1 /*- 2 * Copyright (c) 2007-2013 Broadcom Corporation. All rights reserved. 3 * 4 * Eric Davis <edavis@broadcom.com> 5 * David Christensen <davidch@broadcom.com> 6 * Gary Zambrano <zambrano@broadcom.com> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written consent. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 31 * THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #define BXE_DRIVER_VERSION "1.78.75" 38 39 #include "bxe.h" 40 #include "ecore_sp.h" 41 #include "ecore_init.h" 42 #include "ecore_init_ops.h" 43 44 #include "57710_int_offsets.h" 45 #include "57711_int_offsets.h" 46 #include "57712_int_offsets.h" 47 48 /* 49 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these 50 * explicitly here for older kernels that don't include this changeset. 51 */ 52 #ifndef CTLTYPE_U64 53 #define CTLTYPE_U64 CTLTYPE_QUAD 54 #define sysctl_handle_64 sysctl_handle_quad 55 #endif 56 57 /* 58 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these 59 * here as zero(0) for older kernels that don't include this changeset 60 * thereby masking the functionality. 61 */ 62 #ifndef CSUM_TCP_IPV6 63 #define CSUM_TCP_IPV6 0 64 #define CSUM_UDP_IPV6 0 65 #endif 66 67 /* 68 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap 69 * for older kernels that don't include this changeset. 70 */ 71 #if __FreeBSD_version < 900035 72 #define pci_find_cap pci_find_extcap 73 #endif 74 75 #define BXE_DEF_SB_ATT_IDX 0x0001 76 #define BXE_DEF_SB_IDX 0x0002 77 78 /* 79 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per 80 * function HW initialization. 81 */ 82 #define FLR_WAIT_USEC 10000 /* 10 msecs */ 83 #define FLR_WAIT_INTERVAL 50 /* usecs */ 84 #define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */ 85 86 struct pbf_pN_buf_regs { 87 int pN; 88 uint32_t init_crd; 89 uint32_t crd; 90 uint32_t crd_freed; 91 }; 92 93 struct pbf_pN_cmd_regs { 94 int pN; 95 uint32_t lines_occup; 96 uint32_t lines_freed; 97 }; 98 99 /* 100 * PCI Device ID Table used by bxe_probe(). 101 */ 102 #define BXE_DEVDESC_MAX 64 103 static struct bxe_device_type bxe_devs[] = { 104 { 105 BRCM_VENDORID, 106 CHIP_NUM_57710, 107 PCI_ANY_ID, PCI_ANY_ID, 108 "Broadcom NetXtreme II BCM57710 10GbE" 109 }, 110 { 111 BRCM_VENDORID, 112 CHIP_NUM_57711, 113 PCI_ANY_ID, PCI_ANY_ID, 114 "Broadcom NetXtreme II BCM57711 10GbE" 115 }, 116 { 117 BRCM_VENDORID, 118 CHIP_NUM_57711E, 119 PCI_ANY_ID, PCI_ANY_ID, 120 "Broadcom NetXtreme II BCM57711E 10GbE" 121 }, 122 { 123 BRCM_VENDORID, 124 CHIP_NUM_57712, 125 PCI_ANY_ID, PCI_ANY_ID, 126 "Broadcom NetXtreme II BCM57712 10GbE" 127 }, 128 { 129 BRCM_VENDORID, 130 CHIP_NUM_57712_MF, 131 PCI_ANY_ID, PCI_ANY_ID, 132 "Broadcom NetXtreme II BCM57712 MF 10GbE" 133 }, 134 #if 0 135 { 136 BRCM_VENDORID, 137 CHIP_NUM_57712_VF, 138 PCI_ANY_ID, PCI_ANY_ID, 139 "Broadcom NetXtreme II BCM57712 VF 10GbE" 140 }, 141 #endif 142 { 143 BRCM_VENDORID, 144 CHIP_NUM_57800, 145 PCI_ANY_ID, PCI_ANY_ID, 146 "Broadcom NetXtreme II BCM57800 10GbE" 147 }, 148 { 149 BRCM_VENDORID, 150 CHIP_NUM_57800_MF, 151 PCI_ANY_ID, PCI_ANY_ID, 152 "Broadcom NetXtreme II BCM57800 MF 10GbE" 153 }, 154 #if 0 155 { 156 BRCM_VENDORID, 157 CHIP_NUM_57800_VF, 158 PCI_ANY_ID, PCI_ANY_ID, 159 "Broadcom NetXtreme II BCM57800 VF 10GbE" 160 }, 161 #endif 162 { 163 BRCM_VENDORID, 164 CHIP_NUM_57810, 165 PCI_ANY_ID, PCI_ANY_ID, 166 "Broadcom NetXtreme II BCM57810 10GbE" 167 }, 168 { 169 BRCM_VENDORID, 170 CHIP_NUM_57810_MF, 171 PCI_ANY_ID, PCI_ANY_ID, 172 "Broadcom NetXtreme II BCM57810 MF 10GbE" 173 }, 174 #if 0 175 { 176 BRCM_VENDORID, 177 CHIP_NUM_57810_VF, 178 PCI_ANY_ID, PCI_ANY_ID, 179 "Broadcom NetXtreme II BCM57810 VF 10GbE" 180 }, 181 #endif 182 { 183 BRCM_VENDORID, 184 CHIP_NUM_57811, 185 PCI_ANY_ID, PCI_ANY_ID, 186 "Broadcom NetXtreme II BCM57811 10GbE" 187 }, 188 { 189 BRCM_VENDORID, 190 CHIP_NUM_57811_MF, 191 PCI_ANY_ID, PCI_ANY_ID, 192 "Broadcom NetXtreme II BCM57811 MF 10GbE" 193 }, 194 #if 0 195 { 196 BRCM_VENDORID, 197 CHIP_NUM_57811_VF, 198 PCI_ANY_ID, PCI_ANY_ID, 199 "Broadcom NetXtreme II BCM57811 VF 10GbE" 200 }, 201 #endif 202 { 203 BRCM_VENDORID, 204 CHIP_NUM_57840_4_10, 205 PCI_ANY_ID, PCI_ANY_ID, 206 "Broadcom NetXtreme II BCM57840 4x10GbE" 207 }, 208 #if 0 209 { 210 BRCM_VENDORID, 211 CHIP_NUM_57840_2_20, 212 PCI_ANY_ID, PCI_ANY_ID, 213 "Broadcom NetXtreme II BCM57840 2x20GbE" 214 }, 215 #endif 216 { 217 BRCM_VENDORID, 218 CHIP_NUM_57840_MF, 219 PCI_ANY_ID, PCI_ANY_ID, 220 "Broadcom NetXtreme II BCM57840 MF 10GbE" 221 }, 222 #if 0 223 { 224 BRCM_VENDORID, 225 CHIP_NUM_57840_VF, 226 PCI_ANY_ID, PCI_ANY_ID, 227 "Broadcom NetXtreme II BCM57840 VF 10GbE" 228 }, 229 #endif 230 { 231 0, 0, 0, 0, NULL 232 } 233 }; 234 235 MALLOC_DECLARE(M_BXE_ILT); 236 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer"); 237 238 /* 239 * FreeBSD device entry points. 240 */ 241 static int bxe_probe(device_t); 242 static int bxe_attach(device_t); 243 static int bxe_detach(device_t); 244 static int bxe_shutdown(device_t); 245 246 /* 247 * FreeBSD KLD module/device interface event handler method. 248 */ 249 static device_method_t bxe_methods[] = { 250 /* Device interface (device_if.h) */ 251 DEVMETHOD(device_probe, bxe_probe), 252 DEVMETHOD(device_attach, bxe_attach), 253 DEVMETHOD(device_detach, bxe_detach), 254 DEVMETHOD(device_shutdown, bxe_shutdown), 255 #if 0 256 DEVMETHOD(device_suspend, bxe_suspend), 257 DEVMETHOD(device_resume, bxe_resume), 258 #endif 259 /* Bus interface (bus_if.h) */ 260 DEVMETHOD(bus_print_child, bus_generic_print_child), 261 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 262 KOBJMETHOD_END 263 }; 264 265 /* 266 * FreeBSD KLD Module data declaration 267 */ 268 static driver_t bxe_driver = { 269 "bxe", /* module name */ 270 bxe_methods, /* event handler */ 271 sizeof(struct bxe_softc) /* extra data */ 272 }; 273 274 /* 275 * FreeBSD dev class is needed to manage dev instances and 276 * to associate with a bus type 277 */ 278 static devclass_t bxe_devclass; 279 280 MODULE_DEPEND(bxe, pci, 1, 1, 1); 281 MODULE_DEPEND(bxe, ether, 1, 1, 1); 282 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0); 283 284 /* resources needed for unloading a previously loaded device */ 285 286 #define BXE_PREV_WAIT_NEEDED 1 287 struct mtx bxe_prev_mtx; 288 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF); 289 struct bxe_prev_list_node { 290 LIST_ENTRY(bxe_prev_list_node) node; 291 uint8_t bus; 292 uint8_t slot; 293 uint8_t path; 294 uint8_t aer; /* XXX automatic error recovery */ 295 uint8_t undi; 296 }; 297 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list); 298 299 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 300 301 /* Tunable device values... */ 302 303 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters"); 304 305 /* Debug */ 306 unsigned long bxe_debug = 0; 307 TUNABLE_ULONG("hw.bxe.debug", &bxe_debug); 308 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, (CTLFLAG_RDTUN), 309 &bxe_debug, 0, "Debug logging mode"); 310 311 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 312 static int bxe_interrupt_mode = INTR_MODE_MSIX; 313 TUNABLE_INT("hw.bxe.interrupt_mode", &bxe_interrupt_mode); 314 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN, 315 &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode"); 316 317 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */ 318 static int bxe_queue_count = 4; 319 TUNABLE_INT("hw.bxe.queue_count", &bxe_queue_count); 320 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN, 321 &bxe_queue_count, 0, "Multi-Queue queue count"); 322 323 /* max number of buffers per queue (default RX_BD_USABLE) */ 324 static int bxe_max_rx_bufs = 0; 325 TUNABLE_INT("hw.bxe.max_rx_bufs", &bxe_max_rx_bufs); 326 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN, 327 &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue"); 328 329 /* Host interrupt coalescing RX tick timer (usecs) */ 330 static int bxe_hc_rx_ticks = 25; 331 TUNABLE_INT("hw.bxe.hc_rx_ticks", &bxe_hc_rx_ticks); 332 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN, 333 &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks"); 334 335 /* Host interrupt coalescing TX tick timer (usecs) */ 336 static int bxe_hc_tx_ticks = 50; 337 TUNABLE_INT("hw.bxe.hc_tx_ticks", &bxe_hc_tx_ticks); 338 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN, 339 &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks"); 340 341 /* Maximum number of Rx packets to process at a time */ 342 static int bxe_rx_budget = 0xffffffff; 343 TUNABLE_INT("hw.bxe.rx_budget", &bxe_rx_budget); 344 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN, 345 &bxe_rx_budget, 0, "Rx processing budget"); 346 347 /* Maximum LRO aggregation size */ 348 static int bxe_max_aggregation_size = 0; 349 TUNABLE_INT("hw.bxe.max_aggregation_size", &bxe_max_aggregation_size); 350 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN, 351 &bxe_max_aggregation_size, 0, "max aggregation size"); 352 353 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */ 354 static int bxe_mrrs = -1; 355 TUNABLE_INT("hw.bxe.mrrs", &bxe_mrrs); 356 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN, 357 &bxe_mrrs, 0, "PCIe maximum read request size"); 358 359 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */ 360 static int bxe_autogreeen = 0; 361 TUNABLE_INT("hw.bxe.autogreeen", &bxe_autogreeen); 362 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN, 363 &bxe_autogreeen, 0, "AutoGrEEEn support"); 364 365 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */ 366 static int bxe_udp_rss = 0; 367 TUNABLE_INT("hw.bxe.udp_rss", &bxe_udp_rss); 368 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN, 369 &bxe_udp_rss, 0, "UDP RSS support"); 370 371 372 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */ 373 374 #define STATS_OFFSET32(stat_name) \ 375 (offsetof(struct bxe_eth_stats, stat_name) / 4) 376 377 #define Q_STATS_OFFSET32(stat_name) \ 378 (offsetof(struct bxe_eth_q_stats, stat_name) / 4) 379 380 static const struct { 381 uint32_t offset; 382 uint32_t size; 383 uint32_t flags; 384 #define STATS_FLAGS_PORT 1 385 #define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */ 386 #define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT) 387 char string[STAT_NAME_LEN]; 388 } bxe_eth_stats_arr[] = { 389 { STATS_OFFSET32(total_bytes_received_hi), 390 8, STATS_FLAGS_BOTH, "rx_bytes" }, 391 { STATS_OFFSET32(error_bytes_received_hi), 392 8, STATS_FLAGS_BOTH, "rx_error_bytes" }, 393 { STATS_OFFSET32(total_unicast_packets_received_hi), 394 8, STATS_FLAGS_BOTH, "rx_ucast_packets" }, 395 { STATS_OFFSET32(total_multicast_packets_received_hi), 396 8, STATS_FLAGS_BOTH, "rx_mcast_packets" }, 397 { STATS_OFFSET32(total_broadcast_packets_received_hi), 398 8, STATS_FLAGS_BOTH, "rx_bcast_packets" }, 399 { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi), 400 8, STATS_FLAGS_PORT, "rx_crc_errors" }, 401 { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi), 402 8, STATS_FLAGS_PORT, "rx_align_errors" }, 403 { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi), 404 8, STATS_FLAGS_PORT, "rx_undersize_packets" }, 405 { STATS_OFFSET32(etherstatsoverrsizepkts_hi), 406 8, STATS_FLAGS_PORT, "rx_oversize_packets" }, 407 { STATS_OFFSET32(rx_stat_etherstatsfragments_hi), 408 8, STATS_FLAGS_PORT, "rx_fragments" }, 409 { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi), 410 8, STATS_FLAGS_PORT, "rx_jabbers" }, 411 { STATS_OFFSET32(no_buff_discard_hi), 412 8, STATS_FLAGS_BOTH, "rx_discards" }, 413 { STATS_OFFSET32(mac_filter_discard), 414 4, STATS_FLAGS_PORT, "rx_filtered_packets" }, 415 { STATS_OFFSET32(mf_tag_discard), 416 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" }, 417 { STATS_OFFSET32(pfc_frames_received_hi), 418 8, STATS_FLAGS_PORT, "pfc_frames_received" }, 419 { STATS_OFFSET32(pfc_frames_sent_hi), 420 8, STATS_FLAGS_PORT, "pfc_frames_sent" }, 421 { STATS_OFFSET32(brb_drop_hi), 422 8, STATS_FLAGS_PORT, "rx_brb_discard" }, 423 { STATS_OFFSET32(brb_truncate_hi), 424 8, STATS_FLAGS_PORT, "rx_brb_truncate" }, 425 { STATS_OFFSET32(pause_frames_received_hi), 426 8, STATS_FLAGS_PORT, "rx_pause_frames" }, 427 { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi), 428 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" }, 429 { STATS_OFFSET32(nig_timer_max), 430 4, STATS_FLAGS_PORT, "rx_constant_pause_events" }, 431 { STATS_OFFSET32(total_bytes_transmitted_hi), 432 8, STATS_FLAGS_BOTH, "tx_bytes" }, 433 { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi), 434 8, STATS_FLAGS_PORT, "tx_error_bytes" }, 435 { STATS_OFFSET32(total_unicast_packets_transmitted_hi), 436 8, STATS_FLAGS_BOTH, "tx_ucast_packets" }, 437 { STATS_OFFSET32(total_multicast_packets_transmitted_hi), 438 8, STATS_FLAGS_BOTH, "tx_mcast_packets" }, 439 { STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 440 8, STATS_FLAGS_BOTH, "tx_bcast_packets" }, 441 { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi), 442 8, STATS_FLAGS_PORT, "tx_mac_errors" }, 443 { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi), 444 8, STATS_FLAGS_PORT, "tx_carrier_errors" }, 445 { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi), 446 8, STATS_FLAGS_PORT, "tx_single_collisions" }, 447 { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi), 448 8, STATS_FLAGS_PORT, "tx_multi_collisions" }, 449 { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi), 450 8, STATS_FLAGS_PORT, "tx_deferred" }, 451 { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi), 452 8, STATS_FLAGS_PORT, "tx_excess_collisions" }, 453 { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi), 454 8, STATS_FLAGS_PORT, "tx_late_collisions" }, 455 { STATS_OFFSET32(tx_stat_etherstatscollisions_hi), 456 8, STATS_FLAGS_PORT, "tx_total_collisions" }, 457 { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi), 458 8, STATS_FLAGS_PORT, "tx_64_byte_packets" }, 459 { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi), 460 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" }, 461 { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi), 462 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" }, 463 { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi), 464 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" }, 465 { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi), 466 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" }, 467 { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi), 468 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" }, 469 { STATS_OFFSET32(etherstatspktsover1522octets_hi), 470 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" }, 471 { STATS_OFFSET32(pause_frames_sent_hi), 472 8, STATS_FLAGS_PORT, "tx_pause_frames" }, 473 { STATS_OFFSET32(total_tpa_aggregations_hi), 474 8, STATS_FLAGS_FUNC, "tpa_aggregations" }, 475 { STATS_OFFSET32(total_tpa_aggregated_frames_hi), 476 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"}, 477 { STATS_OFFSET32(total_tpa_bytes_hi), 478 8, STATS_FLAGS_FUNC, "tpa_bytes"}, 479 #if 0 480 { STATS_OFFSET32(recoverable_error), 481 4, STATS_FLAGS_FUNC, "recoverable_errors" }, 482 { STATS_OFFSET32(unrecoverable_error), 483 4, STATS_FLAGS_FUNC, "unrecoverable_errors" }, 484 #endif 485 { STATS_OFFSET32(eee_tx_lpi), 486 4, STATS_FLAGS_PORT, "eee_tx_lpi"}, 487 { STATS_OFFSET32(rx_calls), 488 4, STATS_FLAGS_FUNC, "rx_calls"}, 489 { STATS_OFFSET32(rx_pkts), 490 4, STATS_FLAGS_FUNC, "rx_pkts"}, 491 { STATS_OFFSET32(rx_tpa_pkts), 492 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"}, 493 { STATS_OFFSET32(rx_soft_errors), 494 4, STATS_FLAGS_FUNC, "rx_soft_errors"}, 495 { STATS_OFFSET32(rx_hw_csum_errors), 496 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"}, 497 { STATS_OFFSET32(rx_ofld_frames_csum_ip), 498 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"}, 499 { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 500 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"}, 501 { STATS_OFFSET32(rx_budget_reached), 502 4, STATS_FLAGS_FUNC, "rx_budget_reached"}, 503 { STATS_OFFSET32(tx_pkts), 504 4, STATS_FLAGS_FUNC, "tx_pkts"}, 505 { STATS_OFFSET32(tx_soft_errors), 506 4, STATS_FLAGS_FUNC, "tx_soft_errors"}, 507 { STATS_OFFSET32(tx_ofld_frames_csum_ip), 508 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"}, 509 { STATS_OFFSET32(tx_ofld_frames_csum_tcp), 510 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"}, 511 { STATS_OFFSET32(tx_ofld_frames_csum_udp), 512 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"}, 513 { STATS_OFFSET32(tx_ofld_frames_lso), 514 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"}, 515 { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 516 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"}, 517 { STATS_OFFSET32(tx_encap_failures), 518 4, STATS_FLAGS_FUNC, "tx_encap_failures"}, 519 { STATS_OFFSET32(tx_hw_queue_full), 520 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"}, 521 { STATS_OFFSET32(tx_hw_max_queue_depth), 522 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"}, 523 { STATS_OFFSET32(tx_dma_mapping_failure), 524 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"}, 525 { STATS_OFFSET32(tx_max_drbr_queue_depth), 526 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"}, 527 { STATS_OFFSET32(tx_window_violation_std), 528 4, STATS_FLAGS_FUNC, "tx_window_violation_std"}, 529 { STATS_OFFSET32(tx_window_violation_tso), 530 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"}, 531 #if 0 532 { STATS_OFFSET32(tx_unsupported_tso_request_ipv6), 533 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_ipv6"}, 534 { STATS_OFFSET32(tx_unsupported_tso_request_not_tcp), 535 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_not_tcp"}, 536 #endif 537 { STATS_OFFSET32(tx_chain_lost_mbuf), 538 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"}, 539 { STATS_OFFSET32(tx_frames_deferred), 540 4, STATS_FLAGS_FUNC, "tx_frames_deferred"}, 541 { STATS_OFFSET32(tx_queue_xoff), 542 4, STATS_FLAGS_FUNC, "tx_queue_xoff"}, 543 { STATS_OFFSET32(mbuf_defrag_attempts), 544 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"}, 545 { STATS_OFFSET32(mbuf_defrag_failures), 546 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"}, 547 { STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 548 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"}, 549 { STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 550 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"}, 551 { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 552 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"}, 553 { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 554 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"}, 555 { STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 556 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"}, 557 { STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 558 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"}, 559 { STATS_OFFSET32(mbuf_alloc_tx), 560 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"}, 561 { STATS_OFFSET32(mbuf_alloc_rx), 562 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"}, 563 { STATS_OFFSET32(mbuf_alloc_sge), 564 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"}, 565 { STATS_OFFSET32(mbuf_alloc_tpa), 566 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"} 567 }; 568 569 static const struct { 570 uint32_t offset; 571 uint32_t size; 572 char string[STAT_NAME_LEN]; 573 } bxe_eth_q_stats_arr[] = { 574 { Q_STATS_OFFSET32(total_bytes_received_hi), 575 8, "rx_bytes" }, 576 { Q_STATS_OFFSET32(total_unicast_packets_received_hi), 577 8, "rx_ucast_packets" }, 578 { Q_STATS_OFFSET32(total_multicast_packets_received_hi), 579 8, "rx_mcast_packets" }, 580 { Q_STATS_OFFSET32(total_broadcast_packets_received_hi), 581 8, "rx_bcast_packets" }, 582 { Q_STATS_OFFSET32(no_buff_discard_hi), 583 8, "rx_discards" }, 584 { Q_STATS_OFFSET32(total_bytes_transmitted_hi), 585 8, "tx_bytes" }, 586 { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi), 587 8, "tx_ucast_packets" }, 588 { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi), 589 8, "tx_mcast_packets" }, 590 { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 591 8, "tx_bcast_packets" }, 592 { Q_STATS_OFFSET32(total_tpa_aggregations_hi), 593 8, "tpa_aggregations" }, 594 { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi), 595 8, "tpa_aggregated_frames"}, 596 { Q_STATS_OFFSET32(total_tpa_bytes_hi), 597 8, "tpa_bytes"}, 598 { Q_STATS_OFFSET32(rx_calls), 599 4, "rx_calls"}, 600 { Q_STATS_OFFSET32(rx_pkts), 601 4, "rx_pkts"}, 602 { Q_STATS_OFFSET32(rx_tpa_pkts), 603 4, "rx_tpa_pkts"}, 604 { Q_STATS_OFFSET32(rx_soft_errors), 605 4, "rx_soft_errors"}, 606 { Q_STATS_OFFSET32(rx_hw_csum_errors), 607 4, "rx_hw_csum_errors"}, 608 { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip), 609 4, "rx_ofld_frames_csum_ip"}, 610 { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 611 4, "rx_ofld_frames_csum_tcp_udp"}, 612 { Q_STATS_OFFSET32(rx_budget_reached), 613 4, "rx_budget_reached"}, 614 { Q_STATS_OFFSET32(tx_pkts), 615 4, "tx_pkts"}, 616 { Q_STATS_OFFSET32(tx_soft_errors), 617 4, "tx_soft_errors"}, 618 { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip), 619 4, "tx_ofld_frames_csum_ip"}, 620 { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp), 621 4, "tx_ofld_frames_csum_tcp"}, 622 { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp), 623 4, "tx_ofld_frames_csum_udp"}, 624 { Q_STATS_OFFSET32(tx_ofld_frames_lso), 625 4, "tx_ofld_frames_lso"}, 626 { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 627 4, "tx_ofld_frames_lso_hdr_splits"}, 628 { Q_STATS_OFFSET32(tx_encap_failures), 629 4, "tx_encap_failures"}, 630 { Q_STATS_OFFSET32(tx_hw_queue_full), 631 4, "tx_hw_queue_full"}, 632 { Q_STATS_OFFSET32(tx_hw_max_queue_depth), 633 4, "tx_hw_max_queue_depth"}, 634 { Q_STATS_OFFSET32(tx_dma_mapping_failure), 635 4, "tx_dma_mapping_failure"}, 636 { Q_STATS_OFFSET32(tx_max_drbr_queue_depth), 637 4, "tx_max_drbr_queue_depth"}, 638 { Q_STATS_OFFSET32(tx_window_violation_std), 639 4, "tx_window_violation_std"}, 640 { Q_STATS_OFFSET32(tx_window_violation_tso), 641 4, "tx_window_violation_tso"}, 642 #if 0 643 { Q_STATS_OFFSET32(tx_unsupported_tso_request_ipv6), 644 4, "tx_unsupported_tso_request_ipv6"}, 645 { Q_STATS_OFFSET32(tx_unsupported_tso_request_not_tcp), 646 4, "tx_unsupported_tso_request_not_tcp"}, 647 #endif 648 { Q_STATS_OFFSET32(tx_chain_lost_mbuf), 649 4, "tx_chain_lost_mbuf"}, 650 { Q_STATS_OFFSET32(tx_frames_deferred), 651 4, "tx_frames_deferred"}, 652 { Q_STATS_OFFSET32(tx_queue_xoff), 653 4, "tx_queue_xoff"}, 654 { Q_STATS_OFFSET32(mbuf_defrag_attempts), 655 4, "mbuf_defrag_attempts"}, 656 { Q_STATS_OFFSET32(mbuf_defrag_failures), 657 4, "mbuf_defrag_failures"}, 658 { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 659 4, "mbuf_rx_bd_alloc_failed"}, 660 { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 661 4, "mbuf_rx_bd_mapping_failed"}, 662 { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 663 4, "mbuf_rx_tpa_alloc_failed"}, 664 { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 665 4, "mbuf_rx_tpa_mapping_failed"}, 666 { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 667 4, "mbuf_rx_sge_alloc_failed"}, 668 { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 669 4, "mbuf_rx_sge_mapping_failed"}, 670 { Q_STATS_OFFSET32(mbuf_alloc_tx), 671 4, "mbuf_alloc_tx"}, 672 { Q_STATS_OFFSET32(mbuf_alloc_rx), 673 4, "mbuf_alloc_rx"}, 674 { Q_STATS_OFFSET32(mbuf_alloc_sge), 675 4, "mbuf_alloc_sge"}, 676 { Q_STATS_OFFSET32(mbuf_alloc_tpa), 677 4, "mbuf_alloc_tpa"} 678 }; 679 680 #define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr) 681 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr) 682 683 684 static void bxe_cmng_fns_init(struct bxe_softc *sc, 685 uint8_t read_cfg, 686 uint8_t cmng_type); 687 static int bxe_get_cmng_fns_mode(struct bxe_softc *sc); 688 static void storm_memset_cmng(struct bxe_softc *sc, 689 struct cmng_init *cmng, 690 uint8_t port); 691 static void bxe_set_reset_global(struct bxe_softc *sc); 692 static void bxe_set_reset_in_progress(struct bxe_softc *sc); 693 static uint8_t bxe_reset_is_done(struct bxe_softc *sc, 694 int engine); 695 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc); 696 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc, 697 uint8_t *global, 698 uint8_t print); 699 static void bxe_int_disable(struct bxe_softc *sc); 700 static int bxe_release_leader_lock(struct bxe_softc *sc); 701 static void bxe_pf_disable(struct bxe_softc *sc); 702 static void bxe_free_fp_buffers(struct bxe_softc *sc); 703 static inline void bxe_update_rx_prod(struct bxe_softc *sc, 704 struct bxe_fastpath *fp, 705 uint16_t rx_bd_prod, 706 uint16_t rx_cq_prod, 707 uint16_t rx_sge_prod); 708 static void bxe_link_report_locked(struct bxe_softc *sc); 709 static void bxe_link_report(struct bxe_softc *sc); 710 static void bxe_link_status_update(struct bxe_softc *sc); 711 static void bxe_periodic_callout_func(void *xsc); 712 static void bxe_periodic_start(struct bxe_softc *sc); 713 static void bxe_periodic_stop(struct bxe_softc *sc); 714 static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 715 uint16_t prev_index, 716 uint16_t index); 717 static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 718 int queue); 719 static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 720 uint16_t index); 721 static uint8_t bxe_txeof(struct bxe_softc *sc, 722 struct bxe_fastpath *fp); 723 static void bxe_task_fp(struct bxe_fastpath *fp); 724 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc, 725 struct mbuf *m, 726 uint8_t contents); 727 static int bxe_alloc_mem(struct bxe_softc *sc); 728 static void bxe_free_mem(struct bxe_softc *sc); 729 static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc); 730 static void bxe_free_fw_stats_mem(struct bxe_softc *sc); 731 static int bxe_interrupt_attach(struct bxe_softc *sc); 732 static void bxe_interrupt_detach(struct bxe_softc *sc); 733 static void bxe_set_rx_mode(struct bxe_softc *sc); 734 static int bxe_init_locked(struct bxe_softc *sc); 735 static int bxe_stop_locked(struct bxe_softc *sc); 736 static __noinline int bxe_nic_load(struct bxe_softc *sc, 737 int load_mode); 738 static __noinline int bxe_nic_unload(struct bxe_softc *sc, 739 uint32_t unload_mode, 740 uint8_t keep_link); 741 742 static void bxe_handle_sp_tq(void *context, int pending); 743 static void bxe_handle_rx_mode_tq(void *context, int pending); 744 static void bxe_handle_fp_tq(void *context, int pending); 745 746 747 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */ 748 uint32_t 749 calc_crc32(uint8_t *crc32_packet, 750 uint32_t crc32_length, 751 uint32_t crc32_seed, 752 uint8_t complement) 753 { 754 uint32_t byte = 0; 755 uint32_t bit = 0; 756 uint8_t msb = 0; 757 uint32_t temp = 0; 758 uint32_t shft = 0; 759 uint8_t current_byte = 0; 760 uint32_t crc32_result = crc32_seed; 761 const uint32_t CRC32_POLY = 0x1edc6f41; 762 763 if ((crc32_packet == NULL) || 764 (crc32_length == 0) || 765 ((crc32_length % 8) != 0)) 766 { 767 return (crc32_result); 768 } 769 770 for (byte = 0; byte < crc32_length; byte = byte + 1) 771 { 772 current_byte = crc32_packet[byte]; 773 for (bit = 0; bit < 8; bit = bit + 1) 774 { 775 /* msb = crc32_result[31]; */ 776 msb = (uint8_t)(crc32_result >> 31); 777 778 crc32_result = crc32_result << 1; 779 780 /* it (msb != current_byte[bit]) */ 781 if (msb != (0x1 & (current_byte >> bit))) 782 { 783 crc32_result = crc32_result ^ CRC32_POLY; 784 /* crc32_result[0] = 1 */ 785 crc32_result |= 1; 786 } 787 } 788 } 789 790 /* Last step is to: 791 * 1. "mirror" every bit 792 * 2. swap the 4 bytes 793 * 3. complement each bit 794 */ 795 796 /* Mirror */ 797 temp = crc32_result; 798 shft = sizeof(crc32_result) * 8 - 1; 799 800 for (crc32_result >>= 1; crc32_result; crc32_result >>= 1) 801 { 802 temp <<= 1; 803 temp |= crc32_result & 1; 804 shft-- ; 805 } 806 807 /* temp[31-bit] = crc32_result[bit] */ 808 temp <<= shft; 809 810 /* Swap */ 811 /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */ 812 { 813 uint32_t t0, t1, t2, t3; 814 t0 = (0x000000ff & (temp >> 24)); 815 t1 = (0x0000ff00 & (temp >> 8)); 816 t2 = (0x00ff0000 & (temp << 8)); 817 t3 = (0xff000000 & (temp << 24)); 818 crc32_result = t0 | t1 | t2 | t3; 819 } 820 821 /* Complement */ 822 if (complement) 823 { 824 crc32_result = ~crc32_result; 825 } 826 827 return (crc32_result); 828 } 829 830 int 831 bxe_test_bit(int nr, 832 volatile unsigned long *addr) 833 { 834 return ((atomic_load_acq_long(addr) & (1 << nr)) != 0); 835 } 836 837 void 838 bxe_set_bit(unsigned int nr, 839 volatile unsigned long *addr) 840 { 841 atomic_set_acq_long(addr, (1 << nr)); 842 } 843 844 void 845 bxe_clear_bit(int nr, 846 volatile unsigned long *addr) 847 { 848 atomic_clear_acq_long(addr, (1 << nr)); 849 } 850 851 int 852 bxe_test_and_set_bit(int nr, 853 volatile unsigned long *addr) 854 { 855 unsigned long x; 856 nr = (1 << nr); 857 do { 858 x = *addr; 859 } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0); 860 // if (x & nr) bit_was_set; else bit_was_not_set; 861 return (x & nr); 862 } 863 864 int 865 bxe_test_and_clear_bit(int nr, 866 volatile unsigned long *addr) 867 { 868 unsigned long x; 869 nr = (1 << nr); 870 do { 871 x = *addr; 872 } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0); 873 // if (x & nr) bit_was_set; else bit_was_not_set; 874 return (x & nr); 875 } 876 877 int 878 bxe_cmpxchg(volatile int *addr, 879 int old, 880 int new) 881 { 882 int x; 883 do { 884 x = *addr; 885 } while (atomic_cmpset_acq_int(addr, old, new) == 0); 886 return (x); 887 } 888 889 /* 890 * Get DMA memory from the OS. 891 * 892 * Validates that the OS has provided DMA buffers in response to a 893 * bus_dmamap_load call and saves the physical address of those buffers. 894 * When the callback is used the OS will return 0 for the mapping function 895 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any 896 * failures back to the caller. 897 * 898 * Returns: 899 * Nothing. 900 */ 901 static void 902 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 903 { 904 struct bxe_dma *dma = arg; 905 906 if (error) { 907 dma->paddr = 0; 908 dma->nseg = 0; 909 BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error); 910 } else { 911 dma->paddr = segs->ds_addr; 912 dma->nseg = nseg; 913 #if 0 914 BLOGD(dma->sc, DBG_LOAD,, 915 "DMA alloc '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n", 916 dma->msg, dma->vaddr, (void *)dma->paddr, 917 dma->nseg, dma->size); 918 #endif 919 } 920 } 921 922 /* 923 * Allocate a block of memory and map it for DMA. No partial completions 924 * allowed and release any resources acquired if we can't acquire all 925 * resources. 926 * 927 * Returns: 928 * 0 = Success, !0 = Failure 929 */ 930 int 931 bxe_dma_alloc(struct bxe_softc *sc, 932 bus_size_t size, 933 struct bxe_dma *dma, 934 const char *msg) 935 { 936 int rc; 937 938 if (dma->size > 0) { 939 BLOGE(sc, "dma block '%s' already has size %lu\n", msg, 940 (unsigned long)dma->size); 941 return (1); 942 } 943 944 memset(dma, 0, sizeof(*dma)); /* sanity */ 945 dma->sc = sc; 946 dma->size = size; 947 snprintf(dma->msg, sizeof(dma->msg), "%s", msg); 948 949 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 950 BCM_PAGE_SIZE, /* alignment */ 951 0, /* boundary limit */ 952 BUS_SPACE_MAXADDR, /* restricted low */ 953 BUS_SPACE_MAXADDR, /* restricted hi */ 954 NULL, /* addr filter() */ 955 NULL, /* addr filter() arg */ 956 size, /* max map size */ 957 1, /* num discontinuous */ 958 size, /* max seg size */ 959 BUS_DMA_ALLOCNOW, /* flags */ 960 NULL, /* lock() */ 961 NULL, /* lock() arg */ 962 &dma->tag); /* returned dma tag */ 963 if (rc != 0) { 964 BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc); 965 memset(dma, 0, sizeof(*dma)); 966 return (1); 967 } 968 969 rc = bus_dmamem_alloc(dma->tag, 970 (void **)&dma->vaddr, 971 (BUS_DMA_NOWAIT | BUS_DMA_ZERO), 972 &dma->map); 973 if (rc != 0) { 974 BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc); 975 bus_dma_tag_destroy(dma->tag); 976 memset(dma, 0, sizeof(*dma)); 977 return (1); 978 } 979 980 rc = bus_dmamap_load(dma->tag, 981 dma->map, 982 dma->vaddr, 983 size, 984 bxe_dma_map_addr, /* BLOGD in here */ 985 dma, 986 BUS_DMA_NOWAIT); 987 if (rc != 0) { 988 BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc); 989 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 990 bus_dma_tag_destroy(dma->tag); 991 memset(dma, 0, sizeof(*dma)); 992 return (1); 993 } 994 995 return (0); 996 } 997 998 void 999 bxe_dma_free(struct bxe_softc *sc, 1000 struct bxe_dma *dma) 1001 { 1002 if (dma->size > 0) { 1003 #if 0 1004 BLOGD(sc, DBG_LOAD, 1005 "DMA free '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n", 1006 dma->msg, dma->vaddr, (void *)dma->paddr, 1007 dma->nseg, dma->size); 1008 #endif 1009 1010 DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL")); 1011 1012 bus_dmamap_sync(dma->tag, dma->map, 1013 (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)); 1014 bus_dmamap_unload(dma->tag, dma->map); 1015 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 1016 bus_dma_tag_destroy(dma->tag); 1017 } 1018 1019 memset(dma, 0, sizeof(*dma)); 1020 } 1021 1022 /* 1023 * These indirect read and write routines are only during init. 1024 * The locking is handled by the MCP. 1025 */ 1026 1027 void 1028 bxe_reg_wr_ind(struct bxe_softc *sc, 1029 uint32_t addr, 1030 uint32_t val) 1031 { 1032 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 1033 pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4); 1034 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 1035 } 1036 1037 uint32_t 1038 bxe_reg_rd_ind(struct bxe_softc *sc, 1039 uint32_t addr) 1040 { 1041 uint32_t val; 1042 1043 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 1044 val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4); 1045 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 1046 1047 return (val); 1048 } 1049 1050 #if 0 1051 void bxe_dp_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int msglvl) 1052 { 1053 uint32_t src_type = dmae->opcode & DMAE_COMMAND_SRC; 1054 1055 switch (dmae->opcode & DMAE_COMMAND_DST) { 1056 case DMAE_CMD_DST_PCI: 1057 if (src_type == DMAE_CMD_SRC_PCI) 1058 DP(msglvl, "DMAE: opcode 0x%08x\n" 1059 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n" 1060 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1061 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 1062 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 1063 dmae->comp_addr_hi, dmae->comp_addr_lo, 1064 dmae->comp_val); 1065 else 1066 DP(msglvl, "DMAE: opcode 0x%08x\n" 1067 "src [%08x], len [%d*4], dst [%x:%08x]\n" 1068 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1069 dmae->opcode, dmae->src_addr_lo >> 2, 1070 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 1071 dmae->comp_addr_hi, dmae->comp_addr_lo, 1072 dmae->comp_val); 1073 break; 1074 case DMAE_CMD_DST_GRC: 1075 if (src_type == DMAE_CMD_SRC_PCI) 1076 DP(msglvl, "DMAE: opcode 0x%08x\n" 1077 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n" 1078 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1079 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 1080 dmae->len, dmae->dst_addr_lo >> 2, 1081 dmae->comp_addr_hi, dmae->comp_addr_lo, 1082 dmae->comp_val); 1083 else 1084 DP(msglvl, "DMAE: opcode 0x%08x\n" 1085 "src [%08x], len [%d*4], dst [%08x]\n" 1086 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1087 dmae->opcode, dmae->src_addr_lo >> 2, 1088 dmae->len, dmae->dst_addr_lo >> 2, 1089 dmae->comp_addr_hi, dmae->comp_addr_lo, 1090 dmae->comp_val); 1091 break; 1092 default: 1093 if (src_type == DMAE_CMD_SRC_PCI) 1094 DP(msglvl, "DMAE: opcode 0x%08x\n" 1095 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n" 1096 "comp_addr [%x:%08x] comp_val 0x%08x\n", 1097 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 1098 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 1099 dmae->comp_val); 1100 else 1101 DP(msglvl, "DMAE: opcode 0x%08x\n" 1102 "src_addr [%08x] len [%d * 4] dst_addr [none]\n" 1103 "comp_addr [%x:%08x] comp_val 0x%08x\n", 1104 dmae->opcode, dmae->src_addr_lo >> 2, 1105 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 1106 dmae->comp_val); 1107 break; 1108 } 1109 1110 } 1111 #endif 1112 1113 static int 1114 bxe_acquire_hw_lock(struct bxe_softc *sc, 1115 uint32_t resource) 1116 { 1117 uint32_t lock_status; 1118 uint32_t resource_bit = (1 << resource); 1119 int func = SC_FUNC(sc); 1120 uint32_t hw_lock_control_reg; 1121 int cnt; 1122 1123 /* validate the resource is within range */ 1124 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1125 BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource); 1126 return (-1); 1127 } 1128 1129 if (func <= 5) { 1130 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1131 } else { 1132 hw_lock_control_reg = 1133 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1134 } 1135 1136 /* validate the resource is not already taken */ 1137 lock_status = REG_RD(sc, hw_lock_control_reg); 1138 if (lock_status & resource_bit) { 1139 BLOGE(sc, "resource in use (status 0x%x bit 0x%x)\n", 1140 lock_status, resource_bit); 1141 return (-1); 1142 } 1143 1144 /* try every 5ms for 5 seconds */ 1145 for (cnt = 0; cnt < 1000; cnt++) { 1146 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit); 1147 lock_status = REG_RD(sc, hw_lock_control_reg); 1148 if (lock_status & resource_bit) { 1149 return (0); 1150 } 1151 DELAY(5000); 1152 } 1153 1154 BLOGE(sc, "Resource lock timeout!\n"); 1155 return (-1); 1156 } 1157 1158 static int 1159 bxe_release_hw_lock(struct bxe_softc *sc, 1160 uint32_t resource) 1161 { 1162 uint32_t lock_status; 1163 uint32_t resource_bit = (1 << resource); 1164 int func = SC_FUNC(sc); 1165 uint32_t hw_lock_control_reg; 1166 1167 /* validate the resource is within range */ 1168 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1169 BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource); 1170 return (-1); 1171 } 1172 1173 if (func <= 5) { 1174 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1175 } else { 1176 hw_lock_control_reg = 1177 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1178 } 1179 1180 /* validate the resource is currently taken */ 1181 lock_status = REG_RD(sc, hw_lock_control_reg); 1182 if (!(lock_status & resource_bit)) { 1183 BLOGE(sc, "resource not in use (status 0x%x bit 0x%x)\n", 1184 lock_status, resource_bit); 1185 return (-1); 1186 } 1187 1188 REG_WR(sc, hw_lock_control_reg, resource_bit); 1189 return (0); 1190 } 1191 1192 /* 1193 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise, 1194 * had we done things the other way around, if two pfs from the same port 1195 * would attempt to access nvram at the same time, we could run into a 1196 * scenario such as: 1197 * pf A takes the port lock. 1198 * pf B succeeds in taking the same lock since they are from the same port. 1199 * pf A takes the per pf misc lock. Performs eeprom access. 1200 * pf A finishes. Unlocks the per pf misc lock. 1201 * Pf B takes the lock and proceeds to perform it's own access. 1202 * pf A unlocks the per port lock, while pf B is still working (!). 1203 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own 1204 * access corrupted by pf B).* 1205 */ 1206 static int 1207 bxe_acquire_nvram_lock(struct bxe_softc *sc) 1208 { 1209 int port = SC_PORT(sc); 1210 int count, i; 1211 uint32_t val = 0; 1212 1213 /* acquire HW lock: protect against other PFs in PF Direct Assignment */ 1214 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1215 1216 /* adjust timeout for emulation/FPGA */ 1217 count = NVRAM_TIMEOUT_COUNT; 1218 if (CHIP_REV_IS_SLOW(sc)) { 1219 count *= 100; 1220 } 1221 1222 /* request access to nvram interface */ 1223 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1224 (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port)); 1225 1226 for (i = 0; i < count*10; i++) { 1227 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1228 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1229 break; 1230 } 1231 1232 DELAY(5); 1233 } 1234 1235 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1236 BLOGE(sc, "Cannot get access to nvram interface\n"); 1237 return (-1); 1238 } 1239 1240 return (0); 1241 } 1242 1243 static int 1244 bxe_release_nvram_lock(struct bxe_softc *sc) 1245 { 1246 int port = SC_PORT(sc); 1247 int count, i; 1248 uint32_t val = 0; 1249 1250 /* adjust timeout for emulation/FPGA */ 1251 count = NVRAM_TIMEOUT_COUNT; 1252 if (CHIP_REV_IS_SLOW(sc)) { 1253 count *= 100; 1254 } 1255 1256 /* relinquish nvram interface */ 1257 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1258 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port)); 1259 1260 for (i = 0; i < count*10; i++) { 1261 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1262 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1263 break; 1264 } 1265 1266 DELAY(5); 1267 } 1268 1269 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1270 BLOGE(sc, "Cannot free access to nvram interface\n"); 1271 return (-1); 1272 } 1273 1274 /* release HW lock: protect against other PFs in PF Direct Assignment */ 1275 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1276 1277 return (0); 1278 } 1279 1280 static void 1281 bxe_enable_nvram_access(struct bxe_softc *sc) 1282 { 1283 uint32_t val; 1284 1285 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1286 1287 /* enable both bits, even on read */ 1288 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1289 (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN)); 1290 } 1291 1292 static void 1293 bxe_disable_nvram_access(struct bxe_softc *sc) 1294 { 1295 uint32_t val; 1296 1297 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1298 1299 /* disable both bits, even after read */ 1300 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1301 (val & ~(MCPR_NVM_ACCESS_ENABLE_EN | 1302 MCPR_NVM_ACCESS_ENABLE_WR_EN))); 1303 } 1304 1305 static int 1306 bxe_nvram_read_dword(struct bxe_softc *sc, 1307 uint32_t offset, 1308 uint32_t *ret_val, 1309 uint32_t cmd_flags) 1310 { 1311 int count, i, rc; 1312 uint32_t val; 1313 1314 /* build the command word */ 1315 cmd_flags |= MCPR_NVM_COMMAND_DOIT; 1316 1317 /* need to clear DONE bit separately */ 1318 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1319 1320 /* address of the NVRAM to read from */ 1321 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1322 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1323 1324 /* issue a read command */ 1325 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1326 1327 /* adjust timeout for emulation/FPGA */ 1328 count = NVRAM_TIMEOUT_COUNT; 1329 if (CHIP_REV_IS_SLOW(sc)) { 1330 count *= 100; 1331 } 1332 1333 /* wait for completion */ 1334 *ret_val = 0; 1335 rc = -1; 1336 for (i = 0; i < count; i++) { 1337 DELAY(5); 1338 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1339 1340 if (val & MCPR_NVM_COMMAND_DONE) { 1341 val = REG_RD(sc, MCP_REG_MCPR_NVM_READ); 1342 /* we read nvram data in cpu order 1343 * but ethtool sees it as an array of bytes 1344 * converting to big-endian will do the work 1345 */ 1346 *ret_val = htobe32(val); 1347 rc = 0; 1348 break; 1349 } 1350 } 1351 1352 if (rc == -1) { 1353 BLOGE(sc, "nvram read timeout expired\n"); 1354 } 1355 1356 return (rc); 1357 } 1358 1359 static int 1360 bxe_nvram_read(struct bxe_softc *sc, 1361 uint32_t offset, 1362 uint8_t *ret_buf, 1363 int buf_size) 1364 { 1365 uint32_t cmd_flags; 1366 uint32_t val; 1367 int rc; 1368 1369 if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) { 1370 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1371 offset, buf_size); 1372 return (-1); 1373 } 1374 1375 if ((offset + buf_size) > sc->devinfo.flash_size) { 1376 BLOGE(sc, "Invalid parameter, " 1377 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1378 offset, buf_size, sc->devinfo.flash_size); 1379 return (-1); 1380 } 1381 1382 /* request access to nvram interface */ 1383 rc = bxe_acquire_nvram_lock(sc); 1384 if (rc) { 1385 return (rc); 1386 } 1387 1388 /* enable access to nvram interface */ 1389 bxe_enable_nvram_access(sc); 1390 1391 /* read the first word(s) */ 1392 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1393 while ((buf_size > sizeof(uint32_t)) && (rc == 0)) { 1394 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1395 memcpy(ret_buf, &val, 4); 1396 1397 /* advance to the next dword */ 1398 offset += sizeof(uint32_t); 1399 ret_buf += sizeof(uint32_t); 1400 buf_size -= sizeof(uint32_t); 1401 cmd_flags = 0; 1402 } 1403 1404 if (rc == 0) { 1405 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1406 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1407 memcpy(ret_buf, &val, 4); 1408 } 1409 1410 /* disable access to nvram interface */ 1411 bxe_disable_nvram_access(sc); 1412 bxe_release_nvram_lock(sc); 1413 1414 return (rc); 1415 } 1416 1417 static int 1418 bxe_nvram_write_dword(struct bxe_softc *sc, 1419 uint32_t offset, 1420 uint32_t val, 1421 uint32_t cmd_flags) 1422 { 1423 int count, i, rc; 1424 1425 /* build the command word */ 1426 cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR); 1427 1428 /* need to clear DONE bit separately */ 1429 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1430 1431 /* write the data */ 1432 REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val); 1433 1434 /* address of the NVRAM to write to */ 1435 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1436 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1437 1438 /* issue the write command */ 1439 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1440 1441 /* adjust timeout for emulation/FPGA */ 1442 count = NVRAM_TIMEOUT_COUNT; 1443 if (CHIP_REV_IS_SLOW(sc)) { 1444 count *= 100; 1445 } 1446 1447 /* wait for completion */ 1448 rc = -1; 1449 for (i = 0; i < count; i++) { 1450 DELAY(5); 1451 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1452 if (val & MCPR_NVM_COMMAND_DONE) { 1453 rc = 0; 1454 break; 1455 } 1456 } 1457 1458 if (rc == -1) { 1459 BLOGE(sc, "nvram write timeout expired\n"); 1460 } 1461 1462 return (rc); 1463 } 1464 1465 #define BYTE_OFFSET(offset) (8 * (offset & 0x03)) 1466 1467 static int 1468 bxe_nvram_write1(struct bxe_softc *sc, 1469 uint32_t offset, 1470 uint8_t *data_buf, 1471 int buf_size) 1472 { 1473 uint32_t cmd_flags; 1474 uint32_t align_offset; 1475 uint32_t val; 1476 int rc; 1477 1478 if ((offset + buf_size) > sc->devinfo.flash_size) { 1479 BLOGE(sc, "Invalid parameter, " 1480 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1481 offset, buf_size, sc->devinfo.flash_size); 1482 return (-1); 1483 } 1484 1485 /* request access to nvram interface */ 1486 rc = bxe_acquire_nvram_lock(sc); 1487 if (rc) { 1488 return (rc); 1489 } 1490 1491 /* enable access to nvram interface */ 1492 bxe_enable_nvram_access(sc); 1493 1494 cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST); 1495 align_offset = (offset & ~0x03); 1496 rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags); 1497 1498 if (rc == 0) { 1499 val &= ~(0xff << BYTE_OFFSET(offset)); 1500 val |= (*data_buf << BYTE_OFFSET(offset)); 1501 1502 /* nvram data is returned as an array of bytes 1503 * convert it back to cpu order 1504 */ 1505 val = be32toh(val); 1506 1507 rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags); 1508 } 1509 1510 /* disable access to nvram interface */ 1511 bxe_disable_nvram_access(sc); 1512 bxe_release_nvram_lock(sc); 1513 1514 return (rc); 1515 } 1516 1517 static int 1518 bxe_nvram_write(struct bxe_softc *sc, 1519 uint32_t offset, 1520 uint8_t *data_buf, 1521 int buf_size) 1522 { 1523 uint32_t cmd_flags; 1524 uint32_t val; 1525 uint32_t written_so_far; 1526 int rc; 1527 1528 if (buf_size == 1) { 1529 return (bxe_nvram_write1(sc, offset, data_buf, buf_size)); 1530 } 1531 1532 if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) { 1533 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1534 offset, buf_size); 1535 return (-1); 1536 } 1537 1538 if (buf_size == 0) { 1539 return (0); /* nothing to do */ 1540 } 1541 1542 if ((offset + buf_size) > sc->devinfo.flash_size) { 1543 BLOGE(sc, "Invalid parameter, " 1544 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1545 offset, buf_size, sc->devinfo.flash_size); 1546 return (-1); 1547 } 1548 1549 /* request access to nvram interface */ 1550 rc = bxe_acquire_nvram_lock(sc); 1551 if (rc) { 1552 return (rc); 1553 } 1554 1555 /* enable access to nvram interface */ 1556 bxe_enable_nvram_access(sc); 1557 1558 written_so_far = 0; 1559 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1560 while ((written_so_far < buf_size) && (rc == 0)) { 1561 if (written_so_far == (buf_size - sizeof(uint32_t))) { 1562 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1563 } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) { 1564 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1565 } else if ((offset % NVRAM_PAGE_SIZE) == 0) { 1566 cmd_flags |= MCPR_NVM_COMMAND_FIRST; 1567 } 1568 1569 memcpy(&val, data_buf, 4); 1570 1571 rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags); 1572 1573 /* advance to the next dword */ 1574 offset += sizeof(uint32_t); 1575 data_buf += sizeof(uint32_t); 1576 written_so_far += sizeof(uint32_t); 1577 cmd_flags = 0; 1578 } 1579 1580 /* disable access to nvram interface */ 1581 bxe_disable_nvram_access(sc); 1582 bxe_release_nvram_lock(sc); 1583 1584 return (rc); 1585 } 1586 1587 /* copy command into DMAE command memory and set DMAE command Go */ 1588 void 1589 bxe_post_dmae(struct bxe_softc *sc, 1590 struct dmae_command *dmae, 1591 int idx) 1592 { 1593 uint32_t cmd_offset; 1594 int i; 1595 1596 cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx)); 1597 for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) { 1598 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i)); 1599 } 1600 1601 REG_WR(sc, dmae_reg_go_c[idx], 1); 1602 } 1603 1604 uint32_t 1605 bxe_dmae_opcode_add_comp(uint32_t opcode, 1606 uint8_t comp_type) 1607 { 1608 return (opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) | 1609 DMAE_COMMAND_C_TYPE_ENABLE)); 1610 } 1611 1612 uint32_t 1613 bxe_dmae_opcode_clr_src_reset(uint32_t opcode) 1614 { 1615 return (opcode & ~DMAE_COMMAND_SRC_RESET); 1616 } 1617 1618 uint32_t 1619 bxe_dmae_opcode(struct bxe_softc *sc, 1620 uint8_t src_type, 1621 uint8_t dst_type, 1622 uint8_t with_comp, 1623 uint8_t comp_type) 1624 { 1625 uint32_t opcode = 0; 1626 1627 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) | 1628 (dst_type << DMAE_COMMAND_DST_SHIFT)); 1629 1630 opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET); 1631 1632 opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 1633 1634 opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) | 1635 (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT)); 1636 1637 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT); 1638 1639 #ifdef __BIG_ENDIAN 1640 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 1641 #else 1642 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 1643 #endif 1644 1645 if (with_comp) { 1646 opcode = bxe_dmae_opcode_add_comp(opcode, comp_type); 1647 } 1648 1649 return (opcode); 1650 } 1651 1652 static void 1653 bxe_prep_dmae_with_comp(struct bxe_softc *sc, 1654 struct dmae_command *dmae, 1655 uint8_t src_type, 1656 uint8_t dst_type) 1657 { 1658 memset(dmae, 0, sizeof(struct dmae_command)); 1659 1660 /* set the opcode */ 1661 dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type, 1662 TRUE, DMAE_COMP_PCI); 1663 1664 /* fill in the completion parameters */ 1665 dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp)); 1666 dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp)); 1667 dmae->comp_val = DMAE_COMP_VAL; 1668 } 1669 1670 /* issue a DMAE command over the init channel and wait for completion */ 1671 static int 1672 bxe_issue_dmae_with_comp(struct bxe_softc *sc, 1673 struct dmae_command *dmae) 1674 { 1675 uint32_t *wb_comp = BXE_SP(sc, wb_comp); 1676 int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000; 1677 1678 BXE_DMAE_LOCK(sc); 1679 1680 /* reset completion */ 1681 *wb_comp = 0; 1682 1683 /* post the command on the channel used for initializations */ 1684 bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc)); 1685 1686 /* wait for completion */ 1687 DELAY(5); 1688 1689 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 1690 if (!timeout || 1691 (sc->recovery_state != BXE_RECOVERY_DONE && 1692 sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) { 1693 BLOGE(sc, "DMAE timeout!\n"); 1694 BXE_DMAE_UNLOCK(sc); 1695 return (DMAE_TIMEOUT); 1696 } 1697 1698 timeout--; 1699 DELAY(50); 1700 } 1701 1702 if (*wb_comp & DMAE_PCI_ERR_FLAG) { 1703 BLOGE(sc, "DMAE PCI error!\n"); 1704 BXE_DMAE_UNLOCK(sc); 1705 return (DMAE_PCI_ERROR); 1706 } 1707 1708 BXE_DMAE_UNLOCK(sc); 1709 return (0); 1710 } 1711 1712 void 1713 bxe_read_dmae(struct bxe_softc *sc, 1714 uint32_t src_addr, 1715 uint32_t len32) 1716 { 1717 struct dmae_command dmae; 1718 uint32_t *data; 1719 int i, rc; 1720 1721 DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32)); 1722 1723 if (!sc->dmae_ready) { 1724 data = BXE_SP(sc, wb_data[0]); 1725 1726 for (i = 0; i < len32; i++) { 1727 data[i] = (CHIP_IS_E1(sc)) ? 1728 bxe_reg_rd_ind(sc, (src_addr + (i * 4))) : 1729 REG_RD(sc, (src_addr + (i * 4))); 1730 } 1731 1732 return; 1733 } 1734 1735 /* set opcode and fixed command fields */ 1736 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 1737 1738 /* fill in addresses and len */ 1739 dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */ 1740 dmae.src_addr_hi = 0; 1741 dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data)); 1742 dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data)); 1743 dmae.len = len32; 1744 1745 /* issue the command and wait for completion */ 1746 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1747 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1748 }; 1749 } 1750 1751 void 1752 bxe_write_dmae(struct bxe_softc *sc, 1753 bus_addr_t dma_addr, 1754 uint32_t dst_addr, 1755 uint32_t len32) 1756 { 1757 struct dmae_command dmae; 1758 int rc; 1759 1760 if (!sc->dmae_ready) { 1761 DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32)); 1762 1763 if (CHIP_IS_E1(sc)) { 1764 ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1765 } else { 1766 ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1767 } 1768 1769 return; 1770 } 1771 1772 /* set opcode and fixed command fields */ 1773 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 1774 1775 /* fill in addresses and len */ 1776 dmae.src_addr_lo = U64_LO(dma_addr); 1777 dmae.src_addr_hi = U64_HI(dma_addr); 1778 dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */ 1779 dmae.dst_addr_hi = 0; 1780 dmae.len = len32; 1781 1782 /* issue the command and wait for completion */ 1783 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1784 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1785 } 1786 } 1787 1788 void 1789 bxe_write_dmae_phys_len(struct bxe_softc *sc, 1790 bus_addr_t phys_addr, 1791 uint32_t addr, 1792 uint32_t len) 1793 { 1794 int dmae_wr_max = DMAE_LEN32_WR_MAX(sc); 1795 int offset = 0; 1796 1797 while (len > dmae_wr_max) { 1798 bxe_write_dmae(sc, 1799 (phys_addr + offset), /* src DMA address */ 1800 (addr + offset), /* dst GRC address */ 1801 dmae_wr_max); 1802 offset += (dmae_wr_max * 4); 1803 len -= dmae_wr_max; 1804 } 1805 1806 bxe_write_dmae(sc, 1807 (phys_addr + offset), /* src DMA address */ 1808 (addr + offset), /* dst GRC address */ 1809 len); 1810 } 1811 1812 void 1813 bxe_set_ctx_validation(struct bxe_softc *sc, 1814 struct eth_context *cxt, 1815 uint32_t cid) 1816 { 1817 /* ustorm cxt validation */ 1818 cxt->ustorm_ag_context.cdu_usage = 1819 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1820 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 1821 /* xcontext validation */ 1822 cxt->xstorm_ag_context.cdu_reserved = 1823 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1824 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 1825 } 1826 1827 static void 1828 bxe_storm_memset_hc_timeout(struct bxe_softc *sc, 1829 uint8_t port, 1830 uint8_t fw_sb_id, 1831 uint8_t sb_index, 1832 uint8_t ticks) 1833 { 1834 uint32_t addr = 1835 (BAR_CSTRORM_INTMEM + 1836 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index)); 1837 1838 REG_WR8(sc, addr, ticks); 1839 1840 BLOGD(sc, DBG_LOAD, 1841 "port %d fw_sb_id %d sb_index %d ticks %d\n", 1842 port, fw_sb_id, sb_index, ticks); 1843 } 1844 1845 static void 1846 bxe_storm_memset_hc_disable(struct bxe_softc *sc, 1847 uint8_t port, 1848 uint16_t fw_sb_id, 1849 uint8_t sb_index, 1850 uint8_t disable) 1851 { 1852 uint32_t enable_flag = 1853 (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 1854 uint32_t addr = 1855 (BAR_CSTRORM_INTMEM + 1856 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index)); 1857 uint8_t flags; 1858 1859 /* clear and set */ 1860 flags = REG_RD8(sc, addr); 1861 flags &= ~HC_INDEX_DATA_HC_ENABLED; 1862 flags |= enable_flag; 1863 REG_WR8(sc, addr, flags); 1864 1865 BLOGD(sc, DBG_LOAD, 1866 "port %d fw_sb_id %d sb_index %d disable %d\n", 1867 port, fw_sb_id, sb_index, disable); 1868 } 1869 1870 void 1871 bxe_update_coalesce_sb_index(struct bxe_softc *sc, 1872 uint8_t fw_sb_id, 1873 uint8_t sb_index, 1874 uint8_t disable, 1875 uint16_t usec) 1876 { 1877 int port = SC_PORT(sc); 1878 uint8_t ticks = (usec / 4); /* XXX ??? */ 1879 1880 bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks); 1881 1882 disable = (disable) ? 1 : ((usec) ? 0 : 1); 1883 bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable); 1884 } 1885 1886 void 1887 elink_cb_udelay(struct bxe_softc *sc, 1888 uint32_t usecs) 1889 { 1890 DELAY(usecs); 1891 } 1892 1893 uint32_t 1894 elink_cb_reg_read(struct bxe_softc *sc, 1895 uint32_t reg_addr) 1896 { 1897 return (REG_RD(sc, reg_addr)); 1898 } 1899 1900 void 1901 elink_cb_reg_write(struct bxe_softc *sc, 1902 uint32_t reg_addr, 1903 uint32_t val) 1904 { 1905 REG_WR(sc, reg_addr, val); 1906 } 1907 1908 void 1909 elink_cb_reg_wb_write(struct bxe_softc *sc, 1910 uint32_t offset, 1911 uint32_t *wb_write, 1912 uint16_t len) 1913 { 1914 REG_WR_DMAE(sc, offset, wb_write, len); 1915 } 1916 1917 void 1918 elink_cb_reg_wb_read(struct bxe_softc *sc, 1919 uint32_t offset, 1920 uint32_t *wb_write, 1921 uint16_t len) 1922 { 1923 REG_RD_DMAE(sc, offset, wb_write, len); 1924 } 1925 1926 uint8_t 1927 elink_cb_path_id(struct bxe_softc *sc) 1928 { 1929 return (SC_PATH(sc)); 1930 } 1931 1932 void 1933 elink_cb_event_log(struct bxe_softc *sc, 1934 const elink_log_id_t elink_log_id, 1935 ...) 1936 { 1937 /* XXX */ 1938 #if 0 1939 //va_list ap; 1940 va_start(ap, elink_log_id); 1941 _XXX_(sc, lm_log_id, ap); 1942 va_end(ap); 1943 #endif 1944 BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id); 1945 } 1946 1947 static int 1948 bxe_set_spio(struct bxe_softc *sc, 1949 int spio, 1950 uint32_t mode) 1951 { 1952 uint32_t spio_reg; 1953 1954 /* Only 2 SPIOs are configurable */ 1955 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 1956 BLOGE(sc, "Invalid SPIO 0x%x\n", spio); 1957 return (-1); 1958 } 1959 1960 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1961 1962 /* read SPIO and mask except the float bits */ 1963 spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 1964 1965 switch (mode) { 1966 case MISC_SPIO_OUTPUT_LOW: 1967 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio); 1968 /* clear FLOAT and set CLR */ 1969 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1970 spio_reg |= (spio << MISC_SPIO_CLR_POS); 1971 break; 1972 1973 case MISC_SPIO_OUTPUT_HIGH: 1974 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio); 1975 /* clear FLOAT and set SET */ 1976 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1977 spio_reg |= (spio << MISC_SPIO_SET_POS); 1978 break; 1979 1980 case MISC_SPIO_INPUT_HI_Z: 1981 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio); 1982 /* set FLOAT */ 1983 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 1984 break; 1985 1986 default: 1987 break; 1988 } 1989 1990 REG_WR(sc, MISC_REG_SPIO, spio_reg); 1991 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1992 1993 return (0); 1994 } 1995 1996 static int 1997 bxe_gpio_read(struct bxe_softc *sc, 1998 int gpio_num, 1999 uint8_t port) 2000 { 2001 /* The GPIO should be swapped if swap register is set and active */ 2002 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2003 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2004 int gpio_shift = (gpio_num + 2005 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2006 uint32_t gpio_mask = (1 << gpio_shift); 2007 uint32_t gpio_reg; 2008 2009 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2010 BLOGE(sc, "Invalid GPIO %d\n", gpio_num); 2011 return (-1); 2012 } 2013 2014 /* read GPIO value */ 2015 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 2016 2017 /* get the requested pin value */ 2018 return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0; 2019 } 2020 2021 static int 2022 bxe_gpio_write(struct bxe_softc *sc, 2023 int gpio_num, 2024 uint32_t mode, 2025 uint8_t port) 2026 { 2027 /* The GPIO should be swapped if swap register is set and active */ 2028 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2029 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2030 int gpio_shift = (gpio_num + 2031 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2032 uint32_t gpio_mask = (1 << gpio_shift); 2033 uint32_t gpio_reg; 2034 2035 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2036 BLOGE(sc, "Invalid GPIO %d\n", gpio_num); 2037 return (-1); 2038 } 2039 2040 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2041 2042 /* read GPIO and mask except the float bits */ 2043 gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 2044 2045 switch (mode) { 2046 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2047 BLOGD(sc, DBG_PHY, 2048 "Set GPIO %d (shift %d) -> output low\n", 2049 gpio_num, gpio_shift); 2050 /* clear FLOAT and set CLR */ 2051 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2052 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 2053 break; 2054 2055 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2056 BLOGD(sc, DBG_PHY, 2057 "Set GPIO %d (shift %d) -> output high\n", 2058 gpio_num, gpio_shift); 2059 /* clear FLOAT and set SET */ 2060 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2061 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 2062 break; 2063 2064 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2065 BLOGD(sc, DBG_PHY, 2066 "Set GPIO %d (shift %d) -> input\n", 2067 gpio_num, gpio_shift); 2068 /* set FLOAT */ 2069 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2070 break; 2071 2072 default: 2073 break; 2074 } 2075 2076 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 2077 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2078 2079 return (0); 2080 } 2081 2082 static int 2083 bxe_gpio_mult_write(struct bxe_softc *sc, 2084 uint8_t pins, 2085 uint32_t mode) 2086 { 2087 uint32_t gpio_reg; 2088 2089 /* any port swapping should be handled by caller */ 2090 2091 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2092 2093 /* read GPIO and mask except the float bits */ 2094 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 2095 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2096 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 2097 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 2098 2099 switch (mode) { 2100 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2101 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins); 2102 /* set CLR */ 2103 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 2104 break; 2105 2106 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2107 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins); 2108 /* set SET */ 2109 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 2110 break; 2111 2112 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2113 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins); 2114 /* set FLOAT */ 2115 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2116 break; 2117 2118 default: 2119 BLOGE(sc, "Invalid GPIO mode assignment %d\n", mode); 2120 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2121 return (-1); 2122 } 2123 2124 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 2125 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2126 2127 return (0); 2128 } 2129 2130 static int 2131 bxe_gpio_int_write(struct bxe_softc *sc, 2132 int gpio_num, 2133 uint32_t mode, 2134 uint8_t port) 2135 { 2136 /* The GPIO should be swapped if swap register is set and active */ 2137 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2138 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2139 int gpio_shift = (gpio_num + 2140 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2141 uint32_t gpio_mask = (1 << gpio_shift); 2142 uint32_t gpio_reg; 2143 2144 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2145 BLOGE(sc, "Invalid GPIO %d\n", gpio_num); 2146 return (-1); 2147 } 2148 2149 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2150 2151 /* read GPIO int */ 2152 gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT); 2153 2154 switch (mode) { 2155 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2156 BLOGD(sc, DBG_PHY, 2157 "Clear GPIO INT %d (shift %d) -> output low\n", 2158 gpio_num, gpio_shift); 2159 /* clear SET and set CLR */ 2160 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2161 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2162 break; 2163 2164 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2165 BLOGD(sc, DBG_PHY, 2166 "Set GPIO INT %d (shift %d) -> output high\n", 2167 gpio_num, gpio_shift); 2168 /* clear CLR and set SET */ 2169 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2170 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2171 break; 2172 2173 default: 2174 break; 2175 } 2176 2177 REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg); 2178 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2179 2180 return (0); 2181 } 2182 2183 uint32_t 2184 elink_cb_gpio_read(struct bxe_softc *sc, 2185 uint16_t gpio_num, 2186 uint8_t port) 2187 { 2188 return (bxe_gpio_read(sc, gpio_num, port)); 2189 } 2190 2191 uint8_t 2192 elink_cb_gpio_write(struct bxe_softc *sc, 2193 uint16_t gpio_num, 2194 uint8_t mode, /* 0=low 1=high */ 2195 uint8_t port) 2196 { 2197 return (bxe_gpio_write(sc, gpio_num, mode, port)); 2198 } 2199 2200 uint8_t 2201 elink_cb_gpio_mult_write(struct bxe_softc *sc, 2202 uint8_t pins, 2203 uint8_t mode) /* 0=low 1=high */ 2204 { 2205 return (bxe_gpio_mult_write(sc, pins, mode)); 2206 } 2207 2208 uint8_t 2209 elink_cb_gpio_int_write(struct bxe_softc *sc, 2210 uint16_t gpio_num, 2211 uint8_t mode, /* 0=low 1=high */ 2212 uint8_t port) 2213 { 2214 return (bxe_gpio_int_write(sc, gpio_num, mode, port)); 2215 } 2216 2217 void 2218 elink_cb_notify_link_changed(struct bxe_softc *sc) 2219 { 2220 REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 + 2221 (SC_FUNC(sc) * sizeof(uint32_t))), 1); 2222 } 2223 2224 /* send the MCP a request, block until there is a reply */ 2225 uint32_t 2226 elink_cb_fw_command(struct bxe_softc *sc, 2227 uint32_t command, 2228 uint32_t param) 2229 { 2230 int mb_idx = SC_FW_MB_IDX(sc); 2231 uint32_t seq; 2232 uint32_t rc = 0; 2233 uint32_t cnt = 1; 2234 uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10; 2235 2236 BXE_FWMB_LOCK(sc); 2237 2238 seq = ++sc->fw_seq; 2239 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param); 2240 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq)); 2241 2242 BLOGD(sc, DBG_PHY, 2243 "wrote command 0x%08x to FW MB param 0x%08x\n", 2244 (command | seq), param); 2245 2246 /* Let the FW do it's magic. GIve it up to 5 seconds... */ 2247 do { 2248 DELAY(delay * 1000); 2249 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header); 2250 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 2251 2252 BLOGD(sc, DBG_PHY, 2253 "[after %d ms] read 0x%x seq 0x%x from FW MB\n", 2254 cnt*delay, rc, seq); 2255 2256 /* is this a reply to our command? */ 2257 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) { 2258 rc &= FW_MSG_CODE_MASK; 2259 } else { 2260 /* Ruh-roh! */ 2261 BLOGE(sc, "FW failed to respond!\n"); 2262 // XXX bxe_fw_dump(sc); 2263 rc = 0; 2264 } 2265 2266 BXE_FWMB_UNLOCK(sc); 2267 return (rc); 2268 } 2269 2270 static uint32_t 2271 bxe_fw_command(struct bxe_softc *sc, 2272 uint32_t command, 2273 uint32_t param) 2274 { 2275 return (elink_cb_fw_command(sc, command, param)); 2276 } 2277 2278 static void 2279 __storm_memset_dma_mapping(struct bxe_softc *sc, 2280 uint32_t addr, 2281 bus_addr_t mapping) 2282 { 2283 REG_WR(sc, addr, U64_LO(mapping)); 2284 REG_WR(sc, (addr + 4), U64_HI(mapping)); 2285 } 2286 2287 static void 2288 storm_memset_spq_addr(struct bxe_softc *sc, 2289 bus_addr_t mapping, 2290 uint16_t abs_fid) 2291 { 2292 uint32_t addr = (XSEM_REG_FAST_MEMORY + 2293 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid)); 2294 __storm_memset_dma_mapping(sc, addr, mapping); 2295 } 2296 2297 static void 2298 storm_memset_vf_to_pf(struct bxe_softc *sc, 2299 uint16_t abs_fid, 2300 uint16_t pf_id) 2301 { 2302 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2303 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2304 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2305 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2306 } 2307 2308 static void 2309 storm_memset_func_en(struct bxe_softc *sc, 2310 uint16_t abs_fid, 2311 uint8_t enable) 2312 { 2313 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2314 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2315 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2316 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2317 } 2318 2319 static void 2320 storm_memset_eq_data(struct bxe_softc *sc, 2321 struct event_ring_data *eq_data, 2322 uint16_t pfid) 2323 { 2324 uint32_t addr; 2325 size_t size; 2326 2327 addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid)); 2328 size = sizeof(struct event_ring_data); 2329 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data); 2330 } 2331 2332 static void 2333 storm_memset_eq_prod(struct bxe_softc *sc, 2334 uint16_t eq_prod, 2335 uint16_t pfid) 2336 { 2337 uint32_t addr = (BAR_CSTRORM_INTMEM + 2338 CSTORM_EVENT_RING_PROD_OFFSET(pfid)); 2339 REG_WR16(sc, addr, eq_prod); 2340 } 2341 2342 /* 2343 * Post a slowpath command. 2344 * 2345 * A slowpath command is used to propogate a configuration change through 2346 * the controller in a controlled manner, allowing each STORM processor and 2347 * other H/W blocks to phase in the change. The commands sent on the 2348 * slowpath are referred to as ramrods. Depending on the ramrod used the 2349 * completion of the ramrod will occur in different ways. Here's a 2350 * breakdown of ramrods and how they complete: 2351 * 2352 * RAMROD_CMD_ID_ETH_PORT_SETUP 2353 * Used to setup the leading connection on a port. Completes on the 2354 * Receive Completion Queue (RCQ) of that port (typically fp[0]). 2355 * 2356 * RAMROD_CMD_ID_ETH_CLIENT_SETUP 2357 * Used to setup an additional connection on a port. Completes on the 2358 * RCQ of the multi-queue/RSS connection being initialized. 2359 * 2360 * RAMROD_CMD_ID_ETH_STAT_QUERY 2361 * Used to force the storm processors to update the statistics database 2362 * in host memory. This ramrod is send on the leading connection CID and 2363 * completes as an index increment of the CSTORM on the default status 2364 * block. 2365 * 2366 * RAMROD_CMD_ID_ETH_UPDATE 2367 * Used to update the state of the leading connection, usually to udpate 2368 * the RSS indirection table. Completes on the RCQ of the leading 2369 * connection. (Not currently used under FreeBSD until OS support becomes 2370 * available.) 2371 * 2372 * RAMROD_CMD_ID_ETH_HALT 2373 * Used when tearing down a connection prior to driver unload. Completes 2374 * on the RCQ of the multi-queue/RSS connection being torn down. Don't 2375 * use this on the leading connection. 2376 * 2377 * RAMROD_CMD_ID_ETH_SET_MAC 2378 * Sets the Unicast/Broadcast/Multicast used by the port. Completes on 2379 * the RCQ of the leading connection. 2380 * 2381 * RAMROD_CMD_ID_ETH_CFC_DEL 2382 * Used when tearing down a conneciton prior to driver unload. Completes 2383 * on the RCQ of the leading connection (since the current connection 2384 * has been completely removed from controller memory). 2385 * 2386 * RAMROD_CMD_ID_ETH_PORT_DEL 2387 * Used to tear down the leading connection prior to driver unload, 2388 * typically fp[0]. Completes as an index increment of the CSTORM on the 2389 * default status block. 2390 * 2391 * RAMROD_CMD_ID_ETH_FORWARD_SETUP 2392 * Used for connection offload. Completes on the RCQ of the multi-queue 2393 * RSS connection that is being offloaded. (Not currently used under 2394 * FreeBSD.) 2395 * 2396 * There can only be one command pending per function. 2397 * 2398 * Returns: 2399 * 0 = Success, !0 = Failure. 2400 */ 2401 2402 /* must be called under the spq lock */ 2403 static inline 2404 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc) 2405 { 2406 struct eth_spe *next_spe = sc->spq_prod_bd; 2407 2408 if (sc->spq_prod_bd == sc->spq_last_bd) { 2409 /* wrap back to the first eth_spq */ 2410 sc->spq_prod_bd = sc->spq; 2411 sc->spq_prod_idx = 0; 2412 } else { 2413 sc->spq_prod_bd++; 2414 sc->spq_prod_idx++; 2415 } 2416 2417 return (next_spe); 2418 } 2419 2420 /* must be called under the spq lock */ 2421 static inline 2422 void bxe_sp_prod_update(struct bxe_softc *sc) 2423 { 2424 int func = SC_FUNC(sc); 2425 2426 /* 2427 * Make sure that BD data is updated before writing the producer. 2428 * BD data is written to the memory, the producer is read from the 2429 * memory, thus we need a full memory barrier to ensure the ordering. 2430 */ 2431 mb(); 2432 2433 REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)), 2434 sc->spq_prod_idx); 2435 2436 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 2437 BUS_SPACE_BARRIER_WRITE); 2438 } 2439 2440 /** 2441 * bxe_is_contextless_ramrod - check if the current command ends on EQ 2442 * 2443 * @cmd: command to check 2444 * @cmd_type: command type 2445 */ 2446 static inline 2447 int bxe_is_contextless_ramrod(int cmd, 2448 int cmd_type) 2449 { 2450 if ((cmd_type == NONE_CONNECTION_TYPE) || 2451 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 2452 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 2453 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 2454 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 2455 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 2456 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) { 2457 return (TRUE); 2458 } else { 2459 return (FALSE); 2460 } 2461 } 2462 2463 /** 2464 * bxe_sp_post - place a single command on an SP ring 2465 * 2466 * @sc: driver handle 2467 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 2468 * @cid: SW CID the command is related to 2469 * @data_hi: command private data address (high 32 bits) 2470 * @data_lo: command private data address (low 32 bits) 2471 * @cmd_type: command type (e.g. NONE, ETH) 2472 * 2473 * SP data is handled as if it's always an address pair, thus data fields are 2474 * not swapped to little endian in upper functions. Instead this function swaps 2475 * data as if it's two uint32 fields. 2476 */ 2477 int 2478 bxe_sp_post(struct bxe_softc *sc, 2479 int command, 2480 int cid, 2481 uint32_t data_hi, 2482 uint32_t data_lo, 2483 int cmd_type) 2484 { 2485 struct eth_spe *spe; 2486 uint16_t type; 2487 int common; 2488 2489 common = bxe_is_contextless_ramrod(command, cmd_type); 2490 2491 BXE_SP_LOCK(sc); 2492 2493 if (common) { 2494 if (!atomic_load_acq_long(&sc->eq_spq_left)) { 2495 BLOGE(sc, "EQ ring is full!\n"); 2496 BXE_SP_UNLOCK(sc); 2497 return (-1); 2498 } 2499 } else { 2500 if (!atomic_load_acq_long(&sc->cq_spq_left)) { 2501 BLOGE(sc, "SPQ ring is full!\n"); 2502 BXE_SP_UNLOCK(sc); 2503 return (-1); 2504 } 2505 } 2506 2507 spe = bxe_sp_get_next(sc); 2508 2509 /* CID needs port number to be encoded int it */ 2510 spe->hdr.conn_and_cmd_data = 2511 htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid)); 2512 2513 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE; 2514 2515 /* TBD: Check if it works for VFs */ 2516 type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) & 2517 SPE_HDR_FUNCTION_ID); 2518 2519 spe->hdr.type = htole16(type); 2520 2521 spe->data.update_data_addr.hi = htole32(data_hi); 2522 spe->data.update_data_addr.lo = htole32(data_lo); 2523 2524 /* 2525 * It's ok if the actual decrement is issued towards the memory 2526 * somewhere between the lock and unlock. Thus no more explict 2527 * memory barrier is needed. 2528 */ 2529 if (common) { 2530 atomic_subtract_acq_long(&sc->eq_spq_left, 1); 2531 } else { 2532 atomic_subtract_acq_long(&sc->cq_spq_left, 1); 2533 } 2534 2535 BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr); 2536 BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n", 2537 BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata)); 2538 BLOGD(sc, DBG_SP, 2539 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n", 2540 sc->spq_prod_idx, 2541 (uint32_t)U64_HI(sc->spq_dma.paddr), 2542 (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq), 2543 command, 2544 common, 2545 HW_CID(sc, cid), 2546 data_hi, 2547 data_lo, 2548 type, 2549 atomic_load_acq_long(&sc->cq_spq_left), 2550 atomic_load_acq_long(&sc->eq_spq_left)); 2551 2552 bxe_sp_prod_update(sc); 2553 2554 BXE_SP_UNLOCK(sc); 2555 return (0); 2556 } 2557 2558 /** 2559 * bxe_debug_print_ind_table - prints the indirection table configuration. 2560 * 2561 * @sc: driver hanlde 2562 * @p: pointer to rss configuration 2563 */ 2564 #if 0 2565 static void 2566 bxe_debug_print_ind_table(struct bxe_softc *sc, 2567 struct ecore_config_rss_params *p) 2568 { 2569 int i; 2570 2571 BLOGD(sc, DBG_LOAD, "Setting indirection table to:\n"); 2572 BLOGD(sc, DBG_LOAD, " 0x0000: "); 2573 for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) { 2574 BLOGD(sc, DBG_LOAD, "0x%02x ", p->ind_table[i]); 2575 2576 /* Print 4 bytes in a line */ 2577 if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) && 2578 (((i + 1) & 0x3) == 0)) { 2579 BLOGD(sc, DBG_LOAD, "\n"); 2580 BLOGD(sc, DBG_LOAD, "0x%04x: ", i + 1); 2581 } 2582 } 2583 2584 BLOGD(sc, DBG_LOAD, "\n"); 2585 } 2586 #endif 2587 2588 /* 2589 * FreeBSD Device probe function. 2590 * 2591 * Compares the device found to the driver's list of supported devices and 2592 * reports back to the bsd loader whether this is the right driver for the device. 2593 * This is the driver entry function called from the "kldload" command. 2594 * 2595 * Returns: 2596 * BUS_PROBE_DEFAULT on success, positive value on failure. 2597 */ 2598 static int 2599 bxe_probe(device_t dev) 2600 { 2601 struct bxe_softc *sc; 2602 struct bxe_device_type *t; 2603 char *descbuf; 2604 uint16_t did, sdid, svid, vid; 2605 2606 /* Find our device structure */ 2607 sc = device_get_softc(dev); 2608 sc->dev = dev; 2609 t = bxe_devs; 2610 2611 /* Get the data for the device to be probed. */ 2612 vid = pci_get_vendor(dev); 2613 did = pci_get_device(dev); 2614 svid = pci_get_subvendor(dev); 2615 sdid = pci_get_subdevice(dev); 2616 2617 BLOGD(sc, DBG_LOAD, 2618 "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, " 2619 "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid); 2620 2621 /* Look through the list of known devices for a match. */ 2622 while (t->bxe_name != NULL) { 2623 if ((vid == t->bxe_vid) && (did == t->bxe_did) && 2624 ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) && 2625 ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) { 2626 descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 2627 if (descbuf == NULL) 2628 return (ENOMEM); 2629 2630 /* Print out the device identity. */ 2631 snprintf(descbuf, BXE_DEVDESC_MAX, 2632 "%s (%c%d) BXE v:%s\n", t->bxe_name, 2633 (((pci_read_config(dev, PCIR_REVID, 4) & 2634 0xf0) >> 4) + 'A'), 2635 (pci_read_config(dev, PCIR_REVID, 4) & 0xf), 2636 BXE_DRIVER_VERSION); 2637 2638 device_set_desc_copy(dev, descbuf); 2639 free(descbuf, M_TEMP); 2640 return (BUS_PROBE_DEFAULT); 2641 } 2642 t++; 2643 } 2644 2645 return (ENXIO); 2646 } 2647 2648 static void 2649 bxe_init_mutexes(struct bxe_softc *sc) 2650 { 2651 #ifdef BXE_CORE_LOCK_SX 2652 snprintf(sc->core_sx_name, sizeof(sc->core_sx_name), 2653 "bxe%d_core_lock", sc->unit); 2654 sx_init(&sc->core_sx, sc->core_sx_name); 2655 #else 2656 snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name), 2657 "bxe%d_core_lock", sc->unit); 2658 mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF); 2659 #endif 2660 2661 snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name), 2662 "bxe%d_sp_lock", sc->unit); 2663 mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF); 2664 2665 snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name), 2666 "bxe%d_dmae_lock", sc->unit); 2667 mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF); 2668 2669 snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name), 2670 "bxe%d_phy_lock", sc->unit); 2671 mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF); 2672 2673 snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name), 2674 "bxe%d_fwmb_lock", sc->unit); 2675 mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF); 2676 2677 snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name), 2678 "bxe%d_print_lock", sc->unit); 2679 mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF); 2680 2681 snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name), 2682 "bxe%d_stats_lock", sc->unit); 2683 mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF); 2684 2685 snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name), 2686 "bxe%d_mcast_lock", sc->unit); 2687 mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF); 2688 } 2689 2690 static void 2691 bxe_release_mutexes(struct bxe_softc *sc) 2692 { 2693 #ifdef BXE_CORE_LOCK_SX 2694 sx_destroy(&sc->core_sx); 2695 #else 2696 if (mtx_initialized(&sc->core_mtx)) { 2697 mtx_destroy(&sc->core_mtx); 2698 } 2699 #endif 2700 2701 if (mtx_initialized(&sc->sp_mtx)) { 2702 mtx_destroy(&sc->sp_mtx); 2703 } 2704 2705 if (mtx_initialized(&sc->dmae_mtx)) { 2706 mtx_destroy(&sc->dmae_mtx); 2707 } 2708 2709 if (mtx_initialized(&sc->port.phy_mtx)) { 2710 mtx_destroy(&sc->port.phy_mtx); 2711 } 2712 2713 if (mtx_initialized(&sc->fwmb_mtx)) { 2714 mtx_destroy(&sc->fwmb_mtx); 2715 } 2716 2717 if (mtx_initialized(&sc->print_mtx)) { 2718 mtx_destroy(&sc->print_mtx); 2719 } 2720 2721 if (mtx_initialized(&sc->stats_mtx)) { 2722 mtx_destroy(&sc->stats_mtx); 2723 } 2724 2725 if (mtx_initialized(&sc->mcast_mtx)) { 2726 mtx_destroy(&sc->mcast_mtx); 2727 } 2728 } 2729 2730 static void 2731 bxe_tx_disable(struct bxe_softc* sc) 2732 { 2733 struct ifnet *ifp = sc->ifnet; 2734 2735 /* tell the stack the driver is stopped and TX queue is full */ 2736 if (ifp != NULL) { 2737 ifp->if_drv_flags = 0; 2738 } 2739 } 2740 2741 static void 2742 bxe_drv_pulse(struct bxe_softc *sc) 2743 { 2744 SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb, 2745 sc->fw_drv_pulse_wr_seq); 2746 } 2747 2748 static inline uint16_t 2749 bxe_tx_avail(struct bxe_softc *sc, 2750 struct bxe_fastpath *fp) 2751 { 2752 int16_t used; 2753 uint16_t prod; 2754 uint16_t cons; 2755 2756 prod = fp->tx_bd_prod; 2757 cons = fp->tx_bd_cons; 2758 2759 used = SUB_S16(prod, cons); 2760 2761 #if 0 2762 KASSERT((used < 0), ("used tx bds < 0")); 2763 KASSERT((used > sc->tx_ring_size), ("used tx bds > tx_ring_size")); 2764 KASSERT(((sc->tx_ring_size - used) > MAX_TX_AVAIL), 2765 ("invalid number of tx bds used")); 2766 #endif 2767 2768 return (int16_t)(sc->tx_ring_size) - used; 2769 } 2770 2771 static inline int 2772 bxe_tx_queue_has_work(struct bxe_fastpath *fp) 2773 { 2774 uint16_t hw_cons; 2775 2776 mb(); /* status block fields can change */ 2777 hw_cons = le16toh(*fp->tx_cons_sb); 2778 return (hw_cons != fp->tx_pkt_cons); 2779 } 2780 2781 static inline uint8_t 2782 bxe_has_tx_work(struct bxe_fastpath *fp) 2783 { 2784 /* expand this for multi-cos if ever supported */ 2785 return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE; 2786 } 2787 2788 static inline int 2789 bxe_has_rx_work(struct bxe_fastpath *fp) 2790 { 2791 uint16_t rx_cq_cons_sb; 2792 2793 mb(); /* status block fields can change */ 2794 rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb); 2795 if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX) 2796 rx_cq_cons_sb++; 2797 return (fp->rx_cq_cons != rx_cq_cons_sb); 2798 } 2799 2800 static void 2801 bxe_sp_event(struct bxe_softc *sc, 2802 struct bxe_fastpath *fp, 2803 union eth_rx_cqe *rr_cqe) 2804 { 2805 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2806 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2807 enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX; 2808 struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 2809 2810 BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n", 2811 fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type); 2812 2813 #if 0 2814 /* 2815 * If cid is within VF range, replace the slowpath object with the 2816 * one corresponding to this VF 2817 */ 2818 if ((cid >= BXE_FIRST_VF_CID) && (cid < BXE_FIRST_VF_CID + BXE_VF_CIDS)) { 2819 bxe_iov_set_queue_sp_obj(sc, cid, &q_obj); 2820 } 2821 #endif 2822 2823 switch (command) { 2824 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 2825 BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid); 2826 drv_cmd = ECORE_Q_CMD_UPDATE; 2827 break; 2828 2829 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 2830 BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid); 2831 drv_cmd = ECORE_Q_CMD_SETUP; 2832 break; 2833 2834 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 2835 BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 2836 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY; 2837 break; 2838 2839 case (RAMROD_CMD_ID_ETH_HALT): 2840 BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid); 2841 drv_cmd = ECORE_Q_CMD_HALT; 2842 break; 2843 2844 case (RAMROD_CMD_ID_ETH_TERMINATE): 2845 BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid); 2846 drv_cmd = ECORE_Q_CMD_TERMINATE; 2847 break; 2848 2849 case (RAMROD_CMD_ID_ETH_EMPTY): 2850 BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid); 2851 drv_cmd = ECORE_Q_CMD_EMPTY; 2852 break; 2853 2854 default: 2855 BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n", 2856 command, fp->index); 2857 return; 2858 } 2859 2860 if ((drv_cmd != ECORE_Q_CMD_MAX) && 2861 q_obj->complete_cmd(sc, q_obj, drv_cmd)) { 2862 /* 2863 * q_obj->complete_cmd() failure means that this was 2864 * an unexpected completion. 2865 * 2866 * In this case we don't want to increase the sc->spq_left 2867 * because apparently we haven't sent this command the first 2868 * place. 2869 */ 2870 // bxe_panic(sc, ("Unexpected SP completion\n")); 2871 return; 2872 } 2873 2874 #if 0 2875 /* SRIOV: reschedule any 'in_progress' operations */ 2876 bxe_iov_sp_event(sc, cid, TRUE); 2877 #endif 2878 2879 atomic_add_acq_long(&sc->cq_spq_left, 1); 2880 2881 BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n", 2882 atomic_load_acq_long(&sc->cq_spq_left)); 2883 2884 #if 0 2885 if ((drv_cmd == ECORE_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) && 2886 (!!bxe_test_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state))) { 2887 /* 2888 * If Queue update ramrod is completed for last Queue in AFEX VIF set 2889 * flow, then ACK MCP at the end. Mark pending ACK to MCP bit to 2890 * prevent case that both bits are cleared. At the end of load/unload 2891 * driver checks that sp_state is cleared and this order prevents 2892 * races. 2893 */ 2894 bxe_set_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, &sc->sp_state); 2895 wmb(); 2896 bxe_clear_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state); 2897 2898 /* schedule the sp task as MCP ack is required */ 2899 bxe_schedule_sp_task(sc); 2900 } 2901 #endif 2902 } 2903 2904 /* 2905 * The current mbuf is part of an aggregation. Move the mbuf into the TPA 2906 * aggregation queue, put an empty mbuf back onto the receive chain, and mark 2907 * the current aggregation queue as in-progress. 2908 */ 2909 static void 2910 bxe_tpa_start(struct bxe_softc *sc, 2911 struct bxe_fastpath *fp, 2912 uint16_t queue, 2913 uint16_t cons, 2914 uint16_t prod, 2915 struct eth_fast_path_rx_cqe *cqe) 2916 { 2917 struct bxe_sw_rx_bd tmp_bd; 2918 struct bxe_sw_rx_bd *rx_buf; 2919 struct eth_rx_bd *rx_bd; 2920 int max_agg_queues; 2921 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 2922 uint16_t index; 2923 2924 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START " 2925 "cons=%d prod=%d\n", 2926 fp->index, queue, cons, prod); 2927 2928 max_agg_queues = MAX_AGG_QS(sc); 2929 2930 KASSERT((queue < max_agg_queues), 2931 ("fp[%02d] invalid aggr queue (%d >= %d)!", 2932 fp->index, queue, max_agg_queues)); 2933 2934 KASSERT((tpa_info->state == BXE_TPA_STATE_STOP), 2935 ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!", 2936 fp->index, queue)); 2937 2938 /* copy the existing mbuf and mapping from the TPA pool */ 2939 tmp_bd = tpa_info->bd; 2940 2941 if (tmp_bd.m == NULL) { 2942 BLOGE(sc, "fp[%02d].tpa[%02d] mbuf not allocated!\n", 2943 fp->index, queue); 2944 /* XXX Error handling? */ 2945 return; 2946 } 2947 2948 /* change the TPA queue to the start state */ 2949 tpa_info->state = BXE_TPA_STATE_START; 2950 tpa_info->placement_offset = cqe->placement_offset; 2951 tpa_info->parsing_flags = le16toh(cqe->pars_flags.flags); 2952 tpa_info->vlan_tag = le16toh(cqe->vlan_tag); 2953 tpa_info->len_on_bd = le16toh(cqe->len_on_bd); 2954 2955 fp->rx_tpa_queue_used |= (1 << queue); 2956 2957 /* 2958 * If all the buffer descriptors are filled with mbufs then fill in 2959 * the current consumer index with a new BD. Else if a maximum Rx 2960 * buffer limit is imposed then fill in the next producer index. 2961 */ 2962 index = (sc->max_rx_bufs != RX_BD_USABLE) ? 2963 prod : cons; 2964 2965 /* move the received mbuf and mapping to TPA pool */ 2966 tpa_info->bd = fp->rx_mbuf_chain[cons]; 2967 2968 /* release any existing RX BD mbuf mappings */ 2969 if (cons != index) { 2970 rx_buf = &fp->rx_mbuf_chain[cons]; 2971 2972 if (rx_buf->m_map != NULL) { 2973 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 2974 BUS_DMASYNC_POSTREAD); 2975 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 2976 } 2977 2978 /* 2979 * We get here when the maximum number of rx buffers is less than 2980 * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL 2981 * it out here without concern of a memory leak. 2982 */ 2983 fp->rx_mbuf_chain[cons].m = NULL; 2984 } 2985 2986 /* update the Rx SW BD with the mbuf info from the TPA pool */ 2987 fp->rx_mbuf_chain[index] = tmp_bd; 2988 2989 /* update the Rx BD with the empty mbuf phys address from the TPA pool */ 2990 rx_bd = &fp->rx_chain[index]; 2991 rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr)); 2992 rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr)); 2993 } 2994 2995 /* 2996 * When a TPA aggregation is completed, loop through the individual mbufs 2997 * of the aggregation, combining them into a single mbuf which will be sent 2998 * up the stack. Refill all freed SGEs with mbufs as we go along. 2999 */ 3000 static int 3001 bxe_fill_frag_mbuf(struct bxe_softc *sc, 3002 struct bxe_fastpath *fp, 3003 struct bxe_sw_tpa_info *tpa_info, 3004 uint16_t queue, 3005 uint16_t pages, 3006 struct mbuf *m, 3007 struct eth_end_agg_rx_cqe *cqe, 3008 uint16_t cqe_idx) 3009 { 3010 struct mbuf *m_frag; 3011 uint32_t frag_len, frag_size, i; 3012 uint16_t sge_idx; 3013 int rc = 0; 3014 int j; 3015 3016 frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd; 3017 3018 BLOGD(sc, DBG_LRO, 3019 "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n", 3020 fp->index, queue, tpa_info->len_on_bd, frag_size, pages); 3021 3022 /* make sure the aggregated frame is not too big to handle */ 3023 if (pages > 8 * PAGES_PER_SGE) { 3024 BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! " 3025 "pkt_len=%d len_on_bd=%d frag_size=%d\n", 3026 fp->index, cqe_idx, pages, le16toh(cqe->pkt_len), 3027 tpa_info->len_on_bd, frag_size); 3028 bxe_panic(sc, ("sge page count error\n")); 3029 return (EINVAL); 3030 } 3031 3032 /* 3033 * Scan through the scatter gather list pulling individual mbufs into a 3034 * single mbuf for the host stack. 3035 */ 3036 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 3037 sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j])); 3038 3039 /* 3040 * Firmware gives the indices of the SGE as if the ring is an array 3041 * (meaning that the "next" element will consume 2 indices). 3042 */ 3043 frag_len = min(frag_size, (uint32_t)(SGE_PAGES)); 3044 3045 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d " 3046 "sge_idx=%d frag_size=%d frag_len=%d\n", 3047 fp->index, queue, i, j, sge_idx, frag_size, frag_len); 3048 3049 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 3050 3051 /* allocate a new mbuf for the SGE */ 3052 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 3053 if (rc) { 3054 /* Leave all remaining SGEs in the ring! */ 3055 return (rc); 3056 } 3057 3058 /* update the fragment length */ 3059 m_frag->m_len = frag_len; 3060 3061 /* concatenate the fragment to the head mbuf */ 3062 m_cat(m, m_frag); 3063 fp->eth_q_stats.mbuf_alloc_sge--; 3064 3065 /* update the TPA mbuf size and remaining fragment size */ 3066 m->m_pkthdr.len += frag_len; 3067 frag_size -= frag_len; 3068 } 3069 3070 BLOGD(sc, DBG_LRO, 3071 "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n", 3072 fp->index, queue, frag_size); 3073 3074 return (rc); 3075 } 3076 3077 static inline void 3078 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp) 3079 { 3080 int i, j; 3081 3082 for (i = 1; i <= RX_SGE_NUM_PAGES; i++) { 3083 int idx = RX_SGE_TOTAL_PER_PAGE * i - 1; 3084 3085 for (j = 0; j < 2; j++) { 3086 BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx); 3087 idx--; 3088 } 3089 } 3090 } 3091 3092 static inline void 3093 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp) 3094 { 3095 /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */ 3096 memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask)); 3097 3098 /* 3099 * Clear the two last indices in the page to 1. These are the indices that 3100 * correspond to the "next" element, hence will never be indicated and 3101 * should be removed from the calculations. 3102 */ 3103 bxe_clear_sge_mask_next_elems(fp); 3104 } 3105 3106 static inline void 3107 bxe_update_last_max_sge(struct bxe_fastpath *fp, 3108 uint16_t idx) 3109 { 3110 uint16_t last_max = fp->last_max_sge; 3111 3112 if (SUB_S16(idx, last_max) > 0) { 3113 fp->last_max_sge = idx; 3114 } 3115 } 3116 3117 static inline void 3118 bxe_update_sge_prod(struct bxe_softc *sc, 3119 struct bxe_fastpath *fp, 3120 uint16_t sge_len, 3121 struct eth_end_agg_rx_cqe *cqe) 3122 { 3123 uint16_t last_max, last_elem, first_elem; 3124 uint16_t delta = 0; 3125 uint16_t i; 3126 3127 if (!sge_len) { 3128 return; 3129 } 3130 3131 /* first mark all used pages */ 3132 for (i = 0; i < sge_len; i++) { 3133 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 3134 RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[i]))); 3135 } 3136 3137 BLOGD(sc, DBG_LRO, 3138 "fp[%02d] fp_cqe->sgl[%d] = %d\n", 3139 fp->index, sge_len - 1, 3140 le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 3141 3142 /* assume that the last SGE index is the biggest */ 3143 bxe_update_last_max_sge(fp, 3144 le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 3145 3146 last_max = RX_SGE(fp->last_max_sge); 3147 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 3148 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 3149 3150 /* if ring is not full */ 3151 if (last_elem + 1 != first_elem) { 3152 last_elem++; 3153 } 3154 3155 /* now update the prod */ 3156 for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) { 3157 if (__predict_true(fp->sge_mask[i])) { 3158 break; 3159 } 3160 3161 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 3162 delta += BIT_VEC64_ELEM_SZ; 3163 } 3164 3165 if (delta > 0) { 3166 fp->rx_sge_prod += delta; 3167 /* clear page-end entries */ 3168 bxe_clear_sge_mask_next_elems(fp); 3169 } 3170 3171 BLOGD(sc, DBG_LRO, 3172 "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n", 3173 fp->index, fp->last_max_sge, fp->rx_sge_prod); 3174 } 3175 3176 /* 3177 * The aggregation on the current TPA queue has completed. Pull the individual 3178 * mbuf fragments together into a single mbuf, perform all necessary checksum 3179 * calculations, and send the resuting mbuf to the stack. 3180 */ 3181 static void 3182 bxe_tpa_stop(struct bxe_softc *sc, 3183 struct bxe_fastpath *fp, 3184 struct bxe_sw_tpa_info *tpa_info, 3185 uint16_t queue, 3186 uint16_t pages, 3187 struct eth_end_agg_rx_cqe *cqe, 3188 uint16_t cqe_idx) 3189 { 3190 struct ifnet *ifp = sc->ifnet; 3191 struct mbuf *m; 3192 int rc = 0; 3193 3194 BLOGD(sc, DBG_LRO, 3195 "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n", 3196 fp->index, queue, tpa_info->placement_offset, 3197 le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag); 3198 3199 m = tpa_info->bd.m; 3200 3201 /* allocate a replacement before modifying existing mbuf */ 3202 rc = bxe_alloc_rx_tpa_mbuf(fp, queue); 3203 if (rc) { 3204 /* drop the frame and log an error */ 3205 fp->eth_q_stats.rx_soft_errors++; 3206 goto bxe_tpa_stop_exit; 3207 } 3208 3209 /* we have a replacement, fixup the current mbuf */ 3210 m_adj(m, tpa_info->placement_offset); 3211 m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd; 3212 3213 /* mark the checksums valid (taken care of by the firmware) */ 3214 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3215 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3216 m->m_pkthdr.csum_data = 0xffff; 3217 m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | 3218 CSUM_IP_VALID | 3219 CSUM_DATA_VALID | 3220 CSUM_PSEUDO_HDR); 3221 3222 /* aggregate all of the SGEs into a single mbuf */ 3223 rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx); 3224 if (rc) { 3225 /* drop the packet and log an error */ 3226 fp->eth_q_stats.rx_soft_errors++; 3227 m_freem(m); 3228 } else { 3229 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) { 3230 m->m_pkthdr.ether_vtag = tpa_info->vlan_tag; 3231 m->m_flags |= M_VLANTAG; 3232 } 3233 3234 /* assign packet to this interface interface */ 3235 m->m_pkthdr.rcvif = ifp; 3236 3237 #if __FreeBSD_version >= 800000 3238 /* specify what RSS queue was used for this flow */ 3239 m->m_pkthdr.flowid = fp->index; 3240 m->m_flags |= M_FLOWID; 3241 #endif 3242 3243 ifp->if_ipackets++; 3244 fp->eth_q_stats.rx_tpa_pkts++; 3245 3246 /* pass the frame to the stack */ 3247 (*ifp->if_input)(ifp, m); 3248 } 3249 3250 /* we passed an mbuf up the stack or dropped the frame */ 3251 fp->eth_q_stats.mbuf_alloc_tpa--; 3252 3253 bxe_tpa_stop_exit: 3254 3255 fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP; 3256 fp->rx_tpa_queue_used &= ~(1 << queue); 3257 } 3258 3259 static uint8_t 3260 bxe_rxeof(struct bxe_softc *sc, 3261 struct bxe_fastpath *fp) 3262 { 3263 struct ifnet *ifp = sc->ifnet; 3264 uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 3265 uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod; 3266 int rx_pkts = 0; 3267 int rc; 3268 3269 BXE_FP_RX_LOCK(fp); 3270 3271 /* CQ "next element" is of the size of the regular element */ 3272 hw_cq_cons = le16toh(*fp->rx_cq_cons_sb); 3273 if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) { 3274 hw_cq_cons++; 3275 } 3276 3277 bd_cons = fp->rx_bd_cons; 3278 bd_prod = fp->rx_bd_prod; 3279 bd_prod_fw = bd_prod; 3280 sw_cq_cons = fp->rx_cq_cons; 3281 sw_cq_prod = fp->rx_cq_prod; 3282 3283 /* 3284 * Memory barrier necessary as speculative reads of the rx 3285 * buffer can be ahead of the index in the status block 3286 */ 3287 rmb(); 3288 3289 BLOGD(sc, DBG_RX, 3290 "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n", 3291 fp->index, hw_cq_cons, sw_cq_cons); 3292 3293 while (sw_cq_cons != hw_cq_cons) { 3294 struct bxe_sw_rx_bd *rx_buf = NULL; 3295 union eth_rx_cqe *cqe; 3296 struct eth_fast_path_rx_cqe *cqe_fp; 3297 uint8_t cqe_fp_flags; 3298 enum eth_rx_cqe_type cqe_fp_type; 3299 uint16_t len, pad; 3300 struct mbuf *m = NULL; 3301 3302 comp_ring_cons = RCQ(sw_cq_cons); 3303 bd_prod = RX_BD(bd_prod); 3304 bd_cons = RX_BD(bd_cons); 3305 3306 cqe = &fp->rcq_chain[comp_ring_cons]; 3307 cqe_fp = &cqe->fast_path_cqe; 3308 cqe_fp_flags = cqe_fp->type_error_flags; 3309 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 3310 3311 BLOGD(sc, DBG_RX, 3312 "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d " 3313 "BD prod=%d cons=%d CQE type=0x%x err=0x%x " 3314 "status=0x%x rss_hash=0x%x vlan=0x%x len=%u\n", 3315 fp->index, 3316 hw_cq_cons, 3317 sw_cq_cons, 3318 bd_prod, 3319 bd_cons, 3320 CQE_TYPE(cqe_fp_flags), 3321 cqe_fp_flags, 3322 cqe_fp->status_flags, 3323 le32toh(cqe_fp->rss_hash_result), 3324 le16toh(cqe_fp->vlan_tag), 3325 le16toh(cqe_fp->pkt_len_or_gro_seg_len)); 3326 3327 /* is this a slowpath msg? */ 3328 if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) { 3329 bxe_sp_event(sc, fp, cqe); 3330 goto next_cqe; 3331 } 3332 3333 rx_buf = &fp->rx_mbuf_chain[bd_cons]; 3334 3335 if (!CQE_TYPE_FAST(cqe_fp_type)) { 3336 struct bxe_sw_tpa_info *tpa_info; 3337 uint16_t frag_size, pages; 3338 uint8_t queue; 3339 3340 #if 0 3341 /* sanity check */ 3342 if (!fp->tpa_enable && 3343 (CQE_TYPE_START(cqe_fp_type) || CQE_TYPE_STOP(cqe_fp_type))) { 3344 BLOGE(sc, "START/STOP packet while !tpa_enable type (0x%x)\n", 3345 CQE_TYPE(cqe_fp_type)); 3346 } 3347 #endif 3348 3349 if (CQE_TYPE_START(cqe_fp_type)) { 3350 bxe_tpa_start(sc, fp, cqe_fp->queue_index, 3351 bd_cons, bd_prod, cqe_fp); 3352 m = NULL; /* packet not ready yet */ 3353 goto next_rx; 3354 } 3355 3356 KASSERT(CQE_TYPE_STOP(cqe_fp_type), 3357 ("CQE type is not STOP! (0x%x)\n", cqe_fp_type)); 3358 3359 queue = cqe->end_agg_cqe.queue_index; 3360 tpa_info = &fp->rx_tpa_info[queue]; 3361 3362 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n", 3363 fp->index, queue); 3364 3365 frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) - 3366 tpa_info->len_on_bd); 3367 pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3368 3369 bxe_tpa_stop(sc, fp, tpa_info, queue, pages, 3370 &cqe->end_agg_cqe, comp_ring_cons); 3371 3372 bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe); 3373 3374 goto next_cqe; 3375 } 3376 3377 /* non TPA */ 3378 3379 /* is this an error packet? */ 3380 if (__predict_false(cqe_fp_flags & 3381 ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) { 3382 BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons); 3383 fp->eth_q_stats.rx_soft_errors++; 3384 goto next_rx; 3385 } 3386 3387 len = le16toh(cqe_fp->pkt_len_or_gro_seg_len); 3388 pad = cqe_fp->placement_offset; 3389 3390 m = rx_buf->m; 3391 3392 if (__predict_false(m == NULL)) { 3393 BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n", 3394 bd_cons, fp->index); 3395 goto next_rx; 3396 } 3397 3398 /* XXX double copy if packet length under a threshold */ 3399 3400 /* 3401 * If all the buffer descriptors are filled with mbufs then fill in 3402 * the current consumer index with a new BD. Else if a maximum Rx 3403 * buffer limit is imposed then fill in the next producer index. 3404 */ 3405 rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons, 3406 (sc->max_rx_bufs != RX_BD_USABLE) ? 3407 bd_prod : bd_cons); 3408 if (rc != 0) { 3409 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 3410 fp->index, rc); 3411 fp->eth_q_stats.rx_soft_errors++; 3412 3413 if (sc->max_rx_bufs != RX_BD_USABLE) { 3414 /* copy this consumer index to the producer index */ 3415 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf, 3416 sizeof(struct bxe_sw_rx_bd)); 3417 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd)); 3418 } 3419 3420 goto next_rx; 3421 } 3422 3423 /* current mbuf was detached from the bd */ 3424 fp->eth_q_stats.mbuf_alloc_rx--; 3425 3426 /* we allocated a replacement mbuf, fixup the current one */ 3427 m_adj(m, pad); 3428 m->m_pkthdr.len = m->m_len = len; 3429 3430 /* assign packet to this interface interface */ 3431 m->m_pkthdr.rcvif = ifp; 3432 3433 /* assume no hardware checksum has complated */ 3434 m->m_pkthdr.csum_flags = 0; 3435 3436 /* validate checksum if offload enabled */ 3437 if (ifp->if_capenable & IFCAP_RXCSUM) { 3438 /* check for a valid IP frame */ 3439 if (!(cqe->fast_path_cqe.status_flags & 3440 ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) { 3441 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3442 if (__predict_false(cqe_fp_flags & 3443 ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) { 3444 fp->eth_q_stats.rx_hw_csum_errors++; 3445 } else { 3446 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3447 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3448 } 3449 } 3450 3451 /* check for a valid TCP/UDP frame */ 3452 if (!(cqe->fast_path_cqe.status_flags & 3453 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) { 3454 if (__predict_false(cqe_fp_flags & 3455 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) { 3456 fp->eth_q_stats.rx_hw_csum_errors++; 3457 } else { 3458 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3459 m->m_pkthdr.csum_data = 0xFFFF; 3460 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | 3461 CSUM_PSEUDO_HDR); 3462 } 3463 } 3464 } 3465 3466 /* if there is a VLAN tag then flag that info */ 3467 if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_VLAN) { 3468 m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag; 3469 m->m_flags |= M_VLANTAG; 3470 } 3471 3472 #if __FreeBSD_version >= 800000 3473 /* specify what RSS queue was used for this flow */ 3474 m->m_pkthdr.flowid = fp->index; 3475 m->m_flags |= M_FLOWID; 3476 #endif 3477 3478 next_rx: 3479 3480 bd_cons = RX_BD_NEXT(bd_cons); 3481 bd_prod = RX_BD_NEXT(bd_prod); 3482 bd_prod_fw = RX_BD_NEXT(bd_prod_fw); 3483 3484 /* pass the frame to the stack */ 3485 if (__predict_true(m != NULL)) { 3486 ifp->if_ipackets++; 3487 rx_pkts++; 3488 (*ifp->if_input)(ifp, m); 3489 } 3490 3491 next_cqe: 3492 3493 sw_cq_prod = RCQ_NEXT(sw_cq_prod); 3494 sw_cq_cons = RCQ_NEXT(sw_cq_cons); 3495 3496 /* limit spinning on the queue */ 3497 if (rx_pkts == sc->rx_budget) { 3498 fp->eth_q_stats.rx_budget_reached++; 3499 break; 3500 } 3501 } /* while work to do */ 3502 3503 fp->rx_bd_cons = bd_cons; 3504 fp->rx_bd_prod = bd_prod_fw; 3505 fp->rx_cq_cons = sw_cq_cons; 3506 fp->rx_cq_prod = sw_cq_prod; 3507 3508 /* Update producers */ 3509 bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod); 3510 3511 fp->eth_q_stats.rx_pkts += rx_pkts; 3512 fp->eth_q_stats.rx_calls++; 3513 3514 BXE_FP_RX_UNLOCK(fp); 3515 3516 return (sw_cq_cons != hw_cq_cons); 3517 } 3518 3519 static uint16_t 3520 bxe_free_tx_pkt(struct bxe_softc *sc, 3521 struct bxe_fastpath *fp, 3522 uint16_t idx) 3523 { 3524 struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx]; 3525 struct eth_tx_start_bd *tx_start_bd; 3526 uint16_t bd_idx = TX_BD(tx_buf->first_bd); 3527 uint16_t new_cons; 3528 int nbd; 3529 3530 /* unmap the mbuf from non-paged memory */ 3531 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 3532 3533 tx_start_bd = &fp->tx_chain[bd_idx].start_bd; 3534 nbd = le16toh(tx_start_bd->nbd) - 1; 3535 3536 #if 0 3537 if ((nbd - 1) > (MAX_MBUF_FRAGS + 2)) { 3538 bxe_panic(sc, ("BAD nbd!\n")); 3539 } 3540 #endif 3541 3542 new_cons = (tx_buf->first_bd + nbd); 3543 3544 #if 0 3545 struct eth_tx_bd *tx_data_bd; 3546 3547 /* 3548 * The following code doesn't do anything but is left here 3549 * for clarity on what the new value of new_cons skipped. 3550 */ 3551 3552 /* get the next bd */ 3553 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3554 3555 /* skip the parse bd */ 3556 --nbd; 3557 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3558 3559 /* skip the TSO split header bd since they have no mapping */ 3560 if (tx_buf->flags & BXE_TSO_SPLIT_BD) { 3561 --nbd; 3562 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3563 } 3564 3565 /* now free frags */ 3566 while (nbd > 0) { 3567 tx_data_bd = &fp->tx_chain[bd_idx].reg_bd; 3568 if (--nbd) { 3569 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3570 } 3571 } 3572 #endif 3573 3574 /* free the mbuf */ 3575 if (__predict_true(tx_buf->m != NULL)) { 3576 m_freem(tx_buf->m); 3577 fp->eth_q_stats.mbuf_alloc_tx--; 3578 } else { 3579 fp->eth_q_stats.tx_chain_lost_mbuf++; 3580 } 3581 3582 tx_buf->m = NULL; 3583 tx_buf->first_bd = 0; 3584 3585 return (new_cons); 3586 } 3587 3588 /* transmit timeout watchdog */ 3589 static int 3590 bxe_watchdog(struct bxe_softc *sc, 3591 struct bxe_fastpath *fp) 3592 { 3593 BXE_FP_TX_LOCK(fp); 3594 3595 if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) { 3596 BXE_FP_TX_UNLOCK(fp); 3597 return (0); 3598 } 3599 3600 BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index); 3601 3602 BXE_FP_TX_UNLOCK(fp); 3603 3604 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT); 3605 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 3606 3607 return (-1); 3608 } 3609 3610 /* processes transmit completions */ 3611 static uint8_t 3612 bxe_txeof(struct bxe_softc *sc, 3613 struct bxe_fastpath *fp) 3614 { 3615 struct ifnet *ifp = sc->ifnet; 3616 uint16_t bd_cons, hw_cons, sw_cons, pkt_cons; 3617 uint16_t tx_bd_avail; 3618 3619 BXE_FP_TX_LOCK_ASSERT(fp); 3620 3621 bd_cons = fp->tx_bd_cons; 3622 hw_cons = le16toh(*fp->tx_cons_sb); 3623 sw_cons = fp->tx_pkt_cons; 3624 3625 while (sw_cons != hw_cons) { 3626 pkt_cons = TX_BD(sw_cons); 3627 3628 BLOGD(sc, DBG_TX, 3629 "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n", 3630 fp->index, hw_cons, sw_cons, pkt_cons); 3631 3632 bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons); 3633 3634 sw_cons++; 3635 } 3636 3637 fp->tx_pkt_cons = sw_cons; 3638 fp->tx_bd_cons = bd_cons; 3639 3640 BLOGD(sc, DBG_TX, 3641 "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n", 3642 fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod); 3643 3644 mb(); 3645 3646 tx_bd_avail = bxe_tx_avail(sc, fp); 3647 3648 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 3649 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3650 } else { 3651 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3652 } 3653 3654 if (fp->tx_pkt_prod != fp->tx_pkt_cons) { 3655 /* reset the watchdog timer if there are pending transmits */ 3656 fp->watchdog_timer = BXE_TX_TIMEOUT; 3657 return (TRUE); 3658 } else { 3659 /* clear watchdog when there are no pending transmits */ 3660 fp->watchdog_timer = 0; 3661 return (FALSE); 3662 } 3663 } 3664 3665 static void 3666 bxe_drain_tx_queues(struct bxe_softc *sc) 3667 { 3668 struct bxe_fastpath *fp; 3669 int i, count; 3670 3671 /* wait until all TX fastpath tasks have completed */ 3672 for (i = 0; i < sc->num_queues; i++) { 3673 fp = &sc->fp[i]; 3674 3675 count = 1000; 3676 3677 while (bxe_has_tx_work(fp)) { 3678 3679 BXE_FP_TX_LOCK(fp); 3680 bxe_txeof(sc, fp); 3681 BXE_FP_TX_UNLOCK(fp); 3682 3683 if (count == 0) { 3684 BLOGE(sc, "Timeout waiting for fp[%d] " 3685 "transmits to complete!\n", i); 3686 bxe_panic(sc, ("tx drain failure\n")); 3687 return; 3688 } 3689 3690 count--; 3691 DELAY(1000); 3692 rmb(); 3693 } 3694 } 3695 3696 return; 3697 } 3698 3699 static int 3700 bxe_del_all_macs(struct bxe_softc *sc, 3701 struct ecore_vlan_mac_obj *mac_obj, 3702 int mac_type, 3703 uint8_t wait_for_comp) 3704 { 3705 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 3706 int rc; 3707 3708 /* wait for completion of requested */ 3709 if (wait_for_comp) { 3710 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 3711 } 3712 3713 /* Set the mac type of addresses we want to clear */ 3714 bxe_set_bit(mac_type, &vlan_mac_flags); 3715 3716 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags); 3717 if (rc < 0) { 3718 BLOGE(sc, "Failed to delete MACs (%d)\n", rc); 3719 } 3720 3721 return (rc); 3722 } 3723 3724 static int 3725 bxe_fill_accept_flags(struct bxe_softc *sc, 3726 uint32_t rx_mode, 3727 unsigned long *rx_accept_flags, 3728 unsigned long *tx_accept_flags) 3729 { 3730 /* Clear the flags first */ 3731 *rx_accept_flags = 0; 3732 *tx_accept_flags = 0; 3733 3734 switch (rx_mode) { 3735 case BXE_RX_MODE_NONE: 3736 /* 3737 * 'drop all' supersedes any accept flags that may have been 3738 * passed to the function. 3739 */ 3740 break; 3741 3742 case BXE_RX_MODE_NORMAL: 3743 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3744 bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags); 3745 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3746 3747 /* internal switching mode */ 3748 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3749 bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags); 3750 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3751 3752 break; 3753 3754 case BXE_RX_MODE_ALLMULTI: 3755 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3756 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3757 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3758 3759 /* internal switching mode */ 3760 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3761 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3762 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3763 3764 break; 3765 3766 case BXE_RX_MODE_PROMISC: 3767 /* 3768 * According to deffinition of SI mode, iface in promisc mode 3769 * should receive matched and unmatched (in resolution of port) 3770 * unicast packets. 3771 */ 3772 bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags); 3773 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3774 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3775 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3776 3777 /* internal switching mode */ 3778 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3779 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3780 3781 if (IS_MF_SI(sc)) { 3782 bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags); 3783 } else { 3784 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3785 } 3786 3787 break; 3788 3789 default: 3790 BLOGE(sc, "Unknown rx_mode (%d)\n", rx_mode); 3791 return (-1); 3792 } 3793 3794 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ 3795 if (rx_mode != BXE_RX_MODE_NONE) { 3796 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags); 3797 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags); 3798 } 3799 3800 return (0); 3801 } 3802 3803 static int 3804 bxe_set_q_rx_mode(struct bxe_softc *sc, 3805 uint8_t cl_id, 3806 unsigned long rx_mode_flags, 3807 unsigned long rx_accept_flags, 3808 unsigned long tx_accept_flags, 3809 unsigned long ramrod_flags) 3810 { 3811 struct ecore_rx_mode_ramrod_params ramrod_param; 3812 int rc; 3813 3814 memset(&ramrod_param, 0, sizeof(ramrod_param)); 3815 3816 /* Prepare ramrod parameters */ 3817 ramrod_param.cid = 0; 3818 ramrod_param.cl_id = cl_id; 3819 ramrod_param.rx_mode_obj = &sc->rx_mode_obj; 3820 ramrod_param.func_id = SC_FUNC(sc); 3821 3822 ramrod_param.pstate = &sc->sp_state; 3823 ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING; 3824 3825 ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata); 3826 ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata); 3827 3828 bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 3829 3830 ramrod_param.ramrod_flags = ramrod_flags; 3831 ramrod_param.rx_mode_flags = rx_mode_flags; 3832 3833 ramrod_param.rx_accept_flags = rx_accept_flags; 3834 ramrod_param.tx_accept_flags = tx_accept_flags; 3835 3836 rc = ecore_config_rx_mode(sc, &ramrod_param); 3837 if (rc < 0) { 3838 BLOGE(sc, "Set rx_mode %d failed\n", sc->rx_mode); 3839 return (rc); 3840 } 3841 3842 return (0); 3843 } 3844 3845 static int 3846 bxe_set_storm_rx_mode(struct bxe_softc *sc) 3847 { 3848 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 3849 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 3850 int rc; 3851 3852 rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags, 3853 &tx_accept_flags); 3854 if (rc) { 3855 return (rc); 3856 } 3857 3858 bxe_set_bit(RAMROD_RX, &ramrod_flags); 3859 bxe_set_bit(RAMROD_TX, &ramrod_flags); 3860 3861 /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */ 3862 return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags, 3863 rx_accept_flags, tx_accept_flags, 3864 ramrod_flags)); 3865 } 3866 3867 /* returns the "mcp load_code" according to global load_count array */ 3868 static int 3869 bxe_nic_load_no_mcp(struct bxe_softc *sc) 3870 { 3871 int path = SC_PATH(sc); 3872 int port = SC_PORT(sc); 3873 3874 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3875 path, load_count[path][0], load_count[path][1], 3876 load_count[path][2]); 3877 load_count[path][0]++; 3878 load_count[path][1 + port]++; 3879 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3880 path, load_count[path][0], load_count[path][1], 3881 load_count[path][2]); 3882 if (load_count[path][0] == 1) { 3883 return (FW_MSG_CODE_DRV_LOAD_COMMON); 3884 } else if (load_count[path][1 + port] == 1) { 3885 return (FW_MSG_CODE_DRV_LOAD_PORT); 3886 } else { 3887 return (FW_MSG_CODE_DRV_LOAD_FUNCTION); 3888 } 3889 } 3890 3891 /* returns the "mcp load_code" according to global load_count array */ 3892 static int 3893 bxe_nic_unload_no_mcp(struct bxe_softc *sc) 3894 { 3895 int port = SC_PORT(sc); 3896 int path = SC_PATH(sc); 3897 3898 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3899 path, load_count[path][0], load_count[path][1], 3900 load_count[path][2]); 3901 load_count[path][0]--; 3902 load_count[path][1 + port]--; 3903 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3904 path, load_count[path][0], load_count[path][1], 3905 load_count[path][2]); 3906 if (load_count[path][0] == 0) { 3907 return (FW_MSG_CODE_DRV_UNLOAD_COMMON); 3908 } else if (load_count[path][1 + port] == 0) { 3909 return (FW_MSG_CODE_DRV_UNLOAD_PORT); 3910 } else { 3911 return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION); 3912 } 3913 } 3914 3915 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */ 3916 static uint32_t 3917 bxe_send_unload_req(struct bxe_softc *sc, 3918 int unload_mode) 3919 { 3920 uint32_t reset_code = 0; 3921 #if 0 3922 int port = SC_PORT(sc); 3923 int path = SC_PATH(sc); 3924 #endif 3925 3926 /* Select the UNLOAD request mode */ 3927 if (unload_mode == UNLOAD_NORMAL) { 3928 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3929 } 3930 #if 0 3931 else if (sc->flags & BXE_NO_WOL_FLAG) { 3932 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP; 3933 } else if (sc->wol) { 3934 uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0; 3935 uint8_t *mac_addr = sc->dev->dev_addr; 3936 uint32_t val; 3937 uint16_t pmc; 3938 3939 /* 3940 * The mac address is written to entries 1-4 to 3941 * preserve entry 0 which is used by the PMF 3942 */ 3943 uint8_t entry = (SC_VN(sc) + 1)*8; 3944 3945 val = (mac_addr[0] << 8) | mac_addr[1]; 3946 EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry, val); 3947 3948 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 3949 (mac_addr[4] << 8) | mac_addr[5]; 3950 EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val); 3951 3952 /* Enable the PME and clear the status */ 3953 pmc = pci_read_config(sc->dev, 3954 (sc->devinfo.pcie_pm_cap_reg + 3955 PCIR_POWER_STATUS), 3956 2); 3957 pmc |= PCIM_PSTAT_PMEENABLE | PCIM_PSTAT_PME; 3958 pci_write_config(sc->dev, 3959 (sc->devinfo.pcie_pm_cap_reg + 3960 PCIR_POWER_STATUS), 3961 pmc, 4); 3962 3963 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN; 3964 } 3965 #endif 3966 else { 3967 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3968 } 3969 3970 /* Send the request to the MCP */ 3971 if (!BXE_NOMCP(sc)) { 3972 reset_code = bxe_fw_command(sc, reset_code, 0); 3973 } else { 3974 reset_code = bxe_nic_unload_no_mcp(sc); 3975 } 3976 3977 return (reset_code); 3978 } 3979 3980 /* send UNLOAD_DONE command to the MCP */ 3981 static void 3982 bxe_send_unload_done(struct bxe_softc *sc, 3983 uint8_t keep_link) 3984 { 3985 uint32_t reset_param = 3986 keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 3987 3988 /* Report UNLOAD_DONE to MCP */ 3989 if (!BXE_NOMCP(sc)) { 3990 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 3991 } 3992 } 3993 3994 static int 3995 bxe_func_wait_started(struct bxe_softc *sc) 3996 { 3997 int tout = 50; 3998 3999 if (!sc->port.pmf) { 4000 return (0); 4001 } 4002 4003 /* 4004 * (assumption: No Attention from MCP at this stage) 4005 * PMF probably in the middle of TX disable/enable transaction 4006 * 1. Sync IRS for default SB 4007 * 2. Sync SP queue - this guarantees us that attention handling started 4008 * 3. Wait, that TX disable/enable transaction completes 4009 * 4010 * 1+2 guarantee that if DCBX attention was scheduled it already changed 4011 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 4012 * received completion for the transaction the state is TX_STOPPED. 4013 * State will return to STARTED after completion of TX_STOPPED-->STARTED 4014 * transaction. 4015 */ 4016 4017 /* XXX make sure default SB ISR is done */ 4018 /* need a way to synchronize an irq (intr_mtx?) */ 4019 4020 /* XXX flush any work queues */ 4021 4022 while (ecore_func_get_state(sc, &sc->func_obj) != 4023 ECORE_F_STATE_STARTED && tout--) { 4024 DELAY(20000); 4025 } 4026 4027 if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) { 4028 /* 4029 * Failed to complete the transaction in a "good way" 4030 * Force both transactions with CLR bit. 4031 */ 4032 struct ecore_func_state_params func_params = { NULL }; 4033 4034 BLOGE(sc, "Unexpected function state! " 4035 "Forcing STARTED-->TX_STOPPED-->STARTED\n"); 4036 4037 func_params.f_obj = &sc->func_obj; 4038 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 4039 4040 /* STARTED-->TX_STOPPED */ 4041 func_params.cmd = ECORE_F_CMD_TX_STOP; 4042 ecore_func_state_change(sc, &func_params); 4043 4044 /* TX_STOPPED-->STARTED */ 4045 func_params.cmd = ECORE_F_CMD_TX_START; 4046 return (ecore_func_state_change(sc, &func_params)); 4047 } 4048 4049 return (0); 4050 } 4051 4052 static int 4053 bxe_stop_queue(struct bxe_softc *sc, 4054 int index) 4055 { 4056 struct bxe_fastpath *fp = &sc->fp[index]; 4057 struct ecore_queue_state_params q_params = { NULL }; 4058 int rc; 4059 4060 BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index); 4061 4062 q_params.q_obj = &sc->sp_objs[fp->index].q_obj; 4063 /* We want to wait for completion in this context */ 4064 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 4065 4066 /* Stop the primary connection: */ 4067 4068 /* ...halt the connection */ 4069 q_params.cmd = ECORE_Q_CMD_HALT; 4070 rc = ecore_queue_state_change(sc, &q_params); 4071 if (rc) { 4072 return (rc); 4073 } 4074 4075 /* ...terminate the connection */ 4076 q_params.cmd = ECORE_Q_CMD_TERMINATE; 4077 memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate)); 4078 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 4079 rc = ecore_queue_state_change(sc, &q_params); 4080 if (rc) { 4081 return (rc); 4082 } 4083 4084 /* ...delete cfc entry */ 4085 q_params.cmd = ECORE_Q_CMD_CFC_DEL; 4086 memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del)); 4087 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 4088 return (ecore_queue_state_change(sc, &q_params)); 4089 } 4090 4091 /* wait for the outstanding SP commands */ 4092 static inline uint8_t 4093 bxe_wait_sp_comp(struct bxe_softc *sc, 4094 unsigned long mask) 4095 { 4096 unsigned long tmp; 4097 int tout = 5000; /* wait for 5 secs tops */ 4098 4099 while (tout--) { 4100 mb(); 4101 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) { 4102 return (TRUE); 4103 } 4104 4105 DELAY(1000); 4106 } 4107 4108 mb(); 4109 4110 tmp = atomic_load_acq_long(&sc->sp_state); 4111 if (tmp & mask) { 4112 BLOGE(sc, "Filtering completion timed out: " 4113 "sp_state 0x%lx, mask 0x%lx\n", 4114 tmp, mask); 4115 return (FALSE); 4116 } 4117 4118 return (FALSE); 4119 } 4120 4121 static int 4122 bxe_func_stop(struct bxe_softc *sc) 4123 { 4124 struct ecore_func_state_params func_params = { NULL }; 4125 int rc; 4126 4127 /* prepare parameters for function state transitions */ 4128 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 4129 func_params.f_obj = &sc->func_obj; 4130 func_params.cmd = ECORE_F_CMD_STOP; 4131 4132 /* 4133 * Try to stop the function the 'good way'. If it fails (in case 4134 * of a parity error during bxe_chip_cleanup()) and we are 4135 * not in a debug mode, perform a state transaction in order to 4136 * enable further HW_RESET transaction. 4137 */ 4138 rc = ecore_func_state_change(sc, &func_params); 4139 if (rc) { 4140 BLOGE(sc, "FUNC_STOP ramrod failed. " 4141 "Running a dry transaction\n"); 4142 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 4143 return (ecore_func_state_change(sc, &func_params)); 4144 } 4145 4146 return (0); 4147 } 4148 4149 static int 4150 bxe_reset_hw(struct bxe_softc *sc, 4151 uint32_t load_code) 4152 { 4153 struct ecore_func_state_params func_params = { NULL }; 4154 4155 /* Prepare parameters for function state transitions */ 4156 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 4157 4158 func_params.f_obj = &sc->func_obj; 4159 func_params.cmd = ECORE_F_CMD_HW_RESET; 4160 4161 func_params.params.hw_init.load_phase = load_code; 4162 4163 return (ecore_func_state_change(sc, &func_params)); 4164 } 4165 4166 static void 4167 bxe_int_disable_sync(struct bxe_softc *sc, 4168 int disable_hw) 4169 { 4170 if (disable_hw) { 4171 /* prevent the HW from sending interrupts */ 4172 bxe_int_disable(sc); 4173 } 4174 4175 /* XXX need a way to synchronize ALL irqs (intr_mtx?) */ 4176 /* make sure all ISRs are done */ 4177 4178 /* XXX make sure sp_task is not running */ 4179 /* cancel and flush work queues */ 4180 } 4181 4182 static void 4183 bxe_chip_cleanup(struct bxe_softc *sc, 4184 uint32_t unload_mode, 4185 uint8_t keep_link) 4186 { 4187 int port = SC_PORT(sc); 4188 struct ecore_mcast_ramrod_params rparam = { NULL }; 4189 uint32_t reset_code; 4190 int i, rc = 0; 4191 4192 bxe_drain_tx_queues(sc); 4193 4194 /* give HW time to discard old tx messages */ 4195 DELAY(1000); 4196 4197 /* Clean all ETH MACs */ 4198 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE); 4199 if (rc < 0) { 4200 BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc); 4201 } 4202 4203 /* Clean up UC list */ 4204 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE); 4205 if (rc < 0) { 4206 BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc); 4207 } 4208 4209 /* Disable LLH */ 4210 if (!CHIP_IS_E1(sc)) { 4211 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 4212 } 4213 4214 /* Set "drop all" to stop Rx */ 4215 4216 /* 4217 * We need to take the BXE_MCAST_LOCK() here in order to prevent 4218 * a race between the completion code and this code. 4219 */ 4220 BXE_MCAST_LOCK(sc); 4221 4222 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 4223 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 4224 } else { 4225 bxe_set_storm_rx_mode(sc); 4226 } 4227 4228 /* Clean up multicast configuration */ 4229 rparam.mcast_obj = &sc->mcast_obj; 4230 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4231 if (rc < 0) { 4232 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4233 } 4234 4235 BXE_MCAST_UNLOCK(sc); 4236 4237 // XXX bxe_iov_chip_cleanup(sc); 4238 4239 /* 4240 * Send the UNLOAD_REQUEST to the MCP. This will return if 4241 * this function should perform FUNCTION, PORT, or COMMON HW 4242 * reset. 4243 */ 4244 reset_code = bxe_send_unload_req(sc, unload_mode); 4245 4246 /* 4247 * (assumption: No Attention from MCP at this stage) 4248 * PMF probably in the middle of TX disable/enable transaction 4249 */ 4250 rc = bxe_func_wait_started(sc); 4251 if (rc) { 4252 BLOGE(sc, "bxe_func_wait_started failed\n"); 4253 } 4254 4255 /* 4256 * Close multi and leading connections 4257 * Completions for ramrods are collected in a synchronous way 4258 */ 4259 for (i = 0; i < sc->num_queues; i++) { 4260 if (bxe_stop_queue(sc, i)) { 4261 goto unload_error; 4262 } 4263 } 4264 4265 /* 4266 * If SP settings didn't get completed so far - something 4267 * very wrong has happen. 4268 */ 4269 if (!bxe_wait_sp_comp(sc, ~0x0UL)) { 4270 BLOGE(sc, "Common slow path ramrods got stuck!\n"); 4271 } 4272 4273 unload_error: 4274 4275 rc = bxe_func_stop(sc); 4276 if (rc) { 4277 BLOGE(sc, "Function stop failed!\n"); 4278 } 4279 4280 /* disable HW interrupts */ 4281 bxe_int_disable_sync(sc, TRUE); 4282 4283 /* detach interrupts */ 4284 bxe_interrupt_detach(sc); 4285 4286 /* Reset the chip */ 4287 rc = bxe_reset_hw(sc, reset_code); 4288 if (rc) { 4289 BLOGE(sc, "Hardware reset failed\n"); 4290 } 4291 4292 /* Report UNLOAD_DONE to MCP */ 4293 bxe_send_unload_done(sc, keep_link); 4294 } 4295 4296 static void 4297 bxe_disable_close_the_gate(struct bxe_softc *sc) 4298 { 4299 uint32_t val; 4300 int port = SC_PORT(sc); 4301 4302 BLOGD(sc, DBG_LOAD, 4303 "Disabling 'close the gates'\n"); 4304 4305 if (CHIP_IS_E1(sc)) { 4306 uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 4307 MISC_REG_AEU_MASK_ATTN_FUNC_0; 4308 val = REG_RD(sc, addr); 4309 val &= ~(0x300); 4310 REG_WR(sc, addr, val); 4311 } else { 4312 val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK); 4313 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 4314 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 4315 REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val); 4316 } 4317 } 4318 4319 /* 4320 * Cleans the object that have internal lists without sending 4321 * ramrods. Should be run when interrutps are disabled. 4322 */ 4323 static void 4324 bxe_squeeze_objects(struct bxe_softc *sc) 4325 { 4326 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 4327 struct ecore_mcast_ramrod_params rparam = { NULL }; 4328 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 4329 int rc; 4330 4331 /* Cleanup MACs' object first... */ 4332 4333 /* Wait for completion of requested */ 4334 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 4335 /* Perform a dry cleanup */ 4336 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 4337 4338 /* Clean ETH primary MAC */ 4339 bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags); 4340 rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags, 4341 &ramrod_flags); 4342 if (rc != 0) { 4343 BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc); 4344 } 4345 4346 /* Cleanup UC list */ 4347 vlan_mac_flags = 0; 4348 bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags); 4349 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, 4350 &ramrod_flags); 4351 if (rc != 0) { 4352 BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc); 4353 } 4354 4355 /* Now clean mcast object... */ 4356 4357 rparam.mcast_obj = &sc->mcast_obj; 4358 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 4359 4360 /* Add a DEL command... */ 4361 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4362 if (rc < 0) { 4363 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4364 } 4365 4366 /* now wait until all pending commands are cleared */ 4367 4368 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4369 while (rc != 0) { 4370 if (rc < 0) { 4371 BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc); 4372 return; 4373 } 4374 4375 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4376 } 4377 } 4378 4379 /* stop the controller */ 4380 static __noinline int 4381 bxe_nic_unload(struct bxe_softc *sc, 4382 uint32_t unload_mode, 4383 uint8_t keep_link) 4384 { 4385 uint8_t global = FALSE; 4386 uint32_t val; 4387 4388 BXE_CORE_LOCK_ASSERT(sc); 4389 4390 BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n"); 4391 4392 /* mark driver as unloaded in shmem2 */ 4393 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 4394 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 4395 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 4396 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 4397 } 4398 4399 if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE && 4400 (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) { 4401 /* 4402 * We can get here if the driver has been unloaded 4403 * during parity error recovery and is either waiting for a 4404 * leader to complete or for other functions to unload and 4405 * then ifconfig down has been issued. In this case we want to 4406 * unload and let other functions to complete a recovery 4407 * process. 4408 */ 4409 sc->recovery_state = BXE_RECOVERY_DONE; 4410 sc->is_leader = 0; 4411 bxe_release_leader_lock(sc); 4412 mb(); 4413 4414 BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n"); 4415 BLOGE(sc, "Can't unload in closed or error state\n"); 4416 return (-1); 4417 } 4418 4419 /* 4420 * Nothing to do during unload if previous bxe_nic_load() 4421 * did not completed succesfully - all resourses are released. 4422 */ 4423 if ((sc->state == BXE_STATE_CLOSED) || 4424 (sc->state == BXE_STATE_ERROR)) { 4425 return (0); 4426 } 4427 4428 sc->state = BXE_STATE_CLOSING_WAITING_HALT; 4429 mb(); 4430 4431 /* stop tx */ 4432 bxe_tx_disable(sc); 4433 4434 sc->rx_mode = BXE_RX_MODE_NONE; 4435 /* XXX set rx mode ??? */ 4436 4437 if (IS_PF(sc)) { 4438 /* set ALWAYS_ALIVE bit in shmem */ 4439 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 4440 4441 bxe_drv_pulse(sc); 4442 4443 bxe_stats_handle(sc, STATS_EVENT_STOP); 4444 bxe_save_statistics(sc); 4445 } 4446 4447 /* wait till consumers catch up with producers in all queues */ 4448 bxe_drain_tx_queues(sc); 4449 4450 /* if VF indicate to PF this function is going down (PF will delete sp 4451 * elements and clear initializations 4452 */ 4453 if (IS_VF(sc)) { 4454 ; /* bxe_vfpf_close_vf(sc); */ 4455 } else if (unload_mode != UNLOAD_RECOVERY) { 4456 /* if this is a normal/close unload need to clean up chip */ 4457 bxe_chip_cleanup(sc, unload_mode, keep_link); 4458 } else { 4459 /* Send the UNLOAD_REQUEST to the MCP */ 4460 bxe_send_unload_req(sc, unload_mode); 4461 4462 /* 4463 * Prevent transactions to host from the functions on the 4464 * engine that doesn't reset global blocks in case of global 4465 * attention once gloabl blocks are reset and gates are opened 4466 * (the engine which leader will perform the recovery 4467 * last). 4468 */ 4469 if (!CHIP_IS_E1x(sc)) { 4470 bxe_pf_disable(sc); 4471 } 4472 4473 /* disable HW interrupts */ 4474 bxe_int_disable_sync(sc, TRUE); 4475 4476 /* detach interrupts */ 4477 bxe_interrupt_detach(sc); 4478 4479 /* Report UNLOAD_DONE to MCP */ 4480 bxe_send_unload_done(sc, FALSE); 4481 } 4482 4483 /* 4484 * At this stage no more interrupts will arrive so we may safely clean 4485 * the queue'able objects here in case they failed to get cleaned so far. 4486 */ 4487 if (IS_PF(sc)) { 4488 bxe_squeeze_objects(sc); 4489 } 4490 4491 /* There should be no more pending SP commands at this stage */ 4492 sc->sp_state = 0; 4493 4494 sc->port.pmf = 0; 4495 4496 bxe_free_fp_buffers(sc); 4497 4498 if (IS_PF(sc)) { 4499 bxe_free_mem(sc); 4500 } 4501 4502 bxe_free_fw_stats_mem(sc); 4503 4504 sc->state = BXE_STATE_CLOSED; 4505 4506 /* 4507 * Check if there are pending parity attentions. If there are - set 4508 * RECOVERY_IN_PROGRESS. 4509 */ 4510 if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) { 4511 bxe_set_reset_in_progress(sc); 4512 4513 /* Set RESET_IS_GLOBAL if needed */ 4514 if (global) { 4515 bxe_set_reset_global(sc); 4516 } 4517 } 4518 4519 /* 4520 * The last driver must disable a "close the gate" if there is no 4521 * parity attention or "process kill" pending. 4522 */ 4523 if (IS_PF(sc) && !bxe_clear_pf_load(sc) && 4524 bxe_reset_is_done(sc, SC_PATH(sc))) { 4525 bxe_disable_close_the_gate(sc); 4526 } 4527 4528 BLOGD(sc, DBG_LOAD, "Ended NIC unload\n"); 4529 4530 return (0); 4531 } 4532 4533 /* 4534 * Called by the OS to set various media options (i.e. link, speed, etc.) when 4535 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...". 4536 */ 4537 static int 4538 bxe_ifmedia_update(struct ifnet *ifp) 4539 { 4540 struct bxe_softc *sc = (struct bxe_softc *)ifp->if_softc; 4541 struct ifmedia *ifm; 4542 4543 ifm = &sc->ifmedia; 4544 4545 /* We only support Ethernet media type. */ 4546 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) { 4547 return (EINVAL); 4548 } 4549 4550 switch (IFM_SUBTYPE(ifm->ifm_media)) { 4551 case IFM_AUTO: 4552 break; 4553 case IFM_10G_CX4: 4554 case IFM_10G_SR: 4555 case IFM_10G_T: 4556 case IFM_10G_TWINAX: 4557 default: 4558 /* We don't support changing the media type. */ 4559 BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n", 4560 IFM_SUBTYPE(ifm->ifm_media)); 4561 return (EINVAL); 4562 } 4563 4564 return (0); 4565 } 4566 4567 /* 4568 * Called by the OS to get the current media status (i.e. link, speed, etc.). 4569 */ 4570 static void 4571 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr) 4572 { 4573 struct bxe_softc *sc = ifp->if_softc; 4574 4575 /* Report link down if the driver isn't running. */ 4576 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 4577 ifmr->ifm_active |= IFM_NONE; 4578 return; 4579 } 4580 4581 /* Setup the default interface info. */ 4582 ifmr->ifm_status = IFM_AVALID; 4583 ifmr->ifm_active = IFM_ETHER; 4584 4585 if (sc->link_vars.link_up) { 4586 ifmr->ifm_status |= IFM_ACTIVE; 4587 } else { 4588 ifmr->ifm_active |= IFM_NONE; 4589 return; 4590 } 4591 4592 ifmr->ifm_active |= sc->media; 4593 4594 if (sc->link_vars.duplex == DUPLEX_FULL) { 4595 ifmr->ifm_active |= IFM_FDX; 4596 } else { 4597 ifmr->ifm_active |= IFM_HDX; 4598 } 4599 } 4600 4601 static int 4602 bxe_ioctl_nvram(struct bxe_softc *sc, 4603 uint32_t priv_op, 4604 struct ifreq *ifr) 4605 { 4606 struct bxe_nvram_data nvdata_base; 4607 struct bxe_nvram_data *nvdata; 4608 int len; 4609 int error = 0; 4610 4611 copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base)); 4612 4613 len = (sizeof(struct bxe_nvram_data) + 4614 nvdata_base.len - 4615 sizeof(uint32_t)); 4616 4617 if (len > sizeof(struct bxe_nvram_data)) { 4618 if ((nvdata = (struct bxe_nvram_data *) 4619 malloc(len, M_DEVBUF, 4620 (M_NOWAIT | M_ZERO))) == NULL) { 4621 BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed\n"); 4622 return (1); 4623 } 4624 memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data)); 4625 } else { 4626 nvdata = &nvdata_base; 4627 } 4628 4629 if (priv_op == BXE_IOC_RD_NVRAM) { 4630 BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n", 4631 nvdata->offset, nvdata->len); 4632 error = bxe_nvram_read(sc, 4633 nvdata->offset, 4634 (uint8_t *)nvdata->value, 4635 nvdata->len); 4636 copyout(nvdata, ifr->ifr_data, len); 4637 } else { /* BXE_IOC_WR_NVRAM */ 4638 BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n", 4639 nvdata->offset, nvdata->len); 4640 copyin(ifr->ifr_data, nvdata, len); 4641 error = bxe_nvram_write(sc, 4642 nvdata->offset, 4643 (uint8_t *)nvdata->value, 4644 nvdata->len); 4645 } 4646 4647 if (len > sizeof(struct bxe_nvram_data)) { 4648 free(nvdata, M_DEVBUF); 4649 } 4650 4651 return (error); 4652 } 4653 4654 static int 4655 bxe_ioctl_stats_show(struct bxe_softc *sc, 4656 uint32_t priv_op, 4657 struct ifreq *ifr) 4658 { 4659 const size_t str_size = (BXE_NUM_ETH_STATS * STAT_NAME_LEN); 4660 const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t)); 4661 caddr_t p_tmp; 4662 uint32_t *offset; 4663 int i; 4664 4665 switch (priv_op) 4666 { 4667 case BXE_IOC_STATS_SHOW_NUM: 4668 memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data)); 4669 ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num = 4670 BXE_NUM_ETH_STATS; 4671 ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len = 4672 STAT_NAME_LEN; 4673 return (0); 4674 4675 case BXE_IOC_STATS_SHOW_STR: 4676 memset(ifr->ifr_data, 0, str_size); 4677 p_tmp = ifr->ifr_data; 4678 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 4679 strcpy(p_tmp, bxe_eth_stats_arr[i].string); 4680 p_tmp += STAT_NAME_LEN; 4681 } 4682 return (0); 4683 4684 case BXE_IOC_STATS_SHOW_CNT: 4685 memset(ifr->ifr_data, 0, stats_size); 4686 p_tmp = ifr->ifr_data; 4687 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 4688 offset = ((uint32_t *)&sc->eth_stats + 4689 bxe_eth_stats_arr[i].offset); 4690 switch (bxe_eth_stats_arr[i].size) { 4691 case 4: 4692 *((uint64_t *)p_tmp) = (uint64_t)*offset; 4693 break; 4694 case 8: 4695 *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1)); 4696 break; 4697 default: 4698 *((uint64_t *)p_tmp) = 0; 4699 } 4700 p_tmp += sizeof(uint64_t); 4701 } 4702 return (0); 4703 4704 default: 4705 return (-1); 4706 } 4707 } 4708 4709 static void 4710 bxe_handle_chip_tq(void *context, 4711 int pending) 4712 { 4713 struct bxe_softc *sc = (struct bxe_softc *)context; 4714 long work = atomic_load_acq_long(&sc->chip_tq_flags); 4715 4716 switch (work) 4717 { 4718 case CHIP_TQ_START: 4719 if ((sc->ifnet->if_flags & IFF_UP) && 4720 !(sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) { 4721 /* start the interface */ 4722 BLOGD(sc, DBG_LOAD, "Starting the interface...\n"); 4723 BXE_CORE_LOCK(sc); 4724 bxe_init_locked(sc); 4725 BXE_CORE_UNLOCK(sc); 4726 } 4727 break; 4728 4729 case CHIP_TQ_STOP: 4730 if (!(sc->ifnet->if_flags & IFF_UP) && 4731 (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) { 4732 /* bring down the interface */ 4733 BLOGD(sc, DBG_LOAD, "Stopping the interface...\n"); 4734 bxe_periodic_stop(sc); 4735 BXE_CORE_LOCK(sc); 4736 bxe_stop_locked(sc); 4737 BXE_CORE_UNLOCK(sc); 4738 } 4739 break; 4740 4741 case CHIP_TQ_REINIT: 4742 if (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING) { 4743 /* restart the interface */ 4744 BLOGD(sc, DBG_LOAD, "Restarting the interface...\n"); 4745 bxe_periodic_stop(sc); 4746 BXE_CORE_LOCK(sc); 4747 bxe_stop_locked(sc); 4748 bxe_init_locked(sc); 4749 BXE_CORE_UNLOCK(sc); 4750 } 4751 break; 4752 4753 default: 4754 break; 4755 } 4756 } 4757 4758 /* 4759 * Handles any IOCTL calls from the operating system. 4760 * 4761 * Returns: 4762 * 0 = Success, >0 Failure 4763 */ 4764 static int 4765 bxe_ioctl(struct ifnet *ifp, 4766 u_long command, 4767 caddr_t data) 4768 { 4769 struct bxe_softc *sc = ifp->if_softc; 4770 struct ifreq *ifr = (struct ifreq *)data; 4771 struct bxe_nvram_data *nvdata; 4772 uint32_t priv_op; 4773 int mask = 0; 4774 int reinit = 0; 4775 int error = 0; 4776 4777 int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN); 4778 int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING); 4779 4780 switch (command) 4781 { 4782 case SIOCSIFMTU: 4783 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n", 4784 ifr->ifr_mtu); 4785 4786 if (sc->mtu == ifr->ifr_mtu) { 4787 /* nothing to change */ 4788 break; 4789 } 4790 4791 if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) { 4792 BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n", 4793 ifr->ifr_mtu, mtu_min, mtu_max); 4794 error = EINVAL; 4795 break; 4796 } 4797 4798 atomic_store_rel_int((volatile unsigned int *)&sc->mtu, 4799 (unsigned long)ifr->ifr_mtu); 4800 atomic_store_rel_long((volatile unsigned long *)&ifp->if_mtu, 4801 (unsigned long)ifr->ifr_mtu); 4802 4803 reinit = 1; 4804 break; 4805 4806 case SIOCSIFFLAGS: 4807 /* toggle the interface state up or down */ 4808 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n"); 4809 4810 /* check if the interface is up */ 4811 if (ifp->if_flags & IFF_UP) { 4812 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 4813 /* set the receive mode flags */ 4814 bxe_set_rx_mode(sc); 4815 } else { 4816 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_START); 4817 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 4818 } 4819 } else { 4820 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 4821 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_STOP); 4822 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 4823 } 4824 } 4825 4826 break; 4827 4828 case SIOCADDMULTI: 4829 case SIOCDELMULTI: 4830 /* add/delete multicast addresses */ 4831 BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n"); 4832 4833 /* check if the interface is up */ 4834 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 4835 /* set the receive mode flags */ 4836 bxe_set_rx_mode(sc); 4837 } 4838 4839 break; 4840 4841 case SIOCSIFCAP: 4842 /* find out which capabilities have changed */ 4843 mask = (ifr->ifr_reqcap ^ ifp->if_capenable); 4844 4845 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n", 4846 mask); 4847 4848 /* toggle the LRO capabilites enable flag */ 4849 if (mask & IFCAP_LRO) { 4850 ifp->if_capenable ^= IFCAP_LRO; 4851 BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n", 4852 (ifp->if_capenable & IFCAP_LRO) ? "ON" : "OFF"); 4853 reinit = 1; 4854 } 4855 4856 /* toggle the TXCSUM checksum capabilites enable flag */ 4857 if (mask & IFCAP_TXCSUM) { 4858 ifp->if_capenable ^= IFCAP_TXCSUM; 4859 BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n", 4860 (ifp->if_capenable & IFCAP_TXCSUM) ? "ON" : "OFF"); 4861 if (ifp->if_capenable & IFCAP_TXCSUM) { 4862 ifp->if_hwassist = (CSUM_IP | 4863 CSUM_TCP | 4864 CSUM_UDP | 4865 CSUM_TSO | 4866 CSUM_TCP_IPV6 | 4867 CSUM_UDP_IPV6); 4868 } else { 4869 ifp->if_hwassist = 0; 4870 } 4871 } 4872 4873 /* toggle the RXCSUM checksum capabilities enable flag */ 4874 if (mask & IFCAP_RXCSUM) { 4875 ifp->if_capenable ^= IFCAP_RXCSUM; 4876 BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n", 4877 (ifp->if_capenable & IFCAP_RXCSUM) ? "ON" : "OFF"); 4878 if (ifp->if_capenable & IFCAP_RXCSUM) { 4879 ifp->if_hwassist = (CSUM_IP | 4880 CSUM_TCP | 4881 CSUM_UDP | 4882 CSUM_TSO | 4883 CSUM_TCP_IPV6 | 4884 CSUM_UDP_IPV6); 4885 } else { 4886 ifp->if_hwassist = 0; 4887 } 4888 } 4889 4890 /* toggle TSO4 capabilities enabled flag */ 4891 if (mask & IFCAP_TSO4) { 4892 ifp->if_capenable ^= IFCAP_TSO4; 4893 BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n", 4894 (ifp->if_capenable & IFCAP_TSO4) ? "ON" : "OFF"); 4895 } 4896 4897 /* toggle TSO6 capabilities enabled flag */ 4898 if (mask & IFCAP_TSO6) { 4899 ifp->if_capenable ^= IFCAP_TSO6; 4900 BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n", 4901 (ifp->if_capenable & IFCAP_TSO6) ? "ON" : "OFF"); 4902 } 4903 4904 /* toggle VLAN_HWTSO capabilities enabled flag */ 4905 if (mask & IFCAP_VLAN_HWTSO) { 4906 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 4907 BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n", 4908 (ifp->if_capenable & IFCAP_VLAN_HWTSO) ? "ON" : "OFF"); 4909 } 4910 4911 /* toggle VLAN_HWCSUM capabilities enabled flag */ 4912 if (mask & IFCAP_VLAN_HWCSUM) { 4913 /* XXX investigate this... */ 4914 BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n"); 4915 error = EINVAL; 4916 } 4917 4918 /* toggle VLAN_MTU capabilities enable flag */ 4919 if (mask & IFCAP_VLAN_MTU) { 4920 /* XXX investigate this... */ 4921 BLOGE(sc, "Changing VLAN_MTU is not supported!\n"); 4922 error = EINVAL; 4923 } 4924 4925 /* toggle VLAN_HWTAGGING capabilities enabled flag */ 4926 if (mask & IFCAP_VLAN_HWTAGGING) { 4927 /* XXX investigate this... */ 4928 BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n"); 4929 error = EINVAL; 4930 } 4931 4932 /* toggle VLAN_HWFILTER capabilities enabled flag */ 4933 if (mask & IFCAP_VLAN_HWFILTER) { 4934 /* XXX investigate this... */ 4935 BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n"); 4936 error = EINVAL; 4937 } 4938 4939 /* XXX not yet... 4940 * IFCAP_WOL_MAGIC 4941 */ 4942 4943 break; 4944 4945 case SIOCSIFMEDIA: 4946 case SIOCGIFMEDIA: 4947 /* set/get interface media */ 4948 BLOGD(sc, DBG_IOCTL, 4949 "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n", 4950 (command & 0xff)); 4951 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); 4952 break; 4953 4954 case SIOCGPRIVATE_0: 4955 copyin(ifr->ifr_data, &priv_op, sizeof(priv_op)); 4956 4957 switch (priv_op) 4958 { 4959 case BXE_IOC_RD_NVRAM: 4960 case BXE_IOC_WR_NVRAM: 4961 nvdata = (struct bxe_nvram_data *)ifr->ifr_data; 4962 BLOGD(sc, DBG_IOCTL, 4963 "Received Private NVRAM ioctl addr=0x%x size=%u\n", 4964 nvdata->offset, nvdata->len); 4965 error = bxe_ioctl_nvram(sc, priv_op, ifr); 4966 break; 4967 4968 case BXE_IOC_STATS_SHOW_NUM: 4969 case BXE_IOC_STATS_SHOW_STR: 4970 case BXE_IOC_STATS_SHOW_CNT: 4971 BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n", 4972 priv_op); 4973 error = bxe_ioctl_stats_show(sc, priv_op, ifr); 4974 break; 4975 4976 default: 4977 BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op); 4978 error = EINVAL; 4979 break; 4980 } 4981 4982 break; 4983 4984 default: 4985 BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n", 4986 (command & 0xff)); 4987 error = ether_ioctl(ifp, command, data); 4988 break; 4989 } 4990 4991 if (reinit && (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) { 4992 BLOGD(sc, DBG_LOAD | DBG_IOCTL, 4993 "Re-initializing hardware from IOCTL change\n"); 4994 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT); 4995 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 4996 } 4997 4998 return (error); 4999 } 5000 5001 static __noinline void 5002 bxe_dump_mbuf(struct bxe_softc *sc, 5003 struct mbuf *m, 5004 uint8_t contents) 5005 { 5006 char * type; 5007 5008 if (!(sc->debug & DBG_MBUF)) { 5009 return; 5010 } 5011 5012 if (m == NULL) { 5013 BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n"); 5014 return; 5015 } 5016 5017 while (m) { 5018 BLOGD(sc, DBG_MBUF, 5019 "mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 5020 m, m->m_len, m->m_flags, 5021 "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", m->m_data); 5022 5023 if (m->m_flags & M_PKTHDR) { 5024 BLOGD(sc, DBG_MBUF, 5025 "- m_pkthdr: len=%d flags=0x%b csum_flags=%b\n", 5026 m->m_pkthdr.len, m->m_flags, 5027 "\20\12M_BCAST\13M_MCAST\14M_FRAG" 5028 "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG" 5029 "\22M_PROMISC\23M_NOFREE", 5030 (int)m->m_pkthdr.csum_flags, 5031 "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS" 5032 "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED" 5033 "\12CSUM_IP_VALID\13CSUM_DATA_VALID" 5034 "\14CSUM_PSEUDO_HDR"); 5035 } 5036 5037 if (m->m_flags & M_EXT) { 5038 switch (m->m_ext.ext_type) { 5039 case EXT_CLUSTER: type = "EXT_CLUSTER"; break; 5040 case EXT_SFBUF: type = "EXT_SFBUF"; break; 5041 case EXT_JUMBO9: type = "EXT_JUMBO9"; break; 5042 case EXT_JUMBO16: type = "EXT_JUMBO16"; break; 5043 case EXT_PACKET: type = "EXT_PACKET"; break; 5044 case EXT_MBUF: type = "EXT_MBUF"; break; 5045 case EXT_NET_DRV: type = "EXT_NET_DRV"; break; 5046 case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break; 5047 case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break; 5048 case EXT_EXTREF: type = "EXT_EXTREF"; break; 5049 default: type = "UNKNOWN"; break; 5050 } 5051 5052 BLOGD(sc, DBG_MBUF, 5053 "- m_ext: %p ext_size=%d, type=%s\n", 5054 m->m_ext.ext_buf, m->m_ext.ext_size, type); 5055 } 5056 5057 if (contents) { 5058 bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE); 5059 } 5060 5061 m = m->m_next; 5062 } 5063 } 5064 5065 /* 5066 * Checks to ensure the 13 bd sliding window is >= MSS for TSO. 5067 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS. 5068 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD 5069 * The headers comes in a seperate bd in FreeBSD so 13-3=10. 5070 * Returns: 0 if OK to send, 1 if packet needs further defragmentation 5071 */ 5072 static int 5073 bxe_chktso_window(struct bxe_softc *sc, 5074 int nsegs, 5075 bus_dma_segment_t *segs, 5076 struct mbuf *m) 5077 { 5078 uint32_t num_wnds, wnd_size, wnd_sum; 5079 int32_t frag_idx, wnd_idx; 5080 unsigned short lso_mss; 5081 int defrag; 5082 5083 defrag = 0; 5084 wnd_sum = 0; 5085 wnd_size = 10; 5086 num_wnds = nsegs - wnd_size; 5087 lso_mss = htole16(m->m_pkthdr.tso_segsz); 5088 5089 /* 5090 * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the 5091 * first window sum of data while skipping the first assuming it is the 5092 * header in FreeBSD. 5093 */ 5094 for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) { 5095 wnd_sum += htole16(segs[frag_idx].ds_len); 5096 } 5097 5098 /* check the first 10 bd window size */ 5099 if (wnd_sum < lso_mss) { 5100 return (1); 5101 } 5102 5103 /* run through the windows */ 5104 for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) { 5105 /* subtract the first mbuf->m_len of the last wndw(-header) */ 5106 wnd_sum -= htole16(segs[wnd_idx+1].ds_len); 5107 /* add the next mbuf len to the len of our new window */ 5108 wnd_sum += htole16(segs[frag_idx].ds_len); 5109 if (wnd_sum < lso_mss) { 5110 return (1); 5111 } 5112 } 5113 5114 return (0); 5115 } 5116 5117 static uint8_t 5118 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp, 5119 struct mbuf *m, 5120 uint32_t *parsing_data) 5121 { 5122 struct ether_vlan_header *eh = NULL; 5123 struct ip *ip4 = NULL; 5124 struct ip6_hdr *ip6 = NULL; 5125 caddr_t ip = NULL; 5126 struct tcphdr *th = NULL; 5127 int e_hlen, ip_hlen, l4_off; 5128 uint16_t proto; 5129 5130 if (m->m_pkthdr.csum_flags == CSUM_IP) { 5131 /* no L4 checksum offload needed */ 5132 return (0); 5133 } 5134 5135 /* get the Ethernet header */ 5136 eh = mtod(m, struct ether_vlan_header *); 5137 5138 /* handle VLAN encapsulation if present */ 5139 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 5140 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 5141 proto = ntohs(eh->evl_proto); 5142 } else { 5143 e_hlen = ETHER_HDR_LEN; 5144 proto = ntohs(eh->evl_encap_proto); 5145 } 5146 5147 switch (proto) { 5148 case ETHERTYPE_IP: 5149 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 5150 ip4 = (m->m_len < sizeof(struct ip)) ? 5151 (struct ip *)m->m_next->m_data : 5152 (struct ip *)(m->m_data + e_hlen); 5153 /* ip_hl is number of 32-bit words */ 5154 ip_hlen = (ip4->ip_hl << 2); 5155 ip = (caddr_t)ip4; 5156 break; 5157 case ETHERTYPE_IPV6: 5158 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 5159 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 5160 (struct ip6_hdr *)m->m_next->m_data : 5161 (struct ip6_hdr *)(m->m_data + e_hlen); 5162 /* XXX cannot support offload with IPv6 extensions */ 5163 ip_hlen = sizeof(struct ip6_hdr); 5164 ip = (caddr_t)ip6; 5165 break; 5166 default: 5167 /* We can't offload in this case... */ 5168 /* XXX error stat ??? */ 5169 return (0); 5170 } 5171 5172 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 5173 l4_off = (e_hlen + ip_hlen); 5174 5175 *parsing_data |= 5176 (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 5177 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W); 5178 5179 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5180 CSUM_TSO | 5181 CSUM_TCP_IPV6)) { 5182 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 5183 th = (struct tcphdr *)(ip + ip_hlen); 5184 /* th_off is number of 32-bit words */ 5185 *parsing_data |= ((th->th_off << 5186 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 5187 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW); 5188 return (l4_off + (th->th_off << 2)); /* entire header length */ 5189 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5190 CSUM_UDP_IPV6)) { 5191 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 5192 return (l4_off + sizeof(struct udphdr)); /* entire header length */ 5193 } else { 5194 /* XXX error stat ??? */ 5195 return (0); 5196 } 5197 } 5198 5199 static uint8_t 5200 bxe_set_pbd_csum(struct bxe_fastpath *fp, 5201 struct mbuf *m, 5202 struct eth_tx_parse_bd_e1x *pbd) 5203 { 5204 struct ether_vlan_header *eh = NULL; 5205 struct ip *ip4 = NULL; 5206 struct ip6_hdr *ip6 = NULL; 5207 caddr_t ip = NULL; 5208 struct tcphdr *th = NULL; 5209 struct udphdr *uh = NULL; 5210 int e_hlen, ip_hlen; 5211 uint16_t proto; 5212 uint8_t hlen; 5213 uint16_t tmp_csum; 5214 uint32_t *tmp_uh; 5215 5216 /* get the Ethernet header */ 5217 eh = mtod(m, struct ether_vlan_header *); 5218 5219 /* handle VLAN encapsulation if present */ 5220 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 5221 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 5222 proto = ntohs(eh->evl_proto); 5223 } else { 5224 e_hlen = ETHER_HDR_LEN; 5225 proto = ntohs(eh->evl_encap_proto); 5226 } 5227 5228 switch (proto) { 5229 case ETHERTYPE_IP: 5230 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 5231 ip4 = (m->m_len < sizeof(struct ip)) ? 5232 (struct ip *)m->m_next->m_data : 5233 (struct ip *)(m->m_data + e_hlen); 5234 /* ip_hl is number of 32-bit words */ 5235 ip_hlen = (ip4->ip_hl << 1); 5236 ip = (caddr_t)ip4; 5237 break; 5238 case ETHERTYPE_IPV6: 5239 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 5240 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 5241 (struct ip6_hdr *)m->m_next->m_data : 5242 (struct ip6_hdr *)(m->m_data + e_hlen); 5243 /* XXX cannot support offload with IPv6 extensions */ 5244 ip_hlen = (sizeof(struct ip6_hdr) >> 1); 5245 ip = (caddr_t)ip6; 5246 break; 5247 default: 5248 /* We can't offload in this case... */ 5249 /* XXX error stat ??? */ 5250 return (0); 5251 } 5252 5253 hlen = (e_hlen >> 1); 5254 5255 /* note that rest of global_data is indirectly zeroed here */ 5256 if (m->m_flags & M_VLANTAG) { 5257 pbd->global_data = 5258 htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 5259 } else { 5260 pbd->global_data = htole16(hlen); 5261 } 5262 5263 pbd->ip_hlen_w = ip_hlen; 5264 5265 hlen += pbd->ip_hlen_w; 5266 5267 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 5268 5269 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5270 CSUM_TSO | 5271 CSUM_TCP_IPV6)) { 5272 th = (struct tcphdr *)(ip + (ip_hlen << 1)); 5273 /* th_off is number of 32-bit words */ 5274 hlen += (uint16_t)(th->th_off << 1); 5275 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5276 CSUM_UDP_IPV6)) { 5277 uh = (struct udphdr *)(ip + (ip_hlen << 1)); 5278 hlen += (sizeof(struct udphdr) / 2); 5279 } else { 5280 /* valid case as only CSUM_IP was set */ 5281 return (0); 5282 } 5283 5284 pbd->total_hlen_w = htole16(hlen); 5285 5286 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5287 CSUM_TSO | 5288 CSUM_TCP_IPV6)) { 5289 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 5290 pbd->tcp_pseudo_csum = ntohs(th->th_sum); 5291 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5292 CSUM_UDP_IPV6)) { 5293 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 5294 5295 /* 5296 * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP 5297 * checksums and does not know anything about the UDP header and where 5298 * the checksum field is located. It only knows about TCP. Therefore 5299 * we "lie" to the hardware for outgoing UDP packets w/ checksum 5300 * offload. Since the checksum field offset for TCP is 16 bytes and 5301 * for UDP it is 6 bytes we pass a pointer to the hardware that is 10 5302 * bytes less than the start of the UDP header. This allows the 5303 * hardware to write the checksum in the correct spot. But the 5304 * hardware will compute a checksum which includes the last 10 bytes 5305 * of the IP header. To correct this we tweak the stack computed 5306 * pseudo checksum by folding in the calculation of the inverse 5307 * checksum for those final 10 bytes of the IP header. This allows 5308 * the correct checksum to be computed by the hardware. 5309 */ 5310 5311 /* set pointer 10 bytes before UDP header */ 5312 tmp_uh = (uint32_t *)((uint8_t *)uh - 10); 5313 5314 /* calculate a pseudo header checksum over the first 10 bytes */ 5315 tmp_csum = in_pseudo(*tmp_uh, 5316 *(tmp_uh + 1), 5317 *(uint16_t *)(tmp_uh + 2)); 5318 5319 pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum)); 5320 } 5321 5322 return (hlen * 2); /* entire header length, number of bytes */ 5323 } 5324 5325 static void 5326 bxe_set_pbd_lso_e2(struct mbuf *m, 5327 uint32_t *parsing_data) 5328 { 5329 *parsing_data |= ((m->m_pkthdr.tso_segsz << 5330 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 5331 ETH_TX_PARSE_BD_E2_LSO_MSS); 5332 5333 /* XXX test for IPv6 with extension header... */ 5334 #if 0 5335 struct ip6_hdr *ip6; 5336 if (ip6 && ip6->ip6_nxt == 'some ipv6 extension header') 5337 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR; 5338 #endif 5339 } 5340 5341 static void 5342 bxe_set_pbd_lso(struct mbuf *m, 5343 struct eth_tx_parse_bd_e1x *pbd) 5344 { 5345 struct ether_vlan_header *eh = NULL; 5346 struct ip *ip = NULL; 5347 struct tcphdr *th = NULL; 5348 int e_hlen; 5349 5350 /* get the Ethernet header */ 5351 eh = mtod(m, struct ether_vlan_header *); 5352 5353 /* handle VLAN encapsulation if present */ 5354 e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ? 5355 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN; 5356 5357 /* get the IP and TCP header, with LSO entire header in first mbuf */ 5358 /* XXX assuming IPv4 */ 5359 ip = (struct ip *)(m->m_data + e_hlen); 5360 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 5361 5362 pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz); 5363 pbd->tcp_send_seq = ntohl(th->th_seq); 5364 pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff); 5365 5366 #if 1 5367 /* XXX IPv4 */ 5368 pbd->ip_id = ntohs(ip->ip_id); 5369 pbd->tcp_pseudo_csum = 5370 ntohs(in_pseudo(ip->ip_src.s_addr, 5371 ip->ip_dst.s_addr, 5372 htons(IPPROTO_TCP))); 5373 #else 5374 /* XXX IPv6 */ 5375 pbd->tcp_pseudo_csum = 5376 ntohs(in_pseudo(&ip6->ip6_src, 5377 &ip6->ip6_dst, 5378 htons(IPPROTO_TCP))); 5379 #endif 5380 5381 pbd->global_data |= 5382 htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 5383 } 5384 5385 /* 5386 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory 5387 * visible to the controller. 5388 * 5389 * If an mbuf is submitted to this routine and cannot be given to the 5390 * controller (e.g. it has too many fragments) then the function may free 5391 * the mbuf and return to the caller. 5392 * 5393 * Returns: 5394 * 0 = Success, !0 = Failure 5395 * Note the side effect that an mbuf may be freed if it causes a problem. 5396 */ 5397 static int 5398 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head) 5399 { 5400 bus_dma_segment_t segs[32]; 5401 struct mbuf *m0; 5402 struct bxe_sw_tx_bd *tx_buf; 5403 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 5404 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 5405 /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */ 5406 struct eth_tx_bd *tx_data_bd; 5407 struct eth_tx_bd *tx_total_pkt_size_bd; 5408 struct eth_tx_start_bd *tx_start_bd; 5409 uint16_t bd_prod, pkt_prod, total_pkt_size; 5410 uint8_t mac_type; 5411 int defragged, error, nsegs, rc, nbds, vlan_off, ovlan; 5412 struct bxe_softc *sc; 5413 uint16_t tx_bd_avail; 5414 struct ether_vlan_header *eh; 5415 uint32_t pbd_e2_parsing_data = 0; 5416 uint8_t hlen = 0; 5417 int tmp_bd; 5418 int i; 5419 5420 sc = fp->sc; 5421 5422 M_ASSERTPKTHDR(*m_head); 5423 5424 m0 = *m_head; 5425 rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0; 5426 tx_start_bd = NULL; 5427 tx_data_bd = NULL; 5428 tx_total_pkt_size_bd = NULL; 5429 5430 /* get the H/W pointer for packets and BDs */ 5431 pkt_prod = fp->tx_pkt_prod; 5432 bd_prod = fp->tx_bd_prod; 5433 5434 mac_type = UNICAST_ADDRESS; 5435 5436 /* map the mbuf into the next open DMAable memory */ 5437 tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)]; 5438 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5439 tx_buf->m_map, m0, 5440 segs, &nsegs, BUS_DMA_NOWAIT); 5441 5442 /* mapping errors */ 5443 if(__predict_false(error != 0)) { 5444 fp->eth_q_stats.tx_dma_mapping_failure++; 5445 if (error == ENOMEM) { 5446 /* resource issue, try again later */ 5447 rc = ENOMEM; 5448 } else if (error == EFBIG) { 5449 /* possibly recoverable with defragmentation */ 5450 fp->eth_q_stats.mbuf_defrag_attempts++; 5451 m0 = m_defrag(*m_head, M_DONTWAIT); 5452 if (m0 == NULL) { 5453 fp->eth_q_stats.mbuf_defrag_failures++; 5454 rc = ENOBUFS; 5455 } else { 5456 /* defrag successful, try mapping again */ 5457 *m_head = m0; 5458 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5459 tx_buf->m_map, m0, 5460 segs, &nsegs, BUS_DMA_NOWAIT); 5461 if (error) { 5462 fp->eth_q_stats.tx_dma_mapping_failure++; 5463 rc = error; 5464 } 5465 } 5466 } else { 5467 /* unknown, unrecoverable mapping error */ 5468 BLOGE(sc, "Unknown TX mapping error rc=%d\n", error); 5469 bxe_dump_mbuf(sc, m0, FALSE); 5470 rc = error; 5471 } 5472 5473 goto bxe_tx_encap_continue; 5474 } 5475 5476 tx_bd_avail = bxe_tx_avail(sc, fp); 5477 5478 /* make sure there is enough room in the send queue */ 5479 if (__predict_false(tx_bd_avail < (nsegs + 2))) { 5480 /* Recoverable, try again later. */ 5481 fp->eth_q_stats.tx_hw_queue_full++; 5482 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5483 rc = ENOMEM; 5484 goto bxe_tx_encap_continue; 5485 } 5486 5487 /* capture the current H/W TX chain high watermark */ 5488 if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth < 5489 (TX_BD_USABLE - tx_bd_avail))) { 5490 fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail); 5491 } 5492 5493 /* make sure it fits in the packet window */ 5494 if (__predict_false(nsegs > 12)) { 5495 /* 5496 * The mbuf may be to big for the controller to handle. If the frame 5497 * is a TSO frame we'll need to do an additional check. 5498 */ 5499 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5500 if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) { 5501 goto bxe_tx_encap_continue; /* OK to send */ 5502 } else { 5503 fp->eth_q_stats.tx_window_violation_tso++; 5504 } 5505 } else { 5506 fp->eth_q_stats.tx_window_violation_std++; 5507 } 5508 5509 /* XXX I don't like this, change to double copy packet */ 5510 5511 /* no sense trying to defrag again, just drop the frame */ 5512 rc = ENODEV; 5513 } 5514 5515 bxe_tx_encap_continue: 5516 5517 /* Check for errors */ 5518 if (rc) { 5519 if (rc == ENOMEM) { 5520 /* recoverable try again later */ 5521 } else { 5522 fp->eth_q_stats.tx_soft_errors++; 5523 fp->eth_q_stats.mbuf_alloc_tx--; 5524 m_freem(*m_head); 5525 *m_head = NULL; 5526 } 5527 5528 return (rc); 5529 } 5530 5531 /* set flag according to packet type (UNICAST_ADDRESS is default) */ 5532 if (m0->m_flags & M_BCAST) { 5533 mac_type = BROADCAST_ADDRESS; 5534 } else if (m0->m_flags & M_MCAST) { 5535 mac_type = MULTICAST_ADDRESS; 5536 } 5537 5538 /* store the mbuf into the mbuf ring */ 5539 tx_buf->m = m0; 5540 tx_buf->first_bd = fp->tx_bd_prod; 5541 tx_buf->flags = 0; 5542 5543 /* prepare the first transmit (start) BD for the mbuf */ 5544 tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd; 5545 5546 BLOGD(sc, DBG_TX, 5547 "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n", 5548 pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd); 5549 5550 tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 5551 tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 5552 tx_start_bd->nbytes = htole16(segs[0].ds_len); 5553 total_pkt_size += tx_start_bd->nbytes; 5554 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 5555 5556 tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT); 5557 5558 /* all frames have at least Start BD + Parsing BD */ 5559 nbds = nsegs + 1; 5560 tx_start_bd->nbd = htole16(nbds); 5561 5562 if (m0->m_flags & M_VLANTAG) { 5563 tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag); 5564 tx_start_bd->bd_flags.as_bitfield |= 5565 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 5566 } else { 5567 /* vf tx, start bd must hold the ethertype for fw to enforce it */ 5568 if (IS_VF(sc)) { 5569 /* map ethernet header to find type and header length */ 5570 eh = mtod(m0, struct ether_vlan_header *); 5571 tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto; 5572 } else { 5573 /* used by FW for packet accounting */ 5574 tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod); 5575 #if 0 5576 /* 5577 * If NPAR-SD is active then FW should do the tagging regardless 5578 * of value of priority. Otherwise, if priority indicates this is 5579 * a control packet we need to indicate to FW to avoid tagging. 5580 */ 5581 if (!IS_MF_AFEX(sc) && (mbuf priority == PRIO_CONTROL)) { 5582 SET_FLAG(tx_start_bd->general_data, 5583 ETH_TX_START_BD_FORCE_VLAN_MODE, 1); 5584 } 5585 #endif 5586 } 5587 } 5588 5589 /* 5590 * add a parsing BD from the chain. The parsing BD is always added 5591 * though it is only used for TSO and chksum 5592 */ 5593 bd_prod = TX_BD_NEXT(bd_prod); 5594 5595 if (m0->m_pkthdr.csum_flags) { 5596 if (m0->m_pkthdr.csum_flags & CSUM_IP) { 5597 fp->eth_q_stats.tx_ofld_frames_csum_ip++; 5598 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM; 5599 } 5600 5601 if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) { 5602 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5603 ETH_TX_BD_FLAGS_L4_CSUM); 5604 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) { 5605 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5606 ETH_TX_BD_FLAGS_IS_UDP | 5607 ETH_TX_BD_FLAGS_L4_CSUM); 5608 } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) || 5609 (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5610 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 5611 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) { 5612 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM | 5613 ETH_TX_BD_FLAGS_IS_UDP); 5614 } 5615 } 5616 5617 if (!CHIP_IS_E1x(sc)) { 5618 pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2; 5619 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 5620 5621 if (m0->m_pkthdr.csum_flags) { 5622 hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data); 5623 } 5624 5625 #if 0 5626 /* 5627 * Add the MACs to the parsing BD if the module param was 5628 * explicitly set, if this is a vf, or in switch independent 5629 * mode. 5630 */ 5631 if (sc->flags & BXE_TX_SWITCHING || IS_VF(sc) || IS_MF_SI(sc)) { 5632 eh = mtod(m0, struct ether_vlan_header *); 5633 bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, 5634 &pbd_e2->data.mac_addr.src_mid, 5635 &pbd_e2->data.mac_addr.src_lo, 5636 eh->evl_shost); 5637 bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi, 5638 &pbd_e2->data.mac_addr.dst_mid, 5639 &pbd_e2->data.mac_addr.dst_lo, 5640 eh->evl_dhost); 5641 } 5642 #endif 5643 5644 SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, 5645 mac_type); 5646 } else { 5647 uint16_t global_data = 0; 5648 5649 pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x; 5650 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 5651 5652 if (m0->m_pkthdr.csum_flags) { 5653 hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x); 5654 } 5655 5656 SET_FLAG(global_data, 5657 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 5658 pbd_e1x->global_data |= htole16(global_data); 5659 } 5660 5661 /* setup the parsing BD with TSO specific info */ 5662 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5663 fp->eth_q_stats.tx_ofld_frames_lso++; 5664 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 5665 5666 if (__predict_false(tx_start_bd->nbytes > hlen)) { 5667 fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++; 5668 5669 /* split the first BD into header/data making the fw job easy */ 5670 nbds++; 5671 tx_start_bd->nbd = htole16(nbds); 5672 5673 bd_prod = TX_BD_NEXT(bd_prod); 5674 5675 /* new transmit BD after the tx_parse_bd */ 5676 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5677 tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen)); 5678 tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen)); 5679 tx_data_bd->nbytes = htole16(segs[0].ds_len - hlen); 5680 if (tx_total_pkt_size_bd == NULL) { 5681 tx_total_pkt_size_bd = tx_data_bd; 5682 } 5683 5684 BLOGD(sc, DBG_TX, 5685 "TSO split header size is %d (%x:%x) nbds %d\n", 5686 le16toh(tx_start_bd->nbytes), 5687 le32toh(tx_start_bd->addr_hi), 5688 le32toh(tx_start_bd->addr_lo), 5689 nbds); 5690 } 5691 5692 if (!CHIP_IS_E1x(sc)) { 5693 bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data); 5694 } else { 5695 bxe_set_pbd_lso(m0, pbd_e1x); 5696 } 5697 } 5698 5699 if (pbd_e2_parsing_data) { 5700 pbd_e2->parsing_data = htole32(pbd_e2_parsing_data); 5701 } 5702 5703 /* prepare remaining BDs, start tx bd contains first seg/frag */ 5704 for (i = 1; i < nsegs ; i++) { 5705 bd_prod = TX_BD_NEXT(bd_prod); 5706 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5707 tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr)); 5708 tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr)); 5709 tx_data_bd->nbytes = htole16(segs[i].ds_len); 5710 if (tx_total_pkt_size_bd == NULL) { 5711 tx_total_pkt_size_bd = tx_data_bd; 5712 } 5713 total_pkt_size += tx_data_bd->nbytes; 5714 } 5715 5716 BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd); 5717 5718 if (tx_total_pkt_size_bd != NULL) { 5719 tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size; 5720 } 5721 5722 if (__predict_false(sc->debug & DBG_TX)) { 5723 tmp_bd = tx_buf->first_bd; 5724 for (i = 0; i < nbds; i++) 5725 { 5726 if (i == 0) { 5727 BLOGD(sc, DBG_TX, 5728 "TX Strt: %p bd=%d nbd=%d vlan=0x%x " 5729 "bd_flags=0x%x hdr_nbds=%d\n", 5730 tx_start_bd, 5731 tmp_bd, 5732 le16toh(tx_start_bd->nbd), 5733 le16toh(tx_start_bd->vlan_or_ethertype), 5734 tx_start_bd->bd_flags.as_bitfield, 5735 (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS)); 5736 } else if (i == 1) { 5737 if (pbd_e1x) { 5738 BLOGD(sc, DBG_TX, 5739 "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u " 5740 "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x " 5741 "tcp_seq=%u total_hlen_w=%u\n", 5742 pbd_e1x, 5743 tmp_bd, 5744 pbd_e1x->global_data, 5745 pbd_e1x->ip_hlen_w, 5746 pbd_e1x->ip_id, 5747 pbd_e1x->lso_mss, 5748 pbd_e1x->tcp_flags, 5749 pbd_e1x->tcp_pseudo_csum, 5750 pbd_e1x->tcp_send_seq, 5751 le16toh(pbd_e1x->total_hlen_w)); 5752 } else { /* if (pbd_e2) */ 5753 BLOGD(sc, DBG_TX, 5754 "-> Parse: %p bd=%d dst=%02x:%02x:%02x " 5755 "src=%02x:%02x:%02x parsing_data=0x%x\n", 5756 pbd_e2, 5757 tmp_bd, 5758 pbd_e2->data.mac_addr.dst_hi, 5759 pbd_e2->data.mac_addr.dst_mid, 5760 pbd_e2->data.mac_addr.dst_lo, 5761 pbd_e2->data.mac_addr.src_hi, 5762 pbd_e2->data.mac_addr.src_mid, 5763 pbd_e2->data.mac_addr.src_lo, 5764 pbd_e2->parsing_data); 5765 } 5766 } 5767 5768 if (i != 1) { /* skip parse db as it doesn't hold data */ 5769 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd; 5770 BLOGD(sc, DBG_TX, 5771 "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n", 5772 tx_data_bd, 5773 tmp_bd, 5774 le16toh(tx_data_bd->nbytes), 5775 le32toh(tx_data_bd->addr_hi), 5776 le32toh(tx_data_bd->addr_lo)); 5777 } 5778 5779 tmp_bd = TX_BD_NEXT(tmp_bd); 5780 } 5781 } 5782 5783 BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod); 5784 5785 /* update TX BD producer index value for next TX */ 5786 bd_prod = TX_BD_NEXT(bd_prod); 5787 5788 /* 5789 * If the chain of tx_bd's describing this frame is adjacent to or spans 5790 * an eth_tx_next_bd element then we need to increment the nbds value. 5791 */ 5792 if (TX_BD_IDX(bd_prod) < nbds) { 5793 nbds++; 5794 } 5795 5796 /* don't allow reordering of writes for nbd and packets */ 5797 mb(); 5798 5799 fp->tx_db.data.prod += nbds; 5800 5801 /* producer points to the next free tx_bd at this point */ 5802 fp->tx_pkt_prod++; 5803 fp->tx_bd_prod = bd_prod; 5804 5805 DOORBELL(sc, fp->index, fp->tx_db.raw); 5806 5807 fp->eth_q_stats.tx_pkts++; 5808 5809 /* Prevent speculative reads from getting ahead of the status block. */ 5810 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 5811 0, 0, BUS_SPACE_BARRIER_READ); 5812 5813 /* Prevent speculative reads from getting ahead of the doorbell. */ 5814 bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle, 5815 0, 0, BUS_SPACE_BARRIER_READ); 5816 5817 return (0); 5818 } 5819 5820 static void 5821 bxe_tx_start_locked(struct bxe_softc *sc, 5822 struct ifnet *ifp, 5823 struct bxe_fastpath *fp) 5824 { 5825 struct mbuf *m = NULL; 5826 int tx_count = 0; 5827 uint16_t tx_bd_avail; 5828 5829 BXE_FP_TX_LOCK_ASSERT(fp); 5830 5831 /* keep adding entries while there are frames to send */ 5832 while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 5833 5834 /* 5835 * check for any frames to send 5836 * dequeue can still be NULL even if queue is not empty 5837 */ 5838 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 5839 if (__predict_false(m == NULL)) { 5840 break; 5841 } 5842 5843 /* the mbuf now belongs to us */ 5844 fp->eth_q_stats.mbuf_alloc_tx++; 5845 5846 /* 5847 * Put the frame into the transmit ring. If we don't have room, 5848 * place the mbuf back at the head of the TX queue, set the 5849 * OACTIVE flag, and wait for the NIC to drain the chain. 5850 */ 5851 if (__predict_false(bxe_tx_encap(fp, &m))) { 5852 fp->eth_q_stats.tx_encap_failures++; 5853 if (m != NULL) { 5854 /* mark the TX queue as full and return the frame */ 5855 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 5856 IFQ_DRV_PREPEND(&ifp->if_snd, m); 5857 fp->eth_q_stats.mbuf_alloc_tx--; 5858 fp->eth_q_stats.tx_queue_xoff++; 5859 } 5860 5861 /* stop looking for more work */ 5862 break; 5863 } 5864 5865 /* the frame was enqueued successfully */ 5866 tx_count++; 5867 5868 /* send a copy of the frame to any BPF listeners. */ 5869 BPF_MTAP(ifp, m); 5870 5871 tx_bd_avail = bxe_tx_avail(sc, fp); 5872 5873 /* handle any completions if we're running low */ 5874 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5875 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5876 bxe_txeof(sc, fp); 5877 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 5878 break; 5879 } 5880 } 5881 } 5882 5883 /* all TX packets were dequeued and/or the tx ring is full */ 5884 if (tx_count > 0) { 5885 /* reset the TX watchdog timeout timer */ 5886 fp->watchdog_timer = BXE_TX_TIMEOUT; 5887 } 5888 } 5889 5890 /* Legacy (non-RSS) dispatch routine */ 5891 static void 5892 bxe_tx_start(struct ifnet *ifp) 5893 { 5894 struct bxe_softc *sc; 5895 struct bxe_fastpath *fp; 5896 5897 sc = ifp->if_softc; 5898 5899 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 5900 BLOGW(sc, "Interface not running, ignoring transmit request\n"); 5901 return; 5902 } 5903 5904 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 5905 BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n"); 5906 return; 5907 } 5908 5909 if (!sc->link_vars.link_up) { 5910 BLOGW(sc, "Interface link is down, ignoring transmit request\n"); 5911 return; 5912 } 5913 5914 fp = &sc->fp[0]; 5915 5916 BXE_FP_TX_LOCK(fp); 5917 bxe_tx_start_locked(sc, ifp, fp); 5918 BXE_FP_TX_UNLOCK(fp); 5919 } 5920 5921 #if __FreeBSD_version >= 800000 5922 5923 static int 5924 bxe_tx_mq_start_locked(struct bxe_softc *sc, 5925 struct ifnet *ifp, 5926 struct bxe_fastpath *fp, 5927 struct mbuf *m) 5928 { 5929 struct buf_ring *tx_br = fp->tx_br; 5930 struct mbuf *next; 5931 int depth, rc, tx_count; 5932 uint16_t tx_bd_avail; 5933 5934 rc = tx_count = 0; 5935 5936 if (!tx_br) { 5937 BLOGE(sc, "Multiqueue TX and no buf_ring!\n"); 5938 return (EINVAL); 5939 } 5940 5941 /* fetch the depth of the driver queue */ 5942 depth = drbr_inuse(ifp, tx_br); 5943 if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) { 5944 fp->eth_q_stats.tx_max_drbr_queue_depth = depth; 5945 } 5946 5947 BXE_FP_TX_LOCK_ASSERT(fp); 5948 5949 if (m == NULL) { 5950 /* no new work, check for pending frames */ 5951 next = drbr_dequeue(ifp, tx_br); 5952 } else if (drbr_needs_enqueue(ifp, tx_br)) { 5953 /* have both new and pending work, maintain packet order */ 5954 rc = drbr_enqueue(ifp, tx_br, m); 5955 if (rc != 0) { 5956 fp->eth_q_stats.tx_soft_errors++; 5957 goto bxe_tx_mq_start_locked_exit; 5958 } 5959 next = drbr_dequeue(ifp, tx_br); 5960 } else { 5961 /* new work only and nothing pending */ 5962 next = m; 5963 } 5964 5965 /* keep adding entries while there are frames to send */ 5966 while (next != NULL) { 5967 5968 /* the mbuf now belongs to us */ 5969 fp->eth_q_stats.mbuf_alloc_tx++; 5970 5971 /* 5972 * Put the frame into the transmit ring. If we don't have room, 5973 * place the mbuf back at the head of the TX queue, set the 5974 * OACTIVE flag, and wait for the NIC to drain the chain. 5975 */ 5976 rc = bxe_tx_encap(fp, &next); 5977 if (__predict_false(rc != 0)) { 5978 fp->eth_q_stats.tx_encap_failures++; 5979 if (next != NULL) { 5980 /* mark the TX queue as full and save the frame */ 5981 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 5982 /* XXX this may reorder the frame */ 5983 rc = drbr_enqueue(ifp, tx_br, next); 5984 fp->eth_q_stats.mbuf_alloc_tx--; 5985 fp->eth_q_stats.tx_frames_deferred++; 5986 } 5987 5988 /* stop looking for more work */ 5989 break; 5990 } 5991 5992 /* the transmit frame was enqueued successfully */ 5993 tx_count++; 5994 5995 /* send a copy of the frame to any BPF listeners */ 5996 BPF_MTAP(ifp, next); 5997 5998 tx_bd_avail = bxe_tx_avail(sc, fp); 5999 6000 /* handle any completions if we're running low */ 6001 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 6002 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 6003 bxe_txeof(sc, fp); 6004 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 6005 break; 6006 } 6007 } 6008 6009 next = drbr_dequeue(ifp, tx_br); 6010 } 6011 6012 /* all TX packets were dequeued and/or the tx ring is full */ 6013 if (tx_count > 0) { 6014 /* reset the TX watchdog timeout timer */ 6015 fp->watchdog_timer = BXE_TX_TIMEOUT; 6016 } 6017 6018 bxe_tx_mq_start_locked_exit: 6019 6020 return (rc); 6021 } 6022 6023 /* Multiqueue (TSS) dispatch routine. */ 6024 static int 6025 bxe_tx_mq_start(struct ifnet *ifp, 6026 struct mbuf *m) 6027 { 6028 struct bxe_softc *sc = ifp->if_softc; 6029 struct bxe_fastpath *fp; 6030 int fp_index, rc; 6031 6032 fp_index = 0; /* default is the first queue */ 6033 6034 /* change the queue if using flow ID */ 6035 if ((m->m_flags & M_FLOWID) != 0) { 6036 fp_index = (m->m_pkthdr.flowid % sc->num_queues); 6037 } 6038 6039 fp = &sc->fp[fp_index]; 6040 6041 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 6042 BLOGW(sc, "Interface not running, ignoring transmit request\n"); 6043 return (ENETDOWN); 6044 } 6045 6046 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 6047 BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n"); 6048 return (EBUSY); 6049 } 6050 6051 if (!sc->link_vars.link_up) { 6052 BLOGW(sc, "Interface link is down, ignoring transmit request\n"); 6053 return (ENETDOWN); 6054 } 6055 6056 /* XXX change to TRYLOCK here and if failed then schedule taskqueue */ 6057 6058 BXE_FP_TX_LOCK(fp); 6059 rc = bxe_tx_mq_start_locked(sc, ifp, fp, m); 6060 BXE_FP_TX_UNLOCK(fp); 6061 6062 return (rc); 6063 } 6064 6065 static void 6066 bxe_mq_flush(struct ifnet *ifp) 6067 { 6068 struct bxe_softc *sc = ifp->if_softc; 6069 struct bxe_fastpath *fp; 6070 struct mbuf *m; 6071 int i; 6072 6073 for (i = 0; i < sc->num_queues; i++) { 6074 fp = &sc->fp[i]; 6075 6076 if (fp->state != BXE_FP_STATE_OPEN) { 6077 BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n", 6078 fp->index, fp->state); 6079 continue; 6080 } 6081 6082 if (fp->tx_br != NULL) { 6083 BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index); 6084 BXE_FP_TX_LOCK(fp); 6085 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { 6086 m_freem(m); 6087 } 6088 BXE_FP_TX_UNLOCK(fp); 6089 } 6090 } 6091 6092 if_qflush(ifp); 6093 } 6094 6095 #endif /* FreeBSD_version >= 800000 */ 6096 6097 static uint16_t 6098 bxe_cid_ilt_lines(struct bxe_softc *sc) 6099 { 6100 if (IS_SRIOV(sc)) { 6101 return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS); 6102 } 6103 return (L2_ILT_LINES(sc)); 6104 } 6105 6106 static void 6107 bxe_ilt_set_info(struct bxe_softc *sc) 6108 { 6109 struct ilt_client_info *ilt_client; 6110 struct ecore_ilt *ilt = sc->ilt; 6111 uint16_t line = 0; 6112 6113 ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc)); 6114 BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line); 6115 6116 /* CDU */ 6117 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 6118 ilt_client->client_num = ILT_CLIENT_CDU; 6119 ilt_client->page_size = CDU_ILT_PAGE_SZ; 6120 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 6121 ilt_client->start = line; 6122 line += bxe_cid_ilt_lines(sc); 6123 6124 if (CNIC_SUPPORT(sc)) { 6125 line += CNIC_ILT_LINES; 6126 } 6127 6128 ilt_client->end = (line - 1); 6129 6130 BLOGD(sc, DBG_LOAD, 6131 "ilt client[CDU]: start %d, end %d, " 6132 "psz 0x%x, flags 0x%x, hw psz %d\n", 6133 ilt_client->start, ilt_client->end, 6134 ilt_client->page_size, 6135 ilt_client->flags, 6136 ilog2(ilt_client->page_size >> 12)); 6137 6138 /* QM */ 6139 if (QM_INIT(sc->qm_cid_count)) { 6140 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 6141 ilt_client->client_num = ILT_CLIENT_QM; 6142 ilt_client->page_size = QM_ILT_PAGE_SZ; 6143 ilt_client->flags = 0; 6144 ilt_client->start = line; 6145 6146 /* 4 bytes for each cid */ 6147 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 6148 QM_ILT_PAGE_SZ); 6149 6150 ilt_client->end = (line - 1); 6151 6152 BLOGD(sc, DBG_LOAD, 6153 "ilt client[QM]: start %d, end %d, " 6154 "psz 0x%x, flags 0x%x, hw psz %d\n", 6155 ilt_client->start, ilt_client->end, 6156 ilt_client->page_size, ilt_client->flags, 6157 ilog2(ilt_client->page_size >> 12)); 6158 } 6159 6160 if (CNIC_SUPPORT(sc)) { 6161 /* SRC */ 6162 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 6163 ilt_client->client_num = ILT_CLIENT_SRC; 6164 ilt_client->page_size = SRC_ILT_PAGE_SZ; 6165 ilt_client->flags = 0; 6166 ilt_client->start = line; 6167 line += SRC_ILT_LINES; 6168 ilt_client->end = (line - 1); 6169 6170 BLOGD(sc, DBG_LOAD, 6171 "ilt client[SRC]: start %d, end %d, " 6172 "psz 0x%x, flags 0x%x, hw psz %d\n", 6173 ilt_client->start, ilt_client->end, 6174 ilt_client->page_size, ilt_client->flags, 6175 ilog2(ilt_client->page_size >> 12)); 6176 6177 /* TM */ 6178 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 6179 ilt_client->client_num = ILT_CLIENT_TM; 6180 ilt_client->page_size = TM_ILT_PAGE_SZ; 6181 ilt_client->flags = 0; 6182 ilt_client->start = line; 6183 line += TM_ILT_LINES; 6184 ilt_client->end = (line - 1); 6185 6186 BLOGD(sc, DBG_LOAD, 6187 "ilt client[TM]: start %d, end %d, " 6188 "psz 0x%x, flags 0x%x, hw psz %d\n", 6189 ilt_client->start, ilt_client->end, 6190 ilt_client->page_size, ilt_client->flags, 6191 ilog2(ilt_client->page_size >> 12)); 6192 } 6193 6194 KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!")); 6195 } 6196 6197 static void 6198 bxe_set_fp_rx_buf_size(struct bxe_softc *sc) 6199 { 6200 int i; 6201 6202 BLOGD(sc, DBG_LOAD, "mtu = %d\n", sc->mtu); 6203 6204 for (i = 0; i < sc->num_queues; i++) { 6205 /* get the Rx buffer size for RX frames */ 6206 sc->fp[i].rx_buf_size = 6207 (IP_HEADER_ALIGNMENT_PADDING + 6208 ETH_OVERHEAD + 6209 sc->mtu); 6210 6211 BLOGD(sc, DBG_LOAD, "rx_buf_size for fp[%02d] = %d\n", 6212 i, sc->fp[i].rx_buf_size); 6213 6214 /* get the mbuf allocation size for RX frames */ 6215 if (sc->fp[i].rx_buf_size <= MCLBYTES) { 6216 sc->fp[i].mbuf_alloc_size = MCLBYTES; 6217 } else if (sc->fp[i].rx_buf_size <= BCM_PAGE_SIZE) { 6218 sc->fp[i].mbuf_alloc_size = PAGE_SIZE; 6219 } else { 6220 sc->fp[i].mbuf_alloc_size = MJUM9BYTES; 6221 } 6222 6223 BLOGD(sc, DBG_LOAD, "mbuf_alloc_size for fp[%02d] = %d\n", 6224 i, sc->fp[i].mbuf_alloc_size); 6225 } 6226 } 6227 6228 static int 6229 bxe_alloc_ilt_mem(struct bxe_softc *sc) 6230 { 6231 int rc = 0; 6232 6233 if ((sc->ilt = 6234 (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt), 6235 M_BXE_ILT, 6236 (M_NOWAIT | M_ZERO))) == NULL) { 6237 rc = 1; 6238 } 6239 6240 return (rc); 6241 } 6242 6243 static int 6244 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc) 6245 { 6246 int rc = 0; 6247 6248 if ((sc->ilt->lines = 6249 (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES), 6250 M_BXE_ILT, 6251 (M_NOWAIT | M_ZERO))) == NULL) { 6252 rc = 1; 6253 } 6254 6255 return (rc); 6256 } 6257 6258 static void 6259 bxe_free_ilt_mem(struct bxe_softc *sc) 6260 { 6261 if (sc->ilt != NULL) { 6262 free(sc->ilt, M_BXE_ILT); 6263 sc->ilt = NULL; 6264 } 6265 } 6266 6267 static void 6268 bxe_free_ilt_lines_mem(struct bxe_softc *sc) 6269 { 6270 if (sc->ilt->lines != NULL) { 6271 free(sc->ilt->lines, M_BXE_ILT); 6272 sc->ilt->lines = NULL; 6273 } 6274 } 6275 6276 static void 6277 bxe_free_mem(struct bxe_softc *sc) 6278 { 6279 int i; 6280 6281 #if 0 6282 if (!CONFIGURE_NIC_MODE(sc)) { 6283 /* free searcher T2 table */ 6284 bxe_dma_free(sc, &sc->t2); 6285 } 6286 #endif 6287 6288 for (i = 0; i < L2_ILT_LINES(sc); i++) { 6289 bxe_dma_free(sc, &sc->context[i].vcxt_dma); 6290 sc->context[i].vcxt = NULL; 6291 sc->context[i].size = 0; 6292 } 6293 6294 ecore_ilt_mem_op(sc, ILT_MEMOP_FREE); 6295 6296 bxe_free_ilt_lines_mem(sc); 6297 6298 #if 0 6299 bxe_iov_free_mem(sc); 6300 #endif 6301 } 6302 6303 static int 6304 bxe_alloc_mem(struct bxe_softc *sc) 6305 { 6306 int context_size; 6307 int allocated; 6308 int i; 6309 6310 #if 0 6311 if (!CONFIGURE_NIC_MODE(sc)) { 6312 /* allocate searcher T2 table */ 6313 if (bxe_dma_alloc(sc, SRC_T2_SZ, 6314 &sc->t2, "searcher t2 table") != 0) { 6315 return (-1); 6316 } 6317 } 6318 #endif 6319 6320 /* 6321 * Allocate memory for CDU context: 6322 * This memory is allocated separately and not in the generic ILT 6323 * functions because CDU differs in few aspects: 6324 * 1. There can be multiple entities allocating memory for context - 6325 * regular L2, CNIC, and SRIOV drivers. Each separately controls 6326 * its own ILT lines. 6327 * 2. Since CDU page-size is not a single 4KB page (which is the case 6328 * for the other ILT clients), to be efficient we want to support 6329 * allocation of sub-page-size in the last entry. 6330 * 3. Context pointers are used by the driver to pass to FW / update 6331 * the context (for the other ILT clients the pointers are used just to 6332 * free the memory during unload). 6333 */ 6334 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc)); 6335 for (i = 0, allocated = 0; allocated < context_size; i++) { 6336 sc->context[i].size = min(CDU_ILT_PAGE_SZ, 6337 (context_size - allocated)); 6338 6339 if (bxe_dma_alloc(sc, sc->context[i].size, 6340 &sc->context[i].vcxt_dma, 6341 "cdu context") != 0) { 6342 bxe_free_mem(sc); 6343 return (-1); 6344 } 6345 6346 sc->context[i].vcxt = 6347 (union cdu_context *)sc->context[i].vcxt_dma.vaddr; 6348 6349 allocated += sc->context[i].size; 6350 } 6351 6352 bxe_alloc_ilt_lines_mem(sc); 6353 6354 BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n", 6355 sc->ilt, sc->ilt->start_line, sc->ilt->lines); 6356 { 6357 for (i = 0; i < 4; i++) { 6358 BLOGD(sc, DBG_LOAD, 6359 "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n", 6360 i, 6361 sc->ilt->clients[i].page_size, 6362 sc->ilt->clients[i].start, 6363 sc->ilt->clients[i].end, 6364 sc->ilt->clients[i].client_num, 6365 sc->ilt->clients[i].flags); 6366 } 6367 } 6368 if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) { 6369 BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n"); 6370 bxe_free_mem(sc); 6371 return (-1); 6372 } 6373 6374 #if 0 6375 if (bxe_iov_alloc_mem(sc)) { 6376 BLOGE(sc, "Failed to allocate memory for SRIOV\n"); 6377 bxe_free_mem(sc); 6378 return (-1); 6379 } 6380 #endif 6381 6382 return (0); 6383 } 6384 6385 static void 6386 bxe_free_rx_bd_chain(struct bxe_fastpath *fp) 6387 { 6388 struct bxe_softc *sc; 6389 int i; 6390 6391 sc = fp->sc; 6392 6393 if (fp->rx_mbuf_tag == NULL) { 6394 return; 6395 } 6396 6397 /* free all mbufs and unload all maps */ 6398 for (i = 0; i < RX_BD_TOTAL; i++) { 6399 if (fp->rx_mbuf_chain[i].m_map != NULL) { 6400 bus_dmamap_sync(fp->rx_mbuf_tag, 6401 fp->rx_mbuf_chain[i].m_map, 6402 BUS_DMASYNC_POSTREAD); 6403 bus_dmamap_unload(fp->rx_mbuf_tag, 6404 fp->rx_mbuf_chain[i].m_map); 6405 } 6406 6407 if (fp->rx_mbuf_chain[i].m != NULL) { 6408 m_freem(fp->rx_mbuf_chain[i].m); 6409 fp->rx_mbuf_chain[i].m = NULL; 6410 fp->eth_q_stats.mbuf_alloc_rx--; 6411 } 6412 } 6413 } 6414 6415 static void 6416 bxe_free_tpa_pool(struct bxe_fastpath *fp) 6417 { 6418 struct bxe_softc *sc; 6419 int i, max_agg_queues; 6420 6421 sc = fp->sc; 6422 6423 if (fp->rx_mbuf_tag == NULL) { 6424 return; 6425 } 6426 6427 max_agg_queues = MAX_AGG_QS(sc); 6428 6429 /* release all mbufs and unload all DMA maps in the TPA pool */ 6430 for (i = 0; i < max_agg_queues; i++) { 6431 if (fp->rx_tpa_info[i].bd.m_map != NULL) { 6432 bus_dmamap_sync(fp->rx_mbuf_tag, 6433 fp->rx_tpa_info[i].bd.m_map, 6434 BUS_DMASYNC_POSTREAD); 6435 bus_dmamap_unload(fp->rx_mbuf_tag, 6436 fp->rx_tpa_info[i].bd.m_map); 6437 } 6438 6439 if (fp->rx_tpa_info[i].bd.m != NULL) { 6440 m_freem(fp->rx_tpa_info[i].bd.m); 6441 fp->rx_tpa_info[i].bd.m = NULL; 6442 fp->eth_q_stats.mbuf_alloc_tpa--; 6443 } 6444 } 6445 } 6446 6447 static void 6448 bxe_free_sge_chain(struct bxe_fastpath *fp) 6449 { 6450 struct bxe_softc *sc; 6451 int i; 6452 6453 sc = fp->sc; 6454 6455 if (fp->rx_sge_mbuf_tag == NULL) { 6456 return; 6457 } 6458 6459 /* rree all mbufs and unload all maps */ 6460 for (i = 0; i < RX_SGE_TOTAL; i++) { 6461 if (fp->rx_sge_mbuf_chain[i].m_map != NULL) { 6462 bus_dmamap_sync(fp->rx_sge_mbuf_tag, 6463 fp->rx_sge_mbuf_chain[i].m_map, 6464 BUS_DMASYNC_POSTREAD); 6465 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 6466 fp->rx_sge_mbuf_chain[i].m_map); 6467 } 6468 6469 if (fp->rx_sge_mbuf_chain[i].m != NULL) { 6470 m_freem(fp->rx_sge_mbuf_chain[i].m); 6471 fp->rx_sge_mbuf_chain[i].m = NULL; 6472 fp->eth_q_stats.mbuf_alloc_sge--; 6473 } 6474 } 6475 } 6476 6477 static void 6478 bxe_free_fp_buffers(struct bxe_softc *sc) 6479 { 6480 struct bxe_fastpath *fp; 6481 int i; 6482 6483 for (i = 0; i < sc->num_queues; i++) { 6484 fp = &sc->fp[i]; 6485 6486 #if __FreeBSD_version >= 800000 6487 if (fp->tx_br != NULL) { 6488 struct mbuf *m; 6489 /* just in case bxe_mq_flush() wasn't called */ 6490 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { 6491 m_freem(m); 6492 } 6493 buf_ring_free(fp->tx_br, M_DEVBUF); 6494 fp->tx_br = NULL; 6495 } 6496 #endif 6497 6498 /* free all RX buffers */ 6499 bxe_free_rx_bd_chain(fp); 6500 bxe_free_tpa_pool(fp); 6501 bxe_free_sge_chain(fp); 6502 6503 if (fp->eth_q_stats.mbuf_alloc_rx != 0) { 6504 BLOGE(sc, "failed to claim all rx mbufs (%d left)\n", 6505 fp->eth_q_stats.mbuf_alloc_rx); 6506 } 6507 6508 if (fp->eth_q_stats.mbuf_alloc_sge != 0) { 6509 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6510 fp->eth_q_stats.mbuf_alloc_sge); 6511 } 6512 6513 if (fp->eth_q_stats.mbuf_alloc_tpa != 0) { 6514 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6515 fp->eth_q_stats.mbuf_alloc_tpa); 6516 } 6517 6518 if (fp->eth_q_stats.mbuf_alloc_tx != 0) { 6519 BLOGE(sc, "failed to release tx mbufs (%d left)\n", 6520 fp->eth_q_stats.mbuf_alloc_tx); 6521 } 6522 6523 /* XXX verify all mbufs were reclaimed */ 6524 6525 if (mtx_initialized(&fp->tx_mtx)) { 6526 mtx_destroy(&fp->tx_mtx); 6527 } 6528 6529 if (mtx_initialized(&fp->rx_mtx)) { 6530 mtx_destroy(&fp->rx_mtx); 6531 } 6532 } 6533 } 6534 6535 static int 6536 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 6537 uint16_t prev_index, 6538 uint16_t index) 6539 { 6540 struct bxe_sw_rx_bd *rx_buf; 6541 struct eth_rx_bd *rx_bd; 6542 bus_dma_segment_t segs[1]; 6543 bus_dmamap_t map; 6544 struct mbuf *m; 6545 int nsegs, rc; 6546 6547 rc = 0; 6548 6549 /* allocate the new RX BD mbuf */ 6550 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6551 if (__predict_false(m == NULL)) { 6552 fp->eth_q_stats.mbuf_rx_bd_alloc_failed++; 6553 return (ENOBUFS); 6554 } 6555 6556 fp->eth_q_stats.mbuf_alloc_rx++; 6557 6558 /* initialize the mbuf buffer length */ 6559 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6560 6561 /* map the mbuf into non-paged pool */ 6562 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6563 fp->rx_mbuf_spare_map, 6564 m, segs, &nsegs, BUS_DMA_NOWAIT); 6565 if (__predict_false(rc != 0)) { 6566 fp->eth_q_stats.mbuf_rx_bd_mapping_failed++; 6567 m_freem(m); 6568 fp->eth_q_stats.mbuf_alloc_rx--; 6569 return (rc); 6570 } 6571 6572 /* all mbufs must map to a single segment */ 6573 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6574 6575 /* release any existing RX BD mbuf mappings */ 6576 6577 if (prev_index != index) { 6578 rx_buf = &fp->rx_mbuf_chain[prev_index]; 6579 6580 if (rx_buf->m_map != NULL) { 6581 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6582 BUS_DMASYNC_POSTREAD); 6583 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6584 } 6585 6586 /* 6587 * We only get here from bxe_rxeof() when the maximum number 6588 * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already 6589 * holds the mbuf in the prev_index so it's OK to NULL it out 6590 * here without concern of a memory leak. 6591 */ 6592 fp->rx_mbuf_chain[prev_index].m = NULL; 6593 } 6594 6595 rx_buf = &fp->rx_mbuf_chain[index]; 6596 6597 if (rx_buf->m_map != NULL) { 6598 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6599 BUS_DMASYNC_POSTREAD); 6600 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6601 } 6602 6603 /* save the mbuf and mapping info for a future packet */ 6604 map = (prev_index != index) ? 6605 fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map; 6606 rx_buf->m_map = fp->rx_mbuf_spare_map; 6607 fp->rx_mbuf_spare_map = map; 6608 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6609 BUS_DMASYNC_PREREAD); 6610 rx_buf->m = m; 6611 6612 rx_bd = &fp->rx_chain[index]; 6613 rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6614 rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6615 6616 return (rc); 6617 } 6618 6619 static int 6620 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 6621 int queue) 6622 { 6623 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 6624 bus_dma_segment_t segs[1]; 6625 bus_dmamap_t map; 6626 struct mbuf *m; 6627 int nsegs; 6628 int rc = 0; 6629 6630 /* allocate the new TPA mbuf */ 6631 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6632 if (__predict_false(m == NULL)) { 6633 fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++; 6634 return (ENOBUFS); 6635 } 6636 6637 fp->eth_q_stats.mbuf_alloc_tpa++; 6638 6639 /* initialize the mbuf buffer length */ 6640 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6641 6642 /* map the mbuf into non-paged pool */ 6643 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6644 fp->rx_tpa_info_mbuf_spare_map, 6645 m, segs, &nsegs, BUS_DMA_NOWAIT); 6646 if (__predict_false(rc != 0)) { 6647 fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++; 6648 m_free(m); 6649 fp->eth_q_stats.mbuf_alloc_tpa--; 6650 return (rc); 6651 } 6652 6653 /* all mbufs must map to a single segment */ 6654 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6655 6656 /* release any existing TPA mbuf mapping */ 6657 if (tpa_info->bd.m_map != NULL) { 6658 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6659 BUS_DMASYNC_POSTREAD); 6660 bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map); 6661 } 6662 6663 /* save the mbuf and mapping info for the TPA mbuf */ 6664 map = tpa_info->bd.m_map; 6665 tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map; 6666 fp->rx_tpa_info_mbuf_spare_map = map; 6667 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6668 BUS_DMASYNC_PREREAD); 6669 tpa_info->bd.m = m; 6670 tpa_info->seg = segs[0]; 6671 6672 return (rc); 6673 } 6674 6675 /* 6676 * Allocate an mbuf and assign it to the receive scatter gather chain. The 6677 * caller must take care to save a copy of the existing mbuf in the SG mbuf 6678 * chain. 6679 */ 6680 static int 6681 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 6682 uint16_t index) 6683 { 6684 struct bxe_sw_rx_bd *sge_buf; 6685 struct eth_rx_sge *sge; 6686 bus_dma_segment_t segs[1]; 6687 bus_dmamap_t map; 6688 struct mbuf *m; 6689 int nsegs; 6690 int rc = 0; 6691 6692 /* allocate a new SGE mbuf */ 6693 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE); 6694 if (__predict_false(m == NULL)) { 6695 fp->eth_q_stats.mbuf_rx_sge_alloc_failed++; 6696 return (ENOMEM); 6697 } 6698 6699 fp->eth_q_stats.mbuf_alloc_sge++; 6700 6701 /* initialize the mbuf buffer length */ 6702 m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE; 6703 6704 /* map the SGE mbuf into non-paged pool */ 6705 rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag, 6706 fp->rx_sge_mbuf_spare_map, 6707 m, segs, &nsegs, BUS_DMA_NOWAIT); 6708 if (__predict_false(rc != 0)) { 6709 fp->eth_q_stats.mbuf_rx_sge_mapping_failed++; 6710 m_freem(m); 6711 fp->eth_q_stats.mbuf_alloc_sge--; 6712 return (rc); 6713 } 6714 6715 /* all mbufs must map to a single segment */ 6716 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6717 6718 sge_buf = &fp->rx_sge_mbuf_chain[index]; 6719 6720 /* release any existing SGE mbuf mapping */ 6721 if (sge_buf->m_map != NULL) { 6722 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6723 BUS_DMASYNC_POSTREAD); 6724 bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map); 6725 } 6726 6727 /* save the mbuf and mapping info for a future packet */ 6728 map = sge_buf->m_map; 6729 sge_buf->m_map = fp->rx_sge_mbuf_spare_map; 6730 fp->rx_sge_mbuf_spare_map = map; 6731 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6732 BUS_DMASYNC_PREREAD); 6733 sge_buf->m = m; 6734 6735 sge = &fp->rx_sge_chain[index]; 6736 sge->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6737 sge->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6738 6739 return (rc); 6740 } 6741 6742 static __noinline int 6743 bxe_alloc_fp_buffers(struct bxe_softc *sc) 6744 { 6745 struct bxe_fastpath *fp; 6746 int i, j, rc = 0; 6747 int ring_prod, cqe_ring_prod; 6748 int max_agg_queues; 6749 6750 for (i = 0; i < sc->num_queues; i++) { 6751 fp = &sc->fp[i]; 6752 6753 #if __FreeBSD_version >= 800000 6754 fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF, 6755 M_DONTWAIT, &fp->tx_mtx); 6756 if (fp->tx_br == NULL) { 6757 BLOGE(sc, "buf_ring alloc fail for fp[%02d]\n", i); 6758 goto bxe_alloc_fp_buffers_error; 6759 } 6760 #endif 6761 6762 ring_prod = cqe_ring_prod = 0; 6763 fp->rx_bd_cons = 0; 6764 fp->rx_cq_cons = 0; 6765 6766 /* allocate buffers for the RX BDs in RX BD chain */ 6767 for (j = 0; j < sc->max_rx_bufs; j++) { 6768 rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod); 6769 if (rc != 0) { 6770 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 6771 i, rc); 6772 goto bxe_alloc_fp_buffers_error; 6773 } 6774 6775 ring_prod = RX_BD_NEXT(ring_prod); 6776 cqe_ring_prod = RCQ_NEXT(cqe_ring_prod); 6777 } 6778 6779 fp->rx_bd_prod = ring_prod; 6780 fp->rx_cq_prod = cqe_ring_prod; 6781 fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0; 6782 6783 if (sc->ifnet->if_capenable & IFCAP_LRO) { 6784 max_agg_queues = MAX_AGG_QS(sc); 6785 6786 fp->tpa_enable = TRUE; 6787 6788 /* fill the TPA pool */ 6789 for (j = 0; j < max_agg_queues; j++) { 6790 rc = bxe_alloc_rx_tpa_mbuf(fp, j); 6791 if (rc != 0) { 6792 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n", 6793 i, j); 6794 fp->tpa_enable = FALSE; 6795 goto bxe_alloc_fp_buffers_error; 6796 } 6797 6798 fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP; 6799 } 6800 6801 if (fp->tpa_enable) { 6802 /* fill the RX SGE chain */ 6803 ring_prod = 0; 6804 for (j = 0; j < RX_SGE_USABLE; j++) { 6805 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod); 6806 if (rc != 0) { 6807 BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n", 6808 i, ring_prod); 6809 fp->tpa_enable = FALSE; 6810 ring_prod = 0; 6811 goto bxe_alloc_fp_buffers_error; 6812 } 6813 6814 ring_prod = RX_SGE_NEXT(ring_prod); 6815 } 6816 6817 fp->rx_sge_prod = ring_prod; 6818 } 6819 } 6820 } 6821 6822 return (0); 6823 6824 bxe_alloc_fp_buffers_error: 6825 6826 /* unwind what was already allocated */ 6827 bxe_free_rx_bd_chain(fp); 6828 bxe_free_tpa_pool(fp); 6829 bxe_free_sge_chain(fp); 6830 6831 return (ENOBUFS); 6832 } 6833 6834 static void 6835 bxe_free_fw_stats_mem(struct bxe_softc *sc) 6836 { 6837 bxe_dma_free(sc, &sc->fw_stats_dma); 6838 6839 sc->fw_stats_num = 0; 6840 6841 sc->fw_stats_req_size = 0; 6842 sc->fw_stats_req = NULL; 6843 sc->fw_stats_req_mapping = 0; 6844 6845 sc->fw_stats_data_size = 0; 6846 sc->fw_stats_data = NULL; 6847 sc->fw_stats_data_mapping = 0; 6848 } 6849 6850 static int 6851 bxe_alloc_fw_stats_mem(struct bxe_softc *sc) 6852 { 6853 uint8_t num_queue_stats; 6854 int num_groups; 6855 6856 /* number of queues for statistics is number of eth queues */ 6857 num_queue_stats = BXE_NUM_ETH_QUEUES(sc); 6858 6859 /* 6860 * Total number of FW statistics requests = 6861 * 1 for port stats + 1 for PF stats + num of queues 6862 */ 6863 sc->fw_stats_num = (2 + num_queue_stats); 6864 6865 /* 6866 * Request is built from stats_query_header and an array of 6867 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT 6868 * rules. The real number or requests is configured in the 6869 * stats_query_header. 6870 */ 6871 num_groups = 6872 ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) + 6873 ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0)); 6874 6875 BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n", 6876 sc->fw_stats_num, num_groups); 6877 6878 sc->fw_stats_req_size = 6879 (sizeof(struct stats_query_header) + 6880 (num_groups * sizeof(struct stats_query_cmd_group))); 6881 6882 /* 6883 * Data for statistics requests + stats_counter. 6884 * stats_counter holds per-STORM counters that are incremented when 6885 * STORM has finished with the current request. Memory for FCoE 6886 * offloaded statistics are counted anyway, even if they will not be sent. 6887 * VF stats are not accounted for here as the data of VF stats is stored 6888 * in memory allocated by the VF, not here. 6889 */ 6890 sc->fw_stats_data_size = 6891 (sizeof(struct stats_counter) + 6892 sizeof(struct per_port_stats) + 6893 sizeof(struct per_pf_stats) + 6894 /* sizeof(struct fcoe_statistics_params) + */ 6895 (sizeof(struct per_queue_stats) * num_queue_stats)); 6896 6897 if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size), 6898 &sc->fw_stats_dma, "fw stats") != 0) { 6899 bxe_free_fw_stats_mem(sc); 6900 return (-1); 6901 } 6902 6903 /* set up the shortcuts */ 6904 6905 sc->fw_stats_req = 6906 (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr; 6907 sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr; 6908 6909 sc->fw_stats_data = 6910 (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr + 6911 sc->fw_stats_req_size); 6912 sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr + 6913 sc->fw_stats_req_size); 6914 6915 BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n", 6916 (uintmax_t)sc->fw_stats_req_mapping); 6917 6918 BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n", 6919 (uintmax_t)sc->fw_stats_data_mapping); 6920 6921 return (0); 6922 } 6923 6924 /* 6925 * Bits map: 6926 * 0-7 - Engine0 load counter. 6927 * 8-15 - Engine1 load counter. 6928 * 16 - Engine0 RESET_IN_PROGRESS bit. 6929 * 17 - Engine1 RESET_IN_PROGRESS bit. 6930 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active 6931 * function on the engine 6932 * 19 - Engine1 ONE_IS_LOADED. 6933 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 6934 * leader to complete (check for both RESET_IN_PROGRESS bits and not 6935 * for just the one belonging to its engine). 6936 */ 6937 #define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 6938 #define BXE_PATH0_LOAD_CNT_MASK 0x000000ff 6939 #define BXE_PATH0_LOAD_CNT_SHIFT 0 6940 #define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00 6941 #define BXE_PATH1_LOAD_CNT_SHIFT 8 6942 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000 6943 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000 6944 #define BXE_GLOBAL_RESET_BIT 0x00040000 6945 6946 /* set the GLOBAL_RESET bit, should be run under rtnl lock */ 6947 static void 6948 bxe_set_reset_global(struct bxe_softc *sc) 6949 { 6950 uint32_t val; 6951 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6952 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6953 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT); 6954 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6955 } 6956 6957 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */ 6958 static void 6959 bxe_clear_reset_global(struct bxe_softc *sc) 6960 { 6961 uint32_t val; 6962 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6963 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6964 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT)); 6965 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6966 } 6967 6968 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */ 6969 static uint8_t 6970 bxe_reset_is_global(struct bxe_softc *sc) 6971 { 6972 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6973 BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val); 6974 return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE; 6975 } 6976 6977 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */ 6978 static void 6979 bxe_set_reset_done(struct bxe_softc *sc) 6980 { 6981 uint32_t val; 6982 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6983 BXE_PATH0_RST_IN_PROG_BIT; 6984 6985 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6986 6987 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6988 /* Clear the bit */ 6989 val &= ~bit; 6990 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6991 6992 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6993 } 6994 6995 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */ 6996 static void 6997 bxe_set_reset_in_progress(struct bxe_softc *sc) 6998 { 6999 uint32_t val; 7000 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 7001 BXE_PATH0_RST_IN_PROG_BIT; 7002 7003 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7004 7005 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7006 /* Set the bit */ 7007 val |= bit; 7008 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 7009 7010 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7011 } 7012 7013 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */ 7014 static uint8_t 7015 bxe_reset_is_done(struct bxe_softc *sc, 7016 int engine) 7017 { 7018 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7019 uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT : 7020 BXE_PATH0_RST_IN_PROG_BIT; 7021 7022 /* return false if bit is set */ 7023 return (val & bit) ? FALSE : TRUE; 7024 } 7025 7026 /* get the load status for an engine, should be run under rtnl lock */ 7027 static uint8_t 7028 bxe_get_load_status(struct bxe_softc *sc, 7029 int engine) 7030 { 7031 uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK : 7032 BXE_PATH0_LOAD_CNT_MASK; 7033 uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT : 7034 BXE_PATH0_LOAD_CNT_SHIFT; 7035 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7036 7037 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 7038 7039 val = ((val & mask) >> shift); 7040 7041 BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val); 7042 7043 return (val != 0); 7044 } 7045 7046 /* set pf load mark */ 7047 /* XXX needs to be under rtnl lock */ 7048 static void 7049 bxe_set_pf_load(struct bxe_softc *sc) 7050 { 7051 uint32_t val; 7052 uint32_t val1; 7053 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 7054 BXE_PATH0_LOAD_CNT_MASK; 7055 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 7056 BXE_PATH0_LOAD_CNT_SHIFT; 7057 7058 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7059 7060 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7061 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 7062 7063 /* get the current counter value */ 7064 val1 = ((val & mask) >> shift); 7065 7066 /* set bit of this PF */ 7067 val1 |= (1 << SC_ABS_FUNC(sc)); 7068 7069 /* clear the old value */ 7070 val &= ~mask; 7071 7072 /* set the new one */ 7073 val |= ((val1 << shift) & mask); 7074 7075 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 7076 7077 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7078 } 7079 7080 /* clear pf load mark */ 7081 /* XXX needs to be under rtnl lock */ 7082 static uint8_t 7083 bxe_clear_pf_load(struct bxe_softc *sc) 7084 { 7085 uint32_t val1, val; 7086 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 7087 BXE_PATH0_LOAD_CNT_MASK; 7088 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 7089 BXE_PATH0_LOAD_CNT_SHIFT; 7090 7091 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7092 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7093 BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val); 7094 7095 /* get the current counter value */ 7096 val1 = (val & mask) >> shift; 7097 7098 /* clear bit of that PF */ 7099 val1 &= ~(1 << SC_ABS_FUNC(sc)); 7100 7101 /* clear the old value */ 7102 val &= ~mask; 7103 7104 /* set the new one */ 7105 val |= ((val1 << shift) & mask); 7106 7107 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 7108 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7109 return (val1 != 0); 7110 } 7111 7112 /* send load requrest to mcp and analyze response */ 7113 static int 7114 bxe_nic_load_request(struct bxe_softc *sc, 7115 uint32_t *load_code) 7116 { 7117 /* init fw_seq */ 7118 sc->fw_seq = 7119 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 7120 DRV_MSG_SEQ_NUMBER_MASK); 7121 7122 BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq); 7123 7124 /* get the current FW pulse sequence */ 7125 sc->fw_drv_pulse_wr_seq = 7126 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) & 7127 DRV_PULSE_SEQ_MASK); 7128 7129 BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n", 7130 sc->fw_drv_pulse_wr_seq); 7131 7132 /* load request */ 7133 (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 7134 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 7135 7136 /* if the MCP fails to respond we must abort */ 7137 if (!(*load_code)) { 7138 BLOGE(sc, "MCP response failure!\n"); 7139 return (-1); 7140 } 7141 7142 /* if MCP refused then must abort */ 7143 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 7144 BLOGE(sc, "MCP refused load request\n"); 7145 return (-1); 7146 } 7147 7148 return (0); 7149 } 7150 7151 /* 7152 * Check whether another PF has already loaded FW to chip. In virtualized 7153 * environments a pf from anoth VM may have already initialized the device 7154 * including loading FW. 7155 */ 7156 static int 7157 bxe_nic_load_analyze_req(struct bxe_softc *sc, 7158 uint32_t load_code) 7159 { 7160 uint32_t my_fw, loaded_fw; 7161 7162 /* is another pf loaded on this engine? */ 7163 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 7164 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 7165 /* build my FW version dword */ 7166 my_fw = (BCM_5710_FW_MAJOR_VERSION + 7167 (BCM_5710_FW_MINOR_VERSION << 8 ) + 7168 (BCM_5710_FW_REVISION_VERSION << 16) + 7169 (BCM_5710_FW_ENGINEERING_VERSION << 24)); 7170 7171 /* read loaded FW from chip */ 7172 loaded_fw = REG_RD(sc, XSEM_REG_PRAM); 7173 BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n", 7174 loaded_fw, my_fw); 7175 7176 /* abort nic load if version mismatch */ 7177 if (my_fw != loaded_fw) { 7178 BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)", 7179 loaded_fw, my_fw); 7180 return (-1); 7181 } 7182 } 7183 7184 return (0); 7185 } 7186 7187 /* mark PMF if applicable */ 7188 static void 7189 bxe_nic_load_pmf(struct bxe_softc *sc, 7190 uint32_t load_code) 7191 { 7192 uint32_t ncsi_oem_data_addr; 7193 7194 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 7195 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 7196 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 7197 /* 7198 * Barrier here for ordering between the writing to sc->port.pmf here 7199 * and reading it from the periodic task. 7200 */ 7201 sc->port.pmf = 1; 7202 mb(); 7203 } else { 7204 sc->port.pmf = 0; 7205 } 7206 7207 BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf); 7208 7209 /* XXX needed? */ 7210 if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) { 7211 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) { 7212 ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr); 7213 if (ncsi_oem_data_addr) { 7214 REG_WR(sc, 7215 (ncsi_oem_data_addr + 7216 offsetof(struct glob_ncsi_oem_data, driver_version)), 7217 0); 7218 } 7219 } 7220 } 7221 } 7222 7223 static void 7224 bxe_read_mf_cfg(struct bxe_softc *sc) 7225 { 7226 int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1); 7227 int abs_func; 7228 int vn; 7229 7230 if (BXE_NOMCP(sc)) { 7231 return; /* what should be the default bvalue in this case */ 7232 } 7233 7234 /* 7235 * The formula for computing the absolute function number is... 7236 * For 2 port configuration (4 functions per port): 7237 * abs_func = 2 * vn + SC_PORT + SC_PATH 7238 * For 4 port configuration (2 functions per port): 7239 * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH 7240 */ 7241 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 7242 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc)); 7243 if (abs_func >= E1H_FUNC_MAX) { 7244 break; 7245 } 7246 sc->devinfo.mf_info.mf_config[vn] = 7247 MFCFG_RD(sc, func_mf_config[abs_func].config); 7248 } 7249 7250 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & 7251 FUNC_MF_CFG_FUNC_DISABLED) { 7252 BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n"); 7253 sc->flags |= BXE_MF_FUNC_DIS; 7254 } else { 7255 BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n"); 7256 sc->flags &= ~BXE_MF_FUNC_DIS; 7257 } 7258 } 7259 7260 /* acquire split MCP access lock register */ 7261 static int bxe_acquire_alr(struct bxe_softc *sc) 7262 { 7263 uint32_t j, val; 7264 7265 for (j = 0; j < 1000; j++) { 7266 val = (1UL << 31); 7267 REG_WR(sc, GRCBASE_MCP + 0x9c, val); 7268 val = REG_RD(sc, GRCBASE_MCP + 0x9c); 7269 if (val & (1L << 31)) 7270 break; 7271 7272 DELAY(5000); 7273 } 7274 7275 if (!(val & (1L << 31))) { 7276 BLOGE(sc, "Cannot acquire MCP access lock register\n"); 7277 return (-1); 7278 } 7279 7280 return (0); 7281 } 7282 7283 /* release split MCP access lock register */ 7284 static void bxe_release_alr(struct bxe_softc *sc) 7285 { 7286 REG_WR(sc, GRCBASE_MCP + 0x9c, 0); 7287 } 7288 7289 static void 7290 bxe_fan_failure(struct bxe_softc *sc) 7291 { 7292 int port = SC_PORT(sc); 7293 uint32_t ext_phy_config; 7294 7295 /* mark the failure */ 7296 ext_phy_config = 7297 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 7298 7299 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 7300 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 7301 SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config, 7302 ext_phy_config); 7303 7304 /* log the failure */ 7305 BLOGW(sc, "Fan Failure has caused the driver to shutdown " 7306 "the card to prevent permanent damage. " 7307 "Please contact OEM Support for assistance\n"); 7308 7309 /* XXX */ 7310 #if 1 7311 bxe_panic(sc, ("Schedule task to handle fan failure\n")); 7312 #else 7313 /* 7314 * Schedule device reset (unload) 7315 * This is due to some boards consuming sufficient power when driver is 7316 * up to overheat if fan fails. 7317 */ 7318 bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state); 7319 schedule_delayed_work(&sc->sp_rtnl_task, 0); 7320 #endif 7321 } 7322 7323 /* this function is called upon a link interrupt */ 7324 static void 7325 bxe_link_attn(struct bxe_softc *sc) 7326 { 7327 uint32_t pause_enabled = 0; 7328 struct host_port_stats *pstats; 7329 int cmng_fns; 7330 7331 /* Make sure that we are synced with the current statistics */ 7332 bxe_stats_handle(sc, STATS_EVENT_STOP); 7333 7334 elink_link_update(&sc->link_params, &sc->link_vars); 7335 7336 if (sc->link_vars.link_up) { 7337 7338 /* dropless flow control */ 7339 if (!CHIP_IS_E1(sc) && sc->dropless_fc) { 7340 pause_enabled = 0; 7341 7342 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 7343 pause_enabled = 1; 7344 } 7345 7346 REG_WR(sc, 7347 (BAR_USTRORM_INTMEM + 7348 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))), 7349 pause_enabled); 7350 } 7351 7352 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) { 7353 pstats = BXE_SP(sc, port_stats); 7354 /* reset old mac stats */ 7355 memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx)); 7356 } 7357 7358 if (sc->state == BXE_STATE_OPEN) { 7359 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 7360 } 7361 } 7362 7363 if (sc->link_vars.link_up && sc->link_vars.line_speed) { 7364 cmng_fns = bxe_get_cmng_fns_mode(sc); 7365 7366 if (cmng_fns != CMNG_FNS_NONE) { 7367 bxe_cmng_fns_init(sc, FALSE, cmng_fns); 7368 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7369 } else { 7370 /* rate shaping and fairness are disabled */ 7371 BLOGD(sc, DBG_LOAD, "single function mode without fairness\n"); 7372 } 7373 } 7374 7375 bxe_link_report_locked(sc); 7376 7377 if (IS_MF(sc)) { 7378 ; // XXX bxe_link_sync_notify(sc); 7379 } 7380 } 7381 7382 static void 7383 bxe_attn_int_asserted(struct bxe_softc *sc, 7384 uint32_t asserted) 7385 { 7386 int port = SC_PORT(sc); 7387 uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 7388 MISC_REG_AEU_MASK_ATTN_FUNC_0; 7389 uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 7390 NIG_REG_MASK_INTERRUPT_PORT0; 7391 uint32_t aeu_mask; 7392 uint32_t nig_mask = 0; 7393 uint32_t reg_addr; 7394 uint32_t igu_acked; 7395 uint32_t cnt; 7396 7397 if (sc->attn_state & asserted) { 7398 BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted); 7399 } 7400 7401 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7402 7403 aeu_mask = REG_RD(sc, aeu_addr); 7404 7405 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n", 7406 aeu_mask, asserted); 7407 7408 aeu_mask &= ~(asserted & 0x3ff); 7409 7410 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 7411 7412 REG_WR(sc, aeu_addr, aeu_mask); 7413 7414 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7415 7416 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 7417 sc->attn_state |= asserted; 7418 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 7419 7420 if (asserted & ATTN_HARD_WIRED_MASK) { 7421 if (asserted & ATTN_NIG_FOR_FUNC) { 7422 7423 BXE_PHY_LOCK(sc); 7424 7425 /* save nig interrupt mask */ 7426 nig_mask = REG_RD(sc, nig_int_mask_addr); 7427 7428 /* If nig_mask is not set, no need to call the update function */ 7429 if (nig_mask) { 7430 REG_WR(sc, nig_int_mask_addr, 0); 7431 7432 bxe_link_attn(sc); 7433 } 7434 7435 /* handle unicore attn? */ 7436 } 7437 7438 if (asserted & ATTN_SW_TIMER_4_FUNC) { 7439 BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n"); 7440 } 7441 7442 if (asserted & GPIO_2_FUNC) { 7443 BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n"); 7444 } 7445 7446 if (asserted & GPIO_3_FUNC) { 7447 BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n"); 7448 } 7449 7450 if (asserted & GPIO_4_FUNC) { 7451 BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n"); 7452 } 7453 7454 if (port == 0) { 7455 if (asserted & ATTN_GENERAL_ATTN_1) { 7456 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n"); 7457 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 7458 } 7459 if (asserted & ATTN_GENERAL_ATTN_2) { 7460 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n"); 7461 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 7462 } 7463 if (asserted & ATTN_GENERAL_ATTN_3) { 7464 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n"); 7465 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 7466 } 7467 } else { 7468 if (asserted & ATTN_GENERAL_ATTN_4) { 7469 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n"); 7470 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 7471 } 7472 if (asserted & ATTN_GENERAL_ATTN_5) { 7473 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n"); 7474 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 7475 } 7476 if (asserted & ATTN_GENERAL_ATTN_6) { 7477 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n"); 7478 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 7479 } 7480 } 7481 } /* hardwired */ 7482 7483 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7484 reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET); 7485 } else { 7486 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 7487 } 7488 7489 BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n", 7490 asserted, 7491 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 7492 REG_WR(sc, reg_addr, asserted); 7493 7494 /* now set back the mask */ 7495 if (asserted & ATTN_NIG_FOR_FUNC) { 7496 /* 7497 * Verify that IGU ack through BAR was written before restoring 7498 * NIG mask. This loop should exit after 2-3 iterations max. 7499 */ 7500 if (sc->devinfo.int_block != INT_BLOCK_HC) { 7501 cnt = 0; 7502 7503 do { 7504 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS); 7505 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 7506 (++cnt < MAX_IGU_ATTN_ACK_TO)); 7507 7508 if (!igu_acked) { 7509 BLOGE(sc, "Failed to verify IGU ack on time\n"); 7510 } 7511 7512 mb(); 7513 } 7514 7515 REG_WR(sc, nig_int_mask_addr, nig_mask); 7516 7517 BXE_PHY_UNLOCK(sc); 7518 } 7519 } 7520 7521 static void 7522 bxe_print_next_block(struct bxe_softc *sc, 7523 int idx, 7524 const char *blk) 7525 { 7526 BLOGI(sc, "%s%s", idx ? ", " : "", blk); 7527 } 7528 7529 static int 7530 bxe_check_blocks_with_parity0(struct bxe_softc *sc, 7531 uint32_t sig, 7532 int par_num, 7533 uint8_t print) 7534 { 7535 uint32_t cur_bit = 0; 7536 int i = 0; 7537 7538 for (i = 0; sig; i++) { 7539 cur_bit = ((uint32_t)0x1 << i); 7540 if (sig & cur_bit) { 7541 switch (cur_bit) { 7542 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 7543 if (print) 7544 bxe_print_next_block(sc, par_num++, "BRB"); 7545 break; 7546 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 7547 if (print) 7548 bxe_print_next_block(sc, par_num++, "PARSER"); 7549 break; 7550 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 7551 if (print) 7552 bxe_print_next_block(sc, par_num++, "TSDM"); 7553 break; 7554 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 7555 if (print) 7556 bxe_print_next_block(sc, par_num++, "SEARCHER"); 7557 break; 7558 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 7559 if (print) 7560 bxe_print_next_block(sc, par_num++, "TCM"); 7561 break; 7562 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 7563 if (print) 7564 bxe_print_next_block(sc, par_num++, "TSEMI"); 7565 break; 7566 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 7567 if (print) 7568 bxe_print_next_block(sc, par_num++, "XPB"); 7569 break; 7570 } 7571 7572 /* Clear the bit */ 7573 sig &= ~cur_bit; 7574 } 7575 } 7576 7577 return (par_num); 7578 } 7579 7580 static int 7581 bxe_check_blocks_with_parity1(struct bxe_softc *sc, 7582 uint32_t sig, 7583 int par_num, 7584 uint8_t *global, 7585 uint8_t print) 7586 { 7587 int i = 0; 7588 uint32_t cur_bit = 0; 7589 for (i = 0; sig; i++) { 7590 cur_bit = ((uint32_t)0x1 << i); 7591 if (sig & cur_bit) { 7592 switch (cur_bit) { 7593 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 7594 if (print) 7595 bxe_print_next_block(sc, par_num++, "PBF"); 7596 break; 7597 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 7598 if (print) 7599 bxe_print_next_block(sc, par_num++, "QM"); 7600 break; 7601 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 7602 if (print) 7603 bxe_print_next_block(sc, par_num++, "TM"); 7604 break; 7605 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 7606 if (print) 7607 bxe_print_next_block(sc, par_num++, "XSDM"); 7608 break; 7609 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 7610 if (print) 7611 bxe_print_next_block(sc, par_num++, "XCM"); 7612 break; 7613 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 7614 if (print) 7615 bxe_print_next_block(sc, par_num++, "XSEMI"); 7616 break; 7617 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 7618 if (print) 7619 bxe_print_next_block(sc, par_num++, "DOORBELLQ"); 7620 break; 7621 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 7622 if (print) 7623 bxe_print_next_block(sc, par_num++, "NIG"); 7624 break; 7625 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 7626 if (print) 7627 bxe_print_next_block(sc, par_num++, "VAUX PCI CORE"); 7628 *global = TRUE; 7629 break; 7630 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 7631 if (print) 7632 bxe_print_next_block(sc, par_num++, "DEBUG"); 7633 break; 7634 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 7635 if (print) 7636 bxe_print_next_block(sc, par_num++, "USDM"); 7637 break; 7638 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 7639 if (print) 7640 bxe_print_next_block(sc, par_num++, "UCM"); 7641 break; 7642 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 7643 if (print) 7644 bxe_print_next_block(sc, par_num++, "USEMI"); 7645 break; 7646 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 7647 if (print) 7648 bxe_print_next_block(sc, par_num++, "UPB"); 7649 break; 7650 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 7651 if (print) 7652 bxe_print_next_block(sc, par_num++, "CSDM"); 7653 break; 7654 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 7655 if (print) 7656 bxe_print_next_block(sc, par_num++, "CCM"); 7657 break; 7658 } 7659 7660 /* Clear the bit */ 7661 sig &= ~cur_bit; 7662 } 7663 } 7664 7665 return (par_num); 7666 } 7667 7668 static int 7669 bxe_check_blocks_with_parity2(struct bxe_softc *sc, 7670 uint32_t sig, 7671 int par_num, 7672 uint8_t print) 7673 { 7674 uint32_t cur_bit = 0; 7675 int i = 0; 7676 7677 for (i = 0; sig; i++) { 7678 cur_bit = ((uint32_t)0x1 << i); 7679 if (sig & cur_bit) { 7680 switch (cur_bit) { 7681 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 7682 if (print) 7683 bxe_print_next_block(sc, par_num++, "CSEMI"); 7684 break; 7685 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 7686 if (print) 7687 bxe_print_next_block(sc, par_num++, "PXP"); 7688 break; 7689 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 7690 if (print) 7691 bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT"); 7692 break; 7693 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 7694 if (print) 7695 bxe_print_next_block(sc, par_num++, "CFC"); 7696 break; 7697 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 7698 if (print) 7699 bxe_print_next_block(sc, par_num++, "CDU"); 7700 break; 7701 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 7702 if (print) 7703 bxe_print_next_block(sc, par_num++, "DMAE"); 7704 break; 7705 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 7706 if (print) 7707 bxe_print_next_block(sc, par_num++, "IGU"); 7708 break; 7709 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 7710 if (print) 7711 bxe_print_next_block(sc, par_num++, "MISC"); 7712 break; 7713 } 7714 7715 /* Clear the bit */ 7716 sig &= ~cur_bit; 7717 } 7718 } 7719 7720 return (par_num); 7721 } 7722 7723 static int 7724 bxe_check_blocks_with_parity3(struct bxe_softc *sc, 7725 uint32_t sig, 7726 int par_num, 7727 uint8_t *global, 7728 uint8_t print) 7729 { 7730 uint32_t cur_bit = 0; 7731 int i = 0; 7732 7733 for (i = 0; sig; i++) { 7734 cur_bit = ((uint32_t)0x1 << i); 7735 if (sig & cur_bit) { 7736 switch (cur_bit) { 7737 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 7738 if (print) 7739 bxe_print_next_block(sc, par_num++, "MCP ROM"); 7740 *global = TRUE; 7741 break; 7742 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 7743 if (print) 7744 bxe_print_next_block(sc, par_num++, 7745 "MCP UMP RX"); 7746 *global = TRUE; 7747 break; 7748 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 7749 if (print) 7750 bxe_print_next_block(sc, par_num++, 7751 "MCP UMP TX"); 7752 *global = TRUE; 7753 break; 7754 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 7755 if (print) 7756 bxe_print_next_block(sc, par_num++, 7757 "MCP SCPAD"); 7758 *global = TRUE; 7759 break; 7760 } 7761 7762 /* Clear the bit */ 7763 sig &= ~cur_bit; 7764 } 7765 } 7766 7767 return (par_num); 7768 } 7769 7770 static int 7771 bxe_check_blocks_with_parity4(struct bxe_softc *sc, 7772 uint32_t sig, 7773 int par_num, 7774 uint8_t print) 7775 { 7776 uint32_t cur_bit = 0; 7777 int i = 0; 7778 7779 for (i = 0; sig; i++) { 7780 cur_bit = ((uint32_t)0x1 << i); 7781 if (sig & cur_bit) { 7782 switch (cur_bit) { 7783 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 7784 if (print) 7785 bxe_print_next_block(sc, par_num++, "PGLUE_B"); 7786 break; 7787 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 7788 if (print) 7789 bxe_print_next_block(sc, par_num++, "ATC"); 7790 break; 7791 } 7792 7793 /* Clear the bit */ 7794 sig &= ~cur_bit; 7795 } 7796 } 7797 7798 return (par_num); 7799 } 7800 7801 static uint8_t 7802 bxe_parity_attn(struct bxe_softc *sc, 7803 uint8_t *global, 7804 uint8_t print, 7805 uint32_t *sig) 7806 { 7807 int par_num = 0; 7808 7809 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 7810 (sig[1] & HW_PRTY_ASSERT_SET_1) || 7811 (sig[2] & HW_PRTY_ASSERT_SET_2) || 7812 (sig[3] & HW_PRTY_ASSERT_SET_3) || 7813 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 7814 BLOGE(sc, "Parity error: HW block parity attention:\n" 7815 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 7816 (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0), 7817 (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1), 7818 (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2), 7819 (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3), 7820 (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4)); 7821 7822 if (print) 7823 BLOGI(sc, "Parity errors detected in blocks: "); 7824 7825 par_num = 7826 bxe_check_blocks_with_parity0(sc, sig[0] & 7827 HW_PRTY_ASSERT_SET_0, 7828 par_num, print); 7829 par_num = 7830 bxe_check_blocks_with_parity1(sc, sig[1] & 7831 HW_PRTY_ASSERT_SET_1, 7832 par_num, global, print); 7833 par_num = 7834 bxe_check_blocks_with_parity2(sc, sig[2] & 7835 HW_PRTY_ASSERT_SET_2, 7836 par_num, print); 7837 par_num = 7838 bxe_check_blocks_with_parity3(sc, sig[3] & 7839 HW_PRTY_ASSERT_SET_3, 7840 par_num, global, print); 7841 par_num = 7842 bxe_check_blocks_with_parity4(sc, sig[4] & 7843 HW_PRTY_ASSERT_SET_4, 7844 par_num, print); 7845 7846 if (print) 7847 BLOGI(sc, "\n"); 7848 7849 return (TRUE); 7850 } 7851 7852 return (FALSE); 7853 } 7854 7855 static uint8_t 7856 bxe_chk_parity_attn(struct bxe_softc *sc, 7857 uint8_t *global, 7858 uint8_t print) 7859 { 7860 struct attn_route attn = { {0} }; 7861 int port = SC_PORT(sc); 7862 7863 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 7864 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 7865 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 7866 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 7867 7868 if (!CHIP_IS_E1x(sc)) 7869 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 7870 7871 return (bxe_parity_attn(sc, global, print, attn.sig)); 7872 } 7873 7874 static void 7875 bxe_attn_int_deasserted4(struct bxe_softc *sc, 7876 uint32_t attn) 7877 { 7878 uint32_t val; 7879 7880 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 7881 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 7882 BLOGE(sc, "PGLUE hw attention 0x%08x\n", val); 7883 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 7884 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 7885 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 7886 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 7887 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 7888 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 7889 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 7890 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 7891 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 7892 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 7893 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 7894 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 7895 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 7896 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 7897 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 7898 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 7899 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 7900 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 7901 } 7902 7903 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 7904 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR); 7905 BLOGE(sc, "ATC hw attention 0x%08x\n", val); 7906 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 7907 BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 7908 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 7909 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 7910 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 7911 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 7912 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 7913 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 7914 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 7915 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 7916 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 7917 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 7918 } 7919 7920 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7921 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 7922 BLOGE(sc, "FATAL parity attention set4 0x%08x\n", 7923 (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7924 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 7925 } 7926 } 7927 7928 static void 7929 bxe_e1h_disable(struct bxe_softc *sc) 7930 { 7931 int port = SC_PORT(sc); 7932 7933 bxe_tx_disable(sc); 7934 7935 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 7936 } 7937 7938 static void 7939 bxe_e1h_enable(struct bxe_softc *sc) 7940 { 7941 int port = SC_PORT(sc); 7942 7943 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 7944 7945 // XXX bxe_tx_enable(sc); 7946 } 7947 7948 /* 7949 * called due to MCP event (on pmf): 7950 * reread new bandwidth configuration 7951 * configure FW 7952 * notify others function about the change 7953 */ 7954 static void 7955 bxe_config_mf_bw(struct bxe_softc *sc) 7956 { 7957 if (sc->link_vars.link_up) { 7958 bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX); 7959 // XXX bxe_link_sync_notify(sc); 7960 } 7961 7962 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7963 } 7964 7965 static void 7966 bxe_set_mf_bw(struct bxe_softc *sc) 7967 { 7968 bxe_config_mf_bw(sc); 7969 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 7970 } 7971 7972 static void 7973 bxe_handle_eee_event(struct bxe_softc *sc) 7974 { 7975 BLOGD(sc, DBG_INTR, "EEE - LLDP event\n"); 7976 bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 7977 } 7978 7979 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 7980 7981 static void 7982 bxe_drv_info_ether_stat(struct bxe_softc *sc) 7983 { 7984 struct eth_stats_info *ether_stat = 7985 &sc->sp->drv_info_to_mcp.ether_stat; 7986 7987 strlcpy(ether_stat->version, BXE_DRIVER_VERSION, 7988 ETH_STAT_INFO_VERSION_LEN); 7989 7990 /* XXX (+ MAC_PAD) taken from other driver... verify this is right */ 7991 sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj, 7992 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 7993 ether_stat->mac_local + MAC_PAD, 7994 MAC_PAD, ETH_ALEN); 7995 7996 ether_stat->mtu_size = sc->mtu; 7997 7998 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 7999 if (sc->ifnet->if_capenable & (IFCAP_TSO4 | IFCAP_TSO6)) { 8000 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 8001 } 8002 8003 // XXX ether_stat->feature_flags |= ???; 8004 8005 ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0; 8006 8007 ether_stat->txq_size = sc->tx_ring_size; 8008 ether_stat->rxq_size = sc->rx_ring_size; 8009 } 8010 8011 static void 8012 bxe_handle_drv_info_req(struct bxe_softc *sc) 8013 { 8014 enum drv_info_opcode op_code; 8015 uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control); 8016 8017 /* if drv_info version supported by MFW doesn't match - send NACK */ 8018 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 8019 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 8020 return; 8021 } 8022 8023 op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 8024 DRV_INFO_CONTROL_OP_CODE_SHIFT); 8025 8026 memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp)); 8027 8028 switch (op_code) { 8029 case ETH_STATS_OPCODE: 8030 bxe_drv_info_ether_stat(sc); 8031 break; 8032 case FCOE_STATS_OPCODE: 8033 case ISCSI_STATS_OPCODE: 8034 default: 8035 /* if op code isn't supported - send NACK */ 8036 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 8037 return; 8038 } 8039 8040 /* 8041 * If we got drv_info attn from MFW then these fields are defined in 8042 * shmem2 for sure 8043 */ 8044 SHMEM2_WR(sc, drv_info_host_addr_lo, 8045 U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 8046 SHMEM2_WR(sc, drv_info_host_addr_hi, 8047 U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 8048 8049 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0); 8050 } 8051 8052 static void 8053 bxe_dcc_event(struct bxe_softc *sc, 8054 uint32_t dcc_event) 8055 { 8056 BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event); 8057 8058 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { 8059 /* 8060 * This is the only place besides the function initialization 8061 * where the sc->flags can change so it is done without any 8062 * locks 8063 */ 8064 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) { 8065 BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n"); 8066 sc->flags |= BXE_MF_FUNC_DIS; 8067 bxe_e1h_disable(sc); 8068 } else { 8069 BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n"); 8070 sc->flags &= ~BXE_MF_FUNC_DIS; 8071 bxe_e1h_enable(sc); 8072 } 8073 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; 8074 } 8075 8076 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { 8077 bxe_config_mf_bw(sc); 8078 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; 8079 } 8080 8081 /* Report results to MCP */ 8082 if (dcc_event) 8083 bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0); 8084 else 8085 bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0); 8086 } 8087 8088 static void 8089 bxe_pmf_update(struct bxe_softc *sc) 8090 { 8091 int port = SC_PORT(sc); 8092 uint32_t val; 8093 8094 sc->port.pmf = 1; 8095 BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf); 8096 8097 /* 8098 * We need the mb() to ensure the ordering between the writing to 8099 * sc->port.pmf here and reading it from the bxe_periodic_task(). 8100 */ 8101 mb(); 8102 8103 /* queue a periodic task */ 8104 // XXX schedule task... 8105 8106 // XXX bxe_dcbx_pmf_update(sc); 8107 8108 /* enable nig attention */ 8109 val = (0xff0f | (1 << (SC_VN(sc) + 4))); 8110 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8111 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val); 8112 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val); 8113 } else if (!CHIP_IS_E1x(sc)) { 8114 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 8115 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 8116 } 8117 8118 bxe_stats_handle(sc, STATS_EVENT_PMF); 8119 } 8120 8121 static int 8122 bxe_mc_assert(struct bxe_softc *sc) 8123 { 8124 char last_idx; 8125 int i, rc = 0; 8126 uint32_t row0, row1, row2, row3; 8127 8128 /* XSTORM */ 8129 last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET); 8130 if (last_idx) 8131 BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8132 8133 /* print the asserts */ 8134 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8135 8136 row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i)); 8137 row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4); 8138 row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8); 8139 row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12); 8140 8141 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8142 BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8143 i, row3, row2, row1, row0); 8144 rc++; 8145 } else { 8146 break; 8147 } 8148 } 8149 8150 /* TSTORM */ 8151 last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET); 8152 if (last_idx) { 8153 BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8154 } 8155 8156 /* print the asserts */ 8157 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8158 8159 row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i)); 8160 row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4); 8161 row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8); 8162 row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12); 8163 8164 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8165 BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8166 i, row3, row2, row1, row0); 8167 rc++; 8168 } else { 8169 break; 8170 } 8171 } 8172 8173 /* CSTORM */ 8174 last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET); 8175 if (last_idx) { 8176 BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8177 } 8178 8179 /* print the asserts */ 8180 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8181 8182 row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i)); 8183 row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4); 8184 row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8); 8185 row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12); 8186 8187 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8188 BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8189 i, row3, row2, row1, row0); 8190 rc++; 8191 } else { 8192 break; 8193 } 8194 } 8195 8196 /* USTORM */ 8197 last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET); 8198 if (last_idx) { 8199 BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8200 } 8201 8202 /* print the asserts */ 8203 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8204 8205 row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i)); 8206 row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4); 8207 row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8); 8208 row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12); 8209 8210 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8211 BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8212 i, row3, row2, row1, row0); 8213 rc++; 8214 } else { 8215 break; 8216 } 8217 } 8218 8219 return (rc); 8220 } 8221 8222 static void 8223 bxe_attn_int_deasserted3(struct bxe_softc *sc, 8224 uint32_t attn) 8225 { 8226 int func = SC_FUNC(sc); 8227 uint32_t val; 8228 8229 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 8230 8231 if (attn & BXE_PMF_LINK_ASSERT(sc)) { 8232 8233 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 8234 bxe_read_mf_cfg(sc); 8235 sc->devinfo.mf_info.mf_config[SC_VN(sc)] = 8236 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 8237 val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status); 8238 8239 if (val & DRV_STATUS_DCC_EVENT_MASK) 8240 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK)); 8241 8242 if (val & DRV_STATUS_SET_MF_BW) 8243 bxe_set_mf_bw(sc); 8244 8245 if (val & DRV_STATUS_DRV_INFO_REQ) 8246 bxe_handle_drv_info_req(sc); 8247 8248 #if 0 8249 if (val & DRV_STATUS_VF_DISABLED) 8250 bxe_vf_handle_flr_event(sc); 8251 #endif 8252 8253 if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF)) 8254 bxe_pmf_update(sc); 8255 8256 #if 0 8257 if (sc->port.pmf && 8258 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) && 8259 (sc->dcbx_enabled > 0)) 8260 /* start dcbx state machine */ 8261 bxe_dcbx_set_params(sc, BXE_DCBX_STATE_NEG_RECEIVED); 8262 #endif 8263 8264 #if 0 8265 if (val & DRV_STATUS_AFEX_EVENT_MASK) 8266 bxe_handle_afex_cmd(sc, val & DRV_STATUS_AFEX_EVENT_MASK); 8267 #endif 8268 8269 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 8270 bxe_handle_eee_event(sc); 8271 8272 if (sc->link_vars.periodic_flags & 8273 ELINK_PERIODIC_FLAGS_LINK_EVENT) { 8274 /* sync with link */ 8275 BXE_PHY_LOCK(sc); 8276 sc->link_vars.periodic_flags &= 8277 ~ELINK_PERIODIC_FLAGS_LINK_EVENT; 8278 BXE_PHY_UNLOCK(sc); 8279 if (IS_MF(sc)) 8280 ; // XXX bxe_link_sync_notify(sc); 8281 bxe_link_report(sc); 8282 } 8283 8284 /* 8285 * Always call it here: bxe_link_report() will 8286 * prevent the link indication duplication. 8287 */ 8288 bxe_link_status_update(sc); 8289 8290 } else if (attn & BXE_MC_ASSERT_BITS) { 8291 8292 BLOGE(sc, "MC assert!\n"); 8293 bxe_mc_assert(sc); 8294 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0); 8295 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0); 8296 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0); 8297 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0); 8298 bxe_panic(sc, ("MC assert!\n")); 8299 8300 } else if (attn & BXE_MCP_ASSERT) { 8301 8302 BLOGE(sc, "MCP assert!\n"); 8303 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0); 8304 // XXX bxe_fw_dump(sc); 8305 8306 } else { 8307 BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn); 8308 } 8309 } 8310 8311 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 8312 BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn); 8313 if (attn & BXE_GRC_TIMEOUT) { 8314 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN); 8315 BLOGE(sc, "GRC time-out 0x%08x\n", val); 8316 } 8317 if (attn & BXE_GRC_RSV) { 8318 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN); 8319 BLOGE(sc, "GRC reserved 0x%08x\n", val); 8320 } 8321 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 8322 } 8323 } 8324 8325 static void 8326 bxe_attn_int_deasserted2(struct bxe_softc *sc, 8327 uint32_t attn) 8328 { 8329 int port = SC_PORT(sc); 8330 int reg_offset; 8331 uint32_t val0, mask0, val1, mask1; 8332 uint32_t val; 8333 8334 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 8335 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR); 8336 BLOGE(sc, "CFC hw attention 0x%08x\n", val); 8337 /* CFC error attention */ 8338 if (val & 0x2) { 8339 BLOGE(sc, "FATAL error from CFC\n"); 8340 } 8341 } 8342 8343 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 8344 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0); 8345 BLOGE(sc, "PXP hw attention-0 0x%08x\n", val); 8346 /* RQ_USDMDP_FIFO_OVERFLOW */ 8347 if (val & 0x18000) { 8348 BLOGE(sc, "FATAL error from PXP\n"); 8349 } 8350 8351 if (!CHIP_IS_E1x(sc)) { 8352 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1); 8353 BLOGE(sc, "PXP hw attention-1 0x%08x\n", val); 8354 } 8355 } 8356 8357 #define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR 8358 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT 8359 8360 if (attn & AEU_PXP2_HW_INT_BIT) { 8361 /* CQ47854 workaround do not panic on 8362 * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8363 */ 8364 if (!CHIP_IS_E1x(sc)) { 8365 mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0); 8366 val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1); 8367 mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1); 8368 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0); 8369 /* 8370 * If the olny PXP2_EOP_ERROR_BIT is set in 8371 * STS0 and STS1 - clear it 8372 * 8373 * probably we lose additional attentions between 8374 * STS0 and STS_CLR0, in this case user will not 8375 * be notified about them 8376 */ 8377 if (val0 & mask0 & PXP2_EOP_ERROR_BIT && 8378 !(val1 & mask1)) 8379 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 8380 8381 /* print the register, since no one can restore it */ 8382 BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0); 8383 8384 /* 8385 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8386 * then notify 8387 */ 8388 if (val0 & PXP2_EOP_ERROR_BIT) { 8389 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n"); 8390 8391 /* 8392 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is 8393 * set then clear attention from PXP2 block without panic 8394 */ 8395 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) && 8396 ((val1 & mask1) == 0)) 8397 attn &= ~AEU_PXP2_HW_INT_BIT; 8398 } 8399 } 8400 } 8401 8402 if (attn & HW_INTERRUT_ASSERT_SET_2) { 8403 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 8404 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 8405 8406 val = REG_RD(sc, reg_offset); 8407 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); 8408 REG_WR(sc, reg_offset, val); 8409 8410 BLOGE(sc, "FATAL HW block attention set2 0x%x\n", 8411 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2)); 8412 bxe_panic(sc, ("HW block attention set2\n")); 8413 } 8414 } 8415 8416 static void 8417 bxe_attn_int_deasserted1(struct bxe_softc *sc, 8418 uint32_t attn) 8419 { 8420 int port = SC_PORT(sc); 8421 int reg_offset; 8422 uint32_t val; 8423 8424 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 8425 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR); 8426 BLOGE(sc, "DB hw attention 0x%08x\n", val); 8427 /* DORQ discard attention */ 8428 if (val & 0x2) { 8429 BLOGE(sc, "FATAL error from DORQ\n"); 8430 } 8431 } 8432 8433 if (attn & HW_INTERRUT_ASSERT_SET_1) { 8434 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 8435 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 8436 8437 val = REG_RD(sc, reg_offset); 8438 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); 8439 REG_WR(sc, reg_offset, val); 8440 8441 BLOGE(sc, "FATAL HW block attention set1 0x%08x\n", 8442 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1)); 8443 bxe_panic(sc, ("HW block attention set1\n")); 8444 } 8445 } 8446 8447 static void 8448 bxe_attn_int_deasserted0(struct bxe_softc *sc, 8449 uint32_t attn) 8450 { 8451 int port = SC_PORT(sc); 8452 int reg_offset; 8453 uint32_t val; 8454 8455 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 8456 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 8457 8458 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 8459 val = REG_RD(sc, reg_offset); 8460 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 8461 REG_WR(sc, reg_offset, val); 8462 8463 BLOGW(sc, "SPIO5 hw attention\n"); 8464 8465 /* Fan failure attention */ 8466 elink_hw_reset_phy(&sc->link_params); 8467 bxe_fan_failure(sc); 8468 } 8469 8470 if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) { 8471 BXE_PHY_LOCK(sc); 8472 elink_handle_module_detect_int(&sc->link_params); 8473 BXE_PHY_UNLOCK(sc); 8474 } 8475 8476 if (attn & HW_INTERRUT_ASSERT_SET_0) { 8477 val = REG_RD(sc, reg_offset); 8478 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); 8479 REG_WR(sc, reg_offset, val); 8480 8481 bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n", 8482 (attn & HW_INTERRUT_ASSERT_SET_0))); 8483 } 8484 } 8485 8486 static void 8487 bxe_attn_int_deasserted(struct bxe_softc *sc, 8488 uint32_t deasserted) 8489 { 8490 struct attn_route attn; 8491 struct attn_route *group_mask; 8492 int port = SC_PORT(sc); 8493 int index; 8494 uint32_t reg_addr; 8495 uint32_t val; 8496 uint32_t aeu_mask; 8497 uint8_t global = FALSE; 8498 8499 /* 8500 * Need to take HW lock because MCP or other port might also 8501 * try to handle this event. 8502 */ 8503 bxe_acquire_alr(sc); 8504 8505 if (bxe_chk_parity_attn(sc, &global, TRUE)) { 8506 /* XXX 8507 * In case of parity errors don't handle attentions so that 8508 * other function would "see" parity errors. 8509 */ 8510 sc->recovery_state = BXE_RECOVERY_INIT; 8511 // XXX schedule a recovery task... 8512 /* disable HW interrupts */ 8513 bxe_int_disable(sc); 8514 bxe_release_alr(sc); 8515 return; 8516 } 8517 8518 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 8519 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 8520 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 8521 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 8522 if (!CHIP_IS_E1x(sc)) { 8523 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 8524 } else { 8525 attn.sig[4] = 0; 8526 } 8527 8528 BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", 8529 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 8530 8531 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 8532 if (deasserted & (1 << index)) { 8533 group_mask = &sc->attn_group[index]; 8534 8535 BLOGD(sc, DBG_INTR, 8536 "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index, 8537 group_mask->sig[0], group_mask->sig[1], 8538 group_mask->sig[2], group_mask->sig[3], 8539 group_mask->sig[4]); 8540 8541 bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]); 8542 bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]); 8543 bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]); 8544 bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]); 8545 bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]); 8546 } 8547 } 8548 8549 bxe_release_alr(sc); 8550 8551 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8552 reg_addr = (HC_REG_COMMAND_REG + port*32 + 8553 COMMAND_REG_ATTN_BITS_CLR); 8554 } else { 8555 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 8556 } 8557 8558 val = ~deasserted; 8559 BLOGD(sc, DBG_INTR, 8560 "about to mask 0x%08x at %s addr 0x%08x\n", val, 8561 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 8562 REG_WR(sc, reg_addr, val); 8563 8564 if (~sc->attn_state & deasserted) { 8565 BLOGE(sc, "IGU error\n"); 8566 } 8567 8568 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 8569 MISC_REG_AEU_MASK_ATTN_FUNC_0; 8570 8571 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8572 8573 aeu_mask = REG_RD(sc, reg_addr); 8574 8575 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n", 8576 aeu_mask, deasserted); 8577 aeu_mask |= (deasserted & 0x3ff); 8578 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 8579 8580 REG_WR(sc, reg_addr, aeu_mask); 8581 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8582 8583 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 8584 sc->attn_state &= ~deasserted; 8585 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 8586 } 8587 8588 static void 8589 bxe_attn_int(struct bxe_softc *sc) 8590 { 8591 /* read local copy of bits */ 8592 uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits); 8593 uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack); 8594 uint32_t attn_state = sc->attn_state; 8595 8596 /* look for changed bits */ 8597 uint32_t asserted = attn_bits & ~attn_ack & ~attn_state; 8598 uint32_t deasserted = ~attn_bits & attn_ack & attn_state; 8599 8600 BLOGD(sc, DBG_INTR, 8601 "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n", 8602 attn_bits, attn_ack, asserted, deasserted); 8603 8604 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) { 8605 BLOGE(sc, "BAD attention state\n"); 8606 } 8607 8608 /* handle bits that were raised */ 8609 if (asserted) { 8610 bxe_attn_int_asserted(sc, asserted); 8611 } 8612 8613 if (deasserted) { 8614 bxe_attn_int_deasserted(sc, deasserted); 8615 } 8616 } 8617 8618 static uint16_t 8619 bxe_update_dsb_idx(struct bxe_softc *sc) 8620 { 8621 struct host_sp_status_block *def_sb = sc->def_sb; 8622 uint16_t rc = 0; 8623 8624 mb(); /* status block is written to by the chip */ 8625 8626 if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 8627 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index; 8628 rc |= BXE_DEF_SB_ATT_IDX; 8629 } 8630 8631 if (sc->def_idx != def_sb->sp_sb.running_index) { 8632 sc->def_idx = def_sb->sp_sb.running_index; 8633 rc |= BXE_DEF_SB_IDX; 8634 } 8635 8636 mb(); 8637 8638 return (rc); 8639 } 8640 8641 static inline struct ecore_queue_sp_obj * 8642 bxe_cid_to_q_obj(struct bxe_softc *sc, 8643 uint32_t cid) 8644 { 8645 BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid); 8646 return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj); 8647 } 8648 8649 static void 8650 bxe_handle_mcast_eqe(struct bxe_softc *sc) 8651 { 8652 struct ecore_mcast_ramrod_params rparam; 8653 int rc; 8654 8655 memset(&rparam, 0, sizeof(rparam)); 8656 8657 rparam.mcast_obj = &sc->mcast_obj; 8658 8659 BXE_MCAST_LOCK(sc); 8660 8661 /* clear pending state for the last command */ 8662 sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw); 8663 8664 /* if there are pending mcast commands - send them */ 8665 if (sc->mcast_obj.check_pending(&sc->mcast_obj)) { 8666 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 8667 if (rc < 0) { 8668 BLOGD(sc, DBG_SP, 8669 "ERROR: Failed to send pending mcast commands (%d)\n", 8670 rc); 8671 } 8672 } 8673 8674 BXE_MCAST_UNLOCK(sc); 8675 } 8676 8677 static void 8678 bxe_handle_classification_eqe(struct bxe_softc *sc, 8679 union event_ring_elem *elem) 8680 { 8681 unsigned long ramrod_flags = 0; 8682 int rc = 0; 8683 uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8684 struct ecore_vlan_mac_obj *vlan_mac_obj; 8685 8686 /* always push next commands out, don't wait here */ 8687 bit_set(&ramrod_flags, RAMROD_CONT); 8688 8689 switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) { 8690 case ECORE_FILTER_MAC_PENDING: 8691 BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n"); 8692 vlan_mac_obj = &sc->sp_objs[cid].mac_obj; 8693 break; 8694 8695 case ECORE_FILTER_MCAST_PENDING: 8696 BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n"); 8697 /* 8698 * This is only relevant for 57710 where multicast MACs are 8699 * configured as unicast MACs using the same ramrod. 8700 */ 8701 bxe_handle_mcast_eqe(sc); 8702 return; 8703 8704 default: 8705 BLOGE(sc, "Unsupported classification command: %d\n", 8706 elem->message.data.eth_event.echo); 8707 return; 8708 } 8709 8710 rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags); 8711 8712 if (rc < 0) { 8713 BLOGE(sc, "Failed to schedule new commands (%d)\n", rc); 8714 } else if (rc > 0) { 8715 BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n"); 8716 } 8717 } 8718 8719 static void 8720 bxe_handle_rx_mode_eqe(struct bxe_softc *sc, 8721 union event_ring_elem *elem) 8722 { 8723 bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 8724 8725 /* send rx_mode command again if was requested */ 8726 if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, 8727 &sc->sp_state)) { 8728 bxe_set_storm_rx_mode(sc); 8729 } 8730 #if 0 8731 else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_START_SCHED, 8732 &sc->sp_state)) { 8733 bxe_set_iscsi_eth_rx_mode(sc, TRUE); 8734 } 8735 else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_STOP_SCHED, 8736 &sc->sp_state)) { 8737 bxe_set_iscsi_eth_rx_mode(sc, FALSE); 8738 } 8739 #endif 8740 } 8741 8742 static void 8743 bxe_update_eq_prod(struct bxe_softc *sc, 8744 uint16_t prod) 8745 { 8746 storm_memset_eq_prod(sc, prod, SC_FUNC(sc)); 8747 wmb(); /* keep prod updates ordered */ 8748 } 8749 8750 static void 8751 bxe_eq_int(struct bxe_softc *sc) 8752 { 8753 uint16_t hw_cons, sw_cons, sw_prod; 8754 union event_ring_elem *elem; 8755 uint8_t echo; 8756 uint32_t cid; 8757 uint8_t opcode; 8758 int spqe_cnt = 0; 8759 struct ecore_queue_sp_obj *q_obj; 8760 struct ecore_func_sp_obj *f_obj = &sc->func_obj; 8761 struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw; 8762 8763 hw_cons = le16toh(*sc->eq_cons_sb); 8764 8765 /* 8766 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256. 8767 * when we get to the next-page we need to adjust so the loop 8768 * condition below will be met. The next element is the size of a 8769 * regular element and hence incrementing by 1 8770 */ 8771 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) { 8772 hw_cons++; 8773 } 8774 8775 /* 8776 * This function may never run in parallel with itself for a 8777 * specific sc and no need for a read memory barrier here. 8778 */ 8779 sw_cons = sc->eq_cons; 8780 sw_prod = sc->eq_prod; 8781 8782 BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n", 8783 hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left)); 8784 8785 for (; 8786 sw_cons != hw_cons; 8787 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 8788 8789 elem = &sc->eq[EQ_DESC(sw_cons)]; 8790 8791 #if 0 8792 int rc; 8793 rc = bxe_iov_eq_sp_event(sc, elem); 8794 if (!rc) { 8795 BLOGE(sc, "bxe_iov_eq_sp_event returned %d\n", rc); 8796 goto next_spqe; 8797 } 8798 #endif 8799 8800 /* elem CID originates from FW, actually LE */ 8801 cid = SW_CID(elem->message.data.cfc_del_event.cid); 8802 opcode = elem->message.opcode; 8803 8804 /* handle eq element */ 8805 switch (opcode) { 8806 #if 0 8807 case EVENT_RING_OPCODE_VF_PF_CHANNEL: 8808 BLOGD(sc, DBG_SP, "vf/pf channel element on eq\n"); 8809 bxe_vf_mbx(sc, &elem->message.data.vf_pf_event); 8810 continue; 8811 #endif 8812 8813 case EVENT_RING_OPCODE_STAT_QUERY: 8814 BLOGD(sc, DBG_SP, "got statistics completion event %d\n", 8815 sc->stats_comp++); 8816 /* nothing to do with stats comp */ 8817 goto next_spqe; 8818 8819 case EVENT_RING_OPCODE_CFC_DEL: 8820 /* handle according to cid range */ 8821 /* we may want to verify here that the sc state is HALTING */ 8822 BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid); 8823 q_obj = bxe_cid_to_q_obj(sc, cid); 8824 if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) { 8825 break; 8826 } 8827 goto next_spqe; 8828 8829 case EVENT_RING_OPCODE_STOP_TRAFFIC: 8830 BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n"); 8831 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) { 8832 break; 8833 } 8834 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED); 8835 goto next_spqe; 8836 8837 case EVENT_RING_OPCODE_START_TRAFFIC: 8838 BLOGD(sc, DBG_SP, "got START TRAFFIC\n"); 8839 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) { 8840 break; 8841 } 8842 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED); 8843 goto next_spqe; 8844 8845 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 8846 echo = elem->message.data.function_update_event.echo; 8847 if (echo == SWITCH_UPDATE) { 8848 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n"); 8849 if (f_obj->complete_cmd(sc, f_obj, 8850 ECORE_F_CMD_SWITCH_UPDATE)) { 8851 break; 8852 } 8853 } 8854 else { 8855 BLOGD(sc, DBG_SP, 8856 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 8857 #if 0 8858 f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_UPDATE); 8859 /* 8860 * We will perform the queues update from the sp_core_task as 8861 * all queue SP operations should run with CORE_LOCK. 8862 */ 8863 bxe_set_bit(BXE_SP_CORE_AFEX_F_UPDATE, &sc->sp_core_state); 8864 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8865 #endif 8866 } 8867 goto next_spqe; 8868 8869 #if 0 8870 case EVENT_RING_OPCODE_AFEX_VIF_LISTS: 8871 f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_VIFLISTS); 8872 bxe_after_afex_vif_lists(sc, elem); 8873 goto next_spqe; 8874 #endif 8875 8876 case EVENT_RING_OPCODE_FORWARD_SETUP: 8877 q_obj = &bxe_fwd_sp_obj(sc, q_obj); 8878 if (q_obj->complete_cmd(sc, q_obj, 8879 ECORE_Q_CMD_SETUP_TX_ONLY)) { 8880 break; 8881 } 8882 goto next_spqe; 8883 8884 case EVENT_RING_OPCODE_FUNCTION_START: 8885 BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n"); 8886 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) { 8887 break; 8888 } 8889 goto next_spqe; 8890 8891 case EVENT_RING_OPCODE_FUNCTION_STOP: 8892 BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n"); 8893 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) { 8894 break; 8895 } 8896 goto next_spqe; 8897 } 8898 8899 switch (opcode | sc->state) { 8900 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN): 8901 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT): 8902 cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8903 BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid); 8904 rss_raw->clear_pending(rss_raw); 8905 break; 8906 8907 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN): 8908 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG): 8909 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT): 8910 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN): 8911 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG): 8912 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8913 BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n"); 8914 bxe_handle_classification_eqe(sc, elem); 8915 break; 8916 8917 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN): 8918 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG): 8919 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8920 BLOGD(sc, DBG_SP, "got mcast ramrod\n"); 8921 bxe_handle_mcast_eqe(sc); 8922 break; 8923 8924 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN): 8925 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG): 8926 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8927 BLOGD(sc, DBG_SP, "got rx_mode ramrod\n"); 8928 bxe_handle_rx_mode_eqe(sc, elem); 8929 break; 8930 8931 default: 8932 /* unknown event log error and continue */ 8933 BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n", 8934 elem->message.opcode, sc->state); 8935 } 8936 8937 next_spqe: 8938 spqe_cnt++; 8939 } /* for */ 8940 8941 mb(); 8942 atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt); 8943 8944 sc->eq_cons = sw_cons; 8945 sc->eq_prod = sw_prod; 8946 8947 /* make sure that above mem writes were issued towards the memory */ 8948 wmb(); 8949 8950 /* update producer */ 8951 bxe_update_eq_prod(sc, sc->eq_prod); 8952 } 8953 8954 static void 8955 bxe_handle_sp_tq(void *context, 8956 int pending) 8957 { 8958 struct bxe_softc *sc = (struct bxe_softc *)context; 8959 uint16_t status; 8960 8961 BLOGD(sc, DBG_SP, "---> SP TASK <---\n"); 8962 8963 /* what work needs to be performed? */ 8964 status = bxe_update_dsb_idx(sc); 8965 8966 BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status); 8967 8968 /* HW attentions */ 8969 if (status & BXE_DEF_SB_ATT_IDX) { 8970 BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n"); 8971 bxe_attn_int(sc); 8972 status &= ~BXE_DEF_SB_ATT_IDX; 8973 } 8974 8975 /* SP events: STAT_QUERY and others */ 8976 if (status & BXE_DEF_SB_IDX) { 8977 /* handle EQ completions */ 8978 BLOGD(sc, DBG_SP, "---> EQ INTR <---\n"); 8979 bxe_eq_int(sc); 8980 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 8981 le16toh(sc->def_idx), IGU_INT_NOP, 1); 8982 status &= ~BXE_DEF_SB_IDX; 8983 } 8984 8985 /* if status is non zero then something went wrong */ 8986 if (__predict_false(status)) { 8987 BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status); 8988 } 8989 8990 /* ack status block only if something was actually handled */ 8991 bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID, 8992 le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1); 8993 8994 /* 8995 * Must be called after the EQ processing (since eq leads to sriov 8996 * ramrod completion flows). 8997 * This flow may have been scheduled by the arrival of a ramrod 8998 * completion, or by the sriov code rescheduling itself. 8999 */ 9000 // XXX bxe_iov_sp_task(sc); 9001 9002 #if 0 9003 /* AFEX - poll to check if VIFSET_ACK should be sent to MFW */ 9004 if (bxe_test_and_clear_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, 9005 &sc->sp_state)) { 9006 bxe_link_report(sc); 9007 bxe_fw_command(sc, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 9008 } 9009 #endif 9010 } 9011 9012 static void 9013 bxe_handle_fp_tq(void *context, 9014 int pending) 9015 { 9016 struct bxe_fastpath *fp = (struct bxe_fastpath *)context; 9017 struct bxe_softc *sc = fp->sc; 9018 uint8_t more_tx = FALSE; 9019 uint8_t more_rx = FALSE; 9020 9021 BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index); 9022 9023 /* XXX 9024 * IFF_DRV_RUNNING state can't be checked here since we process 9025 * slowpath events on a client queue during setup. Instead 9026 * we need to add a "process/continue" flag here that the driver 9027 * can use to tell the task here not to do anything. 9028 */ 9029 #if 0 9030 if (!(sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) { 9031 return; 9032 } 9033 #endif 9034 9035 /* update the fastpath index */ 9036 bxe_update_fp_sb_idx(fp); 9037 9038 /* XXX add loop here if ever support multiple tx CoS */ 9039 /* fp->txdata[cos] */ 9040 if (bxe_has_tx_work(fp)) { 9041 BXE_FP_TX_LOCK(fp); 9042 more_tx = bxe_txeof(sc, fp); 9043 BXE_FP_TX_UNLOCK(fp); 9044 } 9045 9046 if (bxe_has_rx_work(fp)) { 9047 more_rx = bxe_rxeof(sc, fp); 9048 } 9049 9050 if (more_rx /*|| more_tx*/) { 9051 /* still more work to do */ 9052 taskqueue_enqueue_fast(fp->tq, &fp->tq_task); 9053 return; 9054 } 9055 9056 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 9057 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 9058 } 9059 9060 static void 9061 bxe_task_fp(struct bxe_fastpath *fp) 9062 { 9063 struct bxe_softc *sc = fp->sc; 9064 uint8_t more_tx = FALSE; 9065 uint8_t more_rx = FALSE; 9066 9067 BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index); 9068 9069 /* update the fastpath index */ 9070 bxe_update_fp_sb_idx(fp); 9071 9072 /* XXX add loop here if ever support multiple tx CoS */ 9073 /* fp->txdata[cos] */ 9074 if (bxe_has_tx_work(fp)) { 9075 BXE_FP_TX_LOCK(fp); 9076 more_tx = bxe_txeof(sc, fp); 9077 BXE_FP_TX_UNLOCK(fp); 9078 } 9079 9080 if (bxe_has_rx_work(fp)) { 9081 more_rx = bxe_rxeof(sc, fp); 9082 } 9083 9084 if (more_rx /*|| more_tx*/) { 9085 /* still more work to do, bail out if this ISR and process later */ 9086 taskqueue_enqueue_fast(fp->tq, &fp->tq_task); 9087 return; 9088 } 9089 9090 /* 9091 * Here we write the fastpath index taken before doing any tx or rx work. 9092 * It is very well possible other hw events occurred up to this point and 9093 * they were actually processed accordingly above. Since we're going to 9094 * write an older fastpath index, an interrupt is coming which we might 9095 * not do any work in. 9096 */ 9097 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 9098 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 9099 } 9100 9101 /* 9102 * Legacy interrupt entry point. 9103 * 9104 * Verifies that the controller generated the interrupt and 9105 * then calls a separate routine to handle the various 9106 * interrupt causes: link, RX, and TX. 9107 */ 9108 static void 9109 bxe_intr_legacy(void *xsc) 9110 { 9111 struct bxe_softc *sc = (struct bxe_softc *)xsc; 9112 struct bxe_fastpath *fp; 9113 uint16_t status, mask; 9114 int i; 9115 9116 BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n"); 9117 9118 #if 0 9119 /* Don't handle any interrupts if we're not ready. */ 9120 if (__predict_false(sc->intr_sem != 0)) { 9121 return; 9122 } 9123 #endif 9124 9125 /* 9126 * 0 for ustorm, 1 for cstorm 9127 * the bits returned from ack_int() are 0-15 9128 * bit 0 = attention status block 9129 * bit 1 = fast path status block 9130 * a mask of 0x2 or more = tx/rx event 9131 * a mask of 1 = slow path event 9132 */ 9133 9134 status = bxe_ack_int(sc); 9135 9136 /* the interrupt is not for us */ 9137 if (__predict_false(status == 0)) { 9138 BLOGD(sc, DBG_INTR, "Not our interrupt!\n"); 9139 return; 9140 } 9141 9142 BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status); 9143 9144 FOR_EACH_ETH_QUEUE(sc, i) { 9145 fp = &sc->fp[i]; 9146 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc))); 9147 if (status & mask) { 9148 /* acknowledge and disable further fastpath interrupts */ 9149 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9150 bxe_task_fp(fp); 9151 status &= ~mask; 9152 } 9153 } 9154 9155 #if 0 9156 if (CNIC_SUPPORT(sc)) { 9157 mask = 0x2; 9158 if (status & (mask | 0x1)) { 9159 ... 9160 status &= ~mask; 9161 } 9162 } 9163 #endif 9164 9165 if (__predict_false(status & 0x1)) { 9166 /* acknowledge and disable further slowpath interrupts */ 9167 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9168 9169 /* schedule slowpath handler */ 9170 taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task); 9171 9172 status &= ~0x1; 9173 } 9174 9175 if (__predict_false(status)) { 9176 BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status); 9177 } 9178 } 9179 9180 /* slowpath interrupt entry point */ 9181 static void 9182 bxe_intr_sp(void *xsc) 9183 { 9184 struct bxe_softc *sc = (struct bxe_softc *)xsc; 9185 9186 BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n"); 9187 9188 /* acknowledge and disable further slowpath interrupts */ 9189 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9190 9191 /* schedule slowpath handler */ 9192 taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task); 9193 } 9194 9195 /* fastpath interrupt entry point */ 9196 static void 9197 bxe_intr_fp(void *xfp) 9198 { 9199 struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp; 9200 struct bxe_softc *sc = fp->sc; 9201 9202 BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index); 9203 9204 BLOGD(sc, DBG_INTR, 9205 "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n", 9206 curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id); 9207 9208 #if 0 9209 /* Don't handle any interrupts if we're not ready. */ 9210 if (__predict_false(sc->intr_sem != 0)) { 9211 return; 9212 } 9213 #endif 9214 9215 /* acknowledge and disable further fastpath interrupts */ 9216 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9217 9218 bxe_task_fp(fp); 9219 } 9220 9221 /* Release all interrupts allocated by the driver. */ 9222 static void 9223 bxe_interrupt_free(struct bxe_softc *sc) 9224 { 9225 int i; 9226 9227 switch (sc->interrupt_mode) { 9228 case INTR_MODE_INTX: 9229 BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n"); 9230 if (sc->intr[0].resource != NULL) { 9231 bus_release_resource(sc->dev, 9232 SYS_RES_IRQ, 9233 sc->intr[0].rid, 9234 sc->intr[0].resource); 9235 } 9236 break; 9237 case INTR_MODE_MSI: 9238 for (i = 0; i < sc->intr_count; i++) { 9239 BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i); 9240 if (sc->intr[i].resource && sc->intr[i].rid) { 9241 bus_release_resource(sc->dev, 9242 SYS_RES_IRQ, 9243 sc->intr[i].rid, 9244 sc->intr[i].resource); 9245 } 9246 } 9247 pci_release_msi(sc->dev); 9248 break; 9249 case INTR_MODE_MSIX: 9250 for (i = 0; i < sc->intr_count; i++) { 9251 BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i); 9252 if (sc->intr[i].resource && sc->intr[i].rid) { 9253 bus_release_resource(sc->dev, 9254 SYS_RES_IRQ, 9255 sc->intr[i].rid, 9256 sc->intr[i].resource); 9257 } 9258 } 9259 pci_release_msi(sc->dev); 9260 break; 9261 default: 9262 /* nothing to do as initial allocation failed */ 9263 break; 9264 } 9265 } 9266 9267 /* 9268 * This function determines and allocates the appropriate 9269 * interrupt based on system capabilites and user request. 9270 * 9271 * The user may force a particular interrupt mode, specify 9272 * the number of receive queues, specify the method for 9273 * distribuitng received frames to receive queues, or use 9274 * the default settings which will automatically select the 9275 * best supported combination. In addition, the OS may or 9276 * may not support certain combinations of these settings. 9277 * This routine attempts to reconcile the settings requested 9278 * by the user with the capabilites available from the system 9279 * to select the optimal combination of features. 9280 * 9281 * Returns: 9282 * 0 = Success, !0 = Failure. 9283 */ 9284 static int 9285 bxe_interrupt_alloc(struct bxe_softc *sc) 9286 { 9287 int msix_count = 0; 9288 int msi_count = 0; 9289 int num_requested = 0; 9290 int num_allocated = 0; 9291 int rid, i, j; 9292 int rc; 9293 9294 /* get the number of available MSI/MSI-X interrupts from the OS */ 9295 if (sc->interrupt_mode > 0) { 9296 if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) { 9297 msix_count = pci_msix_count(sc->dev); 9298 } 9299 9300 if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) { 9301 msi_count = pci_msi_count(sc->dev); 9302 } 9303 9304 BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n", 9305 msi_count, msix_count); 9306 } 9307 9308 do { /* try allocating MSI-X interrupt resources (at least 2) */ 9309 if (sc->interrupt_mode != INTR_MODE_MSIX) { 9310 break; 9311 } 9312 9313 if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) || 9314 (msix_count < 2)) { 9315 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9316 break; 9317 } 9318 9319 /* ask for the necessary number of MSI-X vectors */ 9320 num_requested = min((sc->num_queues + 1), msix_count); 9321 9322 BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested); 9323 9324 num_allocated = num_requested; 9325 if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) { 9326 BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc); 9327 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9328 break; 9329 } 9330 9331 if (num_allocated < 2) { /* possible? */ 9332 BLOGE(sc, "MSI-X allocation less than 2!\n"); 9333 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9334 pci_release_msi(sc->dev); 9335 break; 9336 } 9337 9338 BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n", 9339 num_requested, num_allocated); 9340 9341 /* best effort so use the number of vectors allocated to us */ 9342 sc->intr_count = num_allocated; 9343 sc->num_queues = num_allocated - 1; 9344 9345 rid = 1; /* initial resource identifier */ 9346 9347 /* allocate the MSI-X vectors */ 9348 for (i = 0; i < num_allocated; i++) { 9349 sc->intr[i].rid = (rid + i); 9350 9351 if ((sc->intr[i].resource = 9352 bus_alloc_resource_any(sc->dev, 9353 SYS_RES_IRQ, 9354 &sc->intr[i].rid, 9355 RF_ACTIVE)) == NULL) { 9356 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n", 9357 i, (rid + i)); 9358 9359 for (j = (i - 1); j >= 0; j--) { 9360 bus_release_resource(sc->dev, 9361 SYS_RES_IRQ, 9362 sc->intr[j].rid, 9363 sc->intr[j].resource); 9364 } 9365 9366 sc->intr_count = 0; 9367 sc->num_queues = 0; 9368 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9369 pci_release_msi(sc->dev); 9370 break; 9371 } 9372 9373 BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i)); 9374 } 9375 } while (0); 9376 9377 do { /* try allocating MSI vector resources (at least 2) */ 9378 if (sc->interrupt_mode != INTR_MODE_MSI) { 9379 break; 9380 } 9381 9382 if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) || 9383 (msi_count < 2)) { 9384 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9385 break; 9386 } 9387 9388 /* ask for the necessary number of MSI vectors */ 9389 num_requested = min((sc->num_queues + 1), msi_count); 9390 9391 BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested); 9392 9393 num_allocated = num_requested; 9394 if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) { 9395 BLOGE(sc, "MSI alloc failed (%d)!\n", rc); 9396 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9397 break; 9398 } 9399 9400 if (num_allocated < 2) { /* possible? */ 9401 BLOGE(sc, "MSI allocation less than 2!\n"); 9402 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9403 pci_release_msi(sc->dev); 9404 break; 9405 } 9406 9407 BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n", 9408 num_requested, num_allocated); 9409 9410 /* best effort so use the number of vectors allocated to us */ 9411 sc->intr_count = num_allocated; 9412 sc->num_queues = num_allocated - 1; 9413 9414 rid = 1; /* initial resource identifier */ 9415 9416 /* allocate the MSI vectors */ 9417 for (i = 0; i < num_allocated; i++) { 9418 sc->intr[i].rid = (rid + i); 9419 9420 if ((sc->intr[i].resource = 9421 bus_alloc_resource_any(sc->dev, 9422 SYS_RES_IRQ, 9423 &sc->intr[i].rid, 9424 RF_ACTIVE)) == NULL) { 9425 BLOGE(sc, "Failed to map MSI[%d] (rid=%d)!\n", 9426 i, (rid + i)); 9427 9428 for (j = (i - 1); j >= 0; j--) { 9429 bus_release_resource(sc->dev, 9430 SYS_RES_IRQ, 9431 sc->intr[j].rid, 9432 sc->intr[j].resource); 9433 } 9434 9435 sc->intr_count = 0; 9436 sc->num_queues = 0; 9437 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9438 pci_release_msi(sc->dev); 9439 break; 9440 } 9441 9442 BLOGD(sc, DBG_LOAD, "Mapped MSI[%d] (rid=%d)\n", i, (rid + i)); 9443 } 9444 } while (0); 9445 9446 do { /* try allocating INTx vector resources */ 9447 if (sc->interrupt_mode != INTR_MODE_INTX) { 9448 break; 9449 } 9450 9451 BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n"); 9452 9453 /* only one vector for INTx */ 9454 sc->intr_count = 1; 9455 sc->num_queues = 1; 9456 9457 rid = 0; /* initial resource identifier */ 9458 9459 sc->intr[0].rid = rid; 9460 9461 if ((sc->intr[0].resource = 9462 bus_alloc_resource_any(sc->dev, 9463 SYS_RES_IRQ, 9464 &sc->intr[0].rid, 9465 (RF_ACTIVE | RF_SHAREABLE))) == NULL) { 9466 BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid); 9467 sc->intr_count = 0; 9468 sc->num_queues = 0; 9469 sc->interrupt_mode = -1; /* Failed! */ 9470 break; 9471 } 9472 9473 BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid); 9474 } while (0); 9475 9476 if (sc->interrupt_mode == -1) { 9477 BLOGE(sc, "Interrupt Allocation: FAILED!!!\n"); 9478 rc = 1; 9479 } else { 9480 BLOGD(sc, DBG_LOAD, 9481 "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n", 9482 sc->interrupt_mode, sc->num_queues); 9483 rc = 0; 9484 } 9485 9486 return (rc); 9487 } 9488 9489 static void 9490 bxe_interrupt_detach(struct bxe_softc *sc) 9491 { 9492 struct bxe_fastpath *fp; 9493 int i; 9494 9495 /* release interrupt resources */ 9496 for (i = 0; i < sc->intr_count; i++) { 9497 if (sc->intr[i].resource && sc->intr[i].tag) { 9498 BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i); 9499 bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag); 9500 } 9501 } 9502 9503 for (i = 0; i < sc->num_queues; i++) { 9504 fp = &sc->fp[i]; 9505 if (fp->tq) { 9506 taskqueue_drain(fp->tq, &fp->tq_task); 9507 taskqueue_free(fp->tq); 9508 fp->tq = NULL; 9509 } 9510 } 9511 9512 if (sc->rx_mode_tq) { 9513 taskqueue_drain(sc->rx_mode_tq, &sc->rx_mode_tq_task); 9514 taskqueue_free(sc->rx_mode_tq); 9515 sc->rx_mode_tq = NULL; 9516 } 9517 9518 if (sc->sp_tq) { 9519 taskqueue_drain(sc->sp_tq, &sc->sp_tq_task); 9520 taskqueue_free(sc->sp_tq); 9521 sc->sp_tq = NULL; 9522 } 9523 } 9524 9525 /* 9526 * Enables interrupts and attach to the ISR. 9527 * 9528 * When using multiple MSI/MSI-X vectors the first vector 9529 * is used for slowpath operations while all remaining 9530 * vectors are used for fastpath operations. If only a 9531 * single MSI/MSI-X vector is used (SINGLE_ISR) then the 9532 * ISR must look for both slowpath and fastpath completions. 9533 */ 9534 static int 9535 bxe_interrupt_attach(struct bxe_softc *sc) 9536 { 9537 struct bxe_fastpath *fp; 9538 int rc = 0; 9539 int i; 9540 9541 snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name), 9542 "bxe%d_sp_tq", sc->unit); 9543 TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc); 9544 sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT, 9545 taskqueue_thread_enqueue, 9546 &sc->sp_tq); 9547 taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */ 9548 "%s", sc->sp_tq_name); 9549 9550 snprintf(sc->rx_mode_tq_name, sizeof(sc->rx_mode_tq_name), 9551 "bxe%d_rx_mode_tq", sc->unit); 9552 TASK_INIT(&sc->rx_mode_tq_task, 0, bxe_handle_rx_mode_tq, sc); 9553 sc->rx_mode_tq = taskqueue_create_fast(sc->rx_mode_tq_name, M_NOWAIT, 9554 taskqueue_thread_enqueue, 9555 &sc->rx_mode_tq); 9556 taskqueue_start_threads(&sc->rx_mode_tq, 1, PWAIT, /* lower priority */ 9557 "%s", sc->rx_mode_tq_name); 9558 9559 for (i = 0; i < sc->num_queues; i++) { 9560 fp = &sc->fp[i]; 9561 snprintf(fp->tq_name, sizeof(fp->tq_name), 9562 "bxe%d_fp%d_tq", sc->unit, i); 9563 TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp); 9564 fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT, 9565 taskqueue_thread_enqueue, 9566 &fp->tq); 9567 taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */ 9568 "%s", fp->tq_name); 9569 } 9570 9571 /* setup interrupt handlers */ 9572 if (sc->interrupt_mode == INTR_MODE_MSIX) { 9573 BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n"); 9574 9575 /* 9576 * Setup the interrupt handler. Note that we pass the driver instance 9577 * to the interrupt handler for the slowpath. 9578 */ 9579 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9580 (INTR_TYPE_NET | INTR_MPSAFE), 9581 NULL, bxe_intr_sp, sc, 9582 &sc->intr[0].tag)) != 0) { 9583 BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc); 9584 goto bxe_interrupt_attach_exit; 9585 } 9586 9587 bus_describe_intr(sc->dev, sc->intr[0].resource, 9588 sc->intr[0].tag, "sp"); 9589 9590 /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */ 9591 9592 /* initialize the fastpath vectors (note the first was used for sp) */ 9593 for (i = 0; i < sc->num_queues; i++) { 9594 fp = &sc->fp[i]; 9595 BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1)); 9596 9597 /* 9598 * Setup the interrupt handler. Note that we pass the 9599 * fastpath context to the interrupt handler in this 9600 * case. 9601 */ 9602 if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource, 9603 (INTR_TYPE_NET | INTR_MPSAFE), 9604 NULL, bxe_intr_fp, fp, 9605 &sc->intr[i + 1].tag)) != 0) { 9606 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n", 9607 (i + 1), rc); 9608 goto bxe_interrupt_attach_exit; 9609 } 9610 9611 bus_describe_intr(sc->dev, sc->intr[i + 1].resource, 9612 sc->intr[i + 1].tag, "fp%02d", i); 9613 9614 /* bind the fastpath instance to a cpu */ 9615 if (sc->num_queues > 1) { 9616 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i); 9617 } 9618 9619 fp->state = BXE_FP_STATE_IRQ; 9620 } 9621 } else if (sc->interrupt_mode == INTR_MODE_MSI) { 9622 BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI[0] vector.\n"); 9623 9624 /* 9625 * Setup the interrupt handler. Note that we pass the driver instance 9626 * to the interrupt handler for the slowpath. 9627 */ 9628 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9629 (INTR_TYPE_NET | INTR_MPSAFE), 9630 NULL, bxe_intr_sp, sc, 9631 &sc->intr[0].tag)) != 0) { 9632 BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc); 9633 goto bxe_interrupt_attach_exit; 9634 } 9635 9636 bus_describe_intr(sc->dev, sc->intr[0].resource, 9637 sc->intr[0].tag, "sp"); 9638 9639 /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */ 9640 9641 /* initialize the fastpath vectors (note the first was used for sp) */ 9642 for (i = 0; i < sc->num_queues; i++) { 9643 fp = &sc->fp[i]; 9644 BLOGD(sc, DBG_LOAD, "Enabling MSI[%d] vector\n", (i + 1)); 9645 9646 /* 9647 * Setup the interrupt handler. Note that we pass the 9648 * fastpath context to the interrupt handler in this 9649 * case. 9650 */ 9651 if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource, 9652 (INTR_TYPE_NET | INTR_MPSAFE), 9653 NULL, bxe_intr_fp, fp, 9654 &sc->intr[i + 1].tag)) != 0) { 9655 BLOGE(sc, "Failed to allocate MSI[%d] vector (%d)\n", 9656 (i + 1), rc); 9657 goto bxe_interrupt_attach_exit; 9658 } 9659 9660 bus_describe_intr(sc->dev, sc->intr[i + 1].resource, 9661 sc->intr[i + 1].tag, "fp%02d", i); 9662 9663 /* bind the fastpath instance to a cpu */ 9664 if (sc->num_queues > 1) { 9665 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i); 9666 } 9667 9668 fp->state = BXE_FP_STATE_IRQ; 9669 } 9670 } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */ 9671 BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n"); 9672 9673 /* 9674 * Setup the interrupt handler. Note that we pass the 9675 * driver instance to the interrupt handler which 9676 * will handle both the slowpath and fastpath. 9677 */ 9678 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9679 (INTR_TYPE_NET | INTR_MPSAFE), 9680 NULL, bxe_intr_legacy, sc, 9681 &sc->intr[0].tag)) != 0) { 9682 BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc); 9683 goto bxe_interrupt_attach_exit; 9684 } 9685 } 9686 9687 bxe_interrupt_attach_exit: 9688 9689 return (rc); 9690 } 9691 9692 static int bxe_init_hw_common_chip(struct bxe_softc *sc); 9693 static int bxe_init_hw_common(struct bxe_softc *sc); 9694 static int bxe_init_hw_port(struct bxe_softc *sc); 9695 static int bxe_init_hw_func(struct bxe_softc *sc); 9696 static void bxe_reset_common(struct bxe_softc *sc); 9697 static void bxe_reset_port(struct bxe_softc *sc); 9698 static void bxe_reset_func(struct bxe_softc *sc); 9699 static int bxe_gunzip_init(struct bxe_softc *sc); 9700 static void bxe_gunzip_end(struct bxe_softc *sc); 9701 static int bxe_init_firmware(struct bxe_softc *sc); 9702 static void bxe_release_firmware(struct bxe_softc *sc); 9703 9704 static struct 9705 ecore_func_sp_drv_ops bxe_func_sp_drv = { 9706 .init_hw_cmn_chip = bxe_init_hw_common_chip, 9707 .init_hw_cmn = bxe_init_hw_common, 9708 .init_hw_port = bxe_init_hw_port, 9709 .init_hw_func = bxe_init_hw_func, 9710 9711 .reset_hw_cmn = bxe_reset_common, 9712 .reset_hw_port = bxe_reset_port, 9713 .reset_hw_func = bxe_reset_func, 9714 9715 .gunzip_init = bxe_gunzip_init, 9716 .gunzip_end = bxe_gunzip_end, 9717 9718 .init_fw = bxe_init_firmware, 9719 .release_fw = bxe_release_firmware, 9720 }; 9721 9722 static void 9723 bxe_init_func_obj(struct bxe_softc *sc) 9724 { 9725 sc->dmae_ready = 0; 9726 9727 ecore_init_func_obj(sc, 9728 &sc->func_obj, 9729 BXE_SP(sc, func_rdata), 9730 BXE_SP_MAPPING(sc, func_rdata), 9731 BXE_SP(sc, func_afex_rdata), 9732 BXE_SP_MAPPING(sc, func_afex_rdata), 9733 &bxe_func_sp_drv); 9734 } 9735 9736 static int 9737 bxe_init_hw(struct bxe_softc *sc, 9738 uint32_t load_code) 9739 { 9740 struct ecore_func_state_params func_params = { NULL }; 9741 int rc; 9742 9743 /* prepare the parameters for function state transitions */ 9744 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 9745 9746 func_params.f_obj = &sc->func_obj; 9747 func_params.cmd = ECORE_F_CMD_HW_INIT; 9748 9749 func_params.params.hw_init.load_phase = load_code; 9750 9751 /* 9752 * Via a plethora of function pointers, we will eventually reach 9753 * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func(). 9754 */ 9755 rc = ecore_func_state_change(sc, &func_params); 9756 9757 return (rc); 9758 } 9759 9760 static void 9761 bxe_fill(struct bxe_softc *sc, 9762 uint32_t addr, 9763 int fill, 9764 uint32_t len) 9765 { 9766 uint32_t i; 9767 9768 if (!(len % 4) && !(addr % 4)) { 9769 for (i = 0; i < len; i += 4) { 9770 REG_WR(sc, (addr + i), fill); 9771 } 9772 } else { 9773 for (i = 0; i < len; i++) { 9774 REG_WR8(sc, (addr + i), fill); 9775 } 9776 } 9777 } 9778 9779 /* writes FP SP data to FW - data_size in dwords */ 9780 static void 9781 bxe_wr_fp_sb_data(struct bxe_softc *sc, 9782 int fw_sb_id, 9783 uint32_t *sb_data_p, 9784 uint32_t data_size) 9785 { 9786 int index; 9787 9788 for (index = 0; index < data_size; index++) { 9789 REG_WR(sc, 9790 (BAR_CSTRORM_INTMEM + 9791 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 9792 (sizeof(uint32_t) * index)), 9793 *(sb_data_p + index)); 9794 } 9795 } 9796 9797 static void 9798 bxe_zero_fp_sb(struct bxe_softc *sc, 9799 int fw_sb_id) 9800 { 9801 struct hc_status_block_data_e2 sb_data_e2; 9802 struct hc_status_block_data_e1x sb_data_e1x; 9803 uint32_t *sb_data_p; 9804 uint32_t data_size = 0; 9805 9806 if (!CHIP_IS_E1x(sc)) { 9807 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9808 sb_data_e2.common.state = SB_DISABLED; 9809 sb_data_e2.common.p_func.vf_valid = FALSE; 9810 sb_data_p = (uint32_t *)&sb_data_e2; 9811 data_size = (sizeof(struct hc_status_block_data_e2) / 9812 sizeof(uint32_t)); 9813 } else { 9814 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9815 sb_data_e1x.common.state = SB_DISABLED; 9816 sb_data_e1x.common.p_func.vf_valid = FALSE; 9817 sb_data_p = (uint32_t *)&sb_data_e1x; 9818 data_size = (sizeof(struct hc_status_block_data_e1x) / 9819 sizeof(uint32_t)); 9820 } 9821 9822 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9823 9824 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 9825 0, CSTORM_STATUS_BLOCK_SIZE); 9826 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)), 9827 0, CSTORM_SYNC_BLOCK_SIZE); 9828 } 9829 9830 static void 9831 bxe_wr_sp_sb_data(struct bxe_softc *sc, 9832 struct hc_sp_status_block_data *sp_sb_data) 9833 { 9834 int i; 9835 9836 for (i = 0; 9837 i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t)); 9838 i++) { 9839 REG_WR(sc, 9840 (BAR_CSTRORM_INTMEM + 9841 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) + 9842 (i * sizeof(uint32_t))), 9843 *((uint32_t *)sp_sb_data + i)); 9844 } 9845 } 9846 9847 static void 9848 bxe_zero_sp_sb(struct bxe_softc *sc) 9849 { 9850 struct hc_sp_status_block_data sp_sb_data; 9851 9852 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9853 9854 sp_sb_data.state = SB_DISABLED; 9855 sp_sb_data.p_func.vf_valid = FALSE; 9856 9857 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9858 9859 bxe_fill(sc, 9860 (BAR_CSTRORM_INTMEM + 9861 CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))), 9862 0, CSTORM_SP_STATUS_BLOCK_SIZE); 9863 bxe_fill(sc, 9864 (BAR_CSTRORM_INTMEM + 9865 CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))), 9866 0, CSTORM_SP_SYNC_BLOCK_SIZE); 9867 } 9868 9869 static void 9870 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 9871 int igu_sb_id, 9872 int igu_seg_id) 9873 { 9874 hc_sm->igu_sb_id = igu_sb_id; 9875 hc_sm->igu_seg_id = igu_seg_id; 9876 hc_sm->timer_value = 0xFF; 9877 hc_sm->time_to_expire = 0xFFFFFFFF; 9878 } 9879 9880 static void 9881 bxe_map_sb_state_machines(struct hc_index_data *index_data) 9882 { 9883 /* zero out state machine indices */ 9884 9885 /* rx indices */ 9886 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9887 9888 /* tx indices */ 9889 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9890 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 9891 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 9892 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 9893 9894 /* map indices */ 9895 9896 /* rx indices */ 9897 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 9898 (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9899 9900 /* tx indices */ 9901 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 9902 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9903 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 9904 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9905 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 9906 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9907 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 9908 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9909 } 9910 9911 static void 9912 bxe_init_sb(struct bxe_softc *sc, 9913 bus_addr_t busaddr, 9914 int vfid, 9915 uint8_t vf_valid, 9916 int fw_sb_id, 9917 int igu_sb_id) 9918 { 9919 struct hc_status_block_data_e2 sb_data_e2; 9920 struct hc_status_block_data_e1x sb_data_e1x; 9921 struct hc_status_block_sm *hc_sm_p; 9922 uint32_t *sb_data_p; 9923 int igu_seg_id; 9924 int data_size; 9925 9926 if (CHIP_INT_MODE_IS_BC(sc)) { 9927 igu_seg_id = HC_SEG_ACCESS_NORM; 9928 } else { 9929 igu_seg_id = IGU_SEG_ACCESS_NORM; 9930 } 9931 9932 bxe_zero_fp_sb(sc, fw_sb_id); 9933 9934 if (!CHIP_IS_E1x(sc)) { 9935 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9936 sb_data_e2.common.state = SB_ENABLED; 9937 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc); 9938 sb_data_e2.common.p_func.vf_id = vfid; 9939 sb_data_e2.common.p_func.vf_valid = vf_valid; 9940 sb_data_e2.common.p_func.vnic_id = SC_VN(sc); 9941 sb_data_e2.common.same_igu_sb_1b = TRUE; 9942 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr); 9943 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr); 9944 hc_sm_p = sb_data_e2.common.state_machine; 9945 sb_data_p = (uint32_t *)&sb_data_e2; 9946 data_size = (sizeof(struct hc_status_block_data_e2) / 9947 sizeof(uint32_t)); 9948 bxe_map_sb_state_machines(sb_data_e2.index_data); 9949 } else { 9950 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9951 sb_data_e1x.common.state = SB_ENABLED; 9952 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc); 9953 sb_data_e1x.common.p_func.vf_id = 0xff; 9954 sb_data_e1x.common.p_func.vf_valid = FALSE; 9955 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc); 9956 sb_data_e1x.common.same_igu_sb_1b = TRUE; 9957 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr); 9958 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr); 9959 hc_sm_p = sb_data_e1x.common.state_machine; 9960 sb_data_p = (uint32_t *)&sb_data_e1x; 9961 data_size = (sizeof(struct hc_status_block_data_e1x) / 9962 sizeof(uint32_t)); 9963 bxe_map_sb_state_machines(sb_data_e1x.index_data); 9964 } 9965 9966 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id); 9967 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id); 9968 9969 BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id); 9970 9971 /* write indices to HW - PCI guarantees endianity of regpairs */ 9972 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9973 } 9974 9975 static inline uint8_t 9976 bxe_fp_qzone_id(struct bxe_fastpath *fp) 9977 { 9978 if (CHIP_IS_E1x(fp->sc)) { 9979 return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H); 9980 } else { 9981 return (fp->cl_id); 9982 } 9983 } 9984 9985 static inline uint32_t 9986 bxe_rx_ustorm_prods_offset(struct bxe_softc *sc, 9987 struct bxe_fastpath *fp) 9988 { 9989 uint32_t offset = BAR_USTRORM_INTMEM; 9990 9991 #if 0 9992 if (IS_VF(sc)) { 9993 return (PXP_VF_ADDR_USDM_QUEUES_START + 9994 (sc->acquire_resp.resc.hw_qid[fp->index] * 9995 sizeof(struct ustorm_queue_zone_data))); 9996 } else 9997 #endif 9998 if (!CHIP_IS_E1x(sc)) { 9999 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 10000 } else { 10001 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id); 10002 } 10003 10004 return (offset); 10005 } 10006 10007 static void 10008 bxe_init_eth_fp(struct bxe_softc *sc, 10009 int idx) 10010 { 10011 struct bxe_fastpath *fp = &sc->fp[idx]; 10012 uint32_t cids[ECORE_MULTI_TX_COS] = { 0 }; 10013 unsigned long q_type = 0; 10014 int cos; 10015 10016 fp->sc = sc; 10017 fp->index = idx; 10018 10019 snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name), 10020 "bxe%d_fp%d_tx_lock", sc->unit, idx); 10021 mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF); 10022 10023 snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name), 10024 "bxe%d_fp%d_rx_lock", sc->unit, idx); 10025 mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF); 10026 10027 fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc)); 10028 fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc)); 10029 10030 fp->cl_id = (CHIP_IS_E1x(sc)) ? 10031 (SC_L_ID(sc) + idx) : 10032 /* want client ID same as IGU SB ID for non-E1 */ 10033 fp->igu_sb_id; 10034 fp->cl_qzone_id = bxe_fp_qzone_id(fp); 10035 10036 /* setup sb indices */ 10037 if (!CHIP_IS_E1x(sc)) { 10038 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values; 10039 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index; 10040 } else { 10041 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values; 10042 fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index; 10043 } 10044 10045 /* init shortcut */ 10046 fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp); 10047 10048 fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]; 10049 10050 /* 10051 * XXX If multiple CoS is ever supported then each fastpath structure 10052 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 10053 */ 10054 for (cos = 0; cos < sc->max_cos; cos++) { 10055 cids[cos] = idx; 10056 } 10057 fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]; 10058 10059 /* nothing more for a VF to do */ 10060 if (IS_VF(sc)) { 10061 return; 10062 } 10063 10064 bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE, 10065 fp->fw_sb_id, fp->igu_sb_id); 10066 10067 bxe_update_fp_sb_idx(fp); 10068 10069 /* Configure Queue State object */ 10070 bit_set(&q_type, ECORE_Q_TYPE_HAS_RX); 10071 bit_set(&q_type, ECORE_Q_TYPE_HAS_TX); 10072 10073 ecore_init_queue_obj(sc, 10074 &sc->sp_objs[idx].q_obj, 10075 fp->cl_id, 10076 cids, 10077 sc->max_cos, 10078 SC_FUNC(sc), 10079 BXE_SP(sc, q_rdata), 10080 BXE_SP_MAPPING(sc, q_rdata), 10081 q_type); 10082 10083 /* configure classification DBs */ 10084 ecore_init_mac_obj(sc, 10085 &sc->sp_objs[idx].mac_obj, 10086 fp->cl_id, 10087 idx, 10088 SC_FUNC(sc), 10089 BXE_SP(sc, mac_rdata), 10090 BXE_SP_MAPPING(sc, mac_rdata), 10091 ECORE_FILTER_MAC_PENDING, 10092 &sc->sp_state, 10093 ECORE_OBJ_TYPE_RX_TX, 10094 &sc->macs_pool); 10095 10096 BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n", 10097 idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id); 10098 } 10099 10100 static inline void 10101 bxe_update_rx_prod(struct bxe_softc *sc, 10102 struct bxe_fastpath *fp, 10103 uint16_t rx_bd_prod, 10104 uint16_t rx_cq_prod, 10105 uint16_t rx_sge_prod) 10106 { 10107 struct ustorm_eth_rx_producers rx_prods = { 0 }; 10108 uint32_t i; 10109 10110 /* update producers */ 10111 rx_prods.bd_prod = rx_bd_prod; 10112 rx_prods.cqe_prod = rx_cq_prod; 10113 rx_prods.sge_prod = rx_sge_prod; 10114 10115 /* 10116 * Make sure that the BD and SGE data is updated before updating the 10117 * producers since FW might read the BD/SGE right after the producer 10118 * is updated. 10119 * This is only applicable for weak-ordered memory model archs such 10120 * as IA-64. The following barrier is also mandatory since FW will 10121 * assumes BDs must have buffers. 10122 */ 10123 wmb(); 10124 10125 for (i = 0; i < (sizeof(rx_prods) / 4); i++) { 10126 REG_WR(sc, 10127 (fp->ustorm_rx_prods_offset + (i * 4)), 10128 ((uint32_t *)&rx_prods)[i]); 10129 } 10130 10131 wmb(); /* keep prod updates ordered */ 10132 10133 BLOGD(sc, DBG_RX, 10134 "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n", 10135 fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod); 10136 } 10137 10138 static void 10139 bxe_init_rx_rings(struct bxe_softc *sc) 10140 { 10141 struct bxe_fastpath *fp; 10142 int i; 10143 10144 for (i = 0; i < sc->num_queues; i++) { 10145 fp = &sc->fp[i]; 10146 10147 fp->rx_bd_cons = 0; 10148 10149 /* 10150 * Activate the BD ring... 10151 * Warning, this will generate an interrupt (to the TSTORM) 10152 * so this can only be done after the chip is initialized 10153 */ 10154 bxe_update_rx_prod(sc, fp, 10155 fp->rx_bd_prod, 10156 fp->rx_cq_prod, 10157 fp->rx_sge_prod); 10158 10159 if (i != 0) { 10160 continue; 10161 } 10162 10163 if (CHIP_IS_E1(sc)) { 10164 REG_WR(sc, 10165 (BAR_USTRORM_INTMEM + 10166 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))), 10167 U64_LO(fp->rcq_dma.paddr)); 10168 REG_WR(sc, 10169 (BAR_USTRORM_INTMEM + 10170 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4), 10171 U64_HI(fp->rcq_dma.paddr)); 10172 } 10173 } 10174 } 10175 10176 static void 10177 bxe_init_tx_ring_one(struct bxe_fastpath *fp) 10178 { 10179 SET_FLAG(fp->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1); 10180 fp->tx_db.data.zero_fill1 = 0; 10181 fp->tx_db.data.prod = 0; 10182 10183 fp->tx_pkt_prod = 0; 10184 fp->tx_pkt_cons = 0; 10185 fp->tx_bd_prod = 0; 10186 fp->tx_bd_cons = 0; 10187 fp->eth_q_stats.tx_pkts = 0; 10188 } 10189 10190 static inline void 10191 bxe_init_tx_rings(struct bxe_softc *sc) 10192 { 10193 int i; 10194 10195 for (i = 0; i < sc->num_queues; i++) { 10196 #if 0 10197 uint8_t cos; 10198 for (cos = 0; cos < sc->max_cos; cos++) { 10199 bxe_init_tx_ring_one(&sc->fp[i].txdata[cos]); 10200 } 10201 #else 10202 bxe_init_tx_ring_one(&sc->fp[i]); 10203 #endif 10204 } 10205 } 10206 10207 static void 10208 bxe_init_def_sb(struct bxe_softc *sc) 10209 { 10210 struct host_sp_status_block *def_sb = sc->def_sb; 10211 bus_addr_t mapping = sc->def_sb_dma.paddr; 10212 int igu_sp_sb_index; 10213 int igu_seg_id; 10214 int port = SC_PORT(sc); 10215 int func = SC_FUNC(sc); 10216 int reg_offset, reg_offset_en5; 10217 uint64_t section; 10218 int index, sindex; 10219 struct hc_sp_status_block_data sp_sb_data; 10220 10221 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 10222 10223 if (CHIP_INT_MODE_IS_BC(sc)) { 10224 igu_sp_sb_index = DEF_SB_IGU_ID; 10225 igu_seg_id = HC_SEG_ACCESS_DEF; 10226 } else { 10227 igu_sp_sb_index = sc->igu_dsb_id; 10228 igu_seg_id = IGU_SEG_ACCESS_DEF; 10229 } 10230 10231 /* attentions */ 10232 section = ((uint64_t)mapping + 10233 offsetof(struct host_sp_status_block, atten_status_block)); 10234 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 10235 sc->attn_state = 0; 10236 10237 reg_offset = (port) ? 10238 MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 10239 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 10240 reg_offset_en5 = (port) ? 10241 MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 10242 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0; 10243 10244 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 10245 /* take care of sig[0]..sig[4] */ 10246 for (sindex = 0; sindex < 4; sindex++) { 10247 sc->attn_group[index].sig[sindex] = 10248 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index))); 10249 } 10250 10251 if (!CHIP_IS_E1x(sc)) { 10252 /* 10253 * enable5 is separate from the rest of the registers, 10254 * and the address skip is 4 and not 16 between the 10255 * different groups 10256 */ 10257 sc->attn_group[index].sig[4] = 10258 REG_RD(sc, (reg_offset_en5 + (0x4 * index))); 10259 } else { 10260 sc->attn_group[index].sig[4] = 0; 10261 } 10262 } 10263 10264 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10265 reg_offset = (port) ? 10266 HC_REG_ATTN_MSG1_ADDR_L : 10267 HC_REG_ATTN_MSG0_ADDR_L; 10268 REG_WR(sc, reg_offset, U64_LO(section)); 10269 REG_WR(sc, (reg_offset + 4), U64_HI(section)); 10270 } else if (!CHIP_IS_E1x(sc)) { 10271 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 10272 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 10273 } 10274 10275 section = ((uint64_t)mapping + 10276 offsetof(struct host_sp_status_block, sp_sb)); 10277 10278 bxe_zero_sp_sb(sc); 10279 10280 /* PCI guarantees endianity of regpair */ 10281 sp_sb_data.state = SB_ENABLED; 10282 sp_sb_data.host_sb_addr.lo = U64_LO(section); 10283 sp_sb_data.host_sb_addr.hi = U64_HI(section); 10284 sp_sb_data.igu_sb_id = igu_sp_sb_index; 10285 sp_sb_data.igu_seg_id = igu_seg_id; 10286 sp_sb_data.p_func.pf_id = func; 10287 sp_sb_data.p_func.vnic_id = SC_VN(sc); 10288 sp_sb_data.p_func.vf_id = 0xff; 10289 10290 bxe_wr_sp_sb_data(sc, &sp_sb_data); 10291 10292 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 10293 } 10294 10295 static void 10296 bxe_init_sp_ring(struct bxe_softc *sc) 10297 { 10298 atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING); 10299 sc->spq_prod_idx = 0; 10300 sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS]; 10301 sc->spq_prod_bd = sc->spq; 10302 sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT); 10303 } 10304 10305 static void 10306 bxe_init_eq_ring(struct bxe_softc *sc) 10307 { 10308 union event_ring_elem *elem; 10309 int i; 10310 10311 for (i = 1; i <= NUM_EQ_PAGES; i++) { 10312 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1]; 10313 10314 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr + 10315 BCM_PAGE_SIZE * 10316 (i % NUM_EQ_PAGES))); 10317 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr + 10318 BCM_PAGE_SIZE * 10319 (i % NUM_EQ_PAGES))); 10320 } 10321 10322 sc->eq_cons = 0; 10323 sc->eq_prod = NUM_EQ_DESC; 10324 sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS]; 10325 10326 atomic_store_rel_long(&sc->eq_spq_left, 10327 (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING), 10328 NUM_EQ_DESC) - 1)); 10329 } 10330 10331 static void 10332 bxe_init_internal_common(struct bxe_softc *sc) 10333 { 10334 int i; 10335 10336 if (IS_MF_SI(sc)) { 10337 /* 10338 * In switch independent mode, the TSTORM needs to accept 10339 * packets that failed classification, since approximate match 10340 * mac addresses aren't written to NIG LLH. 10341 */ 10342 REG_WR8(sc, 10343 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 10344 2); 10345 } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */ 10346 REG_WR8(sc, 10347 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 10348 0); 10349 } 10350 10351 /* 10352 * Zero this manually as its initialization is currently missing 10353 * in the initTool. 10354 */ 10355 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) { 10356 REG_WR(sc, 10357 (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)), 10358 0); 10359 } 10360 10361 if (!CHIP_IS_E1x(sc)) { 10362 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET), 10363 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 10364 } 10365 } 10366 10367 static void 10368 bxe_init_internal(struct bxe_softc *sc, 10369 uint32_t load_code) 10370 { 10371 switch (load_code) { 10372 case FW_MSG_CODE_DRV_LOAD_COMMON: 10373 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 10374 bxe_init_internal_common(sc); 10375 /* no break */ 10376 10377 case FW_MSG_CODE_DRV_LOAD_PORT: 10378 /* nothing to do */ 10379 /* no break */ 10380 10381 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 10382 /* internal memory per function is initialized inside bxe_pf_init */ 10383 break; 10384 10385 default: 10386 BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code); 10387 break; 10388 } 10389 } 10390 10391 static void 10392 storm_memset_func_cfg(struct bxe_softc *sc, 10393 struct tstorm_eth_function_common_config *tcfg, 10394 uint16_t abs_fid) 10395 { 10396 uint32_t addr; 10397 size_t size; 10398 10399 addr = (BAR_TSTRORM_INTMEM + 10400 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid)); 10401 size = sizeof(struct tstorm_eth_function_common_config); 10402 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg); 10403 } 10404 10405 static void 10406 bxe_func_init(struct bxe_softc *sc, 10407 struct bxe_func_init_params *p) 10408 { 10409 struct tstorm_eth_function_common_config tcfg = { 0 }; 10410 10411 if (CHIP_IS_E1x(sc)) { 10412 storm_memset_func_cfg(sc, &tcfg, p->func_id); 10413 } 10414 10415 /* Enable the function in the FW */ 10416 storm_memset_vf_to_pf(sc, p->func_id, p->pf_id); 10417 storm_memset_func_en(sc, p->func_id, 1); 10418 10419 /* spq */ 10420 if (p->func_flgs & FUNC_FLG_SPQ) { 10421 storm_memset_spq_addr(sc, p->spq_map, p->func_id); 10422 REG_WR(sc, 10423 (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)), 10424 p->spq_prod); 10425 } 10426 } 10427 10428 /* 10429 * Calculates the sum of vn_min_rates. 10430 * It's needed for further normalizing of the min_rates. 10431 * Returns: 10432 * sum of vn_min_rates. 10433 * or 10434 * 0 - if all the min_rates are 0. 10435 * In the later case fainess algorithm should be deactivated. 10436 * If all min rates are not zero then those that are zeroes will be set to 1. 10437 */ 10438 static void 10439 bxe_calc_vn_min(struct bxe_softc *sc, 10440 struct cmng_init_input *input) 10441 { 10442 uint32_t vn_cfg; 10443 uint32_t vn_min_rate; 10444 int all_zero = 1; 10445 int vn; 10446 10447 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10448 vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10449 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 10450 FUNC_MF_CFG_MIN_BW_SHIFT) * 100); 10451 10452 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10453 /* skip hidden VNs */ 10454 vn_min_rate = 0; 10455 } else if (!vn_min_rate) { 10456 /* If min rate is zero - set it to 100 */ 10457 vn_min_rate = DEF_MIN_RATE; 10458 } else { 10459 all_zero = 0; 10460 } 10461 10462 input->vnic_min_rate[vn] = vn_min_rate; 10463 } 10464 10465 /* if ETS or all min rates are zeros - disable fairness */ 10466 if (BXE_IS_ETS_ENABLED(sc)) { 10467 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10468 BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n"); 10469 } else if (all_zero) { 10470 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10471 BLOGD(sc, DBG_LOAD, 10472 "Fariness disabled (all MIN values are zeroes)\n"); 10473 } else { 10474 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10475 } 10476 } 10477 10478 static inline uint16_t 10479 bxe_extract_max_cfg(struct bxe_softc *sc, 10480 uint32_t mf_cfg) 10481 { 10482 uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >> 10483 FUNC_MF_CFG_MAX_BW_SHIFT); 10484 10485 if (!max_cfg) { 10486 BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n"); 10487 max_cfg = 100; 10488 } 10489 10490 return (max_cfg); 10491 } 10492 10493 static void 10494 bxe_calc_vn_max(struct bxe_softc *sc, 10495 int vn, 10496 struct cmng_init_input *input) 10497 { 10498 uint16_t vn_max_rate; 10499 uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10500 uint32_t max_cfg; 10501 10502 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10503 vn_max_rate = 0; 10504 } else { 10505 max_cfg = bxe_extract_max_cfg(sc, vn_cfg); 10506 10507 if (IS_MF_SI(sc)) { 10508 /* max_cfg in percents of linkspeed */ 10509 vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100); 10510 } else { /* SD modes */ 10511 /* max_cfg is absolute in 100Mb units */ 10512 vn_max_rate = (max_cfg * 100); 10513 } 10514 } 10515 10516 BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 10517 10518 input->vnic_max_rate[vn] = vn_max_rate; 10519 } 10520 10521 static void 10522 bxe_cmng_fns_init(struct bxe_softc *sc, 10523 uint8_t read_cfg, 10524 uint8_t cmng_type) 10525 { 10526 struct cmng_init_input input; 10527 int vn; 10528 10529 memset(&input, 0, sizeof(struct cmng_init_input)); 10530 10531 input.port_rate = sc->link_vars.line_speed; 10532 10533 if (cmng_type == CMNG_FNS_MINMAX) { 10534 /* read mf conf from shmem */ 10535 if (read_cfg) { 10536 bxe_read_mf_cfg(sc); 10537 } 10538 10539 /* get VN min rate and enable fairness if not 0 */ 10540 bxe_calc_vn_min(sc, &input); 10541 10542 /* get VN max rate */ 10543 if (sc->port.pmf) { 10544 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10545 bxe_calc_vn_max(sc, vn, &input); 10546 } 10547 } 10548 10549 /* always enable rate shaping and fairness */ 10550 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 10551 10552 ecore_init_cmng(&input, &sc->cmng); 10553 return; 10554 } 10555 10556 /* rate shaping and fairness are disabled */ 10557 BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n"); 10558 } 10559 10560 static int 10561 bxe_get_cmng_fns_mode(struct bxe_softc *sc) 10562 { 10563 if (CHIP_REV_IS_SLOW(sc)) { 10564 return (CMNG_FNS_NONE); 10565 } 10566 10567 if (IS_MF(sc)) { 10568 return (CMNG_FNS_MINMAX); 10569 } 10570 10571 return (CMNG_FNS_NONE); 10572 } 10573 10574 static void 10575 storm_memset_cmng(struct bxe_softc *sc, 10576 struct cmng_init *cmng, 10577 uint8_t port) 10578 { 10579 int vn; 10580 int func; 10581 uint32_t addr; 10582 size_t size; 10583 10584 addr = (BAR_XSTRORM_INTMEM + 10585 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port)); 10586 size = sizeof(struct cmng_struct_per_port); 10587 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port); 10588 10589 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10590 func = func_by_vn(sc, vn); 10591 10592 addr = (BAR_XSTRORM_INTMEM + 10593 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func)); 10594 size = sizeof(struct rate_shaping_vars_per_vn); 10595 ecore_storm_memset_struct(sc, addr, size, 10596 (uint32_t *)&cmng->vnic.vnic_max_rate[vn]); 10597 10598 addr = (BAR_XSTRORM_INTMEM + 10599 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func)); 10600 size = sizeof(struct fairness_vars_per_vn); 10601 ecore_storm_memset_struct(sc, addr, size, 10602 (uint32_t *)&cmng->vnic.vnic_min_rate[vn]); 10603 } 10604 } 10605 10606 static void 10607 bxe_pf_init(struct bxe_softc *sc) 10608 { 10609 struct bxe_func_init_params func_init = { 0 }; 10610 struct event_ring_data eq_data = { { 0 } }; 10611 uint16_t flags; 10612 10613 if (!CHIP_IS_E1x(sc)) { 10614 /* reset IGU PF statistics: MSIX + ATTN */ 10615 /* PF */ 10616 REG_WR(sc, 10617 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10618 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10619 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10620 0); 10621 /* ATTN */ 10622 REG_WR(sc, 10623 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10624 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10625 (BXE_IGU_STAS_MSG_PF_CNT * 4) + 10626 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10627 0); 10628 } 10629 10630 /* function setup flags */ 10631 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); 10632 10633 /* 10634 * This flag is relevant for E1x only. 10635 * E2 doesn't have a TPA configuration in a function level. 10636 */ 10637 flags |= (sc->ifnet->if_capenable & IFCAP_LRO) ? FUNC_FLG_TPA : 0; 10638 10639 func_init.func_flgs = flags; 10640 func_init.pf_id = SC_FUNC(sc); 10641 func_init.func_id = SC_FUNC(sc); 10642 func_init.spq_map = sc->spq_dma.paddr; 10643 func_init.spq_prod = sc->spq_prod_idx; 10644 10645 bxe_func_init(sc, &func_init); 10646 10647 memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port)); 10648 10649 /* 10650 * Congestion management values depend on the link rate. 10651 * There is no active link so initial link rate is set to 10Gbps. 10652 * When the link comes up the congestion management values are 10653 * re-calculated according to the actual link rate. 10654 */ 10655 sc->link_vars.line_speed = SPEED_10000; 10656 bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc)); 10657 10658 /* Only the PMF sets the HW */ 10659 if (sc->port.pmf) { 10660 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 10661 } 10662 10663 /* init Event Queue - PCI bus guarantees correct endainity */ 10664 eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr); 10665 eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr); 10666 eq_data.producer = sc->eq_prod; 10667 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 10668 eq_data.sb_id = DEF_SB_ID; 10669 storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc)); 10670 } 10671 10672 static void 10673 bxe_hc_int_enable(struct bxe_softc *sc) 10674 { 10675 int port = SC_PORT(sc); 10676 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10677 uint32_t val = REG_RD(sc, addr); 10678 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10679 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10680 (sc->intr_count == 1)) ? TRUE : FALSE; 10681 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10682 10683 if (msix) { 10684 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10685 HC_CONFIG_0_REG_INT_LINE_EN_0); 10686 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10687 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10688 if (single_msix) { 10689 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 10690 } 10691 } else if (msi) { 10692 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 10693 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10694 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10695 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10696 } else { 10697 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10698 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10699 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10700 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10701 10702 if (!CHIP_IS_E1(sc)) { 10703 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", 10704 val, port, addr); 10705 10706 REG_WR(sc, addr, val); 10707 10708 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 10709 } 10710 } 10711 10712 if (CHIP_IS_E1(sc)) { 10713 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF); 10714 } 10715 10716 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n", 10717 val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10718 10719 REG_WR(sc, addr, val); 10720 10721 /* ensure that HC_CONFIG is written before leading/trailing edge config */ 10722 mb(); 10723 10724 if (!CHIP_IS_E1(sc)) { 10725 /* init leading/trailing edge */ 10726 if (IS_MF(sc)) { 10727 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10728 if (sc->port.pmf) { 10729 /* enable nig and gpio3 attention */ 10730 val |= 0x1100; 10731 } 10732 } else { 10733 val = 0xffff; 10734 } 10735 10736 REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val); 10737 REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val); 10738 } 10739 10740 /* make sure that interrupts are indeed enabled from here on */ 10741 mb(); 10742 } 10743 10744 static void 10745 bxe_igu_int_enable(struct bxe_softc *sc) 10746 { 10747 uint32_t val; 10748 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10749 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10750 (sc->intr_count == 1)) ? TRUE : FALSE; 10751 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10752 10753 val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10754 10755 if (msix) { 10756 val &= ~(IGU_PF_CONF_INT_LINE_EN | 10757 IGU_PF_CONF_SINGLE_ISR_EN); 10758 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10759 IGU_PF_CONF_ATTN_BIT_EN); 10760 if (single_msix) { 10761 val |= IGU_PF_CONF_SINGLE_ISR_EN; 10762 } 10763 } else if (msi) { 10764 val &= ~IGU_PF_CONF_INT_LINE_EN; 10765 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10766 IGU_PF_CONF_ATTN_BIT_EN | 10767 IGU_PF_CONF_SINGLE_ISR_EN); 10768 } else { 10769 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 10770 val |= (IGU_PF_CONF_INT_LINE_EN | 10771 IGU_PF_CONF_ATTN_BIT_EN | 10772 IGU_PF_CONF_SINGLE_ISR_EN); 10773 } 10774 10775 /* clean previous status - need to configure igu prior to ack*/ 10776 if ((!msix) || single_msix) { 10777 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10778 bxe_ack_int(sc); 10779 } 10780 10781 val |= IGU_PF_CONF_FUNC_EN; 10782 10783 BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n", 10784 val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10785 10786 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10787 10788 mb(); 10789 10790 /* init leading/trailing edge */ 10791 if (IS_MF(sc)) { 10792 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10793 if (sc->port.pmf) { 10794 /* enable nig and gpio3 attention */ 10795 val |= 0x1100; 10796 } 10797 } else { 10798 val = 0xffff; 10799 } 10800 10801 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 10802 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 10803 10804 /* make sure that interrupts are indeed enabled from here on */ 10805 mb(); 10806 } 10807 10808 static void 10809 bxe_int_enable(struct bxe_softc *sc) 10810 { 10811 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10812 bxe_hc_int_enable(sc); 10813 } else { 10814 bxe_igu_int_enable(sc); 10815 } 10816 } 10817 10818 static void 10819 bxe_hc_int_disable(struct bxe_softc *sc) 10820 { 10821 int port = SC_PORT(sc); 10822 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10823 uint32_t val = REG_RD(sc, addr); 10824 10825 /* 10826 * In E1 we must use only PCI configuration space to disable MSI/MSIX 10827 * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC 10828 * block 10829 */ 10830 if (CHIP_IS_E1(sc)) { 10831 /* 10832 * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register 10833 * to prevent from HC sending interrupts after we exit the function 10834 */ 10835 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0); 10836 10837 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10838 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10839 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10840 } else { 10841 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10842 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10843 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10844 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10845 } 10846 10847 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr); 10848 10849 /* flush all outstanding writes */ 10850 mb(); 10851 10852 REG_WR(sc, addr, val); 10853 if (REG_RD(sc, addr) != val) { 10854 BLOGE(sc, "proper val not read from HC IGU!\n"); 10855 } 10856 } 10857 10858 static void 10859 bxe_igu_int_disable(struct bxe_softc *sc) 10860 { 10861 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10862 10863 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 10864 IGU_PF_CONF_INT_LINE_EN | 10865 IGU_PF_CONF_ATTN_BIT_EN); 10866 10867 BLOGD(sc, DBG_INTR, "write %x to IGU\n", val); 10868 10869 /* flush all outstanding writes */ 10870 mb(); 10871 10872 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10873 if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) { 10874 BLOGE(sc, "proper val not read from IGU!\n"); 10875 } 10876 } 10877 10878 static void 10879 bxe_int_disable(struct bxe_softc *sc) 10880 { 10881 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10882 bxe_hc_int_disable(sc); 10883 } else { 10884 bxe_igu_int_disable(sc); 10885 } 10886 } 10887 10888 static void 10889 bxe_nic_init(struct bxe_softc *sc, 10890 int load_code) 10891 { 10892 int i; 10893 10894 for (i = 0; i < sc->num_queues; i++) { 10895 bxe_init_eth_fp(sc, i); 10896 } 10897 10898 rmb(); /* ensure status block indices were read */ 10899 10900 bxe_init_rx_rings(sc); 10901 bxe_init_tx_rings(sc); 10902 10903 if (IS_VF(sc)) { 10904 return; 10905 } 10906 10907 /* initialize MOD_ABS interrupts */ 10908 elink_init_mod_abs_int(sc, &sc->link_vars, 10909 sc->devinfo.chip_id, 10910 sc->devinfo.shmem_base, 10911 sc->devinfo.shmem2_base, 10912 SC_PORT(sc)); 10913 10914 bxe_init_def_sb(sc); 10915 bxe_update_dsb_idx(sc); 10916 bxe_init_sp_ring(sc); 10917 bxe_init_eq_ring(sc); 10918 bxe_init_internal(sc, load_code); 10919 bxe_pf_init(sc); 10920 bxe_stats_init(sc); 10921 10922 /* flush all before enabling interrupts */ 10923 mb(); 10924 10925 bxe_int_enable(sc); 10926 10927 /* check for SPIO5 */ 10928 bxe_attn_int_deasserted0(sc, 10929 REG_RD(sc, 10930 (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 10931 SC_PORT(sc)*4)) & 10932 AEU_INPUTS_ATTN_BITS_SPIO5); 10933 } 10934 10935 static inline void 10936 bxe_init_objs(struct bxe_softc *sc) 10937 { 10938 /* mcast rules must be added to tx if tx switching is enabled */ 10939 ecore_obj_type o_type = 10940 (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX : 10941 ECORE_OBJ_TYPE_RX; 10942 10943 /* RX_MODE controlling object */ 10944 ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj); 10945 10946 /* multicast configuration controlling object */ 10947 ecore_init_mcast_obj(sc, 10948 &sc->mcast_obj, 10949 sc->fp[0].cl_id, 10950 sc->fp[0].index, 10951 SC_FUNC(sc), 10952 SC_FUNC(sc), 10953 BXE_SP(sc, mcast_rdata), 10954 BXE_SP_MAPPING(sc, mcast_rdata), 10955 ECORE_FILTER_MCAST_PENDING, 10956 &sc->sp_state, 10957 o_type); 10958 10959 /* Setup CAM credit pools */ 10960 ecore_init_mac_credit_pool(sc, 10961 &sc->macs_pool, 10962 SC_FUNC(sc), 10963 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10964 VNICS_PER_PATH(sc)); 10965 10966 ecore_init_vlan_credit_pool(sc, 10967 &sc->vlans_pool, 10968 SC_ABS_FUNC(sc) >> 1, 10969 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10970 VNICS_PER_PATH(sc)); 10971 10972 /* RSS configuration object */ 10973 ecore_init_rss_config_obj(sc, 10974 &sc->rss_conf_obj, 10975 sc->fp[0].cl_id, 10976 sc->fp[0].index, 10977 SC_FUNC(sc), 10978 SC_FUNC(sc), 10979 BXE_SP(sc, rss_rdata), 10980 BXE_SP_MAPPING(sc, rss_rdata), 10981 ECORE_FILTER_RSS_CONF_PENDING, 10982 &sc->sp_state, ECORE_OBJ_TYPE_RX); 10983 } 10984 10985 /* 10986 * Initialize the function. This must be called before sending CLIENT_SETUP 10987 * for the first client. 10988 */ 10989 static inline int 10990 bxe_func_start(struct bxe_softc *sc) 10991 { 10992 struct ecore_func_state_params func_params = { NULL }; 10993 struct ecore_func_start_params *start_params = &func_params.params.start; 10994 10995 /* Prepare parameters for function state transitions */ 10996 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 10997 10998 func_params.f_obj = &sc->func_obj; 10999 func_params.cmd = ECORE_F_CMD_START; 11000 11001 /* Function parameters */ 11002 start_params->mf_mode = sc->devinfo.mf_info.mf_mode; 11003 start_params->sd_vlan_tag = OVLAN(sc); 11004 11005 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 11006 start_params->network_cos_mode = STATIC_COS; 11007 } else { /* CHIP_IS_E1X */ 11008 start_params->network_cos_mode = FW_WRR; 11009 } 11010 11011 start_params->gre_tunnel_mode = 0; 11012 start_params->gre_tunnel_rss = 0; 11013 11014 return (ecore_func_state_change(sc, &func_params)); 11015 } 11016 11017 static int 11018 bxe_set_power_state(struct bxe_softc *sc, 11019 uint8_t state) 11020 { 11021 uint16_t pmcsr; 11022 11023 /* If there is no power capability, silently succeed */ 11024 if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) { 11025 BLOGW(sc, "No power capability\n"); 11026 return (0); 11027 } 11028 11029 pmcsr = pci_read_config(sc->dev, 11030 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 11031 2); 11032 11033 switch (state) { 11034 case PCI_PM_D0: 11035 pci_write_config(sc->dev, 11036 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 11037 ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2); 11038 11039 if (pmcsr & PCIM_PSTAT_DMASK) { 11040 /* delay required during transition out of D3hot */ 11041 DELAY(20000); 11042 } 11043 11044 break; 11045 11046 case PCI_PM_D3hot: 11047 /* XXX if there are other clients above don't shut down the power */ 11048 11049 /* don't shut down the power for emulation and FPGA */ 11050 if (CHIP_REV_IS_SLOW(sc)) { 11051 return (0); 11052 } 11053 11054 pmcsr &= ~PCIM_PSTAT_DMASK; 11055 pmcsr |= PCIM_PSTAT_D3; 11056 11057 if (sc->wol) { 11058 pmcsr |= PCIM_PSTAT_PMEENABLE; 11059 } 11060 11061 pci_write_config(sc->dev, 11062 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 11063 pmcsr, 4); 11064 11065 /* 11066 * No more memory access after this point until device is brought back 11067 * to D0 state. 11068 */ 11069 break; 11070 11071 default: 11072 BLOGE(sc, "Can't support PCI power state = %d\n", state); 11073 return (-1); 11074 } 11075 11076 return (0); 11077 } 11078 11079 11080 /* return true if succeeded to acquire the lock */ 11081 static uint8_t 11082 bxe_trylock_hw_lock(struct bxe_softc *sc, 11083 uint32_t resource) 11084 { 11085 uint32_t lock_status; 11086 uint32_t resource_bit = (1 << resource); 11087 int func = SC_FUNC(sc); 11088 uint32_t hw_lock_control_reg; 11089 11090 BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource); 11091 11092 /* Validating that the resource is within range */ 11093 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 11094 BLOGD(sc, DBG_LOAD, 11095 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 11096 resource, HW_LOCK_MAX_RESOURCE_VALUE); 11097 return (FALSE); 11098 } 11099 11100 if (func <= 5) { 11101 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 11102 } else { 11103 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 11104 } 11105 11106 /* try to acquire the lock */ 11107 REG_WR(sc, hw_lock_control_reg + 4, resource_bit); 11108 lock_status = REG_RD(sc, hw_lock_control_reg); 11109 if (lock_status & resource_bit) { 11110 return (TRUE); 11111 } 11112 11113 BLOGE(sc, "Failed to get a resource lock 0x%x\n", resource); 11114 11115 return (FALSE); 11116 } 11117 11118 /* 11119 * Get the recovery leader resource id according to the engine this function 11120 * belongs to. Currently only only 2 engines is supported. 11121 */ 11122 static int 11123 bxe_get_leader_lock_resource(struct bxe_softc *sc) 11124 { 11125 if (SC_PATH(sc)) { 11126 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1); 11127 } else { 11128 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0); 11129 } 11130 } 11131 11132 /* try to acquire a leader lock for current engine */ 11133 static uint8_t 11134 bxe_trylock_leader_lock(struct bxe_softc *sc) 11135 { 11136 return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 11137 } 11138 11139 static int 11140 bxe_release_leader_lock(struct bxe_softc *sc) 11141 { 11142 return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 11143 } 11144 11145 /* close gates #2, #3 and #4 */ 11146 static void 11147 bxe_set_234_gates(struct bxe_softc *sc, 11148 uint8_t close) 11149 { 11150 uint32_t val; 11151 11152 /* gates #2 and #4a are closed/opened for "not E1" only */ 11153 if (!CHIP_IS_E1(sc)) { 11154 /* #4 */ 11155 REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 11156 /* #2 */ 11157 REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 11158 } 11159 11160 /* #3 */ 11161 if (CHIP_IS_E1x(sc)) { 11162 /* prevent interrupts from HC on both ports */ 11163 val = REG_RD(sc, HC_REG_CONFIG_1); 11164 REG_WR(sc, HC_REG_CONFIG_1, 11165 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 11166 (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 11167 11168 val = REG_RD(sc, HC_REG_CONFIG_0); 11169 REG_WR(sc, HC_REG_CONFIG_0, 11170 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 11171 (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 11172 } else { 11173 /* Prevent incomming interrupts in IGU */ 11174 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 11175 11176 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, 11177 (!close) ? 11178 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 11179 (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 11180 } 11181 11182 BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n", 11183 close ? "closing" : "opening"); 11184 11185 wmb(); 11186 } 11187 11188 /* poll for pending writes bit, it should get cleared in no more than 1s */ 11189 static int 11190 bxe_er_poll_igu_vq(struct bxe_softc *sc) 11191 { 11192 uint32_t cnt = 1000; 11193 uint32_t pend_bits = 0; 11194 11195 do { 11196 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS); 11197 11198 if (pend_bits == 0) { 11199 break; 11200 } 11201 11202 DELAY(1000); 11203 } while (--cnt > 0); 11204 11205 if (cnt == 0) { 11206 BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits); 11207 return (-1); 11208 } 11209 11210 return (0); 11211 } 11212 11213 #define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */ 11214 11215 static void 11216 bxe_clp_reset_prep(struct bxe_softc *sc, 11217 uint32_t *magic_val) 11218 { 11219 /* Do some magic... */ 11220 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 11221 *magic_val = val & SHARED_MF_CLP_MAGIC; 11222 MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 11223 } 11224 11225 /* restore the value of the 'magic' bit */ 11226 static void 11227 bxe_clp_reset_done(struct bxe_softc *sc, 11228 uint32_t magic_val) 11229 { 11230 /* Restore the 'magic' bit value... */ 11231 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 11232 MFCFG_WR(sc, shared_mf_config.clp_mb, 11233 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 11234 } 11235 11236 /* prepare for MCP reset, takes care of CLP configurations */ 11237 static void 11238 bxe_reset_mcp_prep(struct bxe_softc *sc, 11239 uint32_t *magic_val) 11240 { 11241 uint32_t shmem; 11242 uint32_t validity_offset; 11243 11244 /* set `magic' bit in order to save MF config */ 11245 if (!CHIP_IS_E1(sc)) { 11246 bxe_clp_reset_prep(sc, magic_val); 11247 } 11248 11249 /* get shmem offset */ 11250 shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 11251 validity_offset = 11252 offsetof(struct shmem_region, validity_map[SC_PORT(sc)]); 11253 11254 /* Clear validity map flags */ 11255 if (shmem > 0) { 11256 REG_WR(sc, shmem + validity_offset, 0); 11257 } 11258 } 11259 11260 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 11261 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 11262 11263 static void 11264 bxe_mcp_wait_one(struct bxe_softc *sc) 11265 { 11266 /* special handling for emulation and FPGA (10 times longer) */ 11267 if (CHIP_REV_IS_SLOW(sc)) { 11268 DELAY((MCP_ONE_TIMEOUT*10) * 1000); 11269 } else { 11270 DELAY((MCP_ONE_TIMEOUT) * 1000); 11271 } 11272 } 11273 11274 /* initialize shmem_base and waits for validity signature to appear */ 11275 static int 11276 bxe_init_shmem(struct bxe_softc *sc) 11277 { 11278 int cnt = 0; 11279 uint32_t val = 0; 11280 11281 do { 11282 sc->devinfo.shmem_base = 11283 sc->link_params.shmem_base = 11284 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 11285 11286 if (sc->devinfo.shmem_base) { 11287 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 11288 if (val & SHR_MEM_VALIDITY_MB) 11289 return (0); 11290 } 11291 11292 bxe_mcp_wait_one(sc); 11293 11294 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 11295 11296 BLOGE(sc, "BAD MCP validity signature\n"); 11297 11298 return (-1); 11299 } 11300 11301 static int 11302 bxe_reset_mcp_comp(struct bxe_softc *sc, 11303 uint32_t magic_val) 11304 { 11305 int rc = bxe_init_shmem(sc); 11306 11307 /* Restore the `magic' bit value */ 11308 if (!CHIP_IS_E1(sc)) { 11309 bxe_clp_reset_done(sc, magic_val); 11310 } 11311 11312 return (rc); 11313 } 11314 11315 static void 11316 bxe_pxp_prep(struct bxe_softc *sc) 11317 { 11318 if (!CHIP_IS_E1(sc)) { 11319 REG_WR(sc, PXP2_REG_RD_START_INIT, 0); 11320 REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0); 11321 wmb(); 11322 } 11323 } 11324 11325 /* 11326 * Reset the whole chip except for: 11327 * - PCIE core 11328 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit) 11329 * - IGU 11330 * - MISC (including AEU) 11331 * - GRC 11332 * - RBCN, RBCP 11333 */ 11334 static void 11335 bxe_process_kill_chip_reset(struct bxe_softc *sc, 11336 uint8_t global) 11337 { 11338 uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 11339 uint32_t global_bits2, stay_reset2; 11340 11341 /* 11342 * Bits that have to be set in reset_mask2 if we want to reset 'global' 11343 * (per chip) blocks. 11344 */ 11345 global_bits2 = 11346 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 11347 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 11348 11349 /* 11350 * Don't reset the following blocks. 11351 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 11352 * reset, as in 4 port device they might still be owned 11353 * by the MCP (there is only one leader per path). 11354 */ 11355 not_reset_mask1 = 11356 MISC_REGISTERS_RESET_REG_1_RST_HC | 11357 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 11358 MISC_REGISTERS_RESET_REG_1_RST_PXP; 11359 11360 not_reset_mask2 = 11361 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 11362 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 11363 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 11364 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 11365 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 11366 MISC_REGISTERS_RESET_REG_2_RST_GRC | 11367 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 11368 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 11369 MISC_REGISTERS_RESET_REG_2_RST_ATC | 11370 MISC_REGISTERS_RESET_REG_2_PGLC | 11371 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 11372 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 11373 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 11374 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 11375 MISC_REGISTERS_RESET_REG_2_UMAC0 | 11376 MISC_REGISTERS_RESET_REG_2_UMAC1; 11377 11378 /* 11379 * Keep the following blocks in reset: 11380 * - all xxMACs are handled by the elink code. 11381 */ 11382 stay_reset2 = 11383 MISC_REGISTERS_RESET_REG_2_XMAC | 11384 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 11385 11386 /* Full reset masks according to the chip */ 11387 reset_mask1 = 0xffffffff; 11388 11389 if (CHIP_IS_E1(sc)) 11390 reset_mask2 = 0xffff; 11391 else if (CHIP_IS_E1H(sc)) 11392 reset_mask2 = 0x1ffff; 11393 else if (CHIP_IS_E2(sc)) 11394 reset_mask2 = 0xfffff; 11395 else /* CHIP_IS_E3 */ 11396 reset_mask2 = 0x3ffffff; 11397 11398 /* Don't reset global blocks unless we need to */ 11399 if (!global) 11400 reset_mask2 &= ~global_bits2; 11401 11402 /* 11403 * In case of attention in the QM, we need to reset PXP 11404 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 11405 * because otherwise QM reset would release 'close the gates' shortly 11406 * before resetting the PXP, then the PSWRQ would send a write 11407 * request to PGLUE. Then when PXP is reset, PGLUE would try to 11408 * read the payload data from PSWWR, but PSWWR would not 11409 * respond. The write queue in PGLUE would stuck, dmae commands 11410 * would not return. Therefore it's important to reset the second 11411 * reset register (containing the 11412 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 11413 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 11414 * bit). 11415 */ 11416 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 11417 reset_mask2 & (~not_reset_mask2)); 11418 11419 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 11420 reset_mask1 & (~not_reset_mask1)); 11421 11422 mb(); 11423 wmb(); 11424 11425 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 11426 reset_mask2 & (~stay_reset2)); 11427 11428 mb(); 11429 wmb(); 11430 11431 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 11432 wmb(); 11433 } 11434 11435 static int 11436 bxe_process_kill(struct bxe_softc *sc, 11437 uint8_t global) 11438 { 11439 int cnt = 1000; 11440 uint32_t val = 0; 11441 uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 11442 uint32_t tags_63_32 = 0; 11443 11444 /* Empty the Tetris buffer, wait for 1s */ 11445 do { 11446 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT); 11447 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT); 11448 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0); 11449 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1); 11450 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2); 11451 if (CHIP_IS_E3(sc)) { 11452 tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32); 11453 } 11454 11455 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 11456 ((port_is_idle_0 & 0x1) == 0x1) && 11457 ((port_is_idle_1 & 0x1) == 0x1) && 11458 (pgl_exp_rom2 == 0xffffffff) && 11459 (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff))) 11460 break; 11461 DELAY(1000); 11462 } while (cnt-- > 0); 11463 11464 if (cnt <= 0) { 11465 BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there " 11466 "are still outstanding read requests after 1s! " 11467 "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, " 11468 "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 11469 sr_cnt, blk_cnt, port_is_idle_0, 11470 port_is_idle_1, pgl_exp_rom2); 11471 return (-1); 11472 } 11473 11474 mb(); 11475 11476 /* Close gates #2, #3 and #4 */ 11477 bxe_set_234_gates(sc, TRUE); 11478 11479 /* Poll for IGU VQs for 57712 and newer chips */ 11480 if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) { 11481 return (-1); 11482 } 11483 11484 /* XXX indicate that "process kill" is in progress to MCP */ 11485 11486 /* clear "unprepared" bit */ 11487 REG_WR(sc, MISC_REG_UNPREPARED, 0); 11488 mb(); 11489 11490 /* Make sure all is written to the chip before the reset */ 11491 wmb(); 11492 11493 /* 11494 * Wait for 1ms to empty GLUE and PCI-E core queues, 11495 * PSWHST, GRC and PSWRD Tetris buffer. 11496 */ 11497 DELAY(1000); 11498 11499 /* Prepare to chip reset: */ 11500 /* MCP */ 11501 if (global) { 11502 bxe_reset_mcp_prep(sc, &val); 11503 } 11504 11505 /* PXP */ 11506 bxe_pxp_prep(sc); 11507 mb(); 11508 11509 /* reset the chip */ 11510 bxe_process_kill_chip_reset(sc, global); 11511 mb(); 11512 11513 /* Recover after reset: */ 11514 /* MCP */ 11515 if (global && bxe_reset_mcp_comp(sc, val)) { 11516 return (-1); 11517 } 11518 11519 /* XXX add resetting the NO_MCP mode DB here */ 11520 11521 /* Open the gates #2, #3 and #4 */ 11522 bxe_set_234_gates(sc, FALSE); 11523 11524 /* XXX 11525 * IGU/AEU preparation bring back the AEU/IGU to a reset state 11526 * re-enable attentions 11527 */ 11528 11529 return (0); 11530 } 11531 11532 static int 11533 bxe_leader_reset(struct bxe_softc *sc) 11534 { 11535 int rc = 0; 11536 uint8_t global = bxe_reset_is_global(sc); 11537 uint32_t load_code; 11538 11539 /* 11540 * If not going to reset MCP, load "fake" driver to reset HW while 11541 * driver is owner of the HW. 11542 */ 11543 if (!global && !BXE_NOMCP(sc)) { 11544 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 11545 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 11546 if (!load_code) { 11547 BLOGE(sc, "MCP response failure, aborting\n"); 11548 rc = -1; 11549 goto exit_leader_reset; 11550 } 11551 11552 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 11553 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 11554 BLOGE(sc, "MCP unexpected response, aborting\n"); 11555 rc = -1; 11556 goto exit_leader_reset2; 11557 } 11558 11559 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 11560 if (!load_code) { 11561 BLOGE(sc, "MCP response failure, aborting\n"); 11562 rc = -1; 11563 goto exit_leader_reset2; 11564 } 11565 } 11566 11567 /* try to recover after the failure */ 11568 if (bxe_process_kill(sc, global)) { 11569 BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc)); 11570 rc = -1; 11571 goto exit_leader_reset2; 11572 } 11573 11574 /* 11575 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver 11576 * state. 11577 */ 11578 bxe_set_reset_done(sc); 11579 if (global) { 11580 bxe_clear_reset_global(sc); 11581 } 11582 11583 exit_leader_reset2: 11584 11585 /* unload "fake driver" if it was loaded */ 11586 if (!global && !BXE_NOMCP(sc)) { 11587 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 11588 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 11589 } 11590 11591 exit_leader_reset: 11592 11593 sc->is_leader = 0; 11594 bxe_release_leader_lock(sc); 11595 11596 mb(); 11597 return (rc); 11598 } 11599 11600 /* 11601 * prepare INIT transition, parameters configured: 11602 * - HC configuration 11603 * - Queue's CDU context 11604 */ 11605 static void 11606 bxe_pf_q_prep_init(struct bxe_softc *sc, 11607 struct bxe_fastpath *fp, 11608 struct ecore_queue_init_params *init_params) 11609 { 11610 uint8_t cos; 11611 int cxt_index, cxt_offset; 11612 11613 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags); 11614 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags); 11615 11616 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags); 11617 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags); 11618 11619 /* HC rate */ 11620 init_params->rx.hc_rate = 11621 sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0; 11622 init_params->tx.hc_rate = 11623 sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0; 11624 11625 /* FW SB ID */ 11626 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id; 11627 11628 /* CQ index among the SB indices */ 11629 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11630 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 11631 11632 /* set maximum number of COSs supported by this queue */ 11633 init_params->max_cos = sc->max_cos; 11634 11635 BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n", 11636 fp->index, init_params->max_cos); 11637 11638 /* set the context pointers queue object */ 11639 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 11640 /* XXX change index/cid here if ever support multiple tx CoS */ 11641 /* fp->txdata[cos]->cid */ 11642 cxt_index = fp->index / ILT_PAGE_CIDS; 11643 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS); 11644 init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth; 11645 } 11646 } 11647 11648 /* set flags that are common for the Tx-only and not normal connections */ 11649 static unsigned long 11650 bxe_get_common_flags(struct bxe_softc *sc, 11651 struct bxe_fastpath *fp, 11652 uint8_t zero_stats) 11653 { 11654 unsigned long flags = 0; 11655 11656 /* PF driver will always initialize the Queue to an ACTIVE state */ 11657 bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags); 11658 11659 /* 11660 * tx only connections collect statistics (on the same index as the 11661 * parent connection). The statistics are zeroed when the parent 11662 * connection is initialized. 11663 */ 11664 11665 bxe_set_bit(ECORE_Q_FLG_STATS, &flags); 11666 if (zero_stats) { 11667 bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags); 11668 } 11669 11670 /* 11671 * tx only connections can support tx-switching, though their 11672 * CoS-ness doesn't survive the loopback 11673 */ 11674 if (sc->flags & BXE_TX_SWITCHING) { 11675 bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags); 11676 } 11677 11678 bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags); 11679 11680 return (flags); 11681 } 11682 11683 static unsigned long 11684 bxe_get_q_flags(struct bxe_softc *sc, 11685 struct bxe_fastpath *fp, 11686 uint8_t leading) 11687 { 11688 unsigned long flags = 0; 11689 11690 if (IS_MF_SD(sc)) { 11691 bxe_set_bit(ECORE_Q_FLG_OV, &flags); 11692 } 11693 11694 if (sc->ifnet->if_capenable & IFCAP_LRO) { 11695 bxe_set_bit(ECORE_Q_FLG_TPA, &flags); 11696 bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags); 11697 #if 0 11698 if (fp->mode == TPA_MODE_GRO) 11699 __set_bit(ECORE_Q_FLG_TPA_GRO, &flags); 11700 #endif 11701 } 11702 11703 if (leading) { 11704 bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags); 11705 bxe_set_bit(ECORE_Q_FLG_MCAST, &flags); 11706 } 11707 11708 bxe_set_bit(ECORE_Q_FLG_VLAN, &flags); 11709 11710 #if 0 11711 /* configure silent vlan removal */ 11712 if (IS_MF_AFEX(sc)) { 11713 bxe_set_bit(ECORE_Q_FLG_SILENT_VLAN_REM, &flags); 11714 } 11715 #endif 11716 11717 /* merge with common flags */ 11718 return (flags | bxe_get_common_flags(sc, fp, TRUE)); 11719 } 11720 11721 static void 11722 bxe_pf_q_prep_general(struct bxe_softc *sc, 11723 struct bxe_fastpath *fp, 11724 struct ecore_general_setup_params *gen_init, 11725 uint8_t cos) 11726 { 11727 gen_init->stat_id = bxe_stats_id(fp); 11728 gen_init->spcl_id = fp->cl_id; 11729 gen_init->mtu = sc->mtu; 11730 gen_init->cos = cos; 11731 } 11732 11733 static void 11734 bxe_pf_rx_q_prep(struct bxe_softc *sc, 11735 struct bxe_fastpath *fp, 11736 struct rxq_pause_params *pause, 11737 struct ecore_rxq_setup_params *rxq_init) 11738 { 11739 uint8_t max_sge = 0; 11740 uint16_t sge_sz = 0; 11741 uint16_t tpa_agg_size = 0; 11742 11743 if (sc->ifnet->if_capenable & IFCAP_LRO) { 11744 pause->sge_th_lo = SGE_TH_LO(sc); 11745 pause->sge_th_hi = SGE_TH_HI(sc); 11746 11747 /* validate SGE ring has enough to cross high threshold */ 11748 if (sc->dropless_fc && 11749 (pause->sge_th_hi + FW_PREFETCH_CNT) > 11750 (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) { 11751 BLOGW(sc, "sge ring threshold limit\n"); 11752 } 11753 11754 /* minimum max_aggregation_size is 2*MTU (two full buffers) */ 11755 tpa_agg_size = (2 * sc->mtu); 11756 if (tpa_agg_size < sc->max_aggregation_size) { 11757 tpa_agg_size = sc->max_aggregation_size; 11758 } 11759 11760 max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT; 11761 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 11762 (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT; 11763 sge_sz = (uint16_t)min(SGE_PAGES, 0xffff); 11764 } 11765 11766 /* pause - not for e1 */ 11767 if (!CHIP_IS_E1(sc)) { 11768 pause->bd_th_lo = BD_TH_LO(sc); 11769 pause->bd_th_hi = BD_TH_HI(sc); 11770 11771 pause->rcq_th_lo = RCQ_TH_LO(sc); 11772 pause->rcq_th_hi = RCQ_TH_HI(sc); 11773 11774 /* validate rings have enough entries to cross high thresholds */ 11775 if (sc->dropless_fc && 11776 pause->bd_th_hi + FW_PREFETCH_CNT > 11777 sc->rx_ring_size) { 11778 BLOGW(sc, "rx bd ring threshold limit\n"); 11779 } 11780 11781 if (sc->dropless_fc && 11782 pause->rcq_th_hi + FW_PREFETCH_CNT > 11783 RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) { 11784 BLOGW(sc, "rcq ring threshold limit\n"); 11785 } 11786 11787 pause->pri_map = 1; 11788 } 11789 11790 /* rxq setup */ 11791 rxq_init->dscr_map = fp->rx_dma.paddr; 11792 rxq_init->sge_map = fp->rx_sge_dma.paddr; 11793 rxq_init->rcq_map = fp->rcq_dma.paddr; 11794 rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE); 11795 11796 /* 11797 * This should be a maximum number of data bytes that may be 11798 * placed on the BD (not including paddings). 11799 */ 11800 rxq_init->buf_sz = (fp->rx_buf_size - 11801 IP_HEADER_ALIGNMENT_PADDING); 11802 11803 rxq_init->cl_qzone_id = fp->cl_qzone_id; 11804 rxq_init->tpa_agg_sz = tpa_agg_size; 11805 rxq_init->sge_buf_sz = sge_sz; 11806 rxq_init->max_sges_pkt = max_sge; 11807 rxq_init->rss_engine_id = SC_FUNC(sc); 11808 rxq_init->mcast_engine_id = SC_FUNC(sc); 11809 11810 /* 11811 * Maximum number or simultaneous TPA aggregation for this Queue. 11812 * For PF Clients it should be the maximum available number. 11813 * VF driver(s) may want to define it to a smaller value. 11814 */ 11815 rxq_init->max_tpa_queues = MAX_AGG_QS(sc); 11816 11817 rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT; 11818 rxq_init->fw_sb_id = fp->fw_sb_id; 11819 11820 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11821 11822 /* 11823 * configure silent vlan removal 11824 * if multi function mode is afex, then mask default vlan 11825 */ 11826 if (IS_MF_AFEX(sc)) { 11827 rxq_init->silent_removal_value = 11828 sc->devinfo.mf_info.afex_def_vlan_tag; 11829 rxq_init->silent_removal_mask = EVL_VLID_MASK; 11830 } 11831 } 11832 11833 static void 11834 bxe_pf_tx_q_prep(struct bxe_softc *sc, 11835 struct bxe_fastpath *fp, 11836 struct ecore_txq_setup_params *txq_init, 11837 uint8_t cos) 11838 { 11839 /* 11840 * XXX If multiple CoS is ever supported then each fastpath structure 11841 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 11842 * fp->txdata[cos]->tx_dma.paddr; 11843 */ 11844 txq_init->dscr_map = fp->tx_dma.paddr; 11845 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 11846 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 11847 txq_init->fw_sb_id = fp->fw_sb_id; 11848 11849 /* 11850 * set the TSS leading client id for TX classfication to the 11851 * leading RSS client id 11852 */ 11853 txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id); 11854 } 11855 11856 /* 11857 * This function performs 2 steps in a queue state machine: 11858 * 1) RESET->INIT 11859 * 2) INIT->SETUP 11860 */ 11861 static int 11862 bxe_setup_queue(struct bxe_softc *sc, 11863 struct bxe_fastpath *fp, 11864 uint8_t leading) 11865 { 11866 struct ecore_queue_state_params q_params = { NULL }; 11867 struct ecore_queue_setup_params *setup_params = 11868 &q_params.params.setup; 11869 #if 0 11870 struct ecore_queue_setup_tx_only_params *tx_only_params = 11871 &q_params.params.tx_only; 11872 uint8_t tx_index; 11873 #endif 11874 int rc; 11875 11876 BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index); 11877 11878 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 11879 11880 q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 11881 11882 /* we want to wait for completion in this context */ 11883 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 11884 11885 /* prepare the INIT parameters */ 11886 bxe_pf_q_prep_init(sc, fp, &q_params.params.init); 11887 11888 /* Set the command */ 11889 q_params.cmd = ECORE_Q_CMD_INIT; 11890 11891 /* Change the state to INIT */ 11892 rc = ecore_queue_state_change(sc, &q_params); 11893 if (rc) { 11894 BLOGE(sc, "Queue(%d) INIT failed\n", fp->index); 11895 return (rc); 11896 } 11897 11898 BLOGD(sc, DBG_LOAD, "init complete\n"); 11899 11900 /* now move the Queue to the SETUP state */ 11901 memset(setup_params, 0, sizeof(*setup_params)); 11902 11903 /* set Queue flags */ 11904 setup_params->flags = bxe_get_q_flags(sc, fp, leading); 11905 11906 /* set general SETUP parameters */ 11907 bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params, 11908 FIRST_TX_COS_INDEX); 11909 11910 bxe_pf_rx_q_prep(sc, fp, 11911 &setup_params->pause_params, 11912 &setup_params->rxq_params); 11913 11914 bxe_pf_tx_q_prep(sc, fp, 11915 &setup_params->txq_params, 11916 FIRST_TX_COS_INDEX); 11917 11918 /* Set the command */ 11919 q_params.cmd = ECORE_Q_CMD_SETUP; 11920 11921 /* change the state to SETUP */ 11922 rc = ecore_queue_state_change(sc, &q_params); 11923 if (rc) { 11924 BLOGE(sc, "Queue(%d) SETUP failed\n", fp->index); 11925 return (rc); 11926 } 11927 11928 #if 0 11929 /* loop through the relevant tx-only indices */ 11930 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 11931 tx_index < sc->max_cos; 11932 tx_index++) { 11933 /* prepare and send tx-only ramrod*/ 11934 rc = bxe_setup_tx_only(sc, fp, &q_params, 11935 tx_only_params, tx_index, leading); 11936 if (rc) { 11937 BLOGE(sc, "Queue(%d.%d) TX_ONLY_SETUP failed\n", 11938 fp->index, tx_index); 11939 return (rc); 11940 } 11941 } 11942 #endif 11943 11944 return (rc); 11945 } 11946 11947 static int 11948 bxe_setup_leading(struct bxe_softc *sc) 11949 { 11950 return (bxe_setup_queue(sc, &sc->fp[0], TRUE)); 11951 } 11952 11953 static int 11954 bxe_config_rss_pf(struct bxe_softc *sc, 11955 struct ecore_rss_config_obj *rss_obj, 11956 uint8_t config_hash) 11957 { 11958 struct ecore_config_rss_params params = { NULL }; 11959 int i; 11960 11961 /* 11962 * Although RSS is meaningless when there is a single HW queue we 11963 * still need it enabled in order to have HW Rx hash generated. 11964 */ 11965 11966 params.rss_obj = rss_obj; 11967 11968 bxe_set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 11969 11970 bxe_set_bit(ECORE_RSS_MODE_REGULAR, ¶ms.rss_flags); 11971 11972 /* RSS configuration */ 11973 bxe_set_bit(ECORE_RSS_IPV4, ¶ms.rss_flags); 11974 bxe_set_bit(ECORE_RSS_IPV4_TCP, ¶ms.rss_flags); 11975 bxe_set_bit(ECORE_RSS_IPV6, ¶ms.rss_flags); 11976 bxe_set_bit(ECORE_RSS_IPV6_TCP, ¶ms.rss_flags); 11977 if (rss_obj->udp_rss_v4) { 11978 bxe_set_bit(ECORE_RSS_IPV4_UDP, ¶ms.rss_flags); 11979 } 11980 if (rss_obj->udp_rss_v6) { 11981 bxe_set_bit(ECORE_RSS_IPV6_UDP, ¶ms.rss_flags); 11982 } 11983 11984 /* Hash bits */ 11985 params.rss_result_mask = MULTI_MASK; 11986 11987 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 11988 11989 if (config_hash) { 11990 /* RSS keys */ 11991 for (i = 0; i < sizeof(params.rss_key) / 4; i++) { 11992 params.rss_key[i] = arc4random(); 11993 } 11994 11995 bxe_set_bit(ECORE_RSS_SET_SRCH, ¶ms.rss_flags); 11996 } 11997 11998 return (ecore_config_rss(sc, ¶ms)); 11999 } 12000 12001 static int 12002 bxe_config_rss_eth(struct bxe_softc *sc, 12003 uint8_t config_hash) 12004 { 12005 return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash)); 12006 } 12007 12008 static int 12009 bxe_init_rss_pf(struct bxe_softc *sc) 12010 { 12011 uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc); 12012 int i; 12013 12014 /* 12015 * Prepare the initial contents of the indirection table if 12016 * RSS is enabled 12017 */ 12018 for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) { 12019 sc->rss_conf_obj.ind_table[i] = 12020 (sc->fp->cl_id + (i % num_eth_queues)); 12021 } 12022 12023 if (sc->udp_rss) { 12024 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1; 12025 } 12026 12027 /* 12028 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 12029 * per-port, so if explicit configuration is needed, do it only 12030 * for a PMF. 12031 * 12032 * For 57712 and newer it's a per-function configuration. 12033 */ 12034 return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc))); 12035 } 12036 12037 static int 12038 bxe_set_mac_one(struct bxe_softc *sc, 12039 uint8_t *mac, 12040 struct ecore_vlan_mac_obj *obj, 12041 uint8_t set, 12042 int mac_type, 12043 unsigned long *ramrod_flags) 12044 { 12045 struct ecore_vlan_mac_ramrod_params ramrod_param; 12046 int rc; 12047 12048 memset(&ramrod_param, 0, sizeof(ramrod_param)); 12049 12050 /* fill in general parameters */ 12051 ramrod_param.vlan_mac_obj = obj; 12052 ramrod_param.ramrod_flags = *ramrod_flags; 12053 12054 /* fill a user request section if needed */ 12055 if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) { 12056 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 12057 12058 bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 12059 12060 /* Set the command: ADD or DEL */ 12061 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD : 12062 ECORE_VLAN_MAC_DEL; 12063 } 12064 12065 rc = ecore_config_vlan_mac(sc, &ramrod_param); 12066 12067 if (rc == ECORE_EXISTS) { 12068 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12069 /* do not treat adding same MAC as error */ 12070 rc = 0; 12071 } else if (rc < 0) { 12072 BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc); 12073 } 12074 12075 return (rc); 12076 } 12077 12078 static int 12079 bxe_set_eth_mac(struct bxe_softc *sc, 12080 uint8_t set) 12081 { 12082 unsigned long ramrod_flags = 0; 12083 12084 BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n"); 12085 12086 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 12087 12088 /* Eth MAC is set on RSS leading client (fp[0]) */ 12089 return (bxe_set_mac_one(sc, sc->link_params.mac_addr, 12090 &sc->sp_objs->mac_obj, 12091 set, ECORE_ETH_MAC, &ramrod_flags)); 12092 } 12093 12094 #if 0 12095 static void 12096 bxe_update_max_mf_config(struct bxe_softc *sc, 12097 uint32_t value) 12098 { 12099 /* load old values */ 12100 uint32_t mf_cfg = sc->devinfo.mf_info.mf_config[SC_VN(sc)]; 12101 12102 if (value != bxe_extract_max_cfg(sc, mf_cfg)) { 12103 /* leave all but MAX value */ 12104 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK; 12105 12106 /* set new MAX value */ 12107 mf_cfg |= ((value << FUNC_MF_CFG_MAX_BW_SHIFT) & 12108 FUNC_MF_CFG_MAX_BW_MASK); 12109 12110 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW, mf_cfg); 12111 } 12112 } 12113 #endif 12114 12115 static int 12116 bxe_get_cur_phy_idx(struct bxe_softc *sc) 12117 { 12118 uint32_t sel_phy_idx = 0; 12119 12120 if (sc->link_params.num_phys <= 1) { 12121 return (ELINK_INT_PHY); 12122 } 12123 12124 if (sc->link_vars.link_up) { 12125 sel_phy_idx = ELINK_EXT_PHY1; 12126 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */ 12127 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 12128 (sc->link_params.phy[ELINK_EXT_PHY2].supported & 12129 ELINK_SUPPORTED_FIBRE)) 12130 sel_phy_idx = ELINK_EXT_PHY2; 12131 } else { 12132 switch (elink_phy_selection(&sc->link_params)) { 12133 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 12134 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 12135 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 12136 sel_phy_idx = ELINK_EXT_PHY1; 12137 break; 12138 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 12139 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 12140 sel_phy_idx = ELINK_EXT_PHY2; 12141 break; 12142 } 12143 } 12144 12145 return (sel_phy_idx); 12146 } 12147 12148 static int 12149 bxe_get_link_cfg_idx(struct bxe_softc *sc) 12150 { 12151 uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc); 12152 12153 /* 12154 * The selected activated PHY is always after swapping (in case PHY 12155 * swapping is enabled). So when swapping is enabled, we need to reverse 12156 * the configuration 12157 */ 12158 12159 if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 12160 if (sel_phy_idx == ELINK_EXT_PHY1) 12161 sel_phy_idx = ELINK_EXT_PHY2; 12162 else if (sel_phy_idx == ELINK_EXT_PHY2) 12163 sel_phy_idx = ELINK_EXT_PHY1; 12164 } 12165 12166 return (ELINK_LINK_CONFIG_IDX(sel_phy_idx)); 12167 } 12168 12169 static void 12170 bxe_set_requested_fc(struct bxe_softc *sc) 12171 { 12172 /* 12173 * Initialize link parameters structure variables 12174 * It is recommended to turn off RX FC for jumbo frames 12175 * for better performance 12176 */ 12177 if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) { 12178 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX; 12179 } else { 12180 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH; 12181 } 12182 } 12183 12184 static void 12185 bxe_calc_fc_adv(struct bxe_softc *sc) 12186 { 12187 uint8_t cfg_idx = bxe_get_link_cfg_idx(sc); 12188 switch (sc->link_vars.ieee_fc & 12189 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 12190 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE: 12191 default: 12192 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 12193 ADVERTISED_Pause); 12194 break; 12195 12196 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 12197 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 12198 ADVERTISED_Pause); 12199 break; 12200 12201 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 12202 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 12203 break; 12204 } 12205 } 12206 12207 static uint16_t 12208 bxe_get_mf_speed(struct bxe_softc *sc) 12209 { 12210 uint16_t line_speed = sc->link_vars.line_speed; 12211 if (IS_MF(sc)) { 12212 uint16_t maxCfg = 12213 bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]); 12214 12215 /* calculate the current MAX line speed limit for the MF devices */ 12216 if (IS_MF_SI(sc)) { 12217 line_speed = (line_speed * maxCfg) / 100; 12218 } else { /* SD mode */ 12219 uint16_t vn_max_rate = maxCfg * 100; 12220 12221 if (vn_max_rate < line_speed) { 12222 line_speed = vn_max_rate; 12223 } 12224 } 12225 } 12226 12227 return (line_speed); 12228 } 12229 12230 static void 12231 bxe_fill_report_data(struct bxe_softc *sc, 12232 struct bxe_link_report_data *data) 12233 { 12234 uint16_t line_speed = bxe_get_mf_speed(sc); 12235 12236 memset(data, 0, sizeof(*data)); 12237 12238 /* fill the report data with the effective line speed */ 12239 data->line_speed = line_speed; 12240 12241 /* Link is down */ 12242 if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) { 12243 bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags); 12244 } 12245 12246 /* Full DUPLEX */ 12247 if (sc->link_vars.duplex == DUPLEX_FULL) { 12248 bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags); 12249 } 12250 12251 /* Rx Flow Control is ON */ 12252 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) { 12253 bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags); 12254 } 12255 12256 /* Tx Flow Control is ON */ 12257 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 12258 bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags); 12259 } 12260 } 12261 12262 /* report link status to OS, should be called under phy_lock */ 12263 static void 12264 bxe_link_report_locked(struct bxe_softc *sc) 12265 { 12266 struct bxe_link_report_data cur_data; 12267 12268 /* reread mf_cfg */ 12269 if (IS_PF(sc) && !CHIP_IS_E1(sc)) { 12270 bxe_read_mf_cfg(sc); 12271 } 12272 12273 /* Read the current link report info */ 12274 bxe_fill_report_data(sc, &cur_data); 12275 12276 /* Don't report link down or exactly the same link status twice */ 12277 if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) || 12278 (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 12279 &sc->last_reported_link.link_report_flags) && 12280 bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 12281 &cur_data.link_report_flags))) { 12282 return; 12283 } 12284 12285 sc->link_cnt++; 12286 12287 /* report new link params and remember the state for the next time */ 12288 memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data)); 12289 12290 if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 12291 &cur_data.link_report_flags)) { 12292 if_link_state_change(sc->ifnet, LINK_STATE_DOWN); 12293 BLOGI(sc, "NIC Link is Down\n"); 12294 } else { 12295 const char *duplex; 12296 const char *flow; 12297 12298 if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX, 12299 &cur_data.link_report_flags)) { 12300 duplex = "full"; 12301 } else { 12302 duplex = "half"; 12303 } 12304 12305 /* 12306 * Handle the FC at the end so that only these flags would be 12307 * possibly set. This way we may easily check if there is no FC 12308 * enabled. 12309 */ 12310 if (cur_data.link_report_flags) { 12311 if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 12312 &cur_data.link_report_flags) && 12313 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 12314 &cur_data.link_report_flags)) { 12315 flow = "ON - receive & transmit"; 12316 } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 12317 &cur_data.link_report_flags) && 12318 !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 12319 &cur_data.link_report_flags)) { 12320 flow = "ON - receive"; 12321 } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 12322 &cur_data.link_report_flags) && 12323 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 12324 &cur_data.link_report_flags)) { 12325 flow = "ON - transmit"; 12326 } else { 12327 flow = "none"; /* possible? */ 12328 } 12329 } else { 12330 flow = "none"; 12331 } 12332 12333 if_link_state_change(sc->ifnet, LINK_STATE_UP); 12334 BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 12335 cur_data.line_speed, duplex, flow); 12336 } 12337 } 12338 12339 static void 12340 bxe_link_report(struct bxe_softc *sc) 12341 { 12342 BXE_PHY_LOCK(sc); 12343 bxe_link_report_locked(sc); 12344 BXE_PHY_UNLOCK(sc); 12345 } 12346 12347 static void 12348 bxe_link_status_update(struct bxe_softc *sc) 12349 { 12350 if (sc->state != BXE_STATE_OPEN) { 12351 return; 12352 } 12353 12354 #if 0 12355 /* read updated dcb configuration */ 12356 if (IS_PF(sc)) 12357 bxe_dcbx_pmf_update(sc); 12358 #endif 12359 12360 if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) { 12361 elink_link_status_update(&sc->link_params, &sc->link_vars); 12362 } else { 12363 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half | 12364 ELINK_SUPPORTED_10baseT_Full | 12365 ELINK_SUPPORTED_100baseT_Half | 12366 ELINK_SUPPORTED_100baseT_Full | 12367 ELINK_SUPPORTED_1000baseT_Full | 12368 ELINK_SUPPORTED_2500baseX_Full | 12369 ELINK_SUPPORTED_10000baseT_Full | 12370 ELINK_SUPPORTED_TP | 12371 ELINK_SUPPORTED_FIBRE | 12372 ELINK_SUPPORTED_Autoneg | 12373 ELINK_SUPPORTED_Pause | 12374 ELINK_SUPPORTED_Asym_Pause); 12375 sc->port.advertising[0] = sc->port.supported[0]; 12376 12377 sc->link_params.sc = sc; 12378 sc->link_params.port = SC_PORT(sc); 12379 sc->link_params.req_duplex[0] = DUPLEX_FULL; 12380 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE; 12381 sc->link_params.req_line_speed[0] = SPEED_10000; 12382 sc->link_params.speed_cap_mask[0] = 0x7f0000; 12383 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G; 12384 12385 if (CHIP_REV_IS_FPGA(sc)) { 12386 sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC; 12387 sc->link_vars.line_speed = ELINK_SPEED_1000; 12388 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 12389 LINK_STATUS_SPEED_AND_DUPLEX_1000TFD); 12390 } else { 12391 sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC; 12392 sc->link_vars.line_speed = ELINK_SPEED_10000; 12393 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 12394 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 12395 } 12396 12397 sc->link_vars.link_up = 1; 12398 12399 sc->link_vars.duplex = DUPLEX_FULL; 12400 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE; 12401 12402 if (IS_PF(sc)) { 12403 REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0); 12404 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12405 bxe_link_report(sc); 12406 } 12407 } 12408 12409 if (IS_PF(sc)) { 12410 if (sc->link_vars.link_up) { 12411 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12412 } else { 12413 bxe_stats_handle(sc, STATS_EVENT_STOP); 12414 } 12415 bxe_link_report(sc); 12416 } else { 12417 bxe_link_report(sc); 12418 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12419 } 12420 } 12421 12422 static int 12423 bxe_initial_phy_init(struct bxe_softc *sc, 12424 int load_mode) 12425 { 12426 int rc, cfg_idx = bxe_get_link_cfg_idx(sc); 12427 uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx]; 12428 struct elink_params *lp = &sc->link_params; 12429 12430 bxe_set_requested_fc(sc); 12431 12432 if (CHIP_REV_IS_SLOW(sc)) { 12433 uint32_t bond = CHIP_BOND_ID(sc); 12434 uint32_t feat = 0; 12435 12436 if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) { 12437 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 12438 } else if (bond & 0x4) { 12439 if (CHIP_IS_E3(sc)) { 12440 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC; 12441 } else { 12442 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 12443 } 12444 } else if (bond & 0x8) { 12445 if (CHIP_IS_E3(sc)) { 12446 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC; 12447 } else { 12448 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 12449 } 12450 } 12451 12452 /* disable EMAC for E3 and above */ 12453 if (bond & 0x2) { 12454 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 12455 } 12456 12457 sc->link_params.feature_config_flags |= feat; 12458 } 12459 12460 BXE_PHY_LOCK(sc); 12461 12462 if (load_mode == LOAD_DIAG) { 12463 lp->loopback_mode = ELINK_LOOPBACK_XGXS; 12464 /* Prefer doing PHY loopback at 10G speed, if possible */ 12465 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) { 12466 if (lp->speed_cap_mask[cfg_idx] & 12467 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 12468 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000; 12469 } else { 12470 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000; 12471 } 12472 } 12473 } 12474 12475 if (load_mode == LOAD_LOOPBACK_EXT) { 12476 lp->loopback_mode = ELINK_LOOPBACK_EXT; 12477 } 12478 12479 rc = elink_phy_init(&sc->link_params, &sc->link_vars); 12480 12481 BXE_PHY_UNLOCK(sc); 12482 12483 bxe_calc_fc_adv(sc); 12484 12485 if (sc->link_vars.link_up) { 12486 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12487 bxe_link_report(sc); 12488 } 12489 12490 if (!CHIP_REV_IS_SLOW(sc)) { 12491 bxe_periodic_start(sc); 12492 } 12493 12494 sc->link_params.req_line_speed[cfg_idx] = req_line_speed; 12495 return (rc); 12496 } 12497 12498 /* must be called under IF_ADDR_LOCK */ 12499 static int 12500 bxe_init_mcast_macs_list(struct bxe_softc *sc, 12501 struct ecore_mcast_ramrod_params *p) 12502 { 12503 struct ifnet *ifp = sc->ifnet; 12504 int mc_count = 0; 12505 struct ifmultiaddr *ifma; 12506 struct ecore_mcast_list_elem *mc_mac; 12507 12508 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 12509 if (ifma->ifma_addr->sa_family != AF_LINK) { 12510 continue; 12511 } 12512 12513 mc_count++; 12514 } 12515 12516 ECORE_LIST_INIT(&p->mcast_list); 12517 p->mcast_list_len = 0; 12518 12519 if (!mc_count) { 12520 return (0); 12521 } 12522 12523 mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, 12524 (M_NOWAIT | M_ZERO)); 12525 if (!mc_mac) { 12526 BLOGE(sc, "Failed to allocate temp mcast list\n"); 12527 return (-1); 12528 } 12529 12530 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 12531 if (ifma->ifma_addr->sa_family != AF_LINK) { 12532 continue; 12533 } 12534 12535 mc_mac->mac = (uint8_t *)LLADDR((struct sockaddr_dl *)ifma->ifma_addr); 12536 ECORE_LIST_PUSH_TAIL(&mc_mac->link, &p->mcast_list); 12537 12538 BLOGD(sc, DBG_LOAD, 12539 "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n", 12540 mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2], 12541 mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]); 12542 12543 mc_mac++; 12544 } 12545 12546 p->mcast_list_len = mc_count; 12547 12548 return (0); 12549 } 12550 12551 static void 12552 bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p) 12553 { 12554 struct ecore_mcast_list_elem *mc_mac = 12555 ECORE_LIST_FIRST_ENTRY(&p->mcast_list, 12556 struct ecore_mcast_list_elem, 12557 link); 12558 12559 if (mc_mac) { 12560 /* only a single free as all mc_macs are in the same heap array */ 12561 free(mc_mac, M_DEVBUF); 12562 } 12563 } 12564 12565 static int 12566 bxe_set_mc_list(struct bxe_softc *sc) 12567 { 12568 struct ecore_mcast_ramrod_params rparam = { NULL }; 12569 int rc = 0; 12570 12571 rparam.mcast_obj = &sc->mcast_obj; 12572 12573 BXE_MCAST_LOCK(sc); 12574 12575 /* first, clear all configured multicast MACs */ 12576 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 12577 if (rc < 0) { 12578 BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc); 12579 return (rc); 12580 } 12581 12582 /* configure a new MACs list */ 12583 rc = bxe_init_mcast_macs_list(sc, &rparam); 12584 if (rc) { 12585 BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc); 12586 BXE_MCAST_UNLOCK(sc); 12587 return (rc); 12588 } 12589 12590 /* Now add the new MACs */ 12591 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD); 12592 if (rc < 0) { 12593 BLOGE(sc, "Failed to set new mcast config (%d)\n", rc); 12594 } 12595 12596 bxe_free_mcast_macs_list(&rparam); 12597 12598 BXE_MCAST_UNLOCK(sc); 12599 12600 return (rc); 12601 } 12602 12603 static int 12604 bxe_set_uc_list(struct bxe_softc *sc) 12605 { 12606 struct ifnet *ifp = sc->ifnet; 12607 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 12608 struct ifaddr *ifa; 12609 unsigned long ramrod_flags = 0; 12610 int rc; 12611 12612 #if __FreeBSD_version < 800000 12613 IF_ADDR_LOCK(ifp); 12614 #else 12615 if_addr_rlock(ifp); 12616 #endif 12617 12618 /* first schedule a cleanup up of old configuration */ 12619 rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE); 12620 if (rc < 0) { 12621 BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc); 12622 #if __FreeBSD_version < 800000 12623 IF_ADDR_UNLOCK(ifp); 12624 #else 12625 if_addr_runlock(ifp); 12626 #endif 12627 return (rc); 12628 } 12629 12630 ifa = ifp->if_addr; 12631 while (ifa) { 12632 if (ifa->ifa_addr->sa_family != AF_LINK) { 12633 ifa = TAILQ_NEXT(ifa, ifa_link); 12634 continue; 12635 } 12636 12637 rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr), 12638 mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags); 12639 if (rc == -EEXIST) { 12640 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12641 /* do not treat adding same MAC as an error */ 12642 rc = 0; 12643 } else if (rc < 0) { 12644 BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc); 12645 #if __FreeBSD_version < 800000 12646 IF_ADDR_UNLOCK(ifp); 12647 #else 12648 if_addr_runlock(ifp); 12649 #endif 12650 return (rc); 12651 } 12652 12653 ifa = TAILQ_NEXT(ifa, ifa_link); 12654 } 12655 12656 #if __FreeBSD_version < 800000 12657 IF_ADDR_UNLOCK(ifp); 12658 #else 12659 if_addr_runlock(ifp); 12660 #endif 12661 12662 /* Execute the pending commands */ 12663 bit_set(&ramrod_flags, RAMROD_CONT); 12664 return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */, 12665 ECORE_UC_LIST_MAC, &ramrod_flags)); 12666 } 12667 12668 static void 12669 bxe_handle_rx_mode_tq(void *context, 12670 int pending) 12671 { 12672 struct bxe_softc *sc = (struct bxe_softc *)context; 12673 struct ifnet *ifp = sc->ifnet; 12674 uint32_t rx_mode = BXE_RX_MODE_NORMAL; 12675 12676 BXE_CORE_LOCK(sc); 12677 12678 if (sc->state != BXE_STATE_OPEN) { 12679 BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state); 12680 BXE_CORE_UNLOCK(sc); 12681 return; 12682 } 12683 12684 BLOGD(sc, DBG_SP, "ifp->if_flags=0x%x\n", ifp->if_flags); 12685 12686 if (ifp->if_flags & IFF_PROMISC) { 12687 rx_mode = BXE_RX_MODE_PROMISC; 12688 } else if ((ifp->if_flags & IFF_ALLMULTI) || 12689 ((ifp->if_amcount > BXE_MAX_MULTICAST) && 12690 CHIP_IS_E1(sc))) { 12691 rx_mode = BXE_RX_MODE_ALLMULTI; 12692 } else { 12693 if (IS_PF(sc)) { 12694 /* some multicasts */ 12695 if (bxe_set_mc_list(sc) < 0) { 12696 rx_mode = BXE_RX_MODE_ALLMULTI; 12697 } 12698 if (bxe_set_uc_list(sc) < 0) { 12699 rx_mode = BXE_RX_MODE_PROMISC; 12700 } 12701 } 12702 #if 0 12703 else { 12704 /* 12705 * Configuring mcast to a VF involves sleeping (when we 12706 * wait for the PF's response). Since this function is 12707 * called from a non sleepable context we must schedule 12708 * a work item for this purpose 12709 */ 12710 bxe_set_bit(BXE_SP_RTNL_VFPF_MCAST, &sc->sp_rtnl_state); 12711 schedule_delayed_work(&sc->sp_rtnl_task, 0); 12712 } 12713 #endif 12714 } 12715 12716 sc->rx_mode = rx_mode; 12717 12718 /* schedule the rx_mode command */ 12719 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 12720 BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n"); 12721 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 12722 BXE_CORE_UNLOCK(sc); 12723 return; 12724 } 12725 12726 if (IS_PF(sc)) { 12727 bxe_set_storm_rx_mode(sc); 12728 } 12729 #if 0 12730 else { 12731 /* 12732 * Configuring mcast to a VF involves sleeping (when we 12733 * wait for the PF's response). Since this function is 12734 * called from a non sleepable context we must schedule 12735 * a work item for this purpose 12736 */ 12737 bxe_set_bit(BXE_SP_RTNL_VFPF_STORM_RX_MODE, &sc->sp_rtnl_state); 12738 schedule_delayed_work(&sc->sp_rtnl_task, 0); 12739 } 12740 #endif 12741 12742 BXE_CORE_UNLOCK(sc); 12743 } 12744 12745 static void 12746 bxe_set_rx_mode(struct bxe_softc *sc) 12747 { 12748 taskqueue_enqueue(sc->rx_mode_tq, &sc->rx_mode_tq_task); 12749 } 12750 12751 /* update flags in shmem */ 12752 static void 12753 bxe_update_drv_flags(struct bxe_softc *sc, 12754 uint32_t flags, 12755 uint32_t set) 12756 { 12757 uint32_t drv_flags; 12758 12759 if (SHMEM2_HAS(sc, drv_flags)) { 12760 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12761 drv_flags = SHMEM2_RD(sc, drv_flags); 12762 12763 if (set) { 12764 SET_FLAGS(drv_flags, flags); 12765 } else { 12766 RESET_FLAGS(drv_flags, flags); 12767 } 12768 12769 SHMEM2_WR(sc, drv_flags, drv_flags); 12770 BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags); 12771 12772 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12773 } 12774 } 12775 12776 /* periodic timer callout routine, only runs when the interface is up */ 12777 12778 static void 12779 bxe_periodic_callout_func(void *xsc) 12780 { 12781 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12782 int i; 12783 12784 if (!BXE_CORE_TRYLOCK(sc)) { 12785 /* just bail and try again next time */ 12786 12787 if ((sc->state == BXE_STATE_OPEN) && 12788 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12789 /* schedule the next periodic callout */ 12790 callout_reset(&sc->periodic_callout, hz, 12791 bxe_periodic_callout_func, sc); 12792 } 12793 12794 return; 12795 } 12796 12797 if ((sc->state != BXE_STATE_OPEN) || 12798 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) { 12799 BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state); 12800 BXE_CORE_UNLOCK(sc); 12801 return; 12802 } 12803 12804 /* Check for TX timeouts on any fastpath. */ 12805 FOR_EACH_QUEUE(sc, i) { 12806 if (bxe_watchdog(sc, &sc->fp[i]) != 0) { 12807 /* Ruh-Roh, chip was reset! */ 12808 break; 12809 } 12810 } 12811 12812 if (!CHIP_REV_IS_SLOW(sc)) { 12813 /* 12814 * This barrier is needed to ensure the ordering between the writing 12815 * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and 12816 * the reading here. 12817 */ 12818 mb(); 12819 if (sc->port.pmf) { 12820 BXE_PHY_LOCK(sc); 12821 elink_period_func(&sc->link_params, &sc->link_vars); 12822 BXE_PHY_UNLOCK(sc); 12823 } 12824 } 12825 12826 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 12827 int mb_idx = SC_FW_MB_IDX(sc); 12828 uint32_t drv_pulse; 12829 uint32_t mcp_pulse; 12830 12831 ++sc->fw_drv_pulse_wr_seq; 12832 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 12833 12834 drv_pulse = sc->fw_drv_pulse_wr_seq; 12835 bxe_drv_pulse(sc); 12836 12837 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) & 12838 MCP_PULSE_SEQ_MASK); 12839 12840 /* 12841 * The delta between driver pulse and mcp response should 12842 * be 1 (before mcp response) or 0 (after mcp response). 12843 */ 12844 if ((drv_pulse != mcp_pulse) && 12845 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) { 12846 /* someone lost a heartbeat... */ 12847 BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 12848 drv_pulse, mcp_pulse); 12849 } 12850 } 12851 12852 /* state is BXE_STATE_OPEN */ 12853 bxe_stats_handle(sc, STATS_EVENT_UPDATE); 12854 12855 #if 0 12856 /* sample VF bulletin board for new posts from PF */ 12857 if (IS_VF(sc)) { 12858 bxe_sample_bulletin(sc); 12859 } 12860 #endif 12861 12862 BXE_CORE_UNLOCK(sc); 12863 12864 if ((sc->state == BXE_STATE_OPEN) && 12865 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12866 /* schedule the next periodic callout */ 12867 callout_reset(&sc->periodic_callout, hz, 12868 bxe_periodic_callout_func, sc); 12869 } 12870 } 12871 12872 static void 12873 bxe_periodic_start(struct bxe_softc *sc) 12874 { 12875 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO); 12876 callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc); 12877 } 12878 12879 static void 12880 bxe_periodic_stop(struct bxe_softc *sc) 12881 { 12882 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP); 12883 callout_drain(&sc->periodic_callout); 12884 } 12885 12886 /* start the controller */ 12887 static __noinline int 12888 bxe_nic_load(struct bxe_softc *sc, 12889 int load_mode) 12890 { 12891 uint32_t val; 12892 int load_code = 0; 12893 int i, rc = 0; 12894 12895 BXE_CORE_LOCK_ASSERT(sc); 12896 12897 BLOGD(sc, DBG_LOAD, "Starting NIC load...\n"); 12898 12899 sc->state = BXE_STATE_OPENING_WAITING_LOAD; 12900 12901 if (IS_PF(sc)) { 12902 /* must be called before memory allocation and HW init */ 12903 bxe_ilt_set_info(sc); 12904 } 12905 12906 sc->last_reported_link_state = LINK_STATE_UNKNOWN; 12907 12908 bxe_set_fp_rx_buf_size(sc); 12909 12910 if (bxe_alloc_fp_buffers(sc) != 0) { 12911 BLOGE(sc, "Failed to allocate fastpath memory\n"); 12912 sc->state = BXE_STATE_CLOSED; 12913 rc = ENOMEM; 12914 goto bxe_nic_load_error0; 12915 } 12916 12917 if (bxe_alloc_mem(sc) != 0) { 12918 sc->state = BXE_STATE_CLOSED; 12919 rc = ENOMEM; 12920 goto bxe_nic_load_error0; 12921 } 12922 12923 if (bxe_alloc_fw_stats_mem(sc) != 0) { 12924 sc->state = BXE_STATE_CLOSED; 12925 rc = ENOMEM; 12926 goto bxe_nic_load_error0; 12927 } 12928 12929 if (IS_PF(sc)) { 12930 /* set pf load just before approaching the MCP */ 12931 bxe_set_pf_load(sc); 12932 12933 /* if MCP exists send load request and analyze response */ 12934 if (!BXE_NOMCP(sc)) { 12935 /* attempt to load pf */ 12936 if (bxe_nic_load_request(sc, &load_code) != 0) { 12937 sc->state = BXE_STATE_CLOSED; 12938 rc = ENXIO; 12939 goto bxe_nic_load_error1; 12940 } 12941 12942 /* what did the MCP say? */ 12943 if (bxe_nic_load_analyze_req(sc, load_code) != 0) { 12944 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12945 sc->state = BXE_STATE_CLOSED; 12946 rc = ENXIO; 12947 goto bxe_nic_load_error2; 12948 } 12949 } else { 12950 BLOGI(sc, "Device has no MCP!\n"); 12951 load_code = bxe_nic_load_no_mcp(sc); 12952 } 12953 12954 /* mark PMF if applicable */ 12955 bxe_nic_load_pmf(sc, load_code); 12956 12957 /* Init Function state controlling object */ 12958 bxe_init_func_obj(sc); 12959 12960 /* Initialize HW */ 12961 if (bxe_init_hw(sc, load_code) != 0) { 12962 BLOGE(sc, "HW init failed\n"); 12963 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12964 sc->state = BXE_STATE_CLOSED; 12965 rc = ENXIO; 12966 goto bxe_nic_load_error2; 12967 } 12968 } 12969 12970 /* attach interrupts */ 12971 if (bxe_interrupt_attach(sc) != 0) { 12972 sc->state = BXE_STATE_CLOSED; 12973 rc = ENXIO; 12974 goto bxe_nic_load_error2; 12975 } 12976 12977 bxe_nic_init(sc, load_code); 12978 12979 /* Init per-function objects */ 12980 if (IS_PF(sc)) { 12981 bxe_init_objs(sc); 12982 // XXX bxe_iov_nic_init(sc); 12983 12984 /* set AFEX default VLAN tag to an invalid value */ 12985 sc->devinfo.mf_info.afex_def_vlan_tag = -1; 12986 // XXX bxe_nic_load_afex_dcc(sc, load_code); 12987 12988 sc->state = BXE_STATE_OPENING_WAITING_PORT; 12989 rc = bxe_func_start(sc); 12990 if (rc) { 12991 BLOGE(sc, "Function start failed!\n"); 12992 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12993 sc->state = BXE_STATE_ERROR; 12994 goto bxe_nic_load_error3; 12995 } 12996 12997 /* send LOAD_DONE command to MCP */ 12998 if (!BXE_NOMCP(sc)) { 12999 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 13000 if (!load_code) { 13001 BLOGE(sc, "MCP response failure, aborting\n"); 13002 sc->state = BXE_STATE_ERROR; 13003 rc = ENXIO; 13004 goto bxe_nic_load_error3; 13005 } 13006 } 13007 13008 rc = bxe_setup_leading(sc); 13009 if (rc) { 13010 BLOGE(sc, "Setup leading failed!\n"); 13011 sc->state = BXE_STATE_ERROR; 13012 goto bxe_nic_load_error3; 13013 } 13014 13015 FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) { 13016 rc = bxe_setup_queue(sc, &sc->fp[i], FALSE); 13017 if (rc) { 13018 BLOGE(sc, "Queue(%d) setup failed\n", i); 13019 sc->state = BXE_STATE_ERROR; 13020 goto bxe_nic_load_error3; 13021 } 13022 } 13023 13024 rc = bxe_init_rss_pf(sc); 13025 if (rc) { 13026 BLOGE(sc, "PF RSS init failed\n"); 13027 sc->state = BXE_STATE_ERROR; 13028 goto bxe_nic_load_error3; 13029 } 13030 } 13031 /* XXX VF */ 13032 #if 0 13033 else { /* VF */ 13034 FOR_EACH_ETH_QUEUE(sc, i) { 13035 rc = bxe_vfpf_setup_q(sc, i); 13036 if (rc) { 13037 BLOGE(sc, "Queue(%d) setup failed\n", i); 13038 sc->state = BXE_STATE_ERROR; 13039 goto bxe_nic_load_error3; 13040 } 13041 } 13042 } 13043 #endif 13044 13045 /* now when Clients are configured we are ready to work */ 13046 sc->state = BXE_STATE_OPEN; 13047 13048 /* Configure a ucast MAC */ 13049 if (IS_PF(sc)) { 13050 rc = bxe_set_eth_mac(sc, TRUE); 13051 } 13052 #if 0 13053 else { /* IS_VF(sc) */ 13054 rc = bxe_vfpf_set_mac(sc); 13055 } 13056 #endif 13057 if (rc) { 13058 BLOGE(sc, "Setting Ethernet MAC failed\n"); 13059 sc->state = BXE_STATE_ERROR; 13060 goto bxe_nic_load_error3; 13061 } 13062 13063 #if 0 13064 if (IS_PF(sc) && sc->pending_max) { 13065 /* for AFEX */ 13066 bxe_update_max_mf_config(sc, sc->pending_max); 13067 sc->pending_max = 0; 13068 } 13069 #endif 13070 13071 if (sc->port.pmf) { 13072 rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN); 13073 if (rc) { 13074 sc->state = BXE_STATE_ERROR; 13075 goto bxe_nic_load_error3; 13076 } 13077 } 13078 13079 sc->link_params.feature_config_flags &= 13080 ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN; 13081 13082 /* start fast path */ 13083 13084 /* Initialize Rx filter */ 13085 bxe_set_rx_mode(sc); 13086 13087 /* start the Tx */ 13088 switch (/* XXX load_mode */LOAD_OPEN) { 13089 case LOAD_NORMAL: 13090 case LOAD_OPEN: 13091 break; 13092 13093 case LOAD_DIAG: 13094 case LOAD_LOOPBACK_EXT: 13095 sc->state = BXE_STATE_DIAG; 13096 break; 13097 13098 default: 13099 break; 13100 } 13101 13102 if (sc->port.pmf) { 13103 bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0); 13104 } else { 13105 bxe_link_status_update(sc); 13106 } 13107 13108 /* start the periodic timer callout */ 13109 bxe_periodic_start(sc); 13110 13111 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 13112 /* mark driver is loaded in shmem2 */ 13113 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 13114 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 13115 (val | 13116 DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 13117 DRV_FLAGS_CAPABILITIES_LOADED_L2)); 13118 } 13119 13120 /* wait for all pending SP commands to complete */ 13121 if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) { 13122 BLOGE(sc, "Timeout waiting for all SPs to complete!\n"); 13123 bxe_periodic_stop(sc); 13124 bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE); 13125 return (ENXIO); 13126 } 13127 13128 #if 0 13129 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */ 13130 if (sc->port.pmf && (sc->state != BXE_STATE_DIAG)) { 13131 bxe_dcbx_init(sc, FALSE); 13132 } 13133 #endif 13134 13135 /* Tell the stack the driver is running! */ 13136 sc->ifnet->if_drv_flags = IFF_DRV_RUNNING; 13137 13138 BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n"); 13139 13140 return (0); 13141 13142 bxe_nic_load_error3: 13143 13144 if (IS_PF(sc)) { 13145 bxe_int_disable_sync(sc, 1); 13146 13147 /* clean out queued objects */ 13148 bxe_squeeze_objects(sc); 13149 } 13150 13151 bxe_interrupt_detach(sc); 13152 13153 bxe_nic_load_error2: 13154 13155 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 13156 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 13157 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 13158 } 13159 13160 sc->port.pmf = 0; 13161 13162 bxe_nic_load_error1: 13163 13164 /* clear pf_load status, as it was already set */ 13165 if (IS_PF(sc)) { 13166 bxe_clear_pf_load(sc); 13167 } 13168 13169 bxe_nic_load_error0: 13170 13171 bxe_free_fw_stats_mem(sc); 13172 bxe_free_fp_buffers(sc); 13173 bxe_free_mem(sc); 13174 13175 return (rc); 13176 } 13177 13178 static int 13179 bxe_init_locked(struct bxe_softc *sc) 13180 { 13181 int other_engine = SC_PATH(sc) ? 0 : 1; 13182 uint8_t other_load_status, load_status; 13183 uint8_t global = FALSE; 13184 int rc; 13185 13186 BXE_CORE_LOCK_ASSERT(sc); 13187 13188 /* check if the driver is already running */ 13189 if (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING) { 13190 BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n"); 13191 return (0); 13192 } 13193 13194 bxe_set_power_state(sc, PCI_PM_D0); 13195 13196 /* 13197 * If parity occurred during the unload, then attentions and/or 13198 * RECOVERY_IN_PROGRES may still be set. If so we want the first function 13199 * loaded on the current engine to complete the recovery. Parity recovery 13200 * is only relevant for PF driver. 13201 */ 13202 if (IS_PF(sc)) { 13203 other_load_status = bxe_get_load_status(sc, other_engine); 13204 load_status = bxe_get_load_status(sc, SC_PATH(sc)); 13205 13206 if (!bxe_reset_is_done(sc, SC_PATH(sc)) || 13207 bxe_chk_parity_attn(sc, &global, TRUE)) { 13208 do { 13209 /* 13210 * If there are attentions and they are in global blocks, set 13211 * the GLOBAL_RESET bit regardless whether it will be this 13212 * function that will complete the recovery or not. 13213 */ 13214 if (global) { 13215 bxe_set_reset_global(sc); 13216 } 13217 13218 /* 13219 * Only the first function on the current engine should try 13220 * to recover in open. In case of attentions in global blocks 13221 * only the first in the chip should try to recover. 13222 */ 13223 if ((!load_status && (!global || !other_load_status)) && 13224 bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) { 13225 BLOGI(sc, "Recovered during init\n"); 13226 break; 13227 } 13228 13229 /* recovery has failed... */ 13230 bxe_set_power_state(sc, PCI_PM_D3hot); 13231 sc->recovery_state = BXE_RECOVERY_FAILED; 13232 13233 BLOGE(sc, "Recovery flow hasn't properly " 13234 "completed yet, try again later. " 13235 "If you still see this message after a " 13236 "few retries then power cycle is required.\n"); 13237 13238 rc = ENXIO; 13239 goto bxe_init_locked_done; 13240 } while (0); 13241 } 13242 } 13243 13244 sc->recovery_state = BXE_RECOVERY_DONE; 13245 13246 rc = bxe_nic_load(sc, LOAD_OPEN); 13247 13248 bxe_init_locked_done: 13249 13250 if (rc) { 13251 /* Tell the stack the driver is NOT running! */ 13252 BLOGE(sc, "Initialization failed, " 13253 "stack notified driver is NOT running!\n"); 13254 sc->ifnet->if_drv_flags &= ~IFF_DRV_RUNNING; 13255 } 13256 13257 return (rc); 13258 } 13259 13260 static int 13261 bxe_stop_locked(struct bxe_softc *sc) 13262 { 13263 BXE_CORE_LOCK_ASSERT(sc); 13264 return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE)); 13265 } 13266 13267 /* 13268 * Handles controller initialization when called from an unlocked routine. 13269 * ifconfig calls this function. 13270 * 13271 * Returns: 13272 * void 13273 */ 13274 static void 13275 bxe_init(void *xsc) 13276 { 13277 struct bxe_softc *sc = (struct bxe_softc *)xsc; 13278 13279 BXE_CORE_LOCK(sc); 13280 bxe_init_locked(sc); 13281 BXE_CORE_UNLOCK(sc); 13282 } 13283 13284 static int 13285 bxe_init_ifnet(struct bxe_softc *sc) 13286 { 13287 struct ifnet *ifp; 13288 13289 /* ifconfig entrypoint for media type/status reporting */ 13290 ifmedia_init(&sc->ifmedia, IFM_IMASK, 13291 bxe_ifmedia_update, 13292 bxe_ifmedia_status); 13293 13294 /* set the default interface values */ 13295 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL); 13296 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL); 13297 ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO)); 13298 13299 sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */ 13300 13301 /* allocate the ifnet structure */ 13302 if ((ifp = if_alloc(IFT_ETHER)) == NULL) { 13303 BLOGE(sc, "Interface allocation failed!\n"); 13304 return (ENXIO); 13305 } 13306 13307 ifp->if_softc = sc; 13308 if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); 13309 ifp->if_flags = (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 13310 ifp->if_ioctl = bxe_ioctl; 13311 ifp->if_start = bxe_tx_start; 13312 #if __FreeBSD_version >= 800000 13313 ifp->if_transmit = bxe_tx_mq_start; 13314 ifp->if_qflush = bxe_mq_flush; 13315 #endif 13316 #ifdef FreeBSD8_0 13317 ifp->if_timer = 0; 13318 #endif 13319 ifp->if_init = bxe_init; 13320 ifp->if_mtu = sc->mtu; 13321 ifp->if_hwassist = (CSUM_IP | 13322 CSUM_TCP | 13323 CSUM_UDP | 13324 CSUM_TSO | 13325 CSUM_TCP_IPV6 | 13326 CSUM_UDP_IPV6); 13327 ifp->if_capabilities = 13328 #if __FreeBSD_version < 700000 13329 (IFCAP_VLAN_MTU | 13330 IFCAP_VLAN_HWTAGGING | 13331 IFCAP_HWCSUM | 13332 IFCAP_JUMBO_MTU | 13333 IFCAP_LRO); 13334 #else 13335 (IFCAP_VLAN_MTU | 13336 IFCAP_VLAN_HWTAGGING | 13337 IFCAP_VLAN_HWTSO | 13338 IFCAP_VLAN_HWFILTER | 13339 IFCAP_VLAN_HWCSUM | 13340 IFCAP_HWCSUM | 13341 IFCAP_JUMBO_MTU | 13342 IFCAP_LRO | 13343 IFCAP_TSO4 | 13344 IFCAP_TSO6 | 13345 IFCAP_WOL_MAGIC); 13346 #endif 13347 ifp->if_capenable = ifp->if_capabilities; 13348 ifp->if_capenable &= ~IFCAP_WOL_MAGIC; /* XXX not yet... */ 13349 #if __FreeBSD_version < 1000025 13350 ifp->if_baudrate = 1000000000; 13351 #else 13352 if_initbaudrate(ifp, IF_Gbps(10)); 13353 #endif 13354 ifp->if_snd.ifq_drv_maxlen = sc->tx_ring_size; 13355 13356 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 13357 IFQ_SET_READY(&ifp->if_snd); 13358 13359 sc->ifnet = ifp; 13360 13361 /* attach to the Ethernet interface list */ 13362 ether_ifattach(ifp, sc->link_params.mac_addr); 13363 13364 return (0); 13365 } 13366 13367 static void 13368 bxe_deallocate_bars(struct bxe_softc *sc) 13369 { 13370 int i; 13371 13372 for (i = 0; i < MAX_BARS; i++) { 13373 if (sc->bar[i].resource != NULL) { 13374 bus_release_resource(sc->dev, 13375 SYS_RES_MEMORY, 13376 sc->bar[i].rid, 13377 sc->bar[i].resource); 13378 BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n", 13379 i, PCIR_BAR(i)); 13380 } 13381 } 13382 } 13383 13384 static int 13385 bxe_allocate_bars(struct bxe_softc *sc) 13386 { 13387 u_int flags; 13388 int i; 13389 13390 memset(sc->bar, 0, sizeof(sc->bar)); 13391 13392 for (i = 0; i < MAX_BARS; i++) { 13393 13394 /* memory resources reside at BARs 0, 2, 4 */ 13395 /* Run `pciconf -lb` to see mappings */ 13396 if ((i != 0) && (i != 2) && (i != 4)) { 13397 continue; 13398 } 13399 13400 sc->bar[i].rid = PCIR_BAR(i); 13401 13402 flags = RF_ACTIVE; 13403 if (i == 0) { 13404 flags |= RF_SHAREABLE; 13405 } 13406 13407 if ((sc->bar[i].resource = 13408 bus_alloc_resource_any(sc->dev, 13409 SYS_RES_MEMORY, 13410 &sc->bar[i].rid, 13411 flags)) == NULL) { 13412 #if 0 13413 /* BAR4 doesn't exist for E1 */ 13414 BLOGE(sc, "PCI BAR%d [%02x] memory allocation failed\n", 13415 i, PCIR_BAR(i)); 13416 #endif 13417 return (0); 13418 } 13419 13420 sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource); 13421 sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource); 13422 sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource); 13423 13424 BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%ld) -> %p\n", 13425 i, PCIR_BAR(i), 13426 (void *)rman_get_start(sc->bar[i].resource), 13427 (void *)rman_get_end(sc->bar[i].resource), 13428 rman_get_size(sc->bar[i].resource), 13429 (void *)sc->bar[i].kva); 13430 } 13431 13432 return (0); 13433 } 13434 13435 static void 13436 bxe_get_function_num(struct bxe_softc *sc) 13437 { 13438 uint32_t val = 0; 13439 13440 /* 13441 * Read the ME register to get the function number. The ME register 13442 * holds the relative-function number and absolute-function number. The 13443 * absolute-function number appears only in E2 and above. Before that 13444 * these bits always contained zero, therefore we cannot blindly use them. 13445 */ 13446 13447 val = REG_RD(sc, BAR_ME_REGISTER); 13448 13449 sc->pfunc_rel = 13450 (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT); 13451 sc->path_id = 13452 (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1; 13453 13454 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13455 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id); 13456 } else { 13457 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id); 13458 } 13459 13460 BLOGD(sc, DBG_LOAD, 13461 "Relative function %d, Absolute function %d, Path %d\n", 13462 sc->pfunc_rel, sc->pfunc_abs, sc->path_id); 13463 } 13464 13465 static uint32_t 13466 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc) 13467 { 13468 uint32_t shmem2_size; 13469 uint32_t offset; 13470 uint32_t mf_cfg_offset_value; 13471 13472 /* Non 57712 */ 13473 offset = (SHMEM_RD(sc, func_mb) + 13474 (MAX_FUNC_NUM * sizeof(struct drv_func_mb))); 13475 13476 /* 57712 plus */ 13477 if (sc->devinfo.shmem2_base != 0) { 13478 shmem2_size = SHMEM2_RD(sc, size); 13479 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) { 13480 mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr); 13481 if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) { 13482 offset = mf_cfg_offset_value; 13483 } 13484 } 13485 } 13486 13487 return (offset); 13488 } 13489 13490 static uint32_t 13491 bxe_pcie_capability_read(struct bxe_softc *sc, 13492 int reg, 13493 int width) 13494 { 13495 int pcie_reg; 13496 13497 /* ensure PCIe capability is enabled */ 13498 if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) { 13499 if (pcie_reg != 0) { 13500 BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg); 13501 return (pci_read_config(sc->dev, (pcie_reg + reg), width)); 13502 } 13503 } 13504 13505 BLOGE(sc, "PCIe capability NOT FOUND!!!\n"); 13506 13507 return (0); 13508 } 13509 13510 static uint8_t 13511 bxe_is_pcie_pending(struct bxe_softc *sc) 13512 { 13513 return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) & 13514 PCIM_EXP_STA_TRANSACTION_PND); 13515 } 13516 13517 /* 13518 * Walk the PCI capabiites list for the device to find what features are 13519 * supported. These capabilites may be enabled/disabled by firmware so it's 13520 * best to walk the list rather than make assumptions. 13521 */ 13522 static void 13523 bxe_probe_pci_caps(struct bxe_softc *sc) 13524 { 13525 uint16_t link_status; 13526 int reg; 13527 13528 /* check if PCI Power Management is enabled */ 13529 if (pci_find_cap(sc->dev, PCIY_PMG, ®) == 0) { 13530 if (reg != 0) { 13531 BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg); 13532 13533 sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG; 13534 sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg; 13535 } 13536 } 13537 13538 link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2); 13539 13540 /* handle PCIe 2.0 workarounds for 57710 */ 13541 if (CHIP_IS_E1(sc)) { 13542 /* workaround for 57710 errata E4_57710_27462 */ 13543 sc->devinfo.pcie_link_speed = 13544 (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1; 13545 13546 /* workaround for 57710 errata E4_57710_27488 */ 13547 sc->devinfo.pcie_link_width = 13548 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 13549 if (sc->devinfo.pcie_link_speed > 1) { 13550 sc->devinfo.pcie_link_width = 13551 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1; 13552 } 13553 } else { 13554 sc->devinfo.pcie_link_speed = 13555 (link_status & PCIM_LINK_STA_SPEED); 13556 sc->devinfo.pcie_link_width = 13557 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 13558 } 13559 13560 BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n", 13561 sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width); 13562 13563 sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG; 13564 sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg; 13565 13566 /* check if MSI capability is enabled */ 13567 if (pci_find_cap(sc->dev, PCIY_MSI, ®) == 0) { 13568 if (reg != 0) { 13569 BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg); 13570 13571 sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG; 13572 sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg; 13573 } 13574 } 13575 13576 /* check if MSI-X capability is enabled */ 13577 if (pci_find_cap(sc->dev, PCIY_MSIX, ®) == 0) { 13578 if (reg != 0) { 13579 BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg); 13580 13581 sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG; 13582 sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg; 13583 } 13584 } 13585 } 13586 13587 static int 13588 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc) 13589 { 13590 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13591 uint32_t val; 13592 13593 /* get the outer vlan if we're in switch-dependent mode */ 13594 13595 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13596 mf_info->ext_id = (uint16_t)val; 13597 13598 mf_info->multi_vnics_mode = 1; 13599 13600 if (!VALID_OVLAN(mf_info->ext_id)) { 13601 BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id); 13602 return (1); 13603 } 13604 13605 /* get the capabilities */ 13606 if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13607 FUNC_MF_CFG_PROTOCOL_ISCSI) { 13608 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI; 13609 } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13610 FUNC_MF_CFG_PROTOCOL_FCOE) { 13611 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE; 13612 } else { 13613 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET; 13614 } 13615 13616 mf_info->vnics_per_port = 13617 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13618 13619 return (0); 13620 } 13621 13622 static uint32_t 13623 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc) 13624 { 13625 uint32_t retval = 0; 13626 uint32_t val; 13627 13628 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13629 13630 if (val & MACP_FUNC_CFG_FLAGS_ENABLED) { 13631 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) { 13632 retval |= MF_PROTO_SUPPORT_ETHERNET; 13633 } 13634 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 13635 retval |= MF_PROTO_SUPPORT_ISCSI; 13636 } 13637 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 13638 retval |= MF_PROTO_SUPPORT_FCOE; 13639 } 13640 } 13641 13642 return (retval); 13643 } 13644 13645 static int 13646 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc) 13647 { 13648 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13649 uint32_t val; 13650 13651 /* 13652 * There is no outer vlan if we're in switch-independent mode. 13653 * If the mac is valid then assume multi-function. 13654 */ 13655 13656 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13657 13658 mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0); 13659 13660 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13661 13662 mf_info->vnics_per_port = 13663 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13664 13665 return (0); 13666 } 13667 13668 static int 13669 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc) 13670 { 13671 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13672 uint32_t e1hov_tag; 13673 uint32_t func_config; 13674 uint32_t niv_config; 13675 13676 mf_info->multi_vnics_mode = 1; 13677 13678 e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13679 func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13680 niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config); 13681 13682 mf_info->ext_id = 13683 (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >> 13684 FUNC_MF_CFG_E1HOV_TAG_SHIFT); 13685 13686 mf_info->default_vlan = 13687 (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >> 13688 FUNC_MF_CFG_AFEX_VLAN_SHIFT); 13689 13690 mf_info->niv_allowed_priorities = 13691 (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 13692 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT); 13693 13694 mf_info->niv_default_cos = 13695 (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 13696 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT); 13697 13698 mf_info->afex_vlan_mode = 13699 ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 13700 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT); 13701 13702 mf_info->niv_mba_enabled = 13703 ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >> 13704 FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT); 13705 13706 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13707 13708 mf_info->vnics_per_port = 13709 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13710 13711 return (0); 13712 } 13713 13714 static int 13715 bxe_check_valid_mf_cfg(struct bxe_softc *sc) 13716 { 13717 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13718 uint32_t mf_cfg1; 13719 uint32_t mf_cfg2; 13720 uint32_t ovlan1; 13721 uint32_t ovlan2; 13722 uint8_t i, j; 13723 13724 BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n", 13725 SC_PORT(sc)); 13726 BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n", 13727 mf_info->mf_config[SC_VN(sc)]); 13728 BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n", 13729 mf_info->multi_vnics_mode); 13730 BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n", 13731 mf_info->vnics_per_port); 13732 BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n", 13733 mf_info->ext_id); 13734 BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n", 13735 mf_info->min_bw[0], mf_info->min_bw[1], 13736 mf_info->min_bw[2], mf_info->min_bw[3]); 13737 BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n", 13738 mf_info->max_bw[0], mf_info->max_bw[1], 13739 mf_info->max_bw[2], mf_info->max_bw[3]); 13740 BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n", 13741 sc->mac_addr_str); 13742 13743 /* various MF mode sanity checks... */ 13744 13745 if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) { 13746 BLOGE(sc, "Enumerated function %d is marked as hidden\n", 13747 SC_PORT(sc)); 13748 return (1); 13749 } 13750 13751 if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) { 13752 BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n", 13753 mf_info->vnics_per_port, mf_info->multi_vnics_mode); 13754 return (1); 13755 } 13756 13757 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13758 /* vnic id > 0 must have valid ovlan in switch-dependent mode */ 13759 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) { 13760 BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n", 13761 SC_VN(sc), OVLAN(sc)); 13762 return (1); 13763 } 13764 13765 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) { 13766 BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n", 13767 mf_info->multi_vnics_mode, OVLAN(sc)); 13768 return (1); 13769 } 13770 13771 /* 13772 * Verify all functions are either MF or SF mode. If MF, make sure 13773 * sure that all non-hidden functions have a valid ovlan. If SF, 13774 * make sure that all non-hidden functions have an invalid ovlan. 13775 */ 13776 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13777 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13778 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13779 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13780 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) || 13781 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) { 13782 BLOGE(sc, "mf_mode=SD function %d MF config " 13783 "mismatch, multi_vnics_mode=%d ovlan=%d\n", 13784 i, mf_info->multi_vnics_mode, ovlan1); 13785 return (1); 13786 } 13787 } 13788 13789 /* Verify all funcs on the same port each have a different ovlan. */ 13790 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13791 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13792 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13793 /* iterate from the next function on the port to the max func */ 13794 for (j = i + 2; j < MAX_FUNC_NUM; j += 2) { 13795 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config); 13796 ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag); 13797 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13798 VALID_OVLAN(ovlan1) && 13799 !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) && 13800 VALID_OVLAN(ovlan2) && 13801 (ovlan1 == ovlan2)) { 13802 BLOGE(sc, "mf_mode=SD functions %d and %d " 13803 "have the same ovlan (%d)\n", 13804 i, j, ovlan1); 13805 return (1); 13806 } 13807 } 13808 } 13809 } /* MULTI_FUNCTION_SD */ 13810 13811 return (0); 13812 } 13813 13814 static int 13815 bxe_get_mf_cfg_info(struct bxe_softc *sc) 13816 { 13817 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13818 uint32_t val, mac_upper; 13819 uint8_t i, vnic; 13820 13821 /* initialize mf_info defaults */ 13822 mf_info->vnics_per_port = 1; 13823 mf_info->multi_vnics_mode = FALSE; 13824 mf_info->path_has_ovlan = FALSE; 13825 mf_info->mf_mode = SINGLE_FUNCTION; 13826 13827 if (!CHIP_IS_MF_CAP(sc)) { 13828 return (0); 13829 } 13830 13831 if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) { 13832 BLOGE(sc, "Invalid mf_cfg_base!\n"); 13833 return (1); 13834 } 13835 13836 /* get the MF mode (switch dependent / independent / single-function) */ 13837 13838 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13839 13840 switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) 13841 { 13842 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 13843 13844 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13845 13846 /* check for legal upper mac bytes */ 13847 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) { 13848 mf_info->mf_mode = MULTI_FUNCTION_SI; 13849 } else { 13850 BLOGE(sc, "Invalid config for Switch Independent mode\n"); 13851 } 13852 13853 break; 13854 13855 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 13856 case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4: 13857 13858 /* get outer vlan configuration */ 13859 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13860 13861 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) != 13862 FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 13863 mf_info->mf_mode = MULTI_FUNCTION_SD; 13864 } else { 13865 BLOGE(sc, "Invalid config for Switch Dependent mode\n"); 13866 } 13867 13868 break; 13869 13870 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 13871 13872 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */ 13873 return (0); 13874 13875 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 13876 13877 /* 13878 * Mark MF mode as NIV if MCP version includes NPAR-SD support 13879 * and the MAC address is valid. 13880 */ 13881 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13882 13883 if ((SHMEM2_HAS(sc, afex_driver_support)) && 13884 (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) { 13885 mf_info->mf_mode = MULTI_FUNCTION_AFEX; 13886 } else { 13887 BLOGE(sc, "Invalid config for AFEX mode\n"); 13888 } 13889 13890 break; 13891 13892 default: 13893 13894 BLOGE(sc, "Unknown MF mode (0x%08x)\n", 13895 (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)); 13896 13897 return (1); 13898 } 13899 13900 /* set path mf_mode (which could be different than function mf_mode) */ 13901 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13902 mf_info->path_has_ovlan = TRUE; 13903 } else if (mf_info->mf_mode == SINGLE_FUNCTION) { 13904 /* 13905 * Decide on path multi vnics mode. If we're not in MF mode and in 13906 * 4-port mode, this is good enough to check vnic-0 of the other port 13907 * on the same path 13908 */ 13909 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13910 uint8_t other_port = !(PORT_ID(sc) & 1); 13911 uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port)); 13912 13913 val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag); 13914 13915 mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0; 13916 } 13917 } 13918 13919 if (mf_info->mf_mode == SINGLE_FUNCTION) { 13920 /* invalid MF config */ 13921 if (SC_VN(sc) >= 1) { 13922 BLOGE(sc, "VNIC ID >= 1 in SF mode\n"); 13923 return (1); 13924 } 13925 13926 return (0); 13927 } 13928 13929 /* get the MF configuration */ 13930 mf_info->mf_config[SC_VN(sc)] = 13931 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13932 13933 switch(mf_info->mf_mode) 13934 { 13935 case MULTI_FUNCTION_SD: 13936 13937 bxe_get_shmem_mf_cfg_info_sd(sc); 13938 break; 13939 13940 case MULTI_FUNCTION_SI: 13941 13942 bxe_get_shmem_mf_cfg_info_si(sc); 13943 break; 13944 13945 case MULTI_FUNCTION_AFEX: 13946 13947 bxe_get_shmem_mf_cfg_info_niv(sc); 13948 break; 13949 13950 default: 13951 13952 BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n", 13953 mf_info->mf_mode); 13954 return (1); 13955 } 13956 13957 /* get the congestion management parameters */ 13958 13959 vnic = 0; 13960 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13961 /* get min/max bw */ 13962 val = MFCFG_RD(sc, func_mf_config[i].config); 13963 mf_info->min_bw[vnic] = 13964 ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT); 13965 mf_info->max_bw[vnic] = 13966 ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT); 13967 vnic++; 13968 } 13969 13970 return (bxe_check_valid_mf_cfg(sc)); 13971 } 13972 13973 static int 13974 bxe_get_shmem_info(struct bxe_softc *sc) 13975 { 13976 int port; 13977 uint32_t mac_hi, mac_lo, val; 13978 13979 port = SC_PORT(sc); 13980 mac_hi = mac_lo = 0; 13981 13982 sc->link_params.sc = sc; 13983 sc->link_params.port = port; 13984 13985 /* get the hardware config info */ 13986 sc->devinfo.hw_config = 13987 SHMEM_RD(sc, dev_info.shared_hw_config.config); 13988 sc->devinfo.hw_config2 = 13989 SHMEM_RD(sc, dev_info.shared_hw_config.config2); 13990 13991 sc->link_params.hw_led_mode = 13992 ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >> 13993 SHARED_HW_CFG_LED_MODE_SHIFT); 13994 13995 /* get the port feature config */ 13996 sc->port.config = 13997 SHMEM_RD(sc, dev_info.port_feature_config[port].config), 13998 13999 /* get the link params */ 14000 sc->link_params.speed_cap_mask[0] = 14001 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask); 14002 sc->link_params.speed_cap_mask[1] = 14003 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2); 14004 14005 /* get the lane config */ 14006 sc->link_params.lane_config = 14007 SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config); 14008 14009 /* get the link config */ 14010 val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config); 14011 sc->port.link_config[ELINK_INT_PHY] = val; 14012 sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK); 14013 sc->port.link_config[ELINK_EXT_PHY1] = 14014 SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2); 14015 14016 /* get the override preemphasis flag and enable it or turn it off */ 14017 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 14018 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) { 14019 sc->link_params.feature_config_flags |= 14020 ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 14021 } else { 14022 sc->link_params.feature_config_flags &= 14023 ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 14024 } 14025 14026 /* get the initial value of the link params */ 14027 sc->link_params.multi_phy_config = 14028 SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config); 14029 14030 /* get external phy info */ 14031 sc->port.ext_phy_config = 14032 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 14033 14034 /* get the multifunction configuration */ 14035 bxe_get_mf_cfg_info(sc); 14036 14037 /* get the mac address */ 14038 if (IS_MF(sc)) { 14039 mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 14040 mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower); 14041 } else { 14042 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper); 14043 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower); 14044 } 14045 14046 if ((mac_lo == 0) && (mac_hi == 0)) { 14047 *sc->mac_addr_str = 0; 14048 BLOGE(sc, "No Ethernet address programmed!\n"); 14049 } else { 14050 sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8); 14051 sc->link_params.mac_addr[1] = (uint8_t)(mac_hi); 14052 sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24); 14053 sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16); 14054 sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8); 14055 sc->link_params.mac_addr[5] = (uint8_t)(mac_lo); 14056 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str), 14057 "%02x:%02x:%02x:%02x:%02x:%02x", 14058 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1], 14059 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3], 14060 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]); 14061 BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str); 14062 } 14063 14064 #if 0 14065 if (!IS_MF(sc) && 14066 ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 14067 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE)) { 14068 sc->flags |= BXE_NO_ISCSI; 14069 } 14070 if (!IS_MF(sc) && 14071 ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 14072 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI)) { 14073 sc->flags |= BXE_NO_FCOE_FLAG; 14074 } 14075 #endif 14076 14077 return (0); 14078 } 14079 14080 static void 14081 bxe_get_tunable_params(struct bxe_softc *sc) 14082 { 14083 /* sanity checks */ 14084 14085 if ((bxe_interrupt_mode != INTR_MODE_INTX) && 14086 (bxe_interrupt_mode != INTR_MODE_MSI) && 14087 (bxe_interrupt_mode != INTR_MODE_MSIX)) { 14088 BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode); 14089 bxe_interrupt_mode = INTR_MODE_MSIX; 14090 } 14091 14092 if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) { 14093 BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count); 14094 bxe_queue_count = 0; 14095 } 14096 14097 if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) { 14098 if (bxe_max_rx_bufs == 0) { 14099 bxe_max_rx_bufs = RX_BD_USABLE; 14100 } else { 14101 BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs); 14102 bxe_max_rx_bufs = 2048; 14103 } 14104 } 14105 14106 if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) { 14107 BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks); 14108 bxe_hc_rx_ticks = 25; 14109 } 14110 14111 if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) { 14112 BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks); 14113 bxe_hc_tx_ticks = 50; 14114 } 14115 14116 if (bxe_max_aggregation_size == 0) { 14117 bxe_max_aggregation_size = TPA_AGG_SIZE; 14118 } 14119 14120 if (bxe_max_aggregation_size > 0xffff) { 14121 BLOGW(sc, "invalid max_aggregation_size (%d)\n", 14122 bxe_max_aggregation_size); 14123 bxe_max_aggregation_size = TPA_AGG_SIZE; 14124 } 14125 14126 if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) { 14127 BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs); 14128 bxe_mrrs = -1; 14129 } 14130 14131 if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) { 14132 BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen); 14133 bxe_autogreeen = 0; 14134 } 14135 14136 if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) { 14137 BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss); 14138 bxe_udp_rss = 0; 14139 } 14140 14141 /* pull in user settings */ 14142 14143 sc->interrupt_mode = bxe_interrupt_mode; 14144 sc->max_rx_bufs = bxe_max_rx_bufs; 14145 sc->hc_rx_ticks = bxe_hc_rx_ticks; 14146 sc->hc_tx_ticks = bxe_hc_tx_ticks; 14147 sc->max_aggregation_size = bxe_max_aggregation_size; 14148 sc->mrrs = bxe_mrrs; 14149 sc->autogreeen = bxe_autogreeen; 14150 sc->udp_rss = bxe_udp_rss; 14151 14152 if (bxe_interrupt_mode == INTR_MODE_INTX) { 14153 sc->num_queues = 1; 14154 } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */ 14155 sc->num_queues = 14156 min((bxe_queue_count ? bxe_queue_count : mp_ncpus), 14157 MAX_RSS_CHAINS); 14158 if (sc->num_queues > mp_ncpus) { 14159 sc->num_queues = mp_ncpus; 14160 } 14161 } 14162 14163 BLOGD(sc, DBG_LOAD, 14164 "User Config: " 14165 "debug=0x%lx " 14166 "interrupt_mode=%d " 14167 "queue_count=%d " 14168 "hc_rx_ticks=%d " 14169 "hc_tx_ticks=%d " 14170 "rx_budget=%d " 14171 "max_aggregation_size=%d " 14172 "mrrs=%d " 14173 "autogreeen=%d " 14174 "udp_rss=%d\n", 14175 bxe_debug, 14176 sc->interrupt_mode, 14177 sc->num_queues, 14178 sc->hc_rx_ticks, 14179 sc->hc_tx_ticks, 14180 bxe_rx_budget, 14181 sc->max_aggregation_size, 14182 sc->mrrs, 14183 sc->autogreeen, 14184 sc->udp_rss); 14185 } 14186 14187 static void 14188 bxe_media_detect(struct bxe_softc *sc) 14189 { 14190 uint32_t phy_idx = bxe_get_cur_phy_idx(sc); 14191 switch (sc->link_params.phy[phy_idx].media_type) { 14192 case ELINK_ETH_PHY_SFPP_10G_FIBER: 14193 case ELINK_ETH_PHY_XFP_FIBER: 14194 BLOGI(sc, "Found 10Gb Fiber media.\n"); 14195 sc->media = IFM_10G_SR; 14196 break; 14197 case ELINK_ETH_PHY_SFP_1G_FIBER: 14198 BLOGI(sc, "Found 1Gb Fiber media.\n"); 14199 sc->media = IFM_1000_SX; 14200 break; 14201 case ELINK_ETH_PHY_KR: 14202 case ELINK_ETH_PHY_CX4: 14203 BLOGI(sc, "Found 10GBase-CX4 media.\n"); 14204 sc->media = IFM_10G_CX4; 14205 break; 14206 case ELINK_ETH_PHY_DA_TWINAX: 14207 BLOGI(sc, "Found 10Gb Twinax media.\n"); 14208 sc->media = IFM_10G_TWINAX; 14209 break; 14210 case ELINK_ETH_PHY_BASE_T: 14211 if (sc->link_params.speed_cap_mask[0] & 14212 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 14213 BLOGI(sc, "Found 10GBase-T media.\n"); 14214 sc->media = IFM_10G_T; 14215 } else { 14216 BLOGI(sc, "Found 1000Base-T media.\n"); 14217 sc->media = IFM_1000_T; 14218 } 14219 break; 14220 case ELINK_ETH_PHY_NOT_PRESENT: 14221 BLOGI(sc, "Media not present.\n"); 14222 sc->media = 0; 14223 break; 14224 case ELINK_ETH_PHY_UNSPECIFIED: 14225 default: 14226 BLOGI(sc, "Unknown media!\n"); 14227 sc->media = 0; 14228 break; 14229 } 14230 } 14231 14232 #define GET_FIELD(value, fname) \ 14233 (((value) & (fname##_MASK)) >> (fname##_SHIFT)) 14234 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 14235 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 14236 14237 static int 14238 bxe_get_igu_cam_info(struct bxe_softc *sc) 14239 { 14240 int pfid = SC_FUNC(sc); 14241 int igu_sb_id; 14242 uint32_t val; 14243 uint8_t fid, igu_sb_cnt = 0; 14244 14245 sc->igu_base_sb = 0xff; 14246 14247 if (CHIP_INT_MODE_IS_BC(sc)) { 14248 int vn = SC_VN(sc); 14249 igu_sb_cnt = sc->igu_sb_cnt; 14250 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) * 14251 FP_SB_MAX_E1x); 14252 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x + 14253 (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn)); 14254 return (0); 14255 } 14256 14257 /* IGU in normal mode - read CAM */ 14258 for (igu_sb_id = 0; 14259 igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 14260 igu_sb_id++) { 14261 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 14262 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) { 14263 continue; 14264 } 14265 fid = IGU_FID(val); 14266 if ((fid & IGU_FID_ENCODE_IS_PF)) { 14267 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) { 14268 continue; 14269 } 14270 if (IGU_VEC(val) == 0) { 14271 /* default status block */ 14272 sc->igu_dsb_id = igu_sb_id; 14273 } else { 14274 if (sc->igu_base_sb == 0xff) { 14275 sc->igu_base_sb = igu_sb_id; 14276 } 14277 igu_sb_cnt++; 14278 } 14279 } 14280 } 14281 14282 /* 14283 * Due to new PF resource allocation by MFW T7.4 and above, it's optional 14284 * that number of CAM entries will not be equal to the value advertised in 14285 * PCI. Driver should use the minimal value of both as the actual status 14286 * block count 14287 */ 14288 sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt); 14289 14290 if (igu_sb_cnt == 0) { 14291 BLOGE(sc, "CAM configuration error\n"); 14292 return (-1); 14293 } 14294 14295 return (0); 14296 } 14297 14298 /* 14299 * Gather various information from the device config space, the device itself, 14300 * shmem, and the user input. 14301 */ 14302 static int 14303 bxe_get_device_info(struct bxe_softc *sc) 14304 { 14305 uint32_t val; 14306 int rc; 14307 14308 /* Get the data for the device */ 14309 sc->devinfo.vendor_id = pci_get_vendor(sc->dev); 14310 sc->devinfo.device_id = pci_get_device(sc->dev); 14311 sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev); 14312 sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev); 14313 14314 /* get the chip revision (chip metal comes from pci config space) */ 14315 sc->devinfo.chip_id = 14316 sc->link_params.chip_id = 14317 (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) | 14318 ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) | 14319 (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) | 14320 ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0)); 14321 14322 /* force 57811 according to MISC register */ 14323 if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 14324 if (CHIP_IS_57810(sc)) { 14325 sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) | 14326 (sc->devinfo.chip_id & 0x0000ffff)); 14327 } else if (CHIP_IS_57810_MF(sc)) { 14328 sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) | 14329 (sc->devinfo.chip_id & 0x0000ffff)); 14330 } 14331 sc->devinfo.chip_id |= 0x1; 14332 } 14333 14334 BLOGD(sc, DBG_LOAD, 14335 "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n", 14336 sc->devinfo.chip_id, 14337 ((sc->devinfo.chip_id >> 16) & 0xffff), 14338 ((sc->devinfo.chip_id >> 12) & 0xf), 14339 ((sc->devinfo.chip_id >> 4) & 0xff), 14340 ((sc->devinfo.chip_id >> 0) & 0xf)); 14341 14342 val = (REG_RD(sc, 0x2874) & 0x55); 14343 if ((sc->devinfo.chip_id & 0x1) || 14344 (CHIP_IS_E1(sc) && val) || 14345 (CHIP_IS_E1H(sc) && (val == 0x55))) { 14346 sc->flags |= BXE_ONE_PORT_FLAG; 14347 BLOGD(sc, DBG_LOAD, "single port device\n"); 14348 } 14349 14350 /* set the doorbell size */ 14351 sc->doorbell_size = (1 << BXE_DB_SHIFT); 14352 14353 /* determine whether the device is in 2 port or 4 port mode */ 14354 sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/ 14355 if (CHIP_IS_E2E3(sc)) { 14356 /* 14357 * Read port4mode_en_ovwr[0]: 14358 * If 1, four port mode is in port4mode_en_ovwr[1]. 14359 * If 0, four port mode is in port4mode_en[0]. 14360 */ 14361 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR); 14362 if (val & 1) { 14363 val = ((val >> 1) & 1); 14364 } else { 14365 val = REG_RD(sc, MISC_REG_PORT4MODE_EN); 14366 } 14367 14368 sc->devinfo.chip_port_mode = 14369 (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE; 14370 14371 BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2"); 14372 } 14373 14374 /* get the function and path info for the device */ 14375 bxe_get_function_num(sc); 14376 14377 /* get the shared memory base address */ 14378 sc->devinfo.shmem_base = 14379 sc->link_params.shmem_base = 14380 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 14381 sc->devinfo.shmem2_base = 14382 REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 : 14383 MISC_REG_GENERIC_CR_0)); 14384 14385 BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n", 14386 sc->devinfo.shmem_base, sc->devinfo.shmem2_base); 14387 14388 if (!sc->devinfo.shmem_base) { 14389 /* this should ONLY prevent upcoming shmem reads */ 14390 BLOGI(sc, "MCP not active\n"); 14391 sc->flags |= BXE_NO_MCP_FLAG; 14392 return (0); 14393 } 14394 14395 /* make sure the shared memory contents are valid */ 14396 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 14397 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) != 14398 (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) { 14399 BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val); 14400 return (0); 14401 } 14402 BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val); 14403 14404 /* get the bootcode version */ 14405 sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev); 14406 snprintf(sc->devinfo.bc_ver_str, 14407 sizeof(sc->devinfo.bc_ver_str), 14408 "%d.%d.%d", 14409 ((sc->devinfo.bc_ver >> 24) & 0xff), 14410 ((sc->devinfo.bc_ver >> 16) & 0xff), 14411 ((sc->devinfo.bc_ver >> 8) & 0xff)); 14412 BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str); 14413 14414 /* get the bootcode shmem address */ 14415 sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc); 14416 BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base); 14417 14418 /* clean indirect addresses as they're not used */ 14419 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 14420 if (IS_PF(sc)) { 14421 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0); 14422 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0); 14423 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0); 14424 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0); 14425 if (CHIP_IS_E1x(sc)) { 14426 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0); 14427 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0); 14428 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0); 14429 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0); 14430 } 14431 14432 /* 14433 * Enable internal target-read (in case we are probed after PF 14434 * FLR). Must be done prior to any BAR read access. Only for 14435 * 57712 and up 14436 */ 14437 if (!CHIP_IS_E1x(sc)) { 14438 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 14439 } 14440 } 14441 14442 /* get the nvram size */ 14443 val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4); 14444 sc->devinfo.flash_size = 14445 (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE)); 14446 BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size); 14447 14448 /* get PCI capabilites */ 14449 bxe_probe_pci_caps(sc); 14450 14451 bxe_set_power_state(sc, PCI_PM_D0); 14452 14453 /* get various configuration parameters from shmem */ 14454 bxe_get_shmem_info(sc); 14455 14456 if (sc->devinfo.pcie_msix_cap_reg != 0) { 14457 val = pci_read_config(sc->dev, 14458 (sc->devinfo.pcie_msix_cap_reg + 14459 PCIR_MSIX_CTRL), 14460 2); 14461 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE); 14462 } else { 14463 sc->igu_sb_cnt = 1; 14464 } 14465 14466 sc->igu_base_addr = BAR_IGU_INTMEM; 14467 14468 /* initialize IGU parameters */ 14469 if (CHIP_IS_E1x(sc)) { 14470 sc->devinfo.int_block = INT_BLOCK_HC; 14471 sc->igu_dsb_id = DEF_SB_IGU_ID; 14472 sc->igu_base_sb = 0; 14473 } else { 14474 sc->devinfo.int_block = INT_BLOCK_IGU; 14475 14476 /* do not allow device reset during IGU info preocessing */ 14477 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14478 14479 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 14480 14481 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 14482 int tout = 5000; 14483 14484 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n"); 14485 14486 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 14487 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val); 14488 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f); 14489 14490 while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 14491 tout--; 14492 DELAY(1000); 14493 } 14494 14495 if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 14496 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n"); 14497 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14498 return (-1); 14499 } 14500 } 14501 14502 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 14503 BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n"); 14504 sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP; 14505 } else { 14506 BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n"); 14507 } 14508 14509 rc = bxe_get_igu_cam_info(sc); 14510 14511 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14512 14513 if (rc) { 14514 return (rc); 14515 } 14516 } 14517 14518 /* 14519 * Get base FW non-default (fast path) status block ID. This value is 14520 * used to initialize the fw_sb_id saved on the fp/queue structure to 14521 * determine the id used by the FW. 14522 */ 14523 if (CHIP_IS_E1x(sc)) { 14524 sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc)); 14525 } else { 14526 /* 14527 * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of 14528 * the same queue are indicated on the same IGU SB). So we prefer 14529 * FW and IGU SBs to be the same value. 14530 */ 14531 sc->base_fw_ndsb = sc->igu_base_sb; 14532 } 14533 14534 BLOGD(sc, DBG_LOAD, 14535 "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n", 14536 sc->igu_dsb_id, sc->igu_base_sb, 14537 sc->igu_sb_cnt, sc->base_fw_ndsb); 14538 14539 elink_phy_probe(&sc->link_params); 14540 14541 return (0); 14542 } 14543 14544 static void 14545 bxe_link_settings_supported(struct bxe_softc *sc, 14546 uint32_t switch_cfg) 14547 { 14548 uint32_t cfg_size = 0; 14549 uint32_t idx; 14550 uint8_t port = SC_PORT(sc); 14551 14552 /* aggregation of supported attributes of all external phys */ 14553 sc->port.supported[0] = 0; 14554 sc->port.supported[1] = 0; 14555 14556 switch (sc->link_params.num_phys) { 14557 case 1: 14558 sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported; 14559 cfg_size = 1; 14560 break; 14561 case 2: 14562 sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported; 14563 cfg_size = 1; 14564 break; 14565 case 3: 14566 if (sc->link_params.multi_phy_config & 14567 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 14568 sc->port.supported[1] = 14569 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14570 sc->port.supported[0] = 14571 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14572 } else { 14573 sc->port.supported[0] = 14574 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14575 sc->port.supported[1] = 14576 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14577 } 14578 cfg_size = 2; 14579 break; 14580 } 14581 14582 if (!(sc->port.supported[0] || sc->port.supported[1])) { 14583 BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n", 14584 SHMEM_RD(sc, 14585 dev_info.port_hw_config[port].external_phy_config), 14586 SHMEM_RD(sc, 14587 dev_info.port_hw_config[port].external_phy_config2)); 14588 return; 14589 } 14590 14591 if (CHIP_IS_E3(sc)) 14592 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR); 14593 else { 14594 switch (switch_cfg) { 14595 case ELINK_SWITCH_CFG_1G: 14596 sc->port.phy_addr = 14597 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 14598 break; 14599 case ELINK_SWITCH_CFG_10G: 14600 sc->port.phy_addr = 14601 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 14602 break; 14603 default: 14604 BLOGE(sc, "Invalid switch config in link_config=0x%08x\n", 14605 sc->port.link_config[0]); 14606 return; 14607 } 14608 } 14609 14610 BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr); 14611 14612 /* mask what we support according to speed_cap_mask per configuration */ 14613 for (idx = 0; idx < cfg_size; idx++) { 14614 if (!(sc->link_params.speed_cap_mask[idx] & 14615 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) { 14616 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half; 14617 } 14618 14619 if (!(sc->link_params.speed_cap_mask[idx] & 14620 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) { 14621 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full; 14622 } 14623 14624 if (!(sc->link_params.speed_cap_mask[idx] & 14625 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) { 14626 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half; 14627 } 14628 14629 if (!(sc->link_params.speed_cap_mask[idx] & 14630 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) { 14631 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full; 14632 } 14633 14634 if (!(sc->link_params.speed_cap_mask[idx] & 14635 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) { 14636 sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full; 14637 } 14638 14639 if (!(sc->link_params.speed_cap_mask[idx] & 14640 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) { 14641 sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full; 14642 } 14643 14644 if (!(sc->link_params.speed_cap_mask[idx] & 14645 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) { 14646 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full; 14647 } 14648 14649 if (!(sc->link_params.speed_cap_mask[idx] & 14650 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) { 14651 sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full; 14652 } 14653 } 14654 14655 BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n", 14656 sc->port.supported[0], sc->port.supported[1]); 14657 } 14658 14659 static void 14660 bxe_link_settings_requested(struct bxe_softc *sc) 14661 { 14662 uint32_t link_config; 14663 uint32_t idx; 14664 uint32_t cfg_size = 0; 14665 14666 sc->port.advertising[0] = 0; 14667 sc->port.advertising[1] = 0; 14668 14669 switch (sc->link_params.num_phys) { 14670 case 1: 14671 case 2: 14672 cfg_size = 1; 14673 break; 14674 case 3: 14675 cfg_size = 2; 14676 break; 14677 } 14678 14679 for (idx = 0; idx < cfg_size; idx++) { 14680 sc->link_params.req_duplex[idx] = DUPLEX_FULL; 14681 link_config = sc->port.link_config[idx]; 14682 14683 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 14684 case PORT_FEATURE_LINK_SPEED_AUTO: 14685 if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) { 14686 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14687 sc->port.advertising[idx] |= sc->port.supported[idx]; 14688 if (sc->link_params.phy[ELINK_EXT_PHY1].type == 14689 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 14690 sc->port.advertising[idx] |= 14691 (ELINK_SUPPORTED_100baseT_Half | 14692 ELINK_SUPPORTED_100baseT_Full); 14693 } else { 14694 /* force 10G, no AN */ 14695 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14696 sc->port.advertising[idx] |= 14697 (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); 14698 continue; 14699 } 14700 break; 14701 14702 case PORT_FEATURE_LINK_SPEED_10M_FULL: 14703 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) { 14704 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14705 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full | 14706 ADVERTISED_TP); 14707 } else { 14708 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14709 "speed_cap_mask=0x%08x\n", 14710 link_config, sc->link_params.speed_cap_mask[idx]); 14711 return; 14712 } 14713 break; 14714 14715 case PORT_FEATURE_LINK_SPEED_10M_HALF: 14716 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) { 14717 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14718 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14719 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half | 14720 ADVERTISED_TP); 14721 } else { 14722 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14723 "speed_cap_mask=0x%08x\n", 14724 link_config, sc->link_params.speed_cap_mask[idx]); 14725 return; 14726 } 14727 break; 14728 14729 case PORT_FEATURE_LINK_SPEED_100M_FULL: 14730 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) { 14731 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14732 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full | 14733 ADVERTISED_TP); 14734 } else { 14735 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14736 "speed_cap_mask=0x%08x\n", 14737 link_config, sc->link_params.speed_cap_mask[idx]); 14738 return; 14739 } 14740 break; 14741 14742 case PORT_FEATURE_LINK_SPEED_100M_HALF: 14743 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) { 14744 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14745 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14746 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half | 14747 ADVERTISED_TP); 14748 } else { 14749 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14750 "speed_cap_mask=0x%08x\n", 14751 link_config, sc->link_params.speed_cap_mask[idx]); 14752 return; 14753 } 14754 break; 14755 14756 case PORT_FEATURE_LINK_SPEED_1G: 14757 if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) { 14758 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000; 14759 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full | 14760 ADVERTISED_TP); 14761 } else { 14762 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14763 "speed_cap_mask=0x%08x\n", 14764 link_config, sc->link_params.speed_cap_mask[idx]); 14765 return; 14766 } 14767 break; 14768 14769 case PORT_FEATURE_LINK_SPEED_2_5G: 14770 if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) { 14771 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500; 14772 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full | 14773 ADVERTISED_TP); 14774 } else { 14775 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14776 "speed_cap_mask=0x%08x\n", 14777 link_config, sc->link_params.speed_cap_mask[idx]); 14778 return; 14779 } 14780 break; 14781 14782 case PORT_FEATURE_LINK_SPEED_10G_CX4: 14783 if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) { 14784 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14785 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full | 14786 ADVERTISED_FIBRE); 14787 } else { 14788 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14789 "speed_cap_mask=0x%08x\n", 14790 link_config, sc->link_params.speed_cap_mask[idx]); 14791 return; 14792 } 14793 break; 14794 14795 case PORT_FEATURE_LINK_SPEED_20G: 14796 sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000; 14797 break; 14798 14799 default: 14800 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14801 "speed_cap_mask=0x%08x\n", 14802 link_config, sc->link_params.speed_cap_mask[idx]); 14803 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14804 sc->port.advertising[idx] = sc->port.supported[idx]; 14805 break; 14806 } 14807 14808 sc->link_params.req_flow_ctrl[idx] = 14809 (link_config & PORT_FEATURE_FLOW_CONTROL_MASK); 14810 14811 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) { 14812 if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) { 14813 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE; 14814 } else { 14815 bxe_set_requested_fc(sc); 14816 } 14817 } 14818 14819 BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d " 14820 "req_flow_ctrl=0x%x advertising=0x%x\n", 14821 sc->link_params.req_line_speed[idx], 14822 sc->link_params.req_duplex[idx], 14823 sc->link_params.req_flow_ctrl[idx], 14824 sc->port.advertising[idx]); 14825 } 14826 } 14827 14828 static void 14829 bxe_get_phy_info(struct bxe_softc *sc) 14830 { 14831 uint8_t port = SC_PORT(sc); 14832 uint32_t config = sc->port.config; 14833 uint32_t eee_mode; 14834 14835 /* shmem data already read in bxe_get_shmem_info() */ 14836 14837 BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x " 14838 "link_config0=0x%08x\n", 14839 sc->link_params.lane_config, 14840 sc->link_params.speed_cap_mask[0], 14841 sc->port.link_config[0]); 14842 14843 bxe_link_settings_supported(sc, sc->link_params.switch_cfg); 14844 bxe_link_settings_requested(sc); 14845 14846 if (sc->autogreeen == AUTO_GREEN_FORCE_ON) { 14847 sc->link_params.feature_config_flags |= 14848 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14849 } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) { 14850 sc->link_params.feature_config_flags &= 14851 ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14852 } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) { 14853 sc->link_params.feature_config_flags |= 14854 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14855 } 14856 14857 /* configure link feature according to nvram value */ 14858 eee_mode = 14859 (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) & 14860 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 14861 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 14862 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 14863 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI | 14864 ELINK_EEE_MODE_ENABLE_LPI | 14865 ELINK_EEE_MODE_OUTPUT_TIME); 14866 } else { 14867 sc->link_params.eee_mode = 0; 14868 } 14869 14870 /* get the media type */ 14871 bxe_media_detect(sc); 14872 } 14873 14874 static void 14875 bxe_get_params(struct bxe_softc *sc) 14876 { 14877 /* get user tunable params */ 14878 bxe_get_tunable_params(sc); 14879 14880 /* select the RX and TX ring sizes */ 14881 sc->tx_ring_size = TX_BD_USABLE; 14882 sc->rx_ring_size = RX_BD_USABLE; 14883 14884 /* XXX disable WoL */ 14885 sc->wol = 0; 14886 } 14887 14888 static void 14889 bxe_set_modes_bitmap(struct bxe_softc *sc) 14890 { 14891 uint32_t flags = 0; 14892 14893 if (CHIP_REV_IS_FPGA(sc)) { 14894 SET_FLAGS(flags, MODE_FPGA); 14895 } else if (CHIP_REV_IS_EMUL(sc)) { 14896 SET_FLAGS(flags, MODE_EMUL); 14897 } else { 14898 SET_FLAGS(flags, MODE_ASIC); 14899 } 14900 14901 if (CHIP_IS_MODE_4_PORT(sc)) { 14902 SET_FLAGS(flags, MODE_PORT4); 14903 } else { 14904 SET_FLAGS(flags, MODE_PORT2); 14905 } 14906 14907 if (CHIP_IS_E2(sc)) { 14908 SET_FLAGS(flags, MODE_E2); 14909 } else if (CHIP_IS_E3(sc)) { 14910 SET_FLAGS(flags, MODE_E3); 14911 if (CHIP_REV(sc) == CHIP_REV_Ax) { 14912 SET_FLAGS(flags, MODE_E3_A0); 14913 } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ { 14914 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 14915 } 14916 } 14917 14918 if (IS_MF(sc)) { 14919 SET_FLAGS(flags, MODE_MF); 14920 switch (sc->devinfo.mf_info.mf_mode) { 14921 case MULTI_FUNCTION_SD: 14922 SET_FLAGS(flags, MODE_MF_SD); 14923 break; 14924 case MULTI_FUNCTION_SI: 14925 SET_FLAGS(flags, MODE_MF_SI); 14926 break; 14927 case MULTI_FUNCTION_AFEX: 14928 SET_FLAGS(flags, MODE_MF_AFEX); 14929 break; 14930 } 14931 } else { 14932 SET_FLAGS(flags, MODE_SF); 14933 } 14934 14935 #if defined(__LITTLE_ENDIAN) 14936 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 14937 #else /* __BIG_ENDIAN */ 14938 SET_FLAGS(flags, MODE_BIG_ENDIAN); 14939 #endif 14940 14941 INIT_MODE_FLAGS(sc) = flags; 14942 } 14943 14944 static int 14945 bxe_alloc_hsi_mem(struct bxe_softc *sc) 14946 { 14947 struct bxe_fastpath *fp; 14948 bus_addr_t busaddr; 14949 int max_agg_queues; 14950 int max_segments; 14951 bus_size_t max_size; 14952 bus_size_t max_seg_size; 14953 char buf[32]; 14954 int rc; 14955 int i, j; 14956 14957 /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */ 14958 14959 /* allocate the parent bus DMA tag */ 14960 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */ 14961 1, /* alignment */ 14962 0, /* boundary limit */ 14963 BUS_SPACE_MAXADDR, /* restricted low */ 14964 BUS_SPACE_MAXADDR, /* restricted hi */ 14965 NULL, /* addr filter() */ 14966 NULL, /* addr filter() arg */ 14967 BUS_SPACE_MAXSIZE_32BIT, /* max map size */ 14968 BUS_SPACE_UNRESTRICTED, /* num discontinuous */ 14969 BUS_SPACE_MAXSIZE_32BIT, /* max seg size */ 14970 0, /* flags */ 14971 NULL, /* lock() */ 14972 NULL, /* lock() arg */ 14973 &sc->parent_dma_tag); /* returned dma tag */ 14974 if (rc != 0) { 14975 BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc); 14976 return (1); 14977 } 14978 14979 /************************/ 14980 /* DEFAULT STATUS BLOCK */ 14981 /************************/ 14982 14983 if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block), 14984 &sc->def_sb_dma, "default status block") != 0) { 14985 /* XXX */ 14986 bus_dma_tag_destroy(sc->parent_dma_tag); 14987 return (1); 14988 } 14989 14990 sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr; 14991 14992 /***************/ 14993 /* EVENT QUEUE */ 14994 /***************/ 14995 14996 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14997 &sc->eq_dma, "event queue") != 0) { 14998 /* XXX */ 14999 bxe_dma_free(sc, &sc->def_sb_dma); 15000 sc->def_sb = NULL; 15001 bus_dma_tag_destroy(sc->parent_dma_tag); 15002 return (1); 15003 } 15004 15005 sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr; 15006 15007 /*************/ 15008 /* SLOW PATH */ 15009 /*************/ 15010 15011 if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath), 15012 &sc->sp_dma, "slow path") != 0) { 15013 /* XXX */ 15014 bxe_dma_free(sc, &sc->eq_dma); 15015 sc->eq = NULL; 15016 bxe_dma_free(sc, &sc->def_sb_dma); 15017 sc->def_sb = NULL; 15018 bus_dma_tag_destroy(sc->parent_dma_tag); 15019 return (1); 15020 } 15021 15022 sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr; 15023 15024 /*******************/ 15025 /* SLOW PATH QUEUE */ 15026 /*******************/ 15027 15028 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 15029 &sc->spq_dma, "slow path queue") != 0) { 15030 /* XXX */ 15031 bxe_dma_free(sc, &sc->sp_dma); 15032 sc->sp = NULL; 15033 bxe_dma_free(sc, &sc->eq_dma); 15034 sc->eq = NULL; 15035 bxe_dma_free(sc, &sc->def_sb_dma); 15036 sc->def_sb = NULL; 15037 bus_dma_tag_destroy(sc->parent_dma_tag); 15038 return (1); 15039 } 15040 15041 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr; 15042 15043 /***************************/ 15044 /* FW DECOMPRESSION BUFFER */ 15045 /***************************/ 15046 15047 if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma, 15048 "fw decompression buffer") != 0) { 15049 /* XXX */ 15050 bxe_dma_free(sc, &sc->spq_dma); 15051 sc->spq = NULL; 15052 bxe_dma_free(sc, &sc->sp_dma); 15053 sc->sp = NULL; 15054 bxe_dma_free(sc, &sc->eq_dma); 15055 sc->eq = NULL; 15056 bxe_dma_free(sc, &sc->def_sb_dma); 15057 sc->def_sb = NULL; 15058 bus_dma_tag_destroy(sc->parent_dma_tag); 15059 return (1); 15060 } 15061 15062 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr; 15063 15064 if ((sc->gz_strm = 15065 malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) { 15066 /* XXX */ 15067 bxe_dma_free(sc, &sc->gz_buf_dma); 15068 sc->gz_buf = NULL; 15069 bxe_dma_free(sc, &sc->spq_dma); 15070 sc->spq = NULL; 15071 bxe_dma_free(sc, &sc->sp_dma); 15072 sc->sp = NULL; 15073 bxe_dma_free(sc, &sc->eq_dma); 15074 sc->eq = NULL; 15075 bxe_dma_free(sc, &sc->def_sb_dma); 15076 sc->def_sb = NULL; 15077 bus_dma_tag_destroy(sc->parent_dma_tag); 15078 return (1); 15079 } 15080 15081 /*************/ 15082 /* FASTPATHS */ 15083 /*************/ 15084 15085 /* allocate DMA memory for each fastpath structure */ 15086 for (i = 0; i < sc->num_queues; i++) { 15087 fp = &sc->fp[i]; 15088 fp->sc = sc; 15089 fp->index = i; 15090 15091 /*******************/ 15092 /* FP STATUS BLOCK */ 15093 /*******************/ 15094 15095 snprintf(buf, sizeof(buf), "fp %d status block", i); 15096 if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block), 15097 &fp->sb_dma, buf) != 0) { 15098 /* XXX unwind and free previous fastpath allocations */ 15099 BLOGE(sc, "Failed to alloc %s\n", buf); 15100 return (1); 15101 } else { 15102 if (CHIP_IS_E2E3(sc)) { 15103 fp->status_block.e2_sb = 15104 (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr; 15105 } else { 15106 fp->status_block.e1x_sb = 15107 (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr; 15108 } 15109 } 15110 15111 /******************/ 15112 /* FP TX BD CHAIN */ 15113 /******************/ 15114 15115 snprintf(buf, sizeof(buf), "fp %d tx bd chain", i); 15116 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES), 15117 &fp->tx_dma, buf) != 0) { 15118 /* XXX unwind and free previous fastpath allocations */ 15119 BLOGE(sc, "Failed to alloc %s\n", buf); 15120 return (1); 15121 } else { 15122 fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr; 15123 } 15124 15125 /* link together the tx bd chain pages */ 15126 for (j = 1; j <= TX_BD_NUM_PAGES; j++) { 15127 /* index into the tx bd chain array to last entry per page */ 15128 struct eth_tx_next_bd *tx_next_bd = 15129 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd; 15130 /* point to the next page and wrap from last page */ 15131 busaddr = (fp->tx_dma.paddr + 15132 (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES))); 15133 tx_next_bd->addr_hi = htole32(U64_HI(busaddr)); 15134 tx_next_bd->addr_lo = htole32(U64_LO(busaddr)); 15135 } 15136 15137 /******************/ 15138 /* FP RX BD CHAIN */ 15139 /******************/ 15140 15141 snprintf(buf, sizeof(buf), "fp %d rx bd chain", i); 15142 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES), 15143 &fp->rx_dma, buf) != 0) { 15144 /* XXX unwind and free previous fastpath allocations */ 15145 BLOGE(sc, "Failed to alloc %s\n", buf); 15146 return (1); 15147 } else { 15148 fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr; 15149 } 15150 15151 /* link together the rx bd chain pages */ 15152 for (j = 1; j <= RX_BD_NUM_PAGES; j++) { 15153 /* index into the rx bd chain array to last entry per page */ 15154 struct eth_rx_bd *rx_bd = 15155 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2]; 15156 /* point to the next page and wrap from last page */ 15157 busaddr = (fp->rx_dma.paddr + 15158 (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES))); 15159 rx_bd->addr_hi = htole32(U64_HI(busaddr)); 15160 rx_bd->addr_lo = htole32(U64_LO(busaddr)); 15161 } 15162 15163 /*******************/ 15164 /* FP RX RCQ CHAIN */ 15165 /*******************/ 15166 15167 snprintf(buf, sizeof(buf), "fp %d rcq chain", i); 15168 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES), 15169 &fp->rcq_dma, buf) != 0) { 15170 /* XXX unwind and free previous fastpath allocations */ 15171 BLOGE(sc, "Failed to alloc %s\n", buf); 15172 return (1); 15173 } else { 15174 fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr; 15175 } 15176 15177 /* link together the rcq chain pages */ 15178 for (j = 1; j <= RCQ_NUM_PAGES; j++) { 15179 /* index into the rcq chain array to last entry per page */ 15180 struct eth_rx_cqe_next_page *rx_cqe_next = 15181 (struct eth_rx_cqe_next_page *) 15182 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1]; 15183 /* point to the next page and wrap from last page */ 15184 busaddr = (fp->rcq_dma.paddr + 15185 (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES))); 15186 rx_cqe_next->addr_hi = htole32(U64_HI(busaddr)); 15187 rx_cqe_next->addr_lo = htole32(U64_LO(busaddr)); 15188 } 15189 15190 /*******************/ 15191 /* FP RX SGE CHAIN */ 15192 /*******************/ 15193 15194 snprintf(buf, sizeof(buf), "fp %d sge chain", i); 15195 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES), 15196 &fp->rx_sge_dma, buf) != 0) { 15197 /* XXX unwind and free previous fastpath allocations */ 15198 BLOGE(sc, "Failed to alloc %s\n", buf); 15199 return (1); 15200 } else { 15201 fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr; 15202 } 15203 15204 /* link together the sge chain pages */ 15205 for (j = 1; j <= RX_SGE_NUM_PAGES; j++) { 15206 /* index into the rcq chain array to last entry per page */ 15207 struct eth_rx_sge *rx_sge = 15208 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2]; 15209 /* point to the next page and wrap from last page */ 15210 busaddr = (fp->rx_sge_dma.paddr + 15211 (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES))); 15212 rx_sge->addr_hi = htole32(U64_HI(busaddr)); 15213 rx_sge->addr_lo = htole32(U64_LO(busaddr)); 15214 } 15215 15216 /***********************/ 15217 /* FP TX MBUF DMA MAPS */ 15218 /***********************/ 15219 15220 /* set required sizes before mapping to conserve resources */ 15221 if (sc->ifnet->if_capenable & (IFCAP_TSO4 | IFCAP_TSO6)) { 15222 max_size = BXE_TSO_MAX_SIZE; 15223 max_segments = BXE_TSO_MAX_SEGMENTS; 15224 max_seg_size = BXE_TSO_MAX_SEG_SIZE; 15225 } else { 15226 max_size = (MCLBYTES * BXE_MAX_SEGMENTS); 15227 max_segments = BXE_MAX_SEGMENTS; 15228 max_seg_size = MCLBYTES; 15229 } 15230 15231 /* create a dma tag for the tx mbufs */ 15232 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 15233 1, /* alignment */ 15234 0, /* boundary limit */ 15235 BUS_SPACE_MAXADDR, /* restricted low */ 15236 BUS_SPACE_MAXADDR, /* restricted hi */ 15237 NULL, /* addr filter() */ 15238 NULL, /* addr filter() arg */ 15239 max_size, /* max map size */ 15240 max_segments, /* num discontinuous */ 15241 max_seg_size, /* max seg size */ 15242 0, /* flags */ 15243 NULL, /* lock() */ 15244 NULL, /* lock() arg */ 15245 &fp->tx_mbuf_tag); /* returned dma tag */ 15246 if (rc != 0) { 15247 /* XXX unwind and free previous fastpath allocations */ 15248 BLOGE(sc, "Failed to create dma tag for " 15249 "'fp %d tx mbufs' (%d)\n", 15250 i, rc); 15251 return (1); 15252 } 15253 15254 /* create dma maps for each of the tx mbuf clusters */ 15255 for (j = 0; j < TX_BD_TOTAL; j++) { 15256 if (bus_dmamap_create(fp->tx_mbuf_tag, 15257 BUS_DMA_NOWAIT, 15258 &fp->tx_mbuf_chain[j].m_map)) { 15259 /* XXX unwind and free previous fastpath allocations */ 15260 BLOGE(sc, "Failed to create dma map for " 15261 "'fp %d tx mbuf %d' (%d)\n", 15262 i, j, rc); 15263 return (1); 15264 } 15265 } 15266 15267 /***********************/ 15268 /* FP RX MBUF DMA MAPS */ 15269 /***********************/ 15270 15271 /* create a dma tag for the rx mbufs */ 15272 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 15273 1, /* alignment */ 15274 0, /* boundary limit */ 15275 BUS_SPACE_MAXADDR, /* restricted low */ 15276 BUS_SPACE_MAXADDR, /* restricted hi */ 15277 NULL, /* addr filter() */ 15278 NULL, /* addr filter() arg */ 15279 MJUM9BYTES, /* max map size */ 15280 1, /* num discontinuous */ 15281 MJUM9BYTES, /* max seg size */ 15282 0, /* flags */ 15283 NULL, /* lock() */ 15284 NULL, /* lock() arg */ 15285 &fp->rx_mbuf_tag); /* returned dma tag */ 15286 if (rc != 0) { 15287 /* XXX unwind and free previous fastpath allocations */ 15288 BLOGE(sc, "Failed to create dma tag for " 15289 "'fp %d rx mbufs' (%d)\n", 15290 i, rc); 15291 return (1); 15292 } 15293 15294 /* create dma maps for each of the rx mbuf clusters */ 15295 for (j = 0; j < RX_BD_TOTAL; j++) { 15296 if (bus_dmamap_create(fp->rx_mbuf_tag, 15297 BUS_DMA_NOWAIT, 15298 &fp->rx_mbuf_chain[j].m_map)) { 15299 /* XXX unwind and free previous fastpath allocations */ 15300 BLOGE(sc, "Failed to create dma map for " 15301 "'fp %d rx mbuf %d' (%d)\n", 15302 i, j, rc); 15303 return (1); 15304 } 15305 } 15306 15307 /* create dma map for the spare rx mbuf cluster */ 15308 if (bus_dmamap_create(fp->rx_mbuf_tag, 15309 BUS_DMA_NOWAIT, 15310 &fp->rx_mbuf_spare_map)) { 15311 /* XXX unwind and free previous fastpath allocations */ 15312 BLOGE(sc, "Failed to create dma map for " 15313 "'fp %d spare rx mbuf' (%d)\n", 15314 i, rc); 15315 return (1); 15316 } 15317 15318 /***************************/ 15319 /* FP RX SGE MBUF DMA MAPS */ 15320 /***************************/ 15321 15322 /* create a dma tag for the rx sge mbufs */ 15323 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 15324 1, /* alignment */ 15325 0, /* boundary limit */ 15326 BUS_SPACE_MAXADDR, /* restricted low */ 15327 BUS_SPACE_MAXADDR, /* restricted hi */ 15328 NULL, /* addr filter() */ 15329 NULL, /* addr filter() arg */ 15330 BCM_PAGE_SIZE, /* max map size */ 15331 1, /* num discontinuous */ 15332 BCM_PAGE_SIZE, /* max seg size */ 15333 0, /* flags */ 15334 NULL, /* lock() */ 15335 NULL, /* lock() arg */ 15336 &fp->rx_sge_mbuf_tag); /* returned dma tag */ 15337 if (rc != 0) { 15338 /* XXX unwind and free previous fastpath allocations */ 15339 BLOGE(sc, "Failed to create dma tag for " 15340 "'fp %d rx sge mbufs' (%d)\n", 15341 i, rc); 15342 return (1); 15343 } 15344 15345 /* create dma maps for the rx sge mbuf clusters */ 15346 for (j = 0; j < RX_SGE_TOTAL; j++) { 15347 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 15348 BUS_DMA_NOWAIT, 15349 &fp->rx_sge_mbuf_chain[j].m_map)) { 15350 /* XXX unwind and free previous fastpath allocations */ 15351 BLOGE(sc, "Failed to create dma map for " 15352 "'fp %d rx sge mbuf %d' (%d)\n", 15353 i, j, rc); 15354 return (1); 15355 } 15356 } 15357 15358 /* create dma map for the spare rx sge mbuf cluster */ 15359 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 15360 BUS_DMA_NOWAIT, 15361 &fp->rx_sge_mbuf_spare_map)) { 15362 /* XXX unwind and free previous fastpath allocations */ 15363 BLOGE(sc, "Failed to create dma map for " 15364 "'fp %d spare rx sge mbuf' (%d)\n", 15365 i, rc); 15366 return (1); 15367 } 15368 15369 /***************************/ 15370 /* FP RX TPA MBUF DMA MAPS */ 15371 /***************************/ 15372 15373 /* create dma maps for the rx tpa mbuf clusters */ 15374 max_agg_queues = MAX_AGG_QS(sc); 15375 15376 for (j = 0; j < max_agg_queues; j++) { 15377 if (bus_dmamap_create(fp->rx_mbuf_tag, 15378 BUS_DMA_NOWAIT, 15379 &fp->rx_tpa_info[j].bd.m_map)) { 15380 /* XXX unwind and free previous fastpath allocations */ 15381 BLOGE(sc, "Failed to create dma map for " 15382 "'fp %d rx tpa mbuf %d' (%d)\n", 15383 i, j, rc); 15384 return (1); 15385 } 15386 } 15387 15388 /* create dma map for the spare rx tpa mbuf cluster */ 15389 if (bus_dmamap_create(fp->rx_mbuf_tag, 15390 BUS_DMA_NOWAIT, 15391 &fp->rx_tpa_info_mbuf_spare_map)) { 15392 /* XXX unwind and free previous fastpath allocations */ 15393 BLOGE(sc, "Failed to create dma map for " 15394 "'fp %d spare rx tpa mbuf' (%d)\n", 15395 i, rc); 15396 return (1); 15397 } 15398 15399 bxe_init_sge_ring_bit_mask(fp); 15400 } 15401 15402 return (0); 15403 } 15404 15405 static void 15406 bxe_free_hsi_mem(struct bxe_softc *sc) 15407 { 15408 struct bxe_fastpath *fp; 15409 int max_agg_queues; 15410 int i, j; 15411 15412 if (sc->parent_dma_tag == NULL) { 15413 return; /* assume nothing was allocated */ 15414 } 15415 15416 for (i = 0; i < sc->num_queues; i++) { 15417 fp = &sc->fp[i]; 15418 15419 /*******************/ 15420 /* FP STATUS BLOCK */ 15421 /*******************/ 15422 15423 bxe_dma_free(sc, &fp->sb_dma); 15424 memset(&fp->status_block, 0, sizeof(fp->status_block)); 15425 15426 /******************/ 15427 /* FP TX BD CHAIN */ 15428 /******************/ 15429 15430 bxe_dma_free(sc, &fp->tx_dma); 15431 fp->tx_chain = NULL; 15432 15433 /******************/ 15434 /* FP RX BD CHAIN */ 15435 /******************/ 15436 15437 bxe_dma_free(sc, &fp->rx_dma); 15438 fp->rx_chain = NULL; 15439 15440 /*******************/ 15441 /* FP RX RCQ CHAIN */ 15442 /*******************/ 15443 15444 bxe_dma_free(sc, &fp->rcq_dma); 15445 fp->rcq_chain = NULL; 15446 15447 /*******************/ 15448 /* FP RX SGE CHAIN */ 15449 /*******************/ 15450 15451 bxe_dma_free(sc, &fp->rx_sge_dma); 15452 fp->rx_sge_chain = NULL; 15453 15454 /***********************/ 15455 /* FP TX MBUF DMA MAPS */ 15456 /***********************/ 15457 15458 if (fp->tx_mbuf_tag != NULL) { 15459 for (j = 0; j < TX_BD_TOTAL; j++) { 15460 if (fp->tx_mbuf_chain[j].m_map != NULL) { 15461 bus_dmamap_unload(fp->tx_mbuf_tag, 15462 fp->tx_mbuf_chain[j].m_map); 15463 bus_dmamap_destroy(fp->tx_mbuf_tag, 15464 fp->tx_mbuf_chain[j].m_map); 15465 } 15466 } 15467 15468 bus_dma_tag_destroy(fp->tx_mbuf_tag); 15469 fp->tx_mbuf_tag = NULL; 15470 } 15471 15472 /***********************/ 15473 /* FP RX MBUF DMA MAPS */ 15474 /***********************/ 15475 15476 if (fp->rx_mbuf_tag != NULL) { 15477 for (j = 0; j < RX_BD_TOTAL; j++) { 15478 if (fp->rx_mbuf_chain[j].m_map != NULL) { 15479 bus_dmamap_unload(fp->rx_mbuf_tag, 15480 fp->rx_mbuf_chain[j].m_map); 15481 bus_dmamap_destroy(fp->rx_mbuf_tag, 15482 fp->rx_mbuf_chain[j].m_map); 15483 } 15484 } 15485 15486 if (fp->rx_mbuf_spare_map != NULL) { 15487 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 15488 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 15489 } 15490 15491 /***************************/ 15492 /* FP RX TPA MBUF DMA MAPS */ 15493 /***************************/ 15494 15495 max_agg_queues = MAX_AGG_QS(sc); 15496 15497 for (j = 0; j < max_agg_queues; j++) { 15498 if (fp->rx_tpa_info[j].bd.m_map != NULL) { 15499 bus_dmamap_unload(fp->rx_mbuf_tag, 15500 fp->rx_tpa_info[j].bd.m_map); 15501 bus_dmamap_destroy(fp->rx_mbuf_tag, 15502 fp->rx_tpa_info[j].bd.m_map); 15503 } 15504 } 15505 15506 if (fp->rx_tpa_info_mbuf_spare_map != NULL) { 15507 bus_dmamap_unload(fp->rx_mbuf_tag, 15508 fp->rx_tpa_info_mbuf_spare_map); 15509 bus_dmamap_destroy(fp->rx_mbuf_tag, 15510 fp->rx_tpa_info_mbuf_spare_map); 15511 } 15512 15513 bus_dma_tag_destroy(fp->rx_mbuf_tag); 15514 fp->rx_mbuf_tag = NULL; 15515 } 15516 15517 /***************************/ 15518 /* FP RX SGE MBUF DMA MAPS */ 15519 /***************************/ 15520 15521 if (fp->rx_sge_mbuf_tag != NULL) { 15522 for (j = 0; j < RX_SGE_TOTAL; j++) { 15523 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) { 15524 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 15525 fp->rx_sge_mbuf_chain[j].m_map); 15526 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 15527 fp->rx_sge_mbuf_chain[j].m_map); 15528 } 15529 } 15530 15531 if (fp->rx_sge_mbuf_spare_map != NULL) { 15532 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 15533 fp->rx_sge_mbuf_spare_map); 15534 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 15535 fp->rx_sge_mbuf_spare_map); 15536 } 15537 15538 bus_dma_tag_destroy(fp->rx_sge_mbuf_tag); 15539 fp->rx_sge_mbuf_tag = NULL; 15540 } 15541 } 15542 15543 /***************************/ 15544 /* FW DECOMPRESSION BUFFER */ 15545 /***************************/ 15546 15547 bxe_dma_free(sc, &sc->gz_buf_dma); 15548 sc->gz_buf = NULL; 15549 free(sc->gz_strm, M_DEVBUF); 15550 sc->gz_strm = NULL; 15551 15552 /*******************/ 15553 /* SLOW PATH QUEUE */ 15554 /*******************/ 15555 15556 bxe_dma_free(sc, &sc->spq_dma); 15557 sc->spq = NULL; 15558 15559 /*************/ 15560 /* SLOW PATH */ 15561 /*************/ 15562 15563 bxe_dma_free(sc, &sc->sp_dma); 15564 sc->sp = NULL; 15565 15566 /***************/ 15567 /* EVENT QUEUE */ 15568 /***************/ 15569 15570 bxe_dma_free(sc, &sc->eq_dma); 15571 sc->eq = NULL; 15572 15573 /************************/ 15574 /* DEFAULT STATUS BLOCK */ 15575 /************************/ 15576 15577 bxe_dma_free(sc, &sc->def_sb_dma); 15578 sc->def_sb = NULL; 15579 15580 bus_dma_tag_destroy(sc->parent_dma_tag); 15581 sc->parent_dma_tag = NULL; 15582 } 15583 15584 /* 15585 * Previous driver DMAE transaction may have occurred when pre-boot stage 15586 * ended and boot began. This would invalidate the addresses of the 15587 * transaction, resulting in was-error bit set in the PCI causing all 15588 * hw-to-host PCIe transactions to timeout. If this happened we want to clear 15589 * the interrupt which detected this from the pglueb and the was-done bit 15590 */ 15591 static void 15592 bxe_prev_interrupted_dmae(struct bxe_softc *sc) 15593 { 15594 uint32_t val; 15595 15596 if (!CHIP_IS_E1x(sc)) { 15597 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS); 15598 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { 15599 BLOGD(sc, DBG_LOAD, 15600 "Clearing 'was-error' bit that was set in pglueb"); 15601 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc)); 15602 } 15603 } 15604 } 15605 15606 static int 15607 bxe_prev_mcp_done(struct bxe_softc *sc) 15608 { 15609 uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 15610 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 15611 if (!rc) { 15612 BLOGE(sc, "MCP response failure, aborting\n"); 15613 return (-1); 15614 } 15615 15616 return (0); 15617 } 15618 15619 static struct bxe_prev_list_node * 15620 bxe_prev_path_get_entry(struct bxe_softc *sc) 15621 { 15622 struct bxe_prev_list_node *tmp; 15623 15624 LIST_FOREACH(tmp, &bxe_prev_list, node) { 15625 if ((sc->pcie_bus == tmp->bus) && 15626 (sc->pcie_device == tmp->slot) && 15627 (SC_PATH(sc) == tmp->path)) { 15628 return (tmp); 15629 } 15630 } 15631 15632 return (NULL); 15633 } 15634 15635 static uint8_t 15636 bxe_prev_is_path_marked(struct bxe_softc *sc) 15637 { 15638 struct bxe_prev_list_node *tmp; 15639 int rc = FALSE; 15640 15641 mtx_lock(&bxe_prev_mtx); 15642 15643 tmp = bxe_prev_path_get_entry(sc); 15644 if (tmp) { 15645 if (tmp->aer) { 15646 BLOGD(sc, DBG_LOAD, 15647 "Path %d/%d/%d was marked by AER\n", 15648 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15649 } else { 15650 rc = TRUE; 15651 BLOGD(sc, DBG_LOAD, 15652 "Path %d/%d/%d was already cleaned from previous drivers\n", 15653 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15654 } 15655 } 15656 15657 mtx_unlock(&bxe_prev_mtx); 15658 15659 return (rc); 15660 } 15661 15662 static int 15663 bxe_prev_mark_path(struct bxe_softc *sc, 15664 uint8_t after_undi) 15665 { 15666 struct bxe_prev_list_node *tmp; 15667 15668 mtx_lock(&bxe_prev_mtx); 15669 15670 /* Check whether the entry for this path already exists */ 15671 tmp = bxe_prev_path_get_entry(sc); 15672 if (tmp) { 15673 if (!tmp->aer) { 15674 BLOGD(sc, DBG_LOAD, 15675 "Re-marking AER in path %d/%d/%d\n", 15676 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15677 } else { 15678 BLOGD(sc, DBG_LOAD, 15679 "Removing AER indication from path %d/%d/%d\n", 15680 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15681 tmp->aer = 0; 15682 } 15683 15684 mtx_unlock(&bxe_prev_mtx); 15685 return (0); 15686 } 15687 15688 mtx_unlock(&bxe_prev_mtx); 15689 15690 /* Create an entry for this path and add it */ 15691 tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF, 15692 (M_NOWAIT | M_ZERO)); 15693 if (!tmp) { 15694 BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n"); 15695 return (-1); 15696 } 15697 15698 tmp->bus = sc->pcie_bus; 15699 tmp->slot = sc->pcie_device; 15700 tmp->path = SC_PATH(sc); 15701 tmp->aer = 0; 15702 tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0; 15703 15704 mtx_lock(&bxe_prev_mtx); 15705 15706 BLOGD(sc, DBG_LOAD, 15707 "Marked path %d/%d/%d - finished previous unload\n", 15708 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15709 LIST_INSERT_HEAD(&bxe_prev_list, tmp, node); 15710 15711 mtx_unlock(&bxe_prev_mtx); 15712 15713 return (0); 15714 } 15715 15716 static int 15717 bxe_do_flr(struct bxe_softc *sc) 15718 { 15719 int i; 15720 15721 /* only E2 and onwards support FLR */ 15722 if (CHIP_IS_E1x(sc)) { 15723 BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n"); 15724 return (-1); 15725 } 15726 15727 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 15728 if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 15729 BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n", 15730 sc->devinfo.bc_ver); 15731 return (-1); 15732 } 15733 15734 /* Wait for Transaction Pending bit clean */ 15735 for (i = 0; i < 4; i++) { 15736 if (i) { 15737 DELAY(((1 << (i - 1)) * 100) * 1000); 15738 } 15739 15740 if (!bxe_is_pcie_pending(sc)) { 15741 goto clear; 15742 } 15743 } 15744 15745 BLOGE(sc, "PCIE transaction is not cleared, " 15746 "proceeding with reset anyway\n"); 15747 15748 clear: 15749 15750 BLOGD(sc, DBG_LOAD, "Initiating FLR\n"); 15751 bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0); 15752 15753 return (0); 15754 } 15755 15756 struct bxe_mac_vals { 15757 uint32_t xmac_addr; 15758 uint32_t xmac_val; 15759 uint32_t emac_addr; 15760 uint32_t emac_val; 15761 uint32_t umac_addr; 15762 uint32_t umac_val; 15763 uint32_t bmac_addr; 15764 uint32_t bmac_val[2]; 15765 }; 15766 15767 static void 15768 bxe_prev_unload_close_mac(struct bxe_softc *sc, 15769 struct bxe_mac_vals *vals) 15770 { 15771 uint32_t val, base_addr, offset, mask, reset_reg; 15772 uint8_t mac_stopped = FALSE; 15773 uint8_t port = SC_PORT(sc); 15774 uint32_t wb_data[2]; 15775 15776 /* reset addresses as they also mark which values were changed */ 15777 vals->bmac_addr = 0; 15778 vals->umac_addr = 0; 15779 vals->xmac_addr = 0; 15780 vals->emac_addr = 0; 15781 15782 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2); 15783 15784 if (!CHIP_IS_E3(sc)) { 15785 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 15786 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 15787 if ((mask & reset_reg) && val) { 15788 BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n"); 15789 base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM 15790 : NIG_REG_INGRESS_BMAC0_MEM; 15791 offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL 15792 : BIGMAC_REGISTER_BMAC_CONTROL; 15793 15794 /* 15795 * use rd/wr since we cannot use dmae. This is safe 15796 * since MCP won't access the bus due to the request 15797 * to unload, and no function on the path can be 15798 * loaded at this time. 15799 */ 15800 wb_data[0] = REG_RD(sc, base_addr + offset); 15801 wb_data[1] = REG_RD(sc, base_addr + offset + 0x4); 15802 vals->bmac_addr = base_addr + offset; 15803 vals->bmac_val[0] = wb_data[0]; 15804 vals->bmac_val[1] = wb_data[1]; 15805 wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE; 15806 REG_WR(sc, vals->bmac_addr, wb_data[0]); 15807 REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]); 15808 } 15809 15810 BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n"); 15811 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4; 15812 vals->emac_val = REG_RD(sc, vals->emac_addr); 15813 REG_WR(sc, vals->emac_addr, 0); 15814 mac_stopped = TRUE; 15815 } else { 15816 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 15817 BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n"); 15818 base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 15819 val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI); 15820 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1)); 15821 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1)); 15822 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 15823 vals->xmac_val = REG_RD(sc, vals->xmac_addr); 15824 REG_WR(sc, vals->xmac_addr, 0); 15825 mac_stopped = TRUE; 15826 } 15827 15828 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 15829 if (mask & reset_reg) { 15830 BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n"); 15831 base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 15832 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; 15833 vals->umac_val = REG_RD(sc, vals->umac_addr); 15834 REG_WR(sc, vals->umac_addr, 0); 15835 mac_stopped = TRUE; 15836 } 15837 } 15838 15839 if (mac_stopped) { 15840 DELAY(20000); 15841 } 15842 } 15843 15844 #define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 15845 #define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff) 15846 #define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 15847 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 15848 15849 static void 15850 bxe_prev_unload_undi_inc(struct bxe_softc *sc, 15851 uint8_t port, 15852 uint8_t inc) 15853 { 15854 uint16_t rcq, bd; 15855 uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port)); 15856 15857 rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc; 15858 bd = BXE_PREV_UNDI_BD(tmp_reg) + inc; 15859 15860 tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd); 15861 REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg); 15862 15863 BLOGD(sc, DBG_LOAD, 15864 "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n", 15865 port, bd, rcq); 15866 } 15867 15868 static int 15869 bxe_prev_unload_common(struct bxe_softc *sc) 15870 { 15871 uint32_t reset_reg, tmp_reg = 0, rc; 15872 uint8_t prev_undi = FALSE; 15873 struct bxe_mac_vals mac_vals; 15874 uint32_t timer_count = 1000; 15875 uint32_t prev_brb; 15876 15877 /* 15878 * It is possible a previous function received 'common' answer, 15879 * but hasn't loaded yet, therefore creating a scenario of 15880 * multiple functions receiving 'common' on the same path. 15881 */ 15882 BLOGD(sc, DBG_LOAD, "Common unload Flow\n"); 15883 15884 memset(&mac_vals, 0, sizeof(mac_vals)); 15885 15886 if (bxe_prev_is_path_marked(sc)) { 15887 return (bxe_prev_mcp_done(sc)); 15888 } 15889 15890 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1); 15891 15892 /* Reset should be performed after BRB is emptied */ 15893 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 15894 /* Close the MAC Rx to prevent BRB from filling up */ 15895 bxe_prev_unload_close_mac(sc, &mac_vals); 15896 15897 /* close LLH filters towards the BRB */ 15898 elink_set_rx_filter(&sc->link_params, 0); 15899 15900 /* 15901 * Check if the UNDI driver was previously loaded. 15902 * UNDI driver initializes CID offset for normal bell to 0x7 15903 */ 15904 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { 15905 tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST); 15906 if (tmp_reg == 0x7) { 15907 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n"); 15908 prev_undi = TRUE; 15909 /* clear the UNDI indication */ 15910 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0); 15911 /* clear possible idle check errors */ 15912 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0); 15913 } 15914 } 15915 15916 /* wait until BRB is empty */ 15917 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15918 while (timer_count) { 15919 prev_brb = tmp_reg; 15920 15921 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15922 if (!tmp_reg) { 15923 break; 15924 } 15925 15926 BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg); 15927 15928 /* reset timer as long as BRB actually gets emptied */ 15929 if (prev_brb > tmp_reg) { 15930 timer_count = 1000; 15931 } else { 15932 timer_count--; 15933 } 15934 15935 /* If UNDI resides in memory, manually increment it */ 15936 if (prev_undi) { 15937 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1); 15938 } 15939 15940 DELAY(10); 15941 } 15942 15943 if (!timer_count) { 15944 BLOGE(sc, "Failed to empty BRB\n"); 15945 } 15946 } 15947 15948 /* No packets are in the pipeline, path is ready for reset */ 15949 bxe_reset_common(sc); 15950 15951 if (mac_vals.xmac_addr) { 15952 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val); 15953 } 15954 if (mac_vals.umac_addr) { 15955 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val); 15956 } 15957 if (mac_vals.emac_addr) { 15958 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val); 15959 } 15960 if (mac_vals.bmac_addr) { 15961 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 15962 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 15963 } 15964 15965 rc = bxe_prev_mark_path(sc, prev_undi); 15966 if (rc) { 15967 bxe_prev_mcp_done(sc); 15968 return (rc); 15969 } 15970 15971 return (bxe_prev_mcp_done(sc)); 15972 } 15973 15974 static int 15975 bxe_prev_unload_uncommon(struct bxe_softc *sc) 15976 { 15977 int rc; 15978 15979 BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n"); 15980 15981 /* Test if previous unload process was already finished for this path */ 15982 if (bxe_prev_is_path_marked(sc)) { 15983 return (bxe_prev_mcp_done(sc)); 15984 } 15985 15986 BLOGD(sc, DBG_LOAD, "Path is unmarked\n"); 15987 15988 /* 15989 * If function has FLR capabilities, and existing FW version matches 15990 * the one required, then FLR will be sufficient to clean any residue 15991 * left by previous driver 15992 */ 15993 rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION); 15994 if (!rc) { 15995 /* fw version is good */ 15996 BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n"); 15997 rc = bxe_do_flr(sc); 15998 } 15999 16000 if (!rc) { 16001 /* FLR was performed */ 16002 BLOGD(sc, DBG_LOAD, "FLR successful\n"); 16003 return (0); 16004 } 16005 16006 BLOGD(sc, DBG_LOAD, "Could not FLR\n"); 16007 16008 /* Close the MCP request, return failure*/ 16009 rc = bxe_prev_mcp_done(sc); 16010 if (!rc) { 16011 rc = BXE_PREV_WAIT_NEEDED; 16012 } 16013 16014 return (rc); 16015 } 16016 16017 static int 16018 bxe_prev_unload(struct bxe_softc *sc) 16019 { 16020 int time_counter = 10; 16021 uint32_t fw, hw_lock_reg, hw_lock_val; 16022 uint32_t rc = 0; 16023 16024 /* 16025 * Clear HW from errors which may have resulted from an interrupted 16026 * DMAE transaction. 16027 */ 16028 bxe_prev_interrupted_dmae(sc); 16029 16030 /* Release previously held locks */ 16031 hw_lock_reg = 16032 (SC_FUNC(sc) <= 5) ? 16033 (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) : 16034 (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8); 16035 16036 hw_lock_val = (REG_RD(sc, hw_lock_reg)); 16037 if (hw_lock_val) { 16038 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 16039 BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n"); 16040 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 16041 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc))); 16042 } 16043 BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n"); 16044 REG_WR(sc, hw_lock_reg, 0xffffffff); 16045 } else { 16046 BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n"); 16047 } 16048 16049 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) { 16050 BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n"); 16051 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0); 16052 } 16053 16054 do { 16055 /* Lock MCP using an unload request */ 16056 fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 16057 if (!fw) { 16058 BLOGE(sc, "MCP response failure, aborting\n"); 16059 rc = -1; 16060 break; 16061 } 16062 16063 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) { 16064 rc = bxe_prev_unload_common(sc); 16065 break; 16066 } 16067 16068 /* non-common reply from MCP night require looping */ 16069 rc = bxe_prev_unload_uncommon(sc); 16070 if (rc != BXE_PREV_WAIT_NEEDED) { 16071 break; 16072 } 16073 16074 DELAY(20000); 16075 } while (--time_counter); 16076 16077 if (!time_counter || rc) { 16078 BLOGE(sc, "Failed to unload previous driver!\n"); 16079 rc = -1; 16080 } 16081 16082 return (rc); 16083 } 16084 16085 void 16086 bxe_dcbx_set_state(struct bxe_softc *sc, 16087 uint8_t dcb_on, 16088 uint32_t dcbx_enabled) 16089 { 16090 if (!CHIP_IS_E1x(sc)) { 16091 sc->dcb_state = dcb_on; 16092 sc->dcbx_enabled = dcbx_enabled; 16093 } else { 16094 sc->dcb_state = FALSE; 16095 sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID; 16096 } 16097 BLOGD(sc, DBG_LOAD, 16098 "DCB state [%s:%s]\n", 16099 dcb_on ? "ON" : "OFF", 16100 (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" : 16101 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" : 16102 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ? 16103 "on-chip with negotiation" : "invalid"); 16104 } 16105 16106 /* must be called after sriov-enable */ 16107 static int 16108 bxe_set_qm_cid_count(struct bxe_softc *sc) 16109 { 16110 int cid_count = BXE_L2_MAX_CID(sc); 16111 16112 if (IS_SRIOV(sc)) { 16113 cid_count += BXE_VF_CIDS; 16114 } 16115 16116 if (CNIC_SUPPORT(sc)) { 16117 cid_count += CNIC_CID_MAX; 16118 } 16119 16120 return (roundup(cid_count, QM_CID_ROUND)); 16121 } 16122 16123 static void 16124 bxe_init_multi_cos(struct bxe_softc *sc) 16125 { 16126 int pri, cos; 16127 16128 uint32_t pri_map = 0; /* XXX change to user config */ 16129 16130 for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) { 16131 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4)); 16132 if (cos < sc->max_cos) { 16133 sc->prio_to_cos[pri] = cos; 16134 } else { 16135 BLOGW(sc, "Invalid COS %d for priority %d " 16136 "(max COS is %d), setting to 0\n", 16137 cos, pri, (sc->max_cos - 1)); 16138 sc->prio_to_cos[pri] = 0; 16139 } 16140 } 16141 } 16142 16143 static int 16144 bxe_sysctl_state(SYSCTL_HANDLER_ARGS) 16145 { 16146 struct bxe_softc *sc; 16147 int error, result; 16148 16149 result = 0; 16150 error = sysctl_handle_int(oidp, &result, 0, req); 16151 16152 if (error || !req->newptr) { 16153 return (error); 16154 } 16155 16156 if (result == 1) { 16157 sc = (struct bxe_softc *)arg1; 16158 BLOGI(sc, "... dumping driver state ...\n"); 16159 /* XXX */ 16160 } 16161 16162 return (error); 16163 } 16164 16165 static int 16166 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS) 16167 { 16168 struct bxe_softc *sc = (struct bxe_softc *)arg1; 16169 uint32_t *eth_stats = (uint32_t *)&sc->eth_stats; 16170 uint32_t *offset; 16171 uint64_t value = 0; 16172 int index = (int)arg2; 16173 16174 if (index >= BXE_NUM_ETH_STATS) { 16175 BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index); 16176 return (-1); 16177 } 16178 16179 offset = (eth_stats + bxe_eth_stats_arr[index].offset); 16180 16181 switch (bxe_eth_stats_arr[index].size) { 16182 case 4: 16183 value = (uint64_t)*offset; 16184 break; 16185 case 8: 16186 value = HILO_U64(*offset, *(offset + 1)); 16187 break; 16188 default: 16189 BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n", 16190 index, bxe_eth_stats_arr[index].size); 16191 return (-1); 16192 } 16193 16194 return (sysctl_handle_64(oidp, &value, 0, req)); 16195 } 16196 16197 static int 16198 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS) 16199 { 16200 struct bxe_softc *sc = (struct bxe_softc *)arg1; 16201 uint32_t *eth_stats; 16202 uint32_t *offset; 16203 uint64_t value = 0; 16204 uint32_t q_stat = (uint32_t)arg2; 16205 uint32_t fp_index = ((q_stat >> 16) & 0xffff); 16206 uint32_t index = (q_stat & 0xffff); 16207 16208 eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats; 16209 16210 if (index >= BXE_NUM_ETH_Q_STATS) { 16211 BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index); 16212 return (-1); 16213 } 16214 16215 offset = (eth_stats + bxe_eth_q_stats_arr[index].offset); 16216 16217 switch (bxe_eth_q_stats_arr[index].size) { 16218 case 4: 16219 value = (uint64_t)*offset; 16220 break; 16221 case 8: 16222 value = HILO_U64(*offset, *(offset + 1)); 16223 break; 16224 default: 16225 BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n", 16226 index, bxe_eth_q_stats_arr[index].size); 16227 return (-1); 16228 } 16229 16230 return (sysctl_handle_64(oidp, &value, 0, req)); 16231 } 16232 16233 static void 16234 bxe_add_sysctls(struct bxe_softc *sc) 16235 { 16236 struct sysctl_ctx_list *ctx; 16237 struct sysctl_oid_list *children; 16238 struct sysctl_oid *queue_top, *queue; 16239 struct sysctl_oid_list *queue_top_children, *queue_children; 16240 char queue_num_buf[32]; 16241 uint32_t q_stat; 16242 int i, j; 16243 16244 ctx = device_get_sysctl_ctx(sc->dev); 16245 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 16246 16247 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version", 16248 CTLFLAG_RD, BXE_DRIVER_VERSION, 0, 16249 "version"); 16250 16251 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 16252 CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0, 16253 "bootcode version"); 16254 16255 snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d", 16256 BCM_5710_FW_MAJOR_VERSION, 16257 BCM_5710_FW_MINOR_VERSION, 16258 BCM_5710_FW_REVISION_VERSION, 16259 BCM_5710_FW_ENGINEERING_VERSION); 16260 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 16261 CTLFLAG_RD, &sc->fw_ver_str, 0, 16262 "firmware version"); 16263 16264 snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s", 16265 ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" : 16266 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" : 16267 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" : 16268 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" : 16269 "Unknown")); 16270 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 16271 CTLFLAG_RD, &sc->mf_mode_str, 0, 16272 "multifunction mode"); 16273 16274 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics", 16275 CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0, 16276 "multifunction vnics per port"); 16277 16278 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 16279 CTLFLAG_RD, &sc->mac_addr_str, 0, 16280 "mac address"); 16281 16282 snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d", 16283 ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" : 16284 (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" : 16285 (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" : 16286 "???GT/s"), 16287 sc->devinfo.pcie_link_width); 16288 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 16289 CTLFLAG_RD, &sc->pci_link_str, 0, 16290 "pci link status"); 16291 16292 sc->debug = bxe_debug; 16293 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug", 16294 CTLFLAG_RW, &sc->debug, 0, 16295 "debug logging mode"); 16296 16297 sc->rx_budget = bxe_rx_budget; 16298 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget", 16299 CTLFLAG_RW, &sc->rx_budget, 0, 16300 "rx processing budget"); 16301 16302 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state", 16303 CTLTYPE_UINT | CTLFLAG_RW, sc, 0, 16304 bxe_sysctl_state, "IU", "dump driver state"); 16305 16306 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 16307 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 16308 bxe_eth_stats_arr[i].string, 16309 CTLTYPE_U64 | CTLFLAG_RD, sc, i, 16310 bxe_sysctl_eth_stat, "LU", 16311 bxe_eth_stats_arr[i].string); 16312 } 16313 16314 /* add a new parent node for all queues "dev.bxe.#.queue" */ 16315 queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue", 16316 CTLFLAG_RD, NULL, "queue"); 16317 queue_top_children = SYSCTL_CHILDREN(queue_top); 16318 16319 for (i = 0; i < sc->num_queues; i++) { 16320 /* add a new parent node for a single queue "dev.bxe.#.queue.#" */ 16321 snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i); 16322 queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO, 16323 queue_num_buf, CTLFLAG_RD, NULL, 16324 "single queue"); 16325 queue_children = SYSCTL_CHILDREN(queue); 16326 16327 for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) { 16328 q_stat = ((i << 16) | j); 16329 SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO, 16330 bxe_eth_q_stats_arr[j].string, 16331 CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat, 16332 bxe_sysctl_eth_q_stat, "LU", 16333 bxe_eth_q_stats_arr[j].string); 16334 } 16335 } 16336 } 16337 16338 /* 16339 * Device attach function. 16340 * 16341 * Allocates device resources, performs secondary chip identification, and 16342 * initializes driver instance variables. This function is called from driver 16343 * load after a successful probe. 16344 * 16345 * Returns: 16346 * 0 = Success, >0 = Failure 16347 */ 16348 static int 16349 bxe_attach(device_t dev) 16350 { 16351 struct bxe_softc *sc; 16352 16353 sc = device_get_softc(dev); 16354 16355 BLOGD(sc, DBG_LOAD, "Starting attach...\n"); 16356 16357 sc->state = BXE_STATE_CLOSED; 16358 16359 sc->dev = dev; 16360 sc->unit = device_get_unit(dev); 16361 16362 BLOGD(sc, DBG_LOAD, "softc = %p\n", sc); 16363 16364 sc->pcie_bus = pci_get_bus(dev); 16365 sc->pcie_device = pci_get_slot(dev); 16366 sc->pcie_func = pci_get_function(dev); 16367 16368 /* enable bus master capability */ 16369 pci_enable_busmaster(dev); 16370 16371 /* get the BARs */ 16372 if (bxe_allocate_bars(sc) != 0) { 16373 return (ENXIO); 16374 } 16375 16376 /* initialize the mutexes */ 16377 bxe_init_mutexes(sc); 16378 16379 /* prepare the periodic callout */ 16380 callout_init(&sc->periodic_callout, 0); 16381 16382 /* prepare the chip taskqueue */ 16383 sc->chip_tq_flags = CHIP_TQ_NONE; 16384 snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name), 16385 "bxe%d_chip_tq", sc->unit); 16386 TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc); 16387 sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT, 16388 taskqueue_thread_enqueue, 16389 &sc->chip_tq); 16390 taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */ 16391 "%s", sc->chip_tq_name); 16392 16393 /* get device info and set params */ 16394 if (bxe_get_device_info(sc) != 0) { 16395 BLOGE(sc, "getting device info\n"); 16396 bxe_deallocate_bars(sc); 16397 pci_disable_busmaster(dev); 16398 return (ENXIO); 16399 } 16400 16401 /* get final misc params */ 16402 bxe_get_params(sc); 16403 16404 /* set the default MTU (changed via ifconfig) */ 16405 sc->mtu = ETHERMTU; 16406 16407 bxe_set_modes_bitmap(sc); 16408 16409 /* XXX 16410 * If in AFEX mode and the function is configured for FCoE 16411 * then bail... no L2 allowed. 16412 */ 16413 16414 /* get phy settings from shmem and 'and' against admin settings */ 16415 bxe_get_phy_info(sc); 16416 16417 /* initialize the FreeBSD ifnet interface */ 16418 if (bxe_init_ifnet(sc) != 0) { 16419 bxe_release_mutexes(sc); 16420 bxe_deallocate_bars(sc); 16421 pci_disable_busmaster(dev); 16422 return (ENXIO); 16423 } 16424 16425 /* allocate device interrupts */ 16426 if (bxe_interrupt_alloc(sc) != 0) { 16427 if (sc->ifnet != NULL) { 16428 ether_ifdetach(sc->ifnet); 16429 } 16430 ifmedia_removeall(&sc->ifmedia); 16431 bxe_release_mutexes(sc); 16432 bxe_deallocate_bars(sc); 16433 pci_disable_busmaster(dev); 16434 return (ENXIO); 16435 } 16436 16437 /* allocate ilt */ 16438 if (bxe_alloc_ilt_mem(sc) != 0) { 16439 bxe_interrupt_free(sc); 16440 if (sc->ifnet != NULL) { 16441 ether_ifdetach(sc->ifnet); 16442 } 16443 ifmedia_removeall(&sc->ifmedia); 16444 bxe_release_mutexes(sc); 16445 bxe_deallocate_bars(sc); 16446 pci_disable_busmaster(dev); 16447 return (ENXIO); 16448 } 16449 16450 /* allocate the host hardware/software hsi structures */ 16451 if (bxe_alloc_hsi_mem(sc) != 0) { 16452 bxe_free_ilt_mem(sc); 16453 bxe_interrupt_free(sc); 16454 if (sc->ifnet != NULL) { 16455 ether_ifdetach(sc->ifnet); 16456 } 16457 ifmedia_removeall(&sc->ifmedia); 16458 bxe_release_mutexes(sc); 16459 bxe_deallocate_bars(sc); 16460 pci_disable_busmaster(dev); 16461 return (ENXIO); 16462 } 16463 16464 /* need to reset chip if UNDI was active */ 16465 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 16466 /* init fw_seq */ 16467 sc->fw_seq = 16468 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 16469 DRV_MSG_SEQ_NUMBER_MASK); 16470 BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq); 16471 bxe_prev_unload(sc); 16472 } 16473 16474 #if 1 16475 /* XXX */ 16476 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16477 #else 16478 if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) && 16479 SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) && 16480 SHMEM2_RD(sc, dcbx_lldp_params_offset) && 16481 SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) { 16482 bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON); 16483 bxe_dcbx_init_params(sc); 16484 } else { 16485 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16486 } 16487 #endif 16488 16489 /* calculate qm_cid_count */ 16490 sc->qm_cid_count = bxe_set_qm_cid_count(sc); 16491 BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count); 16492 16493 sc->max_cos = 1; 16494 bxe_init_multi_cos(sc); 16495 16496 bxe_add_sysctls(sc); 16497 16498 return (0); 16499 } 16500 16501 /* 16502 * Device detach function. 16503 * 16504 * Stops the controller, resets the controller, and releases resources. 16505 * 16506 * Returns: 16507 * 0 = Success, >0 = Failure 16508 */ 16509 static int 16510 bxe_detach(device_t dev) 16511 { 16512 struct bxe_softc *sc; 16513 struct ifnet *ifp; 16514 16515 sc = device_get_softc(dev); 16516 16517 BLOGD(sc, DBG_LOAD, "Starting detach...\n"); 16518 16519 ifp = sc->ifnet; 16520 if (ifp != NULL && ifp->if_vlantrunk != NULL) { 16521 BLOGE(sc, "Cannot detach while VLANs are in use.\n"); 16522 return(EBUSY); 16523 } 16524 16525 /* stop the periodic callout */ 16526 bxe_periodic_stop(sc); 16527 16528 /* stop the chip taskqueue */ 16529 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE); 16530 if (sc->chip_tq) { 16531 taskqueue_drain(sc->chip_tq, &sc->chip_tq_task); 16532 taskqueue_free(sc->chip_tq); 16533 sc->chip_tq = NULL; 16534 } 16535 16536 /* stop and reset the controller if it was open */ 16537 if (sc->state != BXE_STATE_CLOSED) { 16538 BXE_CORE_LOCK(sc); 16539 bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE); 16540 BXE_CORE_UNLOCK(sc); 16541 } 16542 16543 /* release the network interface */ 16544 if (ifp != NULL) { 16545 ether_ifdetach(ifp); 16546 } 16547 ifmedia_removeall(&sc->ifmedia); 16548 16549 /* XXX do the following based on driver state... */ 16550 16551 /* free the host hardware/software hsi structures */ 16552 bxe_free_hsi_mem(sc); 16553 16554 /* free ilt */ 16555 bxe_free_ilt_mem(sc); 16556 16557 /* release the interrupts */ 16558 bxe_interrupt_free(sc); 16559 16560 /* Release the mutexes*/ 16561 bxe_release_mutexes(sc); 16562 16563 /* Release the PCIe BAR mapped memory */ 16564 bxe_deallocate_bars(sc); 16565 16566 /* Release the FreeBSD interface. */ 16567 if (sc->ifnet != NULL) { 16568 if_free(sc->ifnet); 16569 } 16570 16571 pci_disable_busmaster(dev); 16572 16573 return (0); 16574 } 16575 16576 /* 16577 * Device shutdown function. 16578 * 16579 * Stops and resets the controller. 16580 * 16581 * Returns: 16582 * Nothing 16583 */ 16584 static int 16585 bxe_shutdown(device_t dev) 16586 { 16587 struct bxe_softc *sc; 16588 16589 sc = device_get_softc(dev); 16590 16591 BLOGD(sc, DBG_LOAD, "Starting shutdown...\n"); 16592 16593 /* stop the periodic callout */ 16594 bxe_periodic_stop(sc); 16595 16596 BXE_CORE_LOCK(sc); 16597 bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE); 16598 BXE_CORE_UNLOCK(sc); 16599 16600 return (0); 16601 } 16602 16603 void 16604 bxe_igu_ack_sb(struct bxe_softc *sc, 16605 uint8_t igu_sb_id, 16606 uint8_t segment, 16607 uint16_t index, 16608 uint8_t op, 16609 uint8_t update) 16610 { 16611 uint32_t igu_addr = sc->igu_base_addr; 16612 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 16613 bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr); 16614 } 16615 16616 static void 16617 bxe_igu_clear_sb_gen(struct bxe_softc *sc, 16618 uint8_t func, 16619 uint8_t idu_sb_id, 16620 uint8_t is_pf) 16621 { 16622 uint32_t data, ctl, cnt = 100; 16623 uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 16624 uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 16625 uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 16626 uint32_t sb_bit = 1 << (idu_sb_id%32); 16627 uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 16628 uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 16629 16630 /* Not supported in BC mode */ 16631 if (CHIP_INT_MODE_IS_BC(sc)) { 16632 return; 16633 } 16634 16635 data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup << 16636 IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 16637 IGU_REGULAR_CLEANUP_SET | 16638 IGU_REGULAR_BCLEANUP); 16639 16640 ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) | 16641 (func_encode << IGU_CTRL_REG_FID_SHIFT) | 16642 (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT)); 16643 16644 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16645 data, igu_addr_data); 16646 REG_WR(sc, igu_addr_data, data); 16647 16648 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16649 BUS_SPACE_BARRIER_WRITE); 16650 mb(); 16651 16652 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16653 ctl, igu_addr_ctl); 16654 REG_WR(sc, igu_addr_ctl, ctl); 16655 16656 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16657 BUS_SPACE_BARRIER_WRITE); 16658 mb(); 16659 16660 /* wait for clean up to finish */ 16661 while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) { 16662 DELAY(20000); 16663 } 16664 16665 if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) { 16666 BLOGD(sc, DBG_LOAD, 16667 "Unable to finish IGU cleanup: " 16668 "idu_sb_id %d offset %d bit %d (cnt %d)\n", 16669 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 16670 } 16671 } 16672 16673 static void 16674 bxe_igu_clear_sb(struct bxe_softc *sc, 16675 uint8_t idu_sb_id) 16676 { 16677 bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/); 16678 } 16679 16680 16681 16682 16683 16684 16685 16686 /*******************/ 16687 /* ECORE CALLBACKS */ 16688 /*******************/ 16689 16690 static void 16691 bxe_reset_common(struct bxe_softc *sc) 16692 { 16693 uint32_t val = 0x1400; 16694 16695 /* reset_common */ 16696 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f); 16697 16698 if (CHIP_IS_E3(sc)) { 16699 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16700 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16701 } 16702 16703 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val); 16704 } 16705 16706 static void 16707 bxe_common_init_phy(struct bxe_softc *sc) 16708 { 16709 uint32_t shmem_base[2]; 16710 uint32_t shmem2_base[2]; 16711 16712 /* Avoid common init in case MFW supports LFA */ 16713 if (SHMEM2_RD(sc, size) > 16714 (uint32_t)offsetof(struct shmem2_region, 16715 lfa_host_addr[SC_PORT(sc)])) { 16716 return; 16717 } 16718 16719 shmem_base[0] = sc->devinfo.shmem_base; 16720 shmem2_base[0] = sc->devinfo.shmem2_base; 16721 16722 if (!CHIP_IS_E1x(sc)) { 16723 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr); 16724 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr); 16725 } 16726 16727 BXE_PHY_LOCK(sc); 16728 elink_common_init_phy(sc, shmem_base, shmem2_base, 16729 sc->devinfo.chip_id, 0); 16730 BXE_PHY_UNLOCK(sc); 16731 } 16732 16733 static void 16734 bxe_pf_disable(struct bxe_softc *sc) 16735 { 16736 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 16737 16738 val &= ~IGU_PF_CONF_FUNC_EN; 16739 16740 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 16741 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16742 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0); 16743 } 16744 16745 static void 16746 bxe_init_pxp(struct bxe_softc *sc) 16747 { 16748 uint16_t devctl; 16749 int r_order, w_order; 16750 16751 devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2); 16752 16753 BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl); 16754 16755 w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5); 16756 16757 if (sc->mrrs == -1) { 16758 r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12); 16759 } else { 16760 BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs); 16761 r_order = sc->mrrs; 16762 } 16763 16764 ecore_init_pxp_arb(sc, r_order, w_order); 16765 } 16766 16767 static uint32_t 16768 bxe_get_pretend_reg(struct bxe_softc *sc) 16769 { 16770 uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0; 16771 uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base); 16772 return (base + (SC_ABS_FUNC(sc)) * stride); 16773 } 16774 16775 /* 16776 * Called only on E1H or E2. 16777 * When pretending to be PF, the pretend value is the function number 0..7. 16778 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 16779 * combination. 16780 */ 16781 static int 16782 bxe_pretend_func(struct bxe_softc *sc, 16783 uint16_t pretend_func_val) 16784 { 16785 uint32_t pretend_reg; 16786 16787 if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) { 16788 return (-1); 16789 } 16790 16791 /* get my own pretend register */ 16792 pretend_reg = bxe_get_pretend_reg(sc); 16793 REG_WR(sc, pretend_reg, pretend_func_val); 16794 REG_RD(sc, pretend_reg); 16795 return (0); 16796 } 16797 16798 static void 16799 bxe_iov_init_dmae(struct bxe_softc *sc) 16800 { 16801 return; 16802 #if 0 16803 BLOGD(sc, DBG_LOAD, "SRIOV is %s\n", IS_SRIOV(sc) ? "ON" : "OFF"); 16804 16805 if (!IS_SRIOV(sc)) { 16806 return; 16807 } 16808 16809 REG_WR(sc, DMAE_REG_BACKWARD_COMP_EN, 0); 16810 #endif 16811 } 16812 16813 #if 0 16814 static int 16815 bxe_iov_init_ilt(struct bxe_softc *sc, 16816 uint16_t line) 16817 { 16818 return (line); 16819 #if 0 16820 int i; 16821 struct ecore_ilt* ilt = sc->ilt; 16822 16823 if (!IS_SRIOV(sc)) { 16824 return (line); 16825 } 16826 16827 /* set vfs ilt lines */ 16828 for (i = 0; i < BXE_VF_CIDS/ILT_PAGE_CIDS ; i++) { 16829 struct hw_dma *hw_cxt = SC_VF_CXT_PAGE(sc,i); 16830 ilt->lines[line+i].page = hw_cxt->addr; 16831 ilt->lines[line+i].page_mapping = hw_cxt->mapping; 16832 ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */ 16833 } 16834 return (line+i); 16835 #endif 16836 } 16837 #endif 16838 16839 static void 16840 bxe_iov_init_dq(struct bxe_softc *sc) 16841 { 16842 return; 16843 #if 0 16844 if (!IS_SRIOV(sc)) { 16845 return; 16846 } 16847 16848 /* Set the DQ such that the CID reflect the abs_vfid */ 16849 REG_WR(sc, DORQ_REG_VF_NORM_VF_BASE, 0); 16850 REG_WR(sc, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS)); 16851 16852 /* 16853 * Set VFs starting CID. If its > 0 the preceding CIDs are belong to 16854 * the PF L2 queues 16855 */ 16856 REG_WR(sc, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID); 16857 16858 /* The VF window size is the log2 of the max number of CIDs per VF */ 16859 REG_WR(sc, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND); 16860 16861 /* 16862 * The VF doorbell size 0 - *B, 4 - 128B. We set it here to match 16863 * the Pf doorbell size although the 2 are independent. 16864 */ 16865 REG_WR(sc, DORQ_REG_VF_NORM_CID_OFST, 16866 BNX2X_DB_SHIFT - BNX2X_DB_MIN_SHIFT); 16867 16868 /* 16869 * No security checks for now - 16870 * configure single rule (out of 16) mask = 0x1, value = 0x0, 16871 * CID range 0 - 0x1ffff 16872 */ 16873 REG_WR(sc, DORQ_REG_VF_TYPE_MASK_0, 1); 16874 REG_WR(sc, DORQ_REG_VF_TYPE_VALUE_0, 0); 16875 REG_WR(sc, DORQ_REG_VF_TYPE_MIN_MCID_0, 0); 16876 REG_WR(sc, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff); 16877 16878 /* set the number of VF alllowed doorbells to the full DQ range */ 16879 REG_WR(sc, DORQ_REG_VF_NORM_MAX_CID_COUNT, 0x20000); 16880 16881 /* set the VF doorbell threshold */ 16882 REG_WR(sc, DORQ_REG_VF_USAGE_CT_LIMIT, 4); 16883 #endif 16884 } 16885 16886 /* send a NIG loopback debug packet */ 16887 static void 16888 bxe_lb_pckt(struct bxe_softc *sc) 16889 { 16890 uint32_t wb_write[3]; 16891 16892 /* Ethernet source and destination addresses */ 16893 wb_write[0] = 0x55555555; 16894 wb_write[1] = 0x55555555; 16895 wb_write[2] = 0x20; /* SOP */ 16896 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16897 16898 /* NON-IP protocol */ 16899 wb_write[0] = 0x09000000; 16900 wb_write[1] = 0x55555555; 16901 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 16902 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16903 } 16904 16905 /* 16906 * Some of the internal memories are not directly readable from the driver. 16907 * To test them we send debug packets. 16908 */ 16909 static int 16910 bxe_int_mem_test(struct bxe_softc *sc) 16911 { 16912 int factor; 16913 int count, i; 16914 uint32_t val = 0; 16915 16916 if (CHIP_REV_IS_FPGA(sc)) { 16917 factor = 120; 16918 } else if (CHIP_REV_IS_EMUL(sc)) { 16919 factor = 200; 16920 } else { 16921 factor = 1; 16922 } 16923 16924 /* disable inputs of parser neighbor blocks */ 16925 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16926 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16927 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16928 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16929 16930 /* write 0 to parser credits for CFC search request */ 16931 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16932 16933 /* send Ethernet packet */ 16934 bxe_lb_pckt(sc); 16935 16936 /* TODO do i reset NIG statistic? */ 16937 /* Wait until NIG register shows 1 packet of size 0x10 */ 16938 count = 1000 * factor; 16939 while (count) { 16940 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16941 val = *BXE_SP(sc, wb_data[0]); 16942 if (val == 0x10) { 16943 break; 16944 } 16945 16946 DELAY(10000); 16947 count--; 16948 } 16949 16950 if (val != 0x10) { 16951 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16952 return (-1); 16953 } 16954 16955 /* wait until PRS register shows 1 packet */ 16956 count = (1000 * factor); 16957 while (count) { 16958 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16959 if (val == 1) { 16960 break; 16961 } 16962 16963 DELAY(10000); 16964 count--; 16965 } 16966 16967 if (val != 0x1) { 16968 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16969 return (-2); 16970 } 16971 16972 /* Reset and init BRB, PRS */ 16973 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16974 DELAY(50000); 16975 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16976 DELAY(50000); 16977 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16978 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16979 16980 /* Disable inputs of parser neighbor blocks */ 16981 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16982 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16983 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16984 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16985 16986 /* Write 0 to parser credits for CFC search request */ 16987 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16988 16989 /* send 10 Ethernet packets */ 16990 for (i = 0; i < 10; i++) { 16991 bxe_lb_pckt(sc); 16992 } 16993 16994 /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */ 16995 count = (1000 * factor); 16996 while (count) { 16997 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16998 val = *BXE_SP(sc, wb_data[0]); 16999 if (val == 0xb0) { 17000 break; 17001 } 17002 17003 DELAY(10000); 17004 count--; 17005 } 17006 17007 if (val != 0xb0) { 17008 BLOGE(sc, "NIG timeout val=0x%x\n", val); 17009 return (-3); 17010 } 17011 17012 /* Wait until PRS register shows 2 packets */ 17013 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 17014 if (val != 2) { 17015 BLOGE(sc, "PRS timeout val=0x%x\n", val); 17016 } 17017 17018 /* Write 1 to parser credits for CFC search request */ 17019 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 17020 17021 /* Wait until PRS register shows 3 packets */ 17022 DELAY(10000 * factor); 17023 17024 /* Wait until NIG register shows 1 packet of size 0x10 */ 17025 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 17026 if (val != 3) { 17027 BLOGE(sc, "PRS timeout val=0x%x\n", val); 17028 } 17029 17030 /* clear NIG EOP FIFO */ 17031 for (i = 0; i < 11; i++) { 17032 REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO); 17033 } 17034 17035 val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY); 17036 if (val != 1) { 17037 BLOGE(sc, "clear of NIG failed\n"); 17038 return (-4); 17039 } 17040 17041 /* Reset and init BRB, PRS, NIG */ 17042 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 17043 DELAY(50000); 17044 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 17045 DELAY(50000); 17046 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 17047 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 17048 if (!CNIC_SUPPORT(sc)) { 17049 /* set NIC mode */ 17050 REG_WR(sc, PRS_REG_NIC_MODE, 1); 17051 } 17052 17053 /* Enable inputs of parser neighbor blocks */ 17054 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff); 17055 REG_WR(sc, TCM_REG_PRS_IFEN, 0x1); 17056 REG_WR(sc, CFC_REG_DEBUG0, 0x0); 17057 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1); 17058 17059 return (0); 17060 } 17061 17062 static void 17063 bxe_setup_fan_failure_detection(struct bxe_softc *sc) 17064 { 17065 int is_required; 17066 uint32_t val; 17067 int port; 17068 17069 is_required = 0; 17070 val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) & 17071 SHARED_HW_CFG_FAN_FAILURE_MASK); 17072 17073 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) { 17074 is_required = 1; 17075 } 17076 /* 17077 * The fan failure mechanism is usually related to the PHY type since 17078 * the power consumption of the board is affected by the PHY. Currently, 17079 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 17080 */ 17081 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) { 17082 for (port = PORT_0; port < PORT_MAX; port++) { 17083 is_required |= elink_fan_failure_det_req(sc, 17084 sc->devinfo.shmem_base, 17085 sc->devinfo.shmem2_base, 17086 port); 17087 } 17088 } 17089 17090 BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required); 17091 17092 if (is_required == 0) { 17093 return; 17094 } 17095 17096 /* Fan failure is indicated by SPIO 5 */ 17097 bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 17098 17099 /* set to active low mode */ 17100 val = REG_RD(sc, MISC_REG_SPIO_INT); 17101 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 17102 REG_WR(sc, MISC_REG_SPIO_INT, val); 17103 17104 /* enable interrupt to signal the IGU */ 17105 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17106 val |= MISC_SPIO_SPIO5; 17107 REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val); 17108 } 17109 17110 static void 17111 bxe_enable_blocks_attention(struct bxe_softc *sc) 17112 { 17113 uint32_t val; 17114 17115 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 17116 if (!CHIP_IS_E1x(sc)) { 17117 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40); 17118 } else { 17119 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0); 17120 } 17121 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 17122 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 17123 /* 17124 * mask read length error interrupts in brb for parser 17125 * (parsing unit and 'checksum and crc' unit) 17126 * these errors are legal (PU reads fixed length and CAC can cause 17127 * read length error on truncated packets) 17128 */ 17129 REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00); 17130 REG_WR(sc, QM_REG_QM_INT_MASK, 0); 17131 REG_WR(sc, TM_REG_TM_INT_MASK, 0); 17132 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0); 17133 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0); 17134 REG_WR(sc, XCM_REG_XCM_INT_MASK, 0); 17135 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */ 17136 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */ 17137 REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0); 17138 REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0); 17139 REG_WR(sc, UCM_REG_UCM_INT_MASK, 0); 17140 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */ 17141 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */ 17142 REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 17143 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0); 17144 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0); 17145 REG_WR(sc, CCM_REG_CCM_INT_MASK, 0); 17146 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */ 17147 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */ 17148 17149 val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 17150 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 17151 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN); 17152 if (!CHIP_IS_E1x(sc)) { 17153 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 17154 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED); 17155 } 17156 REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val); 17157 17158 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0); 17159 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0); 17160 REG_WR(sc, TCM_REG_TCM_INT_MASK, 0); 17161 /* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */ 17162 17163 if (!CHIP_IS_E1x(sc)) { 17164 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 17165 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 17166 } 17167 17168 REG_WR(sc, CDU_REG_CDU_INT_MASK, 0); 17169 REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0); 17170 /* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */ 17171 REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 17172 } 17173 17174 /** 17175 * bxe_init_hw_common - initialize the HW at the COMMON phase. 17176 * 17177 * @sc: driver handle 17178 */ 17179 static int 17180 bxe_init_hw_common(struct bxe_softc *sc) 17181 { 17182 uint8_t abs_func_id; 17183 uint32_t val; 17184 17185 BLOGD(sc, DBG_LOAD, "starting common init for func %d\n", 17186 SC_ABS_FUNC(sc)); 17187 17188 /* 17189 * take the RESET lock to protect undi_unload flow from accessing 17190 * registers while we are resetting the chip 17191 */ 17192 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 17193 17194 bxe_reset_common(sc); 17195 17196 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff); 17197 17198 val = 0xfffc; 17199 if (CHIP_IS_E3(sc)) { 17200 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 17201 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 17202 } 17203 17204 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val); 17205 17206 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 17207 17208 ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON); 17209 BLOGD(sc, DBG_LOAD, "after misc block init\n"); 17210 17211 if (!CHIP_IS_E1x(sc)) { 17212 /* 17213 * 4-port mode or 2-port mode we need to turn off master-enable for 17214 * everyone. After that we turn it back on for self. So, we disregard 17215 * multi-function, and always disable all functions on the given path, 17216 * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1 17217 */ 17218 for (abs_func_id = SC_PATH(sc); 17219 abs_func_id < (E2_FUNC_MAX * 2); 17220 abs_func_id += 2) { 17221 if (abs_func_id == SC_ABS_FUNC(sc)) { 17222 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17223 continue; 17224 } 17225 17226 bxe_pretend_func(sc, abs_func_id); 17227 17228 /* clear pf enable */ 17229 bxe_pf_disable(sc); 17230 17231 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 17232 } 17233 } 17234 17235 BLOGD(sc, DBG_LOAD, "after pf disable\n"); 17236 17237 ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON); 17238 17239 if (CHIP_IS_E1(sc)) { 17240 /* 17241 * enable HW interrupt from PXP on USDM overflow 17242 * bit 16 on INT_MASK_0 17243 */ 17244 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 17245 } 17246 17247 ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON); 17248 bxe_init_pxp(sc); 17249 17250 #ifdef __BIG_ENDIAN 17251 REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1); 17252 REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1); 17253 REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1); 17254 REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1); 17255 REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1); 17256 /* make sure this value is 0 */ 17257 REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0); 17258 17259 //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1); 17260 REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1); 17261 REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1); 17262 REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1); 17263 REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1); 17264 #endif 17265 17266 ecore_ilt_init_page_size(sc, INITOP_SET); 17267 17268 if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) { 17269 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 17270 } 17271 17272 /* let the HW do it's magic... */ 17273 DELAY(100000); 17274 17275 /* finish PXP init */ 17276 val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE); 17277 if (val != 1) { 17278 BLOGE(sc, "PXP2 CFG failed\n"); 17279 return (-1); 17280 } 17281 val = REG_RD(sc, PXP2_REG_RD_INIT_DONE); 17282 if (val != 1) { 17283 BLOGE(sc, "PXP2 RD_INIT failed\n"); 17284 return (-1); 17285 } 17286 17287 BLOGD(sc, DBG_LOAD, "after pxp init\n"); 17288 17289 /* 17290 * Timer bug workaround for E2 only. We need to set the entire ILT to have 17291 * entries with value "0" and valid bit on. This needs to be done by the 17292 * first PF that is loaded in a path (i.e. common phase) 17293 */ 17294 if (!CHIP_IS_E1x(sc)) { 17295 /* 17296 * In E2 there is a bug in the timers block that can cause function 6 / 7 17297 * (i.e. vnic3) to start even if it is marked as "scan-off". 17298 * This occurs when a different function (func2,3) is being marked 17299 * as "scan-off". Real-life scenario for example: if a driver is being 17300 * load-unloaded while func6,7 are down. This will cause the timer to access 17301 * the ilt, translate to a logical address and send a request to read/write. 17302 * Since the ilt for the function that is down is not valid, this will cause 17303 * a translation error which is unrecoverable. 17304 * The Workaround is intended to make sure that when this happens nothing 17305 * fatal will occur. The workaround: 17306 * 1. First PF driver which loads on a path will: 17307 * a. After taking the chip out of reset, by using pretend, 17308 * it will write "0" to the following registers of 17309 * the other vnics. 17310 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 17311 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 17312 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 17313 * And for itself it will write '1' to 17314 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 17315 * dmae-operations (writing to pram for example.) 17316 * note: can be done for only function 6,7 but cleaner this 17317 * way. 17318 * b. Write zero+valid to the entire ILT. 17319 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 17320 * VNIC3 (of that port). The range allocated will be the 17321 * entire ILT. This is needed to prevent ILT range error. 17322 * 2. Any PF driver load flow: 17323 * a. ILT update with the physical addresses of the allocated 17324 * logical pages. 17325 * b. Wait 20msec. - note that this timeout is needed to make 17326 * sure there are no requests in one of the PXP internal 17327 * queues with "old" ILT addresses. 17328 * c. PF enable in the PGLC. 17329 * d. Clear the was_error of the PF in the PGLC. (could have 17330 * occurred while driver was down) 17331 * e. PF enable in the CFC (WEAK + STRONG) 17332 * f. Timers scan enable 17333 * 3. PF driver unload flow: 17334 * a. Clear the Timers scan_en. 17335 * b. Polling for scan_on=0 for that PF. 17336 * c. Clear the PF enable bit in the PXP. 17337 * d. Clear the PF enable in the CFC (WEAK + STRONG) 17338 * e. Write zero+valid to all ILT entries (The valid bit must 17339 * stay set) 17340 * f. If this is VNIC 3 of a port then also init 17341 * first_timers_ilt_entry to zero and last_timers_ilt_entry 17342 * to the last enrty in the ILT. 17343 * 17344 * Notes: 17345 * Currently the PF error in the PGLC is non recoverable. 17346 * In the future the there will be a recovery routine for this error. 17347 * Currently attention is masked. 17348 * Having an MCP lock on the load/unload process does not guarantee that 17349 * there is no Timer disable during Func6/7 enable. This is because the 17350 * Timers scan is currently being cleared by the MCP on FLR. 17351 * Step 2.d can be done only for PF6/7 and the driver can also check if 17352 * there is error before clearing it. But the flow above is simpler and 17353 * more general. 17354 * All ILT entries are written by zero+valid and not just PF6/7 17355 * ILT entries since in the future the ILT entries allocation for 17356 * PF-s might be dynamic. 17357 */ 17358 struct ilt_client_info ilt_cli; 17359 struct ecore_ilt ilt; 17360 17361 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 17362 memset(&ilt, 0, sizeof(struct ecore_ilt)); 17363 17364 /* initialize dummy TM client */ 17365 ilt_cli.start = 0; 17366 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 17367 ilt_cli.client_num = ILT_CLIENT_TM; 17368 17369 /* 17370 * Step 1: set zeroes to all ilt page entries with valid bit on 17371 * Step 2: set the timers first/last ilt entry to point 17372 * to the entire range to prevent ILT range error for 3rd/4th 17373 * vnic (this code assumes existence of the vnic) 17374 * 17375 * both steps performed by call to ecore_ilt_client_init_op() 17376 * with dummy TM client 17377 * 17378 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 17379 * and his brother are split registers 17380 */ 17381 17382 bxe_pretend_func(sc, (SC_PATH(sc) + 6)); 17383 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR); 17384 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 17385 17386 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN); 17387 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN); 17388 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 17389 } 17390 17391 REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0); 17392 REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0); 17393 17394 if (!CHIP_IS_E1x(sc)) { 17395 int factor = CHIP_REV_IS_EMUL(sc) ? 1000 : 17396 (CHIP_REV_IS_FPGA(sc) ? 400 : 0); 17397 17398 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON); 17399 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON); 17400 17401 /* let the HW do it's magic... */ 17402 do { 17403 DELAY(200000); 17404 val = REG_RD(sc, ATC_REG_ATC_INIT_DONE); 17405 } while (factor-- && (val != 1)); 17406 17407 if (val != 1) { 17408 BLOGE(sc, "ATC_INIT failed\n"); 17409 return (-1); 17410 } 17411 } 17412 17413 BLOGD(sc, DBG_LOAD, "after pglue and atc init\n"); 17414 17415 ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON); 17416 17417 bxe_iov_init_dmae(sc); 17418 17419 /* clean the DMAE memory */ 17420 sc->dmae_ready = 1; 17421 ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1); 17422 17423 ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON); 17424 17425 ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON); 17426 17427 ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON); 17428 17429 ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON); 17430 17431 bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3); 17432 bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3); 17433 bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3); 17434 bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3); 17435 17436 ecore_init_block(sc, BLOCK_QM, PHASE_COMMON); 17437 17438 /* QM queues pointers table */ 17439 ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET); 17440 17441 /* soft reset pulse */ 17442 REG_WR(sc, QM_REG_SOFT_RESET, 1); 17443 REG_WR(sc, QM_REG_SOFT_RESET, 0); 17444 17445 if (CNIC_SUPPORT(sc)) 17446 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON); 17447 17448 ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON); 17449 REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT); 17450 if (!CHIP_REV_IS_SLOW(sc)) { 17451 /* enable hw interrupt from doorbell Q */ 17452 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 17453 } 17454 17455 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 17456 17457 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 17458 REG_WR(sc, PRS_REG_A_PRSU_20, 0xf); 17459 17460 if (!CHIP_IS_E1(sc)) { 17461 REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan); 17462 } 17463 17464 if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) { 17465 if (IS_MF_AFEX(sc)) { 17466 /* 17467 * configure that AFEX and VLAN headers must be 17468 * received in AFEX mode 17469 */ 17470 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE); 17471 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA); 17472 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 17473 REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 17474 REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4); 17475 } else { 17476 /* 17477 * Bit-map indicating which L2 hdrs may appear 17478 * after the basic Ethernet header 17479 */ 17480 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 17481 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17482 } 17483 } 17484 17485 ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON); 17486 ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON); 17487 ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON); 17488 ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON); 17489 17490 if (!CHIP_IS_E1x(sc)) { 17491 /* reset VFC memories */ 17492 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17493 VFC_MEMORIES_RST_REG_CAM_RST | 17494 VFC_MEMORIES_RST_REG_RAM_RST); 17495 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17496 VFC_MEMORIES_RST_REG_CAM_RST | 17497 VFC_MEMORIES_RST_REG_RAM_RST); 17498 17499 DELAY(20000); 17500 } 17501 17502 ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON); 17503 ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON); 17504 ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON); 17505 ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON); 17506 17507 /* sync semi rtc */ 17508 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 17509 0x80000000); 17510 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 17511 0x80000000); 17512 17513 ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON); 17514 ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON); 17515 ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON); 17516 17517 if (!CHIP_IS_E1x(sc)) { 17518 if (IS_MF_AFEX(sc)) { 17519 /* 17520 * configure that AFEX and VLAN headers must be 17521 * sent in AFEX mode 17522 */ 17523 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE); 17524 REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA); 17525 REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 17526 REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 17527 REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4); 17528 } else { 17529 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 17530 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17531 } 17532 } 17533 17534 REG_WR(sc, SRC_REG_SOFT_RST, 1); 17535 17536 ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON); 17537 17538 if (CNIC_SUPPORT(sc)) { 17539 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672); 17540 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 17541 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b); 17542 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a); 17543 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116); 17544 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 17545 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf); 17546 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 17547 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f); 17548 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7); 17549 } 17550 REG_WR(sc, SRC_REG_SOFT_RST, 0); 17551 17552 if (sizeof(union cdu_context) != 1024) { 17553 /* we currently assume that a context is 1024 bytes */ 17554 BLOGE(sc, "please adjust the size of cdu_context(%ld)\n", 17555 (long)sizeof(union cdu_context)); 17556 } 17557 17558 ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON); 17559 val = (4 << 24) + (0 << 12) + 1024; 17560 REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val); 17561 17562 ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON); 17563 17564 REG_WR(sc, CFC_REG_INIT_REG, 0x7FF); 17565 /* enable context validation interrupt from CFC */ 17566 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 17567 17568 /* set the thresholds to prevent CFC/CDU race */ 17569 REG_WR(sc, CFC_REG_DEBUG0, 0x20020000); 17570 ecore_init_block(sc, BLOCK_HC, PHASE_COMMON); 17571 17572 if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) { 17573 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36); 17574 } 17575 17576 ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON); 17577 ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON); 17578 17579 /* Reset PCIE errors for debug */ 17580 REG_WR(sc, 0x2814, 0xffffffff); 17581 REG_WR(sc, 0x3820, 0xffffffff); 17582 17583 if (!CHIP_IS_E1x(sc)) { 17584 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 17585 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 17586 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 17587 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 17588 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 17589 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 17590 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 17591 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 17592 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 17593 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 17594 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 17595 } 17596 17597 ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON); 17598 17599 if (!CHIP_IS_E1(sc)) { 17600 /* in E3 this done in per-port section */ 17601 if (!CHIP_IS_E3(sc)) 17602 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17603 } 17604 17605 if (CHIP_IS_E1H(sc)) { 17606 /* not applicable for E2 (and above ...) */ 17607 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc)); 17608 } 17609 17610 if (CHIP_REV_IS_SLOW(sc)) { 17611 DELAY(200000); 17612 } 17613 17614 /* finish CFC init */ 17615 val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10); 17616 if (val != 1) { 17617 BLOGE(sc, "CFC LL_INIT failed\n"); 17618 return (-1); 17619 } 17620 val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10); 17621 if (val != 1) { 17622 BLOGE(sc, "CFC AC_INIT failed\n"); 17623 return (-1); 17624 } 17625 val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 17626 if (val != 1) { 17627 BLOGE(sc, "CFC CAM_INIT failed\n"); 17628 return (-1); 17629 } 17630 REG_WR(sc, CFC_REG_DEBUG0, 0); 17631 17632 if (CHIP_IS_E1(sc)) { 17633 /* read NIG statistic to see if this is our first up since powerup */ 17634 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 17635 val = *BXE_SP(sc, wb_data[0]); 17636 17637 /* do internal memory self test */ 17638 if ((val == 0) && bxe_int_mem_test(sc)) { 17639 BLOGE(sc, "internal mem self test failed\n"); 17640 return (-1); 17641 } 17642 } 17643 17644 bxe_setup_fan_failure_detection(sc); 17645 17646 /* clear PXP2 attentions */ 17647 REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 17648 17649 bxe_enable_blocks_attention(sc); 17650 17651 if (!CHIP_REV_IS_SLOW(sc)) { 17652 ecore_enable_blocks_parity(sc); 17653 } 17654 17655 if (!BXE_NOMCP(sc)) { 17656 if (CHIP_IS_E1x(sc)) { 17657 bxe_common_init_phy(sc); 17658 } 17659 } 17660 17661 return (0); 17662 } 17663 17664 /** 17665 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase. 17666 * 17667 * @sc: driver handle 17668 */ 17669 static int 17670 bxe_init_hw_common_chip(struct bxe_softc *sc) 17671 { 17672 int rc = bxe_init_hw_common(sc); 17673 17674 if (rc) { 17675 return (rc); 17676 } 17677 17678 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 17679 if (!BXE_NOMCP(sc)) { 17680 bxe_common_init_phy(sc); 17681 } 17682 17683 return (0); 17684 } 17685 17686 static int 17687 bxe_init_hw_port(struct bxe_softc *sc) 17688 { 17689 int port = SC_PORT(sc); 17690 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 17691 uint32_t low, high; 17692 uint32_t val; 17693 17694 BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port); 17695 17696 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 17697 17698 ecore_init_block(sc, BLOCK_MISC, init_phase); 17699 ecore_init_block(sc, BLOCK_PXP, init_phase); 17700 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17701 17702 /* 17703 * Timers bug workaround: disables the pf_master bit in pglue at 17704 * common phase, we need to enable it here before any dmae access are 17705 * attempted. Therefore we manually added the enable-master to the 17706 * port phase (it also happens in the function phase) 17707 */ 17708 if (!CHIP_IS_E1x(sc)) { 17709 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17710 } 17711 17712 ecore_init_block(sc, BLOCK_ATC, init_phase); 17713 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17714 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17715 ecore_init_block(sc, BLOCK_QM, init_phase); 17716 17717 ecore_init_block(sc, BLOCK_TCM, init_phase); 17718 ecore_init_block(sc, BLOCK_UCM, init_phase); 17719 ecore_init_block(sc, BLOCK_CCM, init_phase); 17720 ecore_init_block(sc, BLOCK_XCM, init_phase); 17721 17722 /* QM cid (connection) count */ 17723 ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET); 17724 17725 if (CNIC_SUPPORT(sc)) { 17726 ecore_init_block(sc, BLOCK_TM, init_phase); 17727 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20); 17728 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 17729 } 17730 17731 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17732 17733 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17734 17735 if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) { 17736 if (IS_MF(sc)) { 17737 low = (BXE_ONE_PORT(sc) ? 160 : 246); 17738 } else if (sc->mtu > 4096) { 17739 if (BXE_ONE_PORT(sc)) { 17740 low = 160; 17741 } else { 17742 val = sc->mtu; 17743 /* (24*1024 + val*4)/256 */ 17744 low = (96 + (val / 64) + ((val % 64) ? 1 : 0)); 17745 } 17746 } else { 17747 low = (BXE_ONE_PORT(sc) ? 80 : 160); 17748 } 17749 high = (low + 56); /* 14*1024/256 */ 17750 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 17751 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 17752 } 17753 17754 if (CHIP_IS_MODE_4_PORT(sc)) { 17755 REG_WR(sc, SC_PORT(sc) ? 17756 BRB1_REG_MAC_GUARANTIED_1 : 17757 BRB1_REG_MAC_GUARANTIED_0, 40); 17758 } 17759 17760 ecore_init_block(sc, BLOCK_PRS, init_phase); 17761 if (CHIP_IS_E3B0(sc)) { 17762 if (IS_MF_AFEX(sc)) { 17763 /* configure headers for AFEX mode */ 17764 REG_WR(sc, SC_PORT(sc) ? 17765 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17766 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 17767 REG_WR(sc, SC_PORT(sc) ? 17768 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 17769 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 17770 REG_WR(sc, SC_PORT(sc) ? 17771 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 17772 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 17773 } else { 17774 /* Ovlan exists only if we are in multi-function + 17775 * switch-dependent mode, in switch-independent there 17776 * is no ovlan headers 17777 */ 17778 REG_WR(sc, SC_PORT(sc) ? 17779 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17780 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 17781 (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6)); 17782 } 17783 } 17784 17785 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17786 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17787 ecore_init_block(sc, BLOCK_USDM, init_phase); 17788 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17789 17790 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17791 ecore_init_block(sc, BLOCK_USEM, init_phase); 17792 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17793 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17794 17795 ecore_init_block(sc, BLOCK_UPB, init_phase); 17796 ecore_init_block(sc, BLOCK_XPB, init_phase); 17797 17798 ecore_init_block(sc, BLOCK_PBF, init_phase); 17799 17800 if (CHIP_IS_E1x(sc)) { 17801 /* configure PBF to work without PAUSE mtu 9000 */ 17802 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 17803 17804 /* update threshold */ 17805 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 17806 /* update init credit */ 17807 REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 17808 17809 /* probe changes */ 17810 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1); 17811 DELAY(50); 17812 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0); 17813 } 17814 17815 if (CNIC_SUPPORT(sc)) { 17816 ecore_init_block(sc, BLOCK_SRC, init_phase); 17817 } 17818 17819 ecore_init_block(sc, BLOCK_CDU, init_phase); 17820 ecore_init_block(sc, BLOCK_CFC, init_phase); 17821 17822 if (CHIP_IS_E1(sc)) { 17823 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17824 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17825 } 17826 ecore_init_block(sc, BLOCK_HC, init_phase); 17827 17828 ecore_init_block(sc, BLOCK_IGU, init_phase); 17829 17830 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17831 /* init aeu_mask_attn_func_0/1: 17832 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use 17833 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF 17834 * bits 4-7 are used for "per vn group attention" */ 17835 val = IS_MF(sc) ? 0xF7 : 0x7; 17836 /* Enable DCBX attention for all but E1 */ 17837 val |= CHIP_IS_E1(sc) ? 0 : 0x10; 17838 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 17839 17840 ecore_init_block(sc, BLOCK_NIG, init_phase); 17841 17842 if (!CHIP_IS_E1x(sc)) { 17843 /* Bit-map indicating which L2 hdrs may appear after the 17844 * basic Ethernet header 17845 */ 17846 if (IS_MF_AFEX(sc)) { 17847 REG_WR(sc, SC_PORT(sc) ? 17848 NIG_REG_P1_HDRS_AFTER_BASIC : 17849 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 17850 } else { 17851 REG_WR(sc, SC_PORT(sc) ? 17852 NIG_REG_P1_HDRS_AFTER_BASIC : 17853 NIG_REG_P0_HDRS_AFTER_BASIC, 17854 IS_MF_SD(sc) ? 7 : 6); 17855 } 17856 17857 if (CHIP_IS_E3(sc)) { 17858 REG_WR(sc, SC_PORT(sc) ? 17859 NIG_REG_LLH1_MF_MODE : 17860 NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17861 } 17862 } 17863 if (!CHIP_IS_E3(sc)) { 17864 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 17865 } 17866 17867 if (!CHIP_IS_E1(sc)) { 17868 /* 0x2 disable mf_ov, 0x1 enable */ 17869 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 17870 (IS_MF_SD(sc) ? 0x1 : 0x2)); 17871 17872 if (!CHIP_IS_E1x(sc)) { 17873 val = 0; 17874 switch (sc->devinfo.mf_info.mf_mode) { 17875 case MULTI_FUNCTION_SD: 17876 val = 1; 17877 break; 17878 case MULTI_FUNCTION_SI: 17879 case MULTI_FUNCTION_AFEX: 17880 val = 2; 17881 break; 17882 } 17883 17884 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE : 17885 NIG_REG_LLH0_CLS_TYPE), val); 17886 } 17887 REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 17888 REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 17889 REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 17890 } 17891 17892 /* If SPIO5 is set to generate interrupts, enable it for this port */ 17893 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17894 if (val & MISC_SPIO_SPIO5) { 17895 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 17896 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 17897 val = REG_RD(sc, reg_addr); 17898 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 17899 REG_WR(sc, reg_addr, val); 17900 } 17901 17902 return (0); 17903 } 17904 17905 static uint32_t 17906 bxe_flr_clnup_reg_poll(struct bxe_softc *sc, 17907 uint32_t reg, 17908 uint32_t expected, 17909 uint32_t poll_count) 17910 { 17911 uint32_t cur_cnt = poll_count; 17912 uint32_t val; 17913 17914 while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) { 17915 DELAY(FLR_WAIT_INTERVAL); 17916 } 17917 17918 return (val); 17919 } 17920 17921 static int 17922 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc, 17923 uint32_t reg, 17924 char *msg, 17925 uint32_t poll_cnt) 17926 { 17927 uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt); 17928 17929 if (val != 0) { 17930 BLOGE(sc, "%s usage count=%d\n", msg, val); 17931 return (1); 17932 } 17933 17934 return (0); 17935 } 17936 17937 /* Common routines with VF FLR cleanup */ 17938 static uint32_t 17939 bxe_flr_clnup_poll_count(struct bxe_softc *sc) 17940 { 17941 /* adjust polling timeout */ 17942 if (CHIP_REV_IS_EMUL(sc)) { 17943 return (FLR_POLL_CNT * 2000); 17944 } 17945 17946 if (CHIP_REV_IS_FPGA(sc)) { 17947 return (FLR_POLL_CNT * 120); 17948 } 17949 17950 return (FLR_POLL_CNT); 17951 } 17952 17953 static int 17954 bxe_poll_hw_usage_counters(struct bxe_softc *sc, 17955 uint32_t poll_cnt) 17956 { 17957 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 17958 if (bxe_flr_clnup_poll_hw_counter(sc, 17959 CFC_REG_NUM_LCIDS_INSIDE_PF, 17960 "CFC PF usage counter timed out", 17961 poll_cnt)) { 17962 return (1); 17963 } 17964 17965 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 17966 if (bxe_flr_clnup_poll_hw_counter(sc, 17967 DORQ_REG_PF_USAGE_CNT, 17968 "DQ PF usage counter timed out", 17969 poll_cnt)) { 17970 return (1); 17971 } 17972 17973 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 17974 if (bxe_flr_clnup_poll_hw_counter(sc, 17975 QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc), 17976 "QM PF usage counter timed out", 17977 poll_cnt)) { 17978 return (1); 17979 } 17980 17981 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 17982 if (bxe_flr_clnup_poll_hw_counter(sc, 17983 TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc), 17984 "Timers VNIC usage counter timed out", 17985 poll_cnt)) { 17986 return (1); 17987 } 17988 17989 if (bxe_flr_clnup_poll_hw_counter(sc, 17990 TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc), 17991 "Timers NUM_SCANS usage counter timed out", 17992 poll_cnt)) { 17993 return (1); 17994 } 17995 17996 /* Wait DMAE PF usage counter to zero */ 17997 if (bxe_flr_clnup_poll_hw_counter(sc, 17998 dmae_reg_go_c[INIT_DMAE_C(sc)], 17999 "DMAE dommand register timed out", 18000 poll_cnt)) { 18001 return (1); 18002 } 18003 18004 return (0); 18005 } 18006 18007 #define OP_GEN_PARAM(param) \ 18008 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 18009 #define OP_GEN_TYPE(type) \ 18010 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 18011 #define OP_GEN_AGG_VECT(index) \ 18012 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 18013 18014 static int 18015 bxe_send_final_clnup(struct bxe_softc *sc, 18016 uint8_t clnup_func, 18017 uint32_t poll_cnt) 18018 { 18019 uint32_t op_gen_command = 0; 18020 uint32_t comp_addr = (BAR_CSTRORM_INTMEM + 18021 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func)); 18022 int ret = 0; 18023 18024 if (REG_RD(sc, comp_addr)) { 18025 BLOGE(sc, "Cleanup complete was not 0 before sending\n"); 18026 return (1); 18027 } 18028 18029 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 18030 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 18031 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 18032 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 18033 18034 BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n"); 18035 REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command); 18036 18037 if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) { 18038 BLOGE(sc, "FW final cleanup did not succeed\n"); 18039 BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n", 18040 (REG_RD(sc, comp_addr))); 18041 bxe_panic(sc, ("FLR cleanup failed\n")); 18042 return (1); 18043 } 18044 18045 /* Zero completion for nxt FLR */ 18046 REG_WR(sc, comp_addr, 0); 18047 18048 return (ret); 18049 } 18050 18051 static void 18052 bxe_pbf_pN_buf_flushed(struct bxe_softc *sc, 18053 struct pbf_pN_buf_regs *regs, 18054 uint32_t poll_count) 18055 { 18056 uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start; 18057 uint32_t cur_cnt = poll_count; 18058 18059 crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed); 18060 crd = crd_start = REG_RD(sc, regs->crd); 18061 init_crd = REG_RD(sc, regs->init_crd); 18062 18063 BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 18064 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd); 18065 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 18066 18067 while ((crd != init_crd) && 18068 ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) < 18069 (init_crd - crd_start))) { 18070 if (cur_cnt--) { 18071 DELAY(FLR_WAIT_INTERVAL); 18072 crd = REG_RD(sc, regs->crd); 18073 crd_freed = REG_RD(sc, regs->crd_freed); 18074 } else { 18075 BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN); 18076 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd); 18077 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed); 18078 break; 18079 } 18080 } 18081 18082 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n", 18083 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 18084 } 18085 18086 static void 18087 bxe_pbf_pN_cmd_flushed(struct bxe_softc *sc, 18088 struct pbf_pN_cmd_regs *regs, 18089 uint32_t poll_count) 18090 { 18091 uint32_t occup, to_free, freed, freed_start; 18092 uint32_t cur_cnt = poll_count; 18093 18094 occup = to_free = REG_RD(sc, regs->lines_occup); 18095 freed = freed_start = REG_RD(sc, regs->lines_freed); 18096 18097 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 18098 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 18099 18100 while (occup && 18101 ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) { 18102 if (cur_cnt--) { 18103 DELAY(FLR_WAIT_INTERVAL); 18104 occup = REG_RD(sc, regs->lines_occup); 18105 freed = REG_RD(sc, regs->lines_freed); 18106 } else { 18107 BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN); 18108 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 18109 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 18110 break; 18111 } 18112 } 18113 18114 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n", 18115 poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 18116 } 18117 18118 static void 18119 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count) 18120 { 18121 struct pbf_pN_cmd_regs cmd_regs[] = { 18122 {0, (CHIP_IS_E3B0(sc)) ? 18123 PBF_REG_TQ_OCCUPANCY_Q0 : 18124 PBF_REG_P0_TQ_OCCUPANCY, 18125 (CHIP_IS_E3B0(sc)) ? 18126 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 18127 PBF_REG_P0_TQ_LINES_FREED_CNT}, 18128 {1, (CHIP_IS_E3B0(sc)) ? 18129 PBF_REG_TQ_OCCUPANCY_Q1 : 18130 PBF_REG_P1_TQ_OCCUPANCY, 18131 (CHIP_IS_E3B0(sc)) ? 18132 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 18133 PBF_REG_P1_TQ_LINES_FREED_CNT}, 18134 {4, (CHIP_IS_E3B0(sc)) ? 18135 PBF_REG_TQ_OCCUPANCY_LB_Q : 18136 PBF_REG_P4_TQ_OCCUPANCY, 18137 (CHIP_IS_E3B0(sc)) ? 18138 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 18139 PBF_REG_P4_TQ_LINES_FREED_CNT} 18140 }; 18141 18142 struct pbf_pN_buf_regs buf_regs[] = { 18143 {0, (CHIP_IS_E3B0(sc)) ? 18144 PBF_REG_INIT_CRD_Q0 : 18145 PBF_REG_P0_INIT_CRD , 18146 (CHIP_IS_E3B0(sc)) ? 18147 PBF_REG_CREDIT_Q0 : 18148 PBF_REG_P0_CREDIT, 18149 (CHIP_IS_E3B0(sc)) ? 18150 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 18151 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 18152 {1, (CHIP_IS_E3B0(sc)) ? 18153 PBF_REG_INIT_CRD_Q1 : 18154 PBF_REG_P1_INIT_CRD, 18155 (CHIP_IS_E3B0(sc)) ? 18156 PBF_REG_CREDIT_Q1 : 18157 PBF_REG_P1_CREDIT, 18158 (CHIP_IS_E3B0(sc)) ? 18159 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 18160 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 18161 {4, (CHIP_IS_E3B0(sc)) ? 18162 PBF_REG_INIT_CRD_LB_Q : 18163 PBF_REG_P4_INIT_CRD, 18164 (CHIP_IS_E3B0(sc)) ? 18165 PBF_REG_CREDIT_LB_Q : 18166 PBF_REG_P4_CREDIT, 18167 (CHIP_IS_E3B0(sc)) ? 18168 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 18169 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 18170 }; 18171 18172 int i; 18173 18174 /* Verify the command queues are flushed P0, P1, P4 */ 18175 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) { 18176 bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count); 18177 } 18178 18179 /* Verify the transmission buffers are flushed P0, P1, P4 */ 18180 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) { 18181 bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count); 18182 } 18183 } 18184 18185 static void 18186 bxe_hw_enable_status(struct bxe_softc *sc) 18187 { 18188 uint32_t val; 18189 18190 val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF); 18191 BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 18192 18193 val = REG_RD(sc, PBF_REG_DISABLE_PF); 18194 BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val); 18195 18196 val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN); 18197 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 18198 18199 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN); 18200 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 18201 18202 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 18203 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 18204 18205 val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 18206 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 18207 18208 val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 18209 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 18210 18211 val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 18212 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val); 18213 } 18214 18215 static int 18216 bxe_pf_flr_clnup(struct bxe_softc *sc) 18217 { 18218 uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc); 18219 18220 BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc)); 18221 18222 /* Re-enable PF target read access */ 18223 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 18224 18225 /* Poll HW usage counters */ 18226 BLOGD(sc, DBG_LOAD, "Polling usage counters\n"); 18227 if (bxe_poll_hw_usage_counters(sc, poll_cnt)) { 18228 return (-1); 18229 } 18230 18231 /* Zero the igu 'trailing edge' and 'leading edge' */ 18232 18233 /* Send the FW cleanup command */ 18234 if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) { 18235 return (-1); 18236 } 18237 18238 /* ATC cleanup */ 18239 18240 /* Verify TX hw is flushed */ 18241 bxe_tx_hw_flushed(sc, poll_cnt); 18242 18243 /* Wait 100ms (not adjusted according to platform) */ 18244 DELAY(100000); 18245 18246 /* Verify no pending pci transactions */ 18247 if (bxe_is_pcie_pending(sc)) { 18248 BLOGE(sc, "PCIE Transactions still pending\n"); 18249 } 18250 18251 /* Debug */ 18252 bxe_hw_enable_status(sc); 18253 18254 /* 18255 * Master enable - Due to WB DMAE writes performed before this 18256 * register is re-initialized as part of the regular function init 18257 */ 18258 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 18259 18260 return (0); 18261 } 18262 18263 #if 0 18264 static void 18265 bxe_init_searcher(struct bxe_softc *sc) 18266 { 18267 int port = SC_PORT(sc); 18268 ecore_src_init_t2(sc, sc->t2, sc->t2_mapping, SRC_CONN_NUM); 18269 /* T1 hash bits value determines the T1 number of entries */ 18270 REG_WR(sc, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS); 18271 } 18272 #endif 18273 18274 static int 18275 bxe_init_hw_func(struct bxe_softc *sc) 18276 { 18277 int port = SC_PORT(sc); 18278 int func = SC_FUNC(sc); 18279 int init_phase = PHASE_PF0 + func; 18280 struct ecore_ilt *ilt = sc->ilt; 18281 uint16_t cdu_ilt_start; 18282 uint32_t addr, val; 18283 uint32_t main_mem_base, main_mem_size, main_mem_prty_clr; 18284 int i, main_mem_width, rc; 18285 18286 BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func); 18287 18288 /* FLR cleanup */ 18289 if (!CHIP_IS_E1x(sc)) { 18290 rc = bxe_pf_flr_clnup(sc); 18291 if (rc) { 18292 BLOGE(sc, "FLR cleanup failed!\n"); 18293 // XXX bxe_fw_dump(sc); 18294 // XXX bxe_idle_chk(sc); 18295 return (rc); 18296 } 18297 } 18298 18299 /* set MSI reconfigure capability */ 18300 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18301 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 18302 val = REG_RD(sc, addr); 18303 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 18304 REG_WR(sc, addr, val); 18305 } 18306 18307 ecore_init_block(sc, BLOCK_PXP, init_phase); 18308 ecore_init_block(sc, BLOCK_PXP2, init_phase); 18309 18310 ilt = sc->ilt; 18311 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 18312 18313 #if 0 18314 if (IS_SRIOV(sc)) { 18315 cdu_ilt_start += BXE_FIRST_VF_CID/ILT_PAGE_CIDS; 18316 } 18317 cdu_ilt_start = bxe_iov_init_ilt(sc, cdu_ilt_start); 18318 18319 #if (BXE_FIRST_VF_CID > 0) 18320 /* 18321 * If BXE_FIRST_VF_CID > 0 then the PF L2 cids precedes 18322 * those of the VFs, so start line should be reset 18323 */ 18324 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 18325 #endif 18326 #endif 18327 18328 for (i = 0; i < L2_ILT_LINES(sc); i++) { 18329 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt; 18330 ilt->lines[cdu_ilt_start + i].page_mapping = 18331 sc->context[i].vcxt_dma.paddr; 18332 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size; 18333 } 18334 ecore_ilt_init_op(sc, INITOP_SET); 18335 18336 #if 0 18337 if (!CONFIGURE_NIC_MODE(sc)) { 18338 bxe_init_searcher(sc); 18339 REG_WR(sc, PRS_REG_NIC_MODE, 0); 18340 BLOGD(sc, DBG_LOAD, "NIC MODE disabled\n"); 18341 } else 18342 #endif 18343 { 18344 /* Set NIC mode */ 18345 REG_WR(sc, PRS_REG_NIC_MODE, 1); 18346 BLOGD(sc, DBG_LOAD, "NIC MODE configured\n"); 18347 } 18348 18349 if (!CHIP_IS_E1x(sc)) { 18350 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN; 18351 18352 /* Turn on a single ISR mode in IGU if driver is going to use 18353 * INT#x or MSI 18354 */ 18355 if (sc->interrupt_mode != INTR_MODE_MSIX) { 18356 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 18357 } 18358 18359 /* 18360 * Timers workaround bug: function init part. 18361 * Need to wait 20msec after initializing ILT, 18362 * needed to make sure there are no requests in 18363 * one of the PXP internal queues with "old" ILT addresses 18364 */ 18365 DELAY(20000); 18366 18367 /* 18368 * Master enable - Due to WB DMAE writes performed before this 18369 * register is re-initialized as part of the regular function 18370 * init 18371 */ 18372 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 18373 /* Enable the function in IGU */ 18374 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf); 18375 } 18376 18377 sc->dmae_ready = 1; 18378 18379 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 18380 18381 if (!CHIP_IS_E1x(sc)) 18382 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); 18383 18384 ecore_init_block(sc, BLOCK_ATC, init_phase); 18385 ecore_init_block(sc, BLOCK_DMAE, init_phase); 18386 ecore_init_block(sc, BLOCK_NIG, init_phase); 18387 ecore_init_block(sc, BLOCK_SRC, init_phase); 18388 ecore_init_block(sc, BLOCK_MISC, init_phase); 18389 ecore_init_block(sc, BLOCK_TCM, init_phase); 18390 ecore_init_block(sc, BLOCK_UCM, init_phase); 18391 ecore_init_block(sc, BLOCK_CCM, init_phase); 18392 ecore_init_block(sc, BLOCK_XCM, init_phase); 18393 ecore_init_block(sc, BLOCK_TSEM, init_phase); 18394 ecore_init_block(sc, BLOCK_USEM, init_phase); 18395 ecore_init_block(sc, BLOCK_CSEM, init_phase); 18396 ecore_init_block(sc, BLOCK_XSEM, init_phase); 18397 18398 if (!CHIP_IS_E1x(sc)) 18399 REG_WR(sc, QM_REG_PF_EN, 1); 18400 18401 if (!CHIP_IS_E1x(sc)) { 18402 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18403 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18404 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18405 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18406 } 18407 ecore_init_block(sc, BLOCK_QM, init_phase); 18408 18409 ecore_init_block(sc, BLOCK_TM, init_phase); 18410 ecore_init_block(sc, BLOCK_DORQ, init_phase); 18411 18412 bxe_iov_init_dq(sc); 18413 18414 ecore_init_block(sc, BLOCK_BRB1, init_phase); 18415 ecore_init_block(sc, BLOCK_PRS, init_phase); 18416 ecore_init_block(sc, BLOCK_TSDM, init_phase); 18417 ecore_init_block(sc, BLOCK_CSDM, init_phase); 18418 ecore_init_block(sc, BLOCK_USDM, init_phase); 18419 ecore_init_block(sc, BLOCK_XSDM, init_phase); 18420 ecore_init_block(sc, BLOCK_UPB, init_phase); 18421 ecore_init_block(sc, BLOCK_XPB, init_phase); 18422 ecore_init_block(sc, BLOCK_PBF, init_phase); 18423 if (!CHIP_IS_E1x(sc)) 18424 REG_WR(sc, PBF_REG_DISABLE_PF, 0); 18425 18426 ecore_init_block(sc, BLOCK_CDU, init_phase); 18427 18428 ecore_init_block(sc, BLOCK_CFC, init_phase); 18429 18430 if (!CHIP_IS_E1x(sc)) 18431 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1); 18432 18433 if (IS_MF(sc)) { 18434 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 18435 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc)); 18436 } 18437 18438 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 18439 18440 /* HC init per function */ 18441 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18442 if (CHIP_IS_E1H(sc)) { 18443 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 18444 18445 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18446 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18447 } 18448 ecore_init_block(sc, BLOCK_HC, init_phase); 18449 18450 } else { 18451 int num_segs, sb_idx, prod_offset; 18452 18453 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 18454 18455 if (!CHIP_IS_E1x(sc)) { 18456 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18457 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18458 } 18459 18460 ecore_init_block(sc, BLOCK_IGU, init_phase); 18461 18462 if (!CHIP_IS_E1x(sc)) { 18463 int dsb_idx = 0; 18464 /** 18465 * Producer memory: 18466 * E2 mode: address 0-135 match to the mapping memory; 18467 * 136 - PF0 default prod; 137 - PF1 default prod; 18468 * 138 - PF2 default prod; 139 - PF3 default prod; 18469 * 140 - PF0 attn prod; 141 - PF1 attn prod; 18470 * 142 - PF2 attn prod; 143 - PF3 attn prod; 18471 * 144-147 reserved. 18472 * 18473 * E1.5 mode - In backward compatible mode; 18474 * for non default SB; each even line in the memory 18475 * holds the U producer and each odd line hold 18476 * the C producer. The first 128 producers are for 18477 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 18478 * producers are for the DSB for each PF. 18479 * Each PF has five segments: (the order inside each 18480 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 18481 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 18482 * 144-147 attn prods; 18483 */ 18484 /* non-default-status-blocks */ 18485 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18486 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 18487 for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) { 18488 prod_offset = (sc->igu_base_sb + sb_idx) * 18489 num_segs; 18490 18491 for (i = 0; i < num_segs; i++) { 18492 addr = IGU_REG_PROD_CONS_MEMORY + 18493 (prod_offset + i) * 4; 18494 REG_WR(sc, addr, 0); 18495 } 18496 /* send consumer update with value 0 */ 18497 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx, 18498 USTORM_ID, 0, IGU_INT_NOP, 1); 18499 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx); 18500 } 18501 18502 /* default-status-blocks */ 18503 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18504 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 18505 18506 if (CHIP_IS_MODE_4_PORT(sc)) 18507 dsb_idx = SC_FUNC(sc); 18508 else 18509 dsb_idx = SC_VN(sc); 18510 18511 prod_offset = (CHIP_INT_MODE_IS_BC(sc) ? 18512 IGU_BC_BASE_DSB_PROD + dsb_idx : 18513 IGU_NORM_BASE_DSB_PROD + dsb_idx); 18514 18515 /* 18516 * igu prods come in chunks of E1HVN_MAX (4) - 18517 * does not matters what is the current chip mode 18518 */ 18519 for (i = 0; i < (num_segs * E1HVN_MAX); 18520 i += E1HVN_MAX) { 18521 addr = IGU_REG_PROD_CONS_MEMORY + 18522 (prod_offset + i)*4; 18523 REG_WR(sc, addr, 0); 18524 } 18525 /* send consumer update with 0 */ 18526 if (CHIP_INT_MODE_IS_BC(sc)) { 18527 bxe_ack_sb(sc, sc->igu_dsb_id, 18528 USTORM_ID, 0, IGU_INT_NOP, 1); 18529 bxe_ack_sb(sc, sc->igu_dsb_id, 18530 CSTORM_ID, 0, IGU_INT_NOP, 1); 18531 bxe_ack_sb(sc, sc->igu_dsb_id, 18532 XSTORM_ID, 0, IGU_INT_NOP, 1); 18533 bxe_ack_sb(sc, sc->igu_dsb_id, 18534 TSTORM_ID, 0, IGU_INT_NOP, 1); 18535 bxe_ack_sb(sc, sc->igu_dsb_id, 18536 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18537 } else { 18538 bxe_ack_sb(sc, sc->igu_dsb_id, 18539 USTORM_ID, 0, IGU_INT_NOP, 1); 18540 bxe_ack_sb(sc, sc->igu_dsb_id, 18541 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18542 } 18543 bxe_igu_clear_sb(sc, sc->igu_dsb_id); 18544 18545 /* !!! these should become driver const once 18546 rf-tool supports split-68 const */ 18547 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 18548 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 18549 REG_WR(sc, IGU_REG_SB_MASK_LSB, 0); 18550 REG_WR(sc, IGU_REG_SB_MASK_MSB, 0); 18551 REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0); 18552 REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0); 18553 } 18554 } 18555 18556 /* Reset PCIE errors for debug */ 18557 REG_WR(sc, 0x2114, 0xffffffff); 18558 REG_WR(sc, 0x2120, 0xffffffff); 18559 18560 if (CHIP_IS_E1x(sc)) { 18561 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 18562 main_mem_base = HC_REG_MAIN_MEMORY + 18563 SC_PORT(sc) * (main_mem_size * 4); 18564 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 18565 main_mem_width = 8; 18566 18567 val = REG_RD(sc, main_mem_prty_clr); 18568 if (val) { 18569 BLOGD(sc, DBG_LOAD, 18570 "Parity errors in HC block during function init (0x%x)!\n", 18571 val); 18572 } 18573 18574 /* Clear "false" parity errors in MSI-X table */ 18575 for (i = main_mem_base; 18576 i < main_mem_base + main_mem_size * 4; 18577 i += main_mem_width) { 18578 bxe_read_dmae(sc, i, main_mem_width / 4); 18579 bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), 18580 i, main_mem_width / 4); 18581 } 18582 /* Clear HC parity attention */ 18583 REG_RD(sc, main_mem_prty_clr); 18584 } 18585 18586 #if 1 18587 /* Enable STORMs SP logging */ 18588 REG_WR8(sc, BAR_USTRORM_INTMEM + 18589 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18590 REG_WR8(sc, BAR_TSTRORM_INTMEM + 18591 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18592 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18593 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18594 REG_WR8(sc, BAR_XSTRORM_INTMEM + 18595 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18596 #endif 18597 18598 elink_phy_probe(&sc->link_params); 18599 18600 return (0); 18601 } 18602 18603 static void 18604 bxe_link_reset(struct bxe_softc *sc) 18605 { 18606 if (!BXE_NOMCP(sc)) { 18607 BXE_PHY_LOCK(sc); 18608 elink_lfa_reset(&sc->link_params, &sc->link_vars); 18609 BXE_PHY_UNLOCK(sc); 18610 } else { 18611 if (!CHIP_REV_IS_SLOW(sc)) { 18612 BLOGW(sc, "Bootcode is missing - cannot reset link\n"); 18613 } 18614 } 18615 } 18616 18617 static void 18618 bxe_reset_port(struct bxe_softc *sc) 18619 { 18620 int port = SC_PORT(sc); 18621 uint32_t val; 18622 18623 /* reset physical Link */ 18624 bxe_link_reset(sc); 18625 18626 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 18627 18628 /* Do not rcv packets to BRB */ 18629 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 18630 /* Do not direct rcv packets that are not for MCP to the BRB */ 18631 REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 18632 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 18633 18634 /* Configure AEU */ 18635 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 18636 18637 DELAY(100000); 18638 18639 /* Check for BRB port occupancy */ 18640 val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 18641 if (val) { 18642 BLOGD(sc, DBG_LOAD, 18643 "BRB1 is not empty, %d blocks are occupied\n", val); 18644 } 18645 18646 /* TODO: Close Doorbell port? */ 18647 } 18648 18649 static void 18650 bxe_ilt_wr(struct bxe_softc *sc, 18651 uint32_t index, 18652 bus_addr_t addr) 18653 { 18654 int reg; 18655 uint32_t wb_write[2]; 18656 18657 if (CHIP_IS_E1(sc)) { 18658 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 18659 } else { 18660 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 18661 } 18662 18663 wb_write[0] = ONCHIP_ADDR1(addr); 18664 wb_write[1] = ONCHIP_ADDR2(addr); 18665 REG_WR_DMAE(sc, reg, wb_write, 2); 18666 } 18667 18668 static void 18669 bxe_clear_func_ilt(struct bxe_softc *sc, 18670 uint32_t func) 18671 { 18672 uint32_t i, base = FUNC_ILT_BASE(func); 18673 for (i = base; i < base + ILT_PER_FUNC; i++) { 18674 bxe_ilt_wr(sc, i, 0); 18675 } 18676 } 18677 18678 static void 18679 bxe_reset_func(struct bxe_softc *sc) 18680 { 18681 struct bxe_fastpath *fp; 18682 int port = SC_PORT(sc); 18683 int func = SC_FUNC(sc); 18684 int i; 18685 18686 /* Disable the function in the FW */ 18687 REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 18688 REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 18689 REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 18690 REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 18691 18692 /* FP SBs */ 18693 FOR_EACH_ETH_QUEUE(sc, i) { 18694 fp = &sc->fp[i]; 18695 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18696 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 18697 SB_DISABLED); 18698 } 18699 18700 #if 0 18701 if (CNIC_LOADED(sc)) { 18702 /* CNIC SB */ 18703 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18704 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET 18705 (bxe_cnic_fw_sb_id(sc)), SB_DISABLED); 18706 } 18707 #endif 18708 18709 /* SP SB */ 18710 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18711 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 18712 SB_DISABLED); 18713 18714 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) { 18715 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0); 18716 } 18717 18718 /* Configure IGU */ 18719 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18720 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18721 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18722 } else { 18723 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18724 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18725 } 18726 18727 if (CNIC_LOADED(sc)) { 18728 /* Disable Timer scan */ 18729 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 18730 /* 18731 * Wait for at least 10ms and up to 2 second for the timers 18732 * scan to complete 18733 */ 18734 for (i = 0; i < 200; i++) { 18735 DELAY(10000); 18736 if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4)) 18737 break; 18738 } 18739 } 18740 18741 /* Clear ILT */ 18742 bxe_clear_func_ilt(sc, func); 18743 18744 /* 18745 * Timers workaround bug for E2: if this is vnic-3, 18746 * we need to set the entire ilt range for this timers. 18747 */ 18748 if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) { 18749 struct ilt_client_info ilt_cli; 18750 /* use dummy TM client */ 18751 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 18752 ilt_cli.start = 0; 18753 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 18754 ilt_cli.client_num = ILT_CLIENT_TM; 18755 18756 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR); 18757 } 18758 18759 /* this assumes that reset_port() called before reset_func()*/ 18760 if (!CHIP_IS_E1x(sc)) { 18761 bxe_pf_disable(sc); 18762 } 18763 18764 sc->dmae_ready = 0; 18765 } 18766 18767 static int 18768 bxe_gunzip_init(struct bxe_softc *sc) 18769 { 18770 return (0); 18771 } 18772 18773 static void 18774 bxe_gunzip_end(struct bxe_softc *sc) 18775 { 18776 return; 18777 } 18778 18779 static int 18780 bxe_init_firmware(struct bxe_softc *sc) 18781 { 18782 if (CHIP_IS_E1(sc)) { 18783 ecore_init_e1_firmware(sc); 18784 sc->iro_array = e1_iro_arr; 18785 } else if (CHIP_IS_E1H(sc)) { 18786 ecore_init_e1h_firmware(sc); 18787 sc->iro_array = e1h_iro_arr; 18788 } else if (!CHIP_IS_E1x(sc)) { 18789 ecore_init_e2_firmware(sc); 18790 sc->iro_array = e2_iro_arr; 18791 } else { 18792 BLOGE(sc, "Unsupported chip revision\n"); 18793 return (-1); 18794 } 18795 18796 return (0); 18797 } 18798 18799 static void 18800 bxe_release_firmware(struct bxe_softc *sc) 18801 { 18802 /* Do nothing */ 18803 return; 18804 } 18805 18806 static int 18807 ecore_gunzip(struct bxe_softc *sc, 18808 const uint8_t *zbuf, 18809 int len) 18810 { 18811 /* XXX : Implement... */ 18812 BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n"); 18813 return (FALSE); 18814 } 18815 18816 static void 18817 ecore_reg_wr_ind(struct bxe_softc *sc, 18818 uint32_t addr, 18819 uint32_t val) 18820 { 18821 bxe_reg_wr_ind(sc, addr, val); 18822 } 18823 18824 static void 18825 ecore_write_dmae_phys_len(struct bxe_softc *sc, 18826 bus_addr_t phys_addr, 18827 uint32_t addr, 18828 uint32_t len) 18829 { 18830 bxe_write_dmae_phys_len(sc, phys_addr, addr, len); 18831 } 18832 18833 void 18834 ecore_storm_memset_struct(struct bxe_softc *sc, 18835 uint32_t addr, 18836 size_t size, 18837 uint32_t *data) 18838 { 18839 uint8_t i; 18840 for (i = 0; i < size/4; i++) { 18841 REG_WR(sc, addr + (i * 4), data[i]); 18842 } 18843 } 18844 18845