     if (m == NULL) {
5950         /* no new work, check for pending frames */
5951         next = drbr_dequeue(ifp, tx_br);
5952     } else if (drbr_needs_enqueue(ifp, tx_br)) {
5953         /* have both new and pending work, maintain packet order */
5954         rc = drbr_enqueue(ifp, tx_br, m);
5955         if (rc != 0) {
5956             fp->eth_q_stats.tx_soft_errors++;
5957             goto bxe_tx_mq_start_locked_exit;
5958         }
5959         next = drbr_dequeue(ifp, tx_br);
5960     } else {
5961         /* new work only and nothing pending */
5962         next = m;
5963     }
5964 
5965     /* keep adding entries while there are frames to send */
5966     while (next != NULL) {
5967 
5968         /* the mbuf now belongs to us */
5969         fp->eth_q_stats.mbuf_alloc_tx++;
5970 
5971         /*
5972          * Put the frame into the transmit ring. If we don't have room,
5973          * place the mbuf back at the head of the TX queue, set the
5974          * OACTIVE flag, and wait for the NIC to drain the chain.
5975          */
5976         rc = bxe_tx_encap(fp, &next);
5977         if (__predict_false(rc != 0)) {
5978             fp->eth_q_stats.tx_encap_failures++;
5979             if (next != NULL) {
5980                 /* mark the TX queue as full and save the frame */
5981                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5982                 /* XXX this may reorder the frame */
5983                 rc = drbr_enqueue(ifp, tx_br, next);
5984                 fp->eth_q_stats.mbuf_alloc_tx--;
5985                 fp->eth_q_stats.tx_frames_deferred++;
5986             }
5987 
5988             /* stop looking for more work */
5989             break;
5990         }
5991 
5992         /* the transmit frame was enqueued successfully */
5993         tx_count++;
5994 
5995         /* send a copy of the frame to any BPF listeners */
5996         BPF_MTAP(ifp, next);
5997 
5998         tx_bd_avail = bxe_tx_avail(sc, fp);
5999 
6000         /* handle any completions if we're running low */
6001         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
6002             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
6003             bxe_txeof(sc, fp);
6004             if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
6005                 break;
6006             }
6007         }
6008 
6009         next = drbr_dequeue(ifp, tx_br);
6010     }
6011 
6012     /* all TX packets were dequeued and/or the tx ring is full */
6013     if (tx_count > 0) {
6014         /* reset the TX watchdog timeout timer */
6015         fp->watchdog_timer = BXE_TX_TIMEOUT;
6016     }
6017 
6018 bxe_tx_mq_start_locked_exit:
6019 
6020     return (rc);
6021 }
6022 
6023 /* Multiqueue (TSS) dispatch routine. */
6024 static int
6025 bxe_tx_mq_start(struct ifnet *ifp,
6026                 struct mbuf  *m)
6027 {
6028     struct bxe_softc *sc = ifp->if_softc;
6029     struct bxe_fastpath *fp;
6030     int fp_index, rc;
6031 
6032     fp_index = 0; /* default is the first queue */
6033 
6034     /* change the queue if using flow ID */
6035     if ((m->m_flags & M_FLOWID) != 0) {
6036         fp_index = (m->m_pkthdr.flowid % sc->num_queues);
6037     }
6038 
6039     fp = &sc->fp[fp_index];
6040 
6041     if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
6042         BLOGW(sc, "Interface not running, ignoring transmit request\n");
6043         return (ENETDOWN);
6044     }
6045 
6046     if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
6047         BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
6048         return (EBUSY);
6049     }
6050 
6051     if (!sc->link_vars.link_up) {
6052         BLOGW(sc, "Interface link is down, ignoring transmit request\n");
6053         return (ENETDOWN);
6054     }
6055 
6056     /* XXX change to TRYLOCK here and if failed then schedule taskqueue */
6057 
6058     BXE_FP_TX_LOCK(fp);
6059     rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
6060     BXE_FP_TX_UNLOCK(fp);
6061 
6062     return (rc);
6063 }
6064 
6065 static void
6066 bxe_mq_flush(struct ifnet *ifp)
6067 {
6068     struct bxe_softc *sc = ifp->if_softc;
6069     struct bxe_fastpath *fp;
6070     struct mbuf *m;
6071     int i;
6072 
6073     for (i = 0; i < sc->num_queues; i++) {
6074         fp = &sc->fp[i];
6075 
6076         if (fp->state != BXE_FP_STATE_OPEN) {
6077             BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
6078                   fp->index, fp->state);
6079             continue;
6080         }
6081 
6082         if (fp->tx_br != NULL) {
6083             BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
6084             BXE_FP_TX_LOCK(fp);
6085             while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6086                 m_freem(m);
6087             }
6088             BXE_FP_TX_UNLOCK(fp);
6089         }
6090     }
6091 
6092     if_qflush(ifp);
6093 }
6094 
6095 #endif /* FreeBSD_version >= 800000 */
6096 
6097 static uint16_t
6098 bxe_cid_ilt_lines(struct bxe_softc *sc)
6099 {
6100     if (IS_SRIOV(sc)) {
6101         return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
6102     }
6103     return (L2_ILT_LINES(sc));
6104 }
6105 
6106 static void
6107 bxe_ilt_set_info(struct bxe_softc *sc)
6108 {
6109     struct ilt_client_info *ilt_client;
6110     struct ecore_ilt *ilt = sc->ilt;
6111     uint16_t line = 0;
6112 
6113     ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
6114     BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
6115 
6116     /* CDU */
6117     ilt_client = &ilt->clients[ILT_CLIENT_CDU];
6118     ilt_client->client_num = ILT_CLIENT_CDU;
6119     ilt_client->page_size = CDU_ILT_PAGE_SZ;
6120     ilt_client->flags = ILT_CLIENT_SKIP_MEM;
6121     ilt_client->start = line;
6122     line += bxe_cid_ilt_lines(sc);
6123 
6124     if (CNIC_SUPPORT(sc)) {
6125         line += CNIC_ILT_LINES;
6126     }
6127 
6128     ilt_client->end = (line - 1);
6129 
6130     BLOGD(sc, DBG_LOAD,
6131           "ilt client[CDU]: start %d, end %d, "
6132           "psz 0x%x, flags 0x%x, hw psz %d\n",
6133           ilt_client->start, ilt_client->end,
6134           ilt_client->page_size,
6135           ilt_client->flags,
6136           ilog2(ilt_client->page_size >> 12));
6137 
6138     /* QM */
6139     if (QM_INIT(sc->qm_cid_count)) {
6140         ilt_client = &ilt->clients[ILT_CLIENT_QM];
6141         ilt_client->client_num = ILT_CLIENT_QM;
6142         ilt_client->page_size = QM_ILT_PAGE_SZ;
6143         ilt_client->flags = 0;
6144         ilt_client->start = line;
6145 
6146         /* 4 bytes for each cid */
6147         line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
6148                              QM_ILT_PAGE_SZ);
6149 
6150         ilt_client->end = (line - 1);
6151 
6152         BLOGD(sc, DBG_LOAD,
6153               "ilt client[QM]: start %d, end %d, "
6154               "psz 0x%x, flags 0x%x, hw psz %d\n",
6155               ilt_client->start, ilt_client->end,
6156               ilt_client->page_size, ilt_client->flags,
6157               ilog2(ilt_client->page_size >> 12));
6158     }
6159 
6160     if (CNIC_SUPPORT(sc)) {
6161         /* SRC */
6162         ilt_client = &ilt->clients[ILT_CLIENT_SRC];
6163         ilt_client->client_num = ILT_CLIENT_SRC;
6164         ilt_client->page_size = SRC_ILT_PAGE_SZ;
6165         ilt_client->flags = 0;
6166         ilt_client->start = line;
6167         line += SRC_ILT_LINES;
6168         ilt_client->end = (line - 1);
6169 
6170         BLOGD(sc, DBG_LOAD,
6171               "ilt client[SRC]: start %d, end %d, "
6172               "psz 0x%x, flags 0x%x, hw psz %d\n",
6173               ilt_client->start, ilt_client->end,
6174               ilt_client->page_size, ilt_client->flags,
6175               ilog2(ilt_client->page_size >> 12));
6176 
6177         /* TM */
6178         ilt_client = &ilt->clients[ILT_CLIENT_TM];
6179         ilt_client->client_num = ILT_CLIENT_TM;
6180         ilt_client->page_size = TM_ILT_PAGE_SZ;
6181         ilt_client->flags = 0;
6182         ilt_client->start = line;
6183         line += TM_ILT_LINES;
6184         ilt_client->end = (line - 1);
6185 
6186         BLOGD(sc, DBG_LOAD,
6187               "ilt client[TM]: start %d, end %d, "
6188               "psz 0x%x, flags 0x%x, hw psz %d\n",
6189               ilt_client->start, ilt_client->end,
6190               ilt_client->page_size, ilt_client->flags,
6191               ilog2(ilt_client->page_size >> 12));
6192     }
6193 
6194     KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
6195 }
6196 
6197 static void
6198 bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
6199 {
6200     int i;
6201 
6202     BLOGD(sc, DBG_LOAD, "mtu = %d\n", sc->mtu);
6203 
6204     for (i = 0; i < sc->num_queues; i++) {
6205         /* get the Rx buffer size for RX frames */
6206         sc->fp[i].rx_buf_size =
6207             (IP_HEADER_ALIGNMENT_PADDING +
6208              ETH_OVERHEAD +
6209              sc->mtu);
6210 
6211         BLOGD(sc, DBG_LOAD, "rx_buf_size for fp[%02d] = %d\n",
6212               i, sc->fp[i].rx_buf_size);
6213 
6214         /* get the mbuf allocation size for RX frames */
6215         if (sc->fp[i].rx_buf_size <= MCLBYTES) {
6216             sc->fp[i].mbuf_alloc_size = MCLBYTES;
6217         } else if (sc->fp[i].rx_buf_size <= BCM_PAGE_SIZE) {
6218             sc->fp[i].mbuf_alloc_size = PAGE_SIZE;
6219         } else {
6220             sc->fp[i].mbuf_alloc_size = MJUM9BYTES;
6221         }
6222 
6223         BLOGD(sc, DBG_LOAD, "mbuf_alloc_size for fp[%02d] = %d\n",
6224               i, sc->fp[i].mbuf_alloc_size);
6225     }
6226 }
6227 
6228 static int
6229 bxe_alloc_ilt_mem(struct bxe_softc *sc)
6230 {
6231     int rc = 0;
6232 
6233     if ((sc->ilt =
6234          (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
6235                                     M_BXE_ILT,
6236                                     (M_NOWAIT | M_ZERO))) == NULL) {
6237         rc = 1;
6238     }
6239 
6240     return (rc);
6241 }
6242 
6243 static int
6244 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
6245 {
6246     int rc = 0;
6247 
6248     if ((sc->ilt->lines =
6249          (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
6250                                     M_BXE_ILT,
6251                                     (M_NOWAIT | M_ZERO))) == NULL) {
6252         rc = 1;
6253     }
6254 
6255     return (rc);
6256 }
6257 
6258 static void
6259 bxe_free_ilt_mem(struct bxe_softc *sc)
6260 {
6261     if (sc->ilt != NULL) {
6262         free(sc->ilt, M_BXE_ILT);
6263         sc->ilt = NULL;
6264     }
6265 }
6266 
6267 static void
6268 bxe_free_ilt_lines_mem(struct bxe_softc *sc)
6269 {
6270     if (sc->ilt->lines != NULL) {
6271         free(sc->ilt->lines, M_BXE_ILT);
6272         sc->ilt->lines = NULL;
6273     }
6274 }
6275 
6276 static void
6277 bxe_free_mem(struct bxe_softc *sc)
6278 {
6279     int i;
6280 
6281 #if 0
6282     if (!CONFIGURE_NIC_MODE(sc)) {
6283         /* free searcher T2 table */
6284         bxe_dma_free(sc, &sc->t2);
6285     }
6286 #endif
6287 
6288     for (i = 0; i < L2_ILT_LINES(sc); i++) {
6289         bxe_dma_free(sc, &sc->context[i].vcxt_dma);
6290         sc->context[i].vcxt = NULL;
6291         sc->context[i].size = 0;
6292     }
6293 
6294     ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
6295 
6296     bxe_free_ilt_lines_mem(sc);
6297 
6298 #if 0
6299     bxe_iov_free_mem(sc);
6300 #endif
6301 }
6302 
6303 static int
6304 bxe_alloc_mem(struct bxe_softc *sc)
6305 {
6306     int context_size;
6307     int allocated;
6308     int i;
6309 
6310 #if 0
6311     if (!CONFIGURE_NIC_MODE(sc)) {
6312         /* allocate searcher T2 table */
6313         if (bxe_dma_alloc(sc, SRC_T2_SZ,
6314                           &sc->t2, "searcher t2 table") != 0) {
6315             return (-1);
6316         }
6317     }
6318 #endif
6319 
6320     /*
6321      * Allocate memory for CDU context:
6322      * This memory is allocated separately and not in the generic ILT
6323      * functions because CDU differs in few aspects:
6324      * 1. There can be multiple entities allocating memory for context -
6325      * regular L2, CNIC, and SRIOV drivers. Each separately controls
6326      * its own ILT lines.
6327      * 2. Since CDU page-size is not a single 4KB page (which is the case
6328      * for the other ILT clients), to be efficient we want to support
6329      * allocation of sub-page-size in the last entry.
6330      * 3. Context pointers are used by the driver to pass to FW / update
6331      * the context (for the other ILT clients the pointers are used just to
6332      * free the memory during unload).
6333      */
6334     context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
6335     for (i = 0, allocated = 0; allocated < context_size; i++) {
6336         sc->context[i].size = min(CDU_ILT_PAGE_SZ,
6337                                   (context_size - allocated));
6338 
6339         if (bxe_dma_alloc(sc, sc->context[i].size,
6340                           &sc->context[i].vcxt_dma,
6341                           "cdu context") != 0) {
6342             bxe_free_mem(sc);
6343             return (-1);
6344         }
6345 
6346         sc->context[i].vcxt =
6347             (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
6348 
6349         allocated += sc->context[i].size;
6350     }
6351 
6352     bxe_alloc_ilt_lines_mem(sc);
6353 
6354     BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6355           sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6356     {
6357         for (i = 0; i < 4; i++) {
6358             BLOGD(sc, DBG_LOAD,
6359                   "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6360                   i,
6361                   sc->ilt->clients[i].page_size,
6362                   sc->ilt->clients[i].start,
6363                   sc->ilt->clients[i].end,
6364                   sc->ilt->clients[i].client_num,
6365                   sc->ilt->clients[i].flags);
6366         }
6367     }
6368     if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6369         BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6370         bxe_free_mem(sc);
6371         return (-1);
6372     }
6373 
6374 #if 0
6375     if (bxe_iov_alloc_mem(sc)) {
6376         BLOGE(sc, "Failed to allocate memory for SRIOV\n");
6377         bxe_free_mem(sc);
6378         return (-1);
6379     }
6380 #endif
6381 
6382     return (0);
6383 }
6384 
6385 static void
6386 bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6387 {
6388     struct bxe_softc *sc;
6389     int i;
6390 
6391     sc = fp->sc;
6392 
6393     if (fp->rx_mbuf_tag == NULL) {
6394         return;
6395     }
6396 
6397     /* free all mbufs and unload all maps */
6398     for (i = 0; i < RX_BD_TOTAL; i++) {
6399         if (fp->rx_mbuf_chain[i].m_map != NULL) {
6400             bus_dmamap_sync(fp->rx_mbuf_tag,
6401                             fp->rx_mbuf_chain[i].m_map,
6402                             BUS_DMASYNC_POSTREAD);
6403             bus_dmamap_unload(fp->rx_mbuf_tag,
6404                               fp->rx_mbuf_chain[i].m_map);
6405         }
6406 
6407         if (fp->rx_mbuf_chain[i].m != NULL) {
6408             m_freem(fp->rx_mbuf_chain[i].m);
6409             fp->rx_mbuf_chain[i].m = NULL;
6410             fp->eth_q_stats.mbuf_alloc_rx--;
6411         }
6412     }
6413 }
6414 
6415 static void
6416 bxe_free_tpa_pool(struct bxe_fastpath *fp)
6417 {
6418     struct bxe_softc *sc;
6419     int i, max_agg_queues;
6420 
6421     sc = fp->sc;
6422 
6423     if (fp->rx_mbuf_tag == NULL) {
6424         return;
6425     }
6426 
6427     max_agg_queues = MAX_AGG_QS(sc);
6428 
6429     /* release all mbufs and unload all DMA maps in the TPA pool */
6430     for (i = 0; i < max_agg_queues; i++) {
6431         if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6432             bus_dmamap_sync(fp->rx_mbuf_tag,
6433                             fp->rx_tpa_info[i].bd.m_map,
6434                             BUS_DMASYNC_POSTREAD);
6435             bus_dmamap_unload(fp->rx_mbuf_tag,
6436                               fp->rx_tpa_info[i].bd.m_map);
6437         }
6438 
6439         if (fp->rx_tpa_info[i].bd.m != NULL) {
6440             m_freem(fp->rx_tpa_info[i].bd.m);
6441             fp->rx_tpa_info[i].bd.m = NULL;
6442             fp->eth_q_stats.mbuf_alloc_tpa--;
6443         }
6444     }
6445 }
6446 
6447 static void
6448 bxe_free_sge_chain(struct bxe_fastpath *fp)
6449 {
6450     struct bxe_softc *sc;
6451     int i;
6452 
6453     sc = fp->sc;
6454 
6455     if (fp->rx_sge_mbuf_tag == NULL) {
6456         return;
6457     }
6458 
6459     /* rree all mbufs and unload all maps */
6460     for (i = 0; i < RX_SGE_TOTAL; i++) {
6461         if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6462             bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6463                             fp->rx_sge_mbuf_chain[i].m_map,
6464                             BUS_DMASYNC_POSTREAD);
6465             bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6466                               fp->rx_sge_mbuf_chain[i].m_map);
6467         }
6468 
6469         if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6470             m_freem(fp->rx_sge_mbuf_chain[i].m);
6471             fp->rx_sge_mbuf_chain[i].m = NULL;
6472             fp->eth_q_stats.mbuf_alloc_sge--;
6473         }
6474     }
6475 }
6476 
6477 static void
6478 bxe_free_fp_buffers(struct bxe_softc *sc)
6479 {
6480     struct bxe_fastpath *fp;
6481     int i;
6482 
6483     for (i = 0; i < sc->num_queues; i++) {
6484         fp = &sc->fp[i];
6485 
6486 #if __FreeBSD_version >= 800000
6487         if (fp->tx_br != NULL) {
6488             struct mbuf *m;
6489             /* just in case bxe_mq_flush() wasn't called */
6490             while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6491                 m_freem(m);
6492             }
6493             buf_ring_free(fp->tx_br, M_DEVBUF);
6494             fp->tx_br = NULL;
6495         }
6496 #endif
6497 
6498         /* free all RX buffers */
6499         bxe_free_rx_bd_chain(fp);
6500         bxe_free_tpa_pool(fp);
6501         bxe_free_sge_chain(fp);
6502 
6503         if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6504             BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6505                   fp->eth_q_stats.mbuf_alloc_rx);
6506         }
6507 
6508         if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6509             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6510                   fp->eth_q_stats.mbuf_alloc_sge);
6511         }
6512 
6513         if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6514             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6515                   fp->eth_q_stats.mbuf_alloc_tpa);
6516         }
6517 
6518         if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6519             BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6520                   fp->eth_q_stats.mbuf_alloc_tx);
6521         }
6522 
6523         /* XXX verify all mbufs were reclaimed */
6524 
6525         if (mtx_initialized(&fp->tx_mtx)) {
6526             mtx_destroy(&fp->tx_mtx);
6527         }
6528 
6529         if (mtx_initialized(&fp->rx_mtx)) {
6530             mtx_destroy(&fp->rx_mtx);
6531         }
6532     }
6533 }
6534 
6535 static int
6536 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6537                      uint16_t            prev_index,
6538                      uint16_t            index)
6539 {
6540     struct bxe_sw_rx_bd *rx_buf;
6541     struct eth_rx_bd *rx_bd;
6542     bus_dma_segment_t segs[1];
6543     bus_dmamap_t map;
6544     struct mbuf *m;
6545     int nsegs, rc;
6546 
6547     rc = 0;
6548 
6549     /* allocate the new RX BD mbuf */
6550     m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6551     if (__predict_false(m == NULL)) {
6552         fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6553         return (ENOBUFS);
6554     }
6555 
6556     fp->eth_q_stats.mbuf_alloc_rx++;
6557 
6558     /* initialize the mbuf buffer length */
6559     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6560 
6561     /* map the mbuf into non-paged pool */
6562     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6563                                  fp->rx_mbuf_spare_map,
6564                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6565     if (__predict_false(rc != 0)) {
6566         fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6567         m_freem(m);
6568         fp->eth_q_stats.mbuf_alloc_rx--;
6569         return (rc);
6570     }
6571 
6572     /* all mbufs must map to a single segment */
6573     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6574 
6575     /* release any existing RX BD mbuf mappings */
6576 
6577     if (prev_index != index) {
6578         rx_buf = &fp->rx_mbuf_chain[prev_index];
6579 
6580         if (rx_buf->m_map != NULL) {
6581             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6582                             BUS_DMASYNC_POSTREAD);
6583             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6584         }
6585 
6586         /*
6587          * We only get here from bxe_rxeof() when the maximum number
6588          * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6589          * holds the mbuf in the prev_index so it's OK to NULL it out
6590          * here without concern of a memory leak.
6591          */
6592         fp->rx_mbuf_chain[prev_index].m = NULL;
6593     }
6594 
6595     rx_buf = &fp->rx_mbuf_chain[index];
6596 
6597     if (rx_buf->m_map != NULL) {
6598         bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6599                         BUS_DMASYNC_POSTREAD);
6600         bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6601     }
6602 
6603     /* save the mbuf and mapping info for a future packet */
6604     map = (prev_index != index) ?
6605               fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6606     rx_buf->m_map = fp->rx_mbuf_spare_map;
6607     fp->rx_mbuf_spare_map = map;
6608     bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6609                     BUS_DMASYNC_PREREAD);
6610     rx_buf->m = m;
6611 
6612     rx_bd = &fp->rx_chain[index];
6613     rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6614     rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6615 
6616     return (rc);
6617 }
6618 
6619 static int
6620 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6621                       int                 queue)
6622 {
6623     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6624     bus_dma_segment_t segs[1];
6625     bus_dmamap_t map;
6626     struct mbuf *m;
6627     int nsegs;
6628     int rc = 0;
6629 
6630     /* allocate the new TPA mbuf */
6631     m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6632     if (__predict_false(m == NULL)) {
6633         fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6634         return (ENOBUFS);
6635     }
6636 
6637     fp->eth_q_stats.mbuf_alloc_tpa++;
6638 
6639     /* initialize the mbuf buffer length */
6640     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6641 
6642     /* map the mbuf into non-paged pool */
6643     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6644                                  fp->rx_tpa_info_mbuf_spare_map,
6645                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6646     if (__predict_false(rc != 0)) {
6647         fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6648         m_free(m);
6649         fp->eth_q_stats.mbuf_alloc_tpa--;
6650         return (rc);
6651     }
6652 
6653     /* all mbufs must map to a single segment */
6654     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6655 
6656     /* release any existing TPA mbuf mapping */
6657     if (tpa_info->bd.m_map != NULL) {
6658         bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6659                         BUS_DMASYNC_POSTREAD);
6660         bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6661     }
6662 
6663     /* save the mbuf and mapping info for the TPA mbuf */
6664     map = tpa_info->bd.m_map;
6665     tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6666     fp->rx_tpa_info_mbuf_spare_map = map;
6667     bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6668                     BUS_DMASYNC_PREREAD);
6669     tpa_info->bd.m = m;
6670     tpa_info->seg = segs[0];
6671 
6672     return (rc);
6673 }
6674 
6675 /*
6676  * Allocate an mbuf and assign it to the receive scatter gather chain. The
6677  * caller must take care to save a copy of the existing mbuf in the SG mbuf
6678  * chain.
6679  */
6680 static int
6681 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6682                       uint16_t            index)
6683 {
6684     struct bxe_sw_rx_bd *sge_buf;
6685     struct eth_rx_sge *sge;
6686     bus_dma_segment_t segs[1];
6687     bus_dmamap_t map;
6688     struct mbuf *m;
6689     int nsegs;
6690     int rc = 0;
6691 
6692     /* allocate a new SGE mbuf */
6693     m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6694     if (__predict_false(m == NULL)) {
6695         fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6696         return (ENOMEM);
6697     }
6698 
6699     fp->eth_q_stats.mbuf_alloc_sge++;
6700 
6701     /* initialize the mbuf buffer length */
6702     m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6703 
6704     /* map the SGE mbuf into non-paged pool */
6705     rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6706                                  fp->rx_sge_mbuf_spare_map,
6707                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6708     if (__predict_false(rc != 0)) {
6709         fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6710         m_freem(m);
6711         fp->eth_q_stats.mbuf_alloc_sge--;
6712         return (rc);
6713     }
6714 
6715     /* all mbufs must map to a single segment */
6716     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6717 
6718     sge_buf = &fp->rx_sge_mbuf_chain[index];
6719 
6720     /* release any existing SGE mbuf mapping */
6721     if (sge_buf->m_map != NULL) {
6722         bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6723                         BUS_DMASYNC_POSTREAD);
6724         bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6725     }
6726 
6727     /* save the mbuf and mapping info for a future packet */
6728     map = sge_buf->m_map;
6729     sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6730     fp->rx_sge_mbuf_spare_map = map;
6731     bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6732                     BUS_DMASYNC_PREREAD);
6733     sge_buf->m = m;
6734 
6735     sge = &fp->rx_sge_chain[index];
6736     sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6737     sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6738 
6739     return (rc);
6740 }
6741 
6742 static __noinline int
6743 bxe_alloc_fp_buffers(struct bxe_softc *sc)
6744 {
6745     struct bxe_fastpath *fp;
6746     int i, j, rc = 0;
6747     int ring_prod, cqe_ring_prod;
6748     int max_agg_queues;
6749 
6750     for (i = 0; i < sc->num_queues; i++) {
6751         fp = &sc->fp[i];
6752 
6753 #if __FreeBSD_version >= 800000
6754         fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
6755                                    M_DONTWAIT, &fp->tx_mtx);
6756         if (fp->tx_br == NULL) {
6757             BLOGE(sc, "buf_ring alloc fail for fp[%02d]\n", i);
6758             goto bxe_alloc_fp_buffers_error;
6759         }
6760 #endif
6761 
6762         ring_prod = cqe_ring_prod = 0;
6763         fp->rx_bd_cons = 0;
6764         fp->rx_cq_cons = 0;
6765 
6766         /* allocate buffers for the RX BDs in RX BD chain */
6767         for (j = 0; j < sc->max_rx_bufs; j++) {
6768             rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6769             if (rc != 0) {
6770                 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6771                       i, rc);
6772                 goto bxe_alloc_fp_buffers_error;
6773             }
6774 
6775             ring_prod     = RX_BD_NEXT(ring_prod);
6776             cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6777         }
6778 
6779         fp->rx_bd_prod = ring_prod;
6780         fp->rx_cq_prod = cqe_ring_prod;
6781         fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6782 
6783         if (sc->ifnet->if_capenable & IFCAP_LRO) {
6784             max_agg_queues = MAX_AGG_QS(sc);
6785 
6786             fp->tpa_enable = TRUE;
6787 
6788             /* fill the TPA pool */
6789             for (j = 0; j < max_agg_queues; j++) {
6790                 rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6791                 if (rc != 0) {
6792                     BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6793                           i, j);
6794                     fp->tpa_enable = FALSE;
6795                     goto bxe_alloc_fp_buffers_error;
6796                 }
6797 
6798                 fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6799             }
6800 
6801             if (fp->tpa_enable) {
6802                 /* fill the RX SGE chain */
6803                 ring_prod = 0;
6804                 for (j = 0; j < RX_SGE_USABLE; j++) {
6805                     rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6806                     if (rc != 0) {
6807                         BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6808                               i, ring_prod);
6809                         fp->tpa_enable = FALSE;
6810                         ring_prod = 0;
6811                         goto bxe_alloc_fp_buffers_error;
6812                     }
6813 
6814                     ring_prod = RX_SGE_NEXT(ring_prod);
6815                 }
6816 
6817                 fp->rx_sge_prod = ring_prod;
6818             }
6819         }
6820     }
6821 
6822     return (0);
6823 
6824 bxe_alloc_fp_buffers_error:
6825 
6826     /* unwind what was already allocated */
6827     bxe_free_rx_bd_chain(fp);
6828     bxe_free_tpa_pool(fp);
6829     bxe_free_sge_chain(fp);
6830 
6831     return (ENOBUFS);
6832 }
6833 
6834 static void
6835 bxe_free_fw_stats_mem(struct bxe_softc *sc)
6836 {
6837     bxe_dma_free(sc, &sc->fw_stats_dma);
6838 
6839     sc->fw_stats_num = 0;
6840 
6841     sc->fw_stats_req_size = 0;
6842     sc->fw_stats_req = NULL;
6843     sc->fw_stats_req_mapping = 0;
6844 
6845     sc->fw_stats_data_size = 0;
6846     sc->fw_stats_data = NULL;
6847     sc->fw_stats_data_mapping = 0;
6848 }
6849 
6850 static int
6851 bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6852 {
6853     uint8_t num_queue_stats;
6854     int num_groups;
6855 
6856     /* number of queues for statistics is number of eth queues */
6857     num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6858 
6859     /*
6860      * Total number of FW statistics requests =
6861      *   1 for port stats + 1 for PF stats + num of queues
6862      */
6863     sc->fw_stats_num = (2 + num_queue_stats);
6864 
6865     /*
6866      * Request is built from stats_query_header and an array of
6867      * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6868      * rules. The real number or requests is configured in the
6869      * stats_query_header.
6870      */
6871     num_groups =
6872         ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6873          ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6874 
6875     BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6876           sc->fw_stats_num, num_groups);
6877 
6878     sc->fw_stats_req_size =
6879         (sizeof(struct stats_query_header) +
6880          (num_groups * sizeof(struct stats_query_cmd_group)));
6881 
6882     /*
6883      * Data for statistics requests + stats_counter.
6884      * stats_counter holds per-STORM counters that are incremented when
6885      * STORM has finished with the current request. Memory for FCoE
6886      * offloaded statistics are counted anyway, even if they will not be sent.
6887      * VF stats are not accounted for here as the data of VF stats is stored
6888      * in memory allocated by the VF, not here.
6889      */
6890     sc->fw_stats_data_size =
6891         (sizeof(struct stats_counter) +
6892          sizeof(struct per_port_stats) +
6893          sizeof(struct per_pf_stats) +
6894          /* sizeof(struct fcoe_statistics_params) + */
6895          (sizeof(struct per_queue_stats) * num_queue_stats));
6896 
6897     if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6898                       &sc->fw_stats_dma, "fw stats") != 0) {
6899         bxe_free_fw_stats_mem(sc);
6900         return (-1);
6901     }
6902 
6903     /* set up the shortcuts */
6904 
6905     sc->fw_stats_req =
6906         (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6907     sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6908 
6909     sc->fw_stats_data =
6910         (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6911                                      sc->fw_stats_req_size);
6912     sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6913                                  sc->fw_stats_req_size);
6914 
6915     BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6916           (uintmax_t)sc->fw_stats_req_mapping);
6917 
6918     BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6919           (uintmax_t)sc->fw_stats_data_mapping);
6920 
6921     return (0);
6922 }
6923 
6924 /*
6925  * Bits map:
6926  * 0-7  - Engine0 load counter.
6927  * 8-15 - Engine1 load counter.
6928  * 16   - Engine0 RESET_IN_PROGRESS bit.
6929  * 17   - Engine1 RESET_IN_PROGRESS bit.
6930  * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
6931  *        function on the engine
6932  * 19   - Engine1 ONE_IS_LOADED.
6933  * 20   - Chip reset flow bit. When set none-leader must wait for both engines
6934  *        leader to complete (check for both RESET_IN_PROGRESS bits and not
6935  *        for just the one belonging to its engine).
6936  */
6937 #define BXE_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
6938 #define BXE_PATH0_LOAD_CNT_MASK   0x000000ff
6939 #define BXE_PATH0_LOAD_CNT_SHIFT  0
6940 #define BXE_PATH1_LOAD_CNT_MASK   0x0000ff00
6941 #define BXE_PATH1_LOAD_CNT_SHIFT  8
6942 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
6943 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
6944 #define BXE_GLOBAL_RESET_BIT      0x00040000
6945 
6946 /* set the GLOBAL_RESET bit, should be run under rtnl lock */
6947 static void
6948 bxe_set_reset_global(struct bxe_softc *sc)
6949 {
6950     uint32_t val;
6951     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6952     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6953     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
6954     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6955 }
6956 
6957 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */
6958 static void
6959 bxe_clear_reset_global(struct bxe_softc *sc)
6960 {
6961     uint32_t val;
6962     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6963     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6964     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
6965     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6966 }
6967 
6968 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */
6969 static uint8_t
6970 bxe_reset_is_global(struct bxe_softc *sc)
6971 {
6972     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6973     BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
6974     return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
6975 }
6976 
6977 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
6978 static void
6979 bxe_set_reset_done(struct bxe_softc *sc)
6980 {
6981     uint32_t val;
6982     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6983                                  BXE_PATH0_RST_IN_PROG_BIT;
6984 
6985     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6986 
6987     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6988     /* Clear the bit */
6989     val &= ~bit;
6990     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6991 
6992     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6993 }
6994 
6995 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
6996 static void
6997 bxe_set_reset_in_progress(struct bxe_softc *sc)
6998 {
6999     uint32_t val;
7000     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
7001                                  BXE_PATH0_RST_IN_PROG_BIT;
7002 
7003     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7004 
7005     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7006     /* Set the bit */
7007     val |= bit;
7008     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7009 
7010     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7011 }
7012 
7013 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
7014 static uint8_t
7015 bxe_reset_is_done(struct bxe_softc *sc,
7016                   int              engine)
7017 {
7018     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7019     uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
7020                             BXE_PATH0_RST_IN_PROG_BIT;
7021 
7022     /* return false if bit is set */
7023     return (val & bit) ? FALSE : TRUE;
7024 }
7025 
7026 /* get the load status for an engine, should be run under rtnl lock */
7027 static uint8_t
7028 bxe_get_load_status(struct bxe_softc *sc,
7029                     int              engine)
7030 {
7031     uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
7032                              BXE_PATH0_LOAD_CNT_MASK;
7033     uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
7034                               BXE_PATH0_LOAD_CNT_SHIFT;
7035     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7036 
7037     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7038 
7039     val = ((val & mask) >> shift);
7040 
7041     BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
7042 
7043     return (val != 0);
7044 }
7045 
7046 /* set pf load mark */
7047 /* XXX needs to be under rtnl lock */
7048 static void
7049 bxe_set_pf_load(struct bxe_softc *sc)
7050 {
7051     uint32_t val;
7052     uint32_t val1;
7053     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7054                                   BXE_PATH0_LOAD_CNT_MASK;
7055     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7056                                    BXE_PATH0_LOAD_CNT_SHIFT;
7057 
7058     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7059 
7060     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7061     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7062 
7063     /* get the current counter value */
7064     val1 = ((val & mask) >> shift);
7065 
7066     /* set bit of this PF */
7067     val1 |= (1 << SC_ABS_FUNC(sc));
7068 
7069     /* clear the old value */
7070     val &= ~mask;
7071 
7072     /* set the new one */
7073     val |= ((val1 << shift) & mask);
7074 
7075     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7076 
7077     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7078 }
7079 
7080 /* clear pf load mark */
7081 /* XXX needs to be under rtnl lock */
7082 static uint8_t
7083 bxe_clear_pf_load(struct bxe_softc *sc)
7084 {
7085     uint32_t val1, val;
7086     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7087                                   BXE_PATH0_LOAD_CNT_MASK;
7088     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7089                                    BXE_PATH0_LOAD_CNT_SHIFT;
7090 
7091     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7092     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7093     BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
7094 
7095     /* get the current counter value */
7096     val1 = (val & mask) >> shift;
7097 
7098     /* clear bit of that PF */
7099     val1 &= ~(1 << SC_ABS_FUNC(sc));
7100 
7101     /* clear the old value */
7102     val &= ~mask;
7103 
7104     /* set the new one */
7105     val |= ((val1 << shift) & mask);
7106 
7107     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7108     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7109     return (val1 != 0);
7110 }
7111 
7112 /* send load requrest to mcp and analyze response */
7113 static int
7114 bxe_nic_load_request(struct bxe_softc *sc,
7115                      uint32_t         *load_code)
7116 {
7117     /* init fw_seq */
7118     sc->fw_seq =
7119         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
7120          DRV_MSG_SEQ_NUMBER_MASK);
7121 
7122     BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
7123 
7124     /* get the current FW pulse sequence */
7125     sc->fw_drv_pulse_wr_seq =
7126         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
7127          DRV_PULSE_SEQ_MASK);
7128 
7129     BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
7130           sc->fw_drv_pulse_wr_seq);
7131 
7132     /* load request */
7133     (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
7134                                   DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
7135 
7136     /* if the MCP fails to respond we must abort */
7137     if (!(*load_code)) {
7138         BLOGE(sc, "MCP response failure!\n");
7139         return (-1);
7140     }
7141 
7142     /* if MCP refused then must abort */
7143     if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
7144         BLOGE(sc, "MCP refused load request\n");
7145         return (-1);
7146     }
7147 
7148     return (0);
7149 }
7150 
7151 /*
7152  * Check whether another PF has already loaded FW to chip. In virtualized
7153  * environments a pf from anoth VM may have already initialized the device
7154  * including loading FW.
7155  */
7156 static int
7157 bxe_nic_load_analyze_req(struct bxe_softc *sc,
7158                          uint32_t         load_code)
7159 {
7160     uint32_t my_fw, loaded_fw;
7161 
7162     /* is another pf loaded on this engine? */
7163     if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
7164         (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
7165         /* build my FW version dword */
7166         my_fw = (BCM_5710_FW_MAJOR_VERSION +
7167                  (BCM_5710_FW_MINOR_VERSION << 8 ) +
7168                  (BCM_5710_FW_REVISION_VERSION << 16) +
7169                  (BCM_5710_FW_ENGINEERING_VERSION << 24));
7170 
7171         /* read loaded FW from chip */
7172         loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
7173         BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
7174               loaded_fw, my_fw);
7175 
7176         /* abort nic load if version mismatch */
7177         if (my_fw != loaded_fw) {
7178             BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
7179                   loaded_fw, my_fw);
7180             return (-1);
7181         }
7182     }
7183 
7184     return (0);
7185 }
7186 
7187 /* mark PMF if applicable */
7188 static void
7189 bxe_nic_load_pmf(struct bxe_softc *sc,
7190                  uint32_t         load_code)
7191 {
7192     uint32_t ncsi_oem_data_addr;
7193 
7194     if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
7195         (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
7196         (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
7197         /*
7198          * Barrier here for ordering between the writing to sc->port.pmf here
7199          * and reading it from the periodic task.
7200          */
7201         sc->port.pmf = 1;
7202         mb();
7203     } else {
7204         sc->port.pmf = 0;
7205     }
7206 
7207     BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
7208 
7209     /* XXX needed? */
7210     if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
7211         if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
7212             ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
7213             if (ncsi_oem_data_addr) {
7214                 REG_WR(sc,
7215                        (ncsi_oem_data_addr +
7216                         offsetof(struct glob_ncsi_oem_data, driver_version)),
7217                        0);
7218             }
7219         }
7220     }
7221 }
7222 
7223 static void
7224 bxe_read_mf_cfg(struct bxe_softc *sc)
7225 {
7226     int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
7227     int abs_func;
7228     int vn;
7229 
7230     if (BXE_NOMCP(sc)) {
7231         return; /* what should be the default bvalue in this case */
7232     }
7233 
7234     /*
7235      * The formula for computing the absolute function number is...
7236      * For 2 port configuration (4 functions per port):
7237      *   abs_func = 2 * vn + SC_PORT + SC_PATH
7238      * For 4 port configuration (2 functions per port):
7239      *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
7240      */
7241     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
7242         abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
7243         if (abs_func >= E1H_FUNC_MAX) {
7244             break;
7245         }
7246         sc->devinfo.mf_info.mf_config[vn] =
7247             MFCFG_RD(sc, func_mf_config[abs_func].config);
7248     }
7249 
7250     if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
7251         FUNC_MF_CFG_FUNC_DISABLED) {
7252         BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
7253         sc->flags |= BXE_MF_FUNC_DIS;
7254     } else {
7255         BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
7256         sc->flags &= ~BXE_MF_FUNC_DIS;
7257     }
7258 }
7259 
7260 /* acquire split MCP access lock register */
7261 static int bxe_acquire_alr(struct bxe_softc *sc)
7262 {
7263     uint32_t j, val;
7264 
7265     for (j = 0; j < 1000; j++) {
7266         val = (1UL << 31);
7267         REG_WR(sc, GRCBASE_MCP + 0x9c, val);
7268         val = REG_RD(sc, GRCBASE_MCP + 0x9c);
7269         if (val & (1L << 31))
7270             break;
7271 
7272         DELAY(5000);
7273     }
7274 
7275     if (!(val & (1L << 31))) {
7276         BLOGE(sc, "Cannot acquire MCP access lock register\n");
7277         return (-1);
7278     }
7279 
7280     return (0);
7281 }
7282 
7283 /* release split MCP access lock register */
7284 static void bxe_release_alr(struct bxe_softc *sc)
7285 {
7286     REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
7287 }
7288 
7289 static void
7290 bxe_fan_failure(struct bxe_softc *sc)
7291 {
7292     int port = SC_PORT(sc);
7293     uint32_t ext_phy_config;
7294 
7295     /* mark the failure */
7296     ext_phy_config =
7297         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
7298 
7299     ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
7300     ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
7301     SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
7302              ext_phy_config);
7303 
7304     /* log the failure */
7305     BLOGW(sc, "Fan Failure has caused the driver to shutdown "
7306               "the card to prevent permanent damage. "
7307               "Please contact OEM Support for assistance\n");
7308 
7309     /* XXX */
7310 #if 1
7311     bxe_panic(sc, ("Schedule task to handle fan failure\n"));
7312 #else
7313     /*
7314      * Schedule device reset (unload)
7315      * This is due to some boards consuming sufficient power when driver is
7316      * up to overheat if fan fails.
7317      */
7318     bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
7319     schedule_delayed_work(&sc->sp_rtnl_task, 0);
7320 #endif
7321 }
7322 
7323 /* this function is called upon a link interrupt */
7324 static void
7325 bxe_link_attn(struct bxe_softc *sc)
7326 {
7327     uint32_t pause_enabled = 0;
7328     struct host_port_stats *pstats;
7329     int cmng_fns;
7330 
7331     /* Make sure that we are synced with the current statistics */
7332     bxe_stats_handle(sc, STATS_EVENT_STOP);
7333 
7334     elink_link_update(&sc->link_params, &sc->link_vars);
7335 
7336     if (sc->link_vars.link_up) {
7337 
7338         /* dropless flow control */
7339         if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
7340             pause_enabled = 0;
7341 
7342             if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
7343                 pause_enabled = 1;
7344             }
7345 
7346             REG_WR(sc,
7347                    (BAR_USTRORM_INTMEM +
7348                     USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
7349                    pause_enabled);
7350         }
7351 
7352         if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
7353             pstats = BXE_SP(sc, port_stats);
7354             /* reset old mac stats */
7355             memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
7356         }
7357 
7358         if (sc->state == BXE_STATE_OPEN) {
7359             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
7360         }
7361     }
7362 
7363     if (sc->link_vars.link_up && sc->link_vars.line_speed) {
7364         cmng_fns = bxe_get_cmng_fns_mode(sc);
7365 
7366         if (cmng_fns != CMNG_FNS_NONE) {
7367             bxe_cmng_fns_init(sc, FALSE, cmng_fns);
7368             storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7369         } else {
7370             /* rate shaping and fairness are disabled */
7371             BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
7372         }
7373     }
7374 
7375     bxe_link_report_locked(sc);
7376 
7377     if (IS_MF(sc)) {
7378         ; // XXX bxe_link_sync_notify(sc);
7379     }
7380 }
7381 
7382 static void
7383 bxe_attn_int_asserted(struct bxe_softc *sc,
7384                       uint32_t         asserted)
7385 {
7386     int port = SC_PORT(sc);
7387     uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7388                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
7389     uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7390                                         NIG_REG_MASK_INTERRUPT_PORT0;
7391     uint32_t aeu_mask;
7392     uint32_t nig_mask = 0;
7393     uint32_t reg_addr;
7394     uint32_t igu_acked;
7395     uint32_t cnt;
7396 
7397     if (sc->attn_state & asserted) {
7398         BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7399     }
7400 
7401     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7402 
7403     aeu_mask = REG_RD(sc, aeu_addr);
7404 
7405     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7406           aeu_mask, asserted);
7407 
7408     aeu_mask &= ~(asserted & 0x3ff);
7409 
7410     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7411 
7412     REG_WR(sc, aeu_addr, aeu_mask);
7413 
7414     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7415 
7416     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7417     sc->attn_state |= asserted;
7418     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7419 
7420     if (asserted & ATTN_HARD_WIRED_MASK) {
7421         if (asserted & ATTN_NIG_FOR_FUNC) {
7422 
7423             BXE_PHY_LOCK(sc);
7424 
7425             /* save nig interrupt mask */
7426             nig_mask = REG_RD(sc, nig_int_mask_addr);
7427 
7428             /* If nig_mask is not set, no need to call the update function */
7429             if (nig_mask) {
7430                 REG_WR(sc, nig_int_mask_addr, 0);
7431 
7432                 bxe_link_attn(sc);
7433             }
7434 
7435             /* handle unicore attn? */
7436         }
7437 
7438         if (asserted & ATTN_SW_TIMER_4_FUNC) {
7439             BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7440         }
7441 
7442         if (asserted & GPIO_2_FUNC) {
7443             BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7444         }
7445 
7446         if (asserted & GPIO_3_FUNC) {
7447             BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7448         }
7449 
7450         if (asserted & GPIO_4_FUNC) {
7451             BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7452         }
7453 
7454         if (port == 0) {
7455             if (asserted & ATTN_GENERAL_ATTN_1) {
7456                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7457                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7458             }
7459             if (asserted & ATTN_GENERAL_ATTN_2) {
7460                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7461                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7462             }
7463             if (asserted & ATTN_GENERAL_ATTN_3) {
7464                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7465                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7466             }
7467         } else {
7468             if (asserted & ATTN_GENERAL_ATTN_4) {
7469                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7470                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7471             }
7472             if (asserted & ATTN_GENERAL_ATTN_5) {
7473                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7474                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7475             }
7476             if (asserted & ATTN_GENERAL_ATTN_6) {
7477                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7478                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7479             }
7480         }
7481     } /* hardwired */
7482 
7483     if (sc->devinfo.int_block == INT_BLOCK_HC) {
7484         reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7485     } else {
7486         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7487     }
7488 
7489     BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7490           asserted,
7491           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7492     REG_WR(sc, reg_addr, asserted);
7493 
7494     /* now set back the mask */
7495     if (asserted & ATTN_NIG_FOR_FUNC) {
7496         /*
7497          * Verify that IGU ack through BAR was written before restoring
7498          * NIG mask. This loop should exit after 2-3 iterations max.
7499          */
7500         if (sc->devinfo.int_block != INT_BLOCK_HC) {
7501             cnt = 0;
7502 
7503             do {
7504                 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7505             } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7506                      (++cnt < MAX_IGU_ATTN_ACK_TO));
7507 
7508             if (!igu_acked) {
7509                 BLOGE(sc, "Failed to verify IGU ack on time\n");
7510             }
7511 
7512             mb();
7513         }
7514 
7515         REG_WR(sc, nig_int_mask_addr, nig_mask);
7516 
7517         BXE_PHY_UNLOCK(sc);
7518     }
7519 }
7520 
7521 static void
7522 bxe_print_next_block(struct bxe_softc *sc,
7523                      int              idx,
7524                      const char       *blk)
7525 {
7526     BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7527 }
7528 
7529 static int
7530 bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7531                               uint32_t         sig,
7532                               int              par_num,
7533                               uint8_t          print)
7534 {
7535     uint32_t cur_bit = 0;
7536     int i = 0;
7537 
7538     for (i = 0; sig; i++) {
7539         cur_bit = ((uint32_t)0x1 << i);
7540         if (sig & cur_bit) {
7541             switch (cur_bit) {
7542             case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7543                 if (print)
7544                     bxe_print_next_block(sc, par_num++, "BRB");
7545                 break;
7546             case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7547                 if (print)
7548                     bxe_print_next_block(sc, par_num++, "PARSER");
7549                 break;
7550             case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7551                 if (print)
7552                     bxe_print_next_block(sc, par_num++, "TSDM");
7553                 break;
7554             case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7555                 if (print)
7556                     bxe_print_next_block(sc, par_num++, "SEARCHER");
7557                 break;
7558             case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7559                 if (print)
7560                     bxe_print_next_block(sc, par_num++, "TCM");
7561                 break;
7562             case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7563                 if (print)
7564                     bxe_print_next_block(sc, par_num++, "TSEMI");
7565                 break;
7566             case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7567                 if (print)
7568                     bxe_print_next_block(sc, par_num++, "XPB");
7569                 break;
7570             }
7571 
7572             /* Clear the bit */
7573             sig &= ~cur_bit;
7574         }
7575     }
7576 
7577     return (par_num);
7578 }
7579 
7580 static int
7581 bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7582                               uint32_t         sig,
7583                               int              par_num,
7584                               uint8_t          *global,
7585                               uint8_t          print)
7586 {
7587     int i = 0;
7588     uint32_t cur_bit = 0;
7589     for (i = 0; sig; i++) {
7590         cur_bit = ((uint32_t)0x1 << i);
7591         if (sig & cur_bit) {
7592             switch (cur_bit) {
7593             case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7594                 if (print)
7595                     bxe_print_next_block(sc, par_num++, "PBF");
7596                 break;
7597             case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7598                 if (print)
7599                     bxe_print_next_block(sc, par_num++, "QM");
7600                 break;
7601             case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7602                 if (print)
7603                     bxe_print_next_block(sc, par_num++, "TM");
7604                 break;
7605             case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7606                 if (print)
7607                     bxe_print_next_block(sc, par_num++, "XSDM");
7608                 break;
7609             case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7610                 if (print)
7611                     bxe_print_next_block(sc, par_num++, "XCM");
7612                 break;
7613             case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7614                 if (print)
7615                     bxe_print_next_block(sc, par_num++, "XSEMI");
7616                 break;
7617             case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7618                 if (print)
7619                     bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7620                 break;
7621             case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7622                 if (print)
7623                     bxe_print_next_block(sc, par_num++, "NIG");
7624                 break;
7625             case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7626                 if (print)
7627                     bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7628                 *global = TRUE;
7629                 break;
7630             case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7631                 if (print)
7632                     bxe_print_next_block(sc, par_num++, "DEBUG");
7633                 break;
7634             case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7635                 if (print)
7636                     bxe_print_next_block(sc, par_num++, "USDM");
7637                 break;
7638             case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7639                 if (print)
7640                     bxe_print_next_block(sc, par_num++, "UCM");
7641                 break;
7642             case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7643                 if (print)
7644                     bxe_print_next_block(sc, par_num++, "USEMI");
7645                 break;
7646             case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7647                 if (print)
7648                     bxe_print_next_block(sc, par_num++, "UPB");
7649                 break;
7650             case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7651                 if (print)
7652                     bxe_print_next_block(sc, par_num++, "CSDM");
7653                 break;
7654             case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7655                 if (print)
7656                     bxe_print_next_block(sc, par_num++, "CCM");
7657                 break;
7658             }
7659 
7660             /* Clear the bit */
7661             sig &= ~cur_bit;
7662         }
7663     }
7664 
7665     return (par_num);
7666 }
7667 
7668 static int
7669 bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7670                               uint32_t         sig,
7671                               int              par_num,
7672                               uint8_t          print)
7673 {
7674     uint32_t cur_bit = 0;
7675     int i = 0;
7676 
7677     for (i = 0; sig; i++) {
7678         cur_bit = ((uint32_t)0x1 << i);
7679         if (sig & cur_bit) {
7680             switch (cur_bit) {
7681             case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7682                 if (print)
7683                     bxe_print_next_block(sc, par_num++, "CSEMI");
7684                 break;
7685             case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7686                 if (print)
7687                     bxe_print_next_block(sc, par_num++, "PXP");
7688                 break;
7689             case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7690                 if (print)
7691                     bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7692                 break;
7693             case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7694                 if (print)
7695                     bxe_print_next_block(sc, par_num++, "CFC");
7696                 break;
7697             case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7698                 if (print)
7699                     bxe_print_next_block(sc, par_num++, "CDU");
7700                 break;
7701             case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7702                 if (print)
7703                     bxe_print_next_block(sc, par_num++, "DMAE");
7704                 break;
7705             case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7706                 if (print)
7707                     bxe_print_next_block(sc, par_num++, "IGU");
7708                 break;
7709             case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7710                 if (print)
7711                     bxe_print_next_block(sc, par_num++, "MISC");
7712                 break;
7713             }
7714 
7715             /* Clear the bit */
7716             sig &= ~cur_bit;
7717         }
7718     }
7719 
7720     return (par_num);
7721 }
7722 
7723 static int
7724 bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7725                               uint32_t         sig,
7726                               int              par_num,
7727                               uint8_t          *global,
7728                               uint8_t          print)
7729 {
7730     uint32_t cur_bit = 0;
7731     int i = 0;
7732 
7733     for (i = 0; sig; i++) {
7734         cur_bit = ((uint32_t)0x1 << i);
7735         if (sig & cur_bit) {
7736             switch (cur_bit) {
7737             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7738                 if (print)
7739                     bxe_print_next_block(sc, par_num++, "MCP ROM");
7740                 *global = TRUE;
7741                 break;
7742             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7743                 if (print)
7744                     bxe_print_next_block(sc, par_num++,
7745                               "MCP UMP RX");
7746                 *global = TRUE;
7747                 break;
7748             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7749                 if (print)
7750                     bxe_print_next_block(sc, par_num++,
7751                               "MCP UMP TX");
7752                 *global = TRUE;
7753                 break;
7754             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7755                 if (print)
7756                     bxe_print_next_block(sc, par_num++,
7757                               "MCP SCPAD");
7758                 *global = TRUE;
7759                 break;
7760             }
7761 
7762             /* Clear the bit */
7763             sig &= ~cur_bit;
7764         }
7765     }
7766 
7767     return (par_num);
7768 }
7769 
7770 static int
7771 bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7772                               uint32_t         sig,
7773                               int              par_num,
7774                               uint8_t          print)
7775 {
7776     uint32_t cur_bit = 0;
7777     int i = 0;
7778 
7779     for (i = 0; sig; i++) {
7780         cur_bit = ((uint32_t)0x1 << i);
7781         if (sig & cur_bit) {
7782             switch (cur_bit) {
7783             case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7784                 if (print)
7785                     bxe_print_next_block(sc, par_num++, "PGLUE_B");
7786                 break;
7787             case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7788                 if (print)
7789                     bxe_print_next_block(sc, par_num++, "ATC");
7790                 break;
7791             }
7792 
7793             /* Clear the bit */
7794             sig &= ~cur_bit;
7795         }
7796     }
7797 
7798     return (par_num);
7799 }
7800 
7801 static uint8_t
7802 bxe_parity_attn(struct bxe_softc *sc,
7803                 uint8_t          *global,
7804                 uint8_t          print,
7805                 uint32_t         *sig)
7806 {
7807     int par_num = 0;
7808 
7809     if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7810         (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7811         (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7812         (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7813         (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7814         BLOGE(sc, "Parity error: HW block parity attention:\n"
7815                   "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7816               (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7817               (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7818               (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7819               (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7820               (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7821 
7822         if (print)
7823             BLOGI(sc, "Parity errors detected in blocks: ");
7824 
7825         par_num =
7826             bxe_check_blocks_with_parity0(sc, sig[0] &
7827                                           HW_PRTY_ASSERT_SET_0,
7828                                           par_num, print);
7829         par_num =
7830             bxe_check_blocks_with_parity1(sc, sig[1] &
7831                                           HW_PRTY_ASSERT_SET_1,
7832                                           par_num, global, print);
7833         par_num =
7834             bxe_check_blocks_with_parity2(sc, sig[2] &
7835                                           HW_PRTY_ASSERT_SET_2,
7836                                           par_num, print);
7837         par_num =
7838             bxe_check_blocks_with_parity3(sc, sig[3] &
7839                                           HW_PRTY_ASSERT_SET_3,
7840                                           par_num, global, print);
7841         par_num =
7842             bxe_check_blocks_with_parity4(sc, sig[4] &
7843                                           HW_PRTY_ASSERT_SET_4,
7844                                           par_num, print);
7845 
7846         if (print)
7847             BLOGI(sc, "\n");
7848 
7849         return (TRUE);
7850     }
7851 
7852     return (FALSE);
7853 }
7854 
7855 static uint8_t
7856 bxe_chk_parity_attn(struct bxe_softc *sc,
7857                     uint8_t          *global,
7858                     uint8_t          print)
7859 {
7860     struct attn_route attn = { {0} };
7861     int port = SC_PORT(sc);
7862 
7863     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7864     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7865     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7866     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7867 
7868     if (!CHIP_IS_E1x(sc))
7869         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7870 
7871     return (bxe_parity_attn(sc, global, print, attn.sig));
7872 }
7873 
7874 static void
7875 bxe_attn_int_deasserted4(struct bxe_softc *sc,
7876                          uint32_t         attn)
7877 {
7878     uint32_t val;
7879 
7880     if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7881         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7882         BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7883         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7884             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7885         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7886             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7887         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7888             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7889         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7890             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7891         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7892             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7893         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7894             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7895         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7896             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7897         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7898             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7899         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7900             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7901     }
7902 
7903     if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7904         val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7905         BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7906         if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7907             BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7908         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7909             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7910         if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7911             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7912         if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7913             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7914         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7915             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7916         if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7917             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7918     }
7919 
7920     if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7921                 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7922         BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7923               (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7924                                  AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7925     }
7926 }
7927 
7928 static void
7929 bxe_e1h_disable(struct bxe_softc *sc)
7930 {
7931     int port = SC_PORT(sc);
7932 
7933     bxe_tx_disable(sc);
7934 
7935     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7936 }
7937 
7938 static void
7939 bxe_e1h_enable(struct bxe_softc *sc)
7940 {
7941     int port = SC_PORT(sc);
7942 
7943     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7944 
7945     // XXX bxe_tx_enable(sc);
7946 }
7947 
7948 /*
7949  * called due to MCP event (on pmf):
7950  *   reread new bandwidth configuration
7951  *   configure FW
7952  *   notify others function about the change
7953  */
7954 static void
7955 bxe_config_mf_bw(struct bxe_softc *sc)
7956 {
7957     if (sc->link_vars.link_up) {
7958         bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
7959         // XXX bxe_link_sync_notify(sc);
7960     }
7961 
7962     storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7963 }
7964 
7965 static void
7966 bxe_set_mf_bw(struct bxe_softc *sc)
7967 {
7968     bxe_config_mf_bw(sc);
7969     bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
7970 }
7971 
7972 static void
7973 bxe_handle_eee_event(struct bxe_softc *sc)
7974 {
7975     BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
7976     bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
7977 }
7978 
7979 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
7980 
7981 static void
7982 bxe_drv_info_ether_stat(struct bxe_softc *sc)
7983 {
7984     struct eth_stats_info *ether_stat =
7985         &sc->sp->drv_info_to_mcp.ether_stat;
7986 
7987     strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
7988             ETH_STAT_INFO_VERSION_LEN);
7989 
7990     /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
7991     sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
7992                                           DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
7993                                           ether_stat->mac_local + MAC_PAD,
7994                                           MAC_PAD, ETH_ALEN);
7995 
7996     ether_stat->mtu_size = sc->mtu;
7997 
7998     ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
7999     if (sc->ifnet->if_capenable & (IFCAP_TSO4 | IFCAP_TSO6)) {
8000         ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
8001     }
8002 
8003     // XXX ether_stat->feature_flags |= ???;
8004 
8005     ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
8006 
8007     ether_stat->txq_size = sc->tx_ring_size;
8008     ether_stat->rxq_size = sc->rx_ring_size;
8009 }
8010 
8011 static void
8012 bxe_handle_drv_info_req(struct bxe_softc *sc)
8013 {
8014     enum drv_info_opcode op_code;
8015     uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
8016 
8017     /* if drv_info version supported by MFW doesn't match - send NACK */
8018     if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
8019         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8020         return;
8021     }
8022 
8023     op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
8024                DRV_INFO_CONTROL_OP_CODE_SHIFT);
8025 
8026     memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
8027 
8028     switch (op_code) {
8029     case ETH_STATS_OPCODE:
8030         bxe_drv_info_ether_stat(sc);
8031         break;
8032     case FCOE_STATS_OPCODE:
8033     case ISCSI_STATS_OPCODE:
8034     default:
8035         /* if op code isn't supported - send NACK */
8036         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8037         return;
8038     }
8039 
8040     /*
8041      * If we got drv_info attn from MFW then these fields are defined in
8042      * shmem2 for sure
8043      */
8044     SHMEM2_WR(sc, drv_info_host_addr_lo,
8045               U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8046     SHMEM2_WR(sc, drv_info_host_addr_hi,
8047               U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8048 
8049     bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
8050 }
8051 
8052 static void
8053 bxe_dcc_event(struct bxe_softc *sc,
8054               uint32_t         dcc_event)
8055 {
8056     BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
8057 
8058     if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
8059         /*
8060          * This is the only place besides the function initialization
8061          * where the sc->flags can change so it is done without any
8062          * locks
8063          */
8064         if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
8065             BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
8066             sc->flags |= BXE_MF_FUNC_DIS;
8067             bxe_e1h_disable(sc);
8068         } else {
8069             BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
8070             sc->flags &= ~BXE_MF_FUNC_DIS;
8071             bxe_e1h_enable(sc);
8072         }
8073         dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
8074     }
8075 
8076     if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
8077         bxe_config_mf_bw(sc);
8078         dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
8079     }
8080 
8081     /* Report results to MCP */
8082     if (dcc_event)
8083         bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
8084     else
8085         bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
8086 }
8087 
8088 static void
8089 bxe_pmf_update(struct bxe_softc *sc)
8090 {
8091     int port = SC_PORT(sc);
8092     uint32_t val;
8093 
8094     sc->port.pmf = 1;
8095     BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
8096 
8097     /*
8098      * We need the mb() to ensure the ordering between the writing to
8099      * sc->port.pmf here and reading it from the bxe_periodic_task().
8100      */
8101     mb();
8102 
8103     /* queue a periodic task */
8104     // XXX schedule task...
8105 
8106     // XXX bxe_dcbx_pmf_update(sc);
8107 
8108     /* enable nig attention */
8109     val = (0xff0f | (1 << (SC_VN(sc) + 4)));
8110     if (sc->devinfo.int_block == INT_BLOCK_HC) {
8111         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
8112         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
8113     } else if (!CHIP_IS_E1x(sc)) {
8114         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
8115         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
8116     }
8117 
8118     bxe_stats_handle(sc, STATS_EVENT_PMF);
8119 }
8120 
8121 static int
8122 bxe_mc_assert(struct bxe_softc *sc)
8123 {
8124     char last_idx;
8125     int i, rc = 0;
8126     uint32_t row0, row1, row2, row3;
8127 
8128     /* XSTORM */
8129     last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
8130     if (last_idx)
8131         BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8132 
8133     /* print the asserts */
8134     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8135 
8136         row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
8137         row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
8138         row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
8139         row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
8140 
8141         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8142             BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8143                   i, row3, row2, row1, row0);
8144             rc++;
8145         } else {
8146             break;
8147         }
8148     }
8149 
8150     /* TSTORM */
8151     last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
8152     if (last_idx) {
8153         BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8154     }
8155 
8156     /* print the asserts */
8157     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8158 
8159         row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
8160         row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
8161         row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
8162         row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
8163 
8164         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8165             BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8166                   i, row3, row2, row1, row0);
8167             rc++;
8168         } else {
8169             break;
8170         }
8171     }
8172 
8173     /* CSTORM */
8174     last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
8175     if (last_idx) {
8176         BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8177     }
8178 
8179     /* print the asserts */
8180     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8181 
8182         row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
8183         row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
8184         row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
8185         row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
8186 
8187         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8188             BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8189                   i, row3, row2, row1, row0);
8190             rc++;
8191         } else {
8192             break;
8193         }
8194     }
8195 
8196     /* USTORM */
8197     last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
8198     if (last_idx) {
8199         BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8200     }
8201 
8202     /* print the asserts */
8203     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8204 
8205         row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
8206         row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
8207         row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
8208         row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
8209 
8210         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8211             BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8212                   i, row3, row2, row1, row0);
8213             rc++;
8214         } else {
8215             break;
8216         }
8217     }
8218 
8219     return (rc);
8220 }
8221 
8222 static void
8223 bxe_attn_int_deasserted3(struct bxe_softc *sc,
8224                          uint32_t         attn)
8225 {
8226     int func = SC_FUNC(sc);
8227     uint32_t val;
8228 
8229     if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
8230 
8231         if (attn & BXE_PMF_LINK_ASSERT(sc)) {
8232 
8233             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8234             bxe_read_mf_cfg(sc);
8235             sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
8236                 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
8237             val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
8238 
8239             if (val & DRV_STATUS_DCC_EVENT_MASK)
8240                 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
8241 
8242             if (val & DRV_STATUS_SET_MF_BW)
8243                 bxe_set_mf_bw(sc);
8244 
8245             if (val & DRV_STATUS_DRV_INFO_REQ)
8246                 bxe_handle_drv_info_req(sc);
8247 
8248 #if 0
8249             if (val & DRV_STATUS_VF_DISABLED)
8250                 bxe_vf_handle_flr_event(sc);
8251 #endif
8252 
8253             if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
8254                 bxe_pmf_update(sc);
8255 
8256 #if 0
8257             if (sc->port.pmf &&
8258                 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
8259                 (sc->dcbx_enabled > 0))
8260                 /* start dcbx state machine */
8261                 bxe_dcbx_set_params(sc, BXE_DCBX_STATE_NEG_RECEIVED);
8262 #endif
8263 
8264 #if 0
8265             if (val & DRV_STATUS_AFEX_EVENT_MASK)
8266                 bxe_handle_afex_cmd(sc, val & DRV_STATUS_AFEX_EVENT_MASK);
8267 #endif
8268 
8269             if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
8270                 bxe_handle_eee_event(sc);
8271 
8272             if (sc->link_vars.periodic_flags &
8273                 ELINK_PERIODIC_FLAGS_LINK_EVENT) {
8274                 /* sync with link */
8275                 BXE_PHY_LOCK(sc);
8276                 sc->link_vars.periodic_flags &=
8277                     ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
8278                 BXE_PHY_UNLOCK(sc);
8279                 if (IS_MF(sc))
8280                     ; // XXX bxe_link_sync_notify(sc);
8281                 bxe_link_report(sc);
8282             }
8283 
8284             /*
8285              * Always call it here: bxe_link_report() will
8286              * prevent the link indication duplication.
8287              */
8288             bxe_link_status_update(sc);
8289 
8290         } else if (attn & BXE_MC_ASSERT_BITS) {
8291 
8292             BLOGE(sc, "MC assert!\n");
8293             bxe_mc_assert(sc);
8294             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
8295             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
8296             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
8297             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
8298             bxe_panic(sc, ("MC assert!\n"));
8299 
8300         } else if (attn & BXE_MCP_ASSERT) {
8301 
8302             BLOGE(sc, "MCP assert!\n");
8303             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
8304             // XXX bxe_fw_dump(sc);
8305 
8306         } else {
8307             BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
8308         }
8309     }
8310 
8311     if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
8312         BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
8313         if (attn & BXE_GRC_TIMEOUT) {
8314             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
8315             BLOGE(sc, "GRC time-out 0x%08x\n", val);
8316         }
8317         if (attn & BXE_GRC_RSV) {
8318             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
8319             BLOGE(sc, "GRC reserved 0x%08x\n", val);
8320         }
8321         REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
8322     }
8323 }
8324 
8325 static void
8326 bxe_attn_int_deasserted2(struct bxe_softc *sc,
8327                          uint32_t         attn)
8328 {
8329     int port = SC_PORT(sc);
8330     int reg_offset;
8331     uint32_t val0, mask0, val1, mask1;
8332     uint32_t val;
8333 
8334     if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
8335         val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
8336         BLOGE(sc, "CFC hw attention 0x%08x\n", val);
8337         /* CFC error attention */
8338         if (val & 0x2) {
8339             BLOGE(sc, "FATAL error from CFC\n");
8340         }
8341     }
8342 
8343     if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
8344         val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
8345         BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
8346         /* RQ_USDMDP_FIFO_OVERFLOW */
8347         if (val & 0x18000) {
8348             BLOGE(sc, "FATAL error from PXP\n");
8349         }
8350 
8351         if (!CHIP_IS_E1x(sc)) {
8352             val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
8353             BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
8354         }
8355     }
8356 
8357 #define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
8358 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
8359 
8360     if (attn & AEU_PXP2_HW_INT_BIT) {
8361         /*  CQ47854 workaround do not panic on
8362          *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8363          */
8364         if (!CHIP_IS_E1x(sc)) {
8365             mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
8366             val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
8367             mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
8368             val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
8369             /*
8370              * If the olny PXP2_EOP_ERROR_BIT is set in
8371              * STS0 and STS1 - clear it
8372              *
8373              * probably we lose additional attentions between
8374              * STS0 and STS_CLR0, in this case user will not
8375              * be notified about them
8376              */
8377             if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
8378                 !(val1 & mask1))
8379                 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
8380 
8381             /* print the register, since no one can restore it */
8382             BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8383 
8384             /*
8385              * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8386              * then notify
8387              */
8388             if (val0 & PXP2_EOP_ERROR_BIT) {
8389                 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8390 
8391                 /*
8392                  * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8393                  * set then clear attention from PXP2 block without panic
8394                  */
8395                 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8396                     ((val1 & mask1) == 0))
8397                     attn &= ~AEU_PXP2_HW_INT_BIT;
8398             }
8399         }
8400     }
8401 
8402     if (attn & HW_INTERRUT_ASSERT_SET_2) {
8403         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8404                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8405 
8406         val = REG_RD(sc, reg_offset);
8407         val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8408         REG_WR(sc, reg_offset, val);
8409 
8410         BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8411               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8412         bxe_panic(sc, ("HW block attention set2\n"));
8413     }
8414 }
8415 
8416 static void
8417 bxe_attn_int_deasserted1(struct bxe_softc *sc,
8418                          uint32_t         attn)
8419 {
8420     int port = SC_PORT(sc);
8421     int reg_offset;
8422     uint32_t val;
8423 
8424     if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8425         val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8426         BLOGE(sc, "DB hw attention 0x%08x\n", val);
8427         /* DORQ discard attention */
8428         if (val & 0x2) {
8429             BLOGE(sc, "FATAL error from DORQ\n");
8430         }
8431     }
8432 
8433     if (attn & HW_INTERRUT_ASSERT_SET_1) {
8434         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8435                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8436 
8437         val = REG_RD(sc, reg_offset);
8438         val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8439         REG_WR(sc, reg_offset, val);
8440 
8441         BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8442               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8443         bxe_panic(sc, ("HW block attention set1\n"));
8444     }
8445 }
8446 
8447 static void
8448 bxe_attn_int_deasserted0(struct bxe_softc *sc,
8449                          uint32_t         attn)
8450 {
8451     int port = SC_PORT(sc);
8452     int reg_offset;
8453     uint32_t val;
8454 
8455     reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8456                           MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8457 
8458     if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8459         val = REG_RD(sc, reg_offset);
8460         val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8461         REG_WR(sc, reg_offset, val);
8462 
8463         BLOGW(sc, "SPIO5 hw attention\n");
8464 
8465         /* Fan failure attention */
8466         elink_hw_reset_phy(&sc->link_params);
8467         bxe_fan_failure(sc);
8468     }
8469 
8470     if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8471         BXE_PHY_LOCK(sc);
8472         elink_handle_module_detect_int(&sc->link_params);
8473         BXE_PHY_UNLOCK(sc);
8474     }
8475 
8476     if (attn & HW_INTERRUT_ASSERT_SET_0) {
8477         val = REG_RD(sc, reg_offset);
8478         val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8479         REG_WR(sc, reg_offset, val);
8480 
8481         bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8482                        (attn & HW_INTERRUT_ASSERT_SET_0)));
8483     }
8484 }
8485 
8486 static void
8487 bxe_attn_int_deasserted(struct bxe_softc *sc,
8488                         uint32_t         deasserted)
8489 {
8490     struct attn_route attn;
8491     struct attn_route *group_mask;
8492     int port = SC_PORT(sc);
8493     int index;
8494     uint32_t reg_addr;
8495     uint32_t val;
8496     uint32_t aeu_mask;
8497     uint8_t global = FALSE;
8498 
8499     /*
8500      * Need to take HW lock because MCP or other port might also
8501      * try to handle this event.
8502      */
8503     bxe_acquire_alr(sc);
8504 
8505     if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8506         /* XXX
8507          * In case of parity errors don't handle attentions so that
8508          * other function would "see" parity errors.
8509          */
8510         sc->recovery_state = BXE_RECOVERY_INIT;
8511         // XXX schedule a recovery task...
8512         /* disable HW interrupts */
8513         bxe_int_disable(sc);
8514         bxe_release_alr(sc);
8515         return;
8516     }
8517 
8518     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8519     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8520     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8521     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8522     if (!CHIP_IS_E1x(sc)) {
8523         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8524     } else {
8525         attn.sig[4] = 0;
8526     }
8527 
8528     BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8529           attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8530 
8531     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8532         if (deasserted & (1 << index)) {
8533             group_mask = &sc->attn_group[index];
8534 
8535             BLOGD(sc, DBG_INTR,
8536                   "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8537                   group_mask->sig[0], group_mask->sig[1],
8538                   group_mask->sig[2], group_mask->sig[3],
8539                   group_mask->sig[4]);
8540 
8541             bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8542             bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8543             bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8544             bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8545             bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8546         }
8547     }
8548 
8549     bxe_release_alr(sc);
8550 
8551     if (sc->devinfo.int_block == INT_BLOCK_HC) {
8552         reg_addr = (HC_REG_COMMAND_REG + port*32 +
8553                     COMMAND_REG_ATTN_BITS_CLR);
8554     } else {
8555         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8556     }
8557 
8558     val = ~deasserted;
8559     BLOGD(sc, DBG_INTR,
8560           "about to mask 0x%08x at %s addr 0x%08x\n", val,
8561           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8562     REG_WR(sc, reg_addr, val);
8563 
8564     if (~sc->attn_state & deasserted) {
8565         BLOGE(sc, "IGU error\n");
8566     }
8567 
8568     reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8569                       MISC_REG_AEU_MASK_ATTN_FUNC_0;
8570 
8571     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8572 
8573     aeu_mask = REG_RD(sc, reg_addr);
8574 
8575     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8576           aeu_mask, deasserted);
8577     aeu_mask |= (deasserted & 0x3ff);
8578     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8579 
8580     REG_WR(sc, reg_addr, aeu_mask);
8581     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8582 
8583     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8584     sc->attn_state &= ~deasserted;
8585     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8586 }
8587 
8588 static void
8589 bxe_attn_int(struct bxe_softc *sc)
8590 {
8591     /* read local copy of bits */
8592     uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8593     uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8594     uint32_t attn_state = sc->attn_state;
8595 
8596     /* look for changed bits */
8597     uint32_t asserted   =  attn_bits & ~attn_ack & ~attn_state;
8598     uint32_t deasserted = ~attn_bits &  attn_ack &  attn_state;
8599 
8600     BLOGD(sc, DBG_INTR,
8601           "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8602           attn_bits, attn_ack, asserted, deasserted);
8603 
8604     if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8605         BLOGE(sc, "BAD attention state\n");
8606     }
8607 
8608     /* handle bits that were raised */
8609     if (asserted) {
8610         bxe_attn_int_asserted(sc, asserted);
8611     }
8612 
8613     if (deasserted) {
8614         bxe_attn_int_deasserted(sc, deasserted);
8615     }
8616 }
8617 
8618 static uint16_t
8619 bxe_update_dsb_idx(struct bxe_softc *sc)
8620 {
8621     struct host_sp_status_block *def_sb = sc->def_sb;
8622     uint16_t rc = 0;
8623 
8624     mb(); /* status block is written to by the chip */
8625 
8626     if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8627         sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8628         rc |= BXE_DEF_SB_ATT_IDX;
8629     }
8630 
8631     if (sc->def_idx != def_sb->sp_sb.running_index) {
8632         sc->def_idx = def_sb->sp_sb.running_index;
8633         rc |= BXE_DEF_SB_IDX;
8634     }
8635 
8636     mb();
8637 
8638     return (rc);
8639 }
8640 
8641 static inline struct ecore_queue_sp_obj *
8642 bxe_cid_to_q_obj(struct bxe_softc *sc,
8643                  uint32_t         cid)
8644 {
8645     BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8646     return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8647 }
8648 
8649 static void
8650 bxe_handle_mcast_eqe(struct bxe_softc *sc)
8651 {
8652     struct ecore_mcast_ramrod_params rparam;
8653     int rc;
8654 
8655     memset(&rparam, 0, sizeof(rparam));
8656 
8657     rparam.mcast_obj = &sc->mcast_obj;
8658 
8659     BXE_MCAST_LOCK(sc);
8660 
8661     /* clear pending state for the last command */
8662     sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8663 
8664     /* if there are pending mcast commands - send them */
8665     if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8666         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8667         if (rc < 0) {
8668             BLOGD(sc, DBG_SP,
8669                   "ERROR: Failed to send pending mcast commands (%d)\n",
8670                   rc);
8671         }
8672     }
8673 
8674     BXE_MCAST_UNLOCK(sc);
8675 }
8676 
8677 static void
8678 bxe_handle_classification_eqe(struct bxe_softc      *sc,
8679                               union event_ring_elem *elem)
8680 {
8681     unsigned long ramrod_flags = 0;
8682     int rc = 0;
8683     uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8684     struct ecore_vlan_mac_obj *vlan_mac_obj;
8685 
8686     /* always push next commands out, don't wait here */
8687     bit_set(&ramrod_flags, RAMROD_CONT);
8688 
8689     switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8690     case ECORE_FILTER_MAC_PENDING:
8691         BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8692         vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8693         break;
8694 
8695     case ECORE_FILTER_MCAST_PENDING:
8696         BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8697         /*
8698          * This is only relevant for 57710 where multicast MACs are
8699          * configured as unicast MACs using the same ramrod.
8700          */
8701         bxe_handle_mcast_eqe(sc);
8702         return;
8703 
8704     default:
8705         BLOGE(sc, "Unsupported classification command: %d\n",
8706               elem->message.data.eth_event.echo);
8707         return;
8708     }
8709 
8710     rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8711 
8712     if (rc < 0) {
8713         BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8714     } else if (rc > 0) {
8715         BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8716     }
8717 }
8718 
8719 static void
8720 bxe_handle_rx_mode_eqe(struct bxe_softc      *sc,
8721                        union event_ring_elem *elem)
8722 {
8723     bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8724 
8725     /* send rx_mode command again if was requested */
8726     if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8727                                &sc->sp_state)) {
8728         bxe_set_storm_rx_mode(sc);
8729     }
8730 #if 0
8731     else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_START_SCHED,
8732                                     &sc->sp_state)) {
8733         bxe_set_iscsi_eth_rx_mode(sc, TRUE);
8734     }
8735     else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_STOP_SCHED,
8736                                     &sc->sp_state)) {
8737         bxe_set_iscsi_eth_rx_mode(sc, FALSE);
8738     }
8739 #endif
8740 }
8741 
8742 static void
8743 bxe_update_eq_prod(struct bxe_softc *sc,
8744                    uint16_t         prod)
8745 {
8746     storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8747     wmb(); /* keep prod updates ordered */
8748 }
8749 
8750 static void
8751 bxe_eq_int(struct bxe_softc *sc)
8752 {
8753     uint16_t hw_cons, sw_cons, sw_prod;
8754     union event_ring_elem *elem;
8755     uint8_t echo;
8756     uint32_t cid;
8757     uint8_t opcode;
8758     int spqe_cnt = 0;
8759     struct ecore_queue_sp_obj *q_obj;
8760     struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8761     struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8762 
8763     hw_cons = le16toh(*sc->eq_cons_sb);
8764 
8765     /*
8766      * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8767      * when we get to the next-page we need to adjust so the loop
8768      * condition below will be met. The next element is the size of a
8769      * regular element and hence incrementing by 1
8770      */
8771     if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8772         hw_cons++;
8773     }
8774 
8775     /*
8776      * This function may never run in parallel with itself for a
8777      * specific sc and no need for a read memory barrier here.
8778      */
8779     sw_cons = sc->eq_cons;
8780     sw_prod = sc->eq_prod;
8781 
8782     BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8783           hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8784 
8785     for (;
8786          sw_cons != hw_cons;
8787          sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8788 
8789         elem = &sc->eq[EQ_DESC(sw_cons)];
8790 
8791 #if 0
8792         int rc;
8793         rc = bxe_iov_eq_sp_event(sc, elem);
8794         if (!rc) {
8795             BLOGE(sc, "bxe_iov_eq_sp_event returned %d\n", rc);
8796             goto next_spqe;
8797         }
8798 #endif
8799 
8800         /* elem CID originates from FW, actually LE */
8801         cid = SW_CID(elem->message.data.cfc_del_event.cid);
8802         opcode = elem->message.opcode;
8803 
8804         /* handle eq element */
8805         switch (opcode) {
8806 #if 0
8807         case EVENT_RING_OPCODE_VF_PF_CHANNEL:
8808             BLOGD(sc, DBG_SP, "vf/pf channel element on eq\n");
8809             bxe_vf_mbx(sc, &elem->message.data.vf_pf_event);
8810             continue;
8811 #endif
8812 
8813         case EVENT_RING_OPCODE_STAT_QUERY:
8814             BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8815                   sc->stats_comp++);
8816             /* nothing to do with stats comp */
8817             goto next_spqe;
8818 
8819         case EVENT_RING_OPCODE_CFC_DEL:
8820             /* handle according to cid range */
8821             /* we may want to verify here that the sc state is HALTING */
8822             BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8823             q_obj = bxe_cid_to_q_obj(sc, cid);
8824             if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8825                 break;
8826             }
8827             goto next_spqe;
8828 
8829         case EVENT_RING_OPCODE_STOP_TRAFFIC:
8830             BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8831             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8832                 break;
8833             }
8834             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8835             goto next_spqe;
8836 
8837         case EVENT_RING_OPCODE_START_TRAFFIC:
8838             BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8839             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8840                 break;
8841             }
8842             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8843             goto next_spqe;
8844 
8845         case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8846             echo = elem->message.data.function_update_event.echo;
8847             if (echo == SWITCH_UPDATE) {
8848                 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8849                 if (f_obj->complete_cmd(sc, f_obj,
8850                                         ECORE_F_CMD_SWITCH_UPDATE)) {
8851                     break;
8852                 }
8853             }
8854             else {
8855                 BLOGD(sc, DBG_SP,
8856                       "AFEX: ramrod completed FUNCTION_UPDATE\n");
8857 #if 0
8858                 f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_UPDATE);
8859                 /*
8860                  * We will perform the queues update from the sp_core_task as
8861                  * all queue SP operations should run with CORE_LOCK.
8862                  */
8863                 bxe_set_bit(BXE_SP_CORE_AFEX_F_UPDATE, &sc->sp_core_state);
8864                 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8865 #endif
8866             }
8867             goto next_spqe;
8868 
8869 #if 0
8870         case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
8871             f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_VIFLISTS);
8872             bxe_after_afex_vif_lists(sc, elem);
8873             goto next_spqe;
8874 #endif
8875 
8876         case EVENT_RING_OPCODE_FORWARD_SETUP:
8877             q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8878             if (q_obj->complete_cmd(sc, q_obj,
8879                                     ECORE_Q_CMD_SETUP_TX_ONLY)) {
8880                 break;
8881             }
8882             goto next_spqe;
8883 
8884         case EVENT_RING_OPCODE_FUNCTION_START:
8885             BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8886             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8887                 break;
8888             }
8889             goto next_spqe;
8890 
8891         case EVENT_RING_OPCODE_FUNCTION_STOP:
8892             BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8893             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8894                 break;
8895             }
8896             goto next_spqe;
8897         }
8898 
8899         switch (opcode | sc->state) {
8900         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8901         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8902             cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8903             BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8904             rss_raw->clear_pending(rss_raw);
8905             break;
8906 
8907         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8908         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8909         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8910         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8911         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8912         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8913             BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8914             bxe_handle_classification_eqe(sc, elem);
8915             break;
8916 
8917         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8918         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8919         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8920             BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8921             bxe_handle_mcast_eqe(sc);
8922             break;
8923 
8924         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8925         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8926         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8927             BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8928             bxe_handle_rx_mode_eqe(sc, elem);
8929             break;
8930 
8931         default:
8932             /* unknown event log error and continue */
8933             BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8934                   elem->message.opcode, sc->state);
8935         }
8936 
8937 next_spqe:
8938         spqe_cnt++;
8939     } /* for */
8940 
8941     mb();
8942     atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
8943 
8944     sc->eq_cons = sw_cons;
8945     sc->eq_prod = sw_prod;
8946 
8947     /* make sure that above mem writes were issued towards the memory */
8948     wmb();
8949 
8950     /* update producer */
8951     bxe_update_eq_prod(sc, sc->eq_prod);
8952 }
8953 
8954 static void
8955 bxe_handle_sp_tq(void *context,
8956                  int  pending)
8957 {
8958     struct bxe_softc *sc = (struct bxe_softc *)context;
8959     uint16_t status;
8960 
8961     BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
8962 
8963     /* what work needs to be performed? */
8964     status = bxe_update_dsb_idx(sc);
8965 
8966     BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
8967 
8968     /* HW attentions */
8969     if (status & BXE_DEF_SB_ATT_IDX) {
8970         BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
8971         bxe_attn_int(sc);
8972         status &= ~BXE_DEF_SB_ATT_IDX;
8973     }
8974 
8975     /* SP events: STAT_QUERY and others */
8976     if (status & BXE_DEF_SB_IDX) {
8977         /* handle EQ completions */
8978         BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
8979         bxe_eq_int(sc);
8980         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
8981                    le16toh(sc->def_idx), IGU_INT_NOP, 1);
8982         status &= ~BXE_DEF_SB_IDX;
8983     }
8984 
8985     /* if status is non zero then something went wrong */
8986     if (__predict_false(status)) {
8987         BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
8988     }
8989 
8990     /* ack status block only if something was actually handled */
8991     bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
8992                le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
8993 
8994     /*
8995      * Must be called after the EQ processing (since eq leads to sriov
8996      * ramrod completion flows).
8997      * This flow may have been scheduled by the arrival of a ramrod
8998      * completion, or by the sriov code rescheduling itself.
8999      */
9000     // XXX bxe_iov_sp_task(sc);
9001 
9002 #if 0
9003     /* AFEX - poll to check if VIFSET_ACK should be sent to MFW */
9004     if (bxe_test_and_clear_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK,
9005                                &sc->sp_state)) {
9006         bxe_link_report(sc);
9007         bxe_fw_command(sc, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
9008     }
9009 #endif
9010 }
9011 
9012 static void
9013 bxe_handle_fp_tq(void *context,
9014                  int  pending)
9015 {
9016     struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
9017     struct bxe_softc *sc = fp->sc;
9018     uint8_t more_tx = FALSE;
9019     uint8_t more_rx = FALSE;
9020 
9021     BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
9022 
9023     /* XXX
9024      * IFF_DRV_RUNNING state can't be checked here since we process
9025      * slowpath events on a client queue during setup. Instead
9026      * we need to add a "process/continue" flag here that the driver
9027      * can use to tell the task here not to do anything.
9028      */
9029 #if 0
9030     if (!(sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
9031         return;
9032     }
9033 #endif
9034 
9035     /* update the fastpath index */
9036     bxe_update_fp_sb_idx(fp);
9037 
9038     /* XXX add loop here if ever support multiple tx CoS */
9039     /* fp->txdata[cos] */
9040     if (bxe_has_tx_work(fp)) {
9041         BXE_FP_TX_LOCK(fp);
9042         more_tx = bxe_txeof(sc, fp);
9043         BXE_FP_TX_UNLOCK(fp);
9044     }
9045 
9046     if (bxe_has_rx_work(fp)) {
9047         more_rx = bxe_rxeof(sc, fp);
9048     }
9049 
9050     if (more_rx /*|| more_tx*/) {
9051         /* still more work to do */
9052         taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9053         return;
9054     }
9055 
9056     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9057                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9058 }
9059 
9060 static void
9061 bxe_task_fp(struct bxe_fastpath *fp)
9062 {
9063     struct bxe_softc *sc = fp->sc;
9064     uint8_t more_tx = FALSE;
9065     uint8_t more_rx = FALSE;
9066 
9067     BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
9068 
9069     /* update the fastpath index */
9070     bxe_update_fp_sb_idx(fp);
9071 
9072     /* XXX add loop here if ever support multiple tx CoS */
9073     /* fp->txdata[cos] */
9074     if (bxe_has_tx_work(fp)) {
9075         BXE_FP_TX_LOCK(fp);
9076         more_tx = bxe_txeof(sc, fp);
9077         BXE_FP_TX_UNLOCK(fp);
9078     }
9079 
9080     if (bxe_has_rx_work(fp)) {
9081         more_rx = bxe_rxeof(sc, fp);
9082     }
9083 
9084     if (more_rx /*|| more_tx*/) {
9085         /* still more work to do, bail out if this ISR and process later */
9086         taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9087         return;
9088     }
9089 
9090     /*
9091      * Here we write the fastpath index taken before doing any tx or rx work.
9092      * It is very well possible other hw events occurred up to this point and
9093      * they were actually processed accordingly above. Since we're going to
9094      * write an older fastpath index, an interrupt is coming which we might
9095      * not do any work in.
9096      */
9097     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9098                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9099 }
9100 
9101 /*
9102  * Legacy interrupt entry point.
9103  *
9104  * Verifies that the controller generated the interrupt and
9105  * then calls a separate routine to handle the various
9106  * interrupt causes: link, RX, and TX.
9107  */
9108 static void
9109 bxe_intr_legacy(void *xsc)
9110 {
9111     struct bxe_softc *sc = (struct bxe_softc *)xsc;
9112     struct bxe_fastpath *fp;
9113     uint16_t status, mask;
9114     int i;
9115 
9116     BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
9117 
9118 #if 0
9119     /* Don't handle any interrupts if we're not ready. */
9120     if (__predict_false(sc->intr_sem != 0)) {
9121         return;
9122     }
9123 #endif
9124 
9125     /*
9126      * 0 for ustorm, 1 for cstorm
9127      * the bits returned from ack_int() are 0-15
9128      * bit 0 = attention status block
9129      * bit 1 = fast path status block
9130      * a mask of 0x2 or more = tx/rx event
9131      * a mask of 1 = slow path event
9132      */
9133 
9134     status = bxe_ack_int(sc);
9135 
9136     /* the interrupt is not for us */
9137     if (__predict_false(status == 0)) {
9138         BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
9139         return;
9140     }
9141 
9142     BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
9143 
9144     FOR_EACH_ETH_QUEUE(sc, i) {
9145         fp = &sc->fp[i];
9146         mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
9147         if (status & mask) {
9148             /* acknowledge and disable further fastpath interrupts */
9149             bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9150             bxe_task_fp(fp);
9151             status &= ~mask;
9152         }
9153     }
9154 
9155 #if 0
9156     if (CNIC_SUPPORT(sc)) {
9157         mask = 0x2;
9158         if (status & (mask | 0x1)) {
9159             ...
9160             status &= ~mask;
9161         }
9162     }
9163 #endif
9164 
9165     if (__predict_false(status & 0x1)) {
9166         /* acknowledge and disable further slowpath interrupts */
9167         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9168 
9169         /* schedule slowpath handler */
9170         taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9171 
9172         status &= ~0x1;
9173     }
9174 
9175     if (__predict_false(status)) {
9176         BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
9177     }
9178 }
9179 
9180 /* slowpath interrupt entry point */
9181 static void
9182 bxe_intr_sp(void *xsc)
9183 {
9184     struct bxe_softc *sc = (struct bxe_softc *)xsc;
9185 
9186     BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
9187 
9188     /* acknowledge and disable further slowpath interrupts */
9189     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9190 
9191     /* schedule slowpath handler */
9192     taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9193 }
9194 
9195 /* fastpath interrupt entry point */
9196 static void
9197 bxe_intr_fp(void *xfp)
9198 {
9199     struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
9200     struct bxe_softc *sc = fp->sc;
9201 
9202     BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
9203 
9204     BLOGD(sc, DBG_INTR,
9205           "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
9206           curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
9207 
9208 #if 0
9209     /* Don't handle any interrupts if we're not ready. */
9210     if (__predict_false(sc->intr_sem != 0)) {
9211         return;
9212     }
9213 #endif
9214 
9215     /* acknowledge and disable further fastpath interrupts */
9216     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9217 
9218     bxe_task_fp(fp);
9219 }
9220 
9221 /* Release all interrupts allocated by the driver. */
9222 static void
9223 bxe_interrupt_free(struct bxe_softc *sc)
9224 {
9225     int i;
9226 
9227     switch (sc->interrupt_mode) {
9228     case INTR_MODE_INTX:
9229         BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
9230         if (sc->intr[0].resource != NULL) {
9231             bus_release_resource(sc->dev,
9232                                  SYS_RES_IRQ,
9233                                  sc->intr[0].rid,
9234                                  sc->intr[0].resource);
9235         }
9236         break;
9237     case INTR_MODE_MSI:
9238         for (i = 0; i < sc->intr_count; i++) {
9239             BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
9240             if (sc->intr[i].resource && sc->intr[i].rid) {
9241                 bus_release_resource(sc->dev,
9242                                      SYS_RES_IRQ,
9243                                      sc->intr[i].rid,
9244                                      sc->intr[i].resource);
9245             }
9246         }
9247         pci_release_msi(sc->dev);
9248         break;
9249     case INTR_MODE_MSIX:
9250         for (i = 0; i < sc->intr_count; i++) {
9251             BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
9252             if (sc->intr[i].resource && sc->intr[i].rid) {
9253                 bus_release_resource(sc->dev,
9254                                      SYS_RES_IRQ,
9255                                      sc->intr[i].rid,
9256                                      sc->intr[i].resource);
9257             }
9258         }
9259         pci_release_msi(sc->dev);
9260         break;
9261     default:
9262         /* nothing to do as initial allocation failed */
9263         break;
9264     }
9265 }
9266 
9267 /*
9268  * This function determines and allocates the appropriate
9269  * interrupt based on system capabilites and user request.
9270  *
9271  * The user may force a particular interrupt mode, specify
9272  * the number of receive queues, specify the method for
9273  * distribuitng received frames to receive queues, or use
9274  * the default settings which will automatically select the
9275  * best supported combination.  In addition, the OS may or
9276  * may not support certain combinations of these settings.
9277  * This routine attempts to reconcile the settings requested
9278  * by the user with the capabilites available from the system
9279  * to select the optimal combination of features.
9280  *
9281  * Returns:
9282  *   0 = Success, !0 = Failure.
9283  */
9284 static int
9285 bxe_interrupt_alloc(struct bxe_softc *sc)
9286 {
9287     int msix_count = 0;
9288     int msi_count = 0;
9289     int num_requested = 0;
9290     int num_allocated = 0;
9291     int rid, i, j;
9292     int rc;
9293 
9294     /* get the number of available MSI/MSI-X interrupts from the OS */
9295     if (sc->interrupt_mode > 0) {
9296         if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
9297             msix_count = pci_msix_count(sc->dev);
9298         }
9299 
9300         if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
9301             msi_count = pci_msi_count(sc->dev);
9302         }
9303 
9304         BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
9305               msi_count, msix_count);
9306     }
9307 
9308     do { /* try allocating MSI-X interrupt resources (at least 2) */
9309         if (sc->interrupt_mode != INTR_MODE_MSIX) {
9310             break;
9311         }
9312 
9313         if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
9314             (msix_count < 2)) {
9315             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9316             break;
9317         }
9318 
9319         /* ask for the necessary number of MSI-X vectors */
9320         num_requested = min((sc->num_queues + 1), msix_count);
9321 
9322         BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
9323 
9324         num_allocated = num_requested;
9325         if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
9326             BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
9327             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9328             break;
9329         }
9330 
9331         if (num_allocated < 2) { /* possible? */
9332             BLOGE(sc, "MSI-X allocation less than 2!\n");
9333             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9334             pci_release_msi(sc->dev);
9335             break;
9336         }
9337 
9338         BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
9339               num_requested, num_allocated);
9340 
9341         /* best effort so use the number of vectors allocated to us */
9342         sc->intr_count = num_allocated;
9343         sc->num_queues = num_allocated - 1;
9344 
9345         rid = 1; /* initial resource identifier */
9346 
9347         /* allocate the MSI-X vectors */
9348         for (i = 0; i < num_allocated; i++) {
9349             sc->intr[i].rid = (rid + i);
9350 
9351             if ((sc->intr[i].resource =
9352                  bus_alloc_resource_any(sc->dev,
9353                                         SYS_RES_IRQ,
9354                                         &sc->intr[i].rid,
9355                                         RF_ACTIVE)) == NULL) {
9356                 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
9357                       i, (rid + i));
9358 
9359                 for (j = (i - 1); j >= 0; j--) {
9360                     bus_release_resource(sc->dev,
9361                                          SYS_RES_IRQ,
9362                                          sc->intr[j].rid,
9363                                          sc->intr[j].resource);
9364                 }
9365 
9366                 sc->intr_count = 0;
9367                 sc->num_queues = 0;
9368                 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9369                 pci_release_msi(sc->dev);
9370                 break;
9371             }
9372 
9373             BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
9374         }
9375     } while (0);
9376 
9377     do { /* try allocating MSI vector resources (at least 2) */
9378         if (sc->interrupt_mode != INTR_MODE_MSI) {
9379             break;
9380         }
9381 
9382         if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
9383             (msi_count < 2)) {
9384             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9385             break;
9386         }
9387 
9388         /* ask for the necessary number of MSI vectors */
9389         num_requested = min((sc->num_queues + 1), msi_count);
9390 
9391         BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
9392 
9393         num_allocated = num_requested;
9394         if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
9395             BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
9396             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9397             break;
9398         }
9399 
9400         if (num_allocated < 2) { /* possible? */
9401             BLOGE(sc, "MSI allocation less than 2!\n");
9402             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9403             pci_release_msi(sc->dev);
9404             break;
9405         }
9406 
9407         BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
9408               num_requested, num_allocated);
9409 
9410         /* best effort so use the number of vectors allocated to us */
9411         sc->intr_count = num_allocated;
9412         sc->num_queues = num_allocated - 1;
9413 
9414         rid = 1; /* initial resource identifier */
9415 
9416         /* allocate the MSI vectors */
9417         for (i = 0; i < num_allocated; i++) {
9418             sc->intr[i].rid = (rid + i);
9419 
9420             if ((sc->intr[i].resource =
9421                  bus_alloc_resource_any(sc->dev,
9422                                         SYS_RES_IRQ,
9423                                         &sc->intr[i].rid,
9424                                         RF_ACTIVE)) == NULL) {
9425                 BLOGE(sc, "Failed to map MSI[%d] (rid=%d)!\n",
9426                       i, (rid + i));
9427 
9428                 for (j = (i - 1); j >= 0; j--) {
9429                     bus_release_resource(sc->dev,
9430                                          SYS_RES_IRQ,
9431                                          sc->intr[j].rid,
9432                                          sc->intr[j].resource);
9433                 }
9434 
9435                 sc->intr_count = 0;
9436                 sc->num_queues = 0;
9437                 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9438                 pci_release_msi(sc->dev);
9439                 break;
9440             }
9441 
9442             BLOGD(sc, DBG_LOAD, "Mapped MSI[%d] (rid=%d)\n", i, (rid + i));
9443         }
9444     } while (0);
9445 
9446     do { /* try allocating INTx vector resources */
9447         if (sc->interrupt_mode != INTR_MODE_INTX) {
9448             break;
9449         }
9450 
9451         BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
9452 
9453         /* only one vector for INTx */
9454         sc->intr_count = 1;
9455         sc->num_queues = 1;
9456 
9457         rid = 0; /* initial resource identifier */
9458 
9459         sc->intr[0].rid = rid;
9460 
9461         if ((sc->intr[0].resource =
9462              bus_alloc_resource_any(sc->dev,
9463                                     SYS_RES_IRQ,
9464                                     &sc->intr[0].rid,
9465                                     (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
9466             BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
9467             sc->intr_count = 0;
9468             sc->num_queues = 0;
9469             sc->interrupt_mode = -1; /* Failed! */
9470             break;
9471         }
9472 
9473         BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9474     } while (0);
9475 
9476     if (sc->interrupt_mode == -1) {
9477         BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9478         rc = 1;
9479     } else {
9480         BLOGD(sc, DBG_LOAD,
9481               "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9482               sc->interrupt_mode, sc->num_queues);
9483         rc = 0;
9484     }
9485 
9486     return (rc);
9487 }
9488 
9489 static void
9490 bxe_interrupt_detach(struct bxe_softc *sc)
9491 {
9492     struct bxe_fastpath *fp;
9493     int i;
9494 
9495     /* release interrupt resources */
9496     for (i = 0; i < sc->intr_count; i++) {
9497         if (sc->intr[i].resource && sc->intr[i].tag) {
9498             BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9499             bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9500         }
9501     }
9502 
9503     for (i = 0; i < sc->num_queues; i++) {
9504         fp = &sc->fp[i];
9505         if (fp->tq) {
9506             taskqueue_drain(fp->tq, &fp->tq_task);
9507             taskqueue_free(fp->tq);
9508             fp->tq = NULL;
9509         }
9510     }
9511 
9512     if (sc->rx_mode_tq) {
9513         taskqueue_drain(sc->rx_mode_tq, &sc->rx_mode_tq_task);
9514         taskqueue_free(sc->rx_mode_tq);
9515         sc->rx_mode_tq = NULL;
9516     }
9517 
9518     if (sc->sp_tq) {
9519         taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9520         taskqueue_free(sc->sp_tq);
9521         sc->sp_tq = NULL;
9522     }
9523 }
9524 
9525 /*
9526  * Enables interrupts and attach to the ISR.
9527  *
9528  * When using multiple MSI/MSI-X vectors the first vector
9529  * is used for slowpath operations while all remaining
9530  * vectors are used for fastpath operations.  If only a
9531  * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9532  * ISR must look for both slowpath and fastpath completions.
9533  */
9534 static int
9535 bxe_interrupt_attach(struct bxe_softc *sc)
9536 {
9537     struct bxe_fastpath *fp;
9538     int rc = 0;
9539     int i;
9540 
9541     snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9542              "bxe%d_sp_tq", sc->unit);
9543     TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9544     sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT,
9545                                       taskqueue_thread_enqueue,
9546                                       &sc->sp_tq);
9547     taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9548                             "%s", sc->sp_tq_name);
9549 
9550     snprintf(sc->rx_mode_tq_name, sizeof(sc->rx_mode_tq_name),
9551              "bxe%d_rx_mode_tq", sc->unit);
9552     TASK_INIT(&sc->rx_mode_tq_task, 0, bxe_handle_rx_mode_tq, sc);
9553     sc->rx_mode_tq = taskqueue_create_fast(sc->rx_mode_tq_name, M_NOWAIT,
9554                                            taskqueue_thread_enqueue,
9555                                            &sc->rx_mode_tq);
9556     taskqueue_start_threads(&sc->rx_mode_tq, 1, PWAIT, /* lower priority */
9557                             "%s", sc->rx_mode_tq_name);
9558 
9559     for (i = 0; i < sc->num_queues; i++) {
9560         fp = &sc->fp[i];
9561         snprintf(fp->tq_name, sizeof(fp->tq_name),
9562                  "bxe%d_fp%d_tq", sc->unit, i);
9563         TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9564         fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT,
9565                                        taskqueue_thread_enqueue,
9566                                        &fp->tq);
9567         taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9568                                 "%s", fp->tq_name);
9569     }
9570 
9571     /* setup interrupt handlers */
9572     if (sc->interrupt_mode == INTR_MODE_MSIX) {
9573         BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9574 
9575         /*
9576          * Setup the interrupt handler. Note that we pass the driver instance
9577          * to the interrupt handler for the slowpath.
9578          */
9579         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9580                                  (INTR_TYPE_NET | INTR_MPSAFE),
9581                                  NULL, bxe_intr_sp, sc,
9582                                  &sc->intr[0].tag)) != 0) {
9583             BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9584             goto bxe_interrupt_attach_exit;
9585         }
9586 
9587         bus_describe_intr(sc->dev, sc->intr[0].resource,
9588                           sc->intr[0].tag, "sp");
9589 
9590         /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9591 
9592         /* initialize the fastpath vectors (note the first was used for sp) */
9593         for (i = 0; i < sc->num_queues; i++) {
9594             fp = &sc->fp[i];
9595             BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9596 
9597             /*
9598              * Setup the interrupt handler. Note that we pass the
9599              * fastpath context to the interrupt handler in this
9600              * case.
9601              */
9602             if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9603                                      (INTR_TYPE_NET | INTR_MPSAFE),
9604                                      NULL, bxe_intr_fp, fp,
9605                                      &sc->intr[i + 1].tag)) != 0) {
9606                 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9607                       (i + 1), rc);
9608                 goto bxe_interrupt_attach_exit;
9609             }
9610 
9611             bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9612                               sc->intr[i + 1].tag, "fp%02d", i);
9613 
9614             /* bind the fastpath instance to a cpu */
9615             if (sc->num_queues > 1) {
9616                 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9617             }
9618 
9619             fp->state = BXE_FP_STATE_IRQ;
9620         }
9621     } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9622         BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI[0] vector.\n");
9623 
9624         /*
9625          * Setup the interrupt handler. Note that we pass the driver instance
9626          * to the interrupt handler for the slowpath.
9627          */
9628         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9629                                  (INTR_TYPE_NET | INTR_MPSAFE),
9630                                  NULL, bxe_intr_sp, sc,
9631                                  &sc->intr[0].tag)) != 0) {
9632             BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9633             goto bxe_interrupt_attach_exit;
9634         }
9635 
9636         bus_describe_intr(sc->dev, sc->intr[0].resource,
9637                           sc->intr[0].tag, "sp");
9638 
9639         /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9640 
9641         /* initialize the fastpath vectors (note the first was used for sp) */
9642         for (i = 0; i < sc->num_queues; i++) {
9643             fp = &sc->fp[i];
9644             BLOGD(sc, DBG_LOAD, "Enabling MSI[%d] vector\n", (i + 1));
9645 
9646             /*
9647              * Setup the interrupt handler. Note that we pass the
9648              * fastpath context to the interrupt handler in this
9649              * case.
9650              */
9651             if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9652                                      (INTR_TYPE_NET | INTR_MPSAFE),
9653                                      NULL, bxe_intr_fp, fp,
9654                                      &sc->intr[i + 1].tag)) != 0) {
9655                 BLOGE(sc, "Failed to allocate MSI[%d] vector (%d)\n",
9656                       (i + 1), rc);
9657                 goto bxe_interrupt_attach_exit;
9658             }
9659 
9660             bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9661                               sc->intr[i + 1].tag, "fp%02d", i);
9662 
9663             /* bind the fastpath instance to a cpu */
9664             if (sc->num_queues > 1) {
9665                 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9666             }
9667 
9668             fp->state = BXE_FP_STATE_IRQ;
9669         }
9670     } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9671         BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9672 
9673         /*
9674          * Setup the interrupt handler. Note that we pass the
9675          * driver instance to the interrupt handler which
9676          * will handle both the slowpath and fastpath.
9677          */
9678         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9679                                  (INTR_TYPE_NET | INTR_MPSAFE),
9680                                  NULL, bxe_intr_legacy, sc,
9681                                  &sc->intr[0].tag)) != 0) {
9682             BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9683             goto bxe_interrupt_attach_exit;
9684         }
9685     }
9686 
9687 bxe_interrupt_attach_exit:
9688 
9689     return (rc);
9690 }
9691 
9692 static int  bxe_init_hw_common_chip(struct bxe_softc *sc);
9693 static int  bxe_init_hw_common(struct bxe_softc *sc);
9694 static int  bxe_init_hw_port(struct bxe_softc *sc);
9695 static int  bxe_init_hw_func(struct bxe_softc *sc);
9696 static void bxe_reset_common(struct bxe_softc *sc);
9697 static void bxe_reset_port(struct bxe_softc *sc);
9698 static void bxe_reset_func(struct bxe_softc *sc);
9699 static int  bxe_gunzip_init(struct bxe_softc *sc);
9700 static void bxe_gunzip_end(struct bxe_softc *sc);
9701 static int  bxe_init_firmware(struct bxe_softc *sc);
9702 static void bxe_release_firmware(struct bxe_softc *sc);
9703 
9704 static struct
9705 ecore_func_sp_drv_ops bxe_func_sp_drv = {
9706     .init_hw_cmn_chip = bxe_init_hw_common_chip,
9707     .init_hw_cmn      = bxe_init_hw_common,
9708     .init_hw_port     = bxe_init_hw_port,
9709     .init_hw_func     = bxe_init_hw_func,
9710 
9711     .reset_hw_cmn     = bxe_reset_common,
9712     .reset_hw_port    = bxe_reset_port,
9713     .reset_hw_func    = bxe_reset_func,
9714 
9715     .gunzip_init      = bxe_gunzip_init,
9716     .gunzip_end       = bxe_gunzip_end,
9717 
9718     .init_fw          = bxe_init_firmware,
9719     .release_fw       = bxe_release_firmware,
9720 };
9721 
9722 static void
9723 bxe_init_func_obj(struct bxe_softc *sc)
9724 {
9725     sc->dmae_ready = 0;
9726 
9727     ecore_init_func_obj(sc,
9728                         &sc->func_obj,
9729                         BXE_SP(sc, func_rdata),
9730                         BXE_SP_MAPPING(sc, func_rdata),
9731                         BXE_SP(sc, func_afex_rdata),
9732                         BXE_SP_MAPPING(sc, func_afex_rdata),
9733                         &bxe_func_sp_drv);
9734 }
9735 
9736 static int
9737 bxe_init_hw(struct bxe_softc *sc,
9738             uint32_t         load_code)
9739 {
9740     struct ecore_func_state_params func_params = { NULL };
9741     int rc;
9742 
9743     /* prepare the parameters for function state transitions */
9744     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9745 
9746     func_params.f_obj = &sc->func_obj;
9747     func_params.cmd = ECORE_F_CMD_HW_INIT;
9748 
9749     func_params.params.hw_init.load_phase = load_code;
9750 
9751     /*
9752      * Via a plethora of function pointers, we will eventually reach
9753      * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9754      */
9755     rc = ecore_func_state_change(sc, &func_params);
9756 
9757     return (rc);
9758 }
9759 
9760 static void
9761 bxe_fill(struct bxe_softc *sc,
9762          uint32_t         addr,
9763          int              fill,
9764          uint32_t         len)
9765 {
9766     uint32_t i;
9767 
9768     if (!(len % 4) && !(addr % 4)) {
9769         for (i = 0; i < len; i += 4) {
9770             REG_WR(sc, (addr + i), fill);
9771         }
9772     } else {
9773         for (i = 0; i < len; i++) {
9774             REG_WR8(sc, (addr + i), fill);
9775         }
9776     }
9777 }
9778 
9779 /* writes FP SP data to FW - data_size in dwords */
9780 static void
9781 bxe_wr_fp_sb_data(struct bxe_softc *sc,
9782                   int              fw_sb_id,
9783                   uint32_t         *sb_data_p,
9784                   uint32_t         data_size)
9785 {
9786     int index;
9787 
9788     for (index = 0; index < data_size; index++) {
9789         REG_WR(sc,
9790                (BAR_CSTRORM_INTMEM +
9791                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9792                 (sizeof(uint32_t) * index)),
9793                *(sb_data_p + index));
9794     }
9795 }
9796 
9797 static void
9798 bxe_zero_fp_sb(struct bxe_softc *sc,
9799                int              fw_sb_id)
9800 {
9801     struct hc_status_block_data_e2 sb_data_e2;
9802     struct hc_status_block_data_e1x sb_data_e1x;
9803     uint32_t *sb_data_p;
9804     uint32_t data_size = 0;
9805 
9806     if (!CHIP_IS_E1x(sc)) {
9807         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9808         sb_data_e2.common.state = SB_DISABLED;
9809         sb_data_e2.common.p_func.vf_valid = FALSE;
9810         sb_data_p = (uint32_t *)&sb_data_e2;
9811         data_size = (sizeof(struct hc_status_block_data_e2) /
9812                      sizeof(uint32_t));
9813     } else {
9814         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9815         sb_data_e1x.common.state = SB_DISABLED;
9816         sb_data_e1x.common.p_func.vf_valid = FALSE;
9817         sb_data_p = (uint32_t *)&sb_data_e1x;
9818         data_size = (sizeof(struct hc_status_block_data_e1x) /
9819                      sizeof(uint32_t));
9820     }
9821 
9822     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9823 
9824     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9825              0, CSTORM_STATUS_BLOCK_SIZE);
9826     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9827              0, CSTORM_SYNC_BLOCK_SIZE);
9828 }
9829 
9830 static void
9831 bxe_wr_sp_sb_data(struct bxe_softc               *sc,
9832                   struct hc_sp_status_block_data *sp_sb_data)
9833 {
9834     int i;
9835 
9836     for (i = 0;
9837          i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9838          i++) {
9839         REG_WR(sc,
9840                (BAR_CSTRORM_INTMEM +
9841                 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9842                 (i * sizeof(uint32_t))),
9843                *((uint32_t *)sp_sb_data + i));
9844     }
9845 }
9846 
9847 static void
9848 bxe_zero_sp_sb(struct bxe_softc *sc)
9849 {
9850     struct hc_sp_status_block_data sp_sb_data;
9851 
9852     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9853 
9854     sp_sb_data.state           = SB_DISABLED;
9855     sp_sb_data.p_func.vf_valid = FALSE;
9856 
9857     bxe_wr_sp_sb_data(sc, &sp_sb_data);
9858 
9859     bxe_fill(sc,
9860              (BAR_CSTRORM_INTMEM +
9861               CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9862               0, CSTORM_SP_STATUS_BLOCK_SIZE);
9863     bxe_fill(sc,
9864              (BAR_CSTRORM_INTMEM +
9865               CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9866               0, CSTORM_SP_SYNC_BLOCK_SIZE);
9867 }
9868 
9869 static void
9870 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9871                              int                       igu_sb_id,
9872                              int                       igu_seg_id)
9873 {
9874     hc_sm->igu_sb_id      = igu_sb_id;
9875     hc_sm->igu_seg_id     = igu_seg_id;
9876     hc_sm->timer_value    = 0xFF;
9877     hc_sm->time_to_expire = 0xFFFFFFFF;
9878 }
9879 
9880 static void
9881 bxe_map_sb_state_machines(struct hc_index_data *index_data)
9882 {
9883     /* zero out state machine indices */
9884 
9885     /* rx indices */
9886     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9887 
9888     /* tx indices */
9889     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags      &= ~HC_INDEX_DATA_SM_ID;
9890     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9891     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9892     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9893 
9894     /* map indices */
9895 
9896     /* rx indices */
9897     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9898         (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9899 
9900     /* tx indices */
9901     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9902         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9903     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9904         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9905     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9906         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9907     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9908         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9909 }
9910 
9911 static void
9912 bxe_init_sb(struct bxe_softc *sc,
9913             bus_addr_t       busaddr,
9914             int              vfid,
9915             uint8_t          vf_valid,
9916             int              fw_sb_id,
9917             int              igu_sb_id)
9918 {
9919     struct hc_status_block_data_e2  sb_data_e2;
9920     struct hc_status_block_data_e1x sb_data_e1x;
9921     struct hc_status_block_sm       *hc_sm_p;
9922     uint32_t *sb_data_p;
9923     int igu_seg_id;
9924     int data_size;
9925 
9926     if (CHIP_INT_MODE_IS_BC(sc)) {
9927         igu_seg_id = HC_SEG_ACCESS_NORM;
9928     } else {
9929         igu_seg_id = IGU_SEG_ACCESS_NORM;
9930     }
9931 
9932     bxe_zero_fp_sb(sc, fw_sb_id);
9933 
9934     if (!CHIP_IS_E1x(sc)) {
9935         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9936         sb_data_e2.common.state = SB_ENABLED;
9937         sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9938         sb_data_e2.common.p_func.vf_id = vfid;
9939         sb_data_e2.common.p_func.vf_valid = vf_valid;
9940         sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9941         sb_data_e2.common.same_igu_sb_1b = TRUE;
9942         sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9943         sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9944         hc_sm_p = sb_data_e2.common.state_machine;
9945         sb_data_p = (uint32_t *)&sb_data_e2;
9946         data_size = (sizeof(struct hc_status_block_data_e2) /
9947                      sizeof(uint32_t));
9948         bxe_map_sb_state_machines(sb_data_e2.index_data);
9949     } else {
9950         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9951         sb_data_e1x.common.state = SB_ENABLED;
9952         sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9953         sb_data_e1x.common.p_func.vf_id = 0xff;
9954         sb_data_e1x.common.p_func.vf_valid = FALSE;
9955         sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9956         sb_data_e1x.common.same_igu_sb_1b = TRUE;
9957         sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9958         sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9959         hc_sm_p = sb_data_e1x.common.state_machine;
9960         sb_data_p = (uint32_t *)&sb_data_e1x;
9961         data_size = (sizeof(struct hc_status_block_data_e1x) /
9962                      sizeof(uint32_t));
9963         bxe_map_sb_state_machines(sb_data_e1x.index_data);
9964     }
9965 
9966     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9967     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9968 
9969     BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9970 
9971     /* write indices to HW - PCI guarantees endianity of regpairs */
9972     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9973 }
9974 
9975 static inline uint8_t
9976 bxe_fp_qzone_id(struct bxe_fastpath *fp)
9977 {
9978     if (CHIP_IS_E1x(fp->sc)) {
9979         return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9980     } else {
9981         return (fp->cl_id);
9982     }
9983 }
9984 
9985 static inline uint32_t
9986 bxe_rx_ustorm_prods_offset(struct bxe_softc    *sc,
9987                            struct bxe_fastpath *fp)
9988 {
9989     uint32_t offset = BAR_USTRORM_INTMEM;
9990 
9991 #if 0
9992     if (IS_VF(sc)) {
9993         return (PXP_VF_ADDR_USDM_QUEUES_START +
9994                 (sc->acquire_resp.resc.hw_qid[fp->index] *
9995                  sizeof(struct ustorm_queue_zone_data)));
9996     } else
9997 #endif
9998     if (!CHIP_IS_E1x(sc)) {
9999         offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
10000     } else {
10001         offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
10002     }
10003 
10004     return (offset);
10005 }
10006 
10007 static void
10008 bxe_init_eth_fp(struct bxe_softc *sc,
10009                 int              idx)
10010 {
10011     struct bxe_fastpath *fp = &sc->fp[idx];
10012     uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
10013     unsigned long q_type = 0;
10014     int cos;
10015 
10016     fp->sc    = sc;
10017     fp->index = idx;
10018 
10019     snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
10020              "bxe%d_fp%d_tx_lock", sc->unit, idx);
10021     mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
10022 
10023     snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
10024              "bxe%d_fp%d_rx_lock", sc->unit, idx);
10025     mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
10026 
10027     fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
10028     fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
10029 
10030     fp->cl_id = (CHIP_IS_E1x(sc)) ?
10031                     (SC_L_ID(sc) + idx) :
10032                     /* want client ID same as IGU SB ID for non-E1 */
10033                     fp->igu_sb_id;
10034     fp->cl_qzone_id = bxe_fp_qzone_id(fp);
10035 
10036     /* setup sb indices */
10037     if (!CHIP_IS_E1x(sc)) {
10038         fp->sb_index_values  = fp->status_block.e2_sb->sb.index_values;
10039         fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
10040     } else {
10041         fp->sb_index_values  = fp->status_block.e1x_sb->sb.index_values;
10042         fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
10043     }
10044 
10045     /* init shortcut */
10046     fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
10047 
10048     fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
10049 
10050     /*
10051      * XXX If multiple CoS is ever supported then each fastpath structure
10052      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
10053      */
10054     for (cos = 0; cos < sc->max_cos; cos++) {
10055         cids[cos] = idx;
10056     }
10057     fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
10058 
10059     /* nothing more for a VF to do */
10060     if (IS_VF(sc)) {
10061         return;
10062     }
10063 
10064     bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
10065                 fp->fw_sb_id, fp->igu_sb_id);
10066 
10067     bxe_update_fp_sb_idx(fp);
10068 
10069     /* Configure Queue State object */
10070     bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
10071     bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
10072 
10073     ecore_init_queue_obj(sc,
10074                          &sc->sp_objs[idx].q_obj,
10075                          fp->cl_id,
10076                          cids,
10077                          sc->max_cos,
10078                          SC_FUNC(sc),
10079                          BXE_SP(sc, q_rdata),
10080                          BXE_SP_MAPPING(sc, q_rdata),
10081                          q_type);
10082 
10083     /* configure classification DBs */
10084     ecore_init_mac_obj(sc,
10085                        &sc->sp_objs[idx].mac_obj,
10086                        fp->cl_id,
10087                        idx,
10088                        SC_FUNC(sc),
10089                        BXE_SP(sc, mac_rdata),
10090                        BXE_SP_MAPPING(sc, mac_rdata),
10091                        ECORE_FILTER_MAC_PENDING,
10092                        &sc->sp_state,
10093                        ECORE_OBJ_TYPE_RX_TX,
10094                        &sc->macs_pool);
10095 
10096     BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
10097           idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
10098 }
10099 
10100 static inline void
10101 bxe_update_rx_prod(struct bxe_softc    *sc,
10102                    struct bxe_fastpath *fp,
10103                    uint16_t            rx_bd_prod,
10104                    uint16_t            rx_cq_prod,
10105                    uint16_t            rx_sge_prod)
10106 {
10107     struct ustorm_eth_rx_producers rx_prods = { 0 };
10108     uint32_t i;
10109 
10110     /* update producers */
10111     rx_prods.bd_prod  = rx_bd_prod;
10112     rx_prods.cqe_prod = rx_cq_prod;
10113     rx_prods.sge_prod = rx_sge_prod;
10114 
10115     /*
10116      * Make sure that the BD and SGE data is updated before updating the
10117      * producers since FW might read the BD/SGE right after the producer
10118      * is updated.
10119      * This is only applicable for weak-ordered memory model archs such
10120      * as IA-64. The following barrier is also mandatory since FW will
10121      * assumes BDs must have buffers.
10122      */
10123     wmb();
10124 
10125     for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
10126         REG_WR(sc,
10127                (fp->ustorm_rx_prods_offset + (i * 4)),
10128                ((uint32_t *)&rx_prods)[i]);
10129     }
10130 
10131     wmb(); /* keep prod updates ordered */
10132 
10133     BLOGD(sc, DBG_RX,
10134           "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
10135           fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
10136 }
10137 
10138 static void
10139 bxe_init_rx_rings(struct bxe_softc *sc)
10140 {
10141     struct bxe_fastpath *fp;
10142     int i;
10143 
10144     for (i = 0; i < sc->num_queues; i++) {
10145         fp = &sc->fp[i];
10146 
10147         fp->rx_bd_cons = 0;
10148 
10149         /*
10150          * Activate the BD ring...
10151          * Warning, this will generate an interrupt (to the TSTORM)
10152          * so this can only be done after the chip is initialized
10153          */
10154         bxe_update_rx_prod(sc, fp,
10155                            fp->rx_bd_prod,
10156                            fp->rx_cq_prod,
10157                            fp->rx_sge_prod);
10158 
10159         if (i != 0) {
10160             continue;
10161         }
10162 
10163         if (CHIP_IS_E1(sc)) {
10164             REG_WR(sc,
10165                    (BAR_USTRORM_INTMEM +
10166                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
10167                    U64_LO(fp->rcq_dma.paddr));
10168             REG_WR(sc,
10169                    (BAR_USTRORM_INTMEM +
10170                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
10171                    U64_HI(fp->rcq_dma.paddr));
10172         }
10173     }
10174 }
10175 
10176 static void
10177 bxe_init_tx_ring_one(struct bxe_fastpath *fp)
10178 {
10179     SET_FLAG(fp->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
10180     fp->tx_db.data.zero_fill1 = 0;
10181     fp->tx_db.data.prod = 0;
10182 
10183     fp->tx_pkt_prod = 0;
10184     fp->tx_pkt_cons = 0;
10185     fp->tx_bd_prod = 0;
10186     fp->tx_bd_cons = 0;
10187     fp->eth_q_stats.tx_pkts = 0;
10188 }
10189 
10190 static inline void
10191 bxe_init_tx_rings(struct bxe_softc *sc)
10192 {
10193     int i;
10194 
10195     for (i = 0; i < sc->num_queues; i++) {
10196 #if 0
10197         uint8_t cos;
10198         for (cos = 0; cos < sc->max_cos; cos++) {
10199             bxe_init_tx_ring_one(&sc->fp[i].txdata[cos]);
10200         }
10201 #else
10202         bxe_init_tx_ring_one(&sc->fp[i]);
10203 #endif
10204     }
10205 }
10206 
10207 static void
10208 bxe_init_def_sb(struct bxe_softc *sc)
10209 {
10210     struct host_sp_status_block *def_sb = sc->def_sb;
10211     bus_addr_t mapping = sc->def_sb_dma.paddr;
10212     int igu_sp_sb_index;
10213     int igu_seg_id;
10214     int port = SC_PORT(sc);
10215     int func = SC_FUNC(sc);
10216     int reg_offset, reg_offset_en5;
10217     uint64_t section;
10218     int index, sindex;
10219     struct hc_sp_status_block_data sp_sb_data;
10220 
10221     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
10222 
10223     if (CHIP_INT_MODE_IS_BC(sc)) {
10224         igu_sp_sb_index = DEF_SB_IGU_ID;
10225         igu_seg_id = HC_SEG_ACCESS_DEF;
10226     } else {
10227         igu_sp_sb_index = sc->igu_dsb_id;
10228         igu_seg_id = IGU_SEG_ACCESS_DEF;
10229     }
10230 
10231     /* attentions */
10232     section = ((uint64_t)mapping +
10233                offsetof(struct host_sp_status_block, atten_status_block));
10234     def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
10235     sc->attn_state = 0;
10236 
10237     reg_offset = (port) ?
10238                      MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
10239                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
10240     reg_offset_en5 = (port) ?
10241                          MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
10242                          MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
10243 
10244     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
10245         /* take care of sig[0]..sig[4] */
10246         for (sindex = 0; sindex < 4; sindex++) {
10247             sc->attn_group[index].sig[sindex] =
10248                 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
10249         }
10250 
10251         if (!CHIP_IS_E1x(sc)) {
10252             /*
10253              * enable5 is separate from the rest of the registers,
10254              * and the address skip is 4 and not 16 between the
10255              * different groups
10256              */
10257             sc->attn_group[index].sig[4] =
10258                 REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
10259         } else {
10260             sc->attn_group[index].sig[4] = 0;
10261         }
10262     }
10263 
10264     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10265         reg_offset = (port) ?
10266                          HC_REG_ATTN_MSG1_ADDR_L :
10267                          HC_REG_ATTN_MSG0_ADDR_L;
10268         REG_WR(sc, reg_offset, U64_LO(section));
10269         REG_WR(sc, (reg_offset + 4), U64_HI(section));
10270     } else if (!CHIP_IS_E1x(sc)) {
10271         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
10272         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
10273     }
10274 
10275     section = ((uint64_t)mapping +
10276                offsetof(struct host_sp_status_block, sp_sb));
10277 
10278     bxe_zero_sp_sb(sc);
10279 
10280     /* PCI guarantees endianity of regpair */
10281     sp_sb_data.state           = SB_ENABLED;
10282     sp_sb_data.host_sb_addr.lo = U64_LO(section);
10283     sp_sb_data.host_sb_addr.hi = U64_HI(section);
10284     sp_sb_data.igu_sb_id       = igu_sp_sb_index;
10285     sp_sb_data.igu_seg_id      = igu_seg_id;
10286     sp_sb_data.p_func.pf_id    = func;
10287     sp_sb_data.p_func.vnic_id  = SC_VN(sc);
10288     sp_sb_data.p_func.vf_id    = 0xff;
10289 
10290     bxe_wr_sp_sb_data(sc, &sp_sb_data);
10291 
10292     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
10293 }
10294 
10295 static void
10296 bxe_init_sp_ring(struct bxe_softc *sc)
10297 {
10298     atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
10299     sc->spq_prod_idx = 0;
10300     sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
10301     sc->spq_prod_bd = sc->spq;
10302     sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
10303 }
10304 
10305 static void
10306 bxe_init_eq_ring(struct bxe_softc *sc)
10307 {
10308     union event_ring_elem *elem;
10309     int i;
10310 
10311     for (i = 1; i <= NUM_EQ_PAGES; i++) {
10312         elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
10313 
10314         elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
10315                                                  BCM_PAGE_SIZE *
10316                                                  (i % NUM_EQ_PAGES)));
10317         elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
10318                                                  BCM_PAGE_SIZE *
10319                                                  (i % NUM_EQ_PAGES)));
10320     }
10321 
10322     sc->eq_cons    = 0;
10323     sc->eq_prod    = NUM_EQ_DESC;
10324     sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
10325 
10326     atomic_store_rel_long(&sc->eq_spq_left,
10327                           (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
10328                                NUM_EQ_DESC) - 1));
10329 }
10330 
10331 static void
10332 bxe_init_internal_common(struct bxe_softc *sc)
10333 {
10334     int i;
10335 
10336     if (IS_MF_SI(sc)) {
10337         /*
10338          * In switch independent mode, the TSTORM needs to accept
10339          * packets that failed classification, since approximate match
10340          * mac addresses aren't written to NIG LLH.
10341          */
10342         REG_WR8(sc,
10343                 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10344                 2);
10345     } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */
10346         REG_WR8(sc,
10347                 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10348                 0);
10349     }
10350 
10351     /*
10352      * Zero this manually as its initialization is currently missing
10353      * in the initTool.
10354      */
10355     for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
10356         REG_WR(sc,
10357                (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
10358                0);
10359     }
10360 
10361     if (!CHIP_IS_E1x(sc)) {
10362         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
10363                 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
10364     }
10365 }
10366 
10367 static void
10368 bxe_init_internal(struct bxe_softc *sc,
10369                   uint32_t         load_code)
10370 {
10371     switch (load_code) {
10372     case FW_MSG_CODE_DRV_LOAD_COMMON:
10373     case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
10374         bxe_init_internal_common(sc);
10375         /* no break */
10376 
10377     case FW_MSG_CODE_DRV_LOAD_PORT:
10378         /* nothing to do */
10379         /* no break */
10380 
10381     case FW_MSG_CODE_DRV_LOAD_FUNCTION:
10382         /* internal memory per function is initialized inside bxe_pf_init */
10383         break;
10384 
10385     default:
10386         BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
10387         break;
10388     }
10389 }
10390 
10391 static void
10392 storm_memset_func_cfg(struct bxe_softc                         *sc,
10393                       struct tstorm_eth_function_common_config *tcfg,
10394                       uint16_t                                  abs_fid)
10395 {
10396     uint32_t addr;
10397     size_t size;
10398 
10399     addr = (BAR_TSTRORM_INTMEM +
10400             TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
10401     size = sizeof(struct tstorm_eth_function_common_config);
10402     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
10403 }
10404 
10405 static void
10406 bxe_func_init(struct bxe_softc            *sc,
10407               struct bxe_func_init_params *p)
10408 {
10409     struct tstorm_eth_function_common_config tcfg = { 0 };
10410 
10411     if (CHIP_IS_E1x(sc)) {
10412         storm_memset_func_cfg(sc, &tcfg, p->func_id);
10413     }
10414 
10415     /* Enable the function in the FW */
10416     storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
10417     storm_memset_func_en(sc, p->func_id, 1);
10418 
10419     /* spq */
10420     if (p->func_flgs & FUNC_FLG_SPQ) {
10421         storm_memset_spq_addr(sc, p->spq_map, p->func_id);
10422         REG_WR(sc,
10423                (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
10424                p->spq_prod);
10425     }
10426 }
10427 
10428 /*
10429  * Calculates the sum of vn_min_rates.
10430  * It's needed for further normalizing of the min_rates.
10431  * Returns:
10432  *   sum of vn_min_rates.
10433  *     or
10434  *   0 - if all the min_rates are 0.
10435  * In the later case fainess algorithm should be deactivated.
10436  * If all min rates are not zero then those that are zeroes will be set to 1.
10437  */
10438 static void
10439 bxe_calc_vn_min(struct bxe_softc       *sc,
10440                 struct cmng_init_input *input)
10441 {
10442     uint32_t vn_cfg;
10443     uint32_t vn_min_rate;
10444     int all_zero = 1;
10445     int vn;
10446 
10447     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10448         vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10449         vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
10450                         FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
10451 
10452         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10453             /* skip hidden VNs */
10454             vn_min_rate = 0;
10455         } else if (!vn_min_rate) {
10456             /* If min rate is zero - set it to 100 */
10457             vn_min_rate = DEF_MIN_RATE;
10458         } else {
10459             all_zero = 0;
10460         }
10461 
10462         input->vnic_min_rate[vn] = vn_min_rate;
10463     }
10464 
10465     /* if ETS or all min rates are zeros - disable fairness */
10466     if (BXE_IS_ETS_ENABLED(sc)) {
10467         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10468         BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
10469     } else if (all_zero) {
10470         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10471         BLOGD(sc, DBG_LOAD,
10472               "Fariness disabled (all MIN values are zeroes)\n");
10473     } else {
10474         input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10475     }
10476 }
10477 
10478 static inline uint16_t
10479 bxe_extract_max_cfg(struct bxe_softc *sc,
10480                     uint32_t         mf_cfg)
10481 {
10482     uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
10483                         FUNC_MF_CFG_MAX_BW_SHIFT);
10484 
10485     if (!max_cfg) {
10486         BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
10487         max_cfg = 100;
10488     }
10489 
10490     return (max_cfg);
10491 }
10492 
10493 static void
10494 bxe_calc_vn_max(struct bxe_softc       *sc,
10495                 int                    vn,
10496                 struct cmng_init_input *input)
10497 {
10498     uint16_t vn_max_rate;
10499     uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10500     uint32_t max_cfg;
10501 
10502     if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10503         vn_max_rate = 0;
10504     } else {
10505         max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
10506 
10507         if (IS_MF_SI(sc)) {
10508             /* max_cfg in percents of linkspeed */
10509             vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
10510         } else { /* SD modes */
10511             /* max_cfg is absolute in 100Mb units */
10512             vn_max_rate = (max_cfg * 100);
10513         }
10514     }
10515 
10516     BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
10517 
10518     input->vnic_max_rate[vn] = vn_max_rate;
10519 }
10520 
10521 static void
10522 bxe_cmng_fns_init(struct bxe_softc *sc,
10523                   uint8_t          read_cfg,
10524                   uint8_t          cmng_type)
10525 {
10526     struct cmng_init_input input;
10527     int vn;
10528 
10529     memset(&input, 0, sizeof(struct cmng_init_input));
10530 
10531     input.port_rate = sc->link_vars.line_speed;
10532 
10533     if (cmng_type == CMNG_FNS_MINMAX) {
10534         /* read mf conf from shmem */
10535         if (read_cfg) {
10536             bxe_read_mf_cfg(sc);
10537         }
10538 
10539         /* get VN min rate and enable fairness if not 0 */
10540         bxe_calc_vn_min(sc, &input);
10541 
10542         /* get VN max rate */
10543         if (sc->port.pmf) {
10544             for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10545                 bxe_calc_vn_max(sc, vn, &input);
10546             }
10547         }
10548 
10549         /* always enable rate shaping and fairness */
10550         input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
10551 
10552         ecore_init_cmng(&input, &sc->cmng);
10553         return;
10554     }
10555 
10556     /* rate shaping and fairness are disabled */
10557     BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10558 }
10559 
10560 static int
10561 bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10562 {
10563     if (CHIP_REV_IS_SLOW(sc)) {
10564         return (CMNG_FNS_NONE);
10565     }
10566 
10567     if (IS_MF(sc)) {
10568         return (CMNG_FNS_MINMAX);
10569     }
10570 
10571     return (CMNG_FNS_NONE);
10572 }
10573 
10574 static void
10575 storm_memset_cmng(struct bxe_softc *sc,
10576                   struct cmng_init *cmng,
10577                   uint8_t          port)
10578 {
10579     int vn;
10580     int func;
10581     uint32_t addr;
10582     size_t size;
10583 
10584     addr = (BAR_XSTRORM_INTMEM +
10585             XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10586     size = sizeof(struct cmng_struct_per_port);
10587     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10588 
10589     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10590         func = func_by_vn(sc, vn);
10591 
10592         addr = (BAR_XSTRORM_INTMEM +
10593                 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10594         size = sizeof(struct rate_shaping_vars_per_vn);
10595         ecore_storm_memset_struct(sc, addr, size,
10596                                   (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10597 
10598         addr = (BAR_XSTRORM_INTMEM +
10599                 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10600         size = sizeof(struct fairness_vars_per_vn);
10601         ecore_storm_memset_struct(sc, addr, size,
10602                                   (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10603     }
10604 }
10605 
10606 static void
10607 bxe_pf_init(struct bxe_softc *sc)
10608 {
10609     struct bxe_func_init_params func_init = { 0 };
10610     struct event_ring_data eq_data = { { 0 } };
10611     uint16_t flags;
10612 
10613     if (!CHIP_IS_E1x(sc)) {
10614         /* reset IGU PF statistics: MSIX + ATTN */
10615         /* PF */
10616         REG_WR(sc,
10617                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10618                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10619                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10620                0);
10621         /* ATTN */
10622         REG_WR(sc,
10623                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10624                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10625                 (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10626                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10627                0);
10628     }
10629 
10630     /* function setup flags */
10631     flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10632 
10633     /*
10634      * This flag is relevant for E1x only.
10635      * E2 doesn't have a TPA configuration in a function level.
10636      */
10637     flags |= (sc->ifnet->if_capenable & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10638 
10639     func_init.func_flgs = flags;
10640     func_init.pf_id     = SC_FUNC(sc);
10641     func_init.func_id   = SC_FUNC(sc);
10642     func_init.spq_map   = sc->spq_dma.paddr;
10643     func_init.spq_prod  = sc->spq_prod_idx;
10644 
10645     bxe_func_init(sc, &func_init);
10646 
10647     memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10648 
10649     /*
10650      * Congestion management values depend on the link rate.
10651      * There is no active link so initial link rate is set to 10Gbps.
10652      * When the link comes up the congestion management values are
10653      * re-calculated according to the actual link rate.
10654      */
10655     sc->link_vars.line_speed = SPEED_10000;
10656     bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10657 
10658     /* Only the PMF sets the HW */
10659     if (sc->port.pmf) {
10660         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10661     }
10662 
10663     /* init Event Queue - PCI bus guarantees correct endainity */
10664     eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10665     eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10666     eq_data.producer     = sc->eq_prod;
10667     eq_data.index_id     = HC_SP_INDEX_EQ_CONS;
10668     eq_data.sb_id        = DEF_SB_ID;
10669     storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10670 }
10671 
10672 static void
10673 bxe_hc_int_enable(struct bxe_softc *sc)
10674 {
10675     int port = SC_PORT(sc);
10676     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10677     uint32_t val = REG_RD(sc, addr);
10678     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10679     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10680                            (sc->intr_count == 1)) ? TRUE : FALSE;
10681     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10682 
10683     if (msix) {
10684         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10685                  HC_CONFIG_0_REG_INT_LINE_EN_0);
10686         val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10687                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10688         if (single_msix) {
10689             val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10690         }
10691     } else if (msi) {
10692         val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10693         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10694                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10695                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10696     } else {
10697         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10698                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10699                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10700                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10701 
10702         if (!CHIP_IS_E1(sc)) {
10703             BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10704                   val, port, addr);
10705 
10706             REG_WR(sc, addr, val);
10707 
10708             val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10709         }
10710     }
10711 
10712     if (CHIP_IS_E1(sc)) {
10713         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10714     }
10715 
10716     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10717           val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10718 
10719     REG_WR(sc, addr, val);
10720 
10721     /* ensure that HC_CONFIG is written before leading/trailing edge config */
10722     mb();
10723 
10724     if (!CHIP_IS_E1(sc)) {
10725         /* init leading/trailing edge */
10726         if (IS_MF(sc)) {
10727             val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10728             if (sc->port.pmf) {
10729                 /* enable nig and gpio3 attention */
10730                 val |= 0x1100;
10731             }
10732         } else {
10733             val = 0xffff;
10734         }
10735 
10736         REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10737         REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10738     }
10739 
10740     /* make sure that interrupts are indeed enabled from here on */
10741     mb();
10742 }
10743 
10744 static void
10745 bxe_igu_int_enable(struct bxe_softc *sc)
10746 {
10747     uint32_t val;
10748     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10749     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10750                            (sc->intr_count == 1)) ? TRUE : FALSE;
10751     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10752 
10753     val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10754 
10755     if (msix) {
10756         val &= ~(IGU_PF_CONF_INT_LINE_EN |
10757                  IGU_PF_CONF_SINGLE_ISR_EN);
10758         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10759                 IGU_PF_CONF_ATTN_BIT_EN);
10760         if (single_msix) {
10761             val |= IGU_PF_CONF_SINGLE_ISR_EN;
10762         }
10763     } else if (msi) {
10764         val &= ~IGU_PF_CONF_INT_LINE_EN;
10765         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10766                 IGU_PF_CONF_ATTN_BIT_EN |
10767                 IGU_PF_CONF_SINGLE_ISR_EN);
10768     } else {
10769         val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10770         val |= (IGU_PF_CONF_INT_LINE_EN |
10771                 IGU_PF_CONF_ATTN_BIT_EN |
10772                 IGU_PF_CONF_SINGLE_ISR_EN);
10773     }
10774 
10775     /* clean previous status - need to configure igu prior to ack*/
10776     if ((!msix) || single_msix) {
10777         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10778         bxe_ack_int(sc);
10779     }
10780 
10781     val |= IGU_PF_CONF_FUNC_EN;
10782 
10783     BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10784           val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10785 
10786     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10787 
10788     mb();
10789 
10790     /* init leading/trailing edge */
10791     if (IS_MF(sc)) {
10792         val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10793         if (sc->port.pmf) {
10794             /* enable nig and gpio3 attention */
10795             val |= 0x1100;
10796         }
10797     } else {
10798         val = 0xffff;
10799     }
10800 
10801     REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10802     REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10803 
10804     /* make sure that interrupts are indeed enabled from here on */
10805     mb();
10806 }
10807 
10808 static void
10809 bxe_int_enable(struct bxe_softc *sc)
10810 {
10811     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10812         bxe_hc_int_enable(sc);
10813     } else {
10814         bxe_igu_int_enable(sc);
10815     }
10816 }
10817 
10818 static void
10819 bxe_hc_int_disable(struct bxe_softc *sc)
10820 {
10821     int port = SC_PORT(sc);
10822     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10823     uint32_t val = REG_RD(sc, addr);
10824 
10825     /*
10826      * In E1 we must use only PCI configuration space to disable MSI/MSIX
10827      * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10828      * block
10829      */
10830     if (CHIP_IS_E1(sc)) {
10831         /*
10832          * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10833          * to prevent from HC sending interrupts after we exit the function
10834          */
10835         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10836 
10837         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10838                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10839                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10840     } else {
10841         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10842                  HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10843                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10844                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10845     }
10846 
10847     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10848 
10849     /* flush all outstanding writes */
10850     mb();
10851 
10852     REG_WR(sc, addr, val);
10853     if (REG_RD(sc, addr) != val) {
10854         BLOGE(sc, "proper val not read from HC IGU!\n");
10855     }
10856 }
10857 
10858 static void
10859 bxe_igu_int_disable(struct bxe_softc *sc)
10860 {
10861     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10862 
10863     val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10864              IGU_PF_CONF_INT_LINE_EN |
10865              IGU_PF_CONF_ATTN_BIT_EN);
10866 
10867     BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10868 
10869     /* flush all outstanding writes */
10870     mb();
10871 
10872     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10873     if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10874         BLOGE(sc, "proper val not read from IGU!\n");
10875     }
10876 }
10877 
10878 static void
10879 bxe_int_disable(struct bxe_softc *sc)
10880 {
10881     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10882         bxe_hc_int_disable(sc);
10883     } else {
10884         bxe_igu_int_disable(sc);
10885     }
10886 }
10887 
10888 static void
10889 bxe_nic_init(struct bxe_softc *sc,
10890              int              load_code)
10891 {
10892     int i;
10893 
10894     for (i = 0; i < sc->num_queues; i++) {
10895         bxe_init_eth_fp(sc, i);
10896     }
10897 
10898     rmb(); /* ensure status block indices were read */
10899 
10900     bxe_init_rx_rings(sc);
10901     bxe_init_tx_rings(sc);
10902 
10903     if (IS_VF(sc)) {
10904         return;
10905     }
10906 
10907     /* initialize MOD_ABS interrupts */
10908     elink_init_mod_abs_int(sc, &sc->link_vars,
10909                            sc->devinfo.chip_id,
10910                            sc->devinfo.shmem_base,
10911                            sc->devinfo.shmem2_base,
10912                            SC_PORT(sc));
10913 
10914     bxe_init_def_sb(sc);
10915     bxe_update_dsb_idx(sc);
10916     bxe_init_sp_ring(sc);
10917     bxe_init_eq_ring(sc);
10918     bxe_init_internal(sc, load_code);
10919     bxe_pf_init(sc);
10920     bxe_stats_init(sc);
10921 
10922     /* flush all before enabling interrupts */
10923     mb();
10924 
10925     bxe_int_enable(sc);
10926 
10927     /* check for SPIO5 */
10928     bxe_attn_int_deasserted0(sc,
10929                              REG_RD(sc,
10930                                     (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10931                                      SC_PORT(sc)*4)) &
10932                              AEU_INPUTS_ATTN_BITS_SPIO5);
10933 }
10934 
10935 static inline void
10936 bxe_init_objs(struct bxe_softc *sc)
10937 {
10938     /* mcast rules must be added to tx if tx switching is enabled */
10939     ecore_obj_type o_type =
10940         (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10941                                          ECORE_OBJ_TYPE_RX;
10942 
10943     /* RX_MODE controlling object */
10944     ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10945 
10946     /* multicast configuration controlling object */
10947     ecore_init_mcast_obj(sc,
10948                          &sc->mcast_obj,
10949                          sc->fp[0].cl_id,
10950                          sc->fp[0].index,
10951                          SC_FUNC(sc),
10952                          SC_FUNC(sc),
10953                          BXE_SP(sc, mcast_rdata),
10954                          BXE_SP_MAPPING(sc, mcast_rdata),
10955                          ECORE_FILTER_MCAST_PENDING,
10956                          &sc->sp_state,
10957                          o_type);
10958 
10959     /* Setup CAM credit pools */
10960     ecore_init_mac_credit_pool(sc,
10961                                &sc->macs_pool,
10962                                SC_FUNC(sc),
10963                                CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10964                                                  VNICS_PER_PATH(sc));
10965 
10966     ecore_init_vlan_credit_pool(sc,
10967                                 &sc->vlans_pool,
10968                                 SC_ABS_FUNC(sc) >> 1,
10969                                 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10970                                                   VNICS_PER_PATH(sc));
10971 
10972     /* RSS configuration object */
10973     ecore_init_rss_config_obj(sc,
10974                               &sc->rss_conf_obj,
10975                               sc->fp[0].cl_id,
10976                               sc->fp[0].index,
10977                               SC_FUNC(sc),
10978                               SC_FUNC(sc),
10979                               BXE_SP(sc, rss_rdata),
10980                               BXE_SP_MAPPING(sc, rss_rdata),
10981                               ECORE_FILTER_RSS_CONF_PENDING,
10982                               &sc->sp_state, ECORE_OBJ_TYPE_RX);
10983 }
10984 
10985 /*
10986  * Initialize the function. This must be called before sending CLIENT_SETUP
10987  * for the first client.
10988  */
10989 static inline int
10990 bxe_func_start(struct bxe_softc *sc)
10991 {
10992     struct ecore_func_state_params func_params = { NULL };
10993     struct ecore_func_start_params *start_params = &func_params.params.start;
10994 
10995     /* Prepare parameters for function state transitions */
10996     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
10997 
10998     func_params.f_obj = &sc->func_obj;
10999     func_params.cmd = ECORE_F_CMD_START;
11000 
11001     /* Function parameters */
11002     start_params->mf_mode     = sc->devinfo.mf_info.mf_mode;
11003     start_params->sd_vlan_tag = OVLAN(sc);
11004 
11005     if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
11006         start_params->network_cos_mode = STATIC_COS;
11007     } else { /* CHIP_IS_E1X */
11008         start_params->network_cos_mode = FW_WRR;
11009     }
11010 
11011     start_params->gre_tunnel_mode = 0;
11012     start_params->gre_tunnel_rss  = 0;
11013 
11014     return (ecore_func_state_change(sc, &func_params));
11015 }
11016 
11017 static int
11018 bxe_set_power_state(struct bxe_softc *sc,
11019                     uint8_t          state)
11020 {
11021     uint16_t pmcsr;
11022 
11023     /* If there is no power capability, silently succeed */
11024     if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
11025         BLOGW(sc, "No power capability\n");
11026         return (0);
11027     }
11028 
11029     pmcsr = pci_read_config(sc->dev,
11030                             (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11031                             2);
11032 
11033     switch (state) {
11034     case PCI_PM_D0:
11035         pci_write_config(sc->dev,
11036                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11037                          ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
11038 
11039         if (pmcsr & PCIM_PSTAT_DMASK) {
11040             /* delay required during transition out of D3hot */
11041             DELAY(20000);
11042         }
11043 
11044         break;
11045 
11046     case PCI_PM_D3hot:
11047         /* XXX if there are other clients above don't shut down the power */
11048 
11049         /* don't shut down the power for emulation and FPGA */
11050         if (CHIP_REV_IS_SLOW(sc)) {
11051             return (0);
11052         }
11053 
11054         pmcsr &= ~PCIM_PSTAT_DMASK;
11055         pmcsr |= PCIM_PSTAT_D3;
11056 
11057         if (sc->wol) {
11058             pmcsr |= PCIM_PSTAT_PMEENABLE;
11059         }
11060 
11061         pci_write_config(sc->dev,
11062                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11063                          pmcsr, 4);
11064 
11065         /*
11066          * No more memory access after this point until device is brought back
11067          * to D0 state.
11068          */
11069         break;
11070 
11071     default:
11072         BLOGE(sc, "Can't support PCI power state = %d\n", state);
11073         return (-1);
11074     }
11075 
11076     return (0);
11077 }
11078 
11079 
11080 /* return true if succeeded to acquire the lock */
11081 static uint8_t
11082 bxe_trylock_hw_lock(struct bxe_softc *sc,
11083                     uint32_t         resource)
11084 {
11085     uint32_t lock_status;
11086     uint32_t resource_bit = (1 << resource);
11087     int func = SC_FUNC(sc);
11088     uint32_t hw_lock_control_reg;
11089 
11090     BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
11091 
11092     /* Validating that the resource is within range */
11093     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
11094         BLOGD(sc, DBG_LOAD,
11095               "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
11096               resource, HW_LOCK_MAX_RESOURCE_VALUE);
11097         return (FALSE);
11098     }
11099 
11100     if (func <= 5) {
11101         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
11102     } else {
11103         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
11104     }
11105 
11106     /* try to acquire the lock */
11107     REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
11108     lock_status = REG_RD(sc, hw_lock_control_reg);
11109     if (lock_status & resource_bit) {
11110         return (TRUE);
11111     }
11112 
11113     BLOGE(sc, "Failed to get a resource lock 0x%x\n", resource);
11114 
11115     return (FALSE);
11116 }
11117 
11118 /*
11119  * Get the recovery leader resource id according to the engine this function
11120  * belongs to. Currently only only 2 engines is supported.
11121  */
11122 static int
11123 bxe_get_leader_lock_resource(struct bxe_softc *sc)
11124 {
11125     if (SC_PATH(sc)) {
11126         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
11127     } else {
11128         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
11129     }
11130 }
11131 
11132 /* try to acquire a leader lock for current engine */
11133 static uint8_t
11134 bxe_trylock_leader_lock(struct bxe_softc *sc)
11135 {
11136     return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11137 }
11138 
11139 static int
11140 bxe_release_leader_lock(struct bxe_softc *sc)
11141 {
11142     return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11143 }
11144 
11145 /* close gates #2, #3 and #4 */
11146 static void
11147 bxe_set_234_gates(struct bxe_softc *sc,
11148                   uint8_t          close)
11149 {
11150     uint32_t val;
11151 
11152     /* gates #2 and #4a are closed/opened for "not E1" only */
11153     if (!CHIP_IS_E1(sc)) {
11154         /* #4 */
11155         REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
11156         /* #2 */
11157         REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
11158     }
11159 
11160     /* #3 */
11161     if (CHIP_IS_E1x(sc)) {
11162         /* prevent interrupts from HC on both ports */
11163         val = REG_RD(sc, HC_REG_CONFIG_1);
11164         REG_WR(sc, HC_REG_CONFIG_1,
11165                (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
11166                (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
11167 
11168         val = REG_RD(sc, HC_REG_CONFIG_0);
11169         REG_WR(sc, HC_REG_CONFIG_0,
11170                (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
11171                (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
11172     } else {
11173         /* Prevent incomming interrupts in IGU */
11174         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
11175 
11176         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
11177                (!close) ?
11178                (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
11179                (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
11180     }
11181 
11182     BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
11183           close ? "closing" : "opening");
11184 
11185     wmb();
11186 }
11187 
11188 /* poll for pending writes bit, it should get cleared in no more than 1s */
11189 static int
11190 bxe_er_poll_igu_vq(struct bxe_softc *sc)
11191 {
11192     uint32_t cnt = 1000;
11193     uint32_t pend_bits = 0;
11194 
11195     do {
11196         pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
11197 
11198         if (pend_bits == 0) {
11199             break;
11200         }
11201 
11202         DELAY(1000);
11203     } while (--cnt > 0);
11204 
11205     if (cnt == 0) {
11206         BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
11207         return (-1);
11208     }
11209 
11210     return (0);
11211 }
11212 
11213 #define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
11214 
11215 static void
11216 bxe_clp_reset_prep(struct bxe_softc *sc,
11217                    uint32_t         *magic_val)
11218 {
11219     /* Do some magic... */
11220     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11221     *magic_val = val & SHARED_MF_CLP_MAGIC;
11222     MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
11223 }
11224 
11225 /* restore the value of the 'magic' bit */
11226 static void
11227 bxe_clp_reset_done(struct bxe_softc *sc,
11228                    uint32_t         magic_val)
11229 {
11230     /* Restore the 'magic' bit value... */
11231     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11232     MFCFG_WR(sc, shared_mf_config.clp_mb,
11233               (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
11234 }
11235 
11236 /* prepare for MCP reset, takes care of CLP configurations */
11237 static void
11238 bxe_reset_mcp_prep(struct bxe_softc *sc,
11239                    uint32_t         *magic_val)
11240 {
11241     uint32_t shmem;
11242     uint32_t validity_offset;
11243 
11244     /* set `magic' bit in order to save MF config */
11245     if (!CHIP_IS_E1(sc)) {
11246         bxe_clp_reset_prep(sc, magic_val);
11247     }
11248 
11249     /* get shmem offset */
11250     shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11251     validity_offset =
11252         offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
11253 
11254     /* Clear validity map flags */
11255     if (shmem > 0) {
11256         REG_WR(sc, shmem + validity_offset, 0);
11257     }
11258 }
11259 
11260 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
11261 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
11262 
11263 static void
11264 bxe_mcp_wait_one(struct bxe_softc *sc)
11265 {
11266     /* special handling for emulation and FPGA (10 times longer) */
11267     if (CHIP_REV_IS_SLOW(sc)) {
11268         DELAY((MCP_ONE_TIMEOUT*10) * 1000);
11269     } else {
11270         DELAY((MCP_ONE_TIMEOUT) * 1000);
11271     }
11272 }
11273 
11274 /* initialize shmem_base and waits for validity signature to appear */
11275 static int
11276 bxe_init_shmem(struct bxe_softc *sc)
11277 {
11278     int cnt = 0;
11279     uint32_t val = 0;
11280 
11281     do {
11282         sc->devinfo.shmem_base     =
11283         sc->link_params.shmem_base =
11284             REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11285 
11286         if (sc->devinfo.shmem_base) {
11287             val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
11288             if (val & SHR_MEM_VALIDITY_MB)
11289                 return (0);
11290         }
11291 
11292         bxe_mcp_wait_one(sc);
11293 
11294     } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
11295 
11296     BLOGE(sc, "BAD MCP validity signature\n");
11297 
11298     return (-1);
11299 }
11300 
11301 static int
11302 bxe_reset_mcp_comp(struct bxe_softc *sc,
11303                    uint32_t         magic_val)
11304 {
11305     int rc = bxe_init_shmem(sc);
11306 
11307     /* Restore the `magic' bit value */
11308     if (!CHIP_IS_E1(sc)) {
11309         bxe_clp_reset_done(sc, magic_val);
11310     }
11311 
11312     return (rc);
11313 }
11314 
11315 static void
11316 bxe_pxp_prep(struct bxe_softc *sc)
11317 {
11318     if (!CHIP_IS_E1(sc)) {
11319         REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
11320         REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
11321         wmb();
11322     }
11323 }
11324 
11325 /*
11326  * Reset the whole chip except for:
11327  *      - PCIE core
11328  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
11329  *      - IGU
11330  *      - MISC (including AEU)
11331  *      - GRC
11332  *      - RBCN, RBCP
11333  */
11334 static void
11335 bxe_process_kill_chip_reset(struct bxe_softc *sc,
11336                             uint8_t          global)
11337 {
11338     uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
11339     uint32_t global_bits2, stay_reset2;
11340 
11341     /*
11342      * Bits that have to be set in reset_mask2 if we want to reset 'global'
11343      * (per chip) blocks.
11344      */
11345     global_bits2 =
11346         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
11347         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
11348 
11349     /*
11350      * Don't reset the following blocks.
11351      * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
11352      *            reset, as in 4 port device they might still be owned
11353      *            by the MCP (there is only one leader per path).
11354      */
11355     not_reset_mask1 =
11356         MISC_REGISTERS_RESET_REG_1_RST_HC |
11357         MISC_REGISTERS_RESET_REG_1_RST_PXPV |
11358         MISC_REGISTERS_RESET_REG_1_RST_PXP;
11359 
11360     not_reset_mask2 =
11361         MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
11362         MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
11363         MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
11364         MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
11365         MISC_REGISTERS_RESET_REG_2_RST_RBCN |
11366         MISC_REGISTERS_RESET_REG_2_RST_GRC  |
11367         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
11368         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
11369         MISC_REGISTERS_RESET_REG_2_RST_ATC |
11370         MISC_REGISTERS_RESET_REG_2_PGLC |
11371         MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
11372         MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
11373         MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
11374         MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
11375         MISC_REGISTERS_RESET_REG_2_UMAC0 |
11376         MISC_REGISTERS_RESET_REG_2_UMAC1;
11377 
11378     /*
11379      * Keep the following blocks in reset:
11380      *  - all xxMACs are handled by the elink code.
11381      */
11382     stay_reset2 =
11383         MISC_REGISTERS_RESET_REG_2_XMAC |
11384         MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
11385 
11386     /* Full reset masks according to the chip */
11387     reset_mask1 = 0xffffffff;
11388 
11389     if (CHIP_IS_E1(sc))
11390         reset_mask2 = 0xffff;
11391     else if (CHIP_IS_E1H(sc))
11392         reset_mask2 = 0x1ffff;
11393     else if (CHIP_IS_E2(sc))
11394         reset_mask2 = 0xfffff;
11395     else /* CHIP_IS_E3 */
11396         reset_mask2 = 0x3ffffff;
11397 
11398     /* Don't reset global blocks unless we need to */
11399     if (!global)
11400         reset_mask2 &= ~global_bits2;
11401 
11402     /*
11403      * In case of attention in the QM, we need to reset PXP
11404      * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
11405      * because otherwise QM reset would release 'close the gates' shortly
11406      * before resetting the PXP, then the PSWRQ would send a write
11407      * request to PGLUE. Then when PXP is reset, PGLUE would try to
11408      * read the payload data from PSWWR, but PSWWR would not
11409      * respond. The write queue in PGLUE would stuck, dmae commands
11410      * would not return. Therefore it's important to reset the second
11411      * reset register (containing the
11412      * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
11413      * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
11414      * bit).
11415      */
11416     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
11417            reset_mask2 & (~not_reset_mask2));
11418 
11419     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
11420            reset_mask1 & (~not_reset_mask1));
11421 
11422     mb();
11423     wmb();
11424 
11425     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
11426            reset_mask2 & (~stay_reset2));
11427 
11428     mb();
11429     wmb();
11430 
11431     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
11432     wmb();
11433 }
11434 
11435 static int
11436 bxe_process_kill(struct bxe_softc *sc,
11437                  uint8_t          global)
11438 {
11439     int cnt = 1000;
11440     uint32_t val = 0;
11441     uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
11442     uint32_t tags_63_32 = 0;
11443 
11444     /* Empty the Tetris buffer, wait for 1s */
11445     do {
11446         sr_cnt  = REG_RD(sc, PXP2_REG_RD_SR_CNT);
11447         blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
11448         port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
11449         port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
11450         pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
11451         if (CHIP_IS_E3(sc)) {
11452             tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
11453         }
11454 
11455         if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
11456             ((port_is_idle_0 & 0x1) == 0x1) &&
11457             ((port_is_idle_1 & 0x1) == 0x1) &&
11458             (pgl_exp_rom2 == 0xffffffff) &&
11459             (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
11460             break;
11461         DELAY(1000);
11462     } while (cnt-- > 0);
11463 
11464     if (cnt <= 0) {
11465         BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
11466                   "are still outstanding read requests after 1s! "
11467                   "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
11468                   "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
11469               sr_cnt, blk_cnt, port_is_idle_0,
11470               port_is_idle_1, pgl_exp_rom2);
11471         return (-1);
11472     }
11473 
11474     mb();
11475 
11476     /* Close gates #2, #3 and #4 */
11477     bxe_set_234_gates(sc, TRUE);
11478 
11479     /* Poll for IGU VQs for 57712 and newer chips */
11480     if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
11481         return (-1);
11482     }
11483 
11484     /* XXX indicate that "process kill" is in progress to MCP */
11485 
11486     /* clear "unprepared" bit */
11487     REG_WR(sc, MISC_REG_UNPREPARED, 0);
11488     mb();
11489 
11490     /* Make sure all is written to the chip before the reset */
11491     wmb();
11492 
11493     /*
11494      * Wait for 1ms to empty GLUE and PCI-E core queues,
11495      * PSWHST, GRC and PSWRD Tetris buffer.
11496      */
11497     DELAY(1000);
11498 
11499     /* Prepare to chip reset: */
11500     /* MCP */
11501     if (global) {
11502         bxe_reset_mcp_prep(sc, &val);
11503     }
11504 
11505     /* PXP */
11506     bxe_pxp_prep(sc);
11507     mb();
11508 
11509     /* reset the chip */
11510     bxe_process_kill_chip_reset(sc, global);
11511     mb();
11512 
11513     /* Recover after reset: */
11514     /* MCP */
11515     if (global && bxe_reset_mcp_comp(sc, val)) {
11516         return (-1);
11517     }
11518 
11519     /* XXX add resetting the NO_MCP mode DB here */
11520 
11521     /* Open the gates #2, #3 and #4 */
11522     bxe_set_234_gates(sc, FALSE);
11523 
11524     /* XXX
11525      * IGU/AEU preparation bring back the AEU/IGU to a reset state
11526      * re-enable attentions
11527      */
11528 
11529     return (0);
11530 }
11531 
11532 static int
11533 bxe_leader_reset(struct bxe_softc *sc)
11534 {
11535     int rc = 0;
11536     uint8_t global = bxe_reset_is_global(sc);
11537     uint32_t load_code;
11538 
11539     /*
11540      * If not going to reset MCP, load "fake" driver to reset HW while
11541      * driver is owner of the HW.
11542      */
11543     if (!global && !BXE_NOMCP(sc)) {
11544         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11545                                    DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11546         if (!load_code) {
11547             BLOGE(sc, "MCP response failure, aborting\n");
11548             rc = -1;
11549             goto exit_leader_reset;
11550         }
11551 
11552         if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11553             (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11554             BLOGE(sc, "MCP unexpected response, aborting\n");
11555             rc = -1;
11556             goto exit_leader_reset2;
11557         }
11558 
11559         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11560         if (!load_code) {
11561             BLOGE(sc, "MCP response failure, aborting\n");
11562             rc = -1;
11563             goto exit_leader_reset2;
11564         }
11565     }
11566 
11567     /* try to recover after the failure */
11568     if (bxe_process_kill(sc, global)) {
11569         BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11570         rc = -1;
11571         goto exit_leader_reset2;
11572     }
11573 
11574     /*
11575      * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11576      * state.
11577      */
11578     bxe_set_reset_done(sc);
11579     if (global) {
11580         bxe_clear_reset_global(sc);
11581     }
11582 
11583 exit_leader_reset2:
11584 
11585     /* unload "fake driver" if it was loaded */
11586     if (!global && !BXE_NOMCP(sc)) {
11587         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11588         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11589     }
11590 
11591 exit_leader_reset:
11592 
11593     sc->is_leader = 0;
11594     bxe_release_leader_lock(sc);
11595 
11596     mb();
11597     return (rc);
11598 }
11599 
11600 /*
11601  * prepare INIT transition, parameters configured:
11602  *   - HC configuration
11603  *   - Queue's CDU context
11604  */
11605 static void
11606 bxe_pf_q_prep_init(struct bxe_softc               *sc,
11607                    struct bxe_fastpath            *fp,
11608                    struct ecore_queue_init_params *init_params)
11609 {
11610     uint8_t cos;
11611     int cxt_index, cxt_offset;
11612 
11613     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11614     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11615 
11616     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11617     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11618 
11619     /* HC rate */
11620     init_params->rx.hc_rate =
11621         sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11622     init_params->tx.hc_rate =
11623         sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11624 
11625     /* FW SB ID */
11626     init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11627 
11628     /* CQ index among the SB indices */
11629     init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11630     init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11631 
11632     /* set maximum number of COSs supported by this queue */
11633     init_params->max_cos = sc->max_cos;
11634 
11635     BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11636           fp->index, init_params->max_cos);
11637 
11638     /* set the context pointers queue object */
11639     for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11640         /* XXX change index/cid here if ever support multiple tx CoS */
11641         /* fp->txdata[cos]->cid */
11642         cxt_index = fp->index / ILT_PAGE_CIDS;
11643         cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11644         init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11645     }
11646 }
11647 
11648 /* set flags that are common for the Tx-only and not normal connections */
11649 static unsigned long
11650 bxe_get_common_flags(struct bxe_softc    *sc,
11651                      struct bxe_fastpath *fp,
11652                      uint8_t             zero_stats)
11653 {
11654     unsigned long flags = 0;
11655 
11656     /* PF driver will always initialize the Queue to an ACTIVE state */
11657     bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11658 
11659     /*
11660      * tx only connections collect statistics (on the same index as the
11661      * parent connection). The statistics are zeroed when the parent
11662      * connection is initialized.
11663      */
11664 
11665     bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11666     if (zero_stats) {
11667         bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11668     }
11669 
11670     /*
11671      * tx only connections can support tx-switching, though their
11672      * CoS-ness doesn't survive the loopback
11673      */
11674     if (sc->flags & BXE_TX_SWITCHING) {
11675         bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11676     }
11677 
11678     bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11679 
11680     return (flags);
11681 }
11682 
11683 static unsigned long
11684 bxe_get_q_flags(struct bxe_softc    *sc,
11685                 struct bxe_fastpath *fp,
11686                 uint8_t             leading)
11687 {
11688     unsigned long flags = 0;
11689 
11690     if (IS_MF_SD(sc)) {
11691         bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11692     }
11693 
11694     if (sc->ifnet->if_capenable & IFCAP_LRO) {
11695         bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11696         bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11697 #if 0
11698         if (fp->mode == TPA_MODE_GRO)
11699             __set_bit(ECORE_Q_FLG_TPA_GRO, &flags);
11700 #endif
11701     }
11702 
11703     if (leading) {
11704         bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11705         bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11706     }
11707 
11708     bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11709 
11710 #if 0
11711     /* configure silent vlan removal */
11712     if (IS_MF_AFEX(sc)) {
11713         bxe_set_bit(ECORE_Q_FLG_SILENT_VLAN_REM, &flags);
11714     }
11715 #endif
11716 
11717     /* merge with common flags */
11718     return (flags | bxe_get_common_flags(sc, fp, TRUE));
11719 }
11720 
11721 static void
11722 bxe_pf_q_prep_general(struct bxe_softc                  *sc,
11723                       struct bxe_fastpath               *fp,
11724                       struct ecore_general_setup_params *gen_init,
11725                       uint8_t                           cos)
11726 {
11727     gen_init->stat_id = bxe_stats_id(fp);
11728     gen_init->spcl_id = fp->cl_id;
11729     gen_init->mtu = sc->mtu;
11730     gen_init->cos = cos;
11731 }
11732 
11733 static void
11734 bxe_pf_rx_q_prep(struct bxe_softc              *sc,
11735                  struct bxe_fastpath           *fp,
11736                  struct rxq_pause_params       *pause,
11737                  struct ecore_rxq_setup_params *rxq_init)
11738 {
11739     uint8_t max_sge = 0;
11740     uint16_t sge_sz = 0;
11741     uint16_t tpa_agg_size = 0;
11742 
11743     if (sc->ifnet->if_capenable & IFCAP_LRO) {
11744         pause->sge_th_lo = SGE_TH_LO(sc);
11745         pause->sge_th_hi = SGE_TH_HI(sc);
11746 
11747         /* validate SGE ring has enough to cross high threshold */
11748         if (sc->dropless_fc &&
11749             (pause->sge_th_hi + FW_PREFETCH_CNT) >
11750             (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11751             BLOGW(sc, "sge ring threshold limit\n");
11752         }
11753 
11754         /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11755         tpa_agg_size = (2 * sc->mtu);
11756         if (tpa_agg_size < sc->max_aggregation_size) {
11757             tpa_agg_size = sc->max_aggregation_size;
11758         }
11759 
11760         max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11761         max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11762                    (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11763         sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11764     }
11765 
11766     /* pause - not for e1 */
11767     if (!CHIP_IS_E1(sc)) {
11768         pause->bd_th_lo = BD_TH_LO(sc);
11769         pause->bd_th_hi = BD_TH_HI(sc);
11770 
11771         pause->rcq_th_lo = RCQ_TH_LO(sc);
11772         pause->rcq_th_hi = RCQ_TH_HI(sc);
11773 
11774         /* validate rings have enough entries to cross high thresholds */
11775         if (sc->dropless_fc &&
11776             pause->bd_th_hi + FW_PREFETCH_CNT >
11777             sc->rx_ring_size) {
11778             BLOGW(sc, "rx bd ring threshold limit\n");
11779         }
11780 
11781         if (sc->dropless_fc &&
11782             pause->rcq_th_hi + FW_PREFETCH_CNT >
11783             RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11784             BLOGW(sc, "rcq ring threshold limit\n");
11785         }
11786 
11787         pause->pri_map = 1;
11788     }
11789 
11790     /* rxq setup */
11791     rxq_init->dscr_map   = fp->rx_dma.paddr;
11792     rxq_init->sge_map    = fp->rx_sge_dma.paddr;
11793     rxq_init->rcq_map    = fp->rcq_dma.paddr;
11794     rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11795 
11796     /*
11797      * This should be a maximum number of data bytes that may be
11798      * placed on the BD (not including paddings).
11799      */
11800     rxq_init->buf_sz = (fp->rx_buf_size -
11801                         IP_HEADER_ALIGNMENT_PADDING);
11802 
11803     rxq_init->cl_qzone_id     = fp->cl_qzone_id;
11804     rxq_init->tpa_agg_sz      = tpa_agg_size;
11805     rxq_init->sge_buf_sz      = sge_sz;
11806     rxq_init->max_sges_pkt    = max_sge;
11807     rxq_init->rss_engine_id   = SC_FUNC(sc);
11808     rxq_init->mcast_engine_id = SC_FUNC(sc);
11809 
11810     /*
11811      * Maximum number or simultaneous TPA aggregation for this Queue.
11812      * For PF Clients it should be the maximum available number.
11813      * VF driver(s) may want to define it to a smaller value.
11814      */
11815     rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11816 
11817     rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11818     rxq_init->fw_sb_id = fp->fw_sb_id;
11819 
11820     rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11821 
11822     /*
11823      * configure silent vlan removal
11824      * if multi function mode is afex, then mask default vlan
11825      */
11826     if (IS_MF_AFEX(sc)) {
11827         rxq_init->silent_removal_value =
11828             sc->devinfo.mf_info.afex_def_vlan_tag;
11829         rxq_init->silent_removal_mask = EVL_VLID_MASK;
11830     }
11831 }
11832 
11833 static void
11834 bxe_pf_tx_q_prep(struct bxe_softc              *sc,
11835                  struct bxe_fastpath           *fp,
11836                  struct ecore_txq_setup_params *txq_init,
11837                  uint8_t                       cos)
11838 {
11839     /*
11840      * XXX If multiple CoS is ever supported then each fastpath structure
11841      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11842      * fp->txdata[cos]->tx_dma.paddr;
11843      */
11844     txq_init->dscr_map     = fp->tx_dma.paddr;
11845     txq_init->sb_cq_index  = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11846     txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11847     txq_init->fw_sb_id     = fp->fw_sb_id;
11848 
11849     /*
11850      * set the TSS leading client id for TX classfication to the
11851      * leading RSS client id
11852      */
11853     txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11854 }
11855 
11856 /*
11857  * This function performs 2 steps in a queue state machine:
11858  *   1) RESET->INIT
11859  *   2) INIT->SETUP
11860  */
11861 static int
11862 bxe_setup_queue(struct bxe_softc    *sc,
11863                 struct bxe_fastpath *fp,
11864                 uint8_t             leading)
11865 {
11866     struct ecore_queue_state_params q_params = { NULL };
11867     struct ecore_queue_setup_params *setup_params =
11868                         &q_params.params.setup;
11869 #if 0
11870     struct ecore_queue_setup_tx_only_params *tx_only_params =
11871                         &q_params.params.tx_only;
11872     uint8_t tx_index;
11873 #endif
11874     int rc;
11875 
11876     BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11877 
11878     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11879 
11880     q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11881 
11882     /* we want to wait for completion in this context */
11883     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11884 
11885     /* prepare the INIT parameters */
11886     bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11887 
11888     /* Set the command */
11889     q_params.cmd = ECORE_Q_CMD_INIT;
11890 
11891     /* Change the state to INIT */
11892     rc = ecore_queue_state_change(sc, &q_params);
11893     if (rc) {
11894         BLOGE(sc, "Queue(%d) INIT failed\n", fp->index);
11895         return (rc);
11896     }
11897 
11898     BLOGD(sc, DBG_LOAD, "init complete\n");
11899 
11900     /* now move the Queue to the SETUP state */
11901     memset(setup_params, 0, sizeof(*setup_params));
11902 
11903     /* set Queue flags */
11904     setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11905 
11906     /* set general SETUP parameters */
11907     bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11908                           FIRST_TX_COS_INDEX);
11909 
11910     bxe_pf_rx_q_prep(sc, fp,
11911                      &setup_params->pause_params,
11912                      &setup_params->rxq_params);
11913 
11914     bxe_pf_tx_q_prep(sc, fp,
11915                      &setup_params->txq_params,
11916                      FIRST_TX_COS_INDEX);
11917 
11918     /* Set the command */
11919     q_params.cmd = ECORE_Q_CMD_SETUP;
11920 
11921     /* change the state to SETUP */
11922     rc = ecore_queue_state_change(sc, &q_params);
11923     if (rc) {
11924         BLOGE(sc, "Queue(%d) SETUP failed\n", fp->index);
11925         return (rc);
11926     }
11927 
11928 #if 0
11929     /* loop through the relevant tx-only indices */
11930     for (tx_index = FIRST_TX_ONLY_COS_INDEX;
11931          tx_index < sc->max_cos;
11932          tx_index++) {
11933         /* prepare and send tx-only ramrod*/
11934         rc = bxe_setup_tx_only(sc, fp, &q_params,
11935                                tx_only_params, tx_index, leading);
11936         if (rc) {
11937             BLOGE(sc, "Queue(%d.%d) TX_ONLY_SETUP failed\n",
11938                   fp->index, tx_index);
11939             return (rc);
11940         }
11941     }
11942 #endif
11943 
11944     return (rc);
11945 }
11946 
11947 static int
11948 bxe_setup_leading(struct bxe_softc *sc)
11949 {
11950     return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11951 }
11952 
11953 static int
11954 bxe_config_rss_pf(struct bxe_softc            *sc,
11955                   struct ecore_rss_config_obj *rss_obj,
11956                   uint8_t                     config_hash)
11957 {
11958     struct ecore_config_rss_params params = { NULL };
11959     int i;
11960 
11961     /*
11962      * Although RSS is meaningless when there is a single HW queue we
11963      * still need it enabled in order to have HW Rx hash generated.
11964      */
11965 
11966     params.rss_obj = rss_obj;
11967 
11968     bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11969 
11970     bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11971 
11972     /* RSS configuration */
11973     bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11974     bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11975     bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11976     bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11977     if (rss_obj->udp_rss_v4) {
11978         bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11979     }
11980     if (rss_obj->udp_rss_v6) {
11981         bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11982     }
11983 
11984     /* Hash bits */
11985     params.rss_result_mask = MULTI_MASK;
11986 
11987     memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
11988 
11989     if (config_hash) {
11990         /* RSS keys */
11991         for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
11992             params.rss_key[i] = arc4random();
11993         }
11994 
11995         bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
11996     }
11997 
11998     return (ecore_config_rss(sc, &params));
11999 }
12000 
12001 static int
12002 bxe_config_rss_eth(struct bxe_softc *sc,
12003                    uint8_t          config_hash)
12004 {
12005     return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
12006 }
12007 
12008 static int
12009 bxe_init_rss_pf(struct bxe_softc *sc)
12010 {
12011     uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
12012     int i;
12013 
12014     /*
12015      * Prepare the initial contents of the indirection table if
12016      * RSS is enabled
12017      */
12018     for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
12019         sc->rss_conf_obj.ind_table[i] =
12020             (sc->fp->cl_id + (i % num_eth_queues));
12021     }
12022 
12023     if (sc->udp_rss) {
12024         sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
12025     }
12026 
12027     /*
12028      * For 57710 and 57711 SEARCHER configuration (rss_keys) is
12029      * per-port, so if explicit configuration is needed, do it only
12030      * for a PMF.
12031      *
12032      * For 57712 and newer it's a per-function configuration.
12033      */
12034     return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
12035 }
12036 
12037 static int
12038 bxe_set_mac_one(struct bxe_softc          *sc,
12039                 uint8_t                   *mac,
12040                 struct ecore_vlan_mac_obj *obj,
12041                 uint8_t                   set,
12042                 int                       mac_type,
12043                 unsigned long             *ramrod_flags)
12044 {
12045     struct ecore_vlan_mac_ramrod_params ramrod_param;
12046     int rc;
12047 
12048     memset(&ramrod_param, 0, sizeof(ramrod_param));
12049 
12050     /* fill in general parameters */
12051     ramrod_param.vlan_mac_obj = obj;
12052     ramrod_param.ramrod_flags = *ramrod_flags;
12053 
12054     /* fill a user request section if needed */
12055     if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
12056         memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
12057 
12058         bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
12059 
12060         /* Set the command: ADD or DEL */
12061         ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
12062                                             ECORE_VLAN_MAC_DEL;
12063     }
12064 
12065     rc = ecore_config_vlan_mac(sc, &ramrod_param);
12066 
12067     if (rc == ECORE_EXISTS) {
12068         BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12069         /* do not treat adding same MAC as error */
12070         rc = 0;
12071     } else if (rc < 0) {
12072         BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
12073     }
12074 
12075     return (rc);
12076 }
12077 
12078 static int
12079 bxe_set_eth_mac(struct bxe_softc *sc,
12080                 uint8_t          set)
12081 {
12082     unsigned long ramrod_flags = 0;
12083 
12084     BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
12085 
12086     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12087 
12088     /* Eth MAC is set on RSS leading client (fp[0]) */
12089     return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
12090                             &sc->sp_objs->mac_obj,
12091                             set, ECORE_ETH_MAC, &ramrod_flags));
12092 }
12093 
12094 #if 0
12095 static void
12096 bxe_update_max_mf_config(struct bxe_softc *sc,
12097                          uint32_t         value)
12098 {
12099     /* load old values */
12100     uint32_t mf_cfg = sc->devinfo.mf_info.mf_config[SC_VN(sc)];
12101 
12102     if (value != bxe_extract_max_cfg(sc, mf_cfg)) {
12103         /* leave all but MAX value */
12104         mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
12105 
12106         /* set new MAX value */
12107         mf_cfg |= ((value << FUNC_MF_CFG_MAX_BW_SHIFT) &
12108                    FUNC_MF_CFG_MAX_BW_MASK);
12109 
12110         bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
12111     }
12112 }
12113 #endif
12114 
12115 static int
12116 bxe_get_cur_phy_idx(struct bxe_softc *sc)
12117 {
12118     uint32_t sel_phy_idx = 0;
12119 
12120     if (sc->link_params.num_phys <= 1) {
12121         return (ELINK_INT_PHY);
12122     }
12123 
12124     if (sc->link_vars.link_up) {
12125         sel_phy_idx = ELINK_EXT_PHY1;
12126         /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
12127         if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
12128             (sc->link_params.phy[ELINK_EXT_PHY2].supported &
12129              ELINK_SUPPORTED_FIBRE))
12130             sel_phy_idx = ELINK_EXT_PHY2;
12131     } else {
12132         switch (elink_phy_selection(&sc->link_params)) {
12133         case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
12134         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
12135         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
12136                sel_phy_idx = ELINK_EXT_PHY1;
12137                break;
12138         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
12139         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
12140                sel_phy_idx = ELINK_EXT_PHY2;
12141                break;
12142         }
12143     }
12144 
12145     return (sel_phy_idx);
12146 }
12147 
12148 static int
12149 bxe_get_link_cfg_idx(struct bxe_softc *sc)
12150 {
12151     uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
12152 
12153     /*
12154      * The selected activated PHY is always after swapping (in case PHY
12155      * swapping is enabled). So when swapping is enabled, we need to reverse
12156      * the configuration
12157      */
12158 
12159     if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
12160         if (sel_phy_idx == ELINK_EXT_PHY1)
12161             sel_phy_idx = ELINK_EXT_PHY2;
12162         else if (sel_phy_idx == ELINK_EXT_PHY2)
12163             sel_phy_idx = ELINK_EXT_PHY1;
12164     }
12165 
12166     return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
12167 }
12168 
12169 static void
12170 bxe_set_requested_fc(struct bxe_softc *sc)
12171 {
12172     /*
12173      * Initialize link parameters structure variables
12174      * It is recommended to turn off RX FC for jumbo frames
12175      * for better performance
12176      */
12177     if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
12178         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
12179     } else {
12180         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
12181     }
12182 }
12183 
12184 static void
12185 bxe_calc_fc_adv(struct bxe_softc *sc)
12186 {
12187     uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
12188     switch (sc->link_vars.ieee_fc &
12189             MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
12190     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
12191     default:
12192         sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
12193                                            ADVERTISED_Pause);
12194         break;
12195 
12196     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
12197         sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
12198                                           ADVERTISED_Pause);
12199         break;
12200 
12201     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
12202         sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
12203         break;
12204     }
12205 }
12206 
12207 static uint16_t
12208 bxe_get_mf_speed(struct bxe_softc *sc)
12209 {
12210     uint16_t line_speed = sc->link_vars.line_speed;
12211     if (IS_MF(sc)) {
12212         uint16_t maxCfg =
12213             bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
12214 
12215         /* calculate the current MAX line speed limit for the MF devices */
12216         if (IS_MF_SI(sc)) {
12217             line_speed = (line_speed * maxCfg) / 100;
12218         } else { /* SD mode */
12219             uint16_t vn_max_rate = maxCfg * 100;
12220 
12221             if (vn_max_rate < line_speed) {
12222                 line_speed = vn_max_rate;
12223             }
12224         }
12225     }
12226 
12227     return (line_speed);
12228 }
12229 
12230 static void
12231 bxe_fill_report_data(struct bxe_softc            *sc,
12232                      struct bxe_link_report_data *data)
12233 {
12234     uint16_t line_speed = bxe_get_mf_speed(sc);
12235 
12236     memset(data, 0, sizeof(*data));
12237 
12238     /* fill the report data with the effective line speed */
12239     data->line_speed = line_speed;
12240 
12241     /* Link is down */
12242     if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
12243         bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
12244     }
12245 
12246     /* Full DUPLEX */
12247     if (sc->link_vars.duplex == DUPLEX_FULL) {
12248         bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
12249     }
12250 
12251     /* Rx Flow Control is ON */
12252     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
12253         bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
12254     }
12255 
12256     /* Tx Flow Control is ON */
12257     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
12258         bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
12259     }
12260 }
12261 
12262 /* report link status to OS, should be called under phy_lock */
12263 static void
12264 bxe_link_report_locked(struct bxe_softc *sc)
12265 {
12266     struct bxe_link_report_data cur_data;
12267 
12268     /* reread mf_cfg */
12269     if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
12270         bxe_read_mf_cfg(sc);
12271     }
12272 
12273     /* Read the current link report info */
12274     bxe_fill_report_data(sc, &cur_data);
12275 
12276     /* Don't report link down or exactly the same link status twice */
12277     if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
12278         (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12279                       &sc->last_reported_link.link_report_flags) &&
12280          bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12281                       &cur_data.link_report_flags))) {
12282         return;
12283     }
12284 
12285     sc->link_cnt++;
12286 
12287     /* report new link params and remember the state for the next time */
12288     memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
12289 
12290     if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12291                      &cur_data.link_report_flags)) {
12292         if_link_state_change(sc->ifnet, LINK_STATE_DOWN);
12293         BLOGI(sc, "NIC Link is Down\n");
12294     } else {
12295         const char *duplex;
12296         const char *flow;
12297 
12298         if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
12299                                    &cur_data.link_report_flags)) {
12300             duplex = "full";
12301         } else {
12302             duplex = "half";
12303         }
12304 
12305         /*
12306          * Handle the FC at the end so that only these flags would be
12307          * possibly set. This way we may easily check if there is no FC
12308          * enabled.
12309          */
12310         if (cur_data.link_report_flags) {
12311             if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12312                              &cur_data.link_report_flags) &&
12313                 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12314                              &cur_data.link_report_flags)) {
12315                 flow = "ON - receive & transmit";
12316             } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12317                                     &cur_data.link_report_flags) &&
12318                        !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12319                                      &cur_data.link_report_flags)) {
12320                 flow = "ON - receive";
12321             } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12322                                      &cur_data.link_report_flags) &&
12323                        bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12324                                     &cur_data.link_report_flags)) {
12325                 flow = "ON - transmit";
12326             } else {
12327                 flow = "none"; /* possible? */
12328             }
12329         } else {
12330             flow = "none";
12331         }
12332 
12333         if_link_state_change(sc->ifnet, LINK_STATE_UP);
12334         BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
12335               cur_data.line_speed, duplex, flow);
12336     }
12337 }
12338 
12339 static void
12340 bxe_link_report(struct bxe_softc *sc)
12341 {
12342     BXE_PHY_LOCK(sc);
12343     bxe_link_report_locked(sc);
12344     BXE_PHY_UNLOCK(sc);
12345 }
12346 
12347 static void
12348 bxe_link_status_update(struct bxe_softc *sc)
12349 {
12350     if (sc->state != BXE_STATE_OPEN) {
12351         return;
12352     }
12353 
12354 #if 0
12355     /* read updated dcb configuration */
12356     if (IS_PF(sc))
12357         bxe_dcbx_pmf_update(sc);
12358 #endif
12359 
12360     if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
12361         elink_link_status_update(&sc->link_params, &sc->link_vars);
12362     } else {
12363         sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
12364                                   ELINK_SUPPORTED_10baseT_Full |
12365                                   ELINK_SUPPORTED_100baseT_Half |
12366                                   ELINK_SUPPORTED_100baseT_Full |
12367                                   ELINK_SUPPORTED_1000baseT_Full |
12368                                   ELINK_SUPPORTED_2500baseX_Full |
12369                                   ELINK_SUPPORTED_10000baseT_Full |
12370                                   ELINK_SUPPORTED_TP |
12371                                   ELINK_SUPPORTED_FIBRE |
12372                                   ELINK_SUPPORTED_Autoneg |
12373                                   ELINK_SUPPORTED_Pause |
12374                                   ELINK_SUPPORTED_Asym_Pause);
12375         sc->port.advertising[0] = sc->port.supported[0];
12376 
12377         sc->link_params.sc                = sc;
12378         sc->link_params.port              = SC_PORT(sc);
12379         sc->link_params.req_duplex[0]     = DUPLEX_FULL;
12380         sc->link_params.req_flow_ctrl[0]  = ELINK_FLOW_CTRL_NONE;
12381         sc->link_params.req_line_speed[0] = SPEED_10000;
12382         sc->link_params.speed_cap_mask[0] = 0x7f0000;
12383         sc->link_params.switch_cfg        = ELINK_SWITCH_CFG_10G;
12384 
12385         if (CHIP_REV_IS_FPGA(sc)) {
12386             sc->link_vars.mac_type    = ELINK_MAC_TYPE_EMAC;
12387             sc->link_vars.line_speed  = ELINK_SPEED_1000;
12388             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12389                                          LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
12390         } else {
12391             sc->link_vars.mac_type    = ELINK_MAC_TYPE_BMAC;
12392             sc->link_vars.line_speed  = ELINK_SPEED_10000;
12393             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12394                                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
12395         }
12396 
12397         sc->link_vars.link_up = 1;
12398 
12399         sc->link_vars.duplex    = DUPLEX_FULL;
12400         sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
12401 
12402         if (IS_PF(sc)) {
12403             REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
12404             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12405             bxe_link_report(sc);
12406         }
12407     }
12408 
12409     if (IS_PF(sc)) {
12410         if (sc->link_vars.link_up) {
12411             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12412         } else {
12413             bxe_stats_handle(sc, STATS_EVENT_STOP);
12414         }
12415         bxe_link_report(sc);
12416     } else {
12417         bxe_link_report(sc);
12418         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12419     }
12420 }
12421 
12422 static int
12423 bxe_initial_phy_init(struct bxe_softc *sc,
12424                      int              load_mode)
12425 {
12426     int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
12427     uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
12428     struct elink_params *lp = &sc->link_params;
12429 
12430     bxe_set_requested_fc(sc);
12431 
12432     if (CHIP_REV_IS_SLOW(sc)) {
12433         uint32_t bond = CHIP_BOND_ID(sc);
12434         uint32_t feat = 0;
12435 
12436         if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
12437             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12438         } else if (bond & 0x4) {
12439             if (CHIP_IS_E3(sc)) {
12440                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
12441             } else {
12442                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12443             }
12444         } else if (bond & 0x8) {
12445             if (CHIP_IS_E3(sc)) {
12446                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
12447             } else {
12448                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12449             }
12450         }
12451 
12452         /* disable EMAC for E3 and above */
12453         if (bond & 0x2) {
12454             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12455         }
12456 
12457         sc->link_params.feature_config_flags |= feat;
12458     }
12459 
12460     BXE_PHY_LOCK(sc);
12461 
12462     if (load_mode == LOAD_DIAG) {
12463         lp->loopback_mode = ELINK_LOOPBACK_XGXS;
12464         /* Prefer doing PHY loopback at 10G speed, if possible */
12465         if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
12466             if (lp->speed_cap_mask[cfg_idx] &
12467                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
12468                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
12469             } else {
12470                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
12471             }
12472         }
12473     }
12474 
12475     if (load_mode == LOAD_LOOPBACK_EXT) {
12476         lp->loopback_mode = ELINK_LOOPBACK_EXT;
12477     }
12478 
12479     rc = elink_phy_init(&sc->link_params, &sc->link_vars);
12480 
12481     BXE_PHY_UNLOCK(sc);
12482 
12483     bxe_calc_fc_adv(sc);
12484 
12485     if (sc->link_vars.link_up) {
12486         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12487         bxe_link_report(sc);
12488     }
12489 
12490     if (!CHIP_REV_IS_SLOW(sc)) {
12491         bxe_periodic_start(sc);
12492     }
12493 
12494     sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
12495     return (rc);
12496 }
12497 
12498 /* must be called under IF_ADDR_LOCK */
12499 static int
12500 bxe_init_mcast_macs_list(struct bxe_softc                 *sc,
12501                          struct ecore_mcast_ramrod_params *p)
12502 {
12503     struct ifnet *ifp = sc->ifnet;
12504     int mc_count = 0;
12505     struct ifmultiaddr *ifma;
12506     struct ecore_mcast_list_elem *mc_mac;
12507 
12508     TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
12509         if (ifma->ifma_addr->sa_family != AF_LINK) {
12510             continue;
12511         }
12512 
12513         mc_count++;
12514     }
12515 
12516     ECORE_LIST_INIT(&p->mcast_list);
12517     p->mcast_list_len = 0;
12518 
12519     if (!mc_count) {
12520         return (0);
12521     }
12522 
12523     mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF,
12524                     (M_NOWAIT | M_ZERO));
12525     if (!mc_mac) {
12526         BLOGE(sc, "Failed to allocate temp mcast list\n");
12527         return (-1);
12528     }
12529 
12530     TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
12531         if (ifma->ifma_addr->sa_family != AF_LINK) {
12532             continue;
12533         }
12534 
12535         mc_mac->mac = (uint8_t *)LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
12536         ECORE_LIST_PUSH_TAIL(&mc_mac->link, &p->mcast_list);
12537 
12538         BLOGD(sc, DBG_LOAD,
12539               "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n",
12540               mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2],
12541               mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]);
12542 
12543         mc_mac++;
12544     }
12545 
12546     p->mcast_list_len = mc_count;
12547 
12548     return (0);
12549 }
12550 
12551 static void
12552 bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p)
12553 {
12554     struct ecore_mcast_list_elem *mc_mac =
12555         ECORE_LIST_FIRST_ENTRY(&p->mcast_list,
12556                                struct ecore_mcast_list_elem,
12557                                link);
12558 
12559     if (mc_mac) {
12560         /* only a single free as all mc_macs are in the same heap array */
12561         free(mc_mac, M_DEVBUF);
12562     }
12563 }
12564 
12565 static int
12566 bxe_set_mc_list(struct bxe_softc *sc)
12567 {
12568     struct ecore_mcast_ramrod_params rparam = { NULL };
12569     int rc = 0;
12570 
12571     rparam.mcast_obj = &sc->mcast_obj;
12572 
12573     BXE_MCAST_LOCK(sc);
12574 
12575     /* first, clear all configured multicast MACs */
12576     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
12577     if (rc < 0) {
12578         BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
12579         return (rc);
12580     }
12581 
12582     /* configure a new MACs list */
12583     rc = bxe_init_mcast_macs_list(sc, &rparam);
12584     if (rc) {
12585         BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc);
12586         BXE_MCAST_UNLOCK(sc);
12587         return (rc);
12588     }
12589 
12590     /* Now add the new MACs */
12591     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
12592     if (rc < 0) {
12593         BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
12594     }
12595 
12596     bxe_free_mcast_macs_list(&rparam);
12597 
12598     BXE_MCAST_UNLOCK(sc);
12599 
12600     return (rc);
12601 }
12602 
12603 static int
12604 bxe_set_uc_list(struct bxe_softc *sc)
12605 {
12606     struct ifnet *ifp = sc->ifnet;
12607     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
12608     struct ifaddr *ifa;
12609     unsigned long ramrod_flags = 0;
12610     int rc;
12611 
12612 #if __FreeBSD_version < 800000
12613     IF_ADDR_LOCK(ifp);
12614 #else
12615     if_addr_rlock(ifp);
12616 #endif
12617 
12618     /* first schedule a cleanup up of old configuration */
12619     rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
12620     if (rc < 0) {
12621         BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
12622 #if __FreeBSD_version < 800000
12623         IF_ADDR_UNLOCK(ifp);
12624 #else
12625         if_addr_runlock(ifp);
12626 #endif
12627         return (rc);
12628     }
12629 
12630     ifa = ifp->if_addr;
12631     while (ifa) {
12632         if (ifa->ifa_addr->sa_family != AF_LINK) {
12633             ifa = TAILQ_NEXT(ifa, ifa_link);
12634             continue;
12635         }
12636 
12637         rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
12638                              mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags);
12639         if (rc == -EEXIST) {
12640             BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12641             /* do not treat adding same MAC as an error */
12642             rc = 0;
12643         } else if (rc < 0) {
12644             BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc);
12645 #if __FreeBSD_version < 800000
12646             IF_ADDR_UNLOCK(ifp);
12647 #else
12648             if_addr_runlock(ifp);
12649 #endif
12650             return (rc);
12651         }
12652 
12653         ifa = TAILQ_NEXT(ifa, ifa_link);
12654     }
12655 
12656 #if __FreeBSD_version < 800000
12657     IF_ADDR_UNLOCK(ifp);
12658 #else
12659     if_addr_runlock(ifp);
12660 #endif
12661 
12662     /* Execute the pending commands */
12663     bit_set(&ramrod_flags, RAMROD_CONT);
12664     return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12665                             ECORE_UC_LIST_MAC, &ramrod_flags));
12666 }
12667 
12668 static void
12669 bxe_handle_rx_mode_tq(void *context,
12670                       int  pending)
12671 {
12672     struct bxe_softc *sc = (struct bxe_softc *)context;
12673     struct ifnet *ifp = sc->ifnet;
12674     uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12675 
12676     BXE_CORE_LOCK(sc);
12677 
12678     if (sc->state != BXE_STATE_OPEN) {
12679         BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12680         BXE_CORE_UNLOCK(sc);
12681         return;
12682     }
12683 
12684     BLOGD(sc, DBG_SP, "ifp->if_flags=0x%x\n", ifp->if_flags);
12685 
12686     if (ifp->if_flags & IFF_PROMISC) {
12687         rx_mode = BXE_RX_MODE_PROMISC;
12688     } else if ((ifp->if_flags & IFF_ALLMULTI) ||
12689                ((ifp->if_amcount > BXE_MAX_MULTICAST) &&
12690                 CHIP_IS_E1(sc))) {
12691         rx_mode = BXE_RX_MODE_ALLMULTI;
12692     } else {
12693         if (IS_PF(sc)) {
12694             /* some multicasts */
12695             if (bxe_set_mc_list(sc) < 0) {
12696                 rx_mode = BXE_RX_MODE_ALLMULTI;
12697             }
12698             if (bxe_set_uc_list(sc) < 0) {
12699                 rx_mode = BXE_RX_MODE_PROMISC;
12700             }
12701         }
12702 #if 0
12703         else {
12704             /*
12705              * Configuring mcast to a VF involves sleeping (when we
12706              * wait for the PF's response). Since this function is
12707              * called from a non sleepable context we must schedule
12708              * a work item for this purpose
12709              */
12710             bxe_set_bit(BXE_SP_RTNL_VFPF_MCAST, &sc->sp_rtnl_state);
12711             schedule_delayed_work(&sc->sp_rtnl_task, 0);
12712         }
12713 #endif
12714     }
12715 
12716     sc->rx_mode = rx_mode;
12717 
12718     /* schedule the rx_mode command */
12719     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12720         BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12721         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12722         BXE_CORE_UNLOCK(sc);
12723         return;
12724     }
12725 
12726     if (IS_PF(sc)) {
12727         bxe_set_storm_rx_mode(sc);
12728     }
12729 #if 0
12730     else {
12731         /*
12732          * Configuring mcast to a VF involves sleeping (when we
12733          * wait for the PF's response). Since this function is
12734          * called from a non sleepable context we must schedule
12735          * a work item for this purpose
12736          */
12737         bxe_set_bit(BXE_SP_RTNL_VFPF_STORM_RX_MODE, &sc->sp_rtnl_state);
12738         schedule_delayed_work(&sc->sp_rtnl_task, 0);
12739     }
12740 #endif
12741 
12742     BXE_CORE_UNLOCK(sc);
12743 }
12744 
12745 static void
12746 bxe_set_rx_mode(struct bxe_softc *sc)
12747 {
12748     taskqueue_enqueue(sc->rx_mode_tq, &sc->rx_mode_tq_task);
12749 }
12750 
12751 /* update flags in shmem */
12752 static void
12753 bxe_update_drv_flags(struct bxe_softc *sc,
12754                      uint32_t         flags,
12755                      uint32_t         set)
12756 {
12757     uint32_t drv_flags;
12758 
12759     if (SHMEM2_HAS(sc, drv_flags)) {
12760         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12761         drv_flags = SHMEM2_RD(sc, drv_flags);
12762 
12763         if (set) {
12764             SET_FLAGS(drv_flags, flags);
12765         } else {
12766             RESET_FLAGS(drv_flags, flags);
12767         }
12768 
12769         SHMEM2_WR(sc, drv_flags, drv_flags);
12770         BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12771 
12772         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12773     }
12774 }
12775 
12776 /* periodic timer callout routine, only runs when the interface is up */
12777 
12778 static void
12779 bxe_periodic_callout_func(void *xsc)
12780 {
12781     struct bxe_softc *sc = (struct bxe_softc *)xsc;
12782     int i;
12783 
12784     if (!BXE_CORE_TRYLOCK(sc)) {
12785         /* just bail and try again next time */
12786 
12787         if ((sc->state == BXE_STATE_OPEN) &&
12788             (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12789             /* schedule the next periodic callout */
12790             callout_reset(&sc->periodic_callout, hz,
12791                           bxe_periodic_callout_func, sc);
12792         }
12793 
12794         return;
12795     }
12796 
12797     if ((sc->state != BXE_STATE_OPEN) ||
12798         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12799         BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12800         BXE_CORE_UNLOCK(sc);
12801         return;
12802     }
12803 
12804     /* Check for TX timeouts on any fastpath. */
12805     FOR_EACH_QUEUE(sc, i) {
12806         if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12807             /* Ruh-Roh, chip was reset! */
12808             break;
12809         }
12810     }
12811 
12812     if (!CHIP_REV_IS_SLOW(sc)) {
12813         /*
12814          * This barrier is needed to ensure the ordering between the writing
12815          * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12816          * the reading here.
12817          */
12818         mb();
12819         if (sc->port.pmf) {
12820             BXE_PHY_LOCK(sc);
12821             elink_period_func(&sc->link_params, &sc->link_vars);
12822             BXE_PHY_UNLOCK(sc);
12823         }
12824     }
12825 
12826     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
12827         int mb_idx = SC_FW_MB_IDX(sc);
12828         uint32_t drv_pulse;
12829         uint32_t mcp_pulse;
12830 
12831         ++sc->fw_drv_pulse_wr_seq;
12832         sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12833 
12834         drv_pulse = sc->fw_drv_pulse_wr_seq;
12835         bxe_drv_pulse(sc);
12836 
12837         mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12838                      MCP_PULSE_SEQ_MASK);
12839 
12840         /*
12841          * The delta between driver pulse and mcp response should
12842          * be 1 (before mcp response) or 0 (after mcp response).
12843          */
12844         if ((drv_pulse != mcp_pulse) &&
12845             (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12846             /* someone lost a heartbeat... */
12847             BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12848                   drv_pulse, mcp_pulse);
12849         }
12850     }
12851 
12852     /* state is BXE_STATE_OPEN */
12853     bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12854 
12855 #if 0
12856     /* sample VF bulletin board for new posts from PF */
12857     if (IS_VF(sc)) {
12858         bxe_sample_bulletin(sc);
12859     }
12860 #endif
12861 
12862     BXE_CORE_UNLOCK(sc);
12863 
12864     if ((sc->state == BXE_STATE_OPEN) &&
12865         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12866         /* schedule the next periodic callout */
12867         callout_reset(&sc->periodic_callout, hz,
12868                       bxe_periodic_callout_func, sc);
12869     }
12870 }
12871 
12872 static void
12873 bxe_periodic_start(struct bxe_softc *sc)
12874 {
12875     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12876     callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12877 }
12878 
12879 static void
12880 bxe_periodic_stop(struct bxe_softc *sc)
12881 {
12882     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12883     callout_drain(&sc->periodic_callout);
12884 }
12885 
12886 /* start the controller */
12887 static __noinline int
12888 bxe_nic_load(struct bxe_softc *sc,
12889              int              load_mode)
12890 {
12891     uint32_t val;
12892     int load_code = 0;
12893     int i, rc = 0;
12894 
12895     BXE_CORE_LOCK_ASSERT(sc);
12896 
12897     BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12898 
12899     sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12900 
12901     if (IS_PF(sc)) {
12902         /* must be called before memory allocation and HW init */
12903         bxe_ilt_set_info(sc);
12904     }
12905 
12906     sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12907 
12908     bxe_set_fp_rx_buf_size(sc);
12909 
12910     if (bxe_alloc_fp_buffers(sc) != 0) {
12911         BLOGE(sc, "Failed to allocate fastpath memory\n");
12912         sc->state = BXE_STATE_CLOSED;
12913         rc = ENOMEM;
12914         goto bxe_nic_load_error0;
12915     }
12916 
12917     if (bxe_alloc_mem(sc) != 0) {
12918         sc->state = BXE_STATE_CLOSED;
12919         rc = ENOMEM;
12920         goto bxe_nic_load_error0;
12921     }
12922 
12923     if (bxe_alloc_fw_stats_mem(sc) != 0) {
12924         sc->state = BXE_STATE_CLOSED;
12925         rc = ENOMEM;
12926         goto bxe_nic_load_error0;
12927     }
12928 
12929     if (IS_PF(sc)) {
12930         /* set pf load just before approaching the MCP */
12931         bxe_set_pf_load(sc);
12932 
12933         /* if MCP exists send load request and analyze response */
12934         if (!BXE_NOMCP(sc)) {
12935             /* attempt to load pf */
12936             if (bxe_nic_load_request(sc, &load_code) != 0) {
12937                 sc->state = BXE_STATE_CLOSED;
12938                 rc = ENXIO;
12939                 goto bxe_nic_load_error1;
12940             }
12941 
12942             /* what did the MCP say? */
12943             if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12944                 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12945                 sc->state = BXE_STATE_CLOSED;
12946                 rc = ENXIO;
12947                 goto bxe_nic_load_error2;
12948             }
12949         } else {
12950             BLOGI(sc, "Device has no MCP!\n");
12951             load_code = bxe_nic_load_no_mcp(sc);
12952         }
12953 
12954         /* mark PMF if applicable */
12955         bxe_nic_load_pmf(sc, load_code);
12956 
12957         /* Init Function state controlling object */
12958         bxe_init_func_obj(sc);
12959 
12960         /* Initialize HW */
12961         if (bxe_init_hw(sc, load_code) != 0) {
12962             BLOGE(sc, "HW init failed\n");
12963             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12964             sc->state = BXE_STATE_CLOSED;
12965             rc = ENXIO;
12966             goto bxe_nic_load_error2;
12967         }
12968     }
12969 
12970     /* attach interrupts */
12971     if (bxe_interrupt_attach(sc) != 0) {
12972         sc->state = BXE_STATE_CLOSED;
12973         rc = ENXIO;
12974         goto bxe_nic_load_error2;
12975     }
12976 
12977     bxe_nic_init(sc, load_code);
12978 
12979     /* Init per-function objects */
12980     if (IS_PF(sc)) {
12981         bxe_init_objs(sc);
12982         // XXX bxe_iov_nic_init(sc);
12983 
12984         /* set AFEX default VLAN tag to an invalid value */
12985         sc->devinfo.mf_info.afex_def_vlan_tag = -1;
12986         // XXX bxe_nic_load_afex_dcc(sc, load_code);
12987 
12988         sc->state = BXE_STATE_OPENING_WAITING_PORT;
12989         rc = bxe_func_start(sc);
12990         if (rc) {
12991             BLOGE(sc, "Function start failed!\n");
12992             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12993             sc->state = BXE_STATE_ERROR;
12994             goto bxe_nic_load_error3;
12995         }
12996 
12997         /* send LOAD_DONE command to MCP */
12998         if (!BXE_NOMCP(sc)) {
12999             load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
13000             if (!load_code) {
13001                 BLOGE(sc, "MCP response failure, aborting\n");
13002                 sc->state = BXE_STATE_ERROR;
13003                 rc = ENXIO;
13004                 goto bxe_nic_load_error3;
13005             }
13006         }
13007 
13008         rc = bxe_setup_leading(sc);
13009         if (rc) {
13010             BLOGE(sc, "Setup leading failed!\n");
13011             sc->state = BXE_STATE_ERROR;
13012             goto bxe_nic_load_error3;
13013         }
13014 
13015         FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
13016             rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
13017             if (rc) {
13018                 BLOGE(sc, "Queue(%d) setup failed\n", i);
13019                 sc->state = BXE_STATE_ERROR;
13020                 goto bxe_nic_load_error3;
13021             }
13022         }
13023 
13024         rc = bxe_init_rss_pf(sc);
13025         if (rc) {
13026             BLOGE(sc, "PF RSS init failed\n");
13027             sc->state = BXE_STATE_ERROR;
13028             goto bxe_nic_load_error3;
13029         }
13030     }
13031     /* XXX VF */
13032 #if 0
13033     else { /* VF */
13034         FOR_EACH_ETH_QUEUE(sc, i) {
13035             rc = bxe_vfpf_setup_q(sc, i);
13036             if (rc) {
13037                 BLOGE(sc, "Queue(%d) setup failed\n", i);
13038                 sc->state = BXE_STATE_ERROR;
13039                 goto bxe_nic_load_error3;
13040             }
13041         }
13042     }
13043 #endif
13044 
13045     /* now when Clients are configured we are ready to work */
13046     sc->state = BXE_STATE_OPEN;
13047 
13048     /* Configure a ucast MAC */
13049     if (IS_PF(sc)) {
13050         rc = bxe_set_eth_mac(sc, TRUE);
13051     }
13052 #if 0
13053     else { /* IS_VF(sc) */
13054         rc = bxe_vfpf_set_mac(sc);
13055     }
13056 #endif
13057     if (rc) {
13058         BLOGE(sc, "Setting Ethernet MAC failed\n");
13059         sc->state = BXE_STATE_ERROR;
13060         goto bxe_nic_load_error3;
13061     }
13062 
13063 #if 0
13064     if (IS_PF(sc) && sc->pending_max) {
13065         /* for AFEX */
13066         bxe_update_max_mf_config(sc, sc->pending_max);
13067         sc->pending_max = 0;
13068     }
13069 #endif
13070 
13071     if (sc->port.pmf) {
13072         rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
13073         if (rc) {
13074             sc->state = BXE_STATE_ERROR;
13075             goto bxe_nic_load_error3;
13076         }
13077     }
13078 
13079     sc->link_params.feature_config_flags &=
13080         ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
13081 
13082     /* start fast path */
13083 
13084     /* Initialize Rx filter */
13085     bxe_set_rx_mode(sc);
13086 
13087     /* start the Tx */
13088     switch (/* XXX load_mode */LOAD_OPEN) {
13089     case LOAD_NORMAL:
13090     case LOAD_OPEN:
13091         break;
13092 
13093     case LOAD_DIAG:
13094     case LOAD_LOOPBACK_EXT:
13095         sc->state = BXE_STATE_DIAG;
13096         break;
13097 
13098     default:
13099         break;
13100     }
13101 
13102     if (sc->port.pmf) {
13103         bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
13104     } else {
13105         bxe_link_status_update(sc);
13106     }
13107 
13108     /* start the periodic timer callout */
13109     bxe_periodic_start(sc);
13110 
13111     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
13112         /* mark driver is loaded in shmem2 */
13113         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
13114         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
13115                   (val |
13116                    DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
13117                    DRV_FLAGS_CAPABILITIES_LOADED_L2));
13118     }
13119 
13120     /* wait for all pending SP commands to complete */
13121     if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
13122         BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
13123         bxe_periodic_stop(sc);
13124         bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
13125         return (ENXIO);
13126     }
13127 
13128 #if 0
13129     /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
13130     if (sc->port.pmf && (sc->state != BXE_STATE_DIAG)) {
13131         bxe_dcbx_init(sc, FALSE);
13132     }
13133 #endif
13134 
13135     /* Tell the stack the driver is running! */
13136     sc->ifnet->if_drv_flags = IFF_DRV_RUNNING;
13137 
13138     BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
13139 
13140     return (0);
13141 
13142 bxe_nic_load_error3:
13143 
13144     if (IS_PF(sc)) {
13145         bxe_int_disable_sync(sc, 1);
13146 
13147         /* clean out queued objects */
13148         bxe_squeeze_objects(sc);
13149     }
13150 
13151     bxe_interrupt_detach(sc);
13152 
13153 bxe_nic_load_error2:
13154 
13155     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
13156         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
13157         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
13158     }
13159 
13160     sc->port.pmf = 0;
13161 
13162 bxe_nic_load_error1:
13163 
13164     /* clear pf_load status, as it was already set */
13165     if (IS_PF(sc)) {
13166         bxe_clear_pf_load(sc);
13167     }
13168 
13169 bxe_nic_load_error0:
13170 
13171     bxe_free_fw_stats_mem(sc);
13172     bxe_free_fp_buffers(sc);
13173     bxe_free_mem(sc);
13174 
13175     return (rc);
13176 }
13177 
13178 static int
13179 bxe_init_locked(struct bxe_softc *sc)
13180 {
13181     int other_engine = SC_PATH(sc) ? 0 : 1;
13182     uint8_t other_load_status, load_status;
13183     uint8_t global = FALSE;
13184     int rc;
13185 
13186     BXE_CORE_LOCK_ASSERT(sc);
13187 
13188     /* check if the driver is already running */
13189     if (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING) {
13190         BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
13191         return (0);
13192     }
13193 
13194     bxe_set_power_state(sc, PCI_PM_D0);
13195 
13196     /*
13197      * If parity occurred during the unload, then attentions and/or
13198      * RECOVERY_IN_PROGRES may still be set. If so we want the first function
13199      * loaded on the current engine to complete the recovery. Parity recovery
13200      * is only relevant for PF driver.
13201      */
13202     if (IS_PF(sc)) {
13203         other_load_status = bxe_get_load_status(sc, other_engine);
13204         load_status = bxe_get_load_status(sc, SC_PATH(sc));
13205 
13206         if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
13207             bxe_chk_parity_attn(sc, &global, TRUE)) {
13208             do {
13209                 /*
13210                  * If there are attentions and they are in global blocks, set
13211                  * the GLOBAL_RESET bit regardless whether it will be this
13212                  * function that will complete the recovery or not.
13213                  */
13214                 if (global) {
13215                     bxe_set_reset_global(sc);
13216                 }
13217 
13218                 /*
13219                  * Only the first function on the current engine should try
13220                  * to recover in open. In case of attentions in global blocks
13221                  * only the first in the chip should try to recover.
13222                  */
13223                 if ((!load_status && (!global || !other_load_status)) &&
13224                     bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
13225                     BLOGI(sc, "Recovered during init\n");
13226                     break;
13227                 }
13228 
13229                 /* recovery has failed... */
13230                 bxe_set_power_state(sc, PCI_PM_D3hot);
13231                 sc->recovery_state = BXE_RECOVERY_FAILED;
13232 
13233                 BLOGE(sc, "Recovery flow hasn't properly "
13234                           "completed yet, try again later. "
13235                           "If you still see this message after a "
13236                           "few retries then power cycle is required.\n");
13237 
13238                 rc = ENXIO;
13239                 goto bxe_init_locked_done;
13240             } while (0);
13241         }
13242     }
13243 
13244     sc->recovery_state = BXE_RECOVERY_DONE;
13245 
13246     rc = bxe_nic_load(sc, LOAD_OPEN);
13247 
13248 bxe_init_locked_done:
13249 
13250     if (rc) {
13251         /* Tell the stack the driver is NOT running! */
13252         BLOGE(sc, "Initialization failed, "
13253                   "stack notified driver is NOT running!\n");
13254         sc->ifnet->if_drv_flags &= ~IFF_DRV_RUNNING;
13255     }
13256 
13257     return (rc);
13258 }
13259 
13260 static int
13261 bxe_stop_locked(struct bxe_softc *sc)
13262 {
13263     BXE_CORE_LOCK_ASSERT(sc);
13264     return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
13265 }
13266 
13267 /*
13268  * Handles controller initialization when called from an unlocked routine.
13269  * ifconfig calls this function.
13270  *
13271  * Returns:
13272  *   void
13273  */
13274 static void
13275 bxe_init(void *xsc)
13276 {
13277     struct bxe_softc *sc = (struct bxe_softc *)xsc;
13278 
13279     BXE_CORE_LOCK(sc);
13280     bxe_init_locked(sc);
13281     BXE_CORE_UNLOCK(sc);
13282 }
13283 
13284 static int
13285 bxe_init_ifnet(struct bxe_softc *sc)
13286 {
13287     struct ifnet *ifp;
13288 
13289     /* ifconfig entrypoint for media type/status reporting */
13290     ifmedia_init(&sc->ifmedia, IFM_IMASK,
13291                  bxe_ifmedia_update,
13292                  bxe_ifmedia_status);
13293 
13294     /* set the default interface values */
13295     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
13296     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
13297     ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
13298 
13299     sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
13300 
13301     /* allocate the ifnet structure */
13302     if ((ifp = if_alloc(IFT_ETHER)) == NULL) {
13303         BLOGE(sc, "Interface allocation failed!\n");
13304         return (ENXIO);
13305     }
13306 
13307     ifp->if_softc = sc;
13308     if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
13309     ifp->if_flags = (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
13310     ifp->if_ioctl = bxe_ioctl;
13311     ifp->if_start = bxe_tx_start;
13312 #if __FreeBSD_version >= 800000
13313     ifp->if_transmit = bxe_tx_mq_start;
13314     ifp->if_qflush = bxe_mq_flush;
13315 #endif
13316 #ifdef FreeBSD8_0
13317     ifp->if_timer = 0;
13318 #endif
13319     ifp->if_init = bxe_init;
13320     ifp->if_mtu = sc->mtu;
13321     ifp->if_hwassist = (CSUM_IP       |
13322                         CSUM_TCP      |
13323                         CSUM_UDP      |
13324                         CSUM_TSO      |
13325                         CSUM_TCP_IPV6 |
13326                         CSUM_UDP_IPV6);
13327     ifp->if_capabilities =
13328 #if __FreeBSD_version < 700000
13329         (IFCAP_VLAN_MTU       |
13330          IFCAP_VLAN_HWTAGGING |
13331          IFCAP_HWCSUM         |
13332          IFCAP_JUMBO_MTU      |
13333          IFCAP_LRO);
13334 #else
13335         (IFCAP_VLAN_MTU       |
13336          IFCAP_VLAN_HWTAGGING |
13337          IFCAP_VLAN_HWTSO     |
13338          IFCAP_VLAN_HWFILTER  |
13339          IFCAP_VLAN_HWCSUM    |
13340          IFCAP_HWCSUM         |
13341          IFCAP_JUMBO_MTU      |
13342          IFCAP_LRO            |
13343          IFCAP_TSO4           |
13344          IFCAP_TSO6           |
13345          IFCAP_WOL_MAGIC);
13346 #endif
13347     ifp->if_capenable = ifp->if_capabilities;
13348     ifp->if_capenable &= ~IFCAP_WOL_MAGIC; /* XXX not yet... */
13349 #if __FreeBSD_version < 1000025
13350     ifp->if_baudrate = 1000000000;
13351 #else
13352     if_initbaudrate(ifp, IF_Gbps(10));
13353 #endif
13354     ifp->if_snd.ifq_drv_maxlen = sc->tx_ring_size;
13355 
13356     IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
13357     IFQ_SET_READY(&ifp->if_snd);
13358 
13359     sc->ifnet = ifp;
13360 
13361     /* attach to the Ethernet interface list */
13362     ether_ifattach(ifp, sc->link_params.mac_addr);
13363 
13364     return (0);
13365 }
13366 
13367 static void
13368 bxe_deallocate_bars(struct bxe_softc *sc)
13369 {
13370     int i;
13371 
13372     for (i = 0; i < MAX_BARS; i++) {
13373         if (sc->bar[i].resource != NULL) {
13374             bus_release_resource(sc->dev,
13375                                  SYS_RES_MEMORY,
13376                                  sc->bar[i].rid,
13377                                  sc->bar[i].resource);
13378             BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
13379                   i, PCIR_BAR(i));
13380         }
13381     }
13382 }
13383 
13384 static int
13385 bxe_allocate_bars(struct bxe_softc *sc)
13386 {
13387     u_int flags;
13388     int i;
13389 
13390     memset(sc->bar, 0, sizeof(sc->bar));
13391 
13392     for (i = 0; i < MAX_BARS; i++) {
13393 
13394         /* memory resources reside at BARs 0, 2, 4 */
13395         /* Run `pciconf -lb` to see mappings */
13396         if ((i != 0) && (i != 2) && (i != 4)) {
13397             continue;
13398         }
13399 
13400         sc->bar[i].rid = PCIR_BAR(i);
13401 
13402         flags = RF_ACTIVE;
13403         if (i == 0) {
13404             flags |= RF_SHAREABLE;
13405         }
13406 
13407         if ((sc->bar[i].resource =
13408              bus_alloc_resource_any(sc->dev,
13409                                     SYS_RES_MEMORY,
13410                                     &sc->bar[i].rid,
13411                                     flags)) == NULL) {
13412 #if 0
13413             /* BAR4 doesn't exist for E1 */
13414             BLOGE(sc, "PCI BAR%d [%02x] memory allocation failed\n",
13415                   i, PCIR_BAR(i));
13416 #endif
13417             return (0);
13418         }
13419 
13420         sc->bar[i].tag    = rman_get_bustag(sc->bar[i].resource);
13421         sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
13422         sc->bar[i].kva    = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
13423 
13424         BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%ld) -> %p\n",
13425               i, PCIR_BAR(i),
13426               (void *)rman_get_start(sc->bar[i].resource),
13427               (void *)rman_get_end(sc->bar[i].resource),
13428               rman_get_size(sc->bar[i].resource),
13429               (void *)sc->bar[i].kva);
13430     }
13431 
13432     return (0);
13433 }
13434 
13435 static void
13436 bxe_get_function_num(struct bxe_softc *sc)
13437 {
13438     uint32_t val = 0;
13439 
13440     /*
13441      * Read the ME register to get the function number. The ME register
13442      * holds the relative-function number and absolute-function number. The
13443      * absolute-function number appears only in E2 and above. Before that
13444      * these bits always contained zero, therefore we cannot blindly use them.
13445      */
13446 
13447     val = REG_RD(sc, BAR_ME_REGISTER);
13448 
13449     sc->pfunc_rel =
13450         (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
13451     sc->path_id =
13452         (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
13453 
13454     if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13455         sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
13456     } else {
13457         sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
13458     }
13459 
13460     BLOGD(sc, DBG_LOAD,
13461           "Relative function %d, Absolute function %d, Path %d\n",
13462           sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
13463 }
13464 
13465 static uint32_t
13466 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
13467 {
13468     uint32_t shmem2_size;
13469     uint32_t offset;
13470     uint32_t mf_cfg_offset_value;
13471 
13472     /* Non 57712 */
13473     offset = (SHMEM_RD(sc, func_mb) +
13474               (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
13475 
13476     /* 57712 plus */
13477     if (sc->devinfo.shmem2_base != 0) {
13478         shmem2_size = SHMEM2_RD(sc, size);
13479         if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
13480             mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
13481             if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
13482                 offset = mf_cfg_offset_value;
13483             }
13484         }
13485     }
13486 
13487     return (offset);
13488 }
13489 
13490 static uint32_t
13491 bxe_pcie_capability_read(struct bxe_softc *sc,
13492                          int    reg,
13493                          int    width)
13494 {
13495     int pcie_reg;
13496 
13497     /* ensure PCIe capability is enabled */
13498     if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
13499         if (pcie_reg != 0) {
13500             BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
13501             return (pci_read_config(sc->dev, (pcie_reg + reg), width));
13502         }
13503     }
13504 
13505     BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
13506 
13507     return (0);
13508 }
13509 
13510 static uint8_t
13511 bxe_is_pcie_pending(struct bxe_softc *sc)
13512 {
13513     return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) &
13514             PCIM_EXP_STA_TRANSACTION_PND);
13515 }
13516 
13517 /*
13518  * Walk the PCI capabiites list for the device to find what features are
13519  * supported. These capabilites may be enabled/disabled by firmware so it's
13520  * best to walk the list rather than make assumptions.
13521  */
13522 static void
13523 bxe_probe_pci_caps(struct bxe_softc *sc)
13524 {
13525     uint16_t link_status;
13526     int reg;
13527 
13528     /* check if PCI Power Management is enabled */
13529     if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
13530         if (reg != 0) {
13531             BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
13532 
13533             sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
13534             sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
13535         }
13536     }
13537 
13538     link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2);
13539 
13540     /* handle PCIe 2.0 workarounds for 57710 */
13541     if (CHIP_IS_E1(sc)) {
13542         /* workaround for 57710 errata E4_57710_27462 */
13543         sc->devinfo.pcie_link_speed =
13544             (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
13545 
13546         /* workaround for 57710 errata E4_57710_27488 */
13547         sc->devinfo.pcie_link_width =
13548             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13549         if (sc->devinfo.pcie_link_speed > 1) {
13550             sc->devinfo.pcie_link_width =
13551                 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1;
13552         }
13553     } else {
13554         sc->devinfo.pcie_link_speed =
13555             (link_status & PCIM_LINK_STA_SPEED);
13556         sc->devinfo.pcie_link_width =
13557             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13558     }
13559 
13560     BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
13561           sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
13562 
13563     sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
13564     sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
13565 
13566     /* check if MSI capability is enabled */
13567     if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
13568         if (reg != 0) {
13569             BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
13570 
13571             sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
13572             sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
13573         }
13574     }
13575 
13576     /* check if MSI-X capability is enabled */
13577     if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
13578         if (reg != 0) {
13579             BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
13580 
13581             sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
13582             sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
13583         }
13584     }
13585 }
13586 
13587 static int
13588 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
13589 {
13590     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13591     uint32_t val;
13592 
13593     /* get the outer vlan if we're in switch-dependent mode */
13594 
13595     val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13596     mf_info->ext_id = (uint16_t)val;
13597 
13598     mf_info->multi_vnics_mode = 1;
13599 
13600     if (!VALID_OVLAN(mf_info->ext_id)) {
13601         BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
13602         return (1);
13603     }
13604 
13605     /* get the capabilities */
13606     if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13607         FUNC_MF_CFG_PROTOCOL_ISCSI) {
13608         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
13609     } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13610                FUNC_MF_CFG_PROTOCOL_FCOE) {
13611         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
13612     } else {
13613         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
13614     }
13615 
13616     mf_info->vnics_per_port =
13617         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13618 
13619     return (0);
13620 }
13621 
13622 static uint32_t
13623 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
13624 {
13625     uint32_t retval = 0;
13626     uint32_t val;
13627 
13628     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13629 
13630     if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
13631         if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
13632             retval |= MF_PROTO_SUPPORT_ETHERNET;
13633         }
13634         if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
13635             retval |= MF_PROTO_SUPPORT_ISCSI;
13636         }
13637         if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
13638             retval |= MF_PROTO_SUPPORT_FCOE;
13639         }
13640     }
13641 
13642     return (retval);
13643 }
13644 
13645 static int
13646 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
13647 {
13648     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13649     uint32_t val;
13650 
13651     /*
13652      * There is no outer vlan if we're in switch-independent mode.
13653      * If the mac is valid then assume multi-function.
13654      */
13655 
13656     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13657 
13658     mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
13659 
13660     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13661 
13662     mf_info->vnics_per_port =
13663         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13664 
13665     return (0);
13666 }
13667 
13668 static int
13669 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13670 {
13671     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13672     uint32_t e1hov_tag;
13673     uint32_t func_config;
13674     uint32_t niv_config;
13675 
13676     mf_info->multi_vnics_mode = 1;
13677 
13678     e1hov_tag   = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13679     func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13680     niv_config  = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13681 
13682     mf_info->ext_id =
13683         (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13684                    FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13685 
13686     mf_info->default_vlan =
13687         (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13688                    FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13689 
13690     mf_info->niv_allowed_priorities =
13691         (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13692                   FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13693 
13694     mf_info->niv_default_cos =
13695         (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13696                   FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13697 
13698     mf_info->afex_vlan_mode =
13699         ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13700          FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13701 
13702     mf_info->niv_mba_enabled =
13703         ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13704          FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13705 
13706     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13707 
13708     mf_info->vnics_per_port =
13709         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13710 
13711     return (0);
13712 }
13713 
13714 static int
13715 bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13716 {
13717     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13718     uint32_t mf_cfg1;
13719     uint32_t mf_cfg2;
13720     uint32_t ovlan1;
13721     uint32_t ovlan2;
13722     uint8_t i, j;
13723 
13724     BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13725           SC_PORT(sc));
13726     BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13727           mf_info->mf_config[SC_VN(sc)]);
13728     BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13729           mf_info->multi_vnics_mode);
13730     BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13731           mf_info->vnics_per_port);
13732     BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13733           mf_info->ext_id);
13734     BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13735           mf_info->min_bw[0], mf_info->min_bw[1],
13736           mf_info->min_bw[2], mf_info->min_bw[3]);
13737     BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13738           mf_info->max_bw[0], mf_info->max_bw[1],
13739           mf_info->max_bw[2], mf_info->max_bw[3]);
13740     BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13741           sc->mac_addr_str);
13742 
13743     /* various MF mode sanity checks... */
13744 
13745     if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13746         BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13747               SC_PORT(sc));
13748         return (1);
13749     }
13750 
13751     if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13752         BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13753               mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13754         return (1);
13755     }
13756 
13757     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13758         /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13759         if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13760             BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13761                   SC_VN(sc), OVLAN(sc));
13762             return (1);
13763         }
13764 
13765         if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13766             BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13767                   mf_info->multi_vnics_mode, OVLAN(sc));
13768             return (1);
13769         }
13770 
13771         /*
13772          * Verify all functions are either MF or SF mode. If MF, make sure
13773          * sure that all non-hidden functions have a valid ovlan. If SF,
13774          * make sure that all non-hidden functions have an invalid ovlan.
13775          */
13776         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13777             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13778             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13779             if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13780                 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13781                  ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13782                 BLOGE(sc, "mf_mode=SD function %d MF config "
13783                           "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13784                       i, mf_info->multi_vnics_mode, ovlan1);
13785                 return (1);
13786             }
13787         }
13788 
13789         /* Verify all funcs on the same port each have a different ovlan. */
13790         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13791             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13792             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13793             /* iterate from the next function on the port to the max func */
13794             for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13795                 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13796                 ovlan2  = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13797                 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13798                     VALID_OVLAN(ovlan1) &&
13799                     !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13800                     VALID_OVLAN(ovlan2) &&
13801                     (ovlan1 == ovlan2)) {
13802                     BLOGE(sc, "mf_mode=SD functions %d and %d "
13803                               "have the same ovlan (%d)\n",
13804                           i, j, ovlan1);
13805                     return (1);
13806                 }
13807             }
13808         }
13809     } /* MULTI_FUNCTION_SD */
13810 
13811     return (0);
13812 }
13813 
13814 static int
13815 bxe_get_mf_cfg_info(struct bxe_softc *sc)
13816 {
13817     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13818     uint32_t val, mac_upper;
13819     uint8_t i, vnic;
13820 
13821     /* initialize mf_info defaults */
13822     mf_info->vnics_per_port   = 1;
13823     mf_info->multi_vnics_mode = FALSE;
13824     mf_info->path_has_ovlan   = FALSE;
13825     mf_info->mf_mode          = SINGLE_FUNCTION;
13826 
13827     if (!CHIP_IS_MF_CAP(sc)) {
13828         return (0);
13829     }
13830 
13831     if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13832         BLOGE(sc, "Invalid mf_cfg_base!\n");
13833         return (1);
13834     }
13835 
13836     /* get the MF mode (switch dependent / independent / single-function) */
13837 
13838     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13839 
13840     switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13841     {
13842     case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13843 
13844         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13845 
13846         /* check for legal upper mac bytes */
13847         if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13848             mf_info->mf_mode = MULTI_FUNCTION_SI;
13849         } else {
13850             BLOGE(sc, "Invalid config for Switch Independent mode\n");
13851         }
13852 
13853         break;
13854 
13855     case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13856     case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13857 
13858         /* get outer vlan configuration */
13859         val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13860 
13861         if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13862             FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13863             mf_info->mf_mode = MULTI_FUNCTION_SD;
13864         } else {
13865             BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13866         }
13867 
13868         break;
13869 
13870     case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13871 
13872         /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13873         return (0);
13874 
13875     case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13876 
13877         /*
13878          * Mark MF mode as NIV if MCP version includes NPAR-SD support
13879          * and the MAC address is valid.
13880          */
13881         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13882 
13883         if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13884             (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13885             mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13886         } else {
13887             BLOGE(sc, "Invalid config for AFEX mode\n");
13888         }
13889 
13890         break;
13891 
13892     default:
13893 
13894         BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13895               (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13896 
13897         return (1);
13898     }
13899 
13900     /* set path mf_mode (which could be different than function mf_mode) */
13901     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13902         mf_info->path_has_ovlan = TRUE;
13903     } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13904         /*
13905          * Decide on path multi vnics mode. If we're not in MF mode and in
13906          * 4-port mode, this is good enough to check vnic-0 of the other port
13907          * on the same path
13908          */
13909         if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13910             uint8_t other_port = !(PORT_ID(sc) & 1);
13911             uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13912 
13913             val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13914 
13915             mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13916         }
13917     }
13918 
13919     if (mf_info->mf_mode == SINGLE_FUNCTION) {
13920         /* invalid MF config */
13921         if (SC_VN(sc) >= 1) {
13922             BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13923             return (1);
13924         }
13925 
13926         return (0);
13927     }
13928 
13929     /* get the MF configuration */
13930     mf_info->mf_config[SC_VN(sc)] =
13931         MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13932 
13933     switch(mf_info->mf_mode)
13934     {
13935     case MULTI_FUNCTION_SD:
13936 
13937         bxe_get_shmem_mf_cfg_info_sd(sc);
13938         break;
13939 
13940     case MULTI_FUNCTION_SI:
13941 
13942         bxe_get_shmem_mf_cfg_info_si(sc);
13943         break;
13944 
13945     case MULTI_FUNCTION_AFEX:
13946 
13947         bxe_get_shmem_mf_cfg_info_niv(sc);
13948         break;
13949 
13950     default:
13951 
13952         BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13953               mf_info->mf_mode);
13954         return (1);
13955     }
13956 
13957     /* get the congestion management parameters */
13958 
13959     vnic = 0;
13960     FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13961         /* get min/max bw */
13962         val = MFCFG_RD(sc, func_mf_config[i].config);
13963         mf_info->min_bw[vnic] =
13964             ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13965         mf_info->max_bw[vnic] =
13966             ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13967         vnic++;
13968     }
13969 
13970     return (bxe_check_valid_mf_cfg(sc));
13971 }
13972 
13973 static int
13974 bxe_get_shmem_info(struct bxe_softc *sc)
13975 {
13976     int port;
13977     uint32_t mac_hi, mac_lo, val;
13978 
13979     port = SC_PORT(sc);
13980     mac_hi = mac_lo = 0;
13981 
13982     sc->link_params.sc   = sc;
13983     sc->link_params.port = port;
13984 
13985     /* get the hardware config info */
13986     sc->devinfo.hw_config =
13987         SHMEM_RD(sc, dev_info.shared_hw_config.config);
13988     sc->devinfo.hw_config2 =
13989         SHMEM_RD(sc, dev_info.shared_hw_config.config2);
13990 
13991     sc->link_params.hw_led_mode =
13992         ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
13993          SHARED_HW_CFG_LED_MODE_SHIFT);
13994 
13995     /* get the port feature config */
13996     sc->port.config =
13997         SHMEM_RD(sc, dev_info.port_feature_config[port].config),
13998 
13999     /* get the link params */
14000     sc->link_params.speed_cap_mask[0] =
14001         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
14002     sc->link_params.speed_cap_mask[1] =
14003         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
14004 
14005     /* get the lane config */
14006     sc->link_params.lane_config =
14007         SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
14008 
14009     /* get the link config */
14010     val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
14011     sc->port.link_config[ELINK_INT_PHY] = val;
14012     sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
14013     sc->port.link_config[ELINK_EXT_PHY1] =
14014         SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
14015 
14016     /* get the override preemphasis flag and enable it or turn it off */
14017     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
14018     if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
14019         sc->link_params.feature_config_flags |=
14020             ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
14021     } else {
14022         sc->link_params.feature_config_flags &=
14023             ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
14024     }
14025 
14026     /* get the initial value of the link params */
14027     sc->link_params.multi_phy_config =
14028         SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
14029 
14030     /* get external phy info */
14031     sc->port.ext_phy_config =
14032         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
14033 
14034     /* get the multifunction configuration */
14035     bxe_get_mf_cfg_info(sc);
14036 
14037     /* get the mac address */
14038     if (IS_MF(sc)) {
14039         mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
14040         mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
14041     } else {
14042         mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
14043         mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
14044     }
14045 
14046     if ((mac_lo == 0) && (mac_hi == 0)) {
14047         *sc->mac_addr_str = 0;
14048         BLOGE(sc, "No Ethernet address programmed!\n");
14049     } else {
14050         sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
14051         sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
14052         sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
14053         sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
14054         sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
14055         sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
14056         snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
14057                  "%02x:%02x:%02x:%02x:%02x:%02x",
14058                  sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
14059                  sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
14060                  sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
14061         BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
14062     }
14063 
14064 #if 0
14065     if (!IS_MF(sc) &&
14066         ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14067          PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE)) {
14068         sc->flags |= BXE_NO_ISCSI;
14069     }
14070     if (!IS_MF(sc) &&
14071         ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14072          PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI)) {
14073         sc->flags |= BXE_NO_FCOE_FLAG;
14074     }
14075 #endif
14076 
14077     return (0);
14078 }
14079 
14080 static void
14081 bxe_get_tunable_params(struct bxe_softc *sc)
14082 {
14083     /* sanity checks */
14084 
14085     if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
14086         (bxe_interrupt_mode != INTR_MODE_MSI)  &&
14087         (bxe_interrupt_mode != INTR_MODE_MSIX)) {
14088         BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
14089         bxe_interrupt_mode = INTR_MODE_MSIX;
14090     }
14091 
14092     if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
14093         BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
14094         bxe_queue_count = 0;
14095     }
14096 
14097     if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
14098         if (bxe_max_rx_bufs == 0) {
14099             bxe_max_rx_bufs = RX_BD_USABLE;
14100         } else {
14101             BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
14102             bxe_max_rx_bufs = 2048;
14103         }
14104     }
14105 
14106     if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
14107         BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
14108         bxe_hc_rx_ticks = 25;
14109     }
14110 
14111     if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
14112         BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
14113         bxe_hc_tx_ticks = 50;
14114     }
14115 
14116     if (bxe_max_aggregation_size == 0) {
14117         bxe_max_aggregation_size = TPA_AGG_SIZE;
14118     }
14119 
14120     if (bxe_max_aggregation_size > 0xffff) {
14121         BLOGW(sc, "invalid max_aggregation_size (%d)\n",
14122               bxe_max_aggregation_size);
14123         bxe_max_aggregation_size = TPA_AGG_SIZE;
14124     }
14125 
14126     if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
14127         BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
14128         bxe_mrrs = -1;
14129     }
14130 
14131     if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
14132         BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
14133         bxe_autogreeen = 0;
14134     }
14135 
14136     if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
14137         BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
14138         bxe_udp_rss = 0;
14139     }
14140 
14141     /* pull in user settings */
14142 
14143     sc->interrupt_mode       = bxe_interrupt_mode;
14144     sc->max_rx_bufs          = bxe_max_rx_bufs;
14145     sc->hc_rx_ticks          = bxe_hc_rx_ticks;
14146     sc->hc_tx_ticks          = bxe_hc_tx_ticks;
14147     sc->max_aggregation_size = bxe_max_aggregation_size;
14148     sc->mrrs                 = bxe_mrrs;
14149     sc->autogreeen           = bxe_autogreeen;
14150     sc->udp_rss              = bxe_udp_rss;
14151 
14152     if (bxe_interrupt_mode == INTR_MODE_INTX) {
14153         sc->num_queues = 1;
14154     } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
14155         sc->num_queues =
14156             min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
14157                 MAX_RSS_CHAINS);
14158         if (sc->num_queues > mp_ncpus) {
14159             sc->num_queues = mp_ncpus;
14160         }
14161     }
14162 
14163     BLOGD(sc, DBG_LOAD,
14164           "User Config: "
14165           "debug=0x%lx "
14166           "interrupt_mode=%d "
14167           "queue_count=%d "
14168           "hc_rx_ticks=%d "
14169           "hc_tx_ticks=%d "
14170           "rx_budget=%d "
14171           "max_aggregation_size=%d "
14172           "mrrs=%d "
14173           "autogreeen=%d "
14174           "udp_rss=%d\n",
14175           bxe_debug,
14176           sc->interrupt_mode,
14177           sc->num_queues,
14178           sc->hc_rx_ticks,
14179           sc->hc_tx_ticks,
14180           bxe_rx_budget,
14181           sc->max_aggregation_size,
14182           sc->mrrs,
14183           sc->autogreeen,
14184           sc->udp_rss);
14185 }
14186 
14187 static void
14188 bxe_media_detect(struct bxe_softc *sc)
14189 {
14190     uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
14191     switch (sc->link_params.phy[phy_idx].media_type) {
14192     case ELINK_ETH_PHY_SFPP_10G_FIBER:
14193     case ELINK_ETH_PHY_XFP_FIBER:
14194         BLOGI(sc, "Found 10Gb Fiber media.\n");
14195         sc->media = IFM_10G_SR;
14196         break;
14197     case ELINK_ETH_PHY_SFP_1G_FIBER:
14198         BLOGI(sc, "Found 1Gb Fiber media.\n");
14199         sc->media = IFM_1000_SX;
14200         break;
14201     case ELINK_ETH_PHY_KR:
14202     case ELINK_ETH_PHY_CX4:
14203         BLOGI(sc, "Found 10GBase-CX4 media.\n");
14204         sc->media = IFM_10G_CX4;
14205         break;
14206     case ELINK_ETH_PHY_DA_TWINAX:
14207         BLOGI(sc, "Found 10Gb Twinax media.\n");
14208         sc->media = IFM_10G_TWINAX;
14209         break;
14210     case ELINK_ETH_PHY_BASE_T:
14211         if (sc->link_params.speed_cap_mask[0] &
14212             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
14213             BLOGI(sc, "Found 10GBase-T media.\n");
14214             sc->media = IFM_10G_T;
14215         } else {
14216             BLOGI(sc, "Found 1000Base-T media.\n");
14217             sc->media = IFM_1000_T;
14218         }
14219         break;
14220     case ELINK_ETH_PHY_NOT_PRESENT:
14221         BLOGI(sc, "Media not present.\n");
14222         sc->media = 0;
14223         break;
14224     case ELINK_ETH_PHY_UNSPECIFIED:
14225     default:
14226         BLOGI(sc, "Unknown media!\n");
14227         sc->media = 0;
14228         break;
14229     }
14230 }
14231 
14232 #define GET_FIELD(value, fname)                     \
14233     (((value) & (fname##_MASK)) >> (fname##_SHIFT))
14234 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
14235 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
14236 
14237 static int
14238 bxe_get_igu_cam_info(struct bxe_softc *sc)
14239 {
14240     int pfid = SC_FUNC(sc);
14241     int igu_sb_id;
14242     uint32_t val;
14243     uint8_t fid, igu_sb_cnt = 0;
14244 
14245     sc->igu_base_sb = 0xff;
14246 
14247     if (CHIP_INT_MODE_IS_BC(sc)) {
14248         int vn = SC_VN(sc);
14249         igu_sb_cnt = sc->igu_sb_cnt;
14250         sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
14251                            FP_SB_MAX_E1x);
14252         sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
14253                           (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
14254         return (0);
14255     }
14256 
14257     /* IGU in normal mode - read CAM */
14258     for (igu_sb_id = 0;
14259          igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
14260          igu_sb_id++) {
14261         val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
14262         if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
14263             continue;
14264         }
14265         fid = IGU_FID(val);
14266         if ((fid & IGU_FID_ENCODE_IS_PF)) {
14267             if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
14268                 continue;
14269             }
14270             if (IGU_VEC(val) == 0) {
14271                 /* default status block */
14272                 sc->igu_dsb_id = igu_sb_id;
14273             } else {
14274                 if (sc->igu_base_sb == 0xff) {
14275                     sc->igu_base_sb = igu_sb_id;
14276                 }
14277                 igu_sb_cnt++;
14278             }
14279         }
14280     }
14281 
14282     /*
14283      * Due to new PF resource allocation by MFW T7.4 and above, it's optional
14284      * that number of CAM entries will not be equal to the value advertised in
14285      * PCI. Driver should use the minimal value of both as the actual status
14286      * block count
14287      */
14288     sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
14289 
14290     if (igu_sb_cnt == 0) {
14291         BLOGE(sc, "CAM configuration error\n");
14292         return (-1);
14293     }
14294 
14295     return (0);
14296 }
14297 
14298 /*
14299  * Gather various information from the device config space, the device itself,
14300  * shmem, and the user input.
14301  */
14302 static int
14303 bxe_get_device_info(struct bxe_softc *sc)
14304 {
14305     uint32_t val;
14306     int rc;
14307 
14308     /* Get the data for the device */
14309     sc->devinfo.vendor_id    = pci_get_vendor(sc->dev);
14310     sc->devinfo.device_id    = pci_get_device(sc->dev);
14311     sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
14312     sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
14313 
14314     /* get the chip revision (chip metal comes from pci config space) */
14315     sc->devinfo.chip_id     =
14316     sc->link_params.chip_id =
14317         (((REG_RD(sc, MISC_REG_CHIP_NUM)                   & 0xffff) << 16) |
14318          ((REG_RD(sc, MISC_REG_CHIP_REV)                   & 0xf)    << 12) |
14319          (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf)    << 4)  |
14320          ((REG_RD(sc, MISC_REG_BOND_ID)                    & 0xf)    << 0));
14321 
14322     /* force 57811 according to MISC register */
14323     if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
14324         if (CHIP_IS_57810(sc)) {
14325             sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
14326                                    (sc->devinfo.chip_id & 0x0000ffff));
14327         } else if (CHIP_IS_57810_MF(sc)) {
14328             sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
14329                                    (sc->devinfo.chip_id & 0x0000ffff));
14330         }
14331         sc->devinfo.chip_id |= 0x1;
14332     }
14333 
14334     BLOGD(sc, DBG_LOAD,
14335           "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
14336           sc->devinfo.chip_id,
14337           ((sc->devinfo.chip_id >> 16) & 0xffff),
14338           ((sc->devinfo.chip_id >> 12) & 0xf),
14339           ((sc->devinfo.chip_id >>  4) & 0xff),
14340           ((sc->devinfo.chip_id >>  0) & 0xf));
14341 
14342     val = (REG_RD(sc, 0x2874) & 0x55);
14343     if ((sc->devinfo.chip_id & 0x1) ||
14344         (CHIP_IS_E1(sc) && val) ||
14345         (CHIP_IS_E1H(sc) && (val == 0x55))) {
14346         sc->flags |= BXE_ONE_PORT_FLAG;
14347         BLOGD(sc, DBG_LOAD, "single port device\n");
14348     }
14349 
14350     /* set the doorbell size */
14351     sc->doorbell_size = (1 << BXE_DB_SHIFT);
14352 
14353     /* determine whether the device is in 2 port or 4 port mode */
14354     sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
14355     if (CHIP_IS_E2E3(sc)) {
14356         /*
14357          * Read port4mode_en_ovwr[0]:
14358          *   If 1, four port mode is in port4mode_en_ovwr[1].
14359          *   If 0, four port mode is in port4mode_en[0].
14360          */
14361         val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
14362         if (val & 1) {
14363             val = ((val >> 1) & 1);
14364         } else {
14365             val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
14366         }
14367 
14368         sc->devinfo.chip_port_mode =
14369             (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
14370 
14371         BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
14372     }
14373 
14374     /* get the function and path info for the device */
14375     bxe_get_function_num(sc);
14376 
14377     /* get the shared memory base address */
14378     sc->devinfo.shmem_base     =
14379     sc->link_params.shmem_base =
14380         REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
14381     sc->devinfo.shmem2_base =
14382         REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
14383                                   MISC_REG_GENERIC_CR_0));
14384 
14385     BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
14386           sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
14387 
14388     if (!sc->devinfo.shmem_base) {
14389         /* this should ONLY prevent upcoming shmem reads */
14390         BLOGI(sc, "MCP not active\n");
14391         sc->flags |= BXE_NO_MCP_FLAG;
14392         return (0);
14393     }
14394 
14395     /* make sure the shared memory contents are valid */
14396     val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
14397     if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
14398         (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
14399         BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
14400         return (0);
14401     }
14402     BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
14403 
14404     /* get the bootcode version */
14405     sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
14406     snprintf(sc->devinfo.bc_ver_str,
14407              sizeof(sc->devinfo.bc_ver_str),
14408              "%d.%d.%d",
14409              ((sc->devinfo.bc_ver >> 24) & 0xff),
14410              ((sc->devinfo.bc_ver >> 16) & 0xff),
14411              ((sc->devinfo.bc_ver >>  8) & 0xff));
14412     BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
14413 
14414     /* get the bootcode shmem address */
14415     sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
14416     BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
14417 
14418     /* clean indirect addresses as they're not used */
14419     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
14420     if (IS_PF(sc)) {
14421         REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
14422         REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
14423         REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
14424         REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
14425         if (CHIP_IS_E1x(sc)) {
14426             REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
14427             REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
14428             REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
14429             REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
14430         }
14431 
14432         /*
14433          * Enable internal target-read (in case we are probed after PF
14434          * FLR). Must be done prior to any BAR read access. Only for
14435          * 57712 and up
14436          */
14437         if (!CHIP_IS_E1x(sc)) {
14438             REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
14439         }
14440     }
14441 
14442     /* get the nvram size */
14443     val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
14444     sc->devinfo.flash_size =
14445         (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
14446     BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
14447 
14448     /* get PCI capabilites */
14449     bxe_probe_pci_caps(sc);
14450 
14451     bxe_set_power_state(sc, PCI_PM_D0);
14452 
14453     /* get various configuration parameters from shmem */
14454     bxe_get_shmem_info(sc);
14455 
14456     if (sc->devinfo.pcie_msix_cap_reg != 0) {
14457         val = pci_read_config(sc->dev,
14458                               (sc->devinfo.pcie_msix_cap_reg +
14459                                PCIR_MSIX_CTRL),
14460                               2);
14461         sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
14462     } else {
14463         sc->igu_sb_cnt = 1;
14464     }
14465 
14466     sc->igu_base_addr = BAR_IGU_INTMEM;
14467 
14468     /* initialize IGU parameters */
14469     if (CHIP_IS_E1x(sc)) {
14470         sc->devinfo.int_block = INT_BLOCK_HC;
14471         sc->igu_dsb_id = DEF_SB_IGU_ID;
14472         sc->igu_base_sb = 0;
14473     } else {
14474         sc->devinfo.int_block = INT_BLOCK_IGU;
14475 
14476         /* do not allow device reset during IGU info preocessing */
14477         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14478 
14479         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
14480 
14481         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14482             int tout = 5000;
14483 
14484             BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
14485 
14486             val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
14487             REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
14488             REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
14489 
14490             while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14491                 tout--;
14492                 DELAY(1000);
14493             }
14494 
14495             if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14496                 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
14497                 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14498                 return (-1);
14499             }
14500         }
14501 
14502         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14503             BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
14504             sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
14505         } else {
14506             BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
14507         }
14508 
14509         rc = bxe_get_igu_cam_info(sc);
14510 
14511         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14512 
14513         if (rc) {
14514             return (rc);
14515         }
14516     }
14517 
14518     /*
14519      * Get base FW non-default (fast path) status block ID. This value is
14520      * used to initialize the fw_sb_id saved on the fp/queue structure to
14521      * determine the id used by the FW.
14522      */
14523     if (CHIP_IS_E1x(sc)) {
14524         sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
14525     } else {
14526         /*
14527          * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
14528          * the same queue are indicated on the same IGU SB). So we prefer
14529          * FW and IGU SBs to be the same value.
14530          */
14531         sc->base_fw_ndsb = sc->igu_base_sb;
14532     }
14533 
14534     BLOGD(sc, DBG_LOAD,
14535           "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
14536           sc->igu_dsb_id, sc->igu_base_sb,
14537           sc->igu_sb_cnt, sc->base_fw_ndsb);
14538 
14539     elink_phy_probe(&sc->link_params);
14540 
14541     return (0);
14542 }
14543 
14544 static void
14545 bxe_link_settings_supported(struct bxe_softc *sc,
14546                             uint32_t         switch_cfg)
14547 {
14548     uint32_t cfg_size = 0;
14549     uint32_t idx;
14550     uint8_t port = SC_PORT(sc);
14551 
14552     /* aggregation of supported attributes of all external phys */
14553     sc->port.supported[0] = 0;
14554     sc->port.supported[1] = 0;
14555 
14556     switch (sc->link_params.num_phys) {
14557     case 1:
14558         sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
14559         cfg_size = 1;
14560         break;
14561     case 2:
14562         sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
14563         cfg_size = 1;
14564         break;
14565     case 3:
14566         if (sc->link_params.multi_phy_config &
14567             PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
14568             sc->port.supported[1] =
14569                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
14570             sc->port.supported[0] =
14571                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
14572         } else {
14573             sc->port.supported[0] =
14574                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
14575             sc->port.supported[1] =
14576                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
14577         }
14578         cfg_size = 2;
14579         break;
14580     }
14581 
14582     if (!(sc->port.supported[0] || sc->port.supported[1])) {
14583         BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
14584               SHMEM_RD(sc,
14585                        dev_info.port_hw_config[port].external_phy_config),
14586               SHMEM_RD(sc,
14587                        dev_info.port_hw_config[port].external_phy_config2));
14588         return;
14589     }
14590 
14591     if (CHIP_IS_E3(sc))
14592         sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
14593     else {
14594         switch (switch_cfg) {
14595         case ELINK_SWITCH_CFG_1G:
14596             sc->port.phy_addr =
14597                 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
14598             break;
14599         case ELINK_SWITCH_CFG_10G:
14600             sc->port.phy_addr =
14601                 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
14602             break;
14603         default:
14604             BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
14605                   sc->port.link_config[0]);
14606             return;
14607         }
14608     }
14609 
14610     BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
14611 
14612     /* mask what we support according to speed_cap_mask per configuration */
14613     for (idx = 0; idx < cfg_size; idx++) {
14614         if (!(sc->link_params.speed_cap_mask[idx] &
14615               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
14616             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
14617         }
14618 
14619         if (!(sc->link_params.speed_cap_mask[idx] &
14620               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
14621             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
14622         }
14623 
14624         if (!(sc->link_params.speed_cap_mask[idx] &
14625               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
14626             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
14627         }
14628 
14629         if (!(sc->link_params.speed_cap_mask[idx] &
14630               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
14631             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
14632         }
14633 
14634         if (!(sc->link_params.speed_cap_mask[idx] &
14635               PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
14636             sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
14637         }
14638 
14639         if (!(sc->link_params.speed_cap_mask[idx] &
14640               PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
14641             sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
14642         }
14643 
14644         if (!(sc->link_params.speed_cap_mask[idx] &
14645               PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
14646             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
14647         }
14648 
14649         if (!(sc->link_params.speed_cap_mask[idx] &
14650               PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
14651             sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
14652         }
14653     }
14654 
14655     BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
14656           sc->port.supported[0], sc->port.supported[1]);
14657 }
14658 
14659 static void
14660 bxe_link_settings_requested(struct bxe_softc *sc)
14661 {
14662     uint32_t link_config;
14663     uint32_t idx;
14664     uint32_t cfg_size = 0;
14665 
14666     sc->port.advertising[0] = 0;
14667     sc->port.advertising[1] = 0;
14668 
14669     switch (sc->link_params.num_phys) {
14670     case 1:
14671     case 2:
14672         cfg_size = 1;
14673         break;
14674     case 3:
14675         cfg_size = 2;
14676         break;
14677     }
14678 
14679     for (idx = 0; idx < cfg_size; idx++) {
14680         sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14681         link_config = sc->port.link_config[idx];
14682 
14683         switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14684         case PORT_FEATURE_LINK_SPEED_AUTO:
14685             if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14686                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14687                 sc->port.advertising[idx] |= sc->port.supported[idx];
14688                 if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14689                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14690                     sc->port.advertising[idx] |=
14691                         (ELINK_SUPPORTED_100baseT_Half |
14692                          ELINK_SUPPORTED_100baseT_Full);
14693             } else {
14694                 /* force 10G, no AN */
14695                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14696                 sc->port.advertising[idx] |=
14697                     (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14698                 continue;
14699             }
14700             break;
14701 
14702         case PORT_FEATURE_LINK_SPEED_10M_FULL:
14703             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14704                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14705                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14706                                               ADVERTISED_TP);
14707             } else {
14708                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14709                           "speed_cap_mask=0x%08x\n",
14710                       link_config, sc->link_params.speed_cap_mask[idx]);
14711                 return;
14712             }
14713             break;
14714 
14715         case PORT_FEATURE_LINK_SPEED_10M_HALF:
14716             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14717                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14718                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14719                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14720                                               ADVERTISED_TP);
14721             } else {
14722                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14723                           "speed_cap_mask=0x%08x\n",
14724                       link_config, sc->link_params.speed_cap_mask[idx]);
14725                 return;
14726             }
14727             break;
14728 
14729         case PORT_FEATURE_LINK_SPEED_100M_FULL:
14730             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14731                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14732                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14733                                               ADVERTISED_TP);
14734             } else {
14735                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14736                           "speed_cap_mask=0x%08x\n",
14737                       link_config, sc->link_params.speed_cap_mask[idx]);
14738                 return;
14739             }
14740             break;
14741 
14742         case PORT_FEATURE_LINK_SPEED_100M_HALF:
14743             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14744                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14745                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14746                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14747                                               ADVERTISED_TP);
14748             } else {
14749                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14750                           "speed_cap_mask=0x%08x\n",
14751                       link_config, sc->link_params.speed_cap_mask[idx]);
14752                 return;
14753             }
14754             break;
14755 
14756         case PORT_FEATURE_LINK_SPEED_1G:
14757             if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14758                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14759                 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14760                                               ADVERTISED_TP);
14761             } else {
14762                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14763                           "speed_cap_mask=0x%08x\n",
14764                       link_config, sc->link_params.speed_cap_mask[idx]);
14765                 return;
14766             }
14767             break;
14768 
14769         case PORT_FEATURE_LINK_SPEED_2_5G:
14770             if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14771                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14772                 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14773                                               ADVERTISED_TP);
14774             } else {
14775                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14776                           "speed_cap_mask=0x%08x\n",
14777                       link_config, sc->link_params.speed_cap_mask[idx]);
14778                 return;
14779             }
14780             break;
14781 
14782         case PORT_FEATURE_LINK_SPEED_10G_CX4:
14783             if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14784                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14785                 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14786                                               ADVERTISED_FIBRE);
14787             } else {
14788                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14789                           "speed_cap_mask=0x%08x\n",
14790                       link_config, sc->link_params.speed_cap_mask[idx]);
14791                 return;
14792             }
14793             break;
14794 
14795         case PORT_FEATURE_LINK_SPEED_20G:
14796             sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14797             break;
14798 
14799         default:
14800             BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14801                       "speed_cap_mask=0x%08x\n",
14802                   link_config, sc->link_params.speed_cap_mask[idx]);
14803             sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14804             sc->port.advertising[idx] = sc->port.supported[idx];
14805             break;
14806         }
14807 
14808         sc->link_params.req_flow_ctrl[idx] =
14809             (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14810 
14811         if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14812             if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14813                 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14814             } else {
14815                 bxe_set_requested_fc(sc);
14816             }
14817         }
14818 
14819         BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14820                             "req_flow_ctrl=0x%x advertising=0x%x\n",
14821               sc->link_params.req_line_speed[idx],
14822               sc->link_params.req_duplex[idx],
14823               sc->link_params.req_flow_ctrl[idx],
14824               sc->port.advertising[idx]);
14825     }
14826 }
14827 
14828 static void
14829 bxe_get_phy_info(struct bxe_softc *sc)
14830 {
14831     uint8_t port = SC_PORT(sc);
14832     uint32_t config = sc->port.config;
14833     uint32_t eee_mode;
14834 
14835     /* shmem data already read in bxe_get_shmem_info() */
14836 
14837     BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14838                         "link_config0=0x%08x\n",
14839                sc->link_params.lane_config,
14840                sc->link_params.speed_cap_mask[0],
14841                sc->port.link_config[0]);
14842 
14843     bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14844     bxe_link_settings_requested(sc);
14845 
14846     if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14847         sc->link_params.feature_config_flags |=
14848             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14849     } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14850         sc->link_params.feature_config_flags &=
14851             ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14852     } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14853         sc->link_params.feature_config_flags |=
14854             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14855     }
14856 
14857     /* configure link feature according to nvram value */
14858     eee_mode =
14859         (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14860           PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14861          PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14862     if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14863         sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14864                                     ELINK_EEE_MODE_ENABLE_LPI |
14865                                     ELINK_EEE_MODE_OUTPUT_TIME);
14866     } else {
14867         sc->link_params.eee_mode = 0;
14868     }
14869 
14870     /* get the media type */
14871     bxe_media_detect(sc);
14872 }
14873 
14874 static void
14875 bxe_get_params(struct bxe_softc *sc)
14876 {
14877     /* get user tunable params */
14878     bxe_get_tunable_params(sc);
14879 
14880     /* select the RX and TX ring sizes */
14881     sc->tx_ring_size = TX_BD_USABLE;
14882     sc->rx_ring_size = RX_BD_USABLE;
14883 
14884     /* XXX disable WoL */
14885     sc->wol = 0;
14886 }
14887 
14888 static void
14889 bxe_set_modes_bitmap(struct bxe_softc *sc)
14890 {
14891     uint32_t flags = 0;
14892 
14893     if (CHIP_REV_IS_FPGA(sc)) {
14894         SET_FLAGS(flags, MODE_FPGA);
14895     } else if (CHIP_REV_IS_EMUL(sc)) {
14896         SET_FLAGS(flags, MODE_EMUL);
14897     } else {
14898         SET_FLAGS(flags, MODE_ASIC);
14899     }
14900 
14901     if (CHIP_IS_MODE_4_PORT(sc)) {
14902         SET_FLAGS(flags, MODE_PORT4);
14903     } else {
14904         SET_FLAGS(flags, MODE_PORT2);
14905     }
14906 
14907     if (CHIP_IS_E2(sc)) {
14908         SET_FLAGS(flags, MODE_E2);
14909     } else if (CHIP_IS_E3(sc)) {
14910         SET_FLAGS(flags, MODE_E3);
14911         if (CHIP_REV(sc) == CHIP_REV_Ax) {
14912             SET_FLAGS(flags, MODE_E3_A0);
14913         } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14914             SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14915         }
14916     }
14917 
14918     if (IS_MF(sc)) {
14919         SET_FLAGS(flags, MODE_MF);
14920         switch (sc->devinfo.mf_info.mf_mode) {
14921         case MULTI_FUNCTION_SD:
14922             SET_FLAGS(flags, MODE_MF_SD);
14923             break;
14924         case MULTI_FUNCTION_SI:
14925             SET_FLAGS(flags, MODE_MF_SI);
14926             break;
14927         case MULTI_FUNCTION_AFEX:
14928             SET_FLAGS(flags, MODE_MF_AFEX);
14929             break;
14930         }
14931     } else {
14932         SET_FLAGS(flags, MODE_SF);
14933     }
14934 
14935 #if defined(__LITTLE_ENDIAN)
14936     SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14937 #else /* __BIG_ENDIAN */
14938     SET_FLAGS(flags, MODE_BIG_ENDIAN);
14939 #endif
14940 
14941     INIT_MODE_FLAGS(sc) = flags;
14942 }
14943 
14944 static int
14945 bxe_alloc_hsi_mem(struct bxe_softc *sc)
14946 {
14947     struct bxe_fastpath *fp;
14948     bus_addr_t busaddr;
14949     int max_agg_queues;
14950     int max_segments;
14951     bus_size_t max_size;
14952     bus_size_t max_seg_size;
14953     char buf[32];
14954     int rc;
14955     int i, j;
14956 
14957     /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14958 
14959     /* allocate the parent bus DMA tag */
14960     rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14961                             1,                        /* alignment */
14962                             0,                        /* boundary limit */
14963                             BUS_SPACE_MAXADDR,        /* restricted low */
14964                             BUS_SPACE_MAXADDR,        /* restricted hi */
14965                             NULL,                     /* addr filter() */
14966                             NULL,                     /* addr filter() arg */
14967                             BUS_SPACE_MAXSIZE_32BIT,  /* max map size */
14968                             BUS_SPACE_UNRESTRICTED,   /* num discontinuous */
14969                             BUS_SPACE_MAXSIZE_32BIT,  /* max seg size */
14970                             0,                        /* flags */
14971                             NULL,                     /* lock() */
14972                             NULL,                     /* lock() arg */
14973                             &sc->parent_dma_tag);     /* returned dma tag */
14974     if (rc != 0) {
14975         BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14976         return (1);
14977     }
14978 
14979     /************************/
14980     /* DEFAULT STATUS BLOCK */
14981     /************************/
14982 
14983     if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14984                       &sc->def_sb_dma, "default status block") != 0) {
14985         /* XXX */
14986         bus_dma_tag_destroy(sc->parent_dma_tag);
14987         return (1);
14988     }
14989 
14990     sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
14991 
14992     /***************/
14993     /* EVENT QUEUE */
14994     /***************/
14995 
14996     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14997                       &sc->eq_dma, "event queue") != 0) {
14998         /* XXX */
14999         bxe_dma_free(sc, &sc->def_sb_dma);
15000         sc->def_sb = NULL;
15001         bus_dma_tag_destroy(sc->parent_dma_tag);
15002         return (1);
15003     }
15004 
15005     sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
15006 
15007     /*************/
15008     /* SLOW PATH */
15009     /*************/
15010 
15011     if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
15012                       &sc->sp_dma, "slow path") != 0) {
15013         /* XXX */
15014         bxe_dma_free(sc, &sc->eq_dma);
15015         sc->eq = NULL;
15016         bxe_dma_free(sc, &sc->def_sb_dma);
15017         sc->def_sb = NULL;
15018         bus_dma_tag_destroy(sc->parent_dma_tag);
15019         return (1);
15020     }
15021 
15022     sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
15023 
15024     /*******************/
15025     /* SLOW PATH QUEUE */
15026     /*******************/
15027 
15028     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
15029                       &sc->spq_dma, "slow path queue") != 0) {
15030         /* XXX */
15031         bxe_dma_free(sc, &sc->sp_dma);
15032         sc->sp = NULL;
15033         bxe_dma_free(sc, &sc->eq_dma);
15034         sc->eq = NULL;
15035         bxe_dma_free(sc, &sc->def_sb_dma);
15036         sc->def_sb = NULL;
15037         bus_dma_tag_destroy(sc->parent_dma_tag);
15038         return (1);
15039     }
15040 
15041     sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
15042 
15043     /***************************/
15044     /* FW DECOMPRESSION BUFFER */
15045     /***************************/
15046 
15047     if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
15048                       "fw decompression buffer") != 0) {
15049         /* XXX */
15050         bxe_dma_free(sc, &sc->spq_dma);
15051         sc->spq = NULL;
15052         bxe_dma_free(sc, &sc->sp_dma);
15053         sc->sp = NULL;
15054         bxe_dma_free(sc, &sc->eq_dma);
15055         sc->eq = NULL;
15056         bxe_dma_free(sc, &sc->def_sb_dma);
15057         sc->def_sb = NULL;
15058         bus_dma_tag_destroy(sc->parent_dma_tag);
15059         return (1);
15060     }
15061 
15062     sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
15063 
15064     if ((sc->gz_strm =
15065          malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
15066         /* XXX */
15067         bxe_dma_free(sc, &sc->gz_buf_dma);
15068         sc->gz_buf = NULL;
15069         bxe_dma_free(sc, &sc->spq_dma);
15070         sc->spq = NULL;
15071         bxe_dma_free(sc, &sc->sp_dma);
15072         sc->sp = NULL;
15073         bxe_dma_free(sc, &sc->eq_dma);
15074         sc->eq = NULL;
15075         bxe_dma_free(sc, &sc->def_sb_dma);
15076         sc->def_sb = NULL;
15077         bus_dma_tag_destroy(sc->parent_dma_tag);
15078         return (1);
15079     }
15080 
15081     /*************/
15082     /* FASTPATHS */
15083     /*************/
15084 
15085     /* allocate DMA memory for each fastpath structure */
15086     for (i = 0; i < sc->num_queues; i++) {
15087         fp = &sc->fp[i];
15088         fp->sc    = sc;
15089         fp->index = i;
15090 
15091         /*******************/
15092         /* FP STATUS BLOCK */
15093         /*******************/
15094 
15095         snprintf(buf, sizeof(buf), "fp %d status block", i);
15096         if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
15097                           &fp->sb_dma, buf) != 0) {
15098             /* XXX unwind and free previous fastpath allocations */
15099             BLOGE(sc, "Failed to alloc %s\n", buf);
15100             return (1);
15101         } else {
15102             if (CHIP_IS_E2E3(sc)) {
15103                 fp->status_block.e2_sb =
15104                     (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
15105             } else {
15106                 fp->status_block.e1x_sb =
15107                     (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
15108             }
15109         }
15110 
15111         /******************/
15112         /* FP TX BD CHAIN */
15113         /******************/
15114 
15115         snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
15116         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
15117                           &fp->tx_dma, buf) != 0) {
15118             /* XXX unwind and free previous fastpath allocations */
15119             BLOGE(sc, "Failed to alloc %s\n", buf);
15120             return (1);
15121         } else {
15122             fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
15123         }
15124 
15125         /* link together the tx bd chain pages */
15126         for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
15127             /* index into the tx bd chain array to last entry per page */
15128             struct eth_tx_next_bd *tx_next_bd =
15129                 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
15130             /* point to the next page and wrap from last page */
15131             busaddr = (fp->tx_dma.paddr +
15132                        (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
15133             tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
15134             tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
15135         }
15136 
15137         /******************/
15138         /* FP RX BD CHAIN */
15139         /******************/
15140 
15141         snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
15142         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
15143                           &fp->rx_dma, buf) != 0) {
15144             /* XXX unwind and free previous fastpath allocations */
15145             BLOGE(sc, "Failed to alloc %s\n", buf);
15146             return (1);
15147         } else {
15148             fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
15149         }
15150 
15151         /* link together the rx bd chain pages */
15152         for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
15153             /* index into the rx bd chain array to last entry per page */
15154             struct eth_rx_bd *rx_bd =
15155                 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
15156             /* point to the next page and wrap from last page */
15157             busaddr = (fp->rx_dma.paddr +
15158                        (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
15159             rx_bd->addr_hi = htole32(U64_HI(busaddr));
15160             rx_bd->addr_lo = htole32(U64_LO(busaddr));
15161         }
15162 
15163         /*******************/
15164         /* FP RX RCQ CHAIN */
15165         /*******************/
15166 
15167         snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
15168         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
15169                           &fp->rcq_dma, buf) != 0) {
15170             /* XXX unwind and free previous fastpath allocations */
15171             BLOGE(sc, "Failed to alloc %s\n", buf);
15172             return (1);
15173         } else {
15174             fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
15175         }
15176 
15177         /* link together the rcq chain pages */
15178         for (j = 1; j <= RCQ_NUM_PAGES; j++) {
15179             /* index into the rcq chain array to last entry per page */
15180             struct eth_rx_cqe_next_page *rx_cqe_next =
15181                 (struct eth_rx_cqe_next_page *)
15182                 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
15183             /* point to the next page and wrap from last page */
15184             busaddr = (fp->rcq_dma.paddr +
15185                        (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
15186             rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
15187             rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
15188         }
15189 
15190         /*******************/
15191         /* FP RX SGE CHAIN */
15192         /*******************/
15193 
15194         snprintf(buf, sizeof(buf), "fp %d sge chain", i);
15195         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
15196                           &fp->rx_sge_dma, buf) != 0) {
15197             /* XXX unwind and free previous fastpath allocations */
15198             BLOGE(sc, "Failed to alloc %s\n", buf);
15199             return (1);
15200         } else {
15201             fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
15202         }
15203 
15204         /* link together the sge chain pages */
15205         for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
15206             /* index into the rcq chain array to last entry per page */
15207             struct eth_rx_sge *rx_sge =
15208                 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
15209             /* point to the next page and wrap from last page */
15210             busaddr = (fp->rx_sge_dma.paddr +
15211                        (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
15212             rx_sge->addr_hi = htole32(U64_HI(busaddr));
15213             rx_sge->addr_lo = htole32(U64_LO(busaddr));
15214         }
15215 
15216         /***********************/
15217         /* FP TX MBUF DMA MAPS */
15218         /***********************/
15219 
15220         /* set required sizes before mapping to conserve resources */
15221         if (sc->ifnet->if_capenable & (IFCAP_TSO4 | IFCAP_TSO6)) {
15222             max_size     = BXE_TSO_MAX_SIZE;
15223             max_segments = BXE_TSO_MAX_SEGMENTS;
15224             max_seg_size = BXE_TSO_MAX_SEG_SIZE;
15225         } else {
15226             max_size     = (MCLBYTES * BXE_MAX_SEGMENTS);
15227             max_segments = BXE_MAX_SEGMENTS;
15228             max_seg_size = MCLBYTES;
15229         }
15230 
15231         /* create a dma tag for the tx mbufs */
15232         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15233                                 1,                  /* alignment */
15234                                 0,                  /* boundary limit */
15235                                 BUS_SPACE_MAXADDR,  /* restricted low */
15236                                 BUS_SPACE_MAXADDR,  /* restricted hi */
15237                                 NULL,               /* addr filter() */
15238                                 NULL,               /* addr filter() arg */
15239                                 max_size,           /* max map size */
15240                                 max_segments,       /* num discontinuous */
15241                                 max_seg_size,       /* max seg size */
15242                                 0,                  /* flags */
15243                                 NULL,               /* lock() */
15244                                 NULL,               /* lock() arg */
15245                                 &fp->tx_mbuf_tag);  /* returned dma tag */
15246         if (rc != 0) {
15247             /* XXX unwind and free previous fastpath allocations */
15248             BLOGE(sc, "Failed to create dma tag for "
15249                       "'fp %d tx mbufs' (%d)\n",
15250                   i, rc);
15251             return (1);
15252         }
15253 
15254         /* create dma maps for each of the tx mbuf clusters */
15255         for (j = 0; j < TX_BD_TOTAL; j++) {
15256             if (bus_dmamap_create(fp->tx_mbuf_tag,
15257                                   BUS_DMA_NOWAIT,
15258                                   &fp->tx_mbuf_chain[j].m_map)) {
15259                 /* XXX unwind and free previous fastpath allocations */
15260                 BLOGE(sc, "Failed to create dma map for "
15261                           "'fp %d tx mbuf %d' (%d)\n",
15262                       i, j, rc);
15263                 return (1);
15264             }
15265         }
15266 
15267         /***********************/
15268         /* FP RX MBUF DMA MAPS */
15269         /***********************/
15270 
15271         /* create a dma tag for the rx mbufs */
15272         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15273                                 1,                  /* alignment */
15274                                 0,                  /* boundary limit */
15275                                 BUS_SPACE_MAXADDR,  /* restricted low */
15276                                 BUS_SPACE_MAXADDR,  /* restricted hi */
15277                                 NULL,               /* addr filter() */
15278                                 NULL,               /* addr filter() arg */
15279                                 MJUM9BYTES,         /* max map size */
15280                                 1,                  /* num discontinuous */
15281                                 MJUM9BYTES,         /* max seg size */
15282                                 0,                  /* flags */
15283                                 NULL,               /* lock() */
15284                                 NULL,               /* lock() arg */
15285                                 &fp->rx_mbuf_tag);  /* returned dma tag */
15286         if (rc != 0) {
15287             /* XXX unwind and free previous fastpath allocations */
15288             BLOGE(sc, "Failed to create dma tag for "
15289                       "'fp %d rx mbufs' (%d)\n",
15290                   i, rc);
15291             return (1);
15292         }
15293 
15294         /* create dma maps for each of the rx mbuf clusters */
15295         for (j = 0; j < RX_BD_TOTAL; j++) {
15296             if (bus_dmamap_create(fp->rx_mbuf_tag,
15297                                   BUS_DMA_NOWAIT,
15298                                   &fp->rx_mbuf_chain[j].m_map)) {
15299                 /* XXX unwind and free previous fastpath allocations */
15300                 BLOGE(sc, "Failed to create dma map for "
15301                           "'fp %d rx mbuf %d' (%d)\n",
15302                       i, j, rc);
15303                 return (1);
15304             }
15305         }
15306 
15307         /* create dma map for the spare rx mbuf cluster */
15308         if (bus_dmamap_create(fp->rx_mbuf_tag,
15309                               BUS_DMA_NOWAIT,
15310                               &fp->rx_mbuf_spare_map)) {
15311             /* XXX unwind and free previous fastpath allocations */
15312             BLOGE(sc, "Failed to create dma map for "
15313                       "'fp %d spare rx mbuf' (%d)\n",
15314                   i, rc);
15315             return (1);
15316         }
15317 
15318         /***************************/
15319         /* FP RX SGE MBUF DMA MAPS */
15320         /***************************/
15321 
15322         /* create a dma tag for the rx sge mbufs */
15323         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15324                                 1,                  /* alignment */
15325                                 0,                  /* boundary limit */
15326                                 BUS_SPACE_MAXADDR,  /* restricted low */
15327                                 BUS_SPACE_MAXADDR,  /* restricted hi */
15328                                 NULL,               /* addr filter() */
15329                                 NULL,               /* addr filter() arg */
15330                                 BCM_PAGE_SIZE,      /* max map size */
15331                                 1,                  /* num discontinuous */
15332                                 BCM_PAGE_SIZE,      /* max seg size */
15333                                 0,                  /* flags */
15334                                 NULL,               /* lock() */
15335                                 NULL,               /* lock() arg */
15336                                 &fp->rx_sge_mbuf_tag); /* returned dma tag */
15337         if (rc != 0) {
15338             /* XXX unwind and free previous fastpath allocations */
15339             BLOGE(sc, "Failed to create dma tag for "
15340                       "'fp %d rx sge mbufs' (%d)\n",
15341                   i, rc);
15342             return (1);
15343         }
15344 
15345         /* create dma maps for the rx sge mbuf clusters */
15346         for (j = 0; j < RX_SGE_TOTAL; j++) {
15347             if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15348                                   BUS_DMA_NOWAIT,
15349                                   &fp->rx_sge_mbuf_chain[j].m_map)) {
15350                 /* XXX unwind and free previous fastpath allocations */
15351                 BLOGE(sc, "Failed to create dma map for "
15352                           "'fp %d rx sge mbuf %d' (%d)\n",
15353                       i, j, rc);
15354                 return (1);
15355             }
15356         }
15357 
15358         /* create dma map for the spare rx sge mbuf cluster */
15359         if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15360                               BUS_DMA_NOWAIT,
15361                               &fp->rx_sge_mbuf_spare_map)) {
15362             /* XXX unwind and free previous fastpath allocations */
15363             BLOGE(sc, "Failed to create dma map for "
15364                       "'fp %d spare rx sge mbuf' (%d)\n",
15365                   i, rc);
15366             return (1);
15367         }
15368 
15369         /***************************/
15370         /* FP RX TPA MBUF DMA MAPS */
15371         /***************************/
15372 
15373         /* create dma maps for the rx tpa mbuf clusters */
15374         max_agg_queues = MAX_AGG_QS(sc);
15375 
15376         for (j = 0; j < max_agg_queues; j++) {
15377             if (bus_dmamap_create(fp->rx_mbuf_tag,
15378                                   BUS_DMA_NOWAIT,
15379                                   &fp->rx_tpa_info[j].bd.m_map)) {
15380                 /* XXX unwind and free previous fastpath allocations */
15381                 BLOGE(sc, "Failed to create dma map for "
15382                           "'fp %d rx tpa mbuf %d' (%d)\n",
15383                       i, j, rc);
15384                 return (1);
15385             }
15386         }
15387 
15388         /* create dma map for the spare rx tpa mbuf cluster */
15389         if (bus_dmamap_create(fp->rx_mbuf_tag,
15390                               BUS_DMA_NOWAIT,
15391                               &fp->rx_tpa_info_mbuf_spare_map)) {
15392             /* XXX unwind and free previous fastpath allocations */
15393             BLOGE(sc, "Failed to create dma map for "
15394                       "'fp %d spare rx tpa mbuf' (%d)\n",
15395                   i, rc);
15396             return (1);
15397         }
15398 
15399         bxe_init_sge_ring_bit_mask(fp);
15400     }
15401 
15402     return (0);
15403 }
15404 
15405 static void
15406 bxe_free_hsi_mem(struct bxe_softc *sc)
15407 {
15408     struct bxe_fastpath *fp;
15409     int max_agg_queues;
15410     int i, j;
15411 
15412     if (sc->parent_dma_tag == NULL) {
15413         return; /* assume nothing was allocated */
15414     }
15415 
15416     for (i = 0; i < sc->num_queues; i++) {
15417         fp = &sc->fp[i];
15418 
15419         /*******************/
15420         /* FP STATUS BLOCK */
15421         /*******************/
15422 
15423         bxe_dma_free(sc, &fp->sb_dma);
15424         memset(&fp->status_block, 0, sizeof(fp->status_block));
15425 
15426         /******************/
15427         /* FP TX BD CHAIN */
15428         /******************/
15429 
15430         bxe_dma_free(sc, &fp->tx_dma);
15431         fp->tx_chain = NULL;
15432 
15433         /******************/
15434         /* FP RX BD CHAIN */
15435         /******************/
15436 
15437         bxe_dma_free(sc, &fp->rx_dma);
15438         fp->rx_chain = NULL;
15439 
15440         /*******************/
15441         /* FP RX RCQ CHAIN */
15442         /*******************/
15443 
15444         bxe_dma_free(sc, &fp->rcq_dma);
15445         fp->rcq_chain = NULL;
15446 
15447         /*******************/
15448         /* FP RX SGE CHAIN */
15449         /*******************/
15450 
15451         bxe_dma_free(sc, &fp->rx_sge_dma);
15452         fp->rx_sge_chain = NULL;
15453 
15454         /***********************/
15455         /* FP TX MBUF DMA MAPS */
15456         /***********************/
15457 
15458         if (fp->tx_mbuf_tag != NULL) {
15459             for (j = 0; j < TX_BD_TOTAL; j++) {
15460                 if (fp->tx_mbuf_chain[j].m_map != NULL) {
15461                     bus_dmamap_unload(fp->tx_mbuf_tag,
15462                                       fp->tx_mbuf_chain[j].m_map);
15463                     bus_dmamap_destroy(fp->tx_mbuf_tag,
15464                                        fp->tx_mbuf_chain[j].m_map);
15465                 }
15466             }
15467 
15468             bus_dma_tag_destroy(fp->tx_mbuf_tag);
15469             fp->tx_mbuf_tag = NULL;
15470         }
15471 
15472         /***********************/
15473         /* FP RX MBUF DMA MAPS */
15474         /***********************/
15475 
15476         if (fp->rx_mbuf_tag != NULL) {
15477             for (j = 0; j < RX_BD_TOTAL; j++) {
15478                 if (fp->rx_mbuf_chain[j].m_map != NULL) {
15479                     bus_dmamap_unload(fp->rx_mbuf_tag,
15480                                       fp->rx_mbuf_chain[j].m_map);
15481                     bus_dmamap_destroy(fp->rx_mbuf_tag,
15482                                        fp->rx_mbuf_chain[j].m_map);
15483                 }
15484             }
15485 
15486             if (fp->rx_mbuf_spare_map != NULL) {
15487                 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15488                 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15489             }
15490 
15491             /***************************/
15492             /* FP RX TPA MBUF DMA MAPS */
15493             /***************************/
15494 
15495             max_agg_queues = MAX_AGG_QS(sc);
15496 
15497             for (j = 0; j < max_agg_queues; j++) {
15498                 if (fp->rx_tpa_info[j].bd.m_map != NULL) {
15499                     bus_dmamap_unload(fp->rx_mbuf_tag,
15500                                       fp->rx_tpa_info[j].bd.m_map);
15501                     bus_dmamap_destroy(fp->rx_mbuf_tag,
15502                                        fp->rx_tpa_info[j].bd.m_map);
15503                 }
15504             }
15505 
15506             if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
15507                 bus_dmamap_unload(fp->rx_mbuf_tag,
15508                                   fp->rx_tpa_info_mbuf_spare_map);
15509                 bus_dmamap_destroy(fp->rx_mbuf_tag,
15510                                    fp->rx_tpa_info_mbuf_spare_map);
15511             }
15512 
15513             bus_dma_tag_destroy(fp->rx_mbuf_tag);
15514             fp->rx_mbuf_tag = NULL;
15515         }
15516 
15517         /***************************/
15518         /* FP RX SGE MBUF DMA MAPS */
15519         /***************************/
15520 
15521         if (fp->rx_sge_mbuf_tag != NULL) {
15522             for (j = 0; j < RX_SGE_TOTAL; j++) {
15523                 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
15524                     bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15525                                       fp->rx_sge_mbuf_chain[j].m_map);
15526                     bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15527                                        fp->rx_sge_mbuf_chain[j].m_map);
15528                 }
15529             }
15530 
15531             if (fp->rx_sge_mbuf_spare_map != NULL) {
15532                 bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15533                                   fp->rx_sge_mbuf_spare_map);
15534                 bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15535                                    fp->rx_sge_mbuf_spare_map);
15536             }
15537 
15538             bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
15539             fp->rx_sge_mbuf_tag = NULL;
15540         }
15541     }
15542 
15543     /***************************/
15544     /* FW DECOMPRESSION BUFFER */
15545     /***************************/
15546 
15547     bxe_dma_free(sc, &sc->gz_buf_dma);
15548     sc->gz_buf = NULL;
15549     free(sc->gz_strm, M_DEVBUF);
15550     sc->gz_strm = NULL;
15551 
15552     /*******************/
15553     /* SLOW PATH QUEUE */
15554     /*******************/
15555 
15556     bxe_dma_free(sc, &sc->spq_dma);
15557     sc->spq = NULL;
15558 
15559     /*************/
15560     /* SLOW PATH */
15561     /*************/
15562 
15563     bxe_dma_free(sc, &sc->sp_dma);
15564     sc->sp = NULL;
15565 
15566     /***************/
15567     /* EVENT QUEUE */
15568     /***************/
15569 
15570     bxe_dma_free(sc, &sc->eq_dma);
15571     sc->eq = NULL;
15572 
15573     /************************/
15574     /* DEFAULT STATUS BLOCK */
15575     /************************/
15576 
15577     bxe_dma_free(sc, &sc->def_sb_dma);
15578     sc->def_sb = NULL;
15579 
15580     bus_dma_tag_destroy(sc->parent_dma_tag);
15581     sc->parent_dma_tag = NULL;
15582 }
15583 
15584 /*
15585  * Previous driver DMAE transaction may have occurred when pre-boot stage
15586  * ended and boot began. This would invalidate the addresses of the
15587  * transaction, resulting in was-error bit set in the PCI causing all
15588  * hw-to-host PCIe transactions to timeout. If this happened we want to clear
15589  * the interrupt which detected this from the pglueb and the was-done bit
15590  */
15591 static void
15592 bxe_prev_interrupted_dmae(struct bxe_softc *sc)
15593 {
15594     uint32_t val;
15595 
15596     if (!CHIP_IS_E1x(sc)) {
15597         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
15598         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
15599             BLOGD(sc, DBG_LOAD,
15600                   "Clearing 'was-error' bit that was set in pglueb");
15601             REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
15602         }
15603     }
15604 }
15605 
15606 static int
15607 bxe_prev_mcp_done(struct bxe_softc *sc)
15608 {
15609     uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
15610                                  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
15611     if (!rc) {
15612         BLOGE(sc, "MCP response failure, aborting\n");
15613         return (-1);
15614     }
15615 
15616     return (0);
15617 }
15618 
15619 static struct bxe_prev_list_node *
15620 bxe_prev_path_get_entry(struct bxe_softc *sc)
15621 {
15622     struct bxe_prev_list_node *tmp;
15623 
15624     LIST_FOREACH(tmp, &bxe_prev_list, node) {
15625         if ((sc->pcie_bus == tmp->bus) &&
15626             (sc->pcie_device == tmp->slot) &&
15627             (SC_PATH(sc) == tmp->path)) {
15628             return (tmp);
15629         }
15630     }
15631 
15632     return (NULL);
15633 }
15634 
15635 static uint8_t
15636 bxe_prev_is_path_marked(struct bxe_softc *sc)
15637 {
15638     struct bxe_prev_list_node *tmp;
15639     int rc = FALSE;
15640 
15641     mtx_lock(&bxe_prev_mtx);
15642 
15643     tmp = bxe_prev_path_get_entry(sc);
15644     if (tmp) {
15645         if (tmp->aer) {
15646             BLOGD(sc, DBG_LOAD,
15647                   "Path %d/%d/%d was marked by AER\n",
15648                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15649         } else {
15650             rc = TRUE;
15651             BLOGD(sc, DBG_LOAD,
15652                   "Path %d/%d/%d was already cleaned from previous drivers\n",
15653                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15654         }
15655     }
15656 
15657     mtx_unlock(&bxe_prev_mtx);
15658 
15659     return (rc);
15660 }
15661 
15662 static int
15663 bxe_prev_mark_path(struct bxe_softc *sc,
15664                    uint8_t          after_undi)
15665 {
15666     struct bxe_prev_list_node *tmp;
15667 
15668     mtx_lock(&bxe_prev_mtx);
15669 
15670     /* Check whether the entry for this path already exists */
15671     tmp = bxe_prev_path_get_entry(sc);
15672     if (tmp) {
15673         if (!tmp->aer) {
15674             BLOGD(sc, DBG_LOAD,
15675                   "Re-marking AER in path %d/%d/%d\n",
15676                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15677         } else {
15678             BLOGD(sc, DBG_LOAD,
15679                   "Removing AER indication from path %d/%d/%d\n",
15680                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15681             tmp->aer = 0;
15682         }
15683 
15684         mtx_unlock(&bxe_prev_mtx);
15685         return (0);
15686     }
15687 
15688     mtx_unlock(&bxe_prev_mtx);
15689 
15690     /* Create an entry for this path and add it */
15691     tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15692                  (M_NOWAIT | M_ZERO));
15693     if (!tmp) {
15694         BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15695         return (-1);
15696     }
15697 
15698     tmp->bus  = sc->pcie_bus;
15699     tmp->slot = sc->pcie_device;
15700     tmp->path = SC_PATH(sc);
15701     tmp->aer  = 0;
15702     tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15703 
15704     mtx_lock(&bxe_prev_mtx);
15705 
15706     BLOGD(sc, DBG_LOAD,
15707           "Marked path %d/%d/%d - finished previous unload\n",
15708           sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15709     LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15710 
15711     mtx_unlock(&bxe_prev_mtx);
15712 
15713     return (0);
15714 }
15715 
15716 static int
15717 bxe_do_flr(struct bxe_softc *sc)
15718 {
15719     int i;
15720 
15721     /* only E2 and onwards support FLR */
15722     if (CHIP_IS_E1x(sc)) {
15723         BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15724         return (-1);
15725     }
15726 
15727     /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15728     if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15729         BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15730               sc->devinfo.bc_ver);
15731         return (-1);
15732     }
15733 
15734     /* Wait for Transaction Pending bit clean */
15735     for (i = 0; i < 4; i++) {
15736         if (i) {
15737             DELAY(((1 << (i - 1)) * 100) * 1000);
15738         }
15739 
15740         if (!bxe_is_pcie_pending(sc)) {
15741             goto clear;
15742         }
15743     }
15744 
15745     BLOGE(sc, "PCIE transaction is not cleared, "
15746               "proceeding with reset anyway\n");
15747 
15748 clear:
15749 
15750     BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15751     bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15752 
15753     return (0);
15754 }
15755 
15756 struct bxe_mac_vals {
15757     uint32_t xmac_addr;
15758     uint32_t xmac_val;
15759     uint32_t emac_addr;
15760     uint32_t emac_val;
15761     uint32_t umac_addr;
15762     uint32_t umac_val;
15763     uint32_t bmac_addr;
15764     uint32_t bmac_val[2];
15765 };
15766 
15767 static void
15768 bxe_prev_unload_close_mac(struct bxe_softc *sc,
15769                           struct bxe_mac_vals *vals)
15770 {
15771     uint32_t val, base_addr, offset, mask, reset_reg;
15772     uint8_t mac_stopped = FALSE;
15773     uint8_t port = SC_PORT(sc);
15774     uint32_t wb_data[2];
15775 
15776     /* reset addresses as they also mark which values were changed */
15777     vals->bmac_addr = 0;
15778     vals->umac_addr = 0;
15779     vals->xmac_addr = 0;
15780     vals->emac_addr = 0;
15781 
15782     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15783 
15784     if (!CHIP_IS_E3(sc)) {
15785         val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15786         mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15787         if ((mask & reset_reg) && val) {
15788             BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15789             base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15790                                     : NIG_REG_INGRESS_BMAC0_MEM;
15791             offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15792                                     : BIGMAC_REGISTER_BMAC_CONTROL;
15793 
15794             /*
15795              * use rd/wr since we cannot use dmae. This is safe
15796              * since MCP won't access the bus due to the request
15797              * to unload, and no function on the path can be
15798              * loaded at this time.
15799              */
15800             wb_data[0] = REG_RD(sc, base_addr + offset);
15801             wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15802             vals->bmac_addr = base_addr + offset;
15803             vals->bmac_val[0] = wb_data[0];
15804             vals->bmac_val[1] = wb_data[1];
15805             wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15806             REG_WR(sc, vals->bmac_addr, wb_data[0]);
15807             REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15808         }
15809 
15810         BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15811         vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15812         vals->emac_val = REG_RD(sc, vals->emac_addr);
15813         REG_WR(sc, vals->emac_addr, 0);
15814         mac_stopped = TRUE;
15815     } else {
15816         if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15817             BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15818             base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15819             val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15820             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15821             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15822             vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15823             vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15824             REG_WR(sc, vals->xmac_addr, 0);
15825             mac_stopped = TRUE;
15826         }
15827 
15828         mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15829         if (mask & reset_reg) {
15830             BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15831             base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15832             vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15833             vals->umac_val = REG_RD(sc, vals->umac_addr);
15834             REG_WR(sc, vals->umac_addr, 0);
15835             mac_stopped = TRUE;
15836         }
15837     }
15838 
15839     if (mac_stopped) {
15840         DELAY(20000);
15841     }
15842 }
15843 
15844 #define BXE_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15845 #define BXE_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
15846 #define BXE_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
15847 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15848 
15849 static void
15850 bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15851                          uint8_t          port,
15852                          uint8_t          inc)
15853 {
15854     uint16_t rcq, bd;
15855     uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15856 
15857     rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15858     bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15859 
15860     tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15861     REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15862 
15863     BLOGD(sc, DBG_LOAD,
15864           "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15865           port, bd, rcq);
15866 }
15867 
15868 static int
15869 bxe_prev_unload_common(struct bxe_softc *sc)
15870 {
15871     uint32_t reset_reg, tmp_reg = 0, rc;
15872     uint8_t prev_undi = FALSE;
15873     struct bxe_mac_vals mac_vals;
15874     uint32_t timer_count = 1000;
15875     uint32_t prev_brb;
15876 
15877     /*
15878      * It is possible a previous function received 'common' answer,
15879      * but hasn't loaded yet, therefore creating a scenario of
15880      * multiple functions receiving 'common' on the same path.
15881      */
15882     BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15883 
15884     memset(&mac_vals, 0, sizeof(mac_vals));
15885 
15886     if (bxe_prev_is_path_marked(sc)) {
15887         return (bxe_prev_mcp_done(sc));
15888     }
15889 
15890     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15891 
15892     /* Reset should be performed after BRB is emptied */
15893     if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15894         /* Close the MAC Rx to prevent BRB from filling up */
15895         bxe_prev_unload_close_mac(sc, &mac_vals);
15896 
15897         /* close LLH filters towards the BRB */
15898         elink_set_rx_filter(&sc->link_params, 0);
15899 
15900         /*
15901          * Check if the UNDI driver was previously loaded.
15902          * UNDI driver initializes CID offset for normal bell to 0x7
15903          */
15904         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15905             tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15906             if (tmp_reg == 0x7) {
15907                 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15908                 prev_undi = TRUE;
15909                 /* clear the UNDI indication */
15910                 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15911                 /* clear possible idle check errors */
15912                 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15913             }
15914         }
15915 
15916         /* wait until BRB is empty */
15917         tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15918         while (timer_count) {
15919             prev_brb = tmp_reg;
15920 
15921             tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15922             if (!tmp_reg) {
15923                 break;
15924             }
15925 
15926             BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15927 
15928             /* reset timer as long as BRB actually gets emptied */
15929             if (prev_brb > tmp_reg) {
15930                 timer_count = 1000;
15931             } else {
15932                 timer_count--;
15933             }
15934 
15935             /* If UNDI resides in memory, manually increment it */
15936             if (prev_undi) {
15937                 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15938             }
15939 
15940             DELAY(10);
15941         }
15942 
15943         if (!timer_count) {
15944             BLOGE(sc, "Failed to empty BRB\n");
15945         }
15946     }
15947 
15948     /* No packets are in the pipeline, path is ready for reset */
15949     bxe_reset_common(sc);
15950 
15951     if (mac_vals.xmac_addr) {
15952         REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15953     }
15954     if (mac_vals.umac_addr) {
15955         REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15956     }
15957     if (mac_vals.emac_addr) {
15958         REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15959     }
15960     if (mac_vals.bmac_addr) {
15961         REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15962         REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15963     }
15964 
15965     rc = bxe_prev_mark_path(sc, prev_undi);
15966     if (rc) {
15967         bxe_prev_mcp_done(sc);
15968         return (rc);
15969     }
15970 
15971     return (bxe_prev_mcp_done(sc));
15972 }
15973 
15974 static int
15975 bxe_prev_unload_uncommon(struct bxe_softc *sc)
15976 {
15977     int rc;
15978 
15979     BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15980 
15981     /* Test if previous unload process was already finished for this path */
15982     if (bxe_prev_is_path_marked(sc)) {
15983         return (bxe_prev_mcp_done(sc));
15984     }
15985 
15986     BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15987 
15988     /*
15989      * If function has FLR capabilities, and existing FW version matches
15990      * the one required, then FLR will be sufficient to clean any residue
15991      * left by previous driver
15992      */
15993     rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
15994     if (!rc) {
15995         /* fw version is good */
15996         BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
15997         rc = bxe_do_flr(sc);
15998     }
15999 
16000     if (!rc) {
16001         /* FLR was performed */
16002         BLOGD(sc, DBG_LOAD, "FLR successful\n");
16003         return (0);
16004     }
16005 
16006     BLOGD(sc, DBG_LOAD, "Could not FLR\n");
16007 
16008     /* Close the MCP request, return failure*/
16009     rc = bxe_prev_mcp_done(sc);
16010     if (!rc) {
16011         rc = BXE_PREV_WAIT_NEEDED;
16012     }
16013 
16014     return (rc);
16015 }
16016 
16017 static int
16018 bxe_prev_unload(struct bxe_softc *sc)
16019 {
16020     int time_counter = 10;
16021     uint32_t fw, hw_lock_reg, hw_lock_val;
16022     uint32_t rc = 0;
16023 
16024     /*
16025      * Clear HW from errors which may have resulted from an interrupted
16026      * DMAE transaction.
16027      */
16028     bxe_prev_interrupted_dmae(sc);
16029 
16030     /* Release previously held locks */
16031     hw_lock_reg =
16032         (SC_FUNC(sc) <= 5) ?
16033             (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
16034             (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
16035 
16036     hw_lock_val = (REG_RD(sc, hw_lock_reg));
16037     if (hw_lock_val) {
16038         if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
16039             BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
16040             REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
16041                    (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
16042         }
16043         BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
16044         REG_WR(sc, hw_lock_reg, 0xffffffff);
16045     } else {
16046         BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
16047     }
16048 
16049     if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
16050         BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
16051         REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
16052     }
16053 
16054     do {
16055         /* Lock MCP using an unload request */
16056         fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
16057         if (!fw) {
16058             BLOGE(sc, "MCP response failure, aborting\n");
16059             rc = -1;
16060             break;
16061         }
16062 
16063         if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
16064             rc = bxe_prev_unload_common(sc);
16065             break;
16066         }
16067 
16068         /* non-common reply from MCP night require looping */
16069         rc = bxe_prev_unload_uncommon(sc);
16070         if (rc != BXE_PREV_WAIT_NEEDED) {
16071             break;
16072         }
16073 
16074         DELAY(20000);
16075     } while (--time_counter);
16076 
16077     if (!time_counter || rc) {
16078         BLOGE(sc, "Failed to unload previous driver!\n");
16079         rc = -1;
16080     }
16081 
16082     return (rc);
16083 }
16084 
16085 void
16086 bxe_dcbx_set_state(struct bxe_softc *sc,
16087                    uint8_t          dcb_on,
16088                    uint32_t         dcbx_enabled)
16089 {
16090     if (!CHIP_IS_E1x(sc)) {
16091         sc->dcb_state = dcb_on;
16092         sc->dcbx_enabled = dcbx_enabled;
16093     } else {
16094         sc->dcb_state = FALSE;
16095         sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
16096     }
16097     BLOGD(sc, DBG_LOAD,
16098           "DCB state [%s:%s]\n",
16099           dcb_on ? "ON" : "OFF",
16100           (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
16101           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
16102           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
16103           "on-chip with negotiation" : "invalid");
16104 }
16105 
16106 /* must be called after sriov-enable */
16107 static int
16108 bxe_set_qm_cid_count(struct bxe_softc *sc)
16109 {
16110     int cid_count = BXE_L2_MAX_CID(sc);
16111 
16112     if (IS_SRIOV(sc)) {
16113         cid_count += BXE_VF_CIDS;
16114     }
16115 
16116     if (CNIC_SUPPORT(sc)) {
16117         cid_count += CNIC_CID_MAX;
16118     }
16119 
16120     return (roundup(cid_count, QM_CID_ROUND));
16121 }
16122 
16123 static void
16124 bxe_init_multi_cos(struct bxe_softc *sc)
16125 {
16126     int pri, cos;
16127 
16128     uint32_t pri_map = 0; /* XXX change to user config */
16129 
16130     for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
16131         cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
16132         if (cos < sc->max_cos) {
16133             sc->prio_to_cos[pri] = cos;
16134         } else {
16135             BLOGW(sc, "Invalid COS %d for priority %d "
16136                       "(max COS is %d), setting to 0\n",
16137                   cos, pri, (sc->max_cos - 1));
16138             sc->prio_to_cos[pri] = 0;
16139         }
16140     }
16141 }
16142 
16143 static int
16144 bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
16145 {
16146     struct bxe_softc *sc;
16147     int error, result;
16148 
16149     result = 0;
16150     error = sysctl_handle_int(oidp, &result, 0, req);
16151 
16152     if (error || !req->newptr) {
16153         return (error);
16154     }
16155 
16156     if (result == 1) {
16157         sc = (struct bxe_softc *)arg1;
16158         BLOGI(sc, "... dumping driver state ...\n");
16159         /* XXX */
16160     }
16161 
16162     return (error);
16163 }
16164 
16165 static int
16166 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
16167 {
16168     struct bxe_softc *sc = (struct bxe_softc *)arg1;
16169     uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
16170     uint32_t *offset;
16171     uint64_t value = 0;
16172     int index = (int)arg2;
16173 
16174     if (index >= BXE_NUM_ETH_STATS) {
16175         BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
16176         return (-1);
16177     }
16178 
16179     offset = (eth_stats + bxe_eth_stats_arr[index].offset);
16180 
16181     switch (bxe_eth_stats_arr[index].size) {
16182     case 4:
16183         value = (uint64_t)*offset;
16184         break;
16185     case 8:
16186         value = HILO_U64(*offset, *(offset + 1));
16187         break;
16188     default:
16189         BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
16190               index, bxe_eth_stats_arr[index].size);
16191         return (-1);
16192     }
16193 
16194     return (sysctl_handle_64(oidp, &value, 0, req));
16195 }
16196 
16197 static int
16198 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
16199 {
16200     struct bxe_softc *sc = (struct bxe_softc *)arg1;
16201     uint32_t *eth_stats;
16202     uint32_t *offset;
16203     uint64_t value = 0;
16204     uint32_t q_stat = (uint32_t)arg2;
16205     uint32_t fp_index = ((q_stat >> 16) & 0xffff);
16206     uint32_t index = (q_stat & 0xffff);
16207 
16208     eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
16209 
16210     if (index >= BXE_NUM_ETH_Q_STATS) {
16211         BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
16212         return (-1);
16213     }
16214 
16215     offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
16216 
16217     switch (bxe_eth_q_stats_arr[index].size) {
16218     case 4:
16219         value = (uint64_t)*offset;
16220         break;
16221     case 8:
16222         value = HILO_U64(*offset, *(offset + 1));
16223         break;
16224     default:
16225         BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
16226               index, bxe_eth_q_stats_arr[index].size);
16227         return (-1);
16228     }
16229 
16230     return (sysctl_handle_64(oidp, &value, 0, req));
16231 }
16232 
16233 static void
16234 bxe_add_sysctls(struct bxe_softc *sc)
16235 {
16236     struct sysctl_ctx_list *ctx;
16237     struct sysctl_oid_list *children;
16238     struct sysctl_oid *queue_top, *queue;
16239     struct sysctl_oid_list *queue_top_children, *queue_children;
16240     char queue_num_buf[32];
16241     uint32_t q_stat;
16242     int i, j;
16243 
16244     ctx = device_get_sysctl_ctx(sc->dev);
16245     children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
16246 
16247     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
16248                       CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
16249                       "version");
16250 
16251     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
16252                       CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0,
16253                       "bootcode version");
16254 
16255     snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
16256              BCM_5710_FW_MAJOR_VERSION,
16257              BCM_5710_FW_MINOR_VERSION,
16258              BCM_5710_FW_REVISION_VERSION,
16259              BCM_5710_FW_ENGINEERING_VERSION);
16260     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
16261                       CTLFLAG_RD, &sc->fw_ver_str, 0,
16262                       "firmware version");
16263 
16264     snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
16265         ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION)     ? "Single"  :
16266          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)   ? "MF-SD"   :
16267          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)   ? "MF-SI"   :
16268          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
16269                                                                 "Unknown"));
16270     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
16271                       CTLFLAG_RD, &sc->mf_mode_str, 0,
16272                       "multifunction mode");
16273 
16274     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
16275                     CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
16276                     "multifunction vnics per port");
16277 
16278     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
16279                       CTLFLAG_RD, &sc->mac_addr_str, 0,
16280                       "mac address");
16281 
16282     snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
16283         ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
16284          (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
16285          (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
16286                                               "???GT/s"),
16287         sc->devinfo.pcie_link_width);
16288     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
16289                       CTLFLAG_RD, &sc->pci_link_str, 0,
16290                       "pci link status");
16291 
16292     sc->debug = bxe_debug;
16293     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug",
16294                     CTLFLAG_RW, &sc->debug, 0,
16295                     "debug logging mode");
16296 
16297     sc->rx_budget = bxe_rx_budget;
16298     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
16299                     CTLFLAG_RW, &sc->rx_budget, 0,
16300                     "rx processing budget");
16301 
16302     SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
16303                     CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
16304                     bxe_sysctl_state, "IU", "dump driver state");
16305 
16306     for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
16307         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
16308                         bxe_eth_stats_arr[i].string,
16309                         CTLTYPE_U64 | CTLFLAG_RD, sc, i,
16310                         bxe_sysctl_eth_stat, "LU",
16311                         bxe_eth_stats_arr[i].string);
16312     }
16313 
16314     /* add a new parent node for all queues "dev.bxe.#.queue" */
16315     queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
16316                                 CTLFLAG_RD, NULL, "queue");
16317     queue_top_children = SYSCTL_CHILDREN(queue_top);
16318 
16319     for (i = 0; i < sc->num_queues; i++) {
16320         /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
16321         snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
16322         queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
16323                                 queue_num_buf, CTLFLAG_RD, NULL,
16324                                 "single queue");
16325         queue_children = SYSCTL_CHILDREN(queue);
16326 
16327         for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
16328             q_stat = ((i << 16) | j);
16329             SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
16330                             bxe_eth_q_stats_arr[j].string,
16331                             CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat,
16332                             bxe_sysctl_eth_q_stat, "LU",
16333                             bxe_eth_q_stats_arr[j].string);
16334         }
16335     }
16336 }
16337 
16338 /*
16339  * Device attach function.
16340  *
16341  * Allocates device resources, performs secondary chip identification, and
16342  * initializes driver instance variables. This function is called from driver
16343  * load after a successful probe.
16344  *
16345  * Returns:
16346  *   0 = Success, >0 = Failure
16347  */
16348 static int
16349 bxe_attach(device_t dev)
16350 {
16351     struct bxe_softc *sc;
16352 
16353     sc = device_get_softc(dev);
16354 
16355     BLOGD(sc, DBG_LOAD, "Starting attach...\n");
16356 
16357     sc->state = BXE_STATE_CLOSED;
16358 
16359     sc->dev  = dev;
16360     sc->unit = device_get_unit(dev);
16361 
16362     BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
16363 
16364     sc->pcie_bus    = pci_get_bus(dev);
16365     sc->pcie_device = pci_get_slot(dev);
16366     sc->pcie_func   = pci_get_function(dev);
16367 
16368     /* enable bus master capability */
16369     pci_enable_busmaster(dev);
16370 
16371     /* get the BARs */
16372     if (bxe_allocate_bars(sc) != 0) {
16373         return (ENXIO);
16374     }
16375 
16376     /* initialize the mutexes */
16377     bxe_init_mutexes(sc);
16378 
16379     /* prepare the periodic callout */
16380     callout_init(&sc->periodic_callout, 0);
16381 
16382     /* prepare the chip taskqueue */
16383     sc->chip_tq_flags = CHIP_TQ_NONE;
16384     snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
16385              "bxe%d_chip_tq", sc->unit);
16386     TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
16387     sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
16388                                    taskqueue_thread_enqueue,
16389                                    &sc->chip_tq);
16390     taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
16391                             "%s", sc->chip_tq_name);
16392 
16393     /* get device info and set params */
16394     if (bxe_get_device_info(sc) != 0) {
16395         BLOGE(sc, "getting device info\n");
16396         bxe_deallocate_bars(sc);
16397         pci_disable_busmaster(dev);
16398         return (ENXIO);
16399     }
16400 
16401     /* get final misc params */
16402     bxe_get_params(sc);
16403 
16404     /* set the default MTU (changed via ifconfig) */
16405     sc->mtu = ETHERMTU;
16406 
16407     bxe_set_modes_bitmap(sc);
16408 
16409     /* XXX
16410      * If in AFEX mode and the function is configured for FCoE
16411      * then bail... no L2 allowed.
16412      */
16413 
16414     /* get phy settings from shmem and 'and' against admin settings */
16415     bxe_get_phy_info(sc);
16416 
16417     /* initialize the FreeBSD ifnet interface */
16418     if (bxe_init_ifnet(sc) != 0) {
16419         bxe_release_mutexes(sc);
16420         bxe_deallocate_bars(sc);
16421         pci_disable_busmaster(dev);
16422         return (ENXIO);
16423     }
16424 
16425     /* allocate device interrupts */
16426     if (bxe_interrupt_alloc(sc) != 0) {
16427         if (sc->ifnet != NULL) {
16428             ether_ifdetach(sc->ifnet);
16429         }
16430         ifmedia_removeall(&sc->ifmedia);
16431         bxe_release_mutexes(sc);
16432         bxe_deallocate_bars(sc);
16433         pci_disable_busmaster(dev);
16434         return (ENXIO);
16435     }
16436 
16437     /* allocate ilt */
16438     if (bxe_alloc_ilt_mem(sc) != 0) {
16439         bxe_interrupt_free(sc);
16440         if (sc->ifnet != NULL) {
16441             ether_ifdetach(sc->ifnet);
16442         }
16443         ifmedia_removeall(&sc->ifmedia);
16444         bxe_release_mutexes(sc);
16445         bxe_deallocate_bars(sc);
16446         pci_disable_busmaster(dev);
16447         return (ENXIO);
16448     }
16449 
16450     /* allocate the host hardware/software hsi structures */
16451     if (bxe_alloc_hsi_mem(sc) != 0) {
16452         bxe_free_ilt_mem(sc);
16453         bxe_interrupt_free(sc);
16454         if (sc->ifnet != NULL) {
16455             ether_ifdetach(sc->ifnet);
16456         }
16457         ifmedia_removeall(&sc->ifmedia);
16458         bxe_release_mutexes(sc);
16459         bxe_deallocate_bars(sc);
16460         pci_disable_busmaster(dev);
16461         return (ENXIO);
16462     }
16463 
16464     /* need to reset chip if UNDI was active */
16465     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
16466         /* init fw_seq */
16467         sc->fw_seq =
16468             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
16469              DRV_MSG_SEQ_NUMBER_MASK);
16470         BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
16471         bxe_prev_unload(sc);
16472     }
16473 
16474 #if 1
16475     /* XXX */
16476     bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16477 #else
16478     if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
16479         SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
16480         SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
16481         SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
16482         bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
16483         bxe_dcbx_init_params(sc);
16484     } else {
16485         bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16486     }
16487 #endif
16488 
16489     /* calculate qm_cid_count */
16490     sc->qm_cid_count = bxe_set_qm_cid_count(sc);
16491     BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
16492 
16493     sc->max_cos = 1;
16494     bxe_init_multi_cos(sc);
16495 
16496     bxe_add_sysctls(sc);
16497 
16498     return (0);
16499 }
16500 
16501 /*
16502  * Device detach function.
16503  *
16504  * Stops the controller, resets the controller, and releases resources.
16505  *
16506  * Returns:
16507  *   0 = Success, >0 = Failure
16508  */
16509 static int
16510 bxe_detach(device_t dev)
16511 {
16512     struct bxe_softc *sc;
16513     struct ifnet *ifp;
16514 
16515     sc = device_get_softc(dev);
16516 
16517     BLOGD(sc, DBG_LOAD, "Starting detach...\n");
16518 
16519     ifp = sc->ifnet;
16520     if (ifp != NULL && ifp->if_vlantrunk != NULL) {
16521         BLOGE(sc, "Cannot detach while VLANs are in use.\n");
16522         return(EBUSY);
16523     }
16524 
16525     /* stop the periodic callout */
16526     bxe_periodic_stop(sc);
16527 
16528     /* stop the chip taskqueue */
16529     atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16530     if (sc->chip_tq) {
16531         taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16532         taskqueue_free(sc->chip_tq);
16533         sc->chip_tq = NULL;
16534     }
16535 
16536     /* stop and reset the controller if it was open */
16537     if (sc->state != BXE_STATE_CLOSED) {
16538         BXE_CORE_LOCK(sc);
16539         bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16540         BXE_CORE_UNLOCK(sc);
16541     }
16542 
16543     /* release the network interface */
16544     if (ifp != NULL) {
16545         ether_ifdetach(ifp);
16546     }
16547     ifmedia_removeall(&sc->ifmedia);
16548 
16549     /* XXX do the following based on driver state... */
16550 
16551     /* free the host hardware/software hsi structures */
16552     bxe_free_hsi_mem(sc);
16553 
16554     /* free ilt */
16555     bxe_free_ilt_mem(sc);
16556 
16557     /* release the interrupts */
16558     bxe_interrupt_free(sc);
16559 
16560     /* Release the mutexes*/
16561     bxe_release_mutexes(sc);
16562 
16563     /* Release the PCIe BAR mapped memory */
16564     bxe_deallocate_bars(sc);
16565 
16566     /* Release the FreeBSD interface. */
16567     if (sc->ifnet != NULL) {
16568         if_free(sc->ifnet);
16569     }
16570 
16571     pci_disable_busmaster(dev);
16572 
16573     return (0);
16574 }
16575 
16576 /*
16577  * Device shutdown function.
16578  *
16579  * Stops and resets the controller.
16580  *
16581  * Returns:
16582  *   Nothing
16583  */
16584 static int
16585 bxe_shutdown(device_t dev)
16586 {
16587     struct bxe_softc *sc;
16588 
16589     sc = device_get_softc(dev);
16590 
16591     BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16592 
16593     /* stop the periodic callout */
16594     bxe_periodic_stop(sc);
16595 
16596     BXE_CORE_LOCK(sc);
16597     bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16598     BXE_CORE_UNLOCK(sc);
16599 
16600     return (0);
16601 }
16602 
16603 void
16604 bxe_igu_ack_sb(struct bxe_softc *sc,
16605                uint8_t          igu_sb_id,
16606                uint8_t          segment,
16607                uint16_t         index,
16608                uint8_t          op,
16609                uint8_t          update)
16610 {
16611     uint32_t igu_addr = sc->igu_base_addr;
16612     igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16613     bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16614 }
16615 
16616 static void
16617 bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16618                      uint8_t          func,
16619                      uint8_t          idu_sb_id,
16620                      uint8_t          is_pf)
16621 {
16622     uint32_t data, ctl, cnt = 100;
16623     uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16624     uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16625     uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16626     uint32_t sb_bit =  1 << (idu_sb_id%32);
16627     uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16628     uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16629 
16630     /* Not supported in BC mode */
16631     if (CHIP_INT_MODE_IS_BC(sc)) {
16632         return;
16633     }
16634 
16635     data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16636              IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16637             IGU_REGULAR_CLEANUP_SET |
16638             IGU_REGULAR_BCLEANUP);
16639 
16640     ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16641            (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16642            (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16643 
16644     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16645             data, igu_addr_data);
16646     REG_WR(sc, igu_addr_data, data);
16647 
16648     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16649                       BUS_SPACE_BARRIER_WRITE);
16650     mb();
16651 
16652     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16653             ctl, igu_addr_ctl);
16654     REG_WR(sc, igu_addr_ctl, ctl);
16655 
16656     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16657                       BUS_SPACE_BARRIER_WRITE);
16658     mb();
16659 
16660     /* wait for clean up to finish */
16661     while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16662         DELAY(20000);
16663     }
16664 
16665     if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16666         BLOGD(sc, DBG_LOAD,
16667               "Unable to finish IGU cleanup: "
16668               "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16669               idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16670     }
16671 }
16672 
16673 static void
16674 bxe_igu_clear_sb(struct bxe_softc *sc,
16675                  uint8_t          idu_sb_id)
16676 {
16677     bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16678 }
16679 
16680 
16681 
16682 
16683 
16684 
16685 
16686 /*******************/
16687 /* ECORE CALLBACKS */
16688 /*******************/
16689 
16690 static void
16691 bxe_reset_common(struct bxe_softc *sc)
16692 {
16693     uint32_t val = 0x1400;
16694 
16695     /* reset_common */
16696     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16697 
16698     if (CHIP_IS_E3(sc)) {
16699         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16700         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16701     }
16702 
16703     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16704 }
16705 
16706 static void
16707 bxe_common_init_phy(struct bxe_softc *sc)
16708 {
16709     uint32_t shmem_base[2];
16710     uint32_t shmem2_base[2];
16711 
16712     /* Avoid common init in case MFW supports LFA */
16713     if (SHMEM2_RD(sc, size) >
16714         (uint32_t)offsetof(struct shmem2_region,
16715                            lfa_host_addr[SC_PORT(sc)])) {
16716         return;
16717     }
16718 
16719     shmem_base[0]  = sc->devinfo.shmem_base;
16720     shmem2_base[0] = sc->devinfo.shmem2_base;
16721 
16722     if (!CHIP_IS_E1x(sc)) {
16723         shmem_base[1]  = SHMEM2_RD(sc, other_shmem_base_addr);
16724         shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16725     }
16726 
16727     BXE_PHY_LOCK(sc);
16728     elink_common_init_phy(sc, shmem_base, shmem2_base,
16729                           sc->devinfo.chip_id, 0);
16730     BXE_PHY_UNLOCK(sc);
16731 }
16732 
16733 static void
16734 bxe_pf_disable(struct bxe_softc *sc)
16735 {
16736     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16737 
16738     val &= ~IGU_PF_CONF_FUNC_EN;
16739 
16740     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16741     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16742     REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16743 }
16744 
16745 static void
16746 bxe_init_pxp(struct bxe_softc *sc)
16747 {
16748     uint16_t devctl;
16749     int r_order, w_order;
16750 
16751     devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2);
16752 
16753     BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16754 
16755     w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
16756 
16757     if (sc->mrrs == -1) {
16758         r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
16759     } else {
16760         BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16761         r_order = sc->mrrs;
16762     }
16763 
16764     ecore_init_pxp_arb(sc, r_order, w_order);
16765 }
16766 
16767 static uint32_t
16768 bxe_get_pretend_reg(struct bxe_softc *sc)
16769 {
16770     uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16771     uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16772     return (base + (SC_ABS_FUNC(sc)) * stride);
16773 }
16774 
16775 /*
16776  * Called only on E1H or E2.
16777  * When pretending to be PF, the pretend value is the function number 0..7.
16778  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16779  * combination.
16780  */
16781 static int
16782 bxe_pretend_func(struct bxe_softc *sc,
16783                  uint16_t         pretend_func_val)
16784 {
16785     uint32_t pretend_reg;
16786 
16787     if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16788         return (-1);
16789     }
16790 
16791     /* get my own pretend register */
16792     pretend_reg = bxe_get_pretend_reg(sc);
16793     REG_WR(sc, pretend_reg, pretend_func_val);
16794     REG_RD(sc, pretend_reg);
16795     return (0);
16796 }
16797 
16798 static void
16799 bxe_iov_init_dmae(struct bxe_softc *sc)
16800 {
16801     return;
16802 #if 0
16803     BLOGD(sc, DBG_LOAD, "SRIOV is %s\n", IS_SRIOV(sc) ? "ON" : "OFF");
16804 
16805     if (!IS_SRIOV(sc)) {
16806         return;
16807     }
16808 
16809     REG_WR(sc, DMAE_REG_BACKWARD_COMP_EN, 0);
16810 #endif
16811 }
16812 
16813 #if 0
16814 static int
16815 bxe_iov_init_ilt(struct bxe_softc *sc,
16816                  uint16_t         line)
16817 {
16818     return (line);
16819 #if 0
16820     int i;
16821     struct ecore_ilt* ilt = sc->ilt;
16822 
16823     if (!IS_SRIOV(sc)) {
16824         return (line);
16825     }
16826 
16827     /* set vfs ilt lines */
16828     for (i = 0; i < BXE_VF_CIDS/ILT_PAGE_CIDS ; i++) {
16829         struct hw_dma *hw_cxt = SC_VF_CXT_PAGE(sc,i);
16830         ilt->lines[line+i].page = hw_cxt->addr;
16831         ilt->lines[line+i].page_mapping = hw_cxt->mapping;
16832         ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
16833     }
16834     return (line+i);
16835 #endif
16836 }
16837 #endif
16838 
16839 static void
16840 bxe_iov_init_dq(struct bxe_softc *sc)
16841 {
16842     return;
16843 #if 0
16844     if (!IS_SRIOV(sc)) {
16845         return;
16846     }
16847 
16848     /* Set the DQ such that the CID reflect the abs_vfid */
16849     REG_WR(sc, DORQ_REG_VF_NORM_VF_BASE, 0);
16850     REG_WR(sc, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
16851 
16852     /*
16853      * Set VFs starting CID. If its > 0 the preceding CIDs are belong to
16854      * the PF L2 queues
16855      */
16856     REG_WR(sc, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
16857 
16858     /* The VF window size is the log2 of the max number of CIDs per VF */
16859     REG_WR(sc, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
16860 
16861     /*
16862      * The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
16863      * the Pf doorbell size although the 2 are independent.
16864      */
16865     REG_WR(sc, DORQ_REG_VF_NORM_CID_OFST,
16866            BNX2X_DB_SHIFT - BNX2X_DB_MIN_SHIFT);
16867 
16868     /*
16869      * No security checks for now -
16870      * configure single rule (out of 16) mask = 0x1, value = 0x0,
16871      * CID range 0 - 0x1ffff
16872      */
16873     REG_WR(sc, DORQ_REG_VF_TYPE_MASK_0, 1);
16874     REG_WR(sc, DORQ_REG_VF_TYPE_VALUE_0, 0);
16875     REG_WR(sc, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
16876     REG_WR(sc, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
16877 
16878     /* set the number of VF alllowed doorbells to the full DQ range */
16879     REG_WR(sc, DORQ_REG_VF_NORM_MAX_CID_COUNT, 0x20000);
16880 
16881     /* set the VF doorbell threshold */
16882     REG_WR(sc, DORQ_REG_VF_USAGE_CT_LIMIT, 4);
16883 #endif
16884 }
16885 
16886 /* send a NIG loopback debug packet */
16887 static void
16888 bxe_lb_pckt(struct bxe_softc *sc)
16889 {
16890     uint32_t wb_write[3];
16891 
16892     /* Ethernet source and destination addresses */
16893     wb_write[0] = 0x55555555;
16894     wb_write[1] = 0x55555555;
16895     wb_write[2] = 0x20;     /* SOP */
16896     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16897 
16898     /* NON-IP protocol */
16899     wb_write[0] = 0x09000000;
16900     wb_write[1] = 0x55555555;
16901     wb_write[2] = 0x10;     /* EOP, eop_bvalid = 0 */
16902     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16903 }
16904 
16905 /*
16906  * Some of the internal memories are not directly readable from the driver.
16907  * To test them we send debug packets.
16908  */
16909 static int
16910 bxe_int_mem_test(struct bxe_softc *sc)
16911 {
16912     int factor;
16913     int count, i;
16914     uint32_t val = 0;
16915 
16916     if (CHIP_REV_IS_FPGA(sc)) {
16917         factor = 120;
16918     } else if (CHIP_REV_IS_EMUL(sc)) {
16919         factor = 200;
16920     } else {
16921         factor = 1;
16922     }
16923 
16924     /* disable inputs of parser neighbor blocks */
16925     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16926     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16927     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16928     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16929 
16930     /*  write 0 to parser credits for CFC search request */
16931     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16932 
16933     /* send Ethernet packet */
16934     bxe_lb_pckt(sc);
16935 
16936     /* TODO do i reset NIG statistic? */
16937     /* Wait until NIG register shows 1 packet of size 0x10 */
16938     count = 1000 * factor;
16939     while (count) {
16940         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16941         val = *BXE_SP(sc, wb_data[0]);
16942         if (val == 0x10) {
16943             break;
16944         }
16945 
16946         DELAY(10000);
16947         count--;
16948     }
16949 
16950     if (val != 0x10) {
16951         BLOGE(sc, "NIG timeout val=0x%x\n", val);
16952         return (-1);
16953     }
16954 
16955     /* wait until PRS register shows 1 packet */
16956     count = (1000 * factor);
16957     while (count) {
16958         val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16959         if (val == 1) {
16960             break;
16961         }
16962 
16963         DELAY(10000);
16964         count--;
16965     }
16966 
16967     if (val != 0x1) {
16968         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16969         return (-2);
16970     }
16971 
16972     /* Reset and init BRB, PRS */
16973     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16974     DELAY(50000);
16975     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16976     DELAY(50000);
16977     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16978     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16979 
16980     /* Disable inputs of parser neighbor blocks */
16981     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16982     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16983     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16984     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16985 
16986     /* Write 0 to parser credits for CFC search request */
16987     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16988 
16989     /* send 10 Ethernet packets */
16990     for (i = 0; i < 10; i++) {
16991         bxe_lb_pckt(sc);
16992     }
16993 
16994     /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
16995     count = (1000 * factor);
16996     while (count) {
16997         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16998         val = *BXE_SP(sc, wb_data[0]);
16999         if (val == 0xb0) {
17000             break;
17001         }
17002 
17003         DELAY(10000);
17004         count--;
17005     }
17006 
17007     if (val != 0xb0) {
17008         BLOGE(sc, "NIG timeout val=0x%x\n", val);
17009         return (-3);
17010     }
17011 
17012     /* Wait until PRS register shows 2 packets */
17013     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
17014     if (val != 2) {
17015         BLOGE(sc, "PRS timeout val=0x%x\n", val);
17016     }
17017 
17018     /* Write 1 to parser credits for CFC search request */
17019     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
17020 
17021     /* Wait until PRS register shows 3 packets */
17022     DELAY(10000 * factor);
17023 
17024     /* Wait until NIG register shows 1 packet of size 0x10 */
17025     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
17026     if (val != 3) {
17027         BLOGE(sc, "PRS timeout val=0x%x\n", val);
17028     }
17029 
17030     /* clear NIG EOP FIFO */
17031     for (i = 0; i < 11; i++) {
17032         REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
17033     }
17034 
17035     val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
17036     if (val != 1) {
17037         BLOGE(sc, "clear of NIG failed\n");
17038         return (-4);
17039     }
17040 
17041     /* Reset and init BRB, PRS, NIG */
17042     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
17043     DELAY(50000);
17044     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
17045     DELAY(50000);
17046     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17047     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17048     if (!CNIC_SUPPORT(sc)) {
17049         /* set NIC mode */
17050         REG_WR(sc, PRS_REG_NIC_MODE, 1);
17051     }
17052 
17053     /* Enable inputs of parser neighbor blocks */
17054     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
17055     REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
17056     REG_WR(sc, CFC_REG_DEBUG0, 0x0);
17057     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
17058 
17059     return (0);
17060 }
17061 
17062 static void
17063 bxe_setup_fan_failure_detection(struct bxe_softc *sc)
17064 {
17065     int is_required;
17066     uint32_t val;
17067     int port;
17068 
17069     is_required = 0;
17070     val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
17071            SHARED_HW_CFG_FAN_FAILURE_MASK);
17072 
17073     if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
17074         is_required = 1;
17075     }
17076     /*
17077      * The fan failure mechanism is usually related to the PHY type since
17078      * the power consumption of the board is affected by the PHY. Currently,
17079      * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
17080      */
17081     else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
17082         for (port = PORT_0; port < PORT_MAX; port++) {
17083             is_required |= elink_fan_failure_det_req(sc,
17084                                                      sc->devinfo.shmem_base,
17085                                                      sc->devinfo.shmem2_base,
17086                                                      port);
17087         }
17088     }
17089 
17090     BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
17091 
17092     if (is_required == 0) {
17093         return;
17094     }
17095 
17096     /* Fan failure is indicated by SPIO 5 */
17097     bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
17098 
17099     /* set to active low mode */
17100     val = REG_RD(sc, MISC_REG_SPIO_INT);
17101     val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
17102     REG_WR(sc, MISC_REG_SPIO_INT, val);
17103 
17104     /* enable interrupt to signal the IGU */
17105     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17106     val |= MISC_SPIO_SPIO5;
17107     REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
17108 }
17109 
17110 static void
17111 bxe_enable_blocks_attention(struct bxe_softc *sc)
17112 {
17113     uint32_t val;
17114 
17115     REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17116     if (!CHIP_IS_E1x(sc)) {
17117         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
17118     } else {
17119         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
17120     }
17121     REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17122     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17123     /*
17124      * mask read length error interrupts in brb for parser
17125      * (parsing unit and 'checksum and crc' unit)
17126      * these errors are legal (PU reads fixed length and CAC can cause
17127      * read length error on truncated packets)
17128      */
17129     REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
17130     REG_WR(sc, QM_REG_QM_INT_MASK, 0);
17131     REG_WR(sc, TM_REG_TM_INT_MASK, 0);
17132     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
17133     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
17134     REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
17135 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
17136 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
17137     REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
17138     REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
17139     REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
17140 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
17141 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
17142     REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
17143     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
17144     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
17145     REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
17146 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
17147 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
17148 
17149     val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
17150            PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
17151            PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
17152     if (!CHIP_IS_E1x(sc)) {
17153         val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
17154                 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
17155     }
17156     REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
17157 
17158     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
17159     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
17160     REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
17161 /*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
17162 
17163     if (!CHIP_IS_E1x(sc)) {
17164         /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
17165         REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
17166     }
17167 
17168     REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
17169     REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
17170 /*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
17171     REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18);     /* bit 3,4 masked */
17172 }
17173 
17174 /**
17175  * bxe_init_hw_common - initialize the HW at the COMMON phase.
17176  *
17177  * @sc:     driver handle
17178  */
17179 static int
17180 bxe_init_hw_common(struct bxe_softc *sc)
17181 {
17182     uint8_t abs_func_id;
17183     uint32_t val;
17184 
17185     BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
17186           SC_ABS_FUNC(sc));
17187 
17188     /*
17189      * take the RESET lock to protect undi_unload flow from accessing
17190      * registers while we are resetting the chip
17191      */
17192     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17193 
17194     bxe_reset_common(sc);
17195 
17196     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
17197 
17198     val = 0xfffc;
17199     if (CHIP_IS_E3(sc)) {
17200         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
17201         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
17202     }
17203 
17204     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
17205 
17206     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17207 
17208     ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
17209     BLOGD(sc, DBG_LOAD, "after misc block init\n");
17210 
17211     if (!CHIP_IS_E1x(sc)) {
17212         /*
17213          * 4-port mode or 2-port mode we need to turn off master-enable for
17214          * everyone. After that we turn it back on for self. So, we disregard
17215          * multi-function, and always disable all functions on the given path,
17216          * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
17217          */
17218         for (abs_func_id = SC_PATH(sc);
17219              abs_func_id < (E2_FUNC_MAX * 2);
17220              abs_func_id += 2) {
17221             if (abs_func_id == SC_ABS_FUNC(sc)) {
17222                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17223                 continue;
17224             }
17225 
17226             bxe_pretend_func(sc, abs_func_id);
17227 
17228             /* clear pf enable */
17229             bxe_pf_disable(sc);
17230 
17231             bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17232         }
17233     }
17234 
17235     BLOGD(sc, DBG_LOAD, "after pf disable\n");
17236 
17237     ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
17238 
17239     if (CHIP_IS_E1(sc)) {
17240         /*
17241          * enable HW interrupt from PXP on USDM overflow
17242          * bit 16 on INT_MASK_0
17243          */
17244         REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17245     }
17246 
17247     ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
17248     bxe_init_pxp(sc);
17249 
17250 #ifdef __BIG_ENDIAN
17251     REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
17252     REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
17253     REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
17254     REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
17255     REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
17256     /* make sure this value is 0 */
17257     REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
17258 
17259     //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
17260     REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
17261     REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
17262     REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
17263     REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
17264 #endif
17265 
17266     ecore_ilt_init_page_size(sc, INITOP_SET);
17267 
17268     if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
17269         REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
17270     }
17271 
17272     /* let the HW do it's magic... */
17273     DELAY(100000);
17274 
17275     /* finish PXP init */
17276     val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
17277     if (val != 1) {
17278         BLOGE(sc, "PXP2 CFG failed\n");
17279         return (-1);
17280     }
17281     val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
17282     if (val != 1) {
17283         BLOGE(sc, "PXP2 RD_INIT failed\n");
17284         return (-1);
17285     }
17286 
17287     BLOGD(sc, DBG_LOAD, "after pxp init\n");
17288 
17289     /*
17290      * Timer bug workaround for E2 only. We need to set the entire ILT to have
17291      * entries with value "0" and valid bit on. This needs to be done by the
17292      * first PF that is loaded in a path (i.e. common phase)
17293      */
17294     if (!CHIP_IS_E1x(sc)) {
17295 /*
17296  * In E2 there is a bug in the timers block that can cause function 6 / 7
17297  * (i.e. vnic3) to start even if it is marked as "scan-off".
17298  * This occurs when a different function (func2,3) is being marked
17299  * as "scan-off". Real-life scenario for example: if a driver is being
17300  * load-unloaded while func6,7 are down. This will cause the timer to access
17301  * the ilt, translate to a logical address and send a request to read/write.
17302  * Since the ilt for the function that is down is not valid, this will cause
17303  * a translation error which is unrecoverable.
17304  * The Workaround is intended to make sure that when this happens nothing
17305  * fatal will occur. The workaround:
17306  *  1.  First PF driver which loads on a path will:
17307  *      a.  After taking the chip out of reset, by using pretend,
17308  *          it will write "0" to the following registers of
17309  *          the other vnics.
17310  *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
17311  *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
17312  *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
17313  *          And for itself it will write '1' to
17314  *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
17315  *          dmae-operations (writing to pram for example.)
17316  *          note: can be done for only function 6,7 but cleaner this
17317  *            way.
17318  *      b.  Write zero+valid to the entire ILT.
17319  *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
17320  *          VNIC3 (of that port). The range allocated will be the
17321  *          entire ILT. This is needed to prevent  ILT range error.
17322  *  2.  Any PF driver load flow:
17323  *      a.  ILT update with the physical addresses of the allocated
17324  *          logical pages.
17325  *      b.  Wait 20msec. - note that this timeout is needed to make
17326  *          sure there are no requests in one of the PXP internal
17327  *          queues with "old" ILT addresses.
17328  *      c.  PF enable in the PGLC.
17329  *      d.  Clear the was_error of the PF in the PGLC. (could have
17330  *          occurred while driver was down)
17331  *      e.  PF enable in the CFC (WEAK + STRONG)
17332  *      f.  Timers scan enable
17333  *  3.  PF driver unload flow:
17334  *      a.  Clear the Timers scan_en.
17335  *      b.  Polling for scan_on=0 for that PF.
17336  *      c.  Clear the PF enable bit in the PXP.
17337  *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
17338  *      e.  Write zero+valid to all ILT entries (The valid bit must
17339  *          stay set)
17340  *      f.  If this is VNIC 3 of a port then also init
17341  *          first_timers_ilt_entry to zero and last_timers_ilt_entry
17342  *          to the last enrty in the ILT.
17343  *
17344  *      Notes:
17345  *      Currently the PF error in the PGLC is non recoverable.
17346  *      In the future the there will be a recovery routine for this error.
17347  *      Currently attention is masked.
17348  *      Having an MCP lock on the load/unload process does not guarantee that
17349  *      there is no Timer disable during Func6/7 enable. This is because the
17350  *      Timers scan is currently being cleared by the MCP on FLR.
17351  *      Step 2.d can be done only for PF6/7 and the driver can also check if
17352  *      there is error before clearing it. But the flow above is simpler and
17353  *      more general.
17354  *      All ILT entries are written by zero+valid and not just PF6/7
17355  *      ILT entries since in the future the ILT entries allocation for
17356  *      PF-s might be dynamic.
17357  */
17358         struct ilt_client_info ilt_cli;
17359         struct ecore_ilt ilt;
17360 
17361         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
17362         memset(&ilt, 0, sizeof(struct ecore_ilt));
17363 
17364         /* initialize dummy TM client */
17365         ilt_cli.start      = 0;
17366         ilt_cli.end        = ILT_NUM_PAGE_ENTRIES - 1;
17367         ilt_cli.client_num = ILT_CLIENT_TM;
17368 
17369         /*
17370          * Step 1: set zeroes to all ilt page entries with valid bit on
17371          * Step 2: set the timers first/last ilt entry to point
17372          * to the entire range to prevent ILT range error for 3rd/4th
17373          * vnic (this code assumes existence of the vnic)
17374          *
17375          * both steps performed by call to ecore_ilt_client_init_op()
17376          * with dummy TM client
17377          *
17378          * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
17379          * and his brother are split registers
17380          */
17381 
17382         bxe_pretend_func(sc, (SC_PATH(sc) + 6));
17383         ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
17384         bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17385 
17386         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
17387         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
17388         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
17389     }
17390 
17391     REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
17392     REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
17393 
17394     if (!CHIP_IS_E1x(sc)) {
17395         int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
17396                      (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
17397 
17398         ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
17399         ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
17400 
17401         /* let the HW do it's magic... */
17402         do {
17403             DELAY(200000);
17404             val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
17405         } while (factor-- && (val != 1));
17406 
17407         if (val != 1) {
17408             BLOGE(sc, "ATC_INIT failed\n");
17409             return (-1);
17410         }
17411     }
17412 
17413     BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
17414 
17415     ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
17416 
17417     bxe_iov_init_dmae(sc);
17418 
17419     /* clean the DMAE memory */
17420     sc->dmae_ready = 1;
17421     ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
17422 
17423     ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
17424 
17425     ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
17426 
17427     ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
17428 
17429     ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
17430 
17431     bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
17432     bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
17433     bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
17434     bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
17435 
17436     ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
17437 
17438     /* QM queues pointers table */
17439     ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
17440 
17441     /* soft reset pulse */
17442     REG_WR(sc, QM_REG_SOFT_RESET, 1);
17443     REG_WR(sc, QM_REG_SOFT_RESET, 0);
17444 
17445     if (CNIC_SUPPORT(sc))
17446         ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
17447 
17448     ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
17449     REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
17450     if (!CHIP_REV_IS_SLOW(sc)) {
17451         /* enable hw interrupt from doorbell Q */
17452         REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17453     }
17454 
17455     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17456 
17457     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17458     REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
17459 
17460     if (!CHIP_IS_E1(sc)) {
17461         REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
17462     }
17463 
17464     if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
17465         if (IS_MF_AFEX(sc)) {
17466             /*
17467              * configure that AFEX and VLAN headers must be
17468              * received in AFEX mode
17469              */
17470             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
17471             REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
17472             REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
17473             REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
17474             REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
17475         } else {
17476             /*
17477              * Bit-map indicating which L2 hdrs may appear
17478              * after the basic Ethernet header
17479              */
17480             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
17481                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17482         }
17483     }
17484 
17485     ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
17486     ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
17487     ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
17488     ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
17489 
17490     if (!CHIP_IS_E1x(sc)) {
17491         /* reset VFC memories */
17492         REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17493                VFC_MEMORIES_RST_REG_CAM_RST |
17494                VFC_MEMORIES_RST_REG_RAM_RST);
17495         REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17496                VFC_MEMORIES_RST_REG_CAM_RST |
17497                VFC_MEMORIES_RST_REG_RAM_RST);
17498 
17499         DELAY(20000);
17500     }
17501 
17502     ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
17503     ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
17504     ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
17505     ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
17506 
17507     /* sync semi rtc */
17508     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
17509            0x80000000);
17510     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
17511            0x80000000);
17512 
17513     ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
17514     ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
17515     ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
17516 
17517     if (!CHIP_IS_E1x(sc)) {
17518         if (IS_MF_AFEX(sc)) {
17519             /*
17520              * configure that AFEX and VLAN headers must be
17521              * sent in AFEX mode
17522              */
17523             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
17524             REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
17525             REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
17526             REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
17527             REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
17528         } else {
17529             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
17530                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17531         }
17532     }
17533 
17534     REG_WR(sc, SRC_REG_SOFT_RST, 1);
17535 
17536     ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
17537 
17538     if (CNIC_SUPPORT(sc)) {
17539         REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
17540         REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
17541         REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
17542         REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
17543         REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
17544         REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
17545         REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
17546         REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
17547         REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
17548         REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
17549     }
17550     REG_WR(sc, SRC_REG_SOFT_RST, 0);
17551 
17552     if (sizeof(union cdu_context) != 1024) {
17553         /* we currently assume that a context is 1024 bytes */
17554         BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
17555               (long)sizeof(union cdu_context));
17556     }
17557 
17558     ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
17559     val = (4 << 24) + (0 << 12) + 1024;
17560     REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
17561 
17562     ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
17563 
17564     REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
17565     /* enable context validation interrupt from CFC */
17566     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17567 
17568     /* set the thresholds to prevent CFC/CDU race */
17569     REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
17570     ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
17571 
17572     if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
17573         REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
17574     }
17575 
17576     ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
17577     ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
17578 
17579     /* Reset PCIE errors for debug */
17580     REG_WR(sc, 0x2814, 0xffffffff);
17581     REG_WR(sc, 0x3820, 0xffffffff);
17582 
17583     if (!CHIP_IS_E1x(sc)) {
17584         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
17585                (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
17586                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
17587         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
17588                (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
17589                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
17590                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
17591         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
17592                (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17593                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17594                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17595     }
17596 
17597     ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17598 
17599     if (!CHIP_IS_E1(sc)) {
17600         /* in E3 this done in per-port section */
17601         if (!CHIP_IS_E3(sc))
17602             REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17603     }
17604 
17605     if (CHIP_IS_E1H(sc)) {
17606         /* not applicable for E2 (and above ...) */
17607         REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17608     }
17609 
17610     if (CHIP_REV_IS_SLOW(sc)) {
17611         DELAY(200000);
17612     }
17613 
17614     /* finish CFC init */
17615     val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17616     if (val != 1) {
17617         BLOGE(sc, "CFC LL_INIT failed\n");
17618         return (-1);
17619     }
17620     val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17621     if (val != 1) {
17622         BLOGE(sc, "CFC AC_INIT failed\n");
17623         return (-1);
17624     }
17625     val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17626     if (val != 1) {
17627         BLOGE(sc, "CFC CAM_INIT failed\n");
17628         return (-1);
17629     }
17630     REG_WR(sc, CFC_REG_DEBUG0, 0);
17631 
17632     if (CHIP_IS_E1(sc)) {
17633         /* read NIG statistic to see if this is our first up since powerup */
17634         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17635         val = *BXE_SP(sc, wb_data[0]);
17636 
17637         /* do internal memory self test */
17638         if ((val == 0) && bxe_int_mem_test(sc)) {
17639             BLOGE(sc, "internal mem self test failed\n");
17640             return (-1);
17641         }
17642     }
17643 
17644     bxe_setup_fan_failure_detection(sc);
17645 
17646     /* clear PXP2 attentions */
17647     REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17648 
17649     bxe_enable_blocks_attention(sc);
17650 
17651     if (!CHIP_REV_IS_SLOW(sc)) {
17652         ecore_enable_blocks_parity(sc);
17653     }
17654 
17655     if (!BXE_NOMCP(sc)) {
17656         if (CHIP_IS_E1x(sc)) {
17657             bxe_common_init_phy(sc);
17658         }
17659     }
17660 
17661     return (0);
17662 }
17663 
17664 /**
17665  * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17666  *
17667  * @sc:     driver handle
17668  */
17669 static int
17670 bxe_init_hw_common_chip(struct bxe_softc *sc)
17671 {
17672     int rc = bxe_init_hw_common(sc);
17673 
17674     if (rc) {
17675         return (rc);
17676     }
17677 
17678     /* In E2 2-PORT mode, same ext phy is used for the two paths */
17679     if (!BXE_NOMCP(sc)) {
17680         bxe_common_init_phy(sc);
17681     }
17682 
17683     return (0);
17684 }
17685 
17686 static int
17687 bxe_init_hw_port(struct bxe_softc *sc)
17688 {
17689     int port = SC_PORT(sc);
17690     int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17691     uint32_t low, high;
17692     uint32_t val;
17693 
17694     BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17695 
17696     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17697 
17698     ecore_init_block(sc, BLOCK_MISC, init_phase);
17699     ecore_init_block(sc, BLOCK_PXP, init_phase);
17700     ecore_init_block(sc, BLOCK_PXP2, init_phase);
17701 
17702     /*
17703      * Timers bug workaround: disables the pf_master bit in pglue at
17704      * common phase, we need to enable it here before any dmae access are
17705      * attempted. Therefore we manually added the enable-master to the
17706      * port phase (it also happens in the function phase)
17707      */
17708     if (!CHIP_IS_E1x(sc)) {
17709         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17710     }
17711 
17712     ecore_init_block(sc, BLOCK_ATC, init_phase);
17713     ecore_init_block(sc, BLOCK_DMAE, init_phase);
17714     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17715     ecore_init_block(sc, BLOCK_QM, init_phase);
17716 
17717     ecore_init_block(sc, BLOCK_TCM, init_phase);
17718     ecore_init_block(sc, BLOCK_UCM, init_phase);
17719     ecore_init_block(sc, BLOCK_CCM, init_phase);
17720     ecore_init_block(sc, BLOCK_XCM, init_phase);
17721 
17722     /* QM cid (connection) count */
17723     ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17724 
17725     if (CNIC_SUPPORT(sc)) {
17726         ecore_init_block(sc, BLOCK_TM, init_phase);
17727         REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17728         REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17729     }
17730 
17731     ecore_init_block(sc, BLOCK_DORQ, init_phase);
17732 
17733     ecore_init_block(sc, BLOCK_BRB1, init_phase);
17734 
17735     if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17736         if (IS_MF(sc)) {
17737             low = (BXE_ONE_PORT(sc) ? 160 : 246);
17738         } else if (sc->mtu > 4096) {
17739             if (BXE_ONE_PORT(sc)) {
17740                 low = 160;
17741             } else {
17742                 val = sc->mtu;
17743                 /* (24*1024 + val*4)/256 */
17744                 low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17745             }
17746         } else {
17747             low = (BXE_ONE_PORT(sc) ? 80 : 160);
17748         }
17749         high = (low + 56); /* 14*1024/256 */
17750         REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17751         REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17752     }
17753 
17754     if (CHIP_IS_MODE_4_PORT(sc)) {
17755         REG_WR(sc, SC_PORT(sc) ?
17756                BRB1_REG_MAC_GUARANTIED_1 :
17757                BRB1_REG_MAC_GUARANTIED_0, 40);
17758     }
17759 
17760     ecore_init_block(sc, BLOCK_PRS, init_phase);
17761     if (CHIP_IS_E3B0(sc)) {
17762         if (IS_MF_AFEX(sc)) {
17763             /* configure headers for AFEX mode */
17764             REG_WR(sc, SC_PORT(sc) ?
17765                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17766                    PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17767             REG_WR(sc, SC_PORT(sc) ?
17768                    PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17769                    PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17770             REG_WR(sc, SC_PORT(sc) ?
17771                    PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17772                    PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17773         } else {
17774             /* Ovlan exists only if we are in multi-function +
17775              * switch-dependent mode, in switch-independent there
17776              * is no ovlan headers
17777              */
17778             REG_WR(sc, SC_PORT(sc) ?
17779                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17780                    PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17781                    (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17782         }
17783     }
17784 
17785     ecore_init_block(sc, BLOCK_TSDM, init_phase);
17786     ecore_init_block(sc, BLOCK_CSDM, init_phase);
17787     ecore_init_block(sc, BLOCK_USDM, init_phase);
17788     ecore_init_block(sc, BLOCK_XSDM, init_phase);
17789 
17790     ecore_init_block(sc, BLOCK_TSEM, init_phase);
17791     ecore_init_block(sc, BLOCK_USEM, init_phase);
17792     ecore_init_block(sc, BLOCK_CSEM, init_phase);
17793     ecore_init_block(sc, BLOCK_XSEM, init_phase);
17794 
17795     ecore_init_block(sc, BLOCK_UPB, init_phase);
17796     ecore_init_block(sc, BLOCK_XPB, init_phase);
17797 
17798     ecore_init_block(sc, BLOCK_PBF, init_phase);
17799 
17800     if (CHIP_IS_E1x(sc)) {
17801         /* configure PBF to work without PAUSE mtu 9000 */
17802         REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17803 
17804         /* update threshold */
17805         REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17806         /* update init credit */
17807         REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17808 
17809         /* probe changes */
17810         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17811         DELAY(50);
17812         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17813     }
17814 
17815     if (CNIC_SUPPORT(sc)) {
17816         ecore_init_block(sc, BLOCK_SRC, init_phase);
17817     }
17818 
17819     ecore_init_block(sc, BLOCK_CDU, init_phase);
17820     ecore_init_block(sc, BLOCK_CFC, init_phase);
17821 
17822     if (CHIP_IS_E1(sc)) {
17823         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17824         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17825     }
17826     ecore_init_block(sc, BLOCK_HC, init_phase);
17827 
17828     ecore_init_block(sc, BLOCK_IGU, init_phase);
17829 
17830     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17831     /* init aeu_mask_attn_func_0/1:
17832      *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17833      *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17834      *             bits 4-7 are used for "per vn group attention" */
17835     val = IS_MF(sc) ? 0xF7 : 0x7;
17836     /* Enable DCBX attention for all but E1 */
17837     val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17838     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17839 
17840     ecore_init_block(sc, BLOCK_NIG, init_phase);
17841 
17842     if (!CHIP_IS_E1x(sc)) {
17843         /* Bit-map indicating which L2 hdrs may appear after the
17844          * basic Ethernet header
17845          */
17846         if (IS_MF_AFEX(sc)) {
17847             REG_WR(sc, SC_PORT(sc) ?
17848                    NIG_REG_P1_HDRS_AFTER_BASIC :
17849                    NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17850         } else {
17851             REG_WR(sc, SC_PORT(sc) ?
17852                    NIG_REG_P1_HDRS_AFTER_BASIC :
17853                    NIG_REG_P0_HDRS_AFTER_BASIC,
17854                    IS_MF_SD(sc) ? 7 : 6);
17855         }
17856 
17857         if (CHIP_IS_E3(sc)) {
17858             REG_WR(sc, SC_PORT(sc) ?
17859                    NIG_REG_LLH1_MF_MODE :
17860                    NIG_REG_LLH_MF_MODE, IS_MF(sc));
17861         }
17862     }
17863     if (!CHIP_IS_E3(sc)) {
17864         REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17865     }
17866 
17867     if (!CHIP_IS_E1(sc)) {
17868         /* 0x2 disable mf_ov, 0x1 enable */
17869         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17870                (IS_MF_SD(sc) ? 0x1 : 0x2));
17871 
17872         if (!CHIP_IS_E1x(sc)) {
17873             val = 0;
17874             switch (sc->devinfo.mf_info.mf_mode) {
17875             case MULTI_FUNCTION_SD:
17876                 val = 1;
17877                 break;
17878             case MULTI_FUNCTION_SI:
17879             case MULTI_FUNCTION_AFEX:
17880                 val = 2;
17881                 break;
17882             }
17883 
17884             REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17885                         NIG_REG_LLH0_CLS_TYPE), val);
17886         }
17887         REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17888         REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17889         REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17890     }
17891 
17892     /* If SPIO5 is set to generate interrupts, enable it for this port */
17893     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17894     if (val & MISC_SPIO_SPIO5) {
17895         uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17896                                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17897         val = REG_RD(sc, reg_addr);
17898         val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17899         REG_WR(sc, reg_addr, val);
17900     }
17901 
17902     return (0);
17903 }
17904 
17905 static uint32_t
17906 bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17907                        uint32_t         reg,
17908                        uint32_t         expected,
17909                        uint32_t         poll_count)
17910 {
17911     uint32_t cur_cnt = poll_count;
17912     uint32_t val;
17913 
17914     while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17915         DELAY(FLR_WAIT_INTERVAL);
17916     }
17917 
17918     return (val);
17919 }
17920 
17921 static int
17922 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17923                               uint32_t         reg,
17924                               char             *msg,
17925                               uint32_t         poll_cnt)
17926 {
17927     uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17928 
17929     if (val != 0) {
17930         BLOGE(sc, "%s usage count=%d\n", msg, val);
17931         return (1);
17932     }
17933 
17934     return (0);
17935 }
17936 
17937 /* Common routines with VF FLR cleanup */
17938 static uint32_t
17939 bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17940 {
17941     /* adjust polling timeout */
17942     if (CHIP_REV_IS_EMUL(sc)) {
17943         return (FLR_POLL_CNT * 2000);
17944     }
17945 
17946     if (CHIP_REV_IS_FPGA(sc)) {
17947         return (FLR_POLL_CNT * 120);
17948     }
17949 
17950     return (FLR_POLL_CNT);
17951 }
17952 
17953 static int
17954 bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17955                            uint32_t         poll_cnt)
17956 {
17957     /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17958     if (bxe_flr_clnup_poll_hw_counter(sc,
17959                                       CFC_REG_NUM_LCIDS_INSIDE_PF,
17960                                       "CFC PF usage counter timed out",
17961                                       poll_cnt)) {
17962         return (1);
17963     }
17964 
17965     /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17966     if (bxe_flr_clnup_poll_hw_counter(sc,
17967                                       DORQ_REG_PF_USAGE_CNT,
17968                                       "DQ PF usage counter timed out",
17969                                       poll_cnt)) {
17970         return (1);
17971     }
17972 
17973     /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17974     if (bxe_flr_clnup_poll_hw_counter(sc,
17975                                       QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17976                                       "QM PF usage counter timed out",
17977                                       poll_cnt)) {
17978         return (1);
17979     }
17980 
17981     /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17982     if (bxe_flr_clnup_poll_hw_counter(sc,
17983                                       TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
17984                                       "Timers VNIC usage counter timed out",
17985                                       poll_cnt)) {
17986         return (1);
17987     }
17988 
17989     if (bxe_flr_clnup_poll_hw_counter(sc,
17990                                       TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
17991                                       "Timers NUM_SCANS usage counter timed out",
17992                                       poll_cnt)) {
17993         return (1);
17994     }
17995 
17996     /* Wait DMAE PF usage counter to zero */
17997     if (bxe_flr_clnup_poll_hw_counter(sc,
17998                                       dmae_reg_go_c[INIT_DMAE_C(sc)],
17999                                       "DMAE dommand register timed out",
18000                                       poll_cnt)) {
18001         return (1);
18002     }
18003 
18004     return (0);
18005 }
18006 
18007 #define OP_GEN_PARAM(param)                                            \
18008     (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
18009 #define OP_GEN_TYPE(type)                                           \
18010     (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
18011 #define OP_GEN_AGG_VECT(index)                                             \
18012     (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
18013 
18014 static int
18015 bxe_send_final_clnup(struct bxe_softc *sc,
18016                      uint8_t          clnup_func,
18017                      uint32_t         poll_cnt)
18018 {
18019     uint32_t op_gen_command = 0;
18020     uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
18021                           CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
18022     int ret = 0;
18023 
18024     if (REG_RD(sc, comp_addr)) {
18025         BLOGE(sc, "Cleanup complete was not 0 before sending\n");
18026         return (1);
18027     }
18028 
18029     op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
18030     op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
18031     op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
18032     op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
18033 
18034     BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
18035     REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
18036 
18037     if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
18038         BLOGE(sc, "FW final cleanup did not succeed\n");
18039         BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
18040               (REG_RD(sc, comp_addr)));
18041         bxe_panic(sc, ("FLR cleanup failed\n"));
18042         return (1);
18043     }
18044 
18045     /* Zero completion for nxt FLR */
18046     REG_WR(sc, comp_addr, 0);
18047 
18048     return (ret);
18049 }
18050 
18051 static void
18052 bxe_pbf_pN_buf_flushed(struct bxe_softc       *sc,
18053                        struct pbf_pN_buf_regs *regs,
18054                        uint32_t               poll_count)
18055 {
18056     uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
18057     uint32_t cur_cnt = poll_count;
18058 
18059     crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
18060     crd = crd_start = REG_RD(sc, regs->crd);
18061     init_crd = REG_RD(sc, regs->init_crd);
18062 
18063     BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
18064     BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
18065     BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
18066 
18067     while ((crd != init_crd) &&
18068            ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
18069             (init_crd - crd_start))) {
18070         if (cur_cnt--) {
18071             DELAY(FLR_WAIT_INTERVAL);
18072             crd = REG_RD(sc, regs->crd);
18073             crd_freed = REG_RD(sc, regs->crd_freed);
18074         } else {
18075             BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
18076             BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : c:%x\n", regs->pN, crd);
18077             BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
18078             break;
18079         }
18080     }
18081 
18082     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
18083           poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18084 }
18085 
18086 static void
18087 bxe_pbf_pN_cmd_flushed(struct bxe_softc       *sc,
18088                        struct pbf_pN_cmd_regs *regs,
18089                        uint32_t               poll_count)
18090 {
18091     uint32_t occup, to_free, freed, freed_start;
18092     uint32_t cur_cnt = poll_count;
18093 
18094     occup = to_free = REG_RD(sc, regs->lines_occup);
18095     freed = freed_start = REG_RD(sc, regs->lines_freed);
18096 
18097     BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18098     BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18099 
18100     while (occup &&
18101            ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
18102         if (cur_cnt--) {
18103             DELAY(FLR_WAIT_INTERVAL);
18104             occup = REG_RD(sc, regs->lines_occup);
18105             freed = REG_RD(sc, regs->lines_freed);
18106         } else {
18107             BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
18108             BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18109             BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18110             break;
18111         }
18112     }
18113 
18114     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
18115           poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18116 }
18117 
18118 static void
18119 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
18120 {
18121     struct pbf_pN_cmd_regs cmd_regs[] = {
18122         {0, (CHIP_IS_E3B0(sc)) ?
18123             PBF_REG_TQ_OCCUPANCY_Q0 :
18124             PBF_REG_P0_TQ_OCCUPANCY,
18125             (CHIP_IS_E3B0(sc)) ?
18126             PBF_REG_TQ_LINES_FREED_CNT_Q0 :
18127             PBF_REG_P0_TQ_LINES_FREED_CNT},
18128         {1, (CHIP_IS_E3B0(sc)) ?
18129             PBF_REG_TQ_OCCUPANCY_Q1 :
18130             PBF_REG_P1_TQ_OCCUPANCY,
18131             (CHIP_IS_E3B0(sc)) ?
18132             PBF_REG_TQ_LINES_FREED_CNT_Q1 :
18133             PBF_REG_P1_TQ_LINES_FREED_CNT},
18134         {4, (CHIP_IS_E3B0(sc)) ?
18135             PBF_REG_TQ_OCCUPANCY_LB_Q :
18136             PBF_REG_P4_TQ_OCCUPANCY,
18137             (CHIP_IS_E3B0(sc)) ?
18138             PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
18139             PBF_REG_P4_TQ_LINES_FREED_CNT}
18140     };
18141 
18142     struct pbf_pN_buf_regs buf_regs[] = {
18143         {0, (CHIP_IS_E3B0(sc)) ?
18144             PBF_REG_INIT_CRD_Q0 :
18145             PBF_REG_P0_INIT_CRD ,
18146             (CHIP_IS_E3B0(sc)) ?
18147             PBF_REG_CREDIT_Q0 :
18148             PBF_REG_P0_CREDIT,
18149             (CHIP_IS_E3B0(sc)) ?
18150             PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
18151             PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
18152         {1, (CHIP_IS_E3B0(sc)) ?
18153             PBF_REG_INIT_CRD_Q1 :
18154             PBF_REG_P1_INIT_CRD,
18155             (CHIP_IS_E3B0(sc)) ?
18156             PBF_REG_CREDIT_Q1 :
18157             PBF_REG_P1_CREDIT,
18158             (CHIP_IS_E3B0(sc)) ?
18159             PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
18160             PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
18161         {4, (CHIP_IS_E3B0(sc)) ?
18162             PBF_REG_INIT_CRD_LB_Q :
18163             PBF_REG_P4_INIT_CRD,
18164             (CHIP_IS_E3B0(sc)) ?
18165             PBF_REG_CREDIT_LB_Q :
18166             PBF_REG_P4_CREDIT,
18167             (CHIP_IS_E3B0(sc)) ?
18168             PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
18169             PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
18170     };
18171 
18172     int i;
18173 
18174     /* Verify the command queues are flushed P0, P1, P4 */
18175     for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
18176         bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
18177     }
18178 
18179     /* Verify the transmission buffers are flushed P0, P1, P4 */
18180     for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
18181         bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
18182     }
18183 }
18184 
18185 static void
18186 bxe_hw_enable_status(struct bxe_softc *sc)
18187 {
18188     uint32_t val;
18189 
18190     val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
18191     BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
18192 
18193     val = REG_RD(sc, PBF_REG_DISABLE_PF);
18194     BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
18195 
18196     val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
18197     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
18198 
18199     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
18200     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
18201 
18202     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
18203     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
18204 
18205     val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
18206     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
18207 
18208     val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
18209     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
18210 
18211     val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
18212     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
18213 }
18214 
18215 static int
18216 bxe_pf_flr_clnup(struct bxe_softc *sc)
18217 {
18218     uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
18219 
18220     BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
18221 
18222     /* Re-enable PF target read access */
18223     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
18224 
18225     /* Poll HW usage counters */
18226     BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
18227     if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
18228         return (-1);
18229     }
18230 
18231     /* Zero the igu 'trailing edge' and 'leading edge' */
18232 
18233     /* Send the FW cleanup command */
18234     if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
18235         return (-1);
18236     }
18237 
18238     /* ATC cleanup */
18239 
18240     /* Verify TX hw is flushed */
18241     bxe_tx_hw_flushed(sc, poll_cnt);
18242 
18243     /* Wait 100ms (not adjusted according to platform) */
18244     DELAY(100000);
18245 
18246     /* Verify no pending pci transactions */
18247     if (bxe_is_pcie_pending(sc)) {
18248         BLOGE(sc, "PCIE Transactions still pending\n");
18249     }
18250 
18251     /* Debug */
18252     bxe_hw_enable_status(sc);
18253 
18254     /*
18255      * Master enable - Due to WB DMAE writes performed before this
18256      * register is re-initialized as part of the regular function init
18257      */
18258     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18259 
18260     return (0);
18261 }
18262 
18263 #if 0
18264 static void
18265 bxe_init_searcher(struct bxe_softc *sc)
18266 {
18267     int port = SC_PORT(sc);
18268     ecore_src_init_t2(sc, sc->t2, sc->t2_mapping, SRC_CONN_NUM);
18269     /* T1 hash bits value determines the T1 number of entries */
18270     REG_WR(sc, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
18271 }
18272 #endif
18273 
18274 static int
18275 bxe_init_hw_func(struct bxe_softc *sc)
18276 {
18277     int port = SC_PORT(sc);
18278     int func = SC_FUNC(sc);
18279     int init_phase = PHASE_PF0 + func;
18280     struct ecore_ilt *ilt = sc->ilt;
18281     uint16_t cdu_ilt_start;
18282     uint32_t addr, val;
18283     uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
18284     int i, main_mem_width, rc;
18285 
18286     BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
18287 
18288     /* FLR cleanup */
18289     if (!CHIP_IS_E1x(sc)) {
18290         rc = bxe_pf_flr_clnup(sc);
18291         if (rc) {
18292             BLOGE(sc, "FLR cleanup failed!\n");
18293             // XXX bxe_fw_dump(sc);
18294             // XXX bxe_idle_chk(sc);
18295             return (rc);
18296         }
18297     }
18298 
18299     /* set MSI reconfigure capability */
18300     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18301         addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
18302         val = REG_RD(sc, addr);
18303         val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
18304         REG_WR(sc, addr, val);
18305     }
18306 
18307     ecore_init_block(sc, BLOCK_PXP, init_phase);
18308     ecore_init_block(sc, BLOCK_PXP2, init_phase);
18309 
18310     ilt = sc->ilt;
18311     cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18312 
18313 #if 0
18314     if (IS_SRIOV(sc)) {
18315         cdu_ilt_start += BXE_FIRST_VF_CID/ILT_PAGE_CIDS;
18316     }
18317     cdu_ilt_start = bxe_iov_init_ilt(sc, cdu_ilt_start);
18318 
18319 #if (BXE_FIRST_VF_CID > 0)
18320     /*
18321      * If BXE_FIRST_VF_CID > 0 then the PF L2 cids precedes
18322      * those of the VFs, so start line should be reset
18323      */
18324     cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18325 #endif
18326 #endif
18327 
18328     for (i = 0; i < L2_ILT_LINES(sc); i++) {
18329         ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
18330         ilt->lines[cdu_ilt_start + i].page_mapping =
18331             sc->context[i].vcxt_dma.paddr;
18332         ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
18333     }
18334     ecore_ilt_init_op(sc, INITOP_SET);
18335 
18336 #if 0
18337     if (!CONFIGURE_NIC_MODE(sc)) {
18338         bxe_init_searcher(sc);
18339         REG_WR(sc, PRS_REG_NIC_MODE, 0);
18340         BLOGD(sc, DBG_LOAD, "NIC MODE disabled\n");
18341     } else
18342 #endif
18343     {
18344         /* Set NIC mode */
18345         REG_WR(sc, PRS_REG_NIC_MODE, 1);
18346         BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
18347     }
18348 
18349     if (!CHIP_IS_E1x(sc)) {
18350         uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
18351 
18352         /* Turn on a single ISR mode in IGU if driver is going to use
18353          * INT#x or MSI
18354          */
18355         if (sc->interrupt_mode != INTR_MODE_MSIX) {
18356             pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
18357         }
18358 
18359         /*
18360          * Timers workaround bug: function init part.
18361          * Need to wait 20msec after initializing ILT,
18362          * needed to make sure there are no requests in
18363          * one of the PXP internal queues with "old" ILT addresses
18364          */
18365         DELAY(20000);
18366 
18367         /*
18368          * Master enable - Due to WB DMAE writes performed before this
18369          * register is re-initialized as part of the regular function
18370          * init
18371          */
18372         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18373         /* Enable the function in IGU */
18374         REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
18375     }
18376 
18377     sc->dmae_ready = 1;
18378 
18379     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
18380 
18381     if (!CHIP_IS_E1x(sc))
18382         REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
18383 
18384     ecore_init_block(sc, BLOCK_ATC, init_phase);
18385     ecore_init_block(sc, BLOCK_DMAE, init_phase);
18386     ecore_init_block(sc, BLOCK_NIG, init_phase);
18387     ecore_init_block(sc, BLOCK_SRC, init_phase);
18388     ecore_init_block(sc, BLOCK_MISC, init_phase);
18389     ecore_init_block(sc, BLOCK_TCM, init_phase);
18390     ecore_init_block(sc, BLOCK_UCM, init_phase);
18391     ecore_init_block(sc, BLOCK_CCM, init_phase);
18392     ecore_init_block(sc, BLOCK_XCM, init_phase);
18393     ecore_init_block(sc, BLOCK_TSEM, init_phase);
18394     ecore_init_block(sc, BLOCK_USEM, init_phase);
18395     ecore_init_block(sc, BLOCK_CSEM, init_phase);
18396     ecore_init_block(sc, BLOCK_XSEM, init_phase);
18397 
18398     if (!CHIP_IS_E1x(sc))
18399         REG_WR(sc, QM_REG_PF_EN, 1);
18400 
18401     if (!CHIP_IS_E1x(sc)) {
18402         REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18403         REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18404         REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18405         REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18406     }
18407     ecore_init_block(sc, BLOCK_QM, init_phase);
18408 
18409     ecore_init_block(sc, BLOCK_TM, init_phase);
18410     ecore_init_block(sc, BLOCK_DORQ, init_phase);
18411 
18412     bxe_iov_init_dq(sc);
18413 
18414     ecore_init_block(sc, BLOCK_BRB1, init_phase);
18415     ecore_init_block(sc, BLOCK_PRS, init_phase);
18416     ecore_init_block(sc, BLOCK_TSDM, init_phase);
18417     ecore_init_block(sc, BLOCK_CSDM, init_phase);
18418     ecore_init_block(sc, BLOCK_USDM, init_phase);
18419     ecore_init_block(sc, BLOCK_XSDM, init_phase);
18420     ecore_init_block(sc, BLOCK_UPB, init_phase);
18421     ecore_init_block(sc, BLOCK_XPB, init_phase);
18422     ecore_init_block(sc, BLOCK_PBF, init_phase);
18423     if (!CHIP_IS_E1x(sc))
18424         REG_WR(sc, PBF_REG_DISABLE_PF, 0);
18425 
18426     ecore_init_block(sc, BLOCK_CDU, init_phase);
18427 
18428     ecore_init_block(sc, BLOCK_CFC, init_phase);
18429 
18430     if (!CHIP_IS_E1x(sc))
18431         REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
18432 
18433     if (IS_MF(sc)) {
18434         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
18435         REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
18436     }
18437 
18438     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
18439 
18440     /* HC init per function */
18441     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18442         if (CHIP_IS_E1H(sc)) {
18443             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18444 
18445             REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18446             REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18447         }
18448         ecore_init_block(sc, BLOCK_HC, init_phase);
18449 
18450     } else {
18451         int num_segs, sb_idx, prod_offset;
18452 
18453         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18454 
18455         if (!CHIP_IS_E1x(sc)) {
18456             REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18457             REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18458         }
18459 
18460         ecore_init_block(sc, BLOCK_IGU, init_phase);
18461 
18462         if (!CHIP_IS_E1x(sc)) {
18463             int dsb_idx = 0;
18464             /**
18465              * Producer memory:
18466              * E2 mode: address 0-135 match to the mapping memory;
18467              * 136 - PF0 default prod; 137 - PF1 default prod;
18468              * 138 - PF2 default prod; 139 - PF3 default prod;
18469              * 140 - PF0 attn prod;    141 - PF1 attn prod;
18470              * 142 - PF2 attn prod;    143 - PF3 attn prod;
18471              * 144-147 reserved.
18472              *
18473              * E1.5 mode - In backward compatible mode;
18474              * for non default SB; each even line in the memory
18475              * holds the U producer and each odd line hold
18476              * the C producer. The first 128 producers are for
18477              * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
18478              * producers are for the DSB for each PF.
18479              * Each PF has five segments: (the order inside each
18480              * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
18481              * 132-135 C prods; 136-139 X prods; 140-143 T prods;
18482              * 144-147 attn prods;
18483              */
18484             /* non-default-status-blocks */
18485             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18486                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
18487             for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
18488                 prod_offset = (sc->igu_base_sb + sb_idx) *
18489                     num_segs;
18490 
18491                 for (i = 0; i < num_segs; i++) {
18492                     addr = IGU_REG_PROD_CONS_MEMORY +
18493                             (prod_offset + i) * 4;
18494                     REG_WR(sc, addr, 0);
18495                 }
18496                 /* send consumer update with value 0 */
18497                 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
18498                            USTORM_ID, 0, IGU_INT_NOP, 1);
18499                 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
18500             }
18501 
18502             /* default-status-blocks */
18503             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18504                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
18505 
18506             if (CHIP_IS_MODE_4_PORT(sc))
18507                 dsb_idx = SC_FUNC(sc);
18508             else
18509                 dsb_idx = SC_VN(sc);
18510 
18511             prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
18512                        IGU_BC_BASE_DSB_PROD + dsb_idx :
18513                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
18514 
18515             /*
18516              * igu prods come in chunks of E1HVN_MAX (4) -
18517              * does not matters what is the current chip mode
18518              */
18519             for (i = 0; i < (num_segs * E1HVN_MAX);
18520                  i += E1HVN_MAX) {
18521                 addr = IGU_REG_PROD_CONS_MEMORY +
18522                             (prod_offset + i)*4;
18523                 REG_WR(sc, addr, 0);
18524             }
18525             /* send consumer update with 0 */
18526             if (CHIP_INT_MODE_IS_BC(sc)) {
18527                 bxe_ack_sb(sc, sc->igu_dsb_id,
18528                            USTORM_ID, 0, IGU_INT_NOP, 1);
18529                 bxe_ack_sb(sc, sc->igu_dsb_id,
18530                            CSTORM_ID, 0, IGU_INT_NOP, 1);
18531                 bxe_ack_sb(sc, sc->igu_dsb_id,
18532                            XSTORM_ID, 0, IGU_INT_NOP, 1);
18533                 bxe_ack_sb(sc, sc->igu_dsb_id,
18534                            TSTORM_ID, 0, IGU_INT_NOP, 1);
18535                 bxe_ack_sb(sc, sc->igu_dsb_id,
18536                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
18537             } else {
18538                 bxe_ack_sb(sc, sc->igu_dsb_id,
18539                            USTORM_ID, 0, IGU_INT_NOP, 1);
18540                 bxe_ack_sb(sc, sc->igu_dsb_id,
18541                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
18542             }
18543             bxe_igu_clear_sb(sc, sc->igu_dsb_id);
18544 
18545             /* !!! these should become driver const once
18546                rf-tool supports split-68 const */
18547             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
18548             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
18549             REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
18550             REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
18551             REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
18552             REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
18553         }
18554     }
18555 
18556     /* Reset PCIE errors for debug */
18557     REG_WR(sc, 0x2114, 0xffffffff);
18558     REG_WR(sc, 0x2120, 0xffffffff);
18559 
18560     if (CHIP_IS_E1x(sc)) {
18561         main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
18562         main_mem_base = HC_REG_MAIN_MEMORY +
18563                 SC_PORT(sc) * (main_mem_size * 4);
18564         main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
18565         main_mem_width = 8;
18566 
18567         val = REG_RD(sc, main_mem_prty_clr);
18568         if (val) {
18569             BLOGD(sc, DBG_LOAD,
18570                   "Parity errors in HC block during function init (0x%x)!\n",
18571                   val);
18572         }
18573 
18574         /* Clear "false" parity errors in MSI-X table */
18575         for (i = main_mem_base;
18576              i < main_mem_base + main_mem_size * 4;
18577              i += main_mem_width) {
18578             bxe_read_dmae(sc, i, main_mem_width / 4);
18579             bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
18580                            i, main_mem_width / 4);
18581         }
18582         /* Clear HC parity attention */
18583         REG_RD(sc, main_mem_prty_clr);
18584     }
18585 
18586 #if 1
18587     /* Enable STORMs SP logging */
18588     REG_WR8(sc, BAR_USTRORM_INTMEM +
18589            USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18590     REG_WR8(sc, BAR_TSTRORM_INTMEM +
18591            TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18592     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18593            CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18594     REG_WR8(sc, BAR_XSTRORM_INTMEM +
18595            XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18596 #endif
18597 
18598     elink_phy_probe(&sc->link_params);
18599 
18600     return (0);
18601 }
18602 
18603 static void
18604 bxe_link_reset(struct bxe_softc *sc)
18605 {
18606     if (!BXE_NOMCP(sc)) {
18607         BXE_PHY_LOCK(sc);
18608         elink_lfa_reset(&sc->link_params, &sc->link_vars);
18609         BXE_PHY_UNLOCK(sc);
18610     } else {
18611         if (!CHIP_REV_IS_SLOW(sc)) {
18612             BLOGW(sc, "Bootcode is missing - cannot reset link\n");
18613         }
18614     }
18615 }
18616 
18617 static void
18618 bxe_reset_port(struct bxe_softc *sc)
18619 {
18620     int port = SC_PORT(sc);
18621     uint32_t val;
18622 
18623     /* reset physical Link */
18624     bxe_link_reset(sc);
18625 
18626     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18627 
18628     /* Do not rcv packets to BRB */
18629     REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18630     /* Do not direct rcv packets that are not for MCP to the BRB */
18631     REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18632                NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18633 
18634     /* Configure AEU */
18635     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18636 
18637     DELAY(100000);
18638 
18639     /* Check for BRB port occupancy */
18640     val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18641     if (val) {
18642         BLOGD(sc, DBG_LOAD,
18643               "BRB1 is not empty, %d blocks are occupied\n", val);
18644     }
18645 
18646     /* TODO: Close Doorbell port? */
18647 }
18648 
18649 static void
18650 bxe_ilt_wr(struct bxe_softc *sc,
18651            uint32_t         index,
18652            bus_addr_t       addr)
18653 {
18654     int reg;
18655     uint32_t wb_write[2];
18656 
18657     if (CHIP_IS_E1(sc)) {
18658         reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18659     } else {
18660         reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18661     }
18662 
18663     wb_write[0] = ONCHIP_ADDR1(addr);
18664     wb_write[1] = ONCHIP_ADDR2(addr);
18665     REG_WR_DMAE(sc, reg, wb_write, 2);
18666 }
18667 
18668 static void
18669 bxe_clear_func_ilt(struct bxe_softc *sc,
18670                    uint32_t         func)
18671 {
18672     uint32_t i, base = FUNC_ILT_BASE(func);
18673     for (i = base; i < base + ILT_PER_FUNC; i++) {
18674         bxe_ilt_wr(sc, i, 0);
18675     }
18676 }
18677 
18678 static void
18679 bxe_reset_func(struct bxe_softc *sc)
18680 {
18681     struct bxe_fastpath *fp;
18682     int port = SC_PORT(sc);
18683     int func = SC_FUNC(sc);
18684     int i;
18685 
18686     /* Disable the function in the FW */
18687     REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18688     REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18689     REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18690     REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18691 
18692     /* FP SBs */
18693     FOR_EACH_ETH_QUEUE(sc, i) {
18694         fp = &sc->fp[i];
18695         REG_WR8(sc, BAR_CSTRORM_INTMEM +
18696                 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18697                 SB_DISABLED);
18698     }
18699 
18700 #if 0
18701     if (CNIC_LOADED(sc)) {
18702         /* CNIC SB */
18703         REG_WR8(sc, BAR_CSTRORM_INTMEM +
18704                 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
18705                 (bxe_cnic_fw_sb_id(sc)), SB_DISABLED);
18706     }
18707 #endif
18708 
18709     /* SP SB */
18710     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18711             CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18712             SB_DISABLED);
18713 
18714     for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18715         REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18716     }
18717 
18718     /* Configure IGU */
18719     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18720         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18721         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18722     } else {
18723         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18724         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18725     }
18726 
18727     if (CNIC_LOADED(sc)) {
18728         /* Disable Timer scan */
18729         REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18730         /*
18731          * Wait for at least 10ms and up to 2 second for the timers
18732          * scan to complete
18733          */
18734         for (i = 0; i < 200; i++) {
18735             DELAY(10000);
18736             if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18737                 break;
18738         }
18739     }
18740 
18741     /* Clear ILT */
18742     bxe_clear_func_ilt(sc, func);
18743 
18744     /*
18745      * Timers workaround bug for E2: if this is vnic-3,
18746      * we need to set the entire ilt range for this timers.
18747      */
18748     if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18749         struct ilt_client_info ilt_cli;
18750         /* use dummy TM client */
18751         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18752         ilt_cli.start = 0;
18753         ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18754         ilt_cli.client_num = ILT_CLIENT_TM;
18755 
18756         ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18757     }
18758 
18759     /* this assumes that reset_port() called before reset_func()*/
18760     if (!CHIP_IS_E1x(sc)) {
18761         bxe_pf_disable(sc);
18762     }
18763 
18764     sc->dmae_ready = 0;
18765 }
18766 
18767 static int
18768 bxe_gunzip_init(struct bxe_softc *sc)
18769 {
18770     return (0);
18771 }
18772 
18773 static void
18774 bxe_gunzip_end(struct bxe_softc *sc)
18775 {
18776     return;
18777 }
18778 
18779 static int
18780 bxe_init_firmware(struct bxe_softc *sc)
18781 {
18782     if (CHIP_IS_E1(sc)) {
18783         ecore_init_e1_firmware(sc);
18784         sc->iro_array = e1_iro_arr;
18785     } else if (CHIP_IS_E1H(sc)) {
18786         ecore_init_e1h_firmware(sc);
18787         sc->iro_array = e1h_iro_arr;
18788     } else if (!CHIP_IS_E1x(sc)) {
18789         ecore_init_e2_firmware(sc);
18790         sc->iro_array = e2_iro_arr;
18791     } else {
18792         BLOGE(sc, "Unsupported chip revision\n");
18793         return (-1);
18794     }
18795 
18796     return (0);
18797 }
18798 
18799 static void
18800 bxe_release_firmware(struct bxe_softc *sc)
18801 {
18802     /* Do nothing */
18803     return;
18804 }
18805 
18806 static int
18807 ecore_gunzip(struct bxe_softc *sc,
18808              const uint8_t    *zbuf,
18809              int              len)
18810 {
18811     /* XXX : Implement... */
18812     BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18813     return (FALSE);
18814 }
18815 
18816 static void
18817 ecore_reg_wr_ind(struct bxe_softc *sc,
18818                  uint32_t         addr,
18819                  uint32_t         val)
18820 {
18821     bxe_reg_wr_ind(sc, addr, val);
18822 }
18823 
18824 static void
18825 ecore_write_dmae_phys_len(struct bxe_softc *sc,
18826                           bus_addr_t       phys_addr,
18827                           uint32_t         addr,
18828                           uint32_t         len)
18829 {
18830     bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18831 }
18832 
18833 void
18834 ecore_storm_memset_struct(struct bxe_softc *sc,
18835                           uint32_t         addr,
18836                           size_t           size,
18837                           uint32_t         *data)
18838 {
18839     uint8_t i;
18840     for (i = 0; i < size/4; i++) {
18841         REG_WR(sc, addr + (i * 4), data[i]);
18842     }
18843 }
18844 
18845