1 /*- 2 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 15 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 18 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 19 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 20 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 21 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 22 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 23 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 24 * THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #define BXE_DRIVER_VERSION "1.78.90" 31 32 #include "bxe.h" 33 #include "ecore_sp.h" 34 #include "ecore_init.h" 35 #include "ecore_init_ops.h" 36 37 #include "57710_int_offsets.h" 38 #include "57711_int_offsets.h" 39 #include "57712_int_offsets.h" 40 41 /* 42 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these 43 * explicitly here for older kernels that don't include this changeset. 44 */ 45 #ifndef CTLTYPE_U64 46 #define CTLTYPE_U64 CTLTYPE_QUAD 47 #define sysctl_handle_64 sysctl_handle_quad 48 #endif 49 50 /* 51 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these 52 * here as zero(0) for older kernels that don't include this changeset 53 * thereby masking the functionality. 54 */ 55 #ifndef CSUM_TCP_IPV6 56 #define CSUM_TCP_IPV6 0 57 #define CSUM_UDP_IPV6 0 58 #endif 59 60 /* 61 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap 62 * for older kernels that don't include this changeset. 63 */ 64 #if __FreeBSD_version < 900035 65 #define pci_find_cap pci_find_extcap 66 #endif 67 68 #define BXE_DEF_SB_ATT_IDX 0x0001 69 #define BXE_DEF_SB_IDX 0x0002 70 71 /* 72 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per 73 * function HW initialization. 74 */ 75 #define FLR_WAIT_USEC 10000 /* 10 msecs */ 76 #define FLR_WAIT_INTERVAL 50 /* usecs */ 77 #define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */ 78 79 struct pbf_pN_buf_regs { 80 int pN; 81 uint32_t init_crd; 82 uint32_t crd; 83 uint32_t crd_freed; 84 }; 85 86 struct pbf_pN_cmd_regs { 87 int pN; 88 uint32_t lines_occup; 89 uint32_t lines_freed; 90 }; 91 92 /* 93 * PCI Device ID Table used by bxe_probe(). 94 */ 95 #define BXE_DEVDESC_MAX 64 96 static struct bxe_device_type bxe_devs[] = { 97 { 98 BRCM_VENDORID, 99 CHIP_NUM_57710, 100 PCI_ANY_ID, PCI_ANY_ID, 101 "QLogic NetXtreme II BCM57710 10GbE" 102 }, 103 { 104 BRCM_VENDORID, 105 CHIP_NUM_57711, 106 PCI_ANY_ID, PCI_ANY_ID, 107 "QLogic NetXtreme II BCM57711 10GbE" 108 }, 109 { 110 BRCM_VENDORID, 111 CHIP_NUM_57711E, 112 PCI_ANY_ID, PCI_ANY_ID, 113 "QLogic NetXtreme II BCM57711E 10GbE" 114 }, 115 { 116 BRCM_VENDORID, 117 CHIP_NUM_57712, 118 PCI_ANY_ID, PCI_ANY_ID, 119 "QLogic NetXtreme II BCM57712 10GbE" 120 }, 121 { 122 BRCM_VENDORID, 123 CHIP_NUM_57712_MF, 124 PCI_ANY_ID, PCI_ANY_ID, 125 "QLogic NetXtreme II BCM57712 MF 10GbE" 126 }, 127 { 128 BRCM_VENDORID, 129 CHIP_NUM_57800, 130 PCI_ANY_ID, PCI_ANY_ID, 131 "QLogic NetXtreme II BCM57800 10GbE" 132 }, 133 { 134 BRCM_VENDORID, 135 CHIP_NUM_57800_MF, 136 PCI_ANY_ID, PCI_ANY_ID, 137 "QLogic NetXtreme II BCM57800 MF 10GbE" 138 }, 139 { 140 BRCM_VENDORID, 141 CHIP_NUM_57810, 142 PCI_ANY_ID, PCI_ANY_ID, 143 "QLogic NetXtreme II BCM57810 10GbE" 144 }, 145 { 146 BRCM_VENDORID, 147 CHIP_NUM_57810_MF, 148 PCI_ANY_ID, PCI_ANY_ID, 149 "QLogic NetXtreme II BCM57810 MF 10GbE" 150 }, 151 { 152 BRCM_VENDORID, 153 CHIP_NUM_57811, 154 PCI_ANY_ID, PCI_ANY_ID, 155 "QLogic NetXtreme II BCM57811 10GbE" 156 }, 157 { 158 BRCM_VENDORID, 159 CHIP_NUM_57811_MF, 160 PCI_ANY_ID, PCI_ANY_ID, 161 "QLogic NetXtreme II BCM57811 MF 10GbE" 162 }, 163 { 164 BRCM_VENDORID, 165 CHIP_NUM_57840_4_10, 166 PCI_ANY_ID, PCI_ANY_ID, 167 "QLogic NetXtreme II BCM57840 4x10GbE" 168 }, 169 { 170 BRCM_VENDORID, 171 CHIP_NUM_57840_2_20, 172 PCI_ANY_ID, PCI_ANY_ID, 173 "QLogic NetXtreme II BCM57840 2x20GbE" 174 }, 175 { 176 BRCM_VENDORID, 177 CHIP_NUM_57840_MF, 178 PCI_ANY_ID, PCI_ANY_ID, 179 "QLogic NetXtreme II BCM57840 MF 10GbE" 180 }, 181 { 182 0, 0, 0, 0, NULL 183 } 184 }; 185 186 MALLOC_DECLARE(M_BXE_ILT); 187 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer"); 188 189 /* 190 * FreeBSD device entry points. 191 */ 192 static int bxe_probe(device_t); 193 static int bxe_attach(device_t); 194 static int bxe_detach(device_t); 195 static int bxe_shutdown(device_t); 196 197 /* 198 * FreeBSD KLD module/device interface event handler method. 199 */ 200 static device_method_t bxe_methods[] = { 201 /* Device interface (device_if.h) */ 202 DEVMETHOD(device_probe, bxe_probe), 203 DEVMETHOD(device_attach, bxe_attach), 204 DEVMETHOD(device_detach, bxe_detach), 205 DEVMETHOD(device_shutdown, bxe_shutdown), 206 /* Bus interface (bus_if.h) */ 207 DEVMETHOD(bus_print_child, bus_generic_print_child), 208 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 209 KOBJMETHOD_END 210 }; 211 212 /* 213 * FreeBSD KLD Module data declaration 214 */ 215 static driver_t bxe_driver = { 216 "bxe", /* module name */ 217 bxe_methods, /* event handler */ 218 sizeof(struct bxe_softc) /* extra data */ 219 }; 220 221 /* 222 * FreeBSD dev class is needed to manage dev instances and 223 * to associate with a bus type 224 */ 225 static devclass_t bxe_devclass; 226 227 MODULE_DEPEND(bxe, pci, 1, 1, 1); 228 MODULE_DEPEND(bxe, ether, 1, 1, 1); 229 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0); 230 231 /* resources needed for unloading a previously loaded device */ 232 233 #define BXE_PREV_WAIT_NEEDED 1 234 struct mtx bxe_prev_mtx; 235 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF); 236 struct bxe_prev_list_node { 237 LIST_ENTRY(bxe_prev_list_node) node; 238 uint8_t bus; 239 uint8_t slot; 240 uint8_t path; 241 uint8_t aer; /* XXX automatic error recovery */ 242 uint8_t undi; 243 }; 244 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list); 245 246 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 247 248 /* Tunable device values... */ 249 250 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters"); 251 252 /* Debug */ 253 unsigned long bxe_debug = 0; 254 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN, 255 &bxe_debug, 0, "Debug logging mode"); 256 257 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 258 static int bxe_interrupt_mode = INTR_MODE_MSIX; 259 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN, 260 &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode"); 261 262 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */ 263 static int bxe_queue_count = 4; 264 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN, 265 &bxe_queue_count, 0, "Multi-Queue queue count"); 266 267 /* max number of buffers per queue (default RX_BD_USABLE) */ 268 static int bxe_max_rx_bufs = 0; 269 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN, 270 &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue"); 271 272 /* Host interrupt coalescing RX tick timer (usecs) */ 273 static int bxe_hc_rx_ticks = 25; 274 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN, 275 &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks"); 276 277 /* Host interrupt coalescing TX tick timer (usecs) */ 278 static int bxe_hc_tx_ticks = 50; 279 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN, 280 &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks"); 281 282 /* Maximum number of Rx packets to process at a time */ 283 static int bxe_rx_budget = 0xffffffff; 284 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN, 285 &bxe_rx_budget, 0, "Rx processing budget"); 286 287 /* Maximum LRO aggregation size */ 288 static int bxe_max_aggregation_size = 0; 289 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN, 290 &bxe_max_aggregation_size, 0, "max aggregation size"); 291 292 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */ 293 static int bxe_mrrs = -1; 294 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN, 295 &bxe_mrrs, 0, "PCIe maximum read request size"); 296 297 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */ 298 static int bxe_autogreeen = 0; 299 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN, 300 &bxe_autogreeen, 0, "AutoGrEEEn support"); 301 302 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */ 303 static int bxe_udp_rss = 0; 304 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN, 305 &bxe_udp_rss, 0, "UDP RSS support"); 306 307 308 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */ 309 310 #define STATS_OFFSET32(stat_name) \ 311 (offsetof(struct bxe_eth_stats, stat_name) / 4) 312 313 #define Q_STATS_OFFSET32(stat_name) \ 314 (offsetof(struct bxe_eth_q_stats, stat_name) / 4) 315 316 static const struct { 317 uint32_t offset; 318 uint32_t size; 319 uint32_t flags; 320 #define STATS_FLAGS_PORT 1 321 #define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */ 322 #define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT) 323 char string[STAT_NAME_LEN]; 324 } bxe_eth_stats_arr[] = { 325 { STATS_OFFSET32(total_bytes_received_hi), 326 8, STATS_FLAGS_BOTH, "rx_bytes" }, 327 { STATS_OFFSET32(error_bytes_received_hi), 328 8, STATS_FLAGS_BOTH, "rx_error_bytes" }, 329 { STATS_OFFSET32(total_unicast_packets_received_hi), 330 8, STATS_FLAGS_BOTH, "rx_ucast_packets" }, 331 { STATS_OFFSET32(total_multicast_packets_received_hi), 332 8, STATS_FLAGS_BOTH, "rx_mcast_packets" }, 333 { STATS_OFFSET32(total_broadcast_packets_received_hi), 334 8, STATS_FLAGS_BOTH, "rx_bcast_packets" }, 335 { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi), 336 8, STATS_FLAGS_PORT, "rx_crc_errors" }, 337 { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi), 338 8, STATS_FLAGS_PORT, "rx_align_errors" }, 339 { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi), 340 8, STATS_FLAGS_PORT, "rx_undersize_packets" }, 341 { STATS_OFFSET32(etherstatsoverrsizepkts_hi), 342 8, STATS_FLAGS_PORT, "rx_oversize_packets" }, 343 { STATS_OFFSET32(rx_stat_etherstatsfragments_hi), 344 8, STATS_FLAGS_PORT, "rx_fragments" }, 345 { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi), 346 8, STATS_FLAGS_PORT, "rx_jabbers" }, 347 { STATS_OFFSET32(no_buff_discard_hi), 348 8, STATS_FLAGS_BOTH, "rx_discards" }, 349 { STATS_OFFSET32(mac_filter_discard), 350 4, STATS_FLAGS_PORT, "rx_filtered_packets" }, 351 { STATS_OFFSET32(mf_tag_discard), 352 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" }, 353 { STATS_OFFSET32(pfc_frames_received_hi), 354 8, STATS_FLAGS_PORT, "pfc_frames_received" }, 355 { STATS_OFFSET32(pfc_frames_sent_hi), 356 8, STATS_FLAGS_PORT, "pfc_frames_sent" }, 357 { STATS_OFFSET32(brb_drop_hi), 358 8, STATS_FLAGS_PORT, "rx_brb_discard" }, 359 { STATS_OFFSET32(brb_truncate_hi), 360 8, STATS_FLAGS_PORT, "rx_brb_truncate" }, 361 { STATS_OFFSET32(pause_frames_received_hi), 362 8, STATS_FLAGS_PORT, "rx_pause_frames" }, 363 { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi), 364 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" }, 365 { STATS_OFFSET32(nig_timer_max), 366 4, STATS_FLAGS_PORT, "rx_constant_pause_events" }, 367 { STATS_OFFSET32(total_bytes_transmitted_hi), 368 8, STATS_FLAGS_BOTH, "tx_bytes" }, 369 { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi), 370 8, STATS_FLAGS_PORT, "tx_error_bytes" }, 371 { STATS_OFFSET32(total_unicast_packets_transmitted_hi), 372 8, STATS_FLAGS_BOTH, "tx_ucast_packets" }, 373 { STATS_OFFSET32(total_multicast_packets_transmitted_hi), 374 8, STATS_FLAGS_BOTH, "tx_mcast_packets" }, 375 { STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 376 8, STATS_FLAGS_BOTH, "tx_bcast_packets" }, 377 { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi), 378 8, STATS_FLAGS_PORT, "tx_mac_errors" }, 379 { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi), 380 8, STATS_FLAGS_PORT, "tx_carrier_errors" }, 381 { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi), 382 8, STATS_FLAGS_PORT, "tx_single_collisions" }, 383 { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi), 384 8, STATS_FLAGS_PORT, "tx_multi_collisions" }, 385 { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi), 386 8, STATS_FLAGS_PORT, "tx_deferred" }, 387 { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi), 388 8, STATS_FLAGS_PORT, "tx_excess_collisions" }, 389 { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi), 390 8, STATS_FLAGS_PORT, "tx_late_collisions" }, 391 { STATS_OFFSET32(tx_stat_etherstatscollisions_hi), 392 8, STATS_FLAGS_PORT, "tx_total_collisions" }, 393 { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi), 394 8, STATS_FLAGS_PORT, "tx_64_byte_packets" }, 395 { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi), 396 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" }, 397 { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi), 398 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" }, 399 { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi), 400 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" }, 401 { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi), 402 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" }, 403 { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi), 404 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" }, 405 { STATS_OFFSET32(etherstatspktsover1522octets_hi), 406 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" }, 407 { STATS_OFFSET32(pause_frames_sent_hi), 408 8, STATS_FLAGS_PORT, "tx_pause_frames" }, 409 { STATS_OFFSET32(total_tpa_aggregations_hi), 410 8, STATS_FLAGS_FUNC, "tpa_aggregations" }, 411 { STATS_OFFSET32(total_tpa_aggregated_frames_hi), 412 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"}, 413 { STATS_OFFSET32(total_tpa_bytes_hi), 414 8, STATS_FLAGS_FUNC, "tpa_bytes"}, 415 { STATS_OFFSET32(eee_tx_lpi), 416 4, STATS_FLAGS_PORT, "eee_tx_lpi"}, 417 { STATS_OFFSET32(rx_calls), 418 4, STATS_FLAGS_FUNC, "rx_calls"}, 419 { STATS_OFFSET32(rx_pkts), 420 4, STATS_FLAGS_FUNC, "rx_pkts"}, 421 { STATS_OFFSET32(rx_tpa_pkts), 422 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"}, 423 { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts), 424 4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"}, 425 { STATS_OFFSET32(rx_bxe_service_rxsgl), 426 4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"}, 427 { STATS_OFFSET32(rx_jumbo_sge_pkts), 428 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"}, 429 { STATS_OFFSET32(rx_soft_errors), 430 4, STATS_FLAGS_FUNC, "rx_soft_errors"}, 431 { STATS_OFFSET32(rx_hw_csum_errors), 432 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"}, 433 { STATS_OFFSET32(rx_ofld_frames_csum_ip), 434 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"}, 435 { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 436 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"}, 437 { STATS_OFFSET32(rx_budget_reached), 438 4, STATS_FLAGS_FUNC, "rx_budget_reached"}, 439 { STATS_OFFSET32(tx_pkts), 440 4, STATS_FLAGS_FUNC, "tx_pkts"}, 441 { STATS_OFFSET32(tx_soft_errors), 442 4, STATS_FLAGS_FUNC, "tx_soft_errors"}, 443 { STATS_OFFSET32(tx_ofld_frames_csum_ip), 444 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"}, 445 { STATS_OFFSET32(tx_ofld_frames_csum_tcp), 446 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"}, 447 { STATS_OFFSET32(tx_ofld_frames_csum_udp), 448 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"}, 449 { STATS_OFFSET32(tx_ofld_frames_lso), 450 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"}, 451 { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 452 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"}, 453 { STATS_OFFSET32(tx_encap_failures), 454 4, STATS_FLAGS_FUNC, "tx_encap_failures"}, 455 { STATS_OFFSET32(tx_hw_queue_full), 456 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"}, 457 { STATS_OFFSET32(tx_hw_max_queue_depth), 458 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"}, 459 { STATS_OFFSET32(tx_dma_mapping_failure), 460 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"}, 461 { STATS_OFFSET32(tx_max_drbr_queue_depth), 462 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"}, 463 { STATS_OFFSET32(tx_window_violation_std), 464 4, STATS_FLAGS_FUNC, "tx_window_violation_std"}, 465 { STATS_OFFSET32(tx_window_violation_tso), 466 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"}, 467 { STATS_OFFSET32(tx_chain_lost_mbuf), 468 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"}, 469 { STATS_OFFSET32(tx_frames_deferred), 470 4, STATS_FLAGS_FUNC, "tx_frames_deferred"}, 471 { STATS_OFFSET32(tx_queue_xoff), 472 4, STATS_FLAGS_FUNC, "tx_queue_xoff"}, 473 { STATS_OFFSET32(mbuf_defrag_attempts), 474 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"}, 475 { STATS_OFFSET32(mbuf_defrag_failures), 476 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"}, 477 { STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 478 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"}, 479 { STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 480 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"}, 481 { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 482 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"}, 483 { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 484 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"}, 485 { STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 486 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"}, 487 { STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 488 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"}, 489 { STATS_OFFSET32(mbuf_alloc_tx), 490 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"}, 491 { STATS_OFFSET32(mbuf_alloc_rx), 492 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"}, 493 { STATS_OFFSET32(mbuf_alloc_sge), 494 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"}, 495 { STATS_OFFSET32(mbuf_alloc_tpa), 496 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}, 497 { STATS_OFFSET32(tx_queue_full_return), 498 4, STATS_FLAGS_FUNC, "tx_queue_full_return"}, 499 { STATS_OFFSET32(bxe_tx_mq_sc_state_failures), 500 4, STATS_FLAGS_FUNC, "bxe_tx_mq_sc_state_failures"}, 501 { STATS_OFFSET32(tx_request_link_down_failures), 502 4, STATS_FLAGS_FUNC, "tx_request_link_down_failures"}, 503 { STATS_OFFSET32(bd_avail_too_less_failures), 504 4, STATS_FLAGS_FUNC, "bd_avail_too_less_failures"}, 505 { STATS_OFFSET32(tx_mq_not_empty), 506 4, STATS_FLAGS_FUNC, "tx_mq_not_empty"}, 507 { STATS_OFFSET32(nsegs_path1_errors), 508 4, STATS_FLAGS_FUNC, "nsegs_path1_errors"}, 509 { STATS_OFFSET32(nsegs_path2_errors), 510 4, STATS_FLAGS_FUNC, "nsegs_path2_errors"} 511 512 513 }; 514 515 static const struct { 516 uint32_t offset; 517 uint32_t size; 518 char string[STAT_NAME_LEN]; 519 } bxe_eth_q_stats_arr[] = { 520 { Q_STATS_OFFSET32(total_bytes_received_hi), 521 8, "rx_bytes" }, 522 { Q_STATS_OFFSET32(total_unicast_packets_received_hi), 523 8, "rx_ucast_packets" }, 524 { Q_STATS_OFFSET32(total_multicast_packets_received_hi), 525 8, "rx_mcast_packets" }, 526 { Q_STATS_OFFSET32(total_broadcast_packets_received_hi), 527 8, "rx_bcast_packets" }, 528 { Q_STATS_OFFSET32(no_buff_discard_hi), 529 8, "rx_discards" }, 530 { Q_STATS_OFFSET32(total_bytes_transmitted_hi), 531 8, "tx_bytes" }, 532 { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi), 533 8, "tx_ucast_packets" }, 534 { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi), 535 8, "tx_mcast_packets" }, 536 { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 537 8, "tx_bcast_packets" }, 538 { Q_STATS_OFFSET32(total_tpa_aggregations_hi), 539 8, "tpa_aggregations" }, 540 { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi), 541 8, "tpa_aggregated_frames"}, 542 { Q_STATS_OFFSET32(total_tpa_bytes_hi), 543 8, "tpa_bytes"}, 544 { Q_STATS_OFFSET32(rx_calls), 545 4, "rx_calls"}, 546 { Q_STATS_OFFSET32(rx_pkts), 547 4, "rx_pkts"}, 548 { Q_STATS_OFFSET32(rx_tpa_pkts), 549 4, "rx_tpa_pkts"}, 550 { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts), 551 4, "rx_erroneous_jumbo_sge_pkts"}, 552 { Q_STATS_OFFSET32(rx_bxe_service_rxsgl), 553 4, "rx_bxe_service_rxsgl"}, 554 { Q_STATS_OFFSET32(rx_jumbo_sge_pkts), 555 4, "rx_jumbo_sge_pkts"}, 556 { Q_STATS_OFFSET32(rx_soft_errors), 557 4, "rx_soft_errors"}, 558 { Q_STATS_OFFSET32(rx_hw_csum_errors), 559 4, "rx_hw_csum_errors"}, 560 { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip), 561 4, "rx_ofld_frames_csum_ip"}, 562 { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 563 4, "rx_ofld_frames_csum_tcp_udp"}, 564 { Q_STATS_OFFSET32(rx_budget_reached), 565 4, "rx_budget_reached"}, 566 { Q_STATS_OFFSET32(tx_pkts), 567 4, "tx_pkts"}, 568 { Q_STATS_OFFSET32(tx_soft_errors), 569 4, "tx_soft_errors"}, 570 { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip), 571 4, "tx_ofld_frames_csum_ip"}, 572 { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp), 573 4, "tx_ofld_frames_csum_tcp"}, 574 { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp), 575 4, "tx_ofld_frames_csum_udp"}, 576 { Q_STATS_OFFSET32(tx_ofld_frames_lso), 577 4, "tx_ofld_frames_lso"}, 578 { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 579 4, "tx_ofld_frames_lso_hdr_splits"}, 580 { Q_STATS_OFFSET32(tx_encap_failures), 581 4, "tx_encap_failures"}, 582 { Q_STATS_OFFSET32(tx_hw_queue_full), 583 4, "tx_hw_queue_full"}, 584 { Q_STATS_OFFSET32(tx_hw_max_queue_depth), 585 4, "tx_hw_max_queue_depth"}, 586 { Q_STATS_OFFSET32(tx_dma_mapping_failure), 587 4, "tx_dma_mapping_failure"}, 588 { Q_STATS_OFFSET32(tx_max_drbr_queue_depth), 589 4, "tx_max_drbr_queue_depth"}, 590 { Q_STATS_OFFSET32(tx_window_violation_std), 591 4, "tx_window_violation_std"}, 592 { Q_STATS_OFFSET32(tx_window_violation_tso), 593 4, "tx_window_violation_tso"}, 594 { Q_STATS_OFFSET32(tx_chain_lost_mbuf), 595 4, "tx_chain_lost_mbuf"}, 596 { Q_STATS_OFFSET32(tx_frames_deferred), 597 4, "tx_frames_deferred"}, 598 { Q_STATS_OFFSET32(tx_queue_xoff), 599 4, "tx_queue_xoff"}, 600 { Q_STATS_OFFSET32(mbuf_defrag_attempts), 601 4, "mbuf_defrag_attempts"}, 602 { Q_STATS_OFFSET32(mbuf_defrag_failures), 603 4, "mbuf_defrag_failures"}, 604 { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 605 4, "mbuf_rx_bd_alloc_failed"}, 606 { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 607 4, "mbuf_rx_bd_mapping_failed"}, 608 { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 609 4, "mbuf_rx_tpa_alloc_failed"}, 610 { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 611 4, "mbuf_rx_tpa_mapping_failed"}, 612 { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 613 4, "mbuf_rx_sge_alloc_failed"}, 614 { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 615 4, "mbuf_rx_sge_mapping_failed"}, 616 { Q_STATS_OFFSET32(mbuf_alloc_tx), 617 4, "mbuf_alloc_tx"}, 618 { Q_STATS_OFFSET32(mbuf_alloc_rx), 619 4, "mbuf_alloc_rx"}, 620 { Q_STATS_OFFSET32(mbuf_alloc_sge), 621 4, "mbuf_alloc_sge"}, 622 { Q_STATS_OFFSET32(mbuf_alloc_tpa), 623 4, "mbuf_alloc_tpa"}, 624 { Q_STATS_OFFSET32(tx_queue_full_return), 625 4, "tx_queue_full_return"}, 626 { Q_STATS_OFFSET32(bxe_tx_mq_sc_state_failures), 627 4, "bxe_tx_mq_sc_state_failures"}, 628 { Q_STATS_OFFSET32(tx_request_link_down_failures), 629 4, "tx_request_link_down_failures"}, 630 { Q_STATS_OFFSET32(bd_avail_too_less_failures), 631 4, "bd_avail_too_less_failures"}, 632 { Q_STATS_OFFSET32(tx_mq_not_empty), 633 4, "tx_mq_not_empty"}, 634 { Q_STATS_OFFSET32(nsegs_path1_errors), 635 4, "nsegs_path1_errors"}, 636 { Q_STATS_OFFSET32(nsegs_path2_errors), 637 4, "nsegs_path2_errors"} 638 639 640 }; 641 642 #define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr) 643 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr) 644 645 646 static void bxe_cmng_fns_init(struct bxe_softc *sc, 647 uint8_t read_cfg, 648 uint8_t cmng_type); 649 static int bxe_get_cmng_fns_mode(struct bxe_softc *sc); 650 static void storm_memset_cmng(struct bxe_softc *sc, 651 struct cmng_init *cmng, 652 uint8_t port); 653 static void bxe_set_reset_global(struct bxe_softc *sc); 654 static void bxe_set_reset_in_progress(struct bxe_softc *sc); 655 static uint8_t bxe_reset_is_done(struct bxe_softc *sc, 656 int engine); 657 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc); 658 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc, 659 uint8_t *global, 660 uint8_t print); 661 static void bxe_int_disable(struct bxe_softc *sc); 662 static int bxe_release_leader_lock(struct bxe_softc *sc); 663 static void bxe_pf_disable(struct bxe_softc *sc); 664 static void bxe_free_fp_buffers(struct bxe_softc *sc); 665 static inline void bxe_update_rx_prod(struct bxe_softc *sc, 666 struct bxe_fastpath *fp, 667 uint16_t rx_bd_prod, 668 uint16_t rx_cq_prod, 669 uint16_t rx_sge_prod); 670 static void bxe_link_report_locked(struct bxe_softc *sc); 671 static void bxe_link_report(struct bxe_softc *sc); 672 static void bxe_link_status_update(struct bxe_softc *sc); 673 static void bxe_periodic_callout_func(void *xsc); 674 static void bxe_periodic_start(struct bxe_softc *sc); 675 static void bxe_periodic_stop(struct bxe_softc *sc); 676 static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 677 uint16_t prev_index, 678 uint16_t index); 679 static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 680 int queue); 681 static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 682 uint16_t index); 683 static uint8_t bxe_txeof(struct bxe_softc *sc, 684 struct bxe_fastpath *fp); 685 static void bxe_task_fp(struct bxe_fastpath *fp); 686 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc, 687 struct mbuf *m, 688 uint8_t contents); 689 static int bxe_alloc_mem(struct bxe_softc *sc); 690 static void bxe_free_mem(struct bxe_softc *sc); 691 static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc); 692 static void bxe_free_fw_stats_mem(struct bxe_softc *sc); 693 static int bxe_interrupt_attach(struct bxe_softc *sc); 694 static void bxe_interrupt_detach(struct bxe_softc *sc); 695 static void bxe_set_rx_mode(struct bxe_softc *sc); 696 static int bxe_init_locked(struct bxe_softc *sc); 697 static int bxe_stop_locked(struct bxe_softc *sc); 698 static __noinline int bxe_nic_load(struct bxe_softc *sc, 699 int load_mode); 700 static __noinline int bxe_nic_unload(struct bxe_softc *sc, 701 uint32_t unload_mode, 702 uint8_t keep_link); 703 704 static void bxe_handle_sp_tq(void *context, int pending); 705 static void bxe_handle_fp_tq(void *context, int pending); 706 707 static int bxe_add_cdev(struct bxe_softc *sc); 708 static void bxe_del_cdev(struct bxe_softc *sc); 709 int bxe_grc_dump(struct bxe_softc *sc); 710 static int bxe_alloc_buf_rings(struct bxe_softc *sc); 711 static void bxe_free_buf_rings(struct bxe_softc *sc); 712 713 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */ 714 uint32_t 715 calc_crc32(uint8_t *crc32_packet, 716 uint32_t crc32_length, 717 uint32_t crc32_seed, 718 uint8_t complement) 719 { 720 uint32_t byte = 0; 721 uint32_t bit = 0; 722 uint8_t msb = 0; 723 uint32_t temp = 0; 724 uint32_t shft = 0; 725 uint8_t current_byte = 0; 726 uint32_t crc32_result = crc32_seed; 727 const uint32_t CRC32_POLY = 0x1edc6f41; 728 729 if ((crc32_packet == NULL) || 730 (crc32_length == 0) || 731 ((crc32_length % 8) != 0)) 732 { 733 return (crc32_result); 734 } 735 736 for (byte = 0; byte < crc32_length; byte = byte + 1) 737 { 738 current_byte = crc32_packet[byte]; 739 for (bit = 0; bit < 8; bit = bit + 1) 740 { 741 /* msb = crc32_result[31]; */ 742 msb = (uint8_t)(crc32_result >> 31); 743 744 crc32_result = crc32_result << 1; 745 746 /* it (msb != current_byte[bit]) */ 747 if (msb != (0x1 & (current_byte >> bit))) 748 { 749 crc32_result = crc32_result ^ CRC32_POLY; 750 /* crc32_result[0] = 1 */ 751 crc32_result |= 1; 752 } 753 } 754 } 755 756 /* Last step is to: 757 * 1. "mirror" every bit 758 * 2. swap the 4 bytes 759 * 3. complement each bit 760 */ 761 762 /* Mirror */ 763 temp = crc32_result; 764 shft = sizeof(crc32_result) * 8 - 1; 765 766 for (crc32_result >>= 1; crc32_result; crc32_result >>= 1) 767 { 768 temp <<= 1; 769 temp |= crc32_result & 1; 770 shft-- ; 771 } 772 773 /* temp[31-bit] = crc32_result[bit] */ 774 temp <<= shft; 775 776 /* Swap */ 777 /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */ 778 { 779 uint32_t t0, t1, t2, t3; 780 t0 = (0x000000ff & (temp >> 24)); 781 t1 = (0x0000ff00 & (temp >> 8)); 782 t2 = (0x00ff0000 & (temp << 8)); 783 t3 = (0xff000000 & (temp << 24)); 784 crc32_result = t0 | t1 | t2 | t3; 785 } 786 787 /* Complement */ 788 if (complement) 789 { 790 crc32_result = ~crc32_result; 791 } 792 793 return (crc32_result); 794 } 795 796 int 797 bxe_test_bit(int nr, 798 volatile unsigned long *addr) 799 { 800 return ((atomic_load_acq_long(addr) & (1 << nr)) != 0); 801 } 802 803 void 804 bxe_set_bit(unsigned int nr, 805 volatile unsigned long *addr) 806 { 807 atomic_set_acq_long(addr, (1 << nr)); 808 } 809 810 void 811 bxe_clear_bit(int nr, 812 volatile unsigned long *addr) 813 { 814 atomic_clear_acq_long(addr, (1 << nr)); 815 } 816 817 int 818 bxe_test_and_set_bit(int nr, 819 volatile unsigned long *addr) 820 { 821 unsigned long x; 822 nr = (1 << nr); 823 do { 824 x = *addr; 825 } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0); 826 // if (x & nr) bit_was_set; else bit_was_not_set; 827 return (x & nr); 828 } 829 830 int 831 bxe_test_and_clear_bit(int nr, 832 volatile unsigned long *addr) 833 { 834 unsigned long x; 835 nr = (1 << nr); 836 do { 837 x = *addr; 838 } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0); 839 // if (x & nr) bit_was_set; else bit_was_not_set; 840 return (x & nr); 841 } 842 843 int 844 bxe_cmpxchg(volatile int *addr, 845 int old, 846 int new) 847 { 848 int x; 849 do { 850 x = *addr; 851 } while (atomic_cmpset_acq_int(addr, old, new) == 0); 852 return (x); 853 } 854 855 /* 856 * Get DMA memory from the OS. 857 * 858 * Validates that the OS has provided DMA buffers in response to a 859 * bus_dmamap_load call and saves the physical address of those buffers. 860 * When the callback is used the OS will return 0 for the mapping function 861 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any 862 * failures back to the caller. 863 * 864 * Returns: 865 * Nothing. 866 */ 867 static void 868 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 869 { 870 struct bxe_dma *dma = arg; 871 872 if (error) { 873 dma->paddr = 0; 874 dma->nseg = 0; 875 BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error); 876 } else { 877 dma->paddr = segs->ds_addr; 878 dma->nseg = nseg; 879 } 880 } 881 882 /* 883 * Allocate a block of memory and map it for DMA. No partial completions 884 * allowed and release any resources acquired if we can't acquire all 885 * resources. 886 * 887 * Returns: 888 * 0 = Success, !0 = Failure 889 */ 890 int 891 bxe_dma_alloc(struct bxe_softc *sc, 892 bus_size_t size, 893 struct bxe_dma *dma, 894 const char *msg) 895 { 896 int rc; 897 898 if (dma->size > 0) { 899 BLOGE(sc, "dma block '%s' already has size %lu\n", msg, 900 (unsigned long)dma->size); 901 return (1); 902 } 903 904 memset(dma, 0, sizeof(*dma)); /* sanity */ 905 dma->sc = sc; 906 dma->size = size; 907 snprintf(dma->msg, sizeof(dma->msg), "%s", msg); 908 909 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 910 BCM_PAGE_SIZE, /* alignment */ 911 0, /* boundary limit */ 912 BUS_SPACE_MAXADDR, /* restricted low */ 913 BUS_SPACE_MAXADDR, /* restricted hi */ 914 NULL, /* addr filter() */ 915 NULL, /* addr filter() arg */ 916 size, /* max map size */ 917 1, /* num discontinuous */ 918 size, /* max seg size */ 919 BUS_DMA_ALLOCNOW, /* flags */ 920 NULL, /* lock() */ 921 NULL, /* lock() arg */ 922 &dma->tag); /* returned dma tag */ 923 if (rc != 0) { 924 BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc); 925 memset(dma, 0, sizeof(*dma)); 926 return (1); 927 } 928 929 rc = bus_dmamem_alloc(dma->tag, 930 (void **)&dma->vaddr, 931 (BUS_DMA_NOWAIT | BUS_DMA_ZERO), 932 &dma->map); 933 if (rc != 0) { 934 BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc); 935 bus_dma_tag_destroy(dma->tag); 936 memset(dma, 0, sizeof(*dma)); 937 return (1); 938 } 939 940 rc = bus_dmamap_load(dma->tag, 941 dma->map, 942 dma->vaddr, 943 size, 944 bxe_dma_map_addr, /* BLOGD in here */ 945 dma, 946 BUS_DMA_NOWAIT); 947 if (rc != 0) { 948 BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc); 949 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 950 bus_dma_tag_destroy(dma->tag); 951 memset(dma, 0, sizeof(*dma)); 952 return (1); 953 } 954 955 return (0); 956 } 957 958 void 959 bxe_dma_free(struct bxe_softc *sc, 960 struct bxe_dma *dma) 961 { 962 if (dma->size > 0) { 963 DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL")); 964 965 bus_dmamap_sync(dma->tag, dma->map, 966 (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)); 967 bus_dmamap_unload(dma->tag, dma->map); 968 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 969 bus_dma_tag_destroy(dma->tag); 970 } 971 972 memset(dma, 0, sizeof(*dma)); 973 } 974 975 /* 976 * These indirect read and write routines are only during init. 977 * The locking is handled by the MCP. 978 */ 979 980 void 981 bxe_reg_wr_ind(struct bxe_softc *sc, 982 uint32_t addr, 983 uint32_t val) 984 { 985 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 986 pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4); 987 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 988 } 989 990 uint32_t 991 bxe_reg_rd_ind(struct bxe_softc *sc, 992 uint32_t addr) 993 { 994 uint32_t val; 995 996 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 997 val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4); 998 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 999 1000 return (val); 1001 } 1002 1003 static int 1004 bxe_acquire_hw_lock(struct bxe_softc *sc, 1005 uint32_t resource) 1006 { 1007 uint32_t lock_status; 1008 uint32_t resource_bit = (1 << resource); 1009 int func = SC_FUNC(sc); 1010 uint32_t hw_lock_control_reg; 1011 int cnt; 1012 1013 /* validate the resource is within range */ 1014 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1015 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)" 1016 " resource_bit 0x%x\n", resource, resource_bit); 1017 return (-1); 1018 } 1019 1020 if (func <= 5) { 1021 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1022 } else { 1023 hw_lock_control_reg = 1024 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1025 } 1026 1027 /* validate the resource is not already taken */ 1028 lock_status = REG_RD(sc, hw_lock_control_reg); 1029 if (lock_status & resource_bit) { 1030 BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n", 1031 resource, lock_status, resource_bit); 1032 return (-1); 1033 } 1034 1035 /* try every 5ms for 5 seconds */ 1036 for (cnt = 0; cnt < 1000; cnt++) { 1037 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit); 1038 lock_status = REG_RD(sc, hw_lock_control_reg); 1039 if (lock_status & resource_bit) { 1040 return (0); 1041 } 1042 DELAY(5000); 1043 } 1044 1045 BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n", 1046 resource, resource_bit); 1047 return (-1); 1048 } 1049 1050 static int 1051 bxe_release_hw_lock(struct bxe_softc *sc, 1052 uint32_t resource) 1053 { 1054 uint32_t lock_status; 1055 uint32_t resource_bit = (1 << resource); 1056 int func = SC_FUNC(sc); 1057 uint32_t hw_lock_control_reg; 1058 1059 /* validate the resource is within range */ 1060 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1061 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)" 1062 " resource_bit 0x%x\n", resource, resource_bit); 1063 return (-1); 1064 } 1065 1066 if (func <= 5) { 1067 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1068 } else { 1069 hw_lock_control_reg = 1070 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1071 } 1072 1073 /* validate the resource is currently taken */ 1074 lock_status = REG_RD(sc, hw_lock_control_reg); 1075 if (!(lock_status & resource_bit)) { 1076 BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n", 1077 resource, lock_status, resource_bit); 1078 return (-1); 1079 } 1080 1081 REG_WR(sc, hw_lock_control_reg, resource_bit); 1082 return (0); 1083 } 1084 static void bxe_acquire_phy_lock(struct bxe_softc *sc) 1085 { 1086 BXE_PHY_LOCK(sc); 1087 bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1088 } 1089 1090 static void bxe_release_phy_lock(struct bxe_softc *sc) 1091 { 1092 bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1093 BXE_PHY_UNLOCK(sc); 1094 } 1095 /* 1096 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise, 1097 * had we done things the other way around, if two pfs from the same port 1098 * would attempt to access nvram at the same time, we could run into a 1099 * scenario such as: 1100 * pf A takes the port lock. 1101 * pf B succeeds in taking the same lock since they are from the same port. 1102 * pf A takes the per pf misc lock. Performs eeprom access. 1103 * pf A finishes. Unlocks the per pf misc lock. 1104 * Pf B takes the lock and proceeds to perform it's own access. 1105 * pf A unlocks the per port lock, while pf B is still working (!). 1106 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own 1107 * access corrupted by pf B).* 1108 */ 1109 static int 1110 bxe_acquire_nvram_lock(struct bxe_softc *sc) 1111 { 1112 int port = SC_PORT(sc); 1113 int count, i; 1114 uint32_t val = 0; 1115 1116 /* acquire HW lock: protect against other PFs in PF Direct Assignment */ 1117 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1118 1119 /* adjust timeout for emulation/FPGA */ 1120 count = NVRAM_TIMEOUT_COUNT; 1121 if (CHIP_REV_IS_SLOW(sc)) { 1122 count *= 100; 1123 } 1124 1125 /* request access to nvram interface */ 1126 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1127 (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port)); 1128 1129 for (i = 0; i < count*10; i++) { 1130 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1131 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1132 break; 1133 } 1134 1135 DELAY(5); 1136 } 1137 1138 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1139 BLOGE(sc, "Cannot get access to nvram interface " 1140 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n", 1141 port, val); 1142 return (-1); 1143 } 1144 1145 return (0); 1146 } 1147 1148 static int 1149 bxe_release_nvram_lock(struct bxe_softc *sc) 1150 { 1151 int port = SC_PORT(sc); 1152 int count, i; 1153 uint32_t val = 0; 1154 1155 /* adjust timeout for emulation/FPGA */ 1156 count = NVRAM_TIMEOUT_COUNT; 1157 if (CHIP_REV_IS_SLOW(sc)) { 1158 count *= 100; 1159 } 1160 1161 /* relinquish nvram interface */ 1162 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1163 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port)); 1164 1165 for (i = 0; i < count*10; i++) { 1166 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1167 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1168 break; 1169 } 1170 1171 DELAY(5); 1172 } 1173 1174 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1175 BLOGE(sc, "Cannot free access to nvram interface " 1176 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n", 1177 port, val); 1178 return (-1); 1179 } 1180 1181 /* release HW lock: protect against other PFs in PF Direct Assignment */ 1182 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1183 1184 return (0); 1185 } 1186 1187 static void 1188 bxe_enable_nvram_access(struct bxe_softc *sc) 1189 { 1190 uint32_t val; 1191 1192 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1193 1194 /* enable both bits, even on read */ 1195 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1196 (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN)); 1197 } 1198 1199 static void 1200 bxe_disable_nvram_access(struct bxe_softc *sc) 1201 { 1202 uint32_t val; 1203 1204 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1205 1206 /* disable both bits, even after read */ 1207 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1208 (val & ~(MCPR_NVM_ACCESS_ENABLE_EN | 1209 MCPR_NVM_ACCESS_ENABLE_WR_EN))); 1210 } 1211 1212 static int 1213 bxe_nvram_read_dword(struct bxe_softc *sc, 1214 uint32_t offset, 1215 uint32_t *ret_val, 1216 uint32_t cmd_flags) 1217 { 1218 int count, i, rc; 1219 uint32_t val; 1220 1221 /* build the command word */ 1222 cmd_flags |= MCPR_NVM_COMMAND_DOIT; 1223 1224 /* need to clear DONE bit separately */ 1225 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1226 1227 /* address of the NVRAM to read from */ 1228 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1229 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1230 1231 /* issue a read command */ 1232 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1233 1234 /* adjust timeout for emulation/FPGA */ 1235 count = NVRAM_TIMEOUT_COUNT; 1236 if (CHIP_REV_IS_SLOW(sc)) { 1237 count *= 100; 1238 } 1239 1240 /* wait for completion */ 1241 *ret_val = 0; 1242 rc = -1; 1243 for (i = 0; i < count; i++) { 1244 DELAY(5); 1245 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1246 1247 if (val & MCPR_NVM_COMMAND_DONE) { 1248 val = REG_RD(sc, MCP_REG_MCPR_NVM_READ); 1249 /* we read nvram data in cpu order 1250 * but ethtool sees it as an array of bytes 1251 * converting to big-endian will do the work 1252 */ 1253 *ret_val = htobe32(val); 1254 rc = 0; 1255 break; 1256 } 1257 } 1258 1259 if (rc == -1) { 1260 BLOGE(sc, "nvram read timeout expired " 1261 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n", 1262 offset, cmd_flags, val); 1263 } 1264 1265 return (rc); 1266 } 1267 1268 static int 1269 bxe_nvram_read(struct bxe_softc *sc, 1270 uint32_t offset, 1271 uint8_t *ret_buf, 1272 int buf_size) 1273 { 1274 uint32_t cmd_flags; 1275 uint32_t val; 1276 int rc; 1277 1278 if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) { 1279 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1280 offset, buf_size); 1281 return (-1); 1282 } 1283 1284 if ((offset + buf_size) > sc->devinfo.flash_size) { 1285 BLOGE(sc, "Invalid parameter, " 1286 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1287 offset, buf_size, sc->devinfo.flash_size); 1288 return (-1); 1289 } 1290 1291 /* request access to nvram interface */ 1292 rc = bxe_acquire_nvram_lock(sc); 1293 if (rc) { 1294 return (rc); 1295 } 1296 1297 /* enable access to nvram interface */ 1298 bxe_enable_nvram_access(sc); 1299 1300 /* read the first word(s) */ 1301 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1302 while ((buf_size > sizeof(uint32_t)) && (rc == 0)) { 1303 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1304 memcpy(ret_buf, &val, 4); 1305 1306 /* advance to the next dword */ 1307 offset += sizeof(uint32_t); 1308 ret_buf += sizeof(uint32_t); 1309 buf_size -= sizeof(uint32_t); 1310 cmd_flags = 0; 1311 } 1312 1313 if (rc == 0) { 1314 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1315 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1316 memcpy(ret_buf, &val, 4); 1317 } 1318 1319 /* disable access to nvram interface */ 1320 bxe_disable_nvram_access(sc); 1321 bxe_release_nvram_lock(sc); 1322 1323 return (rc); 1324 } 1325 1326 static int 1327 bxe_nvram_write_dword(struct bxe_softc *sc, 1328 uint32_t offset, 1329 uint32_t val, 1330 uint32_t cmd_flags) 1331 { 1332 int count, i, rc; 1333 1334 /* build the command word */ 1335 cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR); 1336 1337 /* need to clear DONE bit separately */ 1338 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1339 1340 /* write the data */ 1341 REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val); 1342 1343 /* address of the NVRAM to write to */ 1344 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1345 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1346 1347 /* issue the write command */ 1348 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1349 1350 /* adjust timeout for emulation/FPGA */ 1351 count = NVRAM_TIMEOUT_COUNT; 1352 if (CHIP_REV_IS_SLOW(sc)) { 1353 count *= 100; 1354 } 1355 1356 /* wait for completion */ 1357 rc = -1; 1358 for (i = 0; i < count; i++) { 1359 DELAY(5); 1360 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1361 if (val & MCPR_NVM_COMMAND_DONE) { 1362 rc = 0; 1363 break; 1364 } 1365 } 1366 1367 if (rc == -1) { 1368 BLOGE(sc, "nvram write timeout expired " 1369 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n", 1370 offset, cmd_flags, val); 1371 } 1372 1373 return (rc); 1374 } 1375 1376 #define BYTE_OFFSET(offset) (8 * (offset & 0x03)) 1377 1378 static int 1379 bxe_nvram_write1(struct bxe_softc *sc, 1380 uint32_t offset, 1381 uint8_t *data_buf, 1382 int buf_size) 1383 { 1384 uint32_t cmd_flags; 1385 uint32_t align_offset; 1386 uint32_t val; 1387 int rc; 1388 1389 if ((offset + buf_size) > sc->devinfo.flash_size) { 1390 BLOGE(sc, "Invalid parameter, " 1391 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1392 offset, buf_size, sc->devinfo.flash_size); 1393 return (-1); 1394 } 1395 1396 /* request access to nvram interface */ 1397 rc = bxe_acquire_nvram_lock(sc); 1398 if (rc) { 1399 return (rc); 1400 } 1401 1402 /* enable access to nvram interface */ 1403 bxe_enable_nvram_access(sc); 1404 1405 cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST); 1406 align_offset = (offset & ~0x03); 1407 rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags); 1408 1409 if (rc == 0) { 1410 val &= ~(0xff << BYTE_OFFSET(offset)); 1411 val |= (*data_buf << BYTE_OFFSET(offset)); 1412 1413 /* nvram data is returned as an array of bytes 1414 * convert it back to cpu order 1415 */ 1416 val = be32toh(val); 1417 1418 rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags); 1419 } 1420 1421 /* disable access to nvram interface */ 1422 bxe_disable_nvram_access(sc); 1423 bxe_release_nvram_lock(sc); 1424 1425 return (rc); 1426 } 1427 1428 static int 1429 bxe_nvram_write(struct bxe_softc *sc, 1430 uint32_t offset, 1431 uint8_t *data_buf, 1432 int buf_size) 1433 { 1434 uint32_t cmd_flags; 1435 uint32_t val; 1436 uint32_t written_so_far; 1437 int rc; 1438 1439 if (buf_size == 1) { 1440 return (bxe_nvram_write1(sc, offset, data_buf, buf_size)); 1441 } 1442 1443 if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) { 1444 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1445 offset, buf_size); 1446 return (-1); 1447 } 1448 1449 if (buf_size == 0) { 1450 return (0); /* nothing to do */ 1451 } 1452 1453 if ((offset + buf_size) > sc->devinfo.flash_size) { 1454 BLOGE(sc, "Invalid parameter, " 1455 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1456 offset, buf_size, sc->devinfo.flash_size); 1457 return (-1); 1458 } 1459 1460 /* request access to nvram interface */ 1461 rc = bxe_acquire_nvram_lock(sc); 1462 if (rc) { 1463 return (rc); 1464 } 1465 1466 /* enable access to nvram interface */ 1467 bxe_enable_nvram_access(sc); 1468 1469 written_so_far = 0; 1470 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1471 while ((written_so_far < buf_size) && (rc == 0)) { 1472 if (written_so_far == (buf_size - sizeof(uint32_t))) { 1473 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1474 } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) { 1475 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1476 } else if ((offset % NVRAM_PAGE_SIZE) == 0) { 1477 cmd_flags |= MCPR_NVM_COMMAND_FIRST; 1478 } 1479 1480 memcpy(&val, data_buf, 4); 1481 1482 rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags); 1483 1484 /* advance to the next dword */ 1485 offset += sizeof(uint32_t); 1486 data_buf += sizeof(uint32_t); 1487 written_so_far += sizeof(uint32_t); 1488 cmd_flags = 0; 1489 } 1490 1491 /* disable access to nvram interface */ 1492 bxe_disable_nvram_access(sc); 1493 bxe_release_nvram_lock(sc); 1494 1495 return (rc); 1496 } 1497 1498 /* copy command into DMAE command memory and set DMAE command Go */ 1499 void 1500 bxe_post_dmae(struct bxe_softc *sc, 1501 struct dmae_cmd *dmae, 1502 int idx) 1503 { 1504 uint32_t cmd_offset; 1505 int i; 1506 1507 cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx)); 1508 for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) { 1509 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i)); 1510 } 1511 1512 REG_WR(sc, dmae_reg_go_c[idx], 1); 1513 } 1514 1515 uint32_t 1516 bxe_dmae_opcode_add_comp(uint32_t opcode, 1517 uint8_t comp_type) 1518 { 1519 return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) | 1520 DMAE_CMD_C_TYPE_ENABLE)); 1521 } 1522 1523 uint32_t 1524 bxe_dmae_opcode_clr_src_reset(uint32_t opcode) 1525 { 1526 return (opcode & ~DMAE_CMD_SRC_RESET); 1527 } 1528 1529 uint32_t 1530 bxe_dmae_opcode(struct bxe_softc *sc, 1531 uint8_t src_type, 1532 uint8_t dst_type, 1533 uint8_t with_comp, 1534 uint8_t comp_type) 1535 { 1536 uint32_t opcode = 0; 1537 1538 opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) | 1539 (dst_type << DMAE_CMD_DST_SHIFT)); 1540 1541 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET); 1542 1543 opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 1544 1545 opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) | 1546 (SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT)); 1547 1548 opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT); 1549 1550 #ifdef __BIG_ENDIAN 1551 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 1552 #else 1553 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 1554 #endif 1555 1556 if (with_comp) { 1557 opcode = bxe_dmae_opcode_add_comp(opcode, comp_type); 1558 } 1559 1560 return (opcode); 1561 } 1562 1563 static void 1564 bxe_prep_dmae_with_comp(struct bxe_softc *sc, 1565 struct dmae_cmd *dmae, 1566 uint8_t src_type, 1567 uint8_t dst_type) 1568 { 1569 memset(dmae, 0, sizeof(struct dmae_cmd)); 1570 1571 /* set the opcode */ 1572 dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type, 1573 TRUE, DMAE_COMP_PCI); 1574 1575 /* fill in the completion parameters */ 1576 dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp)); 1577 dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp)); 1578 dmae->comp_val = DMAE_COMP_VAL; 1579 } 1580 1581 /* issue a DMAE command over the init channel and wait for completion */ 1582 static int 1583 bxe_issue_dmae_with_comp(struct bxe_softc *sc, 1584 struct dmae_cmd *dmae) 1585 { 1586 uint32_t *wb_comp = BXE_SP(sc, wb_comp); 1587 int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000; 1588 1589 BXE_DMAE_LOCK(sc); 1590 1591 /* reset completion */ 1592 *wb_comp = 0; 1593 1594 /* post the command on the channel used for initializations */ 1595 bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc)); 1596 1597 /* wait for completion */ 1598 DELAY(5); 1599 1600 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 1601 if (!timeout || 1602 (sc->recovery_state != BXE_RECOVERY_DONE && 1603 sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) { 1604 BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n", 1605 *wb_comp, sc->recovery_state); 1606 BXE_DMAE_UNLOCK(sc); 1607 return (DMAE_TIMEOUT); 1608 } 1609 1610 timeout--; 1611 DELAY(50); 1612 } 1613 1614 if (*wb_comp & DMAE_PCI_ERR_FLAG) { 1615 BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n", 1616 *wb_comp, sc->recovery_state); 1617 BXE_DMAE_UNLOCK(sc); 1618 return (DMAE_PCI_ERROR); 1619 } 1620 1621 BXE_DMAE_UNLOCK(sc); 1622 return (0); 1623 } 1624 1625 void 1626 bxe_read_dmae(struct bxe_softc *sc, 1627 uint32_t src_addr, 1628 uint32_t len32) 1629 { 1630 struct dmae_cmd dmae; 1631 uint32_t *data; 1632 int i, rc; 1633 1634 DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32)); 1635 1636 if (!sc->dmae_ready) { 1637 data = BXE_SP(sc, wb_data[0]); 1638 1639 for (i = 0; i < len32; i++) { 1640 data[i] = (CHIP_IS_E1(sc)) ? 1641 bxe_reg_rd_ind(sc, (src_addr + (i * 4))) : 1642 REG_RD(sc, (src_addr + (i * 4))); 1643 } 1644 1645 return; 1646 } 1647 1648 /* set opcode and fixed command fields */ 1649 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 1650 1651 /* fill in addresses and len */ 1652 dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */ 1653 dmae.src_addr_hi = 0; 1654 dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data)); 1655 dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data)); 1656 dmae.len = len32; 1657 1658 /* issue the command and wait for completion */ 1659 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1660 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1661 } 1662 } 1663 1664 void 1665 bxe_write_dmae(struct bxe_softc *sc, 1666 bus_addr_t dma_addr, 1667 uint32_t dst_addr, 1668 uint32_t len32) 1669 { 1670 struct dmae_cmd dmae; 1671 int rc; 1672 1673 if (!sc->dmae_ready) { 1674 DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32)); 1675 1676 if (CHIP_IS_E1(sc)) { 1677 ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1678 } else { 1679 ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1680 } 1681 1682 return; 1683 } 1684 1685 /* set opcode and fixed command fields */ 1686 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 1687 1688 /* fill in addresses and len */ 1689 dmae.src_addr_lo = U64_LO(dma_addr); 1690 dmae.src_addr_hi = U64_HI(dma_addr); 1691 dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */ 1692 dmae.dst_addr_hi = 0; 1693 dmae.len = len32; 1694 1695 /* issue the command and wait for completion */ 1696 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1697 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1698 } 1699 } 1700 1701 void 1702 bxe_write_dmae_phys_len(struct bxe_softc *sc, 1703 bus_addr_t phys_addr, 1704 uint32_t addr, 1705 uint32_t len) 1706 { 1707 int dmae_wr_max = DMAE_LEN32_WR_MAX(sc); 1708 int offset = 0; 1709 1710 while (len > dmae_wr_max) { 1711 bxe_write_dmae(sc, 1712 (phys_addr + offset), /* src DMA address */ 1713 (addr + offset), /* dst GRC address */ 1714 dmae_wr_max); 1715 offset += (dmae_wr_max * 4); 1716 len -= dmae_wr_max; 1717 } 1718 1719 bxe_write_dmae(sc, 1720 (phys_addr + offset), /* src DMA address */ 1721 (addr + offset), /* dst GRC address */ 1722 len); 1723 } 1724 1725 void 1726 bxe_set_ctx_validation(struct bxe_softc *sc, 1727 struct eth_context *cxt, 1728 uint32_t cid) 1729 { 1730 /* ustorm cxt validation */ 1731 cxt->ustorm_ag_context.cdu_usage = 1732 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1733 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 1734 /* xcontext validation */ 1735 cxt->xstorm_ag_context.cdu_reserved = 1736 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1737 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 1738 } 1739 1740 static void 1741 bxe_storm_memset_hc_timeout(struct bxe_softc *sc, 1742 uint8_t port, 1743 uint8_t fw_sb_id, 1744 uint8_t sb_index, 1745 uint8_t ticks) 1746 { 1747 uint32_t addr = 1748 (BAR_CSTRORM_INTMEM + 1749 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index)); 1750 1751 REG_WR8(sc, addr, ticks); 1752 1753 BLOGD(sc, DBG_LOAD, 1754 "port %d fw_sb_id %d sb_index %d ticks %d\n", 1755 port, fw_sb_id, sb_index, ticks); 1756 } 1757 1758 static void 1759 bxe_storm_memset_hc_disable(struct bxe_softc *sc, 1760 uint8_t port, 1761 uint16_t fw_sb_id, 1762 uint8_t sb_index, 1763 uint8_t disable) 1764 { 1765 uint32_t enable_flag = 1766 (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 1767 uint32_t addr = 1768 (BAR_CSTRORM_INTMEM + 1769 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index)); 1770 uint8_t flags; 1771 1772 /* clear and set */ 1773 flags = REG_RD8(sc, addr); 1774 flags &= ~HC_INDEX_DATA_HC_ENABLED; 1775 flags |= enable_flag; 1776 REG_WR8(sc, addr, flags); 1777 1778 BLOGD(sc, DBG_LOAD, 1779 "port %d fw_sb_id %d sb_index %d disable %d\n", 1780 port, fw_sb_id, sb_index, disable); 1781 } 1782 1783 void 1784 bxe_update_coalesce_sb_index(struct bxe_softc *sc, 1785 uint8_t fw_sb_id, 1786 uint8_t sb_index, 1787 uint8_t disable, 1788 uint16_t usec) 1789 { 1790 int port = SC_PORT(sc); 1791 uint8_t ticks = (usec / 4); /* XXX ??? */ 1792 1793 bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks); 1794 1795 disable = (disable) ? 1 : ((usec) ? 0 : 1); 1796 bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable); 1797 } 1798 1799 void 1800 elink_cb_udelay(struct bxe_softc *sc, 1801 uint32_t usecs) 1802 { 1803 DELAY(usecs); 1804 } 1805 1806 uint32_t 1807 elink_cb_reg_read(struct bxe_softc *sc, 1808 uint32_t reg_addr) 1809 { 1810 return (REG_RD(sc, reg_addr)); 1811 } 1812 1813 void 1814 elink_cb_reg_write(struct bxe_softc *sc, 1815 uint32_t reg_addr, 1816 uint32_t val) 1817 { 1818 REG_WR(sc, reg_addr, val); 1819 } 1820 1821 void 1822 elink_cb_reg_wb_write(struct bxe_softc *sc, 1823 uint32_t offset, 1824 uint32_t *wb_write, 1825 uint16_t len) 1826 { 1827 REG_WR_DMAE(sc, offset, wb_write, len); 1828 } 1829 1830 void 1831 elink_cb_reg_wb_read(struct bxe_softc *sc, 1832 uint32_t offset, 1833 uint32_t *wb_write, 1834 uint16_t len) 1835 { 1836 REG_RD_DMAE(sc, offset, wb_write, len); 1837 } 1838 1839 uint8_t 1840 elink_cb_path_id(struct bxe_softc *sc) 1841 { 1842 return (SC_PATH(sc)); 1843 } 1844 1845 void 1846 elink_cb_event_log(struct bxe_softc *sc, 1847 const elink_log_id_t elink_log_id, 1848 ...) 1849 { 1850 /* XXX */ 1851 BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id); 1852 } 1853 1854 static int 1855 bxe_set_spio(struct bxe_softc *sc, 1856 int spio, 1857 uint32_t mode) 1858 { 1859 uint32_t spio_reg; 1860 1861 /* Only 2 SPIOs are configurable */ 1862 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 1863 BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode); 1864 return (-1); 1865 } 1866 1867 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1868 1869 /* read SPIO and mask except the float bits */ 1870 spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 1871 1872 switch (mode) { 1873 case MISC_SPIO_OUTPUT_LOW: 1874 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio); 1875 /* clear FLOAT and set CLR */ 1876 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1877 spio_reg |= (spio << MISC_SPIO_CLR_POS); 1878 break; 1879 1880 case MISC_SPIO_OUTPUT_HIGH: 1881 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio); 1882 /* clear FLOAT and set SET */ 1883 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1884 spio_reg |= (spio << MISC_SPIO_SET_POS); 1885 break; 1886 1887 case MISC_SPIO_INPUT_HI_Z: 1888 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio); 1889 /* set FLOAT */ 1890 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 1891 break; 1892 1893 default: 1894 break; 1895 } 1896 1897 REG_WR(sc, MISC_REG_SPIO, spio_reg); 1898 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1899 1900 return (0); 1901 } 1902 1903 static int 1904 bxe_gpio_read(struct bxe_softc *sc, 1905 int gpio_num, 1906 uint8_t port) 1907 { 1908 /* The GPIO should be swapped if swap register is set and active */ 1909 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1910 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1911 int gpio_shift = (gpio_num + 1912 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1913 uint32_t gpio_mask = (1 << gpio_shift); 1914 uint32_t gpio_reg; 1915 1916 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1917 BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d" 1918 " gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift, 1919 gpio_mask); 1920 return (-1); 1921 } 1922 1923 /* read GPIO value */ 1924 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 1925 1926 /* get the requested pin value */ 1927 return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0; 1928 } 1929 1930 static int 1931 bxe_gpio_write(struct bxe_softc *sc, 1932 int gpio_num, 1933 uint32_t mode, 1934 uint8_t port) 1935 { 1936 /* The GPIO should be swapped if swap register is set and active */ 1937 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1938 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1939 int gpio_shift = (gpio_num + 1940 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1941 uint32_t gpio_mask = (1 << gpio_shift); 1942 uint32_t gpio_reg; 1943 1944 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1945 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d" 1946 " gpio_shift %d gpio_mask 0x%x\n", 1947 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask); 1948 return (-1); 1949 } 1950 1951 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1952 1953 /* read GPIO and mask except the float bits */ 1954 gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 1955 1956 switch (mode) { 1957 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 1958 BLOGD(sc, DBG_PHY, 1959 "Set GPIO %d (shift %d) -> output low\n", 1960 gpio_num, gpio_shift); 1961 /* clear FLOAT and set CLR */ 1962 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1963 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 1964 break; 1965 1966 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 1967 BLOGD(sc, DBG_PHY, 1968 "Set GPIO %d (shift %d) -> output high\n", 1969 gpio_num, gpio_shift); 1970 /* clear FLOAT and set SET */ 1971 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1972 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 1973 break; 1974 1975 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 1976 BLOGD(sc, DBG_PHY, 1977 "Set GPIO %d (shift %d) -> input\n", 1978 gpio_num, gpio_shift); 1979 /* set FLOAT */ 1980 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1981 break; 1982 1983 default: 1984 break; 1985 } 1986 1987 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 1988 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1989 1990 return (0); 1991 } 1992 1993 static int 1994 bxe_gpio_mult_write(struct bxe_softc *sc, 1995 uint8_t pins, 1996 uint32_t mode) 1997 { 1998 uint32_t gpio_reg; 1999 2000 /* any port swapping should be handled by caller */ 2001 2002 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2003 2004 /* read GPIO and mask except the float bits */ 2005 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 2006 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2007 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 2008 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 2009 2010 switch (mode) { 2011 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2012 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins); 2013 /* set CLR */ 2014 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 2015 break; 2016 2017 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2018 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins); 2019 /* set SET */ 2020 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 2021 break; 2022 2023 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2024 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins); 2025 /* set FLOAT */ 2026 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2027 break; 2028 2029 default: 2030 BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x" 2031 " gpio_reg 0x%x\n", pins, mode, gpio_reg); 2032 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2033 return (-1); 2034 } 2035 2036 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 2037 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2038 2039 return (0); 2040 } 2041 2042 static int 2043 bxe_gpio_int_write(struct bxe_softc *sc, 2044 int gpio_num, 2045 uint32_t mode, 2046 uint8_t port) 2047 { 2048 /* The GPIO should be swapped if swap register is set and active */ 2049 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2050 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2051 int gpio_shift = (gpio_num + 2052 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2053 uint32_t gpio_mask = (1 << gpio_shift); 2054 uint32_t gpio_reg; 2055 2056 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2057 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d" 2058 " gpio_shift %d gpio_mask 0x%x\n", 2059 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask); 2060 return (-1); 2061 } 2062 2063 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2064 2065 /* read GPIO int */ 2066 gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT); 2067 2068 switch (mode) { 2069 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2070 BLOGD(sc, DBG_PHY, 2071 "Clear GPIO INT %d (shift %d) -> output low\n", 2072 gpio_num, gpio_shift); 2073 /* clear SET and set CLR */ 2074 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2075 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2076 break; 2077 2078 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2079 BLOGD(sc, DBG_PHY, 2080 "Set GPIO INT %d (shift %d) -> output high\n", 2081 gpio_num, gpio_shift); 2082 /* clear CLR and set SET */ 2083 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2084 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2085 break; 2086 2087 default: 2088 break; 2089 } 2090 2091 REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg); 2092 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2093 2094 return (0); 2095 } 2096 2097 uint32_t 2098 elink_cb_gpio_read(struct bxe_softc *sc, 2099 uint16_t gpio_num, 2100 uint8_t port) 2101 { 2102 return (bxe_gpio_read(sc, gpio_num, port)); 2103 } 2104 2105 uint8_t 2106 elink_cb_gpio_write(struct bxe_softc *sc, 2107 uint16_t gpio_num, 2108 uint8_t mode, /* 0=low 1=high */ 2109 uint8_t port) 2110 { 2111 return (bxe_gpio_write(sc, gpio_num, mode, port)); 2112 } 2113 2114 uint8_t 2115 elink_cb_gpio_mult_write(struct bxe_softc *sc, 2116 uint8_t pins, 2117 uint8_t mode) /* 0=low 1=high */ 2118 { 2119 return (bxe_gpio_mult_write(sc, pins, mode)); 2120 } 2121 2122 uint8_t 2123 elink_cb_gpio_int_write(struct bxe_softc *sc, 2124 uint16_t gpio_num, 2125 uint8_t mode, /* 0=low 1=high */ 2126 uint8_t port) 2127 { 2128 return (bxe_gpio_int_write(sc, gpio_num, mode, port)); 2129 } 2130 2131 void 2132 elink_cb_notify_link_changed(struct bxe_softc *sc) 2133 { 2134 REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 + 2135 (SC_FUNC(sc) * sizeof(uint32_t))), 1); 2136 } 2137 2138 /* send the MCP a request, block until there is a reply */ 2139 uint32_t 2140 elink_cb_fw_command(struct bxe_softc *sc, 2141 uint32_t command, 2142 uint32_t param) 2143 { 2144 int mb_idx = SC_FW_MB_IDX(sc); 2145 uint32_t seq; 2146 uint32_t rc = 0; 2147 uint32_t cnt = 1; 2148 uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10; 2149 2150 BXE_FWMB_LOCK(sc); 2151 2152 seq = ++sc->fw_seq; 2153 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param); 2154 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq)); 2155 2156 BLOGD(sc, DBG_PHY, 2157 "wrote command 0x%08x to FW MB param 0x%08x\n", 2158 (command | seq), param); 2159 2160 /* Let the FW do it's magic. GIve it up to 5 seconds... */ 2161 do { 2162 DELAY(delay * 1000); 2163 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header); 2164 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 2165 2166 BLOGD(sc, DBG_PHY, 2167 "[after %d ms] read 0x%x seq 0x%x from FW MB\n", 2168 cnt*delay, rc, seq); 2169 2170 /* is this a reply to our command? */ 2171 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) { 2172 rc &= FW_MSG_CODE_MASK; 2173 } else { 2174 /* Ruh-roh! */ 2175 BLOGE(sc, "FW failed to respond!\n"); 2176 // XXX bxe_fw_dump(sc); 2177 rc = 0; 2178 } 2179 2180 BXE_FWMB_UNLOCK(sc); 2181 return (rc); 2182 } 2183 2184 static uint32_t 2185 bxe_fw_command(struct bxe_softc *sc, 2186 uint32_t command, 2187 uint32_t param) 2188 { 2189 return (elink_cb_fw_command(sc, command, param)); 2190 } 2191 2192 static void 2193 __storm_memset_dma_mapping(struct bxe_softc *sc, 2194 uint32_t addr, 2195 bus_addr_t mapping) 2196 { 2197 REG_WR(sc, addr, U64_LO(mapping)); 2198 REG_WR(sc, (addr + 4), U64_HI(mapping)); 2199 } 2200 2201 static void 2202 storm_memset_spq_addr(struct bxe_softc *sc, 2203 bus_addr_t mapping, 2204 uint16_t abs_fid) 2205 { 2206 uint32_t addr = (XSEM_REG_FAST_MEMORY + 2207 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid)); 2208 __storm_memset_dma_mapping(sc, addr, mapping); 2209 } 2210 2211 static void 2212 storm_memset_vf_to_pf(struct bxe_softc *sc, 2213 uint16_t abs_fid, 2214 uint16_t pf_id) 2215 { 2216 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2217 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2218 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2219 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2220 } 2221 2222 static void 2223 storm_memset_func_en(struct bxe_softc *sc, 2224 uint16_t abs_fid, 2225 uint8_t enable) 2226 { 2227 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2228 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2229 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2230 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2231 } 2232 2233 static void 2234 storm_memset_eq_data(struct bxe_softc *sc, 2235 struct event_ring_data *eq_data, 2236 uint16_t pfid) 2237 { 2238 uint32_t addr; 2239 size_t size; 2240 2241 addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid)); 2242 size = sizeof(struct event_ring_data); 2243 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data); 2244 } 2245 2246 static void 2247 storm_memset_eq_prod(struct bxe_softc *sc, 2248 uint16_t eq_prod, 2249 uint16_t pfid) 2250 { 2251 uint32_t addr = (BAR_CSTRORM_INTMEM + 2252 CSTORM_EVENT_RING_PROD_OFFSET(pfid)); 2253 REG_WR16(sc, addr, eq_prod); 2254 } 2255 2256 /* 2257 * Post a slowpath command. 2258 * 2259 * A slowpath command is used to propagate a configuration change through 2260 * the controller in a controlled manner, allowing each STORM processor and 2261 * other H/W blocks to phase in the change. The commands sent on the 2262 * slowpath are referred to as ramrods. Depending on the ramrod used the 2263 * completion of the ramrod will occur in different ways. Here's a 2264 * breakdown of ramrods and how they complete: 2265 * 2266 * RAMROD_CMD_ID_ETH_PORT_SETUP 2267 * Used to setup the leading connection on a port. Completes on the 2268 * Receive Completion Queue (RCQ) of that port (typically fp[0]). 2269 * 2270 * RAMROD_CMD_ID_ETH_CLIENT_SETUP 2271 * Used to setup an additional connection on a port. Completes on the 2272 * RCQ of the multi-queue/RSS connection being initialized. 2273 * 2274 * RAMROD_CMD_ID_ETH_STAT_QUERY 2275 * Used to force the storm processors to update the statistics database 2276 * in host memory. This ramrod is send on the leading connection CID and 2277 * completes as an index increment of the CSTORM on the default status 2278 * block. 2279 * 2280 * RAMROD_CMD_ID_ETH_UPDATE 2281 * Used to update the state of the leading connection, usually to udpate 2282 * the RSS indirection table. Completes on the RCQ of the leading 2283 * connection. (Not currently used under FreeBSD until OS support becomes 2284 * available.) 2285 * 2286 * RAMROD_CMD_ID_ETH_HALT 2287 * Used when tearing down a connection prior to driver unload. Completes 2288 * on the RCQ of the multi-queue/RSS connection being torn down. Don't 2289 * use this on the leading connection. 2290 * 2291 * RAMROD_CMD_ID_ETH_SET_MAC 2292 * Sets the Unicast/Broadcast/Multicast used by the port. Completes on 2293 * the RCQ of the leading connection. 2294 * 2295 * RAMROD_CMD_ID_ETH_CFC_DEL 2296 * Used when tearing down a conneciton prior to driver unload. Completes 2297 * on the RCQ of the leading connection (since the current connection 2298 * has been completely removed from controller memory). 2299 * 2300 * RAMROD_CMD_ID_ETH_PORT_DEL 2301 * Used to tear down the leading connection prior to driver unload, 2302 * typically fp[0]. Completes as an index increment of the CSTORM on the 2303 * default status block. 2304 * 2305 * RAMROD_CMD_ID_ETH_FORWARD_SETUP 2306 * Used for connection offload. Completes on the RCQ of the multi-queue 2307 * RSS connection that is being offloaded. (Not currently used under 2308 * FreeBSD.) 2309 * 2310 * There can only be one command pending per function. 2311 * 2312 * Returns: 2313 * 0 = Success, !0 = Failure. 2314 */ 2315 2316 /* must be called under the spq lock */ 2317 static inline 2318 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc) 2319 { 2320 struct eth_spe *next_spe = sc->spq_prod_bd; 2321 2322 if (sc->spq_prod_bd == sc->spq_last_bd) { 2323 /* wrap back to the first eth_spq */ 2324 sc->spq_prod_bd = sc->spq; 2325 sc->spq_prod_idx = 0; 2326 } else { 2327 sc->spq_prod_bd++; 2328 sc->spq_prod_idx++; 2329 } 2330 2331 return (next_spe); 2332 } 2333 2334 /* must be called under the spq lock */ 2335 static inline 2336 void bxe_sp_prod_update(struct bxe_softc *sc) 2337 { 2338 int func = SC_FUNC(sc); 2339 2340 /* 2341 * Make sure that BD data is updated before writing the producer. 2342 * BD data is written to the memory, the producer is read from the 2343 * memory, thus we need a full memory barrier to ensure the ordering. 2344 */ 2345 mb(); 2346 2347 REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)), 2348 sc->spq_prod_idx); 2349 2350 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 2351 BUS_SPACE_BARRIER_WRITE); 2352 } 2353 2354 /** 2355 * bxe_is_contextless_ramrod - check if the current command ends on EQ 2356 * 2357 * @cmd: command to check 2358 * @cmd_type: command type 2359 */ 2360 static inline 2361 int bxe_is_contextless_ramrod(int cmd, 2362 int cmd_type) 2363 { 2364 if ((cmd_type == NONE_CONNECTION_TYPE) || 2365 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 2366 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 2367 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 2368 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 2369 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 2370 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) { 2371 return (TRUE); 2372 } else { 2373 return (FALSE); 2374 } 2375 } 2376 2377 /** 2378 * bxe_sp_post - place a single command on an SP ring 2379 * 2380 * @sc: driver handle 2381 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 2382 * @cid: SW CID the command is related to 2383 * @data_hi: command private data address (high 32 bits) 2384 * @data_lo: command private data address (low 32 bits) 2385 * @cmd_type: command type (e.g. NONE, ETH) 2386 * 2387 * SP data is handled as if it's always an address pair, thus data fields are 2388 * not swapped to little endian in upper functions. Instead this function swaps 2389 * data as if it's two uint32 fields. 2390 */ 2391 int 2392 bxe_sp_post(struct bxe_softc *sc, 2393 int command, 2394 int cid, 2395 uint32_t data_hi, 2396 uint32_t data_lo, 2397 int cmd_type) 2398 { 2399 struct eth_spe *spe; 2400 uint16_t type; 2401 int common; 2402 2403 common = bxe_is_contextless_ramrod(command, cmd_type); 2404 2405 BXE_SP_LOCK(sc); 2406 2407 if (common) { 2408 if (!atomic_load_acq_long(&sc->eq_spq_left)) { 2409 BLOGE(sc, "EQ ring is full!\n"); 2410 BXE_SP_UNLOCK(sc); 2411 return (-1); 2412 } 2413 } else { 2414 if (!atomic_load_acq_long(&sc->cq_spq_left)) { 2415 BLOGE(sc, "SPQ ring is full!\n"); 2416 BXE_SP_UNLOCK(sc); 2417 return (-1); 2418 } 2419 } 2420 2421 spe = bxe_sp_get_next(sc); 2422 2423 /* CID needs port number to be encoded int it */ 2424 spe->hdr.conn_and_cmd_data = 2425 htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid)); 2426 2427 type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE; 2428 2429 /* TBD: Check if it works for VFs */ 2430 type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) & 2431 SPE_HDR_T_FUNCTION_ID); 2432 2433 spe->hdr.type = htole16(type); 2434 2435 spe->data.update_data_addr.hi = htole32(data_hi); 2436 spe->data.update_data_addr.lo = htole32(data_lo); 2437 2438 /* 2439 * It's ok if the actual decrement is issued towards the memory 2440 * somewhere between the lock and unlock. Thus no more explict 2441 * memory barrier is needed. 2442 */ 2443 if (common) { 2444 atomic_subtract_acq_long(&sc->eq_spq_left, 1); 2445 } else { 2446 atomic_subtract_acq_long(&sc->cq_spq_left, 1); 2447 } 2448 2449 BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr); 2450 BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n", 2451 BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata)); 2452 BLOGD(sc, DBG_SP, 2453 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n", 2454 sc->spq_prod_idx, 2455 (uint32_t)U64_HI(sc->spq_dma.paddr), 2456 (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq), 2457 command, 2458 common, 2459 HW_CID(sc, cid), 2460 data_hi, 2461 data_lo, 2462 type, 2463 atomic_load_acq_long(&sc->cq_spq_left), 2464 atomic_load_acq_long(&sc->eq_spq_left)); 2465 2466 bxe_sp_prod_update(sc); 2467 2468 BXE_SP_UNLOCK(sc); 2469 return (0); 2470 } 2471 2472 /** 2473 * bxe_debug_print_ind_table - prints the indirection table configuration. 2474 * 2475 * @sc: driver hanlde 2476 * @p: pointer to rss configuration 2477 */ 2478 2479 /* 2480 * FreeBSD Device probe function. 2481 * 2482 * Compares the device found to the driver's list of supported devices and 2483 * reports back to the bsd loader whether this is the right driver for the device. 2484 * This is the driver entry function called from the "kldload" command. 2485 * 2486 * Returns: 2487 * BUS_PROBE_DEFAULT on success, positive value on failure. 2488 */ 2489 static int 2490 bxe_probe(device_t dev) 2491 { 2492 struct bxe_device_type *t; 2493 char *descbuf; 2494 uint16_t did, sdid, svid, vid; 2495 2496 /* Find our device structure */ 2497 t = bxe_devs; 2498 2499 /* Get the data for the device to be probed. */ 2500 vid = pci_get_vendor(dev); 2501 did = pci_get_device(dev); 2502 svid = pci_get_subvendor(dev); 2503 sdid = pci_get_subdevice(dev); 2504 2505 /* Look through the list of known devices for a match. */ 2506 while (t->bxe_name != NULL) { 2507 if ((vid == t->bxe_vid) && (did == t->bxe_did) && 2508 ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) && 2509 ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) { 2510 descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 2511 if (descbuf == NULL) 2512 return (ENOMEM); 2513 2514 /* Print out the device identity. */ 2515 snprintf(descbuf, BXE_DEVDESC_MAX, 2516 "%s (%c%d) BXE v:%s\n", t->bxe_name, 2517 (((pci_read_config(dev, PCIR_REVID, 4) & 2518 0xf0) >> 4) + 'A'), 2519 (pci_read_config(dev, PCIR_REVID, 4) & 0xf), 2520 BXE_DRIVER_VERSION); 2521 2522 device_set_desc_copy(dev, descbuf); 2523 free(descbuf, M_TEMP); 2524 return (BUS_PROBE_DEFAULT); 2525 } 2526 t++; 2527 } 2528 2529 return (ENXIO); 2530 } 2531 2532 static void 2533 bxe_init_mutexes(struct bxe_softc *sc) 2534 { 2535 #ifdef BXE_CORE_LOCK_SX 2536 snprintf(sc->core_sx_name, sizeof(sc->core_sx_name), 2537 "bxe%d_core_lock", sc->unit); 2538 sx_init(&sc->core_sx, sc->core_sx_name); 2539 #else 2540 snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name), 2541 "bxe%d_core_lock", sc->unit); 2542 mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF); 2543 #endif 2544 2545 snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name), 2546 "bxe%d_sp_lock", sc->unit); 2547 mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF); 2548 2549 snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name), 2550 "bxe%d_dmae_lock", sc->unit); 2551 mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF); 2552 2553 snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name), 2554 "bxe%d_phy_lock", sc->unit); 2555 mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF); 2556 2557 snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name), 2558 "bxe%d_fwmb_lock", sc->unit); 2559 mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF); 2560 2561 snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name), 2562 "bxe%d_print_lock", sc->unit); 2563 mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF); 2564 2565 snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name), 2566 "bxe%d_stats_lock", sc->unit); 2567 mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF); 2568 2569 snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name), 2570 "bxe%d_mcast_lock", sc->unit); 2571 mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF); 2572 } 2573 2574 static void 2575 bxe_release_mutexes(struct bxe_softc *sc) 2576 { 2577 #ifdef BXE_CORE_LOCK_SX 2578 sx_destroy(&sc->core_sx); 2579 #else 2580 if (mtx_initialized(&sc->core_mtx)) { 2581 mtx_destroy(&sc->core_mtx); 2582 } 2583 #endif 2584 2585 if (mtx_initialized(&sc->sp_mtx)) { 2586 mtx_destroy(&sc->sp_mtx); 2587 } 2588 2589 if (mtx_initialized(&sc->dmae_mtx)) { 2590 mtx_destroy(&sc->dmae_mtx); 2591 } 2592 2593 if (mtx_initialized(&sc->port.phy_mtx)) { 2594 mtx_destroy(&sc->port.phy_mtx); 2595 } 2596 2597 if (mtx_initialized(&sc->fwmb_mtx)) { 2598 mtx_destroy(&sc->fwmb_mtx); 2599 } 2600 2601 if (mtx_initialized(&sc->print_mtx)) { 2602 mtx_destroy(&sc->print_mtx); 2603 } 2604 2605 if (mtx_initialized(&sc->stats_mtx)) { 2606 mtx_destroy(&sc->stats_mtx); 2607 } 2608 2609 if (mtx_initialized(&sc->mcast_mtx)) { 2610 mtx_destroy(&sc->mcast_mtx); 2611 } 2612 } 2613 2614 static void 2615 bxe_tx_disable(struct bxe_softc* sc) 2616 { 2617 if_t ifp = sc->ifp; 2618 2619 /* tell the stack the driver is stopped and TX queue is full */ 2620 if (ifp != NULL) { 2621 if_setdrvflags(ifp, 0); 2622 } 2623 } 2624 2625 static void 2626 bxe_drv_pulse(struct bxe_softc *sc) 2627 { 2628 SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb, 2629 sc->fw_drv_pulse_wr_seq); 2630 } 2631 2632 static inline uint16_t 2633 bxe_tx_avail(struct bxe_softc *sc, 2634 struct bxe_fastpath *fp) 2635 { 2636 int16_t used; 2637 uint16_t prod; 2638 uint16_t cons; 2639 2640 prod = fp->tx_bd_prod; 2641 cons = fp->tx_bd_cons; 2642 2643 used = SUB_S16(prod, cons); 2644 2645 return (int16_t)(sc->tx_ring_size) - used; 2646 } 2647 2648 static inline int 2649 bxe_tx_queue_has_work(struct bxe_fastpath *fp) 2650 { 2651 uint16_t hw_cons; 2652 2653 mb(); /* status block fields can change */ 2654 hw_cons = le16toh(*fp->tx_cons_sb); 2655 return (hw_cons != fp->tx_pkt_cons); 2656 } 2657 2658 static inline uint8_t 2659 bxe_has_tx_work(struct bxe_fastpath *fp) 2660 { 2661 /* expand this for multi-cos if ever supported */ 2662 return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE; 2663 } 2664 2665 static inline int 2666 bxe_has_rx_work(struct bxe_fastpath *fp) 2667 { 2668 uint16_t rx_cq_cons_sb; 2669 2670 mb(); /* status block fields can change */ 2671 rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb); 2672 if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX) 2673 rx_cq_cons_sb++; 2674 return (fp->rx_cq_cons != rx_cq_cons_sb); 2675 } 2676 2677 static void 2678 bxe_sp_event(struct bxe_softc *sc, 2679 struct bxe_fastpath *fp, 2680 union eth_rx_cqe *rr_cqe) 2681 { 2682 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2683 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2684 enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX; 2685 struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 2686 2687 BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n", 2688 fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type); 2689 2690 switch (command) { 2691 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 2692 BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid); 2693 drv_cmd = ECORE_Q_CMD_UPDATE; 2694 break; 2695 2696 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 2697 BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid); 2698 drv_cmd = ECORE_Q_CMD_SETUP; 2699 break; 2700 2701 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 2702 BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 2703 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY; 2704 break; 2705 2706 case (RAMROD_CMD_ID_ETH_HALT): 2707 BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid); 2708 drv_cmd = ECORE_Q_CMD_HALT; 2709 break; 2710 2711 case (RAMROD_CMD_ID_ETH_TERMINATE): 2712 BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid); 2713 drv_cmd = ECORE_Q_CMD_TERMINATE; 2714 break; 2715 2716 case (RAMROD_CMD_ID_ETH_EMPTY): 2717 BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid); 2718 drv_cmd = ECORE_Q_CMD_EMPTY; 2719 break; 2720 2721 default: 2722 BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n", 2723 command, fp->index); 2724 return; 2725 } 2726 2727 if ((drv_cmd != ECORE_Q_CMD_MAX) && 2728 q_obj->complete_cmd(sc, q_obj, drv_cmd)) { 2729 /* 2730 * q_obj->complete_cmd() failure means that this was 2731 * an unexpected completion. 2732 * 2733 * In this case we don't want to increase the sc->spq_left 2734 * because apparently we haven't sent this command the first 2735 * place. 2736 */ 2737 // bxe_panic(sc, ("Unexpected SP completion\n")); 2738 return; 2739 } 2740 2741 atomic_add_acq_long(&sc->cq_spq_left, 1); 2742 2743 BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n", 2744 atomic_load_acq_long(&sc->cq_spq_left)); 2745 } 2746 2747 /* 2748 * The current mbuf is part of an aggregation. Move the mbuf into the TPA 2749 * aggregation queue, put an empty mbuf back onto the receive chain, and mark 2750 * the current aggregation queue as in-progress. 2751 */ 2752 static void 2753 bxe_tpa_start(struct bxe_softc *sc, 2754 struct bxe_fastpath *fp, 2755 uint16_t queue, 2756 uint16_t cons, 2757 uint16_t prod, 2758 struct eth_fast_path_rx_cqe *cqe) 2759 { 2760 struct bxe_sw_rx_bd tmp_bd; 2761 struct bxe_sw_rx_bd *rx_buf; 2762 struct eth_rx_bd *rx_bd; 2763 int max_agg_queues; 2764 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 2765 uint16_t index; 2766 2767 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START " 2768 "cons=%d prod=%d\n", 2769 fp->index, queue, cons, prod); 2770 2771 max_agg_queues = MAX_AGG_QS(sc); 2772 2773 KASSERT((queue < max_agg_queues), 2774 ("fp[%02d] invalid aggr queue (%d >= %d)!", 2775 fp->index, queue, max_agg_queues)); 2776 2777 KASSERT((tpa_info->state == BXE_TPA_STATE_STOP), 2778 ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!", 2779 fp->index, queue)); 2780 2781 /* copy the existing mbuf and mapping from the TPA pool */ 2782 tmp_bd = tpa_info->bd; 2783 2784 if (tmp_bd.m == NULL) { 2785 uint32_t *tmp; 2786 2787 tmp = (uint32_t *)cqe; 2788 2789 BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n", 2790 fp->index, queue, cons, prod); 2791 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n", 2792 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 2793 2794 /* XXX Error handling? */ 2795 return; 2796 } 2797 2798 /* change the TPA queue to the start state */ 2799 tpa_info->state = BXE_TPA_STATE_START; 2800 tpa_info->placement_offset = cqe->placement_offset; 2801 tpa_info->parsing_flags = le16toh(cqe->pars_flags.flags); 2802 tpa_info->vlan_tag = le16toh(cqe->vlan_tag); 2803 tpa_info->len_on_bd = le16toh(cqe->len_on_bd); 2804 2805 fp->rx_tpa_queue_used |= (1 << queue); 2806 2807 /* 2808 * If all the buffer descriptors are filled with mbufs then fill in 2809 * the current consumer index with a new BD. Else if a maximum Rx 2810 * buffer limit is imposed then fill in the next producer index. 2811 */ 2812 index = (sc->max_rx_bufs != RX_BD_USABLE) ? 2813 prod : cons; 2814 2815 /* move the received mbuf and mapping to TPA pool */ 2816 tpa_info->bd = fp->rx_mbuf_chain[cons]; 2817 2818 /* release any existing RX BD mbuf mappings */ 2819 if (cons != index) { 2820 rx_buf = &fp->rx_mbuf_chain[cons]; 2821 2822 if (rx_buf->m_map != NULL) { 2823 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 2824 BUS_DMASYNC_POSTREAD); 2825 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 2826 } 2827 2828 /* 2829 * We get here when the maximum number of rx buffers is less than 2830 * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL 2831 * it out here without concern of a memory leak. 2832 */ 2833 fp->rx_mbuf_chain[cons].m = NULL; 2834 } 2835 2836 /* update the Rx SW BD with the mbuf info from the TPA pool */ 2837 fp->rx_mbuf_chain[index] = tmp_bd; 2838 2839 /* update the Rx BD with the empty mbuf phys address from the TPA pool */ 2840 rx_bd = &fp->rx_chain[index]; 2841 rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr)); 2842 rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr)); 2843 } 2844 2845 /* 2846 * When a TPA aggregation is completed, loop through the individual mbufs 2847 * of the aggregation, combining them into a single mbuf which will be sent 2848 * up the stack. Refill all freed SGEs with mbufs as we go along. 2849 */ 2850 static int 2851 bxe_fill_frag_mbuf(struct bxe_softc *sc, 2852 struct bxe_fastpath *fp, 2853 struct bxe_sw_tpa_info *tpa_info, 2854 uint16_t queue, 2855 uint16_t pages, 2856 struct mbuf *m, 2857 struct eth_end_agg_rx_cqe *cqe, 2858 uint16_t cqe_idx) 2859 { 2860 struct mbuf *m_frag; 2861 uint32_t frag_len, frag_size, i; 2862 uint16_t sge_idx; 2863 int rc = 0; 2864 int j; 2865 2866 frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd; 2867 2868 BLOGD(sc, DBG_LRO, 2869 "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n", 2870 fp->index, queue, tpa_info->len_on_bd, frag_size, pages); 2871 2872 /* make sure the aggregated frame is not too big to handle */ 2873 if (pages > 8 * PAGES_PER_SGE) { 2874 2875 uint32_t *tmp = (uint32_t *)cqe; 2876 2877 BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! " 2878 "pkt_len=%d len_on_bd=%d frag_size=%d\n", 2879 fp->index, cqe_idx, pages, le16toh(cqe->pkt_len), 2880 tpa_info->len_on_bd, frag_size); 2881 2882 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n", 2883 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 2884 2885 bxe_panic(sc, ("sge page count error\n")); 2886 return (EINVAL); 2887 } 2888 2889 /* 2890 * Scan through the scatter gather list pulling individual mbufs into a 2891 * single mbuf for the host stack. 2892 */ 2893 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 2894 sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j])); 2895 2896 /* 2897 * Firmware gives the indices of the SGE as if the ring is an array 2898 * (meaning that the "next" element will consume 2 indices). 2899 */ 2900 frag_len = min(frag_size, (uint32_t)(SGE_PAGES)); 2901 2902 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d " 2903 "sge_idx=%d frag_size=%d frag_len=%d\n", 2904 fp->index, queue, i, j, sge_idx, frag_size, frag_len); 2905 2906 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 2907 2908 /* allocate a new mbuf for the SGE */ 2909 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 2910 if (rc) { 2911 /* Leave all remaining SGEs in the ring! */ 2912 return (rc); 2913 } 2914 2915 /* update the fragment length */ 2916 m_frag->m_len = frag_len; 2917 2918 /* concatenate the fragment to the head mbuf */ 2919 m_cat(m, m_frag); 2920 fp->eth_q_stats.mbuf_alloc_sge--; 2921 2922 /* update the TPA mbuf size and remaining fragment size */ 2923 m->m_pkthdr.len += frag_len; 2924 frag_size -= frag_len; 2925 } 2926 2927 BLOGD(sc, DBG_LRO, 2928 "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n", 2929 fp->index, queue, frag_size); 2930 2931 return (rc); 2932 } 2933 2934 static inline void 2935 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp) 2936 { 2937 int i, j; 2938 2939 for (i = 1; i <= RX_SGE_NUM_PAGES; i++) { 2940 int idx = RX_SGE_TOTAL_PER_PAGE * i - 1; 2941 2942 for (j = 0; j < 2; j++) { 2943 BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx); 2944 idx--; 2945 } 2946 } 2947 } 2948 2949 static inline void 2950 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp) 2951 { 2952 /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */ 2953 memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask)); 2954 2955 /* 2956 * Clear the two last indices in the page to 1. These are the indices that 2957 * correspond to the "next" element, hence will never be indicated and 2958 * should be removed from the calculations. 2959 */ 2960 bxe_clear_sge_mask_next_elems(fp); 2961 } 2962 2963 static inline void 2964 bxe_update_last_max_sge(struct bxe_fastpath *fp, 2965 uint16_t idx) 2966 { 2967 uint16_t last_max = fp->last_max_sge; 2968 2969 if (SUB_S16(idx, last_max) > 0) { 2970 fp->last_max_sge = idx; 2971 } 2972 } 2973 2974 static inline void 2975 bxe_update_sge_prod(struct bxe_softc *sc, 2976 struct bxe_fastpath *fp, 2977 uint16_t sge_len, 2978 union eth_sgl_or_raw_data *cqe) 2979 { 2980 uint16_t last_max, last_elem, first_elem; 2981 uint16_t delta = 0; 2982 uint16_t i; 2983 2984 if (!sge_len) { 2985 return; 2986 } 2987 2988 /* first mark all used pages */ 2989 for (i = 0; i < sge_len; i++) { 2990 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 2991 RX_SGE(le16toh(cqe->sgl[i]))); 2992 } 2993 2994 BLOGD(sc, DBG_LRO, 2995 "fp[%02d] fp_cqe->sgl[%d] = %d\n", 2996 fp->index, sge_len - 1, 2997 le16toh(cqe->sgl[sge_len - 1])); 2998 2999 /* assume that the last SGE index is the biggest */ 3000 bxe_update_last_max_sge(fp, 3001 le16toh(cqe->sgl[sge_len - 1])); 3002 3003 last_max = RX_SGE(fp->last_max_sge); 3004 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 3005 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 3006 3007 /* if ring is not full */ 3008 if (last_elem + 1 != first_elem) { 3009 last_elem++; 3010 } 3011 3012 /* now update the prod */ 3013 for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) { 3014 if (__predict_true(fp->sge_mask[i])) { 3015 break; 3016 } 3017 3018 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 3019 delta += BIT_VEC64_ELEM_SZ; 3020 } 3021 3022 if (delta > 0) { 3023 fp->rx_sge_prod += delta; 3024 /* clear page-end entries */ 3025 bxe_clear_sge_mask_next_elems(fp); 3026 } 3027 3028 BLOGD(sc, DBG_LRO, 3029 "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n", 3030 fp->index, fp->last_max_sge, fp->rx_sge_prod); 3031 } 3032 3033 /* 3034 * The aggregation on the current TPA queue has completed. Pull the individual 3035 * mbuf fragments together into a single mbuf, perform all necessary checksum 3036 * calculations, and send the resuting mbuf to the stack. 3037 */ 3038 static void 3039 bxe_tpa_stop(struct bxe_softc *sc, 3040 struct bxe_fastpath *fp, 3041 struct bxe_sw_tpa_info *tpa_info, 3042 uint16_t queue, 3043 uint16_t pages, 3044 struct eth_end_agg_rx_cqe *cqe, 3045 uint16_t cqe_idx) 3046 { 3047 if_t ifp = sc->ifp; 3048 struct mbuf *m; 3049 int rc = 0; 3050 3051 BLOGD(sc, DBG_LRO, 3052 "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n", 3053 fp->index, queue, tpa_info->placement_offset, 3054 le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag); 3055 3056 m = tpa_info->bd.m; 3057 3058 /* allocate a replacement before modifying existing mbuf */ 3059 rc = bxe_alloc_rx_tpa_mbuf(fp, queue); 3060 if (rc) { 3061 /* drop the frame and log an error */ 3062 fp->eth_q_stats.rx_soft_errors++; 3063 goto bxe_tpa_stop_exit; 3064 } 3065 3066 /* we have a replacement, fixup the current mbuf */ 3067 m_adj(m, tpa_info->placement_offset); 3068 m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd; 3069 3070 /* mark the checksums valid (taken care of by the firmware) */ 3071 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3072 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3073 m->m_pkthdr.csum_data = 0xffff; 3074 m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | 3075 CSUM_IP_VALID | 3076 CSUM_DATA_VALID | 3077 CSUM_PSEUDO_HDR); 3078 3079 /* aggregate all of the SGEs into a single mbuf */ 3080 rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx); 3081 if (rc) { 3082 /* drop the packet and log an error */ 3083 fp->eth_q_stats.rx_soft_errors++; 3084 m_freem(m); 3085 } else { 3086 if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) { 3087 m->m_pkthdr.ether_vtag = tpa_info->vlan_tag; 3088 m->m_flags |= M_VLANTAG; 3089 } 3090 3091 /* assign packet to this interface interface */ 3092 if_setrcvif(m, ifp); 3093 3094 #if __FreeBSD_version >= 800000 3095 /* specify what RSS queue was used for this flow */ 3096 m->m_pkthdr.flowid = fp->index; 3097 BXE_SET_FLOWID(m); 3098 #endif 3099 3100 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3101 fp->eth_q_stats.rx_tpa_pkts++; 3102 3103 /* pass the frame to the stack */ 3104 if_input(ifp, m); 3105 } 3106 3107 /* we passed an mbuf up the stack or dropped the frame */ 3108 fp->eth_q_stats.mbuf_alloc_tpa--; 3109 3110 bxe_tpa_stop_exit: 3111 3112 fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP; 3113 fp->rx_tpa_queue_used &= ~(1 << queue); 3114 } 3115 3116 static uint8_t 3117 bxe_service_rxsgl( 3118 struct bxe_fastpath *fp, 3119 uint16_t len, 3120 uint16_t lenonbd, 3121 struct mbuf *m, 3122 struct eth_fast_path_rx_cqe *cqe_fp) 3123 { 3124 struct mbuf *m_frag; 3125 uint16_t frags, frag_len; 3126 uint16_t sge_idx = 0; 3127 uint16_t j; 3128 uint8_t i, rc = 0; 3129 uint32_t frag_size; 3130 3131 /* adjust the mbuf */ 3132 m->m_len = lenonbd; 3133 3134 frag_size = len - lenonbd; 3135 frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3136 3137 for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) { 3138 sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j])); 3139 3140 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 3141 frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE)); 3142 m_frag->m_len = frag_len; 3143 3144 /* allocate a new mbuf for the SGE */ 3145 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 3146 if (rc) { 3147 /* Leave all remaining SGEs in the ring! */ 3148 return (rc); 3149 } 3150 fp->eth_q_stats.mbuf_alloc_sge--; 3151 3152 /* concatenate the fragment to the head mbuf */ 3153 m_cat(m, m_frag); 3154 3155 frag_size -= frag_len; 3156 } 3157 3158 bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data); 3159 3160 return rc; 3161 } 3162 3163 static uint8_t 3164 bxe_rxeof(struct bxe_softc *sc, 3165 struct bxe_fastpath *fp) 3166 { 3167 if_t ifp = sc->ifp; 3168 uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 3169 uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod; 3170 int rx_pkts = 0; 3171 int rc = 0; 3172 3173 BXE_FP_RX_LOCK(fp); 3174 3175 /* CQ "next element" is of the size of the regular element */ 3176 hw_cq_cons = le16toh(*fp->rx_cq_cons_sb); 3177 if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) { 3178 hw_cq_cons++; 3179 } 3180 3181 bd_cons = fp->rx_bd_cons; 3182 bd_prod = fp->rx_bd_prod; 3183 bd_prod_fw = bd_prod; 3184 sw_cq_cons = fp->rx_cq_cons; 3185 sw_cq_prod = fp->rx_cq_prod; 3186 3187 /* 3188 * Memory barrier necessary as speculative reads of the rx 3189 * buffer can be ahead of the index in the status block 3190 */ 3191 rmb(); 3192 3193 BLOGD(sc, DBG_RX, 3194 "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n", 3195 fp->index, hw_cq_cons, sw_cq_cons); 3196 3197 while (sw_cq_cons != hw_cq_cons) { 3198 struct bxe_sw_rx_bd *rx_buf = NULL; 3199 union eth_rx_cqe *cqe; 3200 struct eth_fast_path_rx_cqe *cqe_fp; 3201 uint8_t cqe_fp_flags; 3202 enum eth_rx_cqe_type cqe_fp_type; 3203 uint16_t len, lenonbd, pad; 3204 struct mbuf *m = NULL; 3205 3206 comp_ring_cons = RCQ(sw_cq_cons); 3207 bd_prod = RX_BD(bd_prod); 3208 bd_cons = RX_BD(bd_cons); 3209 3210 cqe = &fp->rcq_chain[comp_ring_cons]; 3211 cqe_fp = &cqe->fast_path_cqe; 3212 cqe_fp_flags = cqe_fp->type_error_flags; 3213 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 3214 3215 BLOGD(sc, DBG_RX, 3216 "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d " 3217 "BD prod=%d cons=%d CQE type=0x%x err=0x%x " 3218 "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n", 3219 fp->index, 3220 hw_cq_cons, 3221 sw_cq_cons, 3222 bd_prod, 3223 bd_cons, 3224 CQE_TYPE(cqe_fp_flags), 3225 cqe_fp_flags, 3226 cqe_fp->status_flags, 3227 le32toh(cqe_fp->rss_hash_result), 3228 le16toh(cqe_fp->vlan_tag), 3229 le16toh(cqe_fp->pkt_len_or_gro_seg_len), 3230 le16toh(cqe_fp->len_on_bd)); 3231 3232 /* is this a slowpath msg? */ 3233 if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) { 3234 bxe_sp_event(sc, fp, cqe); 3235 goto next_cqe; 3236 } 3237 3238 rx_buf = &fp->rx_mbuf_chain[bd_cons]; 3239 3240 if (!CQE_TYPE_FAST(cqe_fp_type)) { 3241 struct bxe_sw_tpa_info *tpa_info; 3242 uint16_t frag_size, pages; 3243 uint8_t queue; 3244 3245 if (CQE_TYPE_START(cqe_fp_type)) { 3246 bxe_tpa_start(sc, fp, cqe_fp->queue_index, 3247 bd_cons, bd_prod, cqe_fp); 3248 m = NULL; /* packet not ready yet */ 3249 goto next_rx; 3250 } 3251 3252 KASSERT(CQE_TYPE_STOP(cqe_fp_type), 3253 ("CQE type is not STOP! (0x%x)\n", cqe_fp_type)); 3254 3255 queue = cqe->end_agg_cqe.queue_index; 3256 tpa_info = &fp->rx_tpa_info[queue]; 3257 3258 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n", 3259 fp->index, queue); 3260 3261 frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) - 3262 tpa_info->len_on_bd); 3263 pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3264 3265 bxe_tpa_stop(sc, fp, tpa_info, queue, pages, 3266 &cqe->end_agg_cqe, comp_ring_cons); 3267 3268 bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data); 3269 3270 goto next_cqe; 3271 } 3272 3273 /* non TPA */ 3274 3275 /* is this an error packet? */ 3276 if (__predict_false(cqe_fp_flags & 3277 ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) { 3278 BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons); 3279 fp->eth_q_stats.rx_soft_errors++; 3280 goto next_rx; 3281 } 3282 3283 len = le16toh(cqe_fp->pkt_len_or_gro_seg_len); 3284 lenonbd = le16toh(cqe_fp->len_on_bd); 3285 pad = cqe_fp->placement_offset; 3286 3287 m = rx_buf->m; 3288 3289 if (__predict_false(m == NULL)) { 3290 BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n", 3291 bd_cons, fp->index); 3292 goto next_rx; 3293 } 3294 3295 /* XXX double copy if packet length under a threshold */ 3296 3297 /* 3298 * If all the buffer descriptors are filled with mbufs then fill in 3299 * the current consumer index with a new BD. Else if a maximum Rx 3300 * buffer limit is imposed then fill in the next producer index. 3301 */ 3302 rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons, 3303 (sc->max_rx_bufs != RX_BD_USABLE) ? 3304 bd_prod : bd_cons); 3305 if (rc != 0) { 3306 3307 /* we simply reuse the received mbuf and don't post it to the stack */ 3308 m = NULL; 3309 3310 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 3311 fp->index, rc); 3312 fp->eth_q_stats.rx_soft_errors++; 3313 3314 if (sc->max_rx_bufs != RX_BD_USABLE) { 3315 /* copy this consumer index to the producer index */ 3316 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf, 3317 sizeof(struct bxe_sw_rx_bd)); 3318 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd)); 3319 } 3320 3321 goto next_rx; 3322 } 3323 3324 /* current mbuf was detached from the bd */ 3325 fp->eth_q_stats.mbuf_alloc_rx--; 3326 3327 /* we allocated a replacement mbuf, fixup the current one */ 3328 m_adj(m, pad); 3329 m->m_pkthdr.len = m->m_len = len; 3330 3331 if ((len > 60) && (len > lenonbd)) { 3332 fp->eth_q_stats.rx_bxe_service_rxsgl++; 3333 rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp); 3334 if (rc) 3335 break; 3336 fp->eth_q_stats.rx_jumbo_sge_pkts++; 3337 } else if (lenonbd < len) { 3338 fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++; 3339 } 3340 3341 /* assign packet to this interface interface */ 3342 if_setrcvif(m, ifp); 3343 3344 /* assume no hardware checksum has complated */ 3345 m->m_pkthdr.csum_flags = 0; 3346 3347 /* validate checksum if offload enabled */ 3348 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 3349 /* check for a valid IP frame */ 3350 if (!(cqe->fast_path_cqe.status_flags & 3351 ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) { 3352 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3353 if (__predict_false(cqe_fp_flags & 3354 ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) { 3355 fp->eth_q_stats.rx_hw_csum_errors++; 3356 } else { 3357 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3358 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3359 } 3360 } 3361 3362 /* check for a valid TCP/UDP frame */ 3363 if (!(cqe->fast_path_cqe.status_flags & 3364 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) { 3365 if (__predict_false(cqe_fp_flags & 3366 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) { 3367 fp->eth_q_stats.rx_hw_csum_errors++; 3368 } else { 3369 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3370 m->m_pkthdr.csum_data = 0xFFFF; 3371 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | 3372 CSUM_PSEUDO_HDR); 3373 } 3374 } 3375 } 3376 3377 /* if there is a VLAN tag then flag that info */ 3378 if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) { 3379 m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag; 3380 m->m_flags |= M_VLANTAG; 3381 } 3382 3383 #if __FreeBSD_version >= 800000 3384 /* specify what RSS queue was used for this flow */ 3385 m->m_pkthdr.flowid = fp->index; 3386 BXE_SET_FLOWID(m); 3387 #endif 3388 3389 next_rx: 3390 3391 bd_cons = RX_BD_NEXT(bd_cons); 3392 bd_prod = RX_BD_NEXT(bd_prod); 3393 bd_prod_fw = RX_BD_NEXT(bd_prod_fw); 3394 3395 /* pass the frame to the stack */ 3396 if (__predict_true(m != NULL)) { 3397 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3398 rx_pkts++; 3399 if_input(ifp, m); 3400 } 3401 3402 next_cqe: 3403 3404 sw_cq_prod = RCQ_NEXT(sw_cq_prod); 3405 sw_cq_cons = RCQ_NEXT(sw_cq_cons); 3406 3407 /* limit spinning on the queue */ 3408 if (rc != 0) 3409 break; 3410 3411 if (rx_pkts == sc->rx_budget) { 3412 fp->eth_q_stats.rx_budget_reached++; 3413 break; 3414 } 3415 } /* while work to do */ 3416 3417 fp->rx_bd_cons = bd_cons; 3418 fp->rx_bd_prod = bd_prod_fw; 3419 fp->rx_cq_cons = sw_cq_cons; 3420 fp->rx_cq_prod = sw_cq_prod; 3421 3422 /* Update producers */ 3423 bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod); 3424 3425 fp->eth_q_stats.rx_pkts += rx_pkts; 3426 fp->eth_q_stats.rx_calls++; 3427 3428 BXE_FP_RX_UNLOCK(fp); 3429 3430 return (sw_cq_cons != hw_cq_cons); 3431 } 3432 3433 static uint16_t 3434 bxe_free_tx_pkt(struct bxe_softc *sc, 3435 struct bxe_fastpath *fp, 3436 uint16_t idx) 3437 { 3438 struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx]; 3439 struct eth_tx_start_bd *tx_start_bd; 3440 uint16_t bd_idx = TX_BD(tx_buf->first_bd); 3441 uint16_t new_cons; 3442 int nbd; 3443 3444 /* unmap the mbuf from non-paged memory */ 3445 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 3446 3447 tx_start_bd = &fp->tx_chain[bd_idx].start_bd; 3448 nbd = le16toh(tx_start_bd->nbd) - 1; 3449 3450 new_cons = (tx_buf->first_bd + nbd); 3451 3452 /* free the mbuf */ 3453 if (__predict_true(tx_buf->m != NULL)) { 3454 m_freem(tx_buf->m); 3455 fp->eth_q_stats.mbuf_alloc_tx--; 3456 } else { 3457 fp->eth_q_stats.tx_chain_lost_mbuf++; 3458 } 3459 3460 tx_buf->m = NULL; 3461 tx_buf->first_bd = 0; 3462 3463 return (new_cons); 3464 } 3465 3466 /* transmit timeout watchdog */ 3467 static int 3468 bxe_watchdog(struct bxe_softc *sc, 3469 struct bxe_fastpath *fp) 3470 { 3471 BXE_FP_TX_LOCK(fp); 3472 3473 if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) { 3474 BXE_FP_TX_UNLOCK(fp); 3475 return (0); 3476 } 3477 3478 BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index); 3479 if(sc->trigger_grcdump) { 3480 /* taking grcdump */ 3481 bxe_grc_dump(sc); 3482 } 3483 3484 BXE_FP_TX_UNLOCK(fp); 3485 3486 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT); 3487 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 3488 3489 return (-1); 3490 } 3491 3492 /* processes transmit completions */ 3493 static uint8_t 3494 bxe_txeof(struct bxe_softc *sc, 3495 struct bxe_fastpath *fp) 3496 { 3497 if_t ifp = sc->ifp; 3498 uint16_t bd_cons, hw_cons, sw_cons, pkt_cons; 3499 uint16_t tx_bd_avail; 3500 3501 BXE_FP_TX_LOCK_ASSERT(fp); 3502 3503 bd_cons = fp->tx_bd_cons; 3504 hw_cons = le16toh(*fp->tx_cons_sb); 3505 sw_cons = fp->tx_pkt_cons; 3506 3507 while (sw_cons != hw_cons) { 3508 pkt_cons = TX_BD(sw_cons); 3509 3510 BLOGD(sc, DBG_TX, 3511 "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n", 3512 fp->index, hw_cons, sw_cons, pkt_cons); 3513 3514 bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons); 3515 3516 sw_cons++; 3517 } 3518 3519 fp->tx_pkt_cons = sw_cons; 3520 fp->tx_bd_cons = bd_cons; 3521 3522 BLOGD(sc, DBG_TX, 3523 "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n", 3524 fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod); 3525 3526 mb(); 3527 3528 tx_bd_avail = bxe_tx_avail(sc, fp); 3529 3530 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 3531 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 3532 } else { 3533 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 3534 } 3535 3536 if (fp->tx_pkt_prod != fp->tx_pkt_cons) { 3537 /* reset the watchdog timer if there are pending transmits */ 3538 fp->watchdog_timer = BXE_TX_TIMEOUT; 3539 return (TRUE); 3540 } else { 3541 /* clear watchdog when there are no pending transmits */ 3542 fp->watchdog_timer = 0; 3543 return (FALSE); 3544 } 3545 } 3546 3547 static void 3548 bxe_drain_tx_queues(struct bxe_softc *sc) 3549 { 3550 struct bxe_fastpath *fp; 3551 int i, count; 3552 3553 /* wait until all TX fastpath tasks have completed */ 3554 for (i = 0; i < sc->num_queues; i++) { 3555 fp = &sc->fp[i]; 3556 3557 count = 1000; 3558 3559 while (bxe_has_tx_work(fp)) { 3560 3561 BXE_FP_TX_LOCK(fp); 3562 bxe_txeof(sc, fp); 3563 BXE_FP_TX_UNLOCK(fp); 3564 3565 if (count == 0) { 3566 BLOGE(sc, "Timeout waiting for fp[%d] " 3567 "transmits to complete!\n", i); 3568 bxe_panic(sc, ("tx drain failure\n")); 3569 return; 3570 } 3571 3572 count--; 3573 DELAY(1000); 3574 rmb(); 3575 } 3576 } 3577 3578 return; 3579 } 3580 3581 static int 3582 bxe_del_all_macs(struct bxe_softc *sc, 3583 struct ecore_vlan_mac_obj *mac_obj, 3584 int mac_type, 3585 uint8_t wait_for_comp) 3586 { 3587 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 3588 int rc; 3589 3590 /* wait for completion of requested */ 3591 if (wait_for_comp) { 3592 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 3593 } 3594 3595 /* Set the mac type of addresses we want to clear */ 3596 bxe_set_bit(mac_type, &vlan_mac_flags); 3597 3598 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags); 3599 if (rc < 0) { 3600 BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n", 3601 rc, mac_type, wait_for_comp); 3602 } 3603 3604 return (rc); 3605 } 3606 3607 static int 3608 bxe_fill_accept_flags(struct bxe_softc *sc, 3609 uint32_t rx_mode, 3610 unsigned long *rx_accept_flags, 3611 unsigned long *tx_accept_flags) 3612 { 3613 /* Clear the flags first */ 3614 *rx_accept_flags = 0; 3615 *tx_accept_flags = 0; 3616 3617 switch (rx_mode) { 3618 case BXE_RX_MODE_NONE: 3619 /* 3620 * 'drop all' supersedes any accept flags that may have been 3621 * passed to the function. 3622 */ 3623 break; 3624 3625 case BXE_RX_MODE_NORMAL: 3626 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3627 bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags); 3628 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3629 3630 /* internal switching mode */ 3631 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3632 bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags); 3633 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3634 3635 break; 3636 3637 case BXE_RX_MODE_ALLMULTI: 3638 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3639 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3640 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3641 3642 /* internal switching mode */ 3643 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3644 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3645 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3646 3647 break; 3648 3649 case BXE_RX_MODE_PROMISC: 3650 /* 3651 * According to deffinition of SI mode, iface in promisc mode 3652 * should receive matched and unmatched (in resolution of port) 3653 * unicast packets. 3654 */ 3655 bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags); 3656 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3657 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3658 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3659 3660 /* internal switching mode */ 3661 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3662 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3663 3664 if (IS_MF_SI(sc)) { 3665 bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags); 3666 } else { 3667 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3668 } 3669 3670 break; 3671 3672 default: 3673 BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode); 3674 return (-1); 3675 } 3676 3677 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ 3678 if (rx_mode != BXE_RX_MODE_NONE) { 3679 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags); 3680 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags); 3681 } 3682 3683 return (0); 3684 } 3685 3686 static int 3687 bxe_set_q_rx_mode(struct bxe_softc *sc, 3688 uint8_t cl_id, 3689 unsigned long rx_mode_flags, 3690 unsigned long rx_accept_flags, 3691 unsigned long tx_accept_flags, 3692 unsigned long ramrod_flags) 3693 { 3694 struct ecore_rx_mode_ramrod_params ramrod_param; 3695 int rc; 3696 3697 memset(&ramrod_param, 0, sizeof(ramrod_param)); 3698 3699 /* Prepare ramrod parameters */ 3700 ramrod_param.cid = 0; 3701 ramrod_param.cl_id = cl_id; 3702 ramrod_param.rx_mode_obj = &sc->rx_mode_obj; 3703 ramrod_param.func_id = SC_FUNC(sc); 3704 3705 ramrod_param.pstate = &sc->sp_state; 3706 ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING; 3707 3708 ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata); 3709 ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata); 3710 3711 bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 3712 3713 ramrod_param.ramrod_flags = ramrod_flags; 3714 ramrod_param.rx_mode_flags = rx_mode_flags; 3715 3716 ramrod_param.rx_accept_flags = rx_accept_flags; 3717 ramrod_param.tx_accept_flags = tx_accept_flags; 3718 3719 rc = ecore_config_rx_mode(sc, &ramrod_param); 3720 if (rc < 0) { 3721 BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x " 3722 "rx_accept_flags 0x%x tx_accept_flags 0x%x " 3723 "ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id, 3724 (uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags, 3725 (uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc); 3726 return (rc); 3727 } 3728 3729 return (0); 3730 } 3731 3732 static int 3733 bxe_set_storm_rx_mode(struct bxe_softc *sc) 3734 { 3735 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 3736 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 3737 int rc; 3738 3739 rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags, 3740 &tx_accept_flags); 3741 if (rc) { 3742 return (rc); 3743 } 3744 3745 bxe_set_bit(RAMROD_RX, &ramrod_flags); 3746 bxe_set_bit(RAMROD_TX, &ramrod_flags); 3747 3748 /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */ 3749 return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags, 3750 rx_accept_flags, tx_accept_flags, 3751 ramrod_flags)); 3752 } 3753 3754 /* returns the "mcp load_code" according to global load_count array */ 3755 static int 3756 bxe_nic_load_no_mcp(struct bxe_softc *sc) 3757 { 3758 int path = SC_PATH(sc); 3759 int port = SC_PORT(sc); 3760 3761 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3762 path, load_count[path][0], load_count[path][1], 3763 load_count[path][2]); 3764 load_count[path][0]++; 3765 load_count[path][1 + port]++; 3766 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3767 path, load_count[path][0], load_count[path][1], 3768 load_count[path][2]); 3769 if (load_count[path][0] == 1) { 3770 return (FW_MSG_CODE_DRV_LOAD_COMMON); 3771 } else if (load_count[path][1 + port] == 1) { 3772 return (FW_MSG_CODE_DRV_LOAD_PORT); 3773 } else { 3774 return (FW_MSG_CODE_DRV_LOAD_FUNCTION); 3775 } 3776 } 3777 3778 /* returns the "mcp load_code" according to global load_count array */ 3779 static int 3780 bxe_nic_unload_no_mcp(struct bxe_softc *sc) 3781 { 3782 int port = SC_PORT(sc); 3783 int path = SC_PATH(sc); 3784 3785 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3786 path, load_count[path][0], load_count[path][1], 3787 load_count[path][2]); 3788 load_count[path][0]--; 3789 load_count[path][1 + port]--; 3790 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3791 path, load_count[path][0], load_count[path][1], 3792 load_count[path][2]); 3793 if (load_count[path][0] == 0) { 3794 return (FW_MSG_CODE_DRV_UNLOAD_COMMON); 3795 } else if (load_count[path][1 + port] == 0) { 3796 return (FW_MSG_CODE_DRV_UNLOAD_PORT); 3797 } else { 3798 return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION); 3799 } 3800 } 3801 3802 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */ 3803 static uint32_t 3804 bxe_send_unload_req(struct bxe_softc *sc, 3805 int unload_mode) 3806 { 3807 uint32_t reset_code = 0; 3808 3809 /* Select the UNLOAD request mode */ 3810 if (unload_mode == UNLOAD_NORMAL) { 3811 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3812 } else { 3813 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3814 } 3815 3816 /* Send the request to the MCP */ 3817 if (!BXE_NOMCP(sc)) { 3818 reset_code = bxe_fw_command(sc, reset_code, 0); 3819 } else { 3820 reset_code = bxe_nic_unload_no_mcp(sc); 3821 } 3822 3823 return (reset_code); 3824 } 3825 3826 /* send UNLOAD_DONE command to the MCP */ 3827 static void 3828 bxe_send_unload_done(struct bxe_softc *sc, 3829 uint8_t keep_link) 3830 { 3831 uint32_t reset_param = 3832 keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 3833 3834 /* Report UNLOAD_DONE to MCP */ 3835 if (!BXE_NOMCP(sc)) { 3836 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 3837 } 3838 } 3839 3840 static int 3841 bxe_func_wait_started(struct bxe_softc *sc) 3842 { 3843 int tout = 50; 3844 3845 if (!sc->port.pmf) { 3846 return (0); 3847 } 3848 3849 /* 3850 * (assumption: No Attention from MCP at this stage) 3851 * PMF probably in the middle of TX disable/enable transaction 3852 * 1. Sync IRS for default SB 3853 * 2. Sync SP queue - this guarantees us that attention handling started 3854 * 3. Wait, that TX disable/enable transaction completes 3855 * 3856 * 1+2 guarantee that if DCBX attention was scheduled it already changed 3857 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 3858 * received completion for the transaction the state is TX_STOPPED. 3859 * State will return to STARTED after completion of TX_STOPPED-->STARTED 3860 * transaction. 3861 */ 3862 3863 /* XXX make sure default SB ISR is done */ 3864 /* need a way to synchronize an irq (intr_mtx?) */ 3865 3866 /* XXX flush any work queues */ 3867 3868 while (ecore_func_get_state(sc, &sc->func_obj) != 3869 ECORE_F_STATE_STARTED && tout--) { 3870 DELAY(20000); 3871 } 3872 3873 if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) { 3874 /* 3875 * Failed to complete the transaction in a "good way" 3876 * Force both transactions with CLR bit. 3877 */ 3878 struct ecore_func_state_params func_params = { NULL }; 3879 3880 BLOGE(sc, "Unexpected function state! " 3881 "Forcing STARTED-->TX_STOPPED-->STARTED\n"); 3882 3883 func_params.f_obj = &sc->func_obj; 3884 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 3885 3886 /* STARTED-->TX_STOPPED */ 3887 func_params.cmd = ECORE_F_CMD_TX_STOP; 3888 ecore_func_state_change(sc, &func_params); 3889 3890 /* TX_STOPPED-->STARTED */ 3891 func_params.cmd = ECORE_F_CMD_TX_START; 3892 return (ecore_func_state_change(sc, &func_params)); 3893 } 3894 3895 return (0); 3896 } 3897 3898 static int 3899 bxe_stop_queue(struct bxe_softc *sc, 3900 int index) 3901 { 3902 struct bxe_fastpath *fp = &sc->fp[index]; 3903 struct ecore_queue_state_params q_params = { NULL }; 3904 int rc; 3905 3906 BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index); 3907 3908 q_params.q_obj = &sc->sp_objs[fp->index].q_obj; 3909 /* We want to wait for completion in this context */ 3910 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 3911 3912 /* Stop the primary connection: */ 3913 3914 /* ...halt the connection */ 3915 q_params.cmd = ECORE_Q_CMD_HALT; 3916 rc = ecore_queue_state_change(sc, &q_params); 3917 if (rc) { 3918 return (rc); 3919 } 3920 3921 /* ...terminate the connection */ 3922 q_params.cmd = ECORE_Q_CMD_TERMINATE; 3923 memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate)); 3924 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 3925 rc = ecore_queue_state_change(sc, &q_params); 3926 if (rc) { 3927 return (rc); 3928 } 3929 3930 /* ...delete cfc entry */ 3931 q_params.cmd = ECORE_Q_CMD_CFC_DEL; 3932 memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del)); 3933 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 3934 return (ecore_queue_state_change(sc, &q_params)); 3935 } 3936 3937 /* wait for the outstanding SP commands */ 3938 static inline uint8_t 3939 bxe_wait_sp_comp(struct bxe_softc *sc, 3940 unsigned long mask) 3941 { 3942 unsigned long tmp; 3943 int tout = 5000; /* wait for 5 secs tops */ 3944 3945 while (tout--) { 3946 mb(); 3947 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) { 3948 return (TRUE); 3949 } 3950 3951 DELAY(1000); 3952 } 3953 3954 mb(); 3955 3956 tmp = atomic_load_acq_long(&sc->sp_state); 3957 if (tmp & mask) { 3958 BLOGE(sc, "Filtering completion timed out: " 3959 "sp_state 0x%lx, mask 0x%lx\n", 3960 tmp, mask); 3961 return (FALSE); 3962 } 3963 3964 return (FALSE); 3965 } 3966 3967 static int 3968 bxe_func_stop(struct bxe_softc *sc) 3969 { 3970 struct ecore_func_state_params func_params = { NULL }; 3971 int rc; 3972 3973 /* prepare parameters for function state transitions */ 3974 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 3975 func_params.f_obj = &sc->func_obj; 3976 func_params.cmd = ECORE_F_CMD_STOP; 3977 3978 /* 3979 * Try to stop the function the 'good way'. If it fails (in case 3980 * of a parity error during bxe_chip_cleanup()) and we are 3981 * not in a debug mode, perform a state transaction in order to 3982 * enable further HW_RESET transaction. 3983 */ 3984 rc = ecore_func_state_change(sc, &func_params); 3985 if (rc) { 3986 BLOGE(sc, "FUNC_STOP ramrod failed. " 3987 "Running a dry transaction (%d)\n", rc); 3988 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 3989 return (ecore_func_state_change(sc, &func_params)); 3990 } 3991 3992 return (0); 3993 } 3994 3995 static int 3996 bxe_reset_hw(struct bxe_softc *sc, 3997 uint32_t load_code) 3998 { 3999 struct ecore_func_state_params func_params = { NULL }; 4000 4001 /* Prepare parameters for function state transitions */ 4002 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 4003 4004 func_params.f_obj = &sc->func_obj; 4005 func_params.cmd = ECORE_F_CMD_HW_RESET; 4006 4007 func_params.params.hw_init.load_phase = load_code; 4008 4009 return (ecore_func_state_change(sc, &func_params)); 4010 } 4011 4012 static void 4013 bxe_int_disable_sync(struct bxe_softc *sc, 4014 int disable_hw) 4015 { 4016 if (disable_hw) { 4017 /* prevent the HW from sending interrupts */ 4018 bxe_int_disable(sc); 4019 } 4020 4021 /* XXX need a way to synchronize ALL irqs (intr_mtx?) */ 4022 /* make sure all ISRs are done */ 4023 4024 /* XXX make sure sp_task is not running */ 4025 /* cancel and flush work queues */ 4026 } 4027 4028 static void 4029 bxe_chip_cleanup(struct bxe_softc *sc, 4030 uint32_t unload_mode, 4031 uint8_t keep_link) 4032 { 4033 int port = SC_PORT(sc); 4034 struct ecore_mcast_ramrod_params rparam = { NULL }; 4035 uint32_t reset_code; 4036 int i, rc = 0; 4037 4038 bxe_drain_tx_queues(sc); 4039 4040 /* give HW time to discard old tx messages */ 4041 DELAY(1000); 4042 4043 /* Clean all ETH MACs */ 4044 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE); 4045 if (rc < 0) { 4046 BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc); 4047 } 4048 4049 /* Clean up UC list */ 4050 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE); 4051 if (rc < 0) { 4052 BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc); 4053 } 4054 4055 /* Disable LLH */ 4056 if (!CHIP_IS_E1(sc)) { 4057 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 4058 } 4059 4060 /* Set "drop all" to stop Rx */ 4061 4062 /* 4063 * We need to take the BXE_MCAST_LOCK() here in order to prevent 4064 * a race between the completion code and this code. 4065 */ 4066 BXE_MCAST_LOCK(sc); 4067 4068 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 4069 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 4070 } else { 4071 bxe_set_storm_rx_mode(sc); 4072 } 4073 4074 /* Clean up multicast configuration */ 4075 rparam.mcast_obj = &sc->mcast_obj; 4076 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4077 if (rc < 0) { 4078 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4079 } 4080 4081 BXE_MCAST_UNLOCK(sc); 4082 4083 // XXX bxe_iov_chip_cleanup(sc); 4084 4085 /* 4086 * Send the UNLOAD_REQUEST to the MCP. This will return if 4087 * this function should perform FUNCTION, PORT, or COMMON HW 4088 * reset. 4089 */ 4090 reset_code = bxe_send_unload_req(sc, unload_mode); 4091 4092 /* 4093 * (assumption: No Attention from MCP at this stage) 4094 * PMF probably in the middle of TX disable/enable transaction 4095 */ 4096 rc = bxe_func_wait_started(sc); 4097 if (rc) { 4098 BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc); 4099 } 4100 4101 /* 4102 * Close multi and leading connections 4103 * Completions for ramrods are collected in a synchronous way 4104 */ 4105 for (i = 0; i < sc->num_queues; i++) { 4106 if (bxe_stop_queue(sc, i)) { 4107 goto unload_error; 4108 } 4109 } 4110 4111 /* 4112 * If SP settings didn't get completed so far - something 4113 * very wrong has happen. 4114 */ 4115 if (!bxe_wait_sp_comp(sc, ~0x0UL)) { 4116 BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc); 4117 } 4118 4119 unload_error: 4120 4121 rc = bxe_func_stop(sc); 4122 if (rc) { 4123 BLOGE(sc, "Function stop failed!(%d)\n", rc); 4124 } 4125 4126 /* disable HW interrupts */ 4127 bxe_int_disable_sync(sc, TRUE); 4128 4129 /* detach interrupts */ 4130 bxe_interrupt_detach(sc); 4131 4132 /* Reset the chip */ 4133 rc = bxe_reset_hw(sc, reset_code); 4134 if (rc) { 4135 BLOGE(sc, "Hardware reset failed(%d)\n", rc); 4136 } 4137 4138 /* Report UNLOAD_DONE to MCP */ 4139 bxe_send_unload_done(sc, keep_link); 4140 } 4141 4142 static void 4143 bxe_disable_close_the_gate(struct bxe_softc *sc) 4144 { 4145 uint32_t val; 4146 int port = SC_PORT(sc); 4147 4148 BLOGD(sc, DBG_LOAD, 4149 "Disabling 'close the gates'\n"); 4150 4151 if (CHIP_IS_E1(sc)) { 4152 uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 4153 MISC_REG_AEU_MASK_ATTN_FUNC_0; 4154 val = REG_RD(sc, addr); 4155 val &= ~(0x300); 4156 REG_WR(sc, addr, val); 4157 } else { 4158 val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK); 4159 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 4160 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 4161 REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val); 4162 } 4163 } 4164 4165 /* 4166 * Cleans the object that have internal lists without sending 4167 * ramrods. Should be run when interrutps are disabled. 4168 */ 4169 static void 4170 bxe_squeeze_objects(struct bxe_softc *sc) 4171 { 4172 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 4173 struct ecore_mcast_ramrod_params rparam = { NULL }; 4174 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 4175 int rc; 4176 4177 /* Cleanup MACs' object first... */ 4178 4179 /* Wait for completion of requested */ 4180 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 4181 /* Perform a dry cleanup */ 4182 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 4183 4184 /* Clean ETH primary MAC */ 4185 bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags); 4186 rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags, 4187 &ramrod_flags); 4188 if (rc != 0) { 4189 BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc); 4190 } 4191 4192 /* Cleanup UC list */ 4193 vlan_mac_flags = 0; 4194 bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags); 4195 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, 4196 &ramrod_flags); 4197 if (rc != 0) { 4198 BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc); 4199 } 4200 4201 /* Now clean mcast object... */ 4202 4203 rparam.mcast_obj = &sc->mcast_obj; 4204 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 4205 4206 /* Add a DEL command... */ 4207 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4208 if (rc < 0) { 4209 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4210 } 4211 4212 /* now wait until all pending commands are cleared */ 4213 4214 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4215 while (rc != 0) { 4216 if (rc < 0) { 4217 BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc); 4218 return; 4219 } 4220 4221 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4222 } 4223 } 4224 4225 /* stop the controller */ 4226 static __noinline int 4227 bxe_nic_unload(struct bxe_softc *sc, 4228 uint32_t unload_mode, 4229 uint8_t keep_link) 4230 { 4231 uint8_t global = FALSE; 4232 uint32_t val; 4233 int i; 4234 4235 BXE_CORE_LOCK_ASSERT(sc); 4236 4237 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 4238 4239 for (i = 0; i < sc->num_queues; i++) { 4240 struct bxe_fastpath *fp; 4241 4242 fp = &sc->fp[i]; 4243 BXE_FP_TX_LOCK(fp); 4244 BXE_FP_TX_UNLOCK(fp); 4245 } 4246 4247 BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n"); 4248 4249 /* mark driver as unloaded in shmem2 */ 4250 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 4251 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 4252 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 4253 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 4254 } 4255 4256 if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE && 4257 (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) { 4258 /* 4259 * We can get here if the driver has been unloaded 4260 * during parity error recovery and is either waiting for a 4261 * leader to complete or for other functions to unload and 4262 * then ifconfig down has been issued. In this case we want to 4263 * unload and let other functions to complete a recovery 4264 * process. 4265 */ 4266 sc->recovery_state = BXE_RECOVERY_DONE; 4267 sc->is_leader = 0; 4268 bxe_release_leader_lock(sc); 4269 mb(); 4270 4271 BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n"); 4272 BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x" 4273 " state = 0x%x\n", sc->recovery_state, sc->state); 4274 return (-1); 4275 } 4276 4277 /* 4278 * Nothing to do during unload if previous bxe_nic_load() 4279 * did not completed successfully - all resourses are released. 4280 */ 4281 if ((sc->state == BXE_STATE_CLOSED) || 4282 (sc->state == BXE_STATE_ERROR)) { 4283 return (0); 4284 } 4285 4286 sc->state = BXE_STATE_CLOSING_WAITING_HALT; 4287 mb(); 4288 4289 /* stop tx */ 4290 bxe_tx_disable(sc); 4291 4292 sc->rx_mode = BXE_RX_MODE_NONE; 4293 /* XXX set rx mode ??? */ 4294 4295 if (IS_PF(sc) && !sc->grcdump_done) { 4296 /* set ALWAYS_ALIVE bit in shmem */ 4297 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 4298 4299 bxe_drv_pulse(sc); 4300 4301 bxe_stats_handle(sc, STATS_EVENT_STOP); 4302 bxe_save_statistics(sc); 4303 } 4304 4305 /* wait till consumers catch up with producers in all queues */ 4306 bxe_drain_tx_queues(sc); 4307 4308 /* if VF indicate to PF this function is going down (PF will delete sp 4309 * elements and clear initializations 4310 */ 4311 if (IS_VF(sc)) { 4312 ; /* bxe_vfpf_close_vf(sc); */ 4313 } else if (unload_mode != UNLOAD_RECOVERY) { 4314 /* if this is a normal/close unload need to clean up chip */ 4315 if (!sc->grcdump_done) 4316 bxe_chip_cleanup(sc, unload_mode, keep_link); 4317 } else { 4318 /* Send the UNLOAD_REQUEST to the MCP */ 4319 bxe_send_unload_req(sc, unload_mode); 4320 4321 /* 4322 * Prevent transactions to host from the functions on the 4323 * engine that doesn't reset global blocks in case of global 4324 * attention once gloabl blocks are reset and gates are opened 4325 * (the engine which leader will perform the recovery 4326 * last). 4327 */ 4328 if (!CHIP_IS_E1x(sc)) { 4329 bxe_pf_disable(sc); 4330 } 4331 4332 /* disable HW interrupts */ 4333 bxe_int_disable_sync(sc, TRUE); 4334 4335 /* detach interrupts */ 4336 bxe_interrupt_detach(sc); 4337 4338 /* Report UNLOAD_DONE to MCP */ 4339 bxe_send_unload_done(sc, FALSE); 4340 } 4341 4342 /* 4343 * At this stage no more interrupts will arrive so we may safely clean 4344 * the queue'able objects here in case they failed to get cleaned so far. 4345 */ 4346 if (IS_PF(sc)) { 4347 bxe_squeeze_objects(sc); 4348 } 4349 4350 /* There should be no more pending SP commands at this stage */ 4351 sc->sp_state = 0; 4352 4353 sc->port.pmf = 0; 4354 4355 bxe_free_fp_buffers(sc); 4356 4357 if (IS_PF(sc)) { 4358 bxe_free_mem(sc); 4359 } 4360 4361 bxe_free_fw_stats_mem(sc); 4362 4363 sc->state = BXE_STATE_CLOSED; 4364 4365 /* 4366 * Check if there are pending parity attentions. If there are - set 4367 * RECOVERY_IN_PROGRESS. 4368 */ 4369 if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) { 4370 bxe_set_reset_in_progress(sc); 4371 4372 /* Set RESET_IS_GLOBAL if needed */ 4373 if (global) { 4374 bxe_set_reset_global(sc); 4375 } 4376 } 4377 4378 /* 4379 * The last driver must disable a "close the gate" if there is no 4380 * parity attention or "process kill" pending. 4381 */ 4382 if (IS_PF(sc) && !bxe_clear_pf_load(sc) && 4383 bxe_reset_is_done(sc, SC_PATH(sc))) { 4384 bxe_disable_close_the_gate(sc); 4385 } 4386 4387 BLOGD(sc, DBG_LOAD, "Ended NIC unload\n"); 4388 4389 return (0); 4390 } 4391 4392 /* 4393 * Called by the OS to set various media options (i.e. link, speed, etc.) when 4394 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...". 4395 */ 4396 static int 4397 bxe_ifmedia_update(struct ifnet *ifp) 4398 { 4399 struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp); 4400 struct ifmedia *ifm; 4401 4402 ifm = &sc->ifmedia; 4403 4404 /* We only support Ethernet media type. */ 4405 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) { 4406 return (EINVAL); 4407 } 4408 4409 switch (IFM_SUBTYPE(ifm->ifm_media)) { 4410 case IFM_AUTO: 4411 break; 4412 case IFM_10G_CX4: 4413 case IFM_10G_SR: 4414 case IFM_10G_T: 4415 case IFM_10G_TWINAX: 4416 default: 4417 /* We don't support changing the media type. */ 4418 BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n", 4419 IFM_SUBTYPE(ifm->ifm_media)); 4420 return (EINVAL); 4421 } 4422 4423 return (0); 4424 } 4425 4426 /* 4427 * Called by the OS to get the current media status (i.e. link, speed, etc.). 4428 */ 4429 static void 4430 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr) 4431 { 4432 struct bxe_softc *sc = if_getsoftc(ifp); 4433 4434 /* Report link down if the driver isn't running. */ 4435 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { 4436 ifmr->ifm_active |= IFM_NONE; 4437 return; 4438 } 4439 4440 /* Setup the default interface info. */ 4441 ifmr->ifm_status = IFM_AVALID; 4442 ifmr->ifm_active = IFM_ETHER; 4443 4444 if (sc->link_vars.link_up) { 4445 ifmr->ifm_status |= IFM_ACTIVE; 4446 } else { 4447 ifmr->ifm_active |= IFM_NONE; 4448 return; 4449 } 4450 4451 ifmr->ifm_active |= sc->media; 4452 4453 if (sc->link_vars.duplex == DUPLEX_FULL) { 4454 ifmr->ifm_active |= IFM_FDX; 4455 } else { 4456 ifmr->ifm_active |= IFM_HDX; 4457 } 4458 } 4459 4460 static void 4461 bxe_handle_chip_tq(void *context, 4462 int pending) 4463 { 4464 struct bxe_softc *sc = (struct bxe_softc *)context; 4465 long work = atomic_load_acq_long(&sc->chip_tq_flags); 4466 4467 switch (work) 4468 { 4469 4470 case CHIP_TQ_REINIT: 4471 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 4472 /* restart the interface */ 4473 BLOGD(sc, DBG_LOAD, "Restarting the interface...\n"); 4474 bxe_periodic_stop(sc); 4475 BXE_CORE_LOCK(sc); 4476 bxe_stop_locked(sc); 4477 bxe_init_locked(sc); 4478 BXE_CORE_UNLOCK(sc); 4479 } 4480 break; 4481 4482 default: 4483 break; 4484 } 4485 } 4486 4487 /* 4488 * Handles any IOCTL calls from the operating system. 4489 * 4490 * Returns: 4491 * 0 = Success, >0 Failure 4492 */ 4493 static int 4494 bxe_ioctl(if_t ifp, 4495 u_long command, 4496 caddr_t data) 4497 { 4498 struct bxe_softc *sc = if_getsoftc(ifp); 4499 struct ifreq *ifr = (struct ifreq *)data; 4500 int mask = 0; 4501 int reinit = 0; 4502 int error = 0; 4503 4504 int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN); 4505 int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING); 4506 4507 switch (command) 4508 { 4509 case SIOCSIFMTU: 4510 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n", 4511 ifr->ifr_mtu); 4512 4513 if (sc->mtu == ifr->ifr_mtu) { 4514 /* nothing to change */ 4515 break; 4516 } 4517 4518 if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) { 4519 BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n", 4520 ifr->ifr_mtu, mtu_min, mtu_max); 4521 error = EINVAL; 4522 break; 4523 } 4524 4525 atomic_store_rel_int((volatile unsigned int *)&sc->mtu, 4526 (unsigned long)ifr->ifr_mtu); 4527 /* 4528 atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp), 4529 (unsigned long)ifr->ifr_mtu); 4530 XXX - Not sure why it needs to be atomic 4531 */ 4532 if_setmtu(ifp, ifr->ifr_mtu); 4533 reinit = 1; 4534 break; 4535 4536 case SIOCSIFFLAGS: 4537 /* toggle the interface state up or down */ 4538 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n"); 4539 4540 BXE_CORE_LOCK(sc); 4541 /* check if the interface is up */ 4542 if (if_getflags(ifp) & IFF_UP) { 4543 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4544 /* set the receive mode flags */ 4545 bxe_set_rx_mode(sc); 4546 } else if(sc->state != BXE_STATE_DISABLED) { 4547 bxe_init_locked(sc); 4548 } 4549 } else { 4550 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4551 bxe_periodic_stop(sc); 4552 bxe_stop_locked(sc); 4553 } 4554 } 4555 BXE_CORE_UNLOCK(sc); 4556 4557 break; 4558 4559 case SIOCADDMULTI: 4560 case SIOCDELMULTI: 4561 /* add/delete multicast addresses */ 4562 BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n"); 4563 4564 /* check if the interface is up */ 4565 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4566 /* set the receive mode flags */ 4567 BXE_CORE_LOCK(sc); 4568 bxe_set_rx_mode(sc); 4569 BXE_CORE_UNLOCK(sc); 4570 } 4571 4572 break; 4573 4574 case SIOCSIFCAP: 4575 /* find out which capabilities have changed */ 4576 mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp)); 4577 4578 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n", 4579 mask); 4580 4581 /* toggle the LRO capabilites enable flag */ 4582 if (mask & IFCAP_LRO) { 4583 if_togglecapenable(ifp, IFCAP_LRO); 4584 BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n", 4585 (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF"); 4586 reinit = 1; 4587 } 4588 4589 /* toggle the TXCSUM checksum capabilites enable flag */ 4590 if (mask & IFCAP_TXCSUM) { 4591 if_togglecapenable(ifp, IFCAP_TXCSUM); 4592 BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n", 4593 (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF"); 4594 if (if_getcapenable(ifp) & IFCAP_TXCSUM) { 4595 if_sethwassistbits(ifp, (CSUM_IP | 4596 CSUM_TCP | 4597 CSUM_UDP | 4598 CSUM_TSO | 4599 CSUM_TCP_IPV6 | 4600 CSUM_UDP_IPV6), 0); 4601 } else { 4602 if_clearhwassist(ifp); /* XXX */ 4603 } 4604 } 4605 4606 /* toggle the RXCSUM checksum capabilities enable flag */ 4607 if (mask & IFCAP_RXCSUM) { 4608 if_togglecapenable(ifp, IFCAP_RXCSUM); 4609 BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n", 4610 (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF"); 4611 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 4612 if_sethwassistbits(ifp, (CSUM_IP | 4613 CSUM_TCP | 4614 CSUM_UDP | 4615 CSUM_TSO | 4616 CSUM_TCP_IPV6 | 4617 CSUM_UDP_IPV6), 0); 4618 } else { 4619 if_clearhwassist(ifp); /* XXX */ 4620 } 4621 } 4622 4623 /* toggle TSO4 capabilities enabled flag */ 4624 if (mask & IFCAP_TSO4) { 4625 if_togglecapenable(ifp, IFCAP_TSO4); 4626 BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n", 4627 (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF"); 4628 } 4629 4630 /* toggle TSO6 capabilities enabled flag */ 4631 if (mask & IFCAP_TSO6) { 4632 if_togglecapenable(ifp, IFCAP_TSO6); 4633 BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n", 4634 (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF"); 4635 } 4636 4637 /* toggle VLAN_HWTSO capabilities enabled flag */ 4638 if (mask & IFCAP_VLAN_HWTSO) { 4639 4640 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 4641 BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n", 4642 (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF"); 4643 } 4644 4645 /* toggle VLAN_HWCSUM capabilities enabled flag */ 4646 if (mask & IFCAP_VLAN_HWCSUM) { 4647 /* XXX investigate this... */ 4648 BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n"); 4649 error = EINVAL; 4650 } 4651 4652 /* toggle VLAN_MTU capabilities enable flag */ 4653 if (mask & IFCAP_VLAN_MTU) { 4654 /* XXX investigate this... */ 4655 BLOGE(sc, "Changing VLAN_MTU is not supported!\n"); 4656 error = EINVAL; 4657 } 4658 4659 /* toggle VLAN_HWTAGGING capabilities enabled flag */ 4660 if (mask & IFCAP_VLAN_HWTAGGING) { 4661 /* XXX investigate this... */ 4662 BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n"); 4663 error = EINVAL; 4664 } 4665 4666 /* toggle VLAN_HWFILTER capabilities enabled flag */ 4667 if (mask & IFCAP_VLAN_HWFILTER) { 4668 /* XXX investigate this... */ 4669 BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n"); 4670 error = EINVAL; 4671 } 4672 4673 /* XXX not yet... 4674 * IFCAP_WOL_MAGIC 4675 */ 4676 4677 break; 4678 4679 case SIOCSIFMEDIA: 4680 case SIOCGIFMEDIA: 4681 /* set/get interface media */ 4682 BLOGD(sc, DBG_IOCTL, 4683 "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n", 4684 (command & 0xff)); 4685 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); 4686 break; 4687 4688 default: 4689 BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n", 4690 (command & 0xff)); 4691 error = ether_ioctl(ifp, command, data); 4692 break; 4693 } 4694 4695 if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 4696 BLOGD(sc, DBG_LOAD | DBG_IOCTL, 4697 "Re-initializing hardware from IOCTL change\n"); 4698 bxe_periodic_stop(sc); 4699 BXE_CORE_LOCK(sc); 4700 bxe_stop_locked(sc); 4701 bxe_init_locked(sc); 4702 BXE_CORE_UNLOCK(sc); 4703 } 4704 4705 return (error); 4706 } 4707 4708 static __noinline void 4709 bxe_dump_mbuf(struct bxe_softc *sc, 4710 struct mbuf *m, 4711 uint8_t contents) 4712 { 4713 char * type; 4714 int i = 0; 4715 4716 if (!(sc->debug & DBG_MBUF)) { 4717 return; 4718 } 4719 4720 if (m == NULL) { 4721 BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n"); 4722 return; 4723 } 4724 4725 while (m) { 4726 4727 #if __FreeBSD_version >= 1000000 4728 BLOGD(sc, DBG_MBUF, 4729 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 4730 i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data); 4731 4732 if (m->m_flags & M_PKTHDR) { 4733 BLOGD(sc, DBG_MBUF, 4734 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 4735 i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS, 4736 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 4737 } 4738 #else 4739 BLOGD(sc, DBG_MBUF, 4740 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 4741 i, m, m->m_len, m->m_flags, 4742 "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", m->m_data); 4743 4744 if (m->m_flags & M_PKTHDR) { 4745 BLOGD(sc, DBG_MBUF, 4746 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 4747 i, m->m_pkthdr.len, m->m_flags, 4748 "\20\12M_BCAST\13M_MCAST\14M_FRAG" 4749 "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG" 4750 "\22M_PROMISC\23M_NOFREE", 4751 (int)m->m_pkthdr.csum_flags, 4752 "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS" 4753 "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED" 4754 "\12CSUM_IP_VALID\13CSUM_DATA_VALID" 4755 "\14CSUM_PSEUDO_HDR"); 4756 } 4757 #endif /* #if __FreeBSD_version >= 1000000 */ 4758 4759 if (m->m_flags & M_EXT) { 4760 switch (m->m_ext.ext_type) { 4761 case EXT_CLUSTER: type = "EXT_CLUSTER"; break; 4762 case EXT_SFBUF: type = "EXT_SFBUF"; break; 4763 case EXT_JUMBOP: type = "EXT_JUMBOP"; break; 4764 case EXT_JUMBO9: type = "EXT_JUMBO9"; break; 4765 case EXT_JUMBO16: type = "EXT_JUMBO16"; break; 4766 case EXT_PACKET: type = "EXT_PACKET"; break; 4767 case EXT_MBUF: type = "EXT_MBUF"; break; 4768 case EXT_NET_DRV: type = "EXT_NET_DRV"; break; 4769 case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break; 4770 case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break; 4771 case EXT_EXTREF: type = "EXT_EXTREF"; break; 4772 default: type = "UNKNOWN"; break; 4773 } 4774 4775 BLOGD(sc, DBG_MBUF, 4776 "%02d: - m_ext: %p ext_size=%d type=%s\n", 4777 i, m->m_ext.ext_buf, m->m_ext.ext_size, type); 4778 } 4779 4780 if (contents) { 4781 bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE); 4782 } 4783 4784 m = m->m_next; 4785 i++; 4786 } 4787 } 4788 4789 /* 4790 * Checks to ensure the 13 bd sliding window is >= MSS for TSO. 4791 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS. 4792 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD 4793 * The headers comes in a separate bd in FreeBSD so 13-3=10. 4794 * Returns: 0 if OK to send, 1 if packet needs further defragmentation 4795 */ 4796 static int 4797 bxe_chktso_window(struct bxe_softc *sc, 4798 int nsegs, 4799 bus_dma_segment_t *segs, 4800 struct mbuf *m) 4801 { 4802 uint32_t num_wnds, wnd_size, wnd_sum; 4803 int32_t frag_idx, wnd_idx; 4804 unsigned short lso_mss; 4805 int defrag; 4806 4807 defrag = 0; 4808 wnd_sum = 0; 4809 wnd_size = 10; 4810 num_wnds = nsegs - wnd_size; 4811 lso_mss = htole16(m->m_pkthdr.tso_segsz); 4812 4813 /* 4814 * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the 4815 * first window sum of data while skipping the first assuming it is the 4816 * header in FreeBSD. 4817 */ 4818 for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) { 4819 wnd_sum += htole16(segs[frag_idx].ds_len); 4820 } 4821 4822 /* check the first 10 bd window size */ 4823 if (wnd_sum < lso_mss) { 4824 return (1); 4825 } 4826 4827 /* run through the windows */ 4828 for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) { 4829 /* subtract the first mbuf->m_len of the last wndw(-header) */ 4830 wnd_sum -= htole16(segs[wnd_idx+1].ds_len); 4831 /* add the next mbuf len to the len of our new window */ 4832 wnd_sum += htole16(segs[frag_idx].ds_len); 4833 if (wnd_sum < lso_mss) { 4834 return (1); 4835 } 4836 } 4837 4838 return (0); 4839 } 4840 4841 static uint8_t 4842 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp, 4843 struct mbuf *m, 4844 uint32_t *parsing_data) 4845 { 4846 struct ether_vlan_header *eh = NULL; 4847 struct ip *ip4 = NULL; 4848 struct ip6_hdr *ip6 = NULL; 4849 caddr_t ip = NULL; 4850 struct tcphdr *th = NULL; 4851 int e_hlen, ip_hlen, l4_off; 4852 uint16_t proto; 4853 4854 if (m->m_pkthdr.csum_flags == CSUM_IP) { 4855 /* no L4 checksum offload needed */ 4856 return (0); 4857 } 4858 4859 /* get the Ethernet header */ 4860 eh = mtod(m, struct ether_vlan_header *); 4861 4862 /* handle VLAN encapsulation if present */ 4863 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 4864 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 4865 proto = ntohs(eh->evl_proto); 4866 } else { 4867 e_hlen = ETHER_HDR_LEN; 4868 proto = ntohs(eh->evl_encap_proto); 4869 } 4870 4871 switch (proto) { 4872 case ETHERTYPE_IP: 4873 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 4874 ip4 = (m->m_len < sizeof(struct ip)) ? 4875 (struct ip *)m->m_next->m_data : 4876 (struct ip *)(m->m_data + e_hlen); 4877 /* ip_hl is number of 32-bit words */ 4878 ip_hlen = (ip4->ip_hl << 2); 4879 ip = (caddr_t)ip4; 4880 break; 4881 case ETHERTYPE_IPV6: 4882 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 4883 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 4884 (struct ip6_hdr *)m->m_next->m_data : 4885 (struct ip6_hdr *)(m->m_data + e_hlen); 4886 /* XXX cannot support offload with IPv6 extensions */ 4887 ip_hlen = sizeof(struct ip6_hdr); 4888 ip = (caddr_t)ip6; 4889 break; 4890 default: 4891 /* We can't offload in this case... */ 4892 /* XXX error stat ??? */ 4893 return (0); 4894 } 4895 4896 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 4897 l4_off = (e_hlen + ip_hlen); 4898 4899 *parsing_data |= 4900 (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 4901 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W); 4902 4903 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 4904 CSUM_TSO | 4905 CSUM_TCP_IPV6)) { 4906 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 4907 th = (struct tcphdr *)(ip + ip_hlen); 4908 /* th_off is number of 32-bit words */ 4909 *parsing_data |= ((th->th_off << 4910 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 4911 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW); 4912 return (l4_off + (th->th_off << 2)); /* entire header length */ 4913 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 4914 CSUM_UDP_IPV6)) { 4915 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 4916 return (l4_off + sizeof(struct udphdr)); /* entire header length */ 4917 } else { 4918 /* XXX error stat ??? */ 4919 return (0); 4920 } 4921 } 4922 4923 static uint8_t 4924 bxe_set_pbd_csum(struct bxe_fastpath *fp, 4925 struct mbuf *m, 4926 struct eth_tx_parse_bd_e1x *pbd) 4927 { 4928 struct ether_vlan_header *eh = NULL; 4929 struct ip *ip4 = NULL; 4930 struct ip6_hdr *ip6 = NULL; 4931 caddr_t ip = NULL; 4932 struct tcphdr *th = NULL; 4933 struct udphdr *uh = NULL; 4934 int e_hlen, ip_hlen; 4935 uint16_t proto; 4936 uint8_t hlen; 4937 uint16_t tmp_csum; 4938 uint32_t *tmp_uh; 4939 4940 /* get the Ethernet header */ 4941 eh = mtod(m, struct ether_vlan_header *); 4942 4943 /* handle VLAN encapsulation if present */ 4944 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 4945 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 4946 proto = ntohs(eh->evl_proto); 4947 } else { 4948 e_hlen = ETHER_HDR_LEN; 4949 proto = ntohs(eh->evl_encap_proto); 4950 } 4951 4952 switch (proto) { 4953 case ETHERTYPE_IP: 4954 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 4955 ip4 = (m->m_len < sizeof(struct ip)) ? 4956 (struct ip *)m->m_next->m_data : 4957 (struct ip *)(m->m_data + e_hlen); 4958 /* ip_hl is number of 32-bit words */ 4959 ip_hlen = (ip4->ip_hl << 1); 4960 ip = (caddr_t)ip4; 4961 break; 4962 case ETHERTYPE_IPV6: 4963 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 4964 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 4965 (struct ip6_hdr *)m->m_next->m_data : 4966 (struct ip6_hdr *)(m->m_data + e_hlen); 4967 /* XXX cannot support offload with IPv6 extensions */ 4968 ip_hlen = (sizeof(struct ip6_hdr) >> 1); 4969 ip = (caddr_t)ip6; 4970 break; 4971 default: 4972 /* We can't offload in this case... */ 4973 /* XXX error stat ??? */ 4974 return (0); 4975 } 4976 4977 hlen = (e_hlen >> 1); 4978 4979 /* note that rest of global_data is indirectly zeroed here */ 4980 if (m->m_flags & M_VLANTAG) { 4981 pbd->global_data = 4982 htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 4983 } else { 4984 pbd->global_data = htole16(hlen); 4985 } 4986 4987 pbd->ip_hlen_w = ip_hlen; 4988 4989 hlen += pbd->ip_hlen_w; 4990 4991 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 4992 4993 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 4994 CSUM_TSO | 4995 CSUM_TCP_IPV6)) { 4996 th = (struct tcphdr *)(ip + (ip_hlen << 1)); 4997 /* th_off is number of 32-bit words */ 4998 hlen += (uint16_t)(th->th_off << 1); 4999 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5000 CSUM_UDP_IPV6)) { 5001 uh = (struct udphdr *)(ip + (ip_hlen << 1)); 5002 hlen += (sizeof(struct udphdr) / 2); 5003 } else { 5004 /* valid case as only CSUM_IP was set */ 5005 return (0); 5006 } 5007 5008 pbd->total_hlen_w = htole16(hlen); 5009 5010 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5011 CSUM_TSO | 5012 CSUM_TCP_IPV6)) { 5013 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 5014 pbd->tcp_pseudo_csum = ntohs(th->th_sum); 5015 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5016 CSUM_UDP_IPV6)) { 5017 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 5018 5019 /* 5020 * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP 5021 * checksums and does not know anything about the UDP header and where 5022 * the checksum field is located. It only knows about TCP. Therefore 5023 * we "lie" to the hardware for outgoing UDP packets w/ checksum 5024 * offload. Since the checksum field offset for TCP is 16 bytes and 5025 * for UDP it is 6 bytes we pass a pointer to the hardware that is 10 5026 * bytes less than the start of the UDP header. This allows the 5027 * hardware to write the checksum in the correct spot. But the 5028 * hardware will compute a checksum which includes the last 10 bytes 5029 * of the IP header. To correct this we tweak the stack computed 5030 * pseudo checksum by folding in the calculation of the inverse 5031 * checksum for those final 10 bytes of the IP header. This allows 5032 * the correct checksum to be computed by the hardware. 5033 */ 5034 5035 /* set pointer 10 bytes before UDP header */ 5036 tmp_uh = (uint32_t *)((uint8_t *)uh - 10); 5037 5038 /* calculate a pseudo header checksum over the first 10 bytes */ 5039 tmp_csum = in_pseudo(*tmp_uh, 5040 *(tmp_uh + 1), 5041 *(uint16_t *)(tmp_uh + 2)); 5042 5043 pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum)); 5044 } 5045 5046 return (hlen * 2); /* entire header length, number of bytes */ 5047 } 5048 5049 static void 5050 bxe_set_pbd_lso_e2(struct mbuf *m, 5051 uint32_t *parsing_data) 5052 { 5053 *parsing_data |= ((m->m_pkthdr.tso_segsz << 5054 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 5055 ETH_TX_PARSE_BD_E2_LSO_MSS); 5056 5057 /* XXX test for IPv6 with extension header... */ 5058 } 5059 5060 static void 5061 bxe_set_pbd_lso(struct mbuf *m, 5062 struct eth_tx_parse_bd_e1x *pbd) 5063 { 5064 struct ether_vlan_header *eh = NULL; 5065 struct ip *ip = NULL; 5066 struct tcphdr *th = NULL; 5067 int e_hlen; 5068 5069 /* get the Ethernet header */ 5070 eh = mtod(m, struct ether_vlan_header *); 5071 5072 /* handle VLAN encapsulation if present */ 5073 e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ? 5074 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN; 5075 5076 /* get the IP and TCP header, with LSO entire header in first mbuf */ 5077 /* XXX assuming IPv4 */ 5078 ip = (struct ip *)(m->m_data + e_hlen); 5079 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 5080 5081 pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz); 5082 pbd->tcp_send_seq = ntohl(th->th_seq); 5083 pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff); 5084 5085 #if 1 5086 /* XXX IPv4 */ 5087 pbd->ip_id = ntohs(ip->ip_id); 5088 pbd->tcp_pseudo_csum = 5089 ntohs(in_pseudo(ip->ip_src.s_addr, 5090 ip->ip_dst.s_addr, 5091 htons(IPPROTO_TCP))); 5092 #else 5093 /* XXX IPv6 */ 5094 pbd->tcp_pseudo_csum = 5095 ntohs(in_pseudo(&ip6->ip6_src, 5096 &ip6->ip6_dst, 5097 htons(IPPROTO_TCP))); 5098 #endif 5099 5100 pbd->global_data |= 5101 htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 5102 } 5103 5104 /* 5105 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory 5106 * visible to the controller. 5107 * 5108 * If an mbuf is submitted to this routine and cannot be given to the 5109 * controller (e.g. it has too many fragments) then the function may free 5110 * the mbuf and return to the caller. 5111 * 5112 * Returns: 5113 * 0 = Success, !0 = Failure 5114 * Note the side effect that an mbuf may be freed if it causes a problem. 5115 */ 5116 static int 5117 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head) 5118 { 5119 bus_dma_segment_t segs[32]; 5120 struct mbuf *m0; 5121 struct bxe_sw_tx_bd *tx_buf; 5122 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 5123 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 5124 /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */ 5125 struct eth_tx_bd *tx_data_bd; 5126 struct eth_tx_bd *tx_total_pkt_size_bd; 5127 struct eth_tx_start_bd *tx_start_bd; 5128 uint16_t bd_prod, pkt_prod, total_pkt_size; 5129 uint8_t mac_type; 5130 int defragged, error, nsegs, rc, nbds, vlan_off, ovlan; 5131 struct bxe_softc *sc; 5132 uint16_t tx_bd_avail; 5133 struct ether_vlan_header *eh; 5134 uint32_t pbd_e2_parsing_data = 0; 5135 uint8_t hlen = 0; 5136 int tmp_bd; 5137 int i; 5138 5139 sc = fp->sc; 5140 5141 #if __FreeBSD_version >= 800000 5142 M_ASSERTPKTHDR(*m_head); 5143 #endif /* #if __FreeBSD_version >= 800000 */ 5144 5145 m0 = *m_head; 5146 rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0; 5147 tx_start_bd = NULL; 5148 tx_data_bd = NULL; 5149 tx_total_pkt_size_bd = NULL; 5150 5151 /* get the H/W pointer for packets and BDs */ 5152 pkt_prod = fp->tx_pkt_prod; 5153 bd_prod = fp->tx_bd_prod; 5154 5155 mac_type = UNICAST_ADDRESS; 5156 5157 /* map the mbuf into the next open DMAable memory */ 5158 tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)]; 5159 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5160 tx_buf->m_map, m0, 5161 segs, &nsegs, BUS_DMA_NOWAIT); 5162 5163 /* mapping errors */ 5164 if(__predict_false(error != 0)) { 5165 fp->eth_q_stats.tx_dma_mapping_failure++; 5166 if (error == ENOMEM) { 5167 /* resource issue, try again later */ 5168 rc = ENOMEM; 5169 } else if (error == EFBIG) { 5170 /* possibly recoverable with defragmentation */ 5171 fp->eth_q_stats.mbuf_defrag_attempts++; 5172 m0 = m_defrag(*m_head, M_NOWAIT); 5173 if (m0 == NULL) { 5174 fp->eth_q_stats.mbuf_defrag_failures++; 5175 rc = ENOBUFS; 5176 } else { 5177 /* defrag successful, try mapping again */ 5178 *m_head = m0; 5179 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5180 tx_buf->m_map, m0, 5181 segs, &nsegs, BUS_DMA_NOWAIT); 5182 if (error) { 5183 fp->eth_q_stats.tx_dma_mapping_failure++; 5184 rc = error; 5185 } 5186 } 5187 } else { 5188 /* unknown, unrecoverable mapping error */ 5189 BLOGE(sc, "Unknown TX mapping error rc=%d\n", error); 5190 bxe_dump_mbuf(sc, m0, FALSE); 5191 rc = error; 5192 } 5193 5194 goto bxe_tx_encap_continue; 5195 } 5196 5197 tx_bd_avail = bxe_tx_avail(sc, fp); 5198 5199 /* make sure there is enough room in the send queue */ 5200 if (__predict_false(tx_bd_avail < (nsegs + 2))) { 5201 /* Recoverable, try again later. */ 5202 fp->eth_q_stats.tx_hw_queue_full++; 5203 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5204 rc = ENOMEM; 5205 goto bxe_tx_encap_continue; 5206 } 5207 5208 /* capture the current H/W TX chain high watermark */ 5209 if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth < 5210 (TX_BD_USABLE - tx_bd_avail))) { 5211 fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail); 5212 } 5213 5214 /* make sure it fits in the packet window */ 5215 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5216 /* 5217 * The mbuf may be to big for the controller to handle. If the frame 5218 * is a TSO frame we'll need to do an additional check. 5219 */ 5220 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5221 if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) { 5222 goto bxe_tx_encap_continue; /* OK to send */ 5223 } else { 5224 fp->eth_q_stats.tx_window_violation_tso++; 5225 } 5226 } else { 5227 fp->eth_q_stats.tx_window_violation_std++; 5228 } 5229 5230 /* lets try to defragment this mbuf and remap it */ 5231 fp->eth_q_stats.mbuf_defrag_attempts++; 5232 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5233 5234 m0 = m_defrag(*m_head, M_NOWAIT); 5235 if (m0 == NULL) { 5236 fp->eth_q_stats.mbuf_defrag_failures++; 5237 /* Ugh, just drop the frame... :( */ 5238 rc = ENOBUFS; 5239 } else { 5240 /* defrag successful, try mapping again */ 5241 *m_head = m0; 5242 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5243 tx_buf->m_map, m0, 5244 segs, &nsegs, BUS_DMA_NOWAIT); 5245 if (error) { 5246 fp->eth_q_stats.tx_dma_mapping_failure++; 5247 /* No sense in trying to defrag/copy chain, drop it. :( */ 5248 rc = error; 5249 } else { 5250 /* if the chain is still too long then drop it */ 5251 if(m0->m_pkthdr.csum_flags & CSUM_TSO) { 5252 /* 5253 * in case TSO is enabled nsegs should be checked against 5254 * BXE_TSO_MAX_SEGMENTS 5255 */ 5256 if (__predict_false(nsegs > BXE_TSO_MAX_SEGMENTS)) { 5257 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5258 fp->eth_q_stats.nsegs_path1_errors++; 5259 rc = ENODEV; 5260 } 5261 } else { 5262 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5263 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5264 fp->eth_q_stats.nsegs_path2_errors++; 5265 rc = ENODEV; 5266 } 5267 } 5268 } 5269 } 5270 } 5271 5272 bxe_tx_encap_continue: 5273 5274 /* Check for errors */ 5275 if (rc) { 5276 if (rc == ENOMEM) { 5277 /* recoverable try again later */ 5278 } else { 5279 fp->eth_q_stats.tx_soft_errors++; 5280 fp->eth_q_stats.mbuf_alloc_tx--; 5281 m_freem(*m_head); 5282 *m_head = NULL; 5283 } 5284 5285 return (rc); 5286 } 5287 5288 /* set flag according to packet type (UNICAST_ADDRESS is default) */ 5289 if (m0->m_flags & M_BCAST) { 5290 mac_type = BROADCAST_ADDRESS; 5291 } else if (m0->m_flags & M_MCAST) { 5292 mac_type = MULTICAST_ADDRESS; 5293 } 5294 5295 /* store the mbuf into the mbuf ring */ 5296 tx_buf->m = m0; 5297 tx_buf->first_bd = fp->tx_bd_prod; 5298 tx_buf->flags = 0; 5299 5300 /* prepare the first transmit (start) BD for the mbuf */ 5301 tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd; 5302 5303 BLOGD(sc, DBG_TX, 5304 "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n", 5305 pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd); 5306 5307 tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 5308 tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 5309 tx_start_bd->nbytes = htole16(segs[0].ds_len); 5310 total_pkt_size += tx_start_bd->nbytes; 5311 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 5312 5313 tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT); 5314 5315 /* all frames have at least Start BD + Parsing BD */ 5316 nbds = nsegs + 1; 5317 tx_start_bd->nbd = htole16(nbds); 5318 5319 if (m0->m_flags & M_VLANTAG) { 5320 tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag); 5321 tx_start_bd->bd_flags.as_bitfield |= 5322 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 5323 } else { 5324 /* vf tx, start bd must hold the ethertype for fw to enforce it */ 5325 if (IS_VF(sc)) { 5326 /* map ethernet header to find type and header length */ 5327 eh = mtod(m0, struct ether_vlan_header *); 5328 tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto; 5329 } else { 5330 /* used by FW for packet accounting */ 5331 tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod); 5332 } 5333 } 5334 5335 /* 5336 * add a parsing BD from the chain. The parsing BD is always added 5337 * though it is only used for TSO and chksum 5338 */ 5339 bd_prod = TX_BD_NEXT(bd_prod); 5340 5341 if (m0->m_pkthdr.csum_flags) { 5342 if (m0->m_pkthdr.csum_flags & CSUM_IP) { 5343 fp->eth_q_stats.tx_ofld_frames_csum_ip++; 5344 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM; 5345 } 5346 5347 if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) { 5348 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5349 ETH_TX_BD_FLAGS_L4_CSUM); 5350 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) { 5351 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5352 ETH_TX_BD_FLAGS_IS_UDP | 5353 ETH_TX_BD_FLAGS_L4_CSUM); 5354 } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) || 5355 (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5356 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 5357 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) { 5358 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM | 5359 ETH_TX_BD_FLAGS_IS_UDP); 5360 } 5361 } 5362 5363 if (!CHIP_IS_E1x(sc)) { 5364 pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2; 5365 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 5366 5367 if (m0->m_pkthdr.csum_flags) { 5368 hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data); 5369 } 5370 5371 SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, 5372 mac_type); 5373 } else { 5374 uint16_t global_data = 0; 5375 5376 pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x; 5377 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 5378 5379 if (m0->m_pkthdr.csum_flags) { 5380 hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x); 5381 } 5382 5383 SET_FLAG(global_data, 5384 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 5385 pbd_e1x->global_data |= htole16(global_data); 5386 } 5387 5388 /* setup the parsing BD with TSO specific info */ 5389 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5390 fp->eth_q_stats.tx_ofld_frames_lso++; 5391 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 5392 5393 if (__predict_false(tx_start_bd->nbytes > hlen)) { 5394 fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++; 5395 5396 /* split the first BD into header/data making the fw job easy */ 5397 nbds++; 5398 tx_start_bd->nbd = htole16(nbds); 5399 tx_start_bd->nbytes = htole16(hlen); 5400 5401 bd_prod = TX_BD_NEXT(bd_prod); 5402 5403 /* new transmit BD after the tx_parse_bd */ 5404 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5405 tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen)); 5406 tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen)); 5407 tx_data_bd->nbytes = htole16(segs[0].ds_len - hlen); 5408 if (tx_total_pkt_size_bd == NULL) { 5409 tx_total_pkt_size_bd = tx_data_bd; 5410 } 5411 5412 BLOGD(sc, DBG_TX, 5413 "TSO split header size is %d (%x:%x) nbds %d\n", 5414 le16toh(tx_start_bd->nbytes), 5415 le32toh(tx_start_bd->addr_hi), 5416 le32toh(tx_start_bd->addr_lo), 5417 nbds); 5418 } 5419 5420 if (!CHIP_IS_E1x(sc)) { 5421 bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data); 5422 } else { 5423 bxe_set_pbd_lso(m0, pbd_e1x); 5424 } 5425 } 5426 5427 if (pbd_e2_parsing_data) { 5428 pbd_e2->parsing_data = htole32(pbd_e2_parsing_data); 5429 } 5430 5431 /* prepare remaining BDs, start tx bd contains first seg/frag */ 5432 for (i = 1; i < nsegs ; i++) { 5433 bd_prod = TX_BD_NEXT(bd_prod); 5434 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5435 tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr)); 5436 tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr)); 5437 tx_data_bd->nbytes = htole16(segs[i].ds_len); 5438 if (tx_total_pkt_size_bd == NULL) { 5439 tx_total_pkt_size_bd = tx_data_bd; 5440 } 5441 total_pkt_size += tx_data_bd->nbytes; 5442 } 5443 5444 BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd); 5445 5446 if (tx_total_pkt_size_bd != NULL) { 5447 tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size; 5448 } 5449 5450 if (__predict_false(sc->debug & DBG_TX)) { 5451 tmp_bd = tx_buf->first_bd; 5452 for (i = 0; i < nbds; i++) 5453 { 5454 if (i == 0) { 5455 BLOGD(sc, DBG_TX, 5456 "TX Strt: %p bd=%d nbd=%d vlan=0x%x " 5457 "bd_flags=0x%x hdr_nbds=%d\n", 5458 tx_start_bd, 5459 tmp_bd, 5460 le16toh(tx_start_bd->nbd), 5461 le16toh(tx_start_bd->vlan_or_ethertype), 5462 tx_start_bd->bd_flags.as_bitfield, 5463 (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS)); 5464 } else if (i == 1) { 5465 if (pbd_e1x) { 5466 BLOGD(sc, DBG_TX, 5467 "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u " 5468 "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x " 5469 "tcp_seq=%u total_hlen_w=%u\n", 5470 pbd_e1x, 5471 tmp_bd, 5472 pbd_e1x->global_data, 5473 pbd_e1x->ip_hlen_w, 5474 pbd_e1x->ip_id, 5475 pbd_e1x->lso_mss, 5476 pbd_e1x->tcp_flags, 5477 pbd_e1x->tcp_pseudo_csum, 5478 pbd_e1x->tcp_send_seq, 5479 le16toh(pbd_e1x->total_hlen_w)); 5480 } else { /* if (pbd_e2) */ 5481 BLOGD(sc, DBG_TX, 5482 "-> Parse: %p bd=%d dst=%02x:%02x:%02x " 5483 "src=%02x:%02x:%02x parsing_data=0x%x\n", 5484 pbd_e2, 5485 tmp_bd, 5486 pbd_e2->data.mac_addr.dst_hi, 5487 pbd_e2->data.mac_addr.dst_mid, 5488 pbd_e2->data.mac_addr.dst_lo, 5489 pbd_e2->data.mac_addr.src_hi, 5490 pbd_e2->data.mac_addr.src_mid, 5491 pbd_e2->data.mac_addr.src_lo, 5492 pbd_e2->parsing_data); 5493 } 5494 } 5495 5496 if (i != 1) { /* skip parse db as it doesn't hold data */ 5497 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd; 5498 BLOGD(sc, DBG_TX, 5499 "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n", 5500 tx_data_bd, 5501 tmp_bd, 5502 le16toh(tx_data_bd->nbytes), 5503 le32toh(tx_data_bd->addr_hi), 5504 le32toh(tx_data_bd->addr_lo)); 5505 } 5506 5507 tmp_bd = TX_BD_NEXT(tmp_bd); 5508 } 5509 } 5510 5511 BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod); 5512 5513 /* update TX BD producer index value for next TX */ 5514 bd_prod = TX_BD_NEXT(bd_prod); 5515 5516 /* 5517 * If the chain of tx_bd's describing this frame is adjacent to or spans 5518 * an eth_tx_next_bd element then we need to increment the nbds value. 5519 */ 5520 if (TX_BD_IDX(bd_prod) < nbds) { 5521 nbds++; 5522 } 5523 5524 /* don't allow reordering of writes for nbd and packets */ 5525 mb(); 5526 5527 fp->tx_db.data.prod += nbds; 5528 5529 /* producer points to the next free tx_bd at this point */ 5530 fp->tx_pkt_prod++; 5531 fp->tx_bd_prod = bd_prod; 5532 5533 DOORBELL(sc, fp->index, fp->tx_db.raw); 5534 5535 fp->eth_q_stats.tx_pkts++; 5536 5537 /* Prevent speculative reads from getting ahead of the status block. */ 5538 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 5539 0, 0, BUS_SPACE_BARRIER_READ); 5540 5541 /* Prevent speculative reads from getting ahead of the doorbell. */ 5542 bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle, 5543 0, 0, BUS_SPACE_BARRIER_READ); 5544 5545 return (0); 5546 } 5547 5548 static void 5549 bxe_tx_start_locked(struct bxe_softc *sc, 5550 if_t ifp, 5551 struct bxe_fastpath *fp) 5552 { 5553 struct mbuf *m = NULL; 5554 int tx_count = 0; 5555 uint16_t tx_bd_avail; 5556 5557 BXE_FP_TX_LOCK_ASSERT(fp); 5558 5559 /* keep adding entries while there are frames to send */ 5560 while (!if_sendq_empty(ifp)) { 5561 5562 /* 5563 * check for any frames to send 5564 * dequeue can still be NULL even if queue is not empty 5565 */ 5566 m = if_dequeue(ifp); 5567 if (__predict_false(m == NULL)) { 5568 break; 5569 } 5570 5571 /* the mbuf now belongs to us */ 5572 fp->eth_q_stats.mbuf_alloc_tx++; 5573 5574 /* 5575 * Put the frame into the transmit ring. If we don't have room, 5576 * place the mbuf back at the head of the TX queue, set the 5577 * OACTIVE flag, and wait for the NIC to drain the chain. 5578 */ 5579 if (__predict_false(bxe_tx_encap(fp, &m))) { 5580 fp->eth_q_stats.tx_encap_failures++; 5581 if (m != NULL) { 5582 /* mark the TX queue as full and return the frame */ 5583 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5584 if_sendq_prepend(ifp, m); 5585 fp->eth_q_stats.mbuf_alloc_tx--; 5586 fp->eth_q_stats.tx_queue_xoff++; 5587 } 5588 5589 /* stop looking for more work */ 5590 break; 5591 } 5592 5593 /* the frame was enqueued successfully */ 5594 tx_count++; 5595 5596 /* send a copy of the frame to any BPF listeners. */ 5597 if_etherbpfmtap(ifp, m); 5598 5599 tx_bd_avail = bxe_tx_avail(sc, fp); 5600 5601 /* handle any completions if we're running low */ 5602 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5603 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5604 bxe_txeof(sc, fp); 5605 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5606 break; 5607 } 5608 } 5609 } 5610 5611 /* all TX packets were dequeued and/or the tx ring is full */ 5612 if (tx_count > 0) { 5613 /* reset the TX watchdog timeout timer */ 5614 fp->watchdog_timer = BXE_TX_TIMEOUT; 5615 } 5616 } 5617 5618 /* Legacy (non-RSS) dispatch routine */ 5619 static void 5620 bxe_tx_start(if_t ifp) 5621 { 5622 struct bxe_softc *sc; 5623 struct bxe_fastpath *fp; 5624 5625 sc = if_getsoftc(ifp); 5626 5627 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 5628 BLOGW(sc, "Interface not running, ignoring transmit request\n"); 5629 return; 5630 } 5631 5632 if (!sc->link_vars.link_up) { 5633 BLOGW(sc, "Interface link is down, ignoring transmit request\n"); 5634 return; 5635 } 5636 5637 fp = &sc->fp[0]; 5638 5639 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5640 fp->eth_q_stats.tx_queue_full_return++; 5641 return; 5642 } 5643 5644 BXE_FP_TX_LOCK(fp); 5645 bxe_tx_start_locked(sc, ifp, fp); 5646 BXE_FP_TX_UNLOCK(fp); 5647 } 5648 5649 #if __FreeBSD_version >= 901504 5650 5651 static int 5652 bxe_tx_mq_start_locked(struct bxe_softc *sc, 5653 if_t ifp, 5654 struct bxe_fastpath *fp, 5655 struct mbuf *m) 5656 { 5657 struct buf_ring *tx_br = fp->tx_br; 5658 struct mbuf *next; 5659 int depth, rc, tx_count; 5660 uint16_t tx_bd_avail; 5661 5662 rc = tx_count = 0; 5663 5664 BXE_FP_TX_LOCK_ASSERT(fp); 5665 5666 if (sc->state != BXE_STATE_OPEN) { 5667 fp->eth_q_stats.bxe_tx_mq_sc_state_failures++; 5668 return ENETDOWN; 5669 } 5670 5671 if (!tx_br) { 5672 BLOGE(sc, "Multiqueue TX and no buf_ring!\n"); 5673 return (EINVAL); 5674 } 5675 5676 if (m != NULL) { 5677 rc = drbr_enqueue(ifp, tx_br, m); 5678 if (rc != 0) { 5679 fp->eth_q_stats.tx_soft_errors++; 5680 goto bxe_tx_mq_start_locked_exit; 5681 } 5682 } 5683 5684 if (!sc->link_vars.link_up || !(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 5685 fp->eth_q_stats.tx_request_link_down_failures++; 5686 goto bxe_tx_mq_start_locked_exit; 5687 } 5688 5689 /* fetch the depth of the driver queue */ 5690 depth = drbr_inuse_drv(ifp, tx_br); 5691 if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) { 5692 fp->eth_q_stats.tx_max_drbr_queue_depth = depth; 5693 } 5694 5695 /* keep adding entries while there are frames to send */ 5696 while ((next = drbr_peek(ifp, tx_br)) != NULL) { 5697 /* handle any completions if we're running low */ 5698 tx_bd_avail = bxe_tx_avail(sc, fp); 5699 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5700 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5701 bxe_txeof(sc, fp); 5702 tx_bd_avail = bxe_tx_avail(sc, fp); 5703 if (tx_bd_avail < (BXE_TSO_MAX_SEGMENTS + 1)) { 5704 fp->eth_q_stats.bd_avail_too_less_failures++; 5705 m_freem(next); 5706 drbr_advance(ifp, tx_br); 5707 rc = ENOBUFS; 5708 break; 5709 } 5710 } 5711 5712 /* the mbuf now belongs to us */ 5713 fp->eth_q_stats.mbuf_alloc_tx++; 5714 5715 /* 5716 * Put the frame into the transmit ring. If we don't have room, 5717 * place the mbuf back at the head of the TX queue, set the 5718 * OACTIVE flag, and wait for the NIC to drain the chain. 5719 */ 5720 rc = bxe_tx_encap(fp, &next); 5721 if (__predict_false(rc != 0)) { 5722 fp->eth_q_stats.tx_encap_failures++; 5723 if (next != NULL) { 5724 /* mark the TX queue as full and save the frame */ 5725 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5726 drbr_putback(ifp, tx_br, next); 5727 fp->eth_q_stats.mbuf_alloc_tx--; 5728 fp->eth_q_stats.tx_frames_deferred++; 5729 } else 5730 drbr_advance(ifp, tx_br); 5731 5732 /* stop looking for more work */ 5733 break; 5734 } 5735 5736 /* the transmit frame was enqueued successfully */ 5737 tx_count++; 5738 5739 /* send a copy of the frame to any BPF listeners */ 5740 if_etherbpfmtap(ifp, next); 5741 5742 drbr_advance(ifp, tx_br); 5743 } 5744 5745 /* all TX packets were dequeued and/or the tx ring is full */ 5746 if (tx_count > 0) { 5747 /* reset the TX watchdog timeout timer */ 5748 fp->watchdog_timer = BXE_TX_TIMEOUT; 5749 } 5750 5751 bxe_tx_mq_start_locked_exit: 5752 /* If we didn't drain the drbr, enqueue a task in the future to do it. */ 5753 if (!drbr_empty(ifp, tx_br)) { 5754 fp->eth_q_stats.tx_mq_not_empty++; 5755 taskqueue_enqueue_timeout(fp->tq, &fp->tx_timeout_task, 1); 5756 } 5757 5758 return (rc); 5759 } 5760 5761 static void 5762 bxe_tx_mq_start_deferred(void *arg, 5763 int pending) 5764 { 5765 struct bxe_fastpath *fp = (struct bxe_fastpath *)arg; 5766 struct bxe_softc *sc = fp->sc; 5767 if_t ifp = sc->ifp; 5768 5769 BXE_FP_TX_LOCK(fp); 5770 bxe_tx_mq_start_locked(sc, ifp, fp, NULL); 5771 BXE_FP_TX_UNLOCK(fp); 5772 } 5773 5774 /* Multiqueue (TSS) dispatch routine. */ 5775 static int 5776 bxe_tx_mq_start(struct ifnet *ifp, 5777 struct mbuf *m) 5778 { 5779 struct bxe_softc *sc = if_getsoftc(ifp); 5780 struct bxe_fastpath *fp; 5781 int fp_index, rc; 5782 5783 fp_index = 0; /* default is the first queue */ 5784 5785 /* check if flowid is set */ 5786 5787 if (BXE_VALID_FLOWID(m)) 5788 fp_index = (m->m_pkthdr.flowid % sc->num_queues); 5789 5790 fp = &sc->fp[fp_index]; 5791 5792 if (sc->state != BXE_STATE_OPEN) { 5793 fp->eth_q_stats.bxe_tx_mq_sc_state_failures++; 5794 return ENETDOWN; 5795 } 5796 5797 if (BXE_FP_TX_TRYLOCK(fp)) { 5798 rc = bxe_tx_mq_start_locked(sc, ifp, fp, m); 5799 BXE_FP_TX_UNLOCK(fp); 5800 } else { 5801 rc = drbr_enqueue(ifp, fp->tx_br, m); 5802 taskqueue_enqueue(fp->tq, &fp->tx_task); 5803 } 5804 5805 return (rc); 5806 } 5807 5808 static void 5809 bxe_mq_flush(struct ifnet *ifp) 5810 { 5811 struct bxe_softc *sc = if_getsoftc(ifp); 5812 struct bxe_fastpath *fp; 5813 struct mbuf *m; 5814 int i; 5815 5816 for (i = 0; i < sc->num_queues; i++) { 5817 fp = &sc->fp[i]; 5818 5819 if (fp->state != BXE_FP_STATE_IRQ) { 5820 BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n", 5821 fp->index, fp->state); 5822 continue; 5823 } 5824 5825 if (fp->tx_br != NULL) { 5826 BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index); 5827 BXE_FP_TX_LOCK(fp); 5828 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { 5829 m_freem(m); 5830 } 5831 BXE_FP_TX_UNLOCK(fp); 5832 } 5833 } 5834 5835 if_qflush(ifp); 5836 } 5837 5838 #endif /* FreeBSD_version >= 901504 */ 5839 5840 static uint16_t 5841 bxe_cid_ilt_lines(struct bxe_softc *sc) 5842 { 5843 if (IS_SRIOV(sc)) { 5844 return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS); 5845 } 5846 return (L2_ILT_LINES(sc)); 5847 } 5848 5849 static void 5850 bxe_ilt_set_info(struct bxe_softc *sc) 5851 { 5852 struct ilt_client_info *ilt_client; 5853 struct ecore_ilt *ilt = sc->ilt; 5854 uint16_t line = 0; 5855 5856 ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc)); 5857 BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line); 5858 5859 /* CDU */ 5860 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 5861 ilt_client->client_num = ILT_CLIENT_CDU; 5862 ilt_client->page_size = CDU_ILT_PAGE_SZ; 5863 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 5864 ilt_client->start = line; 5865 line += bxe_cid_ilt_lines(sc); 5866 5867 if (CNIC_SUPPORT(sc)) { 5868 line += CNIC_ILT_LINES; 5869 } 5870 5871 ilt_client->end = (line - 1); 5872 5873 BLOGD(sc, DBG_LOAD, 5874 "ilt client[CDU]: start %d, end %d, " 5875 "psz 0x%x, flags 0x%x, hw psz %d\n", 5876 ilt_client->start, ilt_client->end, 5877 ilt_client->page_size, 5878 ilt_client->flags, 5879 ilog2(ilt_client->page_size >> 12)); 5880 5881 /* QM */ 5882 if (QM_INIT(sc->qm_cid_count)) { 5883 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 5884 ilt_client->client_num = ILT_CLIENT_QM; 5885 ilt_client->page_size = QM_ILT_PAGE_SZ; 5886 ilt_client->flags = 0; 5887 ilt_client->start = line; 5888 5889 /* 4 bytes for each cid */ 5890 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 5891 QM_ILT_PAGE_SZ); 5892 5893 ilt_client->end = (line - 1); 5894 5895 BLOGD(sc, DBG_LOAD, 5896 "ilt client[QM]: start %d, end %d, " 5897 "psz 0x%x, flags 0x%x, hw psz %d\n", 5898 ilt_client->start, ilt_client->end, 5899 ilt_client->page_size, ilt_client->flags, 5900 ilog2(ilt_client->page_size >> 12)); 5901 } 5902 5903 if (CNIC_SUPPORT(sc)) { 5904 /* SRC */ 5905 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 5906 ilt_client->client_num = ILT_CLIENT_SRC; 5907 ilt_client->page_size = SRC_ILT_PAGE_SZ; 5908 ilt_client->flags = 0; 5909 ilt_client->start = line; 5910 line += SRC_ILT_LINES; 5911 ilt_client->end = (line - 1); 5912 5913 BLOGD(sc, DBG_LOAD, 5914 "ilt client[SRC]: start %d, end %d, " 5915 "psz 0x%x, flags 0x%x, hw psz %d\n", 5916 ilt_client->start, ilt_client->end, 5917 ilt_client->page_size, ilt_client->flags, 5918 ilog2(ilt_client->page_size >> 12)); 5919 5920 /* TM */ 5921 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 5922 ilt_client->client_num = ILT_CLIENT_TM; 5923 ilt_client->page_size = TM_ILT_PAGE_SZ; 5924 ilt_client->flags = 0; 5925 ilt_client->start = line; 5926 line += TM_ILT_LINES; 5927 ilt_client->end = (line - 1); 5928 5929 BLOGD(sc, DBG_LOAD, 5930 "ilt client[TM]: start %d, end %d, " 5931 "psz 0x%x, flags 0x%x, hw psz %d\n", 5932 ilt_client->start, ilt_client->end, 5933 ilt_client->page_size, ilt_client->flags, 5934 ilog2(ilt_client->page_size >> 12)); 5935 } 5936 5937 KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!")); 5938 } 5939 5940 static void 5941 bxe_set_fp_rx_buf_size(struct bxe_softc *sc) 5942 { 5943 int i; 5944 uint32_t rx_buf_size; 5945 5946 rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu); 5947 5948 for (i = 0; i < sc->num_queues; i++) { 5949 if(rx_buf_size <= MCLBYTES){ 5950 sc->fp[i].rx_buf_size = rx_buf_size; 5951 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5952 }else if (rx_buf_size <= MJUMPAGESIZE){ 5953 sc->fp[i].rx_buf_size = rx_buf_size; 5954 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 5955 }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){ 5956 sc->fp[i].rx_buf_size = MCLBYTES; 5957 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5958 }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){ 5959 sc->fp[i].rx_buf_size = MJUMPAGESIZE; 5960 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 5961 }else { 5962 sc->fp[i].rx_buf_size = MCLBYTES; 5963 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5964 } 5965 } 5966 } 5967 5968 static int 5969 bxe_alloc_ilt_mem(struct bxe_softc *sc) 5970 { 5971 int rc = 0; 5972 5973 if ((sc->ilt = 5974 (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt), 5975 M_BXE_ILT, 5976 (M_NOWAIT | M_ZERO))) == NULL) { 5977 rc = 1; 5978 } 5979 5980 return (rc); 5981 } 5982 5983 static int 5984 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc) 5985 { 5986 int rc = 0; 5987 5988 if ((sc->ilt->lines = 5989 (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES), 5990 M_BXE_ILT, 5991 (M_NOWAIT | M_ZERO))) == NULL) { 5992 rc = 1; 5993 } 5994 5995 return (rc); 5996 } 5997 5998 static void 5999 bxe_free_ilt_mem(struct bxe_softc *sc) 6000 { 6001 if (sc->ilt != NULL) { 6002 free(sc->ilt, M_BXE_ILT); 6003 sc->ilt = NULL; 6004 } 6005 } 6006 6007 static void 6008 bxe_free_ilt_lines_mem(struct bxe_softc *sc) 6009 { 6010 if (sc->ilt->lines != NULL) { 6011 free(sc->ilt->lines, M_BXE_ILT); 6012 sc->ilt->lines = NULL; 6013 } 6014 } 6015 6016 static void 6017 bxe_free_mem(struct bxe_softc *sc) 6018 { 6019 int i; 6020 6021 for (i = 0; i < L2_ILT_LINES(sc); i++) { 6022 bxe_dma_free(sc, &sc->context[i].vcxt_dma); 6023 sc->context[i].vcxt = NULL; 6024 sc->context[i].size = 0; 6025 } 6026 6027 ecore_ilt_mem_op(sc, ILT_MEMOP_FREE); 6028 6029 bxe_free_ilt_lines_mem(sc); 6030 6031 } 6032 6033 static int 6034 bxe_alloc_mem(struct bxe_softc *sc) 6035 { 6036 6037 int context_size; 6038 int allocated; 6039 int i; 6040 6041 /* 6042 * Allocate memory for CDU context: 6043 * This memory is allocated separately and not in the generic ILT 6044 * functions because CDU differs in few aspects: 6045 * 1. There can be multiple entities allocating memory for context - 6046 * regular L2, CNIC, and SRIOV drivers. Each separately controls 6047 * its own ILT lines. 6048 * 2. Since CDU page-size is not a single 4KB page (which is the case 6049 * for the other ILT clients), to be efficient we want to support 6050 * allocation of sub-page-size in the last entry. 6051 * 3. Context pointers are used by the driver to pass to FW / update 6052 * the context (for the other ILT clients the pointers are used just to 6053 * free the memory during unload). 6054 */ 6055 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc)); 6056 for (i = 0, allocated = 0; allocated < context_size; i++) { 6057 sc->context[i].size = min(CDU_ILT_PAGE_SZ, 6058 (context_size - allocated)); 6059 6060 if (bxe_dma_alloc(sc, sc->context[i].size, 6061 &sc->context[i].vcxt_dma, 6062 "cdu context") != 0) { 6063 bxe_free_mem(sc); 6064 return (-1); 6065 } 6066 6067 sc->context[i].vcxt = 6068 (union cdu_context *)sc->context[i].vcxt_dma.vaddr; 6069 6070 allocated += sc->context[i].size; 6071 } 6072 6073 bxe_alloc_ilt_lines_mem(sc); 6074 6075 BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n", 6076 sc->ilt, sc->ilt->start_line, sc->ilt->lines); 6077 { 6078 for (i = 0; i < 4; i++) { 6079 BLOGD(sc, DBG_LOAD, 6080 "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n", 6081 i, 6082 sc->ilt->clients[i].page_size, 6083 sc->ilt->clients[i].start, 6084 sc->ilt->clients[i].end, 6085 sc->ilt->clients[i].client_num, 6086 sc->ilt->clients[i].flags); 6087 } 6088 } 6089 if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) { 6090 BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n"); 6091 bxe_free_mem(sc); 6092 return (-1); 6093 } 6094 6095 return (0); 6096 } 6097 6098 static void 6099 bxe_free_rx_bd_chain(struct bxe_fastpath *fp) 6100 { 6101 struct bxe_softc *sc; 6102 int i; 6103 6104 sc = fp->sc; 6105 6106 if (fp->rx_mbuf_tag == NULL) { 6107 return; 6108 } 6109 6110 /* free all mbufs and unload all maps */ 6111 for (i = 0; i < RX_BD_TOTAL; i++) { 6112 if (fp->rx_mbuf_chain[i].m_map != NULL) { 6113 bus_dmamap_sync(fp->rx_mbuf_tag, 6114 fp->rx_mbuf_chain[i].m_map, 6115 BUS_DMASYNC_POSTREAD); 6116 bus_dmamap_unload(fp->rx_mbuf_tag, 6117 fp->rx_mbuf_chain[i].m_map); 6118 } 6119 6120 if (fp->rx_mbuf_chain[i].m != NULL) { 6121 m_freem(fp->rx_mbuf_chain[i].m); 6122 fp->rx_mbuf_chain[i].m = NULL; 6123 fp->eth_q_stats.mbuf_alloc_rx--; 6124 } 6125 } 6126 } 6127 6128 static void 6129 bxe_free_tpa_pool(struct bxe_fastpath *fp) 6130 { 6131 struct bxe_softc *sc; 6132 int i, max_agg_queues; 6133 6134 sc = fp->sc; 6135 6136 if (fp->rx_mbuf_tag == NULL) { 6137 return; 6138 } 6139 6140 max_agg_queues = MAX_AGG_QS(sc); 6141 6142 /* release all mbufs and unload all DMA maps in the TPA pool */ 6143 for (i = 0; i < max_agg_queues; i++) { 6144 if (fp->rx_tpa_info[i].bd.m_map != NULL) { 6145 bus_dmamap_sync(fp->rx_mbuf_tag, 6146 fp->rx_tpa_info[i].bd.m_map, 6147 BUS_DMASYNC_POSTREAD); 6148 bus_dmamap_unload(fp->rx_mbuf_tag, 6149 fp->rx_tpa_info[i].bd.m_map); 6150 } 6151 6152 if (fp->rx_tpa_info[i].bd.m != NULL) { 6153 m_freem(fp->rx_tpa_info[i].bd.m); 6154 fp->rx_tpa_info[i].bd.m = NULL; 6155 fp->eth_q_stats.mbuf_alloc_tpa--; 6156 } 6157 } 6158 } 6159 6160 static void 6161 bxe_free_sge_chain(struct bxe_fastpath *fp) 6162 { 6163 struct bxe_softc *sc; 6164 int i; 6165 6166 sc = fp->sc; 6167 6168 if (fp->rx_sge_mbuf_tag == NULL) { 6169 return; 6170 } 6171 6172 /* rree all mbufs and unload all maps */ 6173 for (i = 0; i < RX_SGE_TOTAL; i++) { 6174 if (fp->rx_sge_mbuf_chain[i].m_map != NULL) { 6175 bus_dmamap_sync(fp->rx_sge_mbuf_tag, 6176 fp->rx_sge_mbuf_chain[i].m_map, 6177 BUS_DMASYNC_POSTREAD); 6178 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 6179 fp->rx_sge_mbuf_chain[i].m_map); 6180 } 6181 6182 if (fp->rx_sge_mbuf_chain[i].m != NULL) { 6183 m_freem(fp->rx_sge_mbuf_chain[i].m); 6184 fp->rx_sge_mbuf_chain[i].m = NULL; 6185 fp->eth_q_stats.mbuf_alloc_sge--; 6186 } 6187 } 6188 } 6189 6190 static void 6191 bxe_free_fp_buffers(struct bxe_softc *sc) 6192 { 6193 struct bxe_fastpath *fp; 6194 int i; 6195 6196 for (i = 0; i < sc->num_queues; i++) { 6197 fp = &sc->fp[i]; 6198 6199 #if __FreeBSD_version >= 901504 6200 if (fp->tx_br != NULL) { 6201 /* just in case bxe_mq_flush() wasn't called */ 6202 if (mtx_initialized(&fp->tx_mtx)) { 6203 struct mbuf *m; 6204 6205 BXE_FP_TX_LOCK(fp); 6206 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) 6207 m_freem(m); 6208 BXE_FP_TX_UNLOCK(fp); 6209 } 6210 } 6211 #endif 6212 6213 /* free all RX buffers */ 6214 bxe_free_rx_bd_chain(fp); 6215 bxe_free_tpa_pool(fp); 6216 bxe_free_sge_chain(fp); 6217 6218 if (fp->eth_q_stats.mbuf_alloc_rx != 0) { 6219 BLOGE(sc, "failed to claim all rx mbufs (%d left)\n", 6220 fp->eth_q_stats.mbuf_alloc_rx); 6221 } 6222 6223 if (fp->eth_q_stats.mbuf_alloc_sge != 0) { 6224 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6225 fp->eth_q_stats.mbuf_alloc_sge); 6226 } 6227 6228 if (fp->eth_q_stats.mbuf_alloc_tpa != 0) { 6229 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6230 fp->eth_q_stats.mbuf_alloc_tpa); 6231 } 6232 6233 if (fp->eth_q_stats.mbuf_alloc_tx != 0) { 6234 BLOGE(sc, "failed to release tx mbufs (%d left)\n", 6235 fp->eth_q_stats.mbuf_alloc_tx); 6236 } 6237 6238 /* XXX verify all mbufs were reclaimed */ 6239 } 6240 } 6241 6242 static int 6243 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 6244 uint16_t prev_index, 6245 uint16_t index) 6246 { 6247 struct bxe_sw_rx_bd *rx_buf; 6248 struct eth_rx_bd *rx_bd; 6249 bus_dma_segment_t segs[1]; 6250 bus_dmamap_t map; 6251 struct mbuf *m; 6252 int nsegs, rc; 6253 6254 rc = 0; 6255 6256 /* allocate the new RX BD mbuf */ 6257 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6258 if (__predict_false(m == NULL)) { 6259 fp->eth_q_stats.mbuf_rx_bd_alloc_failed++; 6260 return (ENOBUFS); 6261 } 6262 6263 fp->eth_q_stats.mbuf_alloc_rx++; 6264 6265 /* initialize the mbuf buffer length */ 6266 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6267 6268 /* map the mbuf into non-paged pool */ 6269 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6270 fp->rx_mbuf_spare_map, 6271 m, segs, &nsegs, BUS_DMA_NOWAIT); 6272 if (__predict_false(rc != 0)) { 6273 fp->eth_q_stats.mbuf_rx_bd_mapping_failed++; 6274 m_freem(m); 6275 fp->eth_q_stats.mbuf_alloc_rx--; 6276 return (rc); 6277 } 6278 6279 /* all mbufs must map to a single segment */ 6280 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6281 6282 /* release any existing RX BD mbuf mappings */ 6283 6284 if (prev_index != index) { 6285 rx_buf = &fp->rx_mbuf_chain[prev_index]; 6286 6287 if (rx_buf->m_map != NULL) { 6288 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6289 BUS_DMASYNC_POSTREAD); 6290 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6291 } 6292 6293 /* 6294 * We only get here from bxe_rxeof() when the maximum number 6295 * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already 6296 * holds the mbuf in the prev_index so it's OK to NULL it out 6297 * here without concern of a memory leak. 6298 */ 6299 fp->rx_mbuf_chain[prev_index].m = NULL; 6300 } 6301 6302 rx_buf = &fp->rx_mbuf_chain[index]; 6303 6304 if (rx_buf->m_map != NULL) { 6305 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6306 BUS_DMASYNC_POSTREAD); 6307 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6308 } 6309 6310 /* save the mbuf and mapping info for a future packet */ 6311 map = (prev_index != index) ? 6312 fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map; 6313 rx_buf->m_map = fp->rx_mbuf_spare_map; 6314 fp->rx_mbuf_spare_map = map; 6315 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6316 BUS_DMASYNC_PREREAD); 6317 rx_buf->m = m; 6318 6319 rx_bd = &fp->rx_chain[index]; 6320 rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6321 rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6322 6323 return (rc); 6324 } 6325 6326 static int 6327 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 6328 int queue) 6329 { 6330 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 6331 bus_dma_segment_t segs[1]; 6332 bus_dmamap_t map; 6333 struct mbuf *m; 6334 int nsegs; 6335 int rc = 0; 6336 6337 /* allocate the new TPA mbuf */ 6338 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6339 if (__predict_false(m == NULL)) { 6340 fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++; 6341 return (ENOBUFS); 6342 } 6343 6344 fp->eth_q_stats.mbuf_alloc_tpa++; 6345 6346 /* initialize the mbuf buffer length */ 6347 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6348 6349 /* map the mbuf into non-paged pool */ 6350 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6351 fp->rx_tpa_info_mbuf_spare_map, 6352 m, segs, &nsegs, BUS_DMA_NOWAIT); 6353 if (__predict_false(rc != 0)) { 6354 fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++; 6355 m_free(m); 6356 fp->eth_q_stats.mbuf_alloc_tpa--; 6357 return (rc); 6358 } 6359 6360 /* all mbufs must map to a single segment */ 6361 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6362 6363 /* release any existing TPA mbuf mapping */ 6364 if (tpa_info->bd.m_map != NULL) { 6365 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6366 BUS_DMASYNC_POSTREAD); 6367 bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map); 6368 } 6369 6370 /* save the mbuf and mapping info for the TPA mbuf */ 6371 map = tpa_info->bd.m_map; 6372 tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map; 6373 fp->rx_tpa_info_mbuf_spare_map = map; 6374 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6375 BUS_DMASYNC_PREREAD); 6376 tpa_info->bd.m = m; 6377 tpa_info->seg = segs[0]; 6378 6379 return (rc); 6380 } 6381 6382 /* 6383 * Allocate an mbuf and assign it to the receive scatter gather chain. The 6384 * caller must take care to save a copy of the existing mbuf in the SG mbuf 6385 * chain. 6386 */ 6387 static int 6388 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 6389 uint16_t index) 6390 { 6391 struct bxe_sw_rx_bd *sge_buf; 6392 struct eth_rx_sge *sge; 6393 bus_dma_segment_t segs[1]; 6394 bus_dmamap_t map; 6395 struct mbuf *m; 6396 int nsegs; 6397 int rc = 0; 6398 6399 /* allocate a new SGE mbuf */ 6400 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE); 6401 if (__predict_false(m == NULL)) { 6402 fp->eth_q_stats.mbuf_rx_sge_alloc_failed++; 6403 return (ENOMEM); 6404 } 6405 6406 fp->eth_q_stats.mbuf_alloc_sge++; 6407 6408 /* initialize the mbuf buffer length */ 6409 m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE; 6410 6411 /* map the SGE mbuf into non-paged pool */ 6412 rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag, 6413 fp->rx_sge_mbuf_spare_map, 6414 m, segs, &nsegs, BUS_DMA_NOWAIT); 6415 if (__predict_false(rc != 0)) { 6416 fp->eth_q_stats.mbuf_rx_sge_mapping_failed++; 6417 m_freem(m); 6418 fp->eth_q_stats.mbuf_alloc_sge--; 6419 return (rc); 6420 } 6421 6422 /* all mbufs must map to a single segment */ 6423 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6424 6425 sge_buf = &fp->rx_sge_mbuf_chain[index]; 6426 6427 /* release any existing SGE mbuf mapping */ 6428 if (sge_buf->m_map != NULL) { 6429 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6430 BUS_DMASYNC_POSTREAD); 6431 bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map); 6432 } 6433 6434 /* save the mbuf and mapping info for a future packet */ 6435 map = sge_buf->m_map; 6436 sge_buf->m_map = fp->rx_sge_mbuf_spare_map; 6437 fp->rx_sge_mbuf_spare_map = map; 6438 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6439 BUS_DMASYNC_PREREAD); 6440 sge_buf->m = m; 6441 6442 sge = &fp->rx_sge_chain[index]; 6443 sge->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6444 sge->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6445 6446 return (rc); 6447 } 6448 6449 static __noinline int 6450 bxe_alloc_fp_buffers(struct bxe_softc *sc) 6451 { 6452 struct bxe_fastpath *fp; 6453 int i, j, rc = 0; 6454 int ring_prod, cqe_ring_prod; 6455 int max_agg_queues; 6456 6457 for (i = 0; i < sc->num_queues; i++) { 6458 fp = &sc->fp[i]; 6459 6460 ring_prod = cqe_ring_prod = 0; 6461 fp->rx_bd_cons = 0; 6462 fp->rx_cq_cons = 0; 6463 6464 /* allocate buffers for the RX BDs in RX BD chain */ 6465 for (j = 0; j < sc->max_rx_bufs; j++) { 6466 rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod); 6467 if (rc != 0) { 6468 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 6469 i, rc); 6470 goto bxe_alloc_fp_buffers_error; 6471 } 6472 6473 ring_prod = RX_BD_NEXT(ring_prod); 6474 cqe_ring_prod = RCQ_NEXT(cqe_ring_prod); 6475 } 6476 6477 fp->rx_bd_prod = ring_prod; 6478 fp->rx_cq_prod = cqe_ring_prod; 6479 fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0; 6480 6481 max_agg_queues = MAX_AGG_QS(sc); 6482 6483 fp->tpa_enable = TRUE; 6484 6485 /* fill the TPA pool */ 6486 for (j = 0; j < max_agg_queues; j++) { 6487 rc = bxe_alloc_rx_tpa_mbuf(fp, j); 6488 if (rc != 0) { 6489 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n", 6490 i, j); 6491 fp->tpa_enable = FALSE; 6492 goto bxe_alloc_fp_buffers_error; 6493 } 6494 6495 fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP; 6496 } 6497 6498 if (fp->tpa_enable) { 6499 /* fill the RX SGE chain */ 6500 ring_prod = 0; 6501 for (j = 0; j < RX_SGE_USABLE; j++) { 6502 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod); 6503 if (rc != 0) { 6504 BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n", 6505 i, ring_prod); 6506 fp->tpa_enable = FALSE; 6507 ring_prod = 0; 6508 goto bxe_alloc_fp_buffers_error; 6509 } 6510 6511 ring_prod = RX_SGE_NEXT(ring_prod); 6512 } 6513 6514 fp->rx_sge_prod = ring_prod; 6515 } 6516 } 6517 6518 return (0); 6519 6520 bxe_alloc_fp_buffers_error: 6521 6522 /* unwind what was already allocated */ 6523 bxe_free_rx_bd_chain(fp); 6524 bxe_free_tpa_pool(fp); 6525 bxe_free_sge_chain(fp); 6526 6527 return (ENOBUFS); 6528 } 6529 6530 static void 6531 bxe_free_fw_stats_mem(struct bxe_softc *sc) 6532 { 6533 bxe_dma_free(sc, &sc->fw_stats_dma); 6534 6535 sc->fw_stats_num = 0; 6536 6537 sc->fw_stats_req_size = 0; 6538 sc->fw_stats_req = NULL; 6539 sc->fw_stats_req_mapping = 0; 6540 6541 sc->fw_stats_data_size = 0; 6542 sc->fw_stats_data = NULL; 6543 sc->fw_stats_data_mapping = 0; 6544 } 6545 6546 static int 6547 bxe_alloc_fw_stats_mem(struct bxe_softc *sc) 6548 { 6549 uint8_t num_queue_stats; 6550 int num_groups; 6551 6552 /* number of queues for statistics is number of eth queues */ 6553 num_queue_stats = BXE_NUM_ETH_QUEUES(sc); 6554 6555 /* 6556 * Total number of FW statistics requests = 6557 * 1 for port stats + 1 for PF stats + num of queues 6558 */ 6559 sc->fw_stats_num = (2 + num_queue_stats); 6560 6561 /* 6562 * Request is built from stats_query_header and an array of 6563 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT 6564 * rules. The real number or requests is configured in the 6565 * stats_query_header. 6566 */ 6567 num_groups = 6568 ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) + 6569 ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0)); 6570 6571 BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n", 6572 sc->fw_stats_num, num_groups); 6573 6574 sc->fw_stats_req_size = 6575 (sizeof(struct stats_query_header) + 6576 (num_groups * sizeof(struct stats_query_cmd_group))); 6577 6578 /* 6579 * Data for statistics requests + stats_counter. 6580 * stats_counter holds per-STORM counters that are incremented when 6581 * STORM has finished with the current request. Memory for FCoE 6582 * offloaded statistics are counted anyway, even if they will not be sent. 6583 * VF stats are not accounted for here as the data of VF stats is stored 6584 * in memory allocated by the VF, not here. 6585 */ 6586 sc->fw_stats_data_size = 6587 (sizeof(struct stats_counter) + 6588 sizeof(struct per_port_stats) + 6589 sizeof(struct per_pf_stats) + 6590 /* sizeof(struct fcoe_statistics_params) + */ 6591 (sizeof(struct per_queue_stats) * num_queue_stats)); 6592 6593 if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size), 6594 &sc->fw_stats_dma, "fw stats") != 0) { 6595 bxe_free_fw_stats_mem(sc); 6596 return (-1); 6597 } 6598 6599 /* set up the shortcuts */ 6600 6601 sc->fw_stats_req = 6602 (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr; 6603 sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr; 6604 6605 sc->fw_stats_data = 6606 (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr + 6607 sc->fw_stats_req_size); 6608 sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr + 6609 sc->fw_stats_req_size); 6610 6611 BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n", 6612 (uintmax_t)sc->fw_stats_req_mapping); 6613 6614 BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n", 6615 (uintmax_t)sc->fw_stats_data_mapping); 6616 6617 return (0); 6618 } 6619 6620 /* 6621 * Bits map: 6622 * 0-7 - Engine0 load counter. 6623 * 8-15 - Engine1 load counter. 6624 * 16 - Engine0 RESET_IN_PROGRESS bit. 6625 * 17 - Engine1 RESET_IN_PROGRESS bit. 6626 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active 6627 * function on the engine 6628 * 19 - Engine1 ONE_IS_LOADED. 6629 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 6630 * leader to complete (check for both RESET_IN_PROGRESS bits and not 6631 * for just the one belonging to its engine). 6632 */ 6633 #define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 6634 #define BXE_PATH0_LOAD_CNT_MASK 0x000000ff 6635 #define BXE_PATH0_LOAD_CNT_SHIFT 0 6636 #define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00 6637 #define BXE_PATH1_LOAD_CNT_SHIFT 8 6638 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000 6639 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000 6640 #define BXE_GLOBAL_RESET_BIT 0x00040000 6641 6642 /* set the GLOBAL_RESET bit, should be run under rtnl lock */ 6643 static void 6644 bxe_set_reset_global(struct bxe_softc *sc) 6645 { 6646 uint32_t val; 6647 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6648 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6649 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT); 6650 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6651 } 6652 6653 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */ 6654 static void 6655 bxe_clear_reset_global(struct bxe_softc *sc) 6656 { 6657 uint32_t val; 6658 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6659 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6660 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT)); 6661 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6662 } 6663 6664 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */ 6665 static uint8_t 6666 bxe_reset_is_global(struct bxe_softc *sc) 6667 { 6668 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6669 BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val); 6670 return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE; 6671 } 6672 6673 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */ 6674 static void 6675 bxe_set_reset_done(struct bxe_softc *sc) 6676 { 6677 uint32_t val; 6678 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6679 BXE_PATH0_RST_IN_PROG_BIT; 6680 6681 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6682 6683 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6684 /* Clear the bit */ 6685 val &= ~bit; 6686 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6687 6688 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6689 } 6690 6691 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */ 6692 static void 6693 bxe_set_reset_in_progress(struct bxe_softc *sc) 6694 { 6695 uint32_t val; 6696 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6697 BXE_PATH0_RST_IN_PROG_BIT; 6698 6699 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6700 6701 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6702 /* Set the bit */ 6703 val |= bit; 6704 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6705 6706 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6707 } 6708 6709 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */ 6710 static uint8_t 6711 bxe_reset_is_done(struct bxe_softc *sc, 6712 int engine) 6713 { 6714 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6715 uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT : 6716 BXE_PATH0_RST_IN_PROG_BIT; 6717 6718 /* return false if bit is set */ 6719 return (val & bit) ? FALSE : TRUE; 6720 } 6721 6722 /* get the load status for an engine, should be run under rtnl lock */ 6723 static uint8_t 6724 bxe_get_load_status(struct bxe_softc *sc, 6725 int engine) 6726 { 6727 uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK : 6728 BXE_PATH0_LOAD_CNT_MASK; 6729 uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT : 6730 BXE_PATH0_LOAD_CNT_SHIFT; 6731 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6732 6733 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 6734 6735 val = ((val & mask) >> shift); 6736 6737 BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val); 6738 6739 return (val != 0); 6740 } 6741 6742 /* set pf load mark */ 6743 /* XXX needs to be under rtnl lock */ 6744 static void 6745 bxe_set_pf_load(struct bxe_softc *sc) 6746 { 6747 uint32_t val; 6748 uint32_t val1; 6749 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 6750 BXE_PATH0_LOAD_CNT_MASK; 6751 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 6752 BXE_PATH0_LOAD_CNT_SHIFT; 6753 6754 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6755 6756 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6757 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 6758 6759 /* get the current counter value */ 6760 val1 = ((val & mask) >> shift); 6761 6762 /* set bit of this PF */ 6763 val1 |= (1 << SC_ABS_FUNC(sc)); 6764 6765 /* clear the old value */ 6766 val &= ~mask; 6767 6768 /* set the new one */ 6769 val |= ((val1 << shift) & mask); 6770 6771 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6772 6773 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6774 } 6775 6776 /* clear pf load mark */ 6777 /* XXX needs to be under rtnl lock */ 6778 static uint8_t 6779 bxe_clear_pf_load(struct bxe_softc *sc) 6780 { 6781 uint32_t val1, val; 6782 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 6783 BXE_PATH0_LOAD_CNT_MASK; 6784 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 6785 BXE_PATH0_LOAD_CNT_SHIFT; 6786 6787 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6788 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6789 BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val); 6790 6791 /* get the current counter value */ 6792 val1 = (val & mask) >> shift; 6793 6794 /* clear bit of that PF */ 6795 val1 &= ~(1 << SC_ABS_FUNC(sc)); 6796 6797 /* clear the old value */ 6798 val &= ~mask; 6799 6800 /* set the new one */ 6801 val |= ((val1 << shift) & mask); 6802 6803 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6804 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6805 return (val1 != 0); 6806 } 6807 6808 /* send load requrest to mcp and analyze response */ 6809 static int 6810 bxe_nic_load_request(struct bxe_softc *sc, 6811 uint32_t *load_code) 6812 { 6813 /* init fw_seq */ 6814 sc->fw_seq = 6815 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 6816 DRV_MSG_SEQ_NUMBER_MASK); 6817 6818 BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq); 6819 6820 /* get the current FW pulse sequence */ 6821 sc->fw_drv_pulse_wr_seq = 6822 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) & 6823 DRV_PULSE_SEQ_MASK); 6824 6825 BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n", 6826 sc->fw_drv_pulse_wr_seq); 6827 6828 /* load request */ 6829 (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 6830 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 6831 6832 /* if the MCP fails to respond we must abort */ 6833 if (!(*load_code)) { 6834 BLOGE(sc, "MCP response failure!\n"); 6835 return (-1); 6836 } 6837 6838 /* if MCP refused then must abort */ 6839 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 6840 BLOGE(sc, "MCP refused load request\n"); 6841 return (-1); 6842 } 6843 6844 return (0); 6845 } 6846 6847 /* 6848 * Check whether another PF has already loaded FW to chip. In virtualized 6849 * environments a pf from anoth VM may have already initialized the device 6850 * including loading FW. 6851 */ 6852 static int 6853 bxe_nic_load_analyze_req(struct bxe_softc *sc, 6854 uint32_t load_code) 6855 { 6856 uint32_t my_fw, loaded_fw; 6857 6858 /* is another pf loaded on this engine? */ 6859 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 6860 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 6861 /* build my FW version dword */ 6862 my_fw = (BCM_5710_FW_MAJOR_VERSION + 6863 (BCM_5710_FW_MINOR_VERSION << 8 ) + 6864 (BCM_5710_FW_REVISION_VERSION << 16) + 6865 (BCM_5710_FW_ENGINEERING_VERSION << 24)); 6866 6867 /* read loaded FW from chip */ 6868 loaded_fw = REG_RD(sc, XSEM_REG_PRAM); 6869 BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n", 6870 loaded_fw, my_fw); 6871 6872 /* abort nic load if version mismatch */ 6873 if (my_fw != loaded_fw) { 6874 BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)", 6875 loaded_fw, my_fw); 6876 return (-1); 6877 } 6878 } 6879 6880 return (0); 6881 } 6882 6883 /* mark PMF if applicable */ 6884 static void 6885 bxe_nic_load_pmf(struct bxe_softc *sc, 6886 uint32_t load_code) 6887 { 6888 uint32_t ncsi_oem_data_addr; 6889 6890 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 6891 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 6892 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 6893 /* 6894 * Barrier here for ordering between the writing to sc->port.pmf here 6895 * and reading it from the periodic task. 6896 */ 6897 sc->port.pmf = 1; 6898 mb(); 6899 } else { 6900 sc->port.pmf = 0; 6901 } 6902 6903 BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf); 6904 6905 /* XXX needed? */ 6906 if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) { 6907 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) { 6908 ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr); 6909 if (ncsi_oem_data_addr) { 6910 REG_WR(sc, 6911 (ncsi_oem_data_addr + 6912 offsetof(struct glob_ncsi_oem_data, driver_version)), 6913 0); 6914 } 6915 } 6916 } 6917 } 6918 6919 static void 6920 bxe_read_mf_cfg(struct bxe_softc *sc) 6921 { 6922 int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1); 6923 int abs_func; 6924 int vn; 6925 6926 if (BXE_NOMCP(sc)) { 6927 return; /* what should be the default bvalue in this case */ 6928 } 6929 6930 /* 6931 * The formula for computing the absolute function number is... 6932 * For 2 port configuration (4 functions per port): 6933 * abs_func = 2 * vn + SC_PORT + SC_PATH 6934 * For 4 port configuration (2 functions per port): 6935 * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH 6936 */ 6937 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 6938 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc)); 6939 if (abs_func >= E1H_FUNC_MAX) { 6940 break; 6941 } 6942 sc->devinfo.mf_info.mf_config[vn] = 6943 MFCFG_RD(sc, func_mf_config[abs_func].config); 6944 } 6945 6946 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & 6947 FUNC_MF_CFG_FUNC_DISABLED) { 6948 BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n"); 6949 sc->flags |= BXE_MF_FUNC_DIS; 6950 } else { 6951 BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n"); 6952 sc->flags &= ~BXE_MF_FUNC_DIS; 6953 } 6954 } 6955 6956 /* acquire split MCP access lock register */ 6957 static int bxe_acquire_alr(struct bxe_softc *sc) 6958 { 6959 uint32_t j, val; 6960 6961 for (j = 0; j < 1000; j++) { 6962 val = (1UL << 31); 6963 REG_WR(sc, GRCBASE_MCP + 0x9c, val); 6964 val = REG_RD(sc, GRCBASE_MCP + 0x9c); 6965 if (val & (1L << 31)) 6966 break; 6967 6968 DELAY(5000); 6969 } 6970 6971 if (!(val & (1L << 31))) { 6972 BLOGE(sc, "Cannot acquire MCP access lock register\n"); 6973 return (-1); 6974 } 6975 6976 return (0); 6977 } 6978 6979 /* release split MCP access lock register */ 6980 static void bxe_release_alr(struct bxe_softc *sc) 6981 { 6982 REG_WR(sc, GRCBASE_MCP + 0x9c, 0); 6983 } 6984 6985 static void 6986 bxe_fan_failure(struct bxe_softc *sc) 6987 { 6988 int port = SC_PORT(sc); 6989 uint32_t ext_phy_config; 6990 6991 /* mark the failure */ 6992 ext_phy_config = 6993 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 6994 6995 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 6996 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 6997 SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config, 6998 ext_phy_config); 6999 7000 /* log the failure */ 7001 BLOGW(sc, "Fan Failure has caused the driver to shutdown " 7002 "the card to prevent permanent damage. " 7003 "Please contact OEM Support for assistance\n"); 7004 7005 /* XXX */ 7006 #if 1 7007 bxe_panic(sc, ("Schedule task to handle fan failure\n")); 7008 #else 7009 /* 7010 * Schedule device reset (unload) 7011 * This is due to some boards consuming sufficient power when driver is 7012 * up to overheat if fan fails. 7013 */ 7014 bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state); 7015 schedule_delayed_work(&sc->sp_rtnl_task, 0); 7016 #endif 7017 } 7018 7019 /* this function is called upon a link interrupt */ 7020 static void 7021 bxe_link_attn(struct bxe_softc *sc) 7022 { 7023 uint32_t pause_enabled = 0; 7024 struct host_port_stats *pstats; 7025 int cmng_fns; 7026 struct bxe_fastpath *fp; 7027 int i; 7028 7029 /* Make sure that we are synced with the current statistics */ 7030 bxe_stats_handle(sc, STATS_EVENT_STOP); 7031 BLOGI(sc, "link_vars phy_flags : %x\n", sc->link_vars.phy_flags); 7032 elink_link_update(&sc->link_params, &sc->link_vars); 7033 7034 if (sc->link_vars.link_up) { 7035 7036 /* dropless flow control */ 7037 if (!CHIP_IS_E1(sc) && sc->dropless_fc) { 7038 pause_enabled = 0; 7039 7040 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 7041 pause_enabled = 1; 7042 } 7043 7044 REG_WR(sc, 7045 (BAR_USTRORM_INTMEM + 7046 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))), 7047 pause_enabled); 7048 } 7049 7050 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) { 7051 pstats = BXE_SP(sc, port_stats); 7052 /* reset old mac stats */ 7053 memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx)); 7054 } 7055 7056 if (sc->state == BXE_STATE_OPEN) { 7057 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 7058 } 7059 7060 /* Restart tx when the link comes back. */ 7061 FOR_EACH_ETH_QUEUE(sc, i) { 7062 fp = &sc->fp[i]; 7063 taskqueue_enqueue(fp->tq, &fp->tx_task); 7064 } 7065 } 7066 7067 if (sc->link_vars.link_up && sc->link_vars.line_speed) { 7068 cmng_fns = bxe_get_cmng_fns_mode(sc); 7069 7070 if (cmng_fns != CMNG_FNS_NONE) { 7071 bxe_cmng_fns_init(sc, FALSE, cmng_fns); 7072 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7073 } else { 7074 /* rate shaping and fairness are disabled */ 7075 BLOGD(sc, DBG_LOAD, "single function mode without fairness\n"); 7076 } 7077 } 7078 7079 bxe_link_report_locked(sc); 7080 7081 if (IS_MF(sc)) { 7082 ; // XXX bxe_link_sync_notify(sc); 7083 } 7084 } 7085 7086 static void 7087 bxe_attn_int_asserted(struct bxe_softc *sc, 7088 uint32_t asserted) 7089 { 7090 int port = SC_PORT(sc); 7091 uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 7092 MISC_REG_AEU_MASK_ATTN_FUNC_0; 7093 uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 7094 NIG_REG_MASK_INTERRUPT_PORT0; 7095 uint32_t aeu_mask; 7096 uint32_t nig_mask = 0; 7097 uint32_t reg_addr; 7098 uint32_t igu_acked; 7099 uint32_t cnt; 7100 7101 if (sc->attn_state & asserted) { 7102 BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted); 7103 } 7104 7105 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7106 7107 aeu_mask = REG_RD(sc, aeu_addr); 7108 7109 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n", 7110 aeu_mask, asserted); 7111 7112 aeu_mask &= ~(asserted & 0x3ff); 7113 7114 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 7115 7116 REG_WR(sc, aeu_addr, aeu_mask); 7117 7118 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7119 7120 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 7121 sc->attn_state |= asserted; 7122 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 7123 7124 if (asserted & ATTN_HARD_WIRED_MASK) { 7125 if (asserted & ATTN_NIG_FOR_FUNC) { 7126 7127 bxe_acquire_phy_lock(sc); 7128 /* save nig interrupt mask */ 7129 nig_mask = REG_RD(sc, nig_int_mask_addr); 7130 7131 /* If nig_mask is not set, no need to call the update function */ 7132 if (nig_mask) { 7133 REG_WR(sc, nig_int_mask_addr, 0); 7134 7135 bxe_link_attn(sc); 7136 } 7137 7138 /* handle unicore attn? */ 7139 } 7140 7141 if (asserted & ATTN_SW_TIMER_4_FUNC) { 7142 BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n"); 7143 } 7144 7145 if (asserted & GPIO_2_FUNC) { 7146 BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n"); 7147 } 7148 7149 if (asserted & GPIO_3_FUNC) { 7150 BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n"); 7151 } 7152 7153 if (asserted & GPIO_4_FUNC) { 7154 BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n"); 7155 } 7156 7157 if (port == 0) { 7158 if (asserted & ATTN_GENERAL_ATTN_1) { 7159 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n"); 7160 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 7161 } 7162 if (asserted & ATTN_GENERAL_ATTN_2) { 7163 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n"); 7164 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 7165 } 7166 if (asserted & ATTN_GENERAL_ATTN_3) { 7167 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n"); 7168 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 7169 } 7170 } else { 7171 if (asserted & ATTN_GENERAL_ATTN_4) { 7172 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n"); 7173 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 7174 } 7175 if (asserted & ATTN_GENERAL_ATTN_5) { 7176 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n"); 7177 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 7178 } 7179 if (asserted & ATTN_GENERAL_ATTN_6) { 7180 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n"); 7181 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 7182 } 7183 } 7184 } /* hardwired */ 7185 7186 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7187 reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET); 7188 } else { 7189 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 7190 } 7191 7192 BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n", 7193 asserted, 7194 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 7195 REG_WR(sc, reg_addr, asserted); 7196 7197 /* now set back the mask */ 7198 if (asserted & ATTN_NIG_FOR_FUNC) { 7199 /* 7200 * Verify that IGU ack through BAR was written before restoring 7201 * NIG mask. This loop should exit after 2-3 iterations max. 7202 */ 7203 if (sc->devinfo.int_block != INT_BLOCK_HC) { 7204 cnt = 0; 7205 7206 do { 7207 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS); 7208 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 7209 (++cnt < MAX_IGU_ATTN_ACK_TO)); 7210 7211 if (!igu_acked) { 7212 BLOGE(sc, "Failed to verify IGU ack on time\n"); 7213 } 7214 7215 mb(); 7216 } 7217 7218 REG_WR(sc, nig_int_mask_addr, nig_mask); 7219 7220 bxe_release_phy_lock(sc); 7221 } 7222 } 7223 7224 static void 7225 bxe_print_next_block(struct bxe_softc *sc, 7226 int idx, 7227 const char *blk) 7228 { 7229 BLOGI(sc, "%s%s", idx ? ", " : "", blk); 7230 } 7231 7232 static int 7233 bxe_check_blocks_with_parity0(struct bxe_softc *sc, 7234 uint32_t sig, 7235 int par_num, 7236 uint8_t print) 7237 { 7238 uint32_t cur_bit = 0; 7239 int i = 0; 7240 7241 for (i = 0; sig; i++) { 7242 cur_bit = ((uint32_t)0x1 << i); 7243 if (sig & cur_bit) { 7244 switch (cur_bit) { 7245 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 7246 if (print) 7247 bxe_print_next_block(sc, par_num++, "BRB"); 7248 break; 7249 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 7250 if (print) 7251 bxe_print_next_block(sc, par_num++, "PARSER"); 7252 break; 7253 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 7254 if (print) 7255 bxe_print_next_block(sc, par_num++, "TSDM"); 7256 break; 7257 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 7258 if (print) 7259 bxe_print_next_block(sc, par_num++, "SEARCHER"); 7260 break; 7261 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 7262 if (print) 7263 bxe_print_next_block(sc, par_num++, "TCM"); 7264 break; 7265 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 7266 if (print) 7267 bxe_print_next_block(sc, par_num++, "TSEMI"); 7268 break; 7269 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 7270 if (print) 7271 bxe_print_next_block(sc, par_num++, "XPB"); 7272 break; 7273 } 7274 7275 /* Clear the bit */ 7276 sig &= ~cur_bit; 7277 } 7278 } 7279 7280 return (par_num); 7281 } 7282 7283 static int 7284 bxe_check_blocks_with_parity1(struct bxe_softc *sc, 7285 uint32_t sig, 7286 int par_num, 7287 uint8_t *global, 7288 uint8_t print) 7289 { 7290 int i = 0; 7291 uint32_t cur_bit = 0; 7292 for (i = 0; sig; i++) { 7293 cur_bit = ((uint32_t)0x1 << i); 7294 if (sig & cur_bit) { 7295 switch (cur_bit) { 7296 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 7297 if (print) 7298 bxe_print_next_block(sc, par_num++, "PBF"); 7299 break; 7300 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 7301 if (print) 7302 bxe_print_next_block(sc, par_num++, "QM"); 7303 break; 7304 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 7305 if (print) 7306 bxe_print_next_block(sc, par_num++, "TM"); 7307 break; 7308 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 7309 if (print) 7310 bxe_print_next_block(sc, par_num++, "XSDM"); 7311 break; 7312 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 7313 if (print) 7314 bxe_print_next_block(sc, par_num++, "XCM"); 7315 break; 7316 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 7317 if (print) 7318 bxe_print_next_block(sc, par_num++, "XSEMI"); 7319 break; 7320 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 7321 if (print) 7322 bxe_print_next_block(sc, par_num++, "DOORBELLQ"); 7323 break; 7324 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 7325 if (print) 7326 bxe_print_next_block(sc, par_num++, "NIG"); 7327 break; 7328 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 7329 if (print) 7330 bxe_print_next_block(sc, par_num++, "VAUX PCI CORE"); 7331 *global = TRUE; 7332 break; 7333 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 7334 if (print) 7335 bxe_print_next_block(sc, par_num++, "DEBUG"); 7336 break; 7337 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 7338 if (print) 7339 bxe_print_next_block(sc, par_num++, "USDM"); 7340 break; 7341 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 7342 if (print) 7343 bxe_print_next_block(sc, par_num++, "UCM"); 7344 break; 7345 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 7346 if (print) 7347 bxe_print_next_block(sc, par_num++, "USEMI"); 7348 break; 7349 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 7350 if (print) 7351 bxe_print_next_block(sc, par_num++, "UPB"); 7352 break; 7353 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 7354 if (print) 7355 bxe_print_next_block(sc, par_num++, "CSDM"); 7356 break; 7357 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 7358 if (print) 7359 bxe_print_next_block(sc, par_num++, "CCM"); 7360 break; 7361 } 7362 7363 /* Clear the bit */ 7364 sig &= ~cur_bit; 7365 } 7366 } 7367 7368 return (par_num); 7369 } 7370 7371 static int 7372 bxe_check_blocks_with_parity2(struct bxe_softc *sc, 7373 uint32_t sig, 7374 int par_num, 7375 uint8_t print) 7376 { 7377 uint32_t cur_bit = 0; 7378 int i = 0; 7379 7380 for (i = 0; sig; i++) { 7381 cur_bit = ((uint32_t)0x1 << i); 7382 if (sig & cur_bit) { 7383 switch (cur_bit) { 7384 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 7385 if (print) 7386 bxe_print_next_block(sc, par_num++, "CSEMI"); 7387 break; 7388 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 7389 if (print) 7390 bxe_print_next_block(sc, par_num++, "PXP"); 7391 break; 7392 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 7393 if (print) 7394 bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT"); 7395 break; 7396 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 7397 if (print) 7398 bxe_print_next_block(sc, par_num++, "CFC"); 7399 break; 7400 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 7401 if (print) 7402 bxe_print_next_block(sc, par_num++, "CDU"); 7403 break; 7404 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 7405 if (print) 7406 bxe_print_next_block(sc, par_num++, "DMAE"); 7407 break; 7408 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 7409 if (print) 7410 bxe_print_next_block(sc, par_num++, "IGU"); 7411 break; 7412 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 7413 if (print) 7414 bxe_print_next_block(sc, par_num++, "MISC"); 7415 break; 7416 } 7417 7418 /* Clear the bit */ 7419 sig &= ~cur_bit; 7420 } 7421 } 7422 7423 return (par_num); 7424 } 7425 7426 static int 7427 bxe_check_blocks_with_parity3(struct bxe_softc *sc, 7428 uint32_t sig, 7429 int par_num, 7430 uint8_t *global, 7431 uint8_t print) 7432 { 7433 uint32_t cur_bit = 0; 7434 int i = 0; 7435 7436 for (i = 0; sig; i++) { 7437 cur_bit = ((uint32_t)0x1 << i); 7438 if (sig & cur_bit) { 7439 switch (cur_bit) { 7440 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 7441 if (print) 7442 bxe_print_next_block(sc, par_num++, "MCP ROM"); 7443 *global = TRUE; 7444 break; 7445 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 7446 if (print) 7447 bxe_print_next_block(sc, par_num++, 7448 "MCP UMP RX"); 7449 *global = TRUE; 7450 break; 7451 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 7452 if (print) 7453 bxe_print_next_block(sc, par_num++, 7454 "MCP UMP TX"); 7455 *global = TRUE; 7456 break; 7457 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 7458 if (print) 7459 bxe_print_next_block(sc, par_num++, 7460 "MCP SCPAD"); 7461 *global = TRUE; 7462 break; 7463 } 7464 7465 /* Clear the bit */ 7466 sig &= ~cur_bit; 7467 } 7468 } 7469 7470 return (par_num); 7471 } 7472 7473 static int 7474 bxe_check_blocks_with_parity4(struct bxe_softc *sc, 7475 uint32_t sig, 7476 int par_num, 7477 uint8_t print) 7478 { 7479 uint32_t cur_bit = 0; 7480 int i = 0; 7481 7482 for (i = 0; sig; i++) { 7483 cur_bit = ((uint32_t)0x1 << i); 7484 if (sig & cur_bit) { 7485 switch (cur_bit) { 7486 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 7487 if (print) 7488 bxe_print_next_block(sc, par_num++, "PGLUE_B"); 7489 break; 7490 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 7491 if (print) 7492 bxe_print_next_block(sc, par_num++, "ATC"); 7493 break; 7494 } 7495 7496 /* Clear the bit */ 7497 sig &= ~cur_bit; 7498 } 7499 } 7500 7501 return (par_num); 7502 } 7503 7504 static uint8_t 7505 bxe_parity_attn(struct bxe_softc *sc, 7506 uint8_t *global, 7507 uint8_t print, 7508 uint32_t *sig) 7509 { 7510 int par_num = 0; 7511 7512 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 7513 (sig[1] & HW_PRTY_ASSERT_SET_1) || 7514 (sig[2] & HW_PRTY_ASSERT_SET_2) || 7515 (sig[3] & HW_PRTY_ASSERT_SET_3) || 7516 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 7517 BLOGE(sc, "Parity error: HW block parity attention:\n" 7518 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 7519 (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0), 7520 (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1), 7521 (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2), 7522 (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3), 7523 (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4)); 7524 7525 if (print) 7526 BLOGI(sc, "Parity errors detected in blocks: "); 7527 7528 par_num = 7529 bxe_check_blocks_with_parity0(sc, sig[0] & 7530 HW_PRTY_ASSERT_SET_0, 7531 par_num, print); 7532 par_num = 7533 bxe_check_blocks_with_parity1(sc, sig[1] & 7534 HW_PRTY_ASSERT_SET_1, 7535 par_num, global, print); 7536 par_num = 7537 bxe_check_blocks_with_parity2(sc, sig[2] & 7538 HW_PRTY_ASSERT_SET_2, 7539 par_num, print); 7540 par_num = 7541 bxe_check_blocks_with_parity3(sc, sig[3] & 7542 HW_PRTY_ASSERT_SET_3, 7543 par_num, global, print); 7544 par_num = 7545 bxe_check_blocks_with_parity4(sc, sig[4] & 7546 HW_PRTY_ASSERT_SET_4, 7547 par_num, print); 7548 7549 if (print) 7550 BLOGI(sc, "\n"); 7551 7552 return (TRUE); 7553 } 7554 7555 return (FALSE); 7556 } 7557 7558 static uint8_t 7559 bxe_chk_parity_attn(struct bxe_softc *sc, 7560 uint8_t *global, 7561 uint8_t print) 7562 { 7563 struct attn_route attn = { {0} }; 7564 int port = SC_PORT(sc); 7565 7566 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 7567 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 7568 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 7569 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 7570 7571 /* 7572 * Since MCP attentions can't be disabled inside the block, we need to 7573 * read AEU registers to see whether they're currently disabled 7574 */ 7575 attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0 7576 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) & 7577 MISC_AEU_ENABLE_MCP_PRTY_BITS) | 7578 ~MISC_AEU_ENABLE_MCP_PRTY_BITS); 7579 7580 7581 if (!CHIP_IS_E1x(sc)) 7582 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 7583 7584 return (bxe_parity_attn(sc, global, print, attn.sig)); 7585 } 7586 7587 static void 7588 bxe_attn_int_deasserted4(struct bxe_softc *sc, 7589 uint32_t attn) 7590 { 7591 uint32_t val; 7592 7593 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 7594 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 7595 BLOGE(sc, "PGLUE hw attention 0x%08x\n", val); 7596 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 7597 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 7598 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 7599 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 7600 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 7601 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 7602 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 7603 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 7604 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 7605 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 7606 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 7607 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 7608 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 7609 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 7610 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 7611 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 7612 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 7613 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 7614 } 7615 7616 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 7617 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR); 7618 BLOGE(sc, "ATC hw attention 0x%08x\n", val); 7619 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 7620 BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 7621 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 7622 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 7623 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 7624 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 7625 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 7626 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 7627 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 7628 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 7629 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 7630 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 7631 } 7632 7633 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7634 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 7635 BLOGE(sc, "FATAL parity attention set4 0x%08x\n", 7636 (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7637 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 7638 } 7639 } 7640 7641 static void 7642 bxe_e1h_disable(struct bxe_softc *sc) 7643 { 7644 int port = SC_PORT(sc); 7645 7646 bxe_tx_disable(sc); 7647 7648 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 7649 } 7650 7651 static void 7652 bxe_e1h_enable(struct bxe_softc *sc) 7653 { 7654 int port = SC_PORT(sc); 7655 7656 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 7657 7658 // XXX bxe_tx_enable(sc); 7659 } 7660 7661 /* 7662 * called due to MCP event (on pmf): 7663 * reread new bandwidth configuration 7664 * configure FW 7665 * notify others function about the change 7666 */ 7667 static void 7668 bxe_config_mf_bw(struct bxe_softc *sc) 7669 { 7670 if (sc->link_vars.link_up) { 7671 bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX); 7672 // XXX bxe_link_sync_notify(sc); 7673 } 7674 7675 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7676 } 7677 7678 static void 7679 bxe_set_mf_bw(struct bxe_softc *sc) 7680 { 7681 bxe_config_mf_bw(sc); 7682 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 7683 } 7684 7685 static void 7686 bxe_handle_eee_event(struct bxe_softc *sc) 7687 { 7688 BLOGD(sc, DBG_INTR, "EEE - LLDP event\n"); 7689 bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 7690 } 7691 7692 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 7693 7694 static void 7695 bxe_drv_info_ether_stat(struct bxe_softc *sc) 7696 { 7697 struct eth_stats_info *ether_stat = 7698 &sc->sp->drv_info_to_mcp.ether_stat; 7699 7700 strlcpy(ether_stat->version, BXE_DRIVER_VERSION, 7701 ETH_STAT_INFO_VERSION_LEN); 7702 7703 /* XXX (+ MAC_PAD) taken from other driver... verify this is right */ 7704 sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj, 7705 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 7706 ether_stat->mac_local + MAC_PAD, 7707 MAC_PAD, ETH_ALEN); 7708 7709 ether_stat->mtu_size = sc->mtu; 7710 7711 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 7712 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 7713 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 7714 } 7715 7716 // XXX ether_stat->feature_flags |= ???; 7717 7718 ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0; 7719 7720 ether_stat->txq_size = sc->tx_ring_size; 7721 ether_stat->rxq_size = sc->rx_ring_size; 7722 } 7723 7724 static void 7725 bxe_handle_drv_info_req(struct bxe_softc *sc) 7726 { 7727 enum drv_info_opcode op_code; 7728 uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control); 7729 7730 /* if drv_info version supported by MFW doesn't match - send NACK */ 7731 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 7732 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 7733 return; 7734 } 7735 7736 op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 7737 DRV_INFO_CONTROL_OP_CODE_SHIFT); 7738 7739 memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp)); 7740 7741 switch (op_code) { 7742 case ETH_STATS_OPCODE: 7743 bxe_drv_info_ether_stat(sc); 7744 break; 7745 case FCOE_STATS_OPCODE: 7746 case ISCSI_STATS_OPCODE: 7747 default: 7748 /* if op code isn't supported - send NACK */ 7749 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 7750 return; 7751 } 7752 7753 /* 7754 * If we got drv_info attn from MFW then these fields are defined in 7755 * shmem2 for sure 7756 */ 7757 SHMEM2_WR(sc, drv_info_host_addr_lo, 7758 U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 7759 SHMEM2_WR(sc, drv_info_host_addr_hi, 7760 U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 7761 7762 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0); 7763 } 7764 7765 static void 7766 bxe_dcc_event(struct bxe_softc *sc, 7767 uint32_t dcc_event) 7768 { 7769 BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event); 7770 7771 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { 7772 /* 7773 * This is the only place besides the function initialization 7774 * where the sc->flags can change so it is done without any 7775 * locks 7776 */ 7777 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) { 7778 BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n"); 7779 sc->flags |= BXE_MF_FUNC_DIS; 7780 bxe_e1h_disable(sc); 7781 } else { 7782 BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n"); 7783 sc->flags &= ~BXE_MF_FUNC_DIS; 7784 bxe_e1h_enable(sc); 7785 } 7786 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; 7787 } 7788 7789 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { 7790 bxe_config_mf_bw(sc); 7791 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; 7792 } 7793 7794 /* Report results to MCP */ 7795 if (dcc_event) 7796 bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0); 7797 else 7798 bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0); 7799 } 7800 7801 static void 7802 bxe_pmf_update(struct bxe_softc *sc) 7803 { 7804 int port = SC_PORT(sc); 7805 uint32_t val; 7806 7807 sc->port.pmf = 1; 7808 BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf); 7809 7810 /* 7811 * We need the mb() to ensure the ordering between the writing to 7812 * sc->port.pmf here and reading it from the bxe_periodic_task(). 7813 */ 7814 mb(); 7815 7816 /* queue a periodic task */ 7817 // XXX schedule task... 7818 7819 // XXX bxe_dcbx_pmf_update(sc); 7820 7821 /* enable nig attention */ 7822 val = (0xff0f | (1 << (SC_VN(sc) + 4))); 7823 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7824 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val); 7825 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val); 7826 } else if (!CHIP_IS_E1x(sc)) { 7827 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 7828 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 7829 } 7830 7831 bxe_stats_handle(sc, STATS_EVENT_PMF); 7832 } 7833 7834 static int 7835 bxe_mc_assert(struct bxe_softc *sc) 7836 { 7837 char last_idx; 7838 int i, rc = 0; 7839 uint32_t row0, row1, row2, row3; 7840 7841 /* XSTORM */ 7842 last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET); 7843 if (last_idx) 7844 BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7845 7846 /* print the asserts */ 7847 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7848 7849 row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i)); 7850 row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4); 7851 row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8); 7852 row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12); 7853 7854 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7855 BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7856 i, row3, row2, row1, row0); 7857 rc++; 7858 } else { 7859 break; 7860 } 7861 } 7862 7863 /* TSTORM */ 7864 last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET); 7865 if (last_idx) { 7866 BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7867 } 7868 7869 /* print the asserts */ 7870 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7871 7872 row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i)); 7873 row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4); 7874 row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8); 7875 row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12); 7876 7877 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7878 BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7879 i, row3, row2, row1, row0); 7880 rc++; 7881 } else { 7882 break; 7883 } 7884 } 7885 7886 /* CSTORM */ 7887 last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET); 7888 if (last_idx) { 7889 BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7890 } 7891 7892 /* print the asserts */ 7893 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7894 7895 row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i)); 7896 row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4); 7897 row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8); 7898 row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12); 7899 7900 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7901 BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7902 i, row3, row2, row1, row0); 7903 rc++; 7904 } else { 7905 break; 7906 } 7907 } 7908 7909 /* USTORM */ 7910 last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET); 7911 if (last_idx) { 7912 BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7913 } 7914 7915 /* print the asserts */ 7916 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7917 7918 row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i)); 7919 row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4); 7920 row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8); 7921 row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12); 7922 7923 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7924 BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7925 i, row3, row2, row1, row0); 7926 rc++; 7927 } else { 7928 break; 7929 } 7930 } 7931 7932 return (rc); 7933 } 7934 7935 static void 7936 bxe_attn_int_deasserted3(struct bxe_softc *sc, 7937 uint32_t attn) 7938 { 7939 int func = SC_FUNC(sc); 7940 uint32_t val; 7941 7942 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 7943 7944 if (attn & BXE_PMF_LINK_ASSERT(sc)) { 7945 7946 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 7947 bxe_read_mf_cfg(sc); 7948 sc->devinfo.mf_info.mf_config[SC_VN(sc)] = 7949 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 7950 val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status); 7951 7952 if (val & DRV_STATUS_DCC_EVENT_MASK) 7953 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK)); 7954 7955 if (val & DRV_STATUS_SET_MF_BW) 7956 bxe_set_mf_bw(sc); 7957 7958 if (val & DRV_STATUS_DRV_INFO_REQ) 7959 bxe_handle_drv_info_req(sc); 7960 7961 if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF)) 7962 bxe_pmf_update(sc); 7963 7964 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 7965 bxe_handle_eee_event(sc); 7966 7967 if (sc->link_vars.periodic_flags & 7968 ELINK_PERIODIC_FLAGS_LINK_EVENT) { 7969 /* sync with link */ 7970 bxe_acquire_phy_lock(sc); 7971 sc->link_vars.periodic_flags &= 7972 ~ELINK_PERIODIC_FLAGS_LINK_EVENT; 7973 bxe_release_phy_lock(sc); 7974 if (IS_MF(sc)) 7975 ; // XXX bxe_link_sync_notify(sc); 7976 bxe_link_report(sc); 7977 } 7978 7979 /* 7980 * Always call it here: bxe_link_report() will 7981 * prevent the link indication duplication. 7982 */ 7983 bxe_link_status_update(sc); 7984 7985 } else if (attn & BXE_MC_ASSERT_BITS) { 7986 7987 BLOGE(sc, "MC assert!\n"); 7988 bxe_mc_assert(sc); 7989 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0); 7990 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0); 7991 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0); 7992 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0); 7993 bxe_panic(sc, ("MC assert!\n")); 7994 7995 } else if (attn & BXE_MCP_ASSERT) { 7996 7997 BLOGE(sc, "MCP assert!\n"); 7998 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0); 7999 // XXX bxe_fw_dump(sc); 8000 8001 } else { 8002 BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn); 8003 } 8004 } 8005 8006 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 8007 BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn); 8008 if (attn & BXE_GRC_TIMEOUT) { 8009 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN); 8010 BLOGE(sc, "GRC time-out 0x%08x\n", val); 8011 } 8012 if (attn & BXE_GRC_RSV) { 8013 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN); 8014 BLOGE(sc, "GRC reserved 0x%08x\n", val); 8015 } 8016 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 8017 } 8018 } 8019 8020 static void 8021 bxe_attn_int_deasserted2(struct bxe_softc *sc, 8022 uint32_t attn) 8023 { 8024 int port = SC_PORT(sc); 8025 int reg_offset; 8026 uint32_t val0, mask0, val1, mask1; 8027 uint32_t val; 8028 8029 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 8030 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR); 8031 BLOGE(sc, "CFC hw attention 0x%08x\n", val); 8032 /* CFC error attention */ 8033 if (val & 0x2) { 8034 BLOGE(sc, "FATAL error from CFC\n"); 8035 } 8036 } 8037 8038 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 8039 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0); 8040 BLOGE(sc, "PXP hw attention-0 0x%08x\n", val); 8041 /* RQ_USDMDP_FIFO_OVERFLOW */ 8042 if (val & 0x18000) { 8043 BLOGE(sc, "FATAL error from PXP\n"); 8044 } 8045 8046 if (!CHIP_IS_E1x(sc)) { 8047 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1); 8048 BLOGE(sc, "PXP hw attention-1 0x%08x\n", val); 8049 } 8050 } 8051 8052 #define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR 8053 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT 8054 8055 if (attn & AEU_PXP2_HW_INT_BIT) { 8056 /* CQ47854 workaround do not panic on 8057 * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8058 */ 8059 if (!CHIP_IS_E1x(sc)) { 8060 mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0); 8061 val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1); 8062 mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1); 8063 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0); 8064 /* 8065 * If the only PXP2_EOP_ERROR_BIT is set in 8066 * STS0 and STS1 - clear it 8067 * 8068 * probably we lose additional attentions between 8069 * STS0 and STS_CLR0, in this case user will not 8070 * be notified about them 8071 */ 8072 if (val0 & mask0 & PXP2_EOP_ERROR_BIT && 8073 !(val1 & mask1)) 8074 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 8075 8076 /* print the register, since no one can restore it */ 8077 BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0); 8078 8079 /* 8080 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8081 * then notify 8082 */ 8083 if (val0 & PXP2_EOP_ERROR_BIT) { 8084 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n"); 8085 8086 /* 8087 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is 8088 * set then clear attention from PXP2 block without panic 8089 */ 8090 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) && 8091 ((val1 & mask1) == 0)) 8092 attn &= ~AEU_PXP2_HW_INT_BIT; 8093 } 8094 } 8095 } 8096 8097 if (attn & HW_INTERRUT_ASSERT_SET_2) { 8098 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 8099 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 8100 8101 val = REG_RD(sc, reg_offset); 8102 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); 8103 REG_WR(sc, reg_offset, val); 8104 8105 BLOGE(sc, "FATAL HW block attention set2 0x%x\n", 8106 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2)); 8107 bxe_panic(sc, ("HW block attention set2\n")); 8108 } 8109 } 8110 8111 static void 8112 bxe_attn_int_deasserted1(struct bxe_softc *sc, 8113 uint32_t attn) 8114 { 8115 int port = SC_PORT(sc); 8116 int reg_offset; 8117 uint32_t val; 8118 8119 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 8120 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR); 8121 BLOGE(sc, "DB hw attention 0x%08x\n", val); 8122 /* DORQ discard attention */ 8123 if (val & 0x2) { 8124 BLOGE(sc, "FATAL error from DORQ\n"); 8125 } 8126 } 8127 8128 if (attn & HW_INTERRUT_ASSERT_SET_1) { 8129 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 8130 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 8131 8132 val = REG_RD(sc, reg_offset); 8133 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); 8134 REG_WR(sc, reg_offset, val); 8135 8136 BLOGE(sc, "FATAL HW block attention set1 0x%08x\n", 8137 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1)); 8138 bxe_panic(sc, ("HW block attention set1\n")); 8139 } 8140 } 8141 8142 static void 8143 bxe_attn_int_deasserted0(struct bxe_softc *sc, 8144 uint32_t attn) 8145 { 8146 int port = SC_PORT(sc); 8147 int reg_offset; 8148 uint32_t val; 8149 8150 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 8151 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 8152 8153 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 8154 val = REG_RD(sc, reg_offset); 8155 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 8156 REG_WR(sc, reg_offset, val); 8157 8158 BLOGW(sc, "SPIO5 hw attention\n"); 8159 8160 /* Fan failure attention */ 8161 elink_hw_reset_phy(&sc->link_params); 8162 bxe_fan_failure(sc); 8163 } 8164 8165 if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) { 8166 bxe_acquire_phy_lock(sc); 8167 elink_handle_module_detect_int(&sc->link_params); 8168 bxe_release_phy_lock(sc); 8169 } 8170 8171 if (attn & HW_INTERRUT_ASSERT_SET_0) { 8172 val = REG_RD(sc, reg_offset); 8173 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); 8174 REG_WR(sc, reg_offset, val); 8175 8176 bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n", 8177 (attn & HW_INTERRUT_ASSERT_SET_0))); 8178 } 8179 } 8180 8181 static void 8182 bxe_attn_int_deasserted(struct bxe_softc *sc, 8183 uint32_t deasserted) 8184 { 8185 struct attn_route attn; 8186 struct attn_route *group_mask; 8187 int port = SC_PORT(sc); 8188 int index; 8189 uint32_t reg_addr; 8190 uint32_t val; 8191 uint32_t aeu_mask; 8192 uint8_t global = FALSE; 8193 8194 /* 8195 * Need to take HW lock because MCP or other port might also 8196 * try to handle this event. 8197 */ 8198 bxe_acquire_alr(sc); 8199 8200 if (bxe_chk_parity_attn(sc, &global, TRUE)) { 8201 /* XXX 8202 * In case of parity errors don't handle attentions so that 8203 * other function would "see" parity errors. 8204 */ 8205 sc->recovery_state = BXE_RECOVERY_INIT; 8206 // XXX schedule a recovery task... 8207 /* disable HW interrupts */ 8208 bxe_int_disable(sc); 8209 bxe_release_alr(sc); 8210 return; 8211 } 8212 8213 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 8214 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 8215 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 8216 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 8217 if (!CHIP_IS_E1x(sc)) { 8218 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 8219 } else { 8220 attn.sig[4] = 0; 8221 } 8222 8223 BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", 8224 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 8225 8226 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 8227 if (deasserted & (1 << index)) { 8228 group_mask = &sc->attn_group[index]; 8229 8230 BLOGD(sc, DBG_INTR, 8231 "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index, 8232 group_mask->sig[0], group_mask->sig[1], 8233 group_mask->sig[2], group_mask->sig[3], 8234 group_mask->sig[4]); 8235 8236 bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]); 8237 bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]); 8238 bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]); 8239 bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]); 8240 bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]); 8241 } 8242 } 8243 8244 bxe_release_alr(sc); 8245 8246 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8247 reg_addr = (HC_REG_COMMAND_REG + port*32 + 8248 COMMAND_REG_ATTN_BITS_CLR); 8249 } else { 8250 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 8251 } 8252 8253 val = ~deasserted; 8254 BLOGD(sc, DBG_INTR, 8255 "about to mask 0x%08x at %s addr 0x%08x\n", val, 8256 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 8257 REG_WR(sc, reg_addr, val); 8258 8259 if (~sc->attn_state & deasserted) { 8260 BLOGE(sc, "IGU error\n"); 8261 } 8262 8263 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 8264 MISC_REG_AEU_MASK_ATTN_FUNC_0; 8265 8266 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8267 8268 aeu_mask = REG_RD(sc, reg_addr); 8269 8270 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n", 8271 aeu_mask, deasserted); 8272 aeu_mask |= (deasserted & 0x3ff); 8273 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 8274 8275 REG_WR(sc, reg_addr, aeu_mask); 8276 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8277 8278 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 8279 sc->attn_state &= ~deasserted; 8280 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 8281 } 8282 8283 static void 8284 bxe_attn_int(struct bxe_softc *sc) 8285 { 8286 /* read local copy of bits */ 8287 uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits); 8288 uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack); 8289 uint32_t attn_state = sc->attn_state; 8290 8291 /* look for changed bits */ 8292 uint32_t asserted = attn_bits & ~attn_ack & ~attn_state; 8293 uint32_t deasserted = ~attn_bits & attn_ack & attn_state; 8294 8295 BLOGD(sc, DBG_INTR, 8296 "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n", 8297 attn_bits, attn_ack, asserted, deasserted); 8298 8299 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) { 8300 BLOGE(sc, "BAD attention state\n"); 8301 } 8302 8303 /* handle bits that were raised */ 8304 if (asserted) { 8305 bxe_attn_int_asserted(sc, asserted); 8306 } 8307 8308 if (deasserted) { 8309 bxe_attn_int_deasserted(sc, deasserted); 8310 } 8311 } 8312 8313 static uint16_t 8314 bxe_update_dsb_idx(struct bxe_softc *sc) 8315 { 8316 struct host_sp_status_block *def_sb = sc->def_sb; 8317 uint16_t rc = 0; 8318 8319 mb(); /* status block is written to by the chip */ 8320 8321 if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 8322 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index; 8323 rc |= BXE_DEF_SB_ATT_IDX; 8324 } 8325 8326 if (sc->def_idx != def_sb->sp_sb.running_index) { 8327 sc->def_idx = def_sb->sp_sb.running_index; 8328 rc |= BXE_DEF_SB_IDX; 8329 } 8330 8331 mb(); 8332 8333 return (rc); 8334 } 8335 8336 static inline struct ecore_queue_sp_obj * 8337 bxe_cid_to_q_obj(struct bxe_softc *sc, 8338 uint32_t cid) 8339 { 8340 BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid); 8341 return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj); 8342 } 8343 8344 static void 8345 bxe_handle_mcast_eqe(struct bxe_softc *sc) 8346 { 8347 struct ecore_mcast_ramrod_params rparam; 8348 int rc; 8349 8350 memset(&rparam, 0, sizeof(rparam)); 8351 8352 rparam.mcast_obj = &sc->mcast_obj; 8353 8354 BXE_MCAST_LOCK(sc); 8355 8356 /* clear pending state for the last command */ 8357 sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw); 8358 8359 /* if there are pending mcast commands - send them */ 8360 if (sc->mcast_obj.check_pending(&sc->mcast_obj)) { 8361 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 8362 if (rc < 0) { 8363 BLOGD(sc, DBG_SP, 8364 "ERROR: Failed to send pending mcast commands (%d)\n", rc); 8365 } 8366 } 8367 8368 BXE_MCAST_UNLOCK(sc); 8369 } 8370 8371 static void 8372 bxe_handle_classification_eqe(struct bxe_softc *sc, 8373 union event_ring_elem *elem) 8374 { 8375 unsigned long ramrod_flags = 0; 8376 int rc = 0; 8377 uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8378 struct ecore_vlan_mac_obj *vlan_mac_obj; 8379 8380 /* always push next commands out, don't wait here */ 8381 bit_set(&ramrod_flags, RAMROD_CONT); 8382 8383 switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) { 8384 case ECORE_FILTER_MAC_PENDING: 8385 BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n"); 8386 vlan_mac_obj = &sc->sp_objs[cid].mac_obj; 8387 break; 8388 8389 case ECORE_FILTER_MCAST_PENDING: 8390 BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n"); 8391 /* 8392 * This is only relevant for 57710 where multicast MACs are 8393 * configured as unicast MACs using the same ramrod. 8394 */ 8395 bxe_handle_mcast_eqe(sc); 8396 return; 8397 8398 default: 8399 BLOGE(sc, "Unsupported classification command: %d\n", 8400 elem->message.data.eth_event.echo); 8401 return; 8402 } 8403 8404 rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags); 8405 8406 if (rc < 0) { 8407 BLOGE(sc, "Failed to schedule new commands (%d)\n", rc); 8408 } else if (rc > 0) { 8409 BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n"); 8410 } 8411 } 8412 8413 static void 8414 bxe_handle_rx_mode_eqe(struct bxe_softc *sc, 8415 union event_ring_elem *elem) 8416 { 8417 bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 8418 8419 /* send rx_mode command again if was requested */ 8420 if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, 8421 &sc->sp_state)) { 8422 bxe_set_storm_rx_mode(sc); 8423 } 8424 } 8425 8426 static void 8427 bxe_update_eq_prod(struct bxe_softc *sc, 8428 uint16_t prod) 8429 { 8430 storm_memset_eq_prod(sc, prod, SC_FUNC(sc)); 8431 wmb(); /* keep prod updates ordered */ 8432 } 8433 8434 static void 8435 bxe_eq_int(struct bxe_softc *sc) 8436 { 8437 uint16_t hw_cons, sw_cons, sw_prod; 8438 union event_ring_elem *elem; 8439 uint8_t echo; 8440 uint32_t cid; 8441 uint8_t opcode; 8442 int spqe_cnt = 0; 8443 struct ecore_queue_sp_obj *q_obj; 8444 struct ecore_func_sp_obj *f_obj = &sc->func_obj; 8445 struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw; 8446 8447 hw_cons = le16toh(*sc->eq_cons_sb); 8448 8449 /* 8450 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256. 8451 * when we get to the next-page we need to adjust so the loop 8452 * condition below will be met. The next element is the size of a 8453 * regular element and hence incrementing by 1 8454 */ 8455 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) { 8456 hw_cons++; 8457 } 8458 8459 /* 8460 * This function may never run in parallel with itself for a 8461 * specific sc and no need for a read memory barrier here. 8462 */ 8463 sw_cons = sc->eq_cons; 8464 sw_prod = sc->eq_prod; 8465 8466 BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n", 8467 hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left)); 8468 8469 for (; 8470 sw_cons != hw_cons; 8471 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 8472 8473 elem = &sc->eq[EQ_DESC(sw_cons)]; 8474 8475 /* elem CID originates from FW, actually LE */ 8476 cid = SW_CID(elem->message.data.cfc_del_event.cid); 8477 opcode = elem->message.opcode; 8478 8479 /* handle eq element */ 8480 switch (opcode) { 8481 8482 case EVENT_RING_OPCODE_STAT_QUERY: 8483 BLOGD(sc, DBG_SP, "got statistics completion event %d\n", 8484 sc->stats_comp++); 8485 /* nothing to do with stats comp */ 8486 goto next_spqe; 8487 8488 case EVENT_RING_OPCODE_CFC_DEL: 8489 /* handle according to cid range */ 8490 /* we may want to verify here that the sc state is HALTING */ 8491 BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid); 8492 q_obj = bxe_cid_to_q_obj(sc, cid); 8493 if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) { 8494 break; 8495 } 8496 goto next_spqe; 8497 8498 case EVENT_RING_OPCODE_STOP_TRAFFIC: 8499 BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n"); 8500 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) { 8501 break; 8502 } 8503 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED); 8504 goto next_spqe; 8505 8506 case EVENT_RING_OPCODE_START_TRAFFIC: 8507 BLOGD(sc, DBG_SP, "got START TRAFFIC\n"); 8508 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) { 8509 break; 8510 } 8511 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED); 8512 goto next_spqe; 8513 8514 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 8515 echo = elem->message.data.function_update_event.echo; 8516 if (echo == SWITCH_UPDATE) { 8517 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n"); 8518 if (f_obj->complete_cmd(sc, f_obj, 8519 ECORE_F_CMD_SWITCH_UPDATE)) { 8520 break; 8521 } 8522 } 8523 else { 8524 BLOGD(sc, DBG_SP, 8525 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 8526 } 8527 goto next_spqe; 8528 8529 case EVENT_RING_OPCODE_FORWARD_SETUP: 8530 q_obj = &bxe_fwd_sp_obj(sc, q_obj); 8531 if (q_obj->complete_cmd(sc, q_obj, 8532 ECORE_Q_CMD_SETUP_TX_ONLY)) { 8533 break; 8534 } 8535 goto next_spqe; 8536 8537 case EVENT_RING_OPCODE_FUNCTION_START: 8538 BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n"); 8539 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) { 8540 break; 8541 } 8542 goto next_spqe; 8543 8544 case EVENT_RING_OPCODE_FUNCTION_STOP: 8545 BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n"); 8546 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) { 8547 break; 8548 } 8549 goto next_spqe; 8550 } 8551 8552 switch (opcode | sc->state) { 8553 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN): 8554 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT): 8555 cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8556 BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid); 8557 rss_raw->clear_pending(rss_raw); 8558 break; 8559 8560 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN): 8561 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG): 8562 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT): 8563 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN): 8564 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG): 8565 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8566 BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n"); 8567 bxe_handle_classification_eqe(sc, elem); 8568 break; 8569 8570 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN): 8571 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG): 8572 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8573 BLOGD(sc, DBG_SP, "got mcast ramrod\n"); 8574 bxe_handle_mcast_eqe(sc); 8575 break; 8576 8577 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN): 8578 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG): 8579 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8580 BLOGD(sc, DBG_SP, "got rx_mode ramrod\n"); 8581 bxe_handle_rx_mode_eqe(sc, elem); 8582 break; 8583 8584 default: 8585 /* unknown event log error and continue */ 8586 BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n", 8587 elem->message.opcode, sc->state); 8588 } 8589 8590 next_spqe: 8591 spqe_cnt++; 8592 } /* for */ 8593 8594 mb(); 8595 atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt); 8596 8597 sc->eq_cons = sw_cons; 8598 sc->eq_prod = sw_prod; 8599 8600 /* make sure that above mem writes were issued towards the memory */ 8601 wmb(); 8602 8603 /* update producer */ 8604 bxe_update_eq_prod(sc, sc->eq_prod); 8605 } 8606 8607 static void 8608 bxe_handle_sp_tq(void *context, 8609 int pending) 8610 { 8611 struct bxe_softc *sc = (struct bxe_softc *)context; 8612 uint16_t status; 8613 8614 BLOGD(sc, DBG_SP, "---> SP TASK <---\n"); 8615 8616 /* what work needs to be performed? */ 8617 status = bxe_update_dsb_idx(sc); 8618 8619 BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status); 8620 8621 /* HW attentions */ 8622 if (status & BXE_DEF_SB_ATT_IDX) { 8623 BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n"); 8624 bxe_attn_int(sc); 8625 status &= ~BXE_DEF_SB_ATT_IDX; 8626 } 8627 8628 /* SP events: STAT_QUERY and others */ 8629 if (status & BXE_DEF_SB_IDX) { 8630 /* handle EQ completions */ 8631 BLOGD(sc, DBG_SP, "---> EQ INTR <---\n"); 8632 bxe_eq_int(sc); 8633 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 8634 le16toh(sc->def_idx), IGU_INT_NOP, 1); 8635 status &= ~BXE_DEF_SB_IDX; 8636 } 8637 8638 /* if status is non zero then something went wrong */ 8639 if (__predict_false(status)) { 8640 BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status); 8641 } 8642 8643 /* ack status block only if something was actually handled */ 8644 bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID, 8645 le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1); 8646 8647 /* 8648 * Must be called after the EQ processing (since eq leads to sriov 8649 * ramrod completion flows). 8650 * This flow may have been scheduled by the arrival of a ramrod 8651 * completion, or by the sriov code rescheduling itself. 8652 */ 8653 // XXX bxe_iov_sp_task(sc); 8654 8655 } 8656 8657 static void 8658 bxe_handle_fp_tq(void *context, 8659 int pending) 8660 { 8661 struct bxe_fastpath *fp = (struct bxe_fastpath *)context; 8662 struct bxe_softc *sc = fp->sc; 8663 uint8_t more_tx = FALSE; 8664 uint8_t more_rx = FALSE; 8665 8666 BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index); 8667 8668 /* XXX 8669 * IFF_DRV_RUNNING state can't be checked here since we process 8670 * slowpath events on a client queue during setup. Instead 8671 * we need to add a "process/continue" flag here that the driver 8672 * can use to tell the task here not to do anything. 8673 */ 8674 #if 0 8675 if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 8676 return; 8677 } 8678 #endif 8679 8680 /* update the fastpath index */ 8681 bxe_update_fp_sb_idx(fp); 8682 8683 /* XXX add loop here if ever support multiple tx CoS */ 8684 /* fp->txdata[cos] */ 8685 if (bxe_has_tx_work(fp)) { 8686 BXE_FP_TX_LOCK(fp); 8687 more_tx = bxe_txeof(sc, fp); 8688 BXE_FP_TX_UNLOCK(fp); 8689 } 8690 8691 if (bxe_has_rx_work(fp)) { 8692 more_rx = bxe_rxeof(sc, fp); 8693 } 8694 8695 if (more_rx /*|| more_tx*/) { 8696 /* still more work to do */ 8697 taskqueue_enqueue(fp->tq, &fp->tq_task); 8698 return; 8699 } 8700 8701 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 8702 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 8703 } 8704 8705 static void 8706 bxe_task_fp(struct bxe_fastpath *fp) 8707 { 8708 struct bxe_softc *sc = fp->sc; 8709 uint8_t more_tx = FALSE; 8710 uint8_t more_rx = FALSE; 8711 8712 BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index); 8713 8714 /* update the fastpath index */ 8715 bxe_update_fp_sb_idx(fp); 8716 8717 /* XXX add loop here if ever support multiple tx CoS */ 8718 /* fp->txdata[cos] */ 8719 if (bxe_has_tx_work(fp)) { 8720 BXE_FP_TX_LOCK(fp); 8721 more_tx = bxe_txeof(sc, fp); 8722 BXE_FP_TX_UNLOCK(fp); 8723 } 8724 8725 if (bxe_has_rx_work(fp)) { 8726 more_rx = bxe_rxeof(sc, fp); 8727 } 8728 8729 if (more_rx /*|| more_tx*/) { 8730 /* still more work to do, bail out if this ISR and process later */ 8731 taskqueue_enqueue(fp->tq, &fp->tq_task); 8732 return; 8733 } 8734 8735 /* 8736 * Here we write the fastpath index taken before doing any tx or rx work. 8737 * It is very well possible other hw events occurred up to this point and 8738 * they were actually processed accordingly above. Since we're going to 8739 * write an older fastpath index, an interrupt is coming which we might 8740 * not do any work in. 8741 */ 8742 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 8743 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 8744 } 8745 8746 /* 8747 * Legacy interrupt entry point. 8748 * 8749 * Verifies that the controller generated the interrupt and 8750 * then calls a separate routine to handle the various 8751 * interrupt causes: link, RX, and TX. 8752 */ 8753 static void 8754 bxe_intr_legacy(void *xsc) 8755 { 8756 struct bxe_softc *sc = (struct bxe_softc *)xsc; 8757 struct bxe_fastpath *fp; 8758 uint16_t status, mask; 8759 int i; 8760 8761 BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n"); 8762 8763 /* 8764 * 0 for ustorm, 1 for cstorm 8765 * the bits returned from ack_int() are 0-15 8766 * bit 0 = attention status block 8767 * bit 1 = fast path status block 8768 * a mask of 0x2 or more = tx/rx event 8769 * a mask of 1 = slow path event 8770 */ 8771 8772 status = bxe_ack_int(sc); 8773 8774 /* the interrupt is not for us */ 8775 if (__predict_false(status == 0)) { 8776 BLOGD(sc, DBG_INTR, "Not our interrupt!\n"); 8777 return; 8778 } 8779 8780 BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status); 8781 8782 FOR_EACH_ETH_QUEUE(sc, i) { 8783 fp = &sc->fp[i]; 8784 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc))); 8785 if (status & mask) { 8786 /* acknowledge and disable further fastpath interrupts */ 8787 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8788 bxe_task_fp(fp); 8789 status &= ~mask; 8790 } 8791 } 8792 8793 if (__predict_false(status & 0x1)) { 8794 /* acknowledge and disable further slowpath interrupts */ 8795 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8796 8797 /* schedule slowpath handler */ 8798 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8799 8800 status &= ~0x1; 8801 } 8802 8803 if (__predict_false(status)) { 8804 BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status); 8805 } 8806 } 8807 8808 /* slowpath interrupt entry point */ 8809 static void 8810 bxe_intr_sp(void *xsc) 8811 { 8812 struct bxe_softc *sc = (struct bxe_softc *)xsc; 8813 8814 BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n"); 8815 8816 /* acknowledge and disable further slowpath interrupts */ 8817 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8818 8819 /* schedule slowpath handler */ 8820 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8821 } 8822 8823 /* fastpath interrupt entry point */ 8824 static void 8825 bxe_intr_fp(void *xfp) 8826 { 8827 struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp; 8828 struct bxe_softc *sc = fp->sc; 8829 8830 BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index); 8831 8832 BLOGD(sc, DBG_INTR, 8833 "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n", 8834 curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id); 8835 8836 /* acknowledge and disable further fastpath interrupts */ 8837 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8838 8839 bxe_task_fp(fp); 8840 } 8841 8842 /* Release all interrupts allocated by the driver. */ 8843 static void 8844 bxe_interrupt_free(struct bxe_softc *sc) 8845 { 8846 int i; 8847 8848 switch (sc->interrupt_mode) { 8849 case INTR_MODE_INTX: 8850 BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n"); 8851 if (sc->intr[0].resource != NULL) { 8852 bus_release_resource(sc->dev, 8853 SYS_RES_IRQ, 8854 sc->intr[0].rid, 8855 sc->intr[0].resource); 8856 } 8857 break; 8858 case INTR_MODE_MSI: 8859 for (i = 0; i < sc->intr_count; i++) { 8860 BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i); 8861 if (sc->intr[i].resource && sc->intr[i].rid) { 8862 bus_release_resource(sc->dev, 8863 SYS_RES_IRQ, 8864 sc->intr[i].rid, 8865 sc->intr[i].resource); 8866 } 8867 } 8868 pci_release_msi(sc->dev); 8869 break; 8870 case INTR_MODE_MSIX: 8871 for (i = 0; i < sc->intr_count; i++) { 8872 BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i); 8873 if (sc->intr[i].resource && sc->intr[i].rid) { 8874 bus_release_resource(sc->dev, 8875 SYS_RES_IRQ, 8876 sc->intr[i].rid, 8877 sc->intr[i].resource); 8878 } 8879 } 8880 pci_release_msi(sc->dev); 8881 break; 8882 default: 8883 /* nothing to do as initial allocation failed */ 8884 break; 8885 } 8886 } 8887 8888 /* 8889 * This function determines and allocates the appropriate 8890 * interrupt based on system capabilites and user request. 8891 * 8892 * The user may force a particular interrupt mode, specify 8893 * the number of receive queues, specify the method for 8894 * distribuitng received frames to receive queues, or use 8895 * the default settings which will automatically select the 8896 * best supported combination. In addition, the OS may or 8897 * may not support certain combinations of these settings. 8898 * This routine attempts to reconcile the settings requested 8899 * by the user with the capabilites available from the system 8900 * to select the optimal combination of features. 8901 * 8902 * Returns: 8903 * 0 = Success, !0 = Failure. 8904 */ 8905 static int 8906 bxe_interrupt_alloc(struct bxe_softc *sc) 8907 { 8908 int msix_count = 0; 8909 int msi_count = 0; 8910 int num_requested = 0; 8911 int num_allocated = 0; 8912 int rid, i, j; 8913 int rc; 8914 8915 /* get the number of available MSI/MSI-X interrupts from the OS */ 8916 if (sc->interrupt_mode > 0) { 8917 if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) { 8918 msix_count = pci_msix_count(sc->dev); 8919 } 8920 8921 if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) { 8922 msi_count = pci_msi_count(sc->dev); 8923 } 8924 8925 BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n", 8926 msi_count, msix_count); 8927 } 8928 8929 do { /* try allocating MSI-X interrupt resources (at least 2) */ 8930 if (sc->interrupt_mode != INTR_MODE_MSIX) { 8931 break; 8932 } 8933 8934 if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) || 8935 (msix_count < 2)) { 8936 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8937 break; 8938 } 8939 8940 /* ask for the necessary number of MSI-X vectors */ 8941 num_requested = min((sc->num_queues + 1), msix_count); 8942 8943 BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested); 8944 8945 num_allocated = num_requested; 8946 if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) { 8947 BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc); 8948 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8949 break; 8950 } 8951 8952 if (num_allocated < 2) { /* possible? */ 8953 BLOGE(sc, "MSI-X allocation less than 2!\n"); 8954 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8955 pci_release_msi(sc->dev); 8956 break; 8957 } 8958 8959 BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n", 8960 num_requested, num_allocated); 8961 8962 /* best effort so use the number of vectors allocated to us */ 8963 sc->intr_count = num_allocated; 8964 sc->num_queues = num_allocated - 1; 8965 8966 rid = 1; /* initial resource identifier */ 8967 8968 /* allocate the MSI-X vectors */ 8969 for (i = 0; i < num_allocated; i++) { 8970 sc->intr[i].rid = (rid + i); 8971 8972 if ((sc->intr[i].resource = 8973 bus_alloc_resource_any(sc->dev, 8974 SYS_RES_IRQ, 8975 &sc->intr[i].rid, 8976 RF_ACTIVE)) == NULL) { 8977 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n", 8978 i, (rid + i)); 8979 8980 for (j = (i - 1); j >= 0; j--) { 8981 bus_release_resource(sc->dev, 8982 SYS_RES_IRQ, 8983 sc->intr[j].rid, 8984 sc->intr[j].resource); 8985 } 8986 8987 sc->intr_count = 0; 8988 sc->num_queues = 0; 8989 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8990 pci_release_msi(sc->dev); 8991 break; 8992 } 8993 8994 BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i)); 8995 } 8996 } while (0); 8997 8998 do { /* try allocating MSI vector resources (at least 2) */ 8999 if (sc->interrupt_mode != INTR_MODE_MSI) { 9000 break; 9001 } 9002 9003 if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) || 9004 (msi_count < 1)) { 9005 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9006 break; 9007 } 9008 9009 /* ask for a single MSI vector */ 9010 num_requested = 1; 9011 9012 BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested); 9013 9014 num_allocated = num_requested; 9015 if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) { 9016 BLOGE(sc, "MSI alloc failed (%d)!\n", rc); 9017 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9018 break; 9019 } 9020 9021 if (num_allocated != 1) { /* possible? */ 9022 BLOGE(sc, "MSI allocation is not 1!\n"); 9023 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9024 pci_release_msi(sc->dev); 9025 break; 9026 } 9027 9028 BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n", 9029 num_requested, num_allocated); 9030 9031 /* best effort so use the number of vectors allocated to us */ 9032 sc->intr_count = num_allocated; 9033 sc->num_queues = num_allocated; 9034 9035 rid = 1; /* initial resource identifier */ 9036 9037 sc->intr[0].rid = rid; 9038 9039 if ((sc->intr[0].resource = 9040 bus_alloc_resource_any(sc->dev, 9041 SYS_RES_IRQ, 9042 &sc->intr[0].rid, 9043 RF_ACTIVE)) == NULL) { 9044 BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid); 9045 sc->intr_count = 0; 9046 sc->num_queues = 0; 9047 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9048 pci_release_msi(sc->dev); 9049 break; 9050 } 9051 9052 BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid); 9053 } while (0); 9054 9055 do { /* try allocating INTx vector resources */ 9056 if (sc->interrupt_mode != INTR_MODE_INTX) { 9057 break; 9058 } 9059 9060 BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n"); 9061 9062 /* only one vector for INTx */ 9063 sc->intr_count = 1; 9064 sc->num_queues = 1; 9065 9066 rid = 0; /* initial resource identifier */ 9067 9068 sc->intr[0].rid = rid; 9069 9070 if ((sc->intr[0].resource = 9071 bus_alloc_resource_any(sc->dev, 9072 SYS_RES_IRQ, 9073 &sc->intr[0].rid, 9074 (RF_ACTIVE | RF_SHAREABLE))) == NULL) { 9075 BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid); 9076 sc->intr_count = 0; 9077 sc->num_queues = 0; 9078 sc->interrupt_mode = -1; /* Failed! */ 9079 break; 9080 } 9081 9082 BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid); 9083 } while (0); 9084 9085 if (sc->interrupt_mode == -1) { 9086 BLOGE(sc, "Interrupt Allocation: FAILED!!!\n"); 9087 rc = 1; 9088 } else { 9089 BLOGD(sc, DBG_LOAD, 9090 "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n", 9091 sc->interrupt_mode, sc->num_queues); 9092 rc = 0; 9093 } 9094 9095 return (rc); 9096 } 9097 9098 static void 9099 bxe_interrupt_detach(struct bxe_softc *sc) 9100 { 9101 struct bxe_fastpath *fp; 9102 int i; 9103 9104 /* release interrupt resources */ 9105 for (i = 0; i < sc->intr_count; i++) { 9106 if (sc->intr[i].resource && sc->intr[i].tag) { 9107 BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i); 9108 bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag); 9109 } 9110 } 9111 9112 for (i = 0; i < sc->num_queues; i++) { 9113 fp = &sc->fp[i]; 9114 if (fp->tq) { 9115 taskqueue_drain(fp->tq, &fp->tq_task); 9116 taskqueue_drain(fp->tq, &fp->tx_task); 9117 while (taskqueue_cancel_timeout(fp->tq, &fp->tx_timeout_task, 9118 NULL)) 9119 taskqueue_drain_timeout(fp->tq, &fp->tx_timeout_task); 9120 taskqueue_free(fp->tq); 9121 fp->tq = NULL; 9122 } 9123 } 9124 9125 9126 if (sc->sp_tq) { 9127 taskqueue_drain(sc->sp_tq, &sc->sp_tq_task); 9128 taskqueue_free(sc->sp_tq); 9129 sc->sp_tq = NULL; 9130 } 9131 } 9132 9133 /* 9134 * Enables interrupts and attach to the ISR. 9135 * 9136 * When using multiple MSI/MSI-X vectors the first vector 9137 * is used for slowpath operations while all remaining 9138 * vectors are used for fastpath operations. If only a 9139 * single MSI/MSI-X vector is used (SINGLE_ISR) then the 9140 * ISR must look for both slowpath and fastpath completions. 9141 */ 9142 static int 9143 bxe_interrupt_attach(struct bxe_softc *sc) 9144 { 9145 struct bxe_fastpath *fp; 9146 int rc = 0; 9147 int i; 9148 9149 snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name), 9150 "bxe%d_sp_tq", sc->unit); 9151 TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc); 9152 sc->sp_tq = taskqueue_create(sc->sp_tq_name, M_NOWAIT, 9153 taskqueue_thread_enqueue, 9154 &sc->sp_tq); 9155 taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */ 9156 "%s", sc->sp_tq_name); 9157 9158 9159 for (i = 0; i < sc->num_queues; i++) { 9160 fp = &sc->fp[i]; 9161 snprintf(fp->tq_name, sizeof(fp->tq_name), 9162 "bxe%d_fp%d_tq", sc->unit, i); 9163 TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp); 9164 TASK_INIT(&fp->tx_task, 0, bxe_tx_mq_start_deferred, fp); 9165 fp->tq = taskqueue_create(fp->tq_name, M_NOWAIT, 9166 taskqueue_thread_enqueue, 9167 &fp->tq); 9168 TIMEOUT_TASK_INIT(fp->tq, &fp->tx_timeout_task, 0, 9169 bxe_tx_mq_start_deferred, fp); 9170 taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */ 9171 "%s", fp->tq_name); 9172 } 9173 9174 /* setup interrupt handlers */ 9175 if (sc->interrupt_mode == INTR_MODE_MSIX) { 9176 BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n"); 9177 9178 /* 9179 * Setup the interrupt handler. Note that we pass the driver instance 9180 * to the interrupt handler for the slowpath. 9181 */ 9182 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9183 (INTR_TYPE_NET | INTR_MPSAFE), 9184 NULL, bxe_intr_sp, sc, 9185 &sc->intr[0].tag)) != 0) { 9186 BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc); 9187 goto bxe_interrupt_attach_exit; 9188 } 9189 9190 bus_describe_intr(sc->dev, sc->intr[0].resource, 9191 sc->intr[0].tag, "sp"); 9192 9193 /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */ 9194 9195 /* initialize the fastpath vectors (note the first was used for sp) */ 9196 for (i = 0; i < sc->num_queues; i++) { 9197 fp = &sc->fp[i]; 9198 BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1)); 9199 9200 /* 9201 * Setup the interrupt handler. Note that we pass the 9202 * fastpath context to the interrupt handler in this 9203 * case. 9204 */ 9205 if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource, 9206 (INTR_TYPE_NET | INTR_MPSAFE), 9207 NULL, bxe_intr_fp, fp, 9208 &sc->intr[i + 1].tag)) != 0) { 9209 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n", 9210 (i + 1), rc); 9211 goto bxe_interrupt_attach_exit; 9212 } 9213 9214 bus_describe_intr(sc->dev, sc->intr[i + 1].resource, 9215 sc->intr[i + 1].tag, "fp%02d", i); 9216 9217 /* bind the fastpath instance to a cpu */ 9218 if (sc->num_queues > 1) { 9219 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i); 9220 } 9221 9222 fp->state = BXE_FP_STATE_IRQ; 9223 } 9224 } else if (sc->interrupt_mode == INTR_MODE_MSI) { 9225 BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n"); 9226 9227 /* 9228 * Setup the interrupt handler. Note that we pass the 9229 * driver instance to the interrupt handler which 9230 * will handle both the slowpath and fastpath. 9231 */ 9232 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9233 (INTR_TYPE_NET | INTR_MPSAFE), 9234 NULL, bxe_intr_legacy, sc, 9235 &sc->intr[0].tag)) != 0) { 9236 BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc); 9237 goto bxe_interrupt_attach_exit; 9238 } 9239 9240 } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */ 9241 BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n"); 9242 9243 /* 9244 * Setup the interrupt handler. Note that we pass the 9245 * driver instance to the interrupt handler which 9246 * will handle both the slowpath and fastpath. 9247 */ 9248 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9249 (INTR_TYPE_NET | INTR_MPSAFE), 9250 NULL, bxe_intr_legacy, sc, 9251 &sc->intr[0].tag)) != 0) { 9252 BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc); 9253 goto bxe_interrupt_attach_exit; 9254 } 9255 } 9256 9257 bxe_interrupt_attach_exit: 9258 9259 return (rc); 9260 } 9261 9262 static int bxe_init_hw_common_chip(struct bxe_softc *sc); 9263 static int bxe_init_hw_common(struct bxe_softc *sc); 9264 static int bxe_init_hw_port(struct bxe_softc *sc); 9265 static int bxe_init_hw_func(struct bxe_softc *sc); 9266 static void bxe_reset_common(struct bxe_softc *sc); 9267 static void bxe_reset_port(struct bxe_softc *sc); 9268 static void bxe_reset_func(struct bxe_softc *sc); 9269 static int bxe_gunzip_init(struct bxe_softc *sc); 9270 static void bxe_gunzip_end(struct bxe_softc *sc); 9271 static int bxe_init_firmware(struct bxe_softc *sc); 9272 static void bxe_release_firmware(struct bxe_softc *sc); 9273 9274 static struct 9275 ecore_func_sp_drv_ops bxe_func_sp_drv = { 9276 .init_hw_cmn_chip = bxe_init_hw_common_chip, 9277 .init_hw_cmn = bxe_init_hw_common, 9278 .init_hw_port = bxe_init_hw_port, 9279 .init_hw_func = bxe_init_hw_func, 9280 9281 .reset_hw_cmn = bxe_reset_common, 9282 .reset_hw_port = bxe_reset_port, 9283 .reset_hw_func = bxe_reset_func, 9284 9285 .gunzip_init = bxe_gunzip_init, 9286 .gunzip_end = bxe_gunzip_end, 9287 9288 .init_fw = bxe_init_firmware, 9289 .release_fw = bxe_release_firmware, 9290 }; 9291 9292 static void 9293 bxe_init_func_obj(struct bxe_softc *sc) 9294 { 9295 sc->dmae_ready = 0; 9296 9297 ecore_init_func_obj(sc, 9298 &sc->func_obj, 9299 BXE_SP(sc, func_rdata), 9300 BXE_SP_MAPPING(sc, func_rdata), 9301 BXE_SP(sc, func_afex_rdata), 9302 BXE_SP_MAPPING(sc, func_afex_rdata), 9303 &bxe_func_sp_drv); 9304 } 9305 9306 static int 9307 bxe_init_hw(struct bxe_softc *sc, 9308 uint32_t load_code) 9309 { 9310 struct ecore_func_state_params func_params = { NULL }; 9311 int rc; 9312 9313 /* prepare the parameters for function state transitions */ 9314 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 9315 9316 func_params.f_obj = &sc->func_obj; 9317 func_params.cmd = ECORE_F_CMD_HW_INIT; 9318 9319 func_params.params.hw_init.load_phase = load_code; 9320 9321 /* 9322 * Via a plethora of function pointers, we will eventually reach 9323 * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func(). 9324 */ 9325 rc = ecore_func_state_change(sc, &func_params); 9326 9327 return (rc); 9328 } 9329 9330 static void 9331 bxe_fill(struct bxe_softc *sc, 9332 uint32_t addr, 9333 int fill, 9334 uint32_t len) 9335 { 9336 uint32_t i; 9337 9338 if (!(len % 4) && !(addr % 4)) { 9339 for (i = 0; i < len; i += 4) { 9340 REG_WR(sc, (addr + i), fill); 9341 } 9342 } else { 9343 for (i = 0; i < len; i++) { 9344 REG_WR8(sc, (addr + i), fill); 9345 } 9346 } 9347 } 9348 9349 /* writes FP SP data to FW - data_size in dwords */ 9350 static void 9351 bxe_wr_fp_sb_data(struct bxe_softc *sc, 9352 int fw_sb_id, 9353 uint32_t *sb_data_p, 9354 uint32_t data_size) 9355 { 9356 int index; 9357 9358 for (index = 0; index < data_size; index++) { 9359 REG_WR(sc, 9360 (BAR_CSTRORM_INTMEM + 9361 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 9362 (sizeof(uint32_t) * index)), 9363 *(sb_data_p + index)); 9364 } 9365 } 9366 9367 static void 9368 bxe_zero_fp_sb(struct bxe_softc *sc, 9369 int fw_sb_id) 9370 { 9371 struct hc_status_block_data_e2 sb_data_e2; 9372 struct hc_status_block_data_e1x sb_data_e1x; 9373 uint32_t *sb_data_p; 9374 uint32_t data_size = 0; 9375 9376 if (!CHIP_IS_E1x(sc)) { 9377 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9378 sb_data_e2.common.state = SB_DISABLED; 9379 sb_data_e2.common.p_func.vf_valid = FALSE; 9380 sb_data_p = (uint32_t *)&sb_data_e2; 9381 data_size = (sizeof(struct hc_status_block_data_e2) / 9382 sizeof(uint32_t)); 9383 } else { 9384 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9385 sb_data_e1x.common.state = SB_DISABLED; 9386 sb_data_e1x.common.p_func.vf_valid = FALSE; 9387 sb_data_p = (uint32_t *)&sb_data_e1x; 9388 data_size = (sizeof(struct hc_status_block_data_e1x) / 9389 sizeof(uint32_t)); 9390 } 9391 9392 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9393 9394 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 9395 0, CSTORM_STATUS_BLOCK_SIZE); 9396 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)), 9397 0, CSTORM_SYNC_BLOCK_SIZE); 9398 } 9399 9400 static void 9401 bxe_wr_sp_sb_data(struct bxe_softc *sc, 9402 struct hc_sp_status_block_data *sp_sb_data) 9403 { 9404 int i; 9405 9406 for (i = 0; 9407 i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t)); 9408 i++) { 9409 REG_WR(sc, 9410 (BAR_CSTRORM_INTMEM + 9411 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) + 9412 (i * sizeof(uint32_t))), 9413 *((uint32_t *)sp_sb_data + i)); 9414 } 9415 } 9416 9417 static void 9418 bxe_zero_sp_sb(struct bxe_softc *sc) 9419 { 9420 struct hc_sp_status_block_data sp_sb_data; 9421 9422 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9423 9424 sp_sb_data.state = SB_DISABLED; 9425 sp_sb_data.p_func.vf_valid = FALSE; 9426 9427 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9428 9429 bxe_fill(sc, 9430 (BAR_CSTRORM_INTMEM + 9431 CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))), 9432 0, CSTORM_SP_STATUS_BLOCK_SIZE); 9433 bxe_fill(sc, 9434 (BAR_CSTRORM_INTMEM + 9435 CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))), 9436 0, CSTORM_SP_SYNC_BLOCK_SIZE); 9437 } 9438 9439 static void 9440 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 9441 int igu_sb_id, 9442 int igu_seg_id) 9443 { 9444 hc_sm->igu_sb_id = igu_sb_id; 9445 hc_sm->igu_seg_id = igu_seg_id; 9446 hc_sm->timer_value = 0xFF; 9447 hc_sm->time_to_expire = 0xFFFFFFFF; 9448 } 9449 9450 static void 9451 bxe_map_sb_state_machines(struct hc_index_data *index_data) 9452 { 9453 /* zero out state machine indices */ 9454 9455 /* rx indices */ 9456 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9457 9458 /* tx indices */ 9459 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9460 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 9461 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 9462 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 9463 9464 /* map indices */ 9465 9466 /* rx indices */ 9467 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 9468 (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9469 9470 /* tx indices */ 9471 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 9472 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9473 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 9474 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9475 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 9476 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9477 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 9478 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9479 } 9480 9481 static void 9482 bxe_init_sb(struct bxe_softc *sc, 9483 bus_addr_t busaddr, 9484 int vfid, 9485 uint8_t vf_valid, 9486 int fw_sb_id, 9487 int igu_sb_id) 9488 { 9489 struct hc_status_block_data_e2 sb_data_e2; 9490 struct hc_status_block_data_e1x sb_data_e1x; 9491 struct hc_status_block_sm *hc_sm_p; 9492 uint32_t *sb_data_p; 9493 int igu_seg_id; 9494 int data_size; 9495 9496 if (CHIP_INT_MODE_IS_BC(sc)) { 9497 igu_seg_id = HC_SEG_ACCESS_NORM; 9498 } else { 9499 igu_seg_id = IGU_SEG_ACCESS_NORM; 9500 } 9501 9502 bxe_zero_fp_sb(sc, fw_sb_id); 9503 9504 if (!CHIP_IS_E1x(sc)) { 9505 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9506 sb_data_e2.common.state = SB_ENABLED; 9507 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc); 9508 sb_data_e2.common.p_func.vf_id = vfid; 9509 sb_data_e2.common.p_func.vf_valid = vf_valid; 9510 sb_data_e2.common.p_func.vnic_id = SC_VN(sc); 9511 sb_data_e2.common.same_igu_sb_1b = TRUE; 9512 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr); 9513 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr); 9514 hc_sm_p = sb_data_e2.common.state_machine; 9515 sb_data_p = (uint32_t *)&sb_data_e2; 9516 data_size = (sizeof(struct hc_status_block_data_e2) / 9517 sizeof(uint32_t)); 9518 bxe_map_sb_state_machines(sb_data_e2.index_data); 9519 } else { 9520 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9521 sb_data_e1x.common.state = SB_ENABLED; 9522 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc); 9523 sb_data_e1x.common.p_func.vf_id = 0xff; 9524 sb_data_e1x.common.p_func.vf_valid = FALSE; 9525 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc); 9526 sb_data_e1x.common.same_igu_sb_1b = TRUE; 9527 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr); 9528 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr); 9529 hc_sm_p = sb_data_e1x.common.state_machine; 9530 sb_data_p = (uint32_t *)&sb_data_e1x; 9531 data_size = (sizeof(struct hc_status_block_data_e1x) / 9532 sizeof(uint32_t)); 9533 bxe_map_sb_state_machines(sb_data_e1x.index_data); 9534 } 9535 9536 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id); 9537 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id); 9538 9539 BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id); 9540 9541 /* write indices to HW - PCI guarantees endianity of regpairs */ 9542 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9543 } 9544 9545 static inline uint8_t 9546 bxe_fp_qzone_id(struct bxe_fastpath *fp) 9547 { 9548 if (CHIP_IS_E1x(fp->sc)) { 9549 return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H); 9550 } else { 9551 return (fp->cl_id); 9552 } 9553 } 9554 9555 static inline uint32_t 9556 bxe_rx_ustorm_prods_offset(struct bxe_softc *sc, 9557 struct bxe_fastpath *fp) 9558 { 9559 uint32_t offset = BAR_USTRORM_INTMEM; 9560 9561 if (!CHIP_IS_E1x(sc)) { 9562 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 9563 } else { 9564 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id); 9565 } 9566 9567 return (offset); 9568 } 9569 9570 static void 9571 bxe_init_eth_fp(struct bxe_softc *sc, 9572 int idx) 9573 { 9574 struct bxe_fastpath *fp = &sc->fp[idx]; 9575 uint32_t cids[ECORE_MULTI_TX_COS] = { 0 }; 9576 unsigned long q_type = 0; 9577 int cos; 9578 9579 fp->sc = sc; 9580 fp->index = idx; 9581 9582 fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc)); 9583 fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc)); 9584 9585 fp->cl_id = (CHIP_IS_E1x(sc)) ? 9586 (SC_L_ID(sc) + idx) : 9587 /* want client ID same as IGU SB ID for non-E1 */ 9588 fp->igu_sb_id; 9589 fp->cl_qzone_id = bxe_fp_qzone_id(fp); 9590 9591 /* setup sb indices */ 9592 if (!CHIP_IS_E1x(sc)) { 9593 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values; 9594 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index; 9595 } else { 9596 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values; 9597 fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index; 9598 } 9599 9600 /* init shortcut */ 9601 fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp); 9602 9603 fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]; 9604 9605 /* 9606 * XXX If multiple CoS is ever supported then each fastpath structure 9607 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 9608 */ 9609 for (cos = 0; cos < sc->max_cos; cos++) { 9610 cids[cos] = idx; 9611 } 9612 fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]; 9613 9614 /* nothing more for a VF to do */ 9615 if (IS_VF(sc)) { 9616 return; 9617 } 9618 9619 bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE, 9620 fp->fw_sb_id, fp->igu_sb_id); 9621 9622 bxe_update_fp_sb_idx(fp); 9623 9624 /* Configure Queue State object */ 9625 bit_set(&q_type, ECORE_Q_TYPE_HAS_RX); 9626 bit_set(&q_type, ECORE_Q_TYPE_HAS_TX); 9627 9628 ecore_init_queue_obj(sc, 9629 &sc->sp_objs[idx].q_obj, 9630 fp->cl_id, 9631 cids, 9632 sc->max_cos, 9633 SC_FUNC(sc), 9634 BXE_SP(sc, q_rdata), 9635 BXE_SP_MAPPING(sc, q_rdata), 9636 q_type); 9637 9638 /* configure classification DBs */ 9639 ecore_init_mac_obj(sc, 9640 &sc->sp_objs[idx].mac_obj, 9641 fp->cl_id, 9642 idx, 9643 SC_FUNC(sc), 9644 BXE_SP(sc, mac_rdata), 9645 BXE_SP_MAPPING(sc, mac_rdata), 9646 ECORE_FILTER_MAC_PENDING, 9647 &sc->sp_state, 9648 ECORE_OBJ_TYPE_RX_TX, 9649 &sc->macs_pool); 9650 9651 BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n", 9652 idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id); 9653 } 9654 9655 static inline void 9656 bxe_update_rx_prod(struct bxe_softc *sc, 9657 struct bxe_fastpath *fp, 9658 uint16_t rx_bd_prod, 9659 uint16_t rx_cq_prod, 9660 uint16_t rx_sge_prod) 9661 { 9662 struct ustorm_eth_rx_producers rx_prods = { 0 }; 9663 uint32_t i; 9664 9665 /* update producers */ 9666 rx_prods.bd_prod = rx_bd_prod; 9667 rx_prods.cqe_prod = rx_cq_prod; 9668 rx_prods.sge_prod = rx_sge_prod; 9669 9670 /* 9671 * Make sure that the BD and SGE data is updated before updating the 9672 * producers since FW might read the BD/SGE right after the producer 9673 * is updated. 9674 * This is only applicable for weak-ordered memory model archs such 9675 * as IA-64. The following barrier is also mandatory since FW will 9676 * assumes BDs must have buffers. 9677 */ 9678 wmb(); 9679 9680 for (i = 0; i < (sizeof(rx_prods) / 4); i++) { 9681 REG_WR(sc, 9682 (fp->ustorm_rx_prods_offset + (i * 4)), 9683 ((uint32_t *)&rx_prods)[i]); 9684 } 9685 9686 wmb(); /* keep prod updates ordered */ 9687 9688 BLOGD(sc, DBG_RX, 9689 "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n", 9690 fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod); 9691 } 9692 9693 static void 9694 bxe_init_rx_rings(struct bxe_softc *sc) 9695 { 9696 struct bxe_fastpath *fp; 9697 int i; 9698 9699 for (i = 0; i < sc->num_queues; i++) { 9700 fp = &sc->fp[i]; 9701 9702 fp->rx_bd_cons = 0; 9703 9704 /* 9705 * Activate the BD ring... 9706 * Warning, this will generate an interrupt (to the TSTORM) 9707 * so this can only be done after the chip is initialized 9708 */ 9709 bxe_update_rx_prod(sc, fp, 9710 fp->rx_bd_prod, 9711 fp->rx_cq_prod, 9712 fp->rx_sge_prod); 9713 9714 if (i != 0) { 9715 continue; 9716 } 9717 9718 if (CHIP_IS_E1(sc)) { 9719 REG_WR(sc, 9720 (BAR_USTRORM_INTMEM + 9721 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))), 9722 U64_LO(fp->rcq_dma.paddr)); 9723 REG_WR(sc, 9724 (BAR_USTRORM_INTMEM + 9725 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4), 9726 U64_HI(fp->rcq_dma.paddr)); 9727 } 9728 } 9729 } 9730 9731 static void 9732 bxe_init_tx_ring_one(struct bxe_fastpath *fp) 9733 { 9734 SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1); 9735 fp->tx_db.data.zero_fill1 = 0; 9736 fp->tx_db.data.prod = 0; 9737 9738 fp->tx_pkt_prod = 0; 9739 fp->tx_pkt_cons = 0; 9740 fp->tx_bd_prod = 0; 9741 fp->tx_bd_cons = 0; 9742 fp->eth_q_stats.tx_pkts = 0; 9743 } 9744 9745 static inline void 9746 bxe_init_tx_rings(struct bxe_softc *sc) 9747 { 9748 int i; 9749 9750 for (i = 0; i < sc->num_queues; i++) { 9751 bxe_init_tx_ring_one(&sc->fp[i]); 9752 } 9753 } 9754 9755 static void 9756 bxe_init_def_sb(struct bxe_softc *sc) 9757 { 9758 struct host_sp_status_block *def_sb = sc->def_sb; 9759 bus_addr_t mapping = sc->def_sb_dma.paddr; 9760 int igu_sp_sb_index; 9761 int igu_seg_id; 9762 int port = SC_PORT(sc); 9763 int func = SC_FUNC(sc); 9764 int reg_offset, reg_offset_en5; 9765 uint64_t section; 9766 int index, sindex; 9767 struct hc_sp_status_block_data sp_sb_data; 9768 9769 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9770 9771 if (CHIP_INT_MODE_IS_BC(sc)) { 9772 igu_sp_sb_index = DEF_SB_IGU_ID; 9773 igu_seg_id = HC_SEG_ACCESS_DEF; 9774 } else { 9775 igu_sp_sb_index = sc->igu_dsb_id; 9776 igu_seg_id = IGU_SEG_ACCESS_DEF; 9777 } 9778 9779 /* attentions */ 9780 section = ((uint64_t)mapping + 9781 offsetof(struct host_sp_status_block, atten_status_block)); 9782 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 9783 sc->attn_state = 0; 9784 9785 reg_offset = (port) ? 9786 MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 9787 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 9788 reg_offset_en5 = (port) ? 9789 MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 9790 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0; 9791 9792 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 9793 /* take care of sig[0]..sig[4] */ 9794 for (sindex = 0; sindex < 4; sindex++) { 9795 sc->attn_group[index].sig[sindex] = 9796 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index))); 9797 } 9798 9799 if (!CHIP_IS_E1x(sc)) { 9800 /* 9801 * enable5 is separate from the rest of the registers, 9802 * and the address skip is 4 and not 16 between the 9803 * different groups 9804 */ 9805 sc->attn_group[index].sig[4] = 9806 REG_RD(sc, (reg_offset_en5 + (0x4 * index))); 9807 } else { 9808 sc->attn_group[index].sig[4] = 0; 9809 } 9810 } 9811 9812 if (sc->devinfo.int_block == INT_BLOCK_HC) { 9813 reg_offset = (port) ? 9814 HC_REG_ATTN_MSG1_ADDR_L : 9815 HC_REG_ATTN_MSG0_ADDR_L; 9816 REG_WR(sc, reg_offset, U64_LO(section)); 9817 REG_WR(sc, (reg_offset + 4), U64_HI(section)); 9818 } else if (!CHIP_IS_E1x(sc)) { 9819 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 9820 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 9821 } 9822 9823 section = ((uint64_t)mapping + 9824 offsetof(struct host_sp_status_block, sp_sb)); 9825 9826 bxe_zero_sp_sb(sc); 9827 9828 /* PCI guarantees endianity of regpair */ 9829 sp_sb_data.state = SB_ENABLED; 9830 sp_sb_data.host_sb_addr.lo = U64_LO(section); 9831 sp_sb_data.host_sb_addr.hi = U64_HI(section); 9832 sp_sb_data.igu_sb_id = igu_sp_sb_index; 9833 sp_sb_data.igu_seg_id = igu_seg_id; 9834 sp_sb_data.p_func.pf_id = func; 9835 sp_sb_data.p_func.vnic_id = SC_VN(sc); 9836 sp_sb_data.p_func.vf_id = 0xff; 9837 9838 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9839 9840 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 9841 } 9842 9843 static void 9844 bxe_init_sp_ring(struct bxe_softc *sc) 9845 { 9846 atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING); 9847 sc->spq_prod_idx = 0; 9848 sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS]; 9849 sc->spq_prod_bd = sc->spq; 9850 sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT); 9851 } 9852 9853 static void 9854 bxe_init_eq_ring(struct bxe_softc *sc) 9855 { 9856 union event_ring_elem *elem; 9857 int i; 9858 9859 for (i = 1; i <= NUM_EQ_PAGES; i++) { 9860 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1]; 9861 9862 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr + 9863 BCM_PAGE_SIZE * 9864 (i % NUM_EQ_PAGES))); 9865 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr + 9866 BCM_PAGE_SIZE * 9867 (i % NUM_EQ_PAGES))); 9868 } 9869 9870 sc->eq_cons = 0; 9871 sc->eq_prod = NUM_EQ_DESC; 9872 sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS]; 9873 9874 atomic_store_rel_long(&sc->eq_spq_left, 9875 (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING), 9876 NUM_EQ_DESC) - 1)); 9877 } 9878 9879 static void 9880 bxe_init_internal_common(struct bxe_softc *sc) 9881 { 9882 int i; 9883 9884 /* 9885 * Zero this manually as its initialization is currently missing 9886 * in the initTool. 9887 */ 9888 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) { 9889 REG_WR(sc, 9890 (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)), 9891 0); 9892 } 9893 9894 if (!CHIP_IS_E1x(sc)) { 9895 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET), 9896 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 9897 } 9898 } 9899 9900 static void 9901 bxe_init_internal(struct bxe_softc *sc, 9902 uint32_t load_code) 9903 { 9904 switch (load_code) { 9905 case FW_MSG_CODE_DRV_LOAD_COMMON: 9906 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 9907 bxe_init_internal_common(sc); 9908 /* no break */ 9909 9910 case FW_MSG_CODE_DRV_LOAD_PORT: 9911 /* nothing to do */ 9912 /* no break */ 9913 9914 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 9915 /* internal memory per function is initialized inside bxe_pf_init */ 9916 break; 9917 9918 default: 9919 BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code); 9920 break; 9921 } 9922 } 9923 9924 static void 9925 storm_memset_func_cfg(struct bxe_softc *sc, 9926 struct tstorm_eth_function_common_config *tcfg, 9927 uint16_t abs_fid) 9928 { 9929 uint32_t addr; 9930 size_t size; 9931 9932 addr = (BAR_TSTRORM_INTMEM + 9933 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid)); 9934 size = sizeof(struct tstorm_eth_function_common_config); 9935 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg); 9936 } 9937 9938 static void 9939 bxe_func_init(struct bxe_softc *sc, 9940 struct bxe_func_init_params *p) 9941 { 9942 struct tstorm_eth_function_common_config tcfg = { 0 }; 9943 9944 if (CHIP_IS_E1x(sc)) { 9945 storm_memset_func_cfg(sc, &tcfg, p->func_id); 9946 } 9947 9948 /* Enable the function in the FW */ 9949 storm_memset_vf_to_pf(sc, p->func_id, p->pf_id); 9950 storm_memset_func_en(sc, p->func_id, 1); 9951 9952 /* spq */ 9953 if (p->func_flgs & FUNC_FLG_SPQ) { 9954 storm_memset_spq_addr(sc, p->spq_map, p->func_id); 9955 REG_WR(sc, 9956 (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)), 9957 p->spq_prod); 9958 } 9959 } 9960 9961 /* 9962 * Calculates the sum of vn_min_rates. 9963 * It's needed for further normalizing of the min_rates. 9964 * Returns: 9965 * sum of vn_min_rates. 9966 * or 9967 * 0 - if all the min_rates are 0. 9968 * In the later case fainess algorithm should be deactivated. 9969 * If all min rates are not zero then those that are zeroes will be set to 1. 9970 */ 9971 static void 9972 bxe_calc_vn_min(struct bxe_softc *sc, 9973 struct cmng_init_input *input) 9974 { 9975 uint32_t vn_cfg; 9976 uint32_t vn_min_rate; 9977 int all_zero = 1; 9978 int vn; 9979 9980 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 9981 vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 9982 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 9983 FUNC_MF_CFG_MIN_BW_SHIFT) * 100); 9984 9985 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 9986 /* skip hidden VNs */ 9987 vn_min_rate = 0; 9988 } else if (!vn_min_rate) { 9989 /* If min rate is zero - set it to 100 */ 9990 vn_min_rate = DEF_MIN_RATE; 9991 } else { 9992 all_zero = 0; 9993 } 9994 9995 input->vnic_min_rate[vn] = vn_min_rate; 9996 } 9997 9998 /* if ETS or all min rates are zeros - disable fairness */ 9999 if (BXE_IS_ETS_ENABLED(sc)) { 10000 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10001 BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n"); 10002 } else if (all_zero) { 10003 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10004 BLOGD(sc, DBG_LOAD, 10005 "Fariness disabled (all MIN values are zeroes)\n"); 10006 } else { 10007 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10008 } 10009 } 10010 10011 static inline uint16_t 10012 bxe_extract_max_cfg(struct bxe_softc *sc, 10013 uint32_t mf_cfg) 10014 { 10015 uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >> 10016 FUNC_MF_CFG_MAX_BW_SHIFT); 10017 10018 if (!max_cfg) { 10019 BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n"); 10020 max_cfg = 100; 10021 } 10022 10023 return (max_cfg); 10024 } 10025 10026 static void 10027 bxe_calc_vn_max(struct bxe_softc *sc, 10028 int vn, 10029 struct cmng_init_input *input) 10030 { 10031 uint16_t vn_max_rate; 10032 uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10033 uint32_t max_cfg; 10034 10035 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10036 vn_max_rate = 0; 10037 } else { 10038 max_cfg = bxe_extract_max_cfg(sc, vn_cfg); 10039 10040 if (IS_MF_SI(sc)) { 10041 /* max_cfg in percents of linkspeed */ 10042 vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100); 10043 } else { /* SD modes */ 10044 /* max_cfg is absolute in 100Mb units */ 10045 vn_max_rate = (max_cfg * 100); 10046 } 10047 } 10048 10049 BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 10050 10051 input->vnic_max_rate[vn] = vn_max_rate; 10052 } 10053 10054 static void 10055 bxe_cmng_fns_init(struct bxe_softc *sc, 10056 uint8_t read_cfg, 10057 uint8_t cmng_type) 10058 { 10059 struct cmng_init_input input; 10060 int vn; 10061 10062 memset(&input, 0, sizeof(struct cmng_init_input)); 10063 10064 input.port_rate = sc->link_vars.line_speed; 10065 10066 if (cmng_type == CMNG_FNS_MINMAX) { 10067 /* read mf conf from shmem */ 10068 if (read_cfg) { 10069 bxe_read_mf_cfg(sc); 10070 } 10071 10072 /* get VN min rate and enable fairness if not 0 */ 10073 bxe_calc_vn_min(sc, &input); 10074 10075 /* get VN max rate */ 10076 if (sc->port.pmf) { 10077 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10078 bxe_calc_vn_max(sc, vn, &input); 10079 } 10080 } 10081 10082 /* always enable rate shaping and fairness */ 10083 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 10084 10085 ecore_init_cmng(&input, &sc->cmng); 10086 return; 10087 } 10088 10089 /* rate shaping and fairness are disabled */ 10090 BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n"); 10091 } 10092 10093 static int 10094 bxe_get_cmng_fns_mode(struct bxe_softc *sc) 10095 { 10096 if (CHIP_REV_IS_SLOW(sc)) { 10097 return (CMNG_FNS_NONE); 10098 } 10099 10100 if (IS_MF(sc)) { 10101 return (CMNG_FNS_MINMAX); 10102 } 10103 10104 return (CMNG_FNS_NONE); 10105 } 10106 10107 static void 10108 storm_memset_cmng(struct bxe_softc *sc, 10109 struct cmng_init *cmng, 10110 uint8_t port) 10111 { 10112 int vn; 10113 int func; 10114 uint32_t addr; 10115 size_t size; 10116 10117 addr = (BAR_XSTRORM_INTMEM + 10118 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port)); 10119 size = sizeof(struct cmng_struct_per_port); 10120 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port); 10121 10122 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10123 func = func_by_vn(sc, vn); 10124 10125 addr = (BAR_XSTRORM_INTMEM + 10126 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func)); 10127 size = sizeof(struct rate_shaping_vars_per_vn); 10128 ecore_storm_memset_struct(sc, addr, size, 10129 (uint32_t *)&cmng->vnic.vnic_max_rate[vn]); 10130 10131 addr = (BAR_XSTRORM_INTMEM + 10132 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func)); 10133 size = sizeof(struct fairness_vars_per_vn); 10134 ecore_storm_memset_struct(sc, addr, size, 10135 (uint32_t *)&cmng->vnic.vnic_min_rate[vn]); 10136 } 10137 } 10138 10139 static void 10140 bxe_pf_init(struct bxe_softc *sc) 10141 { 10142 struct bxe_func_init_params func_init = { 0 }; 10143 struct event_ring_data eq_data = { { 0 } }; 10144 uint16_t flags; 10145 10146 if (!CHIP_IS_E1x(sc)) { 10147 /* reset IGU PF statistics: MSIX + ATTN */ 10148 /* PF */ 10149 REG_WR(sc, 10150 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10151 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10152 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10153 0); 10154 /* ATTN */ 10155 REG_WR(sc, 10156 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10157 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10158 (BXE_IGU_STAS_MSG_PF_CNT * 4) + 10159 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10160 0); 10161 } 10162 10163 /* function setup flags */ 10164 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); 10165 10166 /* 10167 * This flag is relevant for E1x only. 10168 * E2 doesn't have a TPA configuration in a function level. 10169 */ 10170 flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0; 10171 10172 func_init.func_flgs = flags; 10173 func_init.pf_id = SC_FUNC(sc); 10174 func_init.func_id = SC_FUNC(sc); 10175 func_init.spq_map = sc->spq_dma.paddr; 10176 func_init.spq_prod = sc->spq_prod_idx; 10177 10178 bxe_func_init(sc, &func_init); 10179 10180 memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port)); 10181 10182 /* 10183 * Congestion management values depend on the link rate. 10184 * There is no active link so initial link rate is set to 10Gbps. 10185 * When the link comes up the congestion management values are 10186 * re-calculated according to the actual link rate. 10187 */ 10188 sc->link_vars.line_speed = SPEED_10000; 10189 bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc)); 10190 10191 /* Only the PMF sets the HW */ 10192 if (sc->port.pmf) { 10193 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 10194 } 10195 10196 /* init Event Queue - PCI bus guarantees correct endainity */ 10197 eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr); 10198 eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr); 10199 eq_data.producer = sc->eq_prod; 10200 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 10201 eq_data.sb_id = DEF_SB_ID; 10202 storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc)); 10203 } 10204 10205 static void 10206 bxe_hc_int_enable(struct bxe_softc *sc) 10207 { 10208 int port = SC_PORT(sc); 10209 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10210 uint32_t val = REG_RD(sc, addr); 10211 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10212 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10213 (sc->intr_count == 1)) ? TRUE : FALSE; 10214 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10215 10216 if (msix) { 10217 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10218 HC_CONFIG_0_REG_INT_LINE_EN_0); 10219 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10220 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10221 if (single_msix) { 10222 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 10223 } 10224 } else if (msi) { 10225 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 10226 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10227 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10228 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10229 } else { 10230 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10231 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10232 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10233 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10234 10235 if (!CHIP_IS_E1(sc)) { 10236 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", 10237 val, port, addr); 10238 10239 REG_WR(sc, addr, val); 10240 10241 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 10242 } 10243 } 10244 10245 if (CHIP_IS_E1(sc)) { 10246 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF); 10247 } 10248 10249 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n", 10250 val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10251 10252 REG_WR(sc, addr, val); 10253 10254 /* ensure that HC_CONFIG is written before leading/trailing edge config */ 10255 mb(); 10256 10257 if (!CHIP_IS_E1(sc)) { 10258 /* init leading/trailing edge */ 10259 if (IS_MF(sc)) { 10260 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10261 if (sc->port.pmf) { 10262 /* enable nig and gpio3 attention */ 10263 val |= 0x1100; 10264 } 10265 } else { 10266 val = 0xffff; 10267 } 10268 10269 REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val); 10270 REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val); 10271 } 10272 10273 /* make sure that interrupts are indeed enabled from here on */ 10274 mb(); 10275 } 10276 10277 static void 10278 bxe_igu_int_enable(struct bxe_softc *sc) 10279 { 10280 uint32_t val; 10281 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10282 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10283 (sc->intr_count == 1)) ? TRUE : FALSE; 10284 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10285 10286 val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10287 10288 if (msix) { 10289 val &= ~(IGU_PF_CONF_INT_LINE_EN | 10290 IGU_PF_CONF_SINGLE_ISR_EN); 10291 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10292 IGU_PF_CONF_ATTN_BIT_EN); 10293 if (single_msix) { 10294 val |= IGU_PF_CONF_SINGLE_ISR_EN; 10295 } 10296 } else if (msi) { 10297 val &= ~IGU_PF_CONF_INT_LINE_EN; 10298 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10299 IGU_PF_CONF_ATTN_BIT_EN | 10300 IGU_PF_CONF_SINGLE_ISR_EN); 10301 } else { 10302 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 10303 val |= (IGU_PF_CONF_INT_LINE_EN | 10304 IGU_PF_CONF_ATTN_BIT_EN | 10305 IGU_PF_CONF_SINGLE_ISR_EN); 10306 } 10307 10308 /* clean previous status - need to configure igu prior to ack*/ 10309 if ((!msix) || single_msix) { 10310 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10311 bxe_ack_int(sc); 10312 } 10313 10314 val |= IGU_PF_CONF_FUNC_EN; 10315 10316 BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n", 10317 val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10318 10319 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10320 10321 mb(); 10322 10323 /* init leading/trailing edge */ 10324 if (IS_MF(sc)) { 10325 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10326 if (sc->port.pmf) { 10327 /* enable nig and gpio3 attention */ 10328 val |= 0x1100; 10329 } 10330 } else { 10331 val = 0xffff; 10332 } 10333 10334 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 10335 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 10336 10337 /* make sure that interrupts are indeed enabled from here on */ 10338 mb(); 10339 } 10340 10341 static void 10342 bxe_int_enable(struct bxe_softc *sc) 10343 { 10344 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10345 bxe_hc_int_enable(sc); 10346 } else { 10347 bxe_igu_int_enable(sc); 10348 } 10349 } 10350 10351 static void 10352 bxe_hc_int_disable(struct bxe_softc *sc) 10353 { 10354 int port = SC_PORT(sc); 10355 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10356 uint32_t val = REG_RD(sc, addr); 10357 10358 /* 10359 * In E1 we must use only PCI configuration space to disable MSI/MSIX 10360 * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC 10361 * block 10362 */ 10363 if (CHIP_IS_E1(sc)) { 10364 /* 10365 * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register 10366 * to prevent from HC sending interrupts after we exit the function 10367 */ 10368 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0); 10369 10370 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10371 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10372 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10373 } else { 10374 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10375 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10376 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10377 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10378 } 10379 10380 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr); 10381 10382 /* flush all outstanding writes */ 10383 mb(); 10384 10385 REG_WR(sc, addr, val); 10386 if (REG_RD(sc, addr) != val) { 10387 BLOGE(sc, "proper val not read from HC IGU!\n"); 10388 } 10389 } 10390 10391 static void 10392 bxe_igu_int_disable(struct bxe_softc *sc) 10393 { 10394 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10395 10396 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 10397 IGU_PF_CONF_INT_LINE_EN | 10398 IGU_PF_CONF_ATTN_BIT_EN); 10399 10400 BLOGD(sc, DBG_INTR, "write %x to IGU\n", val); 10401 10402 /* flush all outstanding writes */ 10403 mb(); 10404 10405 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10406 if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) { 10407 BLOGE(sc, "proper val not read from IGU!\n"); 10408 } 10409 } 10410 10411 static void 10412 bxe_int_disable(struct bxe_softc *sc) 10413 { 10414 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10415 bxe_hc_int_disable(sc); 10416 } else { 10417 bxe_igu_int_disable(sc); 10418 } 10419 } 10420 10421 static void 10422 bxe_nic_init(struct bxe_softc *sc, 10423 int load_code) 10424 { 10425 int i; 10426 10427 for (i = 0; i < sc->num_queues; i++) { 10428 bxe_init_eth_fp(sc, i); 10429 } 10430 10431 rmb(); /* ensure status block indices were read */ 10432 10433 bxe_init_rx_rings(sc); 10434 bxe_init_tx_rings(sc); 10435 10436 if (IS_VF(sc)) { 10437 return; 10438 } 10439 10440 /* initialize MOD_ABS interrupts */ 10441 elink_init_mod_abs_int(sc, &sc->link_vars, 10442 sc->devinfo.chip_id, 10443 sc->devinfo.shmem_base, 10444 sc->devinfo.shmem2_base, 10445 SC_PORT(sc)); 10446 10447 bxe_init_def_sb(sc); 10448 bxe_update_dsb_idx(sc); 10449 bxe_init_sp_ring(sc); 10450 bxe_init_eq_ring(sc); 10451 bxe_init_internal(sc, load_code); 10452 bxe_pf_init(sc); 10453 bxe_stats_init(sc); 10454 10455 /* flush all before enabling interrupts */ 10456 mb(); 10457 10458 bxe_int_enable(sc); 10459 10460 /* check for SPIO5 */ 10461 bxe_attn_int_deasserted0(sc, 10462 REG_RD(sc, 10463 (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 10464 SC_PORT(sc)*4)) & 10465 AEU_INPUTS_ATTN_BITS_SPIO5); 10466 } 10467 10468 static inline void 10469 bxe_init_objs(struct bxe_softc *sc) 10470 { 10471 /* mcast rules must be added to tx if tx switching is enabled */ 10472 ecore_obj_type o_type = 10473 (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX : 10474 ECORE_OBJ_TYPE_RX; 10475 10476 /* RX_MODE controlling object */ 10477 ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj); 10478 10479 /* multicast configuration controlling object */ 10480 ecore_init_mcast_obj(sc, 10481 &sc->mcast_obj, 10482 sc->fp[0].cl_id, 10483 sc->fp[0].index, 10484 SC_FUNC(sc), 10485 SC_FUNC(sc), 10486 BXE_SP(sc, mcast_rdata), 10487 BXE_SP_MAPPING(sc, mcast_rdata), 10488 ECORE_FILTER_MCAST_PENDING, 10489 &sc->sp_state, 10490 o_type); 10491 10492 /* Setup CAM credit pools */ 10493 ecore_init_mac_credit_pool(sc, 10494 &sc->macs_pool, 10495 SC_FUNC(sc), 10496 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10497 VNICS_PER_PATH(sc)); 10498 10499 ecore_init_vlan_credit_pool(sc, 10500 &sc->vlans_pool, 10501 SC_ABS_FUNC(sc) >> 1, 10502 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10503 VNICS_PER_PATH(sc)); 10504 10505 /* RSS configuration object */ 10506 ecore_init_rss_config_obj(sc, 10507 &sc->rss_conf_obj, 10508 sc->fp[0].cl_id, 10509 sc->fp[0].index, 10510 SC_FUNC(sc), 10511 SC_FUNC(sc), 10512 BXE_SP(sc, rss_rdata), 10513 BXE_SP_MAPPING(sc, rss_rdata), 10514 ECORE_FILTER_RSS_CONF_PENDING, 10515 &sc->sp_state, ECORE_OBJ_TYPE_RX); 10516 } 10517 10518 /* 10519 * Initialize the function. This must be called before sending CLIENT_SETUP 10520 * for the first client. 10521 */ 10522 static inline int 10523 bxe_func_start(struct bxe_softc *sc) 10524 { 10525 struct ecore_func_state_params func_params = { NULL }; 10526 struct ecore_func_start_params *start_params = &func_params.params.start; 10527 10528 /* Prepare parameters for function state transitions */ 10529 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 10530 10531 func_params.f_obj = &sc->func_obj; 10532 func_params.cmd = ECORE_F_CMD_START; 10533 10534 /* Function parameters */ 10535 start_params->mf_mode = sc->devinfo.mf_info.mf_mode; 10536 start_params->sd_vlan_tag = OVLAN(sc); 10537 10538 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 10539 start_params->network_cos_mode = STATIC_COS; 10540 } else { /* CHIP_IS_E1X */ 10541 start_params->network_cos_mode = FW_WRR; 10542 } 10543 10544 //start_params->gre_tunnel_mode = 0; 10545 //start_params->gre_tunnel_rss = 0; 10546 10547 return (ecore_func_state_change(sc, &func_params)); 10548 } 10549 10550 static int 10551 bxe_set_power_state(struct bxe_softc *sc, 10552 uint8_t state) 10553 { 10554 uint16_t pmcsr; 10555 10556 /* If there is no power capability, silently succeed */ 10557 if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) { 10558 BLOGW(sc, "No power capability\n"); 10559 return (0); 10560 } 10561 10562 pmcsr = pci_read_config(sc->dev, 10563 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10564 2); 10565 10566 switch (state) { 10567 case PCI_PM_D0: 10568 pci_write_config(sc->dev, 10569 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10570 ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2); 10571 10572 if (pmcsr & PCIM_PSTAT_DMASK) { 10573 /* delay required during transition out of D3hot */ 10574 DELAY(20000); 10575 } 10576 10577 break; 10578 10579 case PCI_PM_D3hot: 10580 /* XXX if there are other clients above don't shut down the power */ 10581 10582 /* don't shut down the power for emulation and FPGA */ 10583 if (CHIP_REV_IS_SLOW(sc)) { 10584 return (0); 10585 } 10586 10587 pmcsr &= ~PCIM_PSTAT_DMASK; 10588 pmcsr |= PCIM_PSTAT_D3; 10589 10590 if (sc->wol) { 10591 pmcsr |= PCIM_PSTAT_PMEENABLE; 10592 } 10593 10594 pci_write_config(sc->dev, 10595 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10596 pmcsr, 4); 10597 10598 /* 10599 * No more memory access after this point until device is brought back 10600 * to D0 state. 10601 */ 10602 break; 10603 10604 default: 10605 BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n", 10606 state, pmcsr); 10607 return (-1); 10608 } 10609 10610 return (0); 10611 } 10612 10613 10614 /* return true if succeeded to acquire the lock */ 10615 static uint8_t 10616 bxe_trylock_hw_lock(struct bxe_softc *sc, 10617 uint32_t resource) 10618 { 10619 uint32_t lock_status; 10620 uint32_t resource_bit = (1 << resource); 10621 int func = SC_FUNC(sc); 10622 uint32_t hw_lock_control_reg; 10623 10624 BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource); 10625 10626 /* Validating that the resource is within range */ 10627 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 10628 BLOGD(sc, DBG_LOAD, 10629 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 10630 resource, HW_LOCK_MAX_RESOURCE_VALUE); 10631 return (FALSE); 10632 } 10633 10634 if (func <= 5) { 10635 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 10636 } else { 10637 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 10638 } 10639 10640 /* try to acquire the lock */ 10641 REG_WR(sc, hw_lock_control_reg + 4, resource_bit); 10642 lock_status = REG_RD(sc, hw_lock_control_reg); 10643 if (lock_status & resource_bit) { 10644 return (TRUE); 10645 } 10646 10647 BLOGE(sc, "Failed to get a resource lock 0x%x func %d " 10648 "lock_status 0x%x resource_bit 0x%x\n", resource, func, 10649 lock_status, resource_bit); 10650 10651 return (FALSE); 10652 } 10653 10654 /* 10655 * Get the recovery leader resource id according to the engine this function 10656 * belongs to. Currently only only 2 engines is supported. 10657 */ 10658 static int 10659 bxe_get_leader_lock_resource(struct bxe_softc *sc) 10660 { 10661 if (SC_PATH(sc)) { 10662 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1); 10663 } else { 10664 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0); 10665 } 10666 } 10667 10668 /* try to acquire a leader lock for current engine */ 10669 static uint8_t 10670 bxe_trylock_leader_lock(struct bxe_softc *sc) 10671 { 10672 return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 10673 } 10674 10675 static int 10676 bxe_release_leader_lock(struct bxe_softc *sc) 10677 { 10678 return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 10679 } 10680 10681 /* close gates #2, #3 and #4 */ 10682 static void 10683 bxe_set_234_gates(struct bxe_softc *sc, 10684 uint8_t close) 10685 { 10686 uint32_t val; 10687 10688 /* gates #2 and #4a are closed/opened for "not E1" only */ 10689 if (!CHIP_IS_E1(sc)) { 10690 /* #4 */ 10691 REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 10692 /* #2 */ 10693 REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 10694 } 10695 10696 /* #3 */ 10697 if (CHIP_IS_E1x(sc)) { 10698 /* prevent interrupts from HC on both ports */ 10699 val = REG_RD(sc, HC_REG_CONFIG_1); 10700 REG_WR(sc, HC_REG_CONFIG_1, 10701 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 10702 (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 10703 10704 val = REG_RD(sc, HC_REG_CONFIG_0); 10705 REG_WR(sc, HC_REG_CONFIG_0, 10706 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 10707 (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 10708 } else { 10709 /* Prevent incoming interrupts in IGU */ 10710 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 10711 10712 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, 10713 (!close) ? 10714 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 10715 (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 10716 } 10717 10718 BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n", 10719 close ? "closing" : "opening"); 10720 10721 wmb(); 10722 } 10723 10724 /* poll for pending writes bit, it should get cleared in no more than 1s */ 10725 static int 10726 bxe_er_poll_igu_vq(struct bxe_softc *sc) 10727 { 10728 uint32_t cnt = 1000; 10729 uint32_t pend_bits = 0; 10730 10731 do { 10732 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS); 10733 10734 if (pend_bits == 0) { 10735 break; 10736 } 10737 10738 DELAY(1000); 10739 } while (--cnt > 0); 10740 10741 if (cnt == 0) { 10742 BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits); 10743 return (-1); 10744 } 10745 10746 return (0); 10747 } 10748 10749 #define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */ 10750 10751 static void 10752 bxe_clp_reset_prep(struct bxe_softc *sc, 10753 uint32_t *magic_val) 10754 { 10755 /* Do some magic... */ 10756 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 10757 *magic_val = val & SHARED_MF_CLP_MAGIC; 10758 MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 10759 } 10760 10761 /* restore the value of the 'magic' bit */ 10762 static void 10763 bxe_clp_reset_done(struct bxe_softc *sc, 10764 uint32_t magic_val) 10765 { 10766 /* Restore the 'magic' bit value... */ 10767 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 10768 MFCFG_WR(sc, shared_mf_config.clp_mb, 10769 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 10770 } 10771 10772 /* prepare for MCP reset, takes care of CLP configurations */ 10773 static void 10774 bxe_reset_mcp_prep(struct bxe_softc *sc, 10775 uint32_t *magic_val) 10776 { 10777 uint32_t shmem; 10778 uint32_t validity_offset; 10779 10780 /* set `magic' bit in order to save MF config */ 10781 if (!CHIP_IS_E1(sc)) { 10782 bxe_clp_reset_prep(sc, magic_val); 10783 } 10784 10785 /* get shmem offset */ 10786 shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 10787 validity_offset = 10788 offsetof(struct shmem_region, validity_map[SC_PORT(sc)]); 10789 10790 /* Clear validity map flags */ 10791 if (shmem > 0) { 10792 REG_WR(sc, shmem + validity_offset, 0); 10793 } 10794 } 10795 10796 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 10797 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 10798 10799 static void 10800 bxe_mcp_wait_one(struct bxe_softc *sc) 10801 { 10802 /* special handling for emulation and FPGA (10 times longer) */ 10803 if (CHIP_REV_IS_SLOW(sc)) { 10804 DELAY((MCP_ONE_TIMEOUT*10) * 1000); 10805 } else { 10806 DELAY((MCP_ONE_TIMEOUT) * 1000); 10807 } 10808 } 10809 10810 /* initialize shmem_base and waits for validity signature to appear */ 10811 static int 10812 bxe_init_shmem(struct bxe_softc *sc) 10813 { 10814 int cnt = 0; 10815 uint32_t val = 0; 10816 10817 do { 10818 sc->devinfo.shmem_base = 10819 sc->link_params.shmem_base = 10820 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 10821 10822 if (sc->devinfo.shmem_base) { 10823 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 10824 if (val & SHR_MEM_VALIDITY_MB) 10825 return (0); 10826 } 10827 10828 bxe_mcp_wait_one(sc); 10829 10830 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 10831 10832 BLOGE(sc, "BAD MCP validity signature\n"); 10833 10834 return (-1); 10835 } 10836 10837 static int 10838 bxe_reset_mcp_comp(struct bxe_softc *sc, 10839 uint32_t magic_val) 10840 { 10841 int rc = bxe_init_shmem(sc); 10842 10843 /* Restore the `magic' bit value */ 10844 if (!CHIP_IS_E1(sc)) { 10845 bxe_clp_reset_done(sc, magic_val); 10846 } 10847 10848 return (rc); 10849 } 10850 10851 static void 10852 bxe_pxp_prep(struct bxe_softc *sc) 10853 { 10854 if (!CHIP_IS_E1(sc)) { 10855 REG_WR(sc, PXP2_REG_RD_START_INIT, 0); 10856 REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0); 10857 wmb(); 10858 } 10859 } 10860 10861 /* 10862 * Reset the whole chip except for: 10863 * - PCIE core 10864 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit) 10865 * - IGU 10866 * - MISC (including AEU) 10867 * - GRC 10868 * - RBCN, RBCP 10869 */ 10870 static void 10871 bxe_process_kill_chip_reset(struct bxe_softc *sc, 10872 uint8_t global) 10873 { 10874 uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 10875 uint32_t global_bits2, stay_reset2; 10876 10877 /* 10878 * Bits that have to be set in reset_mask2 if we want to reset 'global' 10879 * (per chip) blocks. 10880 */ 10881 global_bits2 = 10882 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 10883 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 10884 10885 /* 10886 * Don't reset the following blocks. 10887 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 10888 * reset, as in 4 port device they might still be owned 10889 * by the MCP (there is only one leader per path). 10890 */ 10891 not_reset_mask1 = 10892 MISC_REGISTERS_RESET_REG_1_RST_HC | 10893 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 10894 MISC_REGISTERS_RESET_REG_1_RST_PXP; 10895 10896 not_reset_mask2 = 10897 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 10898 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 10899 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 10900 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 10901 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 10902 MISC_REGISTERS_RESET_REG_2_RST_GRC | 10903 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 10904 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 10905 MISC_REGISTERS_RESET_REG_2_RST_ATC | 10906 MISC_REGISTERS_RESET_REG_2_PGLC | 10907 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 10908 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 10909 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 10910 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 10911 MISC_REGISTERS_RESET_REG_2_UMAC0 | 10912 MISC_REGISTERS_RESET_REG_2_UMAC1; 10913 10914 /* 10915 * Keep the following blocks in reset: 10916 * - all xxMACs are handled by the elink code. 10917 */ 10918 stay_reset2 = 10919 MISC_REGISTERS_RESET_REG_2_XMAC | 10920 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 10921 10922 /* Full reset masks according to the chip */ 10923 reset_mask1 = 0xffffffff; 10924 10925 if (CHIP_IS_E1(sc)) 10926 reset_mask2 = 0xffff; 10927 else if (CHIP_IS_E1H(sc)) 10928 reset_mask2 = 0x1ffff; 10929 else if (CHIP_IS_E2(sc)) 10930 reset_mask2 = 0xfffff; 10931 else /* CHIP_IS_E3 */ 10932 reset_mask2 = 0x3ffffff; 10933 10934 /* Don't reset global blocks unless we need to */ 10935 if (!global) 10936 reset_mask2 &= ~global_bits2; 10937 10938 /* 10939 * In case of attention in the QM, we need to reset PXP 10940 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 10941 * because otherwise QM reset would release 'close the gates' shortly 10942 * before resetting the PXP, then the PSWRQ would send a write 10943 * request to PGLUE. Then when PXP is reset, PGLUE would try to 10944 * read the payload data from PSWWR, but PSWWR would not 10945 * respond. The write queue in PGLUE would stuck, dmae commands 10946 * would not return. Therefore it's important to reset the second 10947 * reset register (containing the 10948 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 10949 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 10950 * bit). 10951 */ 10952 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 10953 reset_mask2 & (~not_reset_mask2)); 10954 10955 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 10956 reset_mask1 & (~not_reset_mask1)); 10957 10958 mb(); 10959 wmb(); 10960 10961 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 10962 reset_mask2 & (~stay_reset2)); 10963 10964 mb(); 10965 wmb(); 10966 10967 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 10968 wmb(); 10969 } 10970 10971 static int 10972 bxe_process_kill(struct bxe_softc *sc, 10973 uint8_t global) 10974 { 10975 int cnt = 1000; 10976 uint32_t val = 0; 10977 uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 10978 uint32_t tags_63_32 = 0; 10979 10980 /* Empty the Tetris buffer, wait for 1s */ 10981 do { 10982 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT); 10983 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT); 10984 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0); 10985 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1); 10986 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2); 10987 if (CHIP_IS_E3(sc)) { 10988 tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32); 10989 } 10990 10991 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 10992 ((port_is_idle_0 & 0x1) == 0x1) && 10993 ((port_is_idle_1 & 0x1) == 0x1) && 10994 (pgl_exp_rom2 == 0xffffffff) && 10995 (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff))) 10996 break; 10997 DELAY(1000); 10998 } while (cnt-- > 0); 10999 11000 if (cnt <= 0) { 11001 BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there " 11002 "are still outstanding read requests after 1s! " 11003 "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, " 11004 "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 11005 sr_cnt, blk_cnt, port_is_idle_0, 11006 port_is_idle_1, pgl_exp_rom2); 11007 return (-1); 11008 } 11009 11010 mb(); 11011 11012 /* Close gates #2, #3 and #4 */ 11013 bxe_set_234_gates(sc, TRUE); 11014 11015 /* Poll for IGU VQs for 57712 and newer chips */ 11016 if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) { 11017 return (-1); 11018 } 11019 11020 /* XXX indicate that "process kill" is in progress to MCP */ 11021 11022 /* clear "unprepared" bit */ 11023 REG_WR(sc, MISC_REG_UNPREPARED, 0); 11024 mb(); 11025 11026 /* Make sure all is written to the chip before the reset */ 11027 wmb(); 11028 11029 /* 11030 * Wait for 1ms to empty GLUE and PCI-E core queues, 11031 * PSWHST, GRC and PSWRD Tetris buffer. 11032 */ 11033 DELAY(1000); 11034 11035 /* Prepare to chip reset: */ 11036 /* MCP */ 11037 if (global) { 11038 bxe_reset_mcp_prep(sc, &val); 11039 } 11040 11041 /* PXP */ 11042 bxe_pxp_prep(sc); 11043 mb(); 11044 11045 /* reset the chip */ 11046 bxe_process_kill_chip_reset(sc, global); 11047 mb(); 11048 11049 /* clear errors in PGB */ 11050 if (!CHIP_IS_E1(sc)) 11051 REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f); 11052 11053 /* Recover after reset: */ 11054 /* MCP */ 11055 if (global && bxe_reset_mcp_comp(sc, val)) { 11056 return (-1); 11057 } 11058 11059 /* XXX add resetting the NO_MCP mode DB here */ 11060 11061 /* Open the gates #2, #3 and #4 */ 11062 bxe_set_234_gates(sc, FALSE); 11063 11064 /* XXX 11065 * IGU/AEU preparation bring back the AEU/IGU to a reset state 11066 * re-enable attentions 11067 */ 11068 11069 return (0); 11070 } 11071 11072 static int 11073 bxe_leader_reset(struct bxe_softc *sc) 11074 { 11075 int rc = 0; 11076 uint8_t global = bxe_reset_is_global(sc); 11077 uint32_t load_code; 11078 11079 /* 11080 * If not going to reset MCP, load "fake" driver to reset HW while 11081 * driver is owner of the HW. 11082 */ 11083 if (!global && !BXE_NOMCP(sc)) { 11084 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 11085 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 11086 if (!load_code) { 11087 BLOGE(sc, "MCP response failure, aborting\n"); 11088 rc = -1; 11089 goto exit_leader_reset; 11090 } 11091 11092 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 11093 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 11094 BLOGE(sc, "MCP unexpected response, aborting\n"); 11095 rc = -1; 11096 goto exit_leader_reset2; 11097 } 11098 11099 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 11100 if (!load_code) { 11101 BLOGE(sc, "MCP response failure, aborting\n"); 11102 rc = -1; 11103 goto exit_leader_reset2; 11104 } 11105 } 11106 11107 /* try to recover after the failure */ 11108 if (bxe_process_kill(sc, global)) { 11109 BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc)); 11110 rc = -1; 11111 goto exit_leader_reset2; 11112 } 11113 11114 /* 11115 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver 11116 * state. 11117 */ 11118 bxe_set_reset_done(sc); 11119 if (global) { 11120 bxe_clear_reset_global(sc); 11121 } 11122 11123 exit_leader_reset2: 11124 11125 /* unload "fake driver" if it was loaded */ 11126 if (!global && !BXE_NOMCP(sc)) { 11127 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 11128 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 11129 } 11130 11131 exit_leader_reset: 11132 11133 sc->is_leader = 0; 11134 bxe_release_leader_lock(sc); 11135 11136 mb(); 11137 return (rc); 11138 } 11139 11140 /* 11141 * prepare INIT transition, parameters configured: 11142 * - HC configuration 11143 * - Queue's CDU context 11144 */ 11145 static void 11146 bxe_pf_q_prep_init(struct bxe_softc *sc, 11147 struct bxe_fastpath *fp, 11148 struct ecore_queue_init_params *init_params) 11149 { 11150 uint8_t cos; 11151 int cxt_index, cxt_offset; 11152 11153 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags); 11154 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags); 11155 11156 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags); 11157 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags); 11158 11159 /* HC rate */ 11160 init_params->rx.hc_rate = 11161 sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0; 11162 init_params->tx.hc_rate = 11163 sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0; 11164 11165 /* FW SB ID */ 11166 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id; 11167 11168 /* CQ index among the SB indices */ 11169 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11170 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 11171 11172 /* set maximum number of COSs supported by this queue */ 11173 init_params->max_cos = sc->max_cos; 11174 11175 BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n", 11176 fp->index, init_params->max_cos); 11177 11178 /* set the context pointers queue object */ 11179 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 11180 /* XXX change index/cid here if ever support multiple tx CoS */ 11181 /* fp->txdata[cos]->cid */ 11182 cxt_index = fp->index / ILT_PAGE_CIDS; 11183 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS); 11184 init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth; 11185 } 11186 } 11187 11188 /* set flags that are common for the Tx-only and not normal connections */ 11189 static unsigned long 11190 bxe_get_common_flags(struct bxe_softc *sc, 11191 struct bxe_fastpath *fp, 11192 uint8_t zero_stats) 11193 { 11194 unsigned long flags = 0; 11195 11196 /* PF driver will always initialize the Queue to an ACTIVE state */ 11197 bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags); 11198 11199 /* 11200 * tx only connections collect statistics (on the same index as the 11201 * parent connection). The statistics are zeroed when the parent 11202 * connection is initialized. 11203 */ 11204 11205 bxe_set_bit(ECORE_Q_FLG_STATS, &flags); 11206 if (zero_stats) { 11207 bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags); 11208 } 11209 11210 /* 11211 * tx only connections can support tx-switching, though their 11212 * CoS-ness doesn't survive the loopback 11213 */ 11214 if (sc->flags & BXE_TX_SWITCHING) { 11215 bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags); 11216 } 11217 11218 bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags); 11219 11220 return (flags); 11221 } 11222 11223 static unsigned long 11224 bxe_get_q_flags(struct bxe_softc *sc, 11225 struct bxe_fastpath *fp, 11226 uint8_t leading) 11227 { 11228 unsigned long flags = 0; 11229 11230 if (IS_MF_SD(sc)) { 11231 bxe_set_bit(ECORE_Q_FLG_OV, &flags); 11232 } 11233 11234 if (if_getcapenable(sc->ifp) & IFCAP_LRO) { 11235 bxe_set_bit(ECORE_Q_FLG_TPA, &flags); 11236 #if __FreeBSD_version >= 800000 11237 bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags); 11238 #endif 11239 } 11240 11241 if (leading) { 11242 bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags); 11243 bxe_set_bit(ECORE_Q_FLG_MCAST, &flags); 11244 } 11245 11246 bxe_set_bit(ECORE_Q_FLG_VLAN, &flags); 11247 11248 /* merge with common flags */ 11249 return (flags | bxe_get_common_flags(sc, fp, TRUE)); 11250 } 11251 11252 static void 11253 bxe_pf_q_prep_general(struct bxe_softc *sc, 11254 struct bxe_fastpath *fp, 11255 struct ecore_general_setup_params *gen_init, 11256 uint8_t cos) 11257 { 11258 gen_init->stat_id = bxe_stats_id(fp); 11259 gen_init->spcl_id = fp->cl_id; 11260 gen_init->mtu = sc->mtu; 11261 gen_init->cos = cos; 11262 } 11263 11264 static void 11265 bxe_pf_rx_q_prep(struct bxe_softc *sc, 11266 struct bxe_fastpath *fp, 11267 struct rxq_pause_params *pause, 11268 struct ecore_rxq_setup_params *rxq_init) 11269 { 11270 uint8_t max_sge = 0; 11271 uint16_t sge_sz = 0; 11272 uint16_t tpa_agg_size = 0; 11273 11274 pause->sge_th_lo = SGE_TH_LO(sc); 11275 pause->sge_th_hi = SGE_TH_HI(sc); 11276 11277 /* validate SGE ring has enough to cross high threshold */ 11278 if (sc->dropless_fc && 11279 (pause->sge_th_hi + FW_PREFETCH_CNT) > 11280 (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) { 11281 BLOGW(sc, "sge ring threshold limit\n"); 11282 } 11283 11284 /* minimum max_aggregation_size is 2*MTU (two full buffers) */ 11285 tpa_agg_size = (2 * sc->mtu); 11286 if (tpa_agg_size < sc->max_aggregation_size) { 11287 tpa_agg_size = sc->max_aggregation_size; 11288 } 11289 11290 max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT; 11291 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 11292 (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT; 11293 sge_sz = (uint16_t)min(SGE_PAGES, 0xffff); 11294 11295 /* pause - not for e1 */ 11296 if (!CHIP_IS_E1(sc)) { 11297 pause->bd_th_lo = BD_TH_LO(sc); 11298 pause->bd_th_hi = BD_TH_HI(sc); 11299 11300 pause->rcq_th_lo = RCQ_TH_LO(sc); 11301 pause->rcq_th_hi = RCQ_TH_HI(sc); 11302 11303 /* validate rings have enough entries to cross high thresholds */ 11304 if (sc->dropless_fc && 11305 pause->bd_th_hi + FW_PREFETCH_CNT > 11306 sc->rx_ring_size) { 11307 BLOGW(sc, "rx bd ring threshold limit\n"); 11308 } 11309 11310 if (sc->dropless_fc && 11311 pause->rcq_th_hi + FW_PREFETCH_CNT > 11312 RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) { 11313 BLOGW(sc, "rcq ring threshold limit\n"); 11314 } 11315 11316 pause->pri_map = 1; 11317 } 11318 11319 /* rxq setup */ 11320 rxq_init->dscr_map = fp->rx_dma.paddr; 11321 rxq_init->sge_map = fp->rx_sge_dma.paddr; 11322 rxq_init->rcq_map = fp->rcq_dma.paddr; 11323 rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE); 11324 11325 /* 11326 * This should be a maximum number of data bytes that may be 11327 * placed on the BD (not including paddings). 11328 */ 11329 rxq_init->buf_sz = (fp->rx_buf_size - 11330 IP_HEADER_ALIGNMENT_PADDING); 11331 11332 rxq_init->cl_qzone_id = fp->cl_qzone_id; 11333 rxq_init->tpa_agg_sz = tpa_agg_size; 11334 rxq_init->sge_buf_sz = sge_sz; 11335 rxq_init->max_sges_pkt = max_sge; 11336 rxq_init->rss_engine_id = SC_FUNC(sc); 11337 rxq_init->mcast_engine_id = SC_FUNC(sc); 11338 11339 /* 11340 * Maximum number or simultaneous TPA aggregation for this Queue. 11341 * For PF Clients it should be the maximum available number. 11342 * VF driver(s) may want to define it to a smaller value. 11343 */ 11344 rxq_init->max_tpa_queues = MAX_AGG_QS(sc); 11345 11346 rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT; 11347 rxq_init->fw_sb_id = fp->fw_sb_id; 11348 11349 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11350 11351 /* 11352 * configure silent vlan removal 11353 * if multi function mode is afex, then mask default vlan 11354 */ 11355 if (IS_MF_AFEX(sc)) { 11356 rxq_init->silent_removal_value = 11357 sc->devinfo.mf_info.afex_def_vlan_tag; 11358 rxq_init->silent_removal_mask = EVL_VLID_MASK; 11359 } 11360 } 11361 11362 static void 11363 bxe_pf_tx_q_prep(struct bxe_softc *sc, 11364 struct bxe_fastpath *fp, 11365 struct ecore_txq_setup_params *txq_init, 11366 uint8_t cos) 11367 { 11368 /* 11369 * XXX If multiple CoS is ever supported then each fastpath structure 11370 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 11371 * fp->txdata[cos]->tx_dma.paddr; 11372 */ 11373 txq_init->dscr_map = fp->tx_dma.paddr; 11374 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 11375 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 11376 txq_init->fw_sb_id = fp->fw_sb_id; 11377 11378 /* 11379 * set the TSS leading client id for TX classfication to the 11380 * leading RSS client id 11381 */ 11382 txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id); 11383 } 11384 11385 /* 11386 * This function performs 2 steps in a queue state machine: 11387 * 1) RESET->INIT 11388 * 2) INIT->SETUP 11389 */ 11390 static int 11391 bxe_setup_queue(struct bxe_softc *sc, 11392 struct bxe_fastpath *fp, 11393 uint8_t leading) 11394 { 11395 struct ecore_queue_state_params q_params = { NULL }; 11396 struct ecore_queue_setup_params *setup_params = 11397 &q_params.params.setup; 11398 int rc; 11399 11400 BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index); 11401 11402 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 11403 11404 q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 11405 11406 /* we want to wait for completion in this context */ 11407 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 11408 11409 /* prepare the INIT parameters */ 11410 bxe_pf_q_prep_init(sc, fp, &q_params.params.init); 11411 11412 /* Set the command */ 11413 q_params.cmd = ECORE_Q_CMD_INIT; 11414 11415 /* Change the state to INIT */ 11416 rc = ecore_queue_state_change(sc, &q_params); 11417 if (rc) { 11418 BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc); 11419 return (rc); 11420 } 11421 11422 BLOGD(sc, DBG_LOAD, "init complete\n"); 11423 11424 /* now move the Queue to the SETUP state */ 11425 memset(setup_params, 0, sizeof(*setup_params)); 11426 11427 /* set Queue flags */ 11428 setup_params->flags = bxe_get_q_flags(sc, fp, leading); 11429 11430 /* set general SETUP parameters */ 11431 bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params, 11432 FIRST_TX_COS_INDEX); 11433 11434 bxe_pf_rx_q_prep(sc, fp, 11435 &setup_params->pause_params, 11436 &setup_params->rxq_params); 11437 11438 bxe_pf_tx_q_prep(sc, fp, 11439 &setup_params->txq_params, 11440 FIRST_TX_COS_INDEX); 11441 11442 /* Set the command */ 11443 q_params.cmd = ECORE_Q_CMD_SETUP; 11444 11445 /* change the state to SETUP */ 11446 rc = ecore_queue_state_change(sc, &q_params); 11447 if (rc) { 11448 BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc); 11449 return (rc); 11450 } 11451 11452 return (rc); 11453 } 11454 11455 static int 11456 bxe_setup_leading(struct bxe_softc *sc) 11457 { 11458 return (bxe_setup_queue(sc, &sc->fp[0], TRUE)); 11459 } 11460 11461 static int 11462 bxe_config_rss_pf(struct bxe_softc *sc, 11463 struct ecore_rss_config_obj *rss_obj, 11464 uint8_t config_hash) 11465 { 11466 struct ecore_config_rss_params params = { NULL }; 11467 int i; 11468 11469 /* 11470 * Although RSS is meaningless when there is a single HW queue we 11471 * still need it enabled in order to have HW Rx hash generated. 11472 */ 11473 11474 params.rss_obj = rss_obj; 11475 11476 bxe_set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 11477 11478 bxe_set_bit(ECORE_RSS_MODE_REGULAR, ¶ms.rss_flags); 11479 11480 /* RSS configuration */ 11481 bxe_set_bit(ECORE_RSS_IPV4, ¶ms.rss_flags); 11482 bxe_set_bit(ECORE_RSS_IPV4_TCP, ¶ms.rss_flags); 11483 bxe_set_bit(ECORE_RSS_IPV6, ¶ms.rss_flags); 11484 bxe_set_bit(ECORE_RSS_IPV6_TCP, ¶ms.rss_flags); 11485 if (rss_obj->udp_rss_v4) { 11486 bxe_set_bit(ECORE_RSS_IPV4_UDP, ¶ms.rss_flags); 11487 } 11488 if (rss_obj->udp_rss_v6) { 11489 bxe_set_bit(ECORE_RSS_IPV6_UDP, ¶ms.rss_flags); 11490 } 11491 11492 /* Hash bits */ 11493 params.rss_result_mask = MULTI_MASK; 11494 11495 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 11496 11497 if (config_hash) { 11498 /* RSS keys */ 11499 for (i = 0; i < sizeof(params.rss_key) / 4; i++) { 11500 params.rss_key[i] = arc4random(); 11501 } 11502 11503 bxe_set_bit(ECORE_RSS_SET_SRCH, ¶ms.rss_flags); 11504 } 11505 11506 return (ecore_config_rss(sc, ¶ms)); 11507 } 11508 11509 static int 11510 bxe_config_rss_eth(struct bxe_softc *sc, 11511 uint8_t config_hash) 11512 { 11513 return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash)); 11514 } 11515 11516 static int 11517 bxe_init_rss_pf(struct bxe_softc *sc) 11518 { 11519 uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc); 11520 int i; 11521 11522 /* 11523 * Prepare the initial contents of the indirection table if 11524 * RSS is enabled 11525 */ 11526 for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) { 11527 sc->rss_conf_obj.ind_table[i] = 11528 (sc->fp->cl_id + (i % num_eth_queues)); 11529 } 11530 11531 if (sc->udp_rss) { 11532 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1; 11533 } 11534 11535 /* 11536 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 11537 * per-port, so if explicit configuration is needed, do it only 11538 * for a PMF. 11539 * 11540 * For 57712 and newer it's a per-function configuration. 11541 */ 11542 return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc))); 11543 } 11544 11545 static int 11546 bxe_set_mac_one(struct bxe_softc *sc, 11547 uint8_t *mac, 11548 struct ecore_vlan_mac_obj *obj, 11549 uint8_t set, 11550 int mac_type, 11551 unsigned long *ramrod_flags) 11552 { 11553 struct ecore_vlan_mac_ramrod_params ramrod_param; 11554 int rc; 11555 11556 memset(&ramrod_param, 0, sizeof(ramrod_param)); 11557 11558 /* fill in general parameters */ 11559 ramrod_param.vlan_mac_obj = obj; 11560 ramrod_param.ramrod_flags = *ramrod_flags; 11561 11562 /* fill a user request section if needed */ 11563 if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) { 11564 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 11565 11566 bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 11567 11568 /* Set the command: ADD or DEL */ 11569 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD : 11570 ECORE_VLAN_MAC_DEL; 11571 } 11572 11573 rc = ecore_config_vlan_mac(sc, &ramrod_param); 11574 11575 if (rc == ECORE_EXISTS) { 11576 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 11577 /* do not treat adding same MAC as error */ 11578 rc = 0; 11579 } else if (rc < 0) { 11580 BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc); 11581 } 11582 11583 return (rc); 11584 } 11585 11586 static int 11587 bxe_set_eth_mac(struct bxe_softc *sc, 11588 uint8_t set) 11589 { 11590 unsigned long ramrod_flags = 0; 11591 11592 BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n"); 11593 11594 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 11595 11596 /* Eth MAC is set on RSS leading client (fp[0]) */ 11597 return (bxe_set_mac_one(sc, sc->link_params.mac_addr, 11598 &sc->sp_objs->mac_obj, 11599 set, ECORE_ETH_MAC, &ramrod_flags)); 11600 } 11601 11602 static int 11603 bxe_get_cur_phy_idx(struct bxe_softc *sc) 11604 { 11605 uint32_t sel_phy_idx = 0; 11606 11607 if (sc->link_params.num_phys <= 1) { 11608 return (ELINK_INT_PHY); 11609 } 11610 11611 if (sc->link_vars.link_up) { 11612 sel_phy_idx = ELINK_EXT_PHY1; 11613 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */ 11614 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 11615 (sc->link_params.phy[ELINK_EXT_PHY2].supported & 11616 ELINK_SUPPORTED_FIBRE)) 11617 sel_phy_idx = ELINK_EXT_PHY2; 11618 } else { 11619 switch (elink_phy_selection(&sc->link_params)) { 11620 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 11621 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 11622 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 11623 sel_phy_idx = ELINK_EXT_PHY1; 11624 break; 11625 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 11626 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 11627 sel_phy_idx = ELINK_EXT_PHY2; 11628 break; 11629 } 11630 } 11631 11632 return (sel_phy_idx); 11633 } 11634 11635 static int 11636 bxe_get_link_cfg_idx(struct bxe_softc *sc) 11637 { 11638 uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc); 11639 11640 /* 11641 * The selected activated PHY is always after swapping (in case PHY 11642 * swapping is enabled). So when swapping is enabled, we need to reverse 11643 * the configuration 11644 */ 11645 11646 if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 11647 if (sel_phy_idx == ELINK_EXT_PHY1) 11648 sel_phy_idx = ELINK_EXT_PHY2; 11649 else if (sel_phy_idx == ELINK_EXT_PHY2) 11650 sel_phy_idx = ELINK_EXT_PHY1; 11651 } 11652 11653 return (ELINK_LINK_CONFIG_IDX(sel_phy_idx)); 11654 } 11655 11656 static void 11657 bxe_set_requested_fc(struct bxe_softc *sc) 11658 { 11659 /* 11660 * Initialize link parameters structure variables 11661 * It is recommended to turn off RX FC for jumbo frames 11662 * for better performance 11663 */ 11664 if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) { 11665 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX; 11666 } else { 11667 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH; 11668 } 11669 } 11670 11671 static void 11672 bxe_calc_fc_adv(struct bxe_softc *sc) 11673 { 11674 uint8_t cfg_idx = bxe_get_link_cfg_idx(sc); 11675 11676 11677 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 11678 ADVERTISED_Pause); 11679 11680 switch (sc->link_vars.ieee_fc & 11681 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 11682 11683 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 11684 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 11685 ADVERTISED_Pause); 11686 break; 11687 11688 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 11689 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 11690 break; 11691 11692 default: 11693 break; 11694 11695 } 11696 } 11697 11698 static uint16_t 11699 bxe_get_mf_speed(struct bxe_softc *sc) 11700 { 11701 uint16_t line_speed = sc->link_vars.line_speed; 11702 if (IS_MF(sc)) { 11703 uint16_t maxCfg = 11704 bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]); 11705 11706 /* calculate the current MAX line speed limit for the MF devices */ 11707 if (IS_MF_SI(sc)) { 11708 line_speed = (line_speed * maxCfg) / 100; 11709 } else { /* SD mode */ 11710 uint16_t vn_max_rate = maxCfg * 100; 11711 11712 if (vn_max_rate < line_speed) { 11713 line_speed = vn_max_rate; 11714 } 11715 } 11716 } 11717 11718 return (line_speed); 11719 } 11720 11721 static void 11722 bxe_fill_report_data(struct bxe_softc *sc, 11723 struct bxe_link_report_data *data) 11724 { 11725 uint16_t line_speed = bxe_get_mf_speed(sc); 11726 11727 memset(data, 0, sizeof(*data)); 11728 11729 /* fill the report data with the effective line speed */ 11730 data->line_speed = line_speed; 11731 11732 /* Link is down */ 11733 if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) { 11734 bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags); 11735 } 11736 11737 /* Full DUPLEX */ 11738 if (sc->link_vars.duplex == DUPLEX_FULL) { 11739 bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags); 11740 } 11741 11742 /* Rx Flow Control is ON */ 11743 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) { 11744 bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags); 11745 } 11746 11747 /* Tx Flow Control is ON */ 11748 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 11749 bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags); 11750 } 11751 } 11752 11753 /* report link status to OS, should be called under phy_lock */ 11754 static void 11755 bxe_link_report_locked(struct bxe_softc *sc) 11756 { 11757 struct bxe_link_report_data cur_data; 11758 11759 /* reread mf_cfg */ 11760 if (IS_PF(sc) && !CHIP_IS_E1(sc)) { 11761 bxe_read_mf_cfg(sc); 11762 } 11763 11764 /* Read the current link report info */ 11765 bxe_fill_report_data(sc, &cur_data); 11766 11767 /* Don't report link down or exactly the same link status twice */ 11768 if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) || 11769 (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11770 &sc->last_reported_link.link_report_flags) && 11771 bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11772 &cur_data.link_report_flags))) { 11773 return; 11774 } 11775 11776 ELINK_DEBUG_P2(sc, "Change in link status : cur_data = %x, last_reported_link = %x\n", 11777 cur_data.link_report_flags, sc->last_reported_link.link_report_flags); 11778 sc->link_cnt++; 11779 11780 ELINK_DEBUG_P1(sc, "link status change count = %x\n", sc->link_cnt); 11781 /* report new link params and remember the state for the next time */ 11782 memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data)); 11783 11784 if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11785 &cur_data.link_report_flags)) { 11786 if_link_state_change(sc->ifp, LINK_STATE_DOWN); 11787 } else { 11788 const char *duplex; 11789 const char *flow; 11790 11791 if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX, 11792 &cur_data.link_report_flags)) { 11793 duplex = "full"; 11794 ELINK_DEBUG_P0(sc, "link set to full duplex\n"); 11795 } else { 11796 duplex = "half"; 11797 ELINK_DEBUG_P0(sc, "link set to half duplex\n"); 11798 } 11799 11800 /* 11801 * Handle the FC at the end so that only these flags would be 11802 * possibly set. This way we may easily check if there is no FC 11803 * enabled. 11804 */ 11805 if (cur_data.link_report_flags) { 11806 if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11807 &cur_data.link_report_flags) && 11808 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11809 &cur_data.link_report_flags)) { 11810 flow = "ON - receive & transmit"; 11811 } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11812 &cur_data.link_report_flags) && 11813 !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11814 &cur_data.link_report_flags)) { 11815 flow = "ON - receive"; 11816 } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11817 &cur_data.link_report_flags) && 11818 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11819 &cur_data.link_report_flags)) { 11820 flow = "ON - transmit"; 11821 } else { 11822 flow = "none"; /* possible? */ 11823 } 11824 } else { 11825 flow = "none"; 11826 } 11827 11828 if_link_state_change(sc->ifp, LINK_STATE_UP); 11829 BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 11830 cur_data.line_speed, duplex, flow); 11831 } 11832 } 11833 11834 static void 11835 bxe_link_report(struct bxe_softc *sc) 11836 { 11837 bxe_acquire_phy_lock(sc); 11838 bxe_link_report_locked(sc); 11839 bxe_release_phy_lock(sc); 11840 } 11841 11842 static void 11843 bxe_link_status_update(struct bxe_softc *sc) 11844 { 11845 if (sc->state != BXE_STATE_OPEN) { 11846 return; 11847 } 11848 11849 if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) { 11850 elink_link_status_update(&sc->link_params, &sc->link_vars); 11851 } else { 11852 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half | 11853 ELINK_SUPPORTED_10baseT_Full | 11854 ELINK_SUPPORTED_100baseT_Half | 11855 ELINK_SUPPORTED_100baseT_Full | 11856 ELINK_SUPPORTED_1000baseT_Full | 11857 ELINK_SUPPORTED_2500baseX_Full | 11858 ELINK_SUPPORTED_10000baseT_Full | 11859 ELINK_SUPPORTED_TP | 11860 ELINK_SUPPORTED_FIBRE | 11861 ELINK_SUPPORTED_Autoneg | 11862 ELINK_SUPPORTED_Pause | 11863 ELINK_SUPPORTED_Asym_Pause); 11864 sc->port.advertising[0] = sc->port.supported[0]; 11865 11866 sc->link_params.sc = sc; 11867 sc->link_params.port = SC_PORT(sc); 11868 sc->link_params.req_duplex[0] = DUPLEX_FULL; 11869 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE; 11870 sc->link_params.req_line_speed[0] = SPEED_10000; 11871 sc->link_params.speed_cap_mask[0] = 0x7f0000; 11872 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G; 11873 11874 if (CHIP_REV_IS_FPGA(sc)) { 11875 sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC; 11876 sc->link_vars.line_speed = ELINK_SPEED_1000; 11877 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 11878 LINK_STATUS_SPEED_AND_DUPLEX_1000TFD); 11879 } else { 11880 sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC; 11881 sc->link_vars.line_speed = ELINK_SPEED_10000; 11882 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 11883 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 11884 } 11885 11886 sc->link_vars.link_up = 1; 11887 11888 sc->link_vars.duplex = DUPLEX_FULL; 11889 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE; 11890 11891 if (IS_PF(sc)) { 11892 REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0); 11893 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11894 bxe_link_report(sc); 11895 } 11896 } 11897 11898 if (IS_PF(sc)) { 11899 if (sc->link_vars.link_up) { 11900 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11901 } else { 11902 bxe_stats_handle(sc, STATS_EVENT_STOP); 11903 } 11904 bxe_link_report(sc); 11905 } else { 11906 bxe_link_report(sc); 11907 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11908 } 11909 } 11910 11911 static int 11912 bxe_initial_phy_init(struct bxe_softc *sc, 11913 int load_mode) 11914 { 11915 int rc, cfg_idx = bxe_get_link_cfg_idx(sc); 11916 uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx]; 11917 struct elink_params *lp = &sc->link_params; 11918 11919 bxe_set_requested_fc(sc); 11920 11921 if (CHIP_REV_IS_SLOW(sc)) { 11922 uint32_t bond = CHIP_BOND_ID(sc); 11923 uint32_t feat = 0; 11924 11925 if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) { 11926 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 11927 } else if (bond & 0x4) { 11928 if (CHIP_IS_E3(sc)) { 11929 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC; 11930 } else { 11931 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 11932 } 11933 } else if (bond & 0x8) { 11934 if (CHIP_IS_E3(sc)) { 11935 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC; 11936 } else { 11937 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 11938 } 11939 } 11940 11941 /* disable EMAC for E3 and above */ 11942 if (bond & 0x2) { 11943 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 11944 } 11945 11946 sc->link_params.feature_config_flags |= feat; 11947 } 11948 11949 bxe_acquire_phy_lock(sc); 11950 11951 if (load_mode == LOAD_DIAG) { 11952 lp->loopback_mode = ELINK_LOOPBACK_XGXS; 11953 /* Prefer doing PHY loopback at 10G speed, if possible */ 11954 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) { 11955 if (lp->speed_cap_mask[cfg_idx] & 11956 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 11957 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000; 11958 } else { 11959 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000; 11960 } 11961 } 11962 } 11963 11964 if (load_mode == LOAD_LOOPBACK_EXT) { 11965 lp->loopback_mode = ELINK_LOOPBACK_EXT; 11966 } 11967 11968 rc = elink_phy_init(&sc->link_params, &sc->link_vars); 11969 11970 bxe_release_phy_lock(sc); 11971 11972 bxe_calc_fc_adv(sc); 11973 11974 if (sc->link_vars.link_up) { 11975 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11976 bxe_link_report(sc); 11977 } 11978 11979 if (!CHIP_REV_IS_SLOW(sc)) { 11980 bxe_periodic_start(sc); 11981 } 11982 11983 sc->link_params.req_line_speed[cfg_idx] = req_line_speed; 11984 return (rc); 11985 } 11986 11987 /* must be called under IF_ADDR_LOCK */ 11988 11989 static int 11990 bxe_set_mc_list(struct bxe_softc *sc) 11991 { 11992 struct ecore_mcast_ramrod_params rparam = { NULL }; 11993 int rc = 0; 11994 int mc_count = 0; 11995 int mcnt, i; 11996 struct ecore_mcast_list_elem *mc_mac, *mc_mac_start; 11997 unsigned char *mta; 11998 if_t ifp = sc->ifp; 11999 12000 mc_count = if_multiaddr_count(ifp, -1);/* XXX they don't have a limit */ 12001 if (!mc_count) 12002 return (0); 12003 12004 mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN * 12005 mc_count, M_DEVBUF, M_NOWAIT); 12006 12007 if(mta == NULL) { 12008 BLOGE(sc, "Failed to allocate temp mcast list\n"); 12009 return (-1); 12010 } 12011 bzero(mta, (sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count)); 12012 12013 mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, (M_NOWAIT | M_ZERO)); 12014 mc_mac_start = mc_mac; 12015 12016 if (!mc_mac) { 12017 free(mta, M_DEVBUF); 12018 BLOGE(sc, "Failed to allocate temp mcast list\n"); 12019 return (-1); 12020 } 12021 bzero(mc_mac, (sizeof(*mc_mac) * mc_count)); 12022 12023 /* mta and mcnt not expected to be different */ 12024 if_multiaddr_array(ifp, mta, &mcnt, mc_count); 12025 12026 12027 rparam.mcast_obj = &sc->mcast_obj; 12028 ECORE_LIST_INIT(&rparam.mcast_list); 12029 12030 for(i=0; i< mcnt; i++) { 12031 12032 mc_mac->mac = (uint8_t *)(mta + (i * ETHER_ADDR_LEN)); 12033 ECORE_LIST_PUSH_TAIL(&mc_mac->link, &rparam.mcast_list); 12034 12035 BLOGD(sc, DBG_LOAD, 12036 "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n", 12037 mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2], 12038 mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]); 12039 12040 mc_mac++; 12041 } 12042 rparam.mcast_list_len = mc_count; 12043 12044 BXE_MCAST_LOCK(sc); 12045 12046 /* first, clear all configured multicast MACs */ 12047 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 12048 if (rc < 0) { 12049 BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc); 12050 BXE_MCAST_UNLOCK(sc); 12051 free(mc_mac_start, M_DEVBUF); 12052 free(mta, M_DEVBUF); 12053 return (rc); 12054 } 12055 12056 /* Now add the new MACs */ 12057 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD); 12058 if (rc < 0) { 12059 BLOGE(sc, "Failed to set new mcast config (%d)\n", rc); 12060 } 12061 12062 BXE_MCAST_UNLOCK(sc); 12063 12064 free(mc_mac_start, M_DEVBUF); 12065 free(mta, M_DEVBUF); 12066 12067 return (rc); 12068 } 12069 12070 static int 12071 bxe_set_uc_list(struct bxe_softc *sc) 12072 { 12073 if_t ifp = sc->ifp; 12074 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 12075 struct ifaddr *ifa; 12076 unsigned long ramrod_flags = 0; 12077 int rc; 12078 12079 #if __FreeBSD_version < 800000 12080 IF_ADDR_LOCK(ifp); 12081 #else 12082 if_addr_rlock(ifp); 12083 #endif 12084 12085 /* first schedule a cleanup up of old configuration */ 12086 rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE); 12087 if (rc < 0) { 12088 BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc); 12089 #if __FreeBSD_version < 800000 12090 IF_ADDR_UNLOCK(ifp); 12091 #else 12092 if_addr_runlock(ifp); 12093 #endif 12094 return (rc); 12095 } 12096 12097 ifa = if_getifaddr(ifp); /* XXX Is this structure */ 12098 while (ifa) { 12099 if (ifa->ifa_addr->sa_family != AF_LINK) { 12100 ifa = TAILQ_NEXT(ifa, ifa_link); 12101 continue; 12102 } 12103 12104 rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr), 12105 mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags); 12106 if (rc == -EEXIST) { 12107 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12108 /* do not treat adding same MAC as an error */ 12109 rc = 0; 12110 } else if (rc < 0) { 12111 BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc); 12112 #if __FreeBSD_version < 800000 12113 IF_ADDR_UNLOCK(ifp); 12114 #else 12115 if_addr_runlock(ifp); 12116 #endif 12117 return (rc); 12118 } 12119 12120 ifa = TAILQ_NEXT(ifa, ifa_link); 12121 } 12122 12123 #if __FreeBSD_version < 800000 12124 IF_ADDR_UNLOCK(ifp); 12125 #else 12126 if_addr_runlock(ifp); 12127 #endif 12128 12129 /* Execute the pending commands */ 12130 bit_set(&ramrod_flags, RAMROD_CONT); 12131 return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */, 12132 ECORE_UC_LIST_MAC, &ramrod_flags)); 12133 } 12134 12135 static void 12136 bxe_set_rx_mode(struct bxe_softc *sc) 12137 { 12138 if_t ifp = sc->ifp; 12139 uint32_t rx_mode = BXE_RX_MODE_NORMAL; 12140 12141 if (sc->state != BXE_STATE_OPEN) { 12142 BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state); 12143 return; 12144 } 12145 12146 BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp)); 12147 12148 if (if_getflags(ifp) & IFF_PROMISC) { 12149 rx_mode = BXE_RX_MODE_PROMISC; 12150 } else if ((if_getflags(ifp) & IFF_ALLMULTI) || 12151 ((if_getamcount(ifp) > BXE_MAX_MULTICAST) && 12152 CHIP_IS_E1(sc))) { 12153 rx_mode = BXE_RX_MODE_ALLMULTI; 12154 } else { 12155 if (IS_PF(sc)) { 12156 /* some multicasts */ 12157 if (bxe_set_mc_list(sc) < 0) { 12158 rx_mode = BXE_RX_MODE_ALLMULTI; 12159 } 12160 if (bxe_set_uc_list(sc) < 0) { 12161 rx_mode = BXE_RX_MODE_PROMISC; 12162 } 12163 } 12164 } 12165 12166 sc->rx_mode = rx_mode; 12167 12168 /* schedule the rx_mode command */ 12169 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 12170 BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n"); 12171 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 12172 return; 12173 } 12174 12175 if (IS_PF(sc)) { 12176 bxe_set_storm_rx_mode(sc); 12177 } 12178 } 12179 12180 12181 /* update flags in shmem */ 12182 static void 12183 bxe_update_drv_flags(struct bxe_softc *sc, 12184 uint32_t flags, 12185 uint32_t set) 12186 { 12187 uint32_t drv_flags; 12188 12189 if (SHMEM2_HAS(sc, drv_flags)) { 12190 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12191 drv_flags = SHMEM2_RD(sc, drv_flags); 12192 12193 if (set) { 12194 SET_FLAGS(drv_flags, flags); 12195 } else { 12196 RESET_FLAGS(drv_flags, flags); 12197 } 12198 12199 SHMEM2_WR(sc, drv_flags, drv_flags); 12200 BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags); 12201 12202 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12203 } 12204 } 12205 12206 /* periodic timer callout routine, only runs when the interface is up */ 12207 12208 static void 12209 bxe_periodic_callout_func(void *xsc) 12210 { 12211 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12212 int i; 12213 12214 if (!BXE_CORE_TRYLOCK(sc)) { 12215 /* just bail and try again next time */ 12216 12217 if ((sc->state == BXE_STATE_OPEN) && 12218 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12219 /* schedule the next periodic callout */ 12220 callout_reset(&sc->periodic_callout, hz, 12221 bxe_periodic_callout_func, sc); 12222 } 12223 12224 return; 12225 } 12226 12227 if ((sc->state != BXE_STATE_OPEN) || 12228 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) { 12229 BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state); 12230 BXE_CORE_UNLOCK(sc); 12231 return; 12232 } 12233 12234 12235 /* Check for TX timeouts on any fastpath. */ 12236 FOR_EACH_QUEUE(sc, i) { 12237 if (bxe_watchdog(sc, &sc->fp[i]) != 0) { 12238 /* Ruh-Roh, chip was reset! */ 12239 break; 12240 } 12241 } 12242 12243 if (!CHIP_REV_IS_SLOW(sc)) { 12244 /* 12245 * This barrier is needed to ensure the ordering between the writing 12246 * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and 12247 * the reading here. 12248 */ 12249 mb(); 12250 if (sc->port.pmf) { 12251 bxe_acquire_phy_lock(sc); 12252 elink_period_func(&sc->link_params, &sc->link_vars); 12253 bxe_release_phy_lock(sc); 12254 } 12255 } 12256 12257 if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) { 12258 int mb_idx = SC_FW_MB_IDX(sc); 12259 uint32_t drv_pulse; 12260 uint32_t mcp_pulse; 12261 12262 ++sc->fw_drv_pulse_wr_seq; 12263 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 12264 12265 drv_pulse = sc->fw_drv_pulse_wr_seq; 12266 bxe_drv_pulse(sc); 12267 12268 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) & 12269 MCP_PULSE_SEQ_MASK); 12270 12271 /* 12272 * The delta between driver pulse and mcp response should 12273 * be 1 (before mcp response) or 0 (after mcp response). 12274 */ 12275 if ((drv_pulse != mcp_pulse) && 12276 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) { 12277 /* someone lost a heartbeat... */ 12278 BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 12279 drv_pulse, mcp_pulse); 12280 } 12281 } 12282 12283 /* state is BXE_STATE_OPEN */ 12284 bxe_stats_handle(sc, STATS_EVENT_UPDATE); 12285 12286 BXE_CORE_UNLOCK(sc); 12287 12288 if ((sc->state == BXE_STATE_OPEN) && 12289 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12290 /* schedule the next periodic callout */ 12291 callout_reset(&sc->periodic_callout, hz, 12292 bxe_periodic_callout_func, sc); 12293 } 12294 } 12295 12296 static void 12297 bxe_periodic_start(struct bxe_softc *sc) 12298 { 12299 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO); 12300 callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc); 12301 } 12302 12303 static void 12304 bxe_periodic_stop(struct bxe_softc *sc) 12305 { 12306 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP); 12307 callout_drain(&sc->periodic_callout); 12308 } 12309 12310 /* start the controller */ 12311 static __noinline int 12312 bxe_nic_load(struct bxe_softc *sc, 12313 int load_mode) 12314 { 12315 uint32_t val; 12316 int load_code = 0; 12317 int i, rc = 0; 12318 12319 BXE_CORE_LOCK_ASSERT(sc); 12320 12321 BLOGD(sc, DBG_LOAD, "Starting NIC load...\n"); 12322 12323 sc->state = BXE_STATE_OPENING_WAITING_LOAD; 12324 12325 if (IS_PF(sc)) { 12326 /* must be called before memory allocation and HW init */ 12327 bxe_ilt_set_info(sc); 12328 } 12329 12330 sc->last_reported_link_state = LINK_STATE_UNKNOWN; 12331 12332 bxe_set_fp_rx_buf_size(sc); 12333 12334 if (bxe_alloc_fp_buffers(sc) != 0) { 12335 BLOGE(sc, "Failed to allocate fastpath memory\n"); 12336 sc->state = BXE_STATE_CLOSED; 12337 rc = ENOMEM; 12338 goto bxe_nic_load_error0; 12339 } 12340 12341 if (bxe_alloc_mem(sc) != 0) { 12342 sc->state = BXE_STATE_CLOSED; 12343 rc = ENOMEM; 12344 goto bxe_nic_load_error0; 12345 } 12346 12347 if (bxe_alloc_fw_stats_mem(sc) != 0) { 12348 sc->state = BXE_STATE_CLOSED; 12349 rc = ENOMEM; 12350 goto bxe_nic_load_error0; 12351 } 12352 12353 if (IS_PF(sc)) { 12354 /* set pf load just before approaching the MCP */ 12355 bxe_set_pf_load(sc); 12356 12357 /* if MCP exists send load request and analyze response */ 12358 if (!BXE_NOMCP(sc)) { 12359 /* attempt to load pf */ 12360 if (bxe_nic_load_request(sc, &load_code) != 0) { 12361 sc->state = BXE_STATE_CLOSED; 12362 rc = ENXIO; 12363 goto bxe_nic_load_error1; 12364 } 12365 12366 /* what did the MCP say? */ 12367 if (bxe_nic_load_analyze_req(sc, load_code) != 0) { 12368 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12369 sc->state = BXE_STATE_CLOSED; 12370 rc = ENXIO; 12371 goto bxe_nic_load_error2; 12372 } 12373 } else { 12374 BLOGI(sc, "Device has no MCP!\n"); 12375 load_code = bxe_nic_load_no_mcp(sc); 12376 } 12377 12378 /* mark PMF if applicable */ 12379 bxe_nic_load_pmf(sc, load_code); 12380 12381 /* Init Function state controlling object */ 12382 bxe_init_func_obj(sc); 12383 12384 /* Initialize HW */ 12385 if (bxe_init_hw(sc, load_code) != 0) { 12386 BLOGE(sc, "HW init failed\n"); 12387 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12388 sc->state = BXE_STATE_CLOSED; 12389 rc = ENXIO; 12390 goto bxe_nic_load_error2; 12391 } 12392 } 12393 12394 /* set ALWAYS_ALIVE bit in shmem */ 12395 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 12396 bxe_drv_pulse(sc); 12397 sc->flags |= BXE_NO_PULSE; 12398 12399 /* attach interrupts */ 12400 if (bxe_interrupt_attach(sc) != 0) { 12401 sc->state = BXE_STATE_CLOSED; 12402 rc = ENXIO; 12403 goto bxe_nic_load_error2; 12404 } 12405 12406 bxe_nic_init(sc, load_code); 12407 12408 /* Init per-function objects */ 12409 if (IS_PF(sc)) { 12410 bxe_init_objs(sc); 12411 // XXX bxe_iov_nic_init(sc); 12412 12413 /* set AFEX default VLAN tag to an invalid value */ 12414 sc->devinfo.mf_info.afex_def_vlan_tag = -1; 12415 // XXX bxe_nic_load_afex_dcc(sc, load_code); 12416 12417 sc->state = BXE_STATE_OPENING_WAITING_PORT; 12418 rc = bxe_func_start(sc); 12419 if (rc) { 12420 BLOGE(sc, "Function start failed! rc = %d\n", rc); 12421 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12422 sc->state = BXE_STATE_ERROR; 12423 goto bxe_nic_load_error3; 12424 } 12425 12426 /* send LOAD_DONE command to MCP */ 12427 if (!BXE_NOMCP(sc)) { 12428 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12429 if (!load_code) { 12430 BLOGE(sc, "MCP response failure, aborting\n"); 12431 sc->state = BXE_STATE_ERROR; 12432 rc = ENXIO; 12433 goto bxe_nic_load_error3; 12434 } 12435 } 12436 12437 rc = bxe_setup_leading(sc); 12438 if (rc) { 12439 BLOGE(sc, "Setup leading failed! rc = %d\n", rc); 12440 sc->state = BXE_STATE_ERROR; 12441 goto bxe_nic_load_error3; 12442 } 12443 12444 FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) { 12445 rc = bxe_setup_queue(sc, &sc->fp[i], FALSE); 12446 if (rc) { 12447 BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc); 12448 sc->state = BXE_STATE_ERROR; 12449 goto bxe_nic_load_error3; 12450 } 12451 } 12452 12453 rc = bxe_init_rss_pf(sc); 12454 if (rc) { 12455 BLOGE(sc, "PF RSS init failed\n"); 12456 sc->state = BXE_STATE_ERROR; 12457 goto bxe_nic_load_error3; 12458 } 12459 } 12460 /* XXX VF */ 12461 12462 /* now when Clients are configured we are ready to work */ 12463 sc->state = BXE_STATE_OPEN; 12464 12465 /* Configure a ucast MAC */ 12466 if (IS_PF(sc)) { 12467 rc = bxe_set_eth_mac(sc, TRUE); 12468 } 12469 if (rc) { 12470 BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc); 12471 sc->state = BXE_STATE_ERROR; 12472 goto bxe_nic_load_error3; 12473 } 12474 12475 if (sc->port.pmf) { 12476 rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN); 12477 if (rc) { 12478 sc->state = BXE_STATE_ERROR; 12479 goto bxe_nic_load_error3; 12480 } 12481 } 12482 12483 sc->link_params.feature_config_flags &= 12484 ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN; 12485 12486 /* start fast path */ 12487 12488 /* Initialize Rx filter */ 12489 bxe_set_rx_mode(sc); 12490 12491 /* start the Tx */ 12492 switch (/* XXX load_mode */LOAD_OPEN) { 12493 case LOAD_NORMAL: 12494 case LOAD_OPEN: 12495 break; 12496 12497 case LOAD_DIAG: 12498 case LOAD_LOOPBACK_EXT: 12499 sc->state = BXE_STATE_DIAG; 12500 break; 12501 12502 default: 12503 break; 12504 } 12505 12506 if (sc->port.pmf) { 12507 bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0); 12508 } else { 12509 bxe_link_status_update(sc); 12510 } 12511 12512 /* start the periodic timer callout */ 12513 bxe_periodic_start(sc); 12514 12515 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 12516 /* mark driver is loaded in shmem2 */ 12517 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 12518 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 12519 (val | 12520 DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 12521 DRV_FLAGS_CAPABILITIES_LOADED_L2)); 12522 } 12523 12524 /* wait for all pending SP commands to complete */ 12525 if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) { 12526 BLOGE(sc, "Timeout waiting for all SPs to complete!\n"); 12527 bxe_periodic_stop(sc); 12528 bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE); 12529 return (ENXIO); 12530 } 12531 12532 /* Tell the stack the driver is running! */ 12533 if_setdrvflags(sc->ifp, IFF_DRV_RUNNING); 12534 12535 BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n"); 12536 12537 return (0); 12538 12539 bxe_nic_load_error3: 12540 12541 if (IS_PF(sc)) { 12542 bxe_int_disable_sync(sc, 1); 12543 12544 /* clean out queued objects */ 12545 bxe_squeeze_objects(sc); 12546 } 12547 12548 bxe_interrupt_detach(sc); 12549 12550 bxe_nic_load_error2: 12551 12552 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 12553 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 12554 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 12555 } 12556 12557 sc->port.pmf = 0; 12558 12559 bxe_nic_load_error1: 12560 12561 /* clear pf_load status, as it was already set */ 12562 if (IS_PF(sc)) { 12563 bxe_clear_pf_load(sc); 12564 } 12565 12566 bxe_nic_load_error0: 12567 12568 bxe_free_fw_stats_mem(sc); 12569 bxe_free_fp_buffers(sc); 12570 bxe_free_mem(sc); 12571 12572 return (rc); 12573 } 12574 12575 static int 12576 bxe_init_locked(struct bxe_softc *sc) 12577 { 12578 int other_engine = SC_PATH(sc) ? 0 : 1; 12579 uint8_t other_load_status, load_status; 12580 uint8_t global = FALSE; 12581 int rc; 12582 12583 BXE_CORE_LOCK_ASSERT(sc); 12584 12585 /* check if the driver is already running */ 12586 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 12587 BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n"); 12588 return (0); 12589 } 12590 12591 bxe_set_power_state(sc, PCI_PM_D0); 12592 12593 /* 12594 * If parity occurred during the unload, then attentions and/or 12595 * RECOVERY_IN_PROGRES may still be set. If so we want the first function 12596 * loaded on the current engine to complete the recovery. Parity recovery 12597 * is only relevant for PF driver. 12598 */ 12599 if (IS_PF(sc)) { 12600 other_load_status = bxe_get_load_status(sc, other_engine); 12601 load_status = bxe_get_load_status(sc, SC_PATH(sc)); 12602 12603 if (!bxe_reset_is_done(sc, SC_PATH(sc)) || 12604 bxe_chk_parity_attn(sc, &global, TRUE)) { 12605 do { 12606 /* 12607 * If there are attentions and they are in global blocks, set 12608 * the GLOBAL_RESET bit regardless whether it will be this 12609 * function that will complete the recovery or not. 12610 */ 12611 if (global) { 12612 bxe_set_reset_global(sc); 12613 } 12614 12615 /* 12616 * Only the first function on the current engine should try 12617 * to recover in open. In case of attentions in global blocks 12618 * only the first in the chip should try to recover. 12619 */ 12620 if ((!load_status && (!global || !other_load_status)) && 12621 bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) { 12622 BLOGI(sc, "Recovered during init\n"); 12623 break; 12624 } 12625 12626 /* recovery has failed... */ 12627 bxe_set_power_state(sc, PCI_PM_D3hot); 12628 sc->recovery_state = BXE_RECOVERY_FAILED; 12629 12630 BLOGE(sc, "Recovery flow hasn't properly " 12631 "completed yet, try again later. " 12632 "If you still see this message after a " 12633 "few retries then power cycle is required.\n"); 12634 12635 rc = ENXIO; 12636 goto bxe_init_locked_done; 12637 } while (0); 12638 } 12639 } 12640 12641 sc->recovery_state = BXE_RECOVERY_DONE; 12642 12643 rc = bxe_nic_load(sc, LOAD_OPEN); 12644 12645 bxe_init_locked_done: 12646 12647 if (rc) { 12648 /* Tell the stack the driver is NOT running! */ 12649 BLOGE(sc, "Initialization failed, " 12650 "stack notified driver is NOT running!\n"); 12651 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 12652 } 12653 12654 return (rc); 12655 } 12656 12657 static int 12658 bxe_stop_locked(struct bxe_softc *sc) 12659 { 12660 BXE_CORE_LOCK_ASSERT(sc); 12661 return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE)); 12662 } 12663 12664 /* 12665 * Handles controller initialization when called from an unlocked routine. 12666 * ifconfig calls this function. 12667 * 12668 * Returns: 12669 * void 12670 */ 12671 static void 12672 bxe_init(void *xsc) 12673 { 12674 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12675 12676 BXE_CORE_LOCK(sc); 12677 bxe_init_locked(sc); 12678 BXE_CORE_UNLOCK(sc); 12679 } 12680 12681 static int 12682 bxe_init_ifnet(struct bxe_softc *sc) 12683 { 12684 if_t ifp; 12685 int capabilities; 12686 12687 /* ifconfig entrypoint for media type/status reporting */ 12688 ifmedia_init(&sc->ifmedia, IFM_IMASK, 12689 bxe_ifmedia_update, 12690 bxe_ifmedia_status); 12691 12692 /* set the default interface values */ 12693 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL); 12694 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL); 12695 ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO)); 12696 12697 sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */ 12698 BLOGI(sc, "IFMEDIA flags : %x\n", sc->ifmedia.ifm_media); 12699 12700 /* allocate the ifnet structure */ 12701 if ((ifp = if_gethandle(IFT_ETHER)) == NULL) { 12702 BLOGE(sc, "Interface allocation failed!\n"); 12703 return (ENXIO); 12704 } 12705 12706 if_setsoftc(ifp, sc); 12707 if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); 12708 if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST)); 12709 if_setioctlfn(ifp, bxe_ioctl); 12710 if_setstartfn(ifp, bxe_tx_start); 12711 if_setgetcounterfn(ifp, bxe_get_counter); 12712 #if __FreeBSD_version >= 901504 12713 if_settransmitfn(ifp, bxe_tx_mq_start); 12714 if_setqflushfn(ifp, bxe_mq_flush); 12715 #endif 12716 #ifdef FreeBSD8_0 12717 if_settimer(ifp, 0); 12718 #endif 12719 if_setinitfn(ifp, bxe_init); 12720 if_setmtu(ifp, sc->mtu); 12721 if_sethwassist(ifp, (CSUM_IP | 12722 CSUM_TCP | 12723 CSUM_UDP | 12724 CSUM_TSO | 12725 CSUM_TCP_IPV6 | 12726 CSUM_UDP_IPV6)); 12727 12728 capabilities = 12729 #if __FreeBSD_version < 700000 12730 (IFCAP_VLAN_MTU | 12731 IFCAP_VLAN_HWTAGGING | 12732 IFCAP_HWCSUM | 12733 IFCAP_JUMBO_MTU | 12734 IFCAP_LRO); 12735 #else 12736 (IFCAP_VLAN_MTU | 12737 IFCAP_VLAN_HWTAGGING | 12738 IFCAP_VLAN_HWTSO | 12739 IFCAP_VLAN_HWFILTER | 12740 IFCAP_VLAN_HWCSUM | 12741 IFCAP_HWCSUM | 12742 IFCAP_JUMBO_MTU | 12743 IFCAP_LRO | 12744 IFCAP_TSO4 | 12745 IFCAP_TSO6 | 12746 IFCAP_WOL_MAGIC); 12747 #endif 12748 if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */ 12749 if_setcapenable(ifp, if_getcapabilities(ifp)); 12750 if_setbaudrate(ifp, IF_Gbps(10)); 12751 /* XXX */ 12752 if_setsendqlen(ifp, sc->tx_ring_size); 12753 if_setsendqready(ifp); 12754 /* XXX */ 12755 12756 sc->ifp = ifp; 12757 12758 /* attach to the Ethernet interface list */ 12759 ether_ifattach(ifp, sc->link_params.mac_addr); 12760 12761 return (0); 12762 } 12763 12764 static void 12765 bxe_deallocate_bars(struct bxe_softc *sc) 12766 { 12767 int i; 12768 12769 for (i = 0; i < MAX_BARS; i++) { 12770 if (sc->bar[i].resource != NULL) { 12771 bus_release_resource(sc->dev, 12772 SYS_RES_MEMORY, 12773 sc->bar[i].rid, 12774 sc->bar[i].resource); 12775 BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n", 12776 i, PCIR_BAR(i)); 12777 } 12778 } 12779 } 12780 12781 static int 12782 bxe_allocate_bars(struct bxe_softc *sc) 12783 { 12784 u_int flags; 12785 int i; 12786 12787 memset(sc->bar, 0, sizeof(sc->bar)); 12788 12789 for (i = 0; i < MAX_BARS; i++) { 12790 12791 /* memory resources reside at BARs 0, 2, 4 */ 12792 /* Run `pciconf -lb` to see mappings */ 12793 if ((i != 0) && (i != 2) && (i != 4)) { 12794 continue; 12795 } 12796 12797 sc->bar[i].rid = PCIR_BAR(i); 12798 12799 flags = RF_ACTIVE; 12800 if (i == 0) { 12801 flags |= RF_SHAREABLE; 12802 } 12803 12804 if ((sc->bar[i].resource = 12805 bus_alloc_resource_any(sc->dev, 12806 SYS_RES_MEMORY, 12807 &sc->bar[i].rid, 12808 flags)) == NULL) { 12809 return (0); 12810 } 12811 12812 sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource); 12813 sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource); 12814 sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource); 12815 12816 BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%jd) -> %p\n", 12817 i, PCIR_BAR(i), 12818 (void *)rman_get_start(sc->bar[i].resource), 12819 (void *)rman_get_end(sc->bar[i].resource), 12820 rman_get_size(sc->bar[i].resource), 12821 (void *)sc->bar[i].kva); 12822 } 12823 12824 return (0); 12825 } 12826 12827 static void 12828 bxe_get_function_num(struct bxe_softc *sc) 12829 { 12830 uint32_t val = 0; 12831 12832 /* 12833 * Read the ME register to get the function number. The ME register 12834 * holds the relative-function number and absolute-function number. The 12835 * absolute-function number appears only in E2 and above. Before that 12836 * these bits always contained zero, therefore we cannot blindly use them. 12837 */ 12838 12839 val = REG_RD(sc, BAR_ME_REGISTER); 12840 12841 sc->pfunc_rel = 12842 (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT); 12843 sc->path_id = 12844 (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1; 12845 12846 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 12847 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id); 12848 } else { 12849 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id); 12850 } 12851 12852 BLOGD(sc, DBG_LOAD, 12853 "Relative function %d, Absolute function %d, Path %d\n", 12854 sc->pfunc_rel, sc->pfunc_abs, sc->path_id); 12855 } 12856 12857 static uint32_t 12858 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc) 12859 { 12860 uint32_t shmem2_size; 12861 uint32_t offset; 12862 uint32_t mf_cfg_offset_value; 12863 12864 /* Non 57712 */ 12865 offset = (SHMEM_RD(sc, func_mb) + 12866 (MAX_FUNC_NUM * sizeof(struct drv_func_mb))); 12867 12868 /* 57712 plus */ 12869 if (sc->devinfo.shmem2_base != 0) { 12870 shmem2_size = SHMEM2_RD(sc, size); 12871 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) { 12872 mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr); 12873 if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) { 12874 offset = mf_cfg_offset_value; 12875 } 12876 } 12877 } 12878 12879 return (offset); 12880 } 12881 12882 static uint32_t 12883 bxe_pcie_capability_read(struct bxe_softc *sc, 12884 int reg, 12885 int width) 12886 { 12887 int pcie_reg; 12888 12889 /* ensure PCIe capability is enabled */ 12890 if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) { 12891 if (pcie_reg != 0) { 12892 BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg); 12893 return (pci_read_config(sc->dev, (pcie_reg + reg), width)); 12894 } 12895 } 12896 12897 BLOGE(sc, "PCIe capability NOT FOUND!!!\n"); 12898 12899 return (0); 12900 } 12901 12902 static uint8_t 12903 bxe_is_pcie_pending(struct bxe_softc *sc) 12904 { 12905 return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) & 12906 PCIM_EXP_STA_TRANSACTION_PND); 12907 } 12908 12909 /* 12910 * Walk the PCI capabiites list for the device to find what features are 12911 * supported. These capabilites may be enabled/disabled by firmware so it's 12912 * best to walk the list rather than make assumptions. 12913 */ 12914 static void 12915 bxe_probe_pci_caps(struct bxe_softc *sc) 12916 { 12917 uint16_t link_status; 12918 int reg; 12919 12920 /* check if PCI Power Management is enabled */ 12921 if (pci_find_cap(sc->dev, PCIY_PMG, ®) == 0) { 12922 if (reg != 0) { 12923 BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg); 12924 12925 sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG; 12926 sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg; 12927 } 12928 } 12929 12930 link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2); 12931 12932 /* handle PCIe 2.0 workarounds for 57710 */ 12933 if (CHIP_IS_E1(sc)) { 12934 /* workaround for 57710 errata E4_57710_27462 */ 12935 sc->devinfo.pcie_link_speed = 12936 (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1; 12937 12938 /* workaround for 57710 errata E4_57710_27488 */ 12939 sc->devinfo.pcie_link_width = 12940 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 12941 if (sc->devinfo.pcie_link_speed > 1) { 12942 sc->devinfo.pcie_link_width = 12943 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1; 12944 } 12945 } else { 12946 sc->devinfo.pcie_link_speed = 12947 (link_status & PCIM_LINK_STA_SPEED); 12948 sc->devinfo.pcie_link_width = 12949 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 12950 } 12951 12952 BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n", 12953 sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width); 12954 12955 sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG; 12956 sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg; 12957 12958 /* check if MSI capability is enabled */ 12959 if (pci_find_cap(sc->dev, PCIY_MSI, ®) == 0) { 12960 if (reg != 0) { 12961 BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg); 12962 12963 sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG; 12964 sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg; 12965 } 12966 } 12967 12968 /* check if MSI-X capability is enabled */ 12969 if (pci_find_cap(sc->dev, PCIY_MSIX, ®) == 0) { 12970 if (reg != 0) { 12971 BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg); 12972 12973 sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG; 12974 sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg; 12975 } 12976 } 12977 } 12978 12979 static int 12980 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc) 12981 { 12982 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 12983 uint32_t val; 12984 12985 /* get the outer vlan if we're in switch-dependent mode */ 12986 12987 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 12988 mf_info->ext_id = (uint16_t)val; 12989 12990 mf_info->multi_vnics_mode = 1; 12991 12992 if (!VALID_OVLAN(mf_info->ext_id)) { 12993 BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id); 12994 return (1); 12995 } 12996 12997 /* get the capabilities */ 12998 if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 12999 FUNC_MF_CFG_PROTOCOL_ISCSI) { 13000 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI; 13001 } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13002 FUNC_MF_CFG_PROTOCOL_FCOE) { 13003 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE; 13004 } else { 13005 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET; 13006 } 13007 13008 mf_info->vnics_per_port = 13009 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13010 13011 return (0); 13012 } 13013 13014 static uint32_t 13015 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc) 13016 { 13017 uint32_t retval = 0; 13018 uint32_t val; 13019 13020 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13021 13022 if (val & MACP_FUNC_CFG_FLAGS_ENABLED) { 13023 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) { 13024 retval |= MF_PROTO_SUPPORT_ETHERNET; 13025 } 13026 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 13027 retval |= MF_PROTO_SUPPORT_ISCSI; 13028 } 13029 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 13030 retval |= MF_PROTO_SUPPORT_FCOE; 13031 } 13032 } 13033 13034 return (retval); 13035 } 13036 13037 static int 13038 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc) 13039 { 13040 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13041 uint32_t val; 13042 13043 /* 13044 * There is no outer vlan if we're in switch-independent mode. 13045 * If the mac is valid then assume multi-function. 13046 */ 13047 13048 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13049 13050 mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0); 13051 13052 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13053 13054 mf_info->vnics_per_port = 13055 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13056 13057 return (0); 13058 } 13059 13060 static int 13061 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc) 13062 { 13063 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13064 uint32_t e1hov_tag; 13065 uint32_t func_config; 13066 uint32_t niv_config; 13067 13068 mf_info->multi_vnics_mode = 1; 13069 13070 e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13071 func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13072 niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config); 13073 13074 mf_info->ext_id = 13075 (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >> 13076 FUNC_MF_CFG_E1HOV_TAG_SHIFT); 13077 13078 mf_info->default_vlan = 13079 (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >> 13080 FUNC_MF_CFG_AFEX_VLAN_SHIFT); 13081 13082 mf_info->niv_allowed_priorities = 13083 (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 13084 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT); 13085 13086 mf_info->niv_default_cos = 13087 (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 13088 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT); 13089 13090 mf_info->afex_vlan_mode = 13091 ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 13092 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT); 13093 13094 mf_info->niv_mba_enabled = 13095 ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >> 13096 FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT); 13097 13098 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13099 13100 mf_info->vnics_per_port = 13101 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13102 13103 return (0); 13104 } 13105 13106 static int 13107 bxe_check_valid_mf_cfg(struct bxe_softc *sc) 13108 { 13109 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13110 uint32_t mf_cfg1; 13111 uint32_t mf_cfg2; 13112 uint32_t ovlan1; 13113 uint32_t ovlan2; 13114 uint8_t i, j; 13115 13116 BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n", 13117 SC_PORT(sc)); 13118 BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n", 13119 mf_info->mf_config[SC_VN(sc)]); 13120 BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n", 13121 mf_info->multi_vnics_mode); 13122 BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n", 13123 mf_info->vnics_per_port); 13124 BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n", 13125 mf_info->ext_id); 13126 BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n", 13127 mf_info->min_bw[0], mf_info->min_bw[1], 13128 mf_info->min_bw[2], mf_info->min_bw[3]); 13129 BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n", 13130 mf_info->max_bw[0], mf_info->max_bw[1], 13131 mf_info->max_bw[2], mf_info->max_bw[3]); 13132 BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n", 13133 sc->mac_addr_str); 13134 13135 /* various MF mode sanity checks... */ 13136 13137 if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) { 13138 BLOGE(sc, "Enumerated function %d is marked as hidden\n", 13139 SC_PORT(sc)); 13140 return (1); 13141 } 13142 13143 if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) { 13144 BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n", 13145 mf_info->vnics_per_port, mf_info->multi_vnics_mode); 13146 return (1); 13147 } 13148 13149 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13150 /* vnic id > 0 must have valid ovlan in switch-dependent mode */ 13151 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) { 13152 BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n", 13153 SC_VN(sc), OVLAN(sc)); 13154 return (1); 13155 } 13156 13157 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) { 13158 BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n", 13159 mf_info->multi_vnics_mode, OVLAN(sc)); 13160 return (1); 13161 } 13162 13163 /* 13164 * Verify all functions are either MF or SF mode. If MF, make sure 13165 * sure that all non-hidden functions have a valid ovlan. If SF, 13166 * make sure that all non-hidden functions have an invalid ovlan. 13167 */ 13168 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13169 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13170 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13171 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13172 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) || 13173 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) { 13174 BLOGE(sc, "mf_mode=SD function %d MF config " 13175 "mismatch, multi_vnics_mode=%d ovlan=%d\n", 13176 i, mf_info->multi_vnics_mode, ovlan1); 13177 return (1); 13178 } 13179 } 13180 13181 /* Verify all funcs on the same port each have a different ovlan. */ 13182 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13183 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13184 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13185 /* iterate from the next function on the port to the max func */ 13186 for (j = i + 2; j < MAX_FUNC_NUM; j += 2) { 13187 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config); 13188 ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag); 13189 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13190 VALID_OVLAN(ovlan1) && 13191 !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) && 13192 VALID_OVLAN(ovlan2) && 13193 (ovlan1 == ovlan2)) { 13194 BLOGE(sc, "mf_mode=SD functions %d and %d " 13195 "have the same ovlan (%d)\n", 13196 i, j, ovlan1); 13197 return (1); 13198 } 13199 } 13200 } 13201 } /* MULTI_FUNCTION_SD */ 13202 13203 return (0); 13204 } 13205 13206 static int 13207 bxe_get_mf_cfg_info(struct bxe_softc *sc) 13208 { 13209 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13210 uint32_t val, mac_upper; 13211 uint8_t i, vnic; 13212 13213 /* initialize mf_info defaults */ 13214 mf_info->vnics_per_port = 1; 13215 mf_info->multi_vnics_mode = FALSE; 13216 mf_info->path_has_ovlan = FALSE; 13217 mf_info->mf_mode = SINGLE_FUNCTION; 13218 13219 if (!CHIP_IS_MF_CAP(sc)) { 13220 return (0); 13221 } 13222 13223 if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) { 13224 BLOGE(sc, "Invalid mf_cfg_base!\n"); 13225 return (1); 13226 } 13227 13228 /* get the MF mode (switch dependent / independent / single-function) */ 13229 13230 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13231 13232 switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) 13233 { 13234 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 13235 13236 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13237 13238 /* check for legal upper mac bytes */ 13239 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) { 13240 mf_info->mf_mode = MULTI_FUNCTION_SI; 13241 } else { 13242 BLOGE(sc, "Invalid config for Switch Independent mode\n"); 13243 } 13244 13245 break; 13246 13247 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 13248 case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4: 13249 13250 /* get outer vlan configuration */ 13251 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13252 13253 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) != 13254 FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 13255 mf_info->mf_mode = MULTI_FUNCTION_SD; 13256 } else { 13257 BLOGE(sc, "Invalid config for Switch Dependent mode\n"); 13258 } 13259 13260 break; 13261 13262 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 13263 13264 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */ 13265 return (0); 13266 13267 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 13268 13269 /* 13270 * Mark MF mode as NIV if MCP version includes NPAR-SD support 13271 * and the MAC address is valid. 13272 */ 13273 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13274 13275 if ((SHMEM2_HAS(sc, afex_driver_support)) && 13276 (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) { 13277 mf_info->mf_mode = MULTI_FUNCTION_AFEX; 13278 } else { 13279 BLOGE(sc, "Invalid config for AFEX mode\n"); 13280 } 13281 13282 break; 13283 13284 default: 13285 13286 BLOGE(sc, "Unknown MF mode (0x%08x)\n", 13287 (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)); 13288 13289 return (1); 13290 } 13291 13292 /* set path mf_mode (which could be different than function mf_mode) */ 13293 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13294 mf_info->path_has_ovlan = TRUE; 13295 } else if (mf_info->mf_mode == SINGLE_FUNCTION) { 13296 /* 13297 * Decide on path multi vnics mode. If we're not in MF mode and in 13298 * 4-port mode, this is good enough to check vnic-0 of the other port 13299 * on the same path 13300 */ 13301 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13302 uint8_t other_port = !(PORT_ID(sc) & 1); 13303 uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port)); 13304 13305 val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag); 13306 13307 mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0; 13308 } 13309 } 13310 13311 if (mf_info->mf_mode == SINGLE_FUNCTION) { 13312 /* invalid MF config */ 13313 if (SC_VN(sc) >= 1) { 13314 BLOGE(sc, "VNIC ID >= 1 in SF mode\n"); 13315 return (1); 13316 } 13317 13318 return (0); 13319 } 13320 13321 /* get the MF configuration */ 13322 mf_info->mf_config[SC_VN(sc)] = 13323 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13324 13325 switch(mf_info->mf_mode) 13326 { 13327 case MULTI_FUNCTION_SD: 13328 13329 bxe_get_shmem_mf_cfg_info_sd(sc); 13330 break; 13331 13332 case MULTI_FUNCTION_SI: 13333 13334 bxe_get_shmem_mf_cfg_info_si(sc); 13335 break; 13336 13337 case MULTI_FUNCTION_AFEX: 13338 13339 bxe_get_shmem_mf_cfg_info_niv(sc); 13340 break; 13341 13342 default: 13343 13344 BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n", 13345 mf_info->mf_mode); 13346 return (1); 13347 } 13348 13349 /* get the congestion management parameters */ 13350 13351 vnic = 0; 13352 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13353 /* get min/max bw */ 13354 val = MFCFG_RD(sc, func_mf_config[i].config); 13355 mf_info->min_bw[vnic] = 13356 ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT); 13357 mf_info->max_bw[vnic] = 13358 ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT); 13359 vnic++; 13360 } 13361 13362 return (bxe_check_valid_mf_cfg(sc)); 13363 } 13364 13365 static int 13366 bxe_get_shmem_info(struct bxe_softc *sc) 13367 { 13368 int port; 13369 uint32_t mac_hi, mac_lo, val; 13370 13371 port = SC_PORT(sc); 13372 mac_hi = mac_lo = 0; 13373 13374 sc->link_params.sc = sc; 13375 sc->link_params.port = port; 13376 13377 /* get the hardware config info */ 13378 sc->devinfo.hw_config = 13379 SHMEM_RD(sc, dev_info.shared_hw_config.config); 13380 sc->devinfo.hw_config2 = 13381 SHMEM_RD(sc, dev_info.shared_hw_config.config2); 13382 13383 sc->link_params.hw_led_mode = 13384 ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >> 13385 SHARED_HW_CFG_LED_MODE_SHIFT); 13386 13387 /* get the port feature config */ 13388 sc->port.config = 13389 SHMEM_RD(sc, dev_info.port_feature_config[port].config); 13390 13391 /* get the link params */ 13392 sc->link_params.speed_cap_mask[0] = 13393 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask); 13394 sc->link_params.speed_cap_mask[1] = 13395 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2); 13396 13397 /* get the lane config */ 13398 sc->link_params.lane_config = 13399 SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config); 13400 13401 /* get the link config */ 13402 val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config); 13403 sc->port.link_config[ELINK_INT_PHY] = val; 13404 sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK); 13405 sc->port.link_config[ELINK_EXT_PHY1] = 13406 SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2); 13407 13408 /* get the override preemphasis flag and enable it or turn it off */ 13409 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13410 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) { 13411 sc->link_params.feature_config_flags |= 13412 ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13413 } else { 13414 sc->link_params.feature_config_flags &= 13415 ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13416 } 13417 13418 /* get the initial value of the link params */ 13419 sc->link_params.multi_phy_config = 13420 SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config); 13421 13422 /* get external phy info */ 13423 sc->port.ext_phy_config = 13424 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 13425 13426 /* get the multifunction configuration */ 13427 bxe_get_mf_cfg_info(sc); 13428 13429 /* get the mac address */ 13430 if (IS_MF(sc)) { 13431 mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13432 mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower); 13433 } else { 13434 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper); 13435 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower); 13436 } 13437 13438 if ((mac_lo == 0) && (mac_hi == 0)) { 13439 *sc->mac_addr_str = 0; 13440 BLOGE(sc, "No Ethernet address programmed!\n"); 13441 } else { 13442 sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8); 13443 sc->link_params.mac_addr[1] = (uint8_t)(mac_hi); 13444 sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24); 13445 sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16); 13446 sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8); 13447 sc->link_params.mac_addr[5] = (uint8_t)(mac_lo); 13448 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str), 13449 "%02x:%02x:%02x:%02x:%02x:%02x", 13450 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1], 13451 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3], 13452 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]); 13453 BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str); 13454 } 13455 13456 return (0); 13457 } 13458 13459 static void 13460 bxe_get_tunable_params(struct bxe_softc *sc) 13461 { 13462 /* sanity checks */ 13463 13464 if ((bxe_interrupt_mode != INTR_MODE_INTX) && 13465 (bxe_interrupt_mode != INTR_MODE_MSI) && 13466 (bxe_interrupt_mode != INTR_MODE_MSIX)) { 13467 BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode); 13468 bxe_interrupt_mode = INTR_MODE_MSIX; 13469 } 13470 13471 if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) { 13472 BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count); 13473 bxe_queue_count = 0; 13474 } 13475 13476 if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) { 13477 if (bxe_max_rx_bufs == 0) { 13478 bxe_max_rx_bufs = RX_BD_USABLE; 13479 } else { 13480 BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs); 13481 bxe_max_rx_bufs = 2048; 13482 } 13483 } 13484 13485 if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) { 13486 BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks); 13487 bxe_hc_rx_ticks = 25; 13488 } 13489 13490 if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) { 13491 BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks); 13492 bxe_hc_tx_ticks = 50; 13493 } 13494 13495 if (bxe_max_aggregation_size == 0) { 13496 bxe_max_aggregation_size = TPA_AGG_SIZE; 13497 } 13498 13499 if (bxe_max_aggregation_size > 0xffff) { 13500 BLOGW(sc, "invalid max_aggregation_size (%d)\n", 13501 bxe_max_aggregation_size); 13502 bxe_max_aggregation_size = TPA_AGG_SIZE; 13503 } 13504 13505 if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) { 13506 BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs); 13507 bxe_mrrs = -1; 13508 } 13509 13510 if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) { 13511 BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen); 13512 bxe_autogreeen = 0; 13513 } 13514 13515 if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) { 13516 BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss); 13517 bxe_udp_rss = 0; 13518 } 13519 13520 /* pull in user settings */ 13521 13522 sc->interrupt_mode = bxe_interrupt_mode; 13523 sc->max_rx_bufs = bxe_max_rx_bufs; 13524 sc->hc_rx_ticks = bxe_hc_rx_ticks; 13525 sc->hc_tx_ticks = bxe_hc_tx_ticks; 13526 sc->max_aggregation_size = bxe_max_aggregation_size; 13527 sc->mrrs = bxe_mrrs; 13528 sc->autogreeen = bxe_autogreeen; 13529 sc->udp_rss = bxe_udp_rss; 13530 13531 if (bxe_interrupt_mode == INTR_MODE_INTX) { 13532 sc->num_queues = 1; 13533 } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */ 13534 sc->num_queues = 13535 min((bxe_queue_count ? bxe_queue_count : mp_ncpus), 13536 MAX_RSS_CHAINS); 13537 if (sc->num_queues > mp_ncpus) { 13538 sc->num_queues = mp_ncpus; 13539 } 13540 } 13541 13542 BLOGD(sc, DBG_LOAD, 13543 "User Config: " 13544 "debug=0x%lx " 13545 "interrupt_mode=%d " 13546 "queue_count=%d " 13547 "hc_rx_ticks=%d " 13548 "hc_tx_ticks=%d " 13549 "rx_budget=%d " 13550 "max_aggregation_size=%d " 13551 "mrrs=%d " 13552 "autogreeen=%d " 13553 "udp_rss=%d\n", 13554 bxe_debug, 13555 sc->interrupt_mode, 13556 sc->num_queues, 13557 sc->hc_rx_ticks, 13558 sc->hc_tx_ticks, 13559 bxe_rx_budget, 13560 sc->max_aggregation_size, 13561 sc->mrrs, 13562 sc->autogreeen, 13563 sc->udp_rss); 13564 } 13565 13566 static int 13567 bxe_media_detect(struct bxe_softc *sc) 13568 { 13569 int port_type; 13570 uint32_t phy_idx = bxe_get_cur_phy_idx(sc); 13571 13572 switch (sc->link_params.phy[phy_idx].media_type) { 13573 case ELINK_ETH_PHY_SFPP_10G_FIBER: 13574 case ELINK_ETH_PHY_XFP_FIBER: 13575 BLOGI(sc, "Found 10Gb Fiber media.\n"); 13576 sc->media = IFM_10G_SR; 13577 port_type = PORT_FIBRE; 13578 break; 13579 case ELINK_ETH_PHY_SFP_1G_FIBER: 13580 BLOGI(sc, "Found 1Gb Fiber media.\n"); 13581 sc->media = IFM_1000_SX; 13582 port_type = PORT_FIBRE; 13583 break; 13584 case ELINK_ETH_PHY_KR: 13585 case ELINK_ETH_PHY_CX4: 13586 BLOGI(sc, "Found 10GBase-CX4 media.\n"); 13587 sc->media = IFM_10G_CX4; 13588 port_type = PORT_FIBRE; 13589 break; 13590 case ELINK_ETH_PHY_DA_TWINAX: 13591 BLOGI(sc, "Found 10Gb Twinax media.\n"); 13592 sc->media = IFM_10G_TWINAX; 13593 port_type = PORT_DA; 13594 break; 13595 case ELINK_ETH_PHY_BASE_T: 13596 if (sc->link_params.speed_cap_mask[0] & 13597 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 13598 BLOGI(sc, "Found 10GBase-T media.\n"); 13599 sc->media = IFM_10G_T; 13600 port_type = PORT_TP; 13601 } else { 13602 BLOGI(sc, "Found 1000Base-T media.\n"); 13603 sc->media = IFM_1000_T; 13604 port_type = PORT_TP; 13605 } 13606 break; 13607 case ELINK_ETH_PHY_NOT_PRESENT: 13608 BLOGI(sc, "Media not present.\n"); 13609 sc->media = 0; 13610 port_type = PORT_OTHER; 13611 break; 13612 case ELINK_ETH_PHY_UNSPECIFIED: 13613 default: 13614 BLOGI(sc, "Unknown media!\n"); 13615 sc->media = 0; 13616 port_type = PORT_OTHER; 13617 break; 13618 } 13619 return port_type; 13620 } 13621 13622 #define GET_FIELD(value, fname) \ 13623 (((value) & (fname##_MASK)) >> (fname##_SHIFT)) 13624 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 13625 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 13626 13627 static int 13628 bxe_get_igu_cam_info(struct bxe_softc *sc) 13629 { 13630 int pfid = SC_FUNC(sc); 13631 int igu_sb_id; 13632 uint32_t val; 13633 uint8_t fid, igu_sb_cnt = 0; 13634 13635 sc->igu_base_sb = 0xff; 13636 13637 if (CHIP_INT_MODE_IS_BC(sc)) { 13638 int vn = SC_VN(sc); 13639 igu_sb_cnt = sc->igu_sb_cnt; 13640 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) * 13641 FP_SB_MAX_E1x); 13642 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x + 13643 (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn)); 13644 return (0); 13645 } 13646 13647 /* IGU in normal mode - read CAM */ 13648 for (igu_sb_id = 0; 13649 igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 13650 igu_sb_id++) { 13651 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 13652 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) { 13653 continue; 13654 } 13655 fid = IGU_FID(val); 13656 if ((fid & IGU_FID_ENCODE_IS_PF)) { 13657 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) { 13658 continue; 13659 } 13660 if (IGU_VEC(val) == 0) { 13661 /* default status block */ 13662 sc->igu_dsb_id = igu_sb_id; 13663 } else { 13664 if (sc->igu_base_sb == 0xff) { 13665 sc->igu_base_sb = igu_sb_id; 13666 } 13667 igu_sb_cnt++; 13668 } 13669 } 13670 } 13671 13672 /* 13673 * Due to new PF resource allocation by MFW T7.4 and above, it's optional 13674 * that number of CAM entries will not be equal to the value advertised in 13675 * PCI. Driver should use the minimal value of both as the actual status 13676 * block count 13677 */ 13678 sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt); 13679 13680 if (igu_sb_cnt == 0) { 13681 BLOGE(sc, "CAM configuration error\n"); 13682 return (-1); 13683 } 13684 13685 return (0); 13686 } 13687 13688 /* 13689 * Gather various information from the device config space, the device itself, 13690 * shmem, and the user input. 13691 */ 13692 static int 13693 bxe_get_device_info(struct bxe_softc *sc) 13694 { 13695 uint32_t val; 13696 int rc; 13697 13698 /* Get the data for the device */ 13699 sc->devinfo.vendor_id = pci_get_vendor(sc->dev); 13700 sc->devinfo.device_id = pci_get_device(sc->dev); 13701 sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev); 13702 sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev); 13703 13704 /* get the chip revision (chip metal comes from pci config space) */ 13705 sc->devinfo.chip_id = 13706 sc->link_params.chip_id = 13707 (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) | 13708 ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) | 13709 (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) | 13710 ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0)); 13711 13712 /* force 57811 according to MISC register */ 13713 if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 13714 if (CHIP_IS_57810(sc)) { 13715 sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) | 13716 (sc->devinfo.chip_id & 0x0000ffff)); 13717 } else if (CHIP_IS_57810_MF(sc)) { 13718 sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) | 13719 (sc->devinfo.chip_id & 0x0000ffff)); 13720 } 13721 sc->devinfo.chip_id |= 0x1; 13722 } 13723 13724 BLOGD(sc, DBG_LOAD, 13725 "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n", 13726 sc->devinfo.chip_id, 13727 ((sc->devinfo.chip_id >> 16) & 0xffff), 13728 ((sc->devinfo.chip_id >> 12) & 0xf), 13729 ((sc->devinfo.chip_id >> 4) & 0xff), 13730 ((sc->devinfo.chip_id >> 0) & 0xf)); 13731 13732 val = (REG_RD(sc, 0x2874) & 0x55); 13733 if ((sc->devinfo.chip_id & 0x1) || 13734 (CHIP_IS_E1(sc) && val) || 13735 (CHIP_IS_E1H(sc) && (val == 0x55))) { 13736 sc->flags |= BXE_ONE_PORT_FLAG; 13737 BLOGD(sc, DBG_LOAD, "single port device\n"); 13738 } 13739 13740 /* set the doorbell size */ 13741 sc->doorbell_size = (1 << BXE_DB_SHIFT); 13742 13743 /* determine whether the device is in 2 port or 4 port mode */ 13744 sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/ 13745 if (CHIP_IS_E2E3(sc)) { 13746 /* 13747 * Read port4mode_en_ovwr[0]: 13748 * If 1, four port mode is in port4mode_en_ovwr[1]. 13749 * If 0, four port mode is in port4mode_en[0]. 13750 */ 13751 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR); 13752 if (val & 1) { 13753 val = ((val >> 1) & 1); 13754 } else { 13755 val = REG_RD(sc, MISC_REG_PORT4MODE_EN); 13756 } 13757 13758 sc->devinfo.chip_port_mode = 13759 (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE; 13760 13761 BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2"); 13762 } 13763 13764 /* get the function and path info for the device */ 13765 bxe_get_function_num(sc); 13766 13767 /* get the shared memory base address */ 13768 sc->devinfo.shmem_base = 13769 sc->link_params.shmem_base = 13770 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 13771 sc->devinfo.shmem2_base = 13772 REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 : 13773 MISC_REG_GENERIC_CR_0)); 13774 13775 BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n", 13776 sc->devinfo.shmem_base, sc->devinfo.shmem2_base); 13777 13778 if (!sc->devinfo.shmem_base) { 13779 /* this should ONLY prevent upcoming shmem reads */ 13780 BLOGI(sc, "MCP not active\n"); 13781 sc->flags |= BXE_NO_MCP_FLAG; 13782 return (0); 13783 } 13784 13785 /* make sure the shared memory contents are valid */ 13786 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 13787 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) != 13788 (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) { 13789 BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val); 13790 return (0); 13791 } 13792 BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val); 13793 13794 /* get the bootcode version */ 13795 sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev); 13796 snprintf(sc->devinfo.bc_ver_str, 13797 sizeof(sc->devinfo.bc_ver_str), 13798 "%d.%d.%d", 13799 ((sc->devinfo.bc_ver >> 24) & 0xff), 13800 ((sc->devinfo.bc_ver >> 16) & 0xff), 13801 ((sc->devinfo.bc_ver >> 8) & 0xff)); 13802 BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str); 13803 13804 /* get the bootcode shmem address */ 13805 sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc); 13806 BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base); 13807 13808 /* clean indirect addresses as they're not used */ 13809 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 13810 if (IS_PF(sc)) { 13811 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0); 13812 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0); 13813 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0); 13814 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0); 13815 if (CHIP_IS_E1x(sc)) { 13816 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0); 13817 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0); 13818 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0); 13819 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0); 13820 } 13821 13822 /* 13823 * Enable internal target-read (in case we are probed after PF 13824 * FLR). Must be done prior to any BAR read access. Only for 13825 * 57712 and up 13826 */ 13827 if (!CHIP_IS_E1x(sc)) { 13828 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 13829 } 13830 } 13831 13832 /* get the nvram size */ 13833 val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4); 13834 sc->devinfo.flash_size = 13835 (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE)); 13836 BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size); 13837 13838 /* get PCI capabilites */ 13839 bxe_probe_pci_caps(sc); 13840 13841 bxe_set_power_state(sc, PCI_PM_D0); 13842 13843 /* get various configuration parameters from shmem */ 13844 bxe_get_shmem_info(sc); 13845 13846 if (sc->devinfo.pcie_msix_cap_reg != 0) { 13847 val = pci_read_config(sc->dev, 13848 (sc->devinfo.pcie_msix_cap_reg + 13849 PCIR_MSIX_CTRL), 13850 2); 13851 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE); 13852 } else { 13853 sc->igu_sb_cnt = 1; 13854 } 13855 13856 sc->igu_base_addr = BAR_IGU_INTMEM; 13857 13858 /* initialize IGU parameters */ 13859 if (CHIP_IS_E1x(sc)) { 13860 sc->devinfo.int_block = INT_BLOCK_HC; 13861 sc->igu_dsb_id = DEF_SB_IGU_ID; 13862 sc->igu_base_sb = 0; 13863 } else { 13864 sc->devinfo.int_block = INT_BLOCK_IGU; 13865 13866 /* do not allow device reset during IGU info preocessing */ 13867 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 13868 13869 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 13870 13871 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 13872 int tout = 5000; 13873 13874 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n"); 13875 13876 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 13877 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val); 13878 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f); 13879 13880 while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 13881 tout--; 13882 DELAY(1000); 13883 } 13884 13885 if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 13886 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n"); 13887 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 13888 return (-1); 13889 } 13890 } 13891 13892 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 13893 BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n"); 13894 sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP; 13895 } else { 13896 BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n"); 13897 } 13898 13899 rc = bxe_get_igu_cam_info(sc); 13900 13901 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 13902 13903 if (rc) { 13904 return (rc); 13905 } 13906 } 13907 13908 /* 13909 * Get base FW non-default (fast path) status block ID. This value is 13910 * used to initialize the fw_sb_id saved on the fp/queue structure to 13911 * determine the id used by the FW. 13912 */ 13913 if (CHIP_IS_E1x(sc)) { 13914 sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc)); 13915 } else { 13916 /* 13917 * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of 13918 * the same queue are indicated on the same IGU SB). So we prefer 13919 * FW and IGU SBs to be the same value. 13920 */ 13921 sc->base_fw_ndsb = sc->igu_base_sb; 13922 } 13923 13924 BLOGD(sc, DBG_LOAD, 13925 "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n", 13926 sc->igu_dsb_id, sc->igu_base_sb, 13927 sc->igu_sb_cnt, sc->base_fw_ndsb); 13928 13929 elink_phy_probe(&sc->link_params); 13930 13931 return (0); 13932 } 13933 13934 static void 13935 bxe_link_settings_supported(struct bxe_softc *sc, 13936 uint32_t switch_cfg) 13937 { 13938 uint32_t cfg_size = 0; 13939 uint32_t idx; 13940 uint8_t port = SC_PORT(sc); 13941 13942 /* aggregation of supported attributes of all external phys */ 13943 sc->port.supported[0] = 0; 13944 sc->port.supported[1] = 0; 13945 13946 switch (sc->link_params.num_phys) { 13947 case 1: 13948 sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported; 13949 cfg_size = 1; 13950 break; 13951 case 2: 13952 sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported; 13953 cfg_size = 1; 13954 break; 13955 case 3: 13956 if (sc->link_params.multi_phy_config & 13957 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 13958 sc->port.supported[1] = 13959 sc->link_params.phy[ELINK_EXT_PHY1].supported; 13960 sc->port.supported[0] = 13961 sc->link_params.phy[ELINK_EXT_PHY2].supported; 13962 } else { 13963 sc->port.supported[0] = 13964 sc->link_params.phy[ELINK_EXT_PHY1].supported; 13965 sc->port.supported[1] = 13966 sc->link_params.phy[ELINK_EXT_PHY2].supported; 13967 } 13968 cfg_size = 2; 13969 break; 13970 } 13971 13972 if (!(sc->port.supported[0] || sc->port.supported[1])) { 13973 BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n", 13974 SHMEM_RD(sc, 13975 dev_info.port_hw_config[port].external_phy_config), 13976 SHMEM_RD(sc, 13977 dev_info.port_hw_config[port].external_phy_config2)); 13978 return; 13979 } 13980 13981 if (CHIP_IS_E3(sc)) 13982 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR); 13983 else { 13984 switch (switch_cfg) { 13985 case ELINK_SWITCH_CFG_1G: 13986 sc->port.phy_addr = 13987 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 13988 break; 13989 case ELINK_SWITCH_CFG_10G: 13990 sc->port.phy_addr = 13991 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 13992 break; 13993 default: 13994 BLOGE(sc, "Invalid switch config in link_config=0x%08x\n", 13995 sc->port.link_config[0]); 13996 return; 13997 } 13998 } 13999 14000 BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr); 14001 14002 /* mask what we support according to speed_cap_mask per configuration */ 14003 for (idx = 0; idx < cfg_size; idx++) { 14004 if (!(sc->link_params.speed_cap_mask[idx] & 14005 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) { 14006 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half; 14007 } 14008 14009 if (!(sc->link_params.speed_cap_mask[idx] & 14010 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) { 14011 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full; 14012 } 14013 14014 if (!(sc->link_params.speed_cap_mask[idx] & 14015 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) { 14016 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half; 14017 } 14018 14019 if (!(sc->link_params.speed_cap_mask[idx] & 14020 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) { 14021 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full; 14022 } 14023 14024 if (!(sc->link_params.speed_cap_mask[idx] & 14025 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) { 14026 sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full; 14027 } 14028 14029 if (!(sc->link_params.speed_cap_mask[idx] & 14030 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) { 14031 sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full; 14032 } 14033 14034 if (!(sc->link_params.speed_cap_mask[idx] & 14035 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) { 14036 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full; 14037 } 14038 14039 if (!(sc->link_params.speed_cap_mask[idx] & 14040 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) { 14041 sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full; 14042 } 14043 } 14044 14045 BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n", 14046 sc->port.supported[0], sc->port.supported[1]); 14047 ELINK_DEBUG_P2(sc, "PHY supported 0=0x%08x 1=0x%08x\n", 14048 sc->port.supported[0], sc->port.supported[1]); 14049 } 14050 14051 static void 14052 bxe_link_settings_requested(struct bxe_softc *sc) 14053 { 14054 uint32_t link_config; 14055 uint32_t idx; 14056 uint32_t cfg_size = 0; 14057 14058 sc->port.advertising[0] = 0; 14059 sc->port.advertising[1] = 0; 14060 14061 switch (sc->link_params.num_phys) { 14062 case 1: 14063 case 2: 14064 cfg_size = 1; 14065 break; 14066 case 3: 14067 cfg_size = 2; 14068 break; 14069 } 14070 14071 for (idx = 0; idx < cfg_size; idx++) { 14072 sc->link_params.req_duplex[idx] = DUPLEX_FULL; 14073 link_config = sc->port.link_config[idx]; 14074 14075 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 14076 case PORT_FEATURE_LINK_SPEED_AUTO: 14077 if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) { 14078 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14079 sc->port.advertising[idx] |= sc->port.supported[idx]; 14080 if (sc->link_params.phy[ELINK_EXT_PHY1].type == 14081 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 14082 sc->port.advertising[idx] |= 14083 (ELINK_SUPPORTED_100baseT_Half | 14084 ELINK_SUPPORTED_100baseT_Full); 14085 } else { 14086 /* force 10G, no AN */ 14087 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14088 sc->port.advertising[idx] |= 14089 (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); 14090 continue; 14091 } 14092 break; 14093 14094 case PORT_FEATURE_LINK_SPEED_10M_FULL: 14095 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) { 14096 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14097 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full | 14098 ADVERTISED_TP); 14099 } else { 14100 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14101 "speed_cap_mask=0x%08x\n", 14102 link_config, sc->link_params.speed_cap_mask[idx]); 14103 return; 14104 } 14105 break; 14106 14107 case PORT_FEATURE_LINK_SPEED_10M_HALF: 14108 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) { 14109 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14110 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14111 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half | 14112 ADVERTISED_TP); 14113 ELINK_DEBUG_P1(sc, "driver requesting DUPLEX_HALF req_duplex = %x!\n", 14114 sc->link_params.req_duplex[idx]); 14115 } else { 14116 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14117 "speed_cap_mask=0x%08x\n", 14118 link_config, sc->link_params.speed_cap_mask[idx]); 14119 return; 14120 } 14121 break; 14122 14123 case PORT_FEATURE_LINK_SPEED_100M_FULL: 14124 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) { 14125 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14126 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full | 14127 ADVERTISED_TP); 14128 } else { 14129 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14130 "speed_cap_mask=0x%08x\n", 14131 link_config, sc->link_params.speed_cap_mask[idx]); 14132 return; 14133 } 14134 break; 14135 14136 case PORT_FEATURE_LINK_SPEED_100M_HALF: 14137 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) { 14138 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14139 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14140 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half | 14141 ADVERTISED_TP); 14142 } else { 14143 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14144 "speed_cap_mask=0x%08x\n", 14145 link_config, sc->link_params.speed_cap_mask[idx]); 14146 return; 14147 } 14148 break; 14149 14150 case PORT_FEATURE_LINK_SPEED_1G: 14151 if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) { 14152 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000; 14153 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full | 14154 ADVERTISED_TP); 14155 } else { 14156 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14157 "speed_cap_mask=0x%08x\n", 14158 link_config, sc->link_params.speed_cap_mask[idx]); 14159 return; 14160 } 14161 break; 14162 14163 case PORT_FEATURE_LINK_SPEED_2_5G: 14164 if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) { 14165 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500; 14166 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full | 14167 ADVERTISED_TP); 14168 } else { 14169 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14170 "speed_cap_mask=0x%08x\n", 14171 link_config, sc->link_params.speed_cap_mask[idx]); 14172 return; 14173 } 14174 break; 14175 14176 case PORT_FEATURE_LINK_SPEED_10G_CX4: 14177 if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) { 14178 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14179 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full | 14180 ADVERTISED_FIBRE); 14181 } else { 14182 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14183 "speed_cap_mask=0x%08x\n", 14184 link_config, sc->link_params.speed_cap_mask[idx]); 14185 return; 14186 } 14187 break; 14188 14189 case PORT_FEATURE_LINK_SPEED_20G: 14190 sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000; 14191 break; 14192 14193 default: 14194 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14195 "speed_cap_mask=0x%08x\n", 14196 link_config, sc->link_params.speed_cap_mask[idx]); 14197 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14198 sc->port.advertising[idx] = sc->port.supported[idx]; 14199 break; 14200 } 14201 14202 sc->link_params.req_flow_ctrl[idx] = 14203 (link_config & PORT_FEATURE_FLOW_CONTROL_MASK); 14204 14205 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) { 14206 if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) { 14207 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE; 14208 } else { 14209 bxe_set_requested_fc(sc); 14210 } 14211 } 14212 14213 BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d " 14214 "req_flow_ctrl=0x%x advertising=0x%x\n", 14215 sc->link_params.req_line_speed[idx], 14216 sc->link_params.req_duplex[idx], 14217 sc->link_params.req_flow_ctrl[idx], 14218 sc->port.advertising[idx]); 14219 ELINK_DEBUG_P3(sc, "req_line_speed=%d req_duplex=%d " 14220 "advertising=0x%x\n", 14221 sc->link_params.req_line_speed[idx], 14222 sc->link_params.req_duplex[idx], 14223 sc->port.advertising[idx]); 14224 } 14225 } 14226 14227 static void 14228 bxe_get_phy_info(struct bxe_softc *sc) 14229 { 14230 uint8_t port = SC_PORT(sc); 14231 uint32_t config = sc->port.config; 14232 uint32_t eee_mode; 14233 14234 /* shmem data already read in bxe_get_shmem_info() */ 14235 14236 ELINK_DEBUG_P3(sc, "lane_config=0x%08x speed_cap_mask0=0x%08x " 14237 "link_config0=0x%08x\n", 14238 sc->link_params.lane_config, 14239 sc->link_params.speed_cap_mask[0], 14240 sc->port.link_config[0]); 14241 14242 14243 bxe_link_settings_supported(sc, sc->link_params.switch_cfg); 14244 bxe_link_settings_requested(sc); 14245 14246 if (sc->autogreeen == AUTO_GREEN_FORCE_ON) { 14247 sc->link_params.feature_config_flags |= 14248 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14249 } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) { 14250 sc->link_params.feature_config_flags &= 14251 ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14252 } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) { 14253 sc->link_params.feature_config_flags |= 14254 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14255 } 14256 14257 /* configure link feature according to nvram value */ 14258 eee_mode = 14259 (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) & 14260 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 14261 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 14262 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 14263 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI | 14264 ELINK_EEE_MODE_ENABLE_LPI | 14265 ELINK_EEE_MODE_OUTPUT_TIME); 14266 } else { 14267 sc->link_params.eee_mode = 0; 14268 } 14269 14270 /* get the media type */ 14271 bxe_media_detect(sc); 14272 ELINK_DEBUG_P1(sc, "detected media type\n", sc->media); 14273 } 14274 14275 static void 14276 bxe_get_params(struct bxe_softc *sc) 14277 { 14278 /* get user tunable params */ 14279 bxe_get_tunable_params(sc); 14280 14281 /* select the RX and TX ring sizes */ 14282 sc->tx_ring_size = TX_BD_USABLE; 14283 sc->rx_ring_size = RX_BD_USABLE; 14284 14285 /* XXX disable WoL */ 14286 sc->wol = 0; 14287 } 14288 14289 static void 14290 bxe_set_modes_bitmap(struct bxe_softc *sc) 14291 { 14292 uint32_t flags = 0; 14293 14294 if (CHIP_REV_IS_FPGA(sc)) { 14295 SET_FLAGS(flags, MODE_FPGA); 14296 } else if (CHIP_REV_IS_EMUL(sc)) { 14297 SET_FLAGS(flags, MODE_EMUL); 14298 } else { 14299 SET_FLAGS(flags, MODE_ASIC); 14300 } 14301 14302 if (CHIP_IS_MODE_4_PORT(sc)) { 14303 SET_FLAGS(flags, MODE_PORT4); 14304 } else { 14305 SET_FLAGS(flags, MODE_PORT2); 14306 } 14307 14308 if (CHIP_IS_E2(sc)) { 14309 SET_FLAGS(flags, MODE_E2); 14310 } else if (CHIP_IS_E3(sc)) { 14311 SET_FLAGS(flags, MODE_E3); 14312 if (CHIP_REV(sc) == CHIP_REV_Ax) { 14313 SET_FLAGS(flags, MODE_E3_A0); 14314 } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ { 14315 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 14316 } 14317 } 14318 14319 if (IS_MF(sc)) { 14320 SET_FLAGS(flags, MODE_MF); 14321 switch (sc->devinfo.mf_info.mf_mode) { 14322 case MULTI_FUNCTION_SD: 14323 SET_FLAGS(flags, MODE_MF_SD); 14324 break; 14325 case MULTI_FUNCTION_SI: 14326 SET_FLAGS(flags, MODE_MF_SI); 14327 break; 14328 case MULTI_FUNCTION_AFEX: 14329 SET_FLAGS(flags, MODE_MF_AFEX); 14330 break; 14331 } 14332 } else { 14333 SET_FLAGS(flags, MODE_SF); 14334 } 14335 14336 #if defined(__LITTLE_ENDIAN) 14337 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 14338 #else /* __BIG_ENDIAN */ 14339 SET_FLAGS(flags, MODE_BIG_ENDIAN); 14340 #endif 14341 14342 INIT_MODE_FLAGS(sc) = flags; 14343 } 14344 14345 static int 14346 bxe_alloc_hsi_mem(struct bxe_softc *sc) 14347 { 14348 struct bxe_fastpath *fp; 14349 bus_addr_t busaddr; 14350 int max_agg_queues; 14351 int max_segments; 14352 bus_size_t max_size; 14353 bus_size_t max_seg_size; 14354 char buf[32]; 14355 int rc; 14356 int i, j; 14357 14358 /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */ 14359 14360 /* allocate the parent bus DMA tag */ 14361 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */ 14362 1, /* alignment */ 14363 0, /* boundary limit */ 14364 BUS_SPACE_MAXADDR, /* restricted low */ 14365 BUS_SPACE_MAXADDR, /* restricted hi */ 14366 NULL, /* addr filter() */ 14367 NULL, /* addr filter() arg */ 14368 BUS_SPACE_MAXSIZE_32BIT, /* max map size */ 14369 BUS_SPACE_UNRESTRICTED, /* num discontinuous */ 14370 BUS_SPACE_MAXSIZE_32BIT, /* max seg size */ 14371 0, /* flags */ 14372 NULL, /* lock() */ 14373 NULL, /* lock() arg */ 14374 &sc->parent_dma_tag); /* returned dma tag */ 14375 if (rc != 0) { 14376 BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc); 14377 return (1); 14378 } 14379 14380 /************************/ 14381 /* DEFAULT STATUS BLOCK */ 14382 /************************/ 14383 14384 if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block), 14385 &sc->def_sb_dma, "default status block") != 0) { 14386 /* XXX */ 14387 bus_dma_tag_destroy(sc->parent_dma_tag); 14388 return (1); 14389 } 14390 14391 sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr; 14392 14393 /***************/ 14394 /* EVENT QUEUE */ 14395 /***************/ 14396 14397 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14398 &sc->eq_dma, "event queue") != 0) { 14399 /* XXX */ 14400 bxe_dma_free(sc, &sc->def_sb_dma); 14401 sc->def_sb = NULL; 14402 bus_dma_tag_destroy(sc->parent_dma_tag); 14403 return (1); 14404 } 14405 14406 sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr; 14407 14408 /*************/ 14409 /* SLOW PATH */ 14410 /*************/ 14411 14412 if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath), 14413 &sc->sp_dma, "slow path") != 0) { 14414 /* XXX */ 14415 bxe_dma_free(sc, &sc->eq_dma); 14416 sc->eq = NULL; 14417 bxe_dma_free(sc, &sc->def_sb_dma); 14418 sc->def_sb = NULL; 14419 bus_dma_tag_destroy(sc->parent_dma_tag); 14420 return (1); 14421 } 14422 14423 sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr; 14424 14425 /*******************/ 14426 /* SLOW PATH QUEUE */ 14427 /*******************/ 14428 14429 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14430 &sc->spq_dma, "slow path queue") != 0) { 14431 /* XXX */ 14432 bxe_dma_free(sc, &sc->sp_dma); 14433 sc->sp = NULL; 14434 bxe_dma_free(sc, &sc->eq_dma); 14435 sc->eq = NULL; 14436 bxe_dma_free(sc, &sc->def_sb_dma); 14437 sc->def_sb = NULL; 14438 bus_dma_tag_destroy(sc->parent_dma_tag); 14439 return (1); 14440 } 14441 14442 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr; 14443 14444 /***************************/ 14445 /* FW DECOMPRESSION BUFFER */ 14446 /***************************/ 14447 14448 if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma, 14449 "fw decompression buffer") != 0) { 14450 /* XXX */ 14451 bxe_dma_free(sc, &sc->spq_dma); 14452 sc->spq = NULL; 14453 bxe_dma_free(sc, &sc->sp_dma); 14454 sc->sp = NULL; 14455 bxe_dma_free(sc, &sc->eq_dma); 14456 sc->eq = NULL; 14457 bxe_dma_free(sc, &sc->def_sb_dma); 14458 sc->def_sb = NULL; 14459 bus_dma_tag_destroy(sc->parent_dma_tag); 14460 return (1); 14461 } 14462 14463 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr; 14464 14465 if ((sc->gz_strm = 14466 malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) { 14467 /* XXX */ 14468 bxe_dma_free(sc, &sc->gz_buf_dma); 14469 sc->gz_buf = NULL; 14470 bxe_dma_free(sc, &sc->spq_dma); 14471 sc->spq = NULL; 14472 bxe_dma_free(sc, &sc->sp_dma); 14473 sc->sp = NULL; 14474 bxe_dma_free(sc, &sc->eq_dma); 14475 sc->eq = NULL; 14476 bxe_dma_free(sc, &sc->def_sb_dma); 14477 sc->def_sb = NULL; 14478 bus_dma_tag_destroy(sc->parent_dma_tag); 14479 return (1); 14480 } 14481 14482 /*************/ 14483 /* FASTPATHS */ 14484 /*************/ 14485 14486 /* allocate DMA memory for each fastpath structure */ 14487 for (i = 0; i < sc->num_queues; i++) { 14488 fp = &sc->fp[i]; 14489 fp->sc = sc; 14490 fp->index = i; 14491 14492 /*******************/ 14493 /* FP STATUS BLOCK */ 14494 /*******************/ 14495 14496 snprintf(buf, sizeof(buf), "fp %d status block", i); 14497 if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block), 14498 &fp->sb_dma, buf) != 0) { 14499 /* XXX unwind and free previous fastpath allocations */ 14500 BLOGE(sc, "Failed to alloc %s\n", buf); 14501 return (1); 14502 } else { 14503 if (CHIP_IS_E2E3(sc)) { 14504 fp->status_block.e2_sb = 14505 (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr; 14506 } else { 14507 fp->status_block.e1x_sb = 14508 (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr; 14509 } 14510 } 14511 14512 /******************/ 14513 /* FP TX BD CHAIN */ 14514 /******************/ 14515 14516 snprintf(buf, sizeof(buf), "fp %d tx bd chain", i); 14517 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES), 14518 &fp->tx_dma, buf) != 0) { 14519 /* XXX unwind and free previous fastpath allocations */ 14520 BLOGE(sc, "Failed to alloc %s\n", buf); 14521 return (1); 14522 } else { 14523 fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr; 14524 } 14525 14526 /* link together the tx bd chain pages */ 14527 for (j = 1; j <= TX_BD_NUM_PAGES; j++) { 14528 /* index into the tx bd chain array to last entry per page */ 14529 struct eth_tx_next_bd *tx_next_bd = 14530 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd; 14531 /* point to the next page and wrap from last page */ 14532 busaddr = (fp->tx_dma.paddr + 14533 (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES))); 14534 tx_next_bd->addr_hi = htole32(U64_HI(busaddr)); 14535 tx_next_bd->addr_lo = htole32(U64_LO(busaddr)); 14536 } 14537 14538 /******************/ 14539 /* FP RX BD CHAIN */ 14540 /******************/ 14541 14542 snprintf(buf, sizeof(buf), "fp %d rx bd chain", i); 14543 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES), 14544 &fp->rx_dma, buf) != 0) { 14545 /* XXX unwind and free previous fastpath allocations */ 14546 BLOGE(sc, "Failed to alloc %s\n", buf); 14547 return (1); 14548 } else { 14549 fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr; 14550 } 14551 14552 /* link together the rx bd chain pages */ 14553 for (j = 1; j <= RX_BD_NUM_PAGES; j++) { 14554 /* index into the rx bd chain array to last entry per page */ 14555 struct eth_rx_bd *rx_bd = 14556 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2]; 14557 /* point to the next page and wrap from last page */ 14558 busaddr = (fp->rx_dma.paddr + 14559 (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES))); 14560 rx_bd->addr_hi = htole32(U64_HI(busaddr)); 14561 rx_bd->addr_lo = htole32(U64_LO(busaddr)); 14562 } 14563 14564 /*******************/ 14565 /* FP RX RCQ CHAIN */ 14566 /*******************/ 14567 14568 snprintf(buf, sizeof(buf), "fp %d rcq chain", i); 14569 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES), 14570 &fp->rcq_dma, buf) != 0) { 14571 /* XXX unwind and free previous fastpath allocations */ 14572 BLOGE(sc, "Failed to alloc %s\n", buf); 14573 return (1); 14574 } else { 14575 fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr; 14576 } 14577 14578 /* link together the rcq chain pages */ 14579 for (j = 1; j <= RCQ_NUM_PAGES; j++) { 14580 /* index into the rcq chain array to last entry per page */ 14581 struct eth_rx_cqe_next_page *rx_cqe_next = 14582 (struct eth_rx_cqe_next_page *) 14583 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1]; 14584 /* point to the next page and wrap from last page */ 14585 busaddr = (fp->rcq_dma.paddr + 14586 (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES))); 14587 rx_cqe_next->addr_hi = htole32(U64_HI(busaddr)); 14588 rx_cqe_next->addr_lo = htole32(U64_LO(busaddr)); 14589 } 14590 14591 /*******************/ 14592 /* FP RX SGE CHAIN */ 14593 /*******************/ 14594 14595 snprintf(buf, sizeof(buf), "fp %d sge chain", i); 14596 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES), 14597 &fp->rx_sge_dma, buf) != 0) { 14598 /* XXX unwind and free previous fastpath allocations */ 14599 BLOGE(sc, "Failed to alloc %s\n", buf); 14600 return (1); 14601 } else { 14602 fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr; 14603 } 14604 14605 /* link together the sge chain pages */ 14606 for (j = 1; j <= RX_SGE_NUM_PAGES; j++) { 14607 /* index into the rcq chain array to last entry per page */ 14608 struct eth_rx_sge *rx_sge = 14609 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2]; 14610 /* point to the next page and wrap from last page */ 14611 busaddr = (fp->rx_sge_dma.paddr + 14612 (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES))); 14613 rx_sge->addr_hi = htole32(U64_HI(busaddr)); 14614 rx_sge->addr_lo = htole32(U64_LO(busaddr)); 14615 } 14616 14617 /***********************/ 14618 /* FP TX MBUF DMA MAPS */ 14619 /***********************/ 14620 14621 /* set required sizes before mapping to conserve resources */ 14622 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 14623 max_size = BXE_TSO_MAX_SIZE; 14624 max_segments = BXE_TSO_MAX_SEGMENTS; 14625 max_seg_size = BXE_TSO_MAX_SEG_SIZE; 14626 } else { 14627 max_size = (MCLBYTES * BXE_MAX_SEGMENTS); 14628 max_segments = BXE_MAX_SEGMENTS; 14629 max_seg_size = MCLBYTES; 14630 } 14631 14632 /* create a dma tag for the tx mbufs */ 14633 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14634 1, /* alignment */ 14635 0, /* boundary limit */ 14636 BUS_SPACE_MAXADDR, /* restricted low */ 14637 BUS_SPACE_MAXADDR, /* restricted hi */ 14638 NULL, /* addr filter() */ 14639 NULL, /* addr filter() arg */ 14640 max_size, /* max map size */ 14641 max_segments, /* num discontinuous */ 14642 max_seg_size, /* max seg size */ 14643 0, /* flags */ 14644 NULL, /* lock() */ 14645 NULL, /* lock() arg */ 14646 &fp->tx_mbuf_tag); /* returned dma tag */ 14647 if (rc != 0) { 14648 /* XXX unwind and free previous fastpath allocations */ 14649 BLOGE(sc, "Failed to create dma tag for " 14650 "'fp %d tx mbufs' (%d)\n", i, rc); 14651 return (1); 14652 } 14653 14654 /* create dma maps for each of the tx mbuf clusters */ 14655 for (j = 0; j < TX_BD_TOTAL; j++) { 14656 if (bus_dmamap_create(fp->tx_mbuf_tag, 14657 BUS_DMA_NOWAIT, 14658 &fp->tx_mbuf_chain[j].m_map)) { 14659 /* XXX unwind and free previous fastpath allocations */ 14660 BLOGE(sc, "Failed to create dma map for " 14661 "'fp %d tx mbuf %d' (%d)\n", i, j, rc); 14662 return (1); 14663 } 14664 } 14665 14666 /***********************/ 14667 /* FP RX MBUF DMA MAPS */ 14668 /***********************/ 14669 14670 /* create a dma tag for the rx mbufs */ 14671 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14672 1, /* alignment */ 14673 0, /* boundary limit */ 14674 BUS_SPACE_MAXADDR, /* restricted low */ 14675 BUS_SPACE_MAXADDR, /* restricted hi */ 14676 NULL, /* addr filter() */ 14677 NULL, /* addr filter() arg */ 14678 MJUM9BYTES, /* max map size */ 14679 1, /* num discontinuous */ 14680 MJUM9BYTES, /* max seg size */ 14681 0, /* flags */ 14682 NULL, /* lock() */ 14683 NULL, /* lock() arg */ 14684 &fp->rx_mbuf_tag); /* returned dma tag */ 14685 if (rc != 0) { 14686 /* XXX unwind and free previous fastpath allocations */ 14687 BLOGE(sc, "Failed to create dma tag for " 14688 "'fp %d rx mbufs' (%d)\n", i, rc); 14689 return (1); 14690 } 14691 14692 /* create dma maps for each of the rx mbuf clusters */ 14693 for (j = 0; j < RX_BD_TOTAL; j++) { 14694 if (bus_dmamap_create(fp->rx_mbuf_tag, 14695 BUS_DMA_NOWAIT, 14696 &fp->rx_mbuf_chain[j].m_map)) { 14697 /* XXX unwind and free previous fastpath allocations */ 14698 BLOGE(sc, "Failed to create dma map for " 14699 "'fp %d rx mbuf %d' (%d)\n", i, j, rc); 14700 return (1); 14701 } 14702 } 14703 14704 /* create dma map for the spare rx mbuf cluster */ 14705 if (bus_dmamap_create(fp->rx_mbuf_tag, 14706 BUS_DMA_NOWAIT, 14707 &fp->rx_mbuf_spare_map)) { 14708 /* XXX unwind and free previous fastpath allocations */ 14709 BLOGE(sc, "Failed to create dma map for " 14710 "'fp %d spare rx mbuf' (%d)\n", i, rc); 14711 return (1); 14712 } 14713 14714 /***************************/ 14715 /* FP RX SGE MBUF DMA MAPS */ 14716 /***************************/ 14717 14718 /* create a dma tag for the rx sge mbufs */ 14719 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14720 1, /* alignment */ 14721 0, /* boundary limit */ 14722 BUS_SPACE_MAXADDR, /* restricted low */ 14723 BUS_SPACE_MAXADDR, /* restricted hi */ 14724 NULL, /* addr filter() */ 14725 NULL, /* addr filter() arg */ 14726 BCM_PAGE_SIZE, /* max map size */ 14727 1, /* num discontinuous */ 14728 BCM_PAGE_SIZE, /* max seg size */ 14729 0, /* flags */ 14730 NULL, /* lock() */ 14731 NULL, /* lock() arg */ 14732 &fp->rx_sge_mbuf_tag); /* returned dma tag */ 14733 if (rc != 0) { 14734 /* XXX unwind and free previous fastpath allocations */ 14735 BLOGE(sc, "Failed to create dma tag for " 14736 "'fp %d rx sge mbufs' (%d)\n", i, rc); 14737 return (1); 14738 } 14739 14740 /* create dma maps for the rx sge mbuf clusters */ 14741 for (j = 0; j < RX_SGE_TOTAL; j++) { 14742 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 14743 BUS_DMA_NOWAIT, 14744 &fp->rx_sge_mbuf_chain[j].m_map)) { 14745 /* XXX unwind and free previous fastpath allocations */ 14746 BLOGE(sc, "Failed to create dma map for " 14747 "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc); 14748 return (1); 14749 } 14750 } 14751 14752 /* create dma map for the spare rx sge mbuf cluster */ 14753 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 14754 BUS_DMA_NOWAIT, 14755 &fp->rx_sge_mbuf_spare_map)) { 14756 /* XXX unwind and free previous fastpath allocations */ 14757 BLOGE(sc, "Failed to create dma map for " 14758 "'fp %d spare rx sge mbuf' (%d)\n", i, rc); 14759 return (1); 14760 } 14761 14762 /***************************/ 14763 /* FP RX TPA MBUF DMA MAPS */ 14764 /***************************/ 14765 14766 /* create dma maps for the rx tpa mbuf clusters */ 14767 max_agg_queues = MAX_AGG_QS(sc); 14768 14769 for (j = 0; j < max_agg_queues; j++) { 14770 if (bus_dmamap_create(fp->rx_mbuf_tag, 14771 BUS_DMA_NOWAIT, 14772 &fp->rx_tpa_info[j].bd.m_map)) { 14773 /* XXX unwind and free previous fastpath allocations */ 14774 BLOGE(sc, "Failed to create dma map for " 14775 "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc); 14776 return (1); 14777 } 14778 } 14779 14780 /* create dma map for the spare rx tpa mbuf cluster */ 14781 if (bus_dmamap_create(fp->rx_mbuf_tag, 14782 BUS_DMA_NOWAIT, 14783 &fp->rx_tpa_info_mbuf_spare_map)) { 14784 /* XXX unwind and free previous fastpath allocations */ 14785 BLOGE(sc, "Failed to create dma map for " 14786 "'fp %d spare rx tpa mbuf' (%d)\n", i, rc); 14787 return (1); 14788 } 14789 14790 bxe_init_sge_ring_bit_mask(fp); 14791 } 14792 14793 return (0); 14794 } 14795 14796 static void 14797 bxe_free_hsi_mem(struct bxe_softc *sc) 14798 { 14799 struct bxe_fastpath *fp; 14800 int max_agg_queues; 14801 int i, j; 14802 14803 if (sc->parent_dma_tag == NULL) { 14804 return; /* assume nothing was allocated */ 14805 } 14806 14807 for (i = 0; i < sc->num_queues; i++) { 14808 fp = &sc->fp[i]; 14809 14810 /*******************/ 14811 /* FP STATUS BLOCK */ 14812 /*******************/ 14813 14814 bxe_dma_free(sc, &fp->sb_dma); 14815 memset(&fp->status_block, 0, sizeof(fp->status_block)); 14816 14817 /******************/ 14818 /* FP TX BD CHAIN */ 14819 /******************/ 14820 14821 bxe_dma_free(sc, &fp->tx_dma); 14822 fp->tx_chain = NULL; 14823 14824 /******************/ 14825 /* FP RX BD CHAIN */ 14826 /******************/ 14827 14828 bxe_dma_free(sc, &fp->rx_dma); 14829 fp->rx_chain = NULL; 14830 14831 /*******************/ 14832 /* FP RX RCQ CHAIN */ 14833 /*******************/ 14834 14835 bxe_dma_free(sc, &fp->rcq_dma); 14836 fp->rcq_chain = NULL; 14837 14838 /*******************/ 14839 /* FP RX SGE CHAIN */ 14840 /*******************/ 14841 14842 bxe_dma_free(sc, &fp->rx_sge_dma); 14843 fp->rx_sge_chain = NULL; 14844 14845 /***********************/ 14846 /* FP TX MBUF DMA MAPS */ 14847 /***********************/ 14848 14849 if (fp->tx_mbuf_tag != NULL) { 14850 for (j = 0; j < TX_BD_TOTAL; j++) { 14851 if (fp->tx_mbuf_chain[j].m_map != NULL) { 14852 bus_dmamap_unload(fp->tx_mbuf_tag, 14853 fp->tx_mbuf_chain[j].m_map); 14854 bus_dmamap_destroy(fp->tx_mbuf_tag, 14855 fp->tx_mbuf_chain[j].m_map); 14856 } 14857 } 14858 14859 bus_dma_tag_destroy(fp->tx_mbuf_tag); 14860 fp->tx_mbuf_tag = NULL; 14861 } 14862 14863 /***********************/ 14864 /* FP RX MBUF DMA MAPS */ 14865 /***********************/ 14866 14867 if (fp->rx_mbuf_tag != NULL) { 14868 for (j = 0; j < RX_BD_TOTAL; j++) { 14869 if (fp->rx_mbuf_chain[j].m_map != NULL) { 14870 bus_dmamap_unload(fp->rx_mbuf_tag, 14871 fp->rx_mbuf_chain[j].m_map); 14872 bus_dmamap_destroy(fp->rx_mbuf_tag, 14873 fp->rx_mbuf_chain[j].m_map); 14874 } 14875 } 14876 14877 if (fp->rx_mbuf_spare_map != NULL) { 14878 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 14879 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 14880 } 14881 14882 /***************************/ 14883 /* FP RX TPA MBUF DMA MAPS */ 14884 /***************************/ 14885 14886 max_agg_queues = MAX_AGG_QS(sc); 14887 14888 for (j = 0; j < max_agg_queues; j++) { 14889 if (fp->rx_tpa_info[j].bd.m_map != NULL) { 14890 bus_dmamap_unload(fp->rx_mbuf_tag, 14891 fp->rx_tpa_info[j].bd.m_map); 14892 bus_dmamap_destroy(fp->rx_mbuf_tag, 14893 fp->rx_tpa_info[j].bd.m_map); 14894 } 14895 } 14896 14897 if (fp->rx_tpa_info_mbuf_spare_map != NULL) { 14898 bus_dmamap_unload(fp->rx_mbuf_tag, 14899 fp->rx_tpa_info_mbuf_spare_map); 14900 bus_dmamap_destroy(fp->rx_mbuf_tag, 14901 fp->rx_tpa_info_mbuf_spare_map); 14902 } 14903 14904 bus_dma_tag_destroy(fp->rx_mbuf_tag); 14905 fp->rx_mbuf_tag = NULL; 14906 } 14907 14908 /***************************/ 14909 /* FP RX SGE MBUF DMA MAPS */ 14910 /***************************/ 14911 14912 if (fp->rx_sge_mbuf_tag != NULL) { 14913 for (j = 0; j < RX_SGE_TOTAL; j++) { 14914 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) { 14915 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 14916 fp->rx_sge_mbuf_chain[j].m_map); 14917 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 14918 fp->rx_sge_mbuf_chain[j].m_map); 14919 } 14920 } 14921 14922 if (fp->rx_sge_mbuf_spare_map != NULL) { 14923 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 14924 fp->rx_sge_mbuf_spare_map); 14925 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 14926 fp->rx_sge_mbuf_spare_map); 14927 } 14928 14929 bus_dma_tag_destroy(fp->rx_sge_mbuf_tag); 14930 fp->rx_sge_mbuf_tag = NULL; 14931 } 14932 } 14933 14934 /***************************/ 14935 /* FW DECOMPRESSION BUFFER */ 14936 /***************************/ 14937 14938 bxe_dma_free(sc, &sc->gz_buf_dma); 14939 sc->gz_buf = NULL; 14940 free(sc->gz_strm, M_DEVBUF); 14941 sc->gz_strm = NULL; 14942 14943 /*******************/ 14944 /* SLOW PATH QUEUE */ 14945 /*******************/ 14946 14947 bxe_dma_free(sc, &sc->spq_dma); 14948 sc->spq = NULL; 14949 14950 /*************/ 14951 /* SLOW PATH */ 14952 /*************/ 14953 14954 bxe_dma_free(sc, &sc->sp_dma); 14955 sc->sp = NULL; 14956 14957 /***************/ 14958 /* EVENT QUEUE */ 14959 /***************/ 14960 14961 bxe_dma_free(sc, &sc->eq_dma); 14962 sc->eq = NULL; 14963 14964 /************************/ 14965 /* DEFAULT STATUS BLOCK */ 14966 /************************/ 14967 14968 bxe_dma_free(sc, &sc->def_sb_dma); 14969 sc->def_sb = NULL; 14970 14971 bus_dma_tag_destroy(sc->parent_dma_tag); 14972 sc->parent_dma_tag = NULL; 14973 } 14974 14975 /* 14976 * Previous driver DMAE transaction may have occurred when pre-boot stage 14977 * ended and boot began. This would invalidate the addresses of the 14978 * transaction, resulting in was-error bit set in the PCI causing all 14979 * hw-to-host PCIe transactions to timeout. If this happened we want to clear 14980 * the interrupt which detected this from the pglueb and the was-done bit 14981 */ 14982 static void 14983 bxe_prev_interrupted_dmae(struct bxe_softc *sc) 14984 { 14985 uint32_t val; 14986 14987 if (!CHIP_IS_E1x(sc)) { 14988 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS); 14989 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { 14990 BLOGD(sc, DBG_LOAD, 14991 "Clearing 'was-error' bit that was set in pglueb"); 14992 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc)); 14993 } 14994 } 14995 } 14996 14997 static int 14998 bxe_prev_mcp_done(struct bxe_softc *sc) 14999 { 15000 uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 15001 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 15002 if (!rc) { 15003 BLOGE(sc, "MCP response failure, aborting\n"); 15004 return (-1); 15005 } 15006 15007 return (0); 15008 } 15009 15010 static struct bxe_prev_list_node * 15011 bxe_prev_path_get_entry(struct bxe_softc *sc) 15012 { 15013 struct bxe_prev_list_node *tmp; 15014 15015 LIST_FOREACH(tmp, &bxe_prev_list, node) { 15016 if ((sc->pcie_bus == tmp->bus) && 15017 (sc->pcie_device == tmp->slot) && 15018 (SC_PATH(sc) == tmp->path)) { 15019 return (tmp); 15020 } 15021 } 15022 15023 return (NULL); 15024 } 15025 15026 static uint8_t 15027 bxe_prev_is_path_marked(struct bxe_softc *sc) 15028 { 15029 struct bxe_prev_list_node *tmp; 15030 int rc = FALSE; 15031 15032 mtx_lock(&bxe_prev_mtx); 15033 15034 tmp = bxe_prev_path_get_entry(sc); 15035 if (tmp) { 15036 if (tmp->aer) { 15037 BLOGD(sc, DBG_LOAD, 15038 "Path %d/%d/%d was marked by AER\n", 15039 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15040 } else { 15041 rc = TRUE; 15042 BLOGD(sc, DBG_LOAD, 15043 "Path %d/%d/%d was already cleaned from previous drivers\n", 15044 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15045 } 15046 } 15047 15048 mtx_unlock(&bxe_prev_mtx); 15049 15050 return (rc); 15051 } 15052 15053 static int 15054 bxe_prev_mark_path(struct bxe_softc *sc, 15055 uint8_t after_undi) 15056 { 15057 struct bxe_prev_list_node *tmp; 15058 15059 mtx_lock(&bxe_prev_mtx); 15060 15061 /* Check whether the entry for this path already exists */ 15062 tmp = bxe_prev_path_get_entry(sc); 15063 if (tmp) { 15064 if (!tmp->aer) { 15065 BLOGD(sc, DBG_LOAD, 15066 "Re-marking AER in path %d/%d/%d\n", 15067 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15068 } else { 15069 BLOGD(sc, DBG_LOAD, 15070 "Removing AER indication from path %d/%d/%d\n", 15071 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15072 tmp->aer = 0; 15073 } 15074 15075 mtx_unlock(&bxe_prev_mtx); 15076 return (0); 15077 } 15078 15079 mtx_unlock(&bxe_prev_mtx); 15080 15081 /* Create an entry for this path and add it */ 15082 tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF, 15083 (M_NOWAIT | M_ZERO)); 15084 if (!tmp) { 15085 BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n"); 15086 return (-1); 15087 } 15088 15089 tmp->bus = sc->pcie_bus; 15090 tmp->slot = sc->pcie_device; 15091 tmp->path = SC_PATH(sc); 15092 tmp->aer = 0; 15093 tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0; 15094 15095 mtx_lock(&bxe_prev_mtx); 15096 15097 BLOGD(sc, DBG_LOAD, 15098 "Marked path %d/%d/%d - finished previous unload\n", 15099 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15100 LIST_INSERT_HEAD(&bxe_prev_list, tmp, node); 15101 15102 mtx_unlock(&bxe_prev_mtx); 15103 15104 return (0); 15105 } 15106 15107 static int 15108 bxe_do_flr(struct bxe_softc *sc) 15109 { 15110 int i; 15111 15112 /* only E2 and onwards support FLR */ 15113 if (CHIP_IS_E1x(sc)) { 15114 BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n"); 15115 return (-1); 15116 } 15117 15118 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 15119 if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 15120 BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n", 15121 sc->devinfo.bc_ver); 15122 return (-1); 15123 } 15124 15125 /* Wait for Transaction Pending bit clean */ 15126 for (i = 0; i < 4; i++) { 15127 if (i) { 15128 DELAY(((1 << (i - 1)) * 100) * 1000); 15129 } 15130 15131 if (!bxe_is_pcie_pending(sc)) { 15132 goto clear; 15133 } 15134 } 15135 15136 BLOGE(sc, "PCIE transaction is not cleared, " 15137 "proceeding with reset anyway\n"); 15138 15139 clear: 15140 15141 BLOGD(sc, DBG_LOAD, "Initiating FLR\n"); 15142 bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0); 15143 15144 return (0); 15145 } 15146 15147 struct bxe_mac_vals { 15148 uint32_t xmac_addr; 15149 uint32_t xmac_val; 15150 uint32_t emac_addr; 15151 uint32_t emac_val; 15152 uint32_t umac_addr; 15153 uint32_t umac_val; 15154 uint32_t bmac_addr; 15155 uint32_t bmac_val[2]; 15156 }; 15157 15158 static void 15159 bxe_prev_unload_close_mac(struct bxe_softc *sc, 15160 struct bxe_mac_vals *vals) 15161 { 15162 uint32_t val, base_addr, offset, mask, reset_reg; 15163 uint8_t mac_stopped = FALSE; 15164 uint8_t port = SC_PORT(sc); 15165 uint32_t wb_data[2]; 15166 15167 /* reset addresses as they also mark which values were changed */ 15168 vals->bmac_addr = 0; 15169 vals->umac_addr = 0; 15170 vals->xmac_addr = 0; 15171 vals->emac_addr = 0; 15172 15173 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2); 15174 15175 if (!CHIP_IS_E3(sc)) { 15176 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 15177 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 15178 if ((mask & reset_reg) && val) { 15179 BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n"); 15180 base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM 15181 : NIG_REG_INGRESS_BMAC0_MEM; 15182 offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL 15183 : BIGMAC_REGISTER_BMAC_CONTROL; 15184 15185 /* 15186 * use rd/wr since we cannot use dmae. This is safe 15187 * since MCP won't access the bus due to the request 15188 * to unload, and no function on the path can be 15189 * loaded at this time. 15190 */ 15191 wb_data[0] = REG_RD(sc, base_addr + offset); 15192 wb_data[1] = REG_RD(sc, base_addr + offset + 0x4); 15193 vals->bmac_addr = base_addr + offset; 15194 vals->bmac_val[0] = wb_data[0]; 15195 vals->bmac_val[1] = wb_data[1]; 15196 wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE; 15197 REG_WR(sc, vals->bmac_addr, wb_data[0]); 15198 REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]); 15199 } 15200 15201 BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n"); 15202 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4; 15203 vals->emac_val = REG_RD(sc, vals->emac_addr); 15204 REG_WR(sc, vals->emac_addr, 0); 15205 mac_stopped = TRUE; 15206 } else { 15207 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 15208 BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n"); 15209 base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 15210 val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI); 15211 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1)); 15212 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1)); 15213 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 15214 vals->xmac_val = REG_RD(sc, vals->xmac_addr); 15215 REG_WR(sc, vals->xmac_addr, 0); 15216 mac_stopped = TRUE; 15217 } 15218 15219 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 15220 if (mask & reset_reg) { 15221 BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n"); 15222 base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 15223 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; 15224 vals->umac_val = REG_RD(sc, vals->umac_addr); 15225 REG_WR(sc, vals->umac_addr, 0); 15226 mac_stopped = TRUE; 15227 } 15228 } 15229 15230 if (mac_stopped) { 15231 DELAY(20000); 15232 } 15233 } 15234 15235 #define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 15236 #define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff) 15237 #define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 15238 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 15239 15240 static void 15241 bxe_prev_unload_undi_inc(struct bxe_softc *sc, 15242 uint8_t port, 15243 uint8_t inc) 15244 { 15245 uint16_t rcq, bd; 15246 uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port)); 15247 15248 rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc; 15249 bd = BXE_PREV_UNDI_BD(tmp_reg) + inc; 15250 15251 tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd); 15252 REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg); 15253 15254 BLOGD(sc, DBG_LOAD, 15255 "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n", 15256 port, bd, rcq); 15257 } 15258 15259 static int 15260 bxe_prev_unload_common(struct bxe_softc *sc) 15261 { 15262 uint32_t reset_reg, tmp_reg = 0, rc; 15263 uint8_t prev_undi = FALSE; 15264 struct bxe_mac_vals mac_vals; 15265 uint32_t timer_count = 1000; 15266 uint32_t prev_brb; 15267 15268 /* 15269 * It is possible a previous function received 'common' answer, 15270 * but hasn't loaded yet, therefore creating a scenario of 15271 * multiple functions receiving 'common' on the same path. 15272 */ 15273 BLOGD(sc, DBG_LOAD, "Common unload Flow\n"); 15274 15275 memset(&mac_vals, 0, sizeof(mac_vals)); 15276 15277 if (bxe_prev_is_path_marked(sc)) { 15278 return (bxe_prev_mcp_done(sc)); 15279 } 15280 15281 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1); 15282 15283 /* Reset should be performed after BRB is emptied */ 15284 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 15285 /* Close the MAC Rx to prevent BRB from filling up */ 15286 bxe_prev_unload_close_mac(sc, &mac_vals); 15287 15288 /* close LLH filters towards the BRB */ 15289 elink_set_rx_filter(&sc->link_params, 0); 15290 15291 /* 15292 * Check if the UNDI driver was previously loaded. 15293 * UNDI driver initializes CID offset for normal bell to 0x7 15294 */ 15295 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { 15296 tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST); 15297 if (tmp_reg == 0x7) { 15298 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n"); 15299 prev_undi = TRUE; 15300 /* clear the UNDI indication */ 15301 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0); 15302 /* clear possible idle check errors */ 15303 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0); 15304 } 15305 } 15306 15307 /* wait until BRB is empty */ 15308 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15309 while (timer_count) { 15310 prev_brb = tmp_reg; 15311 15312 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15313 if (!tmp_reg) { 15314 break; 15315 } 15316 15317 BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg); 15318 15319 /* reset timer as long as BRB actually gets emptied */ 15320 if (prev_brb > tmp_reg) { 15321 timer_count = 1000; 15322 } else { 15323 timer_count--; 15324 } 15325 15326 /* If UNDI resides in memory, manually increment it */ 15327 if (prev_undi) { 15328 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1); 15329 } 15330 15331 DELAY(10); 15332 } 15333 15334 if (!timer_count) { 15335 BLOGE(sc, "Failed to empty BRB\n"); 15336 } 15337 } 15338 15339 /* No packets are in the pipeline, path is ready for reset */ 15340 bxe_reset_common(sc); 15341 15342 if (mac_vals.xmac_addr) { 15343 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val); 15344 } 15345 if (mac_vals.umac_addr) { 15346 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val); 15347 } 15348 if (mac_vals.emac_addr) { 15349 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val); 15350 } 15351 if (mac_vals.bmac_addr) { 15352 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 15353 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 15354 } 15355 15356 rc = bxe_prev_mark_path(sc, prev_undi); 15357 if (rc) { 15358 bxe_prev_mcp_done(sc); 15359 return (rc); 15360 } 15361 15362 return (bxe_prev_mcp_done(sc)); 15363 } 15364 15365 static int 15366 bxe_prev_unload_uncommon(struct bxe_softc *sc) 15367 { 15368 int rc; 15369 15370 BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n"); 15371 15372 /* Test if previous unload process was already finished for this path */ 15373 if (bxe_prev_is_path_marked(sc)) { 15374 return (bxe_prev_mcp_done(sc)); 15375 } 15376 15377 BLOGD(sc, DBG_LOAD, "Path is unmarked\n"); 15378 15379 /* 15380 * If function has FLR capabilities, and existing FW version matches 15381 * the one required, then FLR will be sufficient to clean any residue 15382 * left by previous driver 15383 */ 15384 rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION); 15385 if (!rc) { 15386 /* fw version is good */ 15387 BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n"); 15388 rc = bxe_do_flr(sc); 15389 } 15390 15391 if (!rc) { 15392 /* FLR was performed */ 15393 BLOGD(sc, DBG_LOAD, "FLR successful\n"); 15394 return (0); 15395 } 15396 15397 BLOGD(sc, DBG_LOAD, "Could not FLR\n"); 15398 15399 /* Close the MCP request, return failure*/ 15400 rc = bxe_prev_mcp_done(sc); 15401 if (!rc) { 15402 rc = BXE_PREV_WAIT_NEEDED; 15403 } 15404 15405 return (rc); 15406 } 15407 15408 static int 15409 bxe_prev_unload(struct bxe_softc *sc) 15410 { 15411 int time_counter = 10; 15412 uint32_t fw, hw_lock_reg, hw_lock_val; 15413 uint32_t rc = 0; 15414 15415 /* 15416 * Clear HW from errors which may have resulted from an interrupted 15417 * DMAE transaction. 15418 */ 15419 bxe_prev_interrupted_dmae(sc); 15420 15421 /* Release previously held locks */ 15422 hw_lock_reg = 15423 (SC_FUNC(sc) <= 5) ? 15424 (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) : 15425 (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8); 15426 15427 hw_lock_val = (REG_RD(sc, hw_lock_reg)); 15428 if (hw_lock_val) { 15429 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 15430 BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n"); 15431 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 15432 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc))); 15433 } 15434 BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n"); 15435 REG_WR(sc, hw_lock_reg, 0xffffffff); 15436 } else { 15437 BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n"); 15438 } 15439 15440 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) { 15441 BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n"); 15442 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0); 15443 } 15444 15445 do { 15446 /* Lock MCP using an unload request */ 15447 fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 15448 if (!fw) { 15449 BLOGE(sc, "MCP response failure, aborting\n"); 15450 rc = -1; 15451 break; 15452 } 15453 15454 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) { 15455 rc = bxe_prev_unload_common(sc); 15456 break; 15457 } 15458 15459 /* non-common reply from MCP night require looping */ 15460 rc = bxe_prev_unload_uncommon(sc); 15461 if (rc != BXE_PREV_WAIT_NEEDED) { 15462 break; 15463 } 15464 15465 DELAY(20000); 15466 } while (--time_counter); 15467 15468 if (!time_counter || rc) { 15469 BLOGE(sc, "Failed to unload previous driver!" 15470 " time_counter %d rc %d\n", time_counter, rc); 15471 rc = -1; 15472 } 15473 15474 return (rc); 15475 } 15476 15477 void 15478 bxe_dcbx_set_state(struct bxe_softc *sc, 15479 uint8_t dcb_on, 15480 uint32_t dcbx_enabled) 15481 { 15482 if (!CHIP_IS_E1x(sc)) { 15483 sc->dcb_state = dcb_on; 15484 sc->dcbx_enabled = dcbx_enabled; 15485 } else { 15486 sc->dcb_state = FALSE; 15487 sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID; 15488 } 15489 BLOGD(sc, DBG_LOAD, 15490 "DCB state [%s:%s]\n", 15491 dcb_on ? "ON" : "OFF", 15492 (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" : 15493 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" : 15494 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ? 15495 "on-chip with negotiation" : "invalid"); 15496 } 15497 15498 /* must be called after sriov-enable */ 15499 static int 15500 bxe_set_qm_cid_count(struct bxe_softc *sc) 15501 { 15502 int cid_count = BXE_L2_MAX_CID(sc); 15503 15504 if (IS_SRIOV(sc)) { 15505 cid_count += BXE_VF_CIDS; 15506 } 15507 15508 if (CNIC_SUPPORT(sc)) { 15509 cid_count += CNIC_CID_MAX; 15510 } 15511 15512 return (roundup(cid_count, QM_CID_ROUND)); 15513 } 15514 15515 static void 15516 bxe_init_multi_cos(struct bxe_softc *sc) 15517 { 15518 int pri, cos; 15519 15520 uint32_t pri_map = 0; /* XXX change to user config */ 15521 15522 for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) { 15523 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4)); 15524 if (cos < sc->max_cos) { 15525 sc->prio_to_cos[pri] = cos; 15526 } else { 15527 BLOGW(sc, "Invalid COS %d for priority %d " 15528 "(max COS is %d), setting to 0\n", 15529 cos, pri, (sc->max_cos - 1)); 15530 sc->prio_to_cos[pri] = 0; 15531 } 15532 } 15533 } 15534 15535 static int 15536 bxe_sysctl_state(SYSCTL_HANDLER_ARGS) 15537 { 15538 struct bxe_softc *sc; 15539 int error, result; 15540 15541 result = 0; 15542 error = sysctl_handle_int(oidp, &result, 0, req); 15543 15544 if (error || !req->newptr) { 15545 return (error); 15546 } 15547 15548 if (result == 1) { 15549 uint32_t temp; 15550 sc = (struct bxe_softc *)arg1; 15551 15552 BLOGI(sc, "... dumping driver state ...\n"); 15553 temp = SHMEM2_RD(sc, temperature_in_half_celsius); 15554 BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2)); 15555 } 15556 15557 return (error); 15558 } 15559 15560 static int 15561 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS) 15562 { 15563 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15564 uint32_t *eth_stats = (uint32_t *)&sc->eth_stats; 15565 uint32_t *offset; 15566 uint64_t value = 0; 15567 int index = (int)arg2; 15568 15569 if (index >= BXE_NUM_ETH_STATS) { 15570 BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index); 15571 return (-1); 15572 } 15573 15574 offset = (eth_stats + bxe_eth_stats_arr[index].offset); 15575 15576 switch (bxe_eth_stats_arr[index].size) { 15577 case 4: 15578 value = (uint64_t)*offset; 15579 break; 15580 case 8: 15581 value = HILO_U64(*offset, *(offset + 1)); 15582 break; 15583 default: 15584 BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n", 15585 index, bxe_eth_stats_arr[index].size); 15586 return (-1); 15587 } 15588 15589 return (sysctl_handle_64(oidp, &value, 0, req)); 15590 } 15591 15592 static int 15593 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS) 15594 { 15595 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15596 uint32_t *eth_stats; 15597 uint32_t *offset; 15598 uint64_t value = 0; 15599 uint32_t q_stat = (uint32_t)arg2; 15600 uint32_t fp_index = ((q_stat >> 16) & 0xffff); 15601 uint32_t index = (q_stat & 0xffff); 15602 15603 eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats; 15604 15605 if (index >= BXE_NUM_ETH_Q_STATS) { 15606 BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index); 15607 return (-1); 15608 } 15609 15610 offset = (eth_stats + bxe_eth_q_stats_arr[index].offset); 15611 15612 switch (bxe_eth_q_stats_arr[index].size) { 15613 case 4: 15614 value = (uint64_t)*offset; 15615 break; 15616 case 8: 15617 value = HILO_U64(*offset, *(offset + 1)); 15618 break; 15619 default: 15620 BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n", 15621 index, bxe_eth_q_stats_arr[index].size); 15622 return (-1); 15623 } 15624 15625 return (sysctl_handle_64(oidp, &value, 0, req)); 15626 } 15627 15628 static void bxe_force_link_reset(struct bxe_softc *sc) 15629 { 15630 15631 bxe_acquire_phy_lock(sc); 15632 elink_link_reset(&sc->link_params, &sc->link_vars, 1); 15633 bxe_release_phy_lock(sc); 15634 } 15635 15636 static int 15637 bxe_sysctl_pauseparam(SYSCTL_HANDLER_ARGS) 15638 { 15639 struct bxe_softc *sc = (struct bxe_softc *)arg1;; 15640 uint32_t cfg_idx = bxe_get_link_cfg_idx(sc); 15641 int rc = 0; 15642 int error; 15643 int result; 15644 15645 15646 error = sysctl_handle_int(oidp, &sc->bxe_pause_param, 0, req); 15647 15648 if (error || !req->newptr) { 15649 return (error); 15650 } 15651 if ((sc->bxe_pause_param < 0) || (sc->bxe_pause_param > 8)) { 15652 BLOGW(sc, "invalid pause param (%d) - use intergers between 1 & 8\n",sc->bxe_pause_param); 15653 sc->bxe_pause_param = 8; 15654 } 15655 15656 result = (sc->bxe_pause_param << PORT_FEATURE_FLOW_CONTROL_SHIFT); 15657 15658 15659 if((result & 0x400) && !(sc->port.supported[cfg_idx] & ELINK_SUPPORTED_Autoneg)) { 15660 BLOGW(sc, "Does not support Autoneg pause_param %d\n", sc->bxe_pause_param); 15661 return -EINVAL; 15662 } 15663 15664 if(IS_MF(sc)) 15665 return 0; 15666 sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_AUTO; 15667 if(result & ELINK_FLOW_CTRL_RX) 15668 sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_RX; 15669 15670 if(result & ELINK_FLOW_CTRL_TX) 15671 sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_TX; 15672 if(sc->link_params.req_flow_ctrl[cfg_idx] == ELINK_FLOW_CTRL_AUTO) 15673 sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_NONE; 15674 15675 if(result & 0x400) { 15676 if (sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) { 15677 sc->link_params.req_flow_ctrl[cfg_idx] = 15678 ELINK_FLOW_CTRL_AUTO; 15679 } 15680 sc->link_params.req_fc_auto_adv = 0; 15681 if (result & ELINK_FLOW_CTRL_RX) 15682 sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_RX; 15683 15684 if (result & ELINK_FLOW_CTRL_TX) 15685 sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_TX; 15686 if (!sc->link_params.req_fc_auto_adv) 15687 sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_NONE; 15688 } 15689 if (IS_PF(sc)) { 15690 if (sc->link_vars.link_up) { 15691 bxe_stats_handle(sc, STATS_EVENT_STOP); 15692 } 15693 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 15694 bxe_force_link_reset(sc); 15695 bxe_acquire_phy_lock(sc); 15696 15697 rc = elink_phy_init(&sc->link_params, &sc->link_vars); 15698 15699 bxe_release_phy_lock(sc); 15700 15701 bxe_calc_fc_adv(sc); 15702 } 15703 } 15704 return rc; 15705 } 15706 15707 15708 static void 15709 bxe_add_sysctls(struct bxe_softc *sc) 15710 { 15711 struct sysctl_ctx_list *ctx; 15712 struct sysctl_oid_list *children; 15713 struct sysctl_oid *queue_top, *queue; 15714 struct sysctl_oid_list *queue_top_children, *queue_children; 15715 char queue_num_buf[32]; 15716 uint32_t q_stat; 15717 int i, j; 15718 15719 ctx = device_get_sysctl_ctx(sc->dev); 15720 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 15721 15722 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version", 15723 CTLFLAG_RD, BXE_DRIVER_VERSION, 0, 15724 "version"); 15725 15726 snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d", 15727 BCM_5710_FW_MAJOR_VERSION, 15728 BCM_5710_FW_MINOR_VERSION, 15729 BCM_5710_FW_REVISION_VERSION, 15730 BCM_5710_FW_ENGINEERING_VERSION); 15731 15732 snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s", 15733 ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" : 15734 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" : 15735 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" : 15736 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" : 15737 "Unknown")); 15738 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics", 15739 CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0, 15740 "multifunction vnics per port"); 15741 15742 snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d", 15743 ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" : 15744 (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" : 15745 (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" : 15746 "???GT/s"), 15747 sc->devinfo.pcie_link_width); 15748 15749 sc->debug = bxe_debug; 15750 15751 #if __FreeBSD_version >= 900000 15752 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 15753 CTLFLAG_RD, sc->devinfo.bc_ver_str, 0, 15754 "bootcode version"); 15755 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 15756 CTLFLAG_RD, sc->fw_ver_str, 0, 15757 "firmware version"); 15758 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 15759 CTLFLAG_RD, sc->mf_mode_str, 0, 15760 "multifunction mode"); 15761 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 15762 CTLFLAG_RD, sc->mac_addr_str, 0, 15763 "mac address"); 15764 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 15765 CTLFLAG_RD, sc->pci_link_str, 0, 15766 "pci link status"); 15767 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug", 15768 CTLFLAG_RW, &sc->debug, 15769 "debug logging mode"); 15770 #else 15771 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 15772 CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0, 15773 "bootcode version"); 15774 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 15775 CTLFLAG_RD, &sc->fw_ver_str, 0, 15776 "firmware version"); 15777 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 15778 CTLFLAG_RD, &sc->mf_mode_str, 0, 15779 "multifunction mode"); 15780 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 15781 CTLFLAG_RD, &sc->mac_addr_str, 0, 15782 "mac address"); 15783 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 15784 CTLFLAG_RD, &sc->pci_link_str, 0, 15785 "pci link status"); 15786 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug", 15787 CTLFLAG_RW, &sc->debug, 0, 15788 "debug logging mode"); 15789 #endif /* #if __FreeBSD_version >= 900000 */ 15790 15791 sc->trigger_grcdump = 0; 15792 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "trigger_grcdump", 15793 CTLFLAG_RW, &sc->trigger_grcdump, 0, 15794 "trigger grcdump should be invoked" 15795 " before collecting grcdump"); 15796 15797 sc->grcdump_started = 0; 15798 sc->grcdump_done = 0; 15799 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done", 15800 CTLFLAG_RD, &sc->grcdump_done, 0, 15801 "set by driver when grcdump is done"); 15802 15803 sc->rx_budget = bxe_rx_budget; 15804 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget", 15805 CTLFLAG_RW, &sc->rx_budget, 0, 15806 "rx processing budget"); 15807 15808 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_param", 15809 CTLTYPE_UINT | CTLFLAG_RW, sc, 0, 15810 bxe_sysctl_pauseparam, "IU", 15811 "need pause frames- DEF:0/TX:1/RX:2/BOTH:3/AUTO:4/AUTOTX:5/AUTORX:6/AUTORXTX:7/NONE:8"); 15812 15813 15814 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state", 15815 CTLTYPE_UINT | CTLFLAG_RW, sc, 0, 15816 bxe_sysctl_state, "IU", "dump driver state"); 15817 15818 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 15819 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 15820 bxe_eth_stats_arr[i].string, 15821 CTLTYPE_U64 | CTLFLAG_RD, sc, i, 15822 bxe_sysctl_eth_stat, "LU", 15823 bxe_eth_stats_arr[i].string); 15824 } 15825 15826 /* add a new parent node for all queues "dev.bxe.#.queue" */ 15827 queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue", 15828 CTLFLAG_RD, NULL, "queue"); 15829 queue_top_children = SYSCTL_CHILDREN(queue_top); 15830 15831 for (i = 0; i < sc->num_queues; i++) { 15832 /* add a new parent node for a single queue "dev.bxe.#.queue.#" */ 15833 snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i); 15834 queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO, 15835 queue_num_buf, CTLFLAG_RD, NULL, 15836 "single queue"); 15837 queue_children = SYSCTL_CHILDREN(queue); 15838 15839 for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) { 15840 q_stat = ((i << 16) | j); 15841 SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO, 15842 bxe_eth_q_stats_arr[j].string, 15843 CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat, 15844 bxe_sysctl_eth_q_stat, "LU", 15845 bxe_eth_q_stats_arr[j].string); 15846 } 15847 } 15848 } 15849 15850 static int 15851 bxe_alloc_buf_rings(struct bxe_softc *sc) 15852 { 15853 #if __FreeBSD_version >= 901504 15854 15855 int i; 15856 struct bxe_fastpath *fp; 15857 15858 for (i = 0; i < sc->num_queues; i++) { 15859 15860 fp = &sc->fp[i]; 15861 15862 fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF, 15863 M_NOWAIT, &fp->tx_mtx); 15864 if (fp->tx_br == NULL) 15865 return (-1); 15866 } 15867 #endif 15868 return (0); 15869 } 15870 15871 static void 15872 bxe_free_buf_rings(struct bxe_softc *sc) 15873 { 15874 #if __FreeBSD_version >= 901504 15875 15876 int i; 15877 struct bxe_fastpath *fp; 15878 15879 for (i = 0; i < sc->num_queues; i++) { 15880 15881 fp = &sc->fp[i]; 15882 15883 if (fp->tx_br) { 15884 buf_ring_free(fp->tx_br, M_DEVBUF); 15885 fp->tx_br = NULL; 15886 } 15887 } 15888 15889 #endif 15890 } 15891 15892 static void 15893 bxe_init_fp_mutexs(struct bxe_softc *sc) 15894 { 15895 int i; 15896 struct bxe_fastpath *fp; 15897 15898 for (i = 0; i < sc->num_queues; i++) { 15899 15900 fp = &sc->fp[i]; 15901 15902 snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name), 15903 "bxe%d_fp%d_tx_lock", sc->unit, i); 15904 mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF); 15905 15906 snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name), 15907 "bxe%d_fp%d_rx_lock", sc->unit, i); 15908 mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF); 15909 } 15910 } 15911 15912 static void 15913 bxe_destroy_fp_mutexs(struct bxe_softc *sc) 15914 { 15915 int i; 15916 struct bxe_fastpath *fp; 15917 15918 for (i = 0; i < sc->num_queues; i++) { 15919 15920 fp = &sc->fp[i]; 15921 15922 if (mtx_initialized(&fp->tx_mtx)) { 15923 mtx_destroy(&fp->tx_mtx); 15924 } 15925 15926 if (mtx_initialized(&fp->rx_mtx)) { 15927 mtx_destroy(&fp->rx_mtx); 15928 } 15929 } 15930 } 15931 15932 15933 /* 15934 * Device attach function. 15935 * 15936 * Allocates device resources, performs secondary chip identification, and 15937 * initializes driver instance variables. This function is called from driver 15938 * load after a successful probe. 15939 * 15940 * Returns: 15941 * 0 = Success, >0 = Failure 15942 */ 15943 static int 15944 bxe_attach(device_t dev) 15945 { 15946 struct bxe_softc *sc; 15947 15948 sc = device_get_softc(dev); 15949 15950 BLOGD(sc, DBG_LOAD, "Starting attach...\n"); 15951 15952 sc->state = BXE_STATE_CLOSED; 15953 15954 sc->dev = dev; 15955 sc->unit = device_get_unit(dev); 15956 15957 BLOGD(sc, DBG_LOAD, "softc = %p\n", sc); 15958 15959 sc->pcie_bus = pci_get_bus(dev); 15960 sc->pcie_device = pci_get_slot(dev); 15961 sc->pcie_func = pci_get_function(dev); 15962 15963 /* enable bus master capability */ 15964 pci_enable_busmaster(dev); 15965 15966 /* get the BARs */ 15967 if (bxe_allocate_bars(sc) != 0) { 15968 return (ENXIO); 15969 } 15970 15971 /* initialize the mutexes */ 15972 bxe_init_mutexes(sc); 15973 15974 /* prepare the periodic callout */ 15975 callout_init(&sc->periodic_callout, 0); 15976 15977 /* prepare the chip taskqueue */ 15978 sc->chip_tq_flags = CHIP_TQ_NONE; 15979 snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name), 15980 "bxe%d_chip_tq", sc->unit); 15981 TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc); 15982 sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT, 15983 taskqueue_thread_enqueue, 15984 &sc->chip_tq); 15985 taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */ 15986 "%s", sc->chip_tq_name); 15987 15988 /* get device info and set params */ 15989 if (bxe_get_device_info(sc) != 0) { 15990 BLOGE(sc, "getting device info\n"); 15991 bxe_deallocate_bars(sc); 15992 pci_disable_busmaster(dev); 15993 return (ENXIO); 15994 } 15995 15996 /* get final misc params */ 15997 bxe_get_params(sc); 15998 15999 /* set the default MTU (changed via ifconfig) */ 16000 sc->mtu = ETHERMTU; 16001 16002 bxe_set_modes_bitmap(sc); 16003 16004 /* XXX 16005 * If in AFEX mode and the function is configured for FCoE 16006 * then bail... no L2 allowed. 16007 */ 16008 16009 /* get phy settings from shmem and 'and' against admin settings */ 16010 bxe_get_phy_info(sc); 16011 16012 /* initialize the FreeBSD ifnet interface */ 16013 if (bxe_init_ifnet(sc) != 0) { 16014 bxe_release_mutexes(sc); 16015 bxe_deallocate_bars(sc); 16016 pci_disable_busmaster(dev); 16017 return (ENXIO); 16018 } 16019 16020 if (bxe_add_cdev(sc) != 0) { 16021 if (sc->ifp != NULL) { 16022 ether_ifdetach(sc->ifp); 16023 } 16024 ifmedia_removeall(&sc->ifmedia); 16025 bxe_release_mutexes(sc); 16026 bxe_deallocate_bars(sc); 16027 pci_disable_busmaster(dev); 16028 return (ENXIO); 16029 } 16030 16031 /* allocate device interrupts */ 16032 if (bxe_interrupt_alloc(sc) != 0) { 16033 bxe_del_cdev(sc); 16034 if (sc->ifp != NULL) { 16035 ether_ifdetach(sc->ifp); 16036 } 16037 ifmedia_removeall(&sc->ifmedia); 16038 bxe_release_mutexes(sc); 16039 bxe_deallocate_bars(sc); 16040 pci_disable_busmaster(dev); 16041 return (ENXIO); 16042 } 16043 16044 bxe_init_fp_mutexs(sc); 16045 16046 if (bxe_alloc_buf_rings(sc) != 0) { 16047 bxe_free_buf_rings(sc); 16048 bxe_interrupt_free(sc); 16049 bxe_del_cdev(sc); 16050 if (sc->ifp != NULL) { 16051 ether_ifdetach(sc->ifp); 16052 } 16053 ifmedia_removeall(&sc->ifmedia); 16054 bxe_release_mutexes(sc); 16055 bxe_deallocate_bars(sc); 16056 pci_disable_busmaster(dev); 16057 return (ENXIO); 16058 } 16059 16060 /* allocate ilt */ 16061 if (bxe_alloc_ilt_mem(sc) != 0) { 16062 bxe_free_buf_rings(sc); 16063 bxe_interrupt_free(sc); 16064 bxe_del_cdev(sc); 16065 if (sc->ifp != NULL) { 16066 ether_ifdetach(sc->ifp); 16067 } 16068 ifmedia_removeall(&sc->ifmedia); 16069 bxe_release_mutexes(sc); 16070 bxe_deallocate_bars(sc); 16071 pci_disable_busmaster(dev); 16072 return (ENXIO); 16073 } 16074 16075 /* allocate the host hardware/software hsi structures */ 16076 if (bxe_alloc_hsi_mem(sc) != 0) { 16077 bxe_free_ilt_mem(sc); 16078 bxe_free_buf_rings(sc); 16079 bxe_interrupt_free(sc); 16080 bxe_del_cdev(sc); 16081 if (sc->ifp != NULL) { 16082 ether_ifdetach(sc->ifp); 16083 } 16084 ifmedia_removeall(&sc->ifmedia); 16085 bxe_release_mutexes(sc); 16086 bxe_deallocate_bars(sc); 16087 pci_disable_busmaster(dev); 16088 return (ENXIO); 16089 } 16090 16091 /* need to reset chip if UNDI was active */ 16092 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 16093 /* init fw_seq */ 16094 sc->fw_seq = 16095 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 16096 DRV_MSG_SEQ_NUMBER_MASK); 16097 BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq); 16098 bxe_prev_unload(sc); 16099 } 16100 16101 #if 1 16102 /* XXX */ 16103 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16104 #else 16105 if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) && 16106 SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) && 16107 SHMEM2_RD(sc, dcbx_lldp_params_offset) && 16108 SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) { 16109 bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON); 16110 bxe_dcbx_init_params(sc); 16111 } else { 16112 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16113 } 16114 #endif 16115 16116 /* calculate qm_cid_count */ 16117 sc->qm_cid_count = bxe_set_qm_cid_count(sc); 16118 BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count); 16119 16120 sc->max_cos = 1; 16121 bxe_init_multi_cos(sc); 16122 16123 bxe_add_sysctls(sc); 16124 16125 return (0); 16126 } 16127 16128 /* 16129 * Device detach function. 16130 * 16131 * Stops the controller, resets the controller, and releases resources. 16132 * 16133 * Returns: 16134 * 0 = Success, >0 = Failure 16135 */ 16136 static int 16137 bxe_detach(device_t dev) 16138 { 16139 struct bxe_softc *sc; 16140 if_t ifp; 16141 16142 sc = device_get_softc(dev); 16143 16144 BLOGD(sc, DBG_LOAD, "Starting detach...\n"); 16145 16146 ifp = sc->ifp; 16147 if (ifp != NULL && if_vlantrunkinuse(ifp)) { 16148 BLOGE(sc, "Cannot detach while VLANs are in use.\n"); 16149 return(EBUSY); 16150 } 16151 16152 bxe_del_cdev(sc); 16153 16154 /* stop the periodic callout */ 16155 bxe_periodic_stop(sc); 16156 16157 /* stop the chip taskqueue */ 16158 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE); 16159 if (sc->chip_tq) { 16160 taskqueue_drain(sc->chip_tq, &sc->chip_tq_task); 16161 taskqueue_free(sc->chip_tq); 16162 sc->chip_tq = NULL; 16163 } 16164 16165 /* stop and reset the controller if it was open */ 16166 if (sc->state != BXE_STATE_CLOSED) { 16167 BXE_CORE_LOCK(sc); 16168 bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE); 16169 sc->state = BXE_STATE_DISABLED; 16170 BXE_CORE_UNLOCK(sc); 16171 } 16172 16173 /* release the network interface */ 16174 if (ifp != NULL) { 16175 ether_ifdetach(ifp); 16176 } 16177 ifmedia_removeall(&sc->ifmedia); 16178 16179 /* XXX do the following based on driver state... */ 16180 16181 /* free the host hardware/software hsi structures */ 16182 bxe_free_hsi_mem(sc); 16183 16184 /* free ilt */ 16185 bxe_free_ilt_mem(sc); 16186 16187 bxe_free_buf_rings(sc); 16188 16189 /* release the interrupts */ 16190 bxe_interrupt_free(sc); 16191 16192 /* Release the mutexes*/ 16193 bxe_destroy_fp_mutexs(sc); 16194 bxe_release_mutexes(sc); 16195 16196 16197 /* Release the PCIe BAR mapped memory */ 16198 bxe_deallocate_bars(sc); 16199 16200 /* Release the FreeBSD interface. */ 16201 if (sc->ifp != NULL) { 16202 if_free(sc->ifp); 16203 } 16204 16205 pci_disable_busmaster(dev); 16206 16207 return (0); 16208 } 16209 16210 /* 16211 * Device shutdown function. 16212 * 16213 * Stops and resets the controller. 16214 * 16215 * Returns: 16216 * Nothing 16217 */ 16218 static int 16219 bxe_shutdown(device_t dev) 16220 { 16221 struct bxe_softc *sc; 16222 16223 sc = device_get_softc(dev); 16224 16225 BLOGD(sc, DBG_LOAD, "Starting shutdown...\n"); 16226 16227 /* stop the periodic callout */ 16228 bxe_periodic_stop(sc); 16229 16230 BXE_CORE_LOCK(sc); 16231 bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE); 16232 BXE_CORE_UNLOCK(sc); 16233 16234 return (0); 16235 } 16236 16237 void 16238 bxe_igu_ack_sb(struct bxe_softc *sc, 16239 uint8_t igu_sb_id, 16240 uint8_t segment, 16241 uint16_t index, 16242 uint8_t op, 16243 uint8_t update) 16244 { 16245 uint32_t igu_addr = sc->igu_base_addr; 16246 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 16247 bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr); 16248 } 16249 16250 static void 16251 bxe_igu_clear_sb_gen(struct bxe_softc *sc, 16252 uint8_t func, 16253 uint8_t idu_sb_id, 16254 uint8_t is_pf) 16255 { 16256 uint32_t data, ctl, cnt = 100; 16257 uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 16258 uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 16259 uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 16260 uint32_t sb_bit = 1 << (idu_sb_id%32); 16261 uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 16262 uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 16263 16264 /* Not supported in BC mode */ 16265 if (CHIP_INT_MODE_IS_BC(sc)) { 16266 return; 16267 } 16268 16269 data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup << 16270 IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 16271 IGU_REGULAR_CLEANUP_SET | 16272 IGU_REGULAR_BCLEANUP); 16273 16274 ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) | 16275 (func_encode << IGU_CTRL_REG_FID_SHIFT) | 16276 (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT)); 16277 16278 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16279 data, igu_addr_data); 16280 REG_WR(sc, igu_addr_data, data); 16281 16282 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16283 BUS_SPACE_BARRIER_WRITE); 16284 mb(); 16285 16286 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16287 ctl, igu_addr_ctl); 16288 REG_WR(sc, igu_addr_ctl, ctl); 16289 16290 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16291 BUS_SPACE_BARRIER_WRITE); 16292 mb(); 16293 16294 /* wait for clean up to finish */ 16295 while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) { 16296 DELAY(20000); 16297 } 16298 16299 if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) { 16300 BLOGD(sc, DBG_LOAD, 16301 "Unable to finish IGU cleanup: " 16302 "idu_sb_id %d offset %d bit %d (cnt %d)\n", 16303 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 16304 } 16305 } 16306 16307 static void 16308 bxe_igu_clear_sb(struct bxe_softc *sc, 16309 uint8_t idu_sb_id) 16310 { 16311 bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/); 16312 } 16313 16314 16315 16316 16317 16318 16319 16320 /*******************/ 16321 /* ECORE CALLBACKS */ 16322 /*******************/ 16323 16324 static void 16325 bxe_reset_common(struct bxe_softc *sc) 16326 { 16327 uint32_t val = 0x1400; 16328 16329 /* reset_common */ 16330 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f); 16331 16332 if (CHIP_IS_E3(sc)) { 16333 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16334 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16335 } 16336 16337 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val); 16338 } 16339 16340 static void 16341 bxe_common_init_phy(struct bxe_softc *sc) 16342 { 16343 uint32_t shmem_base[2]; 16344 uint32_t shmem2_base[2]; 16345 16346 /* Avoid common init in case MFW supports LFA */ 16347 if (SHMEM2_RD(sc, size) > 16348 (uint32_t)offsetof(struct shmem2_region, 16349 lfa_host_addr[SC_PORT(sc)])) { 16350 return; 16351 } 16352 16353 shmem_base[0] = sc->devinfo.shmem_base; 16354 shmem2_base[0] = sc->devinfo.shmem2_base; 16355 16356 if (!CHIP_IS_E1x(sc)) { 16357 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr); 16358 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr); 16359 } 16360 16361 bxe_acquire_phy_lock(sc); 16362 elink_common_init_phy(sc, shmem_base, shmem2_base, 16363 sc->devinfo.chip_id, 0); 16364 bxe_release_phy_lock(sc); 16365 } 16366 16367 static void 16368 bxe_pf_disable(struct bxe_softc *sc) 16369 { 16370 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 16371 16372 val &= ~IGU_PF_CONF_FUNC_EN; 16373 16374 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 16375 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16376 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0); 16377 } 16378 16379 static void 16380 bxe_init_pxp(struct bxe_softc *sc) 16381 { 16382 uint16_t devctl; 16383 int r_order, w_order; 16384 16385 devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2); 16386 16387 BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl); 16388 16389 w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5); 16390 16391 if (sc->mrrs == -1) { 16392 r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12); 16393 } else { 16394 BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs); 16395 r_order = sc->mrrs; 16396 } 16397 16398 ecore_init_pxp_arb(sc, r_order, w_order); 16399 } 16400 16401 static uint32_t 16402 bxe_get_pretend_reg(struct bxe_softc *sc) 16403 { 16404 uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0; 16405 uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base); 16406 return (base + (SC_ABS_FUNC(sc)) * stride); 16407 } 16408 16409 /* 16410 * Called only on E1H or E2. 16411 * When pretending to be PF, the pretend value is the function number 0..7. 16412 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 16413 * combination. 16414 */ 16415 static int 16416 bxe_pretend_func(struct bxe_softc *sc, 16417 uint16_t pretend_func_val) 16418 { 16419 uint32_t pretend_reg; 16420 16421 if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) { 16422 return (-1); 16423 } 16424 16425 /* get my own pretend register */ 16426 pretend_reg = bxe_get_pretend_reg(sc); 16427 REG_WR(sc, pretend_reg, pretend_func_val); 16428 REG_RD(sc, pretend_reg); 16429 return (0); 16430 } 16431 16432 static void 16433 bxe_iov_init_dmae(struct bxe_softc *sc) 16434 { 16435 return; 16436 } 16437 16438 static void 16439 bxe_iov_init_dq(struct bxe_softc *sc) 16440 { 16441 return; 16442 } 16443 16444 /* send a NIG loopback debug packet */ 16445 static void 16446 bxe_lb_pckt(struct bxe_softc *sc) 16447 { 16448 uint32_t wb_write[3]; 16449 16450 /* Ethernet source and destination addresses */ 16451 wb_write[0] = 0x55555555; 16452 wb_write[1] = 0x55555555; 16453 wb_write[2] = 0x20; /* SOP */ 16454 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16455 16456 /* NON-IP protocol */ 16457 wb_write[0] = 0x09000000; 16458 wb_write[1] = 0x55555555; 16459 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 16460 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16461 } 16462 16463 /* 16464 * Some of the internal memories are not directly readable from the driver. 16465 * To test them we send debug packets. 16466 */ 16467 static int 16468 bxe_int_mem_test(struct bxe_softc *sc) 16469 { 16470 int factor; 16471 int count, i; 16472 uint32_t val = 0; 16473 16474 if (CHIP_REV_IS_FPGA(sc)) { 16475 factor = 120; 16476 } else if (CHIP_REV_IS_EMUL(sc)) { 16477 factor = 200; 16478 } else { 16479 factor = 1; 16480 } 16481 16482 /* disable inputs of parser neighbor blocks */ 16483 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16484 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16485 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16486 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16487 16488 /* write 0 to parser credits for CFC search request */ 16489 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16490 16491 /* send Ethernet packet */ 16492 bxe_lb_pckt(sc); 16493 16494 /* TODO do i reset NIG statistic? */ 16495 /* Wait until NIG register shows 1 packet of size 0x10 */ 16496 count = 1000 * factor; 16497 while (count) { 16498 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16499 val = *BXE_SP(sc, wb_data[0]); 16500 if (val == 0x10) { 16501 break; 16502 } 16503 16504 DELAY(10000); 16505 count--; 16506 } 16507 16508 if (val != 0x10) { 16509 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16510 return (-1); 16511 } 16512 16513 /* wait until PRS register shows 1 packet */ 16514 count = (1000 * factor); 16515 while (count) { 16516 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16517 if (val == 1) { 16518 break; 16519 } 16520 16521 DELAY(10000); 16522 count--; 16523 } 16524 16525 if (val != 0x1) { 16526 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16527 return (-2); 16528 } 16529 16530 /* Reset and init BRB, PRS */ 16531 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16532 DELAY(50000); 16533 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16534 DELAY(50000); 16535 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16536 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16537 16538 /* Disable inputs of parser neighbor blocks */ 16539 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16540 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16541 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16542 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16543 16544 /* Write 0 to parser credits for CFC search request */ 16545 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16546 16547 /* send 10 Ethernet packets */ 16548 for (i = 0; i < 10; i++) { 16549 bxe_lb_pckt(sc); 16550 } 16551 16552 /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */ 16553 count = (1000 * factor); 16554 while (count) { 16555 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16556 val = *BXE_SP(sc, wb_data[0]); 16557 if (val == 0xb0) { 16558 break; 16559 } 16560 16561 DELAY(10000); 16562 count--; 16563 } 16564 16565 if (val != 0xb0) { 16566 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16567 return (-3); 16568 } 16569 16570 /* Wait until PRS register shows 2 packets */ 16571 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16572 if (val != 2) { 16573 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16574 } 16575 16576 /* Write 1 to parser credits for CFC search request */ 16577 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 16578 16579 /* Wait until PRS register shows 3 packets */ 16580 DELAY(10000 * factor); 16581 16582 /* Wait until NIG register shows 1 packet of size 0x10 */ 16583 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16584 if (val != 3) { 16585 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16586 } 16587 16588 /* clear NIG EOP FIFO */ 16589 for (i = 0; i < 11; i++) { 16590 REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO); 16591 } 16592 16593 val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY); 16594 if (val != 1) { 16595 BLOGE(sc, "clear of NIG failed val=0x%x\n", val); 16596 return (-4); 16597 } 16598 16599 /* Reset and init BRB, PRS, NIG */ 16600 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16601 DELAY(50000); 16602 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16603 DELAY(50000); 16604 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16605 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16606 if (!CNIC_SUPPORT(sc)) { 16607 /* set NIC mode */ 16608 REG_WR(sc, PRS_REG_NIC_MODE, 1); 16609 } 16610 16611 /* Enable inputs of parser neighbor blocks */ 16612 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff); 16613 REG_WR(sc, TCM_REG_PRS_IFEN, 0x1); 16614 REG_WR(sc, CFC_REG_DEBUG0, 0x0); 16615 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1); 16616 16617 return (0); 16618 } 16619 16620 static void 16621 bxe_setup_fan_failure_detection(struct bxe_softc *sc) 16622 { 16623 int is_required; 16624 uint32_t val; 16625 int port; 16626 16627 is_required = 0; 16628 val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) & 16629 SHARED_HW_CFG_FAN_FAILURE_MASK); 16630 16631 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) { 16632 is_required = 1; 16633 } 16634 /* 16635 * The fan failure mechanism is usually related to the PHY type since 16636 * the power consumption of the board is affected by the PHY. Currently, 16637 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 16638 */ 16639 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) { 16640 for (port = PORT_0; port < PORT_MAX; port++) { 16641 is_required |= elink_fan_failure_det_req(sc, 16642 sc->devinfo.shmem_base, 16643 sc->devinfo.shmem2_base, 16644 port); 16645 } 16646 } 16647 16648 BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required); 16649 16650 if (is_required == 0) { 16651 return; 16652 } 16653 16654 /* Fan failure is indicated by SPIO 5 */ 16655 bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 16656 16657 /* set to active low mode */ 16658 val = REG_RD(sc, MISC_REG_SPIO_INT); 16659 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 16660 REG_WR(sc, MISC_REG_SPIO_INT, val); 16661 16662 /* enable interrupt to signal the IGU */ 16663 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 16664 val |= MISC_SPIO_SPIO5; 16665 REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val); 16666 } 16667 16668 static void 16669 bxe_enable_blocks_attention(struct bxe_softc *sc) 16670 { 16671 uint32_t val; 16672 16673 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 16674 if (!CHIP_IS_E1x(sc)) { 16675 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40); 16676 } else { 16677 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0); 16678 } 16679 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 16680 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 16681 /* 16682 * mask read length error interrupts in brb for parser 16683 * (parsing unit and 'checksum and crc' unit) 16684 * these errors are legal (PU reads fixed length and CAC can cause 16685 * read length error on truncated packets) 16686 */ 16687 REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00); 16688 REG_WR(sc, QM_REG_QM_INT_MASK, 0); 16689 REG_WR(sc, TM_REG_TM_INT_MASK, 0); 16690 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0); 16691 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0); 16692 REG_WR(sc, XCM_REG_XCM_INT_MASK, 0); 16693 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */ 16694 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */ 16695 REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0); 16696 REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0); 16697 REG_WR(sc, UCM_REG_UCM_INT_MASK, 0); 16698 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */ 16699 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */ 16700 REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 16701 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0); 16702 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0); 16703 REG_WR(sc, CCM_REG_CCM_INT_MASK, 0); 16704 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */ 16705 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */ 16706 16707 val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 16708 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 16709 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN); 16710 if (!CHIP_IS_E1x(sc)) { 16711 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 16712 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED); 16713 } 16714 REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val); 16715 16716 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0); 16717 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0); 16718 REG_WR(sc, TCM_REG_TCM_INT_MASK, 0); 16719 /* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */ 16720 16721 if (!CHIP_IS_E1x(sc)) { 16722 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 16723 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 16724 } 16725 16726 REG_WR(sc, CDU_REG_CDU_INT_MASK, 0); 16727 REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0); 16728 /* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */ 16729 REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 16730 } 16731 16732 /** 16733 * bxe_init_hw_common - initialize the HW at the COMMON phase. 16734 * 16735 * @sc: driver handle 16736 */ 16737 static int 16738 bxe_init_hw_common(struct bxe_softc *sc) 16739 { 16740 uint8_t abs_func_id; 16741 uint32_t val; 16742 16743 BLOGD(sc, DBG_LOAD, "starting common init for func %d\n", 16744 SC_ABS_FUNC(sc)); 16745 16746 /* 16747 * take the RESET lock to protect undi_unload flow from accessing 16748 * registers while we are resetting the chip 16749 */ 16750 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 16751 16752 bxe_reset_common(sc); 16753 16754 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff); 16755 16756 val = 0xfffc; 16757 if (CHIP_IS_E3(sc)) { 16758 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16759 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16760 } 16761 16762 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val); 16763 16764 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 16765 16766 ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON); 16767 BLOGD(sc, DBG_LOAD, "after misc block init\n"); 16768 16769 if (!CHIP_IS_E1x(sc)) { 16770 /* 16771 * 4-port mode or 2-port mode we need to turn off master-enable for 16772 * everyone. After that we turn it back on for self. So, we disregard 16773 * multi-function, and always disable all functions on the given path, 16774 * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1 16775 */ 16776 for (abs_func_id = SC_PATH(sc); 16777 abs_func_id < (E2_FUNC_MAX * 2); 16778 abs_func_id += 2) { 16779 if (abs_func_id == SC_ABS_FUNC(sc)) { 16780 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 16781 continue; 16782 } 16783 16784 bxe_pretend_func(sc, abs_func_id); 16785 16786 /* clear pf enable */ 16787 bxe_pf_disable(sc); 16788 16789 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 16790 } 16791 } 16792 16793 BLOGD(sc, DBG_LOAD, "after pf disable\n"); 16794 16795 ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON); 16796 16797 if (CHIP_IS_E1(sc)) { 16798 /* 16799 * enable HW interrupt from PXP on USDM overflow 16800 * bit 16 on INT_MASK_0 16801 */ 16802 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 16803 } 16804 16805 ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON); 16806 bxe_init_pxp(sc); 16807 16808 #ifdef __BIG_ENDIAN 16809 REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1); 16810 REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1); 16811 REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1); 16812 REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1); 16813 REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1); 16814 /* make sure this value is 0 */ 16815 REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0); 16816 16817 //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1); 16818 REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1); 16819 REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1); 16820 REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1); 16821 REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1); 16822 #endif 16823 16824 ecore_ilt_init_page_size(sc, INITOP_SET); 16825 16826 if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) { 16827 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 16828 } 16829 16830 /* let the HW do it's magic... */ 16831 DELAY(100000); 16832 16833 /* finish PXP init */ 16834 val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE); 16835 if (val != 1) { 16836 BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n", 16837 val); 16838 return (-1); 16839 } 16840 val = REG_RD(sc, PXP2_REG_RD_INIT_DONE); 16841 if (val != 1) { 16842 BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val); 16843 return (-1); 16844 } 16845 16846 BLOGD(sc, DBG_LOAD, "after pxp init\n"); 16847 16848 /* 16849 * Timer bug workaround for E2 only. We need to set the entire ILT to have 16850 * entries with value "0" and valid bit on. This needs to be done by the 16851 * first PF that is loaded in a path (i.e. common phase) 16852 */ 16853 if (!CHIP_IS_E1x(sc)) { 16854 /* 16855 * In E2 there is a bug in the timers block that can cause function 6 / 7 16856 * (i.e. vnic3) to start even if it is marked as "scan-off". 16857 * This occurs when a different function (func2,3) is being marked 16858 * as "scan-off". Real-life scenario for example: if a driver is being 16859 * load-unloaded while func6,7 are down. This will cause the timer to access 16860 * the ilt, translate to a logical address and send a request to read/write. 16861 * Since the ilt for the function that is down is not valid, this will cause 16862 * a translation error which is unrecoverable. 16863 * The Workaround is intended to make sure that when this happens nothing 16864 * fatal will occur. The workaround: 16865 * 1. First PF driver which loads on a path will: 16866 * a. After taking the chip out of reset, by using pretend, 16867 * it will write "0" to the following registers of 16868 * the other vnics. 16869 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16870 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 16871 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 16872 * And for itself it will write '1' to 16873 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 16874 * dmae-operations (writing to pram for example.) 16875 * note: can be done for only function 6,7 but cleaner this 16876 * way. 16877 * b. Write zero+valid to the entire ILT. 16878 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 16879 * VNIC3 (of that port). The range allocated will be the 16880 * entire ILT. This is needed to prevent ILT range error. 16881 * 2. Any PF driver load flow: 16882 * a. ILT update with the physical addresses of the allocated 16883 * logical pages. 16884 * b. Wait 20msec. - note that this timeout is needed to make 16885 * sure there are no requests in one of the PXP internal 16886 * queues with "old" ILT addresses. 16887 * c. PF enable in the PGLC. 16888 * d. Clear the was_error of the PF in the PGLC. (could have 16889 * occurred while driver was down) 16890 * e. PF enable in the CFC (WEAK + STRONG) 16891 * f. Timers scan enable 16892 * 3. PF driver unload flow: 16893 * a. Clear the Timers scan_en. 16894 * b. Polling for scan_on=0 for that PF. 16895 * c. Clear the PF enable bit in the PXP. 16896 * d. Clear the PF enable in the CFC (WEAK + STRONG) 16897 * e. Write zero+valid to all ILT entries (The valid bit must 16898 * stay set) 16899 * f. If this is VNIC 3 of a port then also init 16900 * first_timers_ilt_entry to zero and last_timers_ilt_entry 16901 * to the last enrty in the ILT. 16902 * 16903 * Notes: 16904 * Currently the PF error in the PGLC is non recoverable. 16905 * In the future the there will be a recovery routine for this error. 16906 * Currently attention is masked. 16907 * Having an MCP lock on the load/unload process does not guarantee that 16908 * there is no Timer disable during Func6/7 enable. This is because the 16909 * Timers scan is currently being cleared by the MCP on FLR. 16910 * Step 2.d can be done only for PF6/7 and the driver can also check if 16911 * there is error before clearing it. But the flow above is simpler and 16912 * more general. 16913 * All ILT entries are written by zero+valid and not just PF6/7 16914 * ILT entries since in the future the ILT entries allocation for 16915 * PF-s might be dynamic. 16916 */ 16917 struct ilt_client_info ilt_cli; 16918 struct ecore_ilt ilt; 16919 16920 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 16921 memset(&ilt, 0, sizeof(struct ecore_ilt)); 16922 16923 /* initialize dummy TM client */ 16924 ilt_cli.start = 0; 16925 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 16926 ilt_cli.client_num = ILT_CLIENT_TM; 16927 16928 /* 16929 * Step 1: set zeroes to all ilt page entries with valid bit on 16930 * Step 2: set the timers first/last ilt entry to point 16931 * to the entire range to prevent ILT range error for 3rd/4th 16932 * vnic (this code assumes existence of the vnic) 16933 * 16934 * both steps performed by call to ecore_ilt_client_init_op() 16935 * with dummy TM client 16936 * 16937 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 16938 * and his brother are split registers 16939 */ 16940 16941 bxe_pretend_func(sc, (SC_PATH(sc) + 6)); 16942 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR); 16943 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 16944 16945 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN); 16946 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN); 16947 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 16948 } 16949 16950 REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0); 16951 REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0); 16952 16953 if (!CHIP_IS_E1x(sc)) { 16954 int factor = CHIP_REV_IS_EMUL(sc) ? 1000 : 16955 (CHIP_REV_IS_FPGA(sc) ? 400 : 0); 16956 16957 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON); 16958 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON); 16959 16960 /* let the HW do it's magic... */ 16961 do { 16962 DELAY(200000); 16963 val = REG_RD(sc, ATC_REG_ATC_INIT_DONE); 16964 } while (factor-- && (val != 1)); 16965 16966 if (val != 1) { 16967 BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val); 16968 return (-1); 16969 } 16970 } 16971 16972 BLOGD(sc, DBG_LOAD, "after pglue and atc init\n"); 16973 16974 ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON); 16975 16976 bxe_iov_init_dmae(sc); 16977 16978 /* clean the DMAE memory */ 16979 sc->dmae_ready = 1; 16980 ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1); 16981 16982 ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON); 16983 16984 ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON); 16985 16986 ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON); 16987 16988 ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON); 16989 16990 bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3); 16991 bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3); 16992 bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3); 16993 bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3); 16994 16995 ecore_init_block(sc, BLOCK_QM, PHASE_COMMON); 16996 16997 /* QM queues pointers table */ 16998 ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET); 16999 17000 /* soft reset pulse */ 17001 REG_WR(sc, QM_REG_SOFT_RESET, 1); 17002 REG_WR(sc, QM_REG_SOFT_RESET, 0); 17003 17004 if (CNIC_SUPPORT(sc)) 17005 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON); 17006 17007 ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON); 17008 REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT); 17009 if (!CHIP_REV_IS_SLOW(sc)) { 17010 /* enable hw interrupt from doorbell Q */ 17011 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 17012 } 17013 17014 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 17015 17016 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 17017 REG_WR(sc, PRS_REG_A_PRSU_20, 0xf); 17018 17019 if (!CHIP_IS_E1(sc)) { 17020 REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan); 17021 } 17022 17023 if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) { 17024 if (IS_MF_AFEX(sc)) { 17025 /* 17026 * configure that AFEX and VLAN headers must be 17027 * received in AFEX mode 17028 */ 17029 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE); 17030 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA); 17031 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 17032 REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 17033 REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4); 17034 } else { 17035 /* 17036 * Bit-map indicating which L2 hdrs may appear 17037 * after the basic Ethernet header 17038 */ 17039 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 17040 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17041 } 17042 } 17043 17044 ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON); 17045 ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON); 17046 ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON); 17047 ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON); 17048 17049 if (!CHIP_IS_E1x(sc)) { 17050 /* reset VFC memories */ 17051 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17052 VFC_MEMORIES_RST_REG_CAM_RST | 17053 VFC_MEMORIES_RST_REG_RAM_RST); 17054 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17055 VFC_MEMORIES_RST_REG_CAM_RST | 17056 VFC_MEMORIES_RST_REG_RAM_RST); 17057 17058 DELAY(20000); 17059 } 17060 17061 ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON); 17062 ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON); 17063 ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON); 17064 ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON); 17065 17066 /* sync semi rtc */ 17067 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 17068 0x80000000); 17069 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 17070 0x80000000); 17071 17072 ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON); 17073 ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON); 17074 ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON); 17075 17076 if (!CHIP_IS_E1x(sc)) { 17077 if (IS_MF_AFEX(sc)) { 17078 /* 17079 * configure that AFEX and VLAN headers must be 17080 * sent in AFEX mode 17081 */ 17082 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE); 17083 REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA); 17084 REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 17085 REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 17086 REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4); 17087 } else { 17088 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 17089 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17090 } 17091 } 17092 17093 REG_WR(sc, SRC_REG_SOFT_RST, 1); 17094 17095 ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON); 17096 17097 if (CNIC_SUPPORT(sc)) { 17098 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672); 17099 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 17100 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b); 17101 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a); 17102 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116); 17103 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 17104 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf); 17105 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 17106 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f); 17107 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7); 17108 } 17109 REG_WR(sc, SRC_REG_SOFT_RST, 0); 17110 17111 if (sizeof(union cdu_context) != 1024) { 17112 /* we currently assume that a context is 1024 bytes */ 17113 BLOGE(sc, "please adjust the size of cdu_context(%ld)\n", 17114 (long)sizeof(union cdu_context)); 17115 } 17116 17117 ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON); 17118 val = (4 << 24) + (0 << 12) + 1024; 17119 REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val); 17120 17121 ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON); 17122 17123 REG_WR(sc, CFC_REG_INIT_REG, 0x7FF); 17124 /* enable context validation interrupt from CFC */ 17125 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 17126 17127 /* set the thresholds to prevent CFC/CDU race */ 17128 REG_WR(sc, CFC_REG_DEBUG0, 0x20020000); 17129 ecore_init_block(sc, BLOCK_HC, PHASE_COMMON); 17130 17131 if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) { 17132 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36); 17133 } 17134 17135 ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON); 17136 ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON); 17137 17138 /* Reset PCIE errors for debug */ 17139 REG_WR(sc, 0x2814, 0xffffffff); 17140 REG_WR(sc, 0x3820, 0xffffffff); 17141 17142 if (!CHIP_IS_E1x(sc)) { 17143 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 17144 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 17145 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 17146 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 17147 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 17148 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 17149 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 17150 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 17151 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 17152 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 17153 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 17154 } 17155 17156 ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON); 17157 17158 if (!CHIP_IS_E1(sc)) { 17159 /* in E3 this done in per-port section */ 17160 if (!CHIP_IS_E3(sc)) 17161 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17162 } 17163 17164 if (CHIP_IS_E1H(sc)) { 17165 /* not applicable for E2 (and above ...) */ 17166 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc)); 17167 } 17168 17169 if (CHIP_REV_IS_SLOW(sc)) { 17170 DELAY(200000); 17171 } 17172 17173 /* finish CFC init */ 17174 val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10); 17175 if (val != 1) { 17176 BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val); 17177 return (-1); 17178 } 17179 val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10); 17180 if (val != 1) { 17181 BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val); 17182 return (-1); 17183 } 17184 val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 17185 if (val != 1) { 17186 BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val); 17187 return (-1); 17188 } 17189 REG_WR(sc, CFC_REG_DEBUG0, 0); 17190 17191 if (CHIP_IS_E1(sc)) { 17192 /* read NIG statistic to see if this is our first up since powerup */ 17193 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 17194 val = *BXE_SP(sc, wb_data[0]); 17195 17196 /* do internal memory self test */ 17197 if ((val == 0) && bxe_int_mem_test(sc)) { 17198 BLOGE(sc, "internal mem self test failed val=0x%x\n", val); 17199 return (-1); 17200 } 17201 } 17202 17203 bxe_setup_fan_failure_detection(sc); 17204 17205 /* clear PXP2 attentions */ 17206 REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 17207 17208 bxe_enable_blocks_attention(sc); 17209 17210 if (!CHIP_REV_IS_SLOW(sc)) { 17211 ecore_enable_blocks_parity(sc); 17212 } 17213 17214 if (!BXE_NOMCP(sc)) { 17215 if (CHIP_IS_E1x(sc)) { 17216 bxe_common_init_phy(sc); 17217 } 17218 } 17219 17220 return (0); 17221 } 17222 17223 /** 17224 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase. 17225 * 17226 * @sc: driver handle 17227 */ 17228 static int 17229 bxe_init_hw_common_chip(struct bxe_softc *sc) 17230 { 17231 int rc = bxe_init_hw_common(sc); 17232 17233 if (rc) { 17234 BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc); 17235 return (rc); 17236 } 17237 17238 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 17239 if (!BXE_NOMCP(sc)) { 17240 bxe_common_init_phy(sc); 17241 } 17242 17243 return (0); 17244 } 17245 17246 static int 17247 bxe_init_hw_port(struct bxe_softc *sc) 17248 { 17249 int port = SC_PORT(sc); 17250 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 17251 uint32_t low, high; 17252 uint32_t val; 17253 17254 BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port); 17255 17256 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 17257 17258 ecore_init_block(sc, BLOCK_MISC, init_phase); 17259 ecore_init_block(sc, BLOCK_PXP, init_phase); 17260 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17261 17262 /* 17263 * Timers bug workaround: disables the pf_master bit in pglue at 17264 * common phase, we need to enable it here before any dmae access are 17265 * attempted. Therefore we manually added the enable-master to the 17266 * port phase (it also happens in the function phase) 17267 */ 17268 if (!CHIP_IS_E1x(sc)) { 17269 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17270 } 17271 17272 ecore_init_block(sc, BLOCK_ATC, init_phase); 17273 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17274 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17275 ecore_init_block(sc, BLOCK_QM, init_phase); 17276 17277 ecore_init_block(sc, BLOCK_TCM, init_phase); 17278 ecore_init_block(sc, BLOCK_UCM, init_phase); 17279 ecore_init_block(sc, BLOCK_CCM, init_phase); 17280 ecore_init_block(sc, BLOCK_XCM, init_phase); 17281 17282 /* QM cid (connection) count */ 17283 ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET); 17284 17285 if (CNIC_SUPPORT(sc)) { 17286 ecore_init_block(sc, BLOCK_TM, init_phase); 17287 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20); 17288 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 17289 } 17290 17291 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17292 17293 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17294 17295 if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) { 17296 if (IS_MF(sc)) { 17297 low = (BXE_ONE_PORT(sc) ? 160 : 246); 17298 } else if (sc->mtu > 4096) { 17299 if (BXE_ONE_PORT(sc)) { 17300 low = 160; 17301 } else { 17302 val = sc->mtu; 17303 /* (24*1024 + val*4)/256 */ 17304 low = (96 + (val / 64) + ((val % 64) ? 1 : 0)); 17305 } 17306 } else { 17307 low = (BXE_ONE_PORT(sc) ? 80 : 160); 17308 } 17309 high = (low + 56); /* 14*1024/256 */ 17310 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 17311 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 17312 } 17313 17314 if (CHIP_IS_MODE_4_PORT(sc)) { 17315 REG_WR(sc, SC_PORT(sc) ? 17316 BRB1_REG_MAC_GUARANTIED_1 : 17317 BRB1_REG_MAC_GUARANTIED_0, 40); 17318 } 17319 17320 ecore_init_block(sc, BLOCK_PRS, init_phase); 17321 if (CHIP_IS_E3B0(sc)) { 17322 if (IS_MF_AFEX(sc)) { 17323 /* configure headers for AFEX mode */ 17324 REG_WR(sc, SC_PORT(sc) ? 17325 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17326 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 17327 REG_WR(sc, SC_PORT(sc) ? 17328 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 17329 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 17330 REG_WR(sc, SC_PORT(sc) ? 17331 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 17332 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 17333 } else { 17334 /* Ovlan exists only if we are in multi-function + 17335 * switch-dependent mode, in switch-independent there 17336 * is no ovlan headers 17337 */ 17338 REG_WR(sc, SC_PORT(sc) ? 17339 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17340 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 17341 (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6)); 17342 } 17343 } 17344 17345 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17346 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17347 ecore_init_block(sc, BLOCK_USDM, init_phase); 17348 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17349 17350 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17351 ecore_init_block(sc, BLOCK_USEM, init_phase); 17352 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17353 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17354 17355 ecore_init_block(sc, BLOCK_UPB, init_phase); 17356 ecore_init_block(sc, BLOCK_XPB, init_phase); 17357 17358 ecore_init_block(sc, BLOCK_PBF, init_phase); 17359 17360 if (CHIP_IS_E1x(sc)) { 17361 /* configure PBF to work without PAUSE mtu 9000 */ 17362 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 17363 17364 /* update threshold */ 17365 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 17366 /* update init credit */ 17367 REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 17368 17369 /* probe changes */ 17370 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1); 17371 DELAY(50); 17372 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0); 17373 } 17374 17375 if (CNIC_SUPPORT(sc)) { 17376 ecore_init_block(sc, BLOCK_SRC, init_phase); 17377 } 17378 17379 ecore_init_block(sc, BLOCK_CDU, init_phase); 17380 ecore_init_block(sc, BLOCK_CFC, init_phase); 17381 17382 if (CHIP_IS_E1(sc)) { 17383 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17384 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17385 } 17386 ecore_init_block(sc, BLOCK_HC, init_phase); 17387 17388 ecore_init_block(sc, BLOCK_IGU, init_phase); 17389 17390 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17391 /* init aeu_mask_attn_func_0/1: 17392 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use 17393 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF 17394 * bits 4-7 are used for "per vn group attention" */ 17395 val = IS_MF(sc) ? 0xF7 : 0x7; 17396 /* Enable DCBX attention for all but E1 */ 17397 val |= CHIP_IS_E1(sc) ? 0 : 0x10; 17398 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 17399 17400 ecore_init_block(sc, BLOCK_NIG, init_phase); 17401 17402 if (!CHIP_IS_E1x(sc)) { 17403 /* Bit-map indicating which L2 hdrs may appear after the 17404 * basic Ethernet header 17405 */ 17406 if (IS_MF_AFEX(sc)) { 17407 REG_WR(sc, SC_PORT(sc) ? 17408 NIG_REG_P1_HDRS_AFTER_BASIC : 17409 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 17410 } else { 17411 REG_WR(sc, SC_PORT(sc) ? 17412 NIG_REG_P1_HDRS_AFTER_BASIC : 17413 NIG_REG_P0_HDRS_AFTER_BASIC, 17414 IS_MF_SD(sc) ? 7 : 6); 17415 } 17416 17417 if (CHIP_IS_E3(sc)) { 17418 REG_WR(sc, SC_PORT(sc) ? 17419 NIG_REG_LLH1_MF_MODE : 17420 NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17421 } 17422 } 17423 if (!CHIP_IS_E3(sc)) { 17424 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 17425 } 17426 17427 if (!CHIP_IS_E1(sc)) { 17428 /* 0x2 disable mf_ov, 0x1 enable */ 17429 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 17430 (IS_MF_SD(sc) ? 0x1 : 0x2)); 17431 17432 if (!CHIP_IS_E1x(sc)) { 17433 val = 0; 17434 switch (sc->devinfo.mf_info.mf_mode) { 17435 case MULTI_FUNCTION_SD: 17436 val = 1; 17437 break; 17438 case MULTI_FUNCTION_SI: 17439 case MULTI_FUNCTION_AFEX: 17440 val = 2; 17441 break; 17442 } 17443 17444 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE : 17445 NIG_REG_LLH0_CLS_TYPE), val); 17446 } 17447 REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 17448 REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 17449 REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 17450 } 17451 17452 /* If SPIO5 is set to generate interrupts, enable it for this port */ 17453 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17454 if (val & MISC_SPIO_SPIO5) { 17455 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 17456 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 17457 val = REG_RD(sc, reg_addr); 17458 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 17459 REG_WR(sc, reg_addr, val); 17460 } 17461 17462 return (0); 17463 } 17464 17465 static uint32_t 17466 bxe_flr_clnup_reg_poll(struct bxe_softc *sc, 17467 uint32_t reg, 17468 uint32_t expected, 17469 uint32_t poll_count) 17470 { 17471 uint32_t cur_cnt = poll_count; 17472 uint32_t val; 17473 17474 while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) { 17475 DELAY(FLR_WAIT_INTERVAL); 17476 } 17477 17478 return (val); 17479 } 17480 17481 static int 17482 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc, 17483 uint32_t reg, 17484 char *msg, 17485 uint32_t poll_cnt) 17486 { 17487 uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt); 17488 17489 if (val != 0) { 17490 BLOGE(sc, "%s usage count=%d\n", msg, val); 17491 return (1); 17492 } 17493 17494 return (0); 17495 } 17496 17497 /* Common routines with VF FLR cleanup */ 17498 static uint32_t 17499 bxe_flr_clnup_poll_count(struct bxe_softc *sc) 17500 { 17501 /* adjust polling timeout */ 17502 if (CHIP_REV_IS_EMUL(sc)) { 17503 return (FLR_POLL_CNT * 2000); 17504 } 17505 17506 if (CHIP_REV_IS_FPGA(sc)) { 17507 return (FLR_POLL_CNT * 120); 17508 } 17509 17510 return (FLR_POLL_CNT); 17511 } 17512 17513 static int 17514 bxe_poll_hw_usage_counters(struct bxe_softc *sc, 17515 uint32_t poll_cnt) 17516 { 17517 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 17518 if (bxe_flr_clnup_poll_hw_counter(sc, 17519 CFC_REG_NUM_LCIDS_INSIDE_PF, 17520 "CFC PF usage counter timed out", 17521 poll_cnt)) { 17522 return (1); 17523 } 17524 17525 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 17526 if (bxe_flr_clnup_poll_hw_counter(sc, 17527 DORQ_REG_PF_USAGE_CNT, 17528 "DQ PF usage counter timed out", 17529 poll_cnt)) { 17530 return (1); 17531 } 17532 17533 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 17534 if (bxe_flr_clnup_poll_hw_counter(sc, 17535 QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc), 17536 "QM PF usage counter timed out", 17537 poll_cnt)) { 17538 return (1); 17539 } 17540 17541 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 17542 if (bxe_flr_clnup_poll_hw_counter(sc, 17543 TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc), 17544 "Timers VNIC usage counter timed out", 17545 poll_cnt)) { 17546 return (1); 17547 } 17548 17549 if (bxe_flr_clnup_poll_hw_counter(sc, 17550 TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc), 17551 "Timers NUM_SCANS usage counter timed out", 17552 poll_cnt)) { 17553 return (1); 17554 } 17555 17556 /* Wait DMAE PF usage counter to zero */ 17557 if (bxe_flr_clnup_poll_hw_counter(sc, 17558 dmae_reg_go_c[INIT_DMAE_C(sc)], 17559 "DMAE dommand register timed out", 17560 poll_cnt)) { 17561 return (1); 17562 } 17563 17564 return (0); 17565 } 17566 17567 #define OP_GEN_PARAM(param) \ 17568 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 17569 #define OP_GEN_TYPE(type) \ 17570 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 17571 #define OP_GEN_AGG_VECT(index) \ 17572 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 17573 17574 static int 17575 bxe_send_final_clnup(struct bxe_softc *sc, 17576 uint8_t clnup_func, 17577 uint32_t poll_cnt) 17578 { 17579 uint32_t op_gen_command = 0; 17580 uint32_t comp_addr = (BAR_CSTRORM_INTMEM + 17581 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func)); 17582 int ret = 0; 17583 17584 if (REG_RD(sc, comp_addr)) { 17585 BLOGE(sc, "Cleanup complete was not 0 before sending\n"); 17586 return (1); 17587 } 17588 17589 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 17590 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 17591 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 17592 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 17593 17594 BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n"); 17595 REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command); 17596 17597 if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) { 17598 BLOGE(sc, "FW final cleanup did not succeed\n"); 17599 BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n", 17600 (REG_RD(sc, comp_addr))); 17601 bxe_panic(sc, ("FLR cleanup failed\n")); 17602 return (1); 17603 } 17604 17605 /* Zero completion for nxt FLR */ 17606 REG_WR(sc, comp_addr, 0); 17607 17608 return (ret); 17609 } 17610 17611 static void 17612 bxe_pbf_pN_buf_flushed(struct bxe_softc *sc, 17613 struct pbf_pN_buf_regs *regs, 17614 uint32_t poll_count) 17615 { 17616 uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start; 17617 uint32_t cur_cnt = poll_count; 17618 17619 crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed); 17620 crd = crd_start = REG_RD(sc, regs->crd); 17621 init_crd = REG_RD(sc, regs->init_crd); 17622 17623 BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 17624 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd); 17625 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 17626 17627 while ((crd != init_crd) && 17628 ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) < 17629 (init_crd - crd_start))) { 17630 if (cur_cnt--) { 17631 DELAY(FLR_WAIT_INTERVAL); 17632 crd = REG_RD(sc, regs->crd); 17633 crd_freed = REG_RD(sc, regs->crd_freed); 17634 } else { 17635 BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN); 17636 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd); 17637 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed); 17638 break; 17639 } 17640 } 17641 17642 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n", 17643 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 17644 } 17645 17646 static void 17647 bxe_pbf_pN_cmd_flushed(struct bxe_softc *sc, 17648 struct pbf_pN_cmd_regs *regs, 17649 uint32_t poll_count) 17650 { 17651 uint32_t occup, to_free, freed, freed_start; 17652 uint32_t cur_cnt = poll_count; 17653 17654 occup = to_free = REG_RD(sc, regs->lines_occup); 17655 freed = freed_start = REG_RD(sc, regs->lines_freed); 17656 17657 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 17658 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 17659 17660 while (occup && 17661 ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) { 17662 if (cur_cnt--) { 17663 DELAY(FLR_WAIT_INTERVAL); 17664 occup = REG_RD(sc, regs->lines_occup); 17665 freed = REG_RD(sc, regs->lines_freed); 17666 } else { 17667 BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN); 17668 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 17669 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 17670 break; 17671 } 17672 } 17673 17674 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n", 17675 poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 17676 } 17677 17678 static void 17679 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count) 17680 { 17681 struct pbf_pN_cmd_regs cmd_regs[] = { 17682 {0, (CHIP_IS_E3B0(sc)) ? 17683 PBF_REG_TQ_OCCUPANCY_Q0 : 17684 PBF_REG_P0_TQ_OCCUPANCY, 17685 (CHIP_IS_E3B0(sc)) ? 17686 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 17687 PBF_REG_P0_TQ_LINES_FREED_CNT}, 17688 {1, (CHIP_IS_E3B0(sc)) ? 17689 PBF_REG_TQ_OCCUPANCY_Q1 : 17690 PBF_REG_P1_TQ_OCCUPANCY, 17691 (CHIP_IS_E3B0(sc)) ? 17692 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 17693 PBF_REG_P1_TQ_LINES_FREED_CNT}, 17694 {4, (CHIP_IS_E3B0(sc)) ? 17695 PBF_REG_TQ_OCCUPANCY_LB_Q : 17696 PBF_REG_P4_TQ_OCCUPANCY, 17697 (CHIP_IS_E3B0(sc)) ? 17698 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 17699 PBF_REG_P4_TQ_LINES_FREED_CNT} 17700 }; 17701 17702 struct pbf_pN_buf_regs buf_regs[] = { 17703 {0, (CHIP_IS_E3B0(sc)) ? 17704 PBF_REG_INIT_CRD_Q0 : 17705 PBF_REG_P0_INIT_CRD , 17706 (CHIP_IS_E3B0(sc)) ? 17707 PBF_REG_CREDIT_Q0 : 17708 PBF_REG_P0_CREDIT, 17709 (CHIP_IS_E3B0(sc)) ? 17710 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 17711 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 17712 {1, (CHIP_IS_E3B0(sc)) ? 17713 PBF_REG_INIT_CRD_Q1 : 17714 PBF_REG_P1_INIT_CRD, 17715 (CHIP_IS_E3B0(sc)) ? 17716 PBF_REG_CREDIT_Q1 : 17717 PBF_REG_P1_CREDIT, 17718 (CHIP_IS_E3B0(sc)) ? 17719 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 17720 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 17721 {4, (CHIP_IS_E3B0(sc)) ? 17722 PBF_REG_INIT_CRD_LB_Q : 17723 PBF_REG_P4_INIT_CRD, 17724 (CHIP_IS_E3B0(sc)) ? 17725 PBF_REG_CREDIT_LB_Q : 17726 PBF_REG_P4_CREDIT, 17727 (CHIP_IS_E3B0(sc)) ? 17728 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 17729 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 17730 }; 17731 17732 int i; 17733 17734 /* Verify the command queues are flushed P0, P1, P4 */ 17735 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) { 17736 bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count); 17737 } 17738 17739 /* Verify the transmission buffers are flushed P0, P1, P4 */ 17740 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) { 17741 bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count); 17742 } 17743 } 17744 17745 static void 17746 bxe_hw_enable_status(struct bxe_softc *sc) 17747 { 17748 uint32_t val; 17749 17750 val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF); 17751 BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 17752 17753 val = REG_RD(sc, PBF_REG_DISABLE_PF); 17754 BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val); 17755 17756 val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN); 17757 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 17758 17759 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN); 17760 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 17761 17762 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 17763 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 17764 17765 val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 17766 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 17767 17768 val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 17769 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 17770 17771 val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 17772 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val); 17773 } 17774 17775 static int 17776 bxe_pf_flr_clnup(struct bxe_softc *sc) 17777 { 17778 uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc); 17779 17780 BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc)); 17781 17782 /* Re-enable PF target read access */ 17783 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 17784 17785 /* Poll HW usage counters */ 17786 BLOGD(sc, DBG_LOAD, "Polling usage counters\n"); 17787 if (bxe_poll_hw_usage_counters(sc, poll_cnt)) { 17788 return (-1); 17789 } 17790 17791 /* Zero the igu 'trailing edge' and 'leading edge' */ 17792 17793 /* Send the FW cleanup command */ 17794 if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) { 17795 return (-1); 17796 } 17797 17798 /* ATC cleanup */ 17799 17800 /* Verify TX hw is flushed */ 17801 bxe_tx_hw_flushed(sc, poll_cnt); 17802 17803 /* Wait 100ms (not adjusted according to platform) */ 17804 DELAY(100000); 17805 17806 /* Verify no pending pci transactions */ 17807 if (bxe_is_pcie_pending(sc)) { 17808 BLOGE(sc, "PCIE Transactions still pending\n"); 17809 } 17810 17811 /* Debug */ 17812 bxe_hw_enable_status(sc); 17813 17814 /* 17815 * Master enable - Due to WB DMAE writes performed before this 17816 * register is re-initialized as part of the regular function init 17817 */ 17818 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17819 17820 return (0); 17821 } 17822 17823 static int 17824 bxe_init_hw_func(struct bxe_softc *sc) 17825 { 17826 int port = SC_PORT(sc); 17827 int func = SC_FUNC(sc); 17828 int init_phase = PHASE_PF0 + func; 17829 struct ecore_ilt *ilt = sc->ilt; 17830 uint16_t cdu_ilt_start; 17831 uint32_t addr, val; 17832 uint32_t main_mem_base, main_mem_size, main_mem_prty_clr; 17833 int i, main_mem_width, rc; 17834 17835 BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func); 17836 17837 /* FLR cleanup */ 17838 if (!CHIP_IS_E1x(sc)) { 17839 rc = bxe_pf_flr_clnup(sc); 17840 if (rc) { 17841 BLOGE(sc, "FLR cleanup failed!\n"); 17842 // XXX bxe_fw_dump(sc); 17843 // XXX bxe_idle_chk(sc); 17844 return (rc); 17845 } 17846 } 17847 17848 /* set MSI reconfigure capability */ 17849 if (sc->devinfo.int_block == INT_BLOCK_HC) { 17850 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 17851 val = REG_RD(sc, addr); 17852 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 17853 REG_WR(sc, addr, val); 17854 } 17855 17856 ecore_init_block(sc, BLOCK_PXP, init_phase); 17857 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17858 17859 ilt = sc->ilt; 17860 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 17861 17862 for (i = 0; i < L2_ILT_LINES(sc); i++) { 17863 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt; 17864 ilt->lines[cdu_ilt_start + i].page_mapping = 17865 sc->context[i].vcxt_dma.paddr; 17866 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size; 17867 } 17868 ecore_ilt_init_op(sc, INITOP_SET); 17869 17870 /* Set NIC mode */ 17871 REG_WR(sc, PRS_REG_NIC_MODE, 1); 17872 BLOGD(sc, DBG_LOAD, "NIC MODE configured\n"); 17873 17874 if (!CHIP_IS_E1x(sc)) { 17875 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN; 17876 17877 /* Turn on a single ISR mode in IGU if driver is going to use 17878 * INT#x or MSI 17879 */ 17880 if (sc->interrupt_mode != INTR_MODE_MSIX) { 17881 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 17882 } 17883 17884 /* 17885 * Timers workaround bug: function init part. 17886 * Need to wait 20msec after initializing ILT, 17887 * needed to make sure there are no requests in 17888 * one of the PXP internal queues with "old" ILT addresses 17889 */ 17890 DELAY(20000); 17891 17892 /* 17893 * Master enable - Due to WB DMAE writes performed before this 17894 * register is re-initialized as part of the regular function 17895 * init 17896 */ 17897 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17898 /* Enable the function in IGU */ 17899 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf); 17900 } 17901 17902 sc->dmae_ready = 1; 17903 17904 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17905 17906 if (!CHIP_IS_E1x(sc)) 17907 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); 17908 17909 ecore_init_block(sc, BLOCK_ATC, init_phase); 17910 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17911 ecore_init_block(sc, BLOCK_NIG, init_phase); 17912 ecore_init_block(sc, BLOCK_SRC, init_phase); 17913 ecore_init_block(sc, BLOCK_MISC, init_phase); 17914 ecore_init_block(sc, BLOCK_TCM, init_phase); 17915 ecore_init_block(sc, BLOCK_UCM, init_phase); 17916 ecore_init_block(sc, BLOCK_CCM, init_phase); 17917 ecore_init_block(sc, BLOCK_XCM, init_phase); 17918 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17919 ecore_init_block(sc, BLOCK_USEM, init_phase); 17920 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17921 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17922 17923 if (!CHIP_IS_E1x(sc)) 17924 REG_WR(sc, QM_REG_PF_EN, 1); 17925 17926 if (!CHIP_IS_E1x(sc)) { 17927 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17928 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17929 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17930 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17931 } 17932 ecore_init_block(sc, BLOCK_QM, init_phase); 17933 17934 ecore_init_block(sc, BLOCK_TM, init_phase); 17935 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17936 17937 bxe_iov_init_dq(sc); 17938 17939 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17940 ecore_init_block(sc, BLOCK_PRS, init_phase); 17941 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17942 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17943 ecore_init_block(sc, BLOCK_USDM, init_phase); 17944 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17945 ecore_init_block(sc, BLOCK_UPB, init_phase); 17946 ecore_init_block(sc, BLOCK_XPB, init_phase); 17947 ecore_init_block(sc, BLOCK_PBF, init_phase); 17948 if (!CHIP_IS_E1x(sc)) 17949 REG_WR(sc, PBF_REG_DISABLE_PF, 0); 17950 17951 ecore_init_block(sc, BLOCK_CDU, init_phase); 17952 17953 ecore_init_block(sc, BLOCK_CFC, init_phase); 17954 17955 if (!CHIP_IS_E1x(sc)) 17956 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1); 17957 17958 if (IS_MF(sc)) { 17959 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 17960 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc)); 17961 } 17962 17963 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17964 17965 /* HC init per function */ 17966 if (sc->devinfo.int_block == INT_BLOCK_HC) { 17967 if (CHIP_IS_E1H(sc)) { 17968 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 17969 17970 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17971 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17972 } 17973 ecore_init_block(sc, BLOCK_HC, init_phase); 17974 17975 } else { 17976 int num_segs, sb_idx, prod_offset; 17977 17978 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 17979 17980 if (!CHIP_IS_E1x(sc)) { 17981 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 17982 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 17983 } 17984 17985 ecore_init_block(sc, BLOCK_IGU, init_phase); 17986 17987 if (!CHIP_IS_E1x(sc)) { 17988 int dsb_idx = 0; 17989 /** 17990 * Producer memory: 17991 * E2 mode: address 0-135 match to the mapping memory; 17992 * 136 - PF0 default prod; 137 - PF1 default prod; 17993 * 138 - PF2 default prod; 139 - PF3 default prod; 17994 * 140 - PF0 attn prod; 141 - PF1 attn prod; 17995 * 142 - PF2 attn prod; 143 - PF3 attn prod; 17996 * 144-147 reserved. 17997 * 17998 * E1.5 mode - In backward compatible mode; 17999 * for non default SB; each even line in the memory 18000 * holds the U producer and each odd line hold 18001 * the C producer. The first 128 producers are for 18002 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 18003 * producers are for the DSB for each PF. 18004 * Each PF has five segments: (the order inside each 18005 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 18006 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 18007 * 144-147 attn prods; 18008 */ 18009 /* non-default-status-blocks */ 18010 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18011 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 18012 for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) { 18013 prod_offset = (sc->igu_base_sb + sb_idx) * 18014 num_segs; 18015 18016 for (i = 0; i < num_segs; i++) { 18017 addr = IGU_REG_PROD_CONS_MEMORY + 18018 (prod_offset + i) * 4; 18019 REG_WR(sc, addr, 0); 18020 } 18021 /* send consumer update with value 0 */ 18022 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx, 18023 USTORM_ID, 0, IGU_INT_NOP, 1); 18024 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx); 18025 } 18026 18027 /* default-status-blocks */ 18028 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18029 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 18030 18031 if (CHIP_IS_MODE_4_PORT(sc)) 18032 dsb_idx = SC_FUNC(sc); 18033 else 18034 dsb_idx = SC_VN(sc); 18035 18036 prod_offset = (CHIP_INT_MODE_IS_BC(sc) ? 18037 IGU_BC_BASE_DSB_PROD + dsb_idx : 18038 IGU_NORM_BASE_DSB_PROD + dsb_idx); 18039 18040 /* 18041 * igu prods come in chunks of E1HVN_MAX (4) - 18042 * does not matters what is the current chip mode 18043 */ 18044 for (i = 0; i < (num_segs * E1HVN_MAX); 18045 i += E1HVN_MAX) { 18046 addr = IGU_REG_PROD_CONS_MEMORY + 18047 (prod_offset + i)*4; 18048 REG_WR(sc, addr, 0); 18049 } 18050 /* send consumer update with 0 */ 18051 if (CHIP_INT_MODE_IS_BC(sc)) { 18052 bxe_ack_sb(sc, sc->igu_dsb_id, 18053 USTORM_ID, 0, IGU_INT_NOP, 1); 18054 bxe_ack_sb(sc, sc->igu_dsb_id, 18055 CSTORM_ID, 0, IGU_INT_NOP, 1); 18056 bxe_ack_sb(sc, sc->igu_dsb_id, 18057 XSTORM_ID, 0, IGU_INT_NOP, 1); 18058 bxe_ack_sb(sc, sc->igu_dsb_id, 18059 TSTORM_ID, 0, IGU_INT_NOP, 1); 18060 bxe_ack_sb(sc, sc->igu_dsb_id, 18061 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18062 } else { 18063 bxe_ack_sb(sc, sc->igu_dsb_id, 18064 USTORM_ID, 0, IGU_INT_NOP, 1); 18065 bxe_ack_sb(sc, sc->igu_dsb_id, 18066 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18067 } 18068 bxe_igu_clear_sb(sc, sc->igu_dsb_id); 18069 18070 /* !!! these should become driver const once 18071 rf-tool supports split-68 const */ 18072 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 18073 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 18074 REG_WR(sc, IGU_REG_SB_MASK_LSB, 0); 18075 REG_WR(sc, IGU_REG_SB_MASK_MSB, 0); 18076 REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0); 18077 REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0); 18078 } 18079 } 18080 18081 /* Reset PCIE errors for debug */ 18082 REG_WR(sc, 0x2114, 0xffffffff); 18083 REG_WR(sc, 0x2120, 0xffffffff); 18084 18085 if (CHIP_IS_E1x(sc)) { 18086 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 18087 main_mem_base = HC_REG_MAIN_MEMORY + 18088 SC_PORT(sc) * (main_mem_size * 4); 18089 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 18090 main_mem_width = 8; 18091 18092 val = REG_RD(sc, main_mem_prty_clr); 18093 if (val) { 18094 BLOGD(sc, DBG_LOAD, 18095 "Parity errors in HC block during function init (0x%x)!\n", 18096 val); 18097 } 18098 18099 /* Clear "false" parity errors in MSI-X table */ 18100 for (i = main_mem_base; 18101 i < main_mem_base + main_mem_size * 4; 18102 i += main_mem_width) { 18103 bxe_read_dmae(sc, i, main_mem_width / 4); 18104 bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), 18105 i, main_mem_width / 4); 18106 } 18107 /* Clear HC parity attention */ 18108 REG_RD(sc, main_mem_prty_clr); 18109 } 18110 18111 #if 1 18112 /* Enable STORMs SP logging */ 18113 REG_WR8(sc, BAR_USTRORM_INTMEM + 18114 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18115 REG_WR8(sc, BAR_TSTRORM_INTMEM + 18116 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18117 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18118 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18119 REG_WR8(sc, BAR_XSTRORM_INTMEM + 18120 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18121 #endif 18122 18123 elink_phy_probe(&sc->link_params); 18124 18125 return (0); 18126 } 18127 18128 static void 18129 bxe_link_reset(struct bxe_softc *sc) 18130 { 18131 if (!BXE_NOMCP(sc)) { 18132 bxe_acquire_phy_lock(sc); 18133 elink_lfa_reset(&sc->link_params, &sc->link_vars); 18134 bxe_release_phy_lock(sc); 18135 } else { 18136 if (!CHIP_REV_IS_SLOW(sc)) { 18137 BLOGW(sc, "Bootcode is missing - cannot reset link\n"); 18138 } 18139 } 18140 } 18141 18142 static void 18143 bxe_reset_port(struct bxe_softc *sc) 18144 { 18145 int port = SC_PORT(sc); 18146 uint32_t val; 18147 18148 ELINK_DEBUG_P0(sc, "bxe_reset_port called\n"); 18149 /* reset physical Link */ 18150 bxe_link_reset(sc); 18151 18152 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 18153 18154 /* Do not rcv packets to BRB */ 18155 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 18156 /* Do not direct rcv packets that are not for MCP to the BRB */ 18157 REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 18158 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 18159 18160 /* Configure AEU */ 18161 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 18162 18163 DELAY(100000); 18164 18165 /* Check for BRB port occupancy */ 18166 val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 18167 if (val) { 18168 BLOGD(sc, DBG_LOAD, 18169 "BRB1 is not empty, %d blocks are occupied\n", val); 18170 } 18171 18172 /* TODO: Close Doorbell port? */ 18173 } 18174 18175 static void 18176 bxe_ilt_wr(struct bxe_softc *sc, 18177 uint32_t index, 18178 bus_addr_t addr) 18179 { 18180 int reg; 18181 uint32_t wb_write[2]; 18182 18183 if (CHIP_IS_E1(sc)) { 18184 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 18185 } else { 18186 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 18187 } 18188 18189 wb_write[0] = ONCHIP_ADDR1(addr); 18190 wb_write[1] = ONCHIP_ADDR2(addr); 18191 REG_WR_DMAE(sc, reg, wb_write, 2); 18192 } 18193 18194 static void 18195 bxe_clear_func_ilt(struct bxe_softc *sc, 18196 uint32_t func) 18197 { 18198 uint32_t i, base = FUNC_ILT_BASE(func); 18199 for (i = base; i < base + ILT_PER_FUNC; i++) { 18200 bxe_ilt_wr(sc, i, 0); 18201 } 18202 } 18203 18204 static void 18205 bxe_reset_func(struct bxe_softc *sc) 18206 { 18207 struct bxe_fastpath *fp; 18208 int port = SC_PORT(sc); 18209 int func = SC_FUNC(sc); 18210 int i; 18211 18212 /* Disable the function in the FW */ 18213 REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 18214 REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 18215 REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 18216 REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 18217 18218 /* FP SBs */ 18219 FOR_EACH_ETH_QUEUE(sc, i) { 18220 fp = &sc->fp[i]; 18221 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18222 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 18223 SB_DISABLED); 18224 } 18225 18226 /* SP SB */ 18227 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18228 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 18229 SB_DISABLED); 18230 18231 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) { 18232 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0); 18233 } 18234 18235 /* Configure IGU */ 18236 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18237 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18238 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18239 } else { 18240 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18241 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18242 } 18243 18244 if (CNIC_LOADED(sc)) { 18245 /* Disable Timer scan */ 18246 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 18247 /* 18248 * Wait for at least 10ms and up to 2 second for the timers 18249 * scan to complete 18250 */ 18251 for (i = 0; i < 200; i++) { 18252 DELAY(10000); 18253 if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4)) 18254 break; 18255 } 18256 } 18257 18258 /* Clear ILT */ 18259 bxe_clear_func_ilt(sc, func); 18260 18261 /* 18262 * Timers workaround bug for E2: if this is vnic-3, 18263 * we need to set the entire ilt range for this timers. 18264 */ 18265 if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) { 18266 struct ilt_client_info ilt_cli; 18267 /* use dummy TM client */ 18268 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 18269 ilt_cli.start = 0; 18270 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 18271 ilt_cli.client_num = ILT_CLIENT_TM; 18272 18273 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR); 18274 } 18275 18276 /* this assumes that reset_port() called before reset_func()*/ 18277 if (!CHIP_IS_E1x(sc)) { 18278 bxe_pf_disable(sc); 18279 } 18280 18281 sc->dmae_ready = 0; 18282 } 18283 18284 static int 18285 bxe_gunzip_init(struct bxe_softc *sc) 18286 { 18287 return (0); 18288 } 18289 18290 static void 18291 bxe_gunzip_end(struct bxe_softc *sc) 18292 { 18293 return; 18294 } 18295 18296 static int 18297 bxe_init_firmware(struct bxe_softc *sc) 18298 { 18299 if (CHIP_IS_E1(sc)) { 18300 ecore_init_e1_firmware(sc); 18301 sc->iro_array = e1_iro_arr; 18302 } else if (CHIP_IS_E1H(sc)) { 18303 ecore_init_e1h_firmware(sc); 18304 sc->iro_array = e1h_iro_arr; 18305 } else if (!CHIP_IS_E1x(sc)) { 18306 ecore_init_e2_firmware(sc); 18307 sc->iro_array = e2_iro_arr; 18308 } else { 18309 BLOGE(sc, "Unsupported chip revision\n"); 18310 return (-1); 18311 } 18312 18313 return (0); 18314 } 18315 18316 static void 18317 bxe_release_firmware(struct bxe_softc *sc) 18318 { 18319 /* Do nothing */ 18320 return; 18321 } 18322 18323 static int 18324 ecore_gunzip(struct bxe_softc *sc, 18325 const uint8_t *zbuf, 18326 int len) 18327 { 18328 /* XXX : Implement... */ 18329 BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n"); 18330 return (FALSE); 18331 } 18332 18333 static void 18334 ecore_reg_wr_ind(struct bxe_softc *sc, 18335 uint32_t addr, 18336 uint32_t val) 18337 { 18338 bxe_reg_wr_ind(sc, addr, val); 18339 } 18340 18341 static void 18342 ecore_write_dmae_phys_len(struct bxe_softc *sc, 18343 bus_addr_t phys_addr, 18344 uint32_t addr, 18345 uint32_t len) 18346 { 18347 bxe_write_dmae_phys_len(sc, phys_addr, addr, len); 18348 } 18349 18350 void 18351 ecore_storm_memset_struct(struct bxe_softc *sc, 18352 uint32_t addr, 18353 size_t size, 18354 uint32_t *data) 18355 { 18356 uint8_t i; 18357 for (i = 0; i < size/4; i++) { 18358 REG_WR(sc, addr + (i * 4), data[i]); 18359 } 18360 } 18361 18362 18363 /* 18364 * character device - ioctl interface definitions 18365 */ 18366 18367 18368 #include "bxe_dump.h" 18369 #include "bxe_ioctl.h" 18370 #include <sys/conf.h> 18371 18372 static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 18373 struct thread *td); 18374 18375 static struct cdevsw bxe_cdevsw = { 18376 .d_version = D_VERSION, 18377 .d_ioctl = bxe_eioctl, 18378 .d_name = "bxecnic", 18379 }; 18380 18381 #define BXE_PATH(sc) (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1)) 18382 18383 18384 #define DUMP_ALL_PRESETS 0x1FFF 18385 #define DUMP_MAX_PRESETS 13 18386 #define IS_E1_REG(chips) ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1) 18387 #define IS_E1H_REG(chips) ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H) 18388 #define IS_E2_REG(chips) ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2) 18389 #define IS_E3A0_REG(chips) ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0) 18390 #define IS_E3B0_REG(chips) ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0) 18391 18392 #define IS_REG_IN_PRESET(presets, idx) \ 18393 ((presets & (1 << (idx-1))) == (1 << (idx-1))) 18394 18395 18396 static int 18397 bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset) 18398 { 18399 if (CHIP_IS_E1(sc)) 18400 return dump_num_registers[0][preset-1]; 18401 else if (CHIP_IS_E1H(sc)) 18402 return dump_num_registers[1][preset-1]; 18403 else if (CHIP_IS_E2(sc)) 18404 return dump_num_registers[2][preset-1]; 18405 else if (CHIP_IS_E3A0(sc)) 18406 return dump_num_registers[3][preset-1]; 18407 else if (CHIP_IS_E3B0(sc)) 18408 return dump_num_registers[4][preset-1]; 18409 else 18410 return 0; 18411 } 18412 18413 static int 18414 bxe_get_total_regs_len32(struct bxe_softc *sc) 18415 { 18416 uint32_t preset_idx; 18417 int regdump_len32 = 0; 18418 18419 18420 /* Calculate the total preset regs length */ 18421 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { 18422 regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx); 18423 } 18424 18425 return regdump_len32; 18426 } 18427 18428 static const uint32_t * 18429 __bxe_get_page_addr_ar(struct bxe_softc *sc) 18430 { 18431 if (CHIP_IS_E2(sc)) 18432 return page_vals_e2; 18433 else if (CHIP_IS_E3(sc)) 18434 return page_vals_e3; 18435 else 18436 return NULL; 18437 } 18438 18439 static uint32_t 18440 __bxe_get_page_reg_num(struct bxe_softc *sc) 18441 { 18442 if (CHIP_IS_E2(sc)) 18443 return PAGE_MODE_VALUES_E2; 18444 else if (CHIP_IS_E3(sc)) 18445 return PAGE_MODE_VALUES_E3; 18446 else 18447 return 0; 18448 } 18449 18450 static const uint32_t * 18451 __bxe_get_page_write_ar(struct bxe_softc *sc) 18452 { 18453 if (CHIP_IS_E2(sc)) 18454 return page_write_regs_e2; 18455 else if (CHIP_IS_E3(sc)) 18456 return page_write_regs_e3; 18457 else 18458 return NULL; 18459 } 18460 18461 static uint32_t 18462 __bxe_get_page_write_num(struct bxe_softc *sc) 18463 { 18464 if (CHIP_IS_E2(sc)) 18465 return PAGE_WRITE_REGS_E2; 18466 else if (CHIP_IS_E3(sc)) 18467 return PAGE_WRITE_REGS_E3; 18468 else 18469 return 0; 18470 } 18471 18472 static const struct reg_addr * 18473 __bxe_get_page_read_ar(struct bxe_softc *sc) 18474 { 18475 if (CHIP_IS_E2(sc)) 18476 return page_read_regs_e2; 18477 else if (CHIP_IS_E3(sc)) 18478 return page_read_regs_e3; 18479 else 18480 return NULL; 18481 } 18482 18483 static uint32_t 18484 __bxe_get_page_read_num(struct bxe_softc *sc) 18485 { 18486 if (CHIP_IS_E2(sc)) 18487 return PAGE_READ_REGS_E2; 18488 else if (CHIP_IS_E3(sc)) 18489 return PAGE_READ_REGS_E3; 18490 else 18491 return 0; 18492 } 18493 18494 static bool 18495 bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info) 18496 { 18497 if (CHIP_IS_E1(sc)) 18498 return IS_E1_REG(reg_info->chips); 18499 else if (CHIP_IS_E1H(sc)) 18500 return IS_E1H_REG(reg_info->chips); 18501 else if (CHIP_IS_E2(sc)) 18502 return IS_E2_REG(reg_info->chips); 18503 else if (CHIP_IS_E3A0(sc)) 18504 return IS_E3A0_REG(reg_info->chips); 18505 else if (CHIP_IS_E3B0(sc)) 18506 return IS_E3B0_REG(reg_info->chips); 18507 else 18508 return 0; 18509 } 18510 18511 static bool 18512 bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info) 18513 { 18514 if (CHIP_IS_E1(sc)) 18515 return IS_E1_REG(wreg_info->chips); 18516 else if (CHIP_IS_E1H(sc)) 18517 return IS_E1H_REG(wreg_info->chips); 18518 else if (CHIP_IS_E2(sc)) 18519 return IS_E2_REG(wreg_info->chips); 18520 else if (CHIP_IS_E3A0(sc)) 18521 return IS_E3A0_REG(wreg_info->chips); 18522 else if (CHIP_IS_E3B0(sc)) 18523 return IS_E3B0_REG(wreg_info->chips); 18524 else 18525 return 0; 18526 } 18527 18528 /** 18529 * bxe_read_pages_regs - read "paged" registers 18530 * 18531 * @bp device handle 18532 * @p output buffer 18533 * 18534 * Reads "paged" memories: memories that may only be read by first writing to a 18535 * specific address ("write address") and then reading from a specific address 18536 * ("read address"). There may be more than one write address per "page" and 18537 * more than one read address per write address. 18538 */ 18539 static void 18540 bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset) 18541 { 18542 uint32_t i, j, k, n; 18543 18544 /* addresses of the paged registers */ 18545 const uint32_t *page_addr = __bxe_get_page_addr_ar(sc); 18546 /* number of paged registers */ 18547 int num_pages = __bxe_get_page_reg_num(sc); 18548 /* write addresses */ 18549 const uint32_t *write_addr = __bxe_get_page_write_ar(sc); 18550 /* number of write addresses */ 18551 int write_num = __bxe_get_page_write_num(sc); 18552 /* read addresses info */ 18553 const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc); 18554 /* number of read addresses */ 18555 int read_num = __bxe_get_page_read_num(sc); 18556 uint32_t addr, size; 18557 18558 for (i = 0; i < num_pages; i++) { 18559 for (j = 0; j < write_num; j++) { 18560 REG_WR(sc, write_addr[j], page_addr[i]); 18561 18562 for (k = 0; k < read_num; k++) { 18563 if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) { 18564 size = read_addr[k].size; 18565 for (n = 0; n < size; n++) { 18566 addr = read_addr[k].addr + n*4; 18567 *p++ = REG_RD(sc, addr); 18568 } 18569 } 18570 } 18571 } 18572 } 18573 return; 18574 } 18575 18576 18577 static int 18578 bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset) 18579 { 18580 uint32_t i, j, addr; 18581 const struct wreg_addr *wreg_addr_p = NULL; 18582 18583 if (CHIP_IS_E1(sc)) 18584 wreg_addr_p = &wreg_addr_e1; 18585 else if (CHIP_IS_E1H(sc)) 18586 wreg_addr_p = &wreg_addr_e1h; 18587 else if (CHIP_IS_E2(sc)) 18588 wreg_addr_p = &wreg_addr_e2; 18589 else if (CHIP_IS_E3A0(sc)) 18590 wreg_addr_p = &wreg_addr_e3; 18591 else if (CHIP_IS_E3B0(sc)) 18592 wreg_addr_p = &wreg_addr_e3b0; 18593 else 18594 return (-1); 18595 18596 /* Read the idle_chk registers */ 18597 for (i = 0; i < IDLE_REGS_COUNT; i++) { 18598 if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) && 18599 IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) { 18600 for (j = 0; j < idle_reg_addrs[i].size; j++) 18601 *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4); 18602 } 18603 } 18604 18605 /* Read the regular registers */ 18606 for (i = 0; i < REGS_COUNT; i++) { 18607 if (bxe_is_reg_in_chip(sc, ®_addrs[i]) && 18608 IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) { 18609 for (j = 0; j < reg_addrs[i].size; j++) 18610 *p++ = REG_RD(sc, reg_addrs[i].addr + j*4); 18611 } 18612 } 18613 18614 /* Read the CAM registers */ 18615 if (bxe_is_wreg_in_chip(sc, wreg_addr_p) && 18616 IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) { 18617 for (i = 0; i < wreg_addr_p->size; i++) { 18618 *p++ = REG_RD(sc, wreg_addr_p->addr + i*4); 18619 18620 /* In case of wreg_addr register, read additional 18621 registers from read_regs array 18622 */ 18623 for (j = 0; j < wreg_addr_p->read_regs_count; j++) { 18624 addr = *(wreg_addr_p->read_regs); 18625 *p++ = REG_RD(sc, addr + j*4); 18626 } 18627 } 18628 } 18629 18630 /* Paged registers are supported in E2 & E3 only */ 18631 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 18632 /* Read "paged" registers */ 18633 bxe_read_pages_regs(sc, p, preset); 18634 } 18635 18636 return 0; 18637 } 18638 18639 int 18640 bxe_grc_dump(struct bxe_softc *sc) 18641 { 18642 int rval = 0; 18643 uint32_t preset_idx; 18644 uint8_t *buf; 18645 uint32_t size; 18646 struct dump_header *d_hdr; 18647 uint32_t i; 18648 uint32_t reg_val; 18649 uint32_t reg_addr; 18650 uint32_t cmd_offset; 18651 struct ecore_ilt *ilt = SC_ILT(sc); 18652 struct bxe_fastpath *fp; 18653 struct ilt_client_info *ilt_cli; 18654 int grc_dump_size; 18655 18656 18657 if (sc->grcdump_done || sc->grcdump_started) 18658 return (rval); 18659 18660 sc->grcdump_started = 1; 18661 BLOGI(sc, "Started collecting grcdump\n"); 18662 18663 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 18664 sizeof(struct dump_header); 18665 18666 sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT); 18667 18668 if (sc->grc_dump == NULL) { 18669 BLOGW(sc, "Unable to allocate memory for grcdump collection\n"); 18670 return(ENOMEM); 18671 } 18672 18673 18674 18675 /* Disable parity attentions as long as following dump may 18676 * cause false alarms by reading never written registers. We 18677 * will re-enable parity attentions right after the dump. 18678 */ 18679 18680 /* Disable parity on path 0 */ 18681 bxe_pretend_func(sc, 0); 18682 18683 ecore_disable_blocks_parity(sc); 18684 18685 /* Disable parity on path 1 */ 18686 bxe_pretend_func(sc, 1); 18687 ecore_disable_blocks_parity(sc); 18688 18689 /* Return to current function */ 18690 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 18691 18692 buf = sc->grc_dump; 18693 d_hdr = sc->grc_dump; 18694 18695 d_hdr->header_size = (sizeof(struct dump_header) >> 2) - 1; 18696 d_hdr->version = BNX2X_DUMP_VERSION; 18697 d_hdr->preset = DUMP_ALL_PRESETS; 18698 18699 if (CHIP_IS_E1(sc)) { 18700 d_hdr->dump_meta_data = DUMP_CHIP_E1; 18701 } else if (CHIP_IS_E1H(sc)) { 18702 d_hdr->dump_meta_data = DUMP_CHIP_E1H; 18703 } else if (CHIP_IS_E2(sc)) { 18704 d_hdr->dump_meta_data = DUMP_CHIP_E2 | 18705 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18706 } else if (CHIP_IS_E3A0(sc)) { 18707 d_hdr->dump_meta_data = DUMP_CHIP_E3A0 | 18708 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18709 } else if (CHIP_IS_E3B0(sc)) { 18710 d_hdr->dump_meta_data = DUMP_CHIP_E3B0 | 18711 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18712 } 18713 18714 buf += sizeof(struct dump_header); 18715 18716 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { 18717 18718 /* Skip presets with IOR */ 18719 if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) || 18720 (preset_idx == 11)) 18721 continue; 18722 18723 rval = bxe_get_preset_regs(sc, (uint32_t *)buf, preset_idx); 18724 18725 if (rval) 18726 break; 18727 18728 size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t)); 18729 18730 buf += size; 18731 } 18732 18733 bxe_pretend_func(sc, 0); 18734 ecore_clear_blocks_parity(sc); 18735 ecore_enable_blocks_parity(sc); 18736 18737 bxe_pretend_func(sc, 1); 18738 ecore_clear_blocks_parity(sc); 18739 ecore_enable_blocks_parity(sc); 18740 18741 /* Return to current function */ 18742 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 18743 18744 18745 18746 if(sc->state == BXE_STATE_OPEN) { 18747 if(sc->fw_stats_req != NULL) { 18748 BLOGI(sc, "fw stats start_paddr %#jx end_paddr %#jx vaddr %p size 0x%x\n", 18749 (uintmax_t)sc->fw_stats_req_mapping, 18750 (uintmax_t)sc->fw_stats_data_mapping, 18751 sc->fw_stats_req, (sc->fw_stats_req_size + sc->fw_stats_data_size)); 18752 } 18753 if(sc->def_sb != NULL) { 18754 BLOGI(sc, "def_status_block paddr %p vaddr %p size 0x%zx\n", 18755 (void *)sc->def_sb_dma.paddr, sc->def_sb, 18756 sizeof(struct host_sp_status_block)); 18757 } 18758 if(sc->eq_dma.vaddr != NULL) { 18759 BLOGI(sc, "event_queue paddr %#jx vaddr %p size 0x%x\n", 18760 (uintmax_t)sc->eq_dma.paddr, sc->eq_dma.vaddr, BCM_PAGE_SIZE); 18761 } 18762 if(sc->sp_dma.vaddr != NULL) { 18763 BLOGI(sc, "slow path paddr %#jx vaddr %p size 0x%zx\n", 18764 (uintmax_t)sc->sp_dma.paddr, sc->sp_dma.vaddr, 18765 sizeof(struct bxe_slowpath)); 18766 } 18767 if(sc->spq_dma.vaddr != NULL) { 18768 BLOGI(sc, "slow path queue paddr %#jx vaddr %p size 0x%x\n", 18769 (uintmax_t)sc->spq_dma.paddr, sc->spq_dma.vaddr, BCM_PAGE_SIZE); 18770 } 18771 if(sc->gz_buf_dma.vaddr != NULL) { 18772 BLOGI(sc, "fw_buf paddr %#jx vaddr %p size 0x%x\n", 18773 (uintmax_t)sc->gz_buf_dma.paddr, sc->gz_buf_dma.vaddr, 18774 FW_BUF_SIZE); 18775 } 18776 for (i = 0; i < sc->num_queues; i++) { 18777 fp = &sc->fp[i]; 18778 if(fp->sb_dma.vaddr != NULL && fp->tx_dma.vaddr != NULL && 18779 fp->rx_dma.vaddr != NULL && fp->rcq_dma.vaddr != NULL && 18780 fp->rx_sge_dma.vaddr != NULL) { 18781 18782 BLOGI(sc, "FP status block fp %d paddr %#jx vaddr %p size 0x%zx\n", i, 18783 (uintmax_t)fp->sb_dma.paddr, fp->sb_dma.vaddr, 18784 sizeof(union bxe_host_hc_status_block)); 18785 BLOGI(sc, "TX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 18786 (uintmax_t)fp->tx_dma.paddr, fp->tx_dma.vaddr, 18787 (BCM_PAGE_SIZE * TX_BD_NUM_PAGES)); 18788 BLOGI(sc, "RX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 18789 (uintmax_t)fp->rx_dma.paddr, fp->rx_dma.vaddr, 18790 (BCM_PAGE_SIZE * RX_BD_NUM_PAGES)); 18791 BLOGI(sc, "RX RCQ CHAIN fp %d paddr %#jx vaddr %p size 0x%zx\n", i, 18792 (uintmax_t)fp->rcq_dma.paddr, fp->rcq_dma.vaddr, 18793 (BCM_PAGE_SIZE * RCQ_NUM_PAGES)); 18794 BLOGI(sc, "RX SGE CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 18795 (uintmax_t)fp->rx_sge_dma.paddr, fp->rx_sge_dma.vaddr, 18796 (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES)); 18797 } 18798 } 18799 if(ilt != NULL ) { 18800 ilt_cli = &ilt->clients[1]; 18801 if(ilt->lines != NULL) { 18802 for (i = ilt_cli->start; i <= ilt_cli->end; i++) { 18803 BLOGI(sc, "ECORE_ILT paddr %#jx vaddr %p size 0x%x\n", 18804 (uintmax_t)(((struct bxe_dma *)((&ilt->lines[i])->page))->paddr), 18805 ((struct bxe_dma *)((&ilt->lines[i])->page))->vaddr, BCM_PAGE_SIZE); 18806 } 18807 } 18808 } 18809 18810 18811 cmd_offset = DMAE_REG_CMD_MEM; 18812 for (i = 0; i < 224; i++) { 18813 reg_addr = (cmd_offset +(i * 4)); 18814 reg_val = REG_RD(sc, reg_addr); 18815 BLOGI(sc, "DMAE_REG_CMD_MEM i=%d reg_addr 0x%x reg_val 0x%08x\n",i, 18816 reg_addr, reg_val); 18817 } 18818 } 18819 18820 BLOGI(sc, "Collection of grcdump done\n"); 18821 sc->grcdump_done = 1; 18822 return(rval); 18823 } 18824 18825 static int 18826 bxe_add_cdev(struct bxe_softc *sc) 18827 { 18828 sc->eeprom = malloc(BXE_EEPROM_MAX_DATA_LEN, M_DEVBUF, M_NOWAIT); 18829 18830 if (sc->eeprom == NULL) { 18831 BLOGW(sc, "Unable to alloc for eeprom size buffer\n"); 18832 return (-1); 18833 } 18834 18835 sc->ioctl_dev = make_dev(&bxe_cdevsw, 18836 sc->ifp->if_dunit, 18837 UID_ROOT, 18838 GID_WHEEL, 18839 0600, 18840 "%s", 18841 if_name(sc->ifp)); 18842 18843 if (sc->ioctl_dev == NULL) { 18844 free(sc->eeprom, M_DEVBUF); 18845 sc->eeprom = NULL; 18846 return (-1); 18847 } 18848 18849 sc->ioctl_dev->si_drv1 = sc; 18850 18851 return (0); 18852 } 18853 18854 static void 18855 bxe_del_cdev(struct bxe_softc *sc) 18856 { 18857 if (sc->ioctl_dev != NULL) 18858 destroy_dev(sc->ioctl_dev); 18859 18860 if (sc->eeprom != NULL) { 18861 free(sc->eeprom, M_DEVBUF); 18862 sc->eeprom = NULL; 18863 } 18864 sc->ioctl_dev = NULL; 18865 18866 return; 18867 } 18868 18869 static bool bxe_is_nvram_accessible(struct bxe_softc *sc) 18870 { 18871 18872 if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0) 18873 return FALSE; 18874 18875 return TRUE; 18876 } 18877 18878 18879 static int 18880 bxe_wr_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len) 18881 { 18882 int rval = 0; 18883 18884 if(!bxe_is_nvram_accessible(sc)) { 18885 BLOGW(sc, "Cannot access eeprom when interface is down\n"); 18886 return (-EAGAIN); 18887 } 18888 rval = bxe_nvram_write(sc, offset, (uint8_t *)data, len); 18889 18890 18891 return (rval); 18892 } 18893 18894 static int 18895 bxe_rd_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len) 18896 { 18897 int rval = 0; 18898 18899 if(!bxe_is_nvram_accessible(sc)) { 18900 BLOGW(sc, "Cannot access eeprom when interface is down\n"); 18901 return (-EAGAIN); 18902 } 18903 rval = bxe_nvram_read(sc, offset, (uint8_t *)data, len); 18904 18905 return (rval); 18906 } 18907 18908 static int 18909 bxe_eeprom_rd_wr(struct bxe_softc *sc, bxe_eeprom_t *eeprom) 18910 { 18911 int rval = 0; 18912 18913 switch (eeprom->eeprom_cmd) { 18914 18915 case BXE_EEPROM_CMD_SET_EEPROM: 18916 18917 rval = copyin(eeprom->eeprom_data, sc->eeprom, 18918 eeprom->eeprom_data_len); 18919 18920 if (rval) 18921 break; 18922 18923 rval = bxe_wr_eeprom(sc, sc->eeprom, eeprom->eeprom_offset, 18924 eeprom->eeprom_data_len); 18925 break; 18926 18927 case BXE_EEPROM_CMD_GET_EEPROM: 18928 18929 rval = bxe_rd_eeprom(sc, sc->eeprom, eeprom->eeprom_offset, 18930 eeprom->eeprom_data_len); 18931 18932 if (rval) { 18933 break; 18934 } 18935 18936 rval = copyout(sc->eeprom, eeprom->eeprom_data, 18937 eeprom->eeprom_data_len); 18938 break; 18939 18940 default: 18941 rval = EINVAL; 18942 break; 18943 } 18944 18945 if (rval) { 18946 BLOGW(sc, "ioctl cmd %d failed rval %d\n", eeprom->eeprom_cmd, rval); 18947 } 18948 18949 return (rval); 18950 } 18951 18952 static int 18953 bxe_get_settings(struct bxe_softc *sc, bxe_dev_setting_t *dev_p) 18954 { 18955 uint32_t ext_phy_config; 18956 int port = SC_PORT(sc); 18957 int cfg_idx = bxe_get_link_cfg_idx(sc); 18958 18959 dev_p->supported = sc->port.supported[cfg_idx] | 18960 (sc->port.supported[cfg_idx ^ 1] & 18961 (ELINK_SUPPORTED_TP | ELINK_SUPPORTED_FIBRE)); 18962 dev_p->advertising = sc->port.advertising[cfg_idx]; 18963 if(sc->link_params.phy[bxe_get_cur_phy_idx(sc)].media_type == 18964 ELINK_ETH_PHY_SFP_1G_FIBER) { 18965 dev_p->supported = ~(ELINK_SUPPORTED_10000baseT_Full); 18966 dev_p->advertising &= ~(ADVERTISED_10000baseT_Full); 18967 } 18968 if ((sc->state == BXE_STATE_OPEN) && sc->link_vars.link_up && 18969 !(sc->flags & BXE_MF_FUNC_DIS)) { 18970 dev_p->duplex = sc->link_vars.duplex; 18971 if (IS_MF(sc) && !BXE_NOMCP(sc)) 18972 dev_p->speed = bxe_get_mf_speed(sc); 18973 else 18974 dev_p->speed = sc->link_vars.line_speed; 18975 } else { 18976 dev_p->duplex = DUPLEX_UNKNOWN; 18977 dev_p->speed = SPEED_UNKNOWN; 18978 } 18979 18980 dev_p->port = bxe_media_detect(sc); 18981 18982 ext_phy_config = SHMEM_RD(sc, 18983 dev_info.port_hw_config[port].external_phy_config); 18984 if((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) == 18985 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) 18986 dev_p->phy_address = sc->port.phy_addr; 18987 else if(((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) != 18988 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) && 18989 ((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) != 18990 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN)) 18991 dev_p->phy_address = ELINK_XGXS_EXT_PHY_ADDR(ext_phy_config); 18992 else 18993 dev_p->phy_address = 0; 18994 18995 if(sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) 18996 dev_p->autoneg = AUTONEG_ENABLE; 18997 else 18998 dev_p->autoneg = AUTONEG_DISABLE; 18999 19000 19001 return 0; 19002 } 19003 19004 static int 19005 bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 19006 struct thread *td) 19007 { 19008 struct bxe_softc *sc; 19009 int rval = 0; 19010 device_t pci_dev; 19011 bxe_grcdump_t *dump = NULL; 19012 int grc_dump_size; 19013 bxe_drvinfo_t *drv_infop = NULL; 19014 bxe_dev_setting_t *dev_p; 19015 bxe_dev_setting_t dev_set; 19016 bxe_get_regs_t *reg_p; 19017 bxe_reg_rdw_t *reg_rdw_p; 19018 bxe_pcicfg_rdw_t *cfg_rdw_p; 19019 bxe_perm_mac_addr_t *mac_addr_p; 19020 19021 19022 if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL) 19023 return ENXIO; 19024 19025 pci_dev= sc->dev; 19026 19027 dump = (bxe_grcdump_t *)data; 19028 19029 switch(cmd) { 19030 19031 case BXE_GRC_DUMP_SIZE: 19032 dump->pci_func = sc->pcie_func; 19033 dump->grcdump_size = 19034 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 19035 sizeof(struct dump_header); 19036 break; 19037 19038 case BXE_GRC_DUMP: 19039 19040 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 19041 sizeof(struct dump_header); 19042 if ((!sc->trigger_grcdump) || (dump->grcdump == NULL) || 19043 (dump->grcdump_size < grc_dump_size)) { 19044 rval = EINVAL; 19045 break; 19046 } 19047 19048 if((sc->trigger_grcdump) && (!sc->grcdump_done) && 19049 (!sc->grcdump_started)) { 19050 rval = bxe_grc_dump(sc); 19051 } 19052 19053 if((!rval) && (sc->grcdump_done) && (sc->grcdump_started) && 19054 (sc->grc_dump != NULL)) { 19055 dump->grcdump_dwords = grc_dump_size >> 2; 19056 rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size); 19057 free(sc->grc_dump, M_DEVBUF); 19058 sc->grc_dump = NULL; 19059 sc->grcdump_started = 0; 19060 sc->grcdump_done = 0; 19061 } 19062 19063 break; 19064 19065 case BXE_DRV_INFO: 19066 drv_infop = (bxe_drvinfo_t *)data; 19067 snprintf(drv_infop->drv_name, BXE_DRV_NAME_LENGTH, "%s", "bxe"); 19068 snprintf(drv_infop->drv_version, BXE_DRV_VERSION_LENGTH, "v:%s", 19069 BXE_DRIVER_VERSION); 19070 snprintf(drv_infop->mfw_version, BXE_MFW_VERSION_LENGTH, "%s", 19071 sc->devinfo.bc_ver_str); 19072 snprintf(drv_infop->stormfw_version, BXE_STORMFW_VERSION_LENGTH, 19073 "%s", sc->fw_ver_str); 19074 drv_infop->eeprom_dump_len = sc->devinfo.flash_size; 19075 drv_infop->reg_dump_len = 19076 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) 19077 + sizeof(struct dump_header); 19078 snprintf(drv_infop->bus_info, BXE_BUS_INFO_LENGTH, "%d:%d:%d", 19079 sc->pcie_bus, sc->pcie_device, sc->pcie_func); 19080 break; 19081 19082 case BXE_DEV_SETTING: 19083 dev_p = (bxe_dev_setting_t *)data; 19084 bxe_get_settings(sc, &dev_set); 19085 dev_p->supported = dev_set.supported; 19086 dev_p->advertising = dev_set.advertising; 19087 dev_p->speed = dev_set.speed; 19088 dev_p->duplex = dev_set.duplex; 19089 dev_p->port = dev_set.port; 19090 dev_p->phy_address = dev_set.phy_address; 19091 dev_p->autoneg = dev_set.autoneg; 19092 19093 break; 19094 19095 case BXE_GET_REGS: 19096 19097 reg_p = (bxe_get_regs_t *)data; 19098 grc_dump_size = reg_p->reg_buf_len; 19099 19100 if((!sc->grcdump_done) && (!sc->grcdump_started)) { 19101 bxe_grc_dump(sc); 19102 } 19103 if((sc->grcdump_done) && (sc->grcdump_started) && 19104 (sc->grc_dump != NULL)) { 19105 rval = copyout(sc->grc_dump, reg_p->reg_buf, grc_dump_size); 19106 free(sc->grc_dump, M_DEVBUF); 19107 sc->grc_dump = NULL; 19108 sc->grcdump_started = 0; 19109 sc->grcdump_done = 0; 19110 } 19111 19112 break; 19113 19114 case BXE_RDW_REG: 19115 reg_rdw_p = (bxe_reg_rdw_t *)data; 19116 if((reg_rdw_p->reg_cmd == BXE_READ_REG_CMD) && 19117 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT)) 19118 reg_rdw_p->reg_val = REG_RD(sc, reg_rdw_p->reg_id); 19119 19120 if((reg_rdw_p->reg_cmd == BXE_WRITE_REG_CMD) && 19121 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT)) 19122 REG_WR(sc, reg_rdw_p->reg_id, reg_rdw_p->reg_val); 19123 19124 break; 19125 19126 case BXE_RDW_PCICFG: 19127 cfg_rdw_p = (bxe_pcicfg_rdw_t *)data; 19128 if(cfg_rdw_p->cfg_cmd == BXE_READ_PCICFG) { 19129 19130 cfg_rdw_p->cfg_val = pci_read_config(sc->dev, cfg_rdw_p->cfg_id, 19131 cfg_rdw_p->cfg_width); 19132 19133 } else if(cfg_rdw_p->cfg_cmd == BXE_WRITE_PCICFG) { 19134 pci_write_config(sc->dev, cfg_rdw_p->cfg_id, cfg_rdw_p->cfg_val, 19135 cfg_rdw_p->cfg_width); 19136 } else { 19137 BLOGW(sc, "BXE_RDW_PCICFG ioctl wrong cmd passed\n"); 19138 } 19139 break; 19140 19141 case BXE_MAC_ADDR: 19142 mac_addr_p = (bxe_perm_mac_addr_t *)data; 19143 snprintf(mac_addr_p->mac_addr_str, sizeof(sc->mac_addr_str), "%s", 19144 sc->mac_addr_str); 19145 break; 19146 19147 case BXE_EEPROM: 19148 rval = bxe_eeprom_rd_wr(sc, (bxe_eeprom_t *)data); 19149 break; 19150 19151 19152 default: 19153 break; 19154 } 19155 19156 return (rval); 19157 } 19158