1 /*- 2 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 15 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 18 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 19 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 20 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 21 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 22 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 23 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 24 * THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #define BXE_DRIVER_VERSION "1.78.79" 31 32 #include "bxe.h" 33 #include "ecore_sp.h" 34 #include "ecore_init.h" 35 #include "ecore_init_ops.h" 36 37 #include "57710_int_offsets.h" 38 #include "57711_int_offsets.h" 39 #include "57712_int_offsets.h" 40 41 /* 42 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these 43 * explicitly here for older kernels that don't include this changeset. 44 */ 45 #ifndef CTLTYPE_U64 46 #define CTLTYPE_U64 CTLTYPE_QUAD 47 #define sysctl_handle_64 sysctl_handle_quad 48 #endif 49 50 /* 51 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these 52 * here as zero(0) for older kernels that don't include this changeset 53 * thereby masking the functionality. 54 */ 55 #ifndef CSUM_TCP_IPV6 56 #define CSUM_TCP_IPV6 0 57 #define CSUM_UDP_IPV6 0 58 #endif 59 60 /* 61 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap 62 * for older kernels that don't include this changeset. 63 */ 64 #if __FreeBSD_version < 900035 65 #define pci_find_cap pci_find_extcap 66 #endif 67 68 #define BXE_DEF_SB_ATT_IDX 0x0001 69 #define BXE_DEF_SB_IDX 0x0002 70 71 /* 72 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per 73 * function HW initialization. 74 */ 75 #define FLR_WAIT_USEC 10000 /* 10 msecs */ 76 #define FLR_WAIT_INTERVAL 50 /* usecs */ 77 #define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */ 78 79 struct pbf_pN_buf_regs { 80 int pN; 81 uint32_t init_crd; 82 uint32_t crd; 83 uint32_t crd_freed; 84 }; 85 86 struct pbf_pN_cmd_regs { 87 int pN; 88 uint32_t lines_occup; 89 uint32_t lines_freed; 90 }; 91 92 /* 93 * PCI Device ID Table used by bxe_probe(). 94 */ 95 #define BXE_DEVDESC_MAX 64 96 static struct bxe_device_type bxe_devs[] = { 97 { 98 BRCM_VENDORID, 99 CHIP_NUM_57710, 100 PCI_ANY_ID, PCI_ANY_ID, 101 "QLogic NetXtreme II BCM57710 10GbE" 102 }, 103 { 104 BRCM_VENDORID, 105 CHIP_NUM_57711, 106 PCI_ANY_ID, PCI_ANY_ID, 107 "QLogic NetXtreme II BCM57711 10GbE" 108 }, 109 { 110 BRCM_VENDORID, 111 CHIP_NUM_57711E, 112 PCI_ANY_ID, PCI_ANY_ID, 113 "QLogic NetXtreme II BCM57711E 10GbE" 114 }, 115 { 116 BRCM_VENDORID, 117 CHIP_NUM_57712, 118 PCI_ANY_ID, PCI_ANY_ID, 119 "QLogic NetXtreme II BCM57712 10GbE" 120 }, 121 { 122 BRCM_VENDORID, 123 CHIP_NUM_57712_MF, 124 PCI_ANY_ID, PCI_ANY_ID, 125 "QLogic NetXtreme II BCM57712 MF 10GbE" 126 }, 127 #if 0 128 { 129 BRCM_VENDORID, 130 CHIP_NUM_57712_VF, 131 PCI_ANY_ID, PCI_ANY_ID, 132 "QLogic NetXtreme II BCM57712 VF 10GbE" 133 }, 134 #endif 135 { 136 BRCM_VENDORID, 137 CHIP_NUM_57800, 138 PCI_ANY_ID, PCI_ANY_ID, 139 "QLogic NetXtreme II BCM57800 10GbE" 140 }, 141 { 142 BRCM_VENDORID, 143 CHIP_NUM_57800_MF, 144 PCI_ANY_ID, PCI_ANY_ID, 145 "QLogic NetXtreme II BCM57800 MF 10GbE" 146 }, 147 #if 0 148 { 149 BRCM_VENDORID, 150 CHIP_NUM_57800_VF, 151 PCI_ANY_ID, PCI_ANY_ID, 152 "QLogic NetXtreme II BCM57800 VF 10GbE" 153 }, 154 #endif 155 { 156 BRCM_VENDORID, 157 CHIP_NUM_57810, 158 PCI_ANY_ID, PCI_ANY_ID, 159 "QLogic NetXtreme II BCM57810 10GbE" 160 }, 161 { 162 BRCM_VENDORID, 163 CHIP_NUM_57810_MF, 164 PCI_ANY_ID, PCI_ANY_ID, 165 "QLogic NetXtreme II BCM57810 MF 10GbE" 166 }, 167 #if 0 168 { 169 BRCM_VENDORID, 170 CHIP_NUM_57810_VF, 171 PCI_ANY_ID, PCI_ANY_ID, 172 "QLogic NetXtreme II BCM57810 VF 10GbE" 173 }, 174 #endif 175 { 176 BRCM_VENDORID, 177 CHIP_NUM_57811, 178 PCI_ANY_ID, PCI_ANY_ID, 179 "QLogic NetXtreme II BCM57811 10GbE" 180 }, 181 { 182 BRCM_VENDORID, 183 CHIP_NUM_57811_MF, 184 PCI_ANY_ID, PCI_ANY_ID, 185 "QLogic NetXtreme II BCM57811 MF 10GbE" 186 }, 187 #if 0 188 { 189 BRCM_VENDORID, 190 CHIP_NUM_57811_VF, 191 PCI_ANY_ID, PCI_ANY_ID, 192 "QLogic NetXtreme II BCM57811 VF 10GbE" 193 }, 194 #endif 195 { 196 BRCM_VENDORID, 197 CHIP_NUM_57840_4_10, 198 PCI_ANY_ID, PCI_ANY_ID, 199 "QLogic NetXtreme II BCM57840 4x10GbE" 200 }, 201 #if 0 202 { 203 BRCM_VENDORID, 204 CHIP_NUM_57840_2_20, 205 PCI_ANY_ID, PCI_ANY_ID, 206 "QLogic NetXtreme II BCM57840 2x20GbE" 207 }, 208 #endif 209 { 210 BRCM_VENDORID, 211 CHIP_NUM_57840_MF, 212 PCI_ANY_ID, PCI_ANY_ID, 213 "QLogic NetXtreme II BCM57840 MF 10GbE" 214 }, 215 #if 0 216 { 217 BRCM_VENDORID, 218 CHIP_NUM_57840_VF, 219 PCI_ANY_ID, PCI_ANY_ID, 220 "QLogic NetXtreme II BCM57840 VF 10GbE" 221 }, 222 #endif 223 { 224 0, 0, 0, 0, NULL 225 } 226 }; 227 228 MALLOC_DECLARE(M_BXE_ILT); 229 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer"); 230 231 /* 232 * FreeBSD device entry points. 233 */ 234 static int bxe_probe(device_t); 235 static int bxe_attach(device_t); 236 static int bxe_detach(device_t); 237 static int bxe_shutdown(device_t); 238 239 /* 240 * FreeBSD KLD module/device interface event handler method. 241 */ 242 static device_method_t bxe_methods[] = { 243 /* Device interface (device_if.h) */ 244 DEVMETHOD(device_probe, bxe_probe), 245 DEVMETHOD(device_attach, bxe_attach), 246 DEVMETHOD(device_detach, bxe_detach), 247 DEVMETHOD(device_shutdown, bxe_shutdown), 248 #if 0 249 DEVMETHOD(device_suspend, bxe_suspend), 250 DEVMETHOD(device_resume, bxe_resume), 251 #endif 252 /* Bus interface (bus_if.h) */ 253 DEVMETHOD(bus_print_child, bus_generic_print_child), 254 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 255 KOBJMETHOD_END 256 }; 257 258 /* 259 * FreeBSD KLD Module data declaration 260 */ 261 static driver_t bxe_driver = { 262 "bxe", /* module name */ 263 bxe_methods, /* event handler */ 264 sizeof(struct bxe_softc) /* extra data */ 265 }; 266 267 /* 268 * FreeBSD dev class is needed to manage dev instances and 269 * to associate with a bus type 270 */ 271 static devclass_t bxe_devclass; 272 273 MODULE_DEPEND(bxe, pci, 1, 1, 1); 274 MODULE_DEPEND(bxe, ether, 1, 1, 1); 275 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0); 276 277 /* resources needed for unloading a previously loaded device */ 278 279 #define BXE_PREV_WAIT_NEEDED 1 280 struct mtx bxe_prev_mtx; 281 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF); 282 struct bxe_prev_list_node { 283 LIST_ENTRY(bxe_prev_list_node) node; 284 uint8_t bus; 285 uint8_t slot; 286 uint8_t path; 287 uint8_t aer; /* XXX automatic error recovery */ 288 uint8_t undi; 289 }; 290 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list); 291 292 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 293 294 /* Tunable device values... */ 295 296 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters"); 297 298 /* Debug */ 299 unsigned long bxe_debug = 0; 300 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN, 301 &bxe_debug, 0, "Debug logging mode"); 302 303 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 304 static int bxe_interrupt_mode = INTR_MODE_MSIX; 305 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN, 306 &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode"); 307 308 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */ 309 static int bxe_queue_count = 4; 310 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN, 311 &bxe_queue_count, 0, "Multi-Queue queue count"); 312 313 /* max number of buffers per queue (default RX_BD_USABLE) */ 314 static int bxe_max_rx_bufs = 0; 315 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN, 316 &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue"); 317 318 /* Host interrupt coalescing RX tick timer (usecs) */ 319 static int bxe_hc_rx_ticks = 25; 320 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN, 321 &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks"); 322 323 /* Host interrupt coalescing TX tick timer (usecs) */ 324 static int bxe_hc_tx_ticks = 50; 325 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN, 326 &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks"); 327 328 /* Maximum number of Rx packets to process at a time */ 329 static int bxe_rx_budget = 0xffffffff; 330 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN, 331 &bxe_rx_budget, 0, "Rx processing budget"); 332 333 /* Maximum LRO aggregation size */ 334 static int bxe_max_aggregation_size = 0; 335 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN, 336 &bxe_max_aggregation_size, 0, "max aggregation size"); 337 338 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */ 339 static int bxe_mrrs = -1; 340 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN, 341 &bxe_mrrs, 0, "PCIe maximum read request size"); 342 343 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */ 344 static int bxe_autogreeen = 0; 345 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN, 346 &bxe_autogreeen, 0, "AutoGrEEEn support"); 347 348 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */ 349 static int bxe_udp_rss = 0; 350 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN, 351 &bxe_udp_rss, 0, "UDP RSS support"); 352 353 354 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */ 355 356 #define STATS_OFFSET32(stat_name) \ 357 (offsetof(struct bxe_eth_stats, stat_name) / 4) 358 359 #define Q_STATS_OFFSET32(stat_name) \ 360 (offsetof(struct bxe_eth_q_stats, stat_name) / 4) 361 362 static const struct { 363 uint32_t offset; 364 uint32_t size; 365 uint32_t flags; 366 #define STATS_FLAGS_PORT 1 367 #define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */ 368 #define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT) 369 char string[STAT_NAME_LEN]; 370 } bxe_eth_stats_arr[] = { 371 { STATS_OFFSET32(total_bytes_received_hi), 372 8, STATS_FLAGS_BOTH, "rx_bytes" }, 373 { STATS_OFFSET32(error_bytes_received_hi), 374 8, STATS_FLAGS_BOTH, "rx_error_bytes" }, 375 { STATS_OFFSET32(total_unicast_packets_received_hi), 376 8, STATS_FLAGS_BOTH, "rx_ucast_packets" }, 377 { STATS_OFFSET32(total_multicast_packets_received_hi), 378 8, STATS_FLAGS_BOTH, "rx_mcast_packets" }, 379 { STATS_OFFSET32(total_broadcast_packets_received_hi), 380 8, STATS_FLAGS_BOTH, "rx_bcast_packets" }, 381 { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi), 382 8, STATS_FLAGS_PORT, "rx_crc_errors" }, 383 { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi), 384 8, STATS_FLAGS_PORT, "rx_align_errors" }, 385 { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi), 386 8, STATS_FLAGS_PORT, "rx_undersize_packets" }, 387 { STATS_OFFSET32(etherstatsoverrsizepkts_hi), 388 8, STATS_FLAGS_PORT, "rx_oversize_packets" }, 389 { STATS_OFFSET32(rx_stat_etherstatsfragments_hi), 390 8, STATS_FLAGS_PORT, "rx_fragments" }, 391 { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi), 392 8, STATS_FLAGS_PORT, "rx_jabbers" }, 393 { STATS_OFFSET32(no_buff_discard_hi), 394 8, STATS_FLAGS_BOTH, "rx_discards" }, 395 { STATS_OFFSET32(mac_filter_discard), 396 4, STATS_FLAGS_PORT, "rx_filtered_packets" }, 397 { STATS_OFFSET32(mf_tag_discard), 398 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" }, 399 { STATS_OFFSET32(pfc_frames_received_hi), 400 8, STATS_FLAGS_PORT, "pfc_frames_received" }, 401 { STATS_OFFSET32(pfc_frames_sent_hi), 402 8, STATS_FLAGS_PORT, "pfc_frames_sent" }, 403 { STATS_OFFSET32(brb_drop_hi), 404 8, STATS_FLAGS_PORT, "rx_brb_discard" }, 405 { STATS_OFFSET32(brb_truncate_hi), 406 8, STATS_FLAGS_PORT, "rx_brb_truncate" }, 407 { STATS_OFFSET32(pause_frames_received_hi), 408 8, STATS_FLAGS_PORT, "rx_pause_frames" }, 409 { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi), 410 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" }, 411 { STATS_OFFSET32(nig_timer_max), 412 4, STATS_FLAGS_PORT, "rx_constant_pause_events" }, 413 { STATS_OFFSET32(total_bytes_transmitted_hi), 414 8, STATS_FLAGS_BOTH, "tx_bytes" }, 415 { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi), 416 8, STATS_FLAGS_PORT, "tx_error_bytes" }, 417 { STATS_OFFSET32(total_unicast_packets_transmitted_hi), 418 8, STATS_FLAGS_BOTH, "tx_ucast_packets" }, 419 { STATS_OFFSET32(total_multicast_packets_transmitted_hi), 420 8, STATS_FLAGS_BOTH, "tx_mcast_packets" }, 421 { STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 422 8, STATS_FLAGS_BOTH, "tx_bcast_packets" }, 423 { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi), 424 8, STATS_FLAGS_PORT, "tx_mac_errors" }, 425 { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi), 426 8, STATS_FLAGS_PORT, "tx_carrier_errors" }, 427 { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi), 428 8, STATS_FLAGS_PORT, "tx_single_collisions" }, 429 { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi), 430 8, STATS_FLAGS_PORT, "tx_multi_collisions" }, 431 { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi), 432 8, STATS_FLAGS_PORT, "tx_deferred" }, 433 { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi), 434 8, STATS_FLAGS_PORT, "tx_excess_collisions" }, 435 { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi), 436 8, STATS_FLAGS_PORT, "tx_late_collisions" }, 437 { STATS_OFFSET32(tx_stat_etherstatscollisions_hi), 438 8, STATS_FLAGS_PORT, "tx_total_collisions" }, 439 { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi), 440 8, STATS_FLAGS_PORT, "tx_64_byte_packets" }, 441 { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi), 442 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" }, 443 { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi), 444 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" }, 445 { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi), 446 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" }, 447 { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi), 448 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" }, 449 { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi), 450 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" }, 451 { STATS_OFFSET32(etherstatspktsover1522octets_hi), 452 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" }, 453 { STATS_OFFSET32(pause_frames_sent_hi), 454 8, STATS_FLAGS_PORT, "tx_pause_frames" }, 455 { STATS_OFFSET32(total_tpa_aggregations_hi), 456 8, STATS_FLAGS_FUNC, "tpa_aggregations" }, 457 { STATS_OFFSET32(total_tpa_aggregated_frames_hi), 458 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"}, 459 { STATS_OFFSET32(total_tpa_bytes_hi), 460 8, STATS_FLAGS_FUNC, "tpa_bytes"}, 461 #if 0 462 { STATS_OFFSET32(recoverable_error), 463 4, STATS_FLAGS_FUNC, "recoverable_errors" }, 464 { STATS_OFFSET32(unrecoverable_error), 465 4, STATS_FLAGS_FUNC, "unrecoverable_errors" }, 466 #endif 467 { STATS_OFFSET32(eee_tx_lpi), 468 4, STATS_FLAGS_PORT, "eee_tx_lpi"}, 469 { STATS_OFFSET32(rx_calls), 470 4, STATS_FLAGS_FUNC, "rx_calls"}, 471 { STATS_OFFSET32(rx_pkts), 472 4, STATS_FLAGS_FUNC, "rx_pkts"}, 473 { STATS_OFFSET32(rx_tpa_pkts), 474 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"}, 475 { STATS_OFFSET32(rx_jumbo_sge_pkts), 476 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"}, 477 { STATS_OFFSET32(rx_soft_errors), 478 4, STATS_FLAGS_FUNC, "rx_soft_errors"}, 479 { STATS_OFFSET32(rx_hw_csum_errors), 480 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"}, 481 { STATS_OFFSET32(rx_ofld_frames_csum_ip), 482 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"}, 483 { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 484 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"}, 485 { STATS_OFFSET32(rx_budget_reached), 486 4, STATS_FLAGS_FUNC, "rx_budget_reached"}, 487 { STATS_OFFSET32(tx_pkts), 488 4, STATS_FLAGS_FUNC, "tx_pkts"}, 489 { STATS_OFFSET32(tx_soft_errors), 490 4, STATS_FLAGS_FUNC, "tx_soft_errors"}, 491 { STATS_OFFSET32(tx_ofld_frames_csum_ip), 492 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"}, 493 { STATS_OFFSET32(tx_ofld_frames_csum_tcp), 494 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"}, 495 { STATS_OFFSET32(tx_ofld_frames_csum_udp), 496 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"}, 497 { STATS_OFFSET32(tx_ofld_frames_lso), 498 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"}, 499 { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 500 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"}, 501 { STATS_OFFSET32(tx_encap_failures), 502 4, STATS_FLAGS_FUNC, "tx_encap_failures"}, 503 { STATS_OFFSET32(tx_hw_queue_full), 504 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"}, 505 { STATS_OFFSET32(tx_hw_max_queue_depth), 506 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"}, 507 { STATS_OFFSET32(tx_dma_mapping_failure), 508 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"}, 509 { STATS_OFFSET32(tx_max_drbr_queue_depth), 510 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"}, 511 { STATS_OFFSET32(tx_window_violation_std), 512 4, STATS_FLAGS_FUNC, "tx_window_violation_std"}, 513 { STATS_OFFSET32(tx_window_violation_tso), 514 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"}, 515 #if 0 516 { STATS_OFFSET32(tx_unsupported_tso_request_ipv6), 517 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_ipv6"}, 518 { STATS_OFFSET32(tx_unsupported_tso_request_not_tcp), 519 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_not_tcp"}, 520 #endif 521 { STATS_OFFSET32(tx_chain_lost_mbuf), 522 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"}, 523 { STATS_OFFSET32(tx_frames_deferred), 524 4, STATS_FLAGS_FUNC, "tx_frames_deferred"}, 525 { STATS_OFFSET32(tx_queue_xoff), 526 4, STATS_FLAGS_FUNC, "tx_queue_xoff"}, 527 { STATS_OFFSET32(mbuf_defrag_attempts), 528 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"}, 529 { STATS_OFFSET32(mbuf_defrag_failures), 530 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"}, 531 { STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 532 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"}, 533 { STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 534 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"}, 535 { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 536 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"}, 537 { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 538 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"}, 539 { STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 540 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"}, 541 { STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 542 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"}, 543 { STATS_OFFSET32(mbuf_alloc_tx), 544 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"}, 545 { STATS_OFFSET32(mbuf_alloc_rx), 546 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"}, 547 { STATS_OFFSET32(mbuf_alloc_sge), 548 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"}, 549 { STATS_OFFSET32(mbuf_alloc_tpa), 550 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"} 551 }; 552 553 static const struct { 554 uint32_t offset; 555 uint32_t size; 556 char string[STAT_NAME_LEN]; 557 } bxe_eth_q_stats_arr[] = { 558 { Q_STATS_OFFSET32(total_bytes_received_hi), 559 8, "rx_bytes" }, 560 { Q_STATS_OFFSET32(total_unicast_packets_received_hi), 561 8, "rx_ucast_packets" }, 562 { Q_STATS_OFFSET32(total_multicast_packets_received_hi), 563 8, "rx_mcast_packets" }, 564 { Q_STATS_OFFSET32(total_broadcast_packets_received_hi), 565 8, "rx_bcast_packets" }, 566 { Q_STATS_OFFSET32(no_buff_discard_hi), 567 8, "rx_discards" }, 568 { Q_STATS_OFFSET32(total_bytes_transmitted_hi), 569 8, "tx_bytes" }, 570 { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi), 571 8, "tx_ucast_packets" }, 572 { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi), 573 8, "tx_mcast_packets" }, 574 { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 575 8, "tx_bcast_packets" }, 576 { Q_STATS_OFFSET32(total_tpa_aggregations_hi), 577 8, "tpa_aggregations" }, 578 { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi), 579 8, "tpa_aggregated_frames"}, 580 { Q_STATS_OFFSET32(total_tpa_bytes_hi), 581 8, "tpa_bytes"}, 582 { Q_STATS_OFFSET32(rx_calls), 583 4, "rx_calls"}, 584 { Q_STATS_OFFSET32(rx_pkts), 585 4, "rx_pkts"}, 586 { Q_STATS_OFFSET32(rx_tpa_pkts), 587 4, "rx_tpa_pkts"}, 588 { Q_STATS_OFFSET32(rx_jumbo_sge_pkts), 589 4, "rx_jumbo_sge_pkts"}, 590 { Q_STATS_OFFSET32(rx_soft_errors), 591 4, "rx_soft_errors"}, 592 { Q_STATS_OFFSET32(rx_hw_csum_errors), 593 4, "rx_hw_csum_errors"}, 594 { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip), 595 4, "rx_ofld_frames_csum_ip"}, 596 { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 597 4, "rx_ofld_frames_csum_tcp_udp"}, 598 { Q_STATS_OFFSET32(rx_budget_reached), 599 4, "rx_budget_reached"}, 600 { Q_STATS_OFFSET32(tx_pkts), 601 4, "tx_pkts"}, 602 { Q_STATS_OFFSET32(tx_soft_errors), 603 4, "tx_soft_errors"}, 604 { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip), 605 4, "tx_ofld_frames_csum_ip"}, 606 { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp), 607 4, "tx_ofld_frames_csum_tcp"}, 608 { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp), 609 4, "tx_ofld_frames_csum_udp"}, 610 { Q_STATS_OFFSET32(tx_ofld_frames_lso), 611 4, "tx_ofld_frames_lso"}, 612 { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 613 4, "tx_ofld_frames_lso_hdr_splits"}, 614 { Q_STATS_OFFSET32(tx_encap_failures), 615 4, "tx_encap_failures"}, 616 { Q_STATS_OFFSET32(tx_hw_queue_full), 617 4, "tx_hw_queue_full"}, 618 { Q_STATS_OFFSET32(tx_hw_max_queue_depth), 619 4, "tx_hw_max_queue_depth"}, 620 { Q_STATS_OFFSET32(tx_dma_mapping_failure), 621 4, "tx_dma_mapping_failure"}, 622 { Q_STATS_OFFSET32(tx_max_drbr_queue_depth), 623 4, "tx_max_drbr_queue_depth"}, 624 { Q_STATS_OFFSET32(tx_window_violation_std), 625 4, "tx_window_violation_std"}, 626 { Q_STATS_OFFSET32(tx_window_violation_tso), 627 4, "tx_window_violation_tso"}, 628 #if 0 629 { Q_STATS_OFFSET32(tx_unsupported_tso_request_ipv6), 630 4, "tx_unsupported_tso_request_ipv6"}, 631 { Q_STATS_OFFSET32(tx_unsupported_tso_request_not_tcp), 632 4, "tx_unsupported_tso_request_not_tcp"}, 633 #endif 634 { Q_STATS_OFFSET32(tx_chain_lost_mbuf), 635 4, "tx_chain_lost_mbuf"}, 636 { Q_STATS_OFFSET32(tx_frames_deferred), 637 4, "tx_frames_deferred"}, 638 { Q_STATS_OFFSET32(tx_queue_xoff), 639 4, "tx_queue_xoff"}, 640 { Q_STATS_OFFSET32(mbuf_defrag_attempts), 641 4, "mbuf_defrag_attempts"}, 642 { Q_STATS_OFFSET32(mbuf_defrag_failures), 643 4, "mbuf_defrag_failures"}, 644 { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 645 4, "mbuf_rx_bd_alloc_failed"}, 646 { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 647 4, "mbuf_rx_bd_mapping_failed"}, 648 { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 649 4, "mbuf_rx_tpa_alloc_failed"}, 650 { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 651 4, "mbuf_rx_tpa_mapping_failed"}, 652 { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 653 4, "mbuf_rx_sge_alloc_failed"}, 654 { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 655 4, "mbuf_rx_sge_mapping_failed"}, 656 { Q_STATS_OFFSET32(mbuf_alloc_tx), 657 4, "mbuf_alloc_tx"}, 658 { Q_STATS_OFFSET32(mbuf_alloc_rx), 659 4, "mbuf_alloc_rx"}, 660 { Q_STATS_OFFSET32(mbuf_alloc_sge), 661 4, "mbuf_alloc_sge"}, 662 { Q_STATS_OFFSET32(mbuf_alloc_tpa), 663 4, "mbuf_alloc_tpa"} 664 }; 665 666 #define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr) 667 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr) 668 669 670 static void bxe_cmng_fns_init(struct bxe_softc *sc, 671 uint8_t read_cfg, 672 uint8_t cmng_type); 673 static int bxe_get_cmng_fns_mode(struct bxe_softc *sc); 674 static void storm_memset_cmng(struct bxe_softc *sc, 675 struct cmng_init *cmng, 676 uint8_t port); 677 static void bxe_set_reset_global(struct bxe_softc *sc); 678 static void bxe_set_reset_in_progress(struct bxe_softc *sc); 679 static uint8_t bxe_reset_is_done(struct bxe_softc *sc, 680 int engine); 681 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc); 682 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc, 683 uint8_t *global, 684 uint8_t print); 685 static void bxe_int_disable(struct bxe_softc *sc); 686 static int bxe_release_leader_lock(struct bxe_softc *sc); 687 static void bxe_pf_disable(struct bxe_softc *sc); 688 static void bxe_free_fp_buffers(struct bxe_softc *sc); 689 static inline void bxe_update_rx_prod(struct bxe_softc *sc, 690 struct bxe_fastpath *fp, 691 uint16_t rx_bd_prod, 692 uint16_t rx_cq_prod, 693 uint16_t rx_sge_prod); 694 static void bxe_link_report_locked(struct bxe_softc *sc); 695 static void bxe_link_report(struct bxe_softc *sc); 696 static void bxe_link_status_update(struct bxe_softc *sc); 697 static void bxe_periodic_callout_func(void *xsc); 698 static void bxe_periodic_start(struct bxe_softc *sc); 699 static void bxe_periodic_stop(struct bxe_softc *sc); 700 static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 701 uint16_t prev_index, 702 uint16_t index); 703 static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 704 int queue); 705 static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 706 uint16_t index); 707 static uint8_t bxe_txeof(struct bxe_softc *sc, 708 struct bxe_fastpath *fp); 709 static void bxe_task_fp(struct bxe_fastpath *fp); 710 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc, 711 struct mbuf *m, 712 uint8_t contents); 713 static int bxe_alloc_mem(struct bxe_softc *sc); 714 static void bxe_free_mem(struct bxe_softc *sc); 715 static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc); 716 static void bxe_free_fw_stats_mem(struct bxe_softc *sc); 717 static int bxe_interrupt_attach(struct bxe_softc *sc); 718 static void bxe_interrupt_detach(struct bxe_softc *sc); 719 static void bxe_set_rx_mode(struct bxe_softc *sc); 720 static int bxe_init_locked(struct bxe_softc *sc); 721 static int bxe_stop_locked(struct bxe_softc *sc); 722 static __noinline int bxe_nic_load(struct bxe_softc *sc, 723 int load_mode); 724 static __noinline int bxe_nic_unload(struct bxe_softc *sc, 725 uint32_t unload_mode, 726 uint8_t keep_link); 727 728 static void bxe_handle_sp_tq(void *context, int pending); 729 static void bxe_handle_rx_mode_tq(void *context, int pending); 730 static void bxe_handle_fp_tq(void *context, int pending); 731 732 733 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */ 734 uint32_t 735 calc_crc32(uint8_t *crc32_packet, 736 uint32_t crc32_length, 737 uint32_t crc32_seed, 738 uint8_t complement) 739 { 740 uint32_t byte = 0; 741 uint32_t bit = 0; 742 uint8_t msb = 0; 743 uint32_t temp = 0; 744 uint32_t shft = 0; 745 uint8_t current_byte = 0; 746 uint32_t crc32_result = crc32_seed; 747 const uint32_t CRC32_POLY = 0x1edc6f41; 748 749 if ((crc32_packet == NULL) || 750 (crc32_length == 0) || 751 ((crc32_length % 8) != 0)) 752 { 753 return (crc32_result); 754 } 755 756 for (byte = 0; byte < crc32_length; byte = byte + 1) 757 { 758 current_byte = crc32_packet[byte]; 759 for (bit = 0; bit < 8; bit = bit + 1) 760 { 761 /* msb = crc32_result[31]; */ 762 msb = (uint8_t)(crc32_result >> 31); 763 764 crc32_result = crc32_result << 1; 765 766 /* it (msb != current_byte[bit]) */ 767 if (msb != (0x1 & (current_byte >> bit))) 768 { 769 crc32_result = crc32_result ^ CRC32_POLY; 770 /* crc32_result[0] = 1 */ 771 crc32_result |= 1; 772 } 773 } 774 } 775 776 /* Last step is to: 777 * 1. "mirror" every bit 778 * 2. swap the 4 bytes 779 * 3. complement each bit 780 */ 781 782 /* Mirror */ 783 temp = crc32_result; 784 shft = sizeof(crc32_result) * 8 - 1; 785 786 for (crc32_result >>= 1; crc32_result; crc32_result >>= 1) 787 { 788 temp <<= 1; 789 temp |= crc32_result & 1; 790 shft-- ; 791 } 792 793 /* temp[31-bit] = crc32_result[bit] */ 794 temp <<= shft; 795 796 /* Swap */ 797 /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */ 798 { 799 uint32_t t0, t1, t2, t3; 800 t0 = (0x000000ff & (temp >> 24)); 801 t1 = (0x0000ff00 & (temp >> 8)); 802 t2 = (0x00ff0000 & (temp << 8)); 803 t3 = (0xff000000 & (temp << 24)); 804 crc32_result = t0 | t1 | t2 | t3; 805 } 806 807 /* Complement */ 808 if (complement) 809 { 810 crc32_result = ~crc32_result; 811 } 812 813 return (crc32_result); 814 } 815 816 int 817 bxe_test_bit(int nr, 818 volatile unsigned long *addr) 819 { 820 return ((atomic_load_acq_long(addr) & (1 << nr)) != 0); 821 } 822 823 void 824 bxe_set_bit(unsigned int nr, 825 volatile unsigned long *addr) 826 { 827 atomic_set_acq_long(addr, (1 << nr)); 828 } 829 830 void 831 bxe_clear_bit(int nr, 832 volatile unsigned long *addr) 833 { 834 atomic_clear_acq_long(addr, (1 << nr)); 835 } 836 837 int 838 bxe_test_and_set_bit(int nr, 839 volatile unsigned long *addr) 840 { 841 unsigned long x; 842 nr = (1 << nr); 843 do { 844 x = *addr; 845 } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0); 846 // if (x & nr) bit_was_set; else bit_was_not_set; 847 return (x & nr); 848 } 849 850 int 851 bxe_test_and_clear_bit(int nr, 852 volatile unsigned long *addr) 853 { 854 unsigned long x; 855 nr = (1 << nr); 856 do { 857 x = *addr; 858 } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0); 859 // if (x & nr) bit_was_set; else bit_was_not_set; 860 return (x & nr); 861 } 862 863 int 864 bxe_cmpxchg(volatile int *addr, 865 int old, 866 int new) 867 { 868 int x; 869 do { 870 x = *addr; 871 } while (atomic_cmpset_acq_int(addr, old, new) == 0); 872 return (x); 873 } 874 875 /* 876 * Get DMA memory from the OS. 877 * 878 * Validates that the OS has provided DMA buffers in response to a 879 * bus_dmamap_load call and saves the physical address of those buffers. 880 * When the callback is used the OS will return 0 for the mapping function 881 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any 882 * failures back to the caller. 883 * 884 * Returns: 885 * Nothing. 886 */ 887 static void 888 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 889 { 890 struct bxe_dma *dma = arg; 891 892 if (error) { 893 dma->paddr = 0; 894 dma->nseg = 0; 895 BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error); 896 } else { 897 dma->paddr = segs->ds_addr; 898 dma->nseg = nseg; 899 #if 0 900 BLOGD(dma->sc, DBG_LOAD, 901 "DMA alloc '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n", 902 dma->msg, dma->vaddr, (void *)dma->paddr, 903 dma->nseg, dma->size); 904 #endif 905 } 906 } 907 908 /* 909 * Allocate a block of memory and map it for DMA. No partial completions 910 * allowed and release any resources acquired if we can't acquire all 911 * resources. 912 * 913 * Returns: 914 * 0 = Success, !0 = Failure 915 */ 916 int 917 bxe_dma_alloc(struct bxe_softc *sc, 918 bus_size_t size, 919 struct bxe_dma *dma, 920 const char *msg) 921 { 922 int rc; 923 924 if (dma->size > 0) { 925 BLOGE(sc, "dma block '%s' already has size %lu\n", msg, 926 (unsigned long)dma->size); 927 return (1); 928 } 929 930 memset(dma, 0, sizeof(*dma)); /* sanity */ 931 dma->sc = sc; 932 dma->size = size; 933 snprintf(dma->msg, sizeof(dma->msg), "%s", msg); 934 935 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 936 BCM_PAGE_SIZE, /* alignment */ 937 0, /* boundary limit */ 938 BUS_SPACE_MAXADDR, /* restricted low */ 939 BUS_SPACE_MAXADDR, /* restricted hi */ 940 NULL, /* addr filter() */ 941 NULL, /* addr filter() arg */ 942 size, /* max map size */ 943 1, /* num discontinuous */ 944 size, /* max seg size */ 945 BUS_DMA_ALLOCNOW, /* flags */ 946 NULL, /* lock() */ 947 NULL, /* lock() arg */ 948 &dma->tag); /* returned dma tag */ 949 if (rc != 0) { 950 BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc); 951 memset(dma, 0, sizeof(*dma)); 952 return (1); 953 } 954 955 rc = bus_dmamem_alloc(dma->tag, 956 (void **)&dma->vaddr, 957 (BUS_DMA_NOWAIT | BUS_DMA_ZERO), 958 &dma->map); 959 if (rc != 0) { 960 BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc); 961 bus_dma_tag_destroy(dma->tag); 962 memset(dma, 0, sizeof(*dma)); 963 return (1); 964 } 965 966 rc = bus_dmamap_load(dma->tag, 967 dma->map, 968 dma->vaddr, 969 size, 970 bxe_dma_map_addr, /* BLOGD in here */ 971 dma, 972 BUS_DMA_NOWAIT); 973 if (rc != 0) { 974 BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc); 975 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 976 bus_dma_tag_destroy(dma->tag); 977 memset(dma, 0, sizeof(*dma)); 978 return (1); 979 } 980 981 return (0); 982 } 983 984 void 985 bxe_dma_free(struct bxe_softc *sc, 986 struct bxe_dma *dma) 987 { 988 if (dma->size > 0) { 989 #if 0 990 BLOGD(sc, DBG_LOAD, 991 "DMA free '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n", 992 dma->msg, dma->vaddr, (void *)dma->paddr, 993 dma->nseg, dma->size); 994 #endif 995 996 DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL")); 997 998 bus_dmamap_sync(dma->tag, dma->map, 999 (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)); 1000 bus_dmamap_unload(dma->tag, dma->map); 1001 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 1002 bus_dma_tag_destroy(dma->tag); 1003 } 1004 1005 memset(dma, 0, sizeof(*dma)); 1006 } 1007 1008 /* 1009 * These indirect read and write routines are only during init. 1010 * The locking is handled by the MCP. 1011 */ 1012 1013 void 1014 bxe_reg_wr_ind(struct bxe_softc *sc, 1015 uint32_t addr, 1016 uint32_t val) 1017 { 1018 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 1019 pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4); 1020 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 1021 } 1022 1023 uint32_t 1024 bxe_reg_rd_ind(struct bxe_softc *sc, 1025 uint32_t addr) 1026 { 1027 uint32_t val; 1028 1029 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 1030 val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4); 1031 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 1032 1033 return (val); 1034 } 1035 1036 #if 0 1037 void bxe_dp_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int msglvl) 1038 { 1039 uint32_t src_type = dmae->opcode & DMAE_COMMAND_SRC; 1040 1041 switch (dmae->opcode & DMAE_COMMAND_DST) { 1042 case DMAE_CMD_DST_PCI: 1043 if (src_type == DMAE_CMD_SRC_PCI) 1044 DP(msglvl, "DMAE: opcode 0x%08x\n" 1045 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n" 1046 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1047 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 1048 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 1049 dmae->comp_addr_hi, dmae->comp_addr_lo, 1050 dmae->comp_val); 1051 else 1052 DP(msglvl, "DMAE: opcode 0x%08x\n" 1053 "src [%08x], len [%d*4], dst [%x:%08x]\n" 1054 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1055 dmae->opcode, dmae->src_addr_lo >> 2, 1056 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 1057 dmae->comp_addr_hi, dmae->comp_addr_lo, 1058 dmae->comp_val); 1059 break; 1060 case DMAE_CMD_DST_GRC: 1061 if (src_type == DMAE_CMD_SRC_PCI) 1062 DP(msglvl, "DMAE: opcode 0x%08x\n" 1063 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n" 1064 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1065 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 1066 dmae->len, dmae->dst_addr_lo >> 2, 1067 dmae->comp_addr_hi, dmae->comp_addr_lo, 1068 dmae->comp_val); 1069 else 1070 DP(msglvl, "DMAE: opcode 0x%08x\n" 1071 "src [%08x], len [%d*4], dst [%08x]\n" 1072 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1073 dmae->opcode, dmae->src_addr_lo >> 2, 1074 dmae->len, dmae->dst_addr_lo >> 2, 1075 dmae->comp_addr_hi, dmae->comp_addr_lo, 1076 dmae->comp_val); 1077 break; 1078 default: 1079 if (src_type == DMAE_CMD_SRC_PCI) 1080 DP(msglvl, "DMAE: opcode 0x%08x\n" 1081 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n" 1082 "comp_addr [%x:%08x] comp_val 0x%08x\n", 1083 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 1084 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 1085 dmae->comp_val); 1086 else 1087 DP(msglvl, "DMAE: opcode 0x%08x\n" 1088 "src_addr [%08x] len [%d * 4] dst_addr [none]\n" 1089 "comp_addr [%x:%08x] comp_val 0x%08x\n", 1090 dmae->opcode, dmae->src_addr_lo >> 2, 1091 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 1092 dmae->comp_val); 1093 break; 1094 } 1095 1096 } 1097 #endif 1098 1099 static int 1100 bxe_acquire_hw_lock(struct bxe_softc *sc, 1101 uint32_t resource) 1102 { 1103 uint32_t lock_status; 1104 uint32_t resource_bit = (1 << resource); 1105 int func = SC_FUNC(sc); 1106 uint32_t hw_lock_control_reg; 1107 int cnt; 1108 1109 /* validate the resource is within range */ 1110 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1111 BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource); 1112 return (-1); 1113 } 1114 1115 if (func <= 5) { 1116 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1117 } else { 1118 hw_lock_control_reg = 1119 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1120 } 1121 1122 /* validate the resource is not already taken */ 1123 lock_status = REG_RD(sc, hw_lock_control_reg); 1124 if (lock_status & resource_bit) { 1125 BLOGE(sc, "resource in use (status 0x%x bit 0x%x)\n", 1126 lock_status, resource_bit); 1127 return (-1); 1128 } 1129 1130 /* try every 5ms for 5 seconds */ 1131 for (cnt = 0; cnt < 1000; cnt++) { 1132 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit); 1133 lock_status = REG_RD(sc, hw_lock_control_reg); 1134 if (lock_status & resource_bit) { 1135 return (0); 1136 } 1137 DELAY(5000); 1138 } 1139 1140 BLOGE(sc, "Resource lock timeout!\n"); 1141 return (-1); 1142 } 1143 1144 static int 1145 bxe_release_hw_lock(struct bxe_softc *sc, 1146 uint32_t resource) 1147 { 1148 uint32_t lock_status; 1149 uint32_t resource_bit = (1 << resource); 1150 int func = SC_FUNC(sc); 1151 uint32_t hw_lock_control_reg; 1152 1153 /* validate the resource is within range */ 1154 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1155 BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource); 1156 return (-1); 1157 } 1158 1159 if (func <= 5) { 1160 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1161 } else { 1162 hw_lock_control_reg = 1163 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1164 } 1165 1166 /* validate the resource is currently taken */ 1167 lock_status = REG_RD(sc, hw_lock_control_reg); 1168 if (!(lock_status & resource_bit)) { 1169 BLOGE(sc, "resource not in use (status 0x%x bit 0x%x)\n", 1170 lock_status, resource_bit); 1171 return (-1); 1172 } 1173 1174 REG_WR(sc, hw_lock_control_reg, resource_bit); 1175 return (0); 1176 } 1177 1178 /* 1179 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise, 1180 * had we done things the other way around, if two pfs from the same port 1181 * would attempt to access nvram at the same time, we could run into a 1182 * scenario such as: 1183 * pf A takes the port lock. 1184 * pf B succeeds in taking the same lock since they are from the same port. 1185 * pf A takes the per pf misc lock. Performs eeprom access. 1186 * pf A finishes. Unlocks the per pf misc lock. 1187 * Pf B takes the lock and proceeds to perform it's own access. 1188 * pf A unlocks the per port lock, while pf B is still working (!). 1189 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own 1190 * access corrupted by pf B).* 1191 */ 1192 static int 1193 bxe_acquire_nvram_lock(struct bxe_softc *sc) 1194 { 1195 int port = SC_PORT(sc); 1196 int count, i; 1197 uint32_t val = 0; 1198 1199 /* acquire HW lock: protect against other PFs in PF Direct Assignment */ 1200 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1201 1202 /* adjust timeout for emulation/FPGA */ 1203 count = NVRAM_TIMEOUT_COUNT; 1204 if (CHIP_REV_IS_SLOW(sc)) { 1205 count *= 100; 1206 } 1207 1208 /* request access to nvram interface */ 1209 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1210 (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port)); 1211 1212 for (i = 0; i < count*10; i++) { 1213 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1214 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1215 break; 1216 } 1217 1218 DELAY(5); 1219 } 1220 1221 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1222 BLOGE(sc, "Cannot get access to nvram interface\n"); 1223 return (-1); 1224 } 1225 1226 return (0); 1227 } 1228 1229 static int 1230 bxe_release_nvram_lock(struct bxe_softc *sc) 1231 { 1232 int port = SC_PORT(sc); 1233 int count, i; 1234 uint32_t val = 0; 1235 1236 /* adjust timeout for emulation/FPGA */ 1237 count = NVRAM_TIMEOUT_COUNT; 1238 if (CHIP_REV_IS_SLOW(sc)) { 1239 count *= 100; 1240 } 1241 1242 /* relinquish nvram interface */ 1243 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1244 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port)); 1245 1246 for (i = 0; i < count*10; i++) { 1247 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1248 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1249 break; 1250 } 1251 1252 DELAY(5); 1253 } 1254 1255 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1256 BLOGE(sc, "Cannot free access to nvram interface\n"); 1257 return (-1); 1258 } 1259 1260 /* release HW lock: protect against other PFs in PF Direct Assignment */ 1261 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1262 1263 return (0); 1264 } 1265 1266 static void 1267 bxe_enable_nvram_access(struct bxe_softc *sc) 1268 { 1269 uint32_t val; 1270 1271 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1272 1273 /* enable both bits, even on read */ 1274 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1275 (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN)); 1276 } 1277 1278 static void 1279 bxe_disable_nvram_access(struct bxe_softc *sc) 1280 { 1281 uint32_t val; 1282 1283 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1284 1285 /* disable both bits, even after read */ 1286 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1287 (val & ~(MCPR_NVM_ACCESS_ENABLE_EN | 1288 MCPR_NVM_ACCESS_ENABLE_WR_EN))); 1289 } 1290 1291 static int 1292 bxe_nvram_read_dword(struct bxe_softc *sc, 1293 uint32_t offset, 1294 uint32_t *ret_val, 1295 uint32_t cmd_flags) 1296 { 1297 int count, i, rc; 1298 uint32_t val; 1299 1300 /* build the command word */ 1301 cmd_flags |= MCPR_NVM_COMMAND_DOIT; 1302 1303 /* need to clear DONE bit separately */ 1304 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1305 1306 /* address of the NVRAM to read from */ 1307 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1308 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1309 1310 /* issue a read command */ 1311 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1312 1313 /* adjust timeout for emulation/FPGA */ 1314 count = NVRAM_TIMEOUT_COUNT; 1315 if (CHIP_REV_IS_SLOW(sc)) { 1316 count *= 100; 1317 } 1318 1319 /* wait for completion */ 1320 *ret_val = 0; 1321 rc = -1; 1322 for (i = 0; i < count; i++) { 1323 DELAY(5); 1324 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1325 1326 if (val & MCPR_NVM_COMMAND_DONE) { 1327 val = REG_RD(sc, MCP_REG_MCPR_NVM_READ); 1328 /* we read nvram data in cpu order 1329 * but ethtool sees it as an array of bytes 1330 * converting to big-endian will do the work 1331 */ 1332 *ret_val = htobe32(val); 1333 rc = 0; 1334 break; 1335 } 1336 } 1337 1338 if (rc == -1) { 1339 BLOGE(sc, "nvram read timeout expired\n"); 1340 } 1341 1342 return (rc); 1343 } 1344 1345 static int 1346 bxe_nvram_read(struct bxe_softc *sc, 1347 uint32_t offset, 1348 uint8_t *ret_buf, 1349 int buf_size) 1350 { 1351 uint32_t cmd_flags; 1352 uint32_t val; 1353 int rc; 1354 1355 if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) { 1356 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1357 offset, buf_size); 1358 return (-1); 1359 } 1360 1361 if ((offset + buf_size) > sc->devinfo.flash_size) { 1362 BLOGE(sc, "Invalid parameter, " 1363 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1364 offset, buf_size, sc->devinfo.flash_size); 1365 return (-1); 1366 } 1367 1368 /* request access to nvram interface */ 1369 rc = bxe_acquire_nvram_lock(sc); 1370 if (rc) { 1371 return (rc); 1372 } 1373 1374 /* enable access to nvram interface */ 1375 bxe_enable_nvram_access(sc); 1376 1377 /* read the first word(s) */ 1378 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1379 while ((buf_size > sizeof(uint32_t)) && (rc == 0)) { 1380 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1381 memcpy(ret_buf, &val, 4); 1382 1383 /* advance to the next dword */ 1384 offset += sizeof(uint32_t); 1385 ret_buf += sizeof(uint32_t); 1386 buf_size -= sizeof(uint32_t); 1387 cmd_flags = 0; 1388 } 1389 1390 if (rc == 0) { 1391 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1392 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1393 memcpy(ret_buf, &val, 4); 1394 } 1395 1396 /* disable access to nvram interface */ 1397 bxe_disable_nvram_access(sc); 1398 bxe_release_nvram_lock(sc); 1399 1400 return (rc); 1401 } 1402 1403 static int 1404 bxe_nvram_write_dword(struct bxe_softc *sc, 1405 uint32_t offset, 1406 uint32_t val, 1407 uint32_t cmd_flags) 1408 { 1409 int count, i, rc; 1410 1411 /* build the command word */ 1412 cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR); 1413 1414 /* need to clear DONE bit separately */ 1415 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1416 1417 /* write the data */ 1418 REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val); 1419 1420 /* address of the NVRAM to write to */ 1421 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1422 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1423 1424 /* issue the write command */ 1425 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1426 1427 /* adjust timeout for emulation/FPGA */ 1428 count = NVRAM_TIMEOUT_COUNT; 1429 if (CHIP_REV_IS_SLOW(sc)) { 1430 count *= 100; 1431 } 1432 1433 /* wait for completion */ 1434 rc = -1; 1435 for (i = 0; i < count; i++) { 1436 DELAY(5); 1437 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1438 if (val & MCPR_NVM_COMMAND_DONE) { 1439 rc = 0; 1440 break; 1441 } 1442 } 1443 1444 if (rc == -1) { 1445 BLOGE(sc, "nvram write timeout expired\n"); 1446 } 1447 1448 return (rc); 1449 } 1450 1451 #define BYTE_OFFSET(offset) (8 * (offset & 0x03)) 1452 1453 static int 1454 bxe_nvram_write1(struct bxe_softc *sc, 1455 uint32_t offset, 1456 uint8_t *data_buf, 1457 int buf_size) 1458 { 1459 uint32_t cmd_flags; 1460 uint32_t align_offset; 1461 uint32_t val; 1462 int rc; 1463 1464 if ((offset + buf_size) > sc->devinfo.flash_size) { 1465 BLOGE(sc, "Invalid parameter, " 1466 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1467 offset, buf_size, sc->devinfo.flash_size); 1468 return (-1); 1469 } 1470 1471 /* request access to nvram interface */ 1472 rc = bxe_acquire_nvram_lock(sc); 1473 if (rc) { 1474 return (rc); 1475 } 1476 1477 /* enable access to nvram interface */ 1478 bxe_enable_nvram_access(sc); 1479 1480 cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST); 1481 align_offset = (offset & ~0x03); 1482 rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags); 1483 1484 if (rc == 0) { 1485 val &= ~(0xff << BYTE_OFFSET(offset)); 1486 val |= (*data_buf << BYTE_OFFSET(offset)); 1487 1488 /* nvram data is returned as an array of bytes 1489 * convert it back to cpu order 1490 */ 1491 val = be32toh(val); 1492 1493 rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags); 1494 } 1495 1496 /* disable access to nvram interface */ 1497 bxe_disable_nvram_access(sc); 1498 bxe_release_nvram_lock(sc); 1499 1500 return (rc); 1501 } 1502 1503 static int 1504 bxe_nvram_write(struct bxe_softc *sc, 1505 uint32_t offset, 1506 uint8_t *data_buf, 1507 int buf_size) 1508 { 1509 uint32_t cmd_flags; 1510 uint32_t val; 1511 uint32_t written_so_far; 1512 int rc; 1513 1514 if (buf_size == 1) { 1515 return (bxe_nvram_write1(sc, offset, data_buf, buf_size)); 1516 } 1517 1518 if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) { 1519 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1520 offset, buf_size); 1521 return (-1); 1522 } 1523 1524 if (buf_size == 0) { 1525 return (0); /* nothing to do */ 1526 } 1527 1528 if ((offset + buf_size) > sc->devinfo.flash_size) { 1529 BLOGE(sc, "Invalid parameter, " 1530 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1531 offset, buf_size, sc->devinfo.flash_size); 1532 return (-1); 1533 } 1534 1535 /* request access to nvram interface */ 1536 rc = bxe_acquire_nvram_lock(sc); 1537 if (rc) { 1538 return (rc); 1539 } 1540 1541 /* enable access to nvram interface */ 1542 bxe_enable_nvram_access(sc); 1543 1544 written_so_far = 0; 1545 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1546 while ((written_so_far < buf_size) && (rc == 0)) { 1547 if (written_so_far == (buf_size - sizeof(uint32_t))) { 1548 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1549 } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) { 1550 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1551 } else if ((offset % NVRAM_PAGE_SIZE) == 0) { 1552 cmd_flags |= MCPR_NVM_COMMAND_FIRST; 1553 } 1554 1555 memcpy(&val, data_buf, 4); 1556 1557 rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags); 1558 1559 /* advance to the next dword */ 1560 offset += sizeof(uint32_t); 1561 data_buf += sizeof(uint32_t); 1562 written_so_far += sizeof(uint32_t); 1563 cmd_flags = 0; 1564 } 1565 1566 /* disable access to nvram interface */ 1567 bxe_disable_nvram_access(sc); 1568 bxe_release_nvram_lock(sc); 1569 1570 return (rc); 1571 } 1572 1573 /* copy command into DMAE command memory and set DMAE command Go */ 1574 void 1575 bxe_post_dmae(struct bxe_softc *sc, 1576 struct dmae_command *dmae, 1577 int idx) 1578 { 1579 uint32_t cmd_offset; 1580 int i; 1581 1582 cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx)); 1583 for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) { 1584 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i)); 1585 } 1586 1587 REG_WR(sc, dmae_reg_go_c[idx], 1); 1588 } 1589 1590 uint32_t 1591 bxe_dmae_opcode_add_comp(uint32_t opcode, 1592 uint8_t comp_type) 1593 { 1594 return (opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) | 1595 DMAE_COMMAND_C_TYPE_ENABLE)); 1596 } 1597 1598 uint32_t 1599 bxe_dmae_opcode_clr_src_reset(uint32_t opcode) 1600 { 1601 return (opcode & ~DMAE_COMMAND_SRC_RESET); 1602 } 1603 1604 uint32_t 1605 bxe_dmae_opcode(struct bxe_softc *sc, 1606 uint8_t src_type, 1607 uint8_t dst_type, 1608 uint8_t with_comp, 1609 uint8_t comp_type) 1610 { 1611 uint32_t opcode = 0; 1612 1613 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) | 1614 (dst_type << DMAE_COMMAND_DST_SHIFT)); 1615 1616 opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET); 1617 1618 opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 1619 1620 opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) | 1621 (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT)); 1622 1623 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT); 1624 1625 #ifdef __BIG_ENDIAN 1626 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 1627 #else 1628 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 1629 #endif 1630 1631 if (with_comp) { 1632 opcode = bxe_dmae_opcode_add_comp(opcode, comp_type); 1633 } 1634 1635 return (opcode); 1636 } 1637 1638 static void 1639 bxe_prep_dmae_with_comp(struct bxe_softc *sc, 1640 struct dmae_command *dmae, 1641 uint8_t src_type, 1642 uint8_t dst_type) 1643 { 1644 memset(dmae, 0, sizeof(struct dmae_command)); 1645 1646 /* set the opcode */ 1647 dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type, 1648 TRUE, DMAE_COMP_PCI); 1649 1650 /* fill in the completion parameters */ 1651 dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp)); 1652 dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp)); 1653 dmae->comp_val = DMAE_COMP_VAL; 1654 } 1655 1656 /* issue a DMAE command over the init channel and wait for completion */ 1657 static int 1658 bxe_issue_dmae_with_comp(struct bxe_softc *sc, 1659 struct dmae_command *dmae) 1660 { 1661 uint32_t *wb_comp = BXE_SP(sc, wb_comp); 1662 int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000; 1663 1664 BXE_DMAE_LOCK(sc); 1665 1666 /* reset completion */ 1667 *wb_comp = 0; 1668 1669 /* post the command on the channel used for initializations */ 1670 bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc)); 1671 1672 /* wait for completion */ 1673 DELAY(5); 1674 1675 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 1676 if (!timeout || 1677 (sc->recovery_state != BXE_RECOVERY_DONE && 1678 sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) { 1679 BLOGE(sc, "DMAE timeout!\n"); 1680 BXE_DMAE_UNLOCK(sc); 1681 return (DMAE_TIMEOUT); 1682 } 1683 1684 timeout--; 1685 DELAY(50); 1686 } 1687 1688 if (*wb_comp & DMAE_PCI_ERR_FLAG) { 1689 BLOGE(sc, "DMAE PCI error!\n"); 1690 BXE_DMAE_UNLOCK(sc); 1691 return (DMAE_PCI_ERROR); 1692 } 1693 1694 BXE_DMAE_UNLOCK(sc); 1695 return (0); 1696 } 1697 1698 void 1699 bxe_read_dmae(struct bxe_softc *sc, 1700 uint32_t src_addr, 1701 uint32_t len32) 1702 { 1703 struct dmae_command dmae; 1704 uint32_t *data; 1705 int i, rc; 1706 1707 DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32)); 1708 1709 if (!sc->dmae_ready) { 1710 data = BXE_SP(sc, wb_data[0]); 1711 1712 for (i = 0; i < len32; i++) { 1713 data[i] = (CHIP_IS_E1(sc)) ? 1714 bxe_reg_rd_ind(sc, (src_addr + (i * 4))) : 1715 REG_RD(sc, (src_addr + (i * 4))); 1716 } 1717 1718 return; 1719 } 1720 1721 /* set opcode and fixed command fields */ 1722 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 1723 1724 /* fill in addresses and len */ 1725 dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */ 1726 dmae.src_addr_hi = 0; 1727 dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data)); 1728 dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data)); 1729 dmae.len = len32; 1730 1731 /* issue the command and wait for completion */ 1732 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1733 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1734 }; 1735 } 1736 1737 void 1738 bxe_write_dmae(struct bxe_softc *sc, 1739 bus_addr_t dma_addr, 1740 uint32_t dst_addr, 1741 uint32_t len32) 1742 { 1743 struct dmae_command dmae; 1744 int rc; 1745 1746 if (!sc->dmae_ready) { 1747 DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32)); 1748 1749 if (CHIP_IS_E1(sc)) { 1750 ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1751 } else { 1752 ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1753 } 1754 1755 return; 1756 } 1757 1758 /* set opcode and fixed command fields */ 1759 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 1760 1761 /* fill in addresses and len */ 1762 dmae.src_addr_lo = U64_LO(dma_addr); 1763 dmae.src_addr_hi = U64_HI(dma_addr); 1764 dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */ 1765 dmae.dst_addr_hi = 0; 1766 dmae.len = len32; 1767 1768 /* issue the command and wait for completion */ 1769 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1770 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1771 } 1772 } 1773 1774 void 1775 bxe_write_dmae_phys_len(struct bxe_softc *sc, 1776 bus_addr_t phys_addr, 1777 uint32_t addr, 1778 uint32_t len) 1779 { 1780 int dmae_wr_max = DMAE_LEN32_WR_MAX(sc); 1781 int offset = 0; 1782 1783 while (len > dmae_wr_max) { 1784 bxe_write_dmae(sc, 1785 (phys_addr + offset), /* src DMA address */ 1786 (addr + offset), /* dst GRC address */ 1787 dmae_wr_max); 1788 offset += (dmae_wr_max * 4); 1789 len -= dmae_wr_max; 1790 } 1791 1792 bxe_write_dmae(sc, 1793 (phys_addr + offset), /* src DMA address */ 1794 (addr + offset), /* dst GRC address */ 1795 len); 1796 } 1797 1798 void 1799 bxe_set_ctx_validation(struct bxe_softc *sc, 1800 struct eth_context *cxt, 1801 uint32_t cid) 1802 { 1803 /* ustorm cxt validation */ 1804 cxt->ustorm_ag_context.cdu_usage = 1805 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1806 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 1807 /* xcontext validation */ 1808 cxt->xstorm_ag_context.cdu_reserved = 1809 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1810 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 1811 } 1812 1813 static void 1814 bxe_storm_memset_hc_timeout(struct bxe_softc *sc, 1815 uint8_t port, 1816 uint8_t fw_sb_id, 1817 uint8_t sb_index, 1818 uint8_t ticks) 1819 { 1820 uint32_t addr = 1821 (BAR_CSTRORM_INTMEM + 1822 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index)); 1823 1824 REG_WR8(sc, addr, ticks); 1825 1826 BLOGD(sc, DBG_LOAD, 1827 "port %d fw_sb_id %d sb_index %d ticks %d\n", 1828 port, fw_sb_id, sb_index, ticks); 1829 } 1830 1831 static void 1832 bxe_storm_memset_hc_disable(struct bxe_softc *sc, 1833 uint8_t port, 1834 uint16_t fw_sb_id, 1835 uint8_t sb_index, 1836 uint8_t disable) 1837 { 1838 uint32_t enable_flag = 1839 (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 1840 uint32_t addr = 1841 (BAR_CSTRORM_INTMEM + 1842 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index)); 1843 uint8_t flags; 1844 1845 /* clear and set */ 1846 flags = REG_RD8(sc, addr); 1847 flags &= ~HC_INDEX_DATA_HC_ENABLED; 1848 flags |= enable_flag; 1849 REG_WR8(sc, addr, flags); 1850 1851 BLOGD(sc, DBG_LOAD, 1852 "port %d fw_sb_id %d sb_index %d disable %d\n", 1853 port, fw_sb_id, sb_index, disable); 1854 } 1855 1856 void 1857 bxe_update_coalesce_sb_index(struct bxe_softc *sc, 1858 uint8_t fw_sb_id, 1859 uint8_t sb_index, 1860 uint8_t disable, 1861 uint16_t usec) 1862 { 1863 int port = SC_PORT(sc); 1864 uint8_t ticks = (usec / 4); /* XXX ??? */ 1865 1866 bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks); 1867 1868 disable = (disable) ? 1 : ((usec) ? 0 : 1); 1869 bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable); 1870 } 1871 1872 void 1873 elink_cb_udelay(struct bxe_softc *sc, 1874 uint32_t usecs) 1875 { 1876 DELAY(usecs); 1877 } 1878 1879 uint32_t 1880 elink_cb_reg_read(struct bxe_softc *sc, 1881 uint32_t reg_addr) 1882 { 1883 return (REG_RD(sc, reg_addr)); 1884 } 1885 1886 void 1887 elink_cb_reg_write(struct bxe_softc *sc, 1888 uint32_t reg_addr, 1889 uint32_t val) 1890 { 1891 REG_WR(sc, reg_addr, val); 1892 } 1893 1894 void 1895 elink_cb_reg_wb_write(struct bxe_softc *sc, 1896 uint32_t offset, 1897 uint32_t *wb_write, 1898 uint16_t len) 1899 { 1900 REG_WR_DMAE(sc, offset, wb_write, len); 1901 } 1902 1903 void 1904 elink_cb_reg_wb_read(struct bxe_softc *sc, 1905 uint32_t offset, 1906 uint32_t *wb_write, 1907 uint16_t len) 1908 { 1909 REG_RD_DMAE(sc, offset, wb_write, len); 1910 } 1911 1912 uint8_t 1913 elink_cb_path_id(struct bxe_softc *sc) 1914 { 1915 return (SC_PATH(sc)); 1916 } 1917 1918 void 1919 elink_cb_event_log(struct bxe_softc *sc, 1920 const elink_log_id_t elink_log_id, 1921 ...) 1922 { 1923 /* XXX */ 1924 #if 0 1925 //va_list ap; 1926 va_start(ap, elink_log_id); 1927 _XXX_(sc, lm_log_id, ap); 1928 va_end(ap); 1929 #endif 1930 BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id); 1931 } 1932 1933 static int 1934 bxe_set_spio(struct bxe_softc *sc, 1935 int spio, 1936 uint32_t mode) 1937 { 1938 uint32_t spio_reg; 1939 1940 /* Only 2 SPIOs are configurable */ 1941 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 1942 BLOGE(sc, "Invalid SPIO 0x%x\n", spio); 1943 return (-1); 1944 } 1945 1946 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1947 1948 /* read SPIO and mask except the float bits */ 1949 spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 1950 1951 switch (mode) { 1952 case MISC_SPIO_OUTPUT_LOW: 1953 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio); 1954 /* clear FLOAT and set CLR */ 1955 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1956 spio_reg |= (spio << MISC_SPIO_CLR_POS); 1957 break; 1958 1959 case MISC_SPIO_OUTPUT_HIGH: 1960 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio); 1961 /* clear FLOAT and set SET */ 1962 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1963 spio_reg |= (spio << MISC_SPIO_SET_POS); 1964 break; 1965 1966 case MISC_SPIO_INPUT_HI_Z: 1967 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio); 1968 /* set FLOAT */ 1969 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 1970 break; 1971 1972 default: 1973 break; 1974 } 1975 1976 REG_WR(sc, MISC_REG_SPIO, spio_reg); 1977 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1978 1979 return (0); 1980 } 1981 1982 static int 1983 bxe_gpio_read(struct bxe_softc *sc, 1984 int gpio_num, 1985 uint8_t port) 1986 { 1987 /* The GPIO should be swapped if swap register is set and active */ 1988 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1989 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1990 int gpio_shift = (gpio_num + 1991 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1992 uint32_t gpio_mask = (1 << gpio_shift); 1993 uint32_t gpio_reg; 1994 1995 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1996 BLOGE(sc, "Invalid GPIO %d\n", gpio_num); 1997 return (-1); 1998 } 1999 2000 /* read GPIO value */ 2001 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 2002 2003 /* get the requested pin value */ 2004 return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0; 2005 } 2006 2007 static int 2008 bxe_gpio_write(struct bxe_softc *sc, 2009 int gpio_num, 2010 uint32_t mode, 2011 uint8_t port) 2012 { 2013 /* The GPIO should be swapped if swap register is set and active */ 2014 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2015 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2016 int gpio_shift = (gpio_num + 2017 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2018 uint32_t gpio_mask = (1 << gpio_shift); 2019 uint32_t gpio_reg; 2020 2021 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2022 BLOGE(sc, "Invalid GPIO %d\n", gpio_num); 2023 return (-1); 2024 } 2025 2026 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2027 2028 /* read GPIO and mask except the float bits */ 2029 gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 2030 2031 switch (mode) { 2032 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2033 BLOGD(sc, DBG_PHY, 2034 "Set GPIO %d (shift %d) -> output low\n", 2035 gpio_num, gpio_shift); 2036 /* clear FLOAT and set CLR */ 2037 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2038 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 2039 break; 2040 2041 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2042 BLOGD(sc, DBG_PHY, 2043 "Set GPIO %d (shift %d) -> output high\n", 2044 gpio_num, gpio_shift); 2045 /* clear FLOAT and set SET */ 2046 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2047 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 2048 break; 2049 2050 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2051 BLOGD(sc, DBG_PHY, 2052 "Set GPIO %d (shift %d) -> input\n", 2053 gpio_num, gpio_shift); 2054 /* set FLOAT */ 2055 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2056 break; 2057 2058 default: 2059 break; 2060 } 2061 2062 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 2063 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2064 2065 return (0); 2066 } 2067 2068 static int 2069 bxe_gpio_mult_write(struct bxe_softc *sc, 2070 uint8_t pins, 2071 uint32_t mode) 2072 { 2073 uint32_t gpio_reg; 2074 2075 /* any port swapping should be handled by caller */ 2076 2077 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2078 2079 /* read GPIO and mask except the float bits */ 2080 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 2081 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2082 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 2083 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 2084 2085 switch (mode) { 2086 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2087 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins); 2088 /* set CLR */ 2089 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 2090 break; 2091 2092 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2093 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins); 2094 /* set SET */ 2095 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 2096 break; 2097 2098 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2099 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins); 2100 /* set FLOAT */ 2101 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2102 break; 2103 2104 default: 2105 BLOGE(sc, "Invalid GPIO mode assignment %d\n", mode); 2106 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2107 return (-1); 2108 } 2109 2110 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 2111 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2112 2113 return (0); 2114 } 2115 2116 static int 2117 bxe_gpio_int_write(struct bxe_softc *sc, 2118 int gpio_num, 2119 uint32_t mode, 2120 uint8_t port) 2121 { 2122 /* The GPIO should be swapped if swap register is set and active */ 2123 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2124 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2125 int gpio_shift = (gpio_num + 2126 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2127 uint32_t gpio_mask = (1 << gpio_shift); 2128 uint32_t gpio_reg; 2129 2130 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2131 BLOGE(sc, "Invalid GPIO %d\n", gpio_num); 2132 return (-1); 2133 } 2134 2135 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2136 2137 /* read GPIO int */ 2138 gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT); 2139 2140 switch (mode) { 2141 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2142 BLOGD(sc, DBG_PHY, 2143 "Clear GPIO INT %d (shift %d) -> output low\n", 2144 gpio_num, gpio_shift); 2145 /* clear SET and set CLR */ 2146 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2147 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2148 break; 2149 2150 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2151 BLOGD(sc, DBG_PHY, 2152 "Set GPIO INT %d (shift %d) -> output high\n", 2153 gpio_num, gpio_shift); 2154 /* clear CLR and set SET */ 2155 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2156 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2157 break; 2158 2159 default: 2160 break; 2161 } 2162 2163 REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg); 2164 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2165 2166 return (0); 2167 } 2168 2169 uint32_t 2170 elink_cb_gpio_read(struct bxe_softc *sc, 2171 uint16_t gpio_num, 2172 uint8_t port) 2173 { 2174 return (bxe_gpio_read(sc, gpio_num, port)); 2175 } 2176 2177 uint8_t 2178 elink_cb_gpio_write(struct bxe_softc *sc, 2179 uint16_t gpio_num, 2180 uint8_t mode, /* 0=low 1=high */ 2181 uint8_t port) 2182 { 2183 return (bxe_gpio_write(sc, gpio_num, mode, port)); 2184 } 2185 2186 uint8_t 2187 elink_cb_gpio_mult_write(struct bxe_softc *sc, 2188 uint8_t pins, 2189 uint8_t mode) /* 0=low 1=high */ 2190 { 2191 return (bxe_gpio_mult_write(sc, pins, mode)); 2192 } 2193 2194 uint8_t 2195 elink_cb_gpio_int_write(struct bxe_softc *sc, 2196 uint16_t gpio_num, 2197 uint8_t mode, /* 0=low 1=high */ 2198 uint8_t port) 2199 { 2200 return (bxe_gpio_int_write(sc, gpio_num, mode, port)); 2201 } 2202 2203 void 2204 elink_cb_notify_link_changed(struct bxe_softc *sc) 2205 { 2206 REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 + 2207 (SC_FUNC(sc) * sizeof(uint32_t))), 1); 2208 } 2209 2210 /* send the MCP a request, block until there is a reply */ 2211 uint32_t 2212 elink_cb_fw_command(struct bxe_softc *sc, 2213 uint32_t command, 2214 uint32_t param) 2215 { 2216 int mb_idx = SC_FW_MB_IDX(sc); 2217 uint32_t seq; 2218 uint32_t rc = 0; 2219 uint32_t cnt = 1; 2220 uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10; 2221 2222 BXE_FWMB_LOCK(sc); 2223 2224 seq = ++sc->fw_seq; 2225 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param); 2226 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq)); 2227 2228 BLOGD(sc, DBG_PHY, 2229 "wrote command 0x%08x to FW MB param 0x%08x\n", 2230 (command | seq), param); 2231 2232 /* Let the FW do it's magic. GIve it up to 5 seconds... */ 2233 do { 2234 DELAY(delay * 1000); 2235 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header); 2236 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 2237 2238 BLOGD(sc, DBG_PHY, 2239 "[after %d ms] read 0x%x seq 0x%x from FW MB\n", 2240 cnt*delay, rc, seq); 2241 2242 /* is this a reply to our command? */ 2243 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) { 2244 rc &= FW_MSG_CODE_MASK; 2245 } else { 2246 /* Ruh-roh! */ 2247 BLOGE(sc, "FW failed to respond!\n"); 2248 // XXX bxe_fw_dump(sc); 2249 rc = 0; 2250 } 2251 2252 BXE_FWMB_UNLOCK(sc); 2253 return (rc); 2254 } 2255 2256 static uint32_t 2257 bxe_fw_command(struct bxe_softc *sc, 2258 uint32_t command, 2259 uint32_t param) 2260 { 2261 return (elink_cb_fw_command(sc, command, param)); 2262 } 2263 2264 static void 2265 __storm_memset_dma_mapping(struct bxe_softc *sc, 2266 uint32_t addr, 2267 bus_addr_t mapping) 2268 { 2269 REG_WR(sc, addr, U64_LO(mapping)); 2270 REG_WR(sc, (addr + 4), U64_HI(mapping)); 2271 } 2272 2273 static void 2274 storm_memset_spq_addr(struct bxe_softc *sc, 2275 bus_addr_t mapping, 2276 uint16_t abs_fid) 2277 { 2278 uint32_t addr = (XSEM_REG_FAST_MEMORY + 2279 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid)); 2280 __storm_memset_dma_mapping(sc, addr, mapping); 2281 } 2282 2283 static void 2284 storm_memset_vf_to_pf(struct bxe_softc *sc, 2285 uint16_t abs_fid, 2286 uint16_t pf_id) 2287 { 2288 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2289 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2290 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2291 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2292 } 2293 2294 static void 2295 storm_memset_func_en(struct bxe_softc *sc, 2296 uint16_t abs_fid, 2297 uint8_t enable) 2298 { 2299 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2300 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2301 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2302 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2303 } 2304 2305 static void 2306 storm_memset_eq_data(struct bxe_softc *sc, 2307 struct event_ring_data *eq_data, 2308 uint16_t pfid) 2309 { 2310 uint32_t addr; 2311 size_t size; 2312 2313 addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid)); 2314 size = sizeof(struct event_ring_data); 2315 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data); 2316 } 2317 2318 static void 2319 storm_memset_eq_prod(struct bxe_softc *sc, 2320 uint16_t eq_prod, 2321 uint16_t pfid) 2322 { 2323 uint32_t addr = (BAR_CSTRORM_INTMEM + 2324 CSTORM_EVENT_RING_PROD_OFFSET(pfid)); 2325 REG_WR16(sc, addr, eq_prod); 2326 } 2327 2328 /* 2329 * Post a slowpath command. 2330 * 2331 * A slowpath command is used to propogate a configuration change through 2332 * the controller in a controlled manner, allowing each STORM processor and 2333 * other H/W blocks to phase in the change. The commands sent on the 2334 * slowpath are referred to as ramrods. Depending on the ramrod used the 2335 * completion of the ramrod will occur in different ways. Here's a 2336 * breakdown of ramrods and how they complete: 2337 * 2338 * RAMROD_CMD_ID_ETH_PORT_SETUP 2339 * Used to setup the leading connection on a port. Completes on the 2340 * Receive Completion Queue (RCQ) of that port (typically fp[0]). 2341 * 2342 * RAMROD_CMD_ID_ETH_CLIENT_SETUP 2343 * Used to setup an additional connection on a port. Completes on the 2344 * RCQ of the multi-queue/RSS connection being initialized. 2345 * 2346 * RAMROD_CMD_ID_ETH_STAT_QUERY 2347 * Used to force the storm processors to update the statistics database 2348 * in host memory. This ramrod is send on the leading connection CID and 2349 * completes as an index increment of the CSTORM on the default status 2350 * block. 2351 * 2352 * RAMROD_CMD_ID_ETH_UPDATE 2353 * Used to update the state of the leading connection, usually to udpate 2354 * the RSS indirection table. Completes on the RCQ of the leading 2355 * connection. (Not currently used under FreeBSD until OS support becomes 2356 * available.) 2357 * 2358 * RAMROD_CMD_ID_ETH_HALT 2359 * Used when tearing down a connection prior to driver unload. Completes 2360 * on the RCQ of the multi-queue/RSS connection being torn down. Don't 2361 * use this on the leading connection. 2362 * 2363 * RAMROD_CMD_ID_ETH_SET_MAC 2364 * Sets the Unicast/Broadcast/Multicast used by the port. Completes on 2365 * the RCQ of the leading connection. 2366 * 2367 * RAMROD_CMD_ID_ETH_CFC_DEL 2368 * Used when tearing down a conneciton prior to driver unload. Completes 2369 * on the RCQ of the leading connection (since the current connection 2370 * has been completely removed from controller memory). 2371 * 2372 * RAMROD_CMD_ID_ETH_PORT_DEL 2373 * Used to tear down the leading connection prior to driver unload, 2374 * typically fp[0]. Completes as an index increment of the CSTORM on the 2375 * default status block. 2376 * 2377 * RAMROD_CMD_ID_ETH_FORWARD_SETUP 2378 * Used for connection offload. Completes on the RCQ of the multi-queue 2379 * RSS connection that is being offloaded. (Not currently used under 2380 * FreeBSD.) 2381 * 2382 * There can only be one command pending per function. 2383 * 2384 * Returns: 2385 * 0 = Success, !0 = Failure. 2386 */ 2387 2388 /* must be called under the spq lock */ 2389 static inline 2390 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc) 2391 { 2392 struct eth_spe *next_spe = sc->spq_prod_bd; 2393 2394 if (sc->spq_prod_bd == sc->spq_last_bd) { 2395 /* wrap back to the first eth_spq */ 2396 sc->spq_prod_bd = sc->spq; 2397 sc->spq_prod_idx = 0; 2398 } else { 2399 sc->spq_prod_bd++; 2400 sc->spq_prod_idx++; 2401 } 2402 2403 return (next_spe); 2404 } 2405 2406 /* must be called under the spq lock */ 2407 static inline 2408 void bxe_sp_prod_update(struct bxe_softc *sc) 2409 { 2410 int func = SC_FUNC(sc); 2411 2412 /* 2413 * Make sure that BD data is updated before writing the producer. 2414 * BD data is written to the memory, the producer is read from the 2415 * memory, thus we need a full memory barrier to ensure the ordering. 2416 */ 2417 mb(); 2418 2419 REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)), 2420 sc->spq_prod_idx); 2421 2422 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 2423 BUS_SPACE_BARRIER_WRITE); 2424 } 2425 2426 /** 2427 * bxe_is_contextless_ramrod - check if the current command ends on EQ 2428 * 2429 * @cmd: command to check 2430 * @cmd_type: command type 2431 */ 2432 static inline 2433 int bxe_is_contextless_ramrod(int cmd, 2434 int cmd_type) 2435 { 2436 if ((cmd_type == NONE_CONNECTION_TYPE) || 2437 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 2438 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 2439 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 2440 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 2441 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 2442 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) { 2443 return (TRUE); 2444 } else { 2445 return (FALSE); 2446 } 2447 } 2448 2449 /** 2450 * bxe_sp_post - place a single command on an SP ring 2451 * 2452 * @sc: driver handle 2453 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 2454 * @cid: SW CID the command is related to 2455 * @data_hi: command private data address (high 32 bits) 2456 * @data_lo: command private data address (low 32 bits) 2457 * @cmd_type: command type (e.g. NONE, ETH) 2458 * 2459 * SP data is handled as if it's always an address pair, thus data fields are 2460 * not swapped to little endian in upper functions. Instead this function swaps 2461 * data as if it's two uint32 fields. 2462 */ 2463 int 2464 bxe_sp_post(struct bxe_softc *sc, 2465 int command, 2466 int cid, 2467 uint32_t data_hi, 2468 uint32_t data_lo, 2469 int cmd_type) 2470 { 2471 struct eth_spe *spe; 2472 uint16_t type; 2473 int common; 2474 2475 common = bxe_is_contextless_ramrod(command, cmd_type); 2476 2477 BXE_SP_LOCK(sc); 2478 2479 if (common) { 2480 if (!atomic_load_acq_long(&sc->eq_spq_left)) { 2481 BLOGE(sc, "EQ ring is full!\n"); 2482 BXE_SP_UNLOCK(sc); 2483 return (-1); 2484 } 2485 } else { 2486 if (!atomic_load_acq_long(&sc->cq_spq_left)) { 2487 BLOGE(sc, "SPQ ring is full!\n"); 2488 BXE_SP_UNLOCK(sc); 2489 return (-1); 2490 } 2491 } 2492 2493 spe = bxe_sp_get_next(sc); 2494 2495 /* CID needs port number to be encoded int it */ 2496 spe->hdr.conn_and_cmd_data = 2497 htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid)); 2498 2499 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE; 2500 2501 /* TBD: Check if it works for VFs */ 2502 type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) & 2503 SPE_HDR_FUNCTION_ID); 2504 2505 spe->hdr.type = htole16(type); 2506 2507 spe->data.update_data_addr.hi = htole32(data_hi); 2508 spe->data.update_data_addr.lo = htole32(data_lo); 2509 2510 /* 2511 * It's ok if the actual decrement is issued towards the memory 2512 * somewhere between the lock and unlock. Thus no more explict 2513 * memory barrier is needed. 2514 */ 2515 if (common) { 2516 atomic_subtract_acq_long(&sc->eq_spq_left, 1); 2517 } else { 2518 atomic_subtract_acq_long(&sc->cq_spq_left, 1); 2519 } 2520 2521 BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr); 2522 BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n", 2523 BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata)); 2524 BLOGD(sc, DBG_SP, 2525 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n", 2526 sc->spq_prod_idx, 2527 (uint32_t)U64_HI(sc->spq_dma.paddr), 2528 (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq), 2529 command, 2530 common, 2531 HW_CID(sc, cid), 2532 data_hi, 2533 data_lo, 2534 type, 2535 atomic_load_acq_long(&sc->cq_spq_left), 2536 atomic_load_acq_long(&sc->eq_spq_left)); 2537 2538 bxe_sp_prod_update(sc); 2539 2540 BXE_SP_UNLOCK(sc); 2541 return (0); 2542 } 2543 2544 /** 2545 * bxe_debug_print_ind_table - prints the indirection table configuration. 2546 * 2547 * @sc: driver hanlde 2548 * @p: pointer to rss configuration 2549 */ 2550 #if 0 2551 static void 2552 bxe_debug_print_ind_table(struct bxe_softc *sc, 2553 struct ecore_config_rss_params *p) 2554 { 2555 int i; 2556 2557 BLOGD(sc, DBG_LOAD, "Setting indirection table to:\n"); 2558 BLOGD(sc, DBG_LOAD, " 0x0000: "); 2559 for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) { 2560 BLOGD(sc, DBG_LOAD, "0x%02x ", p->ind_table[i]); 2561 2562 /* Print 4 bytes in a line */ 2563 if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) && 2564 (((i + 1) & 0x3) == 0)) { 2565 BLOGD(sc, DBG_LOAD, "\n"); 2566 BLOGD(sc, DBG_LOAD, "0x%04x: ", i + 1); 2567 } 2568 } 2569 2570 BLOGD(sc, DBG_LOAD, "\n"); 2571 } 2572 #endif 2573 2574 /* 2575 * FreeBSD Device probe function. 2576 * 2577 * Compares the device found to the driver's list of supported devices and 2578 * reports back to the bsd loader whether this is the right driver for the device. 2579 * This is the driver entry function called from the "kldload" command. 2580 * 2581 * Returns: 2582 * BUS_PROBE_DEFAULT on success, positive value on failure. 2583 */ 2584 static int 2585 bxe_probe(device_t dev) 2586 { 2587 struct bxe_softc *sc; 2588 struct bxe_device_type *t; 2589 char *descbuf; 2590 uint16_t did, sdid, svid, vid; 2591 2592 /* Find our device structure */ 2593 sc = device_get_softc(dev); 2594 sc->dev = dev; 2595 t = bxe_devs; 2596 2597 /* Get the data for the device to be probed. */ 2598 vid = pci_get_vendor(dev); 2599 did = pci_get_device(dev); 2600 svid = pci_get_subvendor(dev); 2601 sdid = pci_get_subdevice(dev); 2602 2603 BLOGD(sc, DBG_LOAD, 2604 "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, " 2605 "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid); 2606 2607 /* Look through the list of known devices for a match. */ 2608 while (t->bxe_name != NULL) { 2609 if ((vid == t->bxe_vid) && (did == t->bxe_did) && 2610 ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) && 2611 ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) { 2612 descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 2613 if (descbuf == NULL) 2614 return (ENOMEM); 2615 2616 /* Print out the device identity. */ 2617 snprintf(descbuf, BXE_DEVDESC_MAX, 2618 "%s (%c%d) BXE v:%s\n", t->bxe_name, 2619 (((pci_read_config(dev, PCIR_REVID, 4) & 2620 0xf0) >> 4) + 'A'), 2621 (pci_read_config(dev, PCIR_REVID, 4) & 0xf), 2622 BXE_DRIVER_VERSION); 2623 2624 device_set_desc_copy(dev, descbuf); 2625 free(descbuf, M_TEMP); 2626 return (BUS_PROBE_DEFAULT); 2627 } 2628 t++; 2629 } 2630 2631 return (ENXIO); 2632 } 2633 2634 static void 2635 bxe_init_mutexes(struct bxe_softc *sc) 2636 { 2637 #ifdef BXE_CORE_LOCK_SX 2638 snprintf(sc->core_sx_name, sizeof(sc->core_sx_name), 2639 "bxe%d_core_lock", sc->unit); 2640 sx_init(&sc->core_sx, sc->core_sx_name); 2641 #else 2642 snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name), 2643 "bxe%d_core_lock", sc->unit); 2644 mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF); 2645 #endif 2646 2647 snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name), 2648 "bxe%d_sp_lock", sc->unit); 2649 mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF); 2650 2651 snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name), 2652 "bxe%d_dmae_lock", sc->unit); 2653 mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF); 2654 2655 snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name), 2656 "bxe%d_phy_lock", sc->unit); 2657 mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF); 2658 2659 snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name), 2660 "bxe%d_fwmb_lock", sc->unit); 2661 mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF); 2662 2663 snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name), 2664 "bxe%d_print_lock", sc->unit); 2665 mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF); 2666 2667 snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name), 2668 "bxe%d_stats_lock", sc->unit); 2669 mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF); 2670 2671 snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name), 2672 "bxe%d_mcast_lock", sc->unit); 2673 mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF); 2674 } 2675 2676 static void 2677 bxe_release_mutexes(struct bxe_softc *sc) 2678 { 2679 #ifdef BXE_CORE_LOCK_SX 2680 sx_destroy(&sc->core_sx); 2681 #else 2682 if (mtx_initialized(&sc->core_mtx)) { 2683 mtx_destroy(&sc->core_mtx); 2684 } 2685 #endif 2686 2687 if (mtx_initialized(&sc->sp_mtx)) { 2688 mtx_destroy(&sc->sp_mtx); 2689 } 2690 2691 if (mtx_initialized(&sc->dmae_mtx)) { 2692 mtx_destroy(&sc->dmae_mtx); 2693 } 2694 2695 if (mtx_initialized(&sc->port.phy_mtx)) { 2696 mtx_destroy(&sc->port.phy_mtx); 2697 } 2698 2699 if (mtx_initialized(&sc->fwmb_mtx)) { 2700 mtx_destroy(&sc->fwmb_mtx); 2701 } 2702 2703 if (mtx_initialized(&sc->print_mtx)) { 2704 mtx_destroy(&sc->print_mtx); 2705 } 2706 2707 if (mtx_initialized(&sc->stats_mtx)) { 2708 mtx_destroy(&sc->stats_mtx); 2709 } 2710 2711 if (mtx_initialized(&sc->mcast_mtx)) { 2712 mtx_destroy(&sc->mcast_mtx); 2713 } 2714 } 2715 2716 static void 2717 bxe_tx_disable(struct bxe_softc* sc) 2718 { 2719 if_t ifp = sc->ifp; 2720 2721 /* tell the stack the driver is stopped and TX queue is full */ 2722 if (ifp != NULL) { 2723 if_setdrvflags(ifp, 0); 2724 } 2725 } 2726 2727 static void 2728 bxe_drv_pulse(struct bxe_softc *sc) 2729 { 2730 SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb, 2731 sc->fw_drv_pulse_wr_seq); 2732 } 2733 2734 static inline uint16_t 2735 bxe_tx_avail(struct bxe_softc *sc, 2736 struct bxe_fastpath *fp) 2737 { 2738 int16_t used; 2739 uint16_t prod; 2740 uint16_t cons; 2741 2742 prod = fp->tx_bd_prod; 2743 cons = fp->tx_bd_cons; 2744 2745 used = SUB_S16(prod, cons); 2746 2747 #if 0 2748 KASSERT((used < 0), ("used tx bds < 0")); 2749 KASSERT((used > sc->tx_ring_size), ("used tx bds > tx_ring_size")); 2750 KASSERT(((sc->tx_ring_size - used) > MAX_TX_AVAIL), 2751 ("invalid number of tx bds used")); 2752 #endif 2753 2754 return (int16_t)(sc->tx_ring_size) - used; 2755 } 2756 2757 static inline int 2758 bxe_tx_queue_has_work(struct bxe_fastpath *fp) 2759 { 2760 uint16_t hw_cons; 2761 2762 mb(); /* status block fields can change */ 2763 hw_cons = le16toh(*fp->tx_cons_sb); 2764 return (hw_cons != fp->tx_pkt_cons); 2765 } 2766 2767 static inline uint8_t 2768 bxe_has_tx_work(struct bxe_fastpath *fp) 2769 { 2770 /* expand this for multi-cos if ever supported */ 2771 return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE; 2772 } 2773 2774 static inline int 2775 bxe_has_rx_work(struct bxe_fastpath *fp) 2776 { 2777 uint16_t rx_cq_cons_sb; 2778 2779 mb(); /* status block fields can change */ 2780 rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb); 2781 if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX) 2782 rx_cq_cons_sb++; 2783 return (fp->rx_cq_cons != rx_cq_cons_sb); 2784 } 2785 2786 static void 2787 bxe_sp_event(struct bxe_softc *sc, 2788 struct bxe_fastpath *fp, 2789 union eth_rx_cqe *rr_cqe) 2790 { 2791 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2792 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2793 enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX; 2794 struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 2795 2796 BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n", 2797 fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type); 2798 2799 #if 0 2800 /* 2801 * If cid is within VF range, replace the slowpath object with the 2802 * one corresponding to this VF 2803 */ 2804 if ((cid >= BXE_FIRST_VF_CID) && (cid < BXE_FIRST_VF_CID + BXE_VF_CIDS)) { 2805 bxe_iov_set_queue_sp_obj(sc, cid, &q_obj); 2806 } 2807 #endif 2808 2809 switch (command) { 2810 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 2811 BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid); 2812 drv_cmd = ECORE_Q_CMD_UPDATE; 2813 break; 2814 2815 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 2816 BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid); 2817 drv_cmd = ECORE_Q_CMD_SETUP; 2818 break; 2819 2820 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 2821 BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 2822 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY; 2823 break; 2824 2825 case (RAMROD_CMD_ID_ETH_HALT): 2826 BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid); 2827 drv_cmd = ECORE_Q_CMD_HALT; 2828 break; 2829 2830 case (RAMROD_CMD_ID_ETH_TERMINATE): 2831 BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid); 2832 drv_cmd = ECORE_Q_CMD_TERMINATE; 2833 break; 2834 2835 case (RAMROD_CMD_ID_ETH_EMPTY): 2836 BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid); 2837 drv_cmd = ECORE_Q_CMD_EMPTY; 2838 break; 2839 2840 default: 2841 BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n", 2842 command, fp->index); 2843 return; 2844 } 2845 2846 if ((drv_cmd != ECORE_Q_CMD_MAX) && 2847 q_obj->complete_cmd(sc, q_obj, drv_cmd)) { 2848 /* 2849 * q_obj->complete_cmd() failure means that this was 2850 * an unexpected completion. 2851 * 2852 * In this case we don't want to increase the sc->spq_left 2853 * because apparently we haven't sent this command the first 2854 * place. 2855 */ 2856 // bxe_panic(sc, ("Unexpected SP completion\n")); 2857 return; 2858 } 2859 2860 #if 0 2861 /* SRIOV: reschedule any 'in_progress' operations */ 2862 bxe_iov_sp_event(sc, cid, TRUE); 2863 #endif 2864 2865 atomic_add_acq_long(&sc->cq_spq_left, 1); 2866 2867 BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n", 2868 atomic_load_acq_long(&sc->cq_spq_left)); 2869 2870 #if 0 2871 if ((drv_cmd == ECORE_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) && 2872 (!!bxe_test_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state))) { 2873 /* 2874 * If Queue update ramrod is completed for last Queue in AFEX VIF set 2875 * flow, then ACK MCP at the end. Mark pending ACK to MCP bit to 2876 * prevent case that both bits are cleared. At the end of load/unload 2877 * driver checks that sp_state is cleared and this order prevents 2878 * races. 2879 */ 2880 bxe_set_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, &sc->sp_state); 2881 wmb(); 2882 bxe_clear_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state); 2883 2884 /* schedule the sp task as MCP ack is required */ 2885 bxe_schedule_sp_task(sc); 2886 } 2887 #endif 2888 } 2889 2890 /* 2891 * The current mbuf is part of an aggregation. Move the mbuf into the TPA 2892 * aggregation queue, put an empty mbuf back onto the receive chain, and mark 2893 * the current aggregation queue as in-progress. 2894 */ 2895 static void 2896 bxe_tpa_start(struct bxe_softc *sc, 2897 struct bxe_fastpath *fp, 2898 uint16_t queue, 2899 uint16_t cons, 2900 uint16_t prod, 2901 struct eth_fast_path_rx_cqe *cqe) 2902 { 2903 struct bxe_sw_rx_bd tmp_bd; 2904 struct bxe_sw_rx_bd *rx_buf; 2905 struct eth_rx_bd *rx_bd; 2906 int max_agg_queues; 2907 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 2908 uint16_t index; 2909 2910 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START " 2911 "cons=%d prod=%d\n", 2912 fp->index, queue, cons, prod); 2913 2914 max_agg_queues = MAX_AGG_QS(sc); 2915 2916 KASSERT((queue < max_agg_queues), 2917 ("fp[%02d] invalid aggr queue (%d >= %d)!", 2918 fp->index, queue, max_agg_queues)); 2919 2920 KASSERT((tpa_info->state == BXE_TPA_STATE_STOP), 2921 ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!", 2922 fp->index, queue)); 2923 2924 /* copy the existing mbuf and mapping from the TPA pool */ 2925 tmp_bd = tpa_info->bd; 2926 2927 if (tmp_bd.m == NULL) { 2928 BLOGE(sc, "fp[%02d].tpa[%02d] mbuf not allocated!\n", 2929 fp->index, queue); 2930 /* XXX Error handling? */ 2931 return; 2932 } 2933 2934 /* change the TPA queue to the start state */ 2935 tpa_info->state = BXE_TPA_STATE_START; 2936 tpa_info->placement_offset = cqe->placement_offset; 2937 tpa_info->parsing_flags = le16toh(cqe->pars_flags.flags); 2938 tpa_info->vlan_tag = le16toh(cqe->vlan_tag); 2939 tpa_info->len_on_bd = le16toh(cqe->len_on_bd); 2940 2941 fp->rx_tpa_queue_used |= (1 << queue); 2942 2943 /* 2944 * If all the buffer descriptors are filled with mbufs then fill in 2945 * the current consumer index with a new BD. Else if a maximum Rx 2946 * buffer limit is imposed then fill in the next producer index. 2947 */ 2948 index = (sc->max_rx_bufs != RX_BD_USABLE) ? 2949 prod : cons; 2950 2951 /* move the received mbuf and mapping to TPA pool */ 2952 tpa_info->bd = fp->rx_mbuf_chain[cons]; 2953 2954 /* release any existing RX BD mbuf mappings */ 2955 if (cons != index) { 2956 rx_buf = &fp->rx_mbuf_chain[cons]; 2957 2958 if (rx_buf->m_map != NULL) { 2959 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 2960 BUS_DMASYNC_POSTREAD); 2961 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 2962 } 2963 2964 /* 2965 * We get here when the maximum number of rx buffers is less than 2966 * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL 2967 * it out here without concern of a memory leak. 2968 */ 2969 fp->rx_mbuf_chain[cons].m = NULL; 2970 } 2971 2972 /* update the Rx SW BD with the mbuf info from the TPA pool */ 2973 fp->rx_mbuf_chain[index] = tmp_bd; 2974 2975 /* update the Rx BD with the empty mbuf phys address from the TPA pool */ 2976 rx_bd = &fp->rx_chain[index]; 2977 rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr)); 2978 rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr)); 2979 } 2980 2981 /* 2982 * When a TPA aggregation is completed, loop through the individual mbufs 2983 * of the aggregation, combining them into a single mbuf which will be sent 2984 * up the stack. Refill all freed SGEs with mbufs as we go along. 2985 */ 2986 static int 2987 bxe_fill_frag_mbuf(struct bxe_softc *sc, 2988 struct bxe_fastpath *fp, 2989 struct bxe_sw_tpa_info *tpa_info, 2990 uint16_t queue, 2991 uint16_t pages, 2992 struct mbuf *m, 2993 struct eth_end_agg_rx_cqe *cqe, 2994 uint16_t cqe_idx) 2995 { 2996 struct mbuf *m_frag; 2997 uint32_t frag_len, frag_size, i; 2998 uint16_t sge_idx; 2999 int rc = 0; 3000 int j; 3001 3002 frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd; 3003 3004 BLOGD(sc, DBG_LRO, 3005 "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n", 3006 fp->index, queue, tpa_info->len_on_bd, frag_size, pages); 3007 3008 /* make sure the aggregated frame is not too big to handle */ 3009 if (pages > 8 * PAGES_PER_SGE) { 3010 BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! " 3011 "pkt_len=%d len_on_bd=%d frag_size=%d\n", 3012 fp->index, cqe_idx, pages, le16toh(cqe->pkt_len), 3013 tpa_info->len_on_bd, frag_size); 3014 bxe_panic(sc, ("sge page count error\n")); 3015 return (EINVAL); 3016 } 3017 3018 /* 3019 * Scan through the scatter gather list pulling individual mbufs into a 3020 * single mbuf for the host stack. 3021 */ 3022 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 3023 sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j])); 3024 3025 /* 3026 * Firmware gives the indices of the SGE as if the ring is an array 3027 * (meaning that the "next" element will consume 2 indices). 3028 */ 3029 frag_len = min(frag_size, (uint32_t)(SGE_PAGES)); 3030 3031 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d " 3032 "sge_idx=%d frag_size=%d frag_len=%d\n", 3033 fp->index, queue, i, j, sge_idx, frag_size, frag_len); 3034 3035 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 3036 3037 /* allocate a new mbuf for the SGE */ 3038 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 3039 if (rc) { 3040 /* Leave all remaining SGEs in the ring! */ 3041 return (rc); 3042 } 3043 3044 /* update the fragment length */ 3045 m_frag->m_len = frag_len; 3046 3047 /* concatenate the fragment to the head mbuf */ 3048 m_cat(m, m_frag); 3049 fp->eth_q_stats.mbuf_alloc_sge--; 3050 3051 /* update the TPA mbuf size and remaining fragment size */ 3052 m->m_pkthdr.len += frag_len; 3053 frag_size -= frag_len; 3054 } 3055 3056 BLOGD(sc, DBG_LRO, 3057 "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n", 3058 fp->index, queue, frag_size); 3059 3060 return (rc); 3061 } 3062 3063 static inline void 3064 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp) 3065 { 3066 int i, j; 3067 3068 for (i = 1; i <= RX_SGE_NUM_PAGES; i++) { 3069 int idx = RX_SGE_TOTAL_PER_PAGE * i - 1; 3070 3071 for (j = 0; j < 2; j++) { 3072 BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx); 3073 idx--; 3074 } 3075 } 3076 } 3077 3078 static inline void 3079 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp) 3080 { 3081 /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */ 3082 memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask)); 3083 3084 /* 3085 * Clear the two last indices in the page to 1. These are the indices that 3086 * correspond to the "next" element, hence will never be indicated and 3087 * should be removed from the calculations. 3088 */ 3089 bxe_clear_sge_mask_next_elems(fp); 3090 } 3091 3092 static inline void 3093 bxe_update_last_max_sge(struct bxe_fastpath *fp, 3094 uint16_t idx) 3095 { 3096 uint16_t last_max = fp->last_max_sge; 3097 3098 if (SUB_S16(idx, last_max) > 0) { 3099 fp->last_max_sge = idx; 3100 } 3101 } 3102 3103 static inline void 3104 bxe_update_sge_prod(struct bxe_softc *sc, 3105 struct bxe_fastpath *fp, 3106 uint16_t sge_len, 3107 union eth_sgl_or_raw_data *cqe) 3108 { 3109 uint16_t last_max, last_elem, first_elem; 3110 uint16_t delta = 0; 3111 uint16_t i; 3112 3113 if (!sge_len) { 3114 return; 3115 } 3116 3117 /* first mark all used pages */ 3118 for (i = 0; i < sge_len; i++) { 3119 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 3120 RX_SGE(le16toh(cqe->sgl[i]))); 3121 } 3122 3123 BLOGD(sc, DBG_LRO, 3124 "fp[%02d] fp_cqe->sgl[%d] = %d\n", 3125 fp->index, sge_len - 1, 3126 le16toh(cqe->sgl[sge_len - 1])); 3127 3128 /* assume that the last SGE index is the biggest */ 3129 bxe_update_last_max_sge(fp, 3130 le16toh(cqe->sgl[sge_len - 1])); 3131 3132 last_max = RX_SGE(fp->last_max_sge); 3133 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 3134 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 3135 3136 /* if ring is not full */ 3137 if (last_elem + 1 != first_elem) { 3138 last_elem++; 3139 } 3140 3141 /* now update the prod */ 3142 for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) { 3143 if (__predict_true(fp->sge_mask[i])) { 3144 break; 3145 } 3146 3147 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 3148 delta += BIT_VEC64_ELEM_SZ; 3149 } 3150 3151 if (delta > 0) { 3152 fp->rx_sge_prod += delta; 3153 /* clear page-end entries */ 3154 bxe_clear_sge_mask_next_elems(fp); 3155 } 3156 3157 BLOGD(sc, DBG_LRO, 3158 "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n", 3159 fp->index, fp->last_max_sge, fp->rx_sge_prod); 3160 } 3161 3162 /* 3163 * The aggregation on the current TPA queue has completed. Pull the individual 3164 * mbuf fragments together into a single mbuf, perform all necessary checksum 3165 * calculations, and send the resuting mbuf to the stack. 3166 */ 3167 static void 3168 bxe_tpa_stop(struct bxe_softc *sc, 3169 struct bxe_fastpath *fp, 3170 struct bxe_sw_tpa_info *tpa_info, 3171 uint16_t queue, 3172 uint16_t pages, 3173 struct eth_end_agg_rx_cqe *cqe, 3174 uint16_t cqe_idx) 3175 { 3176 if_t ifp = sc->ifp; 3177 struct mbuf *m; 3178 int rc = 0; 3179 3180 BLOGD(sc, DBG_LRO, 3181 "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n", 3182 fp->index, queue, tpa_info->placement_offset, 3183 le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag); 3184 3185 m = tpa_info->bd.m; 3186 3187 /* allocate a replacement before modifying existing mbuf */ 3188 rc = bxe_alloc_rx_tpa_mbuf(fp, queue); 3189 if (rc) { 3190 /* drop the frame and log an error */ 3191 fp->eth_q_stats.rx_soft_errors++; 3192 goto bxe_tpa_stop_exit; 3193 } 3194 3195 /* we have a replacement, fixup the current mbuf */ 3196 m_adj(m, tpa_info->placement_offset); 3197 m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd; 3198 3199 /* mark the checksums valid (taken care of by the firmware) */ 3200 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3201 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3202 m->m_pkthdr.csum_data = 0xffff; 3203 m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | 3204 CSUM_IP_VALID | 3205 CSUM_DATA_VALID | 3206 CSUM_PSEUDO_HDR); 3207 3208 /* aggregate all of the SGEs into a single mbuf */ 3209 rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx); 3210 if (rc) { 3211 /* drop the packet and log an error */ 3212 fp->eth_q_stats.rx_soft_errors++; 3213 m_freem(m); 3214 } else { 3215 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) { 3216 m->m_pkthdr.ether_vtag = tpa_info->vlan_tag; 3217 m->m_flags |= M_VLANTAG; 3218 } 3219 3220 /* assign packet to this interface interface */ 3221 if_setrcvif(m, ifp); 3222 3223 #if __FreeBSD_version >= 800000 3224 /* specify what RSS queue was used for this flow */ 3225 m->m_pkthdr.flowid = fp->index; 3226 M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE); 3227 #endif 3228 3229 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3230 fp->eth_q_stats.rx_tpa_pkts++; 3231 3232 /* pass the frame to the stack */ 3233 if_input(ifp, m); 3234 } 3235 3236 /* we passed an mbuf up the stack or dropped the frame */ 3237 fp->eth_q_stats.mbuf_alloc_tpa--; 3238 3239 bxe_tpa_stop_exit: 3240 3241 fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP; 3242 fp->rx_tpa_queue_used &= ~(1 << queue); 3243 } 3244 3245 static uint8_t 3246 bxe_service_rxsgl( 3247 struct bxe_fastpath *fp, 3248 uint16_t len, 3249 uint16_t lenonbd, 3250 struct mbuf *m, 3251 struct eth_fast_path_rx_cqe *cqe_fp) 3252 { 3253 struct mbuf *m_frag; 3254 uint16_t frags, frag_len; 3255 uint16_t sge_idx = 0; 3256 uint16_t j; 3257 uint8_t i, rc = 0; 3258 uint32_t frag_size; 3259 3260 /* adjust the mbuf */ 3261 m->m_len = lenonbd; 3262 3263 frag_size = len - lenonbd; 3264 frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3265 3266 for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) { 3267 sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j])); 3268 3269 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 3270 frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE)); 3271 m_frag->m_len = frag_len; 3272 3273 /* allocate a new mbuf for the SGE */ 3274 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 3275 if (rc) { 3276 /* Leave all remaining SGEs in the ring! */ 3277 return (rc); 3278 } 3279 fp->eth_q_stats.mbuf_alloc_sge--; 3280 3281 /* concatenate the fragment to the head mbuf */ 3282 m_cat(m, m_frag); 3283 3284 frag_size -= frag_len; 3285 } 3286 3287 bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data); 3288 3289 return rc; 3290 } 3291 3292 static uint8_t 3293 bxe_rxeof(struct bxe_softc *sc, 3294 struct bxe_fastpath *fp) 3295 { 3296 if_t ifp = sc->ifp; 3297 uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 3298 uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod; 3299 int rx_pkts = 0; 3300 int rc = 0; 3301 3302 BXE_FP_RX_LOCK(fp); 3303 3304 /* CQ "next element" is of the size of the regular element */ 3305 hw_cq_cons = le16toh(*fp->rx_cq_cons_sb); 3306 if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) { 3307 hw_cq_cons++; 3308 } 3309 3310 bd_cons = fp->rx_bd_cons; 3311 bd_prod = fp->rx_bd_prod; 3312 bd_prod_fw = bd_prod; 3313 sw_cq_cons = fp->rx_cq_cons; 3314 sw_cq_prod = fp->rx_cq_prod; 3315 3316 /* 3317 * Memory barrier necessary as speculative reads of the rx 3318 * buffer can be ahead of the index in the status block 3319 */ 3320 rmb(); 3321 3322 BLOGD(sc, DBG_RX, 3323 "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n", 3324 fp->index, hw_cq_cons, sw_cq_cons); 3325 3326 while (sw_cq_cons != hw_cq_cons) { 3327 struct bxe_sw_rx_bd *rx_buf = NULL; 3328 union eth_rx_cqe *cqe; 3329 struct eth_fast_path_rx_cqe *cqe_fp; 3330 uint8_t cqe_fp_flags; 3331 enum eth_rx_cqe_type cqe_fp_type; 3332 uint16_t len, lenonbd, pad; 3333 struct mbuf *m = NULL; 3334 3335 comp_ring_cons = RCQ(sw_cq_cons); 3336 bd_prod = RX_BD(bd_prod); 3337 bd_cons = RX_BD(bd_cons); 3338 3339 cqe = &fp->rcq_chain[comp_ring_cons]; 3340 cqe_fp = &cqe->fast_path_cqe; 3341 cqe_fp_flags = cqe_fp->type_error_flags; 3342 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 3343 3344 BLOGD(sc, DBG_RX, 3345 "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d " 3346 "BD prod=%d cons=%d CQE type=0x%x err=0x%x " 3347 "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n", 3348 fp->index, 3349 hw_cq_cons, 3350 sw_cq_cons, 3351 bd_prod, 3352 bd_cons, 3353 CQE_TYPE(cqe_fp_flags), 3354 cqe_fp_flags, 3355 cqe_fp->status_flags, 3356 le32toh(cqe_fp->rss_hash_result), 3357 le16toh(cqe_fp->vlan_tag), 3358 le16toh(cqe_fp->pkt_len_or_gro_seg_len), 3359 le16toh(cqe_fp->len_on_bd)); 3360 3361 /* is this a slowpath msg? */ 3362 if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) { 3363 bxe_sp_event(sc, fp, cqe); 3364 goto next_cqe; 3365 } 3366 3367 rx_buf = &fp->rx_mbuf_chain[bd_cons]; 3368 3369 if (!CQE_TYPE_FAST(cqe_fp_type)) { 3370 struct bxe_sw_tpa_info *tpa_info; 3371 uint16_t frag_size, pages; 3372 uint8_t queue; 3373 3374 #if 0 3375 /* sanity check */ 3376 if (!fp->tpa_enable && 3377 (CQE_TYPE_START(cqe_fp_type) || CQE_TYPE_STOP(cqe_fp_type))) { 3378 BLOGE(sc, "START/STOP packet while !tpa_enable type (0x%x)\n", 3379 CQE_TYPE(cqe_fp_type)); 3380 } 3381 #endif 3382 3383 if (CQE_TYPE_START(cqe_fp_type)) { 3384 bxe_tpa_start(sc, fp, cqe_fp->queue_index, 3385 bd_cons, bd_prod, cqe_fp); 3386 m = NULL; /* packet not ready yet */ 3387 goto next_rx; 3388 } 3389 3390 KASSERT(CQE_TYPE_STOP(cqe_fp_type), 3391 ("CQE type is not STOP! (0x%x)\n", cqe_fp_type)); 3392 3393 queue = cqe->end_agg_cqe.queue_index; 3394 tpa_info = &fp->rx_tpa_info[queue]; 3395 3396 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n", 3397 fp->index, queue); 3398 3399 frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) - 3400 tpa_info->len_on_bd); 3401 pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3402 3403 bxe_tpa_stop(sc, fp, tpa_info, queue, pages, 3404 &cqe->end_agg_cqe, comp_ring_cons); 3405 3406 bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data); 3407 3408 goto next_cqe; 3409 } 3410 3411 /* non TPA */ 3412 3413 /* is this an error packet? */ 3414 if (__predict_false(cqe_fp_flags & 3415 ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) { 3416 BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons); 3417 fp->eth_q_stats.rx_soft_errors++; 3418 goto next_rx; 3419 } 3420 3421 len = le16toh(cqe_fp->pkt_len_or_gro_seg_len); 3422 lenonbd = le16toh(cqe_fp->len_on_bd); 3423 pad = cqe_fp->placement_offset; 3424 3425 m = rx_buf->m; 3426 3427 if (__predict_false(m == NULL)) { 3428 BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n", 3429 bd_cons, fp->index); 3430 goto next_rx; 3431 } 3432 3433 /* XXX double copy if packet length under a threshold */ 3434 3435 /* 3436 * If all the buffer descriptors are filled with mbufs then fill in 3437 * the current consumer index with a new BD. Else if a maximum Rx 3438 * buffer limit is imposed then fill in the next producer index. 3439 */ 3440 rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons, 3441 (sc->max_rx_bufs != RX_BD_USABLE) ? 3442 bd_prod : bd_cons); 3443 if (rc != 0) { 3444 3445 /* we simply reuse the received mbuf and don't post it to the stack */ 3446 m = NULL; 3447 3448 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 3449 fp->index, rc); 3450 fp->eth_q_stats.rx_soft_errors++; 3451 3452 if (sc->max_rx_bufs != RX_BD_USABLE) { 3453 /* copy this consumer index to the producer index */ 3454 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf, 3455 sizeof(struct bxe_sw_rx_bd)); 3456 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd)); 3457 } 3458 3459 goto next_rx; 3460 } 3461 3462 /* current mbuf was detached from the bd */ 3463 fp->eth_q_stats.mbuf_alloc_rx--; 3464 3465 /* we allocated a replacement mbuf, fixup the current one */ 3466 m_adj(m, pad); 3467 m->m_pkthdr.len = m->m_len = len; 3468 3469 if (len != lenonbd){ 3470 rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp); 3471 if (rc) 3472 break; 3473 fp->eth_q_stats.rx_jumbo_sge_pkts++; 3474 } 3475 3476 /* assign packet to this interface interface */ 3477 if_setrcvif(m, ifp); 3478 3479 /* assume no hardware checksum has complated */ 3480 m->m_pkthdr.csum_flags = 0; 3481 3482 /* validate checksum if offload enabled */ 3483 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 3484 /* check for a valid IP frame */ 3485 if (!(cqe->fast_path_cqe.status_flags & 3486 ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) { 3487 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3488 if (__predict_false(cqe_fp_flags & 3489 ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) { 3490 fp->eth_q_stats.rx_hw_csum_errors++; 3491 } else { 3492 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3493 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3494 } 3495 } 3496 3497 /* check for a valid TCP/UDP frame */ 3498 if (!(cqe->fast_path_cqe.status_flags & 3499 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) { 3500 if (__predict_false(cqe_fp_flags & 3501 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) { 3502 fp->eth_q_stats.rx_hw_csum_errors++; 3503 } else { 3504 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3505 m->m_pkthdr.csum_data = 0xFFFF; 3506 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | 3507 CSUM_PSEUDO_HDR); 3508 } 3509 } 3510 } 3511 3512 /* if there is a VLAN tag then flag that info */ 3513 if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_VLAN) { 3514 m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag; 3515 m->m_flags |= M_VLANTAG; 3516 } 3517 3518 #if __FreeBSD_version >= 800000 3519 /* specify what RSS queue was used for this flow */ 3520 m->m_pkthdr.flowid = fp->index; 3521 M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE); 3522 #endif 3523 3524 next_rx: 3525 3526 bd_cons = RX_BD_NEXT(bd_cons); 3527 bd_prod = RX_BD_NEXT(bd_prod); 3528 bd_prod_fw = RX_BD_NEXT(bd_prod_fw); 3529 3530 /* pass the frame to the stack */ 3531 if (__predict_true(m != NULL)) { 3532 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3533 rx_pkts++; 3534 if_input(ifp, m); 3535 } 3536 3537 next_cqe: 3538 3539 sw_cq_prod = RCQ_NEXT(sw_cq_prod); 3540 sw_cq_cons = RCQ_NEXT(sw_cq_cons); 3541 3542 /* limit spinning on the queue */ 3543 if (rc != 0) 3544 break; 3545 3546 if (rx_pkts == sc->rx_budget) { 3547 fp->eth_q_stats.rx_budget_reached++; 3548 break; 3549 } 3550 } /* while work to do */ 3551 3552 fp->rx_bd_cons = bd_cons; 3553 fp->rx_bd_prod = bd_prod_fw; 3554 fp->rx_cq_cons = sw_cq_cons; 3555 fp->rx_cq_prod = sw_cq_prod; 3556 3557 /* Update producers */ 3558 bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod); 3559 3560 fp->eth_q_stats.rx_pkts += rx_pkts; 3561 fp->eth_q_stats.rx_calls++; 3562 3563 BXE_FP_RX_UNLOCK(fp); 3564 3565 return (sw_cq_cons != hw_cq_cons); 3566 } 3567 3568 static uint16_t 3569 bxe_free_tx_pkt(struct bxe_softc *sc, 3570 struct bxe_fastpath *fp, 3571 uint16_t idx) 3572 { 3573 struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx]; 3574 struct eth_tx_start_bd *tx_start_bd; 3575 uint16_t bd_idx = TX_BD(tx_buf->first_bd); 3576 uint16_t new_cons; 3577 int nbd; 3578 3579 /* unmap the mbuf from non-paged memory */ 3580 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 3581 3582 tx_start_bd = &fp->tx_chain[bd_idx].start_bd; 3583 nbd = le16toh(tx_start_bd->nbd) - 1; 3584 3585 #if 0 3586 if ((nbd - 1) > (MAX_MBUF_FRAGS + 2)) { 3587 bxe_panic(sc, ("BAD nbd!\n")); 3588 } 3589 #endif 3590 3591 new_cons = (tx_buf->first_bd + nbd); 3592 3593 #if 0 3594 struct eth_tx_bd *tx_data_bd; 3595 3596 /* 3597 * The following code doesn't do anything but is left here 3598 * for clarity on what the new value of new_cons skipped. 3599 */ 3600 3601 /* get the next bd */ 3602 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3603 3604 /* skip the parse bd */ 3605 --nbd; 3606 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3607 3608 /* skip the TSO split header bd since they have no mapping */ 3609 if (tx_buf->flags & BXE_TSO_SPLIT_BD) { 3610 --nbd; 3611 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3612 } 3613 3614 /* now free frags */ 3615 while (nbd > 0) { 3616 tx_data_bd = &fp->tx_chain[bd_idx].reg_bd; 3617 if (--nbd) { 3618 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3619 } 3620 } 3621 #endif 3622 3623 /* free the mbuf */ 3624 if (__predict_true(tx_buf->m != NULL)) { 3625 m_freem(tx_buf->m); 3626 fp->eth_q_stats.mbuf_alloc_tx--; 3627 } else { 3628 fp->eth_q_stats.tx_chain_lost_mbuf++; 3629 } 3630 3631 tx_buf->m = NULL; 3632 tx_buf->first_bd = 0; 3633 3634 return (new_cons); 3635 } 3636 3637 /* transmit timeout watchdog */ 3638 static int 3639 bxe_watchdog(struct bxe_softc *sc, 3640 struct bxe_fastpath *fp) 3641 { 3642 BXE_FP_TX_LOCK(fp); 3643 3644 if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) { 3645 BXE_FP_TX_UNLOCK(fp); 3646 return (0); 3647 } 3648 3649 BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index); 3650 3651 BXE_FP_TX_UNLOCK(fp); 3652 3653 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT); 3654 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 3655 3656 return (-1); 3657 } 3658 3659 /* processes transmit completions */ 3660 static uint8_t 3661 bxe_txeof(struct bxe_softc *sc, 3662 struct bxe_fastpath *fp) 3663 { 3664 if_t ifp = sc->ifp; 3665 uint16_t bd_cons, hw_cons, sw_cons, pkt_cons; 3666 uint16_t tx_bd_avail; 3667 3668 BXE_FP_TX_LOCK_ASSERT(fp); 3669 3670 bd_cons = fp->tx_bd_cons; 3671 hw_cons = le16toh(*fp->tx_cons_sb); 3672 sw_cons = fp->tx_pkt_cons; 3673 3674 while (sw_cons != hw_cons) { 3675 pkt_cons = TX_BD(sw_cons); 3676 3677 BLOGD(sc, DBG_TX, 3678 "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n", 3679 fp->index, hw_cons, sw_cons, pkt_cons); 3680 3681 bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons); 3682 3683 sw_cons++; 3684 } 3685 3686 fp->tx_pkt_cons = sw_cons; 3687 fp->tx_bd_cons = bd_cons; 3688 3689 BLOGD(sc, DBG_TX, 3690 "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n", 3691 fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod); 3692 3693 mb(); 3694 3695 tx_bd_avail = bxe_tx_avail(sc, fp); 3696 3697 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 3698 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 3699 } else { 3700 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 3701 } 3702 3703 if (fp->tx_pkt_prod != fp->tx_pkt_cons) { 3704 /* reset the watchdog timer if there are pending transmits */ 3705 fp->watchdog_timer = BXE_TX_TIMEOUT; 3706 return (TRUE); 3707 } else { 3708 /* clear watchdog when there are no pending transmits */ 3709 fp->watchdog_timer = 0; 3710 return (FALSE); 3711 } 3712 } 3713 3714 static void 3715 bxe_drain_tx_queues(struct bxe_softc *sc) 3716 { 3717 struct bxe_fastpath *fp; 3718 int i, count; 3719 3720 /* wait until all TX fastpath tasks have completed */ 3721 for (i = 0; i < sc->num_queues; i++) { 3722 fp = &sc->fp[i]; 3723 3724 count = 1000; 3725 3726 while (bxe_has_tx_work(fp)) { 3727 3728 BXE_FP_TX_LOCK(fp); 3729 bxe_txeof(sc, fp); 3730 BXE_FP_TX_UNLOCK(fp); 3731 3732 if (count == 0) { 3733 BLOGE(sc, "Timeout waiting for fp[%d] " 3734 "transmits to complete!\n", i); 3735 bxe_panic(sc, ("tx drain failure\n")); 3736 return; 3737 } 3738 3739 count--; 3740 DELAY(1000); 3741 rmb(); 3742 } 3743 } 3744 3745 return; 3746 } 3747 3748 static int 3749 bxe_del_all_macs(struct bxe_softc *sc, 3750 struct ecore_vlan_mac_obj *mac_obj, 3751 int mac_type, 3752 uint8_t wait_for_comp) 3753 { 3754 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 3755 int rc; 3756 3757 /* wait for completion of requested */ 3758 if (wait_for_comp) { 3759 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 3760 } 3761 3762 /* Set the mac type of addresses we want to clear */ 3763 bxe_set_bit(mac_type, &vlan_mac_flags); 3764 3765 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags); 3766 if (rc < 0) { 3767 BLOGE(sc, "Failed to delete MACs (%d)\n", rc); 3768 } 3769 3770 return (rc); 3771 } 3772 3773 static int 3774 bxe_fill_accept_flags(struct bxe_softc *sc, 3775 uint32_t rx_mode, 3776 unsigned long *rx_accept_flags, 3777 unsigned long *tx_accept_flags) 3778 { 3779 /* Clear the flags first */ 3780 *rx_accept_flags = 0; 3781 *tx_accept_flags = 0; 3782 3783 switch (rx_mode) { 3784 case BXE_RX_MODE_NONE: 3785 /* 3786 * 'drop all' supersedes any accept flags that may have been 3787 * passed to the function. 3788 */ 3789 break; 3790 3791 case BXE_RX_MODE_NORMAL: 3792 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3793 bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags); 3794 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3795 3796 /* internal switching mode */ 3797 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3798 bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags); 3799 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3800 3801 break; 3802 3803 case BXE_RX_MODE_ALLMULTI: 3804 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3805 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3806 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3807 3808 /* internal switching mode */ 3809 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3810 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3811 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3812 3813 break; 3814 3815 case BXE_RX_MODE_PROMISC: 3816 /* 3817 * According to deffinition of SI mode, iface in promisc mode 3818 * should receive matched and unmatched (in resolution of port) 3819 * unicast packets. 3820 */ 3821 bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags); 3822 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3823 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3824 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3825 3826 /* internal switching mode */ 3827 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3828 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3829 3830 if (IS_MF_SI(sc)) { 3831 bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags); 3832 } else { 3833 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3834 } 3835 3836 break; 3837 3838 default: 3839 BLOGE(sc, "Unknown rx_mode (%d)\n", rx_mode); 3840 return (-1); 3841 } 3842 3843 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ 3844 if (rx_mode != BXE_RX_MODE_NONE) { 3845 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags); 3846 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags); 3847 } 3848 3849 return (0); 3850 } 3851 3852 static int 3853 bxe_set_q_rx_mode(struct bxe_softc *sc, 3854 uint8_t cl_id, 3855 unsigned long rx_mode_flags, 3856 unsigned long rx_accept_flags, 3857 unsigned long tx_accept_flags, 3858 unsigned long ramrod_flags) 3859 { 3860 struct ecore_rx_mode_ramrod_params ramrod_param; 3861 int rc; 3862 3863 memset(&ramrod_param, 0, sizeof(ramrod_param)); 3864 3865 /* Prepare ramrod parameters */ 3866 ramrod_param.cid = 0; 3867 ramrod_param.cl_id = cl_id; 3868 ramrod_param.rx_mode_obj = &sc->rx_mode_obj; 3869 ramrod_param.func_id = SC_FUNC(sc); 3870 3871 ramrod_param.pstate = &sc->sp_state; 3872 ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING; 3873 3874 ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata); 3875 ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata); 3876 3877 bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 3878 3879 ramrod_param.ramrod_flags = ramrod_flags; 3880 ramrod_param.rx_mode_flags = rx_mode_flags; 3881 3882 ramrod_param.rx_accept_flags = rx_accept_flags; 3883 ramrod_param.tx_accept_flags = tx_accept_flags; 3884 3885 rc = ecore_config_rx_mode(sc, &ramrod_param); 3886 if (rc < 0) { 3887 BLOGE(sc, "Set rx_mode %d failed\n", sc->rx_mode); 3888 return (rc); 3889 } 3890 3891 return (0); 3892 } 3893 3894 static int 3895 bxe_set_storm_rx_mode(struct bxe_softc *sc) 3896 { 3897 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 3898 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 3899 int rc; 3900 3901 rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags, 3902 &tx_accept_flags); 3903 if (rc) { 3904 return (rc); 3905 } 3906 3907 bxe_set_bit(RAMROD_RX, &ramrod_flags); 3908 bxe_set_bit(RAMROD_TX, &ramrod_flags); 3909 3910 /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */ 3911 return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags, 3912 rx_accept_flags, tx_accept_flags, 3913 ramrod_flags)); 3914 } 3915 3916 /* returns the "mcp load_code" according to global load_count array */ 3917 static int 3918 bxe_nic_load_no_mcp(struct bxe_softc *sc) 3919 { 3920 int path = SC_PATH(sc); 3921 int port = SC_PORT(sc); 3922 3923 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3924 path, load_count[path][0], load_count[path][1], 3925 load_count[path][2]); 3926 load_count[path][0]++; 3927 load_count[path][1 + port]++; 3928 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3929 path, load_count[path][0], load_count[path][1], 3930 load_count[path][2]); 3931 if (load_count[path][0] == 1) { 3932 return (FW_MSG_CODE_DRV_LOAD_COMMON); 3933 } else if (load_count[path][1 + port] == 1) { 3934 return (FW_MSG_CODE_DRV_LOAD_PORT); 3935 } else { 3936 return (FW_MSG_CODE_DRV_LOAD_FUNCTION); 3937 } 3938 } 3939 3940 /* returns the "mcp load_code" according to global load_count array */ 3941 static int 3942 bxe_nic_unload_no_mcp(struct bxe_softc *sc) 3943 { 3944 int port = SC_PORT(sc); 3945 int path = SC_PATH(sc); 3946 3947 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3948 path, load_count[path][0], load_count[path][1], 3949 load_count[path][2]); 3950 load_count[path][0]--; 3951 load_count[path][1 + port]--; 3952 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3953 path, load_count[path][0], load_count[path][1], 3954 load_count[path][2]); 3955 if (load_count[path][0] == 0) { 3956 return (FW_MSG_CODE_DRV_UNLOAD_COMMON); 3957 } else if (load_count[path][1 + port] == 0) { 3958 return (FW_MSG_CODE_DRV_UNLOAD_PORT); 3959 } else { 3960 return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION); 3961 } 3962 } 3963 3964 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */ 3965 static uint32_t 3966 bxe_send_unload_req(struct bxe_softc *sc, 3967 int unload_mode) 3968 { 3969 uint32_t reset_code = 0; 3970 #if 0 3971 int port = SC_PORT(sc); 3972 int path = SC_PATH(sc); 3973 #endif 3974 3975 /* Select the UNLOAD request mode */ 3976 if (unload_mode == UNLOAD_NORMAL) { 3977 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3978 } 3979 #if 0 3980 else if (sc->flags & BXE_NO_WOL_FLAG) { 3981 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP; 3982 } else if (sc->wol) { 3983 uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0; 3984 uint8_t *mac_addr = sc->dev->dev_addr; 3985 uint32_t val; 3986 uint16_t pmc; 3987 3988 /* 3989 * The mac address is written to entries 1-4 to 3990 * preserve entry 0 which is used by the PMF 3991 */ 3992 uint8_t entry = (SC_VN(sc) + 1)*8; 3993 3994 val = (mac_addr[0] << 8) | mac_addr[1]; 3995 EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry, val); 3996 3997 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 3998 (mac_addr[4] << 8) | mac_addr[5]; 3999 EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val); 4000 4001 /* Enable the PME and clear the status */ 4002 pmc = pci_read_config(sc->dev, 4003 (sc->devinfo.pcie_pm_cap_reg + 4004 PCIR_POWER_STATUS), 4005 2); 4006 pmc |= PCIM_PSTAT_PMEENABLE | PCIM_PSTAT_PME; 4007 pci_write_config(sc->dev, 4008 (sc->devinfo.pcie_pm_cap_reg + 4009 PCIR_POWER_STATUS), 4010 pmc, 4); 4011 4012 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN; 4013 } 4014 #endif 4015 else { 4016 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 4017 } 4018 4019 /* Send the request to the MCP */ 4020 if (!BXE_NOMCP(sc)) { 4021 reset_code = bxe_fw_command(sc, reset_code, 0); 4022 } else { 4023 reset_code = bxe_nic_unload_no_mcp(sc); 4024 } 4025 4026 return (reset_code); 4027 } 4028 4029 /* send UNLOAD_DONE command to the MCP */ 4030 static void 4031 bxe_send_unload_done(struct bxe_softc *sc, 4032 uint8_t keep_link) 4033 { 4034 uint32_t reset_param = 4035 keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 4036 4037 /* Report UNLOAD_DONE to MCP */ 4038 if (!BXE_NOMCP(sc)) { 4039 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 4040 } 4041 } 4042 4043 static int 4044 bxe_func_wait_started(struct bxe_softc *sc) 4045 { 4046 int tout = 50; 4047 4048 if (!sc->port.pmf) { 4049 return (0); 4050 } 4051 4052 /* 4053 * (assumption: No Attention from MCP at this stage) 4054 * PMF probably in the middle of TX disable/enable transaction 4055 * 1. Sync IRS for default SB 4056 * 2. Sync SP queue - this guarantees us that attention handling started 4057 * 3. Wait, that TX disable/enable transaction completes 4058 * 4059 * 1+2 guarantee that if DCBX attention was scheduled it already changed 4060 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 4061 * received completion for the transaction the state is TX_STOPPED. 4062 * State will return to STARTED after completion of TX_STOPPED-->STARTED 4063 * transaction. 4064 */ 4065 4066 /* XXX make sure default SB ISR is done */ 4067 /* need a way to synchronize an irq (intr_mtx?) */ 4068 4069 /* XXX flush any work queues */ 4070 4071 while (ecore_func_get_state(sc, &sc->func_obj) != 4072 ECORE_F_STATE_STARTED && tout--) { 4073 DELAY(20000); 4074 } 4075 4076 if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) { 4077 /* 4078 * Failed to complete the transaction in a "good way" 4079 * Force both transactions with CLR bit. 4080 */ 4081 struct ecore_func_state_params func_params = { NULL }; 4082 4083 BLOGE(sc, "Unexpected function state! " 4084 "Forcing STARTED-->TX_STOPPED-->STARTED\n"); 4085 4086 func_params.f_obj = &sc->func_obj; 4087 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 4088 4089 /* STARTED-->TX_STOPPED */ 4090 func_params.cmd = ECORE_F_CMD_TX_STOP; 4091 ecore_func_state_change(sc, &func_params); 4092 4093 /* TX_STOPPED-->STARTED */ 4094 func_params.cmd = ECORE_F_CMD_TX_START; 4095 return (ecore_func_state_change(sc, &func_params)); 4096 } 4097 4098 return (0); 4099 } 4100 4101 static int 4102 bxe_stop_queue(struct bxe_softc *sc, 4103 int index) 4104 { 4105 struct bxe_fastpath *fp = &sc->fp[index]; 4106 struct ecore_queue_state_params q_params = { NULL }; 4107 int rc; 4108 4109 BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index); 4110 4111 q_params.q_obj = &sc->sp_objs[fp->index].q_obj; 4112 /* We want to wait for completion in this context */ 4113 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 4114 4115 /* Stop the primary connection: */ 4116 4117 /* ...halt the connection */ 4118 q_params.cmd = ECORE_Q_CMD_HALT; 4119 rc = ecore_queue_state_change(sc, &q_params); 4120 if (rc) { 4121 return (rc); 4122 } 4123 4124 /* ...terminate the connection */ 4125 q_params.cmd = ECORE_Q_CMD_TERMINATE; 4126 memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate)); 4127 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 4128 rc = ecore_queue_state_change(sc, &q_params); 4129 if (rc) { 4130 return (rc); 4131 } 4132 4133 /* ...delete cfc entry */ 4134 q_params.cmd = ECORE_Q_CMD_CFC_DEL; 4135 memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del)); 4136 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 4137 return (ecore_queue_state_change(sc, &q_params)); 4138 } 4139 4140 /* wait for the outstanding SP commands */ 4141 static inline uint8_t 4142 bxe_wait_sp_comp(struct bxe_softc *sc, 4143 unsigned long mask) 4144 { 4145 unsigned long tmp; 4146 int tout = 5000; /* wait for 5 secs tops */ 4147 4148 while (tout--) { 4149 mb(); 4150 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) { 4151 return (TRUE); 4152 } 4153 4154 DELAY(1000); 4155 } 4156 4157 mb(); 4158 4159 tmp = atomic_load_acq_long(&sc->sp_state); 4160 if (tmp & mask) { 4161 BLOGE(sc, "Filtering completion timed out: " 4162 "sp_state 0x%lx, mask 0x%lx\n", 4163 tmp, mask); 4164 return (FALSE); 4165 } 4166 4167 return (FALSE); 4168 } 4169 4170 static int 4171 bxe_func_stop(struct bxe_softc *sc) 4172 { 4173 struct ecore_func_state_params func_params = { NULL }; 4174 int rc; 4175 4176 /* prepare parameters for function state transitions */ 4177 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 4178 func_params.f_obj = &sc->func_obj; 4179 func_params.cmd = ECORE_F_CMD_STOP; 4180 4181 /* 4182 * Try to stop the function the 'good way'. If it fails (in case 4183 * of a parity error during bxe_chip_cleanup()) and we are 4184 * not in a debug mode, perform a state transaction in order to 4185 * enable further HW_RESET transaction. 4186 */ 4187 rc = ecore_func_state_change(sc, &func_params); 4188 if (rc) { 4189 BLOGE(sc, "FUNC_STOP ramrod failed. " 4190 "Running a dry transaction\n"); 4191 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 4192 return (ecore_func_state_change(sc, &func_params)); 4193 } 4194 4195 return (0); 4196 } 4197 4198 static int 4199 bxe_reset_hw(struct bxe_softc *sc, 4200 uint32_t load_code) 4201 { 4202 struct ecore_func_state_params func_params = { NULL }; 4203 4204 /* Prepare parameters for function state transitions */ 4205 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 4206 4207 func_params.f_obj = &sc->func_obj; 4208 func_params.cmd = ECORE_F_CMD_HW_RESET; 4209 4210 func_params.params.hw_init.load_phase = load_code; 4211 4212 return (ecore_func_state_change(sc, &func_params)); 4213 } 4214 4215 static void 4216 bxe_int_disable_sync(struct bxe_softc *sc, 4217 int disable_hw) 4218 { 4219 if (disable_hw) { 4220 /* prevent the HW from sending interrupts */ 4221 bxe_int_disable(sc); 4222 } 4223 4224 /* XXX need a way to synchronize ALL irqs (intr_mtx?) */ 4225 /* make sure all ISRs are done */ 4226 4227 /* XXX make sure sp_task is not running */ 4228 /* cancel and flush work queues */ 4229 } 4230 4231 static void 4232 bxe_chip_cleanup(struct bxe_softc *sc, 4233 uint32_t unload_mode, 4234 uint8_t keep_link) 4235 { 4236 int port = SC_PORT(sc); 4237 struct ecore_mcast_ramrod_params rparam = { NULL }; 4238 uint32_t reset_code; 4239 int i, rc = 0; 4240 4241 bxe_drain_tx_queues(sc); 4242 4243 /* give HW time to discard old tx messages */ 4244 DELAY(1000); 4245 4246 /* Clean all ETH MACs */ 4247 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE); 4248 if (rc < 0) { 4249 BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc); 4250 } 4251 4252 /* Clean up UC list */ 4253 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE); 4254 if (rc < 0) { 4255 BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc); 4256 } 4257 4258 /* Disable LLH */ 4259 if (!CHIP_IS_E1(sc)) { 4260 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 4261 } 4262 4263 /* Set "drop all" to stop Rx */ 4264 4265 /* 4266 * We need to take the BXE_MCAST_LOCK() here in order to prevent 4267 * a race between the completion code and this code. 4268 */ 4269 BXE_MCAST_LOCK(sc); 4270 4271 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 4272 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 4273 } else { 4274 bxe_set_storm_rx_mode(sc); 4275 } 4276 4277 /* Clean up multicast configuration */ 4278 rparam.mcast_obj = &sc->mcast_obj; 4279 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4280 if (rc < 0) { 4281 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4282 } 4283 4284 BXE_MCAST_UNLOCK(sc); 4285 4286 // XXX bxe_iov_chip_cleanup(sc); 4287 4288 /* 4289 * Send the UNLOAD_REQUEST to the MCP. This will return if 4290 * this function should perform FUNCTION, PORT, or COMMON HW 4291 * reset. 4292 */ 4293 reset_code = bxe_send_unload_req(sc, unload_mode); 4294 4295 /* 4296 * (assumption: No Attention from MCP at this stage) 4297 * PMF probably in the middle of TX disable/enable transaction 4298 */ 4299 rc = bxe_func_wait_started(sc); 4300 if (rc) { 4301 BLOGE(sc, "bxe_func_wait_started failed\n"); 4302 } 4303 4304 /* 4305 * Close multi and leading connections 4306 * Completions for ramrods are collected in a synchronous way 4307 */ 4308 for (i = 0; i < sc->num_queues; i++) { 4309 if (bxe_stop_queue(sc, i)) { 4310 goto unload_error; 4311 } 4312 } 4313 4314 /* 4315 * If SP settings didn't get completed so far - something 4316 * very wrong has happen. 4317 */ 4318 if (!bxe_wait_sp_comp(sc, ~0x0UL)) { 4319 BLOGE(sc, "Common slow path ramrods got stuck!\n"); 4320 } 4321 4322 unload_error: 4323 4324 rc = bxe_func_stop(sc); 4325 if (rc) { 4326 BLOGE(sc, "Function stop failed!\n"); 4327 } 4328 4329 /* disable HW interrupts */ 4330 bxe_int_disable_sync(sc, TRUE); 4331 4332 /* detach interrupts */ 4333 bxe_interrupt_detach(sc); 4334 4335 /* Reset the chip */ 4336 rc = bxe_reset_hw(sc, reset_code); 4337 if (rc) { 4338 BLOGE(sc, "Hardware reset failed\n"); 4339 } 4340 4341 /* Report UNLOAD_DONE to MCP */ 4342 bxe_send_unload_done(sc, keep_link); 4343 } 4344 4345 static void 4346 bxe_disable_close_the_gate(struct bxe_softc *sc) 4347 { 4348 uint32_t val; 4349 int port = SC_PORT(sc); 4350 4351 BLOGD(sc, DBG_LOAD, 4352 "Disabling 'close the gates'\n"); 4353 4354 if (CHIP_IS_E1(sc)) { 4355 uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 4356 MISC_REG_AEU_MASK_ATTN_FUNC_0; 4357 val = REG_RD(sc, addr); 4358 val &= ~(0x300); 4359 REG_WR(sc, addr, val); 4360 } else { 4361 val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK); 4362 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 4363 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 4364 REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val); 4365 } 4366 } 4367 4368 /* 4369 * Cleans the object that have internal lists without sending 4370 * ramrods. Should be run when interrutps are disabled. 4371 */ 4372 static void 4373 bxe_squeeze_objects(struct bxe_softc *sc) 4374 { 4375 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 4376 struct ecore_mcast_ramrod_params rparam = { NULL }; 4377 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 4378 int rc; 4379 4380 /* Cleanup MACs' object first... */ 4381 4382 /* Wait for completion of requested */ 4383 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 4384 /* Perform a dry cleanup */ 4385 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 4386 4387 /* Clean ETH primary MAC */ 4388 bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags); 4389 rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags, 4390 &ramrod_flags); 4391 if (rc != 0) { 4392 BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc); 4393 } 4394 4395 /* Cleanup UC list */ 4396 vlan_mac_flags = 0; 4397 bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags); 4398 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, 4399 &ramrod_flags); 4400 if (rc != 0) { 4401 BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc); 4402 } 4403 4404 /* Now clean mcast object... */ 4405 4406 rparam.mcast_obj = &sc->mcast_obj; 4407 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 4408 4409 /* Add a DEL command... */ 4410 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4411 if (rc < 0) { 4412 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4413 } 4414 4415 /* now wait until all pending commands are cleared */ 4416 4417 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4418 while (rc != 0) { 4419 if (rc < 0) { 4420 BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc); 4421 return; 4422 } 4423 4424 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4425 } 4426 } 4427 4428 /* stop the controller */ 4429 static __noinline int 4430 bxe_nic_unload(struct bxe_softc *sc, 4431 uint32_t unload_mode, 4432 uint8_t keep_link) 4433 { 4434 uint8_t global = FALSE; 4435 uint32_t val; 4436 4437 BXE_CORE_LOCK_ASSERT(sc); 4438 4439 BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n"); 4440 4441 /* mark driver as unloaded in shmem2 */ 4442 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 4443 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 4444 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 4445 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 4446 } 4447 4448 if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE && 4449 (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) { 4450 /* 4451 * We can get here if the driver has been unloaded 4452 * during parity error recovery and is either waiting for a 4453 * leader to complete or for other functions to unload and 4454 * then ifconfig down has been issued. In this case we want to 4455 * unload and let other functions to complete a recovery 4456 * process. 4457 */ 4458 sc->recovery_state = BXE_RECOVERY_DONE; 4459 sc->is_leader = 0; 4460 bxe_release_leader_lock(sc); 4461 mb(); 4462 4463 BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n"); 4464 BLOGE(sc, "Can't unload in closed or error state\n"); 4465 return (-1); 4466 } 4467 4468 /* 4469 * Nothing to do during unload if previous bxe_nic_load() 4470 * did not completed succesfully - all resourses are released. 4471 */ 4472 if ((sc->state == BXE_STATE_CLOSED) || 4473 (sc->state == BXE_STATE_ERROR)) { 4474 return (0); 4475 } 4476 4477 sc->state = BXE_STATE_CLOSING_WAITING_HALT; 4478 mb(); 4479 4480 /* stop tx */ 4481 bxe_tx_disable(sc); 4482 4483 sc->rx_mode = BXE_RX_MODE_NONE; 4484 /* XXX set rx mode ??? */ 4485 4486 if (IS_PF(sc)) { 4487 /* set ALWAYS_ALIVE bit in shmem */ 4488 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 4489 4490 bxe_drv_pulse(sc); 4491 4492 bxe_stats_handle(sc, STATS_EVENT_STOP); 4493 bxe_save_statistics(sc); 4494 } 4495 4496 /* wait till consumers catch up with producers in all queues */ 4497 bxe_drain_tx_queues(sc); 4498 4499 /* if VF indicate to PF this function is going down (PF will delete sp 4500 * elements and clear initializations 4501 */ 4502 if (IS_VF(sc)) { 4503 ; /* bxe_vfpf_close_vf(sc); */ 4504 } else if (unload_mode != UNLOAD_RECOVERY) { 4505 /* if this is a normal/close unload need to clean up chip */ 4506 bxe_chip_cleanup(sc, unload_mode, keep_link); 4507 } else { 4508 /* Send the UNLOAD_REQUEST to the MCP */ 4509 bxe_send_unload_req(sc, unload_mode); 4510 4511 /* 4512 * Prevent transactions to host from the functions on the 4513 * engine that doesn't reset global blocks in case of global 4514 * attention once gloabl blocks are reset and gates are opened 4515 * (the engine which leader will perform the recovery 4516 * last). 4517 */ 4518 if (!CHIP_IS_E1x(sc)) { 4519 bxe_pf_disable(sc); 4520 } 4521 4522 /* disable HW interrupts */ 4523 bxe_int_disable_sync(sc, TRUE); 4524 4525 /* detach interrupts */ 4526 bxe_interrupt_detach(sc); 4527 4528 /* Report UNLOAD_DONE to MCP */ 4529 bxe_send_unload_done(sc, FALSE); 4530 } 4531 4532 /* 4533 * At this stage no more interrupts will arrive so we may safely clean 4534 * the queue'able objects here in case they failed to get cleaned so far. 4535 */ 4536 if (IS_PF(sc)) { 4537 bxe_squeeze_objects(sc); 4538 } 4539 4540 /* There should be no more pending SP commands at this stage */ 4541 sc->sp_state = 0; 4542 4543 sc->port.pmf = 0; 4544 4545 bxe_free_fp_buffers(sc); 4546 4547 if (IS_PF(sc)) { 4548 bxe_free_mem(sc); 4549 } 4550 4551 bxe_free_fw_stats_mem(sc); 4552 4553 sc->state = BXE_STATE_CLOSED; 4554 4555 /* 4556 * Check if there are pending parity attentions. If there are - set 4557 * RECOVERY_IN_PROGRESS. 4558 */ 4559 if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) { 4560 bxe_set_reset_in_progress(sc); 4561 4562 /* Set RESET_IS_GLOBAL if needed */ 4563 if (global) { 4564 bxe_set_reset_global(sc); 4565 } 4566 } 4567 4568 /* 4569 * The last driver must disable a "close the gate" if there is no 4570 * parity attention or "process kill" pending. 4571 */ 4572 if (IS_PF(sc) && !bxe_clear_pf_load(sc) && 4573 bxe_reset_is_done(sc, SC_PATH(sc))) { 4574 bxe_disable_close_the_gate(sc); 4575 } 4576 4577 BLOGD(sc, DBG_LOAD, "Ended NIC unload\n"); 4578 4579 return (0); 4580 } 4581 4582 /* 4583 * Called by the OS to set various media options (i.e. link, speed, etc.) when 4584 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...". 4585 */ 4586 static int 4587 bxe_ifmedia_update(struct ifnet *ifp) 4588 { 4589 struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp); 4590 struct ifmedia *ifm; 4591 4592 ifm = &sc->ifmedia; 4593 4594 /* We only support Ethernet media type. */ 4595 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) { 4596 return (EINVAL); 4597 } 4598 4599 switch (IFM_SUBTYPE(ifm->ifm_media)) { 4600 case IFM_AUTO: 4601 break; 4602 case IFM_10G_CX4: 4603 case IFM_10G_SR: 4604 case IFM_10G_T: 4605 case IFM_10G_TWINAX: 4606 default: 4607 /* We don't support changing the media type. */ 4608 BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n", 4609 IFM_SUBTYPE(ifm->ifm_media)); 4610 return (EINVAL); 4611 } 4612 4613 return (0); 4614 } 4615 4616 /* 4617 * Called by the OS to get the current media status (i.e. link, speed, etc.). 4618 */ 4619 static void 4620 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr) 4621 { 4622 struct bxe_softc *sc = if_getsoftc(ifp); 4623 4624 /* Report link down if the driver isn't running. */ 4625 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { 4626 ifmr->ifm_active |= IFM_NONE; 4627 return; 4628 } 4629 4630 /* Setup the default interface info. */ 4631 ifmr->ifm_status = IFM_AVALID; 4632 ifmr->ifm_active = IFM_ETHER; 4633 4634 if (sc->link_vars.link_up) { 4635 ifmr->ifm_status |= IFM_ACTIVE; 4636 } else { 4637 ifmr->ifm_active |= IFM_NONE; 4638 return; 4639 } 4640 4641 ifmr->ifm_active |= sc->media; 4642 4643 if (sc->link_vars.duplex == DUPLEX_FULL) { 4644 ifmr->ifm_active |= IFM_FDX; 4645 } else { 4646 ifmr->ifm_active |= IFM_HDX; 4647 } 4648 } 4649 4650 static int 4651 bxe_ioctl_nvram(struct bxe_softc *sc, 4652 uint32_t priv_op, 4653 struct ifreq *ifr) 4654 { 4655 struct bxe_nvram_data nvdata_base; 4656 struct bxe_nvram_data *nvdata; 4657 int len; 4658 int error = 0; 4659 4660 copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base)); 4661 4662 len = (sizeof(struct bxe_nvram_data) + 4663 nvdata_base.len - 4664 sizeof(uint32_t)); 4665 4666 if (len > sizeof(struct bxe_nvram_data)) { 4667 if ((nvdata = (struct bxe_nvram_data *) 4668 malloc(len, M_DEVBUF, 4669 (M_NOWAIT | M_ZERO))) == NULL) { 4670 BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed\n"); 4671 return (1); 4672 } 4673 memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data)); 4674 } else { 4675 nvdata = &nvdata_base; 4676 } 4677 4678 if (priv_op == BXE_IOC_RD_NVRAM) { 4679 BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n", 4680 nvdata->offset, nvdata->len); 4681 error = bxe_nvram_read(sc, 4682 nvdata->offset, 4683 (uint8_t *)nvdata->value, 4684 nvdata->len); 4685 copyout(nvdata, ifr->ifr_data, len); 4686 } else { /* BXE_IOC_WR_NVRAM */ 4687 BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n", 4688 nvdata->offset, nvdata->len); 4689 copyin(ifr->ifr_data, nvdata, len); 4690 error = bxe_nvram_write(sc, 4691 nvdata->offset, 4692 (uint8_t *)nvdata->value, 4693 nvdata->len); 4694 } 4695 4696 if (len > sizeof(struct bxe_nvram_data)) { 4697 free(nvdata, M_DEVBUF); 4698 } 4699 4700 return (error); 4701 } 4702 4703 static int 4704 bxe_ioctl_stats_show(struct bxe_softc *sc, 4705 uint32_t priv_op, 4706 struct ifreq *ifr) 4707 { 4708 const size_t str_size = (BXE_NUM_ETH_STATS * STAT_NAME_LEN); 4709 const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t)); 4710 caddr_t p_tmp; 4711 uint32_t *offset; 4712 int i; 4713 4714 switch (priv_op) 4715 { 4716 case BXE_IOC_STATS_SHOW_NUM: 4717 memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data)); 4718 ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num = 4719 BXE_NUM_ETH_STATS; 4720 ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len = 4721 STAT_NAME_LEN; 4722 return (0); 4723 4724 case BXE_IOC_STATS_SHOW_STR: 4725 memset(ifr->ifr_data, 0, str_size); 4726 p_tmp = ifr->ifr_data; 4727 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 4728 strcpy(p_tmp, bxe_eth_stats_arr[i].string); 4729 p_tmp += STAT_NAME_LEN; 4730 } 4731 return (0); 4732 4733 case BXE_IOC_STATS_SHOW_CNT: 4734 memset(ifr->ifr_data, 0, stats_size); 4735 p_tmp = ifr->ifr_data; 4736 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 4737 offset = ((uint32_t *)&sc->eth_stats + 4738 bxe_eth_stats_arr[i].offset); 4739 switch (bxe_eth_stats_arr[i].size) { 4740 case 4: 4741 *((uint64_t *)p_tmp) = (uint64_t)*offset; 4742 break; 4743 case 8: 4744 *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1)); 4745 break; 4746 default: 4747 *((uint64_t *)p_tmp) = 0; 4748 } 4749 p_tmp += sizeof(uint64_t); 4750 } 4751 return (0); 4752 4753 default: 4754 return (-1); 4755 } 4756 } 4757 4758 static void 4759 bxe_handle_chip_tq(void *context, 4760 int pending) 4761 { 4762 struct bxe_softc *sc = (struct bxe_softc *)context; 4763 long work = atomic_load_acq_long(&sc->chip_tq_flags); 4764 4765 switch (work) 4766 { 4767 case CHIP_TQ_START: 4768 if ((if_getflags(sc->ifp) & IFF_UP) && 4769 !(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 4770 /* start the interface */ 4771 BLOGD(sc, DBG_LOAD, "Starting the interface...\n"); 4772 BXE_CORE_LOCK(sc); 4773 bxe_init_locked(sc); 4774 BXE_CORE_UNLOCK(sc); 4775 } 4776 break; 4777 4778 case CHIP_TQ_STOP: 4779 if (!(if_getflags(sc->ifp) & IFF_UP) && 4780 (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 4781 /* bring down the interface */ 4782 BLOGD(sc, DBG_LOAD, "Stopping the interface...\n"); 4783 bxe_periodic_stop(sc); 4784 BXE_CORE_LOCK(sc); 4785 bxe_stop_locked(sc); 4786 BXE_CORE_UNLOCK(sc); 4787 } 4788 break; 4789 4790 case CHIP_TQ_REINIT: 4791 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 4792 /* restart the interface */ 4793 BLOGD(sc, DBG_LOAD, "Restarting the interface...\n"); 4794 bxe_periodic_stop(sc); 4795 BXE_CORE_LOCK(sc); 4796 bxe_stop_locked(sc); 4797 bxe_init_locked(sc); 4798 BXE_CORE_UNLOCK(sc); 4799 } 4800 break; 4801 4802 default: 4803 break; 4804 } 4805 } 4806 4807 /* 4808 * Handles any IOCTL calls from the operating system. 4809 * 4810 * Returns: 4811 * 0 = Success, >0 Failure 4812 */ 4813 static int 4814 bxe_ioctl(if_t ifp, 4815 u_long command, 4816 caddr_t data) 4817 { 4818 struct bxe_softc *sc = if_getsoftc(ifp); 4819 struct ifreq *ifr = (struct ifreq *)data; 4820 struct bxe_nvram_data *nvdata; 4821 uint32_t priv_op; 4822 int mask = 0; 4823 int reinit = 0; 4824 int error = 0; 4825 4826 int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN); 4827 int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING); 4828 4829 switch (command) 4830 { 4831 case SIOCSIFMTU: 4832 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n", 4833 ifr->ifr_mtu); 4834 4835 if (sc->mtu == ifr->ifr_mtu) { 4836 /* nothing to change */ 4837 break; 4838 } 4839 4840 if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) { 4841 BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n", 4842 ifr->ifr_mtu, mtu_min, mtu_max); 4843 error = EINVAL; 4844 break; 4845 } 4846 4847 atomic_store_rel_int((volatile unsigned int *)&sc->mtu, 4848 (unsigned long)ifr->ifr_mtu); 4849 /* 4850 atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp), 4851 (unsigned long)ifr->ifr_mtu); 4852 XXX - Not sure why it needs to be atomic 4853 */ 4854 if_setmtu(ifp, ifr->ifr_mtu); 4855 reinit = 1; 4856 break; 4857 4858 case SIOCSIFFLAGS: 4859 /* toggle the interface state up or down */ 4860 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n"); 4861 4862 /* check if the interface is up */ 4863 if (if_getflags(ifp) & IFF_UP) { 4864 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4865 /* set the receive mode flags */ 4866 bxe_set_rx_mode(sc); 4867 } else { 4868 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_START); 4869 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 4870 } 4871 } else { 4872 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4873 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_STOP); 4874 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 4875 } 4876 } 4877 4878 break; 4879 4880 case SIOCADDMULTI: 4881 case SIOCDELMULTI: 4882 /* add/delete multicast addresses */ 4883 BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n"); 4884 4885 /* check if the interface is up */ 4886 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4887 /* set the receive mode flags */ 4888 bxe_set_rx_mode(sc); 4889 } 4890 4891 break; 4892 4893 case SIOCSIFCAP: 4894 /* find out which capabilities have changed */ 4895 mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp)); 4896 4897 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n", 4898 mask); 4899 4900 /* toggle the LRO capabilites enable flag */ 4901 if (mask & IFCAP_LRO) { 4902 if_togglecapenable(ifp, IFCAP_LRO); 4903 BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n", 4904 (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF"); 4905 reinit = 1; 4906 } 4907 4908 /* toggle the TXCSUM checksum capabilites enable flag */ 4909 if (mask & IFCAP_TXCSUM) { 4910 if_togglecapenable(ifp, IFCAP_TXCSUM); 4911 BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n", 4912 (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF"); 4913 if (if_getcapenable(ifp) & IFCAP_TXCSUM) { 4914 if_sethwassistbits(ifp, (CSUM_IP | 4915 CSUM_TCP | 4916 CSUM_UDP | 4917 CSUM_TSO | 4918 CSUM_TCP_IPV6 | 4919 CSUM_UDP_IPV6), 0); 4920 } else { 4921 if_clearhwassist(ifp); /* XXX */ 4922 } 4923 } 4924 4925 /* toggle the RXCSUM checksum capabilities enable flag */ 4926 if (mask & IFCAP_RXCSUM) { 4927 if_togglecapenable(ifp, IFCAP_RXCSUM); 4928 BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n", 4929 (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF"); 4930 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 4931 if_sethwassistbits(ifp, (CSUM_IP | 4932 CSUM_TCP | 4933 CSUM_UDP | 4934 CSUM_TSO | 4935 CSUM_TCP_IPV6 | 4936 CSUM_UDP_IPV6), 0); 4937 } else { 4938 if_clearhwassist(ifp); /* XXX */ 4939 } 4940 } 4941 4942 /* toggle TSO4 capabilities enabled flag */ 4943 if (mask & IFCAP_TSO4) { 4944 if_togglecapenable(ifp, IFCAP_TSO4); 4945 BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n", 4946 (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF"); 4947 } 4948 4949 /* toggle TSO6 capabilities enabled flag */ 4950 if (mask & IFCAP_TSO6) { 4951 if_togglecapenable(ifp, IFCAP_TSO6); 4952 BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n", 4953 (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF"); 4954 } 4955 4956 /* toggle VLAN_HWTSO capabilities enabled flag */ 4957 if (mask & IFCAP_VLAN_HWTSO) { 4958 4959 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 4960 BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n", 4961 (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF"); 4962 } 4963 4964 /* toggle VLAN_HWCSUM capabilities enabled flag */ 4965 if (mask & IFCAP_VLAN_HWCSUM) { 4966 /* XXX investigate this... */ 4967 BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n"); 4968 error = EINVAL; 4969 } 4970 4971 /* toggle VLAN_MTU capabilities enable flag */ 4972 if (mask & IFCAP_VLAN_MTU) { 4973 /* XXX investigate this... */ 4974 BLOGE(sc, "Changing VLAN_MTU is not supported!\n"); 4975 error = EINVAL; 4976 } 4977 4978 /* toggle VLAN_HWTAGGING capabilities enabled flag */ 4979 if (mask & IFCAP_VLAN_HWTAGGING) { 4980 /* XXX investigate this... */ 4981 BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n"); 4982 error = EINVAL; 4983 } 4984 4985 /* toggle VLAN_HWFILTER capabilities enabled flag */ 4986 if (mask & IFCAP_VLAN_HWFILTER) { 4987 /* XXX investigate this... */ 4988 BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n"); 4989 error = EINVAL; 4990 } 4991 4992 /* XXX not yet... 4993 * IFCAP_WOL_MAGIC 4994 */ 4995 4996 break; 4997 4998 case SIOCSIFMEDIA: 4999 case SIOCGIFMEDIA: 5000 /* set/get interface media */ 5001 BLOGD(sc, DBG_IOCTL, 5002 "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n", 5003 (command & 0xff)); 5004 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); 5005 break; 5006 5007 case SIOCGPRIVATE_0: 5008 copyin(ifr->ifr_data, &priv_op, sizeof(priv_op)); 5009 5010 switch (priv_op) 5011 { 5012 case BXE_IOC_RD_NVRAM: 5013 case BXE_IOC_WR_NVRAM: 5014 nvdata = (struct bxe_nvram_data *)ifr->ifr_data; 5015 BLOGD(sc, DBG_IOCTL, 5016 "Received Private NVRAM ioctl addr=0x%x size=%u\n", 5017 nvdata->offset, nvdata->len); 5018 error = bxe_ioctl_nvram(sc, priv_op, ifr); 5019 break; 5020 5021 case BXE_IOC_STATS_SHOW_NUM: 5022 case BXE_IOC_STATS_SHOW_STR: 5023 case BXE_IOC_STATS_SHOW_CNT: 5024 BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n", 5025 priv_op); 5026 error = bxe_ioctl_stats_show(sc, priv_op, ifr); 5027 break; 5028 5029 default: 5030 BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op); 5031 error = EINVAL; 5032 break; 5033 } 5034 5035 break; 5036 5037 default: 5038 BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n", 5039 (command & 0xff)); 5040 error = ether_ioctl(ifp, command, data); 5041 break; 5042 } 5043 5044 if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 5045 BLOGD(sc, DBG_LOAD | DBG_IOCTL, 5046 "Re-initializing hardware from IOCTL change\n"); 5047 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT); 5048 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 5049 } 5050 5051 return (error); 5052 } 5053 5054 static __noinline void 5055 bxe_dump_mbuf(struct bxe_softc *sc, 5056 struct mbuf *m, 5057 uint8_t contents) 5058 { 5059 char * type; 5060 int i = 0; 5061 5062 if (!(sc->debug & DBG_MBUF)) { 5063 return; 5064 } 5065 5066 if (m == NULL) { 5067 BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n"); 5068 return; 5069 } 5070 5071 while (m) { 5072 BLOGD(sc, DBG_MBUF, 5073 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 5074 i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data); 5075 5076 if (m->m_flags & M_PKTHDR) { 5077 BLOGD(sc, DBG_MBUF, 5078 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 5079 i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS, 5080 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 5081 } 5082 5083 if (m->m_flags & M_EXT) { 5084 switch (m->m_ext.ext_type) { 5085 case EXT_CLUSTER: type = "EXT_CLUSTER"; break; 5086 case EXT_SFBUF: type = "EXT_SFBUF"; break; 5087 case EXT_JUMBOP: type = "EXT_JUMBOP"; break; 5088 case EXT_JUMBO9: type = "EXT_JUMBO9"; break; 5089 case EXT_JUMBO16: type = "EXT_JUMBO16"; break; 5090 case EXT_PACKET: type = "EXT_PACKET"; break; 5091 case EXT_MBUF: type = "EXT_MBUF"; break; 5092 case EXT_NET_DRV: type = "EXT_NET_DRV"; break; 5093 case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break; 5094 case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break; 5095 case EXT_EXTREF: type = "EXT_EXTREF"; break; 5096 default: type = "UNKNOWN"; break; 5097 } 5098 5099 BLOGD(sc, DBG_MBUF, 5100 "%02d: - m_ext: %p ext_size=%d type=%s\n", 5101 i, m->m_ext.ext_buf, m->m_ext.ext_size, type); 5102 } 5103 5104 if (contents) { 5105 bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE); 5106 } 5107 5108 m = m->m_next; 5109 i++; 5110 } 5111 } 5112 5113 /* 5114 * Checks to ensure the 13 bd sliding window is >= MSS for TSO. 5115 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS. 5116 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD 5117 * The headers comes in a seperate bd in FreeBSD so 13-3=10. 5118 * Returns: 0 if OK to send, 1 if packet needs further defragmentation 5119 */ 5120 static int 5121 bxe_chktso_window(struct bxe_softc *sc, 5122 int nsegs, 5123 bus_dma_segment_t *segs, 5124 struct mbuf *m) 5125 { 5126 uint32_t num_wnds, wnd_size, wnd_sum; 5127 int32_t frag_idx, wnd_idx; 5128 unsigned short lso_mss; 5129 int defrag; 5130 5131 defrag = 0; 5132 wnd_sum = 0; 5133 wnd_size = 10; 5134 num_wnds = nsegs - wnd_size; 5135 lso_mss = htole16(m->m_pkthdr.tso_segsz); 5136 5137 /* 5138 * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the 5139 * first window sum of data while skipping the first assuming it is the 5140 * header in FreeBSD. 5141 */ 5142 for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) { 5143 wnd_sum += htole16(segs[frag_idx].ds_len); 5144 } 5145 5146 /* check the first 10 bd window size */ 5147 if (wnd_sum < lso_mss) { 5148 return (1); 5149 } 5150 5151 /* run through the windows */ 5152 for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) { 5153 /* subtract the first mbuf->m_len of the last wndw(-header) */ 5154 wnd_sum -= htole16(segs[wnd_idx+1].ds_len); 5155 /* add the next mbuf len to the len of our new window */ 5156 wnd_sum += htole16(segs[frag_idx].ds_len); 5157 if (wnd_sum < lso_mss) { 5158 return (1); 5159 } 5160 } 5161 5162 return (0); 5163 } 5164 5165 static uint8_t 5166 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp, 5167 struct mbuf *m, 5168 uint32_t *parsing_data) 5169 { 5170 struct ether_vlan_header *eh = NULL; 5171 struct ip *ip4 = NULL; 5172 struct ip6_hdr *ip6 = NULL; 5173 caddr_t ip = NULL; 5174 struct tcphdr *th = NULL; 5175 int e_hlen, ip_hlen, l4_off; 5176 uint16_t proto; 5177 5178 if (m->m_pkthdr.csum_flags == CSUM_IP) { 5179 /* no L4 checksum offload needed */ 5180 return (0); 5181 } 5182 5183 /* get the Ethernet header */ 5184 eh = mtod(m, struct ether_vlan_header *); 5185 5186 /* handle VLAN encapsulation if present */ 5187 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 5188 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 5189 proto = ntohs(eh->evl_proto); 5190 } else { 5191 e_hlen = ETHER_HDR_LEN; 5192 proto = ntohs(eh->evl_encap_proto); 5193 } 5194 5195 switch (proto) { 5196 case ETHERTYPE_IP: 5197 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 5198 ip4 = (m->m_len < sizeof(struct ip)) ? 5199 (struct ip *)m->m_next->m_data : 5200 (struct ip *)(m->m_data + e_hlen); 5201 /* ip_hl is number of 32-bit words */ 5202 ip_hlen = (ip4->ip_hl << 2); 5203 ip = (caddr_t)ip4; 5204 break; 5205 case ETHERTYPE_IPV6: 5206 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 5207 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 5208 (struct ip6_hdr *)m->m_next->m_data : 5209 (struct ip6_hdr *)(m->m_data + e_hlen); 5210 /* XXX cannot support offload with IPv6 extensions */ 5211 ip_hlen = sizeof(struct ip6_hdr); 5212 ip = (caddr_t)ip6; 5213 break; 5214 default: 5215 /* We can't offload in this case... */ 5216 /* XXX error stat ??? */ 5217 return (0); 5218 } 5219 5220 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 5221 l4_off = (e_hlen + ip_hlen); 5222 5223 *parsing_data |= 5224 (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 5225 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W); 5226 5227 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5228 CSUM_TSO | 5229 CSUM_TCP_IPV6)) { 5230 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 5231 th = (struct tcphdr *)(ip + ip_hlen); 5232 /* th_off is number of 32-bit words */ 5233 *parsing_data |= ((th->th_off << 5234 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 5235 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW); 5236 return (l4_off + (th->th_off << 2)); /* entire header length */ 5237 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5238 CSUM_UDP_IPV6)) { 5239 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 5240 return (l4_off + sizeof(struct udphdr)); /* entire header length */ 5241 } else { 5242 /* XXX error stat ??? */ 5243 return (0); 5244 } 5245 } 5246 5247 static uint8_t 5248 bxe_set_pbd_csum(struct bxe_fastpath *fp, 5249 struct mbuf *m, 5250 struct eth_tx_parse_bd_e1x *pbd) 5251 { 5252 struct ether_vlan_header *eh = NULL; 5253 struct ip *ip4 = NULL; 5254 struct ip6_hdr *ip6 = NULL; 5255 caddr_t ip = NULL; 5256 struct tcphdr *th = NULL; 5257 struct udphdr *uh = NULL; 5258 int e_hlen, ip_hlen; 5259 uint16_t proto; 5260 uint8_t hlen; 5261 uint16_t tmp_csum; 5262 uint32_t *tmp_uh; 5263 5264 /* get the Ethernet header */ 5265 eh = mtod(m, struct ether_vlan_header *); 5266 5267 /* handle VLAN encapsulation if present */ 5268 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 5269 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 5270 proto = ntohs(eh->evl_proto); 5271 } else { 5272 e_hlen = ETHER_HDR_LEN; 5273 proto = ntohs(eh->evl_encap_proto); 5274 } 5275 5276 switch (proto) { 5277 case ETHERTYPE_IP: 5278 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 5279 ip4 = (m->m_len < sizeof(struct ip)) ? 5280 (struct ip *)m->m_next->m_data : 5281 (struct ip *)(m->m_data + e_hlen); 5282 /* ip_hl is number of 32-bit words */ 5283 ip_hlen = (ip4->ip_hl << 1); 5284 ip = (caddr_t)ip4; 5285 break; 5286 case ETHERTYPE_IPV6: 5287 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 5288 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 5289 (struct ip6_hdr *)m->m_next->m_data : 5290 (struct ip6_hdr *)(m->m_data + e_hlen); 5291 /* XXX cannot support offload with IPv6 extensions */ 5292 ip_hlen = (sizeof(struct ip6_hdr) >> 1); 5293 ip = (caddr_t)ip6; 5294 break; 5295 default: 5296 /* We can't offload in this case... */ 5297 /* XXX error stat ??? */ 5298 return (0); 5299 } 5300 5301 hlen = (e_hlen >> 1); 5302 5303 /* note that rest of global_data is indirectly zeroed here */ 5304 if (m->m_flags & M_VLANTAG) { 5305 pbd->global_data = 5306 htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 5307 } else { 5308 pbd->global_data = htole16(hlen); 5309 } 5310 5311 pbd->ip_hlen_w = ip_hlen; 5312 5313 hlen += pbd->ip_hlen_w; 5314 5315 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 5316 5317 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5318 CSUM_TSO | 5319 CSUM_TCP_IPV6)) { 5320 th = (struct tcphdr *)(ip + (ip_hlen << 1)); 5321 /* th_off is number of 32-bit words */ 5322 hlen += (uint16_t)(th->th_off << 1); 5323 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5324 CSUM_UDP_IPV6)) { 5325 uh = (struct udphdr *)(ip + (ip_hlen << 1)); 5326 hlen += (sizeof(struct udphdr) / 2); 5327 } else { 5328 /* valid case as only CSUM_IP was set */ 5329 return (0); 5330 } 5331 5332 pbd->total_hlen_w = htole16(hlen); 5333 5334 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5335 CSUM_TSO | 5336 CSUM_TCP_IPV6)) { 5337 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 5338 pbd->tcp_pseudo_csum = ntohs(th->th_sum); 5339 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5340 CSUM_UDP_IPV6)) { 5341 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 5342 5343 /* 5344 * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP 5345 * checksums and does not know anything about the UDP header and where 5346 * the checksum field is located. It only knows about TCP. Therefore 5347 * we "lie" to the hardware for outgoing UDP packets w/ checksum 5348 * offload. Since the checksum field offset for TCP is 16 bytes and 5349 * for UDP it is 6 bytes we pass a pointer to the hardware that is 10 5350 * bytes less than the start of the UDP header. This allows the 5351 * hardware to write the checksum in the correct spot. But the 5352 * hardware will compute a checksum which includes the last 10 bytes 5353 * of the IP header. To correct this we tweak the stack computed 5354 * pseudo checksum by folding in the calculation of the inverse 5355 * checksum for those final 10 bytes of the IP header. This allows 5356 * the correct checksum to be computed by the hardware. 5357 */ 5358 5359 /* set pointer 10 bytes before UDP header */ 5360 tmp_uh = (uint32_t *)((uint8_t *)uh - 10); 5361 5362 /* calculate a pseudo header checksum over the first 10 bytes */ 5363 tmp_csum = in_pseudo(*tmp_uh, 5364 *(tmp_uh + 1), 5365 *(uint16_t *)(tmp_uh + 2)); 5366 5367 pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum)); 5368 } 5369 5370 return (hlen * 2); /* entire header length, number of bytes */ 5371 } 5372 5373 static void 5374 bxe_set_pbd_lso_e2(struct mbuf *m, 5375 uint32_t *parsing_data) 5376 { 5377 *parsing_data |= ((m->m_pkthdr.tso_segsz << 5378 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 5379 ETH_TX_PARSE_BD_E2_LSO_MSS); 5380 5381 /* XXX test for IPv6 with extension header... */ 5382 #if 0 5383 struct ip6_hdr *ip6; 5384 if (ip6 && ip6->ip6_nxt == 'some ipv6 extension header') 5385 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR; 5386 #endif 5387 } 5388 5389 static void 5390 bxe_set_pbd_lso(struct mbuf *m, 5391 struct eth_tx_parse_bd_e1x *pbd) 5392 { 5393 struct ether_vlan_header *eh = NULL; 5394 struct ip *ip = NULL; 5395 struct tcphdr *th = NULL; 5396 int e_hlen; 5397 5398 /* get the Ethernet header */ 5399 eh = mtod(m, struct ether_vlan_header *); 5400 5401 /* handle VLAN encapsulation if present */ 5402 e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ? 5403 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN; 5404 5405 /* get the IP and TCP header, with LSO entire header in first mbuf */ 5406 /* XXX assuming IPv4 */ 5407 ip = (struct ip *)(m->m_data + e_hlen); 5408 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 5409 5410 pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz); 5411 pbd->tcp_send_seq = ntohl(th->th_seq); 5412 pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff); 5413 5414 #if 1 5415 /* XXX IPv4 */ 5416 pbd->ip_id = ntohs(ip->ip_id); 5417 pbd->tcp_pseudo_csum = 5418 ntohs(in_pseudo(ip->ip_src.s_addr, 5419 ip->ip_dst.s_addr, 5420 htons(IPPROTO_TCP))); 5421 #else 5422 /* XXX IPv6 */ 5423 pbd->tcp_pseudo_csum = 5424 ntohs(in_pseudo(&ip6->ip6_src, 5425 &ip6->ip6_dst, 5426 htons(IPPROTO_TCP))); 5427 #endif 5428 5429 pbd->global_data |= 5430 htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 5431 } 5432 5433 /* 5434 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory 5435 * visible to the controller. 5436 * 5437 * If an mbuf is submitted to this routine and cannot be given to the 5438 * controller (e.g. it has too many fragments) then the function may free 5439 * the mbuf and return to the caller. 5440 * 5441 * Returns: 5442 * 0 = Success, !0 = Failure 5443 * Note the side effect that an mbuf may be freed if it causes a problem. 5444 */ 5445 static int 5446 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head) 5447 { 5448 bus_dma_segment_t segs[32]; 5449 struct mbuf *m0; 5450 struct bxe_sw_tx_bd *tx_buf; 5451 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 5452 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 5453 /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */ 5454 struct eth_tx_bd *tx_data_bd; 5455 struct eth_tx_bd *tx_total_pkt_size_bd; 5456 struct eth_tx_start_bd *tx_start_bd; 5457 uint16_t bd_prod, pkt_prod, total_pkt_size; 5458 uint8_t mac_type; 5459 int defragged, error, nsegs, rc, nbds, vlan_off, ovlan; 5460 struct bxe_softc *sc; 5461 uint16_t tx_bd_avail; 5462 struct ether_vlan_header *eh; 5463 uint32_t pbd_e2_parsing_data = 0; 5464 uint8_t hlen = 0; 5465 int tmp_bd; 5466 int i; 5467 5468 sc = fp->sc; 5469 5470 M_ASSERTPKTHDR(*m_head); 5471 5472 m0 = *m_head; 5473 rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0; 5474 tx_start_bd = NULL; 5475 tx_data_bd = NULL; 5476 tx_total_pkt_size_bd = NULL; 5477 5478 /* get the H/W pointer for packets and BDs */ 5479 pkt_prod = fp->tx_pkt_prod; 5480 bd_prod = fp->tx_bd_prod; 5481 5482 mac_type = UNICAST_ADDRESS; 5483 5484 /* map the mbuf into the next open DMAable memory */ 5485 tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)]; 5486 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5487 tx_buf->m_map, m0, 5488 segs, &nsegs, BUS_DMA_NOWAIT); 5489 5490 /* mapping errors */ 5491 if(__predict_false(error != 0)) { 5492 fp->eth_q_stats.tx_dma_mapping_failure++; 5493 if (error == ENOMEM) { 5494 /* resource issue, try again later */ 5495 rc = ENOMEM; 5496 } else if (error == EFBIG) { 5497 /* possibly recoverable with defragmentation */ 5498 fp->eth_q_stats.mbuf_defrag_attempts++; 5499 m0 = m_defrag(*m_head, M_NOWAIT); 5500 if (m0 == NULL) { 5501 fp->eth_q_stats.mbuf_defrag_failures++; 5502 rc = ENOBUFS; 5503 } else { 5504 /* defrag successful, try mapping again */ 5505 *m_head = m0; 5506 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5507 tx_buf->m_map, m0, 5508 segs, &nsegs, BUS_DMA_NOWAIT); 5509 if (error) { 5510 fp->eth_q_stats.tx_dma_mapping_failure++; 5511 rc = error; 5512 } 5513 } 5514 } else { 5515 /* unknown, unrecoverable mapping error */ 5516 BLOGE(sc, "Unknown TX mapping error rc=%d\n", error); 5517 bxe_dump_mbuf(sc, m0, FALSE); 5518 rc = error; 5519 } 5520 5521 goto bxe_tx_encap_continue; 5522 } 5523 5524 tx_bd_avail = bxe_tx_avail(sc, fp); 5525 5526 /* make sure there is enough room in the send queue */ 5527 if (__predict_false(tx_bd_avail < (nsegs + 2))) { 5528 /* Recoverable, try again later. */ 5529 fp->eth_q_stats.tx_hw_queue_full++; 5530 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5531 rc = ENOMEM; 5532 goto bxe_tx_encap_continue; 5533 } 5534 5535 /* capture the current H/W TX chain high watermark */ 5536 if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth < 5537 (TX_BD_USABLE - tx_bd_avail))) { 5538 fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail); 5539 } 5540 5541 /* make sure it fits in the packet window */ 5542 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5543 /* 5544 * The mbuf may be to big for the controller to handle. If the frame 5545 * is a TSO frame we'll need to do an additional check. 5546 */ 5547 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5548 if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) { 5549 goto bxe_tx_encap_continue; /* OK to send */ 5550 } else { 5551 fp->eth_q_stats.tx_window_violation_tso++; 5552 } 5553 } else { 5554 fp->eth_q_stats.tx_window_violation_std++; 5555 } 5556 5557 /* lets try to defragment this mbuf and remap it */ 5558 fp->eth_q_stats.mbuf_defrag_attempts++; 5559 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5560 5561 m0 = m_defrag(*m_head, M_NOWAIT); 5562 if (m0 == NULL) { 5563 fp->eth_q_stats.mbuf_defrag_failures++; 5564 /* Ugh, just drop the frame... :( */ 5565 rc = ENOBUFS; 5566 } else { 5567 /* defrag successful, try mapping again */ 5568 *m_head = m0; 5569 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5570 tx_buf->m_map, m0, 5571 segs, &nsegs, BUS_DMA_NOWAIT); 5572 if (error) { 5573 fp->eth_q_stats.tx_dma_mapping_failure++; 5574 /* No sense in trying to defrag/copy chain, drop it. :( */ 5575 rc = error; 5576 } 5577 else { 5578 /* if the chain is still too long then drop it */ 5579 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5580 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5581 rc = ENODEV; 5582 } 5583 } 5584 } 5585 } 5586 5587 bxe_tx_encap_continue: 5588 5589 /* Check for errors */ 5590 if (rc) { 5591 if (rc == ENOMEM) { 5592 /* recoverable try again later */ 5593 } else { 5594 fp->eth_q_stats.tx_soft_errors++; 5595 fp->eth_q_stats.mbuf_alloc_tx--; 5596 m_freem(*m_head); 5597 *m_head = NULL; 5598 } 5599 5600 return (rc); 5601 } 5602 5603 /* set flag according to packet type (UNICAST_ADDRESS is default) */ 5604 if (m0->m_flags & M_BCAST) { 5605 mac_type = BROADCAST_ADDRESS; 5606 } else if (m0->m_flags & M_MCAST) { 5607 mac_type = MULTICAST_ADDRESS; 5608 } 5609 5610 /* store the mbuf into the mbuf ring */ 5611 tx_buf->m = m0; 5612 tx_buf->first_bd = fp->tx_bd_prod; 5613 tx_buf->flags = 0; 5614 5615 /* prepare the first transmit (start) BD for the mbuf */ 5616 tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd; 5617 5618 BLOGD(sc, DBG_TX, 5619 "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n", 5620 pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd); 5621 5622 tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 5623 tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 5624 tx_start_bd->nbytes = htole16(segs[0].ds_len); 5625 total_pkt_size += tx_start_bd->nbytes; 5626 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 5627 5628 tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT); 5629 5630 /* all frames have at least Start BD + Parsing BD */ 5631 nbds = nsegs + 1; 5632 tx_start_bd->nbd = htole16(nbds); 5633 5634 if (m0->m_flags & M_VLANTAG) { 5635 tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag); 5636 tx_start_bd->bd_flags.as_bitfield |= 5637 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 5638 } else { 5639 /* vf tx, start bd must hold the ethertype for fw to enforce it */ 5640 if (IS_VF(sc)) { 5641 /* map ethernet header to find type and header length */ 5642 eh = mtod(m0, struct ether_vlan_header *); 5643 tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto; 5644 } else { 5645 /* used by FW for packet accounting */ 5646 tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod); 5647 #if 0 5648 /* 5649 * If NPAR-SD is active then FW should do the tagging regardless 5650 * of value of priority. Otherwise, if priority indicates this is 5651 * a control packet we need to indicate to FW to avoid tagging. 5652 */ 5653 if (!IS_MF_AFEX(sc) && (mbuf priority == PRIO_CONTROL)) { 5654 SET_FLAG(tx_start_bd->general_data, 5655 ETH_TX_START_BD_FORCE_VLAN_MODE, 1); 5656 } 5657 #endif 5658 } 5659 } 5660 5661 /* 5662 * add a parsing BD from the chain. The parsing BD is always added 5663 * though it is only used for TSO and chksum 5664 */ 5665 bd_prod = TX_BD_NEXT(bd_prod); 5666 5667 if (m0->m_pkthdr.csum_flags) { 5668 if (m0->m_pkthdr.csum_flags & CSUM_IP) { 5669 fp->eth_q_stats.tx_ofld_frames_csum_ip++; 5670 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM; 5671 } 5672 5673 if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) { 5674 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5675 ETH_TX_BD_FLAGS_L4_CSUM); 5676 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) { 5677 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5678 ETH_TX_BD_FLAGS_IS_UDP | 5679 ETH_TX_BD_FLAGS_L4_CSUM); 5680 } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) || 5681 (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5682 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 5683 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) { 5684 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM | 5685 ETH_TX_BD_FLAGS_IS_UDP); 5686 } 5687 } 5688 5689 if (!CHIP_IS_E1x(sc)) { 5690 pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2; 5691 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 5692 5693 if (m0->m_pkthdr.csum_flags) { 5694 hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data); 5695 } 5696 5697 #if 0 5698 /* 5699 * Add the MACs to the parsing BD if the module param was 5700 * explicitly set, if this is a vf, or in switch independent 5701 * mode. 5702 */ 5703 if (sc->flags & BXE_TX_SWITCHING || IS_VF(sc) || IS_MF_SI(sc)) { 5704 eh = mtod(m0, struct ether_vlan_header *); 5705 bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, 5706 &pbd_e2->data.mac_addr.src_mid, 5707 &pbd_e2->data.mac_addr.src_lo, 5708 eh->evl_shost); 5709 bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi, 5710 &pbd_e2->data.mac_addr.dst_mid, 5711 &pbd_e2->data.mac_addr.dst_lo, 5712 eh->evl_dhost); 5713 } 5714 #endif 5715 5716 SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, 5717 mac_type); 5718 } else { 5719 uint16_t global_data = 0; 5720 5721 pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x; 5722 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 5723 5724 if (m0->m_pkthdr.csum_flags) { 5725 hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x); 5726 } 5727 5728 SET_FLAG(global_data, 5729 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 5730 pbd_e1x->global_data |= htole16(global_data); 5731 } 5732 5733 /* setup the parsing BD with TSO specific info */ 5734 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5735 fp->eth_q_stats.tx_ofld_frames_lso++; 5736 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 5737 5738 if (__predict_false(tx_start_bd->nbytes > hlen)) { 5739 fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++; 5740 5741 /* split the first BD into header/data making the fw job easy */ 5742 nbds++; 5743 tx_start_bd->nbd = htole16(nbds); 5744 tx_start_bd->nbytes = htole16(hlen); 5745 5746 bd_prod = TX_BD_NEXT(bd_prod); 5747 5748 /* new transmit BD after the tx_parse_bd */ 5749 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5750 tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen)); 5751 tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen)); 5752 tx_data_bd->nbytes = htole16(segs[0].ds_len - hlen); 5753 if (tx_total_pkt_size_bd == NULL) { 5754 tx_total_pkt_size_bd = tx_data_bd; 5755 } 5756 5757 BLOGD(sc, DBG_TX, 5758 "TSO split header size is %d (%x:%x) nbds %d\n", 5759 le16toh(tx_start_bd->nbytes), 5760 le32toh(tx_start_bd->addr_hi), 5761 le32toh(tx_start_bd->addr_lo), 5762 nbds); 5763 } 5764 5765 if (!CHIP_IS_E1x(sc)) { 5766 bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data); 5767 } else { 5768 bxe_set_pbd_lso(m0, pbd_e1x); 5769 } 5770 } 5771 5772 if (pbd_e2_parsing_data) { 5773 pbd_e2->parsing_data = htole32(pbd_e2_parsing_data); 5774 } 5775 5776 /* prepare remaining BDs, start tx bd contains first seg/frag */ 5777 for (i = 1; i < nsegs ; i++) { 5778 bd_prod = TX_BD_NEXT(bd_prod); 5779 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5780 tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr)); 5781 tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr)); 5782 tx_data_bd->nbytes = htole16(segs[i].ds_len); 5783 if (tx_total_pkt_size_bd == NULL) { 5784 tx_total_pkt_size_bd = tx_data_bd; 5785 } 5786 total_pkt_size += tx_data_bd->nbytes; 5787 } 5788 5789 BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd); 5790 5791 if (tx_total_pkt_size_bd != NULL) { 5792 tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size; 5793 } 5794 5795 if (__predict_false(sc->debug & DBG_TX)) { 5796 tmp_bd = tx_buf->first_bd; 5797 for (i = 0; i < nbds; i++) 5798 { 5799 if (i == 0) { 5800 BLOGD(sc, DBG_TX, 5801 "TX Strt: %p bd=%d nbd=%d vlan=0x%x " 5802 "bd_flags=0x%x hdr_nbds=%d\n", 5803 tx_start_bd, 5804 tmp_bd, 5805 le16toh(tx_start_bd->nbd), 5806 le16toh(tx_start_bd->vlan_or_ethertype), 5807 tx_start_bd->bd_flags.as_bitfield, 5808 (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS)); 5809 } else if (i == 1) { 5810 if (pbd_e1x) { 5811 BLOGD(sc, DBG_TX, 5812 "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u " 5813 "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x " 5814 "tcp_seq=%u total_hlen_w=%u\n", 5815 pbd_e1x, 5816 tmp_bd, 5817 pbd_e1x->global_data, 5818 pbd_e1x->ip_hlen_w, 5819 pbd_e1x->ip_id, 5820 pbd_e1x->lso_mss, 5821 pbd_e1x->tcp_flags, 5822 pbd_e1x->tcp_pseudo_csum, 5823 pbd_e1x->tcp_send_seq, 5824 le16toh(pbd_e1x->total_hlen_w)); 5825 } else { /* if (pbd_e2) */ 5826 BLOGD(sc, DBG_TX, 5827 "-> Parse: %p bd=%d dst=%02x:%02x:%02x " 5828 "src=%02x:%02x:%02x parsing_data=0x%x\n", 5829 pbd_e2, 5830 tmp_bd, 5831 pbd_e2->data.mac_addr.dst_hi, 5832 pbd_e2->data.mac_addr.dst_mid, 5833 pbd_e2->data.mac_addr.dst_lo, 5834 pbd_e2->data.mac_addr.src_hi, 5835 pbd_e2->data.mac_addr.src_mid, 5836 pbd_e2->data.mac_addr.src_lo, 5837 pbd_e2->parsing_data); 5838 } 5839 } 5840 5841 if (i != 1) { /* skip parse db as it doesn't hold data */ 5842 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd; 5843 BLOGD(sc, DBG_TX, 5844 "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n", 5845 tx_data_bd, 5846 tmp_bd, 5847 le16toh(tx_data_bd->nbytes), 5848 le32toh(tx_data_bd->addr_hi), 5849 le32toh(tx_data_bd->addr_lo)); 5850 } 5851 5852 tmp_bd = TX_BD_NEXT(tmp_bd); 5853 } 5854 } 5855 5856 BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod); 5857 5858 /* update TX BD producer index value for next TX */ 5859 bd_prod = TX_BD_NEXT(bd_prod); 5860 5861 /* 5862 * If the chain of tx_bd's describing this frame is adjacent to or spans 5863 * an eth_tx_next_bd element then we need to increment the nbds value. 5864 */ 5865 if (TX_BD_IDX(bd_prod) < nbds) { 5866 nbds++; 5867 } 5868 5869 /* don't allow reordering of writes for nbd and packets */ 5870 mb(); 5871 5872 fp->tx_db.data.prod += nbds; 5873 5874 /* producer points to the next free tx_bd at this point */ 5875 fp->tx_pkt_prod++; 5876 fp->tx_bd_prod = bd_prod; 5877 5878 DOORBELL(sc, fp->index, fp->tx_db.raw); 5879 5880 fp->eth_q_stats.tx_pkts++; 5881 5882 /* Prevent speculative reads from getting ahead of the status block. */ 5883 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 5884 0, 0, BUS_SPACE_BARRIER_READ); 5885 5886 /* Prevent speculative reads from getting ahead of the doorbell. */ 5887 bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle, 5888 0, 0, BUS_SPACE_BARRIER_READ); 5889 5890 return (0); 5891 } 5892 5893 static void 5894 bxe_tx_start_locked(struct bxe_softc *sc, 5895 if_t ifp, 5896 struct bxe_fastpath *fp) 5897 { 5898 struct mbuf *m = NULL; 5899 int tx_count = 0; 5900 uint16_t tx_bd_avail; 5901 5902 BXE_FP_TX_LOCK_ASSERT(fp); 5903 5904 /* keep adding entries while there are frames to send */ 5905 while (!if_sendq_empty(ifp)) { 5906 5907 /* 5908 * check for any frames to send 5909 * dequeue can still be NULL even if queue is not empty 5910 */ 5911 m = if_dequeue(ifp); 5912 if (__predict_false(m == NULL)) { 5913 break; 5914 } 5915 5916 /* the mbuf now belongs to us */ 5917 fp->eth_q_stats.mbuf_alloc_tx++; 5918 5919 /* 5920 * Put the frame into the transmit ring. If we don't have room, 5921 * place the mbuf back at the head of the TX queue, set the 5922 * OACTIVE flag, and wait for the NIC to drain the chain. 5923 */ 5924 if (__predict_false(bxe_tx_encap(fp, &m))) { 5925 fp->eth_q_stats.tx_encap_failures++; 5926 if (m != NULL) { 5927 /* mark the TX queue as full and return the frame */ 5928 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5929 if_sendq_prepend(ifp, m); 5930 fp->eth_q_stats.mbuf_alloc_tx--; 5931 fp->eth_q_stats.tx_queue_xoff++; 5932 } 5933 5934 /* stop looking for more work */ 5935 break; 5936 } 5937 5938 /* the frame was enqueued successfully */ 5939 tx_count++; 5940 5941 /* send a copy of the frame to any BPF listeners. */ 5942 if_etherbpfmtap(ifp, m); 5943 5944 tx_bd_avail = bxe_tx_avail(sc, fp); 5945 5946 /* handle any completions if we're running low */ 5947 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5948 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5949 bxe_txeof(sc, fp); 5950 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5951 break; 5952 } 5953 } 5954 } 5955 5956 /* all TX packets were dequeued and/or the tx ring is full */ 5957 if (tx_count > 0) { 5958 /* reset the TX watchdog timeout timer */ 5959 fp->watchdog_timer = BXE_TX_TIMEOUT; 5960 } 5961 } 5962 5963 /* Legacy (non-RSS) dispatch routine */ 5964 static void 5965 bxe_tx_start(if_t ifp) 5966 { 5967 struct bxe_softc *sc; 5968 struct bxe_fastpath *fp; 5969 5970 sc = if_getsoftc(ifp); 5971 5972 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 5973 BLOGW(sc, "Interface not running, ignoring transmit request\n"); 5974 return; 5975 } 5976 5977 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5978 BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n"); 5979 return; 5980 } 5981 5982 if (!sc->link_vars.link_up) { 5983 BLOGW(sc, "Interface link is down, ignoring transmit request\n"); 5984 return; 5985 } 5986 5987 fp = &sc->fp[0]; 5988 5989 BXE_FP_TX_LOCK(fp); 5990 bxe_tx_start_locked(sc, ifp, fp); 5991 BXE_FP_TX_UNLOCK(fp); 5992 } 5993 5994 #if __FreeBSD_version >= 800000 5995 5996 static int 5997 bxe_tx_mq_start_locked(struct bxe_softc *sc, 5998 if_t ifp, 5999 struct bxe_fastpath *fp, 6000 struct mbuf *m) 6001 { 6002 struct buf_ring *tx_br = fp->tx_br; 6003 struct mbuf *next; 6004 int depth, rc, tx_count; 6005 uint16_t tx_bd_avail; 6006 6007 rc = tx_count = 0; 6008 6009 if (!tx_br) { 6010 BLOGE(sc, "Multiqueue TX and no buf_ring!\n"); 6011 return (EINVAL); 6012 } 6013 6014 /* fetch the depth of the driver queue */ 6015 depth = drbr_inuse_drv(ifp, tx_br); 6016 if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) { 6017 fp->eth_q_stats.tx_max_drbr_queue_depth = depth; 6018 } 6019 6020 BXE_FP_TX_LOCK_ASSERT(fp); 6021 6022 if (m == NULL) { 6023 /* no new work, check for pending frames */ 6024 next = drbr_dequeue_drv(ifp, tx_br); 6025 } else if (drbr_needs_enqueue_drv(ifp, tx_br)) { 6026 /* have both new and pending work, maintain packet order */ 6027 rc = drbr_enqueue_drv(ifp, tx_br, m); 6028 if (rc != 0) { 6029 fp->eth_q_stats.tx_soft_errors++; 6030 goto bxe_tx_mq_start_locked_exit; 6031 } 6032 next = drbr_dequeue_drv(ifp, tx_br); 6033 } else { 6034 /* new work only and nothing pending */ 6035 next = m; 6036 } 6037 6038 /* keep adding entries while there are frames to send */ 6039 while (next != NULL) { 6040 6041 /* the mbuf now belongs to us */ 6042 fp->eth_q_stats.mbuf_alloc_tx++; 6043 6044 /* 6045 * Put the frame into the transmit ring. If we don't have room, 6046 * place the mbuf back at the head of the TX queue, set the 6047 * OACTIVE flag, and wait for the NIC to drain the chain. 6048 */ 6049 rc = bxe_tx_encap(fp, &next); 6050 if (__predict_false(rc != 0)) { 6051 fp->eth_q_stats.tx_encap_failures++; 6052 if (next != NULL) { 6053 /* mark the TX queue as full and save the frame */ 6054 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 6055 /* XXX this may reorder the frame */ 6056 rc = drbr_enqueue_drv(ifp, tx_br, next); 6057 fp->eth_q_stats.mbuf_alloc_tx--; 6058 fp->eth_q_stats.tx_frames_deferred++; 6059 } 6060 6061 /* stop looking for more work */ 6062 break; 6063 } 6064 6065 /* the transmit frame was enqueued successfully */ 6066 tx_count++; 6067 6068 /* send a copy of the frame to any BPF listeners */ 6069 if_etherbpfmtap(ifp, next); 6070 6071 tx_bd_avail = bxe_tx_avail(sc, fp); 6072 6073 /* handle any completions if we're running low */ 6074 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 6075 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 6076 bxe_txeof(sc, fp); 6077 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 6078 break; 6079 } 6080 } 6081 6082 next = drbr_dequeue_drv(ifp, tx_br); 6083 } 6084 6085 /* all TX packets were dequeued and/or the tx ring is full */ 6086 if (tx_count > 0) { 6087 /* reset the TX watchdog timeout timer */ 6088 fp->watchdog_timer = BXE_TX_TIMEOUT; 6089 } 6090 6091 bxe_tx_mq_start_locked_exit: 6092 6093 return (rc); 6094 } 6095 6096 /* Multiqueue (TSS) dispatch routine. */ 6097 static int 6098 bxe_tx_mq_start(struct ifnet *ifp, 6099 struct mbuf *m) 6100 { 6101 struct bxe_softc *sc = if_getsoftc(ifp); 6102 struct bxe_fastpath *fp; 6103 int fp_index, rc; 6104 6105 fp_index = 0; /* default is the first queue */ 6106 6107 /* check if flowid is set */ 6108 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 6109 fp_index = (m->m_pkthdr.flowid % sc->num_queues); 6110 6111 fp = &sc->fp[fp_index]; 6112 6113 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 6114 BLOGW(sc, "Interface not running, ignoring transmit request\n"); 6115 return (ENETDOWN); 6116 } 6117 6118 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 6119 BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n"); 6120 return (EBUSY); 6121 } 6122 6123 if (!sc->link_vars.link_up) { 6124 BLOGW(sc, "Interface link is down, ignoring transmit request\n"); 6125 return (ENETDOWN); 6126 } 6127 6128 /* XXX change to TRYLOCK here and if failed then schedule taskqueue */ 6129 6130 BXE_FP_TX_LOCK(fp); 6131 rc = bxe_tx_mq_start_locked(sc, ifp, fp, m); 6132 BXE_FP_TX_UNLOCK(fp); 6133 6134 return (rc); 6135 } 6136 6137 static void 6138 bxe_mq_flush(struct ifnet *ifp) 6139 { 6140 struct bxe_softc *sc = if_getsoftc(ifp); 6141 struct bxe_fastpath *fp; 6142 struct mbuf *m; 6143 int i; 6144 6145 for (i = 0; i < sc->num_queues; i++) { 6146 fp = &sc->fp[i]; 6147 6148 if (fp->state != BXE_FP_STATE_OPEN) { 6149 BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n", 6150 fp->index, fp->state); 6151 continue; 6152 } 6153 6154 if (fp->tx_br != NULL) { 6155 BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index); 6156 BXE_FP_TX_LOCK(fp); 6157 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { 6158 m_freem(m); 6159 } 6160 BXE_FP_TX_UNLOCK(fp); 6161 } 6162 } 6163 6164 if_qflush(ifp); 6165 } 6166 6167 #endif /* FreeBSD_version >= 800000 */ 6168 6169 static uint16_t 6170 bxe_cid_ilt_lines(struct bxe_softc *sc) 6171 { 6172 if (IS_SRIOV(sc)) { 6173 return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS); 6174 } 6175 return (L2_ILT_LINES(sc)); 6176 } 6177 6178 static void 6179 bxe_ilt_set_info(struct bxe_softc *sc) 6180 { 6181 struct ilt_client_info *ilt_client; 6182 struct ecore_ilt *ilt = sc->ilt; 6183 uint16_t line = 0; 6184 6185 ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc)); 6186 BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line); 6187 6188 /* CDU */ 6189 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 6190 ilt_client->client_num = ILT_CLIENT_CDU; 6191 ilt_client->page_size = CDU_ILT_PAGE_SZ; 6192 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 6193 ilt_client->start = line; 6194 line += bxe_cid_ilt_lines(sc); 6195 6196 if (CNIC_SUPPORT(sc)) { 6197 line += CNIC_ILT_LINES; 6198 } 6199 6200 ilt_client->end = (line - 1); 6201 6202 BLOGD(sc, DBG_LOAD, 6203 "ilt client[CDU]: start %d, end %d, " 6204 "psz 0x%x, flags 0x%x, hw psz %d\n", 6205 ilt_client->start, ilt_client->end, 6206 ilt_client->page_size, 6207 ilt_client->flags, 6208 ilog2(ilt_client->page_size >> 12)); 6209 6210 /* QM */ 6211 if (QM_INIT(sc->qm_cid_count)) { 6212 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 6213 ilt_client->client_num = ILT_CLIENT_QM; 6214 ilt_client->page_size = QM_ILT_PAGE_SZ; 6215 ilt_client->flags = 0; 6216 ilt_client->start = line; 6217 6218 /* 4 bytes for each cid */ 6219 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 6220 QM_ILT_PAGE_SZ); 6221 6222 ilt_client->end = (line - 1); 6223 6224 BLOGD(sc, DBG_LOAD, 6225 "ilt client[QM]: start %d, end %d, " 6226 "psz 0x%x, flags 0x%x, hw psz %d\n", 6227 ilt_client->start, ilt_client->end, 6228 ilt_client->page_size, ilt_client->flags, 6229 ilog2(ilt_client->page_size >> 12)); 6230 } 6231 6232 if (CNIC_SUPPORT(sc)) { 6233 /* SRC */ 6234 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 6235 ilt_client->client_num = ILT_CLIENT_SRC; 6236 ilt_client->page_size = SRC_ILT_PAGE_SZ; 6237 ilt_client->flags = 0; 6238 ilt_client->start = line; 6239 line += SRC_ILT_LINES; 6240 ilt_client->end = (line - 1); 6241 6242 BLOGD(sc, DBG_LOAD, 6243 "ilt client[SRC]: start %d, end %d, " 6244 "psz 0x%x, flags 0x%x, hw psz %d\n", 6245 ilt_client->start, ilt_client->end, 6246 ilt_client->page_size, ilt_client->flags, 6247 ilog2(ilt_client->page_size >> 12)); 6248 6249 /* TM */ 6250 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 6251 ilt_client->client_num = ILT_CLIENT_TM; 6252 ilt_client->page_size = TM_ILT_PAGE_SZ; 6253 ilt_client->flags = 0; 6254 ilt_client->start = line; 6255 line += TM_ILT_LINES; 6256 ilt_client->end = (line - 1); 6257 6258 BLOGD(sc, DBG_LOAD, 6259 "ilt client[TM]: start %d, end %d, " 6260 "psz 0x%x, flags 0x%x, hw psz %d\n", 6261 ilt_client->start, ilt_client->end, 6262 ilt_client->page_size, ilt_client->flags, 6263 ilog2(ilt_client->page_size >> 12)); 6264 } 6265 6266 KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!")); 6267 } 6268 6269 static void 6270 bxe_set_fp_rx_buf_size(struct bxe_softc *sc) 6271 { 6272 int i; 6273 uint32_t rx_buf_size; 6274 6275 rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu); 6276 6277 for (i = 0; i < sc->num_queues; i++) { 6278 if(rx_buf_size <= MCLBYTES){ 6279 sc->fp[i].rx_buf_size = rx_buf_size; 6280 sc->fp[i].mbuf_alloc_size = MCLBYTES; 6281 }else if (rx_buf_size <= MJUMPAGESIZE){ 6282 sc->fp[i].rx_buf_size = rx_buf_size; 6283 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 6284 }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){ 6285 sc->fp[i].rx_buf_size = MCLBYTES; 6286 sc->fp[i].mbuf_alloc_size = MCLBYTES; 6287 }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){ 6288 sc->fp[i].rx_buf_size = MJUMPAGESIZE; 6289 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 6290 }else { 6291 sc->fp[i].rx_buf_size = MCLBYTES; 6292 sc->fp[i].mbuf_alloc_size = MCLBYTES; 6293 } 6294 } 6295 } 6296 6297 static int 6298 bxe_alloc_ilt_mem(struct bxe_softc *sc) 6299 { 6300 int rc = 0; 6301 6302 if ((sc->ilt = 6303 (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt), 6304 M_BXE_ILT, 6305 (M_NOWAIT | M_ZERO))) == NULL) { 6306 rc = 1; 6307 } 6308 6309 return (rc); 6310 } 6311 6312 static int 6313 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc) 6314 { 6315 int rc = 0; 6316 6317 if ((sc->ilt->lines = 6318 (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES), 6319 M_BXE_ILT, 6320 (M_NOWAIT | M_ZERO))) == NULL) { 6321 rc = 1; 6322 } 6323 6324 return (rc); 6325 } 6326 6327 static void 6328 bxe_free_ilt_mem(struct bxe_softc *sc) 6329 { 6330 if (sc->ilt != NULL) { 6331 free(sc->ilt, M_BXE_ILT); 6332 sc->ilt = NULL; 6333 } 6334 } 6335 6336 static void 6337 bxe_free_ilt_lines_mem(struct bxe_softc *sc) 6338 { 6339 if (sc->ilt->lines != NULL) { 6340 free(sc->ilt->lines, M_BXE_ILT); 6341 sc->ilt->lines = NULL; 6342 } 6343 } 6344 6345 static void 6346 bxe_free_mem(struct bxe_softc *sc) 6347 { 6348 int i; 6349 6350 #if 0 6351 if (!CONFIGURE_NIC_MODE(sc)) { 6352 /* free searcher T2 table */ 6353 bxe_dma_free(sc, &sc->t2); 6354 } 6355 #endif 6356 6357 for (i = 0; i < L2_ILT_LINES(sc); i++) { 6358 bxe_dma_free(sc, &sc->context[i].vcxt_dma); 6359 sc->context[i].vcxt = NULL; 6360 sc->context[i].size = 0; 6361 } 6362 6363 ecore_ilt_mem_op(sc, ILT_MEMOP_FREE); 6364 6365 bxe_free_ilt_lines_mem(sc); 6366 6367 #if 0 6368 bxe_iov_free_mem(sc); 6369 #endif 6370 } 6371 6372 static int 6373 bxe_alloc_mem(struct bxe_softc *sc) 6374 { 6375 int context_size; 6376 int allocated; 6377 int i; 6378 6379 #if 0 6380 if (!CONFIGURE_NIC_MODE(sc)) { 6381 /* allocate searcher T2 table */ 6382 if (bxe_dma_alloc(sc, SRC_T2_SZ, 6383 &sc->t2, "searcher t2 table") != 0) { 6384 return (-1); 6385 } 6386 } 6387 #endif 6388 6389 /* 6390 * Allocate memory for CDU context: 6391 * This memory is allocated separately and not in the generic ILT 6392 * functions because CDU differs in few aspects: 6393 * 1. There can be multiple entities allocating memory for context - 6394 * regular L2, CNIC, and SRIOV drivers. Each separately controls 6395 * its own ILT lines. 6396 * 2. Since CDU page-size is not a single 4KB page (which is the case 6397 * for the other ILT clients), to be efficient we want to support 6398 * allocation of sub-page-size in the last entry. 6399 * 3. Context pointers are used by the driver to pass to FW / update 6400 * the context (for the other ILT clients the pointers are used just to 6401 * free the memory during unload). 6402 */ 6403 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc)); 6404 for (i = 0, allocated = 0; allocated < context_size; i++) { 6405 sc->context[i].size = min(CDU_ILT_PAGE_SZ, 6406 (context_size - allocated)); 6407 6408 if (bxe_dma_alloc(sc, sc->context[i].size, 6409 &sc->context[i].vcxt_dma, 6410 "cdu context") != 0) { 6411 bxe_free_mem(sc); 6412 return (-1); 6413 } 6414 6415 sc->context[i].vcxt = 6416 (union cdu_context *)sc->context[i].vcxt_dma.vaddr; 6417 6418 allocated += sc->context[i].size; 6419 } 6420 6421 bxe_alloc_ilt_lines_mem(sc); 6422 6423 BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n", 6424 sc->ilt, sc->ilt->start_line, sc->ilt->lines); 6425 { 6426 for (i = 0; i < 4; i++) { 6427 BLOGD(sc, DBG_LOAD, 6428 "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n", 6429 i, 6430 sc->ilt->clients[i].page_size, 6431 sc->ilt->clients[i].start, 6432 sc->ilt->clients[i].end, 6433 sc->ilt->clients[i].client_num, 6434 sc->ilt->clients[i].flags); 6435 } 6436 } 6437 if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) { 6438 BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n"); 6439 bxe_free_mem(sc); 6440 return (-1); 6441 } 6442 6443 #if 0 6444 if (bxe_iov_alloc_mem(sc)) { 6445 BLOGE(sc, "Failed to allocate memory for SRIOV\n"); 6446 bxe_free_mem(sc); 6447 return (-1); 6448 } 6449 #endif 6450 6451 return (0); 6452 } 6453 6454 static void 6455 bxe_free_rx_bd_chain(struct bxe_fastpath *fp) 6456 { 6457 struct bxe_softc *sc; 6458 int i; 6459 6460 sc = fp->sc; 6461 6462 if (fp->rx_mbuf_tag == NULL) { 6463 return; 6464 } 6465 6466 /* free all mbufs and unload all maps */ 6467 for (i = 0; i < RX_BD_TOTAL; i++) { 6468 if (fp->rx_mbuf_chain[i].m_map != NULL) { 6469 bus_dmamap_sync(fp->rx_mbuf_tag, 6470 fp->rx_mbuf_chain[i].m_map, 6471 BUS_DMASYNC_POSTREAD); 6472 bus_dmamap_unload(fp->rx_mbuf_tag, 6473 fp->rx_mbuf_chain[i].m_map); 6474 } 6475 6476 if (fp->rx_mbuf_chain[i].m != NULL) { 6477 m_freem(fp->rx_mbuf_chain[i].m); 6478 fp->rx_mbuf_chain[i].m = NULL; 6479 fp->eth_q_stats.mbuf_alloc_rx--; 6480 } 6481 } 6482 } 6483 6484 static void 6485 bxe_free_tpa_pool(struct bxe_fastpath *fp) 6486 { 6487 struct bxe_softc *sc; 6488 int i, max_agg_queues; 6489 6490 sc = fp->sc; 6491 6492 if (fp->rx_mbuf_tag == NULL) { 6493 return; 6494 } 6495 6496 max_agg_queues = MAX_AGG_QS(sc); 6497 6498 /* release all mbufs and unload all DMA maps in the TPA pool */ 6499 for (i = 0; i < max_agg_queues; i++) { 6500 if (fp->rx_tpa_info[i].bd.m_map != NULL) { 6501 bus_dmamap_sync(fp->rx_mbuf_tag, 6502 fp->rx_tpa_info[i].bd.m_map, 6503 BUS_DMASYNC_POSTREAD); 6504 bus_dmamap_unload(fp->rx_mbuf_tag, 6505 fp->rx_tpa_info[i].bd.m_map); 6506 } 6507 6508 if (fp->rx_tpa_info[i].bd.m != NULL) { 6509 m_freem(fp->rx_tpa_info[i].bd.m); 6510 fp->rx_tpa_info[i].bd.m = NULL; 6511 fp->eth_q_stats.mbuf_alloc_tpa--; 6512 } 6513 } 6514 } 6515 6516 static void 6517 bxe_free_sge_chain(struct bxe_fastpath *fp) 6518 { 6519 struct bxe_softc *sc; 6520 int i; 6521 6522 sc = fp->sc; 6523 6524 if (fp->rx_sge_mbuf_tag == NULL) { 6525 return; 6526 } 6527 6528 /* rree all mbufs and unload all maps */ 6529 for (i = 0; i < RX_SGE_TOTAL; i++) { 6530 if (fp->rx_sge_mbuf_chain[i].m_map != NULL) { 6531 bus_dmamap_sync(fp->rx_sge_mbuf_tag, 6532 fp->rx_sge_mbuf_chain[i].m_map, 6533 BUS_DMASYNC_POSTREAD); 6534 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 6535 fp->rx_sge_mbuf_chain[i].m_map); 6536 } 6537 6538 if (fp->rx_sge_mbuf_chain[i].m != NULL) { 6539 m_freem(fp->rx_sge_mbuf_chain[i].m); 6540 fp->rx_sge_mbuf_chain[i].m = NULL; 6541 fp->eth_q_stats.mbuf_alloc_sge--; 6542 } 6543 } 6544 } 6545 6546 static void 6547 bxe_free_fp_buffers(struct bxe_softc *sc) 6548 { 6549 struct bxe_fastpath *fp; 6550 int i; 6551 6552 for (i = 0; i < sc->num_queues; i++) { 6553 fp = &sc->fp[i]; 6554 6555 #if __FreeBSD_version >= 800000 6556 if (fp->tx_br != NULL) { 6557 struct mbuf *m; 6558 /* just in case bxe_mq_flush() wasn't called */ 6559 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { 6560 m_freem(m); 6561 } 6562 buf_ring_free(fp->tx_br, M_DEVBUF); 6563 fp->tx_br = NULL; 6564 } 6565 #endif 6566 6567 /* free all RX buffers */ 6568 bxe_free_rx_bd_chain(fp); 6569 bxe_free_tpa_pool(fp); 6570 bxe_free_sge_chain(fp); 6571 6572 if (fp->eth_q_stats.mbuf_alloc_rx != 0) { 6573 BLOGE(sc, "failed to claim all rx mbufs (%d left)\n", 6574 fp->eth_q_stats.mbuf_alloc_rx); 6575 } 6576 6577 if (fp->eth_q_stats.mbuf_alloc_sge != 0) { 6578 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6579 fp->eth_q_stats.mbuf_alloc_sge); 6580 } 6581 6582 if (fp->eth_q_stats.mbuf_alloc_tpa != 0) { 6583 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6584 fp->eth_q_stats.mbuf_alloc_tpa); 6585 } 6586 6587 if (fp->eth_q_stats.mbuf_alloc_tx != 0) { 6588 BLOGE(sc, "failed to release tx mbufs (%d left)\n", 6589 fp->eth_q_stats.mbuf_alloc_tx); 6590 } 6591 6592 /* XXX verify all mbufs were reclaimed */ 6593 6594 if (mtx_initialized(&fp->tx_mtx)) { 6595 mtx_destroy(&fp->tx_mtx); 6596 } 6597 6598 if (mtx_initialized(&fp->rx_mtx)) { 6599 mtx_destroy(&fp->rx_mtx); 6600 } 6601 } 6602 } 6603 6604 static int 6605 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 6606 uint16_t prev_index, 6607 uint16_t index) 6608 { 6609 struct bxe_sw_rx_bd *rx_buf; 6610 struct eth_rx_bd *rx_bd; 6611 bus_dma_segment_t segs[1]; 6612 bus_dmamap_t map; 6613 struct mbuf *m; 6614 int nsegs, rc; 6615 6616 rc = 0; 6617 6618 /* allocate the new RX BD mbuf */ 6619 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6620 if (__predict_false(m == NULL)) { 6621 fp->eth_q_stats.mbuf_rx_bd_alloc_failed++; 6622 return (ENOBUFS); 6623 } 6624 6625 fp->eth_q_stats.mbuf_alloc_rx++; 6626 6627 /* initialize the mbuf buffer length */ 6628 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6629 6630 /* map the mbuf into non-paged pool */ 6631 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6632 fp->rx_mbuf_spare_map, 6633 m, segs, &nsegs, BUS_DMA_NOWAIT); 6634 if (__predict_false(rc != 0)) { 6635 fp->eth_q_stats.mbuf_rx_bd_mapping_failed++; 6636 m_freem(m); 6637 fp->eth_q_stats.mbuf_alloc_rx--; 6638 return (rc); 6639 } 6640 6641 /* all mbufs must map to a single segment */ 6642 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6643 6644 /* release any existing RX BD mbuf mappings */ 6645 6646 if (prev_index != index) { 6647 rx_buf = &fp->rx_mbuf_chain[prev_index]; 6648 6649 if (rx_buf->m_map != NULL) { 6650 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6651 BUS_DMASYNC_POSTREAD); 6652 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6653 } 6654 6655 /* 6656 * We only get here from bxe_rxeof() when the maximum number 6657 * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already 6658 * holds the mbuf in the prev_index so it's OK to NULL it out 6659 * here without concern of a memory leak. 6660 */ 6661 fp->rx_mbuf_chain[prev_index].m = NULL; 6662 } 6663 6664 rx_buf = &fp->rx_mbuf_chain[index]; 6665 6666 if (rx_buf->m_map != NULL) { 6667 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6668 BUS_DMASYNC_POSTREAD); 6669 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6670 } 6671 6672 /* save the mbuf and mapping info for a future packet */ 6673 map = (prev_index != index) ? 6674 fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map; 6675 rx_buf->m_map = fp->rx_mbuf_spare_map; 6676 fp->rx_mbuf_spare_map = map; 6677 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6678 BUS_DMASYNC_PREREAD); 6679 rx_buf->m = m; 6680 6681 rx_bd = &fp->rx_chain[index]; 6682 rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6683 rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6684 6685 return (rc); 6686 } 6687 6688 static int 6689 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 6690 int queue) 6691 { 6692 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 6693 bus_dma_segment_t segs[1]; 6694 bus_dmamap_t map; 6695 struct mbuf *m; 6696 int nsegs; 6697 int rc = 0; 6698 6699 /* allocate the new TPA mbuf */ 6700 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6701 if (__predict_false(m == NULL)) { 6702 fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++; 6703 return (ENOBUFS); 6704 } 6705 6706 fp->eth_q_stats.mbuf_alloc_tpa++; 6707 6708 /* initialize the mbuf buffer length */ 6709 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6710 6711 /* map the mbuf into non-paged pool */ 6712 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6713 fp->rx_tpa_info_mbuf_spare_map, 6714 m, segs, &nsegs, BUS_DMA_NOWAIT); 6715 if (__predict_false(rc != 0)) { 6716 fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++; 6717 m_free(m); 6718 fp->eth_q_stats.mbuf_alloc_tpa--; 6719 return (rc); 6720 } 6721 6722 /* all mbufs must map to a single segment */ 6723 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6724 6725 /* release any existing TPA mbuf mapping */ 6726 if (tpa_info->bd.m_map != NULL) { 6727 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6728 BUS_DMASYNC_POSTREAD); 6729 bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map); 6730 } 6731 6732 /* save the mbuf and mapping info for the TPA mbuf */ 6733 map = tpa_info->bd.m_map; 6734 tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map; 6735 fp->rx_tpa_info_mbuf_spare_map = map; 6736 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6737 BUS_DMASYNC_PREREAD); 6738 tpa_info->bd.m = m; 6739 tpa_info->seg = segs[0]; 6740 6741 return (rc); 6742 } 6743 6744 /* 6745 * Allocate an mbuf and assign it to the receive scatter gather chain. The 6746 * caller must take care to save a copy of the existing mbuf in the SG mbuf 6747 * chain. 6748 */ 6749 static int 6750 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 6751 uint16_t index) 6752 { 6753 struct bxe_sw_rx_bd *sge_buf; 6754 struct eth_rx_sge *sge; 6755 bus_dma_segment_t segs[1]; 6756 bus_dmamap_t map; 6757 struct mbuf *m; 6758 int nsegs; 6759 int rc = 0; 6760 6761 /* allocate a new SGE mbuf */ 6762 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE); 6763 if (__predict_false(m == NULL)) { 6764 fp->eth_q_stats.mbuf_rx_sge_alloc_failed++; 6765 return (ENOMEM); 6766 } 6767 6768 fp->eth_q_stats.mbuf_alloc_sge++; 6769 6770 /* initialize the mbuf buffer length */ 6771 m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE; 6772 6773 /* map the SGE mbuf into non-paged pool */ 6774 rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag, 6775 fp->rx_sge_mbuf_spare_map, 6776 m, segs, &nsegs, BUS_DMA_NOWAIT); 6777 if (__predict_false(rc != 0)) { 6778 fp->eth_q_stats.mbuf_rx_sge_mapping_failed++; 6779 m_freem(m); 6780 fp->eth_q_stats.mbuf_alloc_sge--; 6781 return (rc); 6782 } 6783 6784 /* all mbufs must map to a single segment */ 6785 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6786 6787 sge_buf = &fp->rx_sge_mbuf_chain[index]; 6788 6789 /* release any existing SGE mbuf mapping */ 6790 if (sge_buf->m_map != NULL) { 6791 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6792 BUS_DMASYNC_POSTREAD); 6793 bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map); 6794 } 6795 6796 /* save the mbuf and mapping info for a future packet */ 6797 map = sge_buf->m_map; 6798 sge_buf->m_map = fp->rx_sge_mbuf_spare_map; 6799 fp->rx_sge_mbuf_spare_map = map; 6800 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6801 BUS_DMASYNC_PREREAD); 6802 sge_buf->m = m; 6803 6804 sge = &fp->rx_sge_chain[index]; 6805 sge->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6806 sge->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6807 6808 return (rc); 6809 } 6810 6811 static __noinline int 6812 bxe_alloc_fp_buffers(struct bxe_softc *sc) 6813 { 6814 struct bxe_fastpath *fp; 6815 int i, j, rc = 0; 6816 int ring_prod, cqe_ring_prod; 6817 int max_agg_queues; 6818 6819 for (i = 0; i < sc->num_queues; i++) { 6820 fp = &sc->fp[i]; 6821 6822 #if __FreeBSD_version >= 800000 6823 fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF, 6824 M_NOWAIT, &fp->tx_mtx); 6825 if (fp->tx_br == NULL) { 6826 BLOGE(sc, "buf_ring alloc fail for fp[%02d]\n", i); 6827 goto bxe_alloc_fp_buffers_error; 6828 } 6829 #endif 6830 6831 ring_prod = cqe_ring_prod = 0; 6832 fp->rx_bd_cons = 0; 6833 fp->rx_cq_cons = 0; 6834 6835 /* allocate buffers for the RX BDs in RX BD chain */ 6836 for (j = 0; j < sc->max_rx_bufs; j++) { 6837 rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod); 6838 if (rc != 0) { 6839 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 6840 i, rc); 6841 goto bxe_alloc_fp_buffers_error; 6842 } 6843 6844 ring_prod = RX_BD_NEXT(ring_prod); 6845 cqe_ring_prod = RCQ_NEXT(cqe_ring_prod); 6846 } 6847 6848 fp->rx_bd_prod = ring_prod; 6849 fp->rx_cq_prod = cqe_ring_prod; 6850 fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0; 6851 6852 max_agg_queues = MAX_AGG_QS(sc); 6853 6854 fp->tpa_enable = TRUE; 6855 6856 /* fill the TPA pool */ 6857 for (j = 0; j < max_agg_queues; j++) { 6858 rc = bxe_alloc_rx_tpa_mbuf(fp, j); 6859 if (rc != 0) { 6860 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n", 6861 i, j); 6862 fp->tpa_enable = FALSE; 6863 goto bxe_alloc_fp_buffers_error; 6864 } 6865 6866 fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP; 6867 } 6868 6869 if (fp->tpa_enable) { 6870 /* fill the RX SGE chain */ 6871 ring_prod = 0; 6872 for (j = 0; j < RX_SGE_USABLE; j++) { 6873 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod); 6874 if (rc != 0) { 6875 BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n", 6876 i, ring_prod); 6877 fp->tpa_enable = FALSE; 6878 ring_prod = 0; 6879 goto bxe_alloc_fp_buffers_error; 6880 } 6881 6882 ring_prod = RX_SGE_NEXT(ring_prod); 6883 } 6884 6885 fp->rx_sge_prod = ring_prod; 6886 } 6887 } 6888 6889 return (0); 6890 6891 bxe_alloc_fp_buffers_error: 6892 6893 /* unwind what was already allocated */ 6894 bxe_free_rx_bd_chain(fp); 6895 bxe_free_tpa_pool(fp); 6896 bxe_free_sge_chain(fp); 6897 6898 return (ENOBUFS); 6899 } 6900 6901 static void 6902 bxe_free_fw_stats_mem(struct bxe_softc *sc) 6903 { 6904 bxe_dma_free(sc, &sc->fw_stats_dma); 6905 6906 sc->fw_stats_num = 0; 6907 6908 sc->fw_stats_req_size = 0; 6909 sc->fw_stats_req = NULL; 6910 sc->fw_stats_req_mapping = 0; 6911 6912 sc->fw_stats_data_size = 0; 6913 sc->fw_stats_data = NULL; 6914 sc->fw_stats_data_mapping = 0; 6915 } 6916 6917 static int 6918 bxe_alloc_fw_stats_mem(struct bxe_softc *sc) 6919 { 6920 uint8_t num_queue_stats; 6921 int num_groups; 6922 6923 /* number of queues for statistics is number of eth queues */ 6924 num_queue_stats = BXE_NUM_ETH_QUEUES(sc); 6925 6926 /* 6927 * Total number of FW statistics requests = 6928 * 1 for port stats + 1 for PF stats + num of queues 6929 */ 6930 sc->fw_stats_num = (2 + num_queue_stats); 6931 6932 /* 6933 * Request is built from stats_query_header and an array of 6934 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT 6935 * rules. The real number or requests is configured in the 6936 * stats_query_header. 6937 */ 6938 num_groups = 6939 ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) + 6940 ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0)); 6941 6942 BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n", 6943 sc->fw_stats_num, num_groups); 6944 6945 sc->fw_stats_req_size = 6946 (sizeof(struct stats_query_header) + 6947 (num_groups * sizeof(struct stats_query_cmd_group))); 6948 6949 /* 6950 * Data for statistics requests + stats_counter. 6951 * stats_counter holds per-STORM counters that are incremented when 6952 * STORM has finished with the current request. Memory for FCoE 6953 * offloaded statistics are counted anyway, even if they will not be sent. 6954 * VF stats are not accounted for here as the data of VF stats is stored 6955 * in memory allocated by the VF, not here. 6956 */ 6957 sc->fw_stats_data_size = 6958 (sizeof(struct stats_counter) + 6959 sizeof(struct per_port_stats) + 6960 sizeof(struct per_pf_stats) + 6961 /* sizeof(struct fcoe_statistics_params) + */ 6962 (sizeof(struct per_queue_stats) * num_queue_stats)); 6963 6964 if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size), 6965 &sc->fw_stats_dma, "fw stats") != 0) { 6966 bxe_free_fw_stats_mem(sc); 6967 return (-1); 6968 } 6969 6970 /* set up the shortcuts */ 6971 6972 sc->fw_stats_req = 6973 (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr; 6974 sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr; 6975 6976 sc->fw_stats_data = 6977 (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr + 6978 sc->fw_stats_req_size); 6979 sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr + 6980 sc->fw_stats_req_size); 6981 6982 BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n", 6983 (uintmax_t)sc->fw_stats_req_mapping); 6984 6985 BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n", 6986 (uintmax_t)sc->fw_stats_data_mapping); 6987 6988 return (0); 6989 } 6990 6991 /* 6992 * Bits map: 6993 * 0-7 - Engine0 load counter. 6994 * 8-15 - Engine1 load counter. 6995 * 16 - Engine0 RESET_IN_PROGRESS bit. 6996 * 17 - Engine1 RESET_IN_PROGRESS bit. 6997 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active 6998 * function on the engine 6999 * 19 - Engine1 ONE_IS_LOADED. 7000 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 7001 * leader to complete (check for both RESET_IN_PROGRESS bits and not 7002 * for just the one belonging to its engine). 7003 */ 7004 #define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 7005 #define BXE_PATH0_LOAD_CNT_MASK 0x000000ff 7006 #define BXE_PATH0_LOAD_CNT_SHIFT 0 7007 #define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00 7008 #define BXE_PATH1_LOAD_CNT_SHIFT 8 7009 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000 7010 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000 7011 #define BXE_GLOBAL_RESET_BIT 0x00040000 7012 7013 /* set the GLOBAL_RESET bit, should be run under rtnl lock */ 7014 static void 7015 bxe_set_reset_global(struct bxe_softc *sc) 7016 { 7017 uint32_t val; 7018 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7019 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7020 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT); 7021 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7022 } 7023 7024 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */ 7025 static void 7026 bxe_clear_reset_global(struct bxe_softc *sc) 7027 { 7028 uint32_t val; 7029 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7030 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7031 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT)); 7032 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7033 } 7034 7035 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */ 7036 static uint8_t 7037 bxe_reset_is_global(struct bxe_softc *sc) 7038 { 7039 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7040 BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val); 7041 return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE; 7042 } 7043 7044 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */ 7045 static void 7046 bxe_set_reset_done(struct bxe_softc *sc) 7047 { 7048 uint32_t val; 7049 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 7050 BXE_PATH0_RST_IN_PROG_BIT; 7051 7052 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7053 7054 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7055 /* Clear the bit */ 7056 val &= ~bit; 7057 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 7058 7059 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7060 } 7061 7062 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */ 7063 static void 7064 bxe_set_reset_in_progress(struct bxe_softc *sc) 7065 { 7066 uint32_t val; 7067 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 7068 BXE_PATH0_RST_IN_PROG_BIT; 7069 7070 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7071 7072 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7073 /* Set the bit */ 7074 val |= bit; 7075 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 7076 7077 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7078 } 7079 7080 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */ 7081 static uint8_t 7082 bxe_reset_is_done(struct bxe_softc *sc, 7083 int engine) 7084 { 7085 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7086 uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT : 7087 BXE_PATH0_RST_IN_PROG_BIT; 7088 7089 /* return false if bit is set */ 7090 return (val & bit) ? FALSE : TRUE; 7091 } 7092 7093 /* get the load status for an engine, should be run under rtnl lock */ 7094 static uint8_t 7095 bxe_get_load_status(struct bxe_softc *sc, 7096 int engine) 7097 { 7098 uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK : 7099 BXE_PATH0_LOAD_CNT_MASK; 7100 uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT : 7101 BXE_PATH0_LOAD_CNT_SHIFT; 7102 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7103 7104 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 7105 7106 val = ((val & mask) >> shift); 7107 7108 BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val); 7109 7110 return (val != 0); 7111 } 7112 7113 /* set pf load mark */ 7114 /* XXX needs to be under rtnl lock */ 7115 static void 7116 bxe_set_pf_load(struct bxe_softc *sc) 7117 { 7118 uint32_t val; 7119 uint32_t val1; 7120 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 7121 BXE_PATH0_LOAD_CNT_MASK; 7122 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 7123 BXE_PATH0_LOAD_CNT_SHIFT; 7124 7125 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7126 7127 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7128 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 7129 7130 /* get the current counter value */ 7131 val1 = ((val & mask) >> shift); 7132 7133 /* set bit of this PF */ 7134 val1 |= (1 << SC_ABS_FUNC(sc)); 7135 7136 /* clear the old value */ 7137 val &= ~mask; 7138 7139 /* set the new one */ 7140 val |= ((val1 << shift) & mask); 7141 7142 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 7143 7144 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7145 } 7146 7147 /* clear pf load mark */ 7148 /* XXX needs to be under rtnl lock */ 7149 static uint8_t 7150 bxe_clear_pf_load(struct bxe_softc *sc) 7151 { 7152 uint32_t val1, val; 7153 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 7154 BXE_PATH0_LOAD_CNT_MASK; 7155 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 7156 BXE_PATH0_LOAD_CNT_SHIFT; 7157 7158 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7159 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7160 BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val); 7161 7162 /* get the current counter value */ 7163 val1 = (val & mask) >> shift; 7164 7165 /* clear bit of that PF */ 7166 val1 &= ~(1 << SC_ABS_FUNC(sc)); 7167 7168 /* clear the old value */ 7169 val &= ~mask; 7170 7171 /* set the new one */ 7172 val |= ((val1 << shift) & mask); 7173 7174 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 7175 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7176 return (val1 != 0); 7177 } 7178 7179 /* send load requrest to mcp and analyze response */ 7180 static int 7181 bxe_nic_load_request(struct bxe_softc *sc, 7182 uint32_t *load_code) 7183 { 7184 /* init fw_seq */ 7185 sc->fw_seq = 7186 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 7187 DRV_MSG_SEQ_NUMBER_MASK); 7188 7189 BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq); 7190 7191 /* get the current FW pulse sequence */ 7192 sc->fw_drv_pulse_wr_seq = 7193 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) & 7194 DRV_PULSE_SEQ_MASK); 7195 7196 BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n", 7197 sc->fw_drv_pulse_wr_seq); 7198 7199 /* load request */ 7200 (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 7201 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 7202 7203 /* if the MCP fails to respond we must abort */ 7204 if (!(*load_code)) { 7205 BLOGE(sc, "MCP response failure!\n"); 7206 return (-1); 7207 } 7208 7209 /* if MCP refused then must abort */ 7210 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 7211 BLOGE(sc, "MCP refused load request\n"); 7212 return (-1); 7213 } 7214 7215 return (0); 7216 } 7217 7218 /* 7219 * Check whether another PF has already loaded FW to chip. In virtualized 7220 * environments a pf from anoth VM may have already initialized the device 7221 * including loading FW. 7222 */ 7223 static int 7224 bxe_nic_load_analyze_req(struct bxe_softc *sc, 7225 uint32_t load_code) 7226 { 7227 uint32_t my_fw, loaded_fw; 7228 7229 /* is another pf loaded on this engine? */ 7230 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 7231 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 7232 /* build my FW version dword */ 7233 my_fw = (BCM_5710_FW_MAJOR_VERSION + 7234 (BCM_5710_FW_MINOR_VERSION << 8 ) + 7235 (BCM_5710_FW_REVISION_VERSION << 16) + 7236 (BCM_5710_FW_ENGINEERING_VERSION << 24)); 7237 7238 /* read loaded FW from chip */ 7239 loaded_fw = REG_RD(sc, XSEM_REG_PRAM); 7240 BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n", 7241 loaded_fw, my_fw); 7242 7243 /* abort nic load if version mismatch */ 7244 if (my_fw != loaded_fw) { 7245 BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)", 7246 loaded_fw, my_fw); 7247 return (-1); 7248 } 7249 } 7250 7251 return (0); 7252 } 7253 7254 /* mark PMF if applicable */ 7255 static void 7256 bxe_nic_load_pmf(struct bxe_softc *sc, 7257 uint32_t load_code) 7258 { 7259 uint32_t ncsi_oem_data_addr; 7260 7261 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 7262 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 7263 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 7264 /* 7265 * Barrier here for ordering between the writing to sc->port.pmf here 7266 * and reading it from the periodic task. 7267 */ 7268 sc->port.pmf = 1; 7269 mb(); 7270 } else { 7271 sc->port.pmf = 0; 7272 } 7273 7274 BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf); 7275 7276 /* XXX needed? */ 7277 if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) { 7278 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) { 7279 ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr); 7280 if (ncsi_oem_data_addr) { 7281 REG_WR(sc, 7282 (ncsi_oem_data_addr + 7283 offsetof(struct glob_ncsi_oem_data, driver_version)), 7284 0); 7285 } 7286 } 7287 } 7288 } 7289 7290 static void 7291 bxe_read_mf_cfg(struct bxe_softc *sc) 7292 { 7293 int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1); 7294 int abs_func; 7295 int vn; 7296 7297 if (BXE_NOMCP(sc)) { 7298 return; /* what should be the default bvalue in this case */ 7299 } 7300 7301 /* 7302 * The formula for computing the absolute function number is... 7303 * For 2 port configuration (4 functions per port): 7304 * abs_func = 2 * vn + SC_PORT + SC_PATH 7305 * For 4 port configuration (2 functions per port): 7306 * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH 7307 */ 7308 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 7309 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc)); 7310 if (abs_func >= E1H_FUNC_MAX) { 7311 break; 7312 } 7313 sc->devinfo.mf_info.mf_config[vn] = 7314 MFCFG_RD(sc, func_mf_config[abs_func].config); 7315 } 7316 7317 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & 7318 FUNC_MF_CFG_FUNC_DISABLED) { 7319 BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n"); 7320 sc->flags |= BXE_MF_FUNC_DIS; 7321 } else { 7322 BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n"); 7323 sc->flags &= ~BXE_MF_FUNC_DIS; 7324 } 7325 } 7326 7327 /* acquire split MCP access lock register */ 7328 static int bxe_acquire_alr(struct bxe_softc *sc) 7329 { 7330 uint32_t j, val; 7331 7332 for (j = 0; j < 1000; j++) { 7333 val = (1UL << 31); 7334 REG_WR(sc, GRCBASE_MCP + 0x9c, val); 7335 val = REG_RD(sc, GRCBASE_MCP + 0x9c); 7336 if (val & (1L << 31)) 7337 break; 7338 7339 DELAY(5000); 7340 } 7341 7342 if (!(val & (1L << 31))) { 7343 BLOGE(sc, "Cannot acquire MCP access lock register\n"); 7344 return (-1); 7345 } 7346 7347 return (0); 7348 } 7349 7350 /* release split MCP access lock register */ 7351 static void bxe_release_alr(struct bxe_softc *sc) 7352 { 7353 REG_WR(sc, GRCBASE_MCP + 0x9c, 0); 7354 } 7355 7356 static void 7357 bxe_fan_failure(struct bxe_softc *sc) 7358 { 7359 int port = SC_PORT(sc); 7360 uint32_t ext_phy_config; 7361 7362 /* mark the failure */ 7363 ext_phy_config = 7364 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 7365 7366 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 7367 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 7368 SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config, 7369 ext_phy_config); 7370 7371 /* log the failure */ 7372 BLOGW(sc, "Fan Failure has caused the driver to shutdown " 7373 "the card to prevent permanent damage. " 7374 "Please contact OEM Support for assistance\n"); 7375 7376 /* XXX */ 7377 #if 1 7378 bxe_panic(sc, ("Schedule task to handle fan failure\n")); 7379 #else 7380 /* 7381 * Schedule device reset (unload) 7382 * This is due to some boards consuming sufficient power when driver is 7383 * up to overheat if fan fails. 7384 */ 7385 bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state); 7386 schedule_delayed_work(&sc->sp_rtnl_task, 0); 7387 #endif 7388 } 7389 7390 /* this function is called upon a link interrupt */ 7391 static void 7392 bxe_link_attn(struct bxe_softc *sc) 7393 { 7394 uint32_t pause_enabled = 0; 7395 struct host_port_stats *pstats; 7396 int cmng_fns; 7397 7398 /* Make sure that we are synced with the current statistics */ 7399 bxe_stats_handle(sc, STATS_EVENT_STOP); 7400 7401 elink_link_update(&sc->link_params, &sc->link_vars); 7402 7403 if (sc->link_vars.link_up) { 7404 7405 /* dropless flow control */ 7406 if (!CHIP_IS_E1(sc) && sc->dropless_fc) { 7407 pause_enabled = 0; 7408 7409 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 7410 pause_enabled = 1; 7411 } 7412 7413 REG_WR(sc, 7414 (BAR_USTRORM_INTMEM + 7415 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))), 7416 pause_enabled); 7417 } 7418 7419 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) { 7420 pstats = BXE_SP(sc, port_stats); 7421 /* reset old mac stats */ 7422 memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx)); 7423 } 7424 7425 if (sc->state == BXE_STATE_OPEN) { 7426 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 7427 } 7428 } 7429 7430 if (sc->link_vars.link_up && sc->link_vars.line_speed) { 7431 cmng_fns = bxe_get_cmng_fns_mode(sc); 7432 7433 if (cmng_fns != CMNG_FNS_NONE) { 7434 bxe_cmng_fns_init(sc, FALSE, cmng_fns); 7435 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7436 } else { 7437 /* rate shaping and fairness are disabled */ 7438 BLOGD(sc, DBG_LOAD, "single function mode without fairness\n"); 7439 } 7440 } 7441 7442 bxe_link_report_locked(sc); 7443 7444 if (IS_MF(sc)) { 7445 ; // XXX bxe_link_sync_notify(sc); 7446 } 7447 } 7448 7449 static void 7450 bxe_attn_int_asserted(struct bxe_softc *sc, 7451 uint32_t asserted) 7452 { 7453 int port = SC_PORT(sc); 7454 uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 7455 MISC_REG_AEU_MASK_ATTN_FUNC_0; 7456 uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 7457 NIG_REG_MASK_INTERRUPT_PORT0; 7458 uint32_t aeu_mask; 7459 uint32_t nig_mask = 0; 7460 uint32_t reg_addr; 7461 uint32_t igu_acked; 7462 uint32_t cnt; 7463 7464 if (sc->attn_state & asserted) { 7465 BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted); 7466 } 7467 7468 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7469 7470 aeu_mask = REG_RD(sc, aeu_addr); 7471 7472 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n", 7473 aeu_mask, asserted); 7474 7475 aeu_mask &= ~(asserted & 0x3ff); 7476 7477 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 7478 7479 REG_WR(sc, aeu_addr, aeu_mask); 7480 7481 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7482 7483 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 7484 sc->attn_state |= asserted; 7485 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 7486 7487 if (asserted & ATTN_HARD_WIRED_MASK) { 7488 if (asserted & ATTN_NIG_FOR_FUNC) { 7489 7490 BXE_PHY_LOCK(sc); 7491 7492 /* save nig interrupt mask */ 7493 nig_mask = REG_RD(sc, nig_int_mask_addr); 7494 7495 /* If nig_mask is not set, no need to call the update function */ 7496 if (nig_mask) { 7497 REG_WR(sc, nig_int_mask_addr, 0); 7498 7499 bxe_link_attn(sc); 7500 } 7501 7502 /* handle unicore attn? */ 7503 } 7504 7505 if (asserted & ATTN_SW_TIMER_4_FUNC) { 7506 BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n"); 7507 } 7508 7509 if (asserted & GPIO_2_FUNC) { 7510 BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n"); 7511 } 7512 7513 if (asserted & GPIO_3_FUNC) { 7514 BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n"); 7515 } 7516 7517 if (asserted & GPIO_4_FUNC) { 7518 BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n"); 7519 } 7520 7521 if (port == 0) { 7522 if (asserted & ATTN_GENERAL_ATTN_1) { 7523 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n"); 7524 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 7525 } 7526 if (asserted & ATTN_GENERAL_ATTN_2) { 7527 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n"); 7528 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 7529 } 7530 if (asserted & ATTN_GENERAL_ATTN_3) { 7531 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n"); 7532 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 7533 } 7534 } else { 7535 if (asserted & ATTN_GENERAL_ATTN_4) { 7536 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n"); 7537 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 7538 } 7539 if (asserted & ATTN_GENERAL_ATTN_5) { 7540 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n"); 7541 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 7542 } 7543 if (asserted & ATTN_GENERAL_ATTN_6) { 7544 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n"); 7545 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 7546 } 7547 } 7548 } /* hardwired */ 7549 7550 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7551 reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET); 7552 } else { 7553 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 7554 } 7555 7556 BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n", 7557 asserted, 7558 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 7559 REG_WR(sc, reg_addr, asserted); 7560 7561 /* now set back the mask */ 7562 if (asserted & ATTN_NIG_FOR_FUNC) { 7563 /* 7564 * Verify that IGU ack through BAR was written before restoring 7565 * NIG mask. This loop should exit after 2-3 iterations max. 7566 */ 7567 if (sc->devinfo.int_block != INT_BLOCK_HC) { 7568 cnt = 0; 7569 7570 do { 7571 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS); 7572 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 7573 (++cnt < MAX_IGU_ATTN_ACK_TO)); 7574 7575 if (!igu_acked) { 7576 BLOGE(sc, "Failed to verify IGU ack on time\n"); 7577 } 7578 7579 mb(); 7580 } 7581 7582 REG_WR(sc, nig_int_mask_addr, nig_mask); 7583 7584 BXE_PHY_UNLOCK(sc); 7585 } 7586 } 7587 7588 static void 7589 bxe_print_next_block(struct bxe_softc *sc, 7590 int idx, 7591 const char *blk) 7592 { 7593 BLOGI(sc, "%s%s", idx ? ", " : "", blk); 7594 } 7595 7596 static int 7597 bxe_check_blocks_with_parity0(struct bxe_softc *sc, 7598 uint32_t sig, 7599 int par_num, 7600 uint8_t print) 7601 { 7602 uint32_t cur_bit = 0; 7603 int i = 0; 7604 7605 for (i = 0; sig; i++) { 7606 cur_bit = ((uint32_t)0x1 << i); 7607 if (sig & cur_bit) { 7608 switch (cur_bit) { 7609 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 7610 if (print) 7611 bxe_print_next_block(sc, par_num++, "BRB"); 7612 break; 7613 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 7614 if (print) 7615 bxe_print_next_block(sc, par_num++, "PARSER"); 7616 break; 7617 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 7618 if (print) 7619 bxe_print_next_block(sc, par_num++, "TSDM"); 7620 break; 7621 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 7622 if (print) 7623 bxe_print_next_block(sc, par_num++, "SEARCHER"); 7624 break; 7625 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 7626 if (print) 7627 bxe_print_next_block(sc, par_num++, "TCM"); 7628 break; 7629 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 7630 if (print) 7631 bxe_print_next_block(sc, par_num++, "TSEMI"); 7632 break; 7633 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 7634 if (print) 7635 bxe_print_next_block(sc, par_num++, "XPB"); 7636 break; 7637 } 7638 7639 /* Clear the bit */ 7640 sig &= ~cur_bit; 7641 } 7642 } 7643 7644 return (par_num); 7645 } 7646 7647 static int 7648 bxe_check_blocks_with_parity1(struct bxe_softc *sc, 7649 uint32_t sig, 7650 int par_num, 7651 uint8_t *global, 7652 uint8_t print) 7653 { 7654 int i = 0; 7655 uint32_t cur_bit = 0; 7656 for (i = 0; sig; i++) { 7657 cur_bit = ((uint32_t)0x1 << i); 7658 if (sig & cur_bit) { 7659 switch (cur_bit) { 7660 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 7661 if (print) 7662 bxe_print_next_block(sc, par_num++, "PBF"); 7663 break; 7664 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 7665 if (print) 7666 bxe_print_next_block(sc, par_num++, "QM"); 7667 break; 7668 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 7669 if (print) 7670 bxe_print_next_block(sc, par_num++, "TM"); 7671 break; 7672 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 7673 if (print) 7674 bxe_print_next_block(sc, par_num++, "XSDM"); 7675 break; 7676 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 7677 if (print) 7678 bxe_print_next_block(sc, par_num++, "XCM"); 7679 break; 7680 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 7681 if (print) 7682 bxe_print_next_block(sc, par_num++, "XSEMI"); 7683 break; 7684 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 7685 if (print) 7686 bxe_print_next_block(sc, par_num++, "DOORBELLQ"); 7687 break; 7688 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 7689 if (print) 7690 bxe_print_next_block(sc, par_num++, "NIG"); 7691 break; 7692 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 7693 if (print) 7694 bxe_print_next_block(sc, par_num++, "VAUX PCI CORE"); 7695 *global = TRUE; 7696 break; 7697 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 7698 if (print) 7699 bxe_print_next_block(sc, par_num++, "DEBUG"); 7700 break; 7701 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 7702 if (print) 7703 bxe_print_next_block(sc, par_num++, "USDM"); 7704 break; 7705 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 7706 if (print) 7707 bxe_print_next_block(sc, par_num++, "UCM"); 7708 break; 7709 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 7710 if (print) 7711 bxe_print_next_block(sc, par_num++, "USEMI"); 7712 break; 7713 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 7714 if (print) 7715 bxe_print_next_block(sc, par_num++, "UPB"); 7716 break; 7717 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 7718 if (print) 7719 bxe_print_next_block(sc, par_num++, "CSDM"); 7720 break; 7721 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 7722 if (print) 7723 bxe_print_next_block(sc, par_num++, "CCM"); 7724 break; 7725 } 7726 7727 /* Clear the bit */ 7728 sig &= ~cur_bit; 7729 } 7730 } 7731 7732 return (par_num); 7733 } 7734 7735 static int 7736 bxe_check_blocks_with_parity2(struct bxe_softc *sc, 7737 uint32_t sig, 7738 int par_num, 7739 uint8_t print) 7740 { 7741 uint32_t cur_bit = 0; 7742 int i = 0; 7743 7744 for (i = 0; sig; i++) { 7745 cur_bit = ((uint32_t)0x1 << i); 7746 if (sig & cur_bit) { 7747 switch (cur_bit) { 7748 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 7749 if (print) 7750 bxe_print_next_block(sc, par_num++, "CSEMI"); 7751 break; 7752 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 7753 if (print) 7754 bxe_print_next_block(sc, par_num++, "PXP"); 7755 break; 7756 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 7757 if (print) 7758 bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT"); 7759 break; 7760 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 7761 if (print) 7762 bxe_print_next_block(sc, par_num++, "CFC"); 7763 break; 7764 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 7765 if (print) 7766 bxe_print_next_block(sc, par_num++, "CDU"); 7767 break; 7768 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 7769 if (print) 7770 bxe_print_next_block(sc, par_num++, "DMAE"); 7771 break; 7772 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 7773 if (print) 7774 bxe_print_next_block(sc, par_num++, "IGU"); 7775 break; 7776 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 7777 if (print) 7778 bxe_print_next_block(sc, par_num++, "MISC"); 7779 break; 7780 } 7781 7782 /* Clear the bit */ 7783 sig &= ~cur_bit; 7784 } 7785 } 7786 7787 return (par_num); 7788 } 7789 7790 static int 7791 bxe_check_blocks_with_parity3(struct bxe_softc *sc, 7792 uint32_t sig, 7793 int par_num, 7794 uint8_t *global, 7795 uint8_t print) 7796 { 7797 uint32_t cur_bit = 0; 7798 int i = 0; 7799 7800 for (i = 0; sig; i++) { 7801 cur_bit = ((uint32_t)0x1 << i); 7802 if (sig & cur_bit) { 7803 switch (cur_bit) { 7804 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 7805 if (print) 7806 bxe_print_next_block(sc, par_num++, "MCP ROM"); 7807 *global = TRUE; 7808 break; 7809 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 7810 if (print) 7811 bxe_print_next_block(sc, par_num++, 7812 "MCP UMP RX"); 7813 *global = TRUE; 7814 break; 7815 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 7816 if (print) 7817 bxe_print_next_block(sc, par_num++, 7818 "MCP UMP TX"); 7819 *global = TRUE; 7820 break; 7821 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 7822 if (print) 7823 bxe_print_next_block(sc, par_num++, 7824 "MCP SCPAD"); 7825 *global = TRUE; 7826 break; 7827 } 7828 7829 /* Clear the bit */ 7830 sig &= ~cur_bit; 7831 } 7832 } 7833 7834 return (par_num); 7835 } 7836 7837 static int 7838 bxe_check_blocks_with_parity4(struct bxe_softc *sc, 7839 uint32_t sig, 7840 int par_num, 7841 uint8_t print) 7842 { 7843 uint32_t cur_bit = 0; 7844 int i = 0; 7845 7846 for (i = 0; sig; i++) { 7847 cur_bit = ((uint32_t)0x1 << i); 7848 if (sig & cur_bit) { 7849 switch (cur_bit) { 7850 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 7851 if (print) 7852 bxe_print_next_block(sc, par_num++, "PGLUE_B"); 7853 break; 7854 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 7855 if (print) 7856 bxe_print_next_block(sc, par_num++, "ATC"); 7857 break; 7858 } 7859 7860 /* Clear the bit */ 7861 sig &= ~cur_bit; 7862 } 7863 } 7864 7865 return (par_num); 7866 } 7867 7868 static uint8_t 7869 bxe_parity_attn(struct bxe_softc *sc, 7870 uint8_t *global, 7871 uint8_t print, 7872 uint32_t *sig) 7873 { 7874 int par_num = 0; 7875 7876 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 7877 (sig[1] & HW_PRTY_ASSERT_SET_1) || 7878 (sig[2] & HW_PRTY_ASSERT_SET_2) || 7879 (sig[3] & HW_PRTY_ASSERT_SET_3) || 7880 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 7881 BLOGE(sc, "Parity error: HW block parity attention:\n" 7882 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 7883 (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0), 7884 (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1), 7885 (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2), 7886 (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3), 7887 (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4)); 7888 7889 if (print) 7890 BLOGI(sc, "Parity errors detected in blocks: "); 7891 7892 par_num = 7893 bxe_check_blocks_with_parity0(sc, sig[0] & 7894 HW_PRTY_ASSERT_SET_0, 7895 par_num, print); 7896 par_num = 7897 bxe_check_blocks_with_parity1(sc, sig[1] & 7898 HW_PRTY_ASSERT_SET_1, 7899 par_num, global, print); 7900 par_num = 7901 bxe_check_blocks_with_parity2(sc, sig[2] & 7902 HW_PRTY_ASSERT_SET_2, 7903 par_num, print); 7904 par_num = 7905 bxe_check_blocks_with_parity3(sc, sig[3] & 7906 HW_PRTY_ASSERT_SET_3, 7907 par_num, global, print); 7908 par_num = 7909 bxe_check_blocks_with_parity4(sc, sig[4] & 7910 HW_PRTY_ASSERT_SET_4, 7911 par_num, print); 7912 7913 if (print) 7914 BLOGI(sc, "\n"); 7915 7916 return (TRUE); 7917 } 7918 7919 return (FALSE); 7920 } 7921 7922 static uint8_t 7923 bxe_chk_parity_attn(struct bxe_softc *sc, 7924 uint8_t *global, 7925 uint8_t print) 7926 { 7927 struct attn_route attn = { {0} }; 7928 int port = SC_PORT(sc); 7929 7930 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 7931 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 7932 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 7933 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 7934 7935 if (!CHIP_IS_E1x(sc)) 7936 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 7937 7938 return (bxe_parity_attn(sc, global, print, attn.sig)); 7939 } 7940 7941 static void 7942 bxe_attn_int_deasserted4(struct bxe_softc *sc, 7943 uint32_t attn) 7944 { 7945 uint32_t val; 7946 7947 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 7948 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 7949 BLOGE(sc, "PGLUE hw attention 0x%08x\n", val); 7950 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 7951 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 7952 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 7953 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 7954 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 7955 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 7956 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 7957 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 7958 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 7959 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 7960 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 7961 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 7962 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 7963 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 7964 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 7965 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 7966 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 7967 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 7968 } 7969 7970 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 7971 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR); 7972 BLOGE(sc, "ATC hw attention 0x%08x\n", val); 7973 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 7974 BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 7975 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 7976 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 7977 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 7978 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 7979 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 7980 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 7981 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 7982 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 7983 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 7984 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 7985 } 7986 7987 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7988 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 7989 BLOGE(sc, "FATAL parity attention set4 0x%08x\n", 7990 (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7991 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 7992 } 7993 } 7994 7995 static void 7996 bxe_e1h_disable(struct bxe_softc *sc) 7997 { 7998 int port = SC_PORT(sc); 7999 8000 bxe_tx_disable(sc); 8001 8002 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 8003 } 8004 8005 static void 8006 bxe_e1h_enable(struct bxe_softc *sc) 8007 { 8008 int port = SC_PORT(sc); 8009 8010 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 8011 8012 // XXX bxe_tx_enable(sc); 8013 } 8014 8015 /* 8016 * called due to MCP event (on pmf): 8017 * reread new bandwidth configuration 8018 * configure FW 8019 * notify others function about the change 8020 */ 8021 static void 8022 bxe_config_mf_bw(struct bxe_softc *sc) 8023 { 8024 if (sc->link_vars.link_up) { 8025 bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX); 8026 // XXX bxe_link_sync_notify(sc); 8027 } 8028 8029 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 8030 } 8031 8032 static void 8033 bxe_set_mf_bw(struct bxe_softc *sc) 8034 { 8035 bxe_config_mf_bw(sc); 8036 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 8037 } 8038 8039 static void 8040 bxe_handle_eee_event(struct bxe_softc *sc) 8041 { 8042 BLOGD(sc, DBG_INTR, "EEE - LLDP event\n"); 8043 bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 8044 } 8045 8046 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 8047 8048 static void 8049 bxe_drv_info_ether_stat(struct bxe_softc *sc) 8050 { 8051 struct eth_stats_info *ether_stat = 8052 &sc->sp->drv_info_to_mcp.ether_stat; 8053 8054 strlcpy(ether_stat->version, BXE_DRIVER_VERSION, 8055 ETH_STAT_INFO_VERSION_LEN); 8056 8057 /* XXX (+ MAC_PAD) taken from other driver... verify this is right */ 8058 sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj, 8059 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 8060 ether_stat->mac_local + MAC_PAD, 8061 MAC_PAD, ETH_ALEN); 8062 8063 ether_stat->mtu_size = sc->mtu; 8064 8065 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 8066 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 8067 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 8068 } 8069 8070 // XXX ether_stat->feature_flags |= ???; 8071 8072 ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0; 8073 8074 ether_stat->txq_size = sc->tx_ring_size; 8075 ether_stat->rxq_size = sc->rx_ring_size; 8076 } 8077 8078 static void 8079 bxe_handle_drv_info_req(struct bxe_softc *sc) 8080 { 8081 enum drv_info_opcode op_code; 8082 uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control); 8083 8084 /* if drv_info version supported by MFW doesn't match - send NACK */ 8085 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 8086 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 8087 return; 8088 } 8089 8090 op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 8091 DRV_INFO_CONTROL_OP_CODE_SHIFT); 8092 8093 memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp)); 8094 8095 switch (op_code) { 8096 case ETH_STATS_OPCODE: 8097 bxe_drv_info_ether_stat(sc); 8098 break; 8099 case FCOE_STATS_OPCODE: 8100 case ISCSI_STATS_OPCODE: 8101 default: 8102 /* if op code isn't supported - send NACK */ 8103 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 8104 return; 8105 } 8106 8107 /* 8108 * If we got drv_info attn from MFW then these fields are defined in 8109 * shmem2 for sure 8110 */ 8111 SHMEM2_WR(sc, drv_info_host_addr_lo, 8112 U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 8113 SHMEM2_WR(sc, drv_info_host_addr_hi, 8114 U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 8115 8116 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0); 8117 } 8118 8119 static void 8120 bxe_dcc_event(struct bxe_softc *sc, 8121 uint32_t dcc_event) 8122 { 8123 BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event); 8124 8125 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { 8126 /* 8127 * This is the only place besides the function initialization 8128 * where the sc->flags can change so it is done without any 8129 * locks 8130 */ 8131 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) { 8132 BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n"); 8133 sc->flags |= BXE_MF_FUNC_DIS; 8134 bxe_e1h_disable(sc); 8135 } else { 8136 BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n"); 8137 sc->flags &= ~BXE_MF_FUNC_DIS; 8138 bxe_e1h_enable(sc); 8139 } 8140 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; 8141 } 8142 8143 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { 8144 bxe_config_mf_bw(sc); 8145 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; 8146 } 8147 8148 /* Report results to MCP */ 8149 if (dcc_event) 8150 bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0); 8151 else 8152 bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0); 8153 } 8154 8155 static void 8156 bxe_pmf_update(struct bxe_softc *sc) 8157 { 8158 int port = SC_PORT(sc); 8159 uint32_t val; 8160 8161 sc->port.pmf = 1; 8162 BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf); 8163 8164 /* 8165 * We need the mb() to ensure the ordering between the writing to 8166 * sc->port.pmf here and reading it from the bxe_periodic_task(). 8167 */ 8168 mb(); 8169 8170 /* queue a periodic task */ 8171 // XXX schedule task... 8172 8173 // XXX bxe_dcbx_pmf_update(sc); 8174 8175 /* enable nig attention */ 8176 val = (0xff0f | (1 << (SC_VN(sc) + 4))); 8177 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8178 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val); 8179 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val); 8180 } else if (!CHIP_IS_E1x(sc)) { 8181 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 8182 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 8183 } 8184 8185 bxe_stats_handle(sc, STATS_EVENT_PMF); 8186 } 8187 8188 static int 8189 bxe_mc_assert(struct bxe_softc *sc) 8190 { 8191 char last_idx; 8192 int i, rc = 0; 8193 uint32_t row0, row1, row2, row3; 8194 8195 /* XSTORM */ 8196 last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET); 8197 if (last_idx) 8198 BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8199 8200 /* print the asserts */ 8201 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8202 8203 row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i)); 8204 row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4); 8205 row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8); 8206 row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12); 8207 8208 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8209 BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8210 i, row3, row2, row1, row0); 8211 rc++; 8212 } else { 8213 break; 8214 } 8215 } 8216 8217 /* TSTORM */ 8218 last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET); 8219 if (last_idx) { 8220 BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8221 } 8222 8223 /* print the asserts */ 8224 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8225 8226 row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i)); 8227 row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4); 8228 row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8); 8229 row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12); 8230 8231 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8232 BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8233 i, row3, row2, row1, row0); 8234 rc++; 8235 } else { 8236 break; 8237 } 8238 } 8239 8240 /* CSTORM */ 8241 last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET); 8242 if (last_idx) { 8243 BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8244 } 8245 8246 /* print the asserts */ 8247 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8248 8249 row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i)); 8250 row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4); 8251 row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8); 8252 row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12); 8253 8254 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8255 BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8256 i, row3, row2, row1, row0); 8257 rc++; 8258 } else { 8259 break; 8260 } 8261 } 8262 8263 /* USTORM */ 8264 last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET); 8265 if (last_idx) { 8266 BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8267 } 8268 8269 /* print the asserts */ 8270 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8271 8272 row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i)); 8273 row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4); 8274 row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8); 8275 row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12); 8276 8277 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8278 BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8279 i, row3, row2, row1, row0); 8280 rc++; 8281 } else { 8282 break; 8283 } 8284 } 8285 8286 return (rc); 8287 } 8288 8289 static void 8290 bxe_attn_int_deasserted3(struct bxe_softc *sc, 8291 uint32_t attn) 8292 { 8293 int func = SC_FUNC(sc); 8294 uint32_t val; 8295 8296 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 8297 8298 if (attn & BXE_PMF_LINK_ASSERT(sc)) { 8299 8300 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 8301 bxe_read_mf_cfg(sc); 8302 sc->devinfo.mf_info.mf_config[SC_VN(sc)] = 8303 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 8304 val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status); 8305 8306 if (val & DRV_STATUS_DCC_EVENT_MASK) 8307 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK)); 8308 8309 if (val & DRV_STATUS_SET_MF_BW) 8310 bxe_set_mf_bw(sc); 8311 8312 if (val & DRV_STATUS_DRV_INFO_REQ) 8313 bxe_handle_drv_info_req(sc); 8314 8315 #if 0 8316 if (val & DRV_STATUS_VF_DISABLED) 8317 bxe_vf_handle_flr_event(sc); 8318 #endif 8319 8320 if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF)) 8321 bxe_pmf_update(sc); 8322 8323 #if 0 8324 if (sc->port.pmf && 8325 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) && 8326 (sc->dcbx_enabled > 0)) 8327 /* start dcbx state machine */ 8328 bxe_dcbx_set_params(sc, BXE_DCBX_STATE_NEG_RECEIVED); 8329 #endif 8330 8331 #if 0 8332 if (val & DRV_STATUS_AFEX_EVENT_MASK) 8333 bxe_handle_afex_cmd(sc, val & DRV_STATUS_AFEX_EVENT_MASK); 8334 #endif 8335 8336 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 8337 bxe_handle_eee_event(sc); 8338 8339 if (sc->link_vars.periodic_flags & 8340 ELINK_PERIODIC_FLAGS_LINK_EVENT) { 8341 /* sync with link */ 8342 BXE_PHY_LOCK(sc); 8343 sc->link_vars.periodic_flags &= 8344 ~ELINK_PERIODIC_FLAGS_LINK_EVENT; 8345 BXE_PHY_UNLOCK(sc); 8346 if (IS_MF(sc)) 8347 ; // XXX bxe_link_sync_notify(sc); 8348 bxe_link_report(sc); 8349 } 8350 8351 /* 8352 * Always call it here: bxe_link_report() will 8353 * prevent the link indication duplication. 8354 */ 8355 bxe_link_status_update(sc); 8356 8357 } else if (attn & BXE_MC_ASSERT_BITS) { 8358 8359 BLOGE(sc, "MC assert!\n"); 8360 bxe_mc_assert(sc); 8361 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0); 8362 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0); 8363 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0); 8364 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0); 8365 bxe_panic(sc, ("MC assert!\n")); 8366 8367 } else if (attn & BXE_MCP_ASSERT) { 8368 8369 BLOGE(sc, "MCP assert!\n"); 8370 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0); 8371 // XXX bxe_fw_dump(sc); 8372 8373 } else { 8374 BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn); 8375 } 8376 } 8377 8378 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 8379 BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn); 8380 if (attn & BXE_GRC_TIMEOUT) { 8381 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN); 8382 BLOGE(sc, "GRC time-out 0x%08x\n", val); 8383 } 8384 if (attn & BXE_GRC_RSV) { 8385 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN); 8386 BLOGE(sc, "GRC reserved 0x%08x\n", val); 8387 } 8388 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 8389 } 8390 } 8391 8392 static void 8393 bxe_attn_int_deasserted2(struct bxe_softc *sc, 8394 uint32_t attn) 8395 { 8396 int port = SC_PORT(sc); 8397 int reg_offset; 8398 uint32_t val0, mask0, val1, mask1; 8399 uint32_t val; 8400 8401 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 8402 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR); 8403 BLOGE(sc, "CFC hw attention 0x%08x\n", val); 8404 /* CFC error attention */ 8405 if (val & 0x2) { 8406 BLOGE(sc, "FATAL error from CFC\n"); 8407 } 8408 } 8409 8410 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 8411 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0); 8412 BLOGE(sc, "PXP hw attention-0 0x%08x\n", val); 8413 /* RQ_USDMDP_FIFO_OVERFLOW */ 8414 if (val & 0x18000) { 8415 BLOGE(sc, "FATAL error from PXP\n"); 8416 } 8417 8418 if (!CHIP_IS_E1x(sc)) { 8419 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1); 8420 BLOGE(sc, "PXP hw attention-1 0x%08x\n", val); 8421 } 8422 } 8423 8424 #define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR 8425 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT 8426 8427 if (attn & AEU_PXP2_HW_INT_BIT) { 8428 /* CQ47854 workaround do not panic on 8429 * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8430 */ 8431 if (!CHIP_IS_E1x(sc)) { 8432 mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0); 8433 val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1); 8434 mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1); 8435 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0); 8436 /* 8437 * If the olny PXP2_EOP_ERROR_BIT is set in 8438 * STS0 and STS1 - clear it 8439 * 8440 * probably we lose additional attentions between 8441 * STS0 and STS_CLR0, in this case user will not 8442 * be notified about them 8443 */ 8444 if (val0 & mask0 & PXP2_EOP_ERROR_BIT && 8445 !(val1 & mask1)) 8446 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 8447 8448 /* print the register, since no one can restore it */ 8449 BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0); 8450 8451 /* 8452 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8453 * then notify 8454 */ 8455 if (val0 & PXP2_EOP_ERROR_BIT) { 8456 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n"); 8457 8458 /* 8459 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is 8460 * set then clear attention from PXP2 block without panic 8461 */ 8462 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) && 8463 ((val1 & mask1) == 0)) 8464 attn &= ~AEU_PXP2_HW_INT_BIT; 8465 } 8466 } 8467 } 8468 8469 if (attn & HW_INTERRUT_ASSERT_SET_2) { 8470 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 8471 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 8472 8473 val = REG_RD(sc, reg_offset); 8474 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); 8475 REG_WR(sc, reg_offset, val); 8476 8477 BLOGE(sc, "FATAL HW block attention set2 0x%x\n", 8478 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2)); 8479 bxe_panic(sc, ("HW block attention set2\n")); 8480 } 8481 } 8482 8483 static void 8484 bxe_attn_int_deasserted1(struct bxe_softc *sc, 8485 uint32_t attn) 8486 { 8487 int port = SC_PORT(sc); 8488 int reg_offset; 8489 uint32_t val; 8490 8491 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 8492 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR); 8493 BLOGE(sc, "DB hw attention 0x%08x\n", val); 8494 /* DORQ discard attention */ 8495 if (val & 0x2) { 8496 BLOGE(sc, "FATAL error from DORQ\n"); 8497 } 8498 } 8499 8500 if (attn & HW_INTERRUT_ASSERT_SET_1) { 8501 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 8502 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 8503 8504 val = REG_RD(sc, reg_offset); 8505 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); 8506 REG_WR(sc, reg_offset, val); 8507 8508 BLOGE(sc, "FATAL HW block attention set1 0x%08x\n", 8509 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1)); 8510 bxe_panic(sc, ("HW block attention set1\n")); 8511 } 8512 } 8513 8514 static void 8515 bxe_attn_int_deasserted0(struct bxe_softc *sc, 8516 uint32_t attn) 8517 { 8518 int port = SC_PORT(sc); 8519 int reg_offset; 8520 uint32_t val; 8521 8522 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 8523 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 8524 8525 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 8526 val = REG_RD(sc, reg_offset); 8527 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 8528 REG_WR(sc, reg_offset, val); 8529 8530 BLOGW(sc, "SPIO5 hw attention\n"); 8531 8532 /* Fan failure attention */ 8533 elink_hw_reset_phy(&sc->link_params); 8534 bxe_fan_failure(sc); 8535 } 8536 8537 if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) { 8538 BXE_PHY_LOCK(sc); 8539 elink_handle_module_detect_int(&sc->link_params); 8540 BXE_PHY_UNLOCK(sc); 8541 } 8542 8543 if (attn & HW_INTERRUT_ASSERT_SET_0) { 8544 val = REG_RD(sc, reg_offset); 8545 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); 8546 REG_WR(sc, reg_offset, val); 8547 8548 bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n", 8549 (attn & HW_INTERRUT_ASSERT_SET_0))); 8550 } 8551 } 8552 8553 static void 8554 bxe_attn_int_deasserted(struct bxe_softc *sc, 8555 uint32_t deasserted) 8556 { 8557 struct attn_route attn; 8558 struct attn_route *group_mask; 8559 int port = SC_PORT(sc); 8560 int index; 8561 uint32_t reg_addr; 8562 uint32_t val; 8563 uint32_t aeu_mask; 8564 uint8_t global = FALSE; 8565 8566 /* 8567 * Need to take HW lock because MCP or other port might also 8568 * try to handle this event. 8569 */ 8570 bxe_acquire_alr(sc); 8571 8572 if (bxe_chk_parity_attn(sc, &global, TRUE)) { 8573 /* XXX 8574 * In case of parity errors don't handle attentions so that 8575 * other function would "see" parity errors. 8576 */ 8577 sc->recovery_state = BXE_RECOVERY_INIT; 8578 // XXX schedule a recovery task... 8579 /* disable HW interrupts */ 8580 bxe_int_disable(sc); 8581 bxe_release_alr(sc); 8582 return; 8583 } 8584 8585 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 8586 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 8587 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 8588 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 8589 if (!CHIP_IS_E1x(sc)) { 8590 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 8591 } else { 8592 attn.sig[4] = 0; 8593 } 8594 8595 BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", 8596 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 8597 8598 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 8599 if (deasserted & (1 << index)) { 8600 group_mask = &sc->attn_group[index]; 8601 8602 BLOGD(sc, DBG_INTR, 8603 "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index, 8604 group_mask->sig[0], group_mask->sig[1], 8605 group_mask->sig[2], group_mask->sig[3], 8606 group_mask->sig[4]); 8607 8608 bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]); 8609 bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]); 8610 bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]); 8611 bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]); 8612 bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]); 8613 } 8614 } 8615 8616 bxe_release_alr(sc); 8617 8618 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8619 reg_addr = (HC_REG_COMMAND_REG + port*32 + 8620 COMMAND_REG_ATTN_BITS_CLR); 8621 } else { 8622 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 8623 } 8624 8625 val = ~deasserted; 8626 BLOGD(sc, DBG_INTR, 8627 "about to mask 0x%08x at %s addr 0x%08x\n", val, 8628 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 8629 REG_WR(sc, reg_addr, val); 8630 8631 if (~sc->attn_state & deasserted) { 8632 BLOGE(sc, "IGU error\n"); 8633 } 8634 8635 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 8636 MISC_REG_AEU_MASK_ATTN_FUNC_0; 8637 8638 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8639 8640 aeu_mask = REG_RD(sc, reg_addr); 8641 8642 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n", 8643 aeu_mask, deasserted); 8644 aeu_mask |= (deasserted & 0x3ff); 8645 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 8646 8647 REG_WR(sc, reg_addr, aeu_mask); 8648 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8649 8650 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 8651 sc->attn_state &= ~deasserted; 8652 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 8653 } 8654 8655 static void 8656 bxe_attn_int(struct bxe_softc *sc) 8657 { 8658 /* read local copy of bits */ 8659 uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits); 8660 uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack); 8661 uint32_t attn_state = sc->attn_state; 8662 8663 /* look for changed bits */ 8664 uint32_t asserted = attn_bits & ~attn_ack & ~attn_state; 8665 uint32_t deasserted = ~attn_bits & attn_ack & attn_state; 8666 8667 BLOGD(sc, DBG_INTR, 8668 "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n", 8669 attn_bits, attn_ack, asserted, deasserted); 8670 8671 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) { 8672 BLOGE(sc, "BAD attention state\n"); 8673 } 8674 8675 /* handle bits that were raised */ 8676 if (asserted) { 8677 bxe_attn_int_asserted(sc, asserted); 8678 } 8679 8680 if (deasserted) { 8681 bxe_attn_int_deasserted(sc, deasserted); 8682 } 8683 } 8684 8685 static uint16_t 8686 bxe_update_dsb_idx(struct bxe_softc *sc) 8687 { 8688 struct host_sp_status_block *def_sb = sc->def_sb; 8689 uint16_t rc = 0; 8690 8691 mb(); /* status block is written to by the chip */ 8692 8693 if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 8694 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index; 8695 rc |= BXE_DEF_SB_ATT_IDX; 8696 } 8697 8698 if (sc->def_idx != def_sb->sp_sb.running_index) { 8699 sc->def_idx = def_sb->sp_sb.running_index; 8700 rc |= BXE_DEF_SB_IDX; 8701 } 8702 8703 mb(); 8704 8705 return (rc); 8706 } 8707 8708 static inline struct ecore_queue_sp_obj * 8709 bxe_cid_to_q_obj(struct bxe_softc *sc, 8710 uint32_t cid) 8711 { 8712 BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid); 8713 return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj); 8714 } 8715 8716 static void 8717 bxe_handle_mcast_eqe(struct bxe_softc *sc) 8718 { 8719 struct ecore_mcast_ramrod_params rparam; 8720 int rc; 8721 8722 memset(&rparam, 0, sizeof(rparam)); 8723 8724 rparam.mcast_obj = &sc->mcast_obj; 8725 8726 BXE_MCAST_LOCK(sc); 8727 8728 /* clear pending state for the last command */ 8729 sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw); 8730 8731 /* if there are pending mcast commands - send them */ 8732 if (sc->mcast_obj.check_pending(&sc->mcast_obj)) { 8733 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 8734 if (rc < 0) { 8735 BLOGD(sc, DBG_SP, 8736 "ERROR: Failed to send pending mcast commands (%d)\n", 8737 rc); 8738 } 8739 } 8740 8741 BXE_MCAST_UNLOCK(sc); 8742 } 8743 8744 static void 8745 bxe_handle_classification_eqe(struct bxe_softc *sc, 8746 union event_ring_elem *elem) 8747 { 8748 unsigned long ramrod_flags = 0; 8749 int rc = 0; 8750 uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8751 struct ecore_vlan_mac_obj *vlan_mac_obj; 8752 8753 /* always push next commands out, don't wait here */ 8754 bit_set(&ramrod_flags, RAMROD_CONT); 8755 8756 switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) { 8757 case ECORE_FILTER_MAC_PENDING: 8758 BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n"); 8759 vlan_mac_obj = &sc->sp_objs[cid].mac_obj; 8760 break; 8761 8762 case ECORE_FILTER_MCAST_PENDING: 8763 BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n"); 8764 /* 8765 * This is only relevant for 57710 where multicast MACs are 8766 * configured as unicast MACs using the same ramrod. 8767 */ 8768 bxe_handle_mcast_eqe(sc); 8769 return; 8770 8771 default: 8772 BLOGE(sc, "Unsupported classification command: %d\n", 8773 elem->message.data.eth_event.echo); 8774 return; 8775 } 8776 8777 rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags); 8778 8779 if (rc < 0) { 8780 BLOGE(sc, "Failed to schedule new commands (%d)\n", rc); 8781 } else if (rc > 0) { 8782 BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n"); 8783 } 8784 } 8785 8786 static void 8787 bxe_handle_rx_mode_eqe(struct bxe_softc *sc, 8788 union event_ring_elem *elem) 8789 { 8790 bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 8791 8792 /* send rx_mode command again if was requested */ 8793 if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, 8794 &sc->sp_state)) { 8795 bxe_set_storm_rx_mode(sc); 8796 } 8797 #if 0 8798 else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_START_SCHED, 8799 &sc->sp_state)) { 8800 bxe_set_iscsi_eth_rx_mode(sc, TRUE); 8801 } 8802 else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_STOP_SCHED, 8803 &sc->sp_state)) { 8804 bxe_set_iscsi_eth_rx_mode(sc, FALSE); 8805 } 8806 #endif 8807 } 8808 8809 static void 8810 bxe_update_eq_prod(struct bxe_softc *sc, 8811 uint16_t prod) 8812 { 8813 storm_memset_eq_prod(sc, prod, SC_FUNC(sc)); 8814 wmb(); /* keep prod updates ordered */ 8815 } 8816 8817 static void 8818 bxe_eq_int(struct bxe_softc *sc) 8819 { 8820 uint16_t hw_cons, sw_cons, sw_prod; 8821 union event_ring_elem *elem; 8822 uint8_t echo; 8823 uint32_t cid; 8824 uint8_t opcode; 8825 int spqe_cnt = 0; 8826 struct ecore_queue_sp_obj *q_obj; 8827 struct ecore_func_sp_obj *f_obj = &sc->func_obj; 8828 struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw; 8829 8830 hw_cons = le16toh(*sc->eq_cons_sb); 8831 8832 /* 8833 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256. 8834 * when we get to the next-page we need to adjust so the loop 8835 * condition below will be met. The next element is the size of a 8836 * regular element and hence incrementing by 1 8837 */ 8838 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) { 8839 hw_cons++; 8840 } 8841 8842 /* 8843 * This function may never run in parallel with itself for a 8844 * specific sc and no need for a read memory barrier here. 8845 */ 8846 sw_cons = sc->eq_cons; 8847 sw_prod = sc->eq_prod; 8848 8849 BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n", 8850 hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left)); 8851 8852 for (; 8853 sw_cons != hw_cons; 8854 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 8855 8856 elem = &sc->eq[EQ_DESC(sw_cons)]; 8857 8858 #if 0 8859 int rc; 8860 rc = bxe_iov_eq_sp_event(sc, elem); 8861 if (!rc) { 8862 BLOGE(sc, "bxe_iov_eq_sp_event returned %d\n", rc); 8863 goto next_spqe; 8864 } 8865 #endif 8866 8867 /* elem CID originates from FW, actually LE */ 8868 cid = SW_CID(elem->message.data.cfc_del_event.cid); 8869 opcode = elem->message.opcode; 8870 8871 /* handle eq element */ 8872 switch (opcode) { 8873 #if 0 8874 case EVENT_RING_OPCODE_VF_PF_CHANNEL: 8875 BLOGD(sc, DBG_SP, "vf/pf channel element on eq\n"); 8876 bxe_vf_mbx(sc, &elem->message.data.vf_pf_event); 8877 continue; 8878 #endif 8879 8880 case EVENT_RING_OPCODE_STAT_QUERY: 8881 BLOGD(sc, DBG_SP, "got statistics completion event %d\n", 8882 sc->stats_comp++); 8883 /* nothing to do with stats comp */ 8884 goto next_spqe; 8885 8886 case EVENT_RING_OPCODE_CFC_DEL: 8887 /* handle according to cid range */ 8888 /* we may want to verify here that the sc state is HALTING */ 8889 BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid); 8890 q_obj = bxe_cid_to_q_obj(sc, cid); 8891 if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) { 8892 break; 8893 } 8894 goto next_spqe; 8895 8896 case EVENT_RING_OPCODE_STOP_TRAFFIC: 8897 BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n"); 8898 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) { 8899 break; 8900 } 8901 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED); 8902 goto next_spqe; 8903 8904 case EVENT_RING_OPCODE_START_TRAFFIC: 8905 BLOGD(sc, DBG_SP, "got START TRAFFIC\n"); 8906 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) { 8907 break; 8908 } 8909 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED); 8910 goto next_spqe; 8911 8912 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 8913 echo = elem->message.data.function_update_event.echo; 8914 if (echo == SWITCH_UPDATE) { 8915 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n"); 8916 if (f_obj->complete_cmd(sc, f_obj, 8917 ECORE_F_CMD_SWITCH_UPDATE)) { 8918 break; 8919 } 8920 } 8921 else { 8922 BLOGD(sc, DBG_SP, 8923 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 8924 #if 0 8925 f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_UPDATE); 8926 /* 8927 * We will perform the queues update from the sp_core_task as 8928 * all queue SP operations should run with CORE_LOCK. 8929 */ 8930 bxe_set_bit(BXE_SP_CORE_AFEX_F_UPDATE, &sc->sp_core_state); 8931 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8932 #endif 8933 } 8934 goto next_spqe; 8935 8936 #if 0 8937 case EVENT_RING_OPCODE_AFEX_VIF_LISTS: 8938 f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_VIFLISTS); 8939 bxe_after_afex_vif_lists(sc, elem); 8940 goto next_spqe; 8941 #endif 8942 8943 case EVENT_RING_OPCODE_FORWARD_SETUP: 8944 q_obj = &bxe_fwd_sp_obj(sc, q_obj); 8945 if (q_obj->complete_cmd(sc, q_obj, 8946 ECORE_Q_CMD_SETUP_TX_ONLY)) { 8947 break; 8948 } 8949 goto next_spqe; 8950 8951 case EVENT_RING_OPCODE_FUNCTION_START: 8952 BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n"); 8953 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) { 8954 break; 8955 } 8956 goto next_spqe; 8957 8958 case EVENT_RING_OPCODE_FUNCTION_STOP: 8959 BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n"); 8960 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) { 8961 break; 8962 } 8963 goto next_spqe; 8964 } 8965 8966 switch (opcode | sc->state) { 8967 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN): 8968 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT): 8969 cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8970 BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid); 8971 rss_raw->clear_pending(rss_raw); 8972 break; 8973 8974 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN): 8975 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG): 8976 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT): 8977 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN): 8978 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG): 8979 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8980 BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n"); 8981 bxe_handle_classification_eqe(sc, elem); 8982 break; 8983 8984 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN): 8985 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG): 8986 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8987 BLOGD(sc, DBG_SP, "got mcast ramrod\n"); 8988 bxe_handle_mcast_eqe(sc); 8989 break; 8990 8991 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN): 8992 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG): 8993 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8994 BLOGD(sc, DBG_SP, "got rx_mode ramrod\n"); 8995 bxe_handle_rx_mode_eqe(sc, elem); 8996 break; 8997 8998 default: 8999 /* unknown event log error and continue */ 9000 BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n", 9001 elem->message.opcode, sc->state); 9002 } 9003 9004 next_spqe: 9005 spqe_cnt++; 9006 } /* for */ 9007 9008 mb(); 9009 atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt); 9010 9011 sc->eq_cons = sw_cons; 9012 sc->eq_prod = sw_prod; 9013 9014 /* make sure that above mem writes were issued towards the memory */ 9015 wmb(); 9016 9017 /* update producer */ 9018 bxe_update_eq_prod(sc, sc->eq_prod); 9019 } 9020 9021 static void 9022 bxe_handle_sp_tq(void *context, 9023 int pending) 9024 { 9025 struct bxe_softc *sc = (struct bxe_softc *)context; 9026 uint16_t status; 9027 9028 BLOGD(sc, DBG_SP, "---> SP TASK <---\n"); 9029 9030 /* what work needs to be performed? */ 9031 status = bxe_update_dsb_idx(sc); 9032 9033 BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status); 9034 9035 /* HW attentions */ 9036 if (status & BXE_DEF_SB_ATT_IDX) { 9037 BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n"); 9038 bxe_attn_int(sc); 9039 status &= ~BXE_DEF_SB_ATT_IDX; 9040 } 9041 9042 /* SP events: STAT_QUERY and others */ 9043 if (status & BXE_DEF_SB_IDX) { 9044 /* handle EQ completions */ 9045 BLOGD(sc, DBG_SP, "---> EQ INTR <---\n"); 9046 bxe_eq_int(sc); 9047 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 9048 le16toh(sc->def_idx), IGU_INT_NOP, 1); 9049 status &= ~BXE_DEF_SB_IDX; 9050 } 9051 9052 /* if status is non zero then something went wrong */ 9053 if (__predict_false(status)) { 9054 BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status); 9055 } 9056 9057 /* ack status block only if something was actually handled */ 9058 bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID, 9059 le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1); 9060 9061 /* 9062 * Must be called after the EQ processing (since eq leads to sriov 9063 * ramrod completion flows). 9064 * This flow may have been scheduled by the arrival of a ramrod 9065 * completion, or by the sriov code rescheduling itself. 9066 */ 9067 // XXX bxe_iov_sp_task(sc); 9068 9069 #if 0 9070 /* AFEX - poll to check if VIFSET_ACK should be sent to MFW */ 9071 if (bxe_test_and_clear_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, 9072 &sc->sp_state)) { 9073 bxe_link_report(sc); 9074 bxe_fw_command(sc, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 9075 } 9076 #endif 9077 } 9078 9079 static void 9080 bxe_handle_fp_tq(void *context, 9081 int pending) 9082 { 9083 struct bxe_fastpath *fp = (struct bxe_fastpath *)context; 9084 struct bxe_softc *sc = fp->sc; 9085 uint8_t more_tx = FALSE; 9086 uint8_t more_rx = FALSE; 9087 9088 BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index); 9089 9090 /* XXX 9091 * IFF_DRV_RUNNING state can't be checked here since we process 9092 * slowpath events on a client queue during setup. Instead 9093 * we need to add a "process/continue" flag here that the driver 9094 * can use to tell the task here not to do anything. 9095 */ 9096 #if 0 9097 if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 9098 return; 9099 } 9100 #endif 9101 9102 /* update the fastpath index */ 9103 bxe_update_fp_sb_idx(fp); 9104 9105 /* XXX add loop here if ever support multiple tx CoS */ 9106 /* fp->txdata[cos] */ 9107 if (bxe_has_tx_work(fp)) { 9108 BXE_FP_TX_LOCK(fp); 9109 more_tx = bxe_txeof(sc, fp); 9110 BXE_FP_TX_UNLOCK(fp); 9111 } 9112 9113 if (bxe_has_rx_work(fp)) { 9114 more_rx = bxe_rxeof(sc, fp); 9115 } 9116 9117 if (more_rx /*|| more_tx*/) { 9118 /* still more work to do */ 9119 taskqueue_enqueue_fast(fp->tq, &fp->tq_task); 9120 return; 9121 } 9122 9123 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 9124 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 9125 } 9126 9127 static void 9128 bxe_task_fp(struct bxe_fastpath *fp) 9129 { 9130 struct bxe_softc *sc = fp->sc; 9131 uint8_t more_tx = FALSE; 9132 uint8_t more_rx = FALSE; 9133 9134 BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index); 9135 9136 /* update the fastpath index */ 9137 bxe_update_fp_sb_idx(fp); 9138 9139 /* XXX add loop here if ever support multiple tx CoS */ 9140 /* fp->txdata[cos] */ 9141 if (bxe_has_tx_work(fp)) { 9142 BXE_FP_TX_LOCK(fp); 9143 more_tx = bxe_txeof(sc, fp); 9144 BXE_FP_TX_UNLOCK(fp); 9145 } 9146 9147 if (bxe_has_rx_work(fp)) { 9148 more_rx = bxe_rxeof(sc, fp); 9149 } 9150 9151 if (more_rx /*|| more_tx*/) { 9152 /* still more work to do, bail out if this ISR and process later */ 9153 taskqueue_enqueue_fast(fp->tq, &fp->tq_task); 9154 return; 9155 } 9156 9157 /* 9158 * Here we write the fastpath index taken before doing any tx or rx work. 9159 * It is very well possible other hw events occurred up to this point and 9160 * they were actually processed accordingly above. Since we're going to 9161 * write an older fastpath index, an interrupt is coming which we might 9162 * not do any work in. 9163 */ 9164 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 9165 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 9166 } 9167 9168 /* 9169 * Legacy interrupt entry point. 9170 * 9171 * Verifies that the controller generated the interrupt and 9172 * then calls a separate routine to handle the various 9173 * interrupt causes: link, RX, and TX. 9174 */ 9175 static void 9176 bxe_intr_legacy(void *xsc) 9177 { 9178 struct bxe_softc *sc = (struct bxe_softc *)xsc; 9179 struct bxe_fastpath *fp; 9180 uint16_t status, mask; 9181 int i; 9182 9183 BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n"); 9184 9185 #if 0 9186 /* Don't handle any interrupts if we're not ready. */ 9187 if (__predict_false(sc->intr_sem != 0)) { 9188 return; 9189 } 9190 #endif 9191 9192 /* 9193 * 0 for ustorm, 1 for cstorm 9194 * the bits returned from ack_int() are 0-15 9195 * bit 0 = attention status block 9196 * bit 1 = fast path status block 9197 * a mask of 0x2 or more = tx/rx event 9198 * a mask of 1 = slow path event 9199 */ 9200 9201 status = bxe_ack_int(sc); 9202 9203 /* the interrupt is not for us */ 9204 if (__predict_false(status == 0)) { 9205 BLOGD(sc, DBG_INTR, "Not our interrupt!\n"); 9206 return; 9207 } 9208 9209 BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status); 9210 9211 FOR_EACH_ETH_QUEUE(sc, i) { 9212 fp = &sc->fp[i]; 9213 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc))); 9214 if (status & mask) { 9215 /* acknowledge and disable further fastpath interrupts */ 9216 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9217 bxe_task_fp(fp); 9218 status &= ~mask; 9219 } 9220 } 9221 9222 #if 0 9223 if (CNIC_SUPPORT(sc)) { 9224 mask = 0x2; 9225 if (status & (mask | 0x1)) { 9226 ... 9227 status &= ~mask; 9228 } 9229 } 9230 #endif 9231 9232 if (__predict_false(status & 0x1)) { 9233 /* acknowledge and disable further slowpath interrupts */ 9234 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9235 9236 /* schedule slowpath handler */ 9237 taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task); 9238 9239 status &= ~0x1; 9240 } 9241 9242 if (__predict_false(status)) { 9243 BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status); 9244 } 9245 } 9246 9247 /* slowpath interrupt entry point */ 9248 static void 9249 bxe_intr_sp(void *xsc) 9250 { 9251 struct bxe_softc *sc = (struct bxe_softc *)xsc; 9252 9253 BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n"); 9254 9255 /* acknowledge and disable further slowpath interrupts */ 9256 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9257 9258 /* schedule slowpath handler */ 9259 taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task); 9260 } 9261 9262 /* fastpath interrupt entry point */ 9263 static void 9264 bxe_intr_fp(void *xfp) 9265 { 9266 struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp; 9267 struct bxe_softc *sc = fp->sc; 9268 9269 BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index); 9270 9271 BLOGD(sc, DBG_INTR, 9272 "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n", 9273 curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id); 9274 9275 #if 0 9276 /* Don't handle any interrupts if we're not ready. */ 9277 if (__predict_false(sc->intr_sem != 0)) { 9278 return; 9279 } 9280 #endif 9281 9282 /* acknowledge and disable further fastpath interrupts */ 9283 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9284 9285 bxe_task_fp(fp); 9286 } 9287 9288 /* Release all interrupts allocated by the driver. */ 9289 static void 9290 bxe_interrupt_free(struct bxe_softc *sc) 9291 { 9292 int i; 9293 9294 switch (sc->interrupt_mode) { 9295 case INTR_MODE_INTX: 9296 BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n"); 9297 if (sc->intr[0].resource != NULL) { 9298 bus_release_resource(sc->dev, 9299 SYS_RES_IRQ, 9300 sc->intr[0].rid, 9301 sc->intr[0].resource); 9302 } 9303 break; 9304 case INTR_MODE_MSI: 9305 for (i = 0; i < sc->intr_count; i++) { 9306 BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i); 9307 if (sc->intr[i].resource && sc->intr[i].rid) { 9308 bus_release_resource(sc->dev, 9309 SYS_RES_IRQ, 9310 sc->intr[i].rid, 9311 sc->intr[i].resource); 9312 } 9313 } 9314 pci_release_msi(sc->dev); 9315 break; 9316 case INTR_MODE_MSIX: 9317 for (i = 0; i < sc->intr_count; i++) { 9318 BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i); 9319 if (sc->intr[i].resource && sc->intr[i].rid) { 9320 bus_release_resource(sc->dev, 9321 SYS_RES_IRQ, 9322 sc->intr[i].rid, 9323 sc->intr[i].resource); 9324 } 9325 } 9326 pci_release_msi(sc->dev); 9327 break; 9328 default: 9329 /* nothing to do as initial allocation failed */ 9330 break; 9331 } 9332 } 9333 9334 /* 9335 * This function determines and allocates the appropriate 9336 * interrupt based on system capabilites and user request. 9337 * 9338 * The user may force a particular interrupt mode, specify 9339 * the number of receive queues, specify the method for 9340 * distribuitng received frames to receive queues, or use 9341 * the default settings which will automatically select the 9342 * best supported combination. In addition, the OS may or 9343 * may not support certain combinations of these settings. 9344 * This routine attempts to reconcile the settings requested 9345 * by the user with the capabilites available from the system 9346 * to select the optimal combination of features. 9347 * 9348 * Returns: 9349 * 0 = Success, !0 = Failure. 9350 */ 9351 static int 9352 bxe_interrupt_alloc(struct bxe_softc *sc) 9353 { 9354 int msix_count = 0; 9355 int msi_count = 0; 9356 int num_requested = 0; 9357 int num_allocated = 0; 9358 int rid, i, j; 9359 int rc; 9360 9361 /* get the number of available MSI/MSI-X interrupts from the OS */ 9362 if (sc->interrupt_mode > 0) { 9363 if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) { 9364 msix_count = pci_msix_count(sc->dev); 9365 } 9366 9367 if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) { 9368 msi_count = pci_msi_count(sc->dev); 9369 } 9370 9371 BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n", 9372 msi_count, msix_count); 9373 } 9374 9375 do { /* try allocating MSI-X interrupt resources (at least 2) */ 9376 if (sc->interrupt_mode != INTR_MODE_MSIX) { 9377 break; 9378 } 9379 9380 if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) || 9381 (msix_count < 2)) { 9382 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9383 break; 9384 } 9385 9386 /* ask for the necessary number of MSI-X vectors */ 9387 num_requested = min((sc->num_queues + 1), msix_count); 9388 9389 BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested); 9390 9391 num_allocated = num_requested; 9392 if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) { 9393 BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc); 9394 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9395 break; 9396 } 9397 9398 if (num_allocated < 2) { /* possible? */ 9399 BLOGE(sc, "MSI-X allocation less than 2!\n"); 9400 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9401 pci_release_msi(sc->dev); 9402 break; 9403 } 9404 9405 BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n", 9406 num_requested, num_allocated); 9407 9408 /* best effort so use the number of vectors allocated to us */ 9409 sc->intr_count = num_allocated; 9410 sc->num_queues = num_allocated - 1; 9411 9412 rid = 1; /* initial resource identifier */ 9413 9414 /* allocate the MSI-X vectors */ 9415 for (i = 0; i < num_allocated; i++) { 9416 sc->intr[i].rid = (rid + i); 9417 9418 if ((sc->intr[i].resource = 9419 bus_alloc_resource_any(sc->dev, 9420 SYS_RES_IRQ, 9421 &sc->intr[i].rid, 9422 RF_ACTIVE)) == NULL) { 9423 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n", 9424 i, (rid + i)); 9425 9426 for (j = (i - 1); j >= 0; j--) { 9427 bus_release_resource(sc->dev, 9428 SYS_RES_IRQ, 9429 sc->intr[j].rid, 9430 sc->intr[j].resource); 9431 } 9432 9433 sc->intr_count = 0; 9434 sc->num_queues = 0; 9435 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9436 pci_release_msi(sc->dev); 9437 break; 9438 } 9439 9440 BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i)); 9441 } 9442 } while (0); 9443 9444 do { /* try allocating MSI vector resources (at least 2) */ 9445 if (sc->interrupt_mode != INTR_MODE_MSI) { 9446 break; 9447 } 9448 9449 if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) || 9450 (msi_count < 1)) { 9451 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9452 break; 9453 } 9454 9455 /* ask for a single MSI vector */ 9456 num_requested = 1; 9457 9458 BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested); 9459 9460 num_allocated = num_requested; 9461 if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) { 9462 BLOGE(sc, "MSI alloc failed (%d)!\n", rc); 9463 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9464 break; 9465 } 9466 9467 if (num_allocated != 1) { /* possible? */ 9468 BLOGE(sc, "MSI allocation is not 1!\n"); 9469 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9470 pci_release_msi(sc->dev); 9471 break; 9472 } 9473 9474 BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n", 9475 num_requested, num_allocated); 9476 9477 /* best effort so use the number of vectors allocated to us */ 9478 sc->intr_count = num_allocated; 9479 sc->num_queues = num_allocated; 9480 9481 rid = 1; /* initial resource identifier */ 9482 9483 sc->intr[0].rid = rid; 9484 9485 if ((sc->intr[0].resource = 9486 bus_alloc_resource_any(sc->dev, 9487 SYS_RES_IRQ, 9488 &sc->intr[0].rid, 9489 RF_ACTIVE)) == NULL) { 9490 BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid); 9491 sc->intr_count = 0; 9492 sc->num_queues = 0; 9493 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9494 pci_release_msi(sc->dev); 9495 break; 9496 } 9497 9498 BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid); 9499 } while (0); 9500 9501 do { /* try allocating INTx vector resources */ 9502 if (sc->interrupt_mode != INTR_MODE_INTX) { 9503 break; 9504 } 9505 9506 BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n"); 9507 9508 /* only one vector for INTx */ 9509 sc->intr_count = 1; 9510 sc->num_queues = 1; 9511 9512 rid = 0; /* initial resource identifier */ 9513 9514 sc->intr[0].rid = rid; 9515 9516 if ((sc->intr[0].resource = 9517 bus_alloc_resource_any(sc->dev, 9518 SYS_RES_IRQ, 9519 &sc->intr[0].rid, 9520 (RF_ACTIVE | RF_SHAREABLE))) == NULL) { 9521 BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid); 9522 sc->intr_count = 0; 9523 sc->num_queues = 0; 9524 sc->interrupt_mode = -1; /* Failed! */ 9525 break; 9526 } 9527 9528 BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid); 9529 } while (0); 9530 9531 if (sc->interrupt_mode == -1) { 9532 BLOGE(sc, "Interrupt Allocation: FAILED!!!\n"); 9533 rc = 1; 9534 } else { 9535 BLOGD(sc, DBG_LOAD, 9536 "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n", 9537 sc->interrupt_mode, sc->num_queues); 9538 rc = 0; 9539 } 9540 9541 return (rc); 9542 } 9543 9544 static void 9545 bxe_interrupt_detach(struct bxe_softc *sc) 9546 { 9547 struct bxe_fastpath *fp; 9548 int i; 9549 9550 /* release interrupt resources */ 9551 for (i = 0; i < sc->intr_count; i++) { 9552 if (sc->intr[i].resource && sc->intr[i].tag) { 9553 BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i); 9554 bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag); 9555 } 9556 } 9557 9558 for (i = 0; i < sc->num_queues; i++) { 9559 fp = &sc->fp[i]; 9560 if (fp->tq) { 9561 taskqueue_drain(fp->tq, &fp->tq_task); 9562 taskqueue_free(fp->tq); 9563 fp->tq = NULL; 9564 } 9565 } 9566 9567 if (sc->rx_mode_tq) { 9568 taskqueue_drain(sc->rx_mode_tq, &sc->rx_mode_tq_task); 9569 taskqueue_free(sc->rx_mode_tq); 9570 sc->rx_mode_tq = NULL; 9571 } 9572 9573 if (sc->sp_tq) { 9574 taskqueue_drain(sc->sp_tq, &sc->sp_tq_task); 9575 taskqueue_free(sc->sp_tq); 9576 sc->sp_tq = NULL; 9577 } 9578 } 9579 9580 /* 9581 * Enables interrupts and attach to the ISR. 9582 * 9583 * When using multiple MSI/MSI-X vectors the first vector 9584 * is used for slowpath operations while all remaining 9585 * vectors are used for fastpath operations. If only a 9586 * single MSI/MSI-X vector is used (SINGLE_ISR) then the 9587 * ISR must look for both slowpath and fastpath completions. 9588 */ 9589 static int 9590 bxe_interrupt_attach(struct bxe_softc *sc) 9591 { 9592 struct bxe_fastpath *fp; 9593 int rc = 0; 9594 int i; 9595 9596 snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name), 9597 "bxe%d_sp_tq", sc->unit); 9598 TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc); 9599 sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT, 9600 taskqueue_thread_enqueue, 9601 &sc->sp_tq); 9602 taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */ 9603 "%s", sc->sp_tq_name); 9604 9605 snprintf(sc->rx_mode_tq_name, sizeof(sc->rx_mode_tq_name), 9606 "bxe%d_rx_mode_tq", sc->unit); 9607 TASK_INIT(&sc->rx_mode_tq_task, 0, bxe_handle_rx_mode_tq, sc); 9608 sc->rx_mode_tq = taskqueue_create_fast(sc->rx_mode_tq_name, M_NOWAIT, 9609 taskqueue_thread_enqueue, 9610 &sc->rx_mode_tq); 9611 taskqueue_start_threads(&sc->rx_mode_tq, 1, PWAIT, /* lower priority */ 9612 "%s", sc->rx_mode_tq_name); 9613 9614 for (i = 0; i < sc->num_queues; i++) { 9615 fp = &sc->fp[i]; 9616 snprintf(fp->tq_name, sizeof(fp->tq_name), 9617 "bxe%d_fp%d_tq", sc->unit, i); 9618 TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp); 9619 fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT, 9620 taskqueue_thread_enqueue, 9621 &fp->tq); 9622 taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */ 9623 "%s", fp->tq_name); 9624 } 9625 9626 /* setup interrupt handlers */ 9627 if (sc->interrupt_mode == INTR_MODE_MSIX) { 9628 BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n"); 9629 9630 /* 9631 * Setup the interrupt handler. Note that we pass the driver instance 9632 * to the interrupt handler for the slowpath. 9633 */ 9634 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9635 (INTR_TYPE_NET | INTR_MPSAFE), 9636 NULL, bxe_intr_sp, sc, 9637 &sc->intr[0].tag)) != 0) { 9638 BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc); 9639 goto bxe_interrupt_attach_exit; 9640 } 9641 9642 bus_describe_intr(sc->dev, sc->intr[0].resource, 9643 sc->intr[0].tag, "sp"); 9644 9645 /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */ 9646 9647 /* initialize the fastpath vectors (note the first was used for sp) */ 9648 for (i = 0; i < sc->num_queues; i++) { 9649 fp = &sc->fp[i]; 9650 BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1)); 9651 9652 /* 9653 * Setup the interrupt handler. Note that we pass the 9654 * fastpath context to the interrupt handler in this 9655 * case. 9656 */ 9657 if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource, 9658 (INTR_TYPE_NET | INTR_MPSAFE), 9659 NULL, bxe_intr_fp, fp, 9660 &sc->intr[i + 1].tag)) != 0) { 9661 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n", 9662 (i + 1), rc); 9663 goto bxe_interrupt_attach_exit; 9664 } 9665 9666 bus_describe_intr(sc->dev, sc->intr[i + 1].resource, 9667 sc->intr[i + 1].tag, "fp%02d", i); 9668 9669 /* bind the fastpath instance to a cpu */ 9670 if (sc->num_queues > 1) { 9671 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i); 9672 } 9673 9674 fp->state = BXE_FP_STATE_IRQ; 9675 } 9676 } else if (sc->interrupt_mode == INTR_MODE_MSI) { 9677 BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n"); 9678 9679 /* 9680 * Setup the interrupt handler. Note that we pass the 9681 * driver instance to the interrupt handler which 9682 * will handle both the slowpath and fastpath. 9683 */ 9684 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9685 (INTR_TYPE_NET | INTR_MPSAFE), 9686 NULL, bxe_intr_legacy, sc, 9687 &sc->intr[0].tag)) != 0) { 9688 BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc); 9689 goto bxe_interrupt_attach_exit; 9690 } 9691 9692 } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */ 9693 BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n"); 9694 9695 /* 9696 * Setup the interrupt handler. Note that we pass the 9697 * driver instance to the interrupt handler which 9698 * will handle both the slowpath and fastpath. 9699 */ 9700 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9701 (INTR_TYPE_NET | INTR_MPSAFE), 9702 NULL, bxe_intr_legacy, sc, 9703 &sc->intr[0].tag)) != 0) { 9704 BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc); 9705 goto bxe_interrupt_attach_exit; 9706 } 9707 } 9708 9709 bxe_interrupt_attach_exit: 9710 9711 return (rc); 9712 } 9713 9714 static int bxe_init_hw_common_chip(struct bxe_softc *sc); 9715 static int bxe_init_hw_common(struct bxe_softc *sc); 9716 static int bxe_init_hw_port(struct bxe_softc *sc); 9717 static int bxe_init_hw_func(struct bxe_softc *sc); 9718 static void bxe_reset_common(struct bxe_softc *sc); 9719 static void bxe_reset_port(struct bxe_softc *sc); 9720 static void bxe_reset_func(struct bxe_softc *sc); 9721 static int bxe_gunzip_init(struct bxe_softc *sc); 9722 static void bxe_gunzip_end(struct bxe_softc *sc); 9723 static int bxe_init_firmware(struct bxe_softc *sc); 9724 static void bxe_release_firmware(struct bxe_softc *sc); 9725 9726 static struct 9727 ecore_func_sp_drv_ops bxe_func_sp_drv = { 9728 .init_hw_cmn_chip = bxe_init_hw_common_chip, 9729 .init_hw_cmn = bxe_init_hw_common, 9730 .init_hw_port = bxe_init_hw_port, 9731 .init_hw_func = bxe_init_hw_func, 9732 9733 .reset_hw_cmn = bxe_reset_common, 9734 .reset_hw_port = bxe_reset_port, 9735 .reset_hw_func = bxe_reset_func, 9736 9737 .gunzip_init = bxe_gunzip_init, 9738 .gunzip_end = bxe_gunzip_end, 9739 9740 .init_fw = bxe_init_firmware, 9741 .release_fw = bxe_release_firmware, 9742 }; 9743 9744 static void 9745 bxe_init_func_obj(struct bxe_softc *sc) 9746 { 9747 sc->dmae_ready = 0; 9748 9749 ecore_init_func_obj(sc, 9750 &sc->func_obj, 9751 BXE_SP(sc, func_rdata), 9752 BXE_SP_MAPPING(sc, func_rdata), 9753 BXE_SP(sc, func_afex_rdata), 9754 BXE_SP_MAPPING(sc, func_afex_rdata), 9755 &bxe_func_sp_drv); 9756 } 9757 9758 static int 9759 bxe_init_hw(struct bxe_softc *sc, 9760 uint32_t load_code) 9761 { 9762 struct ecore_func_state_params func_params = { NULL }; 9763 int rc; 9764 9765 /* prepare the parameters for function state transitions */ 9766 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 9767 9768 func_params.f_obj = &sc->func_obj; 9769 func_params.cmd = ECORE_F_CMD_HW_INIT; 9770 9771 func_params.params.hw_init.load_phase = load_code; 9772 9773 /* 9774 * Via a plethora of function pointers, we will eventually reach 9775 * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func(). 9776 */ 9777 rc = ecore_func_state_change(sc, &func_params); 9778 9779 return (rc); 9780 } 9781 9782 static void 9783 bxe_fill(struct bxe_softc *sc, 9784 uint32_t addr, 9785 int fill, 9786 uint32_t len) 9787 { 9788 uint32_t i; 9789 9790 if (!(len % 4) && !(addr % 4)) { 9791 for (i = 0; i < len; i += 4) { 9792 REG_WR(sc, (addr + i), fill); 9793 } 9794 } else { 9795 for (i = 0; i < len; i++) { 9796 REG_WR8(sc, (addr + i), fill); 9797 } 9798 } 9799 } 9800 9801 /* writes FP SP data to FW - data_size in dwords */ 9802 static void 9803 bxe_wr_fp_sb_data(struct bxe_softc *sc, 9804 int fw_sb_id, 9805 uint32_t *sb_data_p, 9806 uint32_t data_size) 9807 { 9808 int index; 9809 9810 for (index = 0; index < data_size; index++) { 9811 REG_WR(sc, 9812 (BAR_CSTRORM_INTMEM + 9813 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 9814 (sizeof(uint32_t) * index)), 9815 *(sb_data_p + index)); 9816 } 9817 } 9818 9819 static void 9820 bxe_zero_fp_sb(struct bxe_softc *sc, 9821 int fw_sb_id) 9822 { 9823 struct hc_status_block_data_e2 sb_data_e2; 9824 struct hc_status_block_data_e1x sb_data_e1x; 9825 uint32_t *sb_data_p; 9826 uint32_t data_size = 0; 9827 9828 if (!CHIP_IS_E1x(sc)) { 9829 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9830 sb_data_e2.common.state = SB_DISABLED; 9831 sb_data_e2.common.p_func.vf_valid = FALSE; 9832 sb_data_p = (uint32_t *)&sb_data_e2; 9833 data_size = (sizeof(struct hc_status_block_data_e2) / 9834 sizeof(uint32_t)); 9835 } else { 9836 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9837 sb_data_e1x.common.state = SB_DISABLED; 9838 sb_data_e1x.common.p_func.vf_valid = FALSE; 9839 sb_data_p = (uint32_t *)&sb_data_e1x; 9840 data_size = (sizeof(struct hc_status_block_data_e1x) / 9841 sizeof(uint32_t)); 9842 } 9843 9844 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9845 9846 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 9847 0, CSTORM_STATUS_BLOCK_SIZE); 9848 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)), 9849 0, CSTORM_SYNC_BLOCK_SIZE); 9850 } 9851 9852 static void 9853 bxe_wr_sp_sb_data(struct bxe_softc *sc, 9854 struct hc_sp_status_block_data *sp_sb_data) 9855 { 9856 int i; 9857 9858 for (i = 0; 9859 i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t)); 9860 i++) { 9861 REG_WR(sc, 9862 (BAR_CSTRORM_INTMEM + 9863 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) + 9864 (i * sizeof(uint32_t))), 9865 *((uint32_t *)sp_sb_data + i)); 9866 } 9867 } 9868 9869 static void 9870 bxe_zero_sp_sb(struct bxe_softc *sc) 9871 { 9872 struct hc_sp_status_block_data sp_sb_data; 9873 9874 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9875 9876 sp_sb_data.state = SB_DISABLED; 9877 sp_sb_data.p_func.vf_valid = FALSE; 9878 9879 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9880 9881 bxe_fill(sc, 9882 (BAR_CSTRORM_INTMEM + 9883 CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))), 9884 0, CSTORM_SP_STATUS_BLOCK_SIZE); 9885 bxe_fill(sc, 9886 (BAR_CSTRORM_INTMEM + 9887 CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))), 9888 0, CSTORM_SP_SYNC_BLOCK_SIZE); 9889 } 9890 9891 static void 9892 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 9893 int igu_sb_id, 9894 int igu_seg_id) 9895 { 9896 hc_sm->igu_sb_id = igu_sb_id; 9897 hc_sm->igu_seg_id = igu_seg_id; 9898 hc_sm->timer_value = 0xFF; 9899 hc_sm->time_to_expire = 0xFFFFFFFF; 9900 } 9901 9902 static void 9903 bxe_map_sb_state_machines(struct hc_index_data *index_data) 9904 { 9905 /* zero out state machine indices */ 9906 9907 /* rx indices */ 9908 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9909 9910 /* tx indices */ 9911 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9912 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 9913 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 9914 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 9915 9916 /* map indices */ 9917 9918 /* rx indices */ 9919 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 9920 (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9921 9922 /* tx indices */ 9923 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 9924 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9925 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 9926 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9927 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 9928 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9929 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 9930 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9931 } 9932 9933 static void 9934 bxe_init_sb(struct bxe_softc *sc, 9935 bus_addr_t busaddr, 9936 int vfid, 9937 uint8_t vf_valid, 9938 int fw_sb_id, 9939 int igu_sb_id) 9940 { 9941 struct hc_status_block_data_e2 sb_data_e2; 9942 struct hc_status_block_data_e1x sb_data_e1x; 9943 struct hc_status_block_sm *hc_sm_p; 9944 uint32_t *sb_data_p; 9945 int igu_seg_id; 9946 int data_size; 9947 9948 if (CHIP_INT_MODE_IS_BC(sc)) { 9949 igu_seg_id = HC_SEG_ACCESS_NORM; 9950 } else { 9951 igu_seg_id = IGU_SEG_ACCESS_NORM; 9952 } 9953 9954 bxe_zero_fp_sb(sc, fw_sb_id); 9955 9956 if (!CHIP_IS_E1x(sc)) { 9957 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9958 sb_data_e2.common.state = SB_ENABLED; 9959 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc); 9960 sb_data_e2.common.p_func.vf_id = vfid; 9961 sb_data_e2.common.p_func.vf_valid = vf_valid; 9962 sb_data_e2.common.p_func.vnic_id = SC_VN(sc); 9963 sb_data_e2.common.same_igu_sb_1b = TRUE; 9964 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr); 9965 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr); 9966 hc_sm_p = sb_data_e2.common.state_machine; 9967 sb_data_p = (uint32_t *)&sb_data_e2; 9968 data_size = (sizeof(struct hc_status_block_data_e2) / 9969 sizeof(uint32_t)); 9970 bxe_map_sb_state_machines(sb_data_e2.index_data); 9971 } else { 9972 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9973 sb_data_e1x.common.state = SB_ENABLED; 9974 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc); 9975 sb_data_e1x.common.p_func.vf_id = 0xff; 9976 sb_data_e1x.common.p_func.vf_valid = FALSE; 9977 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc); 9978 sb_data_e1x.common.same_igu_sb_1b = TRUE; 9979 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr); 9980 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr); 9981 hc_sm_p = sb_data_e1x.common.state_machine; 9982 sb_data_p = (uint32_t *)&sb_data_e1x; 9983 data_size = (sizeof(struct hc_status_block_data_e1x) / 9984 sizeof(uint32_t)); 9985 bxe_map_sb_state_machines(sb_data_e1x.index_data); 9986 } 9987 9988 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id); 9989 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id); 9990 9991 BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id); 9992 9993 /* write indices to HW - PCI guarantees endianity of regpairs */ 9994 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9995 } 9996 9997 static inline uint8_t 9998 bxe_fp_qzone_id(struct bxe_fastpath *fp) 9999 { 10000 if (CHIP_IS_E1x(fp->sc)) { 10001 return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H); 10002 } else { 10003 return (fp->cl_id); 10004 } 10005 } 10006 10007 static inline uint32_t 10008 bxe_rx_ustorm_prods_offset(struct bxe_softc *sc, 10009 struct bxe_fastpath *fp) 10010 { 10011 uint32_t offset = BAR_USTRORM_INTMEM; 10012 10013 #if 0 10014 if (IS_VF(sc)) { 10015 return (PXP_VF_ADDR_USDM_QUEUES_START + 10016 (sc->acquire_resp.resc.hw_qid[fp->index] * 10017 sizeof(struct ustorm_queue_zone_data))); 10018 } else 10019 #endif 10020 if (!CHIP_IS_E1x(sc)) { 10021 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 10022 } else { 10023 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id); 10024 } 10025 10026 return (offset); 10027 } 10028 10029 static void 10030 bxe_init_eth_fp(struct bxe_softc *sc, 10031 int idx) 10032 { 10033 struct bxe_fastpath *fp = &sc->fp[idx]; 10034 uint32_t cids[ECORE_MULTI_TX_COS] = { 0 }; 10035 unsigned long q_type = 0; 10036 int cos; 10037 10038 fp->sc = sc; 10039 fp->index = idx; 10040 10041 snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name), 10042 "bxe%d_fp%d_tx_lock", sc->unit, idx); 10043 mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF); 10044 10045 snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name), 10046 "bxe%d_fp%d_rx_lock", sc->unit, idx); 10047 mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF); 10048 10049 fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc)); 10050 fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc)); 10051 10052 fp->cl_id = (CHIP_IS_E1x(sc)) ? 10053 (SC_L_ID(sc) + idx) : 10054 /* want client ID same as IGU SB ID for non-E1 */ 10055 fp->igu_sb_id; 10056 fp->cl_qzone_id = bxe_fp_qzone_id(fp); 10057 10058 /* setup sb indices */ 10059 if (!CHIP_IS_E1x(sc)) { 10060 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values; 10061 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index; 10062 } else { 10063 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values; 10064 fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index; 10065 } 10066 10067 /* init shortcut */ 10068 fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp); 10069 10070 fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]; 10071 10072 /* 10073 * XXX If multiple CoS is ever supported then each fastpath structure 10074 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 10075 */ 10076 for (cos = 0; cos < sc->max_cos; cos++) { 10077 cids[cos] = idx; 10078 } 10079 fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]; 10080 10081 /* nothing more for a VF to do */ 10082 if (IS_VF(sc)) { 10083 return; 10084 } 10085 10086 bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE, 10087 fp->fw_sb_id, fp->igu_sb_id); 10088 10089 bxe_update_fp_sb_idx(fp); 10090 10091 /* Configure Queue State object */ 10092 bit_set(&q_type, ECORE_Q_TYPE_HAS_RX); 10093 bit_set(&q_type, ECORE_Q_TYPE_HAS_TX); 10094 10095 ecore_init_queue_obj(sc, 10096 &sc->sp_objs[idx].q_obj, 10097 fp->cl_id, 10098 cids, 10099 sc->max_cos, 10100 SC_FUNC(sc), 10101 BXE_SP(sc, q_rdata), 10102 BXE_SP_MAPPING(sc, q_rdata), 10103 q_type); 10104 10105 /* configure classification DBs */ 10106 ecore_init_mac_obj(sc, 10107 &sc->sp_objs[idx].mac_obj, 10108 fp->cl_id, 10109 idx, 10110 SC_FUNC(sc), 10111 BXE_SP(sc, mac_rdata), 10112 BXE_SP_MAPPING(sc, mac_rdata), 10113 ECORE_FILTER_MAC_PENDING, 10114 &sc->sp_state, 10115 ECORE_OBJ_TYPE_RX_TX, 10116 &sc->macs_pool); 10117 10118 BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n", 10119 idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id); 10120 } 10121 10122 static inline void 10123 bxe_update_rx_prod(struct bxe_softc *sc, 10124 struct bxe_fastpath *fp, 10125 uint16_t rx_bd_prod, 10126 uint16_t rx_cq_prod, 10127 uint16_t rx_sge_prod) 10128 { 10129 struct ustorm_eth_rx_producers rx_prods = { 0 }; 10130 uint32_t i; 10131 10132 /* update producers */ 10133 rx_prods.bd_prod = rx_bd_prod; 10134 rx_prods.cqe_prod = rx_cq_prod; 10135 rx_prods.sge_prod = rx_sge_prod; 10136 10137 /* 10138 * Make sure that the BD and SGE data is updated before updating the 10139 * producers since FW might read the BD/SGE right after the producer 10140 * is updated. 10141 * This is only applicable for weak-ordered memory model archs such 10142 * as IA-64. The following barrier is also mandatory since FW will 10143 * assumes BDs must have buffers. 10144 */ 10145 wmb(); 10146 10147 for (i = 0; i < (sizeof(rx_prods) / 4); i++) { 10148 REG_WR(sc, 10149 (fp->ustorm_rx_prods_offset + (i * 4)), 10150 ((uint32_t *)&rx_prods)[i]); 10151 } 10152 10153 wmb(); /* keep prod updates ordered */ 10154 10155 BLOGD(sc, DBG_RX, 10156 "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n", 10157 fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod); 10158 } 10159 10160 static void 10161 bxe_init_rx_rings(struct bxe_softc *sc) 10162 { 10163 struct bxe_fastpath *fp; 10164 int i; 10165 10166 for (i = 0; i < sc->num_queues; i++) { 10167 fp = &sc->fp[i]; 10168 10169 fp->rx_bd_cons = 0; 10170 10171 /* 10172 * Activate the BD ring... 10173 * Warning, this will generate an interrupt (to the TSTORM) 10174 * so this can only be done after the chip is initialized 10175 */ 10176 bxe_update_rx_prod(sc, fp, 10177 fp->rx_bd_prod, 10178 fp->rx_cq_prod, 10179 fp->rx_sge_prod); 10180 10181 if (i != 0) { 10182 continue; 10183 } 10184 10185 if (CHIP_IS_E1(sc)) { 10186 REG_WR(sc, 10187 (BAR_USTRORM_INTMEM + 10188 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))), 10189 U64_LO(fp->rcq_dma.paddr)); 10190 REG_WR(sc, 10191 (BAR_USTRORM_INTMEM + 10192 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4), 10193 U64_HI(fp->rcq_dma.paddr)); 10194 } 10195 } 10196 } 10197 10198 static void 10199 bxe_init_tx_ring_one(struct bxe_fastpath *fp) 10200 { 10201 SET_FLAG(fp->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1); 10202 fp->tx_db.data.zero_fill1 = 0; 10203 fp->tx_db.data.prod = 0; 10204 10205 fp->tx_pkt_prod = 0; 10206 fp->tx_pkt_cons = 0; 10207 fp->tx_bd_prod = 0; 10208 fp->tx_bd_cons = 0; 10209 fp->eth_q_stats.tx_pkts = 0; 10210 } 10211 10212 static inline void 10213 bxe_init_tx_rings(struct bxe_softc *sc) 10214 { 10215 int i; 10216 10217 for (i = 0; i < sc->num_queues; i++) { 10218 #if 0 10219 uint8_t cos; 10220 for (cos = 0; cos < sc->max_cos; cos++) { 10221 bxe_init_tx_ring_one(&sc->fp[i].txdata[cos]); 10222 } 10223 #else 10224 bxe_init_tx_ring_one(&sc->fp[i]); 10225 #endif 10226 } 10227 } 10228 10229 static void 10230 bxe_init_def_sb(struct bxe_softc *sc) 10231 { 10232 struct host_sp_status_block *def_sb = sc->def_sb; 10233 bus_addr_t mapping = sc->def_sb_dma.paddr; 10234 int igu_sp_sb_index; 10235 int igu_seg_id; 10236 int port = SC_PORT(sc); 10237 int func = SC_FUNC(sc); 10238 int reg_offset, reg_offset_en5; 10239 uint64_t section; 10240 int index, sindex; 10241 struct hc_sp_status_block_data sp_sb_data; 10242 10243 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 10244 10245 if (CHIP_INT_MODE_IS_BC(sc)) { 10246 igu_sp_sb_index = DEF_SB_IGU_ID; 10247 igu_seg_id = HC_SEG_ACCESS_DEF; 10248 } else { 10249 igu_sp_sb_index = sc->igu_dsb_id; 10250 igu_seg_id = IGU_SEG_ACCESS_DEF; 10251 } 10252 10253 /* attentions */ 10254 section = ((uint64_t)mapping + 10255 offsetof(struct host_sp_status_block, atten_status_block)); 10256 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 10257 sc->attn_state = 0; 10258 10259 reg_offset = (port) ? 10260 MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 10261 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 10262 reg_offset_en5 = (port) ? 10263 MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 10264 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0; 10265 10266 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 10267 /* take care of sig[0]..sig[4] */ 10268 for (sindex = 0; sindex < 4; sindex++) { 10269 sc->attn_group[index].sig[sindex] = 10270 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index))); 10271 } 10272 10273 if (!CHIP_IS_E1x(sc)) { 10274 /* 10275 * enable5 is separate from the rest of the registers, 10276 * and the address skip is 4 and not 16 between the 10277 * different groups 10278 */ 10279 sc->attn_group[index].sig[4] = 10280 REG_RD(sc, (reg_offset_en5 + (0x4 * index))); 10281 } else { 10282 sc->attn_group[index].sig[4] = 0; 10283 } 10284 } 10285 10286 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10287 reg_offset = (port) ? 10288 HC_REG_ATTN_MSG1_ADDR_L : 10289 HC_REG_ATTN_MSG0_ADDR_L; 10290 REG_WR(sc, reg_offset, U64_LO(section)); 10291 REG_WR(sc, (reg_offset + 4), U64_HI(section)); 10292 } else if (!CHIP_IS_E1x(sc)) { 10293 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 10294 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 10295 } 10296 10297 section = ((uint64_t)mapping + 10298 offsetof(struct host_sp_status_block, sp_sb)); 10299 10300 bxe_zero_sp_sb(sc); 10301 10302 /* PCI guarantees endianity of regpair */ 10303 sp_sb_data.state = SB_ENABLED; 10304 sp_sb_data.host_sb_addr.lo = U64_LO(section); 10305 sp_sb_data.host_sb_addr.hi = U64_HI(section); 10306 sp_sb_data.igu_sb_id = igu_sp_sb_index; 10307 sp_sb_data.igu_seg_id = igu_seg_id; 10308 sp_sb_data.p_func.pf_id = func; 10309 sp_sb_data.p_func.vnic_id = SC_VN(sc); 10310 sp_sb_data.p_func.vf_id = 0xff; 10311 10312 bxe_wr_sp_sb_data(sc, &sp_sb_data); 10313 10314 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 10315 } 10316 10317 static void 10318 bxe_init_sp_ring(struct bxe_softc *sc) 10319 { 10320 atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING); 10321 sc->spq_prod_idx = 0; 10322 sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS]; 10323 sc->spq_prod_bd = sc->spq; 10324 sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT); 10325 } 10326 10327 static void 10328 bxe_init_eq_ring(struct bxe_softc *sc) 10329 { 10330 union event_ring_elem *elem; 10331 int i; 10332 10333 for (i = 1; i <= NUM_EQ_PAGES; i++) { 10334 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1]; 10335 10336 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr + 10337 BCM_PAGE_SIZE * 10338 (i % NUM_EQ_PAGES))); 10339 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr + 10340 BCM_PAGE_SIZE * 10341 (i % NUM_EQ_PAGES))); 10342 } 10343 10344 sc->eq_cons = 0; 10345 sc->eq_prod = NUM_EQ_DESC; 10346 sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS]; 10347 10348 atomic_store_rel_long(&sc->eq_spq_left, 10349 (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING), 10350 NUM_EQ_DESC) - 1)); 10351 } 10352 10353 static void 10354 bxe_init_internal_common(struct bxe_softc *sc) 10355 { 10356 int i; 10357 10358 if (IS_MF_SI(sc)) { 10359 /* 10360 * In switch independent mode, the TSTORM needs to accept 10361 * packets that failed classification, since approximate match 10362 * mac addresses aren't written to NIG LLH. 10363 */ 10364 REG_WR8(sc, 10365 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 10366 2); 10367 } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */ 10368 REG_WR8(sc, 10369 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 10370 0); 10371 } 10372 10373 /* 10374 * Zero this manually as its initialization is currently missing 10375 * in the initTool. 10376 */ 10377 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) { 10378 REG_WR(sc, 10379 (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)), 10380 0); 10381 } 10382 10383 if (!CHIP_IS_E1x(sc)) { 10384 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET), 10385 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 10386 } 10387 } 10388 10389 static void 10390 bxe_init_internal(struct bxe_softc *sc, 10391 uint32_t load_code) 10392 { 10393 switch (load_code) { 10394 case FW_MSG_CODE_DRV_LOAD_COMMON: 10395 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 10396 bxe_init_internal_common(sc); 10397 /* no break */ 10398 10399 case FW_MSG_CODE_DRV_LOAD_PORT: 10400 /* nothing to do */ 10401 /* no break */ 10402 10403 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 10404 /* internal memory per function is initialized inside bxe_pf_init */ 10405 break; 10406 10407 default: 10408 BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code); 10409 break; 10410 } 10411 } 10412 10413 static void 10414 storm_memset_func_cfg(struct bxe_softc *sc, 10415 struct tstorm_eth_function_common_config *tcfg, 10416 uint16_t abs_fid) 10417 { 10418 uint32_t addr; 10419 size_t size; 10420 10421 addr = (BAR_TSTRORM_INTMEM + 10422 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid)); 10423 size = sizeof(struct tstorm_eth_function_common_config); 10424 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg); 10425 } 10426 10427 static void 10428 bxe_func_init(struct bxe_softc *sc, 10429 struct bxe_func_init_params *p) 10430 { 10431 struct tstorm_eth_function_common_config tcfg = { 0 }; 10432 10433 if (CHIP_IS_E1x(sc)) { 10434 storm_memset_func_cfg(sc, &tcfg, p->func_id); 10435 } 10436 10437 /* Enable the function in the FW */ 10438 storm_memset_vf_to_pf(sc, p->func_id, p->pf_id); 10439 storm_memset_func_en(sc, p->func_id, 1); 10440 10441 /* spq */ 10442 if (p->func_flgs & FUNC_FLG_SPQ) { 10443 storm_memset_spq_addr(sc, p->spq_map, p->func_id); 10444 REG_WR(sc, 10445 (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)), 10446 p->spq_prod); 10447 } 10448 } 10449 10450 /* 10451 * Calculates the sum of vn_min_rates. 10452 * It's needed for further normalizing of the min_rates. 10453 * Returns: 10454 * sum of vn_min_rates. 10455 * or 10456 * 0 - if all the min_rates are 0. 10457 * In the later case fainess algorithm should be deactivated. 10458 * If all min rates are not zero then those that are zeroes will be set to 1. 10459 */ 10460 static void 10461 bxe_calc_vn_min(struct bxe_softc *sc, 10462 struct cmng_init_input *input) 10463 { 10464 uint32_t vn_cfg; 10465 uint32_t vn_min_rate; 10466 int all_zero = 1; 10467 int vn; 10468 10469 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10470 vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10471 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 10472 FUNC_MF_CFG_MIN_BW_SHIFT) * 100); 10473 10474 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10475 /* skip hidden VNs */ 10476 vn_min_rate = 0; 10477 } else if (!vn_min_rate) { 10478 /* If min rate is zero - set it to 100 */ 10479 vn_min_rate = DEF_MIN_RATE; 10480 } else { 10481 all_zero = 0; 10482 } 10483 10484 input->vnic_min_rate[vn] = vn_min_rate; 10485 } 10486 10487 /* if ETS or all min rates are zeros - disable fairness */ 10488 if (BXE_IS_ETS_ENABLED(sc)) { 10489 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10490 BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n"); 10491 } else if (all_zero) { 10492 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10493 BLOGD(sc, DBG_LOAD, 10494 "Fariness disabled (all MIN values are zeroes)\n"); 10495 } else { 10496 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10497 } 10498 } 10499 10500 static inline uint16_t 10501 bxe_extract_max_cfg(struct bxe_softc *sc, 10502 uint32_t mf_cfg) 10503 { 10504 uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >> 10505 FUNC_MF_CFG_MAX_BW_SHIFT); 10506 10507 if (!max_cfg) { 10508 BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n"); 10509 max_cfg = 100; 10510 } 10511 10512 return (max_cfg); 10513 } 10514 10515 static void 10516 bxe_calc_vn_max(struct bxe_softc *sc, 10517 int vn, 10518 struct cmng_init_input *input) 10519 { 10520 uint16_t vn_max_rate; 10521 uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10522 uint32_t max_cfg; 10523 10524 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10525 vn_max_rate = 0; 10526 } else { 10527 max_cfg = bxe_extract_max_cfg(sc, vn_cfg); 10528 10529 if (IS_MF_SI(sc)) { 10530 /* max_cfg in percents of linkspeed */ 10531 vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100); 10532 } else { /* SD modes */ 10533 /* max_cfg is absolute in 100Mb units */ 10534 vn_max_rate = (max_cfg * 100); 10535 } 10536 } 10537 10538 BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 10539 10540 input->vnic_max_rate[vn] = vn_max_rate; 10541 } 10542 10543 static void 10544 bxe_cmng_fns_init(struct bxe_softc *sc, 10545 uint8_t read_cfg, 10546 uint8_t cmng_type) 10547 { 10548 struct cmng_init_input input; 10549 int vn; 10550 10551 memset(&input, 0, sizeof(struct cmng_init_input)); 10552 10553 input.port_rate = sc->link_vars.line_speed; 10554 10555 if (cmng_type == CMNG_FNS_MINMAX) { 10556 /* read mf conf from shmem */ 10557 if (read_cfg) { 10558 bxe_read_mf_cfg(sc); 10559 } 10560 10561 /* get VN min rate and enable fairness if not 0 */ 10562 bxe_calc_vn_min(sc, &input); 10563 10564 /* get VN max rate */ 10565 if (sc->port.pmf) { 10566 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10567 bxe_calc_vn_max(sc, vn, &input); 10568 } 10569 } 10570 10571 /* always enable rate shaping and fairness */ 10572 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 10573 10574 ecore_init_cmng(&input, &sc->cmng); 10575 return; 10576 } 10577 10578 /* rate shaping and fairness are disabled */ 10579 BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n"); 10580 } 10581 10582 static int 10583 bxe_get_cmng_fns_mode(struct bxe_softc *sc) 10584 { 10585 if (CHIP_REV_IS_SLOW(sc)) { 10586 return (CMNG_FNS_NONE); 10587 } 10588 10589 if (IS_MF(sc)) { 10590 return (CMNG_FNS_MINMAX); 10591 } 10592 10593 return (CMNG_FNS_NONE); 10594 } 10595 10596 static void 10597 storm_memset_cmng(struct bxe_softc *sc, 10598 struct cmng_init *cmng, 10599 uint8_t port) 10600 { 10601 int vn; 10602 int func; 10603 uint32_t addr; 10604 size_t size; 10605 10606 addr = (BAR_XSTRORM_INTMEM + 10607 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port)); 10608 size = sizeof(struct cmng_struct_per_port); 10609 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port); 10610 10611 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10612 func = func_by_vn(sc, vn); 10613 10614 addr = (BAR_XSTRORM_INTMEM + 10615 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func)); 10616 size = sizeof(struct rate_shaping_vars_per_vn); 10617 ecore_storm_memset_struct(sc, addr, size, 10618 (uint32_t *)&cmng->vnic.vnic_max_rate[vn]); 10619 10620 addr = (BAR_XSTRORM_INTMEM + 10621 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func)); 10622 size = sizeof(struct fairness_vars_per_vn); 10623 ecore_storm_memset_struct(sc, addr, size, 10624 (uint32_t *)&cmng->vnic.vnic_min_rate[vn]); 10625 } 10626 } 10627 10628 static void 10629 bxe_pf_init(struct bxe_softc *sc) 10630 { 10631 struct bxe_func_init_params func_init = { 0 }; 10632 struct event_ring_data eq_data = { { 0 } }; 10633 uint16_t flags; 10634 10635 if (!CHIP_IS_E1x(sc)) { 10636 /* reset IGU PF statistics: MSIX + ATTN */ 10637 /* PF */ 10638 REG_WR(sc, 10639 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10640 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10641 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10642 0); 10643 /* ATTN */ 10644 REG_WR(sc, 10645 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10646 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10647 (BXE_IGU_STAS_MSG_PF_CNT * 4) + 10648 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10649 0); 10650 } 10651 10652 /* function setup flags */ 10653 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); 10654 10655 /* 10656 * This flag is relevant for E1x only. 10657 * E2 doesn't have a TPA configuration in a function level. 10658 */ 10659 flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0; 10660 10661 func_init.func_flgs = flags; 10662 func_init.pf_id = SC_FUNC(sc); 10663 func_init.func_id = SC_FUNC(sc); 10664 func_init.spq_map = sc->spq_dma.paddr; 10665 func_init.spq_prod = sc->spq_prod_idx; 10666 10667 bxe_func_init(sc, &func_init); 10668 10669 memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port)); 10670 10671 /* 10672 * Congestion management values depend on the link rate. 10673 * There is no active link so initial link rate is set to 10Gbps. 10674 * When the link comes up the congestion management values are 10675 * re-calculated according to the actual link rate. 10676 */ 10677 sc->link_vars.line_speed = SPEED_10000; 10678 bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc)); 10679 10680 /* Only the PMF sets the HW */ 10681 if (sc->port.pmf) { 10682 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 10683 } 10684 10685 /* init Event Queue - PCI bus guarantees correct endainity */ 10686 eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr); 10687 eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr); 10688 eq_data.producer = sc->eq_prod; 10689 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 10690 eq_data.sb_id = DEF_SB_ID; 10691 storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc)); 10692 } 10693 10694 static void 10695 bxe_hc_int_enable(struct bxe_softc *sc) 10696 { 10697 int port = SC_PORT(sc); 10698 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10699 uint32_t val = REG_RD(sc, addr); 10700 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10701 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10702 (sc->intr_count == 1)) ? TRUE : FALSE; 10703 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10704 10705 if (msix) { 10706 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10707 HC_CONFIG_0_REG_INT_LINE_EN_0); 10708 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10709 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10710 if (single_msix) { 10711 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 10712 } 10713 } else if (msi) { 10714 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 10715 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10716 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10717 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10718 } else { 10719 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10720 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10721 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10722 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10723 10724 if (!CHIP_IS_E1(sc)) { 10725 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", 10726 val, port, addr); 10727 10728 REG_WR(sc, addr, val); 10729 10730 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 10731 } 10732 } 10733 10734 if (CHIP_IS_E1(sc)) { 10735 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF); 10736 } 10737 10738 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n", 10739 val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10740 10741 REG_WR(sc, addr, val); 10742 10743 /* ensure that HC_CONFIG is written before leading/trailing edge config */ 10744 mb(); 10745 10746 if (!CHIP_IS_E1(sc)) { 10747 /* init leading/trailing edge */ 10748 if (IS_MF(sc)) { 10749 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10750 if (sc->port.pmf) { 10751 /* enable nig and gpio3 attention */ 10752 val |= 0x1100; 10753 } 10754 } else { 10755 val = 0xffff; 10756 } 10757 10758 REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val); 10759 REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val); 10760 } 10761 10762 /* make sure that interrupts are indeed enabled from here on */ 10763 mb(); 10764 } 10765 10766 static void 10767 bxe_igu_int_enable(struct bxe_softc *sc) 10768 { 10769 uint32_t val; 10770 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10771 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10772 (sc->intr_count == 1)) ? TRUE : FALSE; 10773 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10774 10775 val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10776 10777 if (msix) { 10778 val &= ~(IGU_PF_CONF_INT_LINE_EN | 10779 IGU_PF_CONF_SINGLE_ISR_EN); 10780 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10781 IGU_PF_CONF_ATTN_BIT_EN); 10782 if (single_msix) { 10783 val |= IGU_PF_CONF_SINGLE_ISR_EN; 10784 } 10785 } else if (msi) { 10786 val &= ~IGU_PF_CONF_INT_LINE_EN; 10787 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10788 IGU_PF_CONF_ATTN_BIT_EN | 10789 IGU_PF_CONF_SINGLE_ISR_EN); 10790 } else { 10791 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 10792 val |= (IGU_PF_CONF_INT_LINE_EN | 10793 IGU_PF_CONF_ATTN_BIT_EN | 10794 IGU_PF_CONF_SINGLE_ISR_EN); 10795 } 10796 10797 /* clean previous status - need to configure igu prior to ack*/ 10798 if ((!msix) || single_msix) { 10799 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10800 bxe_ack_int(sc); 10801 } 10802 10803 val |= IGU_PF_CONF_FUNC_EN; 10804 10805 BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n", 10806 val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10807 10808 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10809 10810 mb(); 10811 10812 /* init leading/trailing edge */ 10813 if (IS_MF(sc)) { 10814 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10815 if (sc->port.pmf) { 10816 /* enable nig and gpio3 attention */ 10817 val |= 0x1100; 10818 } 10819 } else { 10820 val = 0xffff; 10821 } 10822 10823 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 10824 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 10825 10826 /* make sure that interrupts are indeed enabled from here on */ 10827 mb(); 10828 } 10829 10830 static void 10831 bxe_int_enable(struct bxe_softc *sc) 10832 { 10833 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10834 bxe_hc_int_enable(sc); 10835 } else { 10836 bxe_igu_int_enable(sc); 10837 } 10838 } 10839 10840 static void 10841 bxe_hc_int_disable(struct bxe_softc *sc) 10842 { 10843 int port = SC_PORT(sc); 10844 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10845 uint32_t val = REG_RD(sc, addr); 10846 10847 /* 10848 * In E1 we must use only PCI configuration space to disable MSI/MSIX 10849 * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC 10850 * block 10851 */ 10852 if (CHIP_IS_E1(sc)) { 10853 /* 10854 * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register 10855 * to prevent from HC sending interrupts after we exit the function 10856 */ 10857 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0); 10858 10859 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10860 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10861 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10862 } else { 10863 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10864 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10865 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10866 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10867 } 10868 10869 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr); 10870 10871 /* flush all outstanding writes */ 10872 mb(); 10873 10874 REG_WR(sc, addr, val); 10875 if (REG_RD(sc, addr) != val) { 10876 BLOGE(sc, "proper val not read from HC IGU!\n"); 10877 } 10878 } 10879 10880 static void 10881 bxe_igu_int_disable(struct bxe_softc *sc) 10882 { 10883 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10884 10885 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 10886 IGU_PF_CONF_INT_LINE_EN | 10887 IGU_PF_CONF_ATTN_BIT_EN); 10888 10889 BLOGD(sc, DBG_INTR, "write %x to IGU\n", val); 10890 10891 /* flush all outstanding writes */ 10892 mb(); 10893 10894 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10895 if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) { 10896 BLOGE(sc, "proper val not read from IGU!\n"); 10897 } 10898 } 10899 10900 static void 10901 bxe_int_disable(struct bxe_softc *sc) 10902 { 10903 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10904 bxe_hc_int_disable(sc); 10905 } else { 10906 bxe_igu_int_disable(sc); 10907 } 10908 } 10909 10910 static void 10911 bxe_nic_init(struct bxe_softc *sc, 10912 int load_code) 10913 { 10914 int i; 10915 10916 for (i = 0; i < sc->num_queues; i++) { 10917 bxe_init_eth_fp(sc, i); 10918 } 10919 10920 rmb(); /* ensure status block indices were read */ 10921 10922 bxe_init_rx_rings(sc); 10923 bxe_init_tx_rings(sc); 10924 10925 if (IS_VF(sc)) { 10926 return; 10927 } 10928 10929 /* initialize MOD_ABS interrupts */ 10930 elink_init_mod_abs_int(sc, &sc->link_vars, 10931 sc->devinfo.chip_id, 10932 sc->devinfo.shmem_base, 10933 sc->devinfo.shmem2_base, 10934 SC_PORT(sc)); 10935 10936 bxe_init_def_sb(sc); 10937 bxe_update_dsb_idx(sc); 10938 bxe_init_sp_ring(sc); 10939 bxe_init_eq_ring(sc); 10940 bxe_init_internal(sc, load_code); 10941 bxe_pf_init(sc); 10942 bxe_stats_init(sc); 10943 10944 /* flush all before enabling interrupts */ 10945 mb(); 10946 10947 bxe_int_enable(sc); 10948 10949 /* check for SPIO5 */ 10950 bxe_attn_int_deasserted0(sc, 10951 REG_RD(sc, 10952 (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 10953 SC_PORT(sc)*4)) & 10954 AEU_INPUTS_ATTN_BITS_SPIO5); 10955 } 10956 10957 static inline void 10958 bxe_init_objs(struct bxe_softc *sc) 10959 { 10960 /* mcast rules must be added to tx if tx switching is enabled */ 10961 ecore_obj_type o_type = 10962 (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX : 10963 ECORE_OBJ_TYPE_RX; 10964 10965 /* RX_MODE controlling object */ 10966 ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj); 10967 10968 /* multicast configuration controlling object */ 10969 ecore_init_mcast_obj(sc, 10970 &sc->mcast_obj, 10971 sc->fp[0].cl_id, 10972 sc->fp[0].index, 10973 SC_FUNC(sc), 10974 SC_FUNC(sc), 10975 BXE_SP(sc, mcast_rdata), 10976 BXE_SP_MAPPING(sc, mcast_rdata), 10977 ECORE_FILTER_MCAST_PENDING, 10978 &sc->sp_state, 10979 o_type); 10980 10981 /* Setup CAM credit pools */ 10982 ecore_init_mac_credit_pool(sc, 10983 &sc->macs_pool, 10984 SC_FUNC(sc), 10985 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10986 VNICS_PER_PATH(sc)); 10987 10988 ecore_init_vlan_credit_pool(sc, 10989 &sc->vlans_pool, 10990 SC_ABS_FUNC(sc) >> 1, 10991 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10992 VNICS_PER_PATH(sc)); 10993 10994 /* RSS configuration object */ 10995 ecore_init_rss_config_obj(sc, 10996 &sc->rss_conf_obj, 10997 sc->fp[0].cl_id, 10998 sc->fp[0].index, 10999 SC_FUNC(sc), 11000 SC_FUNC(sc), 11001 BXE_SP(sc, rss_rdata), 11002 BXE_SP_MAPPING(sc, rss_rdata), 11003 ECORE_FILTER_RSS_CONF_PENDING, 11004 &sc->sp_state, ECORE_OBJ_TYPE_RX); 11005 } 11006 11007 /* 11008 * Initialize the function. This must be called before sending CLIENT_SETUP 11009 * for the first client. 11010 */ 11011 static inline int 11012 bxe_func_start(struct bxe_softc *sc) 11013 { 11014 struct ecore_func_state_params func_params = { NULL }; 11015 struct ecore_func_start_params *start_params = &func_params.params.start; 11016 11017 /* Prepare parameters for function state transitions */ 11018 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 11019 11020 func_params.f_obj = &sc->func_obj; 11021 func_params.cmd = ECORE_F_CMD_START; 11022 11023 /* Function parameters */ 11024 start_params->mf_mode = sc->devinfo.mf_info.mf_mode; 11025 start_params->sd_vlan_tag = OVLAN(sc); 11026 11027 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 11028 start_params->network_cos_mode = STATIC_COS; 11029 } else { /* CHIP_IS_E1X */ 11030 start_params->network_cos_mode = FW_WRR; 11031 } 11032 11033 start_params->gre_tunnel_mode = 0; 11034 start_params->gre_tunnel_rss = 0; 11035 11036 return (ecore_func_state_change(sc, &func_params)); 11037 } 11038 11039 static int 11040 bxe_set_power_state(struct bxe_softc *sc, 11041 uint8_t state) 11042 { 11043 uint16_t pmcsr; 11044 11045 /* If there is no power capability, silently succeed */ 11046 if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) { 11047 BLOGW(sc, "No power capability\n"); 11048 return (0); 11049 } 11050 11051 pmcsr = pci_read_config(sc->dev, 11052 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 11053 2); 11054 11055 switch (state) { 11056 case PCI_PM_D0: 11057 pci_write_config(sc->dev, 11058 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 11059 ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2); 11060 11061 if (pmcsr & PCIM_PSTAT_DMASK) { 11062 /* delay required during transition out of D3hot */ 11063 DELAY(20000); 11064 } 11065 11066 break; 11067 11068 case PCI_PM_D3hot: 11069 /* XXX if there are other clients above don't shut down the power */ 11070 11071 /* don't shut down the power for emulation and FPGA */ 11072 if (CHIP_REV_IS_SLOW(sc)) { 11073 return (0); 11074 } 11075 11076 pmcsr &= ~PCIM_PSTAT_DMASK; 11077 pmcsr |= PCIM_PSTAT_D3; 11078 11079 if (sc->wol) { 11080 pmcsr |= PCIM_PSTAT_PMEENABLE; 11081 } 11082 11083 pci_write_config(sc->dev, 11084 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 11085 pmcsr, 4); 11086 11087 /* 11088 * No more memory access after this point until device is brought back 11089 * to D0 state. 11090 */ 11091 break; 11092 11093 default: 11094 BLOGE(sc, "Can't support PCI power state = %d\n", state); 11095 return (-1); 11096 } 11097 11098 return (0); 11099 } 11100 11101 11102 /* return true if succeeded to acquire the lock */ 11103 static uint8_t 11104 bxe_trylock_hw_lock(struct bxe_softc *sc, 11105 uint32_t resource) 11106 { 11107 uint32_t lock_status; 11108 uint32_t resource_bit = (1 << resource); 11109 int func = SC_FUNC(sc); 11110 uint32_t hw_lock_control_reg; 11111 11112 BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource); 11113 11114 /* Validating that the resource is within range */ 11115 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 11116 BLOGD(sc, DBG_LOAD, 11117 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 11118 resource, HW_LOCK_MAX_RESOURCE_VALUE); 11119 return (FALSE); 11120 } 11121 11122 if (func <= 5) { 11123 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 11124 } else { 11125 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 11126 } 11127 11128 /* try to acquire the lock */ 11129 REG_WR(sc, hw_lock_control_reg + 4, resource_bit); 11130 lock_status = REG_RD(sc, hw_lock_control_reg); 11131 if (lock_status & resource_bit) { 11132 return (TRUE); 11133 } 11134 11135 BLOGE(sc, "Failed to get a resource lock 0x%x\n", resource); 11136 11137 return (FALSE); 11138 } 11139 11140 /* 11141 * Get the recovery leader resource id according to the engine this function 11142 * belongs to. Currently only only 2 engines is supported. 11143 */ 11144 static int 11145 bxe_get_leader_lock_resource(struct bxe_softc *sc) 11146 { 11147 if (SC_PATH(sc)) { 11148 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1); 11149 } else { 11150 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0); 11151 } 11152 } 11153 11154 /* try to acquire a leader lock for current engine */ 11155 static uint8_t 11156 bxe_trylock_leader_lock(struct bxe_softc *sc) 11157 { 11158 return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 11159 } 11160 11161 static int 11162 bxe_release_leader_lock(struct bxe_softc *sc) 11163 { 11164 return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 11165 } 11166 11167 /* close gates #2, #3 and #4 */ 11168 static void 11169 bxe_set_234_gates(struct bxe_softc *sc, 11170 uint8_t close) 11171 { 11172 uint32_t val; 11173 11174 /* gates #2 and #4a are closed/opened for "not E1" only */ 11175 if (!CHIP_IS_E1(sc)) { 11176 /* #4 */ 11177 REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 11178 /* #2 */ 11179 REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 11180 } 11181 11182 /* #3 */ 11183 if (CHIP_IS_E1x(sc)) { 11184 /* prevent interrupts from HC on both ports */ 11185 val = REG_RD(sc, HC_REG_CONFIG_1); 11186 REG_WR(sc, HC_REG_CONFIG_1, 11187 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 11188 (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 11189 11190 val = REG_RD(sc, HC_REG_CONFIG_0); 11191 REG_WR(sc, HC_REG_CONFIG_0, 11192 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 11193 (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 11194 } else { 11195 /* Prevent incomming interrupts in IGU */ 11196 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 11197 11198 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, 11199 (!close) ? 11200 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 11201 (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 11202 } 11203 11204 BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n", 11205 close ? "closing" : "opening"); 11206 11207 wmb(); 11208 } 11209 11210 /* poll for pending writes bit, it should get cleared in no more than 1s */ 11211 static int 11212 bxe_er_poll_igu_vq(struct bxe_softc *sc) 11213 { 11214 uint32_t cnt = 1000; 11215 uint32_t pend_bits = 0; 11216 11217 do { 11218 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS); 11219 11220 if (pend_bits == 0) { 11221 break; 11222 } 11223 11224 DELAY(1000); 11225 } while (--cnt > 0); 11226 11227 if (cnt == 0) { 11228 BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits); 11229 return (-1); 11230 } 11231 11232 return (0); 11233 } 11234 11235 #define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */ 11236 11237 static void 11238 bxe_clp_reset_prep(struct bxe_softc *sc, 11239 uint32_t *magic_val) 11240 { 11241 /* Do some magic... */ 11242 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 11243 *magic_val = val & SHARED_MF_CLP_MAGIC; 11244 MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 11245 } 11246 11247 /* restore the value of the 'magic' bit */ 11248 static void 11249 bxe_clp_reset_done(struct bxe_softc *sc, 11250 uint32_t magic_val) 11251 { 11252 /* Restore the 'magic' bit value... */ 11253 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 11254 MFCFG_WR(sc, shared_mf_config.clp_mb, 11255 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 11256 } 11257 11258 /* prepare for MCP reset, takes care of CLP configurations */ 11259 static void 11260 bxe_reset_mcp_prep(struct bxe_softc *sc, 11261 uint32_t *magic_val) 11262 { 11263 uint32_t shmem; 11264 uint32_t validity_offset; 11265 11266 /* set `magic' bit in order to save MF config */ 11267 if (!CHIP_IS_E1(sc)) { 11268 bxe_clp_reset_prep(sc, magic_val); 11269 } 11270 11271 /* get shmem offset */ 11272 shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 11273 validity_offset = 11274 offsetof(struct shmem_region, validity_map[SC_PORT(sc)]); 11275 11276 /* Clear validity map flags */ 11277 if (shmem > 0) { 11278 REG_WR(sc, shmem + validity_offset, 0); 11279 } 11280 } 11281 11282 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 11283 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 11284 11285 static void 11286 bxe_mcp_wait_one(struct bxe_softc *sc) 11287 { 11288 /* special handling for emulation and FPGA (10 times longer) */ 11289 if (CHIP_REV_IS_SLOW(sc)) { 11290 DELAY((MCP_ONE_TIMEOUT*10) * 1000); 11291 } else { 11292 DELAY((MCP_ONE_TIMEOUT) * 1000); 11293 } 11294 } 11295 11296 /* initialize shmem_base and waits for validity signature to appear */ 11297 static int 11298 bxe_init_shmem(struct bxe_softc *sc) 11299 { 11300 int cnt = 0; 11301 uint32_t val = 0; 11302 11303 do { 11304 sc->devinfo.shmem_base = 11305 sc->link_params.shmem_base = 11306 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 11307 11308 if (sc->devinfo.shmem_base) { 11309 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 11310 if (val & SHR_MEM_VALIDITY_MB) 11311 return (0); 11312 } 11313 11314 bxe_mcp_wait_one(sc); 11315 11316 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 11317 11318 BLOGE(sc, "BAD MCP validity signature\n"); 11319 11320 return (-1); 11321 } 11322 11323 static int 11324 bxe_reset_mcp_comp(struct bxe_softc *sc, 11325 uint32_t magic_val) 11326 { 11327 int rc = bxe_init_shmem(sc); 11328 11329 /* Restore the `magic' bit value */ 11330 if (!CHIP_IS_E1(sc)) { 11331 bxe_clp_reset_done(sc, magic_val); 11332 } 11333 11334 return (rc); 11335 } 11336 11337 static void 11338 bxe_pxp_prep(struct bxe_softc *sc) 11339 { 11340 if (!CHIP_IS_E1(sc)) { 11341 REG_WR(sc, PXP2_REG_RD_START_INIT, 0); 11342 REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0); 11343 wmb(); 11344 } 11345 } 11346 11347 /* 11348 * Reset the whole chip except for: 11349 * - PCIE core 11350 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit) 11351 * - IGU 11352 * - MISC (including AEU) 11353 * - GRC 11354 * - RBCN, RBCP 11355 */ 11356 static void 11357 bxe_process_kill_chip_reset(struct bxe_softc *sc, 11358 uint8_t global) 11359 { 11360 uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 11361 uint32_t global_bits2, stay_reset2; 11362 11363 /* 11364 * Bits that have to be set in reset_mask2 if we want to reset 'global' 11365 * (per chip) blocks. 11366 */ 11367 global_bits2 = 11368 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 11369 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 11370 11371 /* 11372 * Don't reset the following blocks. 11373 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 11374 * reset, as in 4 port device they might still be owned 11375 * by the MCP (there is only one leader per path). 11376 */ 11377 not_reset_mask1 = 11378 MISC_REGISTERS_RESET_REG_1_RST_HC | 11379 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 11380 MISC_REGISTERS_RESET_REG_1_RST_PXP; 11381 11382 not_reset_mask2 = 11383 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 11384 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 11385 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 11386 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 11387 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 11388 MISC_REGISTERS_RESET_REG_2_RST_GRC | 11389 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 11390 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 11391 MISC_REGISTERS_RESET_REG_2_RST_ATC | 11392 MISC_REGISTERS_RESET_REG_2_PGLC | 11393 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 11394 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 11395 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 11396 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 11397 MISC_REGISTERS_RESET_REG_2_UMAC0 | 11398 MISC_REGISTERS_RESET_REG_2_UMAC1; 11399 11400 /* 11401 * Keep the following blocks in reset: 11402 * - all xxMACs are handled by the elink code. 11403 */ 11404 stay_reset2 = 11405 MISC_REGISTERS_RESET_REG_2_XMAC | 11406 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 11407 11408 /* Full reset masks according to the chip */ 11409 reset_mask1 = 0xffffffff; 11410 11411 if (CHIP_IS_E1(sc)) 11412 reset_mask2 = 0xffff; 11413 else if (CHIP_IS_E1H(sc)) 11414 reset_mask2 = 0x1ffff; 11415 else if (CHIP_IS_E2(sc)) 11416 reset_mask2 = 0xfffff; 11417 else /* CHIP_IS_E3 */ 11418 reset_mask2 = 0x3ffffff; 11419 11420 /* Don't reset global blocks unless we need to */ 11421 if (!global) 11422 reset_mask2 &= ~global_bits2; 11423 11424 /* 11425 * In case of attention in the QM, we need to reset PXP 11426 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 11427 * because otherwise QM reset would release 'close the gates' shortly 11428 * before resetting the PXP, then the PSWRQ would send a write 11429 * request to PGLUE. Then when PXP is reset, PGLUE would try to 11430 * read the payload data from PSWWR, but PSWWR would not 11431 * respond. The write queue in PGLUE would stuck, dmae commands 11432 * would not return. Therefore it's important to reset the second 11433 * reset register (containing the 11434 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 11435 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 11436 * bit). 11437 */ 11438 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 11439 reset_mask2 & (~not_reset_mask2)); 11440 11441 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 11442 reset_mask1 & (~not_reset_mask1)); 11443 11444 mb(); 11445 wmb(); 11446 11447 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 11448 reset_mask2 & (~stay_reset2)); 11449 11450 mb(); 11451 wmb(); 11452 11453 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 11454 wmb(); 11455 } 11456 11457 static int 11458 bxe_process_kill(struct bxe_softc *sc, 11459 uint8_t global) 11460 { 11461 int cnt = 1000; 11462 uint32_t val = 0; 11463 uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 11464 uint32_t tags_63_32 = 0; 11465 11466 /* Empty the Tetris buffer, wait for 1s */ 11467 do { 11468 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT); 11469 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT); 11470 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0); 11471 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1); 11472 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2); 11473 if (CHIP_IS_E3(sc)) { 11474 tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32); 11475 } 11476 11477 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 11478 ((port_is_idle_0 & 0x1) == 0x1) && 11479 ((port_is_idle_1 & 0x1) == 0x1) && 11480 (pgl_exp_rom2 == 0xffffffff) && 11481 (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff))) 11482 break; 11483 DELAY(1000); 11484 } while (cnt-- > 0); 11485 11486 if (cnt <= 0) { 11487 BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there " 11488 "are still outstanding read requests after 1s! " 11489 "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, " 11490 "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 11491 sr_cnt, blk_cnt, port_is_idle_0, 11492 port_is_idle_1, pgl_exp_rom2); 11493 return (-1); 11494 } 11495 11496 mb(); 11497 11498 /* Close gates #2, #3 and #4 */ 11499 bxe_set_234_gates(sc, TRUE); 11500 11501 /* Poll for IGU VQs for 57712 and newer chips */ 11502 if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) { 11503 return (-1); 11504 } 11505 11506 /* XXX indicate that "process kill" is in progress to MCP */ 11507 11508 /* clear "unprepared" bit */ 11509 REG_WR(sc, MISC_REG_UNPREPARED, 0); 11510 mb(); 11511 11512 /* Make sure all is written to the chip before the reset */ 11513 wmb(); 11514 11515 /* 11516 * Wait for 1ms to empty GLUE and PCI-E core queues, 11517 * PSWHST, GRC and PSWRD Tetris buffer. 11518 */ 11519 DELAY(1000); 11520 11521 /* Prepare to chip reset: */ 11522 /* MCP */ 11523 if (global) { 11524 bxe_reset_mcp_prep(sc, &val); 11525 } 11526 11527 /* PXP */ 11528 bxe_pxp_prep(sc); 11529 mb(); 11530 11531 /* reset the chip */ 11532 bxe_process_kill_chip_reset(sc, global); 11533 mb(); 11534 11535 /* clear errors in PGB */ 11536 if (!CHIP_IS_E1(sc)) 11537 REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f); 11538 11539 /* Recover after reset: */ 11540 /* MCP */ 11541 if (global && bxe_reset_mcp_comp(sc, val)) { 11542 return (-1); 11543 } 11544 11545 /* XXX add resetting the NO_MCP mode DB here */ 11546 11547 /* Open the gates #2, #3 and #4 */ 11548 bxe_set_234_gates(sc, FALSE); 11549 11550 /* XXX 11551 * IGU/AEU preparation bring back the AEU/IGU to a reset state 11552 * re-enable attentions 11553 */ 11554 11555 return (0); 11556 } 11557 11558 static int 11559 bxe_leader_reset(struct bxe_softc *sc) 11560 { 11561 int rc = 0; 11562 uint8_t global = bxe_reset_is_global(sc); 11563 uint32_t load_code; 11564 11565 /* 11566 * If not going to reset MCP, load "fake" driver to reset HW while 11567 * driver is owner of the HW. 11568 */ 11569 if (!global && !BXE_NOMCP(sc)) { 11570 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 11571 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 11572 if (!load_code) { 11573 BLOGE(sc, "MCP response failure, aborting\n"); 11574 rc = -1; 11575 goto exit_leader_reset; 11576 } 11577 11578 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 11579 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 11580 BLOGE(sc, "MCP unexpected response, aborting\n"); 11581 rc = -1; 11582 goto exit_leader_reset2; 11583 } 11584 11585 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 11586 if (!load_code) { 11587 BLOGE(sc, "MCP response failure, aborting\n"); 11588 rc = -1; 11589 goto exit_leader_reset2; 11590 } 11591 } 11592 11593 /* try to recover after the failure */ 11594 if (bxe_process_kill(sc, global)) { 11595 BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc)); 11596 rc = -1; 11597 goto exit_leader_reset2; 11598 } 11599 11600 /* 11601 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver 11602 * state. 11603 */ 11604 bxe_set_reset_done(sc); 11605 if (global) { 11606 bxe_clear_reset_global(sc); 11607 } 11608 11609 exit_leader_reset2: 11610 11611 /* unload "fake driver" if it was loaded */ 11612 if (!global && !BXE_NOMCP(sc)) { 11613 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 11614 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 11615 } 11616 11617 exit_leader_reset: 11618 11619 sc->is_leader = 0; 11620 bxe_release_leader_lock(sc); 11621 11622 mb(); 11623 return (rc); 11624 } 11625 11626 /* 11627 * prepare INIT transition, parameters configured: 11628 * - HC configuration 11629 * - Queue's CDU context 11630 */ 11631 static void 11632 bxe_pf_q_prep_init(struct bxe_softc *sc, 11633 struct bxe_fastpath *fp, 11634 struct ecore_queue_init_params *init_params) 11635 { 11636 uint8_t cos; 11637 int cxt_index, cxt_offset; 11638 11639 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags); 11640 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags); 11641 11642 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags); 11643 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags); 11644 11645 /* HC rate */ 11646 init_params->rx.hc_rate = 11647 sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0; 11648 init_params->tx.hc_rate = 11649 sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0; 11650 11651 /* FW SB ID */ 11652 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id; 11653 11654 /* CQ index among the SB indices */ 11655 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11656 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 11657 11658 /* set maximum number of COSs supported by this queue */ 11659 init_params->max_cos = sc->max_cos; 11660 11661 BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n", 11662 fp->index, init_params->max_cos); 11663 11664 /* set the context pointers queue object */ 11665 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 11666 /* XXX change index/cid here if ever support multiple tx CoS */ 11667 /* fp->txdata[cos]->cid */ 11668 cxt_index = fp->index / ILT_PAGE_CIDS; 11669 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS); 11670 init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth; 11671 } 11672 } 11673 11674 /* set flags that are common for the Tx-only and not normal connections */ 11675 static unsigned long 11676 bxe_get_common_flags(struct bxe_softc *sc, 11677 struct bxe_fastpath *fp, 11678 uint8_t zero_stats) 11679 { 11680 unsigned long flags = 0; 11681 11682 /* PF driver will always initialize the Queue to an ACTIVE state */ 11683 bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags); 11684 11685 /* 11686 * tx only connections collect statistics (on the same index as the 11687 * parent connection). The statistics are zeroed when the parent 11688 * connection is initialized. 11689 */ 11690 11691 bxe_set_bit(ECORE_Q_FLG_STATS, &flags); 11692 if (zero_stats) { 11693 bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags); 11694 } 11695 11696 /* 11697 * tx only connections can support tx-switching, though their 11698 * CoS-ness doesn't survive the loopback 11699 */ 11700 if (sc->flags & BXE_TX_SWITCHING) { 11701 bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags); 11702 } 11703 11704 bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags); 11705 11706 return (flags); 11707 } 11708 11709 static unsigned long 11710 bxe_get_q_flags(struct bxe_softc *sc, 11711 struct bxe_fastpath *fp, 11712 uint8_t leading) 11713 { 11714 unsigned long flags = 0; 11715 11716 if (IS_MF_SD(sc)) { 11717 bxe_set_bit(ECORE_Q_FLG_OV, &flags); 11718 } 11719 11720 if (if_getcapenable(sc->ifp) & IFCAP_LRO) { 11721 bxe_set_bit(ECORE_Q_FLG_TPA, &flags); 11722 bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags); 11723 #if 0 11724 if (fp->mode == TPA_MODE_GRO) 11725 __set_bit(ECORE_Q_FLG_TPA_GRO, &flags); 11726 #endif 11727 } 11728 11729 if (leading) { 11730 bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags); 11731 bxe_set_bit(ECORE_Q_FLG_MCAST, &flags); 11732 } 11733 11734 bxe_set_bit(ECORE_Q_FLG_VLAN, &flags); 11735 11736 #if 0 11737 /* configure silent vlan removal */ 11738 if (IS_MF_AFEX(sc)) { 11739 bxe_set_bit(ECORE_Q_FLG_SILENT_VLAN_REM, &flags); 11740 } 11741 #endif 11742 11743 /* merge with common flags */ 11744 return (flags | bxe_get_common_flags(sc, fp, TRUE)); 11745 } 11746 11747 static void 11748 bxe_pf_q_prep_general(struct bxe_softc *sc, 11749 struct bxe_fastpath *fp, 11750 struct ecore_general_setup_params *gen_init, 11751 uint8_t cos) 11752 { 11753 gen_init->stat_id = bxe_stats_id(fp); 11754 gen_init->spcl_id = fp->cl_id; 11755 gen_init->mtu = sc->mtu; 11756 gen_init->cos = cos; 11757 } 11758 11759 static void 11760 bxe_pf_rx_q_prep(struct bxe_softc *sc, 11761 struct bxe_fastpath *fp, 11762 struct rxq_pause_params *pause, 11763 struct ecore_rxq_setup_params *rxq_init) 11764 { 11765 uint8_t max_sge = 0; 11766 uint16_t sge_sz = 0; 11767 uint16_t tpa_agg_size = 0; 11768 11769 pause->sge_th_lo = SGE_TH_LO(sc); 11770 pause->sge_th_hi = SGE_TH_HI(sc); 11771 11772 /* validate SGE ring has enough to cross high threshold */ 11773 if (sc->dropless_fc && 11774 (pause->sge_th_hi + FW_PREFETCH_CNT) > 11775 (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) { 11776 BLOGW(sc, "sge ring threshold limit\n"); 11777 } 11778 11779 /* minimum max_aggregation_size is 2*MTU (two full buffers) */ 11780 tpa_agg_size = (2 * sc->mtu); 11781 if (tpa_agg_size < sc->max_aggregation_size) { 11782 tpa_agg_size = sc->max_aggregation_size; 11783 } 11784 11785 max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT; 11786 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 11787 (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT; 11788 sge_sz = (uint16_t)min(SGE_PAGES, 0xffff); 11789 11790 /* pause - not for e1 */ 11791 if (!CHIP_IS_E1(sc)) { 11792 pause->bd_th_lo = BD_TH_LO(sc); 11793 pause->bd_th_hi = BD_TH_HI(sc); 11794 11795 pause->rcq_th_lo = RCQ_TH_LO(sc); 11796 pause->rcq_th_hi = RCQ_TH_HI(sc); 11797 11798 /* validate rings have enough entries to cross high thresholds */ 11799 if (sc->dropless_fc && 11800 pause->bd_th_hi + FW_PREFETCH_CNT > 11801 sc->rx_ring_size) { 11802 BLOGW(sc, "rx bd ring threshold limit\n"); 11803 } 11804 11805 if (sc->dropless_fc && 11806 pause->rcq_th_hi + FW_PREFETCH_CNT > 11807 RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) { 11808 BLOGW(sc, "rcq ring threshold limit\n"); 11809 } 11810 11811 pause->pri_map = 1; 11812 } 11813 11814 /* rxq setup */ 11815 rxq_init->dscr_map = fp->rx_dma.paddr; 11816 rxq_init->sge_map = fp->rx_sge_dma.paddr; 11817 rxq_init->rcq_map = fp->rcq_dma.paddr; 11818 rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE); 11819 11820 /* 11821 * This should be a maximum number of data bytes that may be 11822 * placed on the BD (not including paddings). 11823 */ 11824 rxq_init->buf_sz = (fp->rx_buf_size - 11825 IP_HEADER_ALIGNMENT_PADDING); 11826 11827 rxq_init->cl_qzone_id = fp->cl_qzone_id; 11828 rxq_init->tpa_agg_sz = tpa_agg_size; 11829 rxq_init->sge_buf_sz = sge_sz; 11830 rxq_init->max_sges_pkt = max_sge; 11831 rxq_init->rss_engine_id = SC_FUNC(sc); 11832 rxq_init->mcast_engine_id = SC_FUNC(sc); 11833 11834 /* 11835 * Maximum number or simultaneous TPA aggregation for this Queue. 11836 * For PF Clients it should be the maximum available number. 11837 * VF driver(s) may want to define it to a smaller value. 11838 */ 11839 rxq_init->max_tpa_queues = MAX_AGG_QS(sc); 11840 11841 rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT; 11842 rxq_init->fw_sb_id = fp->fw_sb_id; 11843 11844 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11845 11846 /* 11847 * configure silent vlan removal 11848 * if multi function mode is afex, then mask default vlan 11849 */ 11850 if (IS_MF_AFEX(sc)) { 11851 rxq_init->silent_removal_value = 11852 sc->devinfo.mf_info.afex_def_vlan_tag; 11853 rxq_init->silent_removal_mask = EVL_VLID_MASK; 11854 } 11855 } 11856 11857 static void 11858 bxe_pf_tx_q_prep(struct bxe_softc *sc, 11859 struct bxe_fastpath *fp, 11860 struct ecore_txq_setup_params *txq_init, 11861 uint8_t cos) 11862 { 11863 /* 11864 * XXX If multiple CoS is ever supported then each fastpath structure 11865 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 11866 * fp->txdata[cos]->tx_dma.paddr; 11867 */ 11868 txq_init->dscr_map = fp->tx_dma.paddr; 11869 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 11870 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 11871 txq_init->fw_sb_id = fp->fw_sb_id; 11872 11873 /* 11874 * set the TSS leading client id for TX classfication to the 11875 * leading RSS client id 11876 */ 11877 txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id); 11878 } 11879 11880 /* 11881 * This function performs 2 steps in a queue state machine: 11882 * 1) RESET->INIT 11883 * 2) INIT->SETUP 11884 */ 11885 static int 11886 bxe_setup_queue(struct bxe_softc *sc, 11887 struct bxe_fastpath *fp, 11888 uint8_t leading) 11889 { 11890 struct ecore_queue_state_params q_params = { NULL }; 11891 struct ecore_queue_setup_params *setup_params = 11892 &q_params.params.setup; 11893 #if 0 11894 struct ecore_queue_setup_tx_only_params *tx_only_params = 11895 &q_params.params.tx_only; 11896 uint8_t tx_index; 11897 #endif 11898 int rc; 11899 11900 BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index); 11901 11902 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 11903 11904 q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 11905 11906 /* we want to wait for completion in this context */ 11907 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 11908 11909 /* prepare the INIT parameters */ 11910 bxe_pf_q_prep_init(sc, fp, &q_params.params.init); 11911 11912 /* Set the command */ 11913 q_params.cmd = ECORE_Q_CMD_INIT; 11914 11915 /* Change the state to INIT */ 11916 rc = ecore_queue_state_change(sc, &q_params); 11917 if (rc) { 11918 BLOGE(sc, "Queue(%d) INIT failed\n", fp->index); 11919 return (rc); 11920 } 11921 11922 BLOGD(sc, DBG_LOAD, "init complete\n"); 11923 11924 /* now move the Queue to the SETUP state */ 11925 memset(setup_params, 0, sizeof(*setup_params)); 11926 11927 /* set Queue flags */ 11928 setup_params->flags = bxe_get_q_flags(sc, fp, leading); 11929 11930 /* set general SETUP parameters */ 11931 bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params, 11932 FIRST_TX_COS_INDEX); 11933 11934 bxe_pf_rx_q_prep(sc, fp, 11935 &setup_params->pause_params, 11936 &setup_params->rxq_params); 11937 11938 bxe_pf_tx_q_prep(sc, fp, 11939 &setup_params->txq_params, 11940 FIRST_TX_COS_INDEX); 11941 11942 /* Set the command */ 11943 q_params.cmd = ECORE_Q_CMD_SETUP; 11944 11945 /* change the state to SETUP */ 11946 rc = ecore_queue_state_change(sc, &q_params); 11947 if (rc) { 11948 BLOGE(sc, "Queue(%d) SETUP failed\n", fp->index); 11949 return (rc); 11950 } 11951 11952 #if 0 11953 /* loop through the relevant tx-only indices */ 11954 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 11955 tx_index < sc->max_cos; 11956 tx_index++) { 11957 /* prepare and send tx-only ramrod*/ 11958 rc = bxe_setup_tx_only(sc, fp, &q_params, 11959 tx_only_params, tx_index, leading); 11960 if (rc) { 11961 BLOGE(sc, "Queue(%d.%d) TX_ONLY_SETUP failed\n", 11962 fp->index, tx_index); 11963 return (rc); 11964 } 11965 } 11966 #endif 11967 11968 return (rc); 11969 } 11970 11971 static int 11972 bxe_setup_leading(struct bxe_softc *sc) 11973 { 11974 return (bxe_setup_queue(sc, &sc->fp[0], TRUE)); 11975 } 11976 11977 static int 11978 bxe_config_rss_pf(struct bxe_softc *sc, 11979 struct ecore_rss_config_obj *rss_obj, 11980 uint8_t config_hash) 11981 { 11982 struct ecore_config_rss_params params = { NULL }; 11983 int i; 11984 11985 /* 11986 * Although RSS is meaningless when there is a single HW queue we 11987 * still need it enabled in order to have HW Rx hash generated. 11988 */ 11989 11990 params.rss_obj = rss_obj; 11991 11992 bxe_set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 11993 11994 bxe_set_bit(ECORE_RSS_MODE_REGULAR, ¶ms.rss_flags); 11995 11996 /* RSS configuration */ 11997 bxe_set_bit(ECORE_RSS_IPV4, ¶ms.rss_flags); 11998 bxe_set_bit(ECORE_RSS_IPV4_TCP, ¶ms.rss_flags); 11999 bxe_set_bit(ECORE_RSS_IPV6, ¶ms.rss_flags); 12000 bxe_set_bit(ECORE_RSS_IPV6_TCP, ¶ms.rss_flags); 12001 if (rss_obj->udp_rss_v4) { 12002 bxe_set_bit(ECORE_RSS_IPV4_UDP, ¶ms.rss_flags); 12003 } 12004 if (rss_obj->udp_rss_v6) { 12005 bxe_set_bit(ECORE_RSS_IPV6_UDP, ¶ms.rss_flags); 12006 } 12007 12008 /* Hash bits */ 12009 params.rss_result_mask = MULTI_MASK; 12010 12011 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 12012 12013 if (config_hash) { 12014 /* RSS keys */ 12015 for (i = 0; i < sizeof(params.rss_key) / 4; i++) { 12016 params.rss_key[i] = arc4random(); 12017 } 12018 12019 bxe_set_bit(ECORE_RSS_SET_SRCH, ¶ms.rss_flags); 12020 } 12021 12022 return (ecore_config_rss(sc, ¶ms)); 12023 } 12024 12025 static int 12026 bxe_config_rss_eth(struct bxe_softc *sc, 12027 uint8_t config_hash) 12028 { 12029 return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash)); 12030 } 12031 12032 static int 12033 bxe_init_rss_pf(struct bxe_softc *sc) 12034 { 12035 uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc); 12036 int i; 12037 12038 /* 12039 * Prepare the initial contents of the indirection table if 12040 * RSS is enabled 12041 */ 12042 for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) { 12043 sc->rss_conf_obj.ind_table[i] = 12044 (sc->fp->cl_id + (i % num_eth_queues)); 12045 } 12046 12047 if (sc->udp_rss) { 12048 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1; 12049 } 12050 12051 /* 12052 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 12053 * per-port, so if explicit configuration is needed, do it only 12054 * for a PMF. 12055 * 12056 * For 57712 and newer it's a per-function configuration. 12057 */ 12058 return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc))); 12059 } 12060 12061 static int 12062 bxe_set_mac_one(struct bxe_softc *sc, 12063 uint8_t *mac, 12064 struct ecore_vlan_mac_obj *obj, 12065 uint8_t set, 12066 int mac_type, 12067 unsigned long *ramrod_flags) 12068 { 12069 struct ecore_vlan_mac_ramrod_params ramrod_param; 12070 int rc; 12071 12072 memset(&ramrod_param, 0, sizeof(ramrod_param)); 12073 12074 /* fill in general parameters */ 12075 ramrod_param.vlan_mac_obj = obj; 12076 ramrod_param.ramrod_flags = *ramrod_flags; 12077 12078 /* fill a user request section if needed */ 12079 if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) { 12080 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 12081 12082 bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 12083 12084 /* Set the command: ADD or DEL */ 12085 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD : 12086 ECORE_VLAN_MAC_DEL; 12087 } 12088 12089 rc = ecore_config_vlan_mac(sc, &ramrod_param); 12090 12091 if (rc == ECORE_EXISTS) { 12092 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12093 /* do not treat adding same MAC as error */ 12094 rc = 0; 12095 } else if (rc < 0) { 12096 BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc); 12097 } 12098 12099 return (rc); 12100 } 12101 12102 static int 12103 bxe_set_eth_mac(struct bxe_softc *sc, 12104 uint8_t set) 12105 { 12106 unsigned long ramrod_flags = 0; 12107 12108 BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n"); 12109 12110 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 12111 12112 /* Eth MAC is set on RSS leading client (fp[0]) */ 12113 return (bxe_set_mac_one(sc, sc->link_params.mac_addr, 12114 &sc->sp_objs->mac_obj, 12115 set, ECORE_ETH_MAC, &ramrod_flags)); 12116 } 12117 12118 #if 0 12119 static void 12120 bxe_update_max_mf_config(struct bxe_softc *sc, 12121 uint32_t value) 12122 { 12123 /* load old values */ 12124 uint32_t mf_cfg = sc->devinfo.mf_info.mf_config[SC_VN(sc)]; 12125 12126 if (value != bxe_extract_max_cfg(sc, mf_cfg)) { 12127 /* leave all but MAX value */ 12128 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK; 12129 12130 /* set new MAX value */ 12131 mf_cfg |= ((value << FUNC_MF_CFG_MAX_BW_SHIFT) & 12132 FUNC_MF_CFG_MAX_BW_MASK); 12133 12134 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW, mf_cfg); 12135 } 12136 } 12137 #endif 12138 12139 static int 12140 bxe_get_cur_phy_idx(struct bxe_softc *sc) 12141 { 12142 uint32_t sel_phy_idx = 0; 12143 12144 if (sc->link_params.num_phys <= 1) { 12145 return (ELINK_INT_PHY); 12146 } 12147 12148 if (sc->link_vars.link_up) { 12149 sel_phy_idx = ELINK_EXT_PHY1; 12150 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */ 12151 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 12152 (sc->link_params.phy[ELINK_EXT_PHY2].supported & 12153 ELINK_SUPPORTED_FIBRE)) 12154 sel_phy_idx = ELINK_EXT_PHY2; 12155 } else { 12156 switch (elink_phy_selection(&sc->link_params)) { 12157 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 12158 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 12159 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 12160 sel_phy_idx = ELINK_EXT_PHY1; 12161 break; 12162 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 12163 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 12164 sel_phy_idx = ELINK_EXT_PHY2; 12165 break; 12166 } 12167 } 12168 12169 return (sel_phy_idx); 12170 } 12171 12172 static int 12173 bxe_get_link_cfg_idx(struct bxe_softc *sc) 12174 { 12175 uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc); 12176 12177 /* 12178 * The selected activated PHY is always after swapping (in case PHY 12179 * swapping is enabled). So when swapping is enabled, we need to reverse 12180 * the configuration 12181 */ 12182 12183 if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 12184 if (sel_phy_idx == ELINK_EXT_PHY1) 12185 sel_phy_idx = ELINK_EXT_PHY2; 12186 else if (sel_phy_idx == ELINK_EXT_PHY2) 12187 sel_phy_idx = ELINK_EXT_PHY1; 12188 } 12189 12190 return (ELINK_LINK_CONFIG_IDX(sel_phy_idx)); 12191 } 12192 12193 static void 12194 bxe_set_requested_fc(struct bxe_softc *sc) 12195 { 12196 /* 12197 * Initialize link parameters structure variables 12198 * It is recommended to turn off RX FC for jumbo frames 12199 * for better performance 12200 */ 12201 if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) { 12202 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX; 12203 } else { 12204 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH; 12205 } 12206 } 12207 12208 static void 12209 bxe_calc_fc_adv(struct bxe_softc *sc) 12210 { 12211 uint8_t cfg_idx = bxe_get_link_cfg_idx(sc); 12212 switch (sc->link_vars.ieee_fc & 12213 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 12214 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE: 12215 default: 12216 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 12217 ADVERTISED_Pause); 12218 break; 12219 12220 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 12221 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 12222 ADVERTISED_Pause); 12223 break; 12224 12225 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 12226 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 12227 break; 12228 } 12229 } 12230 12231 static uint16_t 12232 bxe_get_mf_speed(struct bxe_softc *sc) 12233 { 12234 uint16_t line_speed = sc->link_vars.line_speed; 12235 if (IS_MF(sc)) { 12236 uint16_t maxCfg = 12237 bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]); 12238 12239 /* calculate the current MAX line speed limit for the MF devices */ 12240 if (IS_MF_SI(sc)) { 12241 line_speed = (line_speed * maxCfg) / 100; 12242 } else { /* SD mode */ 12243 uint16_t vn_max_rate = maxCfg * 100; 12244 12245 if (vn_max_rate < line_speed) { 12246 line_speed = vn_max_rate; 12247 } 12248 } 12249 } 12250 12251 return (line_speed); 12252 } 12253 12254 static void 12255 bxe_fill_report_data(struct bxe_softc *sc, 12256 struct bxe_link_report_data *data) 12257 { 12258 uint16_t line_speed = bxe_get_mf_speed(sc); 12259 12260 memset(data, 0, sizeof(*data)); 12261 12262 /* fill the report data with the effective line speed */ 12263 data->line_speed = line_speed; 12264 12265 /* Link is down */ 12266 if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) { 12267 bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags); 12268 } 12269 12270 /* Full DUPLEX */ 12271 if (sc->link_vars.duplex == DUPLEX_FULL) { 12272 bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags); 12273 } 12274 12275 /* Rx Flow Control is ON */ 12276 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) { 12277 bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags); 12278 } 12279 12280 /* Tx Flow Control is ON */ 12281 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 12282 bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags); 12283 } 12284 } 12285 12286 /* report link status to OS, should be called under phy_lock */ 12287 static void 12288 bxe_link_report_locked(struct bxe_softc *sc) 12289 { 12290 struct bxe_link_report_data cur_data; 12291 12292 /* reread mf_cfg */ 12293 if (IS_PF(sc) && !CHIP_IS_E1(sc)) { 12294 bxe_read_mf_cfg(sc); 12295 } 12296 12297 /* Read the current link report info */ 12298 bxe_fill_report_data(sc, &cur_data); 12299 12300 /* Don't report link down or exactly the same link status twice */ 12301 if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) || 12302 (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 12303 &sc->last_reported_link.link_report_flags) && 12304 bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 12305 &cur_data.link_report_flags))) { 12306 return; 12307 } 12308 12309 sc->link_cnt++; 12310 12311 /* report new link params and remember the state for the next time */ 12312 memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data)); 12313 12314 if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 12315 &cur_data.link_report_flags)) { 12316 if_link_state_change(sc->ifp, LINK_STATE_DOWN); 12317 BLOGI(sc, "NIC Link is Down\n"); 12318 } else { 12319 const char *duplex; 12320 const char *flow; 12321 12322 if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX, 12323 &cur_data.link_report_flags)) { 12324 duplex = "full"; 12325 } else { 12326 duplex = "half"; 12327 } 12328 12329 /* 12330 * Handle the FC at the end so that only these flags would be 12331 * possibly set. This way we may easily check if there is no FC 12332 * enabled. 12333 */ 12334 if (cur_data.link_report_flags) { 12335 if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 12336 &cur_data.link_report_flags) && 12337 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 12338 &cur_data.link_report_flags)) { 12339 flow = "ON - receive & transmit"; 12340 } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 12341 &cur_data.link_report_flags) && 12342 !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 12343 &cur_data.link_report_flags)) { 12344 flow = "ON - receive"; 12345 } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 12346 &cur_data.link_report_flags) && 12347 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 12348 &cur_data.link_report_flags)) { 12349 flow = "ON - transmit"; 12350 } else { 12351 flow = "none"; /* possible? */ 12352 } 12353 } else { 12354 flow = "none"; 12355 } 12356 12357 if_link_state_change(sc->ifp, LINK_STATE_UP); 12358 BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 12359 cur_data.line_speed, duplex, flow); 12360 } 12361 } 12362 12363 static void 12364 bxe_link_report(struct bxe_softc *sc) 12365 { 12366 BXE_PHY_LOCK(sc); 12367 bxe_link_report_locked(sc); 12368 BXE_PHY_UNLOCK(sc); 12369 } 12370 12371 static void 12372 bxe_link_status_update(struct bxe_softc *sc) 12373 { 12374 if (sc->state != BXE_STATE_OPEN) { 12375 return; 12376 } 12377 12378 #if 0 12379 /* read updated dcb configuration */ 12380 if (IS_PF(sc)) 12381 bxe_dcbx_pmf_update(sc); 12382 #endif 12383 12384 if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) { 12385 elink_link_status_update(&sc->link_params, &sc->link_vars); 12386 } else { 12387 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half | 12388 ELINK_SUPPORTED_10baseT_Full | 12389 ELINK_SUPPORTED_100baseT_Half | 12390 ELINK_SUPPORTED_100baseT_Full | 12391 ELINK_SUPPORTED_1000baseT_Full | 12392 ELINK_SUPPORTED_2500baseX_Full | 12393 ELINK_SUPPORTED_10000baseT_Full | 12394 ELINK_SUPPORTED_TP | 12395 ELINK_SUPPORTED_FIBRE | 12396 ELINK_SUPPORTED_Autoneg | 12397 ELINK_SUPPORTED_Pause | 12398 ELINK_SUPPORTED_Asym_Pause); 12399 sc->port.advertising[0] = sc->port.supported[0]; 12400 12401 sc->link_params.sc = sc; 12402 sc->link_params.port = SC_PORT(sc); 12403 sc->link_params.req_duplex[0] = DUPLEX_FULL; 12404 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE; 12405 sc->link_params.req_line_speed[0] = SPEED_10000; 12406 sc->link_params.speed_cap_mask[0] = 0x7f0000; 12407 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G; 12408 12409 if (CHIP_REV_IS_FPGA(sc)) { 12410 sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC; 12411 sc->link_vars.line_speed = ELINK_SPEED_1000; 12412 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 12413 LINK_STATUS_SPEED_AND_DUPLEX_1000TFD); 12414 } else { 12415 sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC; 12416 sc->link_vars.line_speed = ELINK_SPEED_10000; 12417 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 12418 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 12419 } 12420 12421 sc->link_vars.link_up = 1; 12422 12423 sc->link_vars.duplex = DUPLEX_FULL; 12424 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE; 12425 12426 if (IS_PF(sc)) { 12427 REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0); 12428 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12429 bxe_link_report(sc); 12430 } 12431 } 12432 12433 if (IS_PF(sc)) { 12434 if (sc->link_vars.link_up) { 12435 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12436 } else { 12437 bxe_stats_handle(sc, STATS_EVENT_STOP); 12438 } 12439 bxe_link_report(sc); 12440 } else { 12441 bxe_link_report(sc); 12442 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12443 } 12444 } 12445 12446 static int 12447 bxe_initial_phy_init(struct bxe_softc *sc, 12448 int load_mode) 12449 { 12450 int rc, cfg_idx = bxe_get_link_cfg_idx(sc); 12451 uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx]; 12452 struct elink_params *lp = &sc->link_params; 12453 12454 bxe_set_requested_fc(sc); 12455 12456 if (CHIP_REV_IS_SLOW(sc)) { 12457 uint32_t bond = CHIP_BOND_ID(sc); 12458 uint32_t feat = 0; 12459 12460 if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) { 12461 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 12462 } else if (bond & 0x4) { 12463 if (CHIP_IS_E3(sc)) { 12464 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC; 12465 } else { 12466 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 12467 } 12468 } else if (bond & 0x8) { 12469 if (CHIP_IS_E3(sc)) { 12470 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC; 12471 } else { 12472 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 12473 } 12474 } 12475 12476 /* disable EMAC for E3 and above */ 12477 if (bond & 0x2) { 12478 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 12479 } 12480 12481 sc->link_params.feature_config_flags |= feat; 12482 } 12483 12484 BXE_PHY_LOCK(sc); 12485 12486 if (load_mode == LOAD_DIAG) { 12487 lp->loopback_mode = ELINK_LOOPBACK_XGXS; 12488 /* Prefer doing PHY loopback at 10G speed, if possible */ 12489 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) { 12490 if (lp->speed_cap_mask[cfg_idx] & 12491 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 12492 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000; 12493 } else { 12494 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000; 12495 } 12496 } 12497 } 12498 12499 if (load_mode == LOAD_LOOPBACK_EXT) { 12500 lp->loopback_mode = ELINK_LOOPBACK_EXT; 12501 } 12502 12503 rc = elink_phy_init(&sc->link_params, &sc->link_vars); 12504 12505 BXE_PHY_UNLOCK(sc); 12506 12507 bxe_calc_fc_adv(sc); 12508 12509 if (sc->link_vars.link_up) { 12510 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12511 bxe_link_report(sc); 12512 } 12513 12514 if (!CHIP_REV_IS_SLOW(sc)) { 12515 bxe_periodic_start(sc); 12516 } 12517 12518 sc->link_params.req_line_speed[cfg_idx] = req_line_speed; 12519 return (rc); 12520 } 12521 12522 /* must be called under IF_ADDR_LOCK */ 12523 static int 12524 bxe_init_mcast_macs_list(struct bxe_softc *sc, 12525 struct ecore_mcast_ramrod_params *p) 12526 { 12527 if_t ifp = sc->ifp; 12528 int mc_count = 0; 12529 int mcnt, i; 12530 struct ecore_mcast_list_elem *mc_mac; 12531 unsigned char *mta; 12532 12533 mc_count = if_multiaddr_count(ifp, -1);/* XXX they don't have a limit */ 12534 /* should we enforce one? */ 12535 ECORE_LIST_INIT(&p->mcast_list); 12536 p->mcast_list_len = 0; 12537 12538 if (!mc_count) { 12539 return (0); 12540 } 12541 12542 mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN * 12543 mc_count, M_DEVBUF, M_NOWAIT); 12544 12545 if(mta == NULL) { 12546 BLOGE(sc, "Failed to allocate temp mcast list\n"); 12547 return (-1); 12548 } 12549 12550 mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, 12551 (M_NOWAIT | M_ZERO)); 12552 if (!mc_mac) { 12553 free(mta, M_DEVBUF); 12554 BLOGE(sc, "Failed to allocate temp mcast list\n"); 12555 return (-1); 12556 } 12557 12558 if_multiaddr_array(ifp, mta, &mcnt, mc_count); /* mta and mcnt not expected 12559 to be different */ 12560 for(i=0; i< mcnt; i++) { 12561 12562 bcopy((mta + (i * ETHER_ADDR_LEN)), mc_mac->mac, ETHER_ADDR_LEN); 12563 ECORE_LIST_PUSH_TAIL(&mc_mac->link, &p->mcast_list); 12564 12565 BLOGD(sc, DBG_LOAD, 12566 "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n", 12567 mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2], 12568 mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]); 12569 12570 mc_mac++; 12571 } 12572 12573 p->mcast_list_len = mc_count; 12574 free(mta, M_DEVBUF); 12575 12576 return (0); 12577 } 12578 12579 static void 12580 bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p) 12581 { 12582 struct ecore_mcast_list_elem *mc_mac = 12583 ECORE_LIST_FIRST_ENTRY(&p->mcast_list, 12584 struct ecore_mcast_list_elem, 12585 link); 12586 12587 if (mc_mac) { 12588 /* only a single free as all mc_macs are in the same heap array */ 12589 free(mc_mac, M_DEVBUF); 12590 } 12591 } 12592 12593 static int 12594 bxe_set_mc_list(struct bxe_softc *sc) 12595 { 12596 struct ecore_mcast_ramrod_params rparam = { NULL }; 12597 int rc = 0; 12598 12599 rparam.mcast_obj = &sc->mcast_obj; 12600 12601 BXE_MCAST_LOCK(sc); 12602 12603 /* first, clear all configured multicast MACs */ 12604 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 12605 if (rc < 0) { 12606 BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc); 12607 return (rc); 12608 } 12609 12610 /* configure a new MACs list */ 12611 rc = bxe_init_mcast_macs_list(sc, &rparam); 12612 if (rc) { 12613 BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc); 12614 BXE_MCAST_UNLOCK(sc); 12615 return (rc); 12616 } 12617 12618 /* Now add the new MACs */ 12619 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD); 12620 if (rc < 0) { 12621 BLOGE(sc, "Failed to set new mcast config (%d)\n", rc); 12622 } 12623 12624 bxe_free_mcast_macs_list(&rparam); 12625 12626 BXE_MCAST_UNLOCK(sc); 12627 12628 return (rc); 12629 } 12630 12631 static int 12632 bxe_set_uc_list(struct bxe_softc *sc) 12633 { 12634 if_t ifp = sc->ifp; 12635 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 12636 struct ifaddr *ifa; 12637 unsigned long ramrod_flags = 0; 12638 int rc; 12639 12640 #if __FreeBSD_version < 800000 12641 IF_ADDR_LOCK(ifp); 12642 #else 12643 if_addr_rlock(ifp); 12644 #endif 12645 12646 /* first schedule a cleanup up of old configuration */ 12647 rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE); 12648 if (rc < 0) { 12649 BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc); 12650 #if __FreeBSD_version < 800000 12651 IF_ADDR_UNLOCK(ifp); 12652 #else 12653 if_addr_runlock(ifp); 12654 #endif 12655 return (rc); 12656 } 12657 12658 ifa = if_getifaddr(ifp); /* XXX Is this structure */ 12659 while (ifa) { 12660 if (ifa->ifa_addr->sa_family != AF_LINK) { 12661 ifa = TAILQ_NEXT(ifa, ifa_link); 12662 continue; 12663 } 12664 12665 rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr), 12666 mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags); 12667 if (rc == -EEXIST) { 12668 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12669 /* do not treat adding same MAC as an error */ 12670 rc = 0; 12671 } else if (rc < 0) { 12672 BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc); 12673 #if __FreeBSD_version < 800000 12674 IF_ADDR_UNLOCK(ifp); 12675 #else 12676 if_addr_runlock(ifp); 12677 #endif 12678 return (rc); 12679 } 12680 12681 ifa = TAILQ_NEXT(ifa, ifa_link); 12682 } 12683 12684 #if __FreeBSD_version < 800000 12685 IF_ADDR_UNLOCK(ifp); 12686 #else 12687 if_addr_runlock(ifp); 12688 #endif 12689 12690 /* Execute the pending commands */ 12691 bit_set(&ramrod_flags, RAMROD_CONT); 12692 return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */, 12693 ECORE_UC_LIST_MAC, &ramrod_flags)); 12694 } 12695 12696 static void 12697 bxe_handle_rx_mode_tq(void *context, 12698 int pending) 12699 { 12700 struct bxe_softc *sc = (struct bxe_softc *)context; 12701 if_t ifp = sc->ifp; 12702 uint32_t rx_mode = BXE_RX_MODE_NORMAL; 12703 12704 BXE_CORE_LOCK(sc); 12705 12706 if (sc->state != BXE_STATE_OPEN) { 12707 BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state); 12708 BXE_CORE_UNLOCK(sc); 12709 return; 12710 } 12711 12712 BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp)); 12713 12714 if (if_getflags(ifp) & IFF_PROMISC) { 12715 rx_mode = BXE_RX_MODE_PROMISC; 12716 } else if ((if_getflags(ifp) & IFF_ALLMULTI) || 12717 ((if_getamcount(ifp) > BXE_MAX_MULTICAST) && 12718 CHIP_IS_E1(sc))) { 12719 rx_mode = BXE_RX_MODE_ALLMULTI; 12720 } else { 12721 if (IS_PF(sc)) { 12722 /* some multicasts */ 12723 if (bxe_set_mc_list(sc) < 0) { 12724 rx_mode = BXE_RX_MODE_ALLMULTI; 12725 } 12726 if (bxe_set_uc_list(sc) < 0) { 12727 rx_mode = BXE_RX_MODE_PROMISC; 12728 } 12729 } 12730 #if 0 12731 else { 12732 /* 12733 * Configuring mcast to a VF involves sleeping (when we 12734 * wait for the PF's response). Since this function is 12735 * called from a non sleepable context we must schedule 12736 * a work item for this purpose 12737 */ 12738 bxe_set_bit(BXE_SP_RTNL_VFPF_MCAST, &sc->sp_rtnl_state); 12739 schedule_delayed_work(&sc->sp_rtnl_task, 0); 12740 } 12741 #endif 12742 } 12743 12744 sc->rx_mode = rx_mode; 12745 12746 /* schedule the rx_mode command */ 12747 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 12748 BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n"); 12749 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 12750 BXE_CORE_UNLOCK(sc); 12751 return; 12752 } 12753 12754 if (IS_PF(sc)) { 12755 bxe_set_storm_rx_mode(sc); 12756 } 12757 #if 0 12758 else { 12759 /* 12760 * Configuring mcast to a VF involves sleeping (when we 12761 * wait for the PF's response). Since this function is 12762 * called from a non sleepable context we must schedule 12763 * a work item for this purpose 12764 */ 12765 bxe_set_bit(BXE_SP_RTNL_VFPF_STORM_RX_MODE, &sc->sp_rtnl_state); 12766 schedule_delayed_work(&sc->sp_rtnl_task, 0); 12767 } 12768 #endif 12769 12770 BXE_CORE_UNLOCK(sc); 12771 } 12772 12773 static void 12774 bxe_set_rx_mode(struct bxe_softc *sc) 12775 { 12776 taskqueue_enqueue(sc->rx_mode_tq, &sc->rx_mode_tq_task); 12777 } 12778 12779 /* update flags in shmem */ 12780 static void 12781 bxe_update_drv_flags(struct bxe_softc *sc, 12782 uint32_t flags, 12783 uint32_t set) 12784 { 12785 uint32_t drv_flags; 12786 12787 if (SHMEM2_HAS(sc, drv_flags)) { 12788 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12789 drv_flags = SHMEM2_RD(sc, drv_flags); 12790 12791 if (set) { 12792 SET_FLAGS(drv_flags, flags); 12793 } else { 12794 RESET_FLAGS(drv_flags, flags); 12795 } 12796 12797 SHMEM2_WR(sc, drv_flags, drv_flags); 12798 BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags); 12799 12800 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12801 } 12802 } 12803 12804 /* periodic timer callout routine, only runs when the interface is up */ 12805 12806 static void 12807 bxe_periodic_callout_func(void *xsc) 12808 { 12809 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12810 int i; 12811 12812 if (!BXE_CORE_TRYLOCK(sc)) { 12813 /* just bail and try again next time */ 12814 12815 if ((sc->state == BXE_STATE_OPEN) && 12816 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12817 /* schedule the next periodic callout */ 12818 callout_reset(&sc->periodic_callout, hz, 12819 bxe_periodic_callout_func, sc); 12820 } 12821 12822 return; 12823 } 12824 12825 if ((sc->state != BXE_STATE_OPEN) || 12826 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) { 12827 BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state); 12828 BXE_CORE_UNLOCK(sc); 12829 return; 12830 } 12831 12832 /* Check for TX timeouts on any fastpath. */ 12833 FOR_EACH_QUEUE(sc, i) { 12834 if (bxe_watchdog(sc, &sc->fp[i]) != 0) { 12835 /* Ruh-Roh, chip was reset! */ 12836 break; 12837 } 12838 } 12839 12840 if (!CHIP_REV_IS_SLOW(sc)) { 12841 /* 12842 * This barrier is needed to ensure the ordering between the writing 12843 * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and 12844 * the reading here. 12845 */ 12846 mb(); 12847 if (sc->port.pmf) { 12848 BXE_PHY_LOCK(sc); 12849 elink_period_func(&sc->link_params, &sc->link_vars); 12850 BXE_PHY_UNLOCK(sc); 12851 } 12852 } 12853 12854 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 12855 int mb_idx = SC_FW_MB_IDX(sc); 12856 uint32_t drv_pulse; 12857 uint32_t mcp_pulse; 12858 12859 ++sc->fw_drv_pulse_wr_seq; 12860 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 12861 12862 drv_pulse = sc->fw_drv_pulse_wr_seq; 12863 bxe_drv_pulse(sc); 12864 12865 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) & 12866 MCP_PULSE_SEQ_MASK); 12867 12868 /* 12869 * The delta between driver pulse and mcp response should 12870 * be 1 (before mcp response) or 0 (after mcp response). 12871 */ 12872 if ((drv_pulse != mcp_pulse) && 12873 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) { 12874 /* someone lost a heartbeat... */ 12875 BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 12876 drv_pulse, mcp_pulse); 12877 } 12878 } 12879 12880 /* state is BXE_STATE_OPEN */ 12881 bxe_stats_handle(sc, STATS_EVENT_UPDATE); 12882 12883 #if 0 12884 /* sample VF bulletin board for new posts from PF */ 12885 if (IS_VF(sc)) { 12886 bxe_sample_bulletin(sc); 12887 } 12888 #endif 12889 12890 BXE_CORE_UNLOCK(sc); 12891 12892 if ((sc->state == BXE_STATE_OPEN) && 12893 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12894 /* schedule the next periodic callout */ 12895 callout_reset(&sc->periodic_callout, hz, 12896 bxe_periodic_callout_func, sc); 12897 } 12898 } 12899 12900 static void 12901 bxe_periodic_start(struct bxe_softc *sc) 12902 { 12903 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO); 12904 callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc); 12905 } 12906 12907 static void 12908 bxe_periodic_stop(struct bxe_softc *sc) 12909 { 12910 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP); 12911 callout_drain(&sc->periodic_callout); 12912 } 12913 12914 /* start the controller */ 12915 static __noinline int 12916 bxe_nic_load(struct bxe_softc *sc, 12917 int load_mode) 12918 { 12919 uint32_t val; 12920 int load_code = 0; 12921 int i, rc = 0; 12922 12923 BXE_CORE_LOCK_ASSERT(sc); 12924 12925 BLOGD(sc, DBG_LOAD, "Starting NIC load...\n"); 12926 12927 sc->state = BXE_STATE_OPENING_WAITING_LOAD; 12928 12929 if (IS_PF(sc)) { 12930 /* must be called before memory allocation and HW init */ 12931 bxe_ilt_set_info(sc); 12932 } 12933 12934 sc->last_reported_link_state = LINK_STATE_UNKNOWN; 12935 12936 bxe_set_fp_rx_buf_size(sc); 12937 12938 if (bxe_alloc_fp_buffers(sc) != 0) { 12939 BLOGE(sc, "Failed to allocate fastpath memory\n"); 12940 sc->state = BXE_STATE_CLOSED; 12941 rc = ENOMEM; 12942 goto bxe_nic_load_error0; 12943 } 12944 12945 if (bxe_alloc_mem(sc) != 0) { 12946 sc->state = BXE_STATE_CLOSED; 12947 rc = ENOMEM; 12948 goto bxe_nic_load_error0; 12949 } 12950 12951 if (bxe_alloc_fw_stats_mem(sc) != 0) { 12952 sc->state = BXE_STATE_CLOSED; 12953 rc = ENOMEM; 12954 goto bxe_nic_load_error0; 12955 } 12956 12957 if (IS_PF(sc)) { 12958 /* set pf load just before approaching the MCP */ 12959 bxe_set_pf_load(sc); 12960 12961 /* if MCP exists send load request and analyze response */ 12962 if (!BXE_NOMCP(sc)) { 12963 /* attempt to load pf */ 12964 if (bxe_nic_load_request(sc, &load_code) != 0) { 12965 sc->state = BXE_STATE_CLOSED; 12966 rc = ENXIO; 12967 goto bxe_nic_load_error1; 12968 } 12969 12970 /* what did the MCP say? */ 12971 if (bxe_nic_load_analyze_req(sc, load_code) != 0) { 12972 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12973 sc->state = BXE_STATE_CLOSED; 12974 rc = ENXIO; 12975 goto bxe_nic_load_error2; 12976 } 12977 } else { 12978 BLOGI(sc, "Device has no MCP!\n"); 12979 load_code = bxe_nic_load_no_mcp(sc); 12980 } 12981 12982 /* mark PMF if applicable */ 12983 bxe_nic_load_pmf(sc, load_code); 12984 12985 /* Init Function state controlling object */ 12986 bxe_init_func_obj(sc); 12987 12988 /* Initialize HW */ 12989 if (bxe_init_hw(sc, load_code) != 0) { 12990 BLOGE(sc, "HW init failed\n"); 12991 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12992 sc->state = BXE_STATE_CLOSED; 12993 rc = ENXIO; 12994 goto bxe_nic_load_error2; 12995 } 12996 } 12997 12998 /* attach interrupts */ 12999 if (bxe_interrupt_attach(sc) != 0) { 13000 sc->state = BXE_STATE_CLOSED; 13001 rc = ENXIO; 13002 goto bxe_nic_load_error2; 13003 } 13004 13005 bxe_nic_init(sc, load_code); 13006 13007 /* Init per-function objects */ 13008 if (IS_PF(sc)) { 13009 bxe_init_objs(sc); 13010 // XXX bxe_iov_nic_init(sc); 13011 13012 /* set AFEX default VLAN tag to an invalid value */ 13013 sc->devinfo.mf_info.afex_def_vlan_tag = -1; 13014 // XXX bxe_nic_load_afex_dcc(sc, load_code); 13015 13016 sc->state = BXE_STATE_OPENING_WAITING_PORT; 13017 rc = bxe_func_start(sc); 13018 if (rc) { 13019 BLOGE(sc, "Function start failed!\n"); 13020 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 13021 sc->state = BXE_STATE_ERROR; 13022 goto bxe_nic_load_error3; 13023 } 13024 13025 /* send LOAD_DONE command to MCP */ 13026 if (!BXE_NOMCP(sc)) { 13027 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 13028 if (!load_code) { 13029 BLOGE(sc, "MCP response failure, aborting\n"); 13030 sc->state = BXE_STATE_ERROR; 13031 rc = ENXIO; 13032 goto bxe_nic_load_error3; 13033 } 13034 } 13035 13036 rc = bxe_setup_leading(sc); 13037 if (rc) { 13038 BLOGE(sc, "Setup leading failed!\n"); 13039 sc->state = BXE_STATE_ERROR; 13040 goto bxe_nic_load_error3; 13041 } 13042 13043 FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) { 13044 rc = bxe_setup_queue(sc, &sc->fp[i], FALSE); 13045 if (rc) { 13046 BLOGE(sc, "Queue(%d) setup failed\n", i); 13047 sc->state = BXE_STATE_ERROR; 13048 goto bxe_nic_load_error3; 13049 } 13050 } 13051 13052 rc = bxe_init_rss_pf(sc); 13053 if (rc) { 13054 BLOGE(sc, "PF RSS init failed\n"); 13055 sc->state = BXE_STATE_ERROR; 13056 goto bxe_nic_load_error3; 13057 } 13058 } 13059 /* XXX VF */ 13060 #if 0 13061 else { /* VF */ 13062 FOR_EACH_ETH_QUEUE(sc, i) { 13063 rc = bxe_vfpf_setup_q(sc, i); 13064 if (rc) { 13065 BLOGE(sc, "Queue(%d) setup failed\n", i); 13066 sc->state = BXE_STATE_ERROR; 13067 goto bxe_nic_load_error3; 13068 } 13069 } 13070 } 13071 #endif 13072 13073 /* now when Clients are configured we are ready to work */ 13074 sc->state = BXE_STATE_OPEN; 13075 13076 /* Configure a ucast MAC */ 13077 if (IS_PF(sc)) { 13078 rc = bxe_set_eth_mac(sc, TRUE); 13079 } 13080 #if 0 13081 else { /* IS_VF(sc) */ 13082 rc = bxe_vfpf_set_mac(sc); 13083 } 13084 #endif 13085 if (rc) { 13086 BLOGE(sc, "Setting Ethernet MAC failed\n"); 13087 sc->state = BXE_STATE_ERROR; 13088 goto bxe_nic_load_error3; 13089 } 13090 13091 #if 0 13092 if (IS_PF(sc) && sc->pending_max) { 13093 /* for AFEX */ 13094 bxe_update_max_mf_config(sc, sc->pending_max); 13095 sc->pending_max = 0; 13096 } 13097 #endif 13098 13099 if (sc->port.pmf) { 13100 rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN); 13101 if (rc) { 13102 sc->state = BXE_STATE_ERROR; 13103 goto bxe_nic_load_error3; 13104 } 13105 } 13106 13107 sc->link_params.feature_config_flags &= 13108 ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN; 13109 13110 /* start fast path */ 13111 13112 /* Initialize Rx filter */ 13113 bxe_set_rx_mode(sc); 13114 13115 /* start the Tx */ 13116 switch (/* XXX load_mode */LOAD_OPEN) { 13117 case LOAD_NORMAL: 13118 case LOAD_OPEN: 13119 break; 13120 13121 case LOAD_DIAG: 13122 case LOAD_LOOPBACK_EXT: 13123 sc->state = BXE_STATE_DIAG; 13124 break; 13125 13126 default: 13127 break; 13128 } 13129 13130 if (sc->port.pmf) { 13131 bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0); 13132 } else { 13133 bxe_link_status_update(sc); 13134 } 13135 13136 /* start the periodic timer callout */ 13137 bxe_periodic_start(sc); 13138 13139 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 13140 /* mark driver is loaded in shmem2 */ 13141 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 13142 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 13143 (val | 13144 DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 13145 DRV_FLAGS_CAPABILITIES_LOADED_L2)); 13146 } 13147 13148 /* wait for all pending SP commands to complete */ 13149 if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) { 13150 BLOGE(sc, "Timeout waiting for all SPs to complete!\n"); 13151 bxe_periodic_stop(sc); 13152 bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE); 13153 return (ENXIO); 13154 } 13155 13156 #if 0 13157 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */ 13158 if (sc->port.pmf && (sc->state != BXE_STATE_DIAG)) { 13159 bxe_dcbx_init(sc, FALSE); 13160 } 13161 #endif 13162 13163 /* Tell the stack the driver is running! */ 13164 if_setdrvflags(sc->ifp, IFF_DRV_RUNNING); 13165 13166 BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n"); 13167 13168 return (0); 13169 13170 bxe_nic_load_error3: 13171 13172 if (IS_PF(sc)) { 13173 bxe_int_disable_sync(sc, 1); 13174 13175 /* clean out queued objects */ 13176 bxe_squeeze_objects(sc); 13177 } 13178 13179 bxe_interrupt_detach(sc); 13180 13181 bxe_nic_load_error2: 13182 13183 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 13184 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 13185 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 13186 } 13187 13188 sc->port.pmf = 0; 13189 13190 bxe_nic_load_error1: 13191 13192 /* clear pf_load status, as it was already set */ 13193 if (IS_PF(sc)) { 13194 bxe_clear_pf_load(sc); 13195 } 13196 13197 bxe_nic_load_error0: 13198 13199 bxe_free_fw_stats_mem(sc); 13200 bxe_free_fp_buffers(sc); 13201 bxe_free_mem(sc); 13202 13203 return (rc); 13204 } 13205 13206 static int 13207 bxe_init_locked(struct bxe_softc *sc) 13208 { 13209 int other_engine = SC_PATH(sc) ? 0 : 1; 13210 uint8_t other_load_status, load_status; 13211 uint8_t global = FALSE; 13212 int rc; 13213 13214 BXE_CORE_LOCK_ASSERT(sc); 13215 13216 /* check if the driver is already running */ 13217 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 13218 BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n"); 13219 return (0); 13220 } 13221 13222 bxe_set_power_state(sc, PCI_PM_D0); 13223 13224 /* 13225 * If parity occurred during the unload, then attentions and/or 13226 * RECOVERY_IN_PROGRES may still be set. If so we want the first function 13227 * loaded on the current engine to complete the recovery. Parity recovery 13228 * is only relevant for PF driver. 13229 */ 13230 if (IS_PF(sc)) { 13231 other_load_status = bxe_get_load_status(sc, other_engine); 13232 load_status = bxe_get_load_status(sc, SC_PATH(sc)); 13233 13234 if (!bxe_reset_is_done(sc, SC_PATH(sc)) || 13235 bxe_chk_parity_attn(sc, &global, TRUE)) { 13236 do { 13237 /* 13238 * If there are attentions and they are in global blocks, set 13239 * the GLOBAL_RESET bit regardless whether it will be this 13240 * function that will complete the recovery or not. 13241 */ 13242 if (global) { 13243 bxe_set_reset_global(sc); 13244 } 13245 13246 /* 13247 * Only the first function on the current engine should try 13248 * to recover in open. In case of attentions in global blocks 13249 * only the first in the chip should try to recover. 13250 */ 13251 if ((!load_status && (!global || !other_load_status)) && 13252 bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) { 13253 BLOGI(sc, "Recovered during init\n"); 13254 break; 13255 } 13256 13257 /* recovery has failed... */ 13258 bxe_set_power_state(sc, PCI_PM_D3hot); 13259 sc->recovery_state = BXE_RECOVERY_FAILED; 13260 13261 BLOGE(sc, "Recovery flow hasn't properly " 13262 "completed yet, try again later. " 13263 "If you still see this message after a " 13264 "few retries then power cycle is required.\n"); 13265 13266 rc = ENXIO; 13267 goto bxe_init_locked_done; 13268 } while (0); 13269 } 13270 } 13271 13272 sc->recovery_state = BXE_RECOVERY_DONE; 13273 13274 rc = bxe_nic_load(sc, LOAD_OPEN); 13275 13276 bxe_init_locked_done: 13277 13278 if (rc) { 13279 /* Tell the stack the driver is NOT running! */ 13280 BLOGE(sc, "Initialization failed, " 13281 "stack notified driver is NOT running!\n"); 13282 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 13283 } 13284 13285 return (rc); 13286 } 13287 13288 static int 13289 bxe_stop_locked(struct bxe_softc *sc) 13290 { 13291 BXE_CORE_LOCK_ASSERT(sc); 13292 return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE)); 13293 } 13294 13295 /* 13296 * Handles controller initialization when called from an unlocked routine. 13297 * ifconfig calls this function. 13298 * 13299 * Returns: 13300 * void 13301 */ 13302 static void 13303 bxe_init(void *xsc) 13304 { 13305 struct bxe_softc *sc = (struct bxe_softc *)xsc; 13306 13307 BXE_CORE_LOCK(sc); 13308 bxe_init_locked(sc); 13309 BXE_CORE_UNLOCK(sc); 13310 } 13311 13312 static int 13313 bxe_init_ifnet(struct bxe_softc *sc) 13314 { 13315 if_t ifp; 13316 int capabilities; 13317 13318 /* ifconfig entrypoint for media type/status reporting */ 13319 ifmedia_init(&sc->ifmedia, IFM_IMASK, 13320 bxe_ifmedia_update, 13321 bxe_ifmedia_status); 13322 13323 /* set the default interface values */ 13324 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL); 13325 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL); 13326 ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO)); 13327 13328 sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */ 13329 13330 /* allocate the ifnet structure */ 13331 if ((ifp = if_gethandle(IFT_ETHER)) == NULL) { 13332 BLOGE(sc, "Interface allocation failed!\n"); 13333 return (ENXIO); 13334 } 13335 13336 if_setsoftc(ifp, sc); 13337 if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); 13338 if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST)); 13339 if_setioctlfn(ifp, bxe_ioctl); 13340 if_setstartfn(ifp, bxe_tx_start); 13341 if_setgetcounterfn(ifp, bxe_get_counter); 13342 #if __FreeBSD_version >= 800000 13343 if_settransmitfn(ifp, bxe_tx_mq_start); 13344 if_setqflushfn(ifp, bxe_mq_flush); 13345 #endif 13346 #ifdef FreeBSD8_0 13347 if_settimer(ifp, 0); 13348 #endif 13349 if_setinitfn(ifp, bxe_init); 13350 if_setmtu(ifp, sc->mtu); 13351 if_sethwassist(ifp, (CSUM_IP | 13352 CSUM_TCP | 13353 CSUM_UDP | 13354 CSUM_TSO | 13355 CSUM_TCP_IPV6 | 13356 CSUM_UDP_IPV6)); 13357 13358 capabilities = 13359 #if __FreeBSD_version < 700000 13360 (IFCAP_VLAN_MTU | 13361 IFCAP_VLAN_HWTAGGING | 13362 IFCAP_HWCSUM | 13363 IFCAP_JUMBO_MTU | 13364 IFCAP_LRO); 13365 #else 13366 (IFCAP_VLAN_MTU | 13367 IFCAP_VLAN_HWTAGGING | 13368 IFCAP_VLAN_HWTSO | 13369 IFCAP_VLAN_HWFILTER | 13370 IFCAP_VLAN_HWCSUM | 13371 IFCAP_HWCSUM | 13372 IFCAP_JUMBO_MTU | 13373 IFCAP_LRO | 13374 IFCAP_TSO4 | 13375 IFCAP_TSO6 | 13376 IFCAP_WOL_MAGIC); 13377 #endif 13378 if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */ 13379 if_setbaudrate(ifp, IF_Gbps(10)); 13380 /* XXX */ 13381 if_setsendqlen(ifp, sc->tx_ring_size); 13382 if_setsendqready(ifp); 13383 /* XXX */ 13384 13385 sc->ifp = ifp; 13386 13387 /* attach to the Ethernet interface list */ 13388 ether_ifattach(ifp, sc->link_params.mac_addr); 13389 13390 return (0); 13391 } 13392 13393 static void 13394 bxe_deallocate_bars(struct bxe_softc *sc) 13395 { 13396 int i; 13397 13398 for (i = 0; i < MAX_BARS; i++) { 13399 if (sc->bar[i].resource != NULL) { 13400 bus_release_resource(sc->dev, 13401 SYS_RES_MEMORY, 13402 sc->bar[i].rid, 13403 sc->bar[i].resource); 13404 BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n", 13405 i, PCIR_BAR(i)); 13406 } 13407 } 13408 } 13409 13410 static int 13411 bxe_allocate_bars(struct bxe_softc *sc) 13412 { 13413 u_int flags; 13414 int i; 13415 13416 memset(sc->bar, 0, sizeof(sc->bar)); 13417 13418 for (i = 0; i < MAX_BARS; i++) { 13419 13420 /* memory resources reside at BARs 0, 2, 4 */ 13421 /* Run `pciconf -lb` to see mappings */ 13422 if ((i != 0) && (i != 2) && (i != 4)) { 13423 continue; 13424 } 13425 13426 sc->bar[i].rid = PCIR_BAR(i); 13427 13428 flags = RF_ACTIVE; 13429 if (i == 0) { 13430 flags |= RF_SHAREABLE; 13431 } 13432 13433 if ((sc->bar[i].resource = 13434 bus_alloc_resource_any(sc->dev, 13435 SYS_RES_MEMORY, 13436 &sc->bar[i].rid, 13437 flags)) == NULL) { 13438 #if 0 13439 /* BAR4 doesn't exist for E1 */ 13440 BLOGE(sc, "PCI BAR%d [%02x] memory allocation failed\n", 13441 i, PCIR_BAR(i)); 13442 #endif 13443 return (0); 13444 } 13445 13446 sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource); 13447 sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource); 13448 sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource); 13449 13450 BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%ld) -> %p\n", 13451 i, PCIR_BAR(i), 13452 (void *)rman_get_start(sc->bar[i].resource), 13453 (void *)rman_get_end(sc->bar[i].resource), 13454 rman_get_size(sc->bar[i].resource), 13455 (void *)sc->bar[i].kva); 13456 } 13457 13458 return (0); 13459 } 13460 13461 static void 13462 bxe_get_function_num(struct bxe_softc *sc) 13463 { 13464 uint32_t val = 0; 13465 13466 /* 13467 * Read the ME register to get the function number. The ME register 13468 * holds the relative-function number and absolute-function number. The 13469 * absolute-function number appears only in E2 and above. Before that 13470 * these bits always contained zero, therefore we cannot blindly use them. 13471 */ 13472 13473 val = REG_RD(sc, BAR_ME_REGISTER); 13474 13475 sc->pfunc_rel = 13476 (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT); 13477 sc->path_id = 13478 (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1; 13479 13480 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13481 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id); 13482 } else { 13483 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id); 13484 } 13485 13486 BLOGD(sc, DBG_LOAD, 13487 "Relative function %d, Absolute function %d, Path %d\n", 13488 sc->pfunc_rel, sc->pfunc_abs, sc->path_id); 13489 } 13490 13491 static uint32_t 13492 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc) 13493 { 13494 uint32_t shmem2_size; 13495 uint32_t offset; 13496 uint32_t mf_cfg_offset_value; 13497 13498 /* Non 57712 */ 13499 offset = (SHMEM_RD(sc, func_mb) + 13500 (MAX_FUNC_NUM * sizeof(struct drv_func_mb))); 13501 13502 /* 57712 plus */ 13503 if (sc->devinfo.shmem2_base != 0) { 13504 shmem2_size = SHMEM2_RD(sc, size); 13505 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) { 13506 mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr); 13507 if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) { 13508 offset = mf_cfg_offset_value; 13509 } 13510 } 13511 } 13512 13513 return (offset); 13514 } 13515 13516 static uint32_t 13517 bxe_pcie_capability_read(struct bxe_softc *sc, 13518 int reg, 13519 int width) 13520 { 13521 int pcie_reg; 13522 13523 /* ensure PCIe capability is enabled */ 13524 if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) { 13525 if (pcie_reg != 0) { 13526 BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg); 13527 return (pci_read_config(sc->dev, (pcie_reg + reg), width)); 13528 } 13529 } 13530 13531 BLOGE(sc, "PCIe capability NOT FOUND!!!\n"); 13532 13533 return (0); 13534 } 13535 13536 static uint8_t 13537 bxe_is_pcie_pending(struct bxe_softc *sc) 13538 { 13539 return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) & 13540 PCIM_EXP_STA_TRANSACTION_PND); 13541 } 13542 13543 /* 13544 * Walk the PCI capabiites list for the device to find what features are 13545 * supported. These capabilites may be enabled/disabled by firmware so it's 13546 * best to walk the list rather than make assumptions. 13547 */ 13548 static void 13549 bxe_probe_pci_caps(struct bxe_softc *sc) 13550 { 13551 uint16_t link_status; 13552 int reg; 13553 13554 /* check if PCI Power Management is enabled */ 13555 if (pci_find_cap(sc->dev, PCIY_PMG, ®) == 0) { 13556 if (reg != 0) { 13557 BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg); 13558 13559 sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG; 13560 sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg; 13561 } 13562 } 13563 13564 link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2); 13565 13566 /* handle PCIe 2.0 workarounds for 57710 */ 13567 if (CHIP_IS_E1(sc)) { 13568 /* workaround for 57710 errata E4_57710_27462 */ 13569 sc->devinfo.pcie_link_speed = 13570 (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1; 13571 13572 /* workaround for 57710 errata E4_57710_27488 */ 13573 sc->devinfo.pcie_link_width = 13574 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 13575 if (sc->devinfo.pcie_link_speed > 1) { 13576 sc->devinfo.pcie_link_width = 13577 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1; 13578 } 13579 } else { 13580 sc->devinfo.pcie_link_speed = 13581 (link_status & PCIM_LINK_STA_SPEED); 13582 sc->devinfo.pcie_link_width = 13583 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 13584 } 13585 13586 BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n", 13587 sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width); 13588 13589 sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG; 13590 sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg; 13591 13592 /* check if MSI capability is enabled */ 13593 if (pci_find_cap(sc->dev, PCIY_MSI, ®) == 0) { 13594 if (reg != 0) { 13595 BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg); 13596 13597 sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG; 13598 sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg; 13599 } 13600 } 13601 13602 /* check if MSI-X capability is enabled */ 13603 if (pci_find_cap(sc->dev, PCIY_MSIX, ®) == 0) { 13604 if (reg != 0) { 13605 BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg); 13606 13607 sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG; 13608 sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg; 13609 } 13610 } 13611 } 13612 13613 static int 13614 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc) 13615 { 13616 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13617 uint32_t val; 13618 13619 /* get the outer vlan if we're in switch-dependent mode */ 13620 13621 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13622 mf_info->ext_id = (uint16_t)val; 13623 13624 mf_info->multi_vnics_mode = 1; 13625 13626 if (!VALID_OVLAN(mf_info->ext_id)) { 13627 BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id); 13628 return (1); 13629 } 13630 13631 /* get the capabilities */ 13632 if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13633 FUNC_MF_CFG_PROTOCOL_ISCSI) { 13634 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI; 13635 } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13636 FUNC_MF_CFG_PROTOCOL_FCOE) { 13637 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE; 13638 } else { 13639 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET; 13640 } 13641 13642 mf_info->vnics_per_port = 13643 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13644 13645 return (0); 13646 } 13647 13648 static uint32_t 13649 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc) 13650 { 13651 uint32_t retval = 0; 13652 uint32_t val; 13653 13654 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13655 13656 if (val & MACP_FUNC_CFG_FLAGS_ENABLED) { 13657 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) { 13658 retval |= MF_PROTO_SUPPORT_ETHERNET; 13659 } 13660 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 13661 retval |= MF_PROTO_SUPPORT_ISCSI; 13662 } 13663 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 13664 retval |= MF_PROTO_SUPPORT_FCOE; 13665 } 13666 } 13667 13668 return (retval); 13669 } 13670 13671 static int 13672 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc) 13673 { 13674 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13675 uint32_t val; 13676 13677 /* 13678 * There is no outer vlan if we're in switch-independent mode. 13679 * If the mac is valid then assume multi-function. 13680 */ 13681 13682 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13683 13684 mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0); 13685 13686 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13687 13688 mf_info->vnics_per_port = 13689 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13690 13691 return (0); 13692 } 13693 13694 static int 13695 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc) 13696 { 13697 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13698 uint32_t e1hov_tag; 13699 uint32_t func_config; 13700 uint32_t niv_config; 13701 13702 mf_info->multi_vnics_mode = 1; 13703 13704 e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13705 func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13706 niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config); 13707 13708 mf_info->ext_id = 13709 (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >> 13710 FUNC_MF_CFG_E1HOV_TAG_SHIFT); 13711 13712 mf_info->default_vlan = 13713 (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >> 13714 FUNC_MF_CFG_AFEX_VLAN_SHIFT); 13715 13716 mf_info->niv_allowed_priorities = 13717 (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 13718 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT); 13719 13720 mf_info->niv_default_cos = 13721 (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 13722 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT); 13723 13724 mf_info->afex_vlan_mode = 13725 ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 13726 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT); 13727 13728 mf_info->niv_mba_enabled = 13729 ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >> 13730 FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT); 13731 13732 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13733 13734 mf_info->vnics_per_port = 13735 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13736 13737 return (0); 13738 } 13739 13740 static int 13741 bxe_check_valid_mf_cfg(struct bxe_softc *sc) 13742 { 13743 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13744 uint32_t mf_cfg1; 13745 uint32_t mf_cfg2; 13746 uint32_t ovlan1; 13747 uint32_t ovlan2; 13748 uint8_t i, j; 13749 13750 BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n", 13751 SC_PORT(sc)); 13752 BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n", 13753 mf_info->mf_config[SC_VN(sc)]); 13754 BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n", 13755 mf_info->multi_vnics_mode); 13756 BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n", 13757 mf_info->vnics_per_port); 13758 BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n", 13759 mf_info->ext_id); 13760 BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n", 13761 mf_info->min_bw[0], mf_info->min_bw[1], 13762 mf_info->min_bw[2], mf_info->min_bw[3]); 13763 BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n", 13764 mf_info->max_bw[0], mf_info->max_bw[1], 13765 mf_info->max_bw[2], mf_info->max_bw[3]); 13766 BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n", 13767 sc->mac_addr_str); 13768 13769 /* various MF mode sanity checks... */ 13770 13771 if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) { 13772 BLOGE(sc, "Enumerated function %d is marked as hidden\n", 13773 SC_PORT(sc)); 13774 return (1); 13775 } 13776 13777 if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) { 13778 BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n", 13779 mf_info->vnics_per_port, mf_info->multi_vnics_mode); 13780 return (1); 13781 } 13782 13783 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13784 /* vnic id > 0 must have valid ovlan in switch-dependent mode */ 13785 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) { 13786 BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n", 13787 SC_VN(sc), OVLAN(sc)); 13788 return (1); 13789 } 13790 13791 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) { 13792 BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n", 13793 mf_info->multi_vnics_mode, OVLAN(sc)); 13794 return (1); 13795 } 13796 13797 /* 13798 * Verify all functions are either MF or SF mode. If MF, make sure 13799 * sure that all non-hidden functions have a valid ovlan. If SF, 13800 * make sure that all non-hidden functions have an invalid ovlan. 13801 */ 13802 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13803 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13804 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13805 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13806 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) || 13807 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) { 13808 BLOGE(sc, "mf_mode=SD function %d MF config " 13809 "mismatch, multi_vnics_mode=%d ovlan=%d\n", 13810 i, mf_info->multi_vnics_mode, ovlan1); 13811 return (1); 13812 } 13813 } 13814 13815 /* Verify all funcs on the same port each have a different ovlan. */ 13816 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13817 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13818 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13819 /* iterate from the next function on the port to the max func */ 13820 for (j = i + 2; j < MAX_FUNC_NUM; j += 2) { 13821 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config); 13822 ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag); 13823 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13824 VALID_OVLAN(ovlan1) && 13825 !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) && 13826 VALID_OVLAN(ovlan2) && 13827 (ovlan1 == ovlan2)) { 13828 BLOGE(sc, "mf_mode=SD functions %d and %d " 13829 "have the same ovlan (%d)\n", 13830 i, j, ovlan1); 13831 return (1); 13832 } 13833 } 13834 } 13835 } /* MULTI_FUNCTION_SD */ 13836 13837 return (0); 13838 } 13839 13840 static int 13841 bxe_get_mf_cfg_info(struct bxe_softc *sc) 13842 { 13843 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13844 uint32_t val, mac_upper; 13845 uint8_t i, vnic; 13846 13847 /* initialize mf_info defaults */ 13848 mf_info->vnics_per_port = 1; 13849 mf_info->multi_vnics_mode = FALSE; 13850 mf_info->path_has_ovlan = FALSE; 13851 mf_info->mf_mode = SINGLE_FUNCTION; 13852 13853 if (!CHIP_IS_MF_CAP(sc)) { 13854 return (0); 13855 } 13856 13857 if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) { 13858 BLOGE(sc, "Invalid mf_cfg_base!\n"); 13859 return (1); 13860 } 13861 13862 /* get the MF mode (switch dependent / independent / single-function) */ 13863 13864 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13865 13866 switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) 13867 { 13868 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 13869 13870 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13871 13872 /* check for legal upper mac bytes */ 13873 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) { 13874 mf_info->mf_mode = MULTI_FUNCTION_SI; 13875 } else { 13876 BLOGE(sc, "Invalid config for Switch Independent mode\n"); 13877 } 13878 13879 break; 13880 13881 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 13882 case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4: 13883 13884 /* get outer vlan configuration */ 13885 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13886 13887 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) != 13888 FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 13889 mf_info->mf_mode = MULTI_FUNCTION_SD; 13890 } else { 13891 BLOGE(sc, "Invalid config for Switch Dependent mode\n"); 13892 } 13893 13894 break; 13895 13896 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 13897 13898 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */ 13899 return (0); 13900 13901 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 13902 13903 /* 13904 * Mark MF mode as NIV if MCP version includes NPAR-SD support 13905 * and the MAC address is valid. 13906 */ 13907 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13908 13909 if ((SHMEM2_HAS(sc, afex_driver_support)) && 13910 (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) { 13911 mf_info->mf_mode = MULTI_FUNCTION_AFEX; 13912 } else { 13913 BLOGE(sc, "Invalid config for AFEX mode\n"); 13914 } 13915 13916 break; 13917 13918 default: 13919 13920 BLOGE(sc, "Unknown MF mode (0x%08x)\n", 13921 (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)); 13922 13923 return (1); 13924 } 13925 13926 /* set path mf_mode (which could be different than function mf_mode) */ 13927 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13928 mf_info->path_has_ovlan = TRUE; 13929 } else if (mf_info->mf_mode == SINGLE_FUNCTION) { 13930 /* 13931 * Decide on path multi vnics mode. If we're not in MF mode and in 13932 * 4-port mode, this is good enough to check vnic-0 of the other port 13933 * on the same path 13934 */ 13935 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13936 uint8_t other_port = !(PORT_ID(sc) & 1); 13937 uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port)); 13938 13939 val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag); 13940 13941 mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0; 13942 } 13943 } 13944 13945 if (mf_info->mf_mode == SINGLE_FUNCTION) { 13946 /* invalid MF config */ 13947 if (SC_VN(sc) >= 1) { 13948 BLOGE(sc, "VNIC ID >= 1 in SF mode\n"); 13949 return (1); 13950 } 13951 13952 return (0); 13953 } 13954 13955 /* get the MF configuration */ 13956 mf_info->mf_config[SC_VN(sc)] = 13957 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13958 13959 switch(mf_info->mf_mode) 13960 { 13961 case MULTI_FUNCTION_SD: 13962 13963 bxe_get_shmem_mf_cfg_info_sd(sc); 13964 break; 13965 13966 case MULTI_FUNCTION_SI: 13967 13968 bxe_get_shmem_mf_cfg_info_si(sc); 13969 break; 13970 13971 case MULTI_FUNCTION_AFEX: 13972 13973 bxe_get_shmem_mf_cfg_info_niv(sc); 13974 break; 13975 13976 default: 13977 13978 BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n", 13979 mf_info->mf_mode); 13980 return (1); 13981 } 13982 13983 /* get the congestion management parameters */ 13984 13985 vnic = 0; 13986 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13987 /* get min/max bw */ 13988 val = MFCFG_RD(sc, func_mf_config[i].config); 13989 mf_info->min_bw[vnic] = 13990 ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT); 13991 mf_info->max_bw[vnic] = 13992 ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT); 13993 vnic++; 13994 } 13995 13996 return (bxe_check_valid_mf_cfg(sc)); 13997 } 13998 13999 static int 14000 bxe_get_shmem_info(struct bxe_softc *sc) 14001 { 14002 int port; 14003 uint32_t mac_hi, mac_lo, val; 14004 14005 port = SC_PORT(sc); 14006 mac_hi = mac_lo = 0; 14007 14008 sc->link_params.sc = sc; 14009 sc->link_params.port = port; 14010 14011 /* get the hardware config info */ 14012 sc->devinfo.hw_config = 14013 SHMEM_RD(sc, dev_info.shared_hw_config.config); 14014 sc->devinfo.hw_config2 = 14015 SHMEM_RD(sc, dev_info.shared_hw_config.config2); 14016 14017 sc->link_params.hw_led_mode = 14018 ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >> 14019 SHARED_HW_CFG_LED_MODE_SHIFT); 14020 14021 /* get the port feature config */ 14022 sc->port.config = 14023 SHMEM_RD(sc, dev_info.port_feature_config[port].config), 14024 14025 /* get the link params */ 14026 sc->link_params.speed_cap_mask[0] = 14027 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask); 14028 sc->link_params.speed_cap_mask[1] = 14029 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2); 14030 14031 /* get the lane config */ 14032 sc->link_params.lane_config = 14033 SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config); 14034 14035 /* get the link config */ 14036 val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config); 14037 sc->port.link_config[ELINK_INT_PHY] = val; 14038 sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK); 14039 sc->port.link_config[ELINK_EXT_PHY1] = 14040 SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2); 14041 14042 /* get the override preemphasis flag and enable it or turn it off */ 14043 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 14044 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) { 14045 sc->link_params.feature_config_flags |= 14046 ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 14047 } else { 14048 sc->link_params.feature_config_flags &= 14049 ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 14050 } 14051 14052 /* get the initial value of the link params */ 14053 sc->link_params.multi_phy_config = 14054 SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config); 14055 14056 /* get external phy info */ 14057 sc->port.ext_phy_config = 14058 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 14059 14060 /* get the multifunction configuration */ 14061 bxe_get_mf_cfg_info(sc); 14062 14063 /* get the mac address */ 14064 if (IS_MF(sc)) { 14065 mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 14066 mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower); 14067 } else { 14068 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper); 14069 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower); 14070 } 14071 14072 if ((mac_lo == 0) && (mac_hi == 0)) { 14073 *sc->mac_addr_str = 0; 14074 BLOGE(sc, "No Ethernet address programmed!\n"); 14075 } else { 14076 sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8); 14077 sc->link_params.mac_addr[1] = (uint8_t)(mac_hi); 14078 sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24); 14079 sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16); 14080 sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8); 14081 sc->link_params.mac_addr[5] = (uint8_t)(mac_lo); 14082 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str), 14083 "%02x:%02x:%02x:%02x:%02x:%02x", 14084 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1], 14085 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3], 14086 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]); 14087 BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str); 14088 } 14089 14090 #if 0 14091 if (!IS_MF(sc) && 14092 ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 14093 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE)) { 14094 sc->flags |= BXE_NO_ISCSI; 14095 } 14096 if (!IS_MF(sc) && 14097 ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 14098 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI)) { 14099 sc->flags |= BXE_NO_FCOE_FLAG; 14100 } 14101 #endif 14102 14103 return (0); 14104 } 14105 14106 static void 14107 bxe_get_tunable_params(struct bxe_softc *sc) 14108 { 14109 /* sanity checks */ 14110 14111 if ((bxe_interrupt_mode != INTR_MODE_INTX) && 14112 (bxe_interrupt_mode != INTR_MODE_MSI) && 14113 (bxe_interrupt_mode != INTR_MODE_MSIX)) { 14114 BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode); 14115 bxe_interrupt_mode = INTR_MODE_MSIX; 14116 } 14117 14118 if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) { 14119 BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count); 14120 bxe_queue_count = 0; 14121 } 14122 14123 if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) { 14124 if (bxe_max_rx_bufs == 0) { 14125 bxe_max_rx_bufs = RX_BD_USABLE; 14126 } else { 14127 BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs); 14128 bxe_max_rx_bufs = 2048; 14129 } 14130 } 14131 14132 if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) { 14133 BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks); 14134 bxe_hc_rx_ticks = 25; 14135 } 14136 14137 if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) { 14138 BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks); 14139 bxe_hc_tx_ticks = 50; 14140 } 14141 14142 if (bxe_max_aggregation_size == 0) { 14143 bxe_max_aggregation_size = TPA_AGG_SIZE; 14144 } 14145 14146 if (bxe_max_aggregation_size > 0xffff) { 14147 BLOGW(sc, "invalid max_aggregation_size (%d)\n", 14148 bxe_max_aggregation_size); 14149 bxe_max_aggregation_size = TPA_AGG_SIZE; 14150 } 14151 14152 if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) { 14153 BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs); 14154 bxe_mrrs = -1; 14155 } 14156 14157 if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) { 14158 BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen); 14159 bxe_autogreeen = 0; 14160 } 14161 14162 if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) { 14163 BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss); 14164 bxe_udp_rss = 0; 14165 } 14166 14167 /* pull in user settings */ 14168 14169 sc->interrupt_mode = bxe_interrupt_mode; 14170 sc->max_rx_bufs = bxe_max_rx_bufs; 14171 sc->hc_rx_ticks = bxe_hc_rx_ticks; 14172 sc->hc_tx_ticks = bxe_hc_tx_ticks; 14173 sc->max_aggregation_size = bxe_max_aggregation_size; 14174 sc->mrrs = bxe_mrrs; 14175 sc->autogreeen = bxe_autogreeen; 14176 sc->udp_rss = bxe_udp_rss; 14177 14178 if (bxe_interrupt_mode == INTR_MODE_INTX) { 14179 sc->num_queues = 1; 14180 } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */ 14181 sc->num_queues = 14182 min((bxe_queue_count ? bxe_queue_count : mp_ncpus), 14183 MAX_RSS_CHAINS); 14184 if (sc->num_queues > mp_ncpus) { 14185 sc->num_queues = mp_ncpus; 14186 } 14187 } 14188 14189 BLOGD(sc, DBG_LOAD, 14190 "User Config: " 14191 "debug=0x%lx " 14192 "interrupt_mode=%d " 14193 "queue_count=%d " 14194 "hc_rx_ticks=%d " 14195 "hc_tx_ticks=%d " 14196 "rx_budget=%d " 14197 "max_aggregation_size=%d " 14198 "mrrs=%d " 14199 "autogreeen=%d " 14200 "udp_rss=%d\n", 14201 bxe_debug, 14202 sc->interrupt_mode, 14203 sc->num_queues, 14204 sc->hc_rx_ticks, 14205 sc->hc_tx_ticks, 14206 bxe_rx_budget, 14207 sc->max_aggregation_size, 14208 sc->mrrs, 14209 sc->autogreeen, 14210 sc->udp_rss); 14211 } 14212 14213 static void 14214 bxe_media_detect(struct bxe_softc *sc) 14215 { 14216 uint32_t phy_idx = bxe_get_cur_phy_idx(sc); 14217 switch (sc->link_params.phy[phy_idx].media_type) { 14218 case ELINK_ETH_PHY_SFPP_10G_FIBER: 14219 case ELINK_ETH_PHY_XFP_FIBER: 14220 BLOGI(sc, "Found 10Gb Fiber media.\n"); 14221 sc->media = IFM_10G_SR; 14222 break; 14223 case ELINK_ETH_PHY_SFP_1G_FIBER: 14224 BLOGI(sc, "Found 1Gb Fiber media.\n"); 14225 sc->media = IFM_1000_SX; 14226 break; 14227 case ELINK_ETH_PHY_KR: 14228 case ELINK_ETH_PHY_CX4: 14229 BLOGI(sc, "Found 10GBase-CX4 media.\n"); 14230 sc->media = IFM_10G_CX4; 14231 break; 14232 case ELINK_ETH_PHY_DA_TWINAX: 14233 BLOGI(sc, "Found 10Gb Twinax media.\n"); 14234 sc->media = IFM_10G_TWINAX; 14235 break; 14236 case ELINK_ETH_PHY_BASE_T: 14237 if (sc->link_params.speed_cap_mask[0] & 14238 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 14239 BLOGI(sc, "Found 10GBase-T media.\n"); 14240 sc->media = IFM_10G_T; 14241 } else { 14242 BLOGI(sc, "Found 1000Base-T media.\n"); 14243 sc->media = IFM_1000_T; 14244 } 14245 break; 14246 case ELINK_ETH_PHY_NOT_PRESENT: 14247 BLOGI(sc, "Media not present.\n"); 14248 sc->media = 0; 14249 break; 14250 case ELINK_ETH_PHY_UNSPECIFIED: 14251 default: 14252 BLOGI(sc, "Unknown media!\n"); 14253 sc->media = 0; 14254 break; 14255 } 14256 } 14257 14258 #define GET_FIELD(value, fname) \ 14259 (((value) & (fname##_MASK)) >> (fname##_SHIFT)) 14260 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 14261 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 14262 14263 static int 14264 bxe_get_igu_cam_info(struct bxe_softc *sc) 14265 { 14266 int pfid = SC_FUNC(sc); 14267 int igu_sb_id; 14268 uint32_t val; 14269 uint8_t fid, igu_sb_cnt = 0; 14270 14271 sc->igu_base_sb = 0xff; 14272 14273 if (CHIP_INT_MODE_IS_BC(sc)) { 14274 int vn = SC_VN(sc); 14275 igu_sb_cnt = sc->igu_sb_cnt; 14276 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) * 14277 FP_SB_MAX_E1x); 14278 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x + 14279 (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn)); 14280 return (0); 14281 } 14282 14283 /* IGU in normal mode - read CAM */ 14284 for (igu_sb_id = 0; 14285 igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 14286 igu_sb_id++) { 14287 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 14288 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) { 14289 continue; 14290 } 14291 fid = IGU_FID(val); 14292 if ((fid & IGU_FID_ENCODE_IS_PF)) { 14293 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) { 14294 continue; 14295 } 14296 if (IGU_VEC(val) == 0) { 14297 /* default status block */ 14298 sc->igu_dsb_id = igu_sb_id; 14299 } else { 14300 if (sc->igu_base_sb == 0xff) { 14301 sc->igu_base_sb = igu_sb_id; 14302 } 14303 igu_sb_cnt++; 14304 } 14305 } 14306 } 14307 14308 /* 14309 * Due to new PF resource allocation by MFW T7.4 and above, it's optional 14310 * that number of CAM entries will not be equal to the value advertised in 14311 * PCI. Driver should use the minimal value of both as the actual status 14312 * block count 14313 */ 14314 sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt); 14315 14316 if (igu_sb_cnt == 0) { 14317 BLOGE(sc, "CAM configuration error\n"); 14318 return (-1); 14319 } 14320 14321 return (0); 14322 } 14323 14324 /* 14325 * Gather various information from the device config space, the device itself, 14326 * shmem, and the user input. 14327 */ 14328 static int 14329 bxe_get_device_info(struct bxe_softc *sc) 14330 { 14331 uint32_t val; 14332 int rc; 14333 14334 /* Get the data for the device */ 14335 sc->devinfo.vendor_id = pci_get_vendor(sc->dev); 14336 sc->devinfo.device_id = pci_get_device(sc->dev); 14337 sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev); 14338 sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev); 14339 14340 /* get the chip revision (chip metal comes from pci config space) */ 14341 sc->devinfo.chip_id = 14342 sc->link_params.chip_id = 14343 (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) | 14344 ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) | 14345 (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) | 14346 ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0)); 14347 14348 /* force 57811 according to MISC register */ 14349 if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 14350 if (CHIP_IS_57810(sc)) { 14351 sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) | 14352 (sc->devinfo.chip_id & 0x0000ffff)); 14353 } else if (CHIP_IS_57810_MF(sc)) { 14354 sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) | 14355 (sc->devinfo.chip_id & 0x0000ffff)); 14356 } 14357 sc->devinfo.chip_id |= 0x1; 14358 } 14359 14360 BLOGD(sc, DBG_LOAD, 14361 "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n", 14362 sc->devinfo.chip_id, 14363 ((sc->devinfo.chip_id >> 16) & 0xffff), 14364 ((sc->devinfo.chip_id >> 12) & 0xf), 14365 ((sc->devinfo.chip_id >> 4) & 0xff), 14366 ((sc->devinfo.chip_id >> 0) & 0xf)); 14367 14368 val = (REG_RD(sc, 0x2874) & 0x55); 14369 if ((sc->devinfo.chip_id & 0x1) || 14370 (CHIP_IS_E1(sc) && val) || 14371 (CHIP_IS_E1H(sc) && (val == 0x55))) { 14372 sc->flags |= BXE_ONE_PORT_FLAG; 14373 BLOGD(sc, DBG_LOAD, "single port device\n"); 14374 } 14375 14376 /* set the doorbell size */ 14377 sc->doorbell_size = (1 << BXE_DB_SHIFT); 14378 14379 /* determine whether the device is in 2 port or 4 port mode */ 14380 sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/ 14381 if (CHIP_IS_E2E3(sc)) { 14382 /* 14383 * Read port4mode_en_ovwr[0]: 14384 * If 1, four port mode is in port4mode_en_ovwr[1]. 14385 * If 0, four port mode is in port4mode_en[0]. 14386 */ 14387 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR); 14388 if (val & 1) { 14389 val = ((val >> 1) & 1); 14390 } else { 14391 val = REG_RD(sc, MISC_REG_PORT4MODE_EN); 14392 } 14393 14394 sc->devinfo.chip_port_mode = 14395 (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE; 14396 14397 BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2"); 14398 } 14399 14400 /* get the function and path info for the device */ 14401 bxe_get_function_num(sc); 14402 14403 /* get the shared memory base address */ 14404 sc->devinfo.shmem_base = 14405 sc->link_params.shmem_base = 14406 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 14407 sc->devinfo.shmem2_base = 14408 REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 : 14409 MISC_REG_GENERIC_CR_0)); 14410 14411 BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n", 14412 sc->devinfo.shmem_base, sc->devinfo.shmem2_base); 14413 14414 if (!sc->devinfo.shmem_base) { 14415 /* this should ONLY prevent upcoming shmem reads */ 14416 BLOGI(sc, "MCP not active\n"); 14417 sc->flags |= BXE_NO_MCP_FLAG; 14418 return (0); 14419 } 14420 14421 /* make sure the shared memory contents are valid */ 14422 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 14423 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) != 14424 (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) { 14425 BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val); 14426 return (0); 14427 } 14428 BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val); 14429 14430 /* get the bootcode version */ 14431 sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev); 14432 snprintf(sc->devinfo.bc_ver_str, 14433 sizeof(sc->devinfo.bc_ver_str), 14434 "%d.%d.%d", 14435 ((sc->devinfo.bc_ver >> 24) & 0xff), 14436 ((sc->devinfo.bc_ver >> 16) & 0xff), 14437 ((sc->devinfo.bc_ver >> 8) & 0xff)); 14438 BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str); 14439 14440 /* get the bootcode shmem address */ 14441 sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc); 14442 BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base); 14443 14444 /* clean indirect addresses as they're not used */ 14445 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 14446 if (IS_PF(sc)) { 14447 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0); 14448 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0); 14449 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0); 14450 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0); 14451 if (CHIP_IS_E1x(sc)) { 14452 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0); 14453 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0); 14454 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0); 14455 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0); 14456 } 14457 14458 /* 14459 * Enable internal target-read (in case we are probed after PF 14460 * FLR). Must be done prior to any BAR read access. Only for 14461 * 57712 and up 14462 */ 14463 if (!CHIP_IS_E1x(sc)) { 14464 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 14465 } 14466 } 14467 14468 /* get the nvram size */ 14469 val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4); 14470 sc->devinfo.flash_size = 14471 (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE)); 14472 BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size); 14473 14474 /* get PCI capabilites */ 14475 bxe_probe_pci_caps(sc); 14476 14477 bxe_set_power_state(sc, PCI_PM_D0); 14478 14479 /* get various configuration parameters from shmem */ 14480 bxe_get_shmem_info(sc); 14481 14482 if (sc->devinfo.pcie_msix_cap_reg != 0) { 14483 val = pci_read_config(sc->dev, 14484 (sc->devinfo.pcie_msix_cap_reg + 14485 PCIR_MSIX_CTRL), 14486 2); 14487 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE); 14488 } else { 14489 sc->igu_sb_cnt = 1; 14490 } 14491 14492 sc->igu_base_addr = BAR_IGU_INTMEM; 14493 14494 /* initialize IGU parameters */ 14495 if (CHIP_IS_E1x(sc)) { 14496 sc->devinfo.int_block = INT_BLOCK_HC; 14497 sc->igu_dsb_id = DEF_SB_IGU_ID; 14498 sc->igu_base_sb = 0; 14499 } else { 14500 sc->devinfo.int_block = INT_BLOCK_IGU; 14501 14502 /* do not allow device reset during IGU info preocessing */ 14503 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14504 14505 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 14506 14507 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 14508 int tout = 5000; 14509 14510 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n"); 14511 14512 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 14513 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val); 14514 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f); 14515 14516 while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 14517 tout--; 14518 DELAY(1000); 14519 } 14520 14521 if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 14522 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n"); 14523 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14524 return (-1); 14525 } 14526 } 14527 14528 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 14529 BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n"); 14530 sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP; 14531 } else { 14532 BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n"); 14533 } 14534 14535 rc = bxe_get_igu_cam_info(sc); 14536 14537 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14538 14539 if (rc) { 14540 return (rc); 14541 } 14542 } 14543 14544 /* 14545 * Get base FW non-default (fast path) status block ID. This value is 14546 * used to initialize the fw_sb_id saved on the fp/queue structure to 14547 * determine the id used by the FW. 14548 */ 14549 if (CHIP_IS_E1x(sc)) { 14550 sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc)); 14551 } else { 14552 /* 14553 * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of 14554 * the same queue are indicated on the same IGU SB). So we prefer 14555 * FW and IGU SBs to be the same value. 14556 */ 14557 sc->base_fw_ndsb = sc->igu_base_sb; 14558 } 14559 14560 BLOGD(sc, DBG_LOAD, 14561 "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n", 14562 sc->igu_dsb_id, sc->igu_base_sb, 14563 sc->igu_sb_cnt, sc->base_fw_ndsb); 14564 14565 elink_phy_probe(&sc->link_params); 14566 14567 return (0); 14568 } 14569 14570 static void 14571 bxe_link_settings_supported(struct bxe_softc *sc, 14572 uint32_t switch_cfg) 14573 { 14574 uint32_t cfg_size = 0; 14575 uint32_t idx; 14576 uint8_t port = SC_PORT(sc); 14577 14578 /* aggregation of supported attributes of all external phys */ 14579 sc->port.supported[0] = 0; 14580 sc->port.supported[1] = 0; 14581 14582 switch (sc->link_params.num_phys) { 14583 case 1: 14584 sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported; 14585 cfg_size = 1; 14586 break; 14587 case 2: 14588 sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported; 14589 cfg_size = 1; 14590 break; 14591 case 3: 14592 if (sc->link_params.multi_phy_config & 14593 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 14594 sc->port.supported[1] = 14595 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14596 sc->port.supported[0] = 14597 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14598 } else { 14599 sc->port.supported[0] = 14600 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14601 sc->port.supported[1] = 14602 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14603 } 14604 cfg_size = 2; 14605 break; 14606 } 14607 14608 if (!(sc->port.supported[0] || sc->port.supported[1])) { 14609 BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n", 14610 SHMEM_RD(sc, 14611 dev_info.port_hw_config[port].external_phy_config), 14612 SHMEM_RD(sc, 14613 dev_info.port_hw_config[port].external_phy_config2)); 14614 return; 14615 } 14616 14617 if (CHIP_IS_E3(sc)) 14618 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR); 14619 else { 14620 switch (switch_cfg) { 14621 case ELINK_SWITCH_CFG_1G: 14622 sc->port.phy_addr = 14623 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 14624 break; 14625 case ELINK_SWITCH_CFG_10G: 14626 sc->port.phy_addr = 14627 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 14628 break; 14629 default: 14630 BLOGE(sc, "Invalid switch config in link_config=0x%08x\n", 14631 sc->port.link_config[0]); 14632 return; 14633 } 14634 } 14635 14636 BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr); 14637 14638 /* mask what we support according to speed_cap_mask per configuration */ 14639 for (idx = 0; idx < cfg_size; idx++) { 14640 if (!(sc->link_params.speed_cap_mask[idx] & 14641 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) { 14642 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half; 14643 } 14644 14645 if (!(sc->link_params.speed_cap_mask[idx] & 14646 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) { 14647 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full; 14648 } 14649 14650 if (!(sc->link_params.speed_cap_mask[idx] & 14651 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) { 14652 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half; 14653 } 14654 14655 if (!(sc->link_params.speed_cap_mask[idx] & 14656 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) { 14657 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full; 14658 } 14659 14660 if (!(sc->link_params.speed_cap_mask[idx] & 14661 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) { 14662 sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full; 14663 } 14664 14665 if (!(sc->link_params.speed_cap_mask[idx] & 14666 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) { 14667 sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full; 14668 } 14669 14670 if (!(sc->link_params.speed_cap_mask[idx] & 14671 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) { 14672 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full; 14673 } 14674 14675 if (!(sc->link_params.speed_cap_mask[idx] & 14676 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) { 14677 sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full; 14678 } 14679 } 14680 14681 BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n", 14682 sc->port.supported[0], sc->port.supported[1]); 14683 } 14684 14685 static void 14686 bxe_link_settings_requested(struct bxe_softc *sc) 14687 { 14688 uint32_t link_config; 14689 uint32_t idx; 14690 uint32_t cfg_size = 0; 14691 14692 sc->port.advertising[0] = 0; 14693 sc->port.advertising[1] = 0; 14694 14695 switch (sc->link_params.num_phys) { 14696 case 1: 14697 case 2: 14698 cfg_size = 1; 14699 break; 14700 case 3: 14701 cfg_size = 2; 14702 break; 14703 } 14704 14705 for (idx = 0; idx < cfg_size; idx++) { 14706 sc->link_params.req_duplex[idx] = DUPLEX_FULL; 14707 link_config = sc->port.link_config[idx]; 14708 14709 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 14710 case PORT_FEATURE_LINK_SPEED_AUTO: 14711 if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) { 14712 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14713 sc->port.advertising[idx] |= sc->port.supported[idx]; 14714 if (sc->link_params.phy[ELINK_EXT_PHY1].type == 14715 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 14716 sc->port.advertising[idx] |= 14717 (ELINK_SUPPORTED_100baseT_Half | 14718 ELINK_SUPPORTED_100baseT_Full); 14719 } else { 14720 /* force 10G, no AN */ 14721 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14722 sc->port.advertising[idx] |= 14723 (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); 14724 continue; 14725 } 14726 break; 14727 14728 case PORT_FEATURE_LINK_SPEED_10M_FULL: 14729 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) { 14730 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14731 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full | 14732 ADVERTISED_TP); 14733 } else { 14734 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14735 "speed_cap_mask=0x%08x\n", 14736 link_config, sc->link_params.speed_cap_mask[idx]); 14737 return; 14738 } 14739 break; 14740 14741 case PORT_FEATURE_LINK_SPEED_10M_HALF: 14742 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) { 14743 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14744 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14745 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half | 14746 ADVERTISED_TP); 14747 } else { 14748 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14749 "speed_cap_mask=0x%08x\n", 14750 link_config, sc->link_params.speed_cap_mask[idx]); 14751 return; 14752 } 14753 break; 14754 14755 case PORT_FEATURE_LINK_SPEED_100M_FULL: 14756 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) { 14757 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14758 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full | 14759 ADVERTISED_TP); 14760 } else { 14761 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14762 "speed_cap_mask=0x%08x\n", 14763 link_config, sc->link_params.speed_cap_mask[idx]); 14764 return; 14765 } 14766 break; 14767 14768 case PORT_FEATURE_LINK_SPEED_100M_HALF: 14769 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) { 14770 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14771 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14772 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half | 14773 ADVERTISED_TP); 14774 } else { 14775 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14776 "speed_cap_mask=0x%08x\n", 14777 link_config, sc->link_params.speed_cap_mask[idx]); 14778 return; 14779 } 14780 break; 14781 14782 case PORT_FEATURE_LINK_SPEED_1G: 14783 if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) { 14784 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000; 14785 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full | 14786 ADVERTISED_TP); 14787 } else { 14788 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14789 "speed_cap_mask=0x%08x\n", 14790 link_config, sc->link_params.speed_cap_mask[idx]); 14791 return; 14792 } 14793 break; 14794 14795 case PORT_FEATURE_LINK_SPEED_2_5G: 14796 if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) { 14797 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500; 14798 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full | 14799 ADVERTISED_TP); 14800 } else { 14801 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14802 "speed_cap_mask=0x%08x\n", 14803 link_config, sc->link_params.speed_cap_mask[idx]); 14804 return; 14805 } 14806 break; 14807 14808 case PORT_FEATURE_LINK_SPEED_10G_CX4: 14809 if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) { 14810 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14811 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full | 14812 ADVERTISED_FIBRE); 14813 } else { 14814 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14815 "speed_cap_mask=0x%08x\n", 14816 link_config, sc->link_params.speed_cap_mask[idx]); 14817 return; 14818 } 14819 break; 14820 14821 case PORT_FEATURE_LINK_SPEED_20G: 14822 sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000; 14823 break; 14824 14825 default: 14826 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14827 "speed_cap_mask=0x%08x\n", 14828 link_config, sc->link_params.speed_cap_mask[idx]); 14829 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14830 sc->port.advertising[idx] = sc->port.supported[idx]; 14831 break; 14832 } 14833 14834 sc->link_params.req_flow_ctrl[idx] = 14835 (link_config & PORT_FEATURE_FLOW_CONTROL_MASK); 14836 14837 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) { 14838 if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) { 14839 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE; 14840 } else { 14841 bxe_set_requested_fc(sc); 14842 } 14843 } 14844 14845 BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d " 14846 "req_flow_ctrl=0x%x advertising=0x%x\n", 14847 sc->link_params.req_line_speed[idx], 14848 sc->link_params.req_duplex[idx], 14849 sc->link_params.req_flow_ctrl[idx], 14850 sc->port.advertising[idx]); 14851 } 14852 } 14853 14854 static void 14855 bxe_get_phy_info(struct bxe_softc *sc) 14856 { 14857 uint8_t port = SC_PORT(sc); 14858 uint32_t config = sc->port.config; 14859 uint32_t eee_mode; 14860 14861 /* shmem data already read in bxe_get_shmem_info() */ 14862 14863 BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x " 14864 "link_config0=0x%08x\n", 14865 sc->link_params.lane_config, 14866 sc->link_params.speed_cap_mask[0], 14867 sc->port.link_config[0]); 14868 14869 bxe_link_settings_supported(sc, sc->link_params.switch_cfg); 14870 bxe_link_settings_requested(sc); 14871 14872 if (sc->autogreeen == AUTO_GREEN_FORCE_ON) { 14873 sc->link_params.feature_config_flags |= 14874 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14875 } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) { 14876 sc->link_params.feature_config_flags &= 14877 ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14878 } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) { 14879 sc->link_params.feature_config_flags |= 14880 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14881 } 14882 14883 /* configure link feature according to nvram value */ 14884 eee_mode = 14885 (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) & 14886 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 14887 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 14888 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 14889 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI | 14890 ELINK_EEE_MODE_ENABLE_LPI | 14891 ELINK_EEE_MODE_OUTPUT_TIME); 14892 } else { 14893 sc->link_params.eee_mode = 0; 14894 } 14895 14896 /* get the media type */ 14897 bxe_media_detect(sc); 14898 } 14899 14900 static void 14901 bxe_get_params(struct bxe_softc *sc) 14902 { 14903 /* get user tunable params */ 14904 bxe_get_tunable_params(sc); 14905 14906 /* select the RX and TX ring sizes */ 14907 sc->tx_ring_size = TX_BD_USABLE; 14908 sc->rx_ring_size = RX_BD_USABLE; 14909 14910 /* XXX disable WoL */ 14911 sc->wol = 0; 14912 } 14913 14914 static void 14915 bxe_set_modes_bitmap(struct bxe_softc *sc) 14916 { 14917 uint32_t flags = 0; 14918 14919 if (CHIP_REV_IS_FPGA(sc)) { 14920 SET_FLAGS(flags, MODE_FPGA); 14921 } else if (CHIP_REV_IS_EMUL(sc)) { 14922 SET_FLAGS(flags, MODE_EMUL); 14923 } else { 14924 SET_FLAGS(flags, MODE_ASIC); 14925 } 14926 14927 if (CHIP_IS_MODE_4_PORT(sc)) { 14928 SET_FLAGS(flags, MODE_PORT4); 14929 } else { 14930 SET_FLAGS(flags, MODE_PORT2); 14931 } 14932 14933 if (CHIP_IS_E2(sc)) { 14934 SET_FLAGS(flags, MODE_E2); 14935 } else if (CHIP_IS_E3(sc)) { 14936 SET_FLAGS(flags, MODE_E3); 14937 if (CHIP_REV(sc) == CHIP_REV_Ax) { 14938 SET_FLAGS(flags, MODE_E3_A0); 14939 } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ { 14940 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 14941 } 14942 } 14943 14944 if (IS_MF(sc)) { 14945 SET_FLAGS(flags, MODE_MF); 14946 switch (sc->devinfo.mf_info.mf_mode) { 14947 case MULTI_FUNCTION_SD: 14948 SET_FLAGS(flags, MODE_MF_SD); 14949 break; 14950 case MULTI_FUNCTION_SI: 14951 SET_FLAGS(flags, MODE_MF_SI); 14952 break; 14953 case MULTI_FUNCTION_AFEX: 14954 SET_FLAGS(flags, MODE_MF_AFEX); 14955 break; 14956 } 14957 } else { 14958 SET_FLAGS(flags, MODE_SF); 14959 } 14960 14961 #if defined(__LITTLE_ENDIAN) 14962 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 14963 #else /* __BIG_ENDIAN */ 14964 SET_FLAGS(flags, MODE_BIG_ENDIAN); 14965 #endif 14966 14967 INIT_MODE_FLAGS(sc) = flags; 14968 } 14969 14970 static int 14971 bxe_alloc_hsi_mem(struct bxe_softc *sc) 14972 { 14973 struct bxe_fastpath *fp; 14974 bus_addr_t busaddr; 14975 int max_agg_queues; 14976 int max_segments; 14977 bus_size_t max_size; 14978 bus_size_t max_seg_size; 14979 char buf[32]; 14980 int rc; 14981 int i, j; 14982 14983 /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */ 14984 14985 /* allocate the parent bus DMA tag */ 14986 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */ 14987 1, /* alignment */ 14988 0, /* boundary limit */ 14989 BUS_SPACE_MAXADDR, /* restricted low */ 14990 BUS_SPACE_MAXADDR, /* restricted hi */ 14991 NULL, /* addr filter() */ 14992 NULL, /* addr filter() arg */ 14993 BUS_SPACE_MAXSIZE_32BIT, /* max map size */ 14994 BUS_SPACE_UNRESTRICTED, /* num discontinuous */ 14995 BUS_SPACE_MAXSIZE_32BIT, /* max seg size */ 14996 0, /* flags */ 14997 NULL, /* lock() */ 14998 NULL, /* lock() arg */ 14999 &sc->parent_dma_tag); /* returned dma tag */ 15000 if (rc != 0) { 15001 BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc); 15002 return (1); 15003 } 15004 15005 /************************/ 15006 /* DEFAULT STATUS BLOCK */ 15007 /************************/ 15008 15009 if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block), 15010 &sc->def_sb_dma, "default status block") != 0) { 15011 /* XXX */ 15012 bus_dma_tag_destroy(sc->parent_dma_tag); 15013 return (1); 15014 } 15015 15016 sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr; 15017 15018 /***************/ 15019 /* EVENT QUEUE */ 15020 /***************/ 15021 15022 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 15023 &sc->eq_dma, "event queue") != 0) { 15024 /* XXX */ 15025 bxe_dma_free(sc, &sc->def_sb_dma); 15026 sc->def_sb = NULL; 15027 bus_dma_tag_destroy(sc->parent_dma_tag); 15028 return (1); 15029 } 15030 15031 sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr; 15032 15033 /*************/ 15034 /* SLOW PATH */ 15035 /*************/ 15036 15037 if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath), 15038 &sc->sp_dma, "slow path") != 0) { 15039 /* XXX */ 15040 bxe_dma_free(sc, &sc->eq_dma); 15041 sc->eq = NULL; 15042 bxe_dma_free(sc, &sc->def_sb_dma); 15043 sc->def_sb = NULL; 15044 bus_dma_tag_destroy(sc->parent_dma_tag); 15045 return (1); 15046 } 15047 15048 sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr; 15049 15050 /*******************/ 15051 /* SLOW PATH QUEUE */ 15052 /*******************/ 15053 15054 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 15055 &sc->spq_dma, "slow path queue") != 0) { 15056 /* XXX */ 15057 bxe_dma_free(sc, &sc->sp_dma); 15058 sc->sp = NULL; 15059 bxe_dma_free(sc, &sc->eq_dma); 15060 sc->eq = NULL; 15061 bxe_dma_free(sc, &sc->def_sb_dma); 15062 sc->def_sb = NULL; 15063 bus_dma_tag_destroy(sc->parent_dma_tag); 15064 return (1); 15065 } 15066 15067 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr; 15068 15069 /***************************/ 15070 /* FW DECOMPRESSION BUFFER */ 15071 /***************************/ 15072 15073 if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma, 15074 "fw decompression buffer") != 0) { 15075 /* XXX */ 15076 bxe_dma_free(sc, &sc->spq_dma); 15077 sc->spq = NULL; 15078 bxe_dma_free(sc, &sc->sp_dma); 15079 sc->sp = NULL; 15080 bxe_dma_free(sc, &sc->eq_dma); 15081 sc->eq = NULL; 15082 bxe_dma_free(sc, &sc->def_sb_dma); 15083 sc->def_sb = NULL; 15084 bus_dma_tag_destroy(sc->parent_dma_tag); 15085 return (1); 15086 } 15087 15088 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr; 15089 15090 if ((sc->gz_strm = 15091 malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) { 15092 /* XXX */ 15093 bxe_dma_free(sc, &sc->gz_buf_dma); 15094 sc->gz_buf = NULL; 15095 bxe_dma_free(sc, &sc->spq_dma); 15096 sc->spq = NULL; 15097 bxe_dma_free(sc, &sc->sp_dma); 15098 sc->sp = NULL; 15099 bxe_dma_free(sc, &sc->eq_dma); 15100 sc->eq = NULL; 15101 bxe_dma_free(sc, &sc->def_sb_dma); 15102 sc->def_sb = NULL; 15103 bus_dma_tag_destroy(sc->parent_dma_tag); 15104 return (1); 15105 } 15106 15107 /*************/ 15108 /* FASTPATHS */ 15109 /*************/ 15110 15111 /* allocate DMA memory for each fastpath structure */ 15112 for (i = 0; i < sc->num_queues; i++) { 15113 fp = &sc->fp[i]; 15114 fp->sc = sc; 15115 fp->index = i; 15116 15117 /*******************/ 15118 /* FP STATUS BLOCK */ 15119 /*******************/ 15120 15121 snprintf(buf, sizeof(buf), "fp %d status block", i); 15122 if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block), 15123 &fp->sb_dma, buf) != 0) { 15124 /* XXX unwind and free previous fastpath allocations */ 15125 BLOGE(sc, "Failed to alloc %s\n", buf); 15126 return (1); 15127 } else { 15128 if (CHIP_IS_E2E3(sc)) { 15129 fp->status_block.e2_sb = 15130 (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr; 15131 } else { 15132 fp->status_block.e1x_sb = 15133 (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr; 15134 } 15135 } 15136 15137 /******************/ 15138 /* FP TX BD CHAIN */ 15139 /******************/ 15140 15141 snprintf(buf, sizeof(buf), "fp %d tx bd chain", i); 15142 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES), 15143 &fp->tx_dma, buf) != 0) { 15144 /* XXX unwind and free previous fastpath allocations */ 15145 BLOGE(sc, "Failed to alloc %s\n", buf); 15146 return (1); 15147 } else { 15148 fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr; 15149 } 15150 15151 /* link together the tx bd chain pages */ 15152 for (j = 1; j <= TX_BD_NUM_PAGES; j++) { 15153 /* index into the tx bd chain array to last entry per page */ 15154 struct eth_tx_next_bd *tx_next_bd = 15155 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd; 15156 /* point to the next page and wrap from last page */ 15157 busaddr = (fp->tx_dma.paddr + 15158 (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES))); 15159 tx_next_bd->addr_hi = htole32(U64_HI(busaddr)); 15160 tx_next_bd->addr_lo = htole32(U64_LO(busaddr)); 15161 } 15162 15163 /******************/ 15164 /* FP RX BD CHAIN */ 15165 /******************/ 15166 15167 snprintf(buf, sizeof(buf), "fp %d rx bd chain", i); 15168 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES), 15169 &fp->rx_dma, buf) != 0) { 15170 /* XXX unwind and free previous fastpath allocations */ 15171 BLOGE(sc, "Failed to alloc %s\n", buf); 15172 return (1); 15173 } else { 15174 fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr; 15175 } 15176 15177 /* link together the rx bd chain pages */ 15178 for (j = 1; j <= RX_BD_NUM_PAGES; j++) { 15179 /* index into the rx bd chain array to last entry per page */ 15180 struct eth_rx_bd *rx_bd = 15181 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2]; 15182 /* point to the next page and wrap from last page */ 15183 busaddr = (fp->rx_dma.paddr + 15184 (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES))); 15185 rx_bd->addr_hi = htole32(U64_HI(busaddr)); 15186 rx_bd->addr_lo = htole32(U64_LO(busaddr)); 15187 } 15188 15189 /*******************/ 15190 /* FP RX RCQ CHAIN */ 15191 /*******************/ 15192 15193 snprintf(buf, sizeof(buf), "fp %d rcq chain", i); 15194 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES), 15195 &fp->rcq_dma, buf) != 0) { 15196 /* XXX unwind and free previous fastpath allocations */ 15197 BLOGE(sc, "Failed to alloc %s\n", buf); 15198 return (1); 15199 } else { 15200 fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr; 15201 } 15202 15203 /* link together the rcq chain pages */ 15204 for (j = 1; j <= RCQ_NUM_PAGES; j++) { 15205 /* index into the rcq chain array to last entry per page */ 15206 struct eth_rx_cqe_next_page *rx_cqe_next = 15207 (struct eth_rx_cqe_next_page *) 15208 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1]; 15209 /* point to the next page and wrap from last page */ 15210 busaddr = (fp->rcq_dma.paddr + 15211 (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES))); 15212 rx_cqe_next->addr_hi = htole32(U64_HI(busaddr)); 15213 rx_cqe_next->addr_lo = htole32(U64_LO(busaddr)); 15214 } 15215 15216 /*******************/ 15217 /* FP RX SGE CHAIN */ 15218 /*******************/ 15219 15220 snprintf(buf, sizeof(buf), "fp %d sge chain", i); 15221 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES), 15222 &fp->rx_sge_dma, buf) != 0) { 15223 /* XXX unwind and free previous fastpath allocations */ 15224 BLOGE(sc, "Failed to alloc %s\n", buf); 15225 return (1); 15226 } else { 15227 fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr; 15228 } 15229 15230 /* link together the sge chain pages */ 15231 for (j = 1; j <= RX_SGE_NUM_PAGES; j++) { 15232 /* index into the rcq chain array to last entry per page */ 15233 struct eth_rx_sge *rx_sge = 15234 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2]; 15235 /* point to the next page and wrap from last page */ 15236 busaddr = (fp->rx_sge_dma.paddr + 15237 (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES))); 15238 rx_sge->addr_hi = htole32(U64_HI(busaddr)); 15239 rx_sge->addr_lo = htole32(U64_LO(busaddr)); 15240 } 15241 15242 /***********************/ 15243 /* FP TX MBUF DMA MAPS */ 15244 /***********************/ 15245 15246 /* set required sizes before mapping to conserve resources */ 15247 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 15248 max_size = BXE_TSO_MAX_SIZE; 15249 max_segments = BXE_TSO_MAX_SEGMENTS; 15250 max_seg_size = BXE_TSO_MAX_SEG_SIZE; 15251 } else { 15252 max_size = (MCLBYTES * BXE_MAX_SEGMENTS); 15253 max_segments = BXE_MAX_SEGMENTS; 15254 max_seg_size = MCLBYTES; 15255 } 15256 15257 /* create a dma tag for the tx mbufs */ 15258 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 15259 1, /* alignment */ 15260 0, /* boundary limit */ 15261 BUS_SPACE_MAXADDR, /* restricted low */ 15262 BUS_SPACE_MAXADDR, /* restricted hi */ 15263 NULL, /* addr filter() */ 15264 NULL, /* addr filter() arg */ 15265 max_size, /* max map size */ 15266 max_segments, /* num discontinuous */ 15267 max_seg_size, /* max seg size */ 15268 0, /* flags */ 15269 NULL, /* lock() */ 15270 NULL, /* lock() arg */ 15271 &fp->tx_mbuf_tag); /* returned dma tag */ 15272 if (rc != 0) { 15273 /* XXX unwind and free previous fastpath allocations */ 15274 BLOGE(sc, "Failed to create dma tag for " 15275 "'fp %d tx mbufs' (%d)\n", 15276 i, rc); 15277 return (1); 15278 } 15279 15280 /* create dma maps for each of the tx mbuf clusters */ 15281 for (j = 0; j < TX_BD_TOTAL; j++) { 15282 if (bus_dmamap_create(fp->tx_mbuf_tag, 15283 BUS_DMA_NOWAIT, 15284 &fp->tx_mbuf_chain[j].m_map)) { 15285 /* XXX unwind and free previous fastpath allocations */ 15286 BLOGE(sc, "Failed to create dma map for " 15287 "'fp %d tx mbuf %d' (%d)\n", 15288 i, j, rc); 15289 return (1); 15290 } 15291 } 15292 15293 /***********************/ 15294 /* FP RX MBUF DMA MAPS */ 15295 /***********************/ 15296 15297 /* create a dma tag for the rx mbufs */ 15298 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 15299 1, /* alignment */ 15300 0, /* boundary limit */ 15301 BUS_SPACE_MAXADDR, /* restricted low */ 15302 BUS_SPACE_MAXADDR, /* restricted hi */ 15303 NULL, /* addr filter() */ 15304 NULL, /* addr filter() arg */ 15305 MJUM9BYTES, /* max map size */ 15306 1, /* num discontinuous */ 15307 MJUM9BYTES, /* max seg size */ 15308 0, /* flags */ 15309 NULL, /* lock() */ 15310 NULL, /* lock() arg */ 15311 &fp->rx_mbuf_tag); /* returned dma tag */ 15312 if (rc != 0) { 15313 /* XXX unwind and free previous fastpath allocations */ 15314 BLOGE(sc, "Failed to create dma tag for " 15315 "'fp %d rx mbufs' (%d)\n", 15316 i, rc); 15317 return (1); 15318 } 15319 15320 /* create dma maps for each of the rx mbuf clusters */ 15321 for (j = 0; j < RX_BD_TOTAL; j++) { 15322 if (bus_dmamap_create(fp->rx_mbuf_tag, 15323 BUS_DMA_NOWAIT, 15324 &fp->rx_mbuf_chain[j].m_map)) { 15325 /* XXX unwind and free previous fastpath allocations */ 15326 BLOGE(sc, "Failed to create dma map for " 15327 "'fp %d rx mbuf %d' (%d)\n", 15328 i, j, rc); 15329 return (1); 15330 } 15331 } 15332 15333 /* create dma map for the spare rx mbuf cluster */ 15334 if (bus_dmamap_create(fp->rx_mbuf_tag, 15335 BUS_DMA_NOWAIT, 15336 &fp->rx_mbuf_spare_map)) { 15337 /* XXX unwind and free previous fastpath allocations */ 15338 BLOGE(sc, "Failed to create dma map for " 15339 "'fp %d spare rx mbuf' (%d)\n", 15340 i, rc); 15341 return (1); 15342 } 15343 15344 /***************************/ 15345 /* FP RX SGE MBUF DMA MAPS */ 15346 /***************************/ 15347 15348 /* create a dma tag for the rx sge mbufs */ 15349 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 15350 1, /* alignment */ 15351 0, /* boundary limit */ 15352 BUS_SPACE_MAXADDR, /* restricted low */ 15353 BUS_SPACE_MAXADDR, /* restricted hi */ 15354 NULL, /* addr filter() */ 15355 NULL, /* addr filter() arg */ 15356 BCM_PAGE_SIZE, /* max map size */ 15357 1, /* num discontinuous */ 15358 BCM_PAGE_SIZE, /* max seg size */ 15359 0, /* flags */ 15360 NULL, /* lock() */ 15361 NULL, /* lock() arg */ 15362 &fp->rx_sge_mbuf_tag); /* returned dma tag */ 15363 if (rc != 0) { 15364 /* XXX unwind and free previous fastpath allocations */ 15365 BLOGE(sc, "Failed to create dma tag for " 15366 "'fp %d rx sge mbufs' (%d)\n", 15367 i, rc); 15368 return (1); 15369 } 15370 15371 /* create dma maps for the rx sge mbuf clusters */ 15372 for (j = 0; j < RX_SGE_TOTAL; j++) { 15373 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 15374 BUS_DMA_NOWAIT, 15375 &fp->rx_sge_mbuf_chain[j].m_map)) { 15376 /* XXX unwind and free previous fastpath allocations */ 15377 BLOGE(sc, "Failed to create dma map for " 15378 "'fp %d rx sge mbuf %d' (%d)\n", 15379 i, j, rc); 15380 return (1); 15381 } 15382 } 15383 15384 /* create dma map for the spare rx sge mbuf cluster */ 15385 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 15386 BUS_DMA_NOWAIT, 15387 &fp->rx_sge_mbuf_spare_map)) { 15388 /* XXX unwind and free previous fastpath allocations */ 15389 BLOGE(sc, "Failed to create dma map for " 15390 "'fp %d spare rx sge mbuf' (%d)\n", 15391 i, rc); 15392 return (1); 15393 } 15394 15395 /***************************/ 15396 /* FP RX TPA MBUF DMA MAPS */ 15397 /***************************/ 15398 15399 /* create dma maps for the rx tpa mbuf clusters */ 15400 max_agg_queues = MAX_AGG_QS(sc); 15401 15402 for (j = 0; j < max_agg_queues; j++) { 15403 if (bus_dmamap_create(fp->rx_mbuf_tag, 15404 BUS_DMA_NOWAIT, 15405 &fp->rx_tpa_info[j].bd.m_map)) { 15406 /* XXX unwind and free previous fastpath allocations */ 15407 BLOGE(sc, "Failed to create dma map for " 15408 "'fp %d rx tpa mbuf %d' (%d)\n", 15409 i, j, rc); 15410 return (1); 15411 } 15412 } 15413 15414 /* create dma map for the spare rx tpa mbuf cluster */ 15415 if (bus_dmamap_create(fp->rx_mbuf_tag, 15416 BUS_DMA_NOWAIT, 15417 &fp->rx_tpa_info_mbuf_spare_map)) { 15418 /* XXX unwind and free previous fastpath allocations */ 15419 BLOGE(sc, "Failed to create dma map for " 15420 "'fp %d spare rx tpa mbuf' (%d)\n", 15421 i, rc); 15422 return (1); 15423 } 15424 15425 bxe_init_sge_ring_bit_mask(fp); 15426 } 15427 15428 return (0); 15429 } 15430 15431 static void 15432 bxe_free_hsi_mem(struct bxe_softc *sc) 15433 { 15434 struct bxe_fastpath *fp; 15435 int max_agg_queues; 15436 int i, j; 15437 15438 if (sc->parent_dma_tag == NULL) { 15439 return; /* assume nothing was allocated */ 15440 } 15441 15442 for (i = 0; i < sc->num_queues; i++) { 15443 fp = &sc->fp[i]; 15444 15445 /*******************/ 15446 /* FP STATUS BLOCK */ 15447 /*******************/ 15448 15449 bxe_dma_free(sc, &fp->sb_dma); 15450 memset(&fp->status_block, 0, sizeof(fp->status_block)); 15451 15452 /******************/ 15453 /* FP TX BD CHAIN */ 15454 /******************/ 15455 15456 bxe_dma_free(sc, &fp->tx_dma); 15457 fp->tx_chain = NULL; 15458 15459 /******************/ 15460 /* FP RX BD CHAIN */ 15461 /******************/ 15462 15463 bxe_dma_free(sc, &fp->rx_dma); 15464 fp->rx_chain = NULL; 15465 15466 /*******************/ 15467 /* FP RX RCQ CHAIN */ 15468 /*******************/ 15469 15470 bxe_dma_free(sc, &fp->rcq_dma); 15471 fp->rcq_chain = NULL; 15472 15473 /*******************/ 15474 /* FP RX SGE CHAIN */ 15475 /*******************/ 15476 15477 bxe_dma_free(sc, &fp->rx_sge_dma); 15478 fp->rx_sge_chain = NULL; 15479 15480 /***********************/ 15481 /* FP TX MBUF DMA MAPS */ 15482 /***********************/ 15483 15484 if (fp->tx_mbuf_tag != NULL) { 15485 for (j = 0; j < TX_BD_TOTAL; j++) { 15486 if (fp->tx_mbuf_chain[j].m_map != NULL) { 15487 bus_dmamap_unload(fp->tx_mbuf_tag, 15488 fp->tx_mbuf_chain[j].m_map); 15489 bus_dmamap_destroy(fp->tx_mbuf_tag, 15490 fp->tx_mbuf_chain[j].m_map); 15491 } 15492 } 15493 15494 bus_dma_tag_destroy(fp->tx_mbuf_tag); 15495 fp->tx_mbuf_tag = NULL; 15496 } 15497 15498 /***********************/ 15499 /* FP RX MBUF DMA MAPS */ 15500 /***********************/ 15501 15502 if (fp->rx_mbuf_tag != NULL) { 15503 for (j = 0; j < RX_BD_TOTAL; j++) { 15504 if (fp->rx_mbuf_chain[j].m_map != NULL) { 15505 bus_dmamap_unload(fp->rx_mbuf_tag, 15506 fp->rx_mbuf_chain[j].m_map); 15507 bus_dmamap_destroy(fp->rx_mbuf_tag, 15508 fp->rx_mbuf_chain[j].m_map); 15509 } 15510 } 15511 15512 if (fp->rx_mbuf_spare_map != NULL) { 15513 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 15514 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 15515 } 15516 15517 /***************************/ 15518 /* FP RX TPA MBUF DMA MAPS */ 15519 /***************************/ 15520 15521 max_agg_queues = MAX_AGG_QS(sc); 15522 15523 for (j = 0; j < max_agg_queues; j++) { 15524 if (fp->rx_tpa_info[j].bd.m_map != NULL) { 15525 bus_dmamap_unload(fp->rx_mbuf_tag, 15526 fp->rx_tpa_info[j].bd.m_map); 15527 bus_dmamap_destroy(fp->rx_mbuf_tag, 15528 fp->rx_tpa_info[j].bd.m_map); 15529 } 15530 } 15531 15532 if (fp->rx_tpa_info_mbuf_spare_map != NULL) { 15533 bus_dmamap_unload(fp->rx_mbuf_tag, 15534 fp->rx_tpa_info_mbuf_spare_map); 15535 bus_dmamap_destroy(fp->rx_mbuf_tag, 15536 fp->rx_tpa_info_mbuf_spare_map); 15537 } 15538 15539 bus_dma_tag_destroy(fp->rx_mbuf_tag); 15540 fp->rx_mbuf_tag = NULL; 15541 } 15542 15543 /***************************/ 15544 /* FP RX SGE MBUF DMA MAPS */ 15545 /***************************/ 15546 15547 if (fp->rx_sge_mbuf_tag != NULL) { 15548 for (j = 0; j < RX_SGE_TOTAL; j++) { 15549 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) { 15550 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 15551 fp->rx_sge_mbuf_chain[j].m_map); 15552 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 15553 fp->rx_sge_mbuf_chain[j].m_map); 15554 } 15555 } 15556 15557 if (fp->rx_sge_mbuf_spare_map != NULL) { 15558 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 15559 fp->rx_sge_mbuf_spare_map); 15560 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 15561 fp->rx_sge_mbuf_spare_map); 15562 } 15563 15564 bus_dma_tag_destroy(fp->rx_sge_mbuf_tag); 15565 fp->rx_sge_mbuf_tag = NULL; 15566 } 15567 } 15568 15569 /***************************/ 15570 /* FW DECOMPRESSION BUFFER */ 15571 /***************************/ 15572 15573 bxe_dma_free(sc, &sc->gz_buf_dma); 15574 sc->gz_buf = NULL; 15575 free(sc->gz_strm, M_DEVBUF); 15576 sc->gz_strm = NULL; 15577 15578 /*******************/ 15579 /* SLOW PATH QUEUE */ 15580 /*******************/ 15581 15582 bxe_dma_free(sc, &sc->spq_dma); 15583 sc->spq = NULL; 15584 15585 /*************/ 15586 /* SLOW PATH */ 15587 /*************/ 15588 15589 bxe_dma_free(sc, &sc->sp_dma); 15590 sc->sp = NULL; 15591 15592 /***************/ 15593 /* EVENT QUEUE */ 15594 /***************/ 15595 15596 bxe_dma_free(sc, &sc->eq_dma); 15597 sc->eq = NULL; 15598 15599 /************************/ 15600 /* DEFAULT STATUS BLOCK */ 15601 /************************/ 15602 15603 bxe_dma_free(sc, &sc->def_sb_dma); 15604 sc->def_sb = NULL; 15605 15606 bus_dma_tag_destroy(sc->parent_dma_tag); 15607 sc->parent_dma_tag = NULL; 15608 } 15609 15610 /* 15611 * Previous driver DMAE transaction may have occurred when pre-boot stage 15612 * ended and boot began. This would invalidate the addresses of the 15613 * transaction, resulting in was-error bit set in the PCI causing all 15614 * hw-to-host PCIe transactions to timeout. If this happened we want to clear 15615 * the interrupt which detected this from the pglueb and the was-done bit 15616 */ 15617 static void 15618 bxe_prev_interrupted_dmae(struct bxe_softc *sc) 15619 { 15620 uint32_t val; 15621 15622 if (!CHIP_IS_E1x(sc)) { 15623 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS); 15624 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { 15625 BLOGD(sc, DBG_LOAD, 15626 "Clearing 'was-error' bit that was set in pglueb"); 15627 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc)); 15628 } 15629 } 15630 } 15631 15632 static int 15633 bxe_prev_mcp_done(struct bxe_softc *sc) 15634 { 15635 uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 15636 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 15637 if (!rc) { 15638 BLOGE(sc, "MCP response failure, aborting\n"); 15639 return (-1); 15640 } 15641 15642 return (0); 15643 } 15644 15645 static struct bxe_prev_list_node * 15646 bxe_prev_path_get_entry(struct bxe_softc *sc) 15647 { 15648 struct bxe_prev_list_node *tmp; 15649 15650 LIST_FOREACH(tmp, &bxe_prev_list, node) { 15651 if ((sc->pcie_bus == tmp->bus) && 15652 (sc->pcie_device == tmp->slot) && 15653 (SC_PATH(sc) == tmp->path)) { 15654 return (tmp); 15655 } 15656 } 15657 15658 return (NULL); 15659 } 15660 15661 static uint8_t 15662 bxe_prev_is_path_marked(struct bxe_softc *sc) 15663 { 15664 struct bxe_prev_list_node *tmp; 15665 int rc = FALSE; 15666 15667 mtx_lock(&bxe_prev_mtx); 15668 15669 tmp = bxe_prev_path_get_entry(sc); 15670 if (tmp) { 15671 if (tmp->aer) { 15672 BLOGD(sc, DBG_LOAD, 15673 "Path %d/%d/%d was marked by AER\n", 15674 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15675 } else { 15676 rc = TRUE; 15677 BLOGD(sc, DBG_LOAD, 15678 "Path %d/%d/%d was already cleaned from previous drivers\n", 15679 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15680 } 15681 } 15682 15683 mtx_unlock(&bxe_prev_mtx); 15684 15685 return (rc); 15686 } 15687 15688 static int 15689 bxe_prev_mark_path(struct bxe_softc *sc, 15690 uint8_t after_undi) 15691 { 15692 struct bxe_prev_list_node *tmp; 15693 15694 mtx_lock(&bxe_prev_mtx); 15695 15696 /* Check whether the entry for this path already exists */ 15697 tmp = bxe_prev_path_get_entry(sc); 15698 if (tmp) { 15699 if (!tmp->aer) { 15700 BLOGD(sc, DBG_LOAD, 15701 "Re-marking AER in path %d/%d/%d\n", 15702 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15703 } else { 15704 BLOGD(sc, DBG_LOAD, 15705 "Removing AER indication from path %d/%d/%d\n", 15706 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15707 tmp->aer = 0; 15708 } 15709 15710 mtx_unlock(&bxe_prev_mtx); 15711 return (0); 15712 } 15713 15714 mtx_unlock(&bxe_prev_mtx); 15715 15716 /* Create an entry for this path and add it */ 15717 tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF, 15718 (M_NOWAIT | M_ZERO)); 15719 if (!tmp) { 15720 BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n"); 15721 return (-1); 15722 } 15723 15724 tmp->bus = sc->pcie_bus; 15725 tmp->slot = sc->pcie_device; 15726 tmp->path = SC_PATH(sc); 15727 tmp->aer = 0; 15728 tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0; 15729 15730 mtx_lock(&bxe_prev_mtx); 15731 15732 BLOGD(sc, DBG_LOAD, 15733 "Marked path %d/%d/%d - finished previous unload\n", 15734 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15735 LIST_INSERT_HEAD(&bxe_prev_list, tmp, node); 15736 15737 mtx_unlock(&bxe_prev_mtx); 15738 15739 return (0); 15740 } 15741 15742 static int 15743 bxe_do_flr(struct bxe_softc *sc) 15744 { 15745 int i; 15746 15747 /* only E2 and onwards support FLR */ 15748 if (CHIP_IS_E1x(sc)) { 15749 BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n"); 15750 return (-1); 15751 } 15752 15753 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 15754 if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 15755 BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n", 15756 sc->devinfo.bc_ver); 15757 return (-1); 15758 } 15759 15760 /* Wait for Transaction Pending bit clean */ 15761 for (i = 0; i < 4; i++) { 15762 if (i) { 15763 DELAY(((1 << (i - 1)) * 100) * 1000); 15764 } 15765 15766 if (!bxe_is_pcie_pending(sc)) { 15767 goto clear; 15768 } 15769 } 15770 15771 BLOGE(sc, "PCIE transaction is not cleared, " 15772 "proceeding with reset anyway\n"); 15773 15774 clear: 15775 15776 BLOGD(sc, DBG_LOAD, "Initiating FLR\n"); 15777 bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0); 15778 15779 return (0); 15780 } 15781 15782 struct bxe_mac_vals { 15783 uint32_t xmac_addr; 15784 uint32_t xmac_val; 15785 uint32_t emac_addr; 15786 uint32_t emac_val; 15787 uint32_t umac_addr; 15788 uint32_t umac_val; 15789 uint32_t bmac_addr; 15790 uint32_t bmac_val[2]; 15791 }; 15792 15793 static void 15794 bxe_prev_unload_close_mac(struct bxe_softc *sc, 15795 struct bxe_mac_vals *vals) 15796 { 15797 uint32_t val, base_addr, offset, mask, reset_reg; 15798 uint8_t mac_stopped = FALSE; 15799 uint8_t port = SC_PORT(sc); 15800 uint32_t wb_data[2]; 15801 15802 /* reset addresses as they also mark which values were changed */ 15803 vals->bmac_addr = 0; 15804 vals->umac_addr = 0; 15805 vals->xmac_addr = 0; 15806 vals->emac_addr = 0; 15807 15808 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2); 15809 15810 if (!CHIP_IS_E3(sc)) { 15811 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 15812 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 15813 if ((mask & reset_reg) && val) { 15814 BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n"); 15815 base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM 15816 : NIG_REG_INGRESS_BMAC0_MEM; 15817 offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL 15818 : BIGMAC_REGISTER_BMAC_CONTROL; 15819 15820 /* 15821 * use rd/wr since we cannot use dmae. This is safe 15822 * since MCP won't access the bus due to the request 15823 * to unload, and no function on the path can be 15824 * loaded at this time. 15825 */ 15826 wb_data[0] = REG_RD(sc, base_addr + offset); 15827 wb_data[1] = REG_RD(sc, base_addr + offset + 0x4); 15828 vals->bmac_addr = base_addr + offset; 15829 vals->bmac_val[0] = wb_data[0]; 15830 vals->bmac_val[1] = wb_data[1]; 15831 wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE; 15832 REG_WR(sc, vals->bmac_addr, wb_data[0]); 15833 REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]); 15834 } 15835 15836 BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n"); 15837 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4; 15838 vals->emac_val = REG_RD(sc, vals->emac_addr); 15839 REG_WR(sc, vals->emac_addr, 0); 15840 mac_stopped = TRUE; 15841 } else { 15842 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 15843 BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n"); 15844 base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 15845 val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI); 15846 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1)); 15847 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1)); 15848 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 15849 vals->xmac_val = REG_RD(sc, vals->xmac_addr); 15850 REG_WR(sc, vals->xmac_addr, 0); 15851 mac_stopped = TRUE; 15852 } 15853 15854 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 15855 if (mask & reset_reg) { 15856 BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n"); 15857 base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 15858 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; 15859 vals->umac_val = REG_RD(sc, vals->umac_addr); 15860 REG_WR(sc, vals->umac_addr, 0); 15861 mac_stopped = TRUE; 15862 } 15863 } 15864 15865 if (mac_stopped) { 15866 DELAY(20000); 15867 } 15868 } 15869 15870 #define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 15871 #define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff) 15872 #define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 15873 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 15874 15875 static void 15876 bxe_prev_unload_undi_inc(struct bxe_softc *sc, 15877 uint8_t port, 15878 uint8_t inc) 15879 { 15880 uint16_t rcq, bd; 15881 uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port)); 15882 15883 rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc; 15884 bd = BXE_PREV_UNDI_BD(tmp_reg) + inc; 15885 15886 tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd); 15887 REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg); 15888 15889 BLOGD(sc, DBG_LOAD, 15890 "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n", 15891 port, bd, rcq); 15892 } 15893 15894 static int 15895 bxe_prev_unload_common(struct bxe_softc *sc) 15896 { 15897 uint32_t reset_reg, tmp_reg = 0, rc; 15898 uint8_t prev_undi = FALSE; 15899 struct bxe_mac_vals mac_vals; 15900 uint32_t timer_count = 1000; 15901 uint32_t prev_brb; 15902 15903 /* 15904 * It is possible a previous function received 'common' answer, 15905 * but hasn't loaded yet, therefore creating a scenario of 15906 * multiple functions receiving 'common' on the same path. 15907 */ 15908 BLOGD(sc, DBG_LOAD, "Common unload Flow\n"); 15909 15910 memset(&mac_vals, 0, sizeof(mac_vals)); 15911 15912 if (bxe_prev_is_path_marked(sc)) { 15913 return (bxe_prev_mcp_done(sc)); 15914 } 15915 15916 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1); 15917 15918 /* Reset should be performed after BRB is emptied */ 15919 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 15920 /* Close the MAC Rx to prevent BRB from filling up */ 15921 bxe_prev_unload_close_mac(sc, &mac_vals); 15922 15923 /* close LLH filters towards the BRB */ 15924 elink_set_rx_filter(&sc->link_params, 0); 15925 15926 /* 15927 * Check if the UNDI driver was previously loaded. 15928 * UNDI driver initializes CID offset for normal bell to 0x7 15929 */ 15930 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { 15931 tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST); 15932 if (tmp_reg == 0x7) { 15933 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n"); 15934 prev_undi = TRUE; 15935 /* clear the UNDI indication */ 15936 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0); 15937 /* clear possible idle check errors */ 15938 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0); 15939 } 15940 } 15941 15942 /* wait until BRB is empty */ 15943 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15944 while (timer_count) { 15945 prev_brb = tmp_reg; 15946 15947 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15948 if (!tmp_reg) { 15949 break; 15950 } 15951 15952 BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg); 15953 15954 /* reset timer as long as BRB actually gets emptied */ 15955 if (prev_brb > tmp_reg) { 15956 timer_count = 1000; 15957 } else { 15958 timer_count--; 15959 } 15960 15961 /* If UNDI resides in memory, manually increment it */ 15962 if (prev_undi) { 15963 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1); 15964 } 15965 15966 DELAY(10); 15967 } 15968 15969 if (!timer_count) { 15970 BLOGE(sc, "Failed to empty BRB\n"); 15971 } 15972 } 15973 15974 /* No packets are in the pipeline, path is ready for reset */ 15975 bxe_reset_common(sc); 15976 15977 if (mac_vals.xmac_addr) { 15978 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val); 15979 } 15980 if (mac_vals.umac_addr) { 15981 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val); 15982 } 15983 if (mac_vals.emac_addr) { 15984 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val); 15985 } 15986 if (mac_vals.bmac_addr) { 15987 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 15988 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 15989 } 15990 15991 rc = bxe_prev_mark_path(sc, prev_undi); 15992 if (rc) { 15993 bxe_prev_mcp_done(sc); 15994 return (rc); 15995 } 15996 15997 return (bxe_prev_mcp_done(sc)); 15998 } 15999 16000 static int 16001 bxe_prev_unload_uncommon(struct bxe_softc *sc) 16002 { 16003 int rc; 16004 16005 BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n"); 16006 16007 /* Test if previous unload process was already finished for this path */ 16008 if (bxe_prev_is_path_marked(sc)) { 16009 return (bxe_prev_mcp_done(sc)); 16010 } 16011 16012 BLOGD(sc, DBG_LOAD, "Path is unmarked\n"); 16013 16014 /* 16015 * If function has FLR capabilities, and existing FW version matches 16016 * the one required, then FLR will be sufficient to clean any residue 16017 * left by previous driver 16018 */ 16019 rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION); 16020 if (!rc) { 16021 /* fw version is good */ 16022 BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n"); 16023 rc = bxe_do_flr(sc); 16024 } 16025 16026 if (!rc) { 16027 /* FLR was performed */ 16028 BLOGD(sc, DBG_LOAD, "FLR successful\n"); 16029 return (0); 16030 } 16031 16032 BLOGD(sc, DBG_LOAD, "Could not FLR\n"); 16033 16034 /* Close the MCP request, return failure*/ 16035 rc = bxe_prev_mcp_done(sc); 16036 if (!rc) { 16037 rc = BXE_PREV_WAIT_NEEDED; 16038 } 16039 16040 return (rc); 16041 } 16042 16043 static int 16044 bxe_prev_unload(struct bxe_softc *sc) 16045 { 16046 int time_counter = 10; 16047 uint32_t fw, hw_lock_reg, hw_lock_val; 16048 uint32_t rc = 0; 16049 16050 /* 16051 * Clear HW from errors which may have resulted from an interrupted 16052 * DMAE transaction. 16053 */ 16054 bxe_prev_interrupted_dmae(sc); 16055 16056 /* Release previously held locks */ 16057 hw_lock_reg = 16058 (SC_FUNC(sc) <= 5) ? 16059 (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) : 16060 (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8); 16061 16062 hw_lock_val = (REG_RD(sc, hw_lock_reg)); 16063 if (hw_lock_val) { 16064 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 16065 BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n"); 16066 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 16067 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc))); 16068 } 16069 BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n"); 16070 REG_WR(sc, hw_lock_reg, 0xffffffff); 16071 } else { 16072 BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n"); 16073 } 16074 16075 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) { 16076 BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n"); 16077 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0); 16078 } 16079 16080 do { 16081 /* Lock MCP using an unload request */ 16082 fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 16083 if (!fw) { 16084 BLOGE(sc, "MCP response failure, aborting\n"); 16085 rc = -1; 16086 break; 16087 } 16088 16089 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) { 16090 rc = bxe_prev_unload_common(sc); 16091 break; 16092 } 16093 16094 /* non-common reply from MCP night require looping */ 16095 rc = bxe_prev_unload_uncommon(sc); 16096 if (rc != BXE_PREV_WAIT_NEEDED) { 16097 break; 16098 } 16099 16100 DELAY(20000); 16101 } while (--time_counter); 16102 16103 if (!time_counter || rc) { 16104 BLOGE(sc, "Failed to unload previous driver!\n"); 16105 rc = -1; 16106 } 16107 16108 return (rc); 16109 } 16110 16111 void 16112 bxe_dcbx_set_state(struct bxe_softc *sc, 16113 uint8_t dcb_on, 16114 uint32_t dcbx_enabled) 16115 { 16116 if (!CHIP_IS_E1x(sc)) { 16117 sc->dcb_state = dcb_on; 16118 sc->dcbx_enabled = dcbx_enabled; 16119 } else { 16120 sc->dcb_state = FALSE; 16121 sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID; 16122 } 16123 BLOGD(sc, DBG_LOAD, 16124 "DCB state [%s:%s]\n", 16125 dcb_on ? "ON" : "OFF", 16126 (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" : 16127 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" : 16128 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ? 16129 "on-chip with negotiation" : "invalid"); 16130 } 16131 16132 /* must be called after sriov-enable */ 16133 static int 16134 bxe_set_qm_cid_count(struct bxe_softc *sc) 16135 { 16136 int cid_count = BXE_L2_MAX_CID(sc); 16137 16138 if (IS_SRIOV(sc)) { 16139 cid_count += BXE_VF_CIDS; 16140 } 16141 16142 if (CNIC_SUPPORT(sc)) { 16143 cid_count += CNIC_CID_MAX; 16144 } 16145 16146 return (roundup(cid_count, QM_CID_ROUND)); 16147 } 16148 16149 static void 16150 bxe_init_multi_cos(struct bxe_softc *sc) 16151 { 16152 int pri, cos; 16153 16154 uint32_t pri_map = 0; /* XXX change to user config */ 16155 16156 for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) { 16157 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4)); 16158 if (cos < sc->max_cos) { 16159 sc->prio_to_cos[pri] = cos; 16160 } else { 16161 BLOGW(sc, "Invalid COS %d for priority %d " 16162 "(max COS is %d), setting to 0\n", 16163 cos, pri, (sc->max_cos - 1)); 16164 sc->prio_to_cos[pri] = 0; 16165 } 16166 } 16167 } 16168 16169 static int 16170 bxe_sysctl_state(SYSCTL_HANDLER_ARGS) 16171 { 16172 struct bxe_softc *sc; 16173 int error, result; 16174 16175 result = 0; 16176 error = sysctl_handle_int(oidp, &result, 0, req); 16177 16178 if (error || !req->newptr) { 16179 return (error); 16180 } 16181 16182 if (result == 1) { 16183 sc = (struct bxe_softc *)arg1; 16184 BLOGI(sc, "... dumping driver state ...\n"); 16185 /* XXX */ 16186 } 16187 16188 return (error); 16189 } 16190 16191 static int 16192 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS) 16193 { 16194 struct bxe_softc *sc = (struct bxe_softc *)arg1; 16195 uint32_t *eth_stats = (uint32_t *)&sc->eth_stats; 16196 uint32_t *offset; 16197 uint64_t value = 0; 16198 int index = (int)arg2; 16199 16200 if (index >= BXE_NUM_ETH_STATS) { 16201 BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index); 16202 return (-1); 16203 } 16204 16205 offset = (eth_stats + bxe_eth_stats_arr[index].offset); 16206 16207 switch (bxe_eth_stats_arr[index].size) { 16208 case 4: 16209 value = (uint64_t)*offset; 16210 break; 16211 case 8: 16212 value = HILO_U64(*offset, *(offset + 1)); 16213 break; 16214 default: 16215 BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n", 16216 index, bxe_eth_stats_arr[index].size); 16217 return (-1); 16218 } 16219 16220 return (sysctl_handle_64(oidp, &value, 0, req)); 16221 } 16222 16223 static int 16224 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS) 16225 { 16226 struct bxe_softc *sc = (struct bxe_softc *)arg1; 16227 uint32_t *eth_stats; 16228 uint32_t *offset; 16229 uint64_t value = 0; 16230 uint32_t q_stat = (uint32_t)arg2; 16231 uint32_t fp_index = ((q_stat >> 16) & 0xffff); 16232 uint32_t index = (q_stat & 0xffff); 16233 16234 eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats; 16235 16236 if (index >= BXE_NUM_ETH_Q_STATS) { 16237 BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index); 16238 return (-1); 16239 } 16240 16241 offset = (eth_stats + bxe_eth_q_stats_arr[index].offset); 16242 16243 switch (bxe_eth_q_stats_arr[index].size) { 16244 case 4: 16245 value = (uint64_t)*offset; 16246 break; 16247 case 8: 16248 value = HILO_U64(*offset, *(offset + 1)); 16249 break; 16250 default: 16251 BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n", 16252 index, bxe_eth_q_stats_arr[index].size); 16253 return (-1); 16254 } 16255 16256 return (sysctl_handle_64(oidp, &value, 0, req)); 16257 } 16258 16259 static void 16260 bxe_add_sysctls(struct bxe_softc *sc) 16261 { 16262 struct sysctl_ctx_list *ctx; 16263 struct sysctl_oid_list *children; 16264 struct sysctl_oid *queue_top, *queue; 16265 struct sysctl_oid_list *queue_top_children, *queue_children; 16266 char queue_num_buf[32]; 16267 uint32_t q_stat; 16268 int i, j; 16269 16270 ctx = device_get_sysctl_ctx(sc->dev); 16271 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 16272 16273 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version", 16274 CTLFLAG_RD, BXE_DRIVER_VERSION, 0, 16275 "version"); 16276 16277 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 16278 CTLFLAG_RD, sc->devinfo.bc_ver_str, 0, 16279 "bootcode version"); 16280 16281 snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d", 16282 BCM_5710_FW_MAJOR_VERSION, 16283 BCM_5710_FW_MINOR_VERSION, 16284 BCM_5710_FW_REVISION_VERSION, 16285 BCM_5710_FW_ENGINEERING_VERSION); 16286 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 16287 CTLFLAG_RD, sc->fw_ver_str, 0, 16288 "firmware version"); 16289 16290 snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s", 16291 ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" : 16292 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" : 16293 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" : 16294 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" : 16295 "Unknown")); 16296 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 16297 CTLFLAG_RD, sc->mf_mode_str, 0, 16298 "multifunction mode"); 16299 16300 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics", 16301 CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0, 16302 "multifunction vnics per port"); 16303 16304 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 16305 CTLFLAG_RD, sc->mac_addr_str, 0, 16306 "mac address"); 16307 16308 snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d", 16309 ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" : 16310 (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" : 16311 (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" : 16312 "???GT/s"), 16313 sc->devinfo.pcie_link_width); 16314 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 16315 CTLFLAG_RD, sc->pci_link_str, 0, 16316 "pci link status"); 16317 16318 sc->debug = bxe_debug; 16319 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug", 16320 CTLFLAG_RW, &sc->debug, 16321 "debug logging mode"); 16322 16323 sc->rx_budget = bxe_rx_budget; 16324 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget", 16325 CTLFLAG_RW, &sc->rx_budget, 0, 16326 "rx processing budget"); 16327 16328 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state", 16329 CTLTYPE_UINT | CTLFLAG_RW, sc, 0, 16330 bxe_sysctl_state, "IU", "dump driver state"); 16331 16332 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 16333 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 16334 bxe_eth_stats_arr[i].string, 16335 CTLTYPE_U64 | CTLFLAG_RD, sc, i, 16336 bxe_sysctl_eth_stat, "LU", 16337 bxe_eth_stats_arr[i].string); 16338 } 16339 16340 /* add a new parent node for all queues "dev.bxe.#.queue" */ 16341 queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue", 16342 CTLFLAG_RD, NULL, "queue"); 16343 queue_top_children = SYSCTL_CHILDREN(queue_top); 16344 16345 for (i = 0; i < sc->num_queues; i++) { 16346 /* add a new parent node for a single queue "dev.bxe.#.queue.#" */ 16347 snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i); 16348 queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO, 16349 queue_num_buf, CTLFLAG_RD, NULL, 16350 "single queue"); 16351 queue_children = SYSCTL_CHILDREN(queue); 16352 16353 for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) { 16354 q_stat = ((i << 16) | j); 16355 SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO, 16356 bxe_eth_q_stats_arr[j].string, 16357 CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat, 16358 bxe_sysctl_eth_q_stat, "LU", 16359 bxe_eth_q_stats_arr[j].string); 16360 } 16361 } 16362 } 16363 16364 /* 16365 * Device attach function. 16366 * 16367 * Allocates device resources, performs secondary chip identification, and 16368 * initializes driver instance variables. This function is called from driver 16369 * load after a successful probe. 16370 * 16371 * Returns: 16372 * 0 = Success, >0 = Failure 16373 */ 16374 static int 16375 bxe_attach(device_t dev) 16376 { 16377 struct bxe_softc *sc; 16378 16379 sc = device_get_softc(dev); 16380 16381 BLOGD(sc, DBG_LOAD, "Starting attach...\n"); 16382 16383 sc->state = BXE_STATE_CLOSED; 16384 16385 sc->dev = dev; 16386 sc->unit = device_get_unit(dev); 16387 16388 BLOGD(sc, DBG_LOAD, "softc = %p\n", sc); 16389 16390 sc->pcie_bus = pci_get_bus(dev); 16391 sc->pcie_device = pci_get_slot(dev); 16392 sc->pcie_func = pci_get_function(dev); 16393 16394 /* enable bus master capability */ 16395 pci_enable_busmaster(dev); 16396 16397 /* get the BARs */ 16398 if (bxe_allocate_bars(sc) != 0) { 16399 return (ENXIO); 16400 } 16401 16402 /* initialize the mutexes */ 16403 bxe_init_mutexes(sc); 16404 16405 /* prepare the periodic callout */ 16406 callout_init(&sc->periodic_callout, 0); 16407 16408 /* prepare the chip taskqueue */ 16409 sc->chip_tq_flags = CHIP_TQ_NONE; 16410 snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name), 16411 "bxe%d_chip_tq", sc->unit); 16412 TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc); 16413 sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT, 16414 taskqueue_thread_enqueue, 16415 &sc->chip_tq); 16416 taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */ 16417 "%s", sc->chip_tq_name); 16418 16419 /* get device info and set params */ 16420 if (bxe_get_device_info(sc) != 0) { 16421 BLOGE(sc, "getting device info\n"); 16422 bxe_deallocate_bars(sc); 16423 pci_disable_busmaster(dev); 16424 return (ENXIO); 16425 } 16426 16427 /* get final misc params */ 16428 bxe_get_params(sc); 16429 16430 /* set the default MTU (changed via ifconfig) */ 16431 sc->mtu = ETHERMTU; 16432 16433 bxe_set_modes_bitmap(sc); 16434 16435 /* XXX 16436 * If in AFEX mode and the function is configured for FCoE 16437 * then bail... no L2 allowed. 16438 */ 16439 16440 /* get phy settings from shmem and 'and' against admin settings */ 16441 bxe_get_phy_info(sc); 16442 16443 /* initialize the FreeBSD ifnet interface */ 16444 if (bxe_init_ifnet(sc) != 0) { 16445 bxe_release_mutexes(sc); 16446 bxe_deallocate_bars(sc); 16447 pci_disable_busmaster(dev); 16448 return (ENXIO); 16449 } 16450 16451 /* allocate device interrupts */ 16452 if (bxe_interrupt_alloc(sc) != 0) { 16453 if (sc->ifp != NULL) { 16454 ether_ifdetach(sc->ifp); 16455 } 16456 ifmedia_removeall(&sc->ifmedia); 16457 bxe_release_mutexes(sc); 16458 bxe_deallocate_bars(sc); 16459 pci_disable_busmaster(dev); 16460 return (ENXIO); 16461 } 16462 16463 /* allocate ilt */ 16464 if (bxe_alloc_ilt_mem(sc) != 0) { 16465 bxe_interrupt_free(sc); 16466 if (sc->ifp != NULL) { 16467 ether_ifdetach(sc->ifp); 16468 } 16469 ifmedia_removeall(&sc->ifmedia); 16470 bxe_release_mutexes(sc); 16471 bxe_deallocate_bars(sc); 16472 pci_disable_busmaster(dev); 16473 return (ENXIO); 16474 } 16475 16476 /* allocate the host hardware/software hsi structures */ 16477 if (bxe_alloc_hsi_mem(sc) != 0) { 16478 bxe_free_ilt_mem(sc); 16479 bxe_interrupt_free(sc); 16480 if (sc->ifp != NULL) { 16481 ether_ifdetach(sc->ifp); 16482 } 16483 ifmedia_removeall(&sc->ifmedia); 16484 bxe_release_mutexes(sc); 16485 bxe_deallocate_bars(sc); 16486 pci_disable_busmaster(dev); 16487 return (ENXIO); 16488 } 16489 16490 /* need to reset chip if UNDI was active */ 16491 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 16492 /* init fw_seq */ 16493 sc->fw_seq = 16494 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 16495 DRV_MSG_SEQ_NUMBER_MASK); 16496 BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq); 16497 bxe_prev_unload(sc); 16498 } 16499 16500 #if 1 16501 /* XXX */ 16502 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16503 #else 16504 if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) && 16505 SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) && 16506 SHMEM2_RD(sc, dcbx_lldp_params_offset) && 16507 SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) { 16508 bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON); 16509 bxe_dcbx_init_params(sc); 16510 } else { 16511 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16512 } 16513 #endif 16514 16515 /* calculate qm_cid_count */ 16516 sc->qm_cid_count = bxe_set_qm_cid_count(sc); 16517 BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count); 16518 16519 sc->max_cos = 1; 16520 bxe_init_multi_cos(sc); 16521 16522 bxe_add_sysctls(sc); 16523 16524 return (0); 16525 } 16526 16527 /* 16528 * Device detach function. 16529 * 16530 * Stops the controller, resets the controller, and releases resources. 16531 * 16532 * Returns: 16533 * 0 = Success, >0 = Failure 16534 */ 16535 static int 16536 bxe_detach(device_t dev) 16537 { 16538 struct bxe_softc *sc; 16539 if_t ifp; 16540 16541 sc = device_get_softc(dev); 16542 16543 BLOGD(sc, DBG_LOAD, "Starting detach...\n"); 16544 16545 ifp = sc->ifp; 16546 if (ifp != NULL && if_vlantrunkinuse(ifp)) { 16547 BLOGE(sc, "Cannot detach while VLANs are in use.\n"); 16548 return(EBUSY); 16549 } 16550 16551 /* stop the periodic callout */ 16552 bxe_periodic_stop(sc); 16553 16554 /* stop the chip taskqueue */ 16555 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE); 16556 if (sc->chip_tq) { 16557 taskqueue_drain(sc->chip_tq, &sc->chip_tq_task); 16558 taskqueue_free(sc->chip_tq); 16559 sc->chip_tq = NULL; 16560 } 16561 16562 /* stop and reset the controller if it was open */ 16563 if (sc->state != BXE_STATE_CLOSED) { 16564 BXE_CORE_LOCK(sc); 16565 bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE); 16566 BXE_CORE_UNLOCK(sc); 16567 } 16568 16569 /* release the network interface */ 16570 if (ifp != NULL) { 16571 ether_ifdetach(ifp); 16572 } 16573 ifmedia_removeall(&sc->ifmedia); 16574 16575 /* XXX do the following based on driver state... */ 16576 16577 /* free the host hardware/software hsi structures */ 16578 bxe_free_hsi_mem(sc); 16579 16580 /* free ilt */ 16581 bxe_free_ilt_mem(sc); 16582 16583 /* release the interrupts */ 16584 bxe_interrupt_free(sc); 16585 16586 /* Release the mutexes*/ 16587 bxe_release_mutexes(sc); 16588 16589 /* Release the PCIe BAR mapped memory */ 16590 bxe_deallocate_bars(sc); 16591 16592 /* Release the FreeBSD interface. */ 16593 if (sc->ifp != NULL) { 16594 if_free(sc->ifp); 16595 } 16596 16597 pci_disable_busmaster(dev); 16598 16599 return (0); 16600 } 16601 16602 /* 16603 * Device shutdown function. 16604 * 16605 * Stops and resets the controller. 16606 * 16607 * Returns: 16608 * Nothing 16609 */ 16610 static int 16611 bxe_shutdown(device_t dev) 16612 { 16613 struct bxe_softc *sc; 16614 16615 sc = device_get_softc(dev); 16616 16617 BLOGD(sc, DBG_LOAD, "Starting shutdown...\n"); 16618 16619 /* stop the periodic callout */ 16620 bxe_periodic_stop(sc); 16621 16622 BXE_CORE_LOCK(sc); 16623 bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE); 16624 BXE_CORE_UNLOCK(sc); 16625 16626 return (0); 16627 } 16628 16629 void 16630 bxe_igu_ack_sb(struct bxe_softc *sc, 16631 uint8_t igu_sb_id, 16632 uint8_t segment, 16633 uint16_t index, 16634 uint8_t op, 16635 uint8_t update) 16636 { 16637 uint32_t igu_addr = sc->igu_base_addr; 16638 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 16639 bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr); 16640 } 16641 16642 static void 16643 bxe_igu_clear_sb_gen(struct bxe_softc *sc, 16644 uint8_t func, 16645 uint8_t idu_sb_id, 16646 uint8_t is_pf) 16647 { 16648 uint32_t data, ctl, cnt = 100; 16649 uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 16650 uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 16651 uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 16652 uint32_t sb_bit = 1 << (idu_sb_id%32); 16653 uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 16654 uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 16655 16656 /* Not supported in BC mode */ 16657 if (CHIP_INT_MODE_IS_BC(sc)) { 16658 return; 16659 } 16660 16661 data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup << 16662 IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 16663 IGU_REGULAR_CLEANUP_SET | 16664 IGU_REGULAR_BCLEANUP); 16665 16666 ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) | 16667 (func_encode << IGU_CTRL_REG_FID_SHIFT) | 16668 (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT)); 16669 16670 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16671 data, igu_addr_data); 16672 REG_WR(sc, igu_addr_data, data); 16673 16674 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16675 BUS_SPACE_BARRIER_WRITE); 16676 mb(); 16677 16678 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16679 ctl, igu_addr_ctl); 16680 REG_WR(sc, igu_addr_ctl, ctl); 16681 16682 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16683 BUS_SPACE_BARRIER_WRITE); 16684 mb(); 16685 16686 /* wait for clean up to finish */ 16687 while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) { 16688 DELAY(20000); 16689 } 16690 16691 if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) { 16692 BLOGD(sc, DBG_LOAD, 16693 "Unable to finish IGU cleanup: " 16694 "idu_sb_id %d offset %d bit %d (cnt %d)\n", 16695 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 16696 } 16697 } 16698 16699 static void 16700 bxe_igu_clear_sb(struct bxe_softc *sc, 16701 uint8_t idu_sb_id) 16702 { 16703 bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/); 16704 } 16705 16706 16707 16708 16709 16710 16711 16712 /*******************/ 16713 /* ECORE CALLBACKS */ 16714 /*******************/ 16715 16716 static void 16717 bxe_reset_common(struct bxe_softc *sc) 16718 { 16719 uint32_t val = 0x1400; 16720 16721 /* reset_common */ 16722 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f); 16723 16724 if (CHIP_IS_E3(sc)) { 16725 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16726 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16727 } 16728 16729 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val); 16730 } 16731 16732 static void 16733 bxe_common_init_phy(struct bxe_softc *sc) 16734 { 16735 uint32_t shmem_base[2]; 16736 uint32_t shmem2_base[2]; 16737 16738 /* Avoid common init in case MFW supports LFA */ 16739 if (SHMEM2_RD(sc, size) > 16740 (uint32_t)offsetof(struct shmem2_region, 16741 lfa_host_addr[SC_PORT(sc)])) { 16742 return; 16743 } 16744 16745 shmem_base[0] = sc->devinfo.shmem_base; 16746 shmem2_base[0] = sc->devinfo.shmem2_base; 16747 16748 if (!CHIP_IS_E1x(sc)) { 16749 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr); 16750 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr); 16751 } 16752 16753 BXE_PHY_LOCK(sc); 16754 elink_common_init_phy(sc, shmem_base, shmem2_base, 16755 sc->devinfo.chip_id, 0); 16756 BXE_PHY_UNLOCK(sc); 16757 } 16758 16759 static void 16760 bxe_pf_disable(struct bxe_softc *sc) 16761 { 16762 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 16763 16764 val &= ~IGU_PF_CONF_FUNC_EN; 16765 16766 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 16767 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16768 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0); 16769 } 16770 16771 static void 16772 bxe_init_pxp(struct bxe_softc *sc) 16773 { 16774 uint16_t devctl; 16775 int r_order, w_order; 16776 16777 devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2); 16778 16779 BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl); 16780 16781 w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5); 16782 16783 if (sc->mrrs == -1) { 16784 r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12); 16785 } else { 16786 BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs); 16787 r_order = sc->mrrs; 16788 } 16789 16790 ecore_init_pxp_arb(sc, r_order, w_order); 16791 } 16792 16793 static uint32_t 16794 bxe_get_pretend_reg(struct bxe_softc *sc) 16795 { 16796 uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0; 16797 uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base); 16798 return (base + (SC_ABS_FUNC(sc)) * stride); 16799 } 16800 16801 /* 16802 * Called only on E1H or E2. 16803 * When pretending to be PF, the pretend value is the function number 0..7. 16804 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 16805 * combination. 16806 */ 16807 static int 16808 bxe_pretend_func(struct bxe_softc *sc, 16809 uint16_t pretend_func_val) 16810 { 16811 uint32_t pretend_reg; 16812 16813 if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) { 16814 return (-1); 16815 } 16816 16817 /* get my own pretend register */ 16818 pretend_reg = bxe_get_pretend_reg(sc); 16819 REG_WR(sc, pretend_reg, pretend_func_val); 16820 REG_RD(sc, pretend_reg); 16821 return (0); 16822 } 16823 16824 static void 16825 bxe_iov_init_dmae(struct bxe_softc *sc) 16826 { 16827 return; 16828 #if 0 16829 BLOGD(sc, DBG_LOAD, "SRIOV is %s\n", IS_SRIOV(sc) ? "ON" : "OFF"); 16830 16831 if (!IS_SRIOV(sc)) { 16832 return; 16833 } 16834 16835 REG_WR(sc, DMAE_REG_BACKWARD_COMP_EN, 0); 16836 #endif 16837 } 16838 16839 #if 0 16840 static int 16841 bxe_iov_init_ilt(struct bxe_softc *sc, 16842 uint16_t line) 16843 { 16844 return (line); 16845 #if 0 16846 int i; 16847 struct ecore_ilt* ilt = sc->ilt; 16848 16849 if (!IS_SRIOV(sc)) { 16850 return (line); 16851 } 16852 16853 /* set vfs ilt lines */ 16854 for (i = 0; i < BXE_VF_CIDS/ILT_PAGE_CIDS ; i++) { 16855 struct hw_dma *hw_cxt = SC_VF_CXT_PAGE(sc,i); 16856 ilt->lines[line+i].page = hw_cxt->addr; 16857 ilt->lines[line+i].page_mapping = hw_cxt->mapping; 16858 ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */ 16859 } 16860 return (line+i); 16861 #endif 16862 } 16863 #endif 16864 16865 static void 16866 bxe_iov_init_dq(struct bxe_softc *sc) 16867 { 16868 return; 16869 #if 0 16870 if (!IS_SRIOV(sc)) { 16871 return; 16872 } 16873 16874 /* Set the DQ such that the CID reflect the abs_vfid */ 16875 REG_WR(sc, DORQ_REG_VF_NORM_VF_BASE, 0); 16876 REG_WR(sc, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS)); 16877 16878 /* 16879 * Set VFs starting CID. If its > 0 the preceding CIDs are belong to 16880 * the PF L2 queues 16881 */ 16882 REG_WR(sc, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID); 16883 16884 /* The VF window size is the log2 of the max number of CIDs per VF */ 16885 REG_WR(sc, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND); 16886 16887 /* 16888 * The VF doorbell size 0 - *B, 4 - 128B. We set it here to match 16889 * the Pf doorbell size although the 2 are independent. 16890 */ 16891 REG_WR(sc, DORQ_REG_VF_NORM_CID_OFST, 16892 BNX2X_DB_SHIFT - BNX2X_DB_MIN_SHIFT); 16893 16894 /* 16895 * No security checks for now - 16896 * configure single rule (out of 16) mask = 0x1, value = 0x0, 16897 * CID range 0 - 0x1ffff 16898 */ 16899 REG_WR(sc, DORQ_REG_VF_TYPE_MASK_0, 1); 16900 REG_WR(sc, DORQ_REG_VF_TYPE_VALUE_0, 0); 16901 REG_WR(sc, DORQ_REG_VF_TYPE_MIN_MCID_0, 0); 16902 REG_WR(sc, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff); 16903 16904 /* set the number of VF alllowed doorbells to the full DQ range */ 16905 REG_WR(sc, DORQ_REG_VF_NORM_MAX_CID_COUNT, 0x20000); 16906 16907 /* set the VF doorbell threshold */ 16908 REG_WR(sc, DORQ_REG_VF_USAGE_CT_LIMIT, 4); 16909 #endif 16910 } 16911 16912 /* send a NIG loopback debug packet */ 16913 static void 16914 bxe_lb_pckt(struct bxe_softc *sc) 16915 { 16916 uint32_t wb_write[3]; 16917 16918 /* Ethernet source and destination addresses */ 16919 wb_write[0] = 0x55555555; 16920 wb_write[1] = 0x55555555; 16921 wb_write[2] = 0x20; /* SOP */ 16922 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16923 16924 /* NON-IP protocol */ 16925 wb_write[0] = 0x09000000; 16926 wb_write[1] = 0x55555555; 16927 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 16928 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16929 } 16930 16931 /* 16932 * Some of the internal memories are not directly readable from the driver. 16933 * To test them we send debug packets. 16934 */ 16935 static int 16936 bxe_int_mem_test(struct bxe_softc *sc) 16937 { 16938 int factor; 16939 int count, i; 16940 uint32_t val = 0; 16941 16942 if (CHIP_REV_IS_FPGA(sc)) { 16943 factor = 120; 16944 } else if (CHIP_REV_IS_EMUL(sc)) { 16945 factor = 200; 16946 } else { 16947 factor = 1; 16948 } 16949 16950 /* disable inputs of parser neighbor blocks */ 16951 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16952 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16953 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16954 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16955 16956 /* write 0 to parser credits for CFC search request */ 16957 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16958 16959 /* send Ethernet packet */ 16960 bxe_lb_pckt(sc); 16961 16962 /* TODO do i reset NIG statistic? */ 16963 /* Wait until NIG register shows 1 packet of size 0x10 */ 16964 count = 1000 * factor; 16965 while (count) { 16966 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16967 val = *BXE_SP(sc, wb_data[0]); 16968 if (val == 0x10) { 16969 break; 16970 } 16971 16972 DELAY(10000); 16973 count--; 16974 } 16975 16976 if (val != 0x10) { 16977 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16978 return (-1); 16979 } 16980 16981 /* wait until PRS register shows 1 packet */ 16982 count = (1000 * factor); 16983 while (count) { 16984 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16985 if (val == 1) { 16986 break; 16987 } 16988 16989 DELAY(10000); 16990 count--; 16991 } 16992 16993 if (val != 0x1) { 16994 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16995 return (-2); 16996 } 16997 16998 /* Reset and init BRB, PRS */ 16999 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 17000 DELAY(50000); 17001 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 17002 DELAY(50000); 17003 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 17004 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 17005 17006 /* Disable inputs of parser neighbor blocks */ 17007 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 17008 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 17009 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 17010 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 17011 17012 /* Write 0 to parser credits for CFC search request */ 17013 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 17014 17015 /* send 10 Ethernet packets */ 17016 for (i = 0; i < 10; i++) { 17017 bxe_lb_pckt(sc); 17018 } 17019 17020 /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */ 17021 count = (1000 * factor); 17022 while (count) { 17023 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 17024 val = *BXE_SP(sc, wb_data[0]); 17025 if (val == 0xb0) { 17026 break; 17027 } 17028 17029 DELAY(10000); 17030 count--; 17031 } 17032 17033 if (val != 0xb0) { 17034 BLOGE(sc, "NIG timeout val=0x%x\n", val); 17035 return (-3); 17036 } 17037 17038 /* Wait until PRS register shows 2 packets */ 17039 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 17040 if (val != 2) { 17041 BLOGE(sc, "PRS timeout val=0x%x\n", val); 17042 } 17043 17044 /* Write 1 to parser credits for CFC search request */ 17045 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 17046 17047 /* Wait until PRS register shows 3 packets */ 17048 DELAY(10000 * factor); 17049 17050 /* Wait until NIG register shows 1 packet of size 0x10 */ 17051 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 17052 if (val != 3) { 17053 BLOGE(sc, "PRS timeout val=0x%x\n", val); 17054 } 17055 17056 /* clear NIG EOP FIFO */ 17057 for (i = 0; i < 11; i++) { 17058 REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO); 17059 } 17060 17061 val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY); 17062 if (val != 1) { 17063 BLOGE(sc, "clear of NIG failed\n"); 17064 return (-4); 17065 } 17066 17067 /* Reset and init BRB, PRS, NIG */ 17068 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 17069 DELAY(50000); 17070 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 17071 DELAY(50000); 17072 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 17073 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 17074 if (!CNIC_SUPPORT(sc)) { 17075 /* set NIC mode */ 17076 REG_WR(sc, PRS_REG_NIC_MODE, 1); 17077 } 17078 17079 /* Enable inputs of parser neighbor blocks */ 17080 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff); 17081 REG_WR(sc, TCM_REG_PRS_IFEN, 0x1); 17082 REG_WR(sc, CFC_REG_DEBUG0, 0x0); 17083 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1); 17084 17085 return (0); 17086 } 17087 17088 static void 17089 bxe_setup_fan_failure_detection(struct bxe_softc *sc) 17090 { 17091 int is_required; 17092 uint32_t val; 17093 int port; 17094 17095 is_required = 0; 17096 val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) & 17097 SHARED_HW_CFG_FAN_FAILURE_MASK); 17098 17099 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) { 17100 is_required = 1; 17101 } 17102 /* 17103 * The fan failure mechanism is usually related to the PHY type since 17104 * the power consumption of the board is affected by the PHY. Currently, 17105 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 17106 */ 17107 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) { 17108 for (port = PORT_0; port < PORT_MAX; port++) { 17109 is_required |= elink_fan_failure_det_req(sc, 17110 sc->devinfo.shmem_base, 17111 sc->devinfo.shmem2_base, 17112 port); 17113 } 17114 } 17115 17116 BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required); 17117 17118 if (is_required == 0) { 17119 return; 17120 } 17121 17122 /* Fan failure is indicated by SPIO 5 */ 17123 bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 17124 17125 /* set to active low mode */ 17126 val = REG_RD(sc, MISC_REG_SPIO_INT); 17127 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 17128 REG_WR(sc, MISC_REG_SPIO_INT, val); 17129 17130 /* enable interrupt to signal the IGU */ 17131 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17132 val |= MISC_SPIO_SPIO5; 17133 REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val); 17134 } 17135 17136 static void 17137 bxe_enable_blocks_attention(struct bxe_softc *sc) 17138 { 17139 uint32_t val; 17140 17141 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 17142 if (!CHIP_IS_E1x(sc)) { 17143 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40); 17144 } else { 17145 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0); 17146 } 17147 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 17148 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 17149 /* 17150 * mask read length error interrupts in brb for parser 17151 * (parsing unit and 'checksum and crc' unit) 17152 * these errors are legal (PU reads fixed length and CAC can cause 17153 * read length error on truncated packets) 17154 */ 17155 REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00); 17156 REG_WR(sc, QM_REG_QM_INT_MASK, 0); 17157 REG_WR(sc, TM_REG_TM_INT_MASK, 0); 17158 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0); 17159 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0); 17160 REG_WR(sc, XCM_REG_XCM_INT_MASK, 0); 17161 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */ 17162 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */ 17163 REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0); 17164 REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0); 17165 REG_WR(sc, UCM_REG_UCM_INT_MASK, 0); 17166 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */ 17167 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */ 17168 REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 17169 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0); 17170 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0); 17171 REG_WR(sc, CCM_REG_CCM_INT_MASK, 0); 17172 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */ 17173 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */ 17174 17175 val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 17176 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 17177 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN); 17178 if (!CHIP_IS_E1x(sc)) { 17179 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 17180 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED); 17181 } 17182 REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val); 17183 17184 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0); 17185 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0); 17186 REG_WR(sc, TCM_REG_TCM_INT_MASK, 0); 17187 /* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */ 17188 17189 if (!CHIP_IS_E1x(sc)) { 17190 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 17191 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 17192 } 17193 17194 REG_WR(sc, CDU_REG_CDU_INT_MASK, 0); 17195 REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0); 17196 /* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */ 17197 REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 17198 } 17199 17200 /** 17201 * bxe_init_hw_common - initialize the HW at the COMMON phase. 17202 * 17203 * @sc: driver handle 17204 */ 17205 static int 17206 bxe_init_hw_common(struct bxe_softc *sc) 17207 { 17208 uint8_t abs_func_id; 17209 uint32_t val; 17210 17211 BLOGD(sc, DBG_LOAD, "starting common init for func %d\n", 17212 SC_ABS_FUNC(sc)); 17213 17214 /* 17215 * take the RESET lock to protect undi_unload flow from accessing 17216 * registers while we are resetting the chip 17217 */ 17218 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 17219 17220 bxe_reset_common(sc); 17221 17222 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff); 17223 17224 val = 0xfffc; 17225 if (CHIP_IS_E3(sc)) { 17226 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 17227 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 17228 } 17229 17230 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val); 17231 17232 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 17233 17234 ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON); 17235 BLOGD(sc, DBG_LOAD, "after misc block init\n"); 17236 17237 if (!CHIP_IS_E1x(sc)) { 17238 /* 17239 * 4-port mode or 2-port mode we need to turn off master-enable for 17240 * everyone. After that we turn it back on for self. So, we disregard 17241 * multi-function, and always disable all functions on the given path, 17242 * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1 17243 */ 17244 for (abs_func_id = SC_PATH(sc); 17245 abs_func_id < (E2_FUNC_MAX * 2); 17246 abs_func_id += 2) { 17247 if (abs_func_id == SC_ABS_FUNC(sc)) { 17248 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17249 continue; 17250 } 17251 17252 bxe_pretend_func(sc, abs_func_id); 17253 17254 /* clear pf enable */ 17255 bxe_pf_disable(sc); 17256 17257 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 17258 } 17259 } 17260 17261 BLOGD(sc, DBG_LOAD, "after pf disable\n"); 17262 17263 ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON); 17264 17265 if (CHIP_IS_E1(sc)) { 17266 /* 17267 * enable HW interrupt from PXP on USDM overflow 17268 * bit 16 on INT_MASK_0 17269 */ 17270 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 17271 } 17272 17273 ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON); 17274 bxe_init_pxp(sc); 17275 17276 #ifdef __BIG_ENDIAN 17277 REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1); 17278 REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1); 17279 REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1); 17280 REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1); 17281 REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1); 17282 /* make sure this value is 0 */ 17283 REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0); 17284 17285 //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1); 17286 REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1); 17287 REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1); 17288 REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1); 17289 REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1); 17290 #endif 17291 17292 ecore_ilt_init_page_size(sc, INITOP_SET); 17293 17294 if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) { 17295 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 17296 } 17297 17298 /* let the HW do it's magic... */ 17299 DELAY(100000); 17300 17301 /* finish PXP init */ 17302 val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE); 17303 if (val != 1) { 17304 BLOGE(sc, "PXP2 CFG failed\n"); 17305 return (-1); 17306 } 17307 val = REG_RD(sc, PXP2_REG_RD_INIT_DONE); 17308 if (val != 1) { 17309 BLOGE(sc, "PXP2 RD_INIT failed\n"); 17310 return (-1); 17311 } 17312 17313 BLOGD(sc, DBG_LOAD, "after pxp init\n"); 17314 17315 /* 17316 * Timer bug workaround for E2 only. We need to set the entire ILT to have 17317 * entries with value "0" and valid bit on. This needs to be done by the 17318 * first PF that is loaded in a path (i.e. common phase) 17319 */ 17320 if (!CHIP_IS_E1x(sc)) { 17321 /* 17322 * In E2 there is a bug in the timers block that can cause function 6 / 7 17323 * (i.e. vnic3) to start even if it is marked as "scan-off". 17324 * This occurs when a different function (func2,3) is being marked 17325 * as "scan-off". Real-life scenario for example: if a driver is being 17326 * load-unloaded while func6,7 are down. This will cause the timer to access 17327 * the ilt, translate to a logical address and send a request to read/write. 17328 * Since the ilt for the function that is down is not valid, this will cause 17329 * a translation error which is unrecoverable. 17330 * The Workaround is intended to make sure that when this happens nothing 17331 * fatal will occur. The workaround: 17332 * 1. First PF driver which loads on a path will: 17333 * a. After taking the chip out of reset, by using pretend, 17334 * it will write "0" to the following registers of 17335 * the other vnics. 17336 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 17337 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 17338 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 17339 * And for itself it will write '1' to 17340 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 17341 * dmae-operations (writing to pram for example.) 17342 * note: can be done for only function 6,7 but cleaner this 17343 * way. 17344 * b. Write zero+valid to the entire ILT. 17345 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 17346 * VNIC3 (of that port). The range allocated will be the 17347 * entire ILT. This is needed to prevent ILT range error. 17348 * 2. Any PF driver load flow: 17349 * a. ILT update with the physical addresses of the allocated 17350 * logical pages. 17351 * b. Wait 20msec. - note that this timeout is needed to make 17352 * sure there are no requests in one of the PXP internal 17353 * queues with "old" ILT addresses. 17354 * c. PF enable in the PGLC. 17355 * d. Clear the was_error of the PF in the PGLC. (could have 17356 * occurred while driver was down) 17357 * e. PF enable in the CFC (WEAK + STRONG) 17358 * f. Timers scan enable 17359 * 3. PF driver unload flow: 17360 * a. Clear the Timers scan_en. 17361 * b. Polling for scan_on=0 for that PF. 17362 * c. Clear the PF enable bit in the PXP. 17363 * d. Clear the PF enable in the CFC (WEAK + STRONG) 17364 * e. Write zero+valid to all ILT entries (The valid bit must 17365 * stay set) 17366 * f. If this is VNIC 3 of a port then also init 17367 * first_timers_ilt_entry to zero and last_timers_ilt_entry 17368 * to the last enrty in the ILT. 17369 * 17370 * Notes: 17371 * Currently the PF error in the PGLC is non recoverable. 17372 * In the future the there will be a recovery routine for this error. 17373 * Currently attention is masked. 17374 * Having an MCP lock on the load/unload process does not guarantee that 17375 * there is no Timer disable during Func6/7 enable. This is because the 17376 * Timers scan is currently being cleared by the MCP on FLR. 17377 * Step 2.d can be done only for PF6/7 and the driver can also check if 17378 * there is error before clearing it. But the flow above is simpler and 17379 * more general. 17380 * All ILT entries are written by zero+valid and not just PF6/7 17381 * ILT entries since in the future the ILT entries allocation for 17382 * PF-s might be dynamic. 17383 */ 17384 struct ilt_client_info ilt_cli; 17385 struct ecore_ilt ilt; 17386 17387 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 17388 memset(&ilt, 0, sizeof(struct ecore_ilt)); 17389 17390 /* initialize dummy TM client */ 17391 ilt_cli.start = 0; 17392 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 17393 ilt_cli.client_num = ILT_CLIENT_TM; 17394 17395 /* 17396 * Step 1: set zeroes to all ilt page entries with valid bit on 17397 * Step 2: set the timers first/last ilt entry to point 17398 * to the entire range to prevent ILT range error for 3rd/4th 17399 * vnic (this code assumes existence of the vnic) 17400 * 17401 * both steps performed by call to ecore_ilt_client_init_op() 17402 * with dummy TM client 17403 * 17404 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 17405 * and his brother are split registers 17406 */ 17407 17408 bxe_pretend_func(sc, (SC_PATH(sc) + 6)); 17409 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR); 17410 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 17411 17412 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN); 17413 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN); 17414 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 17415 } 17416 17417 REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0); 17418 REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0); 17419 17420 if (!CHIP_IS_E1x(sc)) { 17421 int factor = CHIP_REV_IS_EMUL(sc) ? 1000 : 17422 (CHIP_REV_IS_FPGA(sc) ? 400 : 0); 17423 17424 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON); 17425 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON); 17426 17427 /* let the HW do it's magic... */ 17428 do { 17429 DELAY(200000); 17430 val = REG_RD(sc, ATC_REG_ATC_INIT_DONE); 17431 } while (factor-- && (val != 1)); 17432 17433 if (val != 1) { 17434 BLOGE(sc, "ATC_INIT failed\n"); 17435 return (-1); 17436 } 17437 } 17438 17439 BLOGD(sc, DBG_LOAD, "after pglue and atc init\n"); 17440 17441 ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON); 17442 17443 bxe_iov_init_dmae(sc); 17444 17445 /* clean the DMAE memory */ 17446 sc->dmae_ready = 1; 17447 ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1); 17448 17449 ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON); 17450 17451 ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON); 17452 17453 ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON); 17454 17455 ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON); 17456 17457 bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3); 17458 bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3); 17459 bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3); 17460 bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3); 17461 17462 ecore_init_block(sc, BLOCK_QM, PHASE_COMMON); 17463 17464 /* QM queues pointers table */ 17465 ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET); 17466 17467 /* soft reset pulse */ 17468 REG_WR(sc, QM_REG_SOFT_RESET, 1); 17469 REG_WR(sc, QM_REG_SOFT_RESET, 0); 17470 17471 if (CNIC_SUPPORT(sc)) 17472 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON); 17473 17474 ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON); 17475 REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT); 17476 if (!CHIP_REV_IS_SLOW(sc)) { 17477 /* enable hw interrupt from doorbell Q */ 17478 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 17479 } 17480 17481 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 17482 17483 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 17484 REG_WR(sc, PRS_REG_A_PRSU_20, 0xf); 17485 17486 if (!CHIP_IS_E1(sc)) { 17487 REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan); 17488 } 17489 17490 if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) { 17491 if (IS_MF_AFEX(sc)) { 17492 /* 17493 * configure that AFEX and VLAN headers must be 17494 * received in AFEX mode 17495 */ 17496 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE); 17497 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA); 17498 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 17499 REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 17500 REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4); 17501 } else { 17502 /* 17503 * Bit-map indicating which L2 hdrs may appear 17504 * after the basic Ethernet header 17505 */ 17506 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 17507 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17508 } 17509 } 17510 17511 ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON); 17512 ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON); 17513 ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON); 17514 ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON); 17515 17516 if (!CHIP_IS_E1x(sc)) { 17517 /* reset VFC memories */ 17518 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17519 VFC_MEMORIES_RST_REG_CAM_RST | 17520 VFC_MEMORIES_RST_REG_RAM_RST); 17521 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17522 VFC_MEMORIES_RST_REG_CAM_RST | 17523 VFC_MEMORIES_RST_REG_RAM_RST); 17524 17525 DELAY(20000); 17526 } 17527 17528 ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON); 17529 ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON); 17530 ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON); 17531 ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON); 17532 17533 /* sync semi rtc */ 17534 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 17535 0x80000000); 17536 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 17537 0x80000000); 17538 17539 ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON); 17540 ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON); 17541 ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON); 17542 17543 if (!CHIP_IS_E1x(sc)) { 17544 if (IS_MF_AFEX(sc)) { 17545 /* 17546 * configure that AFEX and VLAN headers must be 17547 * sent in AFEX mode 17548 */ 17549 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE); 17550 REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA); 17551 REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 17552 REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 17553 REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4); 17554 } else { 17555 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 17556 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17557 } 17558 } 17559 17560 REG_WR(sc, SRC_REG_SOFT_RST, 1); 17561 17562 ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON); 17563 17564 if (CNIC_SUPPORT(sc)) { 17565 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672); 17566 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 17567 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b); 17568 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a); 17569 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116); 17570 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 17571 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf); 17572 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 17573 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f); 17574 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7); 17575 } 17576 REG_WR(sc, SRC_REG_SOFT_RST, 0); 17577 17578 if (sizeof(union cdu_context) != 1024) { 17579 /* we currently assume that a context is 1024 bytes */ 17580 BLOGE(sc, "please adjust the size of cdu_context(%ld)\n", 17581 (long)sizeof(union cdu_context)); 17582 } 17583 17584 ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON); 17585 val = (4 << 24) + (0 << 12) + 1024; 17586 REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val); 17587 17588 ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON); 17589 17590 REG_WR(sc, CFC_REG_INIT_REG, 0x7FF); 17591 /* enable context validation interrupt from CFC */ 17592 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 17593 17594 /* set the thresholds to prevent CFC/CDU race */ 17595 REG_WR(sc, CFC_REG_DEBUG0, 0x20020000); 17596 ecore_init_block(sc, BLOCK_HC, PHASE_COMMON); 17597 17598 if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) { 17599 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36); 17600 } 17601 17602 ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON); 17603 ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON); 17604 17605 /* Reset PCIE errors for debug */ 17606 REG_WR(sc, 0x2814, 0xffffffff); 17607 REG_WR(sc, 0x3820, 0xffffffff); 17608 17609 if (!CHIP_IS_E1x(sc)) { 17610 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 17611 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 17612 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 17613 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 17614 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 17615 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 17616 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 17617 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 17618 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 17619 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 17620 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 17621 } 17622 17623 ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON); 17624 17625 if (!CHIP_IS_E1(sc)) { 17626 /* in E3 this done in per-port section */ 17627 if (!CHIP_IS_E3(sc)) 17628 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17629 } 17630 17631 if (CHIP_IS_E1H(sc)) { 17632 /* not applicable for E2 (and above ...) */ 17633 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc)); 17634 } 17635 17636 if (CHIP_REV_IS_SLOW(sc)) { 17637 DELAY(200000); 17638 } 17639 17640 /* finish CFC init */ 17641 val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10); 17642 if (val != 1) { 17643 BLOGE(sc, "CFC LL_INIT failed\n"); 17644 return (-1); 17645 } 17646 val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10); 17647 if (val != 1) { 17648 BLOGE(sc, "CFC AC_INIT failed\n"); 17649 return (-1); 17650 } 17651 val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 17652 if (val != 1) { 17653 BLOGE(sc, "CFC CAM_INIT failed\n"); 17654 return (-1); 17655 } 17656 REG_WR(sc, CFC_REG_DEBUG0, 0); 17657 17658 if (CHIP_IS_E1(sc)) { 17659 /* read NIG statistic to see if this is our first up since powerup */ 17660 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 17661 val = *BXE_SP(sc, wb_data[0]); 17662 17663 /* do internal memory self test */ 17664 if ((val == 0) && bxe_int_mem_test(sc)) { 17665 BLOGE(sc, "internal mem self test failed\n"); 17666 return (-1); 17667 } 17668 } 17669 17670 bxe_setup_fan_failure_detection(sc); 17671 17672 /* clear PXP2 attentions */ 17673 REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 17674 17675 bxe_enable_blocks_attention(sc); 17676 17677 if (!CHIP_REV_IS_SLOW(sc)) { 17678 ecore_enable_blocks_parity(sc); 17679 } 17680 17681 if (!BXE_NOMCP(sc)) { 17682 if (CHIP_IS_E1x(sc)) { 17683 bxe_common_init_phy(sc); 17684 } 17685 } 17686 17687 return (0); 17688 } 17689 17690 /** 17691 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase. 17692 * 17693 * @sc: driver handle 17694 */ 17695 static int 17696 bxe_init_hw_common_chip(struct bxe_softc *sc) 17697 { 17698 int rc = bxe_init_hw_common(sc); 17699 17700 if (rc) { 17701 return (rc); 17702 } 17703 17704 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 17705 if (!BXE_NOMCP(sc)) { 17706 bxe_common_init_phy(sc); 17707 } 17708 17709 return (0); 17710 } 17711 17712 static int 17713 bxe_init_hw_port(struct bxe_softc *sc) 17714 { 17715 int port = SC_PORT(sc); 17716 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 17717 uint32_t low, high; 17718 uint32_t val; 17719 17720 BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port); 17721 17722 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 17723 17724 ecore_init_block(sc, BLOCK_MISC, init_phase); 17725 ecore_init_block(sc, BLOCK_PXP, init_phase); 17726 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17727 17728 /* 17729 * Timers bug workaround: disables the pf_master bit in pglue at 17730 * common phase, we need to enable it here before any dmae access are 17731 * attempted. Therefore we manually added the enable-master to the 17732 * port phase (it also happens in the function phase) 17733 */ 17734 if (!CHIP_IS_E1x(sc)) { 17735 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17736 } 17737 17738 ecore_init_block(sc, BLOCK_ATC, init_phase); 17739 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17740 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17741 ecore_init_block(sc, BLOCK_QM, init_phase); 17742 17743 ecore_init_block(sc, BLOCK_TCM, init_phase); 17744 ecore_init_block(sc, BLOCK_UCM, init_phase); 17745 ecore_init_block(sc, BLOCK_CCM, init_phase); 17746 ecore_init_block(sc, BLOCK_XCM, init_phase); 17747 17748 /* QM cid (connection) count */ 17749 ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET); 17750 17751 if (CNIC_SUPPORT(sc)) { 17752 ecore_init_block(sc, BLOCK_TM, init_phase); 17753 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20); 17754 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 17755 } 17756 17757 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17758 17759 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17760 17761 if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) { 17762 if (IS_MF(sc)) { 17763 low = (BXE_ONE_PORT(sc) ? 160 : 246); 17764 } else if (sc->mtu > 4096) { 17765 if (BXE_ONE_PORT(sc)) { 17766 low = 160; 17767 } else { 17768 val = sc->mtu; 17769 /* (24*1024 + val*4)/256 */ 17770 low = (96 + (val / 64) + ((val % 64) ? 1 : 0)); 17771 } 17772 } else { 17773 low = (BXE_ONE_PORT(sc) ? 80 : 160); 17774 } 17775 high = (low + 56); /* 14*1024/256 */ 17776 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 17777 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 17778 } 17779 17780 if (CHIP_IS_MODE_4_PORT(sc)) { 17781 REG_WR(sc, SC_PORT(sc) ? 17782 BRB1_REG_MAC_GUARANTIED_1 : 17783 BRB1_REG_MAC_GUARANTIED_0, 40); 17784 } 17785 17786 ecore_init_block(sc, BLOCK_PRS, init_phase); 17787 if (CHIP_IS_E3B0(sc)) { 17788 if (IS_MF_AFEX(sc)) { 17789 /* configure headers for AFEX mode */ 17790 REG_WR(sc, SC_PORT(sc) ? 17791 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17792 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 17793 REG_WR(sc, SC_PORT(sc) ? 17794 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 17795 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 17796 REG_WR(sc, SC_PORT(sc) ? 17797 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 17798 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 17799 } else { 17800 /* Ovlan exists only if we are in multi-function + 17801 * switch-dependent mode, in switch-independent there 17802 * is no ovlan headers 17803 */ 17804 REG_WR(sc, SC_PORT(sc) ? 17805 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17806 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 17807 (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6)); 17808 } 17809 } 17810 17811 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17812 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17813 ecore_init_block(sc, BLOCK_USDM, init_phase); 17814 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17815 17816 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17817 ecore_init_block(sc, BLOCK_USEM, init_phase); 17818 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17819 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17820 17821 ecore_init_block(sc, BLOCK_UPB, init_phase); 17822 ecore_init_block(sc, BLOCK_XPB, init_phase); 17823 17824 ecore_init_block(sc, BLOCK_PBF, init_phase); 17825 17826 if (CHIP_IS_E1x(sc)) { 17827 /* configure PBF to work without PAUSE mtu 9000 */ 17828 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 17829 17830 /* update threshold */ 17831 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 17832 /* update init credit */ 17833 REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 17834 17835 /* probe changes */ 17836 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1); 17837 DELAY(50); 17838 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0); 17839 } 17840 17841 if (CNIC_SUPPORT(sc)) { 17842 ecore_init_block(sc, BLOCK_SRC, init_phase); 17843 } 17844 17845 ecore_init_block(sc, BLOCK_CDU, init_phase); 17846 ecore_init_block(sc, BLOCK_CFC, init_phase); 17847 17848 if (CHIP_IS_E1(sc)) { 17849 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17850 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17851 } 17852 ecore_init_block(sc, BLOCK_HC, init_phase); 17853 17854 ecore_init_block(sc, BLOCK_IGU, init_phase); 17855 17856 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17857 /* init aeu_mask_attn_func_0/1: 17858 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use 17859 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF 17860 * bits 4-7 are used for "per vn group attention" */ 17861 val = IS_MF(sc) ? 0xF7 : 0x7; 17862 /* Enable DCBX attention for all but E1 */ 17863 val |= CHIP_IS_E1(sc) ? 0 : 0x10; 17864 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 17865 17866 ecore_init_block(sc, BLOCK_NIG, init_phase); 17867 17868 if (!CHIP_IS_E1x(sc)) { 17869 /* Bit-map indicating which L2 hdrs may appear after the 17870 * basic Ethernet header 17871 */ 17872 if (IS_MF_AFEX(sc)) { 17873 REG_WR(sc, SC_PORT(sc) ? 17874 NIG_REG_P1_HDRS_AFTER_BASIC : 17875 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 17876 } else { 17877 REG_WR(sc, SC_PORT(sc) ? 17878 NIG_REG_P1_HDRS_AFTER_BASIC : 17879 NIG_REG_P0_HDRS_AFTER_BASIC, 17880 IS_MF_SD(sc) ? 7 : 6); 17881 } 17882 17883 if (CHIP_IS_E3(sc)) { 17884 REG_WR(sc, SC_PORT(sc) ? 17885 NIG_REG_LLH1_MF_MODE : 17886 NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17887 } 17888 } 17889 if (!CHIP_IS_E3(sc)) { 17890 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 17891 } 17892 17893 if (!CHIP_IS_E1(sc)) { 17894 /* 0x2 disable mf_ov, 0x1 enable */ 17895 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 17896 (IS_MF_SD(sc) ? 0x1 : 0x2)); 17897 17898 if (!CHIP_IS_E1x(sc)) { 17899 val = 0; 17900 switch (sc->devinfo.mf_info.mf_mode) { 17901 case MULTI_FUNCTION_SD: 17902 val = 1; 17903 break; 17904 case MULTI_FUNCTION_SI: 17905 case MULTI_FUNCTION_AFEX: 17906 val = 2; 17907 break; 17908 } 17909 17910 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE : 17911 NIG_REG_LLH0_CLS_TYPE), val); 17912 } 17913 REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 17914 REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 17915 REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 17916 } 17917 17918 /* If SPIO5 is set to generate interrupts, enable it for this port */ 17919 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17920 if (val & MISC_SPIO_SPIO5) { 17921 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 17922 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 17923 val = REG_RD(sc, reg_addr); 17924 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 17925 REG_WR(sc, reg_addr, val); 17926 } 17927 17928 return (0); 17929 } 17930 17931 static uint32_t 17932 bxe_flr_clnup_reg_poll(struct bxe_softc *sc, 17933 uint32_t reg, 17934 uint32_t expected, 17935 uint32_t poll_count) 17936 { 17937 uint32_t cur_cnt = poll_count; 17938 uint32_t val; 17939 17940 while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) { 17941 DELAY(FLR_WAIT_INTERVAL); 17942 } 17943 17944 return (val); 17945 } 17946 17947 static int 17948 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc, 17949 uint32_t reg, 17950 char *msg, 17951 uint32_t poll_cnt) 17952 { 17953 uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt); 17954 17955 if (val != 0) { 17956 BLOGE(sc, "%s usage count=%d\n", msg, val); 17957 return (1); 17958 } 17959 17960 return (0); 17961 } 17962 17963 /* Common routines with VF FLR cleanup */ 17964 static uint32_t 17965 bxe_flr_clnup_poll_count(struct bxe_softc *sc) 17966 { 17967 /* adjust polling timeout */ 17968 if (CHIP_REV_IS_EMUL(sc)) { 17969 return (FLR_POLL_CNT * 2000); 17970 } 17971 17972 if (CHIP_REV_IS_FPGA(sc)) { 17973 return (FLR_POLL_CNT * 120); 17974 } 17975 17976 return (FLR_POLL_CNT); 17977 } 17978 17979 static int 17980 bxe_poll_hw_usage_counters(struct bxe_softc *sc, 17981 uint32_t poll_cnt) 17982 { 17983 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 17984 if (bxe_flr_clnup_poll_hw_counter(sc, 17985 CFC_REG_NUM_LCIDS_INSIDE_PF, 17986 "CFC PF usage counter timed out", 17987 poll_cnt)) { 17988 return (1); 17989 } 17990 17991 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 17992 if (bxe_flr_clnup_poll_hw_counter(sc, 17993 DORQ_REG_PF_USAGE_CNT, 17994 "DQ PF usage counter timed out", 17995 poll_cnt)) { 17996 return (1); 17997 } 17998 17999 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 18000 if (bxe_flr_clnup_poll_hw_counter(sc, 18001 QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc), 18002 "QM PF usage counter timed out", 18003 poll_cnt)) { 18004 return (1); 18005 } 18006 18007 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 18008 if (bxe_flr_clnup_poll_hw_counter(sc, 18009 TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc), 18010 "Timers VNIC usage counter timed out", 18011 poll_cnt)) { 18012 return (1); 18013 } 18014 18015 if (bxe_flr_clnup_poll_hw_counter(sc, 18016 TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc), 18017 "Timers NUM_SCANS usage counter timed out", 18018 poll_cnt)) { 18019 return (1); 18020 } 18021 18022 /* Wait DMAE PF usage counter to zero */ 18023 if (bxe_flr_clnup_poll_hw_counter(sc, 18024 dmae_reg_go_c[INIT_DMAE_C(sc)], 18025 "DMAE dommand register timed out", 18026 poll_cnt)) { 18027 return (1); 18028 } 18029 18030 return (0); 18031 } 18032 18033 #define OP_GEN_PARAM(param) \ 18034 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 18035 #define OP_GEN_TYPE(type) \ 18036 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 18037 #define OP_GEN_AGG_VECT(index) \ 18038 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 18039 18040 static int 18041 bxe_send_final_clnup(struct bxe_softc *sc, 18042 uint8_t clnup_func, 18043 uint32_t poll_cnt) 18044 { 18045 uint32_t op_gen_command = 0; 18046 uint32_t comp_addr = (BAR_CSTRORM_INTMEM + 18047 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func)); 18048 int ret = 0; 18049 18050 if (REG_RD(sc, comp_addr)) { 18051 BLOGE(sc, "Cleanup complete was not 0 before sending\n"); 18052 return (1); 18053 } 18054 18055 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 18056 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 18057 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 18058 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 18059 18060 BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n"); 18061 REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command); 18062 18063 if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) { 18064 BLOGE(sc, "FW final cleanup did not succeed\n"); 18065 BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n", 18066 (REG_RD(sc, comp_addr))); 18067 bxe_panic(sc, ("FLR cleanup failed\n")); 18068 return (1); 18069 } 18070 18071 /* Zero completion for nxt FLR */ 18072 REG_WR(sc, comp_addr, 0); 18073 18074 return (ret); 18075 } 18076 18077 static void 18078 bxe_pbf_pN_buf_flushed(struct bxe_softc *sc, 18079 struct pbf_pN_buf_regs *regs, 18080 uint32_t poll_count) 18081 { 18082 uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start; 18083 uint32_t cur_cnt = poll_count; 18084 18085 crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed); 18086 crd = crd_start = REG_RD(sc, regs->crd); 18087 init_crd = REG_RD(sc, regs->init_crd); 18088 18089 BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 18090 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd); 18091 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 18092 18093 while ((crd != init_crd) && 18094 ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) < 18095 (init_crd - crd_start))) { 18096 if (cur_cnt--) { 18097 DELAY(FLR_WAIT_INTERVAL); 18098 crd = REG_RD(sc, regs->crd); 18099 crd_freed = REG_RD(sc, regs->crd_freed); 18100 } else { 18101 BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN); 18102 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd); 18103 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed); 18104 break; 18105 } 18106 } 18107 18108 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n", 18109 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 18110 } 18111 18112 static void 18113 bxe_pbf_pN_cmd_flushed(struct bxe_softc *sc, 18114 struct pbf_pN_cmd_regs *regs, 18115 uint32_t poll_count) 18116 { 18117 uint32_t occup, to_free, freed, freed_start; 18118 uint32_t cur_cnt = poll_count; 18119 18120 occup = to_free = REG_RD(sc, regs->lines_occup); 18121 freed = freed_start = REG_RD(sc, regs->lines_freed); 18122 18123 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 18124 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 18125 18126 while (occup && 18127 ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) { 18128 if (cur_cnt--) { 18129 DELAY(FLR_WAIT_INTERVAL); 18130 occup = REG_RD(sc, regs->lines_occup); 18131 freed = REG_RD(sc, regs->lines_freed); 18132 } else { 18133 BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN); 18134 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 18135 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 18136 break; 18137 } 18138 } 18139 18140 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n", 18141 poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 18142 } 18143 18144 static void 18145 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count) 18146 { 18147 struct pbf_pN_cmd_regs cmd_regs[] = { 18148 {0, (CHIP_IS_E3B0(sc)) ? 18149 PBF_REG_TQ_OCCUPANCY_Q0 : 18150 PBF_REG_P0_TQ_OCCUPANCY, 18151 (CHIP_IS_E3B0(sc)) ? 18152 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 18153 PBF_REG_P0_TQ_LINES_FREED_CNT}, 18154 {1, (CHIP_IS_E3B0(sc)) ? 18155 PBF_REG_TQ_OCCUPANCY_Q1 : 18156 PBF_REG_P1_TQ_OCCUPANCY, 18157 (CHIP_IS_E3B0(sc)) ? 18158 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 18159 PBF_REG_P1_TQ_LINES_FREED_CNT}, 18160 {4, (CHIP_IS_E3B0(sc)) ? 18161 PBF_REG_TQ_OCCUPANCY_LB_Q : 18162 PBF_REG_P4_TQ_OCCUPANCY, 18163 (CHIP_IS_E3B0(sc)) ? 18164 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 18165 PBF_REG_P4_TQ_LINES_FREED_CNT} 18166 }; 18167 18168 struct pbf_pN_buf_regs buf_regs[] = { 18169 {0, (CHIP_IS_E3B0(sc)) ? 18170 PBF_REG_INIT_CRD_Q0 : 18171 PBF_REG_P0_INIT_CRD , 18172 (CHIP_IS_E3B0(sc)) ? 18173 PBF_REG_CREDIT_Q0 : 18174 PBF_REG_P0_CREDIT, 18175 (CHIP_IS_E3B0(sc)) ? 18176 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 18177 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 18178 {1, (CHIP_IS_E3B0(sc)) ? 18179 PBF_REG_INIT_CRD_Q1 : 18180 PBF_REG_P1_INIT_CRD, 18181 (CHIP_IS_E3B0(sc)) ? 18182 PBF_REG_CREDIT_Q1 : 18183 PBF_REG_P1_CREDIT, 18184 (CHIP_IS_E3B0(sc)) ? 18185 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 18186 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 18187 {4, (CHIP_IS_E3B0(sc)) ? 18188 PBF_REG_INIT_CRD_LB_Q : 18189 PBF_REG_P4_INIT_CRD, 18190 (CHIP_IS_E3B0(sc)) ? 18191 PBF_REG_CREDIT_LB_Q : 18192 PBF_REG_P4_CREDIT, 18193 (CHIP_IS_E3B0(sc)) ? 18194 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 18195 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 18196 }; 18197 18198 int i; 18199 18200 /* Verify the command queues are flushed P0, P1, P4 */ 18201 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) { 18202 bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count); 18203 } 18204 18205 /* Verify the transmission buffers are flushed P0, P1, P4 */ 18206 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) { 18207 bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count); 18208 } 18209 } 18210 18211 static void 18212 bxe_hw_enable_status(struct bxe_softc *sc) 18213 { 18214 uint32_t val; 18215 18216 val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF); 18217 BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 18218 18219 val = REG_RD(sc, PBF_REG_DISABLE_PF); 18220 BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val); 18221 18222 val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN); 18223 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 18224 18225 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN); 18226 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 18227 18228 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 18229 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 18230 18231 val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 18232 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 18233 18234 val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 18235 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 18236 18237 val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 18238 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val); 18239 } 18240 18241 static int 18242 bxe_pf_flr_clnup(struct bxe_softc *sc) 18243 { 18244 uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc); 18245 18246 BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc)); 18247 18248 /* Re-enable PF target read access */ 18249 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 18250 18251 /* Poll HW usage counters */ 18252 BLOGD(sc, DBG_LOAD, "Polling usage counters\n"); 18253 if (bxe_poll_hw_usage_counters(sc, poll_cnt)) { 18254 return (-1); 18255 } 18256 18257 /* Zero the igu 'trailing edge' and 'leading edge' */ 18258 18259 /* Send the FW cleanup command */ 18260 if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) { 18261 return (-1); 18262 } 18263 18264 /* ATC cleanup */ 18265 18266 /* Verify TX hw is flushed */ 18267 bxe_tx_hw_flushed(sc, poll_cnt); 18268 18269 /* Wait 100ms (not adjusted according to platform) */ 18270 DELAY(100000); 18271 18272 /* Verify no pending pci transactions */ 18273 if (bxe_is_pcie_pending(sc)) { 18274 BLOGE(sc, "PCIE Transactions still pending\n"); 18275 } 18276 18277 /* Debug */ 18278 bxe_hw_enable_status(sc); 18279 18280 /* 18281 * Master enable - Due to WB DMAE writes performed before this 18282 * register is re-initialized as part of the regular function init 18283 */ 18284 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 18285 18286 return (0); 18287 } 18288 18289 #if 0 18290 static void 18291 bxe_init_searcher(struct bxe_softc *sc) 18292 { 18293 int port = SC_PORT(sc); 18294 ecore_src_init_t2(sc, sc->t2, sc->t2_mapping, SRC_CONN_NUM); 18295 /* T1 hash bits value determines the T1 number of entries */ 18296 REG_WR(sc, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS); 18297 } 18298 #endif 18299 18300 static int 18301 bxe_init_hw_func(struct bxe_softc *sc) 18302 { 18303 int port = SC_PORT(sc); 18304 int func = SC_FUNC(sc); 18305 int init_phase = PHASE_PF0 + func; 18306 struct ecore_ilt *ilt = sc->ilt; 18307 uint16_t cdu_ilt_start; 18308 uint32_t addr, val; 18309 uint32_t main_mem_base, main_mem_size, main_mem_prty_clr; 18310 int i, main_mem_width, rc; 18311 18312 BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func); 18313 18314 /* FLR cleanup */ 18315 if (!CHIP_IS_E1x(sc)) { 18316 rc = bxe_pf_flr_clnup(sc); 18317 if (rc) { 18318 BLOGE(sc, "FLR cleanup failed!\n"); 18319 // XXX bxe_fw_dump(sc); 18320 // XXX bxe_idle_chk(sc); 18321 return (rc); 18322 } 18323 } 18324 18325 /* set MSI reconfigure capability */ 18326 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18327 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 18328 val = REG_RD(sc, addr); 18329 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 18330 REG_WR(sc, addr, val); 18331 } 18332 18333 ecore_init_block(sc, BLOCK_PXP, init_phase); 18334 ecore_init_block(sc, BLOCK_PXP2, init_phase); 18335 18336 ilt = sc->ilt; 18337 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 18338 18339 #if 0 18340 if (IS_SRIOV(sc)) { 18341 cdu_ilt_start += BXE_FIRST_VF_CID/ILT_PAGE_CIDS; 18342 } 18343 cdu_ilt_start = bxe_iov_init_ilt(sc, cdu_ilt_start); 18344 18345 #if (BXE_FIRST_VF_CID > 0) 18346 /* 18347 * If BXE_FIRST_VF_CID > 0 then the PF L2 cids precedes 18348 * those of the VFs, so start line should be reset 18349 */ 18350 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 18351 #endif 18352 #endif 18353 18354 for (i = 0; i < L2_ILT_LINES(sc); i++) { 18355 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt; 18356 ilt->lines[cdu_ilt_start + i].page_mapping = 18357 sc->context[i].vcxt_dma.paddr; 18358 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size; 18359 } 18360 ecore_ilt_init_op(sc, INITOP_SET); 18361 18362 #if 0 18363 if (!CONFIGURE_NIC_MODE(sc)) { 18364 bxe_init_searcher(sc); 18365 REG_WR(sc, PRS_REG_NIC_MODE, 0); 18366 BLOGD(sc, DBG_LOAD, "NIC MODE disabled\n"); 18367 } else 18368 #endif 18369 { 18370 /* Set NIC mode */ 18371 REG_WR(sc, PRS_REG_NIC_MODE, 1); 18372 BLOGD(sc, DBG_LOAD, "NIC MODE configured\n"); 18373 } 18374 18375 if (!CHIP_IS_E1x(sc)) { 18376 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN; 18377 18378 /* Turn on a single ISR mode in IGU if driver is going to use 18379 * INT#x or MSI 18380 */ 18381 if (sc->interrupt_mode != INTR_MODE_MSIX) { 18382 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 18383 } 18384 18385 /* 18386 * Timers workaround bug: function init part. 18387 * Need to wait 20msec after initializing ILT, 18388 * needed to make sure there are no requests in 18389 * one of the PXP internal queues with "old" ILT addresses 18390 */ 18391 DELAY(20000); 18392 18393 /* 18394 * Master enable - Due to WB DMAE writes performed before this 18395 * register is re-initialized as part of the regular function 18396 * init 18397 */ 18398 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 18399 /* Enable the function in IGU */ 18400 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf); 18401 } 18402 18403 sc->dmae_ready = 1; 18404 18405 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 18406 18407 if (!CHIP_IS_E1x(sc)) 18408 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); 18409 18410 ecore_init_block(sc, BLOCK_ATC, init_phase); 18411 ecore_init_block(sc, BLOCK_DMAE, init_phase); 18412 ecore_init_block(sc, BLOCK_NIG, init_phase); 18413 ecore_init_block(sc, BLOCK_SRC, init_phase); 18414 ecore_init_block(sc, BLOCK_MISC, init_phase); 18415 ecore_init_block(sc, BLOCK_TCM, init_phase); 18416 ecore_init_block(sc, BLOCK_UCM, init_phase); 18417 ecore_init_block(sc, BLOCK_CCM, init_phase); 18418 ecore_init_block(sc, BLOCK_XCM, init_phase); 18419 ecore_init_block(sc, BLOCK_TSEM, init_phase); 18420 ecore_init_block(sc, BLOCK_USEM, init_phase); 18421 ecore_init_block(sc, BLOCK_CSEM, init_phase); 18422 ecore_init_block(sc, BLOCK_XSEM, init_phase); 18423 18424 if (!CHIP_IS_E1x(sc)) 18425 REG_WR(sc, QM_REG_PF_EN, 1); 18426 18427 if (!CHIP_IS_E1x(sc)) { 18428 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18429 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18430 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18431 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18432 } 18433 ecore_init_block(sc, BLOCK_QM, init_phase); 18434 18435 ecore_init_block(sc, BLOCK_TM, init_phase); 18436 ecore_init_block(sc, BLOCK_DORQ, init_phase); 18437 18438 bxe_iov_init_dq(sc); 18439 18440 ecore_init_block(sc, BLOCK_BRB1, init_phase); 18441 ecore_init_block(sc, BLOCK_PRS, init_phase); 18442 ecore_init_block(sc, BLOCK_TSDM, init_phase); 18443 ecore_init_block(sc, BLOCK_CSDM, init_phase); 18444 ecore_init_block(sc, BLOCK_USDM, init_phase); 18445 ecore_init_block(sc, BLOCK_XSDM, init_phase); 18446 ecore_init_block(sc, BLOCK_UPB, init_phase); 18447 ecore_init_block(sc, BLOCK_XPB, init_phase); 18448 ecore_init_block(sc, BLOCK_PBF, init_phase); 18449 if (!CHIP_IS_E1x(sc)) 18450 REG_WR(sc, PBF_REG_DISABLE_PF, 0); 18451 18452 ecore_init_block(sc, BLOCK_CDU, init_phase); 18453 18454 ecore_init_block(sc, BLOCK_CFC, init_phase); 18455 18456 if (!CHIP_IS_E1x(sc)) 18457 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1); 18458 18459 if (IS_MF(sc)) { 18460 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 18461 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc)); 18462 } 18463 18464 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 18465 18466 /* HC init per function */ 18467 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18468 if (CHIP_IS_E1H(sc)) { 18469 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 18470 18471 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18472 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18473 } 18474 ecore_init_block(sc, BLOCK_HC, init_phase); 18475 18476 } else { 18477 int num_segs, sb_idx, prod_offset; 18478 18479 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 18480 18481 if (!CHIP_IS_E1x(sc)) { 18482 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18483 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18484 } 18485 18486 ecore_init_block(sc, BLOCK_IGU, init_phase); 18487 18488 if (!CHIP_IS_E1x(sc)) { 18489 int dsb_idx = 0; 18490 /** 18491 * Producer memory: 18492 * E2 mode: address 0-135 match to the mapping memory; 18493 * 136 - PF0 default prod; 137 - PF1 default prod; 18494 * 138 - PF2 default prod; 139 - PF3 default prod; 18495 * 140 - PF0 attn prod; 141 - PF1 attn prod; 18496 * 142 - PF2 attn prod; 143 - PF3 attn prod; 18497 * 144-147 reserved. 18498 * 18499 * E1.5 mode - In backward compatible mode; 18500 * for non default SB; each even line in the memory 18501 * holds the U producer and each odd line hold 18502 * the C producer. The first 128 producers are for 18503 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 18504 * producers are for the DSB for each PF. 18505 * Each PF has five segments: (the order inside each 18506 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 18507 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 18508 * 144-147 attn prods; 18509 */ 18510 /* non-default-status-blocks */ 18511 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18512 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 18513 for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) { 18514 prod_offset = (sc->igu_base_sb + sb_idx) * 18515 num_segs; 18516 18517 for (i = 0; i < num_segs; i++) { 18518 addr = IGU_REG_PROD_CONS_MEMORY + 18519 (prod_offset + i) * 4; 18520 REG_WR(sc, addr, 0); 18521 } 18522 /* send consumer update with value 0 */ 18523 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx, 18524 USTORM_ID, 0, IGU_INT_NOP, 1); 18525 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx); 18526 } 18527 18528 /* default-status-blocks */ 18529 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18530 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 18531 18532 if (CHIP_IS_MODE_4_PORT(sc)) 18533 dsb_idx = SC_FUNC(sc); 18534 else 18535 dsb_idx = SC_VN(sc); 18536 18537 prod_offset = (CHIP_INT_MODE_IS_BC(sc) ? 18538 IGU_BC_BASE_DSB_PROD + dsb_idx : 18539 IGU_NORM_BASE_DSB_PROD + dsb_idx); 18540 18541 /* 18542 * igu prods come in chunks of E1HVN_MAX (4) - 18543 * does not matters what is the current chip mode 18544 */ 18545 for (i = 0; i < (num_segs * E1HVN_MAX); 18546 i += E1HVN_MAX) { 18547 addr = IGU_REG_PROD_CONS_MEMORY + 18548 (prod_offset + i)*4; 18549 REG_WR(sc, addr, 0); 18550 } 18551 /* send consumer update with 0 */ 18552 if (CHIP_INT_MODE_IS_BC(sc)) { 18553 bxe_ack_sb(sc, sc->igu_dsb_id, 18554 USTORM_ID, 0, IGU_INT_NOP, 1); 18555 bxe_ack_sb(sc, sc->igu_dsb_id, 18556 CSTORM_ID, 0, IGU_INT_NOP, 1); 18557 bxe_ack_sb(sc, sc->igu_dsb_id, 18558 XSTORM_ID, 0, IGU_INT_NOP, 1); 18559 bxe_ack_sb(sc, sc->igu_dsb_id, 18560 TSTORM_ID, 0, IGU_INT_NOP, 1); 18561 bxe_ack_sb(sc, sc->igu_dsb_id, 18562 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18563 } else { 18564 bxe_ack_sb(sc, sc->igu_dsb_id, 18565 USTORM_ID, 0, IGU_INT_NOP, 1); 18566 bxe_ack_sb(sc, sc->igu_dsb_id, 18567 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18568 } 18569 bxe_igu_clear_sb(sc, sc->igu_dsb_id); 18570 18571 /* !!! these should become driver const once 18572 rf-tool supports split-68 const */ 18573 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 18574 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 18575 REG_WR(sc, IGU_REG_SB_MASK_LSB, 0); 18576 REG_WR(sc, IGU_REG_SB_MASK_MSB, 0); 18577 REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0); 18578 REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0); 18579 } 18580 } 18581 18582 /* Reset PCIE errors for debug */ 18583 REG_WR(sc, 0x2114, 0xffffffff); 18584 REG_WR(sc, 0x2120, 0xffffffff); 18585 18586 if (CHIP_IS_E1x(sc)) { 18587 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 18588 main_mem_base = HC_REG_MAIN_MEMORY + 18589 SC_PORT(sc) * (main_mem_size * 4); 18590 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 18591 main_mem_width = 8; 18592 18593 val = REG_RD(sc, main_mem_prty_clr); 18594 if (val) { 18595 BLOGD(sc, DBG_LOAD, 18596 "Parity errors in HC block during function init (0x%x)!\n", 18597 val); 18598 } 18599 18600 /* Clear "false" parity errors in MSI-X table */ 18601 for (i = main_mem_base; 18602 i < main_mem_base + main_mem_size * 4; 18603 i += main_mem_width) { 18604 bxe_read_dmae(sc, i, main_mem_width / 4); 18605 bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), 18606 i, main_mem_width / 4); 18607 } 18608 /* Clear HC parity attention */ 18609 REG_RD(sc, main_mem_prty_clr); 18610 } 18611 18612 #if 1 18613 /* Enable STORMs SP logging */ 18614 REG_WR8(sc, BAR_USTRORM_INTMEM + 18615 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18616 REG_WR8(sc, BAR_TSTRORM_INTMEM + 18617 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18618 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18619 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18620 REG_WR8(sc, BAR_XSTRORM_INTMEM + 18621 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18622 #endif 18623 18624 elink_phy_probe(&sc->link_params); 18625 18626 return (0); 18627 } 18628 18629 static void 18630 bxe_link_reset(struct bxe_softc *sc) 18631 { 18632 if (!BXE_NOMCP(sc)) { 18633 BXE_PHY_LOCK(sc); 18634 elink_lfa_reset(&sc->link_params, &sc->link_vars); 18635 BXE_PHY_UNLOCK(sc); 18636 } else { 18637 if (!CHIP_REV_IS_SLOW(sc)) { 18638 BLOGW(sc, "Bootcode is missing - cannot reset link\n"); 18639 } 18640 } 18641 } 18642 18643 static void 18644 bxe_reset_port(struct bxe_softc *sc) 18645 { 18646 int port = SC_PORT(sc); 18647 uint32_t val; 18648 18649 /* reset physical Link */ 18650 bxe_link_reset(sc); 18651 18652 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 18653 18654 /* Do not rcv packets to BRB */ 18655 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 18656 /* Do not direct rcv packets that are not for MCP to the BRB */ 18657 REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 18658 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 18659 18660 /* Configure AEU */ 18661 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 18662 18663 DELAY(100000); 18664 18665 /* Check for BRB port occupancy */ 18666 val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 18667 if (val) { 18668 BLOGD(sc, DBG_LOAD, 18669 "BRB1 is not empty, %d blocks are occupied\n", val); 18670 } 18671 18672 /* TODO: Close Doorbell port? */ 18673 } 18674 18675 static void 18676 bxe_ilt_wr(struct bxe_softc *sc, 18677 uint32_t index, 18678 bus_addr_t addr) 18679 { 18680 int reg; 18681 uint32_t wb_write[2]; 18682 18683 if (CHIP_IS_E1(sc)) { 18684 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 18685 } else { 18686 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 18687 } 18688 18689 wb_write[0] = ONCHIP_ADDR1(addr); 18690 wb_write[1] = ONCHIP_ADDR2(addr); 18691 REG_WR_DMAE(sc, reg, wb_write, 2); 18692 } 18693 18694 static void 18695 bxe_clear_func_ilt(struct bxe_softc *sc, 18696 uint32_t func) 18697 { 18698 uint32_t i, base = FUNC_ILT_BASE(func); 18699 for (i = base; i < base + ILT_PER_FUNC; i++) { 18700 bxe_ilt_wr(sc, i, 0); 18701 } 18702 } 18703 18704 static void 18705 bxe_reset_func(struct bxe_softc *sc) 18706 { 18707 struct bxe_fastpath *fp; 18708 int port = SC_PORT(sc); 18709 int func = SC_FUNC(sc); 18710 int i; 18711 18712 /* Disable the function in the FW */ 18713 REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 18714 REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 18715 REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 18716 REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 18717 18718 /* FP SBs */ 18719 FOR_EACH_ETH_QUEUE(sc, i) { 18720 fp = &sc->fp[i]; 18721 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18722 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 18723 SB_DISABLED); 18724 } 18725 18726 #if 0 18727 if (CNIC_LOADED(sc)) { 18728 /* CNIC SB */ 18729 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18730 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET 18731 (bxe_cnic_fw_sb_id(sc)), SB_DISABLED); 18732 } 18733 #endif 18734 18735 /* SP SB */ 18736 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18737 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 18738 SB_DISABLED); 18739 18740 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) { 18741 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0); 18742 } 18743 18744 /* Configure IGU */ 18745 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18746 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18747 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18748 } else { 18749 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18750 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18751 } 18752 18753 if (CNIC_LOADED(sc)) { 18754 /* Disable Timer scan */ 18755 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 18756 /* 18757 * Wait for at least 10ms and up to 2 second for the timers 18758 * scan to complete 18759 */ 18760 for (i = 0; i < 200; i++) { 18761 DELAY(10000); 18762 if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4)) 18763 break; 18764 } 18765 } 18766 18767 /* Clear ILT */ 18768 bxe_clear_func_ilt(sc, func); 18769 18770 /* 18771 * Timers workaround bug for E2: if this is vnic-3, 18772 * we need to set the entire ilt range for this timers. 18773 */ 18774 if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) { 18775 struct ilt_client_info ilt_cli; 18776 /* use dummy TM client */ 18777 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 18778 ilt_cli.start = 0; 18779 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 18780 ilt_cli.client_num = ILT_CLIENT_TM; 18781 18782 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR); 18783 } 18784 18785 /* this assumes that reset_port() called before reset_func()*/ 18786 if (!CHIP_IS_E1x(sc)) { 18787 bxe_pf_disable(sc); 18788 } 18789 18790 sc->dmae_ready = 0; 18791 } 18792 18793 static int 18794 bxe_gunzip_init(struct bxe_softc *sc) 18795 { 18796 return (0); 18797 } 18798 18799 static void 18800 bxe_gunzip_end(struct bxe_softc *sc) 18801 { 18802 return; 18803 } 18804 18805 static int 18806 bxe_init_firmware(struct bxe_softc *sc) 18807 { 18808 if (CHIP_IS_E1(sc)) { 18809 ecore_init_e1_firmware(sc); 18810 sc->iro_array = e1_iro_arr; 18811 } else if (CHIP_IS_E1H(sc)) { 18812 ecore_init_e1h_firmware(sc); 18813 sc->iro_array = e1h_iro_arr; 18814 } else if (!CHIP_IS_E1x(sc)) { 18815 ecore_init_e2_firmware(sc); 18816 sc->iro_array = e2_iro_arr; 18817 } else { 18818 BLOGE(sc, "Unsupported chip revision\n"); 18819 return (-1); 18820 } 18821 18822 return (0); 18823 } 18824 18825 static void 18826 bxe_release_firmware(struct bxe_softc *sc) 18827 { 18828 /* Do nothing */ 18829 return; 18830 } 18831 18832 static int 18833 ecore_gunzip(struct bxe_softc *sc, 18834 const uint8_t *zbuf, 18835 int len) 18836 { 18837 /* XXX : Implement... */ 18838 BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n"); 18839 return (FALSE); 18840 } 18841 18842 static void 18843 ecore_reg_wr_ind(struct bxe_softc *sc, 18844 uint32_t addr, 18845 uint32_t val) 18846 { 18847 bxe_reg_wr_ind(sc, addr, val); 18848 } 18849 18850 static void 18851 ecore_write_dmae_phys_len(struct bxe_softc *sc, 18852 bus_addr_t phys_addr, 18853 uint32_t addr, 18854 uint32_t len) 18855 { 18856 bxe_write_dmae_phys_len(sc, phys_addr, addr, len); 18857 } 18858 18859 void 18860 ecore_storm_memset_struct(struct bxe_softc *sc, 18861 uint32_t addr, 18862 size_t size, 18863 uint32_t *data) 18864 { 18865 uint8_t i; 18866 for (i = 0; i < size/4; i++) { 18867 REG_WR(sc, addr + (i * 4), data[i]); 18868 } 18869 } 18870 18871