xref: /freebsd/sys/dev/bxe/bxe.c (revision 6ab38b8e25f31df8140b99c09160d0207f912ef3)
1 /*-
2  * Copyright (c) 2007-2013 Broadcom Corporation. All rights reserved.
3  *
4  * Eric Davis        <edavis@broadcom.com>
5  * David Christensen <davidch@broadcom.com>
6  * Gary Zambrano     <zambrano@broadcom.com>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written consent.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #define BXE_DRIVER_VERSION "1.78.18"
38 
39 #include "bxe.h"
40 #include "ecore_sp.h"
41 #include "ecore_init.h"
42 #include "ecore_init_ops.h"
43 
44 #include "57710_int_offsets.h"
45 #include "57711_int_offsets.h"
46 #include "57712_int_offsets.h"
47 
48 /*
49  * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
50  * explicitly here for older kernels that don't include this changeset.
51  */
52 #ifndef CTLTYPE_U64
53 #define CTLTYPE_U64      CTLTYPE_QUAD
54 #define sysctl_handle_64 sysctl_handle_quad
55 #endif
56 
57 /*
58  * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
59  * here as zero(0) for older kernels that don't include this changeset
60  * thereby masking the functionality.
61  */
62 #ifndef CSUM_TCP_IPV6
63 #define CSUM_TCP_IPV6 0
64 #define CSUM_UDP_IPV6 0
65 #endif
66 
67 /*
68  * pci_find_cap was added in r219865. Re-define this at pci_find_extcap
69  * for older kernels that don't include this changeset.
70  */
71 #if __FreeBSD_version < 900035
72 #define pci_find_cap pci_find_extcap
73 #endif
74 
75 #define BXE_DEF_SB_ATT_IDX 0x0001
76 #define BXE_DEF_SB_IDX     0x0002
77 
78 /*
79  * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
80  * function HW initialization.
81  */
82 #define FLR_WAIT_USEC     10000 /* 10 msecs */
83 #define FLR_WAIT_INTERVAL 50    /* usecs */
84 #define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
85 
86 struct pbf_pN_buf_regs {
87     int pN;
88     uint32_t init_crd;
89     uint32_t crd;
90     uint32_t crd_freed;
91 };
92 
93 struct pbf_pN_cmd_regs {
94     int pN;
95     uint32_t lines_occup;
96     uint32_t lines_freed;
97 };
98 
99 /*
100  * PCI Device ID Table used by bxe_probe().
101  */
102 #define BXE_DEVDESC_MAX 64
103 static struct bxe_device_type bxe_devs[] = {
104     {
105         BRCM_VENDORID,
106         CHIP_NUM_57710,
107         PCI_ANY_ID, PCI_ANY_ID,
108         "Broadcom NetXtreme II BCM57710 10GbE"
109     },
110     {
111         BRCM_VENDORID,
112         CHIP_NUM_57711,
113         PCI_ANY_ID, PCI_ANY_ID,
114         "Broadcom NetXtreme II BCM57711 10GbE"
115     },
116     {
117         BRCM_VENDORID,
118         CHIP_NUM_57711E,
119         PCI_ANY_ID, PCI_ANY_ID,
120         "Broadcom NetXtreme II BCM57711E 10GbE"
121     },
122     {
123         BRCM_VENDORID,
124         CHIP_NUM_57712,
125         PCI_ANY_ID, PCI_ANY_ID,
126         "Broadcom NetXtreme II BCM57712 10GbE"
127     },
128     {
129         BRCM_VENDORID,
130         CHIP_NUM_57712_MF,
131         PCI_ANY_ID, PCI_ANY_ID,
132         "Broadcom NetXtreme II BCM57712 MF 10GbE"
133     },
134 #if 0
135     {
136         BRCM_VENDORID,
137         CHIP_NUM_57712_VF,
138         PCI_ANY_ID, PCI_ANY_ID,
139         "Broadcom NetXtreme II BCM57712 VF 10GbE"
140     },
141 #endif
142     {
143         BRCM_VENDORID,
144         CHIP_NUM_57800,
145         PCI_ANY_ID, PCI_ANY_ID,
146         "Broadcom NetXtreme II BCM57800 10GbE"
147     },
148     {
149         BRCM_VENDORID,
150         CHIP_NUM_57800_MF,
151         PCI_ANY_ID, PCI_ANY_ID,
152         "Broadcom NetXtreme II BCM57800 MF 10GbE"
153     },
154 #if 0
155     {
156         BRCM_VENDORID,
157         CHIP_NUM_57800_VF,
158         PCI_ANY_ID, PCI_ANY_ID,
159         "Broadcom NetXtreme II BCM57800 VF 10GbE"
160     },
161 #endif
162     {
163         BRCM_VENDORID,
164         CHIP_NUM_57810,
165         PCI_ANY_ID, PCI_ANY_ID,
166         "Broadcom NetXtreme II BCM57810 10GbE"
167     },
168     {
169         BRCM_VENDORID,
170         CHIP_NUM_57810_MF,
171         PCI_ANY_ID, PCI_ANY_ID,
172         "Broadcom NetXtreme II BCM57810 MF 10GbE"
173     },
174 #if 0
175     {
176         BRCM_VENDORID,
177         CHIP_NUM_57810_VF,
178         PCI_ANY_ID, PCI_ANY_ID,
179         "Broadcom NetXtreme II BCM57810 VF 10GbE"
180     },
181 #endif
182     {
183         BRCM_VENDORID,
184         CHIP_NUM_57811,
185         PCI_ANY_ID, PCI_ANY_ID,
186         "Broadcom NetXtreme II BCM57811 10GbE"
187     },
188     {
189         BRCM_VENDORID,
190         CHIP_NUM_57811_MF,
191         PCI_ANY_ID, PCI_ANY_ID,
192         "Broadcom NetXtreme II BCM57811 MF 10GbE"
193     },
194 #if 0
195     {
196         BRCM_VENDORID,
197         CHIP_NUM_57811_VF,
198         PCI_ANY_ID, PCI_ANY_ID,
199         "Broadcom NetXtreme II BCM57811 VF 10GbE"
200     },
201 #endif
202     {
203         BRCM_VENDORID,
204         CHIP_NUM_57840_4_10,
205         PCI_ANY_ID, PCI_ANY_ID,
206         "Broadcom NetXtreme II BCM57840 4x10GbE"
207     },
208 #if 0
209     {
210         BRCM_VENDORID,
211         CHIP_NUM_57840_2_20,
212         PCI_ANY_ID, PCI_ANY_ID,
213         "Broadcom NetXtreme II BCM57840 2x20GbE"
214     },
215 #endif
216     {
217         BRCM_VENDORID,
218         CHIP_NUM_57840_MF,
219         PCI_ANY_ID, PCI_ANY_ID,
220         "Broadcom NetXtreme II BCM57840 MF 10GbE"
221     },
222 #if 0
223     {
224         BRCM_VENDORID,
225         CHIP_NUM_57840_VF,
226         PCI_ANY_ID, PCI_ANY_ID,
227         "Broadcom NetXtreme II BCM57840 VF 10GbE"
228     },
229 #endif
230     {
231         0, 0, 0, 0, NULL
232     }
233 };
234 
235 MALLOC_DECLARE(M_BXE_ILT);
236 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
237 
238 /*
239  * FreeBSD device entry points.
240  */
241 static int bxe_probe(device_t);
242 static int bxe_attach(device_t);
243 static int bxe_detach(device_t);
244 static int bxe_shutdown(device_t);
245 
246 /*
247  * FreeBSD KLD module/device interface event handler method.
248  */
249 static device_method_t bxe_methods[] = {
250     /* Device interface (device_if.h) */
251     DEVMETHOD(device_probe,     bxe_probe),
252     DEVMETHOD(device_attach,    bxe_attach),
253     DEVMETHOD(device_detach,    bxe_detach),
254     DEVMETHOD(device_shutdown,  bxe_shutdown),
255 #if 0
256     DEVMETHOD(device_suspend,   bxe_suspend),
257     DEVMETHOD(device_resume,    bxe_resume),
258 #endif
259     /* Bus interface (bus_if.h) */
260     DEVMETHOD(bus_print_child,  bus_generic_print_child),
261     DEVMETHOD(bus_driver_added, bus_generic_driver_added),
262     KOBJMETHOD_END
263 };
264 
265 /*
266  * FreeBSD KLD Module data declaration
267  */
268 static driver_t bxe_driver = {
269     "bxe",                   /* module name */
270     bxe_methods,             /* event handler */
271     sizeof(struct bxe_softc) /* extra data */
272 };
273 
274 /*
275  * FreeBSD dev class is needed to manage dev instances and
276  * to associate with a bus type
277  */
278 static devclass_t bxe_devclass;
279 
280 MODULE_DEPEND(bxe, pci, 1, 1, 1);
281 MODULE_DEPEND(bxe, ether, 1, 1, 1);
282 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0);
283 
284 /* resources needed for unloading a previously loaded device */
285 
286 #define BXE_PREV_WAIT_NEEDED 1
287 struct mtx bxe_prev_mtx;
288 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
289 struct bxe_prev_list_node {
290     LIST_ENTRY(bxe_prev_list_node) node;
291     uint8_t bus;
292     uint8_t slot;
293     uint8_t path;
294     uint8_t aer; /* XXX automatic error recovery */
295     uint8_t undi;
296 };
297 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
298 
299 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
300 
301 /* Tunable device values... */
302 
303 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters");
304 
305 /* Debug */
306 uint32_t bxe_debug = 0;
307 TUNABLE_INT("hw.bxe.debug", &bxe_debug);
308 SYSCTL_UINT(_hw_bxe, OID_AUTO, debug, (CTLFLAG_RDTUN),
309             &bxe_debug, 0, "Debug logging mode");
310 
311 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
312 static int bxe_interrupt_mode = INTR_MODE_MSIX;
313 TUNABLE_INT("hw.bxe.interrupt_mode", &bxe_interrupt_mode);
314 SYSCTL_UINT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
315             &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
316 
317 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
318 static int bxe_queue_count = 4;
319 TUNABLE_INT("hw.bxe.queue_count", &bxe_queue_count);
320 SYSCTL_UINT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
321             &bxe_queue_count, 0, "Multi-Queue queue count");
322 
323 /* max number of buffers per queue (default RX_BD_USABLE) */
324 static uint32_t bxe_max_rx_bufs = 0;
325 TUNABLE_INT("hw.bxe.max_rx_bufs", &bxe_max_rx_bufs);
326 SYSCTL_UINT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
327             &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
328 
329 /* Host interrupt coalescing RX tick timer (usecs) */
330 static uint32_t bxe_hc_rx_ticks = 25;
331 TUNABLE_INT("hw.bxe.hc_rx_ticks", &bxe_hc_rx_ticks);
332 SYSCTL_UINT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
333             &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
334 
335 /* Host interrupt coalescing TX tick timer (usecs) */
336 static uint32_t bxe_hc_tx_ticks = 50;
337 TUNABLE_INT("hw.bxe.hc_tx_ticks", &bxe_hc_tx_ticks);
338 SYSCTL_UINT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
339             &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
340 
341 /* Maximum number of Rx packets to process at a time */
342 static uint32_t bxe_rx_budget = 0xffffffff;
343 TUNABLE_INT("hw.bxe.rx_budget", &bxe_rx_budget);
344 SYSCTL_UINT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
345             &bxe_rx_budget, 0, "Rx processing budget");
346 
347 /* Maximum LRO aggregation size */
348 static uint32_t bxe_max_aggregation_size = 0;
349 TUNABLE_INT("hw.bxe.max_aggregation_size", &bxe_max_aggregation_size);
350 SYSCTL_UINT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
351             &bxe_max_aggregation_size, 0, "max aggregation size");
352 
353 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
354 static int bxe_mrrs = -1;
355 TUNABLE_INT("hw.bxe.mrrs", &bxe_mrrs);
356 SYSCTL_UINT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
357             &bxe_mrrs, 0, "PCIe maximum read request size");
358 
359 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
360 static int bxe_autogreeen = 0;
361 TUNABLE_INT("hw.bxe.autogreeen", &bxe_autogreeen);
362 SYSCTL_UINT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
363             &bxe_autogreeen, 0, "AutoGrEEEn support");
364 
365 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
366 static int bxe_udp_rss = 0;
367 TUNABLE_INT("hw.bxe.udp_rss", &bxe_udp_rss);
368 SYSCTL_UINT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
369             &bxe_udp_rss, 0, "UDP RSS support");
370 
371 
372 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
373 
374 #define STATS_OFFSET32(stat_name)                   \
375     (offsetof(struct bxe_eth_stats, stat_name) / 4)
376 
377 #define Q_STATS_OFFSET32(stat_name)                   \
378     (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
379 
380 static const struct {
381     uint32_t offset;
382     uint32_t size;
383     uint32_t flags;
384 #define STATS_FLAGS_PORT  1
385 #define STATS_FLAGS_FUNC  2 /* MF only cares about function stats */
386 #define STATS_FLAGS_BOTH  (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
387     char string[STAT_NAME_LEN];
388 } bxe_eth_stats_arr[] = {
389     { STATS_OFFSET32(total_bytes_received_hi),
390                 8, STATS_FLAGS_BOTH, "rx_bytes" },
391     { STATS_OFFSET32(error_bytes_received_hi),
392                 8, STATS_FLAGS_BOTH, "rx_error_bytes" },
393     { STATS_OFFSET32(total_unicast_packets_received_hi),
394                 8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
395     { STATS_OFFSET32(total_multicast_packets_received_hi),
396                 8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
397     { STATS_OFFSET32(total_broadcast_packets_received_hi),
398                 8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
399     { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
400                 8, STATS_FLAGS_PORT, "rx_crc_errors" },
401     { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
402                 8, STATS_FLAGS_PORT, "rx_align_errors" },
403     { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
404                 8, STATS_FLAGS_PORT, "rx_undersize_packets" },
405     { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
406                 8, STATS_FLAGS_PORT, "rx_oversize_packets" },
407     { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
408                 8, STATS_FLAGS_PORT, "rx_fragments" },
409     { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
410                 8, STATS_FLAGS_PORT, "rx_jabbers" },
411     { STATS_OFFSET32(no_buff_discard_hi),
412                 8, STATS_FLAGS_BOTH, "rx_discards" },
413     { STATS_OFFSET32(mac_filter_discard),
414                 4, STATS_FLAGS_PORT, "rx_filtered_packets" },
415     { STATS_OFFSET32(mf_tag_discard),
416                 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
417     { STATS_OFFSET32(pfc_frames_received_hi),
418                 8, STATS_FLAGS_PORT, "pfc_frames_received" },
419     { STATS_OFFSET32(pfc_frames_sent_hi),
420                 8, STATS_FLAGS_PORT, "pfc_frames_sent" },
421     { STATS_OFFSET32(brb_drop_hi),
422                 8, STATS_FLAGS_PORT, "rx_brb_discard" },
423     { STATS_OFFSET32(brb_truncate_hi),
424                 8, STATS_FLAGS_PORT, "rx_brb_truncate" },
425     { STATS_OFFSET32(pause_frames_received_hi),
426                 8, STATS_FLAGS_PORT, "rx_pause_frames" },
427     { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
428                 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
429     { STATS_OFFSET32(nig_timer_max),
430                 4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
431     { STATS_OFFSET32(total_bytes_transmitted_hi),
432                 8, STATS_FLAGS_BOTH, "tx_bytes" },
433     { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
434                 8, STATS_FLAGS_PORT, "tx_error_bytes" },
435     { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
436                 8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
437     { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
438                 8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
439     { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
440                 8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
441     { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
442                 8, STATS_FLAGS_PORT, "tx_mac_errors" },
443     { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
444                 8, STATS_FLAGS_PORT, "tx_carrier_errors" },
445     { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
446                 8, STATS_FLAGS_PORT, "tx_single_collisions" },
447     { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
448                 8, STATS_FLAGS_PORT, "tx_multi_collisions" },
449     { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
450                 8, STATS_FLAGS_PORT, "tx_deferred" },
451     { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
452                 8, STATS_FLAGS_PORT, "tx_excess_collisions" },
453     { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
454                 8, STATS_FLAGS_PORT, "tx_late_collisions" },
455     { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
456                 8, STATS_FLAGS_PORT, "tx_total_collisions" },
457     { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
458                 8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
459     { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
460                 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
461     { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
462                 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
463     { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
464                 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
465     { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
466                 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
467     { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
468                 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
469     { STATS_OFFSET32(etherstatspktsover1522octets_hi),
470                 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
471     { STATS_OFFSET32(pause_frames_sent_hi),
472                 8, STATS_FLAGS_PORT, "tx_pause_frames" },
473     { STATS_OFFSET32(total_tpa_aggregations_hi),
474                 8, STATS_FLAGS_FUNC, "tpa_aggregations" },
475     { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
476                 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
477     { STATS_OFFSET32(total_tpa_bytes_hi),
478                 8, STATS_FLAGS_FUNC, "tpa_bytes"},
479 #if 0
480     { STATS_OFFSET32(recoverable_error),
481                 4, STATS_FLAGS_FUNC, "recoverable_errors" },
482     { STATS_OFFSET32(unrecoverable_error),
483                 4, STATS_FLAGS_FUNC, "unrecoverable_errors" },
484 #endif
485     { STATS_OFFSET32(eee_tx_lpi),
486                 4, STATS_FLAGS_PORT, "eee_tx_lpi"},
487     { STATS_OFFSET32(rx_calls),
488                 4, STATS_FLAGS_FUNC, "rx_calls"},
489     { STATS_OFFSET32(rx_pkts),
490                 4, STATS_FLAGS_FUNC, "rx_pkts"},
491     { STATS_OFFSET32(rx_tpa_pkts),
492                 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
493     { STATS_OFFSET32(rx_soft_errors),
494                 4, STATS_FLAGS_FUNC, "rx_soft_errors"},
495     { STATS_OFFSET32(rx_hw_csum_errors),
496                 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
497     { STATS_OFFSET32(rx_ofld_frames_csum_ip),
498                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
499     { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
500                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
501     { STATS_OFFSET32(rx_budget_reached),
502                 4, STATS_FLAGS_FUNC, "rx_budget_reached"},
503     { STATS_OFFSET32(tx_pkts),
504                 4, STATS_FLAGS_FUNC, "tx_pkts"},
505     { STATS_OFFSET32(tx_soft_errors),
506                 4, STATS_FLAGS_FUNC, "tx_soft_errors"},
507     { STATS_OFFSET32(tx_ofld_frames_csum_ip),
508                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
509     { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
510                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
511     { STATS_OFFSET32(tx_ofld_frames_csum_udp),
512                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
513     { STATS_OFFSET32(tx_ofld_frames_lso),
514                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
515     { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
516                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
517     { STATS_OFFSET32(tx_encap_failures),
518                 4, STATS_FLAGS_FUNC, "tx_encap_failures"},
519     { STATS_OFFSET32(tx_hw_queue_full),
520                 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
521     { STATS_OFFSET32(tx_hw_max_queue_depth),
522                 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
523     { STATS_OFFSET32(tx_dma_mapping_failure),
524                 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
525     { STATS_OFFSET32(tx_max_drbr_queue_depth),
526                 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
527     { STATS_OFFSET32(tx_window_violation_std),
528                 4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
529     { STATS_OFFSET32(tx_window_violation_tso),
530                 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
531 #if 0
532     { STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
533                 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_ipv6"},
534     { STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
535                 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_not_tcp"},
536 #endif
537     { STATS_OFFSET32(tx_chain_lost_mbuf),
538                 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
539     { STATS_OFFSET32(tx_frames_deferred),
540                 4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
541     { STATS_OFFSET32(tx_queue_xoff),
542                 4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
543     { STATS_OFFSET32(mbuf_defrag_attempts),
544                 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
545     { STATS_OFFSET32(mbuf_defrag_failures),
546                 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
547     { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
548                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
549     { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
550                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
551     { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
552                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
553     { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
554                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
555     { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
556                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
557     { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
558                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
559     { STATS_OFFSET32(mbuf_alloc_tx),
560                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
561     { STATS_OFFSET32(mbuf_alloc_rx),
562                 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
563     { STATS_OFFSET32(mbuf_alloc_sge),
564                 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
565     { STATS_OFFSET32(mbuf_alloc_tpa),
566                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}
567 };
568 
569 static const struct {
570     uint32_t offset;
571     uint32_t size;
572     char string[STAT_NAME_LEN];
573 } bxe_eth_q_stats_arr[] = {
574     { Q_STATS_OFFSET32(total_bytes_received_hi),
575                 8, "rx_bytes" },
576     { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
577                 8, "rx_ucast_packets" },
578     { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
579                 8, "rx_mcast_packets" },
580     { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
581                 8, "rx_bcast_packets" },
582     { Q_STATS_OFFSET32(no_buff_discard_hi),
583                 8, "rx_discards" },
584     { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
585                 8, "tx_bytes" },
586     { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
587                 8, "tx_ucast_packets" },
588     { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
589                 8, "tx_mcast_packets" },
590     { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
591                 8, "tx_bcast_packets" },
592     { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
593                 8, "tpa_aggregations" },
594     { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
595                 8, "tpa_aggregated_frames"},
596     { Q_STATS_OFFSET32(total_tpa_bytes_hi),
597                 8, "tpa_bytes"},
598     { Q_STATS_OFFSET32(rx_calls),
599                 4, "rx_calls"},
600     { Q_STATS_OFFSET32(rx_pkts),
601                 4, "rx_pkts"},
602     { Q_STATS_OFFSET32(rx_tpa_pkts),
603                 4, "rx_tpa_pkts"},
604     { Q_STATS_OFFSET32(rx_soft_errors),
605                 4, "rx_soft_errors"},
606     { Q_STATS_OFFSET32(rx_hw_csum_errors),
607                 4, "rx_hw_csum_errors"},
608     { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
609                 4, "rx_ofld_frames_csum_ip"},
610     { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
611                 4, "rx_ofld_frames_csum_tcp_udp"},
612     { Q_STATS_OFFSET32(rx_budget_reached),
613                 4, "rx_budget_reached"},
614     { Q_STATS_OFFSET32(tx_pkts),
615                 4, "tx_pkts"},
616     { Q_STATS_OFFSET32(tx_soft_errors),
617                 4, "tx_soft_errors"},
618     { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
619                 4, "tx_ofld_frames_csum_ip"},
620     { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
621                 4, "tx_ofld_frames_csum_tcp"},
622     { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
623                 4, "tx_ofld_frames_csum_udp"},
624     { Q_STATS_OFFSET32(tx_ofld_frames_lso),
625                 4, "tx_ofld_frames_lso"},
626     { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
627                 4, "tx_ofld_frames_lso_hdr_splits"},
628     { Q_STATS_OFFSET32(tx_encap_failures),
629                 4, "tx_encap_failures"},
630     { Q_STATS_OFFSET32(tx_hw_queue_full),
631                 4, "tx_hw_queue_full"},
632     { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
633                 4, "tx_hw_max_queue_depth"},
634     { Q_STATS_OFFSET32(tx_dma_mapping_failure),
635                 4, "tx_dma_mapping_failure"},
636     { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
637                 4, "tx_max_drbr_queue_depth"},
638     { Q_STATS_OFFSET32(tx_window_violation_std),
639                 4, "tx_window_violation_std"},
640     { Q_STATS_OFFSET32(tx_window_violation_tso),
641                 4, "tx_window_violation_tso"},
642 #if 0
643     { Q_STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
644                 4, "tx_unsupported_tso_request_ipv6"},
645     { Q_STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
646                 4, "tx_unsupported_tso_request_not_tcp"},
647 #endif
648     { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
649                 4, "tx_chain_lost_mbuf"},
650     { Q_STATS_OFFSET32(tx_frames_deferred),
651                 4, "tx_frames_deferred"},
652     { Q_STATS_OFFSET32(tx_queue_xoff),
653                 4, "tx_queue_xoff"},
654     { Q_STATS_OFFSET32(mbuf_defrag_attempts),
655                 4, "mbuf_defrag_attempts"},
656     { Q_STATS_OFFSET32(mbuf_defrag_failures),
657                 4, "mbuf_defrag_failures"},
658     { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
659                 4, "mbuf_rx_bd_alloc_failed"},
660     { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
661                 4, "mbuf_rx_bd_mapping_failed"},
662     { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
663                 4, "mbuf_rx_tpa_alloc_failed"},
664     { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
665                 4, "mbuf_rx_tpa_mapping_failed"},
666     { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
667                 4, "mbuf_rx_sge_alloc_failed"},
668     { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
669                 4, "mbuf_rx_sge_mapping_failed"},
670     { Q_STATS_OFFSET32(mbuf_alloc_tx),
671                 4, "mbuf_alloc_tx"},
672     { Q_STATS_OFFSET32(mbuf_alloc_rx),
673                 4, "mbuf_alloc_rx"},
674     { Q_STATS_OFFSET32(mbuf_alloc_sge),
675                 4, "mbuf_alloc_sge"},
676     { Q_STATS_OFFSET32(mbuf_alloc_tpa),
677                 4, "mbuf_alloc_tpa"}
678 };
679 
680 #define BXE_NUM_ETH_STATS   ARRAY_SIZE(bxe_eth_stats_arr)
681 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
682 
683 
684 static void    bxe_cmng_fns_init(struct bxe_softc *sc,
685                                  uint8_t          read_cfg,
686                                  uint8_t          cmng_type);
687 static int     bxe_get_cmng_fns_mode(struct bxe_softc *sc);
688 static void    storm_memset_cmng(struct bxe_softc *sc,
689                                  struct cmng_init *cmng,
690                                  uint8_t          port);
691 static void    bxe_set_reset_global(struct bxe_softc *sc);
692 static void    bxe_set_reset_in_progress(struct bxe_softc *sc);
693 static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
694                                  int              engine);
695 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
696 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
697                                    uint8_t          *global,
698                                    uint8_t          print);
699 static void    bxe_int_disable(struct bxe_softc *sc);
700 static int     bxe_release_leader_lock(struct bxe_softc *sc);
701 static void    bxe_pf_disable(struct bxe_softc *sc);
702 static void    bxe_free_fp_buffers(struct bxe_softc *sc);
703 static inline void bxe_update_rx_prod(struct bxe_softc    *sc,
704                                       struct bxe_fastpath *fp,
705                                       uint16_t            rx_bd_prod,
706                                       uint16_t            rx_cq_prod,
707                                       uint16_t            rx_sge_prod);
708 static void    bxe_link_report_locked(struct bxe_softc *sc);
709 static void    bxe_link_report(struct bxe_softc *sc);
710 static void    bxe_link_status_update(struct bxe_softc *sc);
711 static void    bxe_periodic_callout_func(void *xsc);
712 static void    bxe_periodic_start(struct bxe_softc *sc);
713 static void    bxe_periodic_stop(struct bxe_softc *sc);
714 static int     bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
715                                     uint16_t prev_index,
716                                     uint16_t index);
717 static int     bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
718                                      int                 queue);
719 static int     bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
720                                      uint16_t            index);
721 static uint8_t bxe_txeof(struct bxe_softc *sc,
722                          struct bxe_fastpath *fp);
723 static void    bxe_task_fp(struct bxe_fastpath *fp);
724 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
725                                      struct mbuf      *m,
726                                      uint8_t          contents);
727 static int     bxe_alloc_mem(struct bxe_softc *sc);
728 static void    bxe_free_mem(struct bxe_softc *sc);
729 static int     bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
730 static void    bxe_free_fw_stats_mem(struct bxe_softc *sc);
731 static int     bxe_interrupt_attach(struct bxe_softc *sc);
732 static void    bxe_interrupt_detach(struct bxe_softc *sc);
733 static void    bxe_set_rx_mode(struct bxe_softc *sc);
734 static int     bxe_init_locked(struct bxe_softc *sc);
735 static int     bxe_stop_locked(struct bxe_softc *sc);
736 static __noinline int bxe_nic_load(struct bxe_softc *sc,
737                                    int              load_mode);
738 static __noinline int bxe_nic_unload(struct bxe_softc *sc,
739                                      uint32_t         unload_mode,
740                                      uint8_t          keep_link);
741 
742 static void bxe_handle_sp_tq(void *context, int pending);
743 static void bxe_handle_rx_mode_tq(void *context, int pending);
744 static void bxe_handle_fp_tq(void *context, int pending);
745 
746 
747 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
748 uint32_t
749 calc_crc32(uint8_t  *crc32_packet,
750            uint32_t crc32_length,
751            uint32_t crc32_seed,
752            uint8_t  complement)
753 {
754    uint32_t byte         = 0;
755    uint32_t bit          = 0;
756    uint8_t  msb          = 0;
757    uint32_t temp         = 0;
758    uint32_t shft         = 0;
759    uint8_t  current_byte = 0;
760    uint32_t crc32_result = crc32_seed;
761    const uint32_t CRC32_POLY = 0x1edc6f41;
762 
763    if ((crc32_packet == NULL) ||
764        (crc32_length == 0) ||
765        ((crc32_length % 8) != 0))
766     {
767         return (crc32_result);
768     }
769 
770     for (byte = 0; byte < crc32_length; byte = byte + 1)
771     {
772         current_byte = crc32_packet[byte];
773         for (bit = 0; bit < 8; bit = bit + 1)
774         {
775             /* msb = crc32_result[31]; */
776             msb = (uint8_t)(crc32_result >> 31);
777 
778             crc32_result = crc32_result << 1;
779 
780             /* it (msb != current_byte[bit]) */
781             if (msb != (0x1 & (current_byte >> bit)))
782             {
783                 crc32_result = crc32_result ^ CRC32_POLY;
784                 /* crc32_result[0] = 1 */
785                 crc32_result |= 1;
786             }
787         }
788     }
789 
790     /* Last step is to:
791      * 1. "mirror" every bit
792      * 2. swap the 4 bytes
793      * 3. complement each bit
794      */
795 
796     /* Mirror */
797     temp = crc32_result;
798     shft = sizeof(crc32_result) * 8 - 1;
799 
800     for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
801     {
802         temp <<= 1;
803         temp |= crc32_result & 1;
804         shft-- ;
805     }
806 
807     /* temp[31-bit] = crc32_result[bit] */
808     temp <<= shft;
809 
810     /* Swap */
811     /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
812     {
813         uint32_t t0, t1, t2, t3;
814         t0 = (0x000000ff & (temp >> 24));
815         t1 = (0x0000ff00 & (temp >> 8));
816         t2 = (0x00ff0000 & (temp << 8));
817         t3 = (0xff000000 & (temp << 24));
818         crc32_result = t0 | t1 | t2 | t3;
819     }
820 
821     /* Complement */
822     if (complement)
823     {
824         crc32_result = ~crc32_result;
825     }
826 
827     return (crc32_result);
828 }
829 
830 int
831 bxe_test_bit(int                    nr,
832              volatile unsigned long *addr)
833 {
834     return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
835 }
836 
837 void
838 bxe_set_bit(unsigned int           nr,
839             volatile unsigned long *addr)
840 {
841     atomic_set_acq_long(addr, (1 << nr));
842 }
843 
844 void
845 bxe_clear_bit(int                    nr,
846               volatile unsigned long *addr)
847 {
848     atomic_clear_acq_long(addr, (1 << nr));
849 }
850 
851 int
852 bxe_test_and_set_bit(int                    nr,
853                        volatile unsigned long *addr)
854 {
855     unsigned long x;
856     nr = (1 << nr);
857     do {
858         x = *addr;
859     } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
860     // if (x & nr) bit_was_set; else bit_was_not_set;
861     return (x & nr);
862 }
863 
864 int
865 bxe_test_and_clear_bit(int                    nr,
866                        volatile unsigned long *addr)
867 {
868     unsigned long x;
869     nr = (1 << nr);
870     do {
871         x = *addr;
872     } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
873     // if (x & nr) bit_was_set; else bit_was_not_set;
874     return (x & nr);
875 }
876 
877 int
878 bxe_cmpxchg(volatile int *addr,
879             int          old,
880             int          new)
881 {
882     int x;
883     do {
884         x = *addr;
885     } while (atomic_cmpset_acq_int(addr, old, new) == 0);
886     return (x);
887 }
888 
889 /*
890  * Get DMA memory from the OS.
891  *
892  * Validates that the OS has provided DMA buffers in response to a
893  * bus_dmamap_load call and saves the physical address of those buffers.
894  * When the callback is used the OS will return 0 for the mapping function
895  * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
896  * failures back to the caller.
897  *
898  * Returns:
899  *   Nothing.
900  */
901 static void
902 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
903 {
904     struct bxe_dma *dma = arg;
905 
906     if (error) {
907         dma->paddr = 0;
908         dma->nseg  = 0;
909         BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
910     } else {
911         dma->paddr = segs->ds_addr;
912         dma->nseg  = nseg;
913 #if 0
914         BLOGD(dma->sc, DBG_LOAD,,
915               "DMA alloc '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
916               dma->msg, dma->vaddr, (void *)dma->paddr,
917               dma->nseg, dma->size);
918 #endif
919     }
920 }
921 
922 /*
923  * Allocate a block of memory and map it for DMA. No partial completions
924  * allowed and release any resources acquired if we can't acquire all
925  * resources.
926  *
927  * Returns:
928  *   0 = Success, !0 = Failure
929  */
930 int
931 bxe_dma_alloc(struct bxe_softc *sc,
932               bus_size_t       size,
933               struct bxe_dma   *dma,
934               const char       *msg)
935 {
936     int rc;
937 
938     if (dma->size > 0) {
939         BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
940               (unsigned long)dma->size);
941         return (1);
942     }
943 
944     memset(dma, 0, sizeof(*dma)); /* sanity */
945     dma->sc   = sc;
946     dma->size = size;
947     snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
948 
949     rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
950                             BCM_PAGE_SIZE,      /* alignment */
951                             0,                  /* boundary limit */
952                             BUS_SPACE_MAXADDR,  /* restricted low */
953                             BUS_SPACE_MAXADDR,  /* restricted hi */
954                             NULL,               /* addr filter() */
955                             NULL,               /* addr filter() arg */
956                             size,               /* max map size */
957                             1,                  /* num discontinuous */
958                             size,               /* max seg size */
959                             BUS_DMA_ALLOCNOW,   /* flags */
960                             NULL,               /* lock() */
961                             NULL,               /* lock() arg */
962                             &dma->tag);         /* returned dma tag */
963     if (rc != 0) {
964         BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
965         memset(dma, 0, sizeof(*dma));
966         return (1);
967     }
968 
969     rc = bus_dmamem_alloc(dma->tag,
970                           (void **)&dma->vaddr,
971                           (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
972                           &dma->map);
973     if (rc != 0) {
974         BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
975         bus_dma_tag_destroy(dma->tag);
976         memset(dma, 0, sizeof(*dma));
977         return (1);
978     }
979 
980     rc = bus_dmamap_load(dma->tag,
981                          dma->map,
982                          dma->vaddr,
983                          size,
984                          bxe_dma_map_addr, /* BLOGD in here */
985                          dma,
986                          BUS_DMA_NOWAIT);
987     if (rc != 0) {
988         BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
989         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
990         bus_dma_tag_destroy(dma->tag);
991         memset(dma, 0, sizeof(*dma));
992         return (1);
993     }
994 
995     return (0);
996 }
997 
998 void
999 bxe_dma_free(struct bxe_softc *sc,
1000              struct bxe_dma   *dma)
1001 {
1002     if (dma->size > 0) {
1003 #if 0
1004         BLOGD(sc, DBG_LOAD,
1005               "DMA free '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
1006               dma->msg, dma->vaddr, (void *)dma->paddr,
1007               dma->nseg, dma->size);
1008 #endif
1009 
1010         DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
1011 
1012         bus_dmamap_sync(dma->tag, dma->map,
1013                         (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
1014         bus_dmamap_unload(dma->tag, dma->map);
1015         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1016         bus_dma_tag_destroy(dma->tag);
1017     }
1018 
1019     memset(dma, 0, sizeof(*dma));
1020 }
1021 
1022 /*
1023  * These indirect read and write routines are only during init.
1024  * The locking is handled by the MCP.
1025  */
1026 
1027 void
1028 bxe_reg_wr_ind(struct bxe_softc *sc,
1029                uint32_t         addr,
1030                uint32_t         val)
1031 {
1032     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1033     pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
1034     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1035 }
1036 
1037 uint32_t
1038 bxe_reg_rd_ind(struct bxe_softc *sc,
1039                uint32_t         addr)
1040 {
1041     uint32_t val;
1042 
1043     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1044     val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
1045     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1046 
1047     return (val);
1048 }
1049 
1050 #if 0
1051 void bxe_dp_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int msglvl)
1052 {
1053     uint32_t src_type = dmae->opcode & DMAE_COMMAND_SRC;
1054 
1055     switch (dmae->opcode & DMAE_COMMAND_DST) {
1056     case DMAE_CMD_DST_PCI:
1057         if (src_type == DMAE_CMD_SRC_PCI)
1058             DP(msglvl, "DMAE: opcode 0x%08x\n"
1059                "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
1060                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1061                dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1062                dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1063                dmae->comp_addr_hi, dmae->comp_addr_lo,
1064                dmae->comp_val);
1065         else
1066             DP(msglvl, "DMAE: opcode 0x%08x\n"
1067                "src [%08x], len [%d*4], dst [%x:%08x]\n"
1068                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1069                dmae->opcode, dmae->src_addr_lo >> 2,
1070                dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1071                dmae->comp_addr_hi, dmae->comp_addr_lo,
1072                dmae->comp_val);
1073         break;
1074     case DMAE_CMD_DST_GRC:
1075         if (src_type == DMAE_CMD_SRC_PCI)
1076             DP(msglvl, "DMAE: opcode 0x%08x\n"
1077                "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
1078                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1079                dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1080                dmae->len, dmae->dst_addr_lo >> 2,
1081                dmae->comp_addr_hi, dmae->comp_addr_lo,
1082                dmae->comp_val);
1083         else
1084             DP(msglvl, "DMAE: opcode 0x%08x\n"
1085                "src [%08x], len [%d*4], dst [%08x]\n"
1086                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1087                dmae->opcode, dmae->src_addr_lo >> 2,
1088                dmae->len, dmae->dst_addr_lo >> 2,
1089                dmae->comp_addr_hi, dmae->comp_addr_lo,
1090                dmae->comp_val);
1091         break;
1092     default:
1093         if (src_type == DMAE_CMD_SRC_PCI)
1094             DP(msglvl, "DMAE: opcode 0x%08x\n"
1095                "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
1096                "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1097                dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1098                dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1099                dmae->comp_val);
1100         else
1101             DP(msglvl, "DMAE: opcode 0x%08x\n"
1102                "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
1103                "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1104                dmae->opcode, dmae->src_addr_lo >> 2,
1105                dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1106                dmae->comp_val);
1107         break;
1108     }
1109 
1110 }
1111 #endif
1112 
1113 static int
1114 bxe_acquire_hw_lock(struct bxe_softc *sc,
1115                     uint32_t         resource)
1116 {
1117     uint32_t lock_status;
1118     uint32_t resource_bit = (1 << resource);
1119     int func = SC_FUNC(sc);
1120     uint32_t hw_lock_control_reg;
1121     int cnt;
1122 
1123     /* validate the resource is within range */
1124     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1125         BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1126         return (-1);
1127     }
1128 
1129     if (func <= 5) {
1130         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1131     } else {
1132         hw_lock_control_reg =
1133                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1134     }
1135 
1136     /* validate the resource is not already taken */
1137     lock_status = REG_RD(sc, hw_lock_control_reg);
1138     if (lock_status & resource_bit) {
1139         BLOGE(sc, "resource in use (status 0x%x bit 0x%x)\n",
1140               lock_status, resource_bit);
1141         return (-1);
1142     }
1143 
1144     /* try every 5ms for 5 seconds */
1145     for (cnt = 0; cnt < 1000; cnt++) {
1146         REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1147         lock_status = REG_RD(sc, hw_lock_control_reg);
1148         if (lock_status & resource_bit) {
1149             return (0);
1150         }
1151         DELAY(5000);
1152     }
1153 
1154     BLOGE(sc, "Resource lock timeout!\n");
1155     return (-1);
1156 }
1157 
1158 static int
1159 bxe_release_hw_lock(struct bxe_softc *sc,
1160                     uint32_t         resource)
1161 {
1162     uint32_t lock_status;
1163     uint32_t resource_bit = (1 << resource);
1164     int func = SC_FUNC(sc);
1165     uint32_t hw_lock_control_reg;
1166 
1167     /* validate the resource is within range */
1168     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1169         BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1170         return (-1);
1171     }
1172 
1173     if (func <= 5) {
1174         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1175     } else {
1176         hw_lock_control_reg =
1177                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1178     }
1179 
1180     /* validate the resource is currently taken */
1181     lock_status = REG_RD(sc, hw_lock_control_reg);
1182     if (!(lock_status & resource_bit)) {
1183         BLOGE(sc, "resource not in use (status 0x%x bit 0x%x)\n",
1184               lock_status, resource_bit);
1185         return (-1);
1186     }
1187 
1188     REG_WR(sc, hw_lock_control_reg, resource_bit);
1189     return (0);
1190 }
1191 
1192 /*
1193  * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1194  * had we done things the other way around, if two pfs from the same port
1195  * would attempt to access nvram at the same time, we could run into a
1196  * scenario such as:
1197  * pf A takes the port lock.
1198  * pf B succeeds in taking the same lock since they are from the same port.
1199  * pf A takes the per pf misc lock. Performs eeprom access.
1200  * pf A finishes. Unlocks the per pf misc lock.
1201  * Pf B takes the lock and proceeds to perform it's own access.
1202  * pf A unlocks the per port lock, while pf B is still working (!).
1203  * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1204  * access corrupted by pf B).*
1205  */
1206 static int
1207 bxe_acquire_nvram_lock(struct bxe_softc *sc)
1208 {
1209     int port = SC_PORT(sc);
1210     int count, i;
1211     uint32_t val = 0;
1212 
1213     /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1214     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1215 
1216     /* adjust timeout for emulation/FPGA */
1217     count = NVRAM_TIMEOUT_COUNT;
1218     if (CHIP_REV_IS_SLOW(sc)) {
1219         count *= 100;
1220     }
1221 
1222     /* request access to nvram interface */
1223     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1224            (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1225 
1226     for (i = 0; i < count*10; i++) {
1227         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1228         if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1229             break;
1230         }
1231 
1232         DELAY(5);
1233     }
1234 
1235     if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1236         BLOGE(sc, "Cannot get access to nvram interface\n");
1237         return (-1);
1238     }
1239 
1240     return (0);
1241 }
1242 
1243 static int
1244 bxe_release_nvram_lock(struct bxe_softc *sc)
1245 {
1246     int port = SC_PORT(sc);
1247     int count, i;
1248     uint32_t val = 0;
1249 
1250     /* adjust timeout for emulation/FPGA */
1251     count = NVRAM_TIMEOUT_COUNT;
1252     if (CHIP_REV_IS_SLOW(sc)) {
1253         count *= 100;
1254     }
1255 
1256     /* relinquish nvram interface */
1257     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1258            (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1259 
1260     for (i = 0; i < count*10; i++) {
1261         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1262         if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1263             break;
1264         }
1265 
1266         DELAY(5);
1267     }
1268 
1269     if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1270         BLOGE(sc, "Cannot free access to nvram interface\n");
1271         return (-1);
1272     }
1273 
1274     /* release HW lock: protect against other PFs in PF Direct Assignment */
1275     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1276 
1277     return (0);
1278 }
1279 
1280 static void
1281 bxe_enable_nvram_access(struct bxe_softc *sc)
1282 {
1283     uint32_t val;
1284 
1285     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1286 
1287     /* enable both bits, even on read */
1288     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1289            (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1290 }
1291 
1292 static void
1293 bxe_disable_nvram_access(struct bxe_softc *sc)
1294 {
1295     uint32_t val;
1296 
1297     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1298 
1299     /* disable both bits, even after read */
1300     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1301            (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1302                     MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1303 }
1304 
1305 static int
1306 bxe_nvram_read_dword(struct bxe_softc *sc,
1307                      uint32_t         offset,
1308                      uint32_t         *ret_val,
1309                      uint32_t         cmd_flags)
1310 {
1311     int count, i, rc;
1312     uint32_t val;
1313 
1314     /* build the command word */
1315     cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1316 
1317     /* need to clear DONE bit separately */
1318     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1319 
1320     /* address of the NVRAM to read from */
1321     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1322            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1323 
1324     /* issue a read command */
1325     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1326 
1327     /* adjust timeout for emulation/FPGA */
1328     count = NVRAM_TIMEOUT_COUNT;
1329     if (CHIP_REV_IS_SLOW(sc)) {
1330         count *= 100;
1331     }
1332 
1333     /* wait for completion */
1334     *ret_val = 0;
1335     rc = -1;
1336     for (i = 0; i < count; i++) {
1337         DELAY(5);
1338         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1339 
1340         if (val & MCPR_NVM_COMMAND_DONE) {
1341             val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1342             /* we read nvram data in cpu order
1343              * but ethtool sees it as an array of bytes
1344              * converting to big-endian will do the work
1345              */
1346             *ret_val = htobe32(val);
1347             rc = 0;
1348             break;
1349         }
1350     }
1351 
1352     if (rc == -1) {
1353         BLOGE(sc, "nvram read timeout expired\n");
1354     }
1355 
1356     return (rc);
1357 }
1358 
1359 static int
1360 bxe_nvram_read(struct bxe_softc *sc,
1361                uint32_t         offset,
1362                uint8_t          *ret_buf,
1363                int              buf_size)
1364 {
1365     uint32_t cmd_flags;
1366     uint32_t val;
1367     int rc;
1368 
1369     if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1370         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1371               offset, buf_size);
1372         return (-1);
1373     }
1374 
1375     if ((offset + buf_size) > sc->devinfo.flash_size) {
1376         BLOGE(sc, "Invalid parameter, "
1377                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1378               offset, buf_size, sc->devinfo.flash_size);
1379         return (-1);
1380     }
1381 
1382     /* request access to nvram interface */
1383     rc = bxe_acquire_nvram_lock(sc);
1384     if (rc) {
1385         return (rc);
1386     }
1387 
1388     /* enable access to nvram interface */
1389     bxe_enable_nvram_access(sc);
1390 
1391     /* read the first word(s) */
1392     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1393     while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1394         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1395         memcpy(ret_buf, &val, 4);
1396 
1397         /* advance to the next dword */
1398         offset += sizeof(uint32_t);
1399         ret_buf += sizeof(uint32_t);
1400         buf_size -= sizeof(uint32_t);
1401         cmd_flags = 0;
1402     }
1403 
1404     if (rc == 0) {
1405         cmd_flags |= MCPR_NVM_COMMAND_LAST;
1406         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1407         memcpy(ret_buf, &val, 4);
1408     }
1409 
1410     /* disable access to nvram interface */
1411     bxe_disable_nvram_access(sc);
1412     bxe_release_nvram_lock(sc);
1413 
1414     return (rc);
1415 }
1416 
1417 static int
1418 bxe_nvram_write_dword(struct bxe_softc *sc,
1419                       uint32_t         offset,
1420                       uint32_t         val,
1421                       uint32_t         cmd_flags)
1422 {
1423     int count, i, rc;
1424 
1425     /* build the command word */
1426     cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1427 
1428     /* need to clear DONE bit separately */
1429     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1430 
1431     /* write the data */
1432     REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1433 
1434     /* address of the NVRAM to write to */
1435     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1436            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1437 
1438     /* issue the write command */
1439     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1440 
1441     /* adjust timeout for emulation/FPGA */
1442     count = NVRAM_TIMEOUT_COUNT;
1443     if (CHIP_REV_IS_SLOW(sc)) {
1444         count *= 100;
1445     }
1446 
1447     /* wait for completion */
1448     rc = -1;
1449     for (i = 0; i < count; i++) {
1450         DELAY(5);
1451         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1452         if (val & MCPR_NVM_COMMAND_DONE) {
1453             rc = 0;
1454             break;
1455         }
1456     }
1457 
1458     if (rc == -1) {
1459         BLOGE(sc, "nvram write timeout expired\n");
1460     }
1461 
1462     return (rc);
1463 }
1464 
1465 #define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1466 
1467 static int
1468 bxe_nvram_write1(struct bxe_softc *sc,
1469                  uint32_t         offset,
1470                  uint8_t          *data_buf,
1471                  int              buf_size)
1472 {
1473     uint32_t cmd_flags;
1474     uint32_t align_offset;
1475     uint32_t val;
1476     int rc;
1477 
1478     if ((offset + buf_size) > sc->devinfo.flash_size) {
1479         BLOGE(sc, "Invalid parameter, "
1480                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1481               offset, buf_size, sc->devinfo.flash_size);
1482         return (-1);
1483     }
1484 
1485     /* request access to nvram interface */
1486     rc = bxe_acquire_nvram_lock(sc);
1487     if (rc) {
1488         return (rc);
1489     }
1490 
1491     /* enable access to nvram interface */
1492     bxe_enable_nvram_access(sc);
1493 
1494     cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1495     align_offset = (offset & ~0x03);
1496     rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1497 
1498     if (rc == 0) {
1499         val &= ~(0xff << BYTE_OFFSET(offset));
1500         val |= (*data_buf << BYTE_OFFSET(offset));
1501 
1502         /* nvram data is returned as an array of bytes
1503          * convert it back to cpu order
1504          */
1505         val = be32toh(val);
1506 
1507         rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1508     }
1509 
1510     /* disable access to nvram interface */
1511     bxe_disable_nvram_access(sc);
1512     bxe_release_nvram_lock(sc);
1513 
1514     return (rc);
1515 }
1516 
1517 static int
1518 bxe_nvram_write(struct bxe_softc *sc,
1519                 uint32_t         offset,
1520                 uint8_t          *data_buf,
1521                 int              buf_size)
1522 {
1523     uint32_t cmd_flags;
1524     uint32_t val;
1525     uint32_t written_so_far;
1526     int rc;
1527 
1528     if (buf_size == 1) {
1529         return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1530     }
1531 
1532     if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1533         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1534               offset, buf_size);
1535         return (-1);
1536     }
1537 
1538     if (buf_size == 0) {
1539         return (0); /* nothing to do */
1540     }
1541 
1542     if ((offset + buf_size) > sc->devinfo.flash_size) {
1543         BLOGE(sc, "Invalid parameter, "
1544                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1545               offset, buf_size, sc->devinfo.flash_size);
1546         return (-1);
1547     }
1548 
1549     /* request access to nvram interface */
1550     rc = bxe_acquire_nvram_lock(sc);
1551     if (rc) {
1552         return (rc);
1553     }
1554 
1555     /* enable access to nvram interface */
1556     bxe_enable_nvram_access(sc);
1557 
1558     written_so_far = 0;
1559     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1560     while ((written_so_far < buf_size) && (rc == 0)) {
1561         if (written_so_far == (buf_size - sizeof(uint32_t))) {
1562             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1563         } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1564             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1565         } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1566             cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1567         }
1568 
1569         memcpy(&val, data_buf, 4);
1570 
1571         rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1572 
1573         /* advance to the next dword */
1574         offset += sizeof(uint32_t);
1575         data_buf += sizeof(uint32_t);
1576         written_so_far += sizeof(uint32_t);
1577         cmd_flags = 0;
1578     }
1579 
1580     /* disable access to nvram interface */
1581     bxe_disable_nvram_access(sc);
1582     bxe_release_nvram_lock(sc);
1583 
1584     return (rc);
1585 }
1586 
1587 /* copy command into DMAE command memory and set DMAE command Go */
1588 void
1589 bxe_post_dmae(struct bxe_softc    *sc,
1590               struct dmae_command *dmae,
1591               int                 idx)
1592 {
1593     uint32_t cmd_offset;
1594     int i;
1595 
1596     cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx));
1597     for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) {
1598         REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1599     }
1600 
1601     REG_WR(sc, dmae_reg_go_c[idx], 1);
1602 }
1603 
1604 uint32_t
1605 bxe_dmae_opcode_add_comp(uint32_t opcode,
1606                          uint8_t  comp_type)
1607 {
1608     return (opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
1609                       DMAE_COMMAND_C_TYPE_ENABLE));
1610 }
1611 
1612 uint32_t
1613 bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1614 {
1615     return (opcode & ~DMAE_COMMAND_SRC_RESET);
1616 }
1617 
1618 uint32_t
1619 bxe_dmae_opcode(struct bxe_softc *sc,
1620                 uint8_t          src_type,
1621                 uint8_t          dst_type,
1622                 uint8_t          with_comp,
1623                 uint8_t          comp_type)
1624 {
1625     uint32_t opcode = 0;
1626 
1627     opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
1628                (dst_type << DMAE_COMMAND_DST_SHIFT));
1629 
1630     opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET);
1631 
1632     opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1633 
1634     opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) |
1635                (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT));
1636 
1637     opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
1638 
1639 #ifdef __BIG_ENDIAN
1640     opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1641 #else
1642     opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1643 #endif
1644 
1645     if (with_comp) {
1646         opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1647     }
1648 
1649     return (opcode);
1650 }
1651 
1652 static void
1653 bxe_prep_dmae_with_comp(struct bxe_softc    *sc,
1654                         struct dmae_command *dmae,
1655                         uint8_t             src_type,
1656                         uint8_t             dst_type)
1657 {
1658     memset(dmae, 0, sizeof(struct dmae_command));
1659 
1660     /* set the opcode */
1661     dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1662                                    TRUE, DMAE_COMP_PCI);
1663 
1664     /* fill in the completion parameters */
1665     dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1666     dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1667     dmae->comp_val     = DMAE_COMP_VAL;
1668 }
1669 
1670 /* issue a DMAE command over the init channel and wait for completion */
1671 static int
1672 bxe_issue_dmae_with_comp(struct bxe_softc    *sc,
1673                          struct dmae_command *dmae)
1674 {
1675     uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1676     int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1677 
1678     BXE_DMAE_LOCK(sc);
1679 
1680     /* reset completion */
1681     *wb_comp = 0;
1682 
1683     /* post the command on the channel used for initializations */
1684     bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1685 
1686     /* wait for completion */
1687     DELAY(5);
1688 
1689     while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1690         if (!timeout ||
1691             (sc->recovery_state != BXE_RECOVERY_DONE &&
1692              sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1693             BLOGE(sc, "DMAE timeout!\n");
1694             BXE_DMAE_UNLOCK(sc);
1695             return (DMAE_TIMEOUT);
1696         }
1697 
1698         timeout--;
1699         DELAY(50);
1700     }
1701 
1702     if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1703         BLOGE(sc, "DMAE PCI error!\n");
1704         BXE_DMAE_UNLOCK(sc);
1705         return (DMAE_PCI_ERROR);
1706     }
1707 
1708     BXE_DMAE_UNLOCK(sc);
1709     return (0);
1710 }
1711 
1712 void
1713 bxe_read_dmae(struct bxe_softc *sc,
1714               uint32_t         src_addr,
1715               uint32_t         len32)
1716 {
1717     struct dmae_command dmae;
1718     uint32_t *data;
1719     int i, rc;
1720 
1721     DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1722 
1723     if (!sc->dmae_ready) {
1724         data = BXE_SP(sc, wb_data[0]);
1725 
1726         for (i = 0; i < len32; i++) {
1727             data[i] = (CHIP_IS_E1(sc)) ?
1728                           bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1729                           REG_RD(sc, (src_addr + (i * 4)));
1730         }
1731 
1732         return;
1733     }
1734 
1735     /* set opcode and fixed command fields */
1736     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1737 
1738     /* fill in addresses and len */
1739     dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1740     dmae.src_addr_hi = 0;
1741     dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1742     dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1743     dmae.len         = len32;
1744 
1745     /* issue the command and wait for completion */
1746     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1747         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1748     };
1749 }
1750 
1751 void
1752 bxe_write_dmae(struct bxe_softc *sc,
1753                bus_addr_t       dma_addr,
1754                uint32_t         dst_addr,
1755                uint32_t         len32)
1756 {
1757     struct dmae_command dmae;
1758     int rc;
1759 
1760     if (!sc->dmae_ready) {
1761         DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1762 
1763         if (CHIP_IS_E1(sc)) {
1764             ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1765         } else {
1766             ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1767         }
1768 
1769         return;
1770     }
1771 
1772     /* set opcode and fixed command fields */
1773     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1774 
1775     /* fill in addresses and len */
1776     dmae.src_addr_lo = U64_LO(dma_addr);
1777     dmae.src_addr_hi = U64_HI(dma_addr);
1778     dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1779     dmae.dst_addr_hi = 0;
1780     dmae.len         = len32;
1781 
1782     /* issue the command and wait for completion */
1783     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1784         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1785     }
1786 }
1787 
1788 void
1789 bxe_write_dmae_phys_len(struct bxe_softc *sc,
1790                         bus_addr_t       phys_addr,
1791                         uint32_t         addr,
1792                         uint32_t         len)
1793 {
1794     int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1795     int offset = 0;
1796 
1797     while (len > dmae_wr_max) {
1798         bxe_write_dmae(sc,
1799                        (phys_addr + offset), /* src DMA address */
1800                        (addr + offset),      /* dst GRC address */
1801                        dmae_wr_max);
1802         offset += (dmae_wr_max * 4);
1803         len -= dmae_wr_max;
1804     }
1805 
1806     bxe_write_dmae(sc,
1807                    (phys_addr + offset), /* src DMA address */
1808                    (addr + offset),      /* dst GRC address */
1809                    len);
1810 }
1811 
1812 void
1813 bxe_set_ctx_validation(struct bxe_softc   *sc,
1814                        struct eth_context *cxt,
1815                        uint32_t           cid)
1816 {
1817     /* ustorm cxt validation */
1818     cxt->ustorm_ag_context.cdu_usage =
1819         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1820             CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1821     /* xcontext validation */
1822     cxt->xstorm_ag_context.cdu_reserved =
1823         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1824             CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1825 }
1826 
1827 static void
1828 bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1829                             uint8_t          port,
1830                             uint8_t          fw_sb_id,
1831                             uint8_t          sb_index,
1832                             uint8_t          ticks)
1833 {
1834     uint32_t addr =
1835         (BAR_CSTRORM_INTMEM +
1836          CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1837 
1838     REG_WR8(sc, addr, ticks);
1839 
1840     BLOGD(sc, DBG_LOAD,
1841           "port %d fw_sb_id %d sb_index %d ticks %d\n",
1842           port, fw_sb_id, sb_index, ticks);
1843 }
1844 
1845 static void
1846 bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1847                             uint8_t          port,
1848                             uint16_t         fw_sb_id,
1849                             uint8_t          sb_index,
1850                             uint8_t          disable)
1851 {
1852     uint32_t enable_flag =
1853         (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1854     uint32_t addr =
1855         (BAR_CSTRORM_INTMEM +
1856          CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1857     uint8_t flags;
1858 
1859     /* clear and set */
1860     flags = REG_RD8(sc, addr);
1861     flags &= ~HC_INDEX_DATA_HC_ENABLED;
1862     flags |= enable_flag;
1863     REG_WR8(sc, addr, flags);
1864 
1865     BLOGD(sc, DBG_LOAD,
1866           "port %d fw_sb_id %d sb_index %d disable %d\n",
1867           port, fw_sb_id, sb_index, disable);
1868 }
1869 
1870 void
1871 bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1872                              uint8_t          fw_sb_id,
1873                              uint8_t          sb_index,
1874                              uint8_t          disable,
1875                              uint16_t         usec)
1876 {
1877     int port = SC_PORT(sc);
1878     uint8_t ticks = (usec / 4); /* XXX ??? */
1879 
1880     bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1881 
1882     disable = (disable) ? 1 : ((usec) ? 0 : 1);
1883     bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1884 }
1885 
1886 void
1887 elink_cb_udelay(struct bxe_softc *sc,
1888                 uint32_t         usecs)
1889 {
1890     DELAY(usecs);
1891 }
1892 
1893 uint32_t
1894 elink_cb_reg_read(struct bxe_softc *sc,
1895                   uint32_t         reg_addr)
1896 {
1897     return (REG_RD(sc, reg_addr));
1898 }
1899 
1900 void
1901 elink_cb_reg_write(struct bxe_softc *sc,
1902                    uint32_t         reg_addr,
1903                    uint32_t         val)
1904 {
1905     REG_WR(sc, reg_addr, val);
1906 }
1907 
1908 void
1909 elink_cb_reg_wb_write(struct bxe_softc *sc,
1910                       uint32_t         offset,
1911                       uint32_t         *wb_write,
1912                       uint16_t         len)
1913 {
1914     REG_WR_DMAE(sc, offset, wb_write, len);
1915 }
1916 
1917 void
1918 elink_cb_reg_wb_read(struct bxe_softc *sc,
1919                      uint32_t         offset,
1920                      uint32_t         *wb_write,
1921                      uint16_t         len)
1922 {
1923     REG_RD_DMAE(sc, offset, wb_write, len);
1924 }
1925 
1926 uint8_t
1927 elink_cb_path_id(struct bxe_softc *sc)
1928 {
1929     return (SC_PATH(sc));
1930 }
1931 
1932 void
1933 elink_cb_event_log(struct bxe_softc     *sc,
1934                    const elink_log_id_t elink_log_id,
1935                    ...)
1936 {
1937     /* XXX */
1938 #if 0
1939     //va_list ap;
1940     va_start(ap, elink_log_id);
1941     _XXX_(sc, lm_log_id, ap);
1942     va_end(ap);
1943 #endif
1944     BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1945 }
1946 
1947 static int
1948 bxe_set_spio(struct bxe_softc *sc,
1949              int              spio,
1950              uint32_t         mode)
1951 {
1952     uint32_t spio_reg;
1953 
1954     /* Only 2 SPIOs are configurable */
1955     if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1956         BLOGE(sc, "Invalid SPIO 0x%x\n", spio);
1957         return (-1);
1958     }
1959 
1960     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1961 
1962     /* read SPIO and mask except the float bits */
1963     spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1964 
1965     switch (mode) {
1966     case MISC_SPIO_OUTPUT_LOW:
1967         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1968         /* clear FLOAT and set CLR */
1969         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1970         spio_reg |=  (spio << MISC_SPIO_CLR_POS);
1971         break;
1972 
1973     case MISC_SPIO_OUTPUT_HIGH:
1974         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1975         /* clear FLOAT and set SET */
1976         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1977         spio_reg |=  (spio << MISC_SPIO_SET_POS);
1978         break;
1979 
1980     case MISC_SPIO_INPUT_HI_Z:
1981         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1982         /* set FLOAT */
1983         spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1984         break;
1985 
1986     default:
1987         break;
1988     }
1989 
1990     REG_WR(sc, MISC_REG_SPIO, spio_reg);
1991     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1992 
1993     return (0);
1994 }
1995 
1996 static int
1997 bxe_gpio_read(struct bxe_softc *sc,
1998               int              gpio_num,
1999               uint8_t          port)
2000 {
2001     /* The GPIO should be swapped if swap register is set and active */
2002     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2003                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2004     int gpio_shift = (gpio_num +
2005                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2006     uint32_t gpio_mask = (1 << gpio_shift);
2007     uint32_t gpio_reg;
2008 
2009     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2010         BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2011         return (-1);
2012     }
2013 
2014     /* read GPIO value */
2015     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2016 
2017     /* get the requested pin value */
2018     return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
2019 }
2020 
2021 static int
2022 bxe_gpio_write(struct bxe_softc *sc,
2023                int              gpio_num,
2024                uint32_t         mode,
2025                uint8_t          port)
2026 {
2027     /* The GPIO should be swapped if swap register is set and active */
2028     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2029                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2030     int gpio_shift = (gpio_num +
2031                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2032     uint32_t gpio_mask = (1 << gpio_shift);
2033     uint32_t gpio_reg;
2034 
2035     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2036         BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2037         return (-1);
2038     }
2039 
2040     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2041 
2042     /* read GPIO and mask except the float bits */
2043     gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2044 
2045     switch (mode) {
2046     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2047         BLOGD(sc, DBG_PHY,
2048               "Set GPIO %d (shift %d) -> output low\n",
2049               gpio_num, gpio_shift);
2050         /* clear FLOAT and set CLR */
2051         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2052         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2053         break;
2054 
2055     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2056         BLOGD(sc, DBG_PHY,
2057               "Set GPIO %d (shift %d) -> output high\n",
2058               gpio_num, gpio_shift);
2059         /* clear FLOAT and set SET */
2060         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2061         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2062         break;
2063 
2064     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2065         BLOGD(sc, DBG_PHY,
2066               "Set GPIO %d (shift %d) -> input\n",
2067               gpio_num, gpio_shift);
2068         /* set FLOAT */
2069         gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2070         break;
2071 
2072     default:
2073         break;
2074     }
2075 
2076     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2077     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2078 
2079     return (0);
2080 }
2081 
2082 static int
2083 bxe_gpio_mult_write(struct bxe_softc *sc,
2084                     uint8_t          pins,
2085                     uint32_t         mode)
2086 {
2087     uint32_t gpio_reg;
2088 
2089     /* any port swapping should be handled by caller */
2090 
2091     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2092 
2093     /* read GPIO and mask except the float bits */
2094     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2095     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2096     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2097     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2098 
2099     switch (mode) {
2100     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2101         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
2102         /* set CLR */
2103         gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2104         break;
2105 
2106     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2107         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
2108         /* set SET */
2109         gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2110         break;
2111 
2112     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2113         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
2114         /* set FLOAT */
2115         gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2116         break;
2117 
2118     default:
2119         BLOGE(sc, "Invalid GPIO mode assignment %d\n", mode);
2120         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2121         return (-1);
2122     }
2123 
2124     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2125     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2126 
2127     return (0);
2128 }
2129 
2130 static int
2131 bxe_gpio_int_write(struct bxe_softc *sc,
2132                    int              gpio_num,
2133                    uint32_t         mode,
2134                    uint8_t          port)
2135 {
2136     /* The GPIO should be swapped if swap register is set and active */
2137     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2138                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2139     int gpio_shift = (gpio_num +
2140                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2141     uint32_t gpio_mask = (1 << gpio_shift);
2142     uint32_t gpio_reg;
2143 
2144     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2145         BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2146         return (-1);
2147     }
2148 
2149     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2150 
2151     /* read GPIO int */
2152     gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2153 
2154     switch (mode) {
2155     case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2156         BLOGD(sc, DBG_PHY,
2157               "Clear GPIO INT %d (shift %d) -> output low\n",
2158               gpio_num, gpio_shift);
2159         /* clear SET and set CLR */
2160         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2161         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2162         break;
2163 
2164     case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2165         BLOGD(sc, DBG_PHY,
2166               "Set GPIO INT %d (shift %d) -> output high\n",
2167               gpio_num, gpio_shift);
2168         /* clear CLR and set SET */
2169         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2170         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2171         break;
2172 
2173     default:
2174         break;
2175     }
2176 
2177     REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2178     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2179 
2180     return (0);
2181 }
2182 
2183 uint32_t
2184 elink_cb_gpio_read(struct bxe_softc *sc,
2185                    uint16_t         gpio_num,
2186                    uint8_t          port)
2187 {
2188     return (bxe_gpio_read(sc, gpio_num, port));
2189 }
2190 
2191 uint8_t
2192 elink_cb_gpio_write(struct bxe_softc *sc,
2193                     uint16_t         gpio_num,
2194                     uint8_t          mode, /* 0=low 1=high */
2195                     uint8_t          port)
2196 {
2197     return (bxe_gpio_write(sc, gpio_num, mode, port));
2198 }
2199 
2200 uint8_t
2201 elink_cb_gpio_mult_write(struct bxe_softc *sc,
2202                          uint8_t          pins,
2203                          uint8_t          mode) /* 0=low 1=high */
2204 {
2205     return (bxe_gpio_mult_write(sc, pins, mode));
2206 }
2207 
2208 uint8_t
2209 elink_cb_gpio_int_write(struct bxe_softc *sc,
2210                         uint16_t         gpio_num,
2211                         uint8_t          mode, /* 0=low 1=high */
2212                         uint8_t          port)
2213 {
2214     return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2215 }
2216 
2217 void
2218 elink_cb_notify_link_changed(struct bxe_softc *sc)
2219 {
2220     REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2221                 (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2222 }
2223 
2224 /* send the MCP a request, block until there is a reply */
2225 uint32_t
2226 elink_cb_fw_command(struct bxe_softc *sc,
2227                     uint32_t         command,
2228                     uint32_t         param)
2229 {
2230     int mb_idx = SC_FW_MB_IDX(sc);
2231     uint32_t seq;
2232     uint32_t rc = 0;
2233     uint32_t cnt = 1;
2234     uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2235 
2236     BXE_FWMB_LOCK(sc);
2237 
2238     seq = ++sc->fw_seq;
2239     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2240     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2241 
2242     BLOGD(sc, DBG_PHY,
2243           "wrote command 0x%08x to FW MB param 0x%08x\n",
2244           (command | seq), param);
2245 
2246     /* Let the FW do it's magic. GIve it up to 5 seconds... */
2247     do {
2248         DELAY(delay * 1000);
2249         rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2250     } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2251 
2252     BLOGD(sc, DBG_PHY,
2253           "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2254           cnt*delay, rc, seq);
2255 
2256     /* is this a reply to our command? */
2257     if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2258         rc &= FW_MSG_CODE_MASK;
2259     } else {
2260         /* Ruh-roh! */
2261         BLOGE(sc, "FW failed to respond!\n");
2262         // XXX bxe_fw_dump(sc);
2263         rc = 0;
2264     }
2265 
2266     BXE_FWMB_UNLOCK(sc);
2267     return (rc);
2268 }
2269 
2270 static uint32_t
2271 bxe_fw_command(struct bxe_softc *sc,
2272                uint32_t         command,
2273                uint32_t         param)
2274 {
2275     return (elink_cb_fw_command(sc, command, param));
2276 }
2277 
2278 static void
2279 __storm_memset_dma_mapping(struct bxe_softc *sc,
2280                            uint32_t         addr,
2281                            bus_addr_t       mapping)
2282 {
2283     REG_WR(sc, addr, U64_LO(mapping));
2284     REG_WR(sc, (addr + 4), U64_HI(mapping));
2285 }
2286 
2287 static void
2288 storm_memset_spq_addr(struct bxe_softc *sc,
2289                       bus_addr_t       mapping,
2290                       uint16_t         abs_fid)
2291 {
2292     uint32_t addr = (XSEM_REG_FAST_MEMORY +
2293                      XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2294     __storm_memset_dma_mapping(sc, addr, mapping);
2295 }
2296 
2297 static void
2298 storm_memset_vf_to_pf(struct bxe_softc *sc,
2299                       uint16_t         abs_fid,
2300                       uint16_t         pf_id)
2301 {
2302     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2303     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2304     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2305     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2306 }
2307 
2308 static void
2309 storm_memset_func_en(struct bxe_softc *sc,
2310                      uint16_t         abs_fid,
2311                      uint8_t          enable)
2312 {
2313     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2314     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2315     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2316     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2317 }
2318 
2319 static void
2320 storm_memset_eq_data(struct bxe_softc       *sc,
2321                      struct event_ring_data *eq_data,
2322                      uint16_t               pfid)
2323 {
2324     uint32_t addr;
2325     size_t size;
2326 
2327     addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2328     size = sizeof(struct event_ring_data);
2329     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2330 }
2331 
2332 static void
2333 storm_memset_eq_prod(struct bxe_softc *sc,
2334                      uint16_t         eq_prod,
2335                      uint16_t         pfid)
2336 {
2337     uint32_t addr = (BAR_CSTRORM_INTMEM +
2338                      CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2339     REG_WR16(sc, addr, eq_prod);
2340 }
2341 
2342 /*
2343  * Post a slowpath command.
2344  *
2345  * A slowpath command is used to propogate a configuration change through
2346  * the controller in a controlled manner, allowing each STORM processor and
2347  * other H/W blocks to phase in the change.  The commands sent on the
2348  * slowpath are referred to as ramrods.  Depending on the ramrod used the
2349  * completion of the ramrod will occur in different ways.  Here's a
2350  * breakdown of ramrods and how they complete:
2351  *
2352  * RAMROD_CMD_ID_ETH_PORT_SETUP
2353  *   Used to setup the leading connection on a port.  Completes on the
2354  *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
2355  *
2356  * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2357  *   Used to setup an additional connection on a port.  Completes on the
2358  *   RCQ of the multi-queue/RSS connection being initialized.
2359  *
2360  * RAMROD_CMD_ID_ETH_STAT_QUERY
2361  *   Used to force the storm processors to update the statistics database
2362  *   in host memory.  This ramrod is send on the leading connection CID and
2363  *   completes as an index increment of the CSTORM on the default status
2364  *   block.
2365  *
2366  * RAMROD_CMD_ID_ETH_UPDATE
2367  *   Used to update the state of the leading connection, usually to udpate
2368  *   the RSS indirection table.  Completes on the RCQ of the leading
2369  *   connection. (Not currently used under FreeBSD until OS support becomes
2370  *   available.)
2371  *
2372  * RAMROD_CMD_ID_ETH_HALT
2373  *   Used when tearing down a connection prior to driver unload.  Completes
2374  *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
2375  *   use this on the leading connection.
2376  *
2377  * RAMROD_CMD_ID_ETH_SET_MAC
2378  *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
2379  *   the RCQ of the leading connection.
2380  *
2381  * RAMROD_CMD_ID_ETH_CFC_DEL
2382  *   Used when tearing down a conneciton prior to driver unload.  Completes
2383  *   on the RCQ of the leading connection (since the current connection
2384  *   has been completely removed from controller memory).
2385  *
2386  * RAMROD_CMD_ID_ETH_PORT_DEL
2387  *   Used to tear down the leading connection prior to driver unload,
2388  *   typically fp[0].  Completes as an index increment of the CSTORM on the
2389  *   default status block.
2390  *
2391  * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2392  *   Used for connection offload.  Completes on the RCQ of the multi-queue
2393  *   RSS connection that is being offloaded.  (Not currently used under
2394  *   FreeBSD.)
2395  *
2396  * There can only be one command pending per function.
2397  *
2398  * Returns:
2399  *   0 = Success, !0 = Failure.
2400  */
2401 
2402 /* must be called under the spq lock */
2403 static inline
2404 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2405 {
2406     struct eth_spe *next_spe = sc->spq_prod_bd;
2407 
2408     if (sc->spq_prod_bd == sc->spq_last_bd) {
2409         /* wrap back to the first eth_spq */
2410         sc->spq_prod_bd = sc->spq;
2411         sc->spq_prod_idx = 0;
2412     } else {
2413         sc->spq_prod_bd++;
2414         sc->spq_prod_idx++;
2415     }
2416 
2417     return (next_spe);
2418 }
2419 
2420 /* must be called under the spq lock */
2421 static inline
2422 void bxe_sp_prod_update(struct bxe_softc *sc)
2423 {
2424     int func = SC_FUNC(sc);
2425 
2426     /*
2427      * Make sure that BD data is updated before writing the producer.
2428      * BD data is written to the memory, the producer is read from the
2429      * memory, thus we need a full memory barrier to ensure the ordering.
2430      */
2431     mb();
2432 
2433     REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2434              sc->spq_prod_idx);
2435 
2436     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2437                       BUS_SPACE_BARRIER_WRITE);
2438 }
2439 
2440 /**
2441  * bxe_is_contextless_ramrod - check if the current command ends on EQ
2442  *
2443  * @cmd:      command to check
2444  * @cmd_type: command type
2445  */
2446 static inline
2447 int bxe_is_contextless_ramrod(int cmd,
2448                               int cmd_type)
2449 {
2450     if ((cmd_type == NONE_CONNECTION_TYPE) ||
2451         (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2452         (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2453         (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2454         (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2455         (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2456         (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2457         return (TRUE);
2458     } else {
2459         return (FALSE);
2460     }
2461 }
2462 
2463 /**
2464  * bxe_sp_post - place a single command on an SP ring
2465  *
2466  * @sc:         driver handle
2467  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
2468  * @cid:        SW CID the command is related to
2469  * @data_hi:    command private data address (high 32 bits)
2470  * @data_lo:    command private data address (low 32 bits)
2471  * @cmd_type:   command type (e.g. NONE, ETH)
2472  *
2473  * SP data is handled as if it's always an address pair, thus data fields are
2474  * not swapped to little endian in upper functions. Instead this function swaps
2475  * data as if it's two uint32 fields.
2476  */
2477 int
2478 bxe_sp_post(struct bxe_softc *sc,
2479             int              command,
2480             int              cid,
2481             uint32_t         data_hi,
2482             uint32_t         data_lo,
2483             int              cmd_type)
2484 {
2485     struct eth_spe *spe;
2486     uint16_t type;
2487     int common;
2488 
2489     common = bxe_is_contextless_ramrod(command, cmd_type);
2490 
2491     BXE_SP_LOCK(sc);
2492 
2493     if (common) {
2494         if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2495             BLOGE(sc, "EQ ring is full!\n");
2496             BXE_SP_UNLOCK(sc);
2497             return (-1);
2498         }
2499     } else {
2500         if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2501             BLOGE(sc, "SPQ ring is full!\n");
2502             BXE_SP_UNLOCK(sc);
2503             return (-1);
2504         }
2505     }
2506 
2507     spe = bxe_sp_get_next(sc);
2508 
2509     /* CID needs port number to be encoded int it */
2510     spe->hdr.conn_and_cmd_data =
2511         htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid));
2512 
2513     type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
2514 
2515     /* TBD: Check if it works for VFs */
2516     type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) &
2517              SPE_HDR_FUNCTION_ID);
2518 
2519     spe->hdr.type = htole16(type);
2520 
2521     spe->data.update_data_addr.hi = htole32(data_hi);
2522     spe->data.update_data_addr.lo = htole32(data_lo);
2523 
2524     /*
2525      * It's ok if the actual decrement is issued towards the memory
2526      * somewhere between the lock and unlock. Thus no more explict
2527      * memory barrier is needed.
2528      */
2529     if (common) {
2530         atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2531     } else {
2532         atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2533     }
2534 
2535     BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2536     BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2537           BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2538     BLOGD(sc, DBG_SP,
2539           "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2540           sc->spq_prod_idx,
2541           (uint32_t)U64_HI(sc->spq_dma.paddr),
2542           (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2543           command,
2544           common,
2545           HW_CID(sc, cid),
2546           data_hi,
2547           data_lo,
2548           type,
2549           atomic_load_acq_long(&sc->cq_spq_left),
2550           atomic_load_acq_long(&sc->eq_spq_left));
2551 
2552     bxe_sp_prod_update(sc);
2553 
2554     BXE_SP_UNLOCK(sc);
2555     return (0);
2556 }
2557 
2558 /**
2559  * bxe_debug_print_ind_table - prints the indirection table configuration.
2560  *
2561  * @sc: driver hanlde
2562  * @p:  pointer to rss configuration
2563  */
2564 #if 0
2565 static void
2566 bxe_debug_print_ind_table(struct bxe_softc               *sc,
2567                           struct ecore_config_rss_params *p)
2568 {
2569     int i;
2570 
2571     BLOGD(sc, DBG_LOAD, "Setting indirection table to:\n");
2572     BLOGD(sc, DBG_LOAD, "    0x0000: ");
2573     for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
2574         BLOGD(sc, DBG_LOAD, "0x%02x ", p->ind_table[i]);
2575 
2576         /* Print 4 bytes in a line */
2577         if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) &&
2578             (((i + 1) & 0x3) == 0)) {
2579             BLOGD(sc, DBG_LOAD, "\n");
2580             BLOGD(sc, DBG_LOAD, "0x%04x: ", i + 1);
2581         }
2582     }
2583 
2584     BLOGD(sc, DBG_LOAD, "\n");
2585 }
2586 #endif
2587 
2588 /*
2589  * FreeBSD Device probe function.
2590  *
2591  * Compares the device found to the driver's list of supported devices and
2592  * reports back to the bsd loader whether this is the right driver for the device.
2593  * This is the driver entry function called from the "kldload" command.
2594  *
2595  * Returns:
2596  *   BUS_PROBE_DEFAULT on success, positive value on failure.
2597  */
2598 static int
2599 bxe_probe(device_t dev)
2600 {
2601     struct bxe_softc *sc;
2602     struct bxe_device_type *t;
2603     char *descbuf;
2604     uint16_t did, sdid, svid, vid;
2605 
2606     /* Find our device structure */
2607     sc = device_get_softc(dev);
2608     sc->dev = dev;
2609     t = bxe_devs;
2610 
2611     /* Get the data for the device to be probed. */
2612     vid  = pci_get_vendor(dev);
2613     did  = pci_get_device(dev);
2614     svid = pci_get_subvendor(dev);
2615     sdid = pci_get_subdevice(dev);
2616 
2617     BLOGD(sc, DBG_LOAD,
2618           "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
2619           "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
2620 
2621     /* Look through the list of known devices for a match. */
2622     while (t->bxe_name != NULL) {
2623         if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2624             ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2625             ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2626             descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
2627             if (descbuf == NULL)
2628                 return (ENOMEM);
2629 
2630             /* Print out the device identity. */
2631             snprintf(descbuf, BXE_DEVDESC_MAX,
2632                      "%s (%c%d) BXE v:%s\n", t->bxe_name,
2633                      (((pci_read_config(dev, PCIR_REVID, 4) &
2634                         0xf0) >> 4) + 'A'),
2635                      (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2636                      BXE_DRIVER_VERSION);
2637 
2638             device_set_desc_copy(dev, descbuf);
2639             free(descbuf, M_TEMP);
2640             return (BUS_PROBE_DEFAULT);
2641         }
2642         t++;
2643     }
2644 
2645     return (ENXIO);
2646 }
2647 
2648 static void
2649 bxe_init_mutexes(struct bxe_softc *sc)
2650 {
2651 #ifdef BXE_CORE_LOCK_SX
2652     snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2653              "bxe%d_core_lock", sc->unit);
2654     sx_init(&sc->core_sx, sc->core_sx_name);
2655 #else
2656     snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2657              "bxe%d_core_lock", sc->unit);
2658     mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2659 #endif
2660 
2661     snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2662              "bxe%d_sp_lock", sc->unit);
2663     mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2664 
2665     snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2666              "bxe%d_dmae_lock", sc->unit);
2667     mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2668 
2669     snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2670              "bxe%d_phy_lock", sc->unit);
2671     mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2672 
2673     snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2674              "bxe%d_fwmb_lock", sc->unit);
2675     mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2676 
2677     snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2678              "bxe%d_print_lock", sc->unit);
2679     mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2680 
2681     snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2682              "bxe%d_stats_lock", sc->unit);
2683     mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2684 
2685     snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2686              "bxe%d_mcast_lock", sc->unit);
2687     mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2688 }
2689 
2690 static void
2691 bxe_release_mutexes(struct bxe_softc *sc)
2692 {
2693 #ifdef BXE_CORE_LOCK_SX
2694     sx_destroy(&sc->core_sx);
2695 #else
2696     if (mtx_initialized(&sc->core_mtx)) {
2697         mtx_destroy(&sc->core_mtx);
2698     }
2699 #endif
2700 
2701     if (mtx_initialized(&sc->sp_mtx)) {
2702         mtx_destroy(&sc->sp_mtx);
2703     }
2704 
2705     if (mtx_initialized(&sc->dmae_mtx)) {
2706         mtx_destroy(&sc->dmae_mtx);
2707     }
2708 
2709     if (mtx_initialized(&sc->port.phy_mtx)) {
2710         mtx_destroy(&sc->port.phy_mtx);
2711     }
2712 
2713     if (mtx_initialized(&sc->fwmb_mtx)) {
2714         mtx_destroy(&sc->fwmb_mtx);
2715     }
2716 
2717     if (mtx_initialized(&sc->print_mtx)) {
2718         mtx_destroy(&sc->print_mtx);
2719     }
2720 
2721     if (mtx_initialized(&sc->stats_mtx)) {
2722         mtx_destroy(&sc->stats_mtx);
2723     }
2724 
2725     if (mtx_initialized(&sc->mcast_mtx)) {
2726         mtx_destroy(&sc->mcast_mtx);
2727     }
2728 }
2729 
2730 static void
2731 bxe_tx_disable(struct bxe_softc* sc)
2732 {
2733     struct ifnet *ifp = sc->ifnet;
2734 
2735     /* tell the stack the driver is stopped and TX queue is full */
2736     if (ifp != NULL) {
2737         ifp->if_drv_flags = 0;
2738     }
2739 }
2740 
2741 static void
2742 bxe_drv_pulse(struct bxe_softc *sc)
2743 {
2744     SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2745              sc->fw_drv_pulse_wr_seq);
2746 }
2747 
2748 static inline int
2749 bxe_has_tx_work_unload(struct bxe_fastpath *fp)
2750 {
2751     mb(); /* consumer and producer can change */
2752     return (fp->tx_pkt_prod != fp->tx_pkt_cons);
2753 }
2754 
2755 static inline uint16_t
2756 bxe_tx_avail(struct bxe_softc *sc,
2757              struct bxe_fastpath *fp)
2758 {
2759     int16_t  used;
2760     uint16_t prod;
2761     uint16_t cons;
2762 
2763     prod = fp->tx_bd_prod;
2764     cons = fp->tx_bd_cons;
2765 
2766     used = SUB_S16(prod, cons);
2767 
2768 #if 0
2769     KASSERT((used < 0), ("used tx bds < 0"));
2770     KASSERT((used > sc->tx_ring_size), ("used tx bds > tx_ring_size"));
2771     KASSERT(((sc->tx_ring_size - used) > MAX_TX_AVAIL),
2772             ("invalid number of tx bds used"));
2773 #endif
2774 
2775     return (int16_t)(sc->tx_ring_size) - used;
2776 }
2777 
2778 static inline int
2779 bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2780 {
2781     uint16_t hw_cons;
2782 
2783     mb(); /* status block fields can change */
2784     hw_cons = le16toh(*fp->tx_cons_sb);
2785     return (hw_cons != fp->tx_pkt_cons);
2786 }
2787 
2788 static inline uint8_t
2789 bxe_has_tx_work(struct bxe_fastpath *fp)
2790 {
2791     /* expand this for multi-cos if ever supported */
2792     return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2793 }
2794 
2795 static inline int
2796 bxe_has_rx_work(struct bxe_fastpath *fp)
2797 {
2798     uint16_t rx_cq_cons_sb;
2799 
2800     mb(); /* status block fields can change */
2801     rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2802     if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2803         rx_cq_cons_sb++;
2804     return (fp->rx_cq_cons != rx_cq_cons_sb);
2805 }
2806 
2807 static void
2808 bxe_sp_event(struct bxe_softc    *sc,
2809              struct bxe_fastpath *fp,
2810              union eth_rx_cqe    *rr_cqe)
2811 {
2812     int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2813     int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2814     enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2815     struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2816 
2817     BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2818           fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2819 
2820 #if 0
2821     /*
2822      * If cid is within VF range, replace the slowpath object with the
2823      * one corresponding to this VF
2824      */
2825     if ((cid >= BXE_FIRST_VF_CID) && (cid < BXE_FIRST_VF_CID + BXE_VF_CIDS)) {
2826         bxe_iov_set_queue_sp_obj(sc, cid, &q_obj);
2827     }
2828 #endif
2829 
2830     switch (command) {
2831     case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2832         BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2833         drv_cmd = ECORE_Q_CMD_UPDATE;
2834         break;
2835 
2836     case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2837         BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2838         drv_cmd = ECORE_Q_CMD_SETUP;
2839         break;
2840 
2841     case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2842         BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2843         drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2844         break;
2845 
2846     case (RAMROD_CMD_ID_ETH_HALT):
2847         BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2848         drv_cmd = ECORE_Q_CMD_HALT;
2849         break;
2850 
2851     case (RAMROD_CMD_ID_ETH_TERMINATE):
2852         BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2853         drv_cmd = ECORE_Q_CMD_TERMINATE;
2854         break;
2855 
2856     case (RAMROD_CMD_ID_ETH_EMPTY):
2857         BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2858         drv_cmd = ECORE_Q_CMD_EMPTY;
2859         break;
2860 
2861     default:
2862         BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2863               command, fp->index);
2864         return;
2865     }
2866 
2867     if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2868         q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2869         /*
2870          * q_obj->complete_cmd() failure means that this was
2871          * an unexpected completion.
2872          *
2873          * In this case we don't want to increase the sc->spq_left
2874          * because apparently we haven't sent this command the first
2875          * place.
2876          */
2877         // bxe_panic(sc, ("Unexpected SP completion\n"));
2878         return;
2879     }
2880 
2881 #if 0
2882     /* SRIOV: reschedule any 'in_progress' operations */
2883     bxe_iov_sp_event(sc, cid, TRUE);
2884 #endif
2885 
2886     atomic_add_acq_long(&sc->cq_spq_left, 1);
2887 
2888     BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2889           atomic_load_acq_long(&sc->cq_spq_left));
2890 
2891 #if 0
2892     if ((drv_cmd == ECORE_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
2893         (!!bxe_test_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state))) {
2894         /*
2895          * If Queue update ramrod is completed for last Queue in AFEX VIF set
2896          * flow, then ACK MCP at the end. Mark pending ACK to MCP bit to
2897          * prevent case that both bits are cleared. At the end of load/unload
2898          * driver checks that sp_state is cleared and this order prevents
2899          * races.
2900          */
2901         bxe_set_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, &sc->sp_state);
2902         wmb();
2903         bxe_clear_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state);
2904 
2905         /* schedule the sp task as MCP ack is required */
2906         bxe_schedule_sp_task(sc);
2907     }
2908 #endif
2909 }
2910 
2911 /*
2912  * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2913  * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2914  * the current aggregation queue as in-progress.
2915  */
2916 static void
2917 bxe_tpa_start(struct bxe_softc            *sc,
2918               struct bxe_fastpath         *fp,
2919               uint16_t                    queue,
2920               uint16_t                    cons,
2921               uint16_t                    prod,
2922               struct eth_fast_path_rx_cqe *cqe)
2923 {
2924     struct bxe_sw_rx_bd tmp_bd;
2925     struct bxe_sw_rx_bd *rx_buf;
2926     struct eth_rx_bd *rx_bd;
2927     int max_agg_queues;
2928     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2929     uint16_t index;
2930 
2931     BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2932                        "cons=%d prod=%d\n",
2933           fp->index, queue, cons, prod);
2934 
2935     max_agg_queues = MAX_AGG_QS(sc);
2936 
2937     KASSERT((queue < max_agg_queues),
2938             ("fp[%02d] invalid aggr queue (%d >= %d)!",
2939              fp->index, queue, max_agg_queues));
2940 
2941     KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2942             ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2943              fp->index, queue));
2944 
2945     /* copy the existing mbuf and mapping from the TPA pool */
2946     tmp_bd = tpa_info->bd;
2947 
2948     if (tmp_bd.m == NULL) {
2949         BLOGE(sc, "fp[%02d].tpa[%02d] mbuf not allocated!\n",
2950               fp->index, queue);
2951         /* XXX Error handling? */
2952         return;
2953     }
2954 
2955     /* change the TPA queue to the start state */
2956     tpa_info->state            = BXE_TPA_STATE_START;
2957     tpa_info->placement_offset = cqe->placement_offset;
2958     tpa_info->parsing_flags    = le16toh(cqe->pars_flags.flags);
2959     tpa_info->vlan_tag         = le16toh(cqe->vlan_tag);
2960     tpa_info->len_on_bd        = le16toh(cqe->len_on_bd);
2961 
2962     fp->rx_tpa_queue_used |= (1 << queue);
2963 
2964     /*
2965      * If all the buffer descriptors are filled with mbufs then fill in
2966      * the current consumer index with a new BD. Else if a maximum Rx
2967      * buffer limit is imposed then fill in the next producer index.
2968      */
2969     index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2970                 prod : cons;
2971 
2972     /* move the received mbuf and mapping to TPA pool */
2973     tpa_info->bd = fp->rx_mbuf_chain[cons];
2974 
2975     /* release any existing RX BD mbuf mappings */
2976     if (cons != index) {
2977         rx_buf = &fp->rx_mbuf_chain[cons];
2978 
2979         if (rx_buf->m_map != NULL) {
2980             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2981                             BUS_DMASYNC_POSTREAD);
2982             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2983         }
2984 
2985         /*
2986          * We get here when the maximum number of rx buffers is less than
2987          * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2988          * it out here without concern of a memory leak.
2989          */
2990         fp->rx_mbuf_chain[cons].m = NULL;
2991     }
2992 
2993     /* update the Rx SW BD with the mbuf info from the TPA pool */
2994     fp->rx_mbuf_chain[index] = tmp_bd;
2995 
2996     /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2997     rx_bd = &fp->rx_chain[index];
2998     rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2999     rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
3000 }
3001 
3002 /*
3003  * When a TPA aggregation is completed, loop through the individual mbufs
3004  * of the aggregation, combining them into a single mbuf which will be sent
3005  * up the stack. Refill all freed SGEs with mbufs as we go along.
3006  */
3007 static int
3008 bxe_fill_frag_mbuf(struct bxe_softc          *sc,
3009                    struct bxe_fastpath       *fp,
3010                    struct bxe_sw_tpa_info    *tpa_info,
3011                    uint16_t                  queue,
3012                    uint16_t                  pages,
3013                    struct mbuf               *m,
3014 			       struct eth_end_agg_rx_cqe *cqe,
3015                    uint16_t                  cqe_idx)
3016 {
3017     struct mbuf *m_frag;
3018     uint32_t frag_len, frag_size, i;
3019     uint16_t sge_idx;
3020     int rc = 0;
3021     int j;
3022 
3023     frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
3024 
3025     BLOGD(sc, DBG_LRO,
3026           "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
3027           fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
3028 
3029     /* make sure the aggregated frame is not too big to handle */
3030     if (pages > 8 * PAGES_PER_SGE) {
3031         BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
3032                   "pkt_len=%d len_on_bd=%d frag_size=%d\n",
3033               fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
3034               tpa_info->len_on_bd, frag_size);
3035         bxe_panic(sc, ("sge page count error\n"));
3036         return (EINVAL);
3037     }
3038 
3039     /*
3040      * Scan through the scatter gather list pulling individual mbufs into a
3041      * single mbuf for the host stack.
3042      */
3043     for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
3044         sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
3045 
3046         /*
3047          * Firmware gives the indices of the SGE as if the ring is an array
3048          * (meaning that the "next" element will consume 2 indices).
3049          */
3050         frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
3051 
3052         BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
3053                            "sge_idx=%d frag_size=%d frag_len=%d\n",
3054               fp->index, queue, i, j, sge_idx, frag_size, frag_len);
3055 
3056         m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3057 
3058         /* allocate a new mbuf for the SGE */
3059         rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3060         if (rc) {
3061             /* Leave all remaining SGEs in the ring! */
3062             return (rc);
3063         }
3064 
3065         /* update the fragment length */
3066         m_frag->m_len = frag_len;
3067 
3068         /* concatenate the fragment to the head mbuf */
3069         m_cat(m, m_frag);
3070         fp->eth_q_stats.mbuf_alloc_sge--;
3071 
3072         /* update the TPA mbuf size and remaining fragment size */
3073         m->m_pkthdr.len += frag_len;
3074         frag_size -= frag_len;
3075     }
3076 
3077     BLOGD(sc, DBG_LRO,
3078           "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
3079           fp->index, queue, frag_size);
3080 
3081     return (rc);
3082 }
3083 
3084 static inline void
3085 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
3086 {
3087     int i, j;
3088 
3089     for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
3090         int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
3091 
3092         for (j = 0; j < 2; j++) {
3093             BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
3094             idx--;
3095         }
3096     }
3097 }
3098 
3099 static inline void
3100 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
3101 {
3102     /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
3103     memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
3104 
3105     /*
3106      * Clear the two last indices in the page to 1. These are the indices that
3107      * correspond to the "next" element, hence will never be indicated and
3108      * should be removed from the calculations.
3109      */
3110     bxe_clear_sge_mask_next_elems(fp);
3111 }
3112 
3113 static inline void
3114 bxe_update_last_max_sge(struct bxe_fastpath *fp,
3115                         uint16_t            idx)
3116 {
3117     uint16_t last_max = fp->last_max_sge;
3118 
3119     if (SUB_S16(idx, last_max) > 0) {
3120         fp->last_max_sge = idx;
3121     }
3122 }
3123 
3124 static inline void
3125 bxe_update_sge_prod(struct bxe_softc          *sc,
3126                     struct bxe_fastpath       *fp,
3127                     uint16_t                  sge_len,
3128                     struct eth_end_agg_rx_cqe *cqe)
3129 {
3130     uint16_t last_max, last_elem, first_elem;
3131     uint16_t delta = 0;
3132     uint16_t i;
3133 
3134     if (!sge_len) {
3135         return;
3136     }
3137 
3138     /* first mark all used pages */
3139     for (i = 0; i < sge_len; i++) {
3140         BIT_VEC64_CLEAR_BIT(fp->sge_mask,
3141                             RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[i])));
3142     }
3143 
3144     BLOGD(sc, DBG_LRO,
3145           "fp[%02d] fp_cqe->sgl[%d] = %d\n",
3146           fp->index, sge_len - 1,
3147           le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
3148 
3149     /* assume that the last SGE index is the biggest */
3150     bxe_update_last_max_sge(fp,
3151                             le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
3152 
3153     last_max = RX_SGE(fp->last_max_sge);
3154     last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
3155     first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
3156 
3157     /* if ring is not full */
3158     if (last_elem + 1 != first_elem) {
3159         last_elem++;
3160     }
3161 
3162     /* now update the prod */
3163     for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
3164         if (__predict_true(fp->sge_mask[i])) {
3165             break;
3166         }
3167 
3168         fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
3169         delta += BIT_VEC64_ELEM_SZ;
3170     }
3171 
3172     if (delta > 0) {
3173         fp->rx_sge_prod += delta;
3174         /* clear page-end entries */
3175         bxe_clear_sge_mask_next_elems(fp);
3176     }
3177 
3178     BLOGD(sc, DBG_LRO,
3179           "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
3180           fp->index, fp->last_max_sge, fp->rx_sge_prod);
3181 }
3182 
3183 /*
3184  * The aggregation on the current TPA queue has completed. Pull the individual
3185  * mbuf fragments together into a single mbuf, perform all necessary checksum
3186  * calculations, and send the resuting mbuf to the stack.
3187  */
3188 static void
3189 bxe_tpa_stop(struct bxe_softc          *sc,
3190              struct bxe_fastpath       *fp,
3191              struct bxe_sw_tpa_info    *tpa_info,
3192              uint16_t                  queue,
3193              uint16_t                  pages,
3194 			 struct eth_end_agg_rx_cqe *cqe,
3195              uint16_t                  cqe_idx)
3196 {
3197     struct ifnet *ifp = sc->ifnet;
3198     struct mbuf *m;
3199     int rc = 0;
3200 
3201     BLOGD(sc, DBG_LRO,
3202           "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3203           fp->index, queue, tpa_info->placement_offset,
3204           le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3205 
3206     m = tpa_info->bd.m;
3207 
3208     /* allocate a replacement before modifying existing mbuf */
3209     rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3210     if (rc) {
3211         /* drop the frame and log an error */
3212         fp->eth_q_stats.rx_soft_errors++;
3213         goto bxe_tpa_stop_exit;
3214     }
3215 
3216     /* we have a replacement, fixup the current mbuf */
3217     m_adj(m, tpa_info->placement_offset);
3218     m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3219 
3220     /* mark the checksums valid (taken care of by the firmware) */
3221     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3222     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3223     m->m_pkthdr.csum_data = 0xffff;
3224     m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3225                                CSUM_IP_VALID   |
3226                                CSUM_DATA_VALID |
3227                                CSUM_PSEUDO_HDR);
3228 
3229     /* aggregate all of the SGEs into a single mbuf */
3230     rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3231     if (rc) {
3232         /* drop the packet and log an error */
3233         fp->eth_q_stats.rx_soft_errors++;
3234         m_freem(m);
3235     } else {
3236         if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) {
3237             m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3238             m->m_flags |= M_VLANTAG;
3239         }
3240 
3241         /* assign packet to this interface interface */
3242         m->m_pkthdr.rcvif = ifp;
3243 
3244 #if __FreeBSD_version >= 800000
3245         /* specify what RSS queue was used for this flow */
3246         m->m_pkthdr.flowid = fp->index;
3247         m->m_flags |= M_FLOWID;
3248 #endif
3249 
3250         ifp->if_ipackets++;
3251         fp->eth_q_stats.rx_tpa_pkts++;
3252 
3253         /* pass the frame to the stack */
3254         (*ifp->if_input)(ifp, m);
3255     }
3256 
3257     /* we passed an mbuf up the stack or dropped the frame */
3258     fp->eth_q_stats.mbuf_alloc_tpa--;
3259 
3260 bxe_tpa_stop_exit:
3261 
3262     fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3263     fp->rx_tpa_queue_used &= ~(1 << queue);
3264 }
3265 
3266 static uint8_t
3267 bxe_rxeof(struct bxe_softc    *sc,
3268           struct bxe_fastpath *fp)
3269 {
3270     struct ifnet *ifp = sc->ifnet;
3271     uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3272     uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3273     int rx_pkts = 0;
3274     int rc;
3275 
3276     BXE_FP_RX_LOCK(fp);
3277 
3278     /* CQ "next element" is of the size of the regular element */
3279     hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3280     if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3281         hw_cq_cons++;
3282     }
3283 
3284     bd_cons = fp->rx_bd_cons;
3285     bd_prod = fp->rx_bd_prod;
3286     bd_prod_fw = bd_prod;
3287     sw_cq_cons = fp->rx_cq_cons;
3288     sw_cq_prod = fp->rx_cq_prod;
3289 
3290     /*
3291      * Memory barrier necessary as speculative reads of the rx
3292      * buffer can be ahead of the index in the status block
3293      */
3294     rmb();
3295 
3296     BLOGD(sc, DBG_RX,
3297           "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3298           fp->index, hw_cq_cons, sw_cq_cons);
3299 
3300     while (sw_cq_cons != hw_cq_cons) {
3301         struct bxe_sw_rx_bd *rx_buf = NULL;
3302         union eth_rx_cqe *cqe;
3303         struct eth_fast_path_rx_cqe *cqe_fp;
3304         uint8_t cqe_fp_flags;
3305         enum eth_rx_cqe_type cqe_fp_type;
3306         uint16_t len, pad;
3307         struct mbuf *m = NULL;
3308 
3309         comp_ring_cons = RCQ(sw_cq_cons);
3310         bd_prod = RX_BD(bd_prod);
3311         bd_cons = RX_BD(bd_cons);
3312 
3313         cqe          = &fp->rcq_chain[comp_ring_cons];
3314         cqe_fp       = &cqe->fast_path_cqe;
3315         cqe_fp_flags = cqe_fp->type_error_flags;
3316         cqe_fp_type  = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3317 
3318         BLOGD(sc, DBG_RX,
3319               "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3320               "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3321               "status=0x%x rss_hash=0x%x vlan=0x%x len=%u\n",
3322               fp->index,
3323               hw_cq_cons,
3324               sw_cq_cons,
3325               bd_prod,
3326               bd_cons,
3327               CQE_TYPE(cqe_fp_flags),
3328               cqe_fp_flags,
3329               cqe_fp->status_flags,
3330               le32toh(cqe_fp->rss_hash_result),
3331               le16toh(cqe_fp->vlan_tag),
3332               le16toh(cqe_fp->pkt_len_or_gro_seg_len));
3333 
3334         /* is this a slowpath msg? */
3335         if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3336             bxe_sp_event(sc, fp, cqe);
3337             goto next_cqe;
3338         }
3339 
3340         rx_buf = &fp->rx_mbuf_chain[bd_cons];
3341 
3342         if (!CQE_TYPE_FAST(cqe_fp_type)) {
3343             struct bxe_sw_tpa_info *tpa_info;
3344             uint16_t frag_size, pages;
3345             uint8_t queue;
3346 
3347 #if 0
3348             /* sanity check */
3349             if (!fp->tpa_enable &&
3350                 (CQE_TYPE_START(cqe_fp_type) || CQE_TYPE_STOP(cqe_fp_type))) {
3351                 BLOGE(sc, "START/STOP packet while !tpa_enable type (0x%x)\n",
3352                       CQE_TYPE(cqe_fp_type));
3353             }
3354 #endif
3355 
3356             if (CQE_TYPE_START(cqe_fp_type)) {
3357                 bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3358                               bd_cons, bd_prod, cqe_fp);
3359                 m = NULL; /* packet not ready yet */
3360                 goto next_rx;
3361             }
3362 
3363             KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3364                     ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3365 
3366             queue = cqe->end_agg_cqe.queue_index;
3367             tpa_info = &fp->rx_tpa_info[queue];
3368 
3369             BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3370                   fp->index, queue);
3371 
3372             frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3373                          tpa_info->len_on_bd);
3374             pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3375 
3376             bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3377                          &cqe->end_agg_cqe, comp_ring_cons);
3378 
3379             bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe);
3380 
3381             goto next_cqe;
3382         }
3383 
3384         /* non TPA */
3385 
3386         /* is this an error packet? */
3387         if (__predict_false(cqe_fp_flags &
3388                             ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3389             BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3390             fp->eth_q_stats.rx_soft_errors++;
3391             goto next_rx;
3392         }
3393 
3394         len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3395         pad = cqe_fp->placement_offset;
3396 
3397         m = rx_buf->m;
3398 
3399         if (__predict_false(m == NULL)) {
3400             BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3401                   bd_cons, fp->index);
3402             goto next_rx;
3403         }
3404 
3405         /* XXX double copy if packet length under a threshold */
3406 
3407         /*
3408          * If all the buffer descriptors are filled with mbufs then fill in
3409          * the current consumer index with a new BD. Else if a maximum Rx
3410          * buffer limit is imposed then fill in the next producer index.
3411          */
3412         rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3413                                   (sc->max_rx_bufs != RX_BD_USABLE) ?
3414                                       bd_prod : bd_cons);
3415         if (rc != 0) {
3416             BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3417                   fp->index, rc);
3418             fp->eth_q_stats.rx_soft_errors++;
3419 
3420             if (sc->max_rx_bufs != RX_BD_USABLE) {
3421                 /* copy this consumer index to the producer index */
3422                 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3423                        sizeof(struct bxe_sw_rx_bd));
3424                 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3425             }
3426 
3427             goto next_rx;
3428         }
3429 
3430         /* current mbuf was detached from the bd */
3431         fp->eth_q_stats.mbuf_alloc_rx--;
3432 
3433         /* we allocated a replacement mbuf, fixup the current one */
3434         m_adj(m, pad);
3435         m->m_pkthdr.len = m->m_len = len;
3436 
3437         /* assign packet to this interface interface */
3438         m->m_pkthdr.rcvif = ifp;
3439 
3440         /* assume no hardware checksum has complated */
3441         m->m_pkthdr.csum_flags = 0;
3442 
3443         /* validate checksum if offload enabled */
3444         if (ifp->if_capenable & IFCAP_RXCSUM) {
3445             /* check for a valid IP frame */
3446             if (!(cqe->fast_path_cqe.status_flags &
3447                   ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3448                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3449                 if (__predict_false(cqe_fp_flags &
3450                                     ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3451                     fp->eth_q_stats.rx_hw_csum_errors++;
3452                 } else {
3453                     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3454                     m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3455                 }
3456             }
3457 
3458             /* check for a valid TCP/UDP frame */
3459             if (!(cqe->fast_path_cqe.status_flags &
3460                   ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3461                 if (__predict_false(cqe_fp_flags &
3462                                     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3463                     fp->eth_q_stats.rx_hw_csum_errors++;
3464                 } else {
3465                     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3466                     m->m_pkthdr.csum_data = 0xFFFF;
3467                     m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3468                                                CSUM_PSEUDO_HDR);
3469                 }
3470             }
3471         }
3472 
3473         /* if there is a VLAN tag then flag that info */
3474         if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_VLAN) {
3475             m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3476             m->m_flags |= M_VLANTAG;
3477         }
3478 
3479 #if __FreeBSD_version >= 800000
3480         /* specify what RSS queue was used for this flow */
3481         m->m_pkthdr.flowid = fp->index;
3482         m->m_flags |= M_FLOWID;
3483 #endif
3484 
3485 next_rx:
3486 
3487         bd_cons    = RX_BD_NEXT(bd_cons);
3488         bd_prod    = RX_BD_NEXT(bd_prod);
3489         bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3490 
3491         /* pass the frame to the stack */
3492         if (__predict_true(m != NULL)) {
3493             ifp->if_ipackets++;
3494             rx_pkts++;
3495             (*ifp->if_input)(ifp, m);
3496         }
3497 
3498 next_cqe:
3499 
3500         sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3501         sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3502 
3503         /* limit spinning on the queue */
3504         if (rx_pkts == sc->rx_budget) {
3505             fp->eth_q_stats.rx_budget_reached++;
3506             break;
3507         }
3508     } /* while work to do */
3509 
3510     fp->rx_bd_cons = bd_cons;
3511     fp->rx_bd_prod = bd_prod_fw;
3512     fp->rx_cq_cons = sw_cq_cons;
3513     fp->rx_cq_prod = sw_cq_prod;
3514 
3515     /* Update producers */
3516     bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3517 
3518     fp->eth_q_stats.rx_pkts += rx_pkts;
3519     fp->eth_q_stats.rx_calls++;
3520 
3521     BXE_FP_RX_UNLOCK(fp);
3522 
3523     return (sw_cq_cons != hw_cq_cons);
3524 }
3525 
3526 static uint16_t
3527 bxe_free_tx_pkt(struct bxe_softc    *sc,
3528                 struct bxe_fastpath *fp,
3529                 uint16_t            idx)
3530 {
3531     struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3532     struct eth_tx_start_bd *tx_start_bd;
3533     uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3534     uint16_t new_cons;
3535     int nbd;
3536 
3537     /* unmap the mbuf from non-paged memory */
3538     bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3539 
3540     tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3541     nbd = le16toh(tx_start_bd->nbd) - 1;
3542 
3543 #if 0
3544     if ((nbd - 1) > (MAX_MBUF_FRAGS + 2)) {
3545         bxe_panic(sc, ("BAD nbd!\n"));
3546     }
3547 #endif
3548 
3549     new_cons = (tx_buf->first_bd + nbd);
3550 
3551 #if 0
3552     struct eth_tx_bd *tx_data_bd;
3553 
3554     /*
3555      * The following code doesn't do anything but is left here
3556      * for clarity on what the new value of new_cons skipped.
3557      */
3558 
3559     /* get the next bd */
3560     bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3561 
3562     /* skip the parse bd */
3563     --nbd;
3564     bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3565 
3566     /* skip the TSO split header bd since they have no mapping */
3567     if (tx_buf->flags & BXE_TSO_SPLIT_BD) {
3568         --nbd;
3569         bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3570     }
3571 
3572     /* now free frags */
3573     while (nbd > 0) {
3574         tx_data_bd = &fp->tx_chain[bd_idx].reg_bd;
3575         if (--nbd) {
3576             bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3577         }
3578     }
3579 #endif
3580 
3581     /* free the mbuf */
3582     if (__predict_true(tx_buf->m != NULL)) {
3583         m_freem(tx_buf->m);
3584         fp->eth_q_stats.mbuf_alloc_tx--;
3585     } else {
3586         fp->eth_q_stats.tx_chain_lost_mbuf++;
3587     }
3588 
3589     tx_buf->m = NULL;
3590     tx_buf->first_bd = 0;
3591 
3592     return (new_cons);
3593 }
3594 
3595 /* transmit timeout watchdog */
3596 static int
3597 bxe_watchdog(struct bxe_softc    *sc,
3598              struct bxe_fastpath *fp)
3599 {
3600     BXE_FP_TX_LOCK(fp);
3601 
3602     if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3603         BXE_FP_TX_UNLOCK(fp);
3604         return (0);
3605     }
3606 
3607     BXE_FP_TX_UNLOCK(fp);
3608 
3609     BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3610 
3611     atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
3612     taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
3613 
3614     return (-1);
3615 }
3616 
3617 /* processes transmit completions */
3618 static uint8_t
3619 bxe_txeof(struct bxe_softc    *sc,
3620           struct bxe_fastpath *fp)
3621 {
3622     struct ifnet *ifp = sc->ifnet;
3623     uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3624     uint16_t tx_bd_avail;
3625 
3626     BXE_FP_TX_LOCK_ASSERT(fp);
3627 
3628     bd_cons = fp->tx_bd_cons;
3629     hw_cons = le16toh(*fp->tx_cons_sb);
3630     sw_cons = fp->tx_pkt_cons;
3631 
3632     while (sw_cons != hw_cons) {
3633         pkt_cons = TX_BD(sw_cons);
3634 
3635         BLOGD(sc, DBG_TX,
3636               "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3637               fp->index, hw_cons, sw_cons, pkt_cons);
3638 
3639         bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3640 
3641         sw_cons++;
3642     }
3643 
3644     fp->tx_pkt_cons = sw_cons;
3645     fp->tx_bd_cons  = bd_cons;
3646 
3647     BLOGD(sc, DBG_TX,
3648           "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3649           fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3650 
3651     mb();
3652 
3653     tx_bd_avail = bxe_tx_avail(sc, fp);
3654 
3655     /* reset the watchdog timer if there are pending transmits */
3656     if (tx_bd_avail >= BXE_TX_CLEANUP_THRESHOLD) {
3657         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3658 
3659         if (tx_bd_avail >= (TX_BD_USABLE - 1)) {
3660             /* clear watchdog if the tx chain is empty */
3661             fp->watchdog_timer = 0;
3662             return (FALSE);
3663         }
3664 
3665         /* reset watchdog if there are pending transmits */
3666         fp->watchdog_timer = BXE_TX_TIMEOUT;
3667     }
3668 
3669     return (TRUE);
3670 }
3671 
3672 static void
3673 bxe_drain_tx_queues(struct bxe_softc *sc)
3674 {
3675     struct bxe_fastpath *fp;
3676     int i, count;
3677 
3678     /* wait until all TX fastpath tasks have completed */
3679     for (i = 0; i < sc->num_queues; i++) {
3680         fp = &sc->fp[i];
3681 
3682         count = 1000;
3683 
3684         while (bxe_has_tx_work(fp)) {
3685 
3686             BXE_FP_TX_LOCK(fp);
3687             bxe_txeof(sc, fp);
3688             BXE_FP_TX_UNLOCK(fp);
3689 
3690             if (count == 0) {
3691                 BLOGE(sc, "Timeout waiting for fp[%d] "
3692                           "transmits to complete!\n", i);
3693                 bxe_panic(sc, ("tx drain failure\n"));
3694                 return;
3695             }
3696 
3697             count--;
3698             DELAY(1000);
3699             rmb();
3700         }
3701     }
3702 
3703     return;
3704 }
3705 
3706 static int
3707 bxe_del_all_macs(struct bxe_softc          *sc,
3708                  struct ecore_vlan_mac_obj *mac_obj,
3709                  int                       mac_type,
3710                  uint8_t                   wait_for_comp)
3711 {
3712     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3713     int rc;
3714 
3715     /* wait for completion of requested */
3716     if (wait_for_comp) {
3717         bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3718     }
3719 
3720     /* Set the mac type of addresses we want to clear */
3721     bxe_set_bit(mac_type, &vlan_mac_flags);
3722 
3723     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3724     if (rc < 0) {
3725         BLOGE(sc, "Failed to delete MACs (%d)\n", rc);
3726     }
3727 
3728     return (rc);
3729 }
3730 
3731 static int
3732 bxe_fill_accept_flags(struct bxe_softc *sc,
3733                       uint32_t         rx_mode,
3734                       unsigned long    *rx_accept_flags,
3735                       unsigned long    *tx_accept_flags)
3736 {
3737     /* Clear the flags first */
3738     *rx_accept_flags = 0;
3739     *tx_accept_flags = 0;
3740 
3741     switch (rx_mode) {
3742     case BXE_RX_MODE_NONE:
3743         /*
3744          * 'drop all' supersedes any accept flags that may have been
3745          * passed to the function.
3746          */
3747         break;
3748 
3749     case BXE_RX_MODE_NORMAL:
3750         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3751         bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3752         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3753 
3754         /* internal switching mode */
3755         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3756         bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3757         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3758 
3759         break;
3760 
3761     case BXE_RX_MODE_ALLMULTI:
3762         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3763         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3764         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3765 
3766         /* internal switching mode */
3767         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3768         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3769         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3770 
3771         break;
3772 
3773     case BXE_RX_MODE_PROMISC:
3774         /*
3775          * According to deffinition of SI mode, iface in promisc mode
3776          * should receive matched and unmatched (in resolution of port)
3777          * unicast packets.
3778          */
3779         bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3780         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3781         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3782         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3783 
3784         /* internal switching mode */
3785         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3786         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3787 
3788         if (IS_MF_SI(sc)) {
3789             bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3790         } else {
3791             bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3792         }
3793 
3794         break;
3795 
3796     default:
3797         BLOGE(sc, "Unknown rx_mode (%d)\n", rx_mode);
3798         return (-1);
3799     }
3800 
3801     /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3802     if (rx_mode != BXE_RX_MODE_NONE) {
3803         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3804         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3805     }
3806 
3807     return (0);
3808 }
3809 
3810 static int
3811 bxe_set_q_rx_mode(struct bxe_softc *sc,
3812                   uint8_t          cl_id,
3813                   unsigned long    rx_mode_flags,
3814                   unsigned long    rx_accept_flags,
3815                   unsigned long    tx_accept_flags,
3816                   unsigned long    ramrod_flags)
3817 {
3818     struct ecore_rx_mode_ramrod_params ramrod_param;
3819     int rc;
3820 
3821     memset(&ramrod_param, 0, sizeof(ramrod_param));
3822 
3823     /* Prepare ramrod parameters */
3824     ramrod_param.cid = 0;
3825     ramrod_param.cl_id = cl_id;
3826     ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3827     ramrod_param.func_id = SC_FUNC(sc);
3828 
3829     ramrod_param.pstate = &sc->sp_state;
3830     ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3831 
3832     ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3833     ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3834 
3835     bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3836 
3837     ramrod_param.ramrod_flags = ramrod_flags;
3838     ramrod_param.rx_mode_flags = rx_mode_flags;
3839 
3840     ramrod_param.rx_accept_flags = rx_accept_flags;
3841     ramrod_param.tx_accept_flags = tx_accept_flags;
3842 
3843     rc = ecore_config_rx_mode(sc, &ramrod_param);
3844     if (rc < 0) {
3845         BLOGE(sc, "Set rx_mode %d failed\n", sc->rx_mode);
3846         return (rc);
3847     }
3848 
3849     return (0);
3850 }
3851 
3852 static int
3853 bxe_set_storm_rx_mode(struct bxe_softc *sc)
3854 {
3855     unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3856     unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3857     int rc;
3858 
3859     rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3860                                &tx_accept_flags);
3861     if (rc) {
3862         return (rc);
3863     }
3864 
3865     bxe_set_bit(RAMROD_RX, &ramrod_flags);
3866     bxe_set_bit(RAMROD_TX, &ramrod_flags);
3867 
3868     /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3869     return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3870                               rx_accept_flags, tx_accept_flags,
3871                               ramrod_flags));
3872 }
3873 
3874 /* returns the "mcp load_code" according to global load_count array */
3875 static int
3876 bxe_nic_load_no_mcp(struct bxe_softc *sc)
3877 {
3878     int path = SC_PATH(sc);
3879     int port = SC_PORT(sc);
3880 
3881     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3882           path, load_count[path][0], load_count[path][1],
3883           load_count[path][2]);
3884     load_count[path][0]++;
3885     load_count[path][1 + port]++;
3886     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3887           path, load_count[path][0], load_count[path][1],
3888           load_count[path][2]);
3889     if (load_count[path][0] == 1) {
3890         return (FW_MSG_CODE_DRV_LOAD_COMMON);
3891     } else if (load_count[path][1 + port] == 1) {
3892         return (FW_MSG_CODE_DRV_LOAD_PORT);
3893     } else {
3894         return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3895     }
3896 }
3897 
3898 /* returns the "mcp load_code" according to global load_count array */
3899 static int
3900 bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3901 {
3902     int port = SC_PORT(sc);
3903     int path = SC_PATH(sc);
3904 
3905     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3906           path, load_count[path][0], load_count[path][1],
3907           load_count[path][2]);
3908     load_count[path][0]--;
3909     load_count[path][1 + port]--;
3910     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3911           path, load_count[path][0], load_count[path][1],
3912           load_count[path][2]);
3913     if (load_count[path][0] == 0) {
3914         return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3915     } else if (load_count[path][1 + port] == 0) {
3916         return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3917     } else {
3918         return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3919     }
3920 }
3921 
3922 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3923 static uint32_t
3924 bxe_send_unload_req(struct bxe_softc *sc,
3925                     int              unload_mode)
3926 {
3927     uint32_t reset_code = 0;
3928 #if 0
3929     int port = SC_PORT(sc);
3930     int path = SC_PATH(sc);
3931 #endif
3932 
3933     /* Select the UNLOAD request mode */
3934     if (unload_mode == UNLOAD_NORMAL) {
3935         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3936     }
3937 #if 0
3938     else if (sc->flags & BXE_NO_WOL_FLAG) {
3939         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
3940     } else if (sc->wol) {
3941         uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
3942         uint8_t *mac_addr = sc->dev->dev_addr;
3943         uint32_t val;
3944         uint16_t pmc;
3945 
3946         /*
3947          * The mac address is written to entries 1-4 to
3948          * preserve entry 0 which is used by the PMF
3949          */
3950         uint8_t entry = (SC_VN(sc) + 1)*8;
3951 
3952         val = (mac_addr[0] << 8) | mac_addr[1];
3953         EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry, val);
3954 
3955         val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3956               (mac_addr[4] << 8) | mac_addr[5];
3957         EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
3958 
3959         /* Enable the PME and clear the status */
3960         pmc = pci_read_config(sc->dev,
3961                               (sc->devinfo.pcie_pm_cap_reg +
3962                                PCIR_POWER_STATUS),
3963                               2);
3964         pmc |= PCIM_PSTAT_PMEENABLE | PCIM_PSTAT_PME;
3965         pci_write_config(sc->dev,
3966                          (sc->devinfo.pcie_pm_cap_reg +
3967                           PCIR_POWER_STATUS),
3968                          pmc, 4);
3969 
3970         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
3971     }
3972 #endif
3973     else {
3974         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3975     }
3976 
3977     /* Send the request to the MCP */
3978     if (!BXE_NOMCP(sc)) {
3979         reset_code = bxe_fw_command(sc, reset_code, 0);
3980     } else {
3981         reset_code = bxe_nic_unload_no_mcp(sc);
3982     }
3983 
3984     return (reset_code);
3985 }
3986 
3987 /* send UNLOAD_DONE command to the MCP */
3988 static void
3989 bxe_send_unload_done(struct bxe_softc *sc,
3990                      uint8_t          keep_link)
3991 {
3992     uint32_t reset_param =
3993         keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
3994 
3995     /* Report UNLOAD_DONE to MCP */
3996     if (!BXE_NOMCP(sc)) {
3997         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
3998     }
3999 }
4000 
4001 static int
4002 bxe_func_wait_started(struct bxe_softc *sc)
4003 {
4004     int tout = 50;
4005 
4006     if (!sc->port.pmf) {
4007         return (0);
4008     }
4009 
4010     /*
4011      * (assumption: No Attention from MCP at this stage)
4012      * PMF probably in the middle of TX disable/enable transaction
4013      * 1. Sync IRS for default SB
4014      * 2. Sync SP queue - this guarantees us that attention handling started
4015      * 3. Wait, that TX disable/enable transaction completes
4016      *
4017      * 1+2 guarantee that if DCBX attention was scheduled it already changed
4018      * pending bit of transaction from STARTED-->TX_STOPPED, if we already
4019      * received completion for the transaction the state is TX_STOPPED.
4020      * State will return to STARTED after completion of TX_STOPPED-->STARTED
4021      * transaction.
4022      */
4023 
4024     /* XXX make sure default SB ISR is done */
4025     /* need a way to synchronize an irq (intr_mtx?) */
4026 
4027     /* XXX flush any work queues */
4028 
4029     while (ecore_func_get_state(sc, &sc->func_obj) !=
4030            ECORE_F_STATE_STARTED && tout--) {
4031         DELAY(20000);
4032     }
4033 
4034     if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
4035         /*
4036          * Failed to complete the transaction in a "good way"
4037          * Force both transactions with CLR bit.
4038          */
4039         struct ecore_func_state_params func_params = { NULL };
4040 
4041         BLOGE(sc, "Unexpected function state! "
4042                   "Forcing STARTED-->TX_STOPPED-->STARTED\n");
4043 
4044         func_params.f_obj = &sc->func_obj;
4045         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4046 
4047         /* STARTED-->TX_STOPPED */
4048         func_params.cmd = ECORE_F_CMD_TX_STOP;
4049         ecore_func_state_change(sc, &func_params);
4050 
4051         /* TX_STOPPED-->STARTED */
4052         func_params.cmd = ECORE_F_CMD_TX_START;
4053         return (ecore_func_state_change(sc, &func_params));
4054     }
4055 
4056     return (0);
4057 }
4058 
4059 static int
4060 bxe_stop_queue(struct bxe_softc *sc,
4061                int              index)
4062 {
4063     struct bxe_fastpath *fp = &sc->fp[index];
4064     struct ecore_queue_state_params q_params = { NULL };
4065     int rc;
4066 
4067     BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
4068 
4069     q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
4070     /* We want to wait for completion in this context */
4071     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
4072 
4073     /* Stop the primary connection: */
4074 
4075     /* ...halt the connection */
4076     q_params.cmd = ECORE_Q_CMD_HALT;
4077     rc = ecore_queue_state_change(sc, &q_params);
4078     if (rc) {
4079         return (rc);
4080     }
4081 
4082     /* ...terminate the connection */
4083     q_params.cmd = ECORE_Q_CMD_TERMINATE;
4084     memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
4085     q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
4086     rc = ecore_queue_state_change(sc, &q_params);
4087     if (rc) {
4088         return (rc);
4089     }
4090 
4091     /* ...delete cfc entry */
4092     q_params.cmd = ECORE_Q_CMD_CFC_DEL;
4093     memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
4094     q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
4095     return (ecore_queue_state_change(sc, &q_params));
4096 }
4097 
4098 /* wait for the outstanding SP commands */
4099 static inline uint8_t
4100 bxe_wait_sp_comp(struct bxe_softc *sc,
4101                  unsigned long    mask)
4102 {
4103     unsigned long tmp;
4104     int tout = 5000; /* wait for 5 secs tops */
4105 
4106     while (tout--) {
4107         mb();
4108         if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
4109             return (TRUE);
4110         }
4111 
4112         DELAY(1000);
4113     }
4114 
4115     mb();
4116 
4117     tmp = atomic_load_acq_long(&sc->sp_state);
4118     if (tmp & mask) {
4119         BLOGE(sc, "Filtering completion timed out: "
4120                   "sp_state 0x%lx, mask 0x%lx\n",
4121               tmp, mask);
4122         return (FALSE);
4123     }
4124 
4125     return (FALSE);
4126 }
4127 
4128 static int
4129 bxe_func_stop(struct bxe_softc *sc)
4130 {
4131     struct ecore_func_state_params func_params = { NULL };
4132     int rc;
4133 
4134     /* prepare parameters for function state transitions */
4135     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4136     func_params.f_obj = &sc->func_obj;
4137     func_params.cmd = ECORE_F_CMD_STOP;
4138 
4139     /*
4140      * Try to stop the function the 'good way'. If it fails (in case
4141      * of a parity error during bxe_chip_cleanup()) and we are
4142      * not in a debug mode, perform a state transaction in order to
4143      * enable further HW_RESET transaction.
4144      */
4145     rc = ecore_func_state_change(sc, &func_params);
4146     if (rc) {
4147         BLOGE(sc, "FUNC_STOP ramrod failed. "
4148                   "Running a dry transaction\n");
4149         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4150         return (ecore_func_state_change(sc, &func_params));
4151     }
4152 
4153     return (0);
4154 }
4155 
4156 static int
4157 bxe_reset_hw(struct bxe_softc *sc,
4158              uint32_t         load_code)
4159 {
4160     struct ecore_func_state_params func_params = { NULL };
4161 
4162     /* Prepare parameters for function state transitions */
4163     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4164 
4165     func_params.f_obj = &sc->func_obj;
4166     func_params.cmd = ECORE_F_CMD_HW_RESET;
4167 
4168     func_params.params.hw_init.load_phase = load_code;
4169 
4170     return (ecore_func_state_change(sc, &func_params));
4171 }
4172 
4173 static void
4174 bxe_int_disable_sync(struct bxe_softc *sc,
4175                      int              disable_hw)
4176 {
4177     if (disable_hw) {
4178         /* prevent the HW from sending interrupts */
4179         bxe_int_disable(sc);
4180     }
4181 
4182     /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
4183     /* make sure all ISRs are done */
4184 
4185     /* XXX make sure sp_task is not running */
4186     /* cancel and flush work queues */
4187 }
4188 
4189 static void
4190 bxe_chip_cleanup(struct bxe_softc *sc,
4191                  uint32_t         unload_mode,
4192                  uint8_t          keep_link)
4193 {
4194     int port = SC_PORT(sc);
4195     struct ecore_mcast_ramrod_params rparam = { NULL };
4196     uint32_t reset_code;
4197     int i, rc = 0;
4198 
4199     bxe_drain_tx_queues(sc);
4200 
4201     /* give HW time to discard old tx messages */
4202     DELAY(1000);
4203 
4204     /* Clean all ETH MACs */
4205     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4206     if (rc < 0) {
4207         BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4208     }
4209 
4210     /* Clean up UC list  */
4211     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4212     if (rc < 0) {
4213         BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4214     }
4215 
4216     /* Disable LLH */
4217     if (!CHIP_IS_E1(sc)) {
4218         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4219     }
4220 
4221     /* Set "drop all" to stop Rx */
4222 
4223     /*
4224      * We need to take the BXE_MCAST_LOCK() here in order to prevent
4225      * a race between the completion code and this code.
4226      */
4227     BXE_MCAST_LOCK(sc);
4228 
4229     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4230         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4231     } else {
4232         bxe_set_storm_rx_mode(sc);
4233     }
4234 
4235     /* Clean up multicast configuration */
4236     rparam.mcast_obj = &sc->mcast_obj;
4237     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4238     if (rc < 0) {
4239         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4240     }
4241 
4242     BXE_MCAST_UNLOCK(sc);
4243 
4244     // XXX bxe_iov_chip_cleanup(sc);
4245 
4246     /*
4247      * Send the UNLOAD_REQUEST to the MCP. This will return if
4248      * this function should perform FUNCTION, PORT, or COMMON HW
4249      * reset.
4250      */
4251     reset_code = bxe_send_unload_req(sc, unload_mode);
4252 
4253     /*
4254      * (assumption: No Attention from MCP at this stage)
4255      * PMF probably in the middle of TX disable/enable transaction
4256      */
4257     rc = bxe_func_wait_started(sc);
4258     if (rc) {
4259         BLOGE(sc, "bxe_func_wait_started failed\n");
4260     }
4261 
4262     /*
4263      * Close multi and leading connections
4264      * Completions for ramrods are collected in a synchronous way
4265      */
4266     for (i = 0; i < sc->num_queues; i++) {
4267         if (bxe_stop_queue(sc, i)) {
4268             goto unload_error;
4269         }
4270     }
4271 
4272     /*
4273      * If SP settings didn't get completed so far - something
4274      * very wrong has happen.
4275      */
4276     if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4277         BLOGE(sc, "Common slow path ramrods got stuck!\n");
4278     }
4279 
4280 unload_error:
4281 
4282     rc = bxe_func_stop(sc);
4283     if (rc) {
4284         BLOGE(sc, "Function stop failed!\n");
4285     }
4286 
4287     /* disable HW interrupts */
4288     bxe_int_disable_sync(sc, TRUE);
4289 
4290     /* detach interrupts */
4291     bxe_interrupt_detach(sc);
4292 
4293     /* Reset the chip */
4294     rc = bxe_reset_hw(sc, reset_code);
4295     if (rc) {
4296         BLOGE(sc, "Hardware reset failed\n");
4297     }
4298 
4299     /* Report UNLOAD_DONE to MCP */
4300     bxe_send_unload_done(sc, keep_link);
4301 }
4302 
4303 static void
4304 bxe_disable_close_the_gate(struct bxe_softc *sc)
4305 {
4306     uint32_t val;
4307     int port = SC_PORT(sc);
4308 
4309     BLOGD(sc, DBG_LOAD,
4310           "Disabling 'close the gates'\n");
4311 
4312     if (CHIP_IS_E1(sc)) {
4313         uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4314                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
4315         val = REG_RD(sc, addr);
4316         val &= ~(0x300);
4317         REG_WR(sc, addr, val);
4318     } else {
4319         val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4320         val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4321                  MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4322         REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4323     }
4324 }
4325 
4326 /*
4327  * Cleans the object that have internal lists without sending
4328  * ramrods. Should be run when interrutps are disabled.
4329  */
4330 static void
4331 bxe_squeeze_objects(struct bxe_softc *sc)
4332 {
4333     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4334     struct ecore_mcast_ramrod_params rparam = { NULL };
4335     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4336     int rc;
4337 
4338     /* Cleanup MACs' object first... */
4339 
4340     /* Wait for completion of requested */
4341     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4342     /* Perform a dry cleanup */
4343     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4344 
4345     /* Clean ETH primary MAC */
4346     bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4347     rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4348                              &ramrod_flags);
4349     if (rc != 0) {
4350         BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4351     }
4352 
4353     /* Cleanup UC list */
4354     vlan_mac_flags = 0;
4355     bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4356     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4357                              &ramrod_flags);
4358     if (rc != 0) {
4359         BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4360     }
4361 
4362     /* Now clean mcast object... */
4363 
4364     rparam.mcast_obj = &sc->mcast_obj;
4365     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4366 
4367     /* Add a DEL command... */
4368     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4369     if (rc < 0) {
4370         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4371     }
4372 
4373     /* now wait until all pending commands are cleared */
4374 
4375     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4376     while (rc != 0) {
4377         if (rc < 0) {
4378             BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4379             return;
4380         }
4381 
4382         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4383     }
4384 }
4385 
4386 /* stop the controller */
4387 static __noinline int
4388 bxe_nic_unload(struct bxe_softc *sc,
4389                uint32_t         unload_mode,
4390                uint8_t          keep_link)
4391 {
4392     uint8_t global = FALSE;
4393     uint32_t val;
4394 
4395     BXE_CORE_LOCK_ASSERT(sc);
4396 
4397     BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4398 
4399     /* mark driver as unloaded in shmem2 */
4400     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4401         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4402         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4403                   val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4404     }
4405 
4406     if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4407         (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4408         /*
4409          * We can get here if the driver has been unloaded
4410          * during parity error recovery and is either waiting for a
4411          * leader to complete or for other functions to unload and
4412          * then ifconfig down has been issued. In this case we want to
4413          * unload and let other functions to complete a recovery
4414          * process.
4415          */
4416         sc->recovery_state = BXE_RECOVERY_DONE;
4417         sc->is_leader = 0;
4418         bxe_release_leader_lock(sc);
4419         mb();
4420 
4421         BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4422         BLOGE(sc, "Can't unload in closed or error state\n");
4423         return (-1);
4424     }
4425 
4426     /*
4427      * Nothing to do during unload if previous bxe_nic_load()
4428      * did not completed succesfully - all resourses are released.
4429      */
4430     if ((sc->state == BXE_STATE_CLOSED) ||
4431         (sc->state == BXE_STATE_ERROR)) {
4432         return (0);
4433     }
4434 
4435     sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4436     mb();
4437 
4438     /* stop tx */
4439     bxe_tx_disable(sc);
4440 
4441     sc->rx_mode = BXE_RX_MODE_NONE;
4442     /* XXX set rx mode ??? */
4443 
4444     if (IS_PF(sc)) {
4445         /* set ALWAYS_ALIVE bit in shmem */
4446         sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4447 
4448         bxe_drv_pulse(sc);
4449 
4450         bxe_stats_handle(sc, STATS_EVENT_STOP);
4451         bxe_save_statistics(sc);
4452     }
4453 
4454     /* wait till consumers catch up with producers in all queues */
4455     bxe_drain_tx_queues(sc);
4456 
4457     /* if VF indicate to PF this function is going down (PF will delete sp
4458      * elements and clear initializations
4459      */
4460     if (IS_VF(sc)) {
4461         ; /* bxe_vfpf_close_vf(sc); */
4462     } else if (unload_mode != UNLOAD_RECOVERY) {
4463         /* if this is a normal/close unload need to clean up chip */
4464         bxe_chip_cleanup(sc, unload_mode, keep_link);
4465     } else {
4466         /* Send the UNLOAD_REQUEST to the MCP */
4467         bxe_send_unload_req(sc, unload_mode);
4468 
4469         /*
4470          * Prevent transactions to host from the functions on the
4471          * engine that doesn't reset global blocks in case of global
4472          * attention once gloabl blocks are reset and gates are opened
4473          * (the engine which leader will perform the recovery
4474          * last).
4475          */
4476         if (!CHIP_IS_E1x(sc)) {
4477             bxe_pf_disable(sc);
4478         }
4479 
4480         /* disable HW interrupts */
4481         bxe_int_disable_sync(sc, TRUE);
4482 
4483         /* detach interrupts */
4484         bxe_interrupt_detach(sc);
4485 
4486         /* Report UNLOAD_DONE to MCP */
4487         bxe_send_unload_done(sc, FALSE);
4488     }
4489 
4490     /*
4491      * At this stage no more interrupts will arrive so we may safely clean
4492      * the queue'able objects here in case they failed to get cleaned so far.
4493      */
4494     if (IS_PF(sc)) {
4495         bxe_squeeze_objects(sc);
4496     }
4497 
4498     /* There should be no more pending SP commands at this stage */
4499     sc->sp_state = 0;
4500 
4501     sc->port.pmf = 0;
4502 
4503     bxe_free_fp_buffers(sc);
4504 
4505     if (IS_PF(sc)) {
4506         bxe_free_mem(sc);
4507     }
4508 
4509     bxe_free_fw_stats_mem(sc);
4510 
4511     sc->state = BXE_STATE_CLOSED;
4512 
4513     /*
4514      * Check if there are pending parity attentions. If there are - set
4515      * RECOVERY_IN_PROGRESS.
4516      */
4517     if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4518         bxe_set_reset_in_progress(sc);
4519 
4520         /* Set RESET_IS_GLOBAL if needed */
4521         if (global) {
4522             bxe_set_reset_global(sc);
4523         }
4524     }
4525 
4526     /*
4527      * The last driver must disable a "close the gate" if there is no
4528      * parity attention or "process kill" pending.
4529      */
4530     if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4531         bxe_reset_is_done(sc, SC_PATH(sc))) {
4532         bxe_disable_close_the_gate(sc);
4533     }
4534 
4535     BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4536 
4537     return (0);
4538 }
4539 
4540 /*
4541  * Called by the OS to set various media options (i.e. link, speed, etc.) when
4542  * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4543  */
4544 static int
4545 bxe_ifmedia_update(struct ifnet *ifp)
4546 {
4547     struct bxe_softc *sc = (struct bxe_softc *)ifp->if_softc;
4548     struct ifmedia *ifm;
4549 
4550     ifm = &sc->ifmedia;
4551 
4552     /* We only support Ethernet media type. */
4553     if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4554         return (EINVAL);
4555     }
4556 
4557     switch (IFM_SUBTYPE(ifm->ifm_media)) {
4558     case IFM_AUTO:
4559          break;
4560     case IFM_10G_CX4:
4561     case IFM_10G_SR:
4562     case IFM_10G_T:
4563     case IFM_10G_TWINAX:
4564     default:
4565         /* We don't support changing the media type. */
4566         BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4567               IFM_SUBTYPE(ifm->ifm_media));
4568         return (EINVAL);
4569     }
4570 
4571     return (0);
4572 }
4573 
4574 /*
4575  * Called by the OS to get the current media status (i.e. link, speed, etc.).
4576  */
4577 static void
4578 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
4579 {
4580     struct bxe_softc *sc = ifp->if_softc;
4581 
4582     /* Report link down if the driver isn't running. */
4583     if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4584         ifmr->ifm_active |= IFM_NONE;
4585         return;
4586     }
4587 
4588     /* Setup the default interface info. */
4589     ifmr->ifm_status = IFM_AVALID;
4590     ifmr->ifm_active = IFM_ETHER;
4591 
4592     if (sc->link_vars.link_up) {
4593         ifmr->ifm_status |= IFM_ACTIVE;
4594     } else {
4595         ifmr->ifm_active |= IFM_NONE;
4596         return;
4597     }
4598 
4599     ifmr->ifm_active |= sc->media;
4600 
4601     if (sc->link_vars.duplex == DUPLEX_FULL) {
4602         ifmr->ifm_active |= IFM_FDX;
4603     } else {
4604         ifmr->ifm_active |= IFM_HDX;
4605     }
4606 }
4607 
4608 static int
4609 bxe_ioctl_nvram(struct bxe_softc *sc,
4610                 uint32_t         priv_op,
4611                 struct ifreq     *ifr)
4612 {
4613     struct bxe_nvram_data nvdata_base;
4614     struct bxe_nvram_data *nvdata;
4615     int len;
4616     int error = 0;
4617 
4618     copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base));
4619 
4620     len = (sizeof(struct bxe_nvram_data) +
4621            nvdata_base.len -
4622            sizeof(uint32_t));
4623 
4624     if (len > sizeof(struct bxe_nvram_data)) {
4625         if ((nvdata = (struct bxe_nvram_data *)
4626                  malloc(len, M_DEVBUF,
4627                         (M_NOWAIT | M_ZERO))) == NULL) {
4628             BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed\n");
4629             return (1);
4630         }
4631         memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data));
4632     } else {
4633         nvdata = &nvdata_base;
4634     }
4635 
4636     if (priv_op == BXE_IOC_RD_NVRAM) {
4637         BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n",
4638               nvdata->offset, nvdata->len);
4639         error = bxe_nvram_read(sc,
4640                                nvdata->offset,
4641                                (uint8_t *)nvdata->value,
4642                                nvdata->len);
4643         copyout(nvdata, ifr->ifr_data, len);
4644     } else { /* BXE_IOC_WR_NVRAM */
4645         BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n",
4646               nvdata->offset, nvdata->len);
4647         copyin(ifr->ifr_data, nvdata, len);
4648         error = bxe_nvram_write(sc,
4649                                 nvdata->offset,
4650                                 (uint8_t *)nvdata->value,
4651                                 nvdata->len);
4652     }
4653 
4654     if (len > sizeof(struct bxe_nvram_data)) {
4655         free(nvdata, M_DEVBUF);
4656     }
4657 
4658     return (error);
4659 }
4660 
4661 static int
4662 bxe_ioctl_stats_show(struct bxe_softc *sc,
4663                      uint32_t         priv_op,
4664                      struct ifreq     *ifr)
4665 {
4666     const size_t str_size   = (BXE_NUM_ETH_STATS * STAT_NAME_LEN);
4667     const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t));
4668     caddr_t p_tmp;
4669     uint32_t *offset;
4670     int i;
4671 
4672     switch (priv_op)
4673     {
4674     case BXE_IOC_STATS_SHOW_NUM:
4675         memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data));
4676         ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num =
4677             BXE_NUM_ETH_STATS;
4678         ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len =
4679             STAT_NAME_LEN;
4680         return (0);
4681 
4682     case BXE_IOC_STATS_SHOW_STR:
4683         memset(ifr->ifr_data, 0, str_size);
4684         p_tmp = ifr->ifr_data;
4685         for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4686             strcpy(p_tmp, bxe_eth_stats_arr[i].string);
4687             p_tmp += STAT_NAME_LEN;
4688         }
4689         return (0);
4690 
4691     case BXE_IOC_STATS_SHOW_CNT:
4692         memset(ifr->ifr_data, 0, stats_size);
4693         p_tmp = ifr->ifr_data;
4694         for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4695             offset = ((uint32_t *)&sc->eth_stats +
4696                       bxe_eth_stats_arr[i].offset);
4697             switch (bxe_eth_stats_arr[i].size) {
4698             case 4:
4699                 *((uint64_t *)p_tmp) = (uint64_t)*offset;
4700                 break;
4701             case 8:
4702                 *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1));
4703                 break;
4704             default:
4705                 *((uint64_t *)p_tmp) = 0;
4706             }
4707             p_tmp += sizeof(uint64_t);
4708         }
4709         return (0);
4710 
4711     default:
4712         return (-1);
4713     }
4714 }
4715 
4716 static void
4717 bxe_handle_chip_tq(void *context,
4718                    int  pending)
4719 {
4720     struct bxe_softc *sc = (struct bxe_softc *)context;
4721     long work = atomic_load_acq_long(&sc->chip_tq_flags);
4722 
4723     switch (work)
4724     {
4725     case CHIP_TQ_START:
4726         if ((sc->ifnet->if_flags & IFF_UP) &&
4727             !(sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
4728             /* start the interface */
4729             BLOGD(sc, DBG_LOAD, "Starting the interface...\n");
4730             BXE_CORE_LOCK(sc);
4731             bxe_init_locked(sc);
4732             BXE_CORE_UNLOCK(sc);
4733         }
4734         break;
4735 
4736     case CHIP_TQ_STOP:
4737         if (!(sc->ifnet->if_flags & IFF_UP) &&
4738             (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
4739             /* bring down the interface */
4740             BLOGD(sc, DBG_LOAD, "Stopping the interface...\n");
4741             bxe_periodic_stop(sc);
4742             BXE_CORE_LOCK(sc);
4743             bxe_stop_locked(sc);
4744             BXE_CORE_UNLOCK(sc);
4745         }
4746         break;
4747 
4748     case CHIP_TQ_REINIT:
4749         if (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING) {
4750             /* restart the interface */
4751             BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4752             bxe_periodic_stop(sc);
4753             BXE_CORE_LOCK(sc);
4754             bxe_stop_locked(sc);
4755             bxe_init_locked(sc);
4756             BXE_CORE_UNLOCK(sc);
4757         }
4758         break;
4759 
4760     default:
4761         break;
4762     }
4763 }
4764 
4765 /*
4766  * Handles any IOCTL calls from the operating system.
4767  *
4768  * Returns:
4769  *   0 = Success, >0 Failure
4770  */
4771 static int
4772 bxe_ioctl(struct ifnet *ifp,
4773           u_long       command,
4774           caddr_t      data)
4775 {
4776     struct bxe_softc *sc = ifp->if_softc;
4777     struct ifreq *ifr = (struct ifreq *)data;
4778     struct bxe_nvram_data *nvdata;
4779     uint32_t priv_op;
4780     int mask = 0;
4781     int reinit = 0;
4782     int error = 0;
4783 
4784     int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4785     int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4786 
4787     switch (command)
4788     {
4789     case SIOCSIFMTU:
4790         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4791               ifr->ifr_mtu);
4792 
4793         if (sc->mtu == ifr->ifr_mtu) {
4794             /* nothing to change */
4795             break;
4796         }
4797 
4798         if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4799             BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4800                   ifr->ifr_mtu, mtu_min, mtu_max);
4801             error = EINVAL;
4802             break;
4803         }
4804 
4805         atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4806                              (unsigned long)ifr->ifr_mtu);
4807         atomic_store_rel_long((volatile unsigned long *)&ifp->if_mtu,
4808                               (unsigned long)ifr->ifr_mtu);
4809 
4810         reinit = 1;
4811         break;
4812 
4813     case SIOCSIFFLAGS:
4814         /* toggle the interface state up or down */
4815         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4816 
4817         /* check if the interface is up */
4818         if (ifp->if_flags & IFF_UP) {
4819             if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4820                 /* set the receive mode flags */
4821                 bxe_set_rx_mode(sc);
4822             } else {
4823                 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_START);
4824                 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4825             }
4826         } else {
4827             if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4828                 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_STOP);
4829                 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4830             }
4831         }
4832 
4833         break;
4834 
4835     case SIOCADDMULTI:
4836     case SIOCDELMULTI:
4837         /* add/delete multicast addresses */
4838         BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4839 
4840         /* check if the interface is up */
4841         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4842             /* set the receive mode flags */
4843             bxe_set_rx_mode(sc);
4844         }
4845 
4846         break;
4847 
4848     case SIOCSIFCAP:
4849         /* find out which capabilities have changed */
4850         mask = (ifr->ifr_reqcap ^ ifp->if_capenable);
4851 
4852         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4853               mask);
4854 
4855         /* toggle the LRO capabilites enable flag */
4856         if (mask & IFCAP_LRO) {
4857             ifp->if_capenable ^= IFCAP_LRO;
4858             BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4859                   (ifp->if_capenable & IFCAP_LRO) ? "ON" : "OFF");
4860             reinit = 1;
4861         }
4862 
4863         /* toggle the TXCSUM checksum capabilites enable flag */
4864         if (mask & IFCAP_TXCSUM) {
4865             ifp->if_capenable ^= IFCAP_TXCSUM;
4866             BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4867                   (ifp->if_capenable & IFCAP_TXCSUM) ? "ON" : "OFF");
4868             if (ifp->if_capenable & IFCAP_TXCSUM) {
4869                 ifp->if_hwassist = (CSUM_IP       |
4870                                     CSUM_TCP      |
4871                                     CSUM_UDP      |
4872                                     CSUM_TSO      |
4873                                     CSUM_TCP_IPV6 |
4874                                     CSUM_UDP_IPV6);
4875             } else {
4876                 ifp->if_hwassist = 0;
4877             }
4878         }
4879 
4880         /* toggle the RXCSUM checksum capabilities enable flag */
4881         if (mask & IFCAP_RXCSUM) {
4882             ifp->if_capenable ^= IFCAP_RXCSUM;
4883             BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4884                   (ifp->if_capenable & IFCAP_RXCSUM) ? "ON" : "OFF");
4885             if (ifp->if_capenable & IFCAP_RXCSUM) {
4886                 ifp->if_hwassist = (CSUM_IP       |
4887                                     CSUM_TCP      |
4888                                     CSUM_UDP      |
4889                                     CSUM_TSO      |
4890                                     CSUM_TCP_IPV6 |
4891                                     CSUM_UDP_IPV6);
4892             } else {
4893                 ifp->if_hwassist = 0;
4894             }
4895         }
4896 
4897         /* toggle TSO4 capabilities enabled flag */
4898         if (mask & IFCAP_TSO4) {
4899             ifp->if_capenable ^= IFCAP_TSO4;
4900             BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4901                   (ifp->if_capenable & IFCAP_TSO4) ? "ON" : "OFF");
4902         }
4903 
4904         /* toggle TSO6 capabilities enabled flag */
4905         if (mask & IFCAP_TSO6) {
4906             ifp->if_capenable ^= IFCAP_TSO6;
4907             BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4908                   (ifp->if_capenable & IFCAP_TSO6) ? "ON" : "OFF");
4909         }
4910 
4911         /* toggle VLAN_HWTSO capabilities enabled flag */
4912         if (mask & IFCAP_VLAN_HWTSO) {
4913             ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
4914             BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4915                   (ifp->if_capenable & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4916         }
4917 
4918         /* toggle VLAN_HWCSUM capabilities enabled flag */
4919         if (mask & IFCAP_VLAN_HWCSUM) {
4920             /* XXX investigate this... */
4921             BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4922             error = EINVAL;
4923         }
4924 
4925         /* toggle VLAN_MTU capabilities enable flag */
4926         if (mask & IFCAP_VLAN_MTU) {
4927             /* XXX investigate this... */
4928             BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4929             error = EINVAL;
4930         }
4931 
4932         /* toggle VLAN_HWTAGGING capabilities enabled flag */
4933         if (mask & IFCAP_VLAN_HWTAGGING) {
4934             /* XXX investigate this... */
4935             BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4936             error = EINVAL;
4937         }
4938 
4939         /* toggle VLAN_HWFILTER capabilities enabled flag */
4940         if (mask & IFCAP_VLAN_HWFILTER) {
4941             /* XXX investigate this... */
4942             BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4943             error = EINVAL;
4944         }
4945 
4946         /* XXX not yet...
4947          * IFCAP_WOL_MAGIC
4948          */
4949 
4950         break;
4951 
4952     case SIOCSIFMEDIA:
4953     case SIOCGIFMEDIA:
4954         /* set/get interface media */
4955         BLOGD(sc, DBG_IOCTL,
4956               "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4957               (command & 0xff));
4958         error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
4959         break;
4960 
4961     case SIOCGPRIVATE_0:
4962         copyin(ifr->ifr_data, &priv_op, sizeof(priv_op));
4963 
4964         switch (priv_op)
4965         {
4966         case BXE_IOC_RD_NVRAM:
4967         case BXE_IOC_WR_NVRAM:
4968             nvdata = (struct bxe_nvram_data *)ifr->ifr_data;
4969             BLOGD(sc, DBG_IOCTL,
4970                   "Received Private NVRAM ioctl addr=0x%x size=%u\n",
4971                   nvdata->offset, nvdata->len);
4972             error = bxe_ioctl_nvram(sc, priv_op, ifr);
4973             break;
4974 
4975         case BXE_IOC_STATS_SHOW_NUM:
4976         case BXE_IOC_STATS_SHOW_STR:
4977         case BXE_IOC_STATS_SHOW_CNT:
4978             BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n",
4979                   priv_op);
4980             error = bxe_ioctl_stats_show(sc, priv_op, ifr);
4981             break;
4982 
4983         default:
4984             BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op);
4985             error = EINVAL;
4986             break;
4987         }
4988 
4989         break;
4990 
4991     default:
4992         BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
4993               (command & 0xff));
4994         error = ether_ioctl(ifp, command, data);
4995         break;
4996     }
4997 
4998     if (reinit && (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
4999         BLOGD(sc, DBG_LOAD | DBG_IOCTL,
5000               "Re-initializing hardware from IOCTL change\n");
5001         atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
5002         taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
5003     }
5004 
5005     return (error);
5006 }
5007 
5008 static __noinline void
5009 bxe_dump_mbuf(struct bxe_softc *sc,
5010               struct mbuf      *m,
5011               uint8_t          contents)
5012 {
5013     char * type;
5014 
5015     if (!(sc->debug & DBG_MBUF)) {
5016         return;
5017     }
5018 
5019     if (m == NULL) {
5020         BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
5021         return;
5022     }
5023 
5024     while (m) {
5025         BLOGD(sc, DBG_MBUF,
5026               "mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
5027               m, m->m_len, m->m_flags,
5028               "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", m->m_data);
5029 
5030         if (m->m_flags & M_PKTHDR) {
5031              BLOGD(sc, DBG_MBUF,
5032                    "- m_pkthdr: len=%d flags=0x%b csum_flags=%b\n",
5033                    m->m_pkthdr.len, m->m_flags,
5034                    "\20\12M_BCAST\13M_MCAST\14M_FRAG"
5035                    "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG"
5036                    "\22M_PROMISC\23M_NOFREE",
5037                    (int)m->m_pkthdr.csum_flags,
5038                    "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS"
5039                    "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
5040                    "\12CSUM_IP_VALID\13CSUM_DATA_VALID"
5041                    "\14CSUM_PSEUDO_HDR");
5042         }
5043 
5044         if (m->m_flags & M_EXT) {
5045             switch (m->m_ext.ext_type) {
5046             case EXT_CLUSTER:    type = "EXT_CLUSTER";    break;
5047             case EXT_SFBUF:      type = "EXT_SFBUF";      break;
5048             case EXT_JUMBO9:     type = "EXT_JUMBO9";     break;
5049             case EXT_JUMBO16:    type = "EXT_JUMBO16";    break;
5050             case EXT_PACKET:     type = "EXT_PACKET";     break;
5051             case EXT_MBUF:       type = "EXT_MBUF";       break;
5052             case EXT_NET_DRV:    type = "EXT_NET_DRV";    break;
5053             case EXT_MOD_TYPE:   type = "EXT_MOD_TYPE";   break;
5054             case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
5055             case EXT_EXTREF:     type = "EXT_EXTREF";     break;
5056             default:             type = "UNKNOWN";        break;
5057             }
5058 
5059             BLOGD(sc, DBG_MBUF,
5060                   "- m_ext: %p ext_size=%d, type=%s\n",
5061                   m->m_ext.ext_buf, m->m_ext.ext_size, type);
5062         }
5063 
5064         if (contents) {
5065             bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
5066         }
5067 
5068         m = m->m_next;
5069     }
5070 }
5071 
5072 /*
5073  * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
5074  * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
5075  * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
5076  * The headers comes in a seperate bd in FreeBSD so 13-3=10.
5077  * Returns: 0 if OK to send, 1 if packet needs further defragmentation
5078  */
5079 static int
5080 bxe_chktso_window(struct bxe_softc  *sc,
5081                   int               nsegs,
5082                   bus_dma_segment_t *segs,
5083                   struct mbuf       *m)
5084 {
5085     uint32_t num_wnds, wnd_size, wnd_sum;
5086     int32_t frag_idx, wnd_idx;
5087     unsigned short lso_mss;
5088     int defrag;
5089 
5090     defrag = 0;
5091     wnd_sum = 0;
5092     wnd_size = 10;
5093     num_wnds = nsegs - wnd_size;
5094     lso_mss = htole16(m->m_pkthdr.tso_segsz);
5095 
5096     /*
5097      * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
5098      * first window sum of data while skipping the first assuming it is the
5099      * header in FreeBSD.
5100      */
5101     for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
5102         wnd_sum += htole16(segs[frag_idx].ds_len);
5103     }
5104 
5105     /* check the first 10 bd window size */
5106     if (wnd_sum < lso_mss) {
5107         return (1);
5108     }
5109 
5110     /* run through the windows */
5111     for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
5112         /* subtract the first mbuf->m_len of the last wndw(-header) */
5113         wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
5114         /* add the next mbuf len to the len of our new window */
5115         wnd_sum += htole16(segs[frag_idx].ds_len);
5116         if (wnd_sum < lso_mss) {
5117             return (1);
5118         }
5119     }
5120 
5121     return (0);
5122 }
5123 
5124 static uint8_t
5125 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
5126                     struct mbuf         *m,
5127                     uint32_t            *parsing_data)
5128 {
5129     struct ether_vlan_header *eh = NULL;
5130     struct ip *ip4 = NULL;
5131     struct ip6_hdr *ip6 = NULL;
5132     caddr_t ip = NULL;
5133     struct tcphdr *th = NULL;
5134     int e_hlen, ip_hlen, l4_off;
5135     uint16_t proto;
5136 
5137     if (m->m_pkthdr.csum_flags == CSUM_IP) {
5138         /* no L4 checksum offload needed */
5139         return (0);
5140     }
5141 
5142     /* get the Ethernet header */
5143     eh = mtod(m, struct ether_vlan_header *);
5144 
5145     /* handle VLAN encapsulation if present */
5146     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5147         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5148         proto  = ntohs(eh->evl_proto);
5149     } else {
5150         e_hlen = ETHER_HDR_LEN;
5151         proto  = ntohs(eh->evl_encap_proto);
5152     }
5153 
5154     switch (proto) {
5155     case ETHERTYPE_IP:
5156         /* get the IP header, if mbuf len < 20 then header in next mbuf */
5157         ip4 = (m->m_len < sizeof(struct ip)) ?
5158                   (struct ip *)m->m_next->m_data :
5159                   (struct ip *)(m->m_data + e_hlen);
5160         /* ip_hl is number of 32-bit words */
5161         ip_hlen = (ip4->ip_hl << 2);
5162         ip = (caddr_t)ip4;
5163         break;
5164     case ETHERTYPE_IPV6:
5165         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5166         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5167                   (struct ip6_hdr *)m->m_next->m_data :
5168                   (struct ip6_hdr *)(m->m_data + e_hlen);
5169         /* XXX cannot support offload with IPv6 extensions */
5170         ip_hlen = sizeof(struct ip6_hdr);
5171         ip = (caddr_t)ip6;
5172         break;
5173     default:
5174         /* We can't offload in this case... */
5175         /* XXX error stat ??? */
5176         return (0);
5177     }
5178 
5179     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5180     l4_off = (e_hlen + ip_hlen);
5181 
5182     *parsing_data |=
5183         (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
5184          ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
5185 
5186     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5187                                   CSUM_TSO |
5188                                   CSUM_TCP_IPV6)) {
5189         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5190         th = (struct tcphdr *)(ip + ip_hlen);
5191         /* th_off is number of 32-bit words */
5192         *parsing_data |= ((th->th_off <<
5193                            ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
5194                           ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
5195         return (l4_off + (th->th_off << 2)); /* entire header length */
5196     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5197                                          CSUM_UDP_IPV6)) {
5198         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5199         return (l4_off + sizeof(struct udphdr)); /* entire header length */
5200     } else {
5201         /* XXX error stat ??? */
5202         return (0);
5203     }
5204 }
5205 
5206 static uint8_t
5207 bxe_set_pbd_csum(struct bxe_fastpath        *fp,
5208                  struct mbuf                *m,
5209                  struct eth_tx_parse_bd_e1x *pbd)
5210 {
5211     struct ether_vlan_header *eh = NULL;
5212     struct ip *ip4 = NULL;
5213     struct ip6_hdr *ip6 = NULL;
5214     caddr_t ip = NULL;
5215     struct tcphdr *th = NULL;
5216     struct udphdr *uh = NULL;
5217     int e_hlen, ip_hlen;
5218     uint16_t proto;
5219     uint8_t hlen;
5220     uint16_t tmp_csum;
5221     uint32_t *tmp_uh;
5222 
5223     /* get the Ethernet header */
5224     eh = mtod(m, struct ether_vlan_header *);
5225 
5226     /* handle VLAN encapsulation if present */
5227     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5228         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5229         proto  = ntohs(eh->evl_proto);
5230     } else {
5231         e_hlen = ETHER_HDR_LEN;
5232         proto  = ntohs(eh->evl_encap_proto);
5233     }
5234 
5235     switch (proto) {
5236     case ETHERTYPE_IP:
5237         /* get the IP header, if mbuf len < 20 then header in next mbuf */
5238         ip4 = (m->m_len < sizeof(struct ip)) ?
5239                   (struct ip *)m->m_next->m_data :
5240                   (struct ip *)(m->m_data + e_hlen);
5241         /* ip_hl is number of 32-bit words */
5242         ip_hlen = (ip4->ip_hl << 1);
5243         ip = (caddr_t)ip4;
5244         break;
5245     case ETHERTYPE_IPV6:
5246         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5247         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5248                   (struct ip6_hdr *)m->m_next->m_data :
5249                   (struct ip6_hdr *)(m->m_data + e_hlen);
5250         /* XXX cannot support offload with IPv6 extensions */
5251         ip_hlen = (sizeof(struct ip6_hdr) >> 1);
5252         ip = (caddr_t)ip6;
5253         break;
5254     default:
5255         /* We can't offload in this case... */
5256         /* XXX error stat ??? */
5257         return (0);
5258     }
5259 
5260     hlen = (e_hlen >> 1);
5261 
5262     /* note that rest of global_data is indirectly zeroed here */
5263     if (m->m_flags & M_VLANTAG) {
5264         pbd->global_data =
5265             htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
5266     } else {
5267         pbd->global_data = htole16(hlen);
5268     }
5269 
5270     pbd->ip_hlen_w = ip_hlen;
5271 
5272     hlen += pbd->ip_hlen_w;
5273 
5274     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5275 
5276     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5277                                   CSUM_TSO |
5278                                   CSUM_TCP_IPV6)) {
5279         th = (struct tcphdr *)(ip + (ip_hlen << 1));
5280         /* th_off is number of 32-bit words */
5281         hlen += (uint16_t)(th->th_off << 1);
5282     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5283                                          CSUM_UDP_IPV6)) {
5284         uh = (struct udphdr *)(ip + (ip_hlen << 1));
5285         hlen += (sizeof(struct udphdr) / 2);
5286     } else {
5287         /* valid case as only CSUM_IP was set */
5288         return (0);
5289     }
5290 
5291     pbd->total_hlen_w = htole16(hlen);
5292 
5293     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5294                                   CSUM_TSO |
5295                                   CSUM_TCP_IPV6)) {
5296         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5297         pbd->tcp_pseudo_csum = ntohs(th->th_sum);
5298     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5299                                          CSUM_UDP_IPV6)) {
5300         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5301 
5302         /*
5303          * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
5304          * checksums and does not know anything about the UDP header and where
5305          * the checksum field is located. It only knows about TCP. Therefore
5306          * we "lie" to the hardware for outgoing UDP packets w/ checksum
5307          * offload. Since the checksum field offset for TCP is 16 bytes and
5308          * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
5309          * bytes less than the start of the UDP header. This allows the
5310          * hardware to write the checksum in the correct spot. But the
5311          * hardware will compute a checksum which includes the last 10 bytes
5312          * of the IP header. To correct this we tweak the stack computed
5313          * pseudo checksum by folding in the calculation of the inverse
5314          * checksum for those final 10 bytes of the IP header. This allows
5315          * the correct checksum to be computed by the hardware.
5316          */
5317 
5318         /* set pointer 10 bytes before UDP header */
5319         tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5320 
5321         /* calculate a pseudo header checksum over the first 10 bytes */
5322         tmp_csum = in_pseudo(*tmp_uh,
5323                              *(tmp_uh + 1),
5324                              *(uint16_t *)(tmp_uh + 2));
5325 
5326         pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5327     }
5328 
5329     return (hlen * 2); /* entire header length, number of bytes */
5330 }
5331 
5332 static void
5333 bxe_set_pbd_lso_e2(struct mbuf *m,
5334                    uint32_t    *parsing_data)
5335 {
5336     *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5337                        ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5338                       ETH_TX_PARSE_BD_E2_LSO_MSS);
5339 
5340     /* XXX test for IPv6 with extension header... */
5341 #if 0
5342     struct ip6_hdr *ip6;
5343     if (ip6 && ip6->ip6_nxt == 'some ipv6 extension header')
5344         *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
5345 #endif
5346 }
5347 
5348 static void
5349 bxe_set_pbd_lso(struct mbuf                *m,
5350                 struct eth_tx_parse_bd_e1x *pbd)
5351 {
5352     struct ether_vlan_header *eh = NULL;
5353     struct ip *ip = NULL;
5354     struct tcphdr *th = NULL;
5355     int e_hlen;
5356 
5357     /* get the Ethernet header */
5358     eh = mtod(m, struct ether_vlan_header *);
5359 
5360     /* handle VLAN encapsulation if present */
5361     e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5362                  (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5363 
5364     /* get the IP and TCP header, with LSO entire header in first mbuf */
5365     /* XXX assuming IPv4 */
5366     ip = (struct ip *)(m->m_data + e_hlen);
5367     th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5368 
5369     pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5370     pbd->tcp_send_seq = ntohl(th->th_seq);
5371     pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5372 
5373 #if 1
5374         /* XXX IPv4 */
5375         pbd->ip_id = ntohs(ip->ip_id);
5376         pbd->tcp_pseudo_csum =
5377             ntohs(in_pseudo(ip->ip_src.s_addr,
5378                             ip->ip_dst.s_addr,
5379                             htons(IPPROTO_TCP)));
5380 #else
5381         /* XXX IPv6 */
5382         pbd->tcp_pseudo_csum =
5383             ntohs(in_pseudo(&ip6->ip6_src,
5384                             &ip6->ip6_dst,
5385                             htons(IPPROTO_TCP)));
5386 #endif
5387 
5388     pbd->global_data |=
5389         htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5390 }
5391 
5392 /*
5393  * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5394  * visible to the controller.
5395  *
5396  * If an mbuf is submitted to this routine and cannot be given to the
5397  * controller (e.g. it has too many fragments) then the function may free
5398  * the mbuf and return to the caller.
5399  *
5400  * Returns:
5401  *   0 = Success, !0 = Failure
5402  *   Note the side effect that an mbuf may be freed if it causes a problem.
5403  */
5404 static int
5405 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5406 {
5407     bus_dma_segment_t segs[32];
5408     struct mbuf *m0;
5409     struct bxe_sw_tx_bd *tx_buf;
5410     struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5411     struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5412     /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5413     struct eth_tx_bd *tx_data_bd;
5414     struct eth_tx_bd *tx_total_pkt_size_bd;
5415     struct eth_tx_start_bd *tx_start_bd;
5416     uint16_t bd_prod, pkt_prod, total_pkt_size;
5417     uint8_t mac_type;
5418     int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5419     struct bxe_softc *sc;
5420     uint16_t tx_bd_avail;
5421     struct ether_vlan_header *eh;
5422     uint32_t pbd_e2_parsing_data = 0;
5423     uint8_t hlen = 0;
5424     int tmp_bd;
5425     int i;
5426 
5427     sc = fp->sc;
5428 
5429     M_ASSERTPKTHDR(*m_head);
5430 
5431     m0 = *m_head;
5432     rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5433     tx_start_bd = NULL;
5434     tx_data_bd = NULL;
5435     tx_total_pkt_size_bd = NULL;
5436 
5437     /* get the H/W pointer for packets and BDs */
5438     pkt_prod = fp->tx_pkt_prod;
5439     bd_prod = fp->tx_bd_prod;
5440 
5441     mac_type = UNICAST_ADDRESS;
5442 
5443     /* map the mbuf into the next open DMAable memory */
5444     tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5445     error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5446                                     tx_buf->m_map, m0,
5447                                     segs, &nsegs, BUS_DMA_NOWAIT);
5448 
5449     /* mapping errors */
5450     if(__predict_false(error != 0)) {
5451         fp->eth_q_stats.tx_dma_mapping_failure++;
5452         if (error == ENOMEM) {
5453             /* resource issue, try again later */
5454             rc = ENOMEM;
5455         } else if (error == EFBIG) {
5456             /* possibly recoverable with defragmentation */
5457             fp->eth_q_stats.mbuf_defrag_attempts++;
5458             m0 = m_defrag(*m_head, M_DONTWAIT);
5459             if (m0 == NULL) {
5460                 fp->eth_q_stats.mbuf_defrag_failures++;
5461                 rc = ENOBUFS;
5462             } else {
5463                 /* defrag successful, try mapping again */
5464                 *m_head = m0;
5465                 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5466                                                 tx_buf->m_map, m0,
5467                                                 segs, &nsegs, BUS_DMA_NOWAIT);
5468                 if (error) {
5469                     fp->eth_q_stats.tx_dma_mapping_failure++;
5470                     rc = error;
5471                 }
5472             }
5473         } else {
5474             /* unknown, unrecoverable mapping error */
5475             BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5476             bxe_dump_mbuf(sc, m0, FALSE);
5477             rc = error;
5478         }
5479 
5480         goto bxe_tx_encap_continue;
5481     }
5482 
5483     tx_bd_avail = bxe_tx_avail(sc, fp);
5484 
5485     /* make sure there is enough room in the send queue */
5486     if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5487         /* Recoverable, try again later. */
5488         fp->eth_q_stats.tx_hw_queue_full++;
5489         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5490         rc = ENOMEM;
5491         goto bxe_tx_encap_continue;
5492     }
5493 
5494     /* capture the current H/W TX chain high watermark */
5495     if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5496                         (TX_BD_USABLE - tx_bd_avail))) {
5497         fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5498     }
5499 
5500     /* make sure it fits in the packet window */
5501     if (__predict_false(nsegs > 12)) {
5502         /*
5503          * The mbuf may be to big for the controller to handle. If the frame
5504          * is a TSO frame we'll need to do an additional check.
5505          */
5506         if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5507             if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5508                 goto bxe_tx_encap_continue; /* OK to send */
5509             } else {
5510                 fp->eth_q_stats.tx_window_violation_tso++;
5511             }
5512         } else {
5513             fp->eth_q_stats.tx_window_violation_std++;
5514         }
5515 
5516         /* XXX I don't like this, change to double copy packet */
5517 
5518         /* no sense trying to defrag again, just drop the frame */
5519         rc = ENODEV;
5520     }
5521 
5522 bxe_tx_encap_continue:
5523 
5524     /* Check for errors */
5525     if (rc) {
5526         if (rc == ENOMEM) {
5527             /* recoverable try again later  */
5528         } else {
5529             fp->eth_q_stats.tx_soft_errors++;
5530             fp->eth_q_stats.mbuf_alloc_tx--;
5531             m_freem(*m_head);
5532             *m_head = NULL;
5533         }
5534 
5535         return (rc);
5536     }
5537 
5538     /* set flag according to packet type (UNICAST_ADDRESS is default) */
5539     if (m0->m_flags & M_BCAST) {
5540         mac_type = BROADCAST_ADDRESS;
5541     } else if (m0->m_flags & M_MCAST) {
5542         mac_type = MULTICAST_ADDRESS;
5543     }
5544 
5545     /* store the mbuf into the mbuf ring */
5546     tx_buf->m        = m0;
5547     tx_buf->first_bd = fp->tx_bd_prod;
5548     tx_buf->flags    = 0;
5549 
5550     /* prepare the first transmit (start) BD for the mbuf */
5551     tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5552 
5553     BLOGD(sc, DBG_TX,
5554           "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5555           pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5556 
5557     tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5558     tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5559     tx_start_bd->nbytes  = htole16(segs[0].ds_len);
5560     total_pkt_size += tx_start_bd->nbytes;
5561     tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5562 
5563     tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5564 
5565     /* all frames have at least Start BD + Parsing BD */
5566     nbds = nsegs + 1;
5567     tx_start_bd->nbd = htole16(nbds);
5568 
5569     if (m0->m_flags & M_VLANTAG) {
5570         tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5571         tx_start_bd->bd_flags.as_bitfield |=
5572             (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5573     } else {
5574         /* vf tx, start bd must hold the ethertype for fw to enforce it */
5575         if (IS_VF(sc)) {
5576             /* map ethernet header to find type and header length */
5577             eh = mtod(m0, struct ether_vlan_header *);
5578             tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5579         } else {
5580             /* used by FW for packet accounting */
5581             tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5582 #if 0
5583             /*
5584              * If NPAR-SD is active then FW should do the tagging regardless
5585              * of value of priority. Otherwise, if priority indicates this is
5586              * a control packet we need to indicate to FW to avoid tagging.
5587              */
5588             if (!IS_MF_AFEX(sc) && (mbuf priority == PRIO_CONTROL)) {
5589                 SET_FLAG(tx_start_bd->general_data,
5590                          ETH_TX_START_BD_FORCE_VLAN_MODE, 1);
5591             }
5592 #endif
5593         }
5594     }
5595 
5596     /*
5597      * add a parsing BD from the chain. The parsing BD is always added
5598      * though it is only used for TSO and chksum
5599      */
5600     bd_prod = TX_BD_NEXT(bd_prod);
5601 
5602     if (m0->m_pkthdr.csum_flags) {
5603         if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5604             fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5605             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5606         }
5607 
5608         if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5609             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5610                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5611         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5612             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6   |
5613                                                   ETH_TX_BD_FLAGS_IS_UDP |
5614                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5615         } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5616                    (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5617             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5618         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5619             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5620                                                   ETH_TX_BD_FLAGS_IS_UDP);
5621         }
5622     }
5623 
5624     if (!CHIP_IS_E1x(sc)) {
5625         pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5626         memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5627 
5628         if (m0->m_pkthdr.csum_flags) {
5629             hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5630         }
5631 
5632 #if 0
5633         /*
5634          * Add the MACs to the parsing BD if the module param was
5635          * explicitly set, if this is a vf, or in switch independent
5636          * mode.
5637          */
5638         if (sc->flags & BXE_TX_SWITCHING || IS_VF(sc) || IS_MF_SI(sc)) {
5639             eh = mtod(m0, struct ether_vlan_header *);
5640             bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
5641                                 &pbd_e2->data.mac_addr.src_mid,
5642                                 &pbd_e2->data.mac_addr.src_lo,
5643                                 eh->evl_shost);
5644             bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
5645                                 &pbd_e2->data.mac_addr.dst_mid,
5646                                 &pbd_e2->data.mac_addr.dst_lo,
5647                                 eh->evl_dhost);
5648         }
5649 #endif
5650 
5651         SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5652                  mac_type);
5653     } else {
5654         uint16_t global_data = 0;
5655 
5656         pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5657         memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5658 
5659         if (m0->m_pkthdr.csum_flags) {
5660             hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5661         }
5662 
5663         SET_FLAG(global_data,
5664                  ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5665         pbd_e1x->global_data |= htole16(global_data);
5666     }
5667 
5668     /* setup the parsing BD with TSO specific info */
5669     if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5670         fp->eth_q_stats.tx_ofld_frames_lso++;
5671         tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5672 
5673         if (__predict_false(tx_start_bd->nbytes > hlen)) {
5674             fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5675 
5676             /* split the first BD into header/data making the fw job easy */
5677             nbds++;
5678             tx_start_bd->nbd = htole16(nbds);
5679 
5680             bd_prod = TX_BD_NEXT(bd_prod);
5681 
5682             /* new transmit BD after the tx_parse_bd */
5683             tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5684             tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5685             tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5686             tx_data_bd->nbytes  = htole16(segs[0].ds_len - hlen);
5687             if (tx_total_pkt_size_bd == NULL) {
5688                 tx_total_pkt_size_bd = tx_data_bd;
5689             }
5690 
5691             BLOGD(sc, DBG_TX,
5692                   "TSO split header size is %d (%x:%x) nbds %d\n",
5693                   le16toh(tx_start_bd->nbytes),
5694                   le32toh(tx_start_bd->addr_hi),
5695                   le32toh(tx_start_bd->addr_lo),
5696                   nbds);
5697         }
5698 
5699         if (!CHIP_IS_E1x(sc)) {
5700             bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5701         } else {
5702             bxe_set_pbd_lso(m0, pbd_e1x);
5703         }
5704     }
5705 
5706     if (pbd_e2_parsing_data) {
5707         pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5708     }
5709 
5710     /* prepare remaining BDs, start tx bd contains first seg/frag */
5711     for (i = 1; i < nsegs ; i++) {
5712         bd_prod = TX_BD_NEXT(bd_prod);
5713         tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5714         tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5715         tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5716         tx_data_bd->nbytes  = htole16(segs[i].ds_len);
5717         if (tx_total_pkt_size_bd == NULL) {
5718             tx_total_pkt_size_bd = tx_data_bd;
5719         }
5720         total_pkt_size += tx_data_bd->nbytes;
5721     }
5722 
5723     BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5724 
5725     if (tx_total_pkt_size_bd != NULL) {
5726         tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5727     }
5728 
5729     if (__predict_false(sc->debug & DBG_TX)) {
5730         tmp_bd = tx_buf->first_bd;
5731         for (i = 0; i < nbds; i++)
5732         {
5733             if (i == 0) {
5734                 BLOGD(sc, DBG_TX,
5735                       "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5736                       "bd_flags=0x%x hdr_nbds=%d\n",
5737                       tx_start_bd,
5738                       tmp_bd,
5739                       le16toh(tx_start_bd->nbd),
5740                       le16toh(tx_start_bd->vlan_or_ethertype),
5741                       tx_start_bd->bd_flags.as_bitfield,
5742                       (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5743             } else if (i == 1) {
5744                 if (pbd_e1x) {
5745                     BLOGD(sc, DBG_TX,
5746                           "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5747                           "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5748                           "tcp_seq=%u total_hlen_w=%u\n",
5749                           pbd_e1x,
5750                           tmp_bd,
5751                           pbd_e1x->global_data,
5752                           pbd_e1x->ip_hlen_w,
5753                           pbd_e1x->ip_id,
5754                           pbd_e1x->lso_mss,
5755                           pbd_e1x->tcp_flags,
5756                           pbd_e1x->tcp_pseudo_csum,
5757                           pbd_e1x->tcp_send_seq,
5758                           le16toh(pbd_e1x->total_hlen_w));
5759                 } else { /* if (pbd_e2) */
5760                     BLOGD(sc, DBG_TX,
5761                           "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5762                           "src=%02x:%02x:%02x parsing_data=0x%x\n",
5763                           pbd_e2,
5764                           tmp_bd,
5765                           pbd_e2->data.mac_addr.dst_hi,
5766                           pbd_e2->data.mac_addr.dst_mid,
5767                           pbd_e2->data.mac_addr.dst_lo,
5768                           pbd_e2->data.mac_addr.src_hi,
5769                           pbd_e2->data.mac_addr.src_mid,
5770                           pbd_e2->data.mac_addr.src_lo,
5771                           pbd_e2->parsing_data);
5772                 }
5773             }
5774 
5775             if (i != 1) { /* skip parse db as it doesn't hold data */
5776                 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5777                 BLOGD(sc, DBG_TX,
5778                       "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5779                       tx_data_bd,
5780                       tmp_bd,
5781                       le16toh(tx_data_bd->nbytes),
5782                       le32toh(tx_data_bd->addr_hi),
5783                       le32toh(tx_data_bd->addr_lo));
5784             }
5785 
5786             tmp_bd = TX_BD_NEXT(tmp_bd);
5787         }
5788     }
5789 
5790     BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5791 
5792     /* update TX BD producer index value for next TX */
5793     bd_prod = TX_BD_NEXT(bd_prod);
5794 
5795     /*
5796      * If the chain of tx_bd's describing this frame is adjacent to or spans
5797      * an eth_tx_next_bd element then we need to increment the nbds value.
5798      */
5799     if (TX_BD_IDX(bd_prod) < nbds) {
5800         nbds++;
5801     }
5802 
5803     /* don't allow reordering of writes for nbd and packets */
5804     mb();
5805 
5806     fp->tx_db.data.prod += nbds;
5807 
5808     /* producer points to the next free tx_bd at this point */
5809     fp->tx_pkt_prod++;
5810     fp->tx_bd_prod = bd_prod;
5811 
5812     DOORBELL(sc, fp->index, fp->tx_db.raw);
5813 
5814     fp->eth_q_stats.tx_pkts++;
5815 
5816     /* Prevent speculative reads from getting ahead of the status block. */
5817     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5818                       0, 0, BUS_SPACE_BARRIER_READ);
5819 
5820     /* Prevent speculative reads from getting ahead of the doorbell. */
5821     bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5822                       0, 0, BUS_SPACE_BARRIER_READ);
5823 
5824     return (0);
5825 }
5826 
5827 static void
5828 bxe_tx_start_locked(struct bxe_softc    *sc,
5829                     struct ifnet        *ifp,
5830                     struct bxe_fastpath *fp)
5831 {
5832     struct mbuf *m = NULL;
5833     int tx_count = 0;
5834     uint16_t tx_bd_avail;
5835 
5836     BXE_FP_TX_LOCK_ASSERT(fp);
5837 
5838     /* keep adding entries while there are frames to send */
5839     while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
5840 
5841         /*
5842          * check for any frames to send
5843          * dequeue can still be NULL even if queue is not empty
5844          */
5845         IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
5846         if (__predict_false(m == NULL)) {
5847             break;
5848         }
5849 
5850         /* the mbuf now belongs to us */
5851         fp->eth_q_stats.mbuf_alloc_tx++;
5852 
5853         /*
5854          * Put the frame into the transmit ring. If we don't have room,
5855          * place the mbuf back at the head of the TX queue, set the
5856          * OACTIVE flag, and wait for the NIC to drain the chain.
5857          */
5858         if (__predict_false(bxe_tx_encap(fp, &m))) {
5859             fp->eth_q_stats.tx_encap_failures++;
5860             if (m != NULL) {
5861                 /* mark the TX queue as full and return the frame */
5862                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5863                 IFQ_DRV_PREPEND(&ifp->if_snd, m);
5864                 fp->eth_q_stats.mbuf_alloc_tx--;
5865                 fp->eth_q_stats.tx_queue_xoff++;
5866             }
5867 
5868             /* stop looking for more work */
5869             break;
5870         }
5871 
5872         /* the frame was enqueued successfully */
5873         tx_count++;
5874 
5875         /* send a copy of the frame to any BPF listeners. */
5876         BPF_MTAP(ifp, m);
5877 
5878         tx_bd_avail = bxe_tx_avail(sc, fp);
5879 
5880         /* handle any completions if we're running low */
5881         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5882             bxe_txeof(sc, fp);
5883         }
5884 
5885         /* close TX if we're still running low */
5886         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5887             ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5888             break;
5889         }
5890     }
5891 
5892     /* all TX packets were dequeued and/or the tx ring is full */
5893     if (tx_count > 0) {
5894         /* reset the TX watchdog timeout timer */
5895         fp->watchdog_timer = BXE_TX_TIMEOUT;
5896     }
5897 }
5898 
5899 /* Legacy (non-RSS) dispatch routine */
5900 static void
5901 bxe_tx_start(struct ifnet *ifp)
5902 {
5903     struct bxe_softc *sc;
5904     struct bxe_fastpath *fp;
5905 
5906     sc = ifp->if_softc;
5907 
5908     if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
5909         BLOGW(sc, "Interface not running, ignoring transmit request\n");
5910         return;
5911     }
5912 
5913     if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
5914         BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
5915         return;
5916     }
5917 
5918     if (!sc->link_vars.link_up) {
5919         BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5920         return;
5921     }
5922 
5923     fp = &sc->fp[0];
5924 
5925     BXE_FP_TX_LOCK(fp);
5926     bxe_tx_start_locked(sc, ifp, fp);
5927     BXE_FP_TX_UNLOCK(fp);
5928 }
5929 
5930 #if __FreeBSD_version >= 800000
5931 
5932 static int
5933 bxe_tx_mq_start_locked(struct bxe_softc    *sc,
5934                        struct ifnet        *ifp,
5935                        struct bxe_fastpath *fp,
5936                        struct mbuf         *m)
5937 {
5938     struct buf_ring *tx_br = fp->tx_br;
5939     struct mbuf *next;
5940     int depth, rc, tx_count;
5941     uint16_t tx_bd_avail;
5942 
5943     rc = tx_count = 0;
5944 
5945     if (!tx_br) {
5946         BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
5947         return (EINVAL);
5948     }
5949 
5950     /* fetch the depth of the driver queue */
5951     depth = drbr_inuse(ifp, tx_br);
5952     if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
5953         fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
5954     }
5955 
5956     BXE_FP_TX_LOCK_ASSERT(fp);
5957 
5958     if (m == NULL) {
5959         /* no new work, check for pending frames */
5960         next = drbr_dequeue(ifp, tx_br);
5961     } else if (drbr_needs_enqueue(ifp, tx_br)) {
5962         /* have both new and pending work, maintain packet order */
5963         rc = drbr_enqueue(ifp, tx_br, m);
5964         if (rc != 0) {
5965             fp->eth_q_stats.tx_soft_errors++;
5966             goto bxe_tx_mq_start_locked_exit;
5967         }
5968         next = drbr_dequeue(ifp, tx_br);
5969     } else {
5970         /* new work only and nothing pending */
5971         next = m;
5972     }
5973 
5974     /* keep adding entries while there are frames to send */
5975     while (next != NULL) {
5976 
5977         /* the mbuf now belongs to us */
5978         fp->eth_q_stats.mbuf_alloc_tx++;
5979 
5980         /*
5981          * Put the frame into the transmit ring. If we don't have room,
5982          * place the mbuf back at the head of the TX queue, set the
5983          * OACTIVE flag, and wait for the NIC to drain the chain.
5984          */
5985         rc = bxe_tx_encap(fp, &next);
5986         if (__predict_false(rc != 0)) {
5987             fp->eth_q_stats.tx_encap_failures++;
5988             if (next != NULL) {
5989                 /* mark the TX queue as full and save the frame */
5990                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5991                 /* XXX this may reorder the frame */
5992                 rc = drbr_enqueue(ifp, tx_br, next);
5993                 fp->eth_q_stats.mbuf_alloc_tx--;
5994                 fp->eth_q_stats.tx_frames_deferred++;
5995             }
5996 
5997             /* stop looking for more work */
5998             break;
5999         }
6000 
6001         /* the transmit frame was enqueued successfully */
6002         tx_count++;
6003 
6004         /* send a copy of the frame to any BPF listeners */
6005         BPF_MTAP(ifp, next);
6006 
6007         tx_bd_avail = bxe_tx_avail(sc, fp);
6008 
6009         /* handle any completions if we're running low */
6010         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
6011             bxe_txeof(sc, fp);
6012         }
6013 
6014         /* close TX if we're still running low */
6015         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
6016             ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
6017             break;
6018         }
6019 
6020         next = drbr_dequeue(ifp, tx_br);
6021     }
6022 
6023     /* all TX packets were dequeued and/or the tx ring is full */
6024     if (tx_count > 0) {
6025         /* reset the TX watchdog timeout timer */
6026         fp->watchdog_timer = BXE_TX_TIMEOUT;
6027     }
6028 
6029 bxe_tx_mq_start_locked_exit:
6030 
6031     return (rc);
6032 }
6033 
6034 /* Multiqueue (TSS) dispatch routine. */
6035 static int
6036 bxe_tx_mq_start(struct ifnet *ifp,
6037                 struct mbuf  *m)
6038 {
6039     struct bxe_softc *sc = ifp->if_softc;
6040     struct bxe_fastpath *fp;
6041     int fp_index, rc;
6042 
6043     fp_index = 0; /* default is the first queue */
6044 
6045     /* change the queue if using flow ID */
6046     if ((m->m_flags & M_FLOWID) != 0) {
6047         fp_index = (m->m_pkthdr.flowid % sc->num_queues);
6048     }
6049 
6050     fp = &sc->fp[fp_index];
6051 
6052     if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
6053         BLOGW(sc, "Interface not running, ignoring transmit request\n");
6054         return (ENETDOWN);
6055     }
6056 
6057     if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
6058         BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
6059         return (EBUSY);
6060     }
6061 
6062     if (!sc->link_vars.link_up) {
6063         BLOGW(sc, "Interface link is down, ignoring transmit request\n");
6064         return (ENETDOWN);
6065     }
6066 
6067     /* XXX change to TRYLOCK here and if failed then schedule taskqueue */
6068 
6069     BXE_FP_TX_LOCK(fp);
6070     rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
6071     BXE_FP_TX_UNLOCK(fp);
6072 
6073     return (rc);
6074 }
6075 
6076 static void
6077 bxe_mq_flush(struct ifnet *ifp)
6078 {
6079     struct bxe_softc *sc = ifp->if_softc;
6080     struct bxe_fastpath *fp;
6081     struct mbuf *m;
6082     int i;
6083 
6084     for (i = 0; i < sc->num_queues; i++) {
6085         fp = &sc->fp[i];
6086 
6087         if (fp->state != BXE_FP_STATE_OPEN) {
6088             BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
6089                   fp->index, fp->state);
6090             continue;
6091         }
6092 
6093         if (fp->tx_br != NULL) {
6094             BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
6095             BXE_FP_TX_LOCK(fp);
6096             while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6097                 m_freem(m);
6098             }
6099             BXE_FP_TX_UNLOCK(fp);
6100         }
6101     }
6102 
6103     if_qflush(ifp);
6104 }
6105 
6106 #endif /* FreeBSD_version >= 800000 */
6107 
6108 static uint16_t
6109 bxe_cid_ilt_lines(struct bxe_softc *sc)
6110 {
6111     if (IS_SRIOV(sc)) {
6112         return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
6113     }
6114     return (L2_ILT_LINES(sc));
6115 }
6116 
6117 static void
6118 bxe_ilt_set_info(struct bxe_softc *sc)
6119 {
6120     struct ilt_client_info *ilt_client;
6121     struct ecore_ilt *ilt = sc->ilt;
6122     uint16_t line = 0;
6123 
6124     ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
6125     BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
6126 
6127     /* CDU */
6128     ilt_client = &ilt->clients[ILT_CLIENT_CDU];
6129     ilt_client->client_num = ILT_CLIENT_CDU;
6130     ilt_client->page_size = CDU_ILT_PAGE_SZ;
6131     ilt_client->flags = ILT_CLIENT_SKIP_MEM;
6132     ilt_client->start = line;
6133     line += bxe_cid_ilt_lines(sc);
6134 
6135     if (CNIC_SUPPORT(sc)) {
6136         line += CNIC_ILT_LINES;
6137     }
6138 
6139     ilt_client->end = (line - 1);
6140 
6141     BLOGD(sc, DBG_LOAD,
6142           "ilt client[CDU]: start %d, end %d, "
6143           "psz 0x%x, flags 0x%x, hw psz %d\n",
6144           ilt_client->start, ilt_client->end,
6145           ilt_client->page_size,
6146           ilt_client->flags,
6147           ilog2(ilt_client->page_size >> 12));
6148 
6149     /* QM */
6150     if (QM_INIT(sc->qm_cid_count)) {
6151         ilt_client = &ilt->clients[ILT_CLIENT_QM];
6152         ilt_client->client_num = ILT_CLIENT_QM;
6153         ilt_client->page_size = QM_ILT_PAGE_SZ;
6154         ilt_client->flags = 0;
6155         ilt_client->start = line;
6156 
6157         /* 4 bytes for each cid */
6158         line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
6159                              QM_ILT_PAGE_SZ);
6160 
6161         ilt_client->end = (line - 1);
6162 
6163         BLOGD(sc, DBG_LOAD,
6164               "ilt client[QM]: start %d, end %d, "
6165               "psz 0x%x, flags 0x%x, hw psz %d\n",
6166               ilt_client->start, ilt_client->end,
6167               ilt_client->page_size, ilt_client->flags,
6168               ilog2(ilt_client->page_size >> 12));
6169     }
6170 
6171     if (CNIC_SUPPORT(sc)) {
6172         /* SRC */
6173         ilt_client = &ilt->clients[ILT_CLIENT_SRC];
6174         ilt_client->client_num = ILT_CLIENT_SRC;
6175         ilt_client->page_size = SRC_ILT_PAGE_SZ;
6176         ilt_client->flags = 0;
6177         ilt_client->start = line;
6178         line += SRC_ILT_LINES;
6179         ilt_client->end = (line - 1);
6180 
6181         BLOGD(sc, DBG_LOAD,
6182               "ilt client[SRC]: start %d, end %d, "
6183               "psz 0x%x, flags 0x%x, hw psz %d\n",
6184               ilt_client->start, ilt_client->end,
6185               ilt_client->page_size, ilt_client->flags,
6186               ilog2(ilt_client->page_size >> 12));
6187 
6188         /* TM */
6189         ilt_client = &ilt->clients[ILT_CLIENT_TM];
6190         ilt_client->client_num = ILT_CLIENT_TM;
6191         ilt_client->page_size = TM_ILT_PAGE_SZ;
6192         ilt_client->flags = 0;
6193         ilt_client->start = line;
6194         line += TM_ILT_LINES;
6195         ilt_client->end = (line - 1);
6196 
6197         BLOGD(sc, DBG_LOAD,
6198               "ilt client[TM]: start %d, end %d, "
6199               "psz 0x%x, flags 0x%x, hw psz %d\n",
6200               ilt_client->start, ilt_client->end,
6201               ilt_client->page_size, ilt_client->flags,
6202               ilog2(ilt_client->page_size >> 12));
6203     }
6204 
6205     KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
6206 }
6207 
6208 static void
6209 bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
6210 {
6211     int i;
6212 
6213     BLOGD(sc, DBG_LOAD, "mtu = %d\n", sc->mtu);
6214 
6215     for (i = 0; i < sc->num_queues; i++) {
6216         /* get the Rx buffer size for RX frames */
6217         sc->fp[i].rx_buf_size =
6218             (IP_HEADER_ALIGNMENT_PADDING +
6219              ETH_OVERHEAD +
6220              sc->mtu);
6221 
6222         BLOGD(sc, DBG_LOAD, "rx_buf_size for fp[%02d] = %d\n",
6223               i, sc->fp[i].rx_buf_size);
6224 
6225         /* get the mbuf allocation size for RX frames */
6226         if (sc->fp[i].rx_buf_size <= MCLBYTES) {
6227             sc->fp[i].mbuf_alloc_size = MCLBYTES;
6228         } else if (sc->fp[i].rx_buf_size <= BCM_PAGE_SIZE) {
6229             sc->fp[i].mbuf_alloc_size = PAGE_SIZE;
6230         } else {
6231             sc->fp[i].mbuf_alloc_size = MJUM9BYTES;
6232         }
6233 
6234         BLOGD(sc, DBG_LOAD, "mbuf_alloc_size for fp[%02d] = %d\n",
6235               i, sc->fp[i].mbuf_alloc_size);
6236     }
6237 }
6238 
6239 static int
6240 bxe_alloc_ilt_mem(struct bxe_softc *sc)
6241 {
6242     int rc = 0;
6243 
6244     if ((sc->ilt =
6245          (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
6246                                     M_BXE_ILT,
6247                                     (M_NOWAIT | M_ZERO))) == NULL) {
6248         rc = 1;
6249     }
6250 
6251     return (rc);
6252 }
6253 
6254 static int
6255 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
6256 {
6257     int rc = 0;
6258 
6259     if ((sc->ilt->lines =
6260          (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
6261                                     M_BXE_ILT,
6262                                     (M_NOWAIT | M_ZERO))) == NULL) {
6263         rc = 1;
6264     }
6265 
6266     return (rc);
6267 }
6268 
6269 static void
6270 bxe_free_ilt_mem(struct bxe_softc *sc)
6271 {
6272     if (sc->ilt != NULL) {
6273         free(sc->ilt, M_BXE_ILT);
6274         sc->ilt = NULL;
6275     }
6276 }
6277 
6278 static void
6279 bxe_free_ilt_lines_mem(struct bxe_softc *sc)
6280 {
6281     if (sc->ilt->lines != NULL) {
6282         free(sc->ilt->lines, M_BXE_ILT);
6283         sc->ilt->lines = NULL;
6284     }
6285 }
6286 
6287 static void
6288 bxe_free_mem(struct bxe_softc *sc)
6289 {
6290     int i;
6291 
6292 #if 0
6293     if (!CONFIGURE_NIC_MODE(sc)) {
6294         /* free searcher T2 table */
6295         bxe_dma_free(sc, &sc->t2);
6296     }
6297 #endif
6298 
6299     for (i = 0; i < L2_ILT_LINES(sc); i++) {
6300         bxe_dma_free(sc, &sc->context[i].vcxt_dma);
6301         sc->context[i].vcxt = NULL;
6302         sc->context[i].size = 0;
6303     }
6304 
6305     ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
6306 
6307     bxe_free_ilt_lines_mem(sc);
6308 
6309 #if 0
6310     bxe_iov_free_mem(sc);
6311 #endif
6312 }
6313 
6314 static int
6315 bxe_alloc_mem(struct bxe_softc *sc)
6316 {
6317     int context_size;
6318     int allocated;
6319     int i;
6320 
6321 #if 0
6322     if (!CONFIGURE_NIC_MODE(sc)) {
6323         /* allocate searcher T2 table */
6324         if (bxe_dma_alloc(sc, SRC_T2_SZ,
6325                           &sc->t2, "searcher t2 table") != 0) {
6326             return (-1);
6327         }
6328     }
6329 #endif
6330 
6331     /*
6332      * Allocate memory for CDU context:
6333      * This memory is allocated separately and not in the generic ILT
6334      * functions because CDU differs in few aspects:
6335      * 1. There can be multiple entities allocating memory for context -
6336      * regular L2, CNIC, and SRIOV drivers. Each separately controls
6337      * its own ILT lines.
6338      * 2. Since CDU page-size is not a single 4KB page (which is the case
6339      * for the other ILT clients), to be efficient we want to support
6340      * allocation of sub-page-size in the last entry.
6341      * 3. Context pointers are used by the driver to pass to FW / update
6342      * the context (for the other ILT clients the pointers are used just to
6343      * free the memory during unload).
6344      */
6345     context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
6346     for (i = 0, allocated = 0; allocated < context_size; i++) {
6347         sc->context[i].size = min(CDU_ILT_PAGE_SZ,
6348                                   (context_size - allocated));
6349 
6350         if (bxe_dma_alloc(sc, sc->context[i].size,
6351                           &sc->context[i].vcxt_dma,
6352                           "cdu context") != 0) {
6353             bxe_free_mem(sc);
6354             return (-1);
6355         }
6356 
6357         sc->context[i].vcxt =
6358             (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
6359 
6360         allocated += sc->context[i].size;
6361     }
6362 
6363     bxe_alloc_ilt_lines_mem(sc);
6364 
6365     BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6366           sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6367     {
6368         for (i = 0; i < 4; i++) {
6369             BLOGD(sc, DBG_LOAD,
6370                   "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6371                   i,
6372                   sc->ilt->clients[i].page_size,
6373                   sc->ilt->clients[i].start,
6374                   sc->ilt->clients[i].end,
6375                   sc->ilt->clients[i].client_num,
6376                   sc->ilt->clients[i].flags);
6377         }
6378     }
6379     if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6380         BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6381         bxe_free_mem(sc);
6382         return (-1);
6383     }
6384 
6385 #if 0
6386     if (bxe_iov_alloc_mem(sc)) {
6387         BLOGE(sc, "Failed to allocate memory for SRIOV\n");
6388         bxe_free_mem(sc);
6389         return (-1);
6390     }
6391 #endif
6392 
6393     return (0);
6394 }
6395 
6396 static void
6397 bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6398 {
6399     struct bxe_softc *sc;
6400     int i;
6401 
6402     sc = fp->sc;
6403 
6404     if (fp->rx_mbuf_tag == NULL) {
6405         return;
6406     }
6407 
6408     /* free all mbufs and unload all maps */
6409     for (i = 0; i < RX_BD_TOTAL; i++) {
6410         if (fp->rx_mbuf_chain[i].m_map != NULL) {
6411             bus_dmamap_sync(fp->rx_mbuf_tag,
6412                             fp->rx_mbuf_chain[i].m_map,
6413                             BUS_DMASYNC_POSTREAD);
6414             bus_dmamap_unload(fp->rx_mbuf_tag,
6415                               fp->rx_mbuf_chain[i].m_map);
6416         }
6417 
6418         if (fp->rx_mbuf_chain[i].m != NULL) {
6419             m_freem(fp->rx_mbuf_chain[i].m);
6420             fp->rx_mbuf_chain[i].m = NULL;
6421             fp->eth_q_stats.mbuf_alloc_rx--;
6422         }
6423     }
6424 }
6425 
6426 static void
6427 bxe_free_tpa_pool(struct bxe_fastpath *fp)
6428 {
6429     struct bxe_softc *sc;
6430     int i, max_agg_queues;
6431 
6432     sc = fp->sc;
6433 
6434     if (fp->rx_mbuf_tag == NULL) {
6435         return;
6436     }
6437 
6438     max_agg_queues = MAX_AGG_QS(sc);
6439 
6440     /* release all mbufs and unload all DMA maps in the TPA pool */
6441     for (i = 0; i < max_agg_queues; i++) {
6442         if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6443             bus_dmamap_sync(fp->rx_mbuf_tag,
6444                             fp->rx_tpa_info[i].bd.m_map,
6445                             BUS_DMASYNC_POSTREAD);
6446             bus_dmamap_unload(fp->rx_mbuf_tag,
6447                               fp->rx_tpa_info[i].bd.m_map);
6448         }
6449 
6450         if (fp->rx_tpa_info[i].bd.m != NULL) {
6451             m_freem(fp->rx_tpa_info[i].bd.m);
6452             fp->rx_tpa_info[i].bd.m = NULL;
6453             fp->eth_q_stats.mbuf_alloc_tpa--;
6454         }
6455     }
6456 }
6457 
6458 static void
6459 bxe_free_sge_chain(struct bxe_fastpath *fp)
6460 {
6461     struct bxe_softc *sc;
6462     int i;
6463 
6464     sc = fp->sc;
6465 
6466     if (fp->rx_sge_mbuf_tag == NULL) {
6467         return;
6468     }
6469 
6470     /* rree all mbufs and unload all maps */
6471     for (i = 0; i < RX_SGE_TOTAL; i++) {
6472         if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6473             bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6474                             fp->rx_sge_mbuf_chain[i].m_map,
6475                             BUS_DMASYNC_POSTREAD);
6476             bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6477                               fp->rx_sge_mbuf_chain[i].m_map);
6478         }
6479 
6480         if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6481             m_freem(fp->rx_sge_mbuf_chain[i].m);
6482             fp->rx_sge_mbuf_chain[i].m = NULL;
6483             fp->eth_q_stats.mbuf_alloc_sge--;
6484         }
6485     }
6486 }
6487 
6488 static void
6489 bxe_free_fp_buffers(struct bxe_softc *sc)
6490 {
6491     struct bxe_fastpath *fp;
6492     int i;
6493 
6494     for (i = 0; i < sc->num_queues; i++) {
6495         fp = &sc->fp[i];
6496 
6497 #if __FreeBSD_version >= 800000
6498         if (fp->tx_br != NULL) {
6499             struct mbuf *m;
6500             /* just in case bxe_mq_flush() wasn't called */
6501             while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6502                 m_freem(m);
6503             }
6504             buf_ring_free(fp->tx_br, M_DEVBUF);
6505             fp->tx_br = NULL;
6506         }
6507 #endif
6508 
6509         /* free all RX buffers */
6510         bxe_free_rx_bd_chain(fp);
6511         bxe_free_tpa_pool(fp);
6512         bxe_free_sge_chain(fp);
6513 
6514         if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6515             BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6516                   fp->eth_q_stats.mbuf_alloc_rx);
6517         }
6518 
6519         if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6520             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6521                   fp->eth_q_stats.mbuf_alloc_sge);
6522         }
6523 
6524         if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6525             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6526                   fp->eth_q_stats.mbuf_alloc_tpa);
6527         }
6528 
6529         if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6530             BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6531                   fp->eth_q_stats.mbuf_alloc_tx);
6532         }
6533 
6534         /* XXX verify all mbufs were reclaimed */
6535 
6536         if (mtx_initialized(&fp->tx_mtx)) {
6537             mtx_destroy(&fp->tx_mtx);
6538         }
6539 
6540         if (mtx_initialized(&fp->rx_mtx)) {
6541             mtx_destroy(&fp->rx_mtx);
6542         }
6543     }
6544 }
6545 
6546 static int
6547 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6548                      uint16_t            prev_index,
6549                      uint16_t            index)
6550 {
6551     struct bxe_sw_rx_bd *rx_buf;
6552     struct eth_rx_bd *rx_bd;
6553     bus_dma_segment_t segs[1];
6554     bus_dmamap_t map;
6555     struct mbuf *m;
6556     int nsegs, rc;
6557 
6558     rc = 0;
6559 
6560     /* allocate the new RX BD mbuf */
6561     m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6562     if (__predict_false(m == NULL)) {
6563         fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6564         return (ENOBUFS);
6565     }
6566 
6567     fp->eth_q_stats.mbuf_alloc_rx++;
6568 
6569     /* initialize the mbuf buffer length */
6570     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6571 
6572     /* map the mbuf into non-paged pool */
6573     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6574                                  fp->rx_mbuf_spare_map,
6575                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6576     if (__predict_false(rc != 0)) {
6577         fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6578         m_freem(m);
6579         fp->eth_q_stats.mbuf_alloc_rx--;
6580         return (rc);
6581     }
6582 
6583     /* all mbufs must map to a single segment */
6584     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6585 
6586     /* release any existing RX BD mbuf mappings */
6587 
6588     if (prev_index != index) {
6589         rx_buf = &fp->rx_mbuf_chain[prev_index];
6590 
6591         if (rx_buf->m_map != NULL) {
6592             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6593                             BUS_DMASYNC_POSTREAD);
6594             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6595         }
6596 
6597         /*
6598          * We only get here from bxe_rxeof() when the maximum number
6599          * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6600          * holds the mbuf in the prev_index so it's OK to NULL it out
6601          * here without concern of a memory leak.
6602          */
6603         fp->rx_mbuf_chain[prev_index].m = NULL;
6604     }
6605 
6606     rx_buf = &fp->rx_mbuf_chain[index];
6607 
6608     if (rx_buf->m_map != NULL) {
6609         bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6610                         BUS_DMASYNC_POSTREAD);
6611         bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6612     }
6613 
6614     /* save the mbuf and mapping info for a future packet */
6615     map = (prev_index != index) ?
6616               fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6617     rx_buf->m_map = fp->rx_mbuf_spare_map;
6618     fp->rx_mbuf_spare_map = map;
6619     bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6620                     BUS_DMASYNC_PREREAD);
6621     rx_buf->m = m;
6622 
6623     rx_bd = &fp->rx_chain[index];
6624     rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6625     rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6626 
6627     return (rc);
6628 }
6629 
6630 static int
6631 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6632                       int                 queue)
6633 {
6634     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6635     bus_dma_segment_t segs[1];
6636     bus_dmamap_t map;
6637     struct mbuf *m;
6638     int nsegs;
6639     int rc = 0;
6640 
6641     /* allocate the new TPA mbuf */
6642     m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6643     if (__predict_false(m == NULL)) {
6644         fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6645         return (ENOBUFS);
6646     }
6647 
6648     fp->eth_q_stats.mbuf_alloc_tpa++;
6649 
6650     /* initialize the mbuf buffer length */
6651     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6652 
6653     /* map the mbuf into non-paged pool */
6654     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6655                                  fp->rx_tpa_info_mbuf_spare_map,
6656                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6657     if (__predict_false(rc != 0)) {
6658         fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6659         m_free(m);
6660         fp->eth_q_stats.mbuf_alloc_tpa--;
6661         return (rc);
6662     }
6663 
6664     /* all mbufs must map to a single segment */
6665     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6666 
6667     /* release any existing TPA mbuf mapping */
6668     if (tpa_info->bd.m_map != NULL) {
6669         bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6670                         BUS_DMASYNC_POSTREAD);
6671         bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6672     }
6673 
6674     /* save the mbuf and mapping info for the TPA mbuf */
6675     map = tpa_info->bd.m_map;
6676     tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6677     fp->rx_tpa_info_mbuf_spare_map = map;
6678     bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6679                     BUS_DMASYNC_PREREAD);
6680     tpa_info->bd.m = m;
6681     tpa_info->seg = segs[0];
6682 
6683     return (rc);
6684 }
6685 
6686 /*
6687  * Allocate an mbuf and assign it to the receive scatter gather chain. The
6688  * caller must take care to save a copy of the existing mbuf in the SG mbuf
6689  * chain.
6690  */
6691 static int
6692 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6693                       uint16_t            index)
6694 {
6695     struct bxe_sw_rx_bd *sge_buf;
6696     struct eth_rx_sge *sge;
6697     bus_dma_segment_t segs[1];
6698     bus_dmamap_t map;
6699     struct mbuf *m;
6700     int nsegs;
6701     int rc = 0;
6702 
6703     /* allocate a new SGE mbuf */
6704     m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6705     if (__predict_false(m == NULL)) {
6706         fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6707         return (ENOMEM);
6708     }
6709 
6710     fp->eth_q_stats.mbuf_alloc_sge++;
6711 
6712     /* initialize the mbuf buffer length */
6713     m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6714 
6715     /* map the SGE mbuf into non-paged pool */
6716     rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6717                                  fp->rx_sge_mbuf_spare_map,
6718                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6719     if (__predict_false(rc != 0)) {
6720         fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6721         m_freem(m);
6722         fp->eth_q_stats.mbuf_alloc_sge--;
6723         return (rc);
6724     }
6725 
6726     /* all mbufs must map to a single segment */
6727     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6728 
6729     sge_buf = &fp->rx_sge_mbuf_chain[index];
6730 
6731     /* release any existing SGE mbuf mapping */
6732     if (sge_buf->m_map != NULL) {
6733         bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6734                         BUS_DMASYNC_POSTREAD);
6735         bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6736     }
6737 
6738     /* save the mbuf and mapping info for a future packet */
6739     map = sge_buf->m_map;
6740     sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6741     fp->rx_sge_mbuf_spare_map = map;
6742     bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6743                     BUS_DMASYNC_PREREAD);
6744     sge_buf->m = m;
6745 
6746     sge = &fp->rx_sge_chain[index];
6747     sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6748     sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6749 
6750     return (rc);
6751 }
6752 
6753 static __noinline int
6754 bxe_alloc_fp_buffers(struct bxe_softc *sc)
6755 {
6756     struct bxe_fastpath *fp;
6757     int i, j, rc = 0;
6758     int ring_prod, cqe_ring_prod;
6759     int max_agg_queues;
6760 
6761     for (i = 0; i < sc->num_queues; i++) {
6762         fp = &sc->fp[i];
6763 
6764 #if __FreeBSD_version >= 800000
6765         fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
6766                                    M_DONTWAIT, &fp->tx_mtx);
6767         if (fp->tx_br == NULL) {
6768             BLOGE(sc, "buf_ring alloc fail for fp[%02d]\n", i);
6769             goto bxe_alloc_fp_buffers_error;
6770         }
6771 #endif
6772 
6773         ring_prod = cqe_ring_prod = 0;
6774         fp->rx_bd_cons = 0;
6775         fp->rx_cq_cons = 0;
6776 
6777         /* allocate buffers for the RX BDs in RX BD chain */
6778         for (j = 0; j < sc->max_rx_bufs; j++) {
6779             rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6780             if (rc != 0) {
6781                 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6782                       i, rc);
6783                 goto bxe_alloc_fp_buffers_error;
6784             }
6785 
6786             ring_prod     = RX_BD_NEXT(ring_prod);
6787             cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6788         }
6789 
6790         fp->rx_bd_prod = ring_prod;
6791         fp->rx_cq_prod = cqe_ring_prod;
6792         fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6793 
6794         if (sc->ifnet->if_capenable & IFCAP_LRO) {
6795             max_agg_queues = MAX_AGG_QS(sc);
6796 
6797             fp->tpa_enable = TRUE;
6798 
6799             /* fill the TPA pool */
6800             for (j = 0; j < max_agg_queues; j++) {
6801                 rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6802                 if (rc != 0) {
6803                     BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6804                           i, j);
6805                     fp->tpa_enable = FALSE;
6806                     goto bxe_alloc_fp_buffers_error;
6807                 }
6808 
6809                 fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6810             }
6811 
6812             if (fp->tpa_enable) {
6813                 /* fill the RX SGE chain */
6814                 ring_prod = 0;
6815                 for (j = 0; j < RX_SGE_USABLE; j++) {
6816                     rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6817                     if (rc != 0) {
6818                         BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6819                               i, ring_prod);
6820                         fp->tpa_enable = FALSE;
6821                         ring_prod = 0;
6822                         goto bxe_alloc_fp_buffers_error;
6823                     }
6824 
6825                     ring_prod = RX_SGE_NEXT(ring_prod);
6826                 }
6827 
6828                 fp->rx_sge_prod = ring_prod;
6829             }
6830         }
6831     }
6832 
6833     return (0);
6834 
6835 bxe_alloc_fp_buffers_error:
6836 
6837     /* unwind what was already allocated */
6838     bxe_free_rx_bd_chain(fp);
6839     bxe_free_tpa_pool(fp);
6840     bxe_free_sge_chain(fp);
6841 
6842     return (ENOBUFS);
6843 }
6844 
6845 static void
6846 bxe_free_fw_stats_mem(struct bxe_softc *sc)
6847 {
6848     bxe_dma_free(sc, &sc->fw_stats_dma);
6849 
6850     sc->fw_stats_num = 0;
6851 
6852     sc->fw_stats_req_size = 0;
6853     sc->fw_stats_req = NULL;
6854     sc->fw_stats_req_mapping = 0;
6855 
6856     sc->fw_stats_data_size = 0;
6857     sc->fw_stats_data = NULL;
6858     sc->fw_stats_data_mapping = 0;
6859 }
6860 
6861 static int
6862 bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6863 {
6864     uint8_t num_queue_stats;
6865     int num_groups;
6866 
6867     /* number of queues for statistics is number of eth queues */
6868     num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6869 
6870     /*
6871      * Total number of FW statistics requests =
6872      *   1 for port stats + 1 for PF stats + num of queues
6873      */
6874     sc->fw_stats_num = (2 + num_queue_stats);
6875 
6876     /*
6877      * Request is built from stats_query_header and an array of
6878      * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6879      * rules. The real number or requests is configured in the
6880      * stats_query_header.
6881      */
6882     num_groups =
6883         ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6884          ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6885 
6886     BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6887           sc->fw_stats_num, num_groups);
6888 
6889     sc->fw_stats_req_size =
6890         (sizeof(struct stats_query_header) +
6891          (num_groups * sizeof(struct stats_query_cmd_group)));
6892 
6893     /*
6894      * Data for statistics requests + stats_counter.
6895      * stats_counter holds per-STORM counters that are incremented when
6896      * STORM has finished with the current request. Memory for FCoE
6897      * offloaded statistics are counted anyway, even if they will not be sent.
6898      * VF stats are not accounted for here as the data of VF stats is stored
6899      * in memory allocated by the VF, not here.
6900      */
6901     sc->fw_stats_data_size =
6902         (sizeof(struct stats_counter) +
6903          sizeof(struct per_port_stats) +
6904          sizeof(struct per_pf_stats) +
6905          /* sizeof(struct fcoe_statistics_params) + */
6906          (sizeof(struct per_queue_stats) * num_queue_stats));
6907 
6908     if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6909                       &sc->fw_stats_dma, "fw stats") != 0) {
6910         bxe_free_fw_stats_mem(sc);
6911         return (-1);
6912     }
6913 
6914     /* set up the shortcuts */
6915 
6916     sc->fw_stats_req =
6917         (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6918     sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6919 
6920     sc->fw_stats_data =
6921         (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6922                                      sc->fw_stats_req_size);
6923     sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6924                                  sc->fw_stats_req_size);
6925 
6926     BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6927           (uintmax_t)sc->fw_stats_req_mapping);
6928 
6929     BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6930           (uintmax_t)sc->fw_stats_data_mapping);
6931 
6932     return (0);
6933 }
6934 
6935 /*
6936  * Bits map:
6937  * 0-7  - Engine0 load counter.
6938  * 8-15 - Engine1 load counter.
6939  * 16   - Engine0 RESET_IN_PROGRESS bit.
6940  * 17   - Engine1 RESET_IN_PROGRESS bit.
6941  * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
6942  *        function on the engine
6943  * 19   - Engine1 ONE_IS_LOADED.
6944  * 20   - Chip reset flow bit. When set none-leader must wait for both engines
6945  *        leader to complete (check for both RESET_IN_PROGRESS bits and not
6946  *        for just the one belonging to its engine).
6947  */
6948 #define BXE_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
6949 #define BXE_PATH0_LOAD_CNT_MASK   0x000000ff
6950 #define BXE_PATH0_LOAD_CNT_SHIFT  0
6951 #define BXE_PATH1_LOAD_CNT_MASK   0x0000ff00
6952 #define BXE_PATH1_LOAD_CNT_SHIFT  8
6953 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
6954 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
6955 #define BXE_GLOBAL_RESET_BIT      0x00040000
6956 
6957 /* set the GLOBAL_RESET bit, should be run under rtnl lock */
6958 static void
6959 bxe_set_reset_global(struct bxe_softc *sc)
6960 {
6961     uint32_t val;
6962     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6963     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6964     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
6965     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6966 }
6967 
6968 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */
6969 static void
6970 bxe_clear_reset_global(struct bxe_softc *sc)
6971 {
6972     uint32_t val;
6973     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6974     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6975     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
6976     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6977 }
6978 
6979 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */
6980 static uint8_t
6981 bxe_reset_is_global(struct bxe_softc *sc)
6982 {
6983     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6984     BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
6985     return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
6986 }
6987 
6988 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
6989 static void
6990 bxe_set_reset_done(struct bxe_softc *sc)
6991 {
6992     uint32_t val;
6993     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6994                                  BXE_PATH0_RST_IN_PROG_BIT;
6995 
6996     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6997 
6998     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6999     /* Clear the bit */
7000     val &= ~bit;
7001     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7002 
7003     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7004 }
7005 
7006 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
7007 static void
7008 bxe_set_reset_in_progress(struct bxe_softc *sc)
7009 {
7010     uint32_t val;
7011     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
7012                                  BXE_PATH0_RST_IN_PROG_BIT;
7013 
7014     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7015 
7016     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7017     /* Set the bit */
7018     val |= bit;
7019     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7020 
7021     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7022 }
7023 
7024 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
7025 static uint8_t
7026 bxe_reset_is_done(struct bxe_softc *sc,
7027                   int              engine)
7028 {
7029     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7030     uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
7031                             BXE_PATH0_RST_IN_PROG_BIT;
7032 
7033     /* return false if bit is set */
7034     return (val & bit) ? FALSE : TRUE;
7035 }
7036 
7037 /* get the load status for an engine, should be run under rtnl lock */
7038 static uint8_t
7039 bxe_get_load_status(struct bxe_softc *sc,
7040                     int              engine)
7041 {
7042     uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
7043                              BXE_PATH0_LOAD_CNT_MASK;
7044     uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
7045                               BXE_PATH0_LOAD_CNT_SHIFT;
7046     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7047 
7048     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7049 
7050     val = ((val & mask) >> shift);
7051 
7052     BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
7053 
7054     return (val != 0);
7055 }
7056 
7057 /* set pf load mark */
7058 /* XXX needs to be under rtnl lock */
7059 static void
7060 bxe_set_pf_load(struct bxe_softc *sc)
7061 {
7062     uint32_t val;
7063     uint32_t val1;
7064     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7065                                   BXE_PATH0_LOAD_CNT_MASK;
7066     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7067                                    BXE_PATH0_LOAD_CNT_SHIFT;
7068 
7069     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7070 
7071     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7072     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7073 
7074     /* get the current counter value */
7075     val1 = ((val & mask) >> shift);
7076 
7077     /* set bit of this PF */
7078     val1 |= (1 << SC_ABS_FUNC(sc));
7079 
7080     /* clear the old value */
7081     val &= ~mask;
7082 
7083     /* set the new one */
7084     val |= ((val1 << shift) & mask);
7085 
7086     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7087 
7088     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7089 }
7090 
7091 /* clear pf load mark */
7092 /* XXX needs to be under rtnl lock */
7093 static uint8_t
7094 bxe_clear_pf_load(struct bxe_softc *sc)
7095 {
7096     uint32_t val1, val;
7097     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7098                                   BXE_PATH0_LOAD_CNT_MASK;
7099     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7100                                    BXE_PATH0_LOAD_CNT_SHIFT;
7101 
7102     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7103     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7104     BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
7105 
7106     /* get the current counter value */
7107     val1 = (val & mask) >> shift;
7108 
7109     /* clear bit of that PF */
7110     val1 &= ~(1 << SC_ABS_FUNC(sc));
7111 
7112     /* clear the old value */
7113     val &= ~mask;
7114 
7115     /* set the new one */
7116     val |= ((val1 << shift) & mask);
7117 
7118     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7119     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7120     return (val1 != 0);
7121 }
7122 
7123 /* send load requrest to mcp and analyze response */
7124 static int
7125 bxe_nic_load_request(struct bxe_softc *sc,
7126                      uint32_t         *load_code)
7127 {
7128     /* init fw_seq */
7129     sc->fw_seq =
7130         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
7131          DRV_MSG_SEQ_NUMBER_MASK);
7132 
7133     BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
7134 
7135     /* get the current FW pulse sequence */
7136     sc->fw_drv_pulse_wr_seq =
7137         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
7138          DRV_PULSE_SEQ_MASK);
7139 
7140     BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
7141           sc->fw_drv_pulse_wr_seq);
7142 
7143     /* load request */
7144     (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
7145                                   DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
7146 
7147     /* if the MCP fails to respond we must abort */
7148     if (!(*load_code)) {
7149         BLOGE(sc, "MCP response failure!\n");
7150         return (-1);
7151     }
7152 
7153     /* if MCP refused then must abort */
7154     if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
7155         BLOGE(sc, "MCP refused load request\n");
7156         return (-1);
7157     }
7158 
7159     return (0);
7160 }
7161 
7162 /*
7163  * Check whether another PF has already loaded FW to chip. In virtualized
7164  * environments a pf from anoth VM may have already initialized the device
7165  * including loading FW.
7166  */
7167 static int
7168 bxe_nic_load_analyze_req(struct bxe_softc *sc,
7169                          uint32_t         load_code)
7170 {
7171     uint32_t my_fw, loaded_fw;
7172 
7173     /* is another pf loaded on this engine? */
7174     if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
7175         (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
7176         /* build my FW version dword */
7177         my_fw = (BCM_5710_FW_MAJOR_VERSION +
7178                  (BCM_5710_FW_MINOR_VERSION << 8 ) +
7179                  (BCM_5710_FW_REVISION_VERSION << 16) +
7180                  (BCM_5710_FW_ENGINEERING_VERSION << 24));
7181 
7182         /* read loaded FW from chip */
7183         loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
7184         BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
7185               loaded_fw, my_fw);
7186 
7187         /* abort nic load if version mismatch */
7188         if (my_fw != loaded_fw) {
7189             BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
7190                   loaded_fw, my_fw);
7191             return (-1);
7192         }
7193     }
7194 
7195     return (0);
7196 }
7197 
7198 /* mark PMF if applicable */
7199 static void
7200 bxe_nic_load_pmf(struct bxe_softc *sc,
7201                  uint32_t         load_code)
7202 {
7203     uint32_t ncsi_oem_data_addr;
7204 
7205     if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
7206         (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
7207         (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
7208         /*
7209          * Barrier here for ordering between the writing to sc->port.pmf here
7210          * and reading it from the periodic task.
7211          */
7212         sc->port.pmf = 1;
7213         mb();
7214     } else {
7215         sc->port.pmf = 0;
7216     }
7217 
7218     BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
7219 
7220     /* XXX needed? */
7221     if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
7222         if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
7223             ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
7224             if (ncsi_oem_data_addr) {
7225                 REG_WR(sc,
7226                        (ncsi_oem_data_addr +
7227                         offsetof(struct glob_ncsi_oem_data, driver_version)),
7228                        0);
7229             }
7230         }
7231     }
7232 }
7233 
7234 static void
7235 bxe_read_mf_cfg(struct bxe_softc *sc)
7236 {
7237     int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
7238     int abs_func;
7239     int vn;
7240 
7241     if (BXE_NOMCP(sc)) {
7242         return; /* what should be the default bvalue in this case */
7243     }
7244 
7245     /*
7246      * The formula for computing the absolute function number is...
7247      * For 2 port configuration (4 functions per port):
7248      *   abs_func = 2 * vn + SC_PORT + SC_PATH
7249      * For 4 port configuration (2 functions per port):
7250      *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
7251      */
7252     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
7253         abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
7254         if (abs_func >= E1H_FUNC_MAX) {
7255             break;
7256         }
7257         sc->devinfo.mf_info.mf_config[vn] =
7258             MFCFG_RD(sc, func_mf_config[abs_func].config);
7259     }
7260 
7261     if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
7262         FUNC_MF_CFG_FUNC_DISABLED) {
7263         BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
7264         sc->flags |= BXE_MF_FUNC_DIS;
7265     } else {
7266         BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
7267         sc->flags &= ~BXE_MF_FUNC_DIS;
7268     }
7269 }
7270 
7271 /* acquire split MCP access lock register */
7272 static int bxe_acquire_alr(struct bxe_softc *sc)
7273 {
7274     uint32_t j, val;
7275 
7276     for (j = 0; j < 1000; j++) {
7277         val = (1UL << 31);
7278         REG_WR(sc, GRCBASE_MCP + 0x9c, val);
7279         val = REG_RD(sc, GRCBASE_MCP + 0x9c);
7280         if (val & (1L << 31))
7281             break;
7282 
7283         DELAY(5000);
7284     }
7285 
7286     if (!(val & (1L << 31))) {
7287         BLOGE(sc, "Cannot acquire MCP access lock register\n");
7288         return (-1);
7289     }
7290 
7291     return (0);
7292 }
7293 
7294 /* release split MCP access lock register */
7295 static void bxe_release_alr(struct bxe_softc *sc)
7296 {
7297     REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
7298 }
7299 
7300 static void
7301 bxe_fan_failure(struct bxe_softc *sc)
7302 {
7303     int port = SC_PORT(sc);
7304     uint32_t ext_phy_config;
7305 
7306     /* mark the failure */
7307     ext_phy_config =
7308         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
7309 
7310     ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
7311     ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
7312     SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
7313              ext_phy_config);
7314 
7315     /* log the failure */
7316     BLOGW(sc, "Fan Failure has caused the driver to shutdown "
7317               "the card to prevent permanent damage. "
7318               "Please contact OEM Support for assistance\n");
7319 
7320     /* XXX */
7321 #if 1
7322     bxe_panic(sc, ("Schedule task to handle fan failure\n"));
7323 #else
7324     /*
7325      * Schedule device reset (unload)
7326      * This is due to some boards consuming sufficient power when driver is
7327      * up to overheat if fan fails.
7328      */
7329     bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
7330     schedule_delayed_work(&sc->sp_rtnl_task, 0);
7331 #endif
7332 }
7333 
7334 /* this function is called upon a link interrupt */
7335 static void
7336 bxe_link_attn(struct bxe_softc *sc)
7337 {
7338     uint32_t pause_enabled = 0;
7339     struct host_port_stats *pstats;
7340     int cmng_fns;
7341 
7342     /* Make sure that we are synced with the current statistics */
7343     bxe_stats_handle(sc, STATS_EVENT_STOP);
7344 
7345     elink_link_update(&sc->link_params, &sc->link_vars);
7346 
7347     if (sc->link_vars.link_up) {
7348 
7349         /* dropless flow control */
7350         if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
7351             pause_enabled = 0;
7352 
7353             if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
7354                 pause_enabled = 1;
7355             }
7356 
7357             REG_WR(sc,
7358                    (BAR_USTRORM_INTMEM +
7359                     USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
7360                    pause_enabled);
7361         }
7362 
7363         if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
7364             pstats = BXE_SP(sc, port_stats);
7365             /* reset old mac stats */
7366             memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
7367         }
7368 
7369         if (sc->state == BXE_STATE_OPEN) {
7370             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
7371         }
7372     }
7373 
7374     if (sc->link_vars.link_up && sc->link_vars.line_speed) {
7375         cmng_fns = bxe_get_cmng_fns_mode(sc);
7376 
7377         if (cmng_fns != CMNG_FNS_NONE) {
7378             bxe_cmng_fns_init(sc, FALSE, cmng_fns);
7379             storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7380         } else {
7381             /* rate shaping and fairness are disabled */
7382             BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
7383         }
7384     }
7385 
7386     bxe_link_report_locked(sc);
7387 
7388     if (IS_MF(sc)) {
7389         ; // XXX bxe_link_sync_notify(sc);
7390     }
7391 }
7392 
7393 static void
7394 bxe_attn_int_asserted(struct bxe_softc *sc,
7395                       uint32_t         asserted)
7396 {
7397     int port = SC_PORT(sc);
7398     uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7399                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
7400     uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7401                                         NIG_REG_MASK_INTERRUPT_PORT0;
7402     uint32_t aeu_mask;
7403     uint32_t nig_mask = 0;
7404     uint32_t reg_addr;
7405     uint32_t igu_acked;
7406     uint32_t cnt;
7407 
7408     if (sc->attn_state & asserted) {
7409         BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7410     }
7411 
7412     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7413 
7414     aeu_mask = REG_RD(sc, aeu_addr);
7415 
7416     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7417           aeu_mask, asserted);
7418 
7419     aeu_mask &= ~(asserted & 0x3ff);
7420 
7421     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7422 
7423     REG_WR(sc, aeu_addr, aeu_mask);
7424 
7425     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7426 
7427     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7428     sc->attn_state |= asserted;
7429     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7430 
7431     if (asserted & ATTN_HARD_WIRED_MASK) {
7432         if (asserted & ATTN_NIG_FOR_FUNC) {
7433 
7434             BXE_PHY_LOCK(sc);
7435 
7436             /* save nig interrupt mask */
7437             nig_mask = REG_RD(sc, nig_int_mask_addr);
7438 
7439             /* If nig_mask is not set, no need to call the update function */
7440             if (nig_mask) {
7441                 REG_WR(sc, nig_int_mask_addr, 0);
7442 
7443                 bxe_link_attn(sc);
7444             }
7445 
7446             /* handle unicore attn? */
7447         }
7448 
7449         if (asserted & ATTN_SW_TIMER_4_FUNC) {
7450             BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7451         }
7452 
7453         if (asserted & GPIO_2_FUNC) {
7454             BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7455         }
7456 
7457         if (asserted & GPIO_3_FUNC) {
7458             BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7459         }
7460 
7461         if (asserted & GPIO_4_FUNC) {
7462             BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7463         }
7464 
7465         if (port == 0) {
7466             if (asserted & ATTN_GENERAL_ATTN_1) {
7467                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7468                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7469             }
7470             if (asserted & ATTN_GENERAL_ATTN_2) {
7471                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7472                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7473             }
7474             if (asserted & ATTN_GENERAL_ATTN_3) {
7475                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7476                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7477             }
7478         } else {
7479             if (asserted & ATTN_GENERAL_ATTN_4) {
7480                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7481                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7482             }
7483             if (asserted & ATTN_GENERAL_ATTN_5) {
7484                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7485                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7486             }
7487             if (asserted & ATTN_GENERAL_ATTN_6) {
7488                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7489                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7490             }
7491         }
7492     } /* hardwired */
7493 
7494     if (sc->devinfo.int_block == INT_BLOCK_HC) {
7495         reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7496     } else {
7497         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7498     }
7499 
7500     BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7501           asserted,
7502           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7503     REG_WR(sc, reg_addr, asserted);
7504 
7505     /* now set back the mask */
7506     if (asserted & ATTN_NIG_FOR_FUNC) {
7507         /*
7508          * Verify that IGU ack through BAR was written before restoring
7509          * NIG mask. This loop should exit after 2-3 iterations max.
7510          */
7511         if (sc->devinfo.int_block != INT_BLOCK_HC) {
7512             cnt = 0;
7513 
7514             do {
7515                 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7516             } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7517                      (++cnt < MAX_IGU_ATTN_ACK_TO));
7518 
7519             if (!igu_acked) {
7520                 BLOGE(sc, "Failed to verify IGU ack on time\n");
7521             }
7522 
7523             mb();
7524         }
7525 
7526         REG_WR(sc, nig_int_mask_addr, nig_mask);
7527 
7528         BXE_PHY_UNLOCK(sc);
7529     }
7530 }
7531 
7532 static void
7533 bxe_print_next_block(struct bxe_softc *sc,
7534                      int              idx,
7535                      const char       *blk)
7536 {
7537     BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7538 }
7539 
7540 static int
7541 bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7542                               uint32_t         sig,
7543                               int              par_num,
7544                               uint8_t          print)
7545 {
7546     uint32_t cur_bit = 0;
7547     int i = 0;
7548 
7549     for (i = 0; sig; i++) {
7550         cur_bit = ((uint32_t)0x1 << i);
7551         if (sig & cur_bit) {
7552             switch (cur_bit) {
7553             case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7554                 if (print)
7555                     bxe_print_next_block(sc, par_num++, "BRB");
7556                 break;
7557             case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7558                 if (print)
7559                     bxe_print_next_block(sc, par_num++, "PARSER");
7560                 break;
7561             case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7562                 if (print)
7563                     bxe_print_next_block(sc, par_num++, "TSDM");
7564                 break;
7565             case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7566                 if (print)
7567                     bxe_print_next_block(sc, par_num++, "SEARCHER");
7568                 break;
7569             case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7570                 if (print)
7571                     bxe_print_next_block(sc, par_num++, "TCM");
7572                 break;
7573             case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7574                 if (print)
7575                     bxe_print_next_block(sc, par_num++, "TSEMI");
7576                 break;
7577             case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7578                 if (print)
7579                     bxe_print_next_block(sc, par_num++, "XPB");
7580                 break;
7581             }
7582 
7583             /* Clear the bit */
7584             sig &= ~cur_bit;
7585         }
7586     }
7587 
7588     return (par_num);
7589 }
7590 
7591 static int
7592 bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7593                               uint32_t         sig,
7594                               int              par_num,
7595                               uint8_t          *global,
7596                               uint8_t          print)
7597 {
7598     int i = 0;
7599     uint32_t cur_bit = 0;
7600     for (i = 0; sig; i++) {
7601         cur_bit = ((uint32_t)0x1 << i);
7602         if (sig & cur_bit) {
7603             switch (cur_bit) {
7604             case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7605                 if (print)
7606                     bxe_print_next_block(sc, par_num++, "PBF");
7607                 break;
7608             case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7609                 if (print)
7610                     bxe_print_next_block(sc, par_num++, "QM");
7611                 break;
7612             case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7613                 if (print)
7614                     bxe_print_next_block(sc, par_num++, "TM");
7615                 break;
7616             case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7617                 if (print)
7618                     bxe_print_next_block(sc, par_num++, "XSDM");
7619                 break;
7620             case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7621                 if (print)
7622                     bxe_print_next_block(sc, par_num++, "XCM");
7623                 break;
7624             case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7625                 if (print)
7626                     bxe_print_next_block(sc, par_num++, "XSEMI");
7627                 break;
7628             case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7629                 if (print)
7630                     bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7631                 break;
7632             case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7633                 if (print)
7634                     bxe_print_next_block(sc, par_num++, "NIG");
7635                 break;
7636             case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7637                 if (print)
7638                     bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7639                 *global = TRUE;
7640                 break;
7641             case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7642                 if (print)
7643                     bxe_print_next_block(sc, par_num++, "DEBUG");
7644                 break;
7645             case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7646                 if (print)
7647                     bxe_print_next_block(sc, par_num++, "USDM");
7648                 break;
7649             case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7650                 if (print)
7651                     bxe_print_next_block(sc, par_num++, "UCM");
7652                 break;
7653             case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7654                 if (print)
7655                     bxe_print_next_block(sc, par_num++, "USEMI");
7656                 break;
7657             case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7658                 if (print)
7659                     bxe_print_next_block(sc, par_num++, "UPB");
7660                 break;
7661             case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7662                 if (print)
7663                     bxe_print_next_block(sc, par_num++, "CSDM");
7664                 break;
7665             case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7666                 if (print)
7667                     bxe_print_next_block(sc, par_num++, "CCM");
7668                 break;
7669             }
7670 
7671             /* Clear the bit */
7672             sig &= ~cur_bit;
7673         }
7674     }
7675 
7676     return (par_num);
7677 }
7678 
7679 static int
7680 bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7681                               uint32_t         sig,
7682                               int              par_num,
7683                               uint8_t          print)
7684 {
7685     uint32_t cur_bit = 0;
7686     int i = 0;
7687 
7688     for (i = 0; sig; i++) {
7689         cur_bit = ((uint32_t)0x1 << i);
7690         if (sig & cur_bit) {
7691             switch (cur_bit) {
7692             case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7693                 if (print)
7694                     bxe_print_next_block(sc, par_num++, "CSEMI");
7695                 break;
7696             case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7697                 if (print)
7698                     bxe_print_next_block(sc, par_num++, "PXP");
7699                 break;
7700             case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7701                 if (print)
7702                     bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7703                 break;
7704             case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7705                 if (print)
7706                     bxe_print_next_block(sc, par_num++, "CFC");
7707                 break;
7708             case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7709                 if (print)
7710                     bxe_print_next_block(sc, par_num++, "CDU");
7711                 break;
7712             case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7713                 if (print)
7714                     bxe_print_next_block(sc, par_num++, "DMAE");
7715                 break;
7716             case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7717                 if (print)
7718                     bxe_print_next_block(sc, par_num++, "IGU");
7719                 break;
7720             case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7721                 if (print)
7722                     bxe_print_next_block(sc, par_num++, "MISC");
7723                 break;
7724             }
7725 
7726             /* Clear the bit */
7727             sig &= ~cur_bit;
7728         }
7729     }
7730 
7731     return (par_num);
7732 }
7733 
7734 static int
7735 bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7736                               uint32_t         sig,
7737                               int              par_num,
7738                               uint8_t          *global,
7739                               uint8_t          print)
7740 {
7741     uint32_t cur_bit = 0;
7742     int i = 0;
7743 
7744     for (i = 0; sig; i++) {
7745         cur_bit = ((uint32_t)0x1 << i);
7746         if (sig & cur_bit) {
7747             switch (cur_bit) {
7748             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7749                 if (print)
7750                     bxe_print_next_block(sc, par_num++, "MCP ROM");
7751                 *global = TRUE;
7752                 break;
7753             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7754                 if (print)
7755                     bxe_print_next_block(sc, par_num++,
7756                               "MCP UMP RX");
7757                 *global = TRUE;
7758                 break;
7759             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7760                 if (print)
7761                     bxe_print_next_block(sc, par_num++,
7762                               "MCP UMP TX");
7763                 *global = TRUE;
7764                 break;
7765             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7766                 if (print)
7767                     bxe_print_next_block(sc, par_num++,
7768                               "MCP SCPAD");
7769                 *global = TRUE;
7770                 break;
7771             }
7772 
7773             /* Clear the bit */
7774             sig &= ~cur_bit;
7775         }
7776     }
7777 
7778     return (par_num);
7779 }
7780 
7781 static int
7782 bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7783                               uint32_t         sig,
7784                               int              par_num,
7785                               uint8_t          print)
7786 {
7787     uint32_t cur_bit = 0;
7788     int i = 0;
7789 
7790     for (i = 0; sig; i++) {
7791         cur_bit = ((uint32_t)0x1 << i);
7792         if (sig & cur_bit) {
7793             switch (cur_bit) {
7794             case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7795                 if (print)
7796                     bxe_print_next_block(sc, par_num++, "PGLUE_B");
7797                 break;
7798             case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7799                 if (print)
7800                     bxe_print_next_block(sc, par_num++, "ATC");
7801                 break;
7802             }
7803 
7804             /* Clear the bit */
7805             sig &= ~cur_bit;
7806         }
7807     }
7808 
7809     return (par_num);
7810 }
7811 
7812 static uint8_t
7813 bxe_parity_attn(struct bxe_softc *sc,
7814                 uint8_t          *global,
7815                 uint8_t          print,
7816                 uint32_t         *sig)
7817 {
7818     int par_num = 0;
7819 
7820     if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7821         (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7822         (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7823         (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7824         (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7825         BLOGE(sc, "Parity error: HW block parity attention:\n"
7826                   "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7827               (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7828               (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7829               (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7830               (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7831               (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7832 
7833         if (print)
7834             BLOGI(sc, "Parity errors detected in blocks: ");
7835 
7836         par_num =
7837             bxe_check_blocks_with_parity0(sc, sig[0] &
7838                                           HW_PRTY_ASSERT_SET_0,
7839                                           par_num, print);
7840         par_num =
7841             bxe_check_blocks_with_parity1(sc, sig[1] &
7842                                           HW_PRTY_ASSERT_SET_1,
7843                                           par_num, global, print);
7844         par_num =
7845             bxe_check_blocks_with_parity2(sc, sig[2] &
7846                                           HW_PRTY_ASSERT_SET_2,
7847                                           par_num, print);
7848         par_num =
7849             bxe_check_blocks_with_parity3(sc, sig[3] &
7850                                           HW_PRTY_ASSERT_SET_3,
7851                                           par_num, global, print);
7852         par_num =
7853             bxe_check_blocks_with_parity4(sc, sig[4] &
7854                                           HW_PRTY_ASSERT_SET_4,
7855                                           par_num, print);
7856 
7857         if (print)
7858             BLOGI(sc, "\n");
7859 
7860         return (TRUE);
7861     }
7862 
7863     return (FALSE);
7864 }
7865 
7866 static uint8_t
7867 bxe_chk_parity_attn(struct bxe_softc *sc,
7868                     uint8_t          *global,
7869                     uint8_t          print)
7870 {
7871     struct attn_route attn = { {0} };
7872     int port = SC_PORT(sc);
7873 
7874     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7875     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7876     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7877     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7878 
7879     if (!CHIP_IS_E1x(sc))
7880         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7881 
7882     return (bxe_parity_attn(sc, global, print, attn.sig));
7883 }
7884 
7885 static void
7886 bxe_attn_int_deasserted4(struct bxe_softc *sc,
7887                          uint32_t         attn)
7888 {
7889     uint32_t val;
7890 
7891     if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7892         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7893         BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7894         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7895             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7896         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7897             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7898         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7899             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7900         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7901             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7902         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7903             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7904         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7905             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7906         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7907             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7908         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7909             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7910         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7911             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7912     }
7913 
7914     if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7915         val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7916         BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7917         if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7918             BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7919         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7920             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7921         if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7922             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7923         if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7924             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7925         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7926             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7927         if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7928             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7929     }
7930 
7931     if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7932                 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7933         BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7934               (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7935                                  AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7936     }
7937 }
7938 
7939 static void
7940 bxe_e1h_disable(struct bxe_softc *sc)
7941 {
7942     int port = SC_PORT(sc);
7943 
7944     bxe_tx_disable(sc);
7945 
7946     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7947 }
7948 
7949 static void
7950 bxe_e1h_enable(struct bxe_softc *sc)
7951 {
7952     int port = SC_PORT(sc);
7953 
7954     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7955 
7956     // XXX bxe_tx_enable(sc);
7957 }
7958 
7959 /*
7960  * called due to MCP event (on pmf):
7961  *   reread new bandwidth configuration
7962  *   configure FW
7963  *   notify others function about the change
7964  */
7965 static void
7966 bxe_config_mf_bw(struct bxe_softc *sc)
7967 {
7968     if (sc->link_vars.link_up) {
7969         bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
7970         // XXX bxe_link_sync_notify(sc);
7971     }
7972 
7973     storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7974 }
7975 
7976 static void
7977 bxe_set_mf_bw(struct bxe_softc *sc)
7978 {
7979     bxe_config_mf_bw(sc);
7980     bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
7981 }
7982 
7983 static void
7984 bxe_handle_eee_event(struct bxe_softc *sc)
7985 {
7986     BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
7987     bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
7988 }
7989 
7990 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
7991 
7992 static void
7993 bxe_drv_info_ether_stat(struct bxe_softc *sc)
7994 {
7995     struct eth_stats_info *ether_stat =
7996         &sc->sp->drv_info_to_mcp.ether_stat;
7997 
7998     strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
7999             ETH_STAT_INFO_VERSION_LEN);
8000 
8001     /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
8002     sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
8003                                           DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
8004                                           ether_stat->mac_local + MAC_PAD,
8005                                           MAC_PAD, ETH_ALEN);
8006 
8007     ether_stat->mtu_size = sc->mtu;
8008 
8009     ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
8010     if (sc->ifnet->if_capenable & (IFCAP_TSO4 | IFCAP_TSO6)) {
8011         ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
8012     }
8013 
8014     // XXX ether_stat->feature_flags |= ???;
8015 
8016     ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
8017 
8018     ether_stat->txq_size = sc->tx_ring_size;
8019     ether_stat->rxq_size = sc->rx_ring_size;
8020 }
8021 
8022 static void
8023 bxe_handle_drv_info_req(struct bxe_softc *sc)
8024 {
8025     enum drv_info_opcode op_code;
8026     uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
8027 
8028     /* if drv_info version supported by MFW doesn't match - send NACK */
8029     if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
8030         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8031         return;
8032     }
8033 
8034     op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
8035                DRV_INFO_CONTROL_OP_CODE_SHIFT);
8036 
8037     memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
8038 
8039     switch (op_code) {
8040     case ETH_STATS_OPCODE:
8041         bxe_drv_info_ether_stat(sc);
8042         break;
8043     case FCOE_STATS_OPCODE:
8044     case ISCSI_STATS_OPCODE:
8045     default:
8046         /* if op code isn't supported - send NACK */
8047         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8048         return;
8049     }
8050 
8051     /*
8052      * If we got drv_info attn from MFW then these fields are defined in
8053      * shmem2 for sure
8054      */
8055     SHMEM2_WR(sc, drv_info_host_addr_lo,
8056               U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8057     SHMEM2_WR(sc, drv_info_host_addr_hi,
8058               U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8059 
8060     bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
8061 }
8062 
8063 static void
8064 bxe_dcc_event(struct bxe_softc *sc,
8065               uint32_t         dcc_event)
8066 {
8067     BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
8068 
8069     if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
8070         /*
8071          * This is the only place besides the function initialization
8072          * where the sc->flags can change so it is done without any
8073          * locks
8074          */
8075         if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
8076             BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
8077             sc->flags |= BXE_MF_FUNC_DIS;
8078             bxe_e1h_disable(sc);
8079         } else {
8080             BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
8081             sc->flags &= ~BXE_MF_FUNC_DIS;
8082             bxe_e1h_enable(sc);
8083         }
8084         dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
8085     }
8086 
8087     if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
8088         bxe_config_mf_bw(sc);
8089         dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
8090     }
8091 
8092     /* Report results to MCP */
8093     if (dcc_event)
8094         bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
8095     else
8096         bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
8097 }
8098 
8099 static void
8100 bxe_pmf_update(struct bxe_softc *sc)
8101 {
8102     int port = SC_PORT(sc);
8103     uint32_t val;
8104 
8105     sc->port.pmf = 1;
8106     BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
8107 
8108     /*
8109      * We need the mb() to ensure the ordering between the writing to
8110      * sc->port.pmf here and reading it from the bxe_periodic_task().
8111      */
8112     mb();
8113 
8114     /* queue a periodic task */
8115     // XXX schedule task...
8116 
8117     // XXX bxe_dcbx_pmf_update(sc);
8118 
8119     /* enable nig attention */
8120     val = (0xff0f | (1 << (SC_VN(sc) + 4)));
8121     if (sc->devinfo.int_block == INT_BLOCK_HC) {
8122         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
8123         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
8124     } else if (!CHIP_IS_E1x(sc)) {
8125         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
8126         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
8127     }
8128 
8129     bxe_stats_handle(sc, STATS_EVENT_PMF);
8130 }
8131 
8132 static int
8133 bxe_mc_assert(struct bxe_softc *sc)
8134 {
8135     char last_idx;
8136     int i, rc = 0;
8137     uint32_t row0, row1, row2, row3;
8138 
8139     /* XSTORM */
8140     last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
8141     if (last_idx)
8142         BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8143 
8144     /* print the asserts */
8145     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8146 
8147         row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
8148         row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
8149         row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
8150         row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
8151 
8152         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8153             BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8154                   i, row3, row2, row1, row0);
8155             rc++;
8156         } else {
8157             break;
8158         }
8159     }
8160 
8161     /* TSTORM */
8162     last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
8163     if (last_idx) {
8164         BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8165     }
8166 
8167     /* print the asserts */
8168     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8169 
8170         row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
8171         row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
8172         row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
8173         row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
8174 
8175         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8176             BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8177                   i, row3, row2, row1, row0);
8178             rc++;
8179         } else {
8180             break;
8181         }
8182     }
8183 
8184     /* CSTORM */
8185     last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
8186     if (last_idx) {
8187         BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8188     }
8189 
8190     /* print the asserts */
8191     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8192 
8193         row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
8194         row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
8195         row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
8196         row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
8197 
8198         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8199             BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8200                   i, row3, row2, row1, row0);
8201             rc++;
8202         } else {
8203             break;
8204         }
8205     }
8206 
8207     /* USTORM */
8208     last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
8209     if (last_idx) {
8210         BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8211     }
8212 
8213     /* print the asserts */
8214     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8215 
8216         row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
8217         row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
8218         row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
8219         row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
8220 
8221         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8222             BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8223                   i, row3, row2, row1, row0);
8224             rc++;
8225         } else {
8226             break;
8227         }
8228     }
8229 
8230     return (rc);
8231 }
8232 
8233 static void
8234 bxe_attn_int_deasserted3(struct bxe_softc *sc,
8235                          uint32_t         attn)
8236 {
8237     int func = SC_FUNC(sc);
8238     uint32_t val;
8239 
8240     if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
8241 
8242         if (attn & BXE_PMF_LINK_ASSERT(sc)) {
8243 
8244             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8245             bxe_read_mf_cfg(sc);
8246             sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
8247                 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
8248             val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
8249 
8250             if (val & DRV_STATUS_DCC_EVENT_MASK)
8251                 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
8252 
8253             if (val & DRV_STATUS_SET_MF_BW)
8254                 bxe_set_mf_bw(sc);
8255 
8256             if (val & DRV_STATUS_DRV_INFO_REQ)
8257                 bxe_handle_drv_info_req(sc);
8258 
8259 #if 0
8260             if (val & DRV_STATUS_VF_DISABLED)
8261                 bxe_vf_handle_flr_event(sc);
8262 #endif
8263 
8264             if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
8265                 bxe_pmf_update(sc);
8266 
8267 #if 0
8268             if (sc->port.pmf &&
8269                 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
8270                 (sc->dcbx_enabled > 0))
8271                 /* start dcbx state machine */
8272                 bxe_dcbx_set_params(sc, BXE_DCBX_STATE_NEG_RECEIVED);
8273 #endif
8274 
8275 #if 0
8276             if (val & DRV_STATUS_AFEX_EVENT_MASK)
8277                 bxe_handle_afex_cmd(sc, val & DRV_STATUS_AFEX_EVENT_MASK);
8278 #endif
8279 
8280             if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
8281                 bxe_handle_eee_event(sc);
8282 
8283             if (sc->link_vars.periodic_flags &
8284                 ELINK_PERIODIC_FLAGS_LINK_EVENT) {
8285                 /* sync with link */
8286                 BXE_PHY_LOCK(sc);
8287                 sc->link_vars.periodic_flags &=
8288                     ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
8289                 BXE_PHY_UNLOCK(sc);
8290                 if (IS_MF(sc))
8291                     ; // XXX bxe_link_sync_notify(sc);
8292                 bxe_link_report(sc);
8293             }
8294 
8295             /*
8296              * Always call it here: bxe_link_report() will
8297              * prevent the link indication duplication.
8298              */
8299             bxe_link_status_update(sc);
8300 
8301         } else if (attn & BXE_MC_ASSERT_BITS) {
8302 
8303             BLOGE(sc, "MC assert!\n");
8304             bxe_mc_assert(sc);
8305             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
8306             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
8307             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
8308             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
8309             bxe_panic(sc, ("MC assert!\n"));
8310 
8311         } else if (attn & BXE_MCP_ASSERT) {
8312 
8313             BLOGE(sc, "MCP assert!\n");
8314             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
8315             // XXX bxe_fw_dump(sc);
8316 
8317         } else {
8318             BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
8319         }
8320     }
8321 
8322     if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
8323         BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
8324         if (attn & BXE_GRC_TIMEOUT) {
8325             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
8326             BLOGE(sc, "GRC time-out 0x%08x\n", val);
8327         }
8328         if (attn & BXE_GRC_RSV) {
8329             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
8330             BLOGE(sc, "GRC reserved 0x%08x\n", val);
8331         }
8332         REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
8333     }
8334 }
8335 
8336 static void
8337 bxe_attn_int_deasserted2(struct bxe_softc *sc,
8338                          uint32_t         attn)
8339 {
8340     int port = SC_PORT(sc);
8341     int reg_offset;
8342     uint32_t val0, mask0, val1, mask1;
8343     uint32_t val;
8344 
8345     if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
8346         val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
8347         BLOGE(sc, "CFC hw attention 0x%08x\n", val);
8348         /* CFC error attention */
8349         if (val & 0x2) {
8350             BLOGE(sc, "FATAL error from CFC\n");
8351         }
8352     }
8353 
8354     if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
8355         val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
8356         BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
8357         /* RQ_USDMDP_FIFO_OVERFLOW */
8358         if (val & 0x18000) {
8359             BLOGE(sc, "FATAL error from PXP\n");
8360         }
8361 
8362         if (!CHIP_IS_E1x(sc)) {
8363             val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
8364             BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
8365         }
8366     }
8367 
8368 #define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
8369 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
8370 
8371     if (attn & AEU_PXP2_HW_INT_BIT) {
8372         /*  CQ47854 workaround do not panic on
8373          *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8374          */
8375         if (!CHIP_IS_E1x(sc)) {
8376             mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
8377             val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
8378             mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
8379             val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
8380             /*
8381              * If the olny PXP2_EOP_ERROR_BIT is set in
8382              * STS0 and STS1 - clear it
8383              *
8384              * probably we lose additional attentions between
8385              * STS0 and STS_CLR0, in this case user will not
8386              * be notified about them
8387              */
8388             if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
8389                 !(val1 & mask1))
8390                 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
8391 
8392             /* print the register, since no one can restore it */
8393             BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8394 
8395             /*
8396              * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8397              * then notify
8398              */
8399             if (val0 & PXP2_EOP_ERROR_BIT) {
8400                 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8401 
8402                 /*
8403                  * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8404                  * set then clear attention from PXP2 block without panic
8405                  */
8406                 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8407                     ((val1 & mask1) == 0))
8408                     attn &= ~AEU_PXP2_HW_INT_BIT;
8409             }
8410         }
8411     }
8412 
8413     if (attn & HW_INTERRUT_ASSERT_SET_2) {
8414         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8415                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8416 
8417         val = REG_RD(sc, reg_offset);
8418         val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8419         REG_WR(sc, reg_offset, val);
8420 
8421         BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8422               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8423         bxe_panic(sc, ("HW block attention set2\n"));
8424     }
8425 }
8426 
8427 static void
8428 bxe_attn_int_deasserted1(struct bxe_softc *sc,
8429                          uint32_t         attn)
8430 {
8431     int port = SC_PORT(sc);
8432     int reg_offset;
8433     uint32_t val;
8434 
8435     if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8436         val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8437         BLOGE(sc, "DB hw attention 0x%08x\n", val);
8438         /* DORQ discard attention */
8439         if (val & 0x2) {
8440             BLOGE(sc, "FATAL error from DORQ\n");
8441         }
8442     }
8443 
8444     if (attn & HW_INTERRUT_ASSERT_SET_1) {
8445         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8446                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8447 
8448         val = REG_RD(sc, reg_offset);
8449         val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8450         REG_WR(sc, reg_offset, val);
8451 
8452         BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8453               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8454         bxe_panic(sc, ("HW block attention set1\n"));
8455     }
8456 }
8457 
8458 static void
8459 bxe_attn_int_deasserted0(struct bxe_softc *sc,
8460                          uint32_t         attn)
8461 {
8462     int port = SC_PORT(sc);
8463     int reg_offset;
8464     uint32_t val;
8465 
8466     reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8467                           MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8468 
8469     if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8470         val = REG_RD(sc, reg_offset);
8471         val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8472         REG_WR(sc, reg_offset, val);
8473 
8474         BLOGW(sc, "SPIO5 hw attention\n");
8475 
8476         /* Fan failure attention */
8477         elink_hw_reset_phy(&sc->link_params);
8478         bxe_fan_failure(sc);
8479     }
8480 
8481     if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8482         BXE_PHY_LOCK(sc);
8483         elink_handle_module_detect_int(&sc->link_params);
8484         BXE_PHY_UNLOCK(sc);
8485     }
8486 
8487     if (attn & HW_INTERRUT_ASSERT_SET_0) {
8488         val = REG_RD(sc, reg_offset);
8489         val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8490         REG_WR(sc, reg_offset, val);
8491 
8492         bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8493                        (attn & HW_INTERRUT_ASSERT_SET_0)));
8494     }
8495 }
8496 
8497 static void
8498 bxe_attn_int_deasserted(struct bxe_softc *sc,
8499                         uint32_t         deasserted)
8500 {
8501     struct attn_route attn;
8502     struct attn_route *group_mask;
8503     int port = SC_PORT(sc);
8504     int index;
8505     uint32_t reg_addr;
8506     uint32_t val;
8507     uint32_t aeu_mask;
8508     uint8_t global = FALSE;
8509 
8510     /*
8511      * Need to take HW lock because MCP or other port might also
8512      * try to handle this event.
8513      */
8514     bxe_acquire_alr(sc);
8515 
8516     if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8517         /* XXX
8518          * In case of parity errors don't handle attentions so that
8519          * other function would "see" parity errors.
8520          */
8521         sc->recovery_state = BXE_RECOVERY_INIT;
8522         // XXX schedule a recovery task...
8523         /* disable HW interrupts */
8524         bxe_int_disable(sc);
8525         bxe_release_alr(sc);
8526         return;
8527     }
8528 
8529     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8530     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8531     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8532     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8533     if (!CHIP_IS_E1x(sc)) {
8534         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8535     } else {
8536         attn.sig[4] = 0;
8537     }
8538 
8539     BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8540           attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8541 
8542     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8543         if (deasserted & (1 << index)) {
8544             group_mask = &sc->attn_group[index];
8545 
8546             BLOGD(sc, DBG_INTR,
8547                   "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8548                   group_mask->sig[0], group_mask->sig[1],
8549                   group_mask->sig[2], group_mask->sig[3],
8550                   group_mask->sig[4]);
8551 
8552             bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8553             bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8554             bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8555             bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8556             bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8557         }
8558     }
8559 
8560     bxe_release_alr(sc);
8561 
8562     if (sc->devinfo.int_block == INT_BLOCK_HC) {
8563         reg_addr = (HC_REG_COMMAND_REG + port*32 +
8564                     COMMAND_REG_ATTN_BITS_CLR);
8565     } else {
8566         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8567     }
8568 
8569     val = ~deasserted;
8570     BLOGD(sc, DBG_INTR,
8571           "about to mask 0x%08x at %s addr 0x%08x\n", val,
8572           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8573     REG_WR(sc, reg_addr, val);
8574 
8575     if (~sc->attn_state & deasserted) {
8576         BLOGE(sc, "IGU error\n");
8577     }
8578 
8579     reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8580                       MISC_REG_AEU_MASK_ATTN_FUNC_0;
8581 
8582     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8583 
8584     aeu_mask = REG_RD(sc, reg_addr);
8585 
8586     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8587           aeu_mask, deasserted);
8588     aeu_mask |= (deasserted & 0x3ff);
8589     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8590 
8591     REG_WR(sc, reg_addr, aeu_mask);
8592     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8593 
8594     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8595     sc->attn_state &= ~deasserted;
8596     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8597 }
8598 
8599 static void
8600 bxe_attn_int(struct bxe_softc *sc)
8601 {
8602     /* read local copy of bits */
8603     uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8604     uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8605     uint32_t attn_state = sc->attn_state;
8606 
8607     /* look for changed bits */
8608     uint32_t asserted   =  attn_bits & ~attn_ack & ~attn_state;
8609     uint32_t deasserted = ~attn_bits &  attn_ack &  attn_state;
8610 
8611     BLOGD(sc, DBG_INTR,
8612           "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8613           attn_bits, attn_ack, asserted, deasserted);
8614 
8615     if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8616         BLOGE(sc, "BAD attention state\n");
8617     }
8618 
8619     /* handle bits that were raised */
8620     if (asserted) {
8621         bxe_attn_int_asserted(sc, asserted);
8622     }
8623 
8624     if (deasserted) {
8625         bxe_attn_int_deasserted(sc, deasserted);
8626     }
8627 }
8628 
8629 static uint16_t
8630 bxe_update_dsb_idx(struct bxe_softc *sc)
8631 {
8632     struct host_sp_status_block *def_sb = sc->def_sb;
8633     uint16_t rc = 0;
8634 
8635     mb(); /* status block is written to by the chip */
8636 
8637     if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8638         sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8639         rc |= BXE_DEF_SB_ATT_IDX;
8640     }
8641 
8642     if (sc->def_idx != def_sb->sp_sb.running_index) {
8643         sc->def_idx = def_sb->sp_sb.running_index;
8644         rc |= BXE_DEF_SB_IDX;
8645     }
8646 
8647     mb();
8648 
8649     return (rc);
8650 }
8651 
8652 static inline struct ecore_queue_sp_obj *
8653 bxe_cid_to_q_obj(struct bxe_softc *sc,
8654                  uint32_t         cid)
8655 {
8656     BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8657     return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8658 }
8659 
8660 static void
8661 bxe_handle_mcast_eqe(struct bxe_softc *sc)
8662 {
8663     struct ecore_mcast_ramrod_params rparam;
8664     int rc;
8665 
8666     memset(&rparam, 0, sizeof(rparam));
8667 
8668     rparam.mcast_obj = &sc->mcast_obj;
8669 
8670     BXE_MCAST_LOCK(sc);
8671 
8672     /* clear pending state for the last command */
8673     sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8674 
8675     /* if there are pending mcast commands - send them */
8676     if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8677         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8678         if (rc < 0) {
8679             BLOGD(sc, DBG_SP,
8680                   "ERROR: Failed to send pending mcast commands (%d)\n",
8681                   rc);
8682         }
8683     }
8684 
8685     BXE_MCAST_UNLOCK(sc);
8686 }
8687 
8688 static void
8689 bxe_handle_classification_eqe(struct bxe_softc      *sc,
8690                               union event_ring_elem *elem)
8691 {
8692     unsigned long ramrod_flags = 0;
8693     int rc = 0;
8694     uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8695     struct ecore_vlan_mac_obj *vlan_mac_obj;
8696 
8697     /* always push next commands out, don't wait here */
8698     bit_set(&ramrod_flags, RAMROD_CONT);
8699 
8700     switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8701     case ECORE_FILTER_MAC_PENDING:
8702         BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8703         vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8704         break;
8705 
8706     case ECORE_FILTER_MCAST_PENDING:
8707         BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8708         /*
8709          * This is only relevant for 57710 where multicast MACs are
8710          * configured as unicast MACs using the same ramrod.
8711          */
8712         bxe_handle_mcast_eqe(sc);
8713         return;
8714 
8715     default:
8716         BLOGE(sc, "Unsupported classification command: %d\n",
8717               elem->message.data.eth_event.echo);
8718         return;
8719     }
8720 
8721     rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8722 
8723     if (rc < 0) {
8724         BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8725     } else if (rc > 0) {
8726         BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8727     }
8728 }
8729 
8730 static void
8731 bxe_handle_rx_mode_eqe(struct bxe_softc      *sc,
8732                        union event_ring_elem *elem)
8733 {
8734     bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8735 
8736     /* send rx_mode command again if was requested */
8737     if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8738                                &sc->sp_state)) {
8739         bxe_set_storm_rx_mode(sc);
8740     }
8741 #if 0
8742     else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_START_SCHED,
8743                                     &sc->sp_state)) {
8744         bxe_set_iscsi_eth_rx_mode(sc, TRUE);
8745     }
8746     else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_STOP_SCHED,
8747                                     &sc->sp_state)) {
8748         bxe_set_iscsi_eth_rx_mode(sc, FALSE);
8749     }
8750 #endif
8751 }
8752 
8753 static void
8754 bxe_update_eq_prod(struct bxe_softc *sc,
8755                    uint16_t         prod)
8756 {
8757     storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8758     wmb(); /* keep prod updates ordered */
8759 }
8760 
8761 static void
8762 bxe_eq_int(struct bxe_softc *sc)
8763 {
8764     uint16_t hw_cons, sw_cons, sw_prod;
8765     union event_ring_elem *elem;
8766     uint8_t echo;
8767     uint32_t cid;
8768     uint8_t opcode;
8769     int spqe_cnt = 0;
8770     struct ecore_queue_sp_obj *q_obj;
8771     struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8772     struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8773 
8774     hw_cons = le16toh(*sc->eq_cons_sb);
8775 
8776     /*
8777      * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8778      * when we get to the next-page we need to adjust so the loop
8779      * condition below will be met. The next element is the size of a
8780      * regular element and hence incrementing by 1
8781      */
8782     if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8783         hw_cons++;
8784     }
8785 
8786     /*
8787      * This function may never run in parallel with itself for a
8788      * specific sc and no need for a read memory barrier here.
8789      */
8790     sw_cons = sc->eq_cons;
8791     sw_prod = sc->eq_prod;
8792 
8793     BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8794           hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8795 
8796     for (;
8797          sw_cons != hw_cons;
8798          sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8799 
8800         elem = &sc->eq[EQ_DESC(sw_cons)];
8801 
8802 #if 0
8803         int rc;
8804         rc = bxe_iov_eq_sp_event(sc, elem);
8805         if (!rc) {
8806             BLOGE(sc, "bxe_iov_eq_sp_event returned %d\n", rc);
8807             goto next_spqe;
8808         }
8809 #endif
8810 
8811         /* elem CID originates from FW, actually LE */
8812         cid = SW_CID(elem->message.data.cfc_del_event.cid);
8813         opcode = elem->message.opcode;
8814 
8815         /* handle eq element */
8816         switch (opcode) {
8817 #if 0
8818         case EVENT_RING_OPCODE_VF_PF_CHANNEL:
8819             BLOGD(sc, DBG_SP, "vf/pf channel element on eq\n");
8820             bxe_vf_mbx(sc, &elem->message.data.vf_pf_event);
8821             continue;
8822 #endif
8823 
8824         case EVENT_RING_OPCODE_STAT_QUERY:
8825             BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8826                   sc->stats_comp++);
8827             /* nothing to do with stats comp */
8828             goto next_spqe;
8829 
8830         case EVENT_RING_OPCODE_CFC_DEL:
8831             /* handle according to cid range */
8832             /* we may want to verify here that the sc state is HALTING */
8833             BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8834             q_obj = bxe_cid_to_q_obj(sc, cid);
8835             if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8836                 break;
8837             }
8838             goto next_spqe;
8839 
8840         case EVENT_RING_OPCODE_STOP_TRAFFIC:
8841             BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8842             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8843                 break;
8844             }
8845             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8846             goto next_spqe;
8847 
8848         case EVENT_RING_OPCODE_START_TRAFFIC:
8849             BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8850             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8851                 break;
8852             }
8853             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8854             goto next_spqe;
8855 
8856         case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8857             echo = elem->message.data.function_update_event.echo;
8858             if (echo == SWITCH_UPDATE) {
8859                 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8860                 if (f_obj->complete_cmd(sc, f_obj,
8861                                         ECORE_F_CMD_SWITCH_UPDATE)) {
8862                     break;
8863                 }
8864             }
8865             else {
8866                 BLOGD(sc, DBG_SP,
8867                       "AFEX: ramrod completed FUNCTION_UPDATE\n");
8868 #if 0
8869                 f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_UPDATE);
8870                 /*
8871                  * We will perform the queues update from the sp_core_task as
8872                  * all queue SP operations should run with CORE_LOCK.
8873                  */
8874                 bxe_set_bit(BXE_SP_CORE_AFEX_F_UPDATE, &sc->sp_core_state);
8875                 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8876 #endif
8877             }
8878             goto next_spqe;
8879 
8880 #if 0
8881         case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
8882             f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_VIFLISTS);
8883             bxe_after_afex_vif_lists(sc, elem);
8884             goto next_spqe;
8885 #endif
8886 
8887         case EVENT_RING_OPCODE_FORWARD_SETUP:
8888             q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8889             if (q_obj->complete_cmd(sc, q_obj,
8890                                     ECORE_Q_CMD_SETUP_TX_ONLY)) {
8891                 break;
8892             }
8893             goto next_spqe;
8894 
8895         case EVENT_RING_OPCODE_FUNCTION_START:
8896             BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8897             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8898                 break;
8899             }
8900             goto next_spqe;
8901 
8902         case EVENT_RING_OPCODE_FUNCTION_STOP:
8903             BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8904             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8905                 break;
8906             }
8907             goto next_spqe;
8908         }
8909 
8910         switch (opcode | sc->state) {
8911         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8912         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8913             cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8914             BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8915             rss_raw->clear_pending(rss_raw);
8916             break;
8917 
8918         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8919         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8920         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8921         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8922         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8923         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8924             BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8925             bxe_handle_classification_eqe(sc, elem);
8926             break;
8927 
8928         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8929         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8930         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8931             BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8932             bxe_handle_mcast_eqe(sc);
8933             break;
8934 
8935         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8936         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8937         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8938             BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8939             bxe_handle_rx_mode_eqe(sc, elem);
8940             break;
8941 
8942         default:
8943             /* unknown event log error and continue */
8944             BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8945                   elem->message.opcode, sc->state);
8946         }
8947 
8948 next_spqe:
8949         spqe_cnt++;
8950     } /* for */
8951 
8952     mb();
8953     atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
8954 
8955     sc->eq_cons = sw_cons;
8956     sc->eq_prod = sw_prod;
8957 
8958     /* make sure that above mem writes were issued towards the memory */
8959     wmb();
8960 
8961     /* update producer */
8962     bxe_update_eq_prod(sc, sc->eq_prod);
8963 }
8964 
8965 static void
8966 bxe_handle_sp_tq(void *context,
8967                  int  pending)
8968 {
8969     struct bxe_softc *sc = (struct bxe_softc *)context;
8970     uint16_t status;
8971 
8972     BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
8973 
8974     /* what work needs to be performed? */
8975     status = bxe_update_dsb_idx(sc);
8976 
8977     BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
8978 
8979     /* HW attentions */
8980     if (status & BXE_DEF_SB_ATT_IDX) {
8981         BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
8982         bxe_attn_int(sc);
8983         status &= ~BXE_DEF_SB_ATT_IDX;
8984     }
8985 
8986     /* SP events: STAT_QUERY and others */
8987     if (status & BXE_DEF_SB_IDX) {
8988         /* handle EQ completions */
8989         BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
8990         bxe_eq_int(sc);
8991         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
8992                    le16toh(sc->def_idx), IGU_INT_NOP, 1);
8993         status &= ~BXE_DEF_SB_IDX;
8994     }
8995 
8996     /* if status is non zero then something went wrong */
8997     if (__predict_false(status)) {
8998         BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
8999     }
9000 
9001     /* ack status block only if something was actually handled */
9002     bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
9003                le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
9004 
9005     /*
9006      * Must be called after the EQ processing (since eq leads to sriov
9007      * ramrod completion flows).
9008      * This flow may have been scheduled by the arrival of a ramrod
9009      * completion, or by the sriov code rescheduling itself.
9010      */
9011     // XXX bxe_iov_sp_task(sc);
9012 
9013 #if 0
9014     /* AFEX - poll to check if VIFSET_ACK should be sent to MFW */
9015     if (bxe_test_and_clear_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK,
9016                                &sc->sp_state)) {
9017         bxe_link_report(sc);
9018         bxe_fw_command(sc, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
9019     }
9020 #endif
9021 }
9022 
9023 static void
9024 bxe_handle_fp_tq(void *context,
9025                  int  pending)
9026 {
9027     struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
9028     struct bxe_softc *sc = fp->sc;
9029     uint8_t more_tx = FALSE;
9030     uint8_t more_rx = FALSE;
9031 
9032     BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
9033 
9034     /* XXX
9035      * IFF_DRV_RUNNING state can't be checked here since we process
9036      * slowpath events on a client queue during setup. Instead
9037      * we need to add a "process/continue" flag here that the driver
9038      * can use to tell the task here not to do anything.
9039      */
9040 #if 0
9041     if (!(sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
9042         return;
9043     }
9044 #endif
9045 
9046     /* update the fastpath index */
9047     bxe_update_fp_sb_idx(fp);
9048 
9049     /* XXX add loop here if ever support multiple tx CoS */
9050     /* fp->txdata[cos] */
9051     if (bxe_has_tx_work(fp)) {
9052         BXE_FP_TX_LOCK(fp);
9053         more_tx = bxe_txeof(sc, fp);
9054         BXE_FP_TX_UNLOCK(fp);
9055     }
9056 
9057     if (bxe_has_rx_work(fp)) {
9058         more_rx = bxe_rxeof(sc, fp);
9059     }
9060 
9061     if (more_rx /*|| more_tx*/) {
9062         /* still more work to do */
9063         taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9064         return;
9065     }
9066 
9067     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9068                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9069 }
9070 
9071 static void
9072 bxe_task_fp(struct bxe_fastpath *fp)
9073 {
9074     struct bxe_softc *sc = fp->sc;
9075     uint8_t more_tx = FALSE;
9076     uint8_t more_rx = FALSE;
9077 
9078     BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
9079 
9080     /* update the fastpath index */
9081     bxe_update_fp_sb_idx(fp);
9082 
9083     /* XXX add loop here if ever support multiple tx CoS */
9084     /* fp->txdata[cos] */
9085     if (bxe_has_tx_work(fp)) {
9086         BXE_FP_TX_LOCK(fp);
9087         more_tx = bxe_txeof(sc, fp);
9088         BXE_FP_TX_UNLOCK(fp);
9089     }
9090 
9091     if (bxe_has_rx_work(fp)) {
9092         more_rx = bxe_rxeof(sc, fp);
9093     }
9094 
9095     if (more_rx /*|| more_tx*/) {
9096         /* still more work to do, bail out if this ISR and process later */
9097         taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9098         return;
9099     }
9100 
9101     /*
9102      * Here we write the fastpath index taken before doing any tx or rx work.
9103      * It is very well possible other hw events occurred up to this point and
9104      * they were actually processed accordingly above. Since we're going to
9105      * write an older fastpath index, an interrupt is coming which we might
9106      * not do any work in.
9107      */
9108     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9109                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9110 }
9111 
9112 /*
9113  * Legacy interrupt entry point.
9114  *
9115  * Verifies that the controller generated the interrupt and
9116  * then calls a separate routine to handle the various
9117  * interrupt causes: link, RX, and TX.
9118  */
9119 static void
9120 bxe_intr_legacy(void *xsc)
9121 {
9122     struct bxe_softc *sc = (struct bxe_softc *)xsc;
9123     struct bxe_fastpath *fp;
9124     uint16_t status, mask;
9125     int i;
9126 
9127     BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
9128 
9129 #if 0
9130     /* Don't handle any interrupts if we're not ready. */
9131     if (__predict_false(sc->intr_sem != 0)) {
9132         return;
9133     }
9134 #endif
9135 
9136     /*
9137      * 0 for ustorm, 1 for cstorm
9138      * the bits returned from ack_int() are 0-15
9139      * bit 0 = attention status block
9140      * bit 1 = fast path status block
9141      * a mask of 0x2 or more = tx/rx event
9142      * a mask of 1 = slow path event
9143      */
9144 
9145     status = bxe_ack_int(sc);
9146 
9147     /* the interrupt is not for us */
9148     if (__predict_false(status == 0)) {
9149         BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
9150         return;
9151     }
9152 
9153     BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
9154 
9155     FOR_EACH_ETH_QUEUE(sc, i) {
9156         fp = &sc->fp[i];
9157         mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
9158         if (status & mask) {
9159             /* acknowledge and disable further fastpath interrupts */
9160             bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9161             bxe_task_fp(fp);
9162             status &= ~mask;
9163         }
9164     }
9165 
9166 #if 0
9167     if (CNIC_SUPPORT(sc)) {
9168         mask = 0x2;
9169         if (status & (mask | 0x1)) {
9170             ...
9171             status &= ~mask;
9172         }
9173     }
9174 #endif
9175 
9176     if (__predict_false(status & 0x1)) {
9177         /* acknowledge and disable further slowpath interrupts */
9178         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9179 
9180         /* schedule slowpath handler */
9181         taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9182 
9183         status &= ~0x1;
9184     }
9185 
9186     if (__predict_false(status)) {
9187         BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
9188     }
9189 }
9190 
9191 /* slowpath interrupt entry point */
9192 static void
9193 bxe_intr_sp(void *xsc)
9194 {
9195     struct bxe_softc *sc = (struct bxe_softc *)xsc;
9196 
9197     BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
9198 
9199     /* acknowledge and disable further slowpath interrupts */
9200     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9201 
9202     /* schedule slowpath handler */
9203     taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9204 }
9205 
9206 /* fastpath interrupt entry point */
9207 static void
9208 bxe_intr_fp(void *xfp)
9209 {
9210     struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
9211     struct bxe_softc *sc = fp->sc;
9212 
9213     BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
9214 
9215     BLOGD(sc, DBG_INTR,
9216           "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
9217           curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
9218 
9219 #if 0
9220     /* Don't handle any interrupts if we're not ready. */
9221     if (__predict_false(sc->intr_sem != 0)) {
9222         return;
9223     }
9224 #endif
9225 
9226     /* acknowledge and disable further fastpath interrupts */
9227     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9228 
9229     bxe_task_fp(fp);
9230 }
9231 
9232 /* Release all interrupts allocated by the driver. */
9233 static void
9234 bxe_interrupt_free(struct bxe_softc *sc)
9235 {
9236     int i;
9237 
9238     switch (sc->interrupt_mode) {
9239     case INTR_MODE_INTX:
9240         BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
9241         if (sc->intr[0].resource != NULL) {
9242             bus_release_resource(sc->dev,
9243                                  SYS_RES_IRQ,
9244                                  sc->intr[0].rid,
9245                                  sc->intr[0].resource);
9246         }
9247         break;
9248     case INTR_MODE_MSI:
9249         for (i = 0; i < sc->intr_count; i++) {
9250             BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
9251             if (sc->intr[i].resource && sc->intr[i].rid) {
9252                 bus_release_resource(sc->dev,
9253                                      SYS_RES_IRQ,
9254                                      sc->intr[i].rid,
9255                                      sc->intr[i].resource);
9256             }
9257         }
9258         pci_release_msi(sc->dev);
9259         break;
9260     case INTR_MODE_MSIX:
9261         for (i = 0; i < sc->intr_count; i++) {
9262             BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
9263             if (sc->intr[i].resource && sc->intr[i].rid) {
9264                 bus_release_resource(sc->dev,
9265                                      SYS_RES_IRQ,
9266                                      sc->intr[i].rid,
9267                                      sc->intr[i].resource);
9268             }
9269         }
9270         pci_release_msi(sc->dev);
9271         break;
9272     default:
9273         /* nothing to do as initial allocation failed */
9274         break;
9275     }
9276 }
9277 
9278 /*
9279  * This function determines and allocates the appropriate
9280  * interrupt based on system capabilites and user request.
9281  *
9282  * The user may force a particular interrupt mode, specify
9283  * the number of receive queues, specify the method for
9284  * distribuitng received frames to receive queues, or use
9285  * the default settings which will automatically select the
9286  * best supported combination.  In addition, the OS may or
9287  * may not support certain combinations of these settings.
9288  * This routine attempts to reconcile the settings requested
9289  * by the user with the capabilites available from the system
9290  * to select the optimal combination of features.
9291  *
9292  * Returns:
9293  *   0 = Success, !0 = Failure.
9294  */
9295 static int
9296 bxe_interrupt_alloc(struct bxe_softc *sc)
9297 {
9298     int msix_count = 0;
9299     int msi_count = 0;
9300     int num_requested = 0;
9301     int num_allocated = 0;
9302     int rid, i, j;
9303     int rc;
9304 
9305     /* get the number of available MSI/MSI-X interrupts from the OS */
9306     if (sc->interrupt_mode > 0) {
9307         if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
9308             msix_count = pci_msix_count(sc->dev);
9309         }
9310 
9311         if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
9312             msi_count = pci_msi_count(sc->dev);
9313         }
9314 
9315         BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
9316               msi_count, msix_count);
9317     }
9318 
9319     do { /* try allocating MSI-X interrupt resources (at least 2) */
9320         if (sc->interrupt_mode != INTR_MODE_MSIX) {
9321             break;
9322         }
9323 
9324         if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
9325             (msix_count < 2)) {
9326             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9327             break;
9328         }
9329 
9330         /* ask for the necessary number of MSI-X vectors */
9331         num_requested = min((sc->num_queues + 1), msix_count);
9332 
9333         BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
9334 
9335         num_allocated = num_requested;
9336         if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
9337             BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
9338             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9339             break;
9340         }
9341 
9342         if (num_allocated < 2) { /* possible? */
9343             BLOGE(sc, "MSI-X allocation less than 2!\n");
9344             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9345             pci_release_msi(sc->dev);
9346             break;
9347         }
9348 
9349         BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
9350               num_requested, num_allocated);
9351 
9352         /* best effort so use the number of vectors allocated to us */
9353         sc->intr_count = num_allocated;
9354         sc->num_queues = num_allocated - 1;
9355 
9356         rid = 1; /* initial resource identifier */
9357 
9358         /* allocate the MSI-X vectors */
9359         for (i = 0; i < num_allocated; i++) {
9360             sc->intr[i].rid = (rid + i);
9361 
9362             if ((sc->intr[i].resource =
9363                  bus_alloc_resource_any(sc->dev,
9364                                         SYS_RES_IRQ,
9365                                         &sc->intr[i].rid,
9366                                         RF_ACTIVE)) == NULL) {
9367                 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
9368                       i, (rid + i));
9369 
9370                 for (j = (i - 1); j >= 0; j--) {
9371                     bus_release_resource(sc->dev,
9372                                          SYS_RES_IRQ,
9373                                          sc->intr[j].rid,
9374                                          sc->intr[j].resource);
9375                 }
9376 
9377                 sc->intr_count = 0;
9378                 sc->num_queues = 0;
9379                 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9380                 pci_release_msi(sc->dev);
9381                 break;
9382             }
9383 
9384             BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
9385         }
9386     } while (0);
9387 
9388     do { /* try allocating MSI vector resources (at least 2) */
9389         if (sc->interrupt_mode != INTR_MODE_MSI) {
9390             break;
9391         }
9392 
9393         if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
9394             (msi_count < 2)) {
9395             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9396             break;
9397         }
9398 
9399         /* ask for the necessary number of MSI vectors */
9400         num_requested = min((sc->num_queues + 1), msi_count);
9401 
9402         BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
9403 
9404         num_allocated = num_requested;
9405         if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
9406             BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
9407             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9408             break;
9409         }
9410 
9411         if (num_allocated < 2) { /* possible? */
9412             BLOGE(sc, "MSI allocation less than 2!\n");
9413             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9414             pci_release_msi(sc->dev);
9415             break;
9416         }
9417 
9418         BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
9419               num_requested, num_allocated);
9420 
9421         /* best effort so use the number of vectors allocated to us */
9422         sc->intr_count = num_allocated;
9423         sc->num_queues = num_allocated - 1;
9424 
9425         rid = 1; /* initial resource identifier */
9426 
9427         /* allocate the MSI vectors */
9428         for (i = 0; i < num_allocated; i++) {
9429             sc->intr[i].rid = (rid + i);
9430 
9431             if ((sc->intr[i].resource =
9432                  bus_alloc_resource_any(sc->dev,
9433                                         SYS_RES_IRQ,
9434                                         &sc->intr[i].rid,
9435                                         RF_ACTIVE)) == NULL) {
9436                 BLOGE(sc, "Failed to map MSI[%d] (rid=%d)!\n",
9437                       i, (rid + i));
9438 
9439                 for (j = (i - 1); j >= 0; j--) {
9440                     bus_release_resource(sc->dev,
9441                                          SYS_RES_IRQ,
9442                                          sc->intr[j].rid,
9443                                          sc->intr[j].resource);
9444                 }
9445 
9446                 sc->intr_count = 0;
9447                 sc->num_queues = 0;
9448                 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9449                 pci_release_msi(sc->dev);
9450                 break;
9451             }
9452 
9453             BLOGD(sc, DBG_LOAD, "Mapped MSI[%d] (rid=%d)\n", i, (rid + i));
9454         }
9455     } while (0);
9456 
9457     do { /* try allocating INTx vector resources */
9458         if (sc->interrupt_mode != INTR_MODE_INTX) {
9459             break;
9460         }
9461 
9462         BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
9463 
9464         /* only one vector for INTx */
9465         sc->intr_count = 1;
9466         sc->num_queues = 1;
9467 
9468         rid = 0; /* initial resource identifier */
9469 
9470         sc->intr[0].rid = rid;
9471 
9472         if ((sc->intr[0].resource =
9473              bus_alloc_resource_any(sc->dev,
9474                                     SYS_RES_IRQ,
9475                                     &sc->intr[0].rid,
9476                                     (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
9477             BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
9478             sc->intr_count = 0;
9479             sc->num_queues = 0;
9480             sc->interrupt_mode = -1; /* Failed! */
9481             break;
9482         }
9483 
9484         BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9485     } while (0);
9486 
9487     if (sc->interrupt_mode == -1) {
9488         BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9489         rc = 1;
9490     } else {
9491         BLOGD(sc, DBG_LOAD,
9492               "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9493               sc->interrupt_mode, sc->num_queues);
9494         rc = 0;
9495     }
9496 
9497     return (rc);
9498 }
9499 
9500 static void
9501 bxe_interrupt_detach(struct bxe_softc *sc)
9502 {
9503     struct bxe_fastpath *fp;
9504     int i;
9505 
9506     /* release interrupt resources */
9507     for (i = 0; i < sc->intr_count; i++) {
9508         if (sc->intr[i].resource && sc->intr[i].tag) {
9509             BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9510             bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9511         }
9512     }
9513 
9514     for (i = 0; i < sc->num_queues; i++) {
9515         fp = &sc->fp[i];
9516         if (fp->tq) {
9517             taskqueue_drain(fp->tq, &fp->tq_task);
9518             taskqueue_free(fp->tq);
9519             fp->tq = NULL;
9520         }
9521     }
9522 
9523     if (sc->rx_mode_tq) {
9524         taskqueue_drain(sc->rx_mode_tq, &sc->rx_mode_tq_task);
9525         taskqueue_free(sc->rx_mode_tq);
9526         sc->rx_mode_tq = NULL;
9527     }
9528 
9529     if (sc->sp_tq) {
9530         taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9531         taskqueue_free(sc->sp_tq);
9532         sc->sp_tq = NULL;
9533     }
9534 }
9535 
9536 /*
9537  * Enables interrupts and attach to the ISR.
9538  *
9539  * When using multiple MSI/MSI-X vectors the first vector
9540  * is used for slowpath operations while all remaining
9541  * vectors are used for fastpath operations.  If only a
9542  * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9543  * ISR must look for both slowpath and fastpath completions.
9544  */
9545 static int
9546 bxe_interrupt_attach(struct bxe_softc *sc)
9547 {
9548     struct bxe_fastpath *fp;
9549     int rc = 0;
9550     int i;
9551 
9552     snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9553              "bxe%d_sp_tq", sc->unit);
9554     TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9555     sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT,
9556                                       taskqueue_thread_enqueue,
9557                                       &sc->sp_tq);
9558     taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9559                             "%s", sc->sp_tq_name);
9560 
9561     snprintf(sc->rx_mode_tq_name, sizeof(sc->rx_mode_tq_name),
9562              "bxe%d_rx_mode_tq", sc->unit);
9563     TASK_INIT(&sc->rx_mode_tq_task, 0, bxe_handle_rx_mode_tq, sc);
9564     sc->rx_mode_tq = taskqueue_create_fast(sc->rx_mode_tq_name, M_NOWAIT,
9565                                            taskqueue_thread_enqueue,
9566                                            &sc->rx_mode_tq);
9567     taskqueue_start_threads(&sc->rx_mode_tq, 1, PWAIT, /* lower priority */
9568                             "%s", sc->rx_mode_tq_name);
9569 
9570     for (i = 0; i < sc->num_queues; i++) {
9571         fp = &sc->fp[i];
9572         snprintf(fp->tq_name, sizeof(fp->tq_name),
9573                  "bxe%d_fp%d_tq", sc->unit, i);
9574         TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9575         fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT,
9576                                        taskqueue_thread_enqueue,
9577                                        &fp->tq);
9578         taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9579                                 "%s", fp->tq_name);
9580     }
9581 
9582     /* setup interrupt handlers */
9583     if (sc->interrupt_mode == INTR_MODE_MSIX) {
9584         BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9585 
9586         /*
9587          * Setup the interrupt handler. Note that we pass the driver instance
9588          * to the interrupt handler for the slowpath.
9589          */
9590         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9591                                  (INTR_TYPE_NET | INTR_MPSAFE),
9592                                  NULL, bxe_intr_sp, sc,
9593                                  &sc->intr[0].tag)) != 0) {
9594             BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9595             goto bxe_interrupt_attach_exit;
9596         }
9597 
9598         bus_describe_intr(sc->dev, sc->intr[0].resource,
9599                           sc->intr[0].tag, "sp");
9600 
9601         /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9602 
9603         /* initialize the fastpath vectors (note the first was used for sp) */
9604         for (i = 0; i < sc->num_queues; i++) {
9605             fp = &sc->fp[i];
9606             BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9607 
9608             /*
9609              * Setup the interrupt handler. Note that we pass the
9610              * fastpath context to the interrupt handler in this
9611              * case.
9612              */
9613             if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9614                                      (INTR_TYPE_NET | INTR_MPSAFE),
9615                                      NULL, bxe_intr_fp, fp,
9616                                      &sc->intr[i + 1].tag)) != 0) {
9617                 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9618                       (i + 1), rc);
9619                 goto bxe_interrupt_attach_exit;
9620             }
9621 
9622             bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9623                               sc->intr[i + 1].tag, "fp%02d", i);
9624 
9625             /* bind the fastpath instance to a cpu */
9626             if (sc->num_queues > 1) {
9627                 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9628             }
9629 
9630             fp->state = BXE_FP_STATE_IRQ;
9631         }
9632     } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9633         BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI[0] vector.\n");
9634 
9635         /*
9636          * Setup the interrupt handler. Note that we pass the driver instance
9637          * to the interrupt handler for the slowpath.
9638          */
9639         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9640                                  (INTR_TYPE_NET | INTR_MPSAFE),
9641                                  NULL, bxe_intr_sp, sc,
9642                                  &sc->intr[0].tag)) != 0) {
9643             BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9644             goto bxe_interrupt_attach_exit;
9645         }
9646 
9647         bus_describe_intr(sc->dev, sc->intr[0].resource,
9648                           sc->intr[0].tag, "sp");
9649 
9650         /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9651 
9652         /* initialize the fastpath vectors (note the first was used for sp) */
9653         for (i = 0; i < sc->num_queues; i++) {
9654             fp = &sc->fp[i];
9655             BLOGD(sc, DBG_LOAD, "Enabling MSI[%d] vector\n", (i + 1));
9656 
9657             /*
9658              * Setup the interrupt handler. Note that we pass the
9659              * fastpath context to the interrupt handler in this
9660              * case.
9661              */
9662             if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9663                                      (INTR_TYPE_NET | INTR_MPSAFE),
9664                                      NULL, bxe_intr_fp, fp,
9665                                      &sc->intr[i + 1].tag)) != 0) {
9666                 BLOGE(sc, "Failed to allocate MSI[%d] vector (%d)\n",
9667                       (i + 1), rc);
9668                 goto bxe_interrupt_attach_exit;
9669             }
9670 
9671             bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9672                               sc->intr[i + 1].tag, "fp%02d", i);
9673 
9674             /* bind the fastpath instance to a cpu */
9675             if (sc->num_queues > 1) {
9676                 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9677             }
9678 
9679             fp->state = BXE_FP_STATE_IRQ;
9680         }
9681     } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9682         BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9683 
9684         /*
9685          * Setup the interrupt handler. Note that we pass the
9686          * driver instance to the interrupt handler which
9687          * will handle both the slowpath and fastpath.
9688          */
9689         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9690                                  (INTR_TYPE_NET | INTR_MPSAFE),
9691                                  NULL, bxe_intr_legacy, sc,
9692                                  &sc->intr[0].tag)) != 0) {
9693             BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9694             goto bxe_interrupt_attach_exit;
9695         }
9696     }
9697 
9698 bxe_interrupt_attach_exit:
9699 
9700     return (rc);
9701 }
9702 
9703 static int  bxe_init_hw_common_chip(struct bxe_softc *sc);
9704 static int  bxe_init_hw_common(struct bxe_softc *sc);
9705 static int  bxe_init_hw_port(struct bxe_softc *sc);
9706 static int  bxe_init_hw_func(struct bxe_softc *sc);
9707 static void bxe_reset_common(struct bxe_softc *sc);
9708 static void bxe_reset_port(struct bxe_softc *sc);
9709 static void bxe_reset_func(struct bxe_softc *sc);
9710 static int  bxe_gunzip_init(struct bxe_softc *sc);
9711 static void bxe_gunzip_end(struct bxe_softc *sc);
9712 static int  bxe_init_firmware(struct bxe_softc *sc);
9713 static void bxe_release_firmware(struct bxe_softc *sc);
9714 
9715 static struct
9716 ecore_func_sp_drv_ops bxe_func_sp_drv = {
9717     .init_hw_cmn_chip = bxe_init_hw_common_chip,
9718     .init_hw_cmn      = bxe_init_hw_common,
9719     .init_hw_port     = bxe_init_hw_port,
9720     .init_hw_func     = bxe_init_hw_func,
9721 
9722     .reset_hw_cmn     = bxe_reset_common,
9723     .reset_hw_port    = bxe_reset_port,
9724     .reset_hw_func    = bxe_reset_func,
9725 
9726     .gunzip_init      = bxe_gunzip_init,
9727     .gunzip_end       = bxe_gunzip_end,
9728 
9729     .init_fw          = bxe_init_firmware,
9730     .release_fw       = bxe_release_firmware,
9731 };
9732 
9733 static void
9734 bxe_init_func_obj(struct bxe_softc *sc)
9735 {
9736     sc->dmae_ready = 0;
9737 
9738     ecore_init_func_obj(sc,
9739                         &sc->func_obj,
9740                         BXE_SP(sc, func_rdata),
9741                         BXE_SP_MAPPING(sc, func_rdata),
9742                         BXE_SP(sc, func_afex_rdata),
9743                         BXE_SP_MAPPING(sc, func_afex_rdata),
9744                         &bxe_func_sp_drv);
9745 }
9746 
9747 static int
9748 bxe_init_hw(struct bxe_softc *sc,
9749             uint32_t         load_code)
9750 {
9751     struct ecore_func_state_params func_params = { NULL };
9752     int rc;
9753 
9754     /* prepare the parameters for function state transitions */
9755     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9756 
9757     func_params.f_obj = &sc->func_obj;
9758     func_params.cmd = ECORE_F_CMD_HW_INIT;
9759 
9760     func_params.params.hw_init.load_phase = load_code;
9761 
9762     /*
9763      * Via a plethora of function pointers, we will eventually reach
9764      * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9765      */
9766     rc = ecore_func_state_change(sc, &func_params);
9767 
9768     return (rc);
9769 }
9770 
9771 static void
9772 bxe_fill(struct bxe_softc *sc,
9773          uint32_t         addr,
9774          int              fill,
9775          uint32_t         len)
9776 {
9777     uint32_t i;
9778 
9779     if (!(len % 4) && !(addr % 4)) {
9780         for (i = 0; i < len; i += 4) {
9781             REG_WR(sc, (addr + i), fill);
9782         }
9783     } else {
9784         for (i = 0; i < len; i++) {
9785             REG_WR8(sc, (addr + i), fill);
9786         }
9787     }
9788 }
9789 
9790 /* writes FP SP data to FW - data_size in dwords */
9791 static void
9792 bxe_wr_fp_sb_data(struct bxe_softc *sc,
9793                   int              fw_sb_id,
9794                   uint32_t         *sb_data_p,
9795                   uint32_t         data_size)
9796 {
9797     int index;
9798 
9799     for (index = 0; index < data_size; index++) {
9800         REG_WR(sc,
9801                (BAR_CSTRORM_INTMEM +
9802                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9803                 (sizeof(uint32_t) * index)),
9804                *(sb_data_p + index));
9805     }
9806 }
9807 
9808 static void
9809 bxe_zero_fp_sb(struct bxe_softc *sc,
9810                int              fw_sb_id)
9811 {
9812     struct hc_status_block_data_e2 sb_data_e2;
9813     struct hc_status_block_data_e1x sb_data_e1x;
9814     uint32_t *sb_data_p;
9815     uint32_t data_size = 0;
9816 
9817     if (!CHIP_IS_E1x(sc)) {
9818         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9819         sb_data_e2.common.state = SB_DISABLED;
9820         sb_data_e2.common.p_func.vf_valid = FALSE;
9821         sb_data_p = (uint32_t *)&sb_data_e2;
9822         data_size = (sizeof(struct hc_status_block_data_e2) /
9823                      sizeof(uint32_t));
9824     } else {
9825         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9826         sb_data_e1x.common.state = SB_DISABLED;
9827         sb_data_e1x.common.p_func.vf_valid = FALSE;
9828         sb_data_p = (uint32_t *)&sb_data_e1x;
9829         data_size = (sizeof(struct hc_status_block_data_e1x) /
9830                      sizeof(uint32_t));
9831     }
9832 
9833     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9834 
9835     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9836              0, CSTORM_STATUS_BLOCK_SIZE);
9837     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9838              0, CSTORM_SYNC_BLOCK_SIZE);
9839 }
9840 
9841 static void
9842 bxe_wr_sp_sb_data(struct bxe_softc               *sc,
9843                   struct hc_sp_status_block_data *sp_sb_data)
9844 {
9845     int i;
9846 
9847     for (i = 0;
9848          i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9849          i++) {
9850         REG_WR(sc,
9851                (BAR_CSTRORM_INTMEM +
9852                 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9853                 (i * sizeof(uint32_t))),
9854                *((uint32_t *)sp_sb_data + i));
9855     }
9856 }
9857 
9858 static void
9859 bxe_zero_sp_sb(struct bxe_softc *sc)
9860 {
9861     struct hc_sp_status_block_data sp_sb_data;
9862 
9863     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9864 
9865     sp_sb_data.state           = SB_DISABLED;
9866     sp_sb_data.p_func.vf_valid = FALSE;
9867 
9868     bxe_wr_sp_sb_data(sc, &sp_sb_data);
9869 
9870     bxe_fill(sc,
9871              (BAR_CSTRORM_INTMEM +
9872               CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9873               0, CSTORM_SP_STATUS_BLOCK_SIZE);
9874     bxe_fill(sc,
9875              (BAR_CSTRORM_INTMEM +
9876               CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9877               0, CSTORM_SP_SYNC_BLOCK_SIZE);
9878 }
9879 
9880 static void
9881 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9882                              int                       igu_sb_id,
9883                              int                       igu_seg_id)
9884 {
9885     hc_sm->igu_sb_id      = igu_sb_id;
9886     hc_sm->igu_seg_id     = igu_seg_id;
9887     hc_sm->timer_value    = 0xFF;
9888     hc_sm->time_to_expire = 0xFFFFFFFF;
9889 }
9890 
9891 static void
9892 bxe_map_sb_state_machines(struct hc_index_data *index_data)
9893 {
9894     /* zero out state machine indices */
9895 
9896     /* rx indices */
9897     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9898 
9899     /* tx indices */
9900     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags      &= ~HC_INDEX_DATA_SM_ID;
9901     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9902     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9903     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9904 
9905     /* map indices */
9906 
9907     /* rx indices */
9908     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9909         (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9910 
9911     /* tx indices */
9912     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9913         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9914     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9915         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9916     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9917         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9918     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9919         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9920 }
9921 
9922 static void
9923 bxe_init_sb(struct bxe_softc *sc,
9924             bus_addr_t       busaddr,
9925             int              vfid,
9926             uint8_t          vf_valid,
9927             int              fw_sb_id,
9928             int              igu_sb_id)
9929 {
9930     struct hc_status_block_data_e2  sb_data_e2;
9931     struct hc_status_block_data_e1x sb_data_e1x;
9932     struct hc_status_block_sm       *hc_sm_p;
9933     uint32_t *sb_data_p;
9934     int igu_seg_id;
9935     int data_size;
9936 
9937     if (CHIP_INT_MODE_IS_BC(sc)) {
9938         igu_seg_id = HC_SEG_ACCESS_NORM;
9939     } else {
9940         igu_seg_id = IGU_SEG_ACCESS_NORM;
9941     }
9942 
9943     bxe_zero_fp_sb(sc, fw_sb_id);
9944 
9945     if (!CHIP_IS_E1x(sc)) {
9946         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9947         sb_data_e2.common.state = SB_ENABLED;
9948         sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9949         sb_data_e2.common.p_func.vf_id = vfid;
9950         sb_data_e2.common.p_func.vf_valid = vf_valid;
9951         sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9952         sb_data_e2.common.same_igu_sb_1b = TRUE;
9953         sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9954         sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9955         hc_sm_p = sb_data_e2.common.state_machine;
9956         sb_data_p = (uint32_t *)&sb_data_e2;
9957         data_size = (sizeof(struct hc_status_block_data_e2) /
9958                      sizeof(uint32_t));
9959         bxe_map_sb_state_machines(sb_data_e2.index_data);
9960     } else {
9961         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9962         sb_data_e1x.common.state = SB_ENABLED;
9963         sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9964         sb_data_e1x.common.p_func.vf_id = 0xff;
9965         sb_data_e1x.common.p_func.vf_valid = FALSE;
9966         sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9967         sb_data_e1x.common.same_igu_sb_1b = TRUE;
9968         sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9969         sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9970         hc_sm_p = sb_data_e1x.common.state_machine;
9971         sb_data_p = (uint32_t *)&sb_data_e1x;
9972         data_size = (sizeof(struct hc_status_block_data_e1x) /
9973                      sizeof(uint32_t));
9974         bxe_map_sb_state_machines(sb_data_e1x.index_data);
9975     }
9976 
9977     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9978     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9979 
9980     BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9981 
9982     /* write indices to HW - PCI guarantees endianity of regpairs */
9983     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9984 }
9985 
9986 static inline uint8_t
9987 bxe_fp_qzone_id(struct bxe_fastpath *fp)
9988 {
9989     if (CHIP_IS_E1x(fp->sc)) {
9990         return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9991     } else {
9992         return (fp->cl_id);
9993     }
9994 }
9995 
9996 static inline uint32_t
9997 bxe_rx_ustorm_prods_offset(struct bxe_softc    *sc,
9998                            struct bxe_fastpath *fp)
9999 {
10000     uint32_t offset = BAR_USTRORM_INTMEM;
10001 
10002 #if 0
10003     if (IS_VF(sc)) {
10004         return (PXP_VF_ADDR_USDM_QUEUES_START +
10005                 (sc->acquire_resp.resc.hw_qid[fp->index] *
10006                  sizeof(struct ustorm_queue_zone_data)));
10007     } else
10008 #endif
10009     if (!CHIP_IS_E1x(sc)) {
10010         offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
10011     } else {
10012         offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
10013     }
10014 
10015     return (offset);
10016 }
10017 
10018 static void
10019 bxe_init_eth_fp(struct bxe_softc *sc,
10020                 int              idx)
10021 {
10022     struct bxe_fastpath *fp = &sc->fp[idx];
10023     uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
10024     unsigned long q_type = 0;
10025     int cos;
10026 
10027     fp->sc    = sc;
10028     fp->index = idx;
10029 
10030     snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
10031              "bxe%d_fp%d_tx_lock", sc->unit, idx);
10032     mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
10033 
10034     snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
10035              "bxe%d_fp%d_rx_lock", sc->unit, idx);
10036     mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
10037 
10038     fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
10039     fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
10040 
10041     fp->cl_id = (CHIP_IS_E1x(sc)) ?
10042                     (SC_L_ID(sc) + idx) :
10043                     /* want client ID same as IGU SB ID for non-E1 */
10044                     fp->igu_sb_id;
10045     fp->cl_qzone_id = bxe_fp_qzone_id(fp);
10046 
10047     /* setup sb indices */
10048     if (!CHIP_IS_E1x(sc)) {
10049         fp->sb_index_values  = fp->status_block.e2_sb->sb.index_values;
10050         fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
10051     } else {
10052         fp->sb_index_values  = fp->status_block.e1x_sb->sb.index_values;
10053         fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
10054     }
10055 
10056     /* init shortcut */
10057     fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
10058 
10059     fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
10060 
10061     /*
10062      * XXX If multiple CoS is ever supported then each fastpath structure
10063      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
10064      */
10065     for (cos = 0; cos < sc->max_cos; cos++) {
10066         cids[cos] = idx;
10067     }
10068     fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
10069 
10070     /* nothing more for a VF to do */
10071     if (IS_VF(sc)) {
10072         return;
10073     }
10074 
10075     bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
10076                 fp->fw_sb_id, fp->igu_sb_id);
10077 
10078     bxe_update_fp_sb_idx(fp);
10079 
10080     /* Configure Queue State object */
10081     bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
10082     bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
10083 
10084     ecore_init_queue_obj(sc,
10085                          &sc->sp_objs[idx].q_obj,
10086                          fp->cl_id,
10087                          cids,
10088                          sc->max_cos,
10089                          SC_FUNC(sc),
10090                          BXE_SP(sc, q_rdata),
10091                          BXE_SP_MAPPING(sc, q_rdata),
10092                          q_type);
10093 
10094     /* configure classification DBs */
10095     ecore_init_mac_obj(sc,
10096                        &sc->sp_objs[idx].mac_obj,
10097                        fp->cl_id,
10098                        idx,
10099                        SC_FUNC(sc),
10100                        BXE_SP(sc, mac_rdata),
10101                        BXE_SP_MAPPING(sc, mac_rdata),
10102                        ECORE_FILTER_MAC_PENDING,
10103                        &sc->sp_state,
10104                        ECORE_OBJ_TYPE_RX_TX,
10105                        &sc->macs_pool);
10106 
10107     BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
10108           idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
10109 }
10110 
10111 static inline void
10112 bxe_update_rx_prod(struct bxe_softc    *sc,
10113                    struct bxe_fastpath *fp,
10114                    uint16_t            rx_bd_prod,
10115                    uint16_t            rx_cq_prod,
10116                    uint16_t            rx_sge_prod)
10117 {
10118     struct ustorm_eth_rx_producers rx_prods = { 0 };
10119     uint32_t i;
10120 
10121     /* update producers */
10122     rx_prods.bd_prod  = rx_bd_prod;
10123     rx_prods.cqe_prod = rx_cq_prod;
10124     rx_prods.sge_prod = rx_sge_prod;
10125 
10126     /*
10127      * Make sure that the BD and SGE data is updated before updating the
10128      * producers since FW might read the BD/SGE right after the producer
10129      * is updated.
10130      * This is only applicable for weak-ordered memory model archs such
10131      * as IA-64. The following barrier is also mandatory since FW will
10132      * assumes BDs must have buffers.
10133      */
10134     wmb();
10135 
10136     for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
10137         REG_WR(sc,
10138                (fp->ustorm_rx_prods_offset + (i * 4)),
10139                ((uint32_t *)&rx_prods)[i]);
10140     }
10141 
10142     wmb(); /* keep prod updates ordered */
10143 
10144     BLOGD(sc, DBG_RX,
10145           "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
10146           fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
10147 }
10148 
10149 static void
10150 bxe_init_rx_rings(struct bxe_softc *sc)
10151 {
10152     struct bxe_fastpath *fp;
10153     int i;
10154 
10155     for (i = 0; i < sc->num_queues; i++) {
10156         fp = &sc->fp[i];
10157 
10158         fp->rx_bd_cons = 0;
10159 
10160         /*
10161          * Activate the BD ring...
10162          * Warning, this will generate an interrupt (to the TSTORM)
10163          * so this can only be done after the chip is initialized
10164          */
10165         bxe_update_rx_prod(sc, fp,
10166                            fp->rx_bd_prod,
10167                            fp->rx_cq_prod,
10168                            fp->rx_sge_prod);
10169 
10170         if (i != 0) {
10171             continue;
10172         }
10173 
10174         if (CHIP_IS_E1(sc)) {
10175             REG_WR(sc,
10176                    (BAR_USTRORM_INTMEM +
10177                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
10178                    U64_LO(fp->rcq_dma.paddr));
10179             REG_WR(sc,
10180                    (BAR_USTRORM_INTMEM +
10181                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
10182                    U64_HI(fp->rcq_dma.paddr));
10183         }
10184     }
10185 }
10186 
10187 static void
10188 bxe_init_tx_ring_one(struct bxe_fastpath *fp)
10189 {
10190     SET_FLAG(fp->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
10191     fp->tx_db.data.zero_fill1 = 0;
10192     fp->tx_db.data.prod = 0;
10193 
10194     fp->tx_pkt_prod = 0;
10195     fp->tx_pkt_cons = 0;
10196     fp->tx_bd_prod = 0;
10197     fp->tx_bd_cons = 0;
10198     fp->eth_q_stats.tx_pkts = 0;
10199 }
10200 
10201 static inline void
10202 bxe_init_tx_rings(struct bxe_softc *sc)
10203 {
10204     int i;
10205 
10206     for (i = 0; i < sc->num_queues; i++) {
10207 #if 0
10208         uint8_t cos;
10209         for (cos = 0; cos < sc->max_cos; cos++) {
10210             bxe_init_tx_ring_one(&sc->fp[i].txdata[cos]);
10211         }
10212 #else
10213         bxe_init_tx_ring_one(&sc->fp[i]);
10214 #endif
10215     }
10216 }
10217 
10218 static void
10219 bxe_init_def_sb(struct bxe_softc *sc)
10220 {
10221     struct host_sp_status_block *def_sb = sc->def_sb;
10222     bus_addr_t mapping = sc->def_sb_dma.paddr;
10223     int igu_sp_sb_index;
10224     int igu_seg_id;
10225     int port = SC_PORT(sc);
10226     int func = SC_FUNC(sc);
10227     int reg_offset, reg_offset_en5;
10228     uint64_t section;
10229     int index, sindex;
10230     struct hc_sp_status_block_data sp_sb_data;
10231 
10232     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
10233 
10234     if (CHIP_INT_MODE_IS_BC(sc)) {
10235         igu_sp_sb_index = DEF_SB_IGU_ID;
10236         igu_seg_id = HC_SEG_ACCESS_DEF;
10237     } else {
10238         igu_sp_sb_index = sc->igu_dsb_id;
10239         igu_seg_id = IGU_SEG_ACCESS_DEF;
10240     }
10241 
10242     /* attentions */
10243     section = ((uint64_t)mapping +
10244                offsetof(struct host_sp_status_block, atten_status_block));
10245     def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
10246     sc->attn_state = 0;
10247 
10248     reg_offset = (port) ?
10249                      MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
10250                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
10251     reg_offset_en5 = (port) ?
10252                          MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
10253                          MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
10254 
10255     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
10256         /* take care of sig[0]..sig[4] */
10257         for (sindex = 0; sindex < 4; sindex++) {
10258             sc->attn_group[index].sig[sindex] =
10259                 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
10260         }
10261 
10262         if (!CHIP_IS_E1x(sc)) {
10263             /*
10264              * enable5 is separate from the rest of the registers,
10265              * and the address skip is 4 and not 16 between the
10266              * different groups
10267              */
10268             sc->attn_group[index].sig[4] =
10269                 REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
10270         } else {
10271             sc->attn_group[index].sig[4] = 0;
10272         }
10273     }
10274 
10275     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10276         reg_offset = (port) ?
10277                          HC_REG_ATTN_MSG1_ADDR_L :
10278                          HC_REG_ATTN_MSG0_ADDR_L;
10279         REG_WR(sc, reg_offset, U64_LO(section));
10280         REG_WR(sc, (reg_offset + 4), U64_HI(section));
10281     } else if (!CHIP_IS_E1x(sc)) {
10282         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
10283         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
10284     }
10285 
10286     section = ((uint64_t)mapping +
10287                offsetof(struct host_sp_status_block, sp_sb));
10288 
10289     bxe_zero_sp_sb(sc);
10290 
10291     /* PCI guarantees endianity of regpair */
10292     sp_sb_data.state           = SB_ENABLED;
10293     sp_sb_data.host_sb_addr.lo = U64_LO(section);
10294     sp_sb_data.host_sb_addr.hi = U64_HI(section);
10295     sp_sb_data.igu_sb_id       = igu_sp_sb_index;
10296     sp_sb_data.igu_seg_id      = igu_seg_id;
10297     sp_sb_data.p_func.pf_id    = func;
10298     sp_sb_data.p_func.vnic_id  = SC_VN(sc);
10299     sp_sb_data.p_func.vf_id    = 0xff;
10300 
10301     bxe_wr_sp_sb_data(sc, &sp_sb_data);
10302 
10303     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
10304 }
10305 
10306 static void
10307 bxe_init_sp_ring(struct bxe_softc *sc)
10308 {
10309     atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
10310     sc->spq_prod_idx = 0;
10311     sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
10312     sc->spq_prod_bd = sc->spq;
10313     sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
10314 }
10315 
10316 static void
10317 bxe_init_eq_ring(struct bxe_softc *sc)
10318 {
10319     union event_ring_elem *elem;
10320     int i;
10321 
10322     for (i = 1; i <= NUM_EQ_PAGES; i++) {
10323         elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
10324 
10325         elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
10326                                                  BCM_PAGE_SIZE *
10327                                                  (i % NUM_EQ_PAGES)));
10328         elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
10329                                                  BCM_PAGE_SIZE *
10330                                                  (i % NUM_EQ_PAGES)));
10331     }
10332 
10333     sc->eq_cons    = 0;
10334     sc->eq_prod    = NUM_EQ_DESC;
10335     sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
10336 
10337     atomic_store_rel_long(&sc->eq_spq_left,
10338                           (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
10339                                NUM_EQ_DESC) - 1));
10340 }
10341 
10342 static void
10343 bxe_init_internal_common(struct bxe_softc *sc)
10344 {
10345     int i;
10346 
10347     if (IS_MF_SI(sc)) {
10348         /*
10349          * In switch independent mode, the TSTORM needs to accept
10350          * packets that failed classification, since approximate match
10351          * mac addresses aren't written to NIG LLH.
10352          */
10353         REG_WR8(sc,
10354                 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10355                 2);
10356     } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */
10357         REG_WR8(sc,
10358                 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10359                 0);
10360     }
10361 
10362     /*
10363      * Zero this manually as its initialization is currently missing
10364      * in the initTool.
10365      */
10366     for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
10367         REG_WR(sc,
10368                (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
10369                0);
10370     }
10371 
10372     if (!CHIP_IS_E1x(sc)) {
10373         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
10374                 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
10375     }
10376 }
10377 
10378 static void
10379 bxe_init_internal(struct bxe_softc *sc,
10380                   uint32_t         load_code)
10381 {
10382     switch (load_code) {
10383     case FW_MSG_CODE_DRV_LOAD_COMMON:
10384     case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
10385         bxe_init_internal_common(sc);
10386         /* no break */
10387 
10388     case FW_MSG_CODE_DRV_LOAD_PORT:
10389         /* nothing to do */
10390         /* no break */
10391 
10392     case FW_MSG_CODE_DRV_LOAD_FUNCTION:
10393         /* internal memory per function is initialized inside bxe_pf_init */
10394         break;
10395 
10396     default:
10397         BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
10398         break;
10399     }
10400 }
10401 
10402 static void
10403 storm_memset_func_cfg(struct bxe_softc                         *sc,
10404                       struct tstorm_eth_function_common_config *tcfg,
10405                       uint16_t                                  abs_fid)
10406 {
10407     uint32_t addr;
10408     size_t size;
10409 
10410     addr = (BAR_TSTRORM_INTMEM +
10411             TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
10412     size = sizeof(struct tstorm_eth_function_common_config);
10413     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
10414 }
10415 
10416 static void
10417 bxe_func_init(struct bxe_softc            *sc,
10418               struct bxe_func_init_params *p)
10419 {
10420     struct tstorm_eth_function_common_config tcfg = { 0 };
10421 
10422     if (CHIP_IS_E1x(sc)) {
10423         storm_memset_func_cfg(sc, &tcfg, p->func_id);
10424     }
10425 
10426     /* Enable the function in the FW */
10427     storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
10428     storm_memset_func_en(sc, p->func_id, 1);
10429 
10430     /* spq */
10431     if (p->func_flgs & FUNC_FLG_SPQ) {
10432         storm_memset_spq_addr(sc, p->spq_map, p->func_id);
10433         REG_WR(sc,
10434                (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
10435                p->spq_prod);
10436     }
10437 }
10438 
10439 /*
10440  * Calculates the sum of vn_min_rates.
10441  * It's needed for further normalizing of the min_rates.
10442  * Returns:
10443  *   sum of vn_min_rates.
10444  *     or
10445  *   0 - if all the min_rates are 0.
10446  * In the later case fainess algorithm should be deactivated.
10447  * If all min rates are not zero then those that are zeroes will be set to 1.
10448  */
10449 static void
10450 bxe_calc_vn_min(struct bxe_softc       *sc,
10451                 struct cmng_init_input *input)
10452 {
10453     uint32_t vn_cfg;
10454     uint32_t vn_min_rate;
10455     int all_zero = 1;
10456     int vn;
10457 
10458     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10459         vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10460         vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
10461                         FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
10462 
10463         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10464             /* skip hidden VNs */
10465             vn_min_rate = 0;
10466         } else if (!vn_min_rate) {
10467             /* If min rate is zero - set it to 100 */
10468             vn_min_rate = DEF_MIN_RATE;
10469         } else {
10470             all_zero = 0;
10471         }
10472 
10473         input->vnic_min_rate[vn] = vn_min_rate;
10474     }
10475 
10476     /* if ETS or all min rates are zeros - disable fairness */
10477     if (BXE_IS_ETS_ENABLED(sc)) {
10478         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10479         BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
10480     } else if (all_zero) {
10481         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10482         BLOGD(sc, DBG_LOAD,
10483               "Fariness disabled (all MIN values are zeroes)\n");
10484     } else {
10485         input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10486     }
10487 }
10488 
10489 static inline uint16_t
10490 bxe_extract_max_cfg(struct bxe_softc *sc,
10491                     uint32_t         mf_cfg)
10492 {
10493     uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
10494                         FUNC_MF_CFG_MAX_BW_SHIFT);
10495 
10496     if (!max_cfg) {
10497         BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
10498         max_cfg = 100;
10499     }
10500 
10501     return (max_cfg);
10502 }
10503 
10504 static void
10505 bxe_calc_vn_max(struct bxe_softc       *sc,
10506                 int                    vn,
10507                 struct cmng_init_input *input)
10508 {
10509     uint16_t vn_max_rate;
10510     uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10511     uint32_t max_cfg;
10512 
10513     if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10514         vn_max_rate = 0;
10515     } else {
10516         max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
10517 
10518         if (IS_MF_SI(sc)) {
10519             /* max_cfg in percents of linkspeed */
10520             vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
10521         } else { /* SD modes */
10522             /* max_cfg is absolute in 100Mb units */
10523             vn_max_rate = (max_cfg * 100);
10524         }
10525     }
10526 
10527     BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
10528 
10529     input->vnic_max_rate[vn] = vn_max_rate;
10530 }
10531 
10532 static void
10533 bxe_cmng_fns_init(struct bxe_softc *sc,
10534                   uint8_t          read_cfg,
10535                   uint8_t          cmng_type)
10536 {
10537     struct cmng_init_input input;
10538     int vn;
10539 
10540     memset(&input, 0, sizeof(struct cmng_init_input));
10541 
10542     input.port_rate = sc->link_vars.line_speed;
10543 
10544     if (cmng_type == CMNG_FNS_MINMAX) {
10545         /* read mf conf from shmem */
10546         if (read_cfg) {
10547             bxe_read_mf_cfg(sc);
10548         }
10549 
10550         /* get VN min rate and enable fairness if not 0 */
10551         bxe_calc_vn_min(sc, &input);
10552 
10553         /* get VN max rate */
10554         if (sc->port.pmf) {
10555             for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10556                 bxe_calc_vn_max(sc, vn, &input);
10557             }
10558         }
10559 
10560         /* always enable rate shaping and fairness */
10561         input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
10562 
10563         ecore_init_cmng(&input, &sc->cmng);
10564         return;
10565     }
10566 
10567     /* rate shaping and fairness are disabled */
10568     BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10569 }
10570 
10571 static int
10572 bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10573 {
10574     if (CHIP_REV_IS_SLOW(sc)) {
10575         return (CMNG_FNS_NONE);
10576     }
10577 
10578     if (IS_MF(sc)) {
10579         return (CMNG_FNS_MINMAX);
10580     }
10581 
10582     return (CMNG_FNS_NONE);
10583 }
10584 
10585 static void
10586 storm_memset_cmng(struct bxe_softc *sc,
10587                   struct cmng_init *cmng,
10588                   uint8_t          port)
10589 {
10590     int vn;
10591     int func;
10592     uint32_t addr;
10593     size_t size;
10594 
10595     addr = (BAR_XSTRORM_INTMEM +
10596             XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10597     size = sizeof(struct cmng_struct_per_port);
10598     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10599 
10600     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10601         func = func_by_vn(sc, vn);
10602 
10603         addr = (BAR_XSTRORM_INTMEM +
10604                 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10605         size = sizeof(struct rate_shaping_vars_per_vn);
10606         ecore_storm_memset_struct(sc, addr, size,
10607                                   (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10608 
10609         addr = (BAR_XSTRORM_INTMEM +
10610                 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10611         size = sizeof(struct fairness_vars_per_vn);
10612         ecore_storm_memset_struct(sc, addr, size,
10613                                   (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10614     }
10615 }
10616 
10617 static void
10618 bxe_pf_init(struct bxe_softc *sc)
10619 {
10620     struct bxe_func_init_params func_init = { 0 };
10621     struct event_ring_data eq_data = { { 0 } };
10622     uint16_t flags;
10623 
10624     if (!CHIP_IS_E1x(sc)) {
10625         /* reset IGU PF statistics: MSIX + ATTN */
10626         /* PF */
10627         REG_WR(sc,
10628                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10629                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10630                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10631                0);
10632         /* ATTN */
10633         REG_WR(sc,
10634                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10635                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10636                 (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10637                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10638                0);
10639     }
10640 
10641     /* function setup flags */
10642     flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10643 
10644     /*
10645      * This flag is relevant for E1x only.
10646      * E2 doesn't have a TPA configuration in a function level.
10647      */
10648     flags |= (sc->ifnet->if_capenable & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10649 
10650     func_init.func_flgs = flags;
10651     func_init.pf_id     = SC_FUNC(sc);
10652     func_init.func_id   = SC_FUNC(sc);
10653     func_init.spq_map   = sc->spq_dma.paddr;
10654     func_init.spq_prod  = sc->spq_prod_idx;
10655 
10656     bxe_func_init(sc, &func_init);
10657 
10658     memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10659 
10660     /*
10661      * Congestion management values depend on the link rate.
10662      * There is no active link so initial link rate is set to 10Gbps.
10663      * When the link comes up the congestion management values are
10664      * re-calculated according to the actual link rate.
10665      */
10666     sc->link_vars.line_speed = SPEED_10000;
10667     bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10668 
10669     /* Only the PMF sets the HW */
10670     if (sc->port.pmf) {
10671         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10672     }
10673 
10674     /* init Event Queue - PCI bus guarantees correct endainity */
10675     eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10676     eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10677     eq_data.producer     = sc->eq_prod;
10678     eq_data.index_id     = HC_SP_INDEX_EQ_CONS;
10679     eq_data.sb_id        = DEF_SB_ID;
10680     storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10681 }
10682 
10683 static void
10684 bxe_hc_int_enable(struct bxe_softc *sc)
10685 {
10686     int port = SC_PORT(sc);
10687     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10688     uint32_t val = REG_RD(sc, addr);
10689     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10690     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10691                            (sc->intr_count == 1)) ? TRUE : FALSE;
10692     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10693 
10694     if (msix) {
10695         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10696                  HC_CONFIG_0_REG_INT_LINE_EN_0);
10697         val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10698                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10699         if (single_msix) {
10700             val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10701         }
10702     } else if (msi) {
10703         val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10704         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10705                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10706                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10707     } else {
10708         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10709                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10710                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10711                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10712 
10713         if (!CHIP_IS_E1(sc)) {
10714             BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10715                   val, port, addr);
10716 
10717             REG_WR(sc, addr, val);
10718 
10719             val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10720         }
10721     }
10722 
10723     if (CHIP_IS_E1(sc)) {
10724         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10725     }
10726 
10727     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10728           val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10729 
10730     REG_WR(sc, addr, val);
10731 
10732     /* ensure that HC_CONFIG is written before leading/trailing edge config */
10733     mb();
10734 
10735     if (!CHIP_IS_E1(sc)) {
10736         /* init leading/trailing edge */
10737         if (IS_MF(sc)) {
10738             val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10739             if (sc->port.pmf) {
10740                 /* enable nig and gpio3 attention */
10741                 val |= 0x1100;
10742             }
10743         } else {
10744             val = 0xffff;
10745         }
10746 
10747         REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10748         REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10749     }
10750 
10751     /* make sure that interrupts are indeed enabled from here on */
10752     mb();
10753 }
10754 
10755 static void
10756 bxe_igu_int_enable(struct bxe_softc *sc)
10757 {
10758     uint32_t val;
10759     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10760     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10761                            (sc->intr_count == 1)) ? TRUE : FALSE;
10762     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10763 
10764     val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10765 
10766     if (msix) {
10767         val &= ~(IGU_PF_CONF_INT_LINE_EN |
10768                  IGU_PF_CONF_SINGLE_ISR_EN);
10769         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10770                 IGU_PF_CONF_ATTN_BIT_EN);
10771         if (single_msix) {
10772             val |= IGU_PF_CONF_SINGLE_ISR_EN;
10773         }
10774     } else if (msi) {
10775         val &= ~IGU_PF_CONF_INT_LINE_EN;
10776         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10777                 IGU_PF_CONF_ATTN_BIT_EN |
10778                 IGU_PF_CONF_SINGLE_ISR_EN);
10779     } else {
10780         val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10781         val |= (IGU_PF_CONF_INT_LINE_EN |
10782                 IGU_PF_CONF_ATTN_BIT_EN |
10783                 IGU_PF_CONF_SINGLE_ISR_EN);
10784     }
10785 
10786     /* clean previous status - need to configure igu prior to ack*/
10787     if ((!msix) || single_msix) {
10788         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10789         bxe_ack_int(sc);
10790     }
10791 
10792     val |= IGU_PF_CONF_FUNC_EN;
10793 
10794     BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10795           val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10796 
10797     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10798 
10799     mb();
10800 
10801     /* init leading/trailing edge */
10802     if (IS_MF(sc)) {
10803         val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10804         if (sc->port.pmf) {
10805             /* enable nig and gpio3 attention */
10806             val |= 0x1100;
10807         }
10808     } else {
10809         val = 0xffff;
10810     }
10811 
10812     REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10813     REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10814 
10815     /* make sure that interrupts are indeed enabled from here on */
10816     mb();
10817 }
10818 
10819 static void
10820 bxe_int_enable(struct bxe_softc *sc)
10821 {
10822     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10823         bxe_hc_int_enable(sc);
10824     } else {
10825         bxe_igu_int_enable(sc);
10826     }
10827 }
10828 
10829 static void
10830 bxe_hc_int_disable(struct bxe_softc *sc)
10831 {
10832     int port = SC_PORT(sc);
10833     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10834     uint32_t val = REG_RD(sc, addr);
10835 
10836     /*
10837      * In E1 we must use only PCI configuration space to disable MSI/MSIX
10838      * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10839      * block
10840      */
10841     if (CHIP_IS_E1(sc)) {
10842         /*
10843          * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10844          * to prevent from HC sending interrupts after we exit the function
10845          */
10846         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10847 
10848         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10849                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10850                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10851     } else {
10852         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10853                  HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10854                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10855                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10856     }
10857 
10858     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10859 
10860     /* flush all outstanding writes */
10861     mb();
10862 
10863     REG_WR(sc, addr, val);
10864     if (REG_RD(sc, addr) != val) {
10865         BLOGE(sc, "proper val not read from HC IGU!\n");
10866     }
10867 }
10868 
10869 static void
10870 bxe_igu_int_disable(struct bxe_softc *sc)
10871 {
10872     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10873 
10874     val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10875              IGU_PF_CONF_INT_LINE_EN |
10876              IGU_PF_CONF_ATTN_BIT_EN);
10877 
10878     BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10879 
10880     /* flush all outstanding writes */
10881     mb();
10882 
10883     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10884     if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10885         BLOGE(sc, "proper val not read from IGU!\n");
10886     }
10887 }
10888 
10889 static void
10890 bxe_int_disable(struct bxe_softc *sc)
10891 {
10892     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10893         bxe_hc_int_disable(sc);
10894     } else {
10895         bxe_igu_int_disable(sc);
10896     }
10897 }
10898 
10899 static void
10900 bxe_nic_init(struct bxe_softc *sc,
10901              int              load_code)
10902 {
10903     int i;
10904 
10905     for (i = 0; i < sc->num_queues; i++) {
10906         bxe_init_eth_fp(sc, i);
10907     }
10908 
10909     rmb(); /* ensure status block indices were read */
10910 
10911     bxe_init_rx_rings(sc);
10912     bxe_init_tx_rings(sc);
10913 
10914     if (IS_VF(sc)) {
10915         return;
10916     }
10917 
10918     /* initialize MOD_ABS interrupts */
10919     elink_init_mod_abs_int(sc, &sc->link_vars,
10920                            sc->devinfo.chip_id,
10921                            sc->devinfo.shmem_base,
10922                            sc->devinfo.shmem2_base,
10923                            SC_PORT(sc));
10924 
10925     bxe_init_def_sb(sc);
10926     bxe_update_dsb_idx(sc);
10927     bxe_init_sp_ring(sc);
10928     bxe_init_eq_ring(sc);
10929     bxe_init_internal(sc, load_code);
10930     bxe_pf_init(sc);
10931     bxe_stats_init(sc);
10932 
10933     /* flush all before enabling interrupts */
10934     mb();
10935 
10936     bxe_int_enable(sc);
10937 
10938     /* check for SPIO5 */
10939     bxe_attn_int_deasserted0(sc,
10940                              REG_RD(sc,
10941                                     (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10942                                      SC_PORT(sc)*4)) &
10943                              AEU_INPUTS_ATTN_BITS_SPIO5);
10944 }
10945 
10946 static inline void
10947 bxe_init_objs(struct bxe_softc *sc)
10948 {
10949     /* mcast rules must be added to tx if tx switching is enabled */
10950     ecore_obj_type o_type =
10951         (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10952                                          ECORE_OBJ_TYPE_RX;
10953 
10954     /* RX_MODE controlling object */
10955     ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10956 
10957     /* multicast configuration controlling object */
10958     ecore_init_mcast_obj(sc,
10959                          &sc->mcast_obj,
10960                          sc->fp[0].cl_id,
10961                          sc->fp[0].index,
10962                          SC_FUNC(sc),
10963                          SC_FUNC(sc),
10964                          BXE_SP(sc, mcast_rdata),
10965                          BXE_SP_MAPPING(sc, mcast_rdata),
10966                          ECORE_FILTER_MCAST_PENDING,
10967                          &sc->sp_state,
10968                          o_type);
10969 
10970     /* Setup CAM credit pools */
10971     ecore_init_mac_credit_pool(sc,
10972                                &sc->macs_pool,
10973                                SC_FUNC(sc),
10974                                CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10975                                                  VNICS_PER_PATH(sc));
10976 
10977     ecore_init_vlan_credit_pool(sc,
10978                                 &sc->vlans_pool,
10979                                 SC_ABS_FUNC(sc) >> 1,
10980                                 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10981                                                   VNICS_PER_PATH(sc));
10982 
10983     /* RSS configuration object */
10984     ecore_init_rss_config_obj(sc,
10985                               &sc->rss_conf_obj,
10986                               sc->fp[0].cl_id,
10987                               sc->fp[0].index,
10988                               SC_FUNC(sc),
10989                               SC_FUNC(sc),
10990                               BXE_SP(sc, rss_rdata),
10991                               BXE_SP_MAPPING(sc, rss_rdata),
10992                               ECORE_FILTER_RSS_CONF_PENDING,
10993                               &sc->sp_state, ECORE_OBJ_TYPE_RX);
10994 }
10995 
10996 /*
10997  * Initialize the function. This must be called before sending CLIENT_SETUP
10998  * for the first client.
10999  */
11000 static inline int
11001 bxe_func_start(struct bxe_softc *sc)
11002 {
11003     struct ecore_func_state_params func_params = { NULL };
11004     struct ecore_func_start_params *start_params = &func_params.params.start;
11005 
11006     /* Prepare parameters for function state transitions */
11007     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
11008 
11009     func_params.f_obj = &sc->func_obj;
11010     func_params.cmd = ECORE_F_CMD_START;
11011 
11012     /* Function parameters */
11013     start_params->mf_mode     = sc->devinfo.mf_info.mf_mode;
11014     start_params->sd_vlan_tag = OVLAN(sc);
11015 
11016     if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
11017         start_params->network_cos_mode = STATIC_COS;
11018     } else { /* CHIP_IS_E1X */
11019         start_params->network_cos_mode = FW_WRR;
11020     }
11021 
11022     start_params->gre_tunnel_mode = 0;
11023     start_params->gre_tunnel_rss  = 0;
11024 
11025     return (ecore_func_state_change(sc, &func_params));
11026 }
11027 
11028 static int
11029 bxe_set_power_state(struct bxe_softc *sc,
11030                     uint8_t          state)
11031 {
11032     uint16_t pmcsr;
11033 
11034     /* If there is no power capability, silently succeed */
11035     if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
11036         BLOGW(sc, "No power capability\n");
11037         return (0);
11038     }
11039 
11040     pmcsr = pci_read_config(sc->dev,
11041                             (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11042                             2);
11043 
11044     switch (state) {
11045     case PCI_PM_D0:
11046         pci_write_config(sc->dev,
11047                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11048                          ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
11049 
11050         if (pmcsr & PCIM_PSTAT_DMASK) {
11051             /* delay required during transition out of D3hot */
11052             DELAY(20000);
11053         }
11054 
11055         break;
11056 
11057     case PCI_PM_D3hot:
11058         /* XXX if there are other clients above don't shut down the power */
11059 
11060         /* don't shut down the power for emulation and FPGA */
11061         if (CHIP_REV_IS_SLOW(sc)) {
11062             return (0);
11063         }
11064 
11065         pmcsr &= ~PCIM_PSTAT_DMASK;
11066         pmcsr |= PCIM_PSTAT_D3;
11067 
11068         if (sc->wol) {
11069             pmcsr |= PCIM_PSTAT_PMEENABLE;
11070         }
11071 
11072         pci_write_config(sc->dev,
11073                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11074                          pmcsr, 4);
11075 
11076         /*
11077          * No more memory access after this point until device is brought back
11078          * to D0 state.
11079          */
11080         break;
11081 
11082     default:
11083         BLOGE(sc, "Can't support PCI power state = %d\n", state);
11084         return (-1);
11085     }
11086 
11087     return (0);
11088 }
11089 
11090 
11091 /* return true if succeeded to acquire the lock */
11092 static uint8_t
11093 bxe_trylock_hw_lock(struct bxe_softc *sc,
11094                     uint32_t         resource)
11095 {
11096     uint32_t lock_status;
11097     uint32_t resource_bit = (1 << resource);
11098     int func = SC_FUNC(sc);
11099     uint32_t hw_lock_control_reg;
11100 
11101     BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
11102 
11103     /* Validating that the resource is within range */
11104     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
11105         BLOGD(sc, DBG_LOAD,
11106               "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
11107               resource, HW_LOCK_MAX_RESOURCE_VALUE);
11108         return (FALSE);
11109     }
11110 
11111     if (func <= 5) {
11112         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
11113     } else {
11114         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
11115     }
11116 
11117     /* try to acquire the lock */
11118     REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
11119     lock_status = REG_RD(sc, hw_lock_control_reg);
11120     if (lock_status & resource_bit) {
11121         return (TRUE);
11122     }
11123 
11124     BLOGE(sc, "Failed to get a resource lock 0x%x\n", resource);
11125 
11126     return (FALSE);
11127 }
11128 
11129 /*
11130  * Get the recovery leader resource id according to the engine this function
11131  * belongs to. Currently only only 2 engines is supported.
11132  */
11133 static int
11134 bxe_get_leader_lock_resource(struct bxe_softc *sc)
11135 {
11136     if (SC_PATH(sc)) {
11137         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
11138     } else {
11139         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
11140     }
11141 }
11142 
11143 /* try to acquire a leader lock for current engine */
11144 static uint8_t
11145 bxe_trylock_leader_lock(struct bxe_softc *sc)
11146 {
11147     return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11148 }
11149 
11150 static int
11151 bxe_release_leader_lock(struct bxe_softc *sc)
11152 {
11153     return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11154 }
11155 
11156 /* close gates #2, #3 and #4 */
11157 static void
11158 bxe_set_234_gates(struct bxe_softc *sc,
11159                   uint8_t          close)
11160 {
11161     uint32_t val;
11162 
11163     /* gates #2 and #4a are closed/opened for "not E1" only */
11164     if (!CHIP_IS_E1(sc)) {
11165         /* #4 */
11166         REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
11167         /* #2 */
11168         REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
11169     }
11170 
11171     /* #3 */
11172     if (CHIP_IS_E1x(sc)) {
11173         /* prevent interrupts from HC on both ports */
11174         val = REG_RD(sc, HC_REG_CONFIG_1);
11175         REG_WR(sc, HC_REG_CONFIG_1,
11176                (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
11177                (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
11178 
11179         val = REG_RD(sc, HC_REG_CONFIG_0);
11180         REG_WR(sc, HC_REG_CONFIG_0,
11181                (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
11182                (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
11183     } else {
11184         /* Prevent incomming interrupts in IGU */
11185         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
11186 
11187         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
11188                (!close) ?
11189                (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
11190                (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
11191     }
11192 
11193     BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
11194           close ? "closing" : "opening");
11195 
11196     wmb();
11197 }
11198 
11199 /* poll for pending writes bit, it should get cleared in no more than 1s */
11200 static int
11201 bxe_er_poll_igu_vq(struct bxe_softc *sc)
11202 {
11203     uint32_t cnt = 1000;
11204     uint32_t pend_bits = 0;
11205 
11206     do {
11207         pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
11208 
11209         if (pend_bits == 0) {
11210             break;
11211         }
11212 
11213         DELAY(1000);
11214     } while (--cnt > 0);
11215 
11216     if (cnt == 0) {
11217         BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
11218         return (-1);
11219     }
11220 
11221     return (0);
11222 }
11223 
11224 #define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
11225 
11226 static void
11227 bxe_clp_reset_prep(struct bxe_softc *sc,
11228                    uint32_t         *magic_val)
11229 {
11230     /* Do some magic... */
11231     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11232     *magic_val = val & SHARED_MF_CLP_MAGIC;
11233     MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
11234 }
11235 
11236 /* restore the value of the 'magic' bit */
11237 static void
11238 bxe_clp_reset_done(struct bxe_softc *sc,
11239                    uint32_t         magic_val)
11240 {
11241     /* Restore the 'magic' bit value... */
11242     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11243     MFCFG_WR(sc, shared_mf_config.clp_mb,
11244               (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
11245 }
11246 
11247 /* prepare for MCP reset, takes care of CLP configurations */
11248 static void
11249 bxe_reset_mcp_prep(struct bxe_softc *sc,
11250                    uint32_t         *magic_val)
11251 {
11252     uint32_t shmem;
11253     uint32_t validity_offset;
11254 
11255     /* set `magic' bit in order to save MF config */
11256     if (!CHIP_IS_E1(sc)) {
11257         bxe_clp_reset_prep(sc, magic_val);
11258     }
11259 
11260     /* get shmem offset */
11261     shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11262     validity_offset =
11263         offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
11264 
11265     /* Clear validity map flags */
11266     if (shmem > 0) {
11267         REG_WR(sc, shmem + validity_offset, 0);
11268     }
11269 }
11270 
11271 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
11272 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
11273 
11274 static void
11275 bxe_mcp_wait_one(struct bxe_softc *sc)
11276 {
11277     /* special handling for emulation and FPGA (10 times longer) */
11278     if (CHIP_REV_IS_SLOW(sc)) {
11279         DELAY((MCP_ONE_TIMEOUT*10) * 1000);
11280     } else {
11281         DELAY((MCP_ONE_TIMEOUT) * 1000);
11282     }
11283 }
11284 
11285 /* initialize shmem_base and waits for validity signature to appear */
11286 static int
11287 bxe_init_shmem(struct bxe_softc *sc)
11288 {
11289     int cnt = 0;
11290     uint32_t val = 0;
11291 
11292     do {
11293         sc->devinfo.shmem_base     =
11294         sc->link_params.shmem_base =
11295             REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11296 
11297         if (sc->devinfo.shmem_base) {
11298             val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
11299             if (val & SHR_MEM_VALIDITY_MB)
11300                 return (0);
11301         }
11302 
11303         bxe_mcp_wait_one(sc);
11304 
11305     } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
11306 
11307     BLOGE(sc, "BAD MCP validity signature\n");
11308 
11309     return (-1);
11310 }
11311 
11312 static int
11313 bxe_reset_mcp_comp(struct bxe_softc *sc,
11314                    uint32_t         magic_val)
11315 {
11316     int rc = bxe_init_shmem(sc);
11317 
11318     /* Restore the `magic' bit value */
11319     if (!CHIP_IS_E1(sc)) {
11320         bxe_clp_reset_done(sc, magic_val);
11321     }
11322 
11323     return (rc);
11324 }
11325 
11326 static void
11327 bxe_pxp_prep(struct bxe_softc *sc)
11328 {
11329     if (!CHIP_IS_E1(sc)) {
11330         REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
11331         REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
11332         wmb();
11333     }
11334 }
11335 
11336 /*
11337  * Reset the whole chip except for:
11338  *      - PCIE core
11339  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
11340  *      - IGU
11341  *      - MISC (including AEU)
11342  *      - GRC
11343  *      - RBCN, RBCP
11344  */
11345 static void
11346 bxe_process_kill_chip_reset(struct bxe_softc *sc,
11347                             uint8_t          global)
11348 {
11349     uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
11350     uint32_t global_bits2, stay_reset2;
11351 
11352     /*
11353      * Bits that have to be set in reset_mask2 if we want to reset 'global'
11354      * (per chip) blocks.
11355      */
11356     global_bits2 =
11357         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
11358         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
11359 
11360     /*
11361      * Don't reset the following blocks.
11362      * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
11363      *            reset, as in 4 port device they might still be owned
11364      *            by the MCP (there is only one leader per path).
11365      */
11366     not_reset_mask1 =
11367         MISC_REGISTERS_RESET_REG_1_RST_HC |
11368         MISC_REGISTERS_RESET_REG_1_RST_PXPV |
11369         MISC_REGISTERS_RESET_REG_1_RST_PXP;
11370 
11371     not_reset_mask2 =
11372         MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
11373         MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
11374         MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
11375         MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
11376         MISC_REGISTERS_RESET_REG_2_RST_RBCN |
11377         MISC_REGISTERS_RESET_REG_2_RST_GRC  |
11378         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
11379         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
11380         MISC_REGISTERS_RESET_REG_2_RST_ATC |
11381         MISC_REGISTERS_RESET_REG_2_PGLC |
11382         MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
11383         MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
11384         MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
11385         MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
11386         MISC_REGISTERS_RESET_REG_2_UMAC0 |
11387         MISC_REGISTERS_RESET_REG_2_UMAC1;
11388 
11389     /*
11390      * Keep the following blocks in reset:
11391      *  - all xxMACs are handled by the elink code.
11392      */
11393     stay_reset2 =
11394         MISC_REGISTERS_RESET_REG_2_XMAC |
11395         MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
11396 
11397     /* Full reset masks according to the chip */
11398     reset_mask1 = 0xffffffff;
11399 
11400     if (CHIP_IS_E1(sc))
11401         reset_mask2 = 0xffff;
11402     else if (CHIP_IS_E1H(sc))
11403         reset_mask2 = 0x1ffff;
11404     else if (CHIP_IS_E2(sc))
11405         reset_mask2 = 0xfffff;
11406     else /* CHIP_IS_E3 */
11407         reset_mask2 = 0x3ffffff;
11408 
11409     /* Don't reset global blocks unless we need to */
11410     if (!global)
11411         reset_mask2 &= ~global_bits2;
11412 
11413     /*
11414      * In case of attention in the QM, we need to reset PXP
11415      * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
11416      * because otherwise QM reset would release 'close the gates' shortly
11417      * before resetting the PXP, then the PSWRQ would send a write
11418      * request to PGLUE. Then when PXP is reset, PGLUE would try to
11419      * read the payload data from PSWWR, but PSWWR would not
11420      * respond. The write queue in PGLUE would stuck, dmae commands
11421      * would not return. Therefore it's important to reset the second
11422      * reset register (containing the
11423      * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
11424      * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
11425      * bit).
11426      */
11427     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
11428            reset_mask2 & (~not_reset_mask2));
11429 
11430     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
11431            reset_mask1 & (~not_reset_mask1));
11432 
11433     mb();
11434     wmb();
11435 
11436     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
11437            reset_mask2 & (~stay_reset2));
11438 
11439     mb();
11440     wmb();
11441 
11442     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
11443     wmb();
11444 }
11445 
11446 static int
11447 bxe_process_kill(struct bxe_softc *sc,
11448                  uint8_t          global)
11449 {
11450     int cnt = 1000;
11451     uint32_t val = 0;
11452     uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
11453     uint32_t tags_63_32 = 0;
11454 
11455     /* Empty the Tetris buffer, wait for 1s */
11456     do {
11457         sr_cnt  = REG_RD(sc, PXP2_REG_RD_SR_CNT);
11458         blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
11459         port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
11460         port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
11461         pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
11462         if (CHIP_IS_E3(sc)) {
11463             tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
11464         }
11465 
11466         if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
11467             ((port_is_idle_0 & 0x1) == 0x1) &&
11468             ((port_is_idle_1 & 0x1) == 0x1) &&
11469             (pgl_exp_rom2 == 0xffffffff) &&
11470             (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
11471             break;
11472         DELAY(1000);
11473     } while (cnt-- > 0);
11474 
11475     if (cnt <= 0) {
11476         BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
11477                   "are still outstanding read requests after 1s! "
11478                   "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
11479                   "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
11480               sr_cnt, blk_cnt, port_is_idle_0,
11481               port_is_idle_1, pgl_exp_rom2);
11482         return (-1);
11483     }
11484 
11485     mb();
11486 
11487     /* Close gates #2, #3 and #4 */
11488     bxe_set_234_gates(sc, TRUE);
11489 
11490     /* Poll for IGU VQs for 57712 and newer chips */
11491     if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
11492         return (-1);
11493     }
11494 
11495     /* XXX indicate that "process kill" is in progress to MCP */
11496 
11497     /* clear "unprepared" bit */
11498     REG_WR(sc, MISC_REG_UNPREPARED, 0);
11499     mb();
11500 
11501     /* Make sure all is written to the chip before the reset */
11502     wmb();
11503 
11504     /*
11505      * Wait for 1ms to empty GLUE and PCI-E core queues,
11506      * PSWHST, GRC and PSWRD Tetris buffer.
11507      */
11508     DELAY(1000);
11509 
11510     /* Prepare to chip reset: */
11511     /* MCP */
11512     if (global) {
11513         bxe_reset_mcp_prep(sc, &val);
11514     }
11515 
11516     /* PXP */
11517     bxe_pxp_prep(sc);
11518     mb();
11519 
11520     /* reset the chip */
11521     bxe_process_kill_chip_reset(sc, global);
11522     mb();
11523 
11524     /* Recover after reset: */
11525     /* MCP */
11526     if (global && bxe_reset_mcp_comp(sc, val)) {
11527         return (-1);
11528     }
11529 
11530     /* XXX add resetting the NO_MCP mode DB here */
11531 
11532     /* Open the gates #2, #3 and #4 */
11533     bxe_set_234_gates(sc, FALSE);
11534 
11535     /* XXX
11536      * IGU/AEU preparation bring back the AEU/IGU to a reset state
11537      * re-enable attentions
11538      */
11539 
11540     return (0);
11541 }
11542 
11543 static int
11544 bxe_leader_reset(struct bxe_softc *sc)
11545 {
11546     int rc = 0;
11547     uint8_t global = bxe_reset_is_global(sc);
11548     uint32_t load_code;
11549 
11550     /*
11551      * If not going to reset MCP, load "fake" driver to reset HW while
11552      * driver is owner of the HW.
11553      */
11554     if (!global && !BXE_NOMCP(sc)) {
11555         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11556                                    DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11557         if (!load_code) {
11558             BLOGE(sc, "MCP response failure, aborting\n");
11559             rc = -1;
11560             goto exit_leader_reset;
11561         }
11562 
11563         if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11564             (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11565             BLOGE(sc, "MCP unexpected response, aborting\n");
11566             rc = -1;
11567             goto exit_leader_reset2;
11568         }
11569 
11570         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11571         if (!load_code) {
11572             BLOGE(sc, "MCP response failure, aborting\n");
11573             rc = -1;
11574             goto exit_leader_reset2;
11575         }
11576     }
11577 
11578     /* try to recover after the failure */
11579     if (bxe_process_kill(sc, global)) {
11580         BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11581         rc = -1;
11582         goto exit_leader_reset2;
11583     }
11584 
11585     /*
11586      * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11587      * state.
11588      */
11589     bxe_set_reset_done(sc);
11590     if (global) {
11591         bxe_clear_reset_global(sc);
11592     }
11593 
11594 exit_leader_reset2:
11595 
11596     /* unload "fake driver" if it was loaded */
11597     if (!global && !BXE_NOMCP(sc)) {
11598         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11599         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11600     }
11601 
11602 exit_leader_reset:
11603 
11604     sc->is_leader = 0;
11605     bxe_release_leader_lock(sc);
11606 
11607     mb();
11608     return (rc);
11609 }
11610 
11611 /*
11612  * prepare INIT transition, parameters configured:
11613  *   - HC configuration
11614  *   - Queue's CDU context
11615  */
11616 static void
11617 bxe_pf_q_prep_init(struct bxe_softc               *sc,
11618                    struct bxe_fastpath            *fp,
11619                    struct ecore_queue_init_params *init_params)
11620 {
11621     uint8_t cos;
11622     int cxt_index, cxt_offset;
11623 
11624     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11625     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11626 
11627     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11628     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11629 
11630     /* HC rate */
11631     init_params->rx.hc_rate =
11632         sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11633     init_params->tx.hc_rate =
11634         sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11635 
11636     /* FW SB ID */
11637     init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11638 
11639     /* CQ index among the SB indices */
11640     init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11641     init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11642 
11643     /* set maximum number of COSs supported by this queue */
11644     init_params->max_cos = sc->max_cos;
11645 
11646     BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11647           fp->index, init_params->max_cos);
11648 
11649     /* set the context pointers queue object */
11650     for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11651         /* XXX change index/cid here if ever support multiple tx CoS */
11652         /* fp->txdata[cos]->cid */
11653         cxt_index = fp->index / ILT_PAGE_CIDS;
11654         cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11655         init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11656     }
11657 }
11658 
11659 /* set flags that are common for the Tx-only and not normal connections */
11660 static unsigned long
11661 bxe_get_common_flags(struct bxe_softc    *sc,
11662                      struct bxe_fastpath *fp,
11663                      uint8_t             zero_stats)
11664 {
11665     unsigned long flags = 0;
11666 
11667     /* PF driver will always initialize the Queue to an ACTIVE state */
11668     bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11669 
11670     /*
11671      * tx only connections collect statistics (on the same index as the
11672      * parent connection). The statistics are zeroed when the parent
11673      * connection is initialized.
11674      */
11675 
11676     bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11677     if (zero_stats) {
11678         bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11679     }
11680 
11681     /*
11682      * tx only connections can support tx-switching, though their
11683      * CoS-ness doesn't survive the loopback
11684      */
11685     if (sc->flags & BXE_TX_SWITCHING) {
11686         bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11687     }
11688 
11689     bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11690 
11691     return (flags);
11692 }
11693 
11694 static unsigned long
11695 bxe_get_q_flags(struct bxe_softc    *sc,
11696                 struct bxe_fastpath *fp,
11697                 uint8_t             leading)
11698 {
11699     unsigned long flags = 0;
11700 
11701     if (IS_MF_SD(sc)) {
11702         bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11703     }
11704 
11705     if (sc->ifnet->if_capenable & IFCAP_LRO) {
11706         bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11707         bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11708 #if 0
11709         if (fp->mode == TPA_MODE_GRO)
11710             __set_bit(ECORE_Q_FLG_TPA_GRO, &flags);
11711 #endif
11712     }
11713 
11714     if (leading) {
11715         bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11716         bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11717     }
11718 
11719     bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11720 
11721 #if 0
11722     /* configure silent vlan removal */
11723     if (IS_MF_AFEX(sc)) {
11724         bxe_set_bit(ECORE_Q_FLG_SILENT_VLAN_REM, &flags);
11725     }
11726 #endif
11727 
11728     /* merge with common flags */
11729     return (flags | bxe_get_common_flags(sc, fp, TRUE));
11730 }
11731 
11732 static void
11733 bxe_pf_q_prep_general(struct bxe_softc                  *sc,
11734                       struct bxe_fastpath               *fp,
11735                       struct ecore_general_setup_params *gen_init,
11736                       uint8_t                           cos)
11737 {
11738     gen_init->stat_id = bxe_stats_id(fp);
11739     gen_init->spcl_id = fp->cl_id;
11740     gen_init->mtu = sc->mtu;
11741     gen_init->cos = cos;
11742 }
11743 
11744 static void
11745 bxe_pf_rx_q_prep(struct bxe_softc              *sc,
11746                  struct bxe_fastpath           *fp,
11747                  struct rxq_pause_params       *pause,
11748                  struct ecore_rxq_setup_params *rxq_init)
11749 {
11750     uint8_t max_sge = 0;
11751     uint16_t sge_sz = 0;
11752     uint16_t tpa_agg_size = 0;
11753 
11754     if (sc->ifnet->if_capenable & IFCAP_LRO) {
11755         pause->sge_th_lo = SGE_TH_LO(sc);
11756         pause->sge_th_hi = SGE_TH_HI(sc);
11757 
11758         /* validate SGE ring has enough to cross high threshold */
11759         if (sc->dropless_fc &&
11760             (pause->sge_th_hi + FW_PREFETCH_CNT) >
11761             (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11762             BLOGW(sc, "sge ring threshold limit\n");
11763         }
11764 
11765         /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11766         tpa_agg_size = (2 * sc->mtu);
11767         if (tpa_agg_size < sc->max_aggregation_size) {
11768             tpa_agg_size = sc->max_aggregation_size;
11769         }
11770 
11771         max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11772         max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11773                    (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11774         sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11775     }
11776 
11777     /* pause - not for e1 */
11778     if (!CHIP_IS_E1(sc)) {
11779         pause->bd_th_lo = BD_TH_LO(sc);
11780         pause->bd_th_hi = BD_TH_HI(sc);
11781 
11782         pause->rcq_th_lo = RCQ_TH_LO(sc);
11783         pause->rcq_th_hi = RCQ_TH_HI(sc);
11784 
11785         /* validate rings have enough entries to cross high thresholds */
11786         if (sc->dropless_fc &&
11787             pause->bd_th_hi + FW_PREFETCH_CNT >
11788             sc->rx_ring_size) {
11789             BLOGW(sc, "rx bd ring threshold limit\n");
11790         }
11791 
11792         if (sc->dropless_fc &&
11793             pause->rcq_th_hi + FW_PREFETCH_CNT >
11794             RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11795             BLOGW(sc, "rcq ring threshold limit\n");
11796         }
11797 
11798         pause->pri_map = 1;
11799     }
11800 
11801     /* rxq setup */
11802     rxq_init->dscr_map   = fp->rx_dma.paddr;
11803     rxq_init->sge_map    = fp->rx_sge_dma.paddr;
11804     rxq_init->rcq_map    = fp->rcq_dma.paddr;
11805     rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11806 
11807     /*
11808      * This should be a maximum number of data bytes that may be
11809      * placed on the BD (not including paddings).
11810      */
11811     rxq_init->buf_sz = (fp->rx_buf_size -
11812                         IP_HEADER_ALIGNMENT_PADDING);
11813 
11814     rxq_init->cl_qzone_id     = fp->cl_qzone_id;
11815     rxq_init->tpa_agg_sz      = tpa_agg_size;
11816     rxq_init->sge_buf_sz      = sge_sz;
11817     rxq_init->max_sges_pkt    = max_sge;
11818     rxq_init->rss_engine_id   = SC_FUNC(sc);
11819     rxq_init->mcast_engine_id = SC_FUNC(sc);
11820 
11821     /*
11822      * Maximum number or simultaneous TPA aggregation for this Queue.
11823      * For PF Clients it should be the maximum available number.
11824      * VF driver(s) may want to define it to a smaller value.
11825      */
11826     rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11827 
11828     rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11829     rxq_init->fw_sb_id = fp->fw_sb_id;
11830 
11831     rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11832 
11833     /*
11834      * configure silent vlan removal
11835      * if multi function mode is afex, then mask default vlan
11836      */
11837     if (IS_MF_AFEX(sc)) {
11838         rxq_init->silent_removal_value =
11839             sc->devinfo.mf_info.afex_def_vlan_tag;
11840         rxq_init->silent_removal_mask = EVL_VLID_MASK;
11841     }
11842 }
11843 
11844 static void
11845 bxe_pf_tx_q_prep(struct bxe_softc              *sc,
11846                  struct bxe_fastpath           *fp,
11847                  struct ecore_txq_setup_params *txq_init,
11848                  uint8_t                       cos)
11849 {
11850     /*
11851      * XXX If multiple CoS is ever supported then each fastpath structure
11852      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11853      * fp->txdata[cos]->tx_dma.paddr;
11854      */
11855     txq_init->dscr_map     = fp->tx_dma.paddr;
11856     txq_init->sb_cq_index  = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11857     txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11858     txq_init->fw_sb_id     = fp->fw_sb_id;
11859 
11860     /*
11861      * set the TSS leading client id for TX classfication to the
11862      * leading RSS client id
11863      */
11864     txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11865 }
11866 
11867 /*
11868  * This function performs 2 steps in a queue state machine:
11869  *   1) RESET->INIT
11870  *   2) INIT->SETUP
11871  */
11872 static int
11873 bxe_setup_queue(struct bxe_softc    *sc,
11874                 struct bxe_fastpath *fp,
11875                 uint8_t             leading)
11876 {
11877     struct ecore_queue_state_params q_params = { NULL };
11878     struct ecore_queue_setup_params *setup_params =
11879                         &q_params.params.setup;
11880 #if 0
11881     struct ecore_queue_setup_tx_only_params *tx_only_params =
11882                         &q_params.params.tx_only;
11883     uint8_t tx_index;
11884 #endif
11885     int rc;
11886 
11887     BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11888 
11889     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11890 
11891     q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11892 
11893     /* we want to wait for completion in this context */
11894     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11895 
11896     /* prepare the INIT parameters */
11897     bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11898 
11899     /* Set the command */
11900     q_params.cmd = ECORE_Q_CMD_INIT;
11901 
11902     /* Change the state to INIT */
11903     rc = ecore_queue_state_change(sc, &q_params);
11904     if (rc) {
11905         BLOGE(sc, "Queue(%d) INIT failed\n", fp->index);
11906         return (rc);
11907     }
11908 
11909     BLOGD(sc, DBG_LOAD, "init complete\n");
11910 
11911     /* now move the Queue to the SETUP state */
11912     memset(setup_params, 0, sizeof(*setup_params));
11913 
11914     /* set Queue flags */
11915     setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11916 
11917     /* set general SETUP parameters */
11918     bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11919                           FIRST_TX_COS_INDEX);
11920 
11921     bxe_pf_rx_q_prep(sc, fp,
11922                      &setup_params->pause_params,
11923                      &setup_params->rxq_params);
11924 
11925     bxe_pf_tx_q_prep(sc, fp,
11926                      &setup_params->txq_params,
11927                      FIRST_TX_COS_INDEX);
11928 
11929     /* Set the command */
11930     q_params.cmd = ECORE_Q_CMD_SETUP;
11931 
11932     /* change the state to SETUP */
11933     rc = ecore_queue_state_change(sc, &q_params);
11934     if (rc) {
11935         BLOGE(sc, "Queue(%d) SETUP failed\n", fp->index);
11936         return (rc);
11937     }
11938 
11939 #if 0
11940     /* loop through the relevant tx-only indices */
11941     for (tx_index = FIRST_TX_ONLY_COS_INDEX;
11942          tx_index < sc->max_cos;
11943          tx_index++) {
11944         /* prepare and send tx-only ramrod*/
11945         rc = bxe_setup_tx_only(sc, fp, &q_params,
11946                                tx_only_params, tx_index, leading);
11947         if (rc) {
11948             BLOGE(sc, "Queue(%d.%d) TX_ONLY_SETUP failed\n",
11949                   fp->index, tx_index);
11950             return (rc);
11951         }
11952     }
11953 #endif
11954 
11955     return (rc);
11956 }
11957 
11958 static int
11959 bxe_setup_leading(struct bxe_softc *sc)
11960 {
11961     return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11962 }
11963 
11964 static int
11965 bxe_config_rss_pf(struct bxe_softc            *sc,
11966                   struct ecore_rss_config_obj *rss_obj,
11967                   uint8_t                     config_hash)
11968 {
11969     struct ecore_config_rss_params params = { NULL };
11970     int i;
11971 
11972     /*
11973      * Although RSS is meaningless when there is a single HW queue we
11974      * still need it enabled in order to have HW Rx hash generated.
11975      */
11976 
11977     params.rss_obj = rss_obj;
11978 
11979     bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11980 
11981     bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11982 
11983     /* RSS configuration */
11984     bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11985     bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11986     bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11987     bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11988     if (rss_obj->udp_rss_v4) {
11989         bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11990     }
11991     if (rss_obj->udp_rss_v6) {
11992         bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11993     }
11994 
11995     /* Hash bits */
11996     params.rss_result_mask = MULTI_MASK;
11997 
11998     memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
11999 
12000     if (config_hash) {
12001         /* RSS keys */
12002         for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
12003             params.rss_key[i] = arc4random();
12004         }
12005 
12006         bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
12007     }
12008 
12009     return (ecore_config_rss(sc, &params));
12010 }
12011 
12012 static int
12013 bxe_config_rss_eth(struct bxe_softc *sc,
12014                    uint8_t          config_hash)
12015 {
12016     return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
12017 }
12018 
12019 static int
12020 bxe_init_rss_pf(struct bxe_softc *sc)
12021 {
12022     uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
12023     int i;
12024 
12025     /*
12026      * Prepare the initial contents of the indirection table if
12027      * RSS is enabled
12028      */
12029     for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
12030         sc->rss_conf_obj.ind_table[i] =
12031             (sc->fp->cl_id + (i % num_eth_queues));
12032     }
12033 
12034     if (sc->udp_rss) {
12035         sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
12036     }
12037 
12038     /*
12039      * For 57710 and 57711 SEARCHER configuration (rss_keys) is
12040      * per-port, so if explicit configuration is needed, do it only
12041      * for a PMF.
12042      *
12043      * For 57712 and newer it's a per-function configuration.
12044      */
12045     return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
12046 }
12047 
12048 static int
12049 bxe_set_mac_one(struct bxe_softc          *sc,
12050                 uint8_t                   *mac,
12051                 struct ecore_vlan_mac_obj *obj,
12052                 uint8_t                   set,
12053                 int                       mac_type,
12054                 unsigned long             *ramrod_flags)
12055 {
12056     struct ecore_vlan_mac_ramrod_params ramrod_param;
12057     int rc;
12058 
12059     memset(&ramrod_param, 0, sizeof(ramrod_param));
12060 
12061     /* fill in general parameters */
12062     ramrod_param.vlan_mac_obj = obj;
12063     ramrod_param.ramrod_flags = *ramrod_flags;
12064 
12065     /* fill a user request section if needed */
12066     if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
12067         memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
12068 
12069         bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
12070 
12071         /* Set the command: ADD or DEL */
12072         ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
12073                                             ECORE_VLAN_MAC_DEL;
12074     }
12075 
12076     rc = ecore_config_vlan_mac(sc, &ramrod_param);
12077 
12078     if (rc == ECORE_EXISTS) {
12079         BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12080         /* do not treat adding same MAC as error */
12081         rc = 0;
12082     } else if (rc < 0) {
12083         BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
12084     }
12085 
12086     return (rc);
12087 }
12088 
12089 static int
12090 bxe_set_eth_mac(struct bxe_softc *sc,
12091                 uint8_t          set)
12092 {
12093     unsigned long ramrod_flags = 0;
12094 
12095     BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
12096 
12097     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12098 
12099     /* Eth MAC is set on RSS leading client (fp[0]) */
12100     return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
12101                             &sc->sp_objs->mac_obj,
12102                             set, ECORE_ETH_MAC, &ramrod_flags));
12103 }
12104 
12105 #if 0
12106 static void
12107 bxe_update_max_mf_config(struct bxe_softc *sc,
12108                          uint32_t         value)
12109 {
12110     /* load old values */
12111     uint32_t mf_cfg = sc->devinfo.mf_info.mf_config[SC_VN(sc)];
12112 
12113     if (value != bxe_extract_max_cfg(sc, mf_cfg)) {
12114         /* leave all but MAX value */
12115         mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
12116 
12117         /* set new MAX value */
12118         mf_cfg |= ((value << FUNC_MF_CFG_MAX_BW_SHIFT) &
12119                    FUNC_MF_CFG_MAX_BW_MASK);
12120 
12121         bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
12122     }
12123 }
12124 #endif
12125 
12126 static int
12127 bxe_get_cur_phy_idx(struct bxe_softc *sc)
12128 {
12129     uint32_t sel_phy_idx = 0;
12130 
12131     if (sc->link_params.num_phys <= 1) {
12132         return (ELINK_INT_PHY);
12133     }
12134 
12135     if (sc->link_vars.link_up) {
12136         sel_phy_idx = ELINK_EXT_PHY1;
12137         /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
12138         if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
12139             (sc->link_params.phy[ELINK_EXT_PHY2].supported &
12140              ELINK_SUPPORTED_FIBRE))
12141             sel_phy_idx = ELINK_EXT_PHY2;
12142     } else {
12143         switch (elink_phy_selection(&sc->link_params)) {
12144         case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
12145         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
12146         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
12147                sel_phy_idx = ELINK_EXT_PHY1;
12148                break;
12149         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
12150         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
12151                sel_phy_idx = ELINK_EXT_PHY2;
12152                break;
12153         }
12154     }
12155 
12156     return (sel_phy_idx);
12157 }
12158 
12159 static int
12160 bxe_get_link_cfg_idx(struct bxe_softc *sc)
12161 {
12162     uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
12163 
12164     /*
12165      * The selected activated PHY is always after swapping (in case PHY
12166      * swapping is enabled). So when swapping is enabled, we need to reverse
12167      * the configuration
12168      */
12169 
12170     if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
12171         if (sel_phy_idx == ELINK_EXT_PHY1)
12172             sel_phy_idx = ELINK_EXT_PHY2;
12173         else if (sel_phy_idx == ELINK_EXT_PHY2)
12174             sel_phy_idx = ELINK_EXT_PHY1;
12175     }
12176 
12177     return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
12178 }
12179 
12180 static void
12181 bxe_set_requested_fc(struct bxe_softc *sc)
12182 {
12183     /*
12184      * Initialize link parameters structure variables
12185      * It is recommended to turn off RX FC for jumbo frames
12186      * for better performance
12187      */
12188     if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
12189         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
12190     } else {
12191         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
12192     }
12193 }
12194 
12195 static void
12196 bxe_calc_fc_adv(struct bxe_softc *sc)
12197 {
12198     uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
12199     switch (sc->link_vars.ieee_fc &
12200             MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
12201     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
12202     default:
12203         sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
12204                                            ADVERTISED_Pause);
12205         break;
12206 
12207     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
12208         sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
12209                                           ADVERTISED_Pause);
12210         break;
12211 
12212     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
12213         sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
12214         break;
12215     }
12216 }
12217 
12218 static uint16_t
12219 bxe_get_mf_speed(struct bxe_softc *sc)
12220 {
12221     uint16_t line_speed = sc->link_vars.line_speed;
12222     if (IS_MF(sc)) {
12223         uint16_t maxCfg =
12224             bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
12225 
12226         /* calculate the current MAX line speed limit for the MF devices */
12227         if (IS_MF_SI(sc)) {
12228             line_speed = (line_speed * maxCfg) / 100;
12229         } else { /* SD mode */
12230             uint16_t vn_max_rate = maxCfg * 100;
12231 
12232             if (vn_max_rate < line_speed) {
12233                 line_speed = vn_max_rate;
12234             }
12235         }
12236     }
12237 
12238     return (line_speed);
12239 }
12240 
12241 static void
12242 bxe_fill_report_data(struct bxe_softc            *sc,
12243                      struct bxe_link_report_data *data)
12244 {
12245     uint16_t line_speed = bxe_get_mf_speed(sc);
12246 
12247     memset(data, 0, sizeof(*data));
12248 
12249     /* fill the report data with the effective line speed */
12250     data->line_speed = line_speed;
12251 
12252     /* Link is down */
12253     if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
12254         bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
12255     }
12256 
12257     /* Full DUPLEX */
12258     if (sc->link_vars.duplex == DUPLEX_FULL) {
12259         bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
12260     }
12261 
12262     /* Rx Flow Control is ON */
12263     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
12264         bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
12265     }
12266 
12267     /* Tx Flow Control is ON */
12268     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
12269         bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
12270     }
12271 }
12272 
12273 /* report link status to OS, should be called under phy_lock */
12274 static void
12275 bxe_link_report_locked(struct bxe_softc *sc)
12276 {
12277     struct bxe_link_report_data cur_data;
12278 
12279     /* reread mf_cfg */
12280     if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
12281         bxe_read_mf_cfg(sc);
12282     }
12283 
12284     /* Read the current link report info */
12285     bxe_fill_report_data(sc, &cur_data);
12286 
12287     /* Don't report link down or exactly the same link status twice */
12288     if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
12289         (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12290                       &sc->last_reported_link.link_report_flags) &&
12291          bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12292                       &cur_data.link_report_flags))) {
12293         return;
12294     }
12295 
12296     sc->link_cnt++;
12297 
12298     /* report new link params and remember the state for the next time */
12299     memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
12300 
12301     if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12302                      &cur_data.link_report_flags)) {
12303         if_link_state_change(sc->ifnet, LINK_STATE_DOWN);
12304         BLOGI(sc, "NIC Link is Down\n");
12305     } else {
12306         const char *duplex;
12307         const char *flow;
12308 
12309         if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
12310                                    &cur_data.link_report_flags)) {
12311             duplex = "full";
12312         } else {
12313             duplex = "half";
12314         }
12315 
12316         /*
12317          * Handle the FC at the end so that only these flags would be
12318          * possibly set. This way we may easily check if there is no FC
12319          * enabled.
12320          */
12321         if (cur_data.link_report_flags) {
12322             if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12323                              &cur_data.link_report_flags) &&
12324                 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12325                              &cur_data.link_report_flags)) {
12326                 flow = "ON - receive & transmit";
12327             } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12328                                     &cur_data.link_report_flags) &&
12329                        !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12330                                      &cur_data.link_report_flags)) {
12331                 flow = "ON - receive";
12332             } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12333                                      &cur_data.link_report_flags) &&
12334                        bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12335                                     &cur_data.link_report_flags)) {
12336                 flow = "ON - transmit";
12337             } else {
12338                 flow = "none"; /* possible? */
12339             }
12340         } else {
12341             flow = "none";
12342         }
12343 
12344         if_link_state_change(sc->ifnet, LINK_STATE_UP);
12345         BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
12346               cur_data.line_speed, duplex, flow);
12347     }
12348 }
12349 
12350 static void
12351 bxe_link_report(struct bxe_softc *sc)
12352 {
12353     BXE_PHY_LOCK(sc);
12354     bxe_link_report_locked(sc);
12355     BXE_PHY_UNLOCK(sc);
12356 }
12357 
12358 static void
12359 bxe_link_status_update(struct bxe_softc *sc)
12360 {
12361     if (sc->state != BXE_STATE_OPEN) {
12362         return;
12363     }
12364 
12365 #if 0
12366     /* read updated dcb configuration */
12367     if (IS_PF(sc))
12368         bxe_dcbx_pmf_update(sc);
12369 #endif
12370 
12371     if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
12372         elink_link_status_update(&sc->link_params, &sc->link_vars);
12373     } else {
12374         sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
12375                                   ELINK_SUPPORTED_10baseT_Full |
12376                                   ELINK_SUPPORTED_100baseT_Half |
12377                                   ELINK_SUPPORTED_100baseT_Full |
12378                                   ELINK_SUPPORTED_1000baseT_Full |
12379                                   ELINK_SUPPORTED_2500baseX_Full |
12380                                   ELINK_SUPPORTED_10000baseT_Full |
12381                                   ELINK_SUPPORTED_TP |
12382                                   ELINK_SUPPORTED_FIBRE |
12383                                   ELINK_SUPPORTED_Autoneg |
12384                                   ELINK_SUPPORTED_Pause |
12385                                   ELINK_SUPPORTED_Asym_Pause);
12386         sc->port.advertising[0] = sc->port.supported[0];
12387 
12388         sc->link_params.sc                = sc;
12389         sc->link_params.port              = SC_PORT(sc);
12390         sc->link_params.req_duplex[0]     = DUPLEX_FULL;
12391         sc->link_params.req_flow_ctrl[0]  = ELINK_FLOW_CTRL_NONE;
12392         sc->link_params.req_line_speed[0] = SPEED_10000;
12393         sc->link_params.speed_cap_mask[0] = 0x7f0000;
12394         sc->link_params.switch_cfg        = ELINK_SWITCH_CFG_10G;
12395 
12396         if (CHIP_REV_IS_FPGA(sc)) {
12397             sc->link_vars.mac_type    = ELINK_MAC_TYPE_EMAC;
12398             sc->link_vars.line_speed  = ELINK_SPEED_1000;
12399             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12400                                          LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
12401         } else {
12402             sc->link_vars.mac_type    = ELINK_MAC_TYPE_BMAC;
12403             sc->link_vars.line_speed  = ELINK_SPEED_10000;
12404             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12405                                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
12406         }
12407 
12408         sc->link_vars.link_up = 1;
12409 
12410         sc->link_vars.duplex    = DUPLEX_FULL;
12411         sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
12412 
12413         if (IS_PF(sc)) {
12414             REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
12415             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12416             bxe_link_report(sc);
12417         }
12418     }
12419 
12420     if (IS_PF(sc)) {
12421         if (sc->link_vars.link_up) {
12422             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12423         } else {
12424             bxe_stats_handle(sc, STATS_EVENT_STOP);
12425         }
12426         bxe_link_report(sc);
12427     } else {
12428         bxe_link_report(sc);
12429         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12430     }
12431 }
12432 
12433 static int
12434 bxe_initial_phy_init(struct bxe_softc *sc,
12435                      int              load_mode)
12436 {
12437     int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
12438     uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
12439     struct elink_params *lp = &sc->link_params;
12440 
12441     bxe_set_requested_fc(sc);
12442 
12443     if (CHIP_REV_IS_SLOW(sc)) {
12444         uint32_t bond = CHIP_BOND_ID(sc);
12445         uint32_t feat = 0;
12446 
12447         if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
12448             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12449         } else if (bond & 0x4) {
12450             if (CHIP_IS_E3(sc)) {
12451                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
12452             } else {
12453                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12454             }
12455         } else if (bond & 0x8) {
12456             if (CHIP_IS_E3(sc)) {
12457                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
12458             } else {
12459                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12460             }
12461         }
12462 
12463         /* disable EMAC for E3 and above */
12464         if (bond & 0x2) {
12465             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12466         }
12467 
12468         sc->link_params.feature_config_flags |= feat;
12469     }
12470 
12471     BXE_PHY_LOCK(sc);
12472 
12473     if (load_mode == LOAD_DIAG) {
12474         lp->loopback_mode = ELINK_LOOPBACK_XGXS;
12475         /* Prefer doing PHY loopback at 10G speed, if possible */
12476         if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
12477             if (lp->speed_cap_mask[cfg_idx] &
12478                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
12479                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
12480             } else {
12481                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
12482             }
12483         }
12484     }
12485 
12486     if (load_mode == LOAD_LOOPBACK_EXT) {
12487         lp->loopback_mode = ELINK_LOOPBACK_EXT;
12488     }
12489 
12490     rc = elink_phy_init(&sc->link_params, &sc->link_vars);
12491 
12492     BXE_PHY_UNLOCK(sc);
12493 
12494     bxe_calc_fc_adv(sc);
12495 
12496     if (sc->link_vars.link_up) {
12497         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12498         bxe_link_report(sc);
12499     }
12500 
12501     if (!CHIP_REV_IS_SLOW(sc)) {
12502         bxe_periodic_start(sc);
12503     }
12504 
12505     sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
12506     return (rc);
12507 }
12508 
12509 /* must be called under IF_ADDR_LOCK */
12510 static int
12511 bxe_init_mcast_macs_list(struct bxe_softc                 *sc,
12512                          struct ecore_mcast_ramrod_params *p)
12513 {
12514     struct ifnet *ifp = sc->ifnet;
12515     int mc_count = 0;
12516     struct ifmultiaddr *ifma;
12517     struct ecore_mcast_list_elem *mc_mac;
12518 
12519     TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
12520         if (ifma->ifma_addr->sa_family != AF_LINK) {
12521             continue;
12522         }
12523 
12524         mc_count++;
12525     }
12526 
12527     ECORE_LIST_INIT(&p->mcast_list);
12528     p->mcast_list_len = 0;
12529 
12530     if (!mc_count) {
12531         return (0);
12532     }
12533 
12534     mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF,
12535                     (M_NOWAIT | M_ZERO));
12536     if (!mc_mac) {
12537         BLOGE(sc, "Failed to allocate temp mcast list\n");
12538         return (-1);
12539     }
12540 
12541     TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
12542         if (ifma->ifma_addr->sa_family != AF_LINK) {
12543             continue;
12544         }
12545 
12546         mc_mac->mac = (uint8_t *)LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
12547         ECORE_LIST_PUSH_TAIL(&mc_mac->link, &p->mcast_list);
12548 
12549         BLOGD(sc, DBG_LOAD,
12550               "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n",
12551               mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2],
12552               mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]);
12553 
12554         mc_mac++;
12555     }
12556 
12557     p->mcast_list_len = mc_count;
12558 
12559     return (0);
12560 }
12561 
12562 static void
12563 bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p)
12564 {
12565     struct ecore_mcast_list_elem *mc_mac =
12566         ECORE_LIST_FIRST_ENTRY(&p->mcast_list,
12567                                struct ecore_mcast_list_elem,
12568                                link);
12569 
12570     if (mc_mac) {
12571         /* only a single free as all mc_macs are in the same heap array */
12572         free(mc_mac, M_DEVBUF);
12573     }
12574 }
12575 
12576 static int
12577 bxe_set_mc_list(struct bxe_softc *sc)
12578 {
12579     struct ecore_mcast_ramrod_params rparam = { NULL };
12580     int rc = 0;
12581 
12582     rparam.mcast_obj = &sc->mcast_obj;
12583 
12584     BXE_MCAST_LOCK(sc);
12585 
12586     /* first, clear all configured multicast MACs */
12587     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
12588     if (rc < 0) {
12589         BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
12590         return (rc);
12591     }
12592 
12593     /* configure a new MACs list */
12594     rc = bxe_init_mcast_macs_list(sc, &rparam);
12595     if (rc) {
12596         BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc);
12597         BXE_MCAST_UNLOCK(sc);
12598         return (rc);
12599     }
12600 
12601     /* Now add the new MACs */
12602     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
12603     if (rc < 0) {
12604         BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
12605     }
12606 
12607     bxe_free_mcast_macs_list(&rparam);
12608 
12609     BXE_MCAST_UNLOCK(sc);
12610 
12611     return (rc);
12612 }
12613 
12614 static int
12615 bxe_set_uc_list(struct bxe_softc *sc)
12616 {
12617     struct ifnet *ifp = sc->ifnet;
12618     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
12619     struct ifaddr *ifa;
12620     unsigned long ramrod_flags = 0;
12621     int rc;
12622 
12623 #if __FreeBSD_version < 800000
12624     IF_ADDR_LOCK(ifp);
12625 #else
12626     if_addr_rlock(ifp);
12627 #endif
12628 
12629     /* first schedule a cleanup up of old configuration */
12630     rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
12631     if (rc < 0) {
12632         BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
12633 #if __FreeBSD_version < 800000
12634         IF_ADDR_UNLOCK(ifp);
12635 #else
12636         if_addr_runlock(ifp);
12637 #endif
12638         return (rc);
12639     }
12640 
12641     ifa = ifp->if_addr;
12642     while (ifa) {
12643         if (ifa->ifa_addr->sa_family != AF_LINK) {
12644             ifa = TAILQ_NEXT(ifa, ifa_link);
12645             continue;
12646         }
12647 
12648         rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
12649                              mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags);
12650         if (rc == -EEXIST) {
12651             BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12652             /* do not treat adding same MAC as an error */
12653             rc = 0;
12654         } else if (rc < 0) {
12655             BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc);
12656 #if __FreeBSD_version < 800000
12657             IF_ADDR_UNLOCK(ifp);
12658 #else
12659             if_addr_runlock(ifp);
12660 #endif
12661             return (rc);
12662         }
12663 
12664         ifa = TAILQ_NEXT(ifa, ifa_link);
12665     }
12666 
12667 #if __FreeBSD_version < 800000
12668     IF_ADDR_UNLOCK(ifp);
12669 #else
12670     if_addr_runlock(ifp);
12671 #endif
12672 
12673     /* Execute the pending commands */
12674     bit_set(&ramrod_flags, RAMROD_CONT);
12675     return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12676                             ECORE_UC_LIST_MAC, &ramrod_flags));
12677 }
12678 
12679 static void
12680 bxe_handle_rx_mode_tq(void *context,
12681                       int  pending)
12682 {
12683     struct bxe_softc *sc = (struct bxe_softc *)context;
12684     struct ifnet *ifp = sc->ifnet;
12685     uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12686 
12687     BXE_CORE_LOCK(sc);
12688 
12689     if (sc->state != BXE_STATE_OPEN) {
12690         BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12691         BXE_CORE_UNLOCK(sc);
12692         return;
12693     }
12694 
12695     BLOGD(sc, DBG_SP, "ifp->if_flags=0x%x\n", ifp->if_flags);
12696 
12697     if (ifp->if_flags & IFF_PROMISC) {
12698         rx_mode = BXE_RX_MODE_PROMISC;
12699     } else if ((ifp->if_flags & IFF_ALLMULTI) ||
12700                ((ifp->if_amcount > BXE_MAX_MULTICAST) &&
12701                 CHIP_IS_E1(sc))) {
12702         rx_mode = BXE_RX_MODE_ALLMULTI;
12703     } else {
12704         if (IS_PF(sc)) {
12705             /* some multicasts */
12706             if (bxe_set_mc_list(sc) < 0) {
12707                 rx_mode = BXE_RX_MODE_ALLMULTI;
12708             }
12709             if (bxe_set_uc_list(sc) < 0) {
12710                 rx_mode = BXE_RX_MODE_PROMISC;
12711             }
12712         }
12713 #if 0
12714         else {
12715             /*
12716              * Configuring mcast to a VF involves sleeping (when we
12717              * wait for the PF's response). Since this function is
12718              * called from a non sleepable context we must schedule
12719              * a work item for this purpose
12720              */
12721             bxe_set_bit(BXE_SP_RTNL_VFPF_MCAST, &sc->sp_rtnl_state);
12722             schedule_delayed_work(&sc->sp_rtnl_task, 0);
12723         }
12724 #endif
12725     }
12726 
12727     sc->rx_mode = rx_mode;
12728 
12729     /* schedule the rx_mode command */
12730     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12731         BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12732         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12733         BXE_CORE_UNLOCK(sc);
12734         return;
12735     }
12736 
12737     if (IS_PF(sc)) {
12738         bxe_set_storm_rx_mode(sc);
12739     }
12740 #if 0
12741     else {
12742         /*
12743          * Configuring mcast to a VF involves sleeping (when we
12744          * wait for the PF's response). Since this function is
12745          * called from a non sleepable context we must schedule
12746          * a work item for this purpose
12747          */
12748         bxe_set_bit(BXE_SP_RTNL_VFPF_STORM_RX_MODE, &sc->sp_rtnl_state);
12749         schedule_delayed_work(&sc->sp_rtnl_task, 0);
12750     }
12751 #endif
12752 
12753     BXE_CORE_UNLOCK(sc);
12754 }
12755 
12756 static void
12757 bxe_set_rx_mode(struct bxe_softc *sc)
12758 {
12759     taskqueue_enqueue(sc->rx_mode_tq, &sc->rx_mode_tq_task);
12760 }
12761 
12762 /* update flags in shmem */
12763 static void
12764 bxe_update_drv_flags(struct bxe_softc *sc,
12765                      uint32_t         flags,
12766                      uint32_t         set)
12767 {
12768     uint32_t drv_flags;
12769 
12770     if (SHMEM2_HAS(sc, drv_flags)) {
12771         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12772         drv_flags = SHMEM2_RD(sc, drv_flags);
12773 
12774         if (set) {
12775             SET_FLAGS(drv_flags, flags);
12776         } else {
12777             RESET_FLAGS(drv_flags, flags);
12778         }
12779 
12780         SHMEM2_WR(sc, drv_flags, drv_flags);
12781         BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12782 
12783         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12784     }
12785 }
12786 
12787 /* periodic timer callout routine, only runs when the interface is up */
12788 
12789 static void
12790 bxe_periodic_callout_func(void *xsc)
12791 {
12792     struct bxe_softc *sc = (struct bxe_softc *)xsc;
12793     int i;
12794 
12795     if (!BXE_CORE_TRYLOCK(sc)) {
12796         /* just bail and try again next time */
12797 
12798         if ((sc->state == BXE_STATE_OPEN) &&
12799             (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12800             /* schedule the next periodic callout */
12801             callout_reset(&sc->periodic_callout, hz,
12802                           bxe_periodic_callout_func, sc);
12803         }
12804 
12805         return;
12806     }
12807 
12808     if ((sc->state != BXE_STATE_OPEN) ||
12809         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12810         BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12811         BXE_CORE_UNLOCK(sc);
12812         return;
12813     }
12814 
12815     /* Check for TX timeouts on any fastpath. */
12816     FOR_EACH_QUEUE(sc, i) {
12817         if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12818             /* Ruh-Roh, chip was reset! */
12819             break;
12820         }
12821     }
12822 
12823     if (!CHIP_REV_IS_SLOW(sc)) {
12824         /*
12825          * This barrier is needed to ensure the ordering between the writing
12826          * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12827          * the reading here.
12828          */
12829         mb();
12830         if (sc->port.pmf) {
12831             BXE_PHY_LOCK(sc);
12832             elink_period_func(&sc->link_params, &sc->link_vars);
12833             BXE_PHY_UNLOCK(sc);
12834         }
12835     }
12836 
12837     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
12838         int mb_idx = SC_FW_MB_IDX(sc);
12839         uint32_t drv_pulse;
12840         uint32_t mcp_pulse;
12841 
12842         ++sc->fw_drv_pulse_wr_seq;
12843         sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12844 
12845         drv_pulse = sc->fw_drv_pulse_wr_seq;
12846         bxe_drv_pulse(sc);
12847 
12848         mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12849                      MCP_PULSE_SEQ_MASK);
12850 
12851         /*
12852          * The delta between driver pulse and mcp response should
12853          * be 1 (before mcp response) or 0 (after mcp response).
12854          */
12855         if ((drv_pulse != mcp_pulse) &&
12856             (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12857             /* someone lost a heartbeat... */
12858             BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12859                   drv_pulse, mcp_pulse);
12860         }
12861     }
12862 
12863     /* state is BXE_STATE_OPEN */
12864     bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12865 
12866 #if 0
12867     /* sample VF bulletin board for new posts from PF */
12868     if (IS_VF(sc)) {
12869         bxe_sample_bulletin(sc);
12870     }
12871 #endif
12872 
12873     BXE_CORE_UNLOCK(sc);
12874 
12875     if ((sc->state == BXE_STATE_OPEN) &&
12876         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12877         /* schedule the next periodic callout */
12878         callout_reset(&sc->periodic_callout, hz,
12879                       bxe_periodic_callout_func, sc);
12880     }
12881 }
12882 
12883 static void
12884 bxe_periodic_start(struct bxe_softc *sc)
12885 {
12886     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12887     callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12888 }
12889 
12890 static void
12891 bxe_periodic_stop(struct bxe_softc *sc)
12892 {
12893     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12894     callout_drain(&sc->periodic_callout);
12895 }
12896 
12897 /* start the controller */
12898 static __noinline int
12899 bxe_nic_load(struct bxe_softc *sc,
12900              int              load_mode)
12901 {
12902     uint32_t val;
12903     int load_code = 0;
12904     int i, rc = 0;
12905 
12906     BXE_CORE_LOCK_ASSERT(sc);
12907 
12908     BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12909 
12910     sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12911 
12912     if (IS_PF(sc)) {
12913         /* must be called before memory allocation and HW init */
12914         bxe_ilt_set_info(sc);
12915     }
12916 
12917     sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12918 
12919     bxe_set_fp_rx_buf_size(sc);
12920 
12921     if (bxe_alloc_fp_buffers(sc) != 0) {
12922         BLOGE(sc, "Failed to allocate fastpath memory\n");
12923         sc->state = BXE_STATE_CLOSED;
12924         rc = ENOMEM;
12925         goto bxe_nic_load_error0;
12926     }
12927 
12928     if (bxe_alloc_mem(sc) != 0) {
12929         sc->state = BXE_STATE_CLOSED;
12930         rc = ENOMEM;
12931         goto bxe_nic_load_error0;
12932     }
12933 
12934     if (bxe_alloc_fw_stats_mem(sc) != 0) {
12935         sc->state = BXE_STATE_CLOSED;
12936         rc = ENOMEM;
12937         goto bxe_nic_load_error0;
12938     }
12939 
12940     if (IS_PF(sc)) {
12941         /* set pf load just before approaching the MCP */
12942         bxe_set_pf_load(sc);
12943 
12944         /* if MCP exists send load request and analyze response */
12945         if (!BXE_NOMCP(sc)) {
12946             /* attempt to load pf */
12947             if (bxe_nic_load_request(sc, &load_code) != 0) {
12948                 sc->state = BXE_STATE_CLOSED;
12949                 rc = ENXIO;
12950                 goto bxe_nic_load_error1;
12951             }
12952 
12953             /* what did the MCP say? */
12954             if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12955                 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12956                 sc->state = BXE_STATE_CLOSED;
12957                 rc = ENXIO;
12958                 goto bxe_nic_load_error2;
12959             }
12960         } else {
12961             BLOGI(sc, "Device has no MCP!\n");
12962             load_code = bxe_nic_load_no_mcp(sc);
12963         }
12964 
12965         /* mark PMF if applicable */
12966         bxe_nic_load_pmf(sc, load_code);
12967 
12968         /* Init Function state controlling object */
12969         bxe_init_func_obj(sc);
12970 
12971         /* Initialize HW */
12972         if (bxe_init_hw(sc, load_code) != 0) {
12973             BLOGE(sc, "HW init failed\n");
12974             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12975             sc->state = BXE_STATE_CLOSED;
12976             rc = ENXIO;
12977             goto bxe_nic_load_error2;
12978         }
12979     }
12980 
12981     /* attach interrupts */
12982     if (bxe_interrupt_attach(sc) != 0) {
12983         sc->state = BXE_STATE_CLOSED;
12984         rc = ENXIO;
12985         goto bxe_nic_load_error2;
12986     }
12987 
12988     bxe_nic_init(sc, load_code);
12989 
12990     /* Init per-function objects */
12991     if (IS_PF(sc)) {
12992         bxe_init_objs(sc);
12993         // XXX bxe_iov_nic_init(sc);
12994 
12995         /* set AFEX default VLAN tag to an invalid value */
12996         sc->devinfo.mf_info.afex_def_vlan_tag = -1;
12997         // XXX bxe_nic_load_afex_dcc(sc, load_code);
12998 
12999         sc->state = BXE_STATE_OPENING_WAITING_PORT;
13000         rc = bxe_func_start(sc);
13001         if (rc) {
13002             BLOGE(sc, "Function start failed!\n");
13003             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
13004             sc->state = BXE_STATE_ERROR;
13005             goto bxe_nic_load_error3;
13006         }
13007 
13008         /* send LOAD_DONE command to MCP */
13009         if (!BXE_NOMCP(sc)) {
13010             load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
13011             if (!load_code) {
13012                 BLOGE(sc, "MCP response failure, aborting\n");
13013                 sc->state = BXE_STATE_ERROR;
13014                 rc = ENXIO;
13015                 goto bxe_nic_load_error3;
13016             }
13017         }
13018 
13019         rc = bxe_setup_leading(sc);
13020         if (rc) {
13021             BLOGE(sc, "Setup leading failed!\n");
13022             sc->state = BXE_STATE_ERROR;
13023             goto bxe_nic_load_error3;
13024         }
13025 
13026         FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
13027             rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
13028             if (rc) {
13029                 BLOGE(sc, "Queue(%d) setup failed\n", i);
13030                 sc->state = BXE_STATE_ERROR;
13031                 goto bxe_nic_load_error3;
13032             }
13033         }
13034 
13035         rc = bxe_init_rss_pf(sc);
13036         if (rc) {
13037             BLOGE(sc, "PF RSS init failed\n");
13038             sc->state = BXE_STATE_ERROR;
13039             goto bxe_nic_load_error3;
13040         }
13041     }
13042     /* XXX VF */
13043 #if 0
13044     else { /* VF */
13045         FOR_EACH_ETH_QUEUE(sc, i) {
13046             rc = bxe_vfpf_setup_q(sc, i);
13047             if (rc) {
13048                 BLOGE(sc, "Queue(%d) setup failed\n", i);
13049                 sc->state = BXE_STATE_ERROR;
13050                 goto bxe_nic_load_error3;
13051             }
13052         }
13053     }
13054 #endif
13055 
13056     /* now when Clients are configured we are ready to work */
13057     sc->state = BXE_STATE_OPEN;
13058 
13059     /* Configure a ucast MAC */
13060     if (IS_PF(sc)) {
13061         rc = bxe_set_eth_mac(sc, TRUE);
13062     }
13063 #if 0
13064     else { /* IS_VF(sc) */
13065         rc = bxe_vfpf_set_mac(sc);
13066     }
13067 #endif
13068     if (rc) {
13069         BLOGE(sc, "Setting Ethernet MAC failed\n");
13070         sc->state = BXE_STATE_ERROR;
13071         goto bxe_nic_load_error3;
13072     }
13073 
13074 #if 0
13075     if (IS_PF(sc) && sc->pending_max) {
13076         /* for AFEX */
13077         bxe_update_max_mf_config(sc, sc->pending_max);
13078         sc->pending_max = 0;
13079     }
13080 #endif
13081 
13082     if (sc->port.pmf) {
13083         rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
13084         if (rc) {
13085             sc->state = BXE_STATE_ERROR;
13086             goto bxe_nic_load_error3;
13087         }
13088     }
13089 
13090     sc->link_params.feature_config_flags &=
13091         ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
13092 
13093     /* start fast path */
13094 
13095     /* Initialize Rx filter */
13096     bxe_set_rx_mode(sc);
13097 
13098     /* start the Tx */
13099     switch (/* XXX load_mode */LOAD_OPEN) {
13100     case LOAD_NORMAL:
13101     case LOAD_OPEN:
13102         break;
13103 
13104     case LOAD_DIAG:
13105     case LOAD_LOOPBACK_EXT:
13106         sc->state = BXE_STATE_DIAG;
13107         break;
13108 
13109     default:
13110         break;
13111     }
13112 
13113     if (sc->port.pmf) {
13114         bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
13115     } else {
13116         bxe_link_status_update(sc);
13117     }
13118 
13119     /* start the periodic timer callout */
13120     bxe_periodic_start(sc);
13121 
13122     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
13123         /* mark driver is loaded in shmem2 */
13124         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
13125         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
13126                   (val |
13127                    DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
13128                    DRV_FLAGS_CAPABILITIES_LOADED_L2));
13129     }
13130 
13131     /* wait for all pending SP commands to complete */
13132     if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
13133         BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
13134         bxe_periodic_stop(sc);
13135         bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
13136         return (ENXIO);
13137     }
13138 
13139 #if 0
13140     /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
13141     if (sc->port.pmf && (sc->state != BXE_STATE_DIAG)) {
13142         bxe_dcbx_init(sc, FALSE);
13143     }
13144 #endif
13145 
13146     /* Tell the stack the driver is running! */
13147     sc->ifnet->if_drv_flags = IFF_DRV_RUNNING;
13148 
13149     BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
13150 
13151     return (0);
13152 
13153 bxe_nic_load_error3:
13154 
13155     if (IS_PF(sc)) {
13156         bxe_int_disable_sync(sc, 1);
13157 
13158         /* clean out queued objects */
13159         bxe_squeeze_objects(sc);
13160     }
13161 
13162     bxe_interrupt_detach(sc);
13163 
13164 bxe_nic_load_error2:
13165 
13166     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
13167         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
13168         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
13169     }
13170 
13171     sc->port.pmf = 0;
13172 
13173 bxe_nic_load_error1:
13174 
13175     /* clear pf_load status, as it was already set */
13176     if (IS_PF(sc)) {
13177         bxe_clear_pf_load(sc);
13178     }
13179 
13180 bxe_nic_load_error0:
13181 
13182     bxe_free_fw_stats_mem(sc);
13183     bxe_free_fp_buffers(sc);
13184     bxe_free_mem(sc);
13185 
13186     return (rc);
13187 }
13188 
13189 static int
13190 bxe_init_locked(struct bxe_softc *sc)
13191 {
13192     int other_engine = SC_PATH(sc) ? 0 : 1;
13193     uint8_t other_load_status, load_status;
13194     uint8_t global = FALSE;
13195     int rc;
13196 
13197     BXE_CORE_LOCK_ASSERT(sc);
13198 
13199     /* check if the driver is already running */
13200     if (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING) {
13201         BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
13202         return (0);
13203     }
13204 
13205     bxe_set_power_state(sc, PCI_PM_D0);
13206 
13207     /*
13208      * If parity occurred during the unload, then attentions and/or
13209      * RECOVERY_IN_PROGRES may still be set. If so we want the first function
13210      * loaded on the current engine to complete the recovery. Parity recovery
13211      * is only relevant for PF driver.
13212      */
13213     if (IS_PF(sc)) {
13214         other_load_status = bxe_get_load_status(sc, other_engine);
13215         load_status = bxe_get_load_status(sc, SC_PATH(sc));
13216 
13217         if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
13218             bxe_chk_parity_attn(sc, &global, TRUE)) {
13219             do {
13220                 /*
13221                  * If there are attentions and they are in global blocks, set
13222                  * the GLOBAL_RESET bit regardless whether it will be this
13223                  * function that will complete the recovery or not.
13224                  */
13225                 if (global) {
13226                     bxe_set_reset_global(sc);
13227                 }
13228 
13229                 /*
13230                  * Only the first function on the current engine should try
13231                  * to recover in open. In case of attentions in global blocks
13232                  * only the first in the chip should try to recover.
13233                  */
13234                 if ((!load_status && (!global || !other_load_status)) &&
13235                     bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
13236                     BLOGI(sc, "Recovered during init\n");
13237                     break;
13238                 }
13239 
13240                 /* recovery has failed... */
13241                 bxe_set_power_state(sc, PCI_PM_D3hot);
13242                 sc->recovery_state = BXE_RECOVERY_FAILED;
13243 
13244                 BLOGE(sc, "Recovery flow hasn't properly "
13245                           "completed yet, try again later. "
13246                           "If you still see this message after a "
13247                           "few retries then power cycle is required.\n");
13248 
13249                 rc = ENXIO;
13250                 goto bxe_init_locked_done;
13251             } while (0);
13252         }
13253     }
13254 
13255     sc->recovery_state = BXE_RECOVERY_DONE;
13256 
13257     rc = bxe_nic_load(sc, LOAD_OPEN);
13258 
13259 bxe_init_locked_done:
13260 
13261     if (rc) {
13262         /* Tell the stack the driver is NOT running! */
13263         BLOGE(sc, "Initialization failed, "
13264                   "stack notified driver is NOT running!\n");
13265         sc->ifnet->if_drv_flags &= ~IFF_DRV_RUNNING;
13266     }
13267 
13268     return (rc);
13269 }
13270 
13271 static int
13272 bxe_stop_locked(struct bxe_softc *sc)
13273 {
13274     BXE_CORE_LOCK_ASSERT(sc);
13275     return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
13276 }
13277 
13278 /*
13279  * Handles controller initialization when called from an unlocked routine.
13280  * ifconfig calls this function.
13281  *
13282  * Returns:
13283  *   void
13284  */
13285 static void
13286 bxe_init(void *xsc)
13287 {
13288     struct bxe_softc *sc = (struct bxe_softc *)xsc;
13289 
13290     BXE_CORE_LOCK(sc);
13291     bxe_init_locked(sc);
13292     BXE_CORE_UNLOCK(sc);
13293 }
13294 
13295 static int
13296 bxe_init_ifnet(struct bxe_softc *sc)
13297 {
13298     struct ifnet *ifp;
13299 
13300     /* ifconfig entrypoint for media type/status reporting */
13301     ifmedia_init(&sc->ifmedia, IFM_IMASK,
13302                  bxe_ifmedia_update,
13303                  bxe_ifmedia_status);
13304 
13305     /* set the default interface values */
13306     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
13307     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
13308     ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
13309 
13310     sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
13311 
13312     /* allocate the ifnet structure */
13313     if ((ifp = if_alloc(IFT_ETHER)) == NULL) {
13314         BLOGE(sc, "Interface allocation failed!\n");
13315         return (ENXIO);
13316     }
13317 
13318     ifp->if_softc = sc;
13319     if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
13320     ifp->if_flags = (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
13321     ifp->if_ioctl = bxe_ioctl;
13322     ifp->if_start = bxe_tx_start;
13323 #if __FreeBSD_version >= 800000
13324     ifp->if_transmit = bxe_tx_mq_start;
13325     ifp->if_qflush = bxe_mq_flush;
13326 #endif
13327 #ifdef FreeBSD8_0
13328     ifp->if_timer = 0;
13329 #endif
13330     ifp->if_init = bxe_init;
13331     ifp->if_mtu = sc->mtu;
13332     ifp->if_hwassist = (CSUM_IP       |
13333                         CSUM_TCP      |
13334                         CSUM_UDP      |
13335                         CSUM_TSO      |
13336                         CSUM_TCP_IPV6 |
13337                         CSUM_UDP_IPV6);
13338     ifp->if_capabilities =
13339 #if __FreeBSD_version < 700000
13340         (IFCAP_VLAN_MTU       |
13341          IFCAP_VLAN_HWTAGGING |
13342          IFCAP_HWCSUM         |
13343          IFCAP_JUMBO_MTU      |
13344          IFCAP_LRO);
13345 #else
13346         (IFCAP_VLAN_MTU       |
13347          IFCAP_VLAN_HWTAGGING |
13348          IFCAP_VLAN_HWTSO     |
13349          IFCAP_VLAN_HWFILTER  |
13350          IFCAP_VLAN_HWCSUM    |
13351          IFCAP_HWCSUM         |
13352          IFCAP_JUMBO_MTU      |
13353          IFCAP_LRO            |
13354          IFCAP_TSO4           |
13355          IFCAP_TSO6           |
13356          IFCAP_WOL_MAGIC);
13357 #endif
13358     ifp->if_capenable = ifp->if_capabilities;
13359     ifp->if_capenable &= ~IFCAP_WOL_MAGIC; /* XXX not yet... */
13360 #if __FreeBSD_version < 1000025
13361     ifp->if_baudrate = 1000000000;
13362 #else
13363     if_initbaudrate(ifp, IF_Gbps(10));
13364 #endif
13365     ifp->if_snd.ifq_drv_maxlen = sc->tx_ring_size;
13366 
13367     IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
13368     IFQ_SET_READY(&ifp->if_snd);
13369 
13370     sc->ifnet = ifp;
13371 
13372     /* attach to the Ethernet interface list */
13373     ether_ifattach(ifp, sc->link_params.mac_addr);
13374 
13375     return (0);
13376 }
13377 
13378 static void
13379 bxe_deallocate_bars(struct bxe_softc *sc)
13380 {
13381     int i;
13382 
13383     for (i = 0; i < MAX_BARS; i++) {
13384         if (sc->bar[i].resource != NULL) {
13385             bus_release_resource(sc->dev,
13386                                  SYS_RES_MEMORY,
13387                                  sc->bar[i].rid,
13388                                  sc->bar[i].resource);
13389             BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
13390                   i, PCIR_BAR(i));
13391         }
13392     }
13393 }
13394 
13395 static int
13396 bxe_allocate_bars(struct bxe_softc *sc)
13397 {
13398     u_int flags;
13399     int i;
13400 
13401     memset(sc->bar, 0, sizeof(sc->bar));
13402 
13403     for (i = 0; i < MAX_BARS; i++) {
13404 
13405         /* memory resources reside at BARs 0, 2, 4 */
13406         /* Run `pciconf -lb` to see mappings */
13407         if ((i != 0) && (i != 2) && (i != 4)) {
13408             continue;
13409         }
13410 
13411         sc->bar[i].rid = PCIR_BAR(i);
13412 
13413         flags = RF_ACTIVE;
13414         if (i == 0) {
13415             flags |= RF_SHAREABLE;
13416         }
13417 
13418         if ((sc->bar[i].resource =
13419              bus_alloc_resource_any(sc->dev,
13420                                     SYS_RES_MEMORY,
13421                                     &sc->bar[i].rid,
13422                                     flags)) == NULL) {
13423 #if 0
13424             /* BAR4 doesn't exist for E1 */
13425             BLOGE(sc, "PCI BAR%d [%02x] memory allocation failed\n",
13426                   i, PCIR_BAR(i));
13427 #endif
13428             return (0);
13429         }
13430 
13431         sc->bar[i].tag    = rman_get_bustag(sc->bar[i].resource);
13432         sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
13433         sc->bar[i].kva    = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
13434 
13435         BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%ld) -> %p\n",
13436               i, PCIR_BAR(i),
13437               (void *)rman_get_start(sc->bar[i].resource),
13438               (void *)rman_get_end(sc->bar[i].resource),
13439               rman_get_size(sc->bar[i].resource),
13440               (void *)sc->bar[i].kva);
13441     }
13442 
13443     return (0);
13444 }
13445 
13446 static void
13447 bxe_get_function_num(struct bxe_softc *sc)
13448 {
13449     uint32_t val = 0;
13450 
13451     /*
13452      * Read the ME register to get the function number. The ME register
13453      * holds the relative-function number and absolute-function number. The
13454      * absolute-function number appears only in E2 and above. Before that
13455      * these bits always contained zero, therefore we cannot blindly use them.
13456      */
13457 
13458     val = REG_RD(sc, BAR_ME_REGISTER);
13459 
13460     sc->pfunc_rel =
13461         (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
13462     sc->path_id =
13463         (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
13464 
13465     if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13466         sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
13467     } else {
13468         sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
13469     }
13470 
13471     BLOGD(sc, DBG_LOAD,
13472           "Relative function %d, Absolute function %d, Path %d\n",
13473           sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
13474 }
13475 
13476 static uint32_t
13477 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
13478 {
13479     uint32_t shmem2_size;
13480     uint32_t offset;
13481     uint32_t mf_cfg_offset_value;
13482 
13483     /* Non 57712 */
13484     offset = (SHMEM_RD(sc, func_mb) +
13485               (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
13486 
13487     /* 57712 plus */
13488     if (sc->devinfo.shmem2_base != 0) {
13489         shmem2_size = SHMEM2_RD(sc, size);
13490         if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
13491             mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
13492             if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
13493                 offset = mf_cfg_offset_value;
13494             }
13495         }
13496     }
13497 
13498     return (offset);
13499 }
13500 
13501 static uint32_t
13502 bxe_pcie_capability_read(struct bxe_softc *sc,
13503                          int    reg,
13504                          int    width)
13505 {
13506     int pcie_reg;
13507 
13508     /* ensure PCIe capability is enabled */
13509     if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
13510         if (pcie_reg != 0) {
13511             BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
13512             return (pci_read_config(sc->dev, (pcie_reg + reg), width));
13513         }
13514     }
13515 
13516     BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
13517 
13518     return (0);
13519 }
13520 
13521 static uint8_t
13522 bxe_is_pcie_pending(struct bxe_softc *sc)
13523 {
13524     return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) &
13525             PCIM_EXP_STA_TRANSACTION_PND);
13526 }
13527 
13528 /*
13529  * Walk the PCI capabiites list for the device to find what features are
13530  * supported. These capabilites may be enabled/disabled by firmware so it's
13531  * best to walk the list rather than make assumptions.
13532  */
13533 static void
13534 bxe_probe_pci_caps(struct bxe_softc *sc)
13535 {
13536     uint16_t link_status;
13537     int reg;
13538 
13539     /* check if PCI Power Management is enabled */
13540     if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
13541         if (reg != 0) {
13542             BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
13543 
13544             sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
13545             sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
13546         }
13547     }
13548 
13549     link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2);
13550 
13551     /* handle PCIe 2.0 workarounds for 57710 */
13552     if (CHIP_IS_E1(sc)) {
13553         /* workaround for 57710 errata E4_57710_27462 */
13554         sc->devinfo.pcie_link_speed =
13555             (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
13556 
13557         /* workaround for 57710 errata E4_57710_27488 */
13558         sc->devinfo.pcie_link_width =
13559             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13560         if (sc->devinfo.pcie_link_speed > 1) {
13561             sc->devinfo.pcie_link_width =
13562                 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1;
13563         }
13564     } else {
13565         sc->devinfo.pcie_link_speed =
13566             (link_status & PCIM_LINK_STA_SPEED);
13567         sc->devinfo.pcie_link_width =
13568             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13569     }
13570 
13571     BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
13572           sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
13573 
13574     sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
13575     sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
13576 
13577     /* check if MSI capability is enabled */
13578     if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
13579         if (reg != 0) {
13580             BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
13581 
13582             sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
13583             sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
13584         }
13585     }
13586 
13587     /* check if MSI-X capability is enabled */
13588     if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
13589         if (reg != 0) {
13590             BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
13591 
13592             sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
13593             sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
13594         }
13595     }
13596 }
13597 
13598 static int
13599 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
13600 {
13601     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13602     uint32_t val;
13603 
13604     /* get the outer vlan if we're in switch-dependent mode */
13605 
13606     val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13607     mf_info->ext_id = (uint16_t)val;
13608 
13609     mf_info->multi_vnics_mode = 1;
13610 
13611     if (!VALID_OVLAN(mf_info->ext_id)) {
13612         BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
13613         return (1);
13614     }
13615 
13616     /* get the capabilities */
13617     if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13618         FUNC_MF_CFG_PROTOCOL_ISCSI) {
13619         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
13620     } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13621                FUNC_MF_CFG_PROTOCOL_FCOE) {
13622         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
13623     } else {
13624         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
13625     }
13626 
13627     mf_info->vnics_per_port =
13628         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13629 
13630     return (0);
13631 }
13632 
13633 static uint32_t
13634 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
13635 {
13636     uint32_t retval = 0;
13637     uint32_t val;
13638 
13639     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13640 
13641     if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
13642         if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
13643             retval |= MF_PROTO_SUPPORT_ETHERNET;
13644         }
13645         if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
13646             retval |= MF_PROTO_SUPPORT_ISCSI;
13647         }
13648         if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
13649             retval |= MF_PROTO_SUPPORT_FCOE;
13650         }
13651     }
13652 
13653     return (retval);
13654 }
13655 
13656 static int
13657 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
13658 {
13659     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13660     uint32_t val;
13661 
13662     /*
13663      * There is no outer vlan if we're in switch-independent mode.
13664      * If the mac is valid then assume multi-function.
13665      */
13666 
13667     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13668 
13669     mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
13670 
13671     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13672 
13673     mf_info->vnics_per_port =
13674         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13675 
13676     return (0);
13677 }
13678 
13679 static int
13680 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13681 {
13682     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13683     uint32_t e1hov_tag;
13684     uint32_t func_config;
13685     uint32_t niv_config;
13686 
13687     mf_info->multi_vnics_mode = 1;
13688 
13689     e1hov_tag   = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13690     func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13691     niv_config  = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13692 
13693     mf_info->ext_id =
13694         (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13695                    FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13696 
13697     mf_info->default_vlan =
13698         (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13699                    FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13700 
13701     mf_info->niv_allowed_priorities =
13702         (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13703                   FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13704 
13705     mf_info->niv_default_cos =
13706         (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13707                   FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13708 
13709     mf_info->afex_vlan_mode =
13710         ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13711          FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13712 
13713     mf_info->niv_mba_enabled =
13714         ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13715          FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13716 
13717     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13718 
13719     mf_info->vnics_per_port =
13720         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13721 
13722     return (0);
13723 }
13724 
13725 static int
13726 bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13727 {
13728     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13729     uint32_t mf_cfg1;
13730     uint32_t mf_cfg2;
13731     uint32_t ovlan1;
13732     uint32_t ovlan2;
13733     uint8_t i, j;
13734 
13735     BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13736           SC_PORT(sc));
13737     BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13738           mf_info->mf_config[SC_VN(sc)]);
13739     BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13740           mf_info->multi_vnics_mode);
13741     BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13742           mf_info->vnics_per_port);
13743     BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13744           mf_info->ext_id);
13745     BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13746           mf_info->min_bw[0], mf_info->min_bw[1],
13747           mf_info->min_bw[2], mf_info->min_bw[3]);
13748     BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13749           mf_info->max_bw[0], mf_info->max_bw[1],
13750           mf_info->max_bw[2], mf_info->max_bw[3]);
13751     BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13752           sc->mac_addr_str);
13753 
13754     /* various MF mode sanity checks... */
13755 
13756     if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13757         BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13758               SC_PORT(sc));
13759         return (1);
13760     }
13761 
13762     if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13763         BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13764               mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13765         return (1);
13766     }
13767 
13768     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13769         /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13770         if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13771             BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13772                   SC_VN(sc), OVLAN(sc));
13773             return (1);
13774         }
13775 
13776         if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13777             BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13778                   mf_info->multi_vnics_mode, OVLAN(sc));
13779             return (1);
13780         }
13781 
13782         /*
13783          * Verify all functions are either MF or SF mode. If MF, make sure
13784          * sure that all non-hidden functions have a valid ovlan. If SF,
13785          * make sure that all non-hidden functions have an invalid ovlan.
13786          */
13787         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13788             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13789             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13790             if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13791                 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13792                  ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13793                 BLOGE(sc, "mf_mode=SD function %d MF config "
13794                           "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13795                       i, mf_info->multi_vnics_mode, ovlan1);
13796                 return (1);
13797             }
13798         }
13799 
13800         /* Verify all funcs on the same port each have a different ovlan. */
13801         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13802             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13803             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13804             /* iterate from the next function on the port to the max func */
13805             for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13806                 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13807                 ovlan2  = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13808                 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13809                     VALID_OVLAN(ovlan1) &&
13810                     !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13811                     VALID_OVLAN(ovlan2) &&
13812                     (ovlan1 == ovlan2)) {
13813                     BLOGE(sc, "mf_mode=SD functions %d and %d "
13814                               "have the same ovlan (%d)\n",
13815                           i, j, ovlan1);
13816                     return (1);
13817                 }
13818             }
13819         }
13820     } /* MULTI_FUNCTION_SD */
13821 
13822     return (0);
13823 }
13824 
13825 static int
13826 bxe_get_mf_cfg_info(struct bxe_softc *sc)
13827 {
13828     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13829     uint32_t val, mac_upper;
13830     uint8_t i, vnic;
13831 
13832     /* initialize mf_info defaults */
13833     mf_info->vnics_per_port   = 1;
13834     mf_info->multi_vnics_mode = FALSE;
13835     mf_info->path_has_ovlan   = FALSE;
13836     mf_info->mf_mode          = SINGLE_FUNCTION;
13837 
13838     if (!CHIP_IS_MF_CAP(sc)) {
13839         return (0);
13840     }
13841 
13842     if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13843         BLOGE(sc, "Invalid mf_cfg_base!\n");
13844         return (1);
13845     }
13846 
13847     /* get the MF mode (switch dependent / independent / single-function) */
13848 
13849     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13850 
13851     switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13852     {
13853     case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13854 
13855         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13856 
13857         /* check for legal upper mac bytes */
13858         if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13859             mf_info->mf_mode = MULTI_FUNCTION_SI;
13860         } else {
13861             BLOGE(sc, "Invalid config for Switch Independent mode\n");
13862         }
13863 
13864         break;
13865 
13866     case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13867     case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13868 
13869         /* get outer vlan configuration */
13870         val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13871 
13872         if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13873             FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13874             mf_info->mf_mode = MULTI_FUNCTION_SD;
13875         } else {
13876             BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13877         }
13878 
13879         break;
13880 
13881     case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13882 
13883         /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13884         return (0);
13885 
13886     case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13887 
13888         /*
13889          * Mark MF mode as NIV if MCP version includes NPAR-SD support
13890          * and the MAC address is valid.
13891          */
13892         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13893 
13894         if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13895             (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13896             mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13897         } else {
13898             BLOGE(sc, "Invalid config for AFEX mode\n");
13899         }
13900 
13901         break;
13902 
13903     default:
13904 
13905         BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13906               (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13907 
13908         return (1);
13909     }
13910 
13911     /* set path mf_mode (which could be different than function mf_mode) */
13912     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13913         mf_info->path_has_ovlan = TRUE;
13914     } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13915         /*
13916          * Decide on path multi vnics mode. If we're not in MF mode and in
13917          * 4-port mode, this is good enough to check vnic-0 of the other port
13918          * on the same path
13919          */
13920         if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13921             uint8_t other_port = !(PORT_ID(sc) & 1);
13922             uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13923 
13924             val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13925 
13926             mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13927         }
13928     }
13929 
13930     if (mf_info->mf_mode == SINGLE_FUNCTION) {
13931         /* invalid MF config */
13932         if (SC_VN(sc) >= 1) {
13933             BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13934             return (1);
13935         }
13936 
13937         return (0);
13938     }
13939 
13940     /* get the MF configuration */
13941     mf_info->mf_config[SC_VN(sc)] =
13942         MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13943 
13944     switch(mf_info->mf_mode)
13945     {
13946     case MULTI_FUNCTION_SD:
13947 
13948         bxe_get_shmem_mf_cfg_info_sd(sc);
13949         break;
13950 
13951     case MULTI_FUNCTION_SI:
13952 
13953         bxe_get_shmem_mf_cfg_info_si(sc);
13954         break;
13955 
13956     case MULTI_FUNCTION_AFEX:
13957 
13958         bxe_get_shmem_mf_cfg_info_niv(sc);
13959         break;
13960 
13961     default:
13962 
13963         BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13964               mf_info->mf_mode);
13965         return (1);
13966     }
13967 
13968     /* get the congestion management parameters */
13969 
13970     vnic = 0;
13971     FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13972         /* get min/max bw */
13973         val = MFCFG_RD(sc, func_mf_config[i].config);
13974         mf_info->min_bw[vnic] =
13975             ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13976         mf_info->max_bw[vnic] =
13977             ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13978         vnic++;
13979     }
13980 
13981     return (bxe_check_valid_mf_cfg(sc));
13982 }
13983 
13984 static int
13985 bxe_get_shmem_info(struct bxe_softc *sc)
13986 {
13987     int port;
13988     uint32_t mac_hi, mac_lo, val;
13989 
13990     port = SC_PORT(sc);
13991     mac_hi = mac_lo = 0;
13992 
13993     sc->link_params.sc   = sc;
13994     sc->link_params.port = port;
13995 
13996     /* get the hardware config info */
13997     sc->devinfo.hw_config =
13998         SHMEM_RD(sc, dev_info.shared_hw_config.config);
13999     sc->devinfo.hw_config2 =
14000         SHMEM_RD(sc, dev_info.shared_hw_config.config2);
14001 
14002     sc->link_params.hw_led_mode =
14003         ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
14004          SHARED_HW_CFG_LED_MODE_SHIFT);
14005 
14006     /* get the port feature config */
14007     sc->port.config =
14008         SHMEM_RD(sc, dev_info.port_feature_config[port].config),
14009 
14010     /* get the link params */
14011     sc->link_params.speed_cap_mask[0] =
14012         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
14013     sc->link_params.speed_cap_mask[1] =
14014         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
14015 
14016     /* get the lane config */
14017     sc->link_params.lane_config =
14018         SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
14019 
14020     /* get the link config */
14021     val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
14022     sc->port.link_config[ELINK_INT_PHY] = val;
14023     sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
14024     sc->port.link_config[ELINK_EXT_PHY1] =
14025         SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
14026 
14027     /* get the override preemphasis flag and enable it or turn it off */
14028     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
14029     if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
14030         sc->link_params.feature_config_flags |=
14031             ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
14032     } else {
14033         sc->link_params.feature_config_flags &=
14034             ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
14035     }
14036 
14037     /* get the initial value of the link params */
14038     sc->link_params.multi_phy_config =
14039         SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
14040 
14041     /* get external phy info */
14042     sc->port.ext_phy_config =
14043         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
14044 
14045     /* get the multifunction configuration */
14046     bxe_get_mf_cfg_info(sc);
14047 
14048     /* get the mac address */
14049     if (IS_MF(sc)) {
14050         mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
14051         mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
14052     } else {
14053         mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
14054         mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
14055     }
14056 
14057     if ((mac_lo == 0) && (mac_hi == 0)) {
14058         *sc->mac_addr_str = 0;
14059         BLOGE(sc, "No Ethernet address programmed!\n");
14060     } else {
14061         sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
14062         sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
14063         sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
14064         sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
14065         sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
14066         sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
14067         snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
14068                  "%02x:%02x:%02x:%02x:%02x:%02x",
14069                  sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
14070                  sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
14071                  sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
14072         BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
14073     }
14074 
14075 #if 0
14076     if (!IS_MF(sc) &&
14077         ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14078          PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE)) {
14079         sc->flags |= BXE_NO_ISCSI;
14080     }
14081     if (!IS_MF(sc) &&
14082         ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14083          PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI)) {
14084         sc->flags |= BXE_NO_FCOE_FLAG;
14085     }
14086 #endif
14087 
14088     return (0);
14089 }
14090 
14091 static void
14092 bxe_get_tunable_params(struct bxe_softc *sc)
14093 {
14094     /* sanity checks */
14095 
14096     if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
14097         (bxe_interrupt_mode != INTR_MODE_MSI)  &&
14098         (bxe_interrupt_mode != INTR_MODE_MSIX)) {
14099         BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
14100         bxe_interrupt_mode = INTR_MODE_MSIX;
14101     }
14102 
14103     if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
14104         BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
14105         bxe_queue_count = 0;
14106     }
14107 
14108     if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
14109         if (bxe_max_rx_bufs == 0) {
14110             bxe_max_rx_bufs = RX_BD_USABLE;
14111         } else {
14112             BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
14113             bxe_max_rx_bufs = 2048;
14114         }
14115     }
14116 
14117     if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
14118         BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
14119         bxe_hc_rx_ticks = 25;
14120     }
14121 
14122     if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
14123         BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
14124         bxe_hc_tx_ticks = 50;
14125     }
14126 
14127     if (bxe_max_aggregation_size == 0) {
14128         bxe_max_aggregation_size = TPA_AGG_SIZE;
14129     }
14130 
14131     if (bxe_max_aggregation_size > 0xffff) {
14132         BLOGW(sc, "invalid max_aggregation_size (%d)\n",
14133               bxe_max_aggregation_size);
14134         bxe_max_aggregation_size = TPA_AGG_SIZE;
14135     }
14136 
14137     if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
14138         BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
14139         bxe_mrrs = -1;
14140     }
14141 
14142     if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
14143         BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
14144         bxe_autogreeen = 0;
14145     }
14146 
14147     if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
14148         BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
14149         bxe_udp_rss = 0;
14150     }
14151 
14152     /* pull in user settings */
14153 
14154     sc->interrupt_mode       = bxe_interrupt_mode;
14155     sc->max_rx_bufs          = bxe_max_rx_bufs;
14156     sc->hc_rx_ticks          = bxe_hc_rx_ticks;
14157     sc->hc_tx_ticks          = bxe_hc_tx_ticks;
14158     sc->max_aggregation_size = bxe_max_aggregation_size;
14159     sc->mrrs                 = bxe_mrrs;
14160     sc->autogreeen           = bxe_autogreeen;
14161     sc->udp_rss              = bxe_udp_rss;
14162 
14163     if (bxe_interrupt_mode == INTR_MODE_INTX) {
14164         sc->num_queues = 1;
14165     } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
14166         sc->num_queues =
14167             min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
14168                 MAX_RSS_CHAINS);
14169         if (sc->num_queues > mp_ncpus) {
14170             sc->num_queues = mp_ncpus;
14171         }
14172     }
14173 
14174     BLOGD(sc, DBG_LOAD,
14175           "User Config: "
14176           "debug=0x%x "
14177           "interrupt_mode=%d "
14178           "queue_count=%d "
14179           "hc_rx_ticks=%d "
14180           "hc_tx_ticks=%d "
14181           "rx_budget=%d "
14182           "max_aggregation_size=%d "
14183           "mrrs=%d "
14184           "autogreeen=%d "
14185           "udp_rss=%d\n",
14186           bxe_debug,
14187           sc->interrupt_mode,
14188           sc->num_queues,
14189           sc->hc_rx_ticks,
14190           sc->hc_tx_ticks,
14191           bxe_rx_budget,
14192           sc->max_aggregation_size,
14193           sc->mrrs,
14194           sc->autogreeen,
14195           sc->udp_rss);
14196 }
14197 
14198 static void
14199 bxe_media_detect(struct bxe_softc *sc)
14200 {
14201     uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
14202     switch (sc->link_params.phy[phy_idx].media_type) {
14203     case ELINK_ETH_PHY_SFPP_10G_FIBER:
14204     case ELINK_ETH_PHY_XFP_FIBER:
14205         BLOGI(sc, "Found 10Gb Fiber media.\n");
14206         sc->media = IFM_10G_SR;
14207         break;
14208     case ELINK_ETH_PHY_SFP_1G_FIBER:
14209         BLOGI(sc, "Found 1Gb Fiber media.\n");
14210         sc->media = IFM_1000_SX;
14211         break;
14212     case ELINK_ETH_PHY_KR:
14213     case ELINK_ETH_PHY_CX4:
14214         BLOGI(sc, "Found 10GBase-CX4 media.\n");
14215         sc->media = IFM_10G_CX4;
14216         break;
14217     case ELINK_ETH_PHY_DA_TWINAX:
14218         BLOGI(sc, "Found 10Gb Twinax media.\n");
14219         sc->media = IFM_10G_TWINAX;
14220         break;
14221     case ELINK_ETH_PHY_BASE_T:
14222         if (sc->link_params.speed_cap_mask[0] &
14223             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
14224             BLOGI(sc, "Found 10GBase-T media.\n");
14225             sc->media = IFM_10G_T;
14226         } else {
14227             BLOGI(sc, "Found 1000Base-T media.\n");
14228             sc->media = IFM_1000_T;
14229         }
14230         break;
14231     case ELINK_ETH_PHY_NOT_PRESENT:
14232         BLOGI(sc, "Media not present.\n");
14233         sc->media = 0;
14234         break;
14235     case ELINK_ETH_PHY_UNSPECIFIED:
14236     default:
14237         BLOGI(sc, "Unknown media!\n");
14238         sc->media = 0;
14239         break;
14240     }
14241 }
14242 
14243 #define GET_FIELD(value, fname)                     \
14244     (((value) & (fname##_MASK)) >> (fname##_SHIFT))
14245 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
14246 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
14247 
14248 static int
14249 bxe_get_igu_cam_info(struct bxe_softc *sc)
14250 {
14251     int pfid = SC_FUNC(sc);
14252     int igu_sb_id;
14253     uint32_t val;
14254     uint8_t fid, igu_sb_cnt = 0;
14255 
14256     sc->igu_base_sb = 0xff;
14257 
14258     if (CHIP_INT_MODE_IS_BC(sc)) {
14259         int vn = SC_VN(sc);
14260         igu_sb_cnt = sc->igu_sb_cnt;
14261         sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
14262                            FP_SB_MAX_E1x);
14263         sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
14264                           (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
14265         return (0);
14266     }
14267 
14268     /* IGU in normal mode - read CAM */
14269     for (igu_sb_id = 0;
14270          igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
14271          igu_sb_id++) {
14272         val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
14273         if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
14274             continue;
14275         }
14276         fid = IGU_FID(val);
14277         if ((fid & IGU_FID_ENCODE_IS_PF)) {
14278             if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
14279                 continue;
14280             }
14281             if (IGU_VEC(val) == 0) {
14282                 /* default status block */
14283                 sc->igu_dsb_id = igu_sb_id;
14284             } else {
14285                 if (sc->igu_base_sb == 0xff) {
14286                     sc->igu_base_sb = igu_sb_id;
14287                 }
14288                 igu_sb_cnt++;
14289             }
14290         }
14291     }
14292 
14293     /*
14294      * Due to new PF resource allocation by MFW T7.4 and above, it's optional
14295      * that number of CAM entries will not be equal to the value advertised in
14296      * PCI. Driver should use the minimal value of both as the actual status
14297      * block count
14298      */
14299     sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
14300 
14301     if (igu_sb_cnt == 0) {
14302         BLOGE(sc, "CAM configuration error\n");
14303         return (-1);
14304     }
14305 
14306     return (0);
14307 }
14308 
14309 /*
14310  * Gather various information from the device config space, the device itself,
14311  * shmem, and the user input.
14312  */
14313 static int
14314 bxe_get_device_info(struct bxe_softc *sc)
14315 {
14316     uint32_t val;
14317     int rc;
14318 
14319     /* Get the data for the device */
14320     sc->devinfo.vendor_id    = pci_get_vendor(sc->dev);
14321     sc->devinfo.device_id    = pci_get_device(sc->dev);
14322     sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
14323     sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
14324 
14325     /* get the chip revision (chip metal comes from pci config space) */
14326     sc->devinfo.chip_id     =
14327     sc->link_params.chip_id =
14328         (((REG_RD(sc, MISC_REG_CHIP_NUM)                   & 0xffff) << 16) |
14329          ((REG_RD(sc, MISC_REG_CHIP_REV)                   & 0xf)    << 12) |
14330          (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf)    << 4)  |
14331          ((REG_RD(sc, MISC_REG_BOND_ID)                    & 0xf)    << 0));
14332 
14333     /* force 57811 according to MISC register */
14334     if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
14335         if (CHIP_IS_57810(sc)) {
14336             sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
14337                                    (sc->devinfo.chip_id & 0x0000ffff));
14338         } else if (CHIP_IS_57810_MF(sc)) {
14339             sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
14340                                    (sc->devinfo.chip_id & 0x0000ffff));
14341         }
14342         sc->devinfo.chip_id |= 0x1;
14343     }
14344 
14345     BLOGD(sc, DBG_LOAD,
14346           "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
14347           sc->devinfo.chip_id,
14348           ((sc->devinfo.chip_id >> 16) & 0xffff),
14349           ((sc->devinfo.chip_id >> 12) & 0xf),
14350           ((sc->devinfo.chip_id >>  4) & 0xff),
14351           ((sc->devinfo.chip_id >>  0) & 0xf));
14352 
14353     val = (REG_RD(sc, 0x2874) & 0x55);
14354     if ((sc->devinfo.chip_id & 0x1) ||
14355         (CHIP_IS_E1(sc) && val) ||
14356         (CHIP_IS_E1H(sc) && (val == 0x55))) {
14357         sc->flags |= BXE_ONE_PORT_FLAG;
14358         BLOGD(sc, DBG_LOAD, "single port device\n");
14359     }
14360 
14361     /* set the doorbell size */
14362     sc->doorbell_size = (1 << BXE_DB_SHIFT);
14363 
14364     /* determine whether the device is in 2 port or 4 port mode */
14365     sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
14366     if (CHIP_IS_E2E3(sc)) {
14367         /*
14368          * Read port4mode_en_ovwr[0]:
14369          *   If 1, four port mode is in port4mode_en_ovwr[1].
14370          *   If 0, four port mode is in port4mode_en[0].
14371          */
14372         val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
14373         if (val & 1) {
14374             val = ((val >> 1) & 1);
14375         } else {
14376             val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
14377         }
14378 
14379         sc->devinfo.chip_port_mode =
14380             (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
14381 
14382         BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
14383     }
14384 
14385     /* get the function and path info for the device */
14386     bxe_get_function_num(sc);
14387 
14388     /* get the shared memory base address */
14389     sc->devinfo.shmem_base     =
14390     sc->link_params.shmem_base =
14391         REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
14392     sc->devinfo.shmem2_base =
14393         REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
14394                                   MISC_REG_GENERIC_CR_0));
14395 
14396     BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
14397           sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
14398 
14399     if (!sc->devinfo.shmem_base) {
14400         /* this should ONLY prevent upcoming shmem reads */
14401         BLOGI(sc, "MCP not active\n");
14402         sc->flags |= BXE_NO_MCP_FLAG;
14403         return (0);
14404     }
14405 
14406     /* make sure the shared memory contents are valid */
14407     val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
14408     if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
14409         (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
14410         BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
14411         return (0);
14412     }
14413     BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
14414 
14415     /* get the bootcode version */
14416     sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
14417     snprintf(sc->devinfo.bc_ver_str,
14418              sizeof(sc->devinfo.bc_ver_str),
14419              "%d.%d.%d",
14420              ((sc->devinfo.bc_ver >> 24) & 0xff),
14421              ((sc->devinfo.bc_ver >> 16) & 0xff),
14422              ((sc->devinfo.bc_ver >>  8) & 0xff));
14423     BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
14424 
14425     /* get the bootcode shmem address */
14426     sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
14427     BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
14428 
14429     /* clean indirect addresses as they're not used */
14430     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
14431     if (IS_PF(sc)) {
14432         REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
14433         REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
14434         REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
14435         REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
14436         if (CHIP_IS_E1x(sc)) {
14437             REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
14438             REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
14439             REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
14440             REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
14441         }
14442 
14443         /*
14444          * Enable internal target-read (in case we are probed after PF
14445          * FLR). Must be done prior to any BAR read access. Only for
14446          * 57712 and up
14447          */
14448         if (!CHIP_IS_E1x(sc)) {
14449             REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
14450         }
14451     }
14452 
14453     /* get the nvram size */
14454     val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
14455     sc->devinfo.flash_size =
14456         (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
14457     BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
14458 
14459     /* get PCI capabilites */
14460     bxe_probe_pci_caps(sc);
14461 
14462     bxe_set_power_state(sc, PCI_PM_D0);
14463 
14464     /* get various configuration parameters from shmem */
14465     bxe_get_shmem_info(sc);
14466 
14467     if (sc->devinfo.pcie_msix_cap_reg != 0) {
14468         val = pci_read_config(sc->dev,
14469                               (sc->devinfo.pcie_msix_cap_reg +
14470                                PCIR_MSIX_CTRL),
14471                               2);
14472         sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
14473     } else {
14474         sc->igu_sb_cnt = 1;
14475     }
14476 
14477     sc->igu_base_addr = BAR_IGU_INTMEM;
14478 
14479     /* initialize IGU parameters */
14480     if (CHIP_IS_E1x(sc)) {
14481         sc->devinfo.int_block = INT_BLOCK_HC;
14482         sc->igu_dsb_id = DEF_SB_IGU_ID;
14483         sc->igu_base_sb = 0;
14484     } else {
14485         sc->devinfo.int_block = INT_BLOCK_IGU;
14486 
14487         /* do not allow device reset during IGU info preocessing */
14488         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14489 
14490         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
14491 
14492         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14493             int tout = 5000;
14494 
14495             BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
14496 
14497             val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
14498             REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
14499             REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
14500 
14501             while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14502                 tout--;
14503                 DELAY(1000);
14504             }
14505 
14506             if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14507                 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
14508                 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14509                 return (-1);
14510             }
14511         }
14512 
14513         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14514             BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
14515             sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
14516         } else {
14517             BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
14518         }
14519 
14520         rc = bxe_get_igu_cam_info(sc);
14521 
14522         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14523 
14524         if (rc) {
14525             return (rc);
14526         }
14527     }
14528 
14529     /*
14530      * Get base FW non-default (fast path) status block ID. This value is
14531      * used to initialize the fw_sb_id saved on the fp/queue structure to
14532      * determine the id used by the FW.
14533      */
14534     if (CHIP_IS_E1x(sc)) {
14535         sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
14536     } else {
14537         /*
14538          * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
14539          * the same queue are indicated on the same IGU SB). So we prefer
14540          * FW and IGU SBs to be the same value.
14541          */
14542         sc->base_fw_ndsb = sc->igu_base_sb;
14543     }
14544 
14545     BLOGD(sc, DBG_LOAD,
14546           "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
14547           sc->igu_dsb_id, sc->igu_base_sb,
14548           sc->igu_sb_cnt, sc->base_fw_ndsb);
14549 
14550     elink_phy_probe(&sc->link_params);
14551 
14552     return (0);
14553 }
14554 
14555 static void
14556 bxe_link_settings_supported(struct bxe_softc *sc,
14557                             uint32_t         switch_cfg)
14558 {
14559     uint32_t cfg_size = 0;
14560     uint32_t idx;
14561     uint8_t port = SC_PORT(sc);
14562 
14563     /* aggregation of supported attributes of all external phys */
14564     sc->port.supported[0] = 0;
14565     sc->port.supported[1] = 0;
14566 
14567     switch (sc->link_params.num_phys) {
14568     case 1:
14569         sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
14570         cfg_size = 1;
14571         break;
14572     case 2:
14573         sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
14574         cfg_size = 1;
14575         break;
14576     case 3:
14577         if (sc->link_params.multi_phy_config &
14578             PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
14579             sc->port.supported[1] =
14580                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
14581             sc->port.supported[0] =
14582                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
14583         } else {
14584             sc->port.supported[0] =
14585                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
14586             sc->port.supported[1] =
14587                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
14588         }
14589         cfg_size = 2;
14590         break;
14591     }
14592 
14593     if (!(sc->port.supported[0] || sc->port.supported[1])) {
14594         BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
14595               SHMEM_RD(sc,
14596                        dev_info.port_hw_config[port].external_phy_config),
14597               SHMEM_RD(sc,
14598                        dev_info.port_hw_config[port].external_phy_config2));
14599         return;
14600     }
14601 
14602     if (CHIP_IS_E3(sc))
14603         sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
14604     else {
14605         switch (switch_cfg) {
14606         case ELINK_SWITCH_CFG_1G:
14607             sc->port.phy_addr =
14608                 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
14609             break;
14610         case ELINK_SWITCH_CFG_10G:
14611             sc->port.phy_addr =
14612                 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
14613             break;
14614         default:
14615             BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
14616                   sc->port.link_config[0]);
14617             return;
14618         }
14619     }
14620 
14621     BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
14622 
14623     /* mask what we support according to speed_cap_mask per configuration */
14624     for (idx = 0; idx < cfg_size; idx++) {
14625         if (!(sc->link_params.speed_cap_mask[idx] &
14626               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
14627             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
14628         }
14629 
14630         if (!(sc->link_params.speed_cap_mask[idx] &
14631               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
14632             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
14633         }
14634 
14635         if (!(sc->link_params.speed_cap_mask[idx] &
14636               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
14637             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
14638         }
14639 
14640         if (!(sc->link_params.speed_cap_mask[idx] &
14641               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
14642             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
14643         }
14644 
14645         if (!(sc->link_params.speed_cap_mask[idx] &
14646               PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
14647             sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
14648         }
14649 
14650         if (!(sc->link_params.speed_cap_mask[idx] &
14651               PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
14652             sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
14653         }
14654 
14655         if (!(sc->link_params.speed_cap_mask[idx] &
14656               PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
14657             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
14658         }
14659 
14660         if (!(sc->link_params.speed_cap_mask[idx] &
14661               PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
14662             sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
14663         }
14664     }
14665 
14666     BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
14667           sc->port.supported[0], sc->port.supported[1]);
14668 }
14669 
14670 static void
14671 bxe_link_settings_requested(struct bxe_softc *sc)
14672 {
14673     uint32_t link_config;
14674     uint32_t idx;
14675     uint32_t cfg_size = 0;
14676 
14677     sc->port.advertising[0] = 0;
14678     sc->port.advertising[1] = 0;
14679 
14680     switch (sc->link_params.num_phys) {
14681     case 1:
14682     case 2:
14683         cfg_size = 1;
14684         break;
14685     case 3:
14686         cfg_size = 2;
14687         break;
14688     }
14689 
14690     for (idx = 0; idx < cfg_size; idx++) {
14691         sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14692         link_config = sc->port.link_config[idx];
14693 
14694         switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14695         case PORT_FEATURE_LINK_SPEED_AUTO:
14696             if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14697                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14698                 sc->port.advertising[idx] |= sc->port.supported[idx];
14699                 if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14700                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14701                     sc->port.advertising[idx] |=
14702                         (ELINK_SUPPORTED_100baseT_Half |
14703                          ELINK_SUPPORTED_100baseT_Full);
14704             } else {
14705                 /* force 10G, no AN */
14706                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14707                 sc->port.advertising[idx] |=
14708                     (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14709                 continue;
14710             }
14711             break;
14712 
14713         case PORT_FEATURE_LINK_SPEED_10M_FULL:
14714             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14715                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14716                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14717                                               ADVERTISED_TP);
14718             } else {
14719                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14720                           "speed_cap_mask=0x%08x\n",
14721                       link_config, sc->link_params.speed_cap_mask[idx]);
14722                 return;
14723             }
14724             break;
14725 
14726         case PORT_FEATURE_LINK_SPEED_10M_HALF:
14727             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14728                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14729                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14730                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14731                                               ADVERTISED_TP);
14732             } else {
14733                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14734                           "speed_cap_mask=0x%08x\n",
14735                       link_config, sc->link_params.speed_cap_mask[idx]);
14736                 return;
14737             }
14738             break;
14739 
14740         case PORT_FEATURE_LINK_SPEED_100M_FULL:
14741             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14742                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14743                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14744                                               ADVERTISED_TP);
14745             } else {
14746                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14747                           "speed_cap_mask=0x%08x\n",
14748                       link_config, sc->link_params.speed_cap_mask[idx]);
14749                 return;
14750             }
14751             break;
14752 
14753         case PORT_FEATURE_LINK_SPEED_100M_HALF:
14754             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14755                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14756                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14757                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14758                                               ADVERTISED_TP);
14759             } else {
14760                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14761                           "speed_cap_mask=0x%08x\n",
14762                       link_config, sc->link_params.speed_cap_mask[idx]);
14763                 return;
14764             }
14765             break;
14766 
14767         case PORT_FEATURE_LINK_SPEED_1G:
14768             if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14769                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14770                 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14771                                               ADVERTISED_TP);
14772             } else {
14773                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14774                           "speed_cap_mask=0x%08x\n",
14775                       link_config, sc->link_params.speed_cap_mask[idx]);
14776                 return;
14777             }
14778             break;
14779 
14780         case PORT_FEATURE_LINK_SPEED_2_5G:
14781             if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14782                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14783                 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14784                                               ADVERTISED_TP);
14785             } else {
14786                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14787                           "speed_cap_mask=0x%08x\n",
14788                       link_config, sc->link_params.speed_cap_mask[idx]);
14789                 return;
14790             }
14791             break;
14792 
14793         case PORT_FEATURE_LINK_SPEED_10G_CX4:
14794             if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14795                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14796                 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14797                                               ADVERTISED_FIBRE);
14798             } else {
14799                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14800                           "speed_cap_mask=0x%08x\n",
14801                       link_config, sc->link_params.speed_cap_mask[idx]);
14802                 return;
14803             }
14804             break;
14805 
14806         case PORT_FEATURE_LINK_SPEED_20G:
14807             sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14808             break;
14809 
14810         default:
14811             BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14812                       "speed_cap_mask=0x%08x\n",
14813                   link_config, sc->link_params.speed_cap_mask[idx]);
14814             sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14815             sc->port.advertising[idx] = sc->port.supported[idx];
14816             break;
14817         }
14818 
14819         sc->link_params.req_flow_ctrl[idx] =
14820             (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14821 
14822         if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14823             if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14824                 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14825             } else {
14826                 bxe_set_requested_fc(sc);
14827             }
14828         }
14829 
14830         BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14831                             "req_flow_ctrl=0x%x advertising=0x%x\n",
14832               sc->link_params.req_line_speed[idx],
14833               sc->link_params.req_duplex[idx],
14834               sc->link_params.req_flow_ctrl[idx],
14835               sc->port.advertising[idx]);
14836     }
14837 }
14838 
14839 static void
14840 bxe_get_phy_info(struct bxe_softc *sc)
14841 {
14842     uint8_t port = SC_PORT(sc);
14843     uint32_t config = sc->port.config;
14844     uint32_t eee_mode;
14845 
14846     /* shmem data already read in bxe_get_shmem_info() */
14847 
14848     BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14849                         "link_config0=0x%08x\n",
14850                sc->link_params.lane_config,
14851                sc->link_params.speed_cap_mask[0],
14852                sc->port.link_config[0]);
14853 
14854     bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14855     bxe_link_settings_requested(sc);
14856 
14857     if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14858         sc->link_params.feature_config_flags |=
14859             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14860     } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14861         sc->link_params.feature_config_flags &=
14862             ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14863     } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14864         sc->link_params.feature_config_flags |=
14865             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14866     }
14867 
14868     /* configure link feature according to nvram value */
14869     eee_mode =
14870         (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14871           PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14872          PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14873     if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14874         sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14875                                     ELINK_EEE_MODE_ENABLE_LPI |
14876                                     ELINK_EEE_MODE_OUTPUT_TIME);
14877     } else {
14878         sc->link_params.eee_mode = 0;
14879     }
14880 
14881     /* get the media type */
14882     bxe_media_detect(sc);
14883 }
14884 
14885 static void
14886 bxe_get_params(struct bxe_softc *sc)
14887 {
14888     /* get user tunable params */
14889     bxe_get_tunable_params(sc);
14890 
14891     /* select the RX and TX ring sizes */
14892     sc->tx_ring_size = TX_BD_USABLE;
14893     sc->rx_ring_size = RX_BD_USABLE;
14894 
14895     /* XXX disable WoL */
14896     sc->wol = 0;
14897 }
14898 
14899 static void
14900 bxe_set_modes_bitmap(struct bxe_softc *sc)
14901 {
14902     uint32_t flags = 0;
14903 
14904     if (CHIP_REV_IS_FPGA(sc)) {
14905         SET_FLAGS(flags, MODE_FPGA);
14906     } else if (CHIP_REV_IS_EMUL(sc)) {
14907         SET_FLAGS(flags, MODE_EMUL);
14908     } else {
14909         SET_FLAGS(flags, MODE_ASIC);
14910     }
14911 
14912     if (CHIP_IS_MODE_4_PORT(sc)) {
14913         SET_FLAGS(flags, MODE_PORT4);
14914     } else {
14915         SET_FLAGS(flags, MODE_PORT2);
14916     }
14917 
14918     if (CHIP_IS_E2(sc)) {
14919         SET_FLAGS(flags, MODE_E2);
14920     } else if (CHIP_IS_E3(sc)) {
14921         SET_FLAGS(flags, MODE_E3);
14922         if (CHIP_REV(sc) == CHIP_REV_Ax) {
14923             SET_FLAGS(flags, MODE_E3_A0);
14924         } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14925             SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14926         }
14927     }
14928 
14929     if (IS_MF(sc)) {
14930         SET_FLAGS(flags, MODE_MF);
14931         switch (sc->devinfo.mf_info.mf_mode) {
14932         case MULTI_FUNCTION_SD:
14933             SET_FLAGS(flags, MODE_MF_SD);
14934             break;
14935         case MULTI_FUNCTION_SI:
14936             SET_FLAGS(flags, MODE_MF_SI);
14937             break;
14938         case MULTI_FUNCTION_AFEX:
14939             SET_FLAGS(flags, MODE_MF_AFEX);
14940             break;
14941         }
14942     } else {
14943         SET_FLAGS(flags, MODE_SF);
14944     }
14945 
14946 #if defined(__LITTLE_ENDIAN)
14947     SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14948 #else /* __BIG_ENDIAN */
14949     SET_FLAGS(flags, MODE_BIG_ENDIAN);
14950 #endif
14951 
14952     INIT_MODE_FLAGS(sc) = flags;
14953 }
14954 
14955 static int
14956 bxe_alloc_hsi_mem(struct bxe_softc *sc)
14957 {
14958     struct bxe_fastpath *fp;
14959     bus_addr_t busaddr;
14960     int max_agg_queues;
14961     int max_segments;
14962     bus_size_t max_size;
14963     bus_size_t max_seg_size;
14964     char buf[32];
14965     int rc;
14966     int i, j;
14967 
14968     /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14969 
14970     /* allocate the parent bus DMA tag */
14971     rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14972                             1,                        /* alignment */
14973                             0,                        /* boundary limit */
14974                             BUS_SPACE_MAXADDR,        /* restricted low */
14975                             BUS_SPACE_MAXADDR,        /* restricted hi */
14976                             NULL,                     /* addr filter() */
14977                             NULL,                     /* addr filter() arg */
14978                             BUS_SPACE_MAXSIZE_32BIT,  /* max map size */
14979                             BUS_SPACE_UNRESTRICTED,   /* num discontinuous */
14980                             BUS_SPACE_MAXSIZE_32BIT,  /* max seg size */
14981                             0,                        /* flags */
14982                             NULL,                     /* lock() */
14983                             NULL,                     /* lock() arg */
14984                             &sc->parent_dma_tag);     /* returned dma tag */
14985     if (rc != 0) {
14986         BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14987         return (1);
14988     }
14989 
14990     /************************/
14991     /* DEFAULT STATUS BLOCK */
14992     /************************/
14993 
14994     if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14995                       &sc->def_sb_dma, "default status block") != 0) {
14996         /* XXX */
14997         bus_dma_tag_destroy(sc->parent_dma_tag);
14998         return (1);
14999     }
15000 
15001     sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
15002 
15003     /***************/
15004     /* EVENT QUEUE */
15005     /***************/
15006 
15007     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
15008                       &sc->eq_dma, "event queue") != 0) {
15009         /* XXX */
15010         bxe_dma_free(sc, &sc->def_sb_dma);
15011         sc->def_sb = NULL;
15012         bus_dma_tag_destroy(sc->parent_dma_tag);
15013         return (1);
15014     }
15015 
15016     sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
15017 
15018     /*************/
15019     /* SLOW PATH */
15020     /*************/
15021 
15022     if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
15023                       &sc->sp_dma, "slow path") != 0) {
15024         /* XXX */
15025         bxe_dma_free(sc, &sc->eq_dma);
15026         sc->eq = NULL;
15027         bxe_dma_free(sc, &sc->def_sb_dma);
15028         sc->def_sb = NULL;
15029         bus_dma_tag_destroy(sc->parent_dma_tag);
15030         return (1);
15031     }
15032 
15033     sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
15034 
15035     /*******************/
15036     /* SLOW PATH QUEUE */
15037     /*******************/
15038 
15039     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
15040                       &sc->spq_dma, "slow path queue") != 0) {
15041         /* XXX */
15042         bxe_dma_free(sc, &sc->sp_dma);
15043         sc->sp = NULL;
15044         bxe_dma_free(sc, &sc->eq_dma);
15045         sc->eq = NULL;
15046         bxe_dma_free(sc, &sc->def_sb_dma);
15047         sc->def_sb = NULL;
15048         bus_dma_tag_destroy(sc->parent_dma_tag);
15049         return (1);
15050     }
15051 
15052     sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
15053 
15054     /***************************/
15055     /* FW DECOMPRESSION BUFFER */
15056     /***************************/
15057 
15058     if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
15059                       "fw decompression buffer") != 0) {
15060         /* XXX */
15061         bxe_dma_free(sc, &sc->spq_dma);
15062         sc->spq = NULL;
15063         bxe_dma_free(sc, &sc->sp_dma);
15064         sc->sp = NULL;
15065         bxe_dma_free(sc, &sc->eq_dma);
15066         sc->eq = NULL;
15067         bxe_dma_free(sc, &sc->def_sb_dma);
15068         sc->def_sb = NULL;
15069         bus_dma_tag_destroy(sc->parent_dma_tag);
15070         return (1);
15071     }
15072 
15073     sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
15074 
15075     if ((sc->gz_strm =
15076          malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
15077         /* XXX */
15078         bxe_dma_free(sc, &sc->gz_buf_dma);
15079         sc->gz_buf = NULL;
15080         bxe_dma_free(sc, &sc->spq_dma);
15081         sc->spq = NULL;
15082         bxe_dma_free(sc, &sc->sp_dma);
15083         sc->sp = NULL;
15084         bxe_dma_free(sc, &sc->eq_dma);
15085         sc->eq = NULL;
15086         bxe_dma_free(sc, &sc->def_sb_dma);
15087         sc->def_sb = NULL;
15088         bus_dma_tag_destroy(sc->parent_dma_tag);
15089         return (1);
15090     }
15091 
15092     /*************/
15093     /* FASTPATHS */
15094     /*************/
15095 
15096     /* allocate DMA memory for each fastpath structure */
15097     for (i = 0; i < sc->num_queues; i++) {
15098         fp = &sc->fp[i];
15099         fp->sc    = sc;
15100         fp->index = i;
15101 
15102         /*******************/
15103         /* FP STATUS BLOCK */
15104         /*******************/
15105 
15106         snprintf(buf, sizeof(buf), "fp %d status block", i);
15107         if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
15108                           &fp->sb_dma, buf) != 0) {
15109             /* XXX unwind and free previous fastpath allocations */
15110             BLOGE(sc, "Failed to alloc %s\n", buf);
15111             return (1);
15112         } else {
15113             if (CHIP_IS_E2E3(sc)) {
15114                 fp->status_block.e2_sb =
15115                     (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
15116             } else {
15117                 fp->status_block.e1x_sb =
15118                     (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
15119             }
15120         }
15121 
15122         /******************/
15123         /* FP TX BD CHAIN */
15124         /******************/
15125 
15126         snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
15127         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
15128                           &fp->tx_dma, buf) != 0) {
15129             /* XXX unwind and free previous fastpath allocations */
15130             BLOGE(sc, "Failed to alloc %s\n", buf);
15131             return (1);
15132         } else {
15133             fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
15134         }
15135 
15136         /* link together the tx bd chain pages */
15137         for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
15138             /* index into the tx bd chain array to last entry per page */
15139             struct eth_tx_next_bd *tx_next_bd =
15140                 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
15141             /* point to the next page and wrap from last page */
15142             busaddr = (fp->tx_dma.paddr +
15143                        (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
15144             tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
15145             tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
15146         }
15147 
15148         /******************/
15149         /* FP RX BD CHAIN */
15150         /******************/
15151 
15152         snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
15153         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
15154                           &fp->rx_dma, buf) != 0) {
15155             /* XXX unwind and free previous fastpath allocations */
15156             BLOGE(sc, "Failed to alloc %s\n", buf);
15157             return (1);
15158         } else {
15159             fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
15160         }
15161 
15162         /* link together the rx bd chain pages */
15163         for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
15164             /* index into the rx bd chain array to last entry per page */
15165             struct eth_rx_bd *rx_bd =
15166                 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
15167             /* point to the next page and wrap from last page */
15168             busaddr = (fp->rx_dma.paddr +
15169                        (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
15170             rx_bd->addr_hi = htole32(U64_HI(busaddr));
15171             rx_bd->addr_lo = htole32(U64_LO(busaddr));
15172         }
15173 
15174         /*******************/
15175         /* FP RX RCQ CHAIN */
15176         /*******************/
15177 
15178         snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
15179         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
15180                           &fp->rcq_dma, buf) != 0) {
15181             /* XXX unwind and free previous fastpath allocations */
15182             BLOGE(sc, "Failed to alloc %s\n", buf);
15183             return (1);
15184         } else {
15185             fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
15186         }
15187 
15188         /* link together the rcq chain pages */
15189         for (j = 1; j <= RCQ_NUM_PAGES; j++) {
15190             /* index into the rcq chain array to last entry per page */
15191             struct eth_rx_cqe_next_page *rx_cqe_next =
15192                 (struct eth_rx_cqe_next_page *)
15193                 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
15194             /* point to the next page and wrap from last page */
15195             busaddr = (fp->rcq_dma.paddr +
15196                        (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
15197             rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
15198             rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
15199         }
15200 
15201         /*******************/
15202         /* FP RX SGE CHAIN */
15203         /*******************/
15204 
15205         snprintf(buf, sizeof(buf), "fp %d sge chain", i);
15206         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
15207                           &fp->rx_sge_dma, buf) != 0) {
15208             /* XXX unwind and free previous fastpath allocations */
15209             BLOGE(sc, "Failed to alloc %s\n", buf);
15210             return (1);
15211         } else {
15212             fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
15213         }
15214 
15215         /* link together the sge chain pages */
15216         for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
15217             /* index into the rcq chain array to last entry per page */
15218             struct eth_rx_sge *rx_sge =
15219                 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
15220             /* point to the next page and wrap from last page */
15221             busaddr = (fp->rx_sge_dma.paddr +
15222                        (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
15223             rx_sge->addr_hi = htole32(U64_HI(busaddr));
15224             rx_sge->addr_lo = htole32(U64_LO(busaddr));
15225         }
15226 
15227         /***********************/
15228         /* FP TX MBUF DMA MAPS */
15229         /***********************/
15230 
15231         /* set required sizes before mapping to conserve resources */
15232         if (sc->ifnet->if_capenable & (IFCAP_TSO4 | IFCAP_TSO6)) {
15233             max_size     = BXE_TSO_MAX_SIZE;
15234             max_segments = BXE_TSO_MAX_SEGMENTS;
15235             max_seg_size = BXE_TSO_MAX_SEG_SIZE;
15236         } else {
15237             max_size     = (MCLBYTES * BXE_MAX_SEGMENTS);
15238             max_segments = BXE_MAX_SEGMENTS;
15239             max_seg_size = MCLBYTES;
15240         }
15241 
15242         /* create a dma tag for the tx mbufs */
15243         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15244                                 1,                  /* alignment */
15245                                 0,                  /* boundary limit */
15246                                 BUS_SPACE_MAXADDR,  /* restricted low */
15247                                 BUS_SPACE_MAXADDR,  /* restricted hi */
15248                                 NULL,               /* addr filter() */
15249                                 NULL,               /* addr filter() arg */
15250                                 max_size,           /* max map size */
15251                                 max_segments,       /* num discontinuous */
15252                                 max_seg_size,       /* max seg size */
15253                                 0,                  /* flags */
15254                                 NULL,               /* lock() */
15255                                 NULL,               /* lock() arg */
15256                                 &fp->tx_mbuf_tag);  /* returned dma tag */
15257         if (rc != 0) {
15258             /* XXX unwind and free previous fastpath allocations */
15259             BLOGE(sc, "Failed to create dma tag for "
15260                       "'fp %d tx mbufs' (%d)\n",
15261                   i, rc);
15262             return (1);
15263         }
15264 
15265         /* create dma maps for each of the tx mbuf clusters */
15266         for (j = 0; j < TX_BD_TOTAL; j++) {
15267             if (bus_dmamap_create(fp->tx_mbuf_tag,
15268                                   BUS_DMA_NOWAIT,
15269                                   &fp->tx_mbuf_chain[j].m_map)) {
15270                 /* XXX unwind and free previous fastpath allocations */
15271                 BLOGE(sc, "Failed to create dma map for "
15272                           "'fp %d tx mbuf %d' (%d)\n",
15273                       i, j, rc);
15274                 return (1);
15275             }
15276         }
15277 
15278         /***********************/
15279         /* FP RX MBUF DMA MAPS */
15280         /***********************/
15281 
15282         /* create a dma tag for the rx mbufs */
15283         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15284                                 1,                  /* alignment */
15285                                 0,                  /* boundary limit */
15286                                 BUS_SPACE_MAXADDR,  /* restricted low */
15287                                 BUS_SPACE_MAXADDR,  /* restricted hi */
15288                                 NULL,               /* addr filter() */
15289                                 NULL,               /* addr filter() arg */
15290                                 MJUM9BYTES,         /* max map size */
15291                                 1,                  /* num discontinuous */
15292                                 MJUM9BYTES,         /* max seg size */
15293                                 0,                  /* flags */
15294                                 NULL,               /* lock() */
15295                                 NULL,               /* lock() arg */
15296                                 &fp->rx_mbuf_tag);  /* returned dma tag */
15297         if (rc != 0) {
15298             /* XXX unwind and free previous fastpath allocations */
15299             BLOGE(sc, "Failed to create dma tag for "
15300                       "'fp %d rx mbufs' (%d)\n",
15301                   i, rc);
15302             return (1);
15303         }
15304 
15305         /* create dma maps for each of the rx mbuf clusters */
15306         for (j = 0; j < RX_BD_TOTAL; j++) {
15307             if (bus_dmamap_create(fp->rx_mbuf_tag,
15308                                   BUS_DMA_NOWAIT,
15309                                   &fp->rx_mbuf_chain[j].m_map)) {
15310                 /* XXX unwind and free previous fastpath allocations */
15311                 BLOGE(sc, "Failed to create dma map for "
15312                           "'fp %d rx mbuf %d' (%d)\n",
15313                       i, j, rc);
15314                 return (1);
15315             }
15316         }
15317 
15318         /* create dma map for the spare rx mbuf cluster */
15319         if (bus_dmamap_create(fp->rx_mbuf_tag,
15320                               BUS_DMA_NOWAIT,
15321                               &fp->rx_mbuf_spare_map)) {
15322             /* XXX unwind and free previous fastpath allocations */
15323             BLOGE(sc, "Failed to create dma map for "
15324                       "'fp %d spare rx mbuf' (%d)\n",
15325                   i, rc);
15326             return (1);
15327         }
15328 
15329         /***************************/
15330         /* FP RX SGE MBUF DMA MAPS */
15331         /***************************/
15332 
15333         /* create a dma tag for the rx sge mbufs */
15334         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15335                                 1,                  /* alignment */
15336                                 0,                  /* boundary limit */
15337                                 BUS_SPACE_MAXADDR,  /* restricted low */
15338                                 BUS_SPACE_MAXADDR,  /* restricted hi */
15339                                 NULL,               /* addr filter() */
15340                                 NULL,               /* addr filter() arg */
15341                                 BCM_PAGE_SIZE,      /* max map size */
15342                                 1,                  /* num discontinuous */
15343                                 BCM_PAGE_SIZE,      /* max seg size */
15344                                 0,                  /* flags */
15345                                 NULL,               /* lock() */
15346                                 NULL,               /* lock() arg */
15347                                 &fp->rx_sge_mbuf_tag); /* returned dma tag */
15348         if (rc != 0) {
15349             /* XXX unwind and free previous fastpath allocations */
15350             BLOGE(sc, "Failed to create dma tag for "
15351                       "'fp %d rx sge mbufs' (%d)\n",
15352                   i, rc);
15353             return (1);
15354         }
15355 
15356         /* create dma maps for the rx sge mbuf clusters */
15357         for (j = 0; j < RX_SGE_TOTAL; j++) {
15358             if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15359                                   BUS_DMA_NOWAIT,
15360                                   &fp->rx_sge_mbuf_chain[j].m_map)) {
15361                 /* XXX unwind and free previous fastpath allocations */
15362                 BLOGE(sc, "Failed to create dma map for "
15363                           "'fp %d rx sge mbuf %d' (%d)\n",
15364                       i, j, rc);
15365                 return (1);
15366             }
15367         }
15368 
15369         /* create dma map for the spare rx sge mbuf cluster */
15370         if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15371                               BUS_DMA_NOWAIT,
15372                               &fp->rx_sge_mbuf_spare_map)) {
15373             /* XXX unwind and free previous fastpath allocations */
15374             BLOGE(sc, "Failed to create dma map for "
15375                       "'fp %d spare rx sge mbuf' (%d)\n",
15376                   i, rc);
15377             return (1);
15378         }
15379 
15380         /***************************/
15381         /* FP RX TPA MBUF DMA MAPS */
15382         /***************************/
15383 
15384         /* create dma maps for the rx tpa mbuf clusters */
15385         max_agg_queues = MAX_AGG_QS(sc);
15386 
15387         for (j = 0; j < max_agg_queues; j++) {
15388             if (bus_dmamap_create(fp->rx_mbuf_tag,
15389                                   BUS_DMA_NOWAIT,
15390                                   &fp->rx_tpa_info[j].bd.m_map)) {
15391                 /* XXX unwind and free previous fastpath allocations */
15392                 BLOGE(sc, "Failed to create dma map for "
15393                           "'fp %d rx tpa mbuf %d' (%d)\n",
15394                       i, j, rc);
15395                 return (1);
15396             }
15397         }
15398 
15399         /* create dma map for the spare rx tpa mbuf cluster */
15400         if (bus_dmamap_create(fp->rx_mbuf_tag,
15401                               BUS_DMA_NOWAIT,
15402                               &fp->rx_tpa_info_mbuf_spare_map)) {
15403             /* XXX unwind and free previous fastpath allocations */
15404             BLOGE(sc, "Failed to create dma map for "
15405                       "'fp %d spare rx tpa mbuf' (%d)\n",
15406                   i, rc);
15407             return (1);
15408         }
15409 
15410         bxe_init_sge_ring_bit_mask(fp);
15411     }
15412 
15413     return (0);
15414 }
15415 
15416 static void
15417 bxe_free_hsi_mem(struct bxe_softc *sc)
15418 {
15419     struct bxe_fastpath *fp;
15420     int max_agg_queues;
15421     int i, j;
15422 
15423     if (sc->parent_dma_tag == NULL) {
15424         return; /* assume nothing was allocated */
15425     }
15426 
15427     for (i = 0; i < sc->num_queues; i++) {
15428         fp = &sc->fp[i];
15429 
15430         /*******************/
15431         /* FP STATUS BLOCK */
15432         /*******************/
15433 
15434         bxe_dma_free(sc, &fp->sb_dma);
15435         memset(&fp->status_block, 0, sizeof(fp->status_block));
15436 
15437         /******************/
15438         /* FP TX BD CHAIN */
15439         /******************/
15440 
15441         bxe_dma_free(sc, &fp->tx_dma);
15442         fp->tx_chain = NULL;
15443 
15444         /******************/
15445         /* FP RX BD CHAIN */
15446         /******************/
15447 
15448         bxe_dma_free(sc, &fp->rx_dma);
15449         fp->rx_chain = NULL;
15450 
15451         /*******************/
15452         /* FP RX RCQ CHAIN */
15453         /*******************/
15454 
15455         bxe_dma_free(sc, &fp->rcq_dma);
15456         fp->rcq_chain = NULL;
15457 
15458         /*******************/
15459         /* FP RX SGE CHAIN */
15460         /*******************/
15461 
15462         bxe_dma_free(sc, &fp->rx_sge_dma);
15463         fp->rx_sge_chain = NULL;
15464 
15465         /***********************/
15466         /* FP TX MBUF DMA MAPS */
15467         /***********************/
15468 
15469         if (fp->tx_mbuf_tag != NULL) {
15470             for (j = 0; j < TX_BD_TOTAL; j++) {
15471                 if (fp->tx_mbuf_chain[j].m_map != NULL) {
15472                     bus_dmamap_unload(fp->tx_mbuf_tag,
15473                                       fp->tx_mbuf_chain[j].m_map);
15474                     bus_dmamap_destroy(fp->tx_mbuf_tag,
15475                                        fp->tx_mbuf_chain[j].m_map);
15476                 }
15477             }
15478 
15479             bus_dma_tag_destroy(fp->tx_mbuf_tag);
15480             fp->tx_mbuf_tag = NULL;
15481         }
15482 
15483         /***********************/
15484         /* FP RX MBUF DMA MAPS */
15485         /***********************/
15486 
15487         if (fp->rx_mbuf_tag != NULL) {
15488             for (j = 0; j < RX_BD_TOTAL; j++) {
15489                 if (fp->rx_mbuf_chain[j].m_map != NULL) {
15490                     bus_dmamap_unload(fp->rx_mbuf_tag,
15491                                       fp->rx_mbuf_chain[j].m_map);
15492                     bus_dmamap_destroy(fp->rx_mbuf_tag,
15493                                        fp->rx_mbuf_chain[j].m_map);
15494                 }
15495             }
15496 
15497             if (fp->rx_mbuf_spare_map != NULL) {
15498                 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15499                 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15500             }
15501 
15502             /***************************/
15503             /* FP RX TPA MBUF DMA MAPS */
15504             /***************************/
15505 
15506             max_agg_queues = MAX_AGG_QS(sc);
15507 
15508             for (j = 0; j < max_agg_queues; j++) {
15509                 if (fp->rx_tpa_info[j].bd.m_map != NULL) {
15510                     bus_dmamap_unload(fp->rx_mbuf_tag,
15511                                       fp->rx_tpa_info[j].bd.m_map);
15512                     bus_dmamap_destroy(fp->rx_mbuf_tag,
15513                                        fp->rx_tpa_info[j].bd.m_map);
15514                 }
15515             }
15516 
15517             if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
15518                 bus_dmamap_unload(fp->rx_mbuf_tag,
15519                                   fp->rx_tpa_info_mbuf_spare_map);
15520                 bus_dmamap_destroy(fp->rx_mbuf_tag,
15521                                    fp->rx_tpa_info_mbuf_spare_map);
15522             }
15523 
15524             bus_dma_tag_destroy(fp->rx_mbuf_tag);
15525             fp->rx_mbuf_tag = NULL;
15526         }
15527 
15528         /***************************/
15529         /* FP RX SGE MBUF DMA MAPS */
15530         /***************************/
15531 
15532         if (fp->rx_sge_mbuf_tag != NULL) {
15533             for (j = 0; j < RX_SGE_TOTAL; j++) {
15534                 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
15535                     bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15536                                       fp->rx_sge_mbuf_chain[j].m_map);
15537                     bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15538                                        fp->rx_sge_mbuf_chain[j].m_map);
15539                 }
15540             }
15541 
15542             if (fp->rx_sge_mbuf_spare_map != NULL) {
15543                 bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15544                                   fp->rx_sge_mbuf_spare_map);
15545                 bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15546                                    fp->rx_sge_mbuf_spare_map);
15547             }
15548 
15549             bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
15550             fp->rx_sge_mbuf_tag = NULL;
15551         }
15552     }
15553 
15554     /***************************/
15555     /* FW DECOMPRESSION BUFFER */
15556     /***************************/
15557 
15558     bxe_dma_free(sc, &sc->gz_buf_dma);
15559     sc->gz_buf = NULL;
15560     free(sc->gz_strm, M_DEVBUF);
15561     sc->gz_strm = NULL;
15562 
15563     /*******************/
15564     /* SLOW PATH QUEUE */
15565     /*******************/
15566 
15567     bxe_dma_free(sc, &sc->spq_dma);
15568     sc->spq = NULL;
15569 
15570     /*************/
15571     /* SLOW PATH */
15572     /*************/
15573 
15574     bxe_dma_free(sc, &sc->sp_dma);
15575     sc->sp = NULL;
15576 
15577     /***************/
15578     /* EVENT QUEUE */
15579     /***************/
15580 
15581     bxe_dma_free(sc, &sc->eq_dma);
15582     sc->eq = NULL;
15583 
15584     /************************/
15585     /* DEFAULT STATUS BLOCK */
15586     /************************/
15587 
15588     bxe_dma_free(sc, &sc->def_sb_dma);
15589     sc->def_sb = NULL;
15590 
15591     bus_dma_tag_destroy(sc->parent_dma_tag);
15592     sc->parent_dma_tag = NULL;
15593 }
15594 
15595 /*
15596  * Previous driver DMAE transaction may have occurred when pre-boot stage
15597  * ended and boot began. This would invalidate the addresses of the
15598  * transaction, resulting in was-error bit set in the PCI causing all
15599  * hw-to-host PCIe transactions to timeout. If this happened we want to clear
15600  * the interrupt which detected this from the pglueb and the was-done bit
15601  */
15602 static void
15603 bxe_prev_interrupted_dmae(struct bxe_softc *sc)
15604 {
15605     uint32_t val;
15606 
15607     if (!CHIP_IS_E1x(sc)) {
15608         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
15609         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
15610             BLOGD(sc, DBG_LOAD,
15611                   "Clearing 'was-error' bit that was set in pglueb");
15612             REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
15613         }
15614     }
15615 }
15616 
15617 static int
15618 bxe_prev_mcp_done(struct bxe_softc *sc)
15619 {
15620     uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
15621                                  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
15622     if (!rc) {
15623         BLOGE(sc, "MCP response failure, aborting\n");
15624         return (-1);
15625     }
15626 
15627     return (0);
15628 }
15629 
15630 static struct bxe_prev_list_node *
15631 bxe_prev_path_get_entry(struct bxe_softc *sc)
15632 {
15633     struct bxe_prev_list_node *tmp;
15634 
15635     LIST_FOREACH(tmp, &bxe_prev_list, node) {
15636         if ((sc->pcie_bus == tmp->bus) &&
15637             (sc->pcie_device == tmp->slot) &&
15638             (SC_PATH(sc) == tmp->path)) {
15639             return (tmp);
15640         }
15641     }
15642 
15643     return (NULL);
15644 }
15645 
15646 static uint8_t
15647 bxe_prev_is_path_marked(struct bxe_softc *sc)
15648 {
15649     struct bxe_prev_list_node *tmp;
15650     int rc = FALSE;
15651 
15652     mtx_lock(&bxe_prev_mtx);
15653 
15654     tmp = bxe_prev_path_get_entry(sc);
15655     if (tmp) {
15656         if (tmp->aer) {
15657             BLOGD(sc, DBG_LOAD,
15658                   "Path %d/%d/%d was marked by AER\n",
15659                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15660         } else {
15661             rc = TRUE;
15662             BLOGD(sc, DBG_LOAD,
15663                   "Path %d/%d/%d was already cleaned from previous drivers\n",
15664                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15665         }
15666     }
15667 
15668     mtx_unlock(&bxe_prev_mtx);
15669 
15670     return (rc);
15671 }
15672 
15673 static int
15674 bxe_prev_mark_path(struct bxe_softc *sc,
15675                    uint8_t          after_undi)
15676 {
15677     struct bxe_prev_list_node *tmp;
15678 
15679     mtx_lock(&bxe_prev_mtx);
15680 
15681     /* Check whether the entry for this path already exists */
15682     tmp = bxe_prev_path_get_entry(sc);
15683     if (tmp) {
15684         if (!tmp->aer) {
15685             BLOGD(sc, DBG_LOAD,
15686                   "Re-marking AER in path %d/%d/%d\n",
15687                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15688         } else {
15689             BLOGD(sc, DBG_LOAD,
15690                   "Removing AER indication from path %d/%d/%d\n",
15691                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15692             tmp->aer = 0;
15693         }
15694 
15695         mtx_unlock(&bxe_prev_mtx);
15696         return (0);
15697     }
15698 
15699     mtx_unlock(&bxe_prev_mtx);
15700 
15701     /* Create an entry for this path and add it */
15702     tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15703                  (M_NOWAIT | M_ZERO));
15704     if (!tmp) {
15705         BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15706         return (-1);
15707     }
15708 
15709     tmp->bus  = sc->pcie_bus;
15710     tmp->slot = sc->pcie_device;
15711     tmp->path = SC_PATH(sc);
15712     tmp->aer  = 0;
15713     tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15714 
15715     mtx_lock(&bxe_prev_mtx);
15716 
15717     BLOGD(sc, DBG_LOAD,
15718           "Marked path %d/%d/%d - finished previous unload\n",
15719           sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15720     LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15721 
15722     mtx_unlock(&bxe_prev_mtx);
15723 
15724     return (0);
15725 }
15726 
15727 static int
15728 bxe_do_flr(struct bxe_softc *sc)
15729 {
15730     int i;
15731 
15732     /* only E2 and onwards support FLR */
15733     if (CHIP_IS_E1x(sc)) {
15734         BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15735         return (-1);
15736     }
15737 
15738     /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15739     if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15740         BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15741               sc->devinfo.bc_ver);
15742         return (-1);
15743     }
15744 
15745     /* Wait for Transaction Pending bit clean */
15746     for (i = 0; i < 4; i++) {
15747         if (i) {
15748             DELAY(((1 << (i - 1)) * 100) * 1000);
15749         }
15750 
15751         if (!bxe_is_pcie_pending(sc)) {
15752             goto clear;
15753         }
15754     }
15755 
15756     BLOGE(sc, "PCIE transaction is not cleared, "
15757               "proceeding with reset anyway\n");
15758 
15759 clear:
15760 
15761     BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15762     bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15763 
15764     return (0);
15765 }
15766 
15767 struct bxe_mac_vals {
15768     uint32_t xmac_addr;
15769     uint32_t xmac_val;
15770     uint32_t emac_addr;
15771     uint32_t emac_val;
15772     uint32_t umac_addr;
15773     uint32_t umac_val;
15774     uint32_t bmac_addr;
15775     uint32_t bmac_val[2];
15776 };
15777 
15778 static void
15779 bxe_prev_unload_close_mac(struct bxe_softc *sc,
15780                           struct bxe_mac_vals *vals)
15781 {
15782     uint32_t val, base_addr, offset, mask, reset_reg;
15783     uint8_t mac_stopped = FALSE;
15784     uint8_t port = SC_PORT(sc);
15785     uint32_t wb_data[2];
15786 
15787     /* reset addresses as they also mark which values were changed */
15788     vals->bmac_addr = 0;
15789     vals->umac_addr = 0;
15790     vals->xmac_addr = 0;
15791     vals->emac_addr = 0;
15792 
15793     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15794 
15795     if (!CHIP_IS_E3(sc)) {
15796         val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15797         mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15798         if ((mask & reset_reg) && val) {
15799             BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15800             base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15801                                     : NIG_REG_INGRESS_BMAC0_MEM;
15802             offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15803                                     : BIGMAC_REGISTER_BMAC_CONTROL;
15804 
15805             /*
15806              * use rd/wr since we cannot use dmae. This is safe
15807              * since MCP won't access the bus due to the request
15808              * to unload, and no function on the path can be
15809              * loaded at this time.
15810              */
15811             wb_data[0] = REG_RD(sc, base_addr + offset);
15812             wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15813             vals->bmac_addr = base_addr + offset;
15814             vals->bmac_val[0] = wb_data[0];
15815             vals->bmac_val[1] = wb_data[1];
15816             wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15817             REG_WR(sc, vals->bmac_addr, wb_data[0]);
15818             REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15819         }
15820 
15821         BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15822         vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15823         vals->emac_val = REG_RD(sc, vals->emac_addr);
15824         REG_WR(sc, vals->emac_addr, 0);
15825         mac_stopped = TRUE;
15826     } else {
15827         if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15828             BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15829             base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15830             val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15831             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15832             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15833             vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15834             vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15835             REG_WR(sc, vals->xmac_addr, 0);
15836             mac_stopped = TRUE;
15837         }
15838 
15839         mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15840         if (mask & reset_reg) {
15841             BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15842             base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15843             vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15844             vals->umac_val = REG_RD(sc, vals->umac_addr);
15845             REG_WR(sc, vals->umac_addr, 0);
15846             mac_stopped = TRUE;
15847         }
15848     }
15849 
15850     if (mac_stopped) {
15851         DELAY(20000);
15852     }
15853 }
15854 
15855 #define BXE_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15856 #define BXE_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
15857 #define BXE_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
15858 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15859 
15860 static void
15861 bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15862                          uint8_t          port,
15863                          uint8_t          inc)
15864 {
15865     uint16_t rcq, bd;
15866     uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15867 
15868     rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15869     bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15870 
15871     tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15872     REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15873 
15874     BLOGD(sc, DBG_LOAD,
15875           "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15876           port, bd, rcq);
15877 }
15878 
15879 static int
15880 bxe_prev_unload_common(struct bxe_softc *sc)
15881 {
15882     uint32_t reset_reg, tmp_reg = 0, rc;
15883     uint8_t prev_undi = FALSE;
15884     struct bxe_mac_vals mac_vals;
15885     uint32_t timer_count = 1000;
15886     uint32_t prev_brb;
15887 
15888     /*
15889      * It is possible a previous function received 'common' answer,
15890      * but hasn't loaded yet, therefore creating a scenario of
15891      * multiple functions receiving 'common' on the same path.
15892      */
15893     BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15894 
15895     memset(&mac_vals, 0, sizeof(mac_vals));
15896 
15897     if (bxe_prev_is_path_marked(sc)) {
15898         return (bxe_prev_mcp_done(sc));
15899     }
15900 
15901     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15902 
15903     /* Reset should be performed after BRB is emptied */
15904     if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15905         /* Close the MAC Rx to prevent BRB from filling up */
15906         bxe_prev_unload_close_mac(sc, &mac_vals);
15907 
15908         /* close LLH filters towards the BRB */
15909         elink_set_rx_filter(&sc->link_params, 0);
15910 
15911         /*
15912          * Check if the UNDI driver was previously loaded.
15913          * UNDI driver initializes CID offset for normal bell to 0x7
15914          */
15915         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15916             tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15917             if (tmp_reg == 0x7) {
15918                 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15919                 prev_undi = TRUE;
15920                 /* clear the UNDI indication */
15921                 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15922                 /* clear possible idle check errors */
15923                 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15924             }
15925         }
15926 
15927         /* wait until BRB is empty */
15928         tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15929         while (timer_count) {
15930             prev_brb = tmp_reg;
15931 
15932             tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15933             if (!tmp_reg) {
15934                 break;
15935             }
15936 
15937             BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15938 
15939             /* reset timer as long as BRB actually gets emptied */
15940             if (prev_brb > tmp_reg) {
15941                 timer_count = 1000;
15942             } else {
15943                 timer_count--;
15944             }
15945 
15946             /* If UNDI resides in memory, manually increment it */
15947             if (prev_undi) {
15948                 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15949             }
15950 
15951             DELAY(10);
15952         }
15953 
15954         if (!timer_count) {
15955             BLOGE(sc, "Failed to empty BRB\n");
15956         }
15957     }
15958 
15959     /* No packets are in the pipeline, path is ready for reset */
15960     bxe_reset_common(sc);
15961 
15962     if (mac_vals.xmac_addr) {
15963         REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15964     }
15965     if (mac_vals.umac_addr) {
15966         REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15967     }
15968     if (mac_vals.emac_addr) {
15969         REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15970     }
15971     if (mac_vals.bmac_addr) {
15972         REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15973         REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15974     }
15975 
15976     rc = bxe_prev_mark_path(sc, prev_undi);
15977     if (rc) {
15978         bxe_prev_mcp_done(sc);
15979         return (rc);
15980     }
15981 
15982     return (bxe_prev_mcp_done(sc));
15983 }
15984 
15985 static int
15986 bxe_prev_unload_uncommon(struct bxe_softc *sc)
15987 {
15988     int rc;
15989 
15990     BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15991 
15992     /* Test if previous unload process was already finished for this path */
15993     if (bxe_prev_is_path_marked(sc)) {
15994         return (bxe_prev_mcp_done(sc));
15995     }
15996 
15997     BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15998 
15999     /*
16000      * If function has FLR capabilities, and existing FW version matches
16001      * the one required, then FLR will be sufficient to clean any residue
16002      * left by previous driver
16003      */
16004     rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
16005     if (!rc) {
16006         /* fw version is good */
16007         BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
16008         rc = bxe_do_flr(sc);
16009     }
16010 
16011     if (!rc) {
16012         /* FLR was performed */
16013         BLOGD(sc, DBG_LOAD, "FLR successful\n");
16014         return (0);
16015     }
16016 
16017     BLOGD(sc, DBG_LOAD, "Could not FLR\n");
16018 
16019     /* Close the MCP request, return failure*/
16020     rc = bxe_prev_mcp_done(sc);
16021     if (!rc) {
16022         rc = BXE_PREV_WAIT_NEEDED;
16023     }
16024 
16025     return (rc);
16026 }
16027 
16028 static int
16029 bxe_prev_unload(struct bxe_softc *sc)
16030 {
16031     int time_counter = 10;
16032     uint32_t fw, hw_lock_reg, hw_lock_val;
16033     uint32_t rc = 0;
16034 
16035     /*
16036      * Clear HW from errors which may have resulted from an interrupted
16037      * DMAE transaction.
16038      */
16039     bxe_prev_interrupted_dmae(sc);
16040 
16041     /* Release previously held locks */
16042     hw_lock_reg =
16043         (SC_FUNC(sc) <= 5) ?
16044             (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
16045             (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
16046 
16047     hw_lock_val = (REG_RD(sc, hw_lock_reg));
16048     if (hw_lock_val) {
16049         if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
16050             BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
16051             REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
16052                    (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
16053         }
16054         BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
16055         REG_WR(sc, hw_lock_reg, 0xffffffff);
16056     } else {
16057         BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
16058     }
16059 
16060     if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
16061         BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
16062         REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
16063     }
16064 
16065     do {
16066         /* Lock MCP using an unload request */
16067         fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
16068         if (!fw) {
16069             BLOGE(sc, "MCP response failure, aborting\n");
16070             rc = -1;
16071             break;
16072         }
16073 
16074         if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
16075             rc = bxe_prev_unload_common(sc);
16076             break;
16077         }
16078 
16079         /* non-common reply from MCP night require looping */
16080         rc = bxe_prev_unload_uncommon(sc);
16081         if (rc != BXE_PREV_WAIT_NEEDED) {
16082             break;
16083         }
16084 
16085         DELAY(20000);
16086     } while (--time_counter);
16087 
16088     if (!time_counter || rc) {
16089         BLOGE(sc, "Failed to unload previous driver!\n");
16090         rc = -1;
16091     }
16092 
16093     return (rc);
16094 }
16095 
16096 void
16097 bxe_dcbx_set_state(struct bxe_softc *sc,
16098                    uint8_t          dcb_on,
16099                    uint32_t         dcbx_enabled)
16100 {
16101     if (!CHIP_IS_E1x(sc)) {
16102         sc->dcb_state = dcb_on;
16103         sc->dcbx_enabled = dcbx_enabled;
16104     } else {
16105         sc->dcb_state = FALSE;
16106         sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
16107     }
16108     BLOGD(sc, DBG_LOAD,
16109           "DCB state [%s:%s]\n",
16110           dcb_on ? "ON" : "OFF",
16111           (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
16112           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
16113           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
16114           "on-chip with negotiation" : "invalid");
16115 }
16116 
16117 /* must be called after sriov-enable */
16118 static int
16119 bxe_set_qm_cid_count(struct bxe_softc *sc)
16120 {
16121     int cid_count = BXE_L2_MAX_CID(sc);
16122 
16123     if (IS_SRIOV(sc)) {
16124         cid_count += BXE_VF_CIDS;
16125     }
16126 
16127     if (CNIC_SUPPORT(sc)) {
16128         cid_count += CNIC_CID_MAX;
16129     }
16130 
16131     return (roundup(cid_count, QM_CID_ROUND));
16132 }
16133 
16134 static void
16135 bxe_init_multi_cos(struct bxe_softc *sc)
16136 {
16137     int pri, cos;
16138 
16139     uint32_t pri_map = 0; /* XXX change to user config */
16140 
16141     for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
16142         cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
16143         if (cos < sc->max_cos) {
16144             sc->prio_to_cos[pri] = cos;
16145         } else {
16146             BLOGW(sc, "Invalid COS %d for priority %d "
16147                       "(max COS is %d), setting to 0\n",
16148                   cos, pri, (sc->max_cos - 1));
16149             sc->prio_to_cos[pri] = 0;
16150         }
16151     }
16152 }
16153 
16154 static int
16155 bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
16156 {
16157     struct bxe_softc *sc;
16158     int error, result;
16159 
16160     result = 0;
16161     error = sysctl_handle_int(oidp, &result, 0, req);
16162 
16163     if (error || !req->newptr) {
16164         return (error);
16165     }
16166 
16167     if (result == 1) {
16168         sc = (struct bxe_softc *)arg1;
16169         BLOGI(sc, "... dumping driver state ...\n");
16170         /* XXX */
16171     }
16172 
16173     return (error);
16174 }
16175 
16176 static int
16177 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
16178 {
16179     struct bxe_softc *sc = (struct bxe_softc *)arg1;
16180     uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
16181     uint32_t *offset;
16182     uint64_t value = 0;
16183     int index = (int)arg2;
16184 
16185     if (index >= BXE_NUM_ETH_STATS) {
16186         BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
16187         return (-1);
16188     }
16189 
16190     offset = (eth_stats + bxe_eth_stats_arr[index].offset);
16191 
16192     switch (bxe_eth_stats_arr[index].size) {
16193     case 4:
16194         value = (uint64_t)*offset;
16195         break;
16196     case 8:
16197         value = HILO_U64(*offset, *(offset + 1));
16198         break;
16199     default:
16200         BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
16201               index, bxe_eth_stats_arr[index].size);
16202         return (-1);
16203     }
16204 
16205     return (sysctl_handle_64(oidp, &value, 0, req));
16206 }
16207 
16208 static int
16209 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
16210 {
16211     struct bxe_softc *sc = (struct bxe_softc *)arg1;
16212     uint32_t *eth_stats;
16213     uint32_t *offset;
16214     uint64_t value = 0;
16215     uint32_t q_stat = (uint32_t)arg2;
16216     uint32_t fp_index = ((q_stat >> 16) & 0xffff);
16217     uint32_t index = (q_stat & 0xffff);
16218 
16219     eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
16220 
16221     if (index >= BXE_NUM_ETH_Q_STATS) {
16222         BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
16223         return (-1);
16224     }
16225 
16226     offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
16227 
16228     switch (bxe_eth_q_stats_arr[index].size) {
16229     case 4:
16230         value = (uint64_t)*offset;
16231         break;
16232     case 8:
16233         value = HILO_U64(*offset, *(offset + 1));
16234         break;
16235     default:
16236         BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
16237               index, bxe_eth_q_stats_arr[index].size);
16238         return (-1);
16239     }
16240 
16241     return (sysctl_handle_64(oidp, &value, 0, req));
16242 }
16243 
16244 static void
16245 bxe_add_sysctls(struct bxe_softc *sc)
16246 {
16247     struct sysctl_ctx_list *ctx;
16248     struct sysctl_oid_list *children;
16249     struct sysctl_oid *queue_top, *queue;
16250     struct sysctl_oid_list *queue_top_children, *queue_children;
16251     char queue_num_buf[32];
16252     uint32_t q_stat;
16253     int i, j;
16254 
16255     ctx = device_get_sysctl_ctx(sc->dev);
16256     children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
16257 
16258     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
16259                       CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
16260                       "version");
16261 
16262     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
16263                       CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0,
16264                       "bootcode version");
16265 
16266     snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
16267              BCM_5710_FW_MAJOR_VERSION,
16268              BCM_5710_FW_MINOR_VERSION,
16269              BCM_5710_FW_REVISION_VERSION,
16270              BCM_5710_FW_ENGINEERING_VERSION);
16271     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
16272                       CTLFLAG_RD, &sc->fw_ver_str, 0,
16273                       "firmware version");
16274 
16275     snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
16276         ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION)     ? "Single"  :
16277          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)   ? "MF-SD"   :
16278          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)   ? "MF-SI"   :
16279          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
16280                                                                 "Unknown"));
16281     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
16282                       CTLFLAG_RD, &sc->mf_mode_str, 0,
16283                       "multifunction mode");
16284 
16285     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
16286                     CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
16287                     "multifunction vnics per port");
16288 
16289     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
16290                       CTLFLAG_RD, &sc->mac_addr_str, 0,
16291                       "mac address");
16292 
16293     snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
16294         ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
16295          (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
16296          (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
16297                                               "???GT/s"),
16298         sc->devinfo.pcie_link_width);
16299     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
16300                       CTLFLAG_RD, &sc->pci_link_str, 0,
16301                       "pci link status");
16302 
16303     sc->debug = bxe_debug;
16304     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug",
16305                     CTLFLAG_RW, &sc->debug, 0,
16306                     "debug logging mode");
16307 
16308     sc->rx_budget = bxe_rx_budget;
16309     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
16310                     CTLFLAG_RW, &sc->rx_budget, 0,
16311                     "rx processing budget");
16312 
16313     SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
16314                     CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
16315                     bxe_sysctl_state, "IU", "dump driver state");
16316 
16317     for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
16318         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
16319                         bxe_eth_stats_arr[i].string,
16320                         CTLTYPE_U64 | CTLFLAG_RD, sc, i,
16321                         bxe_sysctl_eth_stat, "LU",
16322                         bxe_eth_stats_arr[i].string);
16323     }
16324 
16325     /* add a new parent node for all queues "dev.bxe.#.queue" */
16326     queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
16327                                 CTLFLAG_RD, NULL, "queue");
16328     queue_top_children = SYSCTL_CHILDREN(queue_top);
16329 
16330     for (i = 0; i < sc->num_queues; i++) {
16331         /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
16332         snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
16333         queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
16334                                 queue_num_buf, CTLFLAG_RD, NULL,
16335                                 "single queue");
16336         queue_children = SYSCTL_CHILDREN(queue);
16337 
16338         for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
16339             q_stat = ((i << 16) | j);
16340             SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
16341                             bxe_eth_q_stats_arr[j].string,
16342                             CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat,
16343                             bxe_sysctl_eth_q_stat, "LU",
16344                             bxe_eth_q_stats_arr[j].string);
16345         }
16346     }
16347 }
16348 
16349 /*
16350  * Device attach function.
16351  *
16352  * Allocates device resources, performs secondary chip identification, and
16353  * initializes driver instance variables. This function is called from driver
16354  * load after a successful probe.
16355  *
16356  * Returns:
16357  *   0 = Success, >0 = Failure
16358  */
16359 static int
16360 bxe_attach(device_t dev)
16361 {
16362     struct bxe_softc *sc;
16363 
16364     sc = device_get_softc(dev);
16365 
16366     BLOGD(sc, DBG_LOAD, "Starting attach...\n");
16367 
16368     sc->state = BXE_STATE_CLOSED;
16369 
16370     sc->dev  = dev;
16371     sc->unit = device_get_unit(dev);
16372 
16373     BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
16374 
16375     sc->pcie_bus    = pci_get_bus(dev);
16376     sc->pcie_device = pci_get_slot(dev);
16377     sc->pcie_func   = pci_get_function(dev);
16378 
16379     /* enable bus master capability */
16380     pci_enable_busmaster(dev);
16381 
16382     /* get the BARs */
16383     if (bxe_allocate_bars(sc) != 0) {
16384         return (ENXIO);
16385     }
16386 
16387     /* initialize the mutexes */
16388     bxe_init_mutexes(sc);
16389 
16390     /* prepare the periodic callout */
16391     callout_init(&sc->periodic_callout, 0);
16392 
16393     /* prepare the chip taskqueue */
16394     sc->chip_tq_flags = CHIP_TQ_NONE;
16395     snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
16396              "bxe%d_chip_tq", sc->unit);
16397     TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
16398     sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
16399                                    taskqueue_thread_enqueue,
16400                                    &sc->chip_tq);
16401     taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
16402                             "%s", sc->chip_tq_name);
16403 
16404     /* get device info and set params */
16405     if (bxe_get_device_info(sc) != 0) {
16406         BLOGE(sc, "getting device info\n");
16407         bxe_deallocate_bars(sc);
16408         pci_disable_busmaster(dev);
16409         return (ENXIO);
16410     }
16411 
16412     /* get final misc params */
16413     bxe_get_params(sc);
16414 
16415     /* set the default MTU (changed via ifconfig) */
16416     sc->mtu = ETHERMTU;
16417 
16418     bxe_set_modes_bitmap(sc);
16419 
16420     /* XXX
16421      * If in AFEX mode and the function is configured for FCoE
16422      * then bail... no L2 allowed.
16423      */
16424 
16425     /* get phy settings from shmem and 'and' against admin settings */
16426     bxe_get_phy_info(sc);
16427 
16428     /* initialize the FreeBSD ifnet interface */
16429     if (bxe_init_ifnet(sc) != 0) {
16430         bxe_release_mutexes(sc);
16431         bxe_deallocate_bars(sc);
16432         pci_disable_busmaster(dev);
16433         return (ENXIO);
16434     }
16435 
16436     /* allocate device interrupts */
16437     if (bxe_interrupt_alloc(sc) != 0) {
16438         if (sc->ifnet != NULL) {
16439             ether_ifdetach(sc->ifnet);
16440         }
16441         ifmedia_removeall(&sc->ifmedia);
16442         bxe_release_mutexes(sc);
16443         bxe_deallocate_bars(sc);
16444         pci_disable_busmaster(dev);
16445         return (ENXIO);
16446     }
16447 
16448     /* allocate ilt */
16449     if (bxe_alloc_ilt_mem(sc) != 0) {
16450         bxe_interrupt_free(sc);
16451         if (sc->ifnet != NULL) {
16452             ether_ifdetach(sc->ifnet);
16453         }
16454         ifmedia_removeall(&sc->ifmedia);
16455         bxe_release_mutexes(sc);
16456         bxe_deallocate_bars(sc);
16457         pci_disable_busmaster(dev);
16458         return (ENXIO);
16459     }
16460 
16461     /* allocate the host hardware/software hsi structures */
16462     if (bxe_alloc_hsi_mem(sc) != 0) {
16463         bxe_free_ilt_mem(sc);
16464         bxe_interrupt_free(sc);
16465         if (sc->ifnet != NULL) {
16466             ether_ifdetach(sc->ifnet);
16467         }
16468         ifmedia_removeall(&sc->ifmedia);
16469         bxe_release_mutexes(sc);
16470         bxe_deallocate_bars(sc);
16471         pci_disable_busmaster(dev);
16472         return (ENXIO);
16473     }
16474 
16475     /* need to reset chip if UNDI was active */
16476     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
16477         /* init fw_seq */
16478         sc->fw_seq =
16479             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
16480              DRV_MSG_SEQ_NUMBER_MASK);
16481         BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
16482         bxe_prev_unload(sc);
16483     }
16484 
16485 #if 1
16486     /* XXX */
16487     bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16488 #else
16489     if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
16490         SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
16491         SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
16492         SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
16493         bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
16494         bxe_dcbx_init_params(sc);
16495     } else {
16496         bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16497     }
16498 #endif
16499 
16500     /* calculate qm_cid_count */
16501     sc->qm_cid_count = bxe_set_qm_cid_count(sc);
16502     BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
16503 
16504     sc->max_cos = 1;
16505     bxe_init_multi_cos(sc);
16506 
16507     bxe_add_sysctls(sc);
16508 
16509     return (0);
16510 }
16511 
16512 /*
16513  * Device detach function.
16514  *
16515  * Stops the controller, resets the controller, and releases resources.
16516  *
16517  * Returns:
16518  *   0 = Success, >0 = Failure
16519  */
16520 static int
16521 bxe_detach(device_t dev)
16522 {
16523     struct bxe_softc *sc;
16524     struct ifnet *ifp;
16525 
16526     sc = device_get_softc(dev);
16527 
16528     BLOGD(sc, DBG_LOAD, "Starting detach...\n");
16529 
16530     ifp = sc->ifnet;
16531     if (ifp != NULL && ifp->if_vlantrunk != NULL) {
16532         BLOGE(sc, "Cannot detach while VLANs are in use.\n");
16533         return(EBUSY);
16534     }
16535 
16536     /* stop the periodic callout */
16537     bxe_periodic_stop(sc);
16538 
16539     /* stop the chip taskqueue */
16540     atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16541     if (sc->chip_tq) {
16542         taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16543         taskqueue_free(sc->chip_tq);
16544         sc->chip_tq = NULL;
16545     }
16546 
16547     /* stop and reset the controller if it was open */
16548     if (sc->state != BXE_STATE_CLOSED) {
16549         BXE_CORE_LOCK(sc);
16550         bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16551         BXE_CORE_UNLOCK(sc);
16552     }
16553 
16554     /* release the network interface */
16555     if (ifp != NULL) {
16556         ether_ifdetach(ifp);
16557     }
16558     ifmedia_removeall(&sc->ifmedia);
16559 
16560     /* XXX do the following based on driver state... */
16561 
16562     /* free the host hardware/software hsi structures */
16563     bxe_free_hsi_mem(sc);
16564 
16565     /* free ilt */
16566     bxe_free_ilt_mem(sc);
16567 
16568     /* release the interrupts */
16569     bxe_interrupt_free(sc);
16570 
16571     /* Release the mutexes*/
16572     bxe_release_mutexes(sc);
16573 
16574     /* Release the PCIe BAR mapped memory */
16575     bxe_deallocate_bars(sc);
16576 
16577     /* Release the FreeBSD interface. */
16578     if (sc->ifnet != NULL) {
16579         if_free(sc->ifnet);
16580     }
16581 
16582     pci_disable_busmaster(dev);
16583 
16584     return (0);
16585 }
16586 
16587 /*
16588  * Device shutdown function.
16589  *
16590  * Stops and resets the controller.
16591  *
16592  * Returns:
16593  *   Nothing
16594  */
16595 static int
16596 bxe_shutdown(device_t dev)
16597 {
16598     struct bxe_softc *sc;
16599 
16600     sc = device_get_softc(dev);
16601 
16602     BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16603 
16604     /* stop the periodic callout */
16605     bxe_periodic_stop(sc);
16606 
16607     BXE_CORE_LOCK(sc);
16608     bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16609     BXE_CORE_UNLOCK(sc);
16610 
16611     return (0);
16612 }
16613 
16614 void
16615 bxe_igu_ack_sb(struct bxe_softc *sc,
16616                uint8_t          igu_sb_id,
16617                uint8_t          segment,
16618                uint16_t         index,
16619                uint8_t          op,
16620                uint8_t          update)
16621 {
16622     uint32_t igu_addr = sc->igu_base_addr;
16623     igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16624     bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16625 }
16626 
16627 static void
16628 bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16629                      uint8_t          func,
16630                      uint8_t          idu_sb_id,
16631                      uint8_t          is_pf)
16632 {
16633     uint32_t data, ctl, cnt = 100;
16634     uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16635     uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16636     uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16637     uint32_t sb_bit =  1 << (idu_sb_id%32);
16638     uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16639     uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16640 
16641     /* Not supported in BC mode */
16642     if (CHIP_INT_MODE_IS_BC(sc)) {
16643         return;
16644     }
16645 
16646     data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16647              IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16648             IGU_REGULAR_CLEANUP_SET |
16649             IGU_REGULAR_BCLEANUP);
16650 
16651     ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16652            (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16653            (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16654 
16655     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16656             data, igu_addr_data);
16657     REG_WR(sc, igu_addr_data, data);
16658 
16659     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16660                       BUS_SPACE_BARRIER_WRITE);
16661     mb();
16662 
16663     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16664             ctl, igu_addr_ctl);
16665     REG_WR(sc, igu_addr_ctl, ctl);
16666 
16667     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16668                       BUS_SPACE_BARRIER_WRITE);
16669     mb();
16670 
16671     /* wait for clean up to finish */
16672     while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16673         DELAY(20000);
16674     }
16675 
16676     if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16677         BLOGD(sc, DBG_LOAD,
16678               "Unable to finish IGU cleanup: "
16679               "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16680               idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16681     }
16682 }
16683 
16684 static void
16685 bxe_igu_clear_sb(struct bxe_softc *sc,
16686                  uint8_t          idu_sb_id)
16687 {
16688     bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16689 }
16690 
16691 
16692 
16693 
16694 
16695 
16696 
16697 /*******************/
16698 /* ECORE CALLBACKS */
16699 /*******************/
16700 
16701 static void
16702 bxe_reset_common(struct bxe_softc *sc)
16703 {
16704     uint32_t val = 0x1400;
16705 
16706     /* reset_common */
16707     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16708 
16709     if (CHIP_IS_E3(sc)) {
16710         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16711         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16712     }
16713 
16714     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16715 }
16716 
16717 static void
16718 bxe_common_init_phy(struct bxe_softc *sc)
16719 {
16720     uint32_t shmem_base[2];
16721     uint32_t shmem2_base[2];
16722 
16723     /* Avoid common init in case MFW supports LFA */
16724     if (SHMEM2_RD(sc, size) >
16725         (uint32_t)offsetof(struct shmem2_region,
16726                            lfa_host_addr[SC_PORT(sc)])) {
16727         return;
16728     }
16729 
16730     shmem_base[0]  = sc->devinfo.shmem_base;
16731     shmem2_base[0] = sc->devinfo.shmem2_base;
16732 
16733     if (!CHIP_IS_E1x(sc)) {
16734         shmem_base[1]  = SHMEM2_RD(sc, other_shmem_base_addr);
16735         shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16736     }
16737 
16738     BXE_PHY_LOCK(sc);
16739     elink_common_init_phy(sc, shmem_base, shmem2_base,
16740                           sc->devinfo.chip_id, 0);
16741     BXE_PHY_UNLOCK(sc);
16742 }
16743 
16744 static void
16745 bxe_pf_disable(struct bxe_softc *sc)
16746 {
16747     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16748 
16749     val &= ~IGU_PF_CONF_FUNC_EN;
16750 
16751     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16752     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16753     REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16754 }
16755 
16756 static void
16757 bxe_init_pxp(struct bxe_softc *sc)
16758 {
16759     uint16_t devctl;
16760     int r_order, w_order;
16761 
16762     devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2);
16763 
16764     BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16765 
16766     w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
16767 
16768     if (sc->mrrs == -1) {
16769         r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
16770     } else {
16771         BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16772         r_order = sc->mrrs;
16773     }
16774 
16775     ecore_init_pxp_arb(sc, r_order, w_order);
16776 }
16777 
16778 static uint32_t
16779 bxe_get_pretend_reg(struct bxe_softc *sc)
16780 {
16781     uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16782     uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16783     return (base + (SC_ABS_FUNC(sc)) * stride);
16784 }
16785 
16786 /*
16787  * Called only on E1H or E2.
16788  * When pretending to be PF, the pretend value is the function number 0..7.
16789  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16790  * combination.
16791  */
16792 static int
16793 bxe_pretend_func(struct bxe_softc *sc,
16794                  uint16_t         pretend_func_val)
16795 {
16796     uint32_t pretend_reg;
16797 
16798     if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16799         return (-1);
16800     }
16801 
16802     /* get my own pretend register */
16803     pretend_reg = bxe_get_pretend_reg(sc);
16804     REG_WR(sc, pretend_reg, pretend_func_val);
16805     REG_RD(sc, pretend_reg);
16806     return (0);
16807 }
16808 
16809 static void
16810 bxe_iov_init_dmae(struct bxe_softc *sc)
16811 {
16812     return;
16813 #if 0
16814     BLOGD(sc, DBG_LOAD, "SRIOV is %s\n", IS_SRIOV(sc) ? "ON" : "OFF");
16815 
16816     if (!IS_SRIOV(sc)) {
16817         return;
16818     }
16819 
16820     REG_WR(sc, DMAE_REG_BACKWARD_COMP_EN, 0);
16821 #endif
16822 }
16823 
16824 #if 0
16825 static int
16826 bxe_iov_init_ilt(struct bxe_softc *sc,
16827                  uint16_t         line)
16828 {
16829     return (line);
16830 #if 0
16831     int i;
16832     struct ecore_ilt* ilt = sc->ilt;
16833 
16834     if (!IS_SRIOV(sc)) {
16835         return (line);
16836     }
16837 
16838     /* set vfs ilt lines */
16839     for (i = 0; i < BXE_VF_CIDS/ILT_PAGE_CIDS ; i++) {
16840         struct hw_dma *hw_cxt = SC_VF_CXT_PAGE(sc,i);
16841         ilt->lines[line+i].page = hw_cxt->addr;
16842         ilt->lines[line+i].page_mapping = hw_cxt->mapping;
16843         ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
16844     }
16845     return (line+i);
16846 #endif
16847 }
16848 #endif
16849 
16850 static void
16851 bxe_iov_init_dq(struct bxe_softc *sc)
16852 {
16853     return;
16854 #if 0
16855     if (!IS_SRIOV(sc)) {
16856         return;
16857     }
16858 
16859     /* Set the DQ such that the CID reflect the abs_vfid */
16860     REG_WR(sc, DORQ_REG_VF_NORM_VF_BASE, 0);
16861     REG_WR(sc, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
16862 
16863     /*
16864      * Set VFs starting CID. If its > 0 the preceding CIDs are belong to
16865      * the PF L2 queues
16866      */
16867     REG_WR(sc, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
16868 
16869     /* The VF window size is the log2 of the max number of CIDs per VF */
16870     REG_WR(sc, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
16871 
16872     /*
16873      * The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
16874      * the Pf doorbell size although the 2 are independent.
16875      */
16876     REG_WR(sc, DORQ_REG_VF_NORM_CID_OFST,
16877            BNX2X_DB_SHIFT - BNX2X_DB_MIN_SHIFT);
16878 
16879     /*
16880      * No security checks for now -
16881      * configure single rule (out of 16) mask = 0x1, value = 0x0,
16882      * CID range 0 - 0x1ffff
16883      */
16884     REG_WR(sc, DORQ_REG_VF_TYPE_MASK_0, 1);
16885     REG_WR(sc, DORQ_REG_VF_TYPE_VALUE_0, 0);
16886     REG_WR(sc, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
16887     REG_WR(sc, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
16888 
16889     /* set the number of VF alllowed doorbells to the full DQ range */
16890     REG_WR(sc, DORQ_REG_VF_NORM_MAX_CID_COUNT, 0x20000);
16891 
16892     /* set the VF doorbell threshold */
16893     REG_WR(sc, DORQ_REG_VF_USAGE_CT_LIMIT, 4);
16894 #endif
16895 }
16896 
16897 /* send a NIG loopback debug packet */
16898 static void
16899 bxe_lb_pckt(struct bxe_softc *sc)
16900 {
16901     uint32_t wb_write[3];
16902 
16903     /* Ethernet source and destination addresses */
16904     wb_write[0] = 0x55555555;
16905     wb_write[1] = 0x55555555;
16906     wb_write[2] = 0x20;     /* SOP */
16907     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16908 
16909     /* NON-IP protocol */
16910     wb_write[0] = 0x09000000;
16911     wb_write[1] = 0x55555555;
16912     wb_write[2] = 0x10;     /* EOP, eop_bvalid = 0 */
16913     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16914 }
16915 
16916 /*
16917  * Some of the internal memories are not directly readable from the driver.
16918  * To test them we send debug packets.
16919  */
16920 static int
16921 bxe_int_mem_test(struct bxe_softc *sc)
16922 {
16923     int factor;
16924     int count, i;
16925     uint32_t val = 0;
16926 
16927     if (CHIP_REV_IS_FPGA(sc)) {
16928         factor = 120;
16929     } else if (CHIP_REV_IS_EMUL(sc)) {
16930         factor = 200;
16931     } else {
16932         factor = 1;
16933     }
16934 
16935     /* disable inputs of parser neighbor blocks */
16936     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16937     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16938     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16939     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16940 
16941     /*  write 0 to parser credits for CFC search request */
16942     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16943 
16944     /* send Ethernet packet */
16945     bxe_lb_pckt(sc);
16946 
16947     /* TODO do i reset NIG statistic? */
16948     /* Wait until NIG register shows 1 packet of size 0x10 */
16949     count = 1000 * factor;
16950     while (count) {
16951         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16952         val = *BXE_SP(sc, wb_data[0]);
16953         if (val == 0x10) {
16954             break;
16955         }
16956 
16957         DELAY(10000);
16958         count--;
16959     }
16960 
16961     if (val != 0x10) {
16962         BLOGE(sc, "NIG timeout val=0x%x\n", val);
16963         return (-1);
16964     }
16965 
16966     /* wait until PRS register shows 1 packet */
16967     count = (1000 * factor);
16968     while (count) {
16969         val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16970         if (val == 1) {
16971             break;
16972         }
16973 
16974         DELAY(10000);
16975         count--;
16976     }
16977 
16978     if (val != 0x1) {
16979         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16980         return (-2);
16981     }
16982 
16983     /* Reset and init BRB, PRS */
16984     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16985     DELAY(50000);
16986     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16987     DELAY(50000);
16988     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16989     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16990 
16991     /* Disable inputs of parser neighbor blocks */
16992     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16993     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16994     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16995     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16996 
16997     /* Write 0 to parser credits for CFC search request */
16998     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16999 
17000     /* send 10 Ethernet packets */
17001     for (i = 0; i < 10; i++) {
17002         bxe_lb_pckt(sc);
17003     }
17004 
17005     /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
17006     count = (1000 * factor);
17007     while (count) {
17008         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17009         val = *BXE_SP(sc, wb_data[0]);
17010         if (val == 0xb0) {
17011             break;
17012         }
17013 
17014         DELAY(10000);
17015         count--;
17016     }
17017 
17018     if (val != 0xb0) {
17019         BLOGE(sc, "NIG timeout val=0x%x\n", val);
17020         return (-3);
17021     }
17022 
17023     /* Wait until PRS register shows 2 packets */
17024     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
17025     if (val != 2) {
17026         BLOGE(sc, "PRS timeout val=0x%x\n", val);
17027     }
17028 
17029     /* Write 1 to parser credits for CFC search request */
17030     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
17031 
17032     /* Wait until PRS register shows 3 packets */
17033     DELAY(10000 * factor);
17034 
17035     /* Wait until NIG register shows 1 packet of size 0x10 */
17036     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
17037     if (val != 3) {
17038         BLOGE(sc, "PRS timeout val=0x%x\n", val);
17039     }
17040 
17041     /* clear NIG EOP FIFO */
17042     for (i = 0; i < 11; i++) {
17043         REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
17044     }
17045 
17046     val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
17047     if (val != 1) {
17048         BLOGE(sc, "clear of NIG failed\n");
17049         return (-4);
17050     }
17051 
17052     /* Reset and init BRB, PRS, NIG */
17053     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
17054     DELAY(50000);
17055     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
17056     DELAY(50000);
17057     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17058     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17059     if (!CNIC_SUPPORT(sc)) {
17060         /* set NIC mode */
17061         REG_WR(sc, PRS_REG_NIC_MODE, 1);
17062     }
17063 
17064     /* Enable inputs of parser neighbor blocks */
17065     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
17066     REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
17067     REG_WR(sc, CFC_REG_DEBUG0, 0x0);
17068     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
17069 
17070     return (0);
17071 }
17072 
17073 static void
17074 bxe_setup_fan_failure_detection(struct bxe_softc *sc)
17075 {
17076     int is_required;
17077     uint32_t val;
17078     int port;
17079 
17080     is_required = 0;
17081     val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
17082            SHARED_HW_CFG_FAN_FAILURE_MASK);
17083 
17084     if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
17085         is_required = 1;
17086     }
17087     /*
17088      * The fan failure mechanism is usually related to the PHY type since
17089      * the power consumption of the board is affected by the PHY. Currently,
17090      * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
17091      */
17092     else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
17093         for (port = PORT_0; port < PORT_MAX; port++) {
17094             is_required |= elink_fan_failure_det_req(sc,
17095                                                      sc->devinfo.shmem_base,
17096                                                      sc->devinfo.shmem2_base,
17097                                                      port);
17098         }
17099     }
17100 
17101     BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
17102 
17103     if (is_required == 0) {
17104         return;
17105     }
17106 
17107     /* Fan failure is indicated by SPIO 5 */
17108     bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
17109 
17110     /* set to active low mode */
17111     val = REG_RD(sc, MISC_REG_SPIO_INT);
17112     val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
17113     REG_WR(sc, MISC_REG_SPIO_INT, val);
17114 
17115     /* enable interrupt to signal the IGU */
17116     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17117     val |= MISC_SPIO_SPIO5;
17118     REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
17119 }
17120 
17121 static void
17122 bxe_enable_blocks_attention(struct bxe_softc *sc)
17123 {
17124     uint32_t val;
17125 
17126     REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17127     if (!CHIP_IS_E1x(sc)) {
17128         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
17129     } else {
17130         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
17131     }
17132     REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17133     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17134     /*
17135      * mask read length error interrupts in brb for parser
17136      * (parsing unit and 'checksum and crc' unit)
17137      * these errors are legal (PU reads fixed length and CAC can cause
17138      * read length error on truncated packets)
17139      */
17140     REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
17141     REG_WR(sc, QM_REG_QM_INT_MASK, 0);
17142     REG_WR(sc, TM_REG_TM_INT_MASK, 0);
17143     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
17144     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
17145     REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
17146 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
17147 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
17148     REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
17149     REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
17150     REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
17151 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
17152 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
17153     REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
17154     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
17155     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
17156     REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
17157 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
17158 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
17159 
17160     val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
17161            PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
17162            PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
17163     if (!CHIP_IS_E1x(sc)) {
17164         val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
17165                 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
17166     }
17167     REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
17168 
17169     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
17170     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
17171     REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
17172 /*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
17173 
17174     if (!CHIP_IS_E1x(sc)) {
17175         /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
17176         REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
17177     }
17178 
17179     REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
17180     REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
17181 /*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
17182     REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18);     /* bit 3,4 masked */
17183 }
17184 
17185 /**
17186  * bxe_init_hw_common - initialize the HW at the COMMON phase.
17187  *
17188  * @sc:     driver handle
17189  */
17190 static int
17191 bxe_init_hw_common(struct bxe_softc *sc)
17192 {
17193     uint8_t abs_func_id;
17194     uint32_t val;
17195 
17196     BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
17197           SC_ABS_FUNC(sc));
17198 
17199     /*
17200      * take the RESET lock to protect undi_unload flow from accessing
17201      * registers while we are resetting the chip
17202      */
17203     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17204 
17205     bxe_reset_common(sc);
17206 
17207     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
17208 
17209     val = 0xfffc;
17210     if (CHIP_IS_E3(sc)) {
17211         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
17212         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
17213     }
17214 
17215     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
17216 
17217     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17218 
17219     ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
17220     BLOGD(sc, DBG_LOAD, "after misc block init\n");
17221 
17222     if (!CHIP_IS_E1x(sc)) {
17223         /*
17224          * 4-port mode or 2-port mode we need to turn off master-enable for
17225          * everyone. After that we turn it back on for self. So, we disregard
17226          * multi-function, and always disable all functions on the given path,
17227          * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
17228          */
17229         for (abs_func_id = SC_PATH(sc);
17230              abs_func_id < (E2_FUNC_MAX * 2);
17231              abs_func_id += 2) {
17232             if (abs_func_id == SC_ABS_FUNC(sc)) {
17233                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17234                 continue;
17235             }
17236 
17237             bxe_pretend_func(sc, abs_func_id);
17238 
17239             /* clear pf enable */
17240             bxe_pf_disable(sc);
17241 
17242             bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17243         }
17244     }
17245 
17246     BLOGD(sc, DBG_LOAD, "after pf disable\n");
17247 
17248     ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
17249 
17250     if (CHIP_IS_E1(sc)) {
17251         /*
17252          * enable HW interrupt from PXP on USDM overflow
17253          * bit 16 on INT_MASK_0
17254          */
17255         REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17256     }
17257 
17258     ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
17259     bxe_init_pxp(sc);
17260 
17261 #ifdef __BIG_ENDIAN
17262     REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
17263     REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
17264     REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
17265     REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
17266     REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
17267     /* make sure this value is 0 */
17268     REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
17269 
17270     //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
17271     REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
17272     REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
17273     REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
17274     REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
17275 #endif
17276 
17277     ecore_ilt_init_page_size(sc, INITOP_SET);
17278 
17279     if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
17280         REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
17281     }
17282 
17283     /* let the HW do it's magic... */
17284     DELAY(100000);
17285 
17286     /* finish PXP init */
17287     val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
17288     if (val != 1) {
17289         BLOGE(sc, "PXP2 CFG failed\n");
17290         return (-1);
17291     }
17292     val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
17293     if (val != 1) {
17294         BLOGE(sc, "PXP2 RD_INIT failed\n");
17295         return (-1);
17296     }
17297 
17298     BLOGD(sc, DBG_LOAD, "after pxp init\n");
17299 
17300     /*
17301      * Timer bug workaround for E2 only. We need to set the entire ILT to have
17302      * entries with value "0" and valid bit on. This needs to be done by the
17303      * first PF that is loaded in a path (i.e. common phase)
17304      */
17305     if (!CHIP_IS_E1x(sc)) {
17306 /*
17307  * In E2 there is a bug in the timers block that can cause function 6 / 7
17308  * (i.e. vnic3) to start even if it is marked as "scan-off".
17309  * This occurs when a different function (func2,3) is being marked
17310  * as "scan-off". Real-life scenario for example: if a driver is being
17311  * load-unloaded while func6,7 are down. This will cause the timer to access
17312  * the ilt, translate to a logical address and send a request to read/write.
17313  * Since the ilt for the function that is down is not valid, this will cause
17314  * a translation error which is unrecoverable.
17315  * The Workaround is intended to make sure that when this happens nothing
17316  * fatal will occur. The workaround:
17317  *  1.  First PF driver which loads on a path will:
17318  *      a.  After taking the chip out of reset, by using pretend,
17319  *          it will write "0" to the following registers of
17320  *          the other vnics.
17321  *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
17322  *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
17323  *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
17324  *          And for itself it will write '1' to
17325  *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
17326  *          dmae-operations (writing to pram for example.)
17327  *          note: can be done for only function 6,7 but cleaner this
17328  *            way.
17329  *      b.  Write zero+valid to the entire ILT.
17330  *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
17331  *          VNIC3 (of that port). The range allocated will be the
17332  *          entire ILT. This is needed to prevent  ILT range error.
17333  *  2.  Any PF driver load flow:
17334  *      a.  ILT update with the physical addresses of the allocated
17335  *          logical pages.
17336  *      b.  Wait 20msec. - note that this timeout is needed to make
17337  *          sure there are no requests in one of the PXP internal
17338  *          queues with "old" ILT addresses.
17339  *      c.  PF enable in the PGLC.
17340  *      d.  Clear the was_error of the PF in the PGLC. (could have
17341  *          occurred while driver was down)
17342  *      e.  PF enable in the CFC (WEAK + STRONG)
17343  *      f.  Timers scan enable
17344  *  3.  PF driver unload flow:
17345  *      a.  Clear the Timers scan_en.
17346  *      b.  Polling for scan_on=0 for that PF.
17347  *      c.  Clear the PF enable bit in the PXP.
17348  *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
17349  *      e.  Write zero+valid to all ILT entries (The valid bit must
17350  *          stay set)
17351  *      f.  If this is VNIC 3 of a port then also init
17352  *          first_timers_ilt_entry to zero and last_timers_ilt_entry
17353  *          to the last enrty in the ILT.
17354  *
17355  *      Notes:
17356  *      Currently the PF error in the PGLC is non recoverable.
17357  *      In the future the there will be a recovery routine for this error.
17358  *      Currently attention is masked.
17359  *      Having an MCP lock on the load/unload process does not guarantee that
17360  *      there is no Timer disable during Func6/7 enable. This is because the
17361  *      Timers scan is currently being cleared by the MCP on FLR.
17362  *      Step 2.d can be done only for PF6/7 and the driver can also check if
17363  *      there is error before clearing it. But the flow above is simpler and
17364  *      more general.
17365  *      All ILT entries are written by zero+valid and not just PF6/7
17366  *      ILT entries since in the future the ILT entries allocation for
17367  *      PF-s might be dynamic.
17368  */
17369         struct ilt_client_info ilt_cli;
17370         struct ecore_ilt ilt;
17371 
17372         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
17373         memset(&ilt, 0, sizeof(struct ecore_ilt));
17374 
17375         /* initialize dummy TM client */
17376         ilt_cli.start      = 0;
17377         ilt_cli.end        = ILT_NUM_PAGE_ENTRIES - 1;
17378         ilt_cli.client_num = ILT_CLIENT_TM;
17379 
17380         /*
17381          * Step 1: set zeroes to all ilt page entries with valid bit on
17382          * Step 2: set the timers first/last ilt entry to point
17383          * to the entire range to prevent ILT range error for 3rd/4th
17384          * vnic (this code assumes existence of the vnic)
17385          *
17386          * both steps performed by call to ecore_ilt_client_init_op()
17387          * with dummy TM client
17388          *
17389          * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
17390          * and his brother are split registers
17391          */
17392 
17393         bxe_pretend_func(sc, (SC_PATH(sc) + 6));
17394         ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
17395         bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17396 
17397         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
17398         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
17399         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
17400     }
17401 
17402     REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
17403     REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
17404 
17405     if (!CHIP_IS_E1x(sc)) {
17406         int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
17407                      (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
17408 
17409         ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
17410         ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
17411 
17412         /* let the HW do it's magic... */
17413         do {
17414             DELAY(200000);
17415             val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
17416         } while (factor-- && (val != 1));
17417 
17418         if (val != 1) {
17419             BLOGE(sc, "ATC_INIT failed\n");
17420             return (-1);
17421         }
17422     }
17423 
17424     BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
17425 
17426     ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
17427 
17428     bxe_iov_init_dmae(sc);
17429 
17430     /* clean the DMAE memory */
17431     sc->dmae_ready = 1;
17432     ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
17433 
17434     ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
17435 
17436     ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
17437 
17438     ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
17439 
17440     ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
17441 
17442     bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
17443     bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
17444     bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
17445     bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
17446 
17447     ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
17448 
17449     /* QM queues pointers table */
17450     ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
17451 
17452     /* soft reset pulse */
17453     REG_WR(sc, QM_REG_SOFT_RESET, 1);
17454     REG_WR(sc, QM_REG_SOFT_RESET, 0);
17455 
17456     if (CNIC_SUPPORT(sc))
17457         ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
17458 
17459     ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
17460     REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
17461     if (!CHIP_REV_IS_SLOW(sc)) {
17462         /* enable hw interrupt from doorbell Q */
17463         REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17464     }
17465 
17466     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17467 
17468     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17469     REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
17470 
17471     if (!CHIP_IS_E1(sc)) {
17472         REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
17473     }
17474 
17475     if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
17476         if (IS_MF_AFEX(sc)) {
17477             /*
17478              * configure that AFEX and VLAN headers must be
17479              * received in AFEX mode
17480              */
17481             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
17482             REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
17483             REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
17484             REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
17485             REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
17486         } else {
17487             /*
17488              * Bit-map indicating which L2 hdrs may appear
17489              * after the basic Ethernet header
17490              */
17491             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
17492                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17493         }
17494     }
17495 
17496     ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
17497     ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
17498     ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
17499     ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
17500 
17501     if (!CHIP_IS_E1x(sc)) {
17502         /* reset VFC memories */
17503         REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17504                VFC_MEMORIES_RST_REG_CAM_RST |
17505                VFC_MEMORIES_RST_REG_RAM_RST);
17506         REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17507                VFC_MEMORIES_RST_REG_CAM_RST |
17508                VFC_MEMORIES_RST_REG_RAM_RST);
17509 
17510         DELAY(20000);
17511     }
17512 
17513     ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
17514     ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
17515     ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
17516     ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
17517 
17518     /* sync semi rtc */
17519     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
17520            0x80000000);
17521     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
17522            0x80000000);
17523 
17524     ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
17525     ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
17526     ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
17527 
17528     if (!CHIP_IS_E1x(sc)) {
17529         if (IS_MF_AFEX(sc)) {
17530             /*
17531              * configure that AFEX and VLAN headers must be
17532              * sent in AFEX mode
17533              */
17534             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
17535             REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
17536             REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
17537             REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
17538             REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
17539         } else {
17540             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
17541                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17542         }
17543     }
17544 
17545     REG_WR(sc, SRC_REG_SOFT_RST, 1);
17546 
17547     ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
17548 
17549     if (CNIC_SUPPORT(sc)) {
17550         REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
17551         REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
17552         REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
17553         REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
17554         REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
17555         REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
17556         REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
17557         REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
17558         REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
17559         REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
17560     }
17561     REG_WR(sc, SRC_REG_SOFT_RST, 0);
17562 
17563     if (sizeof(union cdu_context) != 1024) {
17564         /* we currently assume that a context is 1024 bytes */
17565         BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
17566               (long)sizeof(union cdu_context));
17567     }
17568 
17569     ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
17570     val = (4 << 24) + (0 << 12) + 1024;
17571     REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
17572 
17573     ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
17574 
17575     REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
17576     /* enable context validation interrupt from CFC */
17577     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17578 
17579     /* set the thresholds to prevent CFC/CDU race */
17580     REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
17581     ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
17582 
17583     if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
17584         REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
17585     }
17586 
17587     ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
17588     ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
17589 
17590     /* Reset PCIE errors for debug */
17591     REG_WR(sc, 0x2814, 0xffffffff);
17592     REG_WR(sc, 0x3820, 0xffffffff);
17593 
17594     if (!CHIP_IS_E1x(sc)) {
17595         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
17596                (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
17597                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
17598         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
17599                (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
17600                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
17601                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
17602         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
17603                (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17604                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17605                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17606     }
17607 
17608     ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17609 
17610     if (!CHIP_IS_E1(sc)) {
17611         /* in E3 this done in per-port section */
17612         if (!CHIP_IS_E3(sc))
17613             REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17614     }
17615 
17616     if (CHIP_IS_E1H(sc)) {
17617         /* not applicable for E2 (and above ...) */
17618         REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17619     }
17620 
17621     if (CHIP_REV_IS_SLOW(sc)) {
17622         DELAY(200000);
17623     }
17624 
17625     /* finish CFC init */
17626     val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17627     if (val != 1) {
17628         BLOGE(sc, "CFC LL_INIT failed\n");
17629         return (-1);
17630     }
17631     val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17632     if (val != 1) {
17633         BLOGE(sc, "CFC AC_INIT failed\n");
17634         return (-1);
17635     }
17636     val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17637     if (val != 1) {
17638         BLOGE(sc, "CFC CAM_INIT failed\n");
17639         return (-1);
17640     }
17641     REG_WR(sc, CFC_REG_DEBUG0, 0);
17642 
17643     if (CHIP_IS_E1(sc)) {
17644         /* read NIG statistic to see if this is our first up since powerup */
17645         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17646         val = *BXE_SP(sc, wb_data[0]);
17647 
17648         /* do internal memory self test */
17649         if ((val == 0) && bxe_int_mem_test(sc)) {
17650             BLOGE(sc, "internal mem self test failed\n");
17651             return (-1);
17652         }
17653     }
17654 
17655     bxe_setup_fan_failure_detection(sc);
17656 
17657     /* clear PXP2 attentions */
17658     REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17659 
17660     bxe_enable_blocks_attention(sc);
17661 
17662     if (!CHIP_REV_IS_SLOW(sc)) {
17663         ecore_enable_blocks_parity(sc);
17664     }
17665 
17666     if (!BXE_NOMCP(sc)) {
17667         if (CHIP_IS_E1x(sc)) {
17668             bxe_common_init_phy(sc);
17669         }
17670     }
17671 
17672     return (0);
17673 }
17674 
17675 /**
17676  * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17677  *
17678  * @sc:     driver handle
17679  */
17680 static int
17681 bxe_init_hw_common_chip(struct bxe_softc *sc)
17682 {
17683     int rc = bxe_init_hw_common(sc);
17684 
17685     if (rc) {
17686         return (rc);
17687     }
17688 
17689     /* In E2 2-PORT mode, same ext phy is used for the two paths */
17690     if (!BXE_NOMCP(sc)) {
17691         bxe_common_init_phy(sc);
17692     }
17693 
17694     return (0);
17695 }
17696 
17697 static int
17698 bxe_init_hw_port(struct bxe_softc *sc)
17699 {
17700     int port = SC_PORT(sc);
17701     int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17702     uint32_t low, high;
17703     uint32_t val;
17704 
17705     BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17706 
17707     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17708 
17709     ecore_init_block(sc, BLOCK_MISC, init_phase);
17710     ecore_init_block(sc, BLOCK_PXP, init_phase);
17711     ecore_init_block(sc, BLOCK_PXP2, init_phase);
17712 
17713     /*
17714      * Timers bug workaround: disables the pf_master bit in pglue at
17715      * common phase, we need to enable it here before any dmae access are
17716      * attempted. Therefore we manually added the enable-master to the
17717      * port phase (it also happens in the function phase)
17718      */
17719     if (!CHIP_IS_E1x(sc)) {
17720         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17721     }
17722 
17723     ecore_init_block(sc, BLOCK_ATC, init_phase);
17724     ecore_init_block(sc, BLOCK_DMAE, init_phase);
17725     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17726     ecore_init_block(sc, BLOCK_QM, init_phase);
17727 
17728     ecore_init_block(sc, BLOCK_TCM, init_phase);
17729     ecore_init_block(sc, BLOCK_UCM, init_phase);
17730     ecore_init_block(sc, BLOCK_CCM, init_phase);
17731     ecore_init_block(sc, BLOCK_XCM, init_phase);
17732 
17733     /* QM cid (connection) count */
17734     ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17735 
17736     if (CNIC_SUPPORT(sc)) {
17737         ecore_init_block(sc, BLOCK_TM, init_phase);
17738         REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17739         REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17740     }
17741 
17742     ecore_init_block(sc, BLOCK_DORQ, init_phase);
17743 
17744     ecore_init_block(sc, BLOCK_BRB1, init_phase);
17745 
17746     if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17747         if (IS_MF(sc)) {
17748             low = (BXE_ONE_PORT(sc) ? 160 : 246);
17749         } else if (sc->mtu > 4096) {
17750             if (BXE_ONE_PORT(sc)) {
17751                 low = 160;
17752             } else {
17753                 val = sc->mtu;
17754                 /* (24*1024 + val*4)/256 */
17755                 low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17756             }
17757         } else {
17758             low = (BXE_ONE_PORT(sc) ? 80 : 160);
17759         }
17760         high = (low + 56); /* 14*1024/256 */
17761         REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17762         REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17763     }
17764 
17765     if (CHIP_IS_MODE_4_PORT(sc)) {
17766         REG_WR(sc, SC_PORT(sc) ?
17767                BRB1_REG_MAC_GUARANTIED_1 :
17768                BRB1_REG_MAC_GUARANTIED_0, 40);
17769     }
17770 
17771     ecore_init_block(sc, BLOCK_PRS, init_phase);
17772     if (CHIP_IS_E3B0(sc)) {
17773         if (IS_MF_AFEX(sc)) {
17774             /* configure headers for AFEX mode */
17775             REG_WR(sc, SC_PORT(sc) ?
17776                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17777                    PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17778             REG_WR(sc, SC_PORT(sc) ?
17779                    PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17780                    PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17781             REG_WR(sc, SC_PORT(sc) ?
17782                    PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17783                    PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17784         } else {
17785             /* Ovlan exists only if we are in multi-function +
17786              * switch-dependent mode, in switch-independent there
17787              * is no ovlan headers
17788              */
17789             REG_WR(sc, SC_PORT(sc) ?
17790                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17791                    PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17792                    (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17793         }
17794     }
17795 
17796     ecore_init_block(sc, BLOCK_TSDM, init_phase);
17797     ecore_init_block(sc, BLOCK_CSDM, init_phase);
17798     ecore_init_block(sc, BLOCK_USDM, init_phase);
17799     ecore_init_block(sc, BLOCK_XSDM, init_phase);
17800 
17801     ecore_init_block(sc, BLOCK_TSEM, init_phase);
17802     ecore_init_block(sc, BLOCK_USEM, init_phase);
17803     ecore_init_block(sc, BLOCK_CSEM, init_phase);
17804     ecore_init_block(sc, BLOCK_XSEM, init_phase);
17805 
17806     ecore_init_block(sc, BLOCK_UPB, init_phase);
17807     ecore_init_block(sc, BLOCK_XPB, init_phase);
17808 
17809     ecore_init_block(sc, BLOCK_PBF, init_phase);
17810 
17811     if (CHIP_IS_E1x(sc)) {
17812         /* configure PBF to work without PAUSE mtu 9000 */
17813         REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17814 
17815         /* update threshold */
17816         REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17817         /* update init credit */
17818         REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17819 
17820         /* probe changes */
17821         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17822         DELAY(50);
17823         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17824     }
17825 
17826     if (CNIC_SUPPORT(sc)) {
17827         ecore_init_block(sc, BLOCK_SRC, init_phase);
17828     }
17829 
17830     ecore_init_block(sc, BLOCK_CDU, init_phase);
17831     ecore_init_block(sc, BLOCK_CFC, init_phase);
17832 
17833     if (CHIP_IS_E1(sc)) {
17834         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17835         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17836     }
17837     ecore_init_block(sc, BLOCK_HC, init_phase);
17838 
17839     ecore_init_block(sc, BLOCK_IGU, init_phase);
17840 
17841     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17842     /* init aeu_mask_attn_func_0/1:
17843      *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17844      *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17845      *             bits 4-7 are used for "per vn group attention" */
17846     val = IS_MF(sc) ? 0xF7 : 0x7;
17847     /* Enable DCBX attention for all but E1 */
17848     val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17849     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17850 
17851     ecore_init_block(sc, BLOCK_NIG, init_phase);
17852 
17853     if (!CHIP_IS_E1x(sc)) {
17854         /* Bit-map indicating which L2 hdrs may appear after the
17855          * basic Ethernet header
17856          */
17857         if (IS_MF_AFEX(sc)) {
17858             REG_WR(sc, SC_PORT(sc) ?
17859                    NIG_REG_P1_HDRS_AFTER_BASIC :
17860                    NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17861         } else {
17862             REG_WR(sc, SC_PORT(sc) ?
17863                    NIG_REG_P1_HDRS_AFTER_BASIC :
17864                    NIG_REG_P0_HDRS_AFTER_BASIC,
17865                    IS_MF_SD(sc) ? 7 : 6);
17866         }
17867 
17868         if (CHIP_IS_E3(sc)) {
17869             REG_WR(sc, SC_PORT(sc) ?
17870                    NIG_REG_LLH1_MF_MODE :
17871                    NIG_REG_LLH_MF_MODE, IS_MF(sc));
17872         }
17873     }
17874     if (!CHIP_IS_E3(sc)) {
17875         REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17876     }
17877 
17878     if (!CHIP_IS_E1(sc)) {
17879         /* 0x2 disable mf_ov, 0x1 enable */
17880         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17881                (IS_MF_SD(sc) ? 0x1 : 0x2));
17882 
17883         if (!CHIP_IS_E1x(sc)) {
17884             val = 0;
17885             switch (sc->devinfo.mf_info.mf_mode) {
17886             case MULTI_FUNCTION_SD:
17887                 val = 1;
17888                 break;
17889             case MULTI_FUNCTION_SI:
17890             case MULTI_FUNCTION_AFEX:
17891                 val = 2;
17892                 break;
17893             }
17894 
17895             REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17896                         NIG_REG_LLH0_CLS_TYPE), val);
17897         }
17898         REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17899         REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17900         REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17901     }
17902 
17903     /* If SPIO5 is set to generate interrupts, enable it for this port */
17904     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17905     if (val & MISC_SPIO_SPIO5) {
17906         uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17907                                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17908         val = REG_RD(sc, reg_addr);
17909         val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17910         REG_WR(sc, reg_addr, val);
17911     }
17912 
17913     return (0);
17914 }
17915 
17916 static uint32_t
17917 bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17918                        uint32_t         reg,
17919                        uint32_t         expected,
17920                        uint32_t         poll_count)
17921 {
17922     uint32_t cur_cnt = poll_count;
17923     uint32_t val;
17924 
17925     while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17926         DELAY(FLR_WAIT_INTERVAL);
17927     }
17928 
17929     return (val);
17930 }
17931 
17932 static int
17933 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17934                               uint32_t         reg,
17935                               char             *msg,
17936                               uint32_t         poll_cnt)
17937 {
17938     uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17939 
17940     if (val != 0) {
17941         BLOGE(sc, "%s usage count=%d\n", msg, val);
17942         return (1);
17943     }
17944 
17945     return (0);
17946 }
17947 
17948 /* Common routines with VF FLR cleanup */
17949 static uint32_t
17950 bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17951 {
17952     /* adjust polling timeout */
17953     if (CHIP_REV_IS_EMUL(sc)) {
17954         return (FLR_POLL_CNT * 2000);
17955     }
17956 
17957     if (CHIP_REV_IS_FPGA(sc)) {
17958         return (FLR_POLL_CNT * 120);
17959     }
17960 
17961     return (FLR_POLL_CNT);
17962 }
17963 
17964 static int
17965 bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17966                            uint32_t         poll_cnt)
17967 {
17968     /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17969     if (bxe_flr_clnup_poll_hw_counter(sc,
17970                                       CFC_REG_NUM_LCIDS_INSIDE_PF,
17971                                       "CFC PF usage counter timed out",
17972                                       poll_cnt)) {
17973         return (1);
17974     }
17975 
17976     /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17977     if (bxe_flr_clnup_poll_hw_counter(sc,
17978                                       DORQ_REG_PF_USAGE_CNT,
17979                                       "DQ PF usage counter timed out",
17980                                       poll_cnt)) {
17981         return (1);
17982     }
17983 
17984     /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17985     if (bxe_flr_clnup_poll_hw_counter(sc,
17986                                       QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17987                                       "QM PF usage counter timed out",
17988                                       poll_cnt)) {
17989         return (1);
17990     }
17991 
17992     /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17993     if (bxe_flr_clnup_poll_hw_counter(sc,
17994                                       TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
17995                                       "Timers VNIC usage counter timed out",
17996                                       poll_cnt)) {
17997         return (1);
17998     }
17999 
18000     if (bxe_flr_clnup_poll_hw_counter(sc,
18001                                       TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
18002                                       "Timers NUM_SCANS usage counter timed out",
18003                                       poll_cnt)) {
18004         return (1);
18005     }
18006 
18007     /* Wait DMAE PF usage counter to zero */
18008     if (bxe_flr_clnup_poll_hw_counter(sc,
18009                                       dmae_reg_go_c[INIT_DMAE_C(sc)],
18010                                       "DMAE dommand register timed out",
18011                                       poll_cnt)) {
18012         return (1);
18013     }
18014 
18015     return (0);
18016 }
18017 
18018 #define OP_GEN_PARAM(param)                                            \
18019     (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
18020 #define OP_GEN_TYPE(type)                                           \
18021     (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
18022 #define OP_GEN_AGG_VECT(index)                                             \
18023     (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
18024 
18025 static int
18026 bxe_send_final_clnup(struct bxe_softc *sc,
18027                      uint8_t          clnup_func,
18028                      uint32_t         poll_cnt)
18029 {
18030     uint32_t op_gen_command = 0;
18031     uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
18032                           CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
18033     int ret = 0;
18034 
18035     if (REG_RD(sc, comp_addr)) {
18036         BLOGE(sc, "Cleanup complete was not 0 before sending\n");
18037         return (1);
18038     }
18039 
18040     op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
18041     op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
18042     op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
18043     op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
18044 
18045     BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
18046     REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
18047 
18048     if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
18049         BLOGE(sc, "FW final cleanup did not succeed\n");
18050         BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
18051               (REG_RD(sc, comp_addr)));
18052         bxe_panic(sc, ("FLR cleanup failed\n"));
18053         return (1);
18054     }
18055 
18056     /* Zero completion for nxt FLR */
18057     REG_WR(sc, comp_addr, 0);
18058 
18059     return (ret);
18060 }
18061 
18062 static void
18063 bxe_pbf_pN_buf_flushed(struct bxe_softc       *sc,
18064                        struct pbf_pN_buf_regs *regs,
18065                        uint32_t               poll_count)
18066 {
18067     uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
18068     uint32_t cur_cnt = poll_count;
18069 
18070     crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
18071     crd = crd_start = REG_RD(sc, regs->crd);
18072     init_crd = REG_RD(sc, regs->init_crd);
18073 
18074     BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
18075     BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
18076     BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
18077 
18078     while ((crd != init_crd) &&
18079            ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
18080             (init_crd - crd_start))) {
18081         if (cur_cnt--) {
18082             DELAY(FLR_WAIT_INTERVAL);
18083             crd = REG_RD(sc, regs->crd);
18084             crd_freed = REG_RD(sc, regs->crd_freed);
18085         } else {
18086             BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
18087             BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : c:%x\n", regs->pN, crd);
18088             BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
18089             break;
18090         }
18091     }
18092 
18093     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
18094           poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18095 }
18096 
18097 static void
18098 bxe_pbf_pN_cmd_flushed(struct bxe_softc       *sc,
18099                        struct pbf_pN_cmd_regs *regs,
18100                        uint32_t               poll_count)
18101 {
18102     uint32_t occup, to_free, freed, freed_start;
18103     uint32_t cur_cnt = poll_count;
18104 
18105     occup = to_free = REG_RD(sc, regs->lines_occup);
18106     freed = freed_start = REG_RD(sc, regs->lines_freed);
18107 
18108     BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18109     BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18110 
18111     while (occup &&
18112            ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
18113         if (cur_cnt--) {
18114             DELAY(FLR_WAIT_INTERVAL);
18115             occup = REG_RD(sc, regs->lines_occup);
18116             freed = REG_RD(sc, regs->lines_freed);
18117         } else {
18118             BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
18119             BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18120             BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18121             break;
18122         }
18123     }
18124 
18125     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
18126           poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18127 }
18128 
18129 static void
18130 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
18131 {
18132     struct pbf_pN_cmd_regs cmd_regs[] = {
18133         {0, (CHIP_IS_E3B0(sc)) ?
18134             PBF_REG_TQ_OCCUPANCY_Q0 :
18135             PBF_REG_P0_TQ_OCCUPANCY,
18136             (CHIP_IS_E3B0(sc)) ?
18137             PBF_REG_TQ_LINES_FREED_CNT_Q0 :
18138             PBF_REG_P0_TQ_LINES_FREED_CNT},
18139         {1, (CHIP_IS_E3B0(sc)) ?
18140             PBF_REG_TQ_OCCUPANCY_Q1 :
18141             PBF_REG_P1_TQ_OCCUPANCY,
18142             (CHIP_IS_E3B0(sc)) ?
18143             PBF_REG_TQ_LINES_FREED_CNT_Q1 :
18144             PBF_REG_P1_TQ_LINES_FREED_CNT},
18145         {4, (CHIP_IS_E3B0(sc)) ?
18146             PBF_REG_TQ_OCCUPANCY_LB_Q :
18147             PBF_REG_P4_TQ_OCCUPANCY,
18148             (CHIP_IS_E3B0(sc)) ?
18149             PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
18150             PBF_REG_P4_TQ_LINES_FREED_CNT}
18151     };
18152 
18153     struct pbf_pN_buf_regs buf_regs[] = {
18154         {0, (CHIP_IS_E3B0(sc)) ?
18155             PBF_REG_INIT_CRD_Q0 :
18156             PBF_REG_P0_INIT_CRD ,
18157             (CHIP_IS_E3B0(sc)) ?
18158             PBF_REG_CREDIT_Q0 :
18159             PBF_REG_P0_CREDIT,
18160             (CHIP_IS_E3B0(sc)) ?
18161             PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
18162             PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
18163         {1, (CHIP_IS_E3B0(sc)) ?
18164             PBF_REG_INIT_CRD_Q1 :
18165             PBF_REG_P1_INIT_CRD,
18166             (CHIP_IS_E3B0(sc)) ?
18167             PBF_REG_CREDIT_Q1 :
18168             PBF_REG_P1_CREDIT,
18169             (CHIP_IS_E3B0(sc)) ?
18170             PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
18171             PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
18172         {4, (CHIP_IS_E3B0(sc)) ?
18173             PBF_REG_INIT_CRD_LB_Q :
18174             PBF_REG_P4_INIT_CRD,
18175             (CHIP_IS_E3B0(sc)) ?
18176             PBF_REG_CREDIT_LB_Q :
18177             PBF_REG_P4_CREDIT,
18178             (CHIP_IS_E3B0(sc)) ?
18179             PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
18180             PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
18181     };
18182 
18183     int i;
18184 
18185     /* Verify the command queues are flushed P0, P1, P4 */
18186     for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
18187         bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
18188     }
18189 
18190     /* Verify the transmission buffers are flushed P0, P1, P4 */
18191     for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
18192         bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
18193     }
18194 }
18195 
18196 static void
18197 bxe_hw_enable_status(struct bxe_softc *sc)
18198 {
18199     uint32_t val;
18200 
18201     val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
18202     BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
18203 
18204     val = REG_RD(sc, PBF_REG_DISABLE_PF);
18205     BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
18206 
18207     val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
18208     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
18209 
18210     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
18211     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
18212 
18213     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
18214     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
18215 
18216     val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
18217     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
18218 
18219     val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
18220     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
18221 
18222     val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
18223     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
18224 }
18225 
18226 static int
18227 bxe_pf_flr_clnup(struct bxe_softc *sc)
18228 {
18229     uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
18230 
18231     BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
18232 
18233     /* Re-enable PF target read access */
18234     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
18235 
18236     /* Poll HW usage counters */
18237     BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
18238     if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
18239         return (-1);
18240     }
18241 
18242     /* Zero the igu 'trailing edge' and 'leading edge' */
18243 
18244     /* Send the FW cleanup command */
18245     if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
18246         return (-1);
18247     }
18248 
18249     /* ATC cleanup */
18250 
18251     /* Verify TX hw is flushed */
18252     bxe_tx_hw_flushed(sc, poll_cnt);
18253 
18254     /* Wait 100ms (not adjusted according to platform) */
18255     DELAY(100000);
18256 
18257     /* Verify no pending pci transactions */
18258     if (bxe_is_pcie_pending(sc)) {
18259         BLOGE(sc, "PCIE Transactions still pending\n");
18260     }
18261 
18262     /* Debug */
18263     bxe_hw_enable_status(sc);
18264 
18265     /*
18266      * Master enable - Due to WB DMAE writes performed before this
18267      * register is re-initialized as part of the regular function init
18268      */
18269     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18270 
18271     return (0);
18272 }
18273 
18274 #if 0
18275 static void
18276 bxe_init_searcher(struct bxe_softc *sc)
18277 {
18278     int port = SC_PORT(sc);
18279     ecore_src_init_t2(sc, sc->t2, sc->t2_mapping, SRC_CONN_NUM);
18280     /* T1 hash bits value determines the T1 number of entries */
18281     REG_WR(sc, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
18282 }
18283 #endif
18284 
18285 static int
18286 bxe_init_hw_func(struct bxe_softc *sc)
18287 {
18288     int port = SC_PORT(sc);
18289     int func = SC_FUNC(sc);
18290     int init_phase = PHASE_PF0 + func;
18291     struct ecore_ilt *ilt = sc->ilt;
18292     uint16_t cdu_ilt_start;
18293     uint32_t addr, val;
18294     uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
18295     int i, main_mem_width, rc;
18296 
18297     BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
18298 
18299     /* FLR cleanup */
18300     if (!CHIP_IS_E1x(sc)) {
18301         rc = bxe_pf_flr_clnup(sc);
18302         if (rc) {
18303             BLOGE(sc, "FLR cleanup failed!\n");
18304             // XXX bxe_fw_dump(sc);
18305             // XXX bxe_idle_chk(sc);
18306             return (rc);
18307         }
18308     }
18309 
18310     /* set MSI reconfigure capability */
18311     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18312         addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
18313         val = REG_RD(sc, addr);
18314         val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
18315         REG_WR(sc, addr, val);
18316     }
18317 
18318     ecore_init_block(sc, BLOCK_PXP, init_phase);
18319     ecore_init_block(sc, BLOCK_PXP2, init_phase);
18320 
18321     ilt = sc->ilt;
18322     cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18323 
18324 #if 0
18325     if (IS_SRIOV(sc)) {
18326         cdu_ilt_start += BXE_FIRST_VF_CID/ILT_PAGE_CIDS;
18327     }
18328     cdu_ilt_start = bxe_iov_init_ilt(sc, cdu_ilt_start);
18329 
18330 #if (BXE_FIRST_VF_CID > 0)
18331     /*
18332      * If BXE_FIRST_VF_CID > 0 then the PF L2 cids precedes
18333      * those of the VFs, so start line should be reset
18334      */
18335     cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18336 #endif
18337 #endif
18338 
18339     for (i = 0; i < L2_ILT_LINES(sc); i++) {
18340         ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
18341         ilt->lines[cdu_ilt_start + i].page_mapping =
18342             sc->context[i].vcxt_dma.paddr;
18343         ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
18344     }
18345     ecore_ilt_init_op(sc, INITOP_SET);
18346 
18347 #if 0
18348     if (!CONFIGURE_NIC_MODE(sc)) {
18349         bxe_init_searcher(sc);
18350         REG_WR(sc, PRS_REG_NIC_MODE, 0);
18351         BLOGD(sc, DBG_LOAD, "NIC MODE disabled\n");
18352     } else
18353 #endif
18354     {
18355         /* Set NIC mode */
18356         REG_WR(sc, PRS_REG_NIC_MODE, 1);
18357         BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
18358     }
18359 
18360     if (!CHIP_IS_E1x(sc)) {
18361         uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
18362 
18363         /* Turn on a single ISR mode in IGU if driver is going to use
18364          * INT#x or MSI
18365          */
18366         if (sc->interrupt_mode != INTR_MODE_MSIX) {
18367             pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
18368         }
18369 
18370         /*
18371          * Timers workaround bug: function init part.
18372          * Need to wait 20msec after initializing ILT,
18373          * needed to make sure there are no requests in
18374          * one of the PXP internal queues with "old" ILT addresses
18375          */
18376         DELAY(20000);
18377 
18378         /*
18379          * Master enable - Due to WB DMAE writes performed before this
18380          * register is re-initialized as part of the regular function
18381          * init
18382          */
18383         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18384         /* Enable the function in IGU */
18385         REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
18386     }
18387 
18388     sc->dmae_ready = 1;
18389 
18390     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
18391 
18392     if (!CHIP_IS_E1x(sc))
18393         REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
18394 
18395     ecore_init_block(sc, BLOCK_ATC, init_phase);
18396     ecore_init_block(sc, BLOCK_DMAE, init_phase);
18397     ecore_init_block(sc, BLOCK_NIG, init_phase);
18398     ecore_init_block(sc, BLOCK_SRC, init_phase);
18399     ecore_init_block(sc, BLOCK_MISC, init_phase);
18400     ecore_init_block(sc, BLOCK_TCM, init_phase);
18401     ecore_init_block(sc, BLOCK_UCM, init_phase);
18402     ecore_init_block(sc, BLOCK_CCM, init_phase);
18403     ecore_init_block(sc, BLOCK_XCM, init_phase);
18404     ecore_init_block(sc, BLOCK_TSEM, init_phase);
18405     ecore_init_block(sc, BLOCK_USEM, init_phase);
18406     ecore_init_block(sc, BLOCK_CSEM, init_phase);
18407     ecore_init_block(sc, BLOCK_XSEM, init_phase);
18408 
18409     if (!CHIP_IS_E1x(sc))
18410         REG_WR(sc, QM_REG_PF_EN, 1);
18411 
18412     if (!CHIP_IS_E1x(sc)) {
18413         REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18414         REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18415         REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18416         REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18417     }
18418     ecore_init_block(sc, BLOCK_QM, init_phase);
18419 
18420     ecore_init_block(sc, BLOCK_TM, init_phase);
18421     ecore_init_block(sc, BLOCK_DORQ, init_phase);
18422 
18423     bxe_iov_init_dq(sc);
18424 
18425     ecore_init_block(sc, BLOCK_BRB1, init_phase);
18426     ecore_init_block(sc, BLOCK_PRS, init_phase);
18427     ecore_init_block(sc, BLOCK_TSDM, init_phase);
18428     ecore_init_block(sc, BLOCK_CSDM, init_phase);
18429     ecore_init_block(sc, BLOCK_USDM, init_phase);
18430     ecore_init_block(sc, BLOCK_XSDM, init_phase);
18431     ecore_init_block(sc, BLOCK_UPB, init_phase);
18432     ecore_init_block(sc, BLOCK_XPB, init_phase);
18433     ecore_init_block(sc, BLOCK_PBF, init_phase);
18434     if (!CHIP_IS_E1x(sc))
18435         REG_WR(sc, PBF_REG_DISABLE_PF, 0);
18436 
18437     ecore_init_block(sc, BLOCK_CDU, init_phase);
18438 
18439     ecore_init_block(sc, BLOCK_CFC, init_phase);
18440 
18441     if (!CHIP_IS_E1x(sc))
18442         REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
18443 
18444     if (IS_MF(sc)) {
18445         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
18446         REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
18447     }
18448 
18449     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
18450 
18451     /* HC init per function */
18452     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18453         if (CHIP_IS_E1H(sc)) {
18454             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18455 
18456             REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18457             REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18458         }
18459         ecore_init_block(sc, BLOCK_HC, init_phase);
18460 
18461     } else {
18462         int num_segs, sb_idx, prod_offset;
18463 
18464         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18465 
18466         if (!CHIP_IS_E1x(sc)) {
18467             REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18468             REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18469         }
18470 
18471         ecore_init_block(sc, BLOCK_IGU, init_phase);
18472 
18473         if (!CHIP_IS_E1x(sc)) {
18474             int dsb_idx = 0;
18475             /**
18476              * Producer memory:
18477              * E2 mode: address 0-135 match to the mapping memory;
18478              * 136 - PF0 default prod; 137 - PF1 default prod;
18479              * 138 - PF2 default prod; 139 - PF3 default prod;
18480              * 140 - PF0 attn prod;    141 - PF1 attn prod;
18481              * 142 - PF2 attn prod;    143 - PF3 attn prod;
18482              * 144-147 reserved.
18483              *
18484              * E1.5 mode - In backward compatible mode;
18485              * for non default SB; each even line in the memory
18486              * holds the U producer and each odd line hold
18487              * the C producer. The first 128 producers are for
18488              * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
18489              * producers are for the DSB for each PF.
18490              * Each PF has five segments: (the order inside each
18491              * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
18492              * 132-135 C prods; 136-139 X prods; 140-143 T prods;
18493              * 144-147 attn prods;
18494              */
18495             /* non-default-status-blocks */
18496             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18497                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
18498             for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
18499                 prod_offset = (sc->igu_base_sb + sb_idx) *
18500                     num_segs;
18501 
18502                 for (i = 0; i < num_segs; i++) {
18503                     addr = IGU_REG_PROD_CONS_MEMORY +
18504                             (prod_offset + i) * 4;
18505                     REG_WR(sc, addr, 0);
18506                 }
18507                 /* send consumer update with value 0 */
18508                 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
18509                            USTORM_ID, 0, IGU_INT_NOP, 1);
18510                 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
18511             }
18512 
18513             /* default-status-blocks */
18514             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18515                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
18516 
18517             if (CHIP_IS_MODE_4_PORT(sc))
18518                 dsb_idx = SC_FUNC(sc);
18519             else
18520                 dsb_idx = SC_VN(sc);
18521 
18522             prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
18523                        IGU_BC_BASE_DSB_PROD + dsb_idx :
18524                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
18525 
18526             /*
18527              * igu prods come in chunks of E1HVN_MAX (4) -
18528              * does not matters what is the current chip mode
18529              */
18530             for (i = 0; i < (num_segs * E1HVN_MAX);
18531                  i += E1HVN_MAX) {
18532                 addr = IGU_REG_PROD_CONS_MEMORY +
18533                             (prod_offset + i)*4;
18534                 REG_WR(sc, addr, 0);
18535             }
18536             /* send consumer update with 0 */
18537             if (CHIP_INT_MODE_IS_BC(sc)) {
18538                 bxe_ack_sb(sc, sc->igu_dsb_id,
18539                            USTORM_ID, 0, IGU_INT_NOP, 1);
18540                 bxe_ack_sb(sc, sc->igu_dsb_id,
18541                            CSTORM_ID, 0, IGU_INT_NOP, 1);
18542                 bxe_ack_sb(sc, sc->igu_dsb_id,
18543                            XSTORM_ID, 0, IGU_INT_NOP, 1);
18544                 bxe_ack_sb(sc, sc->igu_dsb_id,
18545                            TSTORM_ID, 0, IGU_INT_NOP, 1);
18546                 bxe_ack_sb(sc, sc->igu_dsb_id,
18547                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
18548             } else {
18549                 bxe_ack_sb(sc, sc->igu_dsb_id,
18550                            USTORM_ID, 0, IGU_INT_NOP, 1);
18551                 bxe_ack_sb(sc, sc->igu_dsb_id,
18552                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
18553             }
18554             bxe_igu_clear_sb(sc, sc->igu_dsb_id);
18555 
18556             /* !!! these should become driver const once
18557                rf-tool supports split-68 const */
18558             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
18559             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
18560             REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
18561             REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
18562             REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
18563             REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
18564         }
18565     }
18566 
18567     /* Reset PCIE errors for debug */
18568     REG_WR(sc, 0x2114, 0xffffffff);
18569     REG_WR(sc, 0x2120, 0xffffffff);
18570 
18571     if (CHIP_IS_E1x(sc)) {
18572         main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
18573         main_mem_base = HC_REG_MAIN_MEMORY +
18574                 SC_PORT(sc) * (main_mem_size * 4);
18575         main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
18576         main_mem_width = 8;
18577 
18578         val = REG_RD(sc, main_mem_prty_clr);
18579         if (val) {
18580             BLOGD(sc, DBG_LOAD,
18581                   "Parity errors in HC block during function init (0x%x)!\n",
18582                   val);
18583         }
18584 
18585         /* Clear "false" parity errors in MSI-X table */
18586         for (i = main_mem_base;
18587              i < main_mem_base + main_mem_size * 4;
18588              i += main_mem_width) {
18589             bxe_read_dmae(sc, i, main_mem_width / 4);
18590             bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
18591                            i, main_mem_width / 4);
18592         }
18593         /* Clear HC parity attention */
18594         REG_RD(sc, main_mem_prty_clr);
18595     }
18596 
18597 #if 1
18598     /* Enable STORMs SP logging */
18599     REG_WR8(sc, BAR_USTRORM_INTMEM +
18600            USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18601     REG_WR8(sc, BAR_TSTRORM_INTMEM +
18602            TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18603     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18604            CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18605     REG_WR8(sc, BAR_XSTRORM_INTMEM +
18606            XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18607 #endif
18608 
18609     elink_phy_probe(&sc->link_params);
18610 
18611     return (0);
18612 }
18613 
18614 static void
18615 bxe_link_reset(struct bxe_softc *sc)
18616 {
18617     if (!BXE_NOMCP(sc)) {
18618         BXE_PHY_LOCK(sc);
18619         elink_lfa_reset(&sc->link_params, &sc->link_vars);
18620         BXE_PHY_UNLOCK(sc);
18621     } else {
18622         if (!CHIP_REV_IS_SLOW(sc)) {
18623             BLOGW(sc, "Bootcode is missing - cannot reset link\n");
18624         }
18625     }
18626 }
18627 
18628 static void
18629 bxe_reset_port(struct bxe_softc *sc)
18630 {
18631     int port = SC_PORT(sc);
18632     uint32_t val;
18633 
18634     /* reset physical Link */
18635     bxe_link_reset(sc);
18636 
18637     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18638 
18639     /* Do not rcv packets to BRB */
18640     REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18641     /* Do not direct rcv packets that are not for MCP to the BRB */
18642     REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18643                NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18644 
18645     /* Configure AEU */
18646     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18647 
18648     DELAY(100000);
18649 
18650     /* Check for BRB port occupancy */
18651     val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18652     if (val) {
18653         BLOGD(sc, DBG_LOAD,
18654               "BRB1 is not empty, %d blocks are occupied\n", val);
18655     }
18656 
18657     /* TODO: Close Doorbell port? */
18658 }
18659 
18660 static void
18661 bxe_ilt_wr(struct bxe_softc *sc,
18662            uint32_t         index,
18663            bus_addr_t       addr)
18664 {
18665     int reg;
18666     uint32_t wb_write[2];
18667 
18668     if (CHIP_IS_E1(sc)) {
18669         reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18670     } else {
18671         reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18672     }
18673 
18674     wb_write[0] = ONCHIP_ADDR1(addr);
18675     wb_write[1] = ONCHIP_ADDR2(addr);
18676     REG_WR_DMAE(sc, reg, wb_write, 2);
18677 }
18678 
18679 static void
18680 bxe_clear_func_ilt(struct bxe_softc *sc,
18681                    uint32_t         func)
18682 {
18683     uint32_t i, base = FUNC_ILT_BASE(func);
18684     for (i = base; i < base + ILT_PER_FUNC; i++) {
18685         bxe_ilt_wr(sc, i, 0);
18686     }
18687 }
18688 
18689 static void
18690 bxe_reset_func(struct bxe_softc *sc)
18691 {
18692     struct bxe_fastpath *fp;
18693     int port = SC_PORT(sc);
18694     int func = SC_FUNC(sc);
18695     int i;
18696 
18697     /* Disable the function in the FW */
18698     REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18699     REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18700     REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18701     REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18702 
18703     /* FP SBs */
18704     FOR_EACH_ETH_QUEUE(sc, i) {
18705         fp = &sc->fp[i];
18706         REG_WR8(sc, BAR_CSTRORM_INTMEM +
18707                 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18708                 SB_DISABLED);
18709     }
18710 
18711 #if 0
18712     if (CNIC_LOADED(sc)) {
18713         /* CNIC SB */
18714         REG_WR8(sc, BAR_CSTRORM_INTMEM +
18715                 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
18716                 (bxe_cnic_fw_sb_id(sc)), SB_DISABLED);
18717     }
18718 #endif
18719 
18720     /* SP SB */
18721     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18722             CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18723             SB_DISABLED);
18724 
18725     for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18726         REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18727     }
18728 
18729     /* Configure IGU */
18730     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18731         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18732         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18733     } else {
18734         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18735         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18736     }
18737 
18738     if (CNIC_LOADED(sc)) {
18739         /* Disable Timer scan */
18740         REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18741         /*
18742          * Wait for at least 10ms and up to 2 second for the timers
18743          * scan to complete
18744          */
18745         for (i = 0; i < 200; i++) {
18746             DELAY(10000);
18747             if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18748                 break;
18749         }
18750     }
18751 
18752     /* Clear ILT */
18753     bxe_clear_func_ilt(sc, func);
18754 
18755     /*
18756      * Timers workaround bug for E2: if this is vnic-3,
18757      * we need to set the entire ilt range for this timers.
18758      */
18759     if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18760         struct ilt_client_info ilt_cli;
18761         /* use dummy TM client */
18762         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18763         ilt_cli.start = 0;
18764         ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18765         ilt_cli.client_num = ILT_CLIENT_TM;
18766 
18767         ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18768     }
18769 
18770     /* this assumes that reset_port() called before reset_func()*/
18771     if (!CHIP_IS_E1x(sc)) {
18772         bxe_pf_disable(sc);
18773     }
18774 
18775     sc->dmae_ready = 0;
18776 }
18777 
18778 static int
18779 bxe_gunzip_init(struct bxe_softc *sc)
18780 {
18781     return (0);
18782 }
18783 
18784 static void
18785 bxe_gunzip_end(struct bxe_softc *sc)
18786 {
18787     return;
18788 }
18789 
18790 static int
18791 bxe_init_firmware(struct bxe_softc *sc)
18792 {
18793     if (CHIP_IS_E1(sc)) {
18794         ecore_init_e1_firmware(sc);
18795         sc->iro_array = e1_iro_arr;
18796     } else if (CHIP_IS_E1H(sc)) {
18797         ecore_init_e1h_firmware(sc);
18798         sc->iro_array = e1h_iro_arr;
18799     } else if (!CHIP_IS_E1x(sc)) {
18800         ecore_init_e2_firmware(sc);
18801         sc->iro_array = e2_iro_arr;
18802     } else {
18803         BLOGE(sc, "Unsupported chip revision\n");
18804         return (-1);
18805     }
18806 
18807     return (0);
18808 }
18809 
18810 static void
18811 bxe_release_firmware(struct bxe_softc *sc)
18812 {
18813     /* Do nothing */
18814     return;
18815 }
18816 
18817 static int
18818 ecore_gunzip(struct bxe_softc *sc,
18819              const uint8_t    *zbuf,
18820              int              len)
18821 {
18822     /* XXX : Implement... */
18823     BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18824     return (FALSE);
18825 }
18826 
18827 static void
18828 ecore_reg_wr_ind(struct bxe_softc *sc,
18829                  uint32_t         addr,
18830                  uint32_t         val)
18831 {
18832     bxe_reg_wr_ind(sc, addr, val);
18833 }
18834 
18835 static void
18836 ecore_write_dmae_phys_len(struct bxe_softc *sc,
18837                           bus_addr_t       phys_addr,
18838                           uint32_t         addr,
18839                           uint32_t         len)
18840 {
18841     bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18842 }
18843 
18844 void
18845 ecore_storm_memset_struct(struct bxe_softc *sc,
18846                           uint32_t         addr,
18847                           size_t           size,
18848                           uint32_t         *data)
18849 {
18850     uint8_t i;
18851     for (i = 0; i < size/4; i++) {
18852         REG_WR(sc, addr + (i * 4), data[i]);
18853     }
18854 }
18855 
18856