1 /*- 2 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 15 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 18 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 19 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 20 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 21 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 22 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 23 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 24 * THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #define BXE_DRIVER_VERSION "1.78.79" 31 32 #include "bxe.h" 33 #include "ecore_sp.h" 34 #include "ecore_init.h" 35 #include "ecore_init_ops.h" 36 37 #include "57710_int_offsets.h" 38 #include "57711_int_offsets.h" 39 #include "57712_int_offsets.h" 40 41 /* 42 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these 43 * explicitly here for older kernels that don't include this changeset. 44 */ 45 #ifndef CTLTYPE_U64 46 #define CTLTYPE_U64 CTLTYPE_QUAD 47 #define sysctl_handle_64 sysctl_handle_quad 48 #endif 49 50 /* 51 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these 52 * here as zero(0) for older kernels that don't include this changeset 53 * thereby masking the functionality. 54 */ 55 #ifndef CSUM_TCP_IPV6 56 #define CSUM_TCP_IPV6 0 57 #define CSUM_UDP_IPV6 0 58 #endif 59 60 /* 61 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap 62 * for older kernels that don't include this changeset. 63 */ 64 #if __FreeBSD_version < 900035 65 #define pci_find_cap pci_find_extcap 66 #endif 67 68 #define BXE_DEF_SB_ATT_IDX 0x0001 69 #define BXE_DEF_SB_IDX 0x0002 70 71 /* 72 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per 73 * function HW initialization. 74 */ 75 #define FLR_WAIT_USEC 10000 /* 10 msecs */ 76 #define FLR_WAIT_INTERVAL 50 /* usecs */ 77 #define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */ 78 79 struct pbf_pN_buf_regs { 80 int pN; 81 uint32_t init_crd; 82 uint32_t crd; 83 uint32_t crd_freed; 84 }; 85 86 struct pbf_pN_cmd_regs { 87 int pN; 88 uint32_t lines_occup; 89 uint32_t lines_freed; 90 }; 91 92 /* 93 * PCI Device ID Table used by bxe_probe(). 94 */ 95 #define BXE_DEVDESC_MAX 64 96 static struct bxe_device_type bxe_devs[] = { 97 { 98 BRCM_VENDORID, 99 CHIP_NUM_57710, 100 PCI_ANY_ID, PCI_ANY_ID, 101 "QLogic NetXtreme II BCM57710 10GbE" 102 }, 103 { 104 BRCM_VENDORID, 105 CHIP_NUM_57711, 106 PCI_ANY_ID, PCI_ANY_ID, 107 "QLogic NetXtreme II BCM57711 10GbE" 108 }, 109 { 110 BRCM_VENDORID, 111 CHIP_NUM_57711E, 112 PCI_ANY_ID, PCI_ANY_ID, 113 "QLogic NetXtreme II BCM57711E 10GbE" 114 }, 115 { 116 BRCM_VENDORID, 117 CHIP_NUM_57712, 118 PCI_ANY_ID, PCI_ANY_ID, 119 "QLogic NetXtreme II BCM57712 10GbE" 120 }, 121 { 122 BRCM_VENDORID, 123 CHIP_NUM_57712_MF, 124 PCI_ANY_ID, PCI_ANY_ID, 125 "QLogic NetXtreme II BCM57712 MF 10GbE" 126 }, 127 #if 0 128 { 129 BRCM_VENDORID, 130 CHIP_NUM_57712_VF, 131 PCI_ANY_ID, PCI_ANY_ID, 132 "QLogic NetXtreme II BCM57712 VF 10GbE" 133 }, 134 #endif 135 { 136 BRCM_VENDORID, 137 CHIP_NUM_57800, 138 PCI_ANY_ID, PCI_ANY_ID, 139 "QLogic NetXtreme II BCM57800 10GbE" 140 }, 141 { 142 BRCM_VENDORID, 143 CHIP_NUM_57800_MF, 144 PCI_ANY_ID, PCI_ANY_ID, 145 "QLogic NetXtreme II BCM57800 MF 10GbE" 146 }, 147 #if 0 148 { 149 BRCM_VENDORID, 150 CHIP_NUM_57800_VF, 151 PCI_ANY_ID, PCI_ANY_ID, 152 "QLogic NetXtreme II BCM57800 VF 10GbE" 153 }, 154 #endif 155 { 156 BRCM_VENDORID, 157 CHIP_NUM_57810, 158 PCI_ANY_ID, PCI_ANY_ID, 159 "QLogic NetXtreme II BCM57810 10GbE" 160 }, 161 { 162 BRCM_VENDORID, 163 CHIP_NUM_57810_MF, 164 PCI_ANY_ID, PCI_ANY_ID, 165 "QLogic NetXtreme II BCM57810 MF 10GbE" 166 }, 167 #if 0 168 { 169 BRCM_VENDORID, 170 CHIP_NUM_57810_VF, 171 PCI_ANY_ID, PCI_ANY_ID, 172 "QLogic NetXtreme II BCM57810 VF 10GbE" 173 }, 174 #endif 175 { 176 BRCM_VENDORID, 177 CHIP_NUM_57811, 178 PCI_ANY_ID, PCI_ANY_ID, 179 "QLogic NetXtreme II BCM57811 10GbE" 180 }, 181 { 182 BRCM_VENDORID, 183 CHIP_NUM_57811_MF, 184 PCI_ANY_ID, PCI_ANY_ID, 185 "QLogic NetXtreme II BCM57811 MF 10GbE" 186 }, 187 #if 0 188 { 189 BRCM_VENDORID, 190 CHIP_NUM_57811_VF, 191 PCI_ANY_ID, PCI_ANY_ID, 192 "QLogic NetXtreme II BCM57811 VF 10GbE" 193 }, 194 #endif 195 { 196 BRCM_VENDORID, 197 CHIP_NUM_57840_4_10, 198 PCI_ANY_ID, PCI_ANY_ID, 199 "QLogic NetXtreme II BCM57840 4x10GbE" 200 }, 201 #if 0 202 { 203 BRCM_VENDORID, 204 CHIP_NUM_57840_2_20, 205 PCI_ANY_ID, PCI_ANY_ID, 206 "QLogic NetXtreme II BCM57840 2x20GbE" 207 }, 208 #endif 209 { 210 BRCM_VENDORID, 211 CHIP_NUM_57840_MF, 212 PCI_ANY_ID, PCI_ANY_ID, 213 "QLogic NetXtreme II BCM57840 MF 10GbE" 214 }, 215 #if 0 216 { 217 BRCM_VENDORID, 218 CHIP_NUM_57840_VF, 219 PCI_ANY_ID, PCI_ANY_ID, 220 "QLogic NetXtreme II BCM57840 VF 10GbE" 221 }, 222 #endif 223 { 224 0, 0, 0, 0, NULL 225 } 226 }; 227 228 MALLOC_DECLARE(M_BXE_ILT); 229 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer"); 230 231 /* 232 * FreeBSD device entry points. 233 */ 234 static int bxe_probe(device_t); 235 static int bxe_attach(device_t); 236 static int bxe_detach(device_t); 237 static int bxe_shutdown(device_t); 238 239 /* 240 * FreeBSD KLD module/device interface event handler method. 241 */ 242 static device_method_t bxe_methods[] = { 243 /* Device interface (device_if.h) */ 244 DEVMETHOD(device_probe, bxe_probe), 245 DEVMETHOD(device_attach, bxe_attach), 246 DEVMETHOD(device_detach, bxe_detach), 247 DEVMETHOD(device_shutdown, bxe_shutdown), 248 #if 0 249 DEVMETHOD(device_suspend, bxe_suspend), 250 DEVMETHOD(device_resume, bxe_resume), 251 #endif 252 /* Bus interface (bus_if.h) */ 253 DEVMETHOD(bus_print_child, bus_generic_print_child), 254 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 255 KOBJMETHOD_END 256 }; 257 258 /* 259 * FreeBSD KLD Module data declaration 260 */ 261 static driver_t bxe_driver = { 262 "bxe", /* module name */ 263 bxe_methods, /* event handler */ 264 sizeof(struct bxe_softc) /* extra data */ 265 }; 266 267 /* 268 * FreeBSD dev class is needed to manage dev instances and 269 * to associate with a bus type 270 */ 271 static devclass_t bxe_devclass; 272 273 MODULE_DEPEND(bxe, pci, 1, 1, 1); 274 MODULE_DEPEND(bxe, ether, 1, 1, 1); 275 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0); 276 277 /* resources needed for unloading a previously loaded device */ 278 279 #define BXE_PREV_WAIT_NEEDED 1 280 struct mtx bxe_prev_mtx; 281 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF); 282 struct bxe_prev_list_node { 283 LIST_ENTRY(bxe_prev_list_node) node; 284 uint8_t bus; 285 uint8_t slot; 286 uint8_t path; 287 uint8_t aer; /* XXX automatic error recovery */ 288 uint8_t undi; 289 }; 290 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list); 291 292 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 293 294 /* Tunable device values... */ 295 296 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters"); 297 298 /* Debug */ 299 unsigned long bxe_debug = 0; 300 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN, 301 &bxe_debug, 0, "Debug logging mode"); 302 303 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 304 static int bxe_interrupt_mode = INTR_MODE_MSIX; 305 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN, 306 &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode"); 307 308 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */ 309 static int bxe_queue_count = 4; 310 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN, 311 &bxe_queue_count, 0, "Multi-Queue queue count"); 312 313 /* max number of buffers per queue (default RX_BD_USABLE) */ 314 static int bxe_max_rx_bufs = 0; 315 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN, 316 &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue"); 317 318 /* Host interrupt coalescing RX tick timer (usecs) */ 319 static int bxe_hc_rx_ticks = 25; 320 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN, 321 &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks"); 322 323 /* Host interrupt coalescing TX tick timer (usecs) */ 324 static int bxe_hc_tx_ticks = 50; 325 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN, 326 &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks"); 327 328 /* Maximum number of Rx packets to process at a time */ 329 static int bxe_rx_budget = 0xffffffff; 330 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN, 331 &bxe_rx_budget, 0, "Rx processing budget"); 332 333 /* Maximum LRO aggregation size */ 334 static int bxe_max_aggregation_size = 0; 335 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN, 336 &bxe_max_aggregation_size, 0, "max aggregation size"); 337 338 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */ 339 static int bxe_mrrs = -1; 340 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN, 341 &bxe_mrrs, 0, "PCIe maximum read request size"); 342 343 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */ 344 static int bxe_autogreeen = 0; 345 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN, 346 &bxe_autogreeen, 0, "AutoGrEEEn support"); 347 348 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */ 349 static int bxe_udp_rss = 0; 350 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN, 351 &bxe_udp_rss, 0, "UDP RSS support"); 352 353 354 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */ 355 356 #define STATS_OFFSET32(stat_name) \ 357 (offsetof(struct bxe_eth_stats, stat_name) / 4) 358 359 #define Q_STATS_OFFSET32(stat_name) \ 360 (offsetof(struct bxe_eth_q_stats, stat_name) / 4) 361 362 static const struct { 363 uint32_t offset; 364 uint32_t size; 365 uint32_t flags; 366 #define STATS_FLAGS_PORT 1 367 #define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */ 368 #define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT) 369 char string[STAT_NAME_LEN]; 370 } bxe_eth_stats_arr[] = { 371 { STATS_OFFSET32(total_bytes_received_hi), 372 8, STATS_FLAGS_BOTH, "rx_bytes" }, 373 { STATS_OFFSET32(error_bytes_received_hi), 374 8, STATS_FLAGS_BOTH, "rx_error_bytes" }, 375 { STATS_OFFSET32(total_unicast_packets_received_hi), 376 8, STATS_FLAGS_BOTH, "rx_ucast_packets" }, 377 { STATS_OFFSET32(total_multicast_packets_received_hi), 378 8, STATS_FLAGS_BOTH, "rx_mcast_packets" }, 379 { STATS_OFFSET32(total_broadcast_packets_received_hi), 380 8, STATS_FLAGS_BOTH, "rx_bcast_packets" }, 381 { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi), 382 8, STATS_FLAGS_PORT, "rx_crc_errors" }, 383 { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi), 384 8, STATS_FLAGS_PORT, "rx_align_errors" }, 385 { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi), 386 8, STATS_FLAGS_PORT, "rx_undersize_packets" }, 387 { STATS_OFFSET32(etherstatsoverrsizepkts_hi), 388 8, STATS_FLAGS_PORT, "rx_oversize_packets" }, 389 { STATS_OFFSET32(rx_stat_etherstatsfragments_hi), 390 8, STATS_FLAGS_PORT, "rx_fragments" }, 391 { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi), 392 8, STATS_FLAGS_PORT, "rx_jabbers" }, 393 { STATS_OFFSET32(no_buff_discard_hi), 394 8, STATS_FLAGS_BOTH, "rx_discards" }, 395 { STATS_OFFSET32(mac_filter_discard), 396 4, STATS_FLAGS_PORT, "rx_filtered_packets" }, 397 { STATS_OFFSET32(mf_tag_discard), 398 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" }, 399 { STATS_OFFSET32(pfc_frames_received_hi), 400 8, STATS_FLAGS_PORT, "pfc_frames_received" }, 401 { STATS_OFFSET32(pfc_frames_sent_hi), 402 8, STATS_FLAGS_PORT, "pfc_frames_sent" }, 403 { STATS_OFFSET32(brb_drop_hi), 404 8, STATS_FLAGS_PORT, "rx_brb_discard" }, 405 { STATS_OFFSET32(brb_truncate_hi), 406 8, STATS_FLAGS_PORT, "rx_brb_truncate" }, 407 { STATS_OFFSET32(pause_frames_received_hi), 408 8, STATS_FLAGS_PORT, "rx_pause_frames" }, 409 { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi), 410 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" }, 411 { STATS_OFFSET32(nig_timer_max), 412 4, STATS_FLAGS_PORT, "rx_constant_pause_events" }, 413 { STATS_OFFSET32(total_bytes_transmitted_hi), 414 8, STATS_FLAGS_BOTH, "tx_bytes" }, 415 { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi), 416 8, STATS_FLAGS_PORT, "tx_error_bytes" }, 417 { STATS_OFFSET32(total_unicast_packets_transmitted_hi), 418 8, STATS_FLAGS_BOTH, "tx_ucast_packets" }, 419 { STATS_OFFSET32(total_multicast_packets_transmitted_hi), 420 8, STATS_FLAGS_BOTH, "tx_mcast_packets" }, 421 { STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 422 8, STATS_FLAGS_BOTH, "tx_bcast_packets" }, 423 { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi), 424 8, STATS_FLAGS_PORT, "tx_mac_errors" }, 425 { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi), 426 8, STATS_FLAGS_PORT, "tx_carrier_errors" }, 427 { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi), 428 8, STATS_FLAGS_PORT, "tx_single_collisions" }, 429 { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi), 430 8, STATS_FLAGS_PORT, "tx_multi_collisions" }, 431 { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi), 432 8, STATS_FLAGS_PORT, "tx_deferred" }, 433 { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi), 434 8, STATS_FLAGS_PORT, "tx_excess_collisions" }, 435 { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi), 436 8, STATS_FLAGS_PORT, "tx_late_collisions" }, 437 { STATS_OFFSET32(tx_stat_etherstatscollisions_hi), 438 8, STATS_FLAGS_PORT, "tx_total_collisions" }, 439 { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi), 440 8, STATS_FLAGS_PORT, "tx_64_byte_packets" }, 441 { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi), 442 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" }, 443 { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi), 444 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" }, 445 { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi), 446 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" }, 447 { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi), 448 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" }, 449 { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi), 450 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" }, 451 { STATS_OFFSET32(etherstatspktsover1522octets_hi), 452 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" }, 453 { STATS_OFFSET32(pause_frames_sent_hi), 454 8, STATS_FLAGS_PORT, "tx_pause_frames" }, 455 { STATS_OFFSET32(total_tpa_aggregations_hi), 456 8, STATS_FLAGS_FUNC, "tpa_aggregations" }, 457 { STATS_OFFSET32(total_tpa_aggregated_frames_hi), 458 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"}, 459 { STATS_OFFSET32(total_tpa_bytes_hi), 460 8, STATS_FLAGS_FUNC, "tpa_bytes"}, 461 #if 0 462 { STATS_OFFSET32(recoverable_error), 463 4, STATS_FLAGS_FUNC, "recoverable_errors" }, 464 { STATS_OFFSET32(unrecoverable_error), 465 4, STATS_FLAGS_FUNC, "unrecoverable_errors" }, 466 #endif 467 { STATS_OFFSET32(eee_tx_lpi), 468 4, STATS_FLAGS_PORT, "eee_tx_lpi"}, 469 { STATS_OFFSET32(rx_calls), 470 4, STATS_FLAGS_FUNC, "rx_calls"}, 471 { STATS_OFFSET32(rx_pkts), 472 4, STATS_FLAGS_FUNC, "rx_pkts"}, 473 { STATS_OFFSET32(rx_tpa_pkts), 474 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"}, 475 { STATS_OFFSET32(rx_jumbo_sge_pkts), 476 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"}, 477 { STATS_OFFSET32(rx_soft_errors), 478 4, STATS_FLAGS_FUNC, "rx_soft_errors"}, 479 { STATS_OFFSET32(rx_hw_csum_errors), 480 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"}, 481 { STATS_OFFSET32(rx_ofld_frames_csum_ip), 482 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"}, 483 { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 484 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"}, 485 { STATS_OFFSET32(rx_budget_reached), 486 4, STATS_FLAGS_FUNC, "rx_budget_reached"}, 487 { STATS_OFFSET32(tx_pkts), 488 4, STATS_FLAGS_FUNC, "tx_pkts"}, 489 { STATS_OFFSET32(tx_soft_errors), 490 4, STATS_FLAGS_FUNC, "tx_soft_errors"}, 491 { STATS_OFFSET32(tx_ofld_frames_csum_ip), 492 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"}, 493 { STATS_OFFSET32(tx_ofld_frames_csum_tcp), 494 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"}, 495 { STATS_OFFSET32(tx_ofld_frames_csum_udp), 496 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"}, 497 { STATS_OFFSET32(tx_ofld_frames_lso), 498 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"}, 499 { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 500 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"}, 501 { STATS_OFFSET32(tx_encap_failures), 502 4, STATS_FLAGS_FUNC, "tx_encap_failures"}, 503 { STATS_OFFSET32(tx_hw_queue_full), 504 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"}, 505 { STATS_OFFSET32(tx_hw_max_queue_depth), 506 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"}, 507 { STATS_OFFSET32(tx_dma_mapping_failure), 508 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"}, 509 { STATS_OFFSET32(tx_max_drbr_queue_depth), 510 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"}, 511 { STATS_OFFSET32(tx_window_violation_std), 512 4, STATS_FLAGS_FUNC, "tx_window_violation_std"}, 513 { STATS_OFFSET32(tx_window_violation_tso), 514 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"}, 515 #if 0 516 { STATS_OFFSET32(tx_unsupported_tso_request_ipv6), 517 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_ipv6"}, 518 { STATS_OFFSET32(tx_unsupported_tso_request_not_tcp), 519 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_not_tcp"}, 520 #endif 521 { STATS_OFFSET32(tx_chain_lost_mbuf), 522 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"}, 523 { STATS_OFFSET32(tx_frames_deferred), 524 4, STATS_FLAGS_FUNC, "tx_frames_deferred"}, 525 { STATS_OFFSET32(tx_queue_xoff), 526 4, STATS_FLAGS_FUNC, "tx_queue_xoff"}, 527 { STATS_OFFSET32(mbuf_defrag_attempts), 528 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"}, 529 { STATS_OFFSET32(mbuf_defrag_failures), 530 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"}, 531 { STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 532 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"}, 533 { STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 534 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"}, 535 { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 536 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"}, 537 { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 538 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"}, 539 { STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 540 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"}, 541 { STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 542 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"}, 543 { STATS_OFFSET32(mbuf_alloc_tx), 544 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"}, 545 { STATS_OFFSET32(mbuf_alloc_rx), 546 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"}, 547 { STATS_OFFSET32(mbuf_alloc_sge), 548 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"}, 549 { STATS_OFFSET32(mbuf_alloc_tpa), 550 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"} 551 }; 552 553 static const struct { 554 uint32_t offset; 555 uint32_t size; 556 char string[STAT_NAME_LEN]; 557 } bxe_eth_q_stats_arr[] = { 558 { Q_STATS_OFFSET32(total_bytes_received_hi), 559 8, "rx_bytes" }, 560 { Q_STATS_OFFSET32(total_unicast_packets_received_hi), 561 8, "rx_ucast_packets" }, 562 { Q_STATS_OFFSET32(total_multicast_packets_received_hi), 563 8, "rx_mcast_packets" }, 564 { Q_STATS_OFFSET32(total_broadcast_packets_received_hi), 565 8, "rx_bcast_packets" }, 566 { Q_STATS_OFFSET32(no_buff_discard_hi), 567 8, "rx_discards" }, 568 { Q_STATS_OFFSET32(total_bytes_transmitted_hi), 569 8, "tx_bytes" }, 570 { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi), 571 8, "tx_ucast_packets" }, 572 { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi), 573 8, "tx_mcast_packets" }, 574 { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 575 8, "tx_bcast_packets" }, 576 { Q_STATS_OFFSET32(total_tpa_aggregations_hi), 577 8, "tpa_aggregations" }, 578 { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi), 579 8, "tpa_aggregated_frames"}, 580 { Q_STATS_OFFSET32(total_tpa_bytes_hi), 581 8, "tpa_bytes"}, 582 { Q_STATS_OFFSET32(rx_calls), 583 4, "rx_calls"}, 584 { Q_STATS_OFFSET32(rx_pkts), 585 4, "rx_pkts"}, 586 { Q_STATS_OFFSET32(rx_tpa_pkts), 587 4, "rx_tpa_pkts"}, 588 { Q_STATS_OFFSET32(rx_jumbo_sge_pkts), 589 4, "rx_jumbo_sge_pkts"}, 590 { Q_STATS_OFFSET32(rx_soft_errors), 591 4, "rx_soft_errors"}, 592 { Q_STATS_OFFSET32(rx_hw_csum_errors), 593 4, "rx_hw_csum_errors"}, 594 { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip), 595 4, "rx_ofld_frames_csum_ip"}, 596 { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 597 4, "rx_ofld_frames_csum_tcp_udp"}, 598 { Q_STATS_OFFSET32(rx_budget_reached), 599 4, "rx_budget_reached"}, 600 { Q_STATS_OFFSET32(tx_pkts), 601 4, "tx_pkts"}, 602 { Q_STATS_OFFSET32(tx_soft_errors), 603 4, "tx_soft_errors"}, 604 { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip), 605 4, "tx_ofld_frames_csum_ip"}, 606 { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp), 607 4, "tx_ofld_frames_csum_tcp"}, 608 { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp), 609 4, "tx_ofld_frames_csum_udp"}, 610 { Q_STATS_OFFSET32(tx_ofld_frames_lso), 611 4, "tx_ofld_frames_lso"}, 612 { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 613 4, "tx_ofld_frames_lso_hdr_splits"}, 614 { Q_STATS_OFFSET32(tx_encap_failures), 615 4, "tx_encap_failures"}, 616 { Q_STATS_OFFSET32(tx_hw_queue_full), 617 4, "tx_hw_queue_full"}, 618 { Q_STATS_OFFSET32(tx_hw_max_queue_depth), 619 4, "tx_hw_max_queue_depth"}, 620 { Q_STATS_OFFSET32(tx_dma_mapping_failure), 621 4, "tx_dma_mapping_failure"}, 622 { Q_STATS_OFFSET32(tx_max_drbr_queue_depth), 623 4, "tx_max_drbr_queue_depth"}, 624 { Q_STATS_OFFSET32(tx_window_violation_std), 625 4, "tx_window_violation_std"}, 626 { Q_STATS_OFFSET32(tx_window_violation_tso), 627 4, "tx_window_violation_tso"}, 628 #if 0 629 { Q_STATS_OFFSET32(tx_unsupported_tso_request_ipv6), 630 4, "tx_unsupported_tso_request_ipv6"}, 631 { Q_STATS_OFFSET32(tx_unsupported_tso_request_not_tcp), 632 4, "tx_unsupported_tso_request_not_tcp"}, 633 #endif 634 { Q_STATS_OFFSET32(tx_chain_lost_mbuf), 635 4, "tx_chain_lost_mbuf"}, 636 { Q_STATS_OFFSET32(tx_frames_deferred), 637 4, "tx_frames_deferred"}, 638 { Q_STATS_OFFSET32(tx_queue_xoff), 639 4, "tx_queue_xoff"}, 640 { Q_STATS_OFFSET32(mbuf_defrag_attempts), 641 4, "mbuf_defrag_attempts"}, 642 { Q_STATS_OFFSET32(mbuf_defrag_failures), 643 4, "mbuf_defrag_failures"}, 644 { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 645 4, "mbuf_rx_bd_alloc_failed"}, 646 { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 647 4, "mbuf_rx_bd_mapping_failed"}, 648 { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 649 4, "mbuf_rx_tpa_alloc_failed"}, 650 { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 651 4, "mbuf_rx_tpa_mapping_failed"}, 652 { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 653 4, "mbuf_rx_sge_alloc_failed"}, 654 { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 655 4, "mbuf_rx_sge_mapping_failed"}, 656 { Q_STATS_OFFSET32(mbuf_alloc_tx), 657 4, "mbuf_alloc_tx"}, 658 { Q_STATS_OFFSET32(mbuf_alloc_rx), 659 4, "mbuf_alloc_rx"}, 660 { Q_STATS_OFFSET32(mbuf_alloc_sge), 661 4, "mbuf_alloc_sge"}, 662 { Q_STATS_OFFSET32(mbuf_alloc_tpa), 663 4, "mbuf_alloc_tpa"} 664 }; 665 666 #define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr) 667 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr) 668 669 670 static void bxe_cmng_fns_init(struct bxe_softc *sc, 671 uint8_t read_cfg, 672 uint8_t cmng_type); 673 static int bxe_get_cmng_fns_mode(struct bxe_softc *sc); 674 static void storm_memset_cmng(struct bxe_softc *sc, 675 struct cmng_init *cmng, 676 uint8_t port); 677 static void bxe_set_reset_global(struct bxe_softc *sc); 678 static void bxe_set_reset_in_progress(struct bxe_softc *sc); 679 static uint8_t bxe_reset_is_done(struct bxe_softc *sc, 680 int engine); 681 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc); 682 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc, 683 uint8_t *global, 684 uint8_t print); 685 static void bxe_int_disable(struct bxe_softc *sc); 686 static int bxe_release_leader_lock(struct bxe_softc *sc); 687 static void bxe_pf_disable(struct bxe_softc *sc); 688 static void bxe_free_fp_buffers(struct bxe_softc *sc); 689 static inline void bxe_update_rx_prod(struct bxe_softc *sc, 690 struct bxe_fastpath *fp, 691 uint16_t rx_bd_prod, 692 uint16_t rx_cq_prod, 693 uint16_t rx_sge_prod); 694 static void bxe_link_report_locked(struct bxe_softc *sc); 695 static void bxe_link_report(struct bxe_softc *sc); 696 static void bxe_link_status_update(struct bxe_softc *sc); 697 static void bxe_periodic_callout_func(void *xsc); 698 static void bxe_periodic_start(struct bxe_softc *sc); 699 static void bxe_periodic_stop(struct bxe_softc *sc); 700 static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 701 uint16_t prev_index, 702 uint16_t index); 703 static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 704 int queue); 705 static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 706 uint16_t index); 707 static uint8_t bxe_txeof(struct bxe_softc *sc, 708 struct bxe_fastpath *fp); 709 static void bxe_task_fp(struct bxe_fastpath *fp); 710 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc, 711 struct mbuf *m, 712 uint8_t contents); 713 static int bxe_alloc_mem(struct bxe_softc *sc); 714 static void bxe_free_mem(struct bxe_softc *sc); 715 static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc); 716 static void bxe_free_fw_stats_mem(struct bxe_softc *sc); 717 static int bxe_interrupt_attach(struct bxe_softc *sc); 718 static void bxe_interrupt_detach(struct bxe_softc *sc); 719 static void bxe_set_rx_mode(struct bxe_softc *sc); 720 static int bxe_init_locked(struct bxe_softc *sc); 721 static int bxe_stop_locked(struct bxe_softc *sc); 722 static __noinline int bxe_nic_load(struct bxe_softc *sc, 723 int load_mode); 724 static __noinline int bxe_nic_unload(struct bxe_softc *sc, 725 uint32_t unload_mode, 726 uint8_t keep_link); 727 728 static void bxe_handle_sp_tq(void *context, int pending); 729 static void bxe_handle_fp_tq(void *context, int pending); 730 731 732 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */ 733 uint32_t 734 calc_crc32(uint8_t *crc32_packet, 735 uint32_t crc32_length, 736 uint32_t crc32_seed, 737 uint8_t complement) 738 { 739 uint32_t byte = 0; 740 uint32_t bit = 0; 741 uint8_t msb = 0; 742 uint32_t temp = 0; 743 uint32_t shft = 0; 744 uint8_t current_byte = 0; 745 uint32_t crc32_result = crc32_seed; 746 const uint32_t CRC32_POLY = 0x1edc6f41; 747 748 if ((crc32_packet == NULL) || 749 (crc32_length == 0) || 750 ((crc32_length % 8) != 0)) 751 { 752 return (crc32_result); 753 } 754 755 for (byte = 0; byte < crc32_length; byte = byte + 1) 756 { 757 current_byte = crc32_packet[byte]; 758 for (bit = 0; bit < 8; bit = bit + 1) 759 { 760 /* msb = crc32_result[31]; */ 761 msb = (uint8_t)(crc32_result >> 31); 762 763 crc32_result = crc32_result << 1; 764 765 /* it (msb != current_byte[bit]) */ 766 if (msb != (0x1 & (current_byte >> bit))) 767 { 768 crc32_result = crc32_result ^ CRC32_POLY; 769 /* crc32_result[0] = 1 */ 770 crc32_result |= 1; 771 } 772 } 773 } 774 775 /* Last step is to: 776 * 1. "mirror" every bit 777 * 2. swap the 4 bytes 778 * 3. complement each bit 779 */ 780 781 /* Mirror */ 782 temp = crc32_result; 783 shft = sizeof(crc32_result) * 8 - 1; 784 785 for (crc32_result >>= 1; crc32_result; crc32_result >>= 1) 786 { 787 temp <<= 1; 788 temp |= crc32_result & 1; 789 shft-- ; 790 } 791 792 /* temp[31-bit] = crc32_result[bit] */ 793 temp <<= shft; 794 795 /* Swap */ 796 /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */ 797 { 798 uint32_t t0, t1, t2, t3; 799 t0 = (0x000000ff & (temp >> 24)); 800 t1 = (0x0000ff00 & (temp >> 8)); 801 t2 = (0x00ff0000 & (temp << 8)); 802 t3 = (0xff000000 & (temp << 24)); 803 crc32_result = t0 | t1 | t2 | t3; 804 } 805 806 /* Complement */ 807 if (complement) 808 { 809 crc32_result = ~crc32_result; 810 } 811 812 return (crc32_result); 813 } 814 815 int 816 bxe_test_bit(int nr, 817 volatile unsigned long *addr) 818 { 819 return ((atomic_load_acq_long(addr) & (1 << nr)) != 0); 820 } 821 822 void 823 bxe_set_bit(unsigned int nr, 824 volatile unsigned long *addr) 825 { 826 atomic_set_acq_long(addr, (1 << nr)); 827 } 828 829 void 830 bxe_clear_bit(int nr, 831 volatile unsigned long *addr) 832 { 833 atomic_clear_acq_long(addr, (1 << nr)); 834 } 835 836 int 837 bxe_test_and_set_bit(int nr, 838 volatile unsigned long *addr) 839 { 840 unsigned long x; 841 nr = (1 << nr); 842 do { 843 x = *addr; 844 } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0); 845 // if (x & nr) bit_was_set; else bit_was_not_set; 846 return (x & nr); 847 } 848 849 int 850 bxe_test_and_clear_bit(int nr, 851 volatile unsigned long *addr) 852 { 853 unsigned long x; 854 nr = (1 << nr); 855 do { 856 x = *addr; 857 } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0); 858 // if (x & nr) bit_was_set; else bit_was_not_set; 859 return (x & nr); 860 } 861 862 int 863 bxe_cmpxchg(volatile int *addr, 864 int old, 865 int new) 866 { 867 int x; 868 do { 869 x = *addr; 870 } while (atomic_cmpset_acq_int(addr, old, new) == 0); 871 return (x); 872 } 873 874 /* 875 * Get DMA memory from the OS. 876 * 877 * Validates that the OS has provided DMA buffers in response to a 878 * bus_dmamap_load call and saves the physical address of those buffers. 879 * When the callback is used the OS will return 0 for the mapping function 880 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any 881 * failures back to the caller. 882 * 883 * Returns: 884 * Nothing. 885 */ 886 static void 887 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 888 { 889 struct bxe_dma *dma = arg; 890 891 if (error) { 892 dma->paddr = 0; 893 dma->nseg = 0; 894 BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error); 895 } else { 896 dma->paddr = segs->ds_addr; 897 dma->nseg = nseg; 898 #if 0 899 BLOGD(dma->sc, DBG_LOAD, 900 "DMA alloc '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n", 901 dma->msg, dma->vaddr, (void *)dma->paddr, 902 dma->nseg, dma->size); 903 #endif 904 } 905 } 906 907 /* 908 * Allocate a block of memory and map it for DMA. No partial completions 909 * allowed and release any resources acquired if we can't acquire all 910 * resources. 911 * 912 * Returns: 913 * 0 = Success, !0 = Failure 914 */ 915 int 916 bxe_dma_alloc(struct bxe_softc *sc, 917 bus_size_t size, 918 struct bxe_dma *dma, 919 const char *msg) 920 { 921 int rc; 922 923 if (dma->size > 0) { 924 BLOGE(sc, "dma block '%s' already has size %lu\n", msg, 925 (unsigned long)dma->size); 926 return (1); 927 } 928 929 memset(dma, 0, sizeof(*dma)); /* sanity */ 930 dma->sc = sc; 931 dma->size = size; 932 snprintf(dma->msg, sizeof(dma->msg), "%s", msg); 933 934 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 935 BCM_PAGE_SIZE, /* alignment */ 936 0, /* boundary limit */ 937 BUS_SPACE_MAXADDR, /* restricted low */ 938 BUS_SPACE_MAXADDR, /* restricted hi */ 939 NULL, /* addr filter() */ 940 NULL, /* addr filter() arg */ 941 size, /* max map size */ 942 1, /* num discontinuous */ 943 size, /* max seg size */ 944 BUS_DMA_ALLOCNOW, /* flags */ 945 NULL, /* lock() */ 946 NULL, /* lock() arg */ 947 &dma->tag); /* returned dma tag */ 948 if (rc != 0) { 949 BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc); 950 memset(dma, 0, sizeof(*dma)); 951 return (1); 952 } 953 954 rc = bus_dmamem_alloc(dma->tag, 955 (void **)&dma->vaddr, 956 (BUS_DMA_NOWAIT | BUS_DMA_ZERO), 957 &dma->map); 958 if (rc != 0) { 959 BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc); 960 bus_dma_tag_destroy(dma->tag); 961 memset(dma, 0, sizeof(*dma)); 962 return (1); 963 } 964 965 rc = bus_dmamap_load(dma->tag, 966 dma->map, 967 dma->vaddr, 968 size, 969 bxe_dma_map_addr, /* BLOGD in here */ 970 dma, 971 BUS_DMA_NOWAIT); 972 if (rc != 0) { 973 BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc); 974 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 975 bus_dma_tag_destroy(dma->tag); 976 memset(dma, 0, sizeof(*dma)); 977 return (1); 978 } 979 980 return (0); 981 } 982 983 void 984 bxe_dma_free(struct bxe_softc *sc, 985 struct bxe_dma *dma) 986 { 987 if (dma->size > 0) { 988 #if 0 989 BLOGD(sc, DBG_LOAD, 990 "DMA free '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n", 991 dma->msg, dma->vaddr, (void *)dma->paddr, 992 dma->nseg, dma->size); 993 #endif 994 995 DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL")); 996 997 bus_dmamap_sync(dma->tag, dma->map, 998 (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)); 999 bus_dmamap_unload(dma->tag, dma->map); 1000 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 1001 bus_dma_tag_destroy(dma->tag); 1002 } 1003 1004 memset(dma, 0, sizeof(*dma)); 1005 } 1006 1007 /* 1008 * These indirect read and write routines are only during init. 1009 * The locking is handled by the MCP. 1010 */ 1011 1012 void 1013 bxe_reg_wr_ind(struct bxe_softc *sc, 1014 uint32_t addr, 1015 uint32_t val) 1016 { 1017 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 1018 pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4); 1019 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 1020 } 1021 1022 uint32_t 1023 bxe_reg_rd_ind(struct bxe_softc *sc, 1024 uint32_t addr) 1025 { 1026 uint32_t val; 1027 1028 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 1029 val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4); 1030 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 1031 1032 return (val); 1033 } 1034 1035 #if 0 1036 void bxe_dp_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int msglvl) 1037 { 1038 uint32_t src_type = dmae->opcode & DMAE_COMMAND_SRC; 1039 1040 switch (dmae->opcode & DMAE_COMMAND_DST) { 1041 case DMAE_CMD_DST_PCI: 1042 if (src_type == DMAE_CMD_SRC_PCI) 1043 DP(msglvl, "DMAE: opcode 0x%08x\n" 1044 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n" 1045 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1046 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 1047 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 1048 dmae->comp_addr_hi, dmae->comp_addr_lo, 1049 dmae->comp_val); 1050 else 1051 DP(msglvl, "DMAE: opcode 0x%08x\n" 1052 "src [%08x], len [%d*4], dst [%x:%08x]\n" 1053 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1054 dmae->opcode, dmae->src_addr_lo >> 2, 1055 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 1056 dmae->comp_addr_hi, dmae->comp_addr_lo, 1057 dmae->comp_val); 1058 break; 1059 case DMAE_CMD_DST_GRC: 1060 if (src_type == DMAE_CMD_SRC_PCI) 1061 DP(msglvl, "DMAE: opcode 0x%08x\n" 1062 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n" 1063 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1064 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 1065 dmae->len, dmae->dst_addr_lo >> 2, 1066 dmae->comp_addr_hi, dmae->comp_addr_lo, 1067 dmae->comp_val); 1068 else 1069 DP(msglvl, "DMAE: opcode 0x%08x\n" 1070 "src [%08x], len [%d*4], dst [%08x]\n" 1071 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1072 dmae->opcode, dmae->src_addr_lo >> 2, 1073 dmae->len, dmae->dst_addr_lo >> 2, 1074 dmae->comp_addr_hi, dmae->comp_addr_lo, 1075 dmae->comp_val); 1076 break; 1077 default: 1078 if (src_type == DMAE_CMD_SRC_PCI) 1079 DP(msglvl, "DMAE: opcode 0x%08x\n" 1080 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n" 1081 "comp_addr [%x:%08x] comp_val 0x%08x\n", 1082 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 1083 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 1084 dmae->comp_val); 1085 else 1086 DP(msglvl, "DMAE: opcode 0x%08x\n" 1087 "src_addr [%08x] len [%d * 4] dst_addr [none]\n" 1088 "comp_addr [%x:%08x] comp_val 0x%08x\n", 1089 dmae->opcode, dmae->src_addr_lo >> 2, 1090 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 1091 dmae->comp_val); 1092 break; 1093 } 1094 1095 } 1096 #endif 1097 1098 static int 1099 bxe_acquire_hw_lock(struct bxe_softc *sc, 1100 uint32_t resource) 1101 { 1102 uint32_t lock_status; 1103 uint32_t resource_bit = (1 << resource); 1104 int func = SC_FUNC(sc); 1105 uint32_t hw_lock_control_reg; 1106 int cnt; 1107 1108 /* validate the resource is within range */ 1109 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1110 BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource); 1111 return (-1); 1112 } 1113 1114 if (func <= 5) { 1115 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1116 } else { 1117 hw_lock_control_reg = 1118 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1119 } 1120 1121 /* validate the resource is not already taken */ 1122 lock_status = REG_RD(sc, hw_lock_control_reg); 1123 if (lock_status & resource_bit) { 1124 BLOGE(sc, "resource in use (status 0x%x bit 0x%x)\n", 1125 lock_status, resource_bit); 1126 return (-1); 1127 } 1128 1129 /* try every 5ms for 5 seconds */ 1130 for (cnt = 0; cnt < 1000; cnt++) { 1131 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit); 1132 lock_status = REG_RD(sc, hw_lock_control_reg); 1133 if (lock_status & resource_bit) { 1134 return (0); 1135 } 1136 DELAY(5000); 1137 } 1138 1139 BLOGE(sc, "Resource lock timeout!\n"); 1140 return (-1); 1141 } 1142 1143 static int 1144 bxe_release_hw_lock(struct bxe_softc *sc, 1145 uint32_t resource) 1146 { 1147 uint32_t lock_status; 1148 uint32_t resource_bit = (1 << resource); 1149 int func = SC_FUNC(sc); 1150 uint32_t hw_lock_control_reg; 1151 1152 /* validate the resource is within range */ 1153 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1154 BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource); 1155 return (-1); 1156 } 1157 1158 if (func <= 5) { 1159 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1160 } else { 1161 hw_lock_control_reg = 1162 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1163 } 1164 1165 /* validate the resource is currently taken */ 1166 lock_status = REG_RD(sc, hw_lock_control_reg); 1167 if (!(lock_status & resource_bit)) { 1168 BLOGE(sc, "resource not in use (status 0x%x bit 0x%x)\n", 1169 lock_status, resource_bit); 1170 return (-1); 1171 } 1172 1173 REG_WR(sc, hw_lock_control_reg, resource_bit); 1174 return (0); 1175 } 1176 static void bxe_acquire_phy_lock(struct bxe_softc *sc) 1177 { 1178 BXE_PHY_LOCK(sc); 1179 bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1180 } 1181 1182 static void bxe_release_phy_lock(struct bxe_softc *sc) 1183 { 1184 bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1185 BXE_PHY_UNLOCK(sc); 1186 } 1187 /* 1188 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise, 1189 * had we done things the other way around, if two pfs from the same port 1190 * would attempt to access nvram at the same time, we could run into a 1191 * scenario such as: 1192 * pf A takes the port lock. 1193 * pf B succeeds in taking the same lock since they are from the same port. 1194 * pf A takes the per pf misc lock. Performs eeprom access. 1195 * pf A finishes. Unlocks the per pf misc lock. 1196 * Pf B takes the lock and proceeds to perform it's own access. 1197 * pf A unlocks the per port lock, while pf B is still working (!). 1198 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own 1199 * access corrupted by pf B).* 1200 */ 1201 static int 1202 bxe_acquire_nvram_lock(struct bxe_softc *sc) 1203 { 1204 int port = SC_PORT(sc); 1205 int count, i; 1206 uint32_t val = 0; 1207 1208 /* acquire HW lock: protect against other PFs in PF Direct Assignment */ 1209 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1210 1211 /* adjust timeout for emulation/FPGA */ 1212 count = NVRAM_TIMEOUT_COUNT; 1213 if (CHIP_REV_IS_SLOW(sc)) { 1214 count *= 100; 1215 } 1216 1217 /* request access to nvram interface */ 1218 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1219 (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port)); 1220 1221 for (i = 0; i < count*10; i++) { 1222 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1223 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1224 break; 1225 } 1226 1227 DELAY(5); 1228 } 1229 1230 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1231 BLOGE(sc, "Cannot get access to nvram interface\n"); 1232 return (-1); 1233 } 1234 1235 return (0); 1236 } 1237 1238 static int 1239 bxe_release_nvram_lock(struct bxe_softc *sc) 1240 { 1241 int port = SC_PORT(sc); 1242 int count, i; 1243 uint32_t val = 0; 1244 1245 /* adjust timeout for emulation/FPGA */ 1246 count = NVRAM_TIMEOUT_COUNT; 1247 if (CHIP_REV_IS_SLOW(sc)) { 1248 count *= 100; 1249 } 1250 1251 /* relinquish nvram interface */ 1252 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1253 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port)); 1254 1255 for (i = 0; i < count*10; i++) { 1256 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1257 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1258 break; 1259 } 1260 1261 DELAY(5); 1262 } 1263 1264 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1265 BLOGE(sc, "Cannot free access to nvram interface\n"); 1266 return (-1); 1267 } 1268 1269 /* release HW lock: protect against other PFs in PF Direct Assignment */ 1270 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1271 1272 return (0); 1273 } 1274 1275 static void 1276 bxe_enable_nvram_access(struct bxe_softc *sc) 1277 { 1278 uint32_t val; 1279 1280 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1281 1282 /* enable both bits, even on read */ 1283 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1284 (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN)); 1285 } 1286 1287 static void 1288 bxe_disable_nvram_access(struct bxe_softc *sc) 1289 { 1290 uint32_t val; 1291 1292 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1293 1294 /* disable both bits, even after read */ 1295 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1296 (val & ~(MCPR_NVM_ACCESS_ENABLE_EN | 1297 MCPR_NVM_ACCESS_ENABLE_WR_EN))); 1298 } 1299 1300 static int 1301 bxe_nvram_read_dword(struct bxe_softc *sc, 1302 uint32_t offset, 1303 uint32_t *ret_val, 1304 uint32_t cmd_flags) 1305 { 1306 int count, i, rc; 1307 uint32_t val; 1308 1309 /* build the command word */ 1310 cmd_flags |= MCPR_NVM_COMMAND_DOIT; 1311 1312 /* need to clear DONE bit separately */ 1313 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1314 1315 /* address of the NVRAM to read from */ 1316 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1317 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1318 1319 /* issue a read command */ 1320 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1321 1322 /* adjust timeout for emulation/FPGA */ 1323 count = NVRAM_TIMEOUT_COUNT; 1324 if (CHIP_REV_IS_SLOW(sc)) { 1325 count *= 100; 1326 } 1327 1328 /* wait for completion */ 1329 *ret_val = 0; 1330 rc = -1; 1331 for (i = 0; i < count; i++) { 1332 DELAY(5); 1333 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1334 1335 if (val & MCPR_NVM_COMMAND_DONE) { 1336 val = REG_RD(sc, MCP_REG_MCPR_NVM_READ); 1337 /* we read nvram data in cpu order 1338 * but ethtool sees it as an array of bytes 1339 * converting to big-endian will do the work 1340 */ 1341 *ret_val = htobe32(val); 1342 rc = 0; 1343 break; 1344 } 1345 } 1346 1347 if (rc == -1) { 1348 BLOGE(sc, "nvram read timeout expired\n"); 1349 } 1350 1351 return (rc); 1352 } 1353 1354 static int 1355 bxe_nvram_read(struct bxe_softc *sc, 1356 uint32_t offset, 1357 uint8_t *ret_buf, 1358 int buf_size) 1359 { 1360 uint32_t cmd_flags; 1361 uint32_t val; 1362 int rc; 1363 1364 if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) { 1365 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1366 offset, buf_size); 1367 return (-1); 1368 } 1369 1370 if ((offset + buf_size) > sc->devinfo.flash_size) { 1371 BLOGE(sc, "Invalid parameter, " 1372 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1373 offset, buf_size, sc->devinfo.flash_size); 1374 return (-1); 1375 } 1376 1377 /* request access to nvram interface */ 1378 rc = bxe_acquire_nvram_lock(sc); 1379 if (rc) { 1380 return (rc); 1381 } 1382 1383 /* enable access to nvram interface */ 1384 bxe_enable_nvram_access(sc); 1385 1386 /* read the first word(s) */ 1387 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1388 while ((buf_size > sizeof(uint32_t)) && (rc == 0)) { 1389 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1390 memcpy(ret_buf, &val, 4); 1391 1392 /* advance to the next dword */ 1393 offset += sizeof(uint32_t); 1394 ret_buf += sizeof(uint32_t); 1395 buf_size -= sizeof(uint32_t); 1396 cmd_flags = 0; 1397 } 1398 1399 if (rc == 0) { 1400 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1401 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1402 memcpy(ret_buf, &val, 4); 1403 } 1404 1405 /* disable access to nvram interface */ 1406 bxe_disable_nvram_access(sc); 1407 bxe_release_nvram_lock(sc); 1408 1409 return (rc); 1410 } 1411 1412 static int 1413 bxe_nvram_write_dword(struct bxe_softc *sc, 1414 uint32_t offset, 1415 uint32_t val, 1416 uint32_t cmd_flags) 1417 { 1418 int count, i, rc; 1419 1420 /* build the command word */ 1421 cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR); 1422 1423 /* need to clear DONE bit separately */ 1424 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1425 1426 /* write the data */ 1427 REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val); 1428 1429 /* address of the NVRAM to write to */ 1430 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1431 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1432 1433 /* issue the write command */ 1434 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1435 1436 /* adjust timeout for emulation/FPGA */ 1437 count = NVRAM_TIMEOUT_COUNT; 1438 if (CHIP_REV_IS_SLOW(sc)) { 1439 count *= 100; 1440 } 1441 1442 /* wait for completion */ 1443 rc = -1; 1444 for (i = 0; i < count; i++) { 1445 DELAY(5); 1446 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1447 if (val & MCPR_NVM_COMMAND_DONE) { 1448 rc = 0; 1449 break; 1450 } 1451 } 1452 1453 if (rc == -1) { 1454 BLOGE(sc, "nvram write timeout expired\n"); 1455 } 1456 1457 return (rc); 1458 } 1459 1460 #define BYTE_OFFSET(offset) (8 * (offset & 0x03)) 1461 1462 static int 1463 bxe_nvram_write1(struct bxe_softc *sc, 1464 uint32_t offset, 1465 uint8_t *data_buf, 1466 int buf_size) 1467 { 1468 uint32_t cmd_flags; 1469 uint32_t align_offset; 1470 uint32_t val; 1471 int rc; 1472 1473 if ((offset + buf_size) > sc->devinfo.flash_size) { 1474 BLOGE(sc, "Invalid parameter, " 1475 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1476 offset, buf_size, sc->devinfo.flash_size); 1477 return (-1); 1478 } 1479 1480 /* request access to nvram interface */ 1481 rc = bxe_acquire_nvram_lock(sc); 1482 if (rc) { 1483 return (rc); 1484 } 1485 1486 /* enable access to nvram interface */ 1487 bxe_enable_nvram_access(sc); 1488 1489 cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST); 1490 align_offset = (offset & ~0x03); 1491 rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags); 1492 1493 if (rc == 0) { 1494 val &= ~(0xff << BYTE_OFFSET(offset)); 1495 val |= (*data_buf << BYTE_OFFSET(offset)); 1496 1497 /* nvram data is returned as an array of bytes 1498 * convert it back to cpu order 1499 */ 1500 val = be32toh(val); 1501 1502 rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags); 1503 } 1504 1505 /* disable access to nvram interface */ 1506 bxe_disable_nvram_access(sc); 1507 bxe_release_nvram_lock(sc); 1508 1509 return (rc); 1510 } 1511 1512 static int 1513 bxe_nvram_write(struct bxe_softc *sc, 1514 uint32_t offset, 1515 uint8_t *data_buf, 1516 int buf_size) 1517 { 1518 uint32_t cmd_flags; 1519 uint32_t val; 1520 uint32_t written_so_far; 1521 int rc; 1522 1523 if (buf_size == 1) { 1524 return (bxe_nvram_write1(sc, offset, data_buf, buf_size)); 1525 } 1526 1527 if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) { 1528 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1529 offset, buf_size); 1530 return (-1); 1531 } 1532 1533 if (buf_size == 0) { 1534 return (0); /* nothing to do */ 1535 } 1536 1537 if ((offset + buf_size) > sc->devinfo.flash_size) { 1538 BLOGE(sc, "Invalid parameter, " 1539 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1540 offset, buf_size, sc->devinfo.flash_size); 1541 return (-1); 1542 } 1543 1544 /* request access to nvram interface */ 1545 rc = bxe_acquire_nvram_lock(sc); 1546 if (rc) { 1547 return (rc); 1548 } 1549 1550 /* enable access to nvram interface */ 1551 bxe_enable_nvram_access(sc); 1552 1553 written_so_far = 0; 1554 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1555 while ((written_so_far < buf_size) && (rc == 0)) { 1556 if (written_so_far == (buf_size - sizeof(uint32_t))) { 1557 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1558 } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) { 1559 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1560 } else if ((offset % NVRAM_PAGE_SIZE) == 0) { 1561 cmd_flags |= MCPR_NVM_COMMAND_FIRST; 1562 } 1563 1564 memcpy(&val, data_buf, 4); 1565 1566 rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags); 1567 1568 /* advance to the next dword */ 1569 offset += sizeof(uint32_t); 1570 data_buf += sizeof(uint32_t); 1571 written_so_far += sizeof(uint32_t); 1572 cmd_flags = 0; 1573 } 1574 1575 /* disable access to nvram interface */ 1576 bxe_disable_nvram_access(sc); 1577 bxe_release_nvram_lock(sc); 1578 1579 return (rc); 1580 } 1581 1582 /* copy command into DMAE command memory and set DMAE command Go */ 1583 void 1584 bxe_post_dmae(struct bxe_softc *sc, 1585 struct dmae_command *dmae, 1586 int idx) 1587 { 1588 uint32_t cmd_offset; 1589 int i; 1590 1591 cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx)); 1592 for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) { 1593 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i)); 1594 } 1595 1596 REG_WR(sc, dmae_reg_go_c[idx], 1); 1597 } 1598 1599 uint32_t 1600 bxe_dmae_opcode_add_comp(uint32_t opcode, 1601 uint8_t comp_type) 1602 { 1603 return (opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) | 1604 DMAE_COMMAND_C_TYPE_ENABLE)); 1605 } 1606 1607 uint32_t 1608 bxe_dmae_opcode_clr_src_reset(uint32_t opcode) 1609 { 1610 return (opcode & ~DMAE_COMMAND_SRC_RESET); 1611 } 1612 1613 uint32_t 1614 bxe_dmae_opcode(struct bxe_softc *sc, 1615 uint8_t src_type, 1616 uint8_t dst_type, 1617 uint8_t with_comp, 1618 uint8_t comp_type) 1619 { 1620 uint32_t opcode = 0; 1621 1622 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) | 1623 (dst_type << DMAE_COMMAND_DST_SHIFT)); 1624 1625 opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET); 1626 1627 opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 1628 1629 opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) | 1630 (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT)); 1631 1632 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT); 1633 1634 #ifdef __BIG_ENDIAN 1635 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 1636 #else 1637 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 1638 #endif 1639 1640 if (with_comp) { 1641 opcode = bxe_dmae_opcode_add_comp(opcode, comp_type); 1642 } 1643 1644 return (opcode); 1645 } 1646 1647 static void 1648 bxe_prep_dmae_with_comp(struct bxe_softc *sc, 1649 struct dmae_command *dmae, 1650 uint8_t src_type, 1651 uint8_t dst_type) 1652 { 1653 memset(dmae, 0, sizeof(struct dmae_command)); 1654 1655 /* set the opcode */ 1656 dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type, 1657 TRUE, DMAE_COMP_PCI); 1658 1659 /* fill in the completion parameters */ 1660 dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp)); 1661 dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp)); 1662 dmae->comp_val = DMAE_COMP_VAL; 1663 } 1664 1665 /* issue a DMAE command over the init channel and wait for completion */ 1666 static int 1667 bxe_issue_dmae_with_comp(struct bxe_softc *sc, 1668 struct dmae_command *dmae) 1669 { 1670 uint32_t *wb_comp = BXE_SP(sc, wb_comp); 1671 int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000; 1672 1673 BXE_DMAE_LOCK(sc); 1674 1675 /* reset completion */ 1676 *wb_comp = 0; 1677 1678 /* post the command on the channel used for initializations */ 1679 bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc)); 1680 1681 /* wait for completion */ 1682 DELAY(5); 1683 1684 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 1685 if (!timeout || 1686 (sc->recovery_state != BXE_RECOVERY_DONE && 1687 sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) { 1688 BLOGE(sc, "DMAE timeout!\n"); 1689 BXE_DMAE_UNLOCK(sc); 1690 return (DMAE_TIMEOUT); 1691 } 1692 1693 timeout--; 1694 DELAY(50); 1695 } 1696 1697 if (*wb_comp & DMAE_PCI_ERR_FLAG) { 1698 BLOGE(sc, "DMAE PCI error!\n"); 1699 BXE_DMAE_UNLOCK(sc); 1700 return (DMAE_PCI_ERROR); 1701 } 1702 1703 BXE_DMAE_UNLOCK(sc); 1704 return (0); 1705 } 1706 1707 void 1708 bxe_read_dmae(struct bxe_softc *sc, 1709 uint32_t src_addr, 1710 uint32_t len32) 1711 { 1712 struct dmae_command dmae; 1713 uint32_t *data; 1714 int i, rc; 1715 1716 DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32)); 1717 1718 if (!sc->dmae_ready) { 1719 data = BXE_SP(sc, wb_data[0]); 1720 1721 for (i = 0; i < len32; i++) { 1722 data[i] = (CHIP_IS_E1(sc)) ? 1723 bxe_reg_rd_ind(sc, (src_addr + (i * 4))) : 1724 REG_RD(sc, (src_addr + (i * 4))); 1725 } 1726 1727 return; 1728 } 1729 1730 /* set opcode and fixed command fields */ 1731 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 1732 1733 /* fill in addresses and len */ 1734 dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */ 1735 dmae.src_addr_hi = 0; 1736 dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data)); 1737 dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data)); 1738 dmae.len = len32; 1739 1740 /* issue the command and wait for completion */ 1741 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1742 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1743 }; 1744 } 1745 1746 void 1747 bxe_write_dmae(struct bxe_softc *sc, 1748 bus_addr_t dma_addr, 1749 uint32_t dst_addr, 1750 uint32_t len32) 1751 { 1752 struct dmae_command dmae; 1753 int rc; 1754 1755 if (!sc->dmae_ready) { 1756 DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32)); 1757 1758 if (CHIP_IS_E1(sc)) { 1759 ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1760 } else { 1761 ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1762 } 1763 1764 return; 1765 } 1766 1767 /* set opcode and fixed command fields */ 1768 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 1769 1770 /* fill in addresses and len */ 1771 dmae.src_addr_lo = U64_LO(dma_addr); 1772 dmae.src_addr_hi = U64_HI(dma_addr); 1773 dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */ 1774 dmae.dst_addr_hi = 0; 1775 dmae.len = len32; 1776 1777 /* issue the command and wait for completion */ 1778 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1779 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1780 } 1781 } 1782 1783 void 1784 bxe_write_dmae_phys_len(struct bxe_softc *sc, 1785 bus_addr_t phys_addr, 1786 uint32_t addr, 1787 uint32_t len) 1788 { 1789 int dmae_wr_max = DMAE_LEN32_WR_MAX(sc); 1790 int offset = 0; 1791 1792 while (len > dmae_wr_max) { 1793 bxe_write_dmae(sc, 1794 (phys_addr + offset), /* src DMA address */ 1795 (addr + offset), /* dst GRC address */ 1796 dmae_wr_max); 1797 offset += (dmae_wr_max * 4); 1798 len -= dmae_wr_max; 1799 } 1800 1801 bxe_write_dmae(sc, 1802 (phys_addr + offset), /* src DMA address */ 1803 (addr + offset), /* dst GRC address */ 1804 len); 1805 } 1806 1807 void 1808 bxe_set_ctx_validation(struct bxe_softc *sc, 1809 struct eth_context *cxt, 1810 uint32_t cid) 1811 { 1812 /* ustorm cxt validation */ 1813 cxt->ustorm_ag_context.cdu_usage = 1814 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1815 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 1816 /* xcontext validation */ 1817 cxt->xstorm_ag_context.cdu_reserved = 1818 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1819 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 1820 } 1821 1822 static void 1823 bxe_storm_memset_hc_timeout(struct bxe_softc *sc, 1824 uint8_t port, 1825 uint8_t fw_sb_id, 1826 uint8_t sb_index, 1827 uint8_t ticks) 1828 { 1829 uint32_t addr = 1830 (BAR_CSTRORM_INTMEM + 1831 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index)); 1832 1833 REG_WR8(sc, addr, ticks); 1834 1835 BLOGD(sc, DBG_LOAD, 1836 "port %d fw_sb_id %d sb_index %d ticks %d\n", 1837 port, fw_sb_id, sb_index, ticks); 1838 } 1839 1840 static void 1841 bxe_storm_memset_hc_disable(struct bxe_softc *sc, 1842 uint8_t port, 1843 uint16_t fw_sb_id, 1844 uint8_t sb_index, 1845 uint8_t disable) 1846 { 1847 uint32_t enable_flag = 1848 (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 1849 uint32_t addr = 1850 (BAR_CSTRORM_INTMEM + 1851 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index)); 1852 uint8_t flags; 1853 1854 /* clear and set */ 1855 flags = REG_RD8(sc, addr); 1856 flags &= ~HC_INDEX_DATA_HC_ENABLED; 1857 flags |= enable_flag; 1858 REG_WR8(sc, addr, flags); 1859 1860 BLOGD(sc, DBG_LOAD, 1861 "port %d fw_sb_id %d sb_index %d disable %d\n", 1862 port, fw_sb_id, sb_index, disable); 1863 } 1864 1865 void 1866 bxe_update_coalesce_sb_index(struct bxe_softc *sc, 1867 uint8_t fw_sb_id, 1868 uint8_t sb_index, 1869 uint8_t disable, 1870 uint16_t usec) 1871 { 1872 int port = SC_PORT(sc); 1873 uint8_t ticks = (usec / 4); /* XXX ??? */ 1874 1875 bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks); 1876 1877 disable = (disable) ? 1 : ((usec) ? 0 : 1); 1878 bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable); 1879 } 1880 1881 void 1882 elink_cb_udelay(struct bxe_softc *sc, 1883 uint32_t usecs) 1884 { 1885 DELAY(usecs); 1886 } 1887 1888 uint32_t 1889 elink_cb_reg_read(struct bxe_softc *sc, 1890 uint32_t reg_addr) 1891 { 1892 return (REG_RD(sc, reg_addr)); 1893 } 1894 1895 void 1896 elink_cb_reg_write(struct bxe_softc *sc, 1897 uint32_t reg_addr, 1898 uint32_t val) 1899 { 1900 REG_WR(sc, reg_addr, val); 1901 } 1902 1903 void 1904 elink_cb_reg_wb_write(struct bxe_softc *sc, 1905 uint32_t offset, 1906 uint32_t *wb_write, 1907 uint16_t len) 1908 { 1909 REG_WR_DMAE(sc, offset, wb_write, len); 1910 } 1911 1912 void 1913 elink_cb_reg_wb_read(struct bxe_softc *sc, 1914 uint32_t offset, 1915 uint32_t *wb_write, 1916 uint16_t len) 1917 { 1918 REG_RD_DMAE(sc, offset, wb_write, len); 1919 } 1920 1921 uint8_t 1922 elink_cb_path_id(struct bxe_softc *sc) 1923 { 1924 return (SC_PATH(sc)); 1925 } 1926 1927 void 1928 elink_cb_event_log(struct bxe_softc *sc, 1929 const elink_log_id_t elink_log_id, 1930 ...) 1931 { 1932 /* XXX */ 1933 #if 0 1934 //va_list ap; 1935 va_start(ap, elink_log_id); 1936 _XXX_(sc, lm_log_id, ap); 1937 va_end(ap); 1938 #endif 1939 BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id); 1940 } 1941 1942 static int 1943 bxe_set_spio(struct bxe_softc *sc, 1944 int spio, 1945 uint32_t mode) 1946 { 1947 uint32_t spio_reg; 1948 1949 /* Only 2 SPIOs are configurable */ 1950 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 1951 BLOGE(sc, "Invalid SPIO 0x%x\n", spio); 1952 return (-1); 1953 } 1954 1955 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1956 1957 /* read SPIO and mask except the float bits */ 1958 spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 1959 1960 switch (mode) { 1961 case MISC_SPIO_OUTPUT_LOW: 1962 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio); 1963 /* clear FLOAT and set CLR */ 1964 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1965 spio_reg |= (spio << MISC_SPIO_CLR_POS); 1966 break; 1967 1968 case MISC_SPIO_OUTPUT_HIGH: 1969 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio); 1970 /* clear FLOAT and set SET */ 1971 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1972 spio_reg |= (spio << MISC_SPIO_SET_POS); 1973 break; 1974 1975 case MISC_SPIO_INPUT_HI_Z: 1976 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio); 1977 /* set FLOAT */ 1978 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 1979 break; 1980 1981 default: 1982 break; 1983 } 1984 1985 REG_WR(sc, MISC_REG_SPIO, spio_reg); 1986 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1987 1988 return (0); 1989 } 1990 1991 static int 1992 bxe_gpio_read(struct bxe_softc *sc, 1993 int gpio_num, 1994 uint8_t port) 1995 { 1996 /* The GPIO should be swapped if swap register is set and active */ 1997 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1998 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1999 int gpio_shift = (gpio_num + 2000 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2001 uint32_t gpio_mask = (1 << gpio_shift); 2002 uint32_t gpio_reg; 2003 2004 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2005 BLOGE(sc, "Invalid GPIO %d\n", gpio_num); 2006 return (-1); 2007 } 2008 2009 /* read GPIO value */ 2010 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 2011 2012 /* get the requested pin value */ 2013 return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0; 2014 } 2015 2016 static int 2017 bxe_gpio_write(struct bxe_softc *sc, 2018 int gpio_num, 2019 uint32_t mode, 2020 uint8_t port) 2021 { 2022 /* The GPIO should be swapped if swap register is set and active */ 2023 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2024 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2025 int gpio_shift = (gpio_num + 2026 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2027 uint32_t gpio_mask = (1 << gpio_shift); 2028 uint32_t gpio_reg; 2029 2030 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2031 BLOGE(sc, "Invalid GPIO %d\n", gpio_num); 2032 return (-1); 2033 } 2034 2035 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2036 2037 /* read GPIO and mask except the float bits */ 2038 gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 2039 2040 switch (mode) { 2041 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2042 BLOGD(sc, DBG_PHY, 2043 "Set GPIO %d (shift %d) -> output low\n", 2044 gpio_num, gpio_shift); 2045 /* clear FLOAT and set CLR */ 2046 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2047 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 2048 break; 2049 2050 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2051 BLOGD(sc, DBG_PHY, 2052 "Set GPIO %d (shift %d) -> output high\n", 2053 gpio_num, gpio_shift); 2054 /* clear FLOAT and set SET */ 2055 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2056 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 2057 break; 2058 2059 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2060 BLOGD(sc, DBG_PHY, 2061 "Set GPIO %d (shift %d) -> input\n", 2062 gpio_num, gpio_shift); 2063 /* set FLOAT */ 2064 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2065 break; 2066 2067 default: 2068 break; 2069 } 2070 2071 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 2072 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2073 2074 return (0); 2075 } 2076 2077 static int 2078 bxe_gpio_mult_write(struct bxe_softc *sc, 2079 uint8_t pins, 2080 uint32_t mode) 2081 { 2082 uint32_t gpio_reg; 2083 2084 /* any port swapping should be handled by caller */ 2085 2086 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2087 2088 /* read GPIO and mask except the float bits */ 2089 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 2090 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2091 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 2092 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 2093 2094 switch (mode) { 2095 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2096 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins); 2097 /* set CLR */ 2098 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 2099 break; 2100 2101 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2102 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins); 2103 /* set SET */ 2104 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 2105 break; 2106 2107 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2108 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins); 2109 /* set FLOAT */ 2110 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2111 break; 2112 2113 default: 2114 BLOGE(sc, "Invalid GPIO mode assignment %d\n", mode); 2115 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2116 return (-1); 2117 } 2118 2119 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 2120 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2121 2122 return (0); 2123 } 2124 2125 static int 2126 bxe_gpio_int_write(struct bxe_softc *sc, 2127 int gpio_num, 2128 uint32_t mode, 2129 uint8_t port) 2130 { 2131 /* The GPIO should be swapped if swap register is set and active */ 2132 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2133 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2134 int gpio_shift = (gpio_num + 2135 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2136 uint32_t gpio_mask = (1 << gpio_shift); 2137 uint32_t gpio_reg; 2138 2139 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2140 BLOGE(sc, "Invalid GPIO %d\n", gpio_num); 2141 return (-1); 2142 } 2143 2144 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2145 2146 /* read GPIO int */ 2147 gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT); 2148 2149 switch (mode) { 2150 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2151 BLOGD(sc, DBG_PHY, 2152 "Clear GPIO INT %d (shift %d) -> output low\n", 2153 gpio_num, gpio_shift); 2154 /* clear SET and set CLR */ 2155 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2156 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2157 break; 2158 2159 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2160 BLOGD(sc, DBG_PHY, 2161 "Set GPIO INT %d (shift %d) -> output high\n", 2162 gpio_num, gpio_shift); 2163 /* clear CLR and set SET */ 2164 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2165 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2166 break; 2167 2168 default: 2169 break; 2170 } 2171 2172 REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg); 2173 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2174 2175 return (0); 2176 } 2177 2178 uint32_t 2179 elink_cb_gpio_read(struct bxe_softc *sc, 2180 uint16_t gpio_num, 2181 uint8_t port) 2182 { 2183 return (bxe_gpio_read(sc, gpio_num, port)); 2184 } 2185 2186 uint8_t 2187 elink_cb_gpio_write(struct bxe_softc *sc, 2188 uint16_t gpio_num, 2189 uint8_t mode, /* 0=low 1=high */ 2190 uint8_t port) 2191 { 2192 return (bxe_gpio_write(sc, gpio_num, mode, port)); 2193 } 2194 2195 uint8_t 2196 elink_cb_gpio_mult_write(struct bxe_softc *sc, 2197 uint8_t pins, 2198 uint8_t mode) /* 0=low 1=high */ 2199 { 2200 return (bxe_gpio_mult_write(sc, pins, mode)); 2201 } 2202 2203 uint8_t 2204 elink_cb_gpio_int_write(struct bxe_softc *sc, 2205 uint16_t gpio_num, 2206 uint8_t mode, /* 0=low 1=high */ 2207 uint8_t port) 2208 { 2209 return (bxe_gpio_int_write(sc, gpio_num, mode, port)); 2210 } 2211 2212 void 2213 elink_cb_notify_link_changed(struct bxe_softc *sc) 2214 { 2215 REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 + 2216 (SC_FUNC(sc) * sizeof(uint32_t))), 1); 2217 } 2218 2219 /* send the MCP a request, block until there is a reply */ 2220 uint32_t 2221 elink_cb_fw_command(struct bxe_softc *sc, 2222 uint32_t command, 2223 uint32_t param) 2224 { 2225 int mb_idx = SC_FW_MB_IDX(sc); 2226 uint32_t seq; 2227 uint32_t rc = 0; 2228 uint32_t cnt = 1; 2229 uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10; 2230 2231 BXE_FWMB_LOCK(sc); 2232 2233 seq = ++sc->fw_seq; 2234 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param); 2235 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq)); 2236 2237 BLOGD(sc, DBG_PHY, 2238 "wrote command 0x%08x to FW MB param 0x%08x\n", 2239 (command | seq), param); 2240 2241 /* Let the FW do it's magic. GIve it up to 5 seconds... */ 2242 do { 2243 DELAY(delay * 1000); 2244 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header); 2245 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 2246 2247 BLOGD(sc, DBG_PHY, 2248 "[after %d ms] read 0x%x seq 0x%x from FW MB\n", 2249 cnt*delay, rc, seq); 2250 2251 /* is this a reply to our command? */ 2252 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) { 2253 rc &= FW_MSG_CODE_MASK; 2254 } else { 2255 /* Ruh-roh! */ 2256 BLOGE(sc, "FW failed to respond!\n"); 2257 // XXX bxe_fw_dump(sc); 2258 rc = 0; 2259 } 2260 2261 BXE_FWMB_UNLOCK(sc); 2262 return (rc); 2263 } 2264 2265 static uint32_t 2266 bxe_fw_command(struct bxe_softc *sc, 2267 uint32_t command, 2268 uint32_t param) 2269 { 2270 return (elink_cb_fw_command(sc, command, param)); 2271 } 2272 2273 static void 2274 __storm_memset_dma_mapping(struct bxe_softc *sc, 2275 uint32_t addr, 2276 bus_addr_t mapping) 2277 { 2278 REG_WR(sc, addr, U64_LO(mapping)); 2279 REG_WR(sc, (addr + 4), U64_HI(mapping)); 2280 } 2281 2282 static void 2283 storm_memset_spq_addr(struct bxe_softc *sc, 2284 bus_addr_t mapping, 2285 uint16_t abs_fid) 2286 { 2287 uint32_t addr = (XSEM_REG_FAST_MEMORY + 2288 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid)); 2289 __storm_memset_dma_mapping(sc, addr, mapping); 2290 } 2291 2292 static void 2293 storm_memset_vf_to_pf(struct bxe_softc *sc, 2294 uint16_t abs_fid, 2295 uint16_t pf_id) 2296 { 2297 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2298 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2299 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2300 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2301 } 2302 2303 static void 2304 storm_memset_func_en(struct bxe_softc *sc, 2305 uint16_t abs_fid, 2306 uint8_t enable) 2307 { 2308 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2309 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2310 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2311 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2312 } 2313 2314 static void 2315 storm_memset_eq_data(struct bxe_softc *sc, 2316 struct event_ring_data *eq_data, 2317 uint16_t pfid) 2318 { 2319 uint32_t addr; 2320 size_t size; 2321 2322 addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid)); 2323 size = sizeof(struct event_ring_data); 2324 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data); 2325 } 2326 2327 static void 2328 storm_memset_eq_prod(struct bxe_softc *sc, 2329 uint16_t eq_prod, 2330 uint16_t pfid) 2331 { 2332 uint32_t addr = (BAR_CSTRORM_INTMEM + 2333 CSTORM_EVENT_RING_PROD_OFFSET(pfid)); 2334 REG_WR16(sc, addr, eq_prod); 2335 } 2336 2337 /* 2338 * Post a slowpath command. 2339 * 2340 * A slowpath command is used to propogate a configuration change through 2341 * the controller in a controlled manner, allowing each STORM processor and 2342 * other H/W blocks to phase in the change. The commands sent on the 2343 * slowpath are referred to as ramrods. Depending on the ramrod used the 2344 * completion of the ramrod will occur in different ways. Here's a 2345 * breakdown of ramrods and how they complete: 2346 * 2347 * RAMROD_CMD_ID_ETH_PORT_SETUP 2348 * Used to setup the leading connection on a port. Completes on the 2349 * Receive Completion Queue (RCQ) of that port (typically fp[0]). 2350 * 2351 * RAMROD_CMD_ID_ETH_CLIENT_SETUP 2352 * Used to setup an additional connection on a port. Completes on the 2353 * RCQ of the multi-queue/RSS connection being initialized. 2354 * 2355 * RAMROD_CMD_ID_ETH_STAT_QUERY 2356 * Used to force the storm processors to update the statistics database 2357 * in host memory. This ramrod is send on the leading connection CID and 2358 * completes as an index increment of the CSTORM on the default status 2359 * block. 2360 * 2361 * RAMROD_CMD_ID_ETH_UPDATE 2362 * Used to update the state of the leading connection, usually to udpate 2363 * the RSS indirection table. Completes on the RCQ of the leading 2364 * connection. (Not currently used under FreeBSD until OS support becomes 2365 * available.) 2366 * 2367 * RAMROD_CMD_ID_ETH_HALT 2368 * Used when tearing down a connection prior to driver unload. Completes 2369 * on the RCQ of the multi-queue/RSS connection being torn down. Don't 2370 * use this on the leading connection. 2371 * 2372 * RAMROD_CMD_ID_ETH_SET_MAC 2373 * Sets the Unicast/Broadcast/Multicast used by the port. Completes on 2374 * the RCQ of the leading connection. 2375 * 2376 * RAMROD_CMD_ID_ETH_CFC_DEL 2377 * Used when tearing down a conneciton prior to driver unload. Completes 2378 * on the RCQ of the leading connection (since the current connection 2379 * has been completely removed from controller memory). 2380 * 2381 * RAMROD_CMD_ID_ETH_PORT_DEL 2382 * Used to tear down the leading connection prior to driver unload, 2383 * typically fp[0]. Completes as an index increment of the CSTORM on the 2384 * default status block. 2385 * 2386 * RAMROD_CMD_ID_ETH_FORWARD_SETUP 2387 * Used for connection offload. Completes on the RCQ of the multi-queue 2388 * RSS connection that is being offloaded. (Not currently used under 2389 * FreeBSD.) 2390 * 2391 * There can only be one command pending per function. 2392 * 2393 * Returns: 2394 * 0 = Success, !0 = Failure. 2395 */ 2396 2397 /* must be called under the spq lock */ 2398 static inline 2399 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc) 2400 { 2401 struct eth_spe *next_spe = sc->spq_prod_bd; 2402 2403 if (sc->spq_prod_bd == sc->spq_last_bd) { 2404 /* wrap back to the first eth_spq */ 2405 sc->spq_prod_bd = sc->spq; 2406 sc->spq_prod_idx = 0; 2407 } else { 2408 sc->spq_prod_bd++; 2409 sc->spq_prod_idx++; 2410 } 2411 2412 return (next_spe); 2413 } 2414 2415 /* must be called under the spq lock */ 2416 static inline 2417 void bxe_sp_prod_update(struct bxe_softc *sc) 2418 { 2419 int func = SC_FUNC(sc); 2420 2421 /* 2422 * Make sure that BD data is updated before writing the producer. 2423 * BD data is written to the memory, the producer is read from the 2424 * memory, thus we need a full memory barrier to ensure the ordering. 2425 */ 2426 mb(); 2427 2428 REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)), 2429 sc->spq_prod_idx); 2430 2431 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 2432 BUS_SPACE_BARRIER_WRITE); 2433 } 2434 2435 /** 2436 * bxe_is_contextless_ramrod - check if the current command ends on EQ 2437 * 2438 * @cmd: command to check 2439 * @cmd_type: command type 2440 */ 2441 static inline 2442 int bxe_is_contextless_ramrod(int cmd, 2443 int cmd_type) 2444 { 2445 if ((cmd_type == NONE_CONNECTION_TYPE) || 2446 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 2447 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 2448 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 2449 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 2450 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 2451 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) { 2452 return (TRUE); 2453 } else { 2454 return (FALSE); 2455 } 2456 } 2457 2458 /** 2459 * bxe_sp_post - place a single command on an SP ring 2460 * 2461 * @sc: driver handle 2462 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 2463 * @cid: SW CID the command is related to 2464 * @data_hi: command private data address (high 32 bits) 2465 * @data_lo: command private data address (low 32 bits) 2466 * @cmd_type: command type (e.g. NONE, ETH) 2467 * 2468 * SP data is handled as if it's always an address pair, thus data fields are 2469 * not swapped to little endian in upper functions. Instead this function swaps 2470 * data as if it's two uint32 fields. 2471 */ 2472 int 2473 bxe_sp_post(struct bxe_softc *sc, 2474 int command, 2475 int cid, 2476 uint32_t data_hi, 2477 uint32_t data_lo, 2478 int cmd_type) 2479 { 2480 struct eth_spe *spe; 2481 uint16_t type; 2482 int common; 2483 2484 common = bxe_is_contextless_ramrod(command, cmd_type); 2485 2486 BXE_SP_LOCK(sc); 2487 2488 if (common) { 2489 if (!atomic_load_acq_long(&sc->eq_spq_left)) { 2490 BLOGE(sc, "EQ ring is full!\n"); 2491 BXE_SP_UNLOCK(sc); 2492 return (-1); 2493 } 2494 } else { 2495 if (!atomic_load_acq_long(&sc->cq_spq_left)) { 2496 BLOGE(sc, "SPQ ring is full!\n"); 2497 BXE_SP_UNLOCK(sc); 2498 return (-1); 2499 } 2500 } 2501 2502 spe = bxe_sp_get_next(sc); 2503 2504 /* CID needs port number to be encoded int it */ 2505 spe->hdr.conn_and_cmd_data = 2506 htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid)); 2507 2508 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE; 2509 2510 /* TBD: Check if it works for VFs */ 2511 type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) & 2512 SPE_HDR_FUNCTION_ID); 2513 2514 spe->hdr.type = htole16(type); 2515 2516 spe->data.update_data_addr.hi = htole32(data_hi); 2517 spe->data.update_data_addr.lo = htole32(data_lo); 2518 2519 /* 2520 * It's ok if the actual decrement is issued towards the memory 2521 * somewhere between the lock and unlock. Thus no more explict 2522 * memory barrier is needed. 2523 */ 2524 if (common) { 2525 atomic_subtract_acq_long(&sc->eq_spq_left, 1); 2526 } else { 2527 atomic_subtract_acq_long(&sc->cq_spq_left, 1); 2528 } 2529 2530 BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr); 2531 BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n", 2532 BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata)); 2533 BLOGD(sc, DBG_SP, 2534 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n", 2535 sc->spq_prod_idx, 2536 (uint32_t)U64_HI(sc->spq_dma.paddr), 2537 (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq), 2538 command, 2539 common, 2540 HW_CID(sc, cid), 2541 data_hi, 2542 data_lo, 2543 type, 2544 atomic_load_acq_long(&sc->cq_spq_left), 2545 atomic_load_acq_long(&sc->eq_spq_left)); 2546 2547 bxe_sp_prod_update(sc); 2548 2549 BXE_SP_UNLOCK(sc); 2550 return (0); 2551 } 2552 2553 /** 2554 * bxe_debug_print_ind_table - prints the indirection table configuration. 2555 * 2556 * @sc: driver hanlde 2557 * @p: pointer to rss configuration 2558 */ 2559 #if 0 2560 static void 2561 bxe_debug_print_ind_table(struct bxe_softc *sc, 2562 struct ecore_config_rss_params *p) 2563 { 2564 int i; 2565 2566 BLOGD(sc, DBG_LOAD, "Setting indirection table to:\n"); 2567 BLOGD(sc, DBG_LOAD, " 0x0000: "); 2568 for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) { 2569 BLOGD(sc, DBG_LOAD, "0x%02x ", p->ind_table[i]); 2570 2571 /* Print 4 bytes in a line */ 2572 if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) && 2573 (((i + 1) & 0x3) == 0)) { 2574 BLOGD(sc, DBG_LOAD, "\n"); 2575 BLOGD(sc, DBG_LOAD, "0x%04x: ", i + 1); 2576 } 2577 } 2578 2579 BLOGD(sc, DBG_LOAD, "\n"); 2580 } 2581 #endif 2582 2583 /* 2584 * FreeBSD Device probe function. 2585 * 2586 * Compares the device found to the driver's list of supported devices and 2587 * reports back to the bsd loader whether this is the right driver for the device. 2588 * This is the driver entry function called from the "kldload" command. 2589 * 2590 * Returns: 2591 * BUS_PROBE_DEFAULT on success, positive value on failure. 2592 */ 2593 static int 2594 bxe_probe(device_t dev) 2595 { 2596 struct bxe_softc *sc; 2597 struct bxe_device_type *t; 2598 char *descbuf; 2599 uint16_t did, sdid, svid, vid; 2600 2601 /* Find our device structure */ 2602 sc = device_get_softc(dev); 2603 sc->dev = dev; 2604 t = bxe_devs; 2605 2606 /* Get the data for the device to be probed. */ 2607 vid = pci_get_vendor(dev); 2608 did = pci_get_device(dev); 2609 svid = pci_get_subvendor(dev); 2610 sdid = pci_get_subdevice(dev); 2611 2612 BLOGD(sc, DBG_LOAD, 2613 "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, " 2614 "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid); 2615 2616 /* Look through the list of known devices for a match. */ 2617 while (t->bxe_name != NULL) { 2618 if ((vid == t->bxe_vid) && (did == t->bxe_did) && 2619 ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) && 2620 ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) { 2621 descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 2622 if (descbuf == NULL) 2623 return (ENOMEM); 2624 2625 /* Print out the device identity. */ 2626 snprintf(descbuf, BXE_DEVDESC_MAX, 2627 "%s (%c%d) BXE v:%s\n", t->bxe_name, 2628 (((pci_read_config(dev, PCIR_REVID, 4) & 2629 0xf0) >> 4) + 'A'), 2630 (pci_read_config(dev, PCIR_REVID, 4) & 0xf), 2631 BXE_DRIVER_VERSION); 2632 2633 device_set_desc_copy(dev, descbuf); 2634 free(descbuf, M_TEMP); 2635 return (BUS_PROBE_DEFAULT); 2636 } 2637 t++; 2638 } 2639 2640 return (ENXIO); 2641 } 2642 2643 static void 2644 bxe_init_mutexes(struct bxe_softc *sc) 2645 { 2646 #ifdef BXE_CORE_LOCK_SX 2647 snprintf(sc->core_sx_name, sizeof(sc->core_sx_name), 2648 "bxe%d_core_lock", sc->unit); 2649 sx_init(&sc->core_sx, sc->core_sx_name); 2650 #else 2651 snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name), 2652 "bxe%d_core_lock", sc->unit); 2653 mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF); 2654 #endif 2655 2656 snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name), 2657 "bxe%d_sp_lock", sc->unit); 2658 mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF); 2659 2660 snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name), 2661 "bxe%d_dmae_lock", sc->unit); 2662 mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF); 2663 2664 snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name), 2665 "bxe%d_phy_lock", sc->unit); 2666 mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF); 2667 2668 snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name), 2669 "bxe%d_fwmb_lock", sc->unit); 2670 mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF); 2671 2672 snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name), 2673 "bxe%d_print_lock", sc->unit); 2674 mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF); 2675 2676 snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name), 2677 "bxe%d_stats_lock", sc->unit); 2678 mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF); 2679 2680 snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name), 2681 "bxe%d_mcast_lock", sc->unit); 2682 mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF); 2683 } 2684 2685 static void 2686 bxe_release_mutexes(struct bxe_softc *sc) 2687 { 2688 #ifdef BXE_CORE_LOCK_SX 2689 sx_destroy(&sc->core_sx); 2690 #else 2691 if (mtx_initialized(&sc->core_mtx)) { 2692 mtx_destroy(&sc->core_mtx); 2693 } 2694 #endif 2695 2696 if (mtx_initialized(&sc->sp_mtx)) { 2697 mtx_destroy(&sc->sp_mtx); 2698 } 2699 2700 if (mtx_initialized(&sc->dmae_mtx)) { 2701 mtx_destroy(&sc->dmae_mtx); 2702 } 2703 2704 if (mtx_initialized(&sc->port.phy_mtx)) { 2705 mtx_destroy(&sc->port.phy_mtx); 2706 } 2707 2708 if (mtx_initialized(&sc->fwmb_mtx)) { 2709 mtx_destroy(&sc->fwmb_mtx); 2710 } 2711 2712 if (mtx_initialized(&sc->print_mtx)) { 2713 mtx_destroy(&sc->print_mtx); 2714 } 2715 2716 if (mtx_initialized(&sc->stats_mtx)) { 2717 mtx_destroy(&sc->stats_mtx); 2718 } 2719 2720 if (mtx_initialized(&sc->mcast_mtx)) { 2721 mtx_destroy(&sc->mcast_mtx); 2722 } 2723 } 2724 2725 static void 2726 bxe_tx_disable(struct bxe_softc* sc) 2727 { 2728 if_t ifp = sc->ifp; 2729 2730 /* tell the stack the driver is stopped and TX queue is full */ 2731 if (ifp != NULL) { 2732 if_setdrvflags(ifp, 0); 2733 } 2734 } 2735 2736 static void 2737 bxe_drv_pulse(struct bxe_softc *sc) 2738 { 2739 SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb, 2740 sc->fw_drv_pulse_wr_seq); 2741 } 2742 2743 static inline uint16_t 2744 bxe_tx_avail(struct bxe_softc *sc, 2745 struct bxe_fastpath *fp) 2746 { 2747 int16_t used; 2748 uint16_t prod; 2749 uint16_t cons; 2750 2751 prod = fp->tx_bd_prod; 2752 cons = fp->tx_bd_cons; 2753 2754 used = SUB_S16(prod, cons); 2755 2756 #if 0 2757 KASSERT((used < 0), ("used tx bds < 0")); 2758 KASSERT((used > sc->tx_ring_size), ("used tx bds > tx_ring_size")); 2759 KASSERT(((sc->tx_ring_size - used) > MAX_TX_AVAIL), 2760 ("invalid number of tx bds used")); 2761 #endif 2762 2763 return (int16_t)(sc->tx_ring_size) - used; 2764 } 2765 2766 static inline int 2767 bxe_tx_queue_has_work(struct bxe_fastpath *fp) 2768 { 2769 uint16_t hw_cons; 2770 2771 mb(); /* status block fields can change */ 2772 hw_cons = le16toh(*fp->tx_cons_sb); 2773 return (hw_cons != fp->tx_pkt_cons); 2774 } 2775 2776 static inline uint8_t 2777 bxe_has_tx_work(struct bxe_fastpath *fp) 2778 { 2779 /* expand this for multi-cos if ever supported */ 2780 return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE; 2781 } 2782 2783 static inline int 2784 bxe_has_rx_work(struct bxe_fastpath *fp) 2785 { 2786 uint16_t rx_cq_cons_sb; 2787 2788 mb(); /* status block fields can change */ 2789 rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb); 2790 if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX) 2791 rx_cq_cons_sb++; 2792 return (fp->rx_cq_cons != rx_cq_cons_sb); 2793 } 2794 2795 static void 2796 bxe_sp_event(struct bxe_softc *sc, 2797 struct bxe_fastpath *fp, 2798 union eth_rx_cqe *rr_cqe) 2799 { 2800 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2801 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2802 enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX; 2803 struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 2804 2805 BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n", 2806 fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type); 2807 2808 #if 0 2809 /* 2810 * If cid is within VF range, replace the slowpath object with the 2811 * one corresponding to this VF 2812 */ 2813 if ((cid >= BXE_FIRST_VF_CID) && (cid < BXE_FIRST_VF_CID + BXE_VF_CIDS)) { 2814 bxe_iov_set_queue_sp_obj(sc, cid, &q_obj); 2815 } 2816 #endif 2817 2818 switch (command) { 2819 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 2820 BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid); 2821 drv_cmd = ECORE_Q_CMD_UPDATE; 2822 break; 2823 2824 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 2825 BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid); 2826 drv_cmd = ECORE_Q_CMD_SETUP; 2827 break; 2828 2829 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 2830 BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 2831 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY; 2832 break; 2833 2834 case (RAMROD_CMD_ID_ETH_HALT): 2835 BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid); 2836 drv_cmd = ECORE_Q_CMD_HALT; 2837 break; 2838 2839 case (RAMROD_CMD_ID_ETH_TERMINATE): 2840 BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid); 2841 drv_cmd = ECORE_Q_CMD_TERMINATE; 2842 break; 2843 2844 case (RAMROD_CMD_ID_ETH_EMPTY): 2845 BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid); 2846 drv_cmd = ECORE_Q_CMD_EMPTY; 2847 break; 2848 2849 default: 2850 BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n", 2851 command, fp->index); 2852 return; 2853 } 2854 2855 if ((drv_cmd != ECORE_Q_CMD_MAX) && 2856 q_obj->complete_cmd(sc, q_obj, drv_cmd)) { 2857 /* 2858 * q_obj->complete_cmd() failure means that this was 2859 * an unexpected completion. 2860 * 2861 * In this case we don't want to increase the sc->spq_left 2862 * because apparently we haven't sent this command the first 2863 * place. 2864 */ 2865 // bxe_panic(sc, ("Unexpected SP completion\n")); 2866 return; 2867 } 2868 2869 #if 0 2870 /* SRIOV: reschedule any 'in_progress' operations */ 2871 bxe_iov_sp_event(sc, cid, TRUE); 2872 #endif 2873 2874 atomic_add_acq_long(&sc->cq_spq_left, 1); 2875 2876 BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n", 2877 atomic_load_acq_long(&sc->cq_spq_left)); 2878 2879 #if 0 2880 if ((drv_cmd == ECORE_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) && 2881 (!!bxe_test_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state))) { 2882 /* 2883 * If Queue update ramrod is completed for last Queue in AFEX VIF set 2884 * flow, then ACK MCP at the end. Mark pending ACK to MCP bit to 2885 * prevent case that both bits are cleared. At the end of load/unload 2886 * driver checks that sp_state is cleared and this order prevents 2887 * races. 2888 */ 2889 bxe_set_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, &sc->sp_state); 2890 wmb(); 2891 bxe_clear_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state); 2892 2893 /* schedule the sp task as MCP ack is required */ 2894 bxe_schedule_sp_task(sc); 2895 } 2896 #endif 2897 } 2898 2899 /* 2900 * The current mbuf is part of an aggregation. Move the mbuf into the TPA 2901 * aggregation queue, put an empty mbuf back onto the receive chain, and mark 2902 * the current aggregation queue as in-progress. 2903 */ 2904 static void 2905 bxe_tpa_start(struct bxe_softc *sc, 2906 struct bxe_fastpath *fp, 2907 uint16_t queue, 2908 uint16_t cons, 2909 uint16_t prod, 2910 struct eth_fast_path_rx_cqe *cqe) 2911 { 2912 struct bxe_sw_rx_bd tmp_bd; 2913 struct bxe_sw_rx_bd *rx_buf; 2914 struct eth_rx_bd *rx_bd; 2915 int max_agg_queues; 2916 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 2917 uint16_t index; 2918 2919 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START " 2920 "cons=%d prod=%d\n", 2921 fp->index, queue, cons, prod); 2922 2923 max_agg_queues = MAX_AGG_QS(sc); 2924 2925 KASSERT((queue < max_agg_queues), 2926 ("fp[%02d] invalid aggr queue (%d >= %d)!", 2927 fp->index, queue, max_agg_queues)); 2928 2929 KASSERT((tpa_info->state == BXE_TPA_STATE_STOP), 2930 ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!", 2931 fp->index, queue)); 2932 2933 /* copy the existing mbuf and mapping from the TPA pool */ 2934 tmp_bd = tpa_info->bd; 2935 2936 if (tmp_bd.m == NULL) { 2937 BLOGE(sc, "fp[%02d].tpa[%02d] mbuf not allocated!\n", 2938 fp->index, queue); 2939 /* XXX Error handling? */ 2940 return; 2941 } 2942 2943 /* change the TPA queue to the start state */ 2944 tpa_info->state = BXE_TPA_STATE_START; 2945 tpa_info->placement_offset = cqe->placement_offset; 2946 tpa_info->parsing_flags = le16toh(cqe->pars_flags.flags); 2947 tpa_info->vlan_tag = le16toh(cqe->vlan_tag); 2948 tpa_info->len_on_bd = le16toh(cqe->len_on_bd); 2949 2950 fp->rx_tpa_queue_used |= (1 << queue); 2951 2952 /* 2953 * If all the buffer descriptors are filled with mbufs then fill in 2954 * the current consumer index with a new BD. Else if a maximum Rx 2955 * buffer limit is imposed then fill in the next producer index. 2956 */ 2957 index = (sc->max_rx_bufs != RX_BD_USABLE) ? 2958 prod : cons; 2959 2960 /* move the received mbuf and mapping to TPA pool */ 2961 tpa_info->bd = fp->rx_mbuf_chain[cons]; 2962 2963 /* release any existing RX BD mbuf mappings */ 2964 if (cons != index) { 2965 rx_buf = &fp->rx_mbuf_chain[cons]; 2966 2967 if (rx_buf->m_map != NULL) { 2968 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 2969 BUS_DMASYNC_POSTREAD); 2970 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 2971 } 2972 2973 /* 2974 * We get here when the maximum number of rx buffers is less than 2975 * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL 2976 * it out here without concern of a memory leak. 2977 */ 2978 fp->rx_mbuf_chain[cons].m = NULL; 2979 } 2980 2981 /* update the Rx SW BD with the mbuf info from the TPA pool */ 2982 fp->rx_mbuf_chain[index] = tmp_bd; 2983 2984 /* update the Rx BD with the empty mbuf phys address from the TPA pool */ 2985 rx_bd = &fp->rx_chain[index]; 2986 rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr)); 2987 rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr)); 2988 } 2989 2990 /* 2991 * When a TPA aggregation is completed, loop through the individual mbufs 2992 * of the aggregation, combining them into a single mbuf which will be sent 2993 * up the stack. Refill all freed SGEs with mbufs as we go along. 2994 */ 2995 static int 2996 bxe_fill_frag_mbuf(struct bxe_softc *sc, 2997 struct bxe_fastpath *fp, 2998 struct bxe_sw_tpa_info *tpa_info, 2999 uint16_t queue, 3000 uint16_t pages, 3001 struct mbuf *m, 3002 struct eth_end_agg_rx_cqe *cqe, 3003 uint16_t cqe_idx) 3004 { 3005 struct mbuf *m_frag; 3006 uint32_t frag_len, frag_size, i; 3007 uint16_t sge_idx; 3008 int rc = 0; 3009 int j; 3010 3011 frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd; 3012 3013 BLOGD(sc, DBG_LRO, 3014 "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n", 3015 fp->index, queue, tpa_info->len_on_bd, frag_size, pages); 3016 3017 /* make sure the aggregated frame is not too big to handle */ 3018 if (pages > 8 * PAGES_PER_SGE) { 3019 BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! " 3020 "pkt_len=%d len_on_bd=%d frag_size=%d\n", 3021 fp->index, cqe_idx, pages, le16toh(cqe->pkt_len), 3022 tpa_info->len_on_bd, frag_size); 3023 bxe_panic(sc, ("sge page count error\n")); 3024 return (EINVAL); 3025 } 3026 3027 /* 3028 * Scan through the scatter gather list pulling individual mbufs into a 3029 * single mbuf for the host stack. 3030 */ 3031 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 3032 sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j])); 3033 3034 /* 3035 * Firmware gives the indices of the SGE as if the ring is an array 3036 * (meaning that the "next" element will consume 2 indices). 3037 */ 3038 frag_len = min(frag_size, (uint32_t)(SGE_PAGES)); 3039 3040 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d " 3041 "sge_idx=%d frag_size=%d frag_len=%d\n", 3042 fp->index, queue, i, j, sge_idx, frag_size, frag_len); 3043 3044 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 3045 3046 /* allocate a new mbuf for the SGE */ 3047 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 3048 if (rc) { 3049 /* Leave all remaining SGEs in the ring! */ 3050 return (rc); 3051 } 3052 3053 /* update the fragment length */ 3054 m_frag->m_len = frag_len; 3055 3056 /* concatenate the fragment to the head mbuf */ 3057 m_cat(m, m_frag); 3058 fp->eth_q_stats.mbuf_alloc_sge--; 3059 3060 /* update the TPA mbuf size and remaining fragment size */ 3061 m->m_pkthdr.len += frag_len; 3062 frag_size -= frag_len; 3063 } 3064 3065 BLOGD(sc, DBG_LRO, 3066 "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n", 3067 fp->index, queue, frag_size); 3068 3069 return (rc); 3070 } 3071 3072 static inline void 3073 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp) 3074 { 3075 int i, j; 3076 3077 for (i = 1; i <= RX_SGE_NUM_PAGES; i++) { 3078 int idx = RX_SGE_TOTAL_PER_PAGE * i - 1; 3079 3080 for (j = 0; j < 2; j++) { 3081 BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx); 3082 idx--; 3083 } 3084 } 3085 } 3086 3087 static inline void 3088 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp) 3089 { 3090 /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */ 3091 memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask)); 3092 3093 /* 3094 * Clear the two last indices in the page to 1. These are the indices that 3095 * correspond to the "next" element, hence will never be indicated and 3096 * should be removed from the calculations. 3097 */ 3098 bxe_clear_sge_mask_next_elems(fp); 3099 } 3100 3101 static inline void 3102 bxe_update_last_max_sge(struct bxe_fastpath *fp, 3103 uint16_t idx) 3104 { 3105 uint16_t last_max = fp->last_max_sge; 3106 3107 if (SUB_S16(idx, last_max) > 0) { 3108 fp->last_max_sge = idx; 3109 } 3110 } 3111 3112 static inline void 3113 bxe_update_sge_prod(struct bxe_softc *sc, 3114 struct bxe_fastpath *fp, 3115 uint16_t sge_len, 3116 union eth_sgl_or_raw_data *cqe) 3117 { 3118 uint16_t last_max, last_elem, first_elem; 3119 uint16_t delta = 0; 3120 uint16_t i; 3121 3122 if (!sge_len) { 3123 return; 3124 } 3125 3126 /* first mark all used pages */ 3127 for (i = 0; i < sge_len; i++) { 3128 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 3129 RX_SGE(le16toh(cqe->sgl[i]))); 3130 } 3131 3132 BLOGD(sc, DBG_LRO, 3133 "fp[%02d] fp_cqe->sgl[%d] = %d\n", 3134 fp->index, sge_len - 1, 3135 le16toh(cqe->sgl[sge_len - 1])); 3136 3137 /* assume that the last SGE index is the biggest */ 3138 bxe_update_last_max_sge(fp, 3139 le16toh(cqe->sgl[sge_len - 1])); 3140 3141 last_max = RX_SGE(fp->last_max_sge); 3142 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 3143 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 3144 3145 /* if ring is not full */ 3146 if (last_elem + 1 != first_elem) { 3147 last_elem++; 3148 } 3149 3150 /* now update the prod */ 3151 for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) { 3152 if (__predict_true(fp->sge_mask[i])) { 3153 break; 3154 } 3155 3156 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 3157 delta += BIT_VEC64_ELEM_SZ; 3158 } 3159 3160 if (delta > 0) { 3161 fp->rx_sge_prod += delta; 3162 /* clear page-end entries */ 3163 bxe_clear_sge_mask_next_elems(fp); 3164 } 3165 3166 BLOGD(sc, DBG_LRO, 3167 "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n", 3168 fp->index, fp->last_max_sge, fp->rx_sge_prod); 3169 } 3170 3171 /* 3172 * The aggregation on the current TPA queue has completed. Pull the individual 3173 * mbuf fragments together into a single mbuf, perform all necessary checksum 3174 * calculations, and send the resuting mbuf to the stack. 3175 */ 3176 static void 3177 bxe_tpa_stop(struct bxe_softc *sc, 3178 struct bxe_fastpath *fp, 3179 struct bxe_sw_tpa_info *tpa_info, 3180 uint16_t queue, 3181 uint16_t pages, 3182 struct eth_end_agg_rx_cqe *cqe, 3183 uint16_t cqe_idx) 3184 { 3185 if_t ifp = sc->ifp; 3186 struct mbuf *m; 3187 int rc = 0; 3188 3189 BLOGD(sc, DBG_LRO, 3190 "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n", 3191 fp->index, queue, tpa_info->placement_offset, 3192 le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag); 3193 3194 m = tpa_info->bd.m; 3195 3196 /* allocate a replacement before modifying existing mbuf */ 3197 rc = bxe_alloc_rx_tpa_mbuf(fp, queue); 3198 if (rc) { 3199 /* drop the frame and log an error */ 3200 fp->eth_q_stats.rx_soft_errors++; 3201 goto bxe_tpa_stop_exit; 3202 } 3203 3204 /* we have a replacement, fixup the current mbuf */ 3205 m_adj(m, tpa_info->placement_offset); 3206 m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd; 3207 3208 /* mark the checksums valid (taken care of by the firmware) */ 3209 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3210 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3211 m->m_pkthdr.csum_data = 0xffff; 3212 m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | 3213 CSUM_IP_VALID | 3214 CSUM_DATA_VALID | 3215 CSUM_PSEUDO_HDR); 3216 3217 /* aggregate all of the SGEs into a single mbuf */ 3218 rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx); 3219 if (rc) { 3220 /* drop the packet and log an error */ 3221 fp->eth_q_stats.rx_soft_errors++; 3222 m_freem(m); 3223 } else { 3224 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) { 3225 m->m_pkthdr.ether_vtag = tpa_info->vlan_tag; 3226 m->m_flags |= M_VLANTAG; 3227 } 3228 3229 /* assign packet to this interface interface */ 3230 if_setrcvif(m, ifp); 3231 3232 #if __FreeBSD_version >= 800000 3233 /* specify what RSS queue was used for this flow */ 3234 m->m_pkthdr.flowid = fp->index; 3235 M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE); 3236 #endif 3237 3238 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3239 fp->eth_q_stats.rx_tpa_pkts++; 3240 3241 /* pass the frame to the stack */ 3242 if_input(ifp, m); 3243 } 3244 3245 /* we passed an mbuf up the stack or dropped the frame */ 3246 fp->eth_q_stats.mbuf_alloc_tpa--; 3247 3248 bxe_tpa_stop_exit: 3249 3250 fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP; 3251 fp->rx_tpa_queue_used &= ~(1 << queue); 3252 } 3253 3254 static uint8_t 3255 bxe_service_rxsgl( 3256 struct bxe_fastpath *fp, 3257 uint16_t len, 3258 uint16_t lenonbd, 3259 struct mbuf *m, 3260 struct eth_fast_path_rx_cqe *cqe_fp) 3261 { 3262 struct mbuf *m_frag; 3263 uint16_t frags, frag_len; 3264 uint16_t sge_idx = 0; 3265 uint16_t j; 3266 uint8_t i, rc = 0; 3267 uint32_t frag_size; 3268 3269 /* adjust the mbuf */ 3270 m->m_len = lenonbd; 3271 3272 frag_size = len - lenonbd; 3273 frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3274 3275 for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) { 3276 sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j])); 3277 3278 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 3279 frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE)); 3280 m_frag->m_len = frag_len; 3281 3282 /* allocate a new mbuf for the SGE */ 3283 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 3284 if (rc) { 3285 /* Leave all remaining SGEs in the ring! */ 3286 return (rc); 3287 } 3288 fp->eth_q_stats.mbuf_alloc_sge--; 3289 3290 /* concatenate the fragment to the head mbuf */ 3291 m_cat(m, m_frag); 3292 3293 frag_size -= frag_len; 3294 } 3295 3296 bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data); 3297 3298 return rc; 3299 } 3300 3301 static uint8_t 3302 bxe_rxeof(struct bxe_softc *sc, 3303 struct bxe_fastpath *fp) 3304 { 3305 if_t ifp = sc->ifp; 3306 uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 3307 uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod; 3308 int rx_pkts = 0; 3309 int rc = 0; 3310 3311 BXE_FP_RX_LOCK(fp); 3312 3313 /* CQ "next element" is of the size of the regular element */ 3314 hw_cq_cons = le16toh(*fp->rx_cq_cons_sb); 3315 if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) { 3316 hw_cq_cons++; 3317 } 3318 3319 bd_cons = fp->rx_bd_cons; 3320 bd_prod = fp->rx_bd_prod; 3321 bd_prod_fw = bd_prod; 3322 sw_cq_cons = fp->rx_cq_cons; 3323 sw_cq_prod = fp->rx_cq_prod; 3324 3325 /* 3326 * Memory barrier necessary as speculative reads of the rx 3327 * buffer can be ahead of the index in the status block 3328 */ 3329 rmb(); 3330 3331 BLOGD(sc, DBG_RX, 3332 "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n", 3333 fp->index, hw_cq_cons, sw_cq_cons); 3334 3335 while (sw_cq_cons != hw_cq_cons) { 3336 struct bxe_sw_rx_bd *rx_buf = NULL; 3337 union eth_rx_cqe *cqe; 3338 struct eth_fast_path_rx_cqe *cqe_fp; 3339 uint8_t cqe_fp_flags; 3340 enum eth_rx_cqe_type cqe_fp_type; 3341 uint16_t len, lenonbd, pad; 3342 struct mbuf *m = NULL; 3343 3344 comp_ring_cons = RCQ(sw_cq_cons); 3345 bd_prod = RX_BD(bd_prod); 3346 bd_cons = RX_BD(bd_cons); 3347 3348 cqe = &fp->rcq_chain[comp_ring_cons]; 3349 cqe_fp = &cqe->fast_path_cqe; 3350 cqe_fp_flags = cqe_fp->type_error_flags; 3351 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 3352 3353 BLOGD(sc, DBG_RX, 3354 "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d " 3355 "BD prod=%d cons=%d CQE type=0x%x err=0x%x " 3356 "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n", 3357 fp->index, 3358 hw_cq_cons, 3359 sw_cq_cons, 3360 bd_prod, 3361 bd_cons, 3362 CQE_TYPE(cqe_fp_flags), 3363 cqe_fp_flags, 3364 cqe_fp->status_flags, 3365 le32toh(cqe_fp->rss_hash_result), 3366 le16toh(cqe_fp->vlan_tag), 3367 le16toh(cqe_fp->pkt_len_or_gro_seg_len), 3368 le16toh(cqe_fp->len_on_bd)); 3369 3370 /* is this a slowpath msg? */ 3371 if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) { 3372 bxe_sp_event(sc, fp, cqe); 3373 goto next_cqe; 3374 } 3375 3376 rx_buf = &fp->rx_mbuf_chain[bd_cons]; 3377 3378 if (!CQE_TYPE_FAST(cqe_fp_type)) { 3379 struct bxe_sw_tpa_info *tpa_info; 3380 uint16_t frag_size, pages; 3381 uint8_t queue; 3382 3383 #if 0 3384 /* sanity check */ 3385 if (!fp->tpa_enable && 3386 (CQE_TYPE_START(cqe_fp_type) || CQE_TYPE_STOP(cqe_fp_type))) { 3387 BLOGE(sc, "START/STOP packet while !tpa_enable type (0x%x)\n", 3388 CQE_TYPE(cqe_fp_type)); 3389 } 3390 #endif 3391 3392 if (CQE_TYPE_START(cqe_fp_type)) { 3393 bxe_tpa_start(sc, fp, cqe_fp->queue_index, 3394 bd_cons, bd_prod, cqe_fp); 3395 m = NULL; /* packet not ready yet */ 3396 goto next_rx; 3397 } 3398 3399 KASSERT(CQE_TYPE_STOP(cqe_fp_type), 3400 ("CQE type is not STOP! (0x%x)\n", cqe_fp_type)); 3401 3402 queue = cqe->end_agg_cqe.queue_index; 3403 tpa_info = &fp->rx_tpa_info[queue]; 3404 3405 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n", 3406 fp->index, queue); 3407 3408 frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) - 3409 tpa_info->len_on_bd); 3410 pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3411 3412 bxe_tpa_stop(sc, fp, tpa_info, queue, pages, 3413 &cqe->end_agg_cqe, comp_ring_cons); 3414 3415 bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data); 3416 3417 goto next_cqe; 3418 } 3419 3420 /* non TPA */ 3421 3422 /* is this an error packet? */ 3423 if (__predict_false(cqe_fp_flags & 3424 ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) { 3425 BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons); 3426 fp->eth_q_stats.rx_soft_errors++; 3427 goto next_rx; 3428 } 3429 3430 len = le16toh(cqe_fp->pkt_len_or_gro_seg_len); 3431 lenonbd = le16toh(cqe_fp->len_on_bd); 3432 pad = cqe_fp->placement_offset; 3433 3434 m = rx_buf->m; 3435 3436 if (__predict_false(m == NULL)) { 3437 BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n", 3438 bd_cons, fp->index); 3439 goto next_rx; 3440 } 3441 3442 /* XXX double copy if packet length under a threshold */ 3443 3444 /* 3445 * If all the buffer descriptors are filled with mbufs then fill in 3446 * the current consumer index with a new BD. Else if a maximum Rx 3447 * buffer limit is imposed then fill in the next producer index. 3448 */ 3449 rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons, 3450 (sc->max_rx_bufs != RX_BD_USABLE) ? 3451 bd_prod : bd_cons); 3452 if (rc != 0) { 3453 3454 /* we simply reuse the received mbuf and don't post it to the stack */ 3455 m = NULL; 3456 3457 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 3458 fp->index, rc); 3459 fp->eth_q_stats.rx_soft_errors++; 3460 3461 if (sc->max_rx_bufs != RX_BD_USABLE) { 3462 /* copy this consumer index to the producer index */ 3463 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf, 3464 sizeof(struct bxe_sw_rx_bd)); 3465 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd)); 3466 } 3467 3468 goto next_rx; 3469 } 3470 3471 /* current mbuf was detached from the bd */ 3472 fp->eth_q_stats.mbuf_alloc_rx--; 3473 3474 /* we allocated a replacement mbuf, fixup the current one */ 3475 m_adj(m, pad); 3476 m->m_pkthdr.len = m->m_len = len; 3477 3478 if (len != lenonbd){ 3479 rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp); 3480 if (rc) 3481 break; 3482 fp->eth_q_stats.rx_jumbo_sge_pkts++; 3483 } 3484 3485 /* assign packet to this interface interface */ 3486 if_setrcvif(m, ifp); 3487 3488 /* assume no hardware checksum has complated */ 3489 m->m_pkthdr.csum_flags = 0; 3490 3491 /* validate checksum if offload enabled */ 3492 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 3493 /* check for a valid IP frame */ 3494 if (!(cqe->fast_path_cqe.status_flags & 3495 ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) { 3496 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3497 if (__predict_false(cqe_fp_flags & 3498 ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) { 3499 fp->eth_q_stats.rx_hw_csum_errors++; 3500 } else { 3501 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3502 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3503 } 3504 } 3505 3506 /* check for a valid TCP/UDP frame */ 3507 if (!(cqe->fast_path_cqe.status_flags & 3508 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) { 3509 if (__predict_false(cqe_fp_flags & 3510 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) { 3511 fp->eth_q_stats.rx_hw_csum_errors++; 3512 } else { 3513 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3514 m->m_pkthdr.csum_data = 0xFFFF; 3515 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | 3516 CSUM_PSEUDO_HDR); 3517 } 3518 } 3519 } 3520 3521 /* if there is a VLAN tag then flag that info */ 3522 if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_VLAN) { 3523 m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag; 3524 m->m_flags |= M_VLANTAG; 3525 } 3526 3527 #if __FreeBSD_version >= 800000 3528 /* specify what RSS queue was used for this flow */ 3529 m->m_pkthdr.flowid = fp->index; 3530 M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE); 3531 #endif 3532 3533 next_rx: 3534 3535 bd_cons = RX_BD_NEXT(bd_cons); 3536 bd_prod = RX_BD_NEXT(bd_prod); 3537 bd_prod_fw = RX_BD_NEXT(bd_prod_fw); 3538 3539 /* pass the frame to the stack */ 3540 if (__predict_true(m != NULL)) { 3541 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3542 rx_pkts++; 3543 if_input(ifp, m); 3544 } 3545 3546 next_cqe: 3547 3548 sw_cq_prod = RCQ_NEXT(sw_cq_prod); 3549 sw_cq_cons = RCQ_NEXT(sw_cq_cons); 3550 3551 /* limit spinning on the queue */ 3552 if (rc != 0) 3553 break; 3554 3555 if (rx_pkts == sc->rx_budget) { 3556 fp->eth_q_stats.rx_budget_reached++; 3557 break; 3558 } 3559 } /* while work to do */ 3560 3561 fp->rx_bd_cons = bd_cons; 3562 fp->rx_bd_prod = bd_prod_fw; 3563 fp->rx_cq_cons = sw_cq_cons; 3564 fp->rx_cq_prod = sw_cq_prod; 3565 3566 /* Update producers */ 3567 bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod); 3568 3569 fp->eth_q_stats.rx_pkts += rx_pkts; 3570 fp->eth_q_stats.rx_calls++; 3571 3572 BXE_FP_RX_UNLOCK(fp); 3573 3574 return (sw_cq_cons != hw_cq_cons); 3575 } 3576 3577 static uint16_t 3578 bxe_free_tx_pkt(struct bxe_softc *sc, 3579 struct bxe_fastpath *fp, 3580 uint16_t idx) 3581 { 3582 struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx]; 3583 struct eth_tx_start_bd *tx_start_bd; 3584 uint16_t bd_idx = TX_BD(tx_buf->first_bd); 3585 uint16_t new_cons; 3586 int nbd; 3587 3588 /* unmap the mbuf from non-paged memory */ 3589 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 3590 3591 tx_start_bd = &fp->tx_chain[bd_idx].start_bd; 3592 nbd = le16toh(tx_start_bd->nbd) - 1; 3593 3594 #if 0 3595 if ((nbd - 1) > (MAX_MBUF_FRAGS + 2)) { 3596 bxe_panic(sc, ("BAD nbd!\n")); 3597 } 3598 #endif 3599 3600 new_cons = (tx_buf->first_bd + nbd); 3601 3602 #if 0 3603 struct eth_tx_bd *tx_data_bd; 3604 3605 /* 3606 * The following code doesn't do anything but is left here 3607 * for clarity on what the new value of new_cons skipped. 3608 */ 3609 3610 /* get the next bd */ 3611 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3612 3613 /* skip the parse bd */ 3614 --nbd; 3615 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3616 3617 /* skip the TSO split header bd since they have no mapping */ 3618 if (tx_buf->flags & BXE_TSO_SPLIT_BD) { 3619 --nbd; 3620 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3621 } 3622 3623 /* now free frags */ 3624 while (nbd > 0) { 3625 tx_data_bd = &fp->tx_chain[bd_idx].reg_bd; 3626 if (--nbd) { 3627 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3628 } 3629 } 3630 #endif 3631 3632 /* free the mbuf */ 3633 if (__predict_true(tx_buf->m != NULL)) { 3634 m_freem(tx_buf->m); 3635 fp->eth_q_stats.mbuf_alloc_tx--; 3636 } else { 3637 fp->eth_q_stats.tx_chain_lost_mbuf++; 3638 } 3639 3640 tx_buf->m = NULL; 3641 tx_buf->first_bd = 0; 3642 3643 return (new_cons); 3644 } 3645 3646 /* transmit timeout watchdog */ 3647 static int 3648 bxe_watchdog(struct bxe_softc *sc, 3649 struct bxe_fastpath *fp) 3650 { 3651 BXE_FP_TX_LOCK(fp); 3652 3653 if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) { 3654 BXE_FP_TX_UNLOCK(fp); 3655 return (0); 3656 } 3657 3658 BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index); 3659 3660 BXE_FP_TX_UNLOCK(fp); 3661 3662 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT); 3663 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 3664 3665 return (-1); 3666 } 3667 3668 /* processes transmit completions */ 3669 static uint8_t 3670 bxe_txeof(struct bxe_softc *sc, 3671 struct bxe_fastpath *fp) 3672 { 3673 if_t ifp = sc->ifp; 3674 uint16_t bd_cons, hw_cons, sw_cons, pkt_cons; 3675 uint16_t tx_bd_avail; 3676 3677 BXE_FP_TX_LOCK_ASSERT(fp); 3678 3679 bd_cons = fp->tx_bd_cons; 3680 hw_cons = le16toh(*fp->tx_cons_sb); 3681 sw_cons = fp->tx_pkt_cons; 3682 3683 while (sw_cons != hw_cons) { 3684 pkt_cons = TX_BD(sw_cons); 3685 3686 BLOGD(sc, DBG_TX, 3687 "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n", 3688 fp->index, hw_cons, sw_cons, pkt_cons); 3689 3690 bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons); 3691 3692 sw_cons++; 3693 } 3694 3695 fp->tx_pkt_cons = sw_cons; 3696 fp->tx_bd_cons = bd_cons; 3697 3698 BLOGD(sc, DBG_TX, 3699 "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n", 3700 fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod); 3701 3702 mb(); 3703 3704 tx_bd_avail = bxe_tx_avail(sc, fp); 3705 3706 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 3707 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 3708 } else { 3709 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 3710 } 3711 3712 if (fp->tx_pkt_prod != fp->tx_pkt_cons) { 3713 /* reset the watchdog timer if there are pending transmits */ 3714 fp->watchdog_timer = BXE_TX_TIMEOUT; 3715 return (TRUE); 3716 } else { 3717 /* clear watchdog when there are no pending transmits */ 3718 fp->watchdog_timer = 0; 3719 return (FALSE); 3720 } 3721 } 3722 3723 static void 3724 bxe_drain_tx_queues(struct bxe_softc *sc) 3725 { 3726 struct bxe_fastpath *fp; 3727 int i, count; 3728 3729 /* wait until all TX fastpath tasks have completed */ 3730 for (i = 0; i < sc->num_queues; i++) { 3731 fp = &sc->fp[i]; 3732 3733 count = 1000; 3734 3735 while (bxe_has_tx_work(fp)) { 3736 3737 BXE_FP_TX_LOCK(fp); 3738 bxe_txeof(sc, fp); 3739 BXE_FP_TX_UNLOCK(fp); 3740 3741 if (count == 0) { 3742 BLOGE(sc, "Timeout waiting for fp[%d] " 3743 "transmits to complete!\n", i); 3744 bxe_panic(sc, ("tx drain failure\n")); 3745 return; 3746 } 3747 3748 count--; 3749 DELAY(1000); 3750 rmb(); 3751 } 3752 } 3753 3754 return; 3755 } 3756 3757 static int 3758 bxe_del_all_macs(struct bxe_softc *sc, 3759 struct ecore_vlan_mac_obj *mac_obj, 3760 int mac_type, 3761 uint8_t wait_for_comp) 3762 { 3763 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 3764 int rc; 3765 3766 /* wait for completion of requested */ 3767 if (wait_for_comp) { 3768 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 3769 } 3770 3771 /* Set the mac type of addresses we want to clear */ 3772 bxe_set_bit(mac_type, &vlan_mac_flags); 3773 3774 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags); 3775 if (rc < 0) { 3776 BLOGE(sc, "Failed to delete MACs (%d)\n", rc); 3777 } 3778 3779 return (rc); 3780 } 3781 3782 static int 3783 bxe_fill_accept_flags(struct bxe_softc *sc, 3784 uint32_t rx_mode, 3785 unsigned long *rx_accept_flags, 3786 unsigned long *tx_accept_flags) 3787 { 3788 /* Clear the flags first */ 3789 *rx_accept_flags = 0; 3790 *tx_accept_flags = 0; 3791 3792 switch (rx_mode) { 3793 case BXE_RX_MODE_NONE: 3794 /* 3795 * 'drop all' supersedes any accept flags that may have been 3796 * passed to the function. 3797 */ 3798 break; 3799 3800 case BXE_RX_MODE_NORMAL: 3801 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3802 bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags); 3803 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3804 3805 /* internal switching mode */ 3806 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3807 bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags); 3808 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3809 3810 break; 3811 3812 case BXE_RX_MODE_ALLMULTI: 3813 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3814 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3815 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3816 3817 /* internal switching mode */ 3818 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3819 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3820 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3821 3822 break; 3823 3824 case BXE_RX_MODE_PROMISC: 3825 /* 3826 * According to deffinition of SI mode, iface in promisc mode 3827 * should receive matched and unmatched (in resolution of port) 3828 * unicast packets. 3829 */ 3830 bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags); 3831 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3832 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3833 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3834 3835 /* internal switching mode */ 3836 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3837 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3838 3839 if (IS_MF_SI(sc)) { 3840 bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags); 3841 } else { 3842 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3843 } 3844 3845 break; 3846 3847 default: 3848 BLOGE(sc, "Unknown rx_mode (%d)\n", rx_mode); 3849 return (-1); 3850 } 3851 3852 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ 3853 if (rx_mode != BXE_RX_MODE_NONE) { 3854 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags); 3855 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags); 3856 } 3857 3858 return (0); 3859 } 3860 3861 static int 3862 bxe_set_q_rx_mode(struct bxe_softc *sc, 3863 uint8_t cl_id, 3864 unsigned long rx_mode_flags, 3865 unsigned long rx_accept_flags, 3866 unsigned long tx_accept_flags, 3867 unsigned long ramrod_flags) 3868 { 3869 struct ecore_rx_mode_ramrod_params ramrod_param; 3870 int rc; 3871 3872 memset(&ramrod_param, 0, sizeof(ramrod_param)); 3873 3874 /* Prepare ramrod parameters */ 3875 ramrod_param.cid = 0; 3876 ramrod_param.cl_id = cl_id; 3877 ramrod_param.rx_mode_obj = &sc->rx_mode_obj; 3878 ramrod_param.func_id = SC_FUNC(sc); 3879 3880 ramrod_param.pstate = &sc->sp_state; 3881 ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING; 3882 3883 ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata); 3884 ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata); 3885 3886 bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 3887 3888 ramrod_param.ramrod_flags = ramrod_flags; 3889 ramrod_param.rx_mode_flags = rx_mode_flags; 3890 3891 ramrod_param.rx_accept_flags = rx_accept_flags; 3892 ramrod_param.tx_accept_flags = tx_accept_flags; 3893 3894 rc = ecore_config_rx_mode(sc, &ramrod_param); 3895 if (rc < 0) { 3896 BLOGE(sc, "Set rx_mode %d failed\n", sc->rx_mode); 3897 return (rc); 3898 } 3899 3900 return (0); 3901 } 3902 3903 static int 3904 bxe_set_storm_rx_mode(struct bxe_softc *sc) 3905 { 3906 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 3907 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 3908 int rc; 3909 3910 rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags, 3911 &tx_accept_flags); 3912 if (rc) { 3913 return (rc); 3914 } 3915 3916 bxe_set_bit(RAMROD_RX, &ramrod_flags); 3917 bxe_set_bit(RAMROD_TX, &ramrod_flags); 3918 3919 /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */ 3920 return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags, 3921 rx_accept_flags, tx_accept_flags, 3922 ramrod_flags)); 3923 } 3924 3925 /* returns the "mcp load_code" according to global load_count array */ 3926 static int 3927 bxe_nic_load_no_mcp(struct bxe_softc *sc) 3928 { 3929 int path = SC_PATH(sc); 3930 int port = SC_PORT(sc); 3931 3932 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3933 path, load_count[path][0], load_count[path][1], 3934 load_count[path][2]); 3935 load_count[path][0]++; 3936 load_count[path][1 + port]++; 3937 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3938 path, load_count[path][0], load_count[path][1], 3939 load_count[path][2]); 3940 if (load_count[path][0] == 1) { 3941 return (FW_MSG_CODE_DRV_LOAD_COMMON); 3942 } else if (load_count[path][1 + port] == 1) { 3943 return (FW_MSG_CODE_DRV_LOAD_PORT); 3944 } else { 3945 return (FW_MSG_CODE_DRV_LOAD_FUNCTION); 3946 } 3947 } 3948 3949 /* returns the "mcp load_code" according to global load_count array */ 3950 static int 3951 bxe_nic_unload_no_mcp(struct bxe_softc *sc) 3952 { 3953 int port = SC_PORT(sc); 3954 int path = SC_PATH(sc); 3955 3956 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3957 path, load_count[path][0], load_count[path][1], 3958 load_count[path][2]); 3959 load_count[path][0]--; 3960 load_count[path][1 + port]--; 3961 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3962 path, load_count[path][0], load_count[path][1], 3963 load_count[path][2]); 3964 if (load_count[path][0] == 0) { 3965 return (FW_MSG_CODE_DRV_UNLOAD_COMMON); 3966 } else if (load_count[path][1 + port] == 0) { 3967 return (FW_MSG_CODE_DRV_UNLOAD_PORT); 3968 } else { 3969 return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION); 3970 } 3971 } 3972 3973 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */ 3974 static uint32_t 3975 bxe_send_unload_req(struct bxe_softc *sc, 3976 int unload_mode) 3977 { 3978 uint32_t reset_code = 0; 3979 #if 0 3980 int port = SC_PORT(sc); 3981 int path = SC_PATH(sc); 3982 #endif 3983 3984 /* Select the UNLOAD request mode */ 3985 if (unload_mode == UNLOAD_NORMAL) { 3986 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3987 } 3988 #if 0 3989 else if (sc->flags & BXE_NO_WOL_FLAG) { 3990 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP; 3991 } else if (sc->wol) { 3992 uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0; 3993 uint8_t *mac_addr = sc->dev->dev_addr; 3994 uint32_t val; 3995 uint16_t pmc; 3996 3997 /* 3998 * The mac address is written to entries 1-4 to 3999 * preserve entry 0 which is used by the PMF 4000 */ 4001 uint8_t entry = (SC_VN(sc) + 1)*8; 4002 4003 val = (mac_addr[0] << 8) | mac_addr[1]; 4004 EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry, val); 4005 4006 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 4007 (mac_addr[4] << 8) | mac_addr[5]; 4008 EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val); 4009 4010 /* Enable the PME and clear the status */ 4011 pmc = pci_read_config(sc->dev, 4012 (sc->devinfo.pcie_pm_cap_reg + 4013 PCIR_POWER_STATUS), 4014 2); 4015 pmc |= PCIM_PSTAT_PMEENABLE | PCIM_PSTAT_PME; 4016 pci_write_config(sc->dev, 4017 (sc->devinfo.pcie_pm_cap_reg + 4018 PCIR_POWER_STATUS), 4019 pmc, 4); 4020 4021 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN; 4022 } 4023 #endif 4024 else { 4025 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 4026 } 4027 4028 /* Send the request to the MCP */ 4029 if (!BXE_NOMCP(sc)) { 4030 reset_code = bxe_fw_command(sc, reset_code, 0); 4031 } else { 4032 reset_code = bxe_nic_unload_no_mcp(sc); 4033 } 4034 4035 return (reset_code); 4036 } 4037 4038 /* send UNLOAD_DONE command to the MCP */ 4039 static void 4040 bxe_send_unload_done(struct bxe_softc *sc, 4041 uint8_t keep_link) 4042 { 4043 uint32_t reset_param = 4044 keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 4045 4046 /* Report UNLOAD_DONE to MCP */ 4047 if (!BXE_NOMCP(sc)) { 4048 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 4049 } 4050 } 4051 4052 static int 4053 bxe_func_wait_started(struct bxe_softc *sc) 4054 { 4055 int tout = 50; 4056 4057 if (!sc->port.pmf) { 4058 return (0); 4059 } 4060 4061 /* 4062 * (assumption: No Attention from MCP at this stage) 4063 * PMF probably in the middle of TX disable/enable transaction 4064 * 1. Sync IRS for default SB 4065 * 2. Sync SP queue - this guarantees us that attention handling started 4066 * 3. Wait, that TX disable/enable transaction completes 4067 * 4068 * 1+2 guarantee that if DCBX attention was scheduled it already changed 4069 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 4070 * received completion for the transaction the state is TX_STOPPED. 4071 * State will return to STARTED after completion of TX_STOPPED-->STARTED 4072 * transaction. 4073 */ 4074 4075 /* XXX make sure default SB ISR is done */ 4076 /* need a way to synchronize an irq (intr_mtx?) */ 4077 4078 /* XXX flush any work queues */ 4079 4080 while (ecore_func_get_state(sc, &sc->func_obj) != 4081 ECORE_F_STATE_STARTED && tout--) { 4082 DELAY(20000); 4083 } 4084 4085 if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) { 4086 /* 4087 * Failed to complete the transaction in a "good way" 4088 * Force both transactions with CLR bit. 4089 */ 4090 struct ecore_func_state_params func_params = { NULL }; 4091 4092 BLOGE(sc, "Unexpected function state! " 4093 "Forcing STARTED-->TX_STOPPED-->STARTED\n"); 4094 4095 func_params.f_obj = &sc->func_obj; 4096 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 4097 4098 /* STARTED-->TX_STOPPED */ 4099 func_params.cmd = ECORE_F_CMD_TX_STOP; 4100 ecore_func_state_change(sc, &func_params); 4101 4102 /* TX_STOPPED-->STARTED */ 4103 func_params.cmd = ECORE_F_CMD_TX_START; 4104 return (ecore_func_state_change(sc, &func_params)); 4105 } 4106 4107 return (0); 4108 } 4109 4110 static int 4111 bxe_stop_queue(struct bxe_softc *sc, 4112 int index) 4113 { 4114 struct bxe_fastpath *fp = &sc->fp[index]; 4115 struct ecore_queue_state_params q_params = { NULL }; 4116 int rc; 4117 4118 BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index); 4119 4120 q_params.q_obj = &sc->sp_objs[fp->index].q_obj; 4121 /* We want to wait for completion in this context */ 4122 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 4123 4124 /* Stop the primary connection: */ 4125 4126 /* ...halt the connection */ 4127 q_params.cmd = ECORE_Q_CMD_HALT; 4128 rc = ecore_queue_state_change(sc, &q_params); 4129 if (rc) { 4130 return (rc); 4131 } 4132 4133 /* ...terminate the connection */ 4134 q_params.cmd = ECORE_Q_CMD_TERMINATE; 4135 memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate)); 4136 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 4137 rc = ecore_queue_state_change(sc, &q_params); 4138 if (rc) { 4139 return (rc); 4140 } 4141 4142 /* ...delete cfc entry */ 4143 q_params.cmd = ECORE_Q_CMD_CFC_DEL; 4144 memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del)); 4145 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 4146 return (ecore_queue_state_change(sc, &q_params)); 4147 } 4148 4149 /* wait for the outstanding SP commands */ 4150 static inline uint8_t 4151 bxe_wait_sp_comp(struct bxe_softc *sc, 4152 unsigned long mask) 4153 { 4154 unsigned long tmp; 4155 int tout = 5000; /* wait for 5 secs tops */ 4156 4157 while (tout--) { 4158 mb(); 4159 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) { 4160 return (TRUE); 4161 } 4162 4163 DELAY(1000); 4164 } 4165 4166 mb(); 4167 4168 tmp = atomic_load_acq_long(&sc->sp_state); 4169 if (tmp & mask) { 4170 BLOGE(sc, "Filtering completion timed out: " 4171 "sp_state 0x%lx, mask 0x%lx\n", 4172 tmp, mask); 4173 return (FALSE); 4174 } 4175 4176 return (FALSE); 4177 } 4178 4179 static int 4180 bxe_func_stop(struct bxe_softc *sc) 4181 { 4182 struct ecore_func_state_params func_params = { NULL }; 4183 int rc; 4184 4185 /* prepare parameters for function state transitions */ 4186 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 4187 func_params.f_obj = &sc->func_obj; 4188 func_params.cmd = ECORE_F_CMD_STOP; 4189 4190 /* 4191 * Try to stop the function the 'good way'. If it fails (in case 4192 * of a parity error during bxe_chip_cleanup()) and we are 4193 * not in a debug mode, perform a state transaction in order to 4194 * enable further HW_RESET transaction. 4195 */ 4196 rc = ecore_func_state_change(sc, &func_params); 4197 if (rc) { 4198 BLOGE(sc, "FUNC_STOP ramrod failed. " 4199 "Running a dry transaction\n"); 4200 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 4201 return (ecore_func_state_change(sc, &func_params)); 4202 } 4203 4204 return (0); 4205 } 4206 4207 static int 4208 bxe_reset_hw(struct bxe_softc *sc, 4209 uint32_t load_code) 4210 { 4211 struct ecore_func_state_params func_params = { NULL }; 4212 4213 /* Prepare parameters for function state transitions */ 4214 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 4215 4216 func_params.f_obj = &sc->func_obj; 4217 func_params.cmd = ECORE_F_CMD_HW_RESET; 4218 4219 func_params.params.hw_init.load_phase = load_code; 4220 4221 return (ecore_func_state_change(sc, &func_params)); 4222 } 4223 4224 static void 4225 bxe_int_disable_sync(struct bxe_softc *sc, 4226 int disable_hw) 4227 { 4228 if (disable_hw) { 4229 /* prevent the HW from sending interrupts */ 4230 bxe_int_disable(sc); 4231 } 4232 4233 /* XXX need a way to synchronize ALL irqs (intr_mtx?) */ 4234 /* make sure all ISRs are done */ 4235 4236 /* XXX make sure sp_task is not running */ 4237 /* cancel and flush work queues */ 4238 } 4239 4240 static void 4241 bxe_chip_cleanup(struct bxe_softc *sc, 4242 uint32_t unload_mode, 4243 uint8_t keep_link) 4244 { 4245 int port = SC_PORT(sc); 4246 struct ecore_mcast_ramrod_params rparam = { NULL }; 4247 uint32_t reset_code; 4248 int i, rc = 0; 4249 4250 bxe_drain_tx_queues(sc); 4251 4252 /* give HW time to discard old tx messages */ 4253 DELAY(1000); 4254 4255 /* Clean all ETH MACs */ 4256 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE); 4257 if (rc < 0) { 4258 BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc); 4259 } 4260 4261 /* Clean up UC list */ 4262 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE); 4263 if (rc < 0) { 4264 BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc); 4265 } 4266 4267 /* Disable LLH */ 4268 if (!CHIP_IS_E1(sc)) { 4269 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 4270 } 4271 4272 /* Set "drop all" to stop Rx */ 4273 4274 /* 4275 * We need to take the BXE_MCAST_LOCK() here in order to prevent 4276 * a race between the completion code and this code. 4277 */ 4278 BXE_MCAST_LOCK(sc); 4279 4280 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 4281 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 4282 } else { 4283 bxe_set_storm_rx_mode(sc); 4284 } 4285 4286 /* Clean up multicast configuration */ 4287 rparam.mcast_obj = &sc->mcast_obj; 4288 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4289 if (rc < 0) { 4290 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4291 } 4292 4293 BXE_MCAST_UNLOCK(sc); 4294 4295 // XXX bxe_iov_chip_cleanup(sc); 4296 4297 /* 4298 * Send the UNLOAD_REQUEST to the MCP. This will return if 4299 * this function should perform FUNCTION, PORT, or COMMON HW 4300 * reset. 4301 */ 4302 reset_code = bxe_send_unload_req(sc, unload_mode); 4303 4304 /* 4305 * (assumption: No Attention from MCP at this stage) 4306 * PMF probably in the middle of TX disable/enable transaction 4307 */ 4308 rc = bxe_func_wait_started(sc); 4309 if (rc) { 4310 BLOGE(sc, "bxe_func_wait_started failed\n"); 4311 } 4312 4313 /* 4314 * Close multi and leading connections 4315 * Completions for ramrods are collected in a synchronous way 4316 */ 4317 for (i = 0; i < sc->num_queues; i++) { 4318 if (bxe_stop_queue(sc, i)) { 4319 goto unload_error; 4320 } 4321 } 4322 4323 /* 4324 * If SP settings didn't get completed so far - something 4325 * very wrong has happen. 4326 */ 4327 if (!bxe_wait_sp_comp(sc, ~0x0UL)) { 4328 BLOGE(sc, "Common slow path ramrods got stuck!\n"); 4329 } 4330 4331 unload_error: 4332 4333 rc = bxe_func_stop(sc); 4334 if (rc) { 4335 BLOGE(sc, "Function stop failed!\n"); 4336 } 4337 4338 /* disable HW interrupts */ 4339 bxe_int_disable_sync(sc, TRUE); 4340 4341 /* detach interrupts */ 4342 bxe_interrupt_detach(sc); 4343 4344 /* Reset the chip */ 4345 rc = bxe_reset_hw(sc, reset_code); 4346 if (rc) { 4347 BLOGE(sc, "Hardware reset failed\n"); 4348 } 4349 4350 /* Report UNLOAD_DONE to MCP */ 4351 bxe_send_unload_done(sc, keep_link); 4352 } 4353 4354 static void 4355 bxe_disable_close_the_gate(struct bxe_softc *sc) 4356 { 4357 uint32_t val; 4358 int port = SC_PORT(sc); 4359 4360 BLOGD(sc, DBG_LOAD, 4361 "Disabling 'close the gates'\n"); 4362 4363 if (CHIP_IS_E1(sc)) { 4364 uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 4365 MISC_REG_AEU_MASK_ATTN_FUNC_0; 4366 val = REG_RD(sc, addr); 4367 val &= ~(0x300); 4368 REG_WR(sc, addr, val); 4369 } else { 4370 val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK); 4371 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 4372 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 4373 REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val); 4374 } 4375 } 4376 4377 /* 4378 * Cleans the object that have internal lists without sending 4379 * ramrods. Should be run when interrutps are disabled. 4380 */ 4381 static void 4382 bxe_squeeze_objects(struct bxe_softc *sc) 4383 { 4384 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 4385 struct ecore_mcast_ramrod_params rparam = { NULL }; 4386 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 4387 int rc; 4388 4389 /* Cleanup MACs' object first... */ 4390 4391 /* Wait for completion of requested */ 4392 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 4393 /* Perform a dry cleanup */ 4394 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 4395 4396 /* Clean ETH primary MAC */ 4397 bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags); 4398 rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags, 4399 &ramrod_flags); 4400 if (rc != 0) { 4401 BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc); 4402 } 4403 4404 /* Cleanup UC list */ 4405 vlan_mac_flags = 0; 4406 bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags); 4407 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, 4408 &ramrod_flags); 4409 if (rc != 0) { 4410 BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc); 4411 } 4412 4413 /* Now clean mcast object... */ 4414 4415 rparam.mcast_obj = &sc->mcast_obj; 4416 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 4417 4418 /* Add a DEL command... */ 4419 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4420 if (rc < 0) { 4421 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4422 } 4423 4424 /* now wait until all pending commands are cleared */ 4425 4426 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4427 while (rc != 0) { 4428 if (rc < 0) { 4429 BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc); 4430 return; 4431 } 4432 4433 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4434 } 4435 } 4436 4437 /* stop the controller */ 4438 static __noinline int 4439 bxe_nic_unload(struct bxe_softc *sc, 4440 uint32_t unload_mode, 4441 uint8_t keep_link) 4442 { 4443 uint8_t global = FALSE; 4444 uint32_t val; 4445 4446 BXE_CORE_LOCK_ASSERT(sc); 4447 4448 BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n"); 4449 4450 /* mark driver as unloaded in shmem2 */ 4451 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 4452 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 4453 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 4454 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 4455 } 4456 4457 if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE && 4458 (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) { 4459 /* 4460 * We can get here if the driver has been unloaded 4461 * during parity error recovery and is either waiting for a 4462 * leader to complete or for other functions to unload and 4463 * then ifconfig down has been issued. In this case we want to 4464 * unload and let other functions to complete a recovery 4465 * process. 4466 */ 4467 sc->recovery_state = BXE_RECOVERY_DONE; 4468 sc->is_leader = 0; 4469 bxe_release_leader_lock(sc); 4470 mb(); 4471 4472 BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n"); 4473 BLOGE(sc, "Can't unload in closed or error state\n"); 4474 return (-1); 4475 } 4476 4477 /* 4478 * Nothing to do during unload if previous bxe_nic_load() 4479 * did not completed succesfully - all resourses are released. 4480 */ 4481 if ((sc->state == BXE_STATE_CLOSED) || 4482 (sc->state == BXE_STATE_ERROR)) { 4483 return (0); 4484 } 4485 4486 sc->state = BXE_STATE_CLOSING_WAITING_HALT; 4487 mb(); 4488 4489 /* stop tx */ 4490 bxe_tx_disable(sc); 4491 4492 sc->rx_mode = BXE_RX_MODE_NONE; 4493 /* XXX set rx mode ??? */ 4494 4495 if (IS_PF(sc)) { 4496 /* set ALWAYS_ALIVE bit in shmem */ 4497 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 4498 4499 bxe_drv_pulse(sc); 4500 4501 bxe_stats_handle(sc, STATS_EVENT_STOP); 4502 bxe_save_statistics(sc); 4503 } 4504 4505 /* wait till consumers catch up with producers in all queues */ 4506 bxe_drain_tx_queues(sc); 4507 4508 /* if VF indicate to PF this function is going down (PF will delete sp 4509 * elements and clear initializations 4510 */ 4511 if (IS_VF(sc)) { 4512 ; /* bxe_vfpf_close_vf(sc); */ 4513 } else if (unload_mode != UNLOAD_RECOVERY) { 4514 /* if this is a normal/close unload need to clean up chip */ 4515 bxe_chip_cleanup(sc, unload_mode, keep_link); 4516 } else { 4517 /* Send the UNLOAD_REQUEST to the MCP */ 4518 bxe_send_unload_req(sc, unload_mode); 4519 4520 /* 4521 * Prevent transactions to host from the functions on the 4522 * engine that doesn't reset global blocks in case of global 4523 * attention once gloabl blocks are reset and gates are opened 4524 * (the engine which leader will perform the recovery 4525 * last). 4526 */ 4527 if (!CHIP_IS_E1x(sc)) { 4528 bxe_pf_disable(sc); 4529 } 4530 4531 /* disable HW interrupts */ 4532 bxe_int_disable_sync(sc, TRUE); 4533 4534 /* detach interrupts */ 4535 bxe_interrupt_detach(sc); 4536 4537 /* Report UNLOAD_DONE to MCP */ 4538 bxe_send_unload_done(sc, FALSE); 4539 } 4540 4541 /* 4542 * At this stage no more interrupts will arrive so we may safely clean 4543 * the queue'able objects here in case they failed to get cleaned so far. 4544 */ 4545 if (IS_PF(sc)) { 4546 bxe_squeeze_objects(sc); 4547 } 4548 4549 /* There should be no more pending SP commands at this stage */ 4550 sc->sp_state = 0; 4551 4552 sc->port.pmf = 0; 4553 4554 bxe_free_fp_buffers(sc); 4555 4556 if (IS_PF(sc)) { 4557 bxe_free_mem(sc); 4558 } 4559 4560 bxe_free_fw_stats_mem(sc); 4561 4562 sc->state = BXE_STATE_CLOSED; 4563 4564 /* 4565 * Check if there are pending parity attentions. If there are - set 4566 * RECOVERY_IN_PROGRESS. 4567 */ 4568 if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) { 4569 bxe_set_reset_in_progress(sc); 4570 4571 /* Set RESET_IS_GLOBAL if needed */ 4572 if (global) { 4573 bxe_set_reset_global(sc); 4574 } 4575 } 4576 4577 /* 4578 * The last driver must disable a "close the gate" if there is no 4579 * parity attention or "process kill" pending. 4580 */ 4581 if (IS_PF(sc) && !bxe_clear_pf_load(sc) && 4582 bxe_reset_is_done(sc, SC_PATH(sc))) { 4583 bxe_disable_close_the_gate(sc); 4584 } 4585 4586 BLOGD(sc, DBG_LOAD, "Ended NIC unload\n"); 4587 4588 return (0); 4589 } 4590 4591 /* 4592 * Called by the OS to set various media options (i.e. link, speed, etc.) when 4593 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...". 4594 */ 4595 static int 4596 bxe_ifmedia_update(struct ifnet *ifp) 4597 { 4598 struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp); 4599 struct ifmedia *ifm; 4600 4601 ifm = &sc->ifmedia; 4602 4603 /* We only support Ethernet media type. */ 4604 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) { 4605 return (EINVAL); 4606 } 4607 4608 switch (IFM_SUBTYPE(ifm->ifm_media)) { 4609 case IFM_AUTO: 4610 break; 4611 case IFM_10G_CX4: 4612 case IFM_10G_SR: 4613 case IFM_10G_T: 4614 case IFM_10G_TWINAX: 4615 default: 4616 /* We don't support changing the media type. */ 4617 BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n", 4618 IFM_SUBTYPE(ifm->ifm_media)); 4619 return (EINVAL); 4620 } 4621 4622 return (0); 4623 } 4624 4625 /* 4626 * Called by the OS to get the current media status (i.e. link, speed, etc.). 4627 */ 4628 static void 4629 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr) 4630 { 4631 struct bxe_softc *sc = if_getsoftc(ifp); 4632 4633 /* Report link down if the driver isn't running. */ 4634 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { 4635 ifmr->ifm_active |= IFM_NONE; 4636 return; 4637 } 4638 4639 /* Setup the default interface info. */ 4640 ifmr->ifm_status = IFM_AVALID; 4641 ifmr->ifm_active = IFM_ETHER; 4642 4643 if (sc->link_vars.link_up) { 4644 ifmr->ifm_status |= IFM_ACTIVE; 4645 } else { 4646 ifmr->ifm_active |= IFM_NONE; 4647 return; 4648 } 4649 4650 ifmr->ifm_active |= sc->media; 4651 4652 if (sc->link_vars.duplex == DUPLEX_FULL) { 4653 ifmr->ifm_active |= IFM_FDX; 4654 } else { 4655 ifmr->ifm_active |= IFM_HDX; 4656 } 4657 } 4658 4659 static int 4660 bxe_ioctl_nvram(struct bxe_softc *sc, 4661 uint32_t priv_op, 4662 struct ifreq *ifr) 4663 { 4664 struct bxe_nvram_data nvdata_base; 4665 struct bxe_nvram_data *nvdata; 4666 int len; 4667 int error = 0; 4668 4669 copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base)); 4670 4671 len = (sizeof(struct bxe_nvram_data) + 4672 nvdata_base.len - 4673 sizeof(uint32_t)); 4674 4675 if (len > sizeof(struct bxe_nvram_data)) { 4676 if ((nvdata = (struct bxe_nvram_data *) 4677 malloc(len, M_DEVBUF, 4678 (M_NOWAIT | M_ZERO))) == NULL) { 4679 BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed\n"); 4680 return (1); 4681 } 4682 memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data)); 4683 } else { 4684 nvdata = &nvdata_base; 4685 } 4686 4687 if (priv_op == BXE_IOC_RD_NVRAM) { 4688 BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n", 4689 nvdata->offset, nvdata->len); 4690 error = bxe_nvram_read(sc, 4691 nvdata->offset, 4692 (uint8_t *)nvdata->value, 4693 nvdata->len); 4694 copyout(nvdata, ifr->ifr_data, len); 4695 } else { /* BXE_IOC_WR_NVRAM */ 4696 BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n", 4697 nvdata->offset, nvdata->len); 4698 copyin(ifr->ifr_data, nvdata, len); 4699 error = bxe_nvram_write(sc, 4700 nvdata->offset, 4701 (uint8_t *)nvdata->value, 4702 nvdata->len); 4703 } 4704 4705 if (len > sizeof(struct bxe_nvram_data)) { 4706 free(nvdata, M_DEVBUF); 4707 } 4708 4709 return (error); 4710 } 4711 4712 static int 4713 bxe_ioctl_stats_show(struct bxe_softc *sc, 4714 uint32_t priv_op, 4715 struct ifreq *ifr) 4716 { 4717 const size_t str_size = (BXE_NUM_ETH_STATS * STAT_NAME_LEN); 4718 const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t)); 4719 caddr_t p_tmp; 4720 uint32_t *offset; 4721 int i; 4722 4723 switch (priv_op) 4724 { 4725 case BXE_IOC_STATS_SHOW_NUM: 4726 memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data)); 4727 ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num = 4728 BXE_NUM_ETH_STATS; 4729 ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len = 4730 STAT_NAME_LEN; 4731 return (0); 4732 4733 case BXE_IOC_STATS_SHOW_STR: 4734 memset(ifr->ifr_data, 0, str_size); 4735 p_tmp = ifr->ifr_data; 4736 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 4737 strcpy(p_tmp, bxe_eth_stats_arr[i].string); 4738 p_tmp += STAT_NAME_LEN; 4739 } 4740 return (0); 4741 4742 case BXE_IOC_STATS_SHOW_CNT: 4743 memset(ifr->ifr_data, 0, stats_size); 4744 p_tmp = ifr->ifr_data; 4745 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 4746 offset = ((uint32_t *)&sc->eth_stats + 4747 bxe_eth_stats_arr[i].offset); 4748 switch (bxe_eth_stats_arr[i].size) { 4749 case 4: 4750 *((uint64_t *)p_tmp) = (uint64_t)*offset; 4751 break; 4752 case 8: 4753 *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1)); 4754 break; 4755 default: 4756 *((uint64_t *)p_tmp) = 0; 4757 } 4758 p_tmp += sizeof(uint64_t); 4759 } 4760 return (0); 4761 4762 default: 4763 return (-1); 4764 } 4765 } 4766 4767 static void 4768 bxe_handle_chip_tq(void *context, 4769 int pending) 4770 { 4771 struct bxe_softc *sc = (struct bxe_softc *)context; 4772 long work = atomic_load_acq_long(&sc->chip_tq_flags); 4773 4774 switch (work) 4775 { 4776 4777 case CHIP_TQ_REINIT: 4778 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 4779 /* restart the interface */ 4780 BLOGD(sc, DBG_LOAD, "Restarting the interface...\n"); 4781 bxe_periodic_stop(sc); 4782 BXE_CORE_LOCK(sc); 4783 bxe_stop_locked(sc); 4784 bxe_init_locked(sc); 4785 BXE_CORE_UNLOCK(sc); 4786 } 4787 break; 4788 4789 default: 4790 break; 4791 } 4792 } 4793 4794 /* 4795 * Handles any IOCTL calls from the operating system. 4796 * 4797 * Returns: 4798 * 0 = Success, >0 Failure 4799 */ 4800 static int 4801 bxe_ioctl(if_t ifp, 4802 u_long command, 4803 caddr_t data) 4804 { 4805 struct bxe_softc *sc = if_getsoftc(ifp); 4806 struct ifreq *ifr = (struct ifreq *)data; 4807 struct bxe_nvram_data *nvdata; 4808 uint32_t priv_op; 4809 int mask = 0; 4810 int reinit = 0; 4811 int error = 0; 4812 4813 int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN); 4814 int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING); 4815 4816 switch (command) 4817 { 4818 case SIOCSIFMTU: 4819 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n", 4820 ifr->ifr_mtu); 4821 4822 if (sc->mtu == ifr->ifr_mtu) { 4823 /* nothing to change */ 4824 break; 4825 } 4826 4827 if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) { 4828 BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n", 4829 ifr->ifr_mtu, mtu_min, mtu_max); 4830 error = EINVAL; 4831 break; 4832 } 4833 4834 atomic_store_rel_int((volatile unsigned int *)&sc->mtu, 4835 (unsigned long)ifr->ifr_mtu); 4836 /* 4837 atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp), 4838 (unsigned long)ifr->ifr_mtu); 4839 XXX - Not sure why it needs to be atomic 4840 */ 4841 if_setmtu(ifp, ifr->ifr_mtu); 4842 reinit = 1; 4843 break; 4844 4845 case SIOCSIFFLAGS: 4846 /* toggle the interface state up or down */ 4847 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n"); 4848 4849 BXE_CORE_LOCK(sc); 4850 /* check if the interface is up */ 4851 if (if_getflags(ifp) & IFF_UP) { 4852 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4853 /* set the receive mode flags */ 4854 bxe_set_rx_mode(sc); 4855 } else { 4856 bxe_init_locked(sc); 4857 } 4858 } else { 4859 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4860 bxe_periodic_stop(sc); 4861 bxe_stop_locked(sc); 4862 } 4863 } 4864 BXE_CORE_UNLOCK(sc); 4865 4866 break; 4867 4868 case SIOCADDMULTI: 4869 case SIOCDELMULTI: 4870 /* add/delete multicast addresses */ 4871 BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n"); 4872 4873 /* check if the interface is up */ 4874 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4875 /* set the receive mode flags */ 4876 BXE_CORE_LOCK(sc); 4877 bxe_set_rx_mode(sc); 4878 BXE_CORE_UNLOCK(sc); 4879 } 4880 4881 break; 4882 4883 case SIOCSIFCAP: 4884 /* find out which capabilities have changed */ 4885 mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp)); 4886 4887 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n", 4888 mask); 4889 4890 /* toggle the LRO capabilites enable flag */ 4891 if (mask & IFCAP_LRO) { 4892 if_togglecapenable(ifp, IFCAP_LRO); 4893 BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n", 4894 (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF"); 4895 reinit = 1; 4896 } 4897 4898 /* toggle the TXCSUM checksum capabilites enable flag */ 4899 if (mask & IFCAP_TXCSUM) { 4900 if_togglecapenable(ifp, IFCAP_TXCSUM); 4901 BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n", 4902 (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF"); 4903 if (if_getcapenable(ifp) & IFCAP_TXCSUM) { 4904 if_sethwassistbits(ifp, (CSUM_IP | 4905 CSUM_TCP | 4906 CSUM_UDP | 4907 CSUM_TSO | 4908 CSUM_TCP_IPV6 | 4909 CSUM_UDP_IPV6), 0); 4910 } else { 4911 if_clearhwassist(ifp); /* XXX */ 4912 } 4913 } 4914 4915 /* toggle the RXCSUM checksum capabilities enable flag */ 4916 if (mask & IFCAP_RXCSUM) { 4917 if_togglecapenable(ifp, IFCAP_RXCSUM); 4918 BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n", 4919 (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF"); 4920 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 4921 if_sethwassistbits(ifp, (CSUM_IP | 4922 CSUM_TCP | 4923 CSUM_UDP | 4924 CSUM_TSO | 4925 CSUM_TCP_IPV6 | 4926 CSUM_UDP_IPV6), 0); 4927 } else { 4928 if_clearhwassist(ifp); /* XXX */ 4929 } 4930 } 4931 4932 /* toggle TSO4 capabilities enabled flag */ 4933 if (mask & IFCAP_TSO4) { 4934 if_togglecapenable(ifp, IFCAP_TSO4); 4935 BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n", 4936 (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF"); 4937 } 4938 4939 /* toggle TSO6 capabilities enabled flag */ 4940 if (mask & IFCAP_TSO6) { 4941 if_togglecapenable(ifp, IFCAP_TSO6); 4942 BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n", 4943 (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF"); 4944 } 4945 4946 /* toggle VLAN_HWTSO capabilities enabled flag */ 4947 if (mask & IFCAP_VLAN_HWTSO) { 4948 4949 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 4950 BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n", 4951 (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF"); 4952 } 4953 4954 /* toggle VLAN_HWCSUM capabilities enabled flag */ 4955 if (mask & IFCAP_VLAN_HWCSUM) { 4956 /* XXX investigate this... */ 4957 BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n"); 4958 error = EINVAL; 4959 } 4960 4961 /* toggle VLAN_MTU capabilities enable flag */ 4962 if (mask & IFCAP_VLAN_MTU) { 4963 /* XXX investigate this... */ 4964 BLOGE(sc, "Changing VLAN_MTU is not supported!\n"); 4965 error = EINVAL; 4966 } 4967 4968 /* toggle VLAN_HWTAGGING capabilities enabled flag */ 4969 if (mask & IFCAP_VLAN_HWTAGGING) { 4970 /* XXX investigate this... */ 4971 BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n"); 4972 error = EINVAL; 4973 } 4974 4975 /* toggle VLAN_HWFILTER capabilities enabled flag */ 4976 if (mask & IFCAP_VLAN_HWFILTER) { 4977 /* XXX investigate this... */ 4978 BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n"); 4979 error = EINVAL; 4980 } 4981 4982 /* XXX not yet... 4983 * IFCAP_WOL_MAGIC 4984 */ 4985 4986 break; 4987 4988 case SIOCSIFMEDIA: 4989 case SIOCGIFMEDIA: 4990 /* set/get interface media */ 4991 BLOGD(sc, DBG_IOCTL, 4992 "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n", 4993 (command & 0xff)); 4994 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); 4995 break; 4996 4997 case SIOCGPRIVATE_0: 4998 copyin(ifr->ifr_data, &priv_op, sizeof(priv_op)); 4999 5000 switch (priv_op) 5001 { 5002 case BXE_IOC_RD_NVRAM: 5003 case BXE_IOC_WR_NVRAM: 5004 nvdata = (struct bxe_nvram_data *)ifr->ifr_data; 5005 BLOGD(sc, DBG_IOCTL, 5006 "Received Private NVRAM ioctl addr=0x%x size=%u\n", 5007 nvdata->offset, nvdata->len); 5008 error = bxe_ioctl_nvram(sc, priv_op, ifr); 5009 break; 5010 5011 case BXE_IOC_STATS_SHOW_NUM: 5012 case BXE_IOC_STATS_SHOW_STR: 5013 case BXE_IOC_STATS_SHOW_CNT: 5014 BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n", 5015 priv_op); 5016 error = bxe_ioctl_stats_show(sc, priv_op, ifr); 5017 break; 5018 5019 default: 5020 BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op); 5021 error = EINVAL; 5022 break; 5023 } 5024 5025 break; 5026 5027 default: 5028 BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n", 5029 (command & 0xff)); 5030 error = ether_ioctl(ifp, command, data); 5031 break; 5032 } 5033 5034 if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 5035 BLOGD(sc, DBG_LOAD | DBG_IOCTL, 5036 "Re-initializing hardware from IOCTL change\n"); 5037 bxe_periodic_stop(sc); 5038 BXE_CORE_LOCK(sc); 5039 bxe_stop_locked(sc); 5040 bxe_init_locked(sc); 5041 BXE_CORE_UNLOCK(sc); 5042 } 5043 5044 return (error); 5045 } 5046 5047 static __noinline void 5048 bxe_dump_mbuf(struct bxe_softc *sc, 5049 struct mbuf *m, 5050 uint8_t contents) 5051 { 5052 char * type; 5053 int i = 0; 5054 5055 if (!(sc->debug & DBG_MBUF)) { 5056 return; 5057 } 5058 5059 if (m == NULL) { 5060 BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n"); 5061 return; 5062 } 5063 5064 while (m) { 5065 BLOGD(sc, DBG_MBUF, 5066 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 5067 i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data); 5068 5069 if (m->m_flags & M_PKTHDR) { 5070 BLOGD(sc, DBG_MBUF, 5071 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 5072 i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS, 5073 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 5074 } 5075 5076 if (m->m_flags & M_EXT) { 5077 switch (m->m_ext.ext_type) { 5078 case EXT_CLUSTER: type = "EXT_CLUSTER"; break; 5079 case EXT_SFBUF: type = "EXT_SFBUF"; break; 5080 case EXT_JUMBOP: type = "EXT_JUMBOP"; break; 5081 case EXT_JUMBO9: type = "EXT_JUMBO9"; break; 5082 case EXT_JUMBO16: type = "EXT_JUMBO16"; break; 5083 case EXT_PACKET: type = "EXT_PACKET"; break; 5084 case EXT_MBUF: type = "EXT_MBUF"; break; 5085 case EXT_NET_DRV: type = "EXT_NET_DRV"; break; 5086 case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break; 5087 case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break; 5088 case EXT_EXTREF: type = "EXT_EXTREF"; break; 5089 default: type = "UNKNOWN"; break; 5090 } 5091 5092 BLOGD(sc, DBG_MBUF, 5093 "%02d: - m_ext: %p ext_size=%d type=%s\n", 5094 i, m->m_ext.ext_buf, m->m_ext.ext_size, type); 5095 } 5096 5097 if (contents) { 5098 bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE); 5099 } 5100 5101 m = m->m_next; 5102 i++; 5103 } 5104 } 5105 5106 /* 5107 * Checks to ensure the 13 bd sliding window is >= MSS for TSO. 5108 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS. 5109 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD 5110 * The headers comes in a seperate bd in FreeBSD so 13-3=10. 5111 * Returns: 0 if OK to send, 1 if packet needs further defragmentation 5112 */ 5113 static int 5114 bxe_chktso_window(struct bxe_softc *sc, 5115 int nsegs, 5116 bus_dma_segment_t *segs, 5117 struct mbuf *m) 5118 { 5119 uint32_t num_wnds, wnd_size, wnd_sum; 5120 int32_t frag_idx, wnd_idx; 5121 unsigned short lso_mss; 5122 int defrag; 5123 5124 defrag = 0; 5125 wnd_sum = 0; 5126 wnd_size = 10; 5127 num_wnds = nsegs - wnd_size; 5128 lso_mss = htole16(m->m_pkthdr.tso_segsz); 5129 5130 /* 5131 * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the 5132 * first window sum of data while skipping the first assuming it is the 5133 * header in FreeBSD. 5134 */ 5135 for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) { 5136 wnd_sum += htole16(segs[frag_idx].ds_len); 5137 } 5138 5139 /* check the first 10 bd window size */ 5140 if (wnd_sum < lso_mss) { 5141 return (1); 5142 } 5143 5144 /* run through the windows */ 5145 for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) { 5146 /* subtract the first mbuf->m_len of the last wndw(-header) */ 5147 wnd_sum -= htole16(segs[wnd_idx+1].ds_len); 5148 /* add the next mbuf len to the len of our new window */ 5149 wnd_sum += htole16(segs[frag_idx].ds_len); 5150 if (wnd_sum < lso_mss) { 5151 return (1); 5152 } 5153 } 5154 5155 return (0); 5156 } 5157 5158 static uint8_t 5159 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp, 5160 struct mbuf *m, 5161 uint32_t *parsing_data) 5162 { 5163 struct ether_vlan_header *eh = NULL; 5164 struct ip *ip4 = NULL; 5165 struct ip6_hdr *ip6 = NULL; 5166 caddr_t ip = NULL; 5167 struct tcphdr *th = NULL; 5168 int e_hlen, ip_hlen, l4_off; 5169 uint16_t proto; 5170 5171 if (m->m_pkthdr.csum_flags == CSUM_IP) { 5172 /* no L4 checksum offload needed */ 5173 return (0); 5174 } 5175 5176 /* get the Ethernet header */ 5177 eh = mtod(m, struct ether_vlan_header *); 5178 5179 /* handle VLAN encapsulation if present */ 5180 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 5181 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 5182 proto = ntohs(eh->evl_proto); 5183 } else { 5184 e_hlen = ETHER_HDR_LEN; 5185 proto = ntohs(eh->evl_encap_proto); 5186 } 5187 5188 switch (proto) { 5189 case ETHERTYPE_IP: 5190 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 5191 ip4 = (m->m_len < sizeof(struct ip)) ? 5192 (struct ip *)m->m_next->m_data : 5193 (struct ip *)(m->m_data + e_hlen); 5194 /* ip_hl is number of 32-bit words */ 5195 ip_hlen = (ip4->ip_hl << 2); 5196 ip = (caddr_t)ip4; 5197 break; 5198 case ETHERTYPE_IPV6: 5199 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 5200 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 5201 (struct ip6_hdr *)m->m_next->m_data : 5202 (struct ip6_hdr *)(m->m_data + e_hlen); 5203 /* XXX cannot support offload with IPv6 extensions */ 5204 ip_hlen = sizeof(struct ip6_hdr); 5205 ip = (caddr_t)ip6; 5206 break; 5207 default: 5208 /* We can't offload in this case... */ 5209 /* XXX error stat ??? */ 5210 return (0); 5211 } 5212 5213 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 5214 l4_off = (e_hlen + ip_hlen); 5215 5216 *parsing_data |= 5217 (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 5218 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W); 5219 5220 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5221 CSUM_TSO | 5222 CSUM_TCP_IPV6)) { 5223 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 5224 th = (struct tcphdr *)(ip + ip_hlen); 5225 /* th_off is number of 32-bit words */ 5226 *parsing_data |= ((th->th_off << 5227 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 5228 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW); 5229 return (l4_off + (th->th_off << 2)); /* entire header length */ 5230 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5231 CSUM_UDP_IPV6)) { 5232 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 5233 return (l4_off + sizeof(struct udphdr)); /* entire header length */ 5234 } else { 5235 /* XXX error stat ??? */ 5236 return (0); 5237 } 5238 } 5239 5240 static uint8_t 5241 bxe_set_pbd_csum(struct bxe_fastpath *fp, 5242 struct mbuf *m, 5243 struct eth_tx_parse_bd_e1x *pbd) 5244 { 5245 struct ether_vlan_header *eh = NULL; 5246 struct ip *ip4 = NULL; 5247 struct ip6_hdr *ip6 = NULL; 5248 caddr_t ip = NULL; 5249 struct tcphdr *th = NULL; 5250 struct udphdr *uh = NULL; 5251 int e_hlen, ip_hlen; 5252 uint16_t proto; 5253 uint8_t hlen; 5254 uint16_t tmp_csum; 5255 uint32_t *tmp_uh; 5256 5257 /* get the Ethernet header */ 5258 eh = mtod(m, struct ether_vlan_header *); 5259 5260 /* handle VLAN encapsulation if present */ 5261 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 5262 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 5263 proto = ntohs(eh->evl_proto); 5264 } else { 5265 e_hlen = ETHER_HDR_LEN; 5266 proto = ntohs(eh->evl_encap_proto); 5267 } 5268 5269 switch (proto) { 5270 case ETHERTYPE_IP: 5271 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 5272 ip4 = (m->m_len < sizeof(struct ip)) ? 5273 (struct ip *)m->m_next->m_data : 5274 (struct ip *)(m->m_data + e_hlen); 5275 /* ip_hl is number of 32-bit words */ 5276 ip_hlen = (ip4->ip_hl << 1); 5277 ip = (caddr_t)ip4; 5278 break; 5279 case ETHERTYPE_IPV6: 5280 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 5281 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 5282 (struct ip6_hdr *)m->m_next->m_data : 5283 (struct ip6_hdr *)(m->m_data + e_hlen); 5284 /* XXX cannot support offload with IPv6 extensions */ 5285 ip_hlen = (sizeof(struct ip6_hdr) >> 1); 5286 ip = (caddr_t)ip6; 5287 break; 5288 default: 5289 /* We can't offload in this case... */ 5290 /* XXX error stat ??? */ 5291 return (0); 5292 } 5293 5294 hlen = (e_hlen >> 1); 5295 5296 /* note that rest of global_data is indirectly zeroed here */ 5297 if (m->m_flags & M_VLANTAG) { 5298 pbd->global_data = 5299 htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 5300 } else { 5301 pbd->global_data = htole16(hlen); 5302 } 5303 5304 pbd->ip_hlen_w = ip_hlen; 5305 5306 hlen += pbd->ip_hlen_w; 5307 5308 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 5309 5310 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5311 CSUM_TSO | 5312 CSUM_TCP_IPV6)) { 5313 th = (struct tcphdr *)(ip + (ip_hlen << 1)); 5314 /* th_off is number of 32-bit words */ 5315 hlen += (uint16_t)(th->th_off << 1); 5316 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5317 CSUM_UDP_IPV6)) { 5318 uh = (struct udphdr *)(ip + (ip_hlen << 1)); 5319 hlen += (sizeof(struct udphdr) / 2); 5320 } else { 5321 /* valid case as only CSUM_IP was set */ 5322 return (0); 5323 } 5324 5325 pbd->total_hlen_w = htole16(hlen); 5326 5327 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5328 CSUM_TSO | 5329 CSUM_TCP_IPV6)) { 5330 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 5331 pbd->tcp_pseudo_csum = ntohs(th->th_sum); 5332 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5333 CSUM_UDP_IPV6)) { 5334 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 5335 5336 /* 5337 * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP 5338 * checksums and does not know anything about the UDP header and where 5339 * the checksum field is located. It only knows about TCP. Therefore 5340 * we "lie" to the hardware for outgoing UDP packets w/ checksum 5341 * offload. Since the checksum field offset for TCP is 16 bytes and 5342 * for UDP it is 6 bytes we pass a pointer to the hardware that is 10 5343 * bytes less than the start of the UDP header. This allows the 5344 * hardware to write the checksum in the correct spot. But the 5345 * hardware will compute a checksum which includes the last 10 bytes 5346 * of the IP header. To correct this we tweak the stack computed 5347 * pseudo checksum by folding in the calculation of the inverse 5348 * checksum for those final 10 bytes of the IP header. This allows 5349 * the correct checksum to be computed by the hardware. 5350 */ 5351 5352 /* set pointer 10 bytes before UDP header */ 5353 tmp_uh = (uint32_t *)((uint8_t *)uh - 10); 5354 5355 /* calculate a pseudo header checksum over the first 10 bytes */ 5356 tmp_csum = in_pseudo(*tmp_uh, 5357 *(tmp_uh + 1), 5358 *(uint16_t *)(tmp_uh + 2)); 5359 5360 pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum)); 5361 } 5362 5363 return (hlen * 2); /* entire header length, number of bytes */ 5364 } 5365 5366 static void 5367 bxe_set_pbd_lso_e2(struct mbuf *m, 5368 uint32_t *parsing_data) 5369 { 5370 *parsing_data |= ((m->m_pkthdr.tso_segsz << 5371 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 5372 ETH_TX_PARSE_BD_E2_LSO_MSS); 5373 5374 /* XXX test for IPv6 with extension header... */ 5375 #if 0 5376 struct ip6_hdr *ip6; 5377 if (ip6 && ip6->ip6_nxt == 'some ipv6 extension header') 5378 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR; 5379 #endif 5380 } 5381 5382 static void 5383 bxe_set_pbd_lso(struct mbuf *m, 5384 struct eth_tx_parse_bd_e1x *pbd) 5385 { 5386 struct ether_vlan_header *eh = NULL; 5387 struct ip *ip = NULL; 5388 struct tcphdr *th = NULL; 5389 int e_hlen; 5390 5391 /* get the Ethernet header */ 5392 eh = mtod(m, struct ether_vlan_header *); 5393 5394 /* handle VLAN encapsulation if present */ 5395 e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ? 5396 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN; 5397 5398 /* get the IP and TCP header, with LSO entire header in first mbuf */ 5399 /* XXX assuming IPv4 */ 5400 ip = (struct ip *)(m->m_data + e_hlen); 5401 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 5402 5403 pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz); 5404 pbd->tcp_send_seq = ntohl(th->th_seq); 5405 pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff); 5406 5407 #if 1 5408 /* XXX IPv4 */ 5409 pbd->ip_id = ntohs(ip->ip_id); 5410 pbd->tcp_pseudo_csum = 5411 ntohs(in_pseudo(ip->ip_src.s_addr, 5412 ip->ip_dst.s_addr, 5413 htons(IPPROTO_TCP))); 5414 #else 5415 /* XXX IPv6 */ 5416 pbd->tcp_pseudo_csum = 5417 ntohs(in_pseudo(&ip6->ip6_src, 5418 &ip6->ip6_dst, 5419 htons(IPPROTO_TCP))); 5420 #endif 5421 5422 pbd->global_data |= 5423 htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 5424 } 5425 5426 /* 5427 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory 5428 * visible to the controller. 5429 * 5430 * If an mbuf is submitted to this routine and cannot be given to the 5431 * controller (e.g. it has too many fragments) then the function may free 5432 * the mbuf and return to the caller. 5433 * 5434 * Returns: 5435 * 0 = Success, !0 = Failure 5436 * Note the side effect that an mbuf may be freed if it causes a problem. 5437 */ 5438 static int 5439 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head) 5440 { 5441 bus_dma_segment_t segs[32]; 5442 struct mbuf *m0; 5443 struct bxe_sw_tx_bd *tx_buf; 5444 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 5445 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 5446 /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */ 5447 struct eth_tx_bd *tx_data_bd; 5448 struct eth_tx_bd *tx_total_pkt_size_bd; 5449 struct eth_tx_start_bd *tx_start_bd; 5450 uint16_t bd_prod, pkt_prod, total_pkt_size; 5451 uint8_t mac_type; 5452 int defragged, error, nsegs, rc, nbds, vlan_off, ovlan; 5453 struct bxe_softc *sc; 5454 uint16_t tx_bd_avail; 5455 struct ether_vlan_header *eh; 5456 uint32_t pbd_e2_parsing_data = 0; 5457 uint8_t hlen = 0; 5458 int tmp_bd; 5459 int i; 5460 5461 sc = fp->sc; 5462 5463 M_ASSERTPKTHDR(*m_head); 5464 5465 m0 = *m_head; 5466 rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0; 5467 tx_start_bd = NULL; 5468 tx_data_bd = NULL; 5469 tx_total_pkt_size_bd = NULL; 5470 5471 /* get the H/W pointer for packets and BDs */ 5472 pkt_prod = fp->tx_pkt_prod; 5473 bd_prod = fp->tx_bd_prod; 5474 5475 mac_type = UNICAST_ADDRESS; 5476 5477 /* map the mbuf into the next open DMAable memory */ 5478 tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)]; 5479 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5480 tx_buf->m_map, m0, 5481 segs, &nsegs, BUS_DMA_NOWAIT); 5482 5483 /* mapping errors */ 5484 if(__predict_false(error != 0)) { 5485 fp->eth_q_stats.tx_dma_mapping_failure++; 5486 if (error == ENOMEM) { 5487 /* resource issue, try again later */ 5488 rc = ENOMEM; 5489 } else if (error == EFBIG) { 5490 /* possibly recoverable with defragmentation */ 5491 fp->eth_q_stats.mbuf_defrag_attempts++; 5492 m0 = m_defrag(*m_head, M_NOWAIT); 5493 if (m0 == NULL) { 5494 fp->eth_q_stats.mbuf_defrag_failures++; 5495 rc = ENOBUFS; 5496 } else { 5497 /* defrag successful, try mapping again */ 5498 *m_head = m0; 5499 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5500 tx_buf->m_map, m0, 5501 segs, &nsegs, BUS_DMA_NOWAIT); 5502 if (error) { 5503 fp->eth_q_stats.tx_dma_mapping_failure++; 5504 rc = error; 5505 } 5506 } 5507 } else { 5508 /* unknown, unrecoverable mapping error */ 5509 BLOGE(sc, "Unknown TX mapping error rc=%d\n", error); 5510 bxe_dump_mbuf(sc, m0, FALSE); 5511 rc = error; 5512 } 5513 5514 goto bxe_tx_encap_continue; 5515 } 5516 5517 tx_bd_avail = bxe_tx_avail(sc, fp); 5518 5519 /* make sure there is enough room in the send queue */ 5520 if (__predict_false(tx_bd_avail < (nsegs + 2))) { 5521 /* Recoverable, try again later. */ 5522 fp->eth_q_stats.tx_hw_queue_full++; 5523 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5524 rc = ENOMEM; 5525 goto bxe_tx_encap_continue; 5526 } 5527 5528 /* capture the current H/W TX chain high watermark */ 5529 if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth < 5530 (TX_BD_USABLE - tx_bd_avail))) { 5531 fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail); 5532 } 5533 5534 /* make sure it fits in the packet window */ 5535 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5536 /* 5537 * The mbuf may be to big for the controller to handle. If the frame 5538 * is a TSO frame we'll need to do an additional check. 5539 */ 5540 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5541 if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) { 5542 goto bxe_tx_encap_continue; /* OK to send */ 5543 } else { 5544 fp->eth_q_stats.tx_window_violation_tso++; 5545 } 5546 } else { 5547 fp->eth_q_stats.tx_window_violation_std++; 5548 } 5549 5550 /* lets try to defragment this mbuf and remap it */ 5551 fp->eth_q_stats.mbuf_defrag_attempts++; 5552 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5553 5554 m0 = m_defrag(*m_head, M_NOWAIT); 5555 if (m0 == NULL) { 5556 fp->eth_q_stats.mbuf_defrag_failures++; 5557 /* Ugh, just drop the frame... :( */ 5558 rc = ENOBUFS; 5559 } else { 5560 /* defrag successful, try mapping again */ 5561 *m_head = m0; 5562 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5563 tx_buf->m_map, m0, 5564 segs, &nsegs, BUS_DMA_NOWAIT); 5565 if (error) { 5566 fp->eth_q_stats.tx_dma_mapping_failure++; 5567 /* No sense in trying to defrag/copy chain, drop it. :( */ 5568 rc = error; 5569 } 5570 else { 5571 /* if the chain is still too long then drop it */ 5572 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5573 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5574 rc = ENODEV; 5575 } 5576 } 5577 } 5578 } 5579 5580 bxe_tx_encap_continue: 5581 5582 /* Check for errors */ 5583 if (rc) { 5584 if (rc == ENOMEM) { 5585 /* recoverable try again later */ 5586 } else { 5587 fp->eth_q_stats.tx_soft_errors++; 5588 fp->eth_q_stats.mbuf_alloc_tx--; 5589 m_freem(*m_head); 5590 *m_head = NULL; 5591 } 5592 5593 return (rc); 5594 } 5595 5596 /* set flag according to packet type (UNICAST_ADDRESS is default) */ 5597 if (m0->m_flags & M_BCAST) { 5598 mac_type = BROADCAST_ADDRESS; 5599 } else if (m0->m_flags & M_MCAST) { 5600 mac_type = MULTICAST_ADDRESS; 5601 } 5602 5603 /* store the mbuf into the mbuf ring */ 5604 tx_buf->m = m0; 5605 tx_buf->first_bd = fp->tx_bd_prod; 5606 tx_buf->flags = 0; 5607 5608 /* prepare the first transmit (start) BD for the mbuf */ 5609 tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd; 5610 5611 BLOGD(sc, DBG_TX, 5612 "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n", 5613 pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd); 5614 5615 tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 5616 tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 5617 tx_start_bd->nbytes = htole16(segs[0].ds_len); 5618 total_pkt_size += tx_start_bd->nbytes; 5619 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 5620 5621 tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT); 5622 5623 /* all frames have at least Start BD + Parsing BD */ 5624 nbds = nsegs + 1; 5625 tx_start_bd->nbd = htole16(nbds); 5626 5627 if (m0->m_flags & M_VLANTAG) { 5628 tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag); 5629 tx_start_bd->bd_flags.as_bitfield |= 5630 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 5631 } else { 5632 /* vf tx, start bd must hold the ethertype for fw to enforce it */ 5633 if (IS_VF(sc)) { 5634 /* map ethernet header to find type and header length */ 5635 eh = mtod(m0, struct ether_vlan_header *); 5636 tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto; 5637 } else { 5638 /* used by FW for packet accounting */ 5639 tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod); 5640 #if 0 5641 /* 5642 * If NPAR-SD is active then FW should do the tagging regardless 5643 * of value of priority. Otherwise, if priority indicates this is 5644 * a control packet we need to indicate to FW to avoid tagging. 5645 */ 5646 if (!IS_MF_AFEX(sc) && (mbuf priority == PRIO_CONTROL)) { 5647 SET_FLAG(tx_start_bd->general_data, 5648 ETH_TX_START_BD_FORCE_VLAN_MODE, 1); 5649 } 5650 #endif 5651 } 5652 } 5653 5654 /* 5655 * add a parsing BD from the chain. The parsing BD is always added 5656 * though it is only used for TSO and chksum 5657 */ 5658 bd_prod = TX_BD_NEXT(bd_prod); 5659 5660 if (m0->m_pkthdr.csum_flags) { 5661 if (m0->m_pkthdr.csum_flags & CSUM_IP) { 5662 fp->eth_q_stats.tx_ofld_frames_csum_ip++; 5663 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM; 5664 } 5665 5666 if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) { 5667 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5668 ETH_TX_BD_FLAGS_L4_CSUM); 5669 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) { 5670 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5671 ETH_TX_BD_FLAGS_IS_UDP | 5672 ETH_TX_BD_FLAGS_L4_CSUM); 5673 } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) || 5674 (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5675 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 5676 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) { 5677 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM | 5678 ETH_TX_BD_FLAGS_IS_UDP); 5679 } 5680 } 5681 5682 if (!CHIP_IS_E1x(sc)) { 5683 pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2; 5684 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 5685 5686 if (m0->m_pkthdr.csum_flags) { 5687 hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data); 5688 } 5689 5690 #if 0 5691 /* 5692 * Add the MACs to the parsing BD if the module param was 5693 * explicitly set, if this is a vf, or in switch independent 5694 * mode. 5695 */ 5696 if (sc->flags & BXE_TX_SWITCHING || IS_VF(sc) || IS_MF_SI(sc)) { 5697 eh = mtod(m0, struct ether_vlan_header *); 5698 bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, 5699 &pbd_e2->data.mac_addr.src_mid, 5700 &pbd_e2->data.mac_addr.src_lo, 5701 eh->evl_shost); 5702 bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi, 5703 &pbd_e2->data.mac_addr.dst_mid, 5704 &pbd_e2->data.mac_addr.dst_lo, 5705 eh->evl_dhost); 5706 } 5707 #endif 5708 5709 SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, 5710 mac_type); 5711 } else { 5712 uint16_t global_data = 0; 5713 5714 pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x; 5715 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 5716 5717 if (m0->m_pkthdr.csum_flags) { 5718 hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x); 5719 } 5720 5721 SET_FLAG(global_data, 5722 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 5723 pbd_e1x->global_data |= htole16(global_data); 5724 } 5725 5726 /* setup the parsing BD with TSO specific info */ 5727 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5728 fp->eth_q_stats.tx_ofld_frames_lso++; 5729 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 5730 5731 if (__predict_false(tx_start_bd->nbytes > hlen)) { 5732 fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++; 5733 5734 /* split the first BD into header/data making the fw job easy */ 5735 nbds++; 5736 tx_start_bd->nbd = htole16(nbds); 5737 tx_start_bd->nbytes = htole16(hlen); 5738 5739 bd_prod = TX_BD_NEXT(bd_prod); 5740 5741 /* new transmit BD after the tx_parse_bd */ 5742 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5743 tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen)); 5744 tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen)); 5745 tx_data_bd->nbytes = htole16(segs[0].ds_len - hlen); 5746 if (tx_total_pkt_size_bd == NULL) { 5747 tx_total_pkt_size_bd = tx_data_bd; 5748 } 5749 5750 BLOGD(sc, DBG_TX, 5751 "TSO split header size is %d (%x:%x) nbds %d\n", 5752 le16toh(tx_start_bd->nbytes), 5753 le32toh(tx_start_bd->addr_hi), 5754 le32toh(tx_start_bd->addr_lo), 5755 nbds); 5756 } 5757 5758 if (!CHIP_IS_E1x(sc)) { 5759 bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data); 5760 } else { 5761 bxe_set_pbd_lso(m0, pbd_e1x); 5762 } 5763 } 5764 5765 if (pbd_e2_parsing_data) { 5766 pbd_e2->parsing_data = htole32(pbd_e2_parsing_data); 5767 } 5768 5769 /* prepare remaining BDs, start tx bd contains first seg/frag */ 5770 for (i = 1; i < nsegs ; i++) { 5771 bd_prod = TX_BD_NEXT(bd_prod); 5772 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5773 tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr)); 5774 tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr)); 5775 tx_data_bd->nbytes = htole16(segs[i].ds_len); 5776 if (tx_total_pkt_size_bd == NULL) { 5777 tx_total_pkt_size_bd = tx_data_bd; 5778 } 5779 total_pkt_size += tx_data_bd->nbytes; 5780 } 5781 5782 BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd); 5783 5784 if (tx_total_pkt_size_bd != NULL) { 5785 tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size; 5786 } 5787 5788 if (__predict_false(sc->debug & DBG_TX)) { 5789 tmp_bd = tx_buf->first_bd; 5790 for (i = 0; i < nbds; i++) 5791 { 5792 if (i == 0) { 5793 BLOGD(sc, DBG_TX, 5794 "TX Strt: %p bd=%d nbd=%d vlan=0x%x " 5795 "bd_flags=0x%x hdr_nbds=%d\n", 5796 tx_start_bd, 5797 tmp_bd, 5798 le16toh(tx_start_bd->nbd), 5799 le16toh(tx_start_bd->vlan_or_ethertype), 5800 tx_start_bd->bd_flags.as_bitfield, 5801 (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS)); 5802 } else if (i == 1) { 5803 if (pbd_e1x) { 5804 BLOGD(sc, DBG_TX, 5805 "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u " 5806 "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x " 5807 "tcp_seq=%u total_hlen_w=%u\n", 5808 pbd_e1x, 5809 tmp_bd, 5810 pbd_e1x->global_data, 5811 pbd_e1x->ip_hlen_w, 5812 pbd_e1x->ip_id, 5813 pbd_e1x->lso_mss, 5814 pbd_e1x->tcp_flags, 5815 pbd_e1x->tcp_pseudo_csum, 5816 pbd_e1x->tcp_send_seq, 5817 le16toh(pbd_e1x->total_hlen_w)); 5818 } else { /* if (pbd_e2) */ 5819 BLOGD(sc, DBG_TX, 5820 "-> Parse: %p bd=%d dst=%02x:%02x:%02x " 5821 "src=%02x:%02x:%02x parsing_data=0x%x\n", 5822 pbd_e2, 5823 tmp_bd, 5824 pbd_e2->data.mac_addr.dst_hi, 5825 pbd_e2->data.mac_addr.dst_mid, 5826 pbd_e2->data.mac_addr.dst_lo, 5827 pbd_e2->data.mac_addr.src_hi, 5828 pbd_e2->data.mac_addr.src_mid, 5829 pbd_e2->data.mac_addr.src_lo, 5830 pbd_e2->parsing_data); 5831 } 5832 } 5833 5834 if (i != 1) { /* skip parse db as it doesn't hold data */ 5835 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd; 5836 BLOGD(sc, DBG_TX, 5837 "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n", 5838 tx_data_bd, 5839 tmp_bd, 5840 le16toh(tx_data_bd->nbytes), 5841 le32toh(tx_data_bd->addr_hi), 5842 le32toh(tx_data_bd->addr_lo)); 5843 } 5844 5845 tmp_bd = TX_BD_NEXT(tmp_bd); 5846 } 5847 } 5848 5849 BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod); 5850 5851 /* update TX BD producer index value for next TX */ 5852 bd_prod = TX_BD_NEXT(bd_prod); 5853 5854 /* 5855 * If the chain of tx_bd's describing this frame is adjacent to or spans 5856 * an eth_tx_next_bd element then we need to increment the nbds value. 5857 */ 5858 if (TX_BD_IDX(bd_prod) < nbds) { 5859 nbds++; 5860 } 5861 5862 /* don't allow reordering of writes for nbd and packets */ 5863 mb(); 5864 5865 fp->tx_db.data.prod += nbds; 5866 5867 /* producer points to the next free tx_bd at this point */ 5868 fp->tx_pkt_prod++; 5869 fp->tx_bd_prod = bd_prod; 5870 5871 DOORBELL(sc, fp->index, fp->tx_db.raw); 5872 5873 fp->eth_q_stats.tx_pkts++; 5874 5875 /* Prevent speculative reads from getting ahead of the status block. */ 5876 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 5877 0, 0, BUS_SPACE_BARRIER_READ); 5878 5879 /* Prevent speculative reads from getting ahead of the doorbell. */ 5880 bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle, 5881 0, 0, BUS_SPACE_BARRIER_READ); 5882 5883 return (0); 5884 } 5885 5886 static void 5887 bxe_tx_start_locked(struct bxe_softc *sc, 5888 if_t ifp, 5889 struct bxe_fastpath *fp) 5890 { 5891 struct mbuf *m = NULL; 5892 int tx_count = 0; 5893 uint16_t tx_bd_avail; 5894 5895 BXE_FP_TX_LOCK_ASSERT(fp); 5896 5897 /* keep adding entries while there are frames to send */ 5898 while (!if_sendq_empty(ifp)) { 5899 5900 /* 5901 * check for any frames to send 5902 * dequeue can still be NULL even if queue is not empty 5903 */ 5904 m = if_dequeue(ifp); 5905 if (__predict_false(m == NULL)) { 5906 break; 5907 } 5908 5909 /* the mbuf now belongs to us */ 5910 fp->eth_q_stats.mbuf_alloc_tx++; 5911 5912 /* 5913 * Put the frame into the transmit ring. If we don't have room, 5914 * place the mbuf back at the head of the TX queue, set the 5915 * OACTIVE flag, and wait for the NIC to drain the chain. 5916 */ 5917 if (__predict_false(bxe_tx_encap(fp, &m))) { 5918 fp->eth_q_stats.tx_encap_failures++; 5919 if (m != NULL) { 5920 /* mark the TX queue as full and return the frame */ 5921 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5922 if_sendq_prepend(ifp, m); 5923 fp->eth_q_stats.mbuf_alloc_tx--; 5924 fp->eth_q_stats.tx_queue_xoff++; 5925 } 5926 5927 /* stop looking for more work */ 5928 break; 5929 } 5930 5931 /* the frame was enqueued successfully */ 5932 tx_count++; 5933 5934 /* send a copy of the frame to any BPF listeners. */ 5935 if_etherbpfmtap(ifp, m); 5936 5937 tx_bd_avail = bxe_tx_avail(sc, fp); 5938 5939 /* handle any completions if we're running low */ 5940 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5941 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5942 bxe_txeof(sc, fp); 5943 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5944 break; 5945 } 5946 } 5947 } 5948 5949 /* all TX packets were dequeued and/or the tx ring is full */ 5950 if (tx_count > 0) { 5951 /* reset the TX watchdog timeout timer */ 5952 fp->watchdog_timer = BXE_TX_TIMEOUT; 5953 } 5954 } 5955 5956 /* Legacy (non-RSS) dispatch routine */ 5957 static void 5958 bxe_tx_start(if_t ifp) 5959 { 5960 struct bxe_softc *sc; 5961 struct bxe_fastpath *fp; 5962 5963 sc = if_getsoftc(ifp); 5964 5965 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 5966 BLOGW(sc, "Interface not running, ignoring transmit request\n"); 5967 return; 5968 } 5969 5970 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5971 BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n"); 5972 return; 5973 } 5974 5975 if (!sc->link_vars.link_up) { 5976 BLOGW(sc, "Interface link is down, ignoring transmit request\n"); 5977 return; 5978 } 5979 5980 fp = &sc->fp[0]; 5981 5982 BXE_FP_TX_LOCK(fp); 5983 bxe_tx_start_locked(sc, ifp, fp); 5984 BXE_FP_TX_UNLOCK(fp); 5985 } 5986 5987 #if __FreeBSD_version >= 800000 5988 5989 static int 5990 bxe_tx_mq_start_locked(struct bxe_softc *sc, 5991 if_t ifp, 5992 struct bxe_fastpath *fp, 5993 struct mbuf *m) 5994 { 5995 struct buf_ring *tx_br = fp->tx_br; 5996 struct mbuf *next; 5997 int depth, rc, tx_count; 5998 uint16_t tx_bd_avail; 5999 6000 rc = tx_count = 0; 6001 6002 BXE_FP_TX_LOCK_ASSERT(fp); 6003 6004 if (!tx_br) { 6005 BLOGE(sc, "Multiqueue TX and no buf_ring!\n"); 6006 return (EINVAL); 6007 } 6008 6009 if (!sc->link_vars.link_up || 6010 (ifp->if_drv_flags & 6011 (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) { 6012 rc = drbr_enqueue_drv(ifp, tx_br, m); 6013 goto bxe_tx_mq_start_locked_exit; 6014 } 6015 6016 /* fetch the depth of the driver queue */ 6017 depth = drbr_inuse_drv(ifp, tx_br); 6018 if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) { 6019 fp->eth_q_stats.tx_max_drbr_queue_depth = depth; 6020 } 6021 6022 if (m == NULL) { 6023 /* no new work, check for pending frames */ 6024 next = drbr_dequeue_drv(ifp, tx_br); 6025 } else if (drbr_needs_enqueue_drv(ifp, tx_br)) { 6026 /* have both new and pending work, maintain packet order */ 6027 rc = drbr_enqueue_drv(ifp, tx_br, m); 6028 if (rc != 0) { 6029 fp->eth_q_stats.tx_soft_errors++; 6030 goto bxe_tx_mq_start_locked_exit; 6031 } 6032 next = drbr_dequeue_drv(ifp, tx_br); 6033 } else { 6034 /* new work only and nothing pending */ 6035 next = m; 6036 } 6037 6038 /* keep adding entries while there are frames to send */ 6039 while (next != NULL) { 6040 6041 /* the mbuf now belongs to us */ 6042 fp->eth_q_stats.mbuf_alloc_tx++; 6043 6044 /* 6045 * Put the frame into the transmit ring. If we don't have room, 6046 * place the mbuf back at the head of the TX queue, set the 6047 * OACTIVE flag, and wait for the NIC to drain the chain. 6048 */ 6049 rc = bxe_tx_encap(fp, &next); 6050 if (__predict_false(rc != 0)) { 6051 fp->eth_q_stats.tx_encap_failures++; 6052 if (next != NULL) { 6053 /* mark the TX queue as full and save the frame */ 6054 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 6055 /* XXX this may reorder the frame */ 6056 rc = drbr_enqueue_drv(ifp, tx_br, next); 6057 fp->eth_q_stats.mbuf_alloc_tx--; 6058 fp->eth_q_stats.tx_frames_deferred++; 6059 } 6060 6061 /* stop looking for more work */ 6062 break; 6063 } 6064 6065 /* the transmit frame was enqueued successfully */ 6066 tx_count++; 6067 6068 /* send a copy of the frame to any BPF listeners */ 6069 if_etherbpfmtap(ifp, next); 6070 6071 tx_bd_avail = bxe_tx_avail(sc, fp); 6072 6073 /* handle any completions if we're running low */ 6074 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 6075 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 6076 bxe_txeof(sc, fp); 6077 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 6078 break; 6079 } 6080 } 6081 6082 next = drbr_dequeue_drv(ifp, tx_br); 6083 } 6084 6085 /* all TX packets were dequeued and/or the tx ring is full */ 6086 if (tx_count > 0) { 6087 /* reset the TX watchdog timeout timer */ 6088 fp->watchdog_timer = BXE_TX_TIMEOUT; 6089 } 6090 6091 bxe_tx_mq_start_locked_exit: 6092 6093 return (rc); 6094 } 6095 6096 /* Multiqueue (TSS) dispatch routine. */ 6097 static int 6098 bxe_tx_mq_start(struct ifnet *ifp, 6099 struct mbuf *m) 6100 { 6101 struct bxe_softc *sc = if_getsoftc(ifp); 6102 struct bxe_fastpath *fp; 6103 int fp_index, rc; 6104 6105 fp_index = 0; /* default is the first queue */ 6106 6107 /* check if flowid is set */ 6108 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 6109 fp_index = (m->m_pkthdr.flowid % sc->num_queues); 6110 6111 fp = &sc->fp[fp_index]; 6112 6113 if (BXE_FP_TX_TRYLOCK(fp)) { 6114 rc = bxe_tx_mq_start_locked(sc, ifp, fp, m); 6115 BXE_FP_TX_UNLOCK(fp); 6116 } else 6117 rc = drbr_enqueue_drv(ifp, fp->tx_br, m); 6118 6119 return (rc); 6120 } 6121 6122 static void 6123 bxe_mq_flush(struct ifnet *ifp) 6124 { 6125 struct bxe_softc *sc = if_getsoftc(ifp); 6126 struct bxe_fastpath *fp; 6127 struct mbuf *m; 6128 int i; 6129 6130 for (i = 0; i < sc->num_queues; i++) { 6131 fp = &sc->fp[i]; 6132 6133 if (fp->state != BXE_FP_STATE_OPEN) { 6134 BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n", 6135 fp->index, fp->state); 6136 continue; 6137 } 6138 6139 if (fp->tx_br != NULL) { 6140 BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index); 6141 BXE_FP_TX_LOCK(fp); 6142 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { 6143 m_freem(m); 6144 } 6145 BXE_FP_TX_UNLOCK(fp); 6146 } 6147 } 6148 6149 if_qflush(ifp); 6150 } 6151 6152 #endif /* FreeBSD_version >= 800000 */ 6153 6154 static uint16_t 6155 bxe_cid_ilt_lines(struct bxe_softc *sc) 6156 { 6157 if (IS_SRIOV(sc)) { 6158 return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS); 6159 } 6160 return (L2_ILT_LINES(sc)); 6161 } 6162 6163 static void 6164 bxe_ilt_set_info(struct bxe_softc *sc) 6165 { 6166 struct ilt_client_info *ilt_client; 6167 struct ecore_ilt *ilt = sc->ilt; 6168 uint16_t line = 0; 6169 6170 ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc)); 6171 BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line); 6172 6173 /* CDU */ 6174 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 6175 ilt_client->client_num = ILT_CLIENT_CDU; 6176 ilt_client->page_size = CDU_ILT_PAGE_SZ; 6177 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 6178 ilt_client->start = line; 6179 line += bxe_cid_ilt_lines(sc); 6180 6181 if (CNIC_SUPPORT(sc)) { 6182 line += CNIC_ILT_LINES; 6183 } 6184 6185 ilt_client->end = (line - 1); 6186 6187 BLOGD(sc, DBG_LOAD, 6188 "ilt client[CDU]: start %d, end %d, " 6189 "psz 0x%x, flags 0x%x, hw psz %d\n", 6190 ilt_client->start, ilt_client->end, 6191 ilt_client->page_size, 6192 ilt_client->flags, 6193 ilog2(ilt_client->page_size >> 12)); 6194 6195 /* QM */ 6196 if (QM_INIT(sc->qm_cid_count)) { 6197 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 6198 ilt_client->client_num = ILT_CLIENT_QM; 6199 ilt_client->page_size = QM_ILT_PAGE_SZ; 6200 ilt_client->flags = 0; 6201 ilt_client->start = line; 6202 6203 /* 4 bytes for each cid */ 6204 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 6205 QM_ILT_PAGE_SZ); 6206 6207 ilt_client->end = (line - 1); 6208 6209 BLOGD(sc, DBG_LOAD, 6210 "ilt client[QM]: start %d, end %d, " 6211 "psz 0x%x, flags 0x%x, hw psz %d\n", 6212 ilt_client->start, ilt_client->end, 6213 ilt_client->page_size, ilt_client->flags, 6214 ilog2(ilt_client->page_size >> 12)); 6215 } 6216 6217 if (CNIC_SUPPORT(sc)) { 6218 /* SRC */ 6219 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 6220 ilt_client->client_num = ILT_CLIENT_SRC; 6221 ilt_client->page_size = SRC_ILT_PAGE_SZ; 6222 ilt_client->flags = 0; 6223 ilt_client->start = line; 6224 line += SRC_ILT_LINES; 6225 ilt_client->end = (line - 1); 6226 6227 BLOGD(sc, DBG_LOAD, 6228 "ilt client[SRC]: start %d, end %d, " 6229 "psz 0x%x, flags 0x%x, hw psz %d\n", 6230 ilt_client->start, ilt_client->end, 6231 ilt_client->page_size, ilt_client->flags, 6232 ilog2(ilt_client->page_size >> 12)); 6233 6234 /* TM */ 6235 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 6236 ilt_client->client_num = ILT_CLIENT_TM; 6237 ilt_client->page_size = TM_ILT_PAGE_SZ; 6238 ilt_client->flags = 0; 6239 ilt_client->start = line; 6240 line += TM_ILT_LINES; 6241 ilt_client->end = (line - 1); 6242 6243 BLOGD(sc, DBG_LOAD, 6244 "ilt client[TM]: start %d, end %d, " 6245 "psz 0x%x, flags 0x%x, hw psz %d\n", 6246 ilt_client->start, ilt_client->end, 6247 ilt_client->page_size, ilt_client->flags, 6248 ilog2(ilt_client->page_size >> 12)); 6249 } 6250 6251 KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!")); 6252 } 6253 6254 static void 6255 bxe_set_fp_rx_buf_size(struct bxe_softc *sc) 6256 { 6257 int i; 6258 uint32_t rx_buf_size; 6259 6260 rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu); 6261 6262 for (i = 0; i < sc->num_queues; i++) { 6263 if(rx_buf_size <= MCLBYTES){ 6264 sc->fp[i].rx_buf_size = rx_buf_size; 6265 sc->fp[i].mbuf_alloc_size = MCLBYTES; 6266 }else if (rx_buf_size <= MJUMPAGESIZE){ 6267 sc->fp[i].rx_buf_size = rx_buf_size; 6268 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 6269 }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){ 6270 sc->fp[i].rx_buf_size = MCLBYTES; 6271 sc->fp[i].mbuf_alloc_size = MCLBYTES; 6272 }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){ 6273 sc->fp[i].rx_buf_size = MJUMPAGESIZE; 6274 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 6275 }else { 6276 sc->fp[i].rx_buf_size = MCLBYTES; 6277 sc->fp[i].mbuf_alloc_size = MCLBYTES; 6278 } 6279 } 6280 } 6281 6282 static int 6283 bxe_alloc_ilt_mem(struct bxe_softc *sc) 6284 { 6285 int rc = 0; 6286 6287 if ((sc->ilt = 6288 (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt), 6289 M_BXE_ILT, 6290 (M_NOWAIT | M_ZERO))) == NULL) { 6291 rc = 1; 6292 } 6293 6294 return (rc); 6295 } 6296 6297 static int 6298 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc) 6299 { 6300 int rc = 0; 6301 6302 if ((sc->ilt->lines = 6303 (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES), 6304 M_BXE_ILT, 6305 (M_NOWAIT | M_ZERO))) == NULL) { 6306 rc = 1; 6307 } 6308 6309 return (rc); 6310 } 6311 6312 static void 6313 bxe_free_ilt_mem(struct bxe_softc *sc) 6314 { 6315 if (sc->ilt != NULL) { 6316 free(sc->ilt, M_BXE_ILT); 6317 sc->ilt = NULL; 6318 } 6319 } 6320 6321 static void 6322 bxe_free_ilt_lines_mem(struct bxe_softc *sc) 6323 { 6324 if (sc->ilt->lines != NULL) { 6325 free(sc->ilt->lines, M_BXE_ILT); 6326 sc->ilt->lines = NULL; 6327 } 6328 } 6329 6330 static void 6331 bxe_free_mem(struct bxe_softc *sc) 6332 { 6333 int i; 6334 6335 #if 0 6336 if (!CONFIGURE_NIC_MODE(sc)) { 6337 /* free searcher T2 table */ 6338 bxe_dma_free(sc, &sc->t2); 6339 } 6340 #endif 6341 6342 for (i = 0; i < L2_ILT_LINES(sc); i++) { 6343 bxe_dma_free(sc, &sc->context[i].vcxt_dma); 6344 sc->context[i].vcxt = NULL; 6345 sc->context[i].size = 0; 6346 } 6347 6348 ecore_ilt_mem_op(sc, ILT_MEMOP_FREE); 6349 6350 bxe_free_ilt_lines_mem(sc); 6351 6352 #if 0 6353 bxe_iov_free_mem(sc); 6354 #endif 6355 } 6356 6357 static int 6358 bxe_alloc_mem(struct bxe_softc *sc) 6359 { 6360 int context_size; 6361 int allocated; 6362 int i; 6363 6364 #if 0 6365 if (!CONFIGURE_NIC_MODE(sc)) { 6366 /* allocate searcher T2 table */ 6367 if (bxe_dma_alloc(sc, SRC_T2_SZ, 6368 &sc->t2, "searcher t2 table") != 0) { 6369 return (-1); 6370 } 6371 } 6372 #endif 6373 6374 /* 6375 * Allocate memory for CDU context: 6376 * This memory is allocated separately and not in the generic ILT 6377 * functions because CDU differs in few aspects: 6378 * 1. There can be multiple entities allocating memory for context - 6379 * regular L2, CNIC, and SRIOV drivers. Each separately controls 6380 * its own ILT lines. 6381 * 2. Since CDU page-size is not a single 4KB page (which is the case 6382 * for the other ILT clients), to be efficient we want to support 6383 * allocation of sub-page-size in the last entry. 6384 * 3. Context pointers are used by the driver to pass to FW / update 6385 * the context (for the other ILT clients the pointers are used just to 6386 * free the memory during unload). 6387 */ 6388 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc)); 6389 for (i = 0, allocated = 0; allocated < context_size; i++) { 6390 sc->context[i].size = min(CDU_ILT_PAGE_SZ, 6391 (context_size - allocated)); 6392 6393 if (bxe_dma_alloc(sc, sc->context[i].size, 6394 &sc->context[i].vcxt_dma, 6395 "cdu context") != 0) { 6396 bxe_free_mem(sc); 6397 return (-1); 6398 } 6399 6400 sc->context[i].vcxt = 6401 (union cdu_context *)sc->context[i].vcxt_dma.vaddr; 6402 6403 allocated += sc->context[i].size; 6404 } 6405 6406 bxe_alloc_ilt_lines_mem(sc); 6407 6408 BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n", 6409 sc->ilt, sc->ilt->start_line, sc->ilt->lines); 6410 { 6411 for (i = 0; i < 4; i++) { 6412 BLOGD(sc, DBG_LOAD, 6413 "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n", 6414 i, 6415 sc->ilt->clients[i].page_size, 6416 sc->ilt->clients[i].start, 6417 sc->ilt->clients[i].end, 6418 sc->ilt->clients[i].client_num, 6419 sc->ilt->clients[i].flags); 6420 } 6421 } 6422 if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) { 6423 BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n"); 6424 bxe_free_mem(sc); 6425 return (-1); 6426 } 6427 6428 #if 0 6429 if (bxe_iov_alloc_mem(sc)) { 6430 BLOGE(sc, "Failed to allocate memory for SRIOV\n"); 6431 bxe_free_mem(sc); 6432 return (-1); 6433 } 6434 #endif 6435 6436 return (0); 6437 } 6438 6439 static void 6440 bxe_free_rx_bd_chain(struct bxe_fastpath *fp) 6441 { 6442 struct bxe_softc *sc; 6443 int i; 6444 6445 sc = fp->sc; 6446 6447 if (fp->rx_mbuf_tag == NULL) { 6448 return; 6449 } 6450 6451 /* free all mbufs and unload all maps */ 6452 for (i = 0; i < RX_BD_TOTAL; i++) { 6453 if (fp->rx_mbuf_chain[i].m_map != NULL) { 6454 bus_dmamap_sync(fp->rx_mbuf_tag, 6455 fp->rx_mbuf_chain[i].m_map, 6456 BUS_DMASYNC_POSTREAD); 6457 bus_dmamap_unload(fp->rx_mbuf_tag, 6458 fp->rx_mbuf_chain[i].m_map); 6459 } 6460 6461 if (fp->rx_mbuf_chain[i].m != NULL) { 6462 m_freem(fp->rx_mbuf_chain[i].m); 6463 fp->rx_mbuf_chain[i].m = NULL; 6464 fp->eth_q_stats.mbuf_alloc_rx--; 6465 } 6466 } 6467 } 6468 6469 static void 6470 bxe_free_tpa_pool(struct bxe_fastpath *fp) 6471 { 6472 struct bxe_softc *sc; 6473 int i, max_agg_queues; 6474 6475 sc = fp->sc; 6476 6477 if (fp->rx_mbuf_tag == NULL) { 6478 return; 6479 } 6480 6481 max_agg_queues = MAX_AGG_QS(sc); 6482 6483 /* release all mbufs and unload all DMA maps in the TPA pool */ 6484 for (i = 0; i < max_agg_queues; i++) { 6485 if (fp->rx_tpa_info[i].bd.m_map != NULL) { 6486 bus_dmamap_sync(fp->rx_mbuf_tag, 6487 fp->rx_tpa_info[i].bd.m_map, 6488 BUS_DMASYNC_POSTREAD); 6489 bus_dmamap_unload(fp->rx_mbuf_tag, 6490 fp->rx_tpa_info[i].bd.m_map); 6491 } 6492 6493 if (fp->rx_tpa_info[i].bd.m != NULL) { 6494 m_freem(fp->rx_tpa_info[i].bd.m); 6495 fp->rx_tpa_info[i].bd.m = NULL; 6496 fp->eth_q_stats.mbuf_alloc_tpa--; 6497 } 6498 } 6499 } 6500 6501 static void 6502 bxe_free_sge_chain(struct bxe_fastpath *fp) 6503 { 6504 struct bxe_softc *sc; 6505 int i; 6506 6507 sc = fp->sc; 6508 6509 if (fp->rx_sge_mbuf_tag == NULL) { 6510 return; 6511 } 6512 6513 /* rree all mbufs and unload all maps */ 6514 for (i = 0; i < RX_SGE_TOTAL; i++) { 6515 if (fp->rx_sge_mbuf_chain[i].m_map != NULL) { 6516 bus_dmamap_sync(fp->rx_sge_mbuf_tag, 6517 fp->rx_sge_mbuf_chain[i].m_map, 6518 BUS_DMASYNC_POSTREAD); 6519 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 6520 fp->rx_sge_mbuf_chain[i].m_map); 6521 } 6522 6523 if (fp->rx_sge_mbuf_chain[i].m != NULL) { 6524 m_freem(fp->rx_sge_mbuf_chain[i].m); 6525 fp->rx_sge_mbuf_chain[i].m = NULL; 6526 fp->eth_q_stats.mbuf_alloc_sge--; 6527 } 6528 } 6529 } 6530 6531 static void 6532 bxe_free_fp_buffers(struct bxe_softc *sc) 6533 { 6534 struct bxe_fastpath *fp; 6535 int i; 6536 6537 for (i = 0; i < sc->num_queues; i++) { 6538 fp = &sc->fp[i]; 6539 6540 #if __FreeBSD_version >= 800000 6541 if (fp->tx_br != NULL) { 6542 /* just in case bxe_mq_flush() wasn't called */ 6543 if (mtx_initialized(&fp->tx_mtx)) { 6544 struct mbuf *m; 6545 6546 BXE_FP_TX_LOCK(fp); 6547 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) 6548 m_freem(m); 6549 BXE_FP_TX_UNLOCK(fp); 6550 } 6551 buf_ring_free(fp->tx_br, M_DEVBUF); 6552 fp->tx_br = NULL; 6553 } 6554 #endif 6555 6556 /* free all RX buffers */ 6557 bxe_free_rx_bd_chain(fp); 6558 bxe_free_tpa_pool(fp); 6559 bxe_free_sge_chain(fp); 6560 6561 if (fp->eth_q_stats.mbuf_alloc_rx != 0) { 6562 BLOGE(sc, "failed to claim all rx mbufs (%d left)\n", 6563 fp->eth_q_stats.mbuf_alloc_rx); 6564 } 6565 6566 if (fp->eth_q_stats.mbuf_alloc_sge != 0) { 6567 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6568 fp->eth_q_stats.mbuf_alloc_sge); 6569 } 6570 6571 if (fp->eth_q_stats.mbuf_alloc_tpa != 0) { 6572 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6573 fp->eth_q_stats.mbuf_alloc_tpa); 6574 } 6575 6576 if (fp->eth_q_stats.mbuf_alloc_tx != 0) { 6577 BLOGE(sc, "failed to release tx mbufs (%d left)\n", 6578 fp->eth_q_stats.mbuf_alloc_tx); 6579 } 6580 6581 /* XXX verify all mbufs were reclaimed */ 6582 6583 if (mtx_initialized(&fp->tx_mtx)) { 6584 mtx_destroy(&fp->tx_mtx); 6585 } 6586 6587 if (mtx_initialized(&fp->rx_mtx)) { 6588 mtx_destroy(&fp->rx_mtx); 6589 } 6590 } 6591 } 6592 6593 static int 6594 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 6595 uint16_t prev_index, 6596 uint16_t index) 6597 { 6598 struct bxe_sw_rx_bd *rx_buf; 6599 struct eth_rx_bd *rx_bd; 6600 bus_dma_segment_t segs[1]; 6601 bus_dmamap_t map; 6602 struct mbuf *m; 6603 int nsegs, rc; 6604 6605 rc = 0; 6606 6607 /* allocate the new RX BD mbuf */ 6608 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6609 if (__predict_false(m == NULL)) { 6610 fp->eth_q_stats.mbuf_rx_bd_alloc_failed++; 6611 return (ENOBUFS); 6612 } 6613 6614 fp->eth_q_stats.mbuf_alloc_rx++; 6615 6616 /* initialize the mbuf buffer length */ 6617 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6618 6619 /* map the mbuf into non-paged pool */ 6620 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6621 fp->rx_mbuf_spare_map, 6622 m, segs, &nsegs, BUS_DMA_NOWAIT); 6623 if (__predict_false(rc != 0)) { 6624 fp->eth_q_stats.mbuf_rx_bd_mapping_failed++; 6625 m_freem(m); 6626 fp->eth_q_stats.mbuf_alloc_rx--; 6627 return (rc); 6628 } 6629 6630 /* all mbufs must map to a single segment */ 6631 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6632 6633 /* release any existing RX BD mbuf mappings */ 6634 6635 if (prev_index != index) { 6636 rx_buf = &fp->rx_mbuf_chain[prev_index]; 6637 6638 if (rx_buf->m_map != NULL) { 6639 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6640 BUS_DMASYNC_POSTREAD); 6641 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6642 } 6643 6644 /* 6645 * We only get here from bxe_rxeof() when the maximum number 6646 * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already 6647 * holds the mbuf in the prev_index so it's OK to NULL it out 6648 * here without concern of a memory leak. 6649 */ 6650 fp->rx_mbuf_chain[prev_index].m = NULL; 6651 } 6652 6653 rx_buf = &fp->rx_mbuf_chain[index]; 6654 6655 if (rx_buf->m_map != NULL) { 6656 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6657 BUS_DMASYNC_POSTREAD); 6658 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6659 } 6660 6661 /* save the mbuf and mapping info for a future packet */ 6662 map = (prev_index != index) ? 6663 fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map; 6664 rx_buf->m_map = fp->rx_mbuf_spare_map; 6665 fp->rx_mbuf_spare_map = map; 6666 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6667 BUS_DMASYNC_PREREAD); 6668 rx_buf->m = m; 6669 6670 rx_bd = &fp->rx_chain[index]; 6671 rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6672 rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6673 6674 return (rc); 6675 } 6676 6677 static int 6678 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 6679 int queue) 6680 { 6681 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 6682 bus_dma_segment_t segs[1]; 6683 bus_dmamap_t map; 6684 struct mbuf *m; 6685 int nsegs; 6686 int rc = 0; 6687 6688 /* allocate the new TPA mbuf */ 6689 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6690 if (__predict_false(m == NULL)) { 6691 fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++; 6692 return (ENOBUFS); 6693 } 6694 6695 fp->eth_q_stats.mbuf_alloc_tpa++; 6696 6697 /* initialize the mbuf buffer length */ 6698 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6699 6700 /* map the mbuf into non-paged pool */ 6701 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6702 fp->rx_tpa_info_mbuf_spare_map, 6703 m, segs, &nsegs, BUS_DMA_NOWAIT); 6704 if (__predict_false(rc != 0)) { 6705 fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++; 6706 m_free(m); 6707 fp->eth_q_stats.mbuf_alloc_tpa--; 6708 return (rc); 6709 } 6710 6711 /* all mbufs must map to a single segment */ 6712 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6713 6714 /* release any existing TPA mbuf mapping */ 6715 if (tpa_info->bd.m_map != NULL) { 6716 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6717 BUS_DMASYNC_POSTREAD); 6718 bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map); 6719 } 6720 6721 /* save the mbuf and mapping info for the TPA mbuf */ 6722 map = tpa_info->bd.m_map; 6723 tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map; 6724 fp->rx_tpa_info_mbuf_spare_map = map; 6725 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6726 BUS_DMASYNC_PREREAD); 6727 tpa_info->bd.m = m; 6728 tpa_info->seg = segs[0]; 6729 6730 return (rc); 6731 } 6732 6733 /* 6734 * Allocate an mbuf and assign it to the receive scatter gather chain. The 6735 * caller must take care to save a copy of the existing mbuf in the SG mbuf 6736 * chain. 6737 */ 6738 static int 6739 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 6740 uint16_t index) 6741 { 6742 struct bxe_sw_rx_bd *sge_buf; 6743 struct eth_rx_sge *sge; 6744 bus_dma_segment_t segs[1]; 6745 bus_dmamap_t map; 6746 struct mbuf *m; 6747 int nsegs; 6748 int rc = 0; 6749 6750 /* allocate a new SGE mbuf */ 6751 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE); 6752 if (__predict_false(m == NULL)) { 6753 fp->eth_q_stats.mbuf_rx_sge_alloc_failed++; 6754 return (ENOMEM); 6755 } 6756 6757 fp->eth_q_stats.mbuf_alloc_sge++; 6758 6759 /* initialize the mbuf buffer length */ 6760 m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE; 6761 6762 /* map the SGE mbuf into non-paged pool */ 6763 rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag, 6764 fp->rx_sge_mbuf_spare_map, 6765 m, segs, &nsegs, BUS_DMA_NOWAIT); 6766 if (__predict_false(rc != 0)) { 6767 fp->eth_q_stats.mbuf_rx_sge_mapping_failed++; 6768 m_freem(m); 6769 fp->eth_q_stats.mbuf_alloc_sge--; 6770 return (rc); 6771 } 6772 6773 /* all mbufs must map to a single segment */ 6774 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6775 6776 sge_buf = &fp->rx_sge_mbuf_chain[index]; 6777 6778 /* release any existing SGE mbuf mapping */ 6779 if (sge_buf->m_map != NULL) { 6780 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6781 BUS_DMASYNC_POSTREAD); 6782 bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map); 6783 } 6784 6785 /* save the mbuf and mapping info for a future packet */ 6786 map = sge_buf->m_map; 6787 sge_buf->m_map = fp->rx_sge_mbuf_spare_map; 6788 fp->rx_sge_mbuf_spare_map = map; 6789 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6790 BUS_DMASYNC_PREREAD); 6791 sge_buf->m = m; 6792 6793 sge = &fp->rx_sge_chain[index]; 6794 sge->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6795 sge->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6796 6797 return (rc); 6798 } 6799 6800 static __noinline int 6801 bxe_alloc_fp_buffers(struct bxe_softc *sc) 6802 { 6803 struct bxe_fastpath *fp; 6804 int i, j, rc = 0; 6805 int ring_prod, cqe_ring_prod; 6806 int max_agg_queues; 6807 6808 for (i = 0; i < sc->num_queues; i++) { 6809 fp = &sc->fp[i]; 6810 6811 #if __FreeBSD_version >= 800000 6812 fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF, 6813 M_NOWAIT, &fp->tx_mtx); 6814 if (fp->tx_br == NULL) { 6815 BLOGE(sc, "buf_ring alloc fail for fp[%02d]\n", i); 6816 goto bxe_alloc_fp_buffers_error; 6817 } 6818 #endif 6819 6820 ring_prod = cqe_ring_prod = 0; 6821 fp->rx_bd_cons = 0; 6822 fp->rx_cq_cons = 0; 6823 6824 /* allocate buffers for the RX BDs in RX BD chain */ 6825 for (j = 0; j < sc->max_rx_bufs; j++) { 6826 rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod); 6827 if (rc != 0) { 6828 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 6829 i, rc); 6830 goto bxe_alloc_fp_buffers_error; 6831 } 6832 6833 ring_prod = RX_BD_NEXT(ring_prod); 6834 cqe_ring_prod = RCQ_NEXT(cqe_ring_prod); 6835 } 6836 6837 fp->rx_bd_prod = ring_prod; 6838 fp->rx_cq_prod = cqe_ring_prod; 6839 fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0; 6840 6841 max_agg_queues = MAX_AGG_QS(sc); 6842 6843 fp->tpa_enable = TRUE; 6844 6845 /* fill the TPA pool */ 6846 for (j = 0; j < max_agg_queues; j++) { 6847 rc = bxe_alloc_rx_tpa_mbuf(fp, j); 6848 if (rc != 0) { 6849 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n", 6850 i, j); 6851 fp->tpa_enable = FALSE; 6852 goto bxe_alloc_fp_buffers_error; 6853 } 6854 6855 fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP; 6856 } 6857 6858 if (fp->tpa_enable) { 6859 /* fill the RX SGE chain */ 6860 ring_prod = 0; 6861 for (j = 0; j < RX_SGE_USABLE; j++) { 6862 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod); 6863 if (rc != 0) { 6864 BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n", 6865 i, ring_prod); 6866 fp->tpa_enable = FALSE; 6867 ring_prod = 0; 6868 goto bxe_alloc_fp_buffers_error; 6869 } 6870 6871 ring_prod = RX_SGE_NEXT(ring_prod); 6872 } 6873 6874 fp->rx_sge_prod = ring_prod; 6875 } 6876 } 6877 6878 return (0); 6879 6880 bxe_alloc_fp_buffers_error: 6881 6882 /* unwind what was already allocated */ 6883 bxe_free_rx_bd_chain(fp); 6884 bxe_free_tpa_pool(fp); 6885 bxe_free_sge_chain(fp); 6886 6887 return (ENOBUFS); 6888 } 6889 6890 static void 6891 bxe_free_fw_stats_mem(struct bxe_softc *sc) 6892 { 6893 bxe_dma_free(sc, &sc->fw_stats_dma); 6894 6895 sc->fw_stats_num = 0; 6896 6897 sc->fw_stats_req_size = 0; 6898 sc->fw_stats_req = NULL; 6899 sc->fw_stats_req_mapping = 0; 6900 6901 sc->fw_stats_data_size = 0; 6902 sc->fw_stats_data = NULL; 6903 sc->fw_stats_data_mapping = 0; 6904 } 6905 6906 static int 6907 bxe_alloc_fw_stats_mem(struct bxe_softc *sc) 6908 { 6909 uint8_t num_queue_stats; 6910 int num_groups; 6911 6912 /* number of queues for statistics is number of eth queues */ 6913 num_queue_stats = BXE_NUM_ETH_QUEUES(sc); 6914 6915 /* 6916 * Total number of FW statistics requests = 6917 * 1 for port stats + 1 for PF stats + num of queues 6918 */ 6919 sc->fw_stats_num = (2 + num_queue_stats); 6920 6921 /* 6922 * Request is built from stats_query_header and an array of 6923 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT 6924 * rules. The real number or requests is configured in the 6925 * stats_query_header. 6926 */ 6927 num_groups = 6928 ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) + 6929 ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0)); 6930 6931 BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n", 6932 sc->fw_stats_num, num_groups); 6933 6934 sc->fw_stats_req_size = 6935 (sizeof(struct stats_query_header) + 6936 (num_groups * sizeof(struct stats_query_cmd_group))); 6937 6938 /* 6939 * Data for statistics requests + stats_counter. 6940 * stats_counter holds per-STORM counters that are incremented when 6941 * STORM has finished with the current request. Memory for FCoE 6942 * offloaded statistics are counted anyway, even if they will not be sent. 6943 * VF stats are not accounted for here as the data of VF stats is stored 6944 * in memory allocated by the VF, not here. 6945 */ 6946 sc->fw_stats_data_size = 6947 (sizeof(struct stats_counter) + 6948 sizeof(struct per_port_stats) + 6949 sizeof(struct per_pf_stats) + 6950 /* sizeof(struct fcoe_statistics_params) + */ 6951 (sizeof(struct per_queue_stats) * num_queue_stats)); 6952 6953 if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size), 6954 &sc->fw_stats_dma, "fw stats") != 0) { 6955 bxe_free_fw_stats_mem(sc); 6956 return (-1); 6957 } 6958 6959 /* set up the shortcuts */ 6960 6961 sc->fw_stats_req = 6962 (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr; 6963 sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr; 6964 6965 sc->fw_stats_data = 6966 (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr + 6967 sc->fw_stats_req_size); 6968 sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr + 6969 sc->fw_stats_req_size); 6970 6971 BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n", 6972 (uintmax_t)sc->fw_stats_req_mapping); 6973 6974 BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n", 6975 (uintmax_t)sc->fw_stats_data_mapping); 6976 6977 return (0); 6978 } 6979 6980 /* 6981 * Bits map: 6982 * 0-7 - Engine0 load counter. 6983 * 8-15 - Engine1 load counter. 6984 * 16 - Engine0 RESET_IN_PROGRESS bit. 6985 * 17 - Engine1 RESET_IN_PROGRESS bit. 6986 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active 6987 * function on the engine 6988 * 19 - Engine1 ONE_IS_LOADED. 6989 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 6990 * leader to complete (check for both RESET_IN_PROGRESS bits and not 6991 * for just the one belonging to its engine). 6992 */ 6993 #define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 6994 #define BXE_PATH0_LOAD_CNT_MASK 0x000000ff 6995 #define BXE_PATH0_LOAD_CNT_SHIFT 0 6996 #define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00 6997 #define BXE_PATH1_LOAD_CNT_SHIFT 8 6998 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000 6999 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000 7000 #define BXE_GLOBAL_RESET_BIT 0x00040000 7001 7002 /* set the GLOBAL_RESET bit, should be run under rtnl lock */ 7003 static void 7004 bxe_set_reset_global(struct bxe_softc *sc) 7005 { 7006 uint32_t val; 7007 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7008 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7009 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT); 7010 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7011 } 7012 7013 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */ 7014 static void 7015 bxe_clear_reset_global(struct bxe_softc *sc) 7016 { 7017 uint32_t val; 7018 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7019 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7020 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT)); 7021 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7022 } 7023 7024 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */ 7025 static uint8_t 7026 bxe_reset_is_global(struct bxe_softc *sc) 7027 { 7028 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7029 BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val); 7030 return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE; 7031 } 7032 7033 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */ 7034 static void 7035 bxe_set_reset_done(struct bxe_softc *sc) 7036 { 7037 uint32_t val; 7038 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 7039 BXE_PATH0_RST_IN_PROG_BIT; 7040 7041 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7042 7043 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7044 /* Clear the bit */ 7045 val &= ~bit; 7046 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 7047 7048 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7049 } 7050 7051 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */ 7052 static void 7053 bxe_set_reset_in_progress(struct bxe_softc *sc) 7054 { 7055 uint32_t val; 7056 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 7057 BXE_PATH0_RST_IN_PROG_BIT; 7058 7059 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7060 7061 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7062 /* Set the bit */ 7063 val |= bit; 7064 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 7065 7066 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7067 } 7068 7069 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */ 7070 static uint8_t 7071 bxe_reset_is_done(struct bxe_softc *sc, 7072 int engine) 7073 { 7074 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7075 uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT : 7076 BXE_PATH0_RST_IN_PROG_BIT; 7077 7078 /* return false if bit is set */ 7079 return (val & bit) ? FALSE : TRUE; 7080 } 7081 7082 /* get the load status for an engine, should be run under rtnl lock */ 7083 static uint8_t 7084 bxe_get_load_status(struct bxe_softc *sc, 7085 int engine) 7086 { 7087 uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK : 7088 BXE_PATH0_LOAD_CNT_MASK; 7089 uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT : 7090 BXE_PATH0_LOAD_CNT_SHIFT; 7091 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7092 7093 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 7094 7095 val = ((val & mask) >> shift); 7096 7097 BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val); 7098 7099 return (val != 0); 7100 } 7101 7102 /* set pf load mark */ 7103 /* XXX needs to be under rtnl lock */ 7104 static void 7105 bxe_set_pf_load(struct bxe_softc *sc) 7106 { 7107 uint32_t val; 7108 uint32_t val1; 7109 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 7110 BXE_PATH0_LOAD_CNT_MASK; 7111 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 7112 BXE_PATH0_LOAD_CNT_SHIFT; 7113 7114 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7115 7116 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7117 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 7118 7119 /* get the current counter value */ 7120 val1 = ((val & mask) >> shift); 7121 7122 /* set bit of this PF */ 7123 val1 |= (1 << SC_ABS_FUNC(sc)); 7124 7125 /* clear the old value */ 7126 val &= ~mask; 7127 7128 /* set the new one */ 7129 val |= ((val1 << shift) & mask); 7130 7131 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 7132 7133 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7134 } 7135 7136 /* clear pf load mark */ 7137 /* XXX needs to be under rtnl lock */ 7138 static uint8_t 7139 bxe_clear_pf_load(struct bxe_softc *sc) 7140 { 7141 uint32_t val1, val; 7142 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 7143 BXE_PATH0_LOAD_CNT_MASK; 7144 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 7145 BXE_PATH0_LOAD_CNT_SHIFT; 7146 7147 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7148 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7149 BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val); 7150 7151 /* get the current counter value */ 7152 val1 = (val & mask) >> shift; 7153 7154 /* clear bit of that PF */ 7155 val1 &= ~(1 << SC_ABS_FUNC(sc)); 7156 7157 /* clear the old value */ 7158 val &= ~mask; 7159 7160 /* set the new one */ 7161 val |= ((val1 << shift) & mask); 7162 7163 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 7164 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7165 return (val1 != 0); 7166 } 7167 7168 /* send load requrest to mcp and analyze response */ 7169 static int 7170 bxe_nic_load_request(struct bxe_softc *sc, 7171 uint32_t *load_code) 7172 { 7173 /* init fw_seq */ 7174 sc->fw_seq = 7175 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 7176 DRV_MSG_SEQ_NUMBER_MASK); 7177 7178 BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq); 7179 7180 /* get the current FW pulse sequence */ 7181 sc->fw_drv_pulse_wr_seq = 7182 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) & 7183 DRV_PULSE_SEQ_MASK); 7184 7185 BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n", 7186 sc->fw_drv_pulse_wr_seq); 7187 7188 /* load request */ 7189 (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 7190 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 7191 7192 /* if the MCP fails to respond we must abort */ 7193 if (!(*load_code)) { 7194 BLOGE(sc, "MCP response failure!\n"); 7195 return (-1); 7196 } 7197 7198 /* if MCP refused then must abort */ 7199 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 7200 BLOGE(sc, "MCP refused load request\n"); 7201 return (-1); 7202 } 7203 7204 return (0); 7205 } 7206 7207 /* 7208 * Check whether another PF has already loaded FW to chip. In virtualized 7209 * environments a pf from anoth VM may have already initialized the device 7210 * including loading FW. 7211 */ 7212 static int 7213 bxe_nic_load_analyze_req(struct bxe_softc *sc, 7214 uint32_t load_code) 7215 { 7216 uint32_t my_fw, loaded_fw; 7217 7218 /* is another pf loaded on this engine? */ 7219 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 7220 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 7221 /* build my FW version dword */ 7222 my_fw = (BCM_5710_FW_MAJOR_VERSION + 7223 (BCM_5710_FW_MINOR_VERSION << 8 ) + 7224 (BCM_5710_FW_REVISION_VERSION << 16) + 7225 (BCM_5710_FW_ENGINEERING_VERSION << 24)); 7226 7227 /* read loaded FW from chip */ 7228 loaded_fw = REG_RD(sc, XSEM_REG_PRAM); 7229 BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n", 7230 loaded_fw, my_fw); 7231 7232 /* abort nic load if version mismatch */ 7233 if (my_fw != loaded_fw) { 7234 BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)", 7235 loaded_fw, my_fw); 7236 return (-1); 7237 } 7238 } 7239 7240 return (0); 7241 } 7242 7243 /* mark PMF if applicable */ 7244 static void 7245 bxe_nic_load_pmf(struct bxe_softc *sc, 7246 uint32_t load_code) 7247 { 7248 uint32_t ncsi_oem_data_addr; 7249 7250 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 7251 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 7252 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 7253 /* 7254 * Barrier here for ordering between the writing to sc->port.pmf here 7255 * and reading it from the periodic task. 7256 */ 7257 sc->port.pmf = 1; 7258 mb(); 7259 } else { 7260 sc->port.pmf = 0; 7261 } 7262 7263 BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf); 7264 7265 /* XXX needed? */ 7266 if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) { 7267 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) { 7268 ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr); 7269 if (ncsi_oem_data_addr) { 7270 REG_WR(sc, 7271 (ncsi_oem_data_addr + 7272 offsetof(struct glob_ncsi_oem_data, driver_version)), 7273 0); 7274 } 7275 } 7276 } 7277 } 7278 7279 static void 7280 bxe_read_mf_cfg(struct bxe_softc *sc) 7281 { 7282 int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1); 7283 int abs_func; 7284 int vn; 7285 7286 if (BXE_NOMCP(sc)) { 7287 return; /* what should be the default bvalue in this case */ 7288 } 7289 7290 /* 7291 * The formula for computing the absolute function number is... 7292 * For 2 port configuration (4 functions per port): 7293 * abs_func = 2 * vn + SC_PORT + SC_PATH 7294 * For 4 port configuration (2 functions per port): 7295 * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH 7296 */ 7297 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 7298 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc)); 7299 if (abs_func >= E1H_FUNC_MAX) { 7300 break; 7301 } 7302 sc->devinfo.mf_info.mf_config[vn] = 7303 MFCFG_RD(sc, func_mf_config[abs_func].config); 7304 } 7305 7306 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & 7307 FUNC_MF_CFG_FUNC_DISABLED) { 7308 BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n"); 7309 sc->flags |= BXE_MF_FUNC_DIS; 7310 } else { 7311 BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n"); 7312 sc->flags &= ~BXE_MF_FUNC_DIS; 7313 } 7314 } 7315 7316 /* acquire split MCP access lock register */ 7317 static int bxe_acquire_alr(struct bxe_softc *sc) 7318 { 7319 uint32_t j, val; 7320 7321 for (j = 0; j < 1000; j++) { 7322 val = (1UL << 31); 7323 REG_WR(sc, GRCBASE_MCP + 0x9c, val); 7324 val = REG_RD(sc, GRCBASE_MCP + 0x9c); 7325 if (val & (1L << 31)) 7326 break; 7327 7328 DELAY(5000); 7329 } 7330 7331 if (!(val & (1L << 31))) { 7332 BLOGE(sc, "Cannot acquire MCP access lock register\n"); 7333 return (-1); 7334 } 7335 7336 return (0); 7337 } 7338 7339 /* release split MCP access lock register */ 7340 static void bxe_release_alr(struct bxe_softc *sc) 7341 { 7342 REG_WR(sc, GRCBASE_MCP + 0x9c, 0); 7343 } 7344 7345 static void 7346 bxe_fan_failure(struct bxe_softc *sc) 7347 { 7348 int port = SC_PORT(sc); 7349 uint32_t ext_phy_config; 7350 7351 /* mark the failure */ 7352 ext_phy_config = 7353 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 7354 7355 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 7356 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 7357 SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config, 7358 ext_phy_config); 7359 7360 /* log the failure */ 7361 BLOGW(sc, "Fan Failure has caused the driver to shutdown " 7362 "the card to prevent permanent damage. " 7363 "Please contact OEM Support for assistance\n"); 7364 7365 /* XXX */ 7366 #if 1 7367 bxe_panic(sc, ("Schedule task to handle fan failure\n")); 7368 #else 7369 /* 7370 * Schedule device reset (unload) 7371 * This is due to some boards consuming sufficient power when driver is 7372 * up to overheat if fan fails. 7373 */ 7374 bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state); 7375 schedule_delayed_work(&sc->sp_rtnl_task, 0); 7376 #endif 7377 } 7378 7379 /* this function is called upon a link interrupt */ 7380 static void 7381 bxe_link_attn(struct bxe_softc *sc) 7382 { 7383 uint32_t pause_enabled = 0; 7384 struct host_port_stats *pstats; 7385 int cmng_fns; 7386 7387 /* Make sure that we are synced with the current statistics */ 7388 bxe_stats_handle(sc, STATS_EVENT_STOP); 7389 7390 elink_link_update(&sc->link_params, &sc->link_vars); 7391 7392 if (sc->link_vars.link_up) { 7393 7394 /* dropless flow control */ 7395 if (!CHIP_IS_E1(sc) && sc->dropless_fc) { 7396 pause_enabled = 0; 7397 7398 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 7399 pause_enabled = 1; 7400 } 7401 7402 REG_WR(sc, 7403 (BAR_USTRORM_INTMEM + 7404 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))), 7405 pause_enabled); 7406 } 7407 7408 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) { 7409 pstats = BXE_SP(sc, port_stats); 7410 /* reset old mac stats */ 7411 memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx)); 7412 } 7413 7414 if (sc->state == BXE_STATE_OPEN) { 7415 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 7416 } 7417 } 7418 7419 if (sc->link_vars.link_up && sc->link_vars.line_speed) { 7420 cmng_fns = bxe_get_cmng_fns_mode(sc); 7421 7422 if (cmng_fns != CMNG_FNS_NONE) { 7423 bxe_cmng_fns_init(sc, FALSE, cmng_fns); 7424 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7425 } else { 7426 /* rate shaping and fairness are disabled */ 7427 BLOGD(sc, DBG_LOAD, "single function mode without fairness\n"); 7428 } 7429 } 7430 7431 bxe_link_report_locked(sc); 7432 7433 if (IS_MF(sc)) { 7434 ; // XXX bxe_link_sync_notify(sc); 7435 } 7436 } 7437 7438 static void 7439 bxe_attn_int_asserted(struct bxe_softc *sc, 7440 uint32_t asserted) 7441 { 7442 int port = SC_PORT(sc); 7443 uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 7444 MISC_REG_AEU_MASK_ATTN_FUNC_0; 7445 uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 7446 NIG_REG_MASK_INTERRUPT_PORT0; 7447 uint32_t aeu_mask; 7448 uint32_t nig_mask = 0; 7449 uint32_t reg_addr; 7450 uint32_t igu_acked; 7451 uint32_t cnt; 7452 7453 if (sc->attn_state & asserted) { 7454 BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted); 7455 } 7456 7457 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7458 7459 aeu_mask = REG_RD(sc, aeu_addr); 7460 7461 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n", 7462 aeu_mask, asserted); 7463 7464 aeu_mask &= ~(asserted & 0x3ff); 7465 7466 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 7467 7468 REG_WR(sc, aeu_addr, aeu_mask); 7469 7470 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7471 7472 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 7473 sc->attn_state |= asserted; 7474 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 7475 7476 if (asserted & ATTN_HARD_WIRED_MASK) { 7477 if (asserted & ATTN_NIG_FOR_FUNC) { 7478 7479 bxe_acquire_phy_lock(sc); 7480 /* save nig interrupt mask */ 7481 nig_mask = REG_RD(sc, nig_int_mask_addr); 7482 7483 /* If nig_mask is not set, no need to call the update function */ 7484 if (nig_mask) { 7485 REG_WR(sc, nig_int_mask_addr, 0); 7486 7487 bxe_link_attn(sc); 7488 } 7489 7490 /* handle unicore attn? */ 7491 } 7492 7493 if (asserted & ATTN_SW_TIMER_4_FUNC) { 7494 BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n"); 7495 } 7496 7497 if (asserted & GPIO_2_FUNC) { 7498 BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n"); 7499 } 7500 7501 if (asserted & GPIO_3_FUNC) { 7502 BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n"); 7503 } 7504 7505 if (asserted & GPIO_4_FUNC) { 7506 BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n"); 7507 } 7508 7509 if (port == 0) { 7510 if (asserted & ATTN_GENERAL_ATTN_1) { 7511 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n"); 7512 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 7513 } 7514 if (asserted & ATTN_GENERAL_ATTN_2) { 7515 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n"); 7516 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 7517 } 7518 if (asserted & ATTN_GENERAL_ATTN_3) { 7519 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n"); 7520 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 7521 } 7522 } else { 7523 if (asserted & ATTN_GENERAL_ATTN_4) { 7524 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n"); 7525 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 7526 } 7527 if (asserted & ATTN_GENERAL_ATTN_5) { 7528 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n"); 7529 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 7530 } 7531 if (asserted & ATTN_GENERAL_ATTN_6) { 7532 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n"); 7533 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 7534 } 7535 } 7536 } /* hardwired */ 7537 7538 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7539 reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET); 7540 } else { 7541 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 7542 } 7543 7544 BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n", 7545 asserted, 7546 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 7547 REG_WR(sc, reg_addr, asserted); 7548 7549 /* now set back the mask */ 7550 if (asserted & ATTN_NIG_FOR_FUNC) { 7551 /* 7552 * Verify that IGU ack through BAR was written before restoring 7553 * NIG mask. This loop should exit after 2-3 iterations max. 7554 */ 7555 if (sc->devinfo.int_block != INT_BLOCK_HC) { 7556 cnt = 0; 7557 7558 do { 7559 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS); 7560 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 7561 (++cnt < MAX_IGU_ATTN_ACK_TO)); 7562 7563 if (!igu_acked) { 7564 BLOGE(sc, "Failed to verify IGU ack on time\n"); 7565 } 7566 7567 mb(); 7568 } 7569 7570 REG_WR(sc, nig_int_mask_addr, nig_mask); 7571 7572 bxe_release_phy_lock(sc); 7573 } 7574 } 7575 7576 static void 7577 bxe_print_next_block(struct bxe_softc *sc, 7578 int idx, 7579 const char *blk) 7580 { 7581 BLOGI(sc, "%s%s", idx ? ", " : "", blk); 7582 } 7583 7584 static int 7585 bxe_check_blocks_with_parity0(struct bxe_softc *sc, 7586 uint32_t sig, 7587 int par_num, 7588 uint8_t print) 7589 { 7590 uint32_t cur_bit = 0; 7591 int i = 0; 7592 7593 for (i = 0; sig; i++) { 7594 cur_bit = ((uint32_t)0x1 << i); 7595 if (sig & cur_bit) { 7596 switch (cur_bit) { 7597 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 7598 if (print) 7599 bxe_print_next_block(sc, par_num++, "BRB"); 7600 break; 7601 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 7602 if (print) 7603 bxe_print_next_block(sc, par_num++, "PARSER"); 7604 break; 7605 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 7606 if (print) 7607 bxe_print_next_block(sc, par_num++, "TSDM"); 7608 break; 7609 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 7610 if (print) 7611 bxe_print_next_block(sc, par_num++, "SEARCHER"); 7612 break; 7613 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 7614 if (print) 7615 bxe_print_next_block(sc, par_num++, "TCM"); 7616 break; 7617 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 7618 if (print) 7619 bxe_print_next_block(sc, par_num++, "TSEMI"); 7620 break; 7621 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 7622 if (print) 7623 bxe_print_next_block(sc, par_num++, "XPB"); 7624 break; 7625 } 7626 7627 /* Clear the bit */ 7628 sig &= ~cur_bit; 7629 } 7630 } 7631 7632 return (par_num); 7633 } 7634 7635 static int 7636 bxe_check_blocks_with_parity1(struct bxe_softc *sc, 7637 uint32_t sig, 7638 int par_num, 7639 uint8_t *global, 7640 uint8_t print) 7641 { 7642 int i = 0; 7643 uint32_t cur_bit = 0; 7644 for (i = 0; sig; i++) { 7645 cur_bit = ((uint32_t)0x1 << i); 7646 if (sig & cur_bit) { 7647 switch (cur_bit) { 7648 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 7649 if (print) 7650 bxe_print_next_block(sc, par_num++, "PBF"); 7651 break; 7652 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 7653 if (print) 7654 bxe_print_next_block(sc, par_num++, "QM"); 7655 break; 7656 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 7657 if (print) 7658 bxe_print_next_block(sc, par_num++, "TM"); 7659 break; 7660 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 7661 if (print) 7662 bxe_print_next_block(sc, par_num++, "XSDM"); 7663 break; 7664 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 7665 if (print) 7666 bxe_print_next_block(sc, par_num++, "XCM"); 7667 break; 7668 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 7669 if (print) 7670 bxe_print_next_block(sc, par_num++, "XSEMI"); 7671 break; 7672 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 7673 if (print) 7674 bxe_print_next_block(sc, par_num++, "DOORBELLQ"); 7675 break; 7676 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 7677 if (print) 7678 bxe_print_next_block(sc, par_num++, "NIG"); 7679 break; 7680 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 7681 if (print) 7682 bxe_print_next_block(sc, par_num++, "VAUX PCI CORE"); 7683 *global = TRUE; 7684 break; 7685 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 7686 if (print) 7687 bxe_print_next_block(sc, par_num++, "DEBUG"); 7688 break; 7689 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 7690 if (print) 7691 bxe_print_next_block(sc, par_num++, "USDM"); 7692 break; 7693 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 7694 if (print) 7695 bxe_print_next_block(sc, par_num++, "UCM"); 7696 break; 7697 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 7698 if (print) 7699 bxe_print_next_block(sc, par_num++, "USEMI"); 7700 break; 7701 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 7702 if (print) 7703 bxe_print_next_block(sc, par_num++, "UPB"); 7704 break; 7705 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 7706 if (print) 7707 bxe_print_next_block(sc, par_num++, "CSDM"); 7708 break; 7709 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 7710 if (print) 7711 bxe_print_next_block(sc, par_num++, "CCM"); 7712 break; 7713 } 7714 7715 /* Clear the bit */ 7716 sig &= ~cur_bit; 7717 } 7718 } 7719 7720 return (par_num); 7721 } 7722 7723 static int 7724 bxe_check_blocks_with_parity2(struct bxe_softc *sc, 7725 uint32_t sig, 7726 int par_num, 7727 uint8_t print) 7728 { 7729 uint32_t cur_bit = 0; 7730 int i = 0; 7731 7732 for (i = 0; sig; i++) { 7733 cur_bit = ((uint32_t)0x1 << i); 7734 if (sig & cur_bit) { 7735 switch (cur_bit) { 7736 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 7737 if (print) 7738 bxe_print_next_block(sc, par_num++, "CSEMI"); 7739 break; 7740 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 7741 if (print) 7742 bxe_print_next_block(sc, par_num++, "PXP"); 7743 break; 7744 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 7745 if (print) 7746 bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT"); 7747 break; 7748 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 7749 if (print) 7750 bxe_print_next_block(sc, par_num++, "CFC"); 7751 break; 7752 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 7753 if (print) 7754 bxe_print_next_block(sc, par_num++, "CDU"); 7755 break; 7756 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 7757 if (print) 7758 bxe_print_next_block(sc, par_num++, "DMAE"); 7759 break; 7760 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 7761 if (print) 7762 bxe_print_next_block(sc, par_num++, "IGU"); 7763 break; 7764 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 7765 if (print) 7766 bxe_print_next_block(sc, par_num++, "MISC"); 7767 break; 7768 } 7769 7770 /* Clear the bit */ 7771 sig &= ~cur_bit; 7772 } 7773 } 7774 7775 return (par_num); 7776 } 7777 7778 static int 7779 bxe_check_blocks_with_parity3(struct bxe_softc *sc, 7780 uint32_t sig, 7781 int par_num, 7782 uint8_t *global, 7783 uint8_t print) 7784 { 7785 uint32_t cur_bit = 0; 7786 int i = 0; 7787 7788 for (i = 0; sig; i++) { 7789 cur_bit = ((uint32_t)0x1 << i); 7790 if (sig & cur_bit) { 7791 switch (cur_bit) { 7792 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 7793 if (print) 7794 bxe_print_next_block(sc, par_num++, "MCP ROM"); 7795 *global = TRUE; 7796 break; 7797 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 7798 if (print) 7799 bxe_print_next_block(sc, par_num++, 7800 "MCP UMP RX"); 7801 *global = TRUE; 7802 break; 7803 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 7804 if (print) 7805 bxe_print_next_block(sc, par_num++, 7806 "MCP UMP TX"); 7807 *global = TRUE; 7808 break; 7809 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 7810 if (print) 7811 bxe_print_next_block(sc, par_num++, 7812 "MCP SCPAD"); 7813 *global = TRUE; 7814 break; 7815 } 7816 7817 /* Clear the bit */ 7818 sig &= ~cur_bit; 7819 } 7820 } 7821 7822 return (par_num); 7823 } 7824 7825 static int 7826 bxe_check_blocks_with_parity4(struct bxe_softc *sc, 7827 uint32_t sig, 7828 int par_num, 7829 uint8_t print) 7830 { 7831 uint32_t cur_bit = 0; 7832 int i = 0; 7833 7834 for (i = 0; sig; i++) { 7835 cur_bit = ((uint32_t)0x1 << i); 7836 if (sig & cur_bit) { 7837 switch (cur_bit) { 7838 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 7839 if (print) 7840 bxe_print_next_block(sc, par_num++, "PGLUE_B"); 7841 break; 7842 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 7843 if (print) 7844 bxe_print_next_block(sc, par_num++, "ATC"); 7845 break; 7846 } 7847 7848 /* Clear the bit */ 7849 sig &= ~cur_bit; 7850 } 7851 } 7852 7853 return (par_num); 7854 } 7855 7856 static uint8_t 7857 bxe_parity_attn(struct bxe_softc *sc, 7858 uint8_t *global, 7859 uint8_t print, 7860 uint32_t *sig) 7861 { 7862 int par_num = 0; 7863 7864 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 7865 (sig[1] & HW_PRTY_ASSERT_SET_1) || 7866 (sig[2] & HW_PRTY_ASSERT_SET_2) || 7867 (sig[3] & HW_PRTY_ASSERT_SET_3) || 7868 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 7869 BLOGE(sc, "Parity error: HW block parity attention:\n" 7870 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 7871 (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0), 7872 (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1), 7873 (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2), 7874 (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3), 7875 (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4)); 7876 7877 if (print) 7878 BLOGI(sc, "Parity errors detected in blocks: "); 7879 7880 par_num = 7881 bxe_check_blocks_with_parity0(sc, sig[0] & 7882 HW_PRTY_ASSERT_SET_0, 7883 par_num, print); 7884 par_num = 7885 bxe_check_blocks_with_parity1(sc, sig[1] & 7886 HW_PRTY_ASSERT_SET_1, 7887 par_num, global, print); 7888 par_num = 7889 bxe_check_blocks_with_parity2(sc, sig[2] & 7890 HW_PRTY_ASSERT_SET_2, 7891 par_num, print); 7892 par_num = 7893 bxe_check_blocks_with_parity3(sc, sig[3] & 7894 HW_PRTY_ASSERT_SET_3, 7895 par_num, global, print); 7896 par_num = 7897 bxe_check_blocks_with_parity4(sc, sig[4] & 7898 HW_PRTY_ASSERT_SET_4, 7899 par_num, print); 7900 7901 if (print) 7902 BLOGI(sc, "\n"); 7903 7904 return (TRUE); 7905 } 7906 7907 return (FALSE); 7908 } 7909 7910 static uint8_t 7911 bxe_chk_parity_attn(struct bxe_softc *sc, 7912 uint8_t *global, 7913 uint8_t print) 7914 { 7915 struct attn_route attn = { {0} }; 7916 int port = SC_PORT(sc); 7917 7918 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 7919 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 7920 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 7921 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 7922 7923 if (!CHIP_IS_E1x(sc)) 7924 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 7925 7926 return (bxe_parity_attn(sc, global, print, attn.sig)); 7927 } 7928 7929 static void 7930 bxe_attn_int_deasserted4(struct bxe_softc *sc, 7931 uint32_t attn) 7932 { 7933 uint32_t val; 7934 7935 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 7936 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 7937 BLOGE(sc, "PGLUE hw attention 0x%08x\n", val); 7938 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 7939 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 7940 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 7941 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 7942 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 7943 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 7944 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 7945 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 7946 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 7947 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 7948 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 7949 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 7950 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 7951 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 7952 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 7953 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 7954 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 7955 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 7956 } 7957 7958 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 7959 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR); 7960 BLOGE(sc, "ATC hw attention 0x%08x\n", val); 7961 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 7962 BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 7963 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 7964 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 7965 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 7966 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 7967 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 7968 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 7969 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 7970 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 7971 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 7972 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 7973 } 7974 7975 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7976 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 7977 BLOGE(sc, "FATAL parity attention set4 0x%08x\n", 7978 (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7979 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 7980 } 7981 } 7982 7983 static void 7984 bxe_e1h_disable(struct bxe_softc *sc) 7985 { 7986 int port = SC_PORT(sc); 7987 7988 bxe_tx_disable(sc); 7989 7990 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 7991 } 7992 7993 static void 7994 bxe_e1h_enable(struct bxe_softc *sc) 7995 { 7996 int port = SC_PORT(sc); 7997 7998 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 7999 8000 // XXX bxe_tx_enable(sc); 8001 } 8002 8003 /* 8004 * called due to MCP event (on pmf): 8005 * reread new bandwidth configuration 8006 * configure FW 8007 * notify others function about the change 8008 */ 8009 static void 8010 bxe_config_mf_bw(struct bxe_softc *sc) 8011 { 8012 if (sc->link_vars.link_up) { 8013 bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX); 8014 // XXX bxe_link_sync_notify(sc); 8015 } 8016 8017 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 8018 } 8019 8020 static void 8021 bxe_set_mf_bw(struct bxe_softc *sc) 8022 { 8023 bxe_config_mf_bw(sc); 8024 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 8025 } 8026 8027 static void 8028 bxe_handle_eee_event(struct bxe_softc *sc) 8029 { 8030 BLOGD(sc, DBG_INTR, "EEE - LLDP event\n"); 8031 bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 8032 } 8033 8034 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 8035 8036 static void 8037 bxe_drv_info_ether_stat(struct bxe_softc *sc) 8038 { 8039 struct eth_stats_info *ether_stat = 8040 &sc->sp->drv_info_to_mcp.ether_stat; 8041 8042 strlcpy(ether_stat->version, BXE_DRIVER_VERSION, 8043 ETH_STAT_INFO_VERSION_LEN); 8044 8045 /* XXX (+ MAC_PAD) taken from other driver... verify this is right */ 8046 sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj, 8047 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 8048 ether_stat->mac_local + MAC_PAD, 8049 MAC_PAD, ETH_ALEN); 8050 8051 ether_stat->mtu_size = sc->mtu; 8052 8053 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 8054 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 8055 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 8056 } 8057 8058 // XXX ether_stat->feature_flags |= ???; 8059 8060 ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0; 8061 8062 ether_stat->txq_size = sc->tx_ring_size; 8063 ether_stat->rxq_size = sc->rx_ring_size; 8064 } 8065 8066 static void 8067 bxe_handle_drv_info_req(struct bxe_softc *sc) 8068 { 8069 enum drv_info_opcode op_code; 8070 uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control); 8071 8072 /* if drv_info version supported by MFW doesn't match - send NACK */ 8073 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 8074 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 8075 return; 8076 } 8077 8078 op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 8079 DRV_INFO_CONTROL_OP_CODE_SHIFT); 8080 8081 memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp)); 8082 8083 switch (op_code) { 8084 case ETH_STATS_OPCODE: 8085 bxe_drv_info_ether_stat(sc); 8086 break; 8087 case FCOE_STATS_OPCODE: 8088 case ISCSI_STATS_OPCODE: 8089 default: 8090 /* if op code isn't supported - send NACK */ 8091 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 8092 return; 8093 } 8094 8095 /* 8096 * If we got drv_info attn from MFW then these fields are defined in 8097 * shmem2 for sure 8098 */ 8099 SHMEM2_WR(sc, drv_info_host_addr_lo, 8100 U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 8101 SHMEM2_WR(sc, drv_info_host_addr_hi, 8102 U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 8103 8104 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0); 8105 } 8106 8107 static void 8108 bxe_dcc_event(struct bxe_softc *sc, 8109 uint32_t dcc_event) 8110 { 8111 BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event); 8112 8113 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { 8114 /* 8115 * This is the only place besides the function initialization 8116 * where the sc->flags can change so it is done without any 8117 * locks 8118 */ 8119 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) { 8120 BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n"); 8121 sc->flags |= BXE_MF_FUNC_DIS; 8122 bxe_e1h_disable(sc); 8123 } else { 8124 BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n"); 8125 sc->flags &= ~BXE_MF_FUNC_DIS; 8126 bxe_e1h_enable(sc); 8127 } 8128 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; 8129 } 8130 8131 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { 8132 bxe_config_mf_bw(sc); 8133 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; 8134 } 8135 8136 /* Report results to MCP */ 8137 if (dcc_event) 8138 bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0); 8139 else 8140 bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0); 8141 } 8142 8143 static void 8144 bxe_pmf_update(struct bxe_softc *sc) 8145 { 8146 int port = SC_PORT(sc); 8147 uint32_t val; 8148 8149 sc->port.pmf = 1; 8150 BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf); 8151 8152 /* 8153 * We need the mb() to ensure the ordering between the writing to 8154 * sc->port.pmf here and reading it from the bxe_periodic_task(). 8155 */ 8156 mb(); 8157 8158 /* queue a periodic task */ 8159 // XXX schedule task... 8160 8161 // XXX bxe_dcbx_pmf_update(sc); 8162 8163 /* enable nig attention */ 8164 val = (0xff0f | (1 << (SC_VN(sc) + 4))); 8165 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8166 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val); 8167 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val); 8168 } else if (!CHIP_IS_E1x(sc)) { 8169 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 8170 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 8171 } 8172 8173 bxe_stats_handle(sc, STATS_EVENT_PMF); 8174 } 8175 8176 static int 8177 bxe_mc_assert(struct bxe_softc *sc) 8178 { 8179 char last_idx; 8180 int i, rc = 0; 8181 uint32_t row0, row1, row2, row3; 8182 8183 /* XSTORM */ 8184 last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET); 8185 if (last_idx) 8186 BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8187 8188 /* print the asserts */ 8189 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8190 8191 row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i)); 8192 row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4); 8193 row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8); 8194 row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12); 8195 8196 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8197 BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8198 i, row3, row2, row1, row0); 8199 rc++; 8200 } else { 8201 break; 8202 } 8203 } 8204 8205 /* TSTORM */ 8206 last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET); 8207 if (last_idx) { 8208 BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8209 } 8210 8211 /* print the asserts */ 8212 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8213 8214 row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i)); 8215 row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4); 8216 row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8); 8217 row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12); 8218 8219 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8220 BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8221 i, row3, row2, row1, row0); 8222 rc++; 8223 } else { 8224 break; 8225 } 8226 } 8227 8228 /* CSTORM */ 8229 last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET); 8230 if (last_idx) { 8231 BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8232 } 8233 8234 /* print the asserts */ 8235 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8236 8237 row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i)); 8238 row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4); 8239 row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8); 8240 row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12); 8241 8242 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8243 BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8244 i, row3, row2, row1, row0); 8245 rc++; 8246 } else { 8247 break; 8248 } 8249 } 8250 8251 /* USTORM */ 8252 last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET); 8253 if (last_idx) { 8254 BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8255 } 8256 8257 /* print the asserts */ 8258 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8259 8260 row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i)); 8261 row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4); 8262 row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8); 8263 row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12); 8264 8265 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8266 BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8267 i, row3, row2, row1, row0); 8268 rc++; 8269 } else { 8270 break; 8271 } 8272 } 8273 8274 return (rc); 8275 } 8276 8277 static void 8278 bxe_attn_int_deasserted3(struct bxe_softc *sc, 8279 uint32_t attn) 8280 { 8281 int func = SC_FUNC(sc); 8282 uint32_t val; 8283 8284 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 8285 8286 if (attn & BXE_PMF_LINK_ASSERT(sc)) { 8287 8288 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 8289 bxe_read_mf_cfg(sc); 8290 sc->devinfo.mf_info.mf_config[SC_VN(sc)] = 8291 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 8292 val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status); 8293 8294 if (val & DRV_STATUS_DCC_EVENT_MASK) 8295 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK)); 8296 8297 if (val & DRV_STATUS_SET_MF_BW) 8298 bxe_set_mf_bw(sc); 8299 8300 if (val & DRV_STATUS_DRV_INFO_REQ) 8301 bxe_handle_drv_info_req(sc); 8302 8303 #if 0 8304 if (val & DRV_STATUS_VF_DISABLED) 8305 bxe_vf_handle_flr_event(sc); 8306 #endif 8307 8308 if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF)) 8309 bxe_pmf_update(sc); 8310 8311 #if 0 8312 if (sc->port.pmf && 8313 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) && 8314 (sc->dcbx_enabled > 0)) 8315 /* start dcbx state machine */ 8316 bxe_dcbx_set_params(sc, BXE_DCBX_STATE_NEG_RECEIVED); 8317 #endif 8318 8319 #if 0 8320 if (val & DRV_STATUS_AFEX_EVENT_MASK) 8321 bxe_handle_afex_cmd(sc, val & DRV_STATUS_AFEX_EVENT_MASK); 8322 #endif 8323 8324 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 8325 bxe_handle_eee_event(sc); 8326 8327 if (sc->link_vars.periodic_flags & 8328 ELINK_PERIODIC_FLAGS_LINK_EVENT) { 8329 /* sync with link */ 8330 bxe_acquire_phy_lock(sc); 8331 sc->link_vars.periodic_flags &= 8332 ~ELINK_PERIODIC_FLAGS_LINK_EVENT; 8333 bxe_release_phy_lock(sc); 8334 if (IS_MF(sc)) 8335 ; // XXX bxe_link_sync_notify(sc); 8336 bxe_link_report(sc); 8337 } 8338 8339 /* 8340 * Always call it here: bxe_link_report() will 8341 * prevent the link indication duplication. 8342 */ 8343 bxe_link_status_update(sc); 8344 8345 } else if (attn & BXE_MC_ASSERT_BITS) { 8346 8347 BLOGE(sc, "MC assert!\n"); 8348 bxe_mc_assert(sc); 8349 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0); 8350 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0); 8351 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0); 8352 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0); 8353 bxe_panic(sc, ("MC assert!\n")); 8354 8355 } else if (attn & BXE_MCP_ASSERT) { 8356 8357 BLOGE(sc, "MCP assert!\n"); 8358 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0); 8359 // XXX bxe_fw_dump(sc); 8360 8361 } else { 8362 BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn); 8363 } 8364 } 8365 8366 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 8367 BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn); 8368 if (attn & BXE_GRC_TIMEOUT) { 8369 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN); 8370 BLOGE(sc, "GRC time-out 0x%08x\n", val); 8371 } 8372 if (attn & BXE_GRC_RSV) { 8373 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN); 8374 BLOGE(sc, "GRC reserved 0x%08x\n", val); 8375 } 8376 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 8377 } 8378 } 8379 8380 static void 8381 bxe_attn_int_deasserted2(struct bxe_softc *sc, 8382 uint32_t attn) 8383 { 8384 int port = SC_PORT(sc); 8385 int reg_offset; 8386 uint32_t val0, mask0, val1, mask1; 8387 uint32_t val; 8388 8389 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 8390 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR); 8391 BLOGE(sc, "CFC hw attention 0x%08x\n", val); 8392 /* CFC error attention */ 8393 if (val & 0x2) { 8394 BLOGE(sc, "FATAL error from CFC\n"); 8395 } 8396 } 8397 8398 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 8399 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0); 8400 BLOGE(sc, "PXP hw attention-0 0x%08x\n", val); 8401 /* RQ_USDMDP_FIFO_OVERFLOW */ 8402 if (val & 0x18000) { 8403 BLOGE(sc, "FATAL error from PXP\n"); 8404 } 8405 8406 if (!CHIP_IS_E1x(sc)) { 8407 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1); 8408 BLOGE(sc, "PXP hw attention-1 0x%08x\n", val); 8409 } 8410 } 8411 8412 #define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR 8413 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT 8414 8415 if (attn & AEU_PXP2_HW_INT_BIT) { 8416 /* CQ47854 workaround do not panic on 8417 * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8418 */ 8419 if (!CHIP_IS_E1x(sc)) { 8420 mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0); 8421 val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1); 8422 mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1); 8423 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0); 8424 /* 8425 * If the olny PXP2_EOP_ERROR_BIT is set in 8426 * STS0 and STS1 - clear it 8427 * 8428 * probably we lose additional attentions between 8429 * STS0 and STS_CLR0, in this case user will not 8430 * be notified about them 8431 */ 8432 if (val0 & mask0 & PXP2_EOP_ERROR_BIT && 8433 !(val1 & mask1)) 8434 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 8435 8436 /* print the register, since no one can restore it */ 8437 BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0); 8438 8439 /* 8440 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8441 * then notify 8442 */ 8443 if (val0 & PXP2_EOP_ERROR_BIT) { 8444 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n"); 8445 8446 /* 8447 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is 8448 * set then clear attention from PXP2 block without panic 8449 */ 8450 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) && 8451 ((val1 & mask1) == 0)) 8452 attn &= ~AEU_PXP2_HW_INT_BIT; 8453 } 8454 } 8455 } 8456 8457 if (attn & HW_INTERRUT_ASSERT_SET_2) { 8458 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 8459 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 8460 8461 val = REG_RD(sc, reg_offset); 8462 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); 8463 REG_WR(sc, reg_offset, val); 8464 8465 BLOGE(sc, "FATAL HW block attention set2 0x%x\n", 8466 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2)); 8467 bxe_panic(sc, ("HW block attention set2\n")); 8468 } 8469 } 8470 8471 static void 8472 bxe_attn_int_deasserted1(struct bxe_softc *sc, 8473 uint32_t attn) 8474 { 8475 int port = SC_PORT(sc); 8476 int reg_offset; 8477 uint32_t val; 8478 8479 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 8480 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR); 8481 BLOGE(sc, "DB hw attention 0x%08x\n", val); 8482 /* DORQ discard attention */ 8483 if (val & 0x2) { 8484 BLOGE(sc, "FATAL error from DORQ\n"); 8485 } 8486 } 8487 8488 if (attn & HW_INTERRUT_ASSERT_SET_1) { 8489 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 8490 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 8491 8492 val = REG_RD(sc, reg_offset); 8493 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); 8494 REG_WR(sc, reg_offset, val); 8495 8496 BLOGE(sc, "FATAL HW block attention set1 0x%08x\n", 8497 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1)); 8498 bxe_panic(sc, ("HW block attention set1\n")); 8499 } 8500 } 8501 8502 static void 8503 bxe_attn_int_deasserted0(struct bxe_softc *sc, 8504 uint32_t attn) 8505 { 8506 int port = SC_PORT(sc); 8507 int reg_offset; 8508 uint32_t val; 8509 8510 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 8511 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 8512 8513 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 8514 val = REG_RD(sc, reg_offset); 8515 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 8516 REG_WR(sc, reg_offset, val); 8517 8518 BLOGW(sc, "SPIO5 hw attention\n"); 8519 8520 /* Fan failure attention */ 8521 elink_hw_reset_phy(&sc->link_params); 8522 bxe_fan_failure(sc); 8523 } 8524 8525 if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) { 8526 bxe_acquire_phy_lock(sc); 8527 elink_handle_module_detect_int(&sc->link_params); 8528 bxe_release_phy_lock(sc); 8529 } 8530 8531 if (attn & HW_INTERRUT_ASSERT_SET_0) { 8532 val = REG_RD(sc, reg_offset); 8533 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); 8534 REG_WR(sc, reg_offset, val); 8535 8536 bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n", 8537 (attn & HW_INTERRUT_ASSERT_SET_0))); 8538 } 8539 } 8540 8541 static void 8542 bxe_attn_int_deasserted(struct bxe_softc *sc, 8543 uint32_t deasserted) 8544 { 8545 struct attn_route attn; 8546 struct attn_route *group_mask; 8547 int port = SC_PORT(sc); 8548 int index; 8549 uint32_t reg_addr; 8550 uint32_t val; 8551 uint32_t aeu_mask; 8552 uint8_t global = FALSE; 8553 8554 /* 8555 * Need to take HW lock because MCP or other port might also 8556 * try to handle this event. 8557 */ 8558 bxe_acquire_alr(sc); 8559 8560 if (bxe_chk_parity_attn(sc, &global, TRUE)) { 8561 /* XXX 8562 * In case of parity errors don't handle attentions so that 8563 * other function would "see" parity errors. 8564 */ 8565 sc->recovery_state = BXE_RECOVERY_INIT; 8566 // XXX schedule a recovery task... 8567 /* disable HW interrupts */ 8568 bxe_int_disable(sc); 8569 bxe_release_alr(sc); 8570 return; 8571 } 8572 8573 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 8574 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 8575 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 8576 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 8577 if (!CHIP_IS_E1x(sc)) { 8578 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 8579 } else { 8580 attn.sig[4] = 0; 8581 } 8582 8583 BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", 8584 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 8585 8586 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 8587 if (deasserted & (1 << index)) { 8588 group_mask = &sc->attn_group[index]; 8589 8590 BLOGD(sc, DBG_INTR, 8591 "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index, 8592 group_mask->sig[0], group_mask->sig[1], 8593 group_mask->sig[2], group_mask->sig[3], 8594 group_mask->sig[4]); 8595 8596 bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]); 8597 bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]); 8598 bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]); 8599 bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]); 8600 bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]); 8601 } 8602 } 8603 8604 bxe_release_alr(sc); 8605 8606 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8607 reg_addr = (HC_REG_COMMAND_REG + port*32 + 8608 COMMAND_REG_ATTN_BITS_CLR); 8609 } else { 8610 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 8611 } 8612 8613 val = ~deasserted; 8614 BLOGD(sc, DBG_INTR, 8615 "about to mask 0x%08x at %s addr 0x%08x\n", val, 8616 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 8617 REG_WR(sc, reg_addr, val); 8618 8619 if (~sc->attn_state & deasserted) { 8620 BLOGE(sc, "IGU error\n"); 8621 } 8622 8623 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 8624 MISC_REG_AEU_MASK_ATTN_FUNC_0; 8625 8626 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8627 8628 aeu_mask = REG_RD(sc, reg_addr); 8629 8630 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n", 8631 aeu_mask, deasserted); 8632 aeu_mask |= (deasserted & 0x3ff); 8633 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 8634 8635 REG_WR(sc, reg_addr, aeu_mask); 8636 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8637 8638 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 8639 sc->attn_state &= ~deasserted; 8640 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 8641 } 8642 8643 static void 8644 bxe_attn_int(struct bxe_softc *sc) 8645 { 8646 /* read local copy of bits */ 8647 uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits); 8648 uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack); 8649 uint32_t attn_state = sc->attn_state; 8650 8651 /* look for changed bits */ 8652 uint32_t asserted = attn_bits & ~attn_ack & ~attn_state; 8653 uint32_t deasserted = ~attn_bits & attn_ack & attn_state; 8654 8655 BLOGD(sc, DBG_INTR, 8656 "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n", 8657 attn_bits, attn_ack, asserted, deasserted); 8658 8659 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) { 8660 BLOGE(sc, "BAD attention state\n"); 8661 } 8662 8663 /* handle bits that were raised */ 8664 if (asserted) { 8665 bxe_attn_int_asserted(sc, asserted); 8666 } 8667 8668 if (deasserted) { 8669 bxe_attn_int_deasserted(sc, deasserted); 8670 } 8671 } 8672 8673 static uint16_t 8674 bxe_update_dsb_idx(struct bxe_softc *sc) 8675 { 8676 struct host_sp_status_block *def_sb = sc->def_sb; 8677 uint16_t rc = 0; 8678 8679 mb(); /* status block is written to by the chip */ 8680 8681 if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 8682 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index; 8683 rc |= BXE_DEF_SB_ATT_IDX; 8684 } 8685 8686 if (sc->def_idx != def_sb->sp_sb.running_index) { 8687 sc->def_idx = def_sb->sp_sb.running_index; 8688 rc |= BXE_DEF_SB_IDX; 8689 } 8690 8691 mb(); 8692 8693 return (rc); 8694 } 8695 8696 static inline struct ecore_queue_sp_obj * 8697 bxe_cid_to_q_obj(struct bxe_softc *sc, 8698 uint32_t cid) 8699 { 8700 BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid); 8701 return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj); 8702 } 8703 8704 static void 8705 bxe_handle_mcast_eqe(struct bxe_softc *sc) 8706 { 8707 struct ecore_mcast_ramrod_params rparam; 8708 int rc; 8709 8710 memset(&rparam, 0, sizeof(rparam)); 8711 8712 rparam.mcast_obj = &sc->mcast_obj; 8713 8714 BXE_MCAST_LOCK(sc); 8715 8716 /* clear pending state for the last command */ 8717 sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw); 8718 8719 /* if there are pending mcast commands - send them */ 8720 if (sc->mcast_obj.check_pending(&sc->mcast_obj)) { 8721 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 8722 if (rc < 0) { 8723 BLOGD(sc, DBG_SP, 8724 "ERROR: Failed to send pending mcast commands (%d)\n", 8725 rc); 8726 } 8727 } 8728 8729 BXE_MCAST_UNLOCK(sc); 8730 } 8731 8732 static void 8733 bxe_handle_classification_eqe(struct bxe_softc *sc, 8734 union event_ring_elem *elem) 8735 { 8736 unsigned long ramrod_flags = 0; 8737 int rc = 0; 8738 uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8739 struct ecore_vlan_mac_obj *vlan_mac_obj; 8740 8741 /* always push next commands out, don't wait here */ 8742 bit_set(&ramrod_flags, RAMROD_CONT); 8743 8744 switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) { 8745 case ECORE_FILTER_MAC_PENDING: 8746 BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n"); 8747 vlan_mac_obj = &sc->sp_objs[cid].mac_obj; 8748 break; 8749 8750 case ECORE_FILTER_MCAST_PENDING: 8751 BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n"); 8752 /* 8753 * This is only relevant for 57710 where multicast MACs are 8754 * configured as unicast MACs using the same ramrod. 8755 */ 8756 bxe_handle_mcast_eqe(sc); 8757 return; 8758 8759 default: 8760 BLOGE(sc, "Unsupported classification command: %d\n", 8761 elem->message.data.eth_event.echo); 8762 return; 8763 } 8764 8765 rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags); 8766 8767 if (rc < 0) { 8768 BLOGE(sc, "Failed to schedule new commands (%d)\n", rc); 8769 } else if (rc > 0) { 8770 BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n"); 8771 } 8772 } 8773 8774 static void 8775 bxe_handle_rx_mode_eqe(struct bxe_softc *sc, 8776 union event_ring_elem *elem) 8777 { 8778 bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 8779 8780 /* send rx_mode command again if was requested */ 8781 if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, 8782 &sc->sp_state)) { 8783 bxe_set_storm_rx_mode(sc); 8784 } 8785 #if 0 8786 else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_START_SCHED, 8787 &sc->sp_state)) { 8788 bxe_set_iscsi_eth_rx_mode(sc, TRUE); 8789 } 8790 else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_STOP_SCHED, 8791 &sc->sp_state)) { 8792 bxe_set_iscsi_eth_rx_mode(sc, FALSE); 8793 } 8794 #endif 8795 } 8796 8797 static void 8798 bxe_update_eq_prod(struct bxe_softc *sc, 8799 uint16_t prod) 8800 { 8801 storm_memset_eq_prod(sc, prod, SC_FUNC(sc)); 8802 wmb(); /* keep prod updates ordered */ 8803 } 8804 8805 static void 8806 bxe_eq_int(struct bxe_softc *sc) 8807 { 8808 uint16_t hw_cons, sw_cons, sw_prod; 8809 union event_ring_elem *elem; 8810 uint8_t echo; 8811 uint32_t cid; 8812 uint8_t opcode; 8813 int spqe_cnt = 0; 8814 struct ecore_queue_sp_obj *q_obj; 8815 struct ecore_func_sp_obj *f_obj = &sc->func_obj; 8816 struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw; 8817 8818 hw_cons = le16toh(*sc->eq_cons_sb); 8819 8820 /* 8821 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256. 8822 * when we get to the next-page we need to adjust so the loop 8823 * condition below will be met. The next element is the size of a 8824 * regular element and hence incrementing by 1 8825 */ 8826 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) { 8827 hw_cons++; 8828 } 8829 8830 /* 8831 * This function may never run in parallel with itself for a 8832 * specific sc and no need for a read memory barrier here. 8833 */ 8834 sw_cons = sc->eq_cons; 8835 sw_prod = sc->eq_prod; 8836 8837 BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n", 8838 hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left)); 8839 8840 for (; 8841 sw_cons != hw_cons; 8842 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 8843 8844 elem = &sc->eq[EQ_DESC(sw_cons)]; 8845 8846 #if 0 8847 int rc; 8848 rc = bxe_iov_eq_sp_event(sc, elem); 8849 if (!rc) { 8850 BLOGE(sc, "bxe_iov_eq_sp_event returned %d\n", rc); 8851 goto next_spqe; 8852 } 8853 #endif 8854 8855 /* elem CID originates from FW, actually LE */ 8856 cid = SW_CID(elem->message.data.cfc_del_event.cid); 8857 opcode = elem->message.opcode; 8858 8859 /* handle eq element */ 8860 switch (opcode) { 8861 #if 0 8862 case EVENT_RING_OPCODE_VF_PF_CHANNEL: 8863 BLOGD(sc, DBG_SP, "vf/pf channel element on eq\n"); 8864 bxe_vf_mbx(sc, &elem->message.data.vf_pf_event); 8865 continue; 8866 #endif 8867 8868 case EVENT_RING_OPCODE_STAT_QUERY: 8869 BLOGD(sc, DBG_SP, "got statistics completion event %d\n", 8870 sc->stats_comp++); 8871 /* nothing to do with stats comp */ 8872 goto next_spqe; 8873 8874 case EVENT_RING_OPCODE_CFC_DEL: 8875 /* handle according to cid range */ 8876 /* we may want to verify here that the sc state is HALTING */ 8877 BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid); 8878 q_obj = bxe_cid_to_q_obj(sc, cid); 8879 if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) { 8880 break; 8881 } 8882 goto next_spqe; 8883 8884 case EVENT_RING_OPCODE_STOP_TRAFFIC: 8885 BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n"); 8886 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) { 8887 break; 8888 } 8889 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED); 8890 goto next_spqe; 8891 8892 case EVENT_RING_OPCODE_START_TRAFFIC: 8893 BLOGD(sc, DBG_SP, "got START TRAFFIC\n"); 8894 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) { 8895 break; 8896 } 8897 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED); 8898 goto next_spqe; 8899 8900 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 8901 echo = elem->message.data.function_update_event.echo; 8902 if (echo == SWITCH_UPDATE) { 8903 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n"); 8904 if (f_obj->complete_cmd(sc, f_obj, 8905 ECORE_F_CMD_SWITCH_UPDATE)) { 8906 break; 8907 } 8908 } 8909 else { 8910 BLOGD(sc, DBG_SP, 8911 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 8912 #if 0 8913 f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_UPDATE); 8914 /* 8915 * We will perform the queues update from the sp_core_task as 8916 * all queue SP operations should run with CORE_LOCK. 8917 */ 8918 bxe_set_bit(BXE_SP_CORE_AFEX_F_UPDATE, &sc->sp_core_state); 8919 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8920 #endif 8921 } 8922 goto next_spqe; 8923 8924 #if 0 8925 case EVENT_RING_OPCODE_AFEX_VIF_LISTS: 8926 f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_VIFLISTS); 8927 bxe_after_afex_vif_lists(sc, elem); 8928 goto next_spqe; 8929 #endif 8930 8931 case EVENT_RING_OPCODE_FORWARD_SETUP: 8932 q_obj = &bxe_fwd_sp_obj(sc, q_obj); 8933 if (q_obj->complete_cmd(sc, q_obj, 8934 ECORE_Q_CMD_SETUP_TX_ONLY)) { 8935 break; 8936 } 8937 goto next_spqe; 8938 8939 case EVENT_RING_OPCODE_FUNCTION_START: 8940 BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n"); 8941 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) { 8942 break; 8943 } 8944 goto next_spqe; 8945 8946 case EVENT_RING_OPCODE_FUNCTION_STOP: 8947 BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n"); 8948 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) { 8949 break; 8950 } 8951 goto next_spqe; 8952 } 8953 8954 switch (opcode | sc->state) { 8955 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN): 8956 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT): 8957 cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8958 BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid); 8959 rss_raw->clear_pending(rss_raw); 8960 break; 8961 8962 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN): 8963 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG): 8964 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT): 8965 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN): 8966 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG): 8967 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8968 BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n"); 8969 bxe_handle_classification_eqe(sc, elem); 8970 break; 8971 8972 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN): 8973 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG): 8974 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8975 BLOGD(sc, DBG_SP, "got mcast ramrod\n"); 8976 bxe_handle_mcast_eqe(sc); 8977 break; 8978 8979 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN): 8980 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG): 8981 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8982 BLOGD(sc, DBG_SP, "got rx_mode ramrod\n"); 8983 bxe_handle_rx_mode_eqe(sc, elem); 8984 break; 8985 8986 default: 8987 /* unknown event log error and continue */ 8988 BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n", 8989 elem->message.opcode, sc->state); 8990 } 8991 8992 next_spqe: 8993 spqe_cnt++; 8994 } /* for */ 8995 8996 mb(); 8997 atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt); 8998 8999 sc->eq_cons = sw_cons; 9000 sc->eq_prod = sw_prod; 9001 9002 /* make sure that above mem writes were issued towards the memory */ 9003 wmb(); 9004 9005 /* update producer */ 9006 bxe_update_eq_prod(sc, sc->eq_prod); 9007 } 9008 9009 static void 9010 bxe_handle_sp_tq(void *context, 9011 int pending) 9012 { 9013 struct bxe_softc *sc = (struct bxe_softc *)context; 9014 uint16_t status; 9015 9016 BLOGD(sc, DBG_SP, "---> SP TASK <---\n"); 9017 9018 /* what work needs to be performed? */ 9019 status = bxe_update_dsb_idx(sc); 9020 9021 BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status); 9022 9023 /* HW attentions */ 9024 if (status & BXE_DEF_SB_ATT_IDX) { 9025 BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n"); 9026 bxe_attn_int(sc); 9027 status &= ~BXE_DEF_SB_ATT_IDX; 9028 } 9029 9030 /* SP events: STAT_QUERY and others */ 9031 if (status & BXE_DEF_SB_IDX) { 9032 /* handle EQ completions */ 9033 BLOGD(sc, DBG_SP, "---> EQ INTR <---\n"); 9034 bxe_eq_int(sc); 9035 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 9036 le16toh(sc->def_idx), IGU_INT_NOP, 1); 9037 status &= ~BXE_DEF_SB_IDX; 9038 } 9039 9040 /* if status is non zero then something went wrong */ 9041 if (__predict_false(status)) { 9042 BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status); 9043 } 9044 9045 /* ack status block only if something was actually handled */ 9046 bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID, 9047 le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1); 9048 9049 /* 9050 * Must be called after the EQ processing (since eq leads to sriov 9051 * ramrod completion flows). 9052 * This flow may have been scheduled by the arrival of a ramrod 9053 * completion, or by the sriov code rescheduling itself. 9054 */ 9055 // XXX bxe_iov_sp_task(sc); 9056 9057 #if 0 9058 /* AFEX - poll to check if VIFSET_ACK should be sent to MFW */ 9059 if (bxe_test_and_clear_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, 9060 &sc->sp_state)) { 9061 bxe_link_report(sc); 9062 bxe_fw_command(sc, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 9063 } 9064 #endif 9065 } 9066 9067 static void 9068 bxe_handle_fp_tq(void *context, 9069 int pending) 9070 { 9071 struct bxe_fastpath *fp = (struct bxe_fastpath *)context; 9072 struct bxe_softc *sc = fp->sc; 9073 uint8_t more_tx = FALSE; 9074 uint8_t more_rx = FALSE; 9075 9076 BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index); 9077 9078 /* XXX 9079 * IFF_DRV_RUNNING state can't be checked here since we process 9080 * slowpath events on a client queue during setup. Instead 9081 * we need to add a "process/continue" flag here that the driver 9082 * can use to tell the task here not to do anything. 9083 */ 9084 #if 0 9085 if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 9086 return; 9087 } 9088 #endif 9089 9090 /* update the fastpath index */ 9091 bxe_update_fp_sb_idx(fp); 9092 9093 /* XXX add loop here if ever support multiple tx CoS */ 9094 /* fp->txdata[cos] */ 9095 if (bxe_has_tx_work(fp)) { 9096 BXE_FP_TX_LOCK(fp); 9097 more_tx = bxe_txeof(sc, fp); 9098 BXE_FP_TX_UNLOCK(fp); 9099 } 9100 9101 if (bxe_has_rx_work(fp)) { 9102 more_rx = bxe_rxeof(sc, fp); 9103 } 9104 9105 if (more_rx /*|| more_tx*/) { 9106 /* still more work to do */ 9107 taskqueue_enqueue_fast(fp->tq, &fp->tq_task); 9108 return; 9109 } 9110 9111 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 9112 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 9113 } 9114 9115 static void 9116 bxe_task_fp(struct bxe_fastpath *fp) 9117 { 9118 struct bxe_softc *sc = fp->sc; 9119 uint8_t more_tx = FALSE; 9120 uint8_t more_rx = FALSE; 9121 9122 BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index); 9123 9124 /* update the fastpath index */ 9125 bxe_update_fp_sb_idx(fp); 9126 9127 /* XXX add loop here if ever support multiple tx CoS */ 9128 /* fp->txdata[cos] */ 9129 if (bxe_has_tx_work(fp)) { 9130 BXE_FP_TX_LOCK(fp); 9131 more_tx = bxe_txeof(sc, fp); 9132 BXE_FP_TX_UNLOCK(fp); 9133 } 9134 9135 if (bxe_has_rx_work(fp)) { 9136 more_rx = bxe_rxeof(sc, fp); 9137 } 9138 9139 if (more_rx /*|| more_tx*/) { 9140 /* still more work to do, bail out if this ISR and process later */ 9141 taskqueue_enqueue_fast(fp->tq, &fp->tq_task); 9142 return; 9143 } 9144 9145 /* 9146 * Here we write the fastpath index taken before doing any tx or rx work. 9147 * It is very well possible other hw events occurred up to this point and 9148 * they were actually processed accordingly above. Since we're going to 9149 * write an older fastpath index, an interrupt is coming which we might 9150 * not do any work in. 9151 */ 9152 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 9153 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 9154 } 9155 9156 /* 9157 * Legacy interrupt entry point. 9158 * 9159 * Verifies that the controller generated the interrupt and 9160 * then calls a separate routine to handle the various 9161 * interrupt causes: link, RX, and TX. 9162 */ 9163 static void 9164 bxe_intr_legacy(void *xsc) 9165 { 9166 struct bxe_softc *sc = (struct bxe_softc *)xsc; 9167 struct bxe_fastpath *fp; 9168 uint16_t status, mask; 9169 int i; 9170 9171 BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n"); 9172 9173 #if 0 9174 /* Don't handle any interrupts if we're not ready. */ 9175 if (__predict_false(sc->intr_sem != 0)) { 9176 return; 9177 } 9178 #endif 9179 9180 /* 9181 * 0 for ustorm, 1 for cstorm 9182 * the bits returned from ack_int() are 0-15 9183 * bit 0 = attention status block 9184 * bit 1 = fast path status block 9185 * a mask of 0x2 or more = tx/rx event 9186 * a mask of 1 = slow path event 9187 */ 9188 9189 status = bxe_ack_int(sc); 9190 9191 /* the interrupt is not for us */ 9192 if (__predict_false(status == 0)) { 9193 BLOGD(sc, DBG_INTR, "Not our interrupt!\n"); 9194 return; 9195 } 9196 9197 BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status); 9198 9199 FOR_EACH_ETH_QUEUE(sc, i) { 9200 fp = &sc->fp[i]; 9201 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc))); 9202 if (status & mask) { 9203 /* acknowledge and disable further fastpath interrupts */ 9204 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9205 bxe_task_fp(fp); 9206 status &= ~mask; 9207 } 9208 } 9209 9210 #if 0 9211 if (CNIC_SUPPORT(sc)) { 9212 mask = 0x2; 9213 if (status & (mask | 0x1)) { 9214 ... 9215 status &= ~mask; 9216 } 9217 } 9218 #endif 9219 9220 if (__predict_false(status & 0x1)) { 9221 /* acknowledge and disable further slowpath interrupts */ 9222 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9223 9224 /* schedule slowpath handler */ 9225 taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task); 9226 9227 status &= ~0x1; 9228 } 9229 9230 if (__predict_false(status)) { 9231 BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status); 9232 } 9233 } 9234 9235 /* slowpath interrupt entry point */ 9236 static void 9237 bxe_intr_sp(void *xsc) 9238 { 9239 struct bxe_softc *sc = (struct bxe_softc *)xsc; 9240 9241 BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n"); 9242 9243 /* acknowledge and disable further slowpath interrupts */ 9244 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9245 9246 /* schedule slowpath handler */ 9247 taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task); 9248 } 9249 9250 /* fastpath interrupt entry point */ 9251 static void 9252 bxe_intr_fp(void *xfp) 9253 { 9254 struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp; 9255 struct bxe_softc *sc = fp->sc; 9256 9257 BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index); 9258 9259 BLOGD(sc, DBG_INTR, 9260 "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n", 9261 curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id); 9262 9263 #if 0 9264 /* Don't handle any interrupts if we're not ready. */ 9265 if (__predict_false(sc->intr_sem != 0)) { 9266 return; 9267 } 9268 #endif 9269 9270 /* acknowledge and disable further fastpath interrupts */ 9271 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9272 9273 bxe_task_fp(fp); 9274 } 9275 9276 /* Release all interrupts allocated by the driver. */ 9277 static void 9278 bxe_interrupt_free(struct bxe_softc *sc) 9279 { 9280 int i; 9281 9282 switch (sc->interrupt_mode) { 9283 case INTR_MODE_INTX: 9284 BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n"); 9285 if (sc->intr[0].resource != NULL) { 9286 bus_release_resource(sc->dev, 9287 SYS_RES_IRQ, 9288 sc->intr[0].rid, 9289 sc->intr[0].resource); 9290 } 9291 break; 9292 case INTR_MODE_MSI: 9293 for (i = 0; i < sc->intr_count; i++) { 9294 BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i); 9295 if (sc->intr[i].resource && sc->intr[i].rid) { 9296 bus_release_resource(sc->dev, 9297 SYS_RES_IRQ, 9298 sc->intr[i].rid, 9299 sc->intr[i].resource); 9300 } 9301 } 9302 pci_release_msi(sc->dev); 9303 break; 9304 case INTR_MODE_MSIX: 9305 for (i = 0; i < sc->intr_count; i++) { 9306 BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i); 9307 if (sc->intr[i].resource && sc->intr[i].rid) { 9308 bus_release_resource(sc->dev, 9309 SYS_RES_IRQ, 9310 sc->intr[i].rid, 9311 sc->intr[i].resource); 9312 } 9313 } 9314 pci_release_msi(sc->dev); 9315 break; 9316 default: 9317 /* nothing to do as initial allocation failed */ 9318 break; 9319 } 9320 } 9321 9322 /* 9323 * This function determines and allocates the appropriate 9324 * interrupt based on system capabilites and user request. 9325 * 9326 * The user may force a particular interrupt mode, specify 9327 * the number of receive queues, specify the method for 9328 * distribuitng received frames to receive queues, or use 9329 * the default settings which will automatically select the 9330 * best supported combination. In addition, the OS may or 9331 * may not support certain combinations of these settings. 9332 * This routine attempts to reconcile the settings requested 9333 * by the user with the capabilites available from the system 9334 * to select the optimal combination of features. 9335 * 9336 * Returns: 9337 * 0 = Success, !0 = Failure. 9338 */ 9339 static int 9340 bxe_interrupt_alloc(struct bxe_softc *sc) 9341 { 9342 int msix_count = 0; 9343 int msi_count = 0; 9344 int num_requested = 0; 9345 int num_allocated = 0; 9346 int rid, i, j; 9347 int rc; 9348 9349 /* get the number of available MSI/MSI-X interrupts from the OS */ 9350 if (sc->interrupt_mode > 0) { 9351 if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) { 9352 msix_count = pci_msix_count(sc->dev); 9353 } 9354 9355 if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) { 9356 msi_count = pci_msi_count(sc->dev); 9357 } 9358 9359 BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n", 9360 msi_count, msix_count); 9361 } 9362 9363 do { /* try allocating MSI-X interrupt resources (at least 2) */ 9364 if (sc->interrupt_mode != INTR_MODE_MSIX) { 9365 break; 9366 } 9367 9368 if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) || 9369 (msix_count < 2)) { 9370 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9371 break; 9372 } 9373 9374 /* ask for the necessary number of MSI-X vectors */ 9375 num_requested = min((sc->num_queues + 1), msix_count); 9376 9377 BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested); 9378 9379 num_allocated = num_requested; 9380 if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) { 9381 BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc); 9382 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9383 break; 9384 } 9385 9386 if (num_allocated < 2) { /* possible? */ 9387 BLOGE(sc, "MSI-X allocation less than 2!\n"); 9388 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9389 pci_release_msi(sc->dev); 9390 break; 9391 } 9392 9393 BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n", 9394 num_requested, num_allocated); 9395 9396 /* best effort so use the number of vectors allocated to us */ 9397 sc->intr_count = num_allocated; 9398 sc->num_queues = num_allocated - 1; 9399 9400 rid = 1; /* initial resource identifier */ 9401 9402 /* allocate the MSI-X vectors */ 9403 for (i = 0; i < num_allocated; i++) { 9404 sc->intr[i].rid = (rid + i); 9405 9406 if ((sc->intr[i].resource = 9407 bus_alloc_resource_any(sc->dev, 9408 SYS_RES_IRQ, 9409 &sc->intr[i].rid, 9410 RF_ACTIVE)) == NULL) { 9411 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n", 9412 i, (rid + i)); 9413 9414 for (j = (i - 1); j >= 0; j--) { 9415 bus_release_resource(sc->dev, 9416 SYS_RES_IRQ, 9417 sc->intr[j].rid, 9418 sc->intr[j].resource); 9419 } 9420 9421 sc->intr_count = 0; 9422 sc->num_queues = 0; 9423 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9424 pci_release_msi(sc->dev); 9425 break; 9426 } 9427 9428 BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i)); 9429 } 9430 } while (0); 9431 9432 do { /* try allocating MSI vector resources (at least 2) */ 9433 if (sc->interrupt_mode != INTR_MODE_MSI) { 9434 break; 9435 } 9436 9437 if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) || 9438 (msi_count < 1)) { 9439 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9440 break; 9441 } 9442 9443 /* ask for a single MSI vector */ 9444 num_requested = 1; 9445 9446 BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested); 9447 9448 num_allocated = num_requested; 9449 if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) { 9450 BLOGE(sc, "MSI alloc failed (%d)!\n", rc); 9451 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9452 break; 9453 } 9454 9455 if (num_allocated != 1) { /* possible? */ 9456 BLOGE(sc, "MSI allocation is not 1!\n"); 9457 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9458 pci_release_msi(sc->dev); 9459 break; 9460 } 9461 9462 BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n", 9463 num_requested, num_allocated); 9464 9465 /* best effort so use the number of vectors allocated to us */ 9466 sc->intr_count = num_allocated; 9467 sc->num_queues = num_allocated; 9468 9469 rid = 1; /* initial resource identifier */ 9470 9471 sc->intr[0].rid = rid; 9472 9473 if ((sc->intr[0].resource = 9474 bus_alloc_resource_any(sc->dev, 9475 SYS_RES_IRQ, 9476 &sc->intr[0].rid, 9477 RF_ACTIVE)) == NULL) { 9478 BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid); 9479 sc->intr_count = 0; 9480 sc->num_queues = 0; 9481 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9482 pci_release_msi(sc->dev); 9483 break; 9484 } 9485 9486 BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid); 9487 } while (0); 9488 9489 do { /* try allocating INTx vector resources */ 9490 if (sc->interrupt_mode != INTR_MODE_INTX) { 9491 break; 9492 } 9493 9494 BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n"); 9495 9496 /* only one vector for INTx */ 9497 sc->intr_count = 1; 9498 sc->num_queues = 1; 9499 9500 rid = 0; /* initial resource identifier */ 9501 9502 sc->intr[0].rid = rid; 9503 9504 if ((sc->intr[0].resource = 9505 bus_alloc_resource_any(sc->dev, 9506 SYS_RES_IRQ, 9507 &sc->intr[0].rid, 9508 (RF_ACTIVE | RF_SHAREABLE))) == NULL) { 9509 BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid); 9510 sc->intr_count = 0; 9511 sc->num_queues = 0; 9512 sc->interrupt_mode = -1; /* Failed! */ 9513 break; 9514 } 9515 9516 BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid); 9517 } while (0); 9518 9519 if (sc->interrupt_mode == -1) { 9520 BLOGE(sc, "Interrupt Allocation: FAILED!!!\n"); 9521 rc = 1; 9522 } else { 9523 BLOGD(sc, DBG_LOAD, 9524 "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n", 9525 sc->interrupt_mode, sc->num_queues); 9526 rc = 0; 9527 } 9528 9529 return (rc); 9530 } 9531 9532 static void 9533 bxe_interrupt_detach(struct bxe_softc *sc) 9534 { 9535 struct bxe_fastpath *fp; 9536 int i; 9537 9538 /* release interrupt resources */ 9539 for (i = 0; i < sc->intr_count; i++) { 9540 if (sc->intr[i].resource && sc->intr[i].tag) { 9541 BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i); 9542 bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag); 9543 } 9544 } 9545 9546 for (i = 0; i < sc->num_queues; i++) { 9547 fp = &sc->fp[i]; 9548 if (fp->tq) { 9549 taskqueue_drain(fp->tq, &fp->tq_task); 9550 taskqueue_free(fp->tq); 9551 fp->tq = NULL; 9552 } 9553 } 9554 9555 9556 if (sc->sp_tq) { 9557 taskqueue_drain(sc->sp_tq, &sc->sp_tq_task); 9558 taskqueue_free(sc->sp_tq); 9559 sc->sp_tq = NULL; 9560 } 9561 } 9562 9563 /* 9564 * Enables interrupts and attach to the ISR. 9565 * 9566 * When using multiple MSI/MSI-X vectors the first vector 9567 * is used for slowpath operations while all remaining 9568 * vectors are used for fastpath operations. If only a 9569 * single MSI/MSI-X vector is used (SINGLE_ISR) then the 9570 * ISR must look for both slowpath and fastpath completions. 9571 */ 9572 static int 9573 bxe_interrupt_attach(struct bxe_softc *sc) 9574 { 9575 struct bxe_fastpath *fp; 9576 int rc = 0; 9577 int i; 9578 9579 snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name), 9580 "bxe%d_sp_tq", sc->unit); 9581 TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc); 9582 sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT, 9583 taskqueue_thread_enqueue, 9584 &sc->sp_tq); 9585 taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */ 9586 "%s", sc->sp_tq_name); 9587 9588 9589 for (i = 0; i < sc->num_queues; i++) { 9590 fp = &sc->fp[i]; 9591 snprintf(fp->tq_name, sizeof(fp->tq_name), 9592 "bxe%d_fp%d_tq", sc->unit, i); 9593 TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp); 9594 fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT, 9595 taskqueue_thread_enqueue, 9596 &fp->tq); 9597 taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */ 9598 "%s", fp->tq_name); 9599 } 9600 9601 /* setup interrupt handlers */ 9602 if (sc->interrupt_mode == INTR_MODE_MSIX) { 9603 BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n"); 9604 9605 /* 9606 * Setup the interrupt handler. Note that we pass the driver instance 9607 * to the interrupt handler for the slowpath. 9608 */ 9609 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9610 (INTR_TYPE_NET | INTR_MPSAFE), 9611 NULL, bxe_intr_sp, sc, 9612 &sc->intr[0].tag)) != 0) { 9613 BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc); 9614 goto bxe_interrupt_attach_exit; 9615 } 9616 9617 bus_describe_intr(sc->dev, sc->intr[0].resource, 9618 sc->intr[0].tag, "sp"); 9619 9620 /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */ 9621 9622 /* initialize the fastpath vectors (note the first was used for sp) */ 9623 for (i = 0; i < sc->num_queues; i++) { 9624 fp = &sc->fp[i]; 9625 BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1)); 9626 9627 /* 9628 * Setup the interrupt handler. Note that we pass the 9629 * fastpath context to the interrupt handler in this 9630 * case. 9631 */ 9632 if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource, 9633 (INTR_TYPE_NET | INTR_MPSAFE), 9634 NULL, bxe_intr_fp, fp, 9635 &sc->intr[i + 1].tag)) != 0) { 9636 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n", 9637 (i + 1), rc); 9638 goto bxe_interrupt_attach_exit; 9639 } 9640 9641 bus_describe_intr(sc->dev, sc->intr[i + 1].resource, 9642 sc->intr[i + 1].tag, "fp%02d", i); 9643 9644 /* bind the fastpath instance to a cpu */ 9645 if (sc->num_queues > 1) { 9646 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i); 9647 } 9648 9649 fp->state = BXE_FP_STATE_IRQ; 9650 } 9651 } else if (sc->interrupt_mode == INTR_MODE_MSI) { 9652 BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n"); 9653 9654 /* 9655 * Setup the interrupt handler. Note that we pass the 9656 * driver instance to the interrupt handler which 9657 * will handle both the slowpath and fastpath. 9658 */ 9659 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9660 (INTR_TYPE_NET | INTR_MPSAFE), 9661 NULL, bxe_intr_legacy, sc, 9662 &sc->intr[0].tag)) != 0) { 9663 BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc); 9664 goto bxe_interrupt_attach_exit; 9665 } 9666 9667 } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */ 9668 BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n"); 9669 9670 /* 9671 * Setup the interrupt handler. Note that we pass the 9672 * driver instance to the interrupt handler which 9673 * will handle both the slowpath and fastpath. 9674 */ 9675 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9676 (INTR_TYPE_NET | INTR_MPSAFE), 9677 NULL, bxe_intr_legacy, sc, 9678 &sc->intr[0].tag)) != 0) { 9679 BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc); 9680 goto bxe_interrupt_attach_exit; 9681 } 9682 } 9683 9684 bxe_interrupt_attach_exit: 9685 9686 return (rc); 9687 } 9688 9689 static int bxe_init_hw_common_chip(struct bxe_softc *sc); 9690 static int bxe_init_hw_common(struct bxe_softc *sc); 9691 static int bxe_init_hw_port(struct bxe_softc *sc); 9692 static int bxe_init_hw_func(struct bxe_softc *sc); 9693 static void bxe_reset_common(struct bxe_softc *sc); 9694 static void bxe_reset_port(struct bxe_softc *sc); 9695 static void bxe_reset_func(struct bxe_softc *sc); 9696 static int bxe_gunzip_init(struct bxe_softc *sc); 9697 static void bxe_gunzip_end(struct bxe_softc *sc); 9698 static int bxe_init_firmware(struct bxe_softc *sc); 9699 static void bxe_release_firmware(struct bxe_softc *sc); 9700 9701 static struct 9702 ecore_func_sp_drv_ops bxe_func_sp_drv = { 9703 .init_hw_cmn_chip = bxe_init_hw_common_chip, 9704 .init_hw_cmn = bxe_init_hw_common, 9705 .init_hw_port = bxe_init_hw_port, 9706 .init_hw_func = bxe_init_hw_func, 9707 9708 .reset_hw_cmn = bxe_reset_common, 9709 .reset_hw_port = bxe_reset_port, 9710 .reset_hw_func = bxe_reset_func, 9711 9712 .gunzip_init = bxe_gunzip_init, 9713 .gunzip_end = bxe_gunzip_end, 9714 9715 .init_fw = bxe_init_firmware, 9716 .release_fw = bxe_release_firmware, 9717 }; 9718 9719 static void 9720 bxe_init_func_obj(struct bxe_softc *sc) 9721 { 9722 sc->dmae_ready = 0; 9723 9724 ecore_init_func_obj(sc, 9725 &sc->func_obj, 9726 BXE_SP(sc, func_rdata), 9727 BXE_SP_MAPPING(sc, func_rdata), 9728 BXE_SP(sc, func_afex_rdata), 9729 BXE_SP_MAPPING(sc, func_afex_rdata), 9730 &bxe_func_sp_drv); 9731 } 9732 9733 static int 9734 bxe_init_hw(struct bxe_softc *sc, 9735 uint32_t load_code) 9736 { 9737 struct ecore_func_state_params func_params = { NULL }; 9738 int rc; 9739 9740 /* prepare the parameters for function state transitions */ 9741 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 9742 9743 func_params.f_obj = &sc->func_obj; 9744 func_params.cmd = ECORE_F_CMD_HW_INIT; 9745 9746 func_params.params.hw_init.load_phase = load_code; 9747 9748 /* 9749 * Via a plethora of function pointers, we will eventually reach 9750 * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func(). 9751 */ 9752 rc = ecore_func_state_change(sc, &func_params); 9753 9754 return (rc); 9755 } 9756 9757 static void 9758 bxe_fill(struct bxe_softc *sc, 9759 uint32_t addr, 9760 int fill, 9761 uint32_t len) 9762 { 9763 uint32_t i; 9764 9765 if (!(len % 4) && !(addr % 4)) { 9766 for (i = 0; i < len; i += 4) { 9767 REG_WR(sc, (addr + i), fill); 9768 } 9769 } else { 9770 for (i = 0; i < len; i++) { 9771 REG_WR8(sc, (addr + i), fill); 9772 } 9773 } 9774 } 9775 9776 /* writes FP SP data to FW - data_size in dwords */ 9777 static void 9778 bxe_wr_fp_sb_data(struct bxe_softc *sc, 9779 int fw_sb_id, 9780 uint32_t *sb_data_p, 9781 uint32_t data_size) 9782 { 9783 int index; 9784 9785 for (index = 0; index < data_size; index++) { 9786 REG_WR(sc, 9787 (BAR_CSTRORM_INTMEM + 9788 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 9789 (sizeof(uint32_t) * index)), 9790 *(sb_data_p + index)); 9791 } 9792 } 9793 9794 static void 9795 bxe_zero_fp_sb(struct bxe_softc *sc, 9796 int fw_sb_id) 9797 { 9798 struct hc_status_block_data_e2 sb_data_e2; 9799 struct hc_status_block_data_e1x sb_data_e1x; 9800 uint32_t *sb_data_p; 9801 uint32_t data_size = 0; 9802 9803 if (!CHIP_IS_E1x(sc)) { 9804 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9805 sb_data_e2.common.state = SB_DISABLED; 9806 sb_data_e2.common.p_func.vf_valid = FALSE; 9807 sb_data_p = (uint32_t *)&sb_data_e2; 9808 data_size = (sizeof(struct hc_status_block_data_e2) / 9809 sizeof(uint32_t)); 9810 } else { 9811 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9812 sb_data_e1x.common.state = SB_DISABLED; 9813 sb_data_e1x.common.p_func.vf_valid = FALSE; 9814 sb_data_p = (uint32_t *)&sb_data_e1x; 9815 data_size = (sizeof(struct hc_status_block_data_e1x) / 9816 sizeof(uint32_t)); 9817 } 9818 9819 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9820 9821 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 9822 0, CSTORM_STATUS_BLOCK_SIZE); 9823 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)), 9824 0, CSTORM_SYNC_BLOCK_SIZE); 9825 } 9826 9827 static void 9828 bxe_wr_sp_sb_data(struct bxe_softc *sc, 9829 struct hc_sp_status_block_data *sp_sb_data) 9830 { 9831 int i; 9832 9833 for (i = 0; 9834 i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t)); 9835 i++) { 9836 REG_WR(sc, 9837 (BAR_CSTRORM_INTMEM + 9838 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) + 9839 (i * sizeof(uint32_t))), 9840 *((uint32_t *)sp_sb_data + i)); 9841 } 9842 } 9843 9844 static void 9845 bxe_zero_sp_sb(struct bxe_softc *sc) 9846 { 9847 struct hc_sp_status_block_data sp_sb_data; 9848 9849 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9850 9851 sp_sb_data.state = SB_DISABLED; 9852 sp_sb_data.p_func.vf_valid = FALSE; 9853 9854 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9855 9856 bxe_fill(sc, 9857 (BAR_CSTRORM_INTMEM + 9858 CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))), 9859 0, CSTORM_SP_STATUS_BLOCK_SIZE); 9860 bxe_fill(sc, 9861 (BAR_CSTRORM_INTMEM + 9862 CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))), 9863 0, CSTORM_SP_SYNC_BLOCK_SIZE); 9864 } 9865 9866 static void 9867 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 9868 int igu_sb_id, 9869 int igu_seg_id) 9870 { 9871 hc_sm->igu_sb_id = igu_sb_id; 9872 hc_sm->igu_seg_id = igu_seg_id; 9873 hc_sm->timer_value = 0xFF; 9874 hc_sm->time_to_expire = 0xFFFFFFFF; 9875 } 9876 9877 static void 9878 bxe_map_sb_state_machines(struct hc_index_data *index_data) 9879 { 9880 /* zero out state machine indices */ 9881 9882 /* rx indices */ 9883 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9884 9885 /* tx indices */ 9886 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9887 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 9888 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 9889 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 9890 9891 /* map indices */ 9892 9893 /* rx indices */ 9894 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 9895 (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9896 9897 /* tx indices */ 9898 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 9899 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9900 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 9901 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9902 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 9903 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9904 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 9905 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9906 } 9907 9908 static void 9909 bxe_init_sb(struct bxe_softc *sc, 9910 bus_addr_t busaddr, 9911 int vfid, 9912 uint8_t vf_valid, 9913 int fw_sb_id, 9914 int igu_sb_id) 9915 { 9916 struct hc_status_block_data_e2 sb_data_e2; 9917 struct hc_status_block_data_e1x sb_data_e1x; 9918 struct hc_status_block_sm *hc_sm_p; 9919 uint32_t *sb_data_p; 9920 int igu_seg_id; 9921 int data_size; 9922 9923 if (CHIP_INT_MODE_IS_BC(sc)) { 9924 igu_seg_id = HC_SEG_ACCESS_NORM; 9925 } else { 9926 igu_seg_id = IGU_SEG_ACCESS_NORM; 9927 } 9928 9929 bxe_zero_fp_sb(sc, fw_sb_id); 9930 9931 if (!CHIP_IS_E1x(sc)) { 9932 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9933 sb_data_e2.common.state = SB_ENABLED; 9934 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc); 9935 sb_data_e2.common.p_func.vf_id = vfid; 9936 sb_data_e2.common.p_func.vf_valid = vf_valid; 9937 sb_data_e2.common.p_func.vnic_id = SC_VN(sc); 9938 sb_data_e2.common.same_igu_sb_1b = TRUE; 9939 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr); 9940 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr); 9941 hc_sm_p = sb_data_e2.common.state_machine; 9942 sb_data_p = (uint32_t *)&sb_data_e2; 9943 data_size = (sizeof(struct hc_status_block_data_e2) / 9944 sizeof(uint32_t)); 9945 bxe_map_sb_state_machines(sb_data_e2.index_data); 9946 } else { 9947 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9948 sb_data_e1x.common.state = SB_ENABLED; 9949 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc); 9950 sb_data_e1x.common.p_func.vf_id = 0xff; 9951 sb_data_e1x.common.p_func.vf_valid = FALSE; 9952 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc); 9953 sb_data_e1x.common.same_igu_sb_1b = TRUE; 9954 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr); 9955 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr); 9956 hc_sm_p = sb_data_e1x.common.state_machine; 9957 sb_data_p = (uint32_t *)&sb_data_e1x; 9958 data_size = (sizeof(struct hc_status_block_data_e1x) / 9959 sizeof(uint32_t)); 9960 bxe_map_sb_state_machines(sb_data_e1x.index_data); 9961 } 9962 9963 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id); 9964 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id); 9965 9966 BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id); 9967 9968 /* write indices to HW - PCI guarantees endianity of regpairs */ 9969 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9970 } 9971 9972 static inline uint8_t 9973 bxe_fp_qzone_id(struct bxe_fastpath *fp) 9974 { 9975 if (CHIP_IS_E1x(fp->sc)) { 9976 return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H); 9977 } else { 9978 return (fp->cl_id); 9979 } 9980 } 9981 9982 static inline uint32_t 9983 bxe_rx_ustorm_prods_offset(struct bxe_softc *sc, 9984 struct bxe_fastpath *fp) 9985 { 9986 uint32_t offset = BAR_USTRORM_INTMEM; 9987 9988 #if 0 9989 if (IS_VF(sc)) { 9990 return (PXP_VF_ADDR_USDM_QUEUES_START + 9991 (sc->acquire_resp.resc.hw_qid[fp->index] * 9992 sizeof(struct ustorm_queue_zone_data))); 9993 } else 9994 #endif 9995 if (!CHIP_IS_E1x(sc)) { 9996 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 9997 } else { 9998 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id); 9999 } 10000 10001 return (offset); 10002 } 10003 10004 static void 10005 bxe_init_eth_fp(struct bxe_softc *sc, 10006 int idx) 10007 { 10008 struct bxe_fastpath *fp = &sc->fp[idx]; 10009 uint32_t cids[ECORE_MULTI_TX_COS] = { 0 }; 10010 unsigned long q_type = 0; 10011 int cos; 10012 10013 fp->sc = sc; 10014 fp->index = idx; 10015 10016 snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name), 10017 "bxe%d_fp%d_tx_lock", sc->unit, idx); 10018 mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF); 10019 10020 snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name), 10021 "bxe%d_fp%d_rx_lock", sc->unit, idx); 10022 mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF); 10023 10024 fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc)); 10025 fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc)); 10026 10027 fp->cl_id = (CHIP_IS_E1x(sc)) ? 10028 (SC_L_ID(sc) + idx) : 10029 /* want client ID same as IGU SB ID for non-E1 */ 10030 fp->igu_sb_id; 10031 fp->cl_qzone_id = bxe_fp_qzone_id(fp); 10032 10033 /* setup sb indices */ 10034 if (!CHIP_IS_E1x(sc)) { 10035 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values; 10036 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index; 10037 } else { 10038 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values; 10039 fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index; 10040 } 10041 10042 /* init shortcut */ 10043 fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp); 10044 10045 fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]; 10046 10047 /* 10048 * XXX If multiple CoS is ever supported then each fastpath structure 10049 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 10050 */ 10051 for (cos = 0; cos < sc->max_cos; cos++) { 10052 cids[cos] = idx; 10053 } 10054 fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]; 10055 10056 /* nothing more for a VF to do */ 10057 if (IS_VF(sc)) { 10058 return; 10059 } 10060 10061 bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE, 10062 fp->fw_sb_id, fp->igu_sb_id); 10063 10064 bxe_update_fp_sb_idx(fp); 10065 10066 /* Configure Queue State object */ 10067 bit_set(&q_type, ECORE_Q_TYPE_HAS_RX); 10068 bit_set(&q_type, ECORE_Q_TYPE_HAS_TX); 10069 10070 ecore_init_queue_obj(sc, 10071 &sc->sp_objs[idx].q_obj, 10072 fp->cl_id, 10073 cids, 10074 sc->max_cos, 10075 SC_FUNC(sc), 10076 BXE_SP(sc, q_rdata), 10077 BXE_SP_MAPPING(sc, q_rdata), 10078 q_type); 10079 10080 /* configure classification DBs */ 10081 ecore_init_mac_obj(sc, 10082 &sc->sp_objs[idx].mac_obj, 10083 fp->cl_id, 10084 idx, 10085 SC_FUNC(sc), 10086 BXE_SP(sc, mac_rdata), 10087 BXE_SP_MAPPING(sc, mac_rdata), 10088 ECORE_FILTER_MAC_PENDING, 10089 &sc->sp_state, 10090 ECORE_OBJ_TYPE_RX_TX, 10091 &sc->macs_pool); 10092 10093 BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n", 10094 idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id); 10095 } 10096 10097 static inline void 10098 bxe_update_rx_prod(struct bxe_softc *sc, 10099 struct bxe_fastpath *fp, 10100 uint16_t rx_bd_prod, 10101 uint16_t rx_cq_prod, 10102 uint16_t rx_sge_prod) 10103 { 10104 struct ustorm_eth_rx_producers rx_prods = { 0 }; 10105 uint32_t i; 10106 10107 /* update producers */ 10108 rx_prods.bd_prod = rx_bd_prod; 10109 rx_prods.cqe_prod = rx_cq_prod; 10110 rx_prods.sge_prod = rx_sge_prod; 10111 10112 /* 10113 * Make sure that the BD and SGE data is updated before updating the 10114 * producers since FW might read the BD/SGE right after the producer 10115 * is updated. 10116 * This is only applicable for weak-ordered memory model archs such 10117 * as IA-64. The following barrier is also mandatory since FW will 10118 * assumes BDs must have buffers. 10119 */ 10120 wmb(); 10121 10122 for (i = 0; i < (sizeof(rx_prods) / 4); i++) { 10123 REG_WR(sc, 10124 (fp->ustorm_rx_prods_offset + (i * 4)), 10125 ((uint32_t *)&rx_prods)[i]); 10126 } 10127 10128 wmb(); /* keep prod updates ordered */ 10129 10130 BLOGD(sc, DBG_RX, 10131 "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n", 10132 fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod); 10133 } 10134 10135 static void 10136 bxe_init_rx_rings(struct bxe_softc *sc) 10137 { 10138 struct bxe_fastpath *fp; 10139 int i; 10140 10141 for (i = 0; i < sc->num_queues; i++) { 10142 fp = &sc->fp[i]; 10143 10144 fp->rx_bd_cons = 0; 10145 10146 /* 10147 * Activate the BD ring... 10148 * Warning, this will generate an interrupt (to the TSTORM) 10149 * so this can only be done after the chip is initialized 10150 */ 10151 bxe_update_rx_prod(sc, fp, 10152 fp->rx_bd_prod, 10153 fp->rx_cq_prod, 10154 fp->rx_sge_prod); 10155 10156 if (i != 0) { 10157 continue; 10158 } 10159 10160 if (CHIP_IS_E1(sc)) { 10161 REG_WR(sc, 10162 (BAR_USTRORM_INTMEM + 10163 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))), 10164 U64_LO(fp->rcq_dma.paddr)); 10165 REG_WR(sc, 10166 (BAR_USTRORM_INTMEM + 10167 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4), 10168 U64_HI(fp->rcq_dma.paddr)); 10169 } 10170 } 10171 } 10172 10173 static void 10174 bxe_init_tx_ring_one(struct bxe_fastpath *fp) 10175 { 10176 SET_FLAG(fp->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1); 10177 fp->tx_db.data.zero_fill1 = 0; 10178 fp->tx_db.data.prod = 0; 10179 10180 fp->tx_pkt_prod = 0; 10181 fp->tx_pkt_cons = 0; 10182 fp->tx_bd_prod = 0; 10183 fp->tx_bd_cons = 0; 10184 fp->eth_q_stats.tx_pkts = 0; 10185 } 10186 10187 static inline void 10188 bxe_init_tx_rings(struct bxe_softc *sc) 10189 { 10190 int i; 10191 10192 for (i = 0; i < sc->num_queues; i++) { 10193 #if 0 10194 uint8_t cos; 10195 for (cos = 0; cos < sc->max_cos; cos++) { 10196 bxe_init_tx_ring_one(&sc->fp[i].txdata[cos]); 10197 } 10198 #else 10199 bxe_init_tx_ring_one(&sc->fp[i]); 10200 #endif 10201 } 10202 } 10203 10204 static void 10205 bxe_init_def_sb(struct bxe_softc *sc) 10206 { 10207 struct host_sp_status_block *def_sb = sc->def_sb; 10208 bus_addr_t mapping = sc->def_sb_dma.paddr; 10209 int igu_sp_sb_index; 10210 int igu_seg_id; 10211 int port = SC_PORT(sc); 10212 int func = SC_FUNC(sc); 10213 int reg_offset, reg_offset_en5; 10214 uint64_t section; 10215 int index, sindex; 10216 struct hc_sp_status_block_data sp_sb_data; 10217 10218 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 10219 10220 if (CHIP_INT_MODE_IS_BC(sc)) { 10221 igu_sp_sb_index = DEF_SB_IGU_ID; 10222 igu_seg_id = HC_SEG_ACCESS_DEF; 10223 } else { 10224 igu_sp_sb_index = sc->igu_dsb_id; 10225 igu_seg_id = IGU_SEG_ACCESS_DEF; 10226 } 10227 10228 /* attentions */ 10229 section = ((uint64_t)mapping + 10230 offsetof(struct host_sp_status_block, atten_status_block)); 10231 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 10232 sc->attn_state = 0; 10233 10234 reg_offset = (port) ? 10235 MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 10236 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 10237 reg_offset_en5 = (port) ? 10238 MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 10239 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0; 10240 10241 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 10242 /* take care of sig[0]..sig[4] */ 10243 for (sindex = 0; sindex < 4; sindex++) { 10244 sc->attn_group[index].sig[sindex] = 10245 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index))); 10246 } 10247 10248 if (!CHIP_IS_E1x(sc)) { 10249 /* 10250 * enable5 is separate from the rest of the registers, 10251 * and the address skip is 4 and not 16 between the 10252 * different groups 10253 */ 10254 sc->attn_group[index].sig[4] = 10255 REG_RD(sc, (reg_offset_en5 + (0x4 * index))); 10256 } else { 10257 sc->attn_group[index].sig[4] = 0; 10258 } 10259 } 10260 10261 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10262 reg_offset = (port) ? 10263 HC_REG_ATTN_MSG1_ADDR_L : 10264 HC_REG_ATTN_MSG0_ADDR_L; 10265 REG_WR(sc, reg_offset, U64_LO(section)); 10266 REG_WR(sc, (reg_offset + 4), U64_HI(section)); 10267 } else if (!CHIP_IS_E1x(sc)) { 10268 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 10269 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 10270 } 10271 10272 section = ((uint64_t)mapping + 10273 offsetof(struct host_sp_status_block, sp_sb)); 10274 10275 bxe_zero_sp_sb(sc); 10276 10277 /* PCI guarantees endianity of regpair */ 10278 sp_sb_data.state = SB_ENABLED; 10279 sp_sb_data.host_sb_addr.lo = U64_LO(section); 10280 sp_sb_data.host_sb_addr.hi = U64_HI(section); 10281 sp_sb_data.igu_sb_id = igu_sp_sb_index; 10282 sp_sb_data.igu_seg_id = igu_seg_id; 10283 sp_sb_data.p_func.pf_id = func; 10284 sp_sb_data.p_func.vnic_id = SC_VN(sc); 10285 sp_sb_data.p_func.vf_id = 0xff; 10286 10287 bxe_wr_sp_sb_data(sc, &sp_sb_data); 10288 10289 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 10290 } 10291 10292 static void 10293 bxe_init_sp_ring(struct bxe_softc *sc) 10294 { 10295 atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING); 10296 sc->spq_prod_idx = 0; 10297 sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS]; 10298 sc->spq_prod_bd = sc->spq; 10299 sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT); 10300 } 10301 10302 static void 10303 bxe_init_eq_ring(struct bxe_softc *sc) 10304 { 10305 union event_ring_elem *elem; 10306 int i; 10307 10308 for (i = 1; i <= NUM_EQ_PAGES; i++) { 10309 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1]; 10310 10311 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr + 10312 BCM_PAGE_SIZE * 10313 (i % NUM_EQ_PAGES))); 10314 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr + 10315 BCM_PAGE_SIZE * 10316 (i % NUM_EQ_PAGES))); 10317 } 10318 10319 sc->eq_cons = 0; 10320 sc->eq_prod = NUM_EQ_DESC; 10321 sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS]; 10322 10323 atomic_store_rel_long(&sc->eq_spq_left, 10324 (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING), 10325 NUM_EQ_DESC) - 1)); 10326 } 10327 10328 static void 10329 bxe_init_internal_common(struct bxe_softc *sc) 10330 { 10331 int i; 10332 10333 if (IS_MF_SI(sc)) { 10334 /* 10335 * In switch independent mode, the TSTORM needs to accept 10336 * packets that failed classification, since approximate match 10337 * mac addresses aren't written to NIG LLH. 10338 */ 10339 REG_WR8(sc, 10340 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 10341 2); 10342 } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */ 10343 REG_WR8(sc, 10344 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 10345 0); 10346 } 10347 10348 /* 10349 * Zero this manually as its initialization is currently missing 10350 * in the initTool. 10351 */ 10352 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) { 10353 REG_WR(sc, 10354 (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)), 10355 0); 10356 } 10357 10358 if (!CHIP_IS_E1x(sc)) { 10359 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET), 10360 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 10361 } 10362 } 10363 10364 static void 10365 bxe_init_internal(struct bxe_softc *sc, 10366 uint32_t load_code) 10367 { 10368 switch (load_code) { 10369 case FW_MSG_CODE_DRV_LOAD_COMMON: 10370 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 10371 bxe_init_internal_common(sc); 10372 /* no break */ 10373 10374 case FW_MSG_CODE_DRV_LOAD_PORT: 10375 /* nothing to do */ 10376 /* no break */ 10377 10378 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 10379 /* internal memory per function is initialized inside bxe_pf_init */ 10380 break; 10381 10382 default: 10383 BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code); 10384 break; 10385 } 10386 } 10387 10388 static void 10389 storm_memset_func_cfg(struct bxe_softc *sc, 10390 struct tstorm_eth_function_common_config *tcfg, 10391 uint16_t abs_fid) 10392 { 10393 uint32_t addr; 10394 size_t size; 10395 10396 addr = (BAR_TSTRORM_INTMEM + 10397 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid)); 10398 size = sizeof(struct tstorm_eth_function_common_config); 10399 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg); 10400 } 10401 10402 static void 10403 bxe_func_init(struct bxe_softc *sc, 10404 struct bxe_func_init_params *p) 10405 { 10406 struct tstorm_eth_function_common_config tcfg = { 0 }; 10407 10408 if (CHIP_IS_E1x(sc)) { 10409 storm_memset_func_cfg(sc, &tcfg, p->func_id); 10410 } 10411 10412 /* Enable the function in the FW */ 10413 storm_memset_vf_to_pf(sc, p->func_id, p->pf_id); 10414 storm_memset_func_en(sc, p->func_id, 1); 10415 10416 /* spq */ 10417 if (p->func_flgs & FUNC_FLG_SPQ) { 10418 storm_memset_spq_addr(sc, p->spq_map, p->func_id); 10419 REG_WR(sc, 10420 (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)), 10421 p->spq_prod); 10422 } 10423 } 10424 10425 /* 10426 * Calculates the sum of vn_min_rates. 10427 * It's needed for further normalizing of the min_rates. 10428 * Returns: 10429 * sum of vn_min_rates. 10430 * or 10431 * 0 - if all the min_rates are 0. 10432 * In the later case fainess algorithm should be deactivated. 10433 * If all min rates are not zero then those that are zeroes will be set to 1. 10434 */ 10435 static void 10436 bxe_calc_vn_min(struct bxe_softc *sc, 10437 struct cmng_init_input *input) 10438 { 10439 uint32_t vn_cfg; 10440 uint32_t vn_min_rate; 10441 int all_zero = 1; 10442 int vn; 10443 10444 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10445 vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10446 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 10447 FUNC_MF_CFG_MIN_BW_SHIFT) * 100); 10448 10449 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10450 /* skip hidden VNs */ 10451 vn_min_rate = 0; 10452 } else if (!vn_min_rate) { 10453 /* If min rate is zero - set it to 100 */ 10454 vn_min_rate = DEF_MIN_RATE; 10455 } else { 10456 all_zero = 0; 10457 } 10458 10459 input->vnic_min_rate[vn] = vn_min_rate; 10460 } 10461 10462 /* if ETS or all min rates are zeros - disable fairness */ 10463 if (BXE_IS_ETS_ENABLED(sc)) { 10464 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10465 BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n"); 10466 } else if (all_zero) { 10467 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10468 BLOGD(sc, DBG_LOAD, 10469 "Fariness disabled (all MIN values are zeroes)\n"); 10470 } else { 10471 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10472 } 10473 } 10474 10475 static inline uint16_t 10476 bxe_extract_max_cfg(struct bxe_softc *sc, 10477 uint32_t mf_cfg) 10478 { 10479 uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >> 10480 FUNC_MF_CFG_MAX_BW_SHIFT); 10481 10482 if (!max_cfg) { 10483 BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n"); 10484 max_cfg = 100; 10485 } 10486 10487 return (max_cfg); 10488 } 10489 10490 static void 10491 bxe_calc_vn_max(struct bxe_softc *sc, 10492 int vn, 10493 struct cmng_init_input *input) 10494 { 10495 uint16_t vn_max_rate; 10496 uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10497 uint32_t max_cfg; 10498 10499 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10500 vn_max_rate = 0; 10501 } else { 10502 max_cfg = bxe_extract_max_cfg(sc, vn_cfg); 10503 10504 if (IS_MF_SI(sc)) { 10505 /* max_cfg in percents of linkspeed */ 10506 vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100); 10507 } else { /* SD modes */ 10508 /* max_cfg is absolute in 100Mb units */ 10509 vn_max_rate = (max_cfg * 100); 10510 } 10511 } 10512 10513 BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 10514 10515 input->vnic_max_rate[vn] = vn_max_rate; 10516 } 10517 10518 static void 10519 bxe_cmng_fns_init(struct bxe_softc *sc, 10520 uint8_t read_cfg, 10521 uint8_t cmng_type) 10522 { 10523 struct cmng_init_input input; 10524 int vn; 10525 10526 memset(&input, 0, sizeof(struct cmng_init_input)); 10527 10528 input.port_rate = sc->link_vars.line_speed; 10529 10530 if (cmng_type == CMNG_FNS_MINMAX) { 10531 /* read mf conf from shmem */ 10532 if (read_cfg) { 10533 bxe_read_mf_cfg(sc); 10534 } 10535 10536 /* get VN min rate and enable fairness if not 0 */ 10537 bxe_calc_vn_min(sc, &input); 10538 10539 /* get VN max rate */ 10540 if (sc->port.pmf) { 10541 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10542 bxe_calc_vn_max(sc, vn, &input); 10543 } 10544 } 10545 10546 /* always enable rate shaping and fairness */ 10547 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 10548 10549 ecore_init_cmng(&input, &sc->cmng); 10550 return; 10551 } 10552 10553 /* rate shaping and fairness are disabled */ 10554 BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n"); 10555 } 10556 10557 static int 10558 bxe_get_cmng_fns_mode(struct bxe_softc *sc) 10559 { 10560 if (CHIP_REV_IS_SLOW(sc)) { 10561 return (CMNG_FNS_NONE); 10562 } 10563 10564 if (IS_MF(sc)) { 10565 return (CMNG_FNS_MINMAX); 10566 } 10567 10568 return (CMNG_FNS_NONE); 10569 } 10570 10571 static void 10572 storm_memset_cmng(struct bxe_softc *sc, 10573 struct cmng_init *cmng, 10574 uint8_t port) 10575 { 10576 int vn; 10577 int func; 10578 uint32_t addr; 10579 size_t size; 10580 10581 addr = (BAR_XSTRORM_INTMEM + 10582 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port)); 10583 size = sizeof(struct cmng_struct_per_port); 10584 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port); 10585 10586 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10587 func = func_by_vn(sc, vn); 10588 10589 addr = (BAR_XSTRORM_INTMEM + 10590 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func)); 10591 size = sizeof(struct rate_shaping_vars_per_vn); 10592 ecore_storm_memset_struct(sc, addr, size, 10593 (uint32_t *)&cmng->vnic.vnic_max_rate[vn]); 10594 10595 addr = (BAR_XSTRORM_INTMEM + 10596 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func)); 10597 size = sizeof(struct fairness_vars_per_vn); 10598 ecore_storm_memset_struct(sc, addr, size, 10599 (uint32_t *)&cmng->vnic.vnic_min_rate[vn]); 10600 } 10601 } 10602 10603 static void 10604 bxe_pf_init(struct bxe_softc *sc) 10605 { 10606 struct bxe_func_init_params func_init = { 0 }; 10607 struct event_ring_data eq_data = { { 0 } }; 10608 uint16_t flags; 10609 10610 if (!CHIP_IS_E1x(sc)) { 10611 /* reset IGU PF statistics: MSIX + ATTN */ 10612 /* PF */ 10613 REG_WR(sc, 10614 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10615 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10616 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10617 0); 10618 /* ATTN */ 10619 REG_WR(sc, 10620 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10621 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10622 (BXE_IGU_STAS_MSG_PF_CNT * 4) + 10623 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10624 0); 10625 } 10626 10627 /* function setup flags */ 10628 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); 10629 10630 /* 10631 * This flag is relevant for E1x only. 10632 * E2 doesn't have a TPA configuration in a function level. 10633 */ 10634 flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0; 10635 10636 func_init.func_flgs = flags; 10637 func_init.pf_id = SC_FUNC(sc); 10638 func_init.func_id = SC_FUNC(sc); 10639 func_init.spq_map = sc->spq_dma.paddr; 10640 func_init.spq_prod = sc->spq_prod_idx; 10641 10642 bxe_func_init(sc, &func_init); 10643 10644 memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port)); 10645 10646 /* 10647 * Congestion management values depend on the link rate. 10648 * There is no active link so initial link rate is set to 10Gbps. 10649 * When the link comes up the congestion management values are 10650 * re-calculated according to the actual link rate. 10651 */ 10652 sc->link_vars.line_speed = SPEED_10000; 10653 bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc)); 10654 10655 /* Only the PMF sets the HW */ 10656 if (sc->port.pmf) { 10657 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 10658 } 10659 10660 /* init Event Queue - PCI bus guarantees correct endainity */ 10661 eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr); 10662 eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr); 10663 eq_data.producer = sc->eq_prod; 10664 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 10665 eq_data.sb_id = DEF_SB_ID; 10666 storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc)); 10667 } 10668 10669 static void 10670 bxe_hc_int_enable(struct bxe_softc *sc) 10671 { 10672 int port = SC_PORT(sc); 10673 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10674 uint32_t val = REG_RD(sc, addr); 10675 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10676 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10677 (sc->intr_count == 1)) ? TRUE : FALSE; 10678 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10679 10680 if (msix) { 10681 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10682 HC_CONFIG_0_REG_INT_LINE_EN_0); 10683 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10684 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10685 if (single_msix) { 10686 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 10687 } 10688 } else if (msi) { 10689 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 10690 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10691 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10692 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10693 } else { 10694 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10695 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10696 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10697 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10698 10699 if (!CHIP_IS_E1(sc)) { 10700 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", 10701 val, port, addr); 10702 10703 REG_WR(sc, addr, val); 10704 10705 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 10706 } 10707 } 10708 10709 if (CHIP_IS_E1(sc)) { 10710 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF); 10711 } 10712 10713 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n", 10714 val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10715 10716 REG_WR(sc, addr, val); 10717 10718 /* ensure that HC_CONFIG is written before leading/trailing edge config */ 10719 mb(); 10720 10721 if (!CHIP_IS_E1(sc)) { 10722 /* init leading/trailing edge */ 10723 if (IS_MF(sc)) { 10724 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10725 if (sc->port.pmf) { 10726 /* enable nig and gpio3 attention */ 10727 val |= 0x1100; 10728 } 10729 } else { 10730 val = 0xffff; 10731 } 10732 10733 REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val); 10734 REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val); 10735 } 10736 10737 /* make sure that interrupts are indeed enabled from here on */ 10738 mb(); 10739 } 10740 10741 static void 10742 bxe_igu_int_enable(struct bxe_softc *sc) 10743 { 10744 uint32_t val; 10745 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10746 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10747 (sc->intr_count == 1)) ? TRUE : FALSE; 10748 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10749 10750 val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10751 10752 if (msix) { 10753 val &= ~(IGU_PF_CONF_INT_LINE_EN | 10754 IGU_PF_CONF_SINGLE_ISR_EN); 10755 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10756 IGU_PF_CONF_ATTN_BIT_EN); 10757 if (single_msix) { 10758 val |= IGU_PF_CONF_SINGLE_ISR_EN; 10759 } 10760 } else if (msi) { 10761 val &= ~IGU_PF_CONF_INT_LINE_EN; 10762 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10763 IGU_PF_CONF_ATTN_BIT_EN | 10764 IGU_PF_CONF_SINGLE_ISR_EN); 10765 } else { 10766 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 10767 val |= (IGU_PF_CONF_INT_LINE_EN | 10768 IGU_PF_CONF_ATTN_BIT_EN | 10769 IGU_PF_CONF_SINGLE_ISR_EN); 10770 } 10771 10772 /* clean previous status - need to configure igu prior to ack*/ 10773 if ((!msix) || single_msix) { 10774 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10775 bxe_ack_int(sc); 10776 } 10777 10778 val |= IGU_PF_CONF_FUNC_EN; 10779 10780 BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n", 10781 val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10782 10783 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10784 10785 mb(); 10786 10787 /* init leading/trailing edge */ 10788 if (IS_MF(sc)) { 10789 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10790 if (sc->port.pmf) { 10791 /* enable nig and gpio3 attention */ 10792 val |= 0x1100; 10793 } 10794 } else { 10795 val = 0xffff; 10796 } 10797 10798 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 10799 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 10800 10801 /* make sure that interrupts are indeed enabled from here on */ 10802 mb(); 10803 } 10804 10805 static void 10806 bxe_int_enable(struct bxe_softc *sc) 10807 { 10808 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10809 bxe_hc_int_enable(sc); 10810 } else { 10811 bxe_igu_int_enable(sc); 10812 } 10813 } 10814 10815 static void 10816 bxe_hc_int_disable(struct bxe_softc *sc) 10817 { 10818 int port = SC_PORT(sc); 10819 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10820 uint32_t val = REG_RD(sc, addr); 10821 10822 /* 10823 * In E1 we must use only PCI configuration space to disable MSI/MSIX 10824 * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC 10825 * block 10826 */ 10827 if (CHIP_IS_E1(sc)) { 10828 /* 10829 * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register 10830 * to prevent from HC sending interrupts after we exit the function 10831 */ 10832 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0); 10833 10834 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10835 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10836 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10837 } else { 10838 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10839 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10840 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10841 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10842 } 10843 10844 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr); 10845 10846 /* flush all outstanding writes */ 10847 mb(); 10848 10849 REG_WR(sc, addr, val); 10850 if (REG_RD(sc, addr) != val) { 10851 BLOGE(sc, "proper val not read from HC IGU!\n"); 10852 } 10853 } 10854 10855 static void 10856 bxe_igu_int_disable(struct bxe_softc *sc) 10857 { 10858 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10859 10860 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 10861 IGU_PF_CONF_INT_LINE_EN | 10862 IGU_PF_CONF_ATTN_BIT_EN); 10863 10864 BLOGD(sc, DBG_INTR, "write %x to IGU\n", val); 10865 10866 /* flush all outstanding writes */ 10867 mb(); 10868 10869 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10870 if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) { 10871 BLOGE(sc, "proper val not read from IGU!\n"); 10872 } 10873 } 10874 10875 static void 10876 bxe_int_disable(struct bxe_softc *sc) 10877 { 10878 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10879 bxe_hc_int_disable(sc); 10880 } else { 10881 bxe_igu_int_disable(sc); 10882 } 10883 } 10884 10885 static void 10886 bxe_nic_init(struct bxe_softc *sc, 10887 int load_code) 10888 { 10889 int i; 10890 10891 for (i = 0; i < sc->num_queues; i++) { 10892 bxe_init_eth_fp(sc, i); 10893 } 10894 10895 rmb(); /* ensure status block indices were read */ 10896 10897 bxe_init_rx_rings(sc); 10898 bxe_init_tx_rings(sc); 10899 10900 if (IS_VF(sc)) { 10901 return; 10902 } 10903 10904 /* initialize MOD_ABS interrupts */ 10905 elink_init_mod_abs_int(sc, &sc->link_vars, 10906 sc->devinfo.chip_id, 10907 sc->devinfo.shmem_base, 10908 sc->devinfo.shmem2_base, 10909 SC_PORT(sc)); 10910 10911 bxe_init_def_sb(sc); 10912 bxe_update_dsb_idx(sc); 10913 bxe_init_sp_ring(sc); 10914 bxe_init_eq_ring(sc); 10915 bxe_init_internal(sc, load_code); 10916 bxe_pf_init(sc); 10917 bxe_stats_init(sc); 10918 10919 /* flush all before enabling interrupts */ 10920 mb(); 10921 10922 bxe_int_enable(sc); 10923 10924 /* check for SPIO5 */ 10925 bxe_attn_int_deasserted0(sc, 10926 REG_RD(sc, 10927 (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 10928 SC_PORT(sc)*4)) & 10929 AEU_INPUTS_ATTN_BITS_SPIO5); 10930 } 10931 10932 static inline void 10933 bxe_init_objs(struct bxe_softc *sc) 10934 { 10935 /* mcast rules must be added to tx if tx switching is enabled */ 10936 ecore_obj_type o_type = 10937 (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX : 10938 ECORE_OBJ_TYPE_RX; 10939 10940 /* RX_MODE controlling object */ 10941 ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj); 10942 10943 /* multicast configuration controlling object */ 10944 ecore_init_mcast_obj(sc, 10945 &sc->mcast_obj, 10946 sc->fp[0].cl_id, 10947 sc->fp[0].index, 10948 SC_FUNC(sc), 10949 SC_FUNC(sc), 10950 BXE_SP(sc, mcast_rdata), 10951 BXE_SP_MAPPING(sc, mcast_rdata), 10952 ECORE_FILTER_MCAST_PENDING, 10953 &sc->sp_state, 10954 o_type); 10955 10956 /* Setup CAM credit pools */ 10957 ecore_init_mac_credit_pool(sc, 10958 &sc->macs_pool, 10959 SC_FUNC(sc), 10960 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10961 VNICS_PER_PATH(sc)); 10962 10963 ecore_init_vlan_credit_pool(sc, 10964 &sc->vlans_pool, 10965 SC_ABS_FUNC(sc) >> 1, 10966 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10967 VNICS_PER_PATH(sc)); 10968 10969 /* RSS configuration object */ 10970 ecore_init_rss_config_obj(sc, 10971 &sc->rss_conf_obj, 10972 sc->fp[0].cl_id, 10973 sc->fp[0].index, 10974 SC_FUNC(sc), 10975 SC_FUNC(sc), 10976 BXE_SP(sc, rss_rdata), 10977 BXE_SP_MAPPING(sc, rss_rdata), 10978 ECORE_FILTER_RSS_CONF_PENDING, 10979 &sc->sp_state, ECORE_OBJ_TYPE_RX); 10980 } 10981 10982 /* 10983 * Initialize the function. This must be called before sending CLIENT_SETUP 10984 * for the first client. 10985 */ 10986 static inline int 10987 bxe_func_start(struct bxe_softc *sc) 10988 { 10989 struct ecore_func_state_params func_params = { NULL }; 10990 struct ecore_func_start_params *start_params = &func_params.params.start; 10991 10992 /* Prepare parameters for function state transitions */ 10993 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 10994 10995 func_params.f_obj = &sc->func_obj; 10996 func_params.cmd = ECORE_F_CMD_START; 10997 10998 /* Function parameters */ 10999 start_params->mf_mode = sc->devinfo.mf_info.mf_mode; 11000 start_params->sd_vlan_tag = OVLAN(sc); 11001 11002 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 11003 start_params->network_cos_mode = STATIC_COS; 11004 } else { /* CHIP_IS_E1X */ 11005 start_params->network_cos_mode = FW_WRR; 11006 } 11007 11008 start_params->gre_tunnel_mode = 0; 11009 start_params->gre_tunnel_rss = 0; 11010 11011 return (ecore_func_state_change(sc, &func_params)); 11012 } 11013 11014 static int 11015 bxe_set_power_state(struct bxe_softc *sc, 11016 uint8_t state) 11017 { 11018 uint16_t pmcsr; 11019 11020 /* If there is no power capability, silently succeed */ 11021 if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) { 11022 BLOGW(sc, "No power capability\n"); 11023 return (0); 11024 } 11025 11026 pmcsr = pci_read_config(sc->dev, 11027 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 11028 2); 11029 11030 switch (state) { 11031 case PCI_PM_D0: 11032 pci_write_config(sc->dev, 11033 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 11034 ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2); 11035 11036 if (pmcsr & PCIM_PSTAT_DMASK) { 11037 /* delay required during transition out of D3hot */ 11038 DELAY(20000); 11039 } 11040 11041 break; 11042 11043 case PCI_PM_D3hot: 11044 /* XXX if there are other clients above don't shut down the power */ 11045 11046 /* don't shut down the power for emulation and FPGA */ 11047 if (CHIP_REV_IS_SLOW(sc)) { 11048 return (0); 11049 } 11050 11051 pmcsr &= ~PCIM_PSTAT_DMASK; 11052 pmcsr |= PCIM_PSTAT_D3; 11053 11054 if (sc->wol) { 11055 pmcsr |= PCIM_PSTAT_PMEENABLE; 11056 } 11057 11058 pci_write_config(sc->dev, 11059 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 11060 pmcsr, 4); 11061 11062 /* 11063 * No more memory access after this point until device is brought back 11064 * to D0 state. 11065 */ 11066 break; 11067 11068 default: 11069 BLOGE(sc, "Can't support PCI power state = %d\n", state); 11070 return (-1); 11071 } 11072 11073 return (0); 11074 } 11075 11076 11077 /* return true if succeeded to acquire the lock */ 11078 static uint8_t 11079 bxe_trylock_hw_lock(struct bxe_softc *sc, 11080 uint32_t resource) 11081 { 11082 uint32_t lock_status; 11083 uint32_t resource_bit = (1 << resource); 11084 int func = SC_FUNC(sc); 11085 uint32_t hw_lock_control_reg; 11086 11087 BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource); 11088 11089 /* Validating that the resource is within range */ 11090 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 11091 BLOGD(sc, DBG_LOAD, 11092 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 11093 resource, HW_LOCK_MAX_RESOURCE_VALUE); 11094 return (FALSE); 11095 } 11096 11097 if (func <= 5) { 11098 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 11099 } else { 11100 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 11101 } 11102 11103 /* try to acquire the lock */ 11104 REG_WR(sc, hw_lock_control_reg + 4, resource_bit); 11105 lock_status = REG_RD(sc, hw_lock_control_reg); 11106 if (lock_status & resource_bit) { 11107 return (TRUE); 11108 } 11109 11110 BLOGE(sc, "Failed to get a resource lock 0x%x\n", resource); 11111 11112 return (FALSE); 11113 } 11114 11115 /* 11116 * Get the recovery leader resource id according to the engine this function 11117 * belongs to. Currently only only 2 engines is supported. 11118 */ 11119 static int 11120 bxe_get_leader_lock_resource(struct bxe_softc *sc) 11121 { 11122 if (SC_PATH(sc)) { 11123 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1); 11124 } else { 11125 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0); 11126 } 11127 } 11128 11129 /* try to acquire a leader lock for current engine */ 11130 static uint8_t 11131 bxe_trylock_leader_lock(struct bxe_softc *sc) 11132 { 11133 return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 11134 } 11135 11136 static int 11137 bxe_release_leader_lock(struct bxe_softc *sc) 11138 { 11139 return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 11140 } 11141 11142 /* close gates #2, #3 and #4 */ 11143 static void 11144 bxe_set_234_gates(struct bxe_softc *sc, 11145 uint8_t close) 11146 { 11147 uint32_t val; 11148 11149 /* gates #2 and #4a are closed/opened for "not E1" only */ 11150 if (!CHIP_IS_E1(sc)) { 11151 /* #4 */ 11152 REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 11153 /* #2 */ 11154 REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 11155 } 11156 11157 /* #3 */ 11158 if (CHIP_IS_E1x(sc)) { 11159 /* prevent interrupts from HC on both ports */ 11160 val = REG_RD(sc, HC_REG_CONFIG_1); 11161 REG_WR(sc, HC_REG_CONFIG_1, 11162 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 11163 (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 11164 11165 val = REG_RD(sc, HC_REG_CONFIG_0); 11166 REG_WR(sc, HC_REG_CONFIG_0, 11167 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 11168 (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 11169 } else { 11170 /* Prevent incomming interrupts in IGU */ 11171 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 11172 11173 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, 11174 (!close) ? 11175 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 11176 (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 11177 } 11178 11179 BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n", 11180 close ? "closing" : "opening"); 11181 11182 wmb(); 11183 } 11184 11185 /* poll for pending writes bit, it should get cleared in no more than 1s */ 11186 static int 11187 bxe_er_poll_igu_vq(struct bxe_softc *sc) 11188 { 11189 uint32_t cnt = 1000; 11190 uint32_t pend_bits = 0; 11191 11192 do { 11193 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS); 11194 11195 if (pend_bits == 0) { 11196 break; 11197 } 11198 11199 DELAY(1000); 11200 } while (--cnt > 0); 11201 11202 if (cnt == 0) { 11203 BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits); 11204 return (-1); 11205 } 11206 11207 return (0); 11208 } 11209 11210 #define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */ 11211 11212 static void 11213 bxe_clp_reset_prep(struct bxe_softc *sc, 11214 uint32_t *magic_val) 11215 { 11216 /* Do some magic... */ 11217 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 11218 *magic_val = val & SHARED_MF_CLP_MAGIC; 11219 MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 11220 } 11221 11222 /* restore the value of the 'magic' bit */ 11223 static void 11224 bxe_clp_reset_done(struct bxe_softc *sc, 11225 uint32_t magic_val) 11226 { 11227 /* Restore the 'magic' bit value... */ 11228 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 11229 MFCFG_WR(sc, shared_mf_config.clp_mb, 11230 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 11231 } 11232 11233 /* prepare for MCP reset, takes care of CLP configurations */ 11234 static void 11235 bxe_reset_mcp_prep(struct bxe_softc *sc, 11236 uint32_t *magic_val) 11237 { 11238 uint32_t shmem; 11239 uint32_t validity_offset; 11240 11241 /* set `magic' bit in order to save MF config */ 11242 if (!CHIP_IS_E1(sc)) { 11243 bxe_clp_reset_prep(sc, magic_val); 11244 } 11245 11246 /* get shmem offset */ 11247 shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 11248 validity_offset = 11249 offsetof(struct shmem_region, validity_map[SC_PORT(sc)]); 11250 11251 /* Clear validity map flags */ 11252 if (shmem > 0) { 11253 REG_WR(sc, shmem + validity_offset, 0); 11254 } 11255 } 11256 11257 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 11258 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 11259 11260 static void 11261 bxe_mcp_wait_one(struct bxe_softc *sc) 11262 { 11263 /* special handling for emulation and FPGA (10 times longer) */ 11264 if (CHIP_REV_IS_SLOW(sc)) { 11265 DELAY((MCP_ONE_TIMEOUT*10) * 1000); 11266 } else { 11267 DELAY((MCP_ONE_TIMEOUT) * 1000); 11268 } 11269 } 11270 11271 /* initialize shmem_base and waits for validity signature to appear */ 11272 static int 11273 bxe_init_shmem(struct bxe_softc *sc) 11274 { 11275 int cnt = 0; 11276 uint32_t val = 0; 11277 11278 do { 11279 sc->devinfo.shmem_base = 11280 sc->link_params.shmem_base = 11281 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 11282 11283 if (sc->devinfo.shmem_base) { 11284 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 11285 if (val & SHR_MEM_VALIDITY_MB) 11286 return (0); 11287 } 11288 11289 bxe_mcp_wait_one(sc); 11290 11291 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 11292 11293 BLOGE(sc, "BAD MCP validity signature\n"); 11294 11295 return (-1); 11296 } 11297 11298 static int 11299 bxe_reset_mcp_comp(struct bxe_softc *sc, 11300 uint32_t magic_val) 11301 { 11302 int rc = bxe_init_shmem(sc); 11303 11304 /* Restore the `magic' bit value */ 11305 if (!CHIP_IS_E1(sc)) { 11306 bxe_clp_reset_done(sc, magic_val); 11307 } 11308 11309 return (rc); 11310 } 11311 11312 static void 11313 bxe_pxp_prep(struct bxe_softc *sc) 11314 { 11315 if (!CHIP_IS_E1(sc)) { 11316 REG_WR(sc, PXP2_REG_RD_START_INIT, 0); 11317 REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0); 11318 wmb(); 11319 } 11320 } 11321 11322 /* 11323 * Reset the whole chip except for: 11324 * - PCIE core 11325 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit) 11326 * - IGU 11327 * - MISC (including AEU) 11328 * - GRC 11329 * - RBCN, RBCP 11330 */ 11331 static void 11332 bxe_process_kill_chip_reset(struct bxe_softc *sc, 11333 uint8_t global) 11334 { 11335 uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 11336 uint32_t global_bits2, stay_reset2; 11337 11338 /* 11339 * Bits that have to be set in reset_mask2 if we want to reset 'global' 11340 * (per chip) blocks. 11341 */ 11342 global_bits2 = 11343 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 11344 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 11345 11346 /* 11347 * Don't reset the following blocks. 11348 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 11349 * reset, as in 4 port device they might still be owned 11350 * by the MCP (there is only one leader per path). 11351 */ 11352 not_reset_mask1 = 11353 MISC_REGISTERS_RESET_REG_1_RST_HC | 11354 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 11355 MISC_REGISTERS_RESET_REG_1_RST_PXP; 11356 11357 not_reset_mask2 = 11358 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 11359 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 11360 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 11361 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 11362 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 11363 MISC_REGISTERS_RESET_REG_2_RST_GRC | 11364 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 11365 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 11366 MISC_REGISTERS_RESET_REG_2_RST_ATC | 11367 MISC_REGISTERS_RESET_REG_2_PGLC | 11368 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 11369 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 11370 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 11371 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 11372 MISC_REGISTERS_RESET_REG_2_UMAC0 | 11373 MISC_REGISTERS_RESET_REG_2_UMAC1; 11374 11375 /* 11376 * Keep the following blocks in reset: 11377 * - all xxMACs are handled by the elink code. 11378 */ 11379 stay_reset2 = 11380 MISC_REGISTERS_RESET_REG_2_XMAC | 11381 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 11382 11383 /* Full reset masks according to the chip */ 11384 reset_mask1 = 0xffffffff; 11385 11386 if (CHIP_IS_E1(sc)) 11387 reset_mask2 = 0xffff; 11388 else if (CHIP_IS_E1H(sc)) 11389 reset_mask2 = 0x1ffff; 11390 else if (CHIP_IS_E2(sc)) 11391 reset_mask2 = 0xfffff; 11392 else /* CHIP_IS_E3 */ 11393 reset_mask2 = 0x3ffffff; 11394 11395 /* Don't reset global blocks unless we need to */ 11396 if (!global) 11397 reset_mask2 &= ~global_bits2; 11398 11399 /* 11400 * In case of attention in the QM, we need to reset PXP 11401 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 11402 * because otherwise QM reset would release 'close the gates' shortly 11403 * before resetting the PXP, then the PSWRQ would send a write 11404 * request to PGLUE. Then when PXP is reset, PGLUE would try to 11405 * read the payload data from PSWWR, but PSWWR would not 11406 * respond. The write queue in PGLUE would stuck, dmae commands 11407 * would not return. Therefore it's important to reset the second 11408 * reset register (containing the 11409 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 11410 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 11411 * bit). 11412 */ 11413 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 11414 reset_mask2 & (~not_reset_mask2)); 11415 11416 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 11417 reset_mask1 & (~not_reset_mask1)); 11418 11419 mb(); 11420 wmb(); 11421 11422 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 11423 reset_mask2 & (~stay_reset2)); 11424 11425 mb(); 11426 wmb(); 11427 11428 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 11429 wmb(); 11430 } 11431 11432 static int 11433 bxe_process_kill(struct bxe_softc *sc, 11434 uint8_t global) 11435 { 11436 int cnt = 1000; 11437 uint32_t val = 0; 11438 uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 11439 uint32_t tags_63_32 = 0; 11440 11441 /* Empty the Tetris buffer, wait for 1s */ 11442 do { 11443 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT); 11444 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT); 11445 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0); 11446 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1); 11447 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2); 11448 if (CHIP_IS_E3(sc)) { 11449 tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32); 11450 } 11451 11452 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 11453 ((port_is_idle_0 & 0x1) == 0x1) && 11454 ((port_is_idle_1 & 0x1) == 0x1) && 11455 (pgl_exp_rom2 == 0xffffffff) && 11456 (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff))) 11457 break; 11458 DELAY(1000); 11459 } while (cnt-- > 0); 11460 11461 if (cnt <= 0) { 11462 BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there " 11463 "are still outstanding read requests after 1s! " 11464 "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, " 11465 "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 11466 sr_cnt, blk_cnt, port_is_idle_0, 11467 port_is_idle_1, pgl_exp_rom2); 11468 return (-1); 11469 } 11470 11471 mb(); 11472 11473 /* Close gates #2, #3 and #4 */ 11474 bxe_set_234_gates(sc, TRUE); 11475 11476 /* Poll for IGU VQs for 57712 and newer chips */ 11477 if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) { 11478 return (-1); 11479 } 11480 11481 /* XXX indicate that "process kill" is in progress to MCP */ 11482 11483 /* clear "unprepared" bit */ 11484 REG_WR(sc, MISC_REG_UNPREPARED, 0); 11485 mb(); 11486 11487 /* Make sure all is written to the chip before the reset */ 11488 wmb(); 11489 11490 /* 11491 * Wait for 1ms to empty GLUE and PCI-E core queues, 11492 * PSWHST, GRC and PSWRD Tetris buffer. 11493 */ 11494 DELAY(1000); 11495 11496 /* Prepare to chip reset: */ 11497 /* MCP */ 11498 if (global) { 11499 bxe_reset_mcp_prep(sc, &val); 11500 } 11501 11502 /* PXP */ 11503 bxe_pxp_prep(sc); 11504 mb(); 11505 11506 /* reset the chip */ 11507 bxe_process_kill_chip_reset(sc, global); 11508 mb(); 11509 11510 /* clear errors in PGB */ 11511 if (!CHIP_IS_E1(sc)) 11512 REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f); 11513 11514 /* Recover after reset: */ 11515 /* MCP */ 11516 if (global && bxe_reset_mcp_comp(sc, val)) { 11517 return (-1); 11518 } 11519 11520 /* XXX add resetting the NO_MCP mode DB here */ 11521 11522 /* Open the gates #2, #3 and #4 */ 11523 bxe_set_234_gates(sc, FALSE); 11524 11525 /* XXX 11526 * IGU/AEU preparation bring back the AEU/IGU to a reset state 11527 * re-enable attentions 11528 */ 11529 11530 return (0); 11531 } 11532 11533 static int 11534 bxe_leader_reset(struct bxe_softc *sc) 11535 { 11536 int rc = 0; 11537 uint8_t global = bxe_reset_is_global(sc); 11538 uint32_t load_code; 11539 11540 /* 11541 * If not going to reset MCP, load "fake" driver to reset HW while 11542 * driver is owner of the HW. 11543 */ 11544 if (!global && !BXE_NOMCP(sc)) { 11545 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 11546 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 11547 if (!load_code) { 11548 BLOGE(sc, "MCP response failure, aborting\n"); 11549 rc = -1; 11550 goto exit_leader_reset; 11551 } 11552 11553 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 11554 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 11555 BLOGE(sc, "MCP unexpected response, aborting\n"); 11556 rc = -1; 11557 goto exit_leader_reset2; 11558 } 11559 11560 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 11561 if (!load_code) { 11562 BLOGE(sc, "MCP response failure, aborting\n"); 11563 rc = -1; 11564 goto exit_leader_reset2; 11565 } 11566 } 11567 11568 /* try to recover after the failure */ 11569 if (bxe_process_kill(sc, global)) { 11570 BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc)); 11571 rc = -1; 11572 goto exit_leader_reset2; 11573 } 11574 11575 /* 11576 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver 11577 * state. 11578 */ 11579 bxe_set_reset_done(sc); 11580 if (global) { 11581 bxe_clear_reset_global(sc); 11582 } 11583 11584 exit_leader_reset2: 11585 11586 /* unload "fake driver" if it was loaded */ 11587 if (!global && !BXE_NOMCP(sc)) { 11588 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 11589 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 11590 } 11591 11592 exit_leader_reset: 11593 11594 sc->is_leader = 0; 11595 bxe_release_leader_lock(sc); 11596 11597 mb(); 11598 return (rc); 11599 } 11600 11601 /* 11602 * prepare INIT transition, parameters configured: 11603 * - HC configuration 11604 * - Queue's CDU context 11605 */ 11606 static void 11607 bxe_pf_q_prep_init(struct bxe_softc *sc, 11608 struct bxe_fastpath *fp, 11609 struct ecore_queue_init_params *init_params) 11610 { 11611 uint8_t cos; 11612 int cxt_index, cxt_offset; 11613 11614 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags); 11615 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags); 11616 11617 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags); 11618 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags); 11619 11620 /* HC rate */ 11621 init_params->rx.hc_rate = 11622 sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0; 11623 init_params->tx.hc_rate = 11624 sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0; 11625 11626 /* FW SB ID */ 11627 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id; 11628 11629 /* CQ index among the SB indices */ 11630 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11631 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 11632 11633 /* set maximum number of COSs supported by this queue */ 11634 init_params->max_cos = sc->max_cos; 11635 11636 BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n", 11637 fp->index, init_params->max_cos); 11638 11639 /* set the context pointers queue object */ 11640 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 11641 /* XXX change index/cid here if ever support multiple tx CoS */ 11642 /* fp->txdata[cos]->cid */ 11643 cxt_index = fp->index / ILT_PAGE_CIDS; 11644 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS); 11645 init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth; 11646 } 11647 } 11648 11649 /* set flags that are common for the Tx-only and not normal connections */ 11650 static unsigned long 11651 bxe_get_common_flags(struct bxe_softc *sc, 11652 struct bxe_fastpath *fp, 11653 uint8_t zero_stats) 11654 { 11655 unsigned long flags = 0; 11656 11657 /* PF driver will always initialize the Queue to an ACTIVE state */ 11658 bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags); 11659 11660 /* 11661 * tx only connections collect statistics (on the same index as the 11662 * parent connection). The statistics are zeroed when the parent 11663 * connection is initialized. 11664 */ 11665 11666 bxe_set_bit(ECORE_Q_FLG_STATS, &flags); 11667 if (zero_stats) { 11668 bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags); 11669 } 11670 11671 /* 11672 * tx only connections can support tx-switching, though their 11673 * CoS-ness doesn't survive the loopback 11674 */ 11675 if (sc->flags & BXE_TX_SWITCHING) { 11676 bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags); 11677 } 11678 11679 bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags); 11680 11681 return (flags); 11682 } 11683 11684 static unsigned long 11685 bxe_get_q_flags(struct bxe_softc *sc, 11686 struct bxe_fastpath *fp, 11687 uint8_t leading) 11688 { 11689 unsigned long flags = 0; 11690 11691 if (IS_MF_SD(sc)) { 11692 bxe_set_bit(ECORE_Q_FLG_OV, &flags); 11693 } 11694 11695 if (if_getcapenable(sc->ifp) & IFCAP_LRO) { 11696 bxe_set_bit(ECORE_Q_FLG_TPA, &flags); 11697 bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags); 11698 #if 0 11699 if (fp->mode == TPA_MODE_GRO) 11700 __set_bit(ECORE_Q_FLG_TPA_GRO, &flags); 11701 #endif 11702 } 11703 11704 if (leading) { 11705 bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags); 11706 bxe_set_bit(ECORE_Q_FLG_MCAST, &flags); 11707 } 11708 11709 bxe_set_bit(ECORE_Q_FLG_VLAN, &flags); 11710 11711 #if 0 11712 /* configure silent vlan removal */ 11713 if (IS_MF_AFEX(sc)) { 11714 bxe_set_bit(ECORE_Q_FLG_SILENT_VLAN_REM, &flags); 11715 } 11716 #endif 11717 11718 /* merge with common flags */ 11719 return (flags | bxe_get_common_flags(sc, fp, TRUE)); 11720 } 11721 11722 static void 11723 bxe_pf_q_prep_general(struct bxe_softc *sc, 11724 struct bxe_fastpath *fp, 11725 struct ecore_general_setup_params *gen_init, 11726 uint8_t cos) 11727 { 11728 gen_init->stat_id = bxe_stats_id(fp); 11729 gen_init->spcl_id = fp->cl_id; 11730 gen_init->mtu = sc->mtu; 11731 gen_init->cos = cos; 11732 } 11733 11734 static void 11735 bxe_pf_rx_q_prep(struct bxe_softc *sc, 11736 struct bxe_fastpath *fp, 11737 struct rxq_pause_params *pause, 11738 struct ecore_rxq_setup_params *rxq_init) 11739 { 11740 uint8_t max_sge = 0; 11741 uint16_t sge_sz = 0; 11742 uint16_t tpa_agg_size = 0; 11743 11744 pause->sge_th_lo = SGE_TH_LO(sc); 11745 pause->sge_th_hi = SGE_TH_HI(sc); 11746 11747 /* validate SGE ring has enough to cross high threshold */ 11748 if (sc->dropless_fc && 11749 (pause->sge_th_hi + FW_PREFETCH_CNT) > 11750 (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) { 11751 BLOGW(sc, "sge ring threshold limit\n"); 11752 } 11753 11754 /* minimum max_aggregation_size is 2*MTU (two full buffers) */ 11755 tpa_agg_size = (2 * sc->mtu); 11756 if (tpa_agg_size < sc->max_aggregation_size) { 11757 tpa_agg_size = sc->max_aggregation_size; 11758 } 11759 11760 max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT; 11761 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 11762 (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT; 11763 sge_sz = (uint16_t)min(SGE_PAGES, 0xffff); 11764 11765 /* pause - not for e1 */ 11766 if (!CHIP_IS_E1(sc)) { 11767 pause->bd_th_lo = BD_TH_LO(sc); 11768 pause->bd_th_hi = BD_TH_HI(sc); 11769 11770 pause->rcq_th_lo = RCQ_TH_LO(sc); 11771 pause->rcq_th_hi = RCQ_TH_HI(sc); 11772 11773 /* validate rings have enough entries to cross high thresholds */ 11774 if (sc->dropless_fc && 11775 pause->bd_th_hi + FW_PREFETCH_CNT > 11776 sc->rx_ring_size) { 11777 BLOGW(sc, "rx bd ring threshold limit\n"); 11778 } 11779 11780 if (sc->dropless_fc && 11781 pause->rcq_th_hi + FW_PREFETCH_CNT > 11782 RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) { 11783 BLOGW(sc, "rcq ring threshold limit\n"); 11784 } 11785 11786 pause->pri_map = 1; 11787 } 11788 11789 /* rxq setup */ 11790 rxq_init->dscr_map = fp->rx_dma.paddr; 11791 rxq_init->sge_map = fp->rx_sge_dma.paddr; 11792 rxq_init->rcq_map = fp->rcq_dma.paddr; 11793 rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE); 11794 11795 /* 11796 * This should be a maximum number of data bytes that may be 11797 * placed on the BD (not including paddings). 11798 */ 11799 rxq_init->buf_sz = (fp->rx_buf_size - 11800 IP_HEADER_ALIGNMENT_PADDING); 11801 11802 rxq_init->cl_qzone_id = fp->cl_qzone_id; 11803 rxq_init->tpa_agg_sz = tpa_agg_size; 11804 rxq_init->sge_buf_sz = sge_sz; 11805 rxq_init->max_sges_pkt = max_sge; 11806 rxq_init->rss_engine_id = SC_FUNC(sc); 11807 rxq_init->mcast_engine_id = SC_FUNC(sc); 11808 11809 /* 11810 * Maximum number or simultaneous TPA aggregation for this Queue. 11811 * For PF Clients it should be the maximum available number. 11812 * VF driver(s) may want to define it to a smaller value. 11813 */ 11814 rxq_init->max_tpa_queues = MAX_AGG_QS(sc); 11815 11816 rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT; 11817 rxq_init->fw_sb_id = fp->fw_sb_id; 11818 11819 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11820 11821 /* 11822 * configure silent vlan removal 11823 * if multi function mode is afex, then mask default vlan 11824 */ 11825 if (IS_MF_AFEX(sc)) { 11826 rxq_init->silent_removal_value = 11827 sc->devinfo.mf_info.afex_def_vlan_tag; 11828 rxq_init->silent_removal_mask = EVL_VLID_MASK; 11829 } 11830 } 11831 11832 static void 11833 bxe_pf_tx_q_prep(struct bxe_softc *sc, 11834 struct bxe_fastpath *fp, 11835 struct ecore_txq_setup_params *txq_init, 11836 uint8_t cos) 11837 { 11838 /* 11839 * XXX If multiple CoS is ever supported then each fastpath structure 11840 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 11841 * fp->txdata[cos]->tx_dma.paddr; 11842 */ 11843 txq_init->dscr_map = fp->tx_dma.paddr; 11844 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 11845 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 11846 txq_init->fw_sb_id = fp->fw_sb_id; 11847 11848 /* 11849 * set the TSS leading client id for TX classfication to the 11850 * leading RSS client id 11851 */ 11852 txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id); 11853 } 11854 11855 /* 11856 * This function performs 2 steps in a queue state machine: 11857 * 1) RESET->INIT 11858 * 2) INIT->SETUP 11859 */ 11860 static int 11861 bxe_setup_queue(struct bxe_softc *sc, 11862 struct bxe_fastpath *fp, 11863 uint8_t leading) 11864 { 11865 struct ecore_queue_state_params q_params = { NULL }; 11866 struct ecore_queue_setup_params *setup_params = 11867 &q_params.params.setup; 11868 #if 0 11869 struct ecore_queue_setup_tx_only_params *tx_only_params = 11870 &q_params.params.tx_only; 11871 uint8_t tx_index; 11872 #endif 11873 int rc; 11874 11875 BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index); 11876 11877 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 11878 11879 q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 11880 11881 /* we want to wait for completion in this context */ 11882 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 11883 11884 /* prepare the INIT parameters */ 11885 bxe_pf_q_prep_init(sc, fp, &q_params.params.init); 11886 11887 /* Set the command */ 11888 q_params.cmd = ECORE_Q_CMD_INIT; 11889 11890 /* Change the state to INIT */ 11891 rc = ecore_queue_state_change(sc, &q_params); 11892 if (rc) { 11893 BLOGE(sc, "Queue(%d) INIT failed\n", fp->index); 11894 return (rc); 11895 } 11896 11897 BLOGD(sc, DBG_LOAD, "init complete\n"); 11898 11899 /* now move the Queue to the SETUP state */ 11900 memset(setup_params, 0, sizeof(*setup_params)); 11901 11902 /* set Queue flags */ 11903 setup_params->flags = bxe_get_q_flags(sc, fp, leading); 11904 11905 /* set general SETUP parameters */ 11906 bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params, 11907 FIRST_TX_COS_INDEX); 11908 11909 bxe_pf_rx_q_prep(sc, fp, 11910 &setup_params->pause_params, 11911 &setup_params->rxq_params); 11912 11913 bxe_pf_tx_q_prep(sc, fp, 11914 &setup_params->txq_params, 11915 FIRST_TX_COS_INDEX); 11916 11917 /* Set the command */ 11918 q_params.cmd = ECORE_Q_CMD_SETUP; 11919 11920 /* change the state to SETUP */ 11921 rc = ecore_queue_state_change(sc, &q_params); 11922 if (rc) { 11923 BLOGE(sc, "Queue(%d) SETUP failed\n", fp->index); 11924 return (rc); 11925 } 11926 11927 #if 0 11928 /* loop through the relevant tx-only indices */ 11929 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 11930 tx_index < sc->max_cos; 11931 tx_index++) { 11932 /* prepare and send tx-only ramrod*/ 11933 rc = bxe_setup_tx_only(sc, fp, &q_params, 11934 tx_only_params, tx_index, leading); 11935 if (rc) { 11936 BLOGE(sc, "Queue(%d.%d) TX_ONLY_SETUP failed\n", 11937 fp->index, tx_index); 11938 return (rc); 11939 } 11940 } 11941 #endif 11942 11943 return (rc); 11944 } 11945 11946 static int 11947 bxe_setup_leading(struct bxe_softc *sc) 11948 { 11949 return (bxe_setup_queue(sc, &sc->fp[0], TRUE)); 11950 } 11951 11952 static int 11953 bxe_config_rss_pf(struct bxe_softc *sc, 11954 struct ecore_rss_config_obj *rss_obj, 11955 uint8_t config_hash) 11956 { 11957 struct ecore_config_rss_params params = { NULL }; 11958 int i; 11959 11960 /* 11961 * Although RSS is meaningless when there is a single HW queue we 11962 * still need it enabled in order to have HW Rx hash generated. 11963 */ 11964 11965 params.rss_obj = rss_obj; 11966 11967 bxe_set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 11968 11969 bxe_set_bit(ECORE_RSS_MODE_REGULAR, ¶ms.rss_flags); 11970 11971 /* RSS configuration */ 11972 bxe_set_bit(ECORE_RSS_IPV4, ¶ms.rss_flags); 11973 bxe_set_bit(ECORE_RSS_IPV4_TCP, ¶ms.rss_flags); 11974 bxe_set_bit(ECORE_RSS_IPV6, ¶ms.rss_flags); 11975 bxe_set_bit(ECORE_RSS_IPV6_TCP, ¶ms.rss_flags); 11976 if (rss_obj->udp_rss_v4) { 11977 bxe_set_bit(ECORE_RSS_IPV4_UDP, ¶ms.rss_flags); 11978 } 11979 if (rss_obj->udp_rss_v6) { 11980 bxe_set_bit(ECORE_RSS_IPV6_UDP, ¶ms.rss_flags); 11981 } 11982 11983 /* Hash bits */ 11984 params.rss_result_mask = MULTI_MASK; 11985 11986 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 11987 11988 if (config_hash) { 11989 /* RSS keys */ 11990 for (i = 0; i < sizeof(params.rss_key) / 4; i++) { 11991 params.rss_key[i] = arc4random(); 11992 } 11993 11994 bxe_set_bit(ECORE_RSS_SET_SRCH, ¶ms.rss_flags); 11995 } 11996 11997 return (ecore_config_rss(sc, ¶ms)); 11998 } 11999 12000 static int 12001 bxe_config_rss_eth(struct bxe_softc *sc, 12002 uint8_t config_hash) 12003 { 12004 return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash)); 12005 } 12006 12007 static int 12008 bxe_init_rss_pf(struct bxe_softc *sc) 12009 { 12010 uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc); 12011 int i; 12012 12013 /* 12014 * Prepare the initial contents of the indirection table if 12015 * RSS is enabled 12016 */ 12017 for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) { 12018 sc->rss_conf_obj.ind_table[i] = 12019 (sc->fp->cl_id + (i % num_eth_queues)); 12020 } 12021 12022 if (sc->udp_rss) { 12023 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1; 12024 } 12025 12026 /* 12027 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 12028 * per-port, so if explicit configuration is needed, do it only 12029 * for a PMF. 12030 * 12031 * For 57712 and newer it's a per-function configuration. 12032 */ 12033 return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc))); 12034 } 12035 12036 static int 12037 bxe_set_mac_one(struct bxe_softc *sc, 12038 uint8_t *mac, 12039 struct ecore_vlan_mac_obj *obj, 12040 uint8_t set, 12041 int mac_type, 12042 unsigned long *ramrod_flags) 12043 { 12044 struct ecore_vlan_mac_ramrod_params ramrod_param; 12045 int rc; 12046 12047 memset(&ramrod_param, 0, sizeof(ramrod_param)); 12048 12049 /* fill in general parameters */ 12050 ramrod_param.vlan_mac_obj = obj; 12051 ramrod_param.ramrod_flags = *ramrod_flags; 12052 12053 /* fill a user request section if needed */ 12054 if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) { 12055 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 12056 12057 bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 12058 12059 /* Set the command: ADD or DEL */ 12060 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD : 12061 ECORE_VLAN_MAC_DEL; 12062 } 12063 12064 rc = ecore_config_vlan_mac(sc, &ramrod_param); 12065 12066 if (rc == ECORE_EXISTS) { 12067 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12068 /* do not treat adding same MAC as error */ 12069 rc = 0; 12070 } else if (rc < 0) { 12071 BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc); 12072 } 12073 12074 return (rc); 12075 } 12076 12077 static int 12078 bxe_set_eth_mac(struct bxe_softc *sc, 12079 uint8_t set) 12080 { 12081 unsigned long ramrod_flags = 0; 12082 12083 BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n"); 12084 12085 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 12086 12087 /* Eth MAC is set on RSS leading client (fp[0]) */ 12088 return (bxe_set_mac_one(sc, sc->link_params.mac_addr, 12089 &sc->sp_objs->mac_obj, 12090 set, ECORE_ETH_MAC, &ramrod_flags)); 12091 } 12092 12093 #if 0 12094 static void 12095 bxe_update_max_mf_config(struct bxe_softc *sc, 12096 uint32_t value) 12097 { 12098 /* load old values */ 12099 uint32_t mf_cfg = sc->devinfo.mf_info.mf_config[SC_VN(sc)]; 12100 12101 if (value != bxe_extract_max_cfg(sc, mf_cfg)) { 12102 /* leave all but MAX value */ 12103 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK; 12104 12105 /* set new MAX value */ 12106 mf_cfg |= ((value << FUNC_MF_CFG_MAX_BW_SHIFT) & 12107 FUNC_MF_CFG_MAX_BW_MASK); 12108 12109 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW, mf_cfg); 12110 } 12111 } 12112 #endif 12113 12114 static int 12115 bxe_get_cur_phy_idx(struct bxe_softc *sc) 12116 { 12117 uint32_t sel_phy_idx = 0; 12118 12119 if (sc->link_params.num_phys <= 1) { 12120 return (ELINK_INT_PHY); 12121 } 12122 12123 if (sc->link_vars.link_up) { 12124 sel_phy_idx = ELINK_EXT_PHY1; 12125 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */ 12126 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 12127 (sc->link_params.phy[ELINK_EXT_PHY2].supported & 12128 ELINK_SUPPORTED_FIBRE)) 12129 sel_phy_idx = ELINK_EXT_PHY2; 12130 } else { 12131 switch (elink_phy_selection(&sc->link_params)) { 12132 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 12133 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 12134 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 12135 sel_phy_idx = ELINK_EXT_PHY1; 12136 break; 12137 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 12138 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 12139 sel_phy_idx = ELINK_EXT_PHY2; 12140 break; 12141 } 12142 } 12143 12144 return (sel_phy_idx); 12145 } 12146 12147 static int 12148 bxe_get_link_cfg_idx(struct bxe_softc *sc) 12149 { 12150 uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc); 12151 12152 /* 12153 * The selected activated PHY is always after swapping (in case PHY 12154 * swapping is enabled). So when swapping is enabled, we need to reverse 12155 * the configuration 12156 */ 12157 12158 if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 12159 if (sel_phy_idx == ELINK_EXT_PHY1) 12160 sel_phy_idx = ELINK_EXT_PHY2; 12161 else if (sel_phy_idx == ELINK_EXT_PHY2) 12162 sel_phy_idx = ELINK_EXT_PHY1; 12163 } 12164 12165 return (ELINK_LINK_CONFIG_IDX(sel_phy_idx)); 12166 } 12167 12168 static void 12169 bxe_set_requested_fc(struct bxe_softc *sc) 12170 { 12171 /* 12172 * Initialize link parameters structure variables 12173 * It is recommended to turn off RX FC for jumbo frames 12174 * for better performance 12175 */ 12176 if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) { 12177 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX; 12178 } else { 12179 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH; 12180 } 12181 } 12182 12183 static void 12184 bxe_calc_fc_adv(struct bxe_softc *sc) 12185 { 12186 uint8_t cfg_idx = bxe_get_link_cfg_idx(sc); 12187 switch (sc->link_vars.ieee_fc & 12188 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 12189 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE: 12190 default: 12191 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 12192 ADVERTISED_Pause); 12193 break; 12194 12195 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 12196 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 12197 ADVERTISED_Pause); 12198 break; 12199 12200 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 12201 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 12202 break; 12203 } 12204 } 12205 12206 static uint16_t 12207 bxe_get_mf_speed(struct bxe_softc *sc) 12208 { 12209 uint16_t line_speed = sc->link_vars.line_speed; 12210 if (IS_MF(sc)) { 12211 uint16_t maxCfg = 12212 bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]); 12213 12214 /* calculate the current MAX line speed limit for the MF devices */ 12215 if (IS_MF_SI(sc)) { 12216 line_speed = (line_speed * maxCfg) / 100; 12217 } else { /* SD mode */ 12218 uint16_t vn_max_rate = maxCfg * 100; 12219 12220 if (vn_max_rate < line_speed) { 12221 line_speed = vn_max_rate; 12222 } 12223 } 12224 } 12225 12226 return (line_speed); 12227 } 12228 12229 static void 12230 bxe_fill_report_data(struct bxe_softc *sc, 12231 struct bxe_link_report_data *data) 12232 { 12233 uint16_t line_speed = bxe_get_mf_speed(sc); 12234 12235 memset(data, 0, sizeof(*data)); 12236 12237 /* fill the report data with the effective line speed */ 12238 data->line_speed = line_speed; 12239 12240 /* Link is down */ 12241 if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) { 12242 bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags); 12243 } 12244 12245 /* Full DUPLEX */ 12246 if (sc->link_vars.duplex == DUPLEX_FULL) { 12247 bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags); 12248 } 12249 12250 /* Rx Flow Control is ON */ 12251 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) { 12252 bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags); 12253 } 12254 12255 /* Tx Flow Control is ON */ 12256 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 12257 bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags); 12258 } 12259 } 12260 12261 /* report link status to OS, should be called under phy_lock */ 12262 static void 12263 bxe_link_report_locked(struct bxe_softc *sc) 12264 { 12265 struct bxe_link_report_data cur_data; 12266 12267 /* reread mf_cfg */ 12268 if (IS_PF(sc) && !CHIP_IS_E1(sc)) { 12269 bxe_read_mf_cfg(sc); 12270 } 12271 12272 /* Read the current link report info */ 12273 bxe_fill_report_data(sc, &cur_data); 12274 12275 /* Don't report link down or exactly the same link status twice */ 12276 if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) || 12277 (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 12278 &sc->last_reported_link.link_report_flags) && 12279 bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 12280 &cur_data.link_report_flags))) { 12281 return; 12282 } 12283 12284 sc->link_cnt++; 12285 12286 /* report new link params and remember the state for the next time */ 12287 memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data)); 12288 12289 if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 12290 &cur_data.link_report_flags)) { 12291 if_link_state_change(sc->ifp, LINK_STATE_DOWN); 12292 BLOGI(sc, "NIC Link is Down\n"); 12293 } else { 12294 const char *duplex; 12295 const char *flow; 12296 12297 if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX, 12298 &cur_data.link_report_flags)) { 12299 duplex = "full"; 12300 } else { 12301 duplex = "half"; 12302 } 12303 12304 /* 12305 * Handle the FC at the end so that only these flags would be 12306 * possibly set. This way we may easily check if there is no FC 12307 * enabled. 12308 */ 12309 if (cur_data.link_report_flags) { 12310 if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 12311 &cur_data.link_report_flags) && 12312 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 12313 &cur_data.link_report_flags)) { 12314 flow = "ON - receive & transmit"; 12315 } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 12316 &cur_data.link_report_flags) && 12317 !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 12318 &cur_data.link_report_flags)) { 12319 flow = "ON - receive"; 12320 } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 12321 &cur_data.link_report_flags) && 12322 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 12323 &cur_data.link_report_flags)) { 12324 flow = "ON - transmit"; 12325 } else { 12326 flow = "none"; /* possible? */ 12327 } 12328 } else { 12329 flow = "none"; 12330 } 12331 12332 if_link_state_change(sc->ifp, LINK_STATE_UP); 12333 BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 12334 cur_data.line_speed, duplex, flow); 12335 } 12336 } 12337 12338 static void 12339 bxe_link_report(struct bxe_softc *sc) 12340 { 12341 bxe_acquire_phy_lock(sc); 12342 bxe_link_report_locked(sc); 12343 bxe_release_phy_lock(sc); 12344 } 12345 12346 static void 12347 bxe_link_status_update(struct bxe_softc *sc) 12348 { 12349 if (sc->state != BXE_STATE_OPEN) { 12350 return; 12351 } 12352 12353 #if 0 12354 /* read updated dcb configuration */ 12355 if (IS_PF(sc)) 12356 bxe_dcbx_pmf_update(sc); 12357 #endif 12358 12359 if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) { 12360 elink_link_status_update(&sc->link_params, &sc->link_vars); 12361 } else { 12362 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half | 12363 ELINK_SUPPORTED_10baseT_Full | 12364 ELINK_SUPPORTED_100baseT_Half | 12365 ELINK_SUPPORTED_100baseT_Full | 12366 ELINK_SUPPORTED_1000baseT_Full | 12367 ELINK_SUPPORTED_2500baseX_Full | 12368 ELINK_SUPPORTED_10000baseT_Full | 12369 ELINK_SUPPORTED_TP | 12370 ELINK_SUPPORTED_FIBRE | 12371 ELINK_SUPPORTED_Autoneg | 12372 ELINK_SUPPORTED_Pause | 12373 ELINK_SUPPORTED_Asym_Pause); 12374 sc->port.advertising[0] = sc->port.supported[0]; 12375 12376 sc->link_params.sc = sc; 12377 sc->link_params.port = SC_PORT(sc); 12378 sc->link_params.req_duplex[0] = DUPLEX_FULL; 12379 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE; 12380 sc->link_params.req_line_speed[0] = SPEED_10000; 12381 sc->link_params.speed_cap_mask[0] = 0x7f0000; 12382 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G; 12383 12384 if (CHIP_REV_IS_FPGA(sc)) { 12385 sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC; 12386 sc->link_vars.line_speed = ELINK_SPEED_1000; 12387 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 12388 LINK_STATUS_SPEED_AND_DUPLEX_1000TFD); 12389 } else { 12390 sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC; 12391 sc->link_vars.line_speed = ELINK_SPEED_10000; 12392 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 12393 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 12394 } 12395 12396 sc->link_vars.link_up = 1; 12397 12398 sc->link_vars.duplex = DUPLEX_FULL; 12399 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE; 12400 12401 if (IS_PF(sc)) { 12402 REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0); 12403 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12404 bxe_link_report(sc); 12405 } 12406 } 12407 12408 if (IS_PF(sc)) { 12409 if (sc->link_vars.link_up) { 12410 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12411 } else { 12412 bxe_stats_handle(sc, STATS_EVENT_STOP); 12413 } 12414 bxe_link_report(sc); 12415 } else { 12416 bxe_link_report(sc); 12417 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12418 } 12419 } 12420 12421 static int 12422 bxe_initial_phy_init(struct bxe_softc *sc, 12423 int load_mode) 12424 { 12425 int rc, cfg_idx = bxe_get_link_cfg_idx(sc); 12426 uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx]; 12427 struct elink_params *lp = &sc->link_params; 12428 12429 bxe_set_requested_fc(sc); 12430 12431 if (CHIP_REV_IS_SLOW(sc)) { 12432 uint32_t bond = CHIP_BOND_ID(sc); 12433 uint32_t feat = 0; 12434 12435 if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) { 12436 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 12437 } else if (bond & 0x4) { 12438 if (CHIP_IS_E3(sc)) { 12439 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC; 12440 } else { 12441 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 12442 } 12443 } else if (bond & 0x8) { 12444 if (CHIP_IS_E3(sc)) { 12445 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC; 12446 } else { 12447 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 12448 } 12449 } 12450 12451 /* disable EMAC for E3 and above */ 12452 if (bond & 0x2) { 12453 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 12454 } 12455 12456 sc->link_params.feature_config_flags |= feat; 12457 } 12458 12459 bxe_acquire_phy_lock(sc); 12460 12461 if (load_mode == LOAD_DIAG) { 12462 lp->loopback_mode = ELINK_LOOPBACK_XGXS; 12463 /* Prefer doing PHY loopback at 10G speed, if possible */ 12464 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) { 12465 if (lp->speed_cap_mask[cfg_idx] & 12466 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 12467 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000; 12468 } else { 12469 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000; 12470 } 12471 } 12472 } 12473 12474 if (load_mode == LOAD_LOOPBACK_EXT) { 12475 lp->loopback_mode = ELINK_LOOPBACK_EXT; 12476 } 12477 12478 rc = elink_phy_init(&sc->link_params, &sc->link_vars); 12479 12480 bxe_release_phy_lock(sc); 12481 12482 bxe_calc_fc_adv(sc); 12483 12484 if (sc->link_vars.link_up) { 12485 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12486 bxe_link_report(sc); 12487 } 12488 12489 if (!CHIP_REV_IS_SLOW(sc)) { 12490 bxe_periodic_start(sc); 12491 } 12492 12493 sc->link_params.req_line_speed[cfg_idx] = req_line_speed; 12494 return (rc); 12495 } 12496 12497 /* must be called under IF_ADDR_LOCK */ 12498 12499 static int 12500 bxe_set_mc_list(struct bxe_softc *sc) 12501 { 12502 struct ecore_mcast_ramrod_params rparam = { NULL }; 12503 int rc = 0; 12504 int mc_count = 0; 12505 int mcnt, i; 12506 struct ecore_mcast_list_elem *mc_mac, *mc_mac_start; 12507 unsigned char *mta; 12508 if_t ifp = sc->ifp; 12509 12510 mc_count = if_multiaddr_count(ifp, -1);/* XXX they don't have a limit */ 12511 if (!mc_count) 12512 return (0); 12513 12514 mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN * 12515 mc_count, M_DEVBUF, M_NOWAIT); 12516 12517 if(mta == NULL) { 12518 BLOGE(sc, "Failed to allocate temp mcast list\n"); 12519 return (-1); 12520 } 12521 bzero(mta, (sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count)); 12522 12523 mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, (M_NOWAIT | M_ZERO)); 12524 mc_mac_start = mc_mac; 12525 12526 if (!mc_mac) { 12527 free(mta, M_DEVBUF); 12528 BLOGE(sc, "Failed to allocate temp mcast list\n"); 12529 return (-1); 12530 } 12531 bzero(mc_mac, (sizeof(*mc_mac) * mc_count)); 12532 12533 /* mta and mcnt not expected to be different */ 12534 if_multiaddr_array(ifp, mta, &mcnt, mc_count); 12535 12536 12537 rparam.mcast_obj = &sc->mcast_obj; 12538 ECORE_LIST_INIT(&rparam.mcast_list); 12539 12540 for(i=0; i< mcnt; i++) { 12541 12542 mc_mac->mac = (uint8_t *)(mta + (i * ETHER_ADDR_LEN)); 12543 ECORE_LIST_PUSH_TAIL(&mc_mac->link, &rparam.mcast_list); 12544 12545 BLOGD(sc, DBG_LOAD, 12546 "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n", 12547 mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2], 12548 mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]); 12549 12550 mc_mac++; 12551 } 12552 rparam.mcast_list_len = mc_count; 12553 12554 BXE_MCAST_LOCK(sc); 12555 12556 /* first, clear all configured multicast MACs */ 12557 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 12558 if (rc < 0) { 12559 BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc); 12560 BXE_MCAST_UNLOCK(sc); 12561 free(mc_mac_start, M_DEVBUF); 12562 free(mta, M_DEVBUF); 12563 return (rc); 12564 } 12565 12566 /* Now add the new MACs */ 12567 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD); 12568 if (rc < 0) { 12569 BLOGE(sc, "Failed to set new mcast config (%d)\n", rc); 12570 } 12571 12572 BXE_MCAST_UNLOCK(sc); 12573 12574 free(mc_mac_start, M_DEVBUF); 12575 free(mta, M_DEVBUF); 12576 12577 return (rc); 12578 } 12579 12580 static int 12581 bxe_set_uc_list(struct bxe_softc *sc) 12582 { 12583 if_t ifp = sc->ifp; 12584 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 12585 struct ifaddr *ifa; 12586 unsigned long ramrod_flags = 0; 12587 int rc; 12588 12589 #if __FreeBSD_version < 800000 12590 IF_ADDR_LOCK(ifp); 12591 #else 12592 if_addr_rlock(ifp); 12593 #endif 12594 12595 /* first schedule a cleanup up of old configuration */ 12596 rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE); 12597 if (rc < 0) { 12598 BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc); 12599 #if __FreeBSD_version < 800000 12600 IF_ADDR_UNLOCK(ifp); 12601 #else 12602 if_addr_runlock(ifp); 12603 #endif 12604 return (rc); 12605 } 12606 12607 ifa = if_getifaddr(ifp); /* XXX Is this structure */ 12608 while (ifa) { 12609 if (ifa->ifa_addr->sa_family != AF_LINK) { 12610 ifa = TAILQ_NEXT(ifa, ifa_link); 12611 continue; 12612 } 12613 12614 rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr), 12615 mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags); 12616 if (rc == -EEXIST) { 12617 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12618 /* do not treat adding same MAC as an error */ 12619 rc = 0; 12620 } else if (rc < 0) { 12621 BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc); 12622 #if __FreeBSD_version < 800000 12623 IF_ADDR_UNLOCK(ifp); 12624 #else 12625 if_addr_runlock(ifp); 12626 #endif 12627 return (rc); 12628 } 12629 12630 ifa = TAILQ_NEXT(ifa, ifa_link); 12631 } 12632 12633 #if __FreeBSD_version < 800000 12634 IF_ADDR_UNLOCK(ifp); 12635 #else 12636 if_addr_runlock(ifp); 12637 #endif 12638 12639 /* Execute the pending commands */ 12640 bit_set(&ramrod_flags, RAMROD_CONT); 12641 return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */, 12642 ECORE_UC_LIST_MAC, &ramrod_flags)); 12643 } 12644 12645 static void 12646 bxe_set_rx_mode(struct bxe_softc *sc) 12647 { 12648 if_t ifp = sc->ifp; 12649 uint32_t rx_mode = BXE_RX_MODE_NORMAL; 12650 12651 if (sc->state != BXE_STATE_OPEN) { 12652 BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state); 12653 return; 12654 } 12655 12656 BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp)); 12657 12658 if (if_getflags(ifp) & IFF_PROMISC) { 12659 rx_mode = BXE_RX_MODE_PROMISC; 12660 } else if ((if_getflags(ifp) & IFF_ALLMULTI) || 12661 ((if_getamcount(ifp) > BXE_MAX_MULTICAST) && 12662 CHIP_IS_E1(sc))) { 12663 rx_mode = BXE_RX_MODE_ALLMULTI; 12664 } else { 12665 if (IS_PF(sc)) { 12666 /* some multicasts */ 12667 if (bxe_set_mc_list(sc) < 0) { 12668 rx_mode = BXE_RX_MODE_ALLMULTI; 12669 } 12670 if (bxe_set_uc_list(sc) < 0) { 12671 rx_mode = BXE_RX_MODE_PROMISC; 12672 } 12673 } 12674 #if 0 12675 else { 12676 /* 12677 * Configuring mcast to a VF involves sleeping (when we 12678 * wait for the PF's response). Since this function is 12679 * called from a non sleepable context we must schedule 12680 * a work item for this purpose 12681 */ 12682 bxe_set_bit(BXE_SP_RTNL_VFPF_MCAST, &sc->sp_rtnl_state); 12683 schedule_delayed_work(&sc->sp_rtnl_task, 0); 12684 } 12685 #endif 12686 } 12687 12688 sc->rx_mode = rx_mode; 12689 12690 /* schedule the rx_mode command */ 12691 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 12692 BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n"); 12693 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 12694 return; 12695 } 12696 12697 if (IS_PF(sc)) { 12698 bxe_set_storm_rx_mode(sc); 12699 } 12700 #if 0 12701 else { 12702 /* 12703 * Configuring mcast to a VF involves sleeping (when we 12704 * wait for the PF's response). Since this function is 12705 * called from a non sleepable context we must schedule 12706 * a work item for this purpose 12707 */ 12708 bxe_set_bit(BXE_SP_RTNL_VFPF_STORM_RX_MODE, &sc->sp_rtnl_state); 12709 schedule_delayed_work(&sc->sp_rtnl_task, 0); 12710 } 12711 #endif 12712 12713 } 12714 12715 12716 /* update flags in shmem */ 12717 static void 12718 bxe_update_drv_flags(struct bxe_softc *sc, 12719 uint32_t flags, 12720 uint32_t set) 12721 { 12722 uint32_t drv_flags; 12723 12724 if (SHMEM2_HAS(sc, drv_flags)) { 12725 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12726 drv_flags = SHMEM2_RD(sc, drv_flags); 12727 12728 if (set) { 12729 SET_FLAGS(drv_flags, flags); 12730 } else { 12731 RESET_FLAGS(drv_flags, flags); 12732 } 12733 12734 SHMEM2_WR(sc, drv_flags, drv_flags); 12735 BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags); 12736 12737 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12738 } 12739 } 12740 12741 /* periodic timer callout routine, only runs when the interface is up */ 12742 12743 static void 12744 bxe_periodic_callout_func(void *xsc) 12745 { 12746 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12747 int i; 12748 12749 if (!BXE_CORE_TRYLOCK(sc)) { 12750 /* just bail and try again next time */ 12751 12752 if ((sc->state == BXE_STATE_OPEN) && 12753 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12754 /* schedule the next periodic callout */ 12755 callout_reset(&sc->periodic_callout, hz, 12756 bxe_periodic_callout_func, sc); 12757 } 12758 12759 return; 12760 } 12761 12762 if ((sc->state != BXE_STATE_OPEN) || 12763 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) { 12764 BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state); 12765 BXE_CORE_UNLOCK(sc); 12766 return; 12767 } 12768 12769 /* Check for TX timeouts on any fastpath. */ 12770 FOR_EACH_QUEUE(sc, i) { 12771 if (bxe_watchdog(sc, &sc->fp[i]) != 0) { 12772 /* Ruh-Roh, chip was reset! */ 12773 break; 12774 } 12775 } 12776 12777 if (!CHIP_REV_IS_SLOW(sc)) { 12778 /* 12779 * This barrier is needed to ensure the ordering between the writing 12780 * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and 12781 * the reading here. 12782 */ 12783 mb(); 12784 if (sc->port.pmf) { 12785 bxe_acquire_phy_lock(sc); 12786 elink_period_func(&sc->link_params, &sc->link_vars); 12787 bxe_release_phy_lock(sc); 12788 } 12789 } 12790 12791 if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) { 12792 int mb_idx = SC_FW_MB_IDX(sc); 12793 uint32_t drv_pulse; 12794 uint32_t mcp_pulse; 12795 12796 ++sc->fw_drv_pulse_wr_seq; 12797 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 12798 12799 drv_pulse = sc->fw_drv_pulse_wr_seq; 12800 bxe_drv_pulse(sc); 12801 12802 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) & 12803 MCP_PULSE_SEQ_MASK); 12804 12805 /* 12806 * The delta between driver pulse and mcp response should 12807 * be 1 (before mcp response) or 0 (after mcp response). 12808 */ 12809 if ((drv_pulse != mcp_pulse) && 12810 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) { 12811 /* someone lost a heartbeat... */ 12812 BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 12813 drv_pulse, mcp_pulse); 12814 } 12815 } 12816 12817 /* state is BXE_STATE_OPEN */ 12818 bxe_stats_handle(sc, STATS_EVENT_UPDATE); 12819 12820 #if 0 12821 /* sample VF bulletin board for new posts from PF */ 12822 if (IS_VF(sc)) { 12823 bxe_sample_bulletin(sc); 12824 } 12825 #endif 12826 12827 BXE_CORE_UNLOCK(sc); 12828 12829 if ((sc->state == BXE_STATE_OPEN) && 12830 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12831 /* schedule the next periodic callout */ 12832 callout_reset(&sc->periodic_callout, hz, 12833 bxe_periodic_callout_func, sc); 12834 } 12835 } 12836 12837 static void 12838 bxe_periodic_start(struct bxe_softc *sc) 12839 { 12840 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO); 12841 callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc); 12842 } 12843 12844 static void 12845 bxe_periodic_stop(struct bxe_softc *sc) 12846 { 12847 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP); 12848 callout_drain(&sc->periodic_callout); 12849 } 12850 12851 /* start the controller */ 12852 static __noinline int 12853 bxe_nic_load(struct bxe_softc *sc, 12854 int load_mode) 12855 { 12856 uint32_t val; 12857 int load_code = 0; 12858 int i, rc = 0; 12859 12860 BXE_CORE_LOCK_ASSERT(sc); 12861 12862 BLOGD(sc, DBG_LOAD, "Starting NIC load...\n"); 12863 12864 sc->state = BXE_STATE_OPENING_WAITING_LOAD; 12865 12866 if (IS_PF(sc)) { 12867 /* must be called before memory allocation and HW init */ 12868 bxe_ilt_set_info(sc); 12869 } 12870 12871 sc->last_reported_link_state = LINK_STATE_UNKNOWN; 12872 12873 bxe_set_fp_rx_buf_size(sc); 12874 12875 if (bxe_alloc_fp_buffers(sc) != 0) { 12876 BLOGE(sc, "Failed to allocate fastpath memory\n"); 12877 sc->state = BXE_STATE_CLOSED; 12878 rc = ENOMEM; 12879 goto bxe_nic_load_error0; 12880 } 12881 12882 if (bxe_alloc_mem(sc) != 0) { 12883 sc->state = BXE_STATE_CLOSED; 12884 rc = ENOMEM; 12885 goto bxe_nic_load_error0; 12886 } 12887 12888 if (bxe_alloc_fw_stats_mem(sc) != 0) { 12889 sc->state = BXE_STATE_CLOSED; 12890 rc = ENOMEM; 12891 goto bxe_nic_load_error0; 12892 } 12893 12894 if (IS_PF(sc)) { 12895 /* set pf load just before approaching the MCP */ 12896 bxe_set_pf_load(sc); 12897 12898 /* if MCP exists send load request and analyze response */ 12899 if (!BXE_NOMCP(sc)) { 12900 /* attempt to load pf */ 12901 if (bxe_nic_load_request(sc, &load_code) != 0) { 12902 sc->state = BXE_STATE_CLOSED; 12903 rc = ENXIO; 12904 goto bxe_nic_load_error1; 12905 } 12906 12907 /* what did the MCP say? */ 12908 if (bxe_nic_load_analyze_req(sc, load_code) != 0) { 12909 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12910 sc->state = BXE_STATE_CLOSED; 12911 rc = ENXIO; 12912 goto bxe_nic_load_error2; 12913 } 12914 } else { 12915 BLOGI(sc, "Device has no MCP!\n"); 12916 load_code = bxe_nic_load_no_mcp(sc); 12917 } 12918 12919 /* mark PMF if applicable */ 12920 bxe_nic_load_pmf(sc, load_code); 12921 12922 /* Init Function state controlling object */ 12923 bxe_init_func_obj(sc); 12924 12925 /* Initialize HW */ 12926 if (bxe_init_hw(sc, load_code) != 0) { 12927 BLOGE(sc, "HW init failed\n"); 12928 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12929 sc->state = BXE_STATE_CLOSED; 12930 rc = ENXIO; 12931 goto bxe_nic_load_error2; 12932 } 12933 } 12934 12935 /* set ALWAYS_ALIVE bit in shmem */ 12936 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 12937 bxe_drv_pulse(sc); 12938 sc->flags |= BXE_NO_PULSE; 12939 12940 /* attach interrupts */ 12941 if (bxe_interrupt_attach(sc) != 0) { 12942 sc->state = BXE_STATE_CLOSED; 12943 rc = ENXIO; 12944 goto bxe_nic_load_error2; 12945 } 12946 12947 bxe_nic_init(sc, load_code); 12948 12949 /* Init per-function objects */ 12950 if (IS_PF(sc)) { 12951 bxe_init_objs(sc); 12952 // XXX bxe_iov_nic_init(sc); 12953 12954 /* set AFEX default VLAN tag to an invalid value */ 12955 sc->devinfo.mf_info.afex_def_vlan_tag = -1; 12956 // XXX bxe_nic_load_afex_dcc(sc, load_code); 12957 12958 sc->state = BXE_STATE_OPENING_WAITING_PORT; 12959 rc = bxe_func_start(sc); 12960 if (rc) { 12961 BLOGE(sc, "Function start failed!\n"); 12962 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12963 sc->state = BXE_STATE_ERROR; 12964 goto bxe_nic_load_error3; 12965 } 12966 12967 /* send LOAD_DONE command to MCP */ 12968 if (!BXE_NOMCP(sc)) { 12969 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12970 if (!load_code) { 12971 BLOGE(sc, "MCP response failure, aborting\n"); 12972 sc->state = BXE_STATE_ERROR; 12973 rc = ENXIO; 12974 goto bxe_nic_load_error3; 12975 } 12976 } 12977 12978 rc = bxe_setup_leading(sc); 12979 if (rc) { 12980 BLOGE(sc, "Setup leading failed!\n"); 12981 sc->state = BXE_STATE_ERROR; 12982 goto bxe_nic_load_error3; 12983 } 12984 12985 FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) { 12986 rc = bxe_setup_queue(sc, &sc->fp[i], FALSE); 12987 if (rc) { 12988 BLOGE(sc, "Queue(%d) setup failed\n", i); 12989 sc->state = BXE_STATE_ERROR; 12990 goto bxe_nic_load_error3; 12991 } 12992 } 12993 12994 rc = bxe_init_rss_pf(sc); 12995 if (rc) { 12996 BLOGE(sc, "PF RSS init failed\n"); 12997 sc->state = BXE_STATE_ERROR; 12998 goto bxe_nic_load_error3; 12999 } 13000 } 13001 /* XXX VF */ 13002 #if 0 13003 else { /* VF */ 13004 FOR_EACH_ETH_QUEUE(sc, i) { 13005 rc = bxe_vfpf_setup_q(sc, i); 13006 if (rc) { 13007 BLOGE(sc, "Queue(%d) setup failed\n", i); 13008 sc->state = BXE_STATE_ERROR; 13009 goto bxe_nic_load_error3; 13010 } 13011 } 13012 } 13013 #endif 13014 13015 /* now when Clients are configured we are ready to work */ 13016 sc->state = BXE_STATE_OPEN; 13017 13018 /* Configure a ucast MAC */ 13019 if (IS_PF(sc)) { 13020 rc = bxe_set_eth_mac(sc, TRUE); 13021 } 13022 #if 0 13023 else { /* IS_VF(sc) */ 13024 rc = bxe_vfpf_set_mac(sc); 13025 } 13026 #endif 13027 if (rc) { 13028 BLOGE(sc, "Setting Ethernet MAC failed\n"); 13029 sc->state = BXE_STATE_ERROR; 13030 goto bxe_nic_load_error3; 13031 } 13032 13033 #if 0 13034 if (IS_PF(sc) && sc->pending_max) { 13035 /* for AFEX */ 13036 bxe_update_max_mf_config(sc, sc->pending_max); 13037 sc->pending_max = 0; 13038 } 13039 #endif 13040 13041 if (sc->port.pmf) { 13042 rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN); 13043 if (rc) { 13044 sc->state = BXE_STATE_ERROR; 13045 goto bxe_nic_load_error3; 13046 } 13047 } 13048 13049 sc->link_params.feature_config_flags &= 13050 ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN; 13051 13052 /* start fast path */ 13053 13054 /* Initialize Rx filter */ 13055 bxe_set_rx_mode(sc); 13056 13057 /* start the Tx */ 13058 switch (/* XXX load_mode */LOAD_OPEN) { 13059 case LOAD_NORMAL: 13060 case LOAD_OPEN: 13061 break; 13062 13063 case LOAD_DIAG: 13064 case LOAD_LOOPBACK_EXT: 13065 sc->state = BXE_STATE_DIAG; 13066 break; 13067 13068 default: 13069 break; 13070 } 13071 13072 if (sc->port.pmf) { 13073 bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0); 13074 } else { 13075 bxe_link_status_update(sc); 13076 } 13077 13078 /* start the periodic timer callout */ 13079 bxe_periodic_start(sc); 13080 13081 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 13082 /* mark driver is loaded in shmem2 */ 13083 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 13084 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 13085 (val | 13086 DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 13087 DRV_FLAGS_CAPABILITIES_LOADED_L2)); 13088 } 13089 13090 /* wait for all pending SP commands to complete */ 13091 if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) { 13092 BLOGE(sc, "Timeout waiting for all SPs to complete!\n"); 13093 bxe_periodic_stop(sc); 13094 bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE); 13095 return (ENXIO); 13096 } 13097 13098 #if 0 13099 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */ 13100 if (sc->port.pmf && (sc->state != BXE_STATE_DIAG)) { 13101 bxe_dcbx_init(sc, FALSE); 13102 } 13103 #endif 13104 13105 /* Tell the stack the driver is running! */ 13106 if_setdrvflags(sc->ifp, IFF_DRV_RUNNING); 13107 13108 BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n"); 13109 13110 return (0); 13111 13112 bxe_nic_load_error3: 13113 13114 if (IS_PF(sc)) { 13115 bxe_int_disable_sync(sc, 1); 13116 13117 /* clean out queued objects */ 13118 bxe_squeeze_objects(sc); 13119 } 13120 13121 bxe_interrupt_detach(sc); 13122 13123 bxe_nic_load_error2: 13124 13125 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 13126 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 13127 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 13128 } 13129 13130 sc->port.pmf = 0; 13131 13132 bxe_nic_load_error1: 13133 13134 /* clear pf_load status, as it was already set */ 13135 if (IS_PF(sc)) { 13136 bxe_clear_pf_load(sc); 13137 } 13138 13139 bxe_nic_load_error0: 13140 13141 bxe_free_fw_stats_mem(sc); 13142 bxe_free_fp_buffers(sc); 13143 bxe_free_mem(sc); 13144 13145 return (rc); 13146 } 13147 13148 static int 13149 bxe_init_locked(struct bxe_softc *sc) 13150 { 13151 int other_engine = SC_PATH(sc) ? 0 : 1; 13152 uint8_t other_load_status, load_status; 13153 uint8_t global = FALSE; 13154 int rc; 13155 13156 BXE_CORE_LOCK_ASSERT(sc); 13157 13158 /* check if the driver is already running */ 13159 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 13160 BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n"); 13161 return (0); 13162 } 13163 13164 bxe_set_power_state(sc, PCI_PM_D0); 13165 13166 /* 13167 * If parity occurred during the unload, then attentions and/or 13168 * RECOVERY_IN_PROGRES may still be set. If so we want the first function 13169 * loaded on the current engine to complete the recovery. Parity recovery 13170 * is only relevant for PF driver. 13171 */ 13172 if (IS_PF(sc)) { 13173 other_load_status = bxe_get_load_status(sc, other_engine); 13174 load_status = bxe_get_load_status(sc, SC_PATH(sc)); 13175 13176 if (!bxe_reset_is_done(sc, SC_PATH(sc)) || 13177 bxe_chk_parity_attn(sc, &global, TRUE)) { 13178 do { 13179 /* 13180 * If there are attentions and they are in global blocks, set 13181 * the GLOBAL_RESET bit regardless whether it will be this 13182 * function that will complete the recovery or not. 13183 */ 13184 if (global) { 13185 bxe_set_reset_global(sc); 13186 } 13187 13188 /* 13189 * Only the first function on the current engine should try 13190 * to recover in open. In case of attentions in global blocks 13191 * only the first in the chip should try to recover. 13192 */ 13193 if ((!load_status && (!global || !other_load_status)) && 13194 bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) { 13195 BLOGI(sc, "Recovered during init\n"); 13196 break; 13197 } 13198 13199 /* recovery has failed... */ 13200 bxe_set_power_state(sc, PCI_PM_D3hot); 13201 sc->recovery_state = BXE_RECOVERY_FAILED; 13202 13203 BLOGE(sc, "Recovery flow hasn't properly " 13204 "completed yet, try again later. " 13205 "If you still see this message after a " 13206 "few retries then power cycle is required.\n"); 13207 13208 rc = ENXIO; 13209 goto bxe_init_locked_done; 13210 } while (0); 13211 } 13212 } 13213 13214 sc->recovery_state = BXE_RECOVERY_DONE; 13215 13216 rc = bxe_nic_load(sc, LOAD_OPEN); 13217 13218 bxe_init_locked_done: 13219 13220 if (rc) { 13221 /* Tell the stack the driver is NOT running! */ 13222 BLOGE(sc, "Initialization failed, " 13223 "stack notified driver is NOT running!\n"); 13224 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 13225 } 13226 13227 return (rc); 13228 } 13229 13230 static int 13231 bxe_stop_locked(struct bxe_softc *sc) 13232 { 13233 BXE_CORE_LOCK_ASSERT(sc); 13234 return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE)); 13235 } 13236 13237 /* 13238 * Handles controller initialization when called from an unlocked routine. 13239 * ifconfig calls this function. 13240 * 13241 * Returns: 13242 * void 13243 */ 13244 static void 13245 bxe_init(void *xsc) 13246 { 13247 struct bxe_softc *sc = (struct bxe_softc *)xsc; 13248 13249 BXE_CORE_LOCK(sc); 13250 bxe_init_locked(sc); 13251 BXE_CORE_UNLOCK(sc); 13252 } 13253 13254 static int 13255 bxe_init_ifnet(struct bxe_softc *sc) 13256 { 13257 if_t ifp; 13258 int capabilities; 13259 13260 /* ifconfig entrypoint for media type/status reporting */ 13261 ifmedia_init(&sc->ifmedia, IFM_IMASK, 13262 bxe_ifmedia_update, 13263 bxe_ifmedia_status); 13264 13265 /* set the default interface values */ 13266 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL); 13267 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL); 13268 ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO)); 13269 13270 sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */ 13271 13272 /* allocate the ifnet structure */ 13273 if ((ifp = if_gethandle(IFT_ETHER)) == NULL) { 13274 BLOGE(sc, "Interface allocation failed!\n"); 13275 return (ENXIO); 13276 } 13277 13278 if_setsoftc(ifp, sc); 13279 if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); 13280 if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST)); 13281 if_setioctlfn(ifp, bxe_ioctl); 13282 if_setstartfn(ifp, bxe_tx_start); 13283 if_setgetcounterfn(ifp, bxe_get_counter); 13284 #if __FreeBSD_version >= 800000 13285 if_settransmitfn(ifp, bxe_tx_mq_start); 13286 if_setqflushfn(ifp, bxe_mq_flush); 13287 #endif 13288 #ifdef FreeBSD8_0 13289 if_settimer(ifp, 0); 13290 #endif 13291 if_setinitfn(ifp, bxe_init); 13292 if_setmtu(ifp, sc->mtu); 13293 if_sethwassist(ifp, (CSUM_IP | 13294 CSUM_TCP | 13295 CSUM_UDP | 13296 CSUM_TSO | 13297 CSUM_TCP_IPV6 | 13298 CSUM_UDP_IPV6)); 13299 13300 capabilities = 13301 #if __FreeBSD_version < 700000 13302 (IFCAP_VLAN_MTU | 13303 IFCAP_VLAN_HWTAGGING | 13304 IFCAP_HWCSUM | 13305 IFCAP_JUMBO_MTU | 13306 IFCAP_LRO); 13307 #else 13308 (IFCAP_VLAN_MTU | 13309 IFCAP_VLAN_HWTAGGING | 13310 IFCAP_VLAN_HWTSO | 13311 IFCAP_VLAN_HWFILTER | 13312 IFCAP_VLAN_HWCSUM | 13313 IFCAP_HWCSUM | 13314 IFCAP_JUMBO_MTU | 13315 IFCAP_LRO | 13316 IFCAP_TSO4 | 13317 IFCAP_TSO6 | 13318 IFCAP_WOL_MAGIC); 13319 #endif 13320 if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */ 13321 if_setbaudrate(ifp, IF_Gbps(10)); 13322 /* XXX */ 13323 if_setsendqlen(ifp, sc->tx_ring_size); 13324 if_setsendqready(ifp); 13325 /* XXX */ 13326 13327 sc->ifp = ifp; 13328 13329 /* attach to the Ethernet interface list */ 13330 ether_ifattach(ifp, sc->link_params.mac_addr); 13331 13332 return (0); 13333 } 13334 13335 static void 13336 bxe_deallocate_bars(struct bxe_softc *sc) 13337 { 13338 int i; 13339 13340 for (i = 0; i < MAX_BARS; i++) { 13341 if (sc->bar[i].resource != NULL) { 13342 bus_release_resource(sc->dev, 13343 SYS_RES_MEMORY, 13344 sc->bar[i].rid, 13345 sc->bar[i].resource); 13346 BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n", 13347 i, PCIR_BAR(i)); 13348 } 13349 } 13350 } 13351 13352 static int 13353 bxe_allocate_bars(struct bxe_softc *sc) 13354 { 13355 u_int flags; 13356 int i; 13357 13358 memset(sc->bar, 0, sizeof(sc->bar)); 13359 13360 for (i = 0; i < MAX_BARS; i++) { 13361 13362 /* memory resources reside at BARs 0, 2, 4 */ 13363 /* Run `pciconf -lb` to see mappings */ 13364 if ((i != 0) && (i != 2) && (i != 4)) { 13365 continue; 13366 } 13367 13368 sc->bar[i].rid = PCIR_BAR(i); 13369 13370 flags = RF_ACTIVE; 13371 if (i == 0) { 13372 flags |= RF_SHAREABLE; 13373 } 13374 13375 if ((sc->bar[i].resource = 13376 bus_alloc_resource_any(sc->dev, 13377 SYS_RES_MEMORY, 13378 &sc->bar[i].rid, 13379 flags)) == NULL) { 13380 #if 0 13381 /* BAR4 doesn't exist for E1 */ 13382 BLOGE(sc, "PCI BAR%d [%02x] memory allocation failed\n", 13383 i, PCIR_BAR(i)); 13384 #endif 13385 return (0); 13386 } 13387 13388 sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource); 13389 sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource); 13390 sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource); 13391 13392 BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%ld) -> %p\n", 13393 i, PCIR_BAR(i), 13394 (void *)rman_get_start(sc->bar[i].resource), 13395 (void *)rman_get_end(sc->bar[i].resource), 13396 rman_get_size(sc->bar[i].resource), 13397 (void *)sc->bar[i].kva); 13398 } 13399 13400 return (0); 13401 } 13402 13403 static void 13404 bxe_get_function_num(struct bxe_softc *sc) 13405 { 13406 uint32_t val = 0; 13407 13408 /* 13409 * Read the ME register to get the function number. The ME register 13410 * holds the relative-function number and absolute-function number. The 13411 * absolute-function number appears only in E2 and above. Before that 13412 * these bits always contained zero, therefore we cannot blindly use them. 13413 */ 13414 13415 val = REG_RD(sc, BAR_ME_REGISTER); 13416 13417 sc->pfunc_rel = 13418 (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT); 13419 sc->path_id = 13420 (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1; 13421 13422 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13423 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id); 13424 } else { 13425 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id); 13426 } 13427 13428 BLOGD(sc, DBG_LOAD, 13429 "Relative function %d, Absolute function %d, Path %d\n", 13430 sc->pfunc_rel, sc->pfunc_abs, sc->path_id); 13431 } 13432 13433 static uint32_t 13434 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc) 13435 { 13436 uint32_t shmem2_size; 13437 uint32_t offset; 13438 uint32_t mf_cfg_offset_value; 13439 13440 /* Non 57712 */ 13441 offset = (SHMEM_RD(sc, func_mb) + 13442 (MAX_FUNC_NUM * sizeof(struct drv_func_mb))); 13443 13444 /* 57712 plus */ 13445 if (sc->devinfo.shmem2_base != 0) { 13446 shmem2_size = SHMEM2_RD(sc, size); 13447 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) { 13448 mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr); 13449 if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) { 13450 offset = mf_cfg_offset_value; 13451 } 13452 } 13453 } 13454 13455 return (offset); 13456 } 13457 13458 static uint32_t 13459 bxe_pcie_capability_read(struct bxe_softc *sc, 13460 int reg, 13461 int width) 13462 { 13463 int pcie_reg; 13464 13465 /* ensure PCIe capability is enabled */ 13466 if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) { 13467 if (pcie_reg != 0) { 13468 BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg); 13469 return (pci_read_config(sc->dev, (pcie_reg + reg), width)); 13470 } 13471 } 13472 13473 BLOGE(sc, "PCIe capability NOT FOUND!!!\n"); 13474 13475 return (0); 13476 } 13477 13478 static uint8_t 13479 bxe_is_pcie_pending(struct bxe_softc *sc) 13480 { 13481 return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) & 13482 PCIM_EXP_STA_TRANSACTION_PND); 13483 } 13484 13485 /* 13486 * Walk the PCI capabiites list for the device to find what features are 13487 * supported. These capabilites may be enabled/disabled by firmware so it's 13488 * best to walk the list rather than make assumptions. 13489 */ 13490 static void 13491 bxe_probe_pci_caps(struct bxe_softc *sc) 13492 { 13493 uint16_t link_status; 13494 int reg; 13495 13496 /* check if PCI Power Management is enabled */ 13497 if (pci_find_cap(sc->dev, PCIY_PMG, ®) == 0) { 13498 if (reg != 0) { 13499 BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg); 13500 13501 sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG; 13502 sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg; 13503 } 13504 } 13505 13506 link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2); 13507 13508 /* handle PCIe 2.0 workarounds for 57710 */ 13509 if (CHIP_IS_E1(sc)) { 13510 /* workaround for 57710 errata E4_57710_27462 */ 13511 sc->devinfo.pcie_link_speed = 13512 (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1; 13513 13514 /* workaround for 57710 errata E4_57710_27488 */ 13515 sc->devinfo.pcie_link_width = 13516 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 13517 if (sc->devinfo.pcie_link_speed > 1) { 13518 sc->devinfo.pcie_link_width = 13519 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1; 13520 } 13521 } else { 13522 sc->devinfo.pcie_link_speed = 13523 (link_status & PCIM_LINK_STA_SPEED); 13524 sc->devinfo.pcie_link_width = 13525 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 13526 } 13527 13528 BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n", 13529 sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width); 13530 13531 sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG; 13532 sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg; 13533 13534 /* check if MSI capability is enabled */ 13535 if (pci_find_cap(sc->dev, PCIY_MSI, ®) == 0) { 13536 if (reg != 0) { 13537 BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg); 13538 13539 sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG; 13540 sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg; 13541 } 13542 } 13543 13544 /* check if MSI-X capability is enabled */ 13545 if (pci_find_cap(sc->dev, PCIY_MSIX, ®) == 0) { 13546 if (reg != 0) { 13547 BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg); 13548 13549 sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG; 13550 sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg; 13551 } 13552 } 13553 } 13554 13555 static int 13556 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc) 13557 { 13558 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13559 uint32_t val; 13560 13561 /* get the outer vlan if we're in switch-dependent mode */ 13562 13563 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13564 mf_info->ext_id = (uint16_t)val; 13565 13566 mf_info->multi_vnics_mode = 1; 13567 13568 if (!VALID_OVLAN(mf_info->ext_id)) { 13569 BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id); 13570 return (1); 13571 } 13572 13573 /* get the capabilities */ 13574 if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13575 FUNC_MF_CFG_PROTOCOL_ISCSI) { 13576 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI; 13577 } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13578 FUNC_MF_CFG_PROTOCOL_FCOE) { 13579 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE; 13580 } else { 13581 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET; 13582 } 13583 13584 mf_info->vnics_per_port = 13585 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13586 13587 return (0); 13588 } 13589 13590 static uint32_t 13591 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc) 13592 { 13593 uint32_t retval = 0; 13594 uint32_t val; 13595 13596 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13597 13598 if (val & MACP_FUNC_CFG_FLAGS_ENABLED) { 13599 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) { 13600 retval |= MF_PROTO_SUPPORT_ETHERNET; 13601 } 13602 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 13603 retval |= MF_PROTO_SUPPORT_ISCSI; 13604 } 13605 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 13606 retval |= MF_PROTO_SUPPORT_FCOE; 13607 } 13608 } 13609 13610 return (retval); 13611 } 13612 13613 static int 13614 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc) 13615 { 13616 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13617 uint32_t val; 13618 13619 /* 13620 * There is no outer vlan if we're in switch-independent mode. 13621 * If the mac is valid then assume multi-function. 13622 */ 13623 13624 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13625 13626 mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0); 13627 13628 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13629 13630 mf_info->vnics_per_port = 13631 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13632 13633 return (0); 13634 } 13635 13636 static int 13637 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc) 13638 { 13639 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13640 uint32_t e1hov_tag; 13641 uint32_t func_config; 13642 uint32_t niv_config; 13643 13644 mf_info->multi_vnics_mode = 1; 13645 13646 e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13647 func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13648 niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config); 13649 13650 mf_info->ext_id = 13651 (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >> 13652 FUNC_MF_CFG_E1HOV_TAG_SHIFT); 13653 13654 mf_info->default_vlan = 13655 (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >> 13656 FUNC_MF_CFG_AFEX_VLAN_SHIFT); 13657 13658 mf_info->niv_allowed_priorities = 13659 (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 13660 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT); 13661 13662 mf_info->niv_default_cos = 13663 (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 13664 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT); 13665 13666 mf_info->afex_vlan_mode = 13667 ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 13668 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT); 13669 13670 mf_info->niv_mba_enabled = 13671 ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >> 13672 FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT); 13673 13674 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13675 13676 mf_info->vnics_per_port = 13677 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13678 13679 return (0); 13680 } 13681 13682 static int 13683 bxe_check_valid_mf_cfg(struct bxe_softc *sc) 13684 { 13685 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13686 uint32_t mf_cfg1; 13687 uint32_t mf_cfg2; 13688 uint32_t ovlan1; 13689 uint32_t ovlan2; 13690 uint8_t i, j; 13691 13692 BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n", 13693 SC_PORT(sc)); 13694 BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n", 13695 mf_info->mf_config[SC_VN(sc)]); 13696 BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n", 13697 mf_info->multi_vnics_mode); 13698 BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n", 13699 mf_info->vnics_per_port); 13700 BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n", 13701 mf_info->ext_id); 13702 BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n", 13703 mf_info->min_bw[0], mf_info->min_bw[1], 13704 mf_info->min_bw[2], mf_info->min_bw[3]); 13705 BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n", 13706 mf_info->max_bw[0], mf_info->max_bw[1], 13707 mf_info->max_bw[2], mf_info->max_bw[3]); 13708 BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n", 13709 sc->mac_addr_str); 13710 13711 /* various MF mode sanity checks... */ 13712 13713 if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) { 13714 BLOGE(sc, "Enumerated function %d is marked as hidden\n", 13715 SC_PORT(sc)); 13716 return (1); 13717 } 13718 13719 if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) { 13720 BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n", 13721 mf_info->vnics_per_port, mf_info->multi_vnics_mode); 13722 return (1); 13723 } 13724 13725 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13726 /* vnic id > 0 must have valid ovlan in switch-dependent mode */ 13727 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) { 13728 BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n", 13729 SC_VN(sc), OVLAN(sc)); 13730 return (1); 13731 } 13732 13733 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) { 13734 BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n", 13735 mf_info->multi_vnics_mode, OVLAN(sc)); 13736 return (1); 13737 } 13738 13739 /* 13740 * Verify all functions are either MF or SF mode. If MF, make sure 13741 * sure that all non-hidden functions have a valid ovlan. If SF, 13742 * make sure that all non-hidden functions have an invalid ovlan. 13743 */ 13744 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13745 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13746 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13747 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13748 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) || 13749 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) { 13750 BLOGE(sc, "mf_mode=SD function %d MF config " 13751 "mismatch, multi_vnics_mode=%d ovlan=%d\n", 13752 i, mf_info->multi_vnics_mode, ovlan1); 13753 return (1); 13754 } 13755 } 13756 13757 /* Verify all funcs on the same port each have a different ovlan. */ 13758 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13759 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13760 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13761 /* iterate from the next function on the port to the max func */ 13762 for (j = i + 2; j < MAX_FUNC_NUM; j += 2) { 13763 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config); 13764 ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag); 13765 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13766 VALID_OVLAN(ovlan1) && 13767 !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) && 13768 VALID_OVLAN(ovlan2) && 13769 (ovlan1 == ovlan2)) { 13770 BLOGE(sc, "mf_mode=SD functions %d and %d " 13771 "have the same ovlan (%d)\n", 13772 i, j, ovlan1); 13773 return (1); 13774 } 13775 } 13776 } 13777 } /* MULTI_FUNCTION_SD */ 13778 13779 return (0); 13780 } 13781 13782 static int 13783 bxe_get_mf_cfg_info(struct bxe_softc *sc) 13784 { 13785 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13786 uint32_t val, mac_upper; 13787 uint8_t i, vnic; 13788 13789 /* initialize mf_info defaults */ 13790 mf_info->vnics_per_port = 1; 13791 mf_info->multi_vnics_mode = FALSE; 13792 mf_info->path_has_ovlan = FALSE; 13793 mf_info->mf_mode = SINGLE_FUNCTION; 13794 13795 if (!CHIP_IS_MF_CAP(sc)) { 13796 return (0); 13797 } 13798 13799 if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) { 13800 BLOGE(sc, "Invalid mf_cfg_base!\n"); 13801 return (1); 13802 } 13803 13804 /* get the MF mode (switch dependent / independent / single-function) */ 13805 13806 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13807 13808 switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) 13809 { 13810 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 13811 13812 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13813 13814 /* check for legal upper mac bytes */ 13815 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) { 13816 mf_info->mf_mode = MULTI_FUNCTION_SI; 13817 } else { 13818 BLOGE(sc, "Invalid config for Switch Independent mode\n"); 13819 } 13820 13821 break; 13822 13823 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 13824 case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4: 13825 13826 /* get outer vlan configuration */ 13827 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13828 13829 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) != 13830 FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 13831 mf_info->mf_mode = MULTI_FUNCTION_SD; 13832 } else { 13833 BLOGE(sc, "Invalid config for Switch Dependent mode\n"); 13834 } 13835 13836 break; 13837 13838 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 13839 13840 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */ 13841 return (0); 13842 13843 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 13844 13845 /* 13846 * Mark MF mode as NIV if MCP version includes NPAR-SD support 13847 * and the MAC address is valid. 13848 */ 13849 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13850 13851 if ((SHMEM2_HAS(sc, afex_driver_support)) && 13852 (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) { 13853 mf_info->mf_mode = MULTI_FUNCTION_AFEX; 13854 } else { 13855 BLOGE(sc, "Invalid config for AFEX mode\n"); 13856 } 13857 13858 break; 13859 13860 default: 13861 13862 BLOGE(sc, "Unknown MF mode (0x%08x)\n", 13863 (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)); 13864 13865 return (1); 13866 } 13867 13868 /* set path mf_mode (which could be different than function mf_mode) */ 13869 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13870 mf_info->path_has_ovlan = TRUE; 13871 } else if (mf_info->mf_mode == SINGLE_FUNCTION) { 13872 /* 13873 * Decide on path multi vnics mode. If we're not in MF mode and in 13874 * 4-port mode, this is good enough to check vnic-0 of the other port 13875 * on the same path 13876 */ 13877 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13878 uint8_t other_port = !(PORT_ID(sc) & 1); 13879 uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port)); 13880 13881 val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag); 13882 13883 mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0; 13884 } 13885 } 13886 13887 if (mf_info->mf_mode == SINGLE_FUNCTION) { 13888 /* invalid MF config */ 13889 if (SC_VN(sc) >= 1) { 13890 BLOGE(sc, "VNIC ID >= 1 in SF mode\n"); 13891 return (1); 13892 } 13893 13894 return (0); 13895 } 13896 13897 /* get the MF configuration */ 13898 mf_info->mf_config[SC_VN(sc)] = 13899 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13900 13901 switch(mf_info->mf_mode) 13902 { 13903 case MULTI_FUNCTION_SD: 13904 13905 bxe_get_shmem_mf_cfg_info_sd(sc); 13906 break; 13907 13908 case MULTI_FUNCTION_SI: 13909 13910 bxe_get_shmem_mf_cfg_info_si(sc); 13911 break; 13912 13913 case MULTI_FUNCTION_AFEX: 13914 13915 bxe_get_shmem_mf_cfg_info_niv(sc); 13916 break; 13917 13918 default: 13919 13920 BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n", 13921 mf_info->mf_mode); 13922 return (1); 13923 } 13924 13925 /* get the congestion management parameters */ 13926 13927 vnic = 0; 13928 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13929 /* get min/max bw */ 13930 val = MFCFG_RD(sc, func_mf_config[i].config); 13931 mf_info->min_bw[vnic] = 13932 ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT); 13933 mf_info->max_bw[vnic] = 13934 ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT); 13935 vnic++; 13936 } 13937 13938 return (bxe_check_valid_mf_cfg(sc)); 13939 } 13940 13941 static int 13942 bxe_get_shmem_info(struct bxe_softc *sc) 13943 { 13944 int port; 13945 uint32_t mac_hi, mac_lo, val; 13946 13947 port = SC_PORT(sc); 13948 mac_hi = mac_lo = 0; 13949 13950 sc->link_params.sc = sc; 13951 sc->link_params.port = port; 13952 13953 /* get the hardware config info */ 13954 sc->devinfo.hw_config = 13955 SHMEM_RD(sc, dev_info.shared_hw_config.config); 13956 sc->devinfo.hw_config2 = 13957 SHMEM_RD(sc, dev_info.shared_hw_config.config2); 13958 13959 sc->link_params.hw_led_mode = 13960 ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >> 13961 SHARED_HW_CFG_LED_MODE_SHIFT); 13962 13963 /* get the port feature config */ 13964 sc->port.config = 13965 SHMEM_RD(sc, dev_info.port_feature_config[port].config), 13966 13967 /* get the link params */ 13968 sc->link_params.speed_cap_mask[0] = 13969 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask); 13970 sc->link_params.speed_cap_mask[1] = 13971 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2); 13972 13973 /* get the lane config */ 13974 sc->link_params.lane_config = 13975 SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config); 13976 13977 /* get the link config */ 13978 val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config); 13979 sc->port.link_config[ELINK_INT_PHY] = val; 13980 sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK); 13981 sc->port.link_config[ELINK_EXT_PHY1] = 13982 SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2); 13983 13984 /* get the override preemphasis flag and enable it or turn it off */ 13985 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13986 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) { 13987 sc->link_params.feature_config_flags |= 13988 ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13989 } else { 13990 sc->link_params.feature_config_flags &= 13991 ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13992 } 13993 13994 /* get the initial value of the link params */ 13995 sc->link_params.multi_phy_config = 13996 SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config); 13997 13998 /* get external phy info */ 13999 sc->port.ext_phy_config = 14000 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 14001 14002 /* get the multifunction configuration */ 14003 bxe_get_mf_cfg_info(sc); 14004 14005 /* get the mac address */ 14006 if (IS_MF(sc)) { 14007 mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 14008 mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower); 14009 } else { 14010 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper); 14011 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower); 14012 } 14013 14014 if ((mac_lo == 0) && (mac_hi == 0)) { 14015 *sc->mac_addr_str = 0; 14016 BLOGE(sc, "No Ethernet address programmed!\n"); 14017 } else { 14018 sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8); 14019 sc->link_params.mac_addr[1] = (uint8_t)(mac_hi); 14020 sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24); 14021 sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16); 14022 sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8); 14023 sc->link_params.mac_addr[5] = (uint8_t)(mac_lo); 14024 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str), 14025 "%02x:%02x:%02x:%02x:%02x:%02x", 14026 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1], 14027 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3], 14028 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]); 14029 BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str); 14030 } 14031 14032 #if 0 14033 if (!IS_MF(sc) && 14034 ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 14035 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE)) { 14036 sc->flags |= BXE_NO_ISCSI; 14037 } 14038 if (!IS_MF(sc) && 14039 ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 14040 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI)) { 14041 sc->flags |= BXE_NO_FCOE_FLAG; 14042 } 14043 #endif 14044 14045 return (0); 14046 } 14047 14048 static void 14049 bxe_get_tunable_params(struct bxe_softc *sc) 14050 { 14051 /* sanity checks */ 14052 14053 if ((bxe_interrupt_mode != INTR_MODE_INTX) && 14054 (bxe_interrupt_mode != INTR_MODE_MSI) && 14055 (bxe_interrupt_mode != INTR_MODE_MSIX)) { 14056 BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode); 14057 bxe_interrupt_mode = INTR_MODE_MSIX; 14058 } 14059 14060 if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) { 14061 BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count); 14062 bxe_queue_count = 0; 14063 } 14064 14065 if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) { 14066 if (bxe_max_rx_bufs == 0) { 14067 bxe_max_rx_bufs = RX_BD_USABLE; 14068 } else { 14069 BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs); 14070 bxe_max_rx_bufs = 2048; 14071 } 14072 } 14073 14074 if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) { 14075 BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks); 14076 bxe_hc_rx_ticks = 25; 14077 } 14078 14079 if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) { 14080 BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks); 14081 bxe_hc_tx_ticks = 50; 14082 } 14083 14084 if (bxe_max_aggregation_size == 0) { 14085 bxe_max_aggregation_size = TPA_AGG_SIZE; 14086 } 14087 14088 if (bxe_max_aggregation_size > 0xffff) { 14089 BLOGW(sc, "invalid max_aggregation_size (%d)\n", 14090 bxe_max_aggregation_size); 14091 bxe_max_aggregation_size = TPA_AGG_SIZE; 14092 } 14093 14094 if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) { 14095 BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs); 14096 bxe_mrrs = -1; 14097 } 14098 14099 if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) { 14100 BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen); 14101 bxe_autogreeen = 0; 14102 } 14103 14104 if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) { 14105 BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss); 14106 bxe_udp_rss = 0; 14107 } 14108 14109 /* pull in user settings */ 14110 14111 sc->interrupt_mode = bxe_interrupt_mode; 14112 sc->max_rx_bufs = bxe_max_rx_bufs; 14113 sc->hc_rx_ticks = bxe_hc_rx_ticks; 14114 sc->hc_tx_ticks = bxe_hc_tx_ticks; 14115 sc->max_aggregation_size = bxe_max_aggregation_size; 14116 sc->mrrs = bxe_mrrs; 14117 sc->autogreeen = bxe_autogreeen; 14118 sc->udp_rss = bxe_udp_rss; 14119 14120 if (bxe_interrupt_mode == INTR_MODE_INTX) { 14121 sc->num_queues = 1; 14122 } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */ 14123 sc->num_queues = 14124 min((bxe_queue_count ? bxe_queue_count : mp_ncpus), 14125 MAX_RSS_CHAINS); 14126 if (sc->num_queues > mp_ncpus) { 14127 sc->num_queues = mp_ncpus; 14128 } 14129 } 14130 14131 BLOGD(sc, DBG_LOAD, 14132 "User Config: " 14133 "debug=0x%lx " 14134 "interrupt_mode=%d " 14135 "queue_count=%d " 14136 "hc_rx_ticks=%d " 14137 "hc_tx_ticks=%d " 14138 "rx_budget=%d " 14139 "max_aggregation_size=%d " 14140 "mrrs=%d " 14141 "autogreeen=%d " 14142 "udp_rss=%d\n", 14143 bxe_debug, 14144 sc->interrupt_mode, 14145 sc->num_queues, 14146 sc->hc_rx_ticks, 14147 sc->hc_tx_ticks, 14148 bxe_rx_budget, 14149 sc->max_aggregation_size, 14150 sc->mrrs, 14151 sc->autogreeen, 14152 sc->udp_rss); 14153 } 14154 14155 static void 14156 bxe_media_detect(struct bxe_softc *sc) 14157 { 14158 uint32_t phy_idx = bxe_get_cur_phy_idx(sc); 14159 switch (sc->link_params.phy[phy_idx].media_type) { 14160 case ELINK_ETH_PHY_SFPP_10G_FIBER: 14161 case ELINK_ETH_PHY_XFP_FIBER: 14162 BLOGI(sc, "Found 10Gb Fiber media.\n"); 14163 sc->media = IFM_10G_SR; 14164 break; 14165 case ELINK_ETH_PHY_SFP_1G_FIBER: 14166 BLOGI(sc, "Found 1Gb Fiber media.\n"); 14167 sc->media = IFM_1000_SX; 14168 break; 14169 case ELINK_ETH_PHY_KR: 14170 case ELINK_ETH_PHY_CX4: 14171 BLOGI(sc, "Found 10GBase-CX4 media.\n"); 14172 sc->media = IFM_10G_CX4; 14173 break; 14174 case ELINK_ETH_PHY_DA_TWINAX: 14175 BLOGI(sc, "Found 10Gb Twinax media.\n"); 14176 sc->media = IFM_10G_TWINAX; 14177 break; 14178 case ELINK_ETH_PHY_BASE_T: 14179 if (sc->link_params.speed_cap_mask[0] & 14180 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 14181 BLOGI(sc, "Found 10GBase-T media.\n"); 14182 sc->media = IFM_10G_T; 14183 } else { 14184 BLOGI(sc, "Found 1000Base-T media.\n"); 14185 sc->media = IFM_1000_T; 14186 } 14187 break; 14188 case ELINK_ETH_PHY_NOT_PRESENT: 14189 BLOGI(sc, "Media not present.\n"); 14190 sc->media = 0; 14191 break; 14192 case ELINK_ETH_PHY_UNSPECIFIED: 14193 default: 14194 BLOGI(sc, "Unknown media!\n"); 14195 sc->media = 0; 14196 break; 14197 } 14198 } 14199 14200 #define GET_FIELD(value, fname) \ 14201 (((value) & (fname##_MASK)) >> (fname##_SHIFT)) 14202 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 14203 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 14204 14205 static int 14206 bxe_get_igu_cam_info(struct bxe_softc *sc) 14207 { 14208 int pfid = SC_FUNC(sc); 14209 int igu_sb_id; 14210 uint32_t val; 14211 uint8_t fid, igu_sb_cnt = 0; 14212 14213 sc->igu_base_sb = 0xff; 14214 14215 if (CHIP_INT_MODE_IS_BC(sc)) { 14216 int vn = SC_VN(sc); 14217 igu_sb_cnt = sc->igu_sb_cnt; 14218 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) * 14219 FP_SB_MAX_E1x); 14220 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x + 14221 (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn)); 14222 return (0); 14223 } 14224 14225 /* IGU in normal mode - read CAM */ 14226 for (igu_sb_id = 0; 14227 igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 14228 igu_sb_id++) { 14229 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 14230 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) { 14231 continue; 14232 } 14233 fid = IGU_FID(val); 14234 if ((fid & IGU_FID_ENCODE_IS_PF)) { 14235 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) { 14236 continue; 14237 } 14238 if (IGU_VEC(val) == 0) { 14239 /* default status block */ 14240 sc->igu_dsb_id = igu_sb_id; 14241 } else { 14242 if (sc->igu_base_sb == 0xff) { 14243 sc->igu_base_sb = igu_sb_id; 14244 } 14245 igu_sb_cnt++; 14246 } 14247 } 14248 } 14249 14250 /* 14251 * Due to new PF resource allocation by MFW T7.4 and above, it's optional 14252 * that number of CAM entries will not be equal to the value advertised in 14253 * PCI. Driver should use the minimal value of both as the actual status 14254 * block count 14255 */ 14256 sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt); 14257 14258 if (igu_sb_cnt == 0) { 14259 BLOGE(sc, "CAM configuration error\n"); 14260 return (-1); 14261 } 14262 14263 return (0); 14264 } 14265 14266 /* 14267 * Gather various information from the device config space, the device itself, 14268 * shmem, and the user input. 14269 */ 14270 static int 14271 bxe_get_device_info(struct bxe_softc *sc) 14272 { 14273 uint32_t val; 14274 int rc; 14275 14276 /* Get the data for the device */ 14277 sc->devinfo.vendor_id = pci_get_vendor(sc->dev); 14278 sc->devinfo.device_id = pci_get_device(sc->dev); 14279 sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev); 14280 sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev); 14281 14282 /* get the chip revision (chip metal comes from pci config space) */ 14283 sc->devinfo.chip_id = 14284 sc->link_params.chip_id = 14285 (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) | 14286 ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) | 14287 (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) | 14288 ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0)); 14289 14290 /* force 57811 according to MISC register */ 14291 if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 14292 if (CHIP_IS_57810(sc)) { 14293 sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) | 14294 (sc->devinfo.chip_id & 0x0000ffff)); 14295 } else if (CHIP_IS_57810_MF(sc)) { 14296 sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) | 14297 (sc->devinfo.chip_id & 0x0000ffff)); 14298 } 14299 sc->devinfo.chip_id |= 0x1; 14300 } 14301 14302 BLOGD(sc, DBG_LOAD, 14303 "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n", 14304 sc->devinfo.chip_id, 14305 ((sc->devinfo.chip_id >> 16) & 0xffff), 14306 ((sc->devinfo.chip_id >> 12) & 0xf), 14307 ((sc->devinfo.chip_id >> 4) & 0xff), 14308 ((sc->devinfo.chip_id >> 0) & 0xf)); 14309 14310 val = (REG_RD(sc, 0x2874) & 0x55); 14311 if ((sc->devinfo.chip_id & 0x1) || 14312 (CHIP_IS_E1(sc) && val) || 14313 (CHIP_IS_E1H(sc) && (val == 0x55))) { 14314 sc->flags |= BXE_ONE_PORT_FLAG; 14315 BLOGD(sc, DBG_LOAD, "single port device\n"); 14316 } 14317 14318 /* set the doorbell size */ 14319 sc->doorbell_size = (1 << BXE_DB_SHIFT); 14320 14321 /* determine whether the device is in 2 port or 4 port mode */ 14322 sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/ 14323 if (CHIP_IS_E2E3(sc)) { 14324 /* 14325 * Read port4mode_en_ovwr[0]: 14326 * If 1, four port mode is in port4mode_en_ovwr[1]. 14327 * If 0, four port mode is in port4mode_en[0]. 14328 */ 14329 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR); 14330 if (val & 1) { 14331 val = ((val >> 1) & 1); 14332 } else { 14333 val = REG_RD(sc, MISC_REG_PORT4MODE_EN); 14334 } 14335 14336 sc->devinfo.chip_port_mode = 14337 (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE; 14338 14339 BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2"); 14340 } 14341 14342 /* get the function and path info for the device */ 14343 bxe_get_function_num(sc); 14344 14345 /* get the shared memory base address */ 14346 sc->devinfo.shmem_base = 14347 sc->link_params.shmem_base = 14348 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 14349 sc->devinfo.shmem2_base = 14350 REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 : 14351 MISC_REG_GENERIC_CR_0)); 14352 14353 BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n", 14354 sc->devinfo.shmem_base, sc->devinfo.shmem2_base); 14355 14356 if (!sc->devinfo.shmem_base) { 14357 /* this should ONLY prevent upcoming shmem reads */ 14358 BLOGI(sc, "MCP not active\n"); 14359 sc->flags |= BXE_NO_MCP_FLAG; 14360 return (0); 14361 } 14362 14363 /* make sure the shared memory contents are valid */ 14364 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 14365 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) != 14366 (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) { 14367 BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val); 14368 return (0); 14369 } 14370 BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val); 14371 14372 /* get the bootcode version */ 14373 sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev); 14374 snprintf(sc->devinfo.bc_ver_str, 14375 sizeof(sc->devinfo.bc_ver_str), 14376 "%d.%d.%d", 14377 ((sc->devinfo.bc_ver >> 24) & 0xff), 14378 ((sc->devinfo.bc_ver >> 16) & 0xff), 14379 ((sc->devinfo.bc_ver >> 8) & 0xff)); 14380 BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str); 14381 14382 /* get the bootcode shmem address */ 14383 sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc); 14384 BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base); 14385 14386 /* clean indirect addresses as they're not used */ 14387 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 14388 if (IS_PF(sc)) { 14389 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0); 14390 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0); 14391 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0); 14392 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0); 14393 if (CHIP_IS_E1x(sc)) { 14394 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0); 14395 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0); 14396 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0); 14397 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0); 14398 } 14399 14400 /* 14401 * Enable internal target-read (in case we are probed after PF 14402 * FLR). Must be done prior to any BAR read access. Only for 14403 * 57712 and up 14404 */ 14405 if (!CHIP_IS_E1x(sc)) { 14406 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 14407 } 14408 } 14409 14410 /* get the nvram size */ 14411 val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4); 14412 sc->devinfo.flash_size = 14413 (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE)); 14414 BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size); 14415 14416 /* get PCI capabilites */ 14417 bxe_probe_pci_caps(sc); 14418 14419 bxe_set_power_state(sc, PCI_PM_D0); 14420 14421 /* get various configuration parameters from shmem */ 14422 bxe_get_shmem_info(sc); 14423 14424 if (sc->devinfo.pcie_msix_cap_reg != 0) { 14425 val = pci_read_config(sc->dev, 14426 (sc->devinfo.pcie_msix_cap_reg + 14427 PCIR_MSIX_CTRL), 14428 2); 14429 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE); 14430 } else { 14431 sc->igu_sb_cnt = 1; 14432 } 14433 14434 sc->igu_base_addr = BAR_IGU_INTMEM; 14435 14436 /* initialize IGU parameters */ 14437 if (CHIP_IS_E1x(sc)) { 14438 sc->devinfo.int_block = INT_BLOCK_HC; 14439 sc->igu_dsb_id = DEF_SB_IGU_ID; 14440 sc->igu_base_sb = 0; 14441 } else { 14442 sc->devinfo.int_block = INT_BLOCK_IGU; 14443 14444 /* do not allow device reset during IGU info preocessing */ 14445 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14446 14447 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 14448 14449 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 14450 int tout = 5000; 14451 14452 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n"); 14453 14454 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 14455 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val); 14456 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f); 14457 14458 while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 14459 tout--; 14460 DELAY(1000); 14461 } 14462 14463 if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 14464 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n"); 14465 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14466 return (-1); 14467 } 14468 } 14469 14470 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 14471 BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n"); 14472 sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP; 14473 } else { 14474 BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n"); 14475 } 14476 14477 rc = bxe_get_igu_cam_info(sc); 14478 14479 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14480 14481 if (rc) { 14482 return (rc); 14483 } 14484 } 14485 14486 /* 14487 * Get base FW non-default (fast path) status block ID. This value is 14488 * used to initialize the fw_sb_id saved on the fp/queue structure to 14489 * determine the id used by the FW. 14490 */ 14491 if (CHIP_IS_E1x(sc)) { 14492 sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc)); 14493 } else { 14494 /* 14495 * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of 14496 * the same queue are indicated on the same IGU SB). So we prefer 14497 * FW and IGU SBs to be the same value. 14498 */ 14499 sc->base_fw_ndsb = sc->igu_base_sb; 14500 } 14501 14502 BLOGD(sc, DBG_LOAD, 14503 "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n", 14504 sc->igu_dsb_id, sc->igu_base_sb, 14505 sc->igu_sb_cnt, sc->base_fw_ndsb); 14506 14507 elink_phy_probe(&sc->link_params); 14508 14509 return (0); 14510 } 14511 14512 static void 14513 bxe_link_settings_supported(struct bxe_softc *sc, 14514 uint32_t switch_cfg) 14515 { 14516 uint32_t cfg_size = 0; 14517 uint32_t idx; 14518 uint8_t port = SC_PORT(sc); 14519 14520 /* aggregation of supported attributes of all external phys */ 14521 sc->port.supported[0] = 0; 14522 sc->port.supported[1] = 0; 14523 14524 switch (sc->link_params.num_phys) { 14525 case 1: 14526 sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported; 14527 cfg_size = 1; 14528 break; 14529 case 2: 14530 sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported; 14531 cfg_size = 1; 14532 break; 14533 case 3: 14534 if (sc->link_params.multi_phy_config & 14535 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 14536 sc->port.supported[1] = 14537 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14538 sc->port.supported[0] = 14539 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14540 } else { 14541 sc->port.supported[0] = 14542 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14543 sc->port.supported[1] = 14544 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14545 } 14546 cfg_size = 2; 14547 break; 14548 } 14549 14550 if (!(sc->port.supported[0] || sc->port.supported[1])) { 14551 BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n", 14552 SHMEM_RD(sc, 14553 dev_info.port_hw_config[port].external_phy_config), 14554 SHMEM_RD(sc, 14555 dev_info.port_hw_config[port].external_phy_config2)); 14556 return; 14557 } 14558 14559 if (CHIP_IS_E3(sc)) 14560 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR); 14561 else { 14562 switch (switch_cfg) { 14563 case ELINK_SWITCH_CFG_1G: 14564 sc->port.phy_addr = 14565 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 14566 break; 14567 case ELINK_SWITCH_CFG_10G: 14568 sc->port.phy_addr = 14569 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 14570 break; 14571 default: 14572 BLOGE(sc, "Invalid switch config in link_config=0x%08x\n", 14573 sc->port.link_config[0]); 14574 return; 14575 } 14576 } 14577 14578 BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr); 14579 14580 /* mask what we support according to speed_cap_mask per configuration */ 14581 for (idx = 0; idx < cfg_size; idx++) { 14582 if (!(sc->link_params.speed_cap_mask[idx] & 14583 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) { 14584 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half; 14585 } 14586 14587 if (!(sc->link_params.speed_cap_mask[idx] & 14588 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) { 14589 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full; 14590 } 14591 14592 if (!(sc->link_params.speed_cap_mask[idx] & 14593 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) { 14594 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half; 14595 } 14596 14597 if (!(sc->link_params.speed_cap_mask[idx] & 14598 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) { 14599 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full; 14600 } 14601 14602 if (!(sc->link_params.speed_cap_mask[idx] & 14603 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) { 14604 sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full; 14605 } 14606 14607 if (!(sc->link_params.speed_cap_mask[idx] & 14608 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) { 14609 sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full; 14610 } 14611 14612 if (!(sc->link_params.speed_cap_mask[idx] & 14613 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) { 14614 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full; 14615 } 14616 14617 if (!(sc->link_params.speed_cap_mask[idx] & 14618 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) { 14619 sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full; 14620 } 14621 } 14622 14623 BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n", 14624 sc->port.supported[0], sc->port.supported[1]); 14625 } 14626 14627 static void 14628 bxe_link_settings_requested(struct bxe_softc *sc) 14629 { 14630 uint32_t link_config; 14631 uint32_t idx; 14632 uint32_t cfg_size = 0; 14633 14634 sc->port.advertising[0] = 0; 14635 sc->port.advertising[1] = 0; 14636 14637 switch (sc->link_params.num_phys) { 14638 case 1: 14639 case 2: 14640 cfg_size = 1; 14641 break; 14642 case 3: 14643 cfg_size = 2; 14644 break; 14645 } 14646 14647 for (idx = 0; idx < cfg_size; idx++) { 14648 sc->link_params.req_duplex[idx] = DUPLEX_FULL; 14649 link_config = sc->port.link_config[idx]; 14650 14651 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 14652 case PORT_FEATURE_LINK_SPEED_AUTO: 14653 if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) { 14654 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14655 sc->port.advertising[idx] |= sc->port.supported[idx]; 14656 if (sc->link_params.phy[ELINK_EXT_PHY1].type == 14657 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 14658 sc->port.advertising[idx] |= 14659 (ELINK_SUPPORTED_100baseT_Half | 14660 ELINK_SUPPORTED_100baseT_Full); 14661 } else { 14662 /* force 10G, no AN */ 14663 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14664 sc->port.advertising[idx] |= 14665 (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); 14666 continue; 14667 } 14668 break; 14669 14670 case PORT_FEATURE_LINK_SPEED_10M_FULL: 14671 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) { 14672 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14673 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full | 14674 ADVERTISED_TP); 14675 } else { 14676 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14677 "speed_cap_mask=0x%08x\n", 14678 link_config, sc->link_params.speed_cap_mask[idx]); 14679 return; 14680 } 14681 break; 14682 14683 case PORT_FEATURE_LINK_SPEED_10M_HALF: 14684 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) { 14685 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14686 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14687 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half | 14688 ADVERTISED_TP); 14689 } else { 14690 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14691 "speed_cap_mask=0x%08x\n", 14692 link_config, sc->link_params.speed_cap_mask[idx]); 14693 return; 14694 } 14695 break; 14696 14697 case PORT_FEATURE_LINK_SPEED_100M_FULL: 14698 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) { 14699 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14700 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full | 14701 ADVERTISED_TP); 14702 } else { 14703 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14704 "speed_cap_mask=0x%08x\n", 14705 link_config, sc->link_params.speed_cap_mask[idx]); 14706 return; 14707 } 14708 break; 14709 14710 case PORT_FEATURE_LINK_SPEED_100M_HALF: 14711 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) { 14712 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14713 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14714 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half | 14715 ADVERTISED_TP); 14716 } else { 14717 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14718 "speed_cap_mask=0x%08x\n", 14719 link_config, sc->link_params.speed_cap_mask[idx]); 14720 return; 14721 } 14722 break; 14723 14724 case PORT_FEATURE_LINK_SPEED_1G: 14725 if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) { 14726 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000; 14727 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full | 14728 ADVERTISED_TP); 14729 } else { 14730 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14731 "speed_cap_mask=0x%08x\n", 14732 link_config, sc->link_params.speed_cap_mask[idx]); 14733 return; 14734 } 14735 break; 14736 14737 case PORT_FEATURE_LINK_SPEED_2_5G: 14738 if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) { 14739 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500; 14740 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full | 14741 ADVERTISED_TP); 14742 } else { 14743 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14744 "speed_cap_mask=0x%08x\n", 14745 link_config, sc->link_params.speed_cap_mask[idx]); 14746 return; 14747 } 14748 break; 14749 14750 case PORT_FEATURE_LINK_SPEED_10G_CX4: 14751 if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) { 14752 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14753 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full | 14754 ADVERTISED_FIBRE); 14755 } else { 14756 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14757 "speed_cap_mask=0x%08x\n", 14758 link_config, sc->link_params.speed_cap_mask[idx]); 14759 return; 14760 } 14761 break; 14762 14763 case PORT_FEATURE_LINK_SPEED_20G: 14764 sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000; 14765 break; 14766 14767 default: 14768 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14769 "speed_cap_mask=0x%08x\n", 14770 link_config, sc->link_params.speed_cap_mask[idx]); 14771 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14772 sc->port.advertising[idx] = sc->port.supported[idx]; 14773 break; 14774 } 14775 14776 sc->link_params.req_flow_ctrl[idx] = 14777 (link_config & PORT_FEATURE_FLOW_CONTROL_MASK); 14778 14779 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) { 14780 if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) { 14781 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE; 14782 } else { 14783 bxe_set_requested_fc(sc); 14784 } 14785 } 14786 14787 BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d " 14788 "req_flow_ctrl=0x%x advertising=0x%x\n", 14789 sc->link_params.req_line_speed[idx], 14790 sc->link_params.req_duplex[idx], 14791 sc->link_params.req_flow_ctrl[idx], 14792 sc->port.advertising[idx]); 14793 } 14794 } 14795 14796 static void 14797 bxe_get_phy_info(struct bxe_softc *sc) 14798 { 14799 uint8_t port = SC_PORT(sc); 14800 uint32_t config = sc->port.config; 14801 uint32_t eee_mode; 14802 14803 /* shmem data already read in bxe_get_shmem_info() */ 14804 14805 BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x " 14806 "link_config0=0x%08x\n", 14807 sc->link_params.lane_config, 14808 sc->link_params.speed_cap_mask[0], 14809 sc->port.link_config[0]); 14810 14811 bxe_link_settings_supported(sc, sc->link_params.switch_cfg); 14812 bxe_link_settings_requested(sc); 14813 14814 if (sc->autogreeen == AUTO_GREEN_FORCE_ON) { 14815 sc->link_params.feature_config_flags |= 14816 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14817 } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) { 14818 sc->link_params.feature_config_flags &= 14819 ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14820 } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) { 14821 sc->link_params.feature_config_flags |= 14822 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14823 } 14824 14825 /* configure link feature according to nvram value */ 14826 eee_mode = 14827 (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) & 14828 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 14829 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 14830 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 14831 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI | 14832 ELINK_EEE_MODE_ENABLE_LPI | 14833 ELINK_EEE_MODE_OUTPUT_TIME); 14834 } else { 14835 sc->link_params.eee_mode = 0; 14836 } 14837 14838 /* get the media type */ 14839 bxe_media_detect(sc); 14840 } 14841 14842 static void 14843 bxe_get_params(struct bxe_softc *sc) 14844 { 14845 /* get user tunable params */ 14846 bxe_get_tunable_params(sc); 14847 14848 /* select the RX and TX ring sizes */ 14849 sc->tx_ring_size = TX_BD_USABLE; 14850 sc->rx_ring_size = RX_BD_USABLE; 14851 14852 /* XXX disable WoL */ 14853 sc->wol = 0; 14854 } 14855 14856 static void 14857 bxe_set_modes_bitmap(struct bxe_softc *sc) 14858 { 14859 uint32_t flags = 0; 14860 14861 if (CHIP_REV_IS_FPGA(sc)) { 14862 SET_FLAGS(flags, MODE_FPGA); 14863 } else if (CHIP_REV_IS_EMUL(sc)) { 14864 SET_FLAGS(flags, MODE_EMUL); 14865 } else { 14866 SET_FLAGS(flags, MODE_ASIC); 14867 } 14868 14869 if (CHIP_IS_MODE_4_PORT(sc)) { 14870 SET_FLAGS(flags, MODE_PORT4); 14871 } else { 14872 SET_FLAGS(flags, MODE_PORT2); 14873 } 14874 14875 if (CHIP_IS_E2(sc)) { 14876 SET_FLAGS(flags, MODE_E2); 14877 } else if (CHIP_IS_E3(sc)) { 14878 SET_FLAGS(flags, MODE_E3); 14879 if (CHIP_REV(sc) == CHIP_REV_Ax) { 14880 SET_FLAGS(flags, MODE_E3_A0); 14881 } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ { 14882 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 14883 } 14884 } 14885 14886 if (IS_MF(sc)) { 14887 SET_FLAGS(flags, MODE_MF); 14888 switch (sc->devinfo.mf_info.mf_mode) { 14889 case MULTI_FUNCTION_SD: 14890 SET_FLAGS(flags, MODE_MF_SD); 14891 break; 14892 case MULTI_FUNCTION_SI: 14893 SET_FLAGS(flags, MODE_MF_SI); 14894 break; 14895 case MULTI_FUNCTION_AFEX: 14896 SET_FLAGS(flags, MODE_MF_AFEX); 14897 break; 14898 } 14899 } else { 14900 SET_FLAGS(flags, MODE_SF); 14901 } 14902 14903 #if defined(__LITTLE_ENDIAN) 14904 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 14905 #else /* __BIG_ENDIAN */ 14906 SET_FLAGS(flags, MODE_BIG_ENDIAN); 14907 #endif 14908 14909 INIT_MODE_FLAGS(sc) = flags; 14910 } 14911 14912 static int 14913 bxe_alloc_hsi_mem(struct bxe_softc *sc) 14914 { 14915 struct bxe_fastpath *fp; 14916 bus_addr_t busaddr; 14917 int max_agg_queues; 14918 int max_segments; 14919 bus_size_t max_size; 14920 bus_size_t max_seg_size; 14921 char buf[32]; 14922 int rc; 14923 int i, j; 14924 14925 /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */ 14926 14927 /* allocate the parent bus DMA tag */ 14928 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */ 14929 1, /* alignment */ 14930 0, /* boundary limit */ 14931 BUS_SPACE_MAXADDR, /* restricted low */ 14932 BUS_SPACE_MAXADDR, /* restricted hi */ 14933 NULL, /* addr filter() */ 14934 NULL, /* addr filter() arg */ 14935 BUS_SPACE_MAXSIZE_32BIT, /* max map size */ 14936 BUS_SPACE_UNRESTRICTED, /* num discontinuous */ 14937 BUS_SPACE_MAXSIZE_32BIT, /* max seg size */ 14938 0, /* flags */ 14939 NULL, /* lock() */ 14940 NULL, /* lock() arg */ 14941 &sc->parent_dma_tag); /* returned dma tag */ 14942 if (rc != 0) { 14943 BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc); 14944 return (1); 14945 } 14946 14947 /************************/ 14948 /* DEFAULT STATUS BLOCK */ 14949 /************************/ 14950 14951 if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block), 14952 &sc->def_sb_dma, "default status block") != 0) { 14953 /* XXX */ 14954 bus_dma_tag_destroy(sc->parent_dma_tag); 14955 return (1); 14956 } 14957 14958 sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr; 14959 14960 /***************/ 14961 /* EVENT QUEUE */ 14962 /***************/ 14963 14964 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14965 &sc->eq_dma, "event queue") != 0) { 14966 /* XXX */ 14967 bxe_dma_free(sc, &sc->def_sb_dma); 14968 sc->def_sb = NULL; 14969 bus_dma_tag_destroy(sc->parent_dma_tag); 14970 return (1); 14971 } 14972 14973 sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr; 14974 14975 /*************/ 14976 /* SLOW PATH */ 14977 /*************/ 14978 14979 if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath), 14980 &sc->sp_dma, "slow path") != 0) { 14981 /* XXX */ 14982 bxe_dma_free(sc, &sc->eq_dma); 14983 sc->eq = NULL; 14984 bxe_dma_free(sc, &sc->def_sb_dma); 14985 sc->def_sb = NULL; 14986 bus_dma_tag_destroy(sc->parent_dma_tag); 14987 return (1); 14988 } 14989 14990 sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr; 14991 14992 /*******************/ 14993 /* SLOW PATH QUEUE */ 14994 /*******************/ 14995 14996 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14997 &sc->spq_dma, "slow path queue") != 0) { 14998 /* XXX */ 14999 bxe_dma_free(sc, &sc->sp_dma); 15000 sc->sp = NULL; 15001 bxe_dma_free(sc, &sc->eq_dma); 15002 sc->eq = NULL; 15003 bxe_dma_free(sc, &sc->def_sb_dma); 15004 sc->def_sb = NULL; 15005 bus_dma_tag_destroy(sc->parent_dma_tag); 15006 return (1); 15007 } 15008 15009 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr; 15010 15011 /***************************/ 15012 /* FW DECOMPRESSION BUFFER */ 15013 /***************************/ 15014 15015 if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma, 15016 "fw decompression buffer") != 0) { 15017 /* XXX */ 15018 bxe_dma_free(sc, &sc->spq_dma); 15019 sc->spq = NULL; 15020 bxe_dma_free(sc, &sc->sp_dma); 15021 sc->sp = NULL; 15022 bxe_dma_free(sc, &sc->eq_dma); 15023 sc->eq = NULL; 15024 bxe_dma_free(sc, &sc->def_sb_dma); 15025 sc->def_sb = NULL; 15026 bus_dma_tag_destroy(sc->parent_dma_tag); 15027 return (1); 15028 } 15029 15030 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr; 15031 15032 if ((sc->gz_strm = 15033 malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) { 15034 /* XXX */ 15035 bxe_dma_free(sc, &sc->gz_buf_dma); 15036 sc->gz_buf = NULL; 15037 bxe_dma_free(sc, &sc->spq_dma); 15038 sc->spq = NULL; 15039 bxe_dma_free(sc, &sc->sp_dma); 15040 sc->sp = NULL; 15041 bxe_dma_free(sc, &sc->eq_dma); 15042 sc->eq = NULL; 15043 bxe_dma_free(sc, &sc->def_sb_dma); 15044 sc->def_sb = NULL; 15045 bus_dma_tag_destroy(sc->parent_dma_tag); 15046 return (1); 15047 } 15048 15049 /*************/ 15050 /* FASTPATHS */ 15051 /*************/ 15052 15053 /* allocate DMA memory for each fastpath structure */ 15054 for (i = 0; i < sc->num_queues; i++) { 15055 fp = &sc->fp[i]; 15056 fp->sc = sc; 15057 fp->index = i; 15058 15059 /*******************/ 15060 /* FP STATUS BLOCK */ 15061 /*******************/ 15062 15063 snprintf(buf, sizeof(buf), "fp %d status block", i); 15064 if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block), 15065 &fp->sb_dma, buf) != 0) { 15066 /* XXX unwind and free previous fastpath allocations */ 15067 BLOGE(sc, "Failed to alloc %s\n", buf); 15068 return (1); 15069 } else { 15070 if (CHIP_IS_E2E3(sc)) { 15071 fp->status_block.e2_sb = 15072 (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr; 15073 } else { 15074 fp->status_block.e1x_sb = 15075 (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr; 15076 } 15077 } 15078 15079 /******************/ 15080 /* FP TX BD CHAIN */ 15081 /******************/ 15082 15083 snprintf(buf, sizeof(buf), "fp %d tx bd chain", i); 15084 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES), 15085 &fp->tx_dma, buf) != 0) { 15086 /* XXX unwind and free previous fastpath allocations */ 15087 BLOGE(sc, "Failed to alloc %s\n", buf); 15088 return (1); 15089 } else { 15090 fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr; 15091 } 15092 15093 /* link together the tx bd chain pages */ 15094 for (j = 1; j <= TX_BD_NUM_PAGES; j++) { 15095 /* index into the tx bd chain array to last entry per page */ 15096 struct eth_tx_next_bd *tx_next_bd = 15097 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd; 15098 /* point to the next page and wrap from last page */ 15099 busaddr = (fp->tx_dma.paddr + 15100 (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES))); 15101 tx_next_bd->addr_hi = htole32(U64_HI(busaddr)); 15102 tx_next_bd->addr_lo = htole32(U64_LO(busaddr)); 15103 } 15104 15105 /******************/ 15106 /* FP RX BD CHAIN */ 15107 /******************/ 15108 15109 snprintf(buf, sizeof(buf), "fp %d rx bd chain", i); 15110 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES), 15111 &fp->rx_dma, buf) != 0) { 15112 /* XXX unwind and free previous fastpath allocations */ 15113 BLOGE(sc, "Failed to alloc %s\n", buf); 15114 return (1); 15115 } else { 15116 fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr; 15117 } 15118 15119 /* link together the rx bd chain pages */ 15120 for (j = 1; j <= RX_BD_NUM_PAGES; j++) { 15121 /* index into the rx bd chain array to last entry per page */ 15122 struct eth_rx_bd *rx_bd = 15123 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2]; 15124 /* point to the next page and wrap from last page */ 15125 busaddr = (fp->rx_dma.paddr + 15126 (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES))); 15127 rx_bd->addr_hi = htole32(U64_HI(busaddr)); 15128 rx_bd->addr_lo = htole32(U64_LO(busaddr)); 15129 } 15130 15131 /*******************/ 15132 /* FP RX RCQ CHAIN */ 15133 /*******************/ 15134 15135 snprintf(buf, sizeof(buf), "fp %d rcq chain", i); 15136 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES), 15137 &fp->rcq_dma, buf) != 0) { 15138 /* XXX unwind and free previous fastpath allocations */ 15139 BLOGE(sc, "Failed to alloc %s\n", buf); 15140 return (1); 15141 } else { 15142 fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr; 15143 } 15144 15145 /* link together the rcq chain pages */ 15146 for (j = 1; j <= RCQ_NUM_PAGES; j++) { 15147 /* index into the rcq chain array to last entry per page */ 15148 struct eth_rx_cqe_next_page *rx_cqe_next = 15149 (struct eth_rx_cqe_next_page *) 15150 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1]; 15151 /* point to the next page and wrap from last page */ 15152 busaddr = (fp->rcq_dma.paddr + 15153 (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES))); 15154 rx_cqe_next->addr_hi = htole32(U64_HI(busaddr)); 15155 rx_cqe_next->addr_lo = htole32(U64_LO(busaddr)); 15156 } 15157 15158 /*******************/ 15159 /* FP RX SGE CHAIN */ 15160 /*******************/ 15161 15162 snprintf(buf, sizeof(buf), "fp %d sge chain", i); 15163 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES), 15164 &fp->rx_sge_dma, buf) != 0) { 15165 /* XXX unwind and free previous fastpath allocations */ 15166 BLOGE(sc, "Failed to alloc %s\n", buf); 15167 return (1); 15168 } else { 15169 fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr; 15170 } 15171 15172 /* link together the sge chain pages */ 15173 for (j = 1; j <= RX_SGE_NUM_PAGES; j++) { 15174 /* index into the rcq chain array to last entry per page */ 15175 struct eth_rx_sge *rx_sge = 15176 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2]; 15177 /* point to the next page and wrap from last page */ 15178 busaddr = (fp->rx_sge_dma.paddr + 15179 (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES))); 15180 rx_sge->addr_hi = htole32(U64_HI(busaddr)); 15181 rx_sge->addr_lo = htole32(U64_LO(busaddr)); 15182 } 15183 15184 /***********************/ 15185 /* FP TX MBUF DMA MAPS */ 15186 /***********************/ 15187 15188 /* set required sizes before mapping to conserve resources */ 15189 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 15190 max_size = BXE_TSO_MAX_SIZE; 15191 max_segments = BXE_TSO_MAX_SEGMENTS; 15192 max_seg_size = BXE_TSO_MAX_SEG_SIZE; 15193 } else { 15194 max_size = (MCLBYTES * BXE_MAX_SEGMENTS); 15195 max_segments = BXE_MAX_SEGMENTS; 15196 max_seg_size = MCLBYTES; 15197 } 15198 15199 /* create a dma tag for the tx mbufs */ 15200 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 15201 1, /* alignment */ 15202 0, /* boundary limit */ 15203 BUS_SPACE_MAXADDR, /* restricted low */ 15204 BUS_SPACE_MAXADDR, /* restricted hi */ 15205 NULL, /* addr filter() */ 15206 NULL, /* addr filter() arg */ 15207 max_size, /* max map size */ 15208 max_segments, /* num discontinuous */ 15209 max_seg_size, /* max seg size */ 15210 0, /* flags */ 15211 NULL, /* lock() */ 15212 NULL, /* lock() arg */ 15213 &fp->tx_mbuf_tag); /* returned dma tag */ 15214 if (rc != 0) { 15215 /* XXX unwind and free previous fastpath allocations */ 15216 BLOGE(sc, "Failed to create dma tag for " 15217 "'fp %d tx mbufs' (%d)\n", 15218 i, rc); 15219 return (1); 15220 } 15221 15222 /* create dma maps for each of the tx mbuf clusters */ 15223 for (j = 0; j < TX_BD_TOTAL; j++) { 15224 if (bus_dmamap_create(fp->tx_mbuf_tag, 15225 BUS_DMA_NOWAIT, 15226 &fp->tx_mbuf_chain[j].m_map)) { 15227 /* XXX unwind and free previous fastpath allocations */ 15228 BLOGE(sc, "Failed to create dma map for " 15229 "'fp %d tx mbuf %d' (%d)\n", 15230 i, j, rc); 15231 return (1); 15232 } 15233 } 15234 15235 /***********************/ 15236 /* FP RX MBUF DMA MAPS */ 15237 /***********************/ 15238 15239 /* create a dma tag for the rx mbufs */ 15240 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 15241 1, /* alignment */ 15242 0, /* boundary limit */ 15243 BUS_SPACE_MAXADDR, /* restricted low */ 15244 BUS_SPACE_MAXADDR, /* restricted hi */ 15245 NULL, /* addr filter() */ 15246 NULL, /* addr filter() arg */ 15247 MJUM9BYTES, /* max map size */ 15248 1, /* num discontinuous */ 15249 MJUM9BYTES, /* max seg size */ 15250 0, /* flags */ 15251 NULL, /* lock() */ 15252 NULL, /* lock() arg */ 15253 &fp->rx_mbuf_tag); /* returned dma tag */ 15254 if (rc != 0) { 15255 /* XXX unwind and free previous fastpath allocations */ 15256 BLOGE(sc, "Failed to create dma tag for " 15257 "'fp %d rx mbufs' (%d)\n", 15258 i, rc); 15259 return (1); 15260 } 15261 15262 /* create dma maps for each of the rx mbuf clusters */ 15263 for (j = 0; j < RX_BD_TOTAL; j++) { 15264 if (bus_dmamap_create(fp->rx_mbuf_tag, 15265 BUS_DMA_NOWAIT, 15266 &fp->rx_mbuf_chain[j].m_map)) { 15267 /* XXX unwind and free previous fastpath allocations */ 15268 BLOGE(sc, "Failed to create dma map for " 15269 "'fp %d rx mbuf %d' (%d)\n", 15270 i, j, rc); 15271 return (1); 15272 } 15273 } 15274 15275 /* create dma map for the spare rx mbuf cluster */ 15276 if (bus_dmamap_create(fp->rx_mbuf_tag, 15277 BUS_DMA_NOWAIT, 15278 &fp->rx_mbuf_spare_map)) { 15279 /* XXX unwind and free previous fastpath allocations */ 15280 BLOGE(sc, "Failed to create dma map for " 15281 "'fp %d spare rx mbuf' (%d)\n", 15282 i, rc); 15283 return (1); 15284 } 15285 15286 /***************************/ 15287 /* FP RX SGE MBUF DMA MAPS */ 15288 /***************************/ 15289 15290 /* create a dma tag for the rx sge mbufs */ 15291 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 15292 1, /* alignment */ 15293 0, /* boundary limit */ 15294 BUS_SPACE_MAXADDR, /* restricted low */ 15295 BUS_SPACE_MAXADDR, /* restricted hi */ 15296 NULL, /* addr filter() */ 15297 NULL, /* addr filter() arg */ 15298 BCM_PAGE_SIZE, /* max map size */ 15299 1, /* num discontinuous */ 15300 BCM_PAGE_SIZE, /* max seg size */ 15301 0, /* flags */ 15302 NULL, /* lock() */ 15303 NULL, /* lock() arg */ 15304 &fp->rx_sge_mbuf_tag); /* returned dma tag */ 15305 if (rc != 0) { 15306 /* XXX unwind and free previous fastpath allocations */ 15307 BLOGE(sc, "Failed to create dma tag for " 15308 "'fp %d rx sge mbufs' (%d)\n", 15309 i, rc); 15310 return (1); 15311 } 15312 15313 /* create dma maps for the rx sge mbuf clusters */ 15314 for (j = 0; j < RX_SGE_TOTAL; j++) { 15315 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 15316 BUS_DMA_NOWAIT, 15317 &fp->rx_sge_mbuf_chain[j].m_map)) { 15318 /* XXX unwind and free previous fastpath allocations */ 15319 BLOGE(sc, "Failed to create dma map for " 15320 "'fp %d rx sge mbuf %d' (%d)\n", 15321 i, j, rc); 15322 return (1); 15323 } 15324 } 15325 15326 /* create dma map for the spare rx sge mbuf cluster */ 15327 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 15328 BUS_DMA_NOWAIT, 15329 &fp->rx_sge_mbuf_spare_map)) { 15330 /* XXX unwind and free previous fastpath allocations */ 15331 BLOGE(sc, "Failed to create dma map for " 15332 "'fp %d spare rx sge mbuf' (%d)\n", 15333 i, rc); 15334 return (1); 15335 } 15336 15337 /***************************/ 15338 /* FP RX TPA MBUF DMA MAPS */ 15339 /***************************/ 15340 15341 /* create dma maps for the rx tpa mbuf clusters */ 15342 max_agg_queues = MAX_AGG_QS(sc); 15343 15344 for (j = 0; j < max_agg_queues; j++) { 15345 if (bus_dmamap_create(fp->rx_mbuf_tag, 15346 BUS_DMA_NOWAIT, 15347 &fp->rx_tpa_info[j].bd.m_map)) { 15348 /* XXX unwind and free previous fastpath allocations */ 15349 BLOGE(sc, "Failed to create dma map for " 15350 "'fp %d rx tpa mbuf %d' (%d)\n", 15351 i, j, rc); 15352 return (1); 15353 } 15354 } 15355 15356 /* create dma map for the spare rx tpa mbuf cluster */ 15357 if (bus_dmamap_create(fp->rx_mbuf_tag, 15358 BUS_DMA_NOWAIT, 15359 &fp->rx_tpa_info_mbuf_spare_map)) { 15360 /* XXX unwind and free previous fastpath allocations */ 15361 BLOGE(sc, "Failed to create dma map for " 15362 "'fp %d spare rx tpa mbuf' (%d)\n", 15363 i, rc); 15364 return (1); 15365 } 15366 15367 bxe_init_sge_ring_bit_mask(fp); 15368 } 15369 15370 return (0); 15371 } 15372 15373 static void 15374 bxe_free_hsi_mem(struct bxe_softc *sc) 15375 { 15376 struct bxe_fastpath *fp; 15377 int max_agg_queues; 15378 int i, j; 15379 15380 if (sc->parent_dma_tag == NULL) { 15381 return; /* assume nothing was allocated */ 15382 } 15383 15384 for (i = 0; i < sc->num_queues; i++) { 15385 fp = &sc->fp[i]; 15386 15387 /*******************/ 15388 /* FP STATUS BLOCK */ 15389 /*******************/ 15390 15391 bxe_dma_free(sc, &fp->sb_dma); 15392 memset(&fp->status_block, 0, sizeof(fp->status_block)); 15393 15394 /******************/ 15395 /* FP TX BD CHAIN */ 15396 /******************/ 15397 15398 bxe_dma_free(sc, &fp->tx_dma); 15399 fp->tx_chain = NULL; 15400 15401 /******************/ 15402 /* FP RX BD CHAIN */ 15403 /******************/ 15404 15405 bxe_dma_free(sc, &fp->rx_dma); 15406 fp->rx_chain = NULL; 15407 15408 /*******************/ 15409 /* FP RX RCQ CHAIN */ 15410 /*******************/ 15411 15412 bxe_dma_free(sc, &fp->rcq_dma); 15413 fp->rcq_chain = NULL; 15414 15415 /*******************/ 15416 /* FP RX SGE CHAIN */ 15417 /*******************/ 15418 15419 bxe_dma_free(sc, &fp->rx_sge_dma); 15420 fp->rx_sge_chain = NULL; 15421 15422 /***********************/ 15423 /* FP TX MBUF DMA MAPS */ 15424 /***********************/ 15425 15426 if (fp->tx_mbuf_tag != NULL) { 15427 for (j = 0; j < TX_BD_TOTAL; j++) { 15428 if (fp->tx_mbuf_chain[j].m_map != NULL) { 15429 bus_dmamap_unload(fp->tx_mbuf_tag, 15430 fp->tx_mbuf_chain[j].m_map); 15431 bus_dmamap_destroy(fp->tx_mbuf_tag, 15432 fp->tx_mbuf_chain[j].m_map); 15433 } 15434 } 15435 15436 bus_dma_tag_destroy(fp->tx_mbuf_tag); 15437 fp->tx_mbuf_tag = NULL; 15438 } 15439 15440 /***********************/ 15441 /* FP RX MBUF DMA MAPS */ 15442 /***********************/ 15443 15444 if (fp->rx_mbuf_tag != NULL) { 15445 for (j = 0; j < RX_BD_TOTAL; j++) { 15446 if (fp->rx_mbuf_chain[j].m_map != NULL) { 15447 bus_dmamap_unload(fp->rx_mbuf_tag, 15448 fp->rx_mbuf_chain[j].m_map); 15449 bus_dmamap_destroy(fp->rx_mbuf_tag, 15450 fp->rx_mbuf_chain[j].m_map); 15451 } 15452 } 15453 15454 if (fp->rx_mbuf_spare_map != NULL) { 15455 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 15456 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 15457 } 15458 15459 /***************************/ 15460 /* FP RX TPA MBUF DMA MAPS */ 15461 /***************************/ 15462 15463 max_agg_queues = MAX_AGG_QS(sc); 15464 15465 for (j = 0; j < max_agg_queues; j++) { 15466 if (fp->rx_tpa_info[j].bd.m_map != NULL) { 15467 bus_dmamap_unload(fp->rx_mbuf_tag, 15468 fp->rx_tpa_info[j].bd.m_map); 15469 bus_dmamap_destroy(fp->rx_mbuf_tag, 15470 fp->rx_tpa_info[j].bd.m_map); 15471 } 15472 } 15473 15474 if (fp->rx_tpa_info_mbuf_spare_map != NULL) { 15475 bus_dmamap_unload(fp->rx_mbuf_tag, 15476 fp->rx_tpa_info_mbuf_spare_map); 15477 bus_dmamap_destroy(fp->rx_mbuf_tag, 15478 fp->rx_tpa_info_mbuf_spare_map); 15479 } 15480 15481 bus_dma_tag_destroy(fp->rx_mbuf_tag); 15482 fp->rx_mbuf_tag = NULL; 15483 } 15484 15485 /***************************/ 15486 /* FP RX SGE MBUF DMA MAPS */ 15487 /***************************/ 15488 15489 if (fp->rx_sge_mbuf_tag != NULL) { 15490 for (j = 0; j < RX_SGE_TOTAL; j++) { 15491 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) { 15492 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 15493 fp->rx_sge_mbuf_chain[j].m_map); 15494 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 15495 fp->rx_sge_mbuf_chain[j].m_map); 15496 } 15497 } 15498 15499 if (fp->rx_sge_mbuf_spare_map != NULL) { 15500 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 15501 fp->rx_sge_mbuf_spare_map); 15502 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 15503 fp->rx_sge_mbuf_spare_map); 15504 } 15505 15506 bus_dma_tag_destroy(fp->rx_sge_mbuf_tag); 15507 fp->rx_sge_mbuf_tag = NULL; 15508 } 15509 } 15510 15511 /***************************/ 15512 /* FW DECOMPRESSION BUFFER */ 15513 /***************************/ 15514 15515 bxe_dma_free(sc, &sc->gz_buf_dma); 15516 sc->gz_buf = NULL; 15517 free(sc->gz_strm, M_DEVBUF); 15518 sc->gz_strm = NULL; 15519 15520 /*******************/ 15521 /* SLOW PATH QUEUE */ 15522 /*******************/ 15523 15524 bxe_dma_free(sc, &sc->spq_dma); 15525 sc->spq = NULL; 15526 15527 /*************/ 15528 /* SLOW PATH */ 15529 /*************/ 15530 15531 bxe_dma_free(sc, &sc->sp_dma); 15532 sc->sp = NULL; 15533 15534 /***************/ 15535 /* EVENT QUEUE */ 15536 /***************/ 15537 15538 bxe_dma_free(sc, &sc->eq_dma); 15539 sc->eq = NULL; 15540 15541 /************************/ 15542 /* DEFAULT STATUS BLOCK */ 15543 /************************/ 15544 15545 bxe_dma_free(sc, &sc->def_sb_dma); 15546 sc->def_sb = NULL; 15547 15548 bus_dma_tag_destroy(sc->parent_dma_tag); 15549 sc->parent_dma_tag = NULL; 15550 } 15551 15552 /* 15553 * Previous driver DMAE transaction may have occurred when pre-boot stage 15554 * ended and boot began. This would invalidate the addresses of the 15555 * transaction, resulting in was-error bit set in the PCI causing all 15556 * hw-to-host PCIe transactions to timeout. If this happened we want to clear 15557 * the interrupt which detected this from the pglueb and the was-done bit 15558 */ 15559 static void 15560 bxe_prev_interrupted_dmae(struct bxe_softc *sc) 15561 { 15562 uint32_t val; 15563 15564 if (!CHIP_IS_E1x(sc)) { 15565 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS); 15566 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { 15567 BLOGD(sc, DBG_LOAD, 15568 "Clearing 'was-error' bit that was set in pglueb"); 15569 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc)); 15570 } 15571 } 15572 } 15573 15574 static int 15575 bxe_prev_mcp_done(struct bxe_softc *sc) 15576 { 15577 uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 15578 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 15579 if (!rc) { 15580 BLOGE(sc, "MCP response failure, aborting\n"); 15581 return (-1); 15582 } 15583 15584 return (0); 15585 } 15586 15587 static struct bxe_prev_list_node * 15588 bxe_prev_path_get_entry(struct bxe_softc *sc) 15589 { 15590 struct bxe_prev_list_node *tmp; 15591 15592 LIST_FOREACH(tmp, &bxe_prev_list, node) { 15593 if ((sc->pcie_bus == tmp->bus) && 15594 (sc->pcie_device == tmp->slot) && 15595 (SC_PATH(sc) == tmp->path)) { 15596 return (tmp); 15597 } 15598 } 15599 15600 return (NULL); 15601 } 15602 15603 static uint8_t 15604 bxe_prev_is_path_marked(struct bxe_softc *sc) 15605 { 15606 struct bxe_prev_list_node *tmp; 15607 int rc = FALSE; 15608 15609 mtx_lock(&bxe_prev_mtx); 15610 15611 tmp = bxe_prev_path_get_entry(sc); 15612 if (tmp) { 15613 if (tmp->aer) { 15614 BLOGD(sc, DBG_LOAD, 15615 "Path %d/%d/%d was marked by AER\n", 15616 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15617 } else { 15618 rc = TRUE; 15619 BLOGD(sc, DBG_LOAD, 15620 "Path %d/%d/%d was already cleaned from previous drivers\n", 15621 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15622 } 15623 } 15624 15625 mtx_unlock(&bxe_prev_mtx); 15626 15627 return (rc); 15628 } 15629 15630 static int 15631 bxe_prev_mark_path(struct bxe_softc *sc, 15632 uint8_t after_undi) 15633 { 15634 struct bxe_prev_list_node *tmp; 15635 15636 mtx_lock(&bxe_prev_mtx); 15637 15638 /* Check whether the entry for this path already exists */ 15639 tmp = bxe_prev_path_get_entry(sc); 15640 if (tmp) { 15641 if (!tmp->aer) { 15642 BLOGD(sc, DBG_LOAD, 15643 "Re-marking AER in path %d/%d/%d\n", 15644 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15645 } else { 15646 BLOGD(sc, DBG_LOAD, 15647 "Removing AER indication from path %d/%d/%d\n", 15648 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15649 tmp->aer = 0; 15650 } 15651 15652 mtx_unlock(&bxe_prev_mtx); 15653 return (0); 15654 } 15655 15656 mtx_unlock(&bxe_prev_mtx); 15657 15658 /* Create an entry for this path and add it */ 15659 tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF, 15660 (M_NOWAIT | M_ZERO)); 15661 if (!tmp) { 15662 BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n"); 15663 return (-1); 15664 } 15665 15666 tmp->bus = sc->pcie_bus; 15667 tmp->slot = sc->pcie_device; 15668 tmp->path = SC_PATH(sc); 15669 tmp->aer = 0; 15670 tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0; 15671 15672 mtx_lock(&bxe_prev_mtx); 15673 15674 BLOGD(sc, DBG_LOAD, 15675 "Marked path %d/%d/%d - finished previous unload\n", 15676 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15677 LIST_INSERT_HEAD(&bxe_prev_list, tmp, node); 15678 15679 mtx_unlock(&bxe_prev_mtx); 15680 15681 return (0); 15682 } 15683 15684 static int 15685 bxe_do_flr(struct bxe_softc *sc) 15686 { 15687 int i; 15688 15689 /* only E2 and onwards support FLR */ 15690 if (CHIP_IS_E1x(sc)) { 15691 BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n"); 15692 return (-1); 15693 } 15694 15695 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 15696 if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 15697 BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n", 15698 sc->devinfo.bc_ver); 15699 return (-1); 15700 } 15701 15702 /* Wait for Transaction Pending bit clean */ 15703 for (i = 0; i < 4; i++) { 15704 if (i) { 15705 DELAY(((1 << (i - 1)) * 100) * 1000); 15706 } 15707 15708 if (!bxe_is_pcie_pending(sc)) { 15709 goto clear; 15710 } 15711 } 15712 15713 BLOGE(sc, "PCIE transaction is not cleared, " 15714 "proceeding with reset anyway\n"); 15715 15716 clear: 15717 15718 BLOGD(sc, DBG_LOAD, "Initiating FLR\n"); 15719 bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0); 15720 15721 return (0); 15722 } 15723 15724 struct bxe_mac_vals { 15725 uint32_t xmac_addr; 15726 uint32_t xmac_val; 15727 uint32_t emac_addr; 15728 uint32_t emac_val; 15729 uint32_t umac_addr; 15730 uint32_t umac_val; 15731 uint32_t bmac_addr; 15732 uint32_t bmac_val[2]; 15733 }; 15734 15735 static void 15736 bxe_prev_unload_close_mac(struct bxe_softc *sc, 15737 struct bxe_mac_vals *vals) 15738 { 15739 uint32_t val, base_addr, offset, mask, reset_reg; 15740 uint8_t mac_stopped = FALSE; 15741 uint8_t port = SC_PORT(sc); 15742 uint32_t wb_data[2]; 15743 15744 /* reset addresses as they also mark which values were changed */ 15745 vals->bmac_addr = 0; 15746 vals->umac_addr = 0; 15747 vals->xmac_addr = 0; 15748 vals->emac_addr = 0; 15749 15750 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2); 15751 15752 if (!CHIP_IS_E3(sc)) { 15753 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 15754 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 15755 if ((mask & reset_reg) && val) { 15756 BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n"); 15757 base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM 15758 : NIG_REG_INGRESS_BMAC0_MEM; 15759 offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL 15760 : BIGMAC_REGISTER_BMAC_CONTROL; 15761 15762 /* 15763 * use rd/wr since we cannot use dmae. This is safe 15764 * since MCP won't access the bus due to the request 15765 * to unload, and no function on the path can be 15766 * loaded at this time. 15767 */ 15768 wb_data[0] = REG_RD(sc, base_addr + offset); 15769 wb_data[1] = REG_RD(sc, base_addr + offset + 0x4); 15770 vals->bmac_addr = base_addr + offset; 15771 vals->bmac_val[0] = wb_data[0]; 15772 vals->bmac_val[1] = wb_data[1]; 15773 wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE; 15774 REG_WR(sc, vals->bmac_addr, wb_data[0]); 15775 REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]); 15776 } 15777 15778 BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n"); 15779 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4; 15780 vals->emac_val = REG_RD(sc, vals->emac_addr); 15781 REG_WR(sc, vals->emac_addr, 0); 15782 mac_stopped = TRUE; 15783 } else { 15784 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 15785 BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n"); 15786 base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 15787 val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI); 15788 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1)); 15789 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1)); 15790 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 15791 vals->xmac_val = REG_RD(sc, vals->xmac_addr); 15792 REG_WR(sc, vals->xmac_addr, 0); 15793 mac_stopped = TRUE; 15794 } 15795 15796 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 15797 if (mask & reset_reg) { 15798 BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n"); 15799 base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 15800 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; 15801 vals->umac_val = REG_RD(sc, vals->umac_addr); 15802 REG_WR(sc, vals->umac_addr, 0); 15803 mac_stopped = TRUE; 15804 } 15805 } 15806 15807 if (mac_stopped) { 15808 DELAY(20000); 15809 } 15810 } 15811 15812 #define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 15813 #define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff) 15814 #define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 15815 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 15816 15817 static void 15818 bxe_prev_unload_undi_inc(struct bxe_softc *sc, 15819 uint8_t port, 15820 uint8_t inc) 15821 { 15822 uint16_t rcq, bd; 15823 uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port)); 15824 15825 rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc; 15826 bd = BXE_PREV_UNDI_BD(tmp_reg) + inc; 15827 15828 tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd); 15829 REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg); 15830 15831 BLOGD(sc, DBG_LOAD, 15832 "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n", 15833 port, bd, rcq); 15834 } 15835 15836 static int 15837 bxe_prev_unload_common(struct bxe_softc *sc) 15838 { 15839 uint32_t reset_reg, tmp_reg = 0, rc; 15840 uint8_t prev_undi = FALSE; 15841 struct bxe_mac_vals mac_vals; 15842 uint32_t timer_count = 1000; 15843 uint32_t prev_brb; 15844 15845 /* 15846 * It is possible a previous function received 'common' answer, 15847 * but hasn't loaded yet, therefore creating a scenario of 15848 * multiple functions receiving 'common' on the same path. 15849 */ 15850 BLOGD(sc, DBG_LOAD, "Common unload Flow\n"); 15851 15852 memset(&mac_vals, 0, sizeof(mac_vals)); 15853 15854 if (bxe_prev_is_path_marked(sc)) { 15855 return (bxe_prev_mcp_done(sc)); 15856 } 15857 15858 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1); 15859 15860 /* Reset should be performed after BRB is emptied */ 15861 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 15862 /* Close the MAC Rx to prevent BRB from filling up */ 15863 bxe_prev_unload_close_mac(sc, &mac_vals); 15864 15865 /* close LLH filters towards the BRB */ 15866 elink_set_rx_filter(&sc->link_params, 0); 15867 15868 /* 15869 * Check if the UNDI driver was previously loaded. 15870 * UNDI driver initializes CID offset for normal bell to 0x7 15871 */ 15872 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { 15873 tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST); 15874 if (tmp_reg == 0x7) { 15875 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n"); 15876 prev_undi = TRUE; 15877 /* clear the UNDI indication */ 15878 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0); 15879 /* clear possible idle check errors */ 15880 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0); 15881 } 15882 } 15883 15884 /* wait until BRB is empty */ 15885 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15886 while (timer_count) { 15887 prev_brb = tmp_reg; 15888 15889 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15890 if (!tmp_reg) { 15891 break; 15892 } 15893 15894 BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg); 15895 15896 /* reset timer as long as BRB actually gets emptied */ 15897 if (prev_brb > tmp_reg) { 15898 timer_count = 1000; 15899 } else { 15900 timer_count--; 15901 } 15902 15903 /* If UNDI resides in memory, manually increment it */ 15904 if (prev_undi) { 15905 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1); 15906 } 15907 15908 DELAY(10); 15909 } 15910 15911 if (!timer_count) { 15912 BLOGE(sc, "Failed to empty BRB\n"); 15913 } 15914 } 15915 15916 /* No packets are in the pipeline, path is ready for reset */ 15917 bxe_reset_common(sc); 15918 15919 if (mac_vals.xmac_addr) { 15920 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val); 15921 } 15922 if (mac_vals.umac_addr) { 15923 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val); 15924 } 15925 if (mac_vals.emac_addr) { 15926 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val); 15927 } 15928 if (mac_vals.bmac_addr) { 15929 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 15930 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 15931 } 15932 15933 rc = bxe_prev_mark_path(sc, prev_undi); 15934 if (rc) { 15935 bxe_prev_mcp_done(sc); 15936 return (rc); 15937 } 15938 15939 return (bxe_prev_mcp_done(sc)); 15940 } 15941 15942 static int 15943 bxe_prev_unload_uncommon(struct bxe_softc *sc) 15944 { 15945 int rc; 15946 15947 BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n"); 15948 15949 /* Test if previous unload process was already finished for this path */ 15950 if (bxe_prev_is_path_marked(sc)) { 15951 return (bxe_prev_mcp_done(sc)); 15952 } 15953 15954 BLOGD(sc, DBG_LOAD, "Path is unmarked\n"); 15955 15956 /* 15957 * If function has FLR capabilities, and existing FW version matches 15958 * the one required, then FLR will be sufficient to clean any residue 15959 * left by previous driver 15960 */ 15961 rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION); 15962 if (!rc) { 15963 /* fw version is good */ 15964 BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n"); 15965 rc = bxe_do_flr(sc); 15966 } 15967 15968 if (!rc) { 15969 /* FLR was performed */ 15970 BLOGD(sc, DBG_LOAD, "FLR successful\n"); 15971 return (0); 15972 } 15973 15974 BLOGD(sc, DBG_LOAD, "Could not FLR\n"); 15975 15976 /* Close the MCP request, return failure*/ 15977 rc = bxe_prev_mcp_done(sc); 15978 if (!rc) { 15979 rc = BXE_PREV_WAIT_NEEDED; 15980 } 15981 15982 return (rc); 15983 } 15984 15985 static int 15986 bxe_prev_unload(struct bxe_softc *sc) 15987 { 15988 int time_counter = 10; 15989 uint32_t fw, hw_lock_reg, hw_lock_val; 15990 uint32_t rc = 0; 15991 15992 /* 15993 * Clear HW from errors which may have resulted from an interrupted 15994 * DMAE transaction. 15995 */ 15996 bxe_prev_interrupted_dmae(sc); 15997 15998 /* Release previously held locks */ 15999 hw_lock_reg = 16000 (SC_FUNC(sc) <= 5) ? 16001 (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) : 16002 (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8); 16003 16004 hw_lock_val = (REG_RD(sc, hw_lock_reg)); 16005 if (hw_lock_val) { 16006 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 16007 BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n"); 16008 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 16009 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc))); 16010 } 16011 BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n"); 16012 REG_WR(sc, hw_lock_reg, 0xffffffff); 16013 } else { 16014 BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n"); 16015 } 16016 16017 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) { 16018 BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n"); 16019 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0); 16020 } 16021 16022 do { 16023 /* Lock MCP using an unload request */ 16024 fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 16025 if (!fw) { 16026 BLOGE(sc, "MCP response failure, aborting\n"); 16027 rc = -1; 16028 break; 16029 } 16030 16031 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) { 16032 rc = bxe_prev_unload_common(sc); 16033 break; 16034 } 16035 16036 /* non-common reply from MCP night require looping */ 16037 rc = bxe_prev_unload_uncommon(sc); 16038 if (rc != BXE_PREV_WAIT_NEEDED) { 16039 break; 16040 } 16041 16042 DELAY(20000); 16043 } while (--time_counter); 16044 16045 if (!time_counter || rc) { 16046 BLOGE(sc, "Failed to unload previous driver!\n"); 16047 rc = -1; 16048 } 16049 16050 return (rc); 16051 } 16052 16053 void 16054 bxe_dcbx_set_state(struct bxe_softc *sc, 16055 uint8_t dcb_on, 16056 uint32_t dcbx_enabled) 16057 { 16058 if (!CHIP_IS_E1x(sc)) { 16059 sc->dcb_state = dcb_on; 16060 sc->dcbx_enabled = dcbx_enabled; 16061 } else { 16062 sc->dcb_state = FALSE; 16063 sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID; 16064 } 16065 BLOGD(sc, DBG_LOAD, 16066 "DCB state [%s:%s]\n", 16067 dcb_on ? "ON" : "OFF", 16068 (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" : 16069 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" : 16070 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ? 16071 "on-chip with negotiation" : "invalid"); 16072 } 16073 16074 /* must be called after sriov-enable */ 16075 static int 16076 bxe_set_qm_cid_count(struct bxe_softc *sc) 16077 { 16078 int cid_count = BXE_L2_MAX_CID(sc); 16079 16080 if (IS_SRIOV(sc)) { 16081 cid_count += BXE_VF_CIDS; 16082 } 16083 16084 if (CNIC_SUPPORT(sc)) { 16085 cid_count += CNIC_CID_MAX; 16086 } 16087 16088 return (roundup(cid_count, QM_CID_ROUND)); 16089 } 16090 16091 static void 16092 bxe_init_multi_cos(struct bxe_softc *sc) 16093 { 16094 int pri, cos; 16095 16096 uint32_t pri_map = 0; /* XXX change to user config */ 16097 16098 for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) { 16099 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4)); 16100 if (cos < sc->max_cos) { 16101 sc->prio_to_cos[pri] = cos; 16102 } else { 16103 BLOGW(sc, "Invalid COS %d for priority %d " 16104 "(max COS is %d), setting to 0\n", 16105 cos, pri, (sc->max_cos - 1)); 16106 sc->prio_to_cos[pri] = 0; 16107 } 16108 } 16109 } 16110 16111 static int 16112 bxe_sysctl_state(SYSCTL_HANDLER_ARGS) 16113 { 16114 struct bxe_softc *sc; 16115 int error, result; 16116 16117 result = 0; 16118 error = sysctl_handle_int(oidp, &result, 0, req); 16119 16120 if (error || !req->newptr) { 16121 return (error); 16122 } 16123 16124 if (result == 1) { 16125 sc = (struct bxe_softc *)arg1; 16126 BLOGI(sc, "... dumping driver state ...\n"); 16127 /* XXX */ 16128 } 16129 16130 return (error); 16131 } 16132 16133 static int 16134 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS) 16135 { 16136 struct bxe_softc *sc = (struct bxe_softc *)arg1; 16137 uint32_t *eth_stats = (uint32_t *)&sc->eth_stats; 16138 uint32_t *offset; 16139 uint64_t value = 0; 16140 int index = (int)arg2; 16141 16142 if (index >= BXE_NUM_ETH_STATS) { 16143 BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index); 16144 return (-1); 16145 } 16146 16147 offset = (eth_stats + bxe_eth_stats_arr[index].offset); 16148 16149 switch (bxe_eth_stats_arr[index].size) { 16150 case 4: 16151 value = (uint64_t)*offset; 16152 break; 16153 case 8: 16154 value = HILO_U64(*offset, *(offset + 1)); 16155 break; 16156 default: 16157 BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n", 16158 index, bxe_eth_stats_arr[index].size); 16159 return (-1); 16160 } 16161 16162 return (sysctl_handle_64(oidp, &value, 0, req)); 16163 } 16164 16165 static int 16166 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS) 16167 { 16168 struct bxe_softc *sc = (struct bxe_softc *)arg1; 16169 uint32_t *eth_stats; 16170 uint32_t *offset; 16171 uint64_t value = 0; 16172 uint32_t q_stat = (uint32_t)arg2; 16173 uint32_t fp_index = ((q_stat >> 16) & 0xffff); 16174 uint32_t index = (q_stat & 0xffff); 16175 16176 eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats; 16177 16178 if (index >= BXE_NUM_ETH_Q_STATS) { 16179 BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index); 16180 return (-1); 16181 } 16182 16183 offset = (eth_stats + bxe_eth_q_stats_arr[index].offset); 16184 16185 switch (bxe_eth_q_stats_arr[index].size) { 16186 case 4: 16187 value = (uint64_t)*offset; 16188 break; 16189 case 8: 16190 value = HILO_U64(*offset, *(offset + 1)); 16191 break; 16192 default: 16193 BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n", 16194 index, bxe_eth_q_stats_arr[index].size); 16195 return (-1); 16196 } 16197 16198 return (sysctl_handle_64(oidp, &value, 0, req)); 16199 } 16200 16201 static void 16202 bxe_add_sysctls(struct bxe_softc *sc) 16203 { 16204 struct sysctl_ctx_list *ctx; 16205 struct sysctl_oid_list *children; 16206 struct sysctl_oid *queue_top, *queue; 16207 struct sysctl_oid_list *queue_top_children, *queue_children; 16208 char queue_num_buf[32]; 16209 uint32_t q_stat; 16210 int i, j; 16211 16212 ctx = device_get_sysctl_ctx(sc->dev); 16213 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 16214 16215 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version", 16216 CTLFLAG_RD, BXE_DRIVER_VERSION, 0, 16217 "version"); 16218 16219 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 16220 CTLFLAG_RD, sc->devinfo.bc_ver_str, 0, 16221 "bootcode version"); 16222 16223 snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d", 16224 BCM_5710_FW_MAJOR_VERSION, 16225 BCM_5710_FW_MINOR_VERSION, 16226 BCM_5710_FW_REVISION_VERSION, 16227 BCM_5710_FW_ENGINEERING_VERSION); 16228 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 16229 CTLFLAG_RD, sc->fw_ver_str, 0, 16230 "firmware version"); 16231 16232 snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s", 16233 ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" : 16234 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" : 16235 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" : 16236 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" : 16237 "Unknown")); 16238 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 16239 CTLFLAG_RD, sc->mf_mode_str, 0, 16240 "multifunction mode"); 16241 16242 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics", 16243 CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0, 16244 "multifunction vnics per port"); 16245 16246 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 16247 CTLFLAG_RD, sc->mac_addr_str, 0, 16248 "mac address"); 16249 16250 snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d", 16251 ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" : 16252 (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" : 16253 (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" : 16254 "???GT/s"), 16255 sc->devinfo.pcie_link_width); 16256 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 16257 CTLFLAG_RD, sc->pci_link_str, 0, 16258 "pci link status"); 16259 16260 sc->debug = bxe_debug; 16261 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug", 16262 CTLFLAG_RW, &sc->debug, 16263 "debug logging mode"); 16264 16265 sc->rx_budget = bxe_rx_budget; 16266 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget", 16267 CTLFLAG_RW, &sc->rx_budget, 0, 16268 "rx processing budget"); 16269 16270 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state", 16271 CTLTYPE_UINT | CTLFLAG_RW, sc, 0, 16272 bxe_sysctl_state, "IU", "dump driver state"); 16273 16274 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 16275 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 16276 bxe_eth_stats_arr[i].string, 16277 CTLTYPE_U64 | CTLFLAG_RD, sc, i, 16278 bxe_sysctl_eth_stat, "LU", 16279 bxe_eth_stats_arr[i].string); 16280 } 16281 16282 /* add a new parent node for all queues "dev.bxe.#.queue" */ 16283 queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue", 16284 CTLFLAG_RD, NULL, "queue"); 16285 queue_top_children = SYSCTL_CHILDREN(queue_top); 16286 16287 for (i = 0; i < sc->num_queues; i++) { 16288 /* add a new parent node for a single queue "dev.bxe.#.queue.#" */ 16289 snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i); 16290 queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO, 16291 queue_num_buf, CTLFLAG_RD, NULL, 16292 "single queue"); 16293 queue_children = SYSCTL_CHILDREN(queue); 16294 16295 for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) { 16296 q_stat = ((i << 16) | j); 16297 SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO, 16298 bxe_eth_q_stats_arr[j].string, 16299 CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat, 16300 bxe_sysctl_eth_q_stat, "LU", 16301 bxe_eth_q_stats_arr[j].string); 16302 } 16303 } 16304 } 16305 16306 /* 16307 * Device attach function. 16308 * 16309 * Allocates device resources, performs secondary chip identification, and 16310 * initializes driver instance variables. This function is called from driver 16311 * load after a successful probe. 16312 * 16313 * Returns: 16314 * 0 = Success, >0 = Failure 16315 */ 16316 static int 16317 bxe_attach(device_t dev) 16318 { 16319 struct bxe_softc *sc; 16320 16321 sc = device_get_softc(dev); 16322 16323 BLOGD(sc, DBG_LOAD, "Starting attach...\n"); 16324 16325 sc->state = BXE_STATE_CLOSED; 16326 16327 sc->dev = dev; 16328 sc->unit = device_get_unit(dev); 16329 16330 BLOGD(sc, DBG_LOAD, "softc = %p\n", sc); 16331 16332 sc->pcie_bus = pci_get_bus(dev); 16333 sc->pcie_device = pci_get_slot(dev); 16334 sc->pcie_func = pci_get_function(dev); 16335 16336 /* enable bus master capability */ 16337 pci_enable_busmaster(dev); 16338 16339 /* get the BARs */ 16340 if (bxe_allocate_bars(sc) != 0) { 16341 return (ENXIO); 16342 } 16343 16344 /* initialize the mutexes */ 16345 bxe_init_mutexes(sc); 16346 16347 /* prepare the periodic callout */ 16348 callout_init(&sc->periodic_callout, 0); 16349 16350 /* prepare the chip taskqueue */ 16351 sc->chip_tq_flags = CHIP_TQ_NONE; 16352 snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name), 16353 "bxe%d_chip_tq", sc->unit); 16354 TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc); 16355 sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT, 16356 taskqueue_thread_enqueue, 16357 &sc->chip_tq); 16358 taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */ 16359 "%s", sc->chip_tq_name); 16360 16361 /* get device info and set params */ 16362 if (bxe_get_device_info(sc) != 0) { 16363 BLOGE(sc, "getting device info\n"); 16364 bxe_deallocate_bars(sc); 16365 pci_disable_busmaster(dev); 16366 return (ENXIO); 16367 } 16368 16369 /* get final misc params */ 16370 bxe_get_params(sc); 16371 16372 /* set the default MTU (changed via ifconfig) */ 16373 sc->mtu = ETHERMTU; 16374 16375 bxe_set_modes_bitmap(sc); 16376 16377 /* XXX 16378 * If in AFEX mode and the function is configured for FCoE 16379 * then bail... no L2 allowed. 16380 */ 16381 16382 /* get phy settings from shmem and 'and' against admin settings */ 16383 bxe_get_phy_info(sc); 16384 16385 /* initialize the FreeBSD ifnet interface */ 16386 if (bxe_init_ifnet(sc) != 0) { 16387 bxe_release_mutexes(sc); 16388 bxe_deallocate_bars(sc); 16389 pci_disable_busmaster(dev); 16390 return (ENXIO); 16391 } 16392 16393 /* allocate device interrupts */ 16394 if (bxe_interrupt_alloc(sc) != 0) { 16395 if (sc->ifp != NULL) { 16396 ether_ifdetach(sc->ifp); 16397 } 16398 ifmedia_removeall(&sc->ifmedia); 16399 bxe_release_mutexes(sc); 16400 bxe_deallocate_bars(sc); 16401 pci_disable_busmaster(dev); 16402 return (ENXIO); 16403 } 16404 16405 /* allocate ilt */ 16406 if (bxe_alloc_ilt_mem(sc) != 0) { 16407 bxe_interrupt_free(sc); 16408 if (sc->ifp != NULL) { 16409 ether_ifdetach(sc->ifp); 16410 } 16411 ifmedia_removeall(&sc->ifmedia); 16412 bxe_release_mutexes(sc); 16413 bxe_deallocate_bars(sc); 16414 pci_disable_busmaster(dev); 16415 return (ENXIO); 16416 } 16417 16418 /* allocate the host hardware/software hsi structures */ 16419 if (bxe_alloc_hsi_mem(sc) != 0) { 16420 bxe_free_ilt_mem(sc); 16421 bxe_interrupt_free(sc); 16422 if (sc->ifp != NULL) { 16423 ether_ifdetach(sc->ifp); 16424 } 16425 ifmedia_removeall(&sc->ifmedia); 16426 bxe_release_mutexes(sc); 16427 bxe_deallocate_bars(sc); 16428 pci_disable_busmaster(dev); 16429 return (ENXIO); 16430 } 16431 16432 /* need to reset chip if UNDI was active */ 16433 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 16434 /* init fw_seq */ 16435 sc->fw_seq = 16436 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 16437 DRV_MSG_SEQ_NUMBER_MASK); 16438 BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq); 16439 bxe_prev_unload(sc); 16440 } 16441 16442 #if 1 16443 /* XXX */ 16444 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16445 #else 16446 if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) && 16447 SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) && 16448 SHMEM2_RD(sc, dcbx_lldp_params_offset) && 16449 SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) { 16450 bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON); 16451 bxe_dcbx_init_params(sc); 16452 } else { 16453 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16454 } 16455 #endif 16456 16457 /* calculate qm_cid_count */ 16458 sc->qm_cid_count = bxe_set_qm_cid_count(sc); 16459 BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count); 16460 16461 sc->max_cos = 1; 16462 bxe_init_multi_cos(sc); 16463 16464 bxe_add_sysctls(sc); 16465 16466 return (0); 16467 } 16468 16469 /* 16470 * Device detach function. 16471 * 16472 * Stops the controller, resets the controller, and releases resources. 16473 * 16474 * Returns: 16475 * 0 = Success, >0 = Failure 16476 */ 16477 static int 16478 bxe_detach(device_t dev) 16479 { 16480 struct bxe_softc *sc; 16481 if_t ifp; 16482 16483 sc = device_get_softc(dev); 16484 16485 BLOGD(sc, DBG_LOAD, "Starting detach...\n"); 16486 16487 ifp = sc->ifp; 16488 if (ifp != NULL && if_vlantrunkinuse(ifp)) { 16489 BLOGE(sc, "Cannot detach while VLANs are in use.\n"); 16490 return(EBUSY); 16491 } 16492 16493 /* stop the periodic callout */ 16494 bxe_periodic_stop(sc); 16495 16496 /* stop the chip taskqueue */ 16497 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE); 16498 if (sc->chip_tq) { 16499 taskqueue_drain(sc->chip_tq, &sc->chip_tq_task); 16500 taskqueue_free(sc->chip_tq); 16501 sc->chip_tq = NULL; 16502 } 16503 16504 /* stop and reset the controller if it was open */ 16505 if (sc->state != BXE_STATE_CLOSED) { 16506 BXE_CORE_LOCK(sc); 16507 bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE); 16508 BXE_CORE_UNLOCK(sc); 16509 } 16510 16511 /* release the network interface */ 16512 if (ifp != NULL) { 16513 ether_ifdetach(ifp); 16514 } 16515 ifmedia_removeall(&sc->ifmedia); 16516 16517 /* XXX do the following based on driver state... */ 16518 16519 /* free the host hardware/software hsi structures */ 16520 bxe_free_hsi_mem(sc); 16521 16522 /* free ilt */ 16523 bxe_free_ilt_mem(sc); 16524 16525 /* release the interrupts */ 16526 bxe_interrupt_free(sc); 16527 16528 /* Release the mutexes*/ 16529 bxe_release_mutexes(sc); 16530 16531 /* Release the PCIe BAR mapped memory */ 16532 bxe_deallocate_bars(sc); 16533 16534 /* Release the FreeBSD interface. */ 16535 if (sc->ifp != NULL) { 16536 if_free(sc->ifp); 16537 } 16538 16539 pci_disable_busmaster(dev); 16540 16541 return (0); 16542 } 16543 16544 /* 16545 * Device shutdown function. 16546 * 16547 * Stops and resets the controller. 16548 * 16549 * Returns: 16550 * Nothing 16551 */ 16552 static int 16553 bxe_shutdown(device_t dev) 16554 { 16555 struct bxe_softc *sc; 16556 16557 sc = device_get_softc(dev); 16558 16559 BLOGD(sc, DBG_LOAD, "Starting shutdown...\n"); 16560 16561 /* stop the periodic callout */ 16562 bxe_periodic_stop(sc); 16563 16564 BXE_CORE_LOCK(sc); 16565 bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE); 16566 BXE_CORE_UNLOCK(sc); 16567 16568 return (0); 16569 } 16570 16571 void 16572 bxe_igu_ack_sb(struct bxe_softc *sc, 16573 uint8_t igu_sb_id, 16574 uint8_t segment, 16575 uint16_t index, 16576 uint8_t op, 16577 uint8_t update) 16578 { 16579 uint32_t igu_addr = sc->igu_base_addr; 16580 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 16581 bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr); 16582 } 16583 16584 static void 16585 bxe_igu_clear_sb_gen(struct bxe_softc *sc, 16586 uint8_t func, 16587 uint8_t idu_sb_id, 16588 uint8_t is_pf) 16589 { 16590 uint32_t data, ctl, cnt = 100; 16591 uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 16592 uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 16593 uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 16594 uint32_t sb_bit = 1 << (idu_sb_id%32); 16595 uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 16596 uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 16597 16598 /* Not supported in BC mode */ 16599 if (CHIP_INT_MODE_IS_BC(sc)) { 16600 return; 16601 } 16602 16603 data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup << 16604 IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 16605 IGU_REGULAR_CLEANUP_SET | 16606 IGU_REGULAR_BCLEANUP); 16607 16608 ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) | 16609 (func_encode << IGU_CTRL_REG_FID_SHIFT) | 16610 (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT)); 16611 16612 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16613 data, igu_addr_data); 16614 REG_WR(sc, igu_addr_data, data); 16615 16616 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16617 BUS_SPACE_BARRIER_WRITE); 16618 mb(); 16619 16620 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16621 ctl, igu_addr_ctl); 16622 REG_WR(sc, igu_addr_ctl, ctl); 16623 16624 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16625 BUS_SPACE_BARRIER_WRITE); 16626 mb(); 16627 16628 /* wait for clean up to finish */ 16629 while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) { 16630 DELAY(20000); 16631 } 16632 16633 if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) { 16634 BLOGD(sc, DBG_LOAD, 16635 "Unable to finish IGU cleanup: " 16636 "idu_sb_id %d offset %d bit %d (cnt %d)\n", 16637 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 16638 } 16639 } 16640 16641 static void 16642 bxe_igu_clear_sb(struct bxe_softc *sc, 16643 uint8_t idu_sb_id) 16644 { 16645 bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/); 16646 } 16647 16648 16649 16650 16651 16652 16653 16654 /*******************/ 16655 /* ECORE CALLBACKS */ 16656 /*******************/ 16657 16658 static void 16659 bxe_reset_common(struct bxe_softc *sc) 16660 { 16661 uint32_t val = 0x1400; 16662 16663 /* reset_common */ 16664 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f); 16665 16666 if (CHIP_IS_E3(sc)) { 16667 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16668 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16669 } 16670 16671 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val); 16672 } 16673 16674 static void 16675 bxe_common_init_phy(struct bxe_softc *sc) 16676 { 16677 uint32_t shmem_base[2]; 16678 uint32_t shmem2_base[2]; 16679 16680 /* Avoid common init in case MFW supports LFA */ 16681 if (SHMEM2_RD(sc, size) > 16682 (uint32_t)offsetof(struct shmem2_region, 16683 lfa_host_addr[SC_PORT(sc)])) { 16684 return; 16685 } 16686 16687 shmem_base[0] = sc->devinfo.shmem_base; 16688 shmem2_base[0] = sc->devinfo.shmem2_base; 16689 16690 if (!CHIP_IS_E1x(sc)) { 16691 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr); 16692 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr); 16693 } 16694 16695 bxe_acquire_phy_lock(sc); 16696 elink_common_init_phy(sc, shmem_base, shmem2_base, 16697 sc->devinfo.chip_id, 0); 16698 bxe_release_phy_lock(sc); 16699 } 16700 16701 static void 16702 bxe_pf_disable(struct bxe_softc *sc) 16703 { 16704 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 16705 16706 val &= ~IGU_PF_CONF_FUNC_EN; 16707 16708 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 16709 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16710 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0); 16711 } 16712 16713 static void 16714 bxe_init_pxp(struct bxe_softc *sc) 16715 { 16716 uint16_t devctl; 16717 int r_order, w_order; 16718 16719 devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2); 16720 16721 BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl); 16722 16723 w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5); 16724 16725 if (sc->mrrs == -1) { 16726 r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12); 16727 } else { 16728 BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs); 16729 r_order = sc->mrrs; 16730 } 16731 16732 ecore_init_pxp_arb(sc, r_order, w_order); 16733 } 16734 16735 static uint32_t 16736 bxe_get_pretend_reg(struct bxe_softc *sc) 16737 { 16738 uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0; 16739 uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base); 16740 return (base + (SC_ABS_FUNC(sc)) * stride); 16741 } 16742 16743 /* 16744 * Called only on E1H or E2. 16745 * When pretending to be PF, the pretend value is the function number 0..7. 16746 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 16747 * combination. 16748 */ 16749 static int 16750 bxe_pretend_func(struct bxe_softc *sc, 16751 uint16_t pretend_func_val) 16752 { 16753 uint32_t pretend_reg; 16754 16755 if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) { 16756 return (-1); 16757 } 16758 16759 /* get my own pretend register */ 16760 pretend_reg = bxe_get_pretend_reg(sc); 16761 REG_WR(sc, pretend_reg, pretend_func_val); 16762 REG_RD(sc, pretend_reg); 16763 return (0); 16764 } 16765 16766 static void 16767 bxe_iov_init_dmae(struct bxe_softc *sc) 16768 { 16769 return; 16770 #if 0 16771 BLOGD(sc, DBG_LOAD, "SRIOV is %s\n", IS_SRIOV(sc) ? "ON" : "OFF"); 16772 16773 if (!IS_SRIOV(sc)) { 16774 return; 16775 } 16776 16777 REG_WR(sc, DMAE_REG_BACKWARD_COMP_EN, 0); 16778 #endif 16779 } 16780 16781 #if 0 16782 static int 16783 bxe_iov_init_ilt(struct bxe_softc *sc, 16784 uint16_t line) 16785 { 16786 return (line); 16787 #if 0 16788 int i; 16789 struct ecore_ilt* ilt = sc->ilt; 16790 16791 if (!IS_SRIOV(sc)) { 16792 return (line); 16793 } 16794 16795 /* set vfs ilt lines */ 16796 for (i = 0; i < BXE_VF_CIDS/ILT_PAGE_CIDS ; i++) { 16797 struct hw_dma *hw_cxt = SC_VF_CXT_PAGE(sc,i); 16798 ilt->lines[line+i].page = hw_cxt->addr; 16799 ilt->lines[line+i].page_mapping = hw_cxt->mapping; 16800 ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */ 16801 } 16802 return (line+i); 16803 #endif 16804 } 16805 #endif 16806 16807 static void 16808 bxe_iov_init_dq(struct bxe_softc *sc) 16809 { 16810 return; 16811 #if 0 16812 if (!IS_SRIOV(sc)) { 16813 return; 16814 } 16815 16816 /* Set the DQ such that the CID reflect the abs_vfid */ 16817 REG_WR(sc, DORQ_REG_VF_NORM_VF_BASE, 0); 16818 REG_WR(sc, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS)); 16819 16820 /* 16821 * Set VFs starting CID. If its > 0 the preceding CIDs are belong to 16822 * the PF L2 queues 16823 */ 16824 REG_WR(sc, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID); 16825 16826 /* The VF window size is the log2 of the max number of CIDs per VF */ 16827 REG_WR(sc, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND); 16828 16829 /* 16830 * The VF doorbell size 0 - *B, 4 - 128B. We set it here to match 16831 * the Pf doorbell size although the 2 are independent. 16832 */ 16833 REG_WR(sc, DORQ_REG_VF_NORM_CID_OFST, 16834 BNX2X_DB_SHIFT - BNX2X_DB_MIN_SHIFT); 16835 16836 /* 16837 * No security checks for now - 16838 * configure single rule (out of 16) mask = 0x1, value = 0x0, 16839 * CID range 0 - 0x1ffff 16840 */ 16841 REG_WR(sc, DORQ_REG_VF_TYPE_MASK_0, 1); 16842 REG_WR(sc, DORQ_REG_VF_TYPE_VALUE_0, 0); 16843 REG_WR(sc, DORQ_REG_VF_TYPE_MIN_MCID_0, 0); 16844 REG_WR(sc, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff); 16845 16846 /* set the number of VF alllowed doorbells to the full DQ range */ 16847 REG_WR(sc, DORQ_REG_VF_NORM_MAX_CID_COUNT, 0x20000); 16848 16849 /* set the VF doorbell threshold */ 16850 REG_WR(sc, DORQ_REG_VF_USAGE_CT_LIMIT, 4); 16851 #endif 16852 } 16853 16854 /* send a NIG loopback debug packet */ 16855 static void 16856 bxe_lb_pckt(struct bxe_softc *sc) 16857 { 16858 uint32_t wb_write[3]; 16859 16860 /* Ethernet source and destination addresses */ 16861 wb_write[0] = 0x55555555; 16862 wb_write[1] = 0x55555555; 16863 wb_write[2] = 0x20; /* SOP */ 16864 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16865 16866 /* NON-IP protocol */ 16867 wb_write[0] = 0x09000000; 16868 wb_write[1] = 0x55555555; 16869 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 16870 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16871 } 16872 16873 /* 16874 * Some of the internal memories are not directly readable from the driver. 16875 * To test them we send debug packets. 16876 */ 16877 static int 16878 bxe_int_mem_test(struct bxe_softc *sc) 16879 { 16880 int factor; 16881 int count, i; 16882 uint32_t val = 0; 16883 16884 if (CHIP_REV_IS_FPGA(sc)) { 16885 factor = 120; 16886 } else if (CHIP_REV_IS_EMUL(sc)) { 16887 factor = 200; 16888 } else { 16889 factor = 1; 16890 } 16891 16892 /* disable inputs of parser neighbor blocks */ 16893 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16894 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16895 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16896 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16897 16898 /* write 0 to parser credits for CFC search request */ 16899 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16900 16901 /* send Ethernet packet */ 16902 bxe_lb_pckt(sc); 16903 16904 /* TODO do i reset NIG statistic? */ 16905 /* Wait until NIG register shows 1 packet of size 0x10 */ 16906 count = 1000 * factor; 16907 while (count) { 16908 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16909 val = *BXE_SP(sc, wb_data[0]); 16910 if (val == 0x10) { 16911 break; 16912 } 16913 16914 DELAY(10000); 16915 count--; 16916 } 16917 16918 if (val != 0x10) { 16919 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16920 return (-1); 16921 } 16922 16923 /* wait until PRS register shows 1 packet */ 16924 count = (1000 * factor); 16925 while (count) { 16926 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16927 if (val == 1) { 16928 break; 16929 } 16930 16931 DELAY(10000); 16932 count--; 16933 } 16934 16935 if (val != 0x1) { 16936 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16937 return (-2); 16938 } 16939 16940 /* Reset and init BRB, PRS */ 16941 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16942 DELAY(50000); 16943 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16944 DELAY(50000); 16945 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16946 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16947 16948 /* Disable inputs of parser neighbor blocks */ 16949 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16950 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16951 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16952 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16953 16954 /* Write 0 to parser credits for CFC search request */ 16955 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16956 16957 /* send 10 Ethernet packets */ 16958 for (i = 0; i < 10; i++) { 16959 bxe_lb_pckt(sc); 16960 } 16961 16962 /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */ 16963 count = (1000 * factor); 16964 while (count) { 16965 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16966 val = *BXE_SP(sc, wb_data[0]); 16967 if (val == 0xb0) { 16968 break; 16969 } 16970 16971 DELAY(10000); 16972 count--; 16973 } 16974 16975 if (val != 0xb0) { 16976 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16977 return (-3); 16978 } 16979 16980 /* Wait until PRS register shows 2 packets */ 16981 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16982 if (val != 2) { 16983 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16984 } 16985 16986 /* Write 1 to parser credits for CFC search request */ 16987 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 16988 16989 /* Wait until PRS register shows 3 packets */ 16990 DELAY(10000 * factor); 16991 16992 /* Wait until NIG register shows 1 packet of size 0x10 */ 16993 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16994 if (val != 3) { 16995 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16996 } 16997 16998 /* clear NIG EOP FIFO */ 16999 for (i = 0; i < 11; i++) { 17000 REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO); 17001 } 17002 17003 val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY); 17004 if (val != 1) { 17005 BLOGE(sc, "clear of NIG failed\n"); 17006 return (-4); 17007 } 17008 17009 /* Reset and init BRB, PRS, NIG */ 17010 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 17011 DELAY(50000); 17012 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 17013 DELAY(50000); 17014 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 17015 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 17016 if (!CNIC_SUPPORT(sc)) { 17017 /* set NIC mode */ 17018 REG_WR(sc, PRS_REG_NIC_MODE, 1); 17019 } 17020 17021 /* Enable inputs of parser neighbor blocks */ 17022 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff); 17023 REG_WR(sc, TCM_REG_PRS_IFEN, 0x1); 17024 REG_WR(sc, CFC_REG_DEBUG0, 0x0); 17025 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1); 17026 17027 return (0); 17028 } 17029 17030 static void 17031 bxe_setup_fan_failure_detection(struct bxe_softc *sc) 17032 { 17033 int is_required; 17034 uint32_t val; 17035 int port; 17036 17037 is_required = 0; 17038 val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) & 17039 SHARED_HW_CFG_FAN_FAILURE_MASK); 17040 17041 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) { 17042 is_required = 1; 17043 } 17044 /* 17045 * The fan failure mechanism is usually related to the PHY type since 17046 * the power consumption of the board is affected by the PHY. Currently, 17047 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 17048 */ 17049 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) { 17050 for (port = PORT_0; port < PORT_MAX; port++) { 17051 is_required |= elink_fan_failure_det_req(sc, 17052 sc->devinfo.shmem_base, 17053 sc->devinfo.shmem2_base, 17054 port); 17055 } 17056 } 17057 17058 BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required); 17059 17060 if (is_required == 0) { 17061 return; 17062 } 17063 17064 /* Fan failure is indicated by SPIO 5 */ 17065 bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 17066 17067 /* set to active low mode */ 17068 val = REG_RD(sc, MISC_REG_SPIO_INT); 17069 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 17070 REG_WR(sc, MISC_REG_SPIO_INT, val); 17071 17072 /* enable interrupt to signal the IGU */ 17073 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17074 val |= MISC_SPIO_SPIO5; 17075 REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val); 17076 } 17077 17078 static void 17079 bxe_enable_blocks_attention(struct bxe_softc *sc) 17080 { 17081 uint32_t val; 17082 17083 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 17084 if (!CHIP_IS_E1x(sc)) { 17085 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40); 17086 } else { 17087 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0); 17088 } 17089 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 17090 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 17091 /* 17092 * mask read length error interrupts in brb for parser 17093 * (parsing unit and 'checksum and crc' unit) 17094 * these errors are legal (PU reads fixed length and CAC can cause 17095 * read length error on truncated packets) 17096 */ 17097 REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00); 17098 REG_WR(sc, QM_REG_QM_INT_MASK, 0); 17099 REG_WR(sc, TM_REG_TM_INT_MASK, 0); 17100 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0); 17101 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0); 17102 REG_WR(sc, XCM_REG_XCM_INT_MASK, 0); 17103 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */ 17104 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */ 17105 REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0); 17106 REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0); 17107 REG_WR(sc, UCM_REG_UCM_INT_MASK, 0); 17108 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */ 17109 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */ 17110 REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 17111 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0); 17112 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0); 17113 REG_WR(sc, CCM_REG_CCM_INT_MASK, 0); 17114 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */ 17115 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */ 17116 17117 val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 17118 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 17119 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN); 17120 if (!CHIP_IS_E1x(sc)) { 17121 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 17122 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED); 17123 } 17124 REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val); 17125 17126 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0); 17127 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0); 17128 REG_WR(sc, TCM_REG_TCM_INT_MASK, 0); 17129 /* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */ 17130 17131 if (!CHIP_IS_E1x(sc)) { 17132 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 17133 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 17134 } 17135 17136 REG_WR(sc, CDU_REG_CDU_INT_MASK, 0); 17137 REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0); 17138 /* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */ 17139 REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 17140 } 17141 17142 /** 17143 * bxe_init_hw_common - initialize the HW at the COMMON phase. 17144 * 17145 * @sc: driver handle 17146 */ 17147 static int 17148 bxe_init_hw_common(struct bxe_softc *sc) 17149 { 17150 uint8_t abs_func_id; 17151 uint32_t val; 17152 17153 BLOGD(sc, DBG_LOAD, "starting common init for func %d\n", 17154 SC_ABS_FUNC(sc)); 17155 17156 /* 17157 * take the RESET lock to protect undi_unload flow from accessing 17158 * registers while we are resetting the chip 17159 */ 17160 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 17161 17162 bxe_reset_common(sc); 17163 17164 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff); 17165 17166 val = 0xfffc; 17167 if (CHIP_IS_E3(sc)) { 17168 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 17169 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 17170 } 17171 17172 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val); 17173 17174 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 17175 17176 ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON); 17177 BLOGD(sc, DBG_LOAD, "after misc block init\n"); 17178 17179 if (!CHIP_IS_E1x(sc)) { 17180 /* 17181 * 4-port mode or 2-port mode we need to turn off master-enable for 17182 * everyone. After that we turn it back on for self. So, we disregard 17183 * multi-function, and always disable all functions on the given path, 17184 * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1 17185 */ 17186 for (abs_func_id = SC_PATH(sc); 17187 abs_func_id < (E2_FUNC_MAX * 2); 17188 abs_func_id += 2) { 17189 if (abs_func_id == SC_ABS_FUNC(sc)) { 17190 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17191 continue; 17192 } 17193 17194 bxe_pretend_func(sc, abs_func_id); 17195 17196 /* clear pf enable */ 17197 bxe_pf_disable(sc); 17198 17199 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 17200 } 17201 } 17202 17203 BLOGD(sc, DBG_LOAD, "after pf disable\n"); 17204 17205 ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON); 17206 17207 if (CHIP_IS_E1(sc)) { 17208 /* 17209 * enable HW interrupt from PXP on USDM overflow 17210 * bit 16 on INT_MASK_0 17211 */ 17212 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 17213 } 17214 17215 ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON); 17216 bxe_init_pxp(sc); 17217 17218 #ifdef __BIG_ENDIAN 17219 REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1); 17220 REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1); 17221 REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1); 17222 REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1); 17223 REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1); 17224 /* make sure this value is 0 */ 17225 REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0); 17226 17227 //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1); 17228 REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1); 17229 REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1); 17230 REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1); 17231 REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1); 17232 #endif 17233 17234 ecore_ilt_init_page_size(sc, INITOP_SET); 17235 17236 if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) { 17237 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 17238 } 17239 17240 /* let the HW do it's magic... */ 17241 DELAY(100000); 17242 17243 /* finish PXP init */ 17244 val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE); 17245 if (val != 1) { 17246 BLOGE(sc, "PXP2 CFG failed\n"); 17247 return (-1); 17248 } 17249 val = REG_RD(sc, PXP2_REG_RD_INIT_DONE); 17250 if (val != 1) { 17251 BLOGE(sc, "PXP2 RD_INIT failed\n"); 17252 return (-1); 17253 } 17254 17255 BLOGD(sc, DBG_LOAD, "after pxp init\n"); 17256 17257 /* 17258 * Timer bug workaround for E2 only. We need to set the entire ILT to have 17259 * entries with value "0" and valid bit on. This needs to be done by the 17260 * first PF that is loaded in a path (i.e. common phase) 17261 */ 17262 if (!CHIP_IS_E1x(sc)) { 17263 /* 17264 * In E2 there is a bug in the timers block that can cause function 6 / 7 17265 * (i.e. vnic3) to start even if it is marked as "scan-off". 17266 * This occurs when a different function (func2,3) is being marked 17267 * as "scan-off". Real-life scenario for example: if a driver is being 17268 * load-unloaded while func6,7 are down. This will cause the timer to access 17269 * the ilt, translate to a logical address and send a request to read/write. 17270 * Since the ilt for the function that is down is not valid, this will cause 17271 * a translation error which is unrecoverable. 17272 * The Workaround is intended to make sure that when this happens nothing 17273 * fatal will occur. The workaround: 17274 * 1. First PF driver which loads on a path will: 17275 * a. After taking the chip out of reset, by using pretend, 17276 * it will write "0" to the following registers of 17277 * the other vnics. 17278 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 17279 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 17280 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 17281 * And for itself it will write '1' to 17282 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 17283 * dmae-operations (writing to pram for example.) 17284 * note: can be done for only function 6,7 but cleaner this 17285 * way. 17286 * b. Write zero+valid to the entire ILT. 17287 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 17288 * VNIC3 (of that port). The range allocated will be the 17289 * entire ILT. This is needed to prevent ILT range error. 17290 * 2. Any PF driver load flow: 17291 * a. ILT update with the physical addresses of the allocated 17292 * logical pages. 17293 * b. Wait 20msec. - note that this timeout is needed to make 17294 * sure there are no requests in one of the PXP internal 17295 * queues with "old" ILT addresses. 17296 * c. PF enable in the PGLC. 17297 * d. Clear the was_error of the PF in the PGLC. (could have 17298 * occurred while driver was down) 17299 * e. PF enable in the CFC (WEAK + STRONG) 17300 * f. Timers scan enable 17301 * 3. PF driver unload flow: 17302 * a. Clear the Timers scan_en. 17303 * b. Polling for scan_on=0 for that PF. 17304 * c. Clear the PF enable bit in the PXP. 17305 * d. Clear the PF enable in the CFC (WEAK + STRONG) 17306 * e. Write zero+valid to all ILT entries (The valid bit must 17307 * stay set) 17308 * f. If this is VNIC 3 of a port then also init 17309 * first_timers_ilt_entry to zero and last_timers_ilt_entry 17310 * to the last enrty in the ILT. 17311 * 17312 * Notes: 17313 * Currently the PF error in the PGLC is non recoverable. 17314 * In the future the there will be a recovery routine for this error. 17315 * Currently attention is masked. 17316 * Having an MCP lock on the load/unload process does not guarantee that 17317 * there is no Timer disable during Func6/7 enable. This is because the 17318 * Timers scan is currently being cleared by the MCP on FLR. 17319 * Step 2.d can be done only for PF6/7 and the driver can also check if 17320 * there is error before clearing it. But the flow above is simpler and 17321 * more general. 17322 * All ILT entries are written by zero+valid and not just PF6/7 17323 * ILT entries since in the future the ILT entries allocation for 17324 * PF-s might be dynamic. 17325 */ 17326 struct ilt_client_info ilt_cli; 17327 struct ecore_ilt ilt; 17328 17329 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 17330 memset(&ilt, 0, sizeof(struct ecore_ilt)); 17331 17332 /* initialize dummy TM client */ 17333 ilt_cli.start = 0; 17334 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 17335 ilt_cli.client_num = ILT_CLIENT_TM; 17336 17337 /* 17338 * Step 1: set zeroes to all ilt page entries with valid bit on 17339 * Step 2: set the timers first/last ilt entry to point 17340 * to the entire range to prevent ILT range error for 3rd/4th 17341 * vnic (this code assumes existence of the vnic) 17342 * 17343 * both steps performed by call to ecore_ilt_client_init_op() 17344 * with dummy TM client 17345 * 17346 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 17347 * and his brother are split registers 17348 */ 17349 17350 bxe_pretend_func(sc, (SC_PATH(sc) + 6)); 17351 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR); 17352 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 17353 17354 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN); 17355 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN); 17356 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 17357 } 17358 17359 REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0); 17360 REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0); 17361 17362 if (!CHIP_IS_E1x(sc)) { 17363 int factor = CHIP_REV_IS_EMUL(sc) ? 1000 : 17364 (CHIP_REV_IS_FPGA(sc) ? 400 : 0); 17365 17366 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON); 17367 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON); 17368 17369 /* let the HW do it's magic... */ 17370 do { 17371 DELAY(200000); 17372 val = REG_RD(sc, ATC_REG_ATC_INIT_DONE); 17373 } while (factor-- && (val != 1)); 17374 17375 if (val != 1) { 17376 BLOGE(sc, "ATC_INIT failed\n"); 17377 return (-1); 17378 } 17379 } 17380 17381 BLOGD(sc, DBG_LOAD, "after pglue and atc init\n"); 17382 17383 ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON); 17384 17385 bxe_iov_init_dmae(sc); 17386 17387 /* clean the DMAE memory */ 17388 sc->dmae_ready = 1; 17389 ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1); 17390 17391 ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON); 17392 17393 ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON); 17394 17395 ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON); 17396 17397 ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON); 17398 17399 bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3); 17400 bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3); 17401 bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3); 17402 bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3); 17403 17404 ecore_init_block(sc, BLOCK_QM, PHASE_COMMON); 17405 17406 /* QM queues pointers table */ 17407 ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET); 17408 17409 /* soft reset pulse */ 17410 REG_WR(sc, QM_REG_SOFT_RESET, 1); 17411 REG_WR(sc, QM_REG_SOFT_RESET, 0); 17412 17413 if (CNIC_SUPPORT(sc)) 17414 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON); 17415 17416 ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON); 17417 REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT); 17418 if (!CHIP_REV_IS_SLOW(sc)) { 17419 /* enable hw interrupt from doorbell Q */ 17420 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 17421 } 17422 17423 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 17424 17425 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 17426 REG_WR(sc, PRS_REG_A_PRSU_20, 0xf); 17427 17428 if (!CHIP_IS_E1(sc)) { 17429 REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan); 17430 } 17431 17432 if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) { 17433 if (IS_MF_AFEX(sc)) { 17434 /* 17435 * configure that AFEX and VLAN headers must be 17436 * received in AFEX mode 17437 */ 17438 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE); 17439 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA); 17440 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 17441 REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 17442 REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4); 17443 } else { 17444 /* 17445 * Bit-map indicating which L2 hdrs may appear 17446 * after the basic Ethernet header 17447 */ 17448 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 17449 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17450 } 17451 } 17452 17453 ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON); 17454 ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON); 17455 ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON); 17456 ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON); 17457 17458 if (!CHIP_IS_E1x(sc)) { 17459 /* reset VFC memories */ 17460 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17461 VFC_MEMORIES_RST_REG_CAM_RST | 17462 VFC_MEMORIES_RST_REG_RAM_RST); 17463 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17464 VFC_MEMORIES_RST_REG_CAM_RST | 17465 VFC_MEMORIES_RST_REG_RAM_RST); 17466 17467 DELAY(20000); 17468 } 17469 17470 ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON); 17471 ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON); 17472 ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON); 17473 ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON); 17474 17475 /* sync semi rtc */ 17476 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 17477 0x80000000); 17478 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 17479 0x80000000); 17480 17481 ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON); 17482 ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON); 17483 ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON); 17484 17485 if (!CHIP_IS_E1x(sc)) { 17486 if (IS_MF_AFEX(sc)) { 17487 /* 17488 * configure that AFEX and VLAN headers must be 17489 * sent in AFEX mode 17490 */ 17491 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE); 17492 REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA); 17493 REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 17494 REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 17495 REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4); 17496 } else { 17497 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 17498 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17499 } 17500 } 17501 17502 REG_WR(sc, SRC_REG_SOFT_RST, 1); 17503 17504 ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON); 17505 17506 if (CNIC_SUPPORT(sc)) { 17507 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672); 17508 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 17509 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b); 17510 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a); 17511 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116); 17512 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 17513 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf); 17514 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 17515 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f); 17516 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7); 17517 } 17518 REG_WR(sc, SRC_REG_SOFT_RST, 0); 17519 17520 if (sizeof(union cdu_context) != 1024) { 17521 /* we currently assume that a context is 1024 bytes */ 17522 BLOGE(sc, "please adjust the size of cdu_context(%ld)\n", 17523 (long)sizeof(union cdu_context)); 17524 } 17525 17526 ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON); 17527 val = (4 << 24) + (0 << 12) + 1024; 17528 REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val); 17529 17530 ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON); 17531 17532 REG_WR(sc, CFC_REG_INIT_REG, 0x7FF); 17533 /* enable context validation interrupt from CFC */ 17534 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 17535 17536 /* set the thresholds to prevent CFC/CDU race */ 17537 REG_WR(sc, CFC_REG_DEBUG0, 0x20020000); 17538 ecore_init_block(sc, BLOCK_HC, PHASE_COMMON); 17539 17540 if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) { 17541 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36); 17542 } 17543 17544 ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON); 17545 ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON); 17546 17547 /* Reset PCIE errors for debug */ 17548 REG_WR(sc, 0x2814, 0xffffffff); 17549 REG_WR(sc, 0x3820, 0xffffffff); 17550 17551 if (!CHIP_IS_E1x(sc)) { 17552 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 17553 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 17554 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 17555 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 17556 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 17557 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 17558 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 17559 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 17560 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 17561 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 17562 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 17563 } 17564 17565 ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON); 17566 17567 if (!CHIP_IS_E1(sc)) { 17568 /* in E3 this done in per-port section */ 17569 if (!CHIP_IS_E3(sc)) 17570 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17571 } 17572 17573 if (CHIP_IS_E1H(sc)) { 17574 /* not applicable for E2 (and above ...) */ 17575 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc)); 17576 } 17577 17578 if (CHIP_REV_IS_SLOW(sc)) { 17579 DELAY(200000); 17580 } 17581 17582 /* finish CFC init */ 17583 val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10); 17584 if (val != 1) { 17585 BLOGE(sc, "CFC LL_INIT failed\n"); 17586 return (-1); 17587 } 17588 val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10); 17589 if (val != 1) { 17590 BLOGE(sc, "CFC AC_INIT failed\n"); 17591 return (-1); 17592 } 17593 val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 17594 if (val != 1) { 17595 BLOGE(sc, "CFC CAM_INIT failed\n"); 17596 return (-1); 17597 } 17598 REG_WR(sc, CFC_REG_DEBUG0, 0); 17599 17600 if (CHIP_IS_E1(sc)) { 17601 /* read NIG statistic to see if this is our first up since powerup */ 17602 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 17603 val = *BXE_SP(sc, wb_data[0]); 17604 17605 /* do internal memory self test */ 17606 if ((val == 0) && bxe_int_mem_test(sc)) { 17607 BLOGE(sc, "internal mem self test failed\n"); 17608 return (-1); 17609 } 17610 } 17611 17612 bxe_setup_fan_failure_detection(sc); 17613 17614 /* clear PXP2 attentions */ 17615 REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 17616 17617 bxe_enable_blocks_attention(sc); 17618 17619 if (!CHIP_REV_IS_SLOW(sc)) { 17620 ecore_enable_blocks_parity(sc); 17621 } 17622 17623 if (!BXE_NOMCP(sc)) { 17624 if (CHIP_IS_E1x(sc)) { 17625 bxe_common_init_phy(sc); 17626 } 17627 } 17628 17629 return (0); 17630 } 17631 17632 /** 17633 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase. 17634 * 17635 * @sc: driver handle 17636 */ 17637 static int 17638 bxe_init_hw_common_chip(struct bxe_softc *sc) 17639 { 17640 int rc = bxe_init_hw_common(sc); 17641 17642 if (rc) { 17643 return (rc); 17644 } 17645 17646 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 17647 if (!BXE_NOMCP(sc)) { 17648 bxe_common_init_phy(sc); 17649 } 17650 17651 return (0); 17652 } 17653 17654 static int 17655 bxe_init_hw_port(struct bxe_softc *sc) 17656 { 17657 int port = SC_PORT(sc); 17658 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 17659 uint32_t low, high; 17660 uint32_t val; 17661 17662 BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port); 17663 17664 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 17665 17666 ecore_init_block(sc, BLOCK_MISC, init_phase); 17667 ecore_init_block(sc, BLOCK_PXP, init_phase); 17668 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17669 17670 /* 17671 * Timers bug workaround: disables the pf_master bit in pglue at 17672 * common phase, we need to enable it here before any dmae access are 17673 * attempted. Therefore we manually added the enable-master to the 17674 * port phase (it also happens in the function phase) 17675 */ 17676 if (!CHIP_IS_E1x(sc)) { 17677 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17678 } 17679 17680 ecore_init_block(sc, BLOCK_ATC, init_phase); 17681 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17682 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17683 ecore_init_block(sc, BLOCK_QM, init_phase); 17684 17685 ecore_init_block(sc, BLOCK_TCM, init_phase); 17686 ecore_init_block(sc, BLOCK_UCM, init_phase); 17687 ecore_init_block(sc, BLOCK_CCM, init_phase); 17688 ecore_init_block(sc, BLOCK_XCM, init_phase); 17689 17690 /* QM cid (connection) count */ 17691 ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET); 17692 17693 if (CNIC_SUPPORT(sc)) { 17694 ecore_init_block(sc, BLOCK_TM, init_phase); 17695 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20); 17696 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 17697 } 17698 17699 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17700 17701 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17702 17703 if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) { 17704 if (IS_MF(sc)) { 17705 low = (BXE_ONE_PORT(sc) ? 160 : 246); 17706 } else if (sc->mtu > 4096) { 17707 if (BXE_ONE_PORT(sc)) { 17708 low = 160; 17709 } else { 17710 val = sc->mtu; 17711 /* (24*1024 + val*4)/256 */ 17712 low = (96 + (val / 64) + ((val % 64) ? 1 : 0)); 17713 } 17714 } else { 17715 low = (BXE_ONE_PORT(sc) ? 80 : 160); 17716 } 17717 high = (low + 56); /* 14*1024/256 */ 17718 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 17719 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 17720 } 17721 17722 if (CHIP_IS_MODE_4_PORT(sc)) { 17723 REG_WR(sc, SC_PORT(sc) ? 17724 BRB1_REG_MAC_GUARANTIED_1 : 17725 BRB1_REG_MAC_GUARANTIED_0, 40); 17726 } 17727 17728 ecore_init_block(sc, BLOCK_PRS, init_phase); 17729 if (CHIP_IS_E3B0(sc)) { 17730 if (IS_MF_AFEX(sc)) { 17731 /* configure headers for AFEX mode */ 17732 REG_WR(sc, SC_PORT(sc) ? 17733 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17734 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 17735 REG_WR(sc, SC_PORT(sc) ? 17736 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 17737 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 17738 REG_WR(sc, SC_PORT(sc) ? 17739 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 17740 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 17741 } else { 17742 /* Ovlan exists only if we are in multi-function + 17743 * switch-dependent mode, in switch-independent there 17744 * is no ovlan headers 17745 */ 17746 REG_WR(sc, SC_PORT(sc) ? 17747 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17748 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 17749 (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6)); 17750 } 17751 } 17752 17753 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17754 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17755 ecore_init_block(sc, BLOCK_USDM, init_phase); 17756 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17757 17758 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17759 ecore_init_block(sc, BLOCK_USEM, init_phase); 17760 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17761 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17762 17763 ecore_init_block(sc, BLOCK_UPB, init_phase); 17764 ecore_init_block(sc, BLOCK_XPB, init_phase); 17765 17766 ecore_init_block(sc, BLOCK_PBF, init_phase); 17767 17768 if (CHIP_IS_E1x(sc)) { 17769 /* configure PBF to work without PAUSE mtu 9000 */ 17770 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 17771 17772 /* update threshold */ 17773 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 17774 /* update init credit */ 17775 REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 17776 17777 /* probe changes */ 17778 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1); 17779 DELAY(50); 17780 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0); 17781 } 17782 17783 if (CNIC_SUPPORT(sc)) { 17784 ecore_init_block(sc, BLOCK_SRC, init_phase); 17785 } 17786 17787 ecore_init_block(sc, BLOCK_CDU, init_phase); 17788 ecore_init_block(sc, BLOCK_CFC, init_phase); 17789 17790 if (CHIP_IS_E1(sc)) { 17791 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17792 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17793 } 17794 ecore_init_block(sc, BLOCK_HC, init_phase); 17795 17796 ecore_init_block(sc, BLOCK_IGU, init_phase); 17797 17798 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17799 /* init aeu_mask_attn_func_0/1: 17800 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use 17801 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF 17802 * bits 4-7 are used for "per vn group attention" */ 17803 val = IS_MF(sc) ? 0xF7 : 0x7; 17804 /* Enable DCBX attention for all but E1 */ 17805 val |= CHIP_IS_E1(sc) ? 0 : 0x10; 17806 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 17807 17808 ecore_init_block(sc, BLOCK_NIG, init_phase); 17809 17810 if (!CHIP_IS_E1x(sc)) { 17811 /* Bit-map indicating which L2 hdrs may appear after the 17812 * basic Ethernet header 17813 */ 17814 if (IS_MF_AFEX(sc)) { 17815 REG_WR(sc, SC_PORT(sc) ? 17816 NIG_REG_P1_HDRS_AFTER_BASIC : 17817 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 17818 } else { 17819 REG_WR(sc, SC_PORT(sc) ? 17820 NIG_REG_P1_HDRS_AFTER_BASIC : 17821 NIG_REG_P0_HDRS_AFTER_BASIC, 17822 IS_MF_SD(sc) ? 7 : 6); 17823 } 17824 17825 if (CHIP_IS_E3(sc)) { 17826 REG_WR(sc, SC_PORT(sc) ? 17827 NIG_REG_LLH1_MF_MODE : 17828 NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17829 } 17830 } 17831 if (!CHIP_IS_E3(sc)) { 17832 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 17833 } 17834 17835 if (!CHIP_IS_E1(sc)) { 17836 /* 0x2 disable mf_ov, 0x1 enable */ 17837 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 17838 (IS_MF_SD(sc) ? 0x1 : 0x2)); 17839 17840 if (!CHIP_IS_E1x(sc)) { 17841 val = 0; 17842 switch (sc->devinfo.mf_info.mf_mode) { 17843 case MULTI_FUNCTION_SD: 17844 val = 1; 17845 break; 17846 case MULTI_FUNCTION_SI: 17847 case MULTI_FUNCTION_AFEX: 17848 val = 2; 17849 break; 17850 } 17851 17852 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE : 17853 NIG_REG_LLH0_CLS_TYPE), val); 17854 } 17855 REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 17856 REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 17857 REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 17858 } 17859 17860 /* If SPIO5 is set to generate interrupts, enable it for this port */ 17861 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17862 if (val & MISC_SPIO_SPIO5) { 17863 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 17864 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 17865 val = REG_RD(sc, reg_addr); 17866 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 17867 REG_WR(sc, reg_addr, val); 17868 } 17869 17870 return (0); 17871 } 17872 17873 static uint32_t 17874 bxe_flr_clnup_reg_poll(struct bxe_softc *sc, 17875 uint32_t reg, 17876 uint32_t expected, 17877 uint32_t poll_count) 17878 { 17879 uint32_t cur_cnt = poll_count; 17880 uint32_t val; 17881 17882 while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) { 17883 DELAY(FLR_WAIT_INTERVAL); 17884 } 17885 17886 return (val); 17887 } 17888 17889 static int 17890 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc, 17891 uint32_t reg, 17892 char *msg, 17893 uint32_t poll_cnt) 17894 { 17895 uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt); 17896 17897 if (val != 0) { 17898 BLOGE(sc, "%s usage count=%d\n", msg, val); 17899 return (1); 17900 } 17901 17902 return (0); 17903 } 17904 17905 /* Common routines with VF FLR cleanup */ 17906 static uint32_t 17907 bxe_flr_clnup_poll_count(struct bxe_softc *sc) 17908 { 17909 /* adjust polling timeout */ 17910 if (CHIP_REV_IS_EMUL(sc)) { 17911 return (FLR_POLL_CNT * 2000); 17912 } 17913 17914 if (CHIP_REV_IS_FPGA(sc)) { 17915 return (FLR_POLL_CNT * 120); 17916 } 17917 17918 return (FLR_POLL_CNT); 17919 } 17920 17921 static int 17922 bxe_poll_hw_usage_counters(struct bxe_softc *sc, 17923 uint32_t poll_cnt) 17924 { 17925 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 17926 if (bxe_flr_clnup_poll_hw_counter(sc, 17927 CFC_REG_NUM_LCIDS_INSIDE_PF, 17928 "CFC PF usage counter timed out", 17929 poll_cnt)) { 17930 return (1); 17931 } 17932 17933 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 17934 if (bxe_flr_clnup_poll_hw_counter(sc, 17935 DORQ_REG_PF_USAGE_CNT, 17936 "DQ PF usage counter timed out", 17937 poll_cnt)) { 17938 return (1); 17939 } 17940 17941 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 17942 if (bxe_flr_clnup_poll_hw_counter(sc, 17943 QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc), 17944 "QM PF usage counter timed out", 17945 poll_cnt)) { 17946 return (1); 17947 } 17948 17949 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 17950 if (bxe_flr_clnup_poll_hw_counter(sc, 17951 TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc), 17952 "Timers VNIC usage counter timed out", 17953 poll_cnt)) { 17954 return (1); 17955 } 17956 17957 if (bxe_flr_clnup_poll_hw_counter(sc, 17958 TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc), 17959 "Timers NUM_SCANS usage counter timed out", 17960 poll_cnt)) { 17961 return (1); 17962 } 17963 17964 /* Wait DMAE PF usage counter to zero */ 17965 if (bxe_flr_clnup_poll_hw_counter(sc, 17966 dmae_reg_go_c[INIT_DMAE_C(sc)], 17967 "DMAE dommand register timed out", 17968 poll_cnt)) { 17969 return (1); 17970 } 17971 17972 return (0); 17973 } 17974 17975 #define OP_GEN_PARAM(param) \ 17976 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 17977 #define OP_GEN_TYPE(type) \ 17978 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 17979 #define OP_GEN_AGG_VECT(index) \ 17980 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 17981 17982 static int 17983 bxe_send_final_clnup(struct bxe_softc *sc, 17984 uint8_t clnup_func, 17985 uint32_t poll_cnt) 17986 { 17987 uint32_t op_gen_command = 0; 17988 uint32_t comp_addr = (BAR_CSTRORM_INTMEM + 17989 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func)); 17990 int ret = 0; 17991 17992 if (REG_RD(sc, comp_addr)) { 17993 BLOGE(sc, "Cleanup complete was not 0 before sending\n"); 17994 return (1); 17995 } 17996 17997 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 17998 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 17999 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 18000 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 18001 18002 BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n"); 18003 REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command); 18004 18005 if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) { 18006 BLOGE(sc, "FW final cleanup did not succeed\n"); 18007 BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n", 18008 (REG_RD(sc, comp_addr))); 18009 bxe_panic(sc, ("FLR cleanup failed\n")); 18010 return (1); 18011 } 18012 18013 /* Zero completion for nxt FLR */ 18014 REG_WR(sc, comp_addr, 0); 18015 18016 return (ret); 18017 } 18018 18019 static void 18020 bxe_pbf_pN_buf_flushed(struct bxe_softc *sc, 18021 struct pbf_pN_buf_regs *regs, 18022 uint32_t poll_count) 18023 { 18024 uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start; 18025 uint32_t cur_cnt = poll_count; 18026 18027 crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed); 18028 crd = crd_start = REG_RD(sc, regs->crd); 18029 init_crd = REG_RD(sc, regs->init_crd); 18030 18031 BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 18032 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd); 18033 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 18034 18035 while ((crd != init_crd) && 18036 ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) < 18037 (init_crd - crd_start))) { 18038 if (cur_cnt--) { 18039 DELAY(FLR_WAIT_INTERVAL); 18040 crd = REG_RD(sc, regs->crd); 18041 crd_freed = REG_RD(sc, regs->crd_freed); 18042 } else { 18043 BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN); 18044 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd); 18045 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed); 18046 break; 18047 } 18048 } 18049 18050 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n", 18051 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 18052 } 18053 18054 static void 18055 bxe_pbf_pN_cmd_flushed(struct bxe_softc *sc, 18056 struct pbf_pN_cmd_regs *regs, 18057 uint32_t poll_count) 18058 { 18059 uint32_t occup, to_free, freed, freed_start; 18060 uint32_t cur_cnt = poll_count; 18061 18062 occup = to_free = REG_RD(sc, regs->lines_occup); 18063 freed = freed_start = REG_RD(sc, regs->lines_freed); 18064 18065 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 18066 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 18067 18068 while (occup && 18069 ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) { 18070 if (cur_cnt--) { 18071 DELAY(FLR_WAIT_INTERVAL); 18072 occup = REG_RD(sc, regs->lines_occup); 18073 freed = REG_RD(sc, regs->lines_freed); 18074 } else { 18075 BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN); 18076 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 18077 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 18078 break; 18079 } 18080 } 18081 18082 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n", 18083 poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 18084 } 18085 18086 static void 18087 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count) 18088 { 18089 struct pbf_pN_cmd_regs cmd_regs[] = { 18090 {0, (CHIP_IS_E3B0(sc)) ? 18091 PBF_REG_TQ_OCCUPANCY_Q0 : 18092 PBF_REG_P0_TQ_OCCUPANCY, 18093 (CHIP_IS_E3B0(sc)) ? 18094 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 18095 PBF_REG_P0_TQ_LINES_FREED_CNT}, 18096 {1, (CHIP_IS_E3B0(sc)) ? 18097 PBF_REG_TQ_OCCUPANCY_Q1 : 18098 PBF_REG_P1_TQ_OCCUPANCY, 18099 (CHIP_IS_E3B0(sc)) ? 18100 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 18101 PBF_REG_P1_TQ_LINES_FREED_CNT}, 18102 {4, (CHIP_IS_E3B0(sc)) ? 18103 PBF_REG_TQ_OCCUPANCY_LB_Q : 18104 PBF_REG_P4_TQ_OCCUPANCY, 18105 (CHIP_IS_E3B0(sc)) ? 18106 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 18107 PBF_REG_P4_TQ_LINES_FREED_CNT} 18108 }; 18109 18110 struct pbf_pN_buf_regs buf_regs[] = { 18111 {0, (CHIP_IS_E3B0(sc)) ? 18112 PBF_REG_INIT_CRD_Q0 : 18113 PBF_REG_P0_INIT_CRD , 18114 (CHIP_IS_E3B0(sc)) ? 18115 PBF_REG_CREDIT_Q0 : 18116 PBF_REG_P0_CREDIT, 18117 (CHIP_IS_E3B0(sc)) ? 18118 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 18119 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 18120 {1, (CHIP_IS_E3B0(sc)) ? 18121 PBF_REG_INIT_CRD_Q1 : 18122 PBF_REG_P1_INIT_CRD, 18123 (CHIP_IS_E3B0(sc)) ? 18124 PBF_REG_CREDIT_Q1 : 18125 PBF_REG_P1_CREDIT, 18126 (CHIP_IS_E3B0(sc)) ? 18127 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 18128 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 18129 {4, (CHIP_IS_E3B0(sc)) ? 18130 PBF_REG_INIT_CRD_LB_Q : 18131 PBF_REG_P4_INIT_CRD, 18132 (CHIP_IS_E3B0(sc)) ? 18133 PBF_REG_CREDIT_LB_Q : 18134 PBF_REG_P4_CREDIT, 18135 (CHIP_IS_E3B0(sc)) ? 18136 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 18137 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 18138 }; 18139 18140 int i; 18141 18142 /* Verify the command queues are flushed P0, P1, P4 */ 18143 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) { 18144 bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count); 18145 } 18146 18147 /* Verify the transmission buffers are flushed P0, P1, P4 */ 18148 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) { 18149 bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count); 18150 } 18151 } 18152 18153 static void 18154 bxe_hw_enable_status(struct bxe_softc *sc) 18155 { 18156 uint32_t val; 18157 18158 val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF); 18159 BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 18160 18161 val = REG_RD(sc, PBF_REG_DISABLE_PF); 18162 BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val); 18163 18164 val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN); 18165 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 18166 18167 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN); 18168 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 18169 18170 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 18171 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 18172 18173 val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 18174 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 18175 18176 val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 18177 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 18178 18179 val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 18180 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val); 18181 } 18182 18183 static int 18184 bxe_pf_flr_clnup(struct bxe_softc *sc) 18185 { 18186 uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc); 18187 18188 BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc)); 18189 18190 /* Re-enable PF target read access */ 18191 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 18192 18193 /* Poll HW usage counters */ 18194 BLOGD(sc, DBG_LOAD, "Polling usage counters\n"); 18195 if (bxe_poll_hw_usage_counters(sc, poll_cnt)) { 18196 return (-1); 18197 } 18198 18199 /* Zero the igu 'trailing edge' and 'leading edge' */ 18200 18201 /* Send the FW cleanup command */ 18202 if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) { 18203 return (-1); 18204 } 18205 18206 /* ATC cleanup */ 18207 18208 /* Verify TX hw is flushed */ 18209 bxe_tx_hw_flushed(sc, poll_cnt); 18210 18211 /* Wait 100ms (not adjusted according to platform) */ 18212 DELAY(100000); 18213 18214 /* Verify no pending pci transactions */ 18215 if (bxe_is_pcie_pending(sc)) { 18216 BLOGE(sc, "PCIE Transactions still pending\n"); 18217 } 18218 18219 /* Debug */ 18220 bxe_hw_enable_status(sc); 18221 18222 /* 18223 * Master enable - Due to WB DMAE writes performed before this 18224 * register is re-initialized as part of the regular function init 18225 */ 18226 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 18227 18228 return (0); 18229 } 18230 18231 #if 0 18232 static void 18233 bxe_init_searcher(struct bxe_softc *sc) 18234 { 18235 int port = SC_PORT(sc); 18236 ecore_src_init_t2(sc, sc->t2, sc->t2_mapping, SRC_CONN_NUM); 18237 /* T1 hash bits value determines the T1 number of entries */ 18238 REG_WR(sc, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS); 18239 } 18240 #endif 18241 18242 static int 18243 bxe_init_hw_func(struct bxe_softc *sc) 18244 { 18245 int port = SC_PORT(sc); 18246 int func = SC_FUNC(sc); 18247 int init_phase = PHASE_PF0 + func; 18248 struct ecore_ilt *ilt = sc->ilt; 18249 uint16_t cdu_ilt_start; 18250 uint32_t addr, val; 18251 uint32_t main_mem_base, main_mem_size, main_mem_prty_clr; 18252 int i, main_mem_width, rc; 18253 18254 BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func); 18255 18256 /* FLR cleanup */ 18257 if (!CHIP_IS_E1x(sc)) { 18258 rc = bxe_pf_flr_clnup(sc); 18259 if (rc) { 18260 BLOGE(sc, "FLR cleanup failed!\n"); 18261 // XXX bxe_fw_dump(sc); 18262 // XXX bxe_idle_chk(sc); 18263 return (rc); 18264 } 18265 } 18266 18267 /* set MSI reconfigure capability */ 18268 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18269 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 18270 val = REG_RD(sc, addr); 18271 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 18272 REG_WR(sc, addr, val); 18273 } 18274 18275 ecore_init_block(sc, BLOCK_PXP, init_phase); 18276 ecore_init_block(sc, BLOCK_PXP2, init_phase); 18277 18278 ilt = sc->ilt; 18279 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 18280 18281 #if 0 18282 if (IS_SRIOV(sc)) { 18283 cdu_ilt_start += BXE_FIRST_VF_CID/ILT_PAGE_CIDS; 18284 } 18285 cdu_ilt_start = bxe_iov_init_ilt(sc, cdu_ilt_start); 18286 18287 #if (BXE_FIRST_VF_CID > 0) 18288 /* 18289 * If BXE_FIRST_VF_CID > 0 then the PF L2 cids precedes 18290 * those of the VFs, so start line should be reset 18291 */ 18292 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 18293 #endif 18294 #endif 18295 18296 for (i = 0; i < L2_ILT_LINES(sc); i++) { 18297 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt; 18298 ilt->lines[cdu_ilt_start + i].page_mapping = 18299 sc->context[i].vcxt_dma.paddr; 18300 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size; 18301 } 18302 ecore_ilt_init_op(sc, INITOP_SET); 18303 18304 #if 0 18305 if (!CONFIGURE_NIC_MODE(sc)) { 18306 bxe_init_searcher(sc); 18307 REG_WR(sc, PRS_REG_NIC_MODE, 0); 18308 BLOGD(sc, DBG_LOAD, "NIC MODE disabled\n"); 18309 } else 18310 #endif 18311 { 18312 /* Set NIC mode */ 18313 REG_WR(sc, PRS_REG_NIC_MODE, 1); 18314 BLOGD(sc, DBG_LOAD, "NIC MODE configured\n"); 18315 } 18316 18317 if (!CHIP_IS_E1x(sc)) { 18318 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN; 18319 18320 /* Turn on a single ISR mode in IGU if driver is going to use 18321 * INT#x or MSI 18322 */ 18323 if (sc->interrupt_mode != INTR_MODE_MSIX) { 18324 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 18325 } 18326 18327 /* 18328 * Timers workaround bug: function init part. 18329 * Need to wait 20msec after initializing ILT, 18330 * needed to make sure there are no requests in 18331 * one of the PXP internal queues with "old" ILT addresses 18332 */ 18333 DELAY(20000); 18334 18335 /* 18336 * Master enable - Due to WB DMAE writes performed before this 18337 * register is re-initialized as part of the regular function 18338 * init 18339 */ 18340 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 18341 /* Enable the function in IGU */ 18342 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf); 18343 } 18344 18345 sc->dmae_ready = 1; 18346 18347 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 18348 18349 if (!CHIP_IS_E1x(sc)) 18350 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); 18351 18352 ecore_init_block(sc, BLOCK_ATC, init_phase); 18353 ecore_init_block(sc, BLOCK_DMAE, init_phase); 18354 ecore_init_block(sc, BLOCK_NIG, init_phase); 18355 ecore_init_block(sc, BLOCK_SRC, init_phase); 18356 ecore_init_block(sc, BLOCK_MISC, init_phase); 18357 ecore_init_block(sc, BLOCK_TCM, init_phase); 18358 ecore_init_block(sc, BLOCK_UCM, init_phase); 18359 ecore_init_block(sc, BLOCK_CCM, init_phase); 18360 ecore_init_block(sc, BLOCK_XCM, init_phase); 18361 ecore_init_block(sc, BLOCK_TSEM, init_phase); 18362 ecore_init_block(sc, BLOCK_USEM, init_phase); 18363 ecore_init_block(sc, BLOCK_CSEM, init_phase); 18364 ecore_init_block(sc, BLOCK_XSEM, init_phase); 18365 18366 if (!CHIP_IS_E1x(sc)) 18367 REG_WR(sc, QM_REG_PF_EN, 1); 18368 18369 if (!CHIP_IS_E1x(sc)) { 18370 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18371 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18372 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18373 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18374 } 18375 ecore_init_block(sc, BLOCK_QM, init_phase); 18376 18377 ecore_init_block(sc, BLOCK_TM, init_phase); 18378 ecore_init_block(sc, BLOCK_DORQ, init_phase); 18379 18380 bxe_iov_init_dq(sc); 18381 18382 ecore_init_block(sc, BLOCK_BRB1, init_phase); 18383 ecore_init_block(sc, BLOCK_PRS, init_phase); 18384 ecore_init_block(sc, BLOCK_TSDM, init_phase); 18385 ecore_init_block(sc, BLOCK_CSDM, init_phase); 18386 ecore_init_block(sc, BLOCK_USDM, init_phase); 18387 ecore_init_block(sc, BLOCK_XSDM, init_phase); 18388 ecore_init_block(sc, BLOCK_UPB, init_phase); 18389 ecore_init_block(sc, BLOCK_XPB, init_phase); 18390 ecore_init_block(sc, BLOCK_PBF, init_phase); 18391 if (!CHIP_IS_E1x(sc)) 18392 REG_WR(sc, PBF_REG_DISABLE_PF, 0); 18393 18394 ecore_init_block(sc, BLOCK_CDU, init_phase); 18395 18396 ecore_init_block(sc, BLOCK_CFC, init_phase); 18397 18398 if (!CHIP_IS_E1x(sc)) 18399 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1); 18400 18401 if (IS_MF(sc)) { 18402 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 18403 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc)); 18404 } 18405 18406 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 18407 18408 /* HC init per function */ 18409 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18410 if (CHIP_IS_E1H(sc)) { 18411 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 18412 18413 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18414 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18415 } 18416 ecore_init_block(sc, BLOCK_HC, init_phase); 18417 18418 } else { 18419 int num_segs, sb_idx, prod_offset; 18420 18421 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 18422 18423 if (!CHIP_IS_E1x(sc)) { 18424 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18425 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18426 } 18427 18428 ecore_init_block(sc, BLOCK_IGU, init_phase); 18429 18430 if (!CHIP_IS_E1x(sc)) { 18431 int dsb_idx = 0; 18432 /** 18433 * Producer memory: 18434 * E2 mode: address 0-135 match to the mapping memory; 18435 * 136 - PF0 default prod; 137 - PF1 default prod; 18436 * 138 - PF2 default prod; 139 - PF3 default prod; 18437 * 140 - PF0 attn prod; 141 - PF1 attn prod; 18438 * 142 - PF2 attn prod; 143 - PF3 attn prod; 18439 * 144-147 reserved. 18440 * 18441 * E1.5 mode - In backward compatible mode; 18442 * for non default SB; each even line in the memory 18443 * holds the U producer and each odd line hold 18444 * the C producer. The first 128 producers are for 18445 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 18446 * producers are for the DSB for each PF. 18447 * Each PF has five segments: (the order inside each 18448 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 18449 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 18450 * 144-147 attn prods; 18451 */ 18452 /* non-default-status-blocks */ 18453 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18454 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 18455 for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) { 18456 prod_offset = (sc->igu_base_sb + sb_idx) * 18457 num_segs; 18458 18459 for (i = 0; i < num_segs; i++) { 18460 addr = IGU_REG_PROD_CONS_MEMORY + 18461 (prod_offset + i) * 4; 18462 REG_WR(sc, addr, 0); 18463 } 18464 /* send consumer update with value 0 */ 18465 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx, 18466 USTORM_ID, 0, IGU_INT_NOP, 1); 18467 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx); 18468 } 18469 18470 /* default-status-blocks */ 18471 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18472 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 18473 18474 if (CHIP_IS_MODE_4_PORT(sc)) 18475 dsb_idx = SC_FUNC(sc); 18476 else 18477 dsb_idx = SC_VN(sc); 18478 18479 prod_offset = (CHIP_INT_MODE_IS_BC(sc) ? 18480 IGU_BC_BASE_DSB_PROD + dsb_idx : 18481 IGU_NORM_BASE_DSB_PROD + dsb_idx); 18482 18483 /* 18484 * igu prods come in chunks of E1HVN_MAX (4) - 18485 * does not matters what is the current chip mode 18486 */ 18487 for (i = 0; i < (num_segs * E1HVN_MAX); 18488 i += E1HVN_MAX) { 18489 addr = IGU_REG_PROD_CONS_MEMORY + 18490 (prod_offset + i)*4; 18491 REG_WR(sc, addr, 0); 18492 } 18493 /* send consumer update with 0 */ 18494 if (CHIP_INT_MODE_IS_BC(sc)) { 18495 bxe_ack_sb(sc, sc->igu_dsb_id, 18496 USTORM_ID, 0, IGU_INT_NOP, 1); 18497 bxe_ack_sb(sc, sc->igu_dsb_id, 18498 CSTORM_ID, 0, IGU_INT_NOP, 1); 18499 bxe_ack_sb(sc, sc->igu_dsb_id, 18500 XSTORM_ID, 0, IGU_INT_NOP, 1); 18501 bxe_ack_sb(sc, sc->igu_dsb_id, 18502 TSTORM_ID, 0, IGU_INT_NOP, 1); 18503 bxe_ack_sb(sc, sc->igu_dsb_id, 18504 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18505 } else { 18506 bxe_ack_sb(sc, sc->igu_dsb_id, 18507 USTORM_ID, 0, IGU_INT_NOP, 1); 18508 bxe_ack_sb(sc, sc->igu_dsb_id, 18509 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18510 } 18511 bxe_igu_clear_sb(sc, sc->igu_dsb_id); 18512 18513 /* !!! these should become driver const once 18514 rf-tool supports split-68 const */ 18515 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 18516 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 18517 REG_WR(sc, IGU_REG_SB_MASK_LSB, 0); 18518 REG_WR(sc, IGU_REG_SB_MASK_MSB, 0); 18519 REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0); 18520 REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0); 18521 } 18522 } 18523 18524 /* Reset PCIE errors for debug */ 18525 REG_WR(sc, 0x2114, 0xffffffff); 18526 REG_WR(sc, 0x2120, 0xffffffff); 18527 18528 if (CHIP_IS_E1x(sc)) { 18529 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 18530 main_mem_base = HC_REG_MAIN_MEMORY + 18531 SC_PORT(sc) * (main_mem_size * 4); 18532 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 18533 main_mem_width = 8; 18534 18535 val = REG_RD(sc, main_mem_prty_clr); 18536 if (val) { 18537 BLOGD(sc, DBG_LOAD, 18538 "Parity errors in HC block during function init (0x%x)!\n", 18539 val); 18540 } 18541 18542 /* Clear "false" parity errors in MSI-X table */ 18543 for (i = main_mem_base; 18544 i < main_mem_base + main_mem_size * 4; 18545 i += main_mem_width) { 18546 bxe_read_dmae(sc, i, main_mem_width / 4); 18547 bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), 18548 i, main_mem_width / 4); 18549 } 18550 /* Clear HC parity attention */ 18551 REG_RD(sc, main_mem_prty_clr); 18552 } 18553 18554 #if 1 18555 /* Enable STORMs SP logging */ 18556 REG_WR8(sc, BAR_USTRORM_INTMEM + 18557 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18558 REG_WR8(sc, BAR_TSTRORM_INTMEM + 18559 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18560 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18561 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18562 REG_WR8(sc, BAR_XSTRORM_INTMEM + 18563 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18564 #endif 18565 18566 elink_phy_probe(&sc->link_params); 18567 18568 return (0); 18569 } 18570 18571 static void 18572 bxe_link_reset(struct bxe_softc *sc) 18573 { 18574 if (!BXE_NOMCP(sc)) { 18575 bxe_acquire_phy_lock(sc); 18576 elink_lfa_reset(&sc->link_params, &sc->link_vars); 18577 bxe_release_phy_lock(sc); 18578 } else { 18579 if (!CHIP_REV_IS_SLOW(sc)) { 18580 BLOGW(sc, "Bootcode is missing - cannot reset link\n"); 18581 } 18582 } 18583 } 18584 18585 static void 18586 bxe_reset_port(struct bxe_softc *sc) 18587 { 18588 int port = SC_PORT(sc); 18589 uint32_t val; 18590 18591 /* reset physical Link */ 18592 bxe_link_reset(sc); 18593 18594 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 18595 18596 /* Do not rcv packets to BRB */ 18597 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 18598 /* Do not direct rcv packets that are not for MCP to the BRB */ 18599 REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 18600 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 18601 18602 /* Configure AEU */ 18603 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 18604 18605 DELAY(100000); 18606 18607 /* Check for BRB port occupancy */ 18608 val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 18609 if (val) { 18610 BLOGD(sc, DBG_LOAD, 18611 "BRB1 is not empty, %d blocks are occupied\n", val); 18612 } 18613 18614 /* TODO: Close Doorbell port? */ 18615 } 18616 18617 static void 18618 bxe_ilt_wr(struct bxe_softc *sc, 18619 uint32_t index, 18620 bus_addr_t addr) 18621 { 18622 int reg; 18623 uint32_t wb_write[2]; 18624 18625 if (CHIP_IS_E1(sc)) { 18626 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 18627 } else { 18628 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 18629 } 18630 18631 wb_write[0] = ONCHIP_ADDR1(addr); 18632 wb_write[1] = ONCHIP_ADDR2(addr); 18633 REG_WR_DMAE(sc, reg, wb_write, 2); 18634 } 18635 18636 static void 18637 bxe_clear_func_ilt(struct bxe_softc *sc, 18638 uint32_t func) 18639 { 18640 uint32_t i, base = FUNC_ILT_BASE(func); 18641 for (i = base; i < base + ILT_PER_FUNC; i++) { 18642 bxe_ilt_wr(sc, i, 0); 18643 } 18644 } 18645 18646 static void 18647 bxe_reset_func(struct bxe_softc *sc) 18648 { 18649 struct bxe_fastpath *fp; 18650 int port = SC_PORT(sc); 18651 int func = SC_FUNC(sc); 18652 int i; 18653 18654 /* Disable the function in the FW */ 18655 REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 18656 REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 18657 REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 18658 REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 18659 18660 /* FP SBs */ 18661 FOR_EACH_ETH_QUEUE(sc, i) { 18662 fp = &sc->fp[i]; 18663 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18664 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 18665 SB_DISABLED); 18666 } 18667 18668 #if 0 18669 if (CNIC_LOADED(sc)) { 18670 /* CNIC SB */ 18671 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18672 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET 18673 (bxe_cnic_fw_sb_id(sc)), SB_DISABLED); 18674 } 18675 #endif 18676 18677 /* SP SB */ 18678 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18679 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 18680 SB_DISABLED); 18681 18682 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) { 18683 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0); 18684 } 18685 18686 /* Configure IGU */ 18687 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18688 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18689 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18690 } else { 18691 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18692 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18693 } 18694 18695 if (CNIC_LOADED(sc)) { 18696 /* Disable Timer scan */ 18697 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 18698 /* 18699 * Wait for at least 10ms and up to 2 second for the timers 18700 * scan to complete 18701 */ 18702 for (i = 0; i < 200; i++) { 18703 DELAY(10000); 18704 if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4)) 18705 break; 18706 } 18707 } 18708 18709 /* Clear ILT */ 18710 bxe_clear_func_ilt(sc, func); 18711 18712 /* 18713 * Timers workaround bug for E2: if this is vnic-3, 18714 * we need to set the entire ilt range for this timers. 18715 */ 18716 if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) { 18717 struct ilt_client_info ilt_cli; 18718 /* use dummy TM client */ 18719 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 18720 ilt_cli.start = 0; 18721 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 18722 ilt_cli.client_num = ILT_CLIENT_TM; 18723 18724 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR); 18725 } 18726 18727 /* this assumes that reset_port() called before reset_func()*/ 18728 if (!CHIP_IS_E1x(sc)) { 18729 bxe_pf_disable(sc); 18730 } 18731 18732 sc->dmae_ready = 0; 18733 } 18734 18735 static int 18736 bxe_gunzip_init(struct bxe_softc *sc) 18737 { 18738 return (0); 18739 } 18740 18741 static void 18742 bxe_gunzip_end(struct bxe_softc *sc) 18743 { 18744 return; 18745 } 18746 18747 static int 18748 bxe_init_firmware(struct bxe_softc *sc) 18749 { 18750 if (CHIP_IS_E1(sc)) { 18751 ecore_init_e1_firmware(sc); 18752 sc->iro_array = e1_iro_arr; 18753 } else if (CHIP_IS_E1H(sc)) { 18754 ecore_init_e1h_firmware(sc); 18755 sc->iro_array = e1h_iro_arr; 18756 } else if (!CHIP_IS_E1x(sc)) { 18757 ecore_init_e2_firmware(sc); 18758 sc->iro_array = e2_iro_arr; 18759 } else { 18760 BLOGE(sc, "Unsupported chip revision\n"); 18761 return (-1); 18762 } 18763 18764 return (0); 18765 } 18766 18767 static void 18768 bxe_release_firmware(struct bxe_softc *sc) 18769 { 18770 /* Do nothing */ 18771 return; 18772 } 18773 18774 static int 18775 ecore_gunzip(struct bxe_softc *sc, 18776 const uint8_t *zbuf, 18777 int len) 18778 { 18779 /* XXX : Implement... */ 18780 BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n"); 18781 return (FALSE); 18782 } 18783 18784 static void 18785 ecore_reg_wr_ind(struct bxe_softc *sc, 18786 uint32_t addr, 18787 uint32_t val) 18788 { 18789 bxe_reg_wr_ind(sc, addr, val); 18790 } 18791 18792 static void 18793 ecore_write_dmae_phys_len(struct bxe_softc *sc, 18794 bus_addr_t phys_addr, 18795 uint32_t addr, 18796 uint32_t len) 18797 { 18798 bxe_write_dmae_phys_len(sc, phys_addr, addr, len); 18799 } 18800 18801 void 18802 ecore_storm_memset_struct(struct bxe_softc *sc, 18803 uint32_t addr, 18804 size_t size, 18805 uint32_t *data) 18806 { 18807 uint8_t i; 18808 for (i = 0; i < size/4; i++) { 18809 REG_WR(sc, addr + (i * 4), data[i]); 18810 } 18811 } 18812 18813