xref: /freebsd/sys/dev/bxe/bxe.c (revision 5944f899a2519c6321bac3c17cc076418643a088)
1 /*-
2  * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24  * THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #define BXE_DRIVER_VERSION "1.78.90"
31 
32 #include "bxe.h"
33 #include "ecore_sp.h"
34 #include "ecore_init.h"
35 #include "ecore_init_ops.h"
36 
37 #include "57710_int_offsets.h"
38 #include "57711_int_offsets.h"
39 #include "57712_int_offsets.h"
40 
41 /*
42  * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
43  * explicitly here for older kernels that don't include this changeset.
44  */
45 #ifndef CTLTYPE_U64
46 #define CTLTYPE_U64      CTLTYPE_QUAD
47 #define sysctl_handle_64 sysctl_handle_quad
48 #endif
49 
50 /*
51  * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
52  * here as zero(0) for older kernels that don't include this changeset
53  * thereby masking the functionality.
54  */
55 #ifndef CSUM_TCP_IPV6
56 #define CSUM_TCP_IPV6 0
57 #define CSUM_UDP_IPV6 0
58 #endif
59 
60 /*
61  * pci_find_cap was added in r219865. Re-define this at pci_find_extcap
62  * for older kernels that don't include this changeset.
63  */
64 #if __FreeBSD_version < 900035
65 #define pci_find_cap pci_find_extcap
66 #endif
67 
68 #define BXE_DEF_SB_ATT_IDX 0x0001
69 #define BXE_DEF_SB_IDX     0x0002
70 
71 /*
72  * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
73  * function HW initialization.
74  */
75 #define FLR_WAIT_USEC     10000 /* 10 msecs */
76 #define FLR_WAIT_INTERVAL 50    /* usecs */
77 #define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
78 
79 struct pbf_pN_buf_regs {
80     int pN;
81     uint32_t init_crd;
82     uint32_t crd;
83     uint32_t crd_freed;
84 };
85 
86 struct pbf_pN_cmd_regs {
87     int pN;
88     uint32_t lines_occup;
89     uint32_t lines_freed;
90 };
91 
92 /*
93  * PCI Device ID Table used by bxe_probe().
94  */
95 #define BXE_DEVDESC_MAX 64
96 static struct bxe_device_type bxe_devs[] = {
97     {
98         BRCM_VENDORID,
99         CHIP_NUM_57710,
100         PCI_ANY_ID, PCI_ANY_ID,
101         "QLogic NetXtreme II BCM57710 10GbE"
102     },
103     {
104         BRCM_VENDORID,
105         CHIP_NUM_57711,
106         PCI_ANY_ID, PCI_ANY_ID,
107         "QLogic NetXtreme II BCM57711 10GbE"
108     },
109     {
110         BRCM_VENDORID,
111         CHIP_NUM_57711E,
112         PCI_ANY_ID, PCI_ANY_ID,
113         "QLogic NetXtreme II BCM57711E 10GbE"
114     },
115     {
116         BRCM_VENDORID,
117         CHIP_NUM_57712,
118         PCI_ANY_ID, PCI_ANY_ID,
119         "QLogic NetXtreme II BCM57712 10GbE"
120     },
121     {
122         BRCM_VENDORID,
123         CHIP_NUM_57712_MF,
124         PCI_ANY_ID, PCI_ANY_ID,
125         "QLogic NetXtreme II BCM57712 MF 10GbE"
126     },
127     {
128         BRCM_VENDORID,
129         CHIP_NUM_57800,
130         PCI_ANY_ID, PCI_ANY_ID,
131         "QLogic NetXtreme II BCM57800 10GbE"
132     },
133     {
134         BRCM_VENDORID,
135         CHIP_NUM_57800_MF,
136         PCI_ANY_ID, PCI_ANY_ID,
137         "QLogic NetXtreme II BCM57800 MF 10GbE"
138     },
139     {
140         BRCM_VENDORID,
141         CHIP_NUM_57810,
142         PCI_ANY_ID, PCI_ANY_ID,
143         "QLogic NetXtreme II BCM57810 10GbE"
144     },
145     {
146         BRCM_VENDORID,
147         CHIP_NUM_57810_MF,
148         PCI_ANY_ID, PCI_ANY_ID,
149         "QLogic NetXtreme II BCM57810 MF 10GbE"
150     },
151     {
152         BRCM_VENDORID,
153         CHIP_NUM_57811,
154         PCI_ANY_ID, PCI_ANY_ID,
155         "QLogic NetXtreme II BCM57811 10GbE"
156     },
157     {
158         BRCM_VENDORID,
159         CHIP_NUM_57811_MF,
160         PCI_ANY_ID, PCI_ANY_ID,
161         "QLogic NetXtreme II BCM57811 MF 10GbE"
162     },
163     {
164         BRCM_VENDORID,
165         CHIP_NUM_57840_4_10,
166         PCI_ANY_ID, PCI_ANY_ID,
167         "QLogic NetXtreme II BCM57840 4x10GbE"
168     },
169     {
170         BRCM_VENDORID,
171         CHIP_NUM_57840_2_20,
172         PCI_ANY_ID, PCI_ANY_ID,
173         "QLogic NetXtreme II BCM57840 2x20GbE"
174     },
175     {
176         BRCM_VENDORID,
177         CHIP_NUM_57840_MF,
178         PCI_ANY_ID, PCI_ANY_ID,
179         "QLogic NetXtreme II BCM57840 MF 10GbE"
180     },
181     {
182         0, 0, 0, 0, NULL
183     }
184 };
185 
186 MALLOC_DECLARE(M_BXE_ILT);
187 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
188 
189 /*
190  * FreeBSD device entry points.
191  */
192 static int bxe_probe(device_t);
193 static int bxe_attach(device_t);
194 static int bxe_detach(device_t);
195 static int bxe_shutdown(device_t);
196 
197 /*
198  * FreeBSD KLD module/device interface event handler method.
199  */
200 static device_method_t bxe_methods[] = {
201     /* Device interface (device_if.h) */
202     DEVMETHOD(device_probe,     bxe_probe),
203     DEVMETHOD(device_attach,    bxe_attach),
204     DEVMETHOD(device_detach,    bxe_detach),
205     DEVMETHOD(device_shutdown,  bxe_shutdown),
206     /* Bus interface (bus_if.h) */
207     DEVMETHOD(bus_print_child,  bus_generic_print_child),
208     DEVMETHOD(bus_driver_added, bus_generic_driver_added),
209     KOBJMETHOD_END
210 };
211 
212 /*
213  * FreeBSD KLD Module data declaration
214  */
215 static driver_t bxe_driver = {
216     "bxe",                   /* module name */
217     bxe_methods,             /* event handler */
218     sizeof(struct bxe_softc) /* extra data */
219 };
220 
221 /*
222  * FreeBSD dev class is needed to manage dev instances and
223  * to associate with a bus type
224  */
225 static devclass_t bxe_devclass;
226 
227 MODULE_DEPEND(bxe, pci, 1, 1, 1);
228 MODULE_DEPEND(bxe, ether, 1, 1, 1);
229 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0);
230 
231 /* resources needed for unloading a previously loaded device */
232 
233 #define BXE_PREV_WAIT_NEEDED 1
234 struct mtx bxe_prev_mtx;
235 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
236 struct bxe_prev_list_node {
237     LIST_ENTRY(bxe_prev_list_node) node;
238     uint8_t bus;
239     uint8_t slot;
240     uint8_t path;
241     uint8_t aer; /* XXX automatic error recovery */
242     uint8_t undi;
243 };
244 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
245 
246 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
247 
248 /* Tunable device values... */
249 
250 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters");
251 
252 /* Debug */
253 unsigned long bxe_debug = 0;
254 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN,
255              &bxe_debug, 0, "Debug logging mode");
256 
257 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
258 static int bxe_interrupt_mode = INTR_MODE_MSIX;
259 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
260            &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
261 
262 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
263 static int bxe_queue_count = 4;
264 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
265            &bxe_queue_count, 0, "Multi-Queue queue count");
266 
267 /* max number of buffers per queue (default RX_BD_USABLE) */
268 static int bxe_max_rx_bufs = 0;
269 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
270            &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
271 
272 /* Host interrupt coalescing RX tick timer (usecs) */
273 static int bxe_hc_rx_ticks = 25;
274 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
275            &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
276 
277 /* Host interrupt coalescing TX tick timer (usecs) */
278 static int bxe_hc_tx_ticks = 50;
279 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
280            &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
281 
282 /* Maximum number of Rx packets to process at a time */
283 static int bxe_rx_budget = 0xffffffff;
284 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
285            &bxe_rx_budget, 0, "Rx processing budget");
286 
287 /* Maximum LRO aggregation size */
288 static int bxe_max_aggregation_size = 0;
289 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
290            &bxe_max_aggregation_size, 0, "max aggregation size");
291 
292 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
293 static int bxe_mrrs = -1;
294 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
295            &bxe_mrrs, 0, "PCIe maximum read request size");
296 
297 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
298 static int bxe_autogreeen = 0;
299 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
300            &bxe_autogreeen, 0, "AutoGrEEEn support");
301 
302 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
303 static int bxe_udp_rss = 0;
304 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
305            &bxe_udp_rss, 0, "UDP RSS support");
306 
307 
308 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
309 
310 #define STATS_OFFSET32(stat_name)                   \
311     (offsetof(struct bxe_eth_stats, stat_name) / 4)
312 
313 #define Q_STATS_OFFSET32(stat_name)                   \
314     (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
315 
316 static const struct {
317     uint32_t offset;
318     uint32_t size;
319     uint32_t flags;
320 #define STATS_FLAGS_PORT  1
321 #define STATS_FLAGS_FUNC  2 /* MF only cares about function stats */
322 #define STATS_FLAGS_BOTH  (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
323     char string[STAT_NAME_LEN];
324 } bxe_eth_stats_arr[] = {
325     { STATS_OFFSET32(total_bytes_received_hi),
326                 8, STATS_FLAGS_BOTH, "rx_bytes" },
327     { STATS_OFFSET32(error_bytes_received_hi),
328                 8, STATS_FLAGS_BOTH, "rx_error_bytes" },
329     { STATS_OFFSET32(total_unicast_packets_received_hi),
330                 8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
331     { STATS_OFFSET32(total_multicast_packets_received_hi),
332                 8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
333     { STATS_OFFSET32(total_broadcast_packets_received_hi),
334                 8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
335     { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
336                 8, STATS_FLAGS_PORT, "rx_crc_errors" },
337     { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
338                 8, STATS_FLAGS_PORT, "rx_align_errors" },
339     { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
340                 8, STATS_FLAGS_PORT, "rx_undersize_packets" },
341     { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
342                 8, STATS_FLAGS_PORT, "rx_oversize_packets" },
343     { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
344                 8, STATS_FLAGS_PORT, "rx_fragments" },
345     { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
346                 8, STATS_FLAGS_PORT, "rx_jabbers" },
347     { STATS_OFFSET32(no_buff_discard_hi),
348                 8, STATS_FLAGS_BOTH, "rx_discards" },
349     { STATS_OFFSET32(mac_filter_discard),
350                 4, STATS_FLAGS_PORT, "rx_filtered_packets" },
351     { STATS_OFFSET32(mf_tag_discard),
352                 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
353     { STATS_OFFSET32(pfc_frames_received_hi),
354                 8, STATS_FLAGS_PORT, "pfc_frames_received" },
355     { STATS_OFFSET32(pfc_frames_sent_hi),
356                 8, STATS_FLAGS_PORT, "pfc_frames_sent" },
357     { STATS_OFFSET32(brb_drop_hi),
358                 8, STATS_FLAGS_PORT, "rx_brb_discard" },
359     { STATS_OFFSET32(brb_truncate_hi),
360                 8, STATS_FLAGS_PORT, "rx_brb_truncate" },
361     { STATS_OFFSET32(pause_frames_received_hi),
362                 8, STATS_FLAGS_PORT, "rx_pause_frames" },
363     { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
364                 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
365     { STATS_OFFSET32(nig_timer_max),
366                 4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
367     { STATS_OFFSET32(total_bytes_transmitted_hi),
368                 8, STATS_FLAGS_BOTH, "tx_bytes" },
369     { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
370                 8, STATS_FLAGS_PORT, "tx_error_bytes" },
371     { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
372                 8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
373     { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
374                 8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
375     { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
376                 8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
377     { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
378                 8, STATS_FLAGS_PORT, "tx_mac_errors" },
379     { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
380                 8, STATS_FLAGS_PORT, "tx_carrier_errors" },
381     { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
382                 8, STATS_FLAGS_PORT, "tx_single_collisions" },
383     { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
384                 8, STATS_FLAGS_PORT, "tx_multi_collisions" },
385     { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
386                 8, STATS_FLAGS_PORT, "tx_deferred" },
387     { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
388                 8, STATS_FLAGS_PORT, "tx_excess_collisions" },
389     { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
390                 8, STATS_FLAGS_PORT, "tx_late_collisions" },
391     { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
392                 8, STATS_FLAGS_PORT, "tx_total_collisions" },
393     { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
394                 8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
395     { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
396                 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
397     { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
398                 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
399     { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
400                 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
401     { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
402                 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
403     { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
404                 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
405     { STATS_OFFSET32(etherstatspktsover1522octets_hi),
406                 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
407     { STATS_OFFSET32(pause_frames_sent_hi),
408                 8, STATS_FLAGS_PORT, "tx_pause_frames" },
409     { STATS_OFFSET32(total_tpa_aggregations_hi),
410                 8, STATS_FLAGS_FUNC, "tpa_aggregations" },
411     { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
412                 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
413     { STATS_OFFSET32(total_tpa_bytes_hi),
414                 8, STATS_FLAGS_FUNC, "tpa_bytes"},
415     { STATS_OFFSET32(eee_tx_lpi),
416                 4, STATS_FLAGS_PORT, "eee_tx_lpi"},
417     { STATS_OFFSET32(rx_calls),
418                 4, STATS_FLAGS_FUNC, "rx_calls"},
419     { STATS_OFFSET32(rx_pkts),
420                 4, STATS_FLAGS_FUNC, "rx_pkts"},
421     { STATS_OFFSET32(rx_tpa_pkts),
422                 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
423     { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
424                 4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"},
425     { STATS_OFFSET32(rx_bxe_service_rxsgl),
426                 4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"},
427     { STATS_OFFSET32(rx_jumbo_sge_pkts),
428                 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"},
429     { STATS_OFFSET32(rx_soft_errors),
430                 4, STATS_FLAGS_FUNC, "rx_soft_errors"},
431     { STATS_OFFSET32(rx_hw_csum_errors),
432                 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
433     { STATS_OFFSET32(rx_ofld_frames_csum_ip),
434                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
435     { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
436                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
437     { STATS_OFFSET32(rx_budget_reached),
438                 4, STATS_FLAGS_FUNC, "rx_budget_reached"},
439     { STATS_OFFSET32(tx_pkts),
440                 4, STATS_FLAGS_FUNC, "tx_pkts"},
441     { STATS_OFFSET32(tx_soft_errors),
442                 4, STATS_FLAGS_FUNC, "tx_soft_errors"},
443     { STATS_OFFSET32(tx_ofld_frames_csum_ip),
444                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
445     { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
446                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
447     { STATS_OFFSET32(tx_ofld_frames_csum_udp),
448                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
449     { STATS_OFFSET32(tx_ofld_frames_lso),
450                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
451     { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
452                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
453     { STATS_OFFSET32(tx_encap_failures),
454                 4, STATS_FLAGS_FUNC, "tx_encap_failures"},
455     { STATS_OFFSET32(tx_hw_queue_full),
456                 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
457     { STATS_OFFSET32(tx_hw_max_queue_depth),
458                 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
459     { STATS_OFFSET32(tx_dma_mapping_failure),
460                 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
461     { STATS_OFFSET32(tx_max_drbr_queue_depth),
462                 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
463     { STATS_OFFSET32(tx_window_violation_std),
464                 4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
465     { STATS_OFFSET32(tx_window_violation_tso),
466                 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
467     { STATS_OFFSET32(tx_chain_lost_mbuf),
468                 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
469     { STATS_OFFSET32(tx_frames_deferred),
470                 4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
471     { STATS_OFFSET32(tx_queue_xoff),
472                 4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
473     { STATS_OFFSET32(mbuf_defrag_attempts),
474                 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
475     { STATS_OFFSET32(mbuf_defrag_failures),
476                 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
477     { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
478                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
479     { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
480                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
481     { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
482                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
483     { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
484                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
485     { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
486                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
487     { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
488                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
489     { STATS_OFFSET32(mbuf_alloc_tx),
490                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
491     { STATS_OFFSET32(mbuf_alloc_rx),
492                 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
493     { STATS_OFFSET32(mbuf_alloc_sge),
494                 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
495     { STATS_OFFSET32(mbuf_alloc_tpa),
496                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"},
497     { STATS_OFFSET32(tx_queue_full_return),
498                 4, STATS_FLAGS_FUNC, "tx_queue_full_return"},
499     { STATS_OFFSET32(bxe_tx_mq_sc_state_failures),
500                 4, STATS_FLAGS_FUNC, "bxe_tx_mq_sc_state_failures"},
501     { STATS_OFFSET32(tx_request_link_down_failures),
502                 4, STATS_FLAGS_FUNC, "tx_request_link_down_failures"},
503     { STATS_OFFSET32(bd_avail_too_less_failures),
504                 4, STATS_FLAGS_FUNC, "bd_avail_too_less_failures"},
505     { STATS_OFFSET32(tx_mq_not_empty),
506                 4, STATS_FLAGS_FUNC, "tx_mq_not_empty"},
507     { STATS_OFFSET32(nsegs_path1_errors),
508                 4, STATS_FLAGS_FUNC, "nsegs_path1_errors"},
509     { STATS_OFFSET32(nsegs_path2_errors),
510                 4, STATS_FLAGS_FUNC, "nsegs_path2_errors"}
511 
512 
513 };
514 
515 static const struct {
516     uint32_t offset;
517     uint32_t size;
518     char string[STAT_NAME_LEN];
519 } bxe_eth_q_stats_arr[] = {
520     { Q_STATS_OFFSET32(total_bytes_received_hi),
521                 8, "rx_bytes" },
522     { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
523                 8, "rx_ucast_packets" },
524     { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
525                 8, "rx_mcast_packets" },
526     { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
527                 8, "rx_bcast_packets" },
528     { Q_STATS_OFFSET32(no_buff_discard_hi),
529                 8, "rx_discards" },
530     { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
531                 8, "tx_bytes" },
532     { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
533                 8, "tx_ucast_packets" },
534     { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
535                 8, "tx_mcast_packets" },
536     { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
537                 8, "tx_bcast_packets" },
538     { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
539                 8, "tpa_aggregations" },
540     { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
541                 8, "tpa_aggregated_frames"},
542     { Q_STATS_OFFSET32(total_tpa_bytes_hi),
543                 8, "tpa_bytes"},
544     { Q_STATS_OFFSET32(rx_calls),
545                 4, "rx_calls"},
546     { Q_STATS_OFFSET32(rx_pkts),
547                 4, "rx_pkts"},
548     { Q_STATS_OFFSET32(rx_tpa_pkts),
549                 4, "rx_tpa_pkts"},
550     { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
551                 4, "rx_erroneous_jumbo_sge_pkts"},
552     { Q_STATS_OFFSET32(rx_bxe_service_rxsgl),
553                 4, "rx_bxe_service_rxsgl"},
554     { Q_STATS_OFFSET32(rx_jumbo_sge_pkts),
555                 4, "rx_jumbo_sge_pkts"},
556     { Q_STATS_OFFSET32(rx_soft_errors),
557                 4, "rx_soft_errors"},
558     { Q_STATS_OFFSET32(rx_hw_csum_errors),
559                 4, "rx_hw_csum_errors"},
560     { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
561                 4, "rx_ofld_frames_csum_ip"},
562     { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
563                 4, "rx_ofld_frames_csum_tcp_udp"},
564     { Q_STATS_OFFSET32(rx_budget_reached),
565                 4, "rx_budget_reached"},
566     { Q_STATS_OFFSET32(tx_pkts),
567                 4, "tx_pkts"},
568     { Q_STATS_OFFSET32(tx_soft_errors),
569                 4, "tx_soft_errors"},
570     { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
571                 4, "tx_ofld_frames_csum_ip"},
572     { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
573                 4, "tx_ofld_frames_csum_tcp"},
574     { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
575                 4, "tx_ofld_frames_csum_udp"},
576     { Q_STATS_OFFSET32(tx_ofld_frames_lso),
577                 4, "tx_ofld_frames_lso"},
578     { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
579                 4, "tx_ofld_frames_lso_hdr_splits"},
580     { Q_STATS_OFFSET32(tx_encap_failures),
581                 4, "tx_encap_failures"},
582     { Q_STATS_OFFSET32(tx_hw_queue_full),
583                 4, "tx_hw_queue_full"},
584     { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
585                 4, "tx_hw_max_queue_depth"},
586     { Q_STATS_OFFSET32(tx_dma_mapping_failure),
587                 4, "tx_dma_mapping_failure"},
588     { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
589                 4, "tx_max_drbr_queue_depth"},
590     { Q_STATS_OFFSET32(tx_window_violation_std),
591                 4, "tx_window_violation_std"},
592     { Q_STATS_OFFSET32(tx_window_violation_tso),
593                 4, "tx_window_violation_tso"},
594     { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
595                 4, "tx_chain_lost_mbuf"},
596     { Q_STATS_OFFSET32(tx_frames_deferred),
597                 4, "tx_frames_deferred"},
598     { Q_STATS_OFFSET32(tx_queue_xoff),
599                 4, "tx_queue_xoff"},
600     { Q_STATS_OFFSET32(mbuf_defrag_attempts),
601                 4, "mbuf_defrag_attempts"},
602     { Q_STATS_OFFSET32(mbuf_defrag_failures),
603                 4, "mbuf_defrag_failures"},
604     { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
605                 4, "mbuf_rx_bd_alloc_failed"},
606     { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
607                 4, "mbuf_rx_bd_mapping_failed"},
608     { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
609                 4, "mbuf_rx_tpa_alloc_failed"},
610     { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
611                 4, "mbuf_rx_tpa_mapping_failed"},
612     { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
613                 4, "mbuf_rx_sge_alloc_failed"},
614     { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
615                 4, "mbuf_rx_sge_mapping_failed"},
616     { Q_STATS_OFFSET32(mbuf_alloc_tx),
617                 4, "mbuf_alloc_tx"},
618     { Q_STATS_OFFSET32(mbuf_alloc_rx),
619                 4, "mbuf_alloc_rx"},
620     { Q_STATS_OFFSET32(mbuf_alloc_sge),
621                 4, "mbuf_alloc_sge"},
622     { Q_STATS_OFFSET32(mbuf_alloc_tpa),
623                 4, "mbuf_alloc_tpa"},
624     { Q_STATS_OFFSET32(tx_queue_full_return),
625                 4, "tx_queue_full_return"},
626     { Q_STATS_OFFSET32(bxe_tx_mq_sc_state_failures),
627                 4, "bxe_tx_mq_sc_state_failures"},
628     { Q_STATS_OFFSET32(tx_request_link_down_failures),
629                 4, "tx_request_link_down_failures"},
630     { Q_STATS_OFFSET32(bd_avail_too_less_failures),
631                 4, "bd_avail_too_less_failures"},
632     { Q_STATS_OFFSET32(tx_mq_not_empty),
633                 4, "tx_mq_not_empty"},
634     { Q_STATS_OFFSET32(nsegs_path1_errors),
635                 4, "nsegs_path1_errors"},
636     { Q_STATS_OFFSET32(nsegs_path2_errors),
637                 4, "nsegs_path2_errors"}
638 
639 
640 };
641 
642 #define BXE_NUM_ETH_STATS   ARRAY_SIZE(bxe_eth_stats_arr)
643 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
644 
645 
646 static void    bxe_cmng_fns_init(struct bxe_softc *sc,
647                                  uint8_t          read_cfg,
648                                  uint8_t          cmng_type);
649 static int     bxe_get_cmng_fns_mode(struct bxe_softc *sc);
650 static void    storm_memset_cmng(struct bxe_softc *sc,
651                                  struct cmng_init *cmng,
652                                  uint8_t          port);
653 static void    bxe_set_reset_global(struct bxe_softc *sc);
654 static void    bxe_set_reset_in_progress(struct bxe_softc *sc);
655 static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
656                                  int              engine);
657 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
658 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
659                                    uint8_t          *global,
660                                    uint8_t          print);
661 static void    bxe_int_disable(struct bxe_softc *sc);
662 static int     bxe_release_leader_lock(struct bxe_softc *sc);
663 static void    bxe_pf_disable(struct bxe_softc *sc);
664 static void    bxe_free_fp_buffers(struct bxe_softc *sc);
665 static inline void bxe_update_rx_prod(struct bxe_softc    *sc,
666                                       struct bxe_fastpath *fp,
667                                       uint16_t            rx_bd_prod,
668                                       uint16_t            rx_cq_prod,
669                                       uint16_t            rx_sge_prod);
670 static void    bxe_link_report_locked(struct bxe_softc *sc);
671 static void    bxe_link_report(struct bxe_softc *sc);
672 static void    bxe_link_status_update(struct bxe_softc *sc);
673 static void    bxe_periodic_callout_func(void *xsc);
674 static void    bxe_periodic_start(struct bxe_softc *sc);
675 static void    bxe_periodic_stop(struct bxe_softc *sc);
676 static int     bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
677                                     uint16_t prev_index,
678                                     uint16_t index);
679 static int     bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
680                                      int                 queue);
681 static int     bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
682                                      uint16_t            index);
683 static uint8_t bxe_txeof(struct bxe_softc *sc,
684                          struct bxe_fastpath *fp);
685 static void    bxe_task_fp(struct bxe_fastpath *fp);
686 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
687                                      struct mbuf      *m,
688                                      uint8_t          contents);
689 static int     bxe_alloc_mem(struct bxe_softc *sc);
690 static void    bxe_free_mem(struct bxe_softc *sc);
691 static int     bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
692 static void    bxe_free_fw_stats_mem(struct bxe_softc *sc);
693 static int     bxe_interrupt_attach(struct bxe_softc *sc);
694 static void    bxe_interrupt_detach(struct bxe_softc *sc);
695 static void    bxe_set_rx_mode(struct bxe_softc *sc);
696 static int     bxe_init_locked(struct bxe_softc *sc);
697 static int     bxe_stop_locked(struct bxe_softc *sc);
698 static __noinline int bxe_nic_load(struct bxe_softc *sc,
699                                    int              load_mode);
700 static __noinline int bxe_nic_unload(struct bxe_softc *sc,
701                                      uint32_t         unload_mode,
702                                      uint8_t          keep_link);
703 
704 static void bxe_handle_sp_tq(void *context, int pending);
705 static void bxe_handle_fp_tq(void *context, int pending);
706 
707 static int bxe_add_cdev(struct bxe_softc *sc);
708 static void bxe_del_cdev(struct bxe_softc *sc);
709 int bxe_grc_dump(struct bxe_softc *sc);
710 static int bxe_alloc_buf_rings(struct bxe_softc *sc);
711 static void bxe_free_buf_rings(struct bxe_softc *sc);
712 
713 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
714 uint32_t
715 calc_crc32(uint8_t  *crc32_packet,
716            uint32_t crc32_length,
717            uint32_t crc32_seed,
718            uint8_t  complement)
719 {
720    uint32_t byte         = 0;
721    uint32_t bit          = 0;
722    uint8_t  msb          = 0;
723    uint32_t temp         = 0;
724    uint32_t shft         = 0;
725    uint8_t  current_byte = 0;
726    uint32_t crc32_result = crc32_seed;
727    const uint32_t CRC32_POLY = 0x1edc6f41;
728 
729    if ((crc32_packet == NULL) ||
730        (crc32_length == 0) ||
731        ((crc32_length % 8) != 0))
732     {
733         return (crc32_result);
734     }
735 
736     for (byte = 0; byte < crc32_length; byte = byte + 1)
737     {
738         current_byte = crc32_packet[byte];
739         for (bit = 0; bit < 8; bit = bit + 1)
740         {
741             /* msb = crc32_result[31]; */
742             msb = (uint8_t)(crc32_result >> 31);
743 
744             crc32_result = crc32_result << 1;
745 
746             /* it (msb != current_byte[bit]) */
747             if (msb != (0x1 & (current_byte >> bit)))
748             {
749                 crc32_result = crc32_result ^ CRC32_POLY;
750                 /* crc32_result[0] = 1 */
751                 crc32_result |= 1;
752             }
753         }
754     }
755 
756     /* Last step is to:
757      * 1. "mirror" every bit
758      * 2. swap the 4 bytes
759      * 3. complement each bit
760      */
761 
762     /* Mirror */
763     temp = crc32_result;
764     shft = sizeof(crc32_result) * 8 - 1;
765 
766     for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
767     {
768         temp <<= 1;
769         temp |= crc32_result & 1;
770         shft-- ;
771     }
772 
773     /* temp[31-bit] = crc32_result[bit] */
774     temp <<= shft;
775 
776     /* Swap */
777     /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
778     {
779         uint32_t t0, t1, t2, t3;
780         t0 = (0x000000ff & (temp >> 24));
781         t1 = (0x0000ff00 & (temp >> 8));
782         t2 = (0x00ff0000 & (temp << 8));
783         t3 = (0xff000000 & (temp << 24));
784         crc32_result = t0 | t1 | t2 | t3;
785     }
786 
787     /* Complement */
788     if (complement)
789     {
790         crc32_result = ~crc32_result;
791     }
792 
793     return (crc32_result);
794 }
795 
796 int
797 bxe_test_bit(int                    nr,
798              volatile unsigned long *addr)
799 {
800     return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
801 }
802 
803 void
804 bxe_set_bit(unsigned int           nr,
805             volatile unsigned long *addr)
806 {
807     atomic_set_acq_long(addr, (1 << nr));
808 }
809 
810 void
811 bxe_clear_bit(int                    nr,
812               volatile unsigned long *addr)
813 {
814     atomic_clear_acq_long(addr, (1 << nr));
815 }
816 
817 int
818 bxe_test_and_set_bit(int                    nr,
819                        volatile unsigned long *addr)
820 {
821     unsigned long x;
822     nr = (1 << nr);
823     do {
824         x = *addr;
825     } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
826     // if (x & nr) bit_was_set; else bit_was_not_set;
827     return (x & nr);
828 }
829 
830 int
831 bxe_test_and_clear_bit(int                    nr,
832                        volatile unsigned long *addr)
833 {
834     unsigned long x;
835     nr = (1 << nr);
836     do {
837         x = *addr;
838     } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
839     // if (x & nr) bit_was_set; else bit_was_not_set;
840     return (x & nr);
841 }
842 
843 int
844 bxe_cmpxchg(volatile int *addr,
845             int          old,
846             int          new)
847 {
848     int x;
849     do {
850         x = *addr;
851     } while (atomic_cmpset_acq_int(addr, old, new) == 0);
852     return (x);
853 }
854 
855 /*
856  * Get DMA memory from the OS.
857  *
858  * Validates that the OS has provided DMA buffers in response to a
859  * bus_dmamap_load call and saves the physical address of those buffers.
860  * When the callback is used the OS will return 0 for the mapping function
861  * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
862  * failures back to the caller.
863  *
864  * Returns:
865  *   Nothing.
866  */
867 static void
868 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
869 {
870     struct bxe_dma *dma = arg;
871 
872     if (error) {
873         dma->paddr = 0;
874         dma->nseg  = 0;
875         BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
876     } else {
877         dma->paddr = segs->ds_addr;
878         dma->nseg  = nseg;
879     }
880 }
881 
882 /*
883  * Allocate a block of memory and map it for DMA. No partial completions
884  * allowed and release any resources acquired if we can't acquire all
885  * resources.
886  *
887  * Returns:
888  *   0 = Success, !0 = Failure
889  */
890 int
891 bxe_dma_alloc(struct bxe_softc *sc,
892               bus_size_t       size,
893               struct bxe_dma   *dma,
894               const char       *msg)
895 {
896     int rc;
897 
898     if (dma->size > 0) {
899         BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
900               (unsigned long)dma->size);
901         return (1);
902     }
903 
904     memset(dma, 0, sizeof(*dma)); /* sanity */
905     dma->sc   = sc;
906     dma->size = size;
907     snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
908 
909     rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
910                             BCM_PAGE_SIZE,      /* alignment */
911                             0,                  /* boundary limit */
912                             BUS_SPACE_MAXADDR,  /* restricted low */
913                             BUS_SPACE_MAXADDR,  /* restricted hi */
914                             NULL,               /* addr filter() */
915                             NULL,               /* addr filter() arg */
916                             size,               /* max map size */
917                             1,                  /* num discontinuous */
918                             size,               /* max seg size */
919                             BUS_DMA_ALLOCNOW,   /* flags */
920                             NULL,               /* lock() */
921                             NULL,               /* lock() arg */
922                             &dma->tag);         /* returned dma tag */
923     if (rc != 0) {
924         BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
925         memset(dma, 0, sizeof(*dma));
926         return (1);
927     }
928 
929     rc = bus_dmamem_alloc(dma->tag,
930                           (void **)&dma->vaddr,
931                           (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
932                           &dma->map);
933     if (rc != 0) {
934         BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
935         bus_dma_tag_destroy(dma->tag);
936         memset(dma, 0, sizeof(*dma));
937         return (1);
938     }
939 
940     rc = bus_dmamap_load(dma->tag,
941                          dma->map,
942                          dma->vaddr,
943                          size,
944                          bxe_dma_map_addr, /* BLOGD in here */
945                          dma,
946                          BUS_DMA_NOWAIT);
947     if (rc != 0) {
948         BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
949         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
950         bus_dma_tag_destroy(dma->tag);
951         memset(dma, 0, sizeof(*dma));
952         return (1);
953     }
954 
955     return (0);
956 }
957 
958 void
959 bxe_dma_free(struct bxe_softc *sc,
960              struct bxe_dma   *dma)
961 {
962     if (dma->size > 0) {
963         DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
964 
965         bus_dmamap_sync(dma->tag, dma->map,
966                         (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
967         bus_dmamap_unload(dma->tag, dma->map);
968         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
969         bus_dma_tag_destroy(dma->tag);
970     }
971 
972     memset(dma, 0, sizeof(*dma));
973 }
974 
975 /*
976  * These indirect read and write routines are only during init.
977  * The locking is handled by the MCP.
978  */
979 
980 void
981 bxe_reg_wr_ind(struct bxe_softc *sc,
982                uint32_t         addr,
983                uint32_t         val)
984 {
985     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
986     pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
987     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
988 }
989 
990 uint32_t
991 bxe_reg_rd_ind(struct bxe_softc *sc,
992                uint32_t         addr)
993 {
994     uint32_t val;
995 
996     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
997     val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
998     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
999 
1000     return (val);
1001 }
1002 
1003 static int
1004 bxe_acquire_hw_lock(struct bxe_softc *sc,
1005                     uint32_t         resource)
1006 {
1007     uint32_t lock_status;
1008     uint32_t resource_bit = (1 << resource);
1009     int func = SC_FUNC(sc);
1010     uint32_t hw_lock_control_reg;
1011     int cnt;
1012 
1013     /* validate the resource is within range */
1014     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1015         BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
1016             " resource_bit 0x%x\n", resource, resource_bit);
1017         return (-1);
1018     }
1019 
1020     if (func <= 5) {
1021         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1022     } else {
1023         hw_lock_control_reg =
1024                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1025     }
1026 
1027     /* validate the resource is not already taken */
1028     lock_status = REG_RD(sc, hw_lock_control_reg);
1029     if (lock_status & resource_bit) {
1030         BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n",
1031               resource, lock_status, resource_bit);
1032         return (-1);
1033     }
1034 
1035     /* try every 5ms for 5 seconds */
1036     for (cnt = 0; cnt < 1000; cnt++) {
1037         REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1038         lock_status = REG_RD(sc, hw_lock_control_reg);
1039         if (lock_status & resource_bit) {
1040             return (0);
1041         }
1042         DELAY(5000);
1043     }
1044 
1045     BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n",
1046         resource, resource_bit);
1047     return (-1);
1048 }
1049 
1050 static int
1051 bxe_release_hw_lock(struct bxe_softc *sc,
1052                     uint32_t         resource)
1053 {
1054     uint32_t lock_status;
1055     uint32_t resource_bit = (1 << resource);
1056     int func = SC_FUNC(sc);
1057     uint32_t hw_lock_control_reg;
1058 
1059     /* validate the resource is within range */
1060     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1061         BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
1062             " resource_bit 0x%x\n", resource, resource_bit);
1063         return (-1);
1064     }
1065 
1066     if (func <= 5) {
1067         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1068     } else {
1069         hw_lock_control_reg =
1070                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1071     }
1072 
1073     /* validate the resource is currently taken */
1074     lock_status = REG_RD(sc, hw_lock_control_reg);
1075     if (!(lock_status & resource_bit)) {
1076         BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n",
1077               resource, lock_status, resource_bit);
1078         return (-1);
1079     }
1080 
1081     REG_WR(sc, hw_lock_control_reg, resource_bit);
1082     return (0);
1083 }
1084 static void bxe_acquire_phy_lock(struct bxe_softc *sc)
1085 {
1086 	BXE_PHY_LOCK(sc);
1087 	bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1088 }
1089 
1090 static void bxe_release_phy_lock(struct bxe_softc *sc)
1091 {
1092 	bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1093 	BXE_PHY_UNLOCK(sc);
1094 }
1095 /*
1096  * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1097  * had we done things the other way around, if two pfs from the same port
1098  * would attempt to access nvram at the same time, we could run into a
1099  * scenario such as:
1100  * pf A takes the port lock.
1101  * pf B succeeds in taking the same lock since they are from the same port.
1102  * pf A takes the per pf misc lock. Performs eeprom access.
1103  * pf A finishes. Unlocks the per pf misc lock.
1104  * Pf B takes the lock and proceeds to perform it's own access.
1105  * pf A unlocks the per port lock, while pf B is still working (!).
1106  * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1107  * access corrupted by pf B).*
1108  */
1109 static int
1110 bxe_acquire_nvram_lock(struct bxe_softc *sc)
1111 {
1112     int port = SC_PORT(sc);
1113     int count, i;
1114     uint32_t val = 0;
1115 
1116     /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1117     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1118 
1119     /* adjust timeout for emulation/FPGA */
1120     count = NVRAM_TIMEOUT_COUNT;
1121     if (CHIP_REV_IS_SLOW(sc)) {
1122         count *= 100;
1123     }
1124 
1125     /* request access to nvram interface */
1126     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1127            (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1128 
1129     for (i = 0; i < count*10; i++) {
1130         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1131         if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1132             break;
1133         }
1134 
1135         DELAY(5);
1136     }
1137 
1138     if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1139         BLOGE(sc, "Cannot get access to nvram interface "
1140             "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
1141             port, val);
1142         return (-1);
1143     }
1144 
1145     return (0);
1146 }
1147 
1148 static int
1149 bxe_release_nvram_lock(struct bxe_softc *sc)
1150 {
1151     int port = SC_PORT(sc);
1152     int count, i;
1153     uint32_t val = 0;
1154 
1155     /* adjust timeout for emulation/FPGA */
1156     count = NVRAM_TIMEOUT_COUNT;
1157     if (CHIP_REV_IS_SLOW(sc)) {
1158         count *= 100;
1159     }
1160 
1161     /* relinquish nvram interface */
1162     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1163            (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1164 
1165     for (i = 0; i < count*10; i++) {
1166         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1167         if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1168             break;
1169         }
1170 
1171         DELAY(5);
1172     }
1173 
1174     if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1175         BLOGE(sc, "Cannot free access to nvram interface "
1176             "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
1177             port, val);
1178         return (-1);
1179     }
1180 
1181     /* release HW lock: protect against other PFs in PF Direct Assignment */
1182     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1183 
1184     return (0);
1185 }
1186 
1187 static void
1188 bxe_enable_nvram_access(struct bxe_softc *sc)
1189 {
1190     uint32_t val;
1191 
1192     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1193 
1194     /* enable both bits, even on read */
1195     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1196            (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1197 }
1198 
1199 static void
1200 bxe_disable_nvram_access(struct bxe_softc *sc)
1201 {
1202     uint32_t val;
1203 
1204     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1205 
1206     /* disable both bits, even after read */
1207     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1208            (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1209                     MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1210 }
1211 
1212 static int
1213 bxe_nvram_read_dword(struct bxe_softc *sc,
1214                      uint32_t         offset,
1215                      uint32_t         *ret_val,
1216                      uint32_t         cmd_flags)
1217 {
1218     int count, i, rc;
1219     uint32_t val;
1220 
1221     /* build the command word */
1222     cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1223 
1224     /* need to clear DONE bit separately */
1225     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1226 
1227     /* address of the NVRAM to read from */
1228     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1229            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1230 
1231     /* issue a read command */
1232     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1233 
1234     /* adjust timeout for emulation/FPGA */
1235     count = NVRAM_TIMEOUT_COUNT;
1236     if (CHIP_REV_IS_SLOW(sc)) {
1237         count *= 100;
1238     }
1239 
1240     /* wait for completion */
1241     *ret_val = 0;
1242     rc = -1;
1243     for (i = 0; i < count; i++) {
1244         DELAY(5);
1245         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1246 
1247         if (val & MCPR_NVM_COMMAND_DONE) {
1248             val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1249             /* we read nvram data in cpu order
1250              * but ethtool sees it as an array of bytes
1251              * converting to big-endian will do the work
1252              */
1253             *ret_val = htobe32(val);
1254             rc = 0;
1255             break;
1256         }
1257     }
1258 
1259     if (rc == -1) {
1260         BLOGE(sc, "nvram read timeout expired "
1261             "(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
1262             offset, cmd_flags, val);
1263     }
1264 
1265     return (rc);
1266 }
1267 
1268 static int
1269 bxe_nvram_read(struct bxe_softc *sc,
1270                uint32_t         offset,
1271                uint8_t          *ret_buf,
1272                int              buf_size)
1273 {
1274     uint32_t cmd_flags;
1275     uint32_t val;
1276     int rc;
1277 
1278     if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1279         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1280               offset, buf_size);
1281         return (-1);
1282     }
1283 
1284     if ((offset + buf_size) > sc->devinfo.flash_size) {
1285         BLOGE(sc, "Invalid parameter, "
1286                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1287               offset, buf_size, sc->devinfo.flash_size);
1288         return (-1);
1289     }
1290 
1291     /* request access to nvram interface */
1292     rc = bxe_acquire_nvram_lock(sc);
1293     if (rc) {
1294         return (rc);
1295     }
1296 
1297     /* enable access to nvram interface */
1298     bxe_enable_nvram_access(sc);
1299 
1300     /* read the first word(s) */
1301     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1302     while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1303         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1304         memcpy(ret_buf, &val, 4);
1305 
1306         /* advance to the next dword */
1307         offset += sizeof(uint32_t);
1308         ret_buf += sizeof(uint32_t);
1309         buf_size -= sizeof(uint32_t);
1310         cmd_flags = 0;
1311     }
1312 
1313     if (rc == 0) {
1314         cmd_flags |= MCPR_NVM_COMMAND_LAST;
1315         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1316         memcpy(ret_buf, &val, 4);
1317     }
1318 
1319     /* disable access to nvram interface */
1320     bxe_disable_nvram_access(sc);
1321     bxe_release_nvram_lock(sc);
1322 
1323     return (rc);
1324 }
1325 
1326 static int
1327 bxe_nvram_write_dword(struct bxe_softc *sc,
1328                       uint32_t         offset,
1329                       uint32_t         val,
1330                       uint32_t         cmd_flags)
1331 {
1332     int count, i, rc;
1333 
1334     /* build the command word */
1335     cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1336 
1337     /* need to clear DONE bit separately */
1338     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1339 
1340     /* write the data */
1341     REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1342 
1343     /* address of the NVRAM to write to */
1344     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1345            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1346 
1347     /* issue the write command */
1348     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1349 
1350     /* adjust timeout for emulation/FPGA */
1351     count = NVRAM_TIMEOUT_COUNT;
1352     if (CHIP_REV_IS_SLOW(sc)) {
1353         count *= 100;
1354     }
1355 
1356     /* wait for completion */
1357     rc = -1;
1358     for (i = 0; i < count; i++) {
1359         DELAY(5);
1360         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1361         if (val & MCPR_NVM_COMMAND_DONE) {
1362             rc = 0;
1363             break;
1364         }
1365     }
1366 
1367     if (rc == -1) {
1368         BLOGE(sc, "nvram write timeout expired "
1369             "(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
1370             offset, cmd_flags, val);
1371     }
1372 
1373     return (rc);
1374 }
1375 
1376 #define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1377 
1378 static int
1379 bxe_nvram_write1(struct bxe_softc *sc,
1380                  uint32_t         offset,
1381                  uint8_t          *data_buf,
1382                  int              buf_size)
1383 {
1384     uint32_t cmd_flags;
1385     uint32_t align_offset;
1386     uint32_t val;
1387     int rc;
1388 
1389     if ((offset + buf_size) > sc->devinfo.flash_size) {
1390         BLOGE(sc, "Invalid parameter, "
1391                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1392               offset, buf_size, sc->devinfo.flash_size);
1393         return (-1);
1394     }
1395 
1396     /* request access to nvram interface */
1397     rc = bxe_acquire_nvram_lock(sc);
1398     if (rc) {
1399         return (rc);
1400     }
1401 
1402     /* enable access to nvram interface */
1403     bxe_enable_nvram_access(sc);
1404 
1405     cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1406     align_offset = (offset & ~0x03);
1407     rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1408 
1409     if (rc == 0) {
1410         val &= ~(0xff << BYTE_OFFSET(offset));
1411         val |= (*data_buf << BYTE_OFFSET(offset));
1412 
1413         /* nvram data is returned as an array of bytes
1414          * convert it back to cpu order
1415          */
1416         val = be32toh(val);
1417 
1418         rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1419     }
1420 
1421     /* disable access to nvram interface */
1422     bxe_disable_nvram_access(sc);
1423     bxe_release_nvram_lock(sc);
1424 
1425     return (rc);
1426 }
1427 
1428 static int
1429 bxe_nvram_write(struct bxe_softc *sc,
1430                 uint32_t         offset,
1431                 uint8_t          *data_buf,
1432                 int              buf_size)
1433 {
1434     uint32_t cmd_flags;
1435     uint32_t val;
1436     uint32_t written_so_far;
1437     int rc;
1438 
1439     if (buf_size == 1) {
1440         return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1441     }
1442 
1443     if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1444         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1445               offset, buf_size);
1446         return (-1);
1447     }
1448 
1449     if (buf_size == 0) {
1450         return (0); /* nothing to do */
1451     }
1452 
1453     if ((offset + buf_size) > sc->devinfo.flash_size) {
1454         BLOGE(sc, "Invalid parameter, "
1455                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1456               offset, buf_size, sc->devinfo.flash_size);
1457         return (-1);
1458     }
1459 
1460     /* request access to nvram interface */
1461     rc = bxe_acquire_nvram_lock(sc);
1462     if (rc) {
1463         return (rc);
1464     }
1465 
1466     /* enable access to nvram interface */
1467     bxe_enable_nvram_access(sc);
1468 
1469     written_so_far = 0;
1470     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1471     while ((written_so_far < buf_size) && (rc == 0)) {
1472         if (written_so_far == (buf_size - sizeof(uint32_t))) {
1473             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1474         } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1475             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1476         } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1477             cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1478         }
1479 
1480         memcpy(&val, data_buf, 4);
1481 
1482         rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1483 
1484         /* advance to the next dword */
1485         offset += sizeof(uint32_t);
1486         data_buf += sizeof(uint32_t);
1487         written_so_far += sizeof(uint32_t);
1488         cmd_flags = 0;
1489     }
1490 
1491     /* disable access to nvram interface */
1492     bxe_disable_nvram_access(sc);
1493     bxe_release_nvram_lock(sc);
1494 
1495     return (rc);
1496 }
1497 
1498 /* copy command into DMAE command memory and set DMAE command Go */
1499 void
1500 bxe_post_dmae(struct bxe_softc    *sc,
1501               struct dmae_cmd *dmae,
1502               int                 idx)
1503 {
1504     uint32_t cmd_offset;
1505     int i;
1506 
1507     cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx));
1508     for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) {
1509         REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1510     }
1511 
1512     REG_WR(sc, dmae_reg_go_c[idx], 1);
1513 }
1514 
1515 uint32_t
1516 bxe_dmae_opcode_add_comp(uint32_t opcode,
1517                          uint8_t  comp_type)
1518 {
1519     return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) |
1520                       DMAE_CMD_C_TYPE_ENABLE));
1521 }
1522 
1523 uint32_t
1524 bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1525 {
1526     return (opcode & ~DMAE_CMD_SRC_RESET);
1527 }
1528 
1529 uint32_t
1530 bxe_dmae_opcode(struct bxe_softc *sc,
1531                 uint8_t          src_type,
1532                 uint8_t          dst_type,
1533                 uint8_t          with_comp,
1534                 uint8_t          comp_type)
1535 {
1536     uint32_t opcode = 0;
1537 
1538     opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) |
1539                (dst_type << DMAE_CMD_DST_SHIFT));
1540 
1541     opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
1542 
1543     opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1544 
1545     opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) |
1546                (SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT));
1547 
1548     opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT);
1549 
1550 #ifdef __BIG_ENDIAN
1551     opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1552 #else
1553     opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1554 #endif
1555 
1556     if (with_comp) {
1557         opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1558     }
1559 
1560     return (opcode);
1561 }
1562 
1563 static void
1564 bxe_prep_dmae_with_comp(struct bxe_softc    *sc,
1565                         struct dmae_cmd *dmae,
1566                         uint8_t             src_type,
1567                         uint8_t             dst_type)
1568 {
1569     memset(dmae, 0, sizeof(struct dmae_cmd));
1570 
1571     /* set the opcode */
1572     dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1573                                    TRUE, DMAE_COMP_PCI);
1574 
1575     /* fill in the completion parameters */
1576     dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1577     dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1578     dmae->comp_val     = DMAE_COMP_VAL;
1579 }
1580 
1581 /* issue a DMAE command over the init channel and wait for completion */
1582 static int
1583 bxe_issue_dmae_with_comp(struct bxe_softc    *sc,
1584                          struct dmae_cmd *dmae)
1585 {
1586     uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1587     int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1588 
1589     BXE_DMAE_LOCK(sc);
1590 
1591     /* reset completion */
1592     *wb_comp = 0;
1593 
1594     /* post the command on the channel used for initializations */
1595     bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1596 
1597     /* wait for completion */
1598     DELAY(5);
1599 
1600     while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1601         if (!timeout ||
1602             (sc->recovery_state != BXE_RECOVERY_DONE &&
1603              sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1604             BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n",
1605                 *wb_comp, sc->recovery_state);
1606             BXE_DMAE_UNLOCK(sc);
1607             return (DMAE_TIMEOUT);
1608         }
1609 
1610         timeout--;
1611         DELAY(50);
1612     }
1613 
1614     if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1615         BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n",
1616                 *wb_comp, sc->recovery_state);
1617         BXE_DMAE_UNLOCK(sc);
1618         return (DMAE_PCI_ERROR);
1619     }
1620 
1621     BXE_DMAE_UNLOCK(sc);
1622     return (0);
1623 }
1624 
1625 void
1626 bxe_read_dmae(struct bxe_softc *sc,
1627               uint32_t         src_addr,
1628               uint32_t         len32)
1629 {
1630     struct dmae_cmd dmae;
1631     uint32_t *data;
1632     int i, rc;
1633 
1634     DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1635 
1636     if (!sc->dmae_ready) {
1637         data = BXE_SP(sc, wb_data[0]);
1638 
1639         for (i = 0; i < len32; i++) {
1640             data[i] = (CHIP_IS_E1(sc)) ?
1641                           bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1642                           REG_RD(sc, (src_addr + (i * 4)));
1643         }
1644 
1645         return;
1646     }
1647 
1648     /* set opcode and fixed command fields */
1649     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1650 
1651     /* fill in addresses and len */
1652     dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1653     dmae.src_addr_hi = 0;
1654     dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1655     dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1656     dmae.len         = len32;
1657 
1658     /* issue the command and wait for completion */
1659     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1660         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1661     }
1662 }
1663 
1664 void
1665 bxe_write_dmae(struct bxe_softc *sc,
1666                bus_addr_t       dma_addr,
1667                uint32_t         dst_addr,
1668                uint32_t         len32)
1669 {
1670     struct dmae_cmd dmae;
1671     int rc;
1672 
1673     if (!sc->dmae_ready) {
1674         DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1675 
1676         if (CHIP_IS_E1(sc)) {
1677             ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1678         } else {
1679             ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1680         }
1681 
1682         return;
1683     }
1684 
1685     /* set opcode and fixed command fields */
1686     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1687 
1688     /* fill in addresses and len */
1689     dmae.src_addr_lo = U64_LO(dma_addr);
1690     dmae.src_addr_hi = U64_HI(dma_addr);
1691     dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1692     dmae.dst_addr_hi = 0;
1693     dmae.len         = len32;
1694 
1695     /* issue the command and wait for completion */
1696     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1697         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1698     }
1699 }
1700 
1701 void
1702 bxe_write_dmae_phys_len(struct bxe_softc *sc,
1703                         bus_addr_t       phys_addr,
1704                         uint32_t         addr,
1705                         uint32_t         len)
1706 {
1707     int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1708     int offset = 0;
1709 
1710     while (len > dmae_wr_max) {
1711         bxe_write_dmae(sc,
1712                        (phys_addr + offset), /* src DMA address */
1713                        (addr + offset),      /* dst GRC address */
1714                        dmae_wr_max);
1715         offset += (dmae_wr_max * 4);
1716         len -= dmae_wr_max;
1717     }
1718 
1719     bxe_write_dmae(sc,
1720                    (phys_addr + offset), /* src DMA address */
1721                    (addr + offset),      /* dst GRC address */
1722                    len);
1723 }
1724 
1725 void
1726 bxe_set_ctx_validation(struct bxe_softc   *sc,
1727                        struct eth_context *cxt,
1728                        uint32_t           cid)
1729 {
1730     /* ustorm cxt validation */
1731     cxt->ustorm_ag_context.cdu_usage =
1732         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1733             CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1734     /* xcontext validation */
1735     cxt->xstorm_ag_context.cdu_reserved =
1736         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1737             CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1738 }
1739 
1740 static void
1741 bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1742                             uint8_t          port,
1743                             uint8_t          fw_sb_id,
1744                             uint8_t          sb_index,
1745                             uint8_t          ticks)
1746 {
1747     uint32_t addr =
1748         (BAR_CSTRORM_INTMEM +
1749          CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1750 
1751     REG_WR8(sc, addr, ticks);
1752 
1753     BLOGD(sc, DBG_LOAD,
1754           "port %d fw_sb_id %d sb_index %d ticks %d\n",
1755           port, fw_sb_id, sb_index, ticks);
1756 }
1757 
1758 static void
1759 bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1760                             uint8_t          port,
1761                             uint16_t         fw_sb_id,
1762                             uint8_t          sb_index,
1763                             uint8_t          disable)
1764 {
1765     uint32_t enable_flag =
1766         (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1767     uint32_t addr =
1768         (BAR_CSTRORM_INTMEM +
1769          CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1770     uint8_t flags;
1771 
1772     /* clear and set */
1773     flags = REG_RD8(sc, addr);
1774     flags &= ~HC_INDEX_DATA_HC_ENABLED;
1775     flags |= enable_flag;
1776     REG_WR8(sc, addr, flags);
1777 
1778     BLOGD(sc, DBG_LOAD,
1779           "port %d fw_sb_id %d sb_index %d disable %d\n",
1780           port, fw_sb_id, sb_index, disable);
1781 }
1782 
1783 void
1784 bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1785                              uint8_t          fw_sb_id,
1786                              uint8_t          sb_index,
1787                              uint8_t          disable,
1788                              uint16_t         usec)
1789 {
1790     int port = SC_PORT(sc);
1791     uint8_t ticks = (usec / 4); /* XXX ??? */
1792 
1793     bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1794 
1795     disable = (disable) ? 1 : ((usec) ? 0 : 1);
1796     bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1797 }
1798 
1799 void
1800 elink_cb_udelay(struct bxe_softc *sc,
1801                 uint32_t         usecs)
1802 {
1803     DELAY(usecs);
1804 }
1805 
1806 uint32_t
1807 elink_cb_reg_read(struct bxe_softc *sc,
1808                   uint32_t         reg_addr)
1809 {
1810     return (REG_RD(sc, reg_addr));
1811 }
1812 
1813 void
1814 elink_cb_reg_write(struct bxe_softc *sc,
1815                    uint32_t         reg_addr,
1816                    uint32_t         val)
1817 {
1818     REG_WR(sc, reg_addr, val);
1819 }
1820 
1821 void
1822 elink_cb_reg_wb_write(struct bxe_softc *sc,
1823                       uint32_t         offset,
1824                       uint32_t         *wb_write,
1825                       uint16_t         len)
1826 {
1827     REG_WR_DMAE(sc, offset, wb_write, len);
1828 }
1829 
1830 void
1831 elink_cb_reg_wb_read(struct bxe_softc *sc,
1832                      uint32_t         offset,
1833                      uint32_t         *wb_write,
1834                      uint16_t         len)
1835 {
1836     REG_RD_DMAE(sc, offset, wb_write, len);
1837 }
1838 
1839 uint8_t
1840 elink_cb_path_id(struct bxe_softc *sc)
1841 {
1842     return (SC_PATH(sc));
1843 }
1844 
1845 void
1846 elink_cb_event_log(struct bxe_softc     *sc,
1847                    const elink_log_id_t elink_log_id,
1848                    ...)
1849 {
1850     /* XXX */
1851     BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1852 }
1853 
1854 static int
1855 bxe_set_spio(struct bxe_softc *sc,
1856              int              spio,
1857              uint32_t         mode)
1858 {
1859     uint32_t spio_reg;
1860 
1861     /* Only 2 SPIOs are configurable */
1862     if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1863         BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode);
1864         return (-1);
1865     }
1866 
1867     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1868 
1869     /* read SPIO and mask except the float bits */
1870     spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1871 
1872     switch (mode) {
1873     case MISC_SPIO_OUTPUT_LOW:
1874         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1875         /* clear FLOAT and set CLR */
1876         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1877         spio_reg |=  (spio << MISC_SPIO_CLR_POS);
1878         break;
1879 
1880     case MISC_SPIO_OUTPUT_HIGH:
1881         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1882         /* clear FLOAT and set SET */
1883         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1884         spio_reg |=  (spio << MISC_SPIO_SET_POS);
1885         break;
1886 
1887     case MISC_SPIO_INPUT_HI_Z:
1888         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1889         /* set FLOAT */
1890         spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1891         break;
1892 
1893     default:
1894         break;
1895     }
1896 
1897     REG_WR(sc, MISC_REG_SPIO, spio_reg);
1898     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1899 
1900     return (0);
1901 }
1902 
1903 static int
1904 bxe_gpio_read(struct bxe_softc *sc,
1905               int              gpio_num,
1906               uint8_t          port)
1907 {
1908     /* The GPIO should be swapped if swap register is set and active */
1909     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1910                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1911     int gpio_shift = (gpio_num +
1912                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1913     uint32_t gpio_mask = (1 << gpio_shift);
1914     uint32_t gpio_reg;
1915 
1916     if (gpio_num > MISC_REGISTERS_GPIO_3) {
1917         BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d"
1918             " gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift,
1919             gpio_mask);
1920         return (-1);
1921     }
1922 
1923     /* read GPIO value */
1924     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
1925 
1926     /* get the requested pin value */
1927     return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
1928 }
1929 
1930 static int
1931 bxe_gpio_write(struct bxe_softc *sc,
1932                int              gpio_num,
1933                uint32_t         mode,
1934                uint8_t          port)
1935 {
1936     /* The GPIO should be swapped if swap register is set and active */
1937     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1938                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1939     int gpio_shift = (gpio_num +
1940                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1941     uint32_t gpio_mask = (1 << gpio_shift);
1942     uint32_t gpio_reg;
1943 
1944     if (gpio_num > MISC_REGISTERS_GPIO_3) {
1945         BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
1946             " gpio_shift %d gpio_mask 0x%x\n",
1947             gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
1948         return (-1);
1949     }
1950 
1951     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1952 
1953     /* read GPIO and mask except the float bits */
1954     gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1955 
1956     switch (mode) {
1957     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1958         BLOGD(sc, DBG_PHY,
1959               "Set GPIO %d (shift %d) -> output low\n",
1960               gpio_num, gpio_shift);
1961         /* clear FLOAT and set CLR */
1962         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1963         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1964         break;
1965 
1966     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1967         BLOGD(sc, DBG_PHY,
1968               "Set GPIO %d (shift %d) -> output high\n",
1969               gpio_num, gpio_shift);
1970         /* clear FLOAT and set SET */
1971         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1972         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1973         break;
1974 
1975     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1976         BLOGD(sc, DBG_PHY,
1977               "Set GPIO %d (shift %d) -> input\n",
1978               gpio_num, gpio_shift);
1979         /* set FLOAT */
1980         gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1981         break;
1982 
1983     default:
1984         break;
1985     }
1986 
1987     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
1988     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1989 
1990     return (0);
1991 }
1992 
1993 static int
1994 bxe_gpio_mult_write(struct bxe_softc *sc,
1995                     uint8_t          pins,
1996                     uint32_t         mode)
1997 {
1998     uint32_t gpio_reg;
1999 
2000     /* any port swapping should be handled by caller */
2001 
2002     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2003 
2004     /* read GPIO and mask except the float bits */
2005     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2006     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2007     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2008     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2009 
2010     switch (mode) {
2011     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2012         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
2013         /* set CLR */
2014         gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2015         break;
2016 
2017     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2018         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
2019         /* set SET */
2020         gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2021         break;
2022 
2023     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2024         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
2025         /* set FLOAT */
2026         gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2027         break;
2028 
2029     default:
2030         BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x"
2031             " gpio_reg 0x%x\n", pins, mode, gpio_reg);
2032         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2033         return (-1);
2034     }
2035 
2036     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2037     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2038 
2039     return (0);
2040 }
2041 
2042 static int
2043 bxe_gpio_int_write(struct bxe_softc *sc,
2044                    int              gpio_num,
2045                    uint32_t         mode,
2046                    uint8_t          port)
2047 {
2048     /* The GPIO should be swapped if swap register is set and active */
2049     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2050                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2051     int gpio_shift = (gpio_num +
2052                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2053     uint32_t gpio_mask = (1 << gpio_shift);
2054     uint32_t gpio_reg;
2055 
2056     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2057         BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
2058             " gpio_shift %d gpio_mask 0x%x\n",
2059             gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
2060         return (-1);
2061     }
2062 
2063     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2064 
2065     /* read GPIO int */
2066     gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2067 
2068     switch (mode) {
2069     case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2070         BLOGD(sc, DBG_PHY,
2071               "Clear GPIO INT %d (shift %d) -> output low\n",
2072               gpio_num, gpio_shift);
2073         /* clear SET and set CLR */
2074         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2075         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2076         break;
2077 
2078     case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2079         BLOGD(sc, DBG_PHY,
2080               "Set GPIO INT %d (shift %d) -> output high\n",
2081               gpio_num, gpio_shift);
2082         /* clear CLR and set SET */
2083         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2084         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2085         break;
2086 
2087     default:
2088         break;
2089     }
2090 
2091     REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2092     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2093 
2094     return (0);
2095 }
2096 
2097 uint32_t
2098 elink_cb_gpio_read(struct bxe_softc *sc,
2099                    uint16_t         gpio_num,
2100                    uint8_t          port)
2101 {
2102     return (bxe_gpio_read(sc, gpio_num, port));
2103 }
2104 
2105 uint8_t
2106 elink_cb_gpio_write(struct bxe_softc *sc,
2107                     uint16_t         gpio_num,
2108                     uint8_t          mode, /* 0=low 1=high */
2109                     uint8_t          port)
2110 {
2111     return (bxe_gpio_write(sc, gpio_num, mode, port));
2112 }
2113 
2114 uint8_t
2115 elink_cb_gpio_mult_write(struct bxe_softc *sc,
2116                          uint8_t          pins,
2117                          uint8_t          mode) /* 0=low 1=high */
2118 {
2119     return (bxe_gpio_mult_write(sc, pins, mode));
2120 }
2121 
2122 uint8_t
2123 elink_cb_gpio_int_write(struct bxe_softc *sc,
2124                         uint16_t         gpio_num,
2125                         uint8_t          mode, /* 0=low 1=high */
2126                         uint8_t          port)
2127 {
2128     return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2129 }
2130 
2131 void
2132 elink_cb_notify_link_changed(struct bxe_softc *sc)
2133 {
2134     REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2135                 (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2136 }
2137 
2138 /* send the MCP a request, block until there is a reply */
2139 uint32_t
2140 elink_cb_fw_command(struct bxe_softc *sc,
2141                     uint32_t         command,
2142                     uint32_t         param)
2143 {
2144     int mb_idx = SC_FW_MB_IDX(sc);
2145     uint32_t seq;
2146     uint32_t rc = 0;
2147     uint32_t cnt = 1;
2148     uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2149 
2150     BXE_FWMB_LOCK(sc);
2151 
2152     seq = ++sc->fw_seq;
2153     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2154     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2155 
2156     BLOGD(sc, DBG_PHY,
2157           "wrote command 0x%08x to FW MB param 0x%08x\n",
2158           (command | seq), param);
2159 
2160     /* Let the FW do it's magic. GIve it up to 5 seconds... */
2161     do {
2162         DELAY(delay * 1000);
2163         rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2164     } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2165 
2166     BLOGD(sc, DBG_PHY,
2167           "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2168           cnt*delay, rc, seq);
2169 
2170     /* is this a reply to our command? */
2171     if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2172         rc &= FW_MSG_CODE_MASK;
2173     } else {
2174         /* Ruh-roh! */
2175         BLOGE(sc, "FW failed to respond!\n");
2176         // XXX bxe_fw_dump(sc);
2177         rc = 0;
2178     }
2179 
2180     BXE_FWMB_UNLOCK(sc);
2181     return (rc);
2182 }
2183 
2184 static uint32_t
2185 bxe_fw_command(struct bxe_softc *sc,
2186                uint32_t         command,
2187                uint32_t         param)
2188 {
2189     return (elink_cb_fw_command(sc, command, param));
2190 }
2191 
2192 static void
2193 __storm_memset_dma_mapping(struct bxe_softc *sc,
2194                            uint32_t         addr,
2195                            bus_addr_t       mapping)
2196 {
2197     REG_WR(sc, addr, U64_LO(mapping));
2198     REG_WR(sc, (addr + 4), U64_HI(mapping));
2199 }
2200 
2201 static void
2202 storm_memset_spq_addr(struct bxe_softc *sc,
2203                       bus_addr_t       mapping,
2204                       uint16_t         abs_fid)
2205 {
2206     uint32_t addr = (XSEM_REG_FAST_MEMORY +
2207                      XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2208     __storm_memset_dma_mapping(sc, addr, mapping);
2209 }
2210 
2211 static void
2212 storm_memset_vf_to_pf(struct bxe_softc *sc,
2213                       uint16_t         abs_fid,
2214                       uint16_t         pf_id)
2215 {
2216     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2217     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2218     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2219     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2220 }
2221 
2222 static void
2223 storm_memset_func_en(struct bxe_softc *sc,
2224                      uint16_t         abs_fid,
2225                      uint8_t          enable)
2226 {
2227     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2228     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2229     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2230     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2231 }
2232 
2233 static void
2234 storm_memset_eq_data(struct bxe_softc       *sc,
2235                      struct event_ring_data *eq_data,
2236                      uint16_t               pfid)
2237 {
2238     uint32_t addr;
2239     size_t size;
2240 
2241     addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2242     size = sizeof(struct event_ring_data);
2243     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2244 }
2245 
2246 static void
2247 storm_memset_eq_prod(struct bxe_softc *sc,
2248                      uint16_t         eq_prod,
2249                      uint16_t         pfid)
2250 {
2251     uint32_t addr = (BAR_CSTRORM_INTMEM +
2252                      CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2253     REG_WR16(sc, addr, eq_prod);
2254 }
2255 
2256 /*
2257  * Post a slowpath command.
2258  *
2259  * A slowpath command is used to propagate a configuration change through
2260  * the controller in a controlled manner, allowing each STORM processor and
2261  * other H/W blocks to phase in the change.  The commands sent on the
2262  * slowpath are referred to as ramrods.  Depending on the ramrod used the
2263  * completion of the ramrod will occur in different ways.  Here's a
2264  * breakdown of ramrods and how they complete:
2265  *
2266  * RAMROD_CMD_ID_ETH_PORT_SETUP
2267  *   Used to setup the leading connection on a port.  Completes on the
2268  *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
2269  *
2270  * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2271  *   Used to setup an additional connection on a port.  Completes on the
2272  *   RCQ of the multi-queue/RSS connection being initialized.
2273  *
2274  * RAMROD_CMD_ID_ETH_STAT_QUERY
2275  *   Used to force the storm processors to update the statistics database
2276  *   in host memory.  This ramrod is send on the leading connection CID and
2277  *   completes as an index increment of the CSTORM on the default status
2278  *   block.
2279  *
2280  * RAMROD_CMD_ID_ETH_UPDATE
2281  *   Used to update the state of the leading connection, usually to udpate
2282  *   the RSS indirection table.  Completes on the RCQ of the leading
2283  *   connection. (Not currently used under FreeBSD until OS support becomes
2284  *   available.)
2285  *
2286  * RAMROD_CMD_ID_ETH_HALT
2287  *   Used when tearing down a connection prior to driver unload.  Completes
2288  *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
2289  *   use this on the leading connection.
2290  *
2291  * RAMROD_CMD_ID_ETH_SET_MAC
2292  *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
2293  *   the RCQ of the leading connection.
2294  *
2295  * RAMROD_CMD_ID_ETH_CFC_DEL
2296  *   Used when tearing down a conneciton prior to driver unload.  Completes
2297  *   on the RCQ of the leading connection (since the current connection
2298  *   has been completely removed from controller memory).
2299  *
2300  * RAMROD_CMD_ID_ETH_PORT_DEL
2301  *   Used to tear down the leading connection prior to driver unload,
2302  *   typically fp[0].  Completes as an index increment of the CSTORM on the
2303  *   default status block.
2304  *
2305  * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2306  *   Used for connection offload.  Completes on the RCQ of the multi-queue
2307  *   RSS connection that is being offloaded.  (Not currently used under
2308  *   FreeBSD.)
2309  *
2310  * There can only be one command pending per function.
2311  *
2312  * Returns:
2313  *   0 = Success, !0 = Failure.
2314  */
2315 
2316 /* must be called under the spq lock */
2317 static inline
2318 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2319 {
2320     struct eth_spe *next_spe = sc->spq_prod_bd;
2321 
2322     if (sc->spq_prod_bd == sc->spq_last_bd) {
2323         /* wrap back to the first eth_spq */
2324         sc->spq_prod_bd = sc->spq;
2325         sc->spq_prod_idx = 0;
2326     } else {
2327         sc->spq_prod_bd++;
2328         sc->spq_prod_idx++;
2329     }
2330 
2331     return (next_spe);
2332 }
2333 
2334 /* must be called under the spq lock */
2335 static inline
2336 void bxe_sp_prod_update(struct bxe_softc *sc)
2337 {
2338     int func = SC_FUNC(sc);
2339 
2340     /*
2341      * Make sure that BD data is updated before writing the producer.
2342      * BD data is written to the memory, the producer is read from the
2343      * memory, thus we need a full memory barrier to ensure the ordering.
2344      */
2345     mb();
2346 
2347     REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2348              sc->spq_prod_idx);
2349 
2350     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2351                       BUS_SPACE_BARRIER_WRITE);
2352 }
2353 
2354 /**
2355  * bxe_is_contextless_ramrod - check if the current command ends on EQ
2356  *
2357  * @cmd:      command to check
2358  * @cmd_type: command type
2359  */
2360 static inline
2361 int bxe_is_contextless_ramrod(int cmd,
2362                               int cmd_type)
2363 {
2364     if ((cmd_type == NONE_CONNECTION_TYPE) ||
2365         (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2366         (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2367         (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2368         (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2369         (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2370         (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2371         return (TRUE);
2372     } else {
2373         return (FALSE);
2374     }
2375 }
2376 
2377 /**
2378  * bxe_sp_post - place a single command on an SP ring
2379  *
2380  * @sc:         driver handle
2381  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
2382  * @cid:        SW CID the command is related to
2383  * @data_hi:    command private data address (high 32 bits)
2384  * @data_lo:    command private data address (low 32 bits)
2385  * @cmd_type:   command type (e.g. NONE, ETH)
2386  *
2387  * SP data is handled as if it's always an address pair, thus data fields are
2388  * not swapped to little endian in upper functions. Instead this function swaps
2389  * data as if it's two uint32 fields.
2390  */
2391 int
2392 bxe_sp_post(struct bxe_softc *sc,
2393             int              command,
2394             int              cid,
2395             uint32_t         data_hi,
2396             uint32_t         data_lo,
2397             int              cmd_type)
2398 {
2399     struct eth_spe *spe;
2400     uint16_t type;
2401     int common;
2402 
2403     common = bxe_is_contextless_ramrod(command, cmd_type);
2404 
2405     BXE_SP_LOCK(sc);
2406 
2407     if (common) {
2408         if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2409             BLOGE(sc, "EQ ring is full!\n");
2410             BXE_SP_UNLOCK(sc);
2411             return (-1);
2412         }
2413     } else {
2414         if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2415             BLOGE(sc, "SPQ ring is full!\n");
2416             BXE_SP_UNLOCK(sc);
2417             return (-1);
2418         }
2419     }
2420 
2421     spe = bxe_sp_get_next(sc);
2422 
2423     /* CID needs port number to be encoded int it */
2424     spe->hdr.conn_and_cmd_data =
2425         htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid));
2426 
2427     type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE;
2428 
2429     /* TBD: Check if it works for VFs */
2430     type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) &
2431              SPE_HDR_T_FUNCTION_ID);
2432 
2433     spe->hdr.type = htole16(type);
2434 
2435     spe->data.update_data_addr.hi = htole32(data_hi);
2436     spe->data.update_data_addr.lo = htole32(data_lo);
2437 
2438     /*
2439      * It's ok if the actual decrement is issued towards the memory
2440      * somewhere between the lock and unlock. Thus no more explict
2441      * memory barrier is needed.
2442      */
2443     if (common) {
2444         atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2445     } else {
2446         atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2447     }
2448 
2449     BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2450     BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2451           BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2452     BLOGD(sc, DBG_SP,
2453           "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2454           sc->spq_prod_idx,
2455           (uint32_t)U64_HI(sc->spq_dma.paddr),
2456           (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2457           command,
2458           common,
2459           HW_CID(sc, cid),
2460           data_hi,
2461           data_lo,
2462           type,
2463           atomic_load_acq_long(&sc->cq_spq_left),
2464           atomic_load_acq_long(&sc->eq_spq_left));
2465 
2466     bxe_sp_prod_update(sc);
2467 
2468     BXE_SP_UNLOCK(sc);
2469     return (0);
2470 }
2471 
2472 /**
2473  * bxe_debug_print_ind_table - prints the indirection table configuration.
2474  *
2475  * @sc: driver hanlde
2476  * @p:  pointer to rss configuration
2477  */
2478 
2479 /*
2480  * FreeBSD Device probe function.
2481  *
2482  * Compares the device found to the driver's list of supported devices and
2483  * reports back to the bsd loader whether this is the right driver for the device.
2484  * This is the driver entry function called from the "kldload" command.
2485  *
2486  * Returns:
2487  *   BUS_PROBE_DEFAULT on success, positive value on failure.
2488  */
2489 static int
2490 bxe_probe(device_t dev)
2491 {
2492     struct bxe_device_type *t;
2493     char *descbuf;
2494     uint16_t did, sdid, svid, vid;
2495 
2496     /* Find our device structure */
2497     t = bxe_devs;
2498 
2499     /* Get the data for the device to be probed. */
2500     vid  = pci_get_vendor(dev);
2501     did  = pci_get_device(dev);
2502     svid = pci_get_subvendor(dev);
2503     sdid = pci_get_subdevice(dev);
2504 
2505     /* Look through the list of known devices for a match. */
2506     while (t->bxe_name != NULL) {
2507         if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2508             ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2509             ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2510             descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
2511             if (descbuf == NULL)
2512                 return (ENOMEM);
2513 
2514             /* Print out the device identity. */
2515             snprintf(descbuf, BXE_DEVDESC_MAX,
2516                      "%s (%c%d) BXE v:%s\n", t->bxe_name,
2517                      (((pci_read_config(dev, PCIR_REVID, 4) &
2518                         0xf0) >> 4) + 'A'),
2519                      (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2520                      BXE_DRIVER_VERSION);
2521 
2522             device_set_desc_copy(dev, descbuf);
2523             free(descbuf, M_TEMP);
2524             return (BUS_PROBE_DEFAULT);
2525         }
2526         t++;
2527     }
2528 
2529     return (ENXIO);
2530 }
2531 
2532 static void
2533 bxe_init_mutexes(struct bxe_softc *sc)
2534 {
2535 #ifdef BXE_CORE_LOCK_SX
2536     snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2537              "bxe%d_core_lock", sc->unit);
2538     sx_init(&sc->core_sx, sc->core_sx_name);
2539 #else
2540     snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2541              "bxe%d_core_lock", sc->unit);
2542     mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2543 #endif
2544 
2545     snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2546              "bxe%d_sp_lock", sc->unit);
2547     mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2548 
2549     snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2550              "bxe%d_dmae_lock", sc->unit);
2551     mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2552 
2553     snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2554              "bxe%d_phy_lock", sc->unit);
2555     mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2556 
2557     snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2558              "bxe%d_fwmb_lock", sc->unit);
2559     mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2560 
2561     snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2562              "bxe%d_print_lock", sc->unit);
2563     mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2564 
2565     snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2566              "bxe%d_stats_lock", sc->unit);
2567     mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2568 
2569     snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2570              "bxe%d_mcast_lock", sc->unit);
2571     mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2572 }
2573 
2574 static void
2575 bxe_release_mutexes(struct bxe_softc *sc)
2576 {
2577 #ifdef BXE_CORE_LOCK_SX
2578     sx_destroy(&sc->core_sx);
2579 #else
2580     if (mtx_initialized(&sc->core_mtx)) {
2581         mtx_destroy(&sc->core_mtx);
2582     }
2583 #endif
2584 
2585     if (mtx_initialized(&sc->sp_mtx)) {
2586         mtx_destroy(&sc->sp_mtx);
2587     }
2588 
2589     if (mtx_initialized(&sc->dmae_mtx)) {
2590         mtx_destroy(&sc->dmae_mtx);
2591     }
2592 
2593     if (mtx_initialized(&sc->port.phy_mtx)) {
2594         mtx_destroy(&sc->port.phy_mtx);
2595     }
2596 
2597     if (mtx_initialized(&sc->fwmb_mtx)) {
2598         mtx_destroy(&sc->fwmb_mtx);
2599     }
2600 
2601     if (mtx_initialized(&sc->print_mtx)) {
2602         mtx_destroy(&sc->print_mtx);
2603     }
2604 
2605     if (mtx_initialized(&sc->stats_mtx)) {
2606         mtx_destroy(&sc->stats_mtx);
2607     }
2608 
2609     if (mtx_initialized(&sc->mcast_mtx)) {
2610         mtx_destroy(&sc->mcast_mtx);
2611     }
2612 }
2613 
2614 static void
2615 bxe_tx_disable(struct bxe_softc* sc)
2616 {
2617     if_t ifp = sc->ifp;
2618 
2619     /* tell the stack the driver is stopped and TX queue is full */
2620     if (ifp !=  NULL) {
2621         if_setdrvflags(ifp, 0);
2622     }
2623 }
2624 
2625 static void
2626 bxe_drv_pulse(struct bxe_softc *sc)
2627 {
2628     SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2629              sc->fw_drv_pulse_wr_seq);
2630 }
2631 
2632 static inline uint16_t
2633 bxe_tx_avail(struct bxe_softc *sc,
2634              struct bxe_fastpath *fp)
2635 {
2636     int16_t  used;
2637     uint16_t prod;
2638     uint16_t cons;
2639 
2640     prod = fp->tx_bd_prod;
2641     cons = fp->tx_bd_cons;
2642 
2643     used = SUB_S16(prod, cons);
2644 
2645     return (int16_t)(sc->tx_ring_size) - used;
2646 }
2647 
2648 static inline int
2649 bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2650 {
2651     uint16_t hw_cons;
2652 
2653     mb(); /* status block fields can change */
2654     hw_cons = le16toh(*fp->tx_cons_sb);
2655     return (hw_cons != fp->tx_pkt_cons);
2656 }
2657 
2658 static inline uint8_t
2659 bxe_has_tx_work(struct bxe_fastpath *fp)
2660 {
2661     /* expand this for multi-cos if ever supported */
2662     return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2663 }
2664 
2665 static inline int
2666 bxe_has_rx_work(struct bxe_fastpath *fp)
2667 {
2668     uint16_t rx_cq_cons_sb;
2669 
2670     mb(); /* status block fields can change */
2671     rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2672     if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2673         rx_cq_cons_sb++;
2674     return (fp->rx_cq_cons != rx_cq_cons_sb);
2675 }
2676 
2677 static void
2678 bxe_sp_event(struct bxe_softc    *sc,
2679              struct bxe_fastpath *fp,
2680              union eth_rx_cqe    *rr_cqe)
2681 {
2682     int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2683     int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2684     enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2685     struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2686 
2687     BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2688           fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2689 
2690     switch (command) {
2691     case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2692         BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2693         drv_cmd = ECORE_Q_CMD_UPDATE;
2694         break;
2695 
2696     case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2697         BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2698         drv_cmd = ECORE_Q_CMD_SETUP;
2699         break;
2700 
2701     case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2702         BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2703         drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2704         break;
2705 
2706     case (RAMROD_CMD_ID_ETH_HALT):
2707         BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2708         drv_cmd = ECORE_Q_CMD_HALT;
2709         break;
2710 
2711     case (RAMROD_CMD_ID_ETH_TERMINATE):
2712         BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2713         drv_cmd = ECORE_Q_CMD_TERMINATE;
2714         break;
2715 
2716     case (RAMROD_CMD_ID_ETH_EMPTY):
2717         BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2718         drv_cmd = ECORE_Q_CMD_EMPTY;
2719         break;
2720 
2721     default:
2722         BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2723               command, fp->index);
2724         return;
2725     }
2726 
2727     if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2728         q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2729         /*
2730          * q_obj->complete_cmd() failure means that this was
2731          * an unexpected completion.
2732          *
2733          * In this case we don't want to increase the sc->spq_left
2734          * because apparently we haven't sent this command the first
2735          * place.
2736          */
2737         // bxe_panic(sc, ("Unexpected SP completion\n"));
2738         return;
2739     }
2740 
2741     atomic_add_acq_long(&sc->cq_spq_left, 1);
2742 
2743     BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2744           atomic_load_acq_long(&sc->cq_spq_left));
2745 }
2746 
2747 /*
2748  * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2749  * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2750  * the current aggregation queue as in-progress.
2751  */
2752 static void
2753 bxe_tpa_start(struct bxe_softc            *sc,
2754               struct bxe_fastpath         *fp,
2755               uint16_t                    queue,
2756               uint16_t                    cons,
2757               uint16_t                    prod,
2758               struct eth_fast_path_rx_cqe *cqe)
2759 {
2760     struct bxe_sw_rx_bd tmp_bd;
2761     struct bxe_sw_rx_bd *rx_buf;
2762     struct eth_rx_bd *rx_bd;
2763     int max_agg_queues;
2764     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2765     uint16_t index;
2766 
2767     BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2768                        "cons=%d prod=%d\n",
2769           fp->index, queue, cons, prod);
2770 
2771     max_agg_queues = MAX_AGG_QS(sc);
2772 
2773     KASSERT((queue < max_agg_queues),
2774             ("fp[%02d] invalid aggr queue (%d >= %d)!",
2775              fp->index, queue, max_agg_queues));
2776 
2777     KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2778             ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2779              fp->index, queue));
2780 
2781     /* copy the existing mbuf and mapping from the TPA pool */
2782     tmp_bd = tpa_info->bd;
2783 
2784     if (tmp_bd.m == NULL) {
2785         uint32_t *tmp;
2786 
2787         tmp = (uint32_t *)cqe;
2788 
2789         BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n",
2790               fp->index, queue, cons, prod);
2791         BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
2792             *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
2793 
2794         /* XXX Error handling? */
2795         return;
2796     }
2797 
2798     /* change the TPA queue to the start state */
2799     tpa_info->state            = BXE_TPA_STATE_START;
2800     tpa_info->placement_offset = cqe->placement_offset;
2801     tpa_info->parsing_flags    = le16toh(cqe->pars_flags.flags);
2802     tpa_info->vlan_tag         = le16toh(cqe->vlan_tag);
2803     tpa_info->len_on_bd        = le16toh(cqe->len_on_bd);
2804 
2805     fp->rx_tpa_queue_used |= (1 << queue);
2806 
2807     /*
2808      * If all the buffer descriptors are filled with mbufs then fill in
2809      * the current consumer index with a new BD. Else if a maximum Rx
2810      * buffer limit is imposed then fill in the next producer index.
2811      */
2812     index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2813                 prod : cons;
2814 
2815     /* move the received mbuf and mapping to TPA pool */
2816     tpa_info->bd = fp->rx_mbuf_chain[cons];
2817 
2818     /* release any existing RX BD mbuf mappings */
2819     if (cons != index) {
2820         rx_buf = &fp->rx_mbuf_chain[cons];
2821 
2822         if (rx_buf->m_map != NULL) {
2823             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2824                             BUS_DMASYNC_POSTREAD);
2825             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2826         }
2827 
2828         /*
2829          * We get here when the maximum number of rx buffers is less than
2830          * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2831          * it out here without concern of a memory leak.
2832          */
2833         fp->rx_mbuf_chain[cons].m = NULL;
2834     }
2835 
2836     /* update the Rx SW BD with the mbuf info from the TPA pool */
2837     fp->rx_mbuf_chain[index] = tmp_bd;
2838 
2839     /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2840     rx_bd = &fp->rx_chain[index];
2841     rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2842     rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
2843 }
2844 
2845 /*
2846  * When a TPA aggregation is completed, loop through the individual mbufs
2847  * of the aggregation, combining them into a single mbuf which will be sent
2848  * up the stack. Refill all freed SGEs with mbufs as we go along.
2849  */
2850 static int
2851 bxe_fill_frag_mbuf(struct bxe_softc          *sc,
2852                    struct bxe_fastpath       *fp,
2853                    struct bxe_sw_tpa_info    *tpa_info,
2854                    uint16_t                  queue,
2855                    uint16_t                  pages,
2856                    struct mbuf               *m,
2857 			       struct eth_end_agg_rx_cqe *cqe,
2858                    uint16_t                  cqe_idx)
2859 {
2860     struct mbuf *m_frag;
2861     uint32_t frag_len, frag_size, i;
2862     uint16_t sge_idx;
2863     int rc = 0;
2864     int j;
2865 
2866     frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
2867 
2868     BLOGD(sc, DBG_LRO,
2869           "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
2870           fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
2871 
2872     /* make sure the aggregated frame is not too big to handle */
2873     if (pages > 8 * PAGES_PER_SGE) {
2874 
2875         uint32_t *tmp = (uint32_t *)cqe;
2876 
2877         BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
2878                   "pkt_len=%d len_on_bd=%d frag_size=%d\n",
2879               fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
2880               tpa_info->len_on_bd, frag_size);
2881 
2882         BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
2883             *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
2884 
2885         bxe_panic(sc, ("sge page count error\n"));
2886         return (EINVAL);
2887     }
2888 
2889     /*
2890      * Scan through the scatter gather list pulling individual mbufs into a
2891      * single mbuf for the host stack.
2892      */
2893     for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
2894         sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
2895 
2896         /*
2897          * Firmware gives the indices of the SGE as if the ring is an array
2898          * (meaning that the "next" element will consume 2 indices).
2899          */
2900         frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
2901 
2902         BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
2903                            "sge_idx=%d frag_size=%d frag_len=%d\n",
2904               fp->index, queue, i, j, sge_idx, frag_size, frag_len);
2905 
2906         m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
2907 
2908         /* allocate a new mbuf for the SGE */
2909         rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
2910         if (rc) {
2911             /* Leave all remaining SGEs in the ring! */
2912             return (rc);
2913         }
2914 
2915         /* update the fragment length */
2916         m_frag->m_len = frag_len;
2917 
2918         /* concatenate the fragment to the head mbuf */
2919         m_cat(m, m_frag);
2920         fp->eth_q_stats.mbuf_alloc_sge--;
2921 
2922         /* update the TPA mbuf size and remaining fragment size */
2923         m->m_pkthdr.len += frag_len;
2924         frag_size -= frag_len;
2925     }
2926 
2927     BLOGD(sc, DBG_LRO,
2928           "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
2929           fp->index, queue, frag_size);
2930 
2931     return (rc);
2932 }
2933 
2934 static inline void
2935 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
2936 {
2937     int i, j;
2938 
2939     for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
2940         int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
2941 
2942         for (j = 0; j < 2; j++) {
2943             BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
2944             idx--;
2945         }
2946     }
2947 }
2948 
2949 static inline void
2950 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
2951 {
2952     /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
2953     memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
2954 
2955     /*
2956      * Clear the two last indices in the page to 1. These are the indices that
2957      * correspond to the "next" element, hence will never be indicated and
2958      * should be removed from the calculations.
2959      */
2960     bxe_clear_sge_mask_next_elems(fp);
2961 }
2962 
2963 static inline void
2964 bxe_update_last_max_sge(struct bxe_fastpath *fp,
2965                         uint16_t            idx)
2966 {
2967     uint16_t last_max = fp->last_max_sge;
2968 
2969     if (SUB_S16(idx, last_max) > 0) {
2970         fp->last_max_sge = idx;
2971     }
2972 }
2973 
2974 static inline void
2975 bxe_update_sge_prod(struct bxe_softc          *sc,
2976                     struct bxe_fastpath       *fp,
2977                     uint16_t                  sge_len,
2978                     union eth_sgl_or_raw_data *cqe)
2979 {
2980     uint16_t last_max, last_elem, first_elem;
2981     uint16_t delta = 0;
2982     uint16_t i;
2983 
2984     if (!sge_len) {
2985         return;
2986     }
2987 
2988     /* first mark all used pages */
2989     for (i = 0; i < sge_len; i++) {
2990         BIT_VEC64_CLEAR_BIT(fp->sge_mask,
2991                             RX_SGE(le16toh(cqe->sgl[i])));
2992     }
2993 
2994     BLOGD(sc, DBG_LRO,
2995           "fp[%02d] fp_cqe->sgl[%d] = %d\n",
2996           fp->index, sge_len - 1,
2997           le16toh(cqe->sgl[sge_len - 1]));
2998 
2999     /* assume that the last SGE index is the biggest */
3000     bxe_update_last_max_sge(fp,
3001                             le16toh(cqe->sgl[sge_len - 1]));
3002 
3003     last_max = RX_SGE(fp->last_max_sge);
3004     last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
3005     first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
3006 
3007     /* if ring is not full */
3008     if (last_elem + 1 != first_elem) {
3009         last_elem++;
3010     }
3011 
3012     /* now update the prod */
3013     for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
3014         if (__predict_true(fp->sge_mask[i])) {
3015             break;
3016         }
3017 
3018         fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
3019         delta += BIT_VEC64_ELEM_SZ;
3020     }
3021 
3022     if (delta > 0) {
3023         fp->rx_sge_prod += delta;
3024         /* clear page-end entries */
3025         bxe_clear_sge_mask_next_elems(fp);
3026     }
3027 
3028     BLOGD(sc, DBG_LRO,
3029           "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
3030           fp->index, fp->last_max_sge, fp->rx_sge_prod);
3031 }
3032 
3033 /*
3034  * The aggregation on the current TPA queue has completed. Pull the individual
3035  * mbuf fragments together into a single mbuf, perform all necessary checksum
3036  * calculations, and send the resuting mbuf to the stack.
3037  */
3038 static void
3039 bxe_tpa_stop(struct bxe_softc          *sc,
3040              struct bxe_fastpath       *fp,
3041              struct bxe_sw_tpa_info    *tpa_info,
3042              uint16_t                  queue,
3043              uint16_t                  pages,
3044 			 struct eth_end_agg_rx_cqe *cqe,
3045              uint16_t                  cqe_idx)
3046 {
3047     if_t ifp = sc->ifp;
3048     struct mbuf *m;
3049     int rc = 0;
3050 
3051     BLOGD(sc, DBG_LRO,
3052           "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3053           fp->index, queue, tpa_info->placement_offset,
3054           le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3055 
3056     m = tpa_info->bd.m;
3057 
3058     /* allocate a replacement before modifying existing mbuf */
3059     rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3060     if (rc) {
3061         /* drop the frame and log an error */
3062         fp->eth_q_stats.rx_soft_errors++;
3063         goto bxe_tpa_stop_exit;
3064     }
3065 
3066     /* we have a replacement, fixup the current mbuf */
3067     m_adj(m, tpa_info->placement_offset);
3068     m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3069 
3070     /* mark the checksums valid (taken care of by the firmware) */
3071     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3072     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3073     m->m_pkthdr.csum_data = 0xffff;
3074     m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3075                                CSUM_IP_VALID   |
3076                                CSUM_DATA_VALID |
3077                                CSUM_PSEUDO_HDR);
3078 
3079     /* aggregate all of the SGEs into a single mbuf */
3080     rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3081     if (rc) {
3082         /* drop the packet and log an error */
3083         fp->eth_q_stats.rx_soft_errors++;
3084         m_freem(m);
3085     } else {
3086         if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
3087             m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3088             m->m_flags |= M_VLANTAG;
3089         }
3090 
3091         /* assign packet to this interface interface */
3092         if_setrcvif(m, ifp);
3093 
3094 #if __FreeBSD_version >= 800000
3095         /* specify what RSS queue was used for this flow */
3096         m->m_pkthdr.flowid = fp->index;
3097         BXE_SET_FLOWID(m);
3098 #endif
3099 
3100         if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3101         fp->eth_q_stats.rx_tpa_pkts++;
3102 
3103         /* pass the frame to the stack */
3104         if_input(ifp, m);
3105     }
3106 
3107     /* we passed an mbuf up the stack or dropped the frame */
3108     fp->eth_q_stats.mbuf_alloc_tpa--;
3109 
3110 bxe_tpa_stop_exit:
3111 
3112     fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3113     fp->rx_tpa_queue_used &= ~(1 << queue);
3114 }
3115 
3116 static uint8_t
3117 bxe_service_rxsgl(
3118                  struct bxe_fastpath *fp,
3119                  uint16_t len,
3120                  uint16_t lenonbd,
3121                  struct mbuf *m,
3122                  struct eth_fast_path_rx_cqe *cqe_fp)
3123 {
3124     struct mbuf *m_frag;
3125     uint16_t frags, frag_len;
3126     uint16_t sge_idx = 0;
3127     uint16_t j;
3128     uint8_t i, rc = 0;
3129     uint32_t frag_size;
3130 
3131     /* adjust the mbuf */
3132     m->m_len = lenonbd;
3133 
3134     frag_size =  len - lenonbd;
3135     frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3136 
3137     for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) {
3138         sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j]));
3139 
3140         m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3141         frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE));
3142         m_frag->m_len = frag_len;
3143 
3144        /* allocate a new mbuf for the SGE */
3145         rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3146         if (rc) {
3147             /* Leave all remaining SGEs in the ring! */
3148             return (rc);
3149         }
3150         fp->eth_q_stats.mbuf_alloc_sge--;
3151 
3152         /* concatenate the fragment to the head mbuf */
3153         m_cat(m, m_frag);
3154 
3155         frag_size -= frag_len;
3156     }
3157 
3158     bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data);
3159 
3160     return rc;
3161 }
3162 
3163 static uint8_t
3164 bxe_rxeof(struct bxe_softc    *sc,
3165           struct bxe_fastpath *fp)
3166 {
3167     if_t ifp = sc->ifp;
3168     uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3169     uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3170     int rx_pkts = 0;
3171     int rc = 0;
3172 
3173     BXE_FP_RX_LOCK(fp);
3174 
3175     /* CQ "next element" is of the size of the regular element */
3176     hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3177     if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3178         hw_cq_cons++;
3179     }
3180 
3181     bd_cons = fp->rx_bd_cons;
3182     bd_prod = fp->rx_bd_prod;
3183     bd_prod_fw = bd_prod;
3184     sw_cq_cons = fp->rx_cq_cons;
3185     sw_cq_prod = fp->rx_cq_prod;
3186 
3187     /*
3188      * Memory barrier necessary as speculative reads of the rx
3189      * buffer can be ahead of the index in the status block
3190      */
3191     rmb();
3192 
3193     BLOGD(sc, DBG_RX,
3194           "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3195           fp->index, hw_cq_cons, sw_cq_cons);
3196 
3197     while (sw_cq_cons != hw_cq_cons) {
3198         struct bxe_sw_rx_bd *rx_buf = NULL;
3199         union eth_rx_cqe *cqe;
3200         struct eth_fast_path_rx_cqe *cqe_fp;
3201         uint8_t cqe_fp_flags;
3202         enum eth_rx_cqe_type cqe_fp_type;
3203         uint16_t len, lenonbd,  pad;
3204         struct mbuf *m = NULL;
3205 
3206         comp_ring_cons = RCQ(sw_cq_cons);
3207         bd_prod = RX_BD(bd_prod);
3208         bd_cons = RX_BD(bd_cons);
3209 
3210         cqe          = &fp->rcq_chain[comp_ring_cons];
3211         cqe_fp       = &cqe->fast_path_cqe;
3212         cqe_fp_flags = cqe_fp->type_error_flags;
3213         cqe_fp_type  = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3214 
3215         BLOGD(sc, DBG_RX,
3216               "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3217               "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3218               "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n",
3219               fp->index,
3220               hw_cq_cons,
3221               sw_cq_cons,
3222               bd_prod,
3223               bd_cons,
3224               CQE_TYPE(cqe_fp_flags),
3225               cqe_fp_flags,
3226               cqe_fp->status_flags,
3227               le32toh(cqe_fp->rss_hash_result),
3228               le16toh(cqe_fp->vlan_tag),
3229               le16toh(cqe_fp->pkt_len_or_gro_seg_len),
3230               le16toh(cqe_fp->len_on_bd));
3231 
3232         /* is this a slowpath msg? */
3233         if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3234             bxe_sp_event(sc, fp, cqe);
3235             goto next_cqe;
3236         }
3237 
3238         rx_buf = &fp->rx_mbuf_chain[bd_cons];
3239 
3240         if (!CQE_TYPE_FAST(cqe_fp_type)) {
3241             struct bxe_sw_tpa_info *tpa_info;
3242             uint16_t frag_size, pages;
3243             uint8_t queue;
3244 
3245             if (CQE_TYPE_START(cqe_fp_type)) {
3246                 bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3247                               bd_cons, bd_prod, cqe_fp);
3248                 m = NULL; /* packet not ready yet */
3249                 goto next_rx;
3250             }
3251 
3252             KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3253                     ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3254 
3255             queue = cqe->end_agg_cqe.queue_index;
3256             tpa_info = &fp->rx_tpa_info[queue];
3257 
3258             BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3259                   fp->index, queue);
3260 
3261             frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3262                          tpa_info->len_on_bd);
3263             pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3264 
3265             bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3266                          &cqe->end_agg_cqe, comp_ring_cons);
3267 
3268             bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data);
3269 
3270             goto next_cqe;
3271         }
3272 
3273         /* non TPA */
3274 
3275         /* is this an error packet? */
3276         if (__predict_false(cqe_fp_flags &
3277                             ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3278             BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3279             fp->eth_q_stats.rx_soft_errors++;
3280             goto next_rx;
3281         }
3282 
3283         len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3284         lenonbd = le16toh(cqe_fp->len_on_bd);
3285         pad = cqe_fp->placement_offset;
3286 
3287         m = rx_buf->m;
3288 
3289         if (__predict_false(m == NULL)) {
3290             BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3291                   bd_cons, fp->index);
3292             goto next_rx;
3293         }
3294 
3295         /* XXX double copy if packet length under a threshold */
3296 
3297         /*
3298          * If all the buffer descriptors are filled with mbufs then fill in
3299          * the current consumer index with a new BD. Else if a maximum Rx
3300          * buffer limit is imposed then fill in the next producer index.
3301          */
3302         rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3303                                   (sc->max_rx_bufs != RX_BD_USABLE) ?
3304                                       bd_prod : bd_cons);
3305         if (rc != 0) {
3306 
3307             /* we simply reuse the received mbuf and don't post it to the stack */
3308             m = NULL;
3309 
3310             BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3311                   fp->index, rc);
3312             fp->eth_q_stats.rx_soft_errors++;
3313 
3314             if (sc->max_rx_bufs != RX_BD_USABLE) {
3315                 /* copy this consumer index to the producer index */
3316                 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3317                        sizeof(struct bxe_sw_rx_bd));
3318                 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3319             }
3320 
3321             goto next_rx;
3322         }
3323 
3324         /* current mbuf was detached from the bd */
3325         fp->eth_q_stats.mbuf_alloc_rx--;
3326 
3327         /* we allocated a replacement mbuf, fixup the current one */
3328         m_adj(m, pad);
3329         m->m_pkthdr.len = m->m_len = len;
3330 
3331         if ((len > 60) && (len > lenonbd)) {
3332             fp->eth_q_stats.rx_bxe_service_rxsgl++;
3333             rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp);
3334             if (rc)
3335                 break;
3336             fp->eth_q_stats.rx_jumbo_sge_pkts++;
3337         } else if (lenonbd < len) {
3338             fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++;
3339         }
3340 
3341         /* assign packet to this interface interface */
3342 	if_setrcvif(m, ifp);
3343 
3344         /* assume no hardware checksum has complated */
3345         m->m_pkthdr.csum_flags = 0;
3346 
3347         /* validate checksum if offload enabled */
3348         if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3349             /* check for a valid IP frame */
3350             if (!(cqe->fast_path_cqe.status_flags &
3351                   ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3352                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3353                 if (__predict_false(cqe_fp_flags &
3354                                     ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3355                     fp->eth_q_stats.rx_hw_csum_errors++;
3356                 } else {
3357                     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3358                     m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3359                 }
3360             }
3361 
3362             /* check for a valid TCP/UDP frame */
3363             if (!(cqe->fast_path_cqe.status_flags &
3364                   ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3365                 if (__predict_false(cqe_fp_flags &
3366                                     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3367                     fp->eth_q_stats.rx_hw_csum_errors++;
3368                 } else {
3369                     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3370                     m->m_pkthdr.csum_data = 0xFFFF;
3371                     m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3372                                                CSUM_PSEUDO_HDR);
3373                 }
3374             }
3375         }
3376 
3377         /* if there is a VLAN tag then flag that info */
3378         if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
3379             m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3380             m->m_flags |= M_VLANTAG;
3381         }
3382 
3383 #if __FreeBSD_version >= 800000
3384         /* specify what RSS queue was used for this flow */
3385         m->m_pkthdr.flowid = fp->index;
3386         BXE_SET_FLOWID(m);
3387 #endif
3388 
3389 next_rx:
3390 
3391         bd_cons    = RX_BD_NEXT(bd_cons);
3392         bd_prod    = RX_BD_NEXT(bd_prod);
3393         bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3394 
3395         /* pass the frame to the stack */
3396         if (__predict_true(m != NULL)) {
3397             if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3398             rx_pkts++;
3399             if_input(ifp, m);
3400         }
3401 
3402 next_cqe:
3403 
3404         sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3405         sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3406 
3407         /* limit spinning on the queue */
3408         if (rc != 0)
3409             break;
3410 
3411         if (rx_pkts == sc->rx_budget) {
3412             fp->eth_q_stats.rx_budget_reached++;
3413             break;
3414         }
3415     } /* while work to do */
3416 
3417     fp->rx_bd_cons = bd_cons;
3418     fp->rx_bd_prod = bd_prod_fw;
3419     fp->rx_cq_cons = sw_cq_cons;
3420     fp->rx_cq_prod = sw_cq_prod;
3421 
3422     /* Update producers */
3423     bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3424 
3425     fp->eth_q_stats.rx_pkts += rx_pkts;
3426     fp->eth_q_stats.rx_calls++;
3427 
3428     BXE_FP_RX_UNLOCK(fp);
3429 
3430     return (sw_cq_cons != hw_cq_cons);
3431 }
3432 
3433 static uint16_t
3434 bxe_free_tx_pkt(struct bxe_softc    *sc,
3435                 struct bxe_fastpath *fp,
3436                 uint16_t            idx)
3437 {
3438     struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3439     struct eth_tx_start_bd *tx_start_bd;
3440     uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3441     uint16_t new_cons;
3442     int nbd;
3443 
3444     /* unmap the mbuf from non-paged memory */
3445     bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3446 
3447     tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3448     nbd = le16toh(tx_start_bd->nbd) - 1;
3449 
3450     new_cons = (tx_buf->first_bd + nbd);
3451 
3452     /* free the mbuf */
3453     if (__predict_true(tx_buf->m != NULL)) {
3454         m_freem(tx_buf->m);
3455         fp->eth_q_stats.mbuf_alloc_tx--;
3456     } else {
3457         fp->eth_q_stats.tx_chain_lost_mbuf++;
3458     }
3459 
3460     tx_buf->m = NULL;
3461     tx_buf->first_bd = 0;
3462 
3463     return (new_cons);
3464 }
3465 
3466 /* transmit timeout watchdog */
3467 static int
3468 bxe_watchdog(struct bxe_softc    *sc,
3469              struct bxe_fastpath *fp)
3470 {
3471     BXE_FP_TX_LOCK(fp);
3472 
3473     if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3474         BXE_FP_TX_UNLOCK(fp);
3475         return (0);
3476     }
3477 
3478     BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3479     if(sc->trigger_grcdump) {
3480          /* taking grcdump */
3481          bxe_grc_dump(sc);
3482     }
3483 
3484     BXE_FP_TX_UNLOCK(fp);
3485 
3486     atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
3487     taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
3488 
3489     return (-1);
3490 }
3491 
3492 /* processes transmit completions */
3493 static uint8_t
3494 bxe_txeof(struct bxe_softc    *sc,
3495           struct bxe_fastpath *fp)
3496 {
3497     if_t ifp = sc->ifp;
3498     uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3499     uint16_t tx_bd_avail;
3500 
3501     BXE_FP_TX_LOCK_ASSERT(fp);
3502 
3503     bd_cons = fp->tx_bd_cons;
3504     hw_cons = le16toh(*fp->tx_cons_sb);
3505     sw_cons = fp->tx_pkt_cons;
3506 
3507     while (sw_cons != hw_cons) {
3508         pkt_cons = TX_BD(sw_cons);
3509 
3510         BLOGD(sc, DBG_TX,
3511               "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3512               fp->index, hw_cons, sw_cons, pkt_cons);
3513 
3514         bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3515 
3516         sw_cons++;
3517     }
3518 
3519     fp->tx_pkt_cons = sw_cons;
3520     fp->tx_bd_cons  = bd_cons;
3521 
3522     BLOGD(sc, DBG_TX,
3523           "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3524           fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3525 
3526     mb();
3527 
3528     tx_bd_avail = bxe_tx_avail(sc, fp);
3529 
3530     if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3531         if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
3532     } else {
3533         if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3534     }
3535 
3536     if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3537         /* reset the watchdog timer if there are pending transmits */
3538         fp->watchdog_timer = BXE_TX_TIMEOUT;
3539         return (TRUE);
3540     } else {
3541         /* clear watchdog when there are no pending transmits */
3542         fp->watchdog_timer = 0;
3543         return (FALSE);
3544     }
3545 }
3546 
3547 static void
3548 bxe_drain_tx_queues(struct bxe_softc *sc)
3549 {
3550     struct bxe_fastpath *fp;
3551     int i, count;
3552 
3553     /* wait until all TX fastpath tasks have completed */
3554     for (i = 0; i < sc->num_queues; i++) {
3555         fp = &sc->fp[i];
3556 
3557         count = 1000;
3558 
3559         while (bxe_has_tx_work(fp)) {
3560 
3561             BXE_FP_TX_LOCK(fp);
3562             bxe_txeof(sc, fp);
3563             BXE_FP_TX_UNLOCK(fp);
3564 
3565             if (count == 0) {
3566                 BLOGE(sc, "Timeout waiting for fp[%d] "
3567                           "transmits to complete!\n", i);
3568                 bxe_panic(sc, ("tx drain failure\n"));
3569                 return;
3570             }
3571 
3572             count--;
3573             DELAY(1000);
3574             rmb();
3575         }
3576     }
3577 
3578     return;
3579 }
3580 
3581 static int
3582 bxe_del_all_macs(struct bxe_softc          *sc,
3583                  struct ecore_vlan_mac_obj *mac_obj,
3584                  int                       mac_type,
3585                  uint8_t                   wait_for_comp)
3586 {
3587     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3588     int rc;
3589 
3590     /* wait for completion of requested */
3591     if (wait_for_comp) {
3592         bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3593     }
3594 
3595     /* Set the mac type of addresses we want to clear */
3596     bxe_set_bit(mac_type, &vlan_mac_flags);
3597 
3598     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3599     if (rc < 0) {
3600         BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n",
3601             rc, mac_type, wait_for_comp);
3602     }
3603 
3604     return (rc);
3605 }
3606 
3607 static int
3608 bxe_fill_accept_flags(struct bxe_softc *sc,
3609                       uint32_t         rx_mode,
3610                       unsigned long    *rx_accept_flags,
3611                       unsigned long    *tx_accept_flags)
3612 {
3613     /* Clear the flags first */
3614     *rx_accept_flags = 0;
3615     *tx_accept_flags = 0;
3616 
3617     switch (rx_mode) {
3618     case BXE_RX_MODE_NONE:
3619         /*
3620          * 'drop all' supersedes any accept flags that may have been
3621          * passed to the function.
3622          */
3623         break;
3624 
3625     case BXE_RX_MODE_NORMAL:
3626         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3627         bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3628         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3629 
3630         /* internal switching mode */
3631         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3632         bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3633         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3634 
3635         break;
3636 
3637     case BXE_RX_MODE_ALLMULTI:
3638         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3639         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3640         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3641 
3642         /* internal switching mode */
3643         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3644         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3645         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3646 
3647         break;
3648 
3649     case BXE_RX_MODE_PROMISC:
3650         /*
3651          * According to deffinition of SI mode, iface in promisc mode
3652          * should receive matched and unmatched (in resolution of port)
3653          * unicast packets.
3654          */
3655         bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3656         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3657         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3658         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3659 
3660         /* internal switching mode */
3661         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3662         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3663 
3664         if (IS_MF_SI(sc)) {
3665             bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3666         } else {
3667             bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3668         }
3669 
3670         break;
3671 
3672     default:
3673         BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode);
3674         return (-1);
3675     }
3676 
3677     /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3678     if (rx_mode != BXE_RX_MODE_NONE) {
3679         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3680         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3681     }
3682 
3683     return (0);
3684 }
3685 
3686 static int
3687 bxe_set_q_rx_mode(struct bxe_softc *sc,
3688                   uint8_t          cl_id,
3689                   unsigned long    rx_mode_flags,
3690                   unsigned long    rx_accept_flags,
3691                   unsigned long    tx_accept_flags,
3692                   unsigned long    ramrod_flags)
3693 {
3694     struct ecore_rx_mode_ramrod_params ramrod_param;
3695     int rc;
3696 
3697     memset(&ramrod_param, 0, sizeof(ramrod_param));
3698 
3699     /* Prepare ramrod parameters */
3700     ramrod_param.cid = 0;
3701     ramrod_param.cl_id = cl_id;
3702     ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3703     ramrod_param.func_id = SC_FUNC(sc);
3704 
3705     ramrod_param.pstate = &sc->sp_state;
3706     ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3707 
3708     ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3709     ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3710 
3711     bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3712 
3713     ramrod_param.ramrod_flags = ramrod_flags;
3714     ramrod_param.rx_mode_flags = rx_mode_flags;
3715 
3716     ramrod_param.rx_accept_flags = rx_accept_flags;
3717     ramrod_param.tx_accept_flags = tx_accept_flags;
3718 
3719     rc = ecore_config_rx_mode(sc, &ramrod_param);
3720     if (rc < 0) {
3721         BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x "
3722             "rx_accept_flags 0x%x tx_accept_flags 0x%x "
3723             "ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id,
3724             (uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags,
3725             (uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc);
3726         return (rc);
3727     }
3728 
3729     return (0);
3730 }
3731 
3732 static int
3733 bxe_set_storm_rx_mode(struct bxe_softc *sc)
3734 {
3735     unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3736     unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3737     int rc;
3738 
3739     rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3740                                &tx_accept_flags);
3741     if (rc) {
3742         return (rc);
3743     }
3744 
3745     bxe_set_bit(RAMROD_RX, &ramrod_flags);
3746     bxe_set_bit(RAMROD_TX, &ramrod_flags);
3747 
3748     /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3749     return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3750                               rx_accept_flags, tx_accept_flags,
3751                               ramrod_flags));
3752 }
3753 
3754 /* returns the "mcp load_code" according to global load_count array */
3755 static int
3756 bxe_nic_load_no_mcp(struct bxe_softc *sc)
3757 {
3758     int path = SC_PATH(sc);
3759     int port = SC_PORT(sc);
3760 
3761     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3762           path, load_count[path][0], load_count[path][1],
3763           load_count[path][2]);
3764     load_count[path][0]++;
3765     load_count[path][1 + port]++;
3766     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3767           path, load_count[path][0], load_count[path][1],
3768           load_count[path][2]);
3769     if (load_count[path][0] == 1) {
3770         return (FW_MSG_CODE_DRV_LOAD_COMMON);
3771     } else if (load_count[path][1 + port] == 1) {
3772         return (FW_MSG_CODE_DRV_LOAD_PORT);
3773     } else {
3774         return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3775     }
3776 }
3777 
3778 /* returns the "mcp load_code" according to global load_count array */
3779 static int
3780 bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3781 {
3782     int port = SC_PORT(sc);
3783     int path = SC_PATH(sc);
3784 
3785     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3786           path, load_count[path][0], load_count[path][1],
3787           load_count[path][2]);
3788     load_count[path][0]--;
3789     load_count[path][1 + port]--;
3790     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3791           path, load_count[path][0], load_count[path][1],
3792           load_count[path][2]);
3793     if (load_count[path][0] == 0) {
3794         return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3795     } else if (load_count[path][1 + port] == 0) {
3796         return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3797     } else {
3798         return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3799     }
3800 }
3801 
3802 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3803 static uint32_t
3804 bxe_send_unload_req(struct bxe_softc *sc,
3805                     int              unload_mode)
3806 {
3807     uint32_t reset_code = 0;
3808 
3809     /* Select the UNLOAD request mode */
3810     if (unload_mode == UNLOAD_NORMAL) {
3811         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3812     } else {
3813         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3814     }
3815 
3816     /* Send the request to the MCP */
3817     if (!BXE_NOMCP(sc)) {
3818         reset_code = bxe_fw_command(sc, reset_code, 0);
3819     } else {
3820         reset_code = bxe_nic_unload_no_mcp(sc);
3821     }
3822 
3823     return (reset_code);
3824 }
3825 
3826 /* send UNLOAD_DONE command to the MCP */
3827 static void
3828 bxe_send_unload_done(struct bxe_softc *sc,
3829                      uint8_t          keep_link)
3830 {
3831     uint32_t reset_param =
3832         keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
3833 
3834     /* Report UNLOAD_DONE to MCP */
3835     if (!BXE_NOMCP(sc)) {
3836         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
3837     }
3838 }
3839 
3840 static int
3841 bxe_func_wait_started(struct bxe_softc *sc)
3842 {
3843     int tout = 50;
3844 
3845     if (!sc->port.pmf) {
3846         return (0);
3847     }
3848 
3849     /*
3850      * (assumption: No Attention from MCP at this stage)
3851      * PMF probably in the middle of TX disable/enable transaction
3852      * 1. Sync IRS for default SB
3853      * 2. Sync SP queue - this guarantees us that attention handling started
3854      * 3. Wait, that TX disable/enable transaction completes
3855      *
3856      * 1+2 guarantee that if DCBX attention was scheduled it already changed
3857      * pending bit of transaction from STARTED-->TX_STOPPED, if we already
3858      * received completion for the transaction the state is TX_STOPPED.
3859      * State will return to STARTED after completion of TX_STOPPED-->STARTED
3860      * transaction.
3861      */
3862 
3863     /* XXX make sure default SB ISR is done */
3864     /* need a way to synchronize an irq (intr_mtx?) */
3865 
3866     /* XXX flush any work queues */
3867 
3868     while (ecore_func_get_state(sc, &sc->func_obj) !=
3869            ECORE_F_STATE_STARTED && tout--) {
3870         DELAY(20000);
3871     }
3872 
3873     if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
3874         /*
3875          * Failed to complete the transaction in a "good way"
3876          * Force both transactions with CLR bit.
3877          */
3878         struct ecore_func_state_params func_params = { NULL };
3879 
3880         BLOGE(sc, "Unexpected function state! "
3881                   "Forcing STARTED-->TX_STOPPED-->STARTED\n");
3882 
3883         func_params.f_obj = &sc->func_obj;
3884         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
3885 
3886         /* STARTED-->TX_STOPPED */
3887         func_params.cmd = ECORE_F_CMD_TX_STOP;
3888         ecore_func_state_change(sc, &func_params);
3889 
3890         /* TX_STOPPED-->STARTED */
3891         func_params.cmd = ECORE_F_CMD_TX_START;
3892         return (ecore_func_state_change(sc, &func_params));
3893     }
3894 
3895     return (0);
3896 }
3897 
3898 static int
3899 bxe_stop_queue(struct bxe_softc *sc,
3900                int              index)
3901 {
3902     struct bxe_fastpath *fp = &sc->fp[index];
3903     struct ecore_queue_state_params q_params = { NULL };
3904     int rc;
3905 
3906     BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
3907 
3908     q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
3909     /* We want to wait for completion in this context */
3910     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
3911 
3912     /* Stop the primary connection: */
3913 
3914     /* ...halt the connection */
3915     q_params.cmd = ECORE_Q_CMD_HALT;
3916     rc = ecore_queue_state_change(sc, &q_params);
3917     if (rc) {
3918         return (rc);
3919     }
3920 
3921     /* ...terminate the connection */
3922     q_params.cmd = ECORE_Q_CMD_TERMINATE;
3923     memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
3924     q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
3925     rc = ecore_queue_state_change(sc, &q_params);
3926     if (rc) {
3927         return (rc);
3928     }
3929 
3930     /* ...delete cfc entry */
3931     q_params.cmd = ECORE_Q_CMD_CFC_DEL;
3932     memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
3933     q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
3934     return (ecore_queue_state_change(sc, &q_params));
3935 }
3936 
3937 /* wait for the outstanding SP commands */
3938 static inline uint8_t
3939 bxe_wait_sp_comp(struct bxe_softc *sc,
3940                  unsigned long    mask)
3941 {
3942     unsigned long tmp;
3943     int tout = 5000; /* wait for 5 secs tops */
3944 
3945     while (tout--) {
3946         mb();
3947         if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
3948             return (TRUE);
3949         }
3950 
3951         DELAY(1000);
3952     }
3953 
3954     mb();
3955 
3956     tmp = atomic_load_acq_long(&sc->sp_state);
3957     if (tmp & mask) {
3958         BLOGE(sc, "Filtering completion timed out: "
3959                   "sp_state 0x%lx, mask 0x%lx\n",
3960               tmp, mask);
3961         return (FALSE);
3962     }
3963 
3964     return (FALSE);
3965 }
3966 
3967 static int
3968 bxe_func_stop(struct bxe_softc *sc)
3969 {
3970     struct ecore_func_state_params func_params = { NULL };
3971     int rc;
3972 
3973     /* prepare parameters for function state transitions */
3974     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
3975     func_params.f_obj = &sc->func_obj;
3976     func_params.cmd = ECORE_F_CMD_STOP;
3977 
3978     /*
3979      * Try to stop the function the 'good way'. If it fails (in case
3980      * of a parity error during bxe_chip_cleanup()) and we are
3981      * not in a debug mode, perform a state transaction in order to
3982      * enable further HW_RESET transaction.
3983      */
3984     rc = ecore_func_state_change(sc, &func_params);
3985     if (rc) {
3986         BLOGE(sc, "FUNC_STOP ramrod failed. "
3987                   "Running a dry transaction (%d)\n", rc);
3988         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
3989         return (ecore_func_state_change(sc, &func_params));
3990     }
3991 
3992     return (0);
3993 }
3994 
3995 static int
3996 bxe_reset_hw(struct bxe_softc *sc,
3997              uint32_t         load_code)
3998 {
3999     struct ecore_func_state_params func_params = { NULL };
4000 
4001     /* Prepare parameters for function state transitions */
4002     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4003 
4004     func_params.f_obj = &sc->func_obj;
4005     func_params.cmd = ECORE_F_CMD_HW_RESET;
4006 
4007     func_params.params.hw_init.load_phase = load_code;
4008 
4009     return (ecore_func_state_change(sc, &func_params));
4010 }
4011 
4012 static void
4013 bxe_int_disable_sync(struct bxe_softc *sc,
4014                      int              disable_hw)
4015 {
4016     if (disable_hw) {
4017         /* prevent the HW from sending interrupts */
4018         bxe_int_disable(sc);
4019     }
4020 
4021     /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
4022     /* make sure all ISRs are done */
4023 
4024     /* XXX make sure sp_task is not running */
4025     /* cancel and flush work queues */
4026 }
4027 
4028 static void
4029 bxe_chip_cleanup(struct bxe_softc *sc,
4030                  uint32_t         unload_mode,
4031                  uint8_t          keep_link)
4032 {
4033     int port = SC_PORT(sc);
4034     struct ecore_mcast_ramrod_params rparam = { NULL };
4035     uint32_t reset_code;
4036     int i, rc = 0;
4037 
4038     bxe_drain_tx_queues(sc);
4039 
4040     /* give HW time to discard old tx messages */
4041     DELAY(1000);
4042 
4043     /* Clean all ETH MACs */
4044     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4045     if (rc < 0) {
4046         BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4047     }
4048 
4049     /* Clean up UC list  */
4050     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4051     if (rc < 0) {
4052         BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4053     }
4054 
4055     /* Disable LLH */
4056     if (!CHIP_IS_E1(sc)) {
4057         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4058     }
4059 
4060     /* Set "drop all" to stop Rx */
4061 
4062     /*
4063      * We need to take the BXE_MCAST_LOCK() here in order to prevent
4064      * a race between the completion code and this code.
4065      */
4066     BXE_MCAST_LOCK(sc);
4067 
4068     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4069         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4070     } else {
4071         bxe_set_storm_rx_mode(sc);
4072     }
4073 
4074     /* Clean up multicast configuration */
4075     rparam.mcast_obj = &sc->mcast_obj;
4076     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4077     if (rc < 0) {
4078         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4079     }
4080 
4081     BXE_MCAST_UNLOCK(sc);
4082 
4083     // XXX bxe_iov_chip_cleanup(sc);
4084 
4085     /*
4086      * Send the UNLOAD_REQUEST to the MCP. This will return if
4087      * this function should perform FUNCTION, PORT, or COMMON HW
4088      * reset.
4089      */
4090     reset_code = bxe_send_unload_req(sc, unload_mode);
4091 
4092     /*
4093      * (assumption: No Attention from MCP at this stage)
4094      * PMF probably in the middle of TX disable/enable transaction
4095      */
4096     rc = bxe_func_wait_started(sc);
4097     if (rc) {
4098         BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc);
4099     }
4100 
4101     /*
4102      * Close multi and leading connections
4103      * Completions for ramrods are collected in a synchronous way
4104      */
4105     for (i = 0; i < sc->num_queues; i++) {
4106         if (bxe_stop_queue(sc, i)) {
4107             goto unload_error;
4108         }
4109     }
4110 
4111     /*
4112      * If SP settings didn't get completed so far - something
4113      * very wrong has happen.
4114      */
4115     if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4116         BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc);
4117     }
4118 
4119 unload_error:
4120 
4121     rc = bxe_func_stop(sc);
4122     if (rc) {
4123         BLOGE(sc, "Function stop failed!(%d)\n", rc);
4124     }
4125 
4126     /* disable HW interrupts */
4127     bxe_int_disable_sync(sc, TRUE);
4128 
4129     /* detach interrupts */
4130     bxe_interrupt_detach(sc);
4131 
4132     /* Reset the chip */
4133     rc = bxe_reset_hw(sc, reset_code);
4134     if (rc) {
4135         BLOGE(sc, "Hardware reset failed(%d)\n", rc);
4136     }
4137 
4138     /* Report UNLOAD_DONE to MCP */
4139     bxe_send_unload_done(sc, keep_link);
4140 }
4141 
4142 static void
4143 bxe_disable_close_the_gate(struct bxe_softc *sc)
4144 {
4145     uint32_t val;
4146     int port = SC_PORT(sc);
4147 
4148     BLOGD(sc, DBG_LOAD,
4149           "Disabling 'close the gates'\n");
4150 
4151     if (CHIP_IS_E1(sc)) {
4152         uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4153                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
4154         val = REG_RD(sc, addr);
4155         val &= ~(0x300);
4156         REG_WR(sc, addr, val);
4157     } else {
4158         val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4159         val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4160                  MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4161         REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4162     }
4163 }
4164 
4165 /*
4166  * Cleans the object that have internal lists without sending
4167  * ramrods. Should be run when interrutps are disabled.
4168  */
4169 static void
4170 bxe_squeeze_objects(struct bxe_softc *sc)
4171 {
4172     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4173     struct ecore_mcast_ramrod_params rparam = { NULL };
4174     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4175     int rc;
4176 
4177     /* Cleanup MACs' object first... */
4178 
4179     /* Wait for completion of requested */
4180     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4181     /* Perform a dry cleanup */
4182     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4183 
4184     /* Clean ETH primary MAC */
4185     bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4186     rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4187                              &ramrod_flags);
4188     if (rc != 0) {
4189         BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4190     }
4191 
4192     /* Cleanup UC list */
4193     vlan_mac_flags = 0;
4194     bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4195     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4196                              &ramrod_flags);
4197     if (rc != 0) {
4198         BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4199     }
4200 
4201     /* Now clean mcast object... */
4202 
4203     rparam.mcast_obj = &sc->mcast_obj;
4204     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4205 
4206     /* Add a DEL command... */
4207     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4208     if (rc < 0) {
4209         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4210     }
4211 
4212     /* now wait until all pending commands are cleared */
4213 
4214     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4215     while (rc != 0) {
4216         if (rc < 0) {
4217             BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4218             return;
4219         }
4220 
4221         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4222     }
4223 }
4224 
4225 /* stop the controller */
4226 static __noinline int
4227 bxe_nic_unload(struct bxe_softc *sc,
4228                uint32_t         unload_mode,
4229                uint8_t          keep_link)
4230 {
4231     uint8_t global = FALSE;
4232     uint32_t val;
4233     int i;
4234 
4235     BXE_CORE_LOCK_ASSERT(sc);
4236 
4237     if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
4238 
4239     for (i = 0; i < sc->num_queues; i++) {
4240         struct bxe_fastpath *fp;
4241 
4242         fp = &sc->fp[i];
4243         BXE_FP_TX_LOCK(fp);
4244         BXE_FP_TX_UNLOCK(fp);
4245     }
4246 
4247     BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4248 
4249     /* mark driver as unloaded in shmem2 */
4250     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4251         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4252         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4253                   val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4254     }
4255 
4256     if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4257         (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4258         /*
4259          * We can get here if the driver has been unloaded
4260          * during parity error recovery and is either waiting for a
4261          * leader to complete or for other functions to unload and
4262          * then ifconfig down has been issued. In this case we want to
4263          * unload and let other functions to complete a recovery
4264          * process.
4265          */
4266         sc->recovery_state = BXE_RECOVERY_DONE;
4267         sc->is_leader = 0;
4268         bxe_release_leader_lock(sc);
4269         mb();
4270 
4271         BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4272         BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x"
4273             " state = 0x%x\n", sc->recovery_state, sc->state);
4274         return (-1);
4275     }
4276 
4277     /*
4278      * Nothing to do during unload if previous bxe_nic_load()
4279      * did not completed successfully - all resourses are released.
4280      */
4281     if ((sc->state == BXE_STATE_CLOSED) ||
4282         (sc->state == BXE_STATE_ERROR)) {
4283         return (0);
4284     }
4285 
4286     sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4287     mb();
4288 
4289     /* stop tx */
4290     bxe_tx_disable(sc);
4291 
4292     sc->rx_mode = BXE_RX_MODE_NONE;
4293     /* XXX set rx mode ??? */
4294 
4295     if (IS_PF(sc) && !sc->grcdump_done) {
4296         /* set ALWAYS_ALIVE bit in shmem */
4297         sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4298 
4299         bxe_drv_pulse(sc);
4300 
4301         bxe_stats_handle(sc, STATS_EVENT_STOP);
4302         bxe_save_statistics(sc);
4303     }
4304 
4305     /* wait till consumers catch up with producers in all queues */
4306     bxe_drain_tx_queues(sc);
4307 
4308     /* if VF indicate to PF this function is going down (PF will delete sp
4309      * elements and clear initializations
4310      */
4311     if (IS_VF(sc)) {
4312         ; /* bxe_vfpf_close_vf(sc); */
4313     } else if (unload_mode != UNLOAD_RECOVERY) {
4314         /* if this is a normal/close unload need to clean up chip */
4315         if (!sc->grcdump_done)
4316             bxe_chip_cleanup(sc, unload_mode, keep_link);
4317     } else {
4318         /* Send the UNLOAD_REQUEST to the MCP */
4319         bxe_send_unload_req(sc, unload_mode);
4320 
4321         /*
4322          * Prevent transactions to host from the functions on the
4323          * engine that doesn't reset global blocks in case of global
4324          * attention once gloabl blocks are reset and gates are opened
4325          * (the engine which leader will perform the recovery
4326          * last).
4327          */
4328         if (!CHIP_IS_E1x(sc)) {
4329             bxe_pf_disable(sc);
4330         }
4331 
4332         /* disable HW interrupts */
4333         bxe_int_disable_sync(sc, TRUE);
4334 
4335         /* detach interrupts */
4336         bxe_interrupt_detach(sc);
4337 
4338         /* Report UNLOAD_DONE to MCP */
4339         bxe_send_unload_done(sc, FALSE);
4340     }
4341 
4342     /*
4343      * At this stage no more interrupts will arrive so we may safely clean
4344      * the queue'able objects here in case they failed to get cleaned so far.
4345      */
4346     if (IS_PF(sc)) {
4347         bxe_squeeze_objects(sc);
4348     }
4349 
4350     /* There should be no more pending SP commands at this stage */
4351     sc->sp_state = 0;
4352 
4353     sc->port.pmf = 0;
4354 
4355     bxe_free_fp_buffers(sc);
4356 
4357     if (IS_PF(sc)) {
4358         bxe_free_mem(sc);
4359     }
4360 
4361     bxe_free_fw_stats_mem(sc);
4362 
4363     sc->state = BXE_STATE_CLOSED;
4364 
4365     /*
4366      * Check if there are pending parity attentions. If there are - set
4367      * RECOVERY_IN_PROGRESS.
4368      */
4369     if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4370         bxe_set_reset_in_progress(sc);
4371 
4372         /* Set RESET_IS_GLOBAL if needed */
4373         if (global) {
4374             bxe_set_reset_global(sc);
4375         }
4376     }
4377 
4378     /*
4379      * The last driver must disable a "close the gate" if there is no
4380      * parity attention or "process kill" pending.
4381      */
4382     if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4383         bxe_reset_is_done(sc, SC_PATH(sc))) {
4384         bxe_disable_close_the_gate(sc);
4385     }
4386 
4387     BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4388 
4389     return (0);
4390 }
4391 
4392 /*
4393  * Called by the OS to set various media options (i.e. link, speed, etc.) when
4394  * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4395  */
4396 static int
4397 bxe_ifmedia_update(struct ifnet  *ifp)
4398 {
4399     struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp);
4400     struct ifmedia *ifm;
4401 
4402     ifm = &sc->ifmedia;
4403 
4404     /* We only support Ethernet media type. */
4405     if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4406         return (EINVAL);
4407     }
4408 
4409     switch (IFM_SUBTYPE(ifm->ifm_media)) {
4410     case IFM_AUTO:
4411          break;
4412     case IFM_10G_CX4:
4413     case IFM_10G_SR:
4414     case IFM_10G_T:
4415     case IFM_10G_TWINAX:
4416     default:
4417         /* We don't support changing the media type. */
4418         BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4419               IFM_SUBTYPE(ifm->ifm_media));
4420         return (EINVAL);
4421     }
4422 
4423     return (0);
4424 }
4425 
4426 /*
4427  * Called by the OS to get the current media status (i.e. link, speed, etc.).
4428  */
4429 static void
4430 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
4431 {
4432     struct bxe_softc *sc = if_getsoftc(ifp);
4433 
4434     /* Report link down if the driver isn't running. */
4435     if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4436         ifmr->ifm_active |= IFM_NONE;
4437         return;
4438     }
4439 
4440     /* Setup the default interface info. */
4441     ifmr->ifm_status = IFM_AVALID;
4442     ifmr->ifm_active = IFM_ETHER;
4443 
4444     if (sc->link_vars.link_up) {
4445         ifmr->ifm_status |= IFM_ACTIVE;
4446     } else {
4447         ifmr->ifm_active |= IFM_NONE;
4448         return;
4449     }
4450 
4451     ifmr->ifm_active |= sc->media;
4452 
4453     if (sc->link_vars.duplex == DUPLEX_FULL) {
4454         ifmr->ifm_active |= IFM_FDX;
4455     } else {
4456         ifmr->ifm_active |= IFM_HDX;
4457     }
4458 }
4459 
4460 static void
4461 bxe_handle_chip_tq(void *context,
4462                    int  pending)
4463 {
4464     struct bxe_softc *sc = (struct bxe_softc *)context;
4465     long work = atomic_load_acq_long(&sc->chip_tq_flags);
4466 
4467     switch (work)
4468     {
4469 
4470     case CHIP_TQ_REINIT:
4471         if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
4472             /* restart the interface */
4473             BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4474             bxe_periodic_stop(sc);
4475             BXE_CORE_LOCK(sc);
4476             bxe_stop_locked(sc);
4477             bxe_init_locked(sc);
4478             BXE_CORE_UNLOCK(sc);
4479         }
4480         break;
4481 
4482     default:
4483         break;
4484     }
4485 }
4486 
4487 /*
4488  * Handles any IOCTL calls from the operating system.
4489  *
4490  * Returns:
4491  *   0 = Success, >0 Failure
4492  */
4493 static int
4494 bxe_ioctl(if_t ifp,
4495           u_long       command,
4496           caddr_t      data)
4497 {
4498     struct bxe_softc *sc = if_getsoftc(ifp);
4499     struct ifreq *ifr = (struct ifreq *)data;
4500     int mask = 0;
4501     int reinit = 0;
4502     int error = 0;
4503 
4504     int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4505     int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4506 
4507     switch (command)
4508     {
4509     case SIOCSIFMTU:
4510         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4511               ifr->ifr_mtu);
4512 
4513         if (sc->mtu == ifr->ifr_mtu) {
4514             /* nothing to change */
4515             break;
4516         }
4517 
4518         if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4519             BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4520                   ifr->ifr_mtu, mtu_min, mtu_max);
4521             error = EINVAL;
4522             break;
4523         }
4524 
4525         atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4526                              (unsigned long)ifr->ifr_mtu);
4527 	/*
4528         atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp),
4529                               (unsigned long)ifr->ifr_mtu);
4530 	XXX - Not sure why it needs to be atomic
4531 	*/
4532 	if_setmtu(ifp, ifr->ifr_mtu);
4533         reinit = 1;
4534         break;
4535 
4536     case SIOCSIFFLAGS:
4537         /* toggle the interface state up or down */
4538         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4539 
4540 	BXE_CORE_LOCK(sc);
4541         /* check if the interface is up */
4542         if (if_getflags(ifp) & IFF_UP) {
4543             if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4544                 /* set the receive mode flags */
4545                 bxe_set_rx_mode(sc);
4546             } else if(sc->state != BXE_STATE_DISABLED) {
4547 		bxe_init_locked(sc);
4548             }
4549         } else {
4550             if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4551 		bxe_periodic_stop(sc);
4552 		bxe_stop_locked(sc);
4553             }
4554         }
4555 	BXE_CORE_UNLOCK(sc);
4556 
4557         break;
4558 
4559     case SIOCADDMULTI:
4560     case SIOCDELMULTI:
4561         /* add/delete multicast addresses */
4562         BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4563 
4564         /* check if the interface is up */
4565         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4566             /* set the receive mode flags */
4567 	    BXE_CORE_LOCK(sc);
4568             bxe_set_rx_mode(sc);
4569 	    BXE_CORE_UNLOCK(sc);
4570         }
4571 
4572         break;
4573 
4574     case SIOCSIFCAP:
4575         /* find out which capabilities have changed */
4576         mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp));
4577 
4578         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4579               mask);
4580 
4581         /* toggle the LRO capabilites enable flag */
4582         if (mask & IFCAP_LRO) {
4583 	    if_togglecapenable(ifp, IFCAP_LRO);
4584             BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4585                   (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF");
4586             reinit = 1;
4587         }
4588 
4589         /* toggle the TXCSUM checksum capabilites enable flag */
4590         if (mask & IFCAP_TXCSUM) {
4591 	    if_togglecapenable(ifp, IFCAP_TXCSUM);
4592             BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4593                   (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF");
4594             if (if_getcapenable(ifp) & IFCAP_TXCSUM) {
4595                 if_sethwassistbits(ifp, (CSUM_IP      |
4596                                     CSUM_TCP      |
4597                                     CSUM_UDP      |
4598                                     CSUM_TSO      |
4599                                     CSUM_TCP_IPV6 |
4600                                     CSUM_UDP_IPV6), 0);
4601             } else {
4602 		if_clearhwassist(ifp); /* XXX */
4603             }
4604         }
4605 
4606         /* toggle the RXCSUM checksum capabilities enable flag */
4607         if (mask & IFCAP_RXCSUM) {
4608 	    if_togglecapenable(ifp, IFCAP_RXCSUM);
4609             BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4610                   (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF");
4611             if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
4612                 if_sethwassistbits(ifp, (CSUM_IP      |
4613                                     CSUM_TCP      |
4614                                     CSUM_UDP      |
4615                                     CSUM_TSO      |
4616                                     CSUM_TCP_IPV6 |
4617                                     CSUM_UDP_IPV6), 0);
4618             } else {
4619 		if_clearhwassist(ifp); /* XXX */
4620             }
4621         }
4622 
4623         /* toggle TSO4 capabilities enabled flag */
4624         if (mask & IFCAP_TSO4) {
4625             if_togglecapenable(ifp, IFCAP_TSO4);
4626             BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4627                   (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF");
4628         }
4629 
4630         /* toggle TSO6 capabilities enabled flag */
4631         if (mask & IFCAP_TSO6) {
4632 	    if_togglecapenable(ifp, IFCAP_TSO6);
4633             BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4634                   (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF");
4635         }
4636 
4637         /* toggle VLAN_HWTSO capabilities enabled flag */
4638         if (mask & IFCAP_VLAN_HWTSO) {
4639 
4640 	    if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
4641             BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4642                   (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4643         }
4644 
4645         /* toggle VLAN_HWCSUM capabilities enabled flag */
4646         if (mask & IFCAP_VLAN_HWCSUM) {
4647             /* XXX investigate this... */
4648             BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4649             error = EINVAL;
4650         }
4651 
4652         /* toggle VLAN_MTU capabilities enable flag */
4653         if (mask & IFCAP_VLAN_MTU) {
4654             /* XXX investigate this... */
4655             BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4656             error = EINVAL;
4657         }
4658 
4659         /* toggle VLAN_HWTAGGING capabilities enabled flag */
4660         if (mask & IFCAP_VLAN_HWTAGGING) {
4661             /* XXX investigate this... */
4662             BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4663             error = EINVAL;
4664         }
4665 
4666         /* toggle VLAN_HWFILTER capabilities enabled flag */
4667         if (mask & IFCAP_VLAN_HWFILTER) {
4668             /* XXX investigate this... */
4669             BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4670             error = EINVAL;
4671         }
4672 
4673         /* XXX not yet...
4674          * IFCAP_WOL_MAGIC
4675          */
4676 
4677         break;
4678 
4679     case SIOCSIFMEDIA:
4680     case SIOCGIFMEDIA:
4681         /* set/get interface media */
4682         BLOGD(sc, DBG_IOCTL,
4683               "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4684               (command & 0xff));
4685         error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
4686         break;
4687 
4688     default:
4689         BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
4690               (command & 0xff));
4691         error = ether_ioctl(ifp, command, data);
4692         break;
4693     }
4694 
4695     if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
4696         BLOGD(sc, DBG_LOAD | DBG_IOCTL,
4697               "Re-initializing hardware from IOCTL change\n");
4698 	bxe_periodic_stop(sc);
4699 	BXE_CORE_LOCK(sc);
4700 	bxe_stop_locked(sc);
4701 	bxe_init_locked(sc);
4702 	BXE_CORE_UNLOCK(sc);
4703     }
4704 
4705     return (error);
4706 }
4707 
4708 static __noinline void
4709 bxe_dump_mbuf(struct bxe_softc *sc,
4710               struct mbuf      *m,
4711               uint8_t          contents)
4712 {
4713     char * type;
4714     int i = 0;
4715 
4716     if (!(sc->debug & DBG_MBUF)) {
4717         return;
4718     }
4719 
4720     if (m == NULL) {
4721         BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
4722         return;
4723     }
4724 
4725     while (m) {
4726 
4727 #if __FreeBSD_version >= 1000000
4728         BLOGD(sc, DBG_MBUF,
4729               "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
4730               i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
4731 
4732         if (m->m_flags & M_PKTHDR) {
4733              BLOGD(sc, DBG_MBUF,
4734                    "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
4735                    i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
4736                    (int)m->m_pkthdr.csum_flags, CSUM_BITS);
4737         }
4738 #else
4739         BLOGD(sc, DBG_MBUF,
4740               "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
4741               i, m, m->m_len, m->m_flags,
4742               "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", m->m_data);
4743 
4744         if (m->m_flags & M_PKTHDR) {
4745              BLOGD(sc, DBG_MBUF,
4746                    "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
4747                    i, m->m_pkthdr.len, m->m_flags,
4748                    "\20\12M_BCAST\13M_MCAST\14M_FRAG"
4749                    "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG"
4750                    "\22M_PROMISC\23M_NOFREE",
4751                    (int)m->m_pkthdr.csum_flags,
4752                    "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS"
4753                    "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
4754                    "\12CSUM_IP_VALID\13CSUM_DATA_VALID"
4755                    "\14CSUM_PSEUDO_HDR");
4756         }
4757 #endif /* #if __FreeBSD_version >= 1000000 */
4758 
4759         if (m->m_flags & M_EXT) {
4760             switch (m->m_ext.ext_type) {
4761             case EXT_CLUSTER:    type = "EXT_CLUSTER";    break;
4762             case EXT_SFBUF:      type = "EXT_SFBUF";      break;
4763             case EXT_JUMBOP:     type = "EXT_JUMBOP";     break;
4764             case EXT_JUMBO9:     type = "EXT_JUMBO9";     break;
4765             case EXT_JUMBO16:    type = "EXT_JUMBO16";    break;
4766             case EXT_PACKET:     type = "EXT_PACKET";     break;
4767             case EXT_MBUF:       type = "EXT_MBUF";       break;
4768             case EXT_NET_DRV:    type = "EXT_NET_DRV";    break;
4769             case EXT_MOD_TYPE:   type = "EXT_MOD_TYPE";   break;
4770             case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
4771             case EXT_EXTREF:     type = "EXT_EXTREF";     break;
4772             default:             type = "UNKNOWN";        break;
4773             }
4774 
4775             BLOGD(sc, DBG_MBUF,
4776                   "%02d: - m_ext: %p ext_size=%d type=%s\n",
4777                   i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
4778         }
4779 
4780         if (contents) {
4781             bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
4782         }
4783 
4784         m = m->m_next;
4785         i++;
4786     }
4787 }
4788 
4789 /*
4790  * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
4791  * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
4792  * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
4793  * The headers comes in a separate bd in FreeBSD so 13-3=10.
4794  * Returns: 0 if OK to send, 1 if packet needs further defragmentation
4795  */
4796 static int
4797 bxe_chktso_window(struct bxe_softc  *sc,
4798                   int               nsegs,
4799                   bus_dma_segment_t *segs,
4800                   struct mbuf       *m)
4801 {
4802     uint32_t num_wnds, wnd_size, wnd_sum;
4803     int32_t frag_idx, wnd_idx;
4804     unsigned short lso_mss;
4805     int defrag;
4806 
4807     defrag = 0;
4808     wnd_sum = 0;
4809     wnd_size = 10;
4810     num_wnds = nsegs - wnd_size;
4811     lso_mss = htole16(m->m_pkthdr.tso_segsz);
4812 
4813     /*
4814      * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
4815      * first window sum of data while skipping the first assuming it is the
4816      * header in FreeBSD.
4817      */
4818     for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
4819         wnd_sum += htole16(segs[frag_idx].ds_len);
4820     }
4821 
4822     /* check the first 10 bd window size */
4823     if (wnd_sum < lso_mss) {
4824         return (1);
4825     }
4826 
4827     /* run through the windows */
4828     for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
4829         /* subtract the first mbuf->m_len of the last wndw(-header) */
4830         wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
4831         /* add the next mbuf len to the len of our new window */
4832         wnd_sum += htole16(segs[frag_idx].ds_len);
4833         if (wnd_sum < lso_mss) {
4834             return (1);
4835         }
4836     }
4837 
4838     return (0);
4839 }
4840 
4841 static uint8_t
4842 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
4843                     struct mbuf         *m,
4844                     uint32_t            *parsing_data)
4845 {
4846     struct ether_vlan_header *eh = NULL;
4847     struct ip *ip4 = NULL;
4848     struct ip6_hdr *ip6 = NULL;
4849     caddr_t ip = NULL;
4850     struct tcphdr *th = NULL;
4851     int e_hlen, ip_hlen, l4_off;
4852     uint16_t proto;
4853 
4854     if (m->m_pkthdr.csum_flags == CSUM_IP) {
4855         /* no L4 checksum offload needed */
4856         return (0);
4857     }
4858 
4859     /* get the Ethernet header */
4860     eh = mtod(m, struct ether_vlan_header *);
4861 
4862     /* handle VLAN encapsulation if present */
4863     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
4864         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
4865         proto  = ntohs(eh->evl_proto);
4866     } else {
4867         e_hlen = ETHER_HDR_LEN;
4868         proto  = ntohs(eh->evl_encap_proto);
4869     }
4870 
4871     switch (proto) {
4872     case ETHERTYPE_IP:
4873         /* get the IP header, if mbuf len < 20 then header in next mbuf */
4874         ip4 = (m->m_len < sizeof(struct ip)) ?
4875                   (struct ip *)m->m_next->m_data :
4876                   (struct ip *)(m->m_data + e_hlen);
4877         /* ip_hl is number of 32-bit words */
4878         ip_hlen = (ip4->ip_hl << 2);
4879         ip = (caddr_t)ip4;
4880         break;
4881     case ETHERTYPE_IPV6:
4882         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
4883         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
4884                   (struct ip6_hdr *)m->m_next->m_data :
4885                   (struct ip6_hdr *)(m->m_data + e_hlen);
4886         /* XXX cannot support offload with IPv6 extensions */
4887         ip_hlen = sizeof(struct ip6_hdr);
4888         ip = (caddr_t)ip6;
4889         break;
4890     default:
4891         /* We can't offload in this case... */
4892         /* XXX error stat ??? */
4893         return (0);
4894     }
4895 
4896     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
4897     l4_off = (e_hlen + ip_hlen);
4898 
4899     *parsing_data |=
4900         (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
4901          ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
4902 
4903     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4904                                   CSUM_TSO |
4905                                   CSUM_TCP_IPV6)) {
4906         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
4907         th = (struct tcphdr *)(ip + ip_hlen);
4908         /* th_off is number of 32-bit words */
4909         *parsing_data |= ((th->th_off <<
4910                            ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
4911                           ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
4912         return (l4_off + (th->th_off << 2)); /* entire header length */
4913     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4914                                          CSUM_UDP_IPV6)) {
4915         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
4916         return (l4_off + sizeof(struct udphdr)); /* entire header length */
4917     } else {
4918         /* XXX error stat ??? */
4919         return (0);
4920     }
4921 }
4922 
4923 static uint8_t
4924 bxe_set_pbd_csum(struct bxe_fastpath        *fp,
4925                  struct mbuf                *m,
4926                  struct eth_tx_parse_bd_e1x *pbd)
4927 {
4928     struct ether_vlan_header *eh = NULL;
4929     struct ip *ip4 = NULL;
4930     struct ip6_hdr *ip6 = NULL;
4931     caddr_t ip = NULL;
4932     struct tcphdr *th = NULL;
4933     struct udphdr *uh = NULL;
4934     int e_hlen, ip_hlen;
4935     uint16_t proto;
4936     uint8_t hlen;
4937     uint16_t tmp_csum;
4938     uint32_t *tmp_uh;
4939 
4940     /* get the Ethernet header */
4941     eh = mtod(m, struct ether_vlan_header *);
4942 
4943     /* handle VLAN encapsulation if present */
4944     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
4945         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
4946         proto  = ntohs(eh->evl_proto);
4947     } else {
4948         e_hlen = ETHER_HDR_LEN;
4949         proto  = ntohs(eh->evl_encap_proto);
4950     }
4951 
4952     switch (proto) {
4953     case ETHERTYPE_IP:
4954         /* get the IP header, if mbuf len < 20 then header in next mbuf */
4955         ip4 = (m->m_len < sizeof(struct ip)) ?
4956                   (struct ip *)m->m_next->m_data :
4957                   (struct ip *)(m->m_data + e_hlen);
4958         /* ip_hl is number of 32-bit words */
4959         ip_hlen = (ip4->ip_hl << 1);
4960         ip = (caddr_t)ip4;
4961         break;
4962     case ETHERTYPE_IPV6:
4963         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
4964         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
4965                   (struct ip6_hdr *)m->m_next->m_data :
4966                   (struct ip6_hdr *)(m->m_data + e_hlen);
4967         /* XXX cannot support offload with IPv6 extensions */
4968         ip_hlen = (sizeof(struct ip6_hdr) >> 1);
4969         ip = (caddr_t)ip6;
4970         break;
4971     default:
4972         /* We can't offload in this case... */
4973         /* XXX error stat ??? */
4974         return (0);
4975     }
4976 
4977     hlen = (e_hlen >> 1);
4978 
4979     /* note that rest of global_data is indirectly zeroed here */
4980     if (m->m_flags & M_VLANTAG) {
4981         pbd->global_data =
4982             htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
4983     } else {
4984         pbd->global_data = htole16(hlen);
4985     }
4986 
4987     pbd->ip_hlen_w = ip_hlen;
4988 
4989     hlen += pbd->ip_hlen_w;
4990 
4991     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
4992 
4993     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4994                                   CSUM_TSO |
4995                                   CSUM_TCP_IPV6)) {
4996         th = (struct tcphdr *)(ip + (ip_hlen << 1));
4997         /* th_off is number of 32-bit words */
4998         hlen += (uint16_t)(th->th_off << 1);
4999     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5000                                          CSUM_UDP_IPV6)) {
5001         uh = (struct udphdr *)(ip + (ip_hlen << 1));
5002         hlen += (sizeof(struct udphdr) / 2);
5003     } else {
5004         /* valid case as only CSUM_IP was set */
5005         return (0);
5006     }
5007 
5008     pbd->total_hlen_w = htole16(hlen);
5009 
5010     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5011                                   CSUM_TSO |
5012                                   CSUM_TCP_IPV6)) {
5013         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5014         pbd->tcp_pseudo_csum = ntohs(th->th_sum);
5015     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5016                                          CSUM_UDP_IPV6)) {
5017         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5018 
5019         /*
5020          * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
5021          * checksums and does not know anything about the UDP header and where
5022          * the checksum field is located. It only knows about TCP. Therefore
5023          * we "lie" to the hardware for outgoing UDP packets w/ checksum
5024          * offload. Since the checksum field offset for TCP is 16 bytes and
5025          * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
5026          * bytes less than the start of the UDP header. This allows the
5027          * hardware to write the checksum in the correct spot. But the
5028          * hardware will compute a checksum which includes the last 10 bytes
5029          * of the IP header. To correct this we tweak the stack computed
5030          * pseudo checksum by folding in the calculation of the inverse
5031          * checksum for those final 10 bytes of the IP header. This allows
5032          * the correct checksum to be computed by the hardware.
5033          */
5034 
5035         /* set pointer 10 bytes before UDP header */
5036         tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5037 
5038         /* calculate a pseudo header checksum over the first 10 bytes */
5039         tmp_csum = in_pseudo(*tmp_uh,
5040                              *(tmp_uh + 1),
5041                              *(uint16_t *)(tmp_uh + 2));
5042 
5043         pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5044     }
5045 
5046     return (hlen * 2); /* entire header length, number of bytes */
5047 }
5048 
5049 static void
5050 bxe_set_pbd_lso_e2(struct mbuf *m,
5051                    uint32_t    *parsing_data)
5052 {
5053     *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5054                        ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5055                       ETH_TX_PARSE_BD_E2_LSO_MSS);
5056 
5057     /* XXX test for IPv6 with extension header... */
5058 }
5059 
5060 static void
5061 bxe_set_pbd_lso(struct mbuf                *m,
5062                 struct eth_tx_parse_bd_e1x *pbd)
5063 {
5064     struct ether_vlan_header *eh = NULL;
5065     struct ip *ip = NULL;
5066     struct tcphdr *th = NULL;
5067     int e_hlen;
5068 
5069     /* get the Ethernet header */
5070     eh = mtod(m, struct ether_vlan_header *);
5071 
5072     /* handle VLAN encapsulation if present */
5073     e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5074                  (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5075 
5076     /* get the IP and TCP header, with LSO entire header in first mbuf */
5077     /* XXX assuming IPv4 */
5078     ip = (struct ip *)(m->m_data + e_hlen);
5079     th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5080 
5081     pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5082     pbd->tcp_send_seq = ntohl(th->th_seq);
5083     pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5084 
5085 #if 1
5086         /* XXX IPv4 */
5087         pbd->ip_id = ntohs(ip->ip_id);
5088         pbd->tcp_pseudo_csum =
5089             ntohs(in_pseudo(ip->ip_src.s_addr,
5090                             ip->ip_dst.s_addr,
5091                             htons(IPPROTO_TCP)));
5092 #else
5093         /* XXX IPv6 */
5094         pbd->tcp_pseudo_csum =
5095             ntohs(in_pseudo(&ip6->ip6_src,
5096                             &ip6->ip6_dst,
5097                             htons(IPPROTO_TCP)));
5098 #endif
5099 
5100     pbd->global_data |=
5101         htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5102 }
5103 
5104 /*
5105  * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5106  * visible to the controller.
5107  *
5108  * If an mbuf is submitted to this routine and cannot be given to the
5109  * controller (e.g. it has too many fragments) then the function may free
5110  * the mbuf and return to the caller.
5111  *
5112  * Returns:
5113  *   0 = Success, !0 = Failure
5114  *   Note the side effect that an mbuf may be freed if it causes a problem.
5115  */
5116 static int
5117 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5118 {
5119     bus_dma_segment_t segs[32];
5120     struct mbuf *m0;
5121     struct bxe_sw_tx_bd *tx_buf;
5122     struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5123     struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5124     /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5125     struct eth_tx_bd *tx_data_bd;
5126     struct eth_tx_bd *tx_total_pkt_size_bd;
5127     struct eth_tx_start_bd *tx_start_bd;
5128     uint16_t bd_prod, pkt_prod, total_pkt_size;
5129     uint8_t mac_type;
5130     int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5131     struct bxe_softc *sc;
5132     uint16_t tx_bd_avail;
5133     struct ether_vlan_header *eh;
5134     uint32_t pbd_e2_parsing_data = 0;
5135     uint8_t hlen = 0;
5136     int tmp_bd;
5137     int i;
5138 
5139     sc = fp->sc;
5140 
5141 #if __FreeBSD_version >= 800000
5142     M_ASSERTPKTHDR(*m_head);
5143 #endif /* #if __FreeBSD_version >= 800000 */
5144 
5145     m0 = *m_head;
5146     rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5147     tx_start_bd = NULL;
5148     tx_data_bd = NULL;
5149     tx_total_pkt_size_bd = NULL;
5150 
5151     /* get the H/W pointer for packets and BDs */
5152     pkt_prod = fp->tx_pkt_prod;
5153     bd_prod = fp->tx_bd_prod;
5154 
5155     mac_type = UNICAST_ADDRESS;
5156 
5157     /* map the mbuf into the next open DMAable memory */
5158     tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5159     error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5160                                     tx_buf->m_map, m0,
5161                                     segs, &nsegs, BUS_DMA_NOWAIT);
5162 
5163     /* mapping errors */
5164     if(__predict_false(error != 0)) {
5165         fp->eth_q_stats.tx_dma_mapping_failure++;
5166         if (error == ENOMEM) {
5167             /* resource issue, try again later */
5168             rc = ENOMEM;
5169         } else if (error == EFBIG) {
5170             /* possibly recoverable with defragmentation */
5171             fp->eth_q_stats.mbuf_defrag_attempts++;
5172             m0 = m_defrag(*m_head, M_NOWAIT);
5173             if (m0 == NULL) {
5174                 fp->eth_q_stats.mbuf_defrag_failures++;
5175                 rc = ENOBUFS;
5176             } else {
5177                 /* defrag successful, try mapping again */
5178                 *m_head = m0;
5179                 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5180                                                 tx_buf->m_map, m0,
5181                                                 segs, &nsegs, BUS_DMA_NOWAIT);
5182                 if (error) {
5183                     fp->eth_q_stats.tx_dma_mapping_failure++;
5184                     rc = error;
5185                 }
5186             }
5187         } else {
5188             /* unknown, unrecoverable mapping error */
5189             BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5190             bxe_dump_mbuf(sc, m0, FALSE);
5191             rc = error;
5192         }
5193 
5194         goto bxe_tx_encap_continue;
5195     }
5196 
5197     tx_bd_avail = bxe_tx_avail(sc, fp);
5198 
5199     /* make sure there is enough room in the send queue */
5200     if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5201         /* Recoverable, try again later. */
5202         fp->eth_q_stats.tx_hw_queue_full++;
5203         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5204         rc = ENOMEM;
5205         goto bxe_tx_encap_continue;
5206     }
5207 
5208     /* capture the current H/W TX chain high watermark */
5209     if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5210                         (TX_BD_USABLE - tx_bd_avail))) {
5211         fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5212     }
5213 
5214     /* make sure it fits in the packet window */
5215     if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5216         /*
5217          * The mbuf may be to big for the controller to handle. If the frame
5218          * is a TSO frame we'll need to do an additional check.
5219          */
5220         if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5221             if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5222                 goto bxe_tx_encap_continue; /* OK to send */
5223             } else {
5224                 fp->eth_q_stats.tx_window_violation_tso++;
5225             }
5226         } else {
5227             fp->eth_q_stats.tx_window_violation_std++;
5228         }
5229 
5230         /* lets try to defragment this mbuf and remap it */
5231         fp->eth_q_stats.mbuf_defrag_attempts++;
5232         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5233 
5234         m0 = m_defrag(*m_head, M_NOWAIT);
5235         if (m0 == NULL) {
5236             fp->eth_q_stats.mbuf_defrag_failures++;
5237             /* Ugh, just drop the frame... :( */
5238             rc = ENOBUFS;
5239         } else {
5240             /* defrag successful, try mapping again */
5241             *m_head = m0;
5242             error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5243                                             tx_buf->m_map, m0,
5244                                             segs, &nsegs, BUS_DMA_NOWAIT);
5245             if (error) {
5246                 fp->eth_q_stats.tx_dma_mapping_failure++;
5247                 /* No sense in trying to defrag/copy chain, drop it. :( */
5248                 rc = error;
5249             } else {
5250                /* if the chain is still too long then drop it */
5251                 if(m0->m_pkthdr.csum_flags & CSUM_TSO) {
5252                     /*
5253                      * in case TSO is enabled nsegs should be checked against
5254                      * BXE_TSO_MAX_SEGMENTS
5255                      */
5256                     if (__predict_false(nsegs > BXE_TSO_MAX_SEGMENTS)) {
5257                         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5258                         fp->eth_q_stats.nsegs_path1_errors++;
5259                         rc = ENODEV;
5260                     }
5261                 } else {
5262                     if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5263                         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5264                         fp->eth_q_stats.nsegs_path2_errors++;
5265                         rc = ENODEV;
5266                     }
5267                 }
5268             }
5269         }
5270     }
5271 
5272 bxe_tx_encap_continue:
5273 
5274     /* Check for errors */
5275     if (rc) {
5276         if (rc == ENOMEM) {
5277             /* recoverable try again later  */
5278         } else {
5279             fp->eth_q_stats.tx_soft_errors++;
5280             fp->eth_q_stats.mbuf_alloc_tx--;
5281             m_freem(*m_head);
5282             *m_head = NULL;
5283         }
5284 
5285         return (rc);
5286     }
5287 
5288     /* set flag according to packet type (UNICAST_ADDRESS is default) */
5289     if (m0->m_flags & M_BCAST) {
5290         mac_type = BROADCAST_ADDRESS;
5291     } else if (m0->m_flags & M_MCAST) {
5292         mac_type = MULTICAST_ADDRESS;
5293     }
5294 
5295     /* store the mbuf into the mbuf ring */
5296     tx_buf->m        = m0;
5297     tx_buf->first_bd = fp->tx_bd_prod;
5298     tx_buf->flags    = 0;
5299 
5300     /* prepare the first transmit (start) BD for the mbuf */
5301     tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5302 
5303     BLOGD(sc, DBG_TX,
5304           "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5305           pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5306 
5307     tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5308     tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5309     tx_start_bd->nbytes  = htole16(segs[0].ds_len);
5310     total_pkt_size += tx_start_bd->nbytes;
5311     tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5312 
5313     tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5314 
5315     /* all frames have at least Start BD + Parsing BD */
5316     nbds = nsegs + 1;
5317     tx_start_bd->nbd = htole16(nbds);
5318 
5319     if (m0->m_flags & M_VLANTAG) {
5320         tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5321         tx_start_bd->bd_flags.as_bitfield |=
5322             (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5323     } else {
5324         /* vf tx, start bd must hold the ethertype for fw to enforce it */
5325         if (IS_VF(sc)) {
5326             /* map ethernet header to find type and header length */
5327             eh = mtod(m0, struct ether_vlan_header *);
5328             tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5329         } else {
5330             /* used by FW for packet accounting */
5331             tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5332         }
5333     }
5334 
5335     /*
5336      * add a parsing BD from the chain. The parsing BD is always added
5337      * though it is only used for TSO and chksum
5338      */
5339     bd_prod = TX_BD_NEXT(bd_prod);
5340 
5341     if (m0->m_pkthdr.csum_flags) {
5342         if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5343             fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5344             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5345         }
5346 
5347         if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5348             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5349                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5350         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5351             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6   |
5352                                                   ETH_TX_BD_FLAGS_IS_UDP |
5353                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5354         } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5355                    (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5356             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5357         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5358             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5359                                                   ETH_TX_BD_FLAGS_IS_UDP);
5360         }
5361     }
5362 
5363     if (!CHIP_IS_E1x(sc)) {
5364         pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5365         memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5366 
5367         if (m0->m_pkthdr.csum_flags) {
5368             hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5369         }
5370 
5371         SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5372                  mac_type);
5373     } else {
5374         uint16_t global_data = 0;
5375 
5376         pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5377         memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5378 
5379         if (m0->m_pkthdr.csum_flags) {
5380             hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5381         }
5382 
5383         SET_FLAG(global_data,
5384                  ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5385         pbd_e1x->global_data |= htole16(global_data);
5386     }
5387 
5388     /* setup the parsing BD with TSO specific info */
5389     if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5390         fp->eth_q_stats.tx_ofld_frames_lso++;
5391         tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5392 
5393         if (__predict_false(tx_start_bd->nbytes > hlen)) {
5394             fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5395 
5396             /* split the first BD into header/data making the fw job easy */
5397             nbds++;
5398             tx_start_bd->nbd = htole16(nbds);
5399             tx_start_bd->nbytes = htole16(hlen);
5400 
5401             bd_prod = TX_BD_NEXT(bd_prod);
5402 
5403             /* new transmit BD after the tx_parse_bd */
5404             tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5405             tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5406             tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5407             tx_data_bd->nbytes  = htole16(segs[0].ds_len - hlen);
5408             if (tx_total_pkt_size_bd == NULL) {
5409                 tx_total_pkt_size_bd = tx_data_bd;
5410             }
5411 
5412             BLOGD(sc, DBG_TX,
5413                   "TSO split header size is %d (%x:%x) nbds %d\n",
5414                   le16toh(tx_start_bd->nbytes),
5415                   le32toh(tx_start_bd->addr_hi),
5416                   le32toh(tx_start_bd->addr_lo),
5417                   nbds);
5418         }
5419 
5420         if (!CHIP_IS_E1x(sc)) {
5421             bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5422         } else {
5423             bxe_set_pbd_lso(m0, pbd_e1x);
5424         }
5425     }
5426 
5427     if (pbd_e2_parsing_data) {
5428         pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5429     }
5430 
5431     /* prepare remaining BDs, start tx bd contains first seg/frag */
5432     for (i = 1; i < nsegs ; i++) {
5433         bd_prod = TX_BD_NEXT(bd_prod);
5434         tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5435         tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5436         tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5437         tx_data_bd->nbytes  = htole16(segs[i].ds_len);
5438         if (tx_total_pkt_size_bd == NULL) {
5439             tx_total_pkt_size_bd = tx_data_bd;
5440         }
5441         total_pkt_size += tx_data_bd->nbytes;
5442     }
5443 
5444     BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5445 
5446     if (tx_total_pkt_size_bd != NULL) {
5447         tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5448     }
5449 
5450     if (__predict_false(sc->debug & DBG_TX)) {
5451         tmp_bd = tx_buf->first_bd;
5452         for (i = 0; i < nbds; i++)
5453         {
5454             if (i == 0) {
5455                 BLOGD(sc, DBG_TX,
5456                       "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5457                       "bd_flags=0x%x hdr_nbds=%d\n",
5458                       tx_start_bd,
5459                       tmp_bd,
5460                       le16toh(tx_start_bd->nbd),
5461                       le16toh(tx_start_bd->vlan_or_ethertype),
5462                       tx_start_bd->bd_flags.as_bitfield,
5463                       (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5464             } else if (i == 1) {
5465                 if (pbd_e1x) {
5466                     BLOGD(sc, DBG_TX,
5467                           "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5468                           "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5469                           "tcp_seq=%u total_hlen_w=%u\n",
5470                           pbd_e1x,
5471                           tmp_bd,
5472                           pbd_e1x->global_data,
5473                           pbd_e1x->ip_hlen_w,
5474                           pbd_e1x->ip_id,
5475                           pbd_e1x->lso_mss,
5476                           pbd_e1x->tcp_flags,
5477                           pbd_e1x->tcp_pseudo_csum,
5478                           pbd_e1x->tcp_send_seq,
5479                           le16toh(pbd_e1x->total_hlen_w));
5480                 } else { /* if (pbd_e2) */
5481                     BLOGD(sc, DBG_TX,
5482                           "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5483                           "src=%02x:%02x:%02x parsing_data=0x%x\n",
5484                           pbd_e2,
5485                           tmp_bd,
5486                           pbd_e2->data.mac_addr.dst_hi,
5487                           pbd_e2->data.mac_addr.dst_mid,
5488                           pbd_e2->data.mac_addr.dst_lo,
5489                           pbd_e2->data.mac_addr.src_hi,
5490                           pbd_e2->data.mac_addr.src_mid,
5491                           pbd_e2->data.mac_addr.src_lo,
5492                           pbd_e2->parsing_data);
5493                 }
5494             }
5495 
5496             if (i != 1) { /* skip parse db as it doesn't hold data */
5497                 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5498                 BLOGD(sc, DBG_TX,
5499                       "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5500                       tx_data_bd,
5501                       tmp_bd,
5502                       le16toh(tx_data_bd->nbytes),
5503                       le32toh(tx_data_bd->addr_hi),
5504                       le32toh(tx_data_bd->addr_lo));
5505             }
5506 
5507             tmp_bd = TX_BD_NEXT(tmp_bd);
5508         }
5509     }
5510 
5511     BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5512 
5513     /* update TX BD producer index value for next TX */
5514     bd_prod = TX_BD_NEXT(bd_prod);
5515 
5516     /*
5517      * If the chain of tx_bd's describing this frame is adjacent to or spans
5518      * an eth_tx_next_bd element then we need to increment the nbds value.
5519      */
5520     if (TX_BD_IDX(bd_prod) < nbds) {
5521         nbds++;
5522     }
5523 
5524     /* don't allow reordering of writes for nbd and packets */
5525     mb();
5526 
5527     fp->tx_db.data.prod += nbds;
5528 
5529     /* producer points to the next free tx_bd at this point */
5530     fp->tx_pkt_prod++;
5531     fp->tx_bd_prod = bd_prod;
5532 
5533     DOORBELL(sc, fp->index, fp->tx_db.raw);
5534 
5535     fp->eth_q_stats.tx_pkts++;
5536 
5537     /* Prevent speculative reads from getting ahead of the status block. */
5538     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5539                       0, 0, BUS_SPACE_BARRIER_READ);
5540 
5541     /* Prevent speculative reads from getting ahead of the doorbell. */
5542     bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5543                       0, 0, BUS_SPACE_BARRIER_READ);
5544 
5545     return (0);
5546 }
5547 
5548 static void
5549 bxe_tx_start_locked(struct bxe_softc *sc,
5550                     if_t ifp,
5551                     struct bxe_fastpath *fp)
5552 {
5553     struct mbuf *m = NULL;
5554     int tx_count = 0;
5555     uint16_t tx_bd_avail;
5556 
5557     BXE_FP_TX_LOCK_ASSERT(fp);
5558 
5559     /* keep adding entries while there are frames to send */
5560     while (!if_sendq_empty(ifp)) {
5561 
5562         /*
5563          * check for any frames to send
5564          * dequeue can still be NULL even if queue is not empty
5565          */
5566         m = if_dequeue(ifp);
5567         if (__predict_false(m == NULL)) {
5568             break;
5569         }
5570 
5571         /* the mbuf now belongs to us */
5572         fp->eth_q_stats.mbuf_alloc_tx++;
5573 
5574         /*
5575          * Put the frame into the transmit ring. If we don't have room,
5576          * place the mbuf back at the head of the TX queue, set the
5577          * OACTIVE flag, and wait for the NIC to drain the chain.
5578          */
5579         if (__predict_false(bxe_tx_encap(fp, &m))) {
5580             fp->eth_q_stats.tx_encap_failures++;
5581             if (m != NULL) {
5582                 /* mark the TX queue as full and return the frame */
5583                 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5584 		if_sendq_prepend(ifp, m);
5585                 fp->eth_q_stats.mbuf_alloc_tx--;
5586                 fp->eth_q_stats.tx_queue_xoff++;
5587             }
5588 
5589             /* stop looking for more work */
5590             break;
5591         }
5592 
5593         /* the frame was enqueued successfully */
5594         tx_count++;
5595 
5596         /* send a copy of the frame to any BPF listeners. */
5597         if_etherbpfmtap(ifp, m);
5598 
5599         tx_bd_avail = bxe_tx_avail(sc, fp);
5600 
5601         /* handle any completions if we're running low */
5602         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5603             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5604             bxe_txeof(sc, fp);
5605             if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5606                 break;
5607             }
5608         }
5609     }
5610 
5611     /* all TX packets were dequeued and/or the tx ring is full */
5612     if (tx_count > 0) {
5613         /* reset the TX watchdog timeout timer */
5614         fp->watchdog_timer = BXE_TX_TIMEOUT;
5615     }
5616 }
5617 
5618 /* Legacy (non-RSS) dispatch routine */
5619 static void
5620 bxe_tx_start(if_t ifp)
5621 {
5622     struct bxe_softc *sc;
5623     struct bxe_fastpath *fp;
5624 
5625     sc = if_getsoftc(ifp);
5626 
5627     if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5628         BLOGW(sc, "Interface not running, ignoring transmit request\n");
5629         return;
5630     }
5631 
5632     if (!sc->link_vars.link_up) {
5633         BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5634         return;
5635     }
5636 
5637     fp = &sc->fp[0];
5638 
5639     if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5640         fp->eth_q_stats.tx_queue_full_return++;
5641         return;
5642     }
5643 
5644     BXE_FP_TX_LOCK(fp);
5645     bxe_tx_start_locked(sc, ifp, fp);
5646     BXE_FP_TX_UNLOCK(fp);
5647 }
5648 
5649 #if __FreeBSD_version >= 901504
5650 
5651 static int
5652 bxe_tx_mq_start_locked(struct bxe_softc    *sc,
5653                        if_t                ifp,
5654                        struct bxe_fastpath *fp,
5655                        struct mbuf         *m)
5656 {
5657     struct buf_ring *tx_br = fp->tx_br;
5658     struct mbuf *next;
5659     int depth, rc, tx_count;
5660     uint16_t tx_bd_avail;
5661 
5662     rc = tx_count = 0;
5663 
5664     BXE_FP_TX_LOCK_ASSERT(fp);
5665 
5666     if (sc->state != BXE_STATE_OPEN)  {
5667         fp->eth_q_stats.bxe_tx_mq_sc_state_failures++;
5668         return ENETDOWN;
5669     }
5670 
5671     if (!tx_br) {
5672         BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
5673         return (EINVAL);
5674     }
5675 
5676     if (m != NULL) {
5677         rc = drbr_enqueue(ifp, tx_br, m);
5678         if (rc != 0) {
5679             fp->eth_q_stats.tx_soft_errors++;
5680             goto bxe_tx_mq_start_locked_exit;
5681         }
5682     }
5683 
5684     if (!sc->link_vars.link_up || !(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5685         fp->eth_q_stats.tx_request_link_down_failures++;
5686         goto bxe_tx_mq_start_locked_exit;
5687     }
5688 
5689     /* fetch the depth of the driver queue */
5690     depth = drbr_inuse_drv(ifp, tx_br);
5691     if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
5692         fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
5693     }
5694 
5695     /* keep adding entries while there are frames to send */
5696     while ((next = drbr_peek(ifp, tx_br)) != NULL) {
5697         /* handle any completions if we're running low */
5698         tx_bd_avail = bxe_tx_avail(sc, fp);
5699         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5700             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5701             bxe_txeof(sc, fp);
5702             tx_bd_avail = bxe_tx_avail(sc, fp);
5703             if (tx_bd_avail < (BXE_TSO_MAX_SEGMENTS + 1)) {
5704                 fp->eth_q_stats.bd_avail_too_less_failures++;
5705                 m_freem(next);
5706                 drbr_advance(ifp, tx_br);
5707                 rc = ENOBUFS;
5708                 break;
5709             }
5710         }
5711 
5712         /* the mbuf now belongs to us */
5713         fp->eth_q_stats.mbuf_alloc_tx++;
5714 
5715         /*
5716          * Put the frame into the transmit ring. If we don't have room,
5717          * place the mbuf back at the head of the TX queue, set the
5718          * OACTIVE flag, and wait for the NIC to drain the chain.
5719          */
5720         rc = bxe_tx_encap(fp, &next);
5721         if (__predict_false(rc != 0)) {
5722             fp->eth_q_stats.tx_encap_failures++;
5723             if (next != NULL) {
5724                 /* mark the TX queue as full and save the frame */
5725                 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5726                 drbr_putback(ifp, tx_br, next);
5727                 fp->eth_q_stats.mbuf_alloc_tx--;
5728                 fp->eth_q_stats.tx_frames_deferred++;
5729             } else
5730                 drbr_advance(ifp, tx_br);
5731 
5732             /* stop looking for more work */
5733             break;
5734         }
5735 
5736         /* the transmit frame was enqueued successfully */
5737         tx_count++;
5738 
5739         /* send a copy of the frame to any BPF listeners */
5740 	if_etherbpfmtap(ifp, next);
5741 
5742         drbr_advance(ifp, tx_br);
5743     }
5744 
5745     /* all TX packets were dequeued and/or the tx ring is full */
5746     if (tx_count > 0) {
5747         /* reset the TX watchdog timeout timer */
5748         fp->watchdog_timer = BXE_TX_TIMEOUT;
5749     }
5750 
5751 bxe_tx_mq_start_locked_exit:
5752     /* If we didn't drain the drbr, enqueue a task in the future to do it. */
5753     if (!drbr_empty(ifp, tx_br)) {
5754         fp->eth_q_stats.tx_mq_not_empty++;
5755         taskqueue_enqueue_timeout(fp->tq, &fp->tx_timeout_task, 1);
5756     }
5757 
5758     return (rc);
5759 }
5760 
5761 static void
5762 bxe_tx_mq_start_deferred(void *arg,
5763                          int pending)
5764 {
5765     struct bxe_fastpath *fp = (struct bxe_fastpath *)arg;
5766     struct bxe_softc *sc = fp->sc;
5767     if_t ifp = sc->ifp;
5768 
5769     BXE_FP_TX_LOCK(fp);
5770     bxe_tx_mq_start_locked(sc, ifp, fp, NULL);
5771     BXE_FP_TX_UNLOCK(fp);
5772 }
5773 
5774 /* Multiqueue (TSS) dispatch routine. */
5775 static int
5776 bxe_tx_mq_start(struct ifnet *ifp,
5777                 struct mbuf  *m)
5778 {
5779     struct bxe_softc *sc = if_getsoftc(ifp);
5780     struct bxe_fastpath *fp;
5781     int fp_index, rc;
5782 
5783     fp_index = 0; /* default is the first queue */
5784 
5785     /* check if flowid is set */
5786 
5787     if (BXE_VALID_FLOWID(m))
5788         fp_index = (m->m_pkthdr.flowid % sc->num_queues);
5789 
5790     fp = &sc->fp[fp_index];
5791 
5792     if (sc->state != BXE_STATE_OPEN)  {
5793         fp->eth_q_stats.bxe_tx_mq_sc_state_failures++;
5794         return ENETDOWN;
5795     }
5796 
5797     if (BXE_FP_TX_TRYLOCK(fp)) {
5798         rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
5799         BXE_FP_TX_UNLOCK(fp);
5800     } else {
5801         rc = drbr_enqueue(ifp, fp->tx_br, m);
5802         taskqueue_enqueue(fp->tq, &fp->tx_task);
5803     }
5804 
5805     return (rc);
5806 }
5807 
5808 static void
5809 bxe_mq_flush(struct ifnet *ifp)
5810 {
5811     struct bxe_softc *sc = if_getsoftc(ifp);
5812     struct bxe_fastpath *fp;
5813     struct mbuf *m;
5814     int i;
5815 
5816     for (i = 0; i < sc->num_queues; i++) {
5817         fp = &sc->fp[i];
5818 
5819         if (fp->state != BXE_FP_STATE_IRQ) {
5820             BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
5821                   fp->index, fp->state);
5822             continue;
5823         }
5824 
5825         if (fp->tx_br != NULL) {
5826             BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
5827             BXE_FP_TX_LOCK(fp);
5828             while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
5829                 m_freem(m);
5830             }
5831             BXE_FP_TX_UNLOCK(fp);
5832         }
5833     }
5834 
5835     if_qflush(ifp);
5836 }
5837 
5838 #endif /* FreeBSD_version >= 901504 */
5839 
5840 static uint16_t
5841 bxe_cid_ilt_lines(struct bxe_softc *sc)
5842 {
5843     if (IS_SRIOV(sc)) {
5844         return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
5845     }
5846     return (L2_ILT_LINES(sc));
5847 }
5848 
5849 static void
5850 bxe_ilt_set_info(struct bxe_softc *sc)
5851 {
5852     struct ilt_client_info *ilt_client;
5853     struct ecore_ilt *ilt = sc->ilt;
5854     uint16_t line = 0;
5855 
5856     ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
5857     BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
5858 
5859     /* CDU */
5860     ilt_client = &ilt->clients[ILT_CLIENT_CDU];
5861     ilt_client->client_num = ILT_CLIENT_CDU;
5862     ilt_client->page_size = CDU_ILT_PAGE_SZ;
5863     ilt_client->flags = ILT_CLIENT_SKIP_MEM;
5864     ilt_client->start = line;
5865     line += bxe_cid_ilt_lines(sc);
5866 
5867     if (CNIC_SUPPORT(sc)) {
5868         line += CNIC_ILT_LINES;
5869     }
5870 
5871     ilt_client->end = (line - 1);
5872 
5873     BLOGD(sc, DBG_LOAD,
5874           "ilt client[CDU]: start %d, end %d, "
5875           "psz 0x%x, flags 0x%x, hw psz %d\n",
5876           ilt_client->start, ilt_client->end,
5877           ilt_client->page_size,
5878           ilt_client->flags,
5879           ilog2(ilt_client->page_size >> 12));
5880 
5881     /* QM */
5882     if (QM_INIT(sc->qm_cid_count)) {
5883         ilt_client = &ilt->clients[ILT_CLIENT_QM];
5884         ilt_client->client_num = ILT_CLIENT_QM;
5885         ilt_client->page_size = QM_ILT_PAGE_SZ;
5886         ilt_client->flags = 0;
5887         ilt_client->start = line;
5888 
5889         /* 4 bytes for each cid */
5890         line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
5891                              QM_ILT_PAGE_SZ);
5892 
5893         ilt_client->end = (line - 1);
5894 
5895         BLOGD(sc, DBG_LOAD,
5896               "ilt client[QM]: start %d, end %d, "
5897               "psz 0x%x, flags 0x%x, hw psz %d\n",
5898               ilt_client->start, ilt_client->end,
5899               ilt_client->page_size, ilt_client->flags,
5900               ilog2(ilt_client->page_size >> 12));
5901     }
5902 
5903     if (CNIC_SUPPORT(sc)) {
5904         /* SRC */
5905         ilt_client = &ilt->clients[ILT_CLIENT_SRC];
5906         ilt_client->client_num = ILT_CLIENT_SRC;
5907         ilt_client->page_size = SRC_ILT_PAGE_SZ;
5908         ilt_client->flags = 0;
5909         ilt_client->start = line;
5910         line += SRC_ILT_LINES;
5911         ilt_client->end = (line - 1);
5912 
5913         BLOGD(sc, DBG_LOAD,
5914               "ilt client[SRC]: start %d, end %d, "
5915               "psz 0x%x, flags 0x%x, hw psz %d\n",
5916               ilt_client->start, ilt_client->end,
5917               ilt_client->page_size, ilt_client->flags,
5918               ilog2(ilt_client->page_size >> 12));
5919 
5920         /* TM */
5921         ilt_client = &ilt->clients[ILT_CLIENT_TM];
5922         ilt_client->client_num = ILT_CLIENT_TM;
5923         ilt_client->page_size = TM_ILT_PAGE_SZ;
5924         ilt_client->flags = 0;
5925         ilt_client->start = line;
5926         line += TM_ILT_LINES;
5927         ilt_client->end = (line - 1);
5928 
5929         BLOGD(sc, DBG_LOAD,
5930               "ilt client[TM]: start %d, end %d, "
5931               "psz 0x%x, flags 0x%x, hw psz %d\n",
5932               ilt_client->start, ilt_client->end,
5933               ilt_client->page_size, ilt_client->flags,
5934               ilog2(ilt_client->page_size >> 12));
5935     }
5936 
5937     KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
5938 }
5939 
5940 static void
5941 bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
5942 {
5943     int i;
5944     uint32_t rx_buf_size;
5945 
5946     rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
5947 
5948     for (i = 0; i < sc->num_queues; i++) {
5949         if(rx_buf_size <= MCLBYTES){
5950             sc->fp[i].rx_buf_size = rx_buf_size;
5951             sc->fp[i].mbuf_alloc_size = MCLBYTES;
5952         }else if (rx_buf_size <= MJUMPAGESIZE){
5953             sc->fp[i].rx_buf_size = rx_buf_size;
5954             sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
5955         }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){
5956             sc->fp[i].rx_buf_size = MCLBYTES;
5957             sc->fp[i].mbuf_alloc_size = MCLBYTES;
5958         }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){
5959             sc->fp[i].rx_buf_size = MJUMPAGESIZE;
5960             sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
5961         }else {
5962             sc->fp[i].rx_buf_size = MCLBYTES;
5963             sc->fp[i].mbuf_alloc_size = MCLBYTES;
5964         }
5965     }
5966 }
5967 
5968 static int
5969 bxe_alloc_ilt_mem(struct bxe_softc *sc)
5970 {
5971     int rc = 0;
5972 
5973     if ((sc->ilt =
5974          (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
5975                                     M_BXE_ILT,
5976                                     (M_NOWAIT | M_ZERO))) == NULL) {
5977         rc = 1;
5978     }
5979 
5980     return (rc);
5981 }
5982 
5983 static int
5984 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
5985 {
5986     int rc = 0;
5987 
5988     if ((sc->ilt->lines =
5989          (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
5990                                     M_BXE_ILT,
5991                                     (M_NOWAIT | M_ZERO))) == NULL) {
5992         rc = 1;
5993     }
5994 
5995     return (rc);
5996 }
5997 
5998 static void
5999 bxe_free_ilt_mem(struct bxe_softc *sc)
6000 {
6001     if (sc->ilt != NULL) {
6002         free(sc->ilt, M_BXE_ILT);
6003         sc->ilt = NULL;
6004     }
6005 }
6006 
6007 static void
6008 bxe_free_ilt_lines_mem(struct bxe_softc *sc)
6009 {
6010     if (sc->ilt->lines != NULL) {
6011         free(sc->ilt->lines, M_BXE_ILT);
6012         sc->ilt->lines = NULL;
6013     }
6014 }
6015 
6016 static void
6017 bxe_free_mem(struct bxe_softc *sc)
6018 {
6019     int i;
6020 
6021     for (i = 0; i < L2_ILT_LINES(sc); i++) {
6022         bxe_dma_free(sc, &sc->context[i].vcxt_dma);
6023         sc->context[i].vcxt = NULL;
6024         sc->context[i].size = 0;
6025     }
6026 
6027     ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
6028 
6029     bxe_free_ilt_lines_mem(sc);
6030 
6031 }
6032 
6033 static int
6034 bxe_alloc_mem(struct bxe_softc *sc)
6035 {
6036 
6037     int context_size;
6038     int allocated;
6039     int i;
6040 
6041     /*
6042      * Allocate memory for CDU context:
6043      * This memory is allocated separately and not in the generic ILT
6044      * functions because CDU differs in few aspects:
6045      * 1. There can be multiple entities allocating memory for context -
6046      * regular L2, CNIC, and SRIOV drivers. Each separately controls
6047      * its own ILT lines.
6048      * 2. Since CDU page-size is not a single 4KB page (which is the case
6049      * for the other ILT clients), to be efficient we want to support
6050      * allocation of sub-page-size in the last entry.
6051      * 3. Context pointers are used by the driver to pass to FW / update
6052      * the context (for the other ILT clients the pointers are used just to
6053      * free the memory during unload).
6054      */
6055     context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
6056     for (i = 0, allocated = 0; allocated < context_size; i++) {
6057         sc->context[i].size = min(CDU_ILT_PAGE_SZ,
6058                                   (context_size - allocated));
6059 
6060         if (bxe_dma_alloc(sc, sc->context[i].size,
6061                           &sc->context[i].vcxt_dma,
6062                           "cdu context") != 0) {
6063             bxe_free_mem(sc);
6064             return (-1);
6065         }
6066 
6067         sc->context[i].vcxt =
6068             (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
6069 
6070         allocated += sc->context[i].size;
6071     }
6072 
6073     bxe_alloc_ilt_lines_mem(sc);
6074 
6075     BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6076           sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6077     {
6078         for (i = 0; i < 4; i++) {
6079             BLOGD(sc, DBG_LOAD,
6080                   "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6081                   i,
6082                   sc->ilt->clients[i].page_size,
6083                   sc->ilt->clients[i].start,
6084                   sc->ilt->clients[i].end,
6085                   sc->ilt->clients[i].client_num,
6086                   sc->ilt->clients[i].flags);
6087         }
6088     }
6089     if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6090         BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6091         bxe_free_mem(sc);
6092         return (-1);
6093     }
6094 
6095     return (0);
6096 }
6097 
6098 static void
6099 bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6100 {
6101     struct bxe_softc *sc;
6102     int i;
6103 
6104     sc = fp->sc;
6105 
6106     if (fp->rx_mbuf_tag == NULL) {
6107         return;
6108     }
6109 
6110     /* free all mbufs and unload all maps */
6111     for (i = 0; i < RX_BD_TOTAL; i++) {
6112         if (fp->rx_mbuf_chain[i].m_map != NULL) {
6113             bus_dmamap_sync(fp->rx_mbuf_tag,
6114                             fp->rx_mbuf_chain[i].m_map,
6115                             BUS_DMASYNC_POSTREAD);
6116             bus_dmamap_unload(fp->rx_mbuf_tag,
6117                               fp->rx_mbuf_chain[i].m_map);
6118         }
6119 
6120         if (fp->rx_mbuf_chain[i].m != NULL) {
6121             m_freem(fp->rx_mbuf_chain[i].m);
6122             fp->rx_mbuf_chain[i].m = NULL;
6123             fp->eth_q_stats.mbuf_alloc_rx--;
6124         }
6125     }
6126 }
6127 
6128 static void
6129 bxe_free_tpa_pool(struct bxe_fastpath *fp)
6130 {
6131     struct bxe_softc *sc;
6132     int i, max_agg_queues;
6133 
6134     sc = fp->sc;
6135 
6136     if (fp->rx_mbuf_tag == NULL) {
6137         return;
6138     }
6139 
6140     max_agg_queues = MAX_AGG_QS(sc);
6141 
6142     /* release all mbufs and unload all DMA maps in the TPA pool */
6143     for (i = 0; i < max_agg_queues; i++) {
6144         if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6145             bus_dmamap_sync(fp->rx_mbuf_tag,
6146                             fp->rx_tpa_info[i].bd.m_map,
6147                             BUS_DMASYNC_POSTREAD);
6148             bus_dmamap_unload(fp->rx_mbuf_tag,
6149                               fp->rx_tpa_info[i].bd.m_map);
6150         }
6151 
6152         if (fp->rx_tpa_info[i].bd.m != NULL) {
6153             m_freem(fp->rx_tpa_info[i].bd.m);
6154             fp->rx_tpa_info[i].bd.m = NULL;
6155             fp->eth_q_stats.mbuf_alloc_tpa--;
6156         }
6157     }
6158 }
6159 
6160 static void
6161 bxe_free_sge_chain(struct bxe_fastpath *fp)
6162 {
6163     struct bxe_softc *sc;
6164     int i;
6165 
6166     sc = fp->sc;
6167 
6168     if (fp->rx_sge_mbuf_tag == NULL) {
6169         return;
6170     }
6171 
6172     /* rree all mbufs and unload all maps */
6173     for (i = 0; i < RX_SGE_TOTAL; i++) {
6174         if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6175             bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6176                             fp->rx_sge_mbuf_chain[i].m_map,
6177                             BUS_DMASYNC_POSTREAD);
6178             bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6179                               fp->rx_sge_mbuf_chain[i].m_map);
6180         }
6181 
6182         if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6183             m_freem(fp->rx_sge_mbuf_chain[i].m);
6184             fp->rx_sge_mbuf_chain[i].m = NULL;
6185             fp->eth_q_stats.mbuf_alloc_sge--;
6186         }
6187     }
6188 }
6189 
6190 static void
6191 bxe_free_fp_buffers(struct bxe_softc *sc)
6192 {
6193     struct bxe_fastpath *fp;
6194     int i;
6195 
6196     for (i = 0; i < sc->num_queues; i++) {
6197         fp = &sc->fp[i];
6198 
6199 #if __FreeBSD_version >= 901504
6200         if (fp->tx_br != NULL) {
6201             /* just in case bxe_mq_flush() wasn't called */
6202             if (mtx_initialized(&fp->tx_mtx)) {
6203                 struct mbuf *m;
6204 
6205                 BXE_FP_TX_LOCK(fp);
6206                 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL)
6207                     m_freem(m);
6208                 BXE_FP_TX_UNLOCK(fp);
6209             }
6210         }
6211 #endif
6212 
6213         /* free all RX buffers */
6214         bxe_free_rx_bd_chain(fp);
6215         bxe_free_tpa_pool(fp);
6216         bxe_free_sge_chain(fp);
6217 
6218         if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6219             BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6220                   fp->eth_q_stats.mbuf_alloc_rx);
6221         }
6222 
6223         if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6224             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6225                   fp->eth_q_stats.mbuf_alloc_sge);
6226         }
6227 
6228         if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6229             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6230                   fp->eth_q_stats.mbuf_alloc_tpa);
6231         }
6232 
6233         if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6234             BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6235                   fp->eth_q_stats.mbuf_alloc_tx);
6236         }
6237 
6238         /* XXX verify all mbufs were reclaimed */
6239     }
6240 }
6241 
6242 static int
6243 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6244                      uint16_t            prev_index,
6245                      uint16_t            index)
6246 {
6247     struct bxe_sw_rx_bd *rx_buf;
6248     struct eth_rx_bd *rx_bd;
6249     bus_dma_segment_t segs[1];
6250     bus_dmamap_t map;
6251     struct mbuf *m;
6252     int nsegs, rc;
6253 
6254     rc = 0;
6255 
6256     /* allocate the new RX BD mbuf */
6257     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6258     if (__predict_false(m == NULL)) {
6259         fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6260         return (ENOBUFS);
6261     }
6262 
6263     fp->eth_q_stats.mbuf_alloc_rx++;
6264 
6265     /* initialize the mbuf buffer length */
6266     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6267 
6268     /* map the mbuf into non-paged pool */
6269     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6270                                  fp->rx_mbuf_spare_map,
6271                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6272     if (__predict_false(rc != 0)) {
6273         fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6274         m_freem(m);
6275         fp->eth_q_stats.mbuf_alloc_rx--;
6276         return (rc);
6277     }
6278 
6279     /* all mbufs must map to a single segment */
6280     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6281 
6282     /* release any existing RX BD mbuf mappings */
6283 
6284     if (prev_index != index) {
6285         rx_buf = &fp->rx_mbuf_chain[prev_index];
6286 
6287         if (rx_buf->m_map != NULL) {
6288             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6289                             BUS_DMASYNC_POSTREAD);
6290             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6291         }
6292 
6293         /*
6294          * We only get here from bxe_rxeof() when the maximum number
6295          * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6296          * holds the mbuf in the prev_index so it's OK to NULL it out
6297          * here without concern of a memory leak.
6298          */
6299         fp->rx_mbuf_chain[prev_index].m = NULL;
6300     }
6301 
6302     rx_buf = &fp->rx_mbuf_chain[index];
6303 
6304     if (rx_buf->m_map != NULL) {
6305         bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6306                         BUS_DMASYNC_POSTREAD);
6307         bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6308     }
6309 
6310     /* save the mbuf and mapping info for a future packet */
6311     map = (prev_index != index) ?
6312               fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6313     rx_buf->m_map = fp->rx_mbuf_spare_map;
6314     fp->rx_mbuf_spare_map = map;
6315     bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6316                     BUS_DMASYNC_PREREAD);
6317     rx_buf->m = m;
6318 
6319     rx_bd = &fp->rx_chain[index];
6320     rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6321     rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6322 
6323     return (rc);
6324 }
6325 
6326 static int
6327 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6328                       int                 queue)
6329 {
6330     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6331     bus_dma_segment_t segs[1];
6332     bus_dmamap_t map;
6333     struct mbuf *m;
6334     int nsegs;
6335     int rc = 0;
6336 
6337     /* allocate the new TPA mbuf */
6338     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6339     if (__predict_false(m == NULL)) {
6340         fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6341         return (ENOBUFS);
6342     }
6343 
6344     fp->eth_q_stats.mbuf_alloc_tpa++;
6345 
6346     /* initialize the mbuf buffer length */
6347     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6348 
6349     /* map the mbuf into non-paged pool */
6350     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6351                                  fp->rx_tpa_info_mbuf_spare_map,
6352                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6353     if (__predict_false(rc != 0)) {
6354         fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6355         m_free(m);
6356         fp->eth_q_stats.mbuf_alloc_tpa--;
6357         return (rc);
6358     }
6359 
6360     /* all mbufs must map to a single segment */
6361     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6362 
6363     /* release any existing TPA mbuf mapping */
6364     if (tpa_info->bd.m_map != NULL) {
6365         bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6366                         BUS_DMASYNC_POSTREAD);
6367         bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6368     }
6369 
6370     /* save the mbuf and mapping info for the TPA mbuf */
6371     map = tpa_info->bd.m_map;
6372     tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6373     fp->rx_tpa_info_mbuf_spare_map = map;
6374     bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6375                     BUS_DMASYNC_PREREAD);
6376     tpa_info->bd.m = m;
6377     tpa_info->seg = segs[0];
6378 
6379     return (rc);
6380 }
6381 
6382 /*
6383  * Allocate an mbuf and assign it to the receive scatter gather chain. The
6384  * caller must take care to save a copy of the existing mbuf in the SG mbuf
6385  * chain.
6386  */
6387 static int
6388 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6389                       uint16_t            index)
6390 {
6391     struct bxe_sw_rx_bd *sge_buf;
6392     struct eth_rx_sge *sge;
6393     bus_dma_segment_t segs[1];
6394     bus_dmamap_t map;
6395     struct mbuf *m;
6396     int nsegs;
6397     int rc = 0;
6398 
6399     /* allocate a new SGE mbuf */
6400     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6401     if (__predict_false(m == NULL)) {
6402         fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6403         return (ENOMEM);
6404     }
6405 
6406     fp->eth_q_stats.mbuf_alloc_sge++;
6407 
6408     /* initialize the mbuf buffer length */
6409     m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6410 
6411     /* map the SGE mbuf into non-paged pool */
6412     rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6413                                  fp->rx_sge_mbuf_spare_map,
6414                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6415     if (__predict_false(rc != 0)) {
6416         fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6417         m_freem(m);
6418         fp->eth_q_stats.mbuf_alloc_sge--;
6419         return (rc);
6420     }
6421 
6422     /* all mbufs must map to a single segment */
6423     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6424 
6425     sge_buf = &fp->rx_sge_mbuf_chain[index];
6426 
6427     /* release any existing SGE mbuf mapping */
6428     if (sge_buf->m_map != NULL) {
6429         bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6430                         BUS_DMASYNC_POSTREAD);
6431         bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6432     }
6433 
6434     /* save the mbuf and mapping info for a future packet */
6435     map = sge_buf->m_map;
6436     sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6437     fp->rx_sge_mbuf_spare_map = map;
6438     bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6439                     BUS_DMASYNC_PREREAD);
6440     sge_buf->m = m;
6441 
6442     sge = &fp->rx_sge_chain[index];
6443     sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6444     sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6445 
6446     return (rc);
6447 }
6448 
6449 static __noinline int
6450 bxe_alloc_fp_buffers(struct bxe_softc *sc)
6451 {
6452     struct bxe_fastpath *fp;
6453     int i, j, rc = 0;
6454     int ring_prod, cqe_ring_prod;
6455     int max_agg_queues;
6456 
6457     for (i = 0; i < sc->num_queues; i++) {
6458         fp = &sc->fp[i];
6459 
6460         ring_prod = cqe_ring_prod = 0;
6461         fp->rx_bd_cons = 0;
6462         fp->rx_cq_cons = 0;
6463 
6464         /* allocate buffers for the RX BDs in RX BD chain */
6465         for (j = 0; j < sc->max_rx_bufs; j++) {
6466             rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6467             if (rc != 0) {
6468                 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6469                       i, rc);
6470                 goto bxe_alloc_fp_buffers_error;
6471             }
6472 
6473             ring_prod     = RX_BD_NEXT(ring_prod);
6474             cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6475         }
6476 
6477         fp->rx_bd_prod = ring_prod;
6478         fp->rx_cq_prod = cqe_ring_prod;
6479         fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6480 
6481         max_agg_queues = MAX_AGG_QS(sc);
6482 
6483         fp->tpa_enable = TRUE;
6484 
6485         /* fill the TPA pool */
6486         for (j = 0; j < max_agg_queues; j++) {
6487             rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6488             if (rc != 0) {
6489                 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6490                           i, j);
6491                 fp->tpa_enable = FALSE;
6492                 goto bxe_alloc_fp_buffers_error;
6493             }
6494 
6495             fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6496         }
6497 
6498         if (fp->tpa_enable) {
6499             /* fill the RX SGE chain */
6500             ring_prod = 0;
6501             for (j = 0; j < RX_SGE_USABLE; j++) {
6502                 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6503                 if (rc != 0) {
6504                     BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6505                               i, ring_prod);
6506                     fp->tpa_enable = FALSE;
6507                     ring_prod = 0;
6508                     goto bxe_alloc_fp_buffers_error;
6509                 }
6510 
6511                 ring_prod = RX_SGE_NEXT(ring_prod);
6512             }
6513 
6514             fp->rx_sge_prod = ring_prod;
6515         }
6516     }
6517 
6518     return (0);
6519 
6520 bxe_alloc_fp_buffers_error:
6521 
6522     /* unwind what was already allocated */
6523     bxe_free_rx_bd_chain(fp);
6524     bxe_free_tpa_pool(fp);
6525     bxe_free_sge_chain(fp);
6526 
6527     return (ENOBUFS);
6528 }
6529 
6530 static void
6531 bxe_free_fw_stats_mem(struct bxe_softc *sc)
6532 {
6533     bxe_dma_free(sc, &sc->fw_stats_dma);
6534 
6535     sc->fw_stats_num = 0;
6536 
6537     sc->fw_stats_req_size = 0;
6538     sc->fw_stats_req = NULL;
6539     sc->fw_stats_req_mapping = 0;
6540 
6541     sc->fw_stats_data_size = 0;
6542     sc->fw_stats_data = NULL;
6543     sc->fw_stats_data_mapping = 0;
6544 }
6545 
6546 static int
6547 bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6548 {
6549     uint8_t num_queue_stats;
6550     int num_groups;
6551 
6552     /* number of queues for statistics is number of eth queues */
6553     num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6554 
6555     /*
6556      * Total number of FW statistics requests =
6557      *   1 for port stats + 1 for PF stats + num of queues
6558      */
6559     sc->fw_stats_num = (2 + num_queue_stats);
6560 
6561     /*
6562      * Request is built from stats_query_header and an array of
6563      * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6564      * rules. The real number or requests is configured in the
6565      * stats_query_header.
6566      */
6567     num_groups =
6568         ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6569          ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6570 
6571     BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6572           sc->fw_stats_num, num_groups);
6573 
6574     sc->fw_stats_req_size =
6575         (sizeof(struct stats_query_header) +
6576          (num_groups * sizeof(struct stats_query_cmd_group)));
6577 
6578     /*
6579      * Data for statistics requests + stats_counter.
6580      * stats_counter holds per-STORM counters that are incremented when
6581      * STORM has finished with the current request. Memory for FCoE
6582      * offloaded statistics are counted anyway, even if they will not be sent.
6583      * VF stats are not accounted for here as the data of VF stats is stored
6584      * in memory allocated by the VF, not here.
6585      */
6586     sc->fw_stats_data_size =
6587         (sizeof(struct stats_counter) +
6588          sizeof(struct per_port_stats) +
6589          sizeof(struct per_pf_stats) +
6590          /* sizeof(struct fcoe_statistics_params) + */
6591          (sizeof(struct per_queue_stats) * num_queue_stats));
6592 
6593     if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6594                       &sc->fw_stats_dma, "fw stats") != 0) {
6595         bxe_free_fw_stats_mem(sc);
6596         return (-1);
6597     }
6598 
6599     /* set up the shortcuts */
6600 
6601     sc->fw_stats_req =
6602         (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6603     sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6604 
6605     sc->fw_stats_data =
6606         (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6607                                      sc->fw_stats_req_size);
6608     sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6609                                  sc->fw_stats_req_size);
6610 
6611     BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6612           (uintmax_t)sc->fw_stats_req_mapping);
6613 
6614     BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6615           (uintmax_t)sc->fw_stats_data_mapping);
6616 
6617     return (0);
6618 }
6619 
6620 /*
6621  * Bits map:
6622  * 0-7  - Engine0 load counter.
6623  * 8-15 - Engine1 load counter.
6624  * 16   - Engine0 RESET_IN_PROGRESS bit.
6625  * 17   - Engine1 RESET_IN_PROGRESS bit.
6626  * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
6627  *        function on the engine
6628  * 19   - Engine1 ONE_IS_LOADED.
6629  * 20   - Chip reset flow bit. When set none-leader must wait for both engines
6630  *        leader to complete (check for both RESET_IN_PROGRESS bits and not
6631  *        for just the one belonging to its engine).
6632  */
6633 #define BXE_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
6634 #define BXE_PATH0_LOAD_CNT_MASK   0x000000ff
6635 #define BXE_PATH0_LOAD_CNT_SHIFT  0
6636 #define BXE_PATH1_LOAD_CNT_MASK   0x0000ff00
6637 #define BXE_PATH1_LOAD_CNT_SHIFT  8
6638 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
6639 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
6640 #define BXE_GLOBAL_RESET_BIT      0x00040000
6641 
6642 /* set the GLOBAL_RESET bit, should be run under rtnl lock */
6643 static void
6644 bxe_set_reset_global(struct bxe_softc *sc)
6645 {
6646     uint32_t val;
6647     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6648     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6649     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
6650     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6651 }
6652 
6653 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */
6654 static void
6655 bxe_clear_reset_global(struct bxe_softc *sc)
6656 {
6657     uint32_t val;
6658     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6659     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6660     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
6661     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6662 }
6663 
6664 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */
6665 static uint8_t
6666 bxe_reset_is_global(struct bxe_softc *sc)
6667 {
6668     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6669     BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
6670     return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
6671 }
6672 
6673 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
6674 static void
6675 bxe_set_reset_done(struct bxe_softc *sc)
6676 {
6677     uint32_t val;
6678     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6679                                  BXE_PATH0_RST_IN_PROG_BIT;
6680 
6681     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6682 
6683     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6684     /* Clear the bit */
6685     val &= ~bit;
6686     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6687 
6688     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6689 }
6690 
6691 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
6692 static void
6693 bxe_set_reset_in_progress(struct bxe_softc *sc)
6694 {
6695     uint32_t val;
6696     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6697                                  BXE_PATH0_RST_IN_PROG_BIT;
6698 
6699     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6700 
6701     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6702     /* Set the bit */
6703     val |= bit;
6704     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6705 
6706     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6707 }
6708 
6709 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
6710 static uint8_t
6711 bxe_reset_is_done(struct bxe_softc *sc,
6712                   int              engine)
6713 {
6714     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6715     uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
6716                             BXE_PATH0_RST_IN_PROG_BIT;
6717 
6718     /* return false if bit is set */
6719     return (val & bit) ? FALSE : TRUE;
6720 }
6721 
6722 /* get the load status for an engine, should be run under rtnl lock */
6723 static uint8_t
6724 bxe_get_load_status(struct bxe_softc *sc,
6725                     int              engine)
6726 {
6727     uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
6728                              BXE_PATH0_LOAD_CNT_MASK;
6729     uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
6730                               BXE_PATH0_LOAD_CNT_SHIFT;
6731     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6732 
6733     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
6734 
6735     val = ((val & mask) >> shift);
6736 
6737     BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
6738 
6739     return (val != 0);
6740 }
6741 
6742 /* set pf load mark */
6743 /* XXX needs to be under rtnl lock */
6744 static void
6745 bxe_set_pf_load(struct bxe_softc *sc)
6746 {
6747     uint32_t val;
6748     uint32_t val1;
6749     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
6750                                   BXE_PATH0_LOAD_CNT_MASK;
6751     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
6752                                    BXE_PATH0_LOAD_CNT_SHIFT;
6753 
6754     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6755 
6756     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6757     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
6758 
6759     /* get the current counter value */
6760     val1 = ((val & mask) >> shift);
6761 
6762     /* set bit of this PF */
6763     val1 |= (1 << SC_ABS_FUNC(sc));
6764 
6765     /* clear the old value */
6766     val &= ~mask;
6767 
6768     /* set the new one */
6769     val |= ((val1 << shift) & mask);
6770 
6771     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6772 
6773     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6774 }
6775 
6776 /* clear pf load mark */
6777 /* XXX needs to be under rtnl lock */
6778 static uint8_t
6779 bxe_clear_pf_load(struct bxe_softc *sc)
6780 {
6781     uint32_t val1, val;
6782     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
6783                                   BXE_PATH0_LOAD_CNT_MASK;
6784     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
6785                                    BXE_PATH0_LOAD_CNT_SHIFT;
6786 
6787     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6788     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6789     BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
6790 
6791     /* get the current counter value */
6792     val1 = (val & mask) >> shift;
6793 
6794     /* clear bit of that PF */
6795     val1 &= ~(1 << SC_ABS_FUNC(sc));
6796 
6797     /* clear the old value */
6798     val &= ~mask;
6799 
6800     /* set the new one */
6801     val |= ((val1 << shift) & mask);
6802 
6803     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6804     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6805     return (val1 != 0);
6806 }
6807 
6808 /* send load requrest to mcp and analyze response */
6809 static int
6810 bxe_nic_load_request(struct bxe_softc *sc,
6811                      uint32_t         *load_code)
6812 {
6813     /* init fw_seq */
6814     sc->fw_seq =
6815         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
6816          DRV_MSG_SEQ_NUMBER_MASK);
6817 
6818     BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
6819 
6820     /* get the current FW pulse sequence */
6821     sc->fw_drv_pulse_wr_seq =
6822         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
6823          DRV_PULSE_SEQ_MASK);
6824 
6825     BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
6826           sc->fw_drv_pulse_wr_seq);
6827 
6828     /* load request */
6829     (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
6830                                   DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
6831 
6832     /* if the MCP fails to respond we must abort */
6833     if (!(*load_code)) {
6834         BLOGE(sc, "MCP response failure!\n");
6835         return (-1);
6836     }
6837 
6838     /* if MCP refused then must abort */
6839     if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
6840         BLOGE(sc, "MCP refused load request\n");
6841         return (-1);
6842     }
6843 
6844     return (0);
6845 }
6846 
6847 /*
6848  * Check whether another PF has already loaded FW to chip. In virtualized
6849  * environments a pf from anoth VM may have already initialized the device
6850  * including loading FW.
6851  */
6852 static int
6853 bxe_nic_load_analyze_req(struct bxe_softc *sc,
6854                          uint32_t         load_code)
6855 {
6856     uint32_t my_fw, loaded_fw;
6857 
6858     /* is another pf loaded on this engine? */
6859     if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
6860         (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
6861         /* build my FW version dword */
6862         my_fw = (BCM_5710_FW_MAJOR_VERSION +
6863                  (BCM_5710_FW_MINOR_VERSION << 8 ) +
6864                  (BCM_5710_FW_REVISION_VERSION << 16) +
6865                  (BCM_5710_FW_ENGINEERING_VERSION << 24));
6866 
6867         /* read loaded FW from chip */
6868         loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
6869         BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
6870               loaded_fw, my_fw);
6871 
6872         /* abort nic load if version mismatch */
6873         if (my_fw != loaded_fw) {
6874             BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
6875                   loaded_fw, my_fw);
6876             return (-1);
6877         }
6878     }
6879 
6880     return (0);
6881 }
6882 
6883 /* mark PMF if applicable */
6884 static void
6885 bxe_nic_load_pmf(struct bxe_softc *sc,
6886                  uint32_t         load_code)
6887 {
6888     uint32_t ncsi_oem_data_addr;
6889 
6890     if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
6891         (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
6892         (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
6893         /*
6894          * Barrier here for ordering between the writing to sc->port.pmf here
6895          * and reading it from the periodic task.
6896          */
6897         sc->port.pmf = 1;
6898         mb();
6899     } else {
6900         sc->port.pmf = 0;
6901     }
6902 
6903     BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
6904 
6905     /* XXX needed? */
6906     if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
6907         if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
6908             ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
6909             if (ncsi_oem_data_addr) {
6910                 REG_WR(sc,
6911                        (ncsi_oem_data_addr +
6912                         offsetof(struct glob_ncsi_oem_data, driver_version)),
6913                        0);
6914             }
6915         }
6916     }
6917 }
6918 
6919 static void
6920 bxe_read_mf_cfg(struct bxe_softc *sc)
6921 {
6922     int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
6923     int abs_func;
6924     int vn;
6925 
6926     if (BXE_NOMCP(sc)) {
6927         return; /* what should be the default bvalue in this case */
6928     }
6929 
6930     /*
6931      * The formula for computing the absolute function number is...
6932      * For 2 port configuration (4 functions per port):
6933      *   abs_func = 2 * vn + SC_PORT + SC_PATH
6934      * For 4 port configuration (2 functions per port):
6935      *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
6936      */
6937     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
6938         abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
6939         if (abs_func >= E1H_FUNC_MAX) {
6940             break;
6941         }
6942         sc->devinfo.mf_info.mf_config[vn] =
6943             MFCFG_RD(sc, func_mf_config[abs_func].config);
6944     }
6945 
6946     if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
6947         FUNC_MF_CFG_FUNC_DISABLED) {
6948         BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
6949         sc->flags |= BXE_MF_FUNC_DIS;
6950     } else {
6951         BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
6952         sc->flags &= ~BXE_MF_FUNC_DIS;
6953     }
6954 }
6955 
6956 /* acquire split MCP access lock register */
6957 static int bxe_acquire_alr(struct bxe_softc *sc)
6958 {
6959     uint32_t j, val;
6960 
6961     for (j = 0; j < 1000; j++) {
6962         val = (1UL << 31);
6963         REG_WR(sc, GRCBASE_MCP + 0x9c, val);
6964         val = REG_RD(sc, GRCBASE_MCP + 0x9c);
6965         if (val & (1L << 31))
6966             break;
6967 
6968         DELAY(5000);
6969     }
6970 
6971     if (!(val & (1L << 31))) {
6972         BLOGE(sc, "Cannot acquire MCP access lock register\n");
6973         return (-1);
6974     }
6975 
6976     return (0);
6977 }
6978 
6979 /* release split MCP access lock register */
6980 static void bxe_release_alr(struct bxe_softc *sc)
6981 {
6982     REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
6983 }
6984 
6985 static void
6986 bxe_fan_failure(struct bxe_softc *sc)
6987 {
6988     int port = SC_PORT(sc);
6989     uint32_t ext_phy_config;
6990 
6991     /* mark the failure */
6992     ext_phy_config =
6993         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
6994 
6995     ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
6996     ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
6997     SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
6998              ext_phy_config);
6999 
7000     /* log the failure */
7001     BLOGW(sc, "Fan Failure has caused the driver to shutdown "
7002               "the card to prevent permanent damage. "
7003               "Please contact OEM Support for assistance\n");
7004 
7005     /* XXX */
7006 #if 1
7007     bxe_panic(sc, ("Schedule task to handle fan failure\n"));
7008 #else
7009     /*
7010      * Schedule device reset (unload)
7011      * This is due to some boards consuming sufficient power when driver is
7012      * up to overheat if fan fails.
7013      */
7014     bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
7015     schedule_delayed_work(&sc->sp_rtnl_task, 0);
7016 #endif
7017 }
7018 
7019 /* this function is called upon a link interrupt */
7020 static void
7021 bxe_link_attn(struct bxe_softc *sc)
7022 {
7023     uint32_t pause_enabled = 0;
7024     struct host_port_stats *pstats;
7025     int cmng_fns;
7026     struct bxe_fastpath *fp;
7027     int i;
7028 
7029     /* Make sure that we are synced with the current statistics */
7030     bxe_stats_handle(sc, STATS_EVENT_STOP);
7031 	BLOGI(sc, "link_vars phy_flags : %x\n", sc->link_vars.phy_flags);
7032     elink_link_update(&sc->link_params, &sc->link_vars);
7033 
7034     if (sc->link_vars.link_up) {
7035 
7036         /* dropless flow control */
7037         if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
7038             pause_enabled = 0;
7039 
7040             if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
7041                 pause_enabled = 1;
7042             }
7043 
7044             REG_WR(sc,
7045                    (BAR_USTRORM_INTMEM +
7046                     USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
7047                    pause_enabled);
7048         }
7049 
7050         if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
7051             pstats = BXE_SP(sc, port_stats);
7052             /* reset old mac stats */
7053             memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
7054         }
7055 
7056         if (sc->state == BXE_STATE_OPEN) {
7057             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
7058         }
7059 
7060 	/* Restart tx when the link comes back. */
7061         FOR_EACH_ETH_QUEUE(sc, i) {
7062             fp = &sc->fp[i];
7063             taskqueue_enqueue(fp->tq, &fp->tx_task);
7064 	}
7065     }
7066 
7067     if (sc->link_vars.link_up && sc->link_vars.line_speed) {
7068         cmng_fns = bxe_get_cmng_fns_mode(sc);
7069 
7070         if (cmng_fns != CMNG_FNS_NONE) {
7071             bxe_cmng_fns_init(sc, FALSE, cmng_fns);
7072             storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7073         } else {
7074             /* rate shaping and fairness are disabled */
7075             BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
7076         }
7077     }
7078 
7079     bxe_link_report_locked(sc);
7080 
7081     if (IS_MF(sc)) {
7082         ; // XXX bxe_link_sync_notify(sc);
7083     }
7084 }
7085 
7086 static void
7087 bxe_attn_int_asserted(struct bxe_softc *sc,
7088                       uint32_t         asserted)
7089 {
7090     int port = SC_PORT(sc);
7091     uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7092                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
7093     uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7094                                         NIG_REG_MASK_INTERRUPT_PORT0;
7095     uint32_t aeu_mask;
7096     uint32_t nig_mask = 0;
7097     uint32_t reg_addr;
7098     uint32_t igu_acked;
7099     uint32_t cnt;
7100 
7101     if (sc->attn_state & asserted) {
7102         BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7103     }
7104 
7105     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7106 
7107     aeu_mask = REG_RD(sc, aeu_addr);
7108 
7109     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7110           aeu_mask, asserted);
7111 
7112     aeu_mask &= ~(asserted & 0x3ff);
7113 
7114     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7115 
7116     REG_WR(sc, aeu_addr, aeu_mask);
7117 
7118     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7119 
7120     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7121     sc->attn_state |= asserted;
7122     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7123 
7124     if (asserted & ATTN_HARD_WIRED_MASK) {
7125         if (asserted & ATTN_NIG_FOR_FUNC) {
7126 
7127 	    bxe_acquire_phy_lock(sc);
7128             /* save nig interrupt mask */
7129             nig_mask = REG_RD(sc, nig_int_mask_addr);
7130 
7131             /* If nig_mask is not set, no need to call the update function */
7132             if (nig_mask) {
7133                 REG_WR(sc, nig_int_mask_addr, 0);
7134 
7135                 bxe_link_attn(sc);
7136             }
7137 
7138             /* handle unicore attn? */
7139         }
7140 
7141         if (asserted & ATTN_SW_TIMER_4_FUNC) {
7142             BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7143         }
7144 
7145         if (asserted & GPIO_2_FUNC) {
7146             BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7147         }
7148 
7149         if (asserted & GPIO_3_FUNC) {
7150             BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7151         }
7152 
7153         if (asserted & GPIO_4_FUNC) {
7154             BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7155         }
7156 
7157         if (port == 0) {
7158             if (asserted & ATTN_GENERAL_ATTN_1) {
7159                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7160                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7161             }
7162             if (asserted & ATTN_GENERAL_ATTN_2) {
7163                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7164                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7165             }
7166             if (asserted & ATTN_GENERAL_ATTN_3) {
7167                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7168                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7169             }
7170         } else {
7171             if (asserted & ATTN_GENERAL_ATTN_4) {
7172                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7173                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7174             }
7175             if (asserted & ATTN_GENERAL_ATTN_5) {
7176                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7177                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7178             }
7179             if (asserted & ATTN_GENERAL_ATTN_6) {
7180                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7181                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7182             }
7183         }
7184     } /* hardwired */
7185 
7186     if (sc->devinfo.int_block == INT_BLOCK_HC) {
7187         reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7188     } else {
7189         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7190     }
7191 
7192     BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7193           asserted,
7194           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7195     REG_WR(sc, reg_addr, asserted);
7196 
7197     /* now set back the mask */
7198     if (asserted & ATTN_NIG_FOR_FUNC) {
7199         /*
7200          * Verify that IGU ack through BAR was written before restoring
7201          * NIG mask. This loop should exit after 2-3 iterations max.
7202          */
7203         if (sc->devinfo.int_block != INT_BLOCK_HC) {
7204             cnt = 0;
7205 
7206             do {
7207                 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7208             } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7209                      (++cnt < MAX_IGU_ATTN_ACK_TO));
7210 
7211             if (!igu_acked) {
7212                 BLOGE(sc, "Failed to verify IGU ack on time\n");
7213             }
7214 
7215             mb();
7216         }
7217 
7218         REG_WR(sc, nig_int_mask_addr, nig_mask);
7219 
7220 	bxe_release_phy_lock(sc);
7221     }
7222 }
7223 
7224 static void
7225 bxe_print_next_block(struct bxe_softc *sc,
7226                      int              idx,
7227                      const char       *blk)
7228 {
7229     BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7230 }
7231 
7232 static int
7233 bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7234                               uint32_t         sig,
7235                               int              par_num,
7236                               uint8_t          print)
7237 {
7238     uint32_t cur_bit = 0;
7239     int i = 0;
7240 
7241     for (i = 0; sig; i++) {
7242         cur_bit = ((uint32_t)0x1 << i);
7243         if (sig & cur_bit) {
7244             switch (cur_bit) {
7245             case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7246                 if (print)
7247                     bxe_print_next_block(sc, par_num++, "BRB");
7248                 break;
7249             case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7250                 if (print)
7251                     bxe_print_next_block(sc, par_num++, "PARSER");
7252                 break;
7253             case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7254                 if (print)
7255                     bxe_print_next_block(sc, par_num++, "TSDM");
7256                 break;
7257             case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7258                 if (print)
7259                     bxe_print_next_block(sc, par_num++, "SEARCHER");
7260                 break;
7261             case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7262                 if (print)
7263                     bxe_print_next_block(sc, par_num++, "TCM");
7264                 break;
7265             case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7266                 if (print)
7267                     bxe_print_next_block(sc, par_num++, "TSEMI");
7268                 break;
7269             case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7270                 if (print)
7271                     bxe_print_next_block(sc, par_num++, "XPB");
7272                 break;
7273             }
7274 
7275             /* Clear the bit */
7276             sig &= ~cur_bit;
7277         }
7278     }
7279 
7280     return (par_num);
7281 }
7282 
7283 static int
7284 bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7285                               uint32_t         sig,
7286                               int              par_num,
7287                               uint8_t          *global,
7288                               uint8_t          print)
7289 {
7290     int i = 0;
7291     uint32_t cur_bit = 0;
7292     for (i = 0; sig; i++) {
7293         cur_bit = ((uint32_t)0x1 << i);
7294         if (sig & cur_bit) {
7295             switch (cur_bit) {
7296             case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7297                 if (print)
7298                     bxe_print_next_block(sc, par_num++, "PBF");
7299                 break;
7300             case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7301                 if (print)
7302                     bxe_print_next_block(sc, par_num++, "QM");
7303                 break;
7304             case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7305                 if (print)
7306                     bxe_print_next_block(sc, par_num++, "TM");
7307                 break;
7308             case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7309                 if (print)
7310                     bxe_print_next_block(sc, par_num++, "XSDM");
7311                 break;
7312             case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7313                 if (print)
7314                     bxe_print_next_block(sc, par_num++, "XCM");
7315                 break;
7316             case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7317                 if (print)
7318                     bxe_print_next_block(sc, par_num++, "XSEMI");
7319                 break;
7320             case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7321                 if (print)
7322                     bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7323                 break;
7324             case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7325                 if (print)
7326                     bxe_print_next_block(sc, par_num++, "NIG");
7327                 break;
7328             case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7329                 if (print)
7330                     bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7331                 *global = TRUE;
7332                 break;
7333             case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7334                 if (print)
7335                     bxe_print_next_block(sc, par_num++, "DEBUG");
7336                 break;
7337             case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7338                 if (print)
7339                     bxe_print_next_block(sc, par_num++, "USDM");
7340                 break;
7341             case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7342                 if (print)
7343                     bxe_print_next_block(sc, par_num++, "UCM");
7344                 break;
7345             case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7346                 if (print)
7347                     bxe_print_next_block(sc, par_num++, "USEMI");
7348                 break;
7349             case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7350                 if (print)
7351                     bxe_print_next_block(sc, par_num++, "UPB");
7352                 break;
7353             case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7354                 if (print)
7355                     bxe_print_next_block(sc, par_num++, "CSDM");
7356                 break;
7357             case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7358                 if (print)
7359                     bxe_print_next_block(sc, par_num++, "CCM");
7360                 break;
7361             }
7362 
7363             /* Clear the bit */
7364             sig &= ~cur_bit;
7365         }
7366     }
7367 
7368     return (par_num);
7369 }
7370 
7371 static int
7372 bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7373                               uint32_t         sig,
7374                               int              par_num,
7375                               uint8_t          print)
7376 {
7377     uint32_t cur_bit = 0;
7378     int i = 0;
7379 
7380     for (i = 0; sig; i++) {
7381         cur_bit = ((uint32_t)0x1 << i);
7382         if (sig & cur_bit) {
7383             switch (cur_bit) {
7384             case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7385                 if (print)
7386                     bxe_print_next_block(sc, par_num++, "CSEMI");
7387                 break;
7388             case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7389                 if (print)
7390                     bxe_print_next_block(sc, par_num++, "PXP");
7391                 break;
7392             case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7393                 if (print)
7394                     bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7395                 break;
7396             case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7397                 if (print)
7398                     bxe_print_next_block(sc, par_num++, "CFC");
7399                 break;
7400             case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7401                 if (print)
7402                     bxe_print_next_block(sc, par_num++, "CDU");
7403                 break;
7404             case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7405                 if (print)
7406                     bxe_print_next_block(sc, par_num++, "DMAE");
7407                 break;
7408             case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7409                 if (print)
7410                     bxe_print_next_block(sc, par_num++, "IGU");
7411                 break;
7412             case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7413                 if (print)
7414                     bxe_print_next_block(sc, par_num++, "MISC");
7415                 break;
7416             }
7417 
7418             /* Clear the bit */
7419             sig &= ~cur_bit;
7420         }
7421     }
7422 
7423     return (par_num);
7424 }
7425 
7426 static int
7427 bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7428                               uint32_t         sig,
7429                               int              par_num,
7430                               uint8_t          *global,
7431                               uint8_t          print)
7432 {
7433     uint32_t cur_bit = 0;
7434     int i = 0;
7435 
7436     for (i = 0; sig; i++) {
7437         cur_bit = ((uint32_t)0x1 << i);
7438         if (sig & cur_bit) {
7439             switch (cur_bit) {
7440             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7441                 if (print)
7442                     bxe_print_next_block(sc, par_num++, "MCP ROM");
7443                 *global = TRUE;
7444                 break;
7445             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7446                 if (print)
7447                     bxe_print_next_block(sc, par_num++,
7448                               "MCP UMP RX");
7449                 *global = TRUE;
7450                 break;
7451             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7452                 if (print)
7453                     bxe_print_next_block(sc, par_num++,
7454                               "MCP UMP TX");
7455                 *global = TRUE;
7456                 break;
7457             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7458                 if (print)
7459                     bxe_print_next_block(sc, par_num++,
7460                               "MCP SCPAD");
7461                 *global = TRUE;
7462                 break;
7463             }
7464 
7465             /* Clear the bit */
7466             sig &= ~cur_bit;
7467         }
7468     }
7469 
7470     return (par_num);
7471 }
7472 
7473 static int
7474 bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7475                               uint32_t         sig,
7476                               int              par_num,
7477                               uint8_t          print)
7478 {
7479     uint32_t cur_bit = 0;
7480     int i = 0;
7481 
7482     for (i = 0; sig; i++) {
7483         cur_bit = ((uint32_t)0x1 << i);
7484         if (sig & cur_bit) {
7485             switch (cur_bit) {
7486             case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7487                 if (print)
7488                     bxe_print_next_block(sc, par_num++, "PGLUE_B");
7489                 break;
7490             case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7491                 if (print)
7492                     bxe_print_next_block(sc, par_num++, "ATC");
7493                 break;
7494             }
7495 
7496             /* Clear the bit */
7497             sig &= ~cur_bit;
7498         }
7499     }
7500 
7501     return (par_num);
7502 }
7503 
7504 static uint8_t
7505 bxe_parity_attn(struct bxe_softc *sc,
7506                 uint8_t          *global,
7507                 uint8_t          print,
7508                 uint32_t         *sig)
7509 {
7510     int par_num = 0;
7511 
7512     if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7513         (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7514         (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7515         (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7516         (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7517         BLOGE(sc, "Parity error: HW block parity attention:\n"
7518                   "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7519               (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7520               (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7521               (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7522               (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7523               (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7524 
7525         if (print)
7526             BLOGI(sc, "Parity errors detected in blocks: ");
7527 
7528         par_num =
7529             bxe_check_blocks_with_parity0(sc, sig[0] &
7530                                           HW_PRTY_ASSERT_SET_0,
7531                                           par_num, print);
7532         par_num =
7533             bxe_check_blocks_with_parity1(sc, sig[1] &
7534                                           HW_PRTY_ASSERT_SET_1,
7535                                           par_num, global, print);
7536         par_num =
7537             bxe_check_blocks_with_parity2(sc, sig[2] &
7538                                           HW_PRTY_ASSERT_SET_2,
7539                                           par_num, print);
7540         par_num =
7541             bxe_check_blocks_with_parity3(sc, sig[3] &
7542                                           HW_PRTY_ASSERT_SET_3,
7543                                           par_num, global, print);
7544         par_num =
7545             bxe_check_blocks_with_parity4(sc, sig[4] &
7546                                           HW_PRTY_ASSERT_SET_4,
7547                                           par_num, print);
7548 
7549         if (print)
7550             BLOGI(sc, "\n");
7551 
7552         return (TRUE);
7553     }
7554 
7555     return (FALSE);
7556 }
7557 
7558 static uint8_t
7559 bxe_chk_parity_attn(struct bxe_softc *sc,
7560                     uint8_t          *global,
7561                     uint8_t          print)
7562 {
7563     struct attn_route attn = { {0} };
7564     int port = SC_PORT(sc);
7565 
7566     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7567     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7568     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7569     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7570 
7571     /*
7572      * Since MCP attentions can't be disabled inside the block, we need to
7573      * read AEU registers to see whether they're currently disabled
7574      */
7575     attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
7576                                       : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) &
7577                          MISC_AEU_ENABLE_MCP_PRTY_BITS) |
7578                         ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
7579 
7580 
7581     if (!CHIP_IS_E1x(sc))
7582         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7583 
7584     return (bxe_parity_attn(sc, global, print, attn.sig));
7585 }
7586 
7587 static void
7588 bxe_attn_int_deasserted4(struct bxe_softc *sc,
7589                          uint32_t         attn)
7590 {
7591     uint32_t val;
7592 
7593     if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7594         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7595         BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7596         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7597             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7598         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7599             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7600         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7601             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7602         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7603             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7604         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7605             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7606         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7607             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7608         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7609             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7610         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7611             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7612         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7613             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7614     }
7615 
7616     if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7617         val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7618         BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7619         if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7620             BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7621         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7622             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7623         if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7624             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7625         if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7626             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7627         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7628             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7629         if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7630             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7631     }
7632 
7633     if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7634                 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7635         BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7636               (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7637                                  AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7638     }
7639 }
7640 
7641 static void
7642 bxe_e1h_disable(struct bxe_softc *sc)
7643 {
7644     int port = SC_PORT(sc);
7645 
7646     bxe_tx_disable(sc);
7647 
7648     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7649 }
7650 
7651 static void
7652 bxe_e1h_enable(struct bxe_softc *sc)
7653 {
7654     int port = SC_PORT(sc);
7655 
7656     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7657 
7658     // XXX bxe_tx_enable(sc);
7659 }
7660 
7661 /*
7662  * called due to MCP event (on pmf):
7663  *   reread new bandwidth configuration
7664  *   configure FW
7665  *   notify others function about the change
7666  */
7667 static void
7668 bxe_config_mf_bw(struct bxe_softc *sc)
7669 {
7670     if (sc->link_vars.link_up) {
7671         bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
7672         // XXX bxe_link_sync_notify(sc);
7673     }
7674 
7675     storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7676 }
7677 
7678 static void
7679 bxe_set_mf_bw(struct bxe_softc *sc)
7680 {
7681     bxe_config_mf_bw(sc);
7682     bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
7683 }
7684 
7685 static void
7686 bxe_handle_eee_event(struct bxe_softc *sc)
7687 {
7688     BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
7689     bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
7690 }
7691 
7692 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
7693 
7694 static void
7695 bxe_drv_info_ether_stat(struct bxe_softc *sc)
7696 {
7697     struct eth_stats_info *ether_stat =
7698         &sc->sp->drv_info_to_mcp.ether_stat;
7699 
7700     strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
7701             ETH_STAT_INFO_VERSION_LEN);
7702 
7703     /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
7704     sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
7705                                           DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
7706                                           ether_stat->mac_local + MAC_PAD,
7707                                           MAC_PAD, ETH_ALEN);
7708 
7709     ether_stat->mtu_size = sc->mtu;
7710 
7711     ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
7712     if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
7713         ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
7714     }
7715 
7716     // XXX ether_stat->feature_flags |= ???;
7717 
7718     ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
7719 
7720     ether_stat->txq_size = sc->tx_ring_size;
7721     ether_stat->rxq_size = sc->rx_ring_size;
7722 }
7723 
7724 static void
7725 bxe_handle_drv_info_req(struct bxe_softc *sc)
7726 {
7727     enum drv_info_opcode op_code;
7728     uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
7729 
7730     /* if drv_info version supported by MFW doesn't match - send NACK */
7731     if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
7732         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
7733         return;
7734     }
7735 
7736     op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
7737                DRV_INFO_CONTROL_OP_CODE_SHIFT);
7738 
7739     memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
7740 
7741     switch (op_code) {
7742     case ETH_STATS_OPCODE:
7743         bxe_drv_info_ether_stat(sc);
7744         break;
7745     case FCOE_STATS_OPCODE:
7746     case ISCSI_STATS_OPCODE:
7747     default:
7748         /* if op code isn't supported - send NACK */
7749         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
7750         return;
7751     }
7752 
7753     /*
7754      * If we got drv_info attn from MFW then these fields are defined in
7755      * shmem2 for sure
7756      */
7757     SHMEM2_WR(sc, drv_info_host_addr_lo,
7758               U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
7759     SHMEM2_WR(sc, drv_info_host_addr_hi,
7760               U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
7761 
7762     bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
7763 }
7764 
7765 static void
7766 bxe_dcc_event(struct bxe_softc *sc,
7767               uint32_t         dcc_event)
7768 {
7769     BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
7770 
7771     if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
7772         /*
7773          * This is the only place besides the function initialization
7774          * where the sc->flags can change so it is done without any
7775          * locks
7776          */
7777         if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
7778             BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
7779             sc->flags |= BXE_MF_FUNC_DIS;
7780             bxe_e1h_disable(sc);
7781         } else {
7782             BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
7783             sc->flags &= ~BXE_MF_FUNC_DIS;
7784             bxe_e1h_enable(sc);
7785         }
7786         dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
7787     }
7788 
7789     if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
7790         bxe_config_mf_bw(sc);
7791         dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
7792     }
7793 
7794     /* Report results to MCP */
7795     if (dcc_event)
7796         bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
7797     else
7798         bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
7799 }
7800 
7801 static void
7802 bxe_pmf_update(struct bxe_softc *sc)
7803 {
7804     int port = SC_PORT(sc);
7805     uint32_t val;
7806 
7807     sc->port.pmf = 1;
7808     BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
7809 
7810     /*
7811      * We need the mb() to ensure the ordering between the writing to
7812      * sc->port.pmf here and reading it from the bxe_periodic_task().
7813      */
7814     mb();
7815 
7816     /* queue a periodic task */
7817     // XXX schedule task...
7818 
7819     // XXX bxe_dcbx_pmf_update(sc);
7820 
7821     /* enable nig attention */
7822     val = (0xff0f | (1 << (SC_VN(sc) + 4)));
7823     if (sc->devinfo.int_block == INT_BLOCK_HC) {
7824         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
7825         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
7826     } else if (!CHIP_IS_E1x(sc)) {
7827         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
7828         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
7829     }
7830 
7831     bxe_stats_handle(sc, STATS_EVENT_PMF);
7832 }
7833 
7834 static int
7835 bxe_mc_assert(struct bxe_softc *sc)
7836 {
7837     char last_idx;
7838     int i, rc = 0;
7839     uint32_t row0, row1, row2, row3;
7840 
7841     /* XSTORM */
7842     last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
7843     if (last_idx)
7844         BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7845 
7846     /* print the asserts */
7847     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7848 
7849         row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
7850         row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
7851         row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
7852         row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
7853 
7854         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7855             BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7856                   i, row3, row2, row1, row0);
7857             rc++;
7858         } else {
7859             break;
7860         }
7861     }
7862 
7863     /* TSTORM */
7864     last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
7865     if (last_idx) {
7866         BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7867     }
7868 
7869     /* print the asserts */
7870     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7871 
7872         row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
7873         row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
7874         row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
7875         row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
7876 
7877         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7878             BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7879                   i, row3, row2, row1, row0);
7880             rc++;
7881         } else {
7882             break;
7883         }
7884     }
7885 
7886     /* CSTORM */
7887     last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
7888     if (last_idx) {
7889         BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7890     }
7891 
7892     /* print the asserts */
7893     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7894 
7895         row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
7896         row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
7897         row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
7898         row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
7899 
7900         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7901             BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7902                   i, row3, row2, row1, row0);
7903             rc++;
7904         } else {
7905             break;
7906         }
7907     }
7908 
7909     /* USTORM */
7910     last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
7911     if (last_idx) {
7912         BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7913     }
7914 
7915     /* print the asserts */
7916     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7917 
7918         row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
7919         row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
7920         row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
7921         row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
7922 
7923         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7924             BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7925                   i, row3, row2, row1, row0);
7926             rc++;
7927         } else {
7928             break;
7929         }
7930     }
7931 
7932     return (rc);
7933 }
7934 
7935 static void
7936 bxe_attn_int_deasserted3(struct bxe_softc *sc,
7937                          uint32_t         attn)
7938 {
7939     int func = SC_FUNC(sc);
7940     uint32_t val;
7941 
7942     if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
7943 
7944         if (attn & BXE_PMF_LINK_ASSERT(sc)) {
7945 
7946             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7947             bxe_read_mf_cfg(sc);
7948             sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
7949                 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
7950             val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
7951 
7952             if (val & DRV_STATUS_DCC_EVENT_MASK)
7953                 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
7954 
7955             if (val & DRV_STATUS_SET_MF_BW)
7956                 bxe_set_mf_bw(sc);
7957 
7958             if (val & DRV_STATUS_DRV_INFO_REQ)
7959                 bxe_handle_drv_info_req(sc);
7960 
7961             if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
7962                 bxe_pmf_update(sc);
7963 
7964             if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
7965                 bxe_handle_eee_event(sc);
7966 
7967             if (sc->link_vars.periodic_flags &
7968                 ELINK_PERIODIC_FLAGS_LINK_EVENT) {
7969                 /* sync with link */
7970 		bxe_acquire_phy_lock(sc);
7971                 sc->link_vars.periodic_flags &=
7972                     ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
7973 		bxe_release_phy_lock(sc);
7974                 if (IS_MF(sc))
7975                     ; // XXX bxe_link_sync_notify(sc);
7976                 bxe_link_report(sc);
7977             }
7978 
7979             /*
7980              * Always call it here: bxe_link_report() will
7981              * prevent the link indication duplication.
7982              */
7983             bxe_link_status_update(sc);
7984 
7985         } else if (attn & BXE_MC_ASSERT_BITS) {
7986 
7987             BLOGE(sc, "MC assert!\n");
7988             bxe_mc_assert(sc);
7989             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
7990             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
7991             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
7992             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
7993             bxe_panic(sc, ("MC assert!\n"));
7994 
7995         } else if (attn & BXE_MCP_ASSERT) {
7996 
7997             BLOGE(sc, "MCP assert!\n");
7998             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
7999             // XXX bxe_fw_dump(sc);
8000 
8001         } else {
8002             BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
8003         }
8004     }
8005 
8006     if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
8007         BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
8008         if (attn & BXE_GRC_TIMEOUT) {
8009             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
8010             BLOGE(sc, "GRC time-out 0x%08x\n", val);
8011         }
8012         if (attn & BXE_GRC_RSV) {
8013             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
8014             BLOGE(sc, "GRC reserved 0x%08x\n", val);
8015         }
8016         REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
8017     }
8018 }
8019 
8020 static void
8021 bxe_attn_int_deasserted2(struct bxe_softc *sc,
8022                          uint32_t         attn)
8023 {
8024     int port = SC_PORT(sc);
8025     int reg_offset;
8026     uint32_t val0, mask0, val1, mask1;
8027     uint32_t val;
8028 
8029     if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
8030         val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
8031         BLOGE(sc, "CFC hw attention 0x%08x\n", val);
8032         /* CFC error attention */
8033         if (val & 0x2) {
8034             BLOGE(sc, "FATAL error from CFC\n");
8035         }
8036     }
8037 
8038     if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
8039         val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
8040         BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
8041         /* RQ_USDMDP_FIFO_OVERFLOW */
8042         if (val & 0x18000) {
8043             BLOGE(sc, "FATAL error from PXP\n");
8044         }
8045 
8046         if (!CHIP_IS_E1x(sc)) {
8047             val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
8048             BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
8049         }
8050     }
8051 
8052 #define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
8053 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
8054 
8055     if (attn & AEU_PXP2_HW_INT_BIT) {
8056         /*  CQ47854 workaround do not panic on
8057          *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8058          */
8059         if (!CHIP_IS_E1x(sc)) {
8060             mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
8061             val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
8062             mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
8063             val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
8064             /*
8065              * If the only PXP2_EOP_ERROR_BIT is set in
8066              * STS0 and STS1 - clear it
8067              *
8068              * probably we lose additional attentions between
8069              * STS0 and STS_CLR0, in this case user will not
8070              * be notified about them
8071              */
8072             if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
8073                 !(val1 & mask1))
8074                 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
8075 
8076             /* print the register, since no one can restore it */
8077             BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8078 
8079             /*
8080              * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8081              * then notify
8082              */
8083             if (val0 & PXP2_EOP_ERROR_BIT) {
8084                 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8085 
8086                 /*
8087                  * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8088                  * set then clear attention from PXP2 block without panic
8089                  */
8090                 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8091                     ((val1 & mask1) == 0))
8092                     attn &= ~AEU_PXP2_HW_INT_BIT;
8093             }
8094         }
8095     }
8096 
8097     if (attn & HW_INTERRUT_ASSERT_SET_2) {
8098         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8099                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8100 
8101         val = REG_RD(sc, reg_offset);
8102         val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8103         REG_WR(sc, reg_offset, val);
8104 
8105         BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8106               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8107         bxe_panic(sc, ("HW block attention set2\n"));
8108     }
8109 }
8110 
8111 static void
8112 bxe_attn_int_deasserted1(struct bxe_softc *sc,
8113                          uint32_t         attn)
8114 {
8115     int port = SC_PORT(sc);
8116     int reg_offset;
8117     uint32_t val;
8118 
8119     if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8120         val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8121         BLOGE(sc, "DB hw attention 0x%08x\n", val);
8122         /* DORQ discard attention */
8123         if (val & 0x2) {
8124             BLOGE(sc, "FATAL error from DORQ\n");
8125         }
8126     }
8127 
8128     if (attn & HW_INTERRUT_ASSERT_SET_1) {
8129         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8130                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8131 
8132         val = REG_RD(sc, reg_offset);
8133         val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8134         REG_WR(sc, reg_offset, val);
8135 
8136         BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8137               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8138         bxe_panic(sc, ("HW block attention set1\n"));
8139     }
8140 }
8141 
8142 static void
8143 bxe_attn_int_deasserted0(struct bxe_softc *sc,
8144                          uint32_t         attn)
8145 {
8146     int port = SC_PORT(sc);
8147     int reg_offset;
8148     uint32_t val;
8149 
8150     reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8151                           MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8152 
8153     if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8154         val = REG_RD(sc, reg_offset);
8155         val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8156         REG_WR(sc, reg_offset, val);
8157 
8158         BLOGW(sc, "SPIO5 hw attention\n");
8159 
8160         /* Fan failure attention */
8161         elink_hw_reset_phy(&sc->link_params);
8162         bxe_fan_failure(sc);
8163     }
8164 
8165     if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8166 	bxe_acquire_phy_lock(sc);
8167         elink_handle_module_detect_int(&sc->link_params);
8168 	bxe_release_phy_lock(sc);
8169     }
8170 
8171     if (attn & HW_INTERRUT_ASSERT_SET_0) {
8172         val = REG_RD(sc, reg_offset);
8173         val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8174         REG_WR(sc, reg_offset, val);
8175 
8176         bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8177                        (attn & HW_INTERRUT_ASSERT_SET_0)));
8178     }
8179 }
8180 
8181 static void
8182 bxe_attn_int_deasserted(struct bxe_softc *sc,
8183                         uint32_t         deasserted)
8184 {
8185     struct attn_route attn;
8186     struct attn_route *group_mask;
8187     int port = SC_PORT(sc);
8188     int index;
8189     uint32_t reg_addr;
8190     uint32_t val;
8191     uint32_t aeu_mask;
8192     uint8_t global = FALSE;
8193 
8194     /*
8195      * Need to take HW lock because MCP or other port might also
8196      * try to handle this event.
8197      */
8198     bxe_acquire_alr(sc);
8199 
8200     if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8201         /* XXX
8202          * In case of parity errors don't handle attentions so that
8203          * other function would "see" parity errors.
8204          */
8205         sc->recovery_state = BXE_RECOVERY_INIT;
8206         // XXX schedule a recovery task...
8207         /* disable HW interrupts */
8208         bxe_int_disable(sc);
8209         bxe_release_alr(sc);
8210         return;
8211     }
8212 
8213     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8214     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8215     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8216     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8217     if (!CHIP_IS_E1x(sc)) {
8218         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8219     } else {
8220         attn.sig[4] = 0;
8221     }
8222 
8223     BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8224           attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8225 
8226     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8227         if (deasserted & (1 << index)) {
8228             group_mask = &sc->attn_group[index];
8229 
8230             BLOGD(sc, DBG_INTR,
8231                   "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8232                   group_mask->sig[0], group_mask->sig[1],
8233                   group_mask->sig[2], group_mask->sig[3],
8234                   group_mask->sig[4]);
8235 
8236             bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8237             bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8238             bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8239             bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8240             bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8241         }
8242     }
8243 
8244     bxe_release_alr(sc);
8245 
8246     if (sc->devinfo.int_block == INT_BLOCK_HC) {
8247         reg_addr = (HC_REG_COMMAND_REG + port*32 +
8248                     COMMAND_REG_ATTN_BITS_CLR);
8249     } else {
8250         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8251     }
8252 
8253     val = ~deasserted;
8254     BLOGD(sc, DBG_INTR,
8255           "about to mask 0x%08x at %s addr 0x%08x\n", val,
8256           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8257     REG_WR(sc, reg_addr, val);
8258 
8259     if (~sc->attn_state & deasserted) {
8260         BLOGE(sc, "IGU error\n");
8261     }
8262 
8263     reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8264                       MISC_REG_AEU_MASK_ATTN_FUNC_0;
8265 
8266     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8267 
8268     aeu_mask = REG_RD(sc, reg_addr);
8269 
8270     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8271           aeu_mask, deasserted);
8272     aeu_mask |= (deasserted & 0x3ff);
8273     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8274 
8275     REG_WR(sc, reg_addr, aeu_mask);
8276     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8277 
8278     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8279     sc->attn_state &= ~deasserted;
8280     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8281 }
8282 
8283 static void
8284 bxe_attn_int(struct bxe_softc *sc)
8285 {
8286     /* read local copy of bits */
8287     uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8288     uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8289     uint32_t attn_state = sc->attn_state;
8290 
8291     /* look for changed bits */
8292     uint32_t asserted   =  attn_bits & ~attn_ack & ~attn_state;
8293     uint32_t deasserted = ~attn_bits &  attn_ack &  attn_state;
8294 
8295     BLOGD(sc, DBG_INTR,
8296           "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8297           attn_bits, attn_ack, asserted, deasserted);
8298 
8299     if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8300         BLOGE(sc, "BAD attention state\n");
8301     }
8302 
8303     /* handle bits that were raised */
8304     if (asserted) {
8305         bxe_attn_int_asserted(sc, asserted);
8306     }
8307 
8308     if (deasserted) {
8309         bxe_attn_int_deasserted(sc, deasserted);
8310     }
8311 }
8312 
8313 static uint16_t
8314 bxe_update_dsb_idx(struct bxe_softc *sc)
8315 {
8316     struct host_sp_status_block *def_sb = sc->def_sb;
8317     uint16_t rc = 0;
8318 
8319     mb(); /* status block is written to by the chip */
8320 
8321     if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8322         sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8323         rc |= BXE_DEF_SB_ATT_IDX;
8324     }
8325 
8326     if (sc->def_idx != def_sb->sp_sb.running_index) {
8327         sc->def_idx = def_sb->sp_sb.running_index;
8328         rc |= BXE_DEF_SB_IDX;
8329     }
8330 
8331     mb();
8332 
8333     return (rc);
8334 }
8335 
8336 static inline struct ecore_queue_sp_obj *
8337 bxe_cid_to_q_obj(struct bxe_softc *sc,
8338                  uint32_t         cid)
8339 {
8340     BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8341     return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8342 }
8343 
8344 static void
8345 bxe_handle_mcast_eqe(struct bxe_softc *sc)
8346 {
8347     struct ecore_mcast_ramrod_params rparam;
8348     int rc;
8349 
8350     memset(&rparam, 0, sizeof(rparam));
8351 
8352     rparam.mcast_obj = &sc->mcast_obj;
8353 
8354     BXE_MCAST_LOCK(sc);
8355 
8356     /* clear pending state for the last command */
8357     sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8358 
8359     /* if there are pending mcast commands - send them */
8360     if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8361         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8362         if (rc < 0) {
8363             BLOGD(sc, DBG_SP,
8364                 "ERROR: Failed to send pending mcast commands (%d)\n", rc);
8365         }
8366     }
8367 
8368     BXE_MCAST_UNLOCK(sc);
8369 }
8370 
8371 static void
8372 bxe_handle_classification_eqe(struct bxe_softc      *sc,
8373                               union event_ring_elem *elem)
8374 {
8375     unsigned long ramrod_flags = 0;
8376     int rc = 0;
8377     uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8378     struct ecore_vlan_mac_obj *vlan_mac_obj;
8379 
8380     /* always push next commands out, don't wait here */
8381     bit_set(&ramrod_flags, RAMROD_CONT);
8382 
8383     switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8384     case ECORE_FILTER_MAC_PENDING:
8385         BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8386         vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8387         break;
8388 
8389     case ECORE_FILTER_MCAST_PENDING:
8390         BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8391         /*
8392          * This is only relevant for 57710 where multicast MACs are
8393          * configured as unicast MACs using the same ramrod.
8394          */
8395         bxe_handle_mcast_eqe(sc);
8396         return;
8397 
8398     default:
8399         BLOGE(sc, "Unsupported classification command: %d\n",
8400               elem->message.data.eth_event.echo);
8401         return;
8402     }
8403 
8404     rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8405 
8406     if (rc < 0) {
8407         BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8408     } else if (rc > 0) {
8409         BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8410     }
8411 }
8412 
8413 static void
8414 bxe_handle_rx_mode_eqe(struct bxe_softc      *sc,
8415                        union event_ring_elem *elem)
8416 {
8417     bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8418 
8419     /* send rx_mode command again if was requested */
8420     if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8421                                &sc->sp_state)) {
8422         bxe_set_storm_rx_mode(sc);
8423     }
8424 }
8425 
8426 static void
8427 bxe_update_eq_prod(struct bxe_softc *sc,
8428                    uint16_t         prod)
8429 {
8430     storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8431     wmb(); /* keep prod updates ordered */
8432 }
8433 
8434 static void
8435 bxe_eq_int(struct bxe_softc *sc)
8436 {
8437     uint16_t hw_cons, sw_cons, sw_prod;
8438     union event_ring_elem *elem;
8439     uint8_t echo;
8440     uint32_t cid;
8441     uint8_t opcode;
8442     int spqe_cnt = 0;
8443     struct ecore_queue_sp_obj *q_obj;
8444     struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8445     struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8446 
8447     hw_cons = le16toh(*sc->eq_cons_sb);
8448 
8449     /*
8450      * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8451      * when we get to the next-page we need to adjust so the loop
8452      * condition below will be met. The next element is the size of a
8453      * regular element and hence incrementing by 1
8454      */
8455     if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8456         hw_cons++;
8457     }
8458 
8459     /*
8460      * This function may never run in parallel with itself for a
8461      * specific sc and no need for a read memory barrier here.
8462      */
8463     sw_cons = sc->eq_cons;
8464     sw_prod = sc->eq_prod;
8465 
8466     BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8467           hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8468 
8469     for (;
8470          sw_cons != hw_cons;
8471          sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8472 
8473         elem = &sc->eq[EQ_DESC(sw_cons)];
8474 
8475         /* elem CID originates from FW, actually LE */
8476         cid = SW_CID(elem->message.data.cfc_del_event.cid);
8477         opcode = elem->message.opcode;
8478 
8479         /* handle eq element */
8480         switch (opcode) {
8481 
8482         case EVENT_RING_OPCODE_STAT_QUERY:
8483             BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8484                   sc->stats_comp++);
8485             /* nothing to do with stats comp */
8486             goto next_spqe;
8487 
8488         case EVENT_RING_OPCODE_CFC_DEL:
8489             /* handle according to cid range */
8490             /* we may want to verify here that the sc state is HALTING */
8491             BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8492             q_obj = bxe_cid_to_q_obj(sc, cid);
8493             if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8494                 break;
8495             }
8496             goto next_spqe;
8497 
8498         case EVENT_RING_OPCODE_STOP_TRAFFIC:
8499             BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8500             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8501                 break;
8502             }
8503             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8504             goto next_spqe;
8505 
8506         case EVENT_RING_OPCODE_START_TRAFFIC:
8507             BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8508             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8509                 break;
8510             }
8511             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8512             goto next_spqe;
8513 
8514         case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8515             echo = elem->message.data.function_update_event.echo;
8516             if (echo == SWITCH_UPDATE) {
8517                 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8518                 if (f_obj->complete_cmd(sc, f_obj,
8519                                         ECORE_F_CMD_SWITCH_UPDATE)) {
8520                     break;
8521                 }
8522             }
8523             else {
8524                 BLOGD(sc, DBG_SP,
8525                       "AFEX: ramrod completed FUNCTION_UPDATE\n");
8526             }
8527             goto next_spqe;
8528 
8529         case EVENT_RING_OPCODE_FORWARD_SETUP:
8530             q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8531             if (q_obj->complete_cmd(sc, q_obj,
8532                                     ECORE_Q_CMD_SETUP_TX_ONLY)) {
8533                 break;
8534             }
8535             goto next_spqe;
8536 
8537         case EVENT_RING_OPCODE_FUNCTION_START:
8538             BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8539             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8540                 break;
8541             }
8542             goto next_spqe;
8543 
8544         case EVENT_RING_OPCODE_FUNCTION_STOP:
8545             BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8546             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8547                 break;
8548             }
8549             goto next_spqe;
8550         }
8551 
8552         switch (opcode | sc->state) {
8553         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8554         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8555             cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8556             BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8557             rss_raw->clear_pending(rss_raw);
8558             break;
8559 
8560         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8561         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8562         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8563         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8564         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8565         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8566             BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8567             bxe_handle_classification_eqe(sc, elem);
8568             break;
8569 
8570         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8571         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8572         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8573             BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8574             bxe_handle_mcast_eqe(sc);
8575             break;
8576 
8577         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8578         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8579         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8580             BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8581             bxe_handle_rx_mode_eqe(sc, elem);
8582             break;
8583 
8584         default:
8585             /* unknown event log error and continue */
8586             BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8587                   elem->message.opcode, sc->state);
8588         }
8589 
8590 next_spqe:
8591         spqe_cnt++;
8592     } /* for */
8593 
8594     mb();
8595     atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
8596 
8597     sc->eq_cons = sw_cons;
8598     sc->eq_prod = sw_prod;
8599 
8600     /* make sure that above mem writes were issued towards the memory */
8601     wmb();
8602 
8603     /* update producer */
8604     bxe_update_eq_prod(sc, sc->eq_prod);
8605 }
8606 
8607 static void
8608 bxe_handle_sp_tq(void *context,
8609                  int  pending)
8610 {
8611     struct bxe_softc *sc = (struct bxe_softc *)context;
8612     uint16_t status;
8613 
8614     BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
8615 
8616     /* what work needs to be performed? */
8617     status = bxe_update_dsb_idx(sc);
8618 
8619     BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
8620 
8621     /* HW attentions */
8622     if (status & BXE_DEF_SB_ATT_IDX) {
8623         BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
8624         bxe_attn_int(sc);
8625         status &= ~BXE_DEF_SB_ATT_IDX;
8626     }
8627 
8628     /* SP events: STAT_QUERY and others */
8629     if (status & BXE_DEF_SB_IDX) {
8630         /* handle EQ completions */
8631         BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
8632         bxe_eq_int(sc);
8633         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
8634                    le16toh(sc->def_idx), IGU_INT_NOP, 1);
8635         status &= ~BXE_DEF_SB_IDX;
8636     }
8637 
8638     /* if status is non zero then something went wrong */
8639     if (__predict_false(status)) {
8640         BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
8641     }
8642 
8643     /* ack status block only if something was actually handled */
8644     bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
8645                le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
8646 
8647     /*
8648      * Must be called after the EQ processing (since eq leads to sriov
8649      * ramrod completion flows).
8650      * This flow may have been scheduled by the arrival of a ramrod
8651      * completion, or by the sriov code rescheduling itself.
8652      */
8653     // XXX bxe_iov_sp_task(sc);
8654 
8655 }
8656 
8657 static void
8658 bxe_handle_fp_tq(void *context,
8659                  int  pending)
8660 {
8661     struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
8662     struct bxe_softc *sc = fp->sc;
8663     uint8_t more_tx = FALSE;
8664     uint8_t more_rx = FALSE;
8665 
8666     BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
8667 
8668     /* XXX
8669      * IFF_DRV_RUNNING state can't be checked here since we process
8670      * slowpath events on a client queue during setup. Instead
8671      * we need to add a "process/continue" flag here that the driver
8672      * can use to tell the task here not to do anything.
8673      */
8674 #if 0
8675     if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
8676         return;
8677     }
8678 #endif
8679 
8680     /* update the fastpath index */
8681     bxe_update_fp_sb_idx(fp);
8682 
8683     /* XXX add loop here if ever support multiple tx CoS */
8684     /* fp->txdata[cos] */
8685     if (bxe_has_tx_work(fp)) {
8686         BXE_FP_TX_LOCK(fp);
8687         more_tx = bxe_txeof(sc, fp);
8688         BXE_FP_TX_UNLOCK(fp);
8689     }
8690 
8691     if (bxe_has_rx_work(fp)) {
8692         more_rx = bxe_rxeof(sc, fp);
8693     }
8694 
8695     if (more_rx /*|| more_tx*/) {
8696         /* still more work to do */
8697         taskqueue_enqueue(fp->tq, &fp->tq_task);
8698         return;
8699     }
8700 
8701     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
8702                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
8703 }
8704 
8705 static void
8706 bxe_task_fp(struct bxe_fastpath *fp)
8707 {
8708     struct bxe_softc *sc = fp->sc;
8709     uint8_t more_tx = FALSE;
8710     uint8_t more_rx = FALSE;
8711 
8712     BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
8713 
8714     /* update the fastpath index */
8715     bxe_update_fp_sb_idx(fp);
8716 
8717     /* XXX add loop here if ever support multiple tx CoS */
8718     /* fp->txdata[cos] */
8719     if (bxe_has_tx_work(fp)) {
8720         BXE_FP_TX_LOCK(fp);
8721         more_tx = bxe_txeof(sc, fp);
8722         BXE_FP_TX_UNLOCK(fp);
8723     }
8724 
8725     if (bxe_has_rx_work(fp)) {
8726         more_rx = bxe_rxeof(sc, fp);
8727     }
8728 
8729     if (more_rx /*|| more_tx*/) {
8730         /* still more work to do, bail out if this ISR and process later */
8731         taskqueue_enqueue(fp->tq, &fp->tq_task);
8732         return;
8733     }
8734 
8735     /*
8736      * Here we write the fastpath index taken before doing any tx or rx work.
8737      * It is very well possible other hw events occurred up to this point and
8738      * they were actually processed accordingly above. Since we're going to
8739      * write an older fastpath index, an interrupt is coming which we might
8740      * not do any work in.
8741      */
8742     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
8743                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
8744 }
8745 
8746 /*
8747  * Legacy interrupt entry point.
8748  *
8749  * Verifies that the controller generated the interrupt and
8750  * then calls a separate routine to handle the various
8751  * interrupt causes: link, RX, and TX.
8752  */
8753 static void
8754 bxe_intr_legacy(void *xsc)
8755 {
8756     struct bxe_softc *sc = (struct bxe_softc *)xsc;
8757     struct bxe_fastpath *fp;
8758     uint16_t status, mask;
8759     int i;
8760 
8761     BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
8762 
8763     /*
8764      * 0 for ustorm, 1 for cstorm
8765      * the bits returned from ack_int() are 0-15
8766      * bit 0 = attention status block
8767      * bit 1 = fast path status block
8768      * a mask of 0x2 or more = tx/rx event
8769      * a mask of 1 = slow path event
8770      */
8771 
8772     status = bxe_ack_int(sc);
8773 
8774     /* the interrupt is not for us */
8775     if (__predict_false(status == 0)) {
8776         BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
8777         return;
8778     }
8779 
8780     BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
8781 
8782     FOR_EACH_ETH_QUEUE(sc, i) {
8783         fp = &sc->fp[i];
8784         mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
8785         if (status & mask) {
8786             /* acknowledge and disable further fastpath interrupts */
8787             bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8788             bxe_task_fp(fp);
8789             status &= ~mask;
8790         }
8791     }
8792 
8793     if (__predict_false(status & 0x1)) {
8794         /* acknowledge and disable further slowpath interrupts */
8795         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8796 
8797         /* schedule slowpath handler */
8798         taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8799 
8800         status &= ~0x1;
8801     }
8802 
8803     if (__predict_false(status)) {
8804         BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
8805     }
8806 }
8807 
8808 /* slowpath interrupt entry point */
8809 static void
8810 bxe_intr_sp(void *xsc)
8811 {
8812     struct bxe_softc *sc = (struct bxe_softc *)xsc;
8813 
8814     BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
8815 
8816     /* acknowledge and disable further slowpath interrupts */
8817     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8818 
8819     /* schedule slowpath handler */
8820     taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8821 }
8822 
8823 /* fastpath interrupt entry point */
8824 static void
8825 bxe_intr_fp(void *xfp)
8826 {
8827     struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
8828     struct bxe_softc *sc = fp->sc;
8829 
8830     BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
8831 
8832     BLOGD(sc, DBG_INTR,
8833           "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
8834           curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
8835 
8836     /* acknowledge and disable further fastpath interrupts */
8837     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8838 
8839     bxe_task_fp(fp);
8840 }
8841 
8842 /* Release all interrupts allocated by the driver. */
8843 static void
8844 bxe_interrupt_free(struct bxe_softc *sc)
8845 {
8846     int i;
8847 
8848     switch (sc->interrupt_mode) {
8849     case INTR_MODE_INTX:
8850         BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
8851         if (sc->intr[0].resource != NULL) {
8852             bus_release_resource(sc->dev,
8853                                  SYS_RES_IRQ,
8854                                  sc->intr[0].rid,
8855                                  sc->intr[0].resource);
8856         }
8857         break;
8858     case INTR_MODE_MSI:
8859         for (i = 0; i < sc->intr_count; i++) {
8860             BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
8861             if (sc->intr[i].resource && sc->intr[i].rid) {
8862                 bus_release_resource(sc->dev,
8863                                      SYS_RES_IRQ,
8864                                      sc->intr[i].rid,
8865                                      sc->intr[i].resource);
8866             }
8867         }
8868         pci_release_msi(sc->dev);
8869         break;
8870     case INTR_MODE_MSIX:
8871         for (i = 0; i < sc->intr_count; i++) {
8872             BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
8873             if (sc->intr[i].resource && sc->intr[i].rid) {
8874                 bus_release_resource(sc->dev,
8875                                      SYS_RES_IRQ,
8876                                      sc->intr[i].rid,
8877                                      sc->intr[i].resource);
8878             }
8879         }
8880         pci_release_msi(sc->dev);
8881         break;
8882     default:
8883         /* nothing to do as initial allocation failed */
8884         break;
8885     }
8886 }
8887 
8888 /*
8889  * This function determines and allocates the appropriate
8890  * interrupt based on system capabilites and user request.
8891  *
8892  * The user may force a particular interrupt mode, specify
8893  * the number of receive queues, specify the method for
8894  * distribuitng received frames to receive queues, or use
8895  * the default settings which will automatically select the
8896  * best supported combination.  In addition, the OS may or
8897  * may not support certain combinations of these settings.
8898  * This routine attempts to reconcile the settings requested
8899  * by the user with the capabilites available from the system
8900  * to select the optimal combination of features.
8901  *
8902  * Returns:
8903  *   0 = Success, !0 = Failure.
8904  */
8905 static int
8906 bxe_interrupt_alloc(struct bxe_softc *sc)
8907 {
8908     int msix_count = 0;
8909     int msi_count = 0;
8910     int num_requested = 0;
8911     int num_allocated = 0;
8912     int rid, i, j;
8913     int rc;
8914 
8915     /* get the number of available MSI/MSI-X interrupts from the OS */
8916     if (sc->interrupt_mode > 0) {
8917         if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
8918             msix_count = pci_msix_count(sc->dev);
8919         }
8920 
8921         if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
8922             msi_count = pci_msi_count(sc->dev);
8923         }
8924 
8925         BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
8926               msi_count, msix_count);
8927     }
8928 
8929     do { /* try allocating MSI-X interrupt resources (at least 2) */
8930         if (sc->interrupt_mode != INTR_MODE_MSIX) {
8931             break;
8932         }
8933 
8934         if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
8935             (msix_count < 2)) {
8936             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8937             break;
8938         }
8939 
8940         /* ask for the necessary number of MSI-X vectors */
8941         num_requested = min((sc->num_queues + 1), msix_count);
8942 
8943         BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
8944 
8945         num_allocated = num_requested;
8946         if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
8947             BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
8948             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8949             break;
8950         }
8951 
8952         if (num_allocated < 2) { /* possible? */
8953             BLOGE(sc, "MSI-X allocation less than 2!\n");
8954             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8955             pci_release_msi(sc->dev);
8956             break;
8957         }
8958 
8959         BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
8960               num_requested, num_allocated);
8961 
8962         /* best effort so use the number of vectors allocated to us */
8963         sc->intr_count = num_allocated;
8964         sc->num_queues = num_allocated - 1;
8965 
8966         rid = 1; /* initial resource identifier */
8967 
8968         /* allocate the MSI-X vectors */
8969         for (i = 0; i < num_allocated; i++) {
8970             sc->intr[i].rid = (rid + i);
8971 
8972             if ((sc->intr[i].resource =
8973                  bus_alloc_resource_any(sc->dev,
8974                                         SYS_RES_IRQ,
8975                                         &sc->intr[i].rid,
8976                                         RF_ACTIVE)) == NULL) {
8977                 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
8978                       i, (rid + i));
8979 
8980                 for (j = (i - 1); j >= 0; j--) {
8981                     bus_release_resource(sc->dev,
8982                                          SYS_RES_IRQ,
8983                                          sc->intr[j].rid,
8984                                          sc->intr[j].resource);
8985                 }
8986 
8987                 sc->intr_count = 0;
8988                 sc->num_queues = 0;
8989                 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8990                 pci_release_msi(sc->dev);
8991                 break;
8992             }
8993 
8994             BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
8995         }
8996     } while (0);
8997 
8998     do { /* try allocating MSI vector resources (at least 2) */
8999         if (sc->interrupt_mode != INTR_MODE_MSI) {
9000             break;
9001         }
9002 
9003         if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
9004             (msi_count < 1)) {
9005             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9006             break;
9007         }
9008 
9009         /* ask for a single MSI vector */
9010         num_requested = 1;
9011 
9012         BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
9013 
9014         num_allocated = num_requested;
9015         if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
9016             BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
9017             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9018             break;
9019         }
9020 
9021         if (num_allocated != 1) { /* possible? */
9022             BLOGE(sc, "MSI allocation is not 1!\n");
9023             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9024             pci_release_msi(sc->dev);
9025             break;
9026         }
9027 
9028         BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
9029               num_requested, num_allocated);
9030 
9031         /* best effort so use the number of vectors allocated to us */
9032         sc->intr_count = num_allocated;
9033         sc->num_queues = num_allocated;
9034 
9035         rid = 1; /* initial resource identifier */
9036 
9037         sc->intr[0].rid = rid;
9038 
9039         if ((sc->intr[0].resource =
9040              bus_alloc_resource_any(sc->dev,
9041                                     SYS_RES_IRQ,
9042                                     &sc->intr[0].rid,
9043                                     RF_ACTIVE)) == NULL) {
9044             BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid);
9045             sc->intr_count = 0;
9046             sc->num_queues = 0;
9047             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9048             pci_release_msi(sc->dev);
9049             break;
9050         }
9051 
9052         BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid);
9053     } while (0);
9054 
9055     do { /* try allocating INTx vector resources */
9056         if (sc->interrupt_mode != INTR_MODE_INTX) {
9057             break;
9058         }
9059 
9060         BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
9061 
9062         /* only one vector for INTx */
9063         sc->intr_count = 1;
9064         sc->num_queues = 1;
9065 
9066         rid = 0; /* initial resource identifier */
9067 
9068         sc->intr[0].rid = rid;
9069 
9070         if ((sc->intr[0].resource =
9071              bus_alloc_resource_any(sc->dev,
9072                                     SYS_RES_IRQ,
9073                                     &sc->intr[0].rid,
9074                                     (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
9075             BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
9076             sc->intr_count = 0;
9077             sc->num_queues = 0;
9078             sc->interrupt_mode = -1; /* Failed! */
9079             break;
9080         }
9081 
9082         BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9083     } while (0);
9084 
9085     if (sc->interrupt_mode == -1) {
9086         BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9087         rc = 1;
9088     } else {
9089         BLOGD(sc, DBG_LOAD,
9090               "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9091               sc->interrupt_mode, sc->num_queues);
9092         rc = 0;
9093     }
9094 
9095     return (rc);
9096 }
9097 
9098 static void
9099 bxe_interrupt_detach(struct bxe_softc *sc)
9100 {
9101     struct bxe_fastpath *fp;
9102     int i;
9103 
9104     /* release interrupt resources */
9105     for (i = 0; i < sc->intr_count; i++) {
9106         if (sc->intr[i].resource && sc->intr[i].tag) {
9107             BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9108             bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9109         }
9110     }
9111 
9112     for (i = 0; i < sc->num_queues; i++) {
9113         fp = &sc->fp[i];
9114         if (fp->tq) {
9115             taskqueue_drain(fp->tq, &fp->tq_task);
9116             taskqueue_drain(fp->tq, &fp->tx_task);
9117             while (taskqueue_cancel_timeout(fp->tq, &fp->tx_timeout_task,
9118                 NULL))
9119                 taskqueue_drain_timeout(fp->tq, &fp->tx_timeout_task);
9120             taskqueue_free(fp->tq);
9121             fp->tq = NULL;
9122         }
9123     }
9124 
9125 
9126     if (sc->sp_tq) {
9127         taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9128         taskqueue_free(sc->sp_tq);
9129         sc->sp_tq = NULL;
9130     }
9131 }
9132 
9133 /*
9134  * Enables interrupts and attach to the ISR.
9135  *
9136  * When using multiple MSI/MSI-X vectors the first vector
9137  * is used for slowpath operations while all remaining
9138  * vectors are used for fastpath operations.  If only a
9139  * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9140  * ISR must look for both slowpath and fastpath completions.
9141  */
9142 static int
9143 bxe_interrupt_attach(struct bxe_softc *sc)
9144 {
9145     struct bxe_fastpath *fp;
9146     int rc = 0;
9147     int i;
9148 
9149     snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9150              "bxe%d_sp_tq", sc->unit);
9151     TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9152     sc->sp_tq = taskqueue_create(sc->sp_tq_name, M_NOWAIT,
9153                                  taskqueue_thread_enqueue,
9154                                  &sc->sp_tq);
9155     taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9156                             "%s", sc->sp_tq_name);
9157 
9158 
9159     for (i = 0; i < sc->num_queues; i++) {
9160         fp = &sc->fp[i];
9161         snprintf(fp->tq_name, sizeof(fp->tq_name),
9162                  "bxe%d_fp%d_tq", sc->unit, i);
9163         TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9164         TASK_INIT(&fp->tx_task, 0, bxe_tx_mq_start_deferred, fp);
9165         fp->tq = taskqueue_create(fp->tq_name, M_NOWAIT,
9166                                   taskqueue_thread_enqueue,
9167                                   &fp->tq);
9168         TIMEOUT_TASK_INIT(fp->tq, &fp->tx_timeout_task, 0,
9169                           bxe_tx_mq_start_deferred, fp);
9170         taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9171                                 "%s", fp->tq_name);
9172     }
9173 
9174     /* setup interrupt handlers */
9175     if (sc->interrupt_mode == INTR_MODE_MSIX) {
9176         BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9177 
9178         /*
9179          * Setup the interrupt handler. Note that we pass the driver instance
9180          * to the interrupt handler for the slowpath.
9181          */
9182         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9183                                  (INTR_TYPE_NET | INTR_MPSAFE),
9184                                  NULL, bxe_intr_sp, sc,
9185                                  &sc->intr[0].tag)) != 0) {
9186             BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9187             goto bxe_interrupt_attach_exit;
9188         }
9189 
9190         bus_describe_intr(sc->dev, sc->intr[0].resource,
9191                           sc->intr[0].tag, "sp");
9192 
9193         /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9194 
9195         /* initialize the fastpath vectors (note the first was used for sp) */
9196         for (i = 0; i < sc->num_queues; i++) {
9197             fp = &sc->fp[i];
9198             BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9199 
9200             /*
9201              * Setup the interrupt handler. Note that we pass the
9202              * fastpath context to the interrupt handler in this
9203              * case.
9204              */
9205             if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9206                                      (INTR_TYPE_NET | INTR_MPSAFE),
9207                                      NULL, bxe_intr_fp, fp,
9208                                      &sc->intr[i + 1].tag)) != 0) {
9209                 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9210                       (i + 1), rc);
9211                 goto bxe_interrupt_attach_exit;
9212             }
9213 
9214             bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9215                               sc->intr[i + 1].tag, "fp%02d", i);
9216 
9217             /* bind the fastpath instance to a cpu */
9218             if (sc->num_queues > 1) {
9219                 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9220             }
9221 
9222             fp->state = BXE_FP_STATE_IRQ;
9223         }
9224     } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9225         BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n");
9226 
9227         /*
9228          * Setup the interrupt handler. Note that we pass the
9229          * driver instance to the interrupt handler which
9230          * will handle both the slowpath and fastpath.
9231          */
9232         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9233                                  (INTR_TYPE_NET | INTR_MPSAFE),
9234                                  NULL, bxe_intr_legacy, sc,
9235                                  &sc->intr[0].tag)) != 0) {
9236             BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9237             goto bxe_interrupt_attach_exit;
9238         }
9239 
9240     } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9241         BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9242 
9243         /*
9244          * Setup the interrupt handler. Note that we pass the
9245          * driver instance to the interrupt handler which
9246          * will handle both the slowpath and fastpath.
9247          */
9248         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9249                                  (INTR_TYPE_NET | INTR_MPSAFE),
9250                                  NULL, bxe_intr_legacy, sc,
9251                                  &sc->intr[0].tag)) != 0) {
9252             BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9253             goto bxe_interrupt_attach_exit;
9254         }
9255     }
9256 
9257 bxe_interrupt_attach_exit:
9258 
9259     return (rc);
9260 }
9261 
9262 static int  bxe_init_hw_common_chip(struct bxe_softc *sc);
9263 static int  bxe_init_hw_common(struct bxe_softc *sc);
9264 static int  bxe_init_hw_port(struct bxe_softc *sc);
9265 static int  bxe_init_hw_func(struct bxe_softc *sc);
9266 static void bxe_reset_common(struct bxe_softc *sc);
9267 static void bxe_reset_port(struct bxe_softc *sc);
9268 static void bxe_reset_func(struct bxe_softc *sc);
9269 static int  bxe_gunzip_init(struct bxe_softc *sc);
9270 static void bxe_gunzip_end(struct bxe_softc *sc);
9271 static int  bxe_init_firmware(struct bxe_softc *sc);
9272 static void bxe_release_firmware(struct bxe_softc *sc);
9273 
9274 static struct
9275 ecore_func_sp_drv_ops bxe_func_sp_drv = {
9276     .init_hw_cmn_chip = bxe_init_hw_common_chip,
9277     .init_hw_cmn      = bxe_init_hw_common,
9278     .init_hw_port     = bxe_init_hw_port,
9279     .init_hw_func     = bxe_init_hw_func,
9280 
9281     .reset_hw_cmn     = bxe_reset_common,
9282     .reset_hw_port    = bxe_reset_port,
9283     .reset_hw_func    = bxe_reset_func,
9284 
9285     .gunzip_init      = bxe_gunzip_init,
9286     .gunzip_end       = bxe_gunzip_end,
9287 
9288     .init_fw          = bxe_init_firmware,
9289     .release_fw       = bxe_release_firmware,
9290 };
9291 
9292 static void
9293 bxe_init_func_obj(struct bxe_softc *sc)
9294 {
9295     sc->dmae_ready = 0;
9296 
9297     ecore_init_func_obj(sc,
9298                         &sc->func_obj,
9299                         BXE_SP(sc, func_rdata),
9300                         BXE_SP_MAPPING(sc, func_rdata),
9301                         BXE_SP(sc, func_afex_rdata),
9302                         BXE_SP_MAPPING(sc, func_afex_rdata),
9303                         &bxe_func_sp_drv);
9304 }
9305 
9306 static int
9307 bxe_init_hw(struct bxe_softc *sc,
9308             uint32_t         load_code)
9309 {
9310     struct ecore_func_state_params func_params = { NULL };
9311     int rc;
9312 
9313     /* prepare the parameters for function state transitions */
9314     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9315 
9316     func_params.f_obj = &sc->func_obj;
9317     func_params.cmd = ECORE_F_CMD_HW_INIT;
9318 
9319     func_params.params.hw_init.load_phase = load_code;
9320 
9321     /*
9322      * Via a plethora of function pointers, we will eventually reach
9323      * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9324      */
9325     rc = ecore_func_state_change(sc, &func_params);
9326 
9327     return (rc);
9328 }
9329 
9330 static void
9331 bxe_fill(struct bxe_softc *sc,
9332          uint32_t         addr,
9333          int              fill,
9334          uint32_t         len)
9335 {
9336     uint32_t i;
9337 
9338     if (!(len % 4) && !(addr % 4)) {
9339         for (i = 0; i < len; i += 4) {
9340             REG_WR(sc, (addr + i), fill);
9341         }
9342     } else {
9343         for (i = 0; i < len; i++) {
9344             REG_WR8(sc, (addr + i), fill);
9345         }
9346     }
9347 }
9348 
9349 /* writes FP SP data to FW - data_size in dwords */
9350 static void
9351 bxe_wr_fp_sb_data(struct bxe_softc *sc,
9352                   int              fw_sb_id,
9353                   uint32_t         *sb_data_p,
9354                   uint32_t         data_size)
9355 {
9356     int index;
9357 
9358     for (index = 0; index < data_size; index++) {
9359         REG_WR(sc,
9360                (BAR_CSTRORM_INTMEM +
9361                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9362                 (sizeof(uint32_t) * index)),
9363                *(sb_data_p + index));
9364     }
9365 }
9366 
9367 static void
9368 bxe_zero_fp_sb(struct bxe_softc *sc,
9369                int              fw_sb_id)
9370 {
9371     struct hc_status_block_data_e2 sb_data_e2;
9372     struct hc_status_block_data_e1x sb_data_e1x;
9373     uint32_t *sb_data_p;
9374     uint32_t data_size = 0;
9375 
9376     if (!CHIP_IS_E1x(sc)) {
9377         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9378         sb_data_e2.common.state = SB_DISABLED;
9379         sb_data_e2.common.p_func.vf_valid = FALSE;
9380         sb_data_p = (uint32_t *)&sb_data_e2;
9381         data_size = (sizeof(struct hc_status_block_data_e2) /
9382                      sizeof(uint32_t));
9383     } else {
9384         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9385         sb_data_e1x.common.state = SB_DISABLED;
9386         sb_data_e1x.common.p_func.vf_valid = FALSE;
9387         sb_data_p = (uint32_t *)&sb_data_e1x;
9388         data_size = (sizeof(struct hc_status_block_data_e1x) /
9389                      sizeof(uint32_t));
9390     }
9391 
9392     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9393 
9394     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9395              0, CSTORM_STATUS_BLOCK_SIZE);
9396     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9397              0, CSTORM_SYNC_BLOCK_SIZE);
9398 }
9399 
9400 static void
9401 bxe_wr_sp_sb_data(struct bxe_softc               *sc,
9402                   struct hc_sp_status_block_data *sp_sb_data)
9403 {
9404     int i;
9405 
9406     for (i = 0;
9407          i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9408          i++) {
9409         REG_WR(sc,
9410                (BAR_CSTRORM_INTMEM +
9411                 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9412                 (i * sizeof(uint32_t))),
9413                *((uint32_t *)sp_sb_data + i));
9414     }
9415 }
9416 
9417 static void
9418 bxe_zero_sp_sb(struct bxe_softc *sc)
9419 {
9420     struct hc_sp_status_block_data sp_sb_data;
9421 
9422     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9423 
9424     sp_sb_data.state           = SB_DISABLED;
9425     sp_sb_data.p_func.vf_valid = FALSE;
9426 
9427     bxe_wr_sp_sb_data(sc, &sp_sb_data);
9428 
9429     bxe_fill(sc,
9430              (BAR_CSTRORM_INTMEM +
9431               CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9432               0, CSTORM_SP_STATUS_BLOCK_SIZE);
9433     bxe_fill(sc,
9434              (BAR_CSTRORM_INTMEM +
9435               CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9436               0, CSTORM_SP_SYNC_BLOCK_SIZE);
9437 }
9438 
9439 static void
9440 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9441                              int                       igu_sb_id,
9442                              int                       igu_seg_id)
9443 {
9444     hc_sm->igu_sb_id      = igu_sb_id;
9445     hc_sm->igu_seg_id     = igu_seg_id;
9446     hc_sm->timer_value    = 0xFF;
9447     hc_sm->time_to_expire = 0xFFFFFFFF;
9448 }
9449 
9450 static void
9451 bxe_map_sb_state_machines(struct hc_index_data *index_data)
9452 {
9453     /* zero out state machine indices */
9454 
9455     /* rx indices */
9456     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9457 
9458     /* tx indices */
9459     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags      &= ~HC_INDEX_DATA_SM_ID;
9460     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9461     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9462     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9463 
9464     /* map indices */
9465 
9466     /* rx indices */
9467     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9468         (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9469 
9470     /* tx indices */
9471     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9472         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9473     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9474         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9475     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9476         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9477     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9478         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9479 }
9480 
9481 static void
9482 bxe_init_sb(struct bxe_softc *sc,
9483             bus_addr_t       busaddr,
9484             int              vfid,
9485             uint8_t          vf_valid,
9486             int              fw_sb_id,
9487             int              igu_sb_id)
9488 {
9489     struct hc_status_block_data_e2  sb_data_e2;
9490     struct hc_status_block_data_e1x sb_data_e1x;
9491     struct hc_status_block_sm       *hc_sm_p;
9492     uint32_t *sb_data_p;
9493     int igu_seg_id;
9494     int data_size;
9495 
9496     if (CHIP_INT_MODE_IS_BC(sc)) {
9497         igu_seg_id = HC_SEG_ACCESS_NORM;
9498     } else {
9499         igu_seg_id = IGU_SEG_ACCESS_NORM;
9500     }
9501 
9502     bxe_zero_fp_sb(sc, fw_sb_id);
9503 
9504     if (!CHIP_IS_E1x(sc)) {
9505         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9506         sb_data_e2.common.state = SB_ENABLED;
9507         sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9508         sb_data_e2.common.p_func.vf_id = vfid;
9509         sb_data_e2.common.p_func.vf_valid = vf_valid;
9510         sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9511         sb_data_e2.common.same_igu_sb_1b = TRUE;
9512         sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9513         sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9514         hc_sm_p = sb_data_e2.common.state_machine;
9515         sb_data_p = (uint32_t *)&sb_data_e2;
9516         data_size = (sizeof(struct hc_status_block_data_e2) /
9517                      sizeof(uint32_t));
9518         bxe_map_sb_state_machines(sb_data_e2.index_data);
9519     } else {
9520         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9521         sb_data_e1x.common.state = SB_ENABLED;
9522         sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9523         sb_data_e1x.common.p_func.vf_id = 0xff;
9524         sb_data_e1x.common.p_func.vf_valid = FALSE;
9525         sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9526         sb_data_e1x.common.same_igu_sb_1b = TRUE;
9527         sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9528         sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9529         hc_sm_p = sb_data_e1x.common.state_machine;
9530         sb_data_p = (uint32_t *)&sb_data_e1x;
9531         data_size = (sizeof(struct hc_status_block_data_e1x) /
9532                      sizeof(uint32_t));
9533         bxe_map_sb_state_machines(sb_data_e1x.index_data);
9534     }
9535 
9536     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9537     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9538 
9539     BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9540 
9541     /* write indices to HW - PCI guarantees endianity of regpairs */
9542     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9543 }
9544 
9545 static inline uint8_t
9546 bxe_fp_qzone_id(struct bxe_fastpath *fp)
9547 {
9548     if (CHIP_IS_E1x(fp->sc)) {
9549         return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9550     } else {
9551         return (fp->cl_id);
9552     }
9553 }
9554 
9555 static inline uint32_t
9556 bxe_rx_ustorm_prods_offset(struct bxe_softc    *sc,
9557                            struct bxe_fastpath *fp)
9558 {
9559     uint32_t offset = BAR_USTRORM_INTMEM;
9560 
9561     if (!CHIP_IS_E1x(sc)) {
9562         offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
9563     } else {
9564         offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
9565     }
9566 
9567     return (offset);
9568 }
9569 
9570 static void
9571 bxe_init_eth_fp(struct bxe_softc *sc,
9572                 int              idx)
9573 {
9574     struct bxe_fastpath *fp = &sc->fp[idx];
9575     uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
9576     unsigned long q_type = 0;
9577     int cos;
9578 
9579     fp->sc    = sc;
9580     fp->index = idx;
9581 
9582     fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
9583     fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
9584 
9585     fp->cl_id = (CHIP_IS_E1x(sc)) ?
9586                     (SC_L_ID(sc) + idx) :
9587                     /* want client ID same as IGU SB ID for non-E1 */
9588                     fp->igu_sb_id;
9589     fp->cl_qzone_id = bxe_fp_qzone_id(fp);
9590 
9591     /* setup sb indices */
9592     if (!CHIP_IS_E1x(sc)) {
9593         fp->sb_index_values  = fp->status_block.e2_sb->sb.index_values;
9594         fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
9595     } else {
9596         fp->sb_index_values  = fp->status_block.e1x_sb->sb.index_values;
9597         fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
9598     }
9599 
9600     /* init shortcut */
9601     fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
9602 
9603     fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
9604 
9605     /*
9606      * XXX If multiple CoS is ever supported then each fastpath structure
9607      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
9608      */
9609     for (cos = 0; cos < sc->max_cos; cos++) {
9610         cids[cos] = idx;
9611     }
9612     fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
9613 
9614     /* nothing more for a VF to do */
9615     if (IS_VF(sc)) {
9616         return;
9617     }
9618 
9619     bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
9620                 fp->fw_sb_id, fp->igu_sb_id);
9621 
9622     bxe_update_fp_sb_idx(fp);
9623 
9624     /* Configure Queue State object */
9625     bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
9626     bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
9627 
9628     ecore_init_queue_obj(sc,
9629                          &sc->sp_objs[idx].q_obj,
9630                          fp->cl_id,
9631                          cids,
9632                          sc->max_cos,
9633                          SC_FUNC(sc),
9634                          BXE_SP(sc, q_rdata),
9635                          BXE_SP_MAPPING(sc, q_rdata),
9636                          q_type);
9637 
9638     /* configure classification DBs */
9639     ecore_init_mac_obj(sc,
9640                        &sc->sp_objs[idx].mac_obj,
9641                        fp->cl_id,
9642                        idx,
9643                        SC_FUNC(sc),
9644                        BXE_SP(sc, mac_rdata),
9645                        BXE_SP_MAPPING(sc, mac_rdata),
9646                        ECORE_FILTER_MAC_PENDING,
9647                        &sc->sp_state,
9648                        ECORE_OBJ_TYPE_RX_TX,
9649                        &sc->macs_pool);
9650 
9651     BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
9652           idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
9653 }
9654 
9655 static inline void
9656 bxe_update_rx_prod(struct bxe_softc    *sc,
9657                    struct bxe_fastpath *fp,
9658                    uint16_t            rx_bd_prod,
9659                    uint16_t            rx_cq_prod,
9660                    uint16_t            rx_sge_prod)
9661 {
9662     struct ustorm_eth_rx_producers rx_prods = { 0 };
9663     uint32_t i;
9664 
9665     /* update producers */
9666     rx_prods.bd_prod  = rx_bd_prod;
9667     rx_prods.cqe_prod = rx_cq_prod;
9668     rx_prods.sge_prod = rx_sge_prod;
9669 
9670     /*
9671      * Make sure that the BD and SGE data is updated before updating the
9672      * producers since FW might read the BD/SGE right after the producer
9673      * is updated.
9674      * This is only applicable for weak-ordered memory model archs such
9675      * as IA-64. The following barrier is also mandatory since FW will
9676      * assumes BDs must have buffers.
9677      */
9678     wmb();
9679 
9680     for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
9681         REG_WR(sc,
9682                (fp->ustorm_rx_prods_offset + (i * 4)),
9683                ((uint32_t *)&rx_prods)[i]);
9684     }
9685 
9686     wmb(); /* keep prod updates ordered */
9687 
9688     BLOGD(sc, DBG_RX,
9689           "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
9690           fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
9691 }
9692 
9693 static void
9694 bxe_init_rx_rings(struct bxe_softc *sc)
9695 {
9696     struct bxe_fastpath *fp;
9697     int i;
9698 
9699     for (i = 0; i < sc->num_queues; i++) {
9700         fp = &sc->fp[i];
9701 
9702         fp->rx_bd_cons = 0;
9703 
9704         /*
9705          * Activate the BD ring...
9706          * Warning, this will generate an interrupt (to the TSTORM)
9707          * so this can only be done after the chip is initialized
9708          */
9709         bxe_update_rx_prod(sc, fp,
9710                            fp->rx_bd_prod,
9711                            fp->rx_cq_prod,
9712                            fp->rx_sge_prod);
9713 
9714         if (i != 0) {
9715             continue;
9716         }
9717 
9718         if (CHIP_IS_E1(sc)) {
9719             REG_WR(sc,
9720                    (BAR_USTRORM_INTMEM +
9721                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
9722                    U64_LO(fp->rcq_dma.paddr));
9723             REG_WR(sc,
9724                    (BAR_USTRORM_INTMEM +
9725                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
9726                    U64_HI(fp->rcq_dma.paddr));
9727         }
9728     }
9729 }
9730 
9731 static void
9732 bxe_init_tx_ring_one(struct bxe_fastpath *fp)
9733 {
9734     SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1);
9735     fp->tx_db.data.zero_fill1 = 0;
9736     fp->tx_db.data.prod = 0;
9737 
9738     fp->tx_pkt_prod = 0;
9739     fp->tx_pkt_cons = 0;
9740     fp->tx_bd_prod = 0;
9741     fp->tx_bd_cons = 0;
9742     fp->eth_q_stats.tx_pkts = 0;
9743 }
9744 
9745 static inline void
9746 bxe_init_tx_rings(struct bxe_softc *sc)
9747 {
9748     int i;
9749 
9750     for (i = 0; i < sc->num_queues; i++) {
9751         bxe_init_tx_ring_one(&sc->fp[i]);
9752     }
9753 }
9754 
9755 static void
9756 bxe_init_def_sb(struct bxe_softc *sc)
9757 {
9758     struct host_sp_status_block *def_sb = sc->def_sb;
9759     bus_addr_t mapping = sc->def_sb_dma.paddr;
9760     int igu_sp_sb_index;
9761     int igu_seg_id;
9762     int port = SC_PORT(sc);
9763     int func = SC_FUNC(sc);
9764     int reg_offset, reg_offset_en5;
9765     uint64_t section;
9766     int index, sindex;
9767     struct hc_sp_status_block_data sp_sb_data;
9768 
9769     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9770 
9771     if (CHIP_INT_MODE_IS_BC(sc)) {
9772         igu_sp_sb_index = DEF_SB_IGU_ID;
9773         igu_seg_id = HC_SEG_ACCESS_DEF;
9774     } else {
9775         igu_sp_sb_index = sc->igu_dsb_id;
9776         igu_seg_id = IGU_SEG_ACCESS_DEF;
9777     }
9778 
9779     /* attentions */
9780     section = ((uint64_t)mapping +
9781                offsetof(struct host_sp_status_block, atten_status_block));
9782     def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
9783     sc->attn_state = 0;
9784 
9785     reg_offset = (port) ?
9786                      MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
9787                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
9788     reg_offset_en5 = (port) ?
9789                          MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
9790                          MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
9791 
9792     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
9793         /* take care of sig[0]..sig[4] */
9794         for (sindex = 0; sindex < 4; sindex++) {
9795             sc->attn_group[index].sig[sindex] =
9796                 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
9797         }
9798 
9799         if (!CHIP_IS_E1x(sc)) {
9800             /*
9801              * enable5 is separate from the rest of the registers,
9802              * and the address skip is 4 and not 16 between the
9803              * different groups
9804              */
9805             sc->attn_group[index].sig[4] =
9806                 REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
9807         } else {
9808             sc->attn_group[index].sig[4] = 0;
9809         }
9810     }
9811 
9812     if (sc->devinfo.int_block == INT_BLOCK_HC) {
9813         reg_offset = (port) ?
9814                          HC_REG_ATTN_MSG1_ADDR_L :
9815                          HC_REG_ATTN_MSG0_ADDR_L;
9816         REG_WR(sc, reg_offset, U64_LO(section));
9817         REG_WR(sc, (reg_offset + 4), U64_HI(section));
9818     } else if (!CHIP_IS_E1x(sc)) {
9819         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
9820         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
9821     }
9822 
9823     section = ((uint64_t)mapping +
9824                offsetof(struct host_sp_status_block, sp_sb));
9825 
9826     bxe_zero_sp_sb(sc);
9827 
9828     /* PCI guarantees endianity of regpair */
9829     sp_sb_data.state           = SB_ENABLED;
9830     sp_sb_data.host_sb_addr.lo = U64_LO(section);
9831     sp_sb_data.host_sb_addr.hi = U64_HI(section);
9832     sp_sb_data.igu_sb_id       = igu_sp_sb_index;
9833     sp_sb_data.igu_seg_id      = igu_seg_id;
9834     sp_sb_data.p_func.pf_id    = func;
9835     sp_sb_data.p_func.vnic_id  = SC_VN(sc);
9836     sp_sb_data.p_func.vf_id    = 0xff;
9837 
9838     bxe_wr_sp_sb_data(sc, &sp_sb_data);
9839 
9840     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
9841 }
9842 
9843 static void
9844 bxe_init_sp_ring(struct bxe_softc *sc)
9845 {
9846     atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
9847     sc->spq_prod_idx = 0;
9848     sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
9849     sc->spq_prod_bd = sc->spq;
9850     sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
9851 }
9852 
9853 static void
9854 bxe_init_eq_ring(struct bxe_softc *sc)
9855 {
9856     union event_ring_elem *elem;
9857     int i;
9858 
9859     for (i = 1; i <= NUM_EQ_PAGES; i++) {
9860         elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
9861 
9862         elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
9863                                                  BCM_PAGE_SIZE *
9864                                                  (i % NUM_EQ_PAGES)));
9865         elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
9866                                                  BCM_PAGE_SIZE *
9867                                                  (i % NUM_EQ_PAGES)));
9868     }
9869 
9870     sc->eq_cons    = 0;
9871     sc->eq_prod    = NUM_EQ_DESC;
9872     sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
9873 
9874     atomic_store_rel_long(&sc->eq_spq_left,
9875                           (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
9876                                NUM_EQ_DESC) - 1));
9877 }
9878 
9879 static void
9880 bxe_init_internal_common(struct bxe_softc *sc)
9881 {
9882     int i;
9883 
9884     /*
9885      * Zero this manually as its initialization is currently missing
9886      * in the initTool.
9887      */
9888     for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
9889         REG_WR(sc,
9890                (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
9891                0);
9892     }
9893 
9894     if (!CHIP_IS_E1x(sc)) {
9895         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
9896                 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
9897     }
9898 }
9899 
9900 static void
9901 bxe_init_internal(struct bxe_softc *sc,
9902                   uint32_t         load_code)
9903 {
9904     switch (load_code) {
9905     case FW_MSG_CODE_DRV_LOAD_COMMON:
9906     case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
9907         bxe_init_internal_common(sc);
9908         /* no break */
9909 
9910     case FW_MSG_CODE_DRV_LOAD_PORT:
9911         /* nothing to do */
9912         /* no break */
9913 
9914     case FW_MSG_CODE_DRV_LOAD_FUNCTION:
9915         /* internal memory per function is initialized inside bxe_pf_init */
9916         break;
9917 
9918     default:
9919         BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
9920         break;
9921     }
9922 }
9923 
9924 static void
9925 storm_memset_func_cfg(struct bxe_softc                         *sc,
9926                       struct tstorm_eth_function_common_config *tcfg,
9927                       uint16_t                                  abs_fid)
9928 {
9929     uint32_t addr;
9930     size_t size;
9931 
9932     addr = (BAR_TSTRORM_INTMEM +
9933             TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
9934     size = sizeof(struct tstorm_eth_function_common_config);
9935     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
9936 }
9937 
9938 static void
9939 bxe_func_init(struct bxe_softc            *sc,
9940               struct bxe_func_init_params *p)
9941 {
9942     struct tstorm_eth_function_common_config tcfg = { 0 };
9943 
9944     if (CHIP_IS_E1x(sc)) {
9945         storm_memset_func_cfg(sc, &tcfg, p->func_id);
9946     }
9947 
9948     /* Enable the function in the FW */
9949     storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
9950     storm_memset_func_en(sc, p->func_id, 1);
9951 
9952     /* spq */
9953     if (p->func_flgs & FUNC_FLG_SPQ) {
9954         storm_memset_spq_addr(sc, p->spq_map, p->func_id);
9955         REG_WR(sc,
9956                (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
9957                p->spq_prod);
9958     }
9959 }
9960 
9961 /*
9962  * Calculates the sum of vn_min_rates.
9963  * It's needed for further normalizing of the min_rates.
9964  * Returns:
9965  *   sum of vn_min_rates.
9966  *     or
9967  *   0 - if all the min_rates are 0.
9968  * In the later case fainess algorithm should be deactivated.
9969  * If all min rates are not zero then those that are zeroes will be set to 1.
9970  */
9971 static void
9972 bxe_calc_vn_min(struct bxe_softc       *sc,
9973                 struct cmng_init_input *input)
9974 {
9975     uint32_t vn_cfg;
9976     uint32_t vn_min_rate;
9977     int all_zero = 1;
9978     int vn;
9979 
9980     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
9981         vn_cfg = sc->devinfo.mf_info.mf_config[vn];
9982         vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
9983                         FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
9984 
9985         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
9986             /* skip hidden VNs */
9987             vn_min_rate = 0;
9988         } else if (!vn_min_rate) {
9989             /* If min rate is zero - set it to 100 */
9990             vn_min_rate = DEF_MIN_RATE;
9991         } else {
9992             all_zero = 0;
9993         }
9994 
9995         input->vnic_min_rate[vn] = vn_min_rate;
9996     }
9997 
9998     /* if ETS or all min rates are zeros - disable fairness */
9999     if (BXE_IS_ETS_ENABLED(sc)) {
10000         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10001         BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
10002     } else if (all_zero) {
10003         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10004         BLOGD(sc, DBG_LOAD,
10005               "Fariness disabled (all MIN values are zeroes)\n");
10006     } else {
10007         input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10008     }
10009 }
10010 
10011 static inline uint16_t
10012 bxe_extract_max_cfg(struct bxe_softc *sc,
10013                     uint32_t         mf_cfg)
10014 {
10015     uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
10016                         FUNC_MF_CFG_MAX_BW_SHIFT);
10017 
10018     if (!max_cfg) {
10019         BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
10020         max_cfg = 100;
10021     }
10022 
10023     return (max_cfg);
10024 }
10025 
10026 static void
10027 bxe_calc_vn_max(struct bxe_softc       *sc,
10028                 int                    vn,
10029                 struct cmng_init_input *input)
10030 {
10031     uint16_t vn_max_rate;
10032     uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10033     uint32_t max_cfg;
10034 
10035     if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10036         vn_max_rate = 0;
10037     } else {
10038         max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
10039 
10040         if (IS_MF_SI(sc)) {
10041             /* max_cfg in percents of linkspeed */
10042             vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
10043         } else { /* SD modes */
10044             /* max_cfg is absolute in 100Mb units */
10045             vn_max_rate = (max_cfg * 100);
10046         }
10047     }
10048 
10049     BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
10050 
10051     input->vnic_max_rate[vn] = vn_max_rate;
10052 }
10053 
10054 static void
10055 bxe_cmng_fns_init(struct bxe_softc *sc,
10056                   uint8_t          read_cfg,
10057                   uint8_t          cmng_type)
10058 {
10059     struct cmng_init_input input;
10060     int vn;
10061 
10062     memset(&input, 0, sizeof(struct cmng_init_input));
10063 
10064     input.port_rate = sc->link_vars.line_speed;
10065 
10066     if (cmng_type == CMNG_FNS_MINMAX) {
10067         /* read mf conf from shmem */
10068         if (read_cfg) {
10069             bxe_read_mf_cfg(sc);
10070         }
10071 
10072         /* get VN min rate and enable fairness if not 0 */
10073         bxe_calc_vn_min(sc, &input);
10074 
10075         /* get VN max rate */
10076         if (sc->port.pmf) {
10077             for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10078                 bxe_calc_vn_max(sc, vn, &input);
10079             }
10080         }
10081 
10082         /* always enable rate shaping and fairness */
10083         input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
10084 
10085         ecore_init_cmng(&input, &sc->cmng);
10086         return;
10087     }
10088 
10089     /* rate shaping and fairness are disabled */
10090     BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10091 }
10092 
10093 static int
10094 bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10095 {
10096     if (CHIP_REV_IS_SLOW(sc)) {
10097         return (CMNG_FNS_NONE);
10098     }
10099 
10100     if (IS_MF(sc)) {
10101         return (CMNG_FNS_MINMAX);
10102     }
10103 
10104     return (CMNG_FNS_NONE);
10105 }
10106 
10107 static void
10108 storm_memset_cmng(struct bxe_softc *sc,
10109                   struct cmng_init *cmng,
10110                   uint8_t          port)
10111 {
10112     int vn;
10113     int func;
10114     uint32_t addr;
10115     size_t size;
10116 
10117     addr = (BAR_XSTRORM_INTMEM +
10118             XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10119     size = sizeof(struct cmng_struct_per_port);
10120     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10121 
10122     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10123         func = func_by_vn(sc, vn);
10124 
10125         addr = (BAR_XSTRORM_INTMEM +
10126                 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10127         size = sizeof(struct rate_shaping_vars_per_vn);
10128         ecore_storm_memset_struct(sc, addr, size,
10129                                   (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10130 
10131         addr = (BAR_XSTRORM_INTMEM +
10132                 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10133         size = sizeof(struct fairness_vars_per_vn);
10134         ecore_storm_memset_struct(sc, addr, size,
10135                                   (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10136     }
10137 }
10138 
10139 static void
10140 bxe_pf_init(struct bxe_softc *sc)
10141 {
10142     struct bxe_func_init_params func_init = { 0 };
10143     struct event_ring_data eq_data = { { 0 } };
10144     uint16_t flags;
10145 
10146     if (!CHIP_IS_E1x(sc)) {
10147         /* reset IGU PF statistics: MSIX + ATTN */
10148         /* PF */
10149         REG_WR(sc,
10150                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10151                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10152                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10153                0);
10154         /* ATTN */
10155         REG_WR(sc,
10156                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10157                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10158                 (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10159                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10160                0);
10161     }
10162 
10163     /* function setup flags */
10164     flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10165 
10166     /*
10167      * This flag is relevant for E1x only.
10168      * E2 doesn't have a TPA configuration in a function level.
10169      */
10170     flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10171 
10172     func_init.func_flgs = flags;
10173     func_init.pf_id     = SC_FUNC(sc);
10174     func_init.func_id   = SC_FUNC(sc);
10175     func_init.spq_map   = sc->spq_dma.paddr;
10176     func_init.spq_prod  = sc->spq_prod_idx;
10177 
10178     bxe_func_init(sc, &func_init);
10179 
10180     memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10181 
10182     /*
10183      * Congestion management values depend on the link rate.
10184      * There is no active link so initial link rate is set to 10Gbps.
10185      * When the link comes up the congestion management values are
10186      * re-calculated according to the actual link rate.
10187      */
10188     sc->link_vars.line_speed = SPEED_10000;
10189     bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10190 
10191     /* Only the PMF sets the HW */
10192     if (sc->port.pmf) {
10193         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10194     }
10195 
10196     /* init Event Queue - PCI bus guarantees correct endainity */
10197     eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10198     eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10199     eq_data.producer     = sc->eq_prod;
10200     eq_data.index_id     = HC_SP_INDEX_EQ_CONS;
10201     eq_data.sb_id        = DEF_SB_ID;
10202     storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10203 }
10204 
10205 static void
10206 bxe_hc_int_enable(struct bxe_softc *sc)
10207 {
10208     int port = SC_PORT(sc);
10209     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10210     uint32_t val = REG_RD(sc, addr);
10211     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10212     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10213                            (sc->intr_count == 1)) ? TRUE : FALSE;
10214     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10215 
10216     if (msix) {
10217         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10218                  HC_CONFIG_0_REG_INT_LINE_EN_0);
10219         val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10220                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10221         if (single_msix) {
10222             val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10223         }
10224     } else if (msi) {
10225         val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10226         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10227                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10228                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10229     } else {
10230         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10231                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10232                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10233                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10234 
10235         if (!CHIP_IS_E1(sc)) {
10236             BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10237                   val, port, addr);
10238 
10239             REG_WR(sc, addr, val);
10240 
10241             val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10242         }
10243     }
10244 
10245     if (CHIP_IS_E1(sc)) {
10246         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10247     }
10248 
10249     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10250           val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10251 
10252     REG_WR(sc, addr, val);
10253 
10254     /* ensure that HC_CONFIG is written before leading/trailing edge config */
10255     mb();
10256 
10257     if (!CHIP_IS_E1(sc)) {
10258         /* init leading/trailing edge */
10259         if (IS_MF(sc)) {
10260             val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10261             if (sc->port.pmf) {
10262                 /* enable nig and gpio3 attention */
10263                 val |= 0x1100;
10264             }
10265         } else {
10266             val = 0xffff;
10267         }
10268 
10269         REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10270         REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10271     }
10272 
10273     /* make sure that interrupts are indeed enabled from here on */
10274     mb();
10275 }
10276 
10277 static void
10278 bxe_igu_int_enable(struct bxe_softc *sc)
10279 {
10280     uint32_t val;
10281     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10282     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10283                            (sc->intr_count == 1)) ? TRUE : FALSE;
10284     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10285 
10286     val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10287 
10288     if (msix) {
10289         val &= ~(IGU_PF_CONF_INT_LINE_EN |
10290                  IGU_PF_CONF_SINGLE_ISR_EN);
10291         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10292                 IGU_PF_CONF_ATTN_BIT_EN);
10293         if (single_msix) {
10294             val |= IGU_PF_CONF_SINGLE_ISR_EN;
10295         }
10296     } else if (msi) {
10297         val &= ~IGU_PF_CONF_INT_LINE_EN;
10298         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10299                 IGU_PF_CONF_ATTN_BIT_EN |
10300                 IGU_PF_CONF_SINGLE_ISR_EN);
10301     } else {
10302         val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10303         val |= (IGU_PF_CONF_INT_LINE_EN |
10304                 IGU_PF_CONF_ATTN_BIT_EN |
10305                 IGU_PF_CONF_SINGLE_ISR_EN);
10306     }
10307 
10308     /* clean previous status - need to configure igu prior to ack*/
10309     if ((!msix) || single_msix) {
10310         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10311         bxe_ack_int(sc);
10312     }
10313 
10314     val |= IGU_PF_CONF_FUNC_EN;
10315 
10316     BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10317           val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10318 
10319     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10320 
10321     mb();
10322 
10323     /* init leading/trailing edge */
10324     if (IS_MF(sc)) {
10325         val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10326         if (sc->port.pmf) {
10327             /* enable nig and gpio3 attention */
10328             val |= 0x1100;
10329         }
10330     } else {
10331         val = 0xffff;
10332     }
10333 
10334     REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10335     REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10336 
10337     /* make sure that interrupts are indeed enabled from here on */
10338     mb();
10339 }
10340 
10341 static void
10342 bxe_int_enable(struct bxe_softc *sc)
10343 {
10344     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10345         bxe_hc_int_enable(sc);
10346     } else {
10347         bxe_igu_int_enable(sc);
10348     }
10349 }
10350 
10351 static void
10352 bxe_hc_int_disable(struct bxe_softc *sc)
10353 {
10354     int port = SC_PORT(sc);
10355     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10356     uint32_t val = REG_RD(sc, addr);
10357 
10358     /*
10359      * In E1 we must use only PCI configuration space to disable MSI/MSIX
10360      * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10361      * block
10362      */
10363     if (CHIP_IS_E1(sc)) {
10364         /*
10365          * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10366          * to prevent from HC sending interrupts after we exit the function
10367          */
10368         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10369 
10370         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10371                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10372                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10373     } else {
10374         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10375                  HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10376                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10377                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10378     }
10379 
10380     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10381 
10382     /* flush all outstanding writes */
10383     mb();
10384 
10385     REG_WR(sc, addr, val);
10386     if (REG_RD(sc, addr) != val) {
10387         BLOGE(sc, "proper val not read from HC IGU!\n");
10388     }
10389 }
10390 
10391 static void
10392 bxe_igu_int_disable(struct bxe_softc *sc)
10393 {
10394     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10395 
10396     val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10397              IGU_PF_CONF_INT_LINE_EN |
10398              IGU_PF_CONF_ATTN_BIT_EN);
10399 
10400     BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10401 
10402     /* flush all outstanding writes */
10403     mb();
10404 
10405     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10406     if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10407         BLOGE(sc, "proper val not read from IGU!\n");
10408     }
10409 }
10410 
10411 static void
10412 bxe_int_disable(struct bxe_softc *sc)
10413 {
10414     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10415         bxe_hc_int_disable(sc);
10416     } else {
10417         bxe_igu_int_disable(sc);
10418     }
10419 }
10420 
10421 static void
10422 bxe_nic_init(struct bxe_softc *sc,
10423              int              load_code)
10424 {
10425     int i;
10426 
10427     for (i = 0; i < sc->num_queues; i++) {
10428         bxe_init_eth_fp(sc, i);
10429     }
10430 
10431     rmb(); /* ensure status block indices were read */
10432 
10433     bxe_init_rx_rings(sc);
10434     bxe_init_tx_rings(sc);
10435 
10436     if (IS_VF(sc)) {
10437         return;
10438     }
10439 
10440     /* initialize MOD_ABS interrupts */
10441     elink_init_mod_abs_int(sc, &sc->link_vars,
10442                            sc->devinfo.chip_id,
10443                            sc->devinfo.shmem_base,
10444                            sc->devinfo.shmem2_base,
10445                            SC_PORT(sc));
10446 
10447     bxe_init_def_sb(sc);
10448     bxe_update_dsb_idx(sc);
10449     bxe_init_sp_ring(sc);
10450     bxe_init_eq_ring(sc);
10451     bxe_init_internal(sc, load_code);
10452     bxe_pf_init(sc);
10453     bxe_stats_init(sc);
10454 
10455     /* flush all before enabling interrupts */
10456     mb();
10457 
10458     bxe_int_enable(sc);
10459 
10460     /* check for SPIO5 */
10461     bxe_attn_int_deasserted0(sc,
10462                              REG_RD(sc,
10463                                     (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10464                                      SC_PORT(sc)*4)) &
10465                              AEU_INPUTS_ATTN_BITS_SPIO5);
10466 }
10467 
10468 static inline void
10469 bxe_init_objs(struct bxe_softc *sc)
10470 {
10471     /* mcast rules must be added to tx if tx switching is enabled */
10472     ecore_obj_type o_type =
10473         (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10474                                          ECORE_OBJ_TYPE_RX;
10475 
10476     /* RX_MODE controlling object */
10477     ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10478 
10479     /* multicast configuration controlling object */
10480     ecore_init_mcast_obj(sc,
10481                          &sc->mcast_obj,
10482                          sc->fp[0].cl_id,
10483                          sc->fp[0].index,
10484                          SC_FUNC(sc),
10485                          SC_FUNC(sc),
10486                          BXE_SP(sc, mcast_rdata),
10487                          BXE_SP_MAPPING(sc, mcast_rdata),
10488                          ECORE_FILTER_MCAST_PENDING,
10489                          &sc->sp_state,
10490                          o_type);
10491 
10492     /* Setup CAM credit pools */
10493     ecore_init_mac_credit_pool(sc,
10494                                &sc->macs_pool,
10495                                SC_FUNC(sc),
10496                                CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10497                                                  VNICS_PER_PATH(sc));
10498 
10499     ecore_init_vlan_credit_pool(sc,
10500                                 &sc->vlans_pool,
10501                                 SC_ABS_FUNC(sc) >> 1,
10502                                 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10503                                                   VNICS_PER_PATH(sc));
10504 
10505     /* RSS configuration object */
10506     ecore_init_rss_config_obj(sc,
10507                               &sc->rss_conf_obj,
10508                               sc->fp[0].cl_id,
10509                               sc->fp[0].index,
10510                               SC_FUNC(sc),
10511                               SC_FUNC(sc),
10512                               BXE_SP(sc, rss_rdata),
10513                               BXE_SP_MAPPING(sc, rss_rdata),
10514                               ECORE_FILTER_RSS_CONF_PENDING,
10515                               &sc->sp_state, ECORE_OBJ_TYPE_RX);
10516 }
10517 
10518 /*
10519  * Initialize the function. This must be called before sending CLIENT_SETUP
10520  * for the first client.
10521  */
10522 static inline int
10523 bxe_func_start(struct bxe_softc *sc)
10524 {
10525     struct ecore_func_state_params func_params = { NULL };
10526     struct ecore_func_start_params *start_params = &func_params.params.start;
10527 
10528     /* Prepare parameters for function state transitions */
10529     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
10530 
10531     func_params.f_obj = &sc->func_obj;
10532     func_params.cmd = ECORE_F_CMD_START;
10533 
10534     /* Function parameters */
10535     start_params->mf_mode     = sc->devinfo.mf_info.mf_mode;
10536     start_params->sd_vlan_tag = OVLAN(sc);
10537 
10538     if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
10539         start_params->network_cos_mode = STATIC_COS;
10540     } else { /* CHIP_IS_E1X */
10541         start_params->network_cos_mode = FW_WRR;
10542     }
10543 
10544     //start_params->gre_tunnel_mode = 0;
10545     //start_params->gre_tunnel_rss  = 0;
10546 
10547     return (ecore_func_state_change(sc, &func_params));
10548 }
10549 
10550 static int
10551 bxe_set_power_state(struct bxe_softc *sc,
10552                     uint8_t          state)
10553 {
10554     uint16_t pmcsr;
10555 
10556     /* If there is no power capability, silently succeed */
10557     if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
10558         BLOGW(sc, "No power capability\n");
10559         return (0);
10560     }
10561 
10562     pmcsr = pci_read_config(sc->dev,
10563                             (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10564                             2);
10565 
10566     switch (state) {
10567     case PCI_PM_D0:
10568         pci_write_config(sc->dev,
10569                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10570                          ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
10571 
10572         if (pmcsr & PCIM_PSTAT_DMASK) {
10573             /* delay required during transition out of D3hot */
10574             DELAY(20000);
10575         }
10576 
10577         break;
10578 
10579     case PCI_PM_D3hot:
10580         /* XXX if there are other clients above don't shut down the power */
10581 
10582         /* don't shut down the power for emulation and FPGA */
10583         if (CHIP_REV_IS_SLOW(sc)) {
10584             return (0);
10585         }
10586 
10587         pmcsr &= ~PCIM_PSTAT_DMASK;
10588         pmcsr |= PCIM_PSTAT_D3;
10589 
10590         if (sc->wol) {
10591             pmcsr |= PCIM_PSTAT_PMEENABLE;
10592         }
10593 
10594         pci_write_config(sc->dev,
10595                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10596                          pmcsr, 4);
10597 
10598         /*
10599          * No more memory access after this point until device is brought back
10600          * to D0 state.
10601          */
10602         break;
10603 
10604     default:
10605         BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n",
10606             state, pmcsr);
10607         return (-1);
10608     }
10609 
10610     return (0);
10611 }
10612 
10613 
10614 /* return true if succeeded to acquire the lock */
10615 static uint8_t
10616 bxe_trylock_hw_lock(struct bxe_softc *sc,
10617                     uint32_t         resource)
10618 {
10619     uint32_t lock_status;
10620     uint32_t resource_bit = (1 << resource);
10621     int func = SC_FUNC(sc);
10622     uint32_t hw_lock_control_reg;
10623 
10624     BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
10625 
10626     /* Validating that the resource is within range */
10627     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
10628         BLOGD(sc, DBG_LOAD,
10629               "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
10630               resource, HW_LOCK_MAX_RESOURCE_VALUE);
10631         return (FALSE);
10632     }
10633 
10634     if (func <= 5) {
10635         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
10636     } else {
10637         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
10638     }
10639 
10640     /* try to acquire the lock */
10641     REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
10642     lock_status = REG_RD(sc, hw_lock_control_reg);
10643     if (lock_status & resource_bit) {
10644         return (TRUE);
10645     }
10646 
10647     BLOGE(sc, "Failed to get a resource lock 0x%x func %d "
10648         "lock_status 0x%x resource_bit 0x%x\n", resource, func,
10649         lock_status, resource_bit);
10650 
10651     return (FALSE);
10652 }
10653 
10654 /*
10655  * Get the recovery leader resource id according to the engine this function
10656  * belongs to. Currently only only 2 engines is supported.
10657  */
10658 static int
10659 bxe_get_leader_lock_resource(struct bxe_softc *sc)
10660 {
10661     if (SC_PATH(sc)) {
10662         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
10663     } else {
10664         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
10665     }
10666 }
10667 
10668 /* try to acquire a leader lock for current engine */
10669 static uint8_t
10670 bxe_trylock_leader_lock(struct bxe_softc *sc)
10671 {
10672     return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
10673 }
10674 
10675 static int
10676 bxe_release_leader_lock(struct bxe_softc *sc)
10677 {
10678     return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
10679 }
10680 
10681 /* close gates #2, #3 and #4 */
10682 static void
10683 bxe_set_234_gates(struct bxe_softc *sc,
10684                   uint8_t          close)
10685 {
10686     uint32_t val;
10687 
10688     /* gates #2 and #4a are closed/opened for "not E1" only */
10689     if (!CHIP_IS_E1(sc)) {
10690         /* #4 */
10691         REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
10692         /* #2 */
10693         REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
10694     }
10695 
10696     /* #3 */
10697     if (CHIP_IS_E1x(sc)) {
10698         /* prevent interrupts from HC on both ports */
10699         val = REG_RD(sc, HC_REG_CONFIG_1);
10700         REG_WR(sc, HC_REG_CONFIG_1,
10701                (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
10702                (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
10703 
10704         val = REG_RD(sc, HC_REG_CONFIG_0);
10705         REG_WR(sc, HC_REG_CONFIG_0,
10706                (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
10707                (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
10708     } else {
10709         /* Prevent incoming interrupts in IGU */
10710         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
10711 
10712         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
10713                (!close) ?
10714                (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
10715                (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
10716     }
10717 
10718     BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
10719           close ? "closing" : "opening");
10720 
10721     wmb();
10722 }
10723 
10724 /* poll for pending writes bit, it should get cleared in no more than 1s */
10725 static int
10726 bxe_er_poll_igu_vq(struct bxe_softc *sc)
10727 {
10728     uint32_t cnt = 1000;
10729     uint32_t pend_bits = 0;
10730 
10731     do {
10732         pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
10733 
10734         if (pend_bits == 0) {
10735             break;
10736         }
10737 
10738         DELAY(1000);
10739     } while (--cnt > 0);
10740 
10741     if (cnt == 0) {
10742         BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
10743         return (-1);
10744     }
10745 
10746     return (0);
10747 }
10748 
10749 #define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
10750 
10751 static void
10752 bxe_clp_reset_prep(struct bxe_softc *sc,
10753                    uint32_t         *magic_val)
10754 {
10755     /* Do some magic... */
10756     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10757     *magic_val = val & SHARED_MF_CLP_MAGIC;
10758     MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
10759 }
10760 
10761 /* restore the value of the 'magic' bit */
10762 static void
10763 bxe_clp_reset_done(struct bxe_softc *sc,
10764                    uint32_t         magic_val)
10765 {
10766     /* Restore the 'magic' bit value... */
10767     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10768     MFCFG_WR(sc, shared_mf_config.clp_mb,
10769               (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
10770 }
10771 
10772 /* prepare for MCP reset, takes care of CLP configurations */
10773 static void
10774 bxe_reset_mcp_prep(struct bxe_softc *sc,
10775                    uint32_t         *magic_val)
10776 {
10777     uint32_t shmem;
10778     uint32_t validity_offset;
10779 
10780     /* set `magic' bit in order to save MF config */
10781     if (!CHIP_IS_E1(sc)) {
10782         bxe_clp_reset_prep(sc, magic_val);
10783     }
10784 
10785     /* get shmem offset */
10786     shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10787     validity_offset =
10788         offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
10789 
10790     /* Clear validity map flags */
10791     if (shmem > 0) {
10792         REG_WR(sc, shmem + validity_offset, 0);
10793     }
10794 }
10795 
10796 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
10797 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
10798 
10799 static void
10800 bxe_mcp_wait_one(struct bxe_softc *sc)
10801 {
10802     /* special handling for emulation and FPGA (10 times longer) */
10803     if (CHIP_REV_IS_SLOW(sc)) {
10804         DELAY((MCP_ONE_TIMEOUT*10) * 1000);
10805     } else {
10806         DELAY((MCP_ONE_TIMEOUT) * 1000);
10807     }
10808 }
10809 
10810 /* initialize shmem_base and waits for validity signature to appear */
10811 static int
10812 bxe_init_shmem(struct bxe_softc *sc)
10813 {
10814     int cnt = 0;
10815     uint32_t val = 0;
10816 
10817     do {
10818         sc->devinfo.shmem_base     =
10819         sc->link_params.shmem_base =
10820             REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10821 
10822         if (sc->devinfo.shmem_base) {
10823             val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
10824             if (val & SHR_MEM_VALIDITY_MB)
10825                 return (0);
10826         }
10827 
10828         bxe_mcp_wait_one(sc);
10829 
10830     } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
10831 
10832     BLOGE(sc, "BAD MCP validity signature\n");
10833 
10834     return (-1);
10835 }
10836 
10837 static int
10838 bxe_reset_mcp_comp(struct bxe_softc *sc,
10839                    uint32_t         magic_val)
10840 {
10841     int rc = bxe_init_shmem(sc);
10842 
10843     /* Restore the `magic' bit value */
10844     if (!CHIP_IS_E1(sc)) {
10845         bxe_clp_reset_done(sc, magic_val);
10846     }
10847 
10848     return (rc);
10849 }
10850 
10851 static void
10852 bxe_pxp_prep(struct bxe_softc *sc)
10853 {
10854     if (!CHIP_IS_E1(sc)) {
10855         REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
10856         REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
10857         wmb();
10858     }
10859 }
10860 
10861 /*
10862  * Reset the whole chip except for:
10863  *      - PCIE core
10864  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
10865  *      - IGU
10866  *      - MISC (including AEU)
10867  *      - GRC
10868  *      - RBCN, RBCP
10869  */
10870 static void
10871 bxe_process_kill_chip_reset(struct bxe_softc *sc,
10872                             uint8_t          global)
10873 {
10874     uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
10875     uint32_t global_bits2, stay_reset2;
10876 
10877     /*
10878      * Bits that have to be set in reset_mask2 if we want to reset 'global'
10879      * (per chip) blocks.
10880      */
10881     global_bits2 =
10882         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
10883         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
10884 
10885     /*
10886      * Don't reset the following blocks.
10887      * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
10888      *            reset, as in 4 port device they might still be owned
10889      *            by the MCP (there is only one leader per path).
10890      */
10891     not_reset_mask1 =
10892         MISC_REGISTERS_RESET_REG_1_RST_HC |
10893         MISC_REGISTERS_RESET_REG_1_RST_PXPV |
10894         MISC_REGISTERS_RESET_REG_1_RST_PXP;
10895 
10896     not_reset_mask2 =
10897         MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
10898         MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
10899         MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
10900         MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
10901         MISC_REGISTERS_RESET_REG_2_RST_RBCN |
10902         MISC_REGISTERS_RESET_REG_2_RST_GRC  |
10903         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
10904         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
10905         MISC_REGISTERS_RESET_REG_2_RST_ATC |
10906         MISC_REGISTERS_RESET_REG_2_PGLC |
10907         MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
10908         MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
10909         MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
10910         MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
10911         MISC_REGISTERS_RESET_REG_2_UMAC0 |
10912         MISC_REGISTERS_RESET_REG_2_UMAC1;
10913 
10914     /*
10915      * Keep the following blocks in reset:
10916      *  - all xxMACs are handled by the elink code.
10917      */
10918     stay_reset2 =
10919         MISC_REGISTERS_RESET_REG_2_XMAC |
10920         MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
10921 
10922     /* Full reset masks according to the chip */
10923     reset_mask1 = 0xffffffff;
10924 
10925     if (CHIP_IS_E1(sc))
10926         reset_mask2 = 0xffff;
10927     else if (CHIP_IS_E1H(sc))
10928         reset_mask2 = 0x1ffff;
10929     else if (CHIP_IS_E2(sc))
10930         reset_mask2 = 0xfffff;
10931     else /* CHIP_IS_E3 */
10932         reset_mask2 = 0x3ffffff;
10933 
10934     /* Don't reset global blocks unless we need to */
10935     if (!global)
10936         reset_mask2 &= ~global_bits2;
10937 
10938     /*
10939      * In case of attention in the QM, we need to reset PXP
10940      * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
10941      * because otherwise QM reset would release 'close the gates' shortly
10942      * before resetting the PXP, then the PSWRQ would send a write
10943      * request to PGLUE. Then when PXP is reset, PGLUE would try to
10944      * read the payload data from PSWWR, but PSWWR would not
10945      * respond. The write queue in PGLUE would stuck, dmae commands
10946      * would not return. Therefore it's important to reset the second
10947      * reset register (containing the
10948      * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
10949      * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
10950      * bit).
10951      */
10952     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
10953            reset_mask2 & (~not_reset_mask2));
10954 
10955     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
10956            reset_mask1 & (~not_reset_mask1));
10957 
10958     mb();
10959     wmb();
10960 
10961     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
10962            reset_mask2 & (~stay_reset2));
10963 
10964     mb();
10965     wmb();
10966 
10967     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
10968     wmb();
10969 }
10970 
10971 static int
10972 bxe_process_kill(struct bxe_softc *sc,
10973                  uint8_t          global)
10974 {
10975     int cnt = 1000;
10976     uint32_t val = 0;
10977     uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
10978     uint32_t tags_63_32 = 0;
10979 
10980     /* Empty the Tetris buffer, wait for 1s */
10981     do {
10982         sr_cnt  = REG_RD(sc, PXP2_REG_RD_SR_CNT);
10983         blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
10984         port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
10985         port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
10986         pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
10987         if (CHIP_IS_E3(sc)) {
10988             tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
10989         }
10990 
10991         if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
10992             ((port_is_idle_0 & 0x1) == 0x1) &&
10993             ((port_is_idle_1 & 0x1) == 0x1) &&
10994             (pgl_exp_rom2 == 0xffffffff) &&
10995             (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
10996             break;
10997         DELAY(1000);
10998     } while (cnt-- > 0);
10999 
11000     if (cnt <= 0) {
11001         BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
11002                   "are still outstanding read requests after 1s! "
11003                   "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
11004                   "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
11005               sr_cnt, blk_cnt, port_is_idle_0,
11006               port_is_idle_1, pgl_exp_rom2);
11007         return (-1);
11008     }
11009 
11010     mb();
11011 
11012     /* Close gates #2, #3 and #4 */
11013     bxe_set_234_gates(sc, TRUE);
11014 
11015     /* Poll for IGU VQs for 57712 and newer chips */
11016     if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
11017         return (-1);
11018     }
11019 
11020     /* XXX indicate that "process kill" is in progress to MCP */
11021 
11022     /* clear "unprepared" bit */
11023     REG_WR(sc, MISC_REG_UNPREPARED, 0);
11024     mb();
11025 
11026     /* Make sure all is written to the chip before the reset */
11027     wmb();
11028 
11029     /*
11030      * Wait for 1ms to empty GLUE and PCI-E core queues,
11031      * PSWHST, GRC and PSWRD Tetris buffer.
11032      */
11033     DELAY(1000);
11034 
11035     /* Prepare to chip reset: */
11036     /* MCP */
11037     if (global) {
11038         bxe_reset_mcp_prep(sc, &val);
11039     }
11040 
11041     /* PXP */
11042     bxe_pxp_prep(sc);
11043     mb();
11044 
11045     /* reset the chip */
11046     bxe_process_kill_chip_reset(sc, global);
11047     mb();
11048 
11049     /* clear errors in PGB */
11050     if (!CHIP_IS_E1(sc))
11051         REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
11052 
11053     /* Recover after reset: */
11054     /* MCP */
11055     if (global && bxe_reset_mcp_comp(sc, val)) {
11056         return (-1);
11057     }
11058 
11059     /* XXX add resetting the NO_MCP mode DB here */
11060 
11061     /* Open the gates #2, #3 and #4 */
11062     bxe_set_234_gates(sc, FALSE);
11063 
11064     /* XXX
11065      * IGU/AEU preparation bring back the AEU/IGU to a reset state
11066      * re-enable attentions
11067      */
11068 
11069     return (0);
11070 }
11071 
11072 static int
11073 bxe_leader_reset(struct bxe_softc *sc)
11074 {
11075     int rc = 0;
11076     uint8_t global = bxe_reset_is_global(sc);
11077     uint32_t load_code;
11078 
11079     /*
11080      * If not going to reset MCP, load "fake" driver to reset HW while
11081      * driver is owner of the HW.
11082      */
11083     if (!global && !BXE_NOMCP(sc)) {
11084         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11085                                    DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11086         if (!load_code) {
11087             BLOGE(sc, "MCP response failure, aborting\n");
11088             rc = -1;
11089             goto exit_leader_reset;
11090         }
11091 
11092         if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11093             (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11094             BLOGE(sc, "MCP unexpected response, aborting\n");
11095             rc = -1;
11096             goto exit_leader_reset2;
11097         }
11098 
11099         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11100         if (!load_code) {
11101             BLOGE(sc, "MCP response failure, aborting\n");
11102             rc = -1;
11103             goto exit_leader_reset2;
11104         }
11105     }
11106 
11107     /* try to recover after the failure */
11108     if (bxe_process_kill(sc, global)) {
11109         BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11110         rc = -1;
11111         goto exit_leader_reset2;
11112     }
11113 
11114     /*
11115      * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11116      * state.
11117      */
11118     bxe_set_reset_done(sc);
11119     if (global) {
11120         bxe_clear_reset_global(sc);
11121     }
11122 
11123 exit_leader_reset2:
11124 
11125     /* unload "fake driver" if it was loaded */
11126     if (!global && !BXE_NOMCP(sc)) {
11127         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11128         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11129     }
11130 
11131 exit_leader_reset:
11132 
11133     sc->is_leader = 0;
11134     bxe_release_leader_lock(sc);
11135 
11136     mb();
11137     return (rc);
11138 }
11139 
11140 /*
11141  * prepare INIT transition, parameters configured:
11142  *   - HC configuration
11143  *   - Queue's CDU context
11144  */
11145 static void
11146 bxe_pf_q_prep_init(struct bxe_softc               *sc,
11147                    struct bxe_fastpath            *fp,
11148                    struct ecore_queue_init_params *init_params)
11149 {
11150     uint8_t cos;
11151     int cxt_index, cxt_offset;
11152 
11153     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11154     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11155 
11156     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11157     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11158 
11159     /* HC rate */
11160     init_params->rx.hc_rate =
11161         sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11162     init_params->tx.hc_rate =
11163         sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11164 
11165     /* FW SB ID */
11166     init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11167 
11168     /* CQ index among the SB indices */
11169     init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11170     init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11171 
11172     /* set maximum number of COSs supported by this queue */
11173     init_params->max_cos = sc->max_cos;
11174 
11175     BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11176           fp->index, init_params->max_cos);
11177 
11178     /* set the context pointers queue object */
11179     for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11180         /* XXX change index/cid here if ever support multiple tx CoS */
11181         /* fp->txdata[cos]->cid */
11182         cxt_index = fp->index / ILT_PAGE_CIDS;
11183         cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11184         init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11185     }
11186 }
11187 
11188 /* set flags that are common for the Tx-only and not normal connections */
11189 static unsigned long
11190 bxe_get_common_flags(struct bxe_softc    *sc,
11191                      struct bxe_fastpath *fp,
11192                      uint8_t             zero_stats)
11193 {
11194     unsigned long flags = 0;
11195 
11196     /* PF driver will always initialize the Queue to an ACTIVE state */
11197     bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11198 
11199     /*
11200      * tx only connections collect statistics (on the same index as the
11201      * parent connection). The statistics are zeroed when the parent
11202      * connection is initialized.
11203      */
11204 
11205     bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11206     if (zero_stats) {
11207         bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11208     }
11209 
11210     /*
11211      * tx only connections can support tx-switching, though their
11212      * CoS-ness doesn't survive the loopback
11213      */
11214     if (sc->flags & BXE_TX_SWITCHING) {
11215         bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11216     }
11217 
11218     bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11219 
11220     return (flags);
11221 }
11222 
11223 static unsigned long
11224 bxe_get_q_flags(struct bxe_softc    *sc,
11225                 struct bxe_fastpath *fp,
11226                 uint8_t             leading)
11227 {
11228     unsigned long flags = 0;
11229 
11230     if (IS_MF_SD(sc)) {
11231         bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11232     }
11233 
11234     if (if_getcapenable(sc->ifp) & IFCAP_LRO) {
11235         bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11236 #if __FreeBSD_version >= 800000
11237         bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11238 #endif
11239     }
11240 
11241     if (leading) {
11242         bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11243         bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11244     }
11245 
11246     bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11247 
11248     /* merge with common flags */
11249     return (flags | bxe_get_common_flags(sc, fp, TRUE));
11250 }
11251 
11252 static void
11253 bxe_pf_q_prep_general(struct bxe_softc                  *sc,
11254                       struct bxe_fastpath               *fp,
11255                       struct ecore_general_setup_params *gen_init,
11256                       uint8_t                           cos)
11257 {
11258     gen_init->stat_id = bxe_stats_id(fp);
11259     gen_init->spcl_id = fp->cl_id;
11260     gen_init->mtu = sc->mtu;
11261     gen_init->cos = cos;
11262 }
11263 
11264 static void
11265 bxe_pf_rx_q_prep(struct bxe_softc              *sc,
11266                  struct bxe_fastpath           *fp,
11267                  struct rxq_pause_params       *pause,
11268                  struct ecore_rxq_setup_params *rxq_init)
11269 {
11270     uint8_t max_sge = 0;
11271     uint16_t sge_sz = 0;
11272     uint16_t tpa_agg_size = 0;
11273 
11274     pause->sge_th_lo = SGE_TH_LO(sc);
11275     pause->sge_th_hi = SGE_TH_HI(sc);
11276 
11277     /* validate SGE ring has enough to cross high threshold */
11278     if (sc->dropless_fc &&
11279             (pause->sge_th_hi + FW_PREFETCH_CNT) >
11280             (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11281         BLOGW(sc, "sge ring threshold limit\n");
11282     }
11283 
11284     /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11285     tpa_agg_size = (2 * sc->mtu);
11286     if (tpa_agg_size < sc->max_aggregation_size) {
11287         tpa_agg_size = sc->max_aggregation_size;
11288     }
11289 
11290     max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11291     max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11292                    (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11293     sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11294 
11295     /* pause - not for e1 */
11296     if (!CHIP_IS_E1(sc)) {
11297         pause->bd_th_lo = BD_TH_LO(sc);
11298         pause->bd_th_hi = BD_TH_HI(sc);
11299 
11300         pause->rcq_th_lo = RCQ_TH_LO(sc);
11301         pause->rcq_th_hi = RCQ_TH_HI(sc);
11302 
11303         /* validate rings have enough entries to cross high thresholds */
11304         if (sc->dropless_fc &&
11305             pause->bd_th_hi + FW_PREFETCH_CNT >
11306             sc->rx_ring_size) {
11307             BLOGW(sc, "rx bd ring threshold limit\n");
11308         }
11309 
11310         if (sc->dropless_fc &&
11311             pause->rcq_th_hi + FW_PREFETCH_CNT >
11312             RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11313             BLOGW(sc, "rcq ring threshold limit\n");
11314         }
11315 
11316         pause->pri_map = 1;
11317     }
11318 
11319     /* rxq setup */
11320     rxq_init->dscr_map   = fp->rx_dma.paddr;
11321     rxq_init->sge_map    = fp->rx_sge_dma.paddr;
11322     rxq_init->rcq_map    = fp->rcq_dma.paddr;
11323     rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11324 
11325     /*
11326      * This should be a maximum number of data bytes that may be
11327      * placed on the BD (not including paddings).
11328      */
11329     rxq_init->buf_sz = (fp->rx_buf_size -
11330                         IP_HEADER_ALIGNMENT_PADDING);
11331 
11332     rxq_init->cl_qzone_id     = fp->cl_qzone_id;
11333     rxq_init->tpa_agg_sz      = tpa_agg_size;
11334     rxq_init->sge_buf_sz      = sge_sz;
11335     rxq_init->max_sges_pkt    = max_sge;
11336     rxq_init->rss_engine_id   = SC_FUNC(sc);
11337     rxq_init->mcast_engine_id = SC_FUNC(sc);
11338 
11339     /*
11340      * Maximum number or simultaneous TPA aggregation for this Queue.
11341      * For PF Clients it should be the maximum available number.
11342      * VF driver(s) may want to define it to a smaller value.
11343      */
11344     rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11345 
11346     rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11347     rxq_init->fw_sb_id = fp->fw_sb_id;
11348 
11349     rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11350 
11351     /*
11352      * configure silent vlan removal
11353      * if multi function mode is afex, then mask default vlan
11354      */
11355     if (IS_MF_AFEX(sc)) {
11356         rxq_init->silent_removal_value =
11357             sc->devinfo.mf_info.afex_def_vlan_tag;
11358         rxq_init->silent_removal_mask = EVL_VLID_MASK;
11359     }
11360 }
11361 
11362 static void
11363 bxe_pf_tx_q_prep(struct bxe_softc              *sc,
11364                  struct bxe_fastpath           *fp,
11365                  struct ecore_txq_setup_params *txq_init,
11366                  uint8_t                       cos)
11367 {
11368     /*
11369      * XXX If multiple CoS is ever supported then each fastpath structure
11370      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11371      * fp->txdata[cos]->tx_dma.paddr;
11372      */
11373     txq_init->dscr_map     = fp->tx_dma.paddr;
11374     txq_init->sb_cq_index  = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11375     txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11376     txq_init->fw_sb_id     = fp->fw_sb_id;
11377 
11378     /*
11379      * set the TSS leading client id for TX classfication to the
11380      * leading RSS client id
11381      */
11382     txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11383 }
11384 
11385 /*
11386  * This function performs 2 steps in a queue state machine:
11387  *   1) RESET->INIT
11388  *   2) INIT->SETUP
11389  */
11390 static int
11391 bxe_setup_queue(struct bxe_softc    *sc,
11392                 struct bxe_fastpath *fp,
11393                 uint8_t             leading)
11394 {
11395     struct ecore_queue_state_params q_params = { NULL };
11396     struct ecore_queue_setup_params *setup_params =
11397                         &q_params.params.setup;
11398     int rc;
11399 
11400     BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11401 
11402     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11403 
11404     q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11405 
11406     /* we want to wait for completion in this context */
11407     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11408 
11409     /* prepare the INIT parameters */
11410     bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11411 
11412     /* Set the command */
11413     q_params.cmd = ECORE_Q_CMD_INIT;
11414 
11415     /* Change the state to INIT */
11416     rc = ecore_queue_state_change(sc, &q_params);
11417     if (rc) {
11418         BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc);
11419         return (rc);
11420     }
11421 
11422     BLOGD(sc, DBG_LOAD, "init complete\n");
11423 
11424     /* now move the Queue to the SETUP state */
11425     memset(setup_params, 0, sizeof(*setup_params));
11426 
11427     /* set Queue flags */
11428     setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11429 
11430     /* set general SETUP parameters */
11431     bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11432                           FIRST_TX_COS_INDEX);
11433 
11434     bxe_pf_rx_q_prep(sc, fp,
11435                      &setup_params->pause_params,
11436                      &setup_params->rxq_params);
11437 
11438     bxe_pf_tx_q_prep(sc, fp,
11439                      &setup_params->txq_params,
11440                      FIRST_TX_COS_INDEX);
11441 
11442     /* Set the command */
11443     q_params.cmd = ECORE_Q_CMD_SETUP;
11444 
11445     /* change the state to SETUP */
11446     rc = ecore_queue_state_change(sc, &q_params);
11447     if (rc) {
11448         BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc);
11449         return (rc);
11450     }
11451 
11452     return (rc);
11453 }
11454 
11455 static int
11456 bxe_setup_leading(struct bxe_softc *sc)
11457 {
11458     return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11459 }
11460 
11461 static int
11462 bxe_config_rss_pf(struct bxe_softc            *sc,
11463                   struct ecore_rss_config_obj *rss_obj,
11464                   uint8_t                     config_hash)
11465 {
11466     struct ecore_config_rss_params params = { NULL };
11467     int i;
11468 
11469     /*
11470      * Although RSS is meaningless when there is a single HW queue we
11471      * still need it enabled in order to have HW Rx hash generated.
11472      */
11473 
11474     params.rss_obj = rss_obj;
11475 
11476     bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11477 
11478     bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11479 
11480     /* RSS configuration */
11481     bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11482     bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11483     bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11484     bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11485     if (rss_obj->udp_rss_v4) {
11486         bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11487     }
11488     if (rss_obj->udp_rss_v6) {
11489         bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11490     }
11491 
11492     /* Hash bits */
11493     params.rss_result_mask = MULTI_MASK;
11494 
11495     memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
11496 
11497     if (config_hash) {
11498         /* RSS keys */
11499         for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
11500             params.rss_key[i] = arc4random();
11501         }
11502 
11503         bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
11504     }
11505 
11506     return (ecore_config_rss(sc, &params));
11507 }
11508 
11509 static int
11510 bxe_config_rss_eth(struct bxe_softc *sc,
11511                    uint8_t          config_hash)
11512 {
11513     return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
11514 }
11515 
11516 static int
11517 bxe_init_rss_pf(struct bxe_softc *sc)
11518 {
11519     uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
11520     int i;
11521 
11522     /*
11523      * Prepare the initial contents of the indirection table if
11524      * RSS is enabled
11525      */
11526     for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
11527         sc->rss_conf_obj.ind_table[i] =
11528             (sc->fp->cl_id + (i % num_eth_queues));
11529     }
11530 
11531     if (sc->udp_rss) {
11532         sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
11533     }
11534 
11535     /*
11536      * For 57710 and 57711 SEARCHER configuration (rss_keys) is
11537      * per-port, so if explicit configuration is needed, do it only
11538      * for a PMF.
11539      *
11540      * For 57712 and newer it's a per-function configuration.
11541      */
11542     return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
11543 }
11544 
11545 static int
11546 bxe_set_mac_one(struct bxe_softc          *sc,
11547                 uint8_t                   *mac,
11548                 struct ecore_vlan_mac_obj *obj,
11549                 uint8_t                   set,
11550                 int                       mac_type,
11551                 unsigned long             *ramrod_flags)
11552 {
11553     struct ecore_vlan_mac_ramrod_params ramrod_param;
11554     int rc;
11555 
11556     memset(&ramrod_param, 0, sizeof(ramrod_param));
11557 
11558     /* fill in general parameters */
11559     ramrod_param.vlan_mac_obj = obj;
11560     ramrod_param.ramrod_flags = *ramrod_flags;
11561 
11562     /* fill a user request section if needed */
11563     if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
11564         memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
11565 
11566         bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
11567 
11568         /* Set the command: ADD or DEL */
11569         ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
11570                                             ECORE_VLAN_MAC_DEL;
11571     }
11572 
11573     rc = ecore_config_vlan_mac(sc, &ramrod_param);
11574 
11575     if (rc == ECORE_EXISTS) {
11576         BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
11577         /* do not treat adding same MAC as error */
11578         rc = 0;
11579     } else if (rc < 0) {
11580         BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
11581     }
11582 
11583     return (rc);
11584 }
11585 
11586 static int
11587 bxe_set_eth_mac(struct bxe_softc *sc,
11588                 uint8_t          set)
11589 {
11590     unsigned long ramrod_flags = 0;
11591 
11592     BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
11593 
11594     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11595 
11596     /* Eth MAC is set on RSS leading client (fp[0]) */
11597     return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
11598                             &sc->sp_objs->mac_obj,
11599                             set, ECORE_ETH_MAC, &ramrod_flags));
11600 }
11601 
11602 static int
11603 bxe_get_cur_phy_idx(struct bxe_softc *sc)
11604 {
11605     uint32_t sel_phy_idx = 0;
11606 
11607     if (sc->link_params.num_phys <= 1) {
11608         return (ELINK_INT_PHY);
11609     }
11610 
11611     if (sc->link_vars.link_up) {
11612         sel_phy_idx = ELINK_EXT_PHY1;
11613         /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
11614         if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
11615             (sc->link_params.phy[ELINK_EXT_PHY2].supported &
11616              ELINK_SUPPORTED_FIBRE))
11617             sel_phy_idx = ELINK_EXT_PHY2;
11618     } else {
11619         switch (elink_phy_selection(&sc->link_params)) {
11620         case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
11621         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
11622         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
11623                sel_phy_idx = ELINK_EXT_PHY1;
11624                break;
11625         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
11626         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
11627                sel_phy_idx = ELINK_EXT_PHY2;
11628                break;
11629         }
11630     }
11631 
11632     return (sel_phy_idx);
11633 }
11634 
11635 static int
11636 bxe_get_link_cfg_idx(struct bxe_softc *sc)
11637 {
11638     uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
11639 
11640     /*
11641      * The selected activated PHY is always after swapping (in case PHY
11642      * swapping is enabled). So when swapping is enabled, we need to reverse
11643      * the configuration
11644      */
11645 
11646     if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11647         if (sel_phy_idx == ELINK_EXT_PHY1)
11648             sel_phy_idx = ELINK_EXT_PHY2;
11649         else if (sel_phy_idx == ELINK_EXT_PHY2)
11650             sel_phy_idx = ELINK_EXT_PHY1;
11651     }
11652 
11653     return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
11654 }
11655 
11656 static void
11657 bxe_set_requested_fc(struct bxe_softc *sc)
11658 {
11659     /*
11660      * Initialize link parameters structure variables
11661      * It is recommended to turn off RX FC for jumbo frames
11662      * for better performance
11663      */
11664     if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
11665         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
11666     } else {
11667         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
11668     }
11669 }
11670 
11671 static void
11672 bxe_calc_fc_adv(struct bxe_softc *sc)
11673 {
11674     uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
11675 
11676 
11677     sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
11678                                            ADVERTISED_Pause);
11679 
11680     switch (sc->link_vars.ieee_fc &
11681             MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
11682 
11683     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
11684         sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
11685                                           ADVERTISED_Pause);
11686         break;
11687 
11688     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
11689         sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
11690         break;
11691 
11692     default:
11693         break;
11694 
11695     }
11696 }
11697 
11698 static uint16_t
11699 bxe_get_mf_speed(struct bxe_softc *sc)
11700 {
11701     uint16_t line_speed = sc->link_vars.line_speed;
11702     if (IS_MF(sc)) {
11703         uint16_t maxCfg =
11704             bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
11705 
11706         /* calculate the current MAX line speed limit for the MF devices */
11707         if (IS_MF_SI(sc)) {
11708             line_speed = (line_speed * maxCfg) / 100;
11709         } else { /* SD mode */
11710             uint16_t vn_max_rate = maxCfg * 100;
11711 
11712             if (vn_max_rate < line_speed) {
11713                 line_speed = vn_max_rate;
11714             }
11715         }
11716     }
11717 
11718     return (line_speed);
11719 }
11720 
11721 static void
11722 bxe_fill_report_data(struct bxe_softc            *sc,
11723                      struct bxe_link_report_data *data)
11724 {
11725     uint16_t line_speed = bxe_get_mf_speed(sc);
11726 
11727     memset(data, 0, sizeof(*data));
11728 
11729     /* fill the report data with the effective line speed */
11730     data->line_speed = line_speed;
11731 
11732     /* Link is down */
11733     if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
11734         bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
11735     }
11736 
11737     /* Full DUPLEX */
11738     if (sc->link_vars.duplex == DUPLEX_FULL) {
11739         bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
11740     }
11741 
11742     /* Rx Flow Control is ON */
11743     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
11744         bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
11745     }
11746 
11747     /* Tx Flow Control is ON */
11748     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
11749         bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
11750     }
11751 }
11752 
11753 /* report link status to OS, should be called under phy_lock */
11754 static void
11755 bxe_link_report_locked(struct bxe_softc *sc)
11756 {
11757     struct bxe_link_report_data cur_data;
11758 
11759     /* reread mf_cfg */
11760     if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
11761         bxe_read_mf_cfg(sc);
11762     }
11763 
11764     /* Read the current link report info */
11765     bxe_fill_report_data(sc, &cur_data);
11766 
11767     /* Don't report link down or exactly the same link status twice */
11768     if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
11769         (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11770                       &sc->last_reported_link.link_report_flags) &&
11771          bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11772                       &cur_data.link_report_flags))) {
11773         return;
11774     }
11775 
11776 	ELINK_DEBUG_P2(sc, "Change in link status : cur_data = %x, last_reported_link = %x\n",
11777 					cur_data.link_report_flags, sc->last_reported_link.link_report_flags);
11778     sc->link_cnt++;
11779 
11780 	ELINK_DEBUG_P1(sc, "link status change count = %x\n", sc->link_cnt);
11781     /* report new link params and remember the state for the next time */
11782     memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
11783 
11784     if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11785                      &cur_data.link_report_flags)) {
11786         if_link_state_change(sc->ifp, LINK_STATE_DOWN);
11787     } else {
11788         const char *duplex;
11789         const char *flow;
11790 
11791         if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
11792                                    &cur_data.link_report_flags)) {
11793             duplex = "full";
11794 			ELINK_DEBUG_P0(sc, "link set to full duplex\n");
11795         } else {
11796             duplex = "half";
11797 			ELINK_DEBUG_P0(sc, "link set to half duplex\n");
11798         }
11799 
11800         /*
11801          * Handle the FC at the end so that only these flags would be
11802          * possibly set. This way we may easily check if there is no FC
11803          * enabled.
11804          */
11805         if (cur_data.link_report_flags) {
11806             if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11807                              &cur_data.link_report_flags) &&
11808                 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11809                              &cur_data.link_report_flags)) {
11810                 flow = "ON - receive & transmit";
11811             } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11812                                     &cur_data.link_report_flags) &&
11813                        !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11814                                      &cur_data.link_report_flags)) {
11815                 flow = "ON - receive";
11816             } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11817                                      &cur_data.link_report_flags) &&
11818                        bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11819                                     &cur_data.link_report_flags)) {
11820                 flow = "ON - transmit";
11821             } else {
11822                 flow = "none"; /* possible? */
11823             }
11824         } else {
11825             flow = "none";
11826         }
11827 
11828         if_link_state_change(sc->ifp, LINK_STATE_UP);
11829         BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
11830               cur_data.line_speed, duplex, flow);
11831     }
11832 }
11833 
11834 static void
11835 bxe_link_report(struct bxe_softc *sc)
11836 {
11837     bxe_acquire_phy_lock(sc);
11838     bxe_link_report_locked(sc);
11839     bxe_release_phy_lock(sc);
11840 }
11841 
11842 static void
11843 bxe_link_status_update(struct bxe_softc *sc)
11844 {
11845     if (sc->state != BXE_STATE_OPEN) {
11846         return;
11847     }
11848 
11849     if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
11850         elink_link_status_update(&sc->link_params, &sc->link_vars);
11851     } else {
11852         sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
11853                                   ELINK_SUPPORTED_10baseT_Full |
11854                                   ELINK_SUPPORTED_100baseT_Half |
11855                                   ELINK_SUPPORTED_100baseT_Full |
11856                                   ELINK_SUPPORTED_1000baseT_Full |
11857                                   ELINK_SUPPORTED_2500baseX_Full |
11858                                   ELINK_SUPPORTED_10000baseT_Full |
11859                                   ELINK_SUPPORTED_TP |
11860                                   ELINK_SUPPORTED_FIBRE |
11861                                   ELINK_SUPPORTED_Autoneg |
11862                                   ELINK_SUPPORTED_Pause |
11863                                   ELINK_SUPPORTED_Asym_Pause);
11864         sc->port.advertising[0] = sc->port.supported[0];
11865 
11866         sc->link_params.sc                = sc;
11867         sc->link_params.port              = SC_PORT(sc);
11868         sc->link_params.req_duplex[0]     = DUPLEX_FULL;
11869         sc->link_params.req_flow_ctrl[0]  = ELINK_FLOW_CTRL_NONE;
11870         sc->link_params.req_line_speed[0] = SPEED_10000;
11871         sc->link_params.speed_cap_mask[0] = 0x7f0000;
11872         sc->link_params.switch_cfg        = ELINK_SWITCH_CFG_10G;
11873 
11874         if (CHIP_REV_IS_FPGA(sc)) {
11875             sc->link_vars.mac_type    = ELINK_MAC_TYPE_EMAC;
11876             sc->link_vars.line_speed  = ELINK_SPEED_1000;
11877             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
11878                                          LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
11879         } else {
11880             sc->link_vars.mac_type    = ELINK_MAC_TYPE_BMAC;
11881             sc->link_vars.line_speed  = ELINK_SPEED_10000;
11882             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
11883                                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
11884         }
11885 
11886         sc->link_vars.link_up = 1;
11887 
11888         sc->link_vars.duplex    = DUPLEX_FULL;
11889         sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
11890 
11891         if (IS_PF(sc)) {
11892             REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
11893             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11894             bxe_link_report(sc);
11895         }
11896     }
11897 
11898     if (IS_PF(sc)) {
11899         if (sc->link_vars.link_up) {
11900             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11901         } else {
11902             bxe_stats_handle(sc, STATS_EVENT_STOP);
11903         }
11904         bxe_link_report(sc);
11905     } else {
11906         bxe_link_report(sc);
11907         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11908     }
11909 }
11910 
11911 static int
11912 bxe_initial_phy_init(struct bxe_softc *sc,
11913                      int              load_mode)
11914 {
11915     int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
11916     uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
11917     struct elink_params *lp = &sc->link_params;
11918 
11919     bxe_set_requested_fc(sc);
11920 
11921     if (CHIP_REV_IS_SLOW(sc)) {
11922         uint32_t bond = CHIP_BOND_ID(sc);
11923         uint32_t feat = 0;
11924 
11925         if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
11926             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
11927         } else if (bond & 0x4) {
11928             if (CHIP_IS_E3(sc)) {
11929                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
11930             } else {
11931                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
11932             }
11933         } else if (bond & 0x8) {
11934             if (CHIP_IS_E3(sc)) {
11935                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
11936             } else {
11937                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
11938             }
11939         }
11940 
11941         /* disable EMAC for E3 and above */
11942         if (bond & 0x2) {
11943             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
11944         }
11945 
11946         sc->link_params.feature_config_flags |= feat;
11947     }
11948 
11949     bxe_acquire_phy_lock(sc);
11950 
11951     if (load_mode == LOAD_DIAG) {
11952         lp->loopback_mode = ELINK_LOOPBACK_XGXS;
11953         /* Prefer doing PHY loopback at 10G speed, if possible */
11954         if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
11955             if (lp->speed_cap_mask[cfg_idx] &
11956                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
11957                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
11958             } else {
11959                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
11960             }
11961         }
11962     }
11963 
11964     if (load_mode == LOAD_LOOPBACK_EXT) {
11965         lp->loopback_mode = ELINK_LOOPBACK_EXT;
11966     }
11967 
11968     rc = elink_phy_init(&sc->link_params, &sc->link_vars);
11969 
11970     bxe_release_phy_lock(sc);
11971 
11972     bxe_calc_fc_adv(sc);
11973 
11974     if (sc->link_vars.link_up) {
11975         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11976         bxe_link_report(sc);
11977     }
11978 
11979     if (!CHIP_REV_IS_SLOW(sc)) {
11980         bxe_periodic_start(sc);
11981     }
11982 
11983     sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
11984     return (rc);
11985 }
11986 
11987 /* must be called under IF_ADDR_LOCK */
11988 
11989 static int
11990 bxe_set_mc_list(struct bxe_softc *sc)
11991 {
11992     struct ecore_mcast_ramrod_params rparam = { NULL };
11993     int rc = 0;
11994     int mc_count = 0;
11995     int mcnt, i;
11996     struct ecore_mcast_list_elem *mc_mac, *mc_mac_start;
11997     unsigned char *mta;
11998     if_t ifp = sc->ifp;
11999 
12000     mc_count = if_multiaddr_count(ifp, -1);/* XXX they don't have a limit */
12001     if (!mc_count)
12002         return (0);
12003 
12004     mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN *
12005             mc_count, M_DEVBUF, M_NOWAIT);
12006 
12007     if(mta == NULL) {
12008         BLOGE(sc, "Failed to allocate temp mcast list\n");
12009         return (-1);
12010     }
12011     bzero(mta, (sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count));
12012 
12013     mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, (M_NOWAIT | M_ZERO));
12014     mc_mac_start = mc_mac;
12015 
12016     if (!mc_mac) {
12017         free(mta, M_DEVBUF);
12018         BLOGE(sc, "Failed to allocate temp mcast list\n");
12019         return (-1);
12020     }
12021     bzero(mc_mac, (sizeof(*mc_mac) * mc_count));
12022 
12023     /* mta and mcnt not expected to be  different */
12024     if_multiaddr_array(ifp, mta, &mcnt, mc_count);
12025 
12026 
12027     rparam.mcast_obj = &sc->mcast_obj;
12028     ECORE_LIST_INIT(&rparam.mcast_list);
12029 
12030     for(i=0; i< mcnt; i++) {
12031 
12032         mc_mac->mac = (uint8_t *)(mta + (i * ETHER_ADDR_LEN));
12033         ECORE_LIST_PUSH_TAIL(&mc_mac->link, &rparam.mcast_list);
12034 
12035         BLOGD(sc, DBG_LOAD,
12036               "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n",
12037               mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2],
12038               mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]);
12039 
12040         mc_mac++;
12041     }
12042     rparam.mcast_list_len = mc_count;
12043 
12044     BXE_MCAST_LOCK(sc);
12045 
12046     /* first, clear all configured multicast MACs */
12047     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
12048     if (rc < 0) {
12049         BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
12050         BXE_MCAST_UNLOCK(sc);
12051     	free(mc_mac_start, M_DEVBUF);
12052         free(mta, M_DEVBUF);
12053         return (rc);
12054     }
12055 
12056     /* Now add the new MACs */
12057     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
12058     if (rc < 0) {
12059         BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
12060     }
12061 
12062     BXE_MCAST_UNLOCK(sc);
12063 
12064     free(mc_mac_start, M_DEVBUF);
12065     free(mta, M_DEVBUF);
12066 
12067     return (rc);
12068 }
12069 
12070 static int
12071 bxe_set_uc_list(struct bxe_softc *sc)
12072 {
12073     if_t ifp = sc->ifp;
12074     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
12075     struct ifaddr *ifa;
12076     unsigned long ramrod_flags = 0;
12077     int rc;
12078 
12079 #if __FreeBSD_version < 800000
12080     IF_ADDR_LOCK(ifp);
12081 #else
12082     if_addr_rlock(ifp);
12083 #endif
12084 
12085     /* first schedule a cleanup up of old configuration */
12086     rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
12087     if (rc < 0) {
12088         BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
12089 #if __FreeBSD_version < 800000
12090         IF_ADDR_UNLOCK(ifp);
12091 #else
12092         if_addr_runlock(ifp);
12093 #endif
12094         return (rc);
12095     }
12096 
12097     ifa = if_getifaddr(ifp); /* XXX Is this structure */
12098     while (ifa) {
12099         if (ifa->ifa_addr->sa_family != AF_LINK) {
12100             ifa = TAILQ_NEXT(ifa, ifa_link);
12101             continue;
12102         }
12103 
12104         rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
12105                              mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags);
12106         if (rc == -EEXIST) {
12107             BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12108             /* do not treat adding same MAC as an error */
12109             rc = 0;
12110         } else if (rc < 0) {
12111             BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc);
12112 #if __FreeBSD_version < 800000
12113             IF_ADDR_UNLOCK(ifp);
12114 #else
12115             if_addr_runlock(ifp);
12116 #endif
12117             return (rc);
12118         }
12119 
12120         ifa = TAILQ_NEXT(ifa, ifa_link);
12121     }
12122 
12123 #if __FreeBSD_version < 800000
12124     IF_ADDR_UNLOCK(ifp);
12125 #else
12126     if_addr_runlock(ifp);
12127 #endif
12128 
12129     /* Execute the pending commands */
12130     bit_set(&ramrod_flags, RAMROD_CONT);
12131     return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12132                             ECORE_UC_LIST_MAC, &ramrod_flags));
12133 }
12134 
12135 static void
12136 bxe_set_rx_mode(struct bxe_softc *sc)
12137 {
12138     if_t ifp = sc->ifp;
12139     uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12140 
12141     if (sc->state != BXE_STATE_OPEN) {
12142         BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12143         return;
12144     }
12145 
12146     BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp));
12147 
12148     if (if_getflags(ifp) & IFF_PROMISC) {
12149         rx_mode = BXE_RX_MODE_PROMISC;
12150     } else if ((if_getflags(ifp) & IFF_ALLMULTI) ||
12151                ((if_getamcount(ifp) > BXE_MAX_MULTICAST) &&
12152                 CHIP_IS_E1(sc))) {
12153         rx_mode = BXE_RX_MODE_ALLMULTI;
12154     } else {
12155         if (IS_PF(sc)) {
12156             /* some multicasts */
12157             if (bxe_set_mc_list(sc) < 0) {
12158                 rx_mode = BXE_RX_MODE_ALLMULTI;
12159             }
12160             if (bxe_set_uc_list(sc) < 0) {
12161                 rx_mode = BXE_RX_MODE_PROMISC;
12162             }
12163         }
12164     }
12165 
12166     sc->rx_mode = rx_mode;
12167 
12168     /* schedule the rx_mode command */
12169     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12170         BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12171         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12172         return;
12173     }
12174 
12175     if (IS_PF(sc)) {
12176         bxe_set_storm_rx_mode(sc);
12177     }
12178 }
12179 
12180 
12181 /* update flags in shmem */
12182 static void
12183 bxe_update_drv_flags(struct bxe_softc *sc,
12184                      uint32_t         flags,
12185                      uint32_t         set)
12186 {
12187     uint32_t drv_flags;
12188 
12189     if (SHMEM2_HAS(sc, drv_flags)) {
12190         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12191         drv_flags = SHMEM2_RD(sc, drv_flags);
12192 
12193         if (set) {
12194             SET_FLAGS(drv_flags, flags);
12195         } else {
12196             RESET_FLAGS(drv_flags, flags);
12197         }
12198 
12199         SHMEM2_WR(sc, drv_flags, drv_flags);
12200         BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12201 
12202         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12203     }
12204 }
12205 
12206 /* periodic timer callout routine, only runs when the interface is up */
12207 
12208 static void
12209 bxe_periodic_callout_func(void *xsc)
12210 {
12211     struct bxe_softc *sc = (struct bxe_softc *)xsc;
12212     int i;
12213 
12214     if (!BXE_CORE_TRYLOCK(sc)) {
12215         /* just bail and try again next time */
12216 
12217         if ((sc->state == BXE_STATE_OPEN) &&
12218             (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12219             /* schedule the next periodic callout */
12220             callout_reset(&sc->periodic_callout, hz,
12221                           bxe_periodic_callout_func, sc);
12222         }
12223 
12224         return;
12225     }
12226 
12227     if ((sc->state != BXE_STATE_OPEN) ||
12228         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12229         BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12230         BXE_CORE_UNLOCK(sc);
12231         return;
12232         }
12233 
12234 
12235     /* Check for TX timeouts on any fastpath. */
12236     FOR_EACH_QUEUE(sc, i) {
12237         if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12238             /* Ruh-Roh, chip was reset! */
12239             break;
12240         }
12241     }
12242 
12243     if (!CHIP_REV_IS_SLOW(sc)) {
12244         /*
12245          * This barrier is needed to ensure the ordering between the writing
12246          * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12247          * the reading here.
12248          */
12249         mb();
12250         if (sc->port.pmf) {
12251 	    bxe_acquire_phy_lock(sc);
12252             elink_period_func(&sc->link_params, &sc->link_vars);
12253 	    bxe_release_phy_lock(sc);
12254         }
12255     }
12256 
12257     if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) {
12258         int mb_idx = SC_FW_MB_IDX(sc);
12259         uint32_t drv_pulse;
12260         uint32_t mcp_pulse;
12261 
12262         ++sc->fw_drv_pulse_wr_seq;
12263         sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12264 
12265         drv_pulse = sc->fw_drv_pulse_wr_seq;
12266         bxe_drv_pulse(sc);
12267 
12268         mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12269                      MCP_PULSE_SEQ_MASK);
12270 
12271         /*
12272          * The delta between driver pulse and mcp response should
12273          * be 1 (before mcp response) or 0 (after mcp response).
12274          */
12275         if ((drv_pulse != mcp_pulse) &&
12276             (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12277             /* someone lost a heartbeat... */
12278             BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12279                   drv_pulse, mcp_pulse);
12280         }
12281     }
12282 
12283     /* state is BXE_STATE_OPEN */
12284     bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12285 
12286     BXE_CORE_UNLOCK(sc);
12287 
12288     if ((sc->state == BXE_STATE_OPEN) &&
12289         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12290         /* schedule the next periodic callout */
12291         callout_reset(&sc->periodic_callout, hz,
12292                       bxe_periodic_callout_func, sc);
12293     }
12294 }
12295 
12296 static void
12297 bxe_periodic_start(struct bxe_softc *sc)
12298 {
12299     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12300     callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12301 }
12302 
12303 static void
12304 bxe_periodic_stop(struct bxe_softc *sc)
12305 {
12306     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12307     callout_drain(&sc->periodic_callout);
12308 }
12309 
12310 /* start the controller */
12311 static __noinline int
12312 bxe_nic_load(struct bxe_softc *sc,
12313              int              load_mode)
12314 {
12315     uint32_t val;
12316     int load_code = 0;
12317     int i, rc = 0;
12318 
12319     BXE_CORE_LOCK_ASSERT(sc);
12320 
12321     BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12322 
12323     sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12324 
12325     if (IS_PF(sc)) {
12326         /* must be called before memory allocation and HW init */
12327         bxe_ilt_set_info(sc);
12328     }
12329 
12330     sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12331 
12332     bxe_set_fp_rx_buf_size(sc);
12333 
12334     if (bxe_alloc_fp_buffers(sc) != 0) {
12335         BLOGE(sc, "Failed to allocate fastpath memory\n");
12336         sc->state = BXE_STATE_CLOSED;
12337         rc = ENOMEM;
12338         goto bxe_nic_load_error0;
12339     }
12340 
12341     if (bxe_alloc_mem(sc) != 0) {
12342         sc->state = BXE_STATE_CLOSED;
12343         rc = ENOMEM;
12344         goto bxe_nic_load_error0;
12345     }
12346 
12347     if (bxe_alloc_fw_stats_mem(sc) != 0) {
12348         sc->state = BXE_STATE_CLOSED;
12349         rc = ENOMEM;
12350         goto bxe_nic_load_error0;
12351     }
12352 
12353     if (IS_PF(sc)) {
12354         /* set pf load just before approaching the MCP */
12355         bxe_set_pf_load(sc);
12356 
12357         /* if MCP exists send load request and analyze response */
12358         if (!BXE_NOMCP(sc)) {
12359             /* attempt to load pf */
12360             if (bxe_nic_load_request(sc, &load_code) != 0) {
12361                 sc->state = BXE_STATE_CLOSED;
12362                 rc = ENXIO;
12363                 goto bxe_nic_load_error1;
12364             }
12365 
12366             /* what did the MCP say? */
12367             if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12368                 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12369                 sc->state = BXE_STATE_CLOSED;
12370                 rc = ENXIO;
12371                 goto bxe_nic_load_error2;
12372             }
12373         } else {
12374             BLOGI(sc, "Device has no MCP!\n");
12375             load_code = bxe_nic_load_no_mcp(sc);
12376         }
12377 
12378         /* mark PMF if applicable */
12379         bxe_nic_load_pmf(sc, load_code);
12380 
12381         /* Init Function state controlling object */
12382         bxe_init_func_obj(sc);
12383 
12384         /* Initialize HW */
12385         if (bxe_init_hw(sc, load_code) != 0) {
12386             BLOGE(sc, "HW init failed\n");
12387             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12388             sc->state = BXE_STATE_CLOSED;
12389             rc = ENXIO;
12390             goto bxe_nic_load_error2;
12391         }
12392     }
12393 
12394     /* set ALWAYS_ALIVE bit in shmem */
12395     sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
12396     bxe_drv_pulse(sc);
12397     sc->flags |= BXE_NO_PULSE;
12398 
12399     /* attach interrupts */
12400     if (bxe_interrupt_attach(sc) != 0) {
12401         sc->state = BXE_STATE_CLOSED;
12402         rc = ENXIO;
12403         goto bxe_nic_load_error2;
12404     }
12405 
12406     bxe_nic_init(sc, load_code);
12407 
12408     /* Init per-function objects */
12409     if (IS_PF(sc)) {
12410         bxe_init_objs(sc);
12411         // XXX bxe_iov_nic_init(sc);
12412 
12413         /* set AFEX default VLAN tag to an invalid value */
12414         sc->devinfo.mf_info.afex_def_vlan_tag = -1;
12415         // XXX bxe_nic_load_afex_dcc(sc, load_code);
12416 
12417         sc->state = BXE_STATE_OPENING_WAITING_PORT;
12418         rc = bxe_func_start(sc);
12419         if (rc) {
12420             BLOGE(sc, "Function start failed! rc = %d\n", rc);
12421             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12422             sc->state = BXE_STATE_ERROR;
12423             goto bxe_nic_load_error3;
12424         }
12425 
12426         /* send LOAD_DONE command to MCP */
12427         if (!BXE_NOMCP(sc)) {
12428             load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12429             if (!load_code) {
12430                 BLOGE(sc, "MCP response failure, aborting\n");
12431                 sc->state = BXE_STATE_ERROR;
12432                 rc = ENXIO;
12433                 goto bxe_nic_load_error3;
12434             }
12435         }
12436 
12437         rc = bxe_setup_leading(sc);
12438         if (rc) {
12439             BLOGE(sc, "Setup leading failed! rc = %d\n", rc);
12440             sc->state = BXE_STATE_ERROR;
12441             goto bxe_nic_load_error3;
12442         }
12443 
12444         FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
12445             rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
12446             if (rc) {
12447                 BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc);
12448                 sc->state = BXE_STATE_ERROR;
12449                 goto bxe_nic_load_error3;
12450             }
12451         }
12452 
12453         rc = bxe_init_rss_pf(sc);
12454         if (rc) {
12455             BLOGE(sc, "PF RSS init failed\n");
12456             sc->state = BXE_STATE_ERROR;
12457             goto bxe_nic_load_error3;
12458         }
12459     }
12460     /* XXX VF */
12461 
12462     /* now when Clients are configured we are ready to work */
12463     sc->state = BXE_STATE_OPEN;
12464 
12465     /* Configure a ucast MAC */
12466     if (IS_PF(sc)) {
12467         rc = bxe_set_eth_mac(sc, TRUE);
12468     }
12469     if (rc) {
12470         BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc);
12471         sc->state = BXE_STATE_ERROR;
12472         goto bxe_nic_load_error3;
12473     }
12474 
12475     if (sc->port.pmf) {
12476         rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
12477         if (rc) {
12478             sc->state = BXE_STATE_ERROR;
12479             goto bxe_nic_load_error3;
12480         }
12481     }
12482 
12483     sc->link_params.feature_config_flags &=
12484         ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
12485 
12486     /* start fast path */
12487 
12488     /* Initialize Rx filter */
12489     bxe_set_rx_mode(sc);
12490 
12491     /* start the Tx */
12492     switch (/* XXX load_mode */LOAD_OPEN) {
12493     case LOAD_NORMAL:
12494     case LOAD_OPEN:
12495         break;
12496 
12497     case LOAD_DIAG:
12498     case LOAD_LOOPBACK_EXT:
12499         sc->state = BXE_STATE_DIAG;
12500         break;
12501 
12502     default:
12503         break;
12504     }
12505 
12506     if (sc->port.pmf) {
12507         bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
12508     } else {
12509         bxe_link_status_update(sc);
12510     }
12511 
12512     /* start the periodic timer callout */
12513     bxe_periodic_start(sc);
12514 
12515     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
12516         /* mark driver is loaded in shmem2 */
12517         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
12518         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
12519                   (val |
12520                    DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
12521                    DRV_FLAGS_CAPABILITIES_LOADED_L2));
12522     }
12523 
12524     /* wait for all pending SP commands to complete */
12525     if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
12526         BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
12527         bxe_periodic_stop(sc);
12528         bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
12529         return (ENXIO);
12530     }
12531 
12532     /* Tell the stack the driver is running! */
12533     if_setdrvflags(sc->ifp, IFF_DRV_RUNNING);
12534 
12535     BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
12536 
12537     return (0);
12538 
12539 bxe_nic_load_error3:
12540 
12541     if (IS_PF(sc)) {
12542         bxe_int_disable_sync(sc, 1);
12543 
12544         /* clean out queued objects */
12545         bxe_squeeze_objects(sc);
12546     }
12547 
12548     bxe_interrupt_detach(sc);
12549 
12550 bxe_nic_load_error2:
12551 
12552     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
12553         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
12554         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
12555     }
12556 
12557     sc->port.pmf = 0;
12558 
12559 bxe_nic_load_error1:
12560 
12561     /* clear pf_load status, as it was already set */
12562     if (IS_PF(sc)) {
12563         bxe_clear_pf_load(sc);
12564     }
12565 
12566 bxe_nic_load_error0:
12567 
12568     bxe_free_fw_stats_mem(sc);
12569     bxe_free_fp_buffers(sc);
12570     bxe_free_mem(sc);
12571 
12572     return (rc);
12573 }
12574 
12575 static int
12576 bxe_init_locked(struct bxe_softc *sc)
12577 {
12578     int other_engine = SC_PATH(sc) ? 0 : 1;
12579     uint8_t other_load_status, load_status;
12580     uint8_t global = FALSE;
12581     int rc;
12582 
12583     BXE_CORE_LOCK_ASSERT(sc);
12584 
12585     /* check if the driver is already running */
12586     if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
12587         BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
12588         return (0);
12589     }
12590 
12591     bxe_set_power_state(sc, PCI_PM_D0);
12592 
12593     /*
12594      * If parity occurred during the unload, then attentions and/or
12595      * RECOVERY_IN_PROGRES may still be set. If so we want the first function
12596      * loaded on the current engine to complete the recovery. Parity recovery
12597      * is only relevant for PF driver.
12598      */
12599     if (IS_PF(sc)) {
12600         other_load_status = bxe_get_load_status(sc, other_engine);
12601         load_status = bxe_get_load_status(sc, SC_PATH(sc));
12602 
12603         if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
12604             bxe_chk_parity_attn(sc, &global, TRUE)) {
12605             do {
12606                 /*
12607                  * If there are attentions and they are in global blocks, set
12608                  * the GLOBAL_RESET bit regardless whether it will be this
12609                  * function that will complete the recovery or not.
12610                  */
12611                 if (global) {
12612                     bxe_set_reset_global(sc);
12613                 }
12614 
12615                 /*
12616                  * Only the first function on the current engine should try
12617                  * to recover in open. In case of attentions in global blocks
12618                  * only the first in the chip should try to recover.
12619                  */
12620                 if ((!load_status && (!global || !other_load_status)) &&
12621                     bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
12622                     BLOGI(sc, "Recovered during init\n");
12623                     break;
12624                 }
12625 
12626                 /* recovery has failed... */
12627                 bxe_set_power_state(sc, PCI_PM_D3hot);
12628                 sc->recovery_state = BXE_RECOVERY_FAILED;
12629 
12630                 BLOGE(sc, "Recovery flow hasn't properly "
12631                           "completed yet, try again later. "
12632                           "If you still see this message after a "
12633                           "few retries then power cycle is required.\n");
12634 
12635                 rc = ENXIO;
12636                 goto bxe_init_locked_done;
12637             } while (0);
12638         }
12639     }
12640 
12641     sc->recovery_state = BXE_RECOVERY_DONE;
12642 
12643     rc = bxe_nic_load(sc, LOAD_OPEN);
12644 
12645 bxe_init_locked_done:
12646 
12647     if (rc) {
12648         /* Tell the stack the driver is NOT running! */
12649         BLOGE(sc, "Initialization failed, "
12650                   "stack notified driver is NOT running!\n");
12651 	if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
12652     }
12653 
12654     return (rc);
12655 }
12656 
12657 static int
12658 bxe_stop_locked(struct bxe_softc *sc)
12659 {
12660     BXE_CORE_LOCK_ASSERT(sc);
12661     return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
12662 }
12663 
12664 /*
12665  * Handles controller initialization when called from an unlocked routine.
12666  * ifconfig calls this function.
12667  *
12668  * Returns:
12669  *   void
12670  */
12671 static void
12672 bxe_init(void *xsc)
12673 {
12674     struct bxe_softc *sc = (struct bxe_softc *)xsc;
12675 
12676     BXE_CORE_LOCK(sc);
12677     bxe_init_locked(sc);
12678     BXE_CORE_UNLOCK(sc);
12679 }
12680 
12681 static int
12682 bxe_init_ifnet(struct bxe_softc *sc)
12683 {
12684     if_t ifp;
12685     int capabilities;
12686 
12687     /* ifconfig entrypoint for media type/status reporting */
12688     ifmedia_init(&sc->ifmedia, IFM_IMASK,
12689                  bxe_ifmedia_update,
12690                  bxe_ifmedia_status);
12691 
12692     /* set the default interface values */
12693     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
12694     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
12695     ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
12696 
12697     sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
12698 	BLOGI(sc, "IFMEDIA flags : %x\n", sc->ifmedia.ifm_media);
12699 
12700     /* allocate the ifnet structure */
12701     if ((ifp = if_gethandle(IFT_ETHER)) == NULL) {
12702         BLOGE(sc, "Interface allocation failed!\n");
12703         return (ENXIO);
12704     }
12705 
12706     if_setsoftc(ifp, sc);
12707     if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
12708     if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST));
12709     if_setioctlfn(ifp, bxe_ioctl);
12710     if_setstartfn(ifp, bxe_tx_start);
12711     if_setgetcounterfn(ifp, bxe_get_counter);
12712 #if __FreeBSD_version >= 901504
12713     if_settransmitfn(ifp, bxe_tx_mq_start);
12714     if_setqflushfn(ifp, bxe_mq_flush);
12715 #endif
12716 #ifdef FreeBSD8_0
12717     if_settimer(ifp, 0);
12718 #endif
12719     if_setinitfn(ifp, bxe_init);
12720     if_setmtu(ifp, sc->mtu);
12721     if_sethwassist(ifp, (CSUM_IP      |
12722                         CSUM_TCP      |
12723                         CSUM_UDP      |
12724                         CSUM_TSO      |
12725                         CSUM_TCP_IPV6 |
12726                         CSUM_UDP_IPV6));
12727 
12728     capabilities =
12729 #if __FreeBSD_version < 700000
12730         (IFCAP_VLAN_MTU       |
12731          IFCAP_VLAN_HWTAGGING |
12732          IFCAP_HWCSUM         |
12733          IFCAP_JUMBO_MTU      |
12734          IFCAP_LRO);
12735 #else
12736         (IFCAP_VLAN_MTU       |
12737          IFCAP_VLAN_HWTAGGING |
12738          IFCAP_VLAN_HWTSO     |
12739          IFCAP_VLAN_HWFILTER  |
12740          IFCAP_VLAN_HWCSUM    |
12741          IFCAP_HWCSUM         |
12742          IFCAP_JUMBO_MTU      |
12743          IFCAP_LRO            |
12744          IFCAP_TSO4           |
12745          IFCAP_TSO6           |
12746          IFCAP_WOL_MAGIC);
12747 #endif
12748     if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */
12749     if_setcapenable(ifp, if_getcapabilities(ifp));
12750     if_setbaudrate(ifp, IF_Gbps(10));
12751 /* XXX */
12752     if_setsendqlen(ifp, sc->tx_ring_size);
12753     if_setsendqready(ifp);
12754 /* XXX */
12755 
12756     sc->ifp = ifp;
12757 
12758     /* attach to the Ethernet interface list */
12759     ether_ifattach(ifp, sc->link_params.mac_addr);
12760 
12761     return (0);
12762 }
12763 
12764 static void
12765 bxe_deallocate_bars(struct bxe_softc *sc)
12766 {
12767     int i;
12768 
12769     for (i = 0; i < MAX_BARS; i++) {
12770         if (sc->bar[i].resource != NULL) {
12771             bus_release_resource(sc->dev,
12772                                  SYS_RES_MEMORY,
12773                                  sc->bar[i].rid,
12774                                  sc->bar[i].resource);
12775             BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
12776                   i, PCIR_BAR(i));
12777         }
12778     }
12779 }
12780 
12781 static int
12782 bxe_allocate_bars(struct bxe_softc *sc)
12783 {
12784     u_int flags;
12785     int i;
12786 
12787     memset(sc->bar, 0, sizeof(sc->bar));
12788 
12789     for (i = 0; i < MAX_BARS; i++) {
12790 
12791         /* memory resources reside at BARs 0, 2, 4 */
12792         /* Run `pciconf -lb` to see mappings */
12793         if ((i != 0) && (i != 2) && (i != 4)) {
12794             continue;
12795         }
12796 
12797         sc->bar[i].rid = PCIR_BAR(i);
12798 
12799         flags = RF_ACTIVE;
12800         if (i == 0) {
12801             flags |= RF_SHAREABLE;
12802         }
12803 
12804         if ((sc->bar[i].resource =
12805              bus_alloc_resource_any(sc->dev,
12806                                     SYS_RES_MEMORY,
12807                                     &sc->bar[i].rid,
12808                                     flags)) == NULL) {
12809             return (0);
12810         }
12811 
12812         sc->bar[i].tag    = rman_get_bustag(sc->bar[i].resource);
12813         sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
12814         sc->bar[i].kva    = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
12815 
12816         BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%jd) -> %p\n",
12817               i, PCIR_BAR(i),
12818               (void *)rman_get_start(sc->bar[i].resource),
12819               (void *)rman_get_end(sc->bar[i].resource),
12820               rman_get_size(sc->bar[i].resource),
12821               (void *)sc->bar[i].kva);
12822     }
12823 
12824     return (0);
12825 }
12826 
12827 static void
12828 bxe_get_function_num(struct bxe_softc *sc)
12829 {
12830     uint32_t val = 0;
12831 
12832     /*
12833      * Read the ME register to get the function number. The ME register
12834      * holds the relative-function number and absolute-function number. The
12835      * absolute-function number appears only in E2 and above. Before that
12836      * these bits always contained zero, therefore we cannot blindly use them.
12837      */
12838 
12839     val = REG_RD(sc, BAR_ME_REGISTER);
12840 
12841     sc->pfunc_rel =
12842         (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
12843     sc->path_id =
12844         (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
12845 
12846     if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
12847         sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
12848     } else {
12849         sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
12850     }
12851 
12852     BLOGD(sc, DBG_LOAD,
12853           "Relative function %d, Absolute function %d, Path %d\n",
12854           sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
12855 }
12856 
12857 static uint32_t
12858 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
12859 {
12860     uint32_t shmem2_size;
12861     uint32_t offset;
12862     uint32_t mf_cfg_offset_value;
12863 
12864     /* Non 57712 */
12865     offset = (SHMEM_RD(sc, func_mb) +
12866               (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
12867 
12868     /* 57712 plus */
12869     if (sc->devinfo.shmem2_base != 0) {
12870         shmem2_size = SHMEM2_RD(sc, size);
12871         if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
12872             mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
12873             if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
12874                 offset = mf_cfg_offset_value;
12875             }
12876         }
12877     }
12878 
12879     return (offset);
12880 }
12881 
12882 static uint32_t
12883 bxe_pcie_capability_read(struct bxe_softc *sc,
12884                          int    reg,
12885                          int    width)
12886 {
12887     int pcie_reg;
12888 
12889     /* ensure PCIe capability is enabled */
12890     if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
12891         if (pcie_reg != 0) {
12892             BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
12893             return (pci_read_config(sc->dev, (pcie_reg + reg), width));
12894         }
12895     }
12896 
12897     BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
12898 
12899     return (0);
12900 }
12901 
12902 static uint8_t
12903 bxe_is_pcie_pending(struct bxe_softc *sc)
12904 {
12905     return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) &
12906             PCIM_EXP_STA_TRANSACTION_PND);
12907 }
12908 
12909 /*
12910  * Walk the PCI capabiites list for the device to find what features are
12911  * supported. These capabilites may be enabled/disabled by firmware so it's
12912  * best to walk the list rather than make assumptions.
12913  */
12914 static void
12915 bxe_probe_pci_caps(struct bxe_softc *sc)
12916 {
12917     uint16_t link_status;
12918     int reg;
12919 
12920     /* check if PCI Power Management is enabled */
12921     if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
12922         if (reg != 0) {
12923             BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
12924 
12925             sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
12926             sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
12927         }
12928     }
12929 
12930     link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2);
12931 
12932     /* handle PCIe 2.0 workarounds for 57710 */
12933     if (CHIP_IS_E1(sc)) {
12934         /* workaround for 57710 errata E4_57710_27462 */
12935         sc->devinfo.pcie_link_speed =
12936             (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
12937 
12938         /* workaround for 57710 errata E4_57710_27488 */
12939         sc->devinfo.pcie_link_width =
12940             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
12941         if (sc->devinfo.pcie_link_speed > 1) {
12942             sc->devinfo.pcie_link_width =
12943                 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1;
12944         }
12945     } else {
12946         sc->devinfo.pcie_link_speed =
12947             (link_status & PCIM_LINK_STA_SPEED);
12948         sc->devinfo.pcie_link_width =
12949             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
12950     }
12951 
12952     BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
12953           sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
12954 
12955     sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
12956     sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
12957 
12958     /* check if MSI capability is enabled */
12959     if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
12960         if (reg != 0) {
12961             BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
12962 
12963             sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
12964             sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
12965         }
12966     }
12967 
12968     /* check if MSI-X capability is enabled */
12969     if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
12970         if (reg != 0) {
12971             BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
12972 
12973             sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
12974             sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
12975         }
12976     }
12977 }
12978 
12979 static int
12980 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
12981 {
12982     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
12983     uint32_t val;
12984 
12985     /* get the outer vlan if we're in switch-dependent mode */
12986 
12987     val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
12988     mf_info->ext_id = (uint16_t)val;
12989 
12990     mf_info->multi_vnics_mode = 1;
12991 
12992     if (!VALID_OVLAN(mf_info->ext_id)) {
12993         BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
12994         return (1);
12995     }
12996 
12997     /* get the capabilities */
12998     if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
12999         FUNC_MF_CFG_PROTOCOL_ISCSI) {
13000         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
13001     } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13002                FUNC_MF_CFG_PROTOCOL_FCOE) {
13003         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
13004     } else {
13005         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
13006     }
13007 
13008     mf_info->vnics_per_port =
13009         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13010 
13011     return (0);
13012 }
13013 
13014 static uint32_t
13015 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
13016 {
13017     uint32_t retval = 0;
13018     uint32_t val;
13019 
13020     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13021 
13022     if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
13023         if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
13024             retval |= MF_PROTO_SUPPORT_ETHERNET;
13025         }
13026         if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
13027             retval |= MF_PROTO_SUPPORT_ISCSI;
13028         }
13029         if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
13030             retval |= MF_PROTO_SUPPORT_FCOE;
13031         }
13032     }
13033 
13034     return (retval);
13035 }
13036 
13037 static int
13038 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
13039 {
13040     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13041     uint32_t val;
13042 
13043     /*
13044      * There is no outer vlan if we're in switch-independent mode.
13045      * If the mac is valid then assume multi-function.
13046      */
13047 
13048     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13049 
13050     mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
13051 
13052     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13053 
13054     mf_info->vnics_per_port =
13055         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13056 
13057     return (0);
13058 }
13059 
13060 static int
13061 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13062 {
13063     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13064     uint32_t e1hov_tag;
13065     uint32_t func_config;
13066     uint32_t niv_config;
13067 
13068     mf_info->multi_vnics_mode = 1;
13069 
13070     e1hov_tag   = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13071     func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13072     niv_config  = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13073 
13074     mf_info->ext_id =
13075         (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13076                    FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13077 
13078     mf_info->default_vlan =
13079         (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13080                    FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13081 
13082     mf_info->niv_allowed_priorities =
13083         (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13084                   FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13085 
13086     mf_info->niv_default_cos =
13087         (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13088                   FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13089 
13090     mf_info->afex_vlan_mode =
13091         ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13092          FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13093 
13094     mf_info->niv_mba_enabled =
13095         ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13096          FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13097 
13098     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13099 
13100     mf_info->vnics_per_port =
13101         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13102 
13103     return (0);
13104 }
13105 
13106 static int
13107 bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13108 {
13109     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13110     uint32_t mf_cfg1;
13111     uint32_t mf_cfg2;
13112     uint32_t ovlan1;
13113     uint32_t ovlan2;
13114     uint8_t i, j;
13115 
13116     BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13117           SC_PORT(sc));
13118     BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13119           mf_info->mf_config[SC_VN(sc)]);
13120     BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13121           mf_info->multi_vnics_mode);
13122     BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13123           mf_info->vnics_per_port);
13124     BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13125           mf_info->ext_id);
13126     BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13127           mf_info->min_bw[0], mf_info->min_bw[1],
13128           mf_info->min_bw[2], mf_info->min_bw[3]);
13129     BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13130           mf_info->max_bw[0], mf_info->max_bw[1],
13131           mf_info->max_bw[2], mf_info->max_bw[3]);
13132     BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13133           sc->mac_addr_str);
13134 
13135     /* various MF mode sanity checks... */
13136 
13137     if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13138         BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13139               SC_PORT(sc));
13140         return (1);
13141     }
13142 
13143     if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13144         BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13145               mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13146         return (1);
13147     }
13148 
13149     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13150         /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13151         if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13152             BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13153                   SC_VN(sc), OVLAN(sc));
13154             return (1);
13155         }
13156 
13157         if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13158             BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13159                   mf_info->multi_vnics_mode, OVLAN(sc));
13160             return (1);
13161         }
13162 
13163         /*
13164          * Verify all functions are either MF or SF mode. If MF, make sure
13165          * sure that all non-hidden functions have a valid ovlan. If SF,
13166          * make sure that all non-hidden functions have an invalid ovlan.
13167          */
13168         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13169             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13170             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13171             if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13172                 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13173                  ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13174                 BLOGE(sc, "mf_mode=SD function %d MF config "
13175                           "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13176                       i, mf_info->multi_vnics_mode, ovlan1);
13177                 return (1);
13178             }
13179         }
13180 
13181         /* Verify all funcs on the same port each have a different ovlan. */
13182         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13183             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13184             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13185             /* iterate from the next function on the port to the max func */
13186             for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13187                 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13188                 ovlan2  = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13189                 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13190                     VALID_OVLAN(ovlan1) &&
13191                     !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13192                     VALID_OVLAN(ovlan2) &&
13193                     (ovlan1 == ovlan2)) {
13194                     BLOGE(sc, "mf_mode=SD functions %d and %d "
13195                               "have the same ovlan (%d)\n",
13196                           i, j, ovlan1);
13197                     return (1);
13198                 }
13199             }
13200         }
13201     } /* MULTI_FUNCTION_SD */
13202 
13203     return (0);
13204 }
13205 
13206 static int
13207 bxe_get_mf_cfg_info(struct bxe_softc *sc)
13208 {
13209     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13210     uint32_t val, mac_upper;
13211     uint8_t i, vnic;
13212 
13213     /* initialize mf_info defaults */
13214     mf_info->vnics_per_port   = 1;
13215     mf_info->multi_vnics_mode = FALSE;
13216     mf_info->path_has_ovlan   = FALSE;
13217     mf_info->mf_mode          = SINGLE_FUNCTION;
13218 
13219     if (!CHIP_IS_MF_CAP(sc)) {
13220         return (0);
13221     }
13222 
13223     if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13224         BLOGE(sc, "Invalid mf_cfg_base!\n");
13225         return (1);
13226     }
13227 
13228     /* get the MF mode (switch dependent / independent / single-function) */
13229 
13230     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13231 
13232     switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13233     {
13234     case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13235 
13236         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13237 
13238         /* check for legal upper mac bytes */
13239         if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13240             mf_info->mf_mode = MULTI_FUNCTION_SI;
13241         } else {
13242             BLOGE(sc, "Invalid config for Switch Independent mode\n");
13243         }
13244 
13245         break;
13246 
13247     case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13248     case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13249 
13250         /* get outer vlan configuration */
13251         val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13252 
13253         if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13254             FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13255             mf_info->mf_mode = MULTI_FUNCTION_SD;
13256         } else {
13257             BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13258         }
13259 
13260         break;
13261 
13262     case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13263 
13264         /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13265         return (0);
13266 
13267     case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13268 
13269         /*
13270          * Mark MF mode as NIV if MCP version includes NPAR-SD support
13271          * and the MAC address is valid.
13272          */
13273         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13274 
13275         if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13276             (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13277             mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13278         } else {
13279             BLOGE(sc, "Invalid config for AFEX mode\n");
13280         }
13281 
13282         break;
13283 
13284     default:
13285 
13286         BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13287               (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13288 
13289         return (1);
13290     }
13291 
13292     /* set path mf_mode (which could be different than function mf_mode) */
13293     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13294         mf_info->path_has_ovlan = TRUE;
13295     } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13296         /*
13297          * Decide on path multi vnics mode. If we're not in MF mode and in
13298          * 4-port mode, this is good enough to check vnic-0 of the other port
13299          * on the same path
13300          */
13301         if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13302             uint8_t other_port = !(PORT_ID(sc) & 1);
13303             uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13304 
13305             val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13306 
13307             mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13308         }
13309     }
13310 
13311     if (mf_info->mf_mode == SINGLE_FUNCTION) {
13312         /* invalid MF config */
13313         if (SC_VN(sc) >= 1) {
13314             BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13315             return (1);
13316         }
13317 
13318         return (0);
13319     }
13320 
13321     /* get the MF configuration */
13322     mf_info->mf_config[SC_VN(sc)] =
13323         MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13324 
13325     switch(mf_info->mf_mode)
13326     {
13327     case MULTI_FUNCTION_SD:
13328 
13329         bxe_get_shmem_mf_cfg_info_sd(sc);
13330         break;
13331 
13332     case MULTI_FUNCTION_SI:
13333 
13334         bxe_get_shmem_mf_cfg_info_si(sc);
13335         break;
13336 
13337     case MULTI_FUNCTION_AFEX:
13338 
13339         bxe_get_shmem_mf_cfg_info_niv(sc);
13340         break;
13341 
13342     default:
13343 
13344         BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13345               mf_info->mf_mode);
13346         return (1);
13347     }
13348 
13349     /* get the congestion management parameters */
13350 
13351     vnic = 0;
13352     FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13353         /* get min/max bw */
13354         val = MFCFG_RD(sc, func_mf_config[i].config);
13355         mf_info->min_bw[vnic] =
13356             ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13357         mf_info->max_bw[vnic] =
13358             ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13359         vnic++;
13360     }
13361 
13362     return (bxe_check_valid_mf_cfg(sc));
13363 }
13364 
13365 static int
13366 bxe_get_shmem_info(struct bxe_softc *sc)
13367 {
13368     int port;
13369     uint32_t mac_hi, mac_lo, val;
13370 
13371     port = SC_PORT(sc);
13372     mac_hi = mac_lo = 0;
13373 
13374     sc->link_params.sc   = sc;
13375     sc->link_params.port = port;
13376 
13377     /* get the hardware config info */
13378     sc->devinfo.hw_config =
13379         SHMEM_RD(sc, dev_info.shared_hw_config.config);
13380     sc->devinfo.hw_config2 =
13381         SHMEM_RD(sc, dev_info.shared_hw_config.config2);
13382 
13383     sc->link_params.hw_led_mode =
13384         ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
13385          SHARED_HW_CFG_LED_MODE_SHIFT);
13386 
13387     /* get the port feature config */
13388     sc->port.config =
13389         SHMEM_RD(sc, dev_info.port_feature_config[port].config);
13390 
13391     /* get the link params */
13392     sc->link_params.speed_cap_mask[0] =
13393         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
13394     sc->link_params.speed_cap_mask[1] =
13395         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
13396 
13397     /* get the lane config */
13398     sc->link_params.lane_config =
13399         SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
13400 
13401     /* get the link config */
13402     val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
13403     sc->port.link_config[ELINK_INT_PHY] = val;
13404     sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
13405     sc->port.link_config[ELINK_EXT_PHY1] =
13406         SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
13407 
13408     /* get the override preemphasis flag and enable it or turn it off */
13409     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13410     if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
13411         sc->link_params.feature_config_flags |=
13412             ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13413     } else {
13414         sc->link_params.feature_config_flags &=
13415             ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13416     }
13417 
13418     /* get the initial value of the link params */
13419     sc->link_params.multi_phy_config =
13420         SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
13421 
13422     /* get external phy info */
13423     sc->port.ext_phy_config =
13424         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
13425 
13426     /* get the multifunction configuration */
13427     bxe_get_mf_cfg_info(sc);
13428 
13429     /* get the mac address */
13430     if (IS_MF(sc)) {
13431         mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13432         mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
13433     } else {
13434         mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
13435         mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
13436     }
13437 
13438     if ((mac_lo == 0) && (mac_hi == 0)) {
13439         *sc->mac_addr_str = 0;
13440         BLOGE(sc, "No Ethernet address programmed!\n");
13441     } else {
13442         sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
13443         sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
13444         sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
13445         sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
13446         sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
13447         sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
13448         snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
13449                  "%02x:%02x:%02x:%02x:%02x:%02x",
13450                  sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
13451                  sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
13452                  sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
13453         BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
13454     }
13455 
13456     return (0);
13457 }
13458 
13459 static void
13460 bxe_get_tunable_params(struct bxe_softc *sc)
13461 {
13462     /* sanity checks */
13463 
13464     if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
13465         (bxe_interrupt_mode != INTR_MODE_MSI)  &&
13466         (bxe_interrupt_mode != INTR_MODE_MSIX)) {
13467         BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
13468         bxe_interrupt_mode = INTR_MODE_MSIX;
13469     }
13470 
13471     if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
13472         BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
13473         bxe_queue_count = 0;
13474     }
13475 
13476     if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
13477         if (bxe_max_rx_bufs == 0) {
13478             bxe_max_rx_bufs = RX_BD_USABLE;
13479         } else {
13480             BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
13481             bxe_max_rx_bufs = 2048;
13482         }
13483     }
13484 
13485     if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
13486         BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
13487         bxe_hc_rx_ticks = 25;
13488     }
13489 
13490     if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
13491         BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
13492         bxe_hc_tx_ticks = 50;
13493     }
13494 
13495     if (bxe_max_aggregation_size == 0) {
13496         bxe_max_aggregation_size = TPA_AGG_SIZE;
13497     }
13498 
13499     if (bxe_max_aggregation_size > 0xffff) {
13500         BLOGW(sc, "invalid max_aggregation_size (%d)\n",
13501               bxe_max_aggregation_size);
13502         bxe_max_aggregation_size = TPA_AGG_SIZE;
13503     }
13504 
13505     if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
13506         BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
13507         bxe_mrrs = -1;
13508     }
13509 
13510     if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
13511         BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
13512         bxe_autogreeen = 0;
13513     }
13514 
13515     if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
13516         BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
13517         bxe_udp_rss = 0;
13518     }
13519 
13520     /* pull in user settings */
13521 
13522     sc->interrupt_mode       = bxe_interrupt_mode;
13523     sc->max_rx_bufs          = bxe_max_rx_bufs;
13524     sc->hc_rx_ticks          = bxe_hc_rx_ticks;
13525     sc->hc_tx_ticks          = bxe_hc_tx_ticks;
13526     sc->max_aggregation_size = bxe_max_aggregation_size;
13527     sc->mrrs                 = bxe_mrrs;
13528     sc->autogreeen           = bxe_autogreeen;
13529     sc->udp_rss              = bxe_udp_rss;
13530 
13531     if (bxe_interrupt_mode == INTR_MODE_INTX) {
13532         sc->num_queues = 1;
13533     } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
13534         sc->num_queues =
13535             min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
13536                 MAX_RSS_CHAINS);
13537         if (sc->num_queues > mp_ncpus) {
13538             sc->num_queues = mp_ncpus;
13539         }
13540     }
13541 
13542     BLOGD(sc, DBG_LOAD,
13543           "User Config: "
13544           "debug=0x%lx "
13545           "interrupt_mode=%d "
13546           "queue_count=%d "
13547           "hc_rx_ticks=%d "
13548           "hc_tx_ticks=%d "
13549           "rx_budget=%d "
13550           "max_aggregation_size=%d "
13551           "mrrs=%d "
13552           "autogreeen=%d "
13553           "udp_rss=%d\n",
13554           bxe_debug,
13555           sc->interrupt_mode,
13556           sc->num_queues,
13557           sc->hc_rx_ticks,
13558           sc->hc_tx_ticks,
13559           bxe_rx_budget,
13560           sc->max_aggregation_size,
13561           sc->mrrs,
13562           sc->autogreeen,
13563           sc->udp_rss);
13564 }
13565 
13566 static int
13567 bxe_media_detect(struct bxe_softc *sc)
13568 {
13569     int port_type;
13570     uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
13571 
13572     switch (sc->link_params.phy[phy_idx].media_type) {
13573     case ELINK_ETH_PHY_SFPP_10G_FIBER:
13574     case ELINK_ETH_PHY_XFP_FIBER:
13575         BLOGI(sc, "Found 10Gb Fiber media.\n");
13576         sc->media = IFM_10G_SR;
13577         port_type = PORT_FIBRE;
13578         break;
13579     case ELINK_ETH_PHY_SFP_1G_FIBER:
13580         BLOGI(sc, "Found 1Gb Fiber media.\n");
13581         sc->media = IFM_1000_SX;
13582         port_type = PORT_FIBRE;
13583         break;
13584     case ELINK_ETH_PHY_KR:
13585     case ELINK_ETH_PHY_CX4:
13586         BLOGI(sc, "Found 10GBase-CX4 media.\n");
13587         sc->media = IFM_10G_CX4;
13588         port_type = PORT_FIBRE;
13589         break;
13590     case ELINK_ETH_PHY_DA_TWINAX:
13591         BLOGI(sc, "Found 10Gb Twinax media.\n");
13592         sc->media = IFM_10G_TWINAX;
13593         port_type = PORT_DA;
13594         break;
13595     case ELINK_ETH_PHY_BASE_T:
13596         if (sc->link_params.speed_cap_mask[0] &
13597             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
13598             BLOGI(sc, "Found 10GBase-T media.\n");
13599             sc->media = IFM_10G_T;
13600             port_type = PORT_TP;
13601         } else {
13602             BLOGI(sc, "Found 1000Base-T media.\n");
13603             sc->media = IFM_1000_T;
13604             port_type = PORT_TP;
13605         }
13606         break;
13607     case ELINK_ETH_PHY_NOT_PRESENT:
13608         BLOGI(sc, "Media not present.\n");
13609         sc->media = 0;
13610         port_type = PORT_OTHER;
13611         break;
13612     case ELINK_ETH_PHY_UNSPECIFIED:
13613     default:
13614         BLOGI(sc, "Unknown media!\n");
13615         sc->media = 0;
13616         port_type = PORT_OTHER;
13617         break;
13618     }
13619     return port_type;
13620 }
13621 
13622 #define GET_FIELD(value, fname)                     \
13623     (((value) & (fname##_MASK)) >> (fname##_SHIFT))
13624 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
13625 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
13626 
13627 static int
13628 bxe_get_igu_cam_info(struct bxe_softc *sc)
13629 {
13630     int pfid = SC_FUNC(sc);
13631     int igu_sb_id;
13632     uint32_t val;
13633     uint8_t fid, igu_sb_cnt = 0;
13634 
13635     sc->igu_base_sb = 0xff;
13636 
13637     if (CHIP_INT_MODE_IS_BC(sc)) {
13638         int vn = SC_VN(sc);
13639         igu_sb_cnt = sc->igu_sb_cnt;
13640         sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
13641                            FP_SB_MAX_E1x);
13642         sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
13643                           (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
13644         return (0);
13645     }
13646 
13647     /* IGU in normal mode - read CAM */
13648     for (igu_sb_id = 0;
13649          igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
13650          igu_sb_id++) {
13651         val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
13652         if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
13653             continue;
13654         }
13655         fid = IGU_FID(val);
13656         if ((fid & IGU_FID_ENCODE_IS_PF)) {
13657             if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
13658                 continue;
13659             }
13660             if (IGU_VEC(val) == 0) {
13661                 /* default status block */
13662                 sc->igu_dsb_id = igu_sb_id;
13663             } else {
13664                 if (sc->igu_base_sb == 0xff) {
13665                     sc->igu_base_sb = igu_sb_id;
13666                 }
13667                 igu_sb_cnt++;
13668             }
13669         }
13670     }
13671 
13672     /*
13673      * Due to new PF resource allocation by MFW T7.4 and above, it's optional
13674      * that number of CAM entries will not be equal to the value advertised in
13675      * PCI. Driver should use the minimal value of both as the actual status
13676      * block count
13677      */
13678     sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
13679 
13680     if (igu_sb_cnt == 0) {
13681         BLOGE(sc, "CAM configuration error\n");
13682         return (-1);
13683     }
13684 
13685     return (0);
13686 }
13687 
13688 /*
13689  * Gather various information from the device config space, the device itself,
13690  * shmem, and the user input.
13691  */
13692 static int
13693 bxe_get_device_info(struct bxe_softc *sc)
13694 {
13695     uint32_t val;
13696     int rc;
13697 
13698     /* Get the data for the device */
13699     sc->devinfo.vendor_id    = pci_get_vendor(sc->dev);
13700     sc->devinfo.device_id    = pci_get_device(sc->dev);
13701     sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
13702     sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
13703 
13704     /* get the chip revision (chip metal comes from pci config space) */
13705     sc->devinfo.chip_id     =
13706     sc->link_params.chip_id =
13707         (((REG_RD(sc, MISC_REG_CHIP_NUM)                   & 0xffff) << 16) |
13708          ((REG_RD(sc, MISC_REG_CHIP_REV)                   & 0xf)    << 12) |
13709          (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf)    << 4)  |
13710          ((REG_RD(sc, MISC_REG_BOND_ID)                    & 0xf)    << 0));
13711 
13712     /* force 57811 according to MISC register */
13713     if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
13714         if (CHIP_IS_57810(sc)) {
13715             sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
13716                                    (sc->devinfo.chip_id & 0x0000ffff));
13717         } else if (CHIP_IS_57810_MF(sc)) {
13718             sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
13719                                    (sc->devinfo.chip_id & 0x0000ffff));
13720         }
13721         sc->devinfo.chip_id |= 0x1;
13722     }
13723 
13724     BLOGD(sc, DBG_LOAD,
13725           "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
13726           sc->devinfo.chip_id,
13727           ((sc->devinfo.chip_id >> 16) & 0xffff),
13728           ((sc->devinfo.chip_id >> 12) & 0xf),
13729           ((sc->devinfo.chip_id >>  4) & 0xff),
13730           ((sc->devinfo.chip_id >>  0) & 0xf));
13731 
13732     val = (REG_RD(sc, 0x2874) & 0x55);
13733     if ((sc->devinfo.chip_id & 0x1) ||
13734         (CHIP_IS_E1(sc) && val) ||
13735         (CHIP_IS_E1H(sc) && (val == 0x55))) {
13736         sc->flags |= BXE_ONE_PORT_FLAG;
13737         BLOGD(sc, DBG_LOAD, "single port device\n");
13738     }
13739 
13740     /* set the doorbell size */
13741     sc->doorbell_size = (1 << BXE_DB_SHIFT);
13742 
13743     /* determine whether the device is in 2 port or 4 port mode */
13744     sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
13745     if (CHIP_IS_E2E3(sc)) {
13746         /*
13747          * Read port4mode_en_ovwr[0]:
13748          *   If 1, four port mode is in port4mode_en_ovwr[1].
13749          *   If 0, four port mode is in port4mode_en[0].
13750          */
13751         val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
13752         if (val & 1) {
13753             val = ((val >> 1) & 1);
13754         } else {
13755             val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
13756         }
13757 
13758         sc->devinfo.chip_port_mode =
13759             (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
13760 
13761         BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
13762     }
13763 
13764     /* get the function and path info for the device */
13765     bxe_get_function_num(sc);
13766 
13767     /* get the shared memory base address */
13768     sc->devinfo.shmem_base     =
13769     sc->link_params.shmem_base =
13770         REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
13771     sc->devinfo.shmem2_base =
13772         REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
13773                                   MISC_REG_GENERIC_CR_0));
13774 
13775     BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
13776           sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
13777 
13778     if (!sc->devinfo.shmem_base) {
13779         /* this should ONLY prevent upcoming shmem reads */
13780         BLOGI(sc, "MCP not active\n");
13781         sc->flags |= BXE_NO_MCP_FLAG;
13782         return (0);
13783     }
13784 
13785     /* make sure the shared memory contents are valid */
13786     val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
13787     if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
13788         (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
13789         BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
13790         return (0);
13791     }
13792     BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
13793 
13794     /* get the bootcode version */
13795     sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
13796     snprintf(sc->devinfo.bc_ver_str,
13797              sizeof(sc->devinfo.bc_ver_str),
13798              "%d.%d.%d",
13799              ((sc->devinfo.bc_ver >> 24) & 0xff),
13800              ((sc->devinfo.bc_ver >> 16) & 0xff),
13801              ((sc->devinfo.bc_ver >>  8) & 0xff));
13802     BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
13803 
13804     /* get the bootcode shmem address */
13805     sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
13806     BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
13807 
13808     /* clean indirect addresses as they're not used */
13809     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
13810     if (IS_PF(sc)) {
13811         REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
13812         REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
13813         REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
13814         REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
13815         if (CHIP_IS_E1x(sc)) {
13816             REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
13817             REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
13818             REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
13819             REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
13820         }
13821 
13822         /*
13823          * Enable internal target-read (in case we are probed after PF
13824          * FLR). Must be done prior to any BAR read access. Only for
13825          * 57712 and up
13826          */
13827         if (!CHIP_IS_E1x(sc)) {
13828             REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13829         }
13830     }
13831 
13832     /* get the nvram size */
13833     val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
13834     sc->devinfo.flash_size =
13835         (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
13836     BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
13837 
13838     /* get PCI capabilites */
13839     bxe_probe_pci_caps(sc);
13840 
13841     bxe_set_power_state(sc, PCI_PM_D0);
13842 
13843     /* get various configuration parameters from shmem */
13844     bxe_get_shmem_info(sc);
13845 
13846     if (sc->devinfo.pcie_msix_cap_reg != 0) {
13847         val = pci_read_config(sc->dev,
13848                               (sc->devinfo.pcie_msix_cap_reg +
13849                                PCIR_MSIX_CTRL),
13850                               2);
13851         sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
13852     } else {
13853         sc->igu_sb_cnt = 1;
13854     }
13855 
13856     sc->igu_base_addr = BAR_IGU_INTMEM;
13857 
13858     /* initialize IGU parameters */
13859     if (CHIP_IS_E1x(sc)) {
13860         sc->devinfo.int_block = INT_BLOCK_HC;
13861         sc->igu_dsb_id = DEF_SB_IGU_ID;
13862         sc->igu_base_sb = 0;
13863     } else {
13864         sc->devinfo.int_block = INT_BLOCK_IGU;
13865 
13866         /* do not allow device reset during IGU info preocessing */
13867         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
13868 
13869         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
13870 
13871         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
13872             int tout = 5000;
13873 
13874             BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
13875 
13876             val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
13877             REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
13878             REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
13879 
13880             while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
13881                 tout--;
13882                 DELAY(1000);
13883             }
13884 
13885             if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
13886                 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
13887                 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
13888                 return (-1);
13889             }
13890         }
13891 
13892         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
13893             BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
13894             sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
13895         } else {
13896             BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
13897         }
13898 
13899         rc = bxe_get_igu_cam_info(sc);
13900 
13901         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
13902 
13903         if (rc) {
13904             return (rc);
13905         }
13906     }
13907 
13908     /*
13909      * Get base FW non-default (fast path) status block ID. This value is
13910      * used to initialize the fw_sb_id saved on the fp/queue structure to
13911      * determine the id used by the FW.
13912      */
13913     if (CHIP_IS_E1x(sc)) {
13914         sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
13915     } else {
13916         /*
13917          * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
13918          * the same queue are indicated on the same IGU SB). So we prefer
13919          * FW and IGU SBs to be the same value.
13920          */
13921         sc->base_fw_ndsb = sc->igu_base_sb;
13922     }
13923 
13924     BLOGD(sc, DBG_LOAD,
13925           "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
13926           sc->igu_dsb_id, sc->igu_base_sb,
13927           sc->igu_sb_cnt, sc->base_fw_ndsb);
13928 
13929     elink_phy_probe(&sc->link_params);
13930 
13931     return (0);
13932 }
13933 
13934 static void
13935 bxe_link_settings_supported(struct bxe_softc *sc,
13936                             uint32_t         switch_cfg)
13937 {
13938     uint32_t cfg_size = 0;
13939     uint32_t idx;
13940     uint8_t port = SC_PORT(sc);
13941 
13942     /* aggregation of supported attributes of all external phys */
13943     sc->port.supported[0] = 0;
13944     sc->port.supported[1] = 0;
13945 
13946     switch (sc->link_params.num_phys) {
13947     case 1:
13948         sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
13949         cfg_size = 1;
13950         break;
13951     case 2:
13952         sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
13953         cfg_size = 1;
13954         break;
13955     case 3:
13956         if (sc->link_params.multi_phy_config &
13957             PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
13958             sc->port.supported[1] =
13959                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
13960             sc->port.supported[0] =
13961                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
13962         } else {
13963             sc->port.supported[0] =
13964                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
13965             sc->port.supported[1] =
13966                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
13967         }
13968         cfg_size = 2;
13969         break;
13970     }
13971 
13972     if (!(sc->port.supported[0] || sc->port.supported[1])) {
13973         BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
13974               SHMEM_RD(sc,
13975                        dev_info.port_hw_config[port].external_phy_config),
13976               SHMEM_RD(sc,
13977                        dev_info.port_hw_config[port].external_phy_config2));
13978         return;
13979     }
13980 
13981     if (CHIP_IS_E3(sc))
13982         sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
13983     else {
13984         switch (switch_cfg) {
13985         case ELINK_SWITCH_CFG_1G:
13986             sc->port.phy_addr =
13987                 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
13988             break;
13989         case ELINK_SWITCH_CFG_10G:
13990             sc->port.phy_addr =
13991                 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
13992             break;
13993         default:
13994             BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
13995                   sc->port.link_config[0]);
13996             return;
13997         }
13998     }
13999 
14000     BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
14001 
14002     /* mask what we support according to speed_cap_mask per configuration */
14003     for (idx = 0; idx < cfg_size; idx++) {
14004         if (!(sc->link_params.speed_cap_mask[idx] &
14005               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
14006             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
14007         }
14008 
14009         if (!(sc->link_params.speed_cap_mask[idx] &
14010               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
14011             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
14012         }
14013 
14014         if (!(sc->link_params.speed_cap_mask[idx] &
14015               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
14016             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
14017         }
14018 
14019         if (!(sc->link_params.speed_cap_mask[idx] &
14020               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
14021             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
14022         }
14023 
14024         if (!(sc->link_params.speed_cap_mask[idx] &
14025               PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
14026             sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
14027         }
14028 
14029         if (!(sc->link_params.speed_cap_mask[idx] &
14030               PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
14031             sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
14032         }
14033 
14034         if (!(sc->link_params.speed_cap_mask[idx] &
14035               PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
14036             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
14037         }
14038 
14039         if (!(sc->link_params.speed_cap_mask[idx] &
14040               PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
14041             sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
14042         }
14043     }
14044 
14045     BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
14046           sc->port.supported[0], sc->port.supported[1]);
14047 	ELINK_DEBUG_P2(sc, "PHY supported 0=0x%08x 1=0x%08x\n",
14048 					sc->port.supported[0], sc->port.supported[1]);
14049 }
14050 
14051 static void
14052 bxe_link_settings_requested(struct bxe_softc *sc)
14053 {
14054     uint32_t link_config;
14055     uint32_t idx;
14056     uint32_t cfg_size = 0;
14057 
14058     sc->port.advertising[0] = 0;
14059     sc->port.advertising[1] = 0;
14060 
14061     switch (sc->link_params.num_phys) {
14062     case 1:
14063     case 2:
14064         cfg_size = 1;
14065         break;
14066     case 3:
14067         cfg_size = 2;
14068         break;
14069     }
14070 
14071     for (idx = 0; idx < cfg_size; idx++) {
14072         sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14073         link_config = sc->port.link_config[idx];
14074 
14075         switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14076         case PORT_FEATURE_LINK_SPEED_AUTO:
14077             if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14078                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14079                 sc->port.advertising[idx] |= sc->port.supported[idx];
14080                 if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14081                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14082                     sc->port.advertising[idx] |=
14083                         (ELINK_SUPPORTED_100baseT_Half |
14084                          ELINK_SUPPORTED_100baseT_Full);
14085             } else {
14086                 /* force 10G, no AN */
14087                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14088                 sc->port.advertising[idx] |=
14089                     (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14090                 continue;
14091             }
14092             break;
14093 
14094         case PORT_FEATURE_LINK_SPEED_10M_FULL:
14095             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14096                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14097                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14098                                               ADVERTISED_TP);
14099             } else {
14100                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14101                           "speed_cap_mask=0x%08x\n",
14102                       link_config, sc->link_params.speed_cap_mask[idx]);
14103                 return;
14104             }
14105             break;
14106 
14107         case PORT_FEATURE_LINK_SPEED_10M_HALF:
14108             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14109                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14110                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14111                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14112                                               ADVERTISED_TP);
14113 				ELINK_DEBUG_P1(sc, "driver requesting DUPLEX_HALF req_duplex = %x!\n",
14114 								sc->link_params.req_duplex[idx]);
14115             } else {
14116                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14117                           "speed_cap_mask=0x%08x\n",
14118                       link_config, sc->link_params.speed_cap_mask[idx]);
14119                 return;
14120             }
14121             break;
14122 
14123         case PORT_FEATURE_LINK_SPEED_100M_FULL:
14124             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14125                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14126                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14127                                               ADVERTISED_TP);
14128             } else {
14129                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14130                           "speed_cap_mask=0x%08x\n",
14131                       link_config, sc->link_params.speed_cap_mask[idx]);
14132                 return;
14133             }
14134             break;
14135 
14136         case PORT_FEATURE_LINK_SPEED_100M_HALF:
14137             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14138                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14139                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14140                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14141                                               ADVERTISED_TP);
14142             } else {
14143                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14144                           "speed_cap_mask=0x%08x\n",
14145                       link_config, sc->link_params.speed_cap_mask[idx]);
14146                 return;
14147             }
14148             break;
14149 
14150         case PORT_FEATURE_LINK_SPEED_1G:
14151             if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14152                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14153                 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14154                                               ADVERTISED_TP);
14155             } else {
14156                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14157                           "speed_cap_mask=0x%08x\n",
14158                       link_config, sc->link_params.speed_cap_mask[idx]);
14159                 return;
14160             }
14161             break;
14162 
14163         case PORT_FEATURE_LINK_SPEED_2_5G:
14164             if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14165                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14166                 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14167                                               ADVERTISED_TP);
14168             } else {
14169                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14170                           "speed_cap_mask=0x%08x\n",
14171                       link_config, sc->link_params.speed_cap_mask[idx]);
14172                 return;
14173             }
14174             break;
14175 
14176         case PORT_FEATURE_LINK_SPEED_10G_CX4:
14177             if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14178                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14179                 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14180                                               ADVERTISED_FIBRE);
14181             } else {
14182                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14183                           "speed_cap_mask=0x%08x\n",
14184                       link_config, sc->link_params.speed_cap_mask[idx]);
14185                 return;
14186             }
14187             break;
14188 
14189         case PORT_FEATURE_LINK_SPEED_20G:
14190             sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14191             break;
14192 
14193         default:
14194             BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14195                       "speed_cap_mask=0x%08x\n",
14196                   link_config, sc->link_params.speed_cap_mask[idx]);
14197             sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14198             sc->port.advertising[idx] = sc->port.supported[idx];
14199             break;
14200         }
14201 
14202         sc->link_params.req_flow_ctrl[idx] =
14203             (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14204 
14205         if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14206             if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14207                 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14208             } else {
14209                 bxe_set_requested_fc(sc);
14210             }
14211         }
14212 
14213         BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14214                             "req_flow_ctrl=0x%x advertising=0x%x\n",
14215               sc->link_params.req_line_speed[idx],
14216               sc->link_params.req_duplex[idx],
14217               sc->link_params.req_flow_ctrl[idx],
14218               sc->port.advertising[idx]);
14219 		ELINK_DEBUG_P3(sc, "req_line_speed=%d req_duplex=%d "
14220 						"advertising=0x%x\n",
14221 						sc->link_params.req_line_speed[idx],
14222 						sc->link_params.req_duplex[idx],
14223 						sc->port.advertising[idx]);
14224     }
14225 }
14226 
14227 static void
14228 bxe_get_phy_info(struct bxe_softc *sc)
14229 {
14230     uint8_t port = SC_PORT(sc);
14231     uint32_t config = sc->port.config;
14232     uint32_t eee_mode;
14233 
14234     /* shmem data already read in bxe_get_shmem_info() */
14235 
14236     ELINK_DEBUG_P3(sc, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14237                         "link_config0=0x%08x\n",
14238                sc->link_params.lane_config,
14239                sc->link_params.speed_cap_mask[0],
14240                sc->port.link_config[0]);
14241 
14242 
14243     bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14244     bxe_link_settings_requested(sc);
14245 
14246     if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14247         sc->link_params.feature_config_flags |=
14248             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14249     } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14250         sc->link_params.feature_config_flags &=
14251             ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14252     } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14253         sc->link_params.feature_config_flags |=
14254             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14255     }
14256 
14257     /* configure link feature according to nvram value */
14258     eee_mode =
14259         (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14260           PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14261          PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14262     if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14263         sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14264                                     ELINK_EEE_MODE_ENABLE_LPI |
14265                                     ELINK_EEE_MODE_OUTPUT_TIME);
14266     } else {
14267         sc->link_params.eee_mode = 0;
14268     }
14269 
14270     /* get the media type */
14271     bxe_media_detect(sc);
14272 	ELINK_DEBUG_P1(sc, "detected media type\n", sc->media);
14273 }
14274 
14275 static void
14276 bxe_get_params(struct bxe_softc *sc)
14277 {
14278     /* get user tunable params */
14279     bxe_get_tunable_params(sc);
14280 
14281     /* select the RX and TX ring sizes */
14282     sc->tx_ring_size = TX_BD_USABLE;
14283     sc->rx_ring_size = RX_BD_USABLE;
14284 
14285     /* XXX disable WoL */
14286     sc->wol = 0;
14287 }
14288 
14289 static void
14290 bxe_set_modes_bitmap(struct bxe_softc *sc)
14291 {
14292     uint32_t flags = 0;
14293 
14294     if (CHIP_REV_IS_FPGA(sc)) {
14295         SET_FLAGS(flags, MODE_FPGA);
14296     } else if (CHIP_REV_IS_EMUL(sc)) {
14297         SET_FLAGS(flags, MODE_EMUL);
14298     } else {
14299         SET_FLAGS(flags, MODE_ASIC);
14300     }
14301 
14302     if (CHIP_IS_MODE_4_PORT(sc)) {
14303         SET_FLAGS(flags, MODE_PORT4);
14304     } else {
14305         SET_FLAGS(flags, MODE_PORT2);
14306     }
14307 
14308     if (CHIP_IS_E2(sc)) {
14309         SET_FLAGS(flags, MODE_E2);
14310     } else if (CHIP_IS_E3(sc)) {
14311         SET_FLAGS(flags, MODE_E3);
14312         if (CHIP_REV(sc) == CHIP_REV_Ax) {
14313             SET_FLAGS(flags, MODE_E3_A0);
14314         } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14315             SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14316         }
14317     }
14318 
14319     if (IS_MF(sc)) {
14320         SET_FLAGS(flags, MODE_MF);
14321         switch (sc->devinfo.mf_info.mf_mode) {
14322         case MULTI_FUNCTION_SD:
14323             SET_FLAGS(flags, MODE_MF_SD);
14324             break;
14325         case MULTI_FUNCTION_SI:
14326             SET_FLAGS(flags, MODE_MF_SI);
14327             break;
14328         case MULTI_FUNCTION_AFEX:
14329             SET_FLAGS(flags, MODE_MF_AFEX);
14330             break;
14331         }
14332     } else {
14333         SET_FLAGS(flags, MODE_SF);
14334     }
14335 
14336 #if defined(__LITTLE_ENDIAN)
14337     SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14338 #else /* __BIG_ENDIAN */
14339     SET_FLAGS(flags, MODE_BIG_ENDIAN);
14340 #endif
14341 
14342     INIT_MODE_FLAGS(sc) = flags;
14343 }
14344 
14345 static int
14346 bxe_alloc_hsi_mem(struct bxe_softc *sc)
14347 {
14348     struct bxe_fastpath *fp;
14349     bus_addr_t busaddr;
14350     int max_agg_queues;
14351     int max_segments;
14352     bus_size_t max_size;
14353     bus_size_t max_seg_size;
14354     char buf[32];
14355     int rc;
14356     int i, j;
14357 
14358     /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14359 
14360     /* allocate the parent bus DMA tag */
14361     rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14362                             1,                        /* alignment */
14363                             0,                        /* boundary limit */
14364                             BUS_SPACE_MAXADDR,        /* restricted low */
14365                             BUS_SPACE_MAXADDR,        /* restricted hi */
14366                             NULL,                     /* addr filter() */
14367                             NULL,                     /* addr filter() arg */
14368                             BUS_SPACE_MAXSIZE_32BIT,  /* max map size */
14369                             BUS_SPACE_UNRESTRICTED,   /* num discontinuous */
14370                             BUS_SPACE_MAXSIZE_32BIT,  /* max seg size */
14371                             0,                        /* flags */
14372                             NULL,                     /* lock() */
14373                             NULL,                     /* lock() arg */
14374                             &sc->parent_dma_tag);     /* returned dma tag */
14375     if (rc != 0) {
14376         BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14377         return (1);
14378     }
14379 
14380     /************************/
14381     /* DEFAULT STATUS BLOCK */
14382     /************************/
14383 
14384     if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14385                       &sc->def_sb_dma, "default status block") != 0) {
14386         /* XXX */
14387         bus_dma_tag_destroy(sc->parent_dma_tag);
14388         return (1);
14389     }
14390 
14391     sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
14392 
14393     /***************/
14394     /* EVENT QUEUE */
14395     /***************/
14396 
14397     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14398                       &sc->eq_dma, "event queue") != 0) {
14399         /* XXX */
14400         bxe_dma_free(sc, &sc->def_sb_dma);
14401         sc->def_sb = NULL;
14402         bus_dma_tag_destroy(sc->parent_dma_tag);
14403         return (1);
14404     }
14405 
14406     sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
14407 
14408     /*************/
14409     /* SLOW PATH */
14410     /*************/
14411 
14412     if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
14413                       &sc->sp_dma, "slow path") != 0) {
14414         /* XXX */
14415         bxe_dma_free(sc, &sc->eq_dma);
14416         sc->eq = NULL;
14417         bxe_dma_free(sc, &sc->def_sb_dma);
14418         sc->def_sb = NULL;
14419         bus_dma_tag_destroy(sc->parent_dma_tag);
14420         return (1);
14421     }
14422 
14423     sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
14424 
14425     /*******************/
14426     /* SLOW PATH QUEUE */
14427     /*******************/
14428 
14429     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14430                       &sc->spq_dma, "slow path queue") != 0) {
14431         /* XXX */
14432         bxe_dma_free(sc, &sc->sp_dma);
14433         sc->sp = NULL;
14434         bxe_dma_free(sc, &sc->eq_dma);
14435         sc->eq = NULL;
14436         bxe_dma_free(sc, &sc->def_sb_dma);
14437         sc->def_sb = NULL;
14438         bus_dma_tag_destroy(sc->parent_dma_tag);
14439         return (1);
14440     }
14441 
14442     sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
14443 
14444     /***************************/
14445     /* FW DECOMPRESSION BUFFER */
14446     /***************************/
14447 
14448     if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
14449                       "fw decompression buffer") != 0) {
14450         /* XXX */
14451         bxe_dma_free(sc, &sc->spq_dma);
14452         sc->spq = NULL;
14453         bxe_dma_free(sc, &sc->sp_dma);
14454         sc->sp = NULL;
14455         bxe_dma_free(sc, &sc->eq_dma);
14456         sc->eq = NULL;
14457         bxe_dma_free(sc, &sc->def_sb_dma);
14458         sc->def_sb = NULL;
14459         bus_dma_tag_destroy(sc->parent_dma_tag);
14460         return (1);
14461     }
14462 
14463     sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
14464 
14465     if ((sc->gz_strm =
14466          malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
14467         /* XXX */
14468         bxe_dma_free(sc, &sc->gz_buf_dma);
14469         sc->gz_buf = NULL;
14470         bxe_dma_free(sc, &sc->spq_dma);
14471         sc->spq = NULL;
14472         bxe_dma_free(sc, &sc->sp_dma);
14473         sc->sp = NULL;
14474         bxe_dma_free(sc, &sc->eq_dma);
14475         sc->eq = NULL;
14476         bxe_dma_free(sc, &sc->def_sb_dma);
14477         sc->def_sb = NULL;
14478         bus_dma_tag_destroy(sc->parent_dma_tag);
14479         return (1);
14480     }
14481 
14482     /*************/
14483     /* FASTPATHS */
14484     /*************/
14485 
14486     /* allocate DMA memory for each fastpath structure */
14487     for (i = 0; i < sc->num_queues; i++) {
14488         fp = &sc->fp[i];
14489         fp->sc    = sc;
14490         fp->index = i;
14491 
14492         /*******************/
14493         /* FP STATUS BLOCK */
14494         /*******************/
14495 
14496         snprintf(buf, sizeof(buf), "fp %d status block", i);
14497         if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
14498                           &fp->sb_dma, buf) != 0) {
14499             /* XXX unwind and free previous fastpath allocations */
14500             BLOGE(sc, "Failed to alloc %s\n", buf);
14501             return (1);
14502         } else {
14503             if (CHIP_IS_E2E3(sc)) {
14504                 fp->status_block.e2_sb =
14505                     (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
14506             } else {
14507                 fp->status_block.e1x_sb =
14508                     (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
14509             }
14510         }
14511 
14512         /******************/
14513         /* FP TX BD CHAIN */
14514         /******************/
14515 
14516         snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
14517         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
14518                           &fp->tx_dma, buf) != 0) {
14519             /* XXX unwind and free previous fastpath allocations */
14520             BLOGE(sc, "Failed to alloc %s\n", buf);
14521             return (1);
14522         } else {
14523             fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
14524         }
14525 
14526         /* link together the tx bd chain pages */
14527         for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
14528             /* index into the tx bd chain array to last entry per page */
14529             struct eth_tx_next_bd *tx_next_bd =
14530                 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
14531             /* point to the next page and wrap from last page */
14532             busaddr = (fp->tx_dma.paddr +
14533                        (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
14534             tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
14535             tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
14536         }
14537 
14538         /******************/
14539         /* FP RX BD CHAIN */
14540         /******************/
14541 
14542         snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
14543         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
14544                           &fp->rx_dma, buf) != 0) {
14545             /* XXX unwind and free previous fastpath allocations */
14546             BLOGE(sc, "Failed to alloc %s\n", buf);
14547             return (1);
14548         } else {
14549             fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
14550         }
14551 
14552         /* link together the rx bd chain pages */
14553         for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
14554             /* index into the rx bd chain array to last entry per page */
14555             struct eth_rx_bd *rx_bd =
14556                 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
14557             /* point to the next page and wrap from last page */
14558             busaddr = (fp->rx_dma.paddr +
14559                        (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
14560             rx_bd->addr_hi = htole32(U64_HI(busaddr));
14561             rx_bd->addr_lo = htole32(U64_LO(busaddr));
14562         }
14563 
14564         /*******************/
14565         /* FP RX RCQ CHAIN */
14566         /*******************/
14567 
14568         snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
14569         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
14570                           &fp->rcq_dma, buf) != 0) {
14571             /* XXX unwind and free previous fastpath allocations */
14572             BLOGE(sc, "Failed to alloc %s\n", buf);
14573             return (1);
14574         } else {
14575             fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
14576         }
14577 
14578         /* link together the rcq chain pages */
14579         for (j = 1; j <= RCQ_NUM_PAGES; j++) {
14580             /* index into the rcq chain array to last entry per page */
14581             struct eth_rx_cqe_next_page *rx_cqe_next =
14582                 (struct eth_rx_cqe_next_page *)
14583                 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
14584             /* point to the next page and wrap from last page */
14585             busaddr = (fp->rcq_dma.paddr +
14586                        (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
14587             rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
14588             rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
14589         }
14590 
14591         /*******************/
14592         /* FP RX SGE CHAIN */
14593         /*******************/
14594 
14595         snprintf(buf, sizeof(buf), "fp %d sge chain", i);
14596         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
14597                           &fp->rx_sge_dma, buf) != 0) {
14598             /* XXX unwind and free previous fastpath allocations */
14599             BLOGE(sc, "Failed to alloc %s\n", buf);
14600             return (1);
14601         } else {
14602             fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
14603         }
14604 
14605         /* link together the sge chain pages */
14606         for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
14607             /* index into the rcq chain array to last entry per page */
14608             struct eth_rx_sge *rx_sge =
14609                 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
14610             /* point to the next page and wrap from last page */
14611             busaddr = (fp->rx_sge_dma.paddr +
14612                        (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
14613             rx_sge->addr_hi = htole32(U64_HI(busaddr));
14614             rx_sge->addr_lo = htole32(U64_LO(busaddr));
14615         }
14616 
14617         /***********************/
14618         /* FP TX MBUF DMA MAPS */
14619         /***********************/
14620 
14621         /* set required sizes before mapping to conserve resources */
14622         if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
14623             max_size     = BXE_TSO_MAX_SIZE;
14624             max_segments = BXE_TSO_MAX_SEGMENTS;
14625             max_seg_size = BXE_TSO_MAX_SEG_SIZE;
14626         } else {
14627             max_size     = (MCLBYTES * BXE_MAX_SEGMENTS);
14628             max_segments = BXE_MAX_SEGMENTS;
14629             max_seg_size = MCLBYTES;
14630         }
14631 
14632         /* create a dma tag for the tx mbufs */
14633         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14634                                 1,                  /* alignment */
14635                                 0,                  /* boundary limit */
14636                                 BUS_SPACE_MAXADDR,  /* restricted low */
14637                                 BUS_SPACE_MAXADDR,  /* restricted hi */
14638                                 NULL,               /* addr filter() */
14639                                 NULL,               /* addr filter() arg */
14640                                 max_size,           /* max map size */
14641                                 max_segments,       /* num discontinuous */
14642                                 max_seg_size,       /* max seg size */
14643                                 0,                  /* flags */
14644                                 NULL,               /* lock() */
14645                                 NULL,               /* lock() arg */
14646                                 &fp->tx_mbuf_tag);  /* returned dma tag */
14647         if (rc != 0) {
14648             /* XXX unwind and free previous fastpath allocations */
14649             BLOGE(sc, "Failed to create dma tag for "
14650                       "'fp %d tx mbufs' (%d)\n", i, rc);
14651             return (1);
14652         }
14653 
14654         /* create dma maps for each of the tx mbuf clusters */
14655         for (j = 0; j < TX_BD_TOTAL; j++) {
14656             if (bus_dmamap_create(fp->tx_mbuf_tag,
14657                                   BUS_DMA_NOWAIT,
14658                                   &fp->tx_mbuf_chain[j].m_map)) {
14659                 /* XXX unwind and free previous fastpath allocations */
14660                 BLOGE(sc, "Failed to create dma map for "
14661                           "'fp %d tx mbuf %d' (%d)\n", i, j, rc);
14662                 return (1);
14663             }
14664         }
14665 
14666         /***********************/
14667         /* FP RX MBUF DMA MAPS */
14668         /***********************/
14669 
14670         /* create a dma tag for the rx mbufs */
14671         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14672                                 1,                  /* alignment */
14673                                 0,                  /* boundary limit */
14674                                 BUS_SPACE_MAXADDR,  /* restricted low */
14675                                 BUS_SPACE_MAXADDR,  /* restricted hi */
14676                                 NULL,               /* addr filter() */
14677                                 NULL,               /* addr filter() arg */
14678                                 MJUM9BYTES,         /* max map size */
14679                                 1,                  /* num discontinuous */
14680                                 MJUM9BYTES,         /* max seg size */
14681                                 0,                  /* flags */
14682                                 NULL,               /* lock() */
14683                                 NULL,               /* lock() arg */
14684                                 &fp->rx_mbuf_tag);  /* returned dma tag */
14685         if (rc != 0) {
14686             /* XXX unwind and free previous fastpath allocations */
14687             BLOGE(sc, "Failed to create dma tag for "
14688                       "'fp %d rx mbufs' (%d)\n", i, rc);
14689             return (1);
14690         }
14691 
14692         /* create dma maps for each of the rx mbuf clusters */
14693         for (j = 0; j < RX_BD_TOTAL; j++) {
14694             if (bus_dmamap_create(fp->rx_mbuf_tag,
14695                                   BUS_DMA_NOWAIT,
14696                                   &fp->rx_mbuf_chain[j].m_map)) {
14697                 /* XXX unwind and free previous fastpath allocations */
14698                 BLOGE(sc, "Failed to create dma map for "
14699                           "'fp %d rx mbuf %d' (%d)\n", i, j, rc);
14700                 return (1);
14701             }
14702         }
14703 
14704         /* create dma map for the spare rx mbuf cluster */
14705         if (bus_dmamap_create(fp->rx_mbuf_tag,
14706                               BUS_DMA_NOWAIT,
14707                               &fp->rx_mbuf_spare_map)) {
14708             /* XXX unwind and free previous fastpath allocations */
14709             BLOGE(sc, "Failed to create dma map for "
14710                       "'fp %d spare rx mbuf' (%d)\n", i, rc);
14711             return (1);
14712         }
14713 
14714         /***************************/
14715         /* FP RX SGE MBUF DMA MAPS */
14716         /***************************/
14717 
14718         /* create a dma tag for the rx sge mbufs */
14719         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14720                                 1,                  /* alignment */
14721                                 0,                  /* boundary limit */
14722                                 BUS_SPACE_MAXADDR,  /* restricted low */
14723                                 BUS_SPACE_MAXADDR,  /* restricted hi */
14724                                 NULL,               /* addr filter() */
14725                                 NULL,               /* addr filter() arg */
14726                                 BCM_PAGE_SIZE,      /* max map size */
14727                                 1,                  /* num discontinuous */
14728                                 BCM_PAGE_SIZE,      /* max seg size */
14729                                 0,                  /* flags */
14730                                 NULL,               /* lock() */
14731                                 NULL,               /* lock() arg */
14732                                 &fp->rx_sge_mbuf_tag); /* returned dma tag */
14733         if (rc != 0) {
14734             /* XXX unwind and free previous fastpath allocations */
14735             BLOGE(sc, "Failed to create dma tag for "
14736                       "'fp %d rx sge mbufs' (%d)\n", i, rc);
14737             return (1);
14738         }
14739 
14740         /* create dma maps for the rx sge mbuf clusters */
14741         for (j = 0; j < RX_SGE_TOTAL; j++) {
14742             if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
14743                                   BUS_DMA_NOWAIT,
14744                                   &fp->rx_sge_mbuf_chain[j].m_map)) {
14745                 /* XXX unwind and free previous fastpath allocations */
14746                 BLOGE(sc, "Failed to create dma map for "
14747                           "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc);
14748                 return (1);
14749             }
14750         }
14751 
14752         /* create dma map for the spare rx sge mbuf cluster */
14753         if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
14754                               BUS_DMA_NOWAIT,
14755                               &fp->rx_sge_mbuf_spare_map)) {
14756             /* XXX unwind and free previous fastpath allocations */
14757             BLOGE(sc, "Failed to create dma map for "
14758                       "'fp %d spare rx sge mbuf' (%d)\n", i, rc);
14759             return (1);
14760         }
14761 
14762         /***************************/
14763         /* FP RX TPA MBUF DMA MAPS */
14764         /***************************/
14765 
14766         /* create dma maps for the rx tpa mbuf clusters */
14767         max_agg_queues = MAX_AGG_QS(sc);
14768 
14769         for (j = 0; j < max_agg_queues; j++) {
14770             if (bus_dmamap_create(fp->rx_mbuf_tag,
14771                                   BUS_DMA_NOWAIT,
14772                                   &fp->rx_tpa_info[j].bd.m_map)) {
14773                 /* XXX unwind and free previous fastpath allocations */
14774                 BLOGE(sc, "Failed to create dma map for "
14775                           "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc);
14776                 return (1);
14777             }
14778         }
14779 
14780         /* create dma map for the spare rx tpa mbuf cluster */
14781         if (bus_dmamap_create(fp->rx_mbuf_tag,
14782                               BUS_DMA_NOWAIT,
14783                               &fp->rx_tpa_info_mbuf_spare_map)) {
14784             /* XXX unwind and free previous fastpath allocations */
14785             BLOGE(sc, "Failed to create dma map for "
14786                       "'fp %d spare rx tpa mbuf' (%d)\n", i, rc);
14787             return (1);
14788         }
14789 
14790         bxe_init_sge_ring_bit_mask(fp);
14791     }
14792 
14793     return (0);
14794 }
14795 
14796 static void
14797 bxe_free_hsi_mem(struct bxe_softc *sc)
14798 {
14799     struct bxe_fastpath *fp;
14800     int max_agg_queues;
14801     int i, j;
14802 
14803     if (sc->parent_dma_tag == NULL) {
14804         return; /* assume nothing was allocated */
14805     }
14806 
14807     for (i = 0; i < sc->num_queues; i++) {
14808         fp = &sc->fp[i];
14809 
14810         /*******************/
14811         /* FP STATUS BLOCK */
14812         /*******************/
14813 
14814         bxe_dma_free(sc, &fp->sb_dma);
14815         memset(&fp->status_block, 0, sizeof(fp->status_block));
14816 
14817         /******************/
14818         /* FP TX BD CHAIN */
14819         /******************/
14820 
14821         bxe_dma_free(sc, &fp->tx_dma);
14822         fp->tx_chain = NULL;
14823 
14824         /******************/
14825         /* FP RX BD CHAIN */
14826         /******************/
14827 
14828         bxe_dma_free(sc, &fp->rx_dma);
14829         fp->rx_chain = NULL;
14830 
14831         /*******************/
14832         /* FP RX RCQ CHAIN */
14833         /*******************/
14834 
14835         bxe_dma_free(sc, &fp->rcq_dma);
14836         fp->rcq_chain = NULL;
14837 
14838         /*******************/
14839         /* FP RX SGE CHAIN */
14840         /*******************/
14841 
14842         bxe_dma_free(sc, &fp->rx_sge_dma);
14843         fp->rx_sge_chain = NULL;
14844 
14845         /***********************/
14846         /* FP TX MBUF DMA MAPS */
14847         /***********************/
14848 
14849         if (fp->tx_mbuf_tag != NULL) {
14850             for (j = 0; j < TX_BD_TOTAL; j++) {
14851                 if (fp->tx_mbuf_chain[j].m_map != NULL) {
14852                     bus_dmamap_unload(fp->tx_mbuf_tag,
14853                                       fp->tx_mbuf_chain[j].m_map);
14854                     bus_dmamap_destroy(fp->tx_mbuf_tag,
14855                                        fp->tx_mbuf_chain[j].m_map);
14856                 }
14857             }
14858 
14859             bus_dma_tag_destroy(fp->tx_mbuf_tag);
14860             fp->tx_mbuf_tag = NULL;
14861         }
14862 
14863         /***********************/
14864         /* FP RX MBUF DMA MAPS */
14865         /***********************/
14866 
14867         if (fp->rx_mbuf_tag != NULL) {
14868             for (j = 0; j < RX_BD_TOTAL; j++) {
14869                 if (fp->rx_mbuf_chain[j].m_map != NULL) {
14870                     bus_dmamap_unload(fp->rx_mbuf_tag,
14871                                       fp->rx_mbuf_chain[j].m_map);
14872                     bus_dmamap_destroy(fp->rx_mbuf_tag,
14873                                        fp->rx_mbuf_chain[j].m_map);
14874                 }
14875             }
14876 
14877             if (fp->rx_mbuf_spare_map != NULL) {
14878                 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
14879                 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
14880             }
14881 
14882             /***************************/
14883             /* FP RX TPA MBUF DMA MAPS */
14884             /***************************/
14885 
14886             max_agg_queues = MAX_AGG_QS(sc);
14887 
14888             for (j = 0; j < max_agg_queues; j++) {
14889                 if (fp->rx_tpa_info[j].bd.m_map != NULL) {
14890                     bus_dmamap_unload(fp->rx_mbuf_tag,
14891                                       fp->rx_tpa_info[j].bd.m_map);
14892                     bus_dmamap_destroy(fp->rx_mbuf_tag,
14893                                        fp->rx_tpa_info[j].bd.m_map);
14894                 }
14895             }
14896 
14897             if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
14898                 bus_dmamap_unload(fp->rx_mbuf_tag,
14899                                   fp->rx_tpa_info_mbuf_spare_map);
14900                 bus_dmamap_destroy(fp->rx_mbuf_tag,
14901                                    fp->rx_tpa_info_mbuf_spare_map);
14902             }
14903 
14904             bus_dma_tag_destroy(fp->rx_mbuf_tag);
14905             fp->rx_mbuf_tag = NULL;
14906         }
14907 
14908         /***************************/
14909         /* FP RX SGE MBUF DMA MAPS */
14910         /***************************/
14911 
14912         if (fp->rx_sge_mbuf_tag != NULL) {
14913             for (j = 0; j < RX_SGE_TOTAL; j++) {
14914                 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
14915                     bus_dmamap_unload(fp->rx_sge_mbuf_tag,
14916                                       fp->rx_sge_mbuf_chain[j].m_map);
14917                     bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
14918                                        fp->rx_sge_mbuf_chain[j].m_map);
14919                 }
14920             }
14921 
14922             if (fp->rx_sge_mbuf_spare_map != NULL) {
14923                 bus_dmamap_unload(fp->rx_sge_mbuf_tag,
14924                                   fp->rx_sge_mbuf_spare_map);
14925                 bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
14926                                    fp->rx_sge_mbuf_spare_map);
14927             }
14928 
14929             bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
14930             fp->rx_sge_mbuf_tag = NULL;
14931         }
14932     }
14933 
14934     /***************************/
14935     /* FW DECOMPRESSION BUFFER */
14936     /***************************/
14937 
14938     bxe_dma_free(sc, &sc->gz_buf_dma);
14939     sc->gz_buf = NULL;
14940     free(sc->gz_strm, M_DEVBUF);
14941     sc->gz_strm = NULL;
14942 
14943     /*******************/
14944     /* SLOW PATH QUEUE */
14945     /*******************/
14946 
14947     bxe_dma_free(sc, &sc->spq_dma);
14948     sc->spq = NULL;
14949 
14950     /*************/
14951     /* SLOW PATH */
14952     /*************/
14953 
14954     bxe_dma_free(sc, &sc->sp_dma);
14955     sc->sp = NULL;
14956 
14957     /***************/
14958     /* EVENT QUEUE */
14959     /***************/
14960 
14961     bxe_dma_free(sc, &sc->eq_dma);
14962     sc->eq = NULL;
14963 
14964     /************************/
14965     /* DEFAULT STATUS BLOCK */
14966     /************************/
14967 
14968     bxe_dma_free(sc, &sc->def_sb_dma);
14969     sc->def_sb = NULL;
14970 
14971     bus_dma_tag_destroy(sc->parent_dma_tag);
14972     sc->parent_dma_tag = NULL;
14973 }
14974 
14975 /*
14976  * Previous driver DMAE transaction may have occurred when pre-boot stage
14977  * ended and boot began. This would invalidate the addresses of the
14978  * transaction, resulting in was-error bit set in the PCI causing all
14979  * hw-to-host PCIe transactions to timeout. If this happened we want to clear
14980  * the interrupt which detected this from the pglueb and the was-done bit
14981  */
14982 static void
14983 bxe_prev_interrupted_dmae(struct bxe_softc *sc)
14984 {
14985     uint32_t val;
14986 
14987     if (!CHIP_IS_E1x(sc)) {
14988         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
14989         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
14990             BLOGD(sc, DBG_LOAD,
14991                   "Clearing 'was-error' bit that was set in pglueb");
14992             REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
14993         }
14994     }
14995 }
14996 
14997 static int
14998 bxe_prev_mcp_done(struct bxe_softc *sc)
14999 {
15000     uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
15001                                  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
15002     if (!rc) {
15003         BLOGE(sc, "MCP response failure, aborting\n");
15004         return (-1);
15005     }
15006 
15007     return (0);
15008 }
15009 
15010 static struct bxe_prev_list_node *
15011 bxe_prev_path_get_entry(struct bxe_softc *sc)
15012 {
15013     struct bxe_prev_list_node *tmp;
15014 
15015     LIST_FOREACH(tmp, &bxe_prev_list, node) {
15016         if ((sc->pcie_bus == tmp->bus) &&
15017             (sc->pcie_device == tmp->slot) &&
15018             (SC_PATH(sc) == tmp->path)) {
15019             return (tmp);
15020         }
15021     }
15022 
15023     return (NULL);
15024 }
15025 
15026 static uint8_t
15027 bxe_prev_is_path_marked(struct bxe_softc *sc)
15028 {
15029     struct bxe_prev_list_node *tmp;
15030     int rc = FALSE;
15031 
15032     mtx_lock(&bxe_prev_mtx);
15033 
15034     tmp = bxe_prev_path_get_entry(sc);
15035     if (tmp) {
15036         if (tmp->aer) {
15037             BLOGD(sc, DBG_LOAD,
15038                   "Path %d/%d/%d was marked by AER\n",
15039                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15040         } else {
15041             rc = TRUE;
15042             BLOGD(sc, DBG_LOAD,
15043                   "Path %d/%d/%d was already cleaned from previous drivers\n",
15044                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15045         }
15046     }
15047 
15048     mtx_unlock(&bxe_prev_mtx);
15049 
15050     return (rc);
15051 }
15052 
15053 static int
15054 bxe_prev_mark_path(struct bxe_softc *sc,
15055                    uint8_t          after_undi)
15056 {
15057     struct bxe_prev_list_node *tmp;
15058 
15059     mtx_lock(&bxe_prev_mtx);
15060 
15061     /* Check whether the entry for this path already exists */
15062     tmp = bxe_prev_path_get_entry(sc);
15063     if (tmp) {
15064         if (!tmp->aer) {
15065             BLOGD(sc, DBG_LOAD,
15066                   "Re-marking AER in path %d/%d/%d\n",
15067                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15068         } else {
15069             BLOGD(sc, DBG_LOAD,
15070                   "Removing AER indication from path %d/%d/%d\n",
15071                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15072             tmp->aer = 0;
15073         }
15074 
15075         mtx_unlock(&bxe_prev_mtx);
15076         return (0);
15077     }
15078 
15079     mtx_unlock(&bxe_prev_mtx);
15080 
15081     /* Create an entry for this path and add it */
15082     tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15083                  (M_NOWAIT | M_ZERO));
15084     if (!tmp) {
15085         BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15086         return (-1);
15087     }
15088 
15089     tmp->bus  = sc->pcie_bus;
15090     tmp->slot = sc->pcie_device;
15091     tmp->path = SC_PATH(sc);
15092     tmp->aer  = 0;
15093     tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15094 
15095     mtx_lock(&bxe_prev_mtx);
15096 
15097     BLOGD(sc, DBG_LOAD,
15098           "Marked path %d/%d/%d - finished previous unload\n",
15099           sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15100     LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15101 
15102     mtx_unlock(&bxe_prev_mtx);
15103 
15104     return (0);
15105 }
15106 
15107 static int
15108 bxe_do_flr(struct bxe_softc *sc)
15109 {
15110     int i;
15111 
15112     /* only E2 and onwards support FLR */
15113     if (CHIP_IS_E1x(sc)) {
15114         BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15115         return (-1);
15116     }
15117 
15118     /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15119     if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15120         BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15121               sc->devinfo.bc_ver);
15122         return (-1);
15123     }
15124 
15125     /* Wait for Transaction Pending bit clean */
15126     for (i = 0; i < 4; i++) {
15127         if (i) {
15128             DELAY(((1 << (i - 1)) * 100) * 1000);
15129         }
15130 
15131         if (!bxe_is_pcie_pending(sc)) {
15132             goto clear;
15133         }
15134     }
15135 
15136     BLOGE(sc, "PCIE transaction is not cleared, "
15137               "proceeding with reset anyway\n");
15138 
15139 clear:
15140 
15141     BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15142     bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15143 
15144     return (0);
15145 }
15146 
15147 struct bxe_mac_vals {
15148     uint32_t xmac_addr;
15149     uint32_t xmac_val;
15150     uint32_t emac_addr;
15151     uint32_t emac_val;
15152     uint32_t umac_addr;
15153     uint32_t umac_val;
15154     uint32_t bmac_addr;
15155     uint32_t bmac_val[2];
15156 };
15157 
15158 static void
15159 bxe_prev_unload_close_mac(struct bxe_softc *sc,
15160                           struct bxe_mac_vals *vals)
15161 {
15162     uint32_t val, base_addr, offset, mask, reset_reg;
15163     uint8_t mac_stopped = FALSE;
15164     uint8_t port = SC_PORT(sc);
15165     uint32_t wb_data[2];
15166 
15167     /* reset addresses as they also mark which values were changed */
15168     vals->bmac_addr = 0;
15169     vals->umac_addr = 0;
15170     vals->xmac_addr = 0;
15171     vals->emac_addr = 0;
15172 
15173     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15174 
15175     if (!CHIP_IS_E3(sc)) {
15176         val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15177         mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15178         if ((mask & reset_reg) && val) {
15179             BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15180             base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15181                                     : NIG_REG_INGRESS_BMAC0_MEM;
15182             offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15183                                     : BIGMAC_REGISTER_BMAC_CONTROL;
15184 
15185             /*
15186              * use rd/wr since we cannot use dmae. This is safe
15187              * since MCP won't access the bus due to the request
15188              * to unload, and no function on the path can be
15189              * loaded at this time.
15190              */
15191             wb_data[0] = REG_RD(sc, base_addr + offset);
15192             wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15193             vals->bmac_addr = base_addr + offset;
15194             vals->bmac_val[0] = wb_data[0];
15195             vals->bmac_val[1] = wb_data[1];
15196             wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15197             REG_WR(sc, vals->bmac_addr, wb_data[0]);
15198             REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15199         }
15200 
15201         BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15202         vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15203         vals->emac_val = REG_RD(sc, vals->emac_addr);
15204         REG_WR(sc, vals->emac_addr, 0);
15205         mac_stopped = TRUE;
15206     } else {
15207         if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15208             BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15209             base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15210             val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15211             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15212             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15213             vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15214             vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15215             REG_WR(sc, vals->xmac_addr, 0);
15216             mac_stopped = TRUE;
15217         }
15218 
15219         mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15220         if (mask & reset_reg) {
15221             BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15222             base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15223             vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15224             vals->umac_val = REG_RD(sc, vals->umac_addr);
15225             REG_WR(sc, vals->umac_addr, 0);
15226             mac_stopped = TRUE;
15227         }
15228     }
15229 
15230     if (mac_stopped) {
15231         DELAY(20000);
15232     }
15233 }
15234 
15235 #define BXE_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15236 #define BXE_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
15237 #define BXE_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
15238 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15239 
15240 static void
15241 bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15242                          uint8_t          port,
15243                          uint8_t          inc)
15244 {
15245     uint16_t rcq, bd;
15246     uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15247 
15248     rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15249     bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15250 
15251     tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15252     REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15253 
15254     BLOGD(sc, DBG_LOAD,
15255           "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15256           port, bd, rcq);
15257 }
15258 
15259 static int
15260 bxe_prev_unload_common(struct bxe_softc *sc)
15261 {
15262     uint32_t reset_reg, tmp_reg = 0, rc;
15263     uint8_t prev_undi = FALSE;
15264     struct bxe_mac_vals mac_vals;
15265     uint32_t timer_count = 1000;
15266     uint32_t prev_brb;
15267 
15268     /*
15269      * It is possible a previous function received 'common' answer,
15270      * but hasn't loaded yet, therefore creating a scenario of
15271      * multiple functions receiving 'common' on the same path.
15272      */
15273     BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15274 
15275     memset(&mac_vals, 0, sizeof(mac_vals));
15276 
15277     if (bxe_prev_is_path_marked(sc)) {
15278         return (bxe_prev_mcp_done(sc));
15279     }
15280 
15281     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15282 
15283     /* Reset should be performed after BRB is emptied */
15284     if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15285         /* Close the MAC Rx to prevent BRB from filling up */
15286         bxe_prev_unload_close_mac(sc, &mac_vals);
15287 
15288         /* close LLH filters towards the BRB */
15289         elink_set_rx_filter(&sc->link_params, 0);
15290 
15291         /*
15292          * Check if the UNDI driver was previously loaded.
15293          * UNDI driver initializes CID offset for normal bell to 0x7
15294          */
15295         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15296             tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15297             if (tmp_reg == 0x7) {
15298                 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15299                 prev_undi = TRUE;
15300                 /* clear the UNDI indication */
15301                 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15302                 /* clear possible idle check errors */
15303                 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15304             }
15305         }
15306 
15307         /* wait until BRB is empty */
15308         tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15309         while (timer_count) {
15310             prev_brb = tmp_reg;
15311 
15312             tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15313             if (!tmp_reg) {
15314                 break;
15315             }
15316 
15317             BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15318 
15319             /* reset timer as long as BRB actually gets emptied */
15320             if (prev_brb > tmp_reg) {
15321                 timer_count = 1000;
15322             } else {
15323                 timer_count--;
15324             }
15325 
15326             /* If UNDI resides in memory, manually increment it */
15327             if (prev_undi) {
15328                 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15329             }
15330 
15331             DELAY(10);
15332         }
15333 
15334         if (!timer_count) {
15335             BLOGE(sc, "Failed to empty BRB\n");
15336         }
15337     }
15338 
15339     /* No packets are in the pipeline, path is ready for reset */
15340     bxe_reset_common(sc);
15341 
15342     if (mac_vals.xmac_addr) {
15343         REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15344     }
15345     if (mac_vals.umac_addr) {
15346         REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15347     }
15348     if (mac_vals.emac_addr) {
15349         REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15350     }
15351     if (mac_vals.bmac_addr) {
15352         REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15353         REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15354     }
15355 
15356     rc = bxe_prev_mark_path(sc, prev_undi);
15357     if (rc) {
15358         bxe_prev_mcp_done(sc);
15359         return (rc);
15360     }
15361 
15362     return (bxe_prev_mcp_done(sc));
15363 }
15364 
15365 static int
15366 bxe_prev_unload_uncommon(struct bxe_softc *sc)
15367 {
15368     int rc;
15369 
15370     BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15371 
15372     /* Test if previous unload process was already finished for this path */
15373     if (bxe_prev_is_path_marked(sc)) {
15374         return (bxe_prev_mcp_done(sc));
15375     }
15376 
15377     BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15378 
15379     /*
15380      * If function has FLR capabilities, and existing FW version matches
15381      * the one required, then FLR will be sufficient to clean any residue
15382      * left by previous driver
15383      */
15384     rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
15385     if (!rc) {
15386         /* fw version is good */
15387         BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
15388         rc = bxe_do_flr(sc);
15389     }
15390 
15391     if (!rc) {
15392         /* FLR was performed */
15393         BLOGD(sc, DBG_LOAD, "FLR successful\n");
15394         return (0);
15395     }
15396 
15397     BLOGD(sc, DBG_LOAD, "Could not FLR\n");
15398 
15399     /* Close the MCP request, return failure*/
15400     rc = bxe_prev_mcp_done(sc);
15401     if (!rc) {
15402         rc = BXE_PREV_WAIT_NEEDED;
15403     }
15404 
15405     return (rc);
15406 }
15407 
15408 static int
15409 bxe_prev_unload(struct bxe_softc *sc)
15410 {
15411     int time_counter = 10;
15412     uint32_t fw, hw_lock_reg, hw_lock_val;
15413     uint32_t rc = 0;
15414 
15415     /*
15416      * Clear HW from errors which may have resulted from an interrupted
15417      * DMAE transaction.
15418      */
15419     bxe_prev_interrupted_dmae(sc);
15420 
15421     /* Release previously held locks */
15422     hw_lock_reg =
15423         (SC_FUNC(sc) <= 5) ?
15424             (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
15425             (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
15426 
15427     hw_lock_val = (REG_RD(sc, hw_lock_reg));
15428     if (hw_lock_val) {
15429         if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
15430             BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
15431             REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
15432                    (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
15433         }
15434         BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
15435         REG_WR(sc, hw_lock_reg, 0xffffffff);
15436     } else {
15437         BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
15438     }
15439 
15440     if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
15441         BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
15442         REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
15443     }
15444 
15445     do {
15446         /* Lock MCP using an unload request */
15447         fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
15448         if (!fw) {
15449             BLOGE(sc, "MCP response failure, aborting\n");
15450             rc = -1;
15451             break;
15452         }
15453 
15454         if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
15455             rc = bxe_prev_unload_common(sc);
15456             break;
15457         }
15458 
15459         /* non-common reply from MCP night require looping */
15460         rc = bxe_prev_unload_uncommon(sc);
15461         if (rc != BXE_PREV_WAIT_NEEDED) {
15462             break;
15463         }
15464 
15465         DELAY(20000);
15466     } while (--time_counter);
15467 
15468     if (!time_counter || rc) {
15469         BLOGE(sc, "Failed to unload previous driver!"
15470             " time_counter %d rc %d\n", time_counter, rc);
15471         rc = -1;
15472     }
15473 
15474     return (rc);
15475 }
15476 
15477 void
15478 bxe_dcbx_set_state(struct bxe_softc *sc,
15479                    uint8_t          dcb_on,
15480                    uint32_t         dcbx_enabled)
15481 {
15482     if (!CHIP_IS_E1x(sc)) {
15483         sc->dcb_state = dcb_on;
15484         sc->dcbx_enabled = dcbx_enabled;
15485     } else {
15486         sc->dcb_state = FALSE;
15487         sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
15488     }
15489     BLOGD(sc, DBG_LOAD,
15490           "DCB state [%s:%s]\n",
15491           dcb_on ? "ON" : "OFF",
15492           (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
15493           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
15494           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
15495           "on-chip with negotiation" : "invalid");
15496 }
15497 
15498 /* must be called after sriov-enable */
15499 static int
15500 bxe_set_qm_cid_count(struct bxe_softc *sc)
15501 {
15502     int cid_count = BXE_L2_MAX_CID(sc);
15503 
15504     if (IS_SRIOV(sc)) {
15505         cid_count += BXE_VF_CIDS;
15506     }
15507 
15508     if (CNIC_SUPPORT(sc)) {
15509         cid_count += CNIC_CID_MAX;
15510     }
15511 
15512     return (roundup(cid_count, QM_CID_ROUND));
15513 }
15514 
15515 static void
15516 bxe_init_multi_cos(struct bxe_softc *sc)
15517 {
15518     int pri, cos;
15519 
15520     uint32_t pri_map = 0; /* XXX change to user config */
15521 
15522     for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
15523         cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
15524         if (cos < sc->max_cos) {
15525             sc->prio_to_cos[pri] = cos;
15526         } else {
15527             BLOGW(sc, "Invalid COS %d for priority %d "
15528                       "(max COS is %d), setting to 0\n",
15529                   cos, pri, (sc->max_cos - 1));
15530             sc->prio_to_cos[pri] = 0;
15531         }
15532     }
15533 }
15534 
15535 static int
15536 bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
15537 {
15538     struct bxe_softc *sc;
15539     int error, result;
15540 
15541     result = 0;
15542     error = sysctl_handle_int(oidp, &result, 0, req);
15543 
15544     if (error || !req->newptr) {
15545         return (error);
15546     }
15547 
15548     if (result == 1) {
15549         uint32_t  temp;
15550         sc = (struct bxe_softc *)arg1;
15551 
15552         BLOGI(sc, "... dumping driver state ...\n");
15553         temp = SHMEM2_RD(sc, temperature_in_half_celsius);
15554         BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2));
15555     }
15556 
15557     return (error);
15558 }
15559 
15560 static int
15561 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
15562 {
15563     struct bxe_softc *sc = (struct bxe_softc *)arg1;
15564     uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
15565     uint32_t *offset;
15566     uint64_t value = 0;
15567     int index = (int)arg2;
15568 
15569     if (index >= BXE_NUM_ETH_STATS) {
15570         BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
15571         return (-1);
15572     }
15573 
15574     offset = (eth_stats + bxe_eth_stats_arr[index].offset);
15575 
15576     switch (bxe_eth_stats_arr[index].size) {
15577     case 4:
15578         value = (uint64_t)*offset;
15579         break;
15580     case 8:
15581         value = HILO_U64(*offset, *(offset + 1));
15582         break;
15583     default:
15584         BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
15585               index, bxe_eth_stats_arr[index].size);
15586         return (-1);
15587     }
15588 
15589     return (sysctl_handle_64(oidp, &value, 0, req));
15590 }
15591 
15592 static int
15593 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
15594 {
15595     struct bxe_softc *sc = (struct bxe_softc *)arg1;
15596     uint32_t *eth_stats;
15597     uint32_t *offset;
15598     uint64_t value = 0;
15599     uint32_t q_stat = (uint32_t)arg2;
15600     uint32_t fp_index = ((q_stat >> 16) & 0xffff);
15601     uint32_t index = (q_stat & 0xffff);
15602 
15603     eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
15604 
15605     if (index >= BXE_NUM_ETH_Q_STATS) {
15606         BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
15607         return (-1);
15608     }
15609 
15610     offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
15611 
15612     switch (bxe_eth_q_stats_arr[index].size) {
15613     case 4:
15614         value = (uint64_t)*offset;
15615         break;
15616     case 8:
15617         value = HILO_U64(*offset, *(offset + 1));
15618         break;
15619     default:
15620         BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
15621               index, bxe_eth_q_stats_arr[index].size);
15622         return (-1);
15623     }
15624 
15625     return (sysctl_handle_64(oidp, &value, 0, req));
15626 }
15627 
15628 static void bxe_force_link_reset(struct bxe_softc *sc)
15629 {
15630 
15631         bxe_acquire_phy_lock(sc);
15632         elink_link_reset(&sc->link_params, &sc->link_vars, 1);
15633         bxe_release_phy_lock(sc);
15634 }
15635 
15636 static int
15637 bxe_sysctl_pauseparam(SYSCTL_HANDLER_ARGS)
15638 {
15639         struct bxe_softc *sc = (struct bxe_softc *)arg1;;
15640         uint32_t cfg_idx = bxe_get_link_cfg_idx(sc);
15641         int rc = 0;
15642         int error;
15643         int result;
15644 
15645 
15646         error = sysctl_handle_int(oidp, &sc->bxe_pause_param, 0, req);
15647 
15648         if (error || !req->newptr) {
15649                 return (error);
15650         }
15651         if ((sc->bxe_pause_param < 0) ||  (sc->bxe_pause_param > 8)) {
15652                 BLOGW(sc, "invalid pause param (%d) - use intergers between 1 & 8\n",sc->bxe_pause_param);
15653                 sc->bxe_pause_param = 8;
15654         }
15655 
15656         result = (sc->bxe_pause_param << PORT_FEATURE_FLOW_CONTROL_SHIFT);
15657 
15658 
15659         if((result & 0x400) && !(sc->port.supported[cfg_idx] & ELINK_SUPPORTED_Autoneg))  {
15660                         BLOGW(sc, "Does not support Autoneg pause_param %d\n", sc->bxe_pause_param);
15661                         return -EINVAL;
15662         }
15663 
15664         if(IS_MF(sc))
15665                 return 0;
15666        sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_AUTO;
15667         if(result & ELINK_FLOW_CTRL_RX)
15668                 sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_RX;
15669 
15670         if(result & ELINK_FLOW_CTRL_TX)
15671                 sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_TX;
15672         if(sc->link_params.req_flow_ctrl[cfg_idx] == ELINK_FLOW_CTRL_AUTO)
15673                 sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_NONE;
15674 
15675         if(result & 0x400) {
15676                 if (sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) {
15677                         sc->link_params.req_flow_ctrl[cfg_idx] =
15678                                 ELINK_FLOW_CTRL_AUTO;
15679                 }
15680                 sc->link_params.req_fc_auto_adv = 0;
15681                 if (result & ELINK_FLOW_CTRL_RX)
15682                         sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_RX;
15683 
15684                 if (result & ELINK_FLOW_CTRL_TX)
15685                         sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_TX;
15686                 if (!sc->link_params.req_fc_auto_adv)
15687                         sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_NONE;
15688         }
15689          if (IS_PF(sc)) {
15690                         if (sc->link_vars.link_up) {
15691                                 bxe_stats_handle(sc, STATS_EVENT_STOP);
15692                         }
15693 			if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
15694                         bxe_force_link_reset(sc);
15695                         bxe_acquire_phy_lock(sc);
15696 
15697                         rc = elink_phy_init(&sc->link_params, &sc->link_vars);
15698 
15699                         bxe_release_phy_lock(sc);
15700 
15701                         bxe_calc_fc_adv(sc);
15702                         }
15703         }
15704         return rc;
15705 }
15706 
15707 
15708 static void
15709 bxe_add_sysctls(struct bxe_softc *sc)
15710 {
15711     struct sysctl_ctx_list *ctx;
15712     struct sysctl_oid_list *children;
15713     struct sysctl_oid *queue_top, *queue;
15714     struct sysctl_oid_list *queue_top_children, *queue_children;
15715     char queue_num_buf[32];
15716     uint32_t q_stat;
15717     int i, j;
15718 
15719     ctx = device_get_sysctl_ctx(sc->dev);
15720     children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
15721 
15722     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
15723                       CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
15724                       "version");
15725 
15726     snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
15727              BCM_5710_FW_MAJOR_VERSION,
15728              BCM_5710_FW_MINOR_VERSION,
15729              BCM_5710_FW_REVISION_VERSION,
15730              BCM_5710_FW_ENGINEERING_VERSION);
15731 
15732     snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
15733         ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION)     ? "Single"  :
15734          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)   ? "MF-SD"   :
15735          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)   ? "MF-SI"   :
15736          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
15737                                                                 "Unknown"));
15738     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
15739                     CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
15740                     "multifunction vnics per port");
15741 
15742     snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
15743         ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
15744          (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
15745          (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
15746                                               "???GT/s"),
15747         sc->devinfo.pcie_link_width);
15748 
15749     sc->debug = bxe_debug;
15750 
15751 #if __FreeBSD_version >= 900000
15752     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
15753                       CTLFLAG_RD, sc->devinfo.bc_ver_str, 0,
15754                       "bootcode version");
15755     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
15756                       CTLFLAG_RD, sc->fw_ver_str, 0,
15757                       "firmware version");
15758     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
15759                       CTLFLAG_RD, sc->mf_mode_str, 0,
15760                       "multifunction mode");
15761     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
15762                       CTLFLAG_RD, sc->mac_addr_str, 0,
15763                       "mac address");
15764     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
15765                       CTLFLAG_RD, sc->pci_link_str, 0,
15766                       "pci link status");
15767     SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug",
15768                     CTLFLAG_RW, &sc->debug,
15769                     "debug logging mode");
15770 #else
15771     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
15772                       CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0,
15773                       "bootcode version");
15774     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
15775                       CTLFLAG_RD, &sc->fw_ver_str, 0,
15776                       "firmware version");
15777     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
15778                       CTLFLAG_RD, &sc->mf_mode_str, 0,
15779                       "multifunction mode");
15780     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
15781                       CTLFLAG_RD, &sc->mac_addr_str, 0,
15782                       "mac address");
15783     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
15784                       CTLFLAG_RD, &sc->pci_link_str, 0,
15785                       "pci link status");
15786     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug",
15787                     CTLFLAG_RW, &sc->debug, 0,
15788                     "debug logging mode");
15789 #endif /* #if __FreeBSD_version >= 900000 */
15790 
15791     sc->trigger_grcdump = 0;
15792     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "trigger_grcdump",
15793                    CTLFLAG_RW, &sc->trigger_grcdump, 0,
15794                    "trigger grcdump should be invoked"
15795                    "  before collecting grcdump");
15796 
15797     sc->grcdump_started = 0;
15798     sc->grcdump_done = 0;
15799     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done",
15800                    CTLFLAG_RD, &sc->grcdump_done, 0,
15801                    "set by driver when grcdump is done");
15802 
15803     sc->rx_budget = bxe_rx_budget;
15804     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
15805                     CTLFLAG_RW, &sc->rx_budget, 0,
15806                     "rx processing budget");
15807 
15808    SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_param",
15809                     CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
15810                     bxe_sysctl_pauseparam, "IU",
15811                     "need pause frames- DEF:0/TX:1/RX:2/BOTH:3/AUTO:4/AUTOTX:5/AUTORX:6/AUTORXTX:7/NONE:8");
15812 
15813 
15814     SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
15815                     CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
15816                     bxe_sysctl_state, "IU", "dump driver state");
15817 
15818     for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
15819         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
15820                         bxe_eth_stats_arr[i].string,
15821                         CTLTYPE_U64 | CTLFLAG_RD, sc, i,
15822                         bxe_sysctl_eth_stat, "LU",
15823                         bxe_eth_stats_arr[i].string);
15824     }
15825 
15826     /* add a new parent node for all queues "dev.bxe.#.queue" */
15827     queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
15828                                 CTLFLAG_RD, NULL, "queue");
15829     queue_top_children = SYSCTL_CHILDREN(queue_top);
15830 
15831     for (i = 0; i < sc->num_queues; i++) {
15832         /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
15833         snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
15834         queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
15835                                 queue_num_buf, CTLFLAG_RD, NULL,
15836                                 "single queue");
15837         queue_children = SYSCTL_CHILDREN(queue);
15838 
15839         for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
15840             q_stat = ((i << 16) | j);
15841             SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
15842                             bxe_eth_q_stats_arr[j].string,
15843                             CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat,
15844                             bxe_sysctl_eth_q_stat, "LU",
15845                             bxe_eth_q_stats_arr[j].string);
15846         }
15847     }
15848 }
15849 
15850 static int
15851 bxe_alloc_buf_rings(struct bxe_softc *sc)
15852 {
15853 #if __FreeBSD_version >= 901504
15854 
15855     int i;
15856     struct bxe_fastpath *fp;
15857 
15858     for (i = 0; i < sc->num_queues; i++) {
15859 
15860         fp = &sc->fp[i];
15861 
15862         fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
15863                                    M_NOWAIT, &fp->tx_mtx);
15864         if (fp->tx_br == NULL)
15865             return (-1);
15866     }
15867 #endif
15868     return (0);
15869 }
15870 
15871 static void
15872 bxe_free_buf_rings(struct bxe_softc *sc)
15873 {
15874 #if __FreeBSD_version >= 901504
15875 
15876     int i;
15877     struct bxe_fastpath *fp;
15878 
15879     for (i = 0; i < sc->num_queues; i++) {
15880 
15881         fp = &sc->fp[i];
15882 
15883         if (fp->tx_br) {
15884             buf_ring_free(fp->tx_br, M_DEVBUF);
15885             fp->tx_br = NULL;
15886         }
15887     }
15888 
15889 #endif
15890 }
15891 
15892 static void
15893 bxe_init_fp_mutexs(struct bxe_softc *sc)
15894 {
15895     int i;
15896     struct bxe_fastpath *fp;
15897 
15898     for (i = 0; i < sc->num_queues; i++) {
15899 
15900         fp = &sc->fp[i];
15901 
15902         snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
15903             "bxe%d_fp%d_tx_lock", sc->unit, i);
15904         mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
15905 
15906         snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
15907             "bxe%d_fp%d_rx_lock", sc->unit, i);
15908         mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
15909     }
15910 }
15911 
15912 static void
15913 bxe_destroy_fp_mutexs(struct bxe_softc *sc)
15914 {
15915     int i;
15916     struct bxe_fastpath *fp;
15917 
15918     for (i = 0; i < sc->num_queues; i++) {
15919 
15920         fp = &sc->fp[i];
15921 
15922         if (mtx_initialized(&fp->tx_mtx)) {
15923             mtx_destroy(&fp->tx_mtx);
15924         }
15925 
15926         if (mtx_initialized(&fp->rx_mtx)) {
15927             mtx_destroy(&fp->rx_mtx);
15928         }
15929     }
15930 }
15931 
15932 
15933 /*
15934  * Device attach function.
15935  *
15936  * Allocates device resources, performs secondary chip identification, and
15937  * initializes driver instance variables. This function is called from driver
15938  * load after a successful probe.
15939  *
15940  * Returns:
15941  *   0 = Success, >0 = Failure
15942  */
15943 static int
15944 bxe_attach(device_t dev)
15945 {
15946     struct bxe_softc *sc;
15947 
15948     sc = device_get_softc(dev);
15949 
15950     BLOGD(sc, DBG_LOAD, "Starting attach...\n");
15951 
15952     sc->state = BXE_STATE_CLOSED;
15953 
15954     sc->dev  = dev;
15955     sc->unit = device_get_unit(dev);
15956 
15957     BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
15958 
15959     sc->pcie_bus    = pci_get_bus(dev);
15960     sc->pcie_device = pci_get_slot(dev);
15961     sc->pcie_func   = pci_get_function(dev);
15962 
15963     /* enable bus master capability */
15964     pci_enable_busmaster(dev);
15965 
15966     /* get the BARs */
15967     if (bxe_allocate_bars(sc) != 0) {
15968         return (ENXIO);
15969     }
15970 
15971     /* initialize the mutexes */
15972     bxe_init_mutexes(sc);
15973 
15974     /* prepare the periodic callout */
15975     callout_init(&sc->periodic_callout, 0);
15976 
15977     /* prepare the chip taskqueue */
15978     sc->chip_tq_flags = CHIP_TQ_NONE;
15979     snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
15980              "bxe%d_chip_tq", sc->unit);
15981     TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
15982     sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
15983                                    taskqueue_thread_enqueue,
15984                                    &sc->chip_tq);
15985     taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
15986                             "%s", sc->chip_tq_name);
15987 
15988     /* get device info and set params */
15989     if (bxe_get_device_info(sc) != 0) {
15990         BLOGE(sc, "getting device info\n");
15991         bxe_deallocate_bars(sc);
15992         pci_disable_busmaster(dev);
15993         return (ENXIO);
15994     }
15995 
15996     /* get final misc params */
15997     bxe_get_params(sc);
15998 
15999     /* set the default MTU (changed via ifconfig) */
16000     sc->mtu = ETHERMTU;
16001 
16002     bxe_set_modes_bitmap(sc);
16003 
16004     /* XXX
16005      * If in AFEX mode and the function is configured for FCoE
16006      * then bail... no L2 allowed.
16007      */
16008 
16009     /* get phy settings from shmem and 'and' against admin settings */
16010     bxe_get_phy_info(sc);
16011 
16012     /* initialize the FreeBSD ifnet interface */
16013     if (bxe_init_ifnet(sc) != 0) {
16014         bxe_release_mutexes(sc);
16015         bxe_deallocate_bars(sc);
16016         pci_disable_busmaster(dev);
16017         return (ENXIO);
16018     }
16019 
16020     if (bxe_add_cdev(sc) != 0) {
16021         if (sc->ifp != NULL) {
16022             ether_ifdetach(sc->ifp);
16023         }
16024         ifmedia_removeall(&sc->ifmedia);
16025         bxe_release_mutexes(sc);
16026         bxe_deallocate_bars(sc);
16027         pci_disable_busmaster(dev);
16028         return (ENXIO);
16029     }
16030 
16031     /* allocate device interrupts */
16032     if (bxe_interrupt_alloc(sc) != 0) {
16033         bxe_del_cdev(sc);
16034         if (sc->ifp != NULL) {
16035             ether_ifdetach(sc->ifp);
16036         }
16037         ifmedia_removeall(&sc->ifmedia);
16038         bxe_release_mutexes(sc);
16039         bxe_deallocate_bars(sc);
16040         pci_disable_busmaster(dev);
16041         return (ENXIO);
16042     }
16043 
16044     bxe_init_fp_mutexs(sc);
16045 
16046     if (bxe_alloc_buf_rings(sc) != 0) {
16047 	bxe_free_buf_rings(sc);
16048         bxe_interrupt_free(sc);
16049         bxe_del_cdev(sc);
16050         if (sc->ifp != NULL) {
16051             ether_ifdetach(sc->ifp);
16052         }
16053         ifmedia_removeall(&sc->ifmedia);
16054         bxe_release_mutexes(sc);
16055         bxe_deallocate_bars(sc);
16056         pci_disable_busmaster(dev);
16057         return (ENXIO);
16058     }
16059 
16060     /* allocate ilt */
16061     if (bxe_alloc_ilt_mem(sc) != 0) {
16062 	bxe_free_buf_rings(sc);
16063         bxe_interrupt_free(sc);
16064         bxe_del_cdev(sc);
16065         if (sc->ifp != NULL) {
16066             ether_ifdetach(sc->ifp);
16067         }
16068         ifmedia_removeall(&sc->ifmedia);
16069         bxe_release_mutexes(sc);
16070         bxe_deallocate_bars(sc);
16071         pci_disable_busmaster(dev);
16072         return (ENXIO);
16073     }
16074 
16075     /* allocate the host hardware/software hsi structures */
16076     if (bxe_alloc_hsi_mem(sc) != 0) {
16077         bxe_free_ilt_mem(sc);
16078 	bxe_free_buf_rings(sc);
16079         bxe_interrupt_free(sc);
16080         bxe_del_cdev(sc);
16081         if (sc->ifp != NULL) {
16082             ether_ifdetach(sc->ifp);
16083         }
16084         ifmedia_removeall(&sc->ifmedia);
16085         bxe_release_mutexes(sc);
16086         bxe_deallocate_bars(sc);
16087         pci_disable_busmaster(dev);
16088         return (ENXIO);
16089     }
16090 
16091     /* need to reset chip if UNDI was active */
16092     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
16093         /* init fw_seq */
16094         sc->fw_seq =
16095             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
16096              DRV_MSG_SEQ_NUMBER_MASK);
16097         BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
16098         bxe_prev_unload(sc);
16099     }
16100 
16101 #if 1
16102     /* XXX */
16103     bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16104 #else
16105     if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
16106         SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
16107         SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
16108         SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
16109         bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
16110         bxe_dcbx_init_params(sc);
16111     } else {
16112         bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16113     }
16114 #endif
16115 
16116     /* calculate qm_cid_count */
16117     sc->qm_cid_count = bxe_set_qm_cid_count(sc);
16118     BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
16119 
16120     sc->max_cos = 1;
16121     bxe_init_multi_cos(sc);
16122 
16123     bxe_add_sysctls(sc);
16124 
16125     return (0);
16126 }
16127 
16128 /*
16129  * Device detach function.
16130  *
16131  * Stops the controller, resets the controller, and releases resources.
16132  *
16133  * Returns:
16134  *   0 = Success, >0 = Failure
16135  */
16136 static int
16137 bxe_detach(device_t dev)
16138 {
16139     struct bxe_softc *sc;
16140     if_t ifp;
16141 
16142     sc = device_get_softc(dev);
16143 
16144     BLOGD(sc, DBG_LOAD, "Starting detach...\n");
16145 
16146     ifp = sc->ifp;
16147     if (ifp != NULL && if_vlantrunkinuse(ifp)) {
16148         BLOGE(sc, "Cannot detach while VLANs are in use.\n");
16149         return(EBUSY);
16150     }
16151 
16152     bxe_del_cdev(sc);
16153 
16154     /* stop the periodic callout */
16155     bxe_periodic_stop(sc);
16156 
16157     /* stop the chip taskqueue */
16158     atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16159     if (sc->chip_tq) {
16160         taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16161         taskqueue_free(sc->chip_tq);
16162         sc->chip_tq = NULL;
16163     }
16164 
16165     /* stop and reset the controller if it was open */
16166     if (sc->state != BXE_STATE_CLOSED) {
16167         BXE_CORE_LOCK(sc);
16168         bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16169         sc->state = BXE_STATE_DISABLED;
16170         BXE_CORE_UNLOCK(sc);
16171     }
16172 
16173     /* release the network interface */
16174     if (ifp != NULL) {
16175         ether_ifdetach(ifp);
16176     }
16177     ifmedia_removeall(&sc->ifmedia);
16178 
16179     /* XXX do the following based on driver state... */
16180 
16181     /* free the host hardware/software hsi structures */
16182     bxe_free_hsi_mem(sc);
16183 
16184     /* free ilt */
16185     bxe_free_ilt_mem(sc);
16186 
16187     bxe_free_buf_rings(sc);
16188 
16189     /* release the interrupts */
16190     bxe_interrupt_free(sc);
16191 
16192     /* Release the mutexes*/
16193     bxe_destroy_fp_mutexs(sc);
16194     bxe_release_mutexes(sc);
16195 
16196 
16197     /* Release the PCIe BAR mapped memory */
16198     bxe_deallocate_bars(sc);
16199 
16200     /* Release the FreeBSD interface. */
16201     if (sc->ifp != NULL) {
16202         if_free(sc->ifp);
16203     }
16204 
16205     pci_disable_busmaster(dev);
16206 
16207     return (0);
16208 }
16209 
16210 /*
16211  * Device shutdown function.
16212  *
16213  * Stops and resets the controller.
16214  *
16215  * Returns:
16216  *   Nothing
16217  */
16218 static int
16219 bxe_shutdown(device_t dev)
16220 {
16221     struct bxe_softc *sc;
16222 
16223     sc = device_get_softc(dev);
16224 
16225     BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16226 
16227     /* stop the periodic callout */
16228     bxe_periodic_stop(sc);
16229 
16230     BXE_CORE_LOCK(sc);
16231     bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16232     BXE_CORE_UNLOCK(sc);
16233 
16234     return (0);
16235 }
16236 
16237 void
16238 bxe_igu_ack_sb(struct bxe_softc *sc,
16239                uint8_t          igu_sb_id,
16240                uint8_t          segment,
16241                uint16_t         index,
16242                uint8_t          op,
16243                uint8_t          update)
16244 {
16245     uint32_t igu_addr = sc->igu_base_addr;
16246     igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16247     bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16248 }
16249 
16250 static void
16251 bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16252                      uint8_t          func,
16253                      uint8_t          idu_sb_id,
16254                      uint8_t          is_pf)
16255 {
16256     uint32_t data, ctl, cnt = 100;
16257     uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16258     uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16259     uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16260     uint32_t sb_bit =  1 << (idu_sb_id%32);
16261     uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16262     uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16263 
16264     /* Not supported in BC mode */
16265     if (CHIP_INT_MODE_IS_BC(sc)) {
16266         return;
16267     }
16268 
16269     data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16270              IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16271             IGU_REGULAR_CLEANUP_SET |
16272             IGU_REGULAR_BCLEANUP);
16273 
16274     ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16275            (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16276            (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16277 
16278     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16279             data, igu_addr_data);
16280     REG_WR(sc, igu_addr_data, data);
16281 
16282     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16283                       BUS_SPACE_BARRIER_WRITE);
16284     mb();
16285 
16286     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16287             ctl, igu_addr_ctl);
16288     REG_WR(sc, igu_addr_ctl, ctl);
16289 
16290     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16291                       BUS_SPACE_BARRIER_WRITE);
16292     mb();
16293 
16294     /* wait for clean up to finish */
16295     while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16296         DELAY(20000);
16297     }
16298 
16299     if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16300         BLOGD(sc, DBG_LOAD,
16301               "Unable to finish IGU cleanup: "
16302               "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16303               idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16304     }
16305 }
16306 
16307 static void
16308 bxe_igu_clear_sb(struct bxe_softc *sc,
16309                  uint8_t          idu_sb_id)
16310 {
16311     bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16312 }
16313 
16314 
16315 
16316 
16317 
16318 
16319 
16320 /*******************/
16321 /* ECORE CALLBACKS */
16322 /*******************/
16323 
16324 static void
16325 bxe_reset_common(struct bxe_softc *sc)
16326 {
16327     uint32_t val = 0x1400;
16328 
16329     /* reset_common */
16330     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16331 
16332     if (CHIP_IS_E3(sc)) {
16333         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16334         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16335     }
16336 
16337     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16338 }
16339 
16340 static void
16341 bxe_common_init_phy(struct bxe_softc *sc)
16342 {
16343     uint32_t shmem_base[2];
16344     uint32_t shmem2_base[2];
16345 
16346     /* Avoid common init in case MFW supports LFA */
16347     if (SHMEM2_RD(sc, size) >
16348         (uint32_t)offsetof(struct shmem2_region,
16349                            lfa_host_addr[SC_PORT(sc)])) {
16350         return;
16351     }
16352 
16353     shmem_base[0]  = sc->devinfo.shmem_base;
16354     shmem2_base[0] = sc->devinfo.shmem2_base;
16355 
16356     if (!CHIP_IS_E1x(sc)) {
16357         shmem_base[1]  = SHMEM2_RD(sc, other_shmem_base_addr);
16358         shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16359     }
16360 
16361     bxe_acquire_phy_lock(sc);
16362     elink_common_init_phy(sc, shmem_base, shmem2_base,
16363                           sc->devinfo.chip_id, 0);
16364     bxe_release_phy_lock(sc);
16365 }
16366 
16367 static void
16368 bxe_pf_disable(struct bxe_softc *sc)
16369 {
16370     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16371 
16372     val &= ~IGU_PF_CONF_FUNC_EN;
16373 
16374     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16375     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16376     REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16377 }
16378 
16379 static void
16380 bxe_init_pxp(struct bxe_softc *sc)
16381 {
16382     uint16_t devctl;
16383     int r_order, w_order;
16384 
16385     devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2);
16386 
16387     BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16388 
16389     w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
16390 
16391     if (sc->mrrs == -1) {
16392         r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
16393     } else {
16394         BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16395         r_order = sc->mrrs;
16396     }
16397 
16398     ecore_init_pxp_arb(sc, r_order, w_order);
16399 }
16400 
16401 static uint32_t
16402 bxe_get_pretend_reg(struct bxe_softc *sc)
16403 {
16404     uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16405     uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16406     return (base + (SC_ABS_FUNC(sc)) * stride);
16407 }
16408 
16409 /*
16410  * Called only on E1H or E2.
16411  * When pretending to be PF, the pretend value is the function number 0..7.
16412  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16413  * combination.
16414  */
16415 static int
16416 bxe_pretend_func(struct bxe_softc *sc,
16417                  uint16_t         pretend_func_val)
16418 {
16419     uint32_t pretend_reg;
16420 
16421     if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16422         return (-1);
16423     }
16424 
16425     /* get my own pretend register */
16426     pretend_reg = bxe_get_pretend_reg(sc);
16427     REG_WR(sc, pretend_reg, pretend_func_val);
16428     REG_RD(sc, pretend_reg);
16429     return (0);
16430 }
16431 
16432 static void
16433 bxe_iov_init_dmae(struct bxe_softc *sc)
16434 {
16435     return;
16436 }
16437 
16438 static void
16439 bxe_iov_init_dq(struct bxe_softc *sc)
16440 {
16441     return;
16442 }
16443 
16444 /* send a NIG loopback debug packet */
16445 static void
16446 bxe_lb_pckt(struct bxe_softc *sc)
16447 {
16448     uint32_t wb_write[3];
16449 
16450     /* Ethernet source and destination addresses */
16451     wb_write[0] = 0x55555555;
16452     wb_write[1] = 0x55555555;
16453     wb_write[2] = 0x20;     /* SOP */
16454     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16455 
16456     /* NON-IP protocol */
16457     wb_write[0] = 0x09000000;
16458     wb_write[1] = 0x55555555;
16459     wb_write[2] = 0x10;     /* EOP, eop_bvalid = 0 */
16460     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16461 }
16462 
16463 /*
16464  * Some of the internal memories are not directly readable from the driver.
16465  * To test them we send debug packets.
16466  */
16467 static int
16468 bxe_int_mem_test(struct bxe_softc *sc)
16469 {
16470     int factor;
16471     int count, i;
16472     uint32_t val = 0;
16473 
16474     if (CHIP_REV_IS_FPGA(sc)) {
16475         factor = 120;
16476     } else if (CHIP_REV_IS_EMUL(sc)) {
16477         factor = 200;
16478     } else {
16479         factor = 1;
16480     }
16481 
16482     /* disable inputs of parser neighbor blocks */
16483     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16484     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16485     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16486     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16487 
16488     /*  write 0 to parser credits for CFC search request */
16489     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16490 
16491     /* send Ethernet packet */
16492     bxe_lb_pckt(sc);
16493 
16494     /* TODO do i reset NIG statistic? */
16495     /* Wait until NIG register shows 1 packet of size 0x10 */
16496     count = 1000 * factor;
16497     while (count) {
16498         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16499         val = *BXE_SP(sc, wb_data[0]);
16500         if (val == 0x10) {
16501             break;
16502         }
16503 
16504         DELAY(10000);
16505         count--;
16506     }
16507 
16508     if (val != 0x10) {
16509         BLOGE(sc, "NIG timeout val=0x%x\n", val);
16510         return (-1);
16511     }
16512 
16513     /* wait until PRS register shows 1 packet */
16514     count = (1000 * factor);
16515     while (count) {
16516         val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16517         if (val == 1) {
16518             break;
16519         }
16520 
16521         DELAY(10000);
16522         count--;
16523     }
16524 
16525     if (val != 0x1) {
16526         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16527         return (-2);
16528     }
16529 
16530     /* Reset and init BRB, PRS */
16531     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16532     DELAY(50000);
16533     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16534     DELAY(50000);
16535     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16536     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16537 
16538     /* Disable inputs of parser neighbor blocks */
16539     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16540     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16541     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16542     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16543 
16544     /* Write 0 to parser credits for CFC search request */
16545     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16546 
16547     /* send 10 Ethernet packets */
16548     for (i = 0; i < 10; i++) {
16549         bxe_lb_pckt(sc);
16550     }
16551 
16552     /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
16553     count = (1000 * factor);
16554     while (count) {
16555         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16556         val = *BXE_SP(sc, wb_data[0]);
16557         if (val == 0xb0) {
16558             break;
16559         }
16560 
16561         DELAY(10000);
16562         count--;
16563     }
16564 
16565     if (val != 0xb0) {
16566         BLOGE(sc, "NIG timeout val=0x%x\n", val);
16567         return (-3);
16568     }
16569 
16570     /* Wait until PRS register shows 2 packets */
16571     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16572     if (val != 2) {
16573         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16574     }
16575 
16576     /* Write 1 to parser credits for CFC search request */
16577     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
16578 
16579     /* Wait until PRS register shows 3 packets */
16580     DELAY(10000 * factor);
16581 
16582     /* Wait until NIG register shows 1 packet of size 0x10 */
16583     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16584     if (val != 3) {
16585         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16586     }
16587 
16588     /* clear NIG EOP FIFO */
16589     for (i = 0; i < 11; i++) {
16590         REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
16591     }
16592 
16593     val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
16594     if (val != 1) {
16595         BLOGE(sc, "clear of NIG failed val=0x%x\n", val);
16596         return (-4);
16597     }
16598 
16599     /* Reset and init BRB, PRS, NIG */
16600     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16601     DELAY(50000);
16602     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16603     DELAY(50000);
16604     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16605     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16606     if (!CNIC_SUPPORT(sc)) {
16607         /* set NIC mode */
16608         REG_WR(sc, PRS_REG_NIC_MODE, 1);
16609     }
16610 
16611     /* Enable inputs of parser neighbor blocks */
16612     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
16613     REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
16614     REG_WR(sc, CFC_REG_DEBUG0, 0x0);
16615     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
16616 
16617     return (0);
16618 }
16619 
16620 static void
16621 bxe_setup_fan_failure_detection(struct bxe_softc *sc)
16622 {
16623     int is_required;
16624     uint32_t val;
16625     int port;
16626 
16627     is_required = 0;
16628     val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
16629            SHARED_HW_CFG_FAN_FAILURE_MASK);
16630 
16631     if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
16632         is_required = 1;
16633     }
16634     /*
16635      * The fan failure mechanism is usually related to the PHY type since
16636      * the power consumption of the board is affected by the PHY. Currently,
16637      * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
16638      */
16639     else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
16640         for (port = PORT_0; port < PORT_MAX; port++) {
16641             is_required |= elink_fan_failure_det_req(sc,
16642                                                      sc->devinfo.shmem_base,
16643                                                      sc->devinfo.shmem2_base,
16644                                                      port);
16645         }
16646     }
16647 
16648     BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
16649 
16650     if (is_required == 0) {
16651         return;
16652     }
16653 
16654     /* Fan failure is indicated by SPIO 5 */
16655     bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
16656 
16657     /* set to active low mode */
16658     val = REG_RD(sc, MISC_REG_SPIO_INT);
16659     val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
16660     REG_WR(sc, MISC_REG_SPIO_INT, val);
16661 
16662     /* enable interrupt to signal the IGU */
16663     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
16664     val |= MISC_SPIO_SPIO5;
16665     REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
16666 }
16667 
16668 static void
16669 bxe_enable_blocks_attention(struct bxe_softc *sc)
16670 {
16671     uint32_t val;
16672 
16673     REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
16674     if (!CHIP_IS_E1x(sc)) {
16675         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
16676     } else {
16677         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
16678     }
16679     REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
16680     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
16681     /*
16682      * mask read length error interrupts in brb for parser
16683      * (parsing unit and 'checksum and crc' unit)
16684      * these errors are legal (PU reads fixed length and CAC can cause
16685      * read length error on truncated packets)
16686      */
16687     REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
16688     REG_WR(sc, QM_REG_QM_INT_MASK, 0);
16689     REG_WR(sc, TM_REG_TM_INT_MASK, 0);
16690     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
16691     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
16692     REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
16693 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
16694 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
16695     REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
16696     REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
16697     REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
16698 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
16699 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
16700     REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
16701     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
16702     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
16703     REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
16704 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
16705 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
16706 
16707     val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
16708            PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
16709            PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
16710     if (!CHIP_IS_E1x(sc)) {
16711         val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
16712                 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
16713     }
16714     REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
16715 
16716     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
16717     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
16718     REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
16719 /*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
16720 
16721     if (!CHIP_IS_E1x(sc)) {
16722         /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
16723         REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
16724     }
16725 
16726     REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
16727     REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
16728 /*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
16729     REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18);     /* bit 3,4 masked */
16730 }
16731 
16732 /**
16733  * bxe_init_hw_common - initialize the HW at the COMMON phase.
16734  *
16735  * @sc:     driver handle
16736  */
16737 static int
16738 bxe_init_hw_common(struct bxe_softc *sc)
16739 {
16740     uint8_t abs_func_id;
16741     uint32_t val;
16742 
16743     BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
16744           SC_ABS_FUNC(sc));
16745 
16746     /*
16747      * take the RESET lock to protect undi_unload flow from accessing
16748      * registers while we are resetting the chip
16749      */
16750     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
16751 
16752     bxe_reset_common(sc);
16753 
16754     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
16755 
16756     val = 0xfffc;
16757     if (CHIP_IS_E3(sc)) {
16758         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16759         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16760     }
16761 
16762     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
16763 
16764     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
16765 
16766     ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
16767     BLOGD(sc, DBG_LOAD, "after misc block init\n");
16768 
16769     if (!CHIP_IS_E1x(sc)) {
16770         /*
16771          * 4-port mode or 2-port mode we need to turn off master-enable for
16772          * everyone. After that we turn it back on for self. So, we disregard
16773          * multi-function, and always disable all functions on the given path,
16774          * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
16775          */
16776         for (abs_func_id = SC_PATH(sc);
16777              abs_func_id < (E2_FUNC_MAX * 2);
16778              abs_func_id += 2) {
16779             if (abs_func_id == SC_ABS_FUNC(sc)) {
16780                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
16781                 continue;
16782             }
16783 
16784             bxe_pretend_func(sc, abs_func_id);
16785 
16786             /* clear pf enable */
16787             bxe_pf_disable(sc);
16788 
16789             bxe_pretend_func(sc, SC_ABS_FUNC(sc));
16790         }
16791     }
16792 
16793     BLOGD(sc, DBG_LOAD, "after pf disable\n");
16794 
16795     ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
16796 
16797     if (CHIP_IS_E1(sc)) {
16798         /*
16799          * enable HW interrupt from PXP on USDM overflow
16800          * bit 16 on INT_MASK_0
16801          */
16802         REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
16803     }
16804 
16805     ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
16806     bxe_init_pxp(sc);
16807 
16808 #ifdef __BIG_ENDIAN
16809     REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
16810     REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
16811     REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
16812     REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
16813     REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
16814     /* make sure this value is 0 */
16815     REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
16816 
16817     //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
16818     REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
16819     REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
16820     REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
16821     REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
16822 #endif
16823 
16824     ecore_ilt_init_page_size(sc, INITOP_SET);
16825 
16826     if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
16827         REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
16828     }
16829 
16830     /* let the HW do it's magic... */
16831     DELAY(100000);
16832 
16833     /* finish PXP init */
16834     val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
16835     if (val != 1) {
16836         BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n",
16837             val);
16838         return (-1);
16839     }
16840     val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
16841     if (val != 1) {
16842         BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val);
16843         return (-1);
16844     }
16845 
16846     BLOGD(sc, DBG_LOAD, "after pxp init\n");
16847 
16848     /*
16849      * Timer bug workaround for E2 only. We need to set the entire ILT to have
16850      * entries with value "0" and valid bit on. This needs to be done by the
16851      * first PF that is loaded in a path (i.e. common phase)
16852      */
16853     if (!CHIP_IS_E1x(sc)) {
16854 /*
16855  * In E2 there is a bug in the timers block that can cause function 6 / 7
16856  * (i.e. vnic3) to start even if it is marked as "scan-off".
16857  * This occurs when a different function (func2,3) is being marked
16858  * as "scan-off". Real-life scenario for example: if a driver is being
16859  * load-unloaded while func6,7 are down. This will cause the timer to access
16860  * the ilt, translate to a logical address and send a request to read/write.
16861  * Since the ilt for the function that is down is not valid, this will cause
16862  * a translation error which is unrecoverable.
16863  * The Workaround is intended to make sure that when this happens nothing
16864  * fatal will occur. The workaround:
16865  *  1.  First PF driver which loads on a path will:
16866  *      a.  After taking the chip out of reset, by using pretend,
16867  *          it will write "0" to the following registers of
16868  *          the other vnics.
16869  *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16870  *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
16871  *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
16872  *          And for itself it will write '1' to
16873  *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
16874  *          dmae-operations (writing to pram for example.)
16875  *          note: can be done for only function 6,7 but cleaner this
16876  *            way.
16877  *      b.  Write zero+valid to the entire ILT.
16878  *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
16879  *          VNIC3 (of that port). The range allocated will be the
16880  *          entire ILT. This is needed to prevent  ILT range error.
16881  *  2.  Any PF driver load flow:
16882  *      a.  ILT update with the physical addresses of the allocated
16883  *          logical pages.
16884  *      b.  Wait 20msec. - note that this timeout is needed to make
16885  *          sure there are no requests in one of the PXP internal
16886  *          queues with "old" ILT addresses.
16887  *      c.  PF enable in the PGLC.
16888  *      d.  Clear the was_error of the PF in the PGLC. (could have
16889  *          occurred while driver was down)
16890  *      e.  PF enable in the CFC (WEAK + STRONG)
16891  *      f.  Timers scan enable
16892  *  3.  PF driver unload flow:
16893  *      a.  Clear the Timers scan_en.
16894  *      b.  Polling for scan_on=0 for that PF.
16895  *      c.  Clear the PF enable bit in the PXP.
16896  *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
16897  *      e.  Write zero+valid to all ILT entries (The valid bit must
16898  *          stay set)
16899  *      f.  If this is VNIC 3 of a port then also init
16900  *          first_timers_ilt_entry to zero and last_timers_ilt_entry
16901  *          to the last enrty in the ILT.
16902  *
16903  *      Notes:
16904  *      Currently the PF error in the PGLC is non recoverable.
16905  *      In the future the there will be a recovery routine for this error.
16906  *      Currently attention is masked.
16907  *      Having an MCP lock on the load/unload process does not guarantee that
16908  *      there is no Timer disable during Func6/7 enable. This is because the
16909  *      Timers scan is currently being cleared by the MCP on FLR.
16910  *      Step 2.d can be done only for PF6/7 and the driver can also check if
16911  *      there is error before clearing it. But the flow above is simpler and
16912  *      more general.
16913  *      All ILT entries are written by zero+valid and not just PF6/7
16914  *      ILT entries since in the future the ILT entries allocation for
16915  *      PF-s might be dynamic.
16916  */
16917         struct ilt_client_info ilt_cli;
16918         struct ecore_ilt ilt;
16919 
16920         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
16921         memset(&ilt, 0, sizeof(struct ecore_ilt));
16922 
16923         /* initialize dummy TM client */
16924         ilt_cli.start      = 0;
16925         ilt_cli.end        = ILT_NUM_PAGE_ENTRIES - 1;
16926         ilt_cli.client_num = ILT_CLIENT_TM;
16927 
16928         /*
16929          * Step 1: set zeroes to all ilt page entries with valid bit on
16930          * Step 2: set the timers first/last ilt entry to point
16931          * to the entire range to prevent ILT range error for 3rd/4th
16932          * vnic (this code assumes existence of the vnic)
16933          *
16934          * both steps performed by call to ecore_ilt_client_init_op()
16935          * with dummy TM client
16936          *
16937          * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
16938          * and his brother are split registers
16939          */
16940 
16941         bxe_pretend_func(sc, (SC_PATH(sc) + 6));
16942         ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
16943         bxe_pretend_func(sc, SC_ABS_FUNC(sc));
16944 
16945         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
16946         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
16947         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
16948     }
16949 
16950     REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
16951     REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
16952 
16953     if (!CHIP_IS_E1x(sc)) {
16954         int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
16955                      (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
16956 
16957         ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
16958         ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
16959 
16960         /* let the HW do it's magic... */
16961         do {
16962             DELAY(200000);
16963             val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
16964         } while (factor-- && (val != 1));
16965 
16966         if (val != 1) {
16967             BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val);
16968             return (-1);
16969         }
16970     }
16971 
16972     BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
16973 
16974     ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
16975 
16976     bxe_iov_init_dmae(sc);
16977 
16978     /* clean the DMAE memory */
16979     sc->dmae_ready = 1;
16980     ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
16981 
16982     ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
16983 
16984     ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
16985 
16986     ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
16987 
16988     ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
16989 
16990     bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
16991     bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
16992     bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
16993     bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
16994 
16995     ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
16996 
16997     /* QM queues pointers table */
16998     ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
16999 
17000     /* soft reset pulse */
17001     REG_WR(sc, QM_REG_SOFT_RESET, 1);
17002     REG_WR(sc, QM_REG_SOFT_RESET, 0);
17003 
17004     if (CNIC_SUPPORT(sc))
17005         ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
17006 
17007     ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
17008     REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
17009     if (!CHIP_REV_IS_SLOW(sc)) {
17010         /* enable hw interrupt from doorbell Q */
17011         REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17012     }
17013 
17014     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17015 
17016     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17017     REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
17018 
17019     if (!CHIP_IS_E1(sc)) {
17020         REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
17021     }
17022 
17023     if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
17024         if (IS_MF_AFEX(sc)) {
17025             /*
17026              * configure that AFEX and VLAN headers must be
17027              * received in AFEX mode
17028              */
17029             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
17030             REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
17031             REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
17032             REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
17033             REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
17034         } else {
17035             /*
17036              * Bit-map indicating which L2 hdrs may appear
17037              * after the basic Ethernet header
17038              */
17039             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
17040                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17041         }
17042     }
17043 
17044     ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
17045     ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
17046     ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
17047     ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
17048 
17049     if (!CHIP_IS_E1x(sc)) {
17050         /* reset VFC memories */
17051         REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17052                VFC_MEMORIES_RST_REG_CAM_RST |
17053                VFC_MEMORIES_RST_REG_RAM_RST);
17054         REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17055                VFC_MEMORIES_RST_REG_CAM_RST |
17056                VFC_MEMORIES_RST_REG_RAM_RST);
17057 
17058         DELAY(20000);
17059     }
17060 
17061     ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
17062     ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
17063     ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
17064     ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
17065 
17066     /* sync semi rtc */
17067     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
17068            0x80000000);
17069     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
17070            0x80000000);
17071 
17072     ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
17073     ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
17074     ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
17075 
17076     if (!CHIP_IS_E1x(sc)) {
17077         if (IS_MF_AFEX(sc)) {
17078             /*
17079              * configure that AFEX and VLAN headers must be
17080              * sent in AFEX mode
17081              */
17082             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
17083             REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
17084             REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
17085             REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
17086             REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
17087         } else {
17088             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
17089                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17090         }
17091     }
17092 
17093     REG_WR(sc, SRC_REG_SOFT_RST, 1);
17094 
17095     ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
17096 
17097     if (CNIC_SUPPORT(sc)) {
17098         REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
17099         REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
17100         REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
17101         REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
17102         REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
17103         REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
17104         REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
17105         REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
17106         REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
17107         REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
17108     }
17109     REG_WR(sc, SRC_REG_SOFT_RST, 0);
17110 
17111     if (sizeof(union cdu_context) != 1024) {
17112         /* we currently assume that a context is 1024 bytes */
17113         BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
17114               (long)sizeof(union cdu_context));
17115     }
17116 
17117     ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
17118     val = (4 << 24) + (0 << 12) + 1024;
17119     REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
17120 
17121     ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
17122 
17123     REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
17124     /* enable context validation interrupt from CFC */
17125     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17126 
17127     /* set the thresholds to prevent CFC/CDU race */
17128     REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
17129     ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
17130 
17131     if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
17132         REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
17133     }
17134 
17135     ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
17136     ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
17137 
17138     /* Reset PCIE errors for debug */
17139     REG_WR(sc, 0x2814, 0xffffffff);
17140     REG_WR(sc, 0x3820, 0xffffffff);
17141 
17142     if (!CHIP_IS_E1x(sc)) {
17143         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
17144                (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
17145                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
17146         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
17147                (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
17148                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
17149                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
17150         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
17151                (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17152                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17153                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17154     }
17155 
17156     ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17157 
17158     if (!CHIP_IS_E1(sc)) {
17159         /* in E3 this done in per-port section */
17160         if (!CHIP_IS_E3(sc))
17161             REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17162     }
17163 
17164     if (CHIP_IS_E1H(sc)) {
17165         /* not applicable for E2 (and above ...) */
17166         REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17167     }
17168 
17169     if (CHIP_REV_IS_SLOW(sc)) {
17170         DELAY(200000);
17171     }
17172 
17173     /* finish CFC init */
17174     val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17175     if (val != 1) {
17176         BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val);
17177         return (-1);
17178     }
17179     val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17180     if (val != 1) {
17181         BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val);
17182         return (-1);
17183     }
17184     val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17185     if (val != 1) {
17186         BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val);
17187         return (-1);
17188     }
17189     REG_WR(sc, CFC_REG_DEBUG0, 0);
17190 
17191     if (CHIP_IS_E1(sc)) {
17192         /* read NIG statistic to see if this is our first up since powerup */
17193         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17194         val = *BXE_SP(sc, wb_data[0]);
17195 
17196         /* do internal memory self test */
17197         if ((val == 0) && bxe_int_mem_test(sc)) {
17198             BLOGE(sc, "internal mem self test failed val=0x%x\n", val);
17199             return (-1);
17200         }
17201     }
17202 
17203     bxe_setup_fan_failure_detection(sc);
17204 
17205     /* clear PXP2 attentions */
17206     REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17207 
17208     bxe_enable_blocks_attention(sc);
17209 
17210     if (!CHIP_REV_IS_SLOW(sc)) {
17211         ecore_enable_blocks_parity(sc);
17212     }
17213 
17214     if (!BXE_NOMCP(sc)) {
17215         if (CHIP_IS_E1x(sc)) {
17216             bxe_common_init_phy(sc);
17217         }
17218     }
17219 
17220     return (0);
17221 }
17222 
17223 /**
17224  * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17225  *
17226  * @sc:     driver handle
17227  */
17228 static int
17229 bxe_init_hw_common_chip(struct bxe_softc *sc)
17230 {
17231     int rc = bxe_init_hw_common(sc);
17232 
17233     if (rc) {
17234         BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc);
17235         return (rc);
17236     }
17237 
17238     /* In E2 2-PORT mode, same ext phy is used for the two paths */
17239     if (!BXE_NOMCP(sc)) {
17240         bxe_common_init_phy(sc);
17241     }
17242 
17243     return (0);
17244 }
17245 
17246 static int
17247 bxe_init_hw_port(struct bxe_softc *sc)
17248 {
17249     int port = SC_PORT(sc);
17250     int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17251     uint32_t low, high;
17252     uint32_t val;
17253 
17254     BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17255 
17256     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17257 
17258     ecore_init_block(sc, BLOCK_MISC, init_phase);
17259     ecore_init_block(sc, BLOCK_PXP, init_phase);
17260     ecore_init_block(sc, BLOCK_PXP2, init_phase);
17261 
17262     /*
17263      * Timers bug workaround: disables the pf_master bit in pglue at
17264      * common phase, we need to enable it here before any dmae access are
17265      * attempted. Therefore we manually added the enable-master to the
17266      * port phase (it also happens in the function phase)
17267      */
17268     if (!CHIP_IS_E1x(sc)) {
17269         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17270     }
17271 
17272     ecore_init_block(sc, BLOCK_ATC, init_phase);
17273     ecore_init_block(sc, BLOCK_DMAE, init_phase);
17274     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17275     ecore_init_block(sc, BLOCK_QM, init_phase);
17276 
17277     ecore_init_block(sc, BLOCK_TCM, init_phase);
17278     ecore_init_block(sc, BLOCK_UCM, init_phase);
17279     ecore_init_block(sc, BLOCK_CCM, init_phase);
17280     ecore_init_block(sc, BLOCK_XCM, init_phase);
17281 
17282     /* QM cid (connection) count */
17283     ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17284 
17285     if (CNIC_SUPPORT(sc)) {
17286         ecore_init_block(sc, BLOCK_TM, init_phase);
17287         REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17288         REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17289     }
17290 
17291     ecore_init_block(sc, BLOCK_DORQ, init_phase);
17292 
17293     ecore_init_block(sc, BLOCK_BRB1, init_phase);
17294 
17295     if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17296         if (IS_MF(sc)) {
17297             low = (BXE_ONE_PORT(sc) ? 160 : 246);
17298         } else if (sc->mtu > 4096) {
17299             if (BXE_ONE_PORT(sc)) {
17300                 low = 160;
17301             } else {
17302                 val = sc->mtu;
17303                 /* (24*1024 + val*4)/256 */
17304                 low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17305             }
17306         } else {
17307             low = (BXE_ONE_PORT(sc) ? 80 : 160);
17308         }
17309         high = (low + 56); /* 14*1024/256 */
17310         REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17311         REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17312     }
17313 
17314     if (CHIP_IS_MODE_4_PORT(sc)) {
17315         REG_WR(sc, SC_PORT(sc) ?
17316                BRB1_REG_MAC_GUARANTIED_1 :
17317                BRB1_REG_MAC_GUARANTIED_0, 40);
17318     }
17319 
17320     ecore_init_block(sc, BLOCK_PRS, init_phase);
17321     if (CHIP_IS_E3B0(sc)) {
17322         if (IS_MF_AFEX(sc)) {
17323             /* configure headers for AFEX mode */
17324             REG_WR(sc, SC_PORT(sc) ?
17325                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17326                    PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17327             REG_WR(sc, SC_PORT(sc) ?
17328                    PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17329                    PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17330             REG_WR(sc, SC_PORT(sc) ?
17331                    PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17332                    PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17333         } else {
17334             /* Ovlan exists only if we are in multi-function +
17335              * switch-dependent mode, in switch-independent there
17336              * is no ovlan headers
17337              */
17338             REG_WR(sc, SC_PORT(sc) ?
17339                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17340                    PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17341                    (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17342         }
17343     }
17344 
17345     ecore_init_block(sc, BLOCK_TSDM, init_phase);
17346     ecore_init_block(sc, BLOCK_CSDM, init_phase);
17347     ecore_init_block(sc, BLOCK_USDM, init_phase);
17348     ecore_init_block(sc, BLOCK_XSDM, init_phase);
17349 
17350     ecore_init_block(sc, BLOCK_TSEM, init_phase);
17351     ecore_init_block(sc, BLOCK_USEM, init_phase);
17352     ecore_init_block(sc, BLOCK_CSEM, init_phase);
17353     ecore_init_block(sc, BLOCK_XSEM, init_phase);
17354 
17355     ecore_init_block(sc, BLOCK_UPB, init_phase);
17356     ecore_init_block(sc, BLOCK_XPB, init_phase);
17357 
17358     ecore_init_block(sc, BLOCK_PBF, init_phase);
17359 
17360     if (CHIP_IS_E1x(sc)) {
17361         /* configure PBF to work without PAUSE mtu 9000 */
17362         REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17363 
17364         /* update threshold */
17365         REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17366         /* update init credit */
17367         REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17368 
17369         /* probe changes */
17370         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17371         DELAY(50);
17372         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17373     }
17374 
17375     if (CNIC_SUPPORT(sc)) {
17376         ecore_init_block(sc, BLOCK_SRC, init_phase);
17377     }
17378 
17379     ecore_init_block(sc, BLOCK_CDU, init_phase);
17380     ecore_init_block(sc, BLOCK_CFC, init_phase);
17381 
17382     if (CHIP_IS_E1(sc)) {
17383         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17384         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17385     }
17386     ecore_init_block(sc, BLOCK_HC, init_phase);
17387 
17388     ecore_init_block(sc, BLOCK_IGU, init_phase);
17389 
17390     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17391     /* init aeu_mask_attn_func_0/1:
17392      *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17393      *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17394      *             bits 4-7 are used for "per vn group attention" */
17395     val = IS_MF(sc) ? 0xF7 : 0x7;
17396     /* Enable DCBX attention for all but E1 */
17397     val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17398     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17399 
17400     ecore_init_block(sc, BLOCK_NIG, init_phase);
17401 
17402     if (!CHIP_IS_E1x(sc)) {
17403         /* Bit-map indicating which L2 hdrs may appear after the
17404          * basic Ethernet header
17405          */
17406         if (IS_MF_AFEX(sc)) {
17407             REG_WR(sc, SC_PORT(sc) ?
17408                    NIG_REG_P1_HDRS_AFTER_BASIC :
17409                    NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17410         } else {
17411             REG_WR(sc, SC_PORT(sc) ?
17412                    NIG_REG_P1_HDRS_AFTER_BASIC :
17413                    NIG_REG_P0_HDRS_AFTER_BASIC,
17414                    IS_MF_SD(sc) ? 7 : 6);
17415         }
17416 
17417         if (CHIP_IS_E3(sc)) {
17418             REG_WR(sc, SC_PORT(sc) ?
17419                    NIG_REG_LLH1_MF_MODE :
17420                    NIG_REG_LLH_MF_MODE, IS_MF(sc));
17421         }
17422     }
17423     if (!CHIP_IS_E3(sc)) {
17424         REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17425     }
17426 
17427     if (!CHIP_IS_E1(sc)) {
17428         /* 0x2 disable mf_ov, 0x1 enable */
17429         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17430                (IS_MF_SD(sc) ? 0x1 : 0x2));
17431 
17432         if (!CHIP_IS_E1x(sc)) {
17433             val = 0;
17434             switch (sc->devinfo.mf_info.mf_mode) {
17435             case MULTI_FUNCTION_SD:
17436                 val = 1;
17437                 break;
17438             case MULTI_FUNCTION_SI:
17439             case MULTI_FUNCTION_AFEX:
17440                 val = 2;
17441                 break;
17442             }
17443 
17444             REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17445                         NIG_REG_LLH0_CLS_TYPE), val);
17446         }
17447         REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17448         REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17449         REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17450     }
17451 
17452     /* If SPIO5 is set to generate interrupts, enable it for this port */
17453     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17454     if (val & MISC_SPIO_SPIO5) {
17455         uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17456                                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17457         val = REG_RD(sc, reg_addr);
17458         val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17459         REG_WR(sc, reg_addr, val);
17460     }
17461 
17462     return (0);
17463 }
17464 
17465 static uint32_t
17466 bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17467                        uint32_t         reg,
17468                        uint32_t         expected,
17469                        uint32_t         poll_count)
17470 {
17471     uint32_t cur_cnt = poll_count;
17472     uint32_t val;
17473 
17474     while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17475         DELAY(FLR_WAIT_INTERVAL);
17476     }
17477 
17478     return (val);
17479 }
17480 
17481 static int
17482 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17483                               uint32_t         reg,
17484                               char             *msg,
17485                               uint32_t         poll_cnt)
17486 {
17487     uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17488 
17489     if (val != 0) {
17490         BLOGE(sc, "%s usage count=%d\n", msg, val);
17491         return (1);
17492     }
17493 
17494     return (0);
17495 }
17496 
17497 /* Common routines with VF FLR cleanup */
17498 static uint32_t
17499 bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17500 {
17501     /* adjust polling timeout */
17502     if (CHIP_REV_IS_EMUL(sc)) {
17503         return (FLR_POLL_CNT * 2000);
17504     }
17505 
17506     if (CHIP_REV_IS_FPGA(sc)) {
17507         return (FLR_POLL_CNT * 120);
17508     }
17509 
17510     return (FLR_POLL_CNT);
17511 }
17512 
17513 static int
17514 bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17515                            uint32_t         poll_cnt)
17516 {
17517     /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17518     if (bxe_flr_clnup_poll_hw_counter(sc,
17519                                       CFC_REG_NUM_LCIDS_INSIDE_PF,
17520                                       "CFC PF usage counter timed out",
17521                                       poll_cnt)) {
17522         return (1);
17523     }
17524 
17525     /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17526     if (bxe_flr_clnup_poll_hw_counter(sc,
17527                                       DORQ_REG_PF_USAGE_CNT,
17528                                       "DQ PF usage counter timed out",
17529                                       poll_cnt)) {
17530         return (1);
17531     }
17532 
17533     /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17534     if (bxe_flr_clnup_poll_hw_counter(sc,
17535                                       QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17536                                       "QM PF usage counter timed out",
17537                                       poll_cnt)) {
17538         return (1);
17539     }
17540 
17541     /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17542     if (bxe_flr_clnup_poll_hw_counter(sc,
17543                                       TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
17544                                       "Timers VNIC usage counter timed out",
17545                                       poll_cnt)) {
17546         return (1);
17547     }
17548 
17549     if (bxe_flr_clnup_poll_hw_counter(sc,
17550                                       TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
17551                                       "Timers NUM_SCANS usage counter timed out",
17552                                       poll_cnt)) {
17553         return (1);
17554     }
17555 
17556     /* Wait DMAE PF usage counter to zero */
17557     if (bxe_flr_clnup_poll_hw_counter(sc,
17558                                       dmae_reg_go_c[INIT_DMAE_C(sc)],
17559                                       "DMAE dommand register timed out",
17560                                       poll_cnt)) {
17561         return (1);
17562     }
17563 
17564     return (0);
17565 }
17566 
17567 #define OP_GEN_PARAM(param)                                            \
17568     (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
17569 #define OP_GEN_TYPE(type)                                           \
17570     (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
17571 #define OP_GEN_AGG_VECT(index)                                             \
17572     (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
17573 
17574 static int
17575 bxe_send_final_clnup(struct bxe_softc *sc,
17576                      uint8_t          clnup_func,
17577                      uint32_t         poll_cnt)
17578 {
17579     uint32_t op_gen_command = 0;
17580     uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
17581                           CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
17582     int ret = 0;
17583 
17584     if (REG_RD(sc, comp_addr)) {
17585         BLOGE(sc, "Cleanup complete was not 0 before sending\n");
17586         return (1);
17587     }
17588 
17589     op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
17590     op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
17591     op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
17592     op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
17593 
17594     BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
17595     REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
17596 
17597     if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
17598         BLOGE(sc, "FW final cleanup did not succeed\n");
17599         BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
17600               (REG_RD(sc, comp_addr)));
17601         bxe_panic(sc, ("FLR cleanup failed\n"));
17602         return (1);
17603     }
17604 
17605     /* Zero completion for nxt FLR */
17606     REG_WR(sc, comp_addr, 0);
17607 
17608     return (ret);
17609 }
17610 
17611 static void
17612 bxe_pbf_pN_buf_flushed(struct bxe_softc       *sc,
17613                        struct pbf_pN_buf_regs *regs,
17614                        uint32_t               poll_count)
17615 {
17616     uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
17617     uint32_t cur_cnt = poll_count;
17618 
17619     crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
17620     crd = crd_start = REG_RD(sc, regs->crd);
17621     init_crd = REG_RD(sc, regs->init_crd);
17622 
17623     BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
17624     BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
17625     BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
17626 
17627     while ((crd != init_crd) &&
17628            ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
17629             (init_crd - crd_start))) {
17630         if (cur_cnt--) {
17631             DELAY(FLR_WAIT_INTERVAL);
17632             crd = REG_RD(sc, regs->crd);
17633             crd_freed = REG_RD(sc, regs->crd_freed);
17634         } else {
17635             BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
17636             BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : c:%x\n", regs->pN, crd);
17637             BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
17638             break;
17639         }
17640     }
17641 
17642     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
17643           poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17644 }
17645 
17646 static void
17647 bxe_pbf_pN_cmd_flushed(struct bxe_softc       *sc,
17648                        struct pbf_pN_cmd_regs *regs,
17649                        uint32_t               poll_count)
17650 {
17651     uint32_t occup, to_free, freed, freed_start;
17652     uint32_t cur_cnt = poll_count;
17653 
17654     occup = to_free = REG_RD(sc, regs->lines_occup);
17655     freed = freed_start = REG_RD(sc, regs->lines_freed);
17656 
17657     BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
17658     BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17659 
17660     while (occup &&
17661            ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
17662         if (cur_cnt--) {
17663             DELAY(FLR_WAIT_INTERVAL);
17664             occup = REG_RD(sc, regs->lines_occup);
17665             freed = REG_RD(sc, regs->lines_freed);
17666         } else {
17667             BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
17668             BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
17669             BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17670             break;
17671         }
17672     }
17673 
17674     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
17675           poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17676 }
17677 
17678 static void
17679 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
17680 {
17681     struct pbf_pN_cmd_regs cmd_regs[] = {
17682         {0, (CHIP_IS_E3B0(sc)) ?
17683             PBF_REG_TQ_OCCUPANCY_Q0 :
17684             PBF_REG_P0_TQ_OCCUPANCY,
17685             (CHIP_IS_E3B0(sc)) ?
17686             PBF_REG_TQ_LINES_FREED_CNT_Q0 :
17687             PBF_REG_P0_TQ_LINES_FREED_CNT},
17688         {1, (CHIP_IS_E3B0(sc)) ?
17689             PBF_REG_TQ_OCCUPANCY_Q1 :
17690             PBF_REG_P1_TQ_OCCUPANCY,
17691             (CHIP_IS_E3B0(sc)) ?
17692             PBF_REG_TQ_LINES_FREED_CNT_Q1 :
17693             PBF_REG_P1_TQ_LINES_FREED_CNT},
17694         {4, (CHIP_IS_E3B0(sc)) ?
17695             PBF_REG_TQ_OCCUPANCY_LB_Q :
17696             PBF_REG_P4_TQ_OCCUPANCY,
17697             (CHIP_IS_E3B0(sc)) ?
17698             PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
17699             PBF_REG_P4_TQ_LINES_FREED_CNT}
17700     };
17701 
17702     struct pbf_pN_buf_regs buf_regs[] = {
17703         {0, (CHIP_IS_E3B0(sc)) ?
17704             PBF_REG_INIT_CRD_Q0 :
17705             PBF_REG_P0_INIT_CRD ,
17706             (CHIP_IS_E3B0(sc)) ?
17707             PBF_REG_CREDIT_Q0 :
17708             PBF_REG_P0_CREDIT,
17709             (CHIP_IS_E3B0(sc)) ?
17710             PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
17711             PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
17712         {1, (CHIP_IS_E3B0(sc)) ?
17713             PBF_REG_INIT_CRD_Q1 :
17714             PBF_REG_P1_INIT_CRD,
17715             (CHIP_IS_E3B0(sc)) ?
17716             PBF_REG_CREDIT_Q1 :
17717             PBF_REG_P1_CREDIT,
17718             (CHIP_IS_E3B0(sc)) ?
17719             PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
17720             PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
17721         {4, (CHIP_IS_E3B0(sc)) ?
17722             PBF_REG_INIT_CRD_LB_Q :
17723             PBF_REG_P4_INIT_CRD,
17724             (CHIP_IS_E3B0(sc)) ?
17725             PBF_REG_CREDIT_LB_Q :
17726             PBF_REG_P4_CREDIT,
17727             (CHIP_IS_E3B0(sc)) ?
17728             PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
17729             PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
17730     };
17731 
17732     int i;
17733 
17734     /* Verify the command queues are flushed P0, P1, P4 */
17735     for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
17736         bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
17737     }
17738 
17739     /* Verify the transmission buffers are flushed P0, P1, P4 */
17740     for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
17741         bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
17742     }
17743 }
17744 
17745 static void
17746 bxe_hw_enable_status(struct bxe_softc *sc)
17747 {
17748     uint32_t val;
17749 
17750     val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
17751     BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
17752 
17753     val = REG_RD(sc, PBF_REG_DISABLE_PF);
17754     BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
17755 
17756     val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
17757     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
17758 
17759     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
17760     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
17761 
17762     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
17763     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
17764 
17765     val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
17766     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
17767 
17768     val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
17769     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
17770 
17771     val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
17772     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
17773 }
17774 
17775 static int
17776 bxe_pf_flr_clnup(struct bxe_softc *sc)
17777 {
17778     uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
17779 
17780     BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
17781 
17782     /* Re-enable PF target read access */
17783     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
17784 
17785     /* Poll HW usage counters */
17786     BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
17787     if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
17788         return (-1);
17789     }
17790 
17791     /* Zero the igu 'trailing edge' and 'leading edge' */
17792 
17793     /* Send the FW cleanup command */
17794     if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
17795         return (-1);
17796     }
17797 
17798     /* ATC cleanup */
17799 
17800     /* Verify TX hw is flushed */
17801     bxe_tx_hw_flushed(sc, poll_cnt);
17802 
17803     /* Wait 100ms (not adjusted according to platform) */
17804     DELAY(100000);
17805 
17806     /* Verify no pending pci transactions */
17807     if (bxe_is_pcie_pending(sc)) {
17808         BLOGE(sc, "PCIE Transactions still pending\n");
17809     }
17810 
17811     /* Debug */
17812     bxe_hw_enable_status(sc);
17813 
17814     /*
17815      * Master enable - Due to WB DMAE writes performed before this
17816      * register is re-initialized as part of the regular function init
17817      */
17818     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17819 
17820     return (0);
17821 }
17822 
17823 static int
17824 bxe_init_hw_func(struct bxe_softc *sc)
17825 {
17826     int port = SC_PORT(sc);
17827     int func = SC_FUNC(sc);
17828     int init_phase = PHASE_PF0 + func;
17829     struct ecore_ilt *ilt = sc->ilt;
17830     uint16_t cdu_ilt_start;
17831     uint32_t addr, val;
17832     uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
17833     int i, main_mem_width, rc;
17834 
17835     BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
17836 
17837     /* FLR cleanup */
17838     if (!CHIP_IS_E1x(sc)) {
17839         rc = bxe_pf_flr_clnup(sc);
17840         if (rc) {
17841             BLOGE(sc, "FLR cleanup failed!\n");
17842             // XXX bxe_fw_dump(sc);
17843             // XXX bxe_idle_chk(sc);
17844             return (rc);
17845         }
17846     }
17847 
17848     /* set MSI reconfigure capability */
17849     if (sc->devinfo.int_block == INT_BLOCK_HC) {
17850         addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
17851         val = REG_RD(sc, addr);
17852         val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
17853         REG_WR(sc, addr, val);
17854     }
17855 
17856     ecore_init_block(sc, BLOCK_PXP, init_phase);
17857     ecore_init_block(sc, BLOCK_PXP2, init_phase);
17858 
17859     ilt = sc->ilt;
17860     cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
17861 
17862     for (i = 0; i < L2_ILT_LINES(sc); i++) {
17863         ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
17864         ilt->lines[cdu_ilt_start + i].page_mapping =
17865             sc->context[i].vcxt_dma.paddr;
17866         ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
17867     }
17868     ecore_ilt_init_op(sc, INITOP_SET);
17869 
17870     /* Set NIC mode */
17871     REG_WR(sc, PRS_REG_NIC_MODE, 1);
17872     BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
17873 
17874     if (!CHIP_IS_E1x(sc)) {
17875         uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
17876 
17877         /* Turn on a single ISR mode in IGU if driver is going to use
17878          * INT#x or MSI
17879          */
17880         if (sc->interrupt_mode != INTR_MODE_MSIX) {
17881             pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
17882         }
17883 
17884         /*
17885          * Timers workaround bug: function init part.
17886          * Need to wait 20msec after initializing ILT,
17887          * needed to make sure there are no requests in
17888          * one of the PXP internal queues with "old" ILT addresses
17889          */
17890         DELAY(20000);
17891 
17892         /*
17893          * Master enable - Due to WB DMAE writes performed before this
17894          * register is re-initialized as part of the regular function
17895          * init
17896          */
17897         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17898         /* Enable the function in IGU */
17899         REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
17900     }
17901 
17902     sc->dmae_ready = 1;
17903 
17904     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17905 
17906     if (!CHIP_IS_E1x(sc))
17907         REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
17908 
17909     ecore_init_block(sc, BLOCK_ATC, init_phase);
17910     ecore_init_block(sc, BLOCK_DMAE, init_phase);
17911     ecore_init_block(sc, BLOCK_NIG, init_phase);
17912     ecore_init_block(sc, BLOCK_SRC, init_phase);
17913     ecore_init_block(sc, BLOCK_MISC, init_phase);
17914     ecore_init_block(sc, BLOCK_TCM, init_phase);
17915     ecore_init_block(sc, BLOCK_UCM, init_phase);
17916     ecore_init_block(sc, BLOCK_CCM, init_phase);
17917     ecore_init_block(sc, BLOCK_XCM, init_phase);
17918     ecore_init_block(sc, BLOCK_TSEM, init_phase);
17919     ecore_init_block(sc, BLOCK_USEM, init_phase);
17920     ecore_init_block(sc, BLOCK_CSEM, init_phase);
17921     ecore_init_block(sc, BLOCK_XSEM, init_phase);
17922 
17923     if (!CHIP_IS_E1x(sc))
17924         REG_WR(sc, QM_REG_PF_EN, 1);
17925 
17926     if (!CHIP_IS_E1x(sc)) {
17927         REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17928         REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17929         REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17930         REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17931     }
17932     ecore_init_block(sc, BLOCK_QM, init_phase);
17933 
17934     ecore_init_block(sc, BLOCK_TM, init_phase);
17935     ecore_init_block(sc, BLOCK_DORQ, init_phase);
17936 
17937     bxe_iov_init_dq(sc);
17938 
17939     ecore_init_block(sc, BLOCK_BRB1, init_phase);
17940     ecore_init_block(sc, BLOCK_PRS, init_phase);
17941     ecore_init_block(sc, BLOCK_TSDM, init_phase);
17942     ecore_init_block(sc, BLOCK_CSDM, init_phase);
17943     ecore_init_block(sc, BLOCK_USDM, init_phase);
17944     ecore_init_block(sc, BLOCK_XSDM, init_phase);
17945     ecore_init_block(sc, BLOCK_UPB, init_phase);
17946     ecore_init_block(sc, BLOCK_XPB, init_phase);
17947     ecore_init_block(sc, BLOCK_PBF, init_phase);
17948     if (!CHIP_IS_E1x(sc))
17949         REG_WR(sc, PBF_REG_DISABLE_PF, 0);
17950 
17951     ecore_init_block(sc, BLOCK_CDU, init_phase);
17952 
17953     ecore_init_block(sc, BLOCK_CFC, init_phase);
17954 
17955     if (!CHIP_IS_E1x(sc))
17956         REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
17957 
17958     if (IS_MF(sc)) {
17959         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
17960         REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
17961     }
17962 
17963     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17964 
17965     /* HC init per function */
17966     if (sc->devinfo.int_block == INT_BLOCK_HC) {
17967         if (CHIP_IS_E1H(sc)) {
17968             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
17969 
17970             REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17971             REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17972         }
17973         ecore_init_block(sc, BLOCK_HC, init_phase);
17974 
17975     } else {
17976         int num_segs, sb_idx, prod_offset;
17977 
17978         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
17979 
17980         if (!CHIP_IS_E1x(sc)) {
17981             REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
17982             REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
17983         }
17984 
17985         ecore_init_block(sc, BLOCK_IGU, init_phase);
17986 
17987         if (!CHIP_IS_E1x(sc)) {
17988             int dsb_idx = 0;
17989             /**
17990              * Producer memory:
17991              * E2 mode: address 0-135 match to the mapping memory;
17992              * 136 - PF0 default prod; 137 - PF1 default prod;
17993              * 138 - PF2 default prod; 139 - PF3 default prod;
17994              * 140 - PF0 attn prod;    141 - PF1 attn prod;
17995              * 142 - PF2 attn prod;    143 - PF3 attn prod;
17996              * 144-147 reserved.
17997              *
17998              * E1.5 mode - In backward compatible mode;
17999              * for non default SB; each even line in the memory
18000              * holds the U producer and each odd line hold
18001              * the C producer. The first 128 producers are for
18002              * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
18003              * producers are for the DSB for each PF.
18004              * Each PF has five segments: (the order inside each
18005              * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
18006              * 132-135 C prods; 136-139 X prods; 140-143 T prods;
18007              * 144-147 attn prods;
18008              */
18009             /* non-default-status-blocks */
18010             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18011                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
18012             for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
18013                 prod_offset = (sc->igu_base_sb + sb_idx) *
18014                     num_segs;
18015 
18016                 for (i = 0; i < num_segs; i++) {
18017                     addr = IGU_REG_PROD_CONS_MEMORY +
18018                             (prod_offset + i) * 4;
18019                     REG_WR(sc, addr, 0);
18020                 }
18021                 /* send consumer update with value 0 */
18022                 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
18023                            USTORM_ID, 0, IGU_INT_NOP, 1);
18024                 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
18025             }
18026 
18027             /* default-status-blocks */
18028             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18029                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
18030 
18031             if (CHIP_IS_MODE_4_PORT(sc))
18032                 dsb_idx = SC_FUNC(sc);
18033             else
18034                 dsb_idx = SC_VN(sc);
18035 
18036             prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
18037                        IGU_BC_BASE_DSB_PROD + dsb_idx :
18038                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
18039 
18040             /*
18041              * igu prods come in chunks of E1HVN_MAX (4) -
18042              * does not matters what is the current chip mode
18043              */
18044             for (i = 0; i < (num_segs * E1HVN_MAX);
18045                  i += E1HVN_MAX) {
18046                 addr = IGU_REG_PROD_CONS_MEMORY +
18047                             (prod_offset + i)*4;
18048                 REG_WR(sc, addr, 0);
18049             }
18050             /* send consumer update with 0 */
18051             if (CHIP_INT_MODE_IS_BC(sc)) {
18052                 bxe_ack_sb(sc, sc->igu_dsb_id,
18053                            USTORM_ID, 0, IGU_INT_NOP, 1);
18054                 bxe_ack_sb(sc, sc->igu_dsb_id,
18055                            CSTORM_ID, 0, IGU_INT_NOP, 1);
18056                 bxe_ack_sb(sc, sc->igu_dsb_id,
18057                            XSTORM_ID, 0, IGU_INT_NOP, 1);
18058                 bxe_ack_sb(sc, sc->igu_dsb_id,
18059                            TSTORM_ID, 0, IGU_INT_NOP, 1);
18060                 bxe_ack_sb(sc, sc->igu_dsb_id,
18061                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
18062             } else {
18063                 bxe_ack_sb(sc, sc->igu_dsb_id,
18064                            USTORM_ID, 0, IGU_INT_NOP, 1);
18065                 bxe_ack_sb(sc, sc->igu_dsb_id,
18066                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
18067             }
18068             bxe_igu_clear_sb(sc, sc->igu_dsb_id);
18069 
18070             /* !!! these should become driver const once
18071                rf-tool supports split-68 const */
18072             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
18073             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
18074             REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
18075             REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
18076             REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
18077             REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
18078         }
18079     }
18080 
18081     /* Reset PCIE errors for debug */
18082     REG_WR(sc, 0x2114, 0xffffffff);
18083     REG_WR(sc, 0x2120, 0xffffffff);
18084 
18085     if (CHIP_IS_E1x(sc)) {
18086         main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
18087         main_mem_base = HC_REG_MAIN_MEMORY +
18088                 SC_PORT(sc) * (main_mem_size * 4);
18089         main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
18090         main_mem_width = 8;
18091 
18092         val = REG_RD(sc, main_mem_prty_clr);
18093         if (val) {
18094             BLOGD(sc, DBG_LOAD,
18095                   "Parity errors in HC block during function init (0x%x)!\n",
18096                   val);
18097         }
18098 
18099         /* Clear "false" parity errors in MSI-X table */
18100         for (i = main_mem_base;
18101              i < main_mem_base + main_mem_size * 4;
18102              i += main_mem_width) {
18103             bxe_read_dmae(sc, i, main_mem_width / 4);
18104             bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
18105                            i, main_mem_width / 4);
18106         }
18107         /* Clear HC parity attention */
18108         REG_RD(sc, main_mem_prty_clr);
18109     }
18110 
18111 #if 1
18112     /* Enable STORMs SP logging */
18113     REG_WR8(sc, BAR_USTRORM_INTMEM +
18114            USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18115     REG_WR8(sc, BAR_TSTRORM_INTMEM +
18116            TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18117     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18118            CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18119     REG_WR8(sc, BAR_XSTRORM_INTMEM +
18120            XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18121 #endif
18122 
18123     elink_phy_probe(&sc->link_params);
18124 
18125     return (0);
18126 }
18127 
18128 static void
18129 bxe_link_reset(struct bxe_softc *sc)
18130 {
18131     if (!BXE_NOMCP(sc)) {
18132 	bxe_acquire_phy_lock(sc);
18133         elink_lfa_reset(&sc->link_params, &sc->link_vars);
18134 	bxe_release_phy_lock(sc);
18135     } else {
18136         if (!CHIP_REV_IS_SLOW(sc)) {
18137             BLOGW(sc, "Bootcode is missing - cannot reset link\n");
18138         }
18139     }
18140 }
18141 
18142 static void
18143 bxe_reset_port(struct bxe_softc *sc)
18144 {
18145     int port = SC_PORT(sc);
18146     uint32_t val;
18147 
18148 	ELINK_DEBUG_P0(sc, "bxe_reset_port called\n");
18149     /* reset physical Link */
18150     bxe_link_reset(sc);
18151 
18152     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18153 
18154     /* Do not rcv packets to BRB */
18155     REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18156     /* Do not direct rcv packets that are not for MCP to the BRB */
18157     REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18158                NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18159 
18160     /* Configure AEU */
18161     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18162 
18163     DELAY(100000);
18164 
18165     /* Check for BRB port occupancy */
18166     val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18167     if (val) {
18168         BLOGD(sc, DBG_LOAD,
18169               "BRB1 is not empty, %d blocks are occupied\n", val);
18170     }
18171 
18172     /* TODO: Close Doorbell port? */
18173 }
18174 
18175 static void
18176 bxe_ilt_wr(struct bxe_softc *sc,
18177            uint32_t         index,
18178            bus_addr_t       addr)
18179 {
18180     int reg;
18181     uint32_t wb_write[2];
18182 
18183     if (CHIP_IS_E1(sc)) {
18184         reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18185     } else {
18186         reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18187     }
18188 
18189     wb_write[0] = ONCHIP_ADDR1(addr);
18190     wb_write[1] = ONCHIP_ADDR2(addr);
18191     REG_WR_DMAE(sc, reg, wb_write, 2);
18192 }
18193 
18194 static void
18195 bxe_clear_func_ilt(struct bxe_softc *sc,
18196                    uint32_t         func)
18197 {
18198     uint32_t i, base = FUNC_ILT_BASE(func);
18199     for (i = base; i < base + ILT_PER_FUNC; i++) {
18200         bxe_ilt_wr(sc, i, 0);
18201     }
18202 }
18203 
18204 static void
18205 bxe_reset_func(struct bxe_softc *sc)
18206 {
18207     struct bxe_fastpath *fp;
18208     int port = SC_PORT(sc);
18209     int func = SC_FUNC(sc);
18210     int i;
18211 
18212     /* Disable the function in the FW */
18213     REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18214     REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18215     REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18216     REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18217 
18218     /* FP SBs */
18219     FOR_EACH_ETH_QUEUE(sc, i) {
18220         fp = &sc->fp[i];
18221         REG_WR8(sc, BAR_CSTRORM_INTMEM +
18222                 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18223                 SB_DISABLED);
18224     }
18225 
18226     /* SP SB */
18227     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18228             CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18229             SB_DISABLED);
18230 
18231     for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18232         REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18233     }
18234 
18235     /* Configure IGU */
18236     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18237         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18238         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18239     } else {
18240         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18241         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18242     }
18243 
18244     if (CNIC_LOADED(sc)) {
18245         /* Disable Timer scan */
18246         REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18247         /*
18248          * Wait for at least 10ms and up to 2 second for the timers
18249          * scan to complete
18250          */
18251         for (i = 0; i < 200; i++) {
18252             DELAY(10000);
18253             if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18254                 break;
18255         }
18256     }
18257 
18258     /* Clear ILT */
18259     bxe_clear_func_ilt(sc, func);
18260 
18261     /*
18262      * Timers workaround bug for E2: if this is vnic-3,
18263      * we need to set the entire ilt range for this timers.
18264      */
18265     if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18266         struct ilt_client_info ilt_cli;
18267         /* use dummy TM client */
18268         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18269         ilt_cli.start = 0;
18270         ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18271         ilt_cli.client_num = ILT_CLIENT_TM;
18272 
18273         ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18274     }
18275 
18276     /* this assumes that reset_port() called before reset_func()*/
18277     if (!CHIP_IS_E1x(sc)) {
18278         bxe_pf_disable(sc);
18279     }
18280 
18281     sc->dmae_ready = 0;
18282 }
18283 
18284 static int
18285 bxe_gunzip_init(struct bxe_softc *sc)
18286 {
18287     return (0);
18288 }
18289 
18290 static void
18291 bxe_gunzip_end(struct bxe_softc *sc)
18292 {
18293     return;
18294 }
18295 
18296 static int
18297 bxe_init_firmware(struct bxe_softc *sc)
18298 {
18299     if (CHIP_IS_E1(sc)) {
18300         ecore_init_e1_firmware(sc);
18301         sc->iro_array = e1_iro_arr;
18302     } else if (CHIP_IS_E1H(sc)) {
18303         ecore_init_e1h_firmware(sc);
18304         sc->iro_array = e1h_iro_arr;
18305     } else if (!CHIP_IS_E1x(sc)) {
18306         ecore_init_e2_firmware(sc);
18307         sc->iro_array = e2_iro_arr;
18308     } else {
18309         BLOGE(sc, "Unsupported chip revision\n");
18310         return (-1);
18311     }
18312 
18313     return (0);
18314 }
18315 
18316 static void
18317 bxe_release_firmware(struct bxe_softc *sc)
18318 {
18319     /* Do nothing */
18320     return;
18321 }
18322 
18323 static int
18324 ecore_gunzip(struct bxe_softc *sc,
18325              const uint8_t    *zbuf,
18326              int              len)
18327 {
18328     /* XXX : Implement... */
18329     BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18330     return (FALSE);
18331 }
18332 
18333 static void
18334 ecore_reg_wr_ind(struct bxe_softc *sc,
18335                  uint32_t         addr,
18336                  uint32_t         val)
18337 {
18338     bxe_reg_wr_ind(sc, addr, val);
18339 }
18340 
18341 static void
18342 ecore_write_dmae_phys_len(struct bxe_softc *sc,
18343                           bus_addr_t       phys_addr,
18344                           uint32_t         addr,
18345                           uint32_t         len)
18346 {
18347     bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18348 }
18349 
18350 void
18351 ecore_storm_memset_struct(struct bxe_softc *sc,
18352                           uint32_t         addr,
18353                           size_t           size,
18354                           uint32_t         *data)
18355 {
18356     uint8_t i;
18357     for (i = 0; i < size/4; i++) {
18358         REG_WR(sc, addr + (i * 4), data[i]);
18359     }
18360 }
18361 
18362 
18363 /*
18364  * character device - ioctl interface definitions
18365  */
18366 
18367 
18368 #include "bxe_dump.h"
18369 #include "bxe_ioctl.h"
18370 #include <sys/conf.h>
18371 
18372 static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
18373                 struct thread *td);
18374 
18375 static struct cdevsw bxe_cdevsw = {
18376     .d_version = D_VERSION,
18377     .d_ioctl = bxe_eioctl,
18378     .d_name = "bxecnic",
18379 };
18380 
18381 #define BXE_PATH(sc)    (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1))
18382 
18383 
18384 #define DUMP_ALL_PRESETS        0x1FFF
18385 #define DUMP_MAX_PRESETS        13
18386 #define IS_E1_REG(chips)        ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1)
18387 #define IS_E1H_REG(chips)       ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H)
18388 #define IS_E2_REG(chips)        ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2)
18389 #define IS_E3A0_REG(chips)      ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0)
18390 #define IS_E3B0_REG(chips)      ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0)
18391 
18392 #define IS_REG_IN_PRESET(presets, idx)  \
18393                 ((presets & (1 << (idx-1))) == (1 << (idx-1)))
18394 
18395 
18396 static int
18397 bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset)
18398 {
18399     if (CHIP_IS_E1(sc))
18400         return dump_num_registers[0][preset-1];
18401     else if (CHIP_IS_E1H(sc))
18402         return dump_num_registers[1][preset-1];
18403     else if (CHIP_IS_E2(sc))
18404         return dump_num_registers[2][preset-1];
18405     else if (CHIP_IS_E3A0(sc))
18406         return dump_num_registers[3][preset-1];
18407     else if (CHIP_IS_E3B0(sc))
18408         return dump_num_registers[4][preset-1];
18409     else
18410         return 0;
18411 }
18412 
18413 static int
18414 bxe_get_total_regs_len32(struct bxe_softc *sc)
18415 {
18416     uint32_t preset_idx;
18417     int regdump_len32 = 0;
18418 
18419 
18420     /* Calculate the total preset regs length */
18421     for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18422         regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx);
18423     }
18424 
18425     return regdump_len32;
18426 }
18427 
18428 static const uint32_t *
18429 __bxe_get_page_addr_ar(struct bxe_softc *sc)
18430 {
18431     if (CHIP_IS_E2(sc))
18432         return page_vals_e2;
18433     else if (CHIP_IS_E3(sc))
18434         return page_vals_e3;
18435     else
18436         return NULL;
18437 }
18438 
18439 static uint32_t
18440 __bxe_get_page_reg_num(struct bxe_softc *sc)
18441 {
18442     if (CHIP_IS_E2(sc))
18443         return PAGE_MODE_VALUES_E2;
18444     else if (CHIP_IS_E3(sc))
18445         return PAGE_MODE_VALUES_E3;
18446     else
18447         return 0;
18448 }
18449 
18450 static const uint32_t *
18451 __bxe_get_page_write_ar(struct bxe_softc *sc)
18452 {
18453     if (CHIP_IS_E2(sc))
18454         return page_write_regs_e2;
18455     else if (CHIP_IS_E3(sc))
18456         return page_write_regs_e3;
18457     else
18458         return NULL;
18459 }
18460 
18461 static uint32_t
18462 __bxe_get_page_write_num(struct bxe_softc *sc)
18463 {
18464     if (CHIP_IS_E2(sc))
18465         return PAGE_WRITE_REGS_E2;
18466     else if (CHIP_IS_E3(sc))
18467         return PAGE_WRITE_REGS_E3;
18468     else
18469         return 0;
18470 }
18471 
18472 static const struct reg_addr *
18473 __bxe_get_page_read_ar(struct bxe_softc *sc)
18474 {
18475     if (CHIP_IS_E2(sc))
18476         return page_read_regs_e2;
18477     else if (CHIP_IS_E3(sc))
18478         return page_read_regs_e3;
18479     else
18480         return NULL;
18481 }
18482 
18483 static uint32_t
18484 __bxe_get_page_read_num(struct bxe_softc *sc)
18485 {
18486     if (CHIP_IS_E2(sc))
18487         return PAGE_READ_REGS_E2;
18488     else if (CHIP_IS_E3(sc))
18489         return PAGE_READ_REGS_E3;
18490     else
18491         return 0;
18492 }
18493 
18494 static bool
18495 bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info)
18496 {
18497     if (CHIP_IS_E1(sc))
18498         return IS_E1_REG(reg_info->chips);
18499     else if (CHIP_IS_E1H(sc))
18500         return IS_E1H_REG(reg_info->chips);
18501     else if (CHIP_IS_E2(sc))
18502         return IS_E2_REG(reg_info->chips);
18503     else if (CHIP_IS_E3A0(sc))
18504         return IS_E3A0_REG(reg_info->chips);
18505     else if (CHIP_IS_E3B0(sc))
18506         return IS_E3B0_REG(reg_info->chips);
18507     else
18508         return 0;
18509 }
18510 
18511 static bool
18512 bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info)
18513 {
18514     if (CHIP_IS_E1(sc))
18515         return IS_E1_REG(wreg_info->chips);
18516     else if (CHIP_IS_E1H(sc))
18517         return IS_E1H_REG(wreg_info->chips);
18518     else if (CHIP_IS_E2(sc))
18519         return IS_E2_REG(wreg_info->chips);
18520     else if (CHIP_IS_E3A0(sc))
18521         return IS_E3A0_REG(wreg_info->chips);
18522     else if (CHIP_IS_E3B0(sc))
18523         return IS_E3B0_REG(wreg_info->chips);
18524     else
18525         return 0;
18526 }
18527 
18528 /**
18529  * bxe_read_pages_regs - read "paged" registers
18530  *
18531  * @bp          device handle
18532  * @p           output buffer
18533  *
18534  * Reads "paged" memories: memories that may only be read by first writing to a
18535  * specific address ("write address") and then reading from a specific address
18536  * ("read address"). There may be more than one write address per "page" and
18537  * more than one read address per write address.
18538  */
18539 static void
18540 bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18541 {
18542     uint32_t i, j, k, n;
18543 
18544     /* addresses of the paged registers */
18545     const uint32_t *page_addr = __bxe_get_page_addr_ar(sc);
18546     /* number of paged registers */
18547     int num_pages = __bxe_get_page_reg_num(sc);
18548     /* write addresses */
18549     const uint32_t *write_addr = __bxe_get_page_write_ar(sc);
18550     /* number of write addresses */
18551     int write_num = __bxe_get_page_write_num(sc);
18552     /* read addresses info */
18553     const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc);
18554     /* number of read addresses */
18555     int read_num = __bxe_get_page_read_num(sc);
18556     uint32_t addr, size;
18557 
18558     for (i = 0; i < num_pages; i++) {
18559         for (j = 0; j < write_num; j++) {
18560             REG_WR(sc, write_addr[j], page_addr[i]);
18561 
18562             for (k = 0; k < read_num; k++) {
18563                 if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) {
18564                     size = read_addr[k].size;
18565                     for (n = 0; n < size; n++) {
18566                         addr = read_addr[k].addr + n*4;
18567                         *p++ = REG_RD(sc, addr);
18568                     }
18569                 }
18570             }
18571         }
18572     }
18573     return;
18574 }
18575 
18576 
18577 static int
18578 bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18579 {
18580     uint32_t i, j, addr;
18581     const struct wreg_addr *wreg_addr_p = NULL;
18582 
18583     if (CHIP_IS_E1(sc))
18584         wreg_addr_p = &wreg_addr_e1;
18585     else if (CHIP_IS_E1H(sc))
18586         wreg_addr_p = &wreg_addr_e1h;
18587     else if (CHIP_IS_E2(sc))
18588         wreg_addr_p = &wreg_addr_e2;
18589     else if (CHIP_IS_E3A0(sc))
18590         wreg_addr_p = &wreg_addr_e3;
18591     else if (CHIP_IS_E3B0(sc))
18592         wreg_addr_p = &wreg_addr_e3b0;
18593     else
18594         return (-1);
18595 
18596     /* Read the idle_chk registers */
18597     for (i = 0; i < IDLE_REGS_COUNT; i++) {
18598         if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) &&
18599             IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) {
18600             for (j = 0; j < idle_reg_addrs[i].size; j++)
18601                 *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4);
18602         }
18603     }
18604 
18605     /* Read the regular registers */
18606     for (i = 0; i < REGS_COUNT; i++) {
18607         if (bxe_is_reg_in_chip(sc, &reg_addrs[i]) &&
18608             IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) {
18609             for (j = 0; j < reg_addrs[i].size; j++)
18610                 *p++ = REG_RD(sc, reg_addrs[i].addr + j*4);
18611         }
18612     }
18613 
18614     /* Read the CAM registers */
18615     if (bxe_is_wreg_in_chip(sc, wreg_addr_p) &&
18616         IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) {
18617         for (i = 0; i < wreg_addr_p->size; i++) {
18618             *p++ = REG_RD(sc, wreg_addr_p->addr + i*4);
18619 
18620             /* In case of wreg_addr register, read additional
18621                registers from read_regs array
18622              */
18623             for (j = 0; j < wreg_addr_p->read_regs_count; j++) {
18624                 addr = *(wreg_addr_p->read_regs);
18625                 *p++ = REG_RD(sc, addr + j*4);
18626             }
18627         }
18628     }
18629 
18630     /* Paged registers are supported in E2 & E3 only */
18631     if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
18632         /* Read "paged" registers */
18633         bxe_read_pages_regs(sc, p, preset);
18634     }
18635 
18636     return 0;
18637 }
18638 
18639 int
18640 bxe_grc_dump(struct bxe_softc *sc)
18641 {
18642     int rval = 0;
18643     uint32_t preset_idx;
18644     uint8_t *buf;
18645     uint32_t size;
18646     struct  dump_header *d_hdr;
18647     uint32_t i;
18648     uint32_t reg_val;
18649     uint32_t reg_addr;
18650     uint32_t cmd_offset;
18651     struct ecore_ilt *ilt = SC_ILT(sc);
18652     struct bxe_fastpath *fp;
18653     struct ilt_client_info *ilt_cli;
18654     int grc_dump_size;
18655 
18656 
18657     if (sc->grcdump_done || sc->grcdump_started)
18658 	return (rval);
18659 
18660     sc->grcdump_started = 1;
18661     BLOGI(sc, "Started collecting grcdump\n");
18662 
18663     grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
18664                 sizeof(struct  dump_header);
18665 
18666     sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT);
18667 
18668     if (sc->grc_dump == NULL) {
18669         BLOGW(sc, "Unable to allocate memory for grcdump collection\n");
18670         return(ENOMEM);
18671     }
18672 
18673 
18674 
18675     /* Disable parity attentions as long as following dump may
18676      * cause false alarms by reading never written registers. We
18677      * will re-enable parity attentions right after the dump.
18678      */
18679 
18680     /* Disable parity on path 0 */
18681     bxe_pretend_func(sc, 0);
18682 
18683     ecore_disable_blocks_parity(sc);
18684 
18685     /* Disable parity on path 1 */
18686     bxe_pretend_func(sc, 1);
18687     ecore_disable_blocks_parity(sc);
18688 
18689     /* Return to current function */
18690     bxe_pretend_func(sc, SC_ABS_FUNC(sc));
18691 
18692     buf = sc->grc_dump;
18693     d_hdr = sc->grc_dump;
18694 
18695     d_hdr->header_size = (sizeof(struct  dump_header) >> 2) - 1;
18696     d_hdr->version = BNX2X_DUMP_VERSION;
18697     d_hdr->preset = DUMP_ALL_PRESETS;
18698 
18699     if (CHIP_IS_E1(sc)) {
18700         d_hdr->dump_meta_data = DUMP_CHIP_E1;
18701     } else if (CHIP_IS_E1H(sc)) {
18702         d_hdr->dump_meta_data = DUMP_CHIP_E1H;
18703     } else if (CHIP_IS_E2(sc)) {
18704         d_hdr->dump_meta_data = DUMP_CHIP_E2 |
18705                 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18706     } else if (CHIP_IS_E3A0(sc)) {
18707         d_hdr->dump_meta_data = DUMP_CHIP_E3A0 |
18708                 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18709     } else if (CHIP_IS_E3B0(sc)) {
18710         d_hdr->dump_meta_data = DUMP_CHIP_E3B0 |
18711                 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18712     }
18713 
18714     buf += sizeof(struct  dump_header);
18715 
18716     for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18717 
18718         /* Skip presets with IOR */
18719         if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) ||
18720             (preset_idx == 11))
18721             continue;
18722 
18723         rval = bxe_get_preset_regs(sc, (uint32_t *)buf, preset_idx);
18724 
18725 	if (rval)
18726             break;
18727 
18728         size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t));
18729 
18730         buf += size;
18731     }
18732 
18733     bxe_pretend_func(sc, 0);
18734     ecore_clear_blocks_parity(sc);
18735     ecore_enable_blocks_parity(sc);
18736 
18737     bxe_pretend_func(sc, 1);
18738     ecore_clear_blocks_parity(sc);
18739     ecore_enable_blocks_parity(sc);
18740 
18741     /* Return to current function */
18742     bxe_pretend_func(sc, SC_ABS_FUNC(sc));
18743 
18744 
18745 
18746     if(sc->state == BXE_STATE_OPEN) {
18747         if(sc->fw_stats_req  != NULL) {
18748     		BLOGI(sc, "fw stats start_paddr %#jx end_paddr %#jx vaddr %p size 0x%x\n",
18749         			(uintmax_t)sc->fw_stats_req_mapping,
18750         			(uintmax_t)sc->fw_stats_data_mapping,
18751         			sc->fw_stats_req, (sc->fw_stats_req_size + sc->fw_stats_data_size));
18752 		}
18753 		if(sc->def_sb != NULL) {
18754 			BLOGI(sc, "def_status_block paddr %p vaddr %p size 0x%zx\n",
18755         			(void *)sc->def_sb_dma.paddr, sc->def_sb,
18756         			sizeof(struct host_sp_status_block));
18757 		}
18758 		if(sc->eq_dma.vaddr != NULL) {
18759     		BLOGI(sc, "event_queue paddr %#jx vaddr %p size 0x%x\n",
18760         			(uintmax_t)sc->eq_dma.paddr, sc->eq_dma.vaddr, BCM_PAGE_SIZE);
18761 		}
18762 		if(sc->sp_dma.vaddr != NULL) {
18763     		BLOGI(sc, "slow path paddr %#jx vaddr %p size 0x%zx\n",
18764         			(uintmax_t)sc->sp_dma.paddr, sc->sp_dma.vaddr,
18765         			sizeof(struct bxe_slowpath));
18766 		}
18767 		if(sc->spq_dma.vaddr != NULL) {
18768     		BLOGI(sc, "slow path queue paddr %#jx vaddr %p size 0x%x\n",
18769         			(uintmax_t)sc->spq_dma.paddr, sc->spq_dma.vaddr, BCM_PAGE_SIZE);
18770 		}
18771 		if(sc->gz_buf_dma.vaddr != NULL) {
18772     		BLOGI(sc, "fw_buf paddr %#jx vaddr %p size 0x%x\n",
18773         			(uintmax_t)sc->gz_buf_dma.paddr, sc->gz_buf_dma.vaddr,
18774         			FW_BUF_SIZE);
18775 		}
18776     	for (i = 0; i < sc->num_queues; i++) {
18777         	fp = &sc->fp[i];
18778 			if(fp->sb_dma.vaddr != NULL && fp->tx_dma.vaddr != NULL &&
18779                         fp->rx_dma.vaddr != NULL && fp->rcq_dma.vaddr != NULL &&
18780                         fp->rx_sge_dma.vaddr != NULL) {
18781 
18782 				BLOGI(sc, "FP status block fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
18783             			(uintmax_t)fp->sb_dma.paddr, fp->sb_dma.vaddr,
18784             			sizeof(union bxe_host_hc_status_block));
18785 				BLOGI(sc, "TX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
18786             			(uintmax_t)fp->tx_dma.paddr, fp->tx_dma.vaddr,
18787             			(BCM_PAGE_SIZE * TX_BD_NUM_PAGES));
18788         		BLOGI(sc, "RX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
18789             			(uintmax_t)fp->rx_dma.paddr, fp->rx_dma.vaddr,
18790             			(BCM_PAGE_SIZE * RX_BD_NUM_PAGES));
18791         		BLOGI(sc, "RX RCQ CHAIN fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
18792             			(uintmax_t)fp->rcq_dma.paddr, fp->rcq_dma.vaddr,
18793             			(BCM_PAGE_SIZE * RCQ_NUM_PAGES));
18794         		BLOGI(sc, "RX SGE CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
18795             			(uintmax_t)fp->rx_sge_dma.paddr, fp->rx_sge_dma.vaddr,
18796             			(BCM_PAGE_SIZE * RX_SGE_NUM_PAGES));
18797     		}
18798 		}
18799 		if(ilt != NULL ) {
18800     		ilt_cli = &ilt->clients[1];
18801 			if(ilt->lines != NULL) {
18802     		for (i = ilt_cli->start; i <= ilt_cli->end; i++) {
18803         		BLOGI(sc, "ECORE_ILT paddr %#jx vaddr %p size 0x%x\n",
18804             			(uintmax_t)(((struct bxe_dma *)((&ilt->lines[i])->page))->paddr),
18805             			((struct bxe_dma *)((&ilt->lines[i])->page))->vaddr, BCM_PAGE_SIZE);
18806     		}
18807 			}
18808 		}
18809 
18810 
18811     	cmd_offset = DMAE_REG_CMD_MEM;
18812     	for (i = 0; i < 224; i++) {
18813         	reg_addr = (cmd_offset +(i * 4));
18814         	reg_val = REG_RD(sc, reg_addr);
18815         	BLOGI(sc, "DMAE_REG_CMD_MEM i=%d reg_addr 0x%x reg_val 0x%08x\n",i,
18816             			reg_addr, reg_val);
18817     	}
18818 	}
18819 
18820     BLOGI(sc, "Collection of grcdump done\n");
18821     sc->grcdump_done = 1;
18822     return(rval);
18823 }
18824 
18825 static int
18826 bxe_add_cdev(struct bxe_softc *sc)
18827 {
18828     sc->eeprom = malloc(BXE_EEPROM_MAX_DATA_LEN, M_DEVBUF, M_NOWAIT);
18829 
18830     if (sc->eeprom == NULL) {
18831         BLOGW(sc, "Unable to alloc for eeprom size buffer\n");
18832         return (-1);
18833     }
18834 
18835     sc->ioctl_dev = make_dev(&bxe_cdevsw,
18836                             sc->ifp->if_dunit,
18837                             UID_ROOT,
18838                             GID_WHEEL,
18839                             0600,
18840                             "%s",
18841                             if_name(sc->ifp));
18842 
18843     if (sc->ioctl_dev == NULL) {
18844         free(sc->eeprom, M_DEVBUF);
18845         sc->eeprom = NULL;
18846         return (-1);
18847     }
18848 
18849     sc->ioctl_dev->si_drv1 = sc;
18850 
18851     return (0);
18852 }
18853 
18854 static void
18855 bxe_del_cdev(struct bxe_softc *sc)
18856 {
18857     if (sc->ioctl_dev != NULL)
18858         destroy_dev(sc->ioctl_dev);
18859 
18860     if (sc->eeprom != NULL) {
18861         free(sc->eeprom, M_DEVBUF);
18862         sc->eeprom = NULL;
18863     }
18864     sc->ioctl_dev = NULL;
18865 
18866     return;
18867 }
18868 
18869 static bool bxe_is_nvram_accessible(struct bxe_softc *sc)
18870 {
18871 
18872     if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0)
18873         return FALSE;
18874 
18875     return TRUE;
18876 }
18877 
18878 
18879 static int
18880 bxe_wr_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
18881 {
18882     int rval = 0;
18883 
18884     if(!bxe_is_nvram_accessible(sc)) {
18885         BLOGW(sc, "Cannot access eeprom when interface is down\n");
18886         return (-EAGAIN);
18887     }
18888     rval = bxe_nvram_write(sc, offset, (uint8_t *)data, len);
18889 
18890 
18891    return (rval);
18892 }
18893 
18894 static int
18895 bxe_rd_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
18896 {
18897     int rval = 0;
18898 
18899     if(!bxe_is_nvram_accessible(sc)) {
18900         BLOGW(sc, "Cannot access eeprom when interface is down\n");
18901         return (-EAGAIN);
18902     }
18903     rval = bxe_nvram_read(sc, offset, (uint8_t *)data, len);
18904 
18905    return (rval);
18906 }
18907 
18908 static int
18909 bxe_eeprom_rd_wr(struct bxe_softc *sc, bxe_eeprom_t *eeprom)
18910 {
18911     int rval = 0;
18912 
18913     switch (eeprom->eeprom_cmd) {
18914 
18915     case BXE_EEPROM_CMD_SET_EEPROM:
18916 
18917         rval = copyin(eeprom->eeprom_data, sc->eeprom,
18918                        eeprom->eeprom_data_len);
18919 
18920         if (rval)
18921             break;
18922 
18923         rval = bxe_wr_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
18924                        eeprom->eeprom_data_len);
18925         break;
18926 
18927     case BXE_EEPROM_CMD_GET_EEPROM:
18928 
18929         rval = bxe_rd_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
18930                        eeprom->eeprom_data_len);
18931 
18932         if (rval) {
18933             break;
18934         }
18935 
18936         rval = copyout(sc->eeprom, eeprom->eeprom_data,
18937                        eeprom->eeprom_data_len);
18938         break;
18939 
18940     default:
18941             rval = EINVAL;
18942             break;
18943     }
18944 
18945     if (rval) {
18946         BLOGW(sc, "ioctl cmd %d  failed rval %d\n", eeprom->eeprom_cmd, rval);
18947     }
18948 
18949     return (rval);
18950 }
18951 
18952 static int
18953 bxe_get_settings(struct bxe_softc *sc, bxe_dev_setting_t *dev_p)
18954 {
18955     uint32_t ext_phy_config;
18956     int port = SC_PORT(sc);
18957     int cfg_idx = bxe_get_link_cfg_idx(sc);
18958 
18959     dev_p->supported = sc->port.supported[cfg_idx] |
18960             (sc->port.supported[cfg_idx ^ 1] &
18961             (ELINK_SUPPORTED_TP | ELINK_SUPPORTED_FIBRE));
18962     dev_p->advertising = sc->port.advertising[cfg_idx];
18963     if(sc->link_params.phy[bxe_get_cur_phy_idx(sc)].media_type ==
18964         ELINK_ETH_PHY_SFP_1G_FIBER) {
18965         dev_p->supported = ~(ELINK_SUPPORTED_10000baseT_Full);
18966         dev_p->advertising &= ~(ADVERTISED_10000baseT_Full);
18967     }
18968     if ((sc->state == BXE_STATE_OPEN) && sc->link_vars.link_up &&
18969         !(sc->flags & BXE_MF_FUNC_DIS)) {
18970         dev_p->duplex = sc->link_vars.duplex;
18971         if (IS_MF(sc) && !BXE_NOMCP(sc))
18972             dev_p->speed = bxe_get_mf_speed(sc);
18973         else
18974             dev_p->speed = sc->link_vars.line_speed;
18975     } else {
18976         dev_p->duplex = DUPLEX_UNKNOWN;
18977         dev_p->speed = SPEED_UNKNOWN;
18978     }
18979 
18980     dev_p->port = bxe_media_detect(sc);
18981 
18982     ext_phy_config = SHMEM_RD(sc,
18983                          dev_info.port_hw_config[port].external_phy_config);
18984     if((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) ==
18985         PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
18986         dev_p->phy_address =  sc->port.phy_addr;
18987     else if(((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
18988             PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
18989         ((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
18990             PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
18991         dev_p->phy_address = ELINK_XGXS_EXT_PHY_ADDR(ext_phy_config);
18992     else
18993         dev_p->phy_address = 0;
18994 
18995     if(sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG)
18996         dev_p->autoneg = AUTONEG_ENABLE;
18997     else
18998        dev_p->autoneg = AUTONEG_DISABLE;
18999 
19000 
19001     return 0;
19002 }
19003 
19004 static int
19005 bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
19006         struct thread *td)
19007 {
19008     struct bxe_softc    *sc;
19009     int                 rval = 0;
19010     device_t            pci_dev;
19011     bxe_grcdump_t       *dump = NULL;
19012     int grc_dump_size;
19013     bxe_drvinfo_t   *drv_infop = NULL;
19014     bxe_dev_setting_t  *dev_p;
19015     bxe_dev_setting_t  dev_set;
19016     bxe_get_regs_t  *reg_p;
19017     bxe_reg_rdw_t *reg_rdw_p;
19018     bxe_pcicfg_rdw_t *cfg_rdw_p;
19019     bxe_perm_mac_addr_t *mac_addr_p;
19020 
19021 
19022     if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL)
19023         return ENXIO;
19024 
19025     pci_dev= sc->dev;
19026 
19027     dump = (bxe_grcdump_t *)data;
19028 
19029     switch(cmd) {
19030 
19031         case BXE_GRC_DUMP_SIZE:
19032             dump->pci_func = sc->pcie_func;
19033             dump->grcdump_size =
19034                 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
19035                      sizeof(struct  dump_header);
19036             break;
19037 
19038         case BXE_GRC_DUMP:
19039 
19040             grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
19041                                 sizeof(struct  dump_header);
19042             if ((!sc->trigger_grcdump) || (dump->grcdump == NULL) ||
19043                 (dump->grcdump_size < grc_dump_size)) {
19044                 rval = EINVAL;
19045                 break;
19046             }
19047 
19048             if((sc->trigger_grcdump) && (!sc->grcdump_done) &&
19049                 (!sc->grcdump_started)) {
19050                 rval =  bxe_grc_dump(sc);
19051             }
19052 
19053             if((!rval) && (sc->grcdump_done) && (sc->grcdump_started) &&
19054                 (sc->grc_dump != NULL))  {
19055                 dump->grcdump_dwords = grc_dump_size >> 2;
19056                 rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size);
19057                 free(sc->grc_dump, M_DEVBUF);
19058                 sc->grc_dump = NULL;
19059                 sc->grcdump_started = 0;
19060                 sc->grcdump_done = 0;
19061             }
19062 
19063             break;
19064 
19065         case BXE_DRV_INFO:
19066             drv_infop = (bxe_drvinfo_t *)data;
19067             snprintf(drv_infop->drv_name, BXE_DRV_NAME_LENGTH, "%s", "bxe");
19068             snprintf(drv_infop->drv_version, BXE_DRV_VERSION_LENGTH, "v:%s",
19069                 BXE_DRIVER_VERSION);
19070             snprintf(drv_infop->mfw_version, BXE_MFW_VERSION_LENGTH, "%s",
19071                 sc->devinfo.bc_ver_str);
19072             snprintf(drv_infop->stormfw_version, BXE_STORMFW_VERSION_LENGTH,
19073                 "%s", sc->fw_ver_str);
19074             drv_infop->eeprom_dump_len = sc->devinfo.flash_size;
19075             drv_infop->reg_dump_len =
19076                 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t))
19077                     + sizeof(struct  dump_header);
19078             snprintf(drv_infop->bus_info, BXE_BUS_INFO_LENGTH, "%d:%d:%d",
19079                 sc->pcie_bus, sc->pcie_device, sc->pcie_func);
19080             break;
19081 
19082         case BXE_DEV_SETTING:
19083             dev_p = (bxe_dev_setting_t *)data;
19084             bxe_get_settings(sc, &dev_set);
19085             dev_p->supported = dev_set.supported;
19086             dev_p->advertising = dev_set.advertising;
19087             dev_p->speed = dev_set.speed;
19088             dev_p->duplex = dev_set.duplex;
19089             dev_p->port = dev_set.port;
19090             dev_p->phy_address = dev_set.phy_address;
19091             dev_p->autoneg = dev_set.autoneg;
19092 
19093             break;
19094 
19095         case BXE_GET_REGS:
19096 
19097             reg_p = (bxe_get_regs_t *)data;
19098             grc_dump_size = reg_p->reg_buf_len;
19099 
19100             if((!sc->grcdump_done) && (!sc->grcdump_started)) {
19101                 bxe_grc_dump(sc);
19102             }
19103             if((sc->grcdump_done) && (sc->grcdump_started) &&
19104                 (sc->grc_dump != NULL))  {
19105                 rval = copyout(sc->grc_dump, reg_p->reg_buf, grc_dump_size);
19106                 free(sc->grc_dump, M_DEVBUF);
19107                 sc->grc_dump = NULL;
19108                 sc->grcdump_started = 0;
19109                 sc->grcdump_done = 0;
19110             }
19111 
19112             break;
19113 
19114         case BXE_RDW_REG:
19115             reg_rdw_p = (bxe_reg_rdw_t *)data;
19116             if((reg_rdw_p->reg_cmd == BXE_READ_REG_CMD) &&
19117                 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
19118                 reg_rdw_p->reg_val = REG_RD(sc, reg_rdw_p->reg_id);
19119 
19120             if((reg_rdw_p->reg_cmd == BXE_WRITE_REG_CMD) &&
19121                 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
19122                 REG_WR(sc, reg_rdw_p->reg_id, reg_rdw_p->reg_val);
19123 
19124             break;
19125 
19126         case BXE_RDW_PCICFG:
19127             cfg_rdw_p = (bxe_pcicfg_rdw_t *)data;
19128             if(cfg_rdw_p->cfg_cmd == BXE_READ_PCICFG) {
19129 
19130                 cfg_rdw_p->cfg_val = pci_read_config(sc->dev, cfg_rdw_p->cfg_id,
19131                                          cfg_rdw_p->cfg_width);
19132 
19133             } else if(cfg_rdw_p->cfg_cmd == BXE_WRITE_PCICFG) {
19134                 pci_write_config(sc->dev, cfg_rdw_p->cfg_id, cfg_rdw_p->cfg_val,
19135                             cfg_rdw_p->cfg_width);
19136             } else {
19137                 BLOGW(sc, "BXE_RDW_PCICFG ioctl wrong cmd passed\n");
19138             }
19139             break;
19140 
19141         case BXE_MAC_ADDR:
19142             mac_addr_p = (bxe_perm_mac_addr_t *)data;
19143             snprintf(mac_addr_p->mac_addr_str, sizeof(sc->mac_addr_str), "%s",
19144                 sc->mac_addr_str);
19145             break;
19146 
19147         case BXE_EEPROM:
19148             rval = bxe_eeprom_rd_wr(sc, (bxe_eeprom_t *)data);
19149             break;
19150 
19151 
19152         default:
19153             break;
19154     }
19155 
19156     return (rval);
19157 }
19158