1 /*- 2 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 15 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 18 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 19 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 20 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 21 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 22 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 23 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 24 * THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #define BXE_DRIVER_VERSION "1.78.78" 31 32 #include "bxe.h" 33 #include "ecore_sp.h" 34 #include "ecore_init.h" 35 #include "ecore_init_ops.h" 36 37 #include "57710_int_offsets.h" 38 #include "57711_int_offsets.h" 39 #include "57712_int_offsets.h" 40 41 /* 42 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these 43 * explicitly here for older kernels that don't include this changeset. 44 */ 45 #ifndef CTLTYPE_U64 46 #define CTLTYPE_U64 CTLTYPE_QUAD 47 #define sysctl_handle_64 sysctl_handle_quad 48 #endif 49 50 /* 51 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these 52 * here as zero(0) for older kernels that don't include this changeset 53 * thereby masking the functionality. 54 */ 55 #ifndef CSUM_TCP_IPV6 56 #define CSUM_TCP_IPV6 0 57 #define CSUM_UDP_IPV6 0 58 #endif 59 60 /* 61 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap 62 * for older kernels that don't include this changeset. 63 */ 64 #if __FreeBSD_version < 900035 65 #define pci_find_cap pci_find_extcap 66 #endif 67 68 #define BXE_DEF_SB_ATT_IDX 0x0001 69 #define BXE_DEF_SB_IDX 0x0002 70 71 /* 72 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per 73 * function HW initialization. 74 */ 75 #define FLR_WAIT_USEC 10000 /* 10 msecs */ 76 #define FLR_WAIT_INTERVAL 50 /* usecs */ 77 #define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */ 78 79 struct pbf_pN_buf_regs { 80 int pN; 81 uint32_t init_crd; 82 uint32_t crd; 83 uint32_t crd_freed; 84 }; 85 86 struct pbf_pN_cmd_regs { 87 int pN; 88 uint32_t lines_occup; 89 uint32_t lines_freed; 90 }; 91 92 /* 93 * PCI Device ID Table used by bxe_probe(). 94 */ 95 #define BXE_DEVDESC_MAX 64 96 static struct bxe_device_type bxe_devs[] = { 97 { 98 BRCM_VENDORID, 99 CHIP_NUM_57710, 100 PCI_ANY_ID, PCI_ANY_ID, 101 "QLogic NetXtreme II BCM57710 10GbE" 102 }, 103 { 104 BRCM_VENDORID, 105 CHIP_NUM_57711, 106 PCI_ANY_ID, PCI_ANY_ID, 107 "QLogic NetXtreme II BCM57711 10GbE" 108 }, 109 { 110 BRCM_VENDORID, 111 CHIP_NUM_57711E, 112 PCI_ANY_ID, PCI_ANY_ID, 113 "QLogic NetXtreme II BCM57711E 10GbE" 114 }, 115 { 116 BRCM_VENDORID, 117 CHIP_NUM_57712, 118 PCI_ANY_ID, PCI_ANY_ID, 119 "QLogic NetXtreme II BCM57712 10GbE" 120 }, 121 { 122 BRCM_VENDORID, 123 CHIP_NUM_57712_MF, 124 PCI_ANY_ID, PCI_ANY_ID, 125 "QLogic NetXtreme II BCM57712 MF 10GbE" 126 }, 127 #if 0 128 { 129 BRCM_VENDORID, 130 CHIP_NUM_57712_VF, 131 PCI_ANY_ID, PCI_ANY_ID, 132 "QLogic NetXtreme II BCM57712 VF 10GbE" 133 }, 134 #endif 135 { 136 BRCM_VENDORID, 137 CHIP_NUM_57800, 138 PCI_ANY_ID, PCI_ANY_ID, 139 "QLogic NetXtreme II BCM57800 10GbE" 140 }, 141 { 142 BRCM_VENDORID, 143 CHIP_NUM_57800_MF, 144 PCI_ANY_ID, PCI_ANY_ID, 145 "QLogic NetXtreme II BCM57800 MF 10GbE" 146 }, 147 #if 0 148 { 149 BRCM_VENDORID, 150 CHIP_NUM_57800_VF, 151 PCI_ANY_ID, PCI_ANY_ID, 152 "QLogic NetXtreme II BCM57800 VF 10GbE" 153 }, 154 #endif 155 { 156 BRCM_VENDORID, 157 CHIP_NUM_57810, 158 PCI_ANY_ID, PCI_ANY_ID, 159 "QLogic NetXtreme II BCM57810 10GbE" 160 }, 161 { 162 BRCM_VENDORID, 163 CHIP_NUM_57810_MF, 164 PCI_ANY_ID, PCI_ANY_ID, 165 "QLogic NetXtreme II BCM57810 MF 10GbE" 166 }, 167 #if 0 168 { 169 BRCM_VENDORID, 170 CHIP_NUM_57810_VF, 171 PCI_ANY_ID, PCI_ANY_ID, 172 "QLogic NetXtreme II BCM57810 VF 10GbE" 173 }, 174 #endif 175 { 176 BRCM_VENDORID, 177 CHIP_NUM_57811, 178 PCI_ANY_ID, PCI_ANY_ID, 179 "QLogic NetXtreme II BCM57811 10GbE" 180 }, 181 { 182 BRCM_VENDORID, 183 CHIP_NUM_57811_MF, 184 PCI_ANY_ID, PCI_ANY_ID, 185 "QLogic NetXtreme II BCM57811 MF 10GbE" 186 }, 187 #if 0 188 { 189 BRCM_VENDORID, 190 CHIP_NUM_57811_VF, 191 PCI_ANY_ID, PCI_ANY_ID, 192 "QLogic NetXtreme II BCM57811 VF 10GbE" 193 }, 194 #endif 195 { 196 BRCM_VENDORID, 197 CHIP_NUM_57840_4_10, 198 PCI_ANY_ID, PCI_ANY_ID, 199 "QLogic NetXtreme II BCM57840 4x10GbE" 200 }, 201 #if 0 202 { 203 BRCM_VENDORID, 204 CHIP_NUM_57840_2_20, 205 PCI_ANY_ID, PCI_ANY_ID, 206 "QLogic NetXtreme II BCM57840 2x20GbE" 207 }, 208 #endif 209 { 210 BRCM_VENDORID, 211 CHIP_NUM_57840_MF, 212 PCI_ANY_ID, PCI_ANY_ID, 213 "QLogic NetXtreme II BCM57840 MF 10GbE" 214 }, 215 #if 0 216 { 217 BRCM_VENDORID, 218 CHIP_NUM_57840_VF, 219 PCI_ANY_ID, PCI_ANY_ID, 220 "QLogic NetXtreme II BCM57840 VF 10GbE" 221 }, 222 #endif 223 { 224 0, 0, 0, 0, NULL 225 } 226 }; 227 228 MALLOC_DECLARE(M_BXE_ILT); 229 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer"); 230 231 /* 232 * FreeBSD device entry points. 233 */ 234 static int bxe_probe(device_t); 235 static int bxe_attach(device_t); 236 static int bxe_detach(device_t); 237 static int bxe_shutdown(device_t); 238 239 /* 240 * FreeBSD KLD module/device interface event handler method. 241 */ 242 static device_method_t bxe_methods[] = { 243 /* Device interface (device_if.h) */ 244 DEVMETHOD(device_probe, bxe_probe), 245 DEVMETHOD(device_attach, bxe_attach), 246 DEVMETHOD(device_detach, bxe_detach), 247 DEVMETHOD(device_shutdown, bxe_shutdown), 248 #if 0 249 DEVMETHOD(device_suspend, bxe_suspend), 250 DEVMETHOD(device_resume, bxe_resume), 251 #endif 252 /* Bus interface (bus_if.h) */ 253 DEVMETHOD(bus_print_child, bus_generic_print_child), 254 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 255 KOBJMETHOD_END 256 }; 257 258 /* 259 * FreeBSD KLD Module data declaration 260 */ 261 static driver_t bxe_driver = { 262 "bxe", /* module name */ 263 bxe_methods, /* event handler */ 264 sizeof(struct bxe_softc) /* extra data */ 265 }; 266 267 /* 268 * FreeBSD dev class is needed to manage dev instances and 269 * to associate with a bus type 270 */ 271 static devclass_t bxe_devclass; 272 273 MODULE_DEPEND(bxe, pci, 1, 1, 1); 274 MODULE_DEPEND(bxe, ether, 1, 1, 1); 275 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0); 276 277 /* resources needed for unloading a previously loaded device */ 278 279 #define BXE_PREV_WAIT_NEEDED 1 280 struct mtx bxe_prev_mtx; 281 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF); 282 struct bxe_prev_list_node { 283 LIST_ENTRY(bxe_prev_list_node) node; 284 uint8_t bus; 285 uint8_t slot; 286 uint8_t path; 287 uint8_t aer; /* XXX automatic error recovery */ 288 uint8_t undi; 289 }; 290 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list); 291 292 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 293 294 /* Tunable device values... */ 295 296 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters"); 297 298 /* Debug */ 299 unsigned long bxe_debug = 0; 300 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN, 301 &bxe_debug, 0, "Debug logging mode"); 302 303 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 304 static int bxe_interrupt_mode = INTR_MODE_MSIX; 305 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN, 306 &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode"); 307 308 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */ 309 static int bxe_queue_count = 4; 310 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN, 311 &bxe_queue_count, 0, "Multi-Queue queue count"); 312 313 /* max number of buffers per queue (default RX_BD_USABLE) */ 314 static int bxe_max_rx_bufs = 0; 315 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN, 316 &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue"); 317 318 /* Host interrupt coalescing RX tick timer (usecs) */ 319 static int bxe_hc_rx_ticks = 25; 320 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN, 321 &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks"); 322 323 /* Host interrupt coalescing TX tick timer (usecs) */ 324 static int bxe_hc_tx_ticks = 50; 325 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN, 326 &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks"); 327 328 /* Maximum number of Rx packets to process at a time */ 329 static int bxe_rx_budget = 0xffffffff; 330 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN, 331 &bxe_rx_budget, 0, "Rx processing budget"); 332 333 /* Maximum LRO aggregation size */ 334 static int bxe_max_aggregation_size = 0; 335 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN, 336 &bxe_max_aggregation_size, 0, "max aggregation size"); 337 338 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */ 339 static int bxe_mrrs = -1; 340 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN, 341 &bxe_mrrs, 0, "PCIe maximum read request size"); 342 343 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */ 344 static int bxe_autogreeen = 0; 345 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN, 346 &bxe_autogreeen, 0, "AutoGrEEEn support"); 347 348 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */ 349 static int bxe_udp_rss = 0; 350 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN, 351 &bxe_udp_rss, 0, "UDP RSS support"); 352 353 354 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */ 355 356 #define STATS_OFFSET32(stat_name) \ 357 (offsetof(struct bxe_eth_stats, stat_name) / 4) 358 359 #define Q_STATS_OFFSET32(stat_name) \ 360 (offsetof(struct bxe_eth_q_stats, stat_name) / 4) 361 362 static const struct { 363 uint32_t offset; 364 uint32_t size; 365 uint32_t flags; 366 #define STATS_FLAGS_PORT 1 367 #define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */ 368 #define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT) 369 char string[STAT_NAME_LEN]; 370 } bxe_eth_stats_arr[] = { 371 { STATS_OFFSET32(total_bytes_received_hi), 372 8, STATS_FLAGS_BOTH, "rx_bytes" }, 373 { STATS_OFFSET32(error_bytes_received_hi), 374 8, STATS_FLAGS_BOTH, "rx_error_bytes" }, 375 { STATS_OFFSET32(total_unicast_packets_received_hi), 376 8, STATS_FLAGS_BOTH, "rx_ucast_packets" }, 377 { STATS_OFFSET32(total_multicast_packets_received_hi), 378 8, STATS_FLAGS_BOTH, "rx_mcast_packets" }, 379 { STATS_OFFSET32(total_broadcast_packets_received_hi), 380 8, STATS_FLAGS_BOTH, "rx_bcast_packets" }, 381 { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi), 382 8, STATS_FLAGS_PORT, "rx_crc_errors" }, 383 { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi), 384 8, STATS_FLAGS_PORT, "rx_align_errors" }, 385 { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi), 386 8, STATS_FLAGS_PORT, "rx_undersize_packets" }, 387 { STATS_OFFSET32(etherstatsoverrsizepkts_hi), 388 8, STATS_FLAGS_PORT, "rx_oversize_packets" }, 389 { STATS_OFFSET32(rx_stat_etherstatsfragments_hi), 390 8, STATS_FLAGS_PORT, "rx_fragments" }, 391 { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi), 392 8, STATS_FLAGS_PORT, "rx_jabbers" }, 393 { STATS_OFFSET32(no_buff_discard_hi), 394 8, STATS_FLAGS_BOTH, "rx_discards" }, 395 { STATS_OFFSET32(mac_filter_discard), 396 4, STATS_FLAGS_PORT, "rx_filtered_packets" }, 397 { STATS_OFFSET32(mf_tag_discard), 398 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" }, 399 { STATS_OFFSET32(pfc_frames_received_hi), 400 8, STATS_FLAGS_PORT, "pfc_frames_received" }, 401 { STATS_OFFSET32(pfc_frames_sent_hi), 402 8, STATS_FLAGS_PORT, "pfc_frames_sent" }, 403 { STATS_OFFSET32(brb_drop_hi), 404 8, STATS_FLAGS_PORT, "rx_brb_discard" }, 405 { STATS_OFFSET32(brb_truncate_hi), 406 8, STATS_FLAGS_PORT, "rx_brb_truncate" }, 407 { STATS_OFFSET32(pause_frames_received_hi), 408 8, STATS_FLAGS_PORT, "rx_pause_frames" }, 409 { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi), 410 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" }, 411 { STATS_OFFSET32(nig_timer_max), 412 4, STATS_FLAGS_PORT, "rx_constant_pause_events" }, 413 { STATS_OFFSET32(total_bytes_transmitted_hi), 414 8, STATS_FLAGS_BOTH, "tx_bytes" }, 415 { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi), 416 8, STATS_FLAGS_PORT, "tx_error_bytes" }, 417 { STATS_OFFSET32(total_unicast_packets_transmitted_hi), 418 8, STATS_FLAGS_BOTH, "tx_ucast_packets" }, 419 { STATS_OFFSET32(total_multicast_packets_transmitted_hi), 420 8, STATS_FLAGS_BOTH, "tx_mcast_packets" }, 421 { STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 422 8, STATS_FLAGS_BOTH, "tx_bcast_packets" }, 423 { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi), 424 8, STATS_FLAGS_PORT, "tx_mac_errors" }, 425 { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi), 426 8, STATS_FLAGS_PORT, "tx_carrier_errors" }, 427 { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi), 428 8, STATS_FLAGS_PORT, "tx_single_collisions" }, 429 { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi), 430 8, STATS_FLAGS_PORT, "tx_multi_collisions" }, 431 { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi), 432 8, STATS_FLAGS_PORT, "tx_deferred" }, 433 { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi), 434 8, STATS_FLAGS_PORT, "tx_excess_collisions" }, 435 { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi), 436 8, STATS_FLAGS_PORT, "tx_late_collisions" }, 437 { STATS_OFFSET32(tx_stat_etherstatscollisions_hi), 438 8, STATS_FLAGS_PORT, "tx_total_collisions" }, 439 { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi), 440 8, STATS_FLAGS_PORT, "tx_64_byte_packets" }, 441 { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi), 442 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" }, 443 { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi), 444 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" }, 445 { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi), 446 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" }, 447 { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi), 448 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" }, 449 { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi), 450 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" }, 451 { STATS_OFFSET32(etherstatspktsover1522octets_hi), 452 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" }, 453 { STATS_OFFSET32(pause_frames_sent_hi), 454 8, STATS_FLAGS_PORT, "tx_pause_frames" }, 455 { STATS_OFFSET32(total_tpa_aggregations_hi), 456 8, STATS_FLAGS_FUNC, "tpa_aggregations" }, 457 { STATS_OFFSET32(total_tpa_aggregated_frames_hi), 458 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"}, 459 { STATS_OFFSET32(total_tpa_bytes_hi), 460 8, STATS_FLAGS_FUNC, "tpa_bytes"}, 461 #if 0 462 { STATS_OFFSET32(recoverable_error), 463 4, STATS_FLAGS_FUNC, "recoverable_errors" }, 464 { STATS_OFFSET32(unrecoverable_error), 465 4, STATS_FLAGS_FUNC, "unrecoverable_errors" }, 466 #endif 467 { STATS_OFFSET32(eee_tx_lpi), 468 4, STATS_FLAGS_PORT, "eee_tx_lpi"}, 469 { STATS_OFFSET32(rx_calls), 470 4, STATS_FLAGS_FUNC, "rx_calls"}, 471 { STATS_OFFSET32(rx_pkts), 472 4, STATS_FLAGS_FUNC, "rx_pkts"}, 473 { STATS_OFFSET32(rx_tpa_pkts), 474 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"}, 475 { STATS_OFFSET32(rx_soft_errors), 476 4, STATS_FLAGS_FUNC, "rx_soft_errors"}, 477 { STATS_OFFSET32(rx_hw_csum_errors), 478 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"}, 479 { STATS_OFFSET32(rx_ofld_frames_csum_ip), 480 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"}, 481 { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 482 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"}, 483 { STATS_OFFSET32(rx_budget_reached), 484 4, STATS_FLAGS_FUNC, "rx_budget_reached"}, 485 { STATS_OFFSET32(tx_pkts), 486 4, STATS_FLAGS_FUNC, "tx_pkts"}, 487 { STATS_OFFSET32(tx_soft_errors), 488 4, STATS_FLAGS_FUNC, "tx_soft_errors"}, 489 { STATS_OFFSET32(tx_ofld_frames_csum_ip), 490 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"}, 491 { STATS_OFFSET32(tx_ofld_frames_csum_tcp), 492 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"}, 493 { STATS_OFFSET32(tx_ofld_frames_csum_udp), 494 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"}, 495 { STATS_OFFSET32(tx_ofld_frames_lso), 496 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"}, 497 { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 498 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"}, 499 { STATS_OFFSET32(tx_encap_failures), 500 4, STATS_FLAGS_FUNC, "tx_encap_failures"}, 501 { STATS_OFFSET32(tx_hw_queue_full), 502 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"}, 503 { STATS_OFFSET32(tx_hw_max_queue_depth), 504 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"}, 505 { STATS_OFFSET32(tx_dma_mapping_failure), 506 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"}, 507 { STATS_OFFSET32(tx_max_drbr_queue_depth), 508 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"}, 509 { STATS_OFFSET32(tx_window_violation_std), 510 4, STATS_FLAGS_FUNC, "tx_window_violation_std"}, 511 { STATS_OFFSET32(tx_window_violation_tso), 512 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"}, 513 #if 0 514 { STATS_OFFSET32(tx_unsupported_tso_request_ipv6), 515 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_ipv6"}, 516 { STATS_OFFSET32(tx_unsupported_tso_request_not_tcp), 517 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_not_tcp"}, 518 #endif 519 { STATS_OFFSET32(tx_chain_lost_mbuf), 520 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"}, 521 { STATS_OFFSET32(tx_frames_deferred), 522 4, STATS_FLAGS_FUNC, "tx_frames_deferred"}, 523 { STATS_OFFSET32(tx_queue_xoff), 524 4, STATS_FLAGS_FUNC, "tx_queue_xoff"}, 525 { STATS_OFFSET32(mbuf_defrag_attempts), 526 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"}, 527 { STATS_OFFSET32(mbuf_defrag_failures), 528 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"}, 529 { STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 530 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"}, 531 { STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 532 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"}, 533 { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 534 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"}, 535 { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 536 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"}, 537 { STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 538 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"}, 539 { STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 540 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"}, 541 { STATS_OFFSET32(mbuf_alloc_tx), 542 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"}, 543 { STATS_OFFSET32(mbuf_alloc_rx), 544 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"}, 545 { STATS_OFFSET32(mbuf_alloc_sge), 546 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"}, 547 { STATS_OFFSET32(mbuf_alloc_tpa), 548 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"} 549 }; 550 551 static const struct { 552 uint32_t offset; 553 uint32_t size; 554 char string[STAT_NAME_LEN]; 555 } bxe_eth_q_stats_arr[] = { 556 { Q_STATS_OFFSET32(total_bytes_received_hi), 557 8, "rx_bytes" }, 558 { Q_STATS_OFFSET32(total_unicast_packets_received_hi), 559 8, "rx_ucast_packets" }, 560 { Q_STATS_OFFSET32(total_multicast_packets_received_hi), 561 8, "rx_mcast_packets" }, 562 { Q_STATS_OFFSET32(total_broadcast_packets_received_hi), 563 8, "rx_bcast_packets" }, 564 { Q_STATS_OFFSET32(no_buff_discard_hi), 565 8, "rx_discards" }, 566 { Q_STATS_OFFSET32(total_bytes_transmitted_hi), 567 8, "tx_bytes" }, 568 { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi), 569 8, "tx_ucast_packets" }, 570 { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi), 571 8, "tx_mcast_packets" }, 572 { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 573 8, "tx_bcast_packets" }, 574 { Q_STATS_OFFSET32(total_tpa_aggregations_hi), 575 8, "tpa_aggregations" }, 576 { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi), 577 8, "tpa_aggregated_frames"}, 578 { Q_STATS_OFFSET32(total_tpa_bytes_hi), 579 8, "tpa_bytes"}, 580 { Q_STATS_OFFSET32(rx_calls), 581 4, "rx_calls"}, 582 { Q_STATS_OFFSET32(rx_pkts), 583 4, "rx_pkts"}, 584 { Q_STATS_OFFSET32(rx_tpa_pkts), 585 4, "rx_tpa_pkts"}, 586 { Q_STATS_OFFSET32(rx_soft_errors), 587 4, "rx_soft_errors"}, 588 { Q_STATS_OFFSET32(rx_hw_csum_errors), 589 4, "rx_hw_csum_errors"}, 590 { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip), 591 4, "rx_ofld_frames_csum_ip"}, 592 { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 593 4, "rx_ofld_frames_csum_tcp_udp"}, 594 { Q_STATS_OFFSET32(rx_budget_reached), 595 4, "rx_budget_reached"}, 596 { Q_STATS_OFFSET32(tx_pkts), 597 4, "tx_pkts"}, 598 { Q_STATS_OFFSET32(tx_soft_errors), 599 4, "tx_soft_errors"}, 600 { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip), 601 4, "tx_ofld_frames_csum_ip"}, 602 { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp), 603 4, "tx_ofld_frames_csum_tcp"}, 604 { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp), 605 4, "tx_ofld_frames_csum_udp"}, 606 { Q_STATS_OFFSET32(tx_ofld_frames_lso), 607 4, "tx_ofld_frames_lso"}, 608 { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 609 4, "tx_ofld_frames_lso_hdr_splits"}, 610 { Q_STATS_OFFSET32(tx_encap_failures), 611 4, "tx_encap_failures"}, 612 { Q_STATS_OFFSET32(tx_hw_queue_full), 613 4, "tx_hw_queue_full"}, 614 { Q_STATS_OFFSET32(tx_hw_max_queue_depth), 615 4, "tx_hw_max_queue_depth"}, 616 { Q_STATS_OFFSET32(tx_dma_mapping_failure), 617 4, "tx_dma_mapping_failure"}, 618 { Q_STATS_OFFSET32(tx_max_drbr_queue_depth), 619 4, "tx_max_drbr_queue_depth"}, 620 { Q_STATS_OFFSET32(tx_window_violation_std), 621 4, "tx_window_violation_std"}, 622 { Q_STATS_OFFSET32(tx_window_violation_tso), 623 4, "tx_window_violation_tso"}, 624 #if 0 625 { Q_STATS_OFFSET32(tx_unsupported_tso_request_ipv6), 626 4, "tx_unsupported_tso_request_ipv6"}, 627 { Q_STATS_OFFSET32(tx_unsupported_tso_request_not_tcp), 628 4, "tx_unsupported_tso_request_not_tcp"}, 629 #endif 630 { Q_STATS_OFFSET32(tx_chain_lost_mbuf), 631 4, "tx_chain_lost_mbuf"}, 632 { Q_STATS_OFFSET32(tx_frames_deferred), 633 4, "tx_frames_deferred"}, 634 { Q_STATS_OFFSET32(tx_queue_xoff), 635 4, "tx_queue_xoff"}, 636 { Q_STATS_OFFSET32(mbuf_defrag_attempts), 637 4, "mbuf_defrag_attempts"}, 638 { Q_STATS_OFFSET32(mbuf_defrag_failures), 639 4, "mbuf_defrag_failures"}, 640 { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 641 4, "mbuf_rx_bd_alloc_failed"}, 642 { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 643 4, "mbuf_rx_bd_mapping_failed"}, 644 { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 645 4, "mbuf_rx_tpa_alloc_failed"}, 646 { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 647 4, "mbuf_rx_tpa_mapping_failed"}, 648 { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 649 4, "mbuf_rx_sge_alloc_failed"}, 650 { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 651 4, "mbuf_rx_sge_mapping_failed"}, 652 { Q_STATS_OFFSET32(mbuf_alloc_tx), 653 4, "mbuf_alloc_tx"}, 654 { Q_STATS_OFFSET32(mbuf_alloc_rx), 655 4, "mbuf_alloc_rx"}, 656 { Q_STATS_OFFSET32(mbuf_alloc_sge), 657 4, "mbuf_alloc_sge"}, 658 { Q_STATS_OFFSET32(mbuf_alloc_tpa), 659 4, "mbuf_alloc_tpa"} 660 }; 661 662 #define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr) 663 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr) 664 665 666 static void bxe_cmng_fns_init(struct bxe_softc *sc, 667 uint8_t read_cfg, 668 uint8_t cmng_type); 669 static int bxe_get_cmng_fns_mode(struct bxe_softc *sc); 670 static void storm_memset_cmng(struct bxe_softc *sc, 671 struct cmng_init *cmng, 672 uint8_t port); 673 static void bxe_set_reset_global(struct bxe_softc *sc); 674 static void bxe_set_reset_in_progress(struct bxe_softc *sc); 675 static uint8_t bxe_reset_is_done(struct bxe_softc *sc, 676 int engine); 677 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc); 678 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc, 679 uint8_t *global, 680 uint8_t print); 681 static void bxe_int_disable(struct bxe_softc *sc); 682 static int bxe_release_leader_lock(struct bxe_softc *sc); 683 static void bxe_pf_disable(struct bxe_softc *sc); 684 static void bxe_free_fp_buffers(struct bxe_softc *sc); 685 static inline void bxe_update_rx_prod(struct bxe_softc *sc, 686 struct bxe_fastpath *fp, 687 uint16_t rx_bd_prod, 688 uint16_t rx_cq_prod, 689 uint16_t rx_sge_prod); 690 static void bxe_link_report_locked(struct bxe_softc *sc); 691 static void bxe_link_report(struct bxe_softc *sc); 692 static void bxe_link_status_update(struct bxe_softc *sc); 693 static void bxe_periodic_callout_func(void *xsc); 694 static void bxe_periodic_start(struct bxe_softc *sc); 695 static void bxe_periodic_stop(struct bxe_softc *sc); 696 static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 697 uint16_t prev_index, 698 uint16_t index); 699 static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 700 int queue); 701 static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 702 uint16_t index); 703 static uint8_t bxe_txeof(struct bxe_softc *sc, 704 struct bxe_fastpath *fp); 705 static void bxe_task_fp(struct bxe_fastpath *fp); 706 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc, 707 struct mbuf *m, 708 uint8_t contents); 709 static int bxe_alloc_mem(struct bxe_softc *sc); 710 static void bxe_free_mem(struct bxe_softc *sc); 711 static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc); 712 static void bxe_free_fw_stats_mem(struct bxe_softc *sc); 713 static int bxe_interrupt_attach(struct bxe_softc *sc); 714 static void bxe_interrupt_detach(struct bxe_softc *sc); 715 static void bxe_set_rx_mode(struct bxe_softc *sc); 716 static int bxe_init_locked(struct bxe_softc *sc); 717 static int bxe_stop_locked(struct bxe_softc *sc); 718 static __noinline int bxe_nic_load(struct bxe_softc *sc, 719 int load_mode); 720 static __noinline int bxe_nic_unload(struct bxe_softc *sc, 721 uint32_t unload_mode, 722 uint8_t keep_link); 723 724 static void bxe_handle_sp_tq(void *context, int pending); 725 static void bxe_handle_rx_mode_tq(void *context, int pending); 726 static void bxe_handle_fp_tq(void *context, int pending); 727 728 729 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */ 730 uint32_t 731 calc_crc32(uint8_t *crc32_packet, 732 uint32_t crc32_length, 733 uint32_t crc32_seed, 734 uint8_t complement) 735 { 736 uint32_t byte = 0; 737 uint32_t bit = 0; 738 uint8_t msb = 0; 739 uint32_t temp = 0; 740 uint32_t shft = 0; 741 uint8_t current_byte = 0; 742 uint32_t crc32_result = crc32_seed; 743 const uint32_t CRC32_POLY = 0x1edc6f41; 744 745 if ((crc32_packet == NULL) || 746 (crc32_length == 0) || 747 ((crc32_length % 8) != 0)) 748 { 749 return (crc32_result); 750 } 751 752 for (byte = 0; byte < crc32_length; byte = byte + 1) 753 { 754 current_byte = crc32_packet[byte]; 755 for (bit = 0; bit < 8; bit = bit + 1) 756 { 757 /* msb = crc32_result[31]; */ 758 msb = (uint8_t)(crc32_result >> 31); 759 760 crc32_result = crc32_result << 1; 761 762 /* it (msb != current_byte[bit]) */ 763 if (msb != (0x1 & (current_byte >> bit))) 764 { 765 crc32_result = crc32_result ^ CRC32_POLY; 766 /* crc32_result[0] = 1 */ 767 crc32_result |= 1; 768 } 769 } 770 } 771 772 /* Last step is to: 773 * 1. "mirror" every bit 774 * 2. swap the 4 bytes 775 * 3. complement each bit 776 */ 777 778 /* Mirror */ 779 temp = crc32_result; 780 shft = sizeof(crc32_result) * 8 - 1; 781 782 for (crc32_result >>= 1; crc32_result; crc32_result >>= 1) 783 { 784 temp <<= 1; 785 temp |= crc32_result & 1; 786 shft-- ; 787 } 788 789 /* temp[31-bit] = crc32_result[bit] */ 790 temp <<= shft; 791 792 /* Swap */ 793 /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */ 794 { 795 uint32_t t0, t1, t2, t3; 796 t0 = (0x000000ff & (temp >> 24)); 797 t1 = (0x0000ff00 & (temp >> 8)); 798 t2 = (0x00ff0000 & (temp << 8)); 799 t3 = (0xff000000 & (temp << 24)); 800 crc32_result = t0 | t1 | t2 | t3; 801 } 802 803 /* Complement */ 804 if (complement) 805 { 806 crc32_result = ~crc32_result; 807 } 808 809 return (crc32_result); 810 } 811 812 int 813 bxe_test_bit(int nr, 814 volatile unsigned long *addr) 815 { 816 return ((atomic_load_acq_long(addr) & (1 << nr)) != 0); 817 } 818 819 void 820 bxe_set_bit(unsigned int nr, 821 volatile unsigned long *addr) 822 { 823 atomic_set_acq_long(addr, (1 << nr)); 824 } 825 826 void 827 bxe_clear_bit(int nr, 828 volatile unsigned long *addr) 829 { 830 atomic_clear_acq_long(addr, (1 << nr)); 831 } 832 833 int 834 bxe_test_and_set_bit(int nr, 835 volatile unsigned long *addr) 836 { 837 unsigned long x; 838 nr = (1 << nr); 839 do { 840 x = *addr; 841 } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0); 842 // if (x & nr) bit_was_set; else bit_was_not_set; 843 return (x & nr); 844 } 845 846 int 847 bxe_test_and_clear_bit(int nr, 848 volatile unsigned long *addr) 849 { 850 unsigned long x; 851 nr = (1 << nr); 852 do { 853 x = *addr; 854 } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0); 855 // if (x & nr) bit_was_set; else bit_was_not_set; 856 return (x & nr); 857 } 858 859 int 860 bxe_cmpxchg(volatile int *addr, 861 int old, 862 int new) 863 { 864 int x; 865 do { 866 x = *addr; 867 } while (atomic_cmpset_acq_int(addr, old, new) == 0); 868 return (x); 869 } 870 871 /* 872 * Get DMA memory from the OS. 873 * 874 * Validates that the OS has provided DMA buffers in response to a 875 * bus_dmamap_load call and saves the physical address of those buffers. 876 * When the callback is used the OS will return 0 for the mapping function 877 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any 878 * failures back to the caller. 879 * 880 * Returns: 881 * Nothing. 882 */ 883 static void 884 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 885 { 886 struct bxe_dma *dma = arg; 887 888 if (error) { 889 dma->paddr = 0; 890 dma->nseg = 0; 891 BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error); 892 } else { 893 dma->paddr = segs->ds_addr; 894 dma->nseg = nseg; 895 #if 0 896 BLOGD(dma->sc, DBG_LOAD, 897 "DMA alloc '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n", 898 dma->msg, dma->vaddr, (void *)dma->paddr, 899 dma->nseg, dma->size); 900 #endif 901 } 902 } 903 904 /* 905 * Allocate a block of memory and map it for DMA. No partial completions 906 * allowed and release any resources acquired if we can't acquire all 907 * resources. 908 * 909 * Returns: 910 * 0 = Success, !0 = Failure 911 */ 912 int 913 bxe_dma_alloc(struct bxe_softc *sc, 914 bus_size_t size, 915 struct bxe_dma *dma, 916 const char *msg) 917 { 918 int rc; 919 920 if (dma->size > 0) { 921 BLOGE(sc, "dma block '%s' already has size %lu\n", msg, 922 (unsigned long)dma->size); 923 return (1); 924 } 925 926 memset(dma, 0, sizeof(*dma)); /* sanity */ 927 dma->sc = sc; 928 dma->size = size; 929 snprintf(dma->msg, sizeof(dma->msg), "%s", msg); 930 931 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 932 BCM_PAGE_SIZE, /* alignment */ 933 0, /* boundary limit */ 934 BUS_SPACE_MAXADDR, /* restricted low */ 935 BUS_SPACE_MAXADDR, /* restricted hi */ 936 NULL, /* addr filter() */ 937 NULL, /* addr filter() arg */ 938 size, /* max map size */ 939 1, /* num discontinuous */ 940 size, /* max seg size */ 941 BUS_DMA_ALLOCNOW, /* flags */ 942 NULL, /* lock() */ 943 NULL, /* lock() arg */ 944 &dma->tag); /* returned dma tag */ 945 if (rc != 0) { 946 BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc); 947 memset(dma, 0, sizeof(*dma)); 948 return (1); 949 } 950 951 rc = bus_dmamem_alloc(dma->tag, 952 (void **)&dma->vaddr, 953 (BUS_DMA_NOWAIT | BUS_DMA_ZERO), 954 &dma->map); 955 if (rc != 0) { 956 BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc); 957 bus_dma_tag_destroy(dma->tag); 958 memset(dma, 0, sizeof(*dma)); 959 return (1); 960 } 961 962 rc = bus_dmamap_load(dma->tag, 963 dma->map, 964 dma->vaddr, 965 size, 966 bxe_dma_map_addr, /* BLOGD in here */ 967 dma, 968 BUS_DMA_NOWAIT); 969 if (rc != 0) { 970 BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc); 971 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 972 bus_dma_tag_destroy(dma->tag); 973 memset(dma, 0, sizeof(*dma)); 974 return (1); 975 } 976 977 return (0); 978 } 979 980 void 981 bxe_dma_free(struct bxe_softc *sc, 982 struct bxe_dma *dma) 983 { 984 if (dma->size > 0) { 985 #if 0 986 BLOGD(sc, DBG_LOAD, 987 "DMA free '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n", 988 dma->msg, dma->vaddr, (void *)dma->paddr, 989 dma->nseg, dma->size); 990 #endif 991 992 DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL")); 993 994 bus_dmamap_sync(dma->tag, dma->map, 995 (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)); 996 bus_dmamap_unload(dma->tag, dma->map); 997 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 998 bus_dma_tag_destroy(dma->tag); 999 } 1000 1001 memset(dma, 0, sizeof(*dma)); 1002 } 1003 1004 /* 1005 * These indirect read and write routines are only during init. 1006 * The locking is handled by the MCP. 1007 */ 1008 1009 void 1010 bxe_reg_wr_ind(struct bxe_softc *sc, 1011 uint32_t addr, 1012 uint32_t val) 1013 { 1014 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 1015 pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4); 1016 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 1017 } 1018 1019 uint32_t 1020 bxe_reg_rd_ind(struct bxe_softc *sc, 1021 uint32_t addr) 1022 { 1023 uint32_t val; 1024 1025 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 1026 val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4); 1027 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 1028 1029 return (val); 1030 } 1031 1032 #if 0 1033 void bxe_dp_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int msglvl) 1034 { 1035 uint32_t src_type = dmae->opcode & DMAE_COMMAND_SRC; 1036 1037 switch (dmae->opcode & DMAE_COMMAND_DST) { 1038 case DMAE_CMD_DST_PCI: 1039 if (src_type == DMAE_CMD_SRC_PCI) 1040 DP(msglvl, "DMAE: opcode 0x%08x\n" 1041 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n" 1042 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1043 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 1044 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 1045 dmae->comp_addr_hi, dmae->comp_addr_lo, 1046 dmae->comp_val); 1047 else 1048 DP(msglvl, "DMAE: opcode 0x%08x\n" 1049 "src [%08x], len [%d*4], dst [%x:%08x]\n" 1050 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1051 dmae->opcode, dmae->src_addr_lo >> 2, 1052 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 1053 dmae->comp_addr_hi, dmae->comp_addr_lo, 1054 dmae->comp_val); 1055 break; 1056 case DMAE_CMD_DST_GRC: 1057 if (src_type == DMAE_CMD_SRC_PCI) 1058 DP(msglvl, "DMAE: opcode 0x%08x\n" 1059 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n" 1060 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1061 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 1062 dmae->len, dmae->dst_addr_lo >> 2, 1063 dmae->comp_addr_hi, dmae->comp_addr_lo, 1064 dmae->comp_val); 1065 else 1066 DP(msglvl, "DMAE: opcode 0x%08x\n" 1067 "src [%08x], len [%d*4], dst [%08x]\n" 1068 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1069 dmae->opcode, dmae->src_addr_lo >> 2, 1070 dmae->len, dmae->dst_addr_lo >> 2, 1071 dmae->comp_addr_hi, dmae->comp_addr_lo, 1072 dmae->comp_val); 1073 break; 1074 default: 1075 if (src_type == DMAE_CMD_SRC_PCI) 1076 DP(msglvl, "DMAE: opcode 0x%08x\n" 1077 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n" 1078 "comp_addr [%x:%08x] comp_val 0x%08x\n", 1079 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 1080 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 1081 dmae->comp_val); 1082 else 1083 DP(msglvl, "DMAE: opcode 0x%08x\n" 1084 "src_addr [%08x] len [%d * 4] dst_addr [none]\n" 1085 "comp_addr [%x:%08x] comp_val 0x%08x\n", 1086 dmae->opcode, dmae->src_addr_lo >> 2, 1087 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 1088 dmae->comp_val); 1089 break; 1090 } 1091 1092 } 1093 #endif 1094 1095 static int 1096 bxe_acquire_hw_lock(struct bxe_softc *sc, 1097 uint32_t resource) 1098 { 1099 uint32_t lock_status; 1100 uint32_t resource_bit = (1 << resource); 1101 int func = SC_FUNC(sc); 1102 uint32_t hw_lock_control_reg; 1103 int cnt; 1104 1105 /* validate the resource is within range */ 1106 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1107 BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource); 1108 return (-1); 1109 } 1110 1111 if (func <= 5) { 1112 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1113 } else { 1114 hw_lock_control_reg = 1115 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1116 } 1117 1118 /* validate the resource is not already taken */ 1119 lock_status = REG_RD(sc, hw_lock_control_reg); 1120 if (lock_status & resource_bit) { 1121 BLOGE(sc, "resource in use (status 0x%x bit 0x%x)\n", 1122 lock_status, resource_bit); 1123 return (-1); 1124 } 1125 1126 /* try every 5ms for 5 seconds */ 1127 for (cnt = 0; cnt < 1000; cnt++) { 1128 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit); 1129 lock_status = REG_RD(sc, hw_lock_control_reg); 1130 if (lock_status & resource_bit) { 1131 return (0); 1132 } 1133 DELAY(5000); 1134 } 1135 1136 BLOGE(sc, "Resource lock timeout!\n"); 1137 return (-1); 1138 } 1139 1140 static int 1141 bxe_release_hw_lock(struct bxe_softc *sc, 1142 uint32_t resource) 1143 { 1144 uint32_t lock_status; 1145 uint32_t resource_bit = (1 << resource); 1146 int func = SC_FUNC(sc); 1147 uint32_t hw_lock_control_reg; 1148 1149 /* validate the resource is within range */ 1150 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1151 BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource); 1152 return (-1); 1153 } 1154 1155 if (func <= 5) { 1156 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1157 } else { 1158 hw_lock_control_reg = 1159 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1160 } 1161 1162 /* validate the resource is currently taken */ 1163 lock_status = REG_RD(sc, hw_lock_control_reg); 1164 if (!(lock_status & resource_bit)) { 1165 BLOGE(sc, "resource not in use (status 0x%x bit 0x%x)\n", 1166 lock_status, resource_bit); 1167 return (-1); 1168 } 1169 1170 REG_WR(sc, hw_lock_control_reg, resource_bit); 1171 return (0); 1172 } 1173 1174 /* 1175 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise, 1176 * had we done things the other way around, if two pfs from the same port 1177 * would attempt to access nvram at the same time, we could run into a 1178 * scenario such as: 1179 * pf A takes the port lock. 1180 * pf B succeeds in taking the same lock since they are from the same port. 1181 * pf A takes the per pf misc lock. Performs eeprom access. 1182 * pf A finishes. Unlocks the per pf misc lock. 1183 * Pf B takes the lock and proceeds to perform it's own access. 1184 * pf A unlocks the per port lock, while pf B is still working (!). 1185 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own 1186 * access corrupted by pf B).* 1187 */ 1188 static int 1189 bxe_acquire_nvram_lock(struct bxe_softc *sc) 1190 { 1191 int port = SC_PORT(sc); 1192 int count, i; 1193 uint32_t val = 0; 1194 1195 /* acquire HW lock: protect against other PFs in PF Direct Assignment */ 1196 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1197 1198 /* adjust timeout for emulation/FPGA */ 1199 count = NVRAM_TIMEOUT_COUNT; 1200 if (CHIP_REV_IS_SLOW(sc)) { 1201 count *= 100; 1202 } 1203 1204 /* request access to nvram interface */ 1205 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1206 (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port)); 1207 1208 for (i = 0; i < count*10; i++) { 1209 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1210 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1211 break; 1212 } 1213 1214 DELAY(5); 1215 } 1216 1217 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1218 BLOGE(sc, "Cannot get access to nvram interface\n"); 1219 return (-1); 1220 } 1221 1222 return (0); 1223 } 1224 1225 static int 1226 bxe_release_nvram_lock(struct bxe_softc *sc) 1227 { 1228 int port = SC_PORT(sc); 1229 int count, i; 1230 uint32_t val = 0; 1231 1232 /* adjust timeout for emulation/FPGA */ 1233 count = NVRAM_TIMEOUT_COUNT; 1234 if (CHIP_REV_IS_SLOW(sc)) { 1235 count *= 100; 1236 } 1237 1238 /* relinquish nvram interface */ 1239 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1240 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port)); 1241 1242 for (i = 0; i < count*10; i++) { 1243 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1244 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1245 break; 1246 } 1247 1248 DELAY(5); 1249 } 1250 1251 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1252 BLOGE(sc, "Cannot free access to nvram interface\n"); 1253 return (-1); 1254 } 1255 1256 /* release HW lock: protect against other PFs in PF Direct Assignment */ 1257 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1258 1259 return (0); 1260 } 1261 1262 static void 1263 bxe_enable_nvram_access(struct bxe_softc *sc) 1264 { 1265 uint32_t val; 1266 1267 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1268 1269 /* enable both bits, even on read */ 1270 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1271 (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN)); 1272 } 1273 1274 static void 1275 bxe_disable_nvram_access(struct bxe_softc *sc) 1276 { 1277 uint32_t val; 1278 1279 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1280 1281 /* disable both bits, even after read */ 1282 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1283 (val & ~(MCPR_NVM_ACCESS_ENABLE_EN | 1284 MCPR_NVM_ACCESS_ENABLE_WR_EN))); 1285 } 1286 1287 static int 1288 bxe_nvram_read_dword(struct bxe_softc *sc, 1289 uint32_t offset, 1290 uint32_t *ret_val, 1291 uint32_t cmd_flags) 1292 { 1293 int count, i, rc; 1294 uint32_t val; 1295 1296 /* build the command word */ 1297 cmd_flags |= MCPR_NVM_COMMAND_DOIT; 1298 1299 /* need to clear DONE bit separately */ 1300 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1301 1302 /* address of the NVRAM to read from */ 1303 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1304 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1305 1306 /* issue a read command */ 1307 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1308 1309 /* adjust timeout for emulation/FPGA */ 1310 count = NVRAM_TIMEOUT_COUNT; 1311 if (CHIP_REV_IS_SLOW(sc)) { 1312 count *= 100; 1313 } 1314 1315 /* wait for completion */ 1316 *ret_val = 0; 1317 rc = -1; 1318 for (i = 0; i < count; i++) { 1319 DELAY(5); 1320 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1321 1322 if (val & MCPR_NVM_COMMAND_DONE) { 1323 val = REG_RD(sc, MCP_REG_MCPR_NVM_READ); 1324 /* we read nvram data in cpu order 1325 * but ethtool sees it as an array of bytes 1326 * converting to big-endian will do the work 1327 */ 1328 *ret_val = htobe32(val); 1329 rc = 0; 1330 break; 1331 } 1332 } 1333 1334 if (rc == -1) { 1335 BLOGE(sc, "nvram read timeout expired\n"); 1336 } 1337 1338 return (rc); 1339 } 1340 1341 static int 1342 bxe_nvram_read(struct bxe_softc *sc, 1343 uint32_t offset, 1344 uint8_t *ret_buf, 1345 int buf_size) 1346 { 1347 uint32_t cmd_flags; 1348 uint32_t val; 1349 int rc; 1350 1351 if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) { 1352 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1353 offset, buf_size); 1354 return (-1); 1355 } 1356 1357 if ((offset + buf_size) > sc->devinfo.flash_size) { 1358 BLOGE(sc, "Invalid parameter, " 1359 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1360 offset, buf_size, sc->devinfo.flash_size); 1361 return (-1); 1362 } 1363 1364 /* request access to nvram interface */ 1365 rc = bxe_acquire_nvram_lock(sc); 1366 if (rc) { 1367 return (rc); 1368 } 1369 1370 /* enable access to nvram interface */ 1371 bxe_enable_nvram_access(sc); 1372 1373 /* read the first word(s) */ 1374 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1375 while ((buf_size > sizeof(uint32_t)) && (rc == 0)) { 1376 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1377 memcpy(ret_buf, &val, 4); 1378 1379 /* advance to the next dword */ 1380 offset += sizeof(uint32_t); 1381 ret_buf += sizeof(uint32_t); 1382 buf_size -= sizeof(uint32_t); 1383 cmd_flags = 0; 1384 } 1385 1386 if (rc == 0) { 1387 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1388 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1389 memcpy(ret_buf, &val, 4); 1390 } 1391 1392 /* disable access to nvram interface */ 1393 bxe_disable_nvram_access(sc); 1394 bxe_release_nvram_lock(sc); 1395 1396 return (rc); 1397 } 1398 1399 static int 1400 bxe_nvram_write_dword(struct bxe_softc *sc, 1401 uint32_t offset, 1402 uint32_t val, 1403 uint32_t cmd_flags) 1404 { 1405 int count, i, rc; 1406 1407 /* build the command word */ 1408 cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR); 1409 1410 /* need to clear DONE bit separately */ 1411 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1412 1413 /* write the data */ 1414 REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val); 1415 1416 /* address of the NVRAM to write to */ 1417 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1418 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1419 1420 /* issue the write command */ 1421 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1422 1423 /* adjust timeout for emulation/FPGA */ 1424 count = NVRAM_TIMEOUT_COUNT; 1425 if (CHIP_REV_IS_SLOW(sc)) { 1426 count *= 100; 1427 } 1428 1429 /* wait for completion */ 1430 rc = -1; 1431 for (i = 0; i < count; i++) { 1432 DELAY(5); 1433 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1434 if (val & MCPR_NVM_COMMAND_DONE) { 1435 rc = 0; 1436 break; 1437 } 1438 } 1439 1440 if (rc == -1) { 1441 BLOGE(sc, "nvram write timeout expired\n"); 1442 } 1443 1444 return (rc); 1445 } 1446 1447 #define BYTE_OFFSET(offset) (8 * (offset & 0x03)) 1448 1449 static int 1450 bxe_nvram_write1(struct bxe_softc *sc, 1451 uint32_t offset, 1452 uint8_t *data_buf, 1453 int buf_size) 1454 { 1455 uint32_t cmd_flags; 1456 uint32_t align_offset; 1457 uint32_t val; 1458 int rc; 1459 1460 if ((offset + buf_size) > sc->devinfo.flash_size) { 1461 BLOGE(sc, "Invalid parameter, " 1462 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1463 offset, buf_size, sc->devinfo.flash_size); 1464 return (-1); 1465 } 1466 1467 /* request access to nvram interface */ 1468 rc = bxe_acquire_nvram_lock(sc); 1469 if (rc) { 1470 return (rc); 1471 } 1472 1473 /* enable access to nvram interface */ 1474 bxe_enable_nvram_access(sc); 1475 1476 cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST); 1477 align_offset = (offset & ~0x03); 1478 rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags); 1479 1480 if (rc == 0) { 1481 val &= ~(0xff << BYTE_OFFSET(offset)); 1482 val |= (*data_buf << BYTE_OFFSET(offset)); 1483 1484 /* nvram data is returned as an array of bytes 1485 * convert it back to cpu order 1486 */ 1487 val = be32toh(val); 1488 1489 rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags); 1490 } 1491 1492 /* disable access to nvram interface */ 1493 bxe_disable_nvram_access(sc); 1494 bxe_release_nvram_lock(sc); 1495 1496 return (rc); 1497 } 1498 1499 static int 1500 bxe_nvram_write(struct bxe_softc *sc, 1501 uint32_t offset, 1502 uint8_t *data_buf, 1503 int buf_size) 1504 { 1505 uint32_t cmd_flags; 1506 uint32_t val; 1507 uint32_t written_so_far; 1508 int rc; 1509 1510 if (buf_size == 1) { 1511 return (bxe_nvram_write1(sc, offset, data_buf, buf_size)); 1512 } 1513 1514 if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) { 1515 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1516 offset, buf_size); 1517 return (-1); 1518 } 1519 1520 if (buf_size == 0) { 1521 return (0); /* nothing to do */ 1522 } 1523 1524 if ((offset + buf_size) > sc->devinfo.flash_size) { 1525 BLOGE(sc, "Invalid parameter, " 1526 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1527 offset, buf_size, sc->devinfo.flash_size); 1528 return (-1); 1529 } 1530 1531 /* request access to nvram interface */ 1532 rc = bxe_acquire_nvram_lock(sc); 1533 if (rc) { 1534 return (rc); 1535 } 1536 1537 /* enable access to nvram interface */ 1538 bxe_enable_nvram_access(sc); 1539 1540 written_so_far = 0; 1541 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1542 while ((written_so_far < buf_size) && (rc == 0)) { 1543 if (written_so_far == (buf_size - sizeof(uint32_t))) { 1544 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1545 } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) { 1546 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1547 } else if ((offset % NVRAM_PAGE_SIZE) == 0) { 1548 cmd_flags |= MCPR_NVM_COMMAND_FIRST; 1549 } 1550 1551 memcpy(&val, data_buf, 4); 1552 1553 rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags); 1554 1555 /* advance to the next dword */ 1556 offset += sizeof(uint32_t); 1557 data_buf += sizeof(uint32_t); 1558 written_so_far += sizeof(uint32_t); 1559 cmd_flags = 0; 1560 } 1561 1562 /* disable access to nvram interface */ 1563 bxe_disable_nvram_access(sc); 1564 bxe_release_nvram_lock(sc); 1565 1566 return (rc); 1567 } 1568 1569 /* copy command into DMAE command memory and set DMAE command Go */ 1570 void 1571 bxe_post_dmae(struct bxe_softc *sc, 1572 struct dmae_command *dmae, 1573 int idx) 1574 { 1575 uint32_t cmd_offset; 1576 int i; 1577 1578 cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx)); 1579 for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) { 1580 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i)); 1581 } 1582 1583 REG_WR(sc, dmae_reg_go_c[idx], 1); 1584 } 1585 1586 uint32_t 1587 bxe_dmae_opcode_add_comp(uint32_t opcode, 1588 uint8_t comp_type) 1589 { 1590 return (opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) | 1591 DMAE_COMMAND_C_TYPE_ENABLE)); 1592 } 1593 1594 uint32_t 1595 bxe_dmae_opcode_clr_src_reset(uint32_t opcode) 1596 { 1597 return (opcode & ~DMAE_COMMAND_SRC_RESET); 1598 } 1599 1600 uint32_t 1601 bxe_dmae_opcode(struct bxe_softc *sc, 1602 uint8_t src_type, 1603 uint8_t dst_type, 1604 uint8_t with_comp, 1605 uint8_t comp_type) 1606 { 1607 uint32_t opcode = 0; 1608 1609 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) | 1610 (dst_type << DMAE_COMMAND_DST_SHIFT)); 1611 1612 opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET); 1613 1614 opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 1615 1616 opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) | 1617 (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT)); 1618 1619 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT); 1620 1621 #ifdef __BIG_ENDIAN 1622 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 1623 #else 1624 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 1625 #endif 1626 1627 if (with_comp) { 1628 opcode = bxe_dmae_opcode_add_comp(opcode, comp_type); 1629 } 1630 1631 return (opcode); 1632 } 1633 1634 static void 1635 bxe_prep_dmae_with_comp(struct bxe_softc *sc, 1636 struct dmae_command *dmae, 1637 uint8_t src_type, 1638 uint8_t dst_type) 1639 { 1640 memset(dmae, 0, sizeof(struct dmae_command)); 1641 1642 /* set the opcode */ 1643 dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type, 1644 TRUE, DMAE_COMP_PCI); 1645 1646 /* fill in the completion parameters */ 1647 dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp)); 1648 dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp)); 1649 dmae->comp_val = DMAE_COMP_VAL; 1650 } 1651 1652 /* issue a DMAE command over the init channel and wait for completion */ 1653 static int 1654 bxe_issue_dmae_with_comp(struct bxe_softc *sc, 1655 struct dmae_command *dmae) 1656 { 1657 uint32_t *wb_comp = BXE_SP(sc, wb_comp); 1658 int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000; 1659 1660 BXE_DMAE_LOCK(sc); 1661 1662 /* reset completion */ 1663 *wb_comp = 0; 1664 1665 /* post the command on the channel used for initializations */ 1666 bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc)); 1667 1668 /* wait for completion */ 1669 DELAY(5); 1670 1671 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 1672 if (!timeout || 1673 (sc->recovery_state != BXE_RECOVERY_DONE && 1674 sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) { 1675 BLOGE(sc, "DMAE timeout!\n"); 1676 BXE_DMAE_UNLOCK(sc); 1677 return (DMAE_TIMEOUT); 1678 } 1679 1680 timeout--; 1681 DELAY(50); 1682 } 1683 1684 if (*wb_comp & DMAE_PCI_ERR_FLAG) { 1685 BLOGE(sc, "DMAE PCI error!\n"); 1686 BXE_DMAE_UNLOCK(sc); 1687 return (DMAE_PCI_ERROR); 1688 } 1689 1690 BXE_DMAE_UNLOCK(sc); 1691 return (0); 1692 } 1693 1694 void 1695 bxe_read_dmae(struct bxe_softc *sc, 1696 uint32_t src_addr, 1697 uint32_t len32) 1698 { 1699 struct dmae_command dmae; 1700 uint32_t *data; 1701 int i, rc; 1702 1703 DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32)); 1704 1705 if (!sc->dmae_ready) { 1706 data = BXE_SP(sc, wb_data[0]); 1707 1708 for (i = 0; i < len32; i++) { 1709 data[i] = (CHIP_IS_E1(sc)) ? 1710 bxe_reg_rd_ind(sc, (src_addr + (i * 4))) : 1711 REG_RD(sc, (src_addr + (i * 4))); 1712 } 1713 1714 return; 1715 } 1716 1717 /* set opcode and fixed command fields */ 1718 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 1719 1720 /* fill in addresses and len */ 1721 dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */ 1722 dmae.src_addr_hi = 0; 1723 dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data)); 1724 dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data)); 1725 dmae.len = len32; 1726 1727 /* issue the command and wait for completion */ 1728 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1729 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1730 }; 1731 } 1732 1733 void 1734 bxe_write_dmae(struct bxe_softc *sc, 1735 bus_addr_t dma_addr, 1736 uint32_t dst_addr, 1737 uint32_t len32) 1738 { 1739 struct dmae_command dmae; 1740 int rc; 1741 1742 if (!sc->dmae_ready) { 1743 DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32)); 1744 1745 if (CHIP_IS_E1(sc)) { 1746 ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1747 } else { 1748 ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1749 } 1750 1751 return; 1752 } 1753 1754 /* set opcode and fixed command fields */ 1755 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 1756 1757 /* fill in addresses and len */ 1758 dmae.src_addr_lo = U64_LO(dma_addr); 1759 dmae.src_addr_hi = U64_HI(dma_addr); 1760 dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */ 1761 dmae.dst_addr_hi = 0; 1762 dmae.len = len32; 1763 1764 /* issue the command and wait for completion */ 1765 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1766 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1767 } 1768 } 1769 1770 void 1771 bxe_write_dmae_phys_len(struct bxe_softc *sc, 1772 bus_addr_t phys_addr, 1773 uint32_t addr, 1774 uint32_t len) 1775 { 1776 int dmae_wr_max = DMAE_LEN32_WR_MAX(sc); 1777 int offset = 0; 1778 1779 while (len > dmae_wr_max) { 1780 bxe_write_dmae(sc, 1781 (phys_addr + offset), /* src DMA address */ 1782 (addr + offset), /* dst GRC address */ 1783 dmae_wr_max); 1784 offset += (dmae_wr_max * 4); 1785 len -= dmae_wr_max; 1786 } 1787 1788 bxe_write_dmae(sc, 1789 (phys_addr + offset), /* src DMA address */ 1790 (addr + offset), /* dst GRC address */ 1791 len); 1792 } 1793 1794 void 1795 bxe_set_ctx_validation(struct bxe_softc *sc, 1796 struct eth_context *cxt, 1797 uint32_t cid) 1798 { 1799 /* ustorm cxt validation */ 1800 cxt->ustorm_ag_context.cdu_usage = 1801 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1802 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 1803 /* xcontext validation */ 1804 cxt->xstorm_ag_context.cdu_reserved = 1805 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1806 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 1807 } 1808 1809 static void 1810 bxe_storm_memset_hc_timeout(struct bxe_softc *sc, 1811 uint8_t port, 1812 uint8_t fw_sb_id, 1813 uint8_t sb_index, 1814 uint8_t ticks) 1815 { 1816 uint32_t addr = 1817 (BAR_CSTRORM_INTMEM + 1818 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index)); 1819 1820 REG_WR8(sc, addr, ticks); 1821 1822 BLOGD(sc, DBG_LOAD, 1823 "port %d fw_sb_id %d sb_index %d ticks %d\n", 1824 port, fw_sb_id, sb_index, ticks); 1825 } 1826 1827 static void 1828 bxe_storm_memset_hc_disable(struct bxe_softc *sc, 1829 uint8_t port, 1830 uint16_t fw_sb_id, 1831 uint8_t sb_index, 1832 uint8_t disable) 1833 { 1834 uint32_t enable_flag = 1835 (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 1836 uint32_t addr = 1837 (BAR_CSTRORM_INTMEM + 1838 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index)); 1839 uint8_t flags; 1840 1841 /* clear and set */ 1842 flags = REG_RD8(sc, addr); 1843 flags &= ~HC_INDEX_DATA_HC_ENABLED; 1844 flags |= enable_flag; 1845 REG_WR8(sc, addr, flags); 1846 1847 BLOGD(sc, DBG_LOAD, 1848 "port %d fw_sb_id %d sb_index %d disable %d\n", 1849 port, fw_sb_id, sb_index, disable); 1850 } 1851 1852 void 1853 bxe_update_coalesce_sb_index(struct bxe_softc *sc, 1854 uint8_t fw_sb_id, 1855 uint8_t sb_index, 1856 uint8_t disable, 1857 uint16_t usec) 1858 { 1859 int port = SC_PORT(sc); 1860 uint8_t ticks = (usec / 4); /* XXX ??? */ 1861 1862 bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks); 1863 1864 disable = (disable) ? 1 : ((usec) ? 0 : 1); 1865 bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable); 1866 } 1867 1868 void 1869 elink_cb_udelay(struct bxe_softc *sc, 1870 uint32_t usecs) 1871 { 1872 DELAY(usecs); 1873 } 1874 1875 uint32_t 1876 elink_cb_reg_read(struct bxe_softc *sc, 1877 uint32_t reg_addr) 1878 { 1879 return (REG_RD(sc, reg_addr)); 1880 } 1881 1882 void 1883 elink_cb_reg_write(struct bxe_softc *sc, 1884 uint32_t reg_addr, 1885 uint32_t val) 1886 { 1887 REG_WR(sc, reg_addr, val); 1888 } 1889 1890 void 1891 elink_cb_reg_wb_write(struct bxe_softc *sc, 1892 uint32_t offset, 1893 uint32_t *wb_write, 1894 uint16_t len) 1895 { 1896 REG_WR_DMAE(sc, offset, wb_write, len); 1897 } 1898 1899 void 1900 elink_cb_reg_wb_read(struct bxe_softc *sc, 1901 uint32_t offset, 1902 uint32_t *wb_write, 1903 uint16_t len) 1904 { 1905 REG_RD_DMAE(sc, offset, wb_write, len); 1906 } 1907 1908 uint8_t 1909 elink_cb_path_id(struct bxe_softc *sc) 1910 { 1911 return (SC_PATH(sc)); 1912 } 1913 1914 void 1915 elink_cb_event_log(struct bxe_softc *sc, 1916 const elink_log_id_t elink_log_id, 1917 ...) 1918 { 1919 /* XXX */ 1920 #if 0 1921 //va_list ap; 1922 va_start(ap, elink_log_id); 1923 _XXX_(sc, lm_log_id, ap); 1924 va_end(ap); 1925 #endif 1926 BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id); 1927 } 1928 1929 static int 1930 bxe_set_spio(struct bxe_softc *sc, 1931 int spio, 1932 uint32_t mode) 1933 { 1934 uint32_t spio_reg; 1935 1936 /* Only 2 SPIOs are configurable */ 1937 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 1938 BLOGE(sc, "Invalid SPIO 0x%x\n", spio); 1939 return (-1); 1940 } 1941 1942 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1943 1944 /* read SPIO and mask except the float bits */ 1945 spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 1946 1947 switch (mode) { 1948 case MISC_SPIO_OUTPUT_LOW: 1949 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio); 1950 /* clear FLOAT and set CLR */ 1951 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1952 spio_reg |= (spio << MISC_SPIO_CLR_POS); 1953 break; 1954 1955 case MISC_SPIO_OUTPUT_HIGH: 1956 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio); 1957 /* clear FLOAT and set SET */ 1958 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1959 spio_reg |= (spio << MISC_SPIO_SET_POS); 1960 break; 1961 1962 case MISC_SPIO_INPUT_HI_Z: 1963 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio); 1964 /* set FLOAT */ 1965 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 1966 break; 1967 1968 default: 1969 break; 1970 } 1971 1972 REG_WR(sc, MISC_REG_SPIO, spio_reg); 1973 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1974 1975 return (0); 1976 } 1977 1978 static int 1979 bxe_gpio_read(struct bxe_softc *sc, 1980 int gpio_num, 1981 uint8_t port) 1982 { 1983 /* The GPIO should be swapped if swap register is set and active */ 1984 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1985 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1986 int gpio_shift = (gpio_num + 1987 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1988 uint32_t gpio_mask = (1 << gpio_shift); 1989 uint32_t gpio_reg; 1990 1991 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1992 BLOGE(sc, "Invalid GPIO %d\n", gpio_num); 1993 return (-1); 1994 } 1995 1996 /* read GPIO value */ 1997 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 1998 1999 /* get the requested pin value */ 2000 return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0; 2001 } 2002 2003 static int 2004 bxe_gpio_write(struct bxe_softc *sc, 2005 int gpio_num, 2006 uint32_t mode, 2007 uint8_t port) 2008 { 2009 /* The GPIO should be swapped if swap register is set and active */ 2010 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2011 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2012 int gpio_shift = (gpio_num + 2013 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2014 uint32_t gpio_mask = (1 << gpio_shift); 2015 uint32_t gpio_reg; 2016 2017 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2018 BLOGE(sc, "Invalid GPIO %d\n", gpio_num); 2019 return (-1); 2020 } 2021 2022 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2023 2024 /* read GPIO and mask except the float bits */ 2025 gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 2026 2027 switch (mode) { 2028 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2029 BLOGD(sc, DBG_PHY, 2030 "Set GPIO %d (shift %d) -> output low\n", 2031 gpio_num, gpio_shift); 2032 /* clear FLOAT and set CLR */ 2033 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2034 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 2035 break; 2036 2037 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2038 BLOGD(sc, DBG_PHY, 2039 "Set GPIO %d (shift %d) -> output high\n", 2040 gpio_num, gpio_shift); 2041 /* clear FLOAT and set SET */ 2042 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2043 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 2044 break; 2045 2046 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2047 BLOGD(sc, DBG_PHY, 2048 "Set GPIO %d (shift %d) -> input\n", 2049 gpio_num, gpio_shift); 2050 /* set FLOAT */ 2051 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2052 break; 2053 2054 default: 2055 break; 2056 } 2057 2058 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 2059 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2060 2061 return (0); 2062 } 2063 2064 static int 2065 bxe_gpio_mult_write(struct bxe_softc *sc, 2066 uint8_t pins, 2067 uint32_t mode) 2068 { 2069 uint32_t gpio_reg; 2070 2071 /* any port swapping should be handled by caller */ 2072 2073 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2074 2075 /* read GPIO and mask except the float bits */ 2076 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 2077 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2078 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 2079 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 2080 2081 switch (mode) { 2082 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2083 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins); 2084 /* set CLR */ 2085 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 2086 break; 2087 2088 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2089 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins); 2090 /* set SET */ 2091 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 2092 break; 2093 2094 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2095 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins); 2096 /* set FLOAT */ 2097 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2098 break; 2099 2100 default: 2101 BLOGE(sc, "Invalid GPIO mode assignment %d\n", mode); 2102 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2103 return (-1); 2104 } 2105 2106 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 2107 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2108 2109 return (0); 2110 } 2111 2112 static int 2113 bxe_gpio_int_write(struct bxe_softc *sc, 2114 int gpio_num, 2115 uint32_t mode, 2116 uint8_t port) 2117 { 2118 /* The GPIO should be swapped if swap register is set and active */ 2119 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2120 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2121 int gpio_shift = (gpio_num + 2122 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2123 uint32_t gpio_mask = (1 << gpio_shift); 2124 uint32_t gpio_reg; 2125 2126 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2127 BLOGE(sc, "Invalid GPIO %d\n", gpio_num); 2128 return (-1); 2129 } 2130 2131 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2132 2133 /* read GPIO int */ 2134 gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT); 2135 2136 switch (mode) { 2137 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2138 BLOGD(sc, DBG_PHY, 2139 "Clear GPIO INT %d (shift %d) -> output low\n", 2140 gpio_num, gpio_shift); 2141 /* clear SET and set CLR */ 2142 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2143 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2144 break; 2145 2146 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2147 BLOGD(sc, DBG_PHY, 2148 "Set GPIO INT %d (shift %d) -> output high\n", 2149 gpio_num, gpio_shift); 2150 /* clear CLR and set SET */ 2151 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2152 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2153 break; 2154 2155 default: 2156 break; 2157 } 2158 2159 REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg); 2160 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2161 2162 return (0); 2163 } 2164 2165 uint32_t 2166 elink_cb_gpio_read(struct bxe_softc *sc, 2167 uint16_t gpio_num, 2168 uint8_t port) 2169 { 2170 return (bxe_gpio_read(sc, gpio_num, port)); 2171 } 2172 2173 uint8_t 2174 elink_cb_gpio_write(struct bxe_softc *sc, 2175 uint16_t gpio_num, 2176 uint8_t mode, /* 0=low 1=high */ 2177 uint8_t port) 2178 { 2179 return (bxe_gpio_write(sc, gpio_num, mode, port)); 2180 } 2181 2182 uint8_t 2183 elink_cb_gpio_mult_write(struct bxe_softc *sc, 2184 uint8_t pins, 2185 uint8_t mode) /* 0=low 1=high */ 2186 { 2187 return (bxe_gpio_mult_write(sc, pins, mode)); 2188 } 2189 2190 uint8_t 2191 elink_cb_gpio_int_write(struct bxe_softc *sc, 2192 uint16_t gpio_num, 2193 uint8_t mode, /* 0=low 1=high */ 2194 uint8_t port) 2195 { 2196 return (bxe_gpio_int_write(sc, gpio_num, mode, port)); 2197 } 2198 2199 void 2200 elink_cb_notify_link_changed(struct bxe_softc *sc) 2201 { 2202 REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 + 2203 (SC_FUNC(sc) * sizeof(uint32_t))), 1); 2204 } 2205 2206 /* send the MCP a request, block until there is a reply */ 2207 uint32_t 2208 elink_cb_fw_command(struct bxe_softc *sc, 2209 uint32_t command, 2210 uint32_t param) 2211 { 2212 int mb_idx = SC_FW_MB_IDX(sc); 2213 uint32_t seq; 2214 uint32_t rc = 0; 2215 uint32_t cnt = 1; 2216 uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10; 2217 2218 BXE_FWMB_LOCK(sc); 2219 2220 seq = ++sc->fw_seq; 2221 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param); 2222 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq)); 2223 2224 BLOGD(sc, DBG_PHY, 2225 "wrote command 0x%08x to FW MB param 0x%08x\n", 2226 (command | seq), param); 2227 2228 /* Let the FW do it's magic. GIve it up to 5 seconds... */ 2229 do { 2230 DELAY(delay * 1000); 2231 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header); 2232 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 2233 2234 BLOGD(sc, DBG_PHY, 2235 "[after %d ms] read 0x%x seq 0x%x from FW MB\n", 2236 cnt*delay, rc, seq); 2237 2238 /* is this a reply to our command? */ 2239 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) { 2240 rc &= FW_MSG_CODE_MASK; 2241 } else { 2242 /* Ruh-roh! */ 2243 BLOGE(sc, "FW failed to respond!\n"); 2244 // XXX bxe_fw_dump(sc); 2245 rc = 0; 2246 } 2247 2248 BXE_FWMB_UNLOCK(sc); 2249 return (rc); 2250 } 2251 2252 static uint32_t 2253 bxe_fw_command(struct bxe_softc *sc, 2254 uint32_t command, 2255 uint32_t param) 2256 { 2257 return (elink_cb_fw_command(sc, command, param)); 2258 } 2259 2260 static void 2261 __storm_memset_dma_mapping(struct bxe_softc *sc, 2262 uint32_t addr, 2263 bus_addr_t mapping) 2264 { 2265 REG_WR(sc, addr, U64_LO(mapping)); 2266 REG_WR(sc, (addr + 4), U64_HI(mapping)); 2267 } 2268 2269 static void 2270 storm_memset_spq_addr(struct bxe_softc *sc, 2271 bus_addr_t mapping, 2272 uint16_t abs_fid) 2273 { 2274 uint32_t addr = (XSEM_REG_FAST_MEMORY + 2275 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid)); 2276 __storm_memset_dma_mapping(sc, addr, mapping); 2277 } 2278 2279 static void 2280 storm_memset_vf_to_pf(struct bxe_softc *sc, 2281 uint16_t abs_fid, 2282 uint16_t pf_id) 2283 { 2284 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2285 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2286 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2287 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2288 } 2289 2290 static void 2291 storm_memset_func_en(struct bxe_softc *sc, 2292 uint16_t abs_fid, 2293 uint8_t enable) 2294 { 2295 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2296 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2297 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2298 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2299 } 2300 2301 static void 2302 storm_memset_eq_data(struct bxe_softc *sc, 2303 struct event_ring_data *eq_data, 2304 uint16_t pfid) 2305 { 2306 uint32_t addr; 2307 size_t size; 2308 2309 addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid)); 2310 size = sizeof(struct event_ring_data); 2311 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data); 2312 } 2313 2314 static void 2315 storm_memset_eq_prod(struct bxe_softc *sc, 2316 uint16_t eq_prod, 2317 uint16_t pfid) 2318 { 2319 uint32_t addr = (BAR_CSTRORM_INTMEM + 2320 CSTORM_EVENT_RING_PROD_OFFSET(pfid)); 2321 REG_WR16(sc, addr, eq_prod); 2322 } 2323 2324 /* 2325 * Post a slowpath command. 2326 * 2327 * A slowpath command is used to propogate a configuration change through 2328 * the controller in a controlled manner, allowing each STORM processor and 2329 * other H/W blocks to phase in the change. The commands sent on the 2330 * slowpath are referred to as ramrods. Depending on the ramrod used the 2331 * completion of the ramrod will occur in different ways. Here's a 2332 * breakdown of ramrods and how they complete: 2333 * 2334 * RAMROD_CMD_ID_ETH_PORT_SETUP 2335 * Used to setup the leading connection on a port. Completes on the 2336 * Receive Completion Queue (RCQ) of that port (typically fp[0]). 2337 * 2338 * RAMROD_CMD_ID_ETH_CLIENT_SETUP 2339 * Used to setup an additional connection on a port. Completes on the 2340 * RCQ of the multi-queue/RSS connection being initialized. 2341 * 2342 * RAMROD_CMD_ID_ETH_STAT_QUERY 2343 * Used to force the storm processors to update the statistics database 2344 * in host memory. This ramrod is send on the leading connection CID and 2345 * completes as an index increment of the CSTORM on the default status 2346 * block. 2347 * 2348 * RAMROD_CMD_ID_ETH_UPDATE 2349 * Used to update the state of the leading connection, usually to udpate 2350 * the RSS indirection table. Completes on the RCQ of the leading 2351 * connection. (Not currently used under FreeBSD until OS support becomes 2352 * available.) 2353 * 2354 * RAMROD_CMD_ID_ETH_HALT 2355 * Used when tearing down a connection prior to driver unload. Completes 2356 * on the RCQ of the multi-queue/RSS connection being torn down. Don't 2357 * use this on the leading connection. 2358 * 2359 * RAMROD_CMD_ID_ETH_SET_MAC 2360 * Sets the Unicast/Broadcast/Multicast used by the port. Completes on 2361 * the RCQ of the leading connection. 2362 * 2363 * RAMROD_CMD_ID_ETH_CFC_DEL 2364 * Used when tearing down a conneciton prior to driver unload. Completes 2365 * on the RCQ of the leading connection (since the current connection 2366 * has been completely removed from controller memory). 2367 * 2368 * RAMROD_CMD_ID_ETH_PORT_DEL 2369 * Used to tear down the leading connection prior to driver unload, 2370 * typically fp[0]. Completes as an index increment of the CSTORM on the 2371 * default status block. 2372 * 2373 * RAMROD_CMD_ID_ETH_FORWARD_SETUP 2374 * Used for connection offload. Completes on the RCQ of the multi-queue 2375 * RSS connection that is being offloaded. (Not currently used under 2376 * FreeBSD.) 2377 * 2378 * There can only be one command pending per function. 2379 * 2380 * Returns: 2381 * 0 = Success, !0 = Failure. 2382 */ 2383 2384 /* must be called under the spq lock */ 2385 static inline 2386 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc) 2387 { 2388 struct eth_spe *next_spe = sc->spq_prod_bd; 2389 2390 if (sc->spq_prod_bd == sc->spq_last_bd) { 2391 /* wrap back to the first eth_spq */ 2392 sc->spq_prod_bd = sc->spq; 2393 sc->spq_prod_idx = 0; 2394 } else { 2395 sc->spq_prod_bd++; 2396 sc->spq_prod_idx++; 2397 } 2398 2399 return (next_spe); 2400 } 2401 2402 /* must be called under the spq lock */ 2403 static inline 2404 void bxe_sp_prod_update(struct bxe_softc *sc) 2405 { 2406 int func = SC_FUNC(sc); 2407 2408 /* 2409 * Make sure that BD data is updated before writing the producer. 2410 * BD data is written to the memory, the producer is read from the 2411 * memory, thus we need a full memory barrier to ensure the ordering. 2412 */ 2413 mb(); 2414 2415 REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)), 2416 sc->spq_prod_idx); 2417 2418 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 2419 BUS_SPACE_BARRIER_WRITE); 2420 } 2421 2422 /** 2423 * bxe_is_contextless_ramrod - check if the current command ends on EQ 2424 * 2425 * @cmd: command to check 2426 * @cmd_type: command type 2427 */ 2428 static inline 2429 int bxe_is_contextless_ramrod(int cmd, 2430 int cmd_type) 2431 { 2432 if ((cmd_type == NONE_CONNECTION_TYPE) || 2433 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 2434 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 2435 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 2436 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 2437 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 2438 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) { 2439 return (TRUE); 2440 } else { 2441 return (FALSE); 2442 } 2443 } 2444 2445 /** 2446 * bxe_sp_post - place a single command on an SP ring 2447 * 2448 * @sc: driver handle 2449 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 2450 * @cid: SW CID the command is related to 2451 * @data_hi: command private data address (high 32 bits) 2452 * @data_lo: command private data address (low 32 bits) 2453 * @cmd_type: command type (e.g. NONE, ETH) 2454 * 2455 * SP data is handled as if it's always an address pair, thus data fields are 2456 * not swapped to little endian in upper functions. Instead this function swaps 2457 * data as if it's two uint32 fields. 2458 */ 2459 int 2460 bxe_sp_post(struct bxe_softc *sc, 2461 int command, 2462 int cid, 2463 uint32_t data_hi, 2464 uint32_t data_lo, 2465 int cmd_type) 2466 { 2467 struct eth_spe *spe; 2468 uint16_t type; 2469 int common; 2470 2471 common = bxe_is_contextless_ramrod(command, cmd_type); 2472 2473 BXE_SP_LOCK(sc); 2474 2475 if (common) { 2476 if (!atomic_load_acq_long(&sc->eq_spq_left)) { 2477 BLOGE(sc, "EQ ring is full!\n"); 2478 BXE_SP_UNLOCK(sc); 2479 return (-1); 2480 } 2481 } else { 2482 if (!atomic_load_acq_long(&sc->cq_spq_left)) { 2483 BLOGE(sc, "SPQ ring is full!\n"); 2484 BXE_SP_UNLOCK(sc); 2485 return (-1); 2486 } 2487 } 2488 2489 spe = bxe_sp_get_next(sc); 2490 2491 /* CID needs port number to be encoded int it */ 2492 spe->hdr.conn_and_cmd_data = 2493 htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid)); 2494 2495 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE; 2496 2497 /* TBD: Check if it works for VFs */ 2498 type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) & 2499 SPE_HDR_FUNCTION_ID); 2500 2501 spe->hdr.type = htole16(type); 2502 2503 spe->data.update_data_addr.hi = htole32(data_hi); 2504 spe->data.update_data_addr.lo = htole32(data_lo); 2505 2506 /* 2507 * It's ok if the actual decrement is issued towards the memory 2508 * somewhere between the lock and unlock. Thus no more explict 2509 * memory barrier is needed. 2510 */ 2511 if (common) { 2512 atomic_subtract_acq_long(&sc->eq_spq_left, 1); 2513 } else { 2514 atomic_subtract_acq_long(&sc->cq_spq_left, 1); 2515 } 2516 2517 BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr); 2518 BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n", 2519 BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata)); 2520 BLOGD(sc, DBG_SP, 2521 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n", 2522 sc->spq_prod_idx, 2523 (uint32_t)U64_HI(sc->spq_dma.paddr), 2524 (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq), 2525 command, 2526 common, 2527 HW_CID(sc, cid), 2528 data_hi, 2529 data_lo, 2530 type, 2531 atomic_load_acq_long(&sc->cq_spq_left), 2532 atomic_load_acq_long(&sc->eq_spq_left)); 2533 2534 bxe_sp_prod_update(sc); 2535 2536 BXE_SP_UNLOCK(sc); 2537 return (0); 2538 } 2539 2540 /** 2541 * bxe_debug_print_ind_table - prints the indirection table configuration. 2542 * 2543 * @sc: driver hanlde 2544 * @p: pointer to rss configuration 2545 */ 2546 #if 0 2547 static void 2548 bxe_debug_print_ind_table(struct bxe_softc *sc, 2549 struct ecore_config_rss_params *p) 2550 { 2551 int i; 2552 2553 BLOGD(sc, DBG_LOAD, "Setting indirection table to:\n"); 2554 BLOGD(sc, DBG_LOAD, " 0x0000: "); 2555 for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) { 2556 BLOGD(sc, DBG_LOAD, "0x%02x ", p->ind_table[i]); 2557 2558 /* Print 4 bytes in a line */ 2559 if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) && 2560 (((i + 1) & 0x3) == 0)) { 2561 BLOGD(sc, DBG_LOAD, "\n"); 2562 BLOGD(sc, DBG_LOAD, "0x%04x: ", i + 1); 2563 } 2564 } 2565 2566 BLOGD(sc, DBG_LOAD, "\n"); 2567 } 2568 #endif 2569 2570 /* 2571 * FreeBSD Device probe function. 2572 * 2573 * Compares the device found to the driver's list of supported devices and 2574 * reports back to the bsd loader whether this is the right driver for the device. 2575 * This is the driver entry function called from the "kldload" command. 2576 * 2577 * Returns: 2578 * BUS_PROBE_DEFAULT on success, positive value on failure. 2579 */ 2580 static int 2581 bxe_probe(device_t dev) 2582 { 2583 struct bxe_softc *sc; 2584 struct bxe_device_type *t; 2585 char *descbuf; 2586 uint16_t did, sdid, svid, vid; 2587 2588 /* Find our device structure */ 2589 sc = device_get_softc(dev); 2590 sc->dev = dev; 2591 t = bxe_devs; 2592 2593 /* Get the data for the device to be probed. */ 2594 vid = pci_get_vendor(dev); 2595 did = pci_get_device(dev); 2596 svid = pci_get_subvendor(dev); 2597 sdid = pci_get_subdevice(dev); 2598 2599 BLOGD(sc, DBG_LOAD, 2600 "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, " 2601 "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid); 2602 2603 /* Look through the list of known devices for a match. */ 2604 while (t->bxe_name != NULL) { 2605 if ((vid == t->bxe_vid) && (did == t->bxe_did) && 2606 ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) && 2607 ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) { 2608 descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 2609 if (descbuf == NULL) 2610 return (ENOMEM); 2611 2612 /* Print out the device identity. */ 2613 snprintf(descbuf, BXE_DEVDESC_MAX, 2614 "%s (%c%d) BXE v:%s\n", t->bxe_name, 2615 (((pci_read_config(dev, PCIR_REVID, 4) & 2616 0xf0) >> 4) + 'A'), 2617 (pci_read_config(dev, PCIR_REVID, 4) & 0xf), 2618 BXE_DRIVER_VERSION); 2619 2620 device_set_desc_copy(dev, descbuf); 2621 free(descbuf, M_TEMP); 2622 return (BUS_PROBE_DEFAULT); 2623 } 2624 t++; 2625 } 2626 2627 return (ENXIO); 2628 } 2629 2630 static void 2631 bxe_init_mutexes(struct bxe_softc *sc) 2632 { 2633 #ifdef BXE_CORE_LOCK_SX 2634 snprintf(sc->core_sx_name, sizeof(sc->core_sx_name), 2635 "bxe%d_core_lock", sc->unit); 2636 sx_init(&sc->core_sx, sc->core_sx_name); 2637 #else 2638 snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name), 2639 "bxe%d_core_lock", sc->unit); 2640 mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF); 2641 #endif 2642 2643 snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name), 2644 "bxe%d_sp_lock", sc->unit); 2645 mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF); 2646 2647 snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name), 2648 "bxe%d_dmae_lock", sc->unit); 2649 mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF); 2650 2651 snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name), 2652 "bxe%d_phy_lock", sc->unit); 2653 mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF); 2654 2655 snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name), 2656 "bxe%d_fwmb_lock", sc->unit); 2657 mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF); 2658 2659 snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name), 2660 "bxe%d_print_lock", sc->unit); 2661 mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF); 2662 2663 snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name), 2664 "bxe%d_stats_lock", sc->unit); 2665 mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF); 2666 2667 snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name), 2668 "bxe%d_mcast_lock", sc->unit); 2669 mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF); 2670 } 2671 2672 static void 2673 bxe_release_mutexes(struct bxe_softc *sc) 2674 { 2675 #ifdef BXE_CORE_LOCK_SX 2676 sx_destroy(&sc->core_sx); 2677 #else 2678 if (mtx_initialized(&sc->core_mtx)) { 2679 mtx_destroy(&sc->core_mtx); 2680 } 2681 #endif 2682 2683 if (mtx_initialized(&sc->sp_mtx)) { 2684 mtx_destroy(&sc->sp_mtx); 2685 } 2686 2687 if (mtx_initialized(&sc->dmae_mtx)) { 2688 mtx_destroy(&sc->dmae_mtx); 2689 } 2690 2691 if (mtx_initialized(&sc->port.phy_mtx)) { 2692 mtx_destroy(&sc->port.phy_mtx); 2693 } 2694 2695 if (mtx_initialized(&sc->fwmb_mtx)) { 2696 mtx_destroy(&sc->fwmb_mtx); 2697 } 2698 2699 if (mtx_initialized(&sc->print_mtx)) { 2700 mtx_destroy(&sc->print_mtx); 2701 } 2702 2703 if (mtx_initialized(&sc->stats_mtx)) { 2704 mtx_destroy(&sc->stats_mtx); 2705 } 2706 2707 if (mtx_initialized(&sc->mcast_mtx)) { 2708 mtx_destroy(&sc->mcast_mtx); 2709 } 2710 } 2711 2712 static void 2713 bxe_tx_disable(struct bxe_softc* sc) 2714 { 2715 if_t ifp = sc->ifp; 2716 2717 /* tell the stack the driver is stopped and TX queue is full */ 2718 if (ifp != NULL) { 2719 if_setdrvflags(ifp, 0); 2720 } 2721 } 2722 2723 static void 2724 bxe_drv_pulse(struct bxe_softc *sc) 2725 { 2726 SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb, 2727 sc->fw_drv_pulse_wr_seq); 2728 } 2729 2730 static inline uint16_t 2731 bxe_tx_avail(struct bxe_softc *sc, 2732 struct bxe_fastpath *fp) 2733 { 2734 int16_t used; 2735 uint16_t prod; 2736 uint16_t cons; 2737 2738 prod = fp->tx_bd_prod; 2739 cons = fp->tx_bd_cons; 2740 2741 used = SUB_S16(prod, cons); 2742 2743 #if 0 2744 KASSERT((used < 0), ("used tx bds < 0")); 2745 KASSERT((used > sc->tx_ring_size), ("used tx bds > tx_ring_size")); 2746 KASSERT(((sc->tx_ring_size - used) > MAX_TX_AVAIL), 2747 ("invalid number of tx bds used")); 2748 #endif 2749 2750 return (int16_t)(sc->tx_ring_size) - used; 2751 } 2752 2753 static inline int 2754 bxe_tx_queue_has_work(struct bxe_fastpath *fp) 2755 { 2756 uint16_t hw_cons; 2757 2758 mb(); /* status block fields can change */ 2759 hw_cons = le16toh(*fp->tx_cons_sb); 2760 return (hw_cons != fp->tx_pkt_cons); 2761 } 2762 2763 static inline uint8_t 2764 bxe_has_tx_work(struct bxe_fastpath *fp) 2765 { 2766 /* expand this for multi-cos if ever supported */ 2767 return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE; 2768 } 2769 2770 static inline int 2771 bxe_has_rx_work(struct bxe_fastpath *fp) 2772 { 2773 uint16_t rx_cq_cons_sb; 2774 2775 mb(); /* status block fields can change */ 2776 rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb); 2777 if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX) 2778 rx_cq_cons_sb++; 2779 return (fp->rx_cq_cons != rx_cq_cons_sb); 2780 } 2781 2782 static void 2783 bxe_sp_event(struct bxe_softc *sc, 2784 struct bxe_fastpath *fp, 2785 union eth_rx_cqe *rr_cqe) 2786 { 2787 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2788 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2789 enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX; 2790 struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 2791 2792 BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n", 2793 fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type); 2794 2795 #if 0 2796 /* 2797 * If cid is within VF range, replace the slowpath object with the 2798 * one corresponding to this VF 2799 */ 2800 if ((cid >= BXE_FIRST_VF_CID) && (cid < BXE_FIRST_VF_CID + BXE_VF_CIDS)) { 2801 bxe_iov_set_queue_sp_obj(sc, cid, &q_obj); 2802 } 2803 #endif 2804 2805 switch (command) { 2806 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 2807 BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid); 2808 drv_cmd = ECORE_Q_CMD_UPDATE; 2809 break; 2810 2811 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 2812 BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid); 2813 drv_cmd = ECORE_Q_CMD_SETUP; 2814 break; 2815 2816 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 2817 BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 2818 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY; 2819 break; 2820 2821 case (RAMROD_CMD_ID_ETH_HALT): 2822 BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid); 2823 drv_cmd = ECORE_Q_CMD_HALT; 2824 break; 2825 2826 case (RAMROD_CMD_ID_ETH_TERMINATE): 2827 BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid); 2828 drv_cmd = ECORE_Q_CMD_TERMINATE; 2829 break; 2830 2831 case (RAMROD_CMD_ID_ETH_EMPTY): 2832 BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid); 2833 drv_cmd = ECORE_Q_CMD_EMPTY; 2834 break; 2835 2836 default: 2837 BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n", 2838 command, fp->index); 2839 return; 2840 } 2841 2842 if ((drv_cmd != ECORE_Q_CMD_MAX) && 2843 q_obj->complete_cmd(sc, q_obj, drv_cmd)) { 2844 /* 2845 * q_obj->complete_cmd() failure means that this was 2846 * an unexpected completion. 2847 * 2848 * In this case we don't want to increase the sc->spq_left 2849 * because apparently we haven't sent this command the first 2850 * place. 2851 */ 2852 // bxe_panic(sc, ("Unexpected SP completion\n")); 2853 return; 2854 } 2855 2856 #if 0 2857 /* SRIOV: reschedule any 'in_progress' operations */ 2858 bxe_iov_sp_event(sc, cid, TRUE); 2859 #endif 2860 2861 atomic_add_acq_long(&sc->cq_spq_left, 1); 2862 2863 BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n", 2864 atomic_load_acq_long(&sc->cq_spq_left)); 2865 2866 #if 0 2867 if ((drv_cmd == ECORE_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) && 2868 (!!bxe_test_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state))) { 2869 /* 2870 * If Queue update ramrod is completed for last Queue in AFEX VIF set 2871 * flow, then ACK MCP at the end. Mark pending ACK to MCP bit to 2872 * prevent case that both bits are cleared. At the end of load/unload 2873 * driver checks that sp_state is cleared and this order prevents 2874 * races. 2875 */ 2876 bxe_set_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, &sc->sp_state); 2877 wmb(); 2878 bxe_clear_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state); 2879 2880 /* schedule the sp task as MCP ack is required */ 2881 bxe_schedule_sp_task(sc); 2882 } 2883 #endif 2884 } 2885 2886 /* 2887 * The current mbuf is part of an aggregation. Move the mbuf into the TPA 2888 * aggregation queue, put an empty mbuf back onto the receive chain, and mark 2889 * the current aggregation queue as in-progress. 2890 */ 2891 static void 2892 bxe_tpa_start(struct bxe_softc *sc, 2893 struct bxe_fastpath *fp, 2894 uint16_t queue, 2895 uint16_t cons, 2896 uint16_t prod, 2897 struct eth_fast_path_rx_cqe *cqe) 2898 { 2899 struct bxe_sw_rx_bd tmp_bd; 2900 struct bxe_sw_rx_bd *rx_buf; 2901 struct eth_rx_bd *rx_bd; 2902 int max_agg_queues; 2903 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 2904 uint16_t index; 2905 2906 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START " 2907 "cons=%d prod=%d\n", 2908 fp->index, queue, cons, prod); 2909 2910 max_agg_queues = MAX_AGG_QS(sc); 2911 2912 KASSERT((queue < max_agg_queues), 2913 ("fp[%02d] invalid aggr queue (%d >= %d)!", 2914 fp->index, queue, max_agg_queues)); 2915 2916 KASSERT((tpa_info->state == BXE_TPA_STATE_STOP), 2917 ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!", 2918 fp->index, queue)); 2919 2920 /* copy the existing mbuf and mapping from the TPA pool */ 2921 tmp_bd = tpa_info->bd; 2922 2923 if (tmp_bd.m == NULL) { 2924 BLOGE(sc, "fp[%02d].tpa[%02d] mbuf not allocated!\n", 2925 fp->index, queue); 2926 /* XXX Error handling? */ 2927 return; 2928 } 2929 2930 /* change the TPA queue to the start state */ 2931 tpa_info->state = BXE_TPA_STATE_START; 2932 tpa_info->placement_offset = cqe->placement_offset; 2933 tpa_info->parsing_flags = le16toh(cqe->pars_flags.flags); 2934 tpa_info->vlan_tag = le16toh(cqe->vlan_tag); 2935 tpa_info->len_on_bd = le16toh(cqe->len_on_bd); 2936 2937 fp->rx_tpa_queue_used |= (1 << queue); 2938 2939 /* 2940 * If all the buffer descriptors are filled with mbufs then fill in 2941 * the current consumer index with a new BD. Else if a maximum Rx 2942 * buffer limit is imposed then fill in the next producer index. 2943 */ 2944 index = (sc->max_rx_bufs != RX_BD_USABLE) ? 2945 prod : cons; 2946 2947 /* move the received mbuf and mapping to TPA pool */ 2948 tpa_info->bd = fp->rx_mbuf_chain[cons]; 2949 2950 /* release any existing RX BD mbuf mappings */ 2951 if (cons != index) { 2952 rx_buf = &fp->rx_mbuf_chain[cons]; 2953 2954 if (rx_buf->m_map != NULL) { 2955 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 2956 BUS_DMASYNC_POSTREAD); 2957 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 2958 } 2959 2960 /* 2961 * We get here when the maximum number of rx buffers is less than 2962 * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL 2963 * it out here without concern of a memory leak. 2964 */ 2965 fp->rx_mbuf_chain[cons].m = NULL; 2966 } 2967 2968 /* update the Rx SW BD with the mbuf info from the TPA pool */ 2969 fp->rx_mbuf_chain[index] = tmp_bd; 2970 2971 /* update the Rx BD with the empty mbuf phys address from the TPA pool */ 2972 rx_bd = &fp->rx_chain[index]; 2973 rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr)); 2974 rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr)); 2975 } 2976 2977 /* 2978 * When a TPA aggregation is completed, loop through the individual mbufs 2979 * of the aggregation, combining them into a single mbuf which will be sent 2980 * up the stack. Refill all freed SGEs with mbufs as we go along. 2981 */ 2982 static int 2983 bxe_fill_frag_mbuf(struct bxe_softc *sc, 2984 struct bxe_fastpath *fp, 2985 struct bxe_sw_tpa_info *tpa_info, 2986 uint16_t queue, 2987 uint16_t pages, 2988 struct mbuf *m, 2989 struct eth_end_agg_rx_cqe *cqe, 2990 uint16_t cqe_idx) 2991 { 2992 struct mbuf *m_frag; 2993 uint32_t frag_len, frag_size, i; 2994 uint16_t sge_idx; 2995 int rc = 0; 2996 int j; 2997 2998 frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd; 2999 3000 BLOGD(sc, DBG_LRO, 3001 "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n", 3002 fp->index, queue, tpa_info->len_on_bd, frag_size, pages); 3003 3004 /* make sure the aggregated frame is not too big to handle */ 3005 if (pages > 8 * PAGES_PER_SGE) { 3006 BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! " 3007 "pkt_len=%d len_on_bd=%d frag_size=%d\n", 3008 fp->index, cqe_idx, pages, le16toh(cqe->pkt_len), 3009 tpa_info->len_on_bd, frag_size); 3010 bxe_panic(sc, ("sge page count error\n")); 3011 return (EINVAL); 3012 } 3013 3014 /* 3015 * Scan through the scatter gather list pulling individual mbufs into a 3016 * single mbuf for the host stack. 3017 */ 3018 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 3019 sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j])); 3020 3021 /* 3022 * Firmware gives the indices of the SGE as if the ring is an array 3023 * (meaning that the "next" element will consume 2 indices). 3024 */ 3025 frag_len = min(frag_size, (uint32_t)(SGE_PAGES)); 3026 3027 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d " 3028 "sge_idx=%d frag_size=%d frag_len=%d\n", 3029 fp->index, queue, i, j, sge_idx, frag_size, frag_len); 3030 3031 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 3032 3033 /* allocate a new mbuf for the SGE */ 3034 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 3035 if (rc) { 3036 /* Leave all remaining SGEs in the ring! */ 3037 return (rc); 3038 } 3039 3040 /* update the fragment length */ 3041 m_frag->m_len = frag_len; 3042 3043 /* concatenate the fragment to the head mbuf */ 3044 m_cat(m, m_frag); 3045 fp->eth_q_stats.mbuf_alloc_sge--; 3046 3047 /* update the TPA mbuf size and remaining fragment size */ 3048 m->m_pkthdr.len += frag_len; 3049 frag_size -= frag_len; 3050 } 3051 3052 BLOGD(sc, DBG_LRO, 3053 "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n", 3054 fp->index, queue, frag_size); 3055 3056 return (rc); 3057 } 3058 3059 static inline void 3060 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp) 3061 { 3062 int i, j; 3063 3064 for (i = 1; i <= RX_SGE_NUM_PAGES; i++) { 3065 int idx = RX_SGE_TOTAL_PER_PAGE * i - 1; 3066 3067 for (j = 0; j < 2; j++) { 3068 BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx); 3069 idx--; 3070 } 3071 } 3072 } 3073 3074 static inline void 3075 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp) 3076 { 3077 /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */ 3078 memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask)); 3079 3080 /* 3081 * Clear the two last indices in the page to 1. These are the indices that 3082 * correspond to the "next" element, hence will never be indicated and 3083 * should be removed from the calculations. 3084 */ 3085 bxe_clear_sge_mask_next_elems(fp); 3086 } 3087 3088 static inline void 3089 bxe_update_last_max_sge(struct bxe_fastpath *fp, 3090 uint16_t idx) 3091 { 3092 uint16_t last_max = fp->last_max_sge; 3093 3094 if (SUB_S16(idx, last_max) > 0) { 3095 fp->last_max_sge = idx; 3096 } 3097 } 3098 3099 static inline void 3100 bxe_update_sge_prod(struct bxe_softc *sc, 3101 struct bxe_fastpath *fp, 3102 uint16_t sge_len, 3103 struct eth_end_agg_rx_cqe *cqe) 3104 { 3105 uint16_t last_max, last_elem, first_elem; 3106 uint16_t delta = 0; 3107 uint16_t i; 3108 3109 if (!sge_len) { 3110 return; 3111 } 3112 3113 /* first mark all used pages */ 3114 for (i = 0; i < sge_len; i++) { 3115 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 3116 RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[i]))); 3117 } 3118 3119 BLOGD(sc, DBG_LRO, 3120 "fp[%02d] fp_cqe->sgl[%d] = %d\n", 3121 fp->index, sge_len - 1, 3122 le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 3123 3124 /* assume that the last SGE index is the biggest */ 3125 bxe_update_last_max_sge(fp, 3126 le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 3127 3128 last_max = RX_SGE(fp->last_max_sge); 3129 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 3130 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 3131 3132 /* if ring is not full */ 3133 if (last_elem + 1 != first_elem) { 3134 last_elem++; 3135 } 3136 3137 /* now update the prod */ 3138 for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) { 3139 if (__predict_true(fp->sge_mask[i])) { 3140 break; 3141 } 3142 3143 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 3144 delta += BIT_VEC64_ELEM_SZ; 3145 } 3146 3147 if (delta > 0) { 3148 fp->rx_sge_prod += delta; 3149 /* clear page-end entries */ 3150 bxe_clear_sge_mask_next_elems(fp); 3151 } 3152 3153 BLOGD(sc, DBG_LRO, 3154 "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n", 3155 fp->index, fp->last_max_sge, fp->rx_sge_prod); 3156 } 3157 3158 /* 3159 * The aggregation on the current TPA queue has completed. Pull the individual 3160 * mbuf fragments together into a single mbuf, perform all necessary checksum 3161 * calculations, and send the resuting mbuf to the stack. 3162 */ 3163 static void 3164 bxe_tpa_stop(struct bxe_softc *sc, 3165 struct bxe_fastpath *fp, 3166 struct bxe_sw_tpa_info *tpa_info, 3167 uint16_t queue, 3168 uint16_t pages, 3169 struct eth_end_agg_rx_cqe *cqe, 3170 uint16_t cqe_idx) 3171 { 3172 if_t ifp = sc->ifp; 3173 struct mbuf *m; 3174 int rc = 0; 3175 3176 BLOGD(sc, DBG_LRO, 3177 "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n", 3178 fp->index, queue, tpa_info->placement_offset, 3179 le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag); 3180 3181 m = tpa_info->bd.m; 3182 3183 /* allocate a replacement before modifying existing mbuf */ 3184 rc = bxe_alloc_rx_tpa_mbuf(fp, queue); 3185 if (rc) { 3186 /* drop the frame and log an error */ 3187 fp->eth_q_stats.rx_soft_errors++; 3188 goto bxe_tpa_stop_exit; 3189 } 3190 3191 /* we have a replacement, fixup the current mbuf */ 3192 m_adj(m, tpa_info->placement_offset); 3193 m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd; 3194 3195 /* mark the checksums valid (taken care of by the firmware) */ 3196 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3197 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3198 m->m_pkthdr.csum_data = 0xffff; 3199 m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | 3200 CSUM_IP_VALID | 3201 CSUM_DATA_VALID | 3202 CSUM_PSEUDO_HDR); 3203 3204 /* aggregate all of the SGEs into a single mbuf */ 3205 rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx); 3206 if (rc) { 3207 /* drop the packet and log an error */ 3208 fp->eth_q_stats.rx_soft_errors++; 3209 m_freem(m); 3210 } else { 3211 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) { 3212 m->m_pkthdr.ether_vtag = tpa_info->vlan_tag; 3213 m->m_flags |= M_VLANTAG; 3214 } 3215 3216 /* assign packet to this interface interface */ 3217 if_setrcvif(m, ifp); 3218 3219 #if __FreeBSD_version >= 800000 3220 /* specify what RSS queue was used for this flow */ 3221 m->m_pkthdr.flowid = fp->index; 3222 M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE); 3223 #endif 3224 3225 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3226 fp->eth_q_stats.rx_tpa_pkts++; 3227 3228 /* pass the frame to the stack */ 3229 if_input(ifp, m); 3230 } 3231 3232 /* we passed an mbuf up the stack or dropped the frame */ 3233 fp->eth_q_stats.mbuf_alloc_tpa--; 3234 3235 bxe_tpa_stop_exit: 3236 3237 fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP; 3238 fp->rx_tpa_queue_used &= ~(1 << queue); 3239 } 3240 3241 static uint8_t 3242 bxe_rxeof(struct bxe_softc *sc, 3243 struct bxe_fastpath *fp) 3244 { 3245 if_t ifp = sc->ifp; 3246 uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 3247 uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod; 3248 int rx_pkts = 0; 3249 int rc = 0; 3250 3251 BXE_FP_RX_LOCK(fp); 3252 3253 /* CQ "next element" is of the size of the regular element */ 3254 hw_cq_cons = le16toh(*fp->rx_cq_cons_sb); 3255 if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) { 3256 hw_cq_cons++; 3257 } 3258 3259 bd_cons = fp->rx_bd_cons; 3260 bd_prod = fp->rx_bd_prod; 3261 bd_prod_fw = bd_prod; 3262 sw_cq_cons = fp->rx_cq_cons; 3263 sw_cq_prod = fp->rx_cq_prod; 3264 3265 /* 3266 * Memory barrier necessary as speculative reads of the rx 3267 * buffer can be ahead of the index in the status block 3268 */ 3269 rmb(); 3270 3271 BLOGD(sc, DBG_RX, 3272 "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n", 3273 fp->index, hw_cq_cons, sw_cq_cons); 3274 3275 while (sw_cq_cons != hw_cq_cons) { 3276 struct bxe_sw_rx_bd *rx_buf = NULL; 3277 union eth_rx_cqe *cqe; 3278 struct eth_fast_path_rx_cqe *cqe_fp; 3279 uint8_t cqe_fp_flags; 3280 enum eth_rx_cqe_type cqe_fp_type; 3281 uint16_t len, pad; 3282 struct mbuf *m = NULL; 3283 3284 comp_ring_cons = RCQ(sw_cq_cons); 3285 bd_prod = RX_BD(bd_prod); 3286 bd_cons = RX_BD(bd_cons); 3287 3288 cqe = &fp->rcq_chain[comp_ring_cons]; 3289 cqe_fp = &cqe->fast_path_cqe; 3290 cqe_fp_flags = cqe_fp->type_error_flags; 3291 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 3292 3293 BLOGD(sc, DBG_RX, 3294 "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d " 3295 "BD prod=%d cons=%d CQE type=0x%x err=0x%x " 3296 "status=0x%x rss_hash=0x%x vlan=0x%x len=%u\n", 3297 fp->index, 3298 hw_cq_cons, 3299 sw_cq_cons, 3300 bd_prod, 3301 bd_cons, 3302 CQE_TYPE(cqe_fp_flags), 3303 cqe_fp_flags, 3304 cqe_fp->status_flags, 3305 le32toh(cqe_fp->rss_hash_result), 3306 le16toh(cqe_fp->vlan_tag), 3307 le16toh(cqe_fp->pkt_len_or_gro_seg_len)); 3308 3309 /* is this a slowpath msg? */ 3310 if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) { 3311 bxe_sp_event(sc, fp, cqe); 3312 goto next_cqe; 3313 } 3314 3315 rx_buf = &fp->rx_mbuf_chain[bd_cons]; 3316 3317 if (!CQE_TYPE_FAST(cqe_fp_type)) { 3318 struct bxe_sw_tpa_info *tpa_info; 3319 uint16_t frag_size, pages; 3320 uint8_t queue; 3321 3322 #if 0 3323 /* sanity check */ 3324 if (!fp->tpa_enable && 3325 (CQE_TYPE_START(cqe_fp_type) || CQE_TYPE_STOP(cqe_fp_type))) { 3326 BLOGE(sc, "START/STOP packet while !tpa_enable type (0x%x)\n", 3327 CQE_TYPE(cqe_fp_type)); 3328 } 3329 #endif 3330 3331 if (CQE_TYPE_START(cqe_fp_type)) { 3332 bxe_tpa_start(sc, fp, cqe_fp->queue_index, 3333 bd_cons, bd_prod, cqe_fp); 3334 m = NULL; /* packet not ready yet */ 3335 goto next_rx; 3336 } 3337 3338 KASSERT(CQE_TYPE_STOP(cqe_fp_type), 3339 ("CQE type is not STOP! (0x%x)\n", cqe_fp_type)); 3340 3341 queue = cqe->end_agg_cqe.queue_index; 3342 tpa_info = &fp->rx_tpa_info[queue]; 3343 3344 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n", 3345 fp->index, queue); 3346 3347 frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) - 3348 tpa_info->len_on_bd); 3349 pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3350 3351 bxe_tpa_stop(sc, fp, tpa_info, queue, pages, 3352 &cqe->end_agg_cqe, comp_ring_cons); 3353 3354 bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe); 3355 3356 goto next_cqe; 3357 } 3358 3359 /* non TPA */ 3360 3361 /* is this an error packet? */ 3362 if (__predict_false(cqe_fp_flags & 3363 ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) { 3364 BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons); 3365 fp->eth_q_stats.rx_soft_errors++; 3366 goto next_rx; 3367 } 3368 3369 len = le16toh(cqe_fp->pkt_len_or_gro_seg_len); 3370 pad = cqe_fp->placement_offset; 3371 3372 m = rx_buf->m; 3373 3374 if (__predict_false(m == NULL)) { 3375 BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n", 3376 bd_cons, fp->index); 3377 goto next_rx; 3378 } 3379 3380 /* XXX double copy if packet length under a threshold */ 3381 3382 /* 3383 * If all the buffer descriptors are filled with mbufs then fill in 3384 * the current consumer index with a new BD. Else if a maximum Rx 3385 * buffer limit is imposed then fill in the next producer index. 3386 */ 3387 rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons, 3388 (sc->max_rx_bufs != RX_BD_USABLE) ? 3389 bd_prod : bd_cons); 3390 if (rc != 0) { 3391 3392 /* we simply reuse the received mbuf and don't post it to the stack */ 3393 m = NULL; 3394 3395 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 3396 fp->index, rc); 3397 fp->eth_q_stats.rx_soft_errors++; 3398 3399 if (sc->max_rx_bufs != RX_BD_USABLE) { 3400 /* copy this consumer index to the producer index */ 3401 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf, 3402 sizeof(struct bxe_sw_rx_bd)); 3403 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd)); 3404 } 3405 3406 goto next_rx; 3407 } 3408 3409 /* current mbuf was detached from the bd */ 3410 fp->eth_q_stats.mbuf_alloc_rx--; 3411 3412 /* we allocated a replacement mbuf, fixup the current one */ 3413 m_adj(m, pad); 3414 m->m_pkthdr.len = m->m_len = len; 3415 3416 /* assign packet to this interface interface */ 3417 if_setrcvif(m, ifp); 3418 3419 /* assume no hardware checksum has complated */ 3420 m->m_pkthdr.csum_flags = 0; 3421 3422 /* validate checksum if offload enabled */ 3423 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 3424 /* check for a valid IP frame */ 3425 if (!(cqe->fast_path_cqe.status_flags & 3426 ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) { 3427 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3428 if (__predict_false(cqe_fp_flags & 3429 ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) { 3430 fp->eth_q_stats.rx_hw_csum_errors++; 3431 } else { 3432 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3433 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3434 } 3435 } 3436 3437 /* check for a valid TCP/UDP frame */ 3438 if (!(cqe->fast_path_cqe.status_flags & 3439 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) { 3440 if (__predict_false(cqe_fp_flags & 3441 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) { 3442 fp->eth_q_stats.rx_hw_csum_errors++; 3443 } else { 3444 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3445 m->m_pkthdr.csum_data = 0xFFFF; 3446 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | 3447 CSUM_PSEUDO_HDR); 3448 } 3449 } 3450 } 3451 3452 /* if there is a VLAN tag then flag that info */ 3453 if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_VLAN) { 3454 m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag; 3455 m->m_flags |= M_VLANTAG; 3456 } 3457 3458 #if __FreeBSD_version >= 800000 3459 /* specify what RSS queue was used for this flow */ 3460 m->m_pkthdr.flowid = fp->index; 3461 M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE); 3462 #endif 3463 3464 next_rx: 3465 3466 bd_cons = RX_BD_NEXT(bd_cons); 3467 bd_prod = RX_BD_NEXT(bd_prod); 3468 bd_prod_fw = RX_BD_NEXT(bd_prod_fw); 3469 3470 /* pass the frame to the stack */ 3471 if (__predict_true(m != NULL)) { 3472 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3473 rx_pkts++; 3474 if_input(ifp, m); 3475 } 3476 3477 next_cqe: 3478 3479 sw_cq_prod = RCQ_NEXT(sw_cq_prod); 3480 sw_cq_cons = RCQ_NEXT(sw_cq_cons); 3481 3482 /* limit spinning on the queue */ 3483 if (rc != 0) 3484 break; 3485 3486 if (rx_pkts == sc->rx_budget) { 3487 fp->eth_q_stats.rx_budget_reached++; 3488 break; 3489 } 3490 } /* while work to do */ 3491 3492 fp->rx_bd_cons = bd_cons; 3493 fp->rx_bd_prod = bd_prod_fw; 3494 fp->rx_cq_cons = sw_cq_cons; 3495 fp->rx_cq_prod = sw_cq_prod; 3496 3497 /* Update producers */ 3498 bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod); 3499 3500 fp->eth_q_stats.rx_pkts += rx_pkts; 3501 fp->eth_q_stats.rx_calls++; 3502 3503 BXE_FP_RX_UNLOCK(fp); 3504 3505 return (sw_cq_cons != hw_cq_cons); 3506 } 3507 3508 static uint16_t 3509 bxe_free_tx_pkt(struct bxe_softc *sc, 3510 struct bxe_fastpath *fp, 3511 uint16_t idx) 3512 { 3513 struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx]; 3514 struct eth_tx_start_bd *tx_start_bd; 3515 uint16_t bd_idx = TX_BD(tx_buf->first_bd); 3516 uint16_t new_cons; 3517 int nbd; 3518 3519 /* unmap the mbuf from non-paged memory */ 3520 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 3521 3522 tx_start_bd = &fp->tx_chain[bd_idx].start_bd; 3523 nbd = le16toh(tx_start_bd->nbd) - 1; 3524 3525 #if 0 3526 if ((nbd - 1) > (MAX_MBUF_FRAGS + 2)) { 3527 bxe_panic(sc, ("BAD nbd!\n")); 3528 } 3529 #endif 3530 3531 new_cons = (tx_buf->first_bd + nbd); 3532 3533 #if 0 3534 struct eth_tx_bd *tx_data_bd; 3535 3536 /* 3537 * The following code doesn't do anything but is left here 3538 * for clarity on what the new value of new_cons skipped. 3539 */ 3540 3541 /* get the next bd */ 3542 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3543 3544 /* skip the parse bd */ 3545 --nbd; 3546 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3547 3548 /* skip the TSO split header bd since they have no mapping */ 3549 if (tx_buf->flags & BXE_TSO_SPLIT_BD) { 3550 --nbd; 3551 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3552 } 3553 3554 /* now free frags */ 3555 while (nbd > 0) { 3556 tx_data_bd = &fp->tx_chain[bd_idx].reg_bd; 3557 if (--nbd) { 3558 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3559 } 3560 } 3561 #endif 3562 3563 /* free the mbuf */ 3564 if (__predict_true(tx_buf->m != NULL)) { 3565 m_freem(tx_buf->m); 3566 fp->eth_q_stats.mbuf_alloc_tx--; 3567 } else { 3568 fp->eth_q_stats.tx_chain_lost_mbuf++; 3569 } 3570 3571 tx_buf->m = NULL; 3572 tx_buf->first_bd = 0; 3573 3574 return (new_cons); 3575 } 3576 3577 /* transmit timeout watchdog */ 3578 static int 3579 bxe_watchdog(struct bxe_softc *sc, 3580 struct bxe_fastpath *fp) 3581 { 3582 BXE_FP_TX_LOCK(fp); 3583 3584 if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) { 3585 BXE_FP_TX_UNLOCK(fp); 3586 return (0); 3587 } 3588 3589 BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index); 3590 3591 BXE_FP_TX_UNLOCK(fp); 3592 3593 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT); 3594 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 3595 3596 return (-1); 3597 } 3598 3599 /* processes transmit completions */ 3600 static uint8_t 3601 bxe_txeof(struct bxe_softc *sc, 3602 struct bxe_fastpath *fp) 3603 { 3604 if_t ifp = sc->ifp; 3605 uint16_t bd_cons, hw_cons, sw_cons, pkt_cons; 3606 uint16_t tx_bd_avail; 3607 3608 BXE_FP_TX_LOCK_ASSERT(fp); 3609 3610 bd_cons = fp->tx_bd_cons; 3611 hw_cons = le16toh(*fp->tx_cons_sb); 3612 sw_cons = fp->tx_pkt_cons; 3613 3614 while (sw_cons != hw_cons) { 3615 pkt_cons = TX_BD(sw_cons); 3616 3617 BLOGD(sc, DBG_TX, 3618 "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n", 3619 fp->index, hw_cons, sw_cons, pkt_cons); 3620 3621 bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons); 3622 3623 sw_cons++; 3624 } 3625 3626 fp->tx_pkt_cons = sw_cons; 3627 fp->tx_bd_cons = bd_cons; 3628 3629 BLOGD(sc, DBG_TX, 3630 "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n", 3631 fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod); 3632 3633 mb(); 3634 3635 tx_bd_avail = bxe_tx_avail(sc, fp); 3636 3637 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 3638 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 3639 } else { 3640 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 3641 } 3642 3643 if (fp->tx_pkt_prod != fp->tx_pkt_cons) { 3644 /* reset the watchdog timer if there are pending transmits */ 3645 fp->watchdog_timer = BXE_TX_TIMEOUT; 3646 return (TRUE); 3647 } else { 3648 /* clear watchdog when there are no pending transmits */ 3649 fp->watchdog_timer = 0; 3650 return (FALSE); 3651 } 3652 } 3653 3654 static void 3655 bxe_drain_tx_queues(struct bxe_softc *sc) 3656 { 3657 struct bxe_fastpath *fp; 3658 int i, count; 3659 3660 /* wait until all TX fastpath tasks have completed */ 3661 for (i = 0; i < sc->num_queues; i++) { 3662 fp = &sc->fp[i]; 3663 3664 count = 1000; 3665 3666 while (bxe_has_tx_work(fp)) { 3667 3668 BXE_FP_TX_LOCK(fp); 3669 bxe_txeof(sc, fp); 3670 BXE_FP_TX_UNLOCK(fp); 3671 3672 if (count == 0) { 3673 BLOGE(sc, "Timeout waiting for fp[%d] " 3674 "transmits to complete!\n", i); 3675 bxe_panic(sc, ("tx drain failure\n")); 3676 return; 3677 } 3678 3679 count--; 3680 DELAY(1000); 3681 rmb(); 3682 } 3683 } 3684 3685 return; 3686 } 3687 3688 static int 3689 bxe_del_all_macs(struct bxe_softc *sc, 3690 struct ecore_vlan_mac_obj *mac_obj, 3691 int mac_type, 3692 uint8_t wait_for_comp) 3693 { 3694 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 3695 int rc; 3696 3697 /* wait for completion of requested */ 3698 if (wait_for_comp) { 3699 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 3700 } 3701 3702 /* Set the mac type of addresses we want to clear */ 3703 bxe_set_bit(mac_type, &vlan_mac_flags); 3704 3705 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags); 3706 if (rc < 0) { 3707 BLOGE(sc, "Failed to delete MACs (%d)\n", rc); 3708 } 3709 3710 return (rc); 3711 } 3712 3713 static int 3714 bxe_fill_accept_flags(struct bxe_softc *sc, 3715 uint32_t rx_mode, 3716 unsigned long *rx_accept_flags, 3717 unsigned long *tx_accept_flags) 3718 { 3719 /* Clear the flags first */ 3720 *rx_accept_flags = 0; 3721 *tx_accept_flags = 0; 3722 3723 switch (rx_mode) { 3724 case BXE_RX_MODE_NONE: 3725 /* 3726 * 'drop all' supersedes any accept flags that may have been 3727 * passed to the function. 3728 */ 3729 break; 3730 3731 case BXE_RX_MODE_NORMAL: 3732 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3733 bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags); 3734 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3735 3736 /* internal switching mode */ 3737 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3738 bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags); 3739 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3740 3741 break; 3742 3743 case BXE_RX_MODE_ALLMULTI: 3744 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3745 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3746 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3747 3748 /* internal switching mode */ 3749 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3750 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3751 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3752 3753 break; 3754 3755 case BXE_RX_MODE_PROMISC: 3756 /* 3757 * According to deffinition of SI mode, iface in promisc mode 3758 * should receive matched and unmatched (in resolution of port) 3759 * unicast packets. 3760 */ 3761 bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags); 3762 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3763 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3764 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3765 3766 /* internal switching mode */ 3767 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3768 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3769 3770 if (IS_MF_SI(sc)) { 3771 bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags); 3772 } else { 3773 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3774 } 3775 3776 break; 3777 3778 default: 3779 BLOGE(sc, "Unknown rx_mode (%d)\n", rx_mode); 3780 return (-1); 3781 } 3782 3783 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ 3784 if (rx_mode != BXE_RX_MODE_NONE) { 3785 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags); 3786 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags); 3787 } 3788 3789 return (0); 3790 } 3791 3792 static int 3793 bxe_set_q_rx_mode(struct bxe_softc *sc, 3794 uint8_t cl_id, 3795 unsigned long rx_mode_flags, 3796 unsigned long rx_accept_flags, 3797 unsigned long tx_accept_flags, 3798 unsigned long ramrod_flags) 3799 { 3800 struct ecore_rx_mode_ramrod_params ramrod_param; 3801 int rc; 3802 3803 memset(&ramrod_param, 0, sizeof(ramrod_param)); 3804 3805 /* Prepare ramrod parameters */ 3806 ramrod_param.cid = 0; 3807 ramrod_param.cl_id = cl_id; 3808 ramrod_param.rx_mode_obj = &sc->rx_mode_obj; 3809 ramrod_param.func_id = SC_FUNC(sc); 3810 3811 ramrod_param.pstate = &sc->sp_state; 3812 ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING; 3813 3814 ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata); 3815 ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata); 3816 3817 bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 3818 3819 ramrod_param.ramrod_flags = ramrod_flags; 3820 ramrod_param.rx_mode_flags = rx_mode_flags; 3821 3822 ramrod_param.rx_accept_flags = rx_accept_flags; 3823 ramrod_param.tx_accept_flags = tx_accept_flags; 3824 3825 rc = ecore_config_rx_mode(sc, &ramrod_param); 3826 if (rc < 0) { 3827 BLOGE(sc, "Set rx_mode %d failed\n", sc->rx_mode); 3828 return (rc); 3829 } 3830 3831 return (0); 3832 } 3833 3834 static int 3835 bxe_set_storm_rx_mode(struct bxe_softc *sc) 3836 { 3837 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 3838 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 3839 int rc; 3840 3841 rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags, 3842 &tx_accept_flags); 3843 if (rc) { 3844 return (rc); 3845 } 3846 3847 bxe_set_bit(RAMROD_RX, &ramrod_flags); 3848 bxe_set_bit(RAMROD_TX, &ramrod_flags); 3849 3850 /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */ 3851 return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags, 3852 rx_accept_flags, tx_accept_flags, 3853 ramrod_flags)); 3854 } 3855 3856 /* returns the "mcp load_code" according to global load_count array */ 3857 static int 3858 bxe_nic_load_no_mcp(struct bxe_softc *sc) 3859 { 3860 int path = SC_PATH(sc); 3861 int port = SC_PORT(sc); 3862 3863 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3864 path, load_count[path][0], load_count[path][1], 3865 load_count[path][2]); 3866 load_count[path][0]++; 3867 load_count[path][1 + port]++; 3868 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3869 path, load_count[path][0], load_count[path][1], 3870 load_count[path][2]); 3871 if (load_count[path][0] == 1) { 3872 return (FW_MSG_CODE_DRV_LOAD_COMMON); 3873 } else if (load_count[path][1 + port] == 1) { 3874 return (FW_MSG_CODE_DRV_LOAD_PORT); 3875 } else { 3876 return (FW_MSG_CODE_DRV_LOAD_FUNCTION); 3877 } 3878 } 3879 3880 /* returns the "mcp load_code" according to global load_count array */ 3881 static int 3882 bxe_nic_unload_no_mcp(struct bxe_softc *sc) 3883 { 3884 int port = SC_PORT(sc); 3885 int path = SC_PATH(sc); 3886 3887 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3888 path, load_count[path][0], load_count[path][1], 3889 load_count[path][2]); 3890 load_count[path][0]--; 3891 load_count[path][1 + port]--; 3892 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3893 path, load_count[path][0], load_count[path][1], 3894 load_count[path][2]); 3895 if (load_count[path][0] == 0) { 3896 return (FW_MSG_CODE_DRV_UNLOAD_COMMON); 3897 } else if (load_count[path][1 + port] == 0) { 3898 return (FW_MSG_CODE_DRV_UNLOAD_PORT); 3899 } else { 3900 return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION); 3901 } 3902 } 3903 3904 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */ 3905 static uint32_t 3906 bxe_send_unload_req(struct bxe_softc *sc, 3907 int unload_mode) 3908 { 3909 uint32_t reset_code = 0; 3910 #if 0 3911 int port = SC_PORT(sc); 3912 int path = SC_PATH(sc); 3913 #endif 3914 3915 /* Select the UNLOAD request mode */ 3916 if (unload_mode == UNLOAD_NORMAL) { 3917 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3918 } 3919 #if 0 3920 else if (sc->flags & BXE_NO_WOL_FLAG) { 3921 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP; 3922 } else if (sc->wol) { 3923 uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0; 3924 uint8_t *mac_addr = sc->dev->dev_addr; 3925 uint32_t val; 3926 uint16_t pmc; 3927 3928 /* 3929 * The mac address is written to entries 1-4 to 3930 * preserve entry 0 which is used by the PMF 3931 */ 3932 uint8_t entry = (SC_VN(sc) + 1)*8; 3933 3934 val = (mac_addr[0] << 8) | mac_addr[1]; 3935 EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry, val); 3936 3937 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 3938 (mac_addr[4] << 8) | mac_addr[5]; 3939 EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val); 3940 3941 /* Enable the PME and clear the status */ 3942 pmc = pci_read_config(sc->dev, 3943 (sc->devinfo.pcie_pm_cap_reg + 3944 PCIR_POWER_STATUS), 3945 2); 3946 pmc |= PCIM_PSTAT_PMEENABLE | PCIM_PSTAT_PME; 3947 pci_write_config(sc->dev, 3948 (sc->devinfo.pcie_pm_cap_reg + 3949 PCIR_POWER_STATUS), 3950 pmc, 4); 3951 3952 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN; 3953 } 3954 #endif 3955 else { 3956 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3957 } 3958 3959 /* Send the request to the MCP */ 3960 if (!BXE_NOMCP(sc)) { 3961 reset_code = bxe_fw_command(sc, reset_code, 0); 3962 } else { 3963 reset_code = bxe_nic_unload_no_mcp(sc); 3964 } 3965 3966 return (reset_code); 3967 } 3968 3969 /* send UNLOAD_DONE command to the MCP */ 3970 static void 3971 bxe_send_unload_done(struct bxe_softc *sc, 3972 uint8_t keep_link) 3973 { 3974 uint32_t reset_param = 3975 keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 3976 3977 /* Report UNLOAD_DONE to MCP */ 3978 if (!BXE_NOMCP(sc)) { 3979 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 3980 } 3981 } 3982 3983 static int 3984 bxe_func_wait_started(struct bxe_softc *sc) 3985 { 3986 int tout = 50; 3987 3988 if (!sc->port.pmf) { 3989 return (0); 3990 } 3991 3992 /* 3993 * (assumption: No Attention from MCP at this stage) 3994 * PMF probably in the middle of TX disable/enable transaction 3995 * 1. Sync IRS for default SB 3996 * 2. Sync SP queue - this guarantees us that attention handling started 3997 * 3. Wait, that TX disable/enable transaction completes 3998 * 3999 * 1+2 guarantee that if DCBX attention was scheduled it already changed 4000 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 4001 * received completion for the transaction the state is TX_STOPPED. 4002 * State will return to STARTED after completion of TX_STOPPED-->STARTED 4003 * transaction. 4004 */ 4005 4006 /* XXX make sure default SB ISR is done */ 4007 /* need a way to synchronize an irq (intr_mtx?) */ 4008 4009 /* XXX flush any work queues */ 4010 4011 while (ecore_func_get_state(sc, &sc->func_obj) != 4012 ECORE_F_STATE_STARTED && tout--) { 4013 DELAY(20000); 4014 } 4015 4016 if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) { 4017 /* 4018 * Failed to complete the transaction in a "good way" 4019 * Force both transactions with CLR bit. 4020 */ 4021 struct ecore_func_state_params func_params = { NULL }; 4022 4023 BLOGE(sc, "Unexpected function state! " 4024 "Forcing STARTED-->TX_STOPPED-->STARTED\n"); 4025 4026 func_params.f_obj = &sc->func_obj; 4027 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 4028 4029 /* STARTED-->TX_STOPPED */ 4030 func_params.cmd = ECORE_F_CMD_TX_STOP; 4031 ecore_func_state_change(sc, &func_params); 4032 4033 /* TX_STOPPED-->STARTED */ 4034 func_params.cmd = ECORE_F_CMD_TX_START; 4035 return (ecore_func_state_change(sc, &func_params)); 4036 } 4037 4038 return (0); 4039 } 4040 4041 static int 4042 bxe_stop_queue(struct bxe_softc *sc, 4043 int index) 4044 { 4045 struct bxe_fastpath *fp = &sc->fp[index]; 4046 struct ecore_queue_state_params q_params = { NULL }; 4047 int rc; 4048 4049 BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index); 4050 4051 q_params.q_obj = &sc->sp_objs[fp->index].q_obj; 4052 /* We want to wait for completion in this context */ 4053 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 4054 4055 /* Stop the primary connection: */ 4056 4057 /* ...halt the connection */ 4058 q_params.cmd = ECORE_Q_CMD_HALT; 4059 rc = ecore_queue_state_change(sc, &q_params); 4060 if (rc) { 4061 return (rc); 4062 } 4063 4064 /* ...terminate the connection */ 4065 q_params.cmd = ECORE_Q_CMD_TERMINATE; 4066 memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate)); 4067 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 4068 rc = ecore_queue_state_change(sc, &q_params); 4069 if (rc) { 4070 return (rc); 4071 } 4072 4073 /* ...delete cfc entry */ 4074 q_params.cmd = ECORE_Q_CMD_CFC_DEL; 4075 memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del)); 4076 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 4077 return (ecore_queue_state_change(sc, &q_params)); 4078 } 4079 4080 /* wait for the outstanding SP commands */ 4081 static inline uint8_t 4082 bxe_wait_sp_comp(struct bxe_softc *sc, 4083 unsigned long mask) 4084 { 4085 unsigned long tmp; 4086 int tout = 5000; /* wait for 5 secs tops */ 4087 4088 while (tout--) { 4089 mb(); 4090 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) { 4091 return (TRUE); 4092 } 4093 4094 DELAY(1000); 4095 } 4096 4097 mb(); 4098 4099 tmp = atomic_load_acq_long(&sc->sp_state); 4100 if (tmp & mask) { 4101 BLOGE(sc, "Filtering completion timed out: " 4102 "sp_state 0x%lx, mask 0x%lx\n", 4103 tmp, mask); 4104 return (FALSE); 4105 } 4106 4107 return (FALSE); 4108 } 4109 4110 static int 4111 bxe_func_stop(struct bxe_softc *sc) 4112 { 4113 struct ecore_func_state_params func_params = { NULL }; 4114 int rc; 4115 4116 /* prepare parameters for function state transitions */ 4117 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 4118 func_params.f_obj = &sc->func_obj; 4119 func_params.cmd = ECORE_F_CMD_STOP; 4120 4121 /* 4122 * Try to stop the function the 'good way'. If it fails (in case 4123 * of a parity error during bxe_chip_cleanup()) and we are 4124 * not in a debug mode, perform a state transaction in order to 4125 * enable further HW_RESET transaction. 4126 */ 4127 rc = ecore_func_state_change(sc, &func_params); 4128 if (rc) { 4129 BLOGE(sc, "FUNC_STOP ramrod failed. " 4130 "Running a dry transaction\n"); 4131 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 4132 return (ecore_func_state_change(sc, &func_params)); 4133 } 4134 4135 return (0); 4136 } 4137 4138 static int 4139 bxe_reset_hw(struct bxe_softc *sc, 4140 uint32_t load_code) 4141 { 4142 struct ecore_func_state_params func_params = { NULL }; 4143 4144 /* Prepare parameters for function state transitions */ 4145 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 4146 4147 func_params.f_obj = &sc->func_obj; 4148 func_params.cmd = ECORE_F_CMD_HW_RESET; 4149 4150 func_params.params.hw_init.load_phase = load_code; 4151 4152 return (ecore_func_state_change(sc, &func_params)); 4153 } 4154 4155 static void 4156 bxe_int_disable_sync(struct bxe_softc *sc, 4157 int disable_hw) 4158 { 4159 if (disable_hw) { 4160 /* prevent the HW from sending interrupts */ 4161 bxe_int_disable(sc); 4162 } 4163 4164 /* XXX need a way to synchronize ALL irqs (intr_mtx?) */ 4165 /* make sure all ISRs are done */ 4166 4167 /* XXX make sure sp_task is not running */ 4168 /* cancel and flush work queues */ 4169 } 4170 4171 static void 4172 bxe_chip_cleanup(struct bxe_softc *sc, 4173 uint32_t unload_mode, 4174 uint8_t keep_link) 4175 { 4176 int port = SC_PORT(sc); 4177 struct ecore_mcast_ramrod_params rparam = { NULL }; 4178 uint32_t reset_code; 4179 int i, rc = 0; 4180 4181 bxe_drain_tx_queues(sc); 4182 4183 /* give HW time to discard old tx messages */ 4184 DELAY(1000); 4185 4186 /* Clean all ETH MACs */ 4187 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE); 4188 if (rc < 0) { 4189 BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc); 4190 } 4191 4192 /* Clean up UC list */ 4193 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE); 4194 if (rc < 0) { 4195 BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc); 4196 } 4197 4198 /* Disable LLH */ 4199 if (!CHIP_IS_E1(sc)) { 4200 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 4201 } 4202 4203 /* Set "drop all" to stop Rx */ 4204 4205 /* 4206 * We need to take the BXE_MCAST_LOCK() here in order to prevent 4207 * a race between the completion code and this code. 4208 */ 4209 BXE_MCAST_LOCK(sc); 4210 4211 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 4212 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 4213 } else { 4214 bxe_set_storm_rx_mode(sc); 4215 } 4216 4217 /* Clean up multicast configuration */ 4218 rparam.mcast_obj = &sc->mcast_obj; 4219 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4220 if (rc < 0) { 4221 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4222 } 4223 4224 BXE_MCAST_UNLOCK(sc); 4225 4226 // XXX bxe_iov_chip_cleanup(sc); 4227 4228 /* 4229 * Send the UNLOAD_REQUEST to the MCP. This will return if 4230 * this function should perform FUNCTION, PORT, or COMMON HW 4231 * reset. 4232 */ 4233 reset_code = bxe_send_unload_req(sc, unload_mode); 4234 4235 /* 4236 * (assumption: No Attention from MCP at this stage) 4237 * PMF probably in the middle of TX disable/enable transaction 4238 */ 4239 rc = bxe_func_wait_started(sc); 4240 if (rc) { 4241 BLOGE(sc, "bxe_func_wait_started failed\n"); 4242 } 4243 4244 /* 4245 * Close multi and leading connections 4246 * Completions for ramrods are collected in a synchronous way 4247 */ 4248 for (i = 0; i < sc->num_queues; i++) { 4249 if (bxe_stop_queue(sc, i)) { 4250 goto unload_error; 4251 } 4252 } 4253 4254 /* 4255 * If SP settings didn't get completed so far - something 4256 * very wrong has happen. 4257 */ 4258 if (!bxe_wait_sp_comp(sc, ~0x0UL)) { 4259 BLOGE(sc, "Common slow path ramrods got stuck!\n"); 4260 } 4261 4262 unload_error: 4263 4264 rc = bxe_func_stop(sc); 4265 if (rc) { 4266 BLOGE(sc, "Function stop failed!\n"); 4267 } 4268 4269 /* disable HW interrupts */ 4270 bxe_int_disable_sync(sc, TRUE); 4271 4272 /* detach interrupts */ 4273 bxe_interrupt_detach(sc); 4274 4275 /* Reset the chip */ 4276 rc = bxe_reset_hw(sc, reset_code); 4277 if (rc) { 4278 BLOGE(sc, "Hardware reset failed\n"); 4279 } 4280 4281 /* Report UNLOAD_DONE to MCP */ 4282 bxe_send_unload_done(sc, keep_link); 4283 } 4284 4285 static void 4286 bxe_disable_close_the_gate(struct bxe_softc *sc) 4287 { 4288 uint32_t val; 4289 int port = SC_PORT(sc); 4290 4291 BLOGD(sc, DBG_LOAD, 4292 "Disabling 'close the gates'\n"); 4293 4294 if (CHIP_IS_E1(sc)) { 4295 uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 4296 MISC_REG_AEU_MASK_ATTN_FUNC_0; 4297 val = REG_RD(sc, addr); 4298 val &= ~(0x300); 4299 REG_WR(sc, addr, val); 4300 } else { 4301 val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK); 4302 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 4303 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 4304 REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val); 4305 } 4306 } 4307 4308 /* 4309 * Cleans the object that have internal lists without sending 4310 * ramrods. Should be run when interrutps are disabled. 4311 */ 4312 static void 4313 bxe_squeeze_objects(struct bxe_softc *sc) 4314 { 4315 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 4316 struct ecore_mcast_ramrod_params rparam = { NULL }; 4317 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 4318 int rc; 4319 4320 /* Cleanup MACs' object first... */ 4321 4322 /* Wait for completion of requested */ 4323 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 4324 /* Perform a dry cleanup */ 4325 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 4326 4327 /* Clean ETH primary MAC */ 4328 bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags); 4329 rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags, 4330 &ramrod_flags); 4331 if (rc != 0) { 4332 BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc); 4333 } 4334 4335 /* Cleanup UC list */ 4336 vlan_mac_flags = 0; 4337 bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags); 4338 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, 4339 &ramrod_flags); 4340 if (rc != 0) { 4341 BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc); 4342 } 4343 4344 /* Now clean mcast object... */ 4345 4346 rparam.mcast_obj = &sc->mcast_obj; 4347 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 4348 4349 /* Add a DEL command... */ 4350 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4351 if (rc < 0) { 4352 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4353 } 4354 4355 /* now wait until all pending commands are cleared */ 4356 4357 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4358 while (rc != 0) { 4359 if (rc < 0) { 4360 BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc); 4361 return; 4362 } 4363 4364 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4365 } 4366 } 4367 4368 /* stop the controller */ 4369 static __noinline int 4370 bxe_nic_unload(struct bxe_softc *sc, 4371 uint32_t unload_mode, 4372 uint8_t keep_link) 4373 { 4374 uint8_t global = FALSE; 4375 uint32_t val; 4376 4377 BXE_CORE_LOCK_ASSERT(sc); 4378 4379 BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n"); 4380 4381 /* mark driver as unloaded in shmem2 */ 4382 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 4383 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 4384 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 4385 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 4386 } 4387 4388 if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE && 4389 (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) { 4390 /* 4391 * We can get here if the driver has been unloaded 4392 * during parity error recovery and is either waiting for a 4393 * leader to complete or for other functions to unload and 4394 * then ifconfig down has been issued. In this case we want to 4395 * unload and let other functions to complete a recovery 4396 * process. 4397 */ 4398 sc->recovery_state = BXE_RECOVERY_DONE; 4399 sc->is_leader = 0; 4400 bxe_release_leader_lock(sc); 4401 mb(); 4402 4403 BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n"); 4404 BLOGE(sc, "Can't unload in closed or error state\n"); 4405 return (-1); 4406 } 4407 4408 /* 4409 * Nothing to do during unload if previous bxe_nic_load() 4410 * did not completed succesfully - all resourses are released. 4411 */ 4412 if ((sc->state == BXE_STATE_CLOSED) || 4413 (sc->state == BXE_STATE_ERROR)) { 4414 return (0); 4415 } 4416 4417 sc->state = BXE_STATE_CLOSING_WAITING_HALT; 4418 mb(); 4419 4420 /* stop tx */ 4421 bxe_tx_disable(sc); 4422 4423 sc->rx_mode = BXE_RX_MODE_NONE; 4424 /* XXX set rx mode ??? */ 4425 4426 if (IS_PF(sc)) { 4427 /* set ALWAYS_ALIVE bit in shmem */ 4428 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 4429 4430 bxe_drv_pulse(sc); 4431 4432 bxe_stats_handle(sc, STATS_EVENT_STOP); 4433 bxe_save_statistics(sc); 4434 } 4435 4436 /* wait till consumers catch up with producers in all queues */ 4437 bxe_drain_tx_queues(sc); 4438 4439 /* if VF indicate to PF this function is going down (PF will delete sp 4440 * elements and clear initializations 4441 */ 4442 if (IS_VF(sc)) { 4443 ; /* bxe_vfpf_close_vf(sc); */ 4444 } else if (unload_mode != UNLOAD_RECOVERY) { 4445 /* if this is a normal/close unload need to clean up chip */ 4446 bxe_chip_cleanup(sc, unload_mode, keep_link); 4447 } else { 4448 /* Send the UNLOAD_REQUEST to the MCP */ 4449 bxe_send_unload_req(sc, unload_mode); 4450 4451 /* 4452 * Prevent transactions to host from the functions on the 4453 * engine that doesn't reset global blocks in case of global 4454 * attention once gloabl blocks are reset and gates are opened 4455 * (the engine which leader will perform the recovery 4456 * last). 4457 */ 4458 if (!CHIP_IS_E1x(sc)) { 4459 bxe_pf_disable(sc); 4460 } 4461 4462 /* disable HW interrupts */ 4463 bxe_int_disable_sync(sc, TRUE); 4464 4465 /* detach interrupts */ 4466 bxe_interrupt_detach(sc); 4467 4468 /* Report UNLOAD_DONE to MCP */ 4469 bxe_send_unload_done(sc, FALSE); 4470 } 4471 4472 /* 4473 * At this stage no more interrupts will arrive so we may safely clean 4474 * the queue'able objects here in case they failed to get cleaned so far. 4475 */ 4476 if (IS_PF(sc)) { 4477 bxe_squeeze_objects(sc); 4478 } 4479 4480 /* There should be no more pending SP commands at this stage */ 4481 sc->sp_state = 0; 4482 4483 sc->port.pmf = 0; 4484 4485 bxe_free_fp_buffers(sc); 4486 4487 if (IS_PF(sc)) { 4488 bxe_free_mem(sc); 4489 } 4490 4491 bxe_free_fw_stats_mem(sc); 4492 4493 sc->state = BXE_STATE_CLOSED; 4494 4495 /* 4496 * Check if there are pending parity attentions. If there are - set 4497 * RECOVERY_IN_PROGRESS. 4498 */ 4499 if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) { 4500 bxe_set_reset_in_progress(sc); 4501 4502 /* Set RESET_IS_GLOBAL if needed */ 4503 if (global) { 4504 bxe_set_reset_global(sc); 4505 } 4506 } 4507 4508 /* 4509 * The last driver must disable a "close the gate" if there is no 4510 * parity attention or "process kill" pending. 4511 */ 4512 if (IS_PF(sc) && !bxe_clear_pf_load(sc) && 4513 bxe_reset_is_done(sc, SC_PATH(sc))) { 4514 bxe_disable_close_the_gate(sc); 4515 } 4516 4517 BLOGD(sc, DBG_LOAD, "Ended NIC unload\n"); 4518 4519 return (0); 4520 } 4521 4522 /* 4523 * Called by the OS to set various media options (i.e. link, speed, etc.) when 4524 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...". 4525 */ 4526 static int 4527 bxe_ifmedia_update(struct ifnet *ifp) 4528 { 4529 struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp); 4530 struct ifmedia *ifm; 4531 4532 ifm = &sc->ifmedia; 4533 4534 /* We only support Ethernet media type. */ 4535 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) { 4536 return (EINVAL); 4537 } 4538 4539 switch (IFM_SUBTYPE(ifm->ifm_media)) { 4540 case IFM_AUTO: 4541 break; 4542 case IFM_10G_CX4: 4543 case IFM_10G_SR: 4544 case IFM_10G_T: 4545 case IFM_10G_TWINAX: 4546 default: 4547 /* We don't support changing the media type. */ 4548 BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n", 4549 IFM_SUBTYPE(ifm->ifm_media)); 4550 return (EINVAL); 4551 } 4552 4553 return (0); 4554 } 4555 4556 /* 4557 * Called by the OS to get the current media status (i.e. link, speed, etc.). 4558 */ 4559 static void 4560 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr) 4561 { 4562 struct bxe_softc *sc = if_getsoftc(ifp); 4563 4564 /* Report link down if the driver isn't running. */ 4565 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { 4566 ifmr->ifm_active |= IFM_NONE; 4567 return; 4568 } 4569 4570 /* Setup the default interface info. */ 4571 ifmr->ifm_status = IFM_AVALID; 4572 ifmr->ifm_active = IFM_ETHER; 4573 4574 if (sc->link_vars.link_up) { 4575 ifmr->ifm_status |= IFM_ACTIVE; 4576 } else { 4577 ifmr->ifm_active |= IFM_NONE; 4578 return; 4579 } 4580 4581 ifmr->ifm_active |= sc->media; 4582 4583 if (sc->link_vars.duplex == DUPLEX_FULL) { 4584 ifmr->ifm_active |= IFM_FDX; 4585 } else { 4586 ifmr->ifm_active |= IFM_HDX; 4587 } 4588 } 4589 4590 static int 4591 bxe_ioctl_nvram(struct bxe_softc *sc, 4592 uint32_t priv_op, 4593 struct ifreq *ifr) 4594 { 4595 struct bxe_nvram_data nvdata_base; 4596 struct bxe_nvram_data *nvdata; 4597 int len; 4598 int error = 0; 4599 4600 copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base)); 4601 4602 len = (sizeof(struct bxe_nvram_data) + 4603 nvdata_base.len - 4604 sizeof(uint32_t)); 4605 4606 if (len > sizeof(struct bxe_nvram_data)) { 4607 if ((nvdata = (struct bxe_nvram_data *) 4608 malloc(len, M_DEVBUF, 4609 (M_NOWAIT | M_ZERO))) == NULL) { 4610 BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed\n"); 4611 return (1); 4612 } 4613 memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data)); 4614 } else { 4615 nvdata = &nvdata_base; 4616 } 4617 4618 if (priv_op == BXE_IOC_RD_NVRAM) { 4619 BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n", 4620 nvdata->offset, nvdata->len); 4621 error = bxe_nvram_read(sc, 4622 nvdata->offset, 4623 (uint8_t *)nvdata->value, 4624 nvdata->len); 4625 copyout(nvdata, ifr->ifr_data, len); 4626 } else { /* BXE_IOC_WR_NVRAM */ 4627 BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n", 4628 nvdata->offset, nvdata->len); 4629 copyin(ifr->ifr_data, nvdata, len); 4630 error = bxe_nvram_write(sc, 4631 nvdata->offset, 4632 (uint8_t *)nvdata->value, 4633 nvdata->len); 4634 } 4635 4636 if (len > sizeof(struct bxe_nvram_data)) { 4637 free(nvdata, M_DEVBUF); 4638 } 4639 4640 return (error); 4641 } 4642 4643 static int 4644 bxe_ioctl_stats_show(struct bxe_softc *sc, 4645 uint32_t priv_op, 4646 struct ifreq *ifr) 4647 { 4648 const size_t str_size = (BXE_NUM_ETH_STATS * STAT_NAME_LEN); 4649 const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t)); 4650 caddr_t p_tmp; 4651 uint32_t *offset; 4652 int i; 4653 4654 switch (priv_op) 4655 { 4656 case BXE_IOC_STATS_SHOW_NUM: 4657 memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data)); 4658 ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num = 4659 BXE_NUM_ETH_STATS; 4660 ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len = 4661 STAT_NAME_LEN; 4662 return (0); 4663 4664 case BXE_IOC_STATS_SHOW_STR: 4665 memset(ifr->ifr_data, 0, str_size); 4666 p_tmp = ifr->ifr_data; 4667 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 4668 strcpy(p_tmp, bxe_eth_stats_arr[i].string); 4669 p_tmp += STAT_NAME_LEN; 4670 } 4671 return (0); 4672 4673 case BXE_IOC_STATS_SHOW_CNT: 4674 memset(ifr->ifr_data, 0, stats_size); 4675 p_tmp = ifr->ifr_data; 4676 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 4677 offset = ((uint32_t *)&sc->eth_stats + 4678 bxe_eth_stats_arr[i].offset); 4679 switch (bxe_eth_stats_arr[i].size) { 4680 case 4: 4681 *((uint64_t *)p_tmp) = (uint64_t)*offset; 4682 break; 4683 case 8: 4684 *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1)); 4685 break; 4686 default: 4687 *((uint64_t *)p_tmp) = 0; 4688 } 4689 p_tmp += sizeof(uint64_t); 4690 } 4691 return (0); 4692 4693 default: 4694 return (-1); 4695 } 4696 } 4697 4698 static void 4699 bxe_handle_chip_tq(void *context, 4700 int pending) 4701 { 4702 struct bxe_softc *sc = (struct bxe_softc *)context; 4703 long work = atomic_load_acq_long(&sc->chip_tq_flags); 4704 4705 switch (work) 4706 { 4707 case CHIP_TQ_START: 4708 if ((if_getflags(sc->ifp) & IFF_UP) && 4709 !(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 4710 /* start the interface */ 4711 BLOGD(sc, DBG_LOAD, "Starting the interface...\n"); 4712 BXE_CORE_LOCK(sc); 4713 bxe_init_locked(sc); 4714 BXE_CORE_UNLOCK(sc); 4715 } 4716 break; 4717 4718 case CHIP_TQ_STOP: 4719 if (!(if_getflags(sc->ifp) & IFF_UP) && 4720 (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 4721 /* bring down the interface */ 4722 BLOGD(sc, DBG_LOAD, "Stopping the interface...\n"); 4723 bxe_periodic_stop(sc); 4724 BXE_CORE_LOCK(sc); 4725 bxe_stop_locked(sc); 4726 BXE_CORE_UNLOCK(sc); 4727 } 4728 break; 4729 4730 case CHIP_TQ_REINIT: 4731 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 4732 /* restart the interface */ 4733 BLOGD(sc, DBG_LOAD, "Restarting the interface...\n"); 4734 bxe_periodic_stop(sc); 4735 BXE_CORE_LOCK(sc); 4736 bxe_stop_locked(sc); 4737 bxe_init_locked(sc); 4738 BXE_CORE_UNLOCK(sc); 4739 } 4740 break; 4741 4742 default: 4743 break; 4744 } 4745 } 4746 4747 /* 4748 * Handles any IOCTL calls from the operating system. 4749 * 4750 * Returns: 4751 * 0 = Success, >0 Failure 4752 */ 4753 static int 4754 bxe_ioctl(if_t ifp, 4755 u_long command, 4756 caddr_t data) 4757 { 4758 struct bxe_softc *sc = if_getsoftc(ifp); 4759 struct ifreq *ifr = (struct ifreq *)data; 4760 struct bxe_nvram_data *nvdata; 4761 uint32_t priv_op; 4762 int mask = 0; 4763 int reinit = 0; 4764 int error = 0; 4765 4766 int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN); 4767 int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING); 4768 4769 switch (command) 4770 { 4771 case SIOCSIFMTU: 4772 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n", 4773 ifr->ifr_mtu); 4774 4775 if (sc->mtu == ifr->ifr_mtu) { 4776 /* nothing to change */ 4777 break; 4778 } 4779 4780 if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) { 4781 BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n", 4782 ifr->ifr_mtu, mtu_min, mtu_max); 4783 error = EINVAL; 4784 break; 4785 } 4786 4787 atomic_store_rel_int((volatile unsigned int *)&sc->mtu, 4788 (unsigned long)ifr->ifr_mtu); 4789 /* 4790 atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp), 4791 (unsigned long)ifr->ifr_mtu); 4792 XXX - Not sure why it needs to be atomic 4793 */ 4794 if_setmtu(ifp, ifr->ifr_mtu); 4795 reinit = 1; 4796 break; 4797 4798 case SIOCSIFFLAGS: 4799 /* toggle the interface state up or down */ 4800 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n"); 4801 4802 /* check if the interface is up */ 4803 if (if_getflags(ifp) & IFF_UP) { 4804 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4805 /* set the receive mode flags */ 4806 bxe_set_rx_mode(sc); 4807 } else { 4808 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_START); 4809 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 4810 } 4811 } else { 4812 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4813 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_STOP); 4814 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 4815 } 4816 } 4817 4818 break; 4819 4820 case SIOCADDMULTI: 4821 case SIOCDELMULTI: 4822 /* add/delete multicast addresses */ 4823 BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n"); 4824 4825 /* check if the interface is up */ 4826 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4827 /* set the receive mode flags */ 4828 bxe_set_rx_mode(sc); 4829 } 4830 4831 break; 4832 4833 case SIOCSIFCAP: 4834 /* find out which capabilities have changed */ 4835 mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp)); 4836 4837 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n", 4838 mask); 4839 4840 /* toggle the LRO capabilites enable flag */ 4841 if (mask & IFCAP_LRO) { 4842 if_togglecapenable(ifp, IFCAP_LRO); 4843 BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n", 4844 (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF"); 4845 reinit = 1; 4846 } 4847 4848 /* toggle the TXCSUM checksum capabilites enable flag */ 4849 if (mask & IFCAP_TXCSUM) { 4850 if_togglecapenable(ifp, IFCAP_TXCSUM); 4851 BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n", 4852 (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF"); 4853 if (if_getcapenable(ifp) & IFCAP_TXCSUM) { 4854 if_sethwassistbits(ifp, (CSUM_IP | 4855 CSUM_TCP | 4856 CSUM_UDP | 4857 CSUM_TSO | 4858 CSUM_TCP_IPV6 | 4859 CSUM_UDP_IPV6), 0); 4860 } else { 4861 if_clearhwassist(ifp); /* XXX */ 4862 } 4863 } 4864 4865 /* toggle the RXCSUM checksum capabilities enable flag */ 4866 if (mask & IFCAP_RXCSUM) { 4867 if_togglecapenable(ifp, IFCAP_RXCSUM); 4868 BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n", 4869 (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF"); 4870 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 4871 if_sethwassistbits(ifp, (CSUM_IP | 4872 CSUM_TCP | 4873 CSUM_UDP | 4874 CSUM_TSO | 4875 CSUM_TCP_IPV6 | 4876 CSUM_UDP_IPV6), 0); 4877 } else { 4878 if_clearhwassist(ifp); /* XXX */ 4879 } 4880 } 4881 4882 /* toggle TSO4 capabilities enabled flag */ 4883 if (mask & IFCAP_TSO4) { 4884 if_togglecapenable(ifp, IFCAP_TSO4); 4885 BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n", 4886 (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF"); 4887 } 4888 4889 /* toggle TSO6 capabilities enabled flag */ 4890 if (mask & IFCAP_TSO6) { 4891 if_togglecapenable(ifp, IFCAP_TSO6); 4892 BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n", 4893 (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF"); 4894 } 4895 4896 /* toggle VLAN_HWTSO capabilities enabled flag */ 4897 if (mask & IFCAP_VLAN_HWTSO) { 4898 4899 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 4900 BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n", 4901 (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF"); 4902 } 4903 4904 /* toggle VLAN_HWCSUM capabilities enabled flag */ 4905 if (mask & IFCAP_VLAN_HWCSUM) { 4906 /* XXX investigate this... */ 4907 BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n"); 4908 error = EINVAL; 4909 } 4910 4911 /* toggle VLAN_MTU capabilities enable flag */ 4912 if (mask & IFCAP_VLAN_MTU) { 4913 /* XXX investigate this... */ 4914 BLOGE(sc, "Changing VLAN_MTU is not supported!\n"); 4915 error = EINVAL; 4916 } 4917 4918 /* toggle VLAN_HWTAGGING capabilities enabled flag */ 4919 if (mask & IFCAP_VLAN_HWTAGGING) { 4920 /* XXX investigate this... */ 4921 BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n"); 4922 error = EINVAL; 4923 } 4924 4925 /* toggle VLAN_HWFILTER capabilities enabled flag */ 4926 if (mask & IFCAP_VLAN_HWFILTER) { 4927 /* XXX investigate this... */ 4928 BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n"); 4929 error = EINVAL; 4930 } 4931 4932 /* XXX not yet... 4933 * IFCAP_WOL_MAGIC 4934 */ 4935 4936 break; 4937 4938 case SIOCSIFMEDIA: 4939 case SIOCGIFMEDIA: 4940 /* set/get interface media */ 4941 BLOGD(sc, DBG_IOCTL, 4942 "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n", 4943 (command & 0xff)); 4944 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); 4945 break; 4946 4947 case SIOCGPRIVATE_0: 4948 copyin(ifr->ifr_data, &priv_op, sizeof(priv_op)); 4949 4950 switch (priv_op) 4951 { 4952 case BXE_IOC_RD_NVRAM: 4953 case BXE_IOC_WR_NVRAM: 4954 nvdata = (struct bxe_nvram_data *)ifr->ifr_data; 4955 BLOGD(sc, DBG_IOCTL, 4956 "Received Private NVRAM ioctl addr=0x%x size=%u\n", 4957 nvdata->offset, nvdata->len); 4958 error = bxe_ioctl_nvram(sc, priv_op, ifr); 4959 break; 4960 4961 case BXE_IOC_STATS_SHOW_NUM: 4962 case BXE_IOC_STATS_SHOW_STR: 4963 case BXE_IOC_STATS_SHOW_CNT: 4964 BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n", 4965 priv_op); 4966 error = bxe_ioctl_stats_show(sc, priv_op, ifr); 4967 break; 4968 4969 default: 4970 BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op); 4971 error = EINVAL; 4972 break; 4973 } 4974 4975 break; 4976 4977 default: 4978 BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n", 4979 (command & 0xff)); 4980 error = ether_ioctl(ifp, command, data); 4981 break; 4982 } 4983 4984 if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 4985 BLOGD(sc, DBG_LOAD | DBG_IOCTL, 4986 "Re-initializing hardware from IOCTL change\n"); 4987 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT); 4988 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 4989 } 4990 4991 return (error); 4992 } 4993 4994 static __noinline void 4995 bxe_dump_mbuf(struct bxe_softc *sc, 4996 struct mbuf *m, 4997 uint8_t contents) 4998 { 4999 char * type; 5000 int i = 0; 5001 5002 if (!(sc->debug & DBG_MBUF)) { 5003 return; 5004 } 5005 5006 if (m == NULL) { 5007 BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n"); 5008 return; 5009 } 5010 5011 while (m) { 5012 BLOGD(sc, DBG_MBUF, 5013 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 5014 i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data); 5015 5016 if (m->m_flags & M_PKTHDR) { 5017 BLOGD(sc, DBG_MBUF, 5018 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 5019 i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS, 5020 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 5021 } 5022 5023 if (m->m_flags & M_EXT) { 5024 switch (m->m_ext.ext_type) { 5025 case EXT_CLUSTER: type = "EXT_CLUSTER"; break; 5026 case EXT_SFBUF: type = "EXT_SFBUF"; break; 5027 case EXT_JUMBOP: type = "EXT_JUMBOP"; break; 5028 case EXT_JUMBO9: type = "EXT_JUMBO9"; break; 5029 case EXT_JUMBO16: type = "EXT_JUMBO16"; break; 5030 case EXT_PACKET: type = "EXT_PACKET"; break; 5031 case EXT_MBUF: type = "EXT_MBUF"; break; 5032 case EXT_NET_DRV: type = "EXT_NET_DRV"; break; 5033 case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break; 5034 case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break; 5035 case EXT_EXTREF: type = "EXT_EXTREF"; break; 5036 default: type = "UNKNOWN"; break; 5037 } 5038 5039 BLOGD(sc, DBG_MBUF, 5040 "%02d: - m_ext: %p ext_size=%d type=%s\n", 5041 i, m->m_ext.ext_buf, m->m_ext.ext_size, type); 5042 } 5043 5044 if (contents) { 5045 bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE); 5046 } 5047 5048 m = m->m_next; 5049 i++; 5050 } 5051 } 5052 5053 /* 5054 * Checks to ensure the 13 bd sliding window is >= MSS for TSO. 5055 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS. 5056 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD 5057 * The headers comes in a seperate bd in FreeBSD so 13-3=10. 5058 * Returns: 0 if OK to send, 1 if packet needs further defragmentation 5059 */ 5060 static int 5061 bxe_chktso_window(struct bxe_softc *sc, 5062 int nsegs, 5063 bus_dma_segment_t *segs, 5064 struct mbuf *m) 5065 { 5066 uint32_t num_wnds, wnd_size, wnd_sum; 5067 int32_t frag_idx, wnd_idx; 5068 unsigned short lso_mss; 5069 int defrag; 5070 5071 defrag = 0; 5072 wnd_sum = 0; 5073 wnd_size = 10; 5074 num_wnds = nsegs - wnd_size; 5075 lso_mss = htole16(m->m_pkthdr.tso_segsz); 5076 5077 /* 5078 * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the 5079 * first window sum of data while skipping the first assuming it is the 5080 * header in FreeBSD. 5081 */ 5082 for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) { 5083 wnd_sum += htole16(segs[frag_idx].ds_len); 5084 } 5085 5086 /* check the first 10 bd window size */ 5087 if (wnd_sum < lso_mss) { 5088 return (1); 5089 } 5090 5091 /* run through the windows */ 5092 for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) { 5093 /* subtract the first mbuf->m_len of the last wndw(-header) */ 5094 wnd_sum -= htole16(segs[wnd_idx+1].ds_len); 5095 /* add the next mbuf len to the len of our new window */ 5096 wnd_sum += htole16(segs[frag_idx].ds_len); 5097 if (wnd_sum < lso_mss) { 5098 return (1); 5099 } 5100 } 5101 5102 return (0); 5103 } 5104 5105 static uint8_t 5106 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp, 5107 struct mbuf *m, 5108 uint32_t *parsing_data) 5109 { 5110 struct ether_vlan_header *eh = NULL; 5111 struct ip *ip4 = NULL; 5112 struct ip6_hdr *ip6 = NULL; 5113 caddr_t ip = NULL; 5114 struct tcphdr *th = NULL; 5115 int e_hlen, ip_hlen, l4_off; 5116 uint16_t proto; 5117 5118 if (m->m_pkthdr.csum_flags == CSUM_IP) { 5119 /* no L4 checksum offload needed */ 5120 return (0); 5121 } 5122 5123 /* get the Ethernet header */ 5124 eh = mtod(m, struct ether_vlan_header *); 5125 5126 /* handle VLAN encapsulation if present */ 5127 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 5128 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 5129 proto = ntohs(eh->evl_proto); 5130 } else { 5131 e_hlen = ETHER_HDR_LEN; 5132 proto = ntohs(eh->evl_encap_proto); 5133 } 5134 5135 switch (proto) { 5136 case ETHERTYPE_IP: 5137 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 5138 ip4 = (m->m_len < sizeof(struct ip)) ? 5139 (struct ip *)m->m_next->m_data : 5140 (struct ip *)(m->m_data + e_hlen); 5141 /* ip_hl is number of 32-bit words */ 5142 ip_hlen = (ip4->ip_hl << 2); 5143 ip = (caddr_t)ip4; 5144 break; 5145 case ETHERTYPE_IPV6: 5146 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 5147 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 5148 (struct ip6_hdr *)m->m_next->m_data : 5149 (struct ip6_hdr *)(m->m_data + e_hlen); 5150 /* XXX cannot support offload with IPv6 extensions */ 5151 ip_hlen = sizeof(struct ip6_hdr); 5152 ip = (caddr_t)ip6; 5153 break; 5154 default: 5155 /* We can't offload in this case... */ 5156 /* XXX error stat ??? */ 5157 return (0); 5158 } 5159 5160 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 5161 l4_off = (e_hlen + ip_hlen); 5162 5163 *parsing_data |= 5164 (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 5165 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W); 5166 5167 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5168 CSUM_TSO | 5169 CSUM_TCP_IPV6)) { 5170 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 5171 th = (struct tcphdr *)(ip + ip_hlen); 5172 /* th_off is number of 32-bit words */ 5173 *parsing_data |= ((th->th_off << 5174 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 5175 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW); 5176 return (l4_off + (th->th_off << 2)); /* entire header length */ 5177 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5178 CSUM_UDP_IPV6)) { 5179 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 5180 return (l4_off + sizeof(struct udphdr)); /* entire header length */ 5181 } else { 5182 /* XXX error stat ??? */ 5183 return (0); 5184 } 5185 } 5186 5187 static uint8_t 5188 bxe_set_pbd_csum(struct bxe_fastpath *fp, 5189 struct mbuf *m, 5190 struct eth_tx_parse_bd_e1x *pbd) 5191 { 5192 struct ether_vlan_header *eh = NULL; 5193 struct ip *ip4 = NULL; 5194 struct ip6_hdr *ip6 = NULL; 5195 caddr_t ip = NULL; 5196 struct tcphdr *th = NULL; 5197 struct udphdr *uh = NULL; 5198 int e_hlen, ip_hlen; 5199 uint16_t proto; 5200 uint8_t hlen; 5201 uint16_t tmp_csum; 5202 uint32_t *tmp_uh; 5203 5204 /* get the Ethernet header */ 5205 eh = mtod(m, struct ether_vlan_header *); 5206 5207 /* handle VLAN encapsulation if present */ 5208 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 5209 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 5210 proto = ntohs(eh->evl_proto); 5211 } else { 5212 e_hlen = ETHER_HDR_LEN; 5213 proto = ntohs(eh->evl_encap_proto); 5214 } 5215 5216 switch (proto) { 5217 case ETHERTYPE_IP: 5218 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 5219 ip4 = (m->m_len < sizeof(struct ip)) ? 5220 (struct ip *)m->m_next->m_data : 5221 (struct ip *)(m->m_data + e_hlen); 5222 /* ip_hl is number of 32-bit words */ 5223 ip_hlen = (ip4->ip_hl << 1); 5224 ip = (caddr_t)ip4; 5225 break; 5226 case ETHERTYPE_IPV6: 5227 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 5228 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 5229 (struct ip6_hdr *)m->m_next->m_data : 5230 (struct ip6_hdr *)(m->m_data + e_hlen); 5231 /* XXX cannot support offload with IPv6 extensions */ 5232 ip_hlen = (sizeof(struct ip6_hdr) >> 1); 5233 ip = (caddr_t)ip6; 5234 break; 5235 default: 5236 /* We can't offload in this case... */ 5237 /* XXX error stat ??? */ 5238 return (0); 5239 } 5240 5241 hlen = (e_hlen >> 1); 5242 5243 /* note that rest of global_data is indirectly zeroed here */ 5244 if (m->m_flags & M_VLANTAG) { 5245 pbd->global_data = 5246 htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 5247 } else { 5248 pbd->global_data = htole16(hlen); 5249 } 5250 5251 pbd->ip_hlen_w = ip_hlen; 5252 5253 hlen += pbd->ip_hlen_w; 5254 5255 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 5256 5257 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5258 CSUM_TSO | 5259 CSUM_TCP_IPV6)) { 5260 th = (struct tcphdr *)(ip + (ip_hlen << 1)); 5261 /* th_off is number of 32-bit words */ 5262 hlen += (uint16_t)(th->th_off << 1); 5263 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5264 CSUM_UDP_IPV6)) { 5265 uh = (struct udphdr *)(ip + (ip_hlen << 1)); 5266 hlen += (sizeof(struct udphdr) / 2); 5267 } else { 5268 /* valid case as only CSUM_IP was set */ 5269 return (0); 5270 } 5271 5272 pbd->total_hlen_w = htole16(hlen); 5273 5274 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5275 CSUM_TSO | 5276 CSUM_TCP_IPV6)) { 5277 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 5278 pbd->tcp_pseudo_csum = ntohs(th->th_sum); 5279 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5280 CSUM_UDP_IPV6)) { 5281 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 5282 5283 /* 5284 * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP 5285 * checksums and does not know anything about the UDP header and where 5286 * the checksum field is located. It only knows about TCP. Therefore 5287 * we "lie" to the hardware for outgoing UDP packets w/ checksum 5288 * offload. Since the checksum field offset for TCP is 16 bytes and 5289 * for UDP it is 6 bytes we pass a pointer to the hardware that is 10 5290 * bytes less than the start of the UDP header. This allows the 5291 * hardware to write the checksum in the correct spot. But the 5292 * hardware will compute a checksum which includes the last 10 bytes 5293 * of the IP header. To correct this we tweak the stack computed 5294 * pseudo checksum by folding in the calculation of the inverse 5295 * checksum for those final 10 bytes of the IP header. This allows 5296 * the correct checksum to be computed by the hardware. 5297 */ 5298 5299 /* set pointer 10 bytes before UDP header */ 5300 tmp_uh = (uint32_t *)((uint8_t *)uh - 10); 5301 5302 /* calculate a pseudo header checksum over the first 10 bytes */ 5303 tmp_csum = in_pseudo(*tmp_uh, 5304 *(tmp_uh + 1), 5305 *(uint16_t *)(tmp_uh + 2)); 5306 5307 pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum)); 5308 } 5309 5310 return (hlen * 2); /* entire header length, number of bytes */ 5311 } 5312 5313 static void 5314 bxe_set_pbd_lso_e2(struct mbuf *m, 5315 uint32_t *parsing_data) 5316 { 5317 *parsing_data |= ((m->m_pkthdr.tso_segsz << 5318 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 5319 ETH_TX_PARSE_BD_E2_LSO_MSS); 5320 5321 /* XXX test for IPv6 with extension header... */ 5322 #if 0 5323 struct ip6_hdr *ip6; 5324 if (ip6 && ip6->ip6_nxt == 'some ipv6 extension header') 5325 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR; 5326 #endif 5327 } 5328 5329 static void 5330 bxe_set_pbd_lso(struct mbuf *m, 5331 struct eth_tx_parse_bd_e1x *pbd) 5332 { 5333 struct ether_vlan_header *eh = NULL; 5334 struct ip *ip = NULL; 5335 struct tcphdr *th = NULL; 5336 int e_hlen; 5337 5338 /* get the Ethernet header */ 5339 eh = mtod(m, struct ether_vlan_header *); 5340 5341 /* handle VLAN encapsulation if present */ 5342 e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ? 5343 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN; 5344 5345 /* get the IP and TCP header, with LSO entire header in first mbuf */ 5346 /* XXX assuming IPv4 */ 5347 ip = (struct ip *)(m->m_data + e_hlen); 5348 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 5349 5350 pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz); 5351 pbd->tcp_send_seq = ntohl(th->th_seq); 5352 pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff); 5353 5354 #if 1 5355 /* XXX IPv4 */ 5356 pbd->ip_id = ntohs(ip->ip_id); 5357 pbd->tcp_pseudo_csum = 5358 ntohs(in_pseudo(ip->ip_src.s_addr, 5359 ip->ip_dst.s_addr, 5360 htons(IPPROTO_TCP))); 5361 #else 5362 /* XXX IPv6 */ 5363 pbd->tcp_pseudo_csum = 5364 ntohs(in_pseudo(&ip6->ip6_src, 5365 &ip6->ip6_dst, 5366 htons(IPPROTO_TCP))); 5367 #endif 5368 5369 pbd->global_data |= 5370 htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 5371 } 5372 5373 /* 5374 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory 5375 * visible to the controller. 5376 * 5377 * If an mbuf is submitted to this routine and cannot be given to the 5378 * controller (e.g. it has too many fragments) then the function may free 5379 * the mbuf and return to the caller. 5380 * 5381 * Returns: 5382 * 0 = Success, !0 = Failure 5383 * Note the side effect that an mbuf may be freed if it causes a problem. 5384 */ 5385 static int 5386 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head) 5387 { 5388 bus_dma_segment_t segs[32]; 5389 struct mbuf *m0; 5390 struct bxe_sw_tx_bd *tx_buf; 5391 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 5392 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 5393 /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */ 5394 struct eth_tx_bd *tx_data_bd; 5395 struct eth_tx_bd *tx_total_pkt_size_bd; 5396 struct eth_tx_start_bd *tx_start_bd; 5397 uint16_t bd_prod, pkt_prod, total_pkt_size; 5398 uint8_t mac_type; 5399 int defragged, error, nsegs, rc, nbds, vlan_off, ovlan; 5400 struct bxe_softc *sc; 5401 uint16_t tx_bd_avail; 5402 struct ether_vlan_header *eh; 5403 uint32_t pbd_e2_parsing_data = 0; 5404 uint8_t hlen = 0; 5405 int tmp_bd; 5406 int i; 5407 5408 sc = fp->sc; 5409 5410 M_ASSERTPKTHDR(*m_head); 5411 5412 m0 = *m_head; 5413 rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0; 5414 tx_start_bd = NULL; 5415 tx_data_bd = NULL; 5416 tx_total_pkt_size_bd = NULL; 5417 5418 /* get the H/W pointer for packets and BDs */ 5419 pkt_prod = fp->tx_pkt_prod; 5420 bd_prod = fp->tx_bd_prod; 5421 5422 mac_type = UNICAST_ADDRESS; 5423 5424 /* map the mbuf into the next open DMAable memory */ 5425 tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)]; 5426 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5427 tx_buf->m_map, m0, 5428 segs, &nsegs, BUS_DMA_NOWAIT); 5429 5430 /* mapping errors */ 5431 if(__predict_false(error != 0)) { 5432 fp->eth_q_stats.tx_dma_mapping_failure++; 5433 if (error == ENOMEM) { 5434 /* resource issue, try again later */ 5435 rc = ENOMEM; 5436 } else if (error == EFBIG) { 5437 /* possibly recoverable with defragmentation */ 5438 fp->eth_q_stats.mbuf_defrag_attempts++; 5439 m0 = m_defrag(*m_head, M_NOWAIT); 5440 if (m0 == NULL) { 5441 fp->eth_q_stats.mbuf_defrag_failures++; 5442 rc = ENOBUFS; 5443 } else { 5444 /* defrag successful, try mapping again */ 5445 *m_head = m0; 5446 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5447 tx_buf->m_map, m0, 5448 segs, &nsegs, BUS_DMA_NOWAIT); 5449 if (error) { 5450 fp->eth_q_stats.tx_dma_mapping_failure++; 5451 rc = error; 5452 } 5453 } 5454 } else { 5455 /* unknown, unrecoverable mapping error */ 5456 BLOGE(sc, "Unknown TX mapping error rc=%d\n", error); 5457 bxe_dump_mbuf(sc, m0, FALSE); 5458 rc = error; 5459 } 5460 5461 goto bxe_tx_encap_continue; 5462 } 5463 5464 tx_bd_avail = bxe_tx_avail(sc, fp); 5465 5466 /* make sure there is enough room in the send queue */ 5467 if (__predict_false(tx_bd_avail < (nsegs + 2))) { 5468 /* Recoverable, try again later. */ 5469 fp->eth_q_stats.tx_hw_queue_full++; 5470 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5471 rc = ENOMEM; 5472 goto bxe_tx_encap_continue; 5473 } 5474 5475 /* capture the current H/W TX chain high watermark */ 5476 if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth < 5477 (TX_BD_USABLE - tx_bd_avail))) { 5478 fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail); 5479 } 5480 5481 /* make sure it fits in the packet window */ 5482 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5483 /* 5484 * The mbuf may be to big for the controller to handle. If the frame 5485 * is a TSO frame we'll need to do an additional check. 5486 */ 5487 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5488 if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) { 5489 goto bxe_tx_encap_continue; /* OK to send */ 5490 } else { 5491 fp->eth_q_stats.tx_window_violation_tso++; 5492 } 5493 } else { 5494 fp->eth_q_stats.tx_window_violation_std++; 5495 } 5496 5497 /* lets try to defragment this mbuf and remap it */ 5498 fp->eth_q_stats.mbuf_defrag_attempts++; 5499 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5500 5501 m0 = m_defrag(*m_head, M_NOWAIT); 5502 if (m0 == NULL) { 5503 fp->eth_q_stats.mbuf_defrag_failures++; 5504 /* Ugh, just drop the frame... :( */ 5505 rc = ENOBUFS; 5506 } else { 5507 /* defrag successful, try mapping again */ 5508 *m_head = m0; 5509 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5510 tx_buf->m_map, m0, 5511 segs, &nsegs, BUS_DMA_NOWAIT); 5512 if (error) { 5513 fp->eth_q_stats.tx_dma_mapping_failure++; 5514 /* No sense in trying to defrag/copy chain, drop it. :( */ 5515 rc = error; 5516 } 5517 else { 5518 /* if the chain is still too long then drop it */ 5519 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5520 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5521 rc = ENODEV; 5522 } 5523 } 5524 } 5525 } 5526 5527 bxe_tx_encap_continue: 5528 5529 /* Check for errors */ 5530 if (rc) { 5531 if (rc == ENOMEM) { 5532 /* recoverable try again later */ 5533 } else { 5534 fp->eth_q_stats.tx_soft_errors++; 5535 fp->eth_q_stats.mbuf_alloc_tx--; 5536 m_freem(*m_head); 5537 *m_head = NULL; 5538 } 5539 5540 return (rc); 5541 } 5542 5543 /* set flag according to packet type (UNICAST_ADDRESS is default) */ 5544 if (m0->m_flags & M_BCAST) { 5545 mac_type = BROADCAST_ADDRESS; 5546 } else if (m0->m_flags & M_MCAST) { 5547 mac_type = MULTICAST_ADDRESS; 5548 } 5549 5550 /* store the mbuf into the mbuf ring */ 5551 tx_buf->m = m0; 5552 tx_buf->first_bd = fp->tx_bd_prod; 5553 tx_buf->flags = 0; 5554 5555 /* prepare the first transmit (start) BD for the mbuf */ 5556 tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd; 5557 5558 BLOGD(sc, DBG_TX, 5559 "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n", 5560 pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd); 5561 5562 tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 5563 tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 5564 tx_start_bd->nbytes = htole16(segs[0].ds_len); 5565 total_pkt_size += tx_start_bd->nbytes; 5566 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 5567 5568 tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT); 5569 5570 /* all frames have at least Start BD + Parsing BD */ 5571 nbds = nsegs + 1; 5572 tx_start_bd->nbd = htole16(nbds); 5573 5574 if (m0->m_flags & M_VLANTAG) { 5575 tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag); 5576 tx_start_bd->bd_flags.as_bitfield |= 5577 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 5578 } else { 5579 /* vf tx, start bd must hold the ethertype for fw to enforce it */ 5580 if (IS_VF(sc)) { 5581 /* map ethernet header to find type and header length */ 5582 eh = mtod(m0, struct ether_vlan_header *); 5583 tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto; 5584 } else { 5585 /* used by FW for packet accounting */ 5586 tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod); 5587 #if 0 5588 /* 5589 * If NPAR-SD is active then FW should do the tagging regardless 5590 * of value of priority. Otherwise, if priority indicates this is 5591 * a control packet we need to indicate to FW to avoid tagging. 5592 */ 5593 if (!IS_MF_AFEX(sc) && (mbuf priority == PRIO_CONTROL)) { 5594 SET_FLAG(tx_start_bd->general_data, 5595 ETH_TX_START_BD_FORCE_VLAN_MODE, 1); 5596 } 5597 #endif 5598 } 5599 } 5600 5601 /* 5602 * add a parsing BD from the chain. The parsing BD is always added 5603 * though it is only used for TSO and chksum 5604 */ 5605 bd_prod = TX_BD_NEXT(bd_prod); 5606 5607 if (m0->m_pkthdr.csum_flags) { 5608 if (m0->m_pkthdr.csum_flags & CSUM_IP) { 5609 fp->eth_q_stats.tx_ofld_frames_csum_ip++; 5610 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM; 5611 } 5612 5613 if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) { 5614 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5615 ETH_TX_BD_FLAGS_L4_CSUM); 5616 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) { 5617 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5618 ETH_TX_BD_FLAGS_IS_UDP | 5619 ETH_TX_BD_FLAGS_L4_CSUM); 5620 } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) || 5621 (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5622 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 5623 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) { 5624 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM | 5625 ETH_TX_BD_FLAGS_IS_UDP); 5626 } 5627 } 5628 5629 if (!CHIP_IS_E1x(sc)) { 5630 pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2; 5631 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 5632 5633 if (m0->m_pkthdr.csum_flags) { 5634 hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data); 5635 } 5636 5637 #if 0 5638 /* 5639 * Add the MACs to the parsing BD if the module param was 5640 * explicitly set, if this is a vf, or in switch independent 5641 * mode. 5642 */ 5643 if (sc->flags & BXE_TX_SWITCHING || IS_VF(sc) || IS_MF_SI(sc)) { 5644 eh = mtod(m0, struct ether_vlan_header *); 5645 bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, 5646 &pbd_e2->data.mac_addr.src_mid, 5647 &pbd_e2->data.mac_addr.src_lo, 5648 eh->evl_shost); 5649 bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi, 5650 &pbd_e2->data.mac_addr.dst_mid, 5651 &pbd_e2->data.mac_addr.dst_lo, 5652 eh->evl_dhost); 5653 } 5654 #endif 5655 5656 SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, 5657 mac_type); 5658 } else { 5659 uint16_t global_data = 0; 5660 5661 pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x; 5662 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 5663 5664 if (m0->m_pkthdr.csum_flags) { 5665 hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x); 5666 } 5667 5668 SET_FLAG(global_data, 5669 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 5670 pbd_e1x->global_data |= htole16(global_data); 5671 } 5672 5673 /* setup the parsing BD with TSO specific info */ 5674 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5675 fp->eth_q_stats.tx_ofld_frames_lso++; 5676 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 5677 5678 if (__predict_false(tx_start_bd->nbytes > hlen)) { 5679 fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++; 5680 5681 /* split the first BD into header/data making the fw job easy */ 5682 nbds++; 5683 tx_start_bd->nbd = htole16(nbds); 5684 tx_start_bd->nbytes = htole16(hlen); 5685 5686 bd_prod = TX_BD_NEXT(bd_prod); 5687 5688 /* new transmit BD after the tx_parse_bd */ 5689 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5690 tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen)); 5691 tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen)); 5692 tx_data_bd->nbytes = htole16(segs[0].ds_len - hlen); 5693 if (tx_total_pkt_size_bd == NULL) { 5694 tx_total_pkt_size_bd = tx_data_bd; 5695 } 5696 5697 BLOGD(sc, DBG_TX, 5698 "TSO split header size is %d (%x:%x) nbds %d\n", 5699 le16toh(tx_start_bd->nbytes), 5700 le32toh(tx_start_bd->addr_hi), 5701 le32toh(tx_start_bd->addr_lo), 5702 nbds); 5703 } 5704 5705 if (!CHIP_IS_E1x(sc)) { 5706 bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data); 5707 } else { 5708 bxe_set_pbd_lso(m0, pbd_e1x); 5709 } 5710 } 5711 5712 if (pbd_e2_parsing_data) { 5713 pbd_e2->parsing_data = htole32(pbd_e2_parsing_data); 5714 } 5715 5716 /* prepare remaining BDs, start tx bd contains first seg/frag */ 5717 for (i = 1; i < nsegs ; i++) { 5718 bd_prod = TX_BD_NEXT(bd_prod); 5719 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5720 tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr)); 5721 tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr)); 5722 tx_data_bd->nbytes = htole16(segs[i].ds_len); 5723 if (tx_total_pkt_size_bd == NULL) { 5724 tx_total_pkt_size_bd = tx_data_bd; 5725 } 5726 total_pkt_size += tx_data_bd->nbytes; 5727 } 5728 5729 BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd); 5730 5731 if (tx_total_pkt_size_bd != NULL) { 5732 tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size; 5733 } 5734 5735 if (__predict_false(sc->debug & DBG_TX)) { 5736 tmp_bd = tx_buf->first_bd; 5737 for (i = 0; i < nbds; i++) 5738 { 5739 if (i == 0) { 5740 BLOGD(sc, DBG_TX, 5741 "TX Strt: %p bd=%d nbd=%d vlan=0x%x " 5742 "bd_flags=0x%x hdr_nbds=%d\n", 5743 tx_start_bd, 5744 tmp_bd, 5745 le16toh(tx_start_bd->nbd), 5746 le16toh(tx_start_bd->vlan_or_ethertype), 5747 tx_start_bd->bd_flags.as_bitfield, 5748 (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS)); 5749 } else if (i == 1) { 5750 if (pbd_e1x) { 5751 BLOGD(sc, DBG_TX, 5752 "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u " 5753 "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x " 5754 "tcp_seq=%u total_hlen_w=%u\n", 5755 pbd_e1x, 5756 tmp_bd, 5757 pbd_e1x->global_data, 5758 pbd_e1x->ip_hlen_w, 5759 pbd_e1x->ip_id, 5760 pbd_e1x->lso_mss, 5761 pbd_e1x->tcp_flags, 5762 pbd_e1x->tcp_pseudo_csum, 5763 pbd_e1x->tcp_send_seq, 5764 le16toh(pbd_e1x->total_hlen_w)); 5765 } else { /* if (pbd_e2) */ 5766 BLOGD(sc, DBG_TX, 5767 "-> Parse: %p bd=%d dst=%02x:%02x:%02x " 5768 "src=%02x:%02x:%02x parsing_data=0x%x\n", 5769 pbd_e2, 5770 tmp_bd, 5771 pbd_e2->data.mac_addr.dst_hi, 5772 pbd_e2->data.mac_addr.dst_mid, 5773 pbd_e2->data.mac_addr.dst_lo, 5774 pbd_e2->data.mac_addr.src_hi, 5775 pbd_e2->data.mac_addr.src_mid, 5776 pbd_e2->data.mac_addr.src_lo, 5777 pbd_e2->parsing_data); 5778 } 5779 } 5780 5781 if (i != 1) { /* skip parse db as it doesn't hold data */ 5782 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd; 5783 BLOGD(sc, DBG_TX, 5784 "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n", 5785 tx_data_bd, 5786 tmp_bd, 5787 le16toh(tx_data_bd->nbytes), 5788 le32toh(tx_data_bd->addr_hi), 5789 le32toh(tx_data_bd->addr_lo)); 5790 } 5791 5792 tmp_bd = TX_BD_NEXT(tmp_bd); 5793 } 5794 } 5795 5796 BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod); 5797 5798 /* update TX BD producer index value for next TX */ 5799 bd_prod = TX_BD_NEXT(bd_prod); 5800 5801 /* 5802 * If the chain of tx_bd's describing this frame is adjacent to or spans 5803 * an eth_tx_next_bd element then we need to increment the nbds value. 5804 */ 5805 if (TX_BD_IDX(bd_prod) < nbds) { 5806 nbds++; 5807 } 5808 5809 /* don't allow reordering of writes for nbd and packets */ 5810 mb(); 5811 5812 fp->tx_db.data.prod += nbds; 5813 5814 /* producer points to the next free tx_bd at this point */ 5815 fp->tx_pkt_prod++; 5816 fp->tx_bd_prod = bd_prod; 5817 5818 DOORBELL(sc, fp->index, fp->tx_db.raw); 5819 5820 fp->eth_q_stats.tx_pkts++; 5821 5822 /* Prevent speculative reads from getting ahead of the status block. */ 5823 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 5824 0, 0, BUS_SPACE_BARRIER_READ); 5825 5826 /* Prevent speculative reads from getting ahead of the doorbell. */ 5827 bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle, 5828 0, 0, BUS_SPACE_BARRIER_READ); 5829 5830 return (0); 5831 } 5832 5833 static void 5834 bxe_tx_start_locked(struct bxe_softc *sc, 5835 if_t ifp, 5836 struct bxe_fastpath *fp) 5837 { 5838 struct mbuf *m = NULL; 5839 int tx_count = 0; 5840 uint16_t tx_bd_avail; 5841 5842 BXE_FP_TX_LOCK_ASSERT(fp); 5843 5844 /* keep adding entries while there are frames to send */ 5845 while (!if_sendq_empty(ifp)) { 5846 5847 /* 5848 * check for any frames to send 5849 * dequeue can still be NULL even if queue is not empty 5850 */ 5851 m = if_dequeue(ifp); 5852 if (__predict_false(m == NULL)) { 5853 break; 5854 } 5855 5856 /* the mbuf now belongs to us */ 5857 fp->eth_q_stats.mbuf_alloc_tx++; 5858 5859 /* 5860 * Put the frame into the transmit ring. If we don't have room, 5861 * place the mbuf back at the head of the TX queue, set the 5862 * OACTIVE flag, and wait for the NIC to drain the chain. 5863 */ 5864 if (__predict_false(bxe_tx_encap(fp, &m))) { 5865 fp->eth_q_stats.tx_encap_failures++; 5866 if (m != NULL) { 5867 /* mark the TX queue as full and return the frame */ 5868 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5869 if_sendq_prepend(ifp, m); 5870 fp->eth_q_stats.mbuf_alloc_tx--; 5871 fp->eth_q_stats.tx_queue_xoff++; 5872 } 5873 5874 /* stop looking for more work */ 5875 break; 5876 } 5877 5878 /* the frame was enqueued successfully */ 5879 tx_count++; 5880 5881 /* send a copy of the frame to any BPF listeners. */ 5882 if_etherbpfmtap(ifp, m); 5883 5884 tx_bd_avail = bxe_tx_avail(sc, fp); 5885 5886 /* handle any completions if we're running low */ 5887 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5888 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5889 bxe_txeof(sc, fp); 5890 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5891 break; 5892 } 5893 } 5894 } 5895 5896 /* all TX packets were dequeued and/or the tx ring is full */ 5897 if (tx_count > 0) { 5898 /* reset the TX watchdog timeout timer */ 5899 fp->watchdog_timer = BXE_TX_TIMEOUT; 5900 } 5901 } 5902 5903 /* Legacy (non-RSS) dispatch routine */ 5904 static void 5905 bxe_tx_start(if_t ifp) 5906 { 5907 struct bxe_softc *sc; 5908 struct bxe_fastpath *fp; 5909 5910 sc = if_getsoftc(ifp); 5911 5912 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 5913 BLOGW(sc, "Interface not running, ignoring transmit request\n"); 5914 return; 5915 } 5916 5917 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5918 BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n"); 5919 return; 5920 } 5921 5922 if (!sc->link_vars.link_up) { 5923 BLOGW(sc, "Interface link is down, ignoring transmit request\n"); 5924 return; 5925 } 5926 5927 fp = &sc->fp[0]; 5928 5929 BXE_FP_TX_LOCK(fp); 5930 bxe_tx_start_locked(sc, ifp, fp); 5931 BXE_FP_TX_UNLOCK(fp); 5932 } 5933 5934 #if __FreeBSD_version >= 800000 5935 5936 static int 5937 bxe_tx_mq_start_locked(struct bxe_softc *sc, 5938 if_t ifp, 5939 struct bxe_fastpath *fp, 5940 struct mbuf *m) 5941 { 5942 struct buf_ring *tx_br = fp->tx_br; 5943 struct mbuf *next; 5944 int depth, rc, tx_count; 5945 uint16_t tx_bd_avail; 5946 5947 rc = tx_count = 0; 5948 5949 if (!tx_br) { 5950 BLOGE(sc, "Multiqueue TX and no buf_ring!\n"); 5951 return (EINVAL); 5952 } 5953 5954 /* fetch the depth of the driver queue */ 5955 depth = drbr_inuse_drv(ifp, tx_br); 5956 if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) { 5957 fp->eth_q_stats.tx_max_drbr_queue_depth = depth; 5958 } 5959 5960 BXE_FP_TX_LOCK_ASSERT(fp); 5961 5962 if (m == NULL) { 5963 /* no new work, check for pending frames */ 5964 next = drbr_dequeue_drv(ifp, tx_br); 5965 } else if (drbr_needs_enqueue_drv(ifp, tx_br)) { 5966 /* have both new and pending work, maintain packet order */ 5967 rc = drbr_enqueue_drv(ifp, tx_br, m); 5968 if (rc != 0) { 5969 fp->eth_q_stats.tx_soft_errors++; 5970 goto bxe_tx_mq_start_locked_exit; 5971 } 5972 next = drbr_dequeue_drv(ifp, tx_br); 5973 } else { 5974 /* new work only and nothing pending */ 5975 next = m; 5976 } 5977 5978 /* keep adding entries while there are frames to send */ 5979 while (next != NULL) { 5980 5981 /* the mbuf now belongs to us */ 5982 fp->eth_q_stats.mbuf_alloc_tx++; 5983 5984 /* 5985 * Put the frame into the transmit ring. If we don't have room, 5986 * place the mbuf back at the head of the TX queue, set the 5987 * OACTIVE flag, and wait for the NIC to drain the chain. 5988 */ 5989 rc = bxe_tx_encap(fp, &next); 5990 if (__predict_false(rc != 0)) { 5991 fp->eth_q_stats.tx_encap_failures++; 5992 if (next != NULL) { 5993 /* mark the TX queue as full and save the frame */ 5994 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5995 /* XXX this may reorder the frame */ 5996 rc = drbr_enqueue_drv(ifp, tx_br, next); 5997 fp->eth_q_stats.mbuf_alloc_tx--; 5998 fp->eth_q_stats.tx_frames_deferred++; 5999 } 6000 6001 /* stop looking for more work */ 6002 break; 6003 } 6004 6005 /* the transmit frame was enqueued successfully */ 6006 tx_count++; 6007 6008 /* send a copy of the frame to any BPF listeners */ 6009 if_etherbpfmtap(ifp, next); 6010 6011 tx_bd_avail = bxe_tx_avail(sc, fp); 6012 6013 /* handle any completions if we're running low */ 6014 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 6015 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 6016 bxe_txeof(sc, fp); 6017 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 6018 break; 6019 } 6020 } 6021 6022 next = drbr_dequeue_drv(ifp, tx_br); 6023 } 6024 6025 /* all TX packets were dequeued and/or the tx ring is full */ 6026 if (tx_count > 0) { 6027 /* reset the TX watchdog timeout timer */ 6028 fp->watchdog_timer = BXE_TX_TIMEOUT; 6029 } 6030 6031 bxe_tx_mq_start_locked_exit: 6032 6033 return (rc); 6034 } 6035 6036 /* Multiqueue (TSS) dispatch routine. */ 6037 static int 6038 bxe_tx_mq_start(struct ifnet *ifp, 6039 struct mbuf *m) 6040 { 6041 struct bxe_softc *sc = if_getsoftc(ifp); 6042 struct bxe_fastpath *fp; 6043 int fp_index, rc; 6044 6045 fp_index = 0; /* default is the first queue */ 6046 6047 /* check if flowid is set */ 6048 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 6049 fp_index = (m->m_pkthdr.flowid % sc->num_queues); 6050 6051 fp = &sc->fp[fp_index]; 6052 6053 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 6054 BLOGW(sc, "Interface not running, ignoring transmit request\n"); 6055 return (ENETDOWN); 6056 } 6057 6058 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 6059 BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n"); 6060 return (EBUSY); 6061 } 6062 6063 if (!sc->link_vars.link_up) { 6064 BLOGW(sc, "Interface link is down, ignoring transmit request\n"); 6065 return (ENETDOWN); 6066 } 6067 6068 /* XXX change to TRYLOCK here and if failed then schedule taskqueue */ 6069 6070 BXE_FP_TX_LOCK(fp); 6071 rc = bxe_tx_mq_start_locked(sc, ifp, fp, m); 6072 BXE_FP_TX_UNLOCK(fp); 6073 6074 return (rc); 6075 } 6076 6077 static void 6078 bxe_mq_flush(struct ifnet *ifp) 6079 { 6080 struct bxe_softc *sc = if_getsoftc(ifp); 6081 struct bxe_fastpath *fp; 6082 struct mbuf *m; 6083 int i; 6084 6085 for (i = 0; i < sc->num_queues; i++) { 6086 fp = &sc->fp[i]; 6087 6088 if (fp->state != BXE_FP_STATE_OPEN) { 6089 BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n", 6090 fp->index, fp->state); 6091 continue; 6092 } 6093 6094 if (fp->tx_br != NULL) { 6095 BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index); 6096 BXE_FP_TX_LOCK(fp); 6097 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { 6098 m_freem(m); 6099 } 6100 BXE_FP_TX_UNLOCK(fp); 6101 } 6102 } 6103 6104 if_qflush(ifp); 6105 } 6106 6107 #endif /* FreeBSD_version >= 800000 */ 6108 6109 static uint16_t 6110 bxe_cid_ilt_lines(struct bxe_softc *sc) 6111 { 6112 if (IS_SRIOV(sc)) { 6113 return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS); 6114 } 6115 return (L2_ILT_LINES(sc)); 6116 } 6117 6118 static void 6119 bxe_ilt_set_info(struct bxe_softc *sc) 6120 { 6121 struct ilt_client_info *ilt_client; 6122 struct ecore_ilt *ilt = sc->ilt; 6123 uint16_t line = 0; 6124 6125 ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc)); 6126 BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line); 6127 6128 /* CDU */ 6129 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 6130 ilt_client->client_num = ILT_CLIENT_CDU; 6131 ilt_client->page_size = CDU_ILT_PAGE_SZ; 6132 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 6133 ilt_client->start = line; 6134 line += bxe_cid_ilt_lines(sc); 6135 6136 if (CNIC_SUPPORT(sc)) { 6137 line += CNIC_ILT_LINES; 6138 } 6139 6140 ilt_client->end = (line - 1); 6141 6142 BLOGD(sc, DBG_LOAD, 6143 "ilt client[CDU]: start %d, end %d, " 6144 "psz 0x%x, flags 0x%x, hw psz %d\n", 6145 ilt_client->start, ilt_client->end, 6146 ilt_client->page_size, 6147 ilt_client->flags, 6148 ilog2(ilt_client->page_size >> 12)); 6149 6150 /* QM */ 6151 if (QM_INIT(sc->qm_cid_count)) { 6152 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 6153 ilt_client->client_num = ILT_CLIENT_QM; 6154 ilt_client->page_size = QM_ILT_PAGE_SZ; 6155 ilt_client->flags = 0; 6156 ilt_client->start = line; 6157 6158 /* 4 bytes for each cid */ 6159 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 6160 QM_ILT_PAGE_SZ); 6161 6162 ilt_client->end = (line - 1); 6163 6164 BLOGD(sc, DBG_LOAD, 6165 "ilt client[QM]: start %d, end %d, " 6166 "psz 0x%x, flags 0x%x, hw psz %d\n", 6167 ilt_client->start, ilt_client->end, 6168 ilt_client->page_size, ilt_client->flags, 6169 ilog2(ilt_client->page_size >> 12)); 6170 } 6171 6172 if (CNIC_SUPPORT(sc)) { 6173 /* SRC */ 6174 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 6175 ilt_client->client_num = ILT_CLIENT_SRC; 6176 ilt_client->page_size = SRC_ILT_PAGE_SZ; 6177 ilt_client->flags = 0; 6178 ilt_client->start = line; 6179 line += SRC_ILT_LINES; 6180 ilt_client->end = (line - 1); 6181 6182 BLOGD(sc, DBG_LOAD, 6183 "ilt client[SRC]: start %d, end %d, " 6184 "psz 0x%x, flags 0x%x, hw psz %d\n", 6185 ilt_client->start, ilt_client->end, 6186 ilt_client->page_size, ilt_client->flags, 6187 ilog2(ilt_client->page_size >> 12)); 6188 6189 /* TM */ 6190 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 6191 ilt_client->client_num = ILT_CLIENT_TM; 6192 ilt_client->page_size = TM_ILT_PAGE_SZ; 6193 ilt_client->flags = 0; 6194 ilt_client->start = line; 6195 line += TM_ILT_LINES; 6196 ilt_client->end = (line - 1); 6197 6198 BLOGD(sc, DBG_LOAD, 6199 "ilt client[TM]: start %d, end %d, " 6200 "psz 0x%x, flags 0x%x, hw psz %d\n", 6201 ilt_client->start, ilt_client->end, 6202 ilt_client->page_size, ilt_client->flags, 6203 ilog2(ilt_client->page_size >> 12)); 6204 } 6205 6206 KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!")); 6207 } 6208 6209 static void 6210 bxe_set_fp_rx_buf_size(struct bxe_softc *sc) 6211 { 6212 int i; 6213 6214 BLOGD(sc, DBG_LOAD, "mtu = %d\n", sc->mtu); 6215 6216 for (i = 0; i < sc->num_queues; i++) { 6217 /* get the Rx buffer size for RX frames */ 6218 sc->fp[i].rx_buf_size = 6219 (IP_HEADER_ALIGNMENT_PADDING + 6220 ETH_OVERHEAD + 6221 sc->mtu); 6222 6223 BLOGD(sc, DBG_LOAD, "rx_buf_size for fp[%02d] = %d\n", 6224 i, sc->fp[i].rx_buf_size); 6225 6226 /* get the mbuf allocation size for RX frames */ 6227 if (sc->fp[i].rx_buf_size <= MCLBYTES) { 6228 sc->fp[i].mbuf_alloc_size = MCLBYTES; 6229 } else if (sc->fp[i].rx_buf_size <= BCM_PAGE_SIZE) { 6230 sc->fp[i].mbuf_alloc_size = PAGE_SIZE; 6231 } else { 6232 sc->fp[i].mbuf_alloc_size = MJUM9BYTES; 6233 } 6234 6235 BLOGD(sc, DBG_LOAD, "mbuf_alloc_size for fp[%02d] = %d\n", 6236 i, sc->fp[i].mbuf_alloc_size); 6237 } 6238 } 6239 6240 static int 6241 bxe_alloc_ilt_mem(struct bxe_softc *sc) 6242 { 6243 int rc = 0; 6244 6245 if ((sc->ilt = 6246 (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt), 6247 M_BXE_ILT, 6248 (M_NOWAIT | M_ZERO))) == NULL) { 6249 rc = 1; 6250 } 6251 6252 return (rc); 6253 } 6254 6255 static int 6256 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc) 6257 { 6258 int rc = 0; 6259 6260 if ((sc->ilt->lines = 6261 (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES), 6262 M_BXE_ILT, 6263 (M_NOWAIT | M_ZERO))) == NULL) { 6264 rc = 1; 6265 } 6266 6267 return (rc); 6268 } 6269 6270 static void 6271 bxe_free_ilt_mem(struct bxe_softc *sc) 6272 { 6273 if (sc->ilt != NULL) { 6274 free(sc->ilt, M_BXE_ILT); 6275 sc->ilt = NULL; 6276 } 6277 } 6278 6279 static void 6280 bxe_free_ilt_lines_mem(struct bxe_softc *sc) 6281 { 6282 if (sc->ilt->lines != NULL) { 6283 free(sc->ilt->lines, M_BXE_ILT); 6284 sc->ilt->lines = NULL; 6285 } 6286 } 6287 6288 static void 6289 bxe_free_mem(struct bxe_softc *sc) 6290 { 6291 int i; 6292 6293 #if 0 6294 if (!CONFIGURE_NIC_MODE(sc)) { 6295 /* free searcher T2 table */ 6296 bxe_dma_free(sc, &sc->t2); 6297 } 6298 #endif 6299 6300 for (i = 0; i < L2_ILT_LINES(sc); i++) { 6301 bxe_dma_free(sc, &sc->context[i].vcxt_dma); 6302 sc->context[i].vcxt = NULL; 6303 sc->context[i].size = 0; 6304 } 6305 6306 ecore_ilt_mem_op(sc, ILT_MEMOP_FREE); 6307 6308 bxe_free_ilt_lines_mem(sc); 6309 6310 #if 0 6311 bxe_iov_free_mem(sc); 6312 #endif 6313 } 6314 6315 static int 6316 bxe_alloc_mem(struct bxe_softc *sc) 6317 { 6318 int context_size; 6319 int allocated; 6320 int i; 6321 6322 #if 0 6323 if (!CONFIGURE_NIC_MODE(sc)) { 6324 /* allocate searcher T2 table */ 6325 if (bxe_dma_alloc(sc, SRC_T2_SZ, 6326 &sc->t2, "searcher t2 table") != 0) { 6327 return (-1); 6328 } 6329 } 6330 #endif 6331 6332 /* 6333 * Allocate memory for CDU context: 6334 * This memory is allocated separately and not in the generic ILT 6335 * functions because CDU differs in few aspects: 6336 * 1. There can be multiple entities allocating memory for context - 6337 * regular L2, CNIC, and SRIOV drivers. Each separately controls 6338 * its own ILT lines. 6339 * 2. Since CDU page-size is not a single 4KB page (which is the case 6340 * for the other ILT clients), to be efficient we want to support 6341 * allocation of sub-page-size in the last entry. 6342 * 3. Context pointers are used by the driver to pass to FW / update 6343 * the context (for the other ILT clients the pointers are used just to 6344 * free the memory during unload). 6345 */ 6346 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc)); 6347 for (i = 0, allocated = 0; allocated < context_size; i++) { 6348 sc->context[i].size = min(CDU_ILT_PAGE_SZ, 6349 (context_size - allocated)); 6350 6351 if (bxe_dma_alloc(sc, sc->context[i].size, 6352 &sc->context[i].vcxt_dma, 6353 "cdu context") != 0) { 6354 bxe_free_mem(sc); 6355 return (-1); 6356 } 6357 6358 sc->context[i].vcxt = 6359 (union cdu_context *)sc->context[i].vcxt_dma.vaddr; 6360 6361 allocated += sc->context[i].size; 6362 } 6363 6364 bxe_alloc_ilt_lines_mem(sc); 6365 6366 BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n", 6367 sc->ilt, sc->ilt->start_line, sc->ilt->lines); 6368 { 6369 for (i = 0; i < 4; i++) { 6370 BLOGD(sc, DBG_LOAD, 6371 "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n", 6372 i, 6373 sc->ilt->clients[i].page_size, 6374 sc->ilt->clients[i].start, 6375 sc->ilt->clients[i].end, 6376 sc->ilt->clients[i].client_num, 6377 sc->ilt->clients[i].flags); 6378 } 6379 } 6380 if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) { 6381 BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n"); 6382 bxe_free_mem(sc); 6383 return (-1); 6384 } 6385 6386 #if 0 6387 if (bxe_iov_alloc_mem(sc)) { 6388 BLOGE(sc, "Failed to allocate memory for SRIOV\n"); 6389 bxe_free_mem(sc); 6390 return (-1); 6391 } 6392 #endif 6393 6394 return (0); 6395 } 6396 6397 static void 6398 bxe_free_rx_bd_chain(struct bxe_fastpath *fp) 6399 { 6400 struct bxe_softc *sc; 6401 int i; 6402 6403 sc = fp->sc; 6404 6405 if (fp->rx_mbuf_tag == NULL) { 6406 return; 6407 } 6408 6409 /* free all mbufs and unload all maps */ 6410 for (i = 0; i < RX_BD_TOTAL; i++) { 6411 if (fp->rx_mbuf_chain[i].m_map != NULL) { 6412 bus_dmamap_sync(fp->rx_mbuf_tag, 6413 fp->rx_mbuf_chain[i].m_map, 6414 BUS_DMASYNC_POSTREAD); 6415 bus_dmamap_unload(fp->rx_mbuf_tag, 6416 fp->rx_mbuf_chain[i].m_map); 6417 } 6418 6419 if (fp->rx_mbuf_chain[i].m != NULL) { 6420 m_freem(fp->rx_mbuf_chain[i].m); 6421 fp->rx_mbuf_chain[i].m = NULL; 6422 fp->eth_q_stats.mbuf_alloc_rx--; 6423 } 6424 } 6425 } 6426 6427 static void 6428 bxe_free_tpa_pool(struct bxe_fastpath *fp) 6429 { 6430 struct bxe_softc *sc; 6431 int i, max_agg_queues; 6432 6433 sc = fp->sc; 6434 6435 if (fp->rx_mbuf_tag == NULL) { 6436 return; 6437 } 6438 6439 max_agg_queues = MAX_AGG_QS(sc); 6440 6441 /* release all mbufs and unload all DMA maps in the TPA pool */ 6442 for (i = 0; i < max_agg_queues; i++) { 6443 if (fp->rx_tpa_info[i].bd.m_map != NULL) { 6444 bus_dmamap_sync(fp->rx_mbuf_tag, 6445 fp->rx_tpa_info[i].bd.m_map, 6446 BUS_DMASYNC_POSTREAD); 6447 bus_dmamap_unload(fp->rx_mbuf_tag, 6448 fp->rx_tpa_info[i].bd.m_map); 6449 } 6450 6451 if (fp->rx_tpa_info[i].bd.m != NULL) { 6452 m_freem(fp->rx_tpa_info[i].bd.m); 6453 fp->rx_tpa_info[i].bd.m = NULL; 6454 fp->eth_q_stats.mbuf_alloc_tpa--; 6455 } 6456 } 6457 } 6458 6459 static void 6460 bxe_free_sge_chain(struct bxe_fastpath *fp) 6461 { 6462 struct bxe_softc *sc; 6463 int i; 6464 6465 sc = fp->sc; 6466 6467 if (fp->rx_sge_mbuf_tag == NULL) { 6468 return; 6469 } 6470 6471 /* rree all mbufs and unload all maps */ 6472 for (i = 0; i < RX_SGE_TOTAL; i++) { 6473 if (fp->rx_sge_mbuf_chain[i].m_map != NULL) { 6474 bus_dmamap_sync(fp->rx_sge_mbuf_tag, 6475 fp->rx_sge_mbuf_chain[i].m_map, 6476 BUS_DMASYNC_POSTREAD); 6477 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 6478 fp->rx_sge_mbuf_chain[i].m_map); 6479 } 6480 6481 if (fp->rx_sge_mbuf_chain[i].m != NULL) { 6482 m_freem(fp->rx_sge_mbuf_chain[i].m); 6483 fp->rx_sge_mbuf_chain[i].m = NULL; 6484 fp->eth_q_stats.mbuf_alloc_sge--; 6485 } 6486 } 6487 } 6488 6489 static void 6490 bxe_free_fp_buffers(struct bxe_softc *sc) 6491 { 6492 struct bxe_fastpath *fp; 6493 int i; 6494 6495 for (i = 0; i < sc->num_queues; i++) { 6496 fp = &sc->fp[i]; 6497 6498 #if __FreeBSD_version >= 800000 6499 if (fp->tx_br != NULL) { 6500 struct mbuf *m; 6501 /* just in case bxe_mq_flush() wasn't called */ 6502 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { 6503 m_freem(m); 6504 } 6505 buf_ring_free(fp->tx_br, M_DEVBUF); 6506 fp->tx_br = NULL; 6507 } 6508 #endif 6509 6510 /* free all RX buffers */ 6511 bxe_free_rx_bd_chain(fp); 6512 bxe_free_tpa_pool(fp); 6513 bxe_free_sge_chain(fp); 6514 6515 if (fp->eth_q_stats.mbuf_alloc_rx != 0) { 6516 BLOGE(sc, "failed to claim all rx mbufs (%d left)\n", 6517 fp->eth_q_stats.mbuf_alloc_rx); 6518 } 6519 6520 if (fp->eth_q_stats.mbuf_alloc_sge != 0) { 6521 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6522 fp->eth_q_stats.mbuf_alloc_sge); 6523 } 6524 6525 if (fp->eth_q_stats.mbuf_alloc_tpa != 0) { 6526 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6527 fp->eth_q_stats.mbuf_alloc_tpa); 6528 } 6529 6530 if (fp->eth_q_stats.mbuf_alloc_tx != 0) { 6531 BLOGE(sc, "failed to release tx mbufs (%d left)\n", 6532 fp->eth_q_stats.mbuf_alloc_tx); 6533 } 6534 6535 /* XXX verify all mbufs were reclaimed */ 6536 6537 if (mtx_initialized(&fp->tx_mtx)) { 6538 mtx_destroy(&fp->tx_mtx); 6539 } 6540 6541 if (mtx_initialized(&fp->rx_mtx)) { 6542 mtx_destroy(&fp->rx_mtx); 6543 } 6544 } 6545 } 6546 6547 static int 6548 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 6549 uint16_t prev_index, 6550 uint16_t index) 6551 { 6552 struct bxe_sw_rx_bd *rx_buf; 6553 struct eth_rx_bd *rx_bd; 6554 bus_dma_segment_t segs[1]; 6555 bus_dmamap_t map; 6556 struct mbuf *m; 6557 int nsegs, rc; 6558 6559 rc = 0; 6560 6561 /* allocate the new RX BD mbuf */ 6562 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6563 if (__predict_false(m == NULL)) { 6564 fp->eth_q_stats.mbuf_rx_bd_alloc_failed++; 6565 return (ENOBUFS); 6566 } 6567 6568 fp->eth_q_stats.mbuf_alloc_rx++; 6569 6570 /* initialize the mbuf buffer length */ 6571 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6572 6573 /* map the mbuf into non-paged pool */ 6574 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6575 fp->rx_mbuf_spare_map, 6576 m, segs, &nsegs, BUS_DMA_NOWAIT); 6577 if (__predict_false(rc != 0)) { 6578 fp->eth_q_stats.mbuf_rx_bd_mapping_failed++; 6579 m_freem(m); 6580 fp->eth_q_stats.mbuf_alloc_rx--; 6581 return (rc); 6582 } 6583 6584 /* all mbufs must map to a single segment */ 6585 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6586 6587 /* release any existing RX BD mbuf mappings */ 6588 6589 if (prev_index != index) { 6590 rx_buf = &fp->rx_mbuf_chain[prev_index]; 6591 6592 if (rx_buf->m_map != NULL) { 6593 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6594 BUS_DMASYNC_POSTREAD); 6595 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6596 } 6597 6598 /* 6599 * We only get here from bxe_rxeof() when the maximum number 6600 * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already 6601 * holds the mbuf in the prev_index so it's OK to NULL it out 6602 * here without concern of a memory leak. 6603 */ 6604 fp->rx_mbuf_chain[prev_index].m = NULL; 6605 } 6606 6607 rx_buf = &fp->rx_mbuf_chain[index]; 6608 6609 if (rx_buf->m_map != NULL) { 6610 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6611 BUS_DMASYNC_POSTREAD); 6612 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6613 } 6614 6615 /* save the mbuf and mapping info for a future packet */ 6616 map = (prev_index != index) ? 6617 fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map; 6618 rx_buf->m_map = fp->rx_mbuf_spare_map; 6619 fp->rx_mbuf_spare_map = map; 6620 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6621 BUS_DMASYNC_PREREAD); 6622 rx_buf->m = m; 6623 6624 rx_bd = &fp->rx_chain[index]; 6625 rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6626 rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6627 6628 return (rc); 6629 } 6630 6631 static int 6632 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 6633 int queue) 6634 { 6635 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 6636 bus_dma_segment_t segs[1]; 6637 bus_dmamap_t map; 6638 struct mbuf *m; 6639 int nsegs; 6640 int rc = 0; 6641 6642 /* allocate the new TPA mbuf */ 6643 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6644 if (__predict_false(m == NULL)) { 6645 fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++; 6646 return (ENOBUFS); 6647 } 6648 6649 fp->eth_q_stats.mbuf_alloc_tpa++; 6650 6651 /* initialize the mbuf buffer length */ 6652 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6653 6654 /* map the mbuf into non-paged pool */ 6655 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6656 fp->rx_tpa_info_mbuf_spare_map, 6657 m, segs, &nsegs, BUS_DMA_NOWAIT); 6658 if (__predict_false(rc != 0)) { 6659 fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++; 6660 m_free(m); 6661 fp->eth_q_stats.mbuf_alloc_tpa--; 6662 return (rc); 6663 } 6664 6665 /* all mbufs must map to a single segment */ 6666 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6667 6668 /* release any existing TPA mbuf mapping */ 6669 if (tpa_info->bd.m_map != NULL) { 6670 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6671 BUS_DMASYNC_POSTREAD); 6672 bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map); 6673 } 6674 6675 /* save the mbuf and mapping info for the TPA mbuf */ 6676 map = tpa_info->bd.m_map; 6677 tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map; 6678 fp->rx_tpa_info_mbuf_spare_map = map; 6679 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6680 BUS_DMASYNC_PREREAD); 6681 tpa_info->bd.m = m; 6682 tpa_info->seg = segs[0]; 6683 6684 return (rc); 6685 } 6686 6687 /* 6688 * Allocate an mbuf and assign it to the receive scatter gather chain. The 6689 * caller must take care to save a copy of the existing mbuf in the SG mbuf 6690 * chain. 6691 */ 6692 static int 6693 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 6694 uint16_t index) 6695 { 6696 struct bxe_sw_rx_bd *sge_buf; 6697 struct eth_rx_sge *sge; 6698 bus_dma_segment_t segs[1]; 6699 bus_dmamap_t map; 6700 struct mbuf *m; 6701 int nsegs; 6702 int rc = 0; 6703 6704 /* allocate a new SGE mbuf */ 6705 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE); 6706 if (__predict_false(m == NULL)) { 6707 fp->eth_q_stats.mbuf_rx_sge_alloc_failed++; 6708 return (ENOMEM); 6709 } 6710 6711 fp->eth_q_stats.mbuf_alloc_sge++; 6712 6713 /* initialize the mbuf buffer length */ 6714 m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE; 6715 6716 /* map the SGE mbuf into non-paged pool */ 6717 rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag, 6718 fp->rx_sge_mbuf_spare_map, 6719 m, segs, &nsegs, BUS_DMA_NOWAIT); 6720 if (__predict_false(rc != 0)) { 6721 fp->eth_q_stats.mbuf_rx_sge_mapping_failed++; 6722 m_freem(m); 6723 fp->eth_q_stats.mbuf_alloc_sge--; 6724 return (rc); 6725 } 6726 6727 /* all mbufs must map to a single segment */ 6728 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6729 6730 sge_buf = &fp->rx_sge_mbuf_chain[index]; 6731 6732 /* release any existing SGE mbuf mapping */ 6733 if (sge_buf->m_map != NULL) { 6734 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6735 BUS_DMASYNC_POSTREAD); 6736 bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map); 6737 } 6738 6739 /* save the mbuf and mapping info for a future packet */ 6740 map = sge_buf->m_map; 6741 sge_buf->m_map = fp->rx_sge_mbuf_spare_map; 6742 fp->rx_sge_mbuf_spare_map = map; 6743 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6744 BUS_DMASYNC_PREREAD); 6745 sge_buf->m = m; 6746 6747 sge = &fp->rx_sge_chain[index]; 6748 sge->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6749 sge->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6750 6751 return (rc); 6752 } 6753 6754 static __noinline int 6755 bxe_alloc_fp_buffers(struct bxe_softc *sc) 6756 { 6757 struct bxe_fastpath *fp; 6758 int i, j, rc = 0; 6759 int ring_prod, cqe_ring_prod; 6760 int max_agg_queues; 6761 6762 for (i = 0; i < sc->num_queues; i++) { 6763 fp = &sc->fp[i]; 6764 6765 #if __FreeBSD_version >= 800000 6766 fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF, 6767 M_NOWAIT, &fp->tx_mtx); 6768 if (fp->tx_br == NULL) { 6769 BLOGE(sc, "buf_ring alloc fail for fp[%02d]\n", i); 6770 goto bxe_alloc_fp_buffers_error; 6771 } 6772 #endif 6773 6774 ring_prod = cqe_ring_prod = 0; 6775 fp->rx_bd_cons = 0; 6776 fp->rx_cq_cons = 0; 6777 6778 /* allocate buffers for the RX BDs in RX BD chain */ 6779 for (j = 0; j < sc->max_rx_bufs; j++) { 6780 rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod); 6781 if (rc != 0) { 6782 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 6783 i, rc); 6784 goto bxe_alloc_fp_buffers_error; 6785 } 6786 6787 ring_prod = RX_BD_NEXT(ring_prod); 6788 cqe_ring_prod = RCQ_NEXT(cqe_ring_prod); 6789 } 6790 6791 fp->rx_bd_prod = ring_prod; 6792 fp->rx_cq_prod = cqe_ring_prod; 6793 fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0; 6794 6795 if (if_getcapenable(sc->ifp) & IFCAP_LRO) { 6796 max_agg_queues = MAX_AGG_QS(sc); 6797 6798 fp->tpa_enable = TRUE; 6799 6800 /* fill the TPA pool */ 6801 for (j = 0; j < max_agg_queues; j++) { 6802 rc = bxe_alloc_rx_tpa_mbuf(fp, j); 6803 if (rc != 0) { 6804 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n", 6805 i, j); 6806 fp->tpa_enable = FALSE; 6807 goto bxe_alloc_fp_buffers_error; 6808 } 6809 6810 fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP; 6811 } 6812 6813 if (fp->tpa_enable) { 6814 /* fill the RX SGE chain */ 6815 ring_prod = 0; 6816 for (j = 0; j < RX_SGE_USABLE; j++) { 6817 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod); 6818 if (rc != 0) { 6819 BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n", 6820 i, ring_prod); 6821 fp->tpa_enable = FALSE; 6822 ring_prod = 0; 6823 goto bxe_alloc_fp_buffers_error; 6824 } 6825 6826 ring_prod = RX_SGE_NEXT(ring_prod); 6827 } 6828 6829 fp->rx_sge_prod = ring_prod; 6830 } 6831 } 6832 } 6833 6834 return (0); 6835 6836 bxe_alloc_fp_buffers_error: 6837 6838 /* unwind what was already allocated */ 6839 bxe_free_rx_bd_chain(fp); 6840 bxe_free_tpa_pool(fp); 6841 bxe_free_sge_chain(fp); 6842 6843 return (ENOBUFS); 6844 } 6845 6846 static void 6847 bxe_free_fw_stats_mem(struct bxe_softc *sc) 6848 { 6849 bxe_dma_free(sc, &sc->fw_stats_dma); 6850 6851 sc->fw_stats_num = 0; 6852 6853 sc->fw_stats_req_size = 0; 6854 sc->fw_stats_req = NULL; 6855 sc->fw_stats_req_mapping = 0; 6856 6857 sc->fw_stats_data_size = 0; 6858 sc->fw_stats_data = NULL; 6859 sc->fw_stats_data_mapping = 0; 6860 } 6861 6862 static int 6863 bxe_alloc_fw_stats_mem(struct bxe_softc *sc) 6864 { 6865 uint8_t num_queue_stats; 6866 int num_groups; 6867 6868 /* number of queues for statistics is number of eth queues */ 6869 num_queue_stats = BXE_NUM_ETH_QUEUES(sc); 6870 6871 /* 6872 * Total number of FW statistics requests = 6873 * 1 for port stats + 1 for PF stats + num of queues 6874 */ 6875 sc->fw_stats_num = (2 + num_queue_stats); 6876 6877 /* 6878 * Request is built from stats_query_header and an array of 6879 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT 6880 * rules. The real number or requests is configured in the 6881 * stats_query_header. 6882 */ 6883 num_groups = 6884 ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) + 6885 ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0)); 6886 6887 BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n", 6888 sc->fw_stats_num, num_groups); 6889 6890 sc->fw_stats_req_size = 6891 (sizeof(struct stats_query_header) + 6892 (num_groups * sizeof(struct stats_query_cmd_group))); 6893 6894 /* 6895 * Data for statistics requests + stats_counter. 6896 * stats_counter holds per-STORM counters that are incremented when 6897 * STORM has finished with the current request. Memory for FCoE 6898 * offloaded statistics are counted anyway, even if they will not be sent. 6899 * VF stats are not accounted for here as the data of VF stats is stored 6900 * in memory allocated by the VF, not here. 6901 */ 6902 sc->fw_stats_data_size = 6903 (sizeof(struct stats_counter) + 6904 sizeof(struct per_port_stats) + 6905 sizeof(struct per_pf_stats) + 6906 /* sizeof(struct fcoe_statistics_params) + */ 6907 (sizeof(struct per_queue_stats) * num_queue_stats)); 6908 6909 if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size), 6910 &sc->fw_stats_dma, "fw stats") != 0) { 6911 bxe_free_fw_stats_mem(sc); 6912 return (-1); 6913 } 6914 6915 /* set up the shortcuts */ 6916 6917 sc->fw_stats_req = 6918 (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr; 6919 sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr; 6920 6921 sc->fw_stats_data = 6922 (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr + 6923 sc->fw_stats_req_size); 6924 sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr + 6925 sc->fw_stats_req_size); 6926 6927 BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n", 6928 (uintmax_t)sc->fw_stats_req_mapping); 6929 6930 BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n", 6931 (uintmax_t)sc->fw_stats_data_mapping); 6932 6933 return (0); 6934 } 6935 6936 /* 6937 * Bits map: 6938 * 0-7 - Engine0 load counter. 6939 * 8-15 - Engine1 load counter. 6940 * 16 - Engine0 RESET_IN_PROGRESS bit. 6941 * 17 - Engine1 RESET_IN_PROGRESS bit. 6942 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active 6943 * function on the engine 6944 * 19 - Engine1 ONE_IS_LOADED. 6945 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 6946 * leader to complete (check for both RESET_IN_PROGRESS bits and not 6947 * for just the one belonging to its engine). 6948 */ 6949 #define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 6950 #define BXE_PATH0_LOAD_CNT_MASK 0x000000ff 6951 #define BXE_PATH0_LOAD_CNT_SHIFT 0 6952 #define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00 6953 #define BXE_PATH1_LOAD_CNT_SHIFT 8 6954 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000 6955 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000 6956 #define BXE_GLOBAL_RESET_BIT 0x00040000 6957 6958 /* set the GLOBAL_RESET bit, should be run under rtnl lock */ 6959 static void 6960 bxe_set_reset_global(struct bxe_softc *sc) 6961 { 6962 uint32_t val; 6963 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6964 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6965 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT); 6966 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6967 } 6968 6969 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */ 6970 static void 6971 bxe_clear_reset_global(struct bxe_softc *sc) 6972 { 6973 uint32_t val; 6974 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6975 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6976 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT)); 6977 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6978 } 6979 6980 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */ 6981 static uint8_t 6982 bxe_reset_is_global(struct bxe_softc *sc) 6983 { 6984 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6985 BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val); 6986 return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE; 6987 } 6988 6989 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */ 6990 static void 6991 bxe_set_reset_done(struct bxe_softc *sc) 6992 { 6993 uint32_t val; 6994 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6995 BXE_PATH0_RST_IN_PROG_BIT; 6996 6997 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6998 6999 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7000 /* Clear the bit */ 7001 val &= ~bit; 7002 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 7003 7004 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7005 } 7006 7007 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */ 7008 static void 7009 bxe_set_reset_in_progress(struct bxe_softc *sc) 7010 { 7011 uint32_t val; 7012 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 7013 BXE_PATH0_RST_IN_PROG_BIT; 7014 7015 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7016 7017 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7018 /* Set the bit */ 7019 val |= bit; 7020 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 7021 7022 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7023 } 7024 7025 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */ 7026 static uint8_t 7027 bxe_reset_is_done(struct bxe_softc *sc, 7028 int engine) 7029 { 7030 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7031 uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT : 7032 BXE_PATH0_RST_IN_PROG_BIT; 7033 7034 /* return false if bit is set */ 7035 return (val & bit) ? FALSE : TRUE; 7036 } 7037 7038 /* get the load status for an engine, should be run under rtnl lock */ 7039 static uint8_t 7040 bxe_get_load_status(struct bxe_softc *sc, 7041 int engine) 7042 { 7043 uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK : 7044 BXE_PATH0_LOAD_CNT_MASK; 7045 uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT : 7046 BXE_PATH0_LOAD_CNT_SHIFT; 7047 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7048 7049 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 7050 7051 val = ((val & mask) >> shift); 7052 7053 BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val); 7054 7055 return (val != 0); 7056 } 7057 7058 /* set pf load mark */ 7059 /* XXX needs to be under rtnl lock */ 7060 static void 7061 bxe_set_pf_load(struct bxe_softc *sc) 7062 { 7063 uint32_t val; 7064 uint32_t val1; 7065 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 7066 BXE_PATH0_LOAD_CNT_MASK; 7067 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 7068 BXE_PATH0_LOAD_CNT_SHIFT; 7069 7070 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7071 7072 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7073 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 7074 7075 /* get the current counter value */ 7076 val1 = ((val & mask) >> shift); 7077 7078 /* set bit of this PF */ 7079 val1 |= (1 << SC_ABS_FUNC(sc)); 7080 7081 /* clear the old value */ 7082 val &= ~mask; 7083 7084 /* set the new one */ 7085 val |= ((val1 << shift) & mask); 7086 7087 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 7088 7089 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7090 } 7091 7092 /* clear pf load mark */ 7093 /* XXX needs to be under rtnl lock */ 7094 static uint8_t 7095 bxe_clear_pf_load(struct bxe_softc *sc) 7096 { 7097 uint32_t val1, val; 7098 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 7099 BXE_PATH0_LOAD_CNT_MASK; 7100 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 7101 BXE_PATH0_LOAD_CNT_SHIFT; 7102 7103 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7104 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7105 BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val); 7106 7107 /* get the current counter value */ 7108 val1 = (val & mask) >> shift; 7109 7110 /* clear bit of that PF */ 7111 val1 &= ~(1 << SC_ABS_FUNC(sc)); 7112 7113 /* clear the old value */ 7114 val &= ~mask; 7115 7116 /* set the new one */ 7117 val |= ((val1 << shift) & mask); 7118 7119 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 7120 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7121 return (val1 != 0); 7122 } 7123 7124 /* send load requrest to mcp and analyze response */ 7125 static int 7126 bxe_nic_load_request(struct bxe_softc *sc, 7127 uint32_t *load_code) 7128 { 7129 /* init fw_seq */ 7130 sc->fw_seq = 7131 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 7132 DRV_MSG_SEQ_NUMBER_MASK); 7133 7134 BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq); 7135 7136 /* get the current FW pulse sequence */ 7137 sc->fw_drv_pulse_wr_seq = 7138 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) & 7139 DRV_PULSE_SEQ_MASK); 7140 7141 BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n", 7142 sc->fw_drv_pulse_wr_seq); 7143 7144 /* load request */ 7145 (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 7146 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 7147 7148 /* if the MCP fails to respond we must abort */ 7149 if (!(*load_code)) { 7150 BLOGE(sc, "MCP response failure!\n"); 7151 return (-1); 7152 } 7153 7154 /* if MCP refused then must abort */ 7155 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 7156 BLOGE(sc, "MCP refused load request\n"); 7157 return (-1); 7158 } 7159 7160 return (0); 7161 } 7162 7163 /* 7164 * Check whether another PF has already loaded FW to chip. In virtualized 7165 * environments a pf from anoth VM may have already initialized the device 7166 * including loading FW. 7167 */ 7168 static int 7169 bxe_nic_load_analyze_req(struct bxe_softc *sc, 7170 uint32_t load_code) 7171 { 7172 uint32_t my_fw, loaded_fw; 7173 7174 /* is another pf loaded on this engine? */ 7175 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 7176 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 7177 /* build my FW version dword */ 7178 my_fw = (BCM_5710_FW_MAJOR_VERSION + 7179 (BCM_5710_FW_MINOR_VERSION << 8 ) + 7180 (BCM_5710_FW_REVISION_VERSION << 16) + 7181 (BCM_5710_FW_ENGINEERING_VERSION << 24)); 7182 7183 /* read loaded FW from chip */ 7184 loaded_fw = REG_RD(sc, XSEM_REG_PRAM); 7185 BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n", 7186 loaded_fw, my_fw); 7187 7188 /* abort nic load if version mismatch */ 7189 if (my_fw != loaded_fw) { 7190 BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)", 7191 loaded_fw, my_fw); 7192 return (-1); 7193 } 7194 } 7195 7196 return (0); 7197 } 7198 7199 /* mark PMF if applicable */ 7200 static void 7201 bxe_nic_load_pmf(struct bxe_softc *sc, 7202 uint32_t load_code) 7203 { 7204 uint32_t ncsi_oem_data_addr; 7205 7206 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 7207 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 7208 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 7209 /* 7210 * Barrier here for ordering between the writing to sc->port.pmf here 7211 * and reading it from the periodic task. 7212 */ 7213 sc->port.pmf = 1; 7214 mb(); 7215 } else { 7216 sc->port.pmf = 0; 7217 } 7218 7219 BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf); 7220 7221 /* XXX needed? */ 7222 if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) { 7223 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) { 7224 ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr); 7225 if (ncsi_oem_data_addr) { 7226 REG_WR(sc, 7227 (ncsi_oem_data_addr + 7228 offsetof(struct glob_ncsi_oem_data, driver_version)), 7229 0); 7230 } 7231 } 7232 } 7233 } 7234 7235 static void 7236 bxe_read_mf_cfg(struct bxe_softc *sc) 7237 { 7238 int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1); 7239 int abs_func; 7240 int vn; 7241 7242 if (BXE_NOMCP(sc)) { 7243 return; /* what should be the default bvalue in this case */ 7244 } 7245 7246 /* 7247 * The formula for computing the absolute function number is... 7248 * For 2 port configuration (4 functions per port): 7249 * abs_func = 2 * vn + SC_PORT + SC_PATH 7250 * For 4 port configuration (2 functions per port): 7251 * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH 7252 */ 7253 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 7254 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc)); 7255 if (abs_func >= E1H_FUNC_MAX) { 7256 break; 7257 } 7258 sc->devinfo.mf_info.mf_config[vn] = 7259 MFCFG_RD(sc, func_mf_config[abs_func].config); 7260 } 7261 7262 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & 7263 FUNC_MF_CFG_FUNC_DISABLED) { 7264 BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n"); 7265 sc->flags |= BXE_MF_FUNC_DIS; 7266 } else { 7267 BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n"); 7268 sc->flags &= ~BXE_MF_FUNC_DIS; 7269 } 7270 } 7271 7272 /* acquire split MCP access lock register */ 7273 static int bxe_acquire_alr(struct bxe_softc *sc) 7274 { 7275 uint32_t j, val; 7276 7277 for (j = 0; j < 1000; j++) { 7278 val = (1UL << 31); 7279 REG_WR(sc, GRCBASE_MCP + 0x9c, val); 7280 val = REG_RD(sc, GRCBASE_MCP + 0x9c); 7281 if (val & (1L << 31)) 7282 break; 7283 7284 DELAY(5000); 7285 } 7286 7287 if (!(val & (1L << 31))) { 7288 BLOGE(sc, "Cannot acquire MCP access lock register\n"); 7289 return (-1); 7290 } 7291 7292 return (0); 7293 } 7294 7295 /* release split MCP access lock register */ 7296 static void bxe_release_alr(struct bxe_softc *sc) 7297 { 7298 REG_WR(sc, GRCBASE_MCP + 0x9c, 0); 7299 } 7300 7301 static void 7302 bxe_fan_failure(struct bxe_softc *sc) 7303 { 7304 int port = SC_PORT(sc); 7305 uint32_t ext_phy_config; 7306 7307 /* mark the failure */ 7308 ext_phy_config = 7309 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 7310 7311 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 7312 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 7313 SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config, 7314 ext_phy_config); 7315 7316 /* log the failure */ 7317 BLOGW(sc, "Fan Failure has caused the driver to shutdown " 7318 "the card to prevent permanent damage. " 7319 "Please contact OEM Support for assistance\n"); 7320 7321 /* XXX */ 7322 #if 1 7323 bxe_panic(sc, ("Schedule task to handle fan failure\n")); 7324 #else 7325 /* 7326 * Schedule device reset (unload) 7327 * This is due to some boards consuming sufficient power when driver is 7328 * up to overheat if fan fails. 7329 */ 7330 bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state); 7331 schedule_delayed_work(&sc->sp_rtnl_task, 0); 7332 #endif 7333 } 7334 7335 /* this function is called upon a link interrupt */ 7336 static void 7337 bxe_link_attn(struct bxe_softc *sc) 7338 { 7339 uint32_t pause_enabled = 0; 7340 struct host_port_stats *pstats; 7341 int cmng_fns; 7342 7343 /* Make sure that we are synced with the current statistics */ 7344 bxe_stats_handle(sc, STATS_EVENT_STOP); 7345 7346 elink_link_update(&sc->link_params, &sc->link_vars); 7347 7348 if (sc->link_vars.link_up) { 7349 7350 /* dropless flow control */ 7351 if (!CHIP_IS_E1(sc) && sc->dropless_fc) { 7352 pause_enabled = 0; 7353 7354 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 7355 pause_enabled = 1; 7356 } 7357 7358 REG_WR(sc, 7359 (BAR_USTRORM_INTMEM + 7360 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))), 7361 pause_enabled); 7362 } 7363 7364 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) { 7365 pstats = BXE_SP(sc, port_stats); 7366 /* reset old mac stats */ 7367 memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx)); 7368 } 7369 7370 if (sc->state == BXE_STATE_OPEN) { 7371 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 7372 } 7373 } 7374 7375 if (sc->link_vars.link_up && sc->link_vars.line_speed) { 7376 cmng_fns = bxe_get_cmng_fns_mode(sc); 7377 7378 if (cmng_fns != CMNG_FNS_NONE) { 7379 bxe_cmng_fns_init(sc, FALSE, cmng_fns); 7380 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7381 } else { 7382 /* rate shaping and fairness are disabled */ 7383 BLOGD(sc, DBG_LOAD, "single function mode without fairness\n"); 7384 } 7385 } 7386 7387 bxe_link_report_locked(sc); 7388 7389 if (IS_MF(sc)) { 7390 ; // XXX bxe_link_sync_notify(sc); 7391 } 7392 } 7393 7394 static void 7395 bxe_attn_int_asserted(struct bxe_softc *sc, 7396 uint32_t asserted) 7397 { 7398 int port = SC_PORT(sc); 7399 uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 7400 MISC_REG_AEU_MASK_ATTN_FUNC_0; 7401 uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 7402 NIG_REG_MASK_INTERRUPT_PORT0; 7403 uint32_t aeu_mask; 7404 uint32_t nig_mask = 0; 7405 uint32_t reg_addr; 7406 uint32_t igu_acked; 7407 uint32_t cnt; 7408 7409 if (sc->attn_state & asserted) { 7410 BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted); 7411 } 7412 7413 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7414 7415 aeu_mask = REG_RD(sc, aeu_addr); 7416 7417 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n", 7418 aeu_mask, asserted); 7419 7420 aeu_mask &= ~(asserted & 0x3ff); 7421 7422 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 7423 7424 REG_WR(sc, aeu_addr, aeu_mask); 7425 7426 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7427 7428 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 7429 sc->attn_state |= asserted; 7430 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 7431 7432 if (asserted & ATTN_HARD_WIRED_MASK) { 7433 if (asserted & ATTN_NIG_FOR_FUNC) { 7434 7435 BXE_PHY_LOCK(sc); 7436 7437 /* save nig interrupt mask */ 7438 nig_mask = REG_RD(sc, nig_int_mask_addr); 7439 7440 /* If nig_mask is not set, no need to call the update function */ 7441 if (nig_mask) { 7442 REG_WR(sc, nig_int_mask_addr, 0); 7443 7444 bxe_link_attn(sc); 7445 } 7446 7447 /* handle unicore attn? */ 7448 } 7449 7450 if (asserted & ATTN_SW_TIMER_4_FUNC) { 7451 BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n"); 7452 } 7453 7454 if (asserted & GPIO_2_FUNC) { 7455 BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n"); 7456 } 7457 7458 if (asserted & GPIO_3_FUNC) { 7459 BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n"); 7460 } 7461 7462 if (asserted & GPIO_4_FUNC) { 7463 BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n"); 7464 } 7465 7466 if (port == 0) { 7467 if (asserted & ATTN_GENERAL_ATTN_1) { 7468 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n"); 7469 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 7470 } 7471 if (asserted & ATTN_GENERAL_ATTN_2) { 7472 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n"); 7473 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 7474 } 7475 if (asserted & ATTN_GENERAL_ATTN_3) { 7476 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n"); 7477 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 7478 } 7479 } else { 7480 if (asserted & ATTN_GENERAL_ATTN_4) { 7481 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n"); 7482 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 7483 } 7484 if (asserted & ATTN_GENERAL_ATTN_5) { 7485 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n"); 7486 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 7487 } 7488 if (asserted & ATTN_GENERAL_ATTN_6) { 7489 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n"); 7490 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 7491 } 7492 } 7493 } /* hardwired */ 7494 7495 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7496 reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET); 7497 } else { 7498 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 7499 } 7500 7501 BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n", 7502 asserted, 7503 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 7504 REG_WR(sc, reg_addr, asserted); 7505 7506 /* now set back the mask */ 7507 if (asserted & ATTN_NIG_FOR_FUNC) { 7508 /* 7509 * Verify that IGU ack through BAR was written before restoring 7510 * NIG mask. This loop should exit after 2-3 iterations max. 7511 */ 7512 if (sc->devinfo.int_block != INT_BLOCK_HC) { 7513 cnt = 0; 7514 7515 do { 7516 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS); 7517 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 7518 (++cnt < MAX_IGU_ATTN_ACK_TO)); 7519 7520 if (!igu_acked) { 7521 BLOGE(sc, "Failed to verify IGU ack on time\n"); 7522 } 7523 7524 mb(); 7525 } 7526 7527 REG_WR(sc, nig_int_mask_addr, nig_mask); 7528 7529 BXE_PHY_UNLOCK(sc); 7530 } 7531 } 7532 7533 static void 7534 bxe_print_next_block(struct bxe_softc *sc, 7535 int idx, 7536 const char *blk) 7537 { 7538 BLOGI(sc, "%s%s", idx ? ", " : "", blk); 7539 } 7540 7541 static int 7542 bxe_check_blocks_with_parity0(struct bxe_softc *sc, 7543 uint32_t sig, 7544 int par_num, 7545 uint8_t print) 7546 { 7547 uint32_t cur_bit = 0; 7548 int i = 0; 7549 7550 for (i = 0; sig; i++) { 7551 cur_bit = ((uint32_t)0x1 << i); 7552 if (sig & cur_bit) { 7553 switch (cur_bit) { 7554 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 7555 if (print) 7556 bxe_print_next_block(sc, par_num++, "BRB"); 7557 break; 7558 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 7559 if (print) 7560 bxe_print_next_block(sc, par_num++, "PARSER"); 7561 break; 7562 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 7563 if (print) 7564 bxe_print_next_block(sc, par_num++, "TSDM"); 7565 break; 7566 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 7567 if (print) 7568 bxe_print_next_block(sc, par_num++, "SEARCHER"); 7569 break; 7570 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 7571 if (print) 7572 bxe_print_next_block(sc, par_num++, "TCM"); 7573 break; 7574 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 7575 if (print) 7576 bxe_print_next_block(sc, par_num++, "TSEMI"); 7577 break; 7578 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 7579 if (print) 7580 bxe_print_next_block(sc, par_num++, "XPB"); 7581 break; 7582 } 7583 7584 /* Clear the bit */ 7585 sig &= ~cur_bit; 7586 } 7587 } 7588 7589 return (par_num); 7590 } 7591 7592 static int 7593 bxe_check_blocks_with_parity1(struct bxe_softc *sc, 7594 uint32_t sig, 7595 int par_num, 7596 uint8_t *global, 7597 uint8_t print) 7598 { 7599 int i = 0; 7600 uint32_t cur_bit = 0; 7601 for (i = 0; sig; i++) { 7602 cur_bit = ((uint32_t)0x1 << i); 7603 if (sig & cur_bit) { 7604 switch (cur_bit) { 7605 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 7606 if (print) 7607 bxe_print_next_block(sc, par_num++, "PBF"); 7608 break; 7609 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 7610 if (print) 7611 bxe_print_next_block(sc, par_num++, "QM"); 7612 break; 7613 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 7614 if (print) 7615 bxe_print_next_block(sc, par_num++, "TM"); 7616 break; 7617 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 7618 if (print) 7619 bxe_print_next_block(sc, par_num++, "XSDM"); 7620 break; 7621 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 7622 if (print) 7623 bxe_print_next_block(sc, par_num++, "XCM"); 7624 break; 7625 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 7626 if (print) 7627 bxe_print_next_block(sc, par_num++, "XSEMI"); 7628 break; 7629 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 7630 if (print) 7631 bxe_print_next_block(sc, par_num++, "DOORBELLQ"); 7632 break; 7633 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 7634 if (print) 7635 bxe_print_next_block(sc, par_num++, "NIG"); 7636 break; 7637 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 7638 if (print) 7639 bxe_print_next_block(sc, par_num++, "VAUX PCI CORE"); 7640 *global = TRUE; 7641 break; 7642 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 7643 if (print) 7644 bxe_print_next_block(sc, par_num++, "DEBUG"); 7645 break; 7646 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 7647 if (print) 7648 bxe_print_next_block(sc, par_num++, "USDM"); 7649 break; 7650 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 7651 if (print) 7652 bxe_print_next_block(sc, par_num++, "UCM"); 7653 break; 7654 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 7655 if (print) 7656 bxe_print_next_block(sc, par_num++, "USEMI"); 7657 break; 7658 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 7659 if (print) 7660 bxe_print_next_block(sc, par_num++, "UPB"); 7661 break; 7662 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 7663 if (print) 7664 bxe_print_next_block(sc, par_num++, "CSDM"); 7665 break; 7666 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 7667 if (print) 7668 bxe_print_next_block(sc, par_num++, "CCM"); 7669 break; 7670 } 7671 7672 /* Clear the bit */ 7673 sig &= ~cur_bit; 7674 } 7675 } 7676 7677 return (par_num); 7678 } 7679 7680 static int 7681 bxe_check_blocks_with_parity2(struct bxe_softc *sc, 7682 uint32_t sig, 7683 int par_num, 7684 uint8_t print) 7685 { 7686 uint32_t cur_bit = 0; 7687 int i = 0; 7688 7689 for (i = 0; sig; i++) { 7690 cur_bit = ((uint32_t)0x1 << i); 7691 if (sig & cur_bit) { 7692 switch (cur_bit) { 7693 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 7694 if (print) 7695 bxe_print_next_block(sc, par_num++, "CSEMI"); 7696 break; 7697 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 7698 if (print) 7699 bxe_print_next_block(sc, par_num++, "PXP"); 7700 break; 7701 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 7702 if (print) 7703 bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT"); 7704 break; 7705 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 7706 if (print) 7707 bxe_print_next_block(sc, par_num++, "CFC"); 7708 break; 7709 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 7710 if (print) 7711 bxe_print_next_block(sc, par_num++, "CDU"); 7712 break; 7713 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 7714 if (print) 7715 bxe_print_next_block(sc, par_num++, "DMAE"); 7716 break; 7717 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 7718 if (print) 7719 bxe_print_next_block(sc, par_num++, "IGU"); 7720 break; 7721 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 7722 if (print) 7723 bxe_print_next_block(sc, par_num++, "MISC"); 7724 break; 7725 } 7726 7727 /* Clear the bit */ 7728 sig &= ~cur_bit; 7729 } 7730 } 7731 7732 return (par_num); 7733 } 7734 7735 static int 7736 bxe_check_blocks_with_parity3(struct bxe_softc *sc, 7737 uint32_t sig, 7738 int par_num, 7739 uint8_t *global, 7740 uint8_t print) 7741 { 7742 uint32_t cur_bit = 0; 7743 int i = 0; 7744 7745 for (i = 0; sig; i++) { 7746 cur_bit = ((uint32_t)0x1 << i); 7747 if (sig & cur_bit) { 7748 switch (cur_bit) { 7749 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 7750 if (print) 7751 bxe_print_next_block(sc, par_num++, "MCP ROM"); 7752 *global = TRUE; 7753 break; 7754 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 7755 if (print) 7756 bxe_print_next_block(sc, par_num++, 7757 "MCP UMP RX"); 7758 *global = TRUE; 7759 break; 7760 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 7761 if (print) 7762 bxe_print_next_block(sc, par_num++, 7763 "MCP UMP TX"); 7764 *global = TRUE; 7765 break; 7766 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 7767 if (print) 7768 bxe_print_next_block(sc, par_num++, 7769 "MCP SCPAD"); 7770 *global = TRUE; 7771 break; 7772 } 7773 7774 /* Clear the bit */ 7775 sig &= ~cur_bit; 7776 } 7777 } 7778 7779 return (par_num); 7780 } 7781 7782 static int 7783 bxe_check_blocks_with_parity4(struct bxe_softc *sc, 7784 uint32_t sig, 7785 int par_num, 7786 uint8_t print) 7787 { 7788 uint32_t cur_bit = 0; 7789 int i = 0; 7790 7791 for (i = 0; sig; i++) { 7792 cur_bit = ((uint32_t)0x1 << i); 7793 if (sig & cur_bit) { 7794 switch (cur_bit) { 7795 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 7796 if (print) 7797 bxe_print_next_block(sc, par_num++, "PGLUE_B"); 7798 break; 7799 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 7800 if (print) 7801 bxe_print_next_block(sc, par_num++, "ATC"); 7802 break; 7803 } 7804 7805 /* Clear the bit */ 7806 sig &= ~cur_bit; 7807 } 7808 } 7809 7810 return (par_num); 7811 } 7812 7813 static uint8_t 7814 bxe_parity_attn(struct bxe_softc *sc, 7815 uint8_t *global, 7816 uint8_t print, 7817 uint32_t *sig) 7818 { 7819 int par_num = 0; 7820 7821 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 7822 (sig[1] & HW_PRTY_ASSERT_SET_1) || 7823 (sig[2] & HW_PRTY_ASSERT_SET_2) || 7824 (sig[3] & HW_PRTY_ASSERT_SET_3) || 7825 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 7826 BLOGE(sc, "Parity error: HW block parity attention:\n" 7827 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 7828 (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0), 7829 (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1), 7830 (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2), 7831 (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3), 7832 (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4)); 7833 7834 if (print) 7835 BLOGI(sc, "Parity errors detected in blocks: "); 7836 7837 par_num = 7838 bxe_check_blocks_with_parity0(sc, sig[0] & 7839 HW_PRTY_ASSERT_SET_0, 7840 par_num, print); 7841 par_num = 7842 bxe_check_blocks_with_parity1(sc, sig[1] & 7843 HW_PRTY_ASSERT_SET_1, 7844 par_num, global, print); 7845 par_num = 7846 bxe_check_blocks_with_parity2(sc, sig[2] & 7847 HW_PRTY_ASSERT_SET_2, 7848 par_num, print); 7849 par_num = 7850 bxe_check_blocks_with_parity3(sc, sig[3] & 7851 HW_PRTY_ASSERT_SET_3, 7852 par_num, global, print); 7853 par_num = 7854 bxe_check_blocks_with_parity4(sc, sig[4] & 7855 HW_PRTY_ASSERT_SET_4, 7856 par_num, print); 7857 7858 if (print) 7859 BLOGI(sc, "\n"); 7860 7861 return (TRUE); 7862 } 7863 7864 return (FALSE); 7865 } 7866 7867 static uint8_t 7868 bxe_chk_parity_attn(struct bxe_softc *sc, 7869 uint8_t *global, 7870 uint8_t print) 7871 { 7872 struct attn_route attn = { {0} }; 7873 int port = SC_PORT(sc); 7874 7875 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 7876 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 7877 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 7878 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 7879 7880 if (!CHIP_IS_E1x(sc)) 7881 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 7882 7883 return (bxe_parity_attn(sc, global, print, attn.sig)); 7884 } 7885 7886 static void 7887 bxe_attn_int_deasserted4(struct bxe_softc *sc, 7888 uint32_t attn) 7889 { 7890 uint32_t val; 7891 7892 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 7893 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 7894 BLOGE(sc, "PGLUE hw attention 0x%08x\n", val); 7895 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 7896 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 7897 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 7898 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 7899 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 7900 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 7901 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 7902 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 7903 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 7904 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 7905 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 7906 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 7907 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 7908 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 7909 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 7910 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 7911 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 7912 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 7913 } 7914 7915 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 7916 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR); 7917 BLOGE(sc, "ATC hw attention 0x%08x\n", val); 7918 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 7919 BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 7920 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 7921 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 7922 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 7923 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 7924 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 7925 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 7926 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 7927 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 7928 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 7929 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 7930 } 7931 7932 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7933 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 7934 BLOGE(sc, "FATAL parity attention set4 0x%08x\n", 7935 (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7936 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 7937 } 7938 } 7939 7940 static void 7941 bxe_e1h_disable(struct bxe_softc *sc) 7942 { 7943 int port = SC_PORT(sc); 7944 7945 bxe_tx_disable(sc); 7946 7947 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 7948 } 7949 7950 static void 7951 bxe_e1h_enable(struct bxe_softc *sc) 7952 { 7953 int port = SC_PORT(sc); 7954 7955 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 7956 7957 // XXX bxe_tx_enable(sc); 7958 } 7959 7960 /* 7961 * called due to MCP event (on pmf): 7962 * reread new bandwidth configuration 7963 * configure FW 7964 * notify others function about the change 7965 */ 7966 static void 7967 bxe_config_mf_bw(struct bxe_softc *sc) 7968 { 7969 if (sc->link_vars.link_up) { 7970 bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX); 7971 // XXX bxe_link_sync_notify(sc); 7972 } 7973 7974 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7975 } 7976 7977 static void 7978 bxe_set_mf_bw(struct bxe_softc *sc) 7979 { 7980 bxe_config_mf_bw(sc); 7981 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 7982 } 7983 7984 static void 7985 bxe_handle_eee_event(struct bxe_softc *sc) 7986 { 7987 BLOGD(sc, DBG_INTR, "EEE - LLDP event\n"); 7988 bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 7989 } 7990 7991 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 7992 7993 static void 7994 bxe_drv_info_ether_stat(struct bxe_softc *sc) 7995 { 7996 struct eth_stats_info *ether_stat = 7997 &sc->sp->drv_info_to_mcp.ether_stat; 7998 7999 strlcpy(ether_stat->version, BXE_DRIVER_VERSION, 8000 ETH_STAT_INFO_VERSION_LEN); 8001 8002 /* XXX (+ MAC_PAD) taken from other driver... verify this is right */ 8003 sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj, 8004 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 8005 ether_stat->mac_local + MAC_PAD, 8006 MAC_PAD, ETH_ALEN); 8007 8008 ether_stat->mtu_size = sc->mtu; 8009 8010 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 8011 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 8012 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 8013 } 8014 8015 // XXX ether_stat->feature_flags |= ???; 8016 8017 ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0; 8018 8019 ether_stat->txq_size = sc->tx_ring_size; 8020 ether_stat->rxq_size = sc->rx_ring_size; 8021 } 8022 8023 static void 8024 bxe_handle_drv_info_req(struct bxe_softc *sc) 8025 { 8026 enum drv_info_opcode op_code; 8027 uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control); 8028 8029 /* if drv_info version supported by MFW doesn't match - send NACK */ 8030 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 8031 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 8032 return; 8033 } 8034 8035 op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 8036 DRV_INFO_CONTROL_OP_CODE_SHIFT); 8037 8038 memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp)); 8039 8040 switch (op_code) { 8041 case ETH_STATS_OPCODE: 8042 bxe_drv_info_ether_stat(sc); 8043 break; 8044 case FCOE_STATS_OPCODE: 8045 case ISCSI_STATS_OPCODE: 8046 default: 8047 /* if op code isn't supported - send NACK */ 8048 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 8049 return; 8050 } 8051 8052 /* 8053 * If we got drv_info attn from MFW then these fields are defined in 8054 * shmem2 for sure 8055 */ 8056 SHMEM2_WR(sc, drv_info_host_addr_lo, 8057 U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 8058 SHMEM2_WR(sc, drv_info_host_addr_hi, 8059 U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 8060 8061 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0); 8062 } 8063 8064 static void 8065 bxe_dcc_event(struct bxe_softc *sc, 8066 uint32_t dcc_event) 8067 { 8068 BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event); 8069 8070 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { 8071 /* 8072 * This is the only place besides the function initialization 8073 * where the sc->flags can change so it is done without any 8074 * locks 8075 */ 8076 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) { 8077 BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n"); 8078 sc->flags |= BXE_MF_FUNC_DIS; 8079 bxe_e1h_disable(sc); 8080 } else { 8081 BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n"); 8082 sc->flags &= ~BXE_MF_FUNC_DIS; 8083 bxe_e1h_enable(sc); 8084 } 8085 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; 8086 } 8087 8088 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { 8089 bxe_config_mf_bw(sc); 8090 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; 8091 } 8092 8093 /* Report results to MCP */ 8094 if (dcc_event) 8095 bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0); 8096 else 8097 bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0); 8098 } 8099 8100 static void 8101 bxe_pmf_update(struct bxe_softc *sc) 8102 { 8103 int port = SC_PORT(sc); 8104 uint32_t val; 8105 8106 sc->port.pmf = 1; 8107 BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf); 8108 8109 /* 8110 * We need the mb() to ensure the ordering between the writing to 8111 * sc->port.pmf here and reading it from the bxe_periodic_task(). 8112 */ 8113 mb(); 8114 8115 /* queue a periodic task */ 8116 // XXX schedule task... 8117 8118 // XXX bxe_dcbx_pmf_update(sc); 8119 8120 /* enable nig attention */ 8121 val = (0xff0f | (1 << (SC_VN(sc) + 4))); 8122 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8123 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val); 8124 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val); 8125 } else if (!CHIP_IS_E1x(sc)) { 8126 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 8127 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 8128 } 8129 8130 bxe_stats_handle(sc, STATS_EVENT_PMF); 8131 } 8132 8133 static int 8134 bxe_mc_assert(struct bxe_softc *sc) 8135 { 8136 char last_idx; 8137 int i, rc = 0; 8138 uint32_t row0, row1, row2, row3; 8139 8140 /* XSTORM */ 8141 last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET); 8142 if (last_idx) 8143 BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8144 8145 /* print the asserts */ 8146 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8147 8148 row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i)); 8149 row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4); 8150 row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8); 8151 row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12); 8152 8153 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8154 BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8155 i, row3, row2, row1, row0); 8156 rc++; 8157 } else { 8158 break; 8159 } 8160 } 8161 8162 /* TSTORM */ 8163 last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET); 8164 if (last_idx) { 8165 BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8166 } 8167 8168 /* print the asserts */ 8169 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8170 8171 row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i)); 8172 row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4); 8173 row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8); 8174 row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12); 8175 8176 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8177 BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8178 i, row3, row2, row1, row0); 8179 rc++; 8180 } else { 8181 break; 8182 } 8183 } 8184 8185 /* CSTORM */ 8186 last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET); 8187 if (last_idx) { 8188 BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8189 } 8190 8191 /* print the asserts */ 8192 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8193 8194 row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i)); 8195 row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4); 8196 row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8); 8197 row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12); 8198 8199 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8200 BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8201 i, row3, row2, row1, row0); 8202 rc++; 8203 } else { 8204 break; 8205 } 8206 } 8207 8208 /* USTORM */ 8209 last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET); 8210 if (last_idx) { 8211 BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8212 } 8213 8214 /* print the asserts */ 8215 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8216 8217 row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i)); 8218 row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4); 8219 row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8); 8220 row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12); 8221 8222 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8223 BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8224 i, row3, row2, row1, row0); 8225 rc++; 8226 } else { 8227 break; 8228 } 8229 } 8230 8231 return (rc); 8232 } 8233 8234 static void 8235 bxe_attn_int_deasserted3(struct bxe_softc *sc, 8236 uint32_t attn) 8237 { 8238 int func = SC_FUNC(sc); 8239 uint32_t val; 8240 8241 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 8242 8243 if (attn & BXE_PMF_LINK_ASSERT(sc)) { 8244 8245 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 8246 bxe_read_mf_cfg(sc); 8247 sc->devinfo.mf_info.mf_config[SC_VN(sc)] = 8248 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 8249 val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status); 8250 8251 if (val & DRV_STATUS_DCC_EVENT_MASK) 8252 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK)); 8253 8254 if (val & DRV_STATUS_SET_MF_BW) 8255 bxe_set_mf_bw(sc); 8256 8257 if (val & DRV_STATUS_DRV_INFO_REQ) 8258 bxe_handle_drv_info_req(sc); 8259 8260 #if 0 8261 if (val & DRV_STATUS_VF_DISABLED) 8262 bxe_vf_handle_flr_event(sc); 8263 #endif 8264 8265 if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF)) 8266 bxe_pmf_update(sc); 8267 8268 #if 0 8269 if (sc->port.pmf && 8270 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) && 8271 (sc->dcbx_enabled > 0)) 8272 /* start dcbx state machine */ 8273 bxe_dcbx_set_params(sc, BXE_DCBX_STATE_NEG_RECEIVED); 8274 #endif 8275 8276 #if 0 8277 if (val & DRV_STATUS_AFEX_EVENT_MASK) 8278 bxe_handle_afex_cmd(sc, val & DRV_STATUS_AFEX_EVENT_MASK); 8279 #endif 8280 8281 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 8282 bxe_handle_eee_event(sc); 8283 8284 if (sc->link_vars.periodic_flags & 8285 ELINK_PERIODIC_FLAGS_LINK_EVENT) { 8286 /* sync with link */ 8287 BXE_PHY_LOCK(sc); 8288 sc->link_vars.periodic_flags &= 8289 ~ELINK_PERIODIC_FLAGS_LINK_EVENT; 8290 BXE_PHY_UNLOCK(sc); 8291 if (IS_MF(sc)) 8292 ; // XXX bxe_link_sync_notify(sc); 8293 bxe_link_report(sc); 8294 } 8295 8296 /* 8297 * Always call it here: bxe_link_report() will 8298 * prevent the link indication duplication. 8299 */ 8300 bxe_link_status_update(sc); 8301 8302 } else if (attn & BXE_MC_ASSERT_BITS) { 8303 8304 BLOGE(sc, "MC assert!\n"); 8305 bxe_mc_assert(sc); 8306 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0); 8307 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0); 8308 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0); 8309 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0); 8310 bxe_panic(sc, ("MC assert!\n")); 8311 8312 } else if (attn & BXE_MCP_ASSERT) { 8313 8314 BLOGE(sc, "MCP assert!\n"); 8315 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0); 8316 // XXX bxe_fw_dump(sc); 8317 8318 } else { 8319 BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn); 8320 } 8321 } 8322 8323 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 8324 BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn); 8325 if (attn & BXE_GRC_TIMEOUT) { 8326 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN); 8327 BLOGE(sc, "GRC time-out 0x%08x\n", val); 8328 } 8329 if (attn & BXE_GRC_RSV) { 8330 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN); 8331 BLOGE(sc, "GRC reserved 0x%08x\n", val); 8332 } 8333 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 8334 } 8335 } 8336 8337 static void 8338 bxe_attn_int_deasserted2(struct bxe_softc *sc, 8339 uint32_t attn) 8340 { 8341 int port = SC_PORT(sc); 8342 int reg_offset; 8343 uint32_t val0, mask0, val1, mask1; 8344 uint32_t val; 8345 8346 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 8347 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR); 8348 BLOGE(sc, "CFC hw attention 0x%08x\n", val); 8349 /* CFC error attention */ 8350 if (val & 0x2) { 8351 BLOGE(sc, "FATAL error from CFC\n"); 8352 } 8353 } 8354 8355 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 8356 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0); 8357 BLOGE(sc, "PXP hw attention-0 0x%08x\n", val); 8358 /* RQ_USDMDP_FIFO_OVERFLOW */ 8359 if (val & 0x18000) { 8360 BLOGE(sc, "FATAL error from PXP\n"); 8361 } 8362 8363 if (!CHIP_IS_E1x(sc)) { 8364 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1); 8365 BLOGE(sc, "PXP hw attention-1 0x%08x\n", val); 8366 } 8367 } 8368 8369 #define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR 8370 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT 8371 8372 if (attn & AEU_PXP2_HW_INT_BIT) { 8373 /* CQ47854 workaround do not panic on 8374 * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8375 */ 8376 if (!CHIP_IS_E1x(sc)) { 8377 mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0); 8378 val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1); 8379 mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1); 8380 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0); 8381 /* 8382 * If the olny PXP2_EOP_ERROR_BIT is set in 8383 * STS0 and STS1 - clear it 8384 * 8385 * probably we lose additional attentions between 8386 * STS0 and STS_CLR0, in this case user will not 8387 * be notified about them 8388 */ 8389 if (val0 & mask0 & PXP2_EOP_ERROR_BIT && 8390 !(val1 & mask1)) 8391 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 8392 8393 /* print the register, since no one can restore it */ 8394 BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0); 8395 8396 /* 8397 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8398 * then notify 8399 */ 8400 if (val0 & PXP2_EOP_ERROR_BIT) { 8401 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n"); 8402 8403 /* 8404 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is 8405 * set then clear attention from PXP2 block without panic 8406 */ 8407 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) && 8408 ((val1 & mask1) == 0)) 8409 attn &= ~AEU_PXP2_HW_INT_BIT; 8410 } 8411 } 8412 } 8413 8414 if (attn & HW_INTERRUT_ASSERT_SET_2) { 8415 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 8416 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 8417 8418 val = REG_RD(sc, reg_offset); 8419 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); 8420 REG_WR(sc, reg_offset, val); 8421 8422 BLOGE(sc, "FATAL HW block attention set2 0x%x\n", 8423 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2)); 8424 bxe_panic(sc, ("HW block attention set2\n")); 8425 } 8426 } 8427 8428 static void 8429 bxe_attn_int_deasserted1(struct bxe_softc *sc, 8430 uint32_t attn) 8431 { 8432 int port = SC_PORT(sc); 8433 int reg_offset; 8434 uint32_t val; 8435 8436 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 8437 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR); 8438 BLOGE(sc, "DB hw attention 0x%08x\n", val); 8439 /* DORQ discard attention */ 8440 if (val & 0x2) { 8441 BLOGE(sc, "FATAL error from DORQ\n"); 8442 } 8443 } 8444 8445 if (attn & HW_INTERRUT_ASSERT_SET_1) { 8446 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 8447 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 8448 8449 val = REG_RD(sc, reg_offset); 8450 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); 8451 REG_WR(sc, reg_offset, val); 8452 8453 BLOGE(sc, "FATAL HW block attention set1 0x%08x\n", 8454 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1)); 8455 bxe_panic(sc, ("HW block attention set1\n")); 8456 } 8457 } 8458 8459 static void 8460 bxe_attn_int_deasserted0(struct bxe_softc *sc, 8461 uint32_t attn) 8462 { 8463 int port = SC_PORT(sc); 8464 int reg_offset; 8465 uint32_t val; 8466 8467 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 8468 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 8469 8470 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 8471 val = REG_RD(sc, reg_offset); 8472 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 8473 REG_WR(sc, reg_offset, val); 8474 8475 BLOGW(sc, "SPIO5 hw attention\n"); 8476 8477 /* Fan failure attention */ 8478 elink_hw_reset_phy(&sc->link_params); 8479 bxe_fan_failure(sc); 8480 } 8481 8482 if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) { 8483 BXE_PHY_LOCK(sc); 8484 elink_handle_module_detect_int(&sc->link_params); 8485 BXE_PHY_UNLOCK(sc); 8486 } 8487 8488 if (attn & HW_INTERRUT_ASSERT_SET_0) { 8489 val = REG_RD(sc, reg_offset); 8490 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); 8491 REG_WR(sc, reg_offset, val); 8492 8493 bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n", 8494 (attn & HW_INTERRUT_ASSERT_SET_0))); 8495 } 8496 } 8497 8498 static void 8499 bxe_attn_int_deasserted(struct bxe_softc *sc, 8500 uint32_t deasserted) 8501 { 8502 struct attn_route attn; 8503 struct attn_route *group_mask; 8504 int port = SC_PORT(sc); 8505 int index; 8506 uint32_t reg_addr; 8507 uint32_t val; 8508 uint32_t aeu_mask; 8509 uint8_t global = FALSE; 8510 8511 /* 8512 * Need to take HW lock because MCP or other port might also 8513 * try to handle this event. 8514 */ 8515 bxe_acquire_alr(sc); 8516 8517 if (bxe_chk_parity_attn(sc, &global, TRUE)) { 8518 /* XXX 8519 * In case of parity errors don't handle attentions so that 8520 * other function would "see" parity errors. 8521 */ 8522 sc->recovery_state = BXE_RECOVERY_INIT; 8523 // XXX schedule a recovery task... 8524 /* disable HW interrupts */ 8525 bxe_int_disable(sc); 8526 bxe_release_alr(sc); 8527 return; 8528 } 8529 8530 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 8531 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 8532 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 8533 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 8534 if (!CHIP_IS_E1x(sc)) { 8535 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 8536 } else { 8537 attn.sig[4] = 0; 8538 } 8539 8540 BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", 8541 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 8542 8543 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 8544 if (deasserted & (1 << index)) { 8545 group_mask = &sc->attn_group[index]; 8546 8547 BLOGD(sc, DBG_INTR, 8548 "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index, 8549 group_mask->sig[0], group_mask->sig[1], 8550 group_mask->sig[2], group_mask->sig[3], 8551 group_mask->sig[4]); 8552 8553 bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]); 8554 bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]); 8555 bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]); 8556 bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]); 8557 bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]); 8558 } 8559 } 8560 8561 bxe_release_alr(sc); 8562 8563 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8564 reg_addr = (HC_REG_COMMAND_REG + port*32 + 8565 COMMAND_REG_ATTN_BITS_CLR); 8566 } else { 8567 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 8568 } 8569 8570 val = ~deasserted; 8571 BLOGD(sc, DBG_INTR, 8572 "about to mask 0x%08x at %s addr 0x%08x\n", val, 8573 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 8574 REG_WR(sc, reg_addr, val); 8575 8576 if (~sc->attn_state & deasserted) { 8577 BLOGE(sc, "IGU error\n"); 8578 } 8579 8580 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 8581 MISC_REG_AEU_MASK_ATTN_FUNC_0; 8582 8583 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8584 8585 aeu_mask = REG_RD(sc, reg_addr); 8586 8587 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n", 8588 aeu_mask, deasserted); 8589 aeu_mask |= (deasserted & 0x3ff); 8590 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 8591 8592 REG_WR(sc, reg_addr, aeu_mask); 8593 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8594 8595 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 8596 sc->attn_state &= ~deasserted; 8597 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 8598 } 8599 8600 static void 8601 bxe_attn_int(struct bxe_softc *sc) 8602 { 8603 /* read local copy of bits */ 8604 uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits); 8605 uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack); 8606 uint32_t attn_state = sc->attn_state; 8607 8608 /* look for changed bits */ 8609 uint32_t asserted = attn_bits & ~attn_ack & ~attn_state; 8610 uint32_t deasserted = ~attn_bits & attn_ack & attn_state; 8611 8612 BLOGD(sc, DBG_INTR, 8613 "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n", 8614 attn_bits, attn_ack, asserted, deasserted); 8615 8616 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) { 8617 BLOGE(sc, "BAD attention state\n"); 8618 } 8619 8620 /* handle bits that were raised */ 8621 if (asserted) { 8622 bxe_attn_int_asserted(sc, asserted); 8623 } 8624 8625 if (deasserted) { 8626 bxe_attn_int_deasserted(sc, deasserted); 8627 } 8628 } 8629 8630 static uint16_t 8631 bxe_update_dsb_idx(struct bxe_softc *sc) 8632 { 8633 struct host_sp_status_block *def_sb = sc->def_sb; 8634 uint16_t rc = 0; 8635 8636 mb(); /* status block is written to by the chip */ 8637 8638 if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 8639 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index; 8640 rc |= BXE_DEF_SB_ATT_IDX; 8641 } 8642 8643 if (sc->def_idx != def_sb->sp_sb.running_index) { 8644 sc->def_idx = def_sb->sp_sb.running_index; 8645 rc |= BXE_DEF_SB_IDX; 8646 } 8647 8648 mb(); 8649 8650 return (rc); 8651 } 8652 8653 static inline struct ecore_queue_sp_obj * 8654 bxe_cid_to_q_obj(struct bxe_softc *sc, 8655 uint32_t cid) 8656 { 8657 BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid); 8658 return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj); 8659 } 8660 8661 static void 8662 bxe_handle_mcast_eqe(struct bxe_softc *sc) 8663 { 8664 struct ecore_mcast_ramrod_params rparam; 8665 int rc; 8666 8667 memset(&rparam, 0, sizeof(rparam)); 8668 8669 rparam.mcast_obj = &sc->mcast_obj; 8670 8671 BXE_MCAST_LOCK(sc); 8672 8673 /* clear pending state for the last command */ 8674 sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw); 8675 8676 /* if there are pending mcast commands - send them */ 8677 if (sc->mcast_obj.check_pending(&sc->mcast_obj)) { 8678 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 8679 if (rc < 0) { 8680 BLOGD(sc, DBG_SP, 8681 "ERROR: Failed to send pending mcast commands (%d)\n", 8682 rc); 8683 } 8684 } 8685 8686 BXE_MCAST_UNLOCK(sc); 8687 } 8688 8689 static void 8690 bxe_handle_classification_eqe(struct bxe_softc *sc, 8691 union event_ring_elem *elem) 8692 { 8693 unsigned long ramrod_flags = 0; 8694 int rc = 0; 8695 uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8696 struct ecore_vlan_mac_obj *vlan_mac_obj; 8697 8698 /* always push next commands out, don't wait here */ 8699 bit_set(&ramrod_flags, RAMROD_CONT); 8700 8701 switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) { 8702 case ECORE_FILTER_MAC_PENDING: 8703 BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n"); 8704 vlan_mac_obj = &sc->sp_objs[cid].mac_obj; 8705 break; 8706 8707 case ECORE_FILTER_MCAST_PENDING: 8708 BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n"); 8709 /* 8710 * This is only relevant for 57710 where multicast MACs are 8711 * configured as unicast MACs using the same ramrod. 8712 */ 8713 bxe_handle_mcast_eqe(sc); 8714 return; 8715 8716 default: 8717 BLOGE(sc, "Unsupported classification command: %d\n", 8718 elem->message.data.eth_event.echo); 8719 return; 8720 } 8721 8722 rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags); 8723 8724 if (rc < 0) { 8725 BLOGE(sc, "Failed to schedule new commands (%d)\n", rc); 8726 } else if (rc > 0) { 8727 BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n"); 8728 } 8729 } 8730 8731 static void 8732 bxe_handle_rx_mode_eqe(struct bxe_softc *sc, 8733 union event_ring_elem *elem) 8734 { 8735 bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 8736 8737 /* send rx_mode command again if was requested */ 8738 if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, 8739 &sc->sp_state)) { 8740 bxe_set_storm_rx_mode(sc); 8741 } 8742 #if 0 8743 else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_START_SCHED, 8744 &sc->sp_state)) { 8745 bxe_set_iscsi_eth_rx_mode(sc, TRUE); 8746 } 8747 else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_STOP_SCHED, 8748 &sc->sp_state)) { 8749 bxe_set_iscsi_eth_rx_mode(sc, FALSE); 8750 } 8751 #endif 8752 } 8753 8754 static void 8755 bxe_update_eq_prod(struct bxe_softc *sc, 8756 uint16_t prod) 8757 { 8758 storm_memset_eq_prod(sc, prod, SC_FUNC(sc)); 8759 wmb(); /* keep prod updates ordered */ 8760 } 8761 8762 static void 8763 bxe_eq_int(struct bxe_softc *sc) 8764 { 8765 uint16_t hw_cons, sw_cons, sw_prod; 8766 union event_ring_elem *elem; 8767 uint8_t echo; 8768 uint32_t cid; 8769 uint8_t opcode; 8770 int spqe_cnt = 0; 8771 struct ecore_queue_sp_obj *q_obj; 8772 struct ecore_func_sp_obj *f_obj = &sc->func_obj; 8773 struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw; 8774 8775 hw_cons = le16toh(*sc->eq_cons_sb); 8776 8777 /* 8778 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256. 8779 * when we get to the next-page we need to adjust so the loop 8780 * condition below will be met. The next element is the size of a 8781 * regular element and hence incrementing by 1 8782 */ 8783 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) { 8784 hw_cons++; 8785 } 8786 8787 /* 8788 * This function may never run in parallel with itself for a 8789 * specific sc and no need for a read memory barrier here. 8790 */ 8791 sw_cons = sc->eq_cons; 8792 sw_prod = sc->eq_prod; 8793 8794 BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n", 8795 hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left)); 8796 8797 for (; 8798 sw_cons != hw_cons; 8799 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 8800 8801 elem = &sc->eq[EQ_DESC(sw_cons)]; 8802 8803 #if 0 8804 int rc; 8805 rc = bxe_iov_eq_sp_event(sc, elem); 8806 if (!rc) { 8807 BLOGE(sc, "bxe_iov_eq_sp_event returned %d\n", rc); 8808 goto next_spqe; 8809 } 8810 #endif 8811 8812 /* elem CID originates from FW, actually LE */ 8813 cid = SW_CID(elem->message.data.cfc_del_event.cid); 8814 opcode = elem->message.opcode; 8815 8816 /* handle eq element */ 8817 switch (opcode) { 8818 #if 0 8819 case EVENT_RING_OPCODE_VF_PF_CHANNEL: 8820 BLOGD(sc, DBG_SP, "vf/pf channel element on eq\n"); 8821 bxe_vf_mbx(sc, &elem->message.data.vf_pf_event); 8822 continue; 8823 #endif 8824 8825 case EVENT_RING_OPCODE_STAT_QUERY: 8826 BLOGD(sc, DBG_SP, "got statistics completion event %d\n", 8827 sc->stats_comp++); 8828 /* nothing to do with stats comp */ 8829 goto next_spqe; 8830 8831 case EVENT_RING_OPCODE_CFC_DEL: 8832 /* handle according to cid range */ 8833 /* we may want to verify here that the sc state is HALTING */ 8834 BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid); 8835 q_obj = bxe_cid_to_q_obj(sc, cid); 8836 if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) { 8837 break; 8838 } 8839 goto next_spqe; 8840 8841 case EVENT_RING_OPCODE_STOP_TRAFFIC: 8842 BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n"); 8843 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) { 8844 break; 8845 } 8846 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED); 8847 goto next_spqe; 8848 8849 case EVENT_RING_OPCODE_START_TRAFFIC: 8850 BLOGD(sc, DBG_SP, "got START TRAFFIC\n"); 8851 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) { 8852 break; 8853 } 8854 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED); 8855 goto next_spqe; 8856 8857 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 8858 echo = elem->message.data.function_update_event.echo; 8859 if (echo == SWITCH_UPDATE) { 8860 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n"); 8861 if (f_obj->complete_cmd(sc, f_obj, 8862 ECORE_F_CMD_SWITCH_UPDATE)) { 8863 break; 8864 } 8865 } 8866 else { 8867 BLOGD(sc, DBG_SP, 8868 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 8869 #if 0 8870 f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_UPDATE); 8871 /* 8872 * We will perform the queues update from the sp_core_task as 8873 * all queue SP operations should run with CORE_LOCK. 8874 */ 8875 bxe_set_bit(BXE_SP_CORE_AFEX_F_UPDATE, &sc->sp_core_state); 8876 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8877 #endif 8878 } 8879 goto next_spqe; 8880 8881 #if 0 8882 case EVENT_RING_OPCODE_AFEX_VIF_LISTS: 8883 f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_VIFLISTS); 8884 bxe_after_afex_vif_lists(sc, elem); 8885 goto next_spqe; 8886 #endif 8887 8888 case EVENT_RING_OPCODE_FORWARD_SETUP: 8889 q_obj = &bxe_fwd_sp_obj(sc, q_obj); 8890 if (q_obj->complete_cmd(sc, q_obj, 8891 ECORE_Q_CMD_SETUP_TX_ONLY)) { 8892 break; 8893 } 8894 goto next_spqe; 8895 8896 case EVENT_RING_OPCODE_FUNCTION_START: 8897 BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n"); 8898 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) { 8899 break; 8900 } 8901 goto next_spqe; 8902 8903 case EVENT_RING_OPCODE_FUNCTION_STOP: 8904 BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n"); 8905 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) { 8906 break; 8907 } 8908 goto next_spqe; 8909 } 8910 8911 switch (opcode | sc->state) { 8912 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN): 8913 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT): 8914 cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8915 BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid); 8916 rss_raw->clear_pending(rss_raw); 8917 break; 8918 8919 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN): 8920 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG): 8921 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT): 8922 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN): 8923 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG): 8924 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8925 BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n"); 8926 bxe_handle_classification_eqe(sc, elem); 8927 break; 8928 8929 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN): 8930 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG): 8931 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8932 BLOGD(sc, DBG_SP, "got mcast ramrod\n"); 8933 bxe_handle_mcast_eqe(sc); 8934 break; 8935 8936 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN): 8937 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG): 8938 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8939 BLOGD(sc, DBG_SP, "got rx_mode ramrod\n"); 8940 bxe_handle_rx_mode_eqe(sc, elem); 8941 break; 8942 8943 default: 8944 /* unknown event log error and continue */ 8945 BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n", 8946 elem->message.opcode, sc->state); 8947 } 8948 8949 next_spqe: 8950 spqe_cnt++; 8951 } /* for */ 8952 8953 mb(); 8954 atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt); 8955 8956 sc->eq_cons = sw_cons; 8957 sc->eq_prod = sw_prod; 8958 8959 /* make sure that above mem writes were issued towards the memory */ 8960 wmb(); 8961 8962 /* update producer */ 8963 bxe_update_eq_prod(sc, sc->eq_prod); 8964 } 8965 8966 static void 8967 bxe_handle_sp_tq(void *context, 8968 int pending) 8969 { 8970 struct bxe_softc *sc = (struct bxe_softc *)context; 8971 uint16_t status; 8972 8973 BLOGD(sc, DBG_SP, "---> SP TASK <---\n"); 8974 8975 /* what work needs to be performed? */ 8976 status = bxe_update_dsb_idx(sc); 8977 8978 BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status); 8979 8980 /* HW attentions */ 8981 if (status & BXE_DEF_SB_ATT_IDX) { 8982 BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n"); 8983 bxe_attn_int(sc); 8984 status &= ~BXE_DEF_SB_ATT_IDX; 8985 } 8986 8987 /* SP events: STAT_QUERY and others */ 8988 if (status & BXE_DEF_SB_IDX) { 8989 /* handle EQ completions */ 8990 BLOGD(sc, DBG_SP, "---> EQ INTR <---\n"); 8991 bxe_eq_int(sc); 8992 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 8993 le16toh(sc->def_idx), IGU_INT_NOP, 1); 8994 status &= ~BXE_DEF_SB_IDX; 8995 } 8996 8997 /* if status is non zero then something went wrong */ 8998 if (__predict_false(status)) { 8999 BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status); 9000 } 9001 9002 /* ack status block only if something was actually handled */ 9003 bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID, 9004 le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1); 9005 9006 /* 9007 * Must be called after the EQ processing (since eq leads to sriov 9008 * ramrod completion flows). 9009 * This flow may have been scheduled by the arrival of a ramrod 9010 * completion, or by the sriov code rescheduling itself. 9011 */ 9012 // XXX bxe_iov_sp_task(sc); 9013 9014 #if 0 9015 /* AFEX - poll to check if VIFSET_ACK should be sent to MFW */ 9016 if (bxe_test_and_clear_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, 9017 &sc->sp_state)) { 9018 bxe_link_report(sc); 9019 bxe_fw_command(sc, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 9020 } 9021 #endif 9022 } 9023 9024 static void 9025 bxe_handle_fp_tq(void *context, 9026 int pending) 9027 { 9028 struct bxe_fastpath *fp = (struct bxe_fastpath *)context; 9029 struct bxe_softc *sc = fp->sc; 9030 uint8_t more_tx = FALSE; 9031 uint8_t more_rx = FALSE; 9032 9033 BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index); 9034 9035 /* XXX 9036 * IFF_DRV_RUNNING state can't be checked here since we process 9037 * slowpath events on a client queue during setup. Instead 9038 * we need to add a "process/continue" flag here that the driver 9039 * can use to tell the task here not to do anything. 9040 */ 9041 #if 0 9042 if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 9043 return; 9044 } 9045 #endif 9046 9047 /* update the fastpath index */ 9048 bxe_update_fp_sb_idx(fp); 9049 9050 /* XXX add loop here if ever support multiple tx CoS */ 9051 /* fp->txdata[cos] */ 9052 if (bxe_has_tx_work(fp)) { 9053 BXE_FP_TX_LOCK(fp); 9054 more_tx = bxe_txeof(sc, fp); 9055 BXE_FP_TX_UNLOCK(fp); 9056 } 9057 9058 if (bxe_has_rx_work(fp)) { 9059 more_rx = bxe_rxeof(sc, fp); 9060 } 9061 9062 if (more_rx /*|| more_tx*/) { 9063 /* still more work to do */ 9064 taskqueue_enqueue_fast(fp->tq, &fp->tq_task); 9065 return; 9066 } 9067 9068 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 9069 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 9070 } 9071 9072 static void 9073 bxe_task_fp(struct bxe_fastpath *fp) 9074 { 9075 struct bxe_softc *sc = fp->sc; 9076 uint8_t more_tx = FALSE; 9077 uint8_t more_rx = FALSE; 9078 9079 BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index); 9080 9081 /* update the fastpath index */ 9082 bxe_update_fp_sb_idx(fp); 9083 9084 /* XXX add loop here if ever support multiple tx CoS */ 9085 /* fp->txdata[cos] */ 9086 if (bxe_has_tx_work(fp)) { 9087 BXE_FP_TX_LOCK(fp); 9088 more_tx = bxe_txeof(sc, fp); 9089 BXE_FP_TX_UNLOCK(fp); 9090 } 9091 9092 if (bxe_has_rx_work(fp)) { 9093 more_rx = bxe_rxeof(sc, fp); 9094 } 9095 9096 if (more_rx /*|| more_tx*/) { 9097 /* still more work to do, bail out if this ISR and process later */ 9098 taskqueue_enqueue_fast(fp->tq, &fp->tq_task); 9099 return; 9100 } 9101 9102 /* 9103 * Here we write the fastpath index taken before doing any tx or rx work. 9104 * It is very well possible other hw events occurred up to this point and 9105 * they were actually processed accordingly above. Since we're going to 9106 * write an older fastpath index, an interrupt is coming which we might 9107 * not do any work in. 9108 */ 9109 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 9110 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 9111 } 9112 9113 /* 9114 * Legacy interrupt entry point. 9115 * 9116 * Verifies that the controller generated the interrupt and 9117 * then calls a separate routine to handle the various 9118 * interrupt causes: link, RX, and TX. 9119 */ 9120 static void 9121 bxe_intr_legacy(void *xsc) 9122 { 9123 struct bxe_softc *sc = (struct bxe_softc *)xsc; 9124 struct bxe_fastpath *fp; 9125 uint16_t status, mask; 9126 int i; 9127 9128 BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n"); 9129 9130 #if 0 9131 /* Don't handle any interrupts if we're not ready. */ 9132 if (__predict_false(sc->intr_sem != 0)) { 9133 return; 9134 } 9135 #endif 9136 9137 /* 9138 * 0 for ustorm, 1 for cstorm 9139 * the bits returned from ack_int() are 0-15 9140 * bit 0 = attention status block 9141 * bit 1 = fast path status block 9142 * a mask of 0x2 or more = tx/rx event 9143 * a mask of 1 = slow path event 9144 */ 9145 9146 status = bxe_ack_int(sc); 9147 9148 /* the interrupt is not for us */ 9149 if (__predict_false(status == 0)) { 9150 BLOGD(sc, DBG_INTR, "Not our interrupt!\n"); 9151 return; 9152 } 9153 9154 BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status); 9155 9156 FOR_EACH_ETH_QUEUE(sc, i) { 9157 fp = &sc->fp[i]; 9158 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc))); 9159 if (status & mask) { 9160 /* acknowledge and disable further fastpath interrupts */ 9161 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9162 bxe_task_fp(fp); 9163 status &= ~mask; 9164 } 9165 } 9166 9167 #if 0 9168 if (CNIC_SUPPORT(sc)) { 9169 mask = 0x2; 9170 if (status & (mask | 0x1)) { 9171 ... 9172 status &= ~mask; 9173 } 9174 } 9175 #endif 9176 9177 if (__predict_false(status & 0x1)) { 9178 /* acknowledge and disable further slowpath interrupts */ 9179 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9180 9181 /* schedule slowpath handler */ 9182 taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task); 9183 9184 status &= ~0x1; 9185 } 9186 9187 if (__predict_false(status)) { 9188 BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status); 9189 } 9190 } 9191 9192 /* slowpath interrupt entry point */ 9193 static void 9194 bxe_intr_sp(void *xsc) 9195 { 9196 struct bxe_softc *sc = (struct bxe_softc *)xsc; 9197 9198 BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n"); 9199 9200 /* acknowledge and disable further slowpath interrupts */ 9201 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9202 9203 /* schedule slowpath handler */ 9204 taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task); 9205 } 9206 9207 /* fastpath interrupt entry point */ 9208 static void 9209 bxe_intr_fp(void *xfp) 9210 { 9211 struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp; 9212 struct bxe_softc *sc = fp->sc; 9213 9214 BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index); 9215 9216 BLOGD(sc, DBG_INTR, 9217 "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n", 9218 curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id); 9219 9220 #if 0 9221 /* Don't handle any interrupts if we're not ready. */ 9222 if (__predict_false(sc->intr_sem != 0)) { 9223 return; 9224 } 9225 #endif 9226 9227 /* acknowledge and disable further fastpath interrupts */ 9228 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9229 9230 bxe_task_fp(fp); 9231 } 9232 9233 /* Release all interrupts allocated by the driver. */ 9234 static void 9235 bxe_interrupt_free(struct bxe_softc *sc) 9236 { 9237 int i; 9238 9239 switch (sc->interrupt_mode) { 9240 case INTR_MODE_INTX: 9241 BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n"); 9242 if (sc->intr[0].resource != NULL) { 9243 bus_release_resource(sc->dev, 9244 SYS_RES_IRQ, 9245 sc->intr[0].rid, 9246 sc->intr[0].resource); 9247 } 9248 break; 9249 case INTR_MODE_MSI: 9250 for (i = 0; i < sc->intr_count; i++) { 9251 BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i); 9252 if (sc->intr[i].resource && sc->intr[i].rid) { 9253 bus_release_resource(sc->dev, 9254 SYS_RES_IRQ, 9255 sc->intr[i].rid, 9256 sc->intr[i].resource); 9257 } 9258 } 9259 pci_release_msi(sc->dev); 9260 break; 9261 case INTR_MODE_MSIX: 9262 for (i = 0; i < sc->intr_count; i++) { 9263 BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i); 9264 if (sc->intr[i].resource && sc->intr[i].rid) { 9265 bus_release_resource(sc->dev, 9266 SYS_RES_IRQ, 9267 sc->intr[i].rid, 9268 sc->intr[i].resource); 9269 } 9270 } 9271 pci_release_msi(sc->dev); 9272 break; 9273 default: 9274 /* nothing to do as initial allocation failed */ 9275 break; 9276 } 9277 } 9278 9279 /* 9280 * This function determines and allocates the appropriate 9281 * interrupt based on system capabilites and user request. 9282 * 9283 * The user may force a particular interrupt mode, specify 9284 * the number of receive queues, specify the method for 9285 * distribuitng received frames to receive queues, or use 9286 * the default settings which will automatically select the 9287 * best supported combination. In addition, the OS may or 9288 * may not support certain combinations of these settings. 9289 * This routine attempts to reconcile the settings requested 9290 * by the user with the capabilites available from the system 9291 * to select the optimal combination of features. 9292 * 9293 * Returns: 9294 * 0 = Success, !0 = Failure. 9295 */ 9296 static int 9297 bxe_interrupt_alloc(struct bxe_softc *sc) 9298 { 9299 int msix_count = 0; 9300 int msi_count = 0; 9301 int num_requested = 0; 9302 int num_allocated = 0; 9303 int rid, i, j; 9304 int rc; 9305 9306 /* get the number of available MSI/MSI-X interrupts from the OS */ 9307 if (sc->interrupt_mode > 0) { 9308 if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) { 9309 msix_count = pci_msix_count(sc->dev); 9310 } 9311 9312 if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) { 9313 msi_count = pci_msi_count(sc->dev); 9314 } 9315 9316 BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n", 9317 msi_count, msix_count); 9318 } 9319 9320 do { /* try allocating MSI-X interrupt resources (at least 2) */ 9321 if (sc->interrupt_mode != INTR_MODE_MSIX) { 9322 break; 9323 } 9324 9325 if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) || 9326 (msix_count < 2)) { 9327 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9328 break; 9329 } 9330 9331 /* ask for the necessary number of MSI-X vectors */ 9332 num_requested = min((sc->num_queues + 1), msix_count); 9333 9334 BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested); 9335 9336 num_allocated = num_requested; 9337 if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) { 9338 BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc); 9339 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9340 break; 9341 } 9342 9343 if (num_allocated < 2) { /* possible? */ 9344 BLOGE(sc, "MSI-X allocation less than 2!\n"); 9345 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9346 pci_release_msi(sc->dev); 9347 break; 9348 } 9349 9350 BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n", 9351 num_requested, num_allocated); 9352 9353 /* best effort so use the number of vectors allocated to us */ 9354 sc->intr_count = num_allocated; 9355 sc->num_queues = num_allocated - 1; 9356 9357 rid = 1; /* initial resource identifier */ 9358 9359 /* allocate the MSI-X vectors */ 9360 for (i = 0; i < num_allocated; i++) { 9361 sc->intr[i].rid = (rid + i); 9362 9363 if ((sc->intr[i].resource = 9364 bus_alloc_resource_any(sc->dev, 9365 SYS_RES_IRQ, 9366 &sc->intr[i].rid, 9367 RF_ACTIVE)) == NULL) { 9368 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n", 9369 i, (rid + i)); 9370 9371 for (j = (i - 1); j >= 0; j--) { 9372 bus_release_resource(sc->dev, 9373 SYS_RES_IRQ, 9374 sc->intr[j].rid, 9375 sc->intr[j].resource); 9376 } 9377 9378 sc->intr_count = 0; 9379 sc->num_queues = 0; 9380 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9381 pci_release_msi(sc->dev); 9382 break; 9383 } 9384 9385 BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i)); 9386 } 9387 } while (0); 9388 9389 do { /* try allocating MSI vector resources (at least 2) */ 9390 if (sc->interrupt_mode != INTR_MODE_MSI) { 9391 break; 9392 } 9393 9394 if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) || 9395 (msi_count < 1)) { 9396 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9397 break; 9398 } 9399 9400 /* ask for a single MSI vector */ 9401 num_requested = 1; 9402 9403 BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested); 9404 9405 num_allocated = num_requested; 9406 if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) { 9407 BLOGE(sc, "MSI alloc failed (%d)!\n", rc); 9408 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9409 break; 9410 } 9411 9412 if (num_allocated != 1) { /* possible? */ 9413 BLOGE(sc, "MSI allocation is not 1!\n"); 9414 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9415 pci_release_msi(sc->dev); 9416 break; 9417 } 9418 9419 BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n", 9420 num_requested, num_allocated); 9421 9422 /* best effort so use the number of vectors allocated to us */ 9423 sc->intr_count = num_allocated; 9424 sc->num_queues = num_allocated; 9425 9426 rid = 1; /* initial resource identifier */ 9427 9428 sc->intr[0].rid = rid; 9429 9430 if ((sc->intr[0].resource = 9431 bus_alloc_resource_any(sc->dev, 9432 SYS_RES_IRQ, 9433 &sc->intr[0].rid, 9434 RF_ACTIVE)) == NULL) { 9435 BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid); 9436 sc->intr_count = 0; 9437 sc->num_queues = 0; 9438 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9439 pci_release_msi(sc->dev); 9440 break; 9441 } 9442 9443 BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid); 9444 } while (0); 9445 9446 do { /* try allocating INTx vector resources */ 9447 if (sc->interrupt_mode != INTR_MODE_INTX) { 9448 break; 9449 } 9450 9451 BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n"); 9452 9453 /* only one vector for INTx */ 9454 sc->intr_count = 1; 9455 sc->num_queues = 1; 9456 9457 rid = 0; /* initial resource identifier */ 9458 9459 sc->intr[0].rid = rid; 9460 9461 if ((sc->intr[0].resource = 9462 bus_alloc_resource_any(sc->dev, 9463 SYS_RES_IRQ, 9464 &sc->intr[0].rid, 9465 (RF_ACTIVE | RF_SHAREABLE))) == NULL) { 9466 BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid); 9467 sc->intr_count = 0; 9468 sc->num_queues = 0; 9469 sc->interrupt_mode = -1; /* Failed! */ 9470 break; 9471 } 9472 9473 BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid); 9474 } while (0); 9475 9476 if (sc->interrupt_mode == -1) { 9477 BLOGE(sc, "Interrupt Allocation: FAILED!!!\n"); 9478 rc = 1; 9479 } else { 9480 BLOGD(sc, DBG_LOAD, 9481 "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n", 9482 sc->interrupt_mode, sc->num_queues); 9483 rc = 0; 9484 } 9485 9486 return (rc); 9487 } 9488 9489 static void 9490 bxe_interrupt_detach(struct bxe_softc *sc) 9491 { 9492 struct bxe_fastpath *fp; 9493 int i; 9494 9495 /* release interrupt resources */ 9496 for (i = 0; i < sc->intr_count; i++) { 9497 if (sc->intr[i].resource && sc->intr[i].tag) { 9498 BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i); 9499 bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag); 9500 } 9501 } 9502 9503 for (i = 0; i < sc->num_queues; i++) { 9504 fp = &sc->fp[i]; 9505 if (fp->tq) { 9506 taskqueue_drain(fp->tq, &fp->tq_task); 9507 taskqueue_free(fp->tq); 9508 fp->tq = NULL; 9509 } 9510 } 9511 9512 if (sc->rx_mode_tq) { 9513 taskqueue_drain(sc->rx_mode_tq, &sc->rx_mode_tq_task); 9514 taskqueue_free(sc->rx_mode_tq); 9515 sc->rx_mode_tq = NULL; 9516 } 9517 9518 if (sc->sp_tq) { 9519 taskqueue_drain(sc->sp_tq, &sc->sp_tq_task); 9520 taskqueue_free(sc->sp_tq); 9521 sc->sp_tq = NULL; 9522 } 9523 } 9524 9525 /* 9526 * Enables interrupts and attach to the ISR. 9527 * 9528 * When using multiple MSI/MSI-X vectors the first vector 9529 * is used for slowpath operations while all remaining 9530 * vectors are used for fastpath operations. If only a 9531 * single MSI/MSI-X vector is used (SINGLE_ISR) then the 9532 * ISR must look for both slowpath and fastpath completions. 9533 */ 9534 static int 9535 bxe_interrupt_attach(struct bxe_softc *sc) 9536 { 9537 struct bxe_fastpath *fp; 9538 int rc = 0; 9539 int i; 9540 9541 snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name), 9542 "bxe%d_sp_tq", sc->unit); 9543 TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc); 9544 sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT, 9545 taskqueue_thread_enqueue, 9546 &sc->sp_tq); 9547 taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */ 9548 "%s", sc->sp_tq_name); 9549 9550 snprintf(sc->rx_mode_tq_name, sizeof(sc->rx_mode_tq_name), 9551 "bxe%d_rx_mode_tq", sc->unit); 9552 TASK_INIT(&sc->rx_mode_tq_task, 0, bxe_handle_rx_mode_tq, sc); 9553 sc->rx_mode_tq = taskqueue_create_fast(sc->rx_mode_tq_name, M_NOWAIT, 9554 taskqueue_thread_enqueue, 9555 &sc->rx_mode_tq); 9556 taskqueue_start_threads(&sc->rx_mode_tq, 1, PWAIT, /* lower priority */ 9557 "%s", sc->rx_mode_tq_name); 9558 9559 for (i = 0; i < sc->num_queues; i++) { 9560 fp = &sc->fp[i]; 9561 snprintf(fp->tq_name, sizeof(fp->tq_name), 9562 "bxe%d_fp%d_tq", sc->unit, i); 9563 TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp); 9564 fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT, 9565 taskqueue_thread_enqueue, 9566 &fp->tq); 9567 taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */ 9568 "%s", fp->tq_name); 9569 } 9570 9571 /* setup interrupt handlers */ 9572 if (sc->interrupt_mode == INTR_MODE_MSIX) { 9573 BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n"); 9574 9575 /* 9576 * Setup the interrupt handler. Note that we pass the driver instance 9577 * to the interrupt handler for the slowpath. 9578 */ 9579 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9580 (INTR_TYPE_NET | INTR_MPSAFE), 9581 NULL, bxe_intr_sp, sc, 9582 &sc->intr[0].tag)) != 0) { 9583 BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc); 9584 goto bxe_interrupt_attach_exit; 9585 } 9586 9587 bus_describe_intr(sc->dev, sc->intr[0].resource, 9588 sc->intr[0].tag, "sp"); 9589 9590 /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */ 9591 9592 /* initialize the fastpath vectors (note the first was used for sp) */ 9593 for (i = 0; i < sc->num_queues; i++) { 9594 fp = &sc->fp[i]; 9595 BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1)); 9596 9597 /* 9598 * Setup the interrupt handler. Note that we pass the 9599 * fastpath context to the interrupt handler in this 9600 * case. 9601 */ 9602 if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource, 9603 (INTR_TYPE_NET | INTR_MPSAFE), 9604 NULL, bxe_intr_fp, fp, 9605 &sc->intr[i + 1].tag)) != 0) { 9606 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n", 9607 (i + 1), rc); 9608 goto bxe_interrupt_attach_exit; 9609 } 9610 9611 bus_describe_intr(sc->dev, sc->intr[i + 1].resource, 9612 sc->intr[i + 1].tag, "fp%02d", i); 9613 9614 /* bind the fastpath instance to a cpu */ 9615 if (sc->num_queues > 1) { 9616 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i); 9617 } 9618 9619 fp->state = BXE_FP_STATE_IRQ; 9620 } 9621 } else if (sc->interrupt_mode == INTR_MODE_MSI) { 9622 BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n"); 9623 9624 /* 9625 * Setup the interrupt handler. Note that we pass the 9626 * driver instance to the interrupt handler which 9627 * will handle both the slowpath and fastpath. 9628 */ 9629 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9630 (INTR_TYPE_NET | INTR_MPSAFE), 9631 NULL, bxe_intr_legacy, sc, 9632 &sc->intr[0].tag)) != 0) { 9633 BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc); 9634 goto bxe_interrupt_attach_exit; 9635 } 9636 9637 } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */ 9638 BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n"); 9639 9640 /* 9641 * Setup the interrupt handler. Note that we pass the 9642 * driver instance to the interrupt handler which 9643 * will handle both the slowpath and fastpath. 9644 */ 9645 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9646 (INTR_TYPE_NET | INTR_MPSAFE), 9647 NULL, bxe_intr_legacy, sc, 9648 &sc->intr[0].tag)) != 0) { 9649 BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc); 9650 goto bxe_interrupt_attach_exit; 9651 } 9652 } 9653 9654 bxe_interrupt_attach_exit: 9655 9656 return (rc); 9657 } 9658 9659 static int bxe_init_hw_common_chip(struct bxe_softc *sc); 9660 static int bxe_init_hw_common(struct bxe_softc *sc); 9661 static int bxe_init_hw_port(struct bxe_softc *sc); 9662 static int bxe_init_hw_func(struct bxe_softc *sc); 9663 static void bxe_reset_common(struct bxe_softc *sc); 9664 static void bxe_reset_port(struct bxe_softc *sc); 9665 static void bxe_reset_func(struct bxe_softc *sc); 9666 static int bxe_gunzip_init(struct bxe_softc *sc); 9667 static void bxe_gunzip_end(struct bxe_softc *sc); 9668 static int bxe_init_firmware(struct bxe_softc *sc); 9669 static void bxe_release_firmware(struct bxe_softc *sc); 9670 9671 static struct 9672 ecore_func_sp_drv_ops bxe_func_sp_drv = { 9673 .init_hw_cmn_chip = bxe_init_hw_common_chip, 9674 .init_hw_cmn = bxe_init_hw_common, 9675 .init_hw_port = bxe_init_hw_port, 9676 .init_hw_func = bxe_init_hw_func, 9677 9678 .reset_hw_cmn = bxe_reset_common, 9679 .reset_hw_port = bxe_reset_port, 9680 .reset_hw_func = bxe_reset_func, 9681 9682 .gunzip_init = bxe_gunzip_init, 9683 .gunzip_end = bxe_gunzip_end, 9684 9685 .init_fw = bxe_init_firmware, 9686 .release_fw = bxe_release_firmware, 9687 }; 9688 9689 static void 9690 bxe_init_func_obj(struct bxe_softc *sc) 9691 { 9692 sc->dmae_ready = 0; 9693 9694 ecore_init_func_obj(sc, 9695 &sc->func_obj, 9696 BXE_SP(sc, func_rdata), 9697 BXE_SP_MAPPING(sc, func_rdata), 9698 BXE_SP(sc, func_afex_rdata), 9699 BXE_SP_MAPPING(sc, func_afex_rdata), 9700 &bxe_func_sp_drv); 9701 } 9702 9703 static int 9704 bxe_init_hw(struct bxe_softc *sc, 9705 uint32_t load_code) 9706 { 9707 struct ecore_func_state_params func_params = { NULL }; 9708 int rc; 9709 9710 /* prepare the parameters for function state transitions */ 9711 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 9712 9713 func_params.f_obj = &sc->func_obj; 9714 func_params.cmd = ECORE_F_CMD_HW_INIT; 9715 9716 func_params.params.hw_init.load_phase = load_code; 9717 9718 /* 9719 * Via a plethora of function pointers, we will eventually reach 9720 * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func(). 9721 */ 9722 rc = ecore_func_state_change(sc, &func_params); 9723 9724 return (rc); 9725 } 9726 9727 static void 9728 bxe_fill(struct bxe_softc *sc, 9729 uint32_t addr, 9730 int fill, 9731 uint32_t len) 9732 { 9733 uint32_t i; 9734 9735 if (!(len % 4) && !(addr % 4)) { 9736 for (i = 0; i < len; i += 4) { 9737 REG_WR(sc, (addr + i), fill); 9738 } 9739 } else { 9740 for (i = 0; i < len; i++) { 9741 REG_WR8(sc, (addr + i), fill); 9742 } 9743 } 9744 } 9745 9746 /* writes FP SP data to FW - data_size in dwords */ 9747 static void 9748 bxe_wr_fp_sb_data(struct bxe_softc *sc, 9749 int fw_sb_id, 9750 uint32_t *sb_data_p, 9751 uint32_t data_size) 9752 { 9753 int index; 9754 9755 for (index = 0; index < data_size; index++) { 9756 REG_WR(sc, 9757 (BAR_CSTRORM_INTMEM + 9758 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 9759 (sizeof(uint32_t) * index)), 9760 *(sb_data_p + index)); 9761 } 9762 } 9763 9764 static void 9765 bxe_zero_fp_sb(struct bxe_softc *sc, 9766 int fw_sb_id) 9767 { 9768 struct hc_status_block_data_e2 sb_data_e2; 9769 struct hc_status_block_data_e1x sb_data_e1x; 9770 uint32_t *sb_data_p; 9771 uint32_t data_size = 0; 9772 9773 if (!CHIP_IS_E1x(sc)) { 9774 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9775 sb_data_e2.common.state = SB_DISABLED; 9776 sb_data_e2.common.p_func.vf_valid = FALSE; 9777 sb_data_p = (uint32_t *)&sb_data_e2; 9778 data_size = (sizeof(struct hc_status_block_data_e2) / 9779 sizeof(uint32_t)); 9780 } else { 9781 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9782 sb_data_e1x.common.state = SB_DISABLED; 9783 sb_data_e1x.common.p_func.vf_valid = FALSE; 9784 sb_data_p = (uint32_t *)&sb_data_e1x; 9785 data_size = (sizeof(struct hc_status_block_data_e1x) / 9786 sizeof(uint32_t)); 9787 } 9788 9789 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9790 9791 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 9792 0, CSTORM_STATUS_BLOCK_SIZE); 9793 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)), 9794 0, CSTORM_SYNC_BLOCK_SIZE); 9795 } 9796 9797 static void 9798 bxe_wr_sp_sb_data(struct bxe_softc *sc, 9799 struct hc_sp_status_block_data *sp_sb_data) 9800 { 9801 int i; 9802 9803 for (i = 0; 9804 i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t)); 9805 i++) { 9806 REG_WR(sc, 9807 (BAR_CSTRORM_INTMEM + 9808 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) + 9809 (i * sizeof(uint32_t))), 9810 *((uint32_t *)sp_sb_data + i)); 9811 } 9812 } 9813 9814 static void 9815 bxe_zero_sp_sb(struct bxe_softc *sc) 9816 { 9817 struct hc_sp_status_block_data sp_sb_data; 9818 9819 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9820 9821 sp_sb_data.state = SB_DISABLED; 9822 sp_sb_data.p_func.vf_valid = FALSE; 9823 9824 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9825 9826 bxe_fill(sc, 9827 (BAR_CSTRORM_INTMEM + 9828 CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))), 9829 0, CSTORM_SP_STATUS_BLOCK_SIZE); 9830 bxe_fill(sc, 9831 (BAR_CSTRORM_INTMEM + 9832 CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))), 9833 0, CSTORM_SP_SYNC_BLOCK_SIZE); 9834 } 9835 9836 static void 9837 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 9838 int igu_sb_id, 9839 int igu_seg_id) 9840 { 9841 hc_sm->igu_sb_id = igu_sb_id; 9842 hc_sm->igu_seg_id = igu_seg_id; 9843 hc_sm->timer_value = 0xFF; 9844 hc_sm->time_to_expire = 0xFFFFFFFF; 9845 } 9846 9847 static void 9848 bxe_map_sb_state_machines(struct hc_index_data *index_data) 9849 { 9850 /* zero out state machine indices */ 9851 9852 /* rx indices */ 9853 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9854 9855 /* tx indices */ 9856 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9857 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 9858 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 9859 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 9860 9861 /* map indices */ 9862 9863 /* rx indices */ 9864 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 9865 (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9866 9867 /* tx indices */ 9868 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 9869 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9870 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 9871 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9872 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 9873 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9874 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 9875 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9876 } 9877 9878 static void 9879 bxe_init_sb(struct bxe_softc *sc, 9880 bus_addr_t busaddr, 9881 int vfid, 9882 uint8_t vf_valid, 9883 int fw_sb_id, 9884 int igu_sb_id) 9885 { 9886 struct hc_status_block_data_e2 sb_data_e2; 9887 struct hc_status_block_data_e1x sb_data_e1x; 9888 struct hc_status_block_sm *hc_sm_p; 9889 uint32_t *sb_data_p; 9890 int igu_seg_id; 9891 int data_size; 9892 9893 if (CHIP_INT_MODE_IS_BC(sc)) { 9894 igu_seg_id = HC_SEG_ACCESS_NORM; 9895 } else { 9896 igu_seg_id = IGU_SEG_ACCESS_NORM; 9897 } 9898 9899 bxe_zero_fp_sb(sc, fw_sb_id); 9900 9901 if (!CHIP_IS_E1x(sc)) { 9902 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9903 sb_data_e2.common.state = SB_ENABLED; 9904 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc); 9905 sb_data_e2.common.p_func.vf_id = vfid; 9906 sb_data_e2.common.p_func.vf_valid = vf_valid; 9907 sb_data_e2.common.p_func.vnic_id = SC_VN(sc); 9908 sb_data_e2.common.same_igu_sb_1b = TRUE; 9909 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr); 9910 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr); 9911 hc_sm_p = sb_data_e2.common.state_machine; 9912 sb_data_p = (uint32_t *)&sb_data_e2; 9913 data_size = (sizeof(struct hc_status_block_data_e2) / 9914 sizeof(uint32_t)); 9915 bxe_map_sb_state_machines(sb_data_e2.index_data); 9916 } else { 9917 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9918 sb_data_e1x.common.state = SB_ENABLED; 9919 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc); 9920 sb_data_e1x.common.p_func.vf_id = 0xff; 9921 sb_data_e1x.common.p_func.vf_valid = FALSE; 9922 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc); 9923 sb_data_e1x.common.same_igu_sb_1b = TRUE; 9924 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr); 9925 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr); 9926 hc_sm_p = sb_data_e1x.common.state_machine; 9927 sb_data_p = (uint32_t *)&sb_data_e1x; 9928 data_size = (sizeof(struct hc_status_block_data_e1x) / 9929 sizeof(uint32_t)); 9930 bxe_map_sb_state_machines(sb_data_e1x.index_data); 9931 } 9932 9933 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id); 9934 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id); 9935 9936 BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id); 9937 9938 /* write indices to HW - PCI guarantees endianity of regpairs */ 9939 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9940 } 9941 9942 static inline uint8_t 9943 bxe_fp_qzone_id(struct bxe_fastpath *fp) 9944 { 9945 if (CHIP_IS_E1x(fp->sc)) { 9946 return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H); 9947 } else { 9948 return (fp->cl_id); 9949 } 9950 } 9951 9952 static inline uint32_t 9953 bxe_rx_ustorm_prods_offset(struct bxe_softc *sc, 9954 struct bxe_fastpath *fp) 9955 { 9956 uint32_t offset = BAR_USTRORM_INTMEM; 9957 9958 #if 0 9959 if (IS_VF(sc)) { 9960 return (PXP_VF_ADDR_USDM_QUEUES_START + 9961 (sc->acquire_resp.resc.hw_qid[fp->index] * 9962 sizeof(struct ustorm_queue_zone_data))); 9963 } else 9964 #endif 9965 if (!CHIP_IS_E1x(sc)) { 9966 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 9967 } else { 9968 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id); 9969 } 9970 9971 return (offset); 9972 } 9973 9974 static void 9975 bxe_init_eth_fp(struct bxe_softc *sc, 9976 int idx) 9977 { 9978 struct bxe_fastpath *fp = &sc->fp[idx]; 9979 uint32_t cids[ECORE_MULTI_TX_COS] = { 0 }; 9980 unsigned long q_type = 0; 9981 int cos; 9982 9983 fp->sc = sc; 9984 fp->index = idx; 9985 9986 snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name), 9987 "bxe%d_fp%d_tx_lock", sc->unit, idx); 9988 mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF); 9989 9990 snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name), 9991 "bxe%d_fp%d_rx_lock", sc->unit, idx); 9992 mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF); 9993 9994 fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc)); 9995 fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc)); 9996 9997 fp->cl_id = (CHIP_IS_E1x(sc)) ? 9998 (SC_L_ID(sc) + idx) : 9999 /* want client ID same as IGU SB ID for non-E1 */ 10000 fp->igu_sb_id; 10001 fp->cl_qzone_id = bxe_fp_qzone_id(fp); 10002 10003 /* setup sb indices */ 10004 if (!CHIP_IS_E1x(sc)) { 10005 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values; 10006 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index; 10007 } else { 10008 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values; 10009 fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index; 10010 } 10011 10012 /* init shortcut */ 10013 fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp); 10014 10015 fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]; 10016 10017 /* 10018 * XXX If multiple CoS is ever supported then each fastpath structure 10019 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 10020 */ 10021 for (cos = 0; cos < sc->max_cos; cos++) { 10022 cids[cos] = idx; 10023 } 10024 fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]; 10025 10026 /* nothing more for a VF to do */ 10027 if (IS_VF(sc)) { 10028 return; 10029 } 10030 10031 bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE, 10032 fp->fw_sb_id, fp->igu_sb_id); 10033 10034 bxe_update_fp_sb_idx(fp); 10035 10036 /* Configure Queue State object */ 10037 bit_set(&q_type, ECORE_Q_TYPE_HAS_RX); 10038 bit_set(&q_type, ECORE_Q_TYPE_HAS_TX); 10039 10040 ecore_init_queue_obj(sc, 10041 &sc->sp_objs[idx].q_obj, 10042 fp->cl_id, 10043 cids, 10044 sc->max_cos, 10045 SC_FUNC(sc), 10046 BXE_SP(sc, q_rdata), 10047 BXE_SP_MAPPING(sc, q_rdata), 10048 q_type); 10049 10050 /* configure classification DBs */ 10051 ecore_init_mac_obj(sc, 10052 &sc->sp_objs[idx].mac_obj, 10053 fp->cl_id, 10054 idx, 10055 SC_FUNC(sc), 10056 BXE_SP(sc, mac_rdata), 10057 BXE_SP_MAPPING(sc, mac_rdata), 10058 ECORE_FILTER_MAC_PENDING, 10059 &sc->sp_state, 10060 ECORE_OBJ_TYPE_RX_TX, 10061 &sc->macs_pool); 10062 10063 BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n", 10064 idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id); 10065 } 10066 10067 static inline void 10068 bxe_update_rx_prod(struct bxe_softc *sc, 10069 struct bxe_fastpath *fp, 10070 uint16_t rx_bd_prod, 10071 uint16_t rx_cq_prod, 10072 uint16_t rx_sge_prod) 10073 { 10074 struct ustorm_eth_rx_producers rx_prods = { 0 }; 10075 uint32_t i; 10076 10077 /* update producers */ 10078 rx_prods.bd_prod = rx_bd_prod; 10079 rx_prods.cqe_prod = rx_cq_prod; 10080 rx_prods.sge_prod = rx_sge_prod; 10081 10082 /* 10083 * Make sure that the BD and SGE data is updated before updating the 10084 * producers since FW might read the BD/SGE right after the producer 10085 * is updated. 10086 * This is only applicable for weak-ordered memory model archs such 10087 * as IA-64. The following barrier is also mandatory since FW will 10088 * assumes BDs must have buffers. 10089 */ 10090 wmb(); 10091 10092 for (i = 0; i < (sizeof(rx_prods) / 4); i++) { 10093 REG_WR(sc, 10094 (fp->ustorm_rx_prods_offset + (i * 4)), 10095 ((uint32_t *)&rx_prods)[i]); 10096 } 10097 10098 wmb(); /* keep prod updates ordered */ 10099 10100 BLOGD(sc, DBG_RX, 10101 "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n", 10102 fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod); 10103 } 10104 10105 static void 10106 bxe_init_rx_rings(struct bxe_softc *sc) 10107 { 10108 struct bxe_fastpath *fp; 10109 int i; 10110 10111 for (i = 0; i < sc->num_queues; i++) { 10112 fp = &sc->fp[i]; 10113 10114 fp->rx_bd_cons = 0; 10115 10116 /* 10117 * Activate the BD ring... 10118 * Warning, this will generate an interrupt (to the TSTORM) 10119 * so this can only be done after the chip is initialized 10120 */ 10121 bxe_update_rx_prod(sc, fp, 10122 fp->rx_bd_prod, 10123 fp->rx_cq_prod, 10124 fp->rx_sge_prod); 10125 10126 if (i != 0) { 10127 continue; 10128 } 10129 10130 if (CHIP_IS_E1(sc)) { 10131 REG_WR(sc, 10132 (BAR_USTRORM_INTMEM + 10133 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))), 10134 U64_LO(fp->rcq_dma.paddr)); 10135 REG_WR(sc, 10136 (BAR_USTRORM_INTMEM + 10137 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4), 10138 U64_HI(fp->rcq_dma.paddr)); 10139 } 10140 } 10141 } 10142 10143 static void 10144 bxe_init_tx_ring_one(struct bxe_fastpath *fp) 10145 { 10146 SET_FLAG(fp->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1); 10147 fp->tx_db.data.zero_fill1 = 0; 10148 fp->tx_db.data.prod = 0; 10149 10150 fp->tx_pkt_prod = 0; 10151 fp->tx_pkt_cons = 0; 10152 fp->tx_bd_prod = 0; 10153 fp->tx_bd_cons = 0; 10154 fp->eth_q_stats.tx_pkts = 0; 10155 } 10156 10157 static inline void 10158 bxe_init_tx_rings(struct bxe_softc *sc) 10159 { 10160 int i; 10161 10162 for (i = 0; i < sc->num_queues; i++) { 10163 #if 0 10164 uint8_t cos; 10165 for (cos = 0; cos < sc->max_cos; cos++) { 10166 bxe_init_tx_ring_one(&sc->fp[i].txdata[cos]); 10167 } 10168 #else 10169 bxe_init_tx_ring_one(&sc->fp[i]); 10170 #endif 10171 } 10172 } 10173 10174 static void 10175 bxe_init_def_sb(struct bxe_softc *sc) 10176 { 10177 struct host_sp_status_block *def_sb = sc->def_sb; 10178 bus_addr_t mapping = sc->def_sb_dma.paddr; 10179 int igu_sp_sb_index; 10180 int igu_seg_id; 10181 int port = SC_PORT(sc); 10182 int func = SC_FUNC(sc); 10183 int reg_offset, reg_offset_en5; 10184 uint64_t section; 10185 int index, sindex; 10186 struct hc_sp_status_block_data sp_sb_data; 10187 10188 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 10189 10190 if (CHIP_INT_MODE_IS_BC(sc)) { 10191 igu_sp_sb_index = DEF_SB_IGU_ID; 10192 igu_seg_id = HC_SEG_ACCESS_DEF; 10193 } else { 10194 igu_sp_sb_index = sc->igu_dsb_id; 10195 igu_seg_id = IGU_SEG_ACCESS_DEF; 10196 } 10197 10198 /* attentions */ 10199 section = ((uint64_t)mapping + 10200 offsetof(struct host_sp_status_block, atten_status_block)); 10201 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 10202 sc->attn_state = 0; 10203 10204 reg_offset = (port) ? 10205 MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 10206 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 10207 reg_offset_en5 = (port) ? 10208 MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 10209 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0; 10210 10211 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 10212 /* take care of sig[0]..sig[4] */ 10213 for (sindex = 0; sindex < 4; sindex++) { 10214 sc->attn_group[index].sig[sindex] = 10215 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index))); 10216 } 10217 10218 if (!CHIP_IS_E1x(sc)) { 10219 /* 10220 * enable5 is separate from the rest of the registers, 10221 * and the address skip is 4 and not 16 between the 10222 * different groups 10223 */ 10224 sc->attn_group[index].sig[4] = 10225 REG_RD(sc, (reg_offset_en5 + (0x4 * index))); 10226 } else { 10227 sc->attn_group[index].sig[4] = 0; 10228 } 10229 } 10230 10231 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10232 reg_offset = (port) ? 10233 HC_REG_ATTN_MSG1_ADDR_L : 10234 HC_REG_ATTN_MSG0_ADDR_L; 10235 REG_WR(sc, reg_offset, U64_LO(section)); 10236 REG_WR(sc, (reg_offset + 4), U64_HI(section)); 10237 } else if (!CHIP_IS_E1x(sc)) { 10238 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 10239 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 10240 } 10241 10242 section = ((uint64_t)mapping + 10243 offsetof(struct host_sp_status_block, sp_sb)); 10244 10245 bxe_zero_sp_sb(sc); 10246 10247 /* PCI guarantees endianity of regpair */ 10248 sp_sb_data.state = SB_ENABLED; 10249 sp_sb_data.host_sb_addr.lo = U64_LO(section); 10250 sp_sb_data.host_sb_addr.hi = U64_HI(section); 10251 sp_sb_data.igu_sb_id = igu_sp_sb_index; 10252 sp_sb_data.igu_seg_id = igu_seg_id; 10253 sp_sb_data.p_func.pf_id = func; 10254 sp_sb_data.p_func.vnic_id = SC_VN(sc); 10255 sp_sb_data.p_func.vf_id = 0xff; 10256 10257 bxe_wr_sp_sb_data(sc, &sp_sb_data); 10258 10259 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 10260 } 10261 10262 static void 10263 bxe_init_sp_ring(struct bxe_softc *sc) 10264 { 10265 atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING); 10266 sc->spq_prod_idx = 0; 10267 sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS]; 10268 sc->spq_prod_bd = sc->spq; 10269 sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT); 10270 } 10271 10272 static void 10273 bxe_init_eq_ring(struct bxe_softc *sc) 10274 { 10275 union event_ring_elem *elem; 10276 int i; 10277 10278 for (i = 1; i <= NUM_EQ_PAGES; i++) { 10279 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1]; 10280 10281 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr + 10282 BCM_PAGE_SIZE * 10283 (i % NUM_EQ_PAGES))); 10284 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr + 10285 BCM_PAGE_SIZE * 10286 (i % NUM_EQ_PAGES))); 10287 } 10288 10289 sc->eq_cons = 0; 10290 sc->eq_prod = NUM_EQ_DESC; 10291 sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS]; 10292 10293 atomic_store_rel_long(&sc->eq_spq_left, 10294 (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING), 10295 NUM_EQ_DESC) - 1)); 10296 } 10297 10298 static void 10299 bxe_init_internal_common(struct bxe_softc *sc) 10300 { 10301 int i; 10302 10303 if (IS_MF_SI(sc)) { 10304 /* 10305 * In switch independent mode, the TSTORM needs to accept 10306 * packets that failed classification, since approximate match 10307 * mac addresses aren't written to NIG LLH. 10308 */ 10309 REG_WR8(sc, 10310 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 10311 2); 10312 } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */ 10313 REG_WR8(sc, 10314 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 10315 0); 10316 } 10317 10318 /* 10319 * Zero this manually as its initialization is currently missing 10320 * in the initTool. 10321 */ 10322 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) { 10323 REG_WR(sc, 10324 (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)), 10325 0); 10326 } 10327 10328 if (!CHIP_IS_E1x(sc)) { 10329 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET), 10330 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 10331 } 10332 } 10333 10334 static void 10335 bxe_init_internal(struct bxe_softc *sc, 10336 uint32_t load_code) 10337 { 10338 switch (load_code) { 10339 case FW_MSG_CODE_DRV_LOAD_COMMON: 10340 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 10341 bxe_init_internal_common(sc); 10342 /* no break */ 10343 10344 case FW_MSG_CODE_DRV_LOAD_PORT: 10345 /* nothing to do */ 10346 /* no break */ 10347 10348 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 10349 /* internal memory per function is initialized inside bxe_pf_init */ 10350 break; 10351 10352 default: 10353 BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code); 10354 break; 10355 } 10356 } 10357 10358 static void 10359 storm_memset_func_cfg(struct bxe_softc *sc, 10360 struct tstorm_eth_function_common_config *tcfg, 10361 uint16_t abs_fid) 10362 { 10363 uint32_t addr; 10364 size_t size; 10365 10366 addr = (BAR_TSTRORM_INTMEM + 10367 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid)); 10368 size = sizeof(struct tstorm_eth_function_common_config); 10369 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg); 10370 } 10371 10372 static void 10373 bxe_func_init(struct bxe_softc *sc, 10374 struct bxe_func_init_params *p) 10375 { 10376 struct tstorm_eth_function_common_config tcfg = { 0 }; 10377 10378 if (CHIP_IS_E1x(sc)) { 10379 storm_memset_func_cfg(sc, &tcfg, p->func_id); 10380 } 10381 10382 /* Enable the function in the FW */ 10383 storm_memset_vf_to_pf(sc, p->func_id, p->pf_id); 10384 storm_memset_func_en(sc, p->func_id, 1); 10385 10386 /* spq */ 10387 if (p->func_flgs & FUNC_FLG_SPQ) { 10388 storm_memset_spq_addr(sc, p->spq_map, p->func_id); 10389 REG_WR(sc, 10390 (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)), 10391 p->spq_prod); 10392 } 10393 } 10394 10395 /* 10396 * Calculates the sum of vn_min_rates. 10397 * It's needed for further normalizing of the min_rates. 10398 * Returns: 10399 * sum of vn_min_rates. 10400 * or 10401 * 0 - if all the min_rates are 0. 10402 * In the later case fainess algorithm should be deactivated. 10403 * If all min rates are not zero then those that are zeroes will be set to 1. 10404 */ 10405 static void 10406 bxe_calc_vn_min(struct bxe_softc *sc, 10407 struct cmng_init_input *input) 10408 { 10409 uint32_t vn_cfg; 10410 uint32_t vn_min_rate; 10411 int all_zero = 1; 10412 int vn; 10413 10414 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10415 vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10416 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 10417 FUNC_MF_CFG_MIN_BW_SHIFT) * 100); 10418 10419 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10420 /* skip hidden VNs */ 10421 vn_min_rate = 0; 10422 } else if (!vn_min_rate) { 10423 /* If min rate is zero - set it to 100 */ 10424 vn_min_rate = DEF_MIN_RATE; 10425 } else { 10426 all_zero = 0; 10427 } 10428 10429 input->vnic_min_rate[vn] = vn_min_rate; 10430 } 10431 10432 /* if ETS or all min rates are zeros - disable fairness */ 10433 if (BXE_IS_ETS_ENABLED(sc)) { 10434 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10435 BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n"); 10436 } else if (all_zero) { 10437 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10438 BLOGD(sc, DBG_LOAD, 10439 "Fariness disabled (all MIN values are zeroes)\n"); 10440 } else { 10441 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10442 } 10443 } 10444 10445 static inline uint16_t 10446 bxe_extract_max_cfg(struct bxe_softc *sc, 10447 uint32_t mf_cfg) 10448 { 10449 uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >> 10450 FUNC_MF_CFG_MAX_BW_SHIFT); 10451 10452 if (!max_cfg) { 10453 BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n"); 10454 max_cfg = 100; 10455 } 10456 10457 return (max_cfg); 10458 } 10459 10460 static void 10461 bxe_calc_vn_max(struct bxe_softc *sc, 10462 int vn, 10463 struct cmng_init_input *input) 10464 { 10465 uint16_t vn_max_rate; 10466 uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10467 uint32_t max_cfg; 10468 10469 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10470 vn_max_rate = 0; 10471 } else { 10472 max_cfg = bxe_extract_max_cfg(sc, vn_cfg); 10473 10474 if (IS_MF_SI(sc)) { 10475 /* max_cfg in percents of linkspeed */ 10476 vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100); 10477 } else { /* SD modes */ 10478 /* max_cfg is absolute in 100Mb units */ 10479 vn_max_rate = (max_cfg * 100); 10480 } 10481 } 10482 10483 BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 10484 10485 input->vnic_max_rate[vn] = vn_max_rate; 10486 } 10487 10488 static void 10489 bxe_cmng_fns_init(struct bxe_softc *sc, 10490 uint8_t read_cfg, 10491 uint8_t cmng_type) 10492 { 10493 struct cmng_init_input input; 10494 int vn; 10495 10496 memset(&input, 0, sizeof(struct cmng_init_input)); 10497 10498 input.port_rate = sc->link_vars.line_speed; 10499 10500 if (cmng_type == CMNG_FNS_MINMAX) { 10501 /* read mf conf from shmem */ 10502 if (read_cfg) { 10503 bxe_read_mf_cfg(sc); 10504 } 10505 10506 /* get VN min rate and enable fairness if not 0 */ 10507 bxe_calc_vn_min(sc, &input); 10508 10509 /* get VN max rate */ 10510 if (sc->port.pmf) { 10511 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10512 bxe_calc_vn_max(sc, vn, &input); 10513 } 10514 } 10515 10516 /* always enable rate shaping and fairness */ 10517 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 10518 10519 ecore_init_cmng(&input, &sc->cmng); 10520 return; 10521 } 10522 10523 /* rate shaping and fairness are disabled */ 10524 BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n"); 10525 } 10526 10527 static int 10528 bxe_get_cmng_fns_mode(struct bxe_softc *sc) 10529 { 10530 if (CHIP_REV_IS_SLOW(sc)) { 10531 return (CMNG_FNS_NONE); 10532 } 10533 10534 if (IS_MF(sc)) { 10535 return (CMNG_FNS_MINMAX); 10536 } 10537 10538 return (CMNG_FNS_NONE); 10539 } 10540 10541 static void 10542 storm_memset_cmng(struct bxe_softc *sc, 10543 struct cmng_init *cmng, 10544 uint8_t port) 10545 { 10546 int vn; 10547 int func; 10548 uint32_t addr; 10549 size_t size; 10550 10551 addr = (BAR_XSTRORM_INTMEM + 10552 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port)); 10553 size = sizeof(struct cmng_struct_per_port); 10554 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port); 10555 10556 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10557 func = func_by_vn(sc, vn); 10558 10559 addr = (BAR_XSTRORM_INTMEM + 10560 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func)); 10561 size = sizeof(struct rate_shaping_vars_per_vn); 10562 ecore_storm_memset_struct(sc, addr, size, 10563 (uint32_t *)&cmng->vnic.vnic_max_rate[vn]); 10564 10565 addr = (BAR_XSTRORM_INTMEM + 10566 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func)); 10567 size = sizeof(struct fairness_vars_per_vn); 10568 ecore_storm_memset_struct(sc, addr, size, 10569 (uint32_t *)&cmng->vnic.vnic_min_rate[vn]); 10570 } 10571 } 10572 10573 static void 10574 bxe_pf_init(struct bxe_softc *sc) 10575 { 10576 struct bxe_func_init_params func_init = { 0 }; 10577 struct event_ring_data eq_data = { { 0 } }; 10578 uint16_t flags; 10579 10580 if (!CHIP_IS_E1x(sc)) { 10581 /* reset IGU PF statistics: MSIX + ATTN */ 10582 /* PF */ 10583 REG_WR(sc, 10584 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10585 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10586 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10587 0); 10588 /* ATTN */ 10589 REG_WR(sc, 10590 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10591 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10592 (BXE_IGU_STAS_MSG_PF_CNT * 4) + 10593 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10594 0); 10595 } 10596 10597 /* function setup flags */ 10598 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); 10599 10600 /* 10601 * This flag is relevant for E1x only. 10602 * E2 doesn't have a TPA configuration in a function level. 10603 */ 10604 flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0; 10605 10606 func_init.func_flgs = flags; 10607 func_init.pf_id = SC_FUNC(sc); 10608 func_init.func_id = SC_FUNC(sc); 10609 func_init.spq_map = sc->spq_dma.paddr; 10610 func_init.spq_prod = sc->spq_prod_idx; 10611 10612 bxe_func_init(sc, &func_init); 10613 10614 memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port)); 10615 10616 /* 10617 * Congestion management values depend on the link rate. 10618 * There is no active link so initial link rate is set to 10Gbps. 10619 * When the link comes up the congestion management values are 10620 * re-calculated according to the actual link rate. 10621 */ 10622 sc->link_vars.line_speed = SPEED_10000; 10623 bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc)); 10624 10625 /* Only the PMF sets the HW */ 10626 if (sc->port.pmf) { 10627 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 10628 } 10629 10630 /* init Event Queue - PCI bus guarantees correct endainity */ 10631 eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr); 10632 eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr); 10633 eq_data.producer = sc->eq_prod; 10634 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 10635 eq_data.sb_id = DEF_SB_ID; 10636 storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc)); 10637 } 10638 10639 static void 10640 bxe_hc_int_enable(struct bxe_softc *sc) 10641 { 10642 int port = SC_PORT(sc); 10643 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10644 uint32_t val = REG_RD(sc, addr); 10645 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10646 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10647 (sc->intr_count == 1)) ? TRUE : FALSE; 10648 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10649 10650 if (msix) { 10651 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10652 HC_CONFIG_0_REG_INT_LINE_EN_0); 10653 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10654 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10655 if (single_msix) { 10656 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 10657 } 10658 } else if (msi) { 10659 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 10660 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10661 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10662 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10663 } else { 10664 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10665 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10666 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10667 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10668 10669 if (!CHIP_IS_E1(sc)) { 10670 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", 10671 val, port, addr); 10672 10673 REG_WR(sc, addr, val); 10674 10675 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 10676 } 10677 } 10678 10679 if (CHIP_IS_E1(sc)) { 10680 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF); 10681 } 10682 10683 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n", 10684 val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10685 10686 REG_WR(sc, addr, val); 10687 10688 /* ensure that HC_CONFIG is written before leading/trailing edge config */ 10689 mb(); 10690 10691 if (!CHIP_IS_E1(sc)) { 10692 /* init leading/trailing edge */ 10693 if (IS_MF(sc)) { 10694 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10695 if (sc->port.pmf) { 10696 /* enable nig and gpio3 attention */ 10697 val |= 0x1100; 10698 } 10699 } else { 10700 val = 0xffff; 10701 } 10702 10703 REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val); 10704 REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val); 10705 } 10706 10707 /* make sure that interrupts are indeed enabled from here on */ 10708 mb(); 10709 } 10710 10711 static void 10712 bxe_igu_int_enable(struct bxe_softc *sc) 10713 { 10714 uint32_t val; 10715 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10716 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10717 (sc->intr_count == 1)) ? TRUE : FALSE; 10718 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10719 10720 val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10721 10722 if (msix) { 10723 val &= ~(IGU_PF_CONF_INT_LINE_EN | 10724 IGU_PF_CONF_SINGLE_ISR_EN); 10725 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10726 IGU_PF_CONF_ATTN_BIT_EN); 10727 if (single_msix) { 10728 val |= IGU_PF_CONF_SINGLE_ISR_EN; 10729 } 10730 } else if (msi) { 10731 val &= ~IGU_PF_CONF_INT_LINE_EN; 10732 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10733 IGU_PF_CONF_ATTN_BIT_EN | 10734 IGU_PF_CONF_SINGLE_ISR_EN); 10735 } else { 10736 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 10737 val |= (IGU_PF_CONF_INT_LINE_EN | 10738 IGU_PF_CONF_ATTN_BIT_EN | 10739 IGU_PF_CONF_SINGLE_ISR_EN); 10740 } 10741 10742 /* clean previous status - need to configure igu prior to ack*/ 10743 if ((!msix) || single_msix) { 10744 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10745 bxe_ack_int(sc); 10746 } 10747 10748 val |= IGU_PF_CONF_FUNC_EN; 10749 10750 BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n", 10751 val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10752 10753 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10754 10755 mb(); 10756 10757 /* init leading/trailing edge */ 10758 if (IS_MF(sc)) { 10759 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10760 if (sc->port.pmf) { 10761 /* enable nig and gpio3 attention */ 10762 val |= 0x1100; 10763 } 10764 } else { 10765 val = 0xffff; 10766 } 10767 10768 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 10769 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 10770 10771 /* make sure that interrupts are indeed enabled from here on */ 10772 mb(); 10773 } 10774 10775 static void 10776 bxe_int_enable(struct bxe_softc *sc) 10777 { 10778 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10779 bxe_hc_int_enable(sc); 10780 } else { 10781 bxe_igu_int_enable(sc); 10782 } 10783 } 10784 10785 static void 10786 bxe_hc_int_disable(struct bxe_softc *sc) 10787 { 10788 int port = SC_PORT(sc); 10789 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10790 uint32_t val = REG_RD(sc, addr); 10791 10792 /* 10793 * In E1 we must use only PCI configuration space to disable MSI/MSIX 10794 * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC 10795 * block 10796 */ 10797 if (CHIP_IS_E1(sc)) { 10798 /* 10799 * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register 10800 * to prevent from HC sending interrupts after we exit the function 10801 */ 10802 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0); 10803 10804 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10805 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10806 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10807 } else { 10808 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10809 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10810 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10811 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10812 } 10813 10814 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr); 10815 10816 /* flush all outstanding writes */ 10817 mb(); 10818 10819 REG_WR(sc, addr, val); 10820 if (REG_RD(sc, addr) != val) { 10821 BLOGE(sc, "proper val not read from HC IGU!\n"); 10822 } 10823 } 10824 10825 static void 10826 bxe_igu_int_disable(struct bxe_softc *sc) 10827 { 10828 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10829 10830 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 10831 IGU_PF_CONF_INT_LINE_EN | 10832 IGU_PF_CONF_ATTN_BIT_EN); 10833 10834 BLOGD(sc, DBG_INTR, "write %x to IGU\n", val); 10835 10836 /* flush all outstanding writes */ 10837 mb(); 10838 10839 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10840 if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) { 10841 BLOGE(sc, "proper val not read from IGU!\n"); 10842 } 10843 } 10844 10845 static void 10846 bxe_int_disable(struct bxe_softc *sc) 10847 { 10848 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10849 bxe_hc_int_disable(sc); 10850 } else { 10851 bxe_igu_int_disable(sc); 10852 } 10853 } 10854 10855 static void 10856 bxe_nic_init(struct bxe_softc *sc, 10857 int load_code) 10858 { 10859 int i; 10860 10861 for (i = 0; i < sc->num_queues; i++) { 10862 bxe_init_eth_fp(sc, i); 10863 } 10864 10865 rmb(); /* ensure status block indices were read */ 10866 10867 bxe_init_rx_rings(sc); 10868 bxe_init_tx_rings(sc); 10869 10870 if (IS_VF(sc)) { 10871 return; 10872 } 10873 10874 /* initialize MOD_ABS interrupts */ 10875 elink_init_mod_abs_int(sc, &sc->link_vars, 10876 sc->devinfo.chip_id, 10877 sc->devinfo.shmem_base, 10878 sc->devinfo.shmem2_base, 10879 SC_PORT(sc)); 10880 10881 bxe_init_def_sb(sc); 10882 bxe_update_dsb_idx(sc); 10883 bxe_init_sp_ring(sc); 10884 bxe_init_eq_ring(sc); 10885 bxe_init_internal(sc, load_code); 10886 bxe_pf_init(sc); 10887 bxe_stats_init(sc); 10888 10889 /* flush all before enabling interrupts */ 10890 mb(); 10891 10892 bxe_int_enable(sc); 10893 10894 /* check for SPIO5 */ 10895 bxe_attn_int_deasserted0(sc, 10896 REG_RD(sc, 10897 (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 10898 SC_PORT(sc)*4)) & 10899 AEU_INPUTS_ATTN_BITS_SPIO5); 10900 } 10901 10902 static inline void 10903 bxe_init_objs(struct bxe_softc *sc) 10904 { 10905 /* mcast rules must be added to tx if tx switching is enabled */ 10906 ecore_obj_type o_type = 10907 (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX : 10908 ECORE_OBJ_TYPE_RX; 10909 10910 /* RX_MODE controlling object */ 10911 ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj); 10912 10913 /* multicast configuration controlling object */ 10914 ecore_init_mcast_obj(sc, 10915 &sc->mcast_obj, 10916 sc->fp[0].cl_id, 10917 sc->fp[0].index, 10918 SC_FUNC(sc), 10919 SC_FUNC(sc), 10920 BXE_SP(sc, mcast_rdata), 10921 BXE_SP_MAPPING(sc, mcast_rdata), 10922 ECORE_FILTER_MCAST_PENDING, 10923 &sc->sp_state, 10924 o_type); 10925 10926 /* Setup CAM credit pools */ 10927 ecore_init_mac_credit_pool(sc, 10928 &sc->macs_pool, 10929 SC_FUNC(sc), 10930 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10931 VNICS_PER_PATH(sc)); 10932 10933 ecore_init_vlan_credit_pool(sc, 10934 &sc->vlans_pool, 10935 SC_ABS_FUNC(sc) >> 1, 10936 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10937 VNICS_PER_PATH(sc)); 10938 10939 /* RSS configuration object */ 10940 ecore_init_rss_config_obj(sc, 10941 &sc->rss_conf_obj, 10942 sc->fp[0].cl_id, 10943 sc->fp[0].index, 10944 SC_FUNC(sc), 10945 SC_FUNC(sc), 10946 BXE_SP(sc, rss_rdata), 10947 BXE_SP_MAPPING(sc, rss_rdata), 10948 ECORE_FILTER_RSS_CONF_PENDING, 10949 &sc->sp_state, ECORE_OBJ_TYPE_RX); 10950 } 10951 10952 /* 10953 * Initialize the function. This must be called before sending CLIENT_SETUP 10954 * for the first client. 10955 */ 10956 static inline int 10957 bxe_func_start(struct bxe_softc *sc) 10958 { 10959 struct ecore_func_state_params func_params = { NULL }; 10960 struct ecore_func_start_params *start_params = &func_params.params.start; 10961 10962 /* Prepare parameters for function state transitions */ 10963 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 10964 10965 func_params.f_obj = &sc->func_obj; 10966 func_params.cmd = ECORE_F_CMD_START; 10967 10968 /* Function parameters */ 10969 start_params->mf_mode = sc->devinfo.mf_info.mf_mode; 10970 start_params->sd_vlan_tag = OVLAN(sc); 10971 10972 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 10973 start_params->network_cos_mode = STATIC_COS; 10974 } else { /* CHIP_IS_E1X */ 10975 start_params->network_cos_mode = FW_WRR; 10976 } 10977 10978 start_params->gre_tunnel_mode = 0; 10979 start_params->gre_tunnel_rss = 0; 10980 10981 return (ecore_func_state_change(sc, &func_params)); 10982 } 10983 10984 static int 10985 bxe_set_power_state(struct bxe_softc *sc, 10986 uint8_t state) 10987 { 10988 uint16_t pmcsr; 10989 10990 /* If there is no power capability, silently succeed */ 10991 if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) { 10992 BLOGW(sc, "No power capability\n"); 10993 return (0); 10994 } 10995 10996 pmcsr = pci_read_config(sc->dev, 10997 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10998 2); 10999 11000 switch (state) { 11001 case PCI_PM_D0: 11002 pci_write_config(sc->dev, 11003 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 11004 ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2); 11005 11006 if (pmcsr & PCIM_PSTAT_DMASK) { 11007 /* delay required during transition out of D3hot */ 11008 DELAY(20000); 11009 } 11010 11011 break; 11012 11013 case PCI_PM_D3hot: 11014 /* XXX if there are other clients above don't shut down the power */ 11015 11016 /* don't shut down the power for emulation and FPGA */ 11017 if (CHIP_REV_IS_SLOW(sc)) { 11018 return (0); 11019 } 11020 11021 pmcsr &= ~PCIM_PSTAT_DMASK; 11022 pmcsr |= PCIM_PSTAT_D3; 11023 11024 if (sc->wol) { 11025 pmcsr |= PCIM_PSTAT_PMEENABLE; 11026 } 11027 11028 pci_write_config(sc->dev, 11029 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 11030 pmcsr, 4); 11031 11032 /* 11033 * No more memory access after this point until device is brought back 11034 * to D0 state. 11035 */ 11036 break; 11037 11038 default: 11039 BLOGE(sc, "Can't support PCI power state = %d\n", state); 11040 return (-1); 11041 } 11042 11043 return (0); 11044 } 11045 11046 11047 /* return true if succeeded to acquire the lock */ 11048 static uint8_t 11049 bxe_trylock_hw_lock(struct bxe_softc *sc, 11050 uint32_t resource) 11051 { 11052 uint32_t lock_status; 11053 uint32_t resource_bit = (1 << resource); 11054 int func = SC_FUNC(sc); 11055 uint32_t hw_lock_control_reg; 11056 11057 BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource); 11058 11059 /* Validating that the resource is within range */ 11060 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 11061 BLOGD(sc, DBG_LOAD, 11062 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 11063 resource, HW_LOCK_MAX_RESOURCE_VALUE); 11064 return (FALSE); 11065 } 11066 11067 if (func <= 5) { 11068 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 11069 } else { 11070 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 11071 } 11072 11073 /* try to acquire the lock */ 11074 REG_WR(sc, hw_lock_control_reg + 4, resource_bit); 11075 lock_status = REG_RD(sc, hw_lock_control_reg); 11076 if (lock_status & resource_bit) { 11077 return (TRUE); 11078 } 11079 11080 BLOGE(sc, "Failed to get a resource lock 0x%x\n", resource); 11081 11082 return (FALSE); 11083 } 11084 11085 /* 11086 * Get the recovery leader resource id according to the engine this function 11087 * belongs to. Currently only only 2 engines is supported. 11088 */ 11089 static int 11090 bxe_get_leader_lock_resource(struct bxe_softc *sc) 11091 { 11092 if (SC_PATH(sc)) { 11093 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1); 11094 } else { 11095 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0); 11096 } 11097 } 11098 11099 /* try to acquire a leader lock for current engine */ 11100 static uint8_t 11101 bxe_trylock_leader_lock(struct bxe_softc *sc) 11102 { 11103 return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 11104 } 11105 11106 static int 11107 bxe_release_leader_lock(struct bxe_softc *sc) 11108 { 11109 return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 11110 } 11111 11112 /* close gates #2, #3 and #4 */ 11113 static void 11114 bxe_set_234_gates(struct bxe_softc *sc, 11115 uint8_t close) 11116 { 11117 uint32_t val; 11118 11119 /* gates #2 and #4a are closed/opened for "not E1" only */ 11120 if (!CHIP_IS_E1(sc)) { 11121 /* #4 */ 11122 REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 11123 /* #2 */ 11124 REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 11125 } 11126 11127 /* #3 */ 11128 if (CHIP_IS_E1x(sc)) { 11129 /* prevent interrupts from HC on both ports */ 11130 val = REG_RD(sc, HC_REG_CONFIG_1); 11131 REG_WR(sc, HC_REG_CONFIG_1, 11132 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 11133 (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 11134 11135 val = REG_RD(sc, HC_REG_CONFIG_0); 11136 REG_WR(sc, HC_REG_CONFIG_0, 11137 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 11138 (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 11139 } else { 11140 /* Prevent incomming interrupts in IGU */ 11141 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 11142 11143 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, 11144 (!close) ? 11145 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 11146 (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 11147 } 11148 11149 BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n", 11150 close ? "closing" : "opening"); 11151 11152 wmb(); 11153 } 11154 11155 /* poll for pending writes bit, it should get cleared in no more than 1s */ 11156 static int 11157 bxe_er_poll_igu_vq(struct bxe_softc *sc) 11158 { 11159 uint32_t cnt = 1000; 11160 uint32_t pend_bits = 0; 11161 11162 do { 11163 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS); 11164 11165 if (pend_bits == 0) { 11166 break; 11167 } 11168 11169 DELAY(1000); 11170 } while (--cnt > 0); 11171 11172 if (cnt == 0) { 11173 BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits); 11174 return (-1); 11175 } 11176 11177 return (0); 11178 } 11179 11180 #define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */ 11181 11182 static void 11183 bxe_clp_reset_prep(struct bxe_softc *sc, 11184 uint32_t *magic_val) 11185 { 11186 /* Do some magic... */ 11187 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 11188 *magic_val = val & SHARED_MF_CLP_MAGIC; 11189 MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 11190 } 11191 11192 /* restore the value of the 'magic' bit */ 11193 static void 11194 bxe_clp_reset_done(struct bxe_softc *sc, 11195 uint32_t magic_val) 11196 { 11197 /* Restore the 'magic' bit value... */ 11198 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 11199 MFCFG_WR(sc, shared_mf_config.clp_mb, 11200 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 11201 } 11202 11203 /* prepare for MCP reset, takes care of CLP configurations */ 11204 static void 11205 bxe_reset_mcp_prep(struct bxe_softc *sc, 11206 uint32_t *magic_val) 11207 { 11208 uint32_t shmem; 11209 uint32_t validity_offset; 11210 11211 /* set `magic' bit in order to save MF config */ 11212 if (!CHIP_IS_E1(sc)) { 11213 bxe_clp_reset_prep(sc, magic_val); 11214 } 11215 11216 /* get shmem offset */ 11217 shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 11218 validity_offset = 11219 offsetof(struct shmem_region, validity_map[SC_PORT(sc)]); 11220 11221 /* Clear validity map flags */ 11222 if (shmem > 0) { 11223 REG_WR(sc, shmem + validity_offset, 0); 11224 } 11225 } 11226 11227 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 11228 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 11229 11230 static void 11231 bxe_mcp_wait_one(struct bxe_softc *sc) 11232 { 11233 /* special handling for emulation and FPGA (10 times longer) */ 11234 if (CHIP_REV_IS_SLOW(sc)) { 11235 DELAY((MCP_ONE_TIMEOUT*10) * 1000); 11236 } else { 11237 DELAY((MCP_ONE_TIMEOUT) * 1000); 11238 } 11239 } 11240 11241 /* initialize shmem_base and waits for validity signature to appear */ 11242 static int 11243 bxe_init_shmem(struct bxe_softc *sc) 11244 { 11245 int cnt = 0; 11246 uint32_t val = 0; 11247 11248 do { 11249 sc->devinfo.shmem_base = 11250 sc->link_params.shmem_base = 11251 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 11252 11253 if (sc->devinfo.shmem_base) { 11254 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 11255 if (val & SHR_MEM_VALIDITY_MB) 11256 return (0); 11257 } 11258 11259 bxe_mcp_wait_one(sc); 11260 11261 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 11262 11263 BLOGE(sc, "BAD MCP validity signature\n"); 11264 11265 return (-1); 11266 } 11267 11268 static int 11269 bxe_reset_mcp_comp(struct bxe_softc *sc, 11270 uint32_t magic_val) 11271 { 11272 int rc = bxe_init_shmem(sc); 11273 11274 /* Restore the `magic' bit value */ 11275 if (!CHIP_IS_E1(sc)) { 11276 bxe_clp_reset_done(sc, magic_val); 11277 } 11278 11279 return (rc); 11280 } 11281 11282 static void 11283 bxe_pxp_prep(struct bxe_softc *sc) 11284 { 11285 if (!CHIP_IS_E1(sc)) { 11286 REG_WR(sc, PXP2_REG_RD_START_INIT, 0); 11287 REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0); 11288 wmb(); 11289 } 11290 } 11291 11292 /* 11293 * Reset the whole chip except for: 11294 * - PCIE core 11295 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit) 11296 * - IGU 11297 * - MISC (including AEU) 11298 * - GRC 11299 * - RBCN, RBCP 11300 */ 11301 static void 11302 bxe_process_kill_chip_reset(struct bxe_softc *sc, 11303 uint8_t global) 11304 { 11305 uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 11306 uint32_t global_bits2, stay_reset2; 11307 11308 /* 11309 * Bits that have to be set in reset_mask2 if we want to reset 'global' 11310 * (per chip) blocks. 11311 */ 11312 global_bits2 = 11313 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 11314 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 11315 11316 /* 11317 * Don't reset the following blocks. 11318 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 11319 * reset, as in 4 port device they might still be owned 11320 * by the MCP (there is only one leader per path). 11321 */ 11322 not_reset_mask1 = 11323 MISC_REGISTERS_RESET_REG_1_RST_HC | 11324 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 11325 MISC_REGISTERS_RESET_REG_1_RST_PXP; 11326 11327 not_reset_mask2 = 11328 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 11329 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 11330 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 11331 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 11332 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 11333 MISC_REGISTERS_RESET_REG_2_RST_GRC | 11334 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 11335 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 11336 MISC_REGISTERS_RESET_REG_2_RST_ATC | 11337 MISC_REGISTERS_RESET_REG_2_PGLC | 11338 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 11339 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 11340 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 11341 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 11342 MISC_REGISTERS_RESET_REG_2_UMAC0 | 11343 MISC_REGISTERS_RESET_REG_2_UMAC1; 11344 11345 /* 11346 * Keep the following blocks in reset: 11347 * - all xxMACs are handled by the elink code. 11348 */ 11349 stay_reset2 = 11350 MISC_REGISTERS_RESET_REG_2_XMAC | 11351 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 11352 11353 /* Full reset masks according to the chip */ 11354 reset_mask1 = 0xffffffff; 11355 11356 if (CHIP_IS_E1(sc)) 11357 reset_mask2 = 0xffff; 11358 else if (CHIP_IS_E1H(sc)) 11359 reset_mask2 = 0x1ffff; 11360 else if (CHIP_IS_E2(sc)) 11361 reset_mask2 = 0xfffff; 11362 else /* CHIP_IS_E3 */ 11363 reset_mask2 = 0x3ffffff; 11364 11365 /* Don't reset global blocks unless we need to */ 11366 if (!global) 11367 reset_mask2 &= ~global_bits2; 11368 11369 /* 11370 * In case of attention in the QM, we need to reset PXP 11371 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 11372 * because otherwise QM reset would release 'close the gates' shortly 11373 * before resetting the PXP, then the PSWRQ would send a write 11374 * request to PGLUE. Then when PXP is reset, PGLUE would try to 11375 * read the payload data from PSWWR, but PSWWR would not 11376 * respond. The write queue in PGLUE would stuck, dmae commands 11377 * would not return. Therefore it's important to reset the second 11378 * reset register (containing the 11379 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 11380 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 11381 * bit). 11382 */ 11383 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 11384 reset_mask2 & (~not_reset_mask2)); 11385 11386 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 11387 reset_mask1 & (~not_reset_mask1)); 11388 11389 mb(); 11390 wmb(); 11391 11392 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 11393 reset_mask2 & (~stay_reset2)); 11394 11395 mb(); 11396 wmb(); 11397 11398 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 11399 wmb(); 11400 } 11401 11402 static int 11403 bxe_process_kill(struct bxe_softc *sc, 11404 uint8_t global) 11405 { 11406 int cnt = 1000; 11407 uint32_t val = 0; 11408 uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 11409 uint32_t tags_63_32 = 0; 11410 11411 /* Empty the Tetris buffer, wait for 1s */ 11412 do { 11413 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT); 11414 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT); 11415 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0); 11416 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1); 11417 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2); 11418 if (CHIP_IS_E3(sc)) { 11419 tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32); 11420 } 11421 11422 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 11423 ((port_is_idle_0 & 0x1) == 0x1) && 11424 ((port_is_idle_1 & 0x1) == 0x1) && 11425 (pgl_exp_rom2 == 0xffffffff) && 11426 (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff))) 11427 break; 11428 DELAY(1000); 11429 } while (cnt-- > 0); 11430 11431 if (cnt <= 0) { 11432 BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there " 11433 "are still outstanding read requests after 1s! " 11434 "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, " 11435 "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 11436 sr_cnt, blk_cnt, port_is_idle_0, 11437 port_is_idle_1, pgl_exp_rom2); 11438 return (-1); 11439 } 11440 11441 mb(); 11442 11443 /* Close gates #2, #3 and #4 */ 11444 bxe_set_234_gates(sc, TRUE); 11445 11446 /* Poll for IGU VQs for 57712 and newer chips */ 11447 if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) { 11448 return (-1); 11449 } 11450 11451 /* XXX indicate that "process kill" is in progress to MCP */ 11452 11453 /* clear "unprepared" bit */ 11454 REG_WR(sc, MISC_REG_UNPREPARED, 0); 11455 mb(); 11456 11457 /* Make sure all is written to the chip before the reset */ 11458 wmb(); 11459 11460 /* 11461 * Wait for 1ms to empty GLUE and PCI-E core queues, 11462 * PSWHST, GRC and PSWRD Tetris buffer. 11463 */ 11464 DELAY(1000); 11465 11466 /* Prepare to chip reset: */ 11467 /* MCP */ 11468 if (global) { 11469 bxe_reset_mcp_prep(sc, &val); 11470 } 11471 11472 /* PXP */ 11473 bxe_pxp_prep(sc); 11474 mb(); 11475 11476 /* reset the chip */ 11477 bxe_process_kill_chip_reset(sc, global); 11478 mb(); 11479 11480 /* clear errors in PGB */ 11481 if (!CHIP_IS_E1(sc)) 11482 REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f); 11483 11484 /* Recover after reset: */ 11485 /* MCP */ 11486 if (global && bxe_reset_mcp_comp(sc, val)) { 11487 return (-1); 11488 } 11489 11490 /* XXX add resetting the NO_MCP mode DB here */ 11491 11492 /* Open the gates #2, #3 and #4 */ 11493 bxe_set_234_gates(sc, FALSE); 11494 11495 /* XXX 11496 * IGU/AEU preparation bring back the AEU/IGU to a reset state 11497 * re-enable attentions 11498 */ 11499 11500 return (0); 11501 } 11502 11503 static int 11504 bxe_leader_reset(struct bxe_softc *sc) 11505 { 11506 int rc = 0; 11507 uint8_t global = bxe_reset_is_global(sc); 11508 uint32_t load_code; 11509 11510 /* 11511 * If not going to reset MCP, load "fake" driver to reset HW while 11512 * driver is owner of the HW. 11513 */ 11514 if (!global && !BXE_NOMCP(sc)) { 11515 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 11516 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 11517 if (!load_code) { 11518 BLOGE(sc, "MCP response failure, aborting\n"); 11519 rc = -1; 11520 goto exit_leader_reset; 11521 } 11522 11523 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 11524 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 11525 BLOGE(sc, "MCP unexpected response, aborting\n"); 11526 rc = -1; 11527 goto exit_leader_reset2; 11528 } 11529 11530 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 11531 if (!load_code) { 11532 BLOGE(sc, "MCP response failure, aborting\n"); 11533 rc = -1; 11534 goto exit_leader_reset2; 11535 } 11536 } 11537 11538 /* try to recover after the failure */ 11539 if (bxe_process_kill(sc, global)) { 11540 BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc)); 11541 rc = -1; 11542 goto exit_leader_reset2; 11543 } 11544 11545 /* 11546 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver 11547 * state. 11548 */ 11549 bxe_set_reset_done(sc); 11550 if (global) { 11551 bxe_clear_reset_global(sc); 11552 } 11553 11554 exit_leader_reset2: 11555 11556 /* unload "fake driver" if it was loaded */ 11557 if (!global && !BXE_NOMCP(sc)) { 11558 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 11559 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 11560 } 11561 11562 exit_leader_reset: 11563 11564 sc->is_leader = 0; 11565 bxe_release_leader_lock(sc); 11566 11567 mb(); 11568 return (rc); 11569 } 11570 11571 /* 11572 * prepare INIT transition, parameters configured: 11573 * - HC configuration 11574 * - Queue's CDU context 11575 */ 11576 static void 11577 bxe_pf_q_prep_init(struct bxe_softc *sc, 11578 struct bxe_fastpath *fp, 11579 struct ecore_queue_init_params *init_params) 11580 { 11581 uint8_t cos; 11582 int cxt_index, cxt_offset; 11583 11584 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags); 11585 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags); 11586 11587 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags); 11588 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags); 11589 11590 /* HC rate */ 11591 init_params->rx.hc_rate = 11592 sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0; 11593 init_params->tx.hc_rate = 11594 sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0; 11595 11596 /* FW SB ID */ 11597 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id; 11598 11599 /* CQ index among the SB indices */ 11600 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11601 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 11602 11603 /* set maximum number of COSs supported by this queue */ 11604 init_params->max_cos = sc->max_cos; 11605 11606 BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n", 11607 fp->index, init_params->max_cos); 11608 11609 /* set the context pointers queue object */ 11610 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 11611 /* XXX change index/cid here if ever support multiple tx CoS */ 11612 /* fp->txdata[cos]->cid */ 11613 cxt_index = fp->index / ILT_PAGE_CIDS; 11614 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS); 11615 init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth; 11616 } 11617 } 11618 11619 /* set flags that are common for the Tx-only and not normal connections */ 11620 static unsigned long 11621 bxe_get_common_flags(struct bxe_softc *sc, 11622 struct bxe_fastpath *fp, 11623 uint8_t zero_stats) 11624 { 11625 unsigned long flags = 0; 11626 11627 /* PF driver will always initialize the Queue to an ACTIVE state */ 11628 bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags); 11629 11630 /* 11631 * tx only connections collect statistics (on the same index as the 11632 * parent connection). The statistics are zeroed when the parent 11633 * connection is initialized. 11634 */ 11635 11636 bxe_set_bit(ECORE_Q_FLG_STATS, &flags); 11637 if (zero_stats) { 11638 bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags); 11639 } 11640 11641 /* 11642 * tx only connections can support tx-switching, though their 11643 * CoS-ness doesn't survive the loopback 11644 */ 11645 if (sc->flags & BXE_TX_SWITCHING) { 11646 bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags); 11647 } 11648 11649 bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags); 11650 11651 return (flags); 11652 } 11653 11654 static unsigned long 11655 bxe_get_q_flags(struct bxe_softc *sc, 11656 struct bxe_fastpath *fp, 11657 uint8_t leading) 11658 { 11659 unsigned long flags = 0; 11660 11661 if (IS_MF_SD(sc)) { 11662 bxe_set_bit(ECORE_Q_FLG_OV, &flags); 11663 } 11664 11665 if (if_getcapenable(sc->ifp) & IFCAP_LRO) { 11666 bxe_set_bit(ECORE_Q_FLG_TPA, &flags); 11667 bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags); 11668 #if 0 11669 if (fp->mode == TPA_MODE_GRO) 11670 __set_bit(ECORE_Q_FLG_TPA_GRO, &flags); 11671 #endif 11672 } 11673 11674 if (leading) { 11675 bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags); 11676 bxe_set_bit(ECORE_Q_FLG_MCAST, &flags); 11677 } 11678 11679 bxe_set_bit(ECORE_Q_FLG_VLAN, &flags); 11680 11681 #if 0 11682 /* configure silent vlan removal */ 11683 if (IS_MF_AFEX(sc)) { 11684 bxe_set_bit(ECORE_Q_FLG_SILENT_VLAN_REM, &flags); 11685 } 11686 #endif 11687 11688 /* merge with common flags */ 11689 return (flags | bxe_get_common_flags(sc, fp, TRUE)); 11690 } 11691 11692 static void 11693 bxe_pf_q_prep_general(struct bxe_softc *sc, 11694 struct bxe_fastpath *fp, 11695 struct ecore_general_setup_params *gen_init, 11696 uint8_t cos) 11697 { 11698 gen_init->stat_id = bxe_stats_id(fp); 11699 gen_init->spcl_id = fp->cl_id; 11700 gen_init->mtu = sc->mtu; 11701 gen_init->cos = cos; 11702 } 11703 11704 static void 11705 bxe_pf_rx_q_prep(struct bxe_softc *sc, 11706 struct bxe_fastpath *fp, 11707 struct rxq_pause_params *pause, 11708 struct ecore_rxq_setup_params *rxq_init) 11709 { 11710 uint8_t max_sge = 0; 11711 uint16_t sge_sz = 0; 11712 uint16_t tpa_agg_size = 0; 11713 11714 if (if_getcapenable(sc->ifp) & IFCAP_LRO) { 11715 pause->sge_th_lo = SGE_TH_LO(sc); 11716 pause->sge_th_hi = SGE_TH_HI(sc); 11717 11718 /* validate SGE ring has enough to cross high threshold */ 11719 if (sc->dropless_fc && 11720 (pause->sge_th_hi + FW_PREFETCH_CNT) > 11721 (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) { 11722 BLOGW(sc, "sge ring threshold limit\n"); 11723 } 11724 11725 /* minimum max_aggregation_size is 2*MTU (two full buffers) */ 11726 tpa_agg_size = (2 * sc->mtu); 11727 if (tpa_agg_size < sc->max_aggregation_size) { 11728 tpa_agg_size = sc->max_aggregation_size; 11729 } 11730 11731 max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT; 11732 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 11733 (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT; 11734 sge_sz = (uint16_t)min(SGE_PAGES, 0xffff); 11735 } 11736 11737 /* pause - not for e1 */ 11738 if (!CHIP_IS_E1(sc)) { 11739 pause->bd_th_lo = BD_TH_LO(sc); 11740 pause->bd_th_hi = BD_TH_HI(sc); 11741 11742 pause->rcq_th_lo = RCQ_TH_LO(sc); 11743 pause->rcq_th_hi = RCQ_TH_HI(sc); 11744 11745 /* validate rings have enough entries to cross high thresholds */ 11746 if (sc->dropless_fc && 11747 pause->bd_th_hi + FW_PREFETCH_CNT > 11748 sc->rx_ring_size) { 11749 BLOGW(sc, "rx bd ring threshold limit\n"); 11750 } 11751 11752 if (sc->dropless_fc && 11753 pause->rcq_th_hi + FW_PREFETCH_CNT > 11754 RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) { 11755 BLOGW(sc, "rcq ring threshold limit\n"); 11756 } 11757 11758 pause->pri_map = 1; 11759 } 11760 11761 /* rxq setup */ 11762 rxq_init->dscr_map = fp->rx_dma.paddr; 11763 rxq_init->sge_map = fp->rx_sge_dma.paddr; 11764 rxq_init->rcq_map = fp->rcq_dma.paddr; 11765 rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE); 11766 11767 /* 11768 * This should be a maximum number of data bytes that may be 11769 * placed on the BD (not including paddings). 11770 */ 11771 rxq_init->buf_sz = (fp->rx_buf_size - 11772 IP_HEADER_ALIGNMENT_PADDING); 11773 11774 rxq_init->cl_qzone_id = fp->cl_qzone_id; 11775 rxq_init->tpa_agg_sz = tpa_agg_size; 11776 rxq_init->sge_buf_sz = sge_sz; 11777 rxq_init->max_sges_pkt = max_sge; 11778 rxq_init->rss_engine_id = SC_FUNC(sc); 11779 rxq_init->mcast_engine_id = SC_FUNC(sc); 11780 11781 /* 11782 * Maximum number or simultaneous TPA aggregation for this Queue. 11783 * For PF Clients it should be the maximum available number. 11784 * VF driver(s) may want to define it to a smaller value. 11785 */ 11786 rxq_init->max_tpa_queues = MAX_AGG_QS(sc); 11787 11788 rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT; 11789 rxq_init->fw_sb_id = fp->fw_sb_id; 11790 11791 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11792 11793 /* 11794 * configure silent vlan removal 11795 * if multi function mode is afex, then mask default vlan 11796 */ 11797 if (IS_MF_AFEX(sc)) { 11798 rxq_init->silent_removal_value = 11799 sc->devinfo.mf_info.afex_def_vlan_tag; 11800 rxq_init->silent_removal_mask = EVL_VLID_MASK; 11801 } 11802 } 11803 11804 static void 11805 bxe_pf_tx_q_prep(struct bxe_softc *sc, 11806 struct bxe_fastpath *fp, 11807 struct ecore_txq_setup_params *txq_init, 11808 uint8_t cos) 11809 { 11810 /* 11811 * XXX If multiple CoS is ever supported then each fastpath structure 11812 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 11813 * fp->txdata[cos]->tx_dma.paddr; 11814 */ 11815 txq_init->dscr_map = fp->tx_dma.paddr; 11816 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 11817 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 11818 txq_init->fw_sb_id = fp->fw_sb_id; 11819 11820 /* 11821 * set the TSS leading client id for TX classfication to the 11822 * leading RSS client id 11823 */ 11824 txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id); 11825 } 11826 11827 /* 11828 * This function performs 2 steps in a queue state machine: 11829 * 1) RESET->INIT 11830 * 2) INIT->SETUP 11831 */ 11832 static int 11833 bxe_setup_queue(struct bxe_softc *sc, 11834 struct bxe_fastpath *fp, 11835 uint8_t leading) 11836 { 11837 struct ecore_queue_state_params q_params = { NULL }; 11838 struct ecore_queue_setup_params *setup_params = 11839 &q_params.params.setup; 11840 #if 0 11841 struct ecore_queue_setup_tx_only_params *tx_only_params = 11842 &q_params.params.tx_only; 11843 uint8_t tx_index; 11844 #endif 11845 int rc; 11846 11847 BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index); 11848 11849 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 11850 11851 q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 11852 11853 /* we want to wait for completion in this context */ 11854 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 11855 11856 /* prepare the INIT parameters */ 11857 bxe_pf_q_prep_init(sc, fp, &q_params.params.init); 11858 11859 /* Set the command */ 11860 q_params.cmd = ECORE_Q_CMD_INIT; 11861 11862 /* Change the state to INIT */ 11863 rc = ecore_queue_state_change(sc, &q_params); 11864 if (rc) { 11865 BLOGE(sc, "Queue(%d) INIT failed\n", fp->index); 11866 return (rc); 11867 } 11868 11869 BLOGD(sc, DBG_LOAD, "init complete\n"); 11870 11871 /* now move the Queue to the SETUP state */ 11872 memset(setup_params, 0, sizeof(*setup_params)); 11873 11874 /* set Queue flags */ 11875 setup_params->flags = bxe_get_q_flags(sc, fp, leading); 11876 11877 /* set general SETUP parameters */ 11878 bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params, 11879 FIRST_TX_COS_INDEX); 11880 11881 bxe_pf_rx_q_prep(sc, fp, 11882 &setup_params->pause_params, 11883 &setup_params->rxq_params); 11884 11885 bxe_pf_tx_q_prep(sc, fp, 11886 &setup_params->txq_params, 11887 FIRST_TX_COS_INDEX); 11888 11889 /* Set the command */ 11890 q_params.cmd = ECORE_Q_CMD_SETUP; 11891 11892 /* change the state to SETUP */ 11893 rc = ecore_queue_state_change(sc, &q_params); 11894 if (rc) { 11895 BLOGE(sc, "Queue(%d) SETUP failed\n", fp->index); 11896 return (rc); 11897 } 11898 11899 #if 0 11900 /* loop through the relevant tx-only indices */ 11901 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 11902 tx_index < sc->max_cos; 11903 tx_index++) { 11904 /* prepare and send tx-only ramrod*/ 11905 rc = bxe_setup_tx_only(sc, fp, &q_params, 11906 tx_only_params, tx_index, leading); 11907 if (rc) { 11908 BLOGE(sc, "Queue(%d.%d) TX_ONLY_SETUP failed\n", 11909 fp->index, tx_index); 11910 return (rc); 11911 } 11912 } 11913 #endif 11914 11915 return (rc); 11916 } 11917 11918 static int 11919 bxe_setup_leading(struct bxe_softc *sc) 11920 { 11921 return (bxe_setup_queue(sc, &sc->fp[0], TRUE)); 11922 } 11923 11924 static int 11925 bxe_config_rss_pf(struct bxe_softc *sc, 11926 struct ecore_rss_config_obj *rss_obj, 11927 uint8_t config_hash) 11928 { 11929 struct ecore_config_rss_params params = { NULL }; 11930 int i; 11931 11932 /* 11933 * Although RSS is meaningless when there is a single HW queue we 11934 * still need it enabled in order to have HW Rx hash generated. 11935 */ 11936 11937 params.rss_obj = rss_obj; 11938 11939 bxe_set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 11940 11941 bxe_set_bit(ECORE_RSS_MODE_REGULAR, ¶ms.rss_flags); 11942 11943 /* RSS configuration */ 11944 bxe_set_bit(ECORE_RSS_IPV4, ¶ms.rss_flags); 11945 bxe_set_bit(ECORE_RSS_IPV4_TCP, ¶ms.rss_flags); 11946 bxe_set_bit(ECORE_RSS_IPV6, ¶ms.rss_flags); 11947 bxe_set_bit(ECORE_RSS_IPV6_TCP, ¶ms.rss_flags); 11948 if (rss_obj->udp_rss_v4) { 11949 bxe_set_bit(ECORE_RSS_IPV4_UDP, ¶ms.rss_flags); 11950 } 11951 if (rss_obj->udp_rss_v6) { 11952 bxe_set_bit(ECORE_RSS_IPV6_UDP, ¶ms.rss_flags); 11953 } 11954 11955 /* Hash bits */ 11956 params.rss_result_mask = MULTI_MASK; 11957 11958 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 11959 11960 if (config_hash) { 11961 /* RSS keys */ 11962 for (i = 0; i < sizeof(params.rss_key) / 4; i++) { 11963 params.rss_key[i] = arc4random(); 11964 } 11965 11966 bxe_set_bit(ECORE_RSS_SET_SRCH, ¶ms.rss_flags); 11967 } 11968 11969 return (ecore_config_rss(sc, ¶ms)); 11970 } 11971 11972 static int 11973 bxe_config_rss_eth(struct bxe_softc *sc, 11974 uint8_t config_hash) 11975 { 11976 return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash)); 11977 } 11978 11979 static int 11980 bxe_init_rss_pf(struct bxe_softc *sc) 11981 { 11982 uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc); 11983 int i; 11984 11985 /* 11986 * Prepare the initial contents of the indirection table if 11987 * RSS is enabled 11988 */ 11989 for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) { 11990 sc->rss_conf_obj.ind_table[i] = 11991 (sc->fp->cl_id + (i % num_eth_queues)); 11992 } 11993 11994 if (sc->udp_rss) { 11995 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1; 11996 } 11997 11998 /* 11999 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 12000 * per-port, so if explicit configuration is needed, do it only 12001 * for a PMF. 12002 * 12003 * For 57712 and newer it's a per-function configuration. 12004 */ 12005 return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc))); 12006 } 12007 12008 static int 12009 bxe_set_mac_one(struct bxe_softc *sc, 12010 uint8_t *mac, 12011 struct ecore_vlan_mac_obj *obj, 12012 uint8_t set, 12013 int mac_type, 12014 unsigned long *ramrod_flags) 12015 { 12016 struct ecore_vlan_mac_ramrod_params ramrod_param; 12017 int rc; 12018 12019 memset(&ramrod_param, 0, sizeof(ramrod_param)); 12020 12021 /* fill in general parameters */ 12022 ramrod_param.vlan_mac_obj = obj; 12023 ramrod_param.ramrod_flags = *ramrod_flags; 12024 12025 /* fill a user request section if needed */ 12026 if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) { 12027 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 12028 12029 bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 12030 12031 /* Set the command: ADD or DEL */ 12032 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD : 12033 ECORE_VLAN_MAC_DEL; 12034 } 12035 12036 rc = ecore_config_vlan_mac(sc, &ramrod_param); 12037 12038 if (rc == ECORE_EXISTS) { 12039 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12040 /* do not treat adding same MAC as error */ 12041 rc = 0; 12042 } else if (rc < 0) { 12043 BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc); 12044 } 12045 12046 return (rc); 12047 } 12048 12049 static int 12050 bxe_set_eth_mac(struct bxe_softc *sc, 12051 uint8_t set) 12052 { 12053 unsigned long ramrod_flags = 0; 12054 12055 BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n"); 12056 12057 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 12058 12059 /* Eth MAC is set on RSS leading client (fp[0]) */ 12060 return (bxe_set_mac_one(sc, sc->link_params.mac_addr, 12061 &sc->sp_objs->mac_obj, 12062 set, ECORE_ETH_MAC, &ramrod_flags)); 12063 } 12064 12065 #if 0 12066 static void 12067 bxe_update_max_mf_config(struct bxe_softc *sc, 12068 uint32_t value) 12069 { 12070 /* load old values */ 12071 uint32_t mf_cfg = sc->devinfo.mf_info.mf_config[SC_VN(sc)]; 12072 12073 if (value != bxe_extract_max_cfg(sc, mf_cfg)) { 12074 /* leave all but MAX value */ 12075 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK; 12076 12077 /* set new MAX value */ 12078 mf_cfg |= ((value << FUNC_MF_CFG_MAX_BW_SHIFT) & 12079 FUNC_MF_CFG_MAX_BW_MASK); 12080 12081 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW, mf_cfg); 12082 } 12083 } 12084 #endif 12085 12086 static int 12087 bxe_get_cur_phy_idx(struct bxe_softc *sc) 12088 { 12089 uint32_t sel_phy_idx = 0; 12090 12091 if (sc->link_params.num_phys <= 1) { 12092 return (ELINK_INT_PHY); 12093 } 12094 12095 if (sc->link_vars.link_up) { 12096 sel_phy_idx = ELINK_EXT_PHY1; 12097 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */ 12098 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 12099 (sc->link_params.phy[ELINK_EXT_PHY2].supported & 12100 ELINK_SUPPORTED_FIBRE)) 12101 sel_phy_idx = ELINK_EXT_PHY2; 12102 } else { 12103 switch (elink_phy_selection(&sc->link_params)) { 12104 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 12105 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 12106 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 12107 sel_phy_idx = ELINK_EXT_PHY1; 12108 break; 12109 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 12110 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 12111 sel_phy_idx = ELINK_EXT_PHY2; 12112 break; 12113 } 12114 } 12115 12116 return (sel_phy_idx); 12117 } 12118 12119 static int 12120 bxe_get_link_cfg_idx(struct bxe_softc *sc) 12121 { 12122 uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc); 12123 12124 /* 12125 * The selected activated PHY is always after swapping (in case PHY 12126 * swapping is enabled). So when swapping is enabled, we need to reverse 12127 * the configuration 12128 */ 12129 12130 if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 12131 if (sel_phy_idx == ELINK_EXT_PHY1) 12132 sel_phy_idx = ELINK_EXT_PHY2; 12133 else if (sel_phy_idx == ELINK_EXT_PHY2) 12134 sel_phy_idx = ELINK_EXT_PHY1; 12135 } 12136 12137 return (ELINK_LINK_CONFIG_IDX(sel_phy_idx)); 12138 } 12139 12140 static void 12141 bxe_set_requested_fc(struct bxe_softc *sc) 12142 { 12143 /* 12144 * Initialize link parameters structure variables 12145 * It is recommended to turn off RX FC for jumbo frames 12146 * for better performance 12147 */ 12148 if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) { 12149 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX; 12150 } else { 12151 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH; 12152 } 12153 } 12154 12155 static void 12156 bxe_calc_fc_adv(struct bxe_softc *sc) 12157 { 12158 uint8_t cfg_idx = bxe_get_link_cfg_idx(sc); 12159 switch (sc->link_vars.ieee_fc & 12160 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 12161 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE: 12162 default: 12163 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 12164 ADVERTISED_Pause); 12165 break; 12166 12167 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 12168 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 12169 ADVERTISED_Pause); 12170 break; 12171 12172 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 12173 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 12174 break; 12175 } 12176 } 12177 12178 static uint16_t 12179 bxe_get_mf_speed(struct bxe_softc *sc) 12180 { 12181 uint16_t line_speed = sc->link_vars.line_speed; 12182 if (IS_MF(sc)) { 12183 uint16_t maxCfg = 12184 bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]); 12185 12186 /* calculate the current MAX line speed limit for the MF devices */ 12187 if (IS_MF_SI(sc)) { 12188 line_speed = (line_speed * maxCfg) / 100; 12189 } else { /* SD mode */ 12190 uint16_t vn_max_rate = maxCfg * 100; 12191 12192 if (vn_max_rate < line_speed) { 12193 line_speed = vn_max_rate; 12194 } 12195 } 12196 } 12197 12198 return (line_speed); 12199 } 12200 12201 static void 12202 bxe_fill_report_data(struct bxe_softc *sc, 12203 struct bxe_link_report_data *data) 12204 { 12205 uint16_t line_speed = bxe_get_mf_speed(sc); 12206 12207 memset(data, 0, sizeof(*data)); 12208 12209 /* fill the report data with the effective line speed */ 12210 data->line_speed = line_speed; 12211 12212 /* Link is down */ 12213 if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) { 12214 bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags); 12215 } 12216 12217 /* Full DUPLEX */ 12218 if (sc->link_vars.duplex == DUPLEX_FULL) { 12219 bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags); 12220 } 12221 12222 /* Rx Flow Control is ON */ 12223 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) { 12224 bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags); 12225 } 12226 12227 /* Tx Flow Control is ON */ 12228 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 12229 bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags); 12230 } 12231 } 12232 12233 /* report link status to OS, should be called under phy_lock */ 12234 static void 12235 bxe_link_report_locked(struct bxe_softc *sc) 12236 { 12237 struct bxe_link_report_data cur_data; 12238 12239 /* reread mf_cfg */ 12240 if (IS_PF(sc) && !CHIP_IS_E1(sc)) { 12241 bxe_read_mf_cfg(sc); 12242 } 12243 12244 /* Read the current link report info */ 12245 bxe_fill_report_data(sc, &cur_data); 12246 12247 /* Don't report link down or exactly the same link status twice */ 12248 if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) || 12249 (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 12250 &sc->last_reported_link.link_report_flags) && 12251 bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 12252 &cur_data.link_report_flags))) { 12253 return; 12254 } 12255 12256 sc->link_cnt++; 12257 12258 /* report new link params and remember the state for the next time */ 12259 memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data)); 12260 12261 if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 12262 &cur_data.link_report_flags)) { 12263 if_link_state_change(sc->ifp, LINK_STATE_DOWN); 12264 BLOGI(sc, "NIC Link is Down\n"); 12265 } else { 12266 const char *duplex; 12267 const char *flow; 12268 12269 if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX, 12270 &cur_data.link_report_flags)) { 12271 duplex = "full"; 12272 } else { 12273 duplex = "half"; 12274 } 12275 12276 /* 12277 * Handle the FC at the end so that only these flags would be 12278 * possibly set. This way we may easily check if there is no FC 12279 * enabled. 12280 */ 12281 if (cur_data.link_report_flags) { 12282 if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 12283 &cur_data.link_report_flags) && 12284 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 12285 &cur_data.link_report_flags)) { 12286 flow = "ON - receive & transmit"; 12287 } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 12288 &cur_data.link_report_flags) && 12289 !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 12290 &cur_data.link_report_flags)) { 12291 flow = "ON - receive"; 12292 } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 12293 &cur_data.link_report_flags) && 12294 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 12295 &cur_data.link_report_flags)) { 12296 flow = "ON - transmit"; 12297 } else { 12298 flow = "none"; /* possible? */ 12299 } 12300 } else { 12301 flow = "none"; 12302 } 12303 12304 if_link_state_change(sc->ifp, LINK_STATE_UP); 12305 BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 12306 cur_data.line_speed, duplex, flow); 12307 } 12308 } 12309 12310 static void 12311 bxe_link_report(struct bxe_softc *sc) 12312 { 12313 BXE_PHY_LOCK(sc); 12314 bxe_link_report_locked(sc); 12315 BXE_PHY_UNLOCK(sc); 12316 } 12317 12318 static void 12319 bxe_link_status_update(struct bxe_softc *sc) 12320 { 12321 if (sc->state != BXE_STATE_OPEN) { 12322 return; 12323 } 12324 12325 #if 0 12326 /* read updated dcb configuration */ 12327 if (IS_PF(sc)) 12328 bxe_dcbx_pmf_update(sc); 12329 #endif 12330 12331 if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) { 12332 elink_link_status_update(&sc->link_params, &sc->link_vars); 12333 } else { 12334 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half | 12335 ELINK_SUPPORTED_10baseT_Full | 12336 ELINK_SUPPORTED_100baseT_Half | 12337 ELINK_SUPPORTED_100baseT_Full | 12338 ELINK_SUPPORTED_1000baseT_Full | 12339 ELINK_SUPPORTED_2500baseX_Full | 12340 ELINK_SUPPORTED_10000baseT_Full | 12341 ELINK_SUPPORTED_TP | 12342 ELINK_SUPPORTED_FIBRE | 12343 ELINK_SUPPORTED_Autoneg | 12344 ELINK_SUPPORTED_Pause | 12345 ELINK_SUPPORTED_Asym_Pause); 12346 sc->port.advertising[0] = sc->port.supported[0]; 12347 12348 sc->link_params.sc = sc; 12349 sc->link_params.port = SC_PORT(sc); 12350 sc->link_params.req_duplex[0] = DUPLEX_FULL; 12351 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE; 12352 sc->link_params.req_line_speed[0] = SPEED_10000; 12353 sc->link_params.speed_cap_mask[0] = 0x7f0000; 12354 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G; 12355 12356 if (CHIP_REV_IS_FPGA(sc)) { 12357 sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC; 12358 sc->link_vars.line_speed = ELINK_SPEED_1000; 12359 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 12360 LINK_STATUS_SPEED_AND_DUPLEX_1000TFD); 12361 } else { 12362 sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC; 12363 sc->link_vars.line_speed = ELINK_SPEED_10000; 12364 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 12365 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 12366 } 12367 12368 sc->link_vars.link_up = 1; 12369 12370 sc->link_vars.duplex = DUPLEX_FULL; 12371 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE; 12372 12373 if (IS_PF(sc)) { 12374 REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0); 12375 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12376 bxe_link_report(sc); 12377 } 12378 } 12379 12380 if (IS_PF(sc)) { 12381 if (sc->link_vars.link_up) { 12382 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12383 } else { 12384 bxe_stats_handle(sc, STATS_EVENT_STOP); 12385 } 12386 bxe_link_report(sc); 12387 } else { 12388 bxe_link_report(sc); 12389 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12390 } 12391 } 12392 12393 static int 12394 bxe_initial_phy_init(struct bxe_softc *sc, 12395 int load_mode) 12396 { 12397 int rc, cfg_idx = bxe_get_link_cfg_idx(sc); 12398 uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx]; 12399 struct elink_params *lp = &sc->link_params; 12400 12401 bxe_set_requested_fc(sc); 12402 12403 if (CHIP_REV_IS_SLOW(sc)) { 12404 uint32_t bond = CHIP_BOND_ID(sc); 12405 uint32_t feat = 0; 12406 12407 if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) { 12408 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 12409 } else if (bond & 0x4) { 12410 if (CHIP_IS_E3(sc)) { 12411 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC; 12412 } else { 12413 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 12414 } 12415 } else if (bond & 0x8) { 12416 if (CHIP_IS_E3(sc)) { 12417 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC; 12418 } else { 12419 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 12420 } 12421 } 12422 12423 /* disable EMAC for E3 and above */ 12424 if (bond & 0x2) { 12425 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 12426 } 12427 12428 sc->link_params.feature_config_flags |= feat; 12429 } 12430 12431 BXE_PHY_LOCK(sc); 12432 12433 if (load_mode == LOAD_DIAG) { 12434 lp->loopback_mode = ELINK_LOOPBACK_XGXS; 12435 /* Prefer doing PHY loopback at 10G speed, if possible */ 12436 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) { 12437 if (lp->speed_cap_mask[cfg_idx] & 12438 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 12439 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000; 12440 } else { 12441 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000; 12442 } 12443 } 12444 } 12445 12446 if (load_mode == LOAD_LOOPBACK_EXT) { 12447 lp->loopback_mode = ELINK_LOOPBACK_EXT; 12448 } 12449 12450 rc = elink_phy_init(&sc->link_params, &sc->link_vars); 12451 12452 BXE_PHY_UNLOCK(sc); 12453 12454 bxe_calc_fc_adv(sc); 12455 12456 if (sc->link_vars.link_up) { 12457 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12458 bxe_link_report(sc); 12459 } 12460 12461 if (!CHIP_REV_IS_SLOW(sc)) { 12462 bxe_periodic_start(sc); 12463 } 12464 12465 sc->link_params.req_line_speed[cfg_idx] = req_line_speed; 12466 return (rc); 12467 } 12468 12469 /* must be called under IF_ADDR_LOCK */ 12470 static int 12471 bxe_init_mcast_macs_list(struct bxe_softc *sc, 12472 struct ecore_mcast_ramrod_params *p) 12473 { 12474 if_t ifp = sc->ifp; 12475 int mc_count = 0; 12476 int mcnt, i; 12477 struct ecore_mcast_list_elem *mc_mac; 12478 unsigned char *mta; 12479 12480 mc_count = if_multiaddr_count(ifp, -1);/* XXX they don't have a limit */ 12481 /* should we enforce one? */ 12482 ECORE_LIST_INIT(&p->mcast_list); 12483 p->mcast_list_len = 0; 12484 12485 if (!mc_count) { 12486 return (0); 12487 } 12488 12489 mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN * 12490 mc_count, M_DEVBUF, M_NOWAIT); 12491 12492 if(mta == NULL) { 12493 BLOGE(sc, "Failed to allocate temp mcast list\n"); 12494 return (-1); 12495 } 12496 12497 mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, 12498 (M_NOWAIT | M_ZERO)); 12499 if (!mc_mac) { 12500 free(mta, M_DEVBUF); 12501 BLOGE(sc, "Failed to allocate temp mcast list\n"); 12502 return (-1); 12503 } 12504 12505 if_multiaddr_array(ifp, mta, &mcnt, mc_count); /* mta and mcnt not expected 12506 to be different */ 12507 for(i=0; i< mcnt; i++) { 12508 12509 bcopy((mta + (i * ETHER_ADDR_LEN)), mc_mac->mac, ETHER_ADDR_LEN); 12510 ECORE_LIST_PUSH_TAIL(&mc_mac->link, &p->mcast_list); 12511 12512 BLOGD(sc, DBG_LOAD, 12513 "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n", 12514 mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2], 12515 mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]); 12516 12517 mc_mac++; 12518 } 12519 12520 p->mcast_list_len = mc_count; 12521 free(mta, M_DEVBUF); 12522 12523 return (0); 12524 } 12525 12526 static void 12527 bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p) 12528 { 12529 struct ecore_mcast_list_elem *mc_mac = 12530 ECORE_LIST_FIRST_ENTRY(&p->mcast_list, 12531 struct ecore_mcast_list_elem, 12532 link); 12533 12534 if (mc_mac) { 12535 /* only a single free as all mc_macs are in the same heap array */ 12536 free(mc_mac, M_DEVBUF); 12537 } 12538 } 12539 12540 static int 12541 bxe_set_mc_list(struct bxe_softc *sc) 12542 { 12543 struct ecore_mcast_ramrod_params rparam = { NULL }; 12544 int rc = 0; 12545 12546 rparam.mcast_obj = &sc->mcast_obj; 12547 12548 BXE_MCAST_LOCK(sc); 12549 12550 /* first, clear all configured multicast MACs */ 12551 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 12552 if (rc < 0) { 12553 BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc); 12554 return (rc); 12555 } 12556 12557 /* configure a new MACs list */ 12558 rc = bxe_init_mcast_macs_list(sc, &rparam); 12559 if (rc) { 12560 BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc); 12561 BXE_MCAST_UNLOCK(sc); 12562 return (rc); 12563 } 12564 12565 /* Now add the new MACs */ 12566 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD); 12567 if (rc < 0) { 12568 BLOGE(sc, "Failed to set new mcast config (%d)\n", rc); 12569 } 12570 12571 bxe_free_mcast_macs_list(&rparam); 12572 12573 BXE_MCAST_UNLOCK(sc); 12574 12575 return (rc); 12576 } 12577 12578 static int 12579 bxe_set_uc_list(struct bxe_softc *sc) 12580 { 12581 if_t ifp = sc->ifp; 12582 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 12583 struct ifaddr *ifa; 12584 unsigned long ramrod_flags = 0; 12585 int rc; 12586 12587 #if __FreeBSD_version < 800000 12588 IF_ADDR_LOCK(ifp); 12589 #else 12590 if_addr_rlock(ifp); 12591 #endif 12592 12593 /* first schedule a cleanup up of old configuration */ 12594 rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE); 12595 if (rc < 0) { 12596 BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc); 12597 #if __FreeBSD_version < 800000 12598 IF_ADDR_UNLOCK(ifp); 12599 #else 12600 if_addr_runlock(ifp); 12601 #endif 12602 return (rc); 12603 } 12604 12605 ifa = if_getifaddr(ifp); /* XXX Is this structure */ 12606 while (ifa) { 12607 if (ifa->ifa_addr->sa_family != AF_LINK) { 12608 ifa = TAILQ_NEXT(ifa, ifa_link); 12609 continue; 12610 } 12611 12612 rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr), 12613 mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags); 12614 if (rc == -EEXIST) { 12615 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12616 /* do not treat adding same MAC as an error */ 12617 rc = 0; 12618 } else if (rc < 0) { 12619 BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc); 12620 #if __FreeBSD_version < 800000 12621 IF_ADDR_UNLOCK(ifp); 12622 #else 12623 if_addr_runlock(ifp); 12624 #endif 12625 return (rc); 12626 } 12627 12628 ifa = TAILQ_NEXT(ifa, ifa_link); 12629 } 12630 12631 #if __FreeBSD_version < 800000 12632 IF_ADDR_UNLOCK(ifp); 12633 #else 12634 if_addr_runlock(ifp); 12635 #endif 12636 12637 /* Execute the pending commands */ 12638 bit_set(&ramrod_flags, RAMROD_CONT); 12639 return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */, 12640 ECORE_UC_LIST_MAC, &ramrod_flags)); 12641 } 12642 12643 static void 12644 bxe_handle_rx_mode_tq(void *context, 12645 int pending) 12646 { 12647 struct bxe_softc *sc = (struct bxe_softc *)context; 12648 if_t ifp = sc->ifp; 12649 uint32_t rx_mode = BXE_RX_MODE_NORMAL; 12650 12651 BXE_CORE_LOCK(sc); 12652 12653 if (sc->state != BXE_STATE_OPEN) { 12654 BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state); 12655 BXE_CORE_UNLOCK(sc); 12656 return; 12657 } 12658 12659 BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp)); 12660 12661 if (if_getflags(ifp) & IFF_PROMISC) { 12662 rx_mode = BXE_RX_MODE_PROMISC; 12663 } else if ((if_getflags(ifp) & IFF_ALLMULTI) || 12664 ((if_getamcount(ifp) > BXE_MAX_MULTICAST) && 12665 CHIP_IS_E1(sc))) { 12666 rx_mode = BXE_RX_MODE_ALLMULTI; 12667 } else { 12668 if (IS_PF(sc)) { 12669 /* some multicasts */ 12670 if (bxe_set_mc_list(sc) < 0) { 12671 rx_mode = BXE_RX_MODE_ALLMULTI; 12672 } 12673 if (bxe_set_uc_list(sc) < 0) { 12674 rx_mode = BXE_RX_MODE_PROMISC; 12675 } 12676 } 12677 #if 0 12678 else { 12679 /* 12680 * Configuring mcast to a VF involves sleeping (when we 12681 * wait for the PF's response). Since this function is 12682 * called from a non sleepable context we must schedule 12683 * a work item for this purpose 12684 */ 12685 bxe_set_bit(BXE_SP_RTNL_VFPF_MCAST, &sc->sp_rtnl_state); 12686 schedule_delayed_work(&sc->sp_rtnl_task, 0); 12687 } 12688 #endif 12689 } 12690 12691 sc->rx_mode = rx_mode; 12692 12693 /* schedule the rx_mode command */ 12694 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 12695 BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n"); 12696 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 12697 BXE_CORE_UNLOCK(sc); 12698 return; 12699 } 12700 12701 if (IS_PF(sc)) { 12702 bxe_set_storm_rx_mode(sc); 12703 } 12704 #if 0 12705 else { 12706 /* 12707 * Configuring mcast to a VF involves sleeping (when we 12708 * wait for the PF's response). Since this function is 12709 * called from a non sleepable context we must schedule 12710 * a work item for this purpose 12711 */ 12712 bxe_set_bit(BXE_SP_RTNL_VFPF_STORM_RX_MODE, &sc->sp_rtnl_state); 12713 schedule_delayed_work(&sc->sp_rtnl_task, 0); 12714 } 12715 #endif 12716 12717 BXE_CORE_UNLOCK(sc); 12718 } 12719 12720 static void 12721 bxe_set_rx_mode(struct bxe_softc *sc) 12722 { 12723 taskqueue_enqueue(sc->rx_mode_tq, &sc->rx_mode_tq_task); 12724 } 12725 12726 /* update flags in shmem */ 12727 static void 12728 bxe_update_drv_flags(struct bxe_softc *sc, 12729 uint32_t flags, 12730 uint32_t set) 12731 { 12732 uint32_t drv_flags; 12733 12734 if (SHMEM2_HAS(sc, drv_flags)) { 12735 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12736 drv_flags = SHMEM2_RD(sc, drv_flags); 12737 12738 if (set) { 12739 SET_FLAGS(drv_flags, flags); 12740 } else { 12741 RESET_FLAGS(drv_flags, flags); 12742 } 12743 12744 SHMEM2_WR(sc, drv_flags, drv_flags); 12745 BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags); 12746 12747 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12748 } 12749 } 12750 12751 /* periodic timer callout routine, only runs when the interface is up */ 12752 12753 static void 12754 bxe_periodic_callout_func(void *xsc) 12755 { 12756 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12757 int i; 12758 12759 if (!BXE_CORE_TRYLOCK(sc)) { 12760 /* just bail and try again next time */ 12761 12762 if ((sc->state == BXE_STATE_OPEN) && 12763 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12764 /* schedule the next periodic callout */ 12765 callout_reset(&sc->periodic_callout, hz, 12766 bxe_periodic_callout_func, sc); 12767 } 12768 12769 return; 12770 } 12771 12772 if ((sc->state != BXE_STATE_OPEN) || 12773 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) { 12774 BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state); 12775 BXE_CORE_UNLOCK(sc); 12776 return; 12777 } 12778 12779 /* Check for TX timeouts on any fastpath. */ 12780 FOR_EACH_QUEUE(sc, i) { 12781 if (bxe_watchdog(sc, &sc->fp[i]) != 0) { 12782 /* Ruh-Roh, chip was reset! */ 12783 break; 12784 } 12785 } 12786 12787 if (!CHIP_REV_IS_SLOW(sc)) { 12788 /* 12789 * This barrier is needed to ensure the ordering between the writing 12790 * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and 12791 * the reading here. 12792 */ 12793 mb(); 12794 if (sc->port.pmf) { 12795 BXE_PHY_LOCK(sc); 12796 elink_period_func(&sc->link_params, &sc->link_vars); 12797 BXE_PHY_UNLOCK(sc); 12798 } 12799 } 12800 12801 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 12802 int mb_idx = SC_FW_MB_IDX(sc); 12803 uint32_t drv_pulse; 12804 uint32_t mcp_pulse; 12805 12806 ++sc->fw_drv_pulse_wr_seq; 12807 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 12808 12809 drv_pulse = sc->fw_drv_pulse_wr_seq; 12810 bxe_drv_pulse(sc); 12811 12812 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) & 12813 MCP_PULSE_SEQ_MASK); 12814 12815 /* 12816 * The delta between driver pulse and mcp response should 12817 * be 1 (before mcp response) or 0 (after mcp response). 12818 */ 12819 if ((drv_pulse != mcp_pulse) && 12820 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) { 12821 /* someone lost a heartbeat... */ 12822 BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 12823 drv_pulse, mcp_pulse); 12824 } 12825 } 12826 12827 /* state is BXE_STATE_OPEN */ 12828 bxe_stats_handle(sc, STATS_EVENT_UPDATE); 12829 12830 #if 0 12831 /* sample VF bulletin board for new posts from PF */ 12832 if (IS_VF(sc)) { 12833 bxe_sample_bulletin(sc); 12834 } 12835 #endif 12836 12837 BXE_CORE_UNLOCK(sc); 12838 12839 if ((sc->state == BXE_STATE_OPEN) && 12840 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12841 /* schedule the next periodic callout */ 12842 callout_reset(&sc->periodic_callout, hz, 12843 bxe_periodic_callout_func, sc); 12844 } 12845 } 12846 12847 static void 12848 bxe_periodic_start(struct bxe_softc *sc) 12849 { 12850 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO); 12851 callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc); 12852 } 12853 12854 static void 12855 bxe_periodic_stop(struct bxe_softc *sc) 12856 { 12857 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP); 12858 callout_drain(&sc->periodic_callout); 12859 } 12860 12861 /* start the controller */ 12862 static __noinline int 12863 bxe_nic_load(struct bxe_softc *sc, 12864 int load_mode) 12865 { 12866 uint32_t val; 12867 int load_code = 0; 12868 int i, rc = 0; 12869 12870 BXE_CORE_LOCK_ASSERT(sc); 12871 12872 BLOGD(sc, DBG_LOAD, "Starting NIC load...\n"); 12873 12874 sc->state = BXE_STATE_OPENING_WAITING_LOAD; 12875 12876 if (IS_PF(sc)) { 12877 /* must be called before memory allocation and HW init */ 12878 bxe_ilt_set_info(sc); 12879 } 12880 12881 sc->last_reported_link_state = LINK_STATE_UNKNOWN; 12882 12883 bxe_set_fp_rx_buf_size(sc); 12884 12885 if (bxe_alloc_fp_buffers(sc) != 0) { 12886 BLOGE(sc, "Failed to allocate fastpath memory\n"); 12887 sc->state = BXE_STATE_CLOSED; 12888 rc = ENOMEM; 12889 goto bxe_nic_load_error0; 12890 } 12891 12892 if (bxe_alloc_mem(sc) != 0) { 12893 sc->state = BXE_STATE_CLOSED; 12894 rc = ENOMEM; 12895 goto bxe_nic_load_error0; 12896 } 12897 12898 if (bxe_alloc_fw_stats_mem(sc) != 0) { 12899 sc->state = BXE_STATE_CLOSED; 12900 rc = ENOMEM; 12901 goto bxe_nic_load_error0; 12902 } 12903 12904 if (IS_PF(sc)) { 12905 /* set pf load just before approaching the MCP */ 12906 bxe_set_pf_load(sc); 12907 12908 /* if MCP exists send load request and analyze response */ 12909 if (!BXE_NOMCP(sc)) { 12910 /* attempt to load pf */ 12911 if (bxe_nic_load_request(sc, &load_code) != 0) { 12912 sc->state = BXE_STATE_CLOSED; 12913 rc = ENXIO; 12914 goto bxe_nic_load_error1; 12915 } 12916 12917 /* what did the MCP say? */ 12918 if (bxe_nic_load_analyze_req(sc, load_code) != 0) { 12919 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12920 sc->state = BXE_STATE_CLOSED; 12921 rc = ENXIO; 12922 goto bxe_nic_load_error2; 12923 } 12924 } else { 12925 BLOGI(sc, "Device has no MCP!\n"); 12926 load_code = bxe_nic_load_no_mcp(sc); 12927 } 12928 12929 /* mark PMF if applicable */ 12930 bxe_nic_load_pmf(sc, load_code); 12931 12932 /* Init Function state controlling object */ 12933 bxe_init_func_obj(sc); 12934 12935 /* Initialize HW */ 12936 if (bxe_init_hw(sc, load_code) != 0) { 12937 BLOGE(sc, "HW init failed\n"); 12938 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12939 sc->state = BXE_STATE_CLOSED; 12940 rc = ENXIO; 12941 goto bxe_nic_load_error2; 12942 } 12943 } 12944 12945 /* attach interrupts */ 12946 if (bxe_interrupt_attach(sc) != 0) { 12947 sc->state = BXE_STATE_CLOSED; 12948 rc = ENXIO; 12949 goto bxe_nic_load_error2; 12950 } 12951 12952 bxe_nic_init(sc, load_code); 12953 12954 /* Init per-function objects */ 12955 if (IS_PF(sc)) { 12956 bxe_init_objs(sc); 12957 // XXX bxe_iov_nic_init(sc); 12958 12959 /* set AFEX default VLAN tag to an invalid value */ 12960 sc->devinfo.mf_info.afex_def_vlan_tag = -1; 12961 // XXX bxe_nic_load_afex_dcc(sc, load_code); 12962 12963 sc->state = BXE_STATE_OPENING_WAITING_PORT; 12964 rc = bxe_func_start(sc); 12965 if (rc) { 12966 BLOGE(sc, "Function start failed!\n"); 12967 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12968 sc->state = BXE_STATE_ERROR; 12969 goto bxe_nic_load_error3; 12970 } 12971 12972 /* send LOAD_DONE command to MCP */ 12973 if (!BXE_NOMCP(sc)) { 12974 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12975 if (!load_code) { 12976 BLOGE(sc, "MCP response failure, aborting\n"); 12977 sc->state = BXE_STATE_ERROR; 12978 rc = ENXIO; 12979 goto bxe_nic_load_error3; 12980 } 12981 } 12982 12983 rc = bxe_setup_leading(sc); 12984 if (rc) { 12985 BLOGE(sc, "Setup leading failed!\n"); 12986 sc->state = BXE_STATE_ERROR; 12987 goto bxe_nic_load_error3; 12988 } 12989 12990 FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) { 12991 rc = bxe_setup_queue(sc, &sc->fp[i], FALSE); 12992 if (rc) { 12993 BLOGE(sc, "Queue(%d) setup failed\n", i); 12994 sc->state = BXE_STATE_ERROR; 12995 goto bxe_nic_load_error3; 12996 } 12997 } 12998 12999 rc = bxe_init_rss_pf(sc); 13000 if (rc) { 13001 BLOGE(sc, "PF RSS init failed\n"); 13002 sc->state = BXE_STATE_ERROR; 13003 goto bxe_nic_load_error3; 13004 } 13005 } 13006 /* XXX VF */ 13007 #if 0 13008 else { /* VF */ 13009 FOR_EACH_ETH_QUEUE(sc, i) { 13010 rc = bxe_vfpf_setup_q(sc, i); 13011 if (rc) { 13012 BLOGE(sc, "Queue(%d) setup failed\n", i); 13013 sc->state = BXE_STATE_ERROR; 13014 goto bxe_nic_load_error3; 13015 } 13016 } 13017 } 13018 #endif 13019 13020 /* now when Clients are configured we are ready to work */ 13021 sc->state = BXE_STATE_OPEN; 13022 13023 /* Configure a ucast MAC */ 13024 if (IS_PF(sc)) { 13025 rc = bxe_set_eth_mac(sc, TRUE); 13026 } 13027 #if 0 13028 else { /* IS_VF(sc) */ 13029 rc = bxe_vfpf_set_mac(sc); 13030 } 13031 #endif 13032 if (rc) { 13033 BLOGE(sc, "Setting Ethernet MAC failed\n"); 13034 sc->state = BXE_STATE_ERROR; 13035 goto bxe_nic_load_error3; 13036 } 13037 13038 #if 0 13039 if (IS_PF(sc) && sc->pending_max) { 13040 /* for AFEX */ 13041 bxe_update_max_mf_config(sc, sc->pending_max); 13042 sc->pending_max = 0; 13043 } 13044 #endif 13045 13046 if (sc->port.pmf) { 13047 rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN); 13048 if (rc) { 13049 sc->state = BXE_STATE_ERROR; 13050 goto bxe_nic_load_error3; 13051 } 13052 } 13053 13054 sc->link_params.feature_config_flags &= 13055 ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN; 13056 13057 /* start fast path */ 13058 13059 /* Initialize Rx filter */ 13060 bxe_set_rx_mode(sc); 13061 13062 /* start the Tx */ 13063 switch (/* XXX load_mode */LOAD_OPEN) { 13064 case LOAD_NORMAL: 13065 case LOAD_OPEN: 13066 break; 13067 13068 case LOAD_DIAG: 13069 case LOAD_LOOPBACK_EXT: 13070 sc->state = BXE_STATE_DIAG; 13071 break; 13072 13073 default: 13074 break; 13075 } 13076 13077 if (sc->port.pmf) { 13078 bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0); 13079 } else { 13080 bxe_link_status_update(sc); 13081 } 13082 13083 /* start the periodic timer callout */ 13084 bxe_periodic_start(sc); 13085 13086 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 13087 /* mark driver is loaded in shmem2 */ 13088 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 13089 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 13090 (val | 13091 DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 13092 DRV_FLAGS_CAPABILITIES_LOADED_L2)); 13093 } 13094 13095 /* wait for all pending SP commands to complete */ 13096 if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) { 13097 BLOGE(sc, "Timeout waiting for all SPs to complete!\n"); 13098 bxe_periodic_stop(sc); 13099 bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE); 13100 return (ENXIO); 13101 } 13102 13103 #if 0 13104 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */ 13105 if (sc->port.pmf && (sc->state != BXE_STATE_DIAG)) { 13106 bxe_dcbx_init(sc, FALSE); 13107 } 13108 #endif 13109 13110 /* Tell the stack the driver is running! */ 13111 if_setdrvflags(sc->ifp, IFF_DRV_RUNNING); 13112 13113 BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n"); 13114 13115 return (0); 13116 13117 bxe_nic_load_error3: 13118 13119 if (IS_PF(sc)) { 13120 bxe_int_disable_sync(sc, 1); 13121 13122 /* clean out queued objects */ 13123 bxe_squeeze_objects(sc); 13124 } 13125 13126 bxe_interrupt_detach(sc); 13127 13128 bxe_nic_load_error2: 13129 13130 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 13131 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 13132 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 13133 } 13134 13135 sc->port.pmf = 0; 13136 13137 bxe_nic_load_error1: 13138 13139 /* clear pf_load status, as it was already set */ 13140 if (IS_PF(sc)) { 13141 bxe_clear_pf_load(sc); 13142 } 13143 13144 bxe_nic_load_error0: 13145 13146 bxe_free_fw_stats_mem(sc); 13147 bxe_free_fp_buffers(sc); 13148 bxe_free_mem(sc); 13149 13150 return (rc); 13151 } 13152 13153 static int 13154 bxe_init_locked(struct bxe_softc *sc) 13155 { 13156 int other_engine = SC_PATH(sc) ? 0 : 1; 13157 uint8_t other_load_status, load_status; 13158 uint8_t global = FALSE; 13159 int rc; 13160 13161 BXE_CORE_LOCK_ASSERT(sc); 13162 13163 /* check if the driver is already running */ 13164 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 13165 BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n"); 13166 return (0); 13167 } 13168 13169 bxe_set_power_state(sc, PCI_PM_D0); 13170 13171 /* 13172 * If parity occurred during the unload, then attentions and/or 13173 * RECOVERY_IN_PROGRES may still be set. If so we want the first function 13174 * loaded on the current engine to complete the recovery. Parity recovery 13175 * is only relevant for PF driver. 13176 */ 13177 if (IS_PF(sc)) { 13178 other_load_status = bxe_get_load_status(sc, other_engine); 13179 load_status = bxe_get_load_status(sc, SC_PATH(sc)); 13180 13181 if (!bxe_reset_is_done(sc, SC_PATH(sc)) || 13182 bxe_chk_parity_attn(sc, &global, TRUE)) { 13183 do { 13184 /* 13185 * If there are attentions and they are in global blocks, set 13186 * the GLOBAL_RESET bit regardless whether it will be this 13187 * function that will complete the recovery or not. 13188 */ 13189 if (global) { 13190 bxe_set_reset_global(sc); 13191 } 13192 13193 /* 13194 * Only the first function on the current engine should try 13195 * to recover in open. In case of attentions in global blocks 13196 * only the first in the chip should try to recover. 13197 */ 13198 if ((!load_status && (!global || !other_load_status)) && 13199 bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) { 13200 BLOGI(sc, "Recovered during init\n"); 13201 break; 13202 } 13203 13204 /* recovery has failed... */ 13205 bxe_set_power_state(sc, PCI_PM_D3hot); 13206 sc->recovery_state = BXE_RECOVERY_FAILED; 13207 13208 BLOGE(sc, "Recovery flow hasn't properly " 13209 "completed yet, try again later. " 13210 "If you still see this message after a " 13211 "few retries then power cycle is required.\n"); 13212 13213 rc = ENXIO; 13214 goto bxe_init_locked_done; 13215 } while (0); 13216 } 13217 } 13218 13219 sc->recovery_state = BXE_RECOVERY_DONE; 13220 13221 rc = bxe_nic_load(sc, LOAD_OPEN); 13222 13223 bxe_init_locked_done: 13224 13225 if (rc) { 13226 /* Tell the stack the driver is NOT running! */ 13227 BLOGE(sc, "Initialization failed, " 13228 "stack notified driver is NOT running!\n"); 13229 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 13230 } 13231 13232 return (rc); 13233 } 13234 13235 static int 13236 bxe_stop_locked(struct bxe_softc *sc) 13237 { 13238 BXE_CORE_LOCK_ASSERT(sc); 13239 return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE)); 13240 } 13241 13242 /* 13243 * Handles controller initialization when called from an unlocked routine. 13244 * ifconfig calls this function. 13245 * 13246 * Returns: 13247 * void 13248 */ 13249 static void 13250 bxe_init(void *xsc) 13251 { 13252 struct bxe_softc *sc = (struct bxe_softc *)xsc; 13253 13254 BXE_CORE_LOCK(sc); 13255 bxe_init_locked(sc); 13256 BXE_CORE_UNLOCK(sc); 13257 } 13258 13259 static int 13260 bxe_init_ifnet(struct bxe_softc *sc) 13261 { 13262 if_t ifp; 13263 int capabilities; 13264 13265 /* ifconfig entrypoint for media type/status reporting */ 13266 ifmedia_init(&sc->ifmedia, IFM_IMASK, 13267 bxe_ifmedia_update, 13268 bxe_ifmedia_status); 13269 13270 /* set the default interface values */ 13271 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL); 13272 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL); 13273 ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO)); 13274 13275 sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */ 13276 13277 /* allocate the ifnet structure */ 13278 if ((ifp = if_gethandle(IFT_ETHER)) == NULL) { 13279 BLOGE(sc, "Interface allocation failed!\n"); 13280 return (ENXIO); 13281 } 13282 13283 if_setsoftc(ifp, sc); 13284 if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); 13285 if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST)); 13286 if_setioctlfn(ifp, bxe_ioctl); 13287 if_setstartfn(ifp, bxe_tx_start); 13288 if_setgetcounterfn(ifp, bxe_get_counter); 13289 #if __FreeBSD_version >= 800000 13290 if_settransmitfn(ifp, bxe_tx_mq_start); 13291 if_setqflushfn(ifp, bxe_mq_flush); 13292 #endif 13293 #ifdef FreeBSD8_0 13294 if_settimer(ifp, 0); 13295 #endif 13296 if_setinitfn(ifp, bxe_init); 13297 if_setmtu(ifp, sc->mtu); 13298 if_sethwassist(ifp, (CSUM_IP | 13299 CSUM_TCP | 13300 CSUM_UDP | 13301 CSUM_TSO | 13302 CSUM_TCP_IPV6 | 13303 CSUM_UDP_IPV6)); 13304 13305 capabilities = 13306 #if __FreeBSD_version < 700000 13307 (IFCAP_VLAN_MTU | 13308 IFCAP_VLAN_HWTAGGING | 13309 IFCAP_HWCSUM | 13310 IFCAP_JUMBO_MTU | 13311 IFCAP_LRO); 13312 #else 13313 (IFCAP_VLAN_MTU | 13314 IFCAP_VLAN_HWTAGGING | 13315 IFCAP_VLAN_HWTSO | 13316 IFCAP_VLAN_HWFILTER | 13317 IFCAP_VLAN_HWCSUM | 13318 IFCAP_HWCSUM | 13319 IFCAP_JUMBO_MTU | 13320 IFCAP_LRO | 13321 IFCAP_TSO4 | 13322 IFCAP_TSO6 | 13323 IFCAP_WOL_MAGIC); 13324 #endif 13325 if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */ 13326 if_setbaudrate(ifp, IF_Gbps(10)); 13327 /* XXX */ 13328 if_setsendqlen(ifp, sc->tx_ring_size); 13329 if_setsendqready(ifp); 13330 /* XXX */ 13331 13332 sc->ifp = ifp; 13333 13334 /* attach to the Ethernet interface list */ 13335 ether_ifattach(ifp, sc->link_params.mac_addr); 13336 13337 return (0); 13338 } 13339 13340 static void 13341 bxe_deallocate_bars(struct bxe_softc *sc) 13342 { 13343 int i; 13344 13345 for (i = 0; i < MAX_BARS; i++) { 13346 if (sc->bar[i].resource != NULL) { 13347 bus_release_resource(sc->dev, 13348 SYS_RES_MEMORY, 13349 sc->bar[i].rid, 13350 sc->bar[i].resource); 13351 BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n", 13352 i, PCIR_BAR(i)); 13353 } 13354 } 13355 } 13356 13357 static int 13358 bxe_allocate_bars(struct bxe_softc *sc) 13359 { 13360 u_int flags; 13361 int i; 13362 13363 memset(sc->bar, 0, sizeof(sc->bar)); 13364 13365 for (i = 0; i < MAX_BARS; i++) { 13366 13367 /* memory resources reside at BARs 0, 2, 4 */ 13368 /* Run `pciconf -lb` to see mappings */ 13369 if ((i != 0) && (i != 2) && (i != 4)) { 13370 continue; 13371 } 13372 13373 sc->bar[i].rid = PCIR_BAR(i); 13374 13375 flags = RF_ACTIVE; 13376 if (i == 0) { 13377 flags |= RF_SHAREABLE; 13378 } 13379 13380 if ((sc->bar[i].resource = 13381 bus_alloc_resource_any(sc->dev, 13382 SYS_RES_MEMORY, 13383 &sc->bar[i].rid, 13384 flags)) == NULL) { 13385 #if 0 13386 /* BAR4 doesn't exist for E1 */ 13387 BLOGE(sc, "PCI BAR%d [%02x] memory allocation failed\n", 13388 i, PCIR_BAR(i)); 13389 #endif 13390 return (0); 13391 } 13392 13393 sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource); 13394 sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource); 13395 sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource); 13396 13397 BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%ld) -> %p\n", 13398 i, PCIR_BAR(i), 13399 (void *)rman_get_start(sc->bar[i].resource), 13400 (void *)rman_get_end(sc->bar[i].resource), 13401 rman_get_size(sc->bar[i].resource), 13402 (void *)sc->bar[i].kva); 13403 } 13404 13405 return (0); 13406 } 13407 13408 static void 13409 bxe_get_function_num(struct bxe_softc *sc) 13410 { 13411 uint32_t val = 0; 13412 13413 /* 13414 * Read the ME register to get the function number. The ME register 13415 * holds the relative-function number and absolute-function number. The 13416 * absolute-function number appears only in E2 and above. Before that 13417 * these bits always contained zero, therefore we cannot blindly use them. 13418 */ 13419 13420 val = REG_RD(sc, BAR_ME_REGISTER); 13421 13422 sc->pfunc_rel = 13423 (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT); 13424 sc->path_id = 13425 (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1; 13426 13427 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13428 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id); 13429 } else { 13430 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id); 13431 } 13432 13433 BLOGD(sc, DBG_LOAD, 13434 "Relative function %d, Absolute function %d, Path %d\n", 13435 sc->pfunc_rel, sc->pfunc_abs, sc->path_id); 13436 } 13437 13438 static uint32_t 13439 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc) 13440 { 13441 uint32_t shmem2_size; 13442 uint32_t offset; 13443 uint32_t mf_cfg_offset_value; 13444 13445 /* Non 57712 */ 13446 offset = (SHMEM_RD(sc, func_mb) + 13447 (MAX_FUNC_NUM * sizeof(struct drv_func_mb))); 13448 13449 /* 57712 plus */ 13450 if (sc->devinfo.shmem2_base != 0) { 13451 shmem2_size = SHMEM2_RD(sc, size); 13452 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) { 13453 mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr); 13454 if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) { 13455 offset = mf_cfg_offset_value; 13456 } 13457 } 13458 } 13459 13460 return (offset); 13461 } 13462 13463 static uint32_t 13464 bxe_pcie_capability_read(struct bxe_softc *sc, 13465 int reg, 13466 int width) 13467 { 13468 int pcie_reg; 13469 13470 /* ensure PCIe capability is enabled */ 13471 if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) { 13472 if (pcie_reg != 0) { 13473 BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg); 13474 return (pci_read_config(sc->dev, (pcie_reg + reg), width)); 13475 } 13476 } 13477 13478 BLOGE(sc, "PCIe capability NOT FOUND!!!\n"); 13479 13480 return (0); 13481 } 13482 13483 static uint8_t 13484 bxe_is_pcie_pending(struct bxe_softc *sc) 13485 { 13486 return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) & 13487 PCIM_EXP_STA_TRANSACTION_PND); 13488 } 13489 13490 /* 13491 * Walk the PCI capabiites list for the device to find what features are 13492 * supported. These capabilites may be enabled/disabled by firmware so it's 13493 * best to walk the list rather than make assumptions. 13494 */ 13495 static void 13496 bxe_probe_pci_caps(struct bxe_softc *sc) 13497 { 13498 uint16_t link_status; 13499 int reg; 13500 13501 /* check if PCI Power Management is enabled */ 13502 if (pci_find_cap(sc->dev, PCIY_PMG, ®) == 0) { 13503 if (reg != 0) { 13504 BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg); 13505 13506 sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG; 13507 sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg; 13508 } 13509 } 13510 13511 link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2); 13512 13513 /* handle PCIe 2.0 workarounds for 57710 */ 13514 if (CHIP_IS_E1(sc)) { 13515 /* workaround for 57710 errata E4_57710_27462 */ 13516 sc->devinfo.pcie_link_speed = 13517 (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1; 13518 13519 /* workaround for 57710 errata E4_57710_27488 */ 13520 sc->devinfo.pcie_link_width = 13521 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 13522 if (sc->devinfo.pcie_link_speed > 1) { 13523 sc->devinfo.pcie_link_width = 13524 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1; 13525 } 13526 } else { 13527 sc->devinfo.pcie_link_speed = 13528 (link_status & PCIM_LINK_STA_SPEED); 13529 sc->devinfo.pcie_link_width = 13530 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 13531 } 13532 13533 BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n", 13534 sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width); 13535 13536 sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG; 13537 sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg; 13538 13539 /* check if MSI capability is enabled */ 13540 if (pci_find_cap(sc->dev, PCIY_MSI, ®) == 0) { 13541 if (reg != 0) { 13542 BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg); 13543 13544 sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG; 13545 sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg; 13546 } 13547 } 13548 13549 /* check if MSI-X capability is enabled */ 13550 if (pci_find_cap(sc->dev, PCIY_MSIX, ®) == 0) { 13551 if (reg != 0) { 13552 BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg); 13553 13554 sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG; 13555 sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg; 13556 } 13557 } 13558 } 13559 13560 static int 13561 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc) 13562 { 13563 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13564 uint32_t val; 13565 13566 /* get the outer vlan if we're in switch-dependent mode */ 13567 13568 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13569 mf_info->ext_id = (uint16_t)val; 13570 13571 mf_info->multi_vnics_mode = 1; 13572 13573 if (!VALID_OVLAN(mf_info->ext_id)) { 13574 BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id); 13575 return (1); 13576 } 13577 13578 /* get the capabilities */ 13579 if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13580 FUNC_MF_CFG_PROTOCOL_ISCSI) { 13581 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI; 13582 } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13583 FUNC_MF_CFG_PROTOCOL_FCOE) { 13584 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE; 13585 } else { 13586 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET; 13587 } 13588 13589 mf_info->vnics_per_port = 13590 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13591 13592 return (0); 13593 } 13594 13595 static uint32_t 13596 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc) 13597 { 13598 uint32_t retval = 0; 13599 uint32_t val; 13600 13601 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13602 13603 if (val & MACP_FUNC_CFG_FLAGS_ENABLED) { 13604 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) { 13605 retval |= MF_PROTO_SUPPORT_ETHERNET; 13606 } 13607 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 13608 retval |= MF_PROTO_SUPPORT_ISCSI; 13609 } 13610 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 13611 retval |= MF_PROTO_SUPPORT_FCOE; 13612 } 13613 } 13614 13615 return (retval); 13616 } 13617 13618 static int 13619 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc) 13620 { 13621 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13622 uint32_t val; 13623 13624 /* 13625 * There is no outer vlan if we're in switch-independent mode. 13626 * If the mac is valid then assume multi-function. 13627 */ 13628 13629 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13630 13631 mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0); 13632 13633 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13634 13635 mf_info->vnics_per_port = 13636 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13637 13638 return (0); 13639 } 13640 13641 static int 13642 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc) 13643 { 13644 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13645 uint32_t e1hov_tag; 13646 uint32_t func_config; 13647 uint32_t niv_config; 13648 13649 mf_info->multi_vnics_mode = 1; 13650 13651 e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13652 func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13653 niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config); 13654 13655 mf_info->ext_id = 13656 (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >> 13657 FUNC_MF_CFG_E1HOV_TAG_SHIFT); 13658 13659 mf_info->default_vlan = 13660 (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >> 13661 FUNC_MF_CFG_AFEX_VLAN_SHIFT); 13662 13663 mf_info->niv_allowed_priorities = 13664 (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 13665 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT); 13666 13667 mf_info->niv_default_cos = 13668 (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 13669 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT); 13670 13671 mf_info->afex_vlan_mode = 13672 ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 13673 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT); 13674 13675 mf_info->niv_mba_enabled = 13676 ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >> 13677 FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT); 13678 13679 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13680 13681 mf_info->vnics_per_port = 13682 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13683 13684 return (0); 13685 } 13686 13687 static int 13688 bxe_check_valid_mf_cfg(struct bxe_softc *sc) 13689 { 13690 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13691 uint32_t mf_cfg1; 13692 uint32_t mf_cfg2; 13693 uint32_t ovlan1; 13694 uint32_t ovlan2; 13695 uint8_t i, j; 13696 13697 BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n", 13698 SC_PORT(sc)); 13699 BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n", 13700 mf_info->mf_config[SC_VN(sc)]); 13701 BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n", 13702 mf_info->multi_vnics_mode); 13703 BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n", 13704 mf_info->vnics_per_port); 13705 BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n", 13706 mf_info->ext_id); 13707 BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n", 13708 mf_info->min_bw[0], mf_info->min_bw[1], 13709 mf_info->min_bw[2], mf_info->min_bw[3]); 13710 BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n", 13711 mf_info->max_bw[0], mf_info->max_bw[1], 13712 mf_info->max_bw[2], mf_info->max_bw[3]); 13713 BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n", 13714 sc->mac_addr_str); 13715 13716 /* various MF mode sanity checks... */ 13717 13718 if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) { 13719 BLOGE(sc, "Enumerated function %d is marked as hidden\n", 13720 SC_PORT(sc)); 13721 return (1); 13722 } 13723 13724 if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) { 13725 BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n", 13726 mf_info->vnics_per_port, mf_info->multi_vnics_mode); 13727 return (1); 13728 } 13729 13730 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13731 /* vnic id > 0 must have valid ovlan in switch-dependent mode */ 13732 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) { 13733 BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n", 13734 SC_VN(sc), OVLAN(sc)); 13735 return (1); 13736 } 13737 13738 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) { 13739 BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n", 13740 mf_info->multi_vnics_mode, OVLAN(sc)); 13741 return (1); 13742 } 13743 13744 /* 13745 * Verify all functions are either MF or SF mode. If MF, make sure 13746 * sure that all non-hidden functions have a valid ovlan. If SF, 13747 * make sure that all non-hidden functions have an invalid ovlan. 13748 */ 13749 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13750 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13751 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13752 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13753 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) || 13754 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) { 13755 BLOGE(sc, "mf_mode=SD function %d MF config " 13756 "mismatch, multi_vnics_mode=%d ovlan=%d\n", 13757 i, mf_info->multi_vnics_mode, ovlan1); 13758 return (1); 13759 } 13760 } 13761 13762 /* Verify all funcs on the same port each have a different ovlan. */ 13763 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13764 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13765 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13766 /* iterate from the next function on the port to the max func */ 13767 for (j = i + 2; j < MAX_FUNC_NUM; j += 2) { 13768 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config); 13769 ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag); 13770 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13771 VALID_OVLAN(ovlan1) && 13772 !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) && 13773 VALID_OVLAN(ovlan2) && 13774 (ovlan1 == ovlan2)) { 13775 BLOGE(sc, "mf_mode=SD functions %d and %d " 13776 "have the same ovlan (%d)\n", 13777 i, j, ovlan1); 13778 return (1); 13779 } 13780 } 13781 } 13782 } /* MULTI_FUNCTION_SD */ 13783 13784 return (0); 13785 } 13786 13787 static int 13788 bxe_get_mf_cfg_info(struct bxe_softc *sc) 13789 { 13790 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13791 uint32_t val, mac_upper; 13792 uint8_t i, vnic; 13793 13794 /* initialize mf_info defaults */ 13795 mf_info->vnics_per_port = 1; 13796 mf_info->multi_vnics_mode = FALSE; 13797 mf_info->path_has_ovlan = FALSE; 13798 mf_info->mf_mode = SINGLE_FUNCTION; 13799 13800 if (!CHIP_IS_MF_CAP(sc)) { 13801 return (0); 13802 } 13803 13804 if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) { 13805 BLOGE(sc, "Invalid mf_cfg_base!\n"); 13806 return (1); 13807 } 13808 13809 /* get the MF mode (switch dependent / independent / single-function) */ 13810 13811 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13812 13813 switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) 13814 { 13815 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 13816 13817 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13818 13819 /* check for legal upper mac bytes */ 13820 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) { 13821 mf_info->mf_mode = MULTI_FUNCTION_SI; 13822 } else { 13823 BLOGE(sc, "Invalid config for Switch Independent mode\n"); 13824 } 13825 13826 break; 13827 13828 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 13829 case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4: 13830 13831 /* get outer vlan configuration */ 13832 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13833 13834 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) != 13835 FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 13836 mf_info->mf_mode = MULTI_FUNCTION_SD; 13837 } else { 13838 BLOGE(sc, "Invalid config for Switch Dependent mode\n"); 13839 } 13840 13841 break; 13842 13843 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 13844 13845 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */ 13846 return (0); 13847 13848 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 13849 13850 /* 13851 * Mark MF mode as NIV if MCP version includes NPAR-SD support 13852 * and the MAC address is valid. 13853 */ 13854 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13855 13856 if ((SHMEM2_HAS(sc, afex_driver_support)) && 13857 (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) { 13858 mf_info->mf_mode = MULTI_FUNCTION_AFEX; 13859 } else { 13860 BLOGE(sc, "Invalid config for AFEX mode\n"); 13861 } 13862 13863 break; 13864 13865 default: 13866 13867 BLOGE(sc, "Unknown MF mode (0x%08x)\n", 13868 (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)); 13869 13870 return (1); 13871 } 13872 13873 /* set path mf_mode (which could be different than function mf_mode) */ 13874 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13875 mf_info->path_has_ovlan = TRUE; 13876 } else if (mf_info->mf_mode == SINGLE_FUNCTION) { 13877 /* 13878 * Decide on path multi vnics mode. If we're not in MF mode and in 13879 * 4-port mode, this is good enough to check vnic-0 of the other port 13880 * on the same path 13881 */ 13882 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13883 uint8_t other_port = !(PORT_ID(sc) & 1); 13884 uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port)); 13885 13886 val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag); 13887 13888 mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0; 13889 } 13890 } 13891 13892 if (mf_info->mf_mode == SINGLE_FUNCTION) { 13893 /* invalid MF config */ 13894 if (SC_VN(sc) >= 1) { 13895 BLOGE(sc, "VNIC ID >= 1 in SF mode\n"); 13896 return (1); 13897 } 13898 13899 return (0); 13900 } 13901 13902 /* get the MF configuration */ 13903 mf_info->mf_config[SC_VN(sc)] = 13904 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13905 13906 switch(mf_info->mf_mode) 13907 { 13908 case MULTI_FUNCTION_SD: 13909 13910 bxe_get_shmem_mf_cfg_info_sd(sc); 13911 break; 13912 13913 case MULTI_FUNCTION_SI: 13914 13915 bxe_get_shmem_mf_cfg_info_si(sc); 13916 break; 13917 13918 case MULTI_FUNCTION_AFEX: 13919 13920 bxe_get_shmem_mf_cfg_info_niv(sc); 13921 break; 13922 13923 default: 13924 13925 BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n", 13926 mf_info->mf_mode); 13927 return (1); 13928 } 13929 13930 /* get the congestion management parameters */ 13931 13932 vnic = 0; 13933 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13934 /* get min/max bw */ 13935 val = MFCFG_RD(sc, func_mf_config[i].config); 13936 mf_info->min_bw[vnic] = 13937 ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT); 13938 mf_info->max_bw[vnic] = 13939 ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT); 13940 vnic++; 13941 } 13942 13943 return (bxe_check_valid_mf_cfg(sc)); 13944 } 13945 13946 static int 13947 bxe_get_shmem_info(struct bxe_softc *sc) 13948 { 13949 int port; 13950 uint32_t mac_hi, mac_lo, val; 13951 13952 port = SC_PORT(sc); 13953 mac_hi = mac_lo = 0; 13954 13955 sc->link_params.sc = sc; 13956 sc->link_params.port = port; 13957 13958 /* get the hardware config info */ 13959 sc->devinfo.hw_config = 13960 SHMEM_RD(sc, dev_info.shared_hw_config.config); 13961 sc->devinfo.hw_config2 = 13962 SHMEM_RD(sc, dev_info.shared_hw_config.config2); 13963 13964 sc->link_params.hw_led_mode = 13965 ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >> 13966 SHARED_HW_CFG_LED_MODE_SHIFT); 13967 13968 /* get the port feature config */ 13969 sc->port.config = 13970 SHMEM_RD(sc, dev_info.port_feature_config[port].config), 13971 13972 /* get the link params */ 13973 sc->link_params.speed_cap_mask[0] = 13974 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask); 13975 sc->link_params.speed_cap_mask[1] = 13976 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2); 13977 13978 /* get the lane config */ 13979 sc->link_params.lane_config = 13980 SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config); 13981 13982 /* get the link config */ 13983 val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config); 13984 sc->port.link_config[ELINK_INT_PHY] = val; 13985 sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK); 13986 sc->port.link_config[ELINK_EXT_PHY1] = 13987 SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2); 13988 13989 /* get the override preemphasis flag and enable it or turn it off */ 13990 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13991 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) { 13992 sc->link_params.feature_config_flags |= 13993 ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13994 } else { 13995 sc->link_params.feature_config_flags &= 13996 ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13997 } 13998 13999 /* get the initial value of the link params */ 14000 sc->link_params.multi_phy_config = 14001 SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config); 14002 14003 /* get external phy info */ 14004 sc->port.ext_phy_config = 14005 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 14006 14007 /* get the multifunction configuration */ 14008 bxe_get_mf_cfg_info(sc); 14009 14010 /* get the mac address */ 14011 if (IS_MF(sc)) { 14012 mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 14013 mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower); 14014 } else { 14015 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper); 14016 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower); 14017 } 14018 14019 if ((mac_lo == 0) && (mac_hi == 0)) { 14020 *sc->mac_addr_str = 0; 14021 BLOGE(sc, "No Ethernet address programmed!\n"); 14022 } else { 14023 sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8); 14024 sc->link_params.mac_addr[1] = (uint8_t)(mac_hi); 14025 sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24); 14026 sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16); 14027 sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8); 14028 sc->link_params.mac_addr[5] = (uint8_t)(mac_lo); 14029 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str), 14030 "%02x:%02x:%02x:%02x:%02x:%02x", 14031 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1], 14032 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3], 14033 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]); 14034 BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str); 14035 } 14036 14037 #if 0 14038 if (!IS_MF(sc) && 14039 ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 14040 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE)) { 14041 sc->flags |= BXE_NO_ISCSI; 14042 } 14043 if (!IS_MF(sc) && 14044 ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 14045 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI)) { 14046 sc->flags |= BXE_NO_FCOE_FLAG; 14047 } 14048 #endif 14049 14050 return (0); 14051 } 14052 14053 static void 14054 bxe_get_tunable_params(struct bxe_softc *sc) 14055 { 14056 /* sanity checks */ 14057 14058 if ((bxe_interrupt_mode != INTR_MODE_INTX) && 14059 (bxe_interrupt_mode != INTR_MODE_MSI) && 14060 (bxe_interrupt_mode != INTR_MODE_MSIX)) { 14061 BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode); 14062 bxe_interrupt_mode = INTR_MODE_MSIX; 14063 } 14064 14065 if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) { 14066 BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count); 14067 bxe_queue_count = 0; 14068 } 14069 14070 if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) { 14071 if (bxe_max_rx_bufs == 0) { 14072 bxe_max_rx_bufs = RX_BD_USABLE; 14073 } else { 14074 BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs); 14075 bxe_max_rx_bufs = 2048; 14076 } 14077 } 14078 14079 if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) { 14080 BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks); 14081 bxe_hc_rx_ticks = 25; 14082 } 14083 14084 if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) { 14085 BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks); 14086 bxe_hc_tx_ticks = 50; 14087 } 14088 14089 if (bxe_max_aggregation_size == 0) { 14090 bxe_max_aggregation_size = TPA_AGG_SIZE; 14091 } 14092 14093 if (bxe_max_aggregation_size > 0xffff) { 14094 BLOGW(sc, "invalid max_aggregation_size (%d)\n", 14095 bxe_max_aggregation_size); 14096 bxe_max_aggregation_size = TPA_AGG_SIZE; 14097 } 14098 14099 if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) { 14100 BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs); 14101 bxe_mrrs = -1; 14102 } 14103 14104 if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) { 14105 BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen); 14106 bxe_autogreeen = 0; 14107 } 14108 14109 if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) { 14110 BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss); 14111 bxe_udp_rss = 0; 14112 } 14113 14114 /* pull in user settings */ 14115 14116 sc->interrupt_mode = bxe_interrupt_mode; 14117 sc->max_rx_bufs = bxe_max_rx_bufs; 14118 sc->hc_rx_ticks = bxe_hc_rx_ticks; 14119 sc->hc_tx_ticks = bxe_hc_tx_ticks; 14120 sc->max_aggregation_size = bxe_max_aggregation_size; 14121 sc->mrrs = bxe_mrrs; 14122 sc->autogreeen = bxe_autogreeen; 14123 sc->udp_rss = bxe_udp_rss; 14124 14125 if (bxe_interrupt_mode == INTR_MODE_INTX) { 14126 sc->num_queues = 1; 14127 } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */ 14128 sc->num_queues = 14129 min((bxe_queue_count ? bxe_queue_count : mp_ncpus), 14130 MAX_RSS_CHAINS); 14131 if (sc->num_queues > mp_ncpus) { 14132 sc->num_queues = mp_ncpus; 14133 } 14134 } 14135 14136 BLOGD(sc, DBG_LOAD, 14137 "User Config: " 14138 "debug=0x%lx " 14139 "interrupt_mode=%d " 14140 "queue_count=%d " 14141 "hc_rx_ticks=%d " 14142 "hc_tx_ticks=%d " 14143 "rx_budget=%d " 14144 "max_aggregation_size=%d " 14145 "mrrs=%d " 14146 "autogreeen=%d " 14147 "udp_rss=%d\n", 14148 bxe_debug, 14149 sc->interrupt_mode, 14150 sc->num_queues, 14151 sc->hc_rx_ticks, 14152 sc->hc_tx_ticks, 14153 bxe_rx_budget, 14154 sc->max_aggregation_size, 14155 sc->mrrs, 14156 sc->autogreeen, 14157 sc->udp_rss); 14158 } 14159 14160 static void 14161 bxe_media_detect(struct bxe_softc *sc) 14162 { 14163 uint32_t phy_idx = bxe_get_cur_phy_idx(sc); 14164 switch (sc->link_params.phy[phy_idx].media_type) { 14165 case ELINK_ETH_PHY_SFPP_10G_FIBER: 14166 case ELINK_ETH_PHY_XFP_FIBER: 14167 BLOGI(sc, "Found 10Gb Fiber media.\n"); 14168 sc->media = IFM_10G_SR; 14169 break; 14170 case ELINK_ETH_PHY_SFP_1G_FIBER: 14171 BLOGI(sc, "Found 1Gb Fiber media.\n"); 14172 sc->media = IFM_1000_SX; 14173 break; 14174 case ELINK_ETH_PHY_KR: 14175 case ELINK_ETH_PHY_CX4: 14176 BLOGI(sc, "Found 10GBase-CX4 media.\n"); 14177 sc->media = IFM_10G_CX4; 14178 break; 14179 case ELINK_ETH_PHY_DA_TWINAX: 14180 BLOGI(sc, "Found 10Gb Twinax media.\n"); 14181 sc->media = IFM_10G_TWINAX; 14182 break; 14183 case ELINK_ETH_PHY_BASE_T: 14184 if (sc->link_params.speed_cap_mask[0] & 14185 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 14186 BLOGI(sc, "Found 10GBase-T media.\n"); 14187 sc->media = IFM_10G_T; 14188 } else { 14189 BLOGI(sc, "Found 1000Base-T media.\n"); 14190 sc->media = IFM_1000_T; 14191 } 14192 break; 14193 case ELINK_ETH_PHY_NOT_PRESENT: 14194 BLOGI(sc, "Media not present.\n"); 14195 sc->media = 0; 14196 break; 14197 case ELINK_ETH_PHY_UNSPECIFIED: 14198 default: 14199 BLOGI(sc, "Unknown media!\n"); 14200 sc->media = 0; 14201 break; 14202 } 14203 } 14204 14205 #define GET_FIELD(value, fname) \ 14206 (((value) & (fname##_MASK)) >> (fname##_SHIFT)) 14207 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 14208 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 14209 14210 static int 14211 bxe_get_igu_cam_info(struct bxe_softc *sc) 14212 { 14213 int pfid = SC_FUNC(sc); 14214 int igu_sb_id; 14215 uint32_t val; 14216 uint8_t fid, igu_sb_cnt = 0; 14217 14218 sc->igu_base_sb = 0xff; 14219 14220 if (CHIP_INT_MODE_IS_BC(sc)) { 14221 int vn = SC_VN(sc); 14222 igu_sb_cnt = sc->igu_sb_cnt; 14223 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) * 14224 FP_SB_MAX_E1x); 14225 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x + 14226 (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn)); 14227 return (0); 14228 } 14229 14230 /* IGU in normal mode - read CAM */ 14231 for (igu_sb_id = 0; 14232 igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 14233 igu_sb_id++) { 14234 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 14235 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) { 14236 continue; 14237 } 14238 fid = IGU_FID(val); 14239 if ((fid & IGU_FID_ENCODE_IS_PF)) { 14240 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) { 14241 continue; 14242 } 14243 if (IGU_VEC(val) == 0) { 14244 /* default status block */ 14245 sc->igu_dsb_id = igu_sb_id; 14246 } else { 14247 if (sc->igu_base_sb == 0xff) { 14248 sc->igu_base_sb = igu_sb_id; 14249 } 14250 igu_sb_cnt++; 14251 } 14252 } 14253 } 14254 14255 /* 14256 * Due to new PF resource allocation by MFW T7.4 and above, it's optional 14257 * that number of CAM entries will not be equal to the value advertised in 14258 * PCI. Driver should use the minimal value of both as the actual status 14259 * block count 14260 */ 14261 sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt); 14262 14263 if (igu_sb_cnt == 0) { 14264 BLOGE(sc, "CAM configuration error\n"); 14265 return (-1); 14266 } 14267 14268 return (0); 14269 } 14270 14271 /* 14272 * Gather various information from the device config space, the device itself, 14273 * shmem, and the user input. 14274 */ 14275 static int 14276 bxe_get_device_info(struct bxe_softc *sc) 14277 { 14278 uint32_t val; 14279 int rc; 14280 14281 /* Get the data for the device */ 14282 sc->devinfo.vendor_id = pci_get_vendor(sc->dev); 14283 sc->devinfo.device_id = pci_get_device(sc->dev); 14284 sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev); 14285 sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev); 14286 14287 /* get the chip revision (chip metal comes from pci config space) */ 14288 sc->devinfo.chip_id = 14289 sc->link_params.chip_id = 14290 (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) | 14291 ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) | 14292 (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) | 14293 ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0)); 14294 14295 /* force 57811 according to MISC register */ 14296 if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 14297 if (CHIP_IS_57810(sc)) { 14298 sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) | 14299 (sc->devinfo.chip_id & 0x0000ffff)); 14300 } else if (CHIP_IS_57810_MF(sc)) { 14301 sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) | 14302 (sc->devinfo.chip_id & 0x0000ffff)); 14303 } 14304 sc->devinfo.chip_id |= 0x1; 14305 } 14306 14307 BLOGD(sc, DBG_LOAD, 14308 "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n", 14309 sc->devinfo.chip_id, 14310 ((sc->devinfo.chip_id >> 16) & 0xffff), 14311 ((sc->devinfo.chip_id >> 12) & 0xf), 14312 ((sc->devinfo.chip_id >> 4) & 0xff), 14313 ((sc->devinfo.chip_id >> 0) & 0xf)); 14314 14315 val = (REG_RD(sc, 0x2874) & 0x55); 14316 if ((sc->devinfo.chip_id & 0x1) || 14317 (CHIP_IS_E1(sc) && val) || 14318 (CHIP_IS_E1H(sc) && (val == 0x55))) { 14319 sc->flags |= BXE_ONE_PORT_FLAG; 14320 BLOGD(sc, DBG_LOAD, "single port device\n"); 14321 } 14322 14323 /* set the doorbell size */ 14324 sc->doorbell_size = (1 << BXE_DB_SHIFT); 14325 14326 /* determine whether the device is in 2 port or 4 port mode */ 14327 sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/ 14328 if (CHIP_IS_E2E3(sc)) { 14329 /* 14330 * Read port4mode_en_ovwr[0]: 14331 * If 1, four port mode is in port4mode_en_ovwr[1]. 14332 * If 0, four port mode is in port4mode_en[0]. 14333 */ 14334 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR); 14335 if (val & 1) { 14336 val = ((val >> 1) & 1); 14337 } else { 14338 val = REG_RD(sc, MISC_REG_PORT4MODE_EN); 14339 } 14340 14341 sc->devinfo.chip_port_mode = 14342 (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE; 14343 14344 BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2"); 14345 } 14346 14347 /* get the function and path info for the device */ 14348 bxe_get_function_num(sc); 14349 14350 /* get the shared memory base address */ 14351 sc->devinfo.shmem_base = 14352 sc->link_params.shmem_base = 14353 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 14354 sc->devinfo.shmem2_base = 14355 REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 : 14356 MISC_REG_GENERIC_CR_0)); 14357 14358 BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n", 14359 sc->devinfo.shmem_base, sc->devinfo.shmem2_base); 14360 14361 if (!sc->devinfo.shmem_base) { 14362 /* this should ONLY prevent upcoming shmem reads */ 14363 BLOGI(sc, "MCP not active\n"); 14364 sc->flags |= BXE_NO_MCP_FLAG; 14365 return (0); 14366 } 14367 14368 /* make sure the shared memory contents are valid */ 14369 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 14370 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) != 14371 (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) { 14372 BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val); 14373 return (0); 14374 } 14375 BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val); 14376 14377 /* get the bootcode version */ 14378 sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev); 14379 snprintf(sc->devinfo.bc_ver_str, 14380 sizeof(sc->devinfo.bc_ver_str), 14381 "%d.%d.%d", 14382 ((sc->devinfo.bc_ver >> 24) & 0xff), 14383 ((sc->devinfo.bc_ver >> 16) & 0xff), 14384 ((sc->devinfo.bc_ver >> 8) & 0xff)); 14385 BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str); 14386 14387 /* get the bootcode shmem address */ 14388 sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc); 14389 BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base); 14390 14391 /* clean indirect addresses as they're not used */ 14392 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 14393 if (IS_PF(sc)) { 14394 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0); 14395 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0); 14396 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0); 14397 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0); 14398 if (CHIP_IS_E1x(sc)) { 14399 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0); 14400 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0); 14401 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0); 14402 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0); 14403 } 14404 14405 /* 14406 * Enable internal target-read (in case we are probed after PF 14407 * FLR). Must be done prior to any BAR read access. Only for 14408 * 57712 and up 14409 */ 14410 if (!CHIP_IS_E1x(sc)) { 14411 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 14412 } 14413 } 14414 14415 /* get the nvram size */ 14416 val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4); 14417 sc->devinfo.flash_size = 14418 (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE)); 14419 BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size); 14420 14421 /* get PCI capabilites */ 14422 bxe_probe_pci_caps(sc); 14423 14424 bxe_set_power_state(sc, PCI_PM_D0); 14425 14426 /* get various configuration parameters from shmem */ 14427 bxe_get_shmem_info(sc); 14428 14429 if (sc->devinfo.pcie_msix_cap_reg != 0) { 14430 val = pci_read_config(sc->dev, 14431 (sc->devinfo.pcie_msix_cap_reg + 14432 PCIR_MSIX_CTRL), 14433 2); 14434 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE); 14435 } else { 14436 sc->igu_sb_cnt = 1; 14437 } 14438 14439 sc->igu_base_addr = BAR_IGU_INTMEM; 14440 14441 /* initialize IGU parameters */ 14442 if (CHIP_IS_E1x(sc)) { 14443 sc->devinfo.int_block = INT_BLOCK_HC; 14444 sc->igu_dsb_id = DEF_SB_IGU_ID; 14445 sc->igu_base_sb = 0; 14446 } else { 14447 sc->devinfo.int_block = INT_BLOCK_IGU; 14448 14449 /* do not allow device reset during IGU info preocessing */ 14450 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14451 14452 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 14453 14454 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 14455 int tout = 5000; 14456 14457 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n"); 14458 14459 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 14460 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val); 14461 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f); 14462 14463 while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 14464 tout--; 14465 DELAY(1000); 14466 } 14467 14468 if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 14469 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n"); 14470 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14471 return (-1); 14472 } 14473 } 14474 14475 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 14476 BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n"); 14477 sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP; 14478 } else { 14479 BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n"); 14480 } 14481 14482 rc = bxe_get_igu_cam_info(sc); 14483 14484 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14485 14486 if (rc) { 14487 return (rc); 14488 } 14489 } 14490 14491 /* 14492 * Get base FW non-default (fast path) status block ID. This value is 14493 * used to initialize the fw_sb_id saved on the fp/queue structure to 14494 * determine the id used by the FW. 14495 */ 14496 if (CHIP_IS_E1x(sc)) { 14497 sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc)); 14498 } else { 14499 /* 14500 * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of 14501 * the same queue are indicated on the same IGU SB). So we prefer 14502 * FW and IGU SBs to be the same value. 14503 */ 14504 sc->base_fw_ndsb = sc->igu_base_sb; 14505 } 14506 14507 BLOGD(sc, DBG_LOAD, 14508 "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n", 14509 sc->igu_dsb_id, sc->igu_base_sb, 14510 sc->igu_sb_cnt, sc->base_fw_ndsb); 14511 14512 elink_phy_probe(&sc->link_params); 14513 14514 return (0); 14515 } 14516 14517 static void 14518 bxe_link_settings_supported(struct bxe_softc *sc, 14519 uint32_t switch_cfg) 14520 { 14521 uint32_t cfg_size = 0; 14522 uint32_t idx; 14523 uint8_t port = SC_PORT(sc); 14524 14525 /* aggregation of supported attributes of all external phys */ 14526 sc->port.supported[0] = 0; 14527 sc->port.supported[1] = 0; 14528 14529 switch (sc->link_params.num_phys) { 14530 case 1: 14531 sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported; 14532 cfg_size = 1; 14533 break; 14534 case 2: 14535 sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported; 14536 cfg_size = 1; 14537 break; 14538 case 3: 14539 if (sc->link_params.multi_phy_config & 14540 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 14541 sc->port.supported[1] = 14542 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14543 sc->port.supported[0] = 14544 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14545 } else { 14546 sc->port.supported[0] = 14547 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14548 sc->port.supported[1] = 14549 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14550 } 14551 cfg_size = 2; 14552 break; 14553 } 14554 14555 if (!(sc->port.supported[0] || sc->port.supported[1])) { 14556 BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n", 14557 SHMEM_RD(sc, 14558 dev_info.port_hw_config[port].external_phy_config), 14559 SHMEM_RD(sc, 14560 dev_info.port_hw_config[port].external_phy_config2)); 14561 return; 14562 } 14563 14564 if (CHIP_IS_E3(sc)) 14565 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR); 14566 else { 14567 switch (switch_cfg) { 14568 case ELINK_SWITCH_CFG_1G: 14569 sc->port.phy_addr = 14570 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 14571 break; 14572 case ELINK_SWITCH_CFG_10G: 14573 sc->port.phy_addr = 14574 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 14575 break; 14576 default: 14577 BLOGE(sc, "Invalid switch config in link_config=0x%08x\n", 14578 sc->port.link_config[0]); 14579 return; 14580 } 14581 } 14582 14583 BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr); 14584 14585 /* mask what we support according to speed_cap_mask per configuration */ 14586 for (idx = 0; idx < cfg_size; idx++) { 14587 if (!(sc->link_params.speed_cap_mask[idx] & 14588 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) { 14589 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half; 14590 } 14591 14592 if (!(sc->link_params.speed_cap_mask[idx] & 14593 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) { 14594 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full; 14595 } 14596 14597 if (!(sc->link_params.speed_cap_mask[idx] & 14598 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) { 14599 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half; 14600 } 14601 14602 if (!(sc->link_params.speed_cap_mask[idx] & 14603 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) { 14604 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full; 14605 } 14606 14607 if (!(sc->link_params.speed_cap_mask[idx] & 14608 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) { 14609 sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full; 14610 } 14611 14612 if (!(sc->link_params.speed_cap_mask[idx] & 14613 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) { 14614 sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full; 14615 } 14616 14617 if (!(sc->link_params.speed_cap_mask[idx] & 14618 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) { 14619 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full; 14620 } 14621 14622 if (!(sc->link_params.speed_cap_mask[idx] & 14623 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) { 14624 sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full; 14625 } 14626 } 14627 14628 BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n", 14629 sc->port.supported[0], sc->port.supported[1]); 14630 } 14631 14632 static void 14633 bxe_link_settings_requested(struct bxe_softc *sc) 14634 { 14635 uint32_t link_config; 14636 uint32_t idx; 14637 uint32_t cfg_size = 0; 14638 14639 sc->port.advertising[0] = 0; 14640 sc->port.advertising[1] = 0; 14641 14642 switch (sc->link_params.num_phys) { 14643 case 1: 14644 case 2: 14645 cfg_size = 1; 14646 break; 14647 case 3: 14648 cfg_size = 2; 14649 break; 14650 } 14651 14652 for (idx = 0; idx < cfg_size; idx++) { 14653 sc->link_params.req_duplex[idx] = DUPLEX_FULL; 14654 link_config = sc->port.link_config[idx]; 14655 14656 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 14657 case PORT_FEATURE_LINK_SPEED_AUTO: 14658 if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) { 14659 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14660 sc->port.advertising[idx] |= sc->port.supported[idx]; 14661 if (sc->link_params.phy[ELINK_EXT_PHY1].type == 14662 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 14663 sc->port.advertising[idx] |= 14664 (ELINK_SUPPORTED_100baseT_Half | 14665 ELINK_SUPPORTED_100baseT_Full); 14666 } else { 14667 /* force 10G, no AN */ 14668 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14669 sc->port.advertising[idx] |= 14670 (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); 14671 continue; 14672 } 14673 break; 14674 14675 case PORT_FEATURE_LINK_SPEED_10M_FULL: 14676 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) { 14677 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14678 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full | 14679 ADVERTISED_TP); 14680 } else { 14681 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14682 "speed_cap_mask=0x%08x\n", 14683 link_config, sc->link_params.speed_cap_mask[idx]); 14684 return; 14685 } 14686 break; 14687 14688 case PORT_FEATURE_LINK_SPEED_10M_HALF: 14689 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) { 14690 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14691 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14692 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half | 14693 ADVERTISED_TP); 14694 } else { 14695 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14696 "speed_cap_mask=0x%08x\n", 14697 link_config, sc->link_params.speed_cap_mask[idx]); 14698 return; 14699 } 14700 break; 14701 14702 case PORT_FEATURE_LINK_SPEED_100M_FULL: 14703 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) { 14704 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14705 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full | 14706 ADVERTISED_TP); 14707 } else { 14708 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14709 "speed_cap_mask=0x%08x\n", 14710 link_config, sc->link_params.speed_cap_mask[idx]); 14711 return; 14712 } 14713 break; 14714 14715 case PORT_FEATURE_LINK_SPEED_100M_HALF: 14716 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) { 14717 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14718 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14719 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half | 14720 ADVERTISED_TP); 14721 } else { 14722 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14723 "speed_cap_mask=0x%08x\n", 14724 link_config, sc->link_params.speed_cap_mask[idx]); 14725 return; 14726 } 14727 break; 14728 14729 case PORT_FEATURE_LINK_SPEED_1G: 14730 if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) { 14731 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000; 14732 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full | 14733 ADVERTISED_TP); 14734 } else { 14735 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14736 "speed_cap_mask=0x%08x\n", 14737 link_config, sc->link_params.speed_cap_mask[idx]); 14738 return; 14739 } 14740 break; 14741 14742 case PORT_FEATURE_LINK_SPEED_2_5G: 14743 if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) { 14744 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500; 14745 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full | 14746 ADVERTISED_TP); 14747 } else { 14748 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14749 "speed_cap_mask=0x%08x\n", 14750 link_config, sc->link_params.speed_cap_mask[idx]); 14751 return; 14752 } 14753 break; 14754 14755 case PORT_FEATURE_LINK_SPEED_10G_CX4: 14756 if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) { 14757 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14758 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full | 14759 ADVERTISED_FIBRE); 14760 } else { 14761 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14762 "speed_cap_mask=0x%08x\n", 14763 link_config, sc->link_params.speed_cap_mask[idx]); 14764 return; 14765 } 14766 break; 14767 14768 case PORT_FEATURE_LINK_SPEED_20G: 14769 sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000; 14770 break; 14771 14772 default: 14773 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14774 "speed_cap_mask=0x%08x\n", 14775 link_config, sc->link_params.speed_cap_mask[idx]); 14776 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14777 sc->port.advertising[idx] = sc->port.supported[idx]; 14778 break; 14779 } 14780 14781 sc->link_params.req_flow_ctrl[idx] = 14782 (link_config & PORT_FEATURE_FLOW_CONTROL_MASK); 14783 14784 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) { 14785 if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) { 14786 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE; 14787 } else { 14788 bxe_set_requested_fc(sc); 14789 } 14790 } 14791 14792 BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d " 14793 "req_flow_ctrl=0x%x advertising=0x%x\n", 14794 sc->link_params.req_line_speed[idx], 14795 sc->link_params.req_duplex[idx], 14796 sc->link_params.req_flow_ctrl[idx], 14797 sc->port.advertising[idx]); 14798 } 14799 } 14800 14801 static void 14802 bxe_get_phy_info(struct bxe_softc *sc) 14803 { 14804 uint8_t port = SC_PORT(sc); 14805 uint32_t config = sc->port.config; 14806 uint32_t eee_mode; 14807 14808 /* shmem data already read in bxe_get_shmem_info() */ 14809 14810 BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x " 14811 "link_config0=0x%08x\n", 14812 sc->link_params.lane_config, 14813 sc->link_params.speed_cap_mask[0], 14814 sc->port.link_config[0]); 14815 14816 bxe_link_settings_supported(sc, sc->link_params.switch_cfg); 14817 bxe_link_settings_requested(sc); 14818 14819 if (sc->autogreeen == AUTO_GREEN_FORCE_ON) { 14820 sc->link_params.feature_config_flags |= 14821 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14822 } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) { 14823 sc->link_params.feature_config_flags &= 14824 ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14825 } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) { 14826 sc->link_params.feature_config_flags |= 14827 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14828 } 14829 14830 /* configure link feature according to nvram value */ 14831 eee_mode = 14832 (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) & 14833 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 14834 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 14835 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 14836 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI | 14837 ELINK_EEE_MODE_ENABLE_LPI | 14838 ELINK_EEE_MODE_OUTPUT_TIME); 14839 } else { 14840 sc->link_params.eee_mode = 0; 14841 } 14842 14843 /* get the media type */ 14844 bxe_media_detect(sc); 14845 } 14846 14847 static void 14848 bxe_get_params(struct bxe_softc *sc) 14849 { 14850 /* get user tunable params */ 14851 bxe_get_tunable_params(sc); 14852 14853 /* select the RX and TX ring sizes */ 14854 sc->tx_ring_size = TX_BD_USABLE; 14855 sc->rx_ring_size = RX_BD_USABLE; 14856 14857 /* XXX disable WoL */ 14858 sc->wol = 0; 14859 } 14860 14861 static void 14862 bxe_set_modes_bitmap(struct bxe_softc *sc) 14863 { 14864 uint32_t flags = 0; 14865 14866 if (CHIP_REV_IS_FPGA(sc)) { 14867 SET_FLAGS(flags, MODE_FPGA); 14868 } else if (CHIP_REV_IS_EMUL(sc)) { 14869 SET_FLAGS(flags, MODE_EMUL); 14870 } else { 14871 SET_FLAGS(flags, MODE_ASIC); 14872 } 14873 14874 if (CHIP_IS_MODE_4_PORT(sc)) { 14875 SET_FLAGS(flags, MODE_PORT4); 14876 } else { 14877 SET_FLAGS(flags, MODE_PORT2); 14878 } 14879 14880 if (CHIP_IS_E2(sc)) { 14881 SET_FLAGS(flags, MODE_E2); 14882 } else if (CHIP_IS_E3(sc)) { 14883 SET_FLAGS(flags, MODE_E3); 14884 if (CHIP_REV(sc) == CHIP_REV_Ax) { 14885 SET_FLAGS(flags, MODE_E3_A0); 14886 } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ { 14887 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 14888 } 14889 } 14890 14891 if (IS_MF(sc)) { 14892 SET_FLAGS(flags, MODE_MF); 14893 switch (sc->devinfo.mf_info.mf_mode) { 14894 case MULTI_FUNCTION_SD: 14895 SET_FLAGS(flags, MODE_MF_SD); 14896 break; 14897 case MULTI_FUNCTION_SI: 14898 SET_FLAGS(flags, MODE_MF_SI); 14899 break; 14900 case MULTI_FUNCTION_AFEX: 14901 SET_FLAGS(flags, MODE_MF_AFEX); 14902 break; 14903 } 14904 } else { 14905 SET_FLAGS(flags, MODE_SF); 14906 } 14907 14908 #if defined(__LITTLE_ENDIAN) 14909 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 14910 #else /* __BIG_ENDIAN */ 14911 SET_FLAGS(flags, MODE_BIG_ENDIAN); 14912 #endif 14913 14914 INIT_MODE_FLAGS(sc) = flags; 14915 } 14916 14917 static int 14918 bxe_alloc_hsi_mem(struct bxe_softc *sc) 14919 { 14920 struct bxe_fastpath *fp; 14921 bus_addr_t busaddr; 14922 int max_agg_queues; 14923 int max_segments; 14924 bus_size_t max_size; 14925 bus_size_t max_seg_size; 14926 char buf[32]; 14927 int rc; 14928 int i, j; 14929 14930 /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */ 14931 14932 /* allocate the parent bus DMA tag */ 14933 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */ 14934 1, /* alignment */ 14935 0, /* boundary limit */ 14936 BUS_SPACE_MAXADDR, /* restricted low */ 14937 BUS_SPACE_MAXADDR, /* restricted hi */ 14938 NULL, /* addr filter() */ 14939 NULL, /* addr filter() arg */ 14940 BUS_SPACE_MAXSIZE_32BIT, /* max map size */ 14941 BUS_SPACE_UNRESTRICTED, /* num discontinuous */ 14942 BUS_SPACE_MAXSIZE_32BIT, /* max seg size */ 14943 0, /* flags */ 14944 NULL, /* lock() */ 14945 NULL, /* lock() arg */ 14946 &sc->parent_dma_tag); /* returned dma tag */ 14947 if (rc != 0) { 14948 BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc); 14949 return (1); 14950 } 14951 14952 /************************/ 14953 /* DEFAULT STATUS BLOCK */ 14954 /************************/ 14955 14956 if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block), 14957 &sc->def_sb_dma, "default status block") != 0) { 14958 /* XXX */ 14959 bus_dma_tag_destroy(sc->parent_dma_tag); 14960 return (1); 14961 } 14962 14963 sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr; 14964 14965 /***************/ 14966 /* EVENT QUEUE */ 14967 /***************/ 14968 14969 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14970 &sc->eq_dma, "event queue") != 0) { 14971 /* XXX */ 14972 bxe_dma_free(sc, &sc->def_sb_dma); 14973 sc->def_sb = NULL; 14974 bus_dma_tag_destroy(sc->parent_dma_tag); 14975 return (1); 14976 } 14977 14978 sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr; 14979 14980 /*************/ 14981 /* SLOW PATH */ 14982 /*************/ 14983 14984 if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath), 14985 &sc->sp_dma, "slow path") != 0) { 14986 /* XXX */ 14987 bxe_dma_free(sc, &sc->eq_dma); 14988 sc->eq = NULL; 14989 bxe_dma_free(sc, &sc->def_sb_dma); 14990 sc->def_sb = NULL; 14991 bus_dma_tag_destroy(sc->parent_dma_tag); 14992 return (1); 14993 } 14994 14995 sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr; 14996 14997 /*******************/ 14998 /* SLOW PATH QUEUE */ 14999 /*******************/ 15000 15001 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 15002 &sc->spq_dma, "slow path queue") != 0) { 15003 /* XXX */ 15004 bxe_dma_free(sc, &sc->sp_dma); 15005 sc->sp = NULL; 15006 bxe_dma_free(sc, &sc->eq_dma); 15007 sc->eq = NULL; 15008 bxe_dma_free(sc, &sc->def_sb_dma); 15009 sc->def_sb = NULL; 15010 bus_dma_tag_destroy(sc->parent_dma_tag); 15011 return (1); 15012 } 15013 15014 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr; 15015 15016 /***************************/ 15017 /* FW DECOMPRESSION BUFFER */ 15018 /***************************/ 15019 15020 if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma, 15021 "fw decompression buffer") != 0) { 15022 /* XXX */ 15023 bxe_dma_free(sc, &sc->spq_dma); 15024 sc->spq = NULL; 15025 bxe_dma_free(sc, &sc->sp_dma); 15026 sc->sp = NULL; 15027 bxe_dma_free(sc, &sc->eq_dma); 15028 sc->eq = NULL; 15029 bxe_dma_free(sc, &sc->def_sb_dma); 15030 sc->def_sb = NULL; 15031 bus_dma_tag_destroy(sc->parent_dma_tag); 15032 return (1); 15033 } 15034 15035 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr; 15036 15037 if ((sc->gz_strm = 15038 malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) { 15039 /* XXX */ 15040 bxe_dma_free(sc, &sc->gz_buf_dma); 15041 sc->gz_buf = NULL; 15042 bxe_dma_free(sc, &sc->spq_dma); 15043 sc->spq = NULL; 15044 bxe_dma_free(sc, &sc->sp_dma); 15045 sc->sp = NULL; 15046 bxe_dma_free(sc, &sc->eq_dma); 15047 sc->eq = NULL; 15048 bxe_dma_free(sc, &sc->def_sb_dma); 15049 sc->def_sb = NULL; 15050 bus_dma_tag_destroy(sc->parent_dma_tag); 15051 return (1); 15052 } 15053 15054 /*************/ 15055 /* FASTPATHS */ 15056 /*************/ 15057 15058 /* allocate DMA memory for each fastpath structure */ 15059 for (i = 0; i < sc->num_queues; i++) { 15060 fp = &sc->fp[i]; 15061 fp->sc = sc; 15062 fp->index = i; 15063 15064 /*******************/ 15065 /* FP STATUS BLOCK */ 15066 /*******************/ 15067 15068 snprintf(buf, sizeof(buf), "fp %d status block", i); 15069 if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block), 15070 &fp->sb_dma, buf) != 0) { 15071 /* XXX unwind and free previous fastpath allocations */ 15072 BLOGE(sc, "Failed to alloc %s\n", buf); 15073 return (1); 15074 } else { 15075 if (CHIP_IS_E2E3(sc)) { 15076 fp->status_block.e2_sb = 15077 (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr; 15078 } else { 15079 fp->status_block.e1x_sb = 15080 (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr; 15081 } 15082 } 15083 15084 /******************/ 15085 /* FP TX BD CHAIN */ 15086 /******************/ 15087 15088 snprintf(buf, sizeof(buf), "fp %d tx bd chain", i); 15089 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES), 15090 &fp->tx_dma, buf) != 0) { 15091 /* XXX unwind and free previous fastpath allocations */ 15092 BLOGE(sc, "Failed to alloc %s\n", buf); 15093 return (1); 15094 } else { 15095 fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr; 15096 } 15097 15098 /* link together the tx bd chain pages */ 15099 for (j = 1; j <= TX_BD_NUM_PAGES; j++) { 15100 /* index into the tx bd chain array to last entry per page */ 15101 struct eth_tx_next_bd *tx_next_bd = 15102 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd; 15103 /* point to the next page and wrap from last page */ 15104 busaddr = (fp->tx_dma.paddr + 15105 (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES))); 15106 tx_next_bd->addr_hi = htole32(U64_HI(busaddr)); 15107 tx_next_bd->addr_lo = htole32(U64_LO(busaddr)); 15108 } 15109 15110 /******************/ 15111 /* FP RX BD CHAIN */ 15112 /******************/ 15113 15114 snprintf(buf, sizeof(buf), "fp %d rx bd chain", i); 15115 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES), 15116 &fp->rx_dma, buf) != 0) { 15117 /* XXX unwind and free previous fastpath allocations */ 15118 BLOGE(sc, "Failed to alloc %s\n", buf); 15119 return (1); 15120 } else { 15121 fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr; 15122 } 15123 15124 /* link together the rx bd chain pages */ 15125 for (j = 1; j <= RX_BD_NUM_PAGES; j++) { 15126 /* index into the rx bd chain array to last entry per page */ 15127 struct eth_rx_bd *rx_bd = 15128 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2]; 15129 /* point to the next page and wrap from last page */ 15130 busaddr = (fp->rx_dma.paddr + 15131 (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES))); 15132 rx_bd->addr_hi = htole32(U64_HI(busaddr)); 15133 rx_bd->addr_lo = htole32(U64_LO(busaddr)); 15134 } 15135 15136 /*******************/ 15137 /* FP RX RCQ CHAIN */ 15138 /*******************/ 15139 15140 snprintf(buf, sizeof(buf), "fp %d rcq chain", i); 15141 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES), 15142 &fp->rcq_dma, buf) != 0) { 15143 /* XXX unwind and free previous fastpath allocations */ 15144 BLOGE(sc, "Failed to alloc %s\n", buf); 15145 return (1); 15146 } else { 15147 fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr; 15148 } 15149 15150 /* link together the rcq chain pages */ 15151 for (j = 1; j <= RCQ_NUM_PAGES; j++) { 15152 /* index into the rcq chain array to last entry per page */ 15153 struct eth_rx_cqe_next_page *rx_cqe_next = 15154 (struct eth_rx_cqe_next_page *) 15155 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1]; 15156 /* point to the next page and wrap from last page */ 15157 busaddr = (fp->rcq_dma.paddr + 15158 (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES))); 15159 rx_cqe_next->addr_hi = htole32(U64_HI(busaddr)); 15160 rx_cqe_next->addr_lo = htole32(U64_LO(busaddr)); 15161 } 15162 15163 /*******************/ 15164 /* FP RX SGE CHAIN */ 15165 /*******************/ 15166 15167 snprintf(buf, sizeof(buf), "fp %d sge chain", i); 15168 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES), 15169 &fp->rx_sge_dma, buf) != 0) { 15170 /* XXX unwind and free previous fastpath allocations */ 15171 BLOGE(sc, "Failed to alloc %s\n", buf); 15172 return (1); 15173 } else { 15174 fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr; 15175 } 15176 15177 /* link together the sge chain pages */ 15178 for (j = 1; j <= RX_SGE_NUM_PAGES; j++) { 15179 /* index into the rcq chain array to last entry per page */ 15180 struct eth_rx_sge *rx_sge = 15181 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2]; 15182 /* point to the next page and wrap from last page */ 15183 busaddr = (fp->rx_sge_dma.paddr + 15184 (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES))); 15185 rx_sge->addr_hi = htole32(U64_HI(busaddr)); 15186 rx_sge->addr_lo = htole32(U64_LO(busaddr)); 15187 } 15188 15189 /***********************/ 15190 /* FP TX MBUF DMA MAPS */ 15191 /***********************/ 15192 15193 /* set required sizes before mapping to conserve resources */ 15194 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 15195 max_size = BXE_TSO_MAX_SIZE; 15196 max_segments = BXE_TSO_MAX_SEGMENTS; 15197 max_seg_size = BXE_TSO_MAX_SEG_SIZE; 15198 } else { 15199 max_size = (MCLBYTES * BXE_MAX_SEGMENTS); 15200 max_segments = BXE_MAX_SEGMENTS; 15201 max_seg_size = MCLBYTES; 15202 } 15203 15204 /* create a dma tag for the tx mbufs */ 15205 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 15206 1, /* alignment */ 15207 0, /* boundary limit */ 15208 BUS_SPACE_MAXADDR, /* restricted low */ 15209 BUS_SPACE_MAXADDR, /* restricted hi */ 15210 NULL, /* addr filter() */ 15211 NULL, /* addr filter() arg */ 15212 max_size, /* max map size */ 15213 max_segments, /* num discontinuous */ 15214 max_seg_size, /* max seg size */ 15215 0, /* flags */ 15216 NULL, /* lock() */ 15217 NULL, /* lock() arg */ 15218 &fp->tx_mbuf_tag); /* returned dma tag */ 15219 if (rc != 0) { 15220 /* XXX unwind and free previous fastpath allocations */ 15221 BLOGE(sc, "Failed to create dma tag for " 15222 "'fp %d tx mbufs' (%d)\n", 15223 i, rc); 15224 return (1); 15225 } 15226 15227 /* create dma maps for each of the tx mbuf clusters */ 15228 for (j = 0; j < TX_BD_TOTAL; j++) { 15229 if (bus_dmamap_create(fp->tx_mbuf_tag, 15230 BUS_DMA_NOWAIT, 15231 &fp->tx_mbuf_chain[j].m_map)) { 15232 /* XXX unwind and free previous fastpath allocations */ 15233 BLOGE(sc, "Failed to create dma map for " 15234 "'fp %d tx mbuf %d' (%d)\n", 15235 i, j, rc); 15236 return (1); 15237 } 15238 } 15239 15240 /***********************/ 15241 /* FP RX MBUF DMA MAPS */ 15242 /***********************/ 15243 15244 /* create a dma tag for the rx mbufs */ 15245 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 15246 1, /* alignment */ 15247 0, /* boundary limit */ 15248 BUS_SPACE_MAXADDR, /* restricted low */ 15249 BUS_SPACE_MAXADDR, /* restricted hi */ 15250 NULL, /* addr filter() */ 15251 NULL, /* addr filter() arg */ 15252 MJUM9BYTES, /* max map size */ 15253 1, /* num discontinuous */ 15254 MJUM9BYTES, /* max seg size */ 15255 0, /* flags */ 15256 NULL, /* lock() */ 15257 NULL, /* lock() arg */ 15258 &fp->rx_mbuf_tag); /* returned dma tag */ 15259 if (rc != 0) { 15260 /* XXX unwind and free previous fastpath allocations */ 15261 BLOGE(sc, "Failed to create dma tag for " 15262 "'fp %d rx mbufs' (%d)\n", 15263 i, rc); 15264 return (1); 15265 } 15266 15267 /* create dma maps for each of the rx mbuf clusters */ 15268 for (j = 0; j < RX_BD_TOTAL; j++) { 15269 if (bus_dmamap_create(fp->rx_mbuf_tag, 15270 BUS_DMA_NOWAIT, 15271 &fp->rx_mbuf_chain[j].m_map)) { 15272 /* XXX unwind and free previous fastpath allocations */ 15273 BLOGE(sc, "Failed to create dma map for " 15274 "'fp %d rx mbuf %d' (%d)\n", 15275 i, j, rc); 15276 return (1); 15277 } 15278 } 15279 15280 /* create dma map for the spare rx mbuf cluster */ 15281 if (bus_dmamap_create(fp->rx_mbuf_tag, 15282 BUS_DMA_NOWAIT, 15283 &fp->rx_mbuf_spare_map)) { 15284 /* XXX unwind and free previous fastpath allocations */ 15285 BLOGE(sc, "Failed to create dma map for " 15286 "'fp %d spare rx mbuf' (%d)\n", 15287 i, rc); 15288 return (1); 15289 } 15290 15291 /***************************/ 15292 /* FP RX SGE MBUF DMA MAPS */ 15293 /***************************/ 15294 15295 /* create a dma tag for the rx sge mbufs */ 15296 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 15297 1, /* alignment */ 15298 0, /* boundary limit */ 15299 BUS_SPACE_MAXADDR, /* restricted low */ 15300 BUS_SPACE_MAXADDR, /* restricted hi */ 15301 NULL, /* addr filter() */ 15302 NULL, /* addr filter() arg */ 15303 BCM_PAGE_SIZE, /* max map size */ 15304 1, /* num discontinuous */ 15305 BCM_PAGE_SIZE, /* max seg size */ 15306 0, /* flags */ 15307 NULL, /* lock() */ 15308 NULL, /* lock() arg */ 15309 &fp->rx_sge_mbuf_tag); /* returned dma tag */ 15310 if (rc != 0) { 15311 /* XXX unwind and free previous fastpath allocations */ 15312 BLOGE(sc, "Failed to create dma tag for " 15313 "'fp %d rx sge mbufs' (%d)\n", 15314 i, rc); 15315 return (1); 15316 } 15317 15318 /* create dma maps for the rx sge mbuf clusters */ 15319 for (j = 0; j < RX_SGE_TOTAL; j++) { 15320 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 15321 BUS_DMA_NOWAIT, 15322 &fp->rx_sge_mbuf_chain[j].m_map)) { 15323 /* XXX unwind and free previous fastpath allocations */ 15324 BLOGE(sc, "Failed to create dma map for " 15325 "'fp %d rx sge mbuf %d' (%d)\n", 15326 i, j, rc); 15327 return (1); 15328 } 15329 } 15330 15331 /* create dma map for the spare rx sge mbuf cluster */ 15332 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 15333 BUS_DMA_NOWAIT, 15334 &fp->rx_sge_mbuf_spare_map)) { 15335 /* XXX unwind and free previous fastpath allocations */ 15336 BLOGE(sc, "Failed to create dma map for " 15337 "'fp %d spare rx sge mbuf' (%d)\n", 15338 i, rc); 15339 return (1); 15340 } 15341 15342 /***************************/ 15343 /* FP RX TPA MBUF DMA MAPS */ 15344 /***************************/ 15345 15346 /* create dma maps for the rx tpa mbuf clusters */ 15347 max_agg_queues = MAX_AGG_QS(sc); 15348 15349 for (j = 0; j < max_agg_queues; j++) { 15350 if (bus_dmamap_create(fp->rx_mbuf_tag, 15351 BUS_DMA_NOWAIT, 15352 &fp->rx_tpa_info[j].bd.m_map)) { 15353 /* XXX unwind and free previous fastpath allocations */ 15354 BLOGE(sc, "Failed to create dma map for " 15355 "'fp %d rx tpa mbuf %d' (%d)\n", 15356 i, j, rc); 15357 return (1); 15358 } 15359 } 15360 15361 /* create dma map for the spare rx tpa mbuf cluster */ 15362 if (bus_dmamap_create(fp->rx_mbuf_tag, 15363 BUS_DMA_NOWAIT, 15364 &fp->rx_tpa_info_mbuf_spare_map)) { 15365 /* XXX unwind and free previous fastpath allocations */ 15366 BLOGE(sc, "Failed to create dma map for " 15367 "'fp %d spare rx tpa mbuf' (%d)\n", 15368 i, rc); 15369 return (1); 15370 } 15371 15372 bxe_init_sge_ring_bit_mask(fp); 15373 } 15374 15375 return (0); 15376 } 15377 15378 static void 15379 bxe_free_hsi_mem(struct bxe_softc *sc) 15380 { 15381 struct bxe_fastpath *fp; 15382 int max_agg_queues; 15383 int i, j; 15384 15385 if (sc->parent_dma_tag == NULL) { 15386 return; /* assume nothing was allocated */ 15387 } 15388 15389 for (i = 0; i < sc->num_queues; i++) { 15390 fp = &sc->fp[i]; 15391 15392 /*******************/ 15393 /* FP STATUS BLOCK */ 15394 /*******************/ 15395 15396 bxe_dma_free(sc, &fp->sb_dma); 15397 memset(&fp->status_block, 0, sizeof(fp->status_block)); 15398 15399 /******************/ 15400 /* FP TX BD CHAIN */ 15401 /******************/ 15402 15403 bxe_dma_free(sc, &fp->tx_dma); 15404 fp->tx_chain = NULL; 15405 15406 /******************/ 15407 /* FP RX BD CHAIN */ 15408 /******************/ 15409 15410 bxe_dma_free(sc, &fp->rx_dma); 15411 fp->rx_chain = NULL; 15412 15413 /*******************/ 15414 /* FP RX RCQ CHAIN */ 15415 /*******************/ 15416 15417 bxe_dma_free(sc, &fp->rcq_dma); 15418 fp->rcq_chain = NULL; 15419 15420 /*******************/ 15421 /* FP RX SGE CHAIN */ 15422 /*******************/ 15423 15424 bxe_dma_free(sc, &fp->rx_sge_dma); 15425 fp->rx_sge_chain = NULL; 15426 15427 /***********************/ 15428 /* FP TX MBUF DMA MAPS */ 15429 /***********************/ 15430 15431 if (fp->tx_mbuf_tag != NULL) { 15432 for (j = 0; j < TX_BD_TOTAL; j++) { 15433 if (fp->tx_mbuf_chain[j].m_map != NULL) { 15434 bus_dmamap_unload(fp->tx_mbuf_tag, 15435 fp->tx_mbuf_chain[j].m_map); 15436 bus_dmamap_destroy(fp->tx_mbuf_tag, 15437 fp->tx_mbuf_chain[j].m_map); 15438 } 15439 } 15440 15441 bus_dma_tag_destroy(fp->tx_mbuf_tag); 15442 fp->tx_mbuf_tag = NULL; 15443 } 15444 15445 /***********************/ 15446 /* FP RX MBUF DMA MAPS */ 15447 /***********************/ 15448 15449 if (fp->rx_mbuf_tag != NULL) { 15450 for (j = 0; j < RX_BD_TOTAL; j++) { 15451 if (fp->rx_mbuf_chain[j].m_map != NULL) { 15452 bus_dmamap_unload(fp->rx_mbuf_tag, 15453 fp->rx_mbuf_chain[j].m_map); 15454 bus_dmamap_destroy(fp->rx_mbuf_tag, 15455 fp->rx_mbuf_chain[j].m_map); 15456 } 15457 } 15458 15459 if (fp->rx_mbuf_spare_map != NULL) { 15460 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 15461 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 15462 } 15463 15464 /***************************/ 15465 /* FP RX TPA MBUF DMA MAPS */ 15466 /***************************/ 15467 15468 max_agg_queues = MAX_AGG_QS(sc); 15469 15470 for (j = 0; j < max_agg_queues; j++) { 15471 if (fp->rx_tpa_info[j].bd.m_map != NULL) { 15472 bus_dmamap_unload(fp->rx_mbuf_tag, 15473 fp->rx_tpa_info[j].bd.m_map); 15474 bus_dmamap_destroy(fp->rx_mbuf_tag, 15475 fp->rx_tpa_info[j].bd.m_map); 15476 } 15477 } 15478 15479 if (fp->rx_tpa_info_mbuf_spare_map != NULL) { 15480 bus_dmamap_unload(fp->rx_mbuf_tag, 15481 fp->rx_tpa_info_mbuf_spare_map); 15482 bus_dmamap_destroy(fp->rx_mbuf_tag, 15483 fp->rx_tpa_info_mbuf_spare_map); 15484 } 15485 15486 bus_dma_tag_destroy(fp->rx_mbuf_tag); 15487 fp->rx_mbuf_tag = NULL; 15488 } 15489 15490 /***************************/ 15491 /* FP RX SGE MBUF DMA MAPS */ 15492 /***************************/ 15493 15494 if (fp->rx_sge_mbuf_tag != NULL) { 15495 for (j = 0; j < RX_SGE_TOTAL; j++) { 15496 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) { 15497 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 15498 fp->rx_sge_mbuf_chain[j].m_map); 15499 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 15500 fp->rx_sge_mbuf_chain[j].m_map); 15501 } 15502 } 15503 15504 if (fp->rx_sge_mbuf_spare_map != NULL) { 15505 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 15506 fp->rx_sge_mbuf_spare_map); 15507 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 15508 fp->rx_sge_mbuf_spare_map); 15509 } 15510 15511 bus_dma_tag_destroy(fp->rx_sge_mbuf_tag); 15512 fp->rx_sge_mbuf_tag = NULL; 15513 } 15514 } 15515 15516 /***************************/ 15517 /* FW DECOMPRESSION BUFFER */ 15518 /***************************/ 15519 15520 bxe_dma_free(sc, &sc->gz_buf_dma); 15521 sc->gz_buf = NULL; 15522 free(sc->gz_strm, M_DEVBUF); 15523 sc->gz_strm = NULL; 15524 15525 /*******************/ 15526 /* SLOW PATH QUEUE */ 15527 /*******************/ 15528 15529 bxe_dma_free(sc, &sc->spq_dma); 15530 sc->spq = NULL; 15531 15532 /*************/ 15533 /* SLOW PATH */ 15534 /*************/ 15535 15536 bxe_dma_free(sc, &sc->sp_dma); 15537 sc->sp = NULL; 15538 15539 /***************/ 15540 /* EVENT QUEUE */ 15541 /***************/ 15542 15543 bxe_dma_free(sc, &sc->eq_dma); 15544 sc->eq = NULL; 15545 15546 /************************/ 15547 /* DEFAULT STATUS BLOCK */ 15548 /************************/ 15549 15550 bxe_dma_free(sc, &sc->def_sb_dma); 15551 sc->def_sb = NULL; 15552 15553 bus_dma_tag_destroy(sc->parent_dma_tag); 15554 sc->parent_dma_tag = NULL; 15555 } 15556 15557 /* 15558 * Previous driver DMAE transaction may have occurred when pre-boot stage 15559 * ended and boot began. This would invalidate the addresses of the 15560 * transaction, resulting in was-error bit set in the PCI causing all 15561 * hw-to-host PCIe transactions to timeout. If this happened we want to clear 15562 * the interrupt which detected this from the pglueb and the was-done bit 15563 */ 15564 static void 15565 bxe_prev_interrupted_dmae(struct bxe_softc *sc) 15566 { 15567 uint32_t val; 15568 15569 if (!CHIP_IS_E1x(sc)) { 15570 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS); 15571 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { 15572 BLOGD(sc, DBG_LOAD, 15573 "Clearing 'was-error' bit that was set in pglueb"); 15574 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc)); 15575 } 15576 } 15577 } 15578 15579 static int 15580 bxe_prev_mcp_done(struct bxe_softc *sc) 15581 { 15582 uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 15583 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 15584 if (!rc) { 15585 BLOGE(sc, "MCP response failure, aborting\n"); 15586 return (-1); 15587 } 15588 15589 return (0); 15590 } 15591 15592 static struct bxe_prev_list_node * 15593 bxe_prev_path_get_entry(struct bxe_softc *sc) 15594 { 15595 struct bxe_prev_list_node *tmp; 15596 15597 LIST_FOREACH(tmp, &bxe_prev_list, node) { 15598 if ((sc->pcie_bus == tmp->bus) && 15599 (sc->pcie_device == tmp->slot) && 15600 (SC_PATH(sc) == tmp->path)) { 15601 return (tmp); 15602 } 15603 } 15604 15605 return (NULL); 15606 } 15607 15608 static uint8_t 15609 bxe_prev_is_path_marked(struct bxe_softc *sc) 15610 { 15611 struct bxe_prev_list_node *tmp; 15612 int rc = FALSE; 15613 15614 mtx_lock(&bxe_prev_mtx); 15615 15616 tmp = bxe_prev_path_get_entry(sc); 15617 if (tmp) { 15618 if (tmp->aer) { 15619 BLOGD(sc, DBG_LOAD, 15620 "Path %d/%d/%d was marked by AER\n", 15621 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15622 } else { 15623 rc = TRUE; 15624 BLOGD(sc, DBG_LOAD, 15625 "Path %d/%d/%d was already cleaned from previous drivers\n", 15626 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15627 } 15628 } 15629 15630 mtx_unlock(&bxe_prev_mtx); 15631 15632 return (rc); 15633 } 15634 15635 static int 15636 bxe_prev_mark_path(struct bxe_softc *sc, 15637 uint8_t after_undi) 15638 { 15639 struct bxe_prev_list_node *tmp; 15640 15641 mtx_lock(&bxe_prev_mtx); 15642 15643 /* Check whether the entry for this path already exists */ 15644 tmp = bxe_prev_path_get_entry(sc); 15645 if (tmp) { 15646 if (!tmp->aer) { 15647 BLOGD(sc, DBG_LOAD, 15648 "Re-marking AER in path %d/%d/%d\n", 15649 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15650 } else { 15651 BLOGD(sc, DBG_LOAD, 15652 "Removing AER indication from path %d/%d/%d\n", 15653 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15654 tmp->aer = 0; 15655 } 15656 15657 mtx_unlock(&bxe_prev_mtx); 15658 return (0); 15659 } 15660 15661 mtx_unlock(&bxe_prev_mtx); 15662 15663 /* Create an entry for this path and add it */ 15664 tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF, 15665 (M_NOWAIT | M_ZERO)); 15666 if (!tmp) { 15667 BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n"); 15668 return (-1); 15669 } 15670 15671 tmp->bus = sc->pcie_bus; 15672 tmp->slot = sc->pcie_device; 15673 tmp->path = SC_PATH(sc); 15674 tmp->aer = 0; 15675 tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0; 15676 15677 mtx_lock(&bxe_prev_mtx); 15678 15679 BLOGD(sc, DBG_LOAD, 15680 "Marked path %d/%d/%d - finished previous unload\n", 15681 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15682 LIST_INSERT_HEAD(&bxe_prev_list, tmp, node); 15683 15684 mtx_unlock(&bxe_prev_mtx); 15685 15686 return (0); 15687 } 15688 15689 static int 15690 bxe_do_flr(struct bxe_softc *sc) 15691 { 15692 int i; 15693 15694 /* only E2 and onwards support FLR */ 15695 if (CHIP_IS_E1x(sc)) { 15696 BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n"); 15697 return (-1); 15698 } 15699 15700 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 15701 if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 15702 BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n", 15703 sc->devinfo.bc_ver); 15704 return (-1); 15705 } 15706 15707 /* Wait for Transaction Pending bit clean */ 15708 for (i = 0; i < 4; i++) { 15709 if (i) { 15710 DELAY(((1 << (i - 1)) * 100) * 1000); 15711 } 15712 15713 if (!bxe_is_pcie_pending(sc)) { 15714 goto clear; 15715 } 15716 } 15717 15718 BLOGE(sc, "PCIE transaction is not cleared, " 15719 "proceeding with reset anyway\n"); 15720 15721 clear: 15722 15723 BLOGD(sc, DBG_LOAD, "Initiating FLR\n"); 15724 bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0); 15725 15726 return (0); 15727 } 15728 15729 struct bxe_mac_vals { 15730 uint32_t xmac_addr; 15731 uint32_t xmac_val; 15732 uint32_t emac_addr; 15733 uint32_t emac_val; 15734 uint32_t umac_addr; 15735 uint32_t umac_val; 15736 uint32_t bmac_addr; 15737 uint32_t bmac_val[2]; 15738 }; 15739 15740 static void 15741 bxe_prev_unload_close_mac(struct bxe_softc *sc, 15742 struct bxe_mac_vals *vals) 15743 { 15744 uint32_t val, base_addr, offset, mask, reset_reg; 15745 uint8_t mac_stopped = FALSE; 15746 uint8_t port = SC_PORT(sc); 15747 uint32_t wb_data[2]; 15748 15749 /* reset addresses as they also mark which values were changed */ 15750 vals->bmac_addr = 0; 15751 vals->umac_addr = 0; 15752 vals->xmac_addr = 0; 15753 vals->emac_addr = 0; 15754 15755 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2); 15756 15757 if (!CHIP_IS_E3(sc)) { 15758 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 15759 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 15760 if ((mask & reset_reg) && val) { 15761 BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n"); 15762 base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM 15763 : NIG_REG_INGRESS_BMAC0_MEM; 15764 offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL 15765 : BIGMAC_REGISTER_BMAC_CONTROL; 15766 15767 /* 15768 * use rd/wr since we cannot use dmae. This is safe 15769 * since MCP won't access the bus due to the request 15770 * to unload, and no function on the path can be 15771 * loaded at this time. 15772 */ 15773 wb_data[0] = REG_RD(sc, base_addr + offset); 15774 wb_data[1] = REG_RD(sc, base_addr + offset + 0x4); 15775 vals->bmac_addr = base_addr + offset; 15776 vals->bmac_val[0] = wb_data[0]; 15777 vals->bmac_val[1] = wb_data[1]; 15778 wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE; 15779 REG_WR(sc, vals->bmac_addr, wb_data[0]); 15780 REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]); 15781 } 15782 15783 BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n"); 15784 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4; 15785 vals->emac_val = REG_RD(sc, vals->emac_addr); 15786 REG_WR(sc, vals->emac_addr, 0); 15787 mac_stopped = TRUE; 15788 } else { 15789 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 15790 BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n"); 15791 base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 15792 val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI); 15793 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1)); 15794 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1)); 15795 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 15796 vals->xmac_val = REG_RD(sc, vals->xmac_addr); 15797 REG_WR(sc, vals->xmac_addr, 0); 15798 mac_stopped = TRUE; 15799 } 15800 15801 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 15802 if (mask & reset_reg) { 15803 BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n"); 15804 base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 15805 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; 15806 vals->umac_val = REG_RD(sc, vals->umac_addr); 15807 REG_WR(sc, vals->umac_addr, 0); 15808 mac_stopped = TRUE; 15809 } 15810 } 15811 15812 if (mac_stopped) { 15813 DELAY(20000); 15814 } 15815 } 15816 15817 #define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 15818 #define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff) 15819 #define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 15820 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 15821 15822 static void 15823 bxe_prev_unload_undi_inc(struct bxe_softc *sc, 15824 uint8_t port, 15825 uint8_t inc) 15826 { 15827 uint16_t rcq, bd; 15828 uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port)); 15829 15830 rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc; 15831 bd = BXE_PREV_UNDI_BD(tmp_reg) + inc; 15832 15833 tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd); 15834 REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg); 15835 15836 BLOGD(sc, DBG_LOAD, 15837 "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n", 15838 port, bd, rcq); 15839 } 15840 15841 static int 15842 bxe_prev_unload_common(struct bxe_softc *sc) 15843 { 15844 uint32_t reset_reg, tmp_reg = 0, rc; 15845 uint8_t prev_undi = FALSE; 15846 struct bxe_mac_vals mac_vals; 15847 uint32_t timer_count = 1000; 15848 uint32_t prev_brb; 15849 15850 /* 15851 * It is possible a previous function received 'common' answer, 15852 * but hasn't loaded yet, therefore creating a scenario of 15853 * multiple functions receiving 'common' on the same path. 15854 */ 15855 BLOGD(sc, DBG_LOAD, "Common unload Flow\n"); 15856 15857 memset(&mac_vals, 0, sizeof(mac_vals)); 15858 15859 if (bxe_prev_is_path_marked(sc)) { 15860 return (bxe_prev_mcp_done(sc)); 15861 } 15862 15863 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1); 15864 15865 /* Reset should be performed after BRB is emptied */ 15866 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 15867 /* Close the MAC Rx to prevent BRB from filling up */ 15868 bxe_prev_unload_close_mac(sc, &mac_vals); 15869 15870 /* close LLH filters towards the BRB */ 15871 elink_set_rx_filter(&sc->link_params, 0); 15872 15873 /* 15874 * Check if the UNDI driver was previously loaded. 15875 * UNDI driver initializes CID offset for normal bell to 0x7 15876 */ 15877 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { 15878 tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST); 15879 if (tmp_reg == 0x7) { 15880 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n"); 15881 prev_undi = TRUE; 15882 /* clear the UNDI indication */ 15883 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0); 15884 /* clear possible idle check errors */ 15885 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0); 15886 } 15887 } 15888 15889 /* wait until BRB is empty */ 15890 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15891 while (timer_count) { 15892 prev_brb = tmp_reg; 15893 15894 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15895 if (!tmp_reg) { 15896 break; 15897 } 15898 15899 BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg); 15900 15901 /* reset timer as long as BRB actually gets emptied */ 15902 if (prev_brb > tmp_reg) { 15903 timer_count = 1000; 15904 } else { 15905 timer_count--; 15906 } 15907 15908 /* If UNDI resides in memory, manually increment it */ 15909 if (prev_undi) { 15910 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1); 15911 } 15912 15913 DELAY(10); 15914 } 15915 15916 if (!timer_count) { 15917 BLOGE(sc, "Failed to empty BRB\n"); 15918 } 15919 } 15920 15921 /* No packets are in the pipeline, path is ready for reset */ 15922 bxe_reset_common(sc); 15923 15924 if (mac_vals.xmac_addr) { 15925 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val); 15926 } 15927 if (mac_vals.umac_addr) { 15928 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val); 15929 } 15930 if (mac_vals.emac_addr) { 15931 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val); 15932 } 15933 if (mac_vals.bmac_addr) { 15934 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 15935 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 15936 } 15937 15938 rc = bxe_prev_mark_path(sc, prev_undi); 15939 if (rc) { 15940 bxe_prev_mcp_done(sc); 15941 return (rc); 15942 } 15943 15944 return (bxe_prev_mcp_done(sc)); 15945 } 15946 15947 static int 15948 bxe_prev_unload_uncommon(struct bxe_softc *sc) 15949 { 15950 int rc; 15951 15952 BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n"); 15953 15954 /* Test if previous unload process was already finished for this path */ 15955 if (bxe_prev_is_path_marked(sc)) { 15956 return (bxe_prev_mcp_done(sc)); 15957 } 15958 15959 BLOGD(sc, DBG_LOAD, "Path is unmarked\n"); 15960 15961 /* 15962 * If function has FLR capabilities, and existing FW version matches 15963 * the one required, then FLR will be sufficient to clean any residue 15964 * left by previous driver 15965 */ 15966 rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION); 15967 if (!rc) { 15968 /* fw version is good */ 15969 BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n"); 15970 rc = bxe_do_flr(sc); 15971 } 15972 15973 if (!rc) { 15974 /* FLR was performed */ 15975 BLOGD(sc, DBG_LOAD, "FLR successful\n"); 15976 return (0); 15977 } 15978 15979 BLOGD(sc, DBG_LOAD, "Could not FLR\n"); 15980 15981 /* Close the MCP request, return failure*/ 15982 rc = bxe_prev_mcp_done(sc); 15983 if (!rc) { 15984 rc = BXE_PREV_WAIT_NEEDED; 15985 } 15986 15987 return (rc); 15988 } 15989 15990 static int 15991 bxe_prev_unload(struct bxe_softc *sc) 15992 { 15993 int time_counter = 10; 15994 uint32_t fw, hw_lock_reg, hw_lock_val; 15995 uint32_t rc = 0; 15996 15997 /* 15998 * Clear HW from errors which may have resulted from an interrupted 15999 * DMAE transaction. 16000 */ 16001 bxe_prev_interrupted_dmae(sc); 16002 16003 /* Release previously held locks */ 16004 hw_lock_reg = 16005 (SC_FUNC(sc) <= 5) ? 16006 (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) : 16007 (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8); 16008 16009 hw_lock_val = (REG_RD(sc, hw_lock_reg)); 16010 if (hw_lock_val) { 16011 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 16012 BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n"); 16013 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 16014 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc))); 16015 } 16016 BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n"); 16017 REG_WR(sc, hw_lock_reg, 0xffffffff); 16018 } else { 16019 BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n"); 16020 } 16021 16022 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) { 16023 BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n"); 16024 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0); 16025 } 16026 16027 do { 16028 /* Lock MCP using an unload request */ 16029 fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 16030 if (!fw) { 16031 BLOGE(sc, "MCP response failure, aborting\n"); 16032 rc = -1; 16033 break; 16034 } 16035 16036 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) { 16037 rc = bxe_prev_unload_common(sc); 16038 break; 16039 } 16040 16041 /* non-common reply from MCP night require looping */ 16042 rc = bxe_prev_unload_uncommon(sc); 16043 if (rc != BXE_PREV_WAIT_NEEDED) { 16044 break; 16045 } 16046 16047 DELAY(20000); 16048 } while (--time_counter); 16049 16050 if (!time_counter || rc) { 16051 BLOGE(sc, "Failed to unload previous driver!\n"); 16052 rc = -1; 16053 } 16054 16055 return (rc); 16056 } 16057 16058 void 16059 bxe_dcbx_set_state(struct bxe_softc *sc, 16060 uint8_t dcb_on, 16061 uint32_t dcbx_enabled) 16062 { 16063 if (!CHIP_IS_E1x(sc)) { 16064 sc->dcb_state = dcb_on; 16065 sc->dcbx_enabled = dcbx_enabled; 16066 } else { 16067 sc->dcb_state = FALSE; 16068 sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID; 16069 } 16070 BLOGD(sc, DBG_LOAD, 16071 "DCB state [%s:%s]\n", 16072 dcb_on ? "ON" : "OFF", 16073 (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" : 16074 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" : 16075 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ? 16076 "on-chip with negotiation" : "invalid"); 16077 } 16078 16079 /* must be called after sriov-enable */ 16080 static int 16081 bxe_set_qm_cid_count(struct bxe_softc *sc) 16082 { 16083 int cid_count = BXE_L2_MAX_CID(sc); 16084 16085 if (IS_SRIOV(sc)) { 16086 cid_count += BXE_VF_CIDS; 16087 } 16088 16089 if (CNIC_SUPPORT(sc)) { 16090 cid_count += CNIC_CID_MAX; 16091 } 16092 16093 return (roundup(cid_count, QM_CID_ROUND)); 16094 } 16095 16096 static void 16097 bxe_init_multi_cos(struct bxe_softc *sc) 16098 { 16099 int pri, cos; 16100 16101 uint32_t pri_map = 0; /* XXX change to user config */ 16102 16103 for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) { 16104 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4)); 16105 if (cos < sc->max_cos) { 16106 sc->prio_to_cos[pri] = cos; 16107 } else { 16108 BLOGW(sc, "Invalid COS %d for priority %d " 16109 "(max COS is %d), setting to 0\n", 16110 cos, pri, (sc->max_cos - 1)); 16111 sc->prio_to_cos[pri] = 0; 16112 } 16113 } 16114 } 16115 16116 static int 16117 bxe_sysctl_state(SYSCTL_HANDLER_ARGS) 16118 { 16119 struct bxe_softc *sc; 16120 int error, result; 16121 16122 result = 0; 16123 error = sysctl_handle_int(oidp, &result, 0, req); 16124 16125 if (error || !req->newptr) { 16126 return (error); 16127 } 16128 16129 if (result == 1) { 16130 sc = (struct bxe_softc *)arg1; 16131 BLOGI(sc, "... dumping driver state ...\n"); 16132 /* XXX */ 16133 } 16134 16135 return (error); 16136 } 16137 16138 static int 16139 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS) 16140 { 16141 struct bxe_softc *sc = (struct bxe_softc *)arg1; 16142 uint32_t *eth_stats = (uint32_t *)&sc->eth_stats; 16143 uint32_t *offset; 16144 uint64_t value = 0; 16145 int index = (int)arg2; 16146 16147 if (index >= BXE_NUM_ETH_STATS) { 16148 BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index); 16149 return (-1); 16150 } 16151 16152 offset = (eth_stats + bxe_eth_stats_arr[index].offset); 16153 16154 switch (bxe_eth_stats_arr[index].size) { 16155 case 4: 16156 value = (uint64_t)*offset; 16157 break; 16158 case 8: 16159 value = HILO_U64(*offset, *(offset + 1)); 16160 break; 16161 default: 16162 BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n", 16163 index, bxe_eth_stats_arr[index].size); 16164 return (-1); 16165 } 16166 16167 return (sysctl_handle_64(oidp, &value, 0, req)); 16168 } 16169 16170 static int 16171 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS) 16172 { 16173 struct bxe_softc *sc = (struct bxe_softc *)arg1; 16174 uint32_t *eth_stats; 16175 uint32_t *offset; 16176 uint64_t value = 0; 16177 uint32_t q_stat = (uint32_t)arg2; 16178 uint32_t fp_index = ((q_stat >> 16) & 0xffff); 16179 uint32_t index = (q_stat & 0xffff); 16180 16181 eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats; 16182 16183 if (index >= BXE_NUM_ETH_Q_STATS) { 16184 BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index); 16185 return (-1); 16186 } 16187 16188 offset = (eth_stats + bxe_eth_q_stats_arr[index].offset); 16189 16190 switch (bxe_eth_q_stats_arr[index].size) { 16191 case 4: 16192 value = (uint64_t)*offset; 16193 break; 16194 case 8: 16195 value = HILO_U64(*offset, *(offset + 1)); 16196 break; 16197 default: 16198 BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n", 16199 index, bxe_eth_q_stats_arr[index].size); 16200 return (-1); 16201 } 16202 16203 return (sysctl_handle_64(oidp, &value, 0, req)); 16204 } 16205 16206 static void 16207 bxe_add_sysctls(struct bxe_softc *sc) 16208 { 16209 struct sysctl_ctx_list *ctx; 16210 struct sysctl_oid_list *children; 16211 struct sysctl_oid *queue_top, *queue; 16212 struct sysctl_oid_list *queue_top_children, *queue_children; 16213 char queue_num_buf[32]; 16214 uint32_t q_stat; 16215 int i, j; 16216 16217 ctx = device_get_sysctl_ctx(sc->dev); 16218 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 16219 16220 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version", 16221 CTLFLAG_RD, BXE_DRIVER_VERSION, 0, 16222 "version"); 16223 16224 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 16225 CTLFLAG_RD, sc->devinfo.bc_ver_str, 0, 16226 "bootcode version"); 16227 16228 snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d", 16229 BCM_5710_FW_MAJOR_VERSION, 16230 BCM_5710_FW_MINOR_VERSION, 16231 BCM_5710_FW_REVISION_VERSION, 16232 BCM_5710_FW_ENGINEERING_VERSION); 16233 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 16234 CTLFLAG_RD, sc->fw_ver_str, 0, 16235 "firmware version"); 16236 16237 snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s", 16238 ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" : 16239 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" : 16240 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" : 16241 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" : 16242 "Unknown")); 16243 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 16244 CTLFLAG_RD, sc->mf_mode_str, 0, 16245 "multifunction mode"); 16246 16247 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics", 16248 CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0, 16249 "multifunction vnics per port"); 16250 16251 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 16252 CTLFLAG_RD, sc->mac_addr_str, 0, 16253 "mac address"); 16254 16255 snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d", 16256 ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" : 16257 (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" : 16258 (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" : 16259 "???GT/s"), 16260 sc->devinfo.pcie_link_width); 16261 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 16262 CTLFLAG_RD, sc->pci_link_str, 0, 16263 "pci link status"); 16264 16265 sc->debug = bxe_debug; 16266 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug", 16267 CTLFLAG_RW, &sc->debug, 16268 "debug logging mode"); 16269 16270 sc->rx_budget = bxe_rx_budget; 16271 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget", 16272 CTLFLAG_RW, &sc->rx_budget, 0, 16273 "rx processing budget"); 16274 16275 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state", 16276 CTLTYPE_UINT | CTLFLAG_RW, sc, 0, 16277 bxe_sysctl_state, "IU", "dump driver state"); 16278 16279 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 16280 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 16281 bxe_eth_stats_arr[i].string, 16282 CTLTYPE_U64 | CTLFLAG_RD, sc, i, 16283 bxe_sysctl_eth_stat, "LU", 16284 bxe_eth_stats_arr[i].string); 16285 } 16286 16287 /* add a new parent node for all queues "dev.bxe.#.queue" */ 16288 queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue", 16289 CTLFLAG_RD, NULL, "queue"); 16290 queue_top_children = SYSCTL_CHILDREN(queue_top); 16291 16292 for (i = 0; i < sc->num_queues; i++) { 16293 /* add a new parent node for a single queue "dev.bxe.#.queue.#" */ 16294 snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i); 16295 queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO, 16296 queue_num_buf, CTLFLAG_RD, NULL, 16297 "single queue"); 16298 queue_children = SYSCTL_CHILDREN(queue); 16299 16300 for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) { 16301 q_stat = ((i << 16) | j); 16302 SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO, 16303 bxe_eth_q_stats_arr[j].string, 16304 CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat, 16305 bxe_sysctl_eth_q_stat, "LU", 16306 bxe_eth_q_stats_arr[j].string); 16307 } 16308 } 16309 } 16310 16311 /* 16312 * Device attach function. 16313 * 16314 * Allocates device resources, performs secondary chip identification, and 16315 * initializes driver instance variables. This function is called from driver 16316 * load after a successful probe. 16317 * 16318 * Returns: 16319 * 0 = Success, >0 = Failure 16320 */ 16321 static int 16322 bxe_attach(device_t dev) 16323 { 16324 struct bxe_softc *sc; 16325 16326 sc = device_get_softc(dev); 16327 16328 BLOGD(sc, DBG_LOAD, "Starting attach...\n"); 16329 16330 sc->state = BXE_STATE_CLOSED; 16331 16332 sc->dev = dev; 16333 sc->unit = device_get_unit(dev); 16334 16335 BLOGD(sc, DBG_LOAD, "softc = %p\n", sc); 16336 16337 sc->pcie_bus = pci_get_bus(dev); 16338 sc->pcie_device = pci_get_slot(dev); 16339 sc->pcie_func = pci_get_function(dev); 16340 16341 /* enable bus master capability */ 16342 pci_enable_busmaster(dev); 16343 16344 /* get the BARs */ 16345 if (bxe_allocate_bars(sc) != 0) { 16346 return (ENXIO); 16347 } 16348 16349 /* initialize the mutexes */ 16350 bxe_init_mutexes(sc); 16351 16352 /* prepare the periodic callout */ 16353 callout_init(&sc->periodic_callout, 0); 16354 16355 /* prepare the chip taskqueue */ 16356 sc->chip_tq_flags = CHIP_TQ_NONE; 16357 snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name), 16358 "bxe%d_chip_tq", sc->unit); 16359 TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc); 16360 sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT, 16361 taskqueue_thread_enqueue, 16362 &sc->chip_tq); 16363 taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */ 16364 "%s", sc->chip_tq_name); 16365 16366 /* get device info and set params */ 16367 if (bxe_get_device_info(sc) != 0) { 16368 BLOGE(sc, "getting device info\n"); 16369 bxe_deallocate_bars(sc); 16370 pci_disable_busmaster(dev); 16371 return (ENXIO); 16372 } 16373 16374 /* get final misc params */ 16375 bxe_get_params(sc); 16376 16377 /* set the default MTU (changed via ifconfig) */ 16378 sc->mtu = ETHERMTU; 16379 16380 bxe_set_modes_bitmap(sc); 16381 16382 /* XXX 16383 * If in AFEX mode and the function is configured for FCoE 16384 * then bail... no L2 allowed. 16385 */ 16386 16387 /* get phy settings from shmem and 'and' against admin settings */ 16388 bxe_get_phy_info(sc); 16389 16390 /* initialize the FreeBSD ifnet interface */ 16391 if (bxe_init_ifnet(sc) != 0) { 16392 bxe_release_mutexes(sc); 16393 bxe_deallocate_bars(sc); 16394 pci_disable_busmaster(dev); 16395 return (ENXIO); 16396 } 16397 16398 /* allocate device interrupts */ 16399 if (bxe_interrupt_alloc(sc) != 0) { 16400 if (sc->ifp != NULL) { 16401 ether_ifdetach(sc->ifp); 16402 } 16403 ifmedia_removeall(&sc->ifmedia); 16404 bxe_release_mutexes(sc); 16405 bxe_deallocate_bars(sc); 16406 pci_disable_busmaster(dev); 16407 return (ENXIO); 16408 } 16409 16410 /* allocate ilt */ 16411 if (bxe_alloc_ilt_mem(sc) != 0) { 16412 bxe_interrupt_free(sc); 16413 if (sc->ifp != NULL) { 16414 ether_ifdetach(sc->ifp); 16415 } 16416 ifmedia_removeall(&sc->ifmedia); 16417 bxe_release_mutexes(sc); 16418 bxe_deallocate_bars(sc); 16419 pci_disable_busmaster(dev); 16420 return (ENXIO); 16421 } 16422 16423 /* allocate the host hardware/software hsi structures */ 16424 if (bxe_alloc_hsi_mem(sc) != 0) { 16425 bxe_free_ilt_mem(sc); 16426 bxe_interrupt_free(sc); 16427 if (sc->ifp != NULL) { 16428 ether_ifdetach(sc->ifp); 16429 } 16430 ifmedia_removeall(&sc->ifmedia); 16431 bxe_release_mutexes(sc); 16432 bxe_deallocate_bars(sc); 16433 pci_disable_busmaster(dev); 16434 return (ENXIO); 16435 } 16436 16437 /* need to reset chip if UNDI was active */ 16438 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 16439 /* init fw_seq */ 16440 sc->fw_seq = 16441 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 16442 DRV_MSG_SEQ_NUMBER_MASK); 16443 BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq); 16444 bxe_prev_unload(sc); 16445 } 16446 16447 #if 1 16448 /* XXX */ 16449 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16450 #else 16451 if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) && 16452 SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) && 16453 SHMEM2_RD(sc, dcbx_lldp_params_offset) && 16454 SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) { 16455 bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON); 16456 bxe_dcbx_init_params(sc); 16457 } else { 16458 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16459 } 16460 #endif 16461 16462 /* calculate qm_cid_count */ 16463 sc->qm_cid_count = bxe_set_qm_cid_count(sc); 16464 BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count); 16465 16466 sc->max_cos = 1; 16467 bxe_init_multi_cos(sc); 16468 16469 bxe_add_sysctls(sc); 16470 16471 return (0); 16472 } 16473 16474 /* 16475 * Device detach function. 16476 * 16477 * Stops the controller, resets the controller, and releases resources. 16478 * 16479 * Returns: 16480 * 0 = Success, >0 = Failure 16481 */ 16482 static int 16483 bxe_detach(device_t dev) 16484 { 16485 struct bxe_softc *sc; 16486 if_t ifp; 16487 16488 sc = device_get_softc(dev); 16489 16490 BLOGD(sc, DBG_LOAD, "Starting detach...\n"); 16491 16492 ifp = sc->ifp; 16493 if (ifp != NULL && if_vlantrunkinuse(ifp)) { 16494 BLOGE(sc, "Cannot detach while VLANs are in use.\n"); 16495 return(EBUSY); 16496 } 16497 16498 /* stop the periodic callout */ 16499 bxe_periodic_stop(sc); 16500 16501 /* stop the chip taskqueue */ 16502 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE); 16503 if (sc->chip_tq) { 16504 taskqueue_drain(sc->chip_tq, &sc->chip_tq_task); 16505 taskqueue_free(sc->chip_tq); 16506 sc->chip_tq = NULL; 16507 } 16508 16509 /* stop and reset the controller if it was open */ 16510 if (sc->state != BXE_STATE_CLOSED) { 16511 BXE_CORE_LOCK(sc); 16512 bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE); 16513 BXE_CORE_UNLOCK(sc); 16514 } 16515 16516 /* release the network interface */ 16517 if (ifp != NULL) { 16518 ether_ifdetach(ifp); 16519 } 16520 ifmedia_removeall(&sc->ifmedia); 16521 16522 /* XXX do the following based on driver state... */ 16523 16524 /* free the host hardware/software hsi structures */ 16525 bxe_free_hsi_mem(sc); 16526 16527 /* free ilt */ 16528 bxe_free_ilt_mem(sc); 16529 16530 /* release the interrupts */ 16531 bxe_interrupt_free(sc); 16532 16533 /* Release the mutexes*/ 16534 bxe_release_mutexes(sc); 16535 16536 /* Release the PCIe BAR mapped memory */ 16537 bxe_deallocate_bars(sc); 16538 16539 /* Release the FreeBSD interface. */ 16540 if (sc->ifp != NULL) { 16541 if_free(sc->ifp); 16542 } 16543 16544 pci_disable_busmaster(dev); 16545 16546 return (0); 16547 } 16548 16549 /* 16550 * Device shutdown function. 16551 * 16552 * Stops and resets the controller. 16553 * 16554 * Returns: 16555 * Nothing 16556 */ 16557 static int 16558 bxe_shutdown(device_t dev) 16559 { 16560 struct bxe_softc *sc; 16561 16562 sc = device_get_softc(dev); 16563 16564 BLOGD(sc, DBG_LOAD, "Starting shutdown...\n"); 16565 16566 /* stop the periodic callout */ 16567 bxe_periodic_stop(sc); 16568 16569 BXE_CORE_LOCK(sc); 16570 bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE); 16571 BXE_CORE_UNLOCK(sc); 16572 16573 return (0); 16574 } 16575 16576 void 16577 bxe_igu_ack_sb(struct bxe_softc *sc, 16578 uint8_t igu_sb_id, 16579 uint8_t segment, 16580 uint16_t index, 16581 uint8_t op, 16582 uint8_t update) 16583 { 16584 uint32_t igu_addr = sc->igu_base_addr; 16585 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 16586 bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr); 16587 } 16588 16589 static void 16590 bxe_igu_clear_sb_gen(struct bxe_softc *sc, 16591 uint8_t func, 16592 uint8_t idu_sb_id, 16593 uint8_t is_pf) 16594 { 16595 uint32_t data, ctl, cnt = 100; 16596 uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 16597 uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 16598 uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 16599 uint32_t sb_bit = 1 << (idu_sb_id%32); 16600 uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 16601 uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 16602 16603 /* Not supported in BC mode */ 16604 if (CHIP_INT_MODE_IS_BC(sc)) { 16605 return; 16606 } 16607 16608 data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup << 16609 IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 16610 IGU_REGULAR_CLEANUP_SET | 16611 IGU_REGULAR_BCLEANUP); 16612 16613 ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) | 16614 (func_encode << IGU_CTRL_REG_FID_SHIFT) | 16615 (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT)); 16616 16617 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16618 data, igu_addr_data); 16619 REG_WR(sc, igu_addr_data, data); 16620 16621 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16622 BUS_SPACE_BARRIER_WRITE); 16623 mb(); 16624 16625 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16626 ctl, igu_addr_ctl); 16627 REG_WR(sc, igu_addr_ctl, ctl); 16628 16629 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16630 BUS_SPACE_BARRIER_WRITE); 16631 mb(); 16632 16633 /* wait for clean up to finish */ 16634 while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) { 16635 DELAY(20000); 16636 } 16637 16638 if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) { 16639 BLOGD(sc, DBG_LOAD, 16640 "Unable to finish IGU cleanup: " 16641 "idu_sb_id %d offset %d bit %d (cnt %d)\n", 16642 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 16643 } 16644 } 16645 16646 static void 16647 bxe_igu_clear_sb(struct bxe_softc *sc, 16648 uint8_t idu_sb_id) 16649 { 16650 bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/); 16651 } 16652 16653 16654 16655 16656 16657 16658 16659 /*******************/ 16660 /* ECORE CALLBACKS */ 16661 /*******************/ 16662 16663 static void 16664 bxe_reset_common(struct bxe_softc *sc) 16665 { 16666 uint32_t val = 0x1400; 16667 16668 /* reset_common */ 16669 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f); 16670 16671 if (CHIP_IS_E3(sc)) { 16672 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16673 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16674 } 16675 16676 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val); 16677 } 16678 16679 static void 16680 bxe_common_init_phy(struct bxe_softc *sc) 16681 { 16682 uint32_t shmem_base[2]; 16683 uint32_t shmem2_base[2]; 16684 16685 /* Avoid common init in case MFW supports LFA */ 16686 if (SHMEM2_RD(sc, size) > 16687 (uint32_t)offsetof(struct shmem2_region, 16688 lfa_host_addr[SC_PORT(sc)])) { 16689 return; 16690 } 16691 16692 shmem_base[0] = sc->devinfo.shmem_base; 16693 shmem2_base[0] = sc->devinfo.shmem2_base; 16694 16695 if (!CHIP_IS_E1x(sc)) { 16696 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr); 16697 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr); 16698 } 16699 16700 BXE_PHY_LOCK(sc); 16701 elink_common_init_phy(sc, shmem_base, shmem2_base, 16702 sc->devinfo.chip_id, 0); 16703 BXE_PHY_UNLOCK(sc); 16704 } 16705 16706 static void 16707 bxe_pf_disable(struct bxe_softc *sc) 16708 { 16709 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 16710 16711 val &= ~IGU_PF_CONF_FUNC_EN; 16712 16713 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 16714 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16715 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0); 16716 } 16717 16718 static void 16719 bxe_init_pxp(struct bxe_softc *sc) 16720 { 16721 uint16_t devctl; 16722 int r_order, w_order; 16723 16724 devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2); 16725 16726 BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl); 16727 16728 w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5); 16729 16730 if (sc->mrrs == -1) { 16731 r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12); 16732 } else { 16733 BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs); 16734 r_order = sc->mrrs; 16735 } 16736 16737 ecore_init_pxp_arb(sc, r_order, w_order); 16738 } 16739 16740 static uint32_t 16741 bxe_get_pretend_reg(struct bxe_softc *sc) 16742 { 16743 uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0; 16744 uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base); 16745 return (base + (SC_ABS_FUNC(sc)) * stride); 16746 } 16747 16748 /* 16749 * Called only on E1H or E2. 16750 * When pretending to be PF, the pretend value is the function number 0..7. 16751 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 16752 * combination. 16753 */ 16754 static int 16755 bxe_pretend_func(struct bxe_softc *sc, 16756 uint16_t pretend_func_val) 16757 { 16758 uint32_t pretend_reg; 16759 16760 if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) { 16761 return (-1); 16762 } 16763 16764 /* get my own pretend register */ 16765 pretend_reg = bxe_get_pretend_reg(sc); 16766 REG_WR(sc, pretend_reg, pretend_func_val); 16767 REG_RD(sc, pretend_reg); 16768 return (0); 16769 } 16770 16771 static void 16772 bxe_iov_init_dmae(struct bxe_softc *sc) 16773 { 16774 return; 16775 #if 0 16776 BLOGD(sc, DBG_LOAD, "SRIOV is %s\n", IS_SRIOV(sc) ? "ON" : "OFF"); 16777 16778 if (!IS_SRIOV(sc)) { 16779 return; 16780 } 16781 16782 REG_WR(sc, DMAE_REG_BACKWARD_COMP_EN, 0); 16783 #endif 16784 } 16785 16786 #if 0 16787 static int 16788 bxe_iov_init_ilt(struct bxe_softc *sc, 16789 uint16_t line) 16790 { 16791 return (line); 16792 #if 0 16793 int i; 16794 struct ecore_ilt* ilt = sc->ilt; 16795 16796 if (!IS_SRIOV(sc)) { 16797 return (line); 16798 } 16799 16800 /* set vfs ilt lines */ 16801 for (i = 0; i < BXE_VF_CIDS/ILT_PAGE_CIDS ; i++) { 16802 struct hw_dma *hw_cxt = SC_VF_CXT_PAGE(sc,i); 16803 ilt->lines[line+i].page = hw_cxt->addr; 16804 ilt->lines[line+i].page_mapping = hw_cxt->mapping; 16805 ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */ 16806 } 16807 return (line+i); 16808 #endif 16809 } 16810 #endif 16811 16812 static void 16813 bxe_iov_init_dq(struct bxe_softc *sc) 16814 { 16815 return; 16816 #if 0 16817 if (!IS_SRIOV(sc)) { 16818 return; 16819 } 16820 16821 /* Set the DQ such that the CID reflect the abs_vfid */ 16822 REG_WR(sc, DORQ_REG_VF_NORM_VF_BASE, 0); 16823 REG_WR(sc, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS)); 16824 16825 /* 16826 * Set VFs starting CID. If its > 0 the preceding CIDs are belong to 16827 * the PF L2 queues 16828 */ 16829 REG_WR(sc, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID); 16830 16831 /* The VF window size is the log2 of the max number of CIDs per VF */ 16832 REG_WR(sc, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND); 16833 16834 /* 16835 * The VF doorbell size 0 - *B, 4 - 128B. We set it here to match 16836 * the Pf doorbell size although the 2 are independent. 16837 */ 16838 REG_WR(sc, DORQ_REG_VF_NORM_CID_OFST, 16839 BNX2X_DB_SHIFT - BNX2X_DB_MIN_SHIFT); 16840 16841 /* 16842 * No security checks for now - 16843 * configure single rule (out of 16) mask = 0x1, value = 0x0, 16844 * CID range 0 - 0x1ffff 16845 */ 16846 REG_WR(sc, DORQ_REG_VF_TYPE_MASK_0, 1); 16847 REG_WR(sc, DORQ_REG_VF_TYPE_VALUE_0, 0); 16848 REG_WR(sc, DORQ_REG_VF_TYPE_MIN_MCID_0, 0); 16849 REG_WR(sc, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff); 16850 16851 /* set the number of VF alllowed doorbells to the full DQ range */ 16852 REG_WR(sc, DORQ_REG_VF_NORM_MAX_CID_COUNT, 0x20000); 16853 16854 /* set the VF doorbell threshold */ 16855 REG_WR(sc, DORQ_REG_VF_USAGE_CT_LIMIT, 4); 16856 #endif 16857 } 16858 16859 /* send a NIG loopback debug packet */ 16860 static void 16861 bxe_lb_pckt(struct bxe_softc *sc) 16862 { 16863 uint32_t wb_write[3]; 16864 16865 /* Ethernet source and destination addresses */ 16866 wb_write[0] = 0x55555555; 16867 wb_write[1] = 0x55555555; 16868 wb_write[2] = 0x20; /* SOP */ 16869 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16870 16871 /* NON-IP protocol */ 16872 wb_write[0] = 0x09000000; 16873 wb_write[1] = 0x55555555; 16874 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 16875 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16876 } 16877 16878 /* 16879 * Some of the internal memories are not directly readable from the driver. 16880 * To test them we send debug packets. 16881 */ 16882 static int 16883 bxe_int_mem_test(struct bxe_softc *sc) 16884 { 16885 int factor; 16886 int count, i; 16887 uint32_t val = 0; 16888 16889 if (CHIP_REV_IS_FPGA(sc)) { 16890 factor = 120; 16891 } else if (CHIP_REV_IS_EMUL(sc)) { 16892 factor = 200; 16893 } else { 16894 factor = 1; 16895 } 16896 16897 /* disable inputs of parser neighbor blocks */ 16898 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16899 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16900 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16901 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16902 16903 /* write 0 to parser credits for CFC search request */ 16904 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16905 16906 /* send Ethernet packet */ 16907 bxe_lb_pckt(sc); 16908 16909 /* TODO do i reset NIG statistic? */ 16910 /* Wait until NIG register shows 1 packet of size 0x10 */ 16911 count = 1000 * factor; 16912 while (count) { 16913 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16914 val = *BXE_SP(sc, wb_data[0]); 16915 if (val == 0x10) { 16916 break; 16917 } 16918 16919 DELAY(10000); 16920 count--; 16921 } 16922 16923 if (val != 0x10) { 16924 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16925 return (-1); 16926 } 16927 16928 /* wait until PRS register shows 1 packet */ 16929 count = (1000 * factor); 16930 while (count) { 16931 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16932 if (val == 1) { 16933 break; 16934 } 16935 16936 DELAY(10000); 16937 count--; 16938 } 16939 16940 if (val != 0x1) { 16941 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16942 return (-2); 16943 } 16944 16945 /* Reset and init BRB, PRS */ 16946 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16947 DELAY(50000); 16948 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16949 DELAY(50000); 16950 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16951 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16952 16953 /* Disable inputs of parser neighbor blocks */ 16954 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16955 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16956 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16957 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16958 16959 /* Write 0 to parser credits for CFC search request */ 16960 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16961 16962 /* send 10 Ethernet packets */ 16963 for (i = 0; i < 10; i++) { 16964 bxe_lb_pckt(sc); 16965 } 16966 16967 /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */ 16968 count = (1000 * factor); 16969 while (count) { 16970 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16971 val = *BXE_SP(sc, wb_data[0]); 16972 if (val == 0xb0) { 16973 break; 16974 } 16975 16976 DELAY(10000); 16977 count--; 16978 } 16979 16980 if (val != 0xb0) { 16981 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16982 return (-3); 16983 } 16984 16985 /* Wait until PRS register shows 2 packets */ 16986 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16987 if (val != 2) { 16988 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16989 } 16990 16991 /* Write 1 to parser credits for CFC search request */ 16992 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 16993 16994 /* Wait until PRS register shows 3 packets */ 16995 DELAY(10000 * factor); 16996 16997 /* Wait until NIG register shows 1 packet of size 0x10 */ 16998 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16999 if (val != 3) { 17000 BLOGE(sc, "PRS timeout val=0x%x\n", val); 17001 } 17002 17003 /* clear NIG EOP FIFO */ 17004 for (i = 0; i < 11; i++) { 17005 REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO); 17006 } 17007 17008 val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY); 17009 if (val != 1) { 17010 BLOGE(sc, "clear of NIG failed\n"); 17011 return (-4); 17012 } 17013 17014 /* Reset and init BRB, PRS, NIG */ 17015 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 17016 DELAY(50000); 17017 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 17018 DELAY(50000); 17019 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 17020 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 17021 if (!CNIC_SUPPORT(sc)) { 17022 /* set NIC mode */ 17023 REG_WR(sc, PRS_REG_NIC_MODE, 1); 17024 } 17025 17026 /* Enable inputs of parser neighbor blocks */ 17027 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff); 17028 REG_WR(sc, TCM_REG_PRS_IFEN, 0x1); 17029 REG_WR(sc, CFC_REG_DEBUG0, 0x0); 17030 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1); 17031 17032 return (0); 17033 } 17034 17035 static void 17036 bxe_setup_fan_failure_detection(struct bxe_softc *sc) 17037 { 17038 int is_required; 17039 uint32_t val; 17040 int port; 17041 17042 is_required = 0; 17043 val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) & 17044 SHARED_HW_CFG_FAN_FAILURE_MASK); 17045 17046 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) { 17047 is_required = 1; 17048 } 17049 /* 17050 * The fan failure mechanism is usually related to the PHY type since 17051 * the power consumption of the board is affected by the PHY. Currently, 17052 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 17053 */ 17054 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) { 17055 for (port = PORT_0; port < PORT_MAX; port++) { 17056 is_required |= elink_fan_failure_det_req(sc, 17057 sc->devinfo.shmem_base, 17058 sc->devinfo.shmem2_base, 17059 port); 17060 } 17061 } 17062 17063 BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required); 17064 17065 if (is_required == 0) { 17066 return; 17067 } 17068 17069 /* Fan failure is indicated by SPIO 5 */ 17070 bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 17071 17072 /* set to active low mode */ 17073 val = REG_RD(sc, MISC_REG_SPIO_INT); 17074 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 17075 REG_WR(sc, MISC_REG_SPIO_INT, val); 17076 17077 /* enable interrupt to signal the IGU */ 17078 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17079 val |= MISC_SPIO_SPIO5; 17080 REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val); 17081 } 17082 17083 static void 17084 bxe_enable_blocks_attention(struct bxe_softc *sc) 17085 { 17086 uint32_t val; 17087 17088 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 17089 if (!CHIP_IS_E1x(sc)) { 17090 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40); 17091 } else { 17092 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0); 17093 } 17094 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 17095 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 17096 /* 17097 * mask read length error interrupts in brb for parser 17098 * (parsing unit and 'checksum and crc' unit) 17099 * these errors are legal (PU reads fixed length and CAC can cause 17100 * read length error on truncated packets) 17101 */ 17102 REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00); 17103 REG_WR(sc, QM_REG_QM_INT_MASK, 0); 17104 REG_WR(sc, TM_REG_TM_INT_MASK, 0); 17105 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0); 17106 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0); 17107 REG_WR(sc, XCM_REG_XCM_INT_MASK, 0); 17108 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */ 17109 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */ 17110 REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0); 17111 REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0); 17112 REG_WR(sc, UCM_REG_UCM_INT_MASK, 0); 17113 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */ 17114 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */ 17115 REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 17116 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0); 17117 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0); 17118 REG_WR(sc, CCM_REG_CCM_INT_MASK, 0); 17119 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */ 17120 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */ 17121 17122 val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 17123 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 17124 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN); 17125 if (!CHIP_IS_E1x(sc)) { 17126 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 17127 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED); 17128 } 17129 REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val); 17130 17131 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0); 17132 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0); 17133 REG_WR(sc, TCM_REG_TCM_INT_MASK, 0); 17134 /* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */ 17135 17136 if (!CHIP_IS_E1x(sc)) { 17137 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 17138 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 17139 } 17140 17141 REG_WR(sc, CDU_REG_CDU_INT_MASK, 0); 17142 REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0); 17143 /* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */ 17144 REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 17145 } 17146 17147 /** 17148 * bxe_init_hw_common - initialize the HW at the COMMON phase. 17149 * 17150 * @sc: driver handle 17151 */ 17152 static int 17153 bxe_init_hw_common(struct bxe_softc *sc) 17154 { 17155 uint8_t abs_func_id; 17156 uint32_t val; 17157 17158 BLOGD(sc, DBG_LOAD, "starting common init for func %d\n", 17159 SC_ABS_FUNC(sc)); 17160 17161 /* 17162 * take the RESET lock to protect undi_unload flow from accessing 17163 * registers while we are resetting the chip 17164 */ 17165 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 17166 17167 bxe_reset_common(sc); 17168 17169 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff); 17170 17171 val = 0xfffc; 17172 if (CHIP_IS_E3(sc)) { 17173 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 17174 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 17175 } 17176 17177 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val); 17178 17179 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 17180 17181 ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON); 17182 BLOGD(sc, DBG_LOAD, "after misc block init\n"); 17183 17184 if (!CHIP_IS_E1x(sc)) { 17185 /* 17186 * 4-port mode or 2-port mode we need to turn off master-enable for 17187 * everyone. After that we turn it back on for self. So, we disregard 17188 * multi-function, and always disable all functions on the given path, 17189 * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1 17190 */ 17191 for (abs_func_id = SC_PATH(sc); 17192 abs_func_id < (E2_FUNC_MAX * 2); 17193 abs_func_id += 2) { 17194 if (abs_func_id == SC_ABS_FUNC(sc)) { 17195 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17196 continue; 17197 } 17198 17199 bxe_pretend_func(sc, abs_func_id); 17200 17201 /* clear pf enable */ 17202 bxe_pf_disable(sc); 17203 17204 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 17205 } 17206 } 17207 17208 BLOGD(sc, DBG_LOAD, "after pf disable\n"); 17209 17210 ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON); 17211 17212 if (CHIP_IS_E1(sc)) { 17213 /* 17214 * enable HW interrupt from PXP on USDM overflow 17215 * bit 16 on INT_MASK_0 17216 */ 17217 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 17218 } 17219 17220 ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON); 17221 bxe_init_pxp(sc); 17222 17223 #ifdef __BIG_ENDIAN 17224 REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1); 17225 REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1); 17226 REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1); 17227 REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1); 17228 REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1); 17229 /* make sure this value is 0 */ 17230 REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0); 17231 17232 //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1); 17233 REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1); 17234 REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1); 17235 REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1); 17236 REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1); 17237 #endif 17238 17239 ecore_ilt_init_page_size(sc, INITOP_SET); 17240 17241 if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) { 17242 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 17243 } 17244 17245 /* let the HW do it's magic... */ 17246 DELAY(100000); 17247 17248 /* finish PXP init */ 17249 val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE); 17250 if (val != 1) { 17251 BLOGE(sc, "PXP2 CFG failed\n"); 17252 return (-1); 17253 } 17254 val = REG_RD(sc, PXP2_REG_RD_INIT_DONE); 17255 if (val != 1) { 17256 BLOGE(sc, "PXP2 RD_INIT failed\n"); 17257 return (-1); 17258 } 17259 17260 BLOGD(sc, DBG_LOAD, "after pxp init\n"); 17261 17262 /* 17263 * Timer bug workaround for E2 only. We need to set the entire ILT to have 17264 * entries with value "0" and valid bit on. This needs to be done by the 17265 * first PF that is loaded in a path (i.e. common phase) 17266 */ 17267 if (!CHIP_IS_E1x(sc)) { 17268 /* 17269 * In E2 there is a bug in the timers block that can cause function 6 / 7 17270 * (i.e. vnic3) to start even if it is marked as "scan-off". 17271 * This occurs when a different function (func2,3) is being marked 17272 * as "scan-off". Real-life scenario for example: if a driver is being 17273 * load-unloaded while func6,7 are down. This will cause the timer to access 17274 * the ilt, translate to a logical address and send a request to read/write. 17275 * Since the ilt for the function that is down is not valid, this will cause 17276 * a translation error which is unrecoverable. 17277 * The Workaround is intended to make sure that when this happens nothing 17278 * fatal will occur. The workaround: 17279 * 1. First PF driver which loads on a path will: 17280 * a. After taking the chip out of reset, by using pretend, 17281 * it will write "0" to the following registers of 17282 * the other vnics. 17283 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 17284 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 17285 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 17286 * And for itself it will write '1' to 17287 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 17288 * dmae-operations (writing to pram for example.) 17289 * note: can be done for only function 6,7 but cleaner this 17290 * way. 17291 * b. Write zero+valid to the entire ILT. 17292 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 17293 * VNIC3 (of that port). The range allocated will be the 17294 * entire ILT. This is needed to prevent ILT range error. 17295 * 2. Any PF driver load flow: 17296 * a. ILT update with the physical addresses of the allocated 17297 * logical pages. 17298 * b. Wait 20msec. - note that this timeout is needed to make 17299 * sure there are no requests in one of the PXP internal 17300 * queues with "old" ILT addresses. 17301 * c. PF enable in the PGLC. 17302 * d. Clear the was_error of the PF in the PGLC. (could have 17303 * occurred while driver was down) 17304 * e. PF enable in the CFC (WEAK + STRONG) 17305 * f. Timers scan enable 17306 * 3. PF driver unload flow: 17307 * a. Clear the Timers scan_en. 17308 * b. Polling for scan_on=0 for that PF. 17309 * c. Clear the PF enable bit in the PXP. 17310 * d. Clear the PF enable in the CFC (WEAK + STRONG) 17311 * e. Write zero+valid to all ILT entries (The valid bit must 17312 * stay set) 17313 * f. If this is VNIC 3 of a port then also init 17314 * first_timers_ilt_entry to zero and last_timers_ilt_entry 17315 * to the last enrty in the ILT. 17316 * 17317 * Notes: 17318 * Currently the PF error in the PGLC is non recoverable. 17319 * In the future the there will be a recovery routine for this error. 17320 * Currently attention is masked. 17321 * Having an MCP lock on the load/unload process does not guarantee that 17322 * there is no Timer disable during Func6/7 enable. This is because the 17323 * Timers scan is currently being cleared by the MCP on FLR. 17324 * Step 2.d can be done only for PF6/7 and the driver can also check if 17325 * there is error before clearing it. But the flow above is simpler and 17326 * more general. 17327 * All ILT entries are written by zero+valid and not just PF6/7 17328 * ILT entries since in the future the ILT entries allocation for 17329 * PF-s might be dynamic. 17330 */ 17331 struct ilt_client_info ilt_cli; 17332 struct ecore_ilt ilt; 17333 17334 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 17335 memset(&ilt, 0, sizeof(struct ecore_ilt)); 17336 17337 /* initialize dummy TM client */ 17338 ilt_cli.start = 0; 17339 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 17340 ilt_cli.client_num = ILT_CLIENT_TM; 17341 17342 /* 17343 * Step 1: set zeroes to all ilt page entries with valid bit on 17344 * Step 2: set the timers first/last ilt entry to point 17345 * to the entire range to prevent ILT range error for 3rd/4th 17346 * vnic (this code assumes existence of the vnic) 17347 * 17348 * both steps performed by call to ecore_ilt_client_init_op() 17349 * with dummy TM client 17350 * 17351 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 17352 * and his brother are split registers 17353 */ 17354 17355 bxe_pretend_func(sc, (SC_PATH(sc) + 6)); 17356 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR); 17357 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 17358 17359 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN); 17360 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN); 17361 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 17362 } 17363 17364 REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0); 17365 REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0); 17366 17367 if (!CHIP_IS_E1x(sc)) { 17368 int factor = CHIP_REV_IS_EMUL(sc) ? 1000 : 17369 (CHIP_REV_IS_FPGA(sc) ? 400 : 0); 17370 17371 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON); 17372 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON); 17373 17374 /* let the HW do it's magic... */ 17375 do { 17376 DELAY(200000); 17377 val = REG_RD(sc, ATC_REG_ATC_INIT_DONE); 17378 } while (factor-- && (val != 1)); 17379 17380 if (val != 1) { 17381 BLOGE(sc, "ATC_INIT failed\n"); 17382 return (-1); 17383 } 17384 } 17385 17386 BLOGD(sc, DBG_LOAD, "after pglue and atc init\n"); 17387 17388 ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON); 17389 17390 bxe_iov_init_dmae(sc); 17391 17392 /* clean the DMAE memory */ 17393 sc->dmae_ready = 1; 17394 ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1); 17395 17396 ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON); 17397 17398 ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON); 17399 17400 ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON); 17401 17402 ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON); 17403 17404 bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3); 17405 bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3); 17406 bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3); 17407 bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3); 17408 17409 ecore_init_block(sc, BLOCK_QM, PHASE_COMMON); 17410 17411 /* QM queues pointers table */ 17412 ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET); 17413 17414 /* soft reset pulse */ 17415 REG_WR(sc, QM_REG_SOFT_RESET, 1); 17416 REG_WR(sc, QM_REG_SOFT_RESET, 0); 17417 17418 if (CNIC_SUPPORT(sc)) 17419 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON); 17420 17421 ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON); 17422 REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT); 17423 if (!CHIP_REV_IS_SLOW(sc)) { 17424 /* enable hw interrupt from doorbell Q */ 17425 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 17426 } 17427 17428 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 17429 17430 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 17431 REG_WR(sc, PRS_REG_A_PRSU_20, 0xf); 17432 17433 if (!CHIP_IS_E1(sc)) { 17434 REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan); 17435 } 17436 17437 if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) { 17438 if (IS_MF_AFEX(sc)) { 17439 /* 17440 * configure that AFEX and VLAN headers must be 17441 * received in AFEX mode 17442 */ 17443 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE); 17444 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA); 17445 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 17446 REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 17447 REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4); 17448 } else { 17449 /* 17450 * Bit-map indicating which L2 hdrs may appear 17451 * after the basic Ethernet header 17452 */ 17453 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 17454 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17455 } 17456 } 17457 17458 ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON); 17459 ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON); 17460 ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON); 17461 ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON); 17462 17463 if (!CHIP_IS_E1x(sc)) { 17464 /* reset VFC memories */ 17465 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17466 VFC_MEMORIES_RST_REG_CAM_RST | 17467 VFC_MEMORIES_RST_REG_RAM_RST); 17468 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17469 VFC_MEMORIES_RST_REG_CAM_RST | 17470 VFC_MEMORIES_RST_REG_RAM_RST); 17471 17472 DELAY(20000); 17473 } 17474 17475 ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON); 17476 ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON); 17477 ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON); 17478 ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON); 17479 17480 /* sync semi rtc */ 17481 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 17482 0x80000000); 17483 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 17484 0x80000000); 17485 17486 ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON); 17487 ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON); 17488 ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON); 17489 17490 if (!CHIP_IS_E1x(sc)) { 17491 if (IS_MF_AFEX(sc)) { 17492 /* 17493 * configure that AFEX and VLAN headers must be 17494 * sent in AFEX mode 17495 */ 17496 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE); 17497 REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA); 17498 REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 17499 REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 17500 REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4); 17501 } else { 17502 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 17503 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17504 } 17505 } 17506 17507 REG_WR(sc, SRC_REG_SOFT_RST, 1); 17508 17509 ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON); 17510 17511 if (CNIC_SUPPORT(sc)) { 17512 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672); 17513 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 17514 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b); 17515 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a); 17516 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116); 17517 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 17518 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf); 17519 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 17520 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f); 17521 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7); 17522 } 17523 REG_WR(sc, SRC_REG_SOFT_RST, 0); 17524 17525 if (sizeof(union cdu_context) != 1024) { 17526 /* we currently assume that a context is 1024 bytes */ 17527 BLOGE(sc, "please adjust the size of cdu_context(%ld)\n", 17528 (long)sizeof(union cdu_context)); 17529 } 17530 17531 ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON); 17532 val = (4 << 24) + (0 << 12) + 1024; 17533 REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val); 17534 17535 ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON); 17536 17537 REG_WR(sc, CFC_REG_INIT_REG, 0x7FF); 17538 /* enable context validation interrupt from CFC */ 17539 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 17540 17541 /* set the thresholds to prevent CFC/CDU race */ 17542 REG_WR(sc, CFC_REG_DEBUG0, 0x20020000); 17543 ecore_init_block(sc, BLOCK_HC, PHASE_COMMON); 17544 17545 if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) { 17546 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36); 17547 } 17548 17549 ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON); 17550 ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON); 17551 17552 /* Reset PCIE errors for debug */ 17553 REG_WR(sc, 0x2814, 0xffffffff); 17554 REG_WR(sc, 0x3820, 0xffffffff); 17555 17556 if (!CHIP_IS_E1x(sc)) { 17557 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 17558 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 17559 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 17560 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 17561 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 17562 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 17563 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 17564 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 17565 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 17566 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 17567 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 17568 } 17569 17570 ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON); 17571 17572 if (!CHIP_IS_E1(sc)) { 17573 /* in E3 this done in per-port section */ 17574 if (!CHIP_IS_E3(sc)) 17575 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17576 } 17577 17578 if (CHIP_IS_E1H(sc)) { 17579 /* not applicable for E2 (and above ...) */ 17580 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc)); 17581 } 17582 17583 if (CHIP_REV_IS_SLOW(sc)) { 17584 DELAY(200000); 17585 } 17586 17587 /* finish CFC init */ 17588 val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10); 17589 if (val != 1) { 17590 BLOGE(sc, "CFC LL_INIT failed\n"); 17591 return (-1); 17592 } 17593 val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10); 17594 if (val != 1) { 17595 BLOGE(sc, "CFC AC_INIT failed\n"); 17596 return (-1); 17597 } 17598 val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 17599 if (val != 1) { 17600 BLOGE(sc, "CFC CAM_INIT failed\n"); 17601 return (-1); 17602 } 17603 REG_WR(sc, CFC_REG_DEBUG0, 0); 17604 17605 if (CHIP_IS_E1(sc)) { 17606 /* read NIG statistic to see if this is our first up since powerup */ 17607 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 17608 val = *BXE_SP(sc, wb_data[0]); 17609 17610 /* do internal memory self test */ 17611 if ((val == 0) && bxe_int_mem_test(sc)) { 17612 BLOGE(sc, "internal mem self test failed\n"); 17613 return (-1); 17614 } 17615 } 17616 17617 bxe_setup_fan_failure_detection(sc); 17618 17619 /* clear PXP2 attentions */ 17620 REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 17621 17622 bxe_enable_blocks_attention(sc); 17623 17624 if (!CHIP_REV_IS_SLOW(sc)) { 17625 ecore_enable_blocks_parity(sc); 17626 } 17627 17628 if (!BXE_NOMCP(sc)) { 17629 if (CHIP_IS_E1x(sc)) { 17630 bxe_common_init_phy(sc); 17631 } 17632 } 17633 17634 return (0); 17635 } 17636 17637 /** 17638 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase. 17639 * 17640 * @sc: driver handle 17641 */ 17642 static int 17643 bxe_init_hw_common_chip(struct bxe_softc *sc) 17644 { 17645 int rc = bxe_init_hw_common(sc); 17646 17647 if (rc) { 17648 return (rc); 17649 } 17650 17651 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 17652 if (!BXE_NOMCP(sc)) { 17653 bxe_common_init_phy(sc); 17654 } 17655 17656 return (0); 17657 } 17658 17659 static int 17660 bxe_init_hw_port(struct bxe_softc *sc) 17661 { 17662 int port = SC_PORT(sc); 17663 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 17664 uint32_t low, high; 17665 uint32_t val; 17666 17667 BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port); 17668 17669 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 17670 17671 ecore_init_block(sc, BLOCK_MISC, init_phase); 17672 ecore_init_block(sc, BLOCK_PXP, init_phase); 17673 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17674 17675 /* 17676 * Timers bug workaround: disables the pf_master bit in pglue at 17677 * common phase, we need to enable it here before any dmae access are 17678 * attempted. Therefore we manually added the enable-master to the 17679 * port phase (it also happens in the function phase) 17680 */ 17681 if (!CHIP_IS_E1x(sc)) { 17682 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17683 } 17684 17685 ecore_init_block(sc, BLOCK_ATC, init_phase); 17686 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17687 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17688 ecore_init_block(sc, BLOCK_QM, init_phase); 17689 17690 ecore_init_block(sc, BLOCK_TCM, init_phase); 17691 ecore_init_block(sc, BLOCK_UCM, init_phase); 17692 ecore_init_block(sc, BLOCK_CCM, init_phase); 17693 ecore_init_block(sc, BLOCK_XCM, init_phase); 17694 17695 /* QM cid (connection) count */ 17696 ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET); 17697 17698 if (CNIC_SUPPORT(sc)) { 17699 ecore_init_block(sc, BLOCK_TM, init_phase); 17700 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20); 17701 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 17702 } 17703 17704 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17705 17706 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17707 17708 if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) { 17709 if (IS_MF(sc)) { 17710 low = (BXE_ONE_PORT(sc) ? 160 : 246); 17711 } else if (sc->mtu > 4096) { 17712 if (BXE_ONE_PORT(sc)) { 17713 low = 160; 17714 } else { 17715 val = sc->mtu; 17716 /* (24*1024 + val*4)/256 */ 17717 low = (96 + (val / 64) + ((val % 64) ? 1 : 0)); 17718 } 17719 } else { 17720 low = (BXE_ONE_PORT(sc) ? 80 : 160); 17721 } 17722 high = (low + 56); /* 14*1024/256 */ 17723 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 17724 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 17725 } 17726 17727 if (CHIP_IS_MODE_4_PORT(sc)) { 17728 REG_WR(sc, SC_PORT(sc) ? 17729 BRB1_REG_MAC_GUARANTIED_1 : 17730 BRB1_REG_MAC_GUARANTIED_0, 40); 17731 } 17732 17733 ecore_init_block(sc, BLOCK_PRS, init_phase); 17734 if (CHIP_IS_E3B0(sc)) { 17735 if (IS_MF_AFEX(sc)) { 17736 /* configure headers for AFEX mode */ 17737 REG_WR(sc, SC_PORT(sc) ? 17738 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17739 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 17740 REG_WR(sc, SC_PORT(sc) ? 17741 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 17742 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 17743 REG_WR(sc, SC_PORT(sc) ? 17744 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 17745 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 17746 } else { 17747 /* Ovlan exists only if we are in multi-function + 17748 * switch-dependent mode, in switch-independent there 17749 * is no ovlan headers 17750 */ 17751 REG_WR(sc, SC_PORT(sc) ? 17752 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17753 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 17754 (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6)); 17755 } 17756 } 17757 17758 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17759 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17760 ecore_init_block(sc, BLOCK_USDM, init_phase); 17761 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17762 17763 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17764 ecore_init_block(sc, BLOCK_USEM, init_phase); 17765 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17766 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17767 17768 ecore_init_block(sc, BLOCK_UPB, init_phase); 17769 ecore_init_block(sc, BLOCK_XPB, init_phase); 17770 17771 ecore_init_block(sc, BLOCK_PBF, init_phase); 17772 17773 if (CHIP_IS_E1x(sc)) { 17774 /* configure PBF to work without PAUSE mtu 9000 */ 17775 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 17776 17777 /* update threshold */ 17778 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 17779 /* update init credit */ 17780 REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 17781 17782 /* probe changes */ 17783 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1); 17784 DELAY(50); 17785 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0); 17786 } 17787 17788 if (CNIC_SUPPORT(sc)) { 17789 ecore_init_block(sc, BLOCK_SRC, init_phase); 17790 } 17791 17792 ecore_init_block(sc, BLOCK_CDU, init_phase); 17793 ecore_init_block(sc, BLOCK_CFC, init_phase); 17794 17795 if (CHIP_IS_E1(sc)) { 17796 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17797 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17798 } 17799 ecore_init_block(sc, BLOCK_HC, init_phase); 17800 17801 ecore_init_block(sc, BLOCK_IGU, init_phase); 17802 17803 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17804 /* init aeu_mask_attn_func_0/1: 17805 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use 17806 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF 17807 * bits 4-7 are used for "per vn group attention" */ 17808 val = IS_MF(sc) ? 0xF7 : 0x7; 17809 /* Enable DCBX attention for all but E1 */ 17810 val |= CHIP_IS_E1(sc) ? 0 : 0x10; 17811 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 17812 17813 ecore_init_block(sc, BLOCK_NIG, init_phase); 17814 17815 if (!CHIP_IS_E1x(sc)) { 17816 /* Bit-map indicating which L2 hdrs may appear after the 17817 * basic Ethernet header 17818 */ 17819 if (IS_MF_AFEX(sc)) { 17820 REG_WR(sc, SC_PORT(sc) ? 17821 NIG_REG_P1_HDRS_AFTER_BASIC : 17822 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 17823 } else { 17824 REG_WR(sc, SC_PORT(sc) ? 17825 NIG_REG_P1_HDRS_AFTER_BASIC : 17826 NIG_REG_P0_HDRS_AFTER_BASIC, 17827 IS_MF_SD(sc) ? 7 : 6); 17828 } 17829 17830 if (CHIP_IS_E3(sc)) { 17831 REG_WR(sc, SC_PORT(sc) ? 17832 NIG_REG_LLH1_MF_MODE : 17833 NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17834 } 17835 } 17836 if (!CHIP_IS_E3(sc)) { 17837 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 17838 } 17839 17840 if (!CHIP_IS_E1(sc)) { 17841 /* 0x2 disable mf_ov, 0x1 enable */ 17842 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 17843 (IS_MF_SD(sc) ? 0x1 : 0x2)); 17844 17845 if (!CHIP_IS_E1x(sc)) { 17846 val = 0; 17847 switch (sc->devinfo.mf_info.mf_mode) { 17848 case MULTI_FUNCTION_SD: 17849 val = 1; 17850 break; 17851 case MULTI_FUNCTION_SI: 17852 case MULTI_FUNCTION_AFEX: 17853 val = 2; 17854 break; 17855 } 17856 17857 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE : 17858 NIG_REG_LLH0_CLS_TYPE), val); 17859 } 17860 REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 17861 REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 17862 REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 17863 } 17864 17865 /* If SPIO5 is set to generate interrupts, enable it for this port */ 17866 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17867 if (val & MISC_SPIO_SPIO5) { 17868 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 17869 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 17870 val = REG_RD(sc, reg_addr); 17871 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 17872 REG_WR(sc, reg_addr, val); 17873 } 17874 17875 return (0); 17876 } 17877 17878 static uint32_t 17879 bxe_flr_clnup_reg_poll(struct bxe_softc *sc, 17880 uint32_t reg, 17881 uint32_t expected, 17882 uint32_t poll_count) 17883 { 17884 uint32_t cur_cnt = poll_count; 17885 uint32_t val; 17886 17887 while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) { 17888 DELAY(FLR_WAIT_INTERVAL); 17889 } 17890 17891 return (val); 17892 } 17893 17894 static int 17895 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc, 17896 uint32_t reg, 17897 char *msg, 17898 uint32_t poll_cnt) 17899 { 17900 uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt); 17901 17902 if (val != 0) { 17903 BLOGE(sc, "%s usage count=%d\n", msg, val); 17904 return (1); 17905 } 17906 17907 return (0); 17908 } 17909 17910 /* Common routines with VF FLR cleanup */ 17911 static uint32_t 17912 bxe_flr_clnup_poll_count(struct bxe_softc *sc) 17913 { 17914 /* adjust polling timeout */ 17915 if (CHIP_REV_IS_EMUL(sc)) { 17916 return (FLR_POLL_CNT * 2000); 17917 } 17918 17919 if (CHIP_REV_IS_FPGA(sc)) { 17920 return (FLR_POLL_CNT * 120); 17921 } 17922 17923 return (FLR_POLL_CNT); 17924 } 17925 17926 static int 17927 bxe_poll_hw_usage_counters(struct bxe_softc *sc, 17928 uint32_t poll_cnt) 17929 { 17930 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 17931 if (bxe_flr_clnup_poll_hw_counter(sc, 17932 CFC_REG_NUM_LCIDS_INSIDE_PF, 17933 "CFC PF usage counter timed out", 17934 poll_cnt)) { 17935 return (1); 17936 } 17937 17938 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 17939 if (bxe_flr_clnup_poll_hw_counter(sc, 17940 DORQ_REG_PF_USAGE_CNT, 17941 "DQ PF usage counter timed out", 17942 poll_cnt)) { 17943 return (1); 17944 } 17945 17946 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 17947 if (bxe_flr_clnup_poll_hw_counter(sc, 17948 QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc), 17949 "QM PF usage counter timed out", 17950 poll_cnt)) { 17951 return (1); 17952 } 17953 17954 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 17955 if (bxe_flr_clnup_poll_hw_counter(sc, 17956 TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc), 17957 "Timers VNIC usage counter timed out", 17958 poll_cnt)) { 17959 return (1); 17960 } 17961 17962 if (bxe_flr_clnup_poll_hw_counter(sc, 17963 TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc), 17964 "Timers NUM_SCANS usage counter timed out", 17965 poll_cnt)) { 17966 return (1); 17967 } 17968 17969 /* Wait DMAE PF usage counter to zero */ 17970 if (bxe_flr_clnup_poll_hw_counter(sc, 17971 dmae_reg_go_c[INIT_DMAE_C(sc)], 17972 "DMAE dommand register timed out", 17973 poll_cnt)) { 17974 return (1); 17975 } 17976 17977 return (0); 17978 } 17979 17980 #define OP_GEN_PARAM(param) \ 17981 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 17982 #define OP_GEN_TYPE(type) \ 17983 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 17984 #define OP_GEN_AGG_VECT(index) \ 17985 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 17986 17987 static int 17988 bxe_send_final_clnup(struct bxe_softc *sc, 17989 uint8_t clnup_func, 17990 uint32_t poll_cnt) 17991 { 17992 uint32_t op_gen_command = 0; 17993 uint32_t comp_addr = (BAR_CSTRORM_INTMEM + 17994 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func)); 17995 int ret = 0; 17996 17997 if (REG_RD(sc, comp_addr)) { 17998 BLOGE(sc, "Cleanup complete was not 0 before sending\n"); 17999 return (1); 18000 } 18001 18002 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 18003 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 18004 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 18005 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 18006 18007 BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n"); 18008 REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command); 18009 18010 if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) { 18011 BLOGE(sc, "FW final cleanup did not succeed\n"); 18012 BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n", 18013 (REG_RD(sc, comp_addr))); 18014 bxe_panic(sc, ("FLR cleanup failed\n")); 18015 return (1); 18016 } 18017 18018 /* Zero completion for nxt FLR */ 18019 REG_WR(sc, comp_addr, 0); 18020 18021 return (ret); 18022 } 18023 18024 static void 18025 bxe_pbf_pN_buf_flushed(struct bxe_softc *sc, 18026 struct pbf_pN_buf_regs *regs, 18027 uint32_t poll_count) 18028 { 18029 uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start; 18030 uint32_t cur_cnt = poll_count; 18031 18032 crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed); 18033 crd = crd_start = REG_RD(sc, regs->crd); 18034 init_crd = REG_RD(sc, regs->init_crd); 18035 18036 BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 18037 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd); 18038 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 18039 18040 while ((crd != init_crd) && 18041 ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) < 18042 (init_crd - crd_start))) { 18043 if (cur_cnt--) { 18044 DELAY(FLR_WAIT_INTERVAL); 18045 crd = REG_RD(sc, regs->crd); 18046 crd_freed = REG_RD(sc, regs->crd_freed); 18047 } else { 18048 BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN); 18049 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd); 18050 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed); 18051 break; 18052 } 18053 } 18054 18055 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n", 18056 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 18057 } 18058 18059 static void 18060 bxe_pbf_pN_cmd_flushed(struct bxe_softc *sc, 18061 struct pbf_pN_cmd_regs *regs, 18062 uint32_t poll_count) 18063 { 18064 uint32_t occup, to_free, freed, freed_start; 18065 uint32_t cur_cnt = poll_count; 18066 18067 occup = to_free = REG_RD(sc, regs->lines_occup); 18068 freed = freed_start = REG_RD(sc, regs->lines_freed); 18069 18070 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 18071 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 18072 18073 while (occup && 18074 ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) { 18075 if (cur_cnt--) { 18076 DELAY(FLR_WAIT_INTERVAL); 18077 occup = REG_RD(sc, regs->lines_occup); 18078 freed = REG_RD(sc, regs->lines_freed); 18079 } else { 18080 BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN); 18081 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 18082 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 18083 break; 18084 } 18085 } 18086 18087 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n", 18088 poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 18089 } 18090 18091 static void 18092 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count) 18093 { 18094 struct pbf_pN_cmd_regs cmd_regs[] = { 18095 {0, (CHIP_IS_E3B0(sc)) ? 18096 PBF_REG_TQ_OCCUPANCY_Q0 : 18097 PBF_REG_P0_TQ_OCCUPANCY, 18098 (CHIP_IS_E3B0(sc)) ? 18099 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 18100 PBF_REG_P0_TQ_LINES_FREED_CNT}, 18101 {1, (CHIP_IS_E3B0(sc)) ? 18102 PBF_REG_TQ_OCCUPANCY_Q1 : 18103 PBF_REG_P1_TQ_OCCUPANCY, 18104 (CHIP_IS_E3B0(sc)) ? 18105 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 18106 PBF_REG_P1_TQ_LINES_FREED_CNT}, 18107 {4, (CHIP_IS_E3B0(sc)) ? 18108 PBF_REG_TQ_OCCUPANCY_LB_Q : 18109 PBF_REG_P4_TQ_OCCUPANCY, 18110 (CHIP_IS_E3B0(sc)) ? 18111 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 18112 PBF_REG_P4_TQ_LINES_FREED_CNT} 18113 }; 18114 18115 struct pbf_pN_buf_regs buf_regs[] = { 18116 {0, (CHIP_IS_E3B0(sc)) ? 18117 PBF_REG_INIT_CRD_Q0 : 18118 PBF_REG_P0_INIT_CRD , 18119 (CHIP_IS_E3B0(sc)) ? 18120 PBF_REG_CREDIT_Q0 : 18121 PBF_REG_P0_CREDIT, 18122 (CHIP_IS_E3B0(sc)) ? 18123 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 18124 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 18125 {1, (CHIP_IS_E3B0(sc)) ? 18126 PBF_REG_INIT_CRD_Q1 : 18127 PBF_REG_P1_INIT_CRD, 18128 (CHIP_IS_E3B0(sc)) ? 18129 PBF_REG_CREDIT_Q1 : 18130 PBF_REG_P1_CREDIT, 18131 (CHIP_IS_E3B0(sc)) ? 18132 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 18133 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 18134 {4, (CHIP_IS_E3B0(sc)) ? 18135 PBF_REG_INIT_CRD_LB_Q : 18136 PBF_REG_P4_INIT_CRD, 18137 (CHIP_IS_E3B0(sc)) ? 18138 PBF_REG_CREDIT_LB_Q : 18139 PBF_REG_P4_CREDIT, 18140 (CHIP_IS_E3B0(sc)) ? 18141 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 18142 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 18143 }; 18144 18145 int i; 18146 18147 /* Verify the command queues are flushed P0, P1, P4 */ 18148 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) { 18149 bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count); 18150 } 18151 18152 /* Verify the transmission buffers are flushed P0, P1, P4 */ 18153 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) { 18154 bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count); 18155 } 18156 } 18157 18158 static void 18159 bxe_hw_enable_status(struct bxe_softc *sc) 18160 { 18161 uint32_t val; 18162 18163 val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF); 18164 BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 18165 18166 val = REG_RD(sc, PBF_REG_DISABLE_PF); 18167 BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val); 18168 18169 val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN); 18170 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 18171 18172 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN); 18173 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 18174 18175 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 18176 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 18177 18178 val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 18179 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 18180 18181 val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 18182 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 18183 18184 val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 18185 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val); 18186 } 18187 18188 static int 18189 bxe_pf_flr_clnup(struct bxe_softc *sc) 18190 { 18191 uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc); 18192 18193 BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc)); 18194 18195 /* Re-enable PF target read access */ 18196 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 18197 18198 /* Poll HW usage counters */ 18199 BLOGD(sc, DBG_LOAD, "Polling usage counters\n"); 18200 if (bxe_poll_hw_usage_counters(sc, poll_cnt)) { 18201 return (-1); 18202 } 18203 18204 /* Zero the igu 'trailing edge' and 'leading edge' */ 18205 18206 /* Send the FW cleanup command */ 18207 if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) { 18208 return (-1); 18209 } 18210 18211 /* ATC cleanup */ 18212 18213 /* Verify TX hw is flushed */ 18214 bxe_tx_hw_flushed(sc, poll_cnt); 18215 18216 /* Wait 100ms (not adjusted according to platform) */ 18217 DELAY(100000); 18218 18219 /* Verify no pending pci transactions */ 18220 if (bxe_is_pcie_pending(sc)) { 18221 BLOGE(sc, "PCIE Transactions still pending\n"); 18222 } 18223 18224 /* Debug */ 18225 bxe_hw_enable_status(sc); 18226 18227 /* 18228 * Master enable - Due to WB DMAE writes performed before this 18229 * register is re-initialized as part of the regular function init 18230 */ 18231 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 18232 18233 return (0); 18234 } 18235 18236 #if 0 18237 static void 18238 bxe_init_searcher(struct bxe_softc *sc) 18239 { 18240 int port = SC_PORT(sc); 18241 ecore_src_init_t2(sc, sc->t2, sc->t2_mapping, SRC_CONN_NUM); 18242 /* T1 hash bits value determines the T1 number of entries */ 18243 REG_WR(sc, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS); 18244 } 18245 #endif 18246 18247 static int 18248 bxe_init_hw_func(struct bxe_softc *sc) 18249 { 18250 int port = SC_PORT(sc); 18251 int func = SC_FUNC(sc); 18252 int init_phase = PHASE_PF0 + func; 18253 struct ecore_ilt *ilt = sc->ilt; 18254 uint16_t cdu_ilt_start; 18255 uint32_t addr, val; 18256 uint32_t main_mem_base, main_mem_size, main_mem_prty_clr; 18257 int i, main_mem_width, rc; 18258 18259 BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func); 18260 18261 /* FLR cleanup */ 18262 if (!CHIP_IS_E1x(sc)) { 18263 rc = bxe_pf_flr_clnup(sc); 18264 if (rc) { 18265 BLOGE(sc, "FLR cleanup failed!\n"); 18266 // XXX bxe_fw_dump(sc); 18267 // XXX bxe_idle_chk(sc); 18268 return (rc); 18269 } 18270 } 18271 18272 /* set MSI reconfigure capability */ 18273 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18274 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 18275 val = REG_RD(sc, addr); 18276 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 18277 REG_WR(sc, addr, val); 18278 } 18279 18280 ecore_init_block(sc, BLOCK_PXP, init_phase); 18281 ecore_init_block(sc, BLOCK_PXP2, init_phase); 18282 18283 ilt = sc->ilt; 18284 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 18285 18286 #if 0 18287 if (IS_SRIOV(sc)) { 18288 cdu_ilt_start += BXE_FIRST_VF_CID/ILT_PAGE_CIDS; 18289 } 18290 cdu_ilt_start = bxe_iov_init_ilt(sc, cdu_ilt_start); 18291 18292 #if (BXE_FIRST_VF_CID > 0) 18293 /* 18294 * If BXE_FIRST_VF_CID > 0 then the PF L2 cids precedes 18295 * those of the VFs, so start line should be reset 18296 */ 18297 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 18298 #endif 18299 #endif 18300 18301 for (i = 0; i < L2_ILT_LINES(sc); i++) { 18302 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt; 18303 ilt->lines[cdu_ilt_start + i].page_mapping = 18304 sc->context[i].vcxt_dma.paddr; 18305 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size; 18306 } 18307 ecore_ilt_init_op(sc, INITOP_SET); 18308 18309 #if 0 18310 if (!CONFIGURE_NIC_MODE(sc)) { 18311 bxe_init_searcher(sc); 18312 REG_WR(sc, PRS_REG_NIC_MODE, 0); 18313 BLOGD(sc, DBG_LOAD, "NIC MODE disabled\n"); 18314 } else 18315 #endif 18316 { 18317 /* Set NIC mode */ 18318 REG_WR(sc, PRS_REG_NIC_MODE, 1); 18319 BLOGD(sc, DBG_LOAD, "NIC MODE configured\n"); 18320 } 18321 18322 if (!CHIP_IS_E1x(sc)) { 18323 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN; 18324 18325 /* Turn on a single ISR mode in IGU if driver is going to use 18326 * INT#x or MSI 18327 */ 18328 if (sc->interrupt_mode != INTR_MODE_MSIX) { 18329 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 18330 } 18331 18332 /* 18333 * Timers workaround bug: function init part. 18334 * Need to wait 20msec after initializing ILT, 18335 * needed to make sure there are no requests in 18336 * one of the PXP internal queues with "old" ILT addresses 18337 */ 18338 DELAY(20000); 18339 18340 /* 18341 * Master enable - Due to WB DMAE writes performed before this 18342 * register is re-initialized as part of the regular function 18343 * init 18344 */ 18345 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 18346 /* Enable the function in IGU */ 18347 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf); 18348 } 18349 18350 sc->dmae_ready = 1; 18351 18352 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 18353 18354 if (!CHIP_IS_E1x(sc)) 18355 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); 18356 18357 ecore_init_block(sc, BLOCK_ATC, init_phase); 18358 ecore_init_block(sc, BLOCK_DMAE, init_phase); 18359 ecore_init_block(sc, BLOCK_NIG, init_phase); 18360 ecore_init_block(sc, BLOCK_SRC, init_phase); 18361 ecore_init_block(sc, BLOCK_MISC, init_phase); 18362 ecore_init_block(sc, BLOCK_TCM, init_phase); 18363 ecore_init_block(sc, BLOCK_UCM, init_phase); 18364 ecore_init_block(sc, BLOCK_CCM, init_phase); 18365 ecore_init_block(sc, BLOCK_XCM, init_phase); 18366 ecore_init_block(sc, BLOCK_TSEM, init_phase); 18367 ecore_init_block(sc, BLOCK_USEM, init_phase); 18368 ecore_init_block(sc, BLOCK_CSEM, init_phase); 18369 ecore_init_block(sc, BLOCK_XSEM, init_phase); 18370 18371 if (!CHIP_IS_E1x(sc)) 18372 REG_WR(sc, QM_REG_PF_EN, 1); 18373 18374 if (!CHIP_IS_E1x(sc)) { 18375 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18376 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18377 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18378 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18379 } 18380 ecore_init_block(sc, BLOCK_QM, init_phase); 18381 18382 ecore_init_block(sc, BLOCK_TM, init_phase); 18383 ecore_init_block(sc, BLOCK_DORQ, init_phase); 18384 18385 bxe_iov_init_dq(sc); 18386 18387 ecore_init_block(sc, BLOCK_BRB1, init_phase); 18388 ecore_init_block(sc, BLOCK_PRS, init_phase); 18389 ecore_init_block(sc, BLOCK_TSDM, init_phase); 18390 ecore_init_block(sc, BLOCK_CSDM, init_phase); 18391 ecore_init_block(sc, BLOCK_USDM, init_phase); 18392 ecore_init_block(sc, BLOCK_XSDM, init_phase); 18393 ecore_init_block(sc, BLOCK_UPB, init_phase); 18394 ecore_init_block(sc, BLOCK_XPB, init_phase); 18395 ecore_init_block(sc, BLOCK_PBF, init_phase); 18396 if (!CHIP_IS_E1x(sc)) 18397 REG_WR(sc, PBF_REG_DISABLE_PF, 0); 18398 18399 ecore_init_block(sc, BLOCK_CDU, init_phase); 18400 18401 ecore_init_block(sc, BLOCK_CFC, init_phase); 18402 18403 if (!CHIP_IS_E1x(sc)) 18404 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1); 18405 18406 if (IS_MF(sc)) { 18407 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 18408 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc)); 18409 } 18410 18411 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 18412 18413 /* HC init per function */ 18414 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18415 if (CHIP_IS_E1H(sc)) { 18416 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 18417 18418 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18419 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18420 } 18421 ecore_init_block(sc, BLOCK_HC, init_phase); 18422 18423 } else { 18424 int num_segs, sb_idx, prod_offset; 18425 18426 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 18427 18428 if (!CHIP_IS_E1x(sc)) { 18429 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18430 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18431 } 18432 18433 ecore_init_block(sc, BLOCK_IGU, init_phase); 18434 18435 if (!CHIP_IS_E1x(sc)) { 18436 int dsb_idx = 0; 18437 /** 18438 * Producer memory: 18439 * E2 mode: address 0-135 match to the mapping memory; 18440 * 136 - PF0 default prod; 137 - PF1 default prod; 18441 * 138 - PF2 default prod; 139 - PF3 default prod; 18442 * 140 - PF0 attn prod; 141 - PF1 attn prod; 18443 * 142 - PF2 attn prod; 143 - PF3 attn prod; 18444 * 144-147 reserved. 18445 * 18446 * E1.5 mode - In backward compatible mode; 18447 * for non default SB; each even line in the memory 18448 * holds the U producer and each odd line hold 18449 * the C producer. The first 128 producers are for 18450 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 18451 * producers are for the DSB for each PF. 18452 * Each PF has five segments: (the order inside each 18453 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 18454 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 18455 * 144-147 attn prods; 18456 */ 18457 /* non-default-status-blocks */ 18458 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18459 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 18460 for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) { 18461 prod_offset = (sc->igu_base_sb + sb_idx) * 18462 num_segs; 18463 18464 for (i = 0; i < num_segs; i++) { 18465 addr = IGU_REG_PROD_CONS_MEMORY + 18466 (prod_offset + i) * 4; 18467 REG_WR(sc, addr, 0); 18468 } 18469 /* send consumer update with value 0 */ 18470 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx, 18471 USTORM_ID, 0, IGU_INT_NOP, 1); 18472 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx); 18473 } 18474 18475 /* default-status-blocks */ 18476 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18477 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 18478 18479 if (CHIP_IS_MODE_4_PORT(sc)) 18480 dsb_idx = SC_FUNC(sc); 18481 else 18482 dsb_idx = SC_VN(sc); 18483 18484 prod_offset = (CHIP_INT_MODE_IS_BC(sc) ? 18485 IGU_BC_BASE_DSB_PROD + dsb_idx : 18486 IGU_NORM_BASE_DSB_PROD + dsb_idx); 18487 18488 /* 18489 * igu prods come in chunks of E1HVN_MAX (4) - 18490 * does not matters what is the current chip mode 18491 */ 18492 for (i = 0; i < (num_segs * E1HVN_MAX); 18493 i += E1HVN_MAX) { 18494 addr = IGU_REG_PROD_CONS_MEMORY + 18495 (prod_offset + i)*4; 18496 REG_WR(sc, addr, 0); 18497 } 18498 /* send consumer update with 0 */ 18499 if (CHIP_INT_MODE_IS_BC(sc)) { 18500 bxe_ack_sb(sc, sc->igu_dsb_id, 18501 USTORM_ID, 0, IGU_INT_NOP, 1); 18502 bxe_ack_sb(sc, sc->igu_dsb_id, 18503 CSTORM_ID, 0, IGU_INT_NOP, 1); 18504 bxe_ack_sb(sc, sc->igu_dsb_id, 18505 XSTORM_ID, 0, IGU_INT_NOP, 1); 18506 bxe_ack_sb(sc, sc->igu_dsb_id, 18507 TSTORM_ID, 0, IGU_INT_NOP, 1); 18508 bxe_ack_sb(sc, sc->igu_dsb_id, 18509 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18510 } else { 18511 bxe_ack_sb(sc, sc->igu_dsb_id, 18512 USTORM_ID, 0, IGU_INT_NOP, 1); 18513 bxe_ack_sb(sc, sc->igu_dsb_id, 18514 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18515 } 18516 bxe_igu_clear_sb(sc, sc->igu_dsb_id); 18517 18518 /* !!! these should become driver const once 18519 rf-tool supports split-68 const */ 18520 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 18521 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 18522 REG_WR(sc, IGU_REG_SB_MASK_LSB, 0); 18523 REG_WR(sc, IGU_REG_SB_MASK_MSB, 0); 18524 REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0); 18525 REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0); 18526 } 18527 } 18528 18529 /* Reset PCIE errors for debug */ 18530 REG_WR(sc, 0x2114, 0xffffffff); 18531 REG_WR(sc, 0x2120, 0xffffffff); 18532 18533 if (CHIP_IS_E1x(sc)) { 18534 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 18535 main_mem_base = HC_REG_MAIN_MEMORY + 18536 SC_PORT(sc) * (main_mem_size * 4); 18537 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 18538 main_mem_width = 8; 18539 18540 val = REG_RD(sc, main_mem_prty_clr); 18541 if (val) { 18542 BLOGD(sc, DBG_LOAD, 18543 "Parity errors in HC block during function init (0x%x)!\n", 18544 val); 18545 } 18546 18547 /* Clear "false" parity errors in MSI-X table */ 18548 for (i = main_mem_base; 18549 i < main_mem_base + main_mem_size * 4; 18550 i += main_mem_width) { 18551 bxe_read_dmae(sc, i, main_mem_width / 4); 18552 bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), 18553 i, main_mem_width / 4); 18554 } 18555 /* Clear HC parity attention */ 18556 REG_RD(sc, main_mem_prty_clr); 18557 } 18558 18559 #if 1 18560 /* Enable STORMs SP logging */ 18561 REG_WR8(sc, BAR_USTRORM_INTMEM + 18562 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18563 REG_WR8(sc, BAR_TSTRORM_INTMEM + 18564 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18565 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18566 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18567 REG_WR8(sc, BAR_XSTRORM_INTMEM + 18568 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18569 #endif 18570 18571 elink_phy_probe(&sc->link_params); 18572 18573 return (0); 18574 } 18575 18576 static void 18577 bxe_link_reset(struct bxe_softc *sc) 18578 { 18579 if (!BXE_NOMCP(sc)) { 18580 BXE_PHY_LOCK(sc); 18581 elink_lfa_reset(&sc->link_params, &sc->link_vars); 18582 BXE_PHY_UNLOCK(sc); 18583 } else { 18584 if (!CHIP_REV_IS_SLOW(sc)) { 18585 BLOGW(sc, "Bootcode is missing - cannot reset link\n"); 18586 } 18587 } 18588 } 18589 18590 static void 18591 bxe_reset_port(struct bxe_softc *sc) 18592 { 18593 int port = SC_PORT(sc); 18594 uint32_t val; 18595 18596 /* reset physical Link */ 18597 bxe_link_reset(sc); 18598 18599 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 18600 18601 /* Do not rcv packets to BRB */ 18602 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 18603 /* Do not direct rcv packets that are not for MCP to the BRB */ 18604 REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 18605 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 18606 18607 /* Configure AEU */ 18608 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 18609 18610 DELAY(100000); 18611 18612 /* Check for BRB port occupancy */ 18613 val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 18614 if (val) { 18615 BLOGD(sc, DBG_LOAD, 18616 "BRB1 is not empty, %d blocks are occupied\n", val); 18617 } 18618 18619 /* TODO: Close Doorbell port? */ 18620 } 18621 18622 static void 18623 bxe_ilt_wr(struct bxe_softc *sc, 18624 uint32_t index, 18625 bus_addr_t addr) 18626 { 18627 int reg; 18628 uint32_t wb_write[2]; 18629 18630 if (CHIP_IS_E1(sc)) { 18631 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 18632 } else { 18633 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 18634 } 18635 18636 wb_write[0] = ONCHIP_ADDR1(addr); 18637 wb_write[1] = ONCHIP_ADDR2(addr); 18638 REG_WR_DMAE(sc, reg, wb_write, 2); 18639 } 18640 18641 static void 18642 bxe_clear_func_ilt(struct bxe_softc *sc, 18643 uint32_t func) 18644 { 18645 uint32_t i, base = FUNC_ILT_BASE(func); 18646 for (i = base; i < base + ILT_PER_FUNC; i++) { 18647 bxe_ilt_wr(sc, i, 0); 18648 } 18649 } 18650 18651 static void 18652 bxe_reset_func(struct bxe_softc *sc) 18653 { 18654 struct bxe_fastpath *fp; 18655 int port = SC_PORT(sc); 18656 int func = SC_FUNC(sc); 18657 int i; 18658 18659 /* Disable the function in the FW */ 18660 REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 18661 REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 18662 REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 18663 REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 18664 18665 /* FP SBs */ 18666 FOR_EACH_ETH_QUEUE(sc, i) { 18667 fp = &sc->fp[i]; 18668 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18669 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 18670 SB_DISABLED); 18671 } 18672 18673 #if 0 18674 if (CNIC_LOADED(sc)) { 18675 /* CNIC SB */ 18676 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18677 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET 18678 (bxe_cnic_fw_sb_id(sc)), SB_DISABLED); 18679 } 18680 #endif 18681 18682 /* SP SB */ 18683 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18684 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 18685 SB_DISABLED); 18686 18687 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) { 18688 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0); 18689 } 18690 18691 /* Configure IGU */ 18692 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18693 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18694 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18695 } else { 18696 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18697 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18698 } 18699 18700 if (CNIC_LOADED(sc)) { 18701 /* Disable Timer scan */ 18702 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 18703 /* 18704 * Wait for at least 10ms and up to 2 second for the timers 18705 * scan to complete 18706 */ 18707 for (i = 0; i < 200; i++) { 18708 DELAY(10000); 18709 if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4)) 18710 break; 18711 } 18712 } 18713 18714 /* Clear ILT */ 18715 bxe_clear_func_ilt(sc, func); 18716 18717 /* 18718 * Timers workaround bug for E2: if this is vnic-3, 18719 * we need to set the entire ilt range for this timers. 18720 */ 18721 if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) { 18722 struct ilt_client_info ilt_cli; 18723 /* use dummy TM client */ 18724 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 18725 ilt_cli.start = 0; 18726 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 18727 ilt_cli.client_num = ILT_CLIENT_TM; 18728 18729 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR); 18730 } 18731 18732 /* this assumes that reset_port() called before reset_func()*/ 18733 if (!CHIP_IS_E1x(sc)) { 18734 bxe_pf_disable(sc); 18735 } 18736 18737 sc->dmae_ready = 0; 18738 } 18739 18740 static int 18741 bxe_gunzip_init(struct bxe_softc *sc) 18742 { 18743 return (0); 18744 } 18745 18746 static void 18747 bxe_gunzip_end(struct bxe_softc *sc) 18748 { 18749 return; 18750 } 18751 18752 static int 18753 bxe_init_firmware(struct bxe_softc *sc) 18754 { 18755 if (CHIP_IS_E1(sc)) { 18756 ecore_init_e1_firmware(sc); 18757 sc->iro_array = e1_iro_arr; 18758 } else if (CHIP_IS_E1H(sc)) { 18759 ecore_init_e1h_firmware(sc); 18760 sc->iro_array = e1h_iro_arr; 18761 } else if (!CHIP_IS_E1x(sc)) { 18762 ecore_init_e2_firmware(sc); 18763 sc->iro_array = e2_iro_arr; 18764 } else { 18765 BLOGE(sc, "Unsupported chip revision\n"); 18766 return (-1); 18767 } 18768 18769 return (0); 18770 } 18771 18772 static void 18773 bxe_release_firmware(struct bxe_softc *sc) 18774 { 18775 /* Do nothing */ 18776 return; 18777 } 18778 18779 static int 18780 ecore_gunzip(struct bxe_softc *sc, 18781 const uint8_t *zbuf, 18782 int len) 18783 { 18784 /* XXX : Implement... */ 18785 BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n"); 18786 return (FALSE); 18787 } 18788 18789 static void 18790 ecore_reg_wr_ind(struct bxe_softc *sc, 18791 uint32_t addr, 18792 uint32_t val) 18793 { 18794 bxe_reg_wr_ind(sc, addr, val); 18795 } 18796 18797 static void 18798 ecore_write_dmae_phys_len(struct bxe_softc *sc, 18799 bus_addr_t phys_addr, 18800 uint32_t addr, 18801 uint32_t len) 18802 { 18803 bxe_write_dmae_phys_len(sc, phys_addr, addr, len); 18804 } 18805 18806 void 18807 ecore_storm_memset_struct(struct bxe_softc *sc, 18808 uint32_t addr, 18809 size_t size, 18810 uint32_t *data) 18811 { 18812 uint8_t i; 18813 for (i = 0; i < size/4; i++) { 18814 REG_WR(sc, addr + (i * 4), data[i]); 18815 } 18816 } 18817 18818