xref: /freebsd/sys/dev/bxe/bxe.c (revision 4ec234c813eed05c166859bba82c882e40826eb9)
1 /*-
2  * Copyright (c) 2007-2013 Broadcom Corporation. All rights reserved.
3  *
4  * Eric Davis        <edavis@broadcom.com>
5  * David Christensen <davidch@broadcom.com>
6  * Gary Zambrano     <zambrano@broadcom.com>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written consent.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #define BXE_DRIVER_VERSION "1.78.77"
38 
39 #include "bxe.h"
40 #include "ecore_sp.h"
41 #include "ecore_init.h"
42 #include "ecore_init_ops.h"
43 
44 #include "57710_int_offsets.h"
45 #include "57711_int_offsets.h"
46 #include "57712_int_offsets.h"
47 
48 /*
49  * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
50  * explicitly here for older kernels that don't include this changeset.
51  */
52 #ifndef CTLTYPE_U64
53 #define CTLTYPE_U64      CTLTYPE_QUAD
54 #define sysctl_handle_64 sysctl_handle_quad
55 #endif
56 
57 /*
58  * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
59  * here as zero(0) for older kernels that don't include this changeset
60  * thereby masking the functionality.
61  */
62 #ifndef CSUM_TCP_IPV6
63 #define CSUM_TCP_IPV6 0
64 #define CSUM_UDP_IPV6 0
65 #endif
66 
67 /*
68  * pci_find_cap was added in r219865. Re-define this at pci_find_extcap
69  * for older kernels that don't include this changeset.
70  */
71 #if __FreeBSD_version < 900035
72 #define pci_find_cap pci_find_extcap
73 #endif
74 
75 #define BXE_DEF_SB_ATT_IDX 0x0001
76 #define BXE_DEF_SB_IDX     0x0002
77 
78 /*
79  * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
80  * function HW initialization.
81  */
82 #define FLR_WAIT_USEC     10000 /* 10 msecs */
83 #define FLR_WAIT_INTERVAL 50    /* usecs */
84 #define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
85 
86 struct pbf_pN_buf_regs {
87     int pN;
88     uint32_t init_crd;
89     uint32_t crd;
90     uint32_t crd_freed;
91 };
92 
93 struct pbf_pN_cmd_regs {
94     int pN;
95     uint32_t lines_occup;
96     uint32_t lines_freed;
97 };
98 
99 /*
100  * PCI Device ID Table used by bxe_probe().
101  */
102 #define BXE_DEVDESC_MAX 64
103 static struct bxe_device_type bxe_devs[] = {
104     {
105         BRCM_VENDORID,
106         CHIP_NUM_57710,
107         PCI_ANY_ID, PCI_ANY_ID,
108         "Broadcom NetXtreme II BCM57710 10GbE"
109     },
110     {
111         BRCM_VENDORID,
112         CHIP_NUM_57711,
113         PCI_ANY_ID, PCI_ANY_ID,
114         "Broadcom NetXtreme II BCM57711 10GbE"
115     },
116     {
117         BRCM_VENDORID,
118         CHIP_NUM_57711E,
119         PCI_ANY_ID, PCI_ANY_ID,
120         "Broadcom NetXtreme II BCM57711E 10GbE"
121     },
122     {
123         BRCM_VENDORID,
124         CHIP_NUM_57712,
125         PCI_ANY_ID, PCI_ANY_ID,
126         "Broadcom NetXtreme II BCM57712 10GbE"
127     },
128     {
129         BRCM_VENDORID,
130         CHIP_NUM_57712_MF,
131         PCI_ANY_ID, PCI_ANY_ID,
132         "Broadcom NetXtreme II BCM57712 MF 10GbE"
133     },
134 #if 0
135     {
136         BRCM_VENDORID,
137         CHIP_NUM_57712_VF,
138         PCI_ANY_ID, PCI_ANY_ID,
139         "Broadcom NetXtreme II BCM57712 VF 10GbE"
140     },
141 #endif
142     {
143         BRCM_VENDORID,
144         CHIP_NUM_57800,
145         PCI_ANY_ID, PCI_ANY_ID,
146         "Broadcom NetXtreme II BCM57800 10GbE"
147     },
148     {
149         BRCM_VENDORID,
150         CHIP_NUM_57800_MF,
151         PCI_ANY_ID, PCI_ANY_ID,
152         "Broadcom NetXtreme II BCM57800 MF 10GbE"
153     },
154 #if 0
155     {
156         BRCM_VENDORID,
157         CHIP_NUM_57800_VF,
158         PCI_ANY_ID, PCI_ANY_ID,
159         "Broadcom NetXtreme II BCM57800 VF 10GbE"
160     },
161 #endif
162     {
163         BRCM_VENDORID,
164         CHIP_NUM_57810,
165         PCI_ANY_ID, PCI_ANY_ID,
166         "Broadcom NetXtreme II BCM57810 10GbE"
167     },
168     {
169         BRCM_VENDORID,
170         CHIP_NUM_57810_MF,
171         PCI_ANY_ID, PCI_ANY_ID,
172         "Broadcom NetXtreme II BCM57810 MF 10GbE"
173     },
174 #if 0
175     {
176         BRCM_VENDORID,
177         CHIP_NUM_57810_VF,
178         PCI_ANY_ID, PCI_ANY_ID,
179         "Broadcom NetXtreme II BCM57810 VF 10GbE"
180     },
181 #endif
182     {
183         BRCM_VENDORID,
184         CHIP_NUM_57811,
185         PCI_ANY_ID, PCI_ANY_ID,
186         "Broadcom NetXtreme II BCM57811 10GbE"
187     },
188     {
189         BRCM_VENDORID,
190         CHIP_NUM_57811_MF,
191         PCI_ANY_ID, PCI_ANY_ID,
192         "Broadcom NetXtreme II BCM57811 MF 10GbE"
193     },
194 #if 0
195     {
196         BRCM_VENDORID,
197         CHIP_NUM_57811_VF,
198         PCI_ANY_ID, PCI_ANY_ID,
199         "Broadcom NetXtreme II BCM57811 VF 10GbE"
200     },
201 #endif
202     {
203         BRCM_VENDORID,
204         CHIP_NUM_57840_4_10,
205         PCI_ANY_ID, PCI_ANY_ID,
206         "Broadcom NetXtreme II BCM57840 4x10GbE"
207     },
208 #if 0
209     {
210         BRCM_VENDORID,
211         CHIP_NUM_57840_2_20,
212         PCI_ANY_ID, PCI_ANY_ID,
213         "Broadcom NetXtreme II BCM57840 2x20GbE"
214     },
215 #endif
216     {
217         BRCM_VENDORID,
218         CHIP_NUM_57840_MF,
219         PCI_ANY_ID, PCI_ANY_ID,
220         "Broadcom NetXtreme II BCM57840 MF 10GbE"
221     },
222 #if 0
223     {
224         BRCM_VENDORID,
225         CHIP_NUM_57840_VF,
226         PCI_ANY_ID, PCI_ANY_ID,
227         "Broadcom NetXtreme II BCM57840 VF 10GbE"
228     },
229 #endif
230     {
231         0, 0, 0, 0, NULL
232     }
233 };
234 
235 MALLOC_DECLARE(M_BXE_ILT);
236 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
237 
238 /*
239  * FreeBSD device entry points.
240  */
241 static int bxe_probe(device_t);
242 static int bxe_attach(device_t);
243 static int bxe_detach(device_t);
244 static int bxe_shutdown(device_t);
245 
246 /*
247  * FreeBSD KLD module/device interface event handler method.
248  */
249 static device_method_t bxe_methods[] = {
250     /* Device interface (device_if.h) */
251     DEVMETHOD(device_probe,     bxe_probe),
252     DEVMETHOD(device_attach,    bxe_attach),
253     DEVMETHOD(device_detach,    bxe_detach),
254     DEVMETHOD(device_shutdown,  bxe_shutdown),
255 #if 0
256     DEVMETHOD(device_suspend,   bxe_suspend),
257     DEVMETHOD(device_resume,    bxe_resume),
258 #endif
259     /* Bus interface (bus_if.h) */
260     DEVMETHOD(bus_print_child,  bus_generic_print_child),
261     DEVMETHOD(bus_driver_added, bus_generic_driver_added),
262     KOBJMETHOD_END
263 };
264 
265 /*
266  * FreeBSD KLD Module data declaration
267  */
268 static driver_t bxe_driver = {
269     "bxe",                   /* module name */
270     bxe_methods,             /* event handler */
271     sizeof(struct bxe_softc) /* extra data */
272 };
273 
274 /*
275  * FreeBSD dev class is needed to manage dev instances and
276  * to associate with a bus type
277  */
278 static devclass_t bxe_devclass;
279 
280 MODULE_DEPEND(bxe, pci, 1, 1, 1);
281 MODULE_DEPEND(bxe, ether, 1, 1, 1);
282 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0);
283 
284 /* resources needed for unloading a previously loaded device */
285 
286 #define BXE_PREV_WAIT_NEEDED 1
287 struct mtx bxe_prev_mtx;
288 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
289 struct bxe_prev_list_node {
290     LIST_ENTRY(bxe_prev_list_node) node;
291     uint8_t bus;
292     uint8_t slot;
293     uint8_t path;
294     uint8_t aer; /* XXX automatic error recovery */
295     uint8_t undi;
296 };
297 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
298 
299 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
300 
301 /* Tunable device values... */
302 
303 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters");
304 
305 /* Debug */
306 unsigned long bxe_debug = 0;
307 TUNABLE_ULONG("hw.bxe.debug", &bxe_debug);
308 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, (CTLFLAG_RDTUN),
309              &bxe_debug, 0, "Debug logging mode");
310 
311 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
312 static int bxe_interrupt_mode = INTR_MODE_MSIX;
313 TUNABLE_INT("hw.bxe.interrupt_mode", &bxe_interrupt_mode);
314 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
315            &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
316 
317 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
318 static int bxe_queue_count = 4;
319 TUNABLE_INT("hw.bxe.queue_count", &bxe_queue_count);
320 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
321            &bxe_queue_count, 0, "Multi-Queue queue count");
322 
323 /* max number of buffers per queue (default RX_BD_USABLE) */
324 static int bxe_max_rx_bufs = 0;
325 TUNABLE_INT("hw.bxe.max_rx_bufs", &bxe_max_rx_bufs);
326 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
327            &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
328 
329 /* Host interrupt coalescing RX tick timer (usecs) */
330 static int bxe_hc_rx_ticks = 25;
331 TUNABLE_INT("hw.bxe.hc_rx_ticks", &bxe_hc_rx_ticks);
332 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
333            &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
334 
335 /* Host interrupt coalescing TX tick timer (usecs) */
336 static int bxe_hc_tx_ticks = 50;
337 TUNABLE_INT("hw.bxe.hc_tx_ticks", &bxe_hc_tx_ticks);
338 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
339            &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
340 
341 /* Maximum number of Rx packets to process at a time */
342 static int bxe_rx_budget = 0xffffffff;
343 TUNABLE_INT("hw.bxe.rx_budget", &bxe_rx_budget);
344 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
345            &bxe_rx_budget, 0, "Rx processing budget");
346 
347 /* Maximum LRO aggregation size */
348 static int bxe_max_aggregation_size = 0;
349 TUNABLE_INT("hw.bxe.max_aggregation_size", &bxe_max_aggregation_size);
350 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
351            &bxe_max_aggregation_size, 0, "max aggregation size");
352 
353 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
354 static int bxe_mrrs = -1;
355 TUNABLE_INT("hw.bxe.mrrs", &bxe_mrrs);
356 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
357            &bxe_mrrs, 0, "PCIe maximum read request size");
358 
359 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
360 static int bxe_autogreeen = 0;
361 TUNABLE_INT("hw.bxe.autogreeen", &bxe_autogreeen);
362 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
363            &bxe_autogreeen, 0, "AutoGrEEEn support");
364 
365 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
366 static int bxe_udp_rss = 0;
367 TUNABLE_INT("hw.bxe.udp_rss", &bxe_udp_rss);
368 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
369            &bxe_udp_rss, 0, "UDP RSS support");
370 
371 
372 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
373 
374 #define STATS_OFFSET32(stat_name)                   \
375     (offsetof(struct bxe_eth_stats, stat_name) / 4)
376 
377 #define Q_STATS_OFFSET32(stat_name)                   \
378     (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
379 
380 static const struct {
381     uint32_t offset;
382     uint32_t size;
383     uint32_t flags;
384 #define STATS_FLAGS_PORT  1
385 #define STATS_FLAGS_FUNC  2 /* MF only cares about function stats */
386 #define STATS_FLAGS_BOTH  (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
387     char string[STAT_NAME_LEN];
388 } bxe_eth_stats_arr[] = {
389     { STATS_OFFSET32(total_bytes_received_hi),
390                 8, STATS_FLAGS_BOTH, "rx_bytes" },
391     { STATS_OFFSET32(error_bytes_received_hi),
392                 8, STATS_FLAGS_BOTH, "rx_error_bytes" },
393     { STATS_OFFSET32(total_unicast_packets_received_hi),
394                 8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
395     { STATS_OFFSET32(total_multicast_packets_received_hi),
396                 8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
397     { STATS_OFFSET32(total_broadcast_packets_received_hi),
398                 8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
399     { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
400                 8, STATS_FLAGS_PORT, "rx_crc_errors" },
401     { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
402                 8, STATS_FLAGS_PORT, "rx_align_errors" },
403     { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
404                 8, STATS_FLAGS_PORT, "rx_undersize_packets" },
405     { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
406                 8, STATS_FLAGS_PORT, "rx_oversize_packets" },
407     { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
408                 8, STATS_FLAGS_PORT, "rx_fragments" },
409     { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
410                 8, STATS_FLAGS_PORT, "rx_jabbers" },
411     { STATS_OFFSET32(no_buff_discard_hi),
412                 8, STATS_FLAGS_BOTH, "rx_discards" },
413     { STATS_OFFSET32(mac_filter_discard),
414                 4, STATS_FLAGS_PORT, "rx_filtered_packets" },
415     { STATS_OFFSET32(mf_tag_discard),
416                 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
417     { STATS_OFFSET32(pfc_frames_received_hi),
418                 8, STATS_FLAGS_PORT, "pfc_frames_received" },
419     { STATS_OFFSET32(pfc_frames_sent_hi),
420                 8, STATS_FLAGS_PORT, "pfc_frames_sent" },
421     { STATS_OFFSET32(brb_drop_hi),
422                 8, STATS_FLAGS_PORT, "rx_brb_discard" },
423     { STATS_OFFSET32(brb_truncate_hi),
424                 8, STATS_FLAGS_PORT, "rx_brb_truncate" },
425     { STATS_OFFSET32(pause_frames_received_hi),
426                 8, STATS_FLAGS_PORT, "rx_pause_frames" },
427     { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
428                 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
429     { STATS_OFFSET32(nig_timer_max),
430                 4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
431     { STATS_OFFSET32(total_bytes_transmitted_hi),
432                 8, STATS_FLAGS_BOTH, "tx_bytes" },
433     { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
434                 8, STATS_FLAGS_PORT, "tx_error_bytes" },
435     { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
436                 8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
437     { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
438                 8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
439     { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
440                 8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
441     { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
442                 8, STATS_FLAGS_PORT, "tx_mac_errors" },
443     { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
444                 8, STATS_FLAGS_PORT, "tx_carrier_errors" },
445     { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
446                 8, STATS_FLAGS_PORT, "tx_single_collisions" },
447     { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
448                 8, STATS_FLAGS_PORT, "tx_multi_collisions" },
449     { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
450                 8, STATS_FLAGS_PORT, "tx_deferred" },
451     { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
452                 8, STATS_FLAGS_PORT, "tx_excess_collisions" },
453     { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
454                 8, STATS_FLAGS_PORT, "tx_late_collisions" },
455     { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
456                 8, STATS_FLAGS_PORT, "tx_total_collisions" },
457     { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
458                 8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
459     { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
460                 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
461     { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
462                 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
463     { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
464                 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
465     { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
466                 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
467     { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
468                 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
469     { STATS_OFFSET32(etherstatspktsover1522octets_hi),
470                 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
471     { STATS_OFFSET32(pause_frames_sent_hi),
472                 8, STATS_FLAGS_PORT, "tx_pause_frames" },
473     { STATS_OFFSET32(total_tpa_aggregations_hi),
474                 8, STATS_FLAGS_FUNC, "tpa_aggregations" },
475     { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
476                 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
477     { STATS_OFFSET32(total_tpa_bytes_hi),
478                 8, STATS_FLAGS_FUNC, "tpa_bytes"},
479 #if 0
480     { STATS_OFFSET32(recoverable_error),
481                 4, STATS_FLAGS_FUNC, "recoverable_errors" },
482     { STATS_OFFSET32(unrecoverable_error),
483                 4, STATS_FLAGS_FUNC, "unrecoverable_errors" },
484 #endif
485     { STATS_OFFSET32(eee_tx_lpi),
486                 4, STATS_FLAGS_PORT, "eee_tx_lpi"},
487     { STATS_OFFSET32(rx_calls),
488                 4, STATS_FLAGS_FUNC, "rx_calls"},
489     { STATS_OFFSET32(rx_pkts),
490                 4, STATS_FLAGS_FUNC, "rx_pkts"},
491     { STATS_OFFSET32(rx_tpa_pkts),
492                 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
493     { STATS_OFFSET32(rx_soft_errors),
494                 4, STATS_FLAGS_FUNC, "rx_soft_errors"},
495     { STATS_OFFSET32(rx_hw_csum_errors),
496                 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
497     { STATS_OFFSET32(rx_ofld_frames_csum_ip),
498                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
499     { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
500                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
501     { STATS_OFFSET32(rx_budget_reached),
502                 4, STATS_FLAGS_FUNC, "rx_budget_reached"},
503     { STATS_OFFSET32(tx_pkts),
504                 4, STATS_FLAGS_FUNC, "tx_pkts"},
505     { STATS_OFFSET32(tx_soft_errors),
506                 4, STATS_FLAGS_FUNC, "tx_soft_errors"},
507     { STATS_OFFSET32(tx_ofld_frames_csum_ip),
508                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
509     { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
510                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
511     { STATS_OFFSET32(tx_ofld_frames_csum_udp),
512                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
513     { STATS_OFFSET32(tx_ofld_frames_lso),
514                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
515     { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
516                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
517     { STATS_OFFSET32(tx_encap_failures),
518                 4, STATS_FLAGS_FUNC, "tx_encap_failures"},
519     { STATS_OFFSET32(tx_hw_queue_full),
520                 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
521     { STATS_OFFSET32(tx_hw_max_queue_depth),
522                 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
523     { STATS_OFFSET32(tx_dma_mapping_failure),
524                 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
525     { STATS_OFFSET32(tx_max_drbr_queue_depth),
526                 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
527     { STATS_OFFSET32(tx_window_violation_std),
528                 4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
529     { STATS_OFFSET32(tx_window_violation_tso),
530                 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
531 #if 0
532     { STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
533                 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_ipv6"},
534     { STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
535                 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_not_tcp"},
536 #endif
537     { STATS_OFFSET32(tx_chain_lost_mbuf),
538                 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
539     { STATS_OFFSET32(tx_frames_deferred),
540                 4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
541     { STATS_OFFSET32(tx_queue_xoff),
542                 4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
543     { STATS_OFFSET32(mbuf_defrag_attempts),
544                 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
545     { STATS_OFFSET32(mbuf_defrag_failures),
546                 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
547     { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
548                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
549     { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
550                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
551     { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
552                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
553     { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
554                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
555     { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
556                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
557     { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
558                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
559     { STATS_OFFSET32(mbuf_alloc_tx),
560                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
561     { STATS_OFFSET32(mbuf_alloc_rx),
562                 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
563     { STATS_OFFSET32(mbuf_alloc_sge),
564                 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
565     { STATS_OFFSET32(mbuf_alloc_tpa),
566                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}
567 };
568 
569 static const struct {
570     uint32_t offset;
571     uint32_t size;
572     char string[STAT_NAME_LEN];
573 } bxe_eth_q_stats_arr[] = {
574     { Q_STATS_OFFSET32(total_bytes_received_hi),
575                 8, "rx_bytes" },
576     { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
577                 8, "rx_ucast_packets" },
578     { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
579                 8, "rx_mcast_packets" },
580     { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
581                 8, "rx_bcast_packets" },
582     { Q_STATS_OFFSET32(no_buff_discard_hi),
583                 8, "rx_discards" },
584     { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
585                 8, "tx_bytes" },
586     { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
587                 8, "tx_ucast_packets" },
588     { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
589                 8, "tx_mcast_packets" },
590     { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
591                 8, "tx_bcast_packets" },
592     { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
593                 8, "tpa_aggregations" },
594     { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
595                 8, "tpa_aggregated_frames"},
596     { Q_STATS_OFFSET32(total_tpa_bytes_hi),
597                 8, "tpa_bytes"},
598     { Q_STATS_OFFSET32(rx_calls),
599                 4, "rx_calls"},
600     { Q_STATS_OFFSET32(rx_pkts),
601                 4, "rx_pkts"},
602     { Q_STATS_OFFSET32(rx_tpa_pkts),
603                 4, "rx_tpa_pkts"},
604     { Q_STATS_OFFSET32(rx_soft_errors),
605                 4, "rx_soft_errors"},
606     { Q_STATS_OFFSET32(rx_hw_csum_errors),
607                 4, "rx_hw_csum_errors"},
608     { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
609                 4, "rx_ofld_frames_csum_ip"},
610     { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
611                 4, "rx_ofld_frames_csum_tcp_udp"},
612     { Q_STATS_OFFSET32(rx_budget_reached),
613                 4, "rx_budget_reached"},
614     { Q_STATS_OFFSET32(tx_pkts),
615                 4, "tx_pkts"},
616     { Q_STATS_OFFSET32(tx_soft_errors),
617                 4, "tx_soft_errors"},
618     { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
619                 4, "tx_ofld_frames_csum_ip"},
620     { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
621                 4, "tx_ofld_frames_csum_tcp"},
622     { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
623                 4, "tx_ofld_frames_csum_udp"},
624     { Q_STATS_OFFSET32(tx_ofld_frames_lso),
625                 4, "tx_ofld_frames_lso"},
626     { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
627                 4, "tx_ofld_frames_lso_hdr_splits"},
628     { Q_STATS_OFFSET32(tx_encap_failures),
629                 4, "tx_encap_failures"},
630     { Q_STATS_OFFSET32(tx_hw_queue_full),
631                 4, "tx_hw_queue_full"},
632     { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
633                 4, "tx_hw_max_queue_depth"},
634     { Q_STATS_OFFSET32(tx_dma_mapping_failure),
635                 4, "tx_dma_mapping_failure"},
636     { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
637                 4, "tx_max_drbr_queue_depth"},
638     { Q_STATS_OFFSET32(tx_window_violation_std),
639                 4, "tx_window_violation_std"},
640     { Q_STATS_OFFSET32(tx_window_violation_tso),
641                 4, "tx_window_violation_tso"},
642 #if 0
643     { Q_STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
644                 4, "tx_unsupported_tso_request_ipv6"},
645     { Q_STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
646                 4, "tx_unsupported_tso_request_not_tcp"},
647 #endif
648     { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
649                 4, "tx_chain_lost_mbuf"},
650     { Q_STATS_OFFSET32(tx_frames_deferred),
651                 4, "tx_frames_deferred"},
652     { Q_STATS_OFFSET32(tx_queue_xoff),
653                 4, "tx_queue_xoff"},
654     { Q_STATS_OFFSET32(mbuf_defrag_attempts),
655                 4, "mbuf_defrag_attempts"},
656     { Q_STATS_OFFSET32(mbuf_defrag_failures),
657                 4, "mbuf_defrag_failures"},
658     { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
659                 4, "mbuf_rx_bd_alloc_failed"},
660     { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
661                 4, "mbuf_rx_bd_mapping_failed"},
662     { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
663                 4, "mbuf_rx_tpa_alloc_failed"},
664     { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
665                 4, "mbuf_rx_tpa_mapping_failed"},
666     { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
667                 4, "mbuf_rx_sge_alloc_failed"},
668     { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
669                 4, "mbuf_rx_sge_mapping_failed"},
670     { Q_STATS_OFFSET32(mbuf_alloc_tx),
671                 4, "mbuf_alloc_tx"},
672     { Q_STATS_OFFSET32(mbuf_alloc_rx),
673                 4, "mbuf_alloc_rx"},
674     { Q_STATS_OFFSET32(mbuf_alloc_sge),
675                 4, "mbuf_alloc_sge"},
676     { Q_STATS_OFFSET32(mbuf_alloc_tpa),
677                 4, "mbuf_alloc_tpa"}
678 };
679 
680 #define BXE_NUM_ETH_STATS   ARRAY_SIZE(bxe_eth_stats_arr)
681 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
682 
683 
684 static void    bxe_cmng_fns_init(struct bxe_softc *sc,
685                                  uint8_t          read_cfg,
686                                  uint8_t          cmng_type);
687 static int     bxe_get_cmng_fns_mode(struct bxe_softc *sc);
688 static void    storm_memset_cmng(struct bxe_softc *sc,
689                                  struct cmng_init *cmng,
690                                  uint8_t          port);
691 static void    bxe_set_reset_global(struct bxe_softc *sc);
692 static void    bxe_set_reset_in_progress(struct bxe_softc *sc);
693 static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
694                                  int              engine);
695 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
696 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
697                                    uint8_t          *global,
698                                    uint8_t          print);
699 static void    bxe_int_disable(struct bxe_softc *sc);
700 static int     bxe_release_leader_lock(struct bxe_softc *sc);
701 static void    bxe_pf_disable(struct bxe_softc *sc);
702 static void    bxe_free_fp_buffers(struct bxe_softc *sc);
703 static inline void bxe_update_rx_prod(struct bxe_softc    *sc,
704                                       struct bxe_fastpath *fp,
705                                       uint16_t            rx_bd_prod,
706                                       uint16_t            rx_cq_prod,
707                                       uint16_t            rx_sge_prod);
708 static void    bxe_link_report_locked(struct bxe_softc *sc);
709 static void    bxe_link_report(struct bxe_softc *sc);
710 static void    bxe_link_status_update(struct bxe_softc *sc);
711 static void    bxe_periodic_callout_func(void *xsc);
712 static void    bxe_periodic_start(struct bxe_softc *sc);
713 static void    bxe_periodic_stop(struct bxe_softc *sc);
714 static int     bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
715                                     uint16_t prev_index,
716                                     uint16_t index);
717 static int     bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
718                                      int                 queue);
719 static int     bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
720                                      uint16_t            index);
721 static uint8_t bxe_txeof(struct bxe_softc *sc,
722                          struct bxe_fastpath *fp);
723 static void    bxe_task_fp(struct bxe_fastpath *fp);
724 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
725                                      struct mbuf      *m,
726                                      uint8_t          contents);
727 static int     bxe_alloc_mem(struct bxe_softc *sc);
728 static void    bxe_free_mem(struct bxe_softc *sc);
729 static int     bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
730 static void    bxe_free_fw_stats_mem(struct bxe_softc *sc);
731 static int     bxe_interrupt_attach(struct bxe_softc *sc);
732 static void    bxe_interrupt_detach(struct bxe_softc *sc);
733 static void    bxe_set_rx_mode(struct bxe_softc *sc);
734 static int     bxe_init_locked(struct bxe_softc *sc);
735 static int     bxe_stop_locked(struct bxe_softc *sc);
736 static __noinline int bxe_nic_load(struct bxe_softc *sc,
737                                    int              load_mode);
738 static __noinline int bxe_nic_unload(struct bxe_softc *sc,
739                                      uint32_t         unload_mode,
740                                      uint8_t          keep_link);
741 
742 static void bxe_handle_sp_tq(void *context, int pending);
743 static void bxe_handle_rx_mode_tq(void *context, int pending);
744 static void bxe_handle_fp_tq(void *context, int pending);
745 
746 
747 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
748 uint32_t
749 calc_crc32(uint8_t  *crc32_packet,
750            uint32_t crc32_length,
751            uint32_t crc32_seed,
752            uint8_t  complement)
753 {
754    uint32_t byte         = 0;
755    uint32_t bit          = 0;
756    uint8_t  msb          = 0;
757    uint32_t temp         = 0;
758    uint32_t shft         = 0;
759    uint8_t  current_byte = 0;
760    uint32_t crc32_result = crc32_seed;
761    const uint32_t CRC32_POLY = 0x1edc6f41;
762 
763    if ((crc32_packet == NULL) ||
764        (crc32_length == 0) ||
765        ((crc32_length % 8) != 0))
766     {
767         return (crc32_result);
768     }
769 
770     for (byte = 0; byte < crc32_length; byte = byte + 1)
771     {
772         current_byte = crc32_packet[byte];
773         for (bit = 0; bit < 8; bit = bit + 1)
774         {
775             /* msb = crc32_result[31]; */
776             msb = (uint8_t)(crc32_result >> 31);
777 
778             crc32_result = crc32_result << 1;
779 
780             /* it (msb != current_byte[bit]) */
781             if (msb != (0x1 & (current_byte >> bit)))
782             {
783                 crc32_result = crc32_result ^ CRC32_POLY;
784                 /* crc32_result[0] = 1 */
785                 crc32_result |= 1;
786             }
787         }
788     }
789 
790     /* Last step is to:
791      * 1. "mirror" every bit
792      * 2. swap the 4 bytes
793      * 3. complement each bit
794      */
795 
796     /* Mirror */
797     temp = crc32_result;
798     shft = sizeof(crc32_result) * 8 - 1;
799 
800     for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
801     {
802         temp <<= 1;
803         temp |= crc32_result & 1;
804         shft-- ;
805     }
806 
807     /* temp[31-bit] = crc32_result[bit] */
808     temp <<= shft;
809 
810     /* Swap */
811     /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
812     {
813         uint32_t t0, t1, t2, t3;
814         t0 = (0x000000ff & (temp >> 24));
815         t1 = (0x0000ff00 & (temp >> 8));
816         t2 = (0x00ff0000 & (temp << 8));
817         t3 = (0xff000000 & (temp << 24));
818         crc32_result = t0 | t1 | t2 | t3;
819     }
820 
821     /* Complement */
822     if (complement)
823     {
824         crc32_result = ~crc32_result;
825     }
826 
827     return (crc32_result);
828 }
829 
830 int
831 bxe_test_bit(int                    nr,
832              volatile unsigned long *addr)
833 {
834     return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
835 }
836 
837 void
838 bxe_set_bit(unsigned int           nr,
839             volatile unsigned long *addr)
840 {
841     atomic_set_acq_long(addr, (1 << nr));
842 }
843 
844 void
845 bxe_clear_bit(int                    nr,
846               volatile unsigned long *addr)
847 {
848     atomic_clear_acq_long(addr, (1 << nr));
849 }
850 
851 int
852 bxe_test_and_set_bit(int                    nr,
853                        volatile unsigned long *addr)
854 {
855     unsigned long x;
856     nr = (1 << nr);
857     do {
858         x = *addr;
859     } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
860     // if (x & nr) bit_was_set; else bit_was_not_set;
861     return (x & nr);
862 }
863 
864 int
865 bxe_test_and_clear_bit(int                    nr,
866                        volatile unsigned long *addr)
867 {
868     unsigned long x;
869     nr = (1 << nr);
870     do {
871         x = *addr;
872     } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
873     // if (x & nr) bit_was_set; else bit_was_not_set;
874     return (x & nr);
875 }
876 
877 int
878 bxe_cmpxchg(volatile int *addr,
879             int          old,
880             int          new)
881 {
882     int x;
883     do {
884         x = *addr;
885     } while (atomic_cmpset_acq_int(addr, old, new) == 0);
886     return (x);
887 }
888 
889 /*
890  * Get DMA memory from the OS.
891  *
892  * Validates that the OS has provided DMA buffers in response to a
893  * bus_dmamap_load call and saves the physical address of those buffers.
894  * When the callback is used the OS will return 0 for the mapping function
895  * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
896  * failures back to the caller.
897  *
898  * Returns:
899  *   Nothing.
900  */
901 static void
902 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
903 {
904     struct bxe_dma *dma = arg;
905 
906     if (error) {
907         dma->paddr = 0;
908         dma->nseg  = 0;
909         BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
910     } else {
911         dma->paddr = segs->ds_addr;
912         dma->nseg  = nseg;
913 #if 0
914         BLOGD(dma->sc, DBG_LOAD,,
915               "DMA alloc '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
916               dma->msg, dma->vaddr, (void *)dma->paddr,
917               dma->nseg, dma->size);
918 #endif
919     }
920 }
921 
922 /*
923  * Allocate a block of memory and map it for DMA. No partial completions
924  * allowed and release any resources acquired if we can't acquire all
925  * resources.
926  *
927  * Returns:
928  *   0 = Success, !0 = Failure
929  */
930 int
931 bxe_dma_alloc(struct bxe_softc *sc,
932               bus_size_t       size,
933               struct bxe_dma   *dma,
934               const char       *msg)
935 {
936     int rc;
937 
938     if (dma->size > 0) {
939         BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
940               (unsigned long)dma->size);
941         return (1);
942     }
943 
944     memset(dma, 0, sizeof(*dma)); /* sanity */
945     dma->sc   = sc;
946     dma->size = size;
947     snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
948 
949     rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
950                             BCM_PAGE_SIZE,      /* alignment */
951                             0,                  /* boundary limit */
952                             BUS_SPACE_MAXADDR,  /* restricted low */
953                             BUS_SPACE_MAXADDR,  /* restricted hi */
954                             NULL,               /* addr filter() */
955                             NULL,               /* addr filter() arg */
956                             size,               /* max map size */
957                             1,                  /* num discontinuous */
958                             size,               /* max seg size */
959                             BUS_DMA_ALLOCNOW,   /* flags */
960                             NULL,               /* lock() */
961                             NULL,               /* lock() arg */
962                             &dma->tag);         /* returned dma tag */
963     if (rc != 0) {
964         BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
965         memset(dma, 0, sizeof(*dma));
966         return (1);
967     }
968 
969     rc = bus_dmamem_alloc(dma->tag,
970                           (void **)&dma->vaddr,
971                           (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
972                           &dma->map);
973     if (rc != 0) {
974         BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
975         bus_dma_tag_destroy(dma->tag);
976         memset(dma, 0, sizeof(*dma));
977         return (1);
978     }
979 
980     rc = bus_dmamap_load(dma->tag,
981                          dma->map,
982                          dma->vaddr,
983                          size,
984                          bxe_dma_map_addr, /* BLOGD in here */
985                          dma,
986                          BUS_DMA_NOWAIT);
987     if (rc != 0) {
988         BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
989         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
990         bus_dma_tag_destroy(dma->tag);
991         memset(dma, 0, sizeof(*dma));
992         return (1);
993     }
994 
995     return (0);
996 }
997 
998 void
999 bxe_dma_free(struct bxe_softc *sc,
1000              struct bxe_dma   *dma)
1001 {
1002     if (dma->size > 0) {
1003 #if 0
1004         BLOGD(sc, DBG_LOAD,
1005               "DMA free '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
1006               dma->msg, dma->vaddr, (void *)dma->paddr,
1007               dma->nseg, dma->size);
1008 #endif
1009 
1010         DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
1011 
1012         bus_dmamap_sync(dma->tag, dma->map,
1013                         (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
1014         bus_dmamap_unload(dma->tag, dma->map);
1015         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1016         bus_dma_tag_destroy(dma->tag);
1017     }
1018 
1019     memset(dma, 0, sizeof(*dma));
1020 }
1021 
1022 /*
1023  * These indirect read and write routines are only during init.
1024  * The locking is handled by the MCP.
1025  */
1026 
1027 void
1028 bxe_reg_wr_ind(struct bxe_softc *sc,
1029                uint32_t         addr,
1030                uint32_t         val)
1031 {
1032     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1033     pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
1034     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1035 }
1036 
1037 uint32_t
1038 bxe_reg_rd_ind(struct bxe_softc *sc,
1039                uint32_t         addr)
1040 {
1041     uint32_t val;
1042 
1043     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1044     val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
1045     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1046 
1047     return (val);
1048 }
1049 
1050 #if 0
1051 void bxe_dp_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int msglvl)
1052 {
1053     uint32_t src_type = dmae->opcode & DMAE_COMMAND_SRC;
1054 
1055     switch (dmae->opcode & DMAE_COMMAND_DST) {
1056     case DMAE_CMD_DST_PCI:
1057         if (src_type == DMAE_CMD_SRC_PCI)
1058             DP(msglvl, "DMAE: opcode 0x%08x\n"
1059                "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
1060                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1061                dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1062                dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1063                dmae->comp_addr_hi, dmae->comp_addr_lo,
1064                dmae->comp_val);
1065         else
1066             DP(msglvl, "DMAE: opcode 0x%08x\n"
1067                "src [%08x], len [%d*4], dst [%x:%08x]\n"
1068                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1069                dmae->opcode, dmae->src_addr_lo >> 2,
1070                dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1071                dmae->comp_addr_hi, dmae->comp_addr_lo,
1072                dmae->comp_val);
1073         break;
1074     case DMAE_CMD_DST_GRC:
1075         if (src_type == DMAE_CMD_SRC_PCI)
1076             DP(msglvl, "DMAE: opcode 0x%08x\n"
1077                "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
1078                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1079                dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1080                dmae->len, dmae->dst_addr_lo >> 2,
1081                dmae->comp_addr_hi, dmae->comp_addr_lo,
1082                dmae->comp_val);
1083         else
1084             DP(msglvl, "DMAE: opcode 0x%08x\n"
1085                "src [%08x], len [%d*4], dst [%08x]\n"
1086                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1087                dmae->opcode, dmae->src_addr_lo >> 2,
1088                dmae->len, dmae->dst_addr_lo >> 2,
1089                dmae->comp_addr_hi, dmae->comp_addr_lo,
1090                dmae->comp_val);
1091         break;
1092     default:
1093         if (src_type == DMAE_CMD_SRC_PCI)
1094             DP(msglvl, "DMAE: opcode 0x%08x\n"
1095                "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
1096                "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1097                dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1098                dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1099                dmae->comp_val);
1100         else
1101             DP(msglvl, "DMAE: opcode 0x%08x\n"
1102                "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
1103                "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1104                dmae->opcode, dmae->src_addr_lo >> 2,
1105                dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1106                dmae->comp_val);
1107         break;
1108     }
1109 
1110 }
1111 #endif
1112 
1113 static int
1114 bxe_acquire_hw_lock(struct bxe_softc *sc,
1115                     uint32_t         resource)
1116 {
1117     uint32_t lock_status;
1118     uint32_t resource_bit = (1 << resource);
1119     int func = SC_FUNC(sc);
1120     uint32_t hw_lock_control_reg;
1121     int cnt;
1122 
1123     /* validate the resource is within range */
1124     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1125         BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1126         return (-1);
1127     }
1128 
1129     if (func <= 5) {
1130         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1131     } else {
1132         hw_lock_control_reg =
1133                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1134     }
1135 
1136     /* validate the resource is not already taken */
1137     lock_status = REG_RD(sc, hw_lock_control_reg);
1138     if (lock_status & resource_bit) {
1139         BLOGE(sc, "resource in use (status 0x%x bit 0x%x)\n",
1140               lock_status, resource_bit);
1141         return (-1);
1142     }
1143 
1144     /* try every 5ms for 5 seconds */
1145     for (cnt = 0; cnt < 1000; cnt++) {
1146         REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1147         lock_status = REG_RD(sc, hw_lock_control_reg);
1148         if (lock_status & resource_bit) {
1149             return (0);
1150         }
1151         DELAY(5000);
1152     }
1153 
1154     BLOGE(sc, "Resource lock timeout!\n");
1155     return (-1);
1156 }
1157 
1158 static int
1159 bxe_release_hw_lock(struct bxe_softc *sc,
1160                     uint32_t         resource)
1161 {
1162     uint32_t lock_status;
1163     uint32_t resource_bit = (1 << resource);
1164     int func = SC_FUNC(sc);
1165     uint32_t hw_lock_control_reg;
1166 
1167     /* validate the resource is within range */
1168     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1169         BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1170         return (-1);
1171     }
1172 
1173     if (func <= 5) {
1174         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1175     } else {
1176         hw_lock_control_reg =
1177                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1178     }
1179 
1180     /* validate the resource is currently taken */
1181     lock_status = REG_RD(sc, hw_lock_control_reg);
1182     if (!(lock_status & resource_bit)) {
1183         BLOGE(sc, "resource not in use (status 0x%x bit 0x%x)\n",
1184               lock_status, resource_bit);
1185         return (-1);
1186     }
1187 
1188     REG_WR(sc, hw_lock_control_reg, resource_bit);
1189     return (0);
1190 }
1191 
1192 /*
1193  * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1194  * had we done things the other way around, if two pfs from the same port
1195  * would attempt to access nvram at the same time, we could run into a
1196  * scenario such as:
1197  * pf A takes the port lock.
1198  * pf B succeeds in taking the same lock since they are from the same port.
1199  * pf A takes the per pf misc lock. Performs eeprom access.
1200  * pf A finishes. Unlocks the per pf misc lock.
1201  * Pf B takes the lock and proceeds to perform it's own access.
1202  * pf A unlocks the per port lock, while pf B is still working (!).
1203  * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1204  * access corrupted by pf B).*
1205  */
1206 static int
1207 bxe_acquire_nvram_lock(struct bxe_softc *sc)
1208 {
1209     int port = SC_PORT(sc);
1210     int count, i;
1211     uint32_t val = 0;
1212 
1213     /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1214     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1215 
1216     /* adjust timeout for emulation/FPGA */
1217     count = NVRAM_TIMEOUT_COUNT;
1218     if (CHIP_REV_IS_SLOW(sc)) {
1219         count *= 100;
1220     }
1221 
1222     /* request access to nvram interface */
1223     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1224            (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1225 
1226     for (i = 0; i < count*10; i++) {
1227         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1228         if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1229             break;
1230         }
1231 
1232         DELAY(5);
1233     }
1234 
1235     if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1236         BLOGE(sc, "Cannot get access to nvram interface\n");
1237         return (-1);
1238     }
1239 
1240     return (0);
1241 }
1242 
1243 static int
1244 bxe_release_nvram_lock(struct bxe_softc *sc)
1245 {
1246     int port = SC_PORT(sc);
1247     int count, i;
1248     uint32_t val = 0;
1249 
1250     /* adjust timeout for emulation/FPGA */
1251     count = NVRAM_TIMEOUT_COUNT;
1252     if (CHIP_REV_IS_SLOW(sc)) {
1253         count *= 100;
1254     }
1255 
1256     /* relinquish nvram interface */
1257     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1258            (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1259 
1260     for (i = 0; i < count*10; i++) {
1261         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1262         if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1263             break;
1264         }
1265 
1266         DELAY(5);
1267     }
1268 
1269     if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1270         BLOGE(sc, "Cannot free access to nvram interface\n");
1271         return (-1);
1272     }
1273 
1274     /* release HW lock: protect against other PFs in PF Direct Assignment */
1275     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1276 
1277     return (0);
1278 }
1279 
1280 static void
1281 bxe_enable_nvram_access(struct bxe_softc *sc)
1282 {
1283     uint32_t val;
1284 
1285     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1286 
1287     /* enable both bits, even on read */
1288     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1289            (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1290 }
1291 
1292 static void
1293 bxe_disable_nvram_access(struct bxe_softc *sc)
1294 {
1295     uint32_t val;
1296 
1297     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1298 
1299     /* disable both bits, even after read */
1300     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1301            (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1302                     MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1303 }
1304 
1305 static int
1306 bxe_nvram_read_dword(struct bxe_softc *sc,
1307                      uint32_t         offset,
1308                      uint32_t         *ret_val,
1309                      uint32_t         cmd_flags)
1310 {
1311     int count, i, rc;
1312     uint32_t val;
1313 
1314     /* build the command word */
1315     cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1316 
1317     /* need to clear DONE bit separately */
1318     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1319 
1320     /* address of the NVRAM to read from */
1321     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1322            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1323 
1324     /* issue a read command */
1325     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1326 
1327     /* adjust timeout for emulation/FPGA */
1328     count = NVRAM_TIMEOUT_COUNT;
1329     if (CHIP_REV_IS_SLOW(sc)) {
1330         count *= 100;
1331     }
1332 
1333     /* wait for completion */
1334     *ret_val = 0;
1335     rc = -1;
1336     for (i = 0; i < count; i++) {
1337         DELAY(5);
1338         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1339 
1340         if (val & MCPR_NVM_COMMAND_DONE) {
1341             val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1342             /* we read nvram data in cpu order
1343              * but ethtool sees it as an array of bytes
1344              * converting to big-endian will do the work
1345              */
1346             *ret_val = htobe32(val);
1347             rc = 0;
1348             break;
1349         }
1350     }
1351 
1352     if (rc == -1) {
1353         BLOGE(sc, "nvram read timeout expired\n");
1354     }
1355 
1356     return (rc);
1357 }
1358 
1359 static int
1360 bxe_nvram_read(struct bxe_softc *sc,
1361                uint32_t         offset,
1362                uint8_t          *ret_buf,
1363                int              buf_size)
1364 {
1365     uint32_t cmd_flags;
1366     uint32_t val;
1367     int rc;
1368 
1369     if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1370         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1371               offset, buf_size);
1372         return (-1);
1373     }
1374 
1375     if ((offset + buf_size) > sc->devinfo.flash_size) {
1376         BLOGE(sc, "Invalid parameter, "
1377                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1378               offset, buf_size, sc->devinfo.flash_size);
1379         return (-1);
1380     }
1381 
1382     /* request access to nvram interface */
1383     rc = bxe_acquire_nvram_lock(sc);
1384     if (rc) {
1385         return (rc);
1386     }
1387 
1388     /* enable access to nvram interface */
1389     bxe_enable_nvram_access(sc);
1390 
1391     /* read the first word(s) */
1392     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1393     while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1394         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1395         memcpy(ret_buf, &val, 4);
1396 
1397         /* advance to the next dword */
1398         offset += sizeof(uint32_t);
1399         ret_buf += sizeof(uint32_t);
1400         buf_size -= sizeof(uint32_t);
1401         cmd_flags = 0;
1402     }
1403 
1404     if (rc == 0) {
1405         cmd_flags |= MCPR_NVM_COMMAND_LAST;
1406         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1407         memcpy(ret_buf, &val, 4);
1408     }
1409 
1410     /* disable access to nvram interface */
1411     bxe_disable_nvram_access(sc);
1412     bxe_release_nvram_lock(sc);
1413 
1414     return (rc);
1415 }
1416 
1417 static int
1418 bxe_nvram_write_dword(struct bxe_softc *sc,
1419                       uint32_t         offset,
1420                       uint32_t         val,
1421                       uint32_t         cmd_flags)
1422 {
1423     int count, i, rc;
1424 
1425     /* build the command word */
1426     cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1427 
1428     /* need to clear DONE bit separately */
1429     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1430 
1431     /* write the data */
1432     REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1433 
1434     /* address of the NVRAM to write to */
1435     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1436            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1437 
1438     /* issue the write command */
1439     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1440 
1441     /* adjust timeout for emulation/FPGA */
1442     count = NVRAM_TIMEOUT_COUNT;
1443     if (CHIP_REV_IS_SLOW(sc)) {
1444         count *= 100;
1445     }
1446 
1447     /* wait for completion */
1448     rc = -1;
1449     for (i = 0; i < count; i++) {
1450         DELAY(5);
1451         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1452         if (val & MCPR_NVM_COMMAND_DONE) {
1453             rc = 0;
1454             break;
1455         }
1456     }
1457 
1458     if (rc == -1) {
1459         BLOGE(sc, "nvram write timeout expired\n");
1460     }
1461 
1462     return (rc);
1463 }
1464 
1465 #define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1466 
1467 static int
1468 bxe_nvram_write1(struct bxe_softc *sc,
1469                  uint32_t         offset,
1470                  uint8_t          *data_buf,
1471                  int              buf_size)
1472 {
1473     uint32_t cmd_flags;
1474     uint32_t align_offset;
1475     uint32_t val;
1476     int rc;
1477 
1478     if ((offset + buf_size) > sc->devinfo.flash_size) {
1479         BLOGE(sc, "Invalid parameter, "
1480                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1481               offset, buf_size, sc->devinfo.flash_size);
1482         return (-1);
1483     }
1484 
1485     /* request access to nvram interface */
1486     rc = bxe_acquire_nvram_lock(sc);
1487     if (rc) {
1488         return (rc);
1489     }
1490 
1491     /* enable access to nvram interface */
1492     bxe_enable_nvram_access(sc);
1493 
1494     cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1495     align_offset = (offset & ~0x03);
1496     rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1497 
1498     if (rc == 0) {
1499         val &= ~(0xff << BYTE_OFFSET(offset));
1500         val |= (*data_buf << BYTE_OFFSET(offset));
1501 
1502         /* nvram data is returned as an array of bytes
1503          * convert it back to cpu order
1504          */
1505         val = be32toh(val);
1506 
1507         rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1508     }
1509 
1510     /* disable access to nvram interface */
1511     bxe_disable_nvram_access(sc);
1512     bxe_release_nvram_lock(sc);
1513 
1514     return (rc);
1515 }
1516 
1517 static int
1518 bxe_nvram_write(struct bxe_softc *sc,
1519                 uint32_t         offset,
1520                 uint8_t          *data_buf,
1521                 int              buf_size)
1522 {
1523     uint32_t cmd_flags;
1524     uint32_t val;
1525     uint32_t written_so_far;
1526     int rc;
1527 
1528     if (buf_size == 1) {
1529         return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1530     }
1531 
1532     if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1533         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1534               offset, buf_size);
1535         return (-1);
1536     }
1537 
1538     if (buf_size == 0) {
1539         return (0); /* nothing to do */
1540     }
1541 
1542     if ((offset + buf_size) > sc->devinfo.flash_size) {
1543         BLOGE(sc, "Invalid parameter, "
1544                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1545               offset, buf_size, sc->devinfo.flash_size);
1546         return (-1);
1547     }
1548 
1549     /* request access to nvram interface */
1550     rc = bxe_acquire_nvram_lock(sc);
1551     if (rc) {
1552         return (rc);
1553     }
1554 
1555     /* enable access to nvram interface */
1556     bxe_enable_nvram_access(sc);
1557 
1558     written_so_far = 0;
1559     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1560     while ((written_so_far < buf_size) && (rc == 0)) {
1561         if (written_so_far == (buf_size - sizeof(uint32_t))) {
1562             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1563         } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1564             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1565         } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1566             cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1567         }
1568 
1569         memcpy(&val, data_buf, 4);
1570 
1571         rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1572 
1573         /* advance to the next dword */
1574         offset += sizeof(uint32_t);
1575         data_buf += sizeof(uint32_t);
1576         written_so_far += sizeof(uint32_t);
1577         cmd_flags = 0;
1578     }
1579 
1580     /* disable access to nvram interface */
1581     bxe_disable_nvram_access(sc);
1582     bxe_release_nvram_lock(sc);
1583 
1584     return (rc);
1585 }
1586 
1587 /* copy command into DMAE command memory and set DMAE command Go */
1588 void
1589 bxe_post_dmae(struct bxe_softc    *sc,
1590               struct dmae_command *dmae,
1591               int                 idx)
1592 {
1593     uint32_t cmd_offset;
1594     int i;
1595 
1596     cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx));
1597     for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) {
1598         REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1599     }
1600 
1601     REG_WR(sc, dmae_reg_go_c[idx], 1);
1602 }
1603 
1604 uint32_t
1605 bxe_dmae_opcode_add_comp(uint32_t opcode,
1606                          uint8_t  comp_type)
1607 {
1608     return (opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
1609                       DMAE_COMMAND_C_TYPE_ENABLE));
1610 }
1611 
1612 uint32_t
1613 bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1614 {
1615     return (opcode & ~DMAE_COMMAND_SRC_RESET);
1616 }
1617 
1618 uint32_t
1619 bxe_dmae_opcode(struct bxe_softc *sc,
1620                 uint8_t          src_type,
1621                 uint8_t          dst_type,
1622                 uint8_t          with_comp,
1623                 uint8_t          comp_type)
1624 {
1625     uint32_t opcode = 0;
1626 
1627     opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
1628                (dst_type << DMAE_COMMAND_DST_SHIFT));
1629 
1630     opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET);
1631 
1632     opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1633 
1634     opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) |
1635                (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT));
1636 
1637     opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
1638 
1639 #ifdef __BIG_ENDIAN
1640     opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1641 #else
1642     opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1643 #endif
1644 
1645     if (with_comp) {
1646         opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1647     }
1648 
1649     return (opcode);
1650 }
1651 
1652 static void
1653 bxe_prep_dmae_with_comp(struct bxe_softc    *sc,
1654                         struct dmae_command *dmae,
1655                         uint8_t             src_type,
1656                         uint8_t             dst_type)
1657 {
1658     memset(dmae, 0, sizeof(struct dmae_command));
1659 
1660     /* set the opcode */
1661     dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1662                                    TRUE, DMAE_COMP_PCI);
1663 
1664     /* fill in the completion parameters */
1665     dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1666     dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1667     dmae->comp_val     = DMAE_COMP_VAL;
1668 }
1669 
1670 /* issue a DMAE command over the init channel and wait for completion */
1671 static int
1672 bxe_issue_dmae_with_comp(struct bxe_softc    *sc,
1673                          struct dmae_command *dmae)
1674 {
1675     uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1676     int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1677 
1678     BXE_DMAE_LOCK(sc);
1679 
1680     /* reset completion */
1681     *wb_comp = 0;
1682 
1683     /* post the command on the channel used for initializations */
1684     bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1685 
1686     /* wait for completion */
1687     DELAY(5);
1688 
1689     while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1690         if (!timeout ||
1691             (sc->recovery_state != BXE_RECOVERY_DONE &&
1692              sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1693             BLOGE(sc, "DMAE timeout!\n");
1694             BXE_DMAE_UNLOCK(sc);
1695             return (DMAE_TIMEOUT);
1696         }
1697 
1698         timeout--;
1699         DELAY(50);
1700     }
1701 
1702     if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1703         BLOGE(sc, "DMAE PCI error!\n");
1704         BXE_DMAE_UNLOCK(sc);
1705         return (DMAE_PCI_ERROR);
1706     }
1707 
1708     BXE_DMAE_UNLOCK(sc);
1709     return (0);
1710 }
1711 
1712 void
1713 bxe_read_dmae(struct bxe_softc *sc,
1714               uint32_t         src_addr,
1715               uint32_t         len32)
1716 {
1717     struct dmae_command dmae;
1718     uint32_t *data;
1719     int i, rc;
1720 
1721     DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1722 
1723     if (!sc->dmae_ready) {
1724         data = BXE_SP(sc, wb_data[0]);
1725 
1726         for (i = 0; i < len32; i++) {
1727             data[i] = (CHIP_IS_E1(sc)) ?
1728                           bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1729                           REG_RD(sc, (src_addr + (i * 4)));
1730         }
1731 
1732         return;
1733     }
1734 
1735     /* set opcode and fixed command fields */
1736     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1737 
1738     /* fill in addresses and len */
1739     dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1740     dmae.src_addr_hi = 0;
1741     dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1742     dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1743     dmae.len         = len32;
1744 
1745     /* issue the command and wait for completion */
1746     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1747         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1748     };
1749 }
1750 
1751 void
1752 bxe_write_dmae(struct bxe_softc *sc,
1753                bus_addr_t       dma_addr,
1754                uint32_t         dst_addr,
1755                uint32_t         len32)
1756 {
1757     struct dmae_command dmae;
1758     int rc;
1759 
1760     if (!sc->dmae_ready) {
1761         DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1762 
1763         if (CHIP_IS_E1(sc)) {
1764             ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1765         } else {
1766             ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1767         }
1768 
1769         return;
1770     }
1771 
1772     /* set opcode and fixed command fields */
1773     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1774 
1775     /* fill in addresses and len */
1776     dmae.src_addr_lo = U64_LO(dma_addr);
1777     dmae.src_addr_hi = U64_HI(dma_addr);
1778     dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1779     dmae.dst_addr_hi = 0;
1780     dmae.len         = len32;
1781 
1782     /* issue the command and wait for completion */
1783     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1784         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1785     }
1786 }
1787 
1788 void
1789 bxe_write_dmae_phys_len(struct bxe_softc *sc,
1790                         bus_addr_t       phys_addr,
1791                         uint32_t         addr,
1792                         uint32_t         len)
1793 {
1794     int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1795     int offset = 0;
1796 
1797     while (len > dmae_wr_max) {
1798         bxe_write_dmae(sc,
1799                        (phys_addr + offset), /* src DMA address */
1800                        (addr + offset),      /* dst GRC address */
1801                        dmae_wr_max);
1802         offset += (dmae_wr_max * 4);
1803         len -= dmae_wr_max;
1804     }
1805 
1806     bxe_write_dmae(sc,
1807                    (phys_addr + offset), /* src DMA address */
1808                    (addr + offset),      /* dst GRC address */
1809                    len);
1810 }
1811 
1812 void
1813 bxe_set_ctx_validation(struct bxe_softc   *sc,
1814                        struct eth_context *cxt,
1815                        uint32_t           cid)
1816 {
1817     /* ustorm cxt validation */
1818     cxt->ustorm_ag_context.cdu_usage =
1819         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1820             CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1821     /* xcontext validation */
1822     cxt->xstorm_ag_context.cdu_reserved =
1823         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1824             CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1825 }
1826 
1827 static void
1828 bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1829                             uint8_t          port,
1830                             uint8_t          fw_sb_id,
1831                             uint8_t          sb_index,
1832                             uint8_t          ticks)
1833 {
1834     uint32_t addr =
1835         (BAR_CSTRORM_INTMEM +
1836          CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1837 
1838     REG_WR8(sc, addr, ticks);
1839 
1840     BLOGD(sc, DBG_LOAD,
1841           "port %d fw_sb_id %d sb_index %d ticks %d\n",
1842           port, fw_sb_id, sb_index, ticks);
1843 }
1844 
1845 static void
1846 bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1847                             uint8_t          port,
1848                             uint16_t         fw_sb_id,
1849                             uint8_t          sb_index,
1850                             uint8_t          disable)
1851 {
1852     uint32_t enable_flag =
1853         (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1854     uint32_t addr =
1855         (BAR_CSTRORM_INTMEM +
1856          CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1857     uint8_t flags;
1858 
1859     /* clear and set */
1860     flags = REG_RD8(sc, addr);
1861     flags &= ~HC_INDEX_DATA_HC_ENABLED;
1862     flags |= enable_flag;
1863     REG_WR8(sc, addr, flags);
1864 
1865     BLOGD(sc, DBG_LOAD,
1866           "port %d fw_sb_id %d sb_index %d disable %d\n",
1867           port, fw_sb_id, sb_index, disable);
1868 }
1869 
1870 void
1871 bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1872                              uint8_t          fw_sb_id,
1873                              uint8_t          sb_index,
1874                              uint8_t          disable,
1875                              uint16_t         usec)
1876 {
1877     int port = SC_PORT(sc);
1878     uint8_t ticks = (usec / 4); /* XXX ??? */
1879 
1880     bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1881 
1882     disable = (disable) ? 1 : ((usec) ? 0 : 1);
1883     bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1884 }
1885 
1886 void
1887 elink_cb_udelay(struct bxe_softc *sc,
1888                 uint32_t         usecs)
1889 {
1890     DELAY(usecs);
1891 }
1892 
1893 uint32_t
1894 elink_cb_reg_read(struct bxe_softc *sc,
1895                   uint32_t         reg_addr)
1896 {
1897     return (REG_RD(sc, reg_addr));
1898 }
1899 
1900 void
1901 elink_cb_reg_write(struct bxe_softc *sc,
1902                    uint32_t         reg_addr,
1903                    uint32_t         val)
1904 {
1905     REG_WR(sc, reg_addr, val);
1906 }
1907 
1908 void
1909 elink_cb_reg_wb_write(struct bxe_softc *sc,
1910                       uint32_t         offset,
1911                       uint32_t         *wb_write,
1912                       uint16_t         len)
1913 {
1914     REG_WR_DMAE(sc, offset, wb_write, len);
1915 }
1916 
1917 void
1918 elink_cb_reg_wb_read(struct bxe_softc *sc,
1919                      uint32_t         offset,
1920                      uint32_t         *wb_write,
1921                      uint16_t         len)
1922 {
1923     REG_RD_DMAE(sc, offset, wb_write, len);
1924 }
1925 
1926 uint8_t
1927 elink_cb_path_id(struct bxe_softc *sc)
1928 {
1929     return (SC_PATH(sc));
1930 }
1931 
1932 void
1933 elink_cb_event_log(struct bxe_softc     *sc,
1934                    const elink_log_id_t elink_log_id,
1935                    ...)
1936 {
1937     /* XXX */
1938 #if 0
1939     //va_list ap;
1940     va_start(ap, elink_log_id);
1941     _XXX_(sc, lm_log_id, ap);
1942     va_end(ap);
1943 #endif
1944     BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1945 }
1946 
1947 static int
1948 bxe_set_spio(struct bxe_softc *sc,
1949              int              spio,
1950              uint32_t         mode)
1951 {
1952     uint32_t spio_reg;
1953 
1954     /* Only 2 SPIOs are configurable */
1955     if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1956         BLOGE(sc, "Invalid SPIO 0x%x\n", spio);
1957         return (-1);
1958     }
1959 
1960     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1961 
1962     /* read SPIO and mask except the float bits */
1963     spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1964 
1965     switch (mode) {
1966     case MISC_SPIO_OUTPUT_LOW:
1967         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1968         /* clear FLOAT and set CLR */
1969         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1970         spio_reg |=  (spio << MISC_SPIO_CLR_POS);
1971         break;
1972 
1973     case MISC_SPIO_OUTPUT_HIGH:
1974         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1975         /* clear FLOAT and set SET */
1976         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1977         spio_reg |=  (spio << MISC_SPIO_SET_POS);
1978         break;
1979 
1980     case MISC_SPIO_INPUT_HI_Z:
1981         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1982         /* set FLOAT */
1983         spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1984         break;
1985 
1986     default:
1987         break;
1988     }
1989 
1990     REG_WR(sc, MISC_REG_SPIO, spio_reg);
1991     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1992 
1993     return (0);
1994 }
1995 
1996 static int
1997 bxe_gpio_read(struct bxe_softc *sc,
1998               int              gpio_num,
1999               uint8_t          port)
2000 {
2001     /* The GPIO should be swapped if swap register is set and active */
2002     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2003                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2004     int gpio_shift = (gpio_num +
2005                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2006     uint32_t gpio_mask = (1 << gpio_shift);
2007     uint32_t gpio_reg;
2008 
2009     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2010         BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2011         return (-1);
2012     }
2013 
2014     /* read GPIO value */
2015     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2016 
2017     /* get the requested pin value */
2018     return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
2019 }
2020 
2021 static int
2022 bxe_gpio_write(struct bxe_softc *sc,
2023                int              gpio_num,
2024                uint32_t         mode,
2025                uint8_t          port)
2026 {
2027     /* The GPIO should be swapped if swap register is set and active */
2028     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2029                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2030     int gpio_shift = (gpio_num +
2031                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2032     uint32_t gpio_mask = (1 << gpio_shift);
2033     uint32_t gpio_reg;
2034 
2035     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2036         BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2037         return (-1);
2038     }
2039 
2040     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2041 
2042     /* read GPIO and mask except the float bits */
2043     gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2044 
2045     switch (mode) {
2046     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2047         BLOGD(sc, DBG_PHY,
2048               "Set GPIO %d (shift %d) -> output low\n",
2049               gpio_num, gpio_shift);
2050         /* clear FLOAT and set CLR */
2051         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2052         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2053         break;
2054 
2055     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2056         BLOGD(sc, DBG_PHY,
2057               "Set GPIO %d (shift %d) -> output high\n",
2058               gpio_num, gpio_shift);
2059         /* clear FLOAT and set SET */
2060         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2061         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2062         break;
2063 
2064     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2065         BLOGD(sc, DBG_PHY,
2066               "Set GPIO %d (shift %d) -> input\n",
2067               gpio_num, gpio_shift);
2068         /* set FLOAT */
2069         gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2070         break;
2071 
2072     default:
2073         break;
2074     }
2075 
2076     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2077     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2078 
2079     return (0);
2080 }
2081 
2082 static int
2083 bxe_gpio_mult_write(struct bxe_softc *sc,
2084                     uint8_t          pins,
2085                     uint32_t         mode)
2086 {
2087     uint32_t gpio_reg;
2088 
2089     /* any port swapping should be handled by caller */
2090 
2091     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2092 
2093     /* read GPIO and mask except the float bits */
2094     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2095     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2096     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2097     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2098 
2099     switch (mode) {
2100     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2101         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
2102         /* set CLR */
2103         gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2104         break;
2105 
2106     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2107         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
2108         /* set SET */
2109         gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2110         break;
2111 
2112     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2113         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
2114         /* set FLOAT */
2115         gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2116         break;
2117 
2118     default:
2119         BLOGE(sc, "Invalid GPIO mode assignment %d\n", mode);
2120         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2121         return (-1);
2122     }
2123 
2124     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2125     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2126 
2127     return (0);
2128 }
2129 
2130 static int
2131 bxe_gpio_int_write(struct bxe_softc *sc,
2132                    int              gpio_num,
2133                    uint32_t         mode,
2134                    uint8_t          port)
2135 {
2136     /* The GPIO should be swapped if swap register is set and active */
2137     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2138                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2139     int gpio_shift = (gpio_num +
2140                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2141     uint32_t gpio_mask = (1 << gpio_shift);
2142     uint32_t gpio_reg;
2143 
2144     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2145         BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2146         return (-1);
2147     }
2148 
2149     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2150 
2151     /* read GPIO int */
2152     gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2153 
2154     switch (mode) {
2155     case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2156         BLOGD(sc, DBG_PHY,
2157               "Clear GPIO INT %d (shift %d) -> output low\n",
2158               gpio_num, gpio_shift);
2159         /* clear SET and set CLR */
2160         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2161         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2162         break;
2163 
2164     case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2165         BLOGD(sc, DBG_PHY,
2166               "Set GPIO INT %d (shift %d) -> output high\n",
2167               gpio_num, gpio_shift);
2168         /* clear CLR and set SET */
2169         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2170         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2171         break;
2172 
2173     default:
2174         break;
2175     }
2176 
2177     REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2178     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2179 
2180     return (0);
2181 }
2182 
2183 uint32_t
2184 elink_cb_gpio_read(struct bxe_softc *sc,
2185                    uint16_t         gpio_num,
2186                    uint8_t          port)
2187 {
2188     return (bxe_gpio_read(sc, gpio_num, port));
2189 }
2190 
2191 uint8_t
2192 elink_cb_gpio_write(struct bxe_softc *sc,
2193                     uint16_t         gpio_num,
2194                     uint8_t          mode, /* 0=low 1=high */
2195                     uint8_t          port)
2196 {
2197     return (bxe_gpio_write(sc, gpio_num, mode, port));
2198 }
2199 
2200 uint8_t
2201 elink_cb_gpio_mult_write(struct bxe_softc *sc,
2202                          uint8_t          pins,
2203                          uint8_t          mode) /* 0=low 1=high */
2204 {
2205     return (bxe_gpio_mult_write(sc, pins, mode));
2206 }
2207 
2208 uint8_t
2209 elink_cb_gpio_int_write(struct bxe_softc *sc,
2210                         uint16_t         gpio_num,
2211                         uint8_t          mode, /* 0=low 1=high */
2212                         uint8_t          port)
2213 {
2214     return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2215 }
2216 
2217 void
2218 elink_cb_notify_link_changed(struct bxe_softc *sc)
2219 {
2220     REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2221                 (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2222 }
2223 
2224 /* send the MCP a request, block until there is a reply */
2225 uint32_t
2226 elink_cb_fw_command(struct bxe_softc *sc,
2227                     uint32_t         command,
2228                     uint32_t         param)
2229 {
2230     int mb_idx = SC_FW_MB_IDX(sc);
2231     uint32_t seq;
2232     uint32_t rc = 0;
2233     uint32_t cnt = 1;
2234     uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2235 
2236     BXE_FWMB_LOCK(sc);
2237 
2238     seq = ++sc->fw_seq;
2239     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2240     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2241 
2242     BLOGD(sc, DBG_PHY,
2243           "wrote command 0x%08x to FW MB param 0x%08x\n",
2244           (command | seq), param);
2245 
2246     /* Let the FW do it's magic. GIve it up to 5 seconds... */
2247     do {
2248         DELAY(delay * 1000);
2249         rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2250     } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2251 
2252     BLOGD(sc, DBG_PHY,
2253           "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2254           cnt*delay, rc, seq);
2255 
2256     /* is this a reply to our command? */
2257     if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2258         rc &= FW_MSG_CODE_MASK;
2259     } else {
2260         /* Ruh-roh! */
2261         BLOGE(sc, "FW failed to respond!\n");
2262         // XXX bxe_fw_dump(sc);
2263         rc = 0;
2264     }
2265 
2266     BXE_FWMB_UNLOCK(sc);
2267     return (rc);
2268 }
2269 
2270 static uint32_t
2271 bxe_fw_command(struct bxe_softc *sc,
2272                uint32_t         command,
2273                uint32_t         param)
2274 {
2275     return (elink_cb_fw_command(sc, command, param));
2276 }
2277 
2278 static void
2279 __storm_memset_dma_mapping(struct bxe_softc *sc,
2280                            uint32_t         addr,
2281                            bus_addr_t       mapping)
2282 {
2283     REG_WR(sc, addr, U64_LO(mapping));
2284     REG_WR(sc, (addr + 4), U64_HI(mapping));
2285 }
2286 
2287 static void
2288 storm_memset_spq_addr(struct bxe_softc *sc,
2289                       bus_addr_t       mapping,
2290                       uint16_t         abs_fid)
2291 {
2292     uint32_t addr = (XSEM_REG_FAST_MEMORY +
2293                      XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2294     __storm_memset_dma_mapping(sc, addr, mapping);
2295 }
2296 
2297 static void
2298 storm_memset_vf_to_pf(struct bxe_softc *sc,
2299                       uint16_t         abs_fid,
2300                       uint16_t         pf_id)
2301 {
2302     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2303     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2304     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2305     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2306 }
2307 
2308 static void
2309 storm_memset_func_en(struct bxe_softc *sc,
2310                      uint16_t         abs_fid,
2311                      uint8_t          enable)
2312 {
2313     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2314     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2315     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2316     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2317 }
2318 
2319 static void
2320 storm_memset_eq_data(struct bxe_softc       *sc,
2321                      struct event_ring_data *eq_data,
2322                      uint16_t               pfid)
2323 {
2324     uint32_t addr;
2325     size_t size;
2326 
2327     addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2328     size = sizeof(struct event_ring_data);
2329     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2330 }
2331 
2332 static void
2333 storm_memset_eq_prod(struct bxe_softc *sc,
2334                      uint16_t         eq_prod,
2335                      uint16_t         pfid)
2336 {
2337     uint32_t addr = (BAR_CSTRORM_INTMEM +
2338                      CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2339     REG_WR16(sc, addr, eq_prod);
2340 }
2341 
2342 /*
2343  * Post a slowpath command.
2344  *
2345  * A slowpath command is used to propogate a configuration change through
2346  * the controller in a controlled manner, allowing each STORM processor and
2347  * other H/W blocks to phase in the change.  The commands sent on the
2348  * slowpath are referred to as ramrods.  Depending on the ramrod used the
2349  * completion of the ramrod will occur in different ways.  Here's a
2350  * breakdown of ramrods and how they complete:
2351  *
2352  * RAMROD_CMD_ID_ETH_PORT_SETUP
2353  *   Used to setup the leading connection on a port.  Completes on the
2354  *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
2355  *
2356  * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2357  *   Used to setup an additional connection on a port.  Completes on the
2358  *   RCQ of the multi-queue/RSS connection being initialized.
2359  *
2360  * RAMROD_CMD_ID_ETH_STAT_QUERY
2361  *   Used to force the storm processors to update the statistics database
2362  *   in host memory.  This ramrod is send on the leading connection CID and
2363  *   completes as an index increment of the CSTORM on the default status
2364  *   block.
2365  *
2366  * RAMROD_CMD_ID_ETH_UPDATE
2367  *   Used to update the state of the leading connection, usually to udpate
2368  *   the RSS indirection table.  Completes on the RCQ of the leading
2369  *   connection. (Not currently used under FreeBSD until OS support becomes
2370  *   available.)
2371  *
2372  * RAMROD_CMD_ID_ETH_HALT
2373  *   Used when tearing down a connection prior to driver unload.  Completes
2374  *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
2375  *   use this on the leading connection.
2376  *
2377  * RAMROD_CMD_ID_ETH_SET_MAC
2378  *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
2379  *   the RCQ of the leading connection.
2380  *
2381  * RAMROD_CMD_ID_ETH_CFC_DEL
2382  *   Used when tearing down a conneciton prior to driver unload.  Completes
2383  *   on the RCQ of the leading connection (since the current connection
2384  *   has been completely removed from controller memory).
2385  *
2386  * RAMROD_CMD_ID_ETH_PORT_DEL
2387  *   Used to tear down the leading connection prior to driver unload,
2388  *   typically fp[0].  Completes as an index increment of the CSTORM on the
2389  *   default status block.
2390  *
2391  * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2392  *   Used for connection offload.  Completes on the RCQ of the multi-queue
2393  *   RSS connection that is being offloaded.  (Not currently used under
2394  *   FreeBSD.)
2395  *
2396  * There can only be one command pending per function.
2397  *
2398  * Returns:
2399  *   0 = Success, !0 = Failure.
2400  */
2401 
2402 /* must be called under the spq lock */
2403 static inline
2404 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2405 {
2406     struct eth_spe *next_spe = sc->spq_prod_bd;
2407 
2408     if (sc->spq_prod_bd == sc->spq_last_bd) {
2409         /* wrap back to the first eth_spq */
2410         sc->spq_prod_bd = sc->spq;
2411         sc->spq_prod_idx = 0;
2412     } else {
2413         sc->spq_prod_bd++;
2414         sc->spq_prod_idx++;
2415     }
2416 
2417     return (next_spe);
2418 }
2419 
2420 /* must be called under the spq lock */
2421 static inline
2422 void bxe_sp_prod_update(struct bxe_softc *sc)
2423 {
2424     int func = SC_FUNC(sc);
2425 
2426     /*
2427      * Make sure that BD data is updated before writing the producer.
2428      * BD data is written to the memory, the producer is read from the
2429      * memory, thus we need a full memory barrier to ensure the ordering.
2430      */
2431     mb();
2432 
2433     REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2434              sc->spq_prod_idx);
2435 
2436     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2437                       BUS_SPACE_BARRIER_WRITE);
2438 }
2439 
2440 /**
2441  * bxe_is_contextless_ramrod - check if the current command ends on EQ
2442  *
2443  * @cmd:      command to check
2444  * @cmd_type: command type
2445  */
2446 static inline
2447 int bxe_is_contextless_ramrod(int cmd,
2448                               int cmd_type)
2449 {
2450     if ((cmd_type == NONE_CONNECTION_TYPE) ||
2451         (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2452         (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2453         (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2454         (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2455         (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2456         (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2457         return (TRUE);
2458     } else {
2459         return (FALSE);
2460     }
2461 }
2462 
2463 /**
2464  * bxe_sp_post - place a single command on an SP ring
2465  *
2466  * @sc:         driver handle
2467  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
2468  * @cid:        SW CID the command is related to
2469  * @data_hi:    command private data address (high 32 bits)
2470  * @data_lo:    command private data address (low 32 bits)
2471  * @cmd_type:   command type (e.g. NONE, ETH)
2472  *
2473  * SP data is handled as if it's always an address pair, thus data fields are
2474  * not swapped to little endian in upper functions. Instead this function swaps
2475  * data as if it's two uint32 fields.
2476  */
2477 int
2478 bxe_sp_post(struct bxe_softc *sc,
2479             int              command,
2480             int              cid,
2481             uint32_t         data_hi,
2482             uint32_t         data_lo,
2483             int              cmd_type)
2484 {
2485     struct eth_spe *spe;
2486     uint16_t type;
2487     int common;
2488 
2489     common = bxe_is_contextless_ramrod(command, cmd_type);
2490 
2491     BXE_SP_LOCK(sc);
2492 
2493     if (common) {
2494         if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2495             BLOGE(sc, "EQ ring is full!\n");
2496             BXE_SP_UNLOCK(sc);
2497             return (-1);
2498         }
2499     } else {
2500         if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2501             BLOGE(sc, "SPQ ring is full!\n");
2502             BXE_SP_UNLOCK(sc);
2503             return (-1);
2504         }
2505     }
2506 
2507     spe = bxe_sp_get_next(sc);
2508 
2509     /* CID needs port number to be encoded int it */
2510     spe->hdr.conn_and_cmd_data =
2511         htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid));
2512 
2513     type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
2514 
2515     /* TBD: Check if it works for VFs */
2516     type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) &
2517              SPE_HDR_FUNCTION_ID);
2518 
2519     spe->hdr.type = htole16(type);
2520 
2521     spe->data.update_data_addr.hi = htole32(data_hi);
2522     spe->data.update_data_addr.lo = htole32(data_lo);
2523 
2524     /*
2525      * It's ok if the actual decrement is issued towards the memory
2526      * somewhere between the lock and unlock. Thus no more explict
2527      * memory barrier is needed.
2528      */
2529     if (common) {
2530         atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2531     } else {
2532         atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2533     }
2534 
2535     BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2536     BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2537           BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2538     BLOGD(sc, DBG_SP,
2539           "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2540           sc->spq_prod_idx,
2541           (uint32_t)U64_HI(sc->spq_dma.paddr),
2542           (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2543           command,
2544           common,
2545           HW_CID(sc, cid),
2546           data_hi,
2547           data_lo,
2548           type,
2549           atomic_load_acq_long(&sc->cq_spq_left),
2550           atomic_load_acq_long(&sc->eq_spq_left));
2551 
2552     bxe_sp_prod_update(sc);
2553 
2554     BXE_SP_UNLOCK(sc);
2555     return (0);
2556 }
2557 
2558 /**
2559  * bxe_debug_print_ind_table - prints the indirection table configuration.
2560  *
2561  * @sc: driver hanlde
2562  * @p:  pointer to rss configuration
2563  */
2564 #if 0
2565 static void
2566 bxe_debug_print_ind_table(struct bxe_softc               *sc,
2567                           struct ecore_config_rss_params *p)
2568 {
2569     int i;
2570 
2571     BLOGD(sc, DBG_LOAD, "Setting indirection table to:\n");
2572     BLOGD(sc, DBG_LOAD, "    0x0000: ");
2573     for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
2574         BLOGD(sc, DBG_LOAD, "0x%02x ", p->ind_table[i]);
2575 
2576         /* Print 4 bytes in a line */
2577         if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) &&
2578             (((i + 1) & 0x3) == 0)) {
2579             BLOGD(sc, DBG_LOAD, "\n");
2580             BLOGD(sc, DBG_LOAD, "0x%04x: ", i + 1);
2581         }
2582     }
2583 
2584     BLOGD(sc, DBG_LOAD, "\n");
2585 }
2586 #endif
2587 
2588 /*
2589  * FreeBSD Device probe function.
2590  *
2591  * Compares the device found to the driver's list of supported devices and
2592  * reports back to the bsd loader whether this is the right driver for the device.
2593  * This is the driver entry function called from the "kldload" command.
2594  *
2595  * Returns:
2596  *   BUS_PROBE_DEFAULT on success, positive value on failure.
2597  */
2598 static int
2599 bxe_probe(device_t dev)
2600 {
2601     struct bxe_softc *sc;
2602     struct bxe_device_type *t;
2603     char *descbuf;
2604     uint16_t did, sdid, svid, vid;
2605 
2606     /* Find our device structure */
2607     sc = device_get_softc(dev);
2608     sc->dev = dev;
2609     t = bxe_devs;
2610 
2611     /* Get the data for the device to be probed. */
2612     vid  = pci_get_vendor(dev);
2613     did  = pci_get_device(dev);
2614     svid = pci_get_subvendor(dev);
2615     sdid = pci_get_subdevice(dev);
2616 
2617     BLOGD(sc, DBG_LOAD,
2618           "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
2619           "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
2620 
2621     /* Look through the list of known devices for a match. */
2622     while (t->bxe_name != NULL) {
2623         if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2624             ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2625             ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2626             descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
2627             if (descbuf == NULL)
2628                 return (ENOMEM);
2629 
2630             /* Print out the device identity. */
2631             snprintf(descbuf, BXE_DEVDESC_MAX,
2632                      "%s (%c%d) BXE v:%s\n", t->bxe_name,
2633                      (((pci_read_config(dev, PCIR_REVID, 4) &
2634                         0xf0) >> 4) + 'A'),
2635                      (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2636                      BXE_DRIVER_VERSION);
2637 
2638             device_set_desc_copy(dev, descbuf);
2639             free(descbuf, M_TEMP);
2640             return (BUS_PROBE_DEFAULT);
2641         }
2642         t++;
2643     }
2644 
2645     return (ENXIO);
2646 }
2647 
2648 static void
2649 bxe_init_mutexes(struct bxe_softc *sc)
2650 {
2651 #ifdef BXE_CORE_LOCK_SX
2652     snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2653              "bxe%d_core_lock", sc->unit);
2654     sx_init(&sc->core_sx, sc->core_sx_name);
2655 #else
2656     snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2657              "bxe%d_core_lock", sc->unit);
2658     mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2659 #endif
2660 
2661     snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2662              "bxe%d_sp_lock", sc->unit);
2663     mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2664 
2665     snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2666              "bxe%d_dmae_lock", sc->unit);
2667     mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2668 
2669     snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2670              "bxe%d_phy_lock", sc->unit);
2671     mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2672 
2673     snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2674              "bxe%d_fwmb_lock", sc->unit);
2675     mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2676 
2677     snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2678              "bxe%d_print_lock", sc->unit);
2679     mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2680 
2681     snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2682              "bxe%d_stats_lock", sc->unit);
2683     mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2684 
2685     snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2686              "bxe%d_mcast_lock", sc->unit);
2687     mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2688 }
2689 
2690 static void
2691 bxe_release_mutexes(struct bxe_softc *sc)
2692 {
2693 #ifdef BXE_CORE_LOCK_SX
2694     sx_destroy(&sc->core_sx);
2695 #else
2696     if (mtx_initialized(&sc->core_mtx)) {
2697         mtx_destroy(&sc->core_mtx);
2698     }
2699 #endif
2700 
2701     if (mtx_initialized(&sc->sp_mtx)) {
2702         mtx_destroy(&sc->sp_mtx);
2703     }
2704 
2705     if (mtx_initialized(&sc->dmae_mtx)) {
2706         mtx_destroy(&sc->dmae_mtx);
2707     }
2708 
2709     if (mtx_initialized(&sc->port.phy_mtx)) {
2710         mtx_destroy(&sc->port.phy_mtx);
2711     }
2712 
2713     if (mtx_initialized(&sc->fwmb_mtx)) {
2714         mtx_destroy(&sc->fwmb_mtx);
2715     }
2716 
2717     if (mtx_initialized(&sc->print_mtx)) {
2718         mtx_destroy(&sc->print_mtx);
2719     }
2720 
2721     if (mtx_initialized(&sc->stats_mtx)) {
2722         mtx_destroy(&sc->stats_mtx);
2723     }
2724 
2725     if (mtx_initialized(&sc->mcast_mtx)) {
2726         mtx_destroy(&sc->mcast_mtx);
2727     }
2728 }
2729 
2730 static void
2731 bxe_tx_disable(struct bxe_softc* sc)
2732 {
2733     struct ifnet *ifp = sc->ifnet;
2734 
2735     /* tell the stack the driver is stopped and TX queue is full */
2736     if (ifp != NULL) {
2737         ifp->if_drv_flags = 0;
2738     }
2739 }
2740 
2741 static void
2742 bxe_drv_pulse(struct bxe_softc *sc)
2743 {
2744     SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2745              sc->fw_drv_pulse_wr_seq);
2746 }
2747 
2748 static inline uint16_t
2749 bxe_tx_avail(struct bxe_softc *sc,
2750              struct bxe_fastpath *fp)
2751 {
2752     int16_t  used;
2753     uint16_t prod;
2754     uint16_t cons;
2755 
2756     prod = fp->tx_bd_prod;
2757     cons = fp->tx_bd_cons;
2758 
2759     used = SUB_S16(prod, cons);
2760 
2761 #if 0
2762     KASSERT((used < 0), ("used tx bds < 0"));
2763     KASSERT((used > sc->tx_ring_size), ("used tx bds > tx_ring_size"));
2764     KASSERT(((sc->tx_ring_size - used) > MAX_TX_AVAIL),
2765             ("invalid number of tx bds used"));
2766 #endif
2767 
2768     return (int16_t)(sc->tx_ring_size) - used;
2769 }
2770 
2771 static inline int
2772 bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2773 {
2774     uint16_t hw_cons;
2775 
2776     mb(); /* status block fields can change */
2777     hw_cons = le16toh(*fp->tx_cons_sb);
2778     return (hw_cons != fp->tx_pkt_cons);
2779 }
2780 
2781 static inline uint8_t
2782 bxe_has_tx_work(struct bxe_fastpath *fp)
2783 {
2784     /* expand this for multi-cos if ever supported */
2785     return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2786 }
2787 
2788 static inline int
2789 bxe_has_rx_work(struct bxe_fastpath *fp)
2790 {
2791     uint16_t rx_cq_cons_sb;
2792 
2793     mb(); /* status block fields can change */
2794     rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2795     if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2796         rx_cq_cons_sb++;
2797     return (fp->rx_cq_cons != rx_cq_cons_sb);
2798 }
2799 
2800 static void
2801 bxe_sp_event(struct bxe_softc    *sc,
2802              struct bxe_fastpath *fp,
2803              union eth_rx_cqe    *rr_cqe)
2804 {
2805     int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2806     int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2807     enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2808     struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2809 
2810     BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2811           fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2812 
2813 #if 0
2814     /*
2815      * If cid is within VF range, replace the slowpath object with the
2816      * one corresponding to this VF
2817      */
2818     if ((cid >= BXE_FIRST_VF_CID) && (cid < BXE_FIRST_VF_CID + BXE_VF_CIDS)) {
2819         bxe_iov_set_queue_sp_obj(sc, cid, &q_obj);
2820     }
2821 #endif
2822 
2823     switch (command) {
2824     case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2825         BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2826         drv_cmd = ECORE_Q_CMD_UPDATE;
2827         break;
2828 
2829     case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2830         BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2831         drv_cmd = ECORE_Q_CMD_SETUP;
2832         break;
2833 
2834     case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2835         BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2836         drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2837         break;
2838 
2839     case (RAMROD_CMD_ID_ETH_HALT):
2840         BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2841         drv_cmd = ECORE_Q_CMD_HALT;
2842         break;
2843 
2844     case (RAMROD_CMD_ID_ETH_TERMINATE):
2845         BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2846         drv_cmd = ECORE_Q_CMD_TERMINATE;
2847         break;
2848 
2849     case (RAMROD_CMD_ID_ETH_EMPTY):
2850         BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2851         drv_cmd = ECORE_Q_CMD_EMPTY;
2852         break;
2853 
2854     default:
2855         BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2856               command, fp->index);
2857         return;
2858     }
2859 
2860     if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2861         q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2862         /*
2863          * q_obj->complete_cmd() failure means that this was
2864          * an unexpected completion.
2865          *
2866          * In this case we don't want to increase the sc->spq_left
2867          * because apparently we haven't sent this command the first
2868          * place.
2869          */
2870         // bxe_panic(sc, ("Unexpected SP completion\n"));
2871         return;
2872     }
2873 
2874 #if 0
2875     /* SRIOV: reschedule any 'in_progress' operations */
2876     bxe_iov_sp_event(sc, cid, TRUE);
2877 #endif
2878 
2879     atomic_add_acq_long(&sc->cq_spq_left, 1);
2880 
2881     BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2882           atomic_load_acq_long(&sc->cq_spq_left));
2883 
2884 #if 0
2885     if ((drv_cmd == ECORE_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
2886         (!!bxe_test_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state))) {
2887         /*
2888          * If Queue update ramrod is completed for last Queue in AFEX VIF set
2889          * flow, then ACK MCP at the end. Mark pending ACK to MCP bit to
2890          * prevent case that both bits are cleared. At the end of load/unload
2891          * driver checks that sp_state is cleared and this order prevents
2892          * races.
2893          */
2894         bxe_set_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, &sc->sp_state);
2895         wmb();
2896         bxe_clear_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state);
2897 
2898         /* schedule the sp task as MCP ack is required */
2899         bxe_schedule_sp_task(sc);
2900     }
2901 #endif
2902 }
2903 
2904 /*
2905  * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2906  * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2907  * the current aggregation queue as in-progress.
2908  */
2909 static void
2910 bxe_tpa_start(struct bxe_softc            *sc,
2911               struct bxe_fastpath         *fp,
2912               uint16_t                    queue,
2913               uint16_t                    cons,
2914               uint16_t                    prod,
2915               struct eth_fast_path_rx_cqe *cqe)
2916 {
2917     struct bxe_sw_rx_bd tmp_bd;
2918     struct bxe_sw_rx_bd *rx_buf;
2919     struct eth_rx_bd *rx_bd;
2920     int max_agg_queues;
2921     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2922     uint16_t index;
2923 
2924     BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2925                        "cons=%d prod=%d\n",
2926           fp->index, queue, cons, prod);
2927 
2928     max_agg_queues = MAX_AGG_QS(sc);
2929 
2930     KASSERT((queue < max_agg_queues),
2931             ("fp[%02d] invalid aggr queue (%d >= %d)!",
2932              fp->index, queue, max_agg_queues));
2933 
2934     KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2935             ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2936              fp->index, queue));
2937 
2938     /* copy the existing mbuf and mapping from the TPA pool */
2939     tmp_bd = tpa_info->bd;
2940 
2941     if (tmp_bd.m == NULL) {
2942         BLOGE(sc, "fp[%02d].tpa[%02d] mbuf not allocated!\n",
2943               fp->index, queue);
2944         /* XXX Error handling? */
2945         return;
2946     }
2947 
2948     /* change the TPA queue to the start state */
2949     tpa_info->state            = BXE_TPA_STATE_START;
2950     tpa_info->placement_offset = cqe->placement_offset;
2951     tpa_info->parsing_flags    = le16toh(cqe->pars_flags.flags);
2952     tpa_info->vlan_tag         = le16toh(cqe->vlan_tag);
2953     tpa_info->len_on_bd        = le16toh(cqe->len_on_bd);
2954 
2955     fp->rx_tpa_queue_used |= (1 << queue);
2956 
2957     /*
2958      * If all the buffer descriptors are filled with mbufs then fill in
2959      * the current consumer index with a new BD. Else if a maximum Rx
2960      * buffer limit is imposed then fill in the next producer index.
2961      */
2962     index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2963                 prod : cons;
2964 
2965     /* move the received mbuf and mapping to TPA pool */
2966     tpa_info->bd = fp->rx_mbuf_chain[cons];
2967 
2968     /* release any existing RX BD mbuf mappings */
2969     if (cons != index) {
2970         rx_buf = &fp->rx_mbuf_chain[cons];
2971 
2972         if (rx_buf->m_map != NULL) {
2973             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2974                             BUS_DMASYNC_POSTREAD);
2975             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2976         }
2977 
2978         /*
2979          * We get here when the maximum number of rx buffers is less than
2980          * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2981          * it out here without concern of a memory leak.
2982          */
2983         fp->rx_mbuf_chain[cons].m = NULL;
2984     }
2985 
2986     /* update the Rx SW BD with the mbuf info from the TPA pool */
2987     fp->rx_mbuf_chain[index] = tmp_bd;
2988 
2989     /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2990     rx_bd = &fp->rx_chain[index];
2991     rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2992     rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
2993 }
2994 
2995 /*
2996  * When a TPA aggregation is completed, loop through the individual mbufs
2997  * of the aggregation, combining them into a single mbuf which will be sent
2998  * up the stack. Refill all freed SGEs with mbufs as we go along.
2999  */
3000 static int
3001 bxe_fill_frag_mbuf(struct bxe_softc          *sc,
3002                    struct bxe_fastpath       *fp,
3003                    struct bxe_sw_tpa_info    *tpa_info,
3004                    uint16_t                  queue,
3005                    uint16_t                  pages,
3006                    struct mbuf               *m,
3007 			       struct eth_end_agg_rx_cqe *cqe,
3008                    uint16_t                  cqe_idx)
3009 {
3010     struct mbuf *m_frag;
3011     uint32_t frag_len, frag_size, i;
3012     uint16_t sge_idx;
3013     int rc = 0;
3014     int j;
3015 
3016     frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
3017 
3018     BLOGD(sc, DBG_LRO,
3019           "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
3020           fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
3021 
3022     /* make sure the aggregated frame is not too big to handle */
3023     if (pages > 8 * PAGES_PER_SGE) {
3024         BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
3025                   "pkt_len=%d len_on_bd=%d frag_size=%d\n",
3026               fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
3027               tpa_info->len_on_bd, frag_size);
3028         bxe_panic(sc, ("sge page count error\n"));
3029         return (EINVAL);
3030     }
3031 
3032     /*
3033      * Scan through the scatter gather list pulling individual mbufs into a
3034      * single mbuf for the host stack.
3035      */
3036     for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
3037         sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
3038 
3039         /*
3040          * Firmware gives the indices of the SGE as if the ring is an array
3041          * (meaning that the "next" element will consume 2 indices).
3042          */
3043         frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
3044 
3045         BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
3046                            "sge_idx=%d frag_size=%d frag_len=%d\n",
3047               fp->index, queue, i, j, sge_idx, frag_size, frag_len);
3048 
3049         m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3050 
3051         /* allocate a new mbuf for the SGE */
3052         rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3053         if (rc) {
3054             /* Leave all remaining SGEs in the ring! */
3055             return (rc);
3056         }
3057 
3058         /* update the fragment length */
3059         m_frag->m_len = frag_len;
3060 
3061         /* concatenate the fragment to the head mbuf */
3062         m_cat(m, m_frag);
3063         fp->eth_q_stats.mbuf_alloc_sge--;
3064 
3065         /* update the TPA mbuf size and remaining fragment size */
3066         m->m_pkthdr.len += frag_len;
3067         frag_size -= frag_len;
3068     }
3069 
3070     BLOGD(sc, DBG_LRO,
3071           "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
3072           fp->index, queue, frag_size);
3073 
3074     return (rc);
3075 }
3076 
3077 static inline void
3078 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
3079 {
3080     int i, j;
3081 
3082     for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
3083         int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
3084 
3085         for (j = 0; j < 2; j++) {
3086             BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
3087             idx--;
3088         }
3089     }
3090 }
3091 
3092 static inline void
3093 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
3094 {
3095     /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
3096     memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
3097 
3098     /*
3099      * Clear the two last indices in the page to 1. These are the indices that
3100      * correspond to the "next" element, hence will never be indicated and
3101      * should be removed from the calculations.
3102      */
3103     bxe_clear_sge_mask_next_elems(fp);
3104 }
3105 
3106 static inline void
3107 bxe_update_last_max_sge(struct bxe_fastpath *fp,
3108                         uint16_t            idx)
3109 {
3110     uint16_t last_max = fp->last_max_sge;
3111 
3112     if (SUB_S16(idx, last_max) > 0) {
3113         fp->last_max_sge = idx;
3114     }
3115 }
3116 
3117 static inline void
3118 bxe_update_sge_prod(struct bxe_softc          *sc,
3119                     struct bxe_fastpath       *fp,
3120                     uint16_t                  sge_len,
3121                     struct eth_end_agg_rx_cqe *cqe)
3122 {
3123     uint16_t last_max, last_elem, first_elem;
3124     uint16_t delta = 0;
3125     uint16_t i;
3126 
3127     if (!sge_len) {
3128         return;
3129     }
3130 
3131     /* first mark all used pages */
3132     for (i = 0; i < sge_len; i++) {
3133         BIT_VEC64_CLEAR_BIT(fp->sge_mask,
3134                             RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[i])));
3135     }
3136 
3137     BLOGD(sc, DBG_LRO,
3138           "fp[%02d] fp_cqe->sgl[%d] = %d\n",
3139           fp->index, sge_len - 1,
3140           le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
3141 
3142     /* assume that the last SGE index is the biggest */
3143     bxe_update_last_max_sge(fp,
3144                             le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
3145 
3146     last_max = RX_SGE(fp->last_max_sge);
3147     last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
3148     first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
3149 
3150     /* if ring is not full */
3151     if (last_elem + 1 != first_elem) {
3152         last_elem++;
3153     }
3154 
3155     /* now update the prod */
3156     for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
3157         if (__predict_true(fp->sge_mask[i])) {
3158             break;
3159         }
3160 
3161         fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
3162         delta += BIT_VEC64_ELEM_SZ;
3163     }
3164 
3165     if (delta > 0) {
3166         fp->rx_sge_prod += delta;
3167         /* clear page-end entries */
3168         bxe_clear_sge_mask_next_elems(fp);
3169     }
3170 
3171     BLOGD(sc, DBG_LRO,
3172           "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
3173           fp->index, fp->last_max_sge, fp->rx_sge_prod);
3174 }
3175 
3176 /*
3177  * The aggregation on the current TPA queue has completed. Pull the individual
3178  * mbuf fragments together into a single mbuf, perform all necessary checksum
3179  * calculations, and send the resuting mbuf to the stack.
3180  */
3181 static void
3182 bxe_tpa_stop(struct bxe_softc          *sc,
3183              struct bxe_fastpath       *fp,
3184              struct bxe_sw_tpa_info    *tpa_info,
3185              uint16_t                  queue,
3186              uint16_t                  pages,
3187 			 struct eth_end_agg_rx_cqe *cqe,
3188              uint16_t                  cqe_idx)
3189 {
3190     struct ifnet *ifp = sc->ifnet;
3191     struct mbuf *m;
3192     int rc = 0;
3193 
3194     BLOGD(sc, DBG_LRO,
3195           "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3196           fp->index, queue, tpa_info->placement_offset,
3197           le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3198 
3199     m = tpa_info->bd.m;
3200 
3201     /* allocate a replacement before modifying existing mbuf */
3202     rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3203     if (rc) {
3204         /* drop the frame and log an error */
3205         fp->eth_q_stats.rx_soft_errors++;
3206         goto bxe_tpa_stop_exit;
3207     }
3208 
3209     /* we have a replacement, fixup the current mbuf */
3210     m_adj(m, tpa_info->placement_offset);
3211     m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3212 
3213     /* mark the checksums valid (taken care of by the firmware) */
3214     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3215     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3216     m->m_pkthdr.csum_data = 0xffff;
3217     m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3218                                CSUM_IP_VALID   |
3219                                CSUM_DATA_VALID |
3220                                CSUM_PSEUDO_HDR);
3221 
3222     /* aggregate all of the SGEs into a single mbuf */
3223     rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3224     if (rc) {
3225         /* drop the packet and log an error */
3226         fp->eth_q_stats.rx_soft_errors++;
3227         m_freem(m);
3228     } else {
3229         if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) {
3230             m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3231             m->m_flags |= M_VLANTAG;
3232         }
3233 
3234         /* assign packet to this interface interface */
3235         m->m_pkthdr.rcvif = ifp;
3236 
3237 #if __FreeBSD_version >= 800000
3238         /* specify what RSS queue was used for this flow */
3239         m->m_pkthdr.flowid = fp->index;
3240         m->m_flags |= M_FLOWID;
3241 #endif
3242 
3243         ifp->if_ipackets++;
3244         fp->eth_q_stats.rx_tpa_pkts++;
3245 
3246         /* pass the frame to the stack */
3247         (*ifp->if_input)(ifp, m);
3248     }
3249 
3250     /* we passed an mbuf up the stack or dropped the frame */
3251     fp->eth_q_stats.mbuf_alloc_tpa--;
3252 
3253 bxe_tpa_stop_exit:
3254 
3255     fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3256     fp->rx_tpa_queue_used &= ~(1 << queue);
3257 }
3258 
3259 static uint8_t
3260 bxe_rxeof(struct bxe_softc    *sc,
3261           struct bxe_fastpath *fp)
3262 {
3263     struct ifnet *ifp = sc->ifnet;
3264     uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3265     uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3266     int rx_pkts = 0;
3267     int rc;
3268 
3269     BXE_FP_RX_LOCK(fp);
3270 
3271     /* CQ "next element" is of the size of the regular element */
3272     hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3273     if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3274         hw_cq_cons++;
3275     }
3276 
3277     bd_cons = fp->rx_bd_cons;
3278     bd_prod = fp->rx_bd_prod;
3279     bd_prod_fw = bd_prod;
3280     sw_cq_cons = fp->rx_cq_cons;
3281     sw_cq_prod = fp->rx_cq_prod;
3282 
3283     /*
3284      * Memory barrier necessary as speculative reads of the rx
3285      * buffer can be ahead of the index in the status block
3286      */
3287     rmb();
3288 
3289     BLOGD(sc, DBG_RX,
3290           "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3291           fp->index, hw_cq_cons, sw_cq_cons);
3292 
3293     while (sw_cq_cons != hw_cq_cons) {
3294         struct bxe_sw_rx_bd *rx_buf = NULL;
3295         union eth_rx_cqe *cqe;
3296         struct eth_fast_path_rx_cqe *cqe_fp;
3297         uint8_t cqe_fp_flags;
3298         enum eth_rx_cqe_type cqe_fp_type;
3299         uint16_t len, pad;
3300         struct mbuf *m = NULL;
3301 
3302         comp_ring_cons = RCQ(sw_cq_cons);
3303         bd_prod = RX_BD(bd_prod);
3304         bd_cons = RX_BD(bd_cons);
3305 
3306         cqe          = &fp->rcq_chain[comp_ring_cons];
3307         cqe_fp       = &cqe->fast_path_cqe;
3308         cqe_fp_flags = cqe_fp->type_error_flags;
3309         cqe_fp_type  = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3310 
3311         BLOGD(sc, DBG_RX,
3312               "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3313               "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3314               "status=0x%x rss_hash=0x%x vlan=0x%x len=%u\n",
3315               fp->index,
3316               hw_cq_cons,
3317               sw_cq_cons,
3318               bd_prod,
3319               bd_cons,
3320               CQE_TYPE(cqe_fp_flags),
3321               cqe_fp_flags,
3322               cqe_fp->status_flags,
3323               le32toh(cqe_fp->rss_hash_result),
3324               le16toh(cqe_fp->vlan_tag),
3325               le16toh(cqe_fp->pkt_len_or_gro_seg_len));
3326 
3327         /* is this a slowpath msg? */
3328         if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3329             bxe_sp_event(sc, fp, cqe);
3330             goto next_cqe;
3331         }
3332 
3333         rx_buf = &fp->rx_mbuf_chain[bd_cons];
3334 
3335         if (!CQE_TYPE_FAST(cqe_fp_type)) {
3336             struct bxe_sw_tpa_info *tpa_info;
3337             uint16_t frag_size, pages;
3338             uint8_t queue;
3339 
3340 #if 0
3341             /* sanity check */
3342             if (!fp->tpa_enable &&
3343                 (CQE_TYPE_START(cqe_fp_type) || CQE_TYPE_STOP(cqe_fp_type))) {
3344                 BLOGE(sc, "START/STOP packet while !tpa_enable type (0x%x)\n",
3345                       CQE_TYPE(cqe_fp_type));
3346             }
3347 #endif
3348 
3349             if (CQE_TYPE_START(cqe_fp_type)) {
3350                 bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3351                               bd_cons, bd_prod, cqe_fp);
3352                 m = NULL; /* packet not ready yet */
3353                 goto next_rx;
3354             }
3355 
3356             KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3357                     ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3358 
3359             queue = cqe->end_agg_cqe.queue_index;
3360             tpa_info = &fp->rx_tpa_info[queue];
3361 
3362             BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3363                   fp->index, queue);
3364 
3365             frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3366                          tpa_info->len_on_bd);
3367             pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3368 
3369             bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3370                          &cqe->end_agg_cqe, comp_ring_cons);
3371 
3372             bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe);
3373 
3374             goto next_cqe;
3375         }
3376 
3377         /* non TPA */
3378 
3379         /* is this an error packet? */
3380         if (__predict_false(cqe_fp_flags &
3381                             ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3382             BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3383             fp->eth_q_stats.rx_soft_errors++;
3384             goto next_rx;
3385         }
3386 
3387         len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3388         pad = cqe_fp->placement_offset;
3389 
3390         m = rx_buf->m;
3391 
3392         if (__predict_false(m == NULL)) {
3393             BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3394                   bd_cons, fp->index);
3395             goto next_rx;
3396         }
3397 
3398         /* XXX double copy if packet length under a threshold */
3399 
3400         /*
3401          * If all the buffer descriptors are filled with mbufs then fill in
3402          * the current consumer index with a new BD. Else if a maximum Rx
3403          * buffer limit is imposed then fill in the next producer index.
3404          */
3405         rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3406                                   (sc->max_rx_bufs != RX_BD_USABLE) ?
3407                                       bd_prod : bd_cons);
3408         if (rc != 0) {
3409             BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3410                   fp->index, rc);
3411             fp->eth_q_stats.rx_soft_errors++;
3412 
3413             if (sc->max_rx_bufs != RX_BD_USABLE) {
3414                 /* copy this consumer index to the producer index */
3415                 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3416                        sizeof(struct bxe_sw_rx_bd));
3417                 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3418             }
3419 
3420             goto next_rx;
3421         }
3422 
3423         /* current mbuf was detached from the bd */
3424         fp->eth_q_stats.mbuf_alloc_rx--;
3425 
3426         /* we allocated a replacement mbuf, fixup the current one */
3427         m_adj(m, pad);
3428         m->m_pkthdr.len = m->m_len = len;
3429 
3430         /* assign packet to this interface interface */
3431         m->m_pkthdr.rcvif = ifp;
3432 
3433         /* assume no hardware checksum has complated */
3434         m->m_pkthdr.csum_flags = 0;
3435 
3436         /* validate checksum if offload enabled */
3437         if (ifp->if_capenable & IFCAP_RXCSUM) {
3438             /* check for a valid IP frame */
3439             if (!(cqe->fast_path_cqe.status_flags &
3440                   ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3441                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3442                 if (__predict_false(cqe_fp_flags &
3443                                     ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3444                     fp->eth_q_stats.rx_hw_csum_errors++;
3445                 } else {
3446                     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3447                     m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3448                 }
3449             }
3450 
3451             /* check for a valid TCP/UDP frame */
3452             if (!(cqe->fast_path_cqe.status_flags &
3453                   ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3454                 if (__predict_false(cqe_fp_flags &
3455                                     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3456                     fp->eth_q_stats.rx_hw_csum_errors++;
3457                 } else {
3458                     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3459                     m->m_pkthdr.csum_data = 0xFFFF;
3460                     m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3461                                                CSUM_PSEUDO_HDR);
3462                 }
3463             }
3464         }
3465 
3466         /* if there is a VLAN tag then flag that info */
3467         if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_VLAN) {
3468             m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3469             m->m_flags |= M_VLANTAG;
3470         }
3471 
3472 #if __FreeBSD_version >= 800000
3473         /* specify what RSS queue was used for this flow */
3474         m->m_pkthdr.flowid = fp->index;
3475         m->m_flags |= M_FLOWID;
3476 #endif
3477 
3478 next_rx:
3479 
3480         bd_cons    = RX_BD_NEXT(bd_cons);
3481         bd_prod    = RX_BD_NEXT(bd_prod);
3482         bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3483 
3484         /* pass the frame to the stack */
3485         if (__predict_true(m != NULL)) {
3486             ifp->if_ipackets++;
3487             rx_pkts++;
3488             (*ifp->if_input)(ifp, m);
3489         }
3490 
3491 next_cqe:
3492 
3493         sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3494         sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3495 
3496         /* limit spinning on the queue */
3497         if (rx_pkts == sc->rx_budget) {
3498             fp->eth_q_stats.rx_budget_reached++;
3499             break;
3500         }
3501     } /* while work to do */
3502 
3503     fp->rx_bd_cons = bd_cons;
3504     fp->rx_bd_prod = bd_prod_fw;
3505     fp->rx_cq_cons = sw_cq_cons;
3506     fp->rx_cq_prod = sw_cq_prod;
3507 
3508     /* Update producers */
3509     bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3510 
3511     fp->eth_q_stats.rx_pkts += rx_pkts;
3512     fp->eth_q_stats.rx_calls++;
3513 
3514     BXE_FP_RX_UNLOCK(fp);
3515 
3516     return (sw_cq_cons != hw_cq_cons);
3517 }
3518 
3519 static uint16_t
3520 bxe_free_tx_pkt(struct bxe_softc    *sc,
3521                 struct bxe_fastpath *fp,
3522                 uint16_t            idx)
3523 {
3524     struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3525     struct eth_tx_start_bd *tx_start_bd;
3526     uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3527     uint16_t new_cons;
3528     int nbd;
3529 
3530     /* unmap the mbuf from non-paged memory */
3531     bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3532 
3533     tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3534     nbd = le16toh(tx_start_bd->nbd) - 1;
3535 
3536 #if 0
3537     if ((nbd - 1) > (MAX_MBUF_FRAGS + 2)) {
3538         bxe_panic(sc, ("BAD nbd!\n"));
3539     }
3540 #endif
3541 
3542     new_cons = (tx_buf->first_bd + nbd);
3543 
3544 #if 0
3545     struct eth_tx_bd *tx_data_bd;
3546 
3547     /*
3548      * The following code doesn't do anything but is left here
3549      * for clarity on what the new value of new_cons skipped.
3550      */
3551 
3552     /* get the next bd */
3553     bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3554 
3555     /* skip the parse bd */
3556     --nbd;
3557     bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3558 
3559     /* skip the TSO split header bd since they have no mapping */
3560     if (tx_buf->flags & BXE_TSO_SPLIT_BD) {
3561         --nbd;
3562         bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3563     }
3564 
3565     /* now free frags */
3566     while (nbd > 0) {
3567         tx_data_bd = &fp->tx_chain[bd_idx].reg_bd;
3568         if (--nbd) {
3569             bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3570         }
3571     }
3572 #endif
3573 
3574     /* free the mbuf */
3575     if (__predict_true(tx_buf->m != NULL)) {
3576         m_freem(tx_buf->m);
3577         fp->eth_q_stats.mbuf_alloc_tx--;
3578     } else {
3579         fp->eth_q_stats.tx_chain_lost_mbuf++;
3580     }
3581 
3582     tx_buf->m = NULL;
3583     tx_buf->first_bd = 0;
3584 
3585     return (new_cons);
3586 }
3587 
3588 /* transmit timeout watchdog */
3589 static int
3590 bxe_watchdog(struct bxe_softc    *sc,
3591              struct bxe_fastpath *fp)
3592 {
3593     BXE_FP_TX_LOCK(fp);
3594 
3595     if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3596         BXE_FP_TX_UNLOCK(fp);
3597         return (0);
3598     }
3599 
3600     BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3601 
3602     BXE_FP_TX_UNLOCK(fp);
3603 
3604     atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
3605     taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
3606 
3607     return (-1);
3608 }
3609 
3610 /* processes transmit completions */
3611 static uint8_t
3612 bxe_txeof(struct bxe_softc    *sc,
3613           struct bxe_fastpath *fp)
3614 {
3615     struct ifnet *ifp = sc->ifnet;
3616     uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3617     uint16_t tx_bd_avail;
3618 
3619     BXE_FP_TX_LOCK_ASSERT(fp);
3620 
3621     bd_cons = fp->tx_bd_cons;
3622     hw_cons = le16toh(*fp->tx_cons_sb);
3623     sw_cons = fp->tx_pkt_cons;
3624 
3625     while (sw_cons != hw_cons) {
3626         pkt_cons = TX_BD(sw_cons);
3627 
3628         BLOGD(sc, DBG_TX,
3629               "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3630               fp->index, hw_cons, sw_cons, pkt_cons);
3631 
3632         bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3633 
3634         sw_cons++;
3635     }
3636 
3637     fp->tx_pkt_cons = sw_cons;
3638     fp->tx_bd_cons  = bd_cons;
3639 
3640     BLOGD(sc, DBG_TX,
3641           "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3642           fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3643 
3644     mb();
3645 
3646     tx_bd_avail = bxe_tx_avail(sc, fp);
3647 
3648     if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3649         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3650     } else {
3651         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3652     }
3653 
3654     if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3655         /* reset the watchdog timer if there are pending transmits */
3656         fp->watchdog_timer = BXE_TX_TIMEOUT;
3657         return (TRUE);
3658     } else {
3659         /* clear watchdog when there are no pending transmits */
3660         fp->watchdog_timer = 0;
3661         return (FALSE);
3662     }
3663 }
3664 
3665 static void
3666 bxe_drain_tx_queues(struct bxe_softc *sc)
3667 {
3668     struct bxe_fastpath *fp;
3669     int i, count;
3670 
3671     /* wait until all TX fastpath tasks have completed */
3672     for (i = 0; i < sc->num_queues; i++) {
3673         fp = &sc->fp[i];
3674 
3675         count = 1000;
3676 
3677         while (bxe_has_tx_work(fp)) {
3678 
3679             BXE_FP_TX_LOCK(fp);
3680             bxe_txeof(sc, fp);
3681             BXE_FP_TX_UNLOCK(fp);
3682 
3683             if (count == 0) {
3684                 BLOGE(sc, "Timeout waiting for fp[%d] "
3685                           "transmits to complete!\n", i);
3686                 bxe_panic(sc, ("tx drain failure\n"));
3687                 return;
3688             }
3689 
3690             count--;
3691             DELAY(1000);
3692             rmb();
3693         }
3694     }
3695 
3696     return;
3697 }
3698 
3699 static int
3700 bxe_del_all_macs(struct bxe_softc          *sc,
3701                  struct ecore_vlan_mac_obj *mac_obj,
3702                  int                       mac_type,
3703                  uint8_t                   wait_for_comp)
3704 {
3705     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3706     int rc;
3707 
3708     /* wait for completion of requested */
3709     if (wait_for_comp) {
3710         bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3711     }
3712 
3713     /* Set the mac type of addresses we want to clear */
3714     bxe_set_bit(mac_type, &vlan_mac_flags);
3715 
3716     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3717     if (rc < 0) {
3718         BLOGE(sc, "Failed to delete MACs (%d)\n", rc);
3719     }
3720 
3721     return (rc);
3722 }
3723 
3724 static int
3725 bxe_fill_accept_flags(struct bxe_softc *sc,
3726                       uint32_t         rx_mode,
3727                       unsigned long    *rx_accept_flags,
3728                       unsigned long    *tx_accept_flags)
3729 {
3730     /* Clear the flags first */
3731     *rx_accept_flags = 0;
3732     *tx_accept_flags = 0;
3733 
3734     switch (rx_mode) {
3735     case BXE_RX_MODE_NONE:
3736         /*
3737          * 'drop all' supersedes any accept flags that may have been
3738          * passed to the function.
3739          */
3740         break;
3741 
3742     case BXE_RX_MODE_NORMAL:
3743         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3744         bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3745         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3746 
3747         /* internal switching mode */
3748         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3749         bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3750         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3751 
3752         break;
3753 
3754     case BXE_RX_MODE_ALLMULTI:
3755         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3756         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3757         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3758 
3759         /* internal switching mode */
3760         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3761         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3762         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3763 
3764         break;
3765 
3766     case BXE_RX_MODE_PROMISC:
3767         /*
3768          * According to deffinition of SI mode, iface in promisc mode
3769          * should receive matched and unmatched (in resolution of port)
3770          * unicast packets.
3771          */
3772         bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3773         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3774         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3775         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3776 
3777         /* internal switching mode */
3778         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3779         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3780 
3781         if (IS_MF_SI(sc)) {
3782             bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3783         } else {
3784             bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3785         }
3786 
3787         break;
3788 
3789     default:
3790         BLOGE(sc, "Unknown rx_mode (%d)\n", rx_mode);
3791         return (-1);
3792     }
3793 
3794     /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3795     if (rx_mode != BXE_RX_MODE_NONE) {
3796         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3797         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3798     }
3799 
3800     return (0);
3801 }
3802 
3803 static int
3804 bxe_set_q_rx_mode(struct bxe_softc *sc,
3805                   uint8_t          cl_id,
3806                   unsigned long    rx_mode_flags,
3807                   unsigned long    rx_accept_flags,
3808                   unsigned long    tx_accept_flags,
3809                   unsigned long    ramrod_flags)
3810 {
3811     struct ecore_rx_mode_ramrod_params ramrod_param;
3812     int rc;
3813 
3814     memset(&ramrod_param, 0, sizeof(ramrod_param));
3815 
3816     /* Prepare ramrod parameters */
3817     ramrod_param.cid = 0;
3818     ramrod_param.cl_id = cl_id;
3819     ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3820     ramrod_param.func_id = SC_FUNC(sc);
3821 
3822     ramrod_param.pstate = &sc->sp_state;
3823     ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3824 
3825     ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3826     ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3827 
3828     bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3829 
3830     ramrod_param.ramrod_flags = ramrod_flags;
3831     ramrod_param.rx_mode_flags = rx_mode_flags;
3832 
3833     ramrod_param.rx_accept_flags = rx_accept_flags;
3834     ramrod_param.tx_accept_flags = tx_accept_flags;
3835 
3836     rc = ecore_config_rx_mode(sc, &ramrod_param);
3837     if (rc < 0) {
3838         BLOGE(sc, "Set rx_mode %d failed\n", sc->rx_mode);
3839         return (rc);
3840     }
3841 
3842     return (0);
3843 }
3844 
3845 static int
3846 bxe_set_storm_rx_mode(struct bxe_softc *sc)
3847 {
3848     unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3849     unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3850     int rc;
3851 
3852     rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3853                                &tx_accept_flags);
3854     if (rc) {
3855         return (rc);
3856     }
3857 
3858     bxe_set_bit(RAMROD_RX, &ramrod_flags);
3859     bxe_set_bit(RAMROD_TX, &ramrod_flags);
3860 
3861     /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3862     return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3863                               rx_accept_flags, tx_accept_flags,
3864                               ramrod_flags));
3865 }
3866 
3867 /* returns the "mcp load_code" according to global load_count array */
3868 static int
3869 bxe_nic_load_no_mcp(struct bxe_softc *sc)
3870 {
3871     int path = SC_PATH(sc);
3872     int port = SC_PORT(sc);
3873 
3874     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3875           path, load_count[path][0], load_count[path][1],
3876           load_count[path][2]);
3877     load_count[path][0]++;
3878     load_count[path][1 + port]++;
3879     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3880           path, load_count[path][0], load_count[path][1],
3881           load_count[path][2]);
3882     if (load_count[path][0] == 1) {
3883         return (FW_MSG_CODE_DRV_LOAD_COMMON);
3884     } else if (load_count[path][1 + port] == 1) {
3885         return (FW_MSG_CODE_DRV_LOAD_PORT);
3886     } else {
3887         return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3888     }
3889 }
3890 
3891 /* returns the "mcp load_code" according to global load_count array */
3892 static int
3893 bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3894 {
3895     int port = SC_PORT(sc);
3896     int path = SC_PATH(sc);
3897 
3898     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3899           path, load_count[path][0], load_count[path][1],
3900           load_count[path][2]);
3901     load_count[path][0]--;
3902     load_count[path][1 + port]--;
3903     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3904           path, load_count[path][0], load_count[path][1],
3905           load_count[path][2]);
3906     if (load_count[path][0] == 0) {
3907         return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3908     } else if (load_count[path][1 + port] == 0) {
3909         return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3910     } else {
3911         return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3912     }
3913 }
3914 
3915 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3916 static uint32_t
3917 bxe_send_unload_req(struct bxe_softc *sc,
3918                     int              unload_mode)
3919 {
3920     uint32_t reset_code = 0;
3921 #if 0
3922     int port = SC_PORT(sc);
3923     int path = SC_PATH(sc);
3924 #endif
3925 
3926     /* Select the UNLOAD request mode */
3927     if (unload_mode == UNLOAD_NORMAL) {
3928         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3929     }
3930 #if 0
3931     else if (sc->flags & BXE_NO_WOL_FLAG) {
3932         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
3933     } else if (sc->wol) {
3934         uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
3935         uint8_t *mac_addr = sc->dev->dev_addr;
3936         uint32_t val;
3937         uint16_t pmc;
3938 
3939         /*
3940          * The mac address is written to entries 1-4 to
3941          * preserve entry 0 which is used by the PMF
3942          */
3943         uint8_t entry = (SC_VN(sc) + 1)*8;
3944 
3945         val = (mac_addr[0] << 8) | mac_addr[1];
3946         EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry, val);
3947 
3948         val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3949               (mac_addr[4] << 8) | mac_addr[5];
3950         EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
3951 
3952         /* Enable the PME and clear the status */
3953         pmc = pci_read_config(sc->dev,
3954                               (sc->devinfo.pcie_pm_cap_reg +
3955                                PCIR_POWER_STATUS),
3956                               2);
3957         pmc |= PCIM_PSTAT_PMEENABLE | PCIM_PSTAT_PME;
3958         pci_write_config(sc->dev,
3959                          (sc->devinfo.pcie_pm_cap_reg +
3960                           PCIR_POWER_STATUS),
3961                          pmc, 4);
3962 
3963         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
3964     }
3965 #endif
3966     else {
3967         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3968     }
3969 
3970     /* Send the request to the MCP */
3971     if (!BXE_NOMCP(sc)) {
3972         reset_code = bxe_fw_command(sc, reset_code, 0);
3973     } else {
3974         reset_code = bxe_nic_unload_no_mcp(sc);
3975     }
3976 
3977     return (reset_code);
3978 }
3979 
3980 /* send UNLOAD_DONE command to the MCP */
3981 static void
3982 bxe_send_unload_done(struct bxe_softc *sc,
3983                      uint8_t          keep_link)
3984 {
3985     uint32_t reset_param =
3986         keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
3987 
3988     /* Report UNLOAD_DONE to MCP */
3989     if (!BXE_NOMCP(sc)) {
3990         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
3991     }
3992 }
3993 
3994 static int
3995 bxe_func_wait_started(struct bxe_softc *sc)
3996 {
3997     int tout = 50;
3998 
3999     if (!sc->port.pmf) {
4000         return (0);
4001     }
4002 
4003     /*
4004      * (assumption: No Attention from MCP at this stage)
4005      * PMF probably in the middle of TX disable/enable transaction
4006      * 1. Sync IRS for default SB
4007      * 2. Sync SP queue - this guarantees us that attention handling started
4008      * 3. Wait, that TX disable/enable transaction completes
4009      *
4010      * 1+2 guarantee that if DCBX attention was scheduled it already changed
4011      * pending bit of transaction from STARTED-->TX_STOPPED, if we already
4012      * received completion for the transaction the state is TX_STOPPED.
4013      * State will return to STARTED after completion of TX_STOPPED-->STARTED
4014      * transaction.
4015      */
4016 
4017     /* XXX make sure default SB ISR is done */
4018     /* need a way to synchronize an irq (intr_mtx?) */
4019 
4020     /* XXX flush any work queues */
4021 
4022     while (ecore_func_get_state(sc, &sc->func_obj) !=
4023            ECORE_F_STATE_STARTED && tout--) {
4024         DELAY(20000);
4025     }
4026 
4027     if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
4028         /*
4029          * Failed to complete the transaction in a "good way"
4030          * Force both transactions with CLR bit.
4031          */
4032         struct ecore_func_state_params func_params = { NULL };
4033 
4034         BLOGE(sc, "Unexpected function state! "
4035                   "Forcing STARTED-->TX_STOPPED-->STARTED\n");
4036 
4037         func_params.f_obj = &sc->func_obj;
4038         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4039 
4040         /* STARTED-->TX_STOPPED */
4041         func_params.cmd = ECORE_F_CMD_TX_STOP;
4042         ecore_func_state_change(sc, &func_params);
4043 
4044         /* TX_STOPPED-->STARTED */
4045         func_params.cmd = ECORE_F_CMD_TX_START;
4046         return (ecore_func_state_change(sc, &func_params));
4047     }
4048 
4049     return (0);
4050 }
4051 
4052 static int
4053 bxe_stop_queue(struct bxe_softc *sc,
4054                int              index)
4055 {
4056     struct bxe_fastpath *fp = &sc->fp[index];
4057     struct ecore_queue_state_params q_params = { NULL };
4058     int rc;
4059 
4060     BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
4061 
4062     q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
4063     /* We want to wait for completion in this context */
4064     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
4065 
4066     /* Stop the primary connection: */
4067 
4068     /* ...halt the connection */
4069     q_params.cmd = ECORE_Q_CMD_HALT;
4070     rc = ecore_queue_state_change(sc, &q_params);
4071     if (rc) {
4072         return (rc);
4073     }
4074 
4075     /* ...terminate the connection */
4076     q_params.cmd = ECORE_Q_CMD_TERMINATE;
4077     memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
4078     q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
4079     rc = ecore_queue_state_change(sc, &q_params);
4080     if (rc) {
4081         return (rc);
4082     }
4083 
4084     /* ...delete cfc entry */
4085     q_params.cmd = ECORE_Q_CMD_CFC_DEL;
4086     memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
4087     q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
4088     return (ecore_queue_state_change(sc, &q_params));
4089 }
4090 
4091 /* wait for the outstanding SP commands */
4092 static inline uint8_t
4093 bxe_wait_sp_comp(struct bxe_softc *sc,
4094                  unsigned long    mask)
4095 {
4096     unsigned long tmp;
4097     int tout = 5000; /* wait for 5 secs tops */
4098 
4099     while (tout--) {
4100         mb();
4101         if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
4102             return (TRUE);
4103         }
4104 
4105         DELAY(1000);
4106     }
4107 
4108     mb();
4109 
4110     tmp = atomic_load_acq_long(&sc->sp_state);
4111     if (tmp & mask) {
4112         BLOGE(sc, "Filtering completion timed out: "
4113                   "sp_state 0x%lx, mask 0x%lx\n",
4114               tmp, mask);
4115         return (FALSE);
4116     }
4117 
4118     return (FALSE);
4119 }
4120 
4121 static int
4122 bxe_func_stop(struct bxe_softc *sc)
4123 {
4124     struct ecore_func_state_params func_params = { NULL };
4125     int rc;
4126 
4127     /* prepare parameters for function state transitions */
4128     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4129     func_params.f_obj = &sc->func_obj;
4130     func_params.cmd = ECORE_F_CMD_STOP;
4131 
4132     /*
4133      * Try to stop the function the 'good way'. If it fails (in case
4134      * of a parity error during bxe_chip_cleanup()) and we are
4135      * not in a debug mode, perform a state transaction in order to
4136      * enable further HW_RESET transaction.
4137      */
4138     rc = ecore_func_state_change(sc, &func_params);
4139     if (rc) {
4140         BLOGE(sc, "FUNC_STOP ramrod failed. "
4141                   "Running a dry transaction\n");
4142         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4143         return (ecore_func_state_change(sc, &func_params));
4144     }
4145 
4146     return (0);
4147 }
4148 
4149 static int
4150 bxe_reset_hw(struct bxe_softc *sc,
4151              uint32_t         load_code)
4152 {
4153     struct ecore_func_state_params func_params = { NULL };
4154 
4155     /* Prepare parameters for function state transitions */
4156     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4157 
4158     func_params.f_obj = &sc->func_obj;
4159     func_params.cmd = ECORE_F_CMD_HW_RESET;
4160 
4161     func_params.params.hw_init.load_phase = load_code;
4162 
4163     return (ecore_func_state_change(sc, &func_params));
4164 }
4165 
4166 static void
4167 bxe_int_disable_sync(struct bxe_softc *sc,
4168                      int              disable_hw)
4169 {
4170     if (disable_hw) {
4171         /* prevent the HW from sending interrupts */
4172         bxe_int_disable(sc);
4173     }
4174 
4175     /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
4176     /* make sure all ISRs are done */
4177 
4178     /* XXX make sure sp_task is not running */
4179     /* cancel and flush work queues */
4180 }
4181 
4182 static void
4183 bxe_chip_cleanup(struct bxe_softc *sc,
4184                  uint32_t         unload_mode,
4185                  uint8_t          keep_link)
4186 {
4187     int port = SC_PORT(sc);
4188     struct ecore_mcast_ramrod_params rparam = { NULL };
4189     uint32_t reset_code;
4190     int i, rc = 0;
4191 
4192     bxe_drain_tx_queues(sc);
4193 
4194     /* give HW time to discard old tx messages */
4195     DELAY(1000);
4196 
4197     /* Clean all ETH MACs */
4198     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4199     if (rc < 0) {
4200         BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4201     }
4202 
4203     /* Clean up UC list  */
4204     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4205     if (rc < 0) {
4206         BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4207     }
4208 
4209     /* Disable LLH */
4210     if (!CHIP_IS_E1(sc)) {
4211         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4212     }
4213 
4214     /* Set "drop all" to stop Rx */
4215 
4216     /*
4217      * We need to take the BXE_MCAST_LOCK() here in order to prevent
4218      * a race between the completion code and this code.
4219      */
4220     BXE_MCAST_LOCK(sc);
4221 
4222     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4223         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4224     } else {
4225         bxe_set_storm_rx_mode(sc);
4226     }
4227 
4228     /* Clean up multicast configuration */
4229     rparam.mcast_obj = &sc->mcast_obj;
4230     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4231     if (rc < 0) {
4232         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4233     }
4234 
4235     BXE_MCAST_UNLOCK(sc);
4236 
4237     // XXX bxe_iov_chip_cleanup(sc);
4238 
4239     /*
4240      * Send the UNLOAD_REQUEST to the MCP. This will return if
4241      * this function should perform FUNCTION, PORT, or COMMON HW
4242      * reset.
4243      */
4244     reset_code = bxe_send_unload_req(sc, unload_mode);
4245 
4246     /*
4247      * (assumption: No Attention from MCP at this stage)
4248      * PMF probably in the middle of TX disable/enable transaction
4249      */
4250     rc = bxe_func_wait_started(sc);
4251     if (rc) {
4252         BLOGE(sc, "bxe_func_wait_started failed\n");
4253     }
4254 
4255     /*
4256      * Close multi and leading connections
4257      * Completions for ramrods are collected in a synchronous way
4258      */
4259     for (i = 0; i < sc->num_queues; i++) {
4260         if (bxe_stop_queue(sc, i)) {
4261             goto unload_error;
4262         }
4263     }
4264 
4265     /*
4266      * If SP settings didn't get completed so far - something
4267      * very wrong has happen.
4268      */
4269     if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4270         BLOGE(sc, "Common slow path ramrods got stuck!\n");
4271     }
4272 
4273 unload_error:
4274 
4275     rc = bxe_func_stop(sc);
4276     if (rc) {
4277         BLOGE(sc, "Function stop failed!\n");
4278     }
4279 
4280     /* disable HW interrupts */
4281     bxe_int_disable_sync(sc, TRUE);
4282 
4283     /* detach interrupts */
4284     bxe_interrupt_detach(sc);
4285 
4286     /* Reset the chip */
4287     rc = bxe_reset_hw(sc, reset_code);
4288     if (rc) {
4289         BLOGE(sc, "Hardware reset failed\n");
4290     }
4291 
4292     /* Report UNLOAD_DONE to MCP */
4293     bxe_send_unload_done(sc, keep_link);
4294 }
4295 
4296 static void
4297 bxe_disable_close_the_gate(struct bxe_softc *sc)
4298 {
4299     uint32_t val;
4300     int port = SC_PORT(sc);
4301 
4302     BLOGD(sc, DBG_LOAD,
4303           "Disabling 'close the gates'\n");
4304 
4305     if (CHIP_IS_E1(sc)) {
4306         uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4307                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
4308         val = REG_RD(sc, addr);
4309         val &= ~(0x300);
4310         REG_WR(sc, addr, val);
4311     } else {
4312         val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4313         val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4314                  MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4315         REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4316     }
4317 }
4318 
4319 /*
4320  * Cleans the object that have internal lists without sending
4321  * ramrods. Should be run when interrutps are disabled.
4322  */
4323 static void
4324 bxe_squeeze_objects(struct bxe_softc *sc)
4325 {
4326     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4327     struct ecore_mcast_ramrod_params rparam = { NULL };
4328     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4329     int rc;
4330 
4331     /* Cleanup MACs' object first... */
4332 
4333     /* Wait for completion of requested */
4334     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4335     /* Perform a dry cleanup */
4336     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4337 
4338     /* Clean ETH primary MAC */
4339     bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4340     rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4341                              &ramrod_flags);
4342     if (rc != 0) {
4343         BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4344     }
4345 
4346     /* Cleanup UC list */
4347     vlan_mac_flags = 0;
4348     bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4349     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4350                              &ramrod_flags);
4351     if (rc != 0) {
4352         BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4353     }
4354 
4355     /* Now clean mcast object... */
4356 
4357     rparam.mcast_obj = &sc->mcast_obj;
4358     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4359 
4360     /* Add a DEL command... */
4361     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4362     if (rc < 0) {
4363         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4364     }
4365 
4366     /* now wait until all pending commands are cleared */
4367 
4368     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4369     while (rc != 0) {
4370         if (rc < 0) {
4371             BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4372             return;
4373         }
4374 
4375         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4376     }
4377 }
4378 
4379 /* stop the controller */
4380 static __noinline int
4381 bxe_nic_unload(struct bxe_softc *sc,
4382                uint32_t         unload_mode,
4383                uint8_t          keep_link)
4384 {
4385     uint8_t global = FALSE;
4386     uint32_t val;
4387 
4388     BXE_CORE_LOCK_ASSERT(sc);
4389 
4390     BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4391 
4392     /* mark driver as unloaded in shmem2 */
4393     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4394         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4395         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4396                   val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4397     }
4398 
4399     if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4400         (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4401         /*
4402          * We can get here if the driver has been unloaded
4403          * during parity error recovery and is either waiting for a
4404          * leader to complete or for other functions to unload and
4405          * then ifconfig down has been issued. In this case we want to
4406          * unload and let other functions to complete a recovery
4407          * process.
4408          */
4409         sc->recovery_state = BXE_RECOVERY_DONE;
4410         sc->is_leader = 0;
4411         bxe_release_leader_lock(sc);
4412         mb();
4413 
4414         BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4415         BLOGE(sc, "Can't unload in closed or error state\n");
4416         return (-1);
4417     }
4418 
4419     /*
4420      * Nothing to do during unload if previous bxe_nic_load()
4421      * did not completed succesfully - all resourses are released.
4422      */
4423     if ((sc->state == BXE_STATE_CLOSED) ||
4424         (sc->state == BXE_STATE_ERROR)) {
4425         return (0);
4426     }
4427 
4428     sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4429     mb();
4430 
4431     /* stop tx */
4432     bxe_tx_disable(sc);
4433 
4434     sc->rx_mode = BXE_RX_MODE_NONE;
4435     /* XXX set rx mode ??? */
4436 
4437     if (IS_PF(sc)) {
4438         /* set ALWAYS_ALIVE bit in shmem */
4439         sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4440 
4441         bxe_drv_pulse(sc);
4442 
4443         bxe_stats_handle(sc, STATS_EVENT_STOP);
4444         bxe_save_statistics(sc);
4445     }
4446 
4447     /* wait till consumers catch up with producers in all queues */
4448     bxe_drain_tx_queues(sc);
4449 
4450     /* if VF indicate to PF this function is going down (PF will delete sp
4451      * elements and clear initializations
4452      */
4453     if (IS_VF(sc)) {
4454         ; /* bxe_vfpf_close_vf(sc); */
4455     } else if (unload_mode != UNLOAD_RECOVERY) {
4456         /* if this is a normal/close unload need to clean up chip */
4457         bxe_chip_cleanup(sc, unload_mode, keep_link);
4458     } else {
4459         /* Send the UNLOAD_REQUEST to the MCP */
4460         bxe_send_unload_req(sc, unload_mode);
4461 
4462         /*
4463          * Prevent transactions to host from the functions on the
4464          * engine that doesn't reset global blocks in case of global
4465          * attention once gloabl blocks are reset and gates are opened
4466          * (the engine which leader will perform the recovery
4467          * last).
4468          */
4469         if (!CHIP_IS_E1x(sc)) {
4470             bxe_pf_disable(sc);
4471         }
4472 
4473         /* disable HW interrupts */
4474         bxe_int_disable_sync(sc, TRUE);
4475 
4476         /* detach interrupts */
4477         bxe_interrupt_detach(sc);
4478 
4479         /* Report UNLOAD_DONE to MCP */
4480         bxe_send_unload_done(sc, FALSE);
4481     }
4482 
4483     /*
4484      * At this stage no more interrupts will arrive so we may safely clean
4485      * the queue'able objects here in case they failed to get cleaned so far.
4486      */
4487     if (IS_PF(sc)) {
4488         bxe_squeeze_objects(sc);
4489     }
4490 
4491     /* There should be no more pending SP commands at this stage */
4492     sc->sp_state = 0;
4493 
4494     sc->port.pmf = 0;
4495 
4496     bxe_free_fp_buffers(sc);
4497 
4498     if (IS_PF(sc)) {
4499         bxe_free_mem(sc);
4500     }
4501 
4502     bxe_free_fw_stats_mem(sc);
4503 
4504     sc->state = BXE_STATE_CLOSED;
4505 
4506     /*
4507      * Check if there are pending parity attentions. If there are - set
4508      * RECOVERY_IN_PROGRESS.
4509      */
4510     if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4511         bxe_set_reset_in_progress(sc);
4512 
4513         /* Set RESET_IS_GLOBAL if needed */
4514         if (global) {
4515             bxe_set_reset_global(sc);
4516         }
4517     }
4518 
4519     /*
4520      * The last driver must disable a "close the gate" if there is no
4521      * parity attention or "process kill" pending.
4522      */
4523     if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4524         bxe_reset_is_done(sc, SC_PATH(sc))) {
4525         bxe_disable_close_the_gate(sc);
4526     }
4527 
4528     BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4529 
4530     return (0);
4531 }
4532 
4533 /*
4534  * Called by the OS to set various media options (i.e. link, speed, etc.) when
4535  * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4536  */
4537 static int
4538 bxe_ifmedia_update(struct ifnet *ifp)
4539 {
4540     struct bxe_softc *sc = (struct bxe_softc *)ifp->if_softc;
4541     struct ifmedia *ifm;
4542 
4543     ifm = &sc->ifmedia;
4544 
4545     /* We only support Ethernet media type. */
4546     if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4547         return (EINVAL);
4548     }
4549 
4550     switch (IFM_SUBTYPE(ifm->ifm_media)) {
4551     case IFM_AUTO:
4552          break;
4553     case IFM_10G_CX4:
4554     case IFM_10G_SR:
4555     case IFM_10G_T:
4556     case IFM_10G_TWINAX:
4557     default:
4558         /* We don't support changing the media type. */
4559         BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4560               IFM_SUBTYPE(ifm->ifm_media));
4561         return (EINVAL);
4562     }
4563 
4564     return (0);
4565 }
4566 
4567 /*
4568  * Called by the OS to get the current media status (i.e. link, speed, etc.).
4569  */
4570 static void
4571 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
4572 {
4573     struct bxe_softc *sc = ifp->if_softc;
4574 
4575     /* Report link down if the driver isn't running. */
4576     if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4577         ifmr->ifm_active |= IFM_NONE;
4578         return;
4579     }
4580 
4581     /* Setup the default interface info. */
4582     ifmr->ifm_status = IFM_AVALID;
4583     ifmr->ifm_active = IFM_ETHER;
4584 
4585     if (sc->link_vars.link_up) {
4586         ifmr->ifm_status |= IFM_ACTIVE;
4587     } else {
4588         ifmr->ifm_active |= IFM_NONE;
4589         return;
4590     }
4591 
4592     ifmr->ifm_active |= sc->media;
4593 
4594     if (sc->link_vars.duplex == DUPLEX_FULL) {
4595         ifmr->ifm_active |= IFM_FDX;
4596     } else {
4597         ifmr->ifm_active |= IFM_HDX;
4598     }
4599 }
4600 
4601 static int
4602 bxe_ioctl_nvram(struct bxe_softc *sc,
4603                 uint32_t         priv_op,
4604                 struct ifreq     *ifr)
4605 {
4606     struct bxe_nvram_data nvdata_base;
4607     struct bxe_nvram_data *nvdata;
4608     int len;
4609     int error = 0;
4610 
4611     copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base));
4612 
4613     len = (sizeof(struct bxe_nvram_data) +
4614            nvdata_base.len -
4615            sizeof(uint32_t));
4616 
4617     if (len > sizeof(struct bxe_nvram_data)) {
4618         if ((nvdata = (struct bxe_nvram_data *)
4619                  malloc(len, M_DEVBUF,
4620                         (M_NOWAIT | M_ZERO))) == NULL) {
4621             BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed\n");
4622             return (1);
4623         }
4624         memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data));
4625     } else {
4626         nvdata = &nvdata_base;
4627     }
4628 
4629     if (priv_op == BXE_IOC_RD_NVRAM) {
4630         BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n",
4631               nvdata->offset, nvdata->len);
4632         error = bxe_nvram_read(sc,
4633                                nvdata->offset,
4634                                (uint8_t *)nvdata->value,
4635                                nvdata->len);
4636         copyout(nvdata, ifr->ifr_data, len);
4637     } else { /* BXE_IOC_WR_NVRAM */
4638         BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n",
4639               nvdata->offset, nvdata->len);
4640         copyin(ifr->ifr_data, nvdata, len);
4641         error = bxe_nvram_write(sc,
4642                                 nvdata->offset,
4643                                 (uint8_t *)nvdata->value,
4644                                 nvdata->len);
4645     }
4646 
4647     if (len > sizeof(struct bxe_nvram_data)) {
4648         free(nvdata, M_DEVBUF);
4649     }
4650 
4651     return (error);
4652 }
4653 
4654 static int
4655 bxe_ioctl_stats_show(struct bxe_softc *sc,
4656                      uint32_t         priv_op,
4657                      struct ifreq     *ifr)
4658 {
4659     const size_t str_size   = (BXE_NUM_ETH_STATS * STAT_NAME_LEN);
4660     const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t));
4661     caddr_t p_tmp;
4662     uint32_t *offset;
4663     int i;
4664 
4665     switch (priv_op)
4666     {
4667     case BXE_IOC_STATS_SHOW_NUM:
4668         memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data));
4669         ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num =
4670             BXE_NUM_ETH_STATS;
4671         ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len =
4672             STAT_NAME_LEN;
4673         return (0);
4674 
4675     case BXE_IOC_STATS_SHOW_STR:
4676         memset(ifr->ifr_data, 0, str_size);
4677         p_tmp = ifr->ifr_data;
4678         for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4679             strcpy(p_tmp, bxe_eth_stats_arr[i].string);
4680             p_tmp += STAT_NAME_LEN;
4681         }
4682         return (0);
4683 
4684     case BXE_IOC_STATS_SHOW_CNT:
4685         memset(ifr->ifr_data, 0, stats_size);
4686         p_tmp = ifr->ifr_data;
4687         for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4688             offset = ((uint32_t *)&sc->eth_stats +
4689                       bxe_eth_stats_arr[i].offset);
4690             switch (bxe_eth_stats_arr[i].size) {
4691             case 4:
4692                 *((uint64_t *)p_tmp) = (uint64_t)*offset;
4693                 break;
4694             case 8:
4695                 *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1));
4696                 break;
4697             default:
4698                 *((uint64_t *)p_tmp) = 0;
4699             }
4700             p_tmp += sizeof(uint64_t);
4701         }
4702         return (0);
4703 
4704     default:
4705         return (-1);
4706     }
4707 }
4708 
4709 static void
4710 bxe_handle_chip_tq(void *context,
4711                    int  pending)
4712 {
4713     struct bxe_softc *sc = (struct bxe_softc *)context;
4714     long work = atomic_load_acq_long(&sc->chip_tq_flags);
4715 
4716     switch (work)
4717     {
4718     case CHIP_TQ_START:
4719         if ((sc->ifnet->if_flags & IFF_UP) &&
4720             !(sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
4721             /* start the interface */
4722             BLOGD(sc, DBG_LOAD, "Starting the interface...\n");
4723             BXE_CORE_LOCK(sc);
4724             bxe_init_locked(sc);
4725             BXE_CORE_UNLOCK(sc);
4726         }
4727         break;
4728 
4729     case CHIP_TQ_STOP:
4730         if (!(sc->ifnet->if_flags & IFF_UP) &&
4731             (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
4732             /* bring down the interface */
4733             BLOGD(sc, DBG_LOAD, "Stopping the interface...\n");
4734             bxe_periodic_stop(sc);
4735             BXE_CORE_LOCK(sc);
4736             bxe_stop_locked(sc);
4737             BXE_CORE_UNLOCK(sc);
4738         }
4739         break;
4740 
4741     case CHIP_TQ_REINIT:
4742         if (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING) {
4743             /* restart the interface */
4744             BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4745             bxe_periodic_stop(sc);
4746             BXE_CORE_LOCK(sc);
4747             bxe_stop_locked(sc);
4748             bxe_init_locked(sc);
4749             BXE_CORE_UNLOCK(sc);
4750         }
4751         break;
4752 
4753     default:
4754         break;
4755     }
4756 }
4757 
4758 /*
4759  * Handles any IOCTL calls from the operating system.
4760  *
4761  * Returns:
4762  *   0 = Success, >0 Failure
4763  */
4764 static int
4765 bxe_ioctl(struct ifnet *ifp,
4766           u_long       command,
4767           caddr_t      data)
4768 {
4769     struct bxe_softc *sc = ifp->if_softc;
4770     struct ifreq *ifr = (struct ifreq *)data;
4771     struct bxe_nvram_data *nvdata;
4772     uint32_t priv_op;
4773     int mask = 0;
4774     int reinit = 0;
4775     int error = 0;
4776 
4777     int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4778     int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4779 
4780     switch (command)
4781     {
4782     case SIOCSIFMTU:
4783         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4784               ifr->ifr_mtu);
4785 
4786         if (sc->mtu == ifr->ifr_mtu) {
4787             /* nothing to change */
4788             break;
4789         }
4790 
4791         if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4792             BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4793                   ifr->ifr_mtu, mtu_min, mtu_max);
4794             error = EINVAL;
4795             break;
4796         }
4797 
4798         atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4799                              (unsigned long)ifr->ifr_mtu);
4800         atomic_store_rel_long((volatile unsigned long *)&ifp->if_mtu,
4801                               (unsigned long)ifr->ifr_mtu);
4802 
4803         reinit = 1;
4804         break;
4805 
4806     case SIOCSIFFLAGS:
4807         /* toggle the interface state up or down */
4808         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4809 
4810         /* check if the interface is up */
4811         if (ifp->if_flags & IFF_UP) {
4812             if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4813                 /* set the receive mode flags */
4814                 bxe_set_rx_mode(sc);
4815             } else {
4816                 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_START);
4817                 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4818             }
4819         } else {
4820             if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4821                 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_STOP);
4822                 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4823             }
4824         }
4825 
4826         break;
4827 
4828     case SIOCADDMULTI:
4829     case SIOCDELMULTI:
4830         /* add/delete multicast addresses */
4831         BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4832 
4833         /* check if the interface is up */
4834         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4835             /* set the receive mode flags */
4836             bxe_set_rx_mode(sc);
4837         }
4838 
4839         break;
4840 
4841     case SIOCSIFCAP:
4842         /* find out which capabilities have changed */
4843         mask = (ifr->ifr_reqcap ^ ifp->if_capenable);
4844 
4845         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4846               mask);
4847 
4848         /* toggle the LRO capabilites enable flag */
4849         if (mask & IFCAP_LRO) {
4850             ifp->if_capenable ^= IFCAP_LRO;
4851             BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4852                   (ifp->if_capenable & IFCAP_LRO) ? "ON" : "OFF");
4853             reinit = 1;
4854         }
4855 
4856         /* toggle the TXCSUM checksum capabilites enable flag */
4857         if (mask & IFCAP_TXCSUM) {
4858             ifp->if_capenable ^= IFCAP_TXCSUM;
4859             BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4860                   (ifp->if_capenable & IFCAP_TXCSUM) ? "ON" : "OFF");
4861             if (ifp->if_capenable & IFCAP_TXCSUM) {
4862                 ifp->if_hwassist = (CSUM_IP       |
4863                                     CSUM_TCP      |
4864                                     CSUM_UDP      |
4865                                     CSUM_TSO      |
4866                                     CSUM_TCP_IPV6 |
4867                                     CSUM_UDP_IPV6);
4868             } else {
4869                 ifp->if_hwassist = 0;
4870             }
4871         }
4872 
4873         /* toggle the RXCSUM checksum capabilities enable flag */
4874         if (mask & IFCAP_RXCSUM) {
4875             ifp->if_capenable ^= IFCAP_RXCSUM;
4876             BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4877                   (ifp->if_capenable & IFCAP_RXCSUM) ? "ON" : "OFF");
4878             if (ifp->if_capenable & IFCAP_RXCSUM) {
4879                 ifp->if_hwassist = (CSUM_IP       |
4880                                     CSUM_TCP      |
4881                                     CSUM_UDP      |
4882                                     CSUM_TSO      |
4883                                     CSUM_TCP_IPV6 |
4884                                     CSUM_UDP_IPV6);
4885             } else {
4886                 ifp->if_hwassist = 0;
4887             }
4888         }
4889 
4890         /* toggle TSO4 capabilities enabled flag */
4891         if (mask & IFCAP_TSO4) {
4892             ifp->if_capenable ^= IFCAP_TSO4;
4893             BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4894                   (ifp->if_capenable & IFCAP_TSO4) ? "ON" : "OFF");
4895         }
4896 
4897         /* toggle TSO6 capabilities enabled flag */
4898         if (mask & IFCAP_TSO6) {
4899             ifp->if_capenable ^= IFCAP_TSO6;
4900             BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4901                   (ifp->if_capenable & IFCAP_TSO6) ? "ON" : "OFF");
4902         }
4903 
4904         /* toggle VLAN_HWTSO capabilities enabled flag */
4905         if (mask & IFCAP_VLAN_HWTSO) {
4906             ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
4907             BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4908                   (ifp->if_capenable & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4909         }
4910 
4911         /* toggle VLAN_HWCSUM capabilities enabled flag */
4912         if (mask & IFCAP_VLAN_HWCSUM) {
4913             /* XXX investigate this... */
4914             BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4915             error = EINVAL;
4916         }
4917 
4918         /* toggle VLAN_MTU capabilities enable flag */
4919         if (mask & IFCAP_VLAN_MTU) {
4920             /* XXX investigate this... */
4921             BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4922             error = EINVAL;
4923         }
4924 
4925         /* toggle VLAN_HWTAGGING capabilities enabled flag */
4926         if (mask & IFCAP_VLAN_HWTAGGING) {
4927             /* XXX investigate this... */
4928             BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4929             error = EINVAL;
4930         }
4931 
4932         /* toggle VLAN_HWFILTER capabilities enabled flag */
4933         if (mask & IFCAP_VLAN_HWFILTER) {
4934             /* XXX investigate this... */
4935             BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4936             error = EINVAL;
4937         }
4938 
4939         /* XXX not yet...
4940          * IFCAP_WOL_MAGIC
4941          */
4942 
4943         break;
4944 
4945     case SIOCSIFMEDIA:
4946     case SIOCGIFMEDIA:
4947         /* set/get interface media */
4948         BLOGD(sc, DBG_IOCTL,
4949               "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4950               (command & 0xff));
4951         error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
4952         break;
4953 
4954     case SIOCGPRIVATE_0:
4955         copyin(ifr->ifr_data, &priv_op, sizeof(priv_op));
4956 
4957         switch (priv_op)
4958         {
4959         case BXE_IOC_RD_NVRAM:
4960         case BXE_IOC_WR_NVRAM:
4961             nvdata = (struct bxe_nvram_data *)ifr->ifr_data;
4962             BLOGD(sc, DBG_IOCTL,
4963                   "Received Private NVRAM ioctl addr=0x%x size=%u\n",
4964                   nvdata->offset, nvdata->len);
4965             error = bxe_ioctl_nvram(sc, priv_op, ifr);
4966             break;
4967 
4968         case BXE_IOC_STATS_SHOW_NUM:
4969         case BXE_IOC_STATS_SHOW_STR:
4970         case BXE_IOC_STATS_SHOW_CNT:
4971             BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n",
4972                   priv_op);
4973             error = bxe_ioctl_stats_show(sc, priv_op, ifr);
4974             break;
4975 
4976         default:
4977             BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op);
4978             error = EINVAL;
4979             break;
4980         }
4981 
4982         break;
4983 
4984     default:
4985         BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
4986               (command & 0xff));
4987         error = ether_ioctl(ifp, command, data);
4988         break;
4989     }
4990 
4991     if (reinit && (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
4992         BLOGD(sc, DBG_LOAD | DBG_IOCTL,
4993               "Re-initializing hardware from IOCTL change\n");
4994         atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
4995         taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4996     }
4997 
4998     return (error);
4999 }
5000 
5001 static __noinline void
5002 bxe_dump_mbuf(struct bxe_softc *sc,
5003               struct mbuf      *m,
5004               uint8_t          contents)
5005 {
5006     char * type;
5007     int i = 0;
5008 
5009     if (!(sc->debug & DBG_MBUF)) {
5010         return;
5011     }
5012 
5013     if (m == NULL) {
5014         BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
5015         return;
5016     }
5017 
5018     while (m) {
5019         BLOGD(sc, DBG_MBUF,
5020               "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
5021               i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
5022 
5023         if (m->m_flags & M_PKTHDR) {
5024              BLOGD(sc, DBG_MBUF,
5025                    "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
5026                    i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
5027                    (int)m->m_pkthdr.csum_flags, CSUM_BITS);
5028         }
5029 
5030         if (m->m_flags & M_EXT) {
5031             switch (m->m_ext.ext_type) {
5032             case EXT_CLUSTER:    type = "EXT_CLUSTER";    break;
5033             case EXT_SFBUF:      type = "EXT_SFBUF";      break;
5034             case EXT_JUMBOP:     type = "EXT_JUMBOP";     break;
5035             case EXT_JUMBO9:     type = "EXT_JUMBO9";     break;
5036             case EXT_JUMBO16:    type = "EXT_JUMBO16";    break;
5037             case EXT_PACKET:     type = "EXT_PACKET";     break;
5038             case EXT_MBUF:       type = "EXT_MBUF";       break;
5039             case EXT_NET_DRV:    type = "EXT_NET_DRV";    break;
5040             case EXT_MOD_TYPE:   type = "EXT_MOD_TYPE";   break;
5041             case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
5042             case EXT_EXTREF:     type = "EXT_EXTREF";     break;
5043             default:             type = "UNKNOWN";        break;
5044             }
5045 
5046             BLOGD(sc, DBG_MBUF,
5047                   "%02d: - m_ext: %p ext_size=%d type=%s\n",
5048                   i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
5049         }
5050 
5051         if (contents) {
5052             bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
5053         }
5054 
5055         m = m->m_next;
5056         i++;
5057     }
5058 }
5059 
5060 /*
5061  * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
5062  * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
5063  * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
5064  * The headers comes in a seperate bd in FreeBSD so 13-3=10.
5065  * Returns: 0 if OK to send, 1 if packet needs further defragmentation
5066  */
5067 static int
5068 bxe_chktso_window(struct bxe_softc  *sc,
5069                   int               nsegs,
5070                   bus_dma_segment_t *segs,
5071                   struct mbuf       *m)
5072 {
5073     uint32_t num_wnds, wnd_size, wnd_sum;
5074     int32_t frag_idx, wnd_idx;
5075     unsigned short lso_mss;
5076     int defrag;
5077 
5078     defrag = 0;
5079     wnd_sum = 0;
5080     wnd_size = 10;
5081     num_wnds = nsegs - wnd_size;
5082     lso_mss = htole16(m->m_pkthdr.tso_segsz);
5083 
5084     /*
5085      * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
5086      * first window sum of data while skipping the first assuming it is the
5087      * header in FreeBSD.
5088      */
5089     for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
5090         wnd_sum += htole16(segs[frag_idx].ds_len);
5091     }
5092 
5093     /* check the first 10 bd window size */
5094     if (wnd_sum < lso_mss) {
5095         return (1);
5096     }
5097 
5098     /* run through the windows */
5099     for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
5100         /* subtract the first mbuf->m_len of the last wndw(-header) */
5101         wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
5102         /* add the next mbuf len to the len of our new window */
5103         wnd_sum += htole16(segs[frag_idx].ds_len);
5104         if (wnd_sum < lso_mss) {
5105             return (1);
5106         }
5107     }
5108 
5109     return (0);
5110 }
5111 
5112 static uint8_t
5113 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
5114                     struct mbuf         *m,
5115                     uint32_t            *parsing_data)
5116 {
5117     struct ether_vlan_header *eh = NULL;
5118     struct ip *ip4 = NULL;
5119     struct ip6_hdr *ip6 = NULL;
5120     caddr_t ip = NULL;
5121     struct tcphdr *th = NULL;
5122     int e_hlen, ip_hlen, l4_off;
5123     uint16_t proto;
5124 
5125     if (m->m_pkthdr.csum_flags == CSUM_IP) {
5126         /* no L4 checksum offload needed */
5127         return (0);
5128     }
5129 
5130     /* get the Ethernet header */
5131     eh = mtod(m, struct ether_vlan_header *);
5132 
5133     /* handle VLAN encapsulation if present */
5134     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5135         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5136         proto  = ntohs(eh->evl_proto);
5137     } else {
5138         e_hlen = ETHER_HDR_LEN;
5139         proto  = ntohs(eh->evl_encap_proto);
5140     }
5141 
5142     switch (proto) {
5143     case ETHERTYPE_IP:
5144         /* get the IP header, if mbuf len < 20 then header in next mbuf */
5145         ip4 = (m->m_len < sizeof(struct ip)) ?
5146                   (struct ip *)m->m_next->m_data :
5147                   (struct ip *)(m->m_data + e_hlen);
5148         /* ip_hl is number of 32-bit words */
5149         ip_hlen = (ip4->ip_hl << 2);
5150         ip = (caddr_t)ip4;
5151         break;
5152     case ETHERTYPE_IPV6:
5153         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5154         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5155                   (struct ip6_hdr *)m->m_next->m_data :
5156                   (struct ip6_hdr *)(m->m_data + e_hlen);
5157         /* XXX cannot support offload with IPv6 extensions */
5158         ip_hlen = sizeof(struct ip6_hdr);
5159         ip = (caddr_t)ip6;
5160         break;
5161     default:
5162         /* We can't offload in this case... */
5163         /* XXX error stat ??? */
5164         return (0);
5165     }
5166 
5167     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5168     l4_off = (e_hlen + ip_hlen);
5169 
5170     *parsing_data |=
5171         (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
5172          ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
5173 
5174     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5175                                   CSUM_TSO |
5176                                   CSUM_TCP_IPV6)) {
5177         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5178         th = (struct tcphdr *)(ip + ip_hlen);
5179         /* th_off is number of 32-bit words */
5180         *parsing_data |= ((th->th_off <<
5181                            ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
5182                           ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
5183         return (l4_off + (th->th_off << 2)); /* entire header length */
5184     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5185                                          CSUM_UDP_IPV6)) {
5186         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5187         return (l4_off + sizeof(struct udphdr)); /* entire header length */
5188     } else {
5189         /* XXX error stat ??? */
5190         return (0);
5191     }
5192 }
5193 
5194 static uint8_t
5195 bxe_set_pbd_csum(struct bxe_fastpath        *fp,
5196                  struct mbuf                *m,
5197                  struct eth_tx_parse_bd_e1x *pbd)
5198 {
5199     struct ether_vlan_header *eh = NULL;
5200     struct ip *ip4 = NULL;
5201     struct ip6_hdr *ip6 = NULL;
5202     caddr_t ip = NULL;
5203     struct tcphdr *th = NULL;
5204     struct udphdr *uh = NULL;
5205     int e_hlen, ip_hlen;
5206     uint16_t proto;
5207     uint8_t hlen;
5208     uint16_t tmp_csum;
5209     uint32_t *tmp_uh;
5210 
5211     /* get the Ethernet header */
5212     eh = mtod(m, struct ether_vlan_header *);
5213 
5214     /* handle VLAN encapsulation if present */
5215     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5216         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5217         proto  = ntohs(eh->evl_proto);
5218     } else {
5219         e_hlen = ETHER_HDR_LEN;
5220         proto  = ntohs(eh->evl_encap_proto);
5221     }
5222 
5223     switch (proto) {
5224     case ETHERTYPE_IP:
5225         /* get the IP header, if mbuf len < 20 then header in next mbuf */
5226         ip4 = (m->m_len < sizeof(struct ip)) ?
5227                   (struct ip *)m->m_next->m_data :
5228                   (struct ip *)(m->m_data + e_hlen);
5229         /* ip_hl is number of 32-bit words */
5230         ip_hlen = (ip4->ip_hl << 1);
5231         ip = (caddr_t)ip4;
5232         break;
5233     case ETHERTYPE_IPV6:
5234         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5235         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5236                   (struct ip6_hdr *)m->m_next->m_data :
5237                   (struct ip6_hdr *)(m->m_data + e_hlen);
5238         /* XXX cannot support offload with IPv6 extensions */
5239         ip_hlen = (sizeof(struct ip6_hdr) >> 1);
5240         ip = (caddr_t)ip6;
5241         break;
5242     default:
5243         /* We can't offload in this case... */
5244         /* XXX error stat ??? */
5245         return (0);
5246     }
5247 
5248     hlen = (e_hlen >> 1);
5249 
5250     /* note that rest of global_data is indirectly zeroed here */
5251     if (m->m_flags & M_VLANTAG) {
5252         pbd->global_data =
5253             htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
5254     } else {
5255         pbd->global_data = htole16(hlen);
5256     }
5257 
5258     pbd->ip_hlen_w = ip_hlen;
5259 
5260     hlen += pbd->ip_hlen_w;
5261 
5262     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5263 
5264     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5265                                   CSUM_TSO |
5266                                   CSUM_TCP_IPV6)) {
5267         th = (struct tcphdr *)(ip + (ip_hlen << 1));
5268         /* th_off is number of 32-bit words */
5269         hlen += (uint16_t)(th->th_off << 1);
5270     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5271                                          CSUM_UDP_IPV6)) {
5272         uh = (struct udphdr *)(ip + (ip_hlen << 1));
5273         hlen += (sizeof(struct udphdr) / 2);
5274     } else {
5275         /* valid case as only CSUM_IP was set */
5276         return (0);
5277     }
5278 
5279     pbd->total_hlen_w = htole16(hlen);
5280 
5281     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5282                                   CSUM_TSO |
5283                                   CSUM_TCP_IPV6)) {
5284         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5285         pbd->tcp_pseudo_csum = ntohs(th->th_sum);
5286     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5287                                          CSUM_UDP_IPV6)) {
5288         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5289 
5290         /*
5291          * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
5292          * checksums and does not know anything about the UDP header and where
5293          * the checksum field is located. It only knows about TCP. Therefore
5294          * we "lie" to the hardware for outgoing UDP packets w/ checksum
5295          * offload. Since the checksum field offset for TCP is 16 bytes and
5296          * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
5297          * bytes less than the start of the UDP header. This allows the
5298          * hardware to write the checksum in the correct spot. But the
5299          * hardware will compute a checksum which includes the last 10 bytes
5300          * of the IP header. To correct this we tweak the stack computed
5301          * pseudo checksum by folding in the calculation of the inverse
5302          * checksum for those final 10 bytes of the IP header. This allows
5303          * the correct checksum to be computed by the hardware.
5304          */
5305 
5306         /* set pointer 10 bytes before UDP header */
5307         tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5308 
5309         /* calculate a pseudo header checksum over the first 10 bytes */
5310         tmp_csum = in_pseudo(*tmp_uh,
5311                              *(tmp_uh + 1),
5312                              *(uint16_t *)(tmp_uh + 2));
5313 
5314         pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5315     }
5316 
5317     return (hlen * 2); /* entire header length, number of bytes */
5318 }
5319 
5320 static void
5321 bxe_set_pbd_lso_e2(struct mbuf *m,
5322                    uint32_t    *parsing_data)
5323 {
5324     *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5325                        ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5326                       ETH_TX_PARSE_BD_E2_LSO_MSS);
5327 
5328     /* XXX test for IPv6 with extension header... */
5329 #if 0
5330     struct ip6_hdr *ip6;
5331     if (ip6 && ip6->ip6_nxt == 'some ipv6 extension header')
5332         *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
5333 #endif
5334 }
5335 
5336 static void
5337 bxe_set_pbd_lso(struct mbuf                *m,
5338                 struct eth_tx_parse_bd_e1x *pbd)
5339 {
5340     struct ether_vlan_header *eh = NULL;
5341     struct ip *ip = NULL;
5342     struct tcphdr *th = NULL;
5343     int e_hlen;
5344 
5345     /* get the Ethernet header */
5346     eh = mtod(m, struct ether_vlan_header *);
5347 
5348     /* handle VLAN encapsulation if present */
5349     e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5350                  (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5351 
5352     /* get the IP and TCP header, with LSO entire header in first mbuf */
5353     /* XXX assuming IPv4 */
5354     ip = (struct ip *)(m->m_data + e_hlen);
5355     th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5356 
5357     pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5358     pbd->tcp_send_seq = ntohl(th->th_seq);
5359     pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5360 
5361 #if 1
5362         /* XXX IPv4 */
5363         pbd->ip_id = ntohs(ip->ip_id);
5364         pbd->tcp_pseudo_csum =
5365             ntohs(in_pseudo(ip->ip_src.s_addr,
5366                             ip->ip_dst.s_addr,
5367                             htons(IPPROTO_TCP)));
5368 #else
5369         /* XXX IPv6 */
5370         pbd->tcp_pseudo_csum =
5371             ntohs(in_pseudo(&ip6->ip6_src,
5372                             &ip6->ip6_dst,
5373                             htons(IPPROTO_TCP)));
5374 #endif
5375 
5376     pbd->global_data |=
5377         htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5378 }
5379 
5380 /*
5381  * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5382  * visible to the controller.
5383  *
5384  * If an mbuf is submitted to this routine and cannot be given to the
5385  * controller (e.g. it has too many fragments) then the function may free
5386  * the mbuf and return to the caller.
5387  *
5388  * Returns:
5389  *   0 = Success, !0 = Failure
5390  *   Note the side effect that an mbuf may be freed if it causes a problem.
5391  */
5392 static int
5393 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5394 {
5395     bus_dma_segment_t segs[32];
5396     struct mbuf *m0;
5397     struct bxe_sw_tx_bd *tx_buf;
5398     struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5399     struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5400     /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5401     struct eth_tx_bd *tx_data_bd;
5402     struct eth_tx_bd *tx_total_pkt_size_bd;
5403     struct eth_tx_start_bd *tx_start_bd;
5404     uint16_t bd_prod, pkt_prod, total_pkt_size;
5405     uint8_t mac_type;
5406     int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5407     struct bxe_softc *sc;
5408     uint16_t tx_bd_avail;
5409     struct ether_vlan_header *eh;
5410     uint32_t pbd_e2_parsing_data = 0;
5411     uint8_t hlen = 0;
5412     int tmp_bd;
5413     int i;
5414 
5415     sc = fp->sc;
5416 
5417     M_ASSERTPKTHDR(*m_head);
5418 
5419     m0 = *m_head;
5420     rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5421     tx_start_bd = NULL;
5422     tx_data_bd = NULL;
5423     tx_total_pkt_size_bd = NULL;
5424 
5425     /* get the H/W pointer for packets and BDs */
5426     pkt_prod = fp->tx_pkt_prod;
5427     bd_prod = fp->tx_bd_prod;
5428 
5429     mac_type = UNICAST_ADDRESS;
5430 
5431     /* map the mbuf into the next open DMAable memory */
5432     tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5433     error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5434                                     tx_buf->m_map, m0,
5435                                     segs, &nsegs, BUS_DMA_NOWAIT);
5436 
5437     /* mapping errors */
5438     if(__predict_false(error != 0)) {
5439         fp->eth_q_stats.tx_dma_mapping_failure++;
5440         if (error == ENOMEM) {
5441             /* resource issue, try again later */
5442             rc = ENOMEM;
5443         } else if (error == EFBIG) {
5444             /* possibly recoverable with defragmentation */
5445             fp->eth_q_stats.mbuf_defrag_attempts++;
5446             m0 = m_defrag(*m_head, M_DONTWAIT);
5447             if (m0 == NULL) {
5448                 fp->eth_q_stats.mbuf_defrag_failures++;
5449                 rc = ENOBUFS;
5450             } else {
5451                 /* defrag successful, try mapping again */
5452                 *m_head = m0;
5453                 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5454                                                 tx_buf->m_map, m0,
5455                                                 segs, &nsegs, BUS_DMA_NOWAIT);
5456                 if (error) {
5457                     fp->eth_q_stats.tx_dma_mapping_failure++;
5458                     rc = error;
5459                 }
5460             }
5461         } else {
5462             /* unknown, unrecoverable mapping error */
5463             BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5464             bxe_dump_mbuf(sc, m0, FALSE);
5465             rc = error;
5466         }
5467 
5468         goto bxe_tx_encap_continue;
5469     }
5470 
5471     tx_bd_avail = bxe_tx_avail(sc, fp);
5472 
5473     /* make sure there is enough room in the send queue */
5474     if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5475         /* Recoverable, try again later. */
5476         fp->eth_q_stats.tx_hw_queue_full++;
5477         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5478         rc = ENOMEM;
5479         goto bxe_tx_encap_continue;
5480     }
5481 
5482     /* capture the current H/W TX chain high watermark */
5483     if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5484                         (TX_BD_USABLE - tx_bd_avail))) {
5485         fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5486     }
5487 
5488     /* make sure it fits in the packet window */
5489     if (__predict_false(nsegs > 12)) {
5490         /*
5491          * The mbuf may be to big for the controller to handle. If the frame
5492          * is a TSO frame we'll need to do an additional check.
5493          */
5494         if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5495             if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5496                 goto bxe_tx_encap_continue; /* OK to send */
5497             } else {
5498                 fp->eth_q_stats.tx_window_violation_tso++;
5499             }
5500         } else {
5501             fp->eth_q_stats.tx_window_violation_std++;
5502         }
5503 
5504         /* lets try to defragment this mbuf */
5505         fp->eth_q_stats.mbuf_defrag_attempts++;
5506 
5507         m0 = m_defrag(*m_head, M_DONTWAIT);
5508         if (m0 == NULL) {
5509             fp->eth_q_stats.mbuf_defrag_failures++;
5510             /* Ugh, just drop the frame... :( */
5511             rc = ENOBUFS;
5512         } else {
5513             /* defrag successful, try mapping again */
5514             *m_head = m0;
5515             error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5516                                             tx_buf->m_map, m0,
5517                                             segs, &nsegs, BUS_DMA_NOWAIT);
5518             if (error) {
5519                 fp->eth_q_stats.tx_dma_mapping_failure++;
5520                 /* No sense in trying to defrag/copy chain, drop it. :( */
5521                 rc = error;
5522             }
5523 
5524             /* if the chain is still too long then drop it */
5525             if (__predict_false(nsegs > 12)) {
5526                 rc = ENODEV;
5527             }
5528         }
5529     }
5530 
5531 bxe_tx_encap_continue:
5532 
5533     /* Check for errors */
5534     if (rc) {
5535         if (rc == ENOMEM) {
5536             /* recoverable try again later  */
5537         } else {
5538             fp->eth_q_stats.tx_soft_errors++;
5539             fp->eth_q_stats.mbuf_alloc_tx--;
5540             m_freem(*m_head);
5541             *m_head = NULL;
5542         }
5543 
5544         return (rc);
5545     }
5546 
5547     /* set flag according to packet type (UNICAST_ADDRESS is default) */
5548     if (m0->m_flags & M_BCAST) {
5549         mac_type = BROADCAST_ADDRESS;
5550     } else if (m0->m_flags & M_MCAST) {
5551         mac_type = MULTICAST_ADDRESS;
5552     }
5553 
5554     /* store the mbuf into the mbuf ring */
5555     tx_buf->m        = m0;
5556     tx_buf->first_bd = fp->tx_bd_prod;
5557     tx_buf->flags    = 0;
5558 
5559     /* prepare the first transmit (start) BD for the mbuf */
5560     tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5561 
5562     BLOGD(sc, DBG_TX,
5563           "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5564           pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5565 
5566     tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5567     tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5568     tx_start_bd->nbytes  = htole16(segs[0].ds_len);
5569     total_pkt_size += tx_start_bd->nbytes;
5570     tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5571 
5572     tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5573 
5574     /* all frames have at least Start BD + Parsing BD */
5575     nbds = nsegs + 1;
5576     tx_start_bd->nbd = htole16(nbds);
5577 
5578     if (m0->m_flags & M_VLANTAG) {
5579         tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5580         tx_start_bd->bd_flags.as_bitfield |=
5581             (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5582     } else {
5583         /* vf tx, start bd must hold the ethertype for fw to enforce it */
5584         if (IS_VF(sc)) {
5585             /* map ethernet header to find type and header length */
5586             eh = mtod(m0, struct ether_vlan_header *);
5587             tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5588         } else {
5589             /* used by FW for packet accounting */
5590             tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5591 #if 0
5592             /*
5593              * If NPAR-SD is active then FW should do the tagging regardless
5594              * of value of priority. Otherwise, if priority indicates this is
5595              * a control packet we need to indicate to FW to avoid tagging.
5596              */
5597             if (!IS_MF_AFEX(sc) && (mbuf priority == PRIO_CONTROL)) {
5598                 SET_FLAG(tx_start_bd->general_data,
5599                          ETH_TX_START_BD_FORCE_VLAN_MODE, 1);
5600             }
5601 #endif
5602         }
5603     }
5604 
5605     /*
5606      * add a parsing BD from the chain. The parsing BD is always added
5607      * though it is only used for TSO and chksum
5608      */
5609     bd_prod = TX_BD_NEXT(bd_prod);
5610 
5611     if (m0->m_pkthdr.csum_flags) {
5612         if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5613             fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5614             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5615         }
5616 
5617         if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5618             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5619                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5620         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5621             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6   |
5622                                                   ETH_TX_BD_FLAGS_IS_UDP |
5623                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5624         } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5625                    (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5626             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5627         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5628             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5629                                                   ETH_TX_BD_FLAGS_IS_UDP);
5630         }
5631     }
5632 
5633     if (!CHIP_IS_E1x(sc)) {
5634         pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5635         memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5636 
5637         if (m0->m_pkthdr.csum_flags) {
5638             hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5639         }
5640 
5641 #if 0
5642         /*
5643          * Add the MACs to the parsing BD if the module param was
5644          * explicitly set, if this is a vf, or in switch independent
5645          * mode.
5646          */
5647         if (sc->flags & BXE_TX_SWITCHING || IS_VF(sc) || IS_MF_SI(sc)) {
5648             eh = mtod(m0, struct ether_vlan_header *);
5649             bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
5650                                 &pbd_e2->data.mac_addr.src_mid,
5651                                 &pbd_e2->data.mac_addr.src_lo,
5652                                 eh->evl_shost);
5653             bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
5654                                 &pbd_e2->data.mac_addr.dst_mid,
5655                                 &pbd_e2->data.mac_addr.dst_lo,
5656                                 eh->evl_dhost);
5657         }
5658 #endif
5659 
5660         SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5661                  mac_type);
5662     } else {
5663         uint16_t global_data = 0;
5664 
5665         pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5666         memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5667 
5668         if (m0->m_pkthdr.csum_flags) {
5669             hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5670         }
5671 
5672         SET_FLAG(global_data,
5673                  ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5674         pbd_e1x->global_data |= htole16(global_data);
5675     }
5676 
5677     /* setup the parsing BD with TSO specific info */
5678     if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5679         fp->eth_q_stats.tx_ofld_frames_lso++;
5680         tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5681 
5682         if (__predict_false(tx_start_bd->nbytes > hlen)) {
5683             fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5684 
5685             /* split the first BD into header/data making the fw job easy */
5686             nbds++;
5687             tx_start_bd->nbd = htole16(nbds);
5688             tx_start_bd->nbytes = htole16(hlen);
5689 
5690             bd_prod = TX_BD_NEXT(bd_prod);
5691 
5692             /* new transmit BD after the tx_parse_bd */
5693             tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5694             tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5695             tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5696             tx_data_bd->nbytes  = htole16(segs[0].ds_len - hlen);
5697             if (tx_total_pkt_size_bd == NULL) {
5698                 tx_total_pkt_size_bd = tx_data_bd;
5699             }
5700 
5701             BLOGD(sc, DBG_TX,
5702                   "TSO split header size is %d (%x:%x) nbds %d\n",
5703                   le16toh(tx_start_bd->nbytes),
5704                   le32toh(tx_start_bd->addr_hi),
5705                   le32toh(tx_start_bd->addr_lo),
5706                   nbds);
5707         }
5708 
5709         if (!CHIP_IS_E1x(sc)) {
5710             bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5711         } else {
5712             bxe_set_pbd_lso(m0, pbd_e1x);
5713         }
5714     }
5715 
5716     if (pbd_e2_parsing_data) {
5717         pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5718     }
5719 
5720     /* prepare remaining BDs, start tx bd contains first seg/frag */
5721     for (i = 1; i < nsegs ; i++) {
5722         bd_prod = TX_BD_NEXT(bd_prod);
5723         tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5724         tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5725         tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5726         tx_data_bd->nbytes  = htole16(segs[i].ds_len);
5727         if (tx_total_pkt_size_bd == NULL) {
5728             tx_total_pkt_size_bd = tx_data_bd;
5729         }
5730         total_pkt_size += tx_data_bd->nbytes;
5731     }
5732 
5733     BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5734 
5735     if (tx_total_pkt_size_bd != NULL) {
5736         tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5737     }
5738 
5739     if (__predict_false(sc->debug & DBG_TX)) {
5740         tmp_bd = tx_buf->first_bd;
5741         for (i = 0; i < nbds; i++)
5742         {
5743             if (i == 0) {
5744                 BLOGD(sc, DBG_TX,
5745                       "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5746                       "bd_flags=0x%x hdr_nbds=%d\n",
5747                       tx_start_bd,
5748                       tmp_bd,
5749                       le16toh(tx_start_bd->nbd),
5750                       le16toh(tx_start_bd->vlan_or_ethertype),
5751                       tx_start_bd->bd_flags.as_bitfield,
5752                       (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5753             } else if (i == 1) {
5754                 if (pbd_e1x) {
5755                     BLOGD(sc, DBG_TX,
5756                           "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5757                           "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5758                           "tcp_seq=%u total_hlen_w=%u\n",
5759                           pbd_e1x,
5760                           tmp_bd,
5761                           pbd_e1x->global_data,
5762                           pbd_e1x->ip_hlen_w,
5763                           pbd_e1x->ip_id,
5764                           pbd_e1x->lso_mss,
5765                           pbd_e1x->tcp_flags,
5766                           pbd_e1x->tcp_pseudo_csum,
5767                           pbd_e1x->tcp_send_seq,
5768                           le16toh(pbd_e1x->total_hlen_w));
5769                 } else { /* if (pbd_e2) */
5770                     BLOGD(sc, DBG_TX,
5771                           "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5772                           "src=%02x:%02x:%02x parsing_data=0x%x\n",
5773                           pbd_e2,
5774                           tmp_bd,
5775                           pbd_e2->data.mac_addr.dst_hi,
5776                           pbd_e2->data.mac_addr.dst_mid,
5777                           pbd_e2->data.mac_addr.dst_lo,
5778                           pbd_e2->data.mac_addr.src_hi,
5779                           pbd_e2->data.mac_addr.src_mid,
5780                           pbd_e2->data.mac_addr.src_lo,
5781                           pbd_e2->parsing_data);
5782                 }
5783             }
5784 
5785             if (i != 1) { /* skip parse db as it doesn't hold data */
5786                 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5787                 BLOGD(sc, DBG_TX,
5788                       "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5789                       tx_data_bd,
5790                       tmp_bd,
5791                       le16toh(tx_data_bd->nbytes),
5792                       le32toh(tx_data_bd->addr_hi),
5793                       le32toh(tx_data_bd->addr_lo));
5794             }
5795 
5796             tmp_bd = TX_BD_NEXT(tmp_bd);
5797         }
5798     }
5799 
5800     BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5801 
5802     /* update TX BD producer index value for next TX */
5803     bd_prod = TX_BD_NEXT(bd_prod);
5804 
5805     /*
5806      * If the chain of tx_bd's describing this frame is adjacent to or spans
5807      * an eth_tx_next_bd element then we need to increment the nbds value.
5808      */
5809     if (TX_BD_IDX(bd_prod) < nbds) {
5810         nbds++;
5811     }
5812 
5813     /* don't allow reordering of writes for nbd and packets */
5814     mb();
5815 
5816     fp->tx_db.data.prod += nbds;
5817 
5818     /* producer points to the next free tx_bd at this point */
5819     fp->tx_pkt_prod++;
5820     fp->tx_bd_prod = bd_prod;
5821 
5822     DOORBELL(sc, fp->index, fp->tx_db.raw);
5823 
5824     fp->eth_q_stats.tx_pkts++;
5825 
5826     /* Prevent speculative reads from getting ahead of the status block. */
5827     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5828                       0, 0, BUS_SPACE_BARRIER_READ);
5829 
5830     /* Prevent speculative reads from getting ahead of the doorbell. */
5831     bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5832                       0, 0, BUS_SPACE_BARRIER_READ);
5833 
5834     return (0);
5835 }
5836 
5837 static void
5838 bxe_tx_start_locked(struct bxe_softc    *sc,
5839                     struct ifnet        *ifp,
5840                     struct bxe_fastpath *fp)
5841 {
5842     struct mbuf *m = NULL;
5843     int tx_count = 0;
5844     uint16_t tx_bd_avail;
5845 
5846     BXE_FP_TX_LOCK_ASSERT(fp);
5847 
5848     /* keep adding entries while there are frames to send */
5849     while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
5850 
5851         /*
5852          * check for any frames to send
5853          * dequeue can still be NULL even if queue is not empty
5854          */
5855         IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
5856         if (__predict_false(m == NULL)) {
5857             break;
5858         }
5859 
5860         /* the mbuf now belongs to us */
5861         fp->eth_q_stats.mbuf_alloc_tx++;
5862 
5863         /*
5864          * Put the frame into the transmit ring. If we don't have room,
5865          * place the mbuf back at the head of the TX queue, set the
5866          * OACTIVE flag, and wait for the NIC to drain the chain.
5867          */
5868         if (__predict_false(bxe_tx_encap(fp, &m))) {
5869             fp->eth_q_stats.tx_encap_failures++;
5870             if (m != NULL) {
5871                 /* mark the TX queue as full and return the frame */
5872                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5873                 IFQ_DRV_PREPEND(&ifp->if_snd, m);
5874                 fp->eth_q_stats.mbuf_alloc_tx--;
5875                 fp->eth_q_stats.tx_queue_xoff++;
5876             }
5877 
5878             /* stop looking for more work */
5879             break;
5880         }
5881 
5882         /* the frame was enqueued successfully */
5883         tx_count++;
5884 
5885         /* send a copy of the frame to any BPF listeners. */
5886         BPF_MTAP(ifp, m);
5887 
5888         tx_bd_avail = bxe_tx_avail(sc, fp);
5889 
5890         /* handle any completions if we're running low */
5891         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5892             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5893             bxe_txeof(sc, fp);
5894             if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
5895                 break;
5896             }
5897         }
5898     }
5899 
5900     /* all TX packets were dequeued and/or the tx ring is full */
5901     if (tx_count > 0) {
5902         /* reset the TX watchdog timeout timer */
5903         fp->watchdog_timer = BXE_TX_TIMEOUT;
5904     }
5905 }
5906 
5907 /* Legacy (non-RSS) dispatch routine */
5908 static void
5909 bxe_tx_start(struct ifnet *ifp)
5910 {
5911     struct bxe_softc *sc;
5912     struct bxe_fastpath *fp;
5913 
5914     sc = ifp->if_softc;
5915 
5916     if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
5917         BLOGW(sc, "Interface not running, ignoring transmit request\n");
5918         return;
5919     }
5920 
5921     if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
5922         BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
5923         return;
5924     }
5925 
5926     if (!sc->link_vars.link_up) {
5927         BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5928         return;
5929     }
5930 
5931     fp = &sc->fp[0];
5932 
5933     BXE_FP_TX_LOCK(fp);
5934     bxe_tx_start_locked(sc, ifp, fp);
5935     BXE_FP_TX_UNLOCK(fp);
5936 }
5937 
5938 #if __FreeBSD_version >= 800000
5939 
5940 static int
5941 bxe_tx_mq_start_locked(struct bxe_softc    *sc,
5942                        struct ifnet        *ifp,
5943                        struct bxe_fastpath *fp,
5944                        struct mbuf         *m)
5945 {
5946     struct buf_ring *tx_br = fp->tx_br;
5947     struct mbuf *next;
5948     int depth, rc, tx_count;
5949     uint16_t tx_bd_avail;
5950 
5951     rc = tx_count = 0;
5952 
5953     if (!tx_br) {
5954         BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
5955         return (EINVAL);
5956     }
5957 
5958     /* fetch the depth of the driver queue */
5959     depth = drbr_inuse(ifp, tx_br);
5960     if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
5961         fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
5962     }
5963 
5964     BXE_FP_TX_LOCK_ASSERT(fp);
5965 
5966     if (m == NULL) {
5967         /* no new work, check for pending frames */
5968         next = drbr_dequeue(ifp, tx_br);
5969     } else if (drbr_needs_enqueue(ifp, tx_br)) {
5970         /* have both new and pending work, maintain packet order */
5971         rc = drbr_enqueue(ifp, tx_br, m);
5972         if (rc != 0) {
5973             fp->eth_q_stats.tx_soft_errors++;
5974             goto bxe_tx_mq_start_locked_exit;
5975         }
5976         next = drbr_dequeue(ifp, tx_br);
5977     } else {
5978         /* new work only and nothing pending */
5979         next = m;
5980     }
5981 
5982     /* keep adding entries while there are frames to send */
5983     while (next != NULL) {
5984 
5985         /* the mbuf now belongs to us */
5986         fp->eth_q_stats.mbuf_alloc_tx++;
5987 
5988         /*
5989          * Put the frame into the transmit ring. If we don't have room,
5990          * place the mbuf back at the head of the TX queue, set the
5991          * OACTIVE flag, and wait for the NIC to drain the chain.
5992          */
5993         rc = bxe_tx_encap(fp, &next);
5994         if (__predict_false(rc != 0)) {
5995             fp->eth_q_stats.tx_encap_failures++;
5996             if (next != NULL) {
5997                 /* mark the TX queue as full and save the frame */
5998                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5999                 /* XXX this may reorder the frame */
6000                 rc = drbr_enqueue(ifp, tx_br, next);
6001                 fp->eth_q_stats.mbuf_alloc_tx--;
6002                 fp->eth_q_stats.tx_frames_deferred++;
6003             }
6004 
6005             /* stop looking for more work */
6006             break;
6007         }
6008 
6009         /* the transmit frame was enqueued successfully */
6010         tx_count++;
6011 
6012         /* send a copy of the frame to any BPF listeners */
6013         BPF_MTAP(ifp, next);
6014 
6015         tx_bd_avail = bxe_tx_avail(sc, fp);
6016 
6017         /* handle any completions if we're running low */
6018         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
6019             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
6020             bxe_txeof(sc, fp);
6021             if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
6022                 break;
6023             }
6024         }
6025 
6026         next = drbr_dequeue(ifp, tx_br);
6027     }
6028 
6029     /* all TX packets were dequeued and/or the tx ring is full */
6030     if (tx_count > 0) {
6031         /* reset the TX watchdog timeout timer */
6032         fp->watchdog_timer = BXE_TX_TIMEOUT;
6033     }
6034 
6035 bxe_tx_mq_start_locked_exit:
6036 
6037     return (rc);
6038 }
6039 
6040 /* Multiqueue (TSS) dispatch routine. */
6041 static int
6042 bxe_tx_mq_start(struct ifnet *ifp,
6043                 struct mbuf  *m)
6044 {
6045     struct bxe_softc *sc = ifp->if_softc;
6046     struct bxe_fastpath *fp;
6047     int fp_index, rc;
6048 
6049     fp_index = 0; /* default is the first queue */
6050 
6051     /* change the queue if using flow ID */
6052     if ((m->m_flags & M_FLOWID) != 0) {
6053         fp_index = (m->m_pkthdr.flowid % sc->num_queues);
6054     }
6055 
6056     fp = &sc->fp[fp_index];
6057 
6058     if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
6059         BLOGW(sc, "Interface not running, ignoring transmit request\n");
6060         return (ENETDOWN);
6061     }
6062 
6063     if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
6064         BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
6065         return (EBUSY);
6066     }
6067 
6068     if (!sc->link_vars.link_up) {
6069         BLOGW(sc, "Interface link is down, ignoring transmit request\n");
6070         return (ENETDOWN);
6071     }
6072 
6073     /* XXX change to TRYLOCK here and if failed then schedule taskqueue */
6074 
6075     BXE_FP_TX_LOCK(fp);
6076     rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
6077     BXE_FP_TX_UNLOCK(fp);
6078 
6079     return (rc);
6080 }
6081 
6082 static void
6083 bxe_mq_flush(struct ifnet *ifp)
6084 {
6085     struct bxe_softc *sc = ifp->if_softc;
6086     struct bxe_fastpath *fp;
6087     struct mbuf *m;
6088     int i;
6089 
6090     for (i = 0; i < sc->num_queues; i++) {
6091         fp = &sc->fp[i];
6092 
6093         if (fp->state != BXE_FP_STATE_OPEN) {
6094             BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
6095                   fp->index, fp->state);
6096             continue;
6097         }
6098 
6099         if (fp->tx_br != NULL) {
6100             BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
6101             BXE_FP_TX_LOCK(fp);
6102             while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6103                 m_freem(m);
6104             }
6105             BXE_FP_TX_UNLOCK(fp);
6106         }
6107     }
6108 
6109     if_qflush(ifp);
6110 }
6111 
6112 #endif /* FreeBSD_version >= 800000 */
6113 
6114 static uint16_t
6115 bxe_cid_ilt_lines(struct bxe_softc *sc)
6116 {
6117     if (IS_SRIOV(sc)) {
6118         return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
6119     }
6120     return (L2_ILT_LINES(sc));
6121 }
6122 
6123 static void
6124 bxe_ilt_set_info(struct bxe_softc *sc)
6125 {
6126     struct ilt_client_info *ilt_client;
6127     struct ecore_ilt *ilt = sc->ilt;
6128     uint16_t line = 0;
6129 
6130     ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
6131     BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
6132 
6133     /* CDU */
6134     ilt_client = &ilt->clients[ILT_CLIENT_CDU];
6135     ilt_client->client_num = ILT_CLIENT_CDU;
6136     ilt_client->page_size = CDU_ILT_PAGE_SZ;
6137     ilt_client->flags = ILT_CLIENT_SKIP_MEM;
6138     ilt_client->start = line;
6139     line += bxe_cid_ilt_lines(sc);
6140 
6141     if (CNIC_SUPPORT(sc)) {
6142         line += CNIC_ILT_LINES;
6143     }
6144 
6145     ilt_client->end = (line - 1);
6146 
6147     BLOGD(sc, DBG_LOAD,
6148           "ilt client[CDU]: start %d, end %d, "
6149           "psz 0x%x, flags 0x%x, hw psz %d\n",
6150           ilt_client->start, ilt_client->end,
6151           ilt_client->page_size,
6152           ilt_client->flags,
6153           ilog2(ilt_client->page_size >> 12));
6154 
6155     /* QM */
6156     if (QM_INIT(sc->qm_cid_count)) {
6157         ilt_client = &ilt->clients[ILT_CLIENT_QM];
6158         ilt_client->client_num = ILT_CLIENT_QM;
6159         ilt_client->page_size = QM_ILT_PAGE_SZ;
6160         ilt_client->flags = 0;
6161         ilt_client->start = line;
6162 
6163         /* 4 bytes for each cid */
6164         line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
6165                              QM_ILT_PAGE_SZ);
6166 
6167         ilt_client->end = (line - 1);
6168 
6169         BLOGD(sc, DBG_LOAD,
6170               "ilt client[QM]: start %d, end %d, "
6171               "psz 0x%x, flags 0x%x, hw psz %d\n",
6172               ilt_client->start, ilt_client->end,
6173               ilt_client->page_size, ilt_client->flags,
6174               ilog2(ilt_client->page_size >> 12));
6175     }
6176 
6177     if (CNIC_SUPPORT(sc)) {
6178         /* SRC */
6179         ilt_client = &ilt->clients[ILT_CLIENT_SRC];
6180         ilt_client->client_num = ILT_CLIENT_SRC;
6181         ilt_client->page_size = SRC_ILT_PAGE_SZ;
6182         ilt_client->flags = 0;
6183         ilt_client->start = line;
6184         line += SRC_ILT_LINES;
6185         ilt_client->end = (line - 1);
6186 
6187         BLOGD(sc, DBG_LOAD,
6188               "ilt client[SRC]: start %d, end %d, "
6189               "psz 0x%x, flags 0x%x, hw psz %d\n",
6190               ilt_client->start, ilt_client->end,
6191               ilt_client->page_size, ilt_client->flags,
6192               ilog2(ilt_client->page_size >> 12));
6193 
6194         /* TM */
6195         ilt_client = &ilt->clients[ILT_CLIENT_TM];
6196         ilt_client->client_num = ILT_CLIENT_TM;
6197         ilt_client->page_size = TM_ILT_PAGE_SZ;
6198         ilt_client->flags = 0;
6199         ilt_client->start = line;
6200         line += TM_ILT_LINES;
6201         ilt_client->end = (line - 1);
6202 
6203         BLOGD(sc, DBG_LOAD,
6204               "ilt client[TM]: start %d, end %d, "
6205               "psz 0x%x, flags 0x%x, hw psz %d\n",
6206               ilt_client->start, ilt_client->end,
6207               ilt_client->page_size, ilt_client->flags,
6208               ilog2(ilt_client->page_size >> 12));
6209     }
6210 
6211     KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
6212 }
6213 
6214 static void
6215 bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
6216 {
6217     int i;
6218 
6219     BLOGD(sc, DBG_LOAD, "mtu = %d\n", sc->mtu);
6220 
6221     for (i = 0; i < sc->num_queues; i++) {
6222         /* get the Rx buffer size for RX frames */
6223         sc->fp[i].rx_buf_size =
6224             (IP_HEADER_ALIGNMENT_PADDING +
6225              ETH_OVERHEAD +
6226              sc->mtu);
6227 
6228         BLOGD(sc, DBG_LOAD, "rx_buf_size for fp[%02d] = %d\n",
6229               i, sc->fp[i].rx_buf_size);
6230 
6231         /* get the mbuf allocation size for RX frames */
6232         if (sc->fp[i].rx_buf_size <= MCLBYTES) {
6233             sc->fp[i].mbuf_alloc_size = MCLBYTES;
6234         } else if (sc->fp[i].rx_buf_size <= BCM_PAGE_SIZE) {
6235             sc->fp[i].mbuf_alloc_size = PAGE_SIZE;
6236         } else {
6237             sc->fp[i].mbuf_alloc_size = MJUM9BYTES;
6238         }
6239 
6240         BLOGD(sc, DBG_LOAD, "mbuf_alloc_size for fp[%02d] = %d\n",
6241               i, sc->fp[i].mbuf_alloc_size);
6242     }
6243 }
6244 
6245 static int
6246 bxe_alloc_ilt_mem(struct bxe_softc *sc)
6247 {
6248     int rc = 0;
6249 
6250     if ((sc->ilt =
6251          (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
6252                                     M_BXE_ILT,
6253                                     (M_NOWAIT | M_ZERO))) == NULL) {
6254         rc = 1;
6255     }
6256 
6257     return (rc);
6258 }
6259 
6260 static int
6261 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
6262 {
6263     int rc = 0;
6264 
6265     if ((sc->ilt->lines =
6266          (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
6267                                     M_BXE_ILT,
6268                                     (M_NOWAIT | M_ZERO))) == NULL) {
6269         rc = 1;
6270     }
6271 
6272     return (rc);
6273 }
6274 
6275 static void
6276 bxe_free_ilt_mem(struct bxe_softc *sc)
6277 {
6278     if (sc->ilt != NULL) {
6279         free(sc->ilt, M_BXE_ILT);
6280         sc->ilt = NULL;
6281     }
6282 }
6283 
6284 static void
6285 bxe_free_ilt_lines_mem(struct bxe_softc *sc)
6286 {
6287     if (sc->ilt->lines != NULL) {
6288         free(sc->ilt->lines, M_BXE_ILT);
6289         sc->ilt->lines = NULL;
6290     }
6291 }
6292 
6293 static void
6294 bxe_free_mem(struct bxe_softc *sc)
6295 {
6296     int i;
6297 
6298 #if 0
6299     if (!CONFIGURE_NIC_MODE(sc)) {
6300         /* free searcher T2 table */
6301         bxe_dma_free(sc, &sc->t2);
6302     }
6303 #endif
6304 
6305     for (i = 0; i < L2_ILT_LINES(sc); i++) {
6306         bxe_dma_free(sc, &sc->context[i].vcxt_dma);
6307         sc->context[i].vcxt = NULL;
6308         sc->context[i].size = 0;
6309     }
6310 
6311     ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
6312 
6313     bxe_free_ilt_lines_mem(sc);
6314 
6315 #if 0
6316     bxe_iov_free_mem(sc);
6317 #endif
6318 }
6319 
6320 static int
6321 bxe_alloc_mem(struct bxe_softc *sc)
6322 {
6323     int context_size;
6324     int allocated;
6325     int i;
6326 
6327 #if 0
6328     if (!CONFIGURE_NIC_MODE(sc)) {
6329         /* allocate searcher T2 table */
6330         if (bxe_dma_alloc(sc, SRC_T2_SZ,
6331                           &sc->t2, "searcher t2 table") != 0) {
6332             return (-1);
6333         }
6334     }
6335 #endif
6336 
6337     /*
6338      * Allocate memory for CDU context:
6339      * This memory is allocated separately and not in the generic ILT
6340      * functions because CDU differs in few aspects:
6341      * 1. There can be multiple entities allocating memory for context -
6342      * regular L2, CNIC, and SRIOV drivers. Each separately controls
6343      * its own ILT lines.
6344      * 2. Since CDU page-size is not a single 4KB page (which is the case
6345      * for the other ILT clients), to be efficient we want to support
6346      * allocation of sub-page-size in the last entry.
6347      * 3. Context pointers are used by the driver to pass to FW / update
6348      * the context (for the other ILT clients the pointers are used just to
6349      * free the memory during unload).
6350      */
6351     context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
6352     for (i = 0, allocated = 0; allocated < context_size; i++) {
6353         sc->context[i].size = min(CDU_ILT_PAGE_SZ,
6354                                   (context_size - allocated));
6355 
6356         if (bxe_dma_alloc(sc, sc->context[i].size,
6357                           &sc->context[i].vcxt_dma,
6358                           "cdu context") != 0) {
6359             bxe_free_mem(sc);
6360             return (-1);
6361         }
6362 
6363         sc->context[i].vcxt =
6364             (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
6365 
6366         allocated += sc->context[i].size;
6367     }
6368 
6369     bxe_alloc_ilt_lines_mem(sc);
6370 
6371     BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6372           sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6373     {
6374         for (i = 0; i < 4; i++) {
6375             BLOGD(sc, DBG_LOAD,
6376                   "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6377                   i,
6378                   sc->ilt->clients[i].page_size,
6379                   sc->ilt->clients[i].start,
6380                   sc->ilt->clients[i].end,
6381                   sc->ilt->clients[i].client_num,
6382                   sc->ilt->clients[i].flags);
6383         }
6384     }
6385     if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6386         BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6387         bxe_free_mem(sc);
6388         return (-1);
6389     }
6390 
6391 #if 0
6392     if (bxe_iov_alloc_mem(sc)) {
6393         BLOGE(sc, "Failed to allocate memory for SRIOV\n");
6394         bxe_free_mem(sc);
6395         return (-1);
6396     }
6397 #endif
6398 
6399     return (0);
6400 }
6401 
6402 static void
6403 bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6404 {
6405     struct bxe_softc *sc;
6406     int i;
6407 
6408     sc = fp->sc;
6409 
6410     if (fp->rx_mbuf_tag == NULL) {
6411         return;
6412     }
6413 
6414     /* free all mbufs and unload all maps */
6415     for (i = 0; i < RX_BD_TOTAL; i++) {
6416         if (fp->rx_mbuf_chain[i].m_map != NULL) {
6417             bus_dmamap_sync(fp->rx_mbuf_tag,
6418                             fp->rx_mbuf_chain[i].m_map,
6419                             BUS_DMASYNC_POSTREAD);
6420             bus_dmamap_unload(fp->rx_mbuf_tag,
6421                               fp->rx_mbuf_chain[i].m_map);
6422         }
6423 
6424         if (fp->rx_mbuf_chain[i].m != NULL) {
6425             m_freem(fp->rx_mbuf_chain[i].m);
6426             fp->rx_mbuf_chain[i].m = NULL;
6427             fp->eth_q_stats.mbuf_alloc_rx--;
6428         }
6429     }
6430 }
6431 
6432 static void
6433 bxe_free_tpa_pool(struct bxe_fastpath *fp)
6434 {
6435     struct bxe_softc *sc;
6436     int i, max_agg_queues;
6437 
6438     sc = fp->sc;
6439 
6440     if (fp->rx_mbuf_tag == NULL) {
6441         return;
6442     }
6443 
6444     max_agg_queues = MAX_AGG_QS(sc);
6445 
6446     /* release all mbufs and unload all DMA maps in the TPA pool */
6447     for (i = 0; i < max_agg_queues; i++) {
6448         if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6449             bus_dmamap_sync(fp->rx_mbuf_tag,
6450                             fp->rx_tpa_info[i].bd.m_map,
6451                             BUS_DMASYNC_POSTREAD);
6452             bus_dmamap_unload(fp->rx_mbuf_tag,
6453                               fp->rx_tpa_info[i].bd.m_map);
6454         }
6455 
6456         if (fp->rx_tpa_info[i].bd.m != NULL) {
6457             m_freem(fp->rx_tpa_info[i].bd.m);
6458             fp->rx_tpa_info[i].bd.m = NULL;
6459             fp->eth_q_stats.mbuf_alloc_tpa--;
6460         }
6461     }
6462 }
6463 
6464 static void
6465 bxe_free_sge_chain(struct bxe_fastpath *fp)
6466 {
6467     struct bxe_softc *sc;
6468     int i;
6469 
6470     sc = fp->sc;
6471 
6472     if (fp->rx_sge_mbuf_tag == NULL) {
6473         return;
6474     }
6475 
6476     /* rree all mbufs and unload all maps */
6477     for (i = 0; i < RX_SGE_TOTAL; i++) {
6478         if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6479             bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6480                             fp->rx_sge_mbuf_chain[i].m_map,
6481                             BUS_DMASYNC_POSTREAD);
6482             bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6483                               fp->rx_sge_mbuf_chain[i].m_map);
6484         }
6485 
6486         if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6487             m_freem(fp->rx_sge_mbuf_chain[i].m);
6488             fp->rx_sge_mbuf_chain[i].m = NULL;
6489             fp->eth_q_stats.mbuf_alloc_sge--;
6490         }
6491     }
6492 }
6493 
6494 static void
6495 bxe_free_fp_buffers(struct bxe_softc *sc)
6496 {
6497     struct bxe_fastpath *fp;
6498     int i;
6499 
6500     for (i = 0; i < sc->num_queues; i++) {
6501         fp = &sc->fp[i];
6502 
6503 #if __FreeBSD_version >= 800000
6504         if (fp->tx_br != NULL) {
6505             struct mbuf *m;
6506             /* just in case bxe_mq_flush() wasn't called */
6507             while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6508                 m_freem(m);
6509             }
6510             buf_ring_free(fp->tx_br, M_DEVBUF);
6511             fp->tx_br = NULL;
6512         }
6513 #endif
6514 
6515         /* free all RX buffers */
6516         bxe_free_rx_bd_chain(fp);
6517         bxe_free_tpa_pool(fp);
6518         bxe_free_sge_chain(fp);
6519 
6520         if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6521             BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6522                   fp->eth_q_stats.mbuf_alloc_rx);
6523         }
6524 
6525         if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6526             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6527                   fp->eth_q_stats.mbuf_alloc_sge);
6528         }
6529 
6530         if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6531             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6532                   fp->eth_q_stats.mbuf_alloc_tpa);
6533         }
6534 
6535         if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6536             BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6537                   fp->eth_q_stats.mbuf_alloc_tx);
6538         }
6539 
6540         /* XXX verify all mbufs were reclaimed */
6541 
6542         if (mtx_initialized(&fp->tx_mtx)) {
6543             mtx_destroy(&fp->tx_mtx);
6544         }
6545 
6546         if (mtx_initialized(&fp->rx_mtx)) {
6547             mtx_destroy(&fp->rx_mtx);
6548         }
6549     }
6550 }
6551 
6552 static int
6553 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6554                      uint16_t            prev_index,
6555                      uint16_t            index)
6556 {
6557     struct bxe_sw_rx_bd *rx_buf;
6558     struct eth_rx_bd *rx_bd;
6559     bus_dma_segment_t segs[1];
6560     bus_dmamap_t map;
6561     struct mbuf *m;
6562     int nsegs, rc;
6563 
6564     rc = 0;
6565 
6566     /* allocate the new RX BD mbuf */
6567     m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6568     if (__predict_false(m == NULL)) {
6569         fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6570         return (ENOBUFS);
6571     }
6572 
6573     fp->eth_q_stats.mbuf_alloc_rx++;
6574 
6575     /* initialize the mbuf buffer length */
6576     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6577 
6578     /* map the mbuf into non-paged pool */
6579     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6580                                  fp->rx_mbuf_spare_map,
6581                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6582     if (__predict_false(rc != 0)) {
6583         fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6584         m_freem(m);
6585         fp->eth_q_stats.mbuf_alloc_rx--;
6586         return (rc);
6587     }
6588 
6589     /* all mbufs must map to a single segment */
6590     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6591 
6592     /* release any existing RX BD mbuf mappings */
6593 
6594     if (prev_index != index) {
6595         rx_buf = &fp->rx_mbuf_chain[prev_index];
6596 
6597         if (rx_buf->m_map != NULL) {
6598             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6599                             BUS_DMASYNC_POSTREAD);
6600             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6601         }
6602 
6603         /*
6604          * We only get here from bxe_rxeof() when the maximum number
6605          * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6606          * holds the mbuf in the prev_index so it's OK to NULL it out
6607          * here without concern of a memory leak.
6608          */
6609         fp->rx_mbuf_chain[prev_index].m = NULL;
6610     }
6611 
6612     rx_buf = &fp->rx_mbuf_chain[index];
6613 
6614     if (rx_buf->m_map != NULL) {
6615         bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6616                         BUS_DMASYNC_POSTREAD);
6617         bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6618     }
6619 
6620     /* save the mbuf and mapping info for a future packet */
6621     map = (prev_index != index) ?
6622               fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6623     rx_buf->m_map = fp->rx_mbuf_spare_map;
6624     fp->rx_mbuf_spare_map = map;
6625     bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6626                     BUS_DMASYNC_PREREAD);
6627     rx_buf->m = m;
6628 
6629     rx_bd = &fp->rx_chain[index];
6630     rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6631     rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6632 
6633     return (rc);
6634 }
6635 
6636 static int
6637 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6638                       int                 queue)
6639 {
6640     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6641     bus_dma_segment_t segs[1];
6642     bus_dmamap_t map;
6643     struct mbuf *m;
6644     int nsegs;
6645     int rc = 0;
6646 
6647     /* allocate the new TPA mbuf */
6648     m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6649     if (__predict_false(m == NULL)) {
6650         fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6651         return (ENOBUFS);
6652     }
6653 
6654     fp->eth_q_stats.mbuf_alloc_tpa++;
6655 
6656     /* initialize the mbuf buffer length */
6657     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6658 
6659     /* map the mbuf into non-paged pool */
6660     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6661                                  fp->rx_tpa_info_mbuf_spare_map,
6662                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6663     if (__predict_false(rc != 0)) {
6664         fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6665         m_free(m);
6666         fp->eth_q_stats.mbuf_alloc_tpa--;
6667         return (rc);
6668     }
6669 
6670     /* all mbufs must map to a single segment */
6671     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6672 
6673     /* release any existing TPA mbuf mapping */
6674     if (tpa_info->bd.m_map != NULL) {
6675         bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6676                         BUS_DMASYNC_POSTREAD);
6677         bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6678     }
6679 
6680     /* save the mbuf and mapping info for the TPA mbuf */
6681     map = tpa_info->bd.m_map;
6682     tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6683     fp->rx_tpa_info_mbuf_spare_map = map;
6684     bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6685                     BUS_DMASYNC_PREREAD);
6686     tpa_info->bd.m = m;
6687     tpa_info->seg = segs[0];
6688 
6689     return (rc);
6690 }
6691 
6692 /*
6693  * Allocate an mbuf and assign it to the receive scatter gather chain. The
6694  * caller must take care to save a copy of the existing mbuf in the SG mbuf
6695  * chain.
6696  */
6697 static int
6698 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6699                       uint16_t            index)
6700 {
6701     struct bxe_sw_rx_bd *sge_buf;
6702     struct eth_rx_sge *sge;
6703     bus_dma_segment_t segs[1];
6704     bus_dmamap_t map;
6705     struct mbuf *m;
6706     int nsegs;
6707     int rc = 0;
6708 
6709     /* allocate a new SGE mbuf */
6710     m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6711     if (__predict_false(m == NULL)) {
6712         fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6713         return (ENOMEM);
6714     }
6715 
6716     fp->eth_q_stats.mbuf_alloc_sge++;
6717 
6718     /* initialize the mbuf buffer length */
6719     m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6720 
6721     /* map the SGE mbuf into non-paged pool */
6722     rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6723                                  fp->rx_sge_mbuf_spare_map,
6724                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6725     if (__predict_false(rc != 0)) {
6726         fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6727         m_freem(m);
6728         fp->eth_q_stats.mbuf_alloc_sge--;
6729         return (rc);
6730     }
6731 
6732     /* all mbufs must map to a single segment */
6733     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6734 
6735     sge_buf = &fp->rx_sge_mbuf_chain[index];
6736 
6737     /* release any existing SGE mbuf mapping */
6738     if (sge_buf->m_map != NULL) {
6739         bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6740                         BUS_DMASYNC_POSTREAD);
6741         bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6742     }
6743 
6744     /* save the mbuf and mapping info for a future packet */
6745     map = sge_buf->m_map;
6746     sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6747     fp->rx_sge_mbuf_spare_map = map;
6748     bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6749                     BUS_DMASYNC_PREREAD);
6750     sge_buf->m = m;
6751 
6752     sge = &fp->rx_sge_chain[index];
6753     sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6754     sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6755 
6756     return (rc);
6757 }
6758 
6759 static __noinline int
6760 bxe_alloc_fp_buffers(struct bxe_softc *sc)
6761 {
6762     struct bxe_fastpath *fp;
6763     int i, j, rc = 0;
6764     int ring_prod, cqe_ring_prod;
6765     int max_agg_queues;
6766 
6767     for (i = 0; i < sc->num_queues; i++) {
6768         fp = &sc->fp[i];
6769 
6770 #if __FreeBSD_version >= 800000
6771         fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
6772                                    M_DONTWAIT, &fp->tx_mtx);
6773         if (fp->tx_br == NULL) {
6774             BLOGE(sc, "buf_ring alloc fail for fp[%02d]\n", i);
6775             goto bxe_alloc_fp_buffers_error;
6776         }
6777 #endif
6778 
6779         ring_prod = cqe_ring_prod = 0;
6780         fp->rx_bd_cons = 0;
6781         fp->rx_cq_cons = 0;
6782 
6783         /* allocate buffers for the RX BDs in RX BD chain */
6784         for (j = 0; j < sc->max_rx_bufs; j++) {
6785             rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6786             if (rc != 0) {
6787                 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6788                       i, rc);
6789                 goto bxe_alloc_fp_buffers_error;
6790             }
6791 
6792             ring_prod     = RX_BD_NEXT(ring_prod);
6793             cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6794         }
6795 
6796         fp->rx_bd_prod = ring_prod;
6797         fp->rx_cq_prod = cqe_ring_prod;
6798         fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6799 
6800         if (sc->ifnet->if_capenable & IFCAP_LRO) {
6801             max_agg_queues = MAX_AGG_QS(sc);
6802 
6803             fp->tpa_enable = TRUE;
6804 
6805             /* fill the TPA pool */
6806             for (j = 0; j < max_agg_queues; j++) {
6807                 rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6808                 if (rc != 0) {
6809                     BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6810                           i, j);
6811                     fp->tpa_enable = FALSE;
6812                     goto bxe_alloc_fp_buffers_error;
6813                 }
6814 
6815                 fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6816             }
6817 
6818             if (fp->tpa_enable) {
6819                 /* fill the RX SGE chain */
6820                 ring_prod = 0;
6821                 for (j = 0; j < RX_SGE_USABLE; j++) {
6822                     rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6823                     if (rc != 0) {
6824                         BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6825                               i, ring_prod);
6826                         fp->tpa_enable = FALSE;
6827                         ring_prod = 0;
6828                         goto bxe_alloc_fp_buffers_error;
6829                     }
6830 
6831                     ring_prod = RX_SGE_NEXT(ring_prod);
6832                 }
6833 
6834                 fp->rx_sge_prod = ring_prod;
6835             }
6836         }
6837     }
6838 
6839     return (0);
6840 
6841 bxe_alloc_fp_buffers_error:
6842 
6843     /* unwind what was already allocated */
6844     bxe_free_rx_bd_chain(fp);
6845     bxe_free_tpa_pool(fp);
6846     bxe_free_sge_chain(fp);
6847 
6848     return (ENOBUFS);
6849 }
6850 
6851 static void
6852 bxe_free_fw_stats_mem(struct bxe_softc *sc)
6853 {
6854     bxe_dma_free(sc, &sc->fw_stats_dma);
6855 
6856     sc->fw_stats_num = 0;
6857 
6858     sc->fw_stats_req_size = 0;
6859     sc->fw_stats_req = NULL;
6860     sc->fw_stats_req_mapping = 0;
6861 
6862     sc->fw_stats_data_size = 0;
6863     sc->fw_stats_data = NULL;
6864     sc->fw_stats_data_mapping = 0;
6865 }
6866 
6867 static int
6868 bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6869 {
6870     uint8_t num_queue_stats;
6871     int num_groups;
6872 
6873     /* number of queues for statistics is number of eth queues */
6874     num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6875 
6876     /*
6877      * Total number of FW statistics requests =
6878      *   1 for port stats + 1 for PF stats + num of queues
6879      */
6880     sc->fw_stats_num = (2 + num_queue_stats);
6881 
6882     /*
6883      * Request is built from stats_query_header and an array of
6884      * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6885      * rules. The real number or requests is configured in the
6886      * stats_query_header.
6887      */
6888     num_groups =
6889         ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6890          ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6891 
6892     BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6893           sc->fw_stats_num, num_groups);
6894 
6895     sc->fw_stats_req_size =
6896         (sizeof(struct stats_query_header) +
6897          (num_groups * sizeof(struct stats_query_cmd_group)));
6898 
6899     /*
6900      * Data for statistics requests + stats_counter.
6901      * stats_counter holds per-STORM counters that are incremented when
6902      * STORM has finished with the current request. Memory for FCoE
6903      * offloaded statistics are counted anyway, even if they will not be sent.
6904      * VF stats are not accounted for here as the data of VF stats is stored
6905      * in memory allocated by the VF, not here.
6906      */
6907     sc->fw_stats_data_size =
6908         (sizeof(struct stats_counter) +
6909          sizeof(struct per_port_stats) +
6910          sizeof(struct per_pf_stats) +
6911          /* sizeof(struct fcoe_statistics_params) + */
6912          (sizeof(struct per_queue_stats) * num_queue_stats));
6913 
6914     if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6915                       &sc->fw_stats_dma, "fw stats") != 0) {
6916         bxe_free_fw_stats_mem(sc);
6917         return (-1);
6918     }
6919 
6920     /* set up the shortcuts */
6921 
6922     sc->fw_stats_req =
6923         (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6924     sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6925 
6926     sc->fw_stats_data =
6927         (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6928                                      sc->fw_stats_req_size);
6929     sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6930                                  sc->fw_stats_req_size);
6931 
6932     BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6933           (uintmax_t)sc->fw_stats_req_mapping);
6934 
6935     BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6936           (uintmax_t)sc->fw_stats_data_mapping);
6937 
6938     return (0);
6939 }
6940 
6941 /*
6942  * Bits map:
6943  * 0-7  - Engine0 load counter.
6944  * 8-15 - Engine1 load counter.
6945  * 16   - Engine0 RESET_IN_PROGRESS bit.
6946  * 17   - Engine1 RESET_IN_PROGRESS bit.
6947  * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
6948  *        function on the engine
6949  * 19   - Engine1 ONE_IS_LOADED.
6950  * 20   - Chip reset flow bit. When set none-leader must wait for both engines
6951  *        leader to complete (check for both RESET_IN_PROGRESS bits and not
6952  *        for just the one belonging to its engine).
6953  */
6954 #define BXE_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
6955 #define BXE_PATH0_LOAD_CNT_MASK   0x000000ff
6956 #define BXE_PATH0_LOAD_CNT_SHIFT  0
6957 #define BXE_PATH1_LOAD_CNT_MASK   0x0000ff00
6958 #define BXE_PATH1_LOAD_CNT_SHIFT  8
6959 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
6960 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
6961 #define BXE_GLOBAL_RESET_BIT      0x00040000
6962 
6963 /* set the GLOBAL_RESET bit, should be run under rtnl lock */
6964 static void
6965 bxe_set_reset_global(struct bxe_softc *sc)
6966 {
6967     uint32_t val;
6968     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6969     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6970     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
6971     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6972 }
6973 
6974 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */
6975 static void
6976 bxe_clear_reset_global(struct bxe_softc *sc)
6977 {
6978     uint32_t val;
6979     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6980     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6981     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
6982     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6983 }
6984 
6985 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */
6986 static uint8_t
6987 bxe_reset_is_global(struct bxe_softc *sc)
6988 {
6989     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6990     BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
6991     return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
6992 }
6993 
6994 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
6995 static void
6996 bxe_set_reset_done(struct bxe_softc *sc)
6997 {
6998     uint32_t val;
6999     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
7000                                  BXE_PATH0_RST_IN_PROG_BIT;
7001 
7002     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7003 
7004     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7005     /* Clear the bit */
7006     val &= ~bit;
7007     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7008 
7009     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7010 }
7011 
7012 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
7013 static void
7014 bxe_set_reset_in_progress(struct bxe_softc *sc)
7015 {
7016     uint32_t val;
7017     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
7018                                  BXE_PATH0_RST_IN_PROG_BIT;
7019 
7020     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7021 
7022     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7023     /* Set the bit */
7024     val |= bit;
7025     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7026 
7027     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7028 }
7029 
7030 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
7031 static uint8_t
7032 bxe_reset_is_done(struct bxe_softc *sc,
7033                   int              engine)
7034 {
7035     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7036     uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
7037                             BXE_PATH0_RST_IN_PROG_BIT;
7038 
7039     /* return false if bit is set */
7040     return (val & bit) ? FALSE : TRUE;
7041 }
7042 
7043 /* get the load status for an engine, should be run under rtnl lock */
7044 static uint8_t
7045 bxe_get_load_status(struct bxe_softc *sc,
7046                     int              engine)
7047 {
7048     uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
7049                              BXE_PATH0_LOAD_CNT_MASK;
7050     uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
7051                               BXE_PATH0_LOAD_CNT_SHIFT;
7052     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7053 
7054     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7055 
7056     val = ((val & mask) >> shift);
7057 
7058     BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
7059 
7060     return (val != 0);
7061 }
7062 
7063 /* set pf load mark */
7064 /* XXX needs to be under rtnl lock */
7065 static void
7066 bxe_set_pf_load(struct bxe_softc *sc)
7067 {
7068     uint32_t val;
7069     uint32_t val1;
7070     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7071                                   BXE_PATH0_LOAD_CNT_MASK;
7072     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7073                                    BXE_PATH0_LOAD_CNT_SHIFT;
7074 
7075     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7076 
7077     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7078     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7079 
7080     /* get the current counter value */
7081     val1 = ((val & mask) >> shift);
7082 
7083     /* set bit of this PF */
7084     val1 |= (1 << SC_ABS_FUNC(sc));
7085 
7086     /* clear the old value */
7087     val &= ~mask;
7088 
7089     /* set the new one */
7090     val |= ((val1 << shift) & mask);
7091 
7092     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7093 
7094     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7095 }
7096 
7097 /* clear pf load mark */
7098 /* XXX needs to be under rtnl lock */
7099 static uint8_t
7100 bxe_clear_pf_load(struct bxe_softc *sc)
7101 {
7102     uint32_t val1, val;
7103     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7104                                   BXE_PATH0_LOAD_CNT_MASK;
7105     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7106                                    BXE_PATH0_LOAD_CNT_SHIFT;
7107 
7108     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7109     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7110     BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
7111 
7112     /* get the current counter value */
7113     val1 = (val & mask) >> shift;
7114 
7115     /* clear bit of that PF */
7116     val1 &= ~(1 << SC_ABS_FUNC(sc));
7117 
7118     /* clear the old value */
7119     val &= ~mask;
7120 
7121     /* set the new one */
7122     val |= ((val1 << shift) & mask);
7123 
7124     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7125     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7126     return (val1 != 0);
7127 }
7128 
7129 /* send load requrest to mcp and analyze response */
7130 static int
7131 bxe_nic_load_request(struct bxe_softc *sc,
7132                      uint32_t         *load_code)
7133 {
7134     /* init fw_seq */
7135     sc->fw_seq =
7136         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
7137          DRV_MSG_SEQ_NUMBER_MASK);
7138 
7139     BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
7140 
7141     /* get the current FW pulse sequence */
7142     sc->fw_drv_pulse_wr_seq =
7143         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
7144          DRV_PULSE_SEQ_MASK);
7145 
7146     BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
7147           sc->fw_drv_pulse_wr_seq);
7148 
7149     /* load request */
7150     (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
7151                                   DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
7152 
7153     /* if the MCP fails to respond we must abort */
7154     if (!(*load_code)) {
7155         BLOGE(sc, "MCP response failure!\n");
7156         return (-1);
7157     }
7158 
7159     /* if MCP refused then must abort */
7160     if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
7161         BLOGE(sc, "MCP refused load request\n");
7162         return (-1);
7163     }
7164 
7165     return (0);
7166 }
7167 
7168 /*
7169  * Check whether another PF has already loaded FW to chip. In virtualized
7170  * environments a pf from anoth VM may have already initialized the device
7171  * including loading FW.
7172  */
7173 static int
7174 bxe_nic_load_analyze_req(struct bxe_softc *sc,
7175                          uint32_t         load_code)
7176 {
7177     uint32_t my_fw, loaded_fw;
7178 
7179     /* is another pf loaded on this engine? */
7180     if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
7181         (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
7182         /* build my FW version dword */
7183         my_fw = (BCM_5710_FW_MAJOR_VERSION +
7184                  (BCM_5710_FW_MINOR_VERSION << 8 ) +
7185                  (BCM_5710_FW_REVISION_VERSION << 16) +
7186                  (BCM_5710_FW_ENGINEERING_VERSION << 24));
7187 
7188         /* read loaded FW from chip */
7189         loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
7190         BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
7191               loaded_fw, my_fw);
7192 
7193         /* abort nic load if version mismatch */
7194         if (my_fw != loaded_fw) {
7195             BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
7196                   loaded_fw, my_fw);
7197             return (-1);
7198         }
7199     }
7200 
7201     return (0);
7202 }
7203 
7204 /* mark PMF if applicable */
7205 static void
7206 bxe_nic_load_pmf(struct bxe_softc *sc,
7207                  uint32_t         load_code)
7208 {
7209     uint32_t ncsi_oem_data_addr;
7210 
7211     if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
7212         (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
7213         (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
7214         /*
7215          * Barrier here for ordering between the writing to sc->port.pmf here
7216          * and reading it from the periodic task.
7217          */
7218         sc->port.pmf = 1;
7219         mb();
7220     } else {
7221         sc->port.pmf = 0;
7222     }
7223 
7224     BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
7225 
7226     /* XXX needed? */
7227     if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
7228         if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
7229             ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
7230             if (ncsi_oem_data_addr) {
7231                 REG_WR(sc,
7232                        (ncsi_oem_data_addr +
7233                         offsetof(struct glob_ncsi_oem_data, driver_version)),
7234                        0);
7235             }
7236         }
7237     }
7238 }
7239 
7240 static void
7241 bxe_read_mf_cfg(struct bxe_softc *sc)
7242 {
7243     int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
7244     int abs_func;
7245     int vn;
7246 
7247     if (BXE_NOMCP(sc)) {
7248         return; /* what should be the default bvalue in this case */
7249     }
7250 
7251     /*
7252      * The formula for computing the absolute function number is...
7253      * For 2 port configuration (4 functions per port):
7254      *   abs_func = 2 * vn + SC_PORT + SC_PATH
7255      * For 4 port configuration (2 functions per port):
7256      *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
7257      */
7258     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
7259         abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
7260         if (abs_func >= E1H_FUNC_MAX) {
7261             break;
7262         }
7263         sc->devinfo.mf_info.mf_config[vn] =
7264             MFCFG_RD(sc, func_mf_config[abs_func].config);
7265     }
7266 
7267     if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
7268         FUNC_MF_CFG_FUNC_DISABLED) {
7269         BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
7270         sc->flags |= BXE_MF_FUNC_DIS;
7271     } else {
7272         BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
7273         sc->flags &= ~BXE_MF_FUNC_DIS;
7274     }
7275 }
7276 
7277 /* acquire split MCP access lock register */
7278 static int bxe_acquire_alr(struct bxe_softc *sc)
7279 {
7280     uint32_t j, val;
7281 
7282     for (j = 0; j < 1000; j++) {
7283         val = (1UL << 31);
7284         REG_WR(sc, GRCBASE_MCP + 0x9c, val);
7285         val = REG_RD(sc, GRCBASE_MCP + 0x9c);
7286         if (val & (1L << 31))
7287             break;
7288 
7289         DELAY(5000);
7290     }
7291 
7292     if (!(val & (1L << 31))) {
7293         BLOGE(sc, "Cannot acquire MCP access lock register\n");
7294         return (-1);
7295     }
7296 
7297     return (0);
7298 }
7299 
7300 /* release split MCP access lock register */
7301 static void bxe_release_alr(struct bxe_softc *sc)
7302 {
7303     REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
7304 }
7305 
7306 static void
7307 bxe_fan_failure(struct bxe_softc *sc)
7308 {
7309     int port = SC_PORT(sc);
7310     uint32_t ext_phy_config;
7311 
7312     /* mark the failure */
7313     ext_phy_config =
7314         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
7315 
7316     ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
7317     ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
7318     SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
7319              ext_phy_config);
7320 
7321     /* log the failure */
7322     BLOGW(sc, "Fan Failure has caused the driver to shutdown "
7323               "the card to prevent permanent damage. "
7324               "Please contact OEM Support for assistance\n");
7325 
7326     /* XXX */
7327 #if 1
7328     bxe_panic(sc, ("Schedule task to handle fan failure\n"));
7329 #else
7330     /*
7331      * Schedule device reset (unload)
7332      * This is due to some boards consuming sufficient power when driver is
7333      * up to overheat if fan fails.
7334      */
7335     bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
7336     schedule_delayed_work(&sc->sp_rtnl_task, 0);
7337 #endif
7338 }
7339 
7340 /* this function is called upon a link interrupt */
7341 static void
7342 bxe_link_attn(struct bxe_softc *sc)
7343 {
7344     uint32_t pause_enabled = 0;
7345     struct host_port_stats *pstats;
7346     int cmng_fns;
7347 
7348     /* Make sure that we are synced with the current statistics */
7349     bxe_stats_handle(sc, STATS_EVENT_STOP);
7350 
7351     elink_link_update(&sc->link_params, &sc->link_vars);
7352 
7353     if (sc->link_vars.link_up) {
7354 
7355         /* dropless flow control */
7356         if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
7357             pause_enabled = 0;
7358 
7359             if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
7360                 pause_enabled = 1;
7361             }
7362 
7363             REG_WR(sc,
7364                    (BAR_USTRORM_INTMEM +
7365                     USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
7366                    pause_enabled);
7367         }
7368 
7369         if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
7370             pstats = BXE_SP(sc, port_stats);
7371             /* reset old mac stats */
7372             memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
7373         }
7374 
7375         if (sc->state == BXE_STATE_OPEN) {
7376             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
7377         }
7378     }
7379 
7380     if (sc->link_vars.link_up && sc->link_vars.line_speed) {
7381         cmng_fns = bxe_get_cmng_fns_mode(sc);
7382 
7383         if (cmng_fns != CMNG_FNS_NONE) {
7384             bxe_cmng_fns_init(sc, FALSE, cmng_fns);
7385             storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7386         } else {
7387             /* rate shaping and fairness are disabled */
7388             BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
7389         }
7390     }
7391 
7392     bxe_link_report_locked(sc);
7393 
7394     if (IS_MF(sc)) {
7395         ; // XXX bxe_link_sync_notify(sc);
7396     }
7397 }
7398 
7399 static void
7400 bxe_attn_int_asserted(struct bxe_softc *sc,
7401                       uint32_t         asserted)
7402 {
7403     int port = SC_PORT(sc);
7404     uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7405                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
7406     uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7407                                         NIG_REG_MASK_INTERRUPT_PORT0;
7408     uint32_t aeu_mask;
7409     uint32_t nig_mask = 0;
7410     uint32_t reg_addr;
7411     uint32_t igu_acked;
7412     uint32_t cnt;
7413 
7414     if (sc->attn_state & asserted) {
7415         BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7416     }
7417 
7418     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7419 
7420     aeu_mask = REG_RD(sc, aeu_addr);
7421 
7422     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7423           aeu_mask, asserted);
7424 
7425     aeu_mask &= ~(asserted & 0x3ff);
7426 
7427     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7428 
7429     REG_WR(sc, aeu_addr, aeu_mask);
7430 
7431     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7432 
7433     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7434     sc->attn_state |= asserted;
7435     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7436 
7437     if (asserted & ATTN_HARD_WIRED_MASK) {
7438         if (asserted & ATTN_NIG_FOR_FUNC) {
7439 
7440             BXE_PHY_LOCK(sc);
7441 
7442             /* save nig interrupt mask */
7443             nig_mask = REG_RD(sc, nig_int_mask_addr);
7444 
7445             /* If nig_mask is not set, no need to call the update function */
7446             if (nig_mask) {
7447                 REG_WR(sc, nig_int_mask_addr, 0);
7448 
7449                 bxe_link_attn(sc);
7450             }
7451 
7452             /* handle unicore attn? */
7453         }
7454 
7455         if (asserted & ATTN_SW_TIMER_4_FUNC) {
7456             BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7457         }
7458 
7459         if (asserted & GPIO_2_FUNC) {
7460             BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7461         }
7462 
7463         if (asserted & GPIO_3_FUNC) {
7464             BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7465         }
7466 
7467         if (asserted & GPIO_4_FUNC) {
7468             BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7469         }
7470 
7471         if (port == 0) {
7472             if (asserted & ATTN_GENERAL_ATTN_1) {
7473                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7474                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7475             }
7476             if (asserted & ATTN_GENERAL_ATTN_2) {
7477                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7478                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7479             }
7480             if (asserted & ATTN_GENERAL_ATTN_3) {
7481                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7482                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7483             }
7484         } else {
7485             if (asserted & ATTN_GENERAL_ATTN_4) {
7486                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7487                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7488             }
7489             if (asserted & ATTN_GENERAL_ATTN_5) {
7490                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7491                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7492             }
7493             if (asserted & ATTN_GENERAL_ATTN_6) {
7494                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7495                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7496             }
7497         }
7498     } /* hardwired */
7499 
7500     if (sc->devinfo.int_block == INT_BLOCK_HC) {
7501         reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7502     } else {
7503         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7504     }
7505 
7506     BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7507           asserted,
7508           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7509     REG_WR(sc, reg_addr, asserted);
7510 
7511     /* now set back the mask */
7512     if (asserted & ATTN_NIG_FOR_FUNC) {
7513         /*
7514          * Verify that IGU ack through BAR was written before restoring
7515          * NIG mask. This loop should exit after 2-3 iterations max.
7516          */
7517         if (sc->devinfo.int_block != INT_BLOCK_HC) {
7518             cnt = 0;
7519 
7520             do {
7521                 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7522             } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7523                      (++cnt < MAX_IGU_ATTN_ACK_TO));
7524 
7525             if (!igu_acked) {
7526                 BLOGE(sc, "Failed to verify IGU ack on time\n");
7527             }
7528 
7529             mb();
7530         }
7531 
7532         REG_WR(sc, nig_int_mask_addr, nig_mask);
7533 
7534         BXE_PHY_UNLOCK(sc);
7535     }
7536 }
7537 
7538 static void
7539 bxe_print_next_block(struct bxe_softc *sc,
7540                      int              idx,
7541                      const char       *blk)
7542 {
7543     BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7544 }
7545 
7546 static int
7547 bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7548                               uint32_t         sig,
7549                               int              par_num,
7550                               uint8_t          print)
7551 {
7552     uint32_t cur_bit = 0;
7553     int i = 0;
7554 
7555     for (i = 0; sig; i++) {
7556         cur_bit = ((uint32_t)0x1 << i);
7557         if (sig & cur_bit) {
7558             switch (cur_bit) {
7559             case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7560                 if (print)
7561                     bxe_print_next_block(sc, par_num++, "BRB");
7562                 break;
7563             case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7564                 if (print)
7565                     bxe_print_next_block(sc, par_num++, "PARSER");
7566                 break;
7567             case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7568                 if (print)
7569                     bxe_print_next_block(sc, par_num++, "TSDM");
7570                 break;
7571             case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7572                 if (print)
7573                     bxe_print_next_block(sc, par_num++, "SEARCHER");
7574                 break;
7575             case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7576                 if (print)
7577                     bxe_print_next_block(sc, par_num++, "TCM");
7578                 break;
7579             case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7580                 if (print)
7581                     bxe_print_next_block(sc, par_num++, "TSEMI");
7582                 break;
7583             case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7584                 if (print)
7585                     bxe_print_next_block(sc, par_num++, "XPB");
7586                 break;
7587             }
7588 
7589             /* Clear the bit */
7590             sig &= ~cur_bit;
7591         }
7592     }
7593 
7594     return (par_num);
7595 }
7596 
7597 static int
7598 bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7599                               uint32_t         sig,
7600                               int              par_num,
7601                               uint8_t          *global,
7602                               uint8_t          print)
7603 {
7604     int i = 0;
7605     uint32_t cur_bit = 0;
7606     for (i = 0; sig; i++) {
7607         cur_bit = ((uint32_t)0x1 << i);
7608         if (sig & cur_bit) {
7609             switch (cur_bit) {
7610             case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7611                 if (print)
7612                     bxe_print_next_block(sc, par_num++, "PBF");
7613                 break;
7614             case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7615                 if (print)
7616                     bxe_print_next_block(sc, par_num++, "QM");
7617                 break;
7618             case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7619                 if (print)
7620                     bxe_print_next_block(sc, par_num++, "TM");
7621                 break;
7622             case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7623                 if (print)
7624                     bxe_print_next_block(sc, par_num++, "XSDM");
7625                 break;
7626             case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7627                 if (print)
7628                     bxe_print_next_block(sc, par_num++, "XCM");
7629                 break;
7630             case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7631                 if (print)
7632                     bxe_print_next_block(sc, par_num++, "XSEMI");
7633                 break;
7634             case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7635                 if (print)
7636                     bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7637                 break;
7638             case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7639                 if (print)
7640                     bxe_print_next_block(sc, par_num++, "NIG");
7641                 break;
7642             case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7643                 if (print)
7644                     bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7645                 *global = TRUE;
7646                 break;
7647             case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7648                 if (print)
7649                     bxe_print_next_block(sc, par_num++, "DEBUG");
7650                 break;
7651             case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7652                 if (print)
7653                     bxe_print_next_block(sc, par_num++, "USDM");
7654                 break;
7655             case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7656                 if (print)
7657                     bxe_print_next_block(sc, par_num++, "UCM");
7658                 break;
7659             case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7660                 if (print)
7661                     bxe_print_next_block(sc, par_num++, "USEMI");
7662                 break;
7663             case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7664                 if (print)
7665                     bxe_print_next_block(sc, par_num++, "UPB");
7666                 break;
7667             case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7668                 if (print)
7669                     bxe_print_next_block(sc, par_num++, "CSDM");
7670                 break;
7671             case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7672                 if (print)
7673                     bxe_print_next_block(sc, par_num++, "CCM");
7674                 break;
7675             }
7676 
7677             /* Clear the bit */
7678             sig &= ~cur_bit;
7679         }
7680     }
7681 
7682     return (par_num);
7683 }
7684 
7685 static int
7686 bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7687                               uint32_t         sig,
7688                               int              par_num,
7689                               uint8_t          print)
7690 {
7691     uint32_t cur_bit = 0;
7692     int i = 0;
7693 
7694     for (i = 0; sig; i++) {
7695         cur_bit = ((uint32_t)0x1 << i);
7696         if (sig & cur_bit) {
7697             switch (cur_bit) {
7698             case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7699                 if (print)
7700                     bxe_print_next_block(sc, par_num++, "CSEMI");
7701                 break;
7702             case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7703                 if (print)
7704                     bxe_print_next_block(sc, par_num++, "PXP");
7705                 break;
7706             case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7707                 if (print)
7708                     bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7709                 break;
7710             case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7711                 if (print)
7712                     bxe_print_next_block(sc, par_num++, "CFC");
7713                 break;
7714             case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7715                 if (print)
7716                     bxe_print_next_block(sc, par_num++, "CDU");
7717                 break;
7718             case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7719                 if (print)
7720                     bxe_print_next_block(sc, par_num++, "DMAE");
7721                 break;
7722             case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7723                 if (print)
7724                     bxe_print_next_block(sc, par_num++, "IGU");
7725                 break;
7726             case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7727                 if (print)
7728                     bxe_print_next_block(sc, par_num++, "MISC");
7729                 break;
7730             }
7731 
7732             /* Clear the bit */
7733             sig &= ~cur_bit;
7734         }
7735     }
7736 
7737     return (par_num);
7738 }
7739 
7740 static int
7741 bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7742                               uint32_t         sig,
7743                               int              par_num,
7744                               uint8_t          *global,
7745                               uint8_t          print)
7746 {
7747     uint32_t cur_bit = 0;
7748     int i = 0;
7749 
7750     for (i = 0; sig; i++) {
7751         cur_bit = ((uint32_t)0x1 << i);
7752         if (sig & cur_bit) {
7753             switch (cur_bit) {
7754             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7755                 if (print)
7756                     bxe_print_next_block(sc, par_num++, "MCP ROM");
7757                 *global = TRUE;
7758                 break;
7759             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7760                 if (print)
7761                     bxe_print_next_block(sc, par_num++,
7762                               "MCP UMP RX");
7763                 *global = TRUE;
7764                 break;
7765             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7766                 if (print)
7767                     bxe_print_next_block(sc, par_num++,
7768                               "MCP UMP TX");
7769                 *global = TRUE;
7770                 break;
7771             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7772                 if (print)
7773                     bxe_print_next_block(sc, par_num++,
7774                               "MCP SCPAD");
7775                 *global = TRUE;
7776                 break;
7777             }
7778 
7779             /* Clear the bit */
7780             sig &= ~cur_bit;
7781         }
7782     }
7783 
7784     return (par_num);
7785 }
7786 
7787 static int
7788 bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7789                               uint32_t         sig,
7790                               int              par_num,
7791                               uint8_t          print)
7792 {
7793     uint32_t cur_bit = 0;
7794     int i = 0;
7795 
7796     for (i = 0; sig; i++) {
7797         cur_bit = ((uint32_t)0x1 << i);
7798         if (sig & cur_bit) {
7799             switch (cur_bit) {
7800             case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7801                 if (print)
7802                     bxe_print_next_block(sc, par_num++, "PGLUE_B");
7803                 break;
7804             case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7805                 if (print)
7806                     bxe_print_next_block(sc, par_num++, "ATC");
7807                 break;
7808             }
7809 
7810             /* Clear the bit */
7811             sig &= ~cur_bit;
7812         }
7813     }
7814 
7815     return (par_num);
7816 }
7817 
7818 static uint8_t
7819 bxe_parity_attn(struct bxe_softc *sc,
7820                 uint8_t          *global,
7821                 uint8_t          print,
7822                 uint32_t         *sig)
7823 {
7824     int par_num = 0;
7825 
7826     if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7827         (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7828         (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7829         (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7830         (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7831         BLOGE(sc, "Parity error: HW block parity attention:\n"
7832                   "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7833               (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7834               (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7835               (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7836               (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7837               (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7838 
7839         if (print)
7840             BLOGI(sc, "Parity errors detected in blocks: ");
7841 
7842         par_num =
7843             bxe_check_blocks_with_parity0(sc, sig[0] &
7844                                           HW_PRTY_ASSERT_SET_0,
7845                                           par_num, print);
7846         par_num =
7847             bxe_check_blocks_with_parity1(sc, sig[1] &
7848                                           HW_PRTY_ASSERT_SET_1,
7849                                           par_num, global, print);
7850         par_num =
7851             bxe_check_blocks_with_parity2(sc, sig[2] &
7852                                           HW_PRTY_ASSERT_SET_2,
7853                                           par_num, print);
7854         par_num =
7855             bxe_check_blocks_with_parity3(sc, sig[3] &
7856                                           HW_PRTY_ASSERT_SET_3,
7857                                           par_num, global, print);
7858         par_num =
7859             bxe_check_blocks_with_parity4(sc, sig[4] &
7860                                           HW_PRTY_ASSERT_SET_4,
7861                                           par_num, print);
7862 
7863         if (print)
7864             BLOGI(sc, "\n");
7865 
7866         return (TRUE);
7867     }
7868 
7869     return (FALSE);
7870 }
7871 
7872 static uint8_t
7873 bxe_chk_parity_attn(struct bxe_softc *sc,
7874                     uint8_t          *global,
7875                     uint8_t          print)
7876 {
7877     struct attn_route attn = { {0} };
7878     int port = SC_PORT(sc);
7879 
7880     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7881     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7882     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7883     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7884 
7885     if (!CHIP_IS_E1x(sc))
7886         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7887 
7888     return (bxe_parity_attn(sc, global, print, attn.sig));
7889 }
7890 
7891 static void
7892 bxe_attn_int_deasserted4(struct bxe_softc *sc,
7893                          uint32_t         attn)
7894 {
7895     uint32_t val;
7896 
7897     if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7898         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7899         BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7900         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7901             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7902         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7903             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7904         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7905             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7906         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7907             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7908         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7909             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7910         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7911             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7912         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7913             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7914         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7915             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7916         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7917             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7918     }
7919 
7920     if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7921         val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7922         BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7923         if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7924             BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7925         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7926             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7927         if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7928             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7929         if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7930             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7931         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7932             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7933         if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7934             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7935     }
7936 
7937     if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7938                 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7939         BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7940               (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7941                                  AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7942     }
7943 }
7944 
7945 static void
7946 bxe_e1h_disable(struct bxe_softc *sc)
7947 {
7948     int port = SC_PORT(sc);
7949 
7950     bxe_tx_disable(sc);
7951 
7952     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7953 }
7954 
7955 static void
7956 bxe_e1h_enable(struct bxe_softc *sc)
7957 {
7958     int port = SC_PORT(sc);
7959 
7960     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7961 
7962     // XXX bxe_tx_enable(sc);
7963 }
7964 
7965 /*
7966  * called due to MCP event (on pmf):
7967  *   reread new bandwidth configuration
7968  *   configure FW
7969  *   notify others function about the change
7970  */
7971 static void
7972 bxe_config_mf_bw(struct bxe_softc *sc)
7973 {
7974     if (sc->link_vars.link_up) {
7975         bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
7976         // XXX bxe_link_sync_notify(sc);
7977     }
7978 
7979     storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7980 }
7981 
7982 static void
7983 bxe_set_mf_bw(struct bxe_softc *sc)
7984 {
7985     bxe_config_mf_bw(sc);
7986     bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
7987 }
7988 
7989 static void
7990 bxe_handle_eee_event(struct bxe_softc *sc)
7991 {
7992     BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
7993     bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
7994 }
7995 
7996 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
7997 
7998 static void
7999 bxe_drv_info_ether_stat(struct bxe_softc *sc)
8000 {
8001     struct eth_stats_info *ether_stat =
8002         &sc->sp->drv_info_to_mcp.ether_stat;
8003 
8004     strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
8005             ETH_STAT_INFO_VERSION_LEN);
8006 
8007     /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
8008     sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
8009                                           DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
8010                                           ether_stat->mac_local + MAC_PAD,
8011                                           MAC_PAD, ETH_ALEN);
8012 
8013     ether_stat->mtu_size = sc->mtu;
8014 
8015     ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
8016     if (sc->ifnet->if_capenable & (IFCAP_TSO4 | IFCAP_TSO6)) {
8017         ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
8018     }
8019 
8020     // XXX ether_stat->feature_flags |= ???;
8021 
8022     ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
8023 
8024     ether_stat->txq_size = sc->tx_ring_size;
8025     ether_stat->rxq_size = sc->rx_ring_size;
8026 }
8027 
8028 static void
8029 bxe_handle_drv_info_req(struct bxe_softc *sc)
8030 {
8031     enum drv_info_opcode op_code;
8032     uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
8033 
8034     /* if drv_info version supported by MFW doesn't match - send NACK */
8035     if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
8036         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8037         return;
8038     }
8039 
8040     op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
8041                DRV_INFO_CONTROL_OP_CODE_SHIFT);
8042 
8043     memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
8044 
8045     switch (op_code) {
8046     case ETH_STATS_OPCODE:
8047         bxe_drv_info_ether_stat(sc);
8048         break;
8049     case FCOE_STATS_OPCODE:
8050     case ISCSI_STATS_OPCODE:
8051     default:
8052         /* if op code isn't supported - send NACK */
8053         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8054         return;
8055     }
8056 
8057     /*
8058      * If we got drv_info attn from MFW then these fields are defined in
8059      * shmem2 for sure
8060      */
8061     SHMEM2_WR(sc, drv_info_host_addr_lo,
8062               U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8063     SHMEM2_WR(sc, drv_info_host_addr_hi,
8064               U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8065 
8066     bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
8067 }
8068 
8069 static void
8070 bxe_dcc_event(struct bxe_softc *sc,
8071               uint32_t         dcc_event)
8072 {
8073     BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
8074 
8075     if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
8076         /*
8077          * This is the only place besides the function initialization
8078          * where the sc->flags can change so it is done without any
8079          * locks
8080          */
8081         if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
8082             BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
8083             sc->flags |= BXE_MF_FUNC_DIS;
8084             bxe_e1h_disable(sc);
8085         } else {
8086             BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
8087             sc->flags &= ~BXE_MF_FUNC_DIS;
8088             bxe_e1h_enable(sc);
8089         }
8090         dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
8091     }
8092 
8093     if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
8094         bxe_config_mf_bw(sc);
8095         dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
8096     }
8097 
8098     /* Report results to MCP */
8099     if (dcc_event)
8100         bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
8101     else
8102         bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
8103 }
8104 
8105 static void
8106 bxe_pmf_update(struct bxe_softc *sc)
8107 {
8108     int port = SC_PORT(sc);
8109     uint32_t val;
8110 
8111     sc->port.pmf = 1;
8112     BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
8113 
8114     /*
8115      * We need the mb() to ensure the ordering between the writing to
8116      * sc->port.pmf here and reading it from the bxe_periodic_task().
8117      */
8118     mb();
8119 
8120     /* queue a periodic task */
8121     // XXX schedule task...
8122 
8123     // XXX bxe_dcbx_pmf_update(sc);
8124 
8125     /* enable nig attention */
8126     val = (0xff0f | (1 << (SC_VN(sc) + 4)));
8127     if (sc->devinfo.int_block == INT_BLOCK_HC) {
8128         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
8129         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
8130     } else if (!CHIP_IS_E1x(sc)) {
8131         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
8132         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
8133     }
8134 
8135     bxe_stats_handle(sc, STATS_EVENT_PMF);
8136 }
8137 
8138 static int
8139 bxe_mc_assert(struct bxe_softc *sc)
8140 {
8141     char last_idx;
8142     int i, rc = 0;
8143     uint32_t row0, row1, row2, row3;
8144 
8145     /* XSTORM */
8146     last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
8147     if (last_idx)
8148         BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8149 
8150     /* print the asserts */
8151     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8152 
8153         row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
8154         row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
8155         row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
8156         row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
8157 
8158         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8159             BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8160                   i, row3, row2, row1, row0);
8161             rc++;
8162         } else {
8163             break;
8164         }
8165     }
8166 
8167     /* TSTORM */
8168     last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
8169     if (last_idx) {
8170         BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8171     }
8172 
8173     /* print the asserts */
8174     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8175 
8176         row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
8177         row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
8178         row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
8179         row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
8180 
8181         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8182             BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8183                   i, row3, row2, row1, row0);
8184             rc++;
8185         } else {
8186             break;
8187         }
8188     }
8189 
8190     /* CSTORM */
8191     last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
8192     if (last_idx) {
8193         BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8194     }
8195 
8196     /* print the asserts */
8197     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8198 
8199         row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
8200         row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
8201         row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
8202         row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
8203 
8204         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8205             BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8206                   i, row3, row2, row1, row0);
8207             rc++;
8208         } else {
8209             break;
8210         }
8211     }
8212 
8213     /* USTORM */
8214     last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
8215     if (last_idx) {
8216         BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8217     }
8218 
8219     /* print the asserts */
8220     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8221 
8222         row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
8223         row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
8224         row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
8225         row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
8226 
8227         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8228             BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8229                   i, row3, row2, row1, row0);
8230             rc++;
8231         } else {
8232             break;
8233         }
8234     }
8235 
8236     return (rc);
8237 }
8238 
8239 static void
8240 bxe_attn_int_deasserted3(struct bxe_softc *sc,
8241                          uint32_t         attn)
8242 {
8243     int func = SC_FUNC(sc);
8244     uint32_t val;
8245 
8246     if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
8247 
8248         if (attn & BXE_PMF_LINK_ASSERT(sc)) {
8249 
8250             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8251             bxe_read_mf_cfg(sc);
8252             sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
8253                 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
8254             val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
8255 
8256             if (val & DRV_STATUS_DCC_EVENT_MASK)
8257                 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
8258 
8259             if (val & DRV_STATUS_SET_MF_BW)
8260                 bxe_set_mf_bw(sc);
8261 
8262             if (val & DRV_STATUS_DRV_INFO_REQ)
8263                 bxe_handle_drv_info_req(sc);
8264 
8265 #if 0
8266             if (val & DRV_STATUS_VF_DISABLED)
8267                 bxe_vf_handle_flr_event(sc);
8268 #endif
8269 
8270             if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
8271                 bxe_pmf_update(sc);
8272 
8273 #if 0
8274             if (sc->port.pmf &&
8275                 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
8276                 (sc->dcbx_enabled > 0))
8277                 /* start dcbx state machine */
8278                 bxe_dcbx_set_params(sc, BXE_DCBX_STATE_NEG_RECEIVED);
8279 #endif
8280 
8281 #if 0
8282             if (val & DRV_STATUS_AFEX_EVENT_MASK)
8283                 bxe_handle_afex_cmd(sc, val & DRV_STATUS_AFEX_EVENT_MASK);
8284 #endif
8285 
8286             if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
8287                 bxe_handle_eee_event(sc);
8288 
8289             if (sc->link_vars.periodic_flags &
8290                 ELINK_PERIODIC_FLAGS_LINK_EVENT) {
8291                 /* sync with link */
8292                 BXE_PHY_LOCK(sc);
8293                 sc->link_vars.periodic_flags &=
8294                     ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
8295                 BXE_PHY_UNLOCK(sc);
8296                 if (IS_MF(sc))
8297                     ; // XXX bxe_link_sync_notify(sc);
8298                 bxe_link_report(sc);
8299             }
8300 
8301             /*
8302              * Always call it here: bxe_link_report() will
8303              * prevent the link indication duplication.
8304              */
8305             bxe_link_status_update(sc);
8306 
8307         } else if (attn & BXE_MC_ASSERT_BITS) {
8308 
8309             BLOGE(sc, "MC assert!\n");
8310             bxe_mc_assert(sc);
8311             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
8312             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
8313             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
8314             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
8315             bxe_panic(sc, ("MC assert!\n"));
8316 
8317         } else if (attn & BXE_MCP_ASSERT) {
8318 
8319             BLOGE(sc, "MCP assert!\n");
8320             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
8321             // XXX bxe_fw_dump(sc);
8322 
8323         } else {
8324             BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
8325         }
8326     }
8327 
8328     if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
8329         BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
8330         if (attn & BXE_GRC_TIMEOUT) {
8331             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
8332             BLOGE(sc, "GRC time-out 0x%08x\n", val);
8333         }
8334         if (attn & BXE_GRC_RSV) {
8335             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
8336             BLOGE(sc, "GRC reserved 0x%08x\n", val);
8337         }
8338         REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
8339     }
8340 }
8341 
8342 static void
8343 bxe_attn_int_deasserted2(struct bxe_softc *sc,
8344                          uint32_t         attn)
8345 {
8346     int port = SC_PORT(sc);
8347     int reg_offset;
8348     uint32_t val0, mask0, val1, mask1;
8349     uint32_t val;
8350 
8351     if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
8352         val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
8353         BLOGE(sc, "CFC hw attention 0x%08x\n", val);
8354         /* CFC error attention */
8355         if (val & 0x2) {
8356             BLOGE(sc, "FATAL error from CFC\n");
8357         }
8358     }
8359 
8360     if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
8361         val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
8362         BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
8363         /* RQ_USDMDP_FIFO_OVERFLOW */
8364         if (val & 0x18000) {
8365             BLOGE(sc, "FATAL error from PXP\n");
8366         }
8367 
8368         if (!CHIP_IS_E1x(sc)) {
8369             val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
8370             BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
8371         }
8372     }
8373 
8374 #define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
8375 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
8376 
8377     if (attn & AEU_PXP2_HW_INT_BIT) {
8378         /*  CQ47854 workaround do not panic on
8379          *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8380          */
8381         if (!CHIP_IS_E1x(sc)) {
8382             mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
8383             val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
8384             mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
8385             val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
8386             /*
8387              * If the olny PXP2_EOP_ERROR_BIT is set in
8388              * STS0 and STS1 - clear it
8389              *
8390              * probably we lose additional attentions between
8391              * STS0 and STS_CLR0, in this case user will not
8392              * be notified about them
8393              */
8394             if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
8395                 !(val1 & mask1))
8396                 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
8397 
8398             /* print the register, since no one can restore it */
8399             BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8400 
8401             /*
8402              * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8403              * then notify
8404              */
8405             if (val0 & PXP2_EOP_ERROR_BIT) {
8406                 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8407 
8408                 /*
8409                  * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8410                  * set then clear attention from PXP2 block without panic
8411                  */
8412                 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8413                     ((val1 & mask1) == 0))
8414                     attn &= ~AEU_PXP2_HW_INT_BIT;
8415             }
8416         }
8417     }
8418 
8419     if (attn & HW_INTERRUT_ASSERT_SET_2) {
8420         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8421                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8422 
8423         val = REG_RD(sc, reg_offset);
8424         val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8425         REG_WR(sc, reg_offset, val);
8426 
8427         BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8428               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8429         bxe_panic(sc, ("HW block attention set2\n"));
8430     }
8431 }
8432 
8433 static void
8434 bxe_attn_int_deasserted1(struct bxe_softc *sc,
8435                          uint32_t         attn)
8436 {
8437     int port = SC_PORT(sc);
8438     int reg_offset;
8439     uint32_t val;
8440 
8441     if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8442         val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8443         BLOGE(sc, "DB hw attention 0x%08x\n", val);
8444         /* DORQ discard attention */
8445         if (val & 0x2) {
8446             BLOGE(sc, "FATAL error from DORQ\n");
8447         }
8448     }
8449 
8450     if (attn & HW_INTERRUT_ASSERT_SET_1) {
8451         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8452                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8453 
8454         val = REG_RD(sc, reg_offset);
8455         val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8456         REG_WR(sc, reg_offset, val);
8457 
8458         BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8459               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8460         bxe_panic(sc, ("HW block attention set1\n"));
8461     }
8462 }
8463 
8464 static void
8465 bxe_attn_int_deasserted0(struct bxe_softc *sc,
8466                          uint32_t         attn)
8467 {
8468     int port = SC_PORT(sc);
8469     int reg_offset;
8470     uint32_t val;
8471 
8472     reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8473                           MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8474 
8475     if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8476         val = REG_RD(sc, reg_offset);
8477         val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8478         REG_WR(sc, reg_offset, val);
8479 
8480         BLOGW(sc, "SPIO5 hw attention\n");
8481 
8482         /* Fan failure attention */
8483         elink_hw_reset_phy(&sc->link_params);
8484         bxe_fan_failure(sc);
8485     }
8486 
8487     if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8488         BXE_PHY_LOCK(sc);
8489         elink_handle_module_detect_int(&sc->link_params);
8490         BXE_PHY_UNLOCK(sc);
8491     }
8492 
8493     if (attn & HW_INTERRUT_ASSERT_SET_0) {
8494         val = REG_RD(sc, reg_offset);
8495         val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8496         REG_WR(sc, reg_offset, val);
8497 
8498         bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8499                        (attn & HW_INTERRUT_ASSERT_SET_0)));
8500     }
8501 }
8502 
8503 static void
8504 bxe_attn_int_deasserted(struct bxe_softc *sc,
8505                         uint32_t         deasserted)
8506 {
8507     struct attn_route attn;
8508     struct attn_route *group_mask;
8509     int port = SC_PORT(sc);
8510     int index;
8511     uint32_t reg_addr;
8512     uint32_t val;
8513     uint32_t aeu_mask;
8514     uint8_t global = FALSE;
8515 
8516     /*
8517      * Need to take HW lock because MCP or other port might also
8518      * try to handle this event.
8519      */
8520     bxe_acquire_alr(sc);
8521 
8522     if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8523         /* XXX
8524          * In case of parity errors don't handle attentions so that
8525          * other function would "see" parity errors.
8526          */
8527         sc->recovery_state = BXE_RECOVERY_INIT;
8528         // XXX schedule a recovery task...
8529         /* disable HW interrupts */
8530         bxe_int_disable(sc);
8531         bxe_release_alr(sc);
8532         return;
8533     }
8534 
8535     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8536     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8537     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8538     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8539     if (!CHIP_IS_E1x(sc)) {
8540         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8541     } else {
8542         attn.sig[4] = 0;
8543     }
8544 
8545     BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8546           attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8547 
8548     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8549         if (deasserted & (1 << index)) {
8550             group_mask = &sc->attn_group[index];
8551 
8552             BLOGD(sc, DBG_INTR,
8553                   "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8554                   group_mask->sig[0], group_mask->sig[1],
8555                   group_mask->sig[2], group_mask->sig[3],
8556                   group_mask->sig[4]);
8557 
8558             bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8559             bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8560             bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8561             bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8562             bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8563         }
8564     }
8565 
8566     bxe_release_alr(sc);
8567 
8568     if (sc->devinfo.int_block == INT_BLOCK_HC) {
8569         reg_addr = (HC_REG_COMMAND_REG + port*32 +
8570                     COMMAND_REG_ATTN_BITS_CLR);
8571     } else {
8572         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8573     }
8574 
8575     val = ~deasserted;
8576     BLOGD(sc, DBG_INTR,
8577           "about to mask 0x%08x at %s addr 0x%08x\n", val,
8578           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8579     REG_WR(sc, reg_addr, val);
8580 
8581     if (~sc->attn_state & deasserted) {
8582         BLOGE(sc, "IGU error\n");
8583     }
8584 
8585     reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8586                       MISC_REG_AEU_MASK_ATTN_FUNC_0;
8587 
8588     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8589 
8590     aeu_mask = REG_RD(sc, reg_addr);
8591 
8592     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8593           aeu_mask, deasserted);
8594     aeu_mask |= (deasserted & 0x3ff);
8595     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8596 
8597     REG_WR(sc, reg_addr, aeu_mask);
8598     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8599 
8600     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8601     sc->attn_state &= ~deasserted;
8602     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8603 }
8604 
8605 static void
8606 bxe_attn_int(struct bxe_softc *sc)
8607 {
8608     /* read local copy of bits */
8609     uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8610     uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8611     uint32_t attn_state = sc->attn_state;
8612 
8613     /* look for changed bits */
8614     uint32_t asserted   =  attn_bits & ~attn_ack & ~attn_state;
8615     uint32_t deasserted = ~attn_bits &  attn_ack &  attn_state;
8616 
8617     BLOGD(sc, DBG_INTR,
8618           "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8619           attn_bits, attn_ack, asserted, deasserted);
8620 
8621     if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8622         BLOGE(sc, "BAD attention state\n");
8623     }
8624 
8625     /* handle bits that were raised */
8626     if (asserted) {
8627         bxe_attn_int_asserted(sc, asserted);
8628     }
8629 
8630     if (deasserted) {
8631         bxe_attn_int_deasserted(sc, deasserted);
8632     }
8633 }
8634 
8635 static uint16_t
8636 bxe_update_dsb_idx(struct bxe_softc *sc)
8637 {
8638     struct host_sp_status_block *def_sb = sc->def_sb;
8639     uint16_t rc = 0;
8640 
8641     mb(); /* status block is written to by the chip */
8642 
8643     if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8644         sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8645         rc |= BXE_DEF_SB_ATT_IDX;
8646     }
8647 
8648     if (sc->def_idx != def_sb->sp_sb.running_index) {
8649         sc->def_idx = def_sb->sp_sb.running_index;
8650         rc |= BXE_DEF_SB_IDX;
8651     }
8652 
8653     mb();
8654 
8655     return (rc);
8656 }
8657 
8658 static inline struct ecore_queue_sp_obj *
8659 bxe_cid_to_q_obj(struct bxe_softc *sc,
8660                  uint32_t         cid)
8661 {
8662     BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8663     return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8664 }
8665 
8666 static void
8667 bxe_handle_mcast_eqe(struct bxe_softc *sc)
8668 {
8669     struct ecore_mcast_ramrod_params rparam;
8670     int rc;
8671 
8672     memset(&rparam, 0, sizeof(rparam));
8673 
8674     rparam.mcast_obj = &sc->mcast_obj;
8675 
8676     BXE_MCAST_LOCK(sc);
8677 
8678     /* clear pending state for the last command */
8679     sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8680 
8681     /* if there are pending mcast commands - send them */
8682     if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8683         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8684         if (rc < 0) {
8685             BLOGD(sc, DBG_SP,
8686                   "ERROR: Failed to send pending mcast commands (%d)\n",
8687                   rc);
8688         }
8689     }
8690 
8691     BXE_MCAST_UNLOCK(sc);
8692 }
8693 
8694 static void
8695 bxe_handle_classification_eqe(struct bxe_softc      *sc,
8696                               union event_ring_elem *elem)
8697 {
8698     unsigned long ramrod_flags = 0;
8699     int rc = 0;
8700     uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8701     struct ecore_vlan_mac_obj *vlan_mac_obj;
8702 
8703     /* always push next commands out, don't wait here */
8704     bit_set(&ramrod_flags, RAMROD_CONT);
8705 
8706     switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8707     case ECORE_FILTER_MAC_PENDING:
8708         BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8709         vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8710         break;
8711 
8712     case ECORE_FILTER_MCAST_PENDING:
8713         BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8714         /*
8715          * This is only relevant for 57710 where multicast MACs are
8716          * configured as unicast MACs using the same ramrod.
8717          */
8718         bxe_handle_mcast_eqe(sc);
8719         return;
8720 
8721     default:
8722         BLOGE(sc, "Unsupported classification command: %d\n",
8723               elem->message.data.eth_event.echo);
8724         return;
8725     }
8726 
8727     rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8728 
8729     if (rc < 0) {
8730         BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8731     } else if (rc > 0) {
8732         BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8733     }
8734 }
8735 
8736 static void
8737 bxe_handle_rx_mode_eqe(struct bxe_softc      *sc,
8738                        union event_ring_elem *elem)
8739 {
8740     bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8741 
8742     /* send rx_mode command again if was requested */
8743     if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8744                                &sc->sp_state)) {
8745         bxe_set_storm_rx_mode(sc);
8746     }
8747 #if 0
8748     else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_START_SCHED,
8749                                     &sc->sp_state)) {
8750         bxe_set_iscsi_eth_rx_mode(sc, TRUE);
8751     }
8752     else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_STOP_SCHED,
8753                                     &sc->sp_state)) {
8754         bxe_set_iscsi_eth_rx_mode(sc, FALSE);
8755     }
8756 #endif
8757 }
8758 
8759 static void
8760 bxe_update_eq_prod(struct bxe_softc *sc,
8761                    uint16_t         prod)
8762 {
8763     storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8764     wmb(); /* keep prod updates ordered */
8765 }
8766 
8767 static void
8768 bxe_eq_int(struct bxe_softc *sc)
8769 {
8770     uint16_t hw_cons, sw_cons, sw_prod;
8771     union event_ring_elem *elem;
8772     uint8_t echo;
8773     uint32_t cid;
8774     uint8_t opcode;
8775     int spqe_cnt = 0;
8776     struct ecore_queue_sp_obj *q_obj;
8777     struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8778     struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8779 
8780     hw_cons = le16toh(*sc->eq_cons_sb);
8781 
8782     /*
8783      * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8784      * when we get to the next-page we need to adjust so the loop
8785      * condition below will be met. The next element is the size of a
8786      * regular element and hence incrementing by 1
8787      */
8788     if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8789         hw_cons++;
8790     }
8791 
8792     /*
8793      * This function may never run in parallel with itself for a
8794      * specific sc and no need for a read memory barrier here.
8795      */
8796     sw_cons = sc->eq_cons;
8797     sw_prod = sc->eq_prod;
8798 
8799     BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8800           hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8801 
8802     for (;
8803          sw_cons != hw_cons;
8804          sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8805 
8806         elem = &sc->eq[EQ_DESC(sw_cons)];
8807 
8808 #if 0
8809         int rc;
8810         rc = bxe_iov_eq_sp_event(sc, elem);
8811         if (!rc) {
8812             BLOGE(sc, "bxe_iov_eq_sp_event returned %d\n", rc);
8813             goto next_spqe;
8814         }
8815 #endif
8816 
8817         /* elem CID originates from FW, actually LE */
8818         cid = SW_CID(elem->message.data.cfc_del_event.cid);
8819         opcode = elem->message.opcode;
8820 
8821         /* handle eq element */
8822         switch (opcode) {
8823 #if 0
8824         case EVENT_RING_OPCODE_VF_PF_CHANNEL:
8825             BLOGD(sc, DBG_SP, "vf/pf channel element on eq\n");
8826             bxe_vf_mbx(sc, &elem->message.data.vf_pf_event);
8827             continue;
8828 #endif
8829 
8830         case EVENT_RING_OPCODE_STAT_QUERY:
8831             BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8832                   sc->stats_comp++);
8833             /* nothing to do with stats comp */
8834             goto next_spqe;
8835 
8836         case EVENT_RING_OPCODE_CFC_DEL:
8837             /* handle according to cid range */
8838             /* we may want to verify here that the sc state is HALTING */
8839             BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8840             q_obj = bxe_cid_to_q_obj(sc, cid);
8841             if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8842                 break;
8843             }
8844             goto next_spqe;
8845 
8846         case EVENT_RING_OPCODE_STOP_TRAFFIC:
8847             BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8848             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8849                 break;
8850             }
8851             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8852             goto next_spqe;
8853 
8854         case EVENT_RING_OPCODE_START_TRAFFIC:
8855             BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8856             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8857                 break;
8858             }
8859             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8860             goto next_spqe;
8861 
8862         case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8863             echo = elem->message.data.function_update_event.echo;
8864             if (echo == SWITCH_UPDATE) {
8865                 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8866                 if (f_obj->complete_cmd(sc, f_obj,
8867                                         ECORE_F_CMD_SWITCH_UPDATE)) {
8868                     break;
8869                 }
8870             }
8871             else {
8872                 BLOGD(sc, DBG_SP,
8873                       "AFEX: ramrod completed FUNCTION_UPDATE\n");
8874 #if 0
8875                 f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_UPDATE);
8876                 /*
8877                  * We will perform the queues update from the sp_core_task as
8878                  * all queue SP operations should run with CORE_LOCK.
8879                  */
8880                 bxe_set_bit(BXE_SP_CORE_AFEX_F_UPDATE, &sc->sp_core_state);
8881                 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8882 #endif
8883             }
8884             goto next_spqe;
8885 
8886 #if 0
8887         case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
8888             f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_VIFLISTS);
8889             bxe_after_afex_vif_lists(sc, elem);
8890             goto next_spqe;
8891 #endif
8892 
8893         case EVENT_RING_OPCODE_FORWARD_SETUP:
8894             q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8895             if (q_obj->complete_cmd(sc, q_obj,
8896                                     ECORE_Q_CMD_SETUP_TX_ONLY)) {
8897                 break;
8898             }
8899             goto next_spqe;
8900 
8901         case EVENT_RING_OPCODE_FUNCTION_START:
8902             BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8903             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8904                 break;
8905             }
8906             goto next_spqe;
8907 
8908         case EVENT_RING_OPCODE_FUNCTION_STOP:
8909             BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8910             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8911                 break;
8912             }
8913             goto next_spqe;
8914         }
8915 
8916         switch (opcode | sc->state) {
8917         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8918         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8919             cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8920             BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8921             rss_raw->clear_pending(rss_raw);
8922             break;
8923 
8924         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8925         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8926         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8927         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8928         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8929         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8930             BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8931             bxe_handle_classification_eqe(sc, elem);
8932             break;
8933 
8934         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8935         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8936         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8937             BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8938             bxe_handle_mcast_eqe(sc);
8939             break;
8940 
8941         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8942         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8943         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8944             BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8945             bxe_handle_rx_mode_eqe(sc, elem);
8946             break;
8947 
8948         default:
8949             /* unknown event log error and continue */
8950             BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8951                   elem->message.opcode, sc->state);
8952         }
8953 
8954 next_spqe:
8955         spqe_cnt++;
8956     } /* for */
8957 
8958     mb();
8959     atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
8960 
8961     sc->eq_cons = sw_cons;
8962     sc->eq_prod = sw_prod;
8963 
8964     /* make sure that above mem writes were issued towards the memory */
8965     wmb();
8966 
8967     /* update producer */
8968     bxe_update_eq_prod(sc, sc->eq_prod);
8969 }
8970 
8971 static void
8972 bxe_handle_sp_tq(void *context,
8973                  int  pending)
8974 {
8975     struct bxe_softc *sc = (struct bxe_softc *)context;
8976     uint16_t status;
8977 
8978     BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
8979 
8980     /* what work needs to be performed? */
8981     status = bxe_update_dsb_idx(sc);
8982 
8983     BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
8984 
8985     /* HW attentions */
8986     if (status & BXE_DEF_SB_ATT_IDX) {
8987         BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
8988         bxe_attn_int(sc);
8989         status &= ~BXE_DEF_SB_ATT_IDX;
8990     }
8991 
8992     /* SP events: STAT_QUERY and others */
8993     if (status & BXE_DEF_SB_IDX) {
8994         /* handle EQ completions */
8995         BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
8996         bxe_eq_int(sc);
8997         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
8998                    le16toh(sc->def_idx), IGU_INT_NOP, 1);
8999         status &= ~BXE_DEF_SB_IDX;
9000     }
9001 
9002     /* if status is non zero then something went wrong */
9003     if (__predict_false(status)) {
9004         BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
9005     }
9006 
9007     /* ack status block only if something was actually handled */
9008     bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
9009                le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
9010 
9011     /*
9012      * Must be called after the EQ processing (since eq leads to sriov
9013      * ramrod completion flows).
9014      * This flow may have been scheduled by the arrival of a ramrod
9015      * completion, or by the sriov code rescheduling itself.
9016      */
9017     // XXX bxe_iov_sp_task(sc);
9018 
9019 #if 0
9020     /* AFEX - poll to check if VIFSET_ACK should be sent to MFW */
9021     if (bxe_test_and_clear_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK,
9022                                &sc->sp_state)) {
9023         bxe_link_report(sc);
9024         bxe_fw_command(sc, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
9025     }
9026 #endif
9027 }
9028 
9029 static void
9030 bxe_handle_fp_tq(void *context,
9031                  int  pending)
9032 {
9033     struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
9034     struct bxe_softc *sc = fp->sc;
9035     uint8_t more_tx = FALSE;
9036     uint8_t more_rx = FALSE;
9037 
9038     BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
9039 
9040     /* XXX
9041      * IFF_DRV_RUNNING state can't be checked here since we process
9042      * slowpath events on a client queue during setup. Instead
9043      * we need to add a "process/continue" flag here that the driver
9044      * can use to tell the task here not to do anything.
9045      */
9046 #if 0
9047     if (!(sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
9048         return;
9049     }
9050 #endif
9051 
9052     /* update the fastpath index */
9053     bxe_update_fp_sb_idx(fp);
9054 
9055     /* XXX add loop here if ever support multiple tx CoS */
9056     /* fp->txdata[cos] */
9057     if (bxe_has_tx_work(fp)) {
9058         BXE_FP_TX_LOCK(fp);
9059         more_tx = bxe_txeof(sc, fp);
9060         BXE_FP_TX_UNLOCK(fp);
9061     }
9062 
9063     if (bxe_has_rx_work(fp)) {
9064         more_rx = bxe_rxeof(sc, fp);
9065     }
9066 
9067     if (more_rx /*|| more_tx*/) {
9068         /* still more work to do */
9069         taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9070         return;
9071     }
9072 
9073     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9074                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9075 }
9076 
9077 static void
9078 bxe_task_fp(struct bxe_fastpath *fp)
9079 {
9080     struct bxe_softc *sc = fp->sc;
9081     uint8_t more_tx = FALSE;
9082     uint8_t more_rx = FALSE;
9083 
9084     BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
9085 
9086     /* update the fastpath index */
9087     bxe_update_fp_sb_idx(fp);
9088 
9089     /* XXX add loop here if ever support multiple tx CoS */
9090     /* fp->txdata[cos] */
9091     if (bxe_has_tx_work(fp)) {
9092         BXE_FP_TX_LOCK(fp);
9093         more_tx = bxe_txeof(sc, fp);
9094         BXE_FP_TX_UNLOCK(fp);
9095     }
9096 
9097     if (bxe_has_rx_work(fp)) {
9098         more_rx = bxe_rxeof(sc, fp);
9099     }
9100 
9101     if (more_rx /*|| more_tx*/) {
9102         /* still more work to do, bail out if this ISR and process later */
9103         taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9104         return;
9105     }
9106 
9107     /*
9108      * Here we write the fastpath index taken before doing any tx or rx work.
9109      * It is very well possible other hw events occurred up to this point and
9110      * they were actually processed accordingly above. Since we're going to
9111      * write an older fastpath index, an interrupt is coming which we might
9112      * not do any work in.
9113      */
9114     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9115                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9116 }
9117 
9118 /*
9119  * Legacy interrupt entry point.
9120  *
9121  * Verifies that the controller generated the interrupt and
9122  * then calls a separate routine to handle the various
9123  * interrupt causes: link, RX, and TX.
9124  */
9125 static void
9126 bxe_intr_legacy(void *xsc)
9127 {
9128     struct bxe_softc *sc = (struct bxe_softc *)xsc;
9129     struct bxe_fastpath *fp;
9130     uint16_t status, mask;
9131     int i;
9132 
9133     BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
9134 
9135 #if 0
9136     /* Don't handle any interrupts if we're not ready. */
9137     if (__predict_false(sc->intr_sem != 0)) {
9138         return;
9139     }
9140 #endif
9141 
9142     /*
9143      * 0 for ustorm, 1 for cstorm
9144      * the bits returned from ack_int() are 0-15
9145      * bit 0 = attention status block
9146      * bit 1 = fast path status block
9147      * a mask of 0x2 or more = tx/rx event
9148      * a mask of 1 = slow path event
9149      */
9150 
9151     status = bxe_ack_int(sc);
9152 
9153     /* the interrupt is not for us */
9154     if (__predict_false(status == 0)) {
9155         BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
9156         return;
9157     }
9158 
9159     BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
9160 
9161     FOR_EACH_ETH_QUEUE(sc, i) {
9162         fp = &sc->fp[i];
9163         mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
9164         if (status & mask) {
9165             /* acknowledge and disable further fastpath interrupts */
9166             bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9167             bxe_task_fp(fp);
9168             status &= ~mask;
9169         }
9170     }
9171 
9172 #if 0
9173     if (CNIC_SUPPORT(sc)) {
9174         mask = 0x2;
9175         if (status & (mask | 0x1)) {
9176             ...
9177             status &= ~mask;
9178         }
9179     }
9180 #endif
9181 
9182     if (__predict_false(status & 0x1)) {
9183         /* acknowledge and disable further slowpath interrupts */
9184         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9185 
9186         /* schedule slowpath handler */
9187         taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9188 
9189         status &= ~0x1;
9190     }
9191 
9192     if (__predict_false(status)) {
9193         BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
9194     }
9195 }
9196 
9197 /* slowpath interrupt entry point */
9198 static void
9199 bxe_intr_sp(void *xsc)
9200 {
9201     struct bxe_softc *sc = (struct bxe_softc *)xsc;
9202 
9203     BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
9204 
9205     /* acknowledge and disable further slowpath interrupts */
9206     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9207 
9208     /* schedule slowpath handler */
9209     taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9210 }
9211 
9212 /* fastpath interrupt entry point */
9213 static void
9214 bxe_intr_fp(void *xfp)
9215 {
9216     struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
9217     struct bxe_softc *sc = fp->sc;
9218 
9219     BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
9220 
9221     BLOGD(sc, DBG_INTR,
9222           "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
9223           curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
9224 
9225 #if 0
9226     /* Don't handle any interrupts if we're not ready. */
9227     if (__predict_false(sc->intr_sem != 0)) {
9228         return;
9229     }
9230 #endif
9231 
9232     /* acknowledge and disable further fastpath interrupts */
9233     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9234 
9235     bxe_task_fp(fp);
9236 }
9237 
9238 /* Release all interrupts allocated by the driver. */
9239 static void
9240 bxe_interrupt_free(struct bxe_softc *sc)
9241 {
9242     int i;
9243 
9244     switch (sc->interrupt_mode) {
9245     case INTR_MODE_INTX:
9246         BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
9247         if (sc->intr[0].resource != NULL) {
9248             bus_release_resource(sc->dev,
9249                                  SYS_RES_IRQ,
9250                                  sc->intr[0].rid,
9251                                  sc->intr[0].resource);
9252         }
9253         break;
9254     case INTR_MODE_MSI:
9255         for (i = 0; i < sc->intr_count; i++) {
9256             BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
9257             if (sc->intr[i].resource && sc->intr[i].rid) {
9258                 bus_release_resource(sc->dev,
9259                                      SYS_RES_IRQ,
9260                                      sc->intr[i].rid,
9261                                      sc->intr[i].resource);
9262             }
9263         }
9264         pci_release_msi(sc->dev);
9265         break;
9266     case INTR_MODE_MSIX:
9267         for (i = 0; i < sc->intr_count; i++) {
9268             BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
9269             if (sc->intr[i].resource && sc->intr[i].rid) {
9270                 bus_release_resource(sc->dev,
9271                                      SYS_RES_IRQ,
9272                                      sc->intr[i].rid,
9273                                      sc->intr[i].resource);
9274             }
9275         }
9276         pci_release_msi(sc->dev);
9277         break;
9278     default:
9279         /* nothing to do as initial allocation failed */
9280         break;
9281     }
9282 }
9283 
9284 /*
9285  * This function determines and allocates the appropriate
9286  * interrupt based on system capabilites and user request.
9287  *
9288  * The user may force a particular interrupt mode, specify
9289  * the number of receive queues, specify the method for
9290  * distribuitng received frames to receive queues, or use
9291  * the default settings which will automatically select the
9292  * best supported combination.  In addition, the OS may or
9293  * may not support certain combinations of these settings.
9294  * This routine attempts to reconcile the settings requested
9295  * by the user with the capabilites available from the system
9296  * to select the optimal combination of features.
9297  *
9298  * Returns:
9299  *   0 = Success, !0 = Failure.
9300  */
9301 static int
9302 bxe_interrupt_alloc(struct bxe_softc *sc)
9303 {
9304     int msix_count = 0;
9305     int msi_count = 0;
9306     int num_requested = 0;
9307     int num_allocated = 0;
9308     int rid, i, j;
9309     int rc;
9310 
9311     /* get the number of available MSI/MSI-X interrupts from the OS */
9312     if (sc->interrupt_mode > 0) {
9313         if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
9314             msix_count = pci_msix_count(sc->dev);
9315         }
9316 
9317         if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
9318             msi_count = pci_msi_count(sc->dev);
9319         }
9320 
9321         BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
9322               msi_count, msix_count);
9323     }
9324 
9325     do { /* try allocating MSI-X interrupt resources (at least 2) */
9326         if (sc->interrupt_mode != INTR_MODE_MSIX) {
9327             break;
9328         }
9329 
9330         if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
9331             (msix_count < 2)) {
9332             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9333             break;
9334         }
9335 
9336         /* ask for the necessary number of MSI-X vectors */
9337         num_requested = min((sc->num_queues + 1), msix_count);
9338 
9339         BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
9340 
9341         num_allocated = num_requested;
9342         if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
9343             BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
9344             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9345             break;
9346         }
9347 
9348         if (num_allocated < 2) { /* possible? */
9349             BLOGE(sc, "MSI-X allocation less than 2!\n");
9350             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9351             pci_release_msi(sc->dev);
9352             break;
9353         }
9354 
9355         BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
9356               num_requested, num_allocated);
9357 
9358         /* best effort so use the number of vectors allocated to us */
9359         sc->intr_count = num_allocated;
9360         sc->num_queues = num_allocated - 1;
9361 
9362         rid = 1; /* initial resource identifier */
9363 
9364         /* allocate the MSI-X vectors */
9365         for (i = 0; i < num_allocated; i++) {
9366             sc->intr[i].rid = (rid + i);
9367 
9368             if ((sc->intr[i].resource =
9369                  bus_alloc_resource_any(sc->dev,
9370                                         SYS_RES_IRQ,
9371                                         &sc->intr[i].rid,
9372                                         RF_ACTIVE)) == NULL) {
9373                 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
9374                       i, (rid + i));
9375 
9376                 for (j = (i - 1); j >= 0; j--) {
9377                     bus_release_resource(sc->dev,
9378                                          SYS_RES_IRQ,
9379                                          sc->intr[j].rid,
9380                                          sc->intr[j].resource);
9381                 }
9382 
9383                 sc->intr_count = 0;
9384                 sc->num_queues = 0;
9385                 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9386                 pci_release_msi(sc->dev);
9387                 break;
9388             }
9389 
9390             BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
9391         }
9392     } while (0);
9393 
9394     do { /* try allocating MSI vector resources (at least 2) */
9395         if (sc->interrupt_mode != INTR_MODE_MSI) {
9396             break;
9397         }
9398 
9399         if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
9400             (msi_count < 2)) {
9401             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9402             break;
9403         }
9404 
9405         /* ask for the necessary number of MSI vectors */
9406         num_requested = min((sc->num_queues + 1), msi_count);
9407 
9408         BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
9409 
9410         num_allocated = num_requested;
9411         if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
9412             BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
9413             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9414             break;
9415         }
9416 
9417         if (num_allocated < 2) { /* possible? */
9418             BLOGE(sc, "MSI allocation less than 2!\n");
9419             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9420             pci_release_msi(sc->dev);
9421             break;
9422         }
9423 
9424         BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
9425               num_requested, num_allocated);
9426 
9427         /* best effort so use the number of vectors allocated to us */
9428         sc->intr_count = num_allocated;
9429         sc->num_queues = num_allocated - 1;
9430 
9431         rid = 1; /* initial resource identifier */
9432 
9433         /* allocate the MSI vectors */
9434         for (i = 0; i < num_allocated; i++) {
9435             sc->intr[i].rid = (rid + i);
9436 
9437             if ((sc->intr[i].resource =
9438                  bus_alloc_resource_any(sc->dev,
9439                                         SYS_RES_IRQ,
9440                                         &sc->intr[i].rid,
9441                                         RF_ACTIVE)) == NULL) {
9442                 BLOGE(sc, "Failed to map MSI[%d] (rid=%d)!\n",
9443                       i, (rid + i));
9444 
9445                 for (j = (i - 1); j >= 0; j--) {
9446                     bus_release_resource(sc->dev,
9447                                          SYS_RES_IRQ,
9448                                          sc->intr[j].rid,
9449                                          sc->intr[j].resource);
9450                 }
9451 
9452                 sc->intr_count = 0;
9453                 sc->num_queues = 0;
9454                 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9455                 pci_release_msi(sc->dev);
9456                 break;
9457             }
9458 
9459             BLOGD(sc, DBG_LOAD, "Mapped MSI[%d] (rid=%d)\n", i, (rid + i));
9460         }
9461     } while (0);
9462 
9463     do { /* try allocating INTx vector resources */
9464         if (sc->interrupt_mode != INTR_MODE_INTX) {
9465             break;
9466         }
9467 
9468         BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
9469 
9470         /* only one vector for INTx */
9471         sc->intr_count = 1;
9472         sc->num_queues = 1;
9473 
9474         rid = 0; /* initial resource identifier */
9475 
9476         sc->intr[0].rid = rid;
9477 
9478         if ((sc->intr[0].resource =
9479              bus_alloc_resource_any(sc->dev,
9480                                     SYS_RES_IRQ,
9481                                     &sc->intr[0].rid,
9482                                     (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
9483             BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
9484             sc->intr_count = 0;
9485             sc->num_queues = 0;
9486             sc->interrupt_mode = -1; /* Failed! */
9487             break;
9488         }
9489 
9490         BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9491     } while (0);
9492 
9493     if (sc->interrupt_mode == -1) {
9494         BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9495         rc = 1;
9496     } else {
9497         BLOGD(sc, DBG_LOAD,
9498               "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9499               sc->interrupt_mode, sc->num_queues);
9500         rc = 0;
9501     }
9502 
9503     return (rc);
9504 }
9505 
9506 static void
9507 bxe_interrupt_detach(struct bxe_softc *sc)
9508 {
9509     struct bxe_fastpath *fp;
9510     int i;
9511 
9512     /* release interrupt resources */
9513     for (i = 0; i < sc->intr_count; i++) {
9514         if (sc->intr[i].resource && sc->intr[i].tag) {
9515             BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9516             bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9517         }
9518     }
9519 
9520     for (i = 0; i < sc->num_queues; i++) {
9521         fp = &sc->fp[i];
9522         if (fp->tq) {
9523             taskqueue_drain(fp->tq, &fp->tq_task);
9524             taskqueue_free(fp->tq);
9525             fp->tq = NULL;
9526         }
9527     }
9528 
9529     if (sc->rx_mode_tq) {
9530         taskqueue_drain(sc->rx_mode_tq, &sc->rx_mode_tq_task);
9531         taskqueue_free(sc->rx_mode_tq);
9532         sc->rx_mode_tq = NULL;
9533     }
9534 
9535     if (sc->sp_tq) {
9536         taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9537         taskqueue_free(sc->sp_tq);
9538         sc->sp_tq = NULL;
9539     }
9540 }
9541 
9542 /*
9543  * Enables interrupts and attach to the ISR.
9544  *
9545  * When using multiple MSI/MSI-X vectors the first vector
9546  * is used for slowpath operations while all remaining
9547  * vectors are used for fastpath operations.  If only a
9548  * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9549  * ISR must look for both slowpath and fastpath completions.
9550  */
9551 static int
9552 bxe_interrupt_attach(struct bxe_softc *sc)
9553 {
9554     struct bxe_fastpath *fp;
9555     int rc = 0;
9556     int i;
9557 
9558     snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9559              "bxe%d_sp_tq", sc->unit);
9560     TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9561     sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT,
9562                                       taskqueue_thread_enqueue,
9563                                       &sc->sp_tq);
9564     taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9565                             "%s", sc->sp_tq_name);
9566 
9567     snprintf(sc->rx_mode_tq_name, sizeof(sc->rx_mode_tq_name),
9568              "bxe%d_rx_mode_tq", sc->unit);
9569     TASK_INIT(&sc->rx_mode_tq_task, 0, bxe_handle_rx_mode_tq, sc);
9570     sc->rx_mode_tq = taskqueue_create_fast(sc->rx_mode_tq_name, M_NOWAIT,
9571                                            taskqueue_thread_enqueue,
9572                                            &sc->rx_mode_tq);
9573     taskqueue_start_threads(&sc->rx_mode_tq, 1, PWAIT, /* lower priority */
9574                             "%s", sc->rx_mode_tq_name);
9575 
9576     for (i = 0; i < sc->num_queues; i++) {
9577         fp = &sc->fp[i];
9578         snprintf(fp->tq_name, sizeof(fp->tq_name),
9579                  "bxe%d_fp%d_tq", sc->unit, i);
9580         TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9581         fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT,
9582                                        taskqueue_thread_enqueue,
9583                                        &fp->tq);
9584         taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9585                                 "%s", fp->tq_name);
9586     }
9587 
9588     /* setup interrupt handlers */
9589     if (sc->interrupt_mode == INTR_MODE_MSIX) {
9590         BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9591 
9592         /*
9593          * Setup the interrupt handler. Note that we pass the driver instance
9594          * to the interrupt handler for the slowpath.
9595          */
9596         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9597                                  (INTR_TYPE_NET | INTR_MPSAFE),
9598                                  NULL, bxe_intr_sp, sc,
9599                                  &sc->intr[0].tag)) != 0) {
9600             BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9601             goto bxe_interrupt_attach_exit;
9602         }
9603 
9604         bus_describe_intr(sc->dev, sc->intr[0].resource,
9605                           sc->intr[0].tag, "sp");
9606 
9607         /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9608 
9609         /* initialize the fastpath vectors (note the first was used for sp) */
9610         for (i = 0; i < sc->num_queues; i++) {
9611             fp = &sc->fp[i];
9612             BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9613 
9614             /*
9615              * Setup the interrupt handler. Note that we pass the
9616              * fastpath context to the interrupt handler in this
9617              * case.
9618              */
9619             if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9620                                      (INTR_TYPE_NET | INTR_MPSAFE),
9621                                      NULL, bxe_intr_fp, fp,
9622                                      &sc->intr[i + 1].tag)) != 0) {
9623                 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9624                       (i + 1), rc);
9625                 goto bxe_interrupt_attach_exit;
9626             }
9627 
9628             bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9629                               sc->intr[i + 1].tag, "fp%02d", i);
9630 
9631             /* bind the fastpath instance to a cpu */
9632             if (sc->num_queues > 1) {
9633                 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9634             }
9635 
9636             fp->state = BXE_FP_STATE_IRQ;
9637         }
9638     } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9639         BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI[0] vector.\n");
9640 
9641         /*
9642          * Setup the interrupt handler. Note that we pass the driver instance
9643          * to the interrupt handler for the slowpath.
9644          */
9645         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9646                                  (INTR_TYPE_NET | INTR_MPSAFE),
9647                                  NULL, bxe_intr_sp, sc,
9648                                  &sc->intr[0].tag)) != 0) {
9649             BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9650             goto bxe_interrupt_attach_exit;
9651         }
9652 
9653         bus_describe_intr(sc->dev, sc->intr[0].resource,
9654                           sc->intr[0].tag, "sp");
9655 
9656         /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9657 
9658         /* initialize the fastpath vectors (note the first was used for sp) */
9659         for (i = 0; i < sc->num_queues; i++) {
9660             fp = &sc->fp[i];
9661             BLOGD(sc, DBG_LOAD, "Enabling MSI[%d] vector\n", (i + 1));
9662 
9663             /*
9664              * Setup the interrupt handler. Note that we pass the
9665              * fastpath context to the interrupt handler in this
9666              * case.
9667              */
9668             if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9669                                      (INTR_TYPE_NET | INTR_MPSAFE),
9670                                      NULL, bxe_intr_fp, fp,
9671                                      &sc->intr[i + 1].tag)) != 0) {
9672                 BLOGE(sc, "Failed to allocate MSI[%d] vector (%d)\n",
9673                       (i + 1), rc);
9674                 goto bxe_interrupt_attach_exit;
9675             }
9676 
9677             bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9678                               sc->intr[i + 1].tag, "fp%02d", i);
9679 
9680             /* bind the fastpath instance to a cpu */
9681             if (sc->num_queues > 1) {
9682                 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9683             }
9684 
9685             fp->state = BXE_FP_STATE_IRQ;
9686         }
9687     } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9688         BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9689 
9690         /*
9691          * Setup the interrupt handler. Note that we pass the
9692          * driver instance to the interrupt handler which
9693          * will handle both the slowpath and fastpath.
9694          */
9695         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9696                                  (INTR_TYPE_NET | INTR_MPSAFE),
9697                                  NULL, bxe_intr_legacy, sc,
9698                                  &sc->intr[0].tag)) != 0) {
9699             BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9700             goto bxe_interrupt_attach_exit;
9701         }
9702     }
9703 
9704 bxe_interrupt_attach_exit:
9705 
9706     return (rc);
9707 }
9708 
9709 static int  bxe_init_hw_common_chip(struct bxe_softc *sc);
9710 static int  bxe_init_hw_common(struct bxe_softc *sc);
9711 static int  bxe_init_hw_port(struct bxe_softc *sc);
9712 static int  bxe_init_hw_func(struct bxe_softc *sc);
9713 static void bxe_reset_common(struct bxe_softc *sc);
9714 static void bxe_reset_port(struct bxe_softc *sc);
9715 static void bxe_reset_func(struct bxe_softc *sc);
9716 static int  bxe_gunzip_init(struct bxe_softc *sc);
9717 static void bxe_gunzip_end(struct bxe_softc *sc);
9718 static int  bxe_init_firmware(struct bxe_softc *sc);
9719 static void bxe_release_firmware(struct bxe_softc *sc);
9720 
9721 static struct
9722 ecore_func_sp_drv_ops bxe_func_sp_drv = {
9723     .init_hw_cmn_chip = bxe_init_hw_common_chip,
9724     .init_hw_cmn      = bxe_init_hw_common,
9725     .init_hw_port     = bxe_init_hw_port,
9726     .init_hw_func     = bxe_init_hw_func,
9727 
9728     .reset_hw_cmn     = bxe_reset_common,
9729     .reset_hw_port    = bxe_reset_port,
9730     .reset_hw_func    = bxe_reset_func,
9731 
9732     .gunzip_init      = bxe_gunzip_init,
9733     .gunzip_end       = bxe_gunzip_end,
9734 
9735     .init_fw          = bxe_init_firmware,
9736     .release_fw       = bxe_release_firmware,
9737 };
9738 
9739 static void
9740 bxe_init_func_obj(struct bxe_softc *sc)
9741 {
9742     sc->dmae_ready = 0;
9743 
9744     ecore_init_func_obj(sc,
9745                         &sc->func_obj,
9746                         BXE_SP(sc, func_rdata),
9747                         BXE_SP_MAPPING(sc, func_rdata),
9748                         BXE_SP(sc, func_afex_rdata),
9749                         BXE_SP_MAPPING(sc, func_afex_rdata),
9750                         &bxe_func_sp_drv);
9751 }
9752 
9753 static int
9754 bxe_init_hw(struct bxe_softc *sc,
9755             uint32_t         load_code)
9756 {
9757     struct ecore_func_state_params func_params = { NULL };
9758     int rc;
9759 
9760     /* prepare the parameters for function state transitions */
9761     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9762 
9763     func_params.f_obj = &sc->func_obj;
9764     func_params.cmd = ECORE_F_CMD_HW_INIT;
9765 
9766     func_params.params.hw_init.load_phase = load_code;
9767 
9768     /*
9769      * Via a plethora of function pointers, we will eventually reach
9770      * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9771      */
9772     rc = ecore_func_state_change(sc, &func_params);
9773 
9774     return (rc);
9775 }
9776 
9777 static void
9778 bxe_fill(struct bxe_softc *sc,
9779          uint32_t         addr,
9780          int              fill,
9781          uint32_t         len)
9782 {
9783     uint32_t i;
9784 
9785     if (!(len % 4) && !(addr % 4)) {
9786         for (i = 0; i < len; i += 4) {
9787             REG_WR(sc, (addr + i), fill);
9788         }
9789     } else {
9790         for (i = 0; i < len; i++) {
9791             REG_WR8(sc, (addr + i), fill);
9792         }
9793     }
9794 }
9795 
9796 /* writes FP SP data to FW - data_size in dwords */
9797 static void
9798 bxe_wr_fp_sb_data(struct bxe_softc *sc,
9799                   int              fw_sb_id,
9800                   uint32_t         *sb_data_p,
9801                   uint32_t         data_size)
9802 {
9803     int index;
9804 
9805     for (index = 0; index < data_size; index++) {
9806         REG_WR(sc,
9807                (BAR_CSTRORM_INTMEM +
9808                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9809                 (sizeof(uint32_t) * index)),
9810                *(sb_data_p + index));
9811     }
9812 }
9813 
9814 static void
9815 bxe_zero_fp_sb(struct bxe_softc *sc,
9816                int              fw_sb_id)
9817 {
9818     struct hc_status_block_data_e2 sb_data_e2;
9819     struct hc_status_block_data_e1x sb_data_e1x;
9820     uint32_t *sb_data_p;
9821     uint32_t data_size = 0;
9822 
9823     if (!CHIP_IS_E1x(sc)) {
9824         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9825         sb_data_e2.common.state = SB_DISABLED;
9826         sb_data_e2.common.p_func.vf_valid = FALSE;
9827         sb_data_p = (uint32_t *)&sb_data_e2;
9828         data_size = (sizeof(struct hc_status_block_data_e2) /
9829                      sizeof(uint32_t));
9830     } else {
9831         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9832         sb_data_e1x.common.state = SB_DISABLED;
9833         sb_data_e1x.common.p_func.vf_valid = FALSE;
9834         sb_data_p = (uint32_t *)&sb_data_e1x;
9835         data_size = (sizeof(struct hc_status_block_data_e1x) /
9836                      sizeof(uint32_t));
9837     }
9838 
9839     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9840 
9841     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9842              0, CSTORM_STATUS_BLOCK_SIZE);
9843     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9844              0, CSTORM_SYNC_BLOCK_SIZE);
9845 }
9846 
9847 static void
9848 bxe_wr_sp_sb_data(struct bxe_softc               *sc,
9849                   struct hc_sp_status_block_data *sp_sb_data)
9850 {
9851     int i;
9852 
9853     for (i = 0;
9854          i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9855          i++) {
9856         REG_WR(sc,
9857                (BAR_CSTRORM_INTMEM +
9858                 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9859                 (i * sizeof(uint32_t))),
9860                *((uint32_t *)sp_sb_data + i));
9861     }
9862 }
9863 
9864 static void
9865 bxe_zero_sp_sb(struct bxe_softc *sc)
9866 {
9867     struct hc_sp_status_block_data sp_sb_data;
9868 
9869     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9870 
9871     sp_sb_data.state           = SB_DISABLED;
9872     sp_sb_data.p_func.vf_valid = FALSE;
9873 
9874     bxe_wr_sp_sb_data(sc, &sp_sb_data);
9875 
9876     bxe_fill(sc,
9877              (BAR_CSTRORM_INTMEM +
9878               CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9879               0, CSTORM_SP_STATUS_BLOCK_SIZE);
9880     bxe_fill(sc,
9881              (BAR_CSTRORM_INTMEM +
9882               CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9883               0, CSTORM_SP_SYNC_BLOCK_SIZE);
9884 }
9885 
9886 static void
9887 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9888                              int                       igu_sb_id,
9889                              int                       igu_seg_id)
9890 {
9891     hc_sm->igu_sb_id      = igu_sb_id;
9892     hc_sm->igu_seg_id     = igu_seg_id;
9893     hc_sm->timer_value    = 0xFF;
9894     hc_sm->time_to_expire = 0xFFFFFFFF;
9895 }
9896 
9897 static void
9898 bxe_map_sb_state_machines(struct hc_index_data *index_data)
9899 {
9900     /* zero out state machine indices */
9901 
9902     /* rx indices */
9903     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9904 
9905     /* tx indices */
9906     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags      &= ~HC_INDEX_DATA_SM_ID;
9907     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9908     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9909     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9910 
9911     /* map indices */
9912 
9913     /* rx indices */
9914     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9915         (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9916 
9917     /* tx indices */
9918     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9919         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9920     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9921         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9922     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9923         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9924     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9925         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9926 }
9927 
9928 static void
9929 bxe_init_sb(struct bxe_softc *sc,
9930             bus_addr_t       busaddr,
9931             int              vfid,
9932             uint8_t          vf_valid,
9933             int              fw_sb_id,
9934             int              igu_sb_id)
9935 {
9936     struct hc_status_block_data_e2  sb_data_e2;
9937     struct hc_status_block_data_e1x sb_data_e1x;
9938     struct hc_status_block_sm       *hc_sm_p;
9939     uint32_t *sb_data_p;
9940     int igu_seg_id;
9941     int data_size;
9942 
9943     if (CHIP_INT_MODE_IS_BC(sc)) {
9944         igu_seg_id = HC_SEG_ACCESS_NORM;
9945     } else {
9946         igu_seg_id = IGU_SEG_ACCESS_NORM;
9947     }
9948 
9949     bxe_zero_fp_sb(sc, fw_sb_id);
9950 
9951     if (!CHIP_IS_E1x(sc)) {
9952         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9953         sb_data_e2.common.state = SB_ENABLED;
9954         sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9955         sb_data_e2.common.p_func.vf_id = vfid;
9956         sb_data_e2.common.p_func.vf_valid = vf_valid;
9957         sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9958         sb_data_e2.common.same_igu_sb_1b = TRUE;
9959         sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9960         sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9961         hc_sm_p = sb_data_e2.common.state_machine;
9962         sb_data_p = (uint32_t *)&sb_data_e2;
9963         data_size = (sizeof(struct hc_status_block_data_e2) /
9964                      sizeof(uint32_t));
9965         bxe_map_sb_state_machines(sb_data_e2.index_data);
9966     } else {
9967         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9968         sb_data_e1x.common.state = SB_ENABLED;
9969         sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9970         sb_data_e1x.common.p_func.vf_id = 0xff;
9971         sb_data_e1x.common.p_func.vf_valid = FALSE;
9972         sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9973         sb_data_e1x.common.same_igu_sb_1b = TRUE;
9974         sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9975         sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9976         hc_sm_p = sb_data_e1x.common.state_machine;
9977         sb_data_p = (uint32_t *)&sb_data_e1x;
9978         data_size = (sizeof(struct hc_status_block_data_e1x) /
9979                      sizeof(uint32_t));
9980         bxe_map_sb_state_machines(sb_data_e1x.index_data);
9981     }
9982 
9983     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9984     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9985 
9986     BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9987 
9988     /* write indices to HW - PCI guarantees endianity of regpairs */
9989     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9990 }
9991 
9992 static inline uint8_t
9993 bxe_fp_qzone_id(struct bxe_fastpath *fp)
9994 {
9995     if (CHIP_IS_E1x(fp->sc)) {
9996         return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9997     } else {
9998         return (fp->cl_id);
9999     }
10000 }
10001 
10002 static inline uint32_t
10003 bxe_rx_ustorm_prods_offset(struct bxe_softc    *sc,
10004                            struct bxe_fastpath *fp)
10005 {
10006     uint32_t offset = BAR_USTRORM_INTMEM;
10007 
10008 #if 0
10009     if (IS_VF(sc)) {
10010         return (PXP_VF_ADDR_USDM_QUEUES_START +
10011                 (sc->acquire_resp.resc.hw_qid[fp->index] *
10012                  sizeof(struct ustorm_queue_zone_data)));
10013     } else
10014 #endif
10015     if (!CHIP_IS_E1x(sc)) {
10016         offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
10017     } else {
10018         offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
10019     }
10020 
10021     return (offset);
10022 }
10023 
10024 static void
10025 bxe_init_eth_fp(struct bxe_softc *sc,
10026                 int              idx)
10027 {
10028     struct bxe_fastpath *fp = &sc->fp[idx];
10029     uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
10030     unsigned long q_type = 0;
10031     int cos;
10032 
10033     fp->sc    = sc;
10034     fp->index = idx;
10035 
10036     snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
10037              "bxe%d_fp%d_tx_lock", sc->unit, idx);
10038     mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
10039 
10040     snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
10041              "bxe%d_fp%d_rx_lock", sc->unit, idx);
10042     mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
10043 
10044     fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
10045     fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
10046 
10047     fp->cl_id = (CHIP_IS_E1x(sc)) ?
10048                     (SC_L_ID(sc) + idx) :
10049                     /* want client ID same as IGU SB ID for non-E1 */
10050                     fp->igu_sb_id;
10051     fp->cl_qzone_id = bxe_fp_qzone_id(fp);
10052 
10053     /* setup sb indices */
10054     if (!CHIP_IS_E1x(sc)) {
10055         fp->sb_index_values  = fp->status_block.e2_sb->sb.index_values;
10056         fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
10057     } else {
10058         fp->sb_index_values  = fp->status_block.e1x_sb->sb.index_values;
10059         fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
10060     }
10061 
10062     /* init shortcut */
10063     fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
10064 
10065     fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
10066 
10067     /*
10068      * XXX If multiple CoS is ever supported then each fastpath structure
10069      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
10070      */
10071     for (cos = 0; cos < sc->max_cos; cos++) {
10072         cids[cos] = idx;
10073     }
10074     fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
10075 
10076     /* nothing more for a VF to do */
10077     if (IS_VF(sc)) {
10078         return;
10079     }
10080 
10081     bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
10082                 fp->fw_sb_id, fp->igu_sb_id);
10083 
10084     bxe_update_fp_sb_idx(fp);
10085 
10086     /* Configure Queue State object */
10087     bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
10088     bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
10089 
10090     ecore_init_queue_obj(sc,
10091                          &sc->sp_objs[idx].q_obj,
10092                          fp->cl_id,
10093                          cids,
10094                          sc->max_cos,
10095                          SC_FUNC(sc),
10096                          BXE_SP(sc, q_rdata),
10097                          BXE_SP_MAPPING(sc, q_rdata),
10098                          q_type);
10099 
10100     /* configure classification DBs */
10101     ecore_init_mac_obj(sc,
10102                        &sc->sp_objs[idx].mac_obj,
10103                        fp->cl_id,
10104                        idx,
10105                        SC_FUNC(sc),
10106                        BXE_SP(sc, mac_rdata),
10107                        BXE_SP_MAPPING(sc, mac_rdata),
10108                        ECORE_FILTER_MAC_PENDING,
10109                        &sc->sp_state,
10110                        ECORE_OBJ_TYPE_RX_TX,
10111                        &sc->macs_pool);
10112 
10113     BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
10114           idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
10115 }
10116 
10117 static inline void
10118 bxe_update_rx_prod(struct bxe_softc    *sc,
10119                    struct bxe_fastpath *fp,
10120                    uint16_t            rx_bd_prod,
10121                    uint16_t            rx_cq_prod,
10122                    uint16_t            rx_sge_prod)
10123 {
10124     struct ustorm_eth_rx_producers rx_prods = { 0 };
10125     uint32_t i;
10126 
10127     /* update producers */
10128     rx_prods.bd_prod  = rx_bd_prod;
10129     rx_prods.cqe_prod = rx_cq_prod;
10130     rx_prods.sge_prod = rx_sge_prod;
10131 
10132     /*
10133      * Make sure that the BD and SGE data is updated before updating the
10134      * producers since FW might read the BD/SGE right after the producer
10135      * is updated.
10136      * This is only applicable for weak-ordered memory model archs such
10137      * as IA-64. The following barrier is also mandatory since FW will
10138      * assumes BDs must have buffers.
10139      */
10140     wmb();
10141 
10142     for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
10143         REG_WR(sc,
10144                (fp->ustorm_rx_prods_offset + (i * 4)),
10145                ((uint32_t *)&rx_prods)[i]);
10146     }
10147 
10148     wmb(); /* keep prod updates ordered */
10149 
10150     BLOGD(sc, DBG_RX,
10151           "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
10152           fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
10153 }
10154 
10155 static void
10156 bxe_init_rx_rings(struct bxe_softc *sc)
10157 {
10158     struct bxe_fastpath *fp;
10159     int i;
10160 
10161     for (i = 0; i < sc->num_queues; i++) {
10162         fp = &sc->fp[i];
10163 
10164         fp->rx_bd_cons = 0;
10165 
10166         /*
10167          * Activate the BD ring...
10168          * Warning, this will generate an interrupt (to the TSTORM)
10169          * so this can only be done after the chip is initialized
10170          */
10171         bxe_update_rx_prod(sc, fp,
10172                            fp->rx_bd_prod,
10173                            fp->rx_cq_prod,
10174                            fp->rx_sge_prod);
10175 
10176         if (i != 0) {
10177             continue;
10178         }
10179 
10180         if (CHIP_IS_E1(sc)) {
10181             REG_WR(sc,
10182                    (BAR_USTRORM_INTMEM +
10183                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
10184                    U64_LO(fp->rcq_dma.paddr));
10185             REG_WR(sc,
10186                    (BAR_USTRORM_INTMEM +
10187                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
10188                    U64_HI(fp->rcq_dma.paddr));
10189         }
10190     }
10191 }
10192 
10193 static void
10194 bxe_init_tx_ring_one(struct bxe_fastpath *fp)
10195 {
10196     SET_FLAG(fp->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
10197     fp->tx_db.data.zero_fill1 = 0;
10198     fp->tx_db.data.prod = 0;
10199 
10200     fp->tx_pkt_prod = 0;
10201     fp->tx_pkt_cons = 0;
10202     fp->tx_bd_prod = 0;
10203     fp->tx_bd_cons = 0;
10204     fp->eth_q_stats.tx_pkts = 0;
10205 }
10206 
10207 static inline void
10208 bxe_init_tx_rings(struct bxe_softc *sc)
10209 {
10210     int i;
10211 
10212     for (i = 0; i < sc->num_queues; i++) {
10213 #if 0
10214         uint8_t cos;
10215         for (cos = 0; cos < sc->max_cos; cos++) {
10216             bxe_init_tx_ring_one(&sc->fp[i].txdata[cos]);
10217         }
10218 #else
10219         bxe_init_tx_ring_one(&sc->fp[i]);
10220 #endif
10221     }
10222 }
10223 
10224 static void
10225 bxe_init_def_sb(struct bxe_softc *sc)
10226 {
10227     struct host_sp_status_block *def_sb = sc->def_sb;
10228     bus_addr_t mapping = sc->def_sb_dma.paddr;
10229     int igu_sp_sb_index;
10230     int igu_seg_id;
10231     int port = SC_PORT(sc);
10232     int func = SC_FUNC(sc);
10233     int reg_offset, reg_offset_en5;
10234     uint64_t section;
10235     int index, sindex;
10236     struct hc_sp_status_block_data sp_sb_data;
10237 
10238     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
10239 
10240     if (CHIP_INT_MODE_IS_BC(sc)) {
10241         igu_sp_sb_index = DEF_SB_IGU_ID;
10242         igu_seg_id = HC_SEG_ACCESS_DEF;
10243     } else {
10244         igu_sp_sb_index = sc->igu_dsb_id;
10245         igu_seg_id = IGU_SEG_ACCESS_DEF;
10246     }
10247 
10248     /* attentions */
10249     section = ((uint64_t)mapping +
10250                offsetof(struct host_sp_status_block, atten_status_block));
10251     def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
10252     sc->attn_state = 0;
10253 
10254     reg_offset = (port) ?
10255                      MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
10256                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
10257     reg_offset_en5 = (port) ?
10258                          MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
10259                          MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
10260 
10261     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
10262         /* take care of sig[0]..sig[4] */
10263         for (sindex = 0; sindex < 4; sindex++) {
10264             sc->attn_group[index].sig[sindex] =
10265                 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
10266         }
10267 
10268         if (!CHIP_IS_E1x(sc)) {
10269             /*
10270              * enable5 is separate from the rest of the registers,
10271              * and the address skip is 4 and not 16 between the
10272              * different groups
10273              */
10274             sc->attn_group[index].sig[4] =
10275                 REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
10276         } else {
10277             sc->attn_group[index].sig[4] = 0;
10278         }
10279     }
10280 
10281     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10282         reg_offset = (port) ?
10283                          HC_REG_ATTN_MSG1_ADDR_L :
10284                          HC_REG_ATTN_MSG0_ADDR_L;
10285         REG_WR(sc, reg_offset, U64_LO(section));
10286         REG_WR(sc, (reg_offset + 4), U64_HI(section));
10287     } else if (!CHIP_IS_E1x(sc)) {
10288         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
10289         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
10290     }
10291 
10292     section = ((uint64_t)mapping +
10293                offsetof(struct host_sp_status_block, sp_sb));
10294 
10295     bxe_zero_sp_sb(sc);
10296 
10297     /* PCI guarantees endianity of regpair */
10298     sp_sb_data.state           = SB_ENABLED;
10299     sp_sb_data.host_sb_addr.lo = U64_LO(section);
10300     sp_sb_data.host_sb_addr.hi = U64_HI(section);
10301     sp_sb_data.igu_sb_id       = igu_sp_sb_index;
10302     sp_sb_data.igu_seg_id      = igu_seg_id;
10303     sp_sb_data.p_func.pf_id    = func;
10304     sp_sb_data.p_func.vnic_id  = SC_VN(sc);
10305     sp_sb_data.p_func.vf_id    = 0xff;
10306 
10307     bxe_wr_sp_sb_data(sc, &sp_sb_data);
10308 
10309     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
10310 }
10311 
10312 static void
10313 bxe_init_sp_ring(struct bxe_softc *sc)
10314 {
10315     atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
10316     sc->spq_prod_idx = 0;
10317     sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
10318     sc->spq_prod_bd = sc->spq;
10319     sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
10320 }
10321 
10322 static void
10323 bxe_init_eq_ring(struct bxe_softc *sc)
10324 {
10325     union event_ring_elem *elem;
10326     int i;
10327 
10328     for (i = 1; i <= NUM_EQ_PAGES; i++) {
10329         elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
10330 
10331         elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
10332                                                  BCM_PAGE_SIZE *
10333                                                  (i % NUM_EQ_PAGES)));
10334         elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
10335                                                  BCM_PAGE_SIZE *
10336                                                  (i % NUM_EQ_PAGES)));
10337     }
10338 
10339     sc->eq_cons    = 0;
10340     sc->eq_prod    = NUM_EQ_DESC;
10341     sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
10342 
10343     atomic_store_rel_long(&sc->eq_spq_left,
10344                           (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
10345                                NUM_EQ_DESC) - 1));
10346 }
10347 
10348 static void
10349 bxe_init_internal_common(struct bxe_softc *sc)
10350 {
10351     int i;
10352 
10353     if (IS_MF_SI(sc)) {
10354         /*
10355          * In switch independent mode, the TSTORM needs to accept
10356          * packets that failed classification, since approximate match
10357          * mac addresses aren't written to NIG LLH.
10358          */
10359         REG_WR8(sc,
10360                 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10361                 2);
10362     } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */
10363         REG_WR8(sc,
10364                 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10365                 0);
10366     }
10367 
10368     /*
10369      * Zero this manually as its initialization is currently missing
10370      * in the initTool.
10371      */
10372     for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
10373         REG_WR(sc,
10374                (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
10375                0);
10376     }
10377 
10378     if (!CHIP_IS_E1x(sc)) {
10379         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
10380                 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
10381     }
10382 }
10383 
10384 static void
10385 bxe_init_internal(struct bxe_softc *sc,
10386                   uint32_t         load_code)
10387 {
10388     switch (load_code) {
10389     case FW_MSG_CODE_DRV_LOAD_COMMON:
10390     case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
10391         bxe_init_internal_common(sc);
10392         /* no break */
10393 
10394     case FW_MSG_CODE_DRV_LOAD_PORT:
10395         /* nothing to do */
10396         /* no break */
10397 
10398     case FW_MSG_CODE_DRV_LOAD_FUNCTION:
10399         /* internal memory per function is initialized inside bxe_pf_init */
10400         break;
10401 
10402     default:
10403         BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
10404         break;
10405     }
10406 }
10407 
10408 static void
10409 storm_memset_func_cfg(struct bxe_softc                         *sc,
10410                       struct tstorm_eth_function_common_config *tcfg,
10411                       uint16_t                                  abs_fid)
10412 {
10413     uint32_t addr;
10414     size_t size;
10415 
10416     addr = (BAR_TSTRORM_INTMEM +
10417             TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
10418     size = sizeof(struct tstorm_eth_function_common_config);
10419     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
10420 }
10421 
10422 static void
10423 bxe_func_init(struct bxe_softc            *sc,
10424               struct bxe_func_init_params *p)
10425 {
10426     struct tstorm_eth_function_common_config tcfg = { 0 };
10427 
10428     if (CHIP_IS_E1x(sc)) {
10429         storm_memset_func_cfg(sc, &tcfg, p->func_id);
10430     }
10431 
10432     /* Enable the function in the FW */
10433     storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
10434     storm_memset_func_en(sc, p->func_id, 1);
10435 
10436     /* spq */
10437     if (p->func_flgs & FUNC_FLG_SPQ) {
10438         storm_memset_spq_addr(sc, p->spq_map, p->func_id);
10439         REG_WR(sc,
10440                (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
10441                p->spq_prod);
10442     }
10443 }
10444 
10445 /*
10446  * Calculates the sum of vn_min_rates.
10447  * It's needed for further normalizing of the min_rates.
10448  * Returns:
10449  *   sum of vn_min_rates.
10450  *     or
10451  *   0 - if all the min_rates are 0.
10452  * In the later case fainess algorithm should be deactivated.
10453  * If all min rates are not zero then those that are zeroes will be set to 1.
10454  */
10455 static void
10456 bxe_calc_vn_min(struct bxe_softc       *sc,
10457                 struct cmng_init_input *input)
10458 {
10459     uint32_t vn_cfg;
10460     uint32_t vn_min_rate;
10461     int all_zero = 1;
10462     int vn;
10463 
10464     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10465         vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10466         vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
10467                         FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
10468 
10469         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10470             /* skip hidden VNs */
10471             vn_min_rate = 0;
10472         } else if (!vn_min_rate) {
10473             /* If min rate is zero - set it to 100 */
10474             vn_min_rate = DEF_MIN_RATE;
10475         } else {
10476             all_zero = 0;
10477         }
10478 
10479         input->vnic_min_rate[vn] = vn_min_rate;
10480     }
10481 
10482     /* if ETS or all min rates are zeros - disable fairness */
10483     if (BXE_IS_ETS_ENABLED(sc)) {
10484         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10485         BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
10486     } else if (all_zero) {
10487         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10488         BLOGD(sc, DBG_LOAD,
10489               "Fariness disabled (all MIN values are zeroes)\n");
10490     } else {
10491         input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10492     }
10493 }
10494 
10495 static inline uint16_t
10496 bxe_extract_max_cfg(struct bxe_softc *sc,
10497                     uint32_t         mf_cfg)
10498 {
10499     uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
10500                         FUNC_MF_CFG_MAX_BW_SHIFT);
10501 
10502     if (!max_cfg) {
10503         BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
10504         max_cfg = 100;
10505     }
10506 
10507     return (max_cfg);
10508 }
10509 
10510 static void
10511 bxe_calc_vn_max(struct bxe_softc       *sc,
10512                 int                    vn,
10513                 struct cmng_init_input *input)
10514 {
10515     uint16_t vn_max_rate;
10516     uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10517     uint32_t max_cfg;
10518 
10519     if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10520         vn_max_rate = 0;
10521     } else {
10522         max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
10523 
10524         if (IS_MF_SI(sc)) {
10525             /* max_cfg in percents of linkspeed */
10526             vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
10527         } else { /* SD modes */
10528             /* max_cfg is absolute in 100Mb units */
10529             vn_max_rate = (max_cfg * 100);
10530         }
10531     }
10532 
10533     BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
10534 
10535     input->vnic_max_rate[vn] = vn_max_rate;
10536 }
10537 
10538 static void
10539 bxe_cmng_fns_init(struct bxe_softc *sc,
10540                   uint8_t          read_cfg,
10541                   uint8_t          cmng_type)
10542 {
10543     struct cmng_init_input input;
10544     int vn;
10545 
10546     memset(&input, 0, sizeof(struct cmng_init_input));
10547 
10548     input.port_rate = sc->link_vars.line_speed;
10549 
10550     if (cmng_type == CMNG_FNS_MINMAX) {
10551         /* read mf conf from shmem */
10552         if (read_cfg) {
10553             bxe_read_mf_cfg(sc);
10554         }
10555 
10556         /* get VN min rate and enable fairness if not 0 */
10557         bxe_calc_vn_min(sc, &input);
10558 
10559         /* get VN max rate */
10560         if (sc->port.pmf) {
10561             for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10562                 bxe_calc_vn_max(sc, vn, &input);
10563             }
10564         }
10565 
10566         /* always enable rate shaping and fairness */
10567         input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
10568 
10569         ecore_init_cmng(&input, &sc->cmng);
10570         return;
10571     }
10572 
10573     /* rate shaping and fairness are disabled */
10574     BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10575 }
10576 
10577 static int
10578 bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10579 {
10580     if (CHIP_REV_IS_SLOW(sc)) {
10581         return (CMNG_FNS_NONE);
10582     }
10583 
10584     if (IS_MF(sc)) {
10585         return (CMNG_FNS_MINMAX);
10586     }
10587 
10588     return (CMNG_FNS_NONE);
10589 }
10590 
10591 static void
10592 storm_memset_cmng(struct bxe_softc *sc,
10593                   struct cmng_init *cmng,
10594                   uint8_t          port)
10595 {
10596     int vn;
10597     int func;
10598     uint32_t addr;
10599     size_t size;
10600 
10601     addr = (BAR_XSTRORM_INTMEM +
10602             XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10603     size = sizeof(struct cmng_struct_per_port);
10604     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10605 
10606     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10607         func = func_by_vn(sc, vn);
10608 
10609         addr = (BAR_XSTRORM_INTMEM +
10610                 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10611         size = sizeof(struct rate_shaping_vars_per_vn);
10612         ecore_storm_memset_struct(sc, addr, size,
10613                                   (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10614 
10615         addr = (BAR_XSTRORM_INTMEM +
10616                 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10617         size = sizeof(struct fairness_vars_per_vn);
10618         ecore_storm_memset_struct(sc, addr, size,
10619                                   (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10620     }
10621 }
10622 
10623 static void
10624 bxe_pf_init(struct bxe_softc *sc)
10625 {
10626     struct bxe_func_init_params func_init = { 0 };
10627     struct event_ring_data eq_data = { { 0 } };
10628     uint16_t flags;
10629 
10630     if (!CHIP_IS_E1x(sc)) {
10631         /* reset IGU PF statistics: MSIX + ATTN */
10632         /* PF */
10633         REG_WR(sc,
10634                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10635                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10636                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10637                0);
10638         /* ATTN */
10639         REG_WR(sc,
10640                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10641                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10642                 (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10643                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10644                0);
10645     }
10646 
10647     /* function setup flags */
10648     flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10649 
10650     /*
10651      * This flag is relevant for E1x only.
10652      * E2 doesn't have a TPA configuration in a function level.
10653      */
10654     flags |= (sc->ifnet->if_capenable & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10655 
10656     func_init.func_flgs = flags;
10657     func_init.pf_id     = SC_FUNC(sc);
10658     func_init.func_id   = SC_FUNC(sc);
10659     func_init.spq_map   = sc->spq_dma.paddr;
10660     func_init.spq_prod  = sc->spq_prod_idx;
10661 
10662     bxe_func_init(sc, &func_init);
10663 
10664     memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10665 
10666     /*
10667      * Congestion management values depend on the link rate.
10668      * There is no active link so initial link rate is set to 10Gbps.
10669      * When the link comes up the congestion management values are
10670      * re-calculated according to the actual link rate.
10671      */
10672     sc->link_vars.line_speed = SPEED_10000;
10673     bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10674 
10675     /* Only the PMF sets the HW */
10676     if (sc->port.pmf) {
10677         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10678     }
10679 
10680     /* init Event Queue - PCI bus guarantees correct endainity */
10681     eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10682     eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10683     eq_data.producer     = sc->eq_prod;
10684     eq_data.index_id     = HC_SP_INDEX_EQ_CONS;
10685     eq_data.sb_id        = DEF_SB_ID;
10686     storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10687 }
10688 
10689 static void
10690 bxe_hc_int_enable(struct bxe_softc *sc)
10691 {
10692     int port = SC_PORT(sc);
10693     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10694     uint32_t val = REG_RD(sc, addr);
10695     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10696     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10697                            (sc->intr_count == 1)) ? TRUE : FALSE;
10698     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10699 
10700     if (msix) {
10701         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10702                  HC_CONFIG_0_REG_INT_LINE_EN_0);
10703         val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10704                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10705         if (single_msix) {
10706             val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10707         }
10708     } else if (msi) {
10709         val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10710         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10711                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10712                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10713     } else {
10714         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10715                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10716                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10717                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10718 
10719         if (!CHIP_IS_E1(sc)) {
10720             BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10721                   val, port, addr);
10722 
10723             REG_WR(sc, addr, val);
10724 
10725             val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10726         }
10727     }
10728 
10729     if (CHIP_IS_E1(sc)) {
10730         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10731     }
10732 
10733     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10734           val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10735 
10736     REG_WR(sc, addr, val);
10737 
10738     /* ensure that HC_CONFIG is written before leading/trailing edge config */
10739     mb();
10740 
10741     if (!CHIP_IS_E1(sc)) {
10742         /* init leading/trailing edge */
10743         if (IS_MF(sc)) {
10744             val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10745             if (sc->port.pmf) {
10746                 /* enable nig and gpio3 attention */
10747                 val |= 0x1100;
10748             }
10749         } else {
10750             val = 0xffff;
10751         }
10752 
10753         REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10754         REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10755     }
10756 
10757     /* make sure that interrupts are indeed enabled from here on */
10758     mb();
10759 }
10760 
10761 static void
10762 bxe_igu_int_enable(struct bxe_softc *sc)
10763 {
10764     uint32_t val;
10765     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10766     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10767                            (sc->intr_count == 1)) ? TRUE : FALSE;
10768     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10769 
10770     val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10771 
10772     if (msix) {
10773         val &= ~(IGU_PF_CONF_INT_LINE_EN |
10774                  IGU_PF_CONF_SINGLE_ISR_EN);
10775         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10776                 IGU_PF_CONF_ATTN_BIT_EN);
10777         if (single_msix) {
10778             val |= IGU_PF_CONF_SINGLE_ISR_EN;
10779         }
10780     } else if (msi) {
10781         val &= ~IGU_PF_CONF_INT_LINE_EN;
10782         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10783                 IGU_PF_CONF_ATTN_BIT_EN |
10784                 IGU_PF_CONF_SINGLE_ISR_EN);
10785     } else {
10786         val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10787         val |= (IGU_PF_CONF_INT_LINE_EN |
10788                 IGU_PF_CONF_ATTN_BIT_EN |
10789                 IGU_PF_CONF_SINGLE_ISR_EN);
10790     }
10791 
10792     /* clean previous status - need to configure igu prior to ack*/
10793     if ((!msix) || single_msix) {
10794         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10795         bxe_ack_int(sc);
10796     }
10797 
10798     val |= IGU_PF_CONF_FUNC_EN;
10799 
10800     BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10801           val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10802 
10803     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10804 
10805     mb();
10806 
10807     /* init leading/trailing edge */
10808     if (IS_MF(sc)) {
10809         val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10810         if (sc->port.pmf) {
10811             /* enable nig and gpio3 attention */
10812             val |= 0x1100;
10813         }
10814     } else {
10815         val = 0xffff;
10816     }
10817 
10818     REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10819     REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10820 
10821     /* make sure that interrupts are indeed enabled from here on */
10822     mb();
10823 }
10824 
10825 static void
10826 bxe_int_enable(struct bxe_softc *sc)
10827 {
10828     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10829         bxe_hc_int_enable(sc);
10830     } else {
10831         bxe_igu_int_enable(sc);
10832     }
10833 }
10834 
10835 static void
10836 bxe_hc_int_disable(struct bxe_softc *sc)
10837 {
10838     int port = SC_PORT(sc);
10839     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10840     uint32_t val = REG_RD(sc, addr);
10841 
10842     /*
10843      * In E1 we must use only PCI configuration space to disable MSI/MSIX
10844      * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10845      * block
10846      */
10847     if (CHIP_IS_E1(sc)) {
10848         /*
10849          * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10850          * to prevent from HC sending interrupts after we exit the function
10851          */
10852         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10853 
10854         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10855                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10856                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10857     } else {
10858         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10859                  HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10860                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10861                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10862     }
10863 
10864     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10865 
10866     /* flush all outstanding writes */
10867     mb();
10868 
10869     REG_WR(sc, addr, val);
10870     if (REG_RD(sc, addr) != val) {
10871         BLOGE(sc, "proper val not read from HC IGU!\n");
10872     }
10873 }
10874 
10875 static void
10876 bxe_igu_int_disable(struct bxe_softc *sc)
10877 {
10878     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10879 
10880     val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10881              IGU_PF_CONF_INT_LINE_EN |
10882              IGU_PF_CONF_ATTN_BIT_EN);
10883 
10884     BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10885 
10886     /* flush all outstanding writes */
10887     mb();
10888 
10889     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10890     if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10891         BLOGE(sc, "proper val not read from IGU!\n");
10892     }
10893 }
10894 
10895 static void
10896 bxe_int_disable(struct bxe_softc *sc)
10897 {
10898     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10899         bxe_hc_int_disable(sc);
10900     } else {
10901         bxe_igu_int_disable(sc);
10902     }
10903 }
10904 
10905 static void
10906 bxe_nic_init(struct bxe_softc *sc,
10907              int              load_code)
10908 {
10909     int i;
10910 
10911     for (i = 0; i < sc->num_queues; i++) {
10912         bxe_init_eth_fp(sc, i);
10913     }
10914 
10915     rmb(); /* ensure status block indices were read */
10916 
10917     bxe_init_rx_rings(sc);
10918     bxe_init_tx_rings(sc);
10919 
10920     if (IS_VF(sc)) {
10921         return;
10922     }
10923 
10924     /* initialize MOD_ABS interrupts */
10925     elink_init_mod_abs_int(sc, &sc->link_vars,
10926                            sc->devinfo.chip_id,
10927                            sc->devinfo.shmem_base,
10928                            sc->devinfo.shmem2_base,
10929                            SC_PORT(sc));
10930 
10931     bxe_init_def_sb(sc);
10932     bxe_update_dsb_idx(sc);
10933     bxe_init_sp_ring(sc);
10934     bxe_init_eq_ring(sc);
10935     bxe_init_internal(sc, load_code);
10936     bxe_pf_init(sc);
10937     bxe_stats_init(sc);
10938 
10939     /* flush all before enabling interrupts */
10940     mb();
10941 
10942     bxe_int_enable(sc);
10943 
10944     /* check for SPIO5 */
10945     bxe_attn_int_deasserted0(sc,
10946                              REG_RD(sc,
10947                                     (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10948                                      SC_PORT(sc)*4)) &
10949                              AEU_INPUTS_ATTN_BITS_SPIO5);
10950 }
10951 
10952 static inline void
10953 bxe_init_objs(struct bxe_softc *sc)
10954 {
10955     /* mcast rules must be added to tx if tx switching is enabled */
10956     ecore_obj_type o_type =
10957         (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10958                                          ECORE_OBJ_TYPE_RX;
10959 
10960     /* RX_MODE controlling object */
10961     ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10962 
10963     /* multicast configuration controlling object */
10964     ecore_init_mcast_obj(sc,
10965                          &sc->mcast_obj,
10966                          sc->fp[0].cl_id,
10967                          sc->fp[0].index,
10968                          SC_FUNC(sc),
10969                          SC_FUNC(sc),
10970                          BXE_SP(sc, mcast_rdata),
10971                          BXE_SP_MAPPING(sc, mcast_rdata),
10972                          ECORE_FILTER_MCAST_PENDING,
10973                          &sc->sp_state,
10974                          o_type);
10975 
10976     /* Setup CAM credit pools */
10977     ecore_init_mac_credit_pool(sc,
10978                                &sc->macs_pool,
10979                                SC_FUNC(sc),
10980                                CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10981                                                  VNICS_PER_PATH(sc));
10982 
10983     ecore_init_vlan_credit_pool(sc,
10984                                 &sc->vlans_pool,
10985                                 SC_ABS_FUNC(sc) >> 1,
10986                                 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10987                                                   VNICS_PER_PATH(sc));
10988 
10989     /* RSS configuration object */
10990     ecore_init_rss_config_obj(sc,
10991                               &sc->rss_conf_obj,
10992                               sc->fp[0].cl_id,
10993                               sc->fp[0].index,
10994                               SC_FUNC(sc),
10995                               SC_FUNC(sc),
10996                               BXE_SP(sc, rss_rdata),
10997                               BXE_SP_MAPPING(sc, rss_rdata),
10998                               ECORE_FILTER_RSS_CONF_PENDING,
10999                               &sc->sp_state, ECORE_OBJ_TYPE_RX);
11000 }
11001 
11002 /*
11003  * Initialize the function. This must be called before sending CLIENT_SETUP
11004  * for the first client.
11005  */
11006 static inline int
11007 bxe_func_start(struct bxe_softc *sc)
11008 {
11009     struct ecore_func_state_params func_params = { NULL };
11010     struct ecore_func_start_params *start_params = &func_params.params.start;
11011 
11012     /* Prepare parameters for function state transitions */
11013     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
11014 
11015     func_params.f_obj = &sc->func_obj;
11016     func_params.cmd = ECORE_F_CMD_START;
11017 
11018     /* Function parameters */
11019     start_params->mf_mode     = sc->devinfo.mf_info.mf_mode;
11020     start_params->sd_vlan_tag = OVLAN(sc);
11021 
11022     if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
11023         start_params->network_cos_mode = STATIC_COS;
11024     } else { /* CHIP_IS_E1X */
11025         start_params->network_cos_mode = FW_WRR;
11026     }
11027 
11028     start_params->gre_tunnel_mode = 0;
11029     start_params->gre_tunnel_rss  = 0;
11030 
11031     return (ecore_func_state_change(sc, &func_params));
11032 }
11033 
11034 static int
11035 bxe_set_power_state(struct bxe_softc *sc,
11036                     uint8_t          state)
11037 {
11038     uint16_t pmcsr;
11039 
11040     /* If there is no power capability, silently succeed */
11041     if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
11042         BLOGW(sc, "No power capability\n");
11043         return (0);
11044     }
11045 
11046     pmcsr = pci_read_config(sc->dev,
11047                             (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11048                             2);
11049 
11050     switch (state) {
11051     case PCI_PM_D0:
11052         pci_write_config(sc->dev,
11053                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11054                          ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
11055 
11056         if (pmcsr & PCIM_PSTAT_DMASK) {
11057             /* delay required during transition out of D3hot */
11058             DELAY(20000);
11059         }
11060 
11061         break;
11062 
11063     case PCI_PM_D3hot:
11064         /* XXX if there are other clients above don't shut down the power */
11065 
11066         /* don't shut down the power for emulation and FPGA */
11067         if (CHIP_REV_IS_SLOW(sc)) {
11068             return (0);
11069         }
11070 
11071         pmcsr &= ~PCIM_PSTAT_DMASK;
11072         pmcsr |= PCIM_PSTAT_D3;
11073 
11074         if (sc->wol) {
11075             pmcsr |= PCIM_PSTAT_PMEENABLE;
11076         }
11077 
11078         pci_write_config(sc->dev,
11079                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11080                          pmcsr, 4);
11081 
11082         /*
11083          * No more memory access after this point until device is brought back
11084          * to D0 state.
11085          */
11086         break;
11087 
11088     default:
11089         BLOGE(sc, "Can't support PCI power state = %d\n", state);
11090         return (-1);
11091     }
11092 
11093     return (0);
11094 }
11095 
11096 
11097 /* return true if succeeded to acquire the lock */
11098 static uint8_t
11099 bxe_trylock_hw_lock(struct bxe_softc *sc,
11100                     uint32_t         resource)
11101 {
11102     uint32_t lock_status;
11103     uint32_t resource_bit = (1 << resource);
11104     int func = SC_FUNC(sc);
11105     uint32_t hw_lock_control_reg;
11106 
11107     BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
11108 
11109     /* Validating that the resource is within range */
11110     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
11111         BLOGD(sc, DBG_LOAD,
11112               "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
11113               resource, HW_LOCK_MAX_RESOURCE_VALUE);
11114         return (FALSE);
11115     }
11116 
11117     if (func <= 5) {
11118         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
11119     } else {
11120         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
11121     }
11122 
11123     /* try to acquire the lock */
11124     REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
11125     lock_status = REG_RD(sc, hw_lock_control_reg);
11126     if (lock_status & resource_bit) {
11127         return (TRUE);
11128     }
11129 
11130     BLOGE(sc, "Failed to get a resource lock 0x%x\n", resource);
11131 
11132     return (FALSE);
11133 }
11134 
11135 /*
11136  * Get the recovery leader resource id according to the engine this function
11137  * belongs to. Currently only only 2 engines is supported.
11138  */
11139 static int
11140 bxe_get_leader_lock_resource(struct bxe_softc *sc)
11141 {
11142     if (SC_PATH(sc)) {
11143         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
11144     } else {
11145         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
11146     }
11147 }
11148 
11149 /* try to acquire a leader lock for current engine */
11150 static uint8_t
11151 bxe_trylock_leader_lock(struct bxe_softc *sc)
11152 {
11153     return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11154 }
11155 
11156 static int
11157 bxe_release_leader_lock(struct bxe_softc *sc)
11158 {
11159     return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11160 }
11161 
11162 /* close gates #2, #3 and #4 */
11163 static void
11164 bxe_set_234_gates(struct bxe_softc *sc,
11165                   uint8_t          close)
11166 {
11167     uint32_t val;
11168 
11169     /* gates #2 and #4a are closed/opened for "not E1" only */
11170     if (!CHIP_IS_E1(sc)) {
11171         /* #4 */
11172         REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
11173         /* #2 */
11174         REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
11175     }
11176 
11177     /* #3 */
11178     if (CHIP_IS_E1x(sc)) {
11179         /* prevent interrupts from HC on both ports */
11180         val = REG_RD(sc, HC_REG_CONFIG_1);
11181         REG_WR(sc, HC_REG_CONFIG_1,
11182                (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
11183                (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
11184 
11185         val = REG_RD(sc, HC_REG_CONFIG_0);
11186         REG_WR(sc, HC_REG_CONFIG_0,
11187                (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
11188                (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
11189     } else {
11190         /* Prevent incomming interrupts in IGU */
11191         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
11192 
11193         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
11194                (!close) ?
11195                (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
11196                (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
11197     }
11198 
11199     BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
11200           close ? "closing" : "opening");
11201 
11202     wmb();
11203 }
11204 
11205 /* poll for pending writes bit, it should get cleared in no more than 1s */
11206 static int
11207 bxe_er_poll_igu_vq(struct bxe_softc *sc)
11208 {
11209     uint32_t cnt = 1000;
11210     uint32_t pend_bits = 0;
11211 
11212     do {
11213         pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
11214 
11215         if (pend_bits == 0) {
11216             break;
11217         }
11218 
11219         DELAY(1000);
11220     } while (--cnt > 0);
11221 
11222     if (cnt == 0) {
11223         BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
11224         return (-1);
11225     }
11226 
11227     return (0);
11228 }
11229 
11230 #define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
11231 
11232 static void
11233 bxe_clp_reset_prep(struct bxe_softc *sc,
11234                    uint32_t         *magic_val)
11235 {
11236     /* Do some magic... */
11237     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11238     *magic_val = val & SHARED_MF_CLP_MAGIC;
11239     MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
11240 }
11241 
11242 /* restore the value of the 'magic' bit */
11243 static void
11244 bxe_clp_reset_done(struct bxe_softc *sc,
11245                    uint32_t         magic_val)
11246 {
11247     /* Restore the 'magic' bit value... */
11248     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11249     MFCFG_WR(sc, shared_mf_config.clp_mb,
11250               (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
11251 }
11252 
11253 /* prepare for MCP reset, takes care of CLP configurations */
11254 static void
11255 bxe_reset_mcp_prep(struct bxe_softc *sc,
11256                    uint32_t         *magic_val)
11257 {
11258     uint32_t shmem;
11259     uint32_t validity_offset;
11260 
11261     /* set `magic' bit in order to save MF config */
11262     if (!CHIP_IS_E1(sc)) {
11263         bxe_clp_reset_prep(sc, magic_val);
11264     }
11265 
11266     /* get shmem offset */
11267     shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11268     validity_offset =
11269         offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
11270 
11271     /* Clear validity map flags */
11272     if (shmem > 0) {
11273         REG_WR(sc, shmem + validity_offset, 0);
11274     }
11275 }
11276 
11277 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
11278 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
11279 
11280 static void
11281 bxe_mcp_wait_one(struct bxe_softc *sc)
11282 {
11283     /* special handling for emulation and FPGA (10 times longer) */
11284     if (CHIP_REV_IS_SLOW(sc)) {
11285         DELAY((MCP_ONE_TIMEOUT*10) * 1000);
11286     } else {
11287         DELAY((MCP_ONE_TIMEOUT) * 1000);
11288     }
11289 }
11290 
11291 /* initialize shmem_base and waits for validity signature to appear */
11292 static int
11293 bxe_init_shmem(struct bxe_softc *sc)
11294 {
11295     int cnt = 0;
11296     uint32_t val = 0;
11297 
11298     do {
11299         sc->devinfo.shmem_base     =
11300         sc->link_params.shmem_base =
11301             REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11302 
11303         if (sc->devinfo.shmem_base) {
11304             val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
11305             if (val & SHR_MEM_VALIDITY_MB)
11306                 return (0);
11307         }
11308 
11309         bxe_mcp_wait_one(sc);
11310 
11311     } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
11312 
11313     BLOGE(sc, "BAD MCP validity signature\n");
11314 
11315     return (-1);
11316 }
11317 
11318 static int
11319 bxe_reset_mcp_comp(struct bxe_softc *sc,
11320                    uint32_t         magic_val)
11321 {
11322     int rc = bxe_init_shmem(sc);
11323 
11324     /* Restore the `magic' bit value */
11325     if (!CHIP_IS_E1(sc)) {
11326         bxe_clp_reset_done(sc, magic_val);
11327     }
11328 
11329     return (rc);
11330 }
11331 
11332 static void
11333 bxe_pxp_prep(struct bxe_softc *sc)
11334 {
11335     if (!CHIP_IS_E1(sc)) {
11336         REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
11337         REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
11338         wmb();
11339     }
11340 }
11341 
11342 /*
11343  * Reset the whole chip except for:
11344  *      - PCIE core
11345  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
11346  *      - IGU
11347  *      - MISC (including AEU)
11348  *      - GRC
11349  *      - RBCN, RBCP
11350  */
11351 static void
11352 bxe_process_kill_chip_reset(struct bxe_softc *sc,
11353                             uint8_t          global)
11354 {
11355     uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
11356     uint32_t global_bits2, stay_reset2;
11357 
11358     /*
11359      * Bits that have to be set in reset_mask2 if we want to reset 'global'
11360      * (per chip) blocks.
11361      */
11362     global_bits2 =
11363         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
11364         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
11365 
11366     /*
11367      * Don't reset the following blocks.
11368      * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
11369      *            reset, as in 4 port device they might still be owned
11370      *            by the MCP (there is only one leader per path).
11371      */
11372     not_reset_mask1 =
11373         MISC_REGISTERS_RESET_REG_1_RST_HC |
11374         MISC_REGISTERS_RESET_REG_1_RST_PXPV |
11375         MISC_REGISTERS_RESET_REG_1_RST_PXP;
11376 
11377     not_reset_mask2 =
11378         MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
11379         MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
11380         MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
11381         MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
11382         MISC_REGISTERS_RESET_REG_2_RST_RBCN |
11383         MISC_REGISTERS_RESET_REG_2_RST_GRC  |
11384         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
11385         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
11386         MISC_REGISTERS_RESET_REG_2_RST_ATC |
11387         MISC_REGISTERS_RESET_REG_2_PGLC |
11388         MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
11389         MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
11390         MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
11391         MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
11392         MISC_REGISTERS_RESET_REG_2_UMAC0 |
11393         MISC_REGISTERS_RESET_REG_2_UMAC1;
11394 
11395     /*
11396      * Keep the following blocks in reset:
11397      *  - all xxMACs are handled by the elink code.
11398      */
11399     stay_reset2 =
11400         MISC_REGISTERS_RESET_REG_2_XMAC |
11401         MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
11402 
11403     /* Full reset masks according to the chip */
11404     reset_mask1 = 0xffffffff;
11405 
11406     if (CHIP_IS_E1(sc))
11407         reset_mask2 = 0xffff;
11408     else if (CHIP_IS_E1H(sc))
11409         reset_mask2 = 0x1ffff;
11410     else if (CHIP_IS_E2(sc))
11411         reset_mask2 = 0xfffff;
11412     else /* CHIP_IS_E3 */
11413         reset_mask2 = 0x3ffffff;
11414 
11415     /* Don't reset global blocks unless we need to */
11416     if (!global)
11417         reset_mask2 &= ~global_bits2;
11418 
11419     /*
11420      * In case of attention in the QM, we need to reset PXP
11421      * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
11422      * because otherwise QM reset would release 'close the gates' shortly
11423      * before resetting the PXP, then the PSWRQ would send a write
11424      * request to PGLUE. Then when PXP is reset, PGLUE would try to
11425      * read the payload data from PSWWR, but PSWWR would not
11426      * respond. The write queue in PGLUE would stuck, dmae commands
11427      * would not return. Therefore it's important to reset the second
11428      * reset register (containing the
11429      * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
11430      * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
11431      * bit).
11432      */
11433     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
11434            reset_mask2 & (~not_reset_mask2));
11435 
11436     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
11437            reset_mask1 & (~not_reset_mask1));
11438 
11439     mb();
11440     wmb();
11441 
11442     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
11443            reset_mask2 & (~stay_reset2));
11444 
11445     mb();
11446     wmb();
11447 
11448     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
11449     wmb();
11450 }
11451 
11452 static int
11453 bxe_process_kill(struct bxe_softc *sc,
11454                  uint8_t          global)
11455 {
11456     int cnt = 1000;
11457     uint32_t val = 0;
11458     uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
11459     uint32_t tags_63_32 = 0;
11460 
11461     /* Empty the Tetris buffer, wait for 1s */
11462     do {
11463         sr_cnt  = REG_RD(sc, PXP2_REG_RD_SR_CNT);
11464         blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
11465         port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
11466         port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
11467         pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
11468         if (CHIP_IS_E3(sc)) {
11469             tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
11470         }
11471 
11472         if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
11473             ((port_is_idle_0 & 0x1) == 0x1) &&
11474             ((port_is_idle_1 & 0x1) == 0x1) &&
11475             (pgl_exp_rom2 == 0xffffffff) &&
11476             (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
11477             break;
11478         DELAY(1000);
11479     } while (cnt-- > 0);
11480 
11481     if (cnt <= 0) {
11482         BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
11483                   "are still outstanding read requests after 1s! "
11484                   "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
11485                   "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
11486               sr_cnt, blk_cnt, port_is_idle_0,
11487               port_is_idle_1, pgl_exp_rom2);
11488         return (-1);
11489     }
11490 
11491     mb();
11492 
11493     /* Close gates #2, #3 and #4 */
11494     bxe_set_234_gates(sc, TRUE);
11495 
11496     /* Poll for IGU VQs for 57712 and newer chips */
11497     if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
11498         return (-1);
11499     }
11500 
11501     /* XXX indicate that "process kill" is in progress to MCP */
11502 
11503     /* clear "unprepared" bit */
11504     REG_WR(sc, MISC_REG_UNPREPARED, 0);
11505     mb();
11506 
11507     /* Make sure all is written to the chip before the reset */
11508     wmb();
11509 
11510     /*
11511      * Wait for 1ms to empty GLUE and PCI-E core queues,
11512      * PSWHST, GRC and PSWRD Tetris buffer.
11513      */
11514     DELAY(1000);
11515 
11516     /* Prepare to chip reset: */
11517     /* MCP */
11518     if (global) {
11519         bxe_reset_mcp_prep(sc, &val);
11520     }
11521 
11522     /* PXP */
11523     bxe_pxp_prep(sc);
11524     mb();
11525 
11526     /* reset the chip */
11527     bxe_process_kill_chip_reset(sc, global);
11528     mb();
11529 
11530     /* Recover after reset: */
11531     /* MCP */
11532     if (global && bxe_reset_mcp_comp(sc, val)) {
11533         return (-1);
11534     }
11535 
11536     /* XXX add resetting the NO_MCP mode DB here */
11537 
11538     /* Open the gates #2, #3 and #4 */
11539     bxe_set_234_gates(sc, FALSE);
11540 
11541     /* XXX
11542      * IGU/AEU preparation bring back the AEU/IGU to a reset state
11543      * re-enable attentions
11544      */
11545 
11546     return (0);
11547 }
11548 
11549 static int
11550 bxe_leader_reset(struct bxe_softc *sc)
11551 {
11552     int rc = 0;
11553     uint8_t global = bxe_reset_is_global(sc);
11554     uint32_t load_code;
11555 
11556     /*
11557      * If not going to reset MCP, load "fake" driver to reset HW while
11558      * driver is owner of the HW.
11559      */
11560     if (!global && !BXE_NOMCP(sc)) {
11561         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11562                                    DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11563         if (!load_code) {
11564             BLOGE(sc, "MCP response failure, aborting\n");
11565             rc = -1;
11566             goto exit_leader_reset;
11567         }
11568 
11569         if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11570             (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11571             BLOGE(sc, "MCP unexpected response, aborting\n");
11572             rc = -1;
11573             goto exit_leader_reset2;
11574         }
11575 
11576         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11577         if (!load_code) {
11578             BLOGE(sc, "MCP response failure, aborting\n");
11579             rc = -1;
11580             goto exit_leader_reset2;
11581         }
11582     }
11583 
11584     /* try to recover after the failure */
11585     if (bxe_process_kill(sc, global)) {
11586         BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11587         rc = -1;
11588         goto exit_leader_reset2;
11589     }
11590 
11591     /*
11592      * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11593      * state.
11594      */
11595     bxe_set_reset_done(sc);
11596     if (global) {
11597         bxe_clear_reset_global(sc);
11598     }
11599 
11600 exit_leader_reset2:
11601 
11602     /* unload "fake driver" if it was loaded */
11603     if (!global && !BXE_NOMCP(sc)) {
11604         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11605         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11606     }
11607 
11608 exit_leader_reset:
11609 
11610     sc->is_leader = 0;
11611     bxe_release_leader_lock(sc);
11612 
11613     mb();
11614     return (rc);
11615 }
11616 
11617 /*
11618  * prepare INIT transition, parameters configured:
11619  *   - HC configuration
11620  *   - Queue's CDU context
11621  */
11622 static void
11623 bxe_pf_q_prep_init(struct bxe_softc               *sc,
11624                    struct bxe_fastpath            *fp,
11625                    struct ecore_queue_init_params *init_params)
11626 {
11627     uint8_t cos;
11628     int cxt_index, cxt_offset;
11629 
11630     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11631     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11632 
11633     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11634     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11635 
11636     /* HC rate */
11637     init_params->rx.hc_rate =
11638         sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11639     init_params->tx.hc_rate =
11640         sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11641 
11642     /* FW SB ID */
11643     init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11644 
11645     /* CQ index among the SB indices */
11646     init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11647     init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11648 
11649     /* set maximum number of COSs supported by this queue */
11650     init_params->max_cos = sc->max_cos;
11651 
11652     BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11653           fp->index, init_params->max_cos);
11654 
11655     /* set the context pointers queue object */
11656     for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11657         /* XXX change index/cid here if ever support multiple tx CoS */
11658         /* fp->txdata[cos]->cid */
11659         cxt_index = fp->index / ILT_PAGE_CIDS;
11660         cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11661         init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11662     }
11663 }
11664 
11665 /* set flags that are common for the Tx-only and not normal connections */
11666 static unsigned long
11667 bxe_get_common_flags(struct bxe_softc    *sc,
11668                      struct bxe_fastpath *fp,
11669                      uint8_t             zero_stats)
11670 {
11671     unsigned long flags = 0;
11672 
11673     /* PF driver will always initialize the Queue to an ACTIVE state */
11674     bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11675 
11676     /*
11677      * tx only connections collect statistics (on the same index as the
11678      * parent connection). The statistics are zeroed when the parent
11679      * connection is initialized.
11680      */
11681 
11682     bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11683     if (zero_stats) {
11684         bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11685     }
11686 
11687     /*
11688      * tx only connections can support tx-switching, though their
11689      * CoS-ness doesn't survive the loopback
11690      */
11691     if (sc->flags & BXE_TX_SWITCHING) {
11692         bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11693     }
11694 
11695     bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11696 
11697     return (flags);
11698 }
11699 
11700 static unsigned long
11701 bxe_get_q_flags(struct bxe_softc    *sc,
11702                 struct bxe_fastpath *fp,
11703                 uint8_t             leading)
11704 {
11705     unsigned long flags = 0;
11706 
11707     if (IS_MF_SD(sc)) {
11708         bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11709     }
11710 
11711     if (sc->ifnet->if_capenable & IFCAP_LRO) {
11712         bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11713         bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11714 #if 0
11715         if (fp->mode == TPA_MODE_GRO)
11716             __set_bit(ECORE_Q_FLG_TPA_GRO, &flags);
11717 #endif
11718     }
11719 
11720     if (leading) {
11721         bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11722         bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11723     }
11724 
11725     bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11726 
11727 #if 0
11728     /* configure silent vlan removal */
11729     if (IS_MF_AFEX(sc)) {
11730         bxe_set_bit(ECORE_Q_FLG_SILENT_VLAN_REM, &flags);
11731     }
11732 #endif
11733 
11734     /* merge with common flags */
11735     return (flags | bxe_get_common_flags(sc, fp, TRUE));
11736 }
11737 
11738 static void
11739 bxe_pf_q_prep_general(struct bxe_softc                  *sc,
11740                       struct bxe_fastpath               *fp,
11741                       struct ecore_general_setup_params *gen_init,
11742                       uint8_t                           cos)
11743 {
11744     gen_init->stat_id = bxe_stats_id(fp);
11745     gen_init->spcl_id = fp->cl_id;
11746     gen_init->mtu = sc->mtu;
11747     gen_init->cos = cos;
11748 }
11749 
11750 static void
11751 bxe_pf_rx_q_prep(struct bxe_softc              *sc,
11752                  struct bxe_fastpath           *fp,
11753                  struct rxq_pause_params       *pause,
11754                  struct ecore_rxq_setup_params *rxq_init)
11755 {
11756     uint8_t max_sge = 0;
11757     uint16_t sge_sz = 0;
11758     uint16_t tpa_agg_size = 0;
11759 
11760     if (sc->ifnet->if_capenable & IFCAP_LRO) {
11761         pause->sge_th_lo = SGE_TH_LO(sc);
11762         pause->sge_th_hi = SGE_TH_HI(sc);
11763 
11764         /* validate SGE ring has enough to cross high threshold */
11765         if (sc->dropless_fc &&
11766             (pause->sge_th_hi + FW_PREFETCH_CNT) >
11767             (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11768             BLOGW(sc, "sge ring threshold limit\n");
11769         }
11770 
11771         /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11772         tpa_agg_size = (2 * sc->mtu);
11773         if (tpa_agg_size < sc->max_aggregation_size) {
11774             tpa_agg_size = sc->max_aggregation_size;
11775         }
11776 
11777         max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11778         max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11779                    (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11780         sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11781     }
11782 
11783     /* pause - not for e1 */
11784     if (!CHIP_IS_E1(sc)) {
11785         pause->bd_th_lo = BD_TH_LO(sc);
11786         pause->bd_th_hi = BD_TH_HI(sc);
11787 
11788         pause->rcq_th_lo = RCQ_TH_LO(sc);
11789         pause->rcq_th_hi = RCQ_TH_HI(sc);
11790 
11791         /* validate rings have enough entries to cross high thresholds */
11792         if (sc->dropless_fc &&
11793             pause->bd_th_hi + FW_PREFETCH_CNT >
11794             sc->rx_ring_size) {
11795             BLOGW(sc, "rx bd ring threshold limit\n");
11796         }
11797 
11798         if (sc->dropless_fc &&
11799             pause->rcq_th_hi + FW_PREFETCH_CNT >
11800             RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11801             BLOGW(sc, "rcq ring threshold limit\n");
11802         }
11803 
11804         pause->pri_map = 1;
11805     }
11806 
11807     /* rxq setup */
11808     rxq_init->dscr_map   = fp->rx_dma.paddr;
11809     rxq_init->sge_map    = fp->rx_sge_dma.paddr;
11810     rxq_init->rcq_map    = fp->rcq_dma.paddr;
11811     rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11812 
11813     /*
11814      * This should be a maximum number of data bytes that may be
11815      * placed on the BD (not including paddings).
11816      */
11817     rxq_init->buf_sz = (fp->rx_buf_size -
11818                         IP_HEADER_ALIGNMENT_PADDING);
11819 
11820     rxq_init->cl_qzone_id     = fp->cl_qzone_id;
11821     rxq_init->tpa_agg_sz      = tpa_agg_size;
11822     rxq_init->sge_buf_sz      = sge_sz;
11823     rxq_init->max_sges_pkt    = max_sge;
11824     rxq_init->rss_engine_id   = SC_FUNC(sc);
11825     rxq_init->mcast_engine_id = SC_FUNC(sc);
11826 
11827     /*
11828      * Maximum number or simultaneous TPA aggregation for this Queue.
11829      * For PF Clients it should be the maximum available number.
11830      * VF driver(s) may want to define it to a smaller value.
11831      */
11832     rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11833 
11834     rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11835     rxq_init->fw_sb_id = fp->fw_sb_id;
11836 
11837     rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11838 
11839     /*
11840      * configure silent vlan removal
11841      * if multi function mode is afex, then mask default vlan
11842      */
11843     if (IS_MF_AFEX(sc)) {
11844         rxq_init->silent_removal_value =
11845             sc->devinfo.mf_info.afex_def_vlan_tag;
11846         rxq_init->silent_removal_mask = EVL_VLID_MASK;
11847     }
11848 }
11849 
11850 static void
11851 bxe_pf_tx_q_prep(struct bxe_softc              *sc,
11852                  struct bxe_fastpath           *fp,
11853                  struct ecore_txq_setup_params *txq_init,
11854                  uint8_t                       cos)
11855 {
11856     /*
11857      * XXX If multiple CoS is ever supported then each fastpath structure
11858      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11859      * fp->txdata[cos]->tx_dma.paddr;
11860      */
11861     txq_init->dscr_map     = fp->tx_dma.paddr;
11862     txq_init->sb_cq_index  = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11863     txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11864     txq_init->fw_sb_id     = fp->fw_sb_id;
11865 
11866     /*
11867      * set the TSS leading client id for TX classfication to the
11868      * leading RSS client id
11869      */
11870     txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11871 }
11872 
11873 /*
11874  * This function performs 2 steps in a queue state machine:
11875  *   1) RESET->INIT
11876  *   2) INIT->SETUP
11877  */
11878 static int
11879 bxe_setup_queue(struct bxe_softc    *sc,
11880                 struct bxe_fastpath *fp,
11881                 uint8_t             leading)
11882 {
11883     struct ecore_queue_state_params q_params = { NULL };
11884     struct ecore_queue_setup_params *setup_params =
11885                         &q_params.params.setup;
11886 #if 0
11887     struct ecore_queue_setup_tx_only_params *tx_only_params =
11888                         &q_params.params.tx_only;
11889     uint8_t tx_index;
11890 #endif
11891     int rc;
11892 
11893     BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11894 
11895     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11896 
11897     q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11898 
11899     /* we want to wait for completion in this context */
11900     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11901 
11902     /* prepare the INIT parameters */
11903     bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11904 
11905     /* Set the command */
11906     q_params.cmd = ECORE_Q_CMD_INIT;
11907 
11908     /* Change the state to INIT */
11909     rc = ecore_queue_state_change(sc, &q_params);
11910     if (rc) {
11911         BLOGE(sc, "Queue(%d) INIT failed\n", fp->index);
11912         return (rc);
11913     }
11914 
11915     BLOGD(sc, DBG_LOAD, "init complete\n");
11916 
11917     /* now move the Queue to the SETUP state */
11918     memset(setup_params, 0, sizeof(*setup_params));
11919 
11920     /* set Queue flags */
11921     setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11922 
11923     /* set general SETUP parameters */
11924     bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11925                           FIRST_TX_COS_INDEX);
11926 
11927     bxe_pf_rx_q_prep(sc, fp,
11928                      &setup_params->pause_params,
11929                      &setup_params->rxq_params);
11930 
11931     bxe_pf_tx_q_prep(sc, fp,
11932                      &setup_params->txq_params,
11933                      FIRST_TX_COS_INDEX);
11934 
11935     /* Set the command */
11936     q_params.cmd = ECORE_Q_CMD_SETUP;
11937 
11938     /* change the state to SETUP */
11939     rc = ecore_queue_state_change(sc, &q_params);
11940     if (rc) {
11941         BLOGE(sc, "Queue(%d) SETUP failed\n", fp->index);
11942         return (rc);
11943     }
11944 
11945 #if 0
11946     /* loop through the relevant tx-only indices */
11947     for (tx_index = FIRST_TX_ONLY_COS_INDEX;
11948          tx_index < sc->max_cos;
11949          tx_index++) {
11950         /* prepare and send tx-only ramrod*/
11951         rc = bxe_setup_tx_only(sc, fp, &q_params,
11952                                tx_only_params, tx_index, leading);
11953         if (rc) {
11954             BLOGE(sc, "Queue(%d.%d) TX_ONLY_SETUP failed\n",
11955                   fp->index, tx_index);
11956             return (rc);
11957         }
11958     }
11959 #endif
11960 
11961     return (rc);
11962 }
11963 
11964 static int
11965 bxe_setup_leading(struct bxe_softc *sc)
11966 {
11967     return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11968 }
11969 
11970 static int
11971 bxe_config_rss_pf(struct bxe_softc            *sc,
11972                   struct ecore_rss_config_obj *rss_obj,
11973                   uint8_t                     config_hash)
11974 {
11975     struct ecore_config_rss_params params = { NULL };
11976     int i;
11977 
11978     /*
11979      * Although RSS is meaningless when there is a single HW queue we
11980      * still need it enabled in order to have HW Rx hash generated.
11981      */
11982 
11983     params.rss_obj = rss_obj;
11984 
11985     bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11986 
11987     bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11988 
11989     /* RSS configuration */
11990     bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11991     bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11992     bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11993     bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11994     if (rss_obj->udp_rss_v4) {
11995         bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11996     }
11997     if (rss_obj->udp_rss_v6) {
11998         bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11999     }
12000 
12001     /* Hash bits */
12002     params.rss_result_mask = MULTI_MASK;
12003 
12004     memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
12005 
12006     if (config_hash) {
12007         /* RSS keys */
12008         for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
12009             params.rss_key[i] = arc4random();
12010         }
12011 
12012         bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
12013     }
12014 
12015     return (ecore_config_rss(sc, &params));
12016 }
12017 
12018 static int
12019 bxe_config_rss_eth(struct bxe_softc *sc,
12020                    uint8_t          config_hash)
12021 {
12022     return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
12023 }
12024 
12025 static int
12026 bxe_init_rss_pf(struct bxe_softc *sc)
12027 {
12028     uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
12029     int i;
12030 
12031     /*
12032      * Prepare the initial contents of the indirection table if
12033      * RSS is enabled
12034      */
12035     for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
12036         sc->rss_conf_obj.ind_table[i] =
12037             (sc->fp->cl_id + (i % num_eth_queues));
12038     }
12039 
12040     if (sc->udp_rss) {
12041         sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
12042     }
12043 
12044     /*
12045      * For 57710 and 57711 SEARCHER configuration (rss_keys) is
12046      * per-port, so if explicit configuration is needed, do it only
12047      * for a PMF.
12048      *
12049      * For 57712 and newer it's a per-function configuration.
12050      */
12051     return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
12052 }
12053 
12054 static int
12055 bxe_set_mac_one(struct bxe_softc          *sc,
12056                 uint8_t                   *mac,
12057                 struct ecore_vlan_mac_obj *obj,
12058                 uint8_t                   set,
12059                 int                       mac_type,
12060                 unsigned long             *ramrod_flags)
12061 {
12062     struct ecore_vlan_mac_ramrod_params ramrod_param;
12063     int rc;
12064 
12065     memset(&ramrod_param, 0, sizeof(ramrod_param));
12066 
12067     /* fill in general parameters */
12068     ramrod_param.vlan_mac_obj = obj;
12069     ramrod_param.ramrod_flags = *ramrod_flags;
12070 
12071     /* fill a user request section if needed */
12072     if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
12073         memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
12074 
12075         bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
12076 
12077         /* Set the command: ADD or DEL */
12078         ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
12079                                             ECORE_VLAN_MAC_DEL;
12080     }
12081 
12082     rc = ecore_config_vlan_mac(sc, &ramrod_param);
12083 
12084     if (rc == ECORE_EXISTS) {
12085         BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12086         /* do not treat adding same MAC as error */
12087         rc = 0;
12088     } else if (rc < 0) {
12089         BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
12090     }
12091 
12092     return (rc);
12093 }
12094 
12095 static int
12096 bxe_set_eth_mac(struct bxe_softc *sc,
12097                 uint8_t          set)
12098 {
12099     unsigned long ramrod_flags = 0;
12100 
12101     BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
12102 
12103     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12104 
12105     /* Eth MAC is set on RSS leading client (fp[0]) */
12106     return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
12107                             &sc->sp_objs->mac_obj,
12108                             set, ECORE_ETH_MAC, &ramrod_flags));
12109 }
12110 
12111 #if 0
12112 static void
12113 bxe_update_max_mf_config(struct bxe_softc *sc,
12114                          uint32_t         value)
12115 {
12116     /* load old values */
12117     uint32_t mf_cfg = sc->devinfo.mf_info.mf_config[SC_VN(sc)];
12118 
12119     if (value != bxe_extract_max_cfg(sc, mf_cfg)) {
12120         /* leave all but MAX value */
12121         mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
12122 
12123         /* set new MAX value */
12124         mf_cfg |= ((value << FUNC_MF_CFG_MAX_BW_SHIFT) &
12125                    FUNC_MF_CFG_MAX_BW_MASK);
12126 
12127         bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
12128     }
12129 }
12130 #endif
12131 
12132 static int
12133 bxe_get_cur_phy_idx(struct bxe_softc *sc)
12134 {
12135     uint32_t sel_phy_idx = 0;
12136 
12137     if (sc->link_params.num_phys <= 1) {
12138         return (ELINK_INT_PHY);
12139     }
12140 
12141     if (sc->link_vars.link_up) {
12142         sel_phy_idx = ELINK_EXT_PHY1;
12143         /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
12144         if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
12145             (sc->link_params.phy[ELINK_EXT_PHY2].supported &
12146              ELINK_SUPPORTED_FIBRE))
12147             sel_phy_idx = ELINK_EXT_PHY2;
12148     } else {
12149         switch (elink_phy_selection(&sc->link_params)) {
12150         case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
12151         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
12152         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
12153                sel_phy_idx = ELINK_EXT_PHY1;
12154                break;
12155         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
12156         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
12157                sel_phy_idx = ELINK_EXT_PHY2;
12158                break;
12159         }
12160     }
12161 
12162     return (sel_phy_idx);
12163 }
12164 
12165 static int
12166 bxe_get_link_cfg_idx(struct bxe_softc *sc)
12167 {
12168     uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
12169 
12170     /*
12171      * The selected activated PHY is always after swapping (in case PHY
12172      * swapping is enabled). So when swapping is enabled, we need to reverse
12173      * the configuration
12174      */
12175 
12176     if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
12177         if (sel_phy_idx == ELINK_EXT_PHY1)
12178             sel_phy_idx = ELINK_EXT_PHY2;
12179         else if (sel_phy_idx == ELINK_EXT_PHY2)
12180             sel_phy_idx = ELINK_EXT_PHY1;
12181     }
12182 
12183     return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
12184 }
12185 
12186 static void
12187 bxe_set_requested_fc(struct bxe_softc *sc)
12188 {
12189     /*
12190      * Initialize link parameters structure variables
12191      * It is recommended to turn off RX FC for jumbo frames
12192      * for better performance
12193      */
12194     if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
12195         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
12196     } else {
12197         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
12198     }
12199 }
12200 
12201 static void
12202 bxe_calc_fc_adv(struct bxe_softc *sc)
12203 {
12204     uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
12205     switch (sc->link_vars.ieee_fc &
12206             MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
12207     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
12208     default:
12209         sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
12210                                            ADVERTISED_Pause);
12211         break;
12212 
12213     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
12214         sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
12215                                           ADVERTISED_Pause);
12216         break;
12217 
12218     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
12219         sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
12220         break;
12221     }
12222 }
12223 
12224 static uint16_t
12225 bxe_get_mf_speed(struct bxe_softc *sc)
12226 {
12227     uint16_t line_speed = sc->link_vars.line_speed;
12228     if (IS_MF(sc)) {
12229         uint16_t maxCfg =
12230             bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
12231 
12232         /* calculate the current MAX line speed limit for the MF devices */
12233         if (IS_MF_SI(sc)) {
12234             line_speed = (line_speed * maxCfg) / 100;
12235         } else { /* SD mode */
12236             uint16_t vn_max_rate = maxCfg * 100;
12237 
12238             if (vn_max_rate < line_speed) {
12239                 line_speed = vn_max_rate;
12240             }
12241         }
12242     }
12243 
12244     return (line_speed);
12245 }
12246 
12247 static void
12248 bxe_fill_report_data(struct bxe_softc            *sc,
12249                      struct bxe_link_report_data *data)
12250 {
12251     uint16_t line_speed = bxe_get_mf_speed(sc);
12252 
12253     memset(data, 0, sizeof(*data));
12254 
12255     /* fill the report data with the effective line speed */
12256     data->line_speed = line_speed;
12257 
12258     /* Link is down */
12259     if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
12260         bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
12261     }
12262 
12263     /* Full DUPLEX */
12264     if (sc->link_vars.duplex == DUPLEX_FULL) {
12265         bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
12266     }
12267 
12268     /* Rx Flow Control is ON */
12269     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
12270         bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
12271     }
12272 
12273     /* Tx Flow Control is ON */
12274     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
12275         bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
12276     }
12277 }
12278 
12279 /* report link status to OS, should be called under phy_lock */
12280 static void
12281 bxe_link_report_locked(struct bxe_softc *sc)
12282 {
12283     struct bxe_link_report_data cur_data;
12284 
12285     /* reread mf_cfg */
12286     if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
12287         bxe_read_mf_cfg(sc);
12288     }
12289 
12290     /* Read the current link report info */
12291     bxe_fill_report_data(sc, &cur_data);
12292 
12293     /* Don't report link down or exactly the same link status twice */
12294     if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
12295         (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12296                       &sc->last_reported_link.link_report_flags) &&
12297          bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12298                       &cur_data.link_report_flags))) {
12299         return;
12300     }
12301 
12302     sc->link_cnt++;
12303 
12304     /* report new link params and remember the state for the next time */
12305     memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
12306 
12307     if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12308                      &cur_data.link_report_flags)) {
12309         if_link_state_change(sc->ifnet, LINK_STATE_DOWN);
12310         BLOGI(sc, "NIC Link is Down\n");
12311     } else {
12312         const char *duplex;
12313         const char *flow;
12314 
12315         if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
12316                                    &cur_data.link_report_flags)) {
12317             duplex = "full";
12318         } else {
12319             duplex = "half";
12320         }
12321 
12322         /*
12323          * Handle the FC at the end so that only these flags would be
12324          * possibly set. This way we may easily check if there is no FC
12325          * enabled.
12326          */
12327         if (cur_data.link_report_flags) {
12328             if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12329                              &cur_data.link_report_flags) &&
12330                 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12331                              &cur_data.link_report_flags)) {
12332                 flow = "ON - receive & transmit";
12333             } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12334                                     &cur_data.link_report_flags) &&
12335                        !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12336                                      &cur_data.link_report_flags)) {
12337                 flow = "ON - receive";
12338             } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12339                                      &cur_data.link_report_flags) &&
12340                        bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12341                                     &cur_data.link_report_flags)) {
12342                 flow = "ON - transmit";
12343             } else {
12344                 flow = "none"; /* possible? */
12345             }
12346         } else {
12347             flow = "none";
12348         }
12349 
12350         if_link_state_change(sc->ifnet, LINK_STATE_UP);
12351         BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
12352               cur_data.line_speed, duplex, flow);
12353     }
12354 }
12355 
12356 static void
12357 bxe_link_report(struct bxe_softc *sc)
12358 {
12359     BXE_PHY_LOCK(sc);
12360     bxe_link_report_locked(sc);
12361     BXE_PHY_UNLOCK(sc);
12362 }
12363 
12364 static void
12365 bxe_link_status_update(struct bxe_softc *sc)
12366 {
12367     if (sc->state != BXE_STATE_OPEN) {
12368         return;
12369     }
12370 
12371 #if 0
12372     /* read updated dcb configuration */
12373     if (IS_PF(sc))
12374         bxe_dcbx_pmf_update(sc);
12375 #endif
12376 
12377     if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
12378         elink_link_status_update(&sc->link_params, &sc->link_vars);
12379     } else {
12380         sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
12381                                   ELINK_SUPPORTED_10baseT_Full |
12382                                   ELINK_SUPPORTED_100baseT_Half |
12383                                   ELINK_SUPPORTED_100baseT_Full |
12384                                   ELINK_SUPPORTED_1000baseT_Full |
12385                                   ELINK_SUPPORTED_2500baseX_Full |
12386                                   ELINK_SUPPORTED_10000baseT_Full |
12387                                   ELINK_SUPPORTED_TP |
12388                                   ELINK_SUPPORTED_FIBRE |
12389                                   ELINK_SUPPORTED_Autoneg |
12390                                   ELINK_SUPPORTED_Pause |
12391                                   ELINK_SUPPORTED_Asym_Pause);
12392         sc->port.advertising[0] = sc->port.supported[0];
12393 
12394         sc->link_params.sc                = sc;
12395         sc->link_params.port              = SC_PORT(sc);
12396         sc->link_params.req_duplex[0]     = DUPLEX_FULL;
12397         sc->link_params.req_flow_ctrl[0]  = ELINK_FLOW_CTRL_NONE;
12398         sc->link_params.req_line_speed[0] = SPEED_10000;
12399         sc->link_params.speed_cap_mask[0] = 0x7f0000;
12400         sc->link_params.switch_cfg        = ELINK_SWITCH_CFG_10G;
12401 
12402         if (CHIP_REV_IS_FPGA(sc)) {
12403             sc->link_vars.mac_type    = ELINK_MAC_TYPE_EMAC;
12404             sc->link_vars.line_speed  = ELINK_SPEED_1000;
12405             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12406                                          LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
12407         } else {
12408             sc->link_vars.mac_type    = ELINK_MAC_TYPE_BMAC;
12409             sc->link_vars.line_speed  = ELINK_SPEED_10000;
12410             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12411                                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
12412         }
12413 
12414         sc->link_vars.link_up = 1;
12415 
12416         sc->link_vars.duplex    = DUPLEX_FULL;
12417         sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
12418 
12419         if (IS_PF(sc)) {
12420             REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
12421             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12422             bxe_link_report(sc);
12423         }
12424     }
12425 
12426     if (IS_PF(sc)) {
12427         if (sc->link_vars.link_up) {
12428             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12429         } else {
12430             bxe_stats_handle(sc, STATS_EVENT_STOP);
12431         }
12432         bxe_link_report(sc);
12433     } else {
12434         bxe_link_report(sc);
12435         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12436     }
12437 }
12438 
12439 static int
12440 bxe_initial_phy_init(struct bxe_softc *sc,
12441                      int              load_mode)
12442 {
12443     int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
12444     uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
12445     struct elink_params *lp = &sc->link_params;
12446 
12447     bxe_set_requested_fc(sc);
12448 
12449     if (CHIP_REV_IS_SLOW(sc)) {
12450         uint32_t bond = CHIP_BOND_ID(sc);
12451         uint32_t feat = 0;
12452 
12453         if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
12454             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12455         } else if (bond & 0x4) {
12456             if (CHIP_IS_E3(sc)) {
12457                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
12458             } else {
12459                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12460             }
12461         } else if (bond & 0x8) {
12462             if (CHIP_IS_E3(sc)) {
12463                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
12464             } else {
12465                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12466             }
12467         }
12468 
12469         /* disable EMAC for E3 and above */
12470         if (bond & 0x2) {
12471             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12472         }
12473 
12474         sc->link_params.feature_config_flags |= feat;
12475     }
12476 
12477     BXE_PHY_LOCK(sc);
12478 
12479     if (load_mode == LOAD_DIAG) {
12480         lp->loopback_mode = ELINK_LOOPBACK_XGXS;
12481         /* Prefer doing PHY loopback at 10G speed, if possible */
12482         if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
12483             if (lp->speed_cap_mask[cfg_idx] &
12484                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
12485                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
12486             } else {
12487                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
12488             }
12489         }
12490     }
12491 
12492     if (load_mode == LOAD_LOOPBACK_EXT) {
12493         lp->loopback_mode = ELINK_LOOPBACK_EXT;
12494     }
12495 
12496     rc = elink_phy_init(&sc->link_params, &sc->link_vars);
12497 
12498     BXE_PHY_UNLOCK(sc);
12499 
12500     bxe_calc_fc_adv(sc);
12501 
12502     if (sc->link_vars.link_up) {
12503         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12504         bxe_link_report(sc);
12505     }
12506 
12507     if (!CHIP_REV_IS_SLOW(sc)) {
12508         bxe_periodic_start(sc);
12509     }
12510 
12511     sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
12512     return (rc);
12513 }
12514 
12515 /* must be called under IF_ADDR_LOCK */
12516 static int
12517 bxe_init_mcast_macs_list(struct bxe_softc                 *sc,
12518                          struct ecore_mcast_ramrod_params *p)
12519 {
12520     struct ifnet *ifp = sc->ifnet;
12521     int mc_count = 0;
12522     struct ifmultiaddr *ifma;
12523     struct ecore_mcast_list_elem *mc_mac;
12524 
12525     TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
12526         if (ifma->ifma_addr->sa_family != AF_LINK) {
12527             continue;
12528         }
12529 
12530         mc_count++;
12531     }
12532 
12533     ECORE_LIST_INIT(&p->mcast_list);
12534     p->mcast_list_len = 0;
12535 
12536     if (!mc_count) {
12537         return (0);
12538     }
12539 
12540     mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF,
12541                     (M_NOWAIT | M_ZERO));
12542     if (!mc_mac) {
12543         BLOGE(sc, "Failed to allocate temp mcast list\n");
12544         return (-1);
12545     }
12546 
12547     TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
12548         if (ifma->ifma_addr->sa_family != AF_LINK) {
12549             continue;
12550         }
12551 
12552         mc_mac->mac = (uint8_t *)LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
12553         ECORE_LIST_PUSH_TAIL(&mc_mac->link, &p->mcast_list);
12554 
12555         BLOGD(sc, DBG_LOAD,
12556               "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n",
12557               mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2],
12558               mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]);
12559 
12560         mc_mac++;
12561     }
12562 
12563     p->mcast_list_len = mc_count;
12564 
12565     return (0);
12566 }
12567 
12568 static void
12569 bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p)
12570 {
12571     struct ecore_mcast_list_elem *mc_mac =
12572         ECORE_LIST_FIRST_ENTRY(&p->mcast_list,
12573                                struct ecore_mcast_list_elem,
12574                                link);
12575 
12576     if (mc_mac) {
12577         /* only a single free as all mc_macs are in the same heap array */
12578         free(mc_mac, M_DEVBUF);
12579     }
12580 }
12581 
12582 static int
12583 bxe_set_mc_list(struct bxe_softc *sc)
12584 {
12585     struct ecore_mcast_ramrod_params rparam = { NULL };
12586     int rc = 0;
12587 
12588     rparam.mcast_obj = &sc->mcast_obj;
12589 
12590     BXE_MCAST_LOCK(sc);
12591 
12592     /* first, clear all configured multicast MACs */
12593     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
12594     if (rc < 0) {
12595         BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
12596         return (rc);
12597     }
12598 
12599     /* configure a new MACs list */
12600     rc = bxe_init_mcast_macs_list(sc, &rparam);
12601     if (rc) {
12602         BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc);
12603         BXE_MCAST_UNLOCK(sc);
12604         return (rc);
12605     }
12606 
12607     /* Now add the new MACs */
12608     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
12609     if (rc < 0) {
12610         BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
12611     }
12612 
12613     bxe_free_mcast_macs_list(&rparam);
12614 
12615     BXE_MCAST_UNLOCK(sc);
12616 
12617     return (rc);
12618 }
12619 
12620 static int
12621 bxe_set_uc_list(struct bxe_softc *sc)
12622 {
12623     struct ifnet *ifp = sc->ifnet;
12624     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
12625     struct ifaddr *ifa;
12626     unsigned long ramrod_flags = 0;
12627     int rc;
12628 
12629 #if __FreeBSD_version < 800000
12630     IF_ADDR_LOCK(ifp);
12631 #else
12632     if_addr_rlock(ifp);
12633 #endif
12634 
12635     /* first schedule a cleanup up of old configuration */
12636     rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
12637     if (rc < 0) {
12638         BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
12639 #if __FreeBSD_version < 800000
12640         IF_ADDR_UNLOCK(ifp);
12641 #else
12642         if_addr_runlock(ifp);
12643 #endif
12644         return (rc);
12645     }
12646 
12647     ifa = ifp->if_addr;
12648     while (ifa) {
12649         if (ifa->ifa_addr->sa_family != AF_LINK) {
12650             ifa = TAILQ_NEXT(ifa, ifa_link);
12651             continue;
12652         }
12653 
12654         rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
12655                              mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags);
12656         if (rc == -EEXIST) {
12657             BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12658             /* do not treat adding same MAC as an error */
12659             rc = 0;
12660         } else if (rc < 0) {
12661             BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc);
12662 #if __FreeBSD_version < 800000
12663             IF_ADDR_UNLOCK(ifp);
12664 #else
12665             if_addr_runlock(ifp);
12666 #endif
12667             return (rc);
12668         }
12669 
12670         ifa = TAILQ_NEXT(ifa, ifa_link);
12671     }
12672 
12673 #if __FreeBSD_version < 800000
12674     IF_ADDR_UNLOCK(ifp);
12675 #else
12676     if_addr_runlock(ifp);
12677 #endif
12678 
12679     /* Execute the pending commands */
12680     bit_set(&ramrod_flags, RAMROD_CONT);
12681     return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12682                             ECORE_UC_LIST_MAC, &ramrod_flags));
12683 }
12684 
12685 static void
12686 bxe_handle_rx_mode_tq(void *context,
12687                       int  pending)
12688 {
12689     struct bxe_softc *sc = (struct bxe_softc *)context;
12690     struct ifnet *ifp = sc->ifnet;
12691     uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12692 
12693     BXE_CORE_LOCK(sc);
12694 
12695     if (sc->state != BXE_STATE_OPEN) {
12696         BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12697         BXE_CORE_UNLOCK(sc);
12698         return;
12699     }
12700 
12701     BLOGD(sc, DBG_SP, "ifp->if_flags=0x%x\n", ifp->if_flags);
12702 
12703     if (ifp->if_flags & IFF_PROMISC) {
12704         rx_mode = BXE_RX_MODE_PROMISC;
12705     } else if ((ifp->if_flags & IFF_ALLMULTI) ||
12706                ((ifp->if_amcount > BXE_MAX_MULTICAST) &&
12707                 CHIP_IS_E1(sc))) {
12708         rx_mode = BXE_RX_MODE_ALLMULTI;
12709     } else {
12710         if (IS_PF(sc)) {
12711             /* some multicasts */
12712             if (bxe_set_mc_list(sc) < 0) {
12713                 rx_mode = BXE_RX_MODE_ALLMULTI;
12714             }
12715             if (bxe_set_uc_list(sc) < 0) {
12716                 rx_mode = BXE_RX_MODE_PROMISC;
12717             }
12718         }
12719 #if 0
12720         else {
12721             /*
12722              * Configuring mcast to a VF involves sleeping (when we
12723              * wait for the PF's response). Since this function is
12724              * called from a non sleepable context we must schedule
12725              * a work item for this purpose
12726              */
12727             bxe_set_bit(BXE_SP_RTNL_VFPF_MCAST, &sc->sp_rtnl_state);
12728             schedule_delayed_work(&sc->sp_rtnl_task, 0);
12729         }
12730 #endif
12731     }
12732 
12733     sc->rx_mode = rx_mode;
12734 
12735     /* schedule the rx_mode command */
12736     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12737         BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12738         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12739         BXE_CORE_UNLOCK(sc);
12740         return;
12741     }
12742 
12743     if (IS_PF(sc)) {
12744         bxe_set_storm_rx_mode(sc);
12745     }
12746 #if 0
12747     else {
12748         /*
12749          * Configuring mcast to a VF involves sleeping (when we
12750          * wait for the PF's response). Since this function is
12751          * called from a non sleepable context we must schedule
12752          * a work item for this purpose
12753          */
12754         bxe_set_bit(BXE_SP_RTNL_VFPF_STORM_RX_MODE, &sc->sp_rtnl_state);
12755         schedule_delayed_work(&sc->sp_rtnl_task, 0);
12756     }
12757 #endif
12758 
12759     BXE_CORE_UNLOCK(sc);
12760 }
12761 
12762 static void
12763 bxe_set_rx_mode(struct bxe_softc *sc)
12764 {
12765     taskqueue_enqueue(sc->rx_mode_tq, &sc->rx_mode_tq_task);
12766 }
12767 
12768 /* update flags in shmem */
12769 static void
12770 bxe_update_drv_flags(struct bxe_softc *sc,
12771                      uint32_t         flags,
12772                      uint32_t         set)
12773 {
12774     uint32_t drv_flags;
12775 
12776     if (SHMEM2_HAS(sc, drv_flags)) {
12777         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12778         drv_flags = SHMEM2_RD(sc, drv_flags);
12779 
12780         if (set) {
12781             SET_FLAGS(drv_flags, flags);
12782         } else {
12783             RESET_FLAGS(drv_flags, flags);
12784         }
12785 
12786         SHMEM2_WR(sc, drv_flags, drv_flags);
12787         BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12788 
12789         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12790     }
12791 }
12792 
12793 /* periodic timer callout routine, only runs when the interface is up */
12794 
12795 static void
12796 bxe_periodic_callout_func(void *xsc)
12797 {
12798     struct bxe_softc *sc = (struct bxe_softc *)xsc;
12799     int i;
12800 
12801     if (!BXE_CORE_TRYLOCK(sc)) {
12802         /* just bail and try again next time */
12803 
12804         if ((sc->state == BXE_STATE_OPEN) &&
12805             (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12806             /* schedule the next periodic callout */
12807             callout_reset(&sc->periodic_callout, hz,
12808                           bxe_periodic_callout_func, sc);
12809         }
12810 
12811         return;
12812     }
12813 
12814     if ((sc->state != BXE_STATE_OPEN) ||
12815         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12816         BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12817         BXE_CORE_UNLOCK(sc);
12818         return;
12819     }
12820 
12821     /* Check for TX timeouts on any fastpath. */
12822     FOR_EACH_QUEUE(sc, i) {
12823         if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12824             /* Ruh-Roh, chip was reset! */
12825             break;
12826         }
12827     }
12828 
12829     if (!CHIP_REV_IS_SLOW(sc)) {
12830         /*
12831          * This barrier is needed to ensure the ordering between the writing
12832          * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12833          * the reading here.
12834          */
12835         mb();
12836         if (sc->port.pmf) {
12837             BXE_PHY_LOCK(sc);
12838             elink_period_func(&sc->link_params, &sc->link_vars);
12839             BXE_PHY_UNLOCK(sc);
12840         }
12841     }
12842 
12843     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
12844         int mb_idx = SC_FW_MB_IDX(sc);
12845         uint32_t drv_pulse;
12846         uint32_t mcp_pulse;
12847 
12848         ++sc->fw_drv_pulse_wr_seq;
12849         sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12850 
12851         drv_pulse = sc->fw_drv_pulse_wr_seq;
12852         bxe_drv_pulse(sc);
12853 
12854         mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12855                      MCP_PULSE_SEQ_MASK);
12856 
12857         /*
12858          * The delta between driver pulse and mcp response should
12859          * be 1 (before mcp response) or 0 (after mcp response).
12860          */
12861         if ((drv_pulse != mcp_pulse) &&
12862             (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12863             /* someone lost a heartbeat... */
12864             BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12865                   drv_pulse, mcp_pulse);
12866         }
12867     }
12868 
12869     /* state is BXE_STATE_OPEN */
12870     bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12871 
12872 #if 0
12873     /* sample VF bulletin board for new posts from PF */
12874     if (IS_VF(sc)) {
12875         bxe_sample_bulletin(sc);
12876     }
12877 #endif
12878 
12879     BXE_CORE_UNLOCK(sc);
12880 
12881     if ((sc->state == BXE_STATE_OPEN) &&
12882         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12883         /* schedule the next periodic callout */
12884         callout_reset(&sc->periodic_callout, hz,
12885                       bxe_periodic_callout_func, sc);
12886     }
12887 }
12888 
12889 static void
12890 bxe_periodic_start(struct bxe_softc *sc)
12891 {
12892     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12893     callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12894 }
12895 
12896 static void
12897 bxe_periodic_stop(struct bxe_softc *sc)
12898 {
12899     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12900     callout_drain(&sc->periodic_callout);
12901 }
12902 
12903 /* start the controller */
12904 static __noinline int
12905 bxe_nic_load(struct bxe_softc *sc,
12906              int              load_mode)
12907 {
12908     uint32_t val;
12909     int load_code = 0;
12910     int i, rc = 0;
12911 
12912     BXE_CORE_LOCK_ASSERT(sc);
12913 
12914     BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12915 
12916     sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12917 
12918     if (IS_PF(sc)) {
12919         /* must be called before memory allocation and HW init */
12920         bxe_ilt_set_info(sc);
12921     }
12922 
12923     sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12924 
12925     bxe_set_fp_rx_buf_size(sc);
12926 
12927     if (bxe_alloc_fp_buffers(sc) != 0) {
12928         BLOGE(sc, "Failed to allocate fastpath memory\n");
12929         sc->state = BXE_STATE_CLOSED;
12930         rc = ENOMEM;
12931         goto bxe_nic_load_error0;
12932     }
12933 
12934     if (bxe_alloc_mem(sc) != 0) {
12935         sc->state = BXE_STATE_CLOSED;
12936         rc = ENOMEM;
12937         goto bxe_nic_load_error0;
12938     }
12939 
12940     if (bxe_alloc_fw_stats_mem(sc) != 0) {
12941         sc->state = BXE_STATE_CLOSED;
12942         rc = ENOMEM;
12943         goto bxe_nic_load_error0;
12944     }
12945 
12946     if (IS_PF(sc)) {
12947         /* set pf load just before approaching the MCP */
12948         bxe_set_pf_load(sc);
12949 
12950         /* if MCP exists send load request and analyze response */
12951         if (!BXE_NOMCP(sc)) {
12952             /* attempt to load pf */
12953             if (bxe_nic_load_request(sc, &load_code) != 0) {
12954                 sc->state = BXE_STATE_CLOSED;
12955                 rc = ENXIO;
12956                 goto bxe_nic_load_error1;
12957             }
12958 
12959             /* what did the MCP say? */
12960             if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12961                 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12962                 sc->state = BXE_STATE_CLOSED;
12963                 rc = ENXIO;
12964                 goto bxe_nic_load_error2;
12965             }
12966         } else {
12967             BLOGI(sc, "Device has no MCP!\n");
12968             load_code = bxe_nic_load_no_mcp(sc);
12969         }
12970 
12971         /* mark PMF if applicable */
12972         bxe_nic_load_pmf(sc, load_code);
12973 
12974         /* Init Function state controlling object */
12975         bxe_init_func_obj(sc);
12976 
12977         /* Initialize HW */
12978         if (bxe_init_hw(sc, load_code) != 0) {
12979             BLOGE(sc, "HW init failed\n");
12980             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12981             sc->state = BXE_STATE_CLOSED;
12982             rc = ENXIO;
12983             goto bxe_nic_load_error2;
12984         }
12985     }
12986 
12987     /* attach interrupts */
12988     if (bxe_interrupt_attach(sc) != 0) {
12989         sc->state = BXE_STATE_CLOSED;
12990         rc = ENXIO;
12991         goto bxe_nic_load_error2;
12992     }
12993 
12994     bxe_nic_init(sc, load_code);
12995 
12996     /* Init per-function objects */
12997     if (IS_PF(sc)) {
12998         bxe_init_objs(sc);
12999         // XXX bxe_iov_nic_init(sc);
13000 
13001         /* set AFEX default VLAN tag to an invalid value */
13002         sc->devinfo.mf_info.afex_def_vlan_tag = -1;
13003         // XXX bxe_nic_load_afex_dcc(sc, load_code);
13004 
13005         sc->state = BXE_STATE_OPENING_WAITING_PORT;
13006         rc = bxe_func_start(sc);
13007         if (rc) {
13008             BLOGE(sc, "Function start failed!\n");
13009             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
13010             sc->state = BXE_STATE_ERROR;
13011             goto bxe_nic_load_error3;
13012         }
13013 
13014         /* send LOAD_DONE command to MCP */
13015         if (!BXE_NOMCP(sc)) {
13016             load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
13017             if (!load_code) {
13018                 BLOGE(sc, "MCP response failure, aborting\n");
13019                 sc->state = BXE_STATE_ERROR;
13020                 rc = ENXIO;
13021                 goto bxe_nic_load_error3;
13022             }
13023         }
13024 
13025         rc = bxe_setup_leading(sc);
13026         if (rc) {
13027             BLOGE(sc, "Setup leading failed!\n");
13028             sc->state = BXE_STATE_ERROR;
13029             goto bxe_nic_load_error3;
13030         }
13031 
13032         FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
13033             rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
13034             if (rc) {
13035                 BLOGE(sc, "Queue(%d) setup failed\n", i);
13036                 sc->state = BXE_STATE_ERROR;
13037                 goto bxe_nic_load_error3;
13038             }
13039         }
13040 
13041         rc = bxe_init_rss_pf(sc);
13042         if (rc) {
13043             BLOGE(sc, "PF RSS init failed\n");
13044             sc->state = BXE_STATE_ERROR;
13045             goto bxe_nic_load_error3;
13046         }
13047     }
13048     /* XXX VF */
13049 #if 0
13050     else { /* VF */
13051         FOR_EACH_ETH_QUEUE(sc, i) {
13052             rc = bxe_vfpf_setup_q(sc, i);
13053             if (rc) {
13054                 BLOGE(sc, "Queue(%d) setup failed\n", i);
13055                 sc->state = BXE_STATE_ERROR;
13056                 goto bxe_nic_load_error3;
13057             }
13058         }
13059     }
13060 #endif
13061 
13062     /* now when Clients are configured we are ready to work */
13063     sc->state = BXE_STATE_OPEN;
13064 
13065     /* Configure a ucast MAC */
13066     if (IS_PF(sc)) {
13067         rc = bxe_set_eth_mac(sc, TRUE);
13068     }
13069 #if 0
13070     else { /* IS_VF(sc) */
13071         rc = bxe_vfpf_set_mac(sc);
13072     }
13073 #endif
13074     if (rc) {
13075         BLOGE(sc, "Setting Ethernet MAC failed\n");
13076         sc->state = BXE_STATE_ERROR;
13077         goto bxe_nic_load_error3;
13078     }
13079 
13080 #if 0
13081     if (IS_PF(sc) && sc->pending_max) {
13082         /* for AFEX */
13083         bxe_update_max_mf_config(sc, sc->pending_max);
13084         sc->pending_max = 0;
13085     }
13086 #endif
13087 
13088     if (sc->port.pmf) {
13089         rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
13090         if (rc) {
13091             sc->state = BXE_STATE_ERROR;
13092             goto bxe_nic_load_error3;
13093         }
13094     }
13095 
13096     sc->link_params.feature_config_flags &=
13097         ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
13098 
13099     /* start fast path */
13100 
13101     /* Initialize Rx filter */
13102     bxe_set_rx_mode(sc);
13103 
13104     /* start the Tx */
13105     switch (/* XXX load_mode */LOAD_OPEN) {
13106     case LOAD_NORMAL:
13107     case LOAD_OPEN:
13108         break;
13109 
13110     case LOAD_DIAG:
13111     case LOAD_LOOPBACK_EXT:
13112         sc->state = BXE_STATE_DIAG;
13113         break;
13114 
13115     default:
13116         break;
13117     }
13118 
13119     if (sc->port.pmf) {
13120         bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
13121     } else {
13122         bxe_link_status_update(sc);
13123     }
13124 
13125     /* start the periodic timer callout */
13126     bxe_periodic_start(sc);
13127 
13128     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
13129         /* mark driver is loaded in shmem2 */
13130         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
13131         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
13132                   (val |
13133                    DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
13134                    DRV_FLAGS_CAPABILITIES_LOADED_L2));
13135     }
13136 
13137     /* wait for all pending SP commands to complete */
13138     if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
13139         BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
13140         bxe_periodic_stop(sc);
13141         bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
13142         return (ENXIO);
13143     }
13144 
13145 #if 0
13146     /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
13147     if (sc->port.pmf && (sc->state != BXE_STATE_DIAG)) {
13148         bxe_dcbx_init(sc, FALSE);
13149     }
13150 #endif
13151 
13152     /* Tell the stack the driver is running! */
13153     sc->ifnet->if_drv_flags = IFF_DRV_RUNNING;
13154 
13155     BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
13156 
13157     return (0);
13158 
13159 bxe_nic_load_error3:
13160 
13161     if (IS_PF(sc)) {
13162         bxe_int_disable_sync(sc, 1);
13163 
13164         /* clean out queued objects */
13165         bxe_squeeze_objects(sc);
13166     }
13167 
13168     bxe_interrupt_detach(sc);
13169 
13170 bxe_nic_load_error2:
13171 
13172     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
13173         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
13174         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
13175     }
13176 
13177     sc->port.pmf = 0;
13178 
13179 bxe_nic_load_error1:
13180 
13181     /* clear pf_load status, as it was already set */
13182     if (IS_PF(sc)) {
13183         bxe_clear_pf_load(sc);
13184     }
13185 
13186 bxe_nic_load_error0:
13187 
13188     bxe_free_fw_stats_mem(sc);
13189     bxe_free_fp_buffers(sc);
13190     bxe_free_mem(sc);
13191 
13192     return (rc);
13193 }
13194 
13195 static int
13196 bxe_init_locked(struct bxe_softc *sc)
13197 {
13198     int other_engine = SC_PATH(sc) ? 0 : 1;
13199     uint8_t other_load_status, load_status;
13200     uint8_t global = FALSE;
13201     int rc;
13202 
13203     BXE_CORE_LOCK_ASSERT(sc);
13204 
13205     /* check if the driver is already running */
13206     if (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING) {
13207         BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
13208         return (0);
13209     }
13210 
13211     bxe_set_power_state(sc, PCI_PM_D0);
13212 
13213     /*
13214      * If parity occurred during the unload, then attentions and/or
13215      * RECOVERY_IN_PROGRES may still be set. If so we want the first function
13216      * loaded on the current engine to complete the recovery. Parity recovery
13217      * is only relevant for PF driver.
13218      */
13219     if (IS_PF(sc)) {
13220         other_load_status = bxe_get_load_status(sc, other_engine);
13221         load_status = bxe_get_load_status(sc, SC_PATH(sc));
13222 
13223         if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
13224             bxe_chk_parity_attn(sc, &global, TRUE)) {
13225             do {
13226                 /*
13227                  * If there are attentions and they are in global blocks, set
13228                  * the GLOBAL_RESET bit regardless whether it will be this
13229                  * function that will complete the recovery or not.
13230                  */
13231                 if (global) {
13232                     bxe_set_reset_global(sc);
13233                 }
13234 
13235                 /*
13236                  * Only the first function on the current engine should try
13237                  * to recover in open. In case of attentions in global blocks
13238                  * only the first in the chip should try to recover.
13239                  */
13240                 if ((!load_status && (!global || !other_load_status)) &&
13241                     bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
13242                     BLOGI(sc, "Recovered during init\n");
13243                     break;
13244                 }
13245 
13246                 /* recovery has failed... */
13247                 bxe_set_power_state(sc, PCI_PM_D3hot);
13248                 sc->recovery_state = BXE_RECOVERY_FAILED;
13249 
13250                 BLOGE(sc, "Recovery flow hasn't properly "
13251                           "completed yet, try again later. "
13252                           "If you still see this message after a "
13253                           "few retries then power cycle is required.\n");
13254 
13255                 rc = ENXIO;
13256                 goto bxe_init_locked_done;
13257             } while (0);
13258         }
13259     }
13260 
13261     sc->recovery_state = BXE_RECOVERY_DONE;
13262 
13263     rc = bxe_nic_load(sc, LOAD_OPEN);
13264 
13265 bxe_init_locked_done:
13266 
13267     if (rc) {
13268         /* Tell the stack the driver is NOT running! */
13269         BLOGE(sc, "Initialization failed, "
13270                   "stack notified driver is NOT running!\n");
13271         sc->ifnet->if_drv_flags &= ~IFF_DRV_RUNNING;
13272     }
13273 
13274     return (rc);
13275 }
13276 
13277 static int
13278 bxe_stop_locked(struct bxe_softc *sc)
13279 {
13280     BXE_CORE_LOCK_ASSERT(sc);
13281     return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
13282 }
13283 
13284 /*
13285  * Handles controller initialization when called from an unlocked routine.
13286  * ifconfig calls this function.
13287  *
13288  * Returns:
13289  *   void
13290  */
13291 static void
13292 bxe_init(void *xsc)
13293 {
13294     struct bxe_softc *sc = (struct bxe_softc *)xsc;
13295 
13296     BXE_CORE_LOCK(sc);
13297     bxe_init_locked(sc);
13298     BXE_CORE_UNLOCK(sc);
13299 }
13300 
13301 static int
13302 bxe_init_ifnet(struct bxe_softc *sc)
13303 {
13304     struct ifnet *ifp;
13305 
13306     /* ifconfig entrypoint for media type/status reporting */
13307     ifmedia_init(&sc->ifmedia, IFM_IMASK,
13308                  bxe_ifmedia_update,
13309                  bxe_ifmedia_status);
13310 
13311     /* set the default interface values */
13312     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
13313     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
13314     ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
13315 
13316     sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
13317 
13318     /* allocate the ifnet structure */
13319     if ((ifp = if_alloc(IFT_ETHER)) == NULL) {
13320         BLOGE(sc, "Interface allocation failed!\n");
13321         return (ENXIO);
13322     }
13323 
13324     ifp->if_softc = sc;
13325     if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
13326     ifp->if_flags = (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
13327     ifp->if_ioctl = bxe_ioctl;
13328     ifp->if_start = bxe_tx_start;
13329 #if __FreeBSD_version >= 800000
13330     ifp->if_transmit = bxe_tx_mq_start;
13331     ifp->if_qflush = bxe_mq_flush;
13332 #endif
13333 #ifdef FreeBSD8_0
13334     ifp->if_timer = 0;
13335 #endif
13336     ifp->if_init = bxe_init;
13337     ifp->if_mtu = sc->mtu;
13338     ifp->if_hwassist = (CSUM_IP       |
13339                         CSUM_TCP      |
13340                         CSUM_UDP      |
13341                         CSUM_TSO      |
13342                         CSUM_TCP_IPV6 |
13343                         CSUM_UDP_IPV6);
13344     ifp->if_capabilities =
13345 #if __FreeBSD_version < 700000
13346         (IFCAP_VLAN_MTU       |
13347          IFCAP_VLAN_HWTAGGING |
13348          IFCAP_HWCSUM         |
13349          IFCAP_JUMBO_MTU      |
13350          IFCAP_LRO);
13351 #else
13352         (IFCAP_VLAN_MTU       |
13353          IFCAP_VLAN_HWTAGGING |
13354          IFCAP_VLAN_HWTSO     |
13355          IFCAP_VLAN_HWFILTER  |
13356          IFCAP_VLAN_HWCSUM    |
13357          IFCAP_HWCSUM         |
13358          IFCAP_JUMBO_MTU      |
13359          IFCAP_LRO            |
13360          IFCAP_TSO4           |
13361          IFCAP_TSO6           |
13362          IFCAP_WOL_MAGIC);
13363 #endif
13364     ifp->if_capenable = ifp->if_capabilities;
13365     ifp->if_capenable &= ~IFCAP_WOL_MAGIC; /* XXX not yet... */
13366 #if __FreeBSD_version < 1000025
13367     ifp->if_baudrate = 1000000000;
13368 #else
13369     if_initbaudrate(ifp, IF_Gbps(10));
13370 #endif
13371     ifp->if_snd.ifq_drv_maxlen = sc->tx_ring_size;
13372 
13373     IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
13374     IFQ_SET_READY(&ifp->if_snd);
13375 
13376     sc->ifnet = ifp;
13377 
13378     /* attach to the Ethernet interface list */
13379     ether_ifattach(ifp, sc->link_params.mac_addr);
13380 
13381     return (0);
13382 }
13383 
13384 static void
13385 bxe_deallocate_bars(struct bxe_softc *sc)
13386 {
13387     int i;
13388 
13389     for (i = 0; i < MAX_BARS; i++) {
13390         if (sc->bar[i].resource != NULL) {
13391             bus_release_resource(sc->dev,
13392                                  SYS_RES_MEMORY,
13393                                  sc->bar[i].rid,
13394                                  sc->bar[i].resource);
13395             BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
13396                   i, PCIR_BAR(i));
13397         }
13398     }
13399 }
13400 
13401 static int
13402 bxe_allocate_bars(struct bxe_softc *sc)
13403 {
13404     u_int flags;
13405     int i;
13406 
13407     memset(sc->bar, 0, sizeof(sc->bar));
13408 
13409     for (i = 0; i < MAX_BARS; i++) {
13410 
13411         /* memory resources reside at BARs 0, 2, 4 */
13412         /* Run `pciconf -lb` to see mappings */
13413         if ((i != 0) && (i != 2) && (i != 4)) {
13414             continue;
13415         }
13416 
13417         sc->bar[i].rid = PCIR_BAR(i);
13418 
13419         flags = RF_ACTIVE;
13420         if (i == 0) {
13421             flags |= RF_SHAREABLE;
13422         }
13423 
13424         if ((sc->bar[i].resource =
13425              bus_alloc_resource_any(sc->dev,
13426                                     SYS_RES_MEMORY,
13427                                     &sc->bar[i].rid,
13428                                     flags)) == NULL) {
13429 #if 0
13430             /* BAR4 doesn't exist for E1 */
13431             BLOGE(sc, "PCI BAR%d [%02x] memory allocation failed\n",
13432                   i, PCIR_BAR(i));
13433 #endif
13434             return (0);
13435         }
13436 
13437         sc->bar[i].tag    = rman_get_bustag(sc->bar[i].resource);
13438         sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
13439         sc->bar[i].kva    = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
13440 
13441         BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%ld) -> %p\n",
13442               i, PCIR_BAR(i),
13443               (void *)rman_get_start(sc->bar[i].resource),
13444               (void *)rman_get_end(sc->bar[i].resource),
13445               rman_get_size(sc->bar[i].resource),
13446               (void *)sc->bar[i].kva);
13447     }
13448 
13449     return (0);
13450 }
13451 
13452 static void
13453 bxe_get_function_num(struct bxe_softc *sc)
13454 {
13455     uint32_t val = 0;
13456 
13457     /*
13458      * Read the ME register to get the function number. The ME register
13459      * holds the relative-function number and absolute-function number. The
13460      * absolute-function number appears only in E2 and above. Before that
13461      * these bits always contained zero, therefore we cannot blindly use them.
13462      */
13463 
13464     val = REG_RD(sc, BAR_ME_REGISTER);
13465 
13466     sc->pfunc_rel =
13467         (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
13468     sc->path_id =
13469         (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
13470 
13471     if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13472         sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
13473     } else {
13474         sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
13475     }
13476 
13477     BLOGD(sc, DBG_LOAD,
13478           "Relative function %d, Absolute function %d, Path %d\n",
13479           sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
13480 }
13481 
13482 static uint32_t
13483 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
13484 {
13485     uint32_t shmem2_size;
13486     uint32_t offset;
13487     uint32_t mf_cfg_offset_value;
13488 
13489     /* Non 57712 */
13490     offset = (SHMEM_RD(sc, func_mb) +
13491               (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
13492 
13493     /* 57712 plus */
13494     if (sc->devinfo.shmem2_base != 0) {
13495         shmem2_size = SHMEM2_RD(sc, size);
13496         if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
13497             mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
13498             if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
13499                 offset = mf_cfg_offset_value;
13500             }
13501         }
13502     }
13503 
13504     return (offset);
13505 }
13506 
13507 static uint32_t
13508 bxe_pcie_capability_read(struct bxe_softc *sc,
13509                          int    reg,
13510                          int    width)
13511 {
13512     int pcie_reg;
13513 
13514     /* ensure PCIe capability is enabled */
13515     if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
13516         if (pcie_reg != 0) {
13517             BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
13518             return (pci_read_config(sc->dev, (pcie_reg + reg), width));
13519         }
13520     }
13521 
13522     BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
13523 
13524     return (0);
13525 }
13526 
13527 static uint8_t
13528 bxe_is_pcie_pending(struct bxe_softc *sc)
13529 {
13530     return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) &
13531             PCIM_EXP_STA_TRANSACTION_PND);
13532 }
13533 
13534 /*
13535  * Walk the PCI capabiites list for the device to find what features are
13536  * supported. These capabilites may be enabled/disabled by firmware so it's
13537  * best to walk the list rather than make assumptions.
13538  */
13539 static void
13540 bxe_probe_pci_caps(struct bxe_softc *sc)
13541 {
13542     uint16_t link_status;
13543     int reg;
13544 
13545     /* check if PCI Power Management is enabled */
13546     if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
13547         if (reg != 0) {
13548             BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
13549 
13550             sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
13551             sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
13552         }
13553     }
13554 
13555     link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2);
13556 
13557     /* handle PCIe 2.0 workarounds for 57710 */
13558     if (CHIP_IS_E1(sc)) {
13559         /* workaround for 57710 errata E4_57710_27462 */
13560         sc->devinfo.pcie_link_speed =
13561             (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
13562 
13563         /* workaround for 57710 errata E4_57710_27488 */
13564         sc->devinfo.pcie_link_width =
13565             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13566         if (sc->devinfo.pcie_link_speed > 1) {
13567             sc->devinfo.pcie_link_width =
13568                 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1;
13569         }
13570     } else {
13571         sc->devinfo.pcie_link_speed =
13572             (link_status & PCIM_LINK_STA_SPEED);
13573         sc->devinfo.pcie_link_width =
13574             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13575     }
13576 
13577     BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
13578           sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
13579 
13580     sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
13581     sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
13582 
13583     /* check if MSI capability is enabled */
13584     if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
13585         if (reg != 0) {
13586             BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
13587 
13588             sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
13589             sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
13590         }
13591     }
13592 
13593     /* check if MSI-X capability is enabled */
13594     if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
13595         if (reg != 0) {
13596             BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
13597 
13598             sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
13599             sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
13600         }
13601     }
13602 }
13603 
13604 static int
13605 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
13606 {
13607     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13608     uint32_t val;
13609 
13610     /* get the outer vlan if we're in switch-dependent mode */
13611 
13612     val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13613     mf_info->ext_id = (uint16_t)val;
13614 
13615     mf_info->multi_vnics_mode = 1;
13616 
13617     if (!VALID_OVLAN(mf_info->ext_id)) {
13618         BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
13619         return (1);
13620     }
13621 
13622     /* get the capabilities */
13623     if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13624         FUNC_MF_CFG_PROTOCOL_ISCSI) {
13625         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
13626     } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13627                FUNC_MF_CFG_PROTOCOL_FCOE) {
13628         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
13629     } else {
13630         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
13631     }
13632 
13633     mf_info->vnics_per_port =
13634         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13635 
13636     return (0);
13637 }
13638 
13639 static uint32_t
13640 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
13641 {
13642     uint32_t retval = 0;
13643     uint32_t val;
13644 
13645     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13646 
13647     if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
13648         if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
13649             retval |= MF_PROTO_SUPPORT_ETHERNET;
13650         }
13651         if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
13652             retval |= MF_PROTO_SUPPORT_ISCSI;
13653         }
13654         if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
13655             retval |= MF_PROTO_SUPPORT_FCOE;
13656         }
13657     }
13658 
13659     return (retval);
13660 }
13661 
13662 static int
13663 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
13664 {
13665     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13666     uint32_t val;
13667 
13668     /*
13669      * There is no outer vlan if we're in switch-independent mode.
13670      * If the mac is valid then assume multi-function.
13671      */
13672 
13673     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13674 
13675     mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
13676 
13677     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13678 
13679     mf_info->vnics_per_port =
13680         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13681 
13682     return (0);
13683 }
13684 
13685 static int
13686 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13687 {
13688     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13689     uint32_t e1hov_tag;
13690     uint32_t func_config;
13691     uint32_t niv_config;
13692 
13693     mf_info->multi_vnics_mode = 1;
13694 
13695     e1hov_tag   = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13696     func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13697     niv_config  = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13698 
13699     mf_info->ext_id =
13700         (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13701                    FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13702 
13703     mf_info->default_vlan =
13704         (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13705                    FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13706 
13707     mf_info->niv_allowed_priorities =
13708         (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13709                   FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13710 
13711     mf_info->niv_default_cos =
13712         (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13713                   FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13714 
13715     mf_info->afex_vlan_mode =
13716         ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13717          FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13718 
13719     mf_info->niv_mba_enabled =
13720         ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13721          FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13722 
13723     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13724 
13725     mf_info->vnics_per_port =
13726         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13727 
13728     return (0);
13729 }
13730 
13731 static int
13732 bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13733 {
13734     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13735     uint32_t mf_cfg1;
13736     uint32_t mf_cfg2;
13737     uint32_t ovlan1;
13738     uint32_t ovlan2;
13739     uint8_t i, j;
13740 
13741     BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13742           SC_PORT(sc));
13743     BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13744           mf_info->mf_config[SC_VN(sc)]);
13745     BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13746           mf_info->multi_vnics_mode);
13747     BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13748           mf_info->vnics_per_port);
13749     BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13750           mf_info->ext_id);
13751     BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13752           mf_info->min_bw[0], mf_info->min_bw[1],
13753           mf_info->min_bw[2], mf_info->min_bw[3]);
13754     BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13755           mf_info->max_bw[0], mf_info->max_bw[1],
13756           mf_info->max_bw[2], mf_info->max_bw[3]);
13757     BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13758           sc->mac_addr_str);
13759 
13760     /* various MF mode sanity checks... */
13761 
13762     if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13763         BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13764               SC_PORT(sc));
13765         return (1);
13766     }
13767 
13768     if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13769         BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13770               mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13771         return (1);
13772     }
13773 
13774     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13775         /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13776         if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13777             BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13778                   SC_VN(sc), OVLAN(sc));
13779             return (1);
13780         }
13781 
13782         if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13783             BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13784                   mf_info->multi_vnics_mode, OVLAN(sc));
13785             return (1);
13786         }
13787 
13788         /*
13789          * Verify all functions are either MF or SF mode. If MF, make sure
13790          * sure that all non-hidden functions have a valid ovlan. If SF,
13791          * make sure that all non-hidden functions have an invalid ovlan.
13792          */
13793         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13794             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13795             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13796             if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13797                 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13798                  ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13799                 BLOGE(sc, "mf_mode=SD function %d MF config "
13800                           "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13801                       i, mf_info->multi_vnics_mode, ovlan1);
13802                 return (1);
13803             }
13804         }
13805 
13806         /* Verify all funcs on the same port each have a different ovlan. */
13807         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13808             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13809             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13810             /* iterate from the next function on the port to the max func */
13811             for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13812                 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13813                 ovlan2  = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13814                 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13815                     VALID_OVLAN(ovlan1) &&
13816                     !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13817                     VALID_OVLAN(ovlan2) &&
13818                     (ovlan1 == ovlan2)) {
13819                     BLOGE(sc, "mf_mode=SD functions %d and %d "
13820                               "have the same ovlan (%d)\n",
13821                           i, j, ovlan1);
13822                     return (1);
13823                 }
13824             }
13825         }
13826     } /* MULTI_FUNCTION_SD */
13827 
13828     return (0);
13829 }
13830 
13831 static int
13832 bxe_get_mf_cfg_info(struct bxe_softc *sc)
13833 {
13834     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13835     uint32_t val, mac_upper;
13836     uint8_t i, vnic;
13837 
13838     /* initialize mf_info defaults */
13839     mf_info->vnics_per_port   = 1;
13840     mf_info->multi_vnics_mode = FALSE;
13841     mf_info->path_has_ovlan   = FALSE;
13842     mf_info->mf_mode          = SINGLE_FUNCTION;
13843 
13844     if (!CHIP_IS_MF_CAP(sc)) {
13845         return (0);
13846     }
13847 
13848     if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13849         BLOGE(sc, "Invalid mf_cfg_base!\n");
13850         return (1);
13851     }
13852 
13853     /* get the MF mode (switch dependent / independent / single-function) */
13854 
13855     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13856 
13857     switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13858     {
13859     case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13860 
13861         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13862 
13863         /* check for legal upper mac bytes */
13864         if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13865             mf_info->mf_mode = MULTI_FUNCTION_SI;
13866         } else {
13867             BLOGE(sc, "Invalid config for Switch Independent mode\n");
13868         }
13869 
13870         break;
13871 
13872     case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13873     case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13874 
13875         /* get outer vlan configuration */
13876         val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13877 
13878         if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13879             FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13880             mf_info->mf_mode = MULTI_FUNCTION_SD;
13881         } else {
13882             BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13883         }
13884 
13885         break;
13886 
13887     case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13888 
13889         /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13890         return (0);
13891 
13892     case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13893 
13894         /*
13895          * Mark MF mode as NIV if MCP version includes NPAR-SD support
13896          * and the MAC address is valid.
13897          */
13898         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13899 
13900         if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13901             (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13902             mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13903         } else {
13904             BLOGE(sc, "Invalid config for AFEX mode\n");
13905         }
13906 
13907         break;
13908 
13909     default:
13910 
13911         BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13912               (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13913 
13914         return (1);
13915     }
13916 
13917     /* set path mf_mode (which could be different than function mf_mode) */
13918     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13919         mf_info->path_has_ovlan = TRUE;
13920     } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13921         /*
13922          * Decide on path multi vnics mode. If we're not in MF mode and in
13923          * 4-port mode, this is good enough to check vnic-0 of the other port
13924          * on the same path
13925          */
13926         if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13927             uint8_t other_port = !(PORT_ID(sc) & 1);
13928             uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13929 
13930             val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13931 
13932             mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13933         }
13934     }
13935 
13936     if (mf_info->mf_mode == SINGLE_FUNCTION) {
13937         /* invalid MF config */
13938         if (SC_VN(sc) >= 1) {
13939             BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13940             return (1);
13941         }
13942 
13943         return (0);
13944     }
13945 
13946     /* get the MF configuration */
13947     mf_info->mf_config[SC_VN(sc)] =
13948         MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13949 
13950     switch(mf_info->mf_mode)
13951     {
13952     case MULTI_FUNCTION_SD:
13953 
13954         bxe_get_shmem_mf_cfg_info_sd(sc);
13955         break;
13956 
13957     case MULTI_FUNCTION_SI:
13958 
13959         bxe_get_shmem_mf_cfg_info_si(sc);
13960         break;
13961 
13962     case MULTI_FUNCTION_AFEX:
13963 
13964         bxe_get_shmem_mf_cfg_info_niv(sc);
13965         break;
13966 
13967     default:
13968 
13969         BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13970               mf_info->mf_mode);
13971         return (1);
13972     }
13973 
13974     /* get the congestion management parameters */
13975 
13976     vnic = 0;
13977     FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13978         /* get min/max bw */
13979         val = MFCFG_RD(sc, func_mf_config[i].config);
13980         mf_info->min_bw[vnic] =
13981             ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13982         mf_info->max_bw[vnic] =
13983             ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13984         vnic++;
13985     }
13986 
13987     return (bxe_check_valid_mf_cfg(sc));
13988 }
13989 
13990 static int
13991 bxe_get_shmem_info(struct bxe_softc *sc)
13992 {
13993     int port;
13994     uint32_t mac_hi, mac_lo, val;
13995 
13996     port = SC_PORT(sc);
13997     mac_hi = mac_lo = 0;
13998 
13999     sc->link_params.sc   = sc;
14000     sc->link_params.port = port;
14001 
14002     /* get the hardware config info */
14003     sc->devinfo.hw_config =
14004         SHMEM_RD(sc, dev_info.shared_hw_config.config);
14005     sc->devinfo.hw_config2 =
14006         SHMEM_RD(sc, dev_info.shared_hw_config.config2);
14007 
14008     sc->link_params.hw_led_mode =
14009         ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
14010          SHARED_HW_CFG_LED_MODE_SHIFT);
14011 
14012     /* get the port feature config */
14013     sc->port.config =
14014         SHMEM_RD(sc, dev_info.port_feature_config[port].config),
14015 
14016     /* get the link params */
14017     sc->link_params.speed_cap_mask[0] =
14018         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
14019     sc->link_params.speed_cap_mask[1] =
14020         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
14021 
14022     /* get the lane config */
14023     sc->link_params.lane_config =
14024         SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
14025 
14026     /* get the link config */
14027     val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
14028     sc->port.link_config[ELINK_INT_PHY] = val;
14029     sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
14030     sc->port.link_config[ELINK_EXT_PHY1] =
14031         SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
14032 
14033     /* get the override preemphasis flag and enable it or turn it off */
14034     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
14035     if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
14036         sc->link_params.feature_config_flags |=
14037             ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
14038     } else {
14039         sc->link_params.feature_config_flags &=
14040             ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
14041     }
14042 
14043     /* get the initial value of the link params */
14044     sc->link_params.multi_phy_config =
14045         SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
14046 
14047     /* get external phy info */
14048     sc->port.ext_phy_config =
14049         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
14050 
14051     /* get the multifunction configuration */
14052     bxe_get_mf_cfg_info(sc);
14053 
14054     /* get the mac address */
14055     if (IS_MF(sc)) {
14056         mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
14057         mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
14058     } else {
14059         mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
14060         mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
14061     }
14062 
14063     if ((mac_lo == 0) && (mac_hi == 0)) {
14064         *sc->mac_addr_str = 0;
14065         BLOGE(sc, "No Ethernet address programmed!\n");
14066     } else {
14067         sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
14068         sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
14069         sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
14070         sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
14071         sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
14072         sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
14073         snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
14074                  "%02x:%02x:%02x:%02x:%02x:%02x",
14075                  sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
14076                  sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
14077                  sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
14078         BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
14079     }
14080 
14081 #if 0
14082     if (!IS_MF(sc) &&
14083         ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14084          PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE)) {
14085         sc->flags |= BXE_NO_ISCSI;
14086     }
14087     if (!IS_MF(sc) &&
14088         ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14089          PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI)) {
14090         sc->flags |= BXE_NO_FCOE_FLAG;
14091     }
14092 #endif
14093 
14094     return (0);
14095 }
14096 
14097 static void
14098 bxe_get_tunable_params(struct bxe_softc *sc)
14099 {
14100     /* sanity checks */
14101 
14102     if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
14103         (bxe_interrupt_mode != INTR_MODE_MSI)  &&
14104         (bxe_interrupt_mode != INTR_MODE_MSIX)) {
14105         BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
14106         bxe_interrupt_mode = INTR_MODE_MSIX;
14107     }
14108 
14109     if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
14110         BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
14111         bxe_queue_count = 0;
14112     }
14113 
14114     if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
14115         if (bxe_max_rx_bufs == 0) {
14116             bxe_max_rx_bufs = RX_BD_USABLE;
14117         } else {
14118             BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
14119             bxe_max_rx_bufs = 2048;
14120         }
14121     }
14122 
14123     if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
14124         BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
14125         bxe_hc_rx_ticks = 25;
14126     }
14127 
14128     if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
14129         BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
14130         bxe_hc_tx_ticks = 50;
14131     }
14132 
14133     if (bxe_max_aggregation_size == 0) {
14134         bxe_max_aggregation_size = TPA_AGG_SIZE;
14135     }
14136 
14137     if (bxe_max_aggregation_size > 0xffff) {
14138         BLOGW(sc, "invalid max_aggregation_size (%d)\n",
14139               bxe_max_aggregation_size);
14140         bxe_max_aggregation_size = TPA_AGG_SIZE;
14141     }
14142 
14143     if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
14144         BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
14145         bxe_mrrs = -1;
14146     }
14147 
14148     if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
14149         BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
14150         bxe_autogreeen = 0;
14151     }
14152 
14153     if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
14154         BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
14155         bxe_udp_rss = 0;
14156     }
14157 
14158     /* pull in user settings */
14159 
14160     sc->interrupt_mode       = bxe_interrupt_mode;
14161     sc->max_rx_bufs          = bxe_max_rx_bufs;
14162     sc->hc_rx_ticks          = bxe_hc_rx_ticks;
14163     sc->hc_tx_ticks          = bxe_hc_tx_ticks;
14164     sc->max_aggregation_size = bxe_max_aggregation_size;
14165     sc->mrrs                 = bxe_mrrs;
14166     sc->autogreeen           = bxe_autogreeen;
14167     sc->udp_rss              = bxe_udp_rss;
14168 
14169     if (bxe_interrupt_mode == INTR_MODE_INTX) {
14170         sc->num_queues = 1;
14171     } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
14172         sc->num_queues =
14173             min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
14174                 MAX_RSS_CHAINS);
14175         if (sc->num_queues > mp_ncpus) {
14176             sc->num_queues = mp_ncpus;
14177         }
14178     }
14179 
14180     BLOGD(sc, DBG_LOAD,
14181           "User Config: "
14182           "debug=0x%lx "
14183           "interrupt_mode=%d "
14184           "queue_count=%d "
14185           "hc_rx_ticks=%d "
14186           "hc_tx_ticks=%d "
14187           "rx_budget=%d "
14188           "max_aggregation_size=%d "
14189           "mrrs=%d "
14190           "autogreeen=%d "
14191           "udp_rss=%d\n",
14192           bxe_debug,
14193           sc->interrupt_mode,
14194           sc->num_queues,
14195           sc->hc_rx_ticks,
14196           sc->hc_tx_ticks,
14197           bxe_rx_budget,
14198           sc->max_aggregation_size,
14199           sc->mrrs,
14200           sc->autogreeen,
14201           sc->udp_rss);
14202 }
14203 
14204 static void
14205 bxe_media_detect(struct bxe_softc *sc)
14206 {
14207     uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
14208     switch (sc->link_params.phy[phy_idx].media_type) {
14209     case ELINK_ETH_PHY_SFPP_10G_FIBER:
14210     case ELINK_ETH_PHY_XFP_FIBER:
14211         BLOGI(sc, "Found 10Gb Fiber media.\n");
14212         sc->media = IFM_10G_SR;
14213         break;
14214     case ELINK_ETH_PHY_SFP_1G_FIBER:
14215         BLOGI(sc, "Found 1Gb Fiber media.\n");
14216         sc->media = IFM_1000_SX;
14217         break;
14218     case ELINK_ETH_PHY_KR:
14219     case ELINK_ETH_PHY_CX4:
14220         BLOGI(sc, "Found 10GBase-CX4 media.\n");
14221         sc->media = IFM_10G_CX4;
14222         break;
14223     case ELINK_ETH_PHY_DA_TWINAX:
14224         BLOGI(sc, "Found 10Gb Twinax media.\n");
14225         sc->media = IFM_10G_TWINAX;
14226         break;
14227     case ELINK_ETH_PHY_BASE_T:
14228         if (sc->link_params.speed_cap_mask[0] &
14229             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
14230             BLOGI(sc, "Found 10GBase-T media.\n");
14231             sc->media = IFM_10G_T;
14232         } else {
14233             BLOGI(sc, "Found 1000Base-T media.\n");
14234             sc->media = IFM_1000_T;
14235         }
14236         break;
14237     case ELINK_ETH_PHY_NOT_PRESENT:
14238         BLOGI(sc, "Media not present.\n");
14239         sc->media = 0;
14240         break;
14241     case ELINK_ETH_PHY_UNSPECIFIED:
14242     default:
14243         BLOGI(sc, "Unknown media!\n");
14244         sc->media = 0;
14245         break;
14246     }
14247 }
14248 
14249 #define GET_FIELD(value, fname)                     \
14250     (((value) & (fname##_MASK)) >> (fname##_SHIFT))
14251 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
14252 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
14253 
14254 static int
14255 bxe_get_igu_cam_info(struct bxe_softc *sc)
14256 {
14257     int pfid = SC_FUNC(sc);
14258     int igu_sb_id;
14259     uint32_t val;
14260     uint8_t fid, igu_sb_cnt = 0;
14261 
14262     sc->igu_base_sb = 0xff;
14263 
14264     if (CHIP_INT_MODE_IS_BC(sc)) {
14265         int vn = SC_VN(sc);
14266         igu_sb_cnt = sc->igu_sb_cnt;
14267         sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
14268                            FP_SB_MAX_E1x);
14269         sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
14270                           (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
14271         return (0);
14272     }
14273 
14274     /* IGU in normal mode - read CAM */
14275     for (igu_sb_id = 0;
14276          igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
14277          igu_sb_id++) {
14278         val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
14279         if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
14280             continue;
14281         }
14282         fid = IGU_FID(val);
14283         if ((fid & IGU_FID_ENCODE_IS_PF)) {
14284             if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
14285                 continue;
14286             }
14287             if (IGU_VEC(val) == 0) {
14288                 /* default status block */
14289                 sc->igu_dsb_id = igu_sb_id;
14290             } else {
14291                 if (sc->igu_base_sb == 0xff) {
14292                     sc->igu_base_sb = igu_sb_id;
14293                 }
14294                 igu_sb_cnt++;
14295             }
14296         }
14297     }
14298 
14299     /*
14300      * Due to new PF resource allocation by MFW T7.4 and above, it's optional
14301      * that number of CAM entries will not be equal to the value advertised in
14302      * PCI. Driver should use the minimal value of both as the actual status
14303      * block count
14304      */
14305     sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
14306 
14307     if (igu_sb_cnt == 0) {
14308         BLOGE(sc, "CAM configuration error\n");
14309         return (-1);
14310     }
14311 
14312     return (0);
14313 }
14314 
14315 /*
14316  * Gather various information from the device config space, the device itself,
14317  * shmem, and the user input.
14318  */
14319 static int
14320 bxe_get_device_info(struct bxe_softc *sc)
14321 {
14322     uint32_t val;
14323     int rc;
14324 
14325     /* Get the data for the device */
14326     sc->devinfo.vendor_id    = pci_get_vendor(sc->dev);
14327     sc->devinfo.device_id    = pci_get_device(sc->dev);
14328     sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
14329     sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
14330 
14331     /* get the chip revision (chip metal comes from pci config space) */
14332     sc->devinfo.chip_id     =
14333     sc->link_params.chip_id =
14334         (((REG_RD(sc, MISC_REG_CHIP_NUM)                   & 0xffff) << 16) |
14335          ((REG_RD(sc, MISC_REG_CHIP_REV)                   & 0xf)    << 12) |
14336          (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf)    << 4)  |
14337          ((REG_RD(sc, MISC_REG_BOND_ID)                    & 0xf)    << 0));
14338 
14339     /* force 57811 according to MISC register */
14340     if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
14341         if (CHIP_IS_57810(sc)) {
14342             sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
14343                                    (sc->devinfo.chip_id & 0x0000ffff));
14344         } else if (CHIP_IS_57810_MF(sc)) {
14345             sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
14346                                    (sc->devinfo.chip_id & 0x0000ffff));
14347         }
14348         sc->devinfo.chip_id |= 0x1;
14349     }
14350 
14351     BLOGD(sc, DBG_LOAD,
14352           "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
14353           sc->devinfo.chip_id,
14354           ((sc->devinfo.chip_id >> 16) & 0xffff),
14355           ((sc->devinfo.chip_id >> 12) & 0xf),
14356           ((sc->devinfo.chip_id >>  4) & 0xff),
14357           ((sc->devinfo.chip_id >>  0) & 0xf));
14358 
14359     val = (REG_RD(sc, 0x2874) & 0x55);
14360     if ((sc->devinfo.chip_id & 0x1) ||
14361         (CHIP_IS_E1(sc) && val) ||
14362         (CHIP_IS_E1H(sc) && (val == 0x55))) {
14363         sc->flags |= BXE_ONE_PORT_FLAG;
14364         BLOGD(sc, DBG_LOAD, "single port device\n");
14365     }
14366 
14367     /* set the doorbell size */
14368     sc->doorbell_size = (1 << BXE_DB_SHIFT);
14369 
14370     /* determine whether the device is in 2 port or 4 port mode */
14371     sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
14372     if (CHIP_IS_E2E3(sc)) {
14373         /*
14374          * Read port4mode_en_ovwr[0]:
14375          *   If 1, four port mode is in port4mode_en_ovwr[1].
14376          *   If 0, four port mode is in port4mode_en[0].
14377          */
14378         val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
14379         if (val & 1) {
14380             val = ((val >> 1) & 1);
14381         } else {
14382             val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
14383         }
14384 
14385         sc->devinfo.chip_port_mode =
14386             (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
14387 
14388         BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
14389     }
14390 
14391     /* get the function and path info for the device */
14392     bxe_get_function_num(sc);
14393 
14394     /* get the shared memory base address */
14395     sc->devinfo.shmem_base     =
14396     sc->link_params.shmem_base =
14397         REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
14398     sc->devinfo.shmem2_base =
14399         REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
14400                                   MISC_REG_GENERIC_CR_0));
14401 
14402     BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
14403           sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
14404 
14405     if (!sc->devinfo.shmem_base) {
14406         /* this should ONLY prevent upcoming shmem reads */
14407         BLOGI(sc, "MCP not active\n");
14408         sc->flags |= BXE_NO_MCP_FLAG;
14409         return (0);
14410     }
14411 
14412     /* make sure the shared memory contents are valid */
14413     val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
14414     if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
14415         (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
14416         BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
14417         return (0);
14418     }
14419     BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
14420 
14421     /* get the bootcode version */
14422     sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
14423     snprintf(sc->devinfo.bc_ver_str,
14424              sizeof(sc->devinfo.bc_ver_str),
14425              "%d.%d.%d",
14426              ((sc->devinfo.bc_ver >> 24) & 0xff),
14427              ((sc->devinfo.bc_ver >> 16) & 0xff),
14428              ((sc->devinfo.bc_ver >>  8) & 0xff));
14429     BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
14430 
14431     /* get the bootcode shmem address */
14432     sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
14433     BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
14434 
14435     /* clean indirect addresses as they're not used */
14436     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
14437     if (IS_PF(sc)) {
14438         REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
14439         REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
14440         REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
14441         REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
14442         if (CHIP_IS_E1x(sc)) {
14443             REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
14444             REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
14445             REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
14446             REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
14447         }
14448 
14449         /*
14450          * Enable internal target-read (in case we are probed after PF
14451          * FLR). Must be done prior to any BAR read access. Only for
14452          * 57712 and up
14453          */
14454         if (!CHIP_IS_E1x(sc)) {
14455             REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
14456         }
14457     }
14458 
14459     /* get the nvram size */
14460     val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
14461     sc->devinfo.flash_size =
14462         (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
14463     BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
14464 
14465     /* get PCI capabilites */
14466     bxe_probe_pci_caps(sc);
14467 
14468     bxe_set_power_state(sc, PCI_PM_D0);
14469 
14470     /* get various configuration parameters from shmem */
14471     bxe_get_shmem_info(sc);
14472 
14473     if (sc->devinfo.pcie_msix_cap_reg != 0) {
14474         val = pci_read_config(sc->dev,
14475                               (sc->devinfo.pcie_msix_cap_reg +
14476                                PCIR_MSIX_CTRL),
14477                               2);
14478         sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
14479     } else {
14480         sc->igu_sb_cnt = 1;
14481     }
14482 
14483     sc->igu_base_addr = BAR_IGU_INTMEM;
14484 
14485     /* initialize IGU parameters */
14486     if (CHIP_IS_E1x(sc)) {
14487         sc->devinfo.int_block = INT_BLOCK_HC;
14488         sc->igu_dsb_id = DEF_SB_IGU_ID;
14489         sc->igu_base_sb = 0;
14490     } else {
14491         sc->devinfo.int_block = INT_BLOCK_IGU;
14492 
14493         /* do not allow device reset during IGU info preocessing */
14494         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14495 
14496         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
14497 
14498         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14499             int tout = 5000;
14500 
14501             BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
14502 
14503             val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
14504             REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
14505             REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
14506 
14507             while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14508                 tout--;
14509                 DELAY(1000);
14510             }
14511 
14512             if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14513                 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
14514                 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14515                 return (-1);
14516             }
14517         }
14518 
14519         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14520             BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
14521             sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
14522         } else {
14523             BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
14524         }
14525 
14526         rc = bxe_get_igu_cam_info(sc);
14527 
14528         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14529 
14530         if (rc) {
14531             return (rc);
14532         }
14533     }
14534 
14535     /*
14536      * Get base FW non-default (fast path) status block ID. This value is
14537      * used to initialize the fw_sb_id saved on the fp/queue structure to
14538      * determine the id used by the FW.
14539      */
14540     if (CHIP_IS_E1x(sc)) {
14541         sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
14542     } else {
14543         /*
14544          * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
14545          * the same queue are indicated on the same IGU SB). So we prefer
14546          * FW and IGU SBs to be the same value.
14547          */
14548         sc->base_fw_ndsb = sc->igu_base_sb;
14549     }
14550 
14551     BLOGD(sc, DBG_LOAD,
14552           "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
14553           sc->igu_dsb_id, sc->igu_base_sb,
14554           sc->igu_sb_cnt, sc->base_fw_ndsb);
14555 
14556     elink_phy_probe(&sc->link_params);
14557 
14558     return (0);
14559 }
14560 
14561 static void
14562 bxe_link_settings_supported(struct bxe_softc *sc,
14563                             uint32_t         switch_cfg)
14564 {
14565     uint32_t cfg_size = 0;
14566     uint32_t idx;
14567     uint8_t port = SC_PORT(sc);
14568 
14569     /* aggregation of supported attributes of all external phys */
14570     sc->port.supported[0] = 0;
14571     sc->port.supported[1] = 0;
14572 
14573     switch (sc->link_params.num_phys) {
14574     case 1:
14575         sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
14576         cfg_size = 1;
14577         break;
14578     case 2:
14579         sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
14580         cfg_size = 1;
14581         break;
14582     case 3:
14583         if (sc->link_params.multi_phy_config &
14584             PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
14585             sc->port.supported[1] =
14586                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
14587             sc->port.supported[0] =
14588                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
14589         } else {
14590             sc->port.supported[0] =
14591                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
14592             sc->port.supported[1] =
14593                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
14594         }
14595         cfg_size = 2;
14596         break;
14597     }
14598 
14599     if (!(sc->port.supported[0] || sc->port.supported[1])) {
14600         BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
14601               SHMEM_RD(sc,
14602                        dev_info.port_hw_config[port].external_phy_config),
14603               SHMEM_RD(sc,
14604                        dev_info.port_hw_config[port].external_phy_config2));
14605         return;
14606     }
14607 
14608     if (CHIP_IS_E3(sc))
14609         sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
14610     else {
14611         switch (switch_cfg) {
14612         case ELINK_SWITCH_CFG_1G:
14613             sc->port.phy_addr =
14614                 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
14615             break;
14616         case ELINK_SWITCH_CFG_10G:
14617             sc->port.phy_addr =
14618                 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
14619             break;
14620         default:
14621             BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
14622                   sc->port.link_config[0]);
14623             return;
14624         }
14625     }
14626 
14627     BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
14628 
14629     /* mask what we support according to speed_cap_mask per configuration */
14630     for (idx = 0; idx < cfg_size; idx++) {
14631         if (!(sc->link_params.speed_cap_mask[idx] &
14632               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
14633             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
14634         }
14635 
14636         if (!(sc->link_params.speed_cap_mask[idx] &
14637               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
14638             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
14639         }
14640 
14641         if (!(sc->link_params.speed_cap_mask[idx] &
14642               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
14643             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
14644         }
14645 
14646         if (!(sc->link_params.speed_cap_mask[idx] &
14647               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
14648             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
14649         }
14650 
14651         if (!(sc->link_params.speed_cap_mask[idx] &
14652               PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
14653             sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
14654         }
14655 
14656         if (!(sc->link_params.speed_cap_mask[idx] &
14657               PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
14658             sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
14659         }
14660 
14661         if (!(sc->link_params.speed_cap_mask[idx] &
14662               PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
14663             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
14664         }
14665 
14666         if (!(sc->link_params.speed_cap_mask[idx] &
14667               PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
14668             sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
14669         }
14670     }
14671 
14672     BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
14673           sc->port.supported[0], sc->port.supported[1]);
14674 }
14675 
14676 static void
14677 bxe_link_settings_requested(struct bxe_softc *sc)
14678 {
14679     uint32_t link_config;
14680     uint32_t idx;
14681     uint32_t cfg_size = 0;
14682 
14683     sc->port.advertising[0] = 0;
14684     sc->port.advertising[1] = 0;
14685 
14686     switch (sc->link_params.num_phys) {
14687     case 1:
14688     case 2:
14689         cfg_size = 1;
14690         break;
14691     case 3:
14692         cfg_size = 2;
14693         break;
14694     }
14695 
14696     for (idx = 0; idx < cfg_size; idx++) {
14697         sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14698         link_config = sc->port.link_config[idx];
14699 
14700         switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14701         case PORT_FEATURE_LINK_SPEED_AUTO:
14702             if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14703                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14704                 sc->port.advertising[idx] |= sc->port.supported[idx];
14705                 if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14706                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14707                     sc->port.advertising[idx] |=
14708                         (ELINK_SUPPORTED_100baseT_Half |
14709                          ELINK_SUPPORTED_100baseT_Full);
14710             } else {
14711                 /* force 10G, no AN */
14712                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14713                 sc->port.advertising[idx] |=
14714                     (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14715                 continue;
14716             }
14717             break;
14718 
14719         case PORT_FEATURE_LINK_SPEED_10M_FULL:
14720             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14721                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14722                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14723                                               ADVERTISED_TP);
14724             } else {
14725                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14726                           "speed_cap_mask=0x%08x\n",
14727                       link_config, sc->link_params.speed_cap_mask[idx]);
14728                 return;
14729             }
14730             break;
14731 
14732         case PORT_FEATURE_LINK_SPEED_10M_HALF:
14733             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14734                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14735                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14736                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14737                                               ADVERTISED_TP);
14738             } else {
14739                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14740                           "speed_cap_mask=0x%08x\n",
14741                       link_config, sc->link_params.speed_cap_mask[idx]);
14742                 return;
14743             }
14744             break;
14745 
14746         case PORT_FEATURE_LINK_SPEED_100M_FULL:
14747             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14748                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14749                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14750                                               ADVERTISED_TP);
14751             } else {
14752                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14753                           "speed_cap_mask=0x%08x\n",
14754                       link_config, sc->link_params.speed_cap_mask[idx]);
14755                 return;
14756             }
14757             break;
14758 
14759         case PORT_FEATURE_LINK_SPEED_100M_HALF:
14760             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14761                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14762                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14763                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14764                                               ADVERTISED_TP);
14765             } else {
14766                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14767                           "speed_cap_mask=0x%08x\n",
14768                       link_config, sc->link_params.speed_cap_mask[idx]);
14769                 return;
14770             }
14771             break;
14772 
14773         case PORT_FEATURE_LINK_SPEED_1G:
14774             if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14775                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14776                 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14777                                               ADVERTISED_TP);
14778             } else {
14779                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14780                           "speed_cap_mask=0x%08x\n",
14781                       link_config, sc->link_params.speed_cap_mask[idx]);
14782                 return;
14783             }
14784             break;
14785 
14786         case PORT_FEATURE_LINK_SPEED_2_5G:
14787             if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14788                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14789                 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14790                                               ADVERTISED_TP);
14791             } else {
14792                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14793                           "speed_cap_mask=0x%08x\n",
14794                       link_config, sc->link_params.speed_cap_mask[idx]);
14795                 return;
14796             }
14797             break;
14798 
14799         case PORT_FEATURE_LINK_SPEED_10G_CX4:
14800             if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14801                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14802                 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14803                                               ADVERTISED_FIBRE);
14804             } else {
14805                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14806                           "speed_cap_mask=0x%08x\n",
14807                       link_config, sc->link_params.speed_cap_mask[idx]);
14808                 return;
14809             }
14810             break;
14811 
14812         case PORT_FEATURE_LINK_SPEED_20G:
14813             sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14814             break;
14815 
14816         default:
14817             BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14818                       "speed_cap_mask=0x%08x\n",
14819                   link_config, sc->link_params.speed_cap_mask[idx]);
14820             sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14821             sc->port.advertising[idx] = sc->port.supported[idx];
14822             break;
14823         }
14824 
14825         sc->link_params.req_flow_ctrl[idx] =
14826             (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14827 
14828         if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14829             if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14830                 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14831             } else {
14832                 bxe_set_requested_fc(sc);
14833             }
14834         }
14835 
14836         BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14837                             "req_flow_ctrl=0x%x advertising=0x%x\n",
14838               sc->link_params.req_line_speed[idx],
14839               sc->link_params.req_duplex[idx],
14840               sc->link_params.req_flow_ctrl[idx],
14841               sc->port.advertising[idx]);
14842     }
14843 }
14844 
14845 static void
14846 bxe_get_phy_info(struct bxe_softc *sc)
14847 {
14848     uint8_t port = SC_PORT(sc);
14849     uint32_t config = sc->port.config;
14850     uint32_t eee_mode;
14851 
14852     /* shmem data already read in bxe_get_shmem_info() */
14853 
14854     BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14855                         "link_config0=0x%08x\n",
14856                sc->link_params.lane_config,
14857                sc->link_params.speed_cap_mask[0],
14858                sc->port.link_config[0]);
14859 
14860     bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14861     bxe_link_settings_requested(sc);
14862 
14863     if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14864         sc->link_params.feature_config_flags |=
14865             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14866     } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14867         sc->link_params.feature_config_flags &=
14868             ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14869     } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14870         sc->link_params.feature_config_flags |=
14871             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14872     }
14873 
14874     /* configure link feature according to nvram value */
14875     eee_mode =
14876         (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14877           PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14878          PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14879     if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14880         sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14881                                     ELINK_EEE_MODE_ENABLE_LPI |
14882                                     ELINK_EEE_MODE_OUTPUT_TIME);
14883     } else {
14884         sc->link_params.eee_mode = 0;
14885     }
14886 
14887     /* get the media type */
14888     bxe_media_detect(sc);
14889 }
14890 
14891 static void
14892 bxe_get_params(struct bxe_softc *sc)
14893 {
14894     /* get user tunable params */
14895     bxe_get_tunable_params(sc);
14896 
14897     /* select the RX and TX ring sizes */
14898     sc->tx_ring_size = TX_BD_USABLE;
14899     sc->rx_ring_size = RX_BD_USABLE;
14900 
14901     /* XXX disable WoL */
14902     sc->wol = 0;
14903 }
14904 
14905 static void
14906 bxe_set_modes_bitmap(struct bxe_softc *sc)
14907 {
14908     uint32_t flags = 0;
14909 
14910     if (CHIP_REV_IS_FPGA(sc)) {
14911         SET_FLAGS(flags, MODE_FPGA);
14912     } else if (CHIP_REV_IS_EMUL(sc)) {
14913         SET_FLAGS(flags, MODE_EMUL);
14914     } else {
14915         SET_FLAGS(flags, MODE_ASIC);
14916     }
14917 
14918     if (CHIP_IS_MODE_4_PORT(sc)) {
14919         SET_FLAGS(flags, MODE_PORT4);
14920     } else {
14921         SET_FLAGS(flags, MODE_PORT2);
14922     }
14923 
14924     if (CHIP_IS_E2(sc)) {
14925         SET_FLAGS(flags, MODE_E2);
14926     } else if (CHIP_IS_E3(sc)) {
14927         SET_FLAGS(flags, MODE_E3);
14928         if (CHIP_REV(sc) == CHIP_REV_Ax) {
14929             SET_FLAGS(flags, MODE_E3_A0);
14930         } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14931             SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14932         }
14933     }
14934 
14935     if (IS_MF(sc)) {
14936         SET_FLAGS(flags, MODE_MF);
14937         switch (sc->devinfo.mf_info.mf_mode) {
14938         case MULTI_FUNCTION_SD:
14939             SET_FLAGS(flags, MODE_MF_SD);
14940             break;
14941         case MULTI_FUNCTION_SI:
14942             SET_FLAGS(flags, MODE_MF_SI);
14943             break;
14944         case MULTI_FUNCTION_AFEX:
14945             SET_FLAGS(flags, MODE_MF_AFEX);
14946             break;
14947         }
14948     } else {
14949         SET_FLAGS(flags, MODE_SF);
14950     }
14951 
14952 #if defined(__LITTLE_ENDIAN)
14953     SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14954 #else /* __BIG_ENDIAN */
14955     SET_FLAGS(flags, MODE_BIG_ENDIAN);
14956 #endif
14957 
14958     INIT_MODE_FLAGS(sc) = flags;
14959 }
14960 
14961 static int
14962 bxe_alloc_hsi_mem(struct bxe_softc *sc)
14963 {
14964     struct bxe_fastpath *fp;
14965     bus_addr_t busaddr;
14966     int max_agg_queues;
14967     int max_segments;
14968     bus_size_t max_size;
14969     bus_size_t max_seg_size;
14970     char buf[32];
14971     int rc;
14972     int i, j;
14973 
14974     /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14975 
14976     /* allocate the parent bus DMA tag */
14977     rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14978                             1,                        /* alignment */
14979                             0,                        /* boundary limit */
14980                             BUS_SPACE_MAXADDR,        /* restricted low */
14981                             BUS_SPACE_MAXADDR,        /* restricted hi */
14982                             NULL,                     /* addr filter() */
14983                             NULL,                     /* addr filter() arg */
14984                             BUS_SPACE_MAXSIZE_32BIT,  /* max map size */
14985                             BUS_SPACE_UNRESTRICTED,   /* num discontinuous */
14986                             BUS_SPACE_MAXSIZE_32BIT,  /* max seg size */
14987                             0,                        /* flags */
14988                             NULL,                     /* lock() */
14989                             NULL,                     /* lock() arg */
14990                             &sc->parent_dma_tag);     /* returned dma tag */
14991     if (rc != 0) {
14992         BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14993         return (1);
14994     }
14995 
14996     /************************/
14997     /* DEFAULT STATUS BLOCK */
14998     /************************/
14999 
15000     if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
15001                       &sc->def_sb_dma, "default status block") != 0) {
15002         /* XXX */
15003         bus_dma_tag_destroy(sc->parent_dma_tag);
15004         return (1);
15005     }
15006 
15007     sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
15008 
15009     /***************/
15010     /* EVENT QUEUE */
15011     /***************/
15012 
15013     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
15014                       &sc->eq_dma, "event queue") != 0) {
15015         /* XXX */
15016         bxe_dma_free(sc, &sc->def_sb_dma);
15017         sc->def_sb = NULL;
15018         bus_dma_tag_destroy(sc->parent_dma_tag);
15019         return (1);
15020     }
15021 
15022     sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
15023 
15024     /*************/
15025     /* SLOW PATH */
15026     /*************/
15027 
15028     if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
15029                       &sc->sp_dma, "slow path") != 0) {
15030         /* XXX */
15031         bxe_dma_free(sc, &sc->eq_dma);
15032         sc->eq = NULL;
15033         bxe_dma_free(sc, &sc->def_sb_dma);
15034         sc->def_sb = NULL;
15035         bus_dma_tag_destroy(sc->parent_dma_tag);
15036         return (1);
15037     }
15038 
15039     sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
15040 
15041     /*******************/
15042     /* SLOW PATH QUEUE */
15043     /*******************/
15044 
15045     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
15046                       &sc->spq_dma, "slow path queue") != 0) {
15047         /* XXX */
15048         bxe_dma_free(sc, &sc->sp_dma);
15049         sc->sp = NULL;
15050         bxe_dma_free(sc, &sc->eq_dma);
15051         sc->eq = NULL;
15052         bxe_dma_free(sc, &sc->def_sb_dma);
15053         sc->def_sb = NULL;
15054         bus_dma_tag_destroy(sc->parent_dma_tag);
15055         return (1);
15056     }
15057 
15058     sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
15059 
15060     /***************************/
15061     /* FW DECOMPRESSION BUFFER */
15062     /***************************/
15063 
15064     if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
15065                       "fw decompression buffer") != 0) {
15066         /* XXX */
15067         bxe_dma_free(sc, &sc->spq_dma);
15068         sc->spq = NULL;
15069         bxe_dma_free(sc, &sc->sp_dma);
15070         sc->sp = NULL;
15071         bxe_dma_free(sc, &sc->eq_dma);
15072         sc->eq = NULL;
15073         bxe_dma_free(sc, &sc->def_sb_dma);
15074         sc->def_sb = NULL;
15075         bus_dma_tag_destroy(sc->parent_dma_tag);
15076         return (1);
15077     }
15078 
15079     sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
15080 
15081     if ((sc->gz_strm =
15082          malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
15083         /* XXX */
15084         bxe_dma_free(sc, &sc->gz_buf_dma);
15085         sc->gz_buf = NULL;
15086         bxe_dma_free(sc, &sc->spq_dma);
15087         sc->spq = NULL;
15088         bxe_dma_free(sc, &sc->sp_dma);
15089         sc->sp = NULL;
15090         bxe_dma_free(sc, &sc->eq_dma);
15091         sc->eq = NULL;
15092         bxe_dma_free(sc, &sc->def_sb_dma);
15093         sc->def_sb = NULL;
15094         bus_dma_tag_destroy(sc->parent_dma_tag);
15095         return (1);
15096     }
15097 
15098     /*************/
15099     /* FASTPATHS */
15100     /*************/
15101 
15102     /* allocate DMA memory for each fastpath structure */
15103     for (i = 0; i < sc->num_queues; i++) {
15104         fp = &sc->fp[i];
15105         fp->sc    = sc;
15106         fp->index = i;
15107 
15108         /*******************/
15109         /* FP STATUS BLOCK */
15110         /*******************/
15111 
15112         snprintf(buf, sizeof(buf), "fp %d status block", i);
15113         if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
15114                           &fp->sb_dma, buf) != 0) {
15115             /* XXX unwind and free previous fastpath allocations */
15116             BLOGE(sc, "Failed to alloc %s\n", buf);
15117             return (1);
15118         } else {
15119             if (CHIP_IS_E2E3(sc)) {
15120                 fp->status_block.e2_sb =
15121                     (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
15122             } else {
15123                 fp->status_block.e1x_sb =
15124                     (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
15125             }
15126         }
15127 
15128         /******************/
15129         /* FP TX BD CHAIN */
15130         /******************/
15131 
15132         snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
15133         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
15134                           &fp->tx_dma, buf) != 0) {
15135             /* XXX unwind and free previous fastpath allocations */
15136             BLOGE(sc, "Failed to alloc %s\n", buf);
15137             return (1);
15138         } else {
15139             fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
15140         }
15141 
15142         /* link together the tx bd chain pages */
15143         for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
15144             /* index into the tx bd chain array to last entry per page */
15145             struct eth_tx_next_bd *tx_next_bd =
15146                 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
15147             /* point to the next page and wrap from last page */
15148             busaddr = (fp->tx_dma.paddr +
15149                        (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
15150             tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
15151             tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
15152         }
15153 
15154         /******************/
15155         /* FP RX BD CHAIN */
15156         /******************/
15157 
15158         snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
15159         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
15160                           &fp->rx_dma, buf) != 0) {
15161             /* XXX unwind and free previous fastpath allocations */
15162             BLOGE(sc, "Failed to alloc %s\n", buf);
15163             return (1);
15164         } else {
15165             fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
15166         }
15167 
15168         /* link together the rx bd chain pages */
15169         for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
15170             /* index into the rx bd chain array to last entry per page */
15171             struct eth_rx_bd *rx_bd =
15172                 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
15173             /* point to the next page and wrap from last page */
15174             busaddr = (fp->rx_dma.paddr +
15175                        (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
15176             rx_bd->addr_hi = htole32(U64_HI(busaddr));
15177             rx_bd->addr_lo = htole32(U64_LO(busaddr));
15178         }
15179 
15180         /*******************/
15181         /* FP RX RCQ CHAIN */
15182         /*******************/
15183 
15184         snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
15185         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
15186                           &fp->rcq_dma, buf) != 0) {
15187             /* XXX unwind and free previous fastpath allocations */
15188             BLOGE(sc, "Failed to alloc %s\n", buf);
15189             return (1);
15190         } else {
15191             fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
15192         }
15193 
15194         /* link together the rcq chain pages */
15195         for (j = 1; j <= RCQ_NUM_PAGES; j++) {
15196             /* index into the rcq chain array to last entry per page */
15197             struct eth_rx_cqe_next_page *rx_cqe_next =
15198                 (struct eth_rx_cqe_next_page *)
15199                 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
15200             /* point to the next page and wrap from last page */
15201             busaddr = (fp->rcq_dma.paddr +
15202                        (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
15203             rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
15204             rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
15205         }
15206 
15207         /*******************/
15208         /* FP RX SGE CHAIN */
15209         /*******************/
15210 
15211         snprintf(buf, sizeof(buf), "fp %d sge chain", i);
15212         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
15213                           &fp->rx_sge_dma, buf) != 0) {
15214             /* XXX unwind and free previous fastpath allocations */
15215             BLOGE(sc, "Failed to alloc %s\n", buf);
15216             return (1);
15217         } else {
15218             fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
15219         }
15220 
15221         /* link together the sge chain pages */
15222         for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
15223             /* index into the rcq chain array to last entry per page */
15224             struct eth_rx_sge *rx_sge =
15225                 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
15226             /* point to the next page and wrap from last page */
15227             busaddr = (fp->rx_sge_dma.paddr +
15228                        (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
15229             rx_sge->addr_hi = htole32(U64_HI(busaddr));
15230             rx_sge->addr_lo = htole32(U64_LO(busaddr));
15231         }
15232 
15233         /***********************/
15234         /* FP TX MBUF DMA MAPS */
15235         /***********************/
15236 
15237         /* set required sizes before mapping to conserve resources */
15238         if (sc->ifnet->if_capenable & (IFCAP_TSO4 | IFCAP_TSO6)) {
15239             max_size     = BXE_TSO_MAX_SIZE;
15240             max_segments = BXE_TSO_MAX_SEGMENTS;
15241             max_seg_size = BXE_TSO_MAX_SEG_SIZE;
15242         } else {
15243             max_size     = (MCLBYTES * BXE_MAX_SEGMENTS);
15244             max_segments = BXE_MAX_SEGMENTS;
15245             max_seg_size = MCLBYTES;
15246         }
15247 
15248         /* create a dma tag for the tx mbufs */
15249         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15250                                 1,                  /* alignment */
15251                                 0,                  /* boundary limit */
15252                                 BUS_SPACE_MAXADDR,  /* restricted low */
15253                                 BUS_SPACE_MAXADDR,  /* restricted hi */
15254                                 NULL,               /* addr filter() */
15255                                 NULL,               /* addr filter() arg */
15256                                 max_size,           /* max map size */
15257                                 max_segments,       /* num discontinuous */
15258                                 max_seg_size,       /* max seg size */
15259                                 0,                  /* flags */
15260                                 NULL,               /* lock() */
15261                                 NULL,               /* lock() arg */
15262                                 &fp->tx_mbuf_tag);  /* returned dma tag */
15263         if (rc != 0) {
15264             /* XXX unwind and free previous fastpath allocations */
15265             BLOGE(sc, "Failed to create dma tag for "
15266                       "'fp %d tx mbufs' (%d)\n",
15267                   i, rc);
15268             return (1);
15269         }
15270 
15271         /* create dma maps for each of the tx mbuf clusters */
15272         for (j = 0; j < TX_BD_TOTAL; j++) {
15273             if (bus_dmamap_create(fp->tx_mbuf_tag,
15274                                   BUS_DMA_NOWAIT,
15275                                   &fp->tx_mbuf_chain[j].m_map)) {
15276                 /* XXX unwind and free previous fastpath allocations */
15277                 BLOGE(sc, "Failed to create dma map for "
15278                           "'fp %d tx mbuf %d' (%d)\n",
15279                       i, j, rc);
15280                 return (1);
15281             }
15282         }
15283 
15284         /***********************/
15285         /* FP RX MBUF DMA MAPS */
15286         /***********************/
15287 
15288         /* create a dma tag for the rx mbufs */
15289         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15290                                 1,                  /* alignment */
15291                                 0,                  /* boundary limit */
15292                                 BUS_SPACE_MAXADDR,  /* restricted low */
15293                                 BUS_SPACE_MAXADDR,  /* restricted hi */
15294                                 NULL,               /* addr filter() */
15295                                 NULL,               /* addr filter() arg */
15296                                 MJUM9BYTES,         /* max map size */
15297                                 1,                  /* num discontinuous */
15298                                 MJUM9BYTES,         /* max seg size */
15299                                 0,                  /* flags */
15300                                 NULL,               /* lock() */
15301                                 NULL,               /* lock() arg */
15302                                 &fp->rx_mbuf_tag);  /* returned dma tag */
15303         if (rc != 0) {
15304             /* XXX unwind and free previous fastpath allocations */
15305             BLOGE(sc, "Failed to create dma tag for "
15306                       "'fp %d rx mbufs' (%d)\n",
15307                   i, rc);
15308             return (1);
15309         }
15310 
15311         /* create dma maps for each of the rx mbuf clusters */
15312         for (j = 0; j < RX_BD_TOTAL; j++) {
15313             if (bus_dmamap_create(fp->rx_mbuf_tag,
15314                                   BUS_DMA_NOWAIT,
15315                                   &fp->rx_mbuf_chain[j].m_map)) {
15316                 /* XXX unwind and free previous fastpath allocations */
15317                 BLOGE(sc, "Failed to create dma map for "
15318                           "'fp %d rx mbuf %d' (%d)\n",
15319                       i, j, rc);
15320                 return (1);
15321             }
15322         }
15323 
15324         /* create dma map for the spare rx mbuf cluster */
15325         if (bus_dmamap_create(fp->rx_mbuf_tag,
15326                               BUS_DMA_NOWAIT,
15327                               &fp->rx_mbuf_spare_map)) {
15328             /* XXX unwind and free previous fastpath allocations */
15329             BLOGE(sc, "Failed to create dma map for "
15330                       "'fp %d spare rx mbuf' (%d)\n",
15331                   i, rc);
15332             return (1);
15333         }
15334 
15335         /***************************/
15336         /* FP RX SGE MBUF DMA MAPS */
15337         /***************************/
15338 
15339         /* create a dma tag for the rx sge mbufs */
15340         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15341                                 1,                  /* alignment */
15342                                 0,                  /* boundary limit */
15343                                 BUS_SPACE_MAXADDR,  /* restricted low */
15344                                 BUS_SPACE_MAXADDR,  /* restricted hi */
15345                                 NULL,               /* addr filter() */
15346                                 NULL,               /* addr filter() arg */
15347                                 BCM_PAGE_SIZE,      /* max map size */
15348                                 1,                  /* num discontinuous */
15349                                 BCM_PAGE_SIZE,      /* max seg size */
15350                                 0,                  /* flags */
15351                                 NULL,               /* lock() */
15352                                 NULL,               /* lock() arg */
15353                                 &fp->rx_sge_mbuf_tag); /* returned dma tag */
15354         if (rc != 0) {
15355             /* XXX unwind and free previous fastpath allocations */
15356             BLOGE(sc, "Failed to create dma tag for "
15357                       "'fp %d rx sge mbufs' (%d)\n",
15358                   i, rc);
15359             return (1);
15360         }
15361 
15362         /* create dma maps for the rx sge mbuf clusters */
15363         for (j = 0; j < RX_SGE_TOTAL; j++) {
15364             if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15365                                   BUS_DMA_NOWAIT,
15366                                   &fp->rx_sge_mbuf_chain[j].m_map)) {
15367                 /* XXX unwind and free previous fastpath allocations */
15368                 BLOGE(sc, "Failed to create dma map for "
15369                           "'fp %d rx sge mbuf %d' (%d)\n",
15370                       i, j, rc);
15371                 return (1);
15372             }
15373         }
15374 
15375         /* create dma map for the spare rx sge mbuf cluster */
15376         if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15377                               BUS_DMA_NOWAIT,
15378                               &fp->rx_sge_mbuf_spare_map)) {
15379             /* XXX unwind and free previous fastpath allocations */
15380             BLOGE(sc, "Failed to create dma map for "
15381                       "'fp %d spare rx sge mbuf' (%d)\n",
15382                   i, rc);
15383             return (1);
15384         }
15385 
15386         /***************************/
15387         /* FP RX TPA MBUF DMA MAPS */
15388         /***************************/
15389 
15390         /* create dma maps for the rx tpa mbuf clusters */
15391         max_agg_queues = MAX_AGG_QS(sc);
15392 
15393         for (j = 0; j < max_agg_queues; j++) {
15394             if (bus_dmamap_create(fp->rx_mbuf_tag,
15395                                   BUS_DMA_NOWAIT,
15396                                   &fp->rx_tpa_info[j].bd.m_map)) {
15397                 /* XXX unwind and free previous fastpath allocations */
15398                 BLOGE(sc, "Failed to create dma map for "
15399                           "'fp %d rx tpa mbuf %d' (%d)\n",
15400                       i, j, rc);
15401                 return (1);
15402             }
15403         }
15404 
15405         /* create dma map for the spare rx tpa mbuf cluster */
15406         if (bus_dmamap_create(fp->rx_mbuf_tag,
15407                               BUS_DMA_NOWAIT,
15408                               &fp->rx_tpa_info_mbuf_spare_map)) {
15409             /* XXX unwind and free previous fastpath allocations */
15410             BLOGE(sc, "Failed to create dma map for "
15411                       "'fp %d spare rx tpa mbuf' (%d)\n",
15412                   i, rc);
15413             return (1);
15414         }
15415 
15416         bxe_init_sge_ring_bit_mask(fp);
15417     }
15418 
15419     return (0);
15420 }
15421 
15422 static void
15423 bxe_free_hsi_mem(struct bxe_softc *sc)
15424 {
15425     struct bxe_fastpath *fp;
15426     int max_agg_queues;
15427     int i, j;
15428 
15429     if (sc->parent_dma_tag == NULL) {
15430         return; /* assume nothing was allocated */
15431     }
15432 
15433     for (i = 0; i < sc->num_queues; i++) {
15434         fp = &sc->fp[i];
15435 
15436         /*******************/
15437         /* FP STATUS BLOCK */
15438         /*******************/
15439 
15440         bxe_dma_free(sc, &fp->sb_dma);
15441         memset(&fp->status_block, 0, sizeof(fp->status_block));
15442 
15443         /******************/
15444         /* FP TX BD CHAIN */
15445         /******************/
15446 
15447         bxe_dma_free(sc, &fp->tx_dma);
15448         fp->tx_chain = NULL;
15449 
15450         /******************/
15451         /* FP RX BD CHAIN */
15452         /******************/
15453 
15454         bxe_dma_free(sc, &fp->rx_dma);
15455         fp->rx_chain = NULL;
15456 
15457         /*******************/
15458         /* FP RX RCQ CHAIN */
15459         /*******************/
15460 
15461         bxe_dma_free(sc, &fp->rcq_dma);
15462         fp->rcq_chain = NULL;
15463 
15464         /*******************/
15465         /* FP RX SGE CHAIN */
15466         /*******************/
15467 
15468         bxe_dma_free(sc, &fp->rx_sge_dma);
15469         fp->rx_sge_chain = NULL;
15470 
15471         /***********************/
15472         /* FP TX MBUF DMA MAPS */
15473         /***********************/
15474 
15475         if (fp->tx_mbuf_tag != NULL) {
15476             for (j = 0; j < TX_BD_TOTAL; j++) {
15477                 if (fp->tx_mbuf_chain[j].m_map != NULL) {
15478                     bus_dmamap_unload(fp->tx_mbuf_tag,
15479                                       fp->tx_mbuf_chain[j].m_map);
15480                     bus_dmamap_destroy(fp->tx_mbuf_tag,
15481                                        fp->tx_mbuf_chain[j].m_map);
15482                 }
15483             }
15484 
15485             bus_dma_tag_destroy(fp->tx_mbuf_tag);
15486             fp->tx_mbuf_tag = NULL;
15487         }
15488 
15489         /***********************/
15490         /* FP RX MBUF DMA MAPS */
15491         /***********************/
15492 
15493         if (fp->rx_mbuf_tag != NULL) {
15494             for (j = 0; j < RX_BD_TOTAL; j++) {
15495                 if (fp->rx_mbuf_chain[j].m_map != NULL) {
15496                     bus_dmamap_unload(fp->rx_mbuf_tag,
15497                                       fp->rx_mbuf_chain[j].m_map);
15498                     bus_dmamap_destroy(fp->rx_mbuf_tag,
15499                                        fp->rx_mbuf_chain[j].m_map);
15500                 }
15501             }
15502 
15503             if (fp->rx_mbuf_spare_map != NULL) {
15504                 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15505                 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15506             }
15507 
15508             /***************************/
15509             /* FP RX TPA MBUF DMA MAPS */
15510             /***************************/
15511 
15512             max_agg_queues = MAX_AGG_QS(sc);
15513 
15514             for (j = 0; j < max_agg_queues; j++) {
15515                 if (fp->rx_tpa_info[j].bd.m_map != NULL) {
15516                     bus_dmamap_unload(fp->rx_mbuf_tag,
15517                                       fp->rx_tpa_info[j].bd.m_map);
15518                     bus_dmamap_destroy(fp->rx_mbuf_tag,
15519                                        fp->rx_tpa_info[j].bd.m_map);
15520                 }
15521             }
15522 
15523             if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
15524                 bus_dmamap_unload(fp->rx_mbuf_tag,
15525                                   fp->rx_tpa_info_mbuf_spare_map);
15526                 bus_dmamap_destroy(fp->rx_mbuf_tag,
15527                                    fp->rx_tpa_info_mbuf_spare_map);
15528             }
15529 
15530             bus_dma_tag_destroy(fp->rx_mbuf_tag);
15531             fp->rx_mbuf_tag = NULL;
15532         }
15533 
15534         /***************************/
15535         /* FP RX SGE MBUF DMA MAPS */
15536         /***************************/
15537 
15538         if (fp->rx_sge_mbuf_tag != NULL) {
15539             for (j = 0; j < RX_SGE_TOTAL; j++) {
15540                 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
15541                     bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15542                                       fp->rx_sge_mbuf_chain[j].m_map);
15543                     bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15544                                        fp->rx_sge_mbuf_chain[j].m_map);
15545                 }
15546             }
15547 
15548             if (fp->rx_sge_mbuf_spare_map != NULL) {
15549                 bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15550                                   fp->rx_sge_mbuf_spare_map);
15551                 bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15552                                    fp->rx_sge_mbuf_spare_map);
15553             }
15554 
15555             bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
15556             fp->rx_sge_mbuf_tag = NULL;
15557         }
15558     }
15559 
15560     /***************************/
15561     /* FW DECOMPRESSION BUFFER */
15562     /***************************/
15563 
15564     bxe_dma_free(sc, &sc->gz_buf_dma);
15565     sc->gz_buf = NULL;
15566     free(sc->gz_strm, M_DEVBUF);
15567     sc->gz_strm = NULL;
15568 
15569     /*******************/
15570     /* SLOW PATH QUEUE */
15571     /*******************/
15572 
15573     bxe_dma_free(sc, &sc->spq_dma);
15574     sc->spq = NULL;
15575 
15576     /*************/
15577     /* SLOW PATH */
15578     /*************/
15579 
15580     bxe_dma_free(sc, &sc->sp_dma);
15581     sc->sp = NULL;
15582 
15583     /***************/
15584     /* EVENT QUEUE */
15585     /***************/
15586 
15587     bxe_dma_free(sc, &sc->eq_dma);
15588     sc->eq = NULL;
15589 
15590     /************************/
15591     /* DEFAULT STATUS BLOCK */
15592     /************************/
15593 
15594     bxe_dma_free(sc, &sc->def_sb_dma);
15595     sc->def_sb = NULL;
15596 
15597     bus_dma_tag_destroy(sc->parent_dma_tag);
15598     sc->parent_dma_tag = NULL;
15599 }
15600 
15601 /*
15602  * Previous driver DMAE transaction may have occurred when pre-boot stage
15603  * ended and boot began. This would invalidate the addresses of the
15604  * transaction, resulting in was-error bit set in the PCI causing all
15605  * hw-to-host PCIe transactions to timeout. If this happened we want to clear
15606  * the interrupt which detected this from the pglueb and the was-done bit
15607  */
15608 static void
15609 bxe_prev_interrupted_dmae(struct bxe_softc *sc)
15610 {
15611     uint32_t val;
15612 
15613     if (!CHIP_IS_E1x(sc)) {
15614         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
15615         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
15616             BLOGD(sc, DBG_LOAD,
15617                   "Clearing 'was-error' bit that was set in pglueb");
15618             REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
15619         }
15620     }
15621 }
15622 
15623 static int
15624 bxe_prev_mcp_done(struct bxe_softc *sc)
15625 {
15626     uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
15627                                  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
15628     if (!rc) {
15629         BLOGE(sc, "MCP response failure, aborting\n");
15630         return (-1);
15631     }
15632 
15633     return (0);
15634 }
15635 
15636 static struct bxe_prev_list_node *
15637 bxe_prev_path_get_entry(struct bxe_softc *sc)
15638 {
15639     struct bxe_prev_list_node *tmp;
15640 
15641     LIST_FOREACH(tmp, &bxe_prev_list, node) {
15642         if ((sc->pcie_bus == tmp->bus) &&
15643             (sc->pcie_device == tmp->slot) &&
15644             (SC_PATH(sc) == tmp->path)) {
15645             return (tmp);
15646         }
15647     }
15648 
15649     return (NULL);
15650 }
15651 
15652 static uint8_t
15653 bxe_prev_is_path_marked(struct bxe_softc *sc)
15654 {
15655     struct bxe_prev_list_node *tmp;
15656     int rc = FALSE;
15657 
15658     mtx_lock(&bxe_prev_mtx);
15659 
15660     tmp = bxe_prev_path_get_entry(sc);
15661     if (tmp) {
15662         if (tmp->aer) {
15663             BLOGD(sc, DBG_LOAD,
15664                   "Path %d/%d/%d was marked by AER\n",
15665                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15666         } else {
15667             rc = TRUE;
15668             BLOGD(sc, DBG_LOAD,
15669                   "Path %d/%d/%d was already cleaned from previous drivers\n",
15670                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15671         }
15672     }
15673 
15674     mtx_unlock(&bxe_prev_mtx);
15675 
15676     return (rc);
15677 }
15678 
15679 static int
15680 bxe_prev_mark_path(struct bxe_softc *sc,
15681                    uint8_t          after_undi)
15682 {
15683     struct bxe_prev_list_node *tmp;
15684 
15685     mtx_lock(&bxe_prev_mtx);
15686 
15687     /* Check whether the entry for this path already exists */
15688     tmp = bxe_prev_path_get_entry(sc);
15689     if (tmp) {
15690         if (!tmp->aer) {
15691             BLOGD(sc, DBG_LOAD,
15692                   "Re-marking AER in path %d/%d/%d\n",
15693                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15694         } else {
15695             BLOGD(sc, DBG_LOAD,
15696                   "Removing AER indication from path %d/%d/%d\n",
15697                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15698             tmp->aer = 0;
15699         }
15700 
15701         mtx_unlock(&bxe_prev_mtx);
15702         return (0);
15703     }
15704 
15705     mtx_unlock(&bxe_prev_mtx);
15706 
15707     /* Create an entry for this path and add it */
15708     tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15709                  (M_NOWAIT | M_ZERO));
15710     if (!tmp) {
15711         BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15712         return (-1);
15713     }
15714 
15715     tmp->bus  = sc->pcie_bus;
15716     tmp->slot = sc->pcie_device;
15717     tmp->path = SC_PATH(sc);
15718     tmp->aer  = 0;
15719     tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15720 
15721     mtx_lock(&bxe_prev_mtx);
15722 
15723     BLOGD(sc, DBG_LOAD,
15724           "Marked path %d/%d/%d - finished previous unload\n",
15725           sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15726     LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15727 
15728     mtx_unlock(&bxe_prev_mtx);
15729 
15730     return (0);
15731 }
15732 
15733 static int
15734 bxe_do_flr(struct bxe_softc *sc)
15735 {
15736     int i;
15737 
15738     /* only E2 and onwards support FLR */
15739     if (CHIP_IS_E1x(sc)) {
15740         BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15741         return (-1);
15742     }
15743 
15744     /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15745     if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15746         BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15747               sc->devinfo.bc_ver);
15748         return (-1);
15749     }
15750 
15751     /* Wait for Transaction Pending bit clean */
15752     for (i = 0; i < 4; i++) {
15753         if (i) {
15754             DELAY(((1 << (i - 1)) * 100) * 1000);
15755         }
15756 
15757         if (!bxe_is_pcie_pending(sc)) {
15758             goto clear;
15759         }
15760     }
15761 
15762     BLOGE(sc, "PCIE transaction is not cleared, "
15763               "proceeding with reset anyway\n");
15764 
15765 clear:
15766 
15767     BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15768     bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15769 
15770     return (0);
15771 }
15772 
15773 struct bxe_mac_vals {
15774     uint32_t xmac_addr;
15775     uint32_t xmac_val;
15776     uint32_t emac_addr;
15777     uint32_t emac_val;
15778     uint32_t umac_addr;
15779     uint32_t umac_val;
15780     uint32_t bmac_addr;
15781     uint32_t bmac_val[2];
15782 };
15783 
15784 static void
15785 bxe_prev_unload_close_mac(struct bxe_softc *sc,
15786                           struct bxe_mac_vals *vals)
15787 {
15788     uint32_t val, base_addr, offset, mask, reset_reg;
15789     uint8_t mac_stopped = FALSE;
15790     uint8_t port = SC_PORT(sc);
15791     uint32_t wb_data[2];
15792 
15793     /* reset addresses as they also mark which values were changed */
15794     vals->bmac_addr = 0;
15795     vals->umac_addr = 0;
15796     vals->xmac_addr = 0;
15797     vals->emac_addr = 0;
15798 
15799     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15800 
15801     if (!CHIP_IS_E3(sc)) {
15802         val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15803         mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15804         if ((mask & reset_reg) && val) {
15805             BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15806             base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15807                                     : NIG_REG_INGRESS_BMAC0_MEM;
15808             offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15809                                     : BIGMAC_REGISTER_BMAC_CONTROL;
15810 
15811             /*
15812              * use rd/wr since we cannot use dmae. This is safe
15813              * since MCP won't access the bus due to the request
15814              * to unload, and no function on the path can be
15815              * loaded at this time.
15816              */
15817             wb_data[0] = REG_RD(sc, base_addr + offset);
15818             wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15819             vals->bmac_addr = base_addr + offset;
15820             vals->bmac_val[0] = wb_data[0];
15821             vals->bmac_val[1] = wb_data[1];
15822             wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15823             REG_WR(sc, vals->bmac_addr, wb_data[0]);
15824             REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15825         }
15826 
15827         BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15828         vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15829         vals->emac_val = REG_RD(sc, vals->emac_addr);
15830         REG_WR(sc, vals->emac_addr, 0);
15831         mac_stopped = TRUE;
15832     } else {
15833         if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15834             BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15835             base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15836             val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15837             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15838             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15839             vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15840             vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15841             REG_WR(sc, vals->xmac_addr, 0);
15842             mac_stopped = TRUE;
15843         }
15844 
15845         mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15846         if (mask & reset_reg) {
15847             BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15848             base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15849             vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15850             vals->umac_val = REG_RD(sc, vals->umac_addr);
15851             REG_WR(sc, vals->umac_addr, 0);
15852             mac_stopped = TRUE;
15853         }
15854     }
15855 
15856     if (mac_stopped) {
15857         DELAY(20000);
15858     }
15859 }
15860 
15861 #define BXE_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15862 #define BXE_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
15863 #define BXE_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
15864 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15865 
15866 static void
15867 bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15868                          uint8_t          port,
15869                          uint8_t          inc)
15870 {
15871     uint16_t rcq, bd;
15872     uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15873 
15874     rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15875     bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15876 
15877     tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15878     REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15879 
15880     BLOGD(sc, DBG_LOAD,
15881           "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15882           port, bd, rcq);
15883 }
15884 
15885 static int
15886 bxe_prev_unload_common(struct bxe_softc *sc)
15887 {
15888     uint32_t reset_reg, tmp_reg = 0, rc;
15889     uint8_t prev_undi = FALSE;
15890     struct bxe_mac_vals mac_vals;
15891     uint32_t timer_count = 1000;
15892     uint32_t prev_brb;
15893 
15894     /*
15895      * It is possible a previous function received 'common' answer,
15896      * but hasn't loaded yet, therefore creating a scenario of
15897      * multiple functions receiving 'common' on the same path.
15898      */
15899     BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15900 
15901     memset(&mac_vals, 0, sizeof(mac_vals));
15902 
15903     if (bxe_prev_is_path_marked(sc)) {
15904         return (bxe_prev_mcp_done(sc));
15905     }
15906 
15907     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15908 
15909     /* Reset should be performed after BRB is emptied */
15910     if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15911         /* Close the MAC Rx to prevent BRB from filling up */
15912         bxe_prev_unload_close_mac(sc, &mac_vals);
15913 
15914         /* close LLH filters towards the BRB */
15915         elink_set_rx_filter(&sc->link_params, 0);
15916 
15917         /*
15918          * Check if the UNDI driver was previously loaded.
15919          * UNDI driver initializes CID offset for normal bell to 0x7
15920          */
15921         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15922             tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15923             if (tmp_reg == 0x7) {
15924                 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15925                 prev_undi = TRUE;
15926                 /* clear the UNDI indication */
15927                 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15928                 /* clear possible idle check errors */
15929                 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15930             }
15931         }
15932 
15933         /* wait until BRB is empty */
15934         tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15935         while (timer_count) {
15936             prev_brb = tmp_reg;
15937 
15938             tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15939             if (!tmp_reg) {
15940                 break;
15941             }
15942 
15943             BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15944 
15945             /* reset timer as long as BRB actually gets emptied */
15946             if (prev_brb > tmp_reg) {
15947                 timer_count = 1000;
15948             } else {
15949                 timer_count--;
15950             }
15951 
15952             /* If UNDI resides in memory, manually increment it */
15953             if (prev_undi) {
15954                 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15955             }
15956 
15957             DELAY(10);
15958         }
15959 
15960         if (!timer_count) {
15961             BLOGE(sc, "Failed to empty BRB\n");
15962         }
15963     }
15964 
15965     /* No packets are in the pipeline, path is ready for reset */
15966     bxe_reset_common(sc);
15967 
15968     if (mac_vals.xmac_addr) {
15969         REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15970     }
15971     if (mac_vals.umac_addr) {
15972         REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15973     }
15974     if (mac_vals.emac_addr) {
15975         REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15976     }
15977     if (mac_vals.bmac_addr) {
15978         REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15979         REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15980     }
15981 
15982     rc = bxe_prev_mark_path(sc, prev_undi);
15983     if (rc) {
15984         bxe_prev_mcp_done(sc);
15985         return (rc);
15986     }
15987 
15988     return (bxe_prev_mcp_done(sc));
15989 }
15990 
15991 static int
15992 bxe_prev_unload_uncommon(struct bxe_softc *sc)
15993 {
15994     int rc;
15995 
15996     BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15997 
15998     /* Test if previous unload process was already finished for this path */
15999     if (bxe_prev_is_path_marked(sc)) {
16000         return (bxe_prev_mcp_done(sc));
16001     }
16002 
16003     BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
16004 
16005     /*
16006      * If function has FLR capabilities, and existing FW version matches
16007      * the one required, then FLR will be sufficient to clean any residue
16008      * left by previous driver
16009      */
16010     rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
16011     if (!rc) {
16012         /* fw version is good */
16013         BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
16014         rc = bxe_do_flr(sc);
16015     }
16016 
16017     if (!rc) {
16018         /* FLR was performed */
16019         BLOGD(sc, DBG_LOAD, "FLR successful\n");
16020         return (0);
16021     }
16022 
16023     BLOGD(sc, DBG_LOAD, "Could not FLR\n");
16024 
16025     /* Close the MCP request, return failure*/
16026     rc = bxe_prev_mcp_done(sc);
16027     if (!rc) {
16028         rc = BXE_PREV_WAIT_NEEDED;
16029     }
16030 
16031     return (rc);
16032 }
16033 
16034 static int
16035 bxe_prev_unload(struct bxe_softc *sc)
16036 {
16037     int time_counter = 10;
16038     uint32_t fw, hw_lock_reg, hw_lock_val;
16039     uint32_t rc = 0;
16040 
16041     /*
16042      * Clear HW from errors which may have resulted from an interrupted
16043      * DMAE transaction.
16044      */
16045     bxe_prev_interrupted_dmae(sc);
16046 
16047     /* Release previously held locks */
16048     hw_lock_reg =
16049         (SC_FUNC(sc) <= 5) ?
16050             (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
16051             (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
16052 
16053     hw_lock_val = (REG_RD(sc, hw_lock_reg));
16054     if (hw_lock_val) {
16055         if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
16056             BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
16057             REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
16058                    (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
16059         }
16060         BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
16061         REG_WR(sc, hw_lock_reg, 0xffffffff);
16062     } else {
16063         BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
16064     }
16065 
16066     if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
16067         BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
16068         REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
16069     }
16070 
16071     do {
16072         /* Lock MCP using an unload request */
16073         fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
16074         if (!fw) {
16075             BLOGE(sc, "MCP response failure, aborting\n");
16076             rc = -1;
16077             break;
16078         }
16079 
16080         if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
16081             rc = bxe_prev_unload_common(sc);
16082             break;
16083         }
16084 
16085         /* non-common reply from MCP night require looping */
16086         rc = bxe_prev_unload_uncommon(sc);
16087         if (rc != BXE_PREV_WAIT_NEEDED) {
16088             break;
16089         }
16090 
16091         DELAY(20000);
16092     } while (--time_counter);
16093 
16094     if (!time_counter || rc) {
16095         BLOGE(sc, "Failed to unload previous driver!\n");
16096         rc = -1;
16097     }
16098 
16099     return (rc);
16100 }
16101 
16102 void
16103 bxe_dcbx_set_state(struct bxe_softc *sc,
16104                    uint8_t          dcb_on,
16105                    uint32_t         dcbx_enabled)
16106 {
16107     if (!CHIP_IS_E1x(sc)) {
16108         sc->dcb_state = dcb_on;
16109         sc->dcbx_enabled = dcbx_enabled;
16110     } else {
16111         sc->dcb_state = FALSE;
16112         sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
16113     }
16114     BLOGD(sc, DBG_LOAD,
16115           "DCB state [%s:%s]\n",
16116           dcb_on ? "ON" : "OFF",
16117           (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
16118           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
16119           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
16120           "on-chip with negotiation" : "invalid");
16121 }
16122 
16123 /* must be called after sriov-enable */
16124 static int
16125 bxe_set_qm_cid_count(struct bxe_softc *sc)
16126 {
16127     int cid_count = BXE_L2_MAX_CID(sc);
16128 
16129     if (IS_SRIOV(sc)) {
16130         cid_count += BXE_VF_CIDS;
16131     }
16132 
16133     if (CNIC_SUPPORT(sc)) {
16134         cid_count += CNIC_CID_MAX;
16135     }
16136 
16137     return (roundup(cid_count, QM_CID_ROUND));
16138 }
16139 
16140 static void
16141 bxe_init_multi_cos(struct bxe_softc *sc)
16142 {
16143     int pri, cos;
16144 
16145     uint32_t pri_map = 0; /* XXX change to user config */
16146 
16147     for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
16148         cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
16149         if (cos < sc->max_cos) {
16150             sc->prio_to_cos[pri] = cos;
16151         } else {
16152             BLOGW(sc, "Invalid COS %d for priority %d "
16153                       "(max COS is %d), setting to 0\n",
16154                   cos, pri, (sc->max_cos - 1));
16155             sc->prio_to_cos[pri] = 0;
16156         }
16157     }
16158 }
16159 
16160 static int
16161 bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
16162 {
16163     struct bxe_softc *sc;
16164     int error, result;
16165 
16166     result = 0;
16167     error = sysctl_handle_int(oidp, &result, 0, req);
16168 
16169     if (error || !req->newptr) {
16170         return (error);
16171     }
16172 
16173     if (result == 1) {
16174         sc = (struct bxe_softc *)arg1;
16175         BLOGI(sc, "... dumping driver state ...\n");
16176         /* XXX */
16177     }
16178 
16179     return (error);
16180 }
16181 
16182 static int
16183 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
16184 {
16185     struct bxe_softc *sc = (struct bxe_softc *)arg1;
16186     uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
16187     uint32_t *offset;
16188     uint64_t value = 0;
16189     int index = (int)arg2;
16190 
16191     if (index >= BXE_NUM_ETH_STATS) {
16192         BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
16193         return (-1);
16194     }
16195 
16196     offset = (eth_stats + bxe_eth_stats_arr[index].offset);
16197 
16198     switch (bxe_eth_stats_arr[index].size) {
16199     case 4:
16200         value = (uint64_t)*offset;
16201         break;
16202     case 8:
16203         value = HILO_U64(*offset, *(offset + 1));
16204         break;
16205     default:
16206         BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
16207               index, bxe_eth_stats_arr[index].size);
16208         return (-1);
16209     }
16210 
16211     return (sysctl_handle_64(oidp, &value, 0, req));
16212 }
16213 
16214 static int
16215 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
16216 {
16217     struct bxe_softc *sc = (struct bxe_softc *)arg1;
16218     uint32_t *eth_stats;
16219     uint32_t *offset;
16220     uint64_t value = 0;
16221     uint32_t q_stat = (uint32_t)arg2;
16222     uint32_t fp_index = ((q_stat >> 16) & 0xffff);
16223     uint32_t index = (q_stat & 0xffff);
16224 
16225     eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
16226 
16227     if (index >= BXE_NUM_ETH_Q_STATS) {
16228         BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
16229         return (-1);
16230     }
16231 
16232     offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
16233 
16234     switch (bxe_eth_q_stats_arr[index].size) {
16235     case 4:
16236         value = (uint64_t)*offset;
16237         break;
16238     case 8:
16239         value = HILO_U64(*offset, *(offset + 1));
16240         break;
16241     default:
16242         BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
16243               index, bxe_eth_q_stats_arr[index].size);
16244         return (-1);
16245     }
16246 
16247     return (sysctl_handle_64(oidp, &value, 0, req));
16248 }
16249 
16250 static void
16251 bxe_add_sysctls(struct bxe_softc *sc)
16252 {
16253     struct sysctl_ctx_list *ctx;
16254     struct sysctl_oid_list *children;
16255     struct sysctl_oid *queue_top, *queue;
16256     struct sysctl_oid_list *queue_top_children, *queue_children;
16257     char queue_num_buf[32];
16258     uint32_t q_stat;
16259     int i, j;
16260 
16261     ctx = device_get_sysctl_ctx(sc->dev);
16262     children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
16263 
16264     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
16265                       CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
16266                       "version");
16267 
16268     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
16269                       CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0,
16270                       "bootcode version");
16271 
16272     snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
16273              BCM_5710_FW_MAJOR_VERSION,
16274              BCM_5710_FW_MINOR_VERSION,
16275              BCM_5710_FW_REVISION_VERSION,
16276              BCM_5710_FW_ENGINEERING_VERSION);
16277     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
16278                       CTLFLAG_RD, &sc->fw_ver_str, 0,
16279                       "firmware version");
16280 
16281     snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
16282         ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION)     ? "Single"  :
16283          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)   ? "MF-SD"   :
16284          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)   ? "MF-SI"   :
16285          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
16286                                                                 "Unknown"));
16287     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
16288                       CTLFLAG_RD, &sc->mf_mode_str, 0,
16289                       "multifunction mode");
16290 
16291     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
16292                     CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
16293                     "multifunction vnics per port");
16294 
16295     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
16296                       CTLFLAG_RD, &sc->mac_addr_str, 0,
16297                       "mac address");
16298 
16299     snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
16300         ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
16301          (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
16302          (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
16303                                               "???GT/s"),
16304         sc->devinfo.pcie_link_width);
16305     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
16306                       CTLFLAG_RD, &sc->pci_link_str, 0,
16307                       "pci link status");
16308 
16309     sc->debug = bxe_debug;
16310     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug",
16311                     CTLFLAG_RW, &sc->debug, 0,
16312                     "debug logging mode");
16313 
16314     sc->rx_budget = bxe_rx_budget;
16315     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
16316                     CTLFLAG_RW, &sc->rx_budget, 0,
16317                     "rx processing budget");
16318 
16319     SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
16320                     CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
16321                     bxe_sysctl_state, "IU", "dump driver state");
16322 
16323     for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
16324         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
16325                         bxe_eth_stats_arr[i].string,
16326                         CTLTYPE_U64 | CTLFLAG_RD, sc, i,
16327                         bxe_sysctl_eth_stat, "LU",
16328                         bxe_eth_stats_arr[i].string);
16329     }
16330 
16331     /* add a new parent node for all queues "dev.bxe.#.queue" */
16332     queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
16333                                 CTLFLAG_RD, NULL, "queue");
16334     queue_top_children = SYSCTL_CHILDREN(queue_top);
16335 
16336     for (i = 0; i < sc->num_queues; i++) {
16337         /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
16338         snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
16339         queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
16340                                 queue_num_buf, CTLFLAG_RD, NULL,
16341                                 "single queue");
16342         queue_children = SYSCTL_CHILDREN(queue);
16343 
16344         for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
16345             q_stat = ((i << 16) | j);
16346             SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
16347                             bxe_eth_q_stats_arr[j].string,
16348                             CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat,
16349                             bxe_sysctl_eth_q_stat, "LU",
16350                             bxe_eth_q_stats_arr[j].string);
16351         }
16352     }
16353 }
16354 
16355 /*
16356  * Device attach function.
16357  *
16358  * Allocates device resources, performs secondary chip identification, and
16359  * initializes driver instance variables. This function is called from driver
16360  * load after a successful probe.
16361  *
16362  * Returns:
16363  *   0 = Success, >0 = Failure
16364  */
16365 static int
16366 bxe_attach(device_t dev)
16367 {
16368     struct bxe_softc *sc;
16369 
16370     sc = device_get_softc(dev);
16371 
16372     BLOGD(sc, DBG_LOAD, "Starting attach...\n");
16373 
16374     sc->state = BXE_STATE_CLOSED;
16375 
16376     sc->dev  = dev;
16377     sc->unit = device_get_unit(dev);
16378 
16379     BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
16380 
16381     sc->pcie_bus    = pci_get_bus(dev);
16382     sc->pcie_device = pci_get_slot(dev);
16383     sc->pcie_func   = pci_get_function(dev);
16384 
16385     /* enable bus master capability */
16386     pci_enable_busmaster(dev);
16387 
16388     /* get the BARs */
16389     if (bxe_allocate_bars(sc) != 0) {
16390         return (ENXIO);
16391     }
16392 
16393     /* initialize the mutexes */
16394     bxe_init_mutexes(sc);
16395 
16396     /* prepare the periodic callout */
16397     callout_init(&sc->periodic_callout, 0);
16398 
16399     /* prepare the chip taskqueue */
16400     sc->chip_tq_flags = CHIP_TQ_NONE;
16401     snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
16402              "bxe%d_chip_tq", sc->unit);
16403     TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
16404     sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
16405                                    taskqueue_thread_enqueue,
16406                                    &sc->chip_tq);
16407     taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
16408                             "%s", sc->chip_tq_name);
16409 
16410     /* get device info and set params */
16411     if (bxe_get_device_info(sc) != 0) {
16412         BLOGE(sc, "getting device info\n");
16413         bxe_deallocate_bars(sc);
16414         pci_disable_busmaster(dev);
16415         return (ENXIO);
16416     }
16417 
16418     /* get final misc params */
16419     bxe_get_params(sc);
16420 
16421     /* set the default MTU (changed via ifconfig) */
16422     sc->mtu = ETHERMTU;
16423 
16424     bxe_set_modes_bitmap(sc);
16425 
16426     /* XXX
16427      * If in AFEX mode and the function is configured for FCoE
16428      * then bail... no L2 allowed.
16429      */
16430 
16431     /* get phy settings from shmem and 'and' against admin settings */
16432     bxe_get_phy_info(sc);
16433 
16434     /* initialize the FreeBSD ifnet interface */
16435     if (bxe_init_ifnet(sc) != 0) {
16436         bxe_release_mutexes(sc);
16437         bxe_deallocate_bars(sc);
16438         pci_disable_busmaster(dev);
16439         return (ENXIO);
16440     }
16441 
16442     /* allocate device interrupts */
16443     if (bxe_interrupt_alloc(sc) != 0) {
16444         if (sc->ifnet != NULL) {
16445             ether_ifdetach(sc->ifnet);
16446         }
16447         ifmedia_removeall(&sc->ifmedia);
16448         bxe_release_mutexes(sc);
16449         bxe_deallocate_bars(sc);
16450         pci_disable_busmaster(dev);
16451         return (ENXIO);
16452     }
16453 
16454     /* allocate ilt */
16455     if (bxe_alloc_ilt_mem(sc) != 0) {
16456         bxe_interrupt_free(sc);
16457         if (sc->ifnet != NULL) {
16458             ether_ifdetach(sc->ifnet);
16459         }
16460         ifmedia_removeall(&sc->ifmedia);
16461         bxe_release_mutexes(sc);
16462         bxe_deallocate_bars(sc);
16463         pci_disable_busmaster(dev);
16464         return (ENXIO);
16465     }
16466 
16467     /* allocate the host hardware/software hsi structures */
16468     if (bxe_alloc_hsi_mem(sc) != 0) {
16469         bxe_free_ilt_mem(sc);
16470         bxe_interrupt_free(sc);
16471         if (sc->ifnet != NULL) {
16472             ether_ifdetach(sc->ifnet);
16473         }
16474         ifmedia_removeall(&sc->ifmedia);
16475         bxe_release_mutexes(sc);
16476         bxe_deallocate_bars(sc);
16477         pci_disable_busmaster(dev);
16478         return (ENXIO);
16479     }
16480 
16481     /* need to reset chip if UNDI was active */
16482     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
16483         /* init fw_seq */
16484         sc->fw_seq =
16485             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
16486              DRV_MSG_SEQ_NUMBER_MASK);
16487         BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
16488         bxe_prev_unload(sc);
16489     }
16490 
16491 #if 1
16492     /* XXX */
16493     bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16494 #else
16495     if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
16496         SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
16497         SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
16498         SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
16499         bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
16500         bxe_dcbx_init_params(sc);
16501     } else {
16502         bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16503     }
16504 #endif
16505 
16506     /* calculate qm_cid_count */
16507     sc->qm_cid_count = bxe_set_qm_cid_count(sc);
16508     BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
16509 
16510     sc->max_cos = 1;
16511     bxe_init_multi_cos(sc);
16512 
16513     bxe_add_sysctls(sc);
16514 
16515     return (0);
16516 }
16517 
16518 /*
16519  * Device detach function.
16520  *
16521  * Stops the controller, resets the controller, and releases resources.
16522  *
16523  * Returns:
16524  *   0 = Success, >0 = Failure
16525  */
16526 static int
16527 bxe_detach(device_t dev)
16528 {
16529     struct bxe_softc *sc;
16530     struct ifnet *ifp;
16531 
16532     sc = device_get_softc(dev);
16533 
16534     BLOGD(sc, DBG_LOAD, "Starting detach...\n");
16535 
16536     ifp = sc->ifnet;
16537     if (ifp != NULL && ifp->if_vlantrunk != NULL) {
16538         BLOGE(sc, "Cannot detach while VLANs are in use.\n");
16539         return(EBUSY);
16540     }
16541 
16542     /* stop the periodic callout */
16543     bxe_periodic_stop(sc);
16544 
16545     /* stop the chip taskqueue */
16546     atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16547     if (sc->chip_tq) {
16548         taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16549         taskqueue_free(sc->chip_tq);
16550         sc->chip_tq = NULL;
16551     }
16552 
16553     /* stop and reset the controller if it was open */
16554     if (sc->state != BXE_STATE_CLOSED) {
16555         BXE_CORE_LOCK(sc);
16556         bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16557         BXE_CORE_UNLOCK(sc);
16558     }
16559 
16560     /* release the network interface */
16561     if (ifp != NULL) {
16562         ether_ifdetach(ifp);
16563     }
16564     ifmedia_removeall(&sc->ifmedia);
16565 
16566     /* XXX do the following based on driver state... */
16567 
16568     /* free the host hardware/software hsi structures */
16569     bxe_free_hsi_mem(sc);
16570 
16571     /* free ilt */
16572     bxe_free_ilt_mem(sc);
16573 
16574     /* release the interrupts */
16575     bxe_interrupt_free(sc);
16576 
16577     /* Release the mutexes*/
16578     bxe_release_mutexes(sc);
16579 
16580     /* Release the PCIe BAR mapped memory */
16581     bxe_deallocate_bars(sc);
16582 
16583     /* Release the FreeBSD interface. */
16584     if (sc->ifnet != NULL) {
16585         if_free(sc->ifnet);
16586     }
16587 
16588     pci_disable_busmaster(dev);
16589 
16590     return (0);
16591 }
16592 
16593 /*
16594  * Device shutdown function.
16595  *
16596  * Stops and resets the controller.
16597  *
16598  * Returns:
16599  *   Nothing
16600  */
16601 static int
16602 bxe_shutdown(device_t dev)
16603 {
16604     struct bxe_softc *sc;
16605 
16606     sc = device_get_softc(dev);
16607 
16608     BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16609 
16610     /* stop the periodic callout */
16611     bxe_periodic_stop(sc);
16612 
16613     BXE_CORE_LOCK(sc);
16614     bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16615     BXE_CORE_UNLOCK(sc);
16616 
16617     return (0);
16618 }
16619 
16620 void
16621 bxe_igu_ack_sb(struct bxe_softc *sc,
16622                uint8_t          igu_sb_id,
16623                uint8_t          segment,
16624                uint16_t         index,
16625                uint8_t          op,
16626                uint8_t          update)
16627 {
16628     uint32_t igu_addr = sc->igu_base_addr;
16629     igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16630     bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16631 }
16632 
16633 static void
16634 bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16635                      uint8_t          func,
16636                      uint8_t          idu_sb_id,
16637                      uint8_t          is_pf)
16638 {
16639     uint32_t data, ctl, cnt = 100;
16640     uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16641     uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16642     uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16643     uint32_t sb_bit =  1 << (idu_sb_id%32);
16644     uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16645     uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16646 
16647     /* Not supported in BC mode */
16648     if (CHIP_INT_MODE_IS_BC(sc)) {
16649         return;
16650     }
16651 
16652     data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16653              IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16654             IGU_REGULAR_CLEANUP_SET |
16655             IGU_REGULAR_BCLEANUP);
16656 
16657     ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16658            (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16659            (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16660 
16661     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16662             data, igu_addr_data);
16663     REG_WR(sc, igu_addr_data, data);
16664 
16665     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16666                       BUS_SPACE_BARRIER_WRITE);
16667     mb();
16668 
16669     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16670             ctl, igu_addr_ctl);
16671     REG_WR(sc, igu_addr_ctl, ctl);
16672 
16673     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16674                       BUS_SPACE_BARRIER_WRITE);
16675     mb();
16676 
16677     /* wait for clean up to finish */
16678     while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16679         DELAY(20000);
16680     }
16681 
16682     if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16683         BLOGD(sc, DBG_LOAD,
16684               "Unable to finish IGU cleanup: "
16685               "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16686               idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16687     }
16688 }
16689 
16690 static void
16691 bxe_igu_clear_sb(struct bxe_softc *sc,
16692                  uint8_t          idu_sb_id)
16693 {
16694     bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16695 }
16696 
16697 
16698 
16699 
16700 
16701 
16702 
16703 /*******************/
16704 /* ECORE CALLBACKS */
16705 /*******************/
16706 
16707 static void
16708 bxe_reset_common(struct bxe_softc *sc)
16709 {
16710     uint32_t val = 0x1400;
16711 
16712     /* reset_common */
16713     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16714 
16715     if (CHIP_IS_E3(sc)) {
16716         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16717         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16718     }
16719 
16720     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16721 }
16722 
16723 static void
16724 bxe_common_init_phy(struct bxe_softc *sc)
16725 {
16726     uint32_t shmem_base[2];
16727     uint32_t shmem2_base[2];
16728 
16729     /* Avoid common init in case MFW supports LFA */
16730     if (SHMEM2_RD(sc, size) >
16731         (uint32_t)offsetof(struct shmem2_region,
16732                            lfa_host_addr[SC_PORT(sc)])) {
16733         return;
16734     }
16735 
16736     shmem_base[0]  = sc->devinfo.shmem_base;
16737     shmem2_base[0] = sc->devinfo.shmem2_base;
16738 
16739     if (!CHIP_IS_E1x(sc)) {
16740         shmem_base[1]  = SHMEM2_RD(sc, other_shmem_base_addr);
16741         shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16742     }
16743 
16744     BXE_PHY_LOCK(sc);
16745     elink_common_init_phy(sc, shmem_base, shmem2_base,
16746                           sc->devinfo.chip_id, 0);
16747     BXE_PHY_UNLOCK(sc);
16748 }
16749 
16750 static void
16751 bxe_pf_disable(struct bxe_softc *sc)
16752 {
16753     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16754 
16755     val &= ~IGU_PF_CONF_FUNC_EN;
16756 
16757     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16758     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16759     REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16760 }
16761 
16762 static void
16763 bxe_init_pxp(struct bxe_softc *sc)
16764 {
16765     uint16_t devctl;
16766     int r_order, w_order;
16767 
16768     devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2);
16769 
16770     BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16771 
16772     w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
16773 
16774     if (sc->mrrs == -1) {
16775         r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
16776     } else {
16777         BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16778         r_order = sc->mrrs;
16779     }
16780 
16781     ecore_init_pxp_arb(sc, r_order, w_order);
16782 }
16783 
16784 static uint32_t
16785 bxe_get_pretend_reg(struct bxe_softc *sc)
16786 {
16787     uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16788     uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16789     return (base + (SC_ABS_FUNC(sc)) * stride);
16790 }
16791 
16792 /*
16793  * Called only on E1H or E2.
16794  * When pretending to be PF, the pretend value is the function number 0..7.
16795  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16796  * combination.
16797  */
16798 static int
16799 bxe_pretend_func(struct bxe_softc *sc,
16800                  uint16_t         pretend_func_val)
16801 {
16802     uint32_t pretend_reg;
16803 
16804     if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16805         return (-1);
16806     }
16807 
16808     /* get my own pretend register */
16809     pretend_reg = bxe_get_pretend_reg(sc);
16810     REG_WR(sc, pretend_reg, pretend_func_val);
16811     REG_RD(sc, pretend_reg);
16812     return (0);
16813 }
16814 
16815 static void
16816 bxe_iov_init_dmae(struct bxe_softc *sc)
16817 {
16818     return;
16819 #if 0
16820     BLOGD(sc, DBG_LOAD, "SRIOV is %s\n", IS_SRIOV(sc) ? "ON" : "OFF");
16821 
16822     if (!IS_SRIOV(sc)) {
16823         return;
16824     }
16825 
16826     REG_WR(sc, DMAE_REG_BACKWARD_COMP_EN, 0);
16827 #endif
16828 }
16829 
16830 #if 0
16831 static int
16832 bxe_iov_init_ilt(struct bxe_softc *sc,
16833                  uint16_t         line)
16834 {
16835     return (line);
16836 #if 0
16837     int i;
16838     struct ecore_ilt* ilt = sc->ilt;
16839 
16840     if (!IS_SRIOV(sc)) {
16841         return (line);
16842     }
16843 
16844     /* set vfs ilt lines */
16845     for (i = 0; i < BXE_VF_CIDS/ILT_PAGE_CIDS ; i++) {
16846         struct hw_dma *hw_cxt = SC_VF_CXT_PAGE(sc,i);
16847         ilt->lines[line+i].page = hw_cxt->addr;
16848         ilt->lines[line+i].page_mapping = hw_cxt->mapping;
16849         ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
16850     }
16851     return (line+i);
16852 #endif
16853 }
16854 #endif
16855 
16856 static void
16857 bxe_iov_init_dq(struct bxe_softc *sc)
16858 {
16859     return;
16860 #if 0
16861     if (!IS_SRIOV(sc)) {
16862         return;
16863     }
16864 
16865     /* Set the DQ such that the CID reflect the abs_vfid */
16866     REG_WR(sc, DORQ_REG_VF_NORM_VF_BASE, 0);
16867     REG_WR(sc, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
16868 
16869     /*
16870      * Set VFs starting CID. If its > 0 the preceding CIDs are belong to
16871      * the PF L2 queues
16872      */
16873     REG_WR(sc, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
16874 
16875     /* The VF window size is the log2 of the max number of CIDs per VF */
16876     REG_WR(sc, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
16877 
16878     /*
16879      * The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
16880      * the Pf doorbell size although the 2 are independent.
16881      */
16882     REG_WR(sc, DORQ_REG_VF_NORM_CID_OFST,
16883            BNX2X_DB_SHIFT - BNX2X_DB_MIN_SHIFT);
16884 
16885     /*
16886      * No security checks for now -
16887      * configure single rule (out of 16) mask = 0x1, value = 0x0,
16888      * CID range 0 - 0x1ffff
16889      */
16890     REG_WR(sc, DORQ_REG_VF_TYPE_MASK_0, 1);
16891     REG_WR(sc, DORQ_REG_VF_TYPE_VALUE_0, 0);
16892     REG_WR(sc, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
16893     REG_WR(sc, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
16894 
16895     /* set the number of VF alllowed doorbells to the full DQ range */
16896     REG_WR(sc, DORQ_REG_VF_NORM_MAX_CID_COUNT, 0x20000);
16897 
16898     /* set the VF doorbell threshold */
16899     REG_WR(sc, DORQ_REG_VF_USAGE_CT_LIMIT, 4);
16900 #endif
16901 }
16902 
16903 /* send a NIG loopback debug packet */
16904 static void
16905 bxe_lb_pckt(struct bxe_softc *sc)
16906 {
16907     uint32_t wb_write[3];
16908 
16909     /* Ethernet source and destination addresses */
16910     wb_write[0] = 0x55555555;
16911     wb_write[1] = 0x55555555;
16912     wb_write[2] = 0x20;     /* SOP */
16913     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16914 
16915     /* NON-IP protocol */
16916     wb_write[0] = 0x09000000;
16917     wb_write[1] = 0x55555555;
16918     wb_write[2] = 0x10;     /* EOP, eop_bvalid = 0 */
16919     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16920 }
16921 
16922 /*
16923  * Some of the internal memories are not directly readable from the driver.
16924  * To test them we send debug packets.
16925  */
16926 static int
16927 bxe_int_mem_test(struct bxe_softc *sc)
16928 {
16929     int factor;
16930     int count, i;
16931     uint32_t val = 0;
16932 
16933     if (CHIP_REV_IS_FPGA(sc)) {
16934         factor = 120;
16935     } else if (CHIP_REV_IS_EMUL(sc)) {
16936         factor = 200;
16937     } else {
16938         factor = 1;
16939     }
16940 
16941     /* disable inputs of parser neighbor blocks */
16942     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16943     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16944     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16945     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16946 
16947     /*  write 0 to parser credits for CFC search request */
16948     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16949 
16950     /* send Ethernet packet */
16951     bxe_lb_pckt(sc);
16952 
16953     /* TODO do i reset NIG statistic? */
16954     /* Wait until NIG register shows 1 packet of size 0x10 */
16955     count = 1000 * factor;
16956     while (count) {
16957         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16958         val = *BXE_SP(sc, wb_data[0]);
16959         if (val == 0x10) {
16960             break;
16961         }
16962 
16963         DELAY(10000);
16964         count--;
16965     }
16966 
16967     if (val != 0x10) {
16968         BLOGE(sc, "NIG timeout val=0x%x\n", val);
16969         return (-1);
16970     }
16971 
16972     /* wait until PRS register shows 1 packet */
16973     count = (1000 * factor);
16974     while (count) {
16975         val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16976         if (val == 1) {
16977             break;
16978         }
16979 
16980         DELAY(10000);
16981         count--;
16982     }
16983 
16984     if (val != 0x1) {
16985         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16986         return (-2);
16987     }
16988 
16989     /* Reset and init BRB, PRS */
16990     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16991     DELAY(50000);
16992     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16993     DELAY(50000);
16994     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16995     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16996 
16997     /* Disable inputs of parser neighbor blocks */
16998     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16999     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
17000     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
17001     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
17002 
17003     /* Write 0 to parser credits for CFC search request */
17004     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
17005 
17006     /* send 10 Ethernet packets */
17007     for (i = 0; i < 10; i++) {
17008         bxe_lb_pckt(sc);
17009     }
17010 
17011     /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
17012     count = (1000 * factor);
17013     while (count) {
17014         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17015         val = *BXE_SP(sc, wb_data[0]);
17016         if (val == 0xb0) {
17017             break;
17018         }
17019 
17020         DELAY(10000);
17021         count--;
17022     }
17023 
17024     if (val != 0xb0) {
17025         BLOGE(sc, "NIG timeout val=0x%x\n", val);
17026         return (-3);
17027     }
17028 
17029     /* Wait until PRS register shows 2 packets */
17030     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
17031     if (val != 2) {
17032         BLOGE(sc, "PRS timeout val=0x%x\n", val);
17033     }
17034 
17035     /* Write 1 to parser credits for CFC search request */
17036     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
17037 
17038     /* Wait until PRS register shows 3 packets */
17039     DELAY(10000 * factor);
17040 
17041     /* Wait until NIG register shows 1 packet of size 0x10 */
17042     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
17043     if (val != 3) {
17044         BLOGE(sc, "PRS timeout val=0x%x\n", val);
17045     }
17046 
17047     /* clear NIG EOP FIFO */
17048     for (i = 0; i < 11; i++) {
17049         REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
17050     }
17051 
17052     val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
17053     if (val != 1) {
17054         BLOGE(sc, "clear of NIG failed\n");
17055         return (-4);
17056     }
17057 
17058     /* Reset and init BRB, PRS, NIG */
17059     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
17060     DELAY(50000);
17061     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
17062     DELAY(50000);
17063     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17064     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17065     if (!CNIC_SUPPORT(sc)) {
17066         /* set NIC mode */
17067         REG_WR(sc, PRS_REG_NIC_MODE, 1);
17068     }
17069 
17070     /* Enable inputs of parser neighbor blocks */
17071     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
17072     REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
17073     REG_WR(sc, CFC_REG_DEBUG0, 0x0);
17074     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
17075 
17076     return (0);
17077 }
17078 
17079 static void
17080 bxe_setup_fan_failure_detection(struct bxe_softc *sc)
17081 {
17082     int is_required;
17083     uint32_t val;
17084     int port;
17085 
17086     is_required = 0;
17087     val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
17088            SHARED_HW_CFG_FAN_FAILURE_MASK);
17089 
17090     if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
17091         is_required = 1;
17092     }
17093     /*
17094      * The fan failure mechanism is usually related to the PHY type since
17095      * the power consumption of the board is affected by the PHY. Currently,
17096      * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
17097      */
17098     else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
17099         for (port = PORT_0; port < PORT_MAX; port++) {
17100             is_required |= elink_fan_failure_det_req(sc,
17101                                                      sc->devinfo.shmem_base,
17102                                                      sc->devinfo.shmem2_base,
17103                                                      port);
17104         }
17105     }
17106 
17107     BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
17108 
17109     if (is_required == 0) {
17110         return;
17111     }
17112 
17113     /* Fan failure is indicated by SPIO 5 */
17114     bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
17115 
17116     /* set to active low mode */
17117     val = REG_RD(sc, MISC_REG_SPIO_INT);
17118     val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
17119     REG_WR(sc, MISC_REG_SPIO_INT, val);
17120 
17121     /* enable interrupt to signal the IGU */
17122     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17123     val |= MISC_SPIO_SPIO5;
17124     REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
17125 }
17126 
17127 static void
17128 bxe_enable_blocks_attention(struct bxe_softc *sc)
17129 {
17130     uint32_t val;
17131 
17132     REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17133     if (!CHIP_IS_E1x(sc)) {
17134         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
17135     } else {
17136         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
17137     }
17138     REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17139     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17140     /*
17141      * mask read length error interrupts in brb for parser
17142      * (parsing unit and 'checksum and crc' unit)
17143      * these errors are legal (PU reads fixed length and CAC can cause
17144      * read length error on truncated packets)
17145      */
17146     REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
17147     REG_WR(sc, QM_REG_QM_INT_MASK, 0);
17148     REG_WR(sc, TM_REG_TM_INT_MASK, 0);
17149     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
17150     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
17151     REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
17152 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
17153 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
17154     REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
17155     REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
17156     REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
17157 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
17158 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
17159     REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
17160     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
17161     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
17162     REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
17163 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
17164 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
17165 
17166     val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
17167            PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
17168            PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
17169     if (!CHIP_IS_E1x(sc)) {
17170         val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
17171                 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
17172     }
17173     REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
17174 
17175     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
17176     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
17177     REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
17178 /*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
17179 
17180     if (!CHIP_IS_E1x(sc)) {
17181         /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
17182         REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
17183     }
17184 
17185     REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
17186     REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
17187 /*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
17188     REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18);     /* bit 3,4 masked */
17189 }
17190 
17191 /**
17192  * bxe_init_hw_common - initialize the HW at the COMMON phase.
17193  *
17194  * @sc:     driver handle
17195  */
17196 static int
17197 bxe_init_hw_common(struct bxe_softc *sc)
17198 {
17199     uint8_t abs_func_id;
17200     uint32_t val;
17201 
17202     BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
17203           SC_ABS_FUNC(sc));
17204 
17205     /*
17206      * take the RESET lock to protect undi_unload flow from accessing
17207      * registers while we are resetting the chip
17208      */
17209     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17210 
17211     bxe_reset_common(sc);
17212 
17213     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
17214 
17215     val = 0xfffc;
17216     if (CHIP_IS_E3(sc)) {
17217         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
17218         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
17219     }
17220 
17221     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
17222 
17223     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17224 
17225     ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
17226     BLOGD(sc, DBG_LOAD, "after misc block init\n");
17227 
17228     if (!CHIP_IS_E1x(sc)) {
17229         /*
17230          * 4-port mode or 2-port mode we need to turn off master-enable for
17231          * everyone. After that we turn it back on for self. So, we disregard
17232          * multi-function, and always disable all functions on the given path,
17233          * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
17234          */
17235         for (abs_func_id = SC_PATH(sc);
17236              abs_func_id < (E2_FUNC_MAX * 2);
17237              abs_func_id += 2) {
17238             if (abs_func_id == SC_ABS_FUNC(sc)) {
17239                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17240                 continue;
17241             }
17242 
17243             bxe_pretend_func(sc, abs_func_id);
17244 
17245             /* clear pf enable */
17246             bxe_pf_disable(sc);
17247 
17248             bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17249         }
17250     }
17251 
17252     BLOGD(sc, DBG_LOAD, "after pf disable\n");
17253 
17254     ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
17255 
17256     if (CHIP_IS_E1(sc)) {
17257         /*
17258          * enable HW interrupt from PXP on USDM overflow
17259          * bit 16 on INT_MASK_0
17260          */
17261         REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17262     }
17263 
17264     ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
17265     bxe_init_pxp(sc);
17266 
17267 #ifdef __BIG_ENDIAN
17268     REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
17269     REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
17270     REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
17271     REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
17272     REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
17273     /* make sure this value is 0 */
17274     REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
17275 
17276     //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
17277     REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
17278     REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
17279     REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
17280     REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
17281 #endif
17282 
17283     ecore_ilt_init_page_size(sc, INITOP_SET);
17284 
17285     if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
17286         REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
17287     }
17288 
17289     /* let the HW do it's magic... */
17290     DELAY(100000);
17291 
17292     /* finish PXP init */
17293     val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
17294     if (val != 1) {
17295         BLOGE(sc, "PXP2 CFG failed\n");
17296         return (-1);
17297     }
17298     val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
17299     if (val != 1) {
17300         BLOGE(sc, "PXP2 RD_INIT failed\n");
17301         return (-1);
17302     }
17303 
17304     BLOGD(sc, DBG_LOAD, "after pxp init\n");
17305 
17306     /*
17307      * Timer bug workaround for E2 only. We need to set the entire ILT to have
17308      * entries with value "0" and valid bit on. This needs to be done by the
17309      * first PF that is loaded in a path (i.e. common phase)
17310      */
17311     if (!CHIP_IS_E1x(sc)) {
17312 /*
17313  * In E2 there is a bug in the timers block that can cause function 6 / 7
17314  * (i.e. vnic3) to start even if it is marked as "scan-off".
17315  * This occurs when a different function (func2,3) is being marked
17316  * as "scan-off". Real-life scenario for example: if a driver is being
17317  * load-unloaded while func6,7 are down. This will cause the timer to access
17318  * the ilt, translate to a logical address and send a request to read/write.
17319  * Since the ilt for the function that is down is not valid, this will cause
17320  * a translation error which is unrecoverable.
17321  * The Workaround is intended to make sure that when this happens nothing
17322  * fatal will occur. The workaround:
17323  *  1.  First PF driver which loads on a path will:
17324  *      a.  After taking the chip out of reset, by using pretend,
17325  *          it will write "0" to the following registers of
17326  *          the other vnics.
17327  *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
17328  *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
17329  *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
17330  *          And for itself it will write '1' to
17331  *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
17332  *          dmae-operations (writing to pram for example.)
17333  *          note: can be done for only function 6,7 but cleaner this
17334  *            way.
17335  *      b.  Write zero+valid to the entire ILT.
17336  *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
17337  *          VNIC3 (of that port). The range allocated will be the
17338  *          entire ILT. This is needed to prevent  ILT range error.
17339  *  2.  Any PF driver load flow:
17340  *      a.  ILT update with the physical addresses of the allocated
17341  *          logical pages.
17342  *      b.  Wait 20msec. - note that this timeout is needed to make
17343  *          sure there are no requests in one of the PXP internal
17344  *          queues with "old" ILT addresses.
17345  *      c.  PF enable in the PGLC.
17346  *      d.  Clear the was_error of the PF in the PGLC. (could have
17347  *          occurred while driver was down)
17348  *      e.  PF enable in the CFC (WEAK + STRONG)
17349  *      f.  Timers scan enable
17350  *  3.  PF driver unload flow:
17351  *      a.  Clear the Timers scan_en.
17352  *      b.  Polling for scan_on=0 for that PF.
17353  *      c.  Clear the PF enable bit in the PXP.
17354  *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
17355  *      e.  Write zero+valid to all ILT entries (The valid bit must
17356  *          stay set)
17357  *      f.  If this is VNIC 3 of a port then also init
17358  *          first_timers_ilt_entry to zero and last_timers_ilt_entry
17359  *          to the last enrty in the ILT.
17360  *
17361  *      Notes:
17362  *      Currently the PF error in the PGLC is non recoverable.
17363  *      In the future the there will be a recovery routine for this error.
17364  *      Currently attention is masked.
17365  *      Having an MCP lock on the load/unload process does not guarantee that
17366  *      there is no Timer disable during Func6/7 enable. This is because the
17367  *      Timers scan is currently being cleared by the MCP on FLR.
17368  *      Step 2.d can be done only for PF6/7 and the driver can also check if
17369  *      there is error before clearing it. But the flow above is simpler and
17370  *      more general.
17371  *      All ILT entries are written by zero+valid and not just PF6/7
17372  *      ILT entries since in the future the ILT entries allocation for
17373  *      PF-s might be dynamic.
17374  */
17375         struct ilt_client_info ilt_cli;
17376         struct ecore_ilt ilt;
17377 
17378         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
17379         memset(&ilt, 0, sizeof(struct ecore_ilt));
17380 
17381         /* initialize dummy TM client */
17382         ilt_cli.start      = 0;
17383         ilt_cli.end        = ILT_NUM_PAGE_ENTRIES - 1;
17384         ilt_cli.client_num = ILT_CLIENT_TM;
17385 
17386         /*
17387          * Step 1: set zeroes to all ilt page entries with valid bit on
17388          * Step 2: set the timers first/last ilt entry to point
17389          * to the entire range to prevent ILT range error for 3rd/4th
17390          * vnic (this code assumes existence of the vnic)
17391          *
17392          * both steps performed by call to ecore_ilt_client_init_op()
17393          * with dummy TM client
17394          *
17395          * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
17396          * and his brother are split registers
17397          */
17398 
17399         bxe_pretend_func(sc, (SC_PATH(sc) + 6));
17400         ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
17401         bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17402 
17403         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
17404         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
17405         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
17406     }
17407 
17408     REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
17409     REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
17410 
17411     if (!CHIP_IS_E1x(sc)) {
17412         int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
17413                      (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
17414 
17415         ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
17416         ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
17417 
17418         /* let the HW do it's magic... */
17419         do {
17420             DELAY(200000);
17421             val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
17422         } while (factor-- && (val != 1));
17423 
17424         if (val != 1) {
17425             BLOGE(sc, "ATC_INIT failed\n");
17426             return (-1);
17427         }
17428     }
17429 
17430     BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
17431 
17432     ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
17433 
17434     bxe_iov_init_dmae(sc);
17435 
17436     /* clean the DMAE memory */
17437     sc->dmae_ready = 1;
17438     ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
17439 
17440     ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
17441 
17442     ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
17443 
17444     ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
17445 
17446     ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
17447 
17448     bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
17449     bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
17450     bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
17451     bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
17452 
17453     ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
17454 
17455     /* QM queues pointers table */
17456     ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
17457 
17458     /* soft reset pulse */
17459     REG_WR(sc, QM_REG_SOFT_RESET, 1);
17460     REG_WR(sc, QM_REG_SOFT_RESET, 0);
17461 
17462     if (CNIC_SUPPORT(sc))
17463         ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
17464 
17465     ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
17466     REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
17467     if (!CHIP_REV_IS_SLOW(sc)) {
17468         /* enable hw interrupt from doorbell Q */
17469         REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17470     }
17471 
17472     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17473 
17474     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17475     REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
17476 
17477     if (!CHIP_IS_E1(sc)) {
17478         REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
17479     }
17480 
17481     if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
17482         if (IS_MF_AFEX(sc)) {
17483             /*
17484              * configure that AFEX and VLAN headers must be
17485              * received in AFEX mode
17486              */
17487             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
17488             REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
17489             REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
17490             REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
17491             REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
17492         } else {
17493             /*
17494              * Bit-map indicating which L2 hdrs may appear
17495              * after the basic Ethernet header
17496              */
17497             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
17498                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17499         }
17500     }
17501 
17502     ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
17503     ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
17504     ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
17505     ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
17506 
17507     if (!CHIP_IS_E1x(sc)) {
17508         /* reset VFC memories */
17509         REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17510                VFC_MEMORIES_RST_REG_CAM_RST |
17511                VFC_MEMORIES_RST_REG_RAM_RST);
17512         REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17513                VFC_MEMORIES_RST_REG_CAM_RST |
17514                VFC_MEMORIES_RST_REG_RAM_RST);
17515 
17516         DELAY(20000);
17517     }
17518 
17519     ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
17520     ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
17521     ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
17522     ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
17523 
17524     /* sync semi rtc */
17525     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
17526            0x80000000);
17527     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
17528            0x80000000);
17529 
17530     ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
17531     ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
17532     ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
17533 
17534     if (!CHIP_IS_E1x(sc)) {
17535         if (IS_MF_AFEX(sc)) {
17536             /*
17537              * configure that AFEX and VLAN headers must be
17538              * sent in AFEX mode
17539              */
17540             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
17541             REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
17542             REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
17543             REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
17544             REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
17545         } else {
17546             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
17547                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17548         }
17549     }
17550 
17551     REG_WR(sc, SRC_REG_SOFT_RST, 1);
17552 
17553     ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
17554 
17555     if (CNIC_SUPPORT(sc)) {
17556         REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
17557         REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
17558         REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
17559         REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
17560         REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
17561         REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
17562         REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
17563         REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
17564         REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
17565         REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
17566     }
17567     REG_WR(sc, SRC_REG_SOFT_RST, 0);
17568 
17569     if (sizeof(union cdu_context) != 1024) {
17570         /* we currently assume that a context is 1024 bytes */
17571         BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
17572               (long)sizeof(union cdu_context));
17573     }
17574 
17575     ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
17576     val = (4 << 24) + (0 << 12) + 1024;
17577     REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
17578 
17579     ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
17580 
17581     REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
17582     /* enable context validation interrupt from CFC */
17583     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17584 
17585     /* set the thresholds to prevent CFC/CDU race */
17586     REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
17587     ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
17588 
17589     if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
17590         REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
17591     }
17592 
17593     ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
17594     ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
17595 
17596     /* Reset PCIE errors for debug */
17597     REG_WR(sc, 0x2814, 0xffffffff);
17598     REG_WR(sc, 0x3820, 0xffffffff);
17599 
17600     if (!CHIP_IS_E1x(sc)) {
17601         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
17602                (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
17603                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
17604         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
17605                (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
17606                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
17607                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
17608         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
17609                (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17610                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17611                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17612     }
17613 
17614     ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17615 
17616     if (!CHIP_IS_E1(sc)) {
17617         /* in E3 this done in per-port section */
17618         if (!CHIP_IS_E3(sc))
17619             REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17620     }
17621 
17622     if (CHIP_IS_E1H(sc)) {
17623         /* not applicable for E2 (and above ...) */
17624         REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17625     }
17626 
17627     if (CHIP_REV_IS_SLOW(sc)) {
17628         DELAY(200000);
17629     }
17630 
17631     /* finish CFC init */
17632     val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17633     if (val != 1) {
17634         BLOGE(sc, "CFC LL_INIT failed\n");
17635         return (-1);
17636     }
17637     val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17638     if (val != 1) {
17639         BLOGE(sc, "CFC AC_INIT failed\n");
17640         return (-1);
17641     }
17642     val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17643     if (val != 1) {
17644         BLOGE(sc, "CFC CAM_INIT failed\n");
17645         return (-1);
17646     }
17647     REG_WR(sc, CFC_REG_DEBUG0, 0);
17648 
17649     if (CHIP_IS_E1(sc)) {
17650         /* read NIG statistic to see if this is our first up since powerup */
17651         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17652         val = *BXE_SP(sc, wb_data[0]);
17653 
17654         /* do internal memory self test */
17655         if ((val == 0) && bxe_int_mem_test(sc)) {
17656             BLOGE(sc, "internal mem self test failed\n");
17657             return (-1);
17658         }
17659     }
17660 
17661     bxe_setup_fan_failure_detection(sc);
17662 
17663     /* clear PXP2 attentions */
17664     REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17665 
17666     bxe_enable_blocks_attention(sc);
17667 
17668     if (!CHIP_REV_IS_SLOW(sc)) {
17669         ecore_enable_blocks_parity(sc);
17670     }
17671 
17672     if (!BXE_NOMCP(sc)) {
17673         if (CHIP_IS_E1x(sc)) {
17674             bxe_common_init_phy(sc);
17675         }
17676     }
17677 
17678     return (0);
17679 }
17680 
17681 /**
17682  * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17683  *
17684  * @sc:     driver handle
17685  */
17686 static int
17687 bxe_init_hw_common_chip(struct bxe_softc *sc)
17688 {
17689     int rc = bxe_init_hw_common(sc);
17690 
17691     if (rc) {
17692         return (rc);
17693     }
17694 
17695     /* In E2 2-PORT mode, same ext phy is used for the two paths */
17696     if (!BXE_NOMCP(sc)) {
17697         bxe_common_init_phy(sc);
17698     }
17699 
17700     return (0);
17701 }
17702 
17703 static int
17704 bxe_init_hw_port(struct bxe_softc *sc)
17705 {
17706     int port = SC_PORT(sc);
17707     int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17708     uint32_t low, high;
17709     uint32_t val;
17710 
17711     BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17712 
17713     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17714 
17715     ecore_init_block(sc, BLOCK_MISC, init_phase);
17716     ecore_init_block(sc, BLOCK_PXP, init_phase);
17717     ecore_init_block(sc, BLOCK_PXP2, init_phase);
17718 
17719     /*
17720      * Timers bug workaround: disables the pf_master bit in pglue at
17721      * common phase, we need to enable it here before any dmae access are
17722      * attempted. Therefore we manually added the enable-master to the
17723      * port phase (it also happens in the function phase)
17724      */
17725     if (!CHIP_IS_E1x(sc)) {
17726         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17727     }
17728 
17729     ecore_init_block(sc, BLOCK_ATC, init_phase);
17730     ecore_init_block(sc, BLOCK_DMAE, init_phase);
17731     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17732     ecore_init_block(sc, BLOCK_QM, init_phase);
17733 
17734     ecore_init_block(sc, BLOCK_TCM, init_phase);
17735     ecore_init_block(sc, BLOCK_UCM, init_phase);
17736     ecore_init_block(sc, BLOCK_CCM, init_phase);
17737     ecore_init_block(sc, BLOCK_XCM, init_phase);
17738 
17739     /* QM cid (connection) count */
17740     ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17741 
17742     if (CNIC_SUPPORT(sc)) {
17743         ecore_init_block(sc, BLOCK_TM, init_phase);
17744         REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17745         REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17746     }
17747 
17748     ecore_init_block(sc, BLOCK_DORQ, init_phase);
17749 
17750     ecore_init_block(sc, BLOCK_BRB1, init_phase);
17751 
17752     if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17753         if (IS_MF(sc)) {
17754             low = (BXE_ONE_PORT(sc) ? 160 : 246);
17755         } else if (sc->mtu > 4096) {
17756             if (BXE_ONE_PORT(sc)) {
17757                 low = 160;
17758             } else {
17759                 val = sc->mtu;
17760                 /* (24*1024 + val*4)/256 */
17761                 low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17762             }
17763         } else {
17764             low = (BXE_ONE_PORT(sc) ? 80 : 160);
17765         }
17766         high = (low + 56); /* 14*1024/256 */
17767         REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17768         REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17769     }
17770 
17771     if (CHIP_IS_MODE_4_PORT(sc)) {
17772         REG_WR(sc, SC_PORT(sc) ?
17773                BRB1_REG_MAC_GUARANTIED_1 :
17774                BRB1_REG_MAC_GUARANTIED_0, 40);
17775     }
17776 
17777     ecore_init_block(sc, BLOCK_PRS, init_phase);
17778     if (CHIP_IS_E3B0(sc)) {
17779         if (IS_MF_AFEX(sc)) {
17780             /* configure headers for AFEX mode */
17781             REG_WR(sc, SC_PORT(sc) ?
17782                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17783                    PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17784             REG_WR(sc, SC_PORT(sc) ?
17785                    PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17786                    PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17787             REG_WR(sc, SC_PORT(sc) ?
17788                    PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17789                    PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17790         } else {
17791             /* Ovlan exists only if we are in multi-function +
17792              * switch-dependent mode, in switch-independent there
17793              * is no ovlan headers
17794              */
17795             REG_WR(sc, SC_PORT(sc) ?
17796                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17797                    PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17798                    (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17799         }
17800     }
17801 
17802     ecore_init_block(sc, BLOCK_TSDM, init_phase);
17803     ecore_init_block(sc, BLOCK_CSDM, init_phase);
17804     ecore_init_block(sc, BLOCK_USDM, init_phase);
17805     ecore_init_block(sc, BLOCK_XSDM, init_phase);
17806 
17807     ecore_init_block(sc, BLOCK_TSEM, init_phase);
17808     ecore_init_block(sc, BLOCK_USEM, init_phase);
17809     ecore_init_block(sc, BLOCK_CSEM, init_phase);
17810     ecore_init_block(sc, BLOCK_XSEM, init_phase);
17811 
17812     ecore_init_block(sc, BLOCK_UPB, init_phase);
17813     ecore_init_block(sc, BLOCK_XPB, init_phase);
17814 
17815     ecore_init_block(sc, BLOCK_PBF, init_phase);
17816 
17817     if (CHIP_IS_E1x(sc)) {
17818         /* configure PBF to work without PAUSE mtu 9000 */
17819         REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17820 
17821         /* update threshold */
17822         REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17823         /* update init credit */
17824         REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17825 
17826         /* probe changes */
17827         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17828         DELAY(50);
17829         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17830     }
17831 
17832     if (CNIC_SUPPORT(sc)) {
17833         ecore_init_block(sc, BLOCK_SRC, init_phase);
17834     }
17835 
17836     ecore_init_block(sc, BLOCK_CDU, init_phase);
17837     ecore_init_block(sc, BLOCK_CFC, init_phase);
17838 
17839     if (CHIP_IS_E1(sc)) {
17840         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17841         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17842     }
17843     ecore_init_block(sc, BLOCK_HC, init_phase);
17844 
17845     ecore_init_block(sc, BLOCK_IGU, init_phase);
17846 
17847     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17848     /* init aeu_mask_attn_func_0/1:
17849      *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17850      *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17851      *             bits 4-7 are used for "per vn group attention" */
17852     val = IS_MF(sc) ? 0xF7 : 0x7;
17853     /* Enable DCBX attention for all but E1 */
17854     val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17855     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17856 
17857     ecore_init_block(sc, BLOCK_NIG, init_phase);
17858 
17859     if (!CHIP_IS_E1x(sc)) {
17860         /* Bit-map indicating which L2 hdrs may appear after the
17861          * basic Ethernet header
17862          */
17863         if (IS_MF_AFEX(sc)) {
17864             REG_WR(sc, SC_PORT(sc) ?
17865                    NIG_REG_P1_HDRS_AFTER_BASIC :
17866                    NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17867         } else {
17868             REG_WR(sc, SC_PORT(sc) ?
17869                    NIG_REG_P1_HDRS_AFTER_BASIC :
17870                    NIG_REG_P0_HDRS_AFTER_BASIC,
17871                    IS_MF_SD(sc) ? 7 : 6);
17872         }
17873 
17874         if (CHIP_IS_E3(sc)) {
17875             REG_WR(sc, SC_PORT(sc) ?
17876                    NIG_REG_LLH1_MF_MODE :
17877                    NIG_REG_LLH_MF_MODE, IS_MF(sc));
17878         }
17879     }
17880     if (!CHIP_IS_E3(sc)) {
17881         REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17882     }
17883 
17884     if (!CHIP_IS_E1(sc)) {
17885         /* 0x2 disable mf_ov, 0x1 enable */
17886         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17887                (IS_MF_SD(sc) ? 0x1 : 0x2));
17888 
17889         if (!CHIP_IS_E1x(sc)) {
17890             val = 0;
17891             switch (sc->devinfo.mf_info.mf_mode) {
17892             case MULTI_FUNCTION_SD:
17893                 val = 1;
17894                 break;
17895             case MULTI_FUNCTION_SI:
17896             case MULTI_FUNCTION_AFEX:
17897                 val = 2;
17898                 break;
17899             }
17900 
17901             REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17902                         NIG_REG_LLH0_CLS_TYPE), val);
17903         }
17904         REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17905         REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17906         REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17907     }
17908 
17909     /* If SPIO5 is set to generate interrupts, enable it for this port */
17910     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17911     if (val & MISC_SPIO_SPIO5) {
17912         uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17913                                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17914         val = REG_RD(sc, reg_addr);
17915         val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17916         REG_WR(sc, reg_addr, val);
17917     }
17918 
17919     return (0);
17920 }
17921 
17922 static uint32_t
17923 bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17924                        uint32_t         reg,
17925                        uint32_t         expected,
17926                        uint32_t         poll_count)
17927 {
17928     uint32_t cur_cnt = poll_count;
17929     uint32_t val;
17930 
17931     while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17932         DELAY(FLR_WAIT_INTERVAL);
17933     }
17934 
17935     return (val);
17936 }
17937 
17938 static int
17939 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17940                               uint32_t         reg,
17941                               char             *msg,
17942                               uint32_t         poll_cnt)
17943 {
17944     uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17945 
17946     if (val != 0) {
17947         BLOGE(sc, "%s usage count=%d\n", msg, val);
17948         return (1);
17949     }
17950 
17951     return (0);
17952 }
17953 
17954 /* Common routines with VF FLR cleanup */
17955 static uint32_t
17956 bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17957 {
17958     /* adjust polling timeout */
17959     if (CHIP_REV_IS_EMUL(sc)) {
17960         return (FLR_POLL_CNT * 2000);
17961     }
17962 
17963     if (CHIP_REV_IS_FPGA(sc)) {
17964         return (FLR_POLL_CNT * 120);
17965     }
17966 
17967     return (FLR_POLL_CNT);
17968 }
17969 
17970 static int
17971 bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17972                            uint32_t         poll_cnt)
17973 {
17974     /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17975     if (bxe_flr_clnup_poll_hw_counter(sc,
17976                                       CFC_REG_NUM_LCIDS_INSIDE_PF,
17977                                       "CFC PF usage counter timed out",
17978                                       poll_cnt)) {
17979         return (1);
17980     }
17981 
17982     /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17983     if (bxe_flr_clnup_poll_hw_counter(sc,
17984                                       DORQ_REG_PF_USAGE_CNT,
17985                                       "DQ PF usage counter timed out",
17986                                       poll_cnt)) {
17987         return (1);
17988     }
17989 
17990     /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17991     if (bxe_flr_clnup_poll_hw_counter(sc,
17992                                       QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17993                                       "QM PF usage counter timed out",
17994                                       poll_cnt)) {
17995         return (1);
17996     }
17997 
17998     /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17999     if (bxe_flr_clnup_poll_hw_counter(sc,
18000                                       TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
18001                                       "Timers VNIC usage counter timed out",
18002                                       poll_cnt)) {
18003         return (1);
18004     }
18005 
18006     if (bxe_flr_clnup_poll_hw_counter(sc,
18007                                       TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
18008                                       "Timers NUM_SCANS usage counter timed out",
18009                                       poll_cnt)) {
18010         return (1);
18011     }
18012 
18013     /* Wait DMAE PF usage counter to zero */
18014     if (bxe_flr_clnup_poll_hw_counter(sc,
18015                                       dmae_reg_go_c[INIT_DMAE_C(sc)],
18016                                       "DMAE dommand register timed out",
18017                                       poll_cnt)) {
18018         return (1);
18019     }
18020 
18021     return (0);
18022 }
18023 
18024 #define OP_GEN_PARAM(param)                                            \
18025     (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
18026 #define OP_GEN_TYPE(type)                                           \
18027     (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
18028 #define OP_GEN_AGG_VECT(index)                                             \
18029     (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
18030 
18031 static int
18032 bxe_send_final_clnup(struct bxe_softc *sc,
18033                      uint8_t          clnup_func,
18034                      uint32_t         poll_cnt)
18035 {
18036     uint32_t op_gen_command = 0;
18037     uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
18038                           CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
18039     int ret = 0;
18040 
18041     if (REG_RD(sc, comp_addr)) {
18042         BLOGE(sc, "Cleanup complete was not 0 before sending\n");
18043         return (1);
18044     }
18045 
18046     op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
18047     op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
18048     op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
18049     op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
18050 
18051     BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
18052     REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
18053 
18054     if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
18055         BLOGE(sc, "FW final cleanup did not succeed\n");
18056         BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
18057               (REG_RD(sc, comp_addr)));
18058         bxe_panic(sc, ("FLR cleanup failed\n"));
18059         return (1);
18060     }
18061 
18062     /* Zero completion for nxt FLR */
18063     REG_WR(sc, comp_addr, 0);
18064 
18065     return (ret);
18066 }
18067 
18068 static void
18069 bxe_pbf_pN_buf_flushed(struct bxe_softc       *sc,
18070                        struct pbf_pN_buf_regs *regs,
18071                        uint32_t               poll_count)
18072 {
18073     uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
18074     uint32_t cur_cnt = poll_count;
18075 
18076     crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
18077     crd = crd_start = REG_RD(sc, regs->crd);
18078     init_crd = REG_RD(sc, regs->init_crd);
18079 
18080     BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
18081     BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
18082     BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
18083 
18084     while ((crd != init_crd) &&
18085            ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
18086             (init_crd - crd_start))) {
18087         if (cur_cnt--) {
18088             DELAY(FLR_WAIT_INTERVAL);
18089             crd = REG_RD(sc, regs->crd);
18090             crd_freed = REG_RD(sc, regs->crd_freed);
18091         } else {
18092             BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
18093             BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : c:%x\n", regs->pN, crd);
18094             BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
18095             break;
18096         }
18097     }
18098 
18099     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
18100           poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18101 }
18102 
18103 static void
18104 bxe_pbf_pN_cmd_flushed(struct bxe_softc       *sc,
18105                        struct pbf_pN_cmd_regs *regs,
18106                        uint32_t               poll_count)
18107 {
18108     uint32_t occup, to_free, freed, freed_start;
18109     uint32_t cur_cnt = poll_count;
18110 
18111     occup = to_free = REG_RD(sc, regs->lines_occup);
18112     freed = freed_start = REG_RD(sc, regs->lines_freed);
18113 
18114     BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18115     BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18116 
18117     while (occup &&
18118            ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
18119         if (cur_cnt--) {
18120             DELAY(FLR_WAIT_INTERVAL);
18121             occup = REG_RD(sc, regs->lines_occup);
18122             freed = REG_RD(sc, regs->lines_freed);
18123         } else {
18124             BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
18125             BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18126             BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18127             break;
18128         }
18129     }
18130 
18131     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
18132           poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18133 }
18134 
18135 static void
18136 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
18137 {
18138     struct pbf_pN_cmd_regs cmd_regs[] = {
18139         {0, (CHIP_IS_E3B0(sc)) ?
18140             PBF_REG_TQ_OCCUPANCY_Q0 :
18141             PBF_REG_P0_TQ_OCCUPANCY,
18142             (CHIP_IS_E3B0(sc)) ?
18143             PBF_REG_TQ_LINES_FREED_CNT_Q0 :
18144             PBF_REG_P0_TQ_LINES_FREED_CNT},
18145         {1, (CHIP_IS_E3B0(sc)) ?
18146             PBF_REG_TQ_OCCUPANCY_Q1 :
18147             PBF_REG_P1_TQ_OCCUPANCY,
18148             (CHIP_IS_E3B0(sc)) ?
18149             PBF_REG_TQ_LINES_FREED_CNT_Q1 :
18150             PBF_REG_P1_TQ_LINES_FREED_CNT},
18151         {4, (CHIP_IS_E3B0(sc)) ?
18152             PBF_REG_TQ_OCCUPANCY_LB_Q :
18153             PBF_REG_P4_TQ_OCCUPANCY,
18154             (CHIP_IS_E3B0(sc)) ?
18155             PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
18156             PBF_REG_P4_TQ_LINES_FREED_CNT}
18157     };
18158 
18159     struct pbf_pN_buf_regs buf_regs[] = {
18160         {0, (CHIP_IS_E3B0(sc)) ?
18161             PBF_REG_INIT_CRD_Q0 :
18162             PBF_REG_P0_INIT_CRD ,
18163             (CHIP_IS_E3B0(sc)) ?
18164             PBF_REG_CREDIT_Q0 :
18165             PBF_REG_P0_CREDIT,
18166             (CHIP_IS_E3B0(sc)) ?
18167             PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
18168             PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
18169         {1, (CHIP_IS_E3B0(sc)) ?
18170             PBF_REG_INIT_CRD_Q1 :
18171             PBF_REG_P1_INIT_CRD,
18172             (CHIP_IS_E3B0(sc)) ?
18173             PBF_REG_CREDIT_Q1 :
18174             PBF_REG_P1_CREDIT,
18175             (CHIP_IS_E3B0(sc)) ?
18176             PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
18177             PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
18178         {4, (CHIP_IS_E3B0(sc)) ?
18179             PBF_REG_INIT_CRD_LB_Q :
18180             PBF_REG_P4_INIT_CRD,
18181             (CHIP_IS_E3B0(sc)) ?
18182             PBF_REG_CREDIT_LB_Q :
18183             PBF_REG_P4_CREDIT,
18184             (CHIP_IS_E3B0(sc)) ?
18185             PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
18186             PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
18187     };
18188 
18189     int i;
18190 
18191     /* Verify the command queues are flushed P0, P1, P4 */
18192     for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
18193         bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
18194     }
18195 
18196     /* Verify the transmission buffers are flushed P0, P1, P4 */
18197     for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
18198         bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
18199     }
18200 }
18201 
18202 static void
18203 bxe_hw_enable_status(struct bxe_softc *sc)
18204 {
18205     uint32_t val;
18206 
18207     val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
18208     BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
18209 
18210     val = REG_RD(sc, PBF_REG_DISABLE_PF);
18211     BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
18212 
18213     val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
18214     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
18215 
18216     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
18217     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
18218 
18219     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
18220     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
18221 
18222     val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
18223     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
18224 
18225     val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
18226     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
18227 
18228     val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
18229     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
18230 }
18231 
18232 static int
18233 bxe_pf_flr_clnup(struct bxe_softc *sc)
18234 {
18235     uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
18236 
18237     BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
18238 
18239     /* Re-enable PF target read access */
18240     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
18241 
18242     /* Poll HW usage counters */
18243     BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
18244     if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
18245         return (-1);
18246     }
18247 
18248     /* Zero the igu 'trailing edge' and 'leading edge' */
18249 
18250     /* Send the FW cleanup command */
18251     if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
18252         return (-1);
18253     }
18254 
18255     /* ATC cleanup */
18256 
18257     /* Verify TX hw is flushed */
18258     bxe_tx_hw_flushed(sc, poll_cnt);
18259 
18260     /* Wait 100ms (not adjusted according to platform) */
18261     DELAY(100000);
18262 
18263     /* Verify no pending pci transactions */
18264     if (bxe_is_pcie_pending(sc)) {
18265         BLOGE(sc, "PCIE Transactions still pending\n");
18266     }
18267 
18268     /* Debug */
18269     bxe_hw_enable_status(sc);
18270 
18271     /*
18272      * Master enable - Due to WB DMAE writes performed before this
18273      * register is re-initialized as part of the regular function init
18274      */
18275     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18276 
18277     return (0);
18278 }
18279 
18280 #if 0
18281 static void
18282 bxe_init_searcher(struct bxe_softc *sc)
18283 {
18284     int port = SC_PORT(sc);
18285     ecore_src_init_t2(sc, sc->t2, sc->t2_mapping, SRC_CONN_NUM);
18286     /* T1 hash bits value determines the T1 number of entries */
18287     REG_WR(sc, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
18288 }
18289 #endif
18290 
18291 static int
18292 bxe_init_hw_func(struct bxe_softc *sc)
18293 {
18294     int port = SC_PORT(sc);
18295     int func = SC_FUNC(sc);
18296     int init_phase = PHASE_PF0 + func;
18297     struct ecore_ilt *ilt = sc->ilt;
18298     uint16_t cdu_ilt_start;
18299     uint32_t addr, val;
18300     uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
18301     int i, main_mem_width, rc;
18302 
18303     BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
18304 
18305     /* FLR cleanup */
18306     if (!CHIP_IS_E1x(sc)) {
18307         rc = bxe_pf_flr_clnup(sc);
18308         if (rc) {
18309             BLOGE(sc, "FLR cleanup failed!\n");
18310             // XXX bxe_fw_dump(sc);
18311             // XXX bxe_idle_chk(sc);
18312             return (rc);
18313         }
18314     }
18315 
18316     /* set MSI reconfigure capability */
18317     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18318         addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
18319         val = REG_RD(sc, addr);
18320         val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
18321         REG_WR(sc, addr, val);
18322     }
18323 
18324     ecore_init_block(sc, BLOCK_PXP, init_phase);
18325     ecore_init_block(sc, BLOCK_PXP2, init_phase);
18326 
18327     ilt = sc->ilt;
18328     cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18329 
18330 #if 0
18331     if (IS_SRIOV(sc)) {
18332         cdu_ilt_start += BXE_FIRST_VF_CID/ILT_PAGE_CIDS;
18333     }
18334     cdu_ilt_start = bxe_iov_init_ilt(sc, cdu_ilt_start);
18335 
18336 #if (BXE_FIRST_VF_CID > 0)
18337     /*
18338      * If BXE_FIRST_VF_CID > 0 then the PF L2 cids precedes
18339      * those of the VFs, so start line should be reset
18340      */
18341     cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18342 #endif
18343 #endif
18344 
18345     for (i = 0; i < L2_ILT_LINES(sc); i++) {
18346         ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
18347         ilt->lines[cdu_ilt_start + i].page_mapping =
18348             sc->context[i].vcxt_dma.paddr;
18349         ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
18350     }
18351     ecore_ilt_init_op(sc, INITOP_SET);
18352 
18353 #if 0
18354     if (!CONFIGURE_NIC_MODE(sc)) {
18355         bxe_init_searcher(sc);
18356         REG_WR(sc, PRS_REG_NIC_MODE, 0);
18357         BLOGD(sc, DBG_LOAD, "NIC MODE disabled\n");
18358     } else
18359 #endif
18360     {
18361         /* Set NIC mode */
18362         REG_WR(sc, PRS_REG_NIC_MODE, 1);
18363         BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
18364     }
18365 
18366     if (!CHIP_IS_E1x(sc)) {
18367         uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
18368 
18369         /* Turn on a single ISR mode in IGU if driver is going to use
18370          * INT#x or MSI
18371          */
18372         if (sc->interrupt_mode != INTR_MODE_MSIX) {
18373             pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
18374         }
18375 
18376         /*
18377          * Timers workaround bug: function init part.
18378          * Need to wait 20msec after initializing ILT,
18379          * needed to make sure there are no requests in
18380          * one of the PXP internal queues with "old" ILT addresses
18381          */
18382         DELAY(20000);
18383 
18384         /*
18385          * Master enable - Due to WB DMAE writes performed before this
18386          * register is re-initialized as part of the regular function
18387          * init
18388          */
18389         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18390         /* Enable the function in IGU */
18391         REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
18392     }
18393 
18394     sc->dmae_ready = 1;
18395 
18396     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
18397 
18398     if (!CHIP_IS_E1x(sc))
18399         REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
18400 
18401     ecore_init_block(sc, BLOCK_ATC, init_phase);
18402     ecore_init_block(sc, BLOCK_DMAE, init_phase);
18403     ecore_init_block(sc, BLOCK_NIG, init_phase);
18404     ecore_init_block(sc, BLOCK_SRC, init_phase);
18405     ecore_init_block(sc, BLOCK_MISC, init_phase);
18406     ecore_init_block(sc, BLOCK_TCM, init_phase);
18407     ecore_init_block(sc, BLOCK_UCM, init_phase);
18408     ecore_init_block(sc, BLOCK_CCM, init_phase);
18409     ecore_init_block(sc, BLOCK_XCM, init_phase);
18410     ecore_init_block(sc, BLOCK_TSEM, init_phase);
18411     ecore_init_block(sc, BLOCK_USEM, init_phase);
18412     ecore_init_block(sc, BLOCK_CSEM, init_phase);
18413     ecore_init_block(sc, BLOCK_XSEM, init_phase);
18414 
18415     if (!CHIP_IS_E1x(sc))
18416         REG_WR(sc, QM_REG_PF_EN, 1);
18417 
18418     if (!CHIP_IS_E1x(sc)) {
18419         REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18420         REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18421         REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18422         REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18423     }
18424     ecore_init_block(sc, BLOCK_QM, init_phase);
18425 
18426     ecore_init_block(sc, BLOCK_TM, init_phase);
18427     ecore_init_block(sc, BLOCK_DORQ, init_phase);
18428 
18429     bxe_iov_init_dq(sc);
18430 
18431     ecore_init_block(sc, BLOCK_BRB1, init_phase);
18432     ecore_init_block(sc, BLOCK_PRS, init_phase);
18433     ecore_init_block(sc, BLOCK_TSDM, init_phase);
18434     ecore_init_block(sc, BLOCK_CSDM, init_phase);
18435     ecore_init_block(sc, BLOCK_USDM, init_phase);
18436     ecore_init_block(sc, BLOCK_XSDM, init_phase);
18437     ecore_init_block(sc, BLOCK_UPB, init_phase);
18438     ecore_init_block(sc, BLOCK_XPB, init_phase);
18439     ecore_init_block(sc, BLOCK_PBF, init_phase);
18440     if (!CHIP_IS_E1x(sc))
18441         REG_WR(sc, PBF_REG_DISABLE_PF, 0);
18442 
18443     ecore_init_block(sc, BLOCK_CDU, init_phase);
18444 
18445     ecore_init_block(sc, BLOCK_CFC, init_phase);
18446 
18447     if (!CHIP_IS_E1x(sc))
18448         REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
18449 
18450     if (IS_MF(sc)) {
18451         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
18452         REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
18453     }
18454 
18455     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
18456 
18457     /* HC init per function */
18458     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18459         if (CHIP_IS_E1H(sc)) {
18460             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18461 
18462             REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18463             REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18464         }
18465         ecore_init_block(sc, BLOCK_HC, init_phase);
18466 
18467     } else {
18468         int num_segs, sb_idx, prod_offset;
18469 
18470         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18471 
18472         if (!CHIP_IS_E1x(sc)) {
18473             REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18474             REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18475         }
18476 
18477         ecore_init_block(sc, BLOCK_IGU, init_phase);
18478 
18479         if (!CHIP_IS_E1x(sc)) {
18480             int dsb_idx = 0;
18481             /**
18482              * Producer memory:
18483              * E2 mode: address 0-135 match to the mapping memory;
18484              * 136 - PF0 default prod; 137 - PF1 default prod;
18485              * 138 - PF2 default prod; 139 - PF3 default prod;
18486              * 140 - PF0 attn prod;    141 - PF1 attn prod;
18487              * 142 - PF2 attn prod;    143 - PF3 attn prod;
18488              * 144-147 reserved.
18489              *
18490              * E1.5 mode - In backward compatible mode;
18491              * for non default SB; each even line in the memory
18492              * holds the U producer and each odd line hold
18493              * the C producer. The first 128 producers are for
18494              * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
18495              * producers are for the DSB for each PF.
18496              * Each PF has five segments: (the order inside each
18497              * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
18498              * 132-135 C prods; 136-139 X prods; 140-143 T prods;
18499              * 144-147 attn prods;
18500              */
18501             /* non-default-status-blocks */
18502             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18503                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
18504             for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
18505                 prod_offset = (sc->igu_base_sb + sb_idx) *
18506                     num_segs;
18507 
18508                 for (i = 0; i < num_segs; i++) {
18509                     addr = IGU_REG_PROD_CONS_MEMORY +
18510                             (prod_offset + i) * 4;
18511                     REG_WR(sc, addr, 0);
18512                 }
18513                 /* send consumer update with value 0 */
18514                 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
18515                            USTORM_ID, 0, IGU_INT_NOP, 1);
18516                 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
18517             }
18518 
18519             /* default-status-blocks */
18520             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18521                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
18522 
18523             if (CHIP_IS_MODE_4_PORT(sc))
18524                 dsb_idx = SC_FUNC(sc);
18525             else
18526                 dsb_idx = SC_VN(sc);
18527 
18528             prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
18529                        IGU_BC_BASE_DSB_PROD + dsb_idx :
18530                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
18531 
18532             /*
18533              * igu prods come in chunks of E1HVN_MAX (4) -
18534              * does not matters what is the current chip mode
18535              */
18536             for (i = 0; i < (num_segs * E1HVN_MAX);
18537                  i += E1HVN_MAX) {
18538                 addr = IGU_REG_PROD_CONS_MEMORY +
18539                             (prod_offset + i)*4;
18540                 REG_WR(sc, addr, 0);
18541             }
18542             /* send consumer update with 0 */
18543             if (CHIP_INT_MODE_IS_BC(sc)) {
18544                 bxe_ack_sb(sc, sc->igu_dsb_id,
18545                            USTORM_ID, 0, IGU_INT_NOP, 1);
18546                 bxe_ack_sb(sc, sc->igu_dsb_id,
18547                            CSTORM_ID, 0, IGU_INT_NOP, 1);
18548                 bxe_ack_sb(sc, sc->igu_dsb_id,
18549                            XSTORM_ID, 0, IGU_INT_NOP, 1);
18550                 bxe_ack_sb(sc, sc->igu_dsb_id,
18551                            TSTORM_ID, 0, IGU_INT_NOP, 1);
18552                 bxe_ack_sb(sc, sc->igu_dsb_id,
18553                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
18554             } else {
18555                 bxe_ack_sb(sc, sc->igu_dsb_id,
18556                            USTORM_ID, 0, IGU_INT_NOP, 1);
18557                 bxe_ack_sb(sc, sc->igu_dsb_id,
18558                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
18559             }
18560             bxe_igu_clear_sb(sc, sc->igu_dsb_id);
18561 
18562             /* !!! these should become driver const once
18563                rf-tool supports split-68 const */
18564             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
18565             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
18566             REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
18567             REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
18568             REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
18569             REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
18570         }
18571     }
18572 
18573     /* Reset PCIE errors for debug */
18574     REG_WR(sc, 0x2114, 0xffffffff);
18575     REG_WR(sc, 0x2120, 0xffffffff);
18576 
18577     if (CHIP_IS_E1x(sc)) {
18578         main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
18579         main_mem_base = HC_REG_MAIN_MEMORY +
18580                 SC_PORT(sc) * (main_mem_size * 4);
18581         main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
18582         main_mem_width = 8;
18583 
18584         val = REG_RD(sc, main_mem_prty_clr);
18585         if (val) {
18586             BLOGD(sc, DBG_LOAD,
18587                   "Parity errors in HC block during function init (0x%x)!\n",
18588                   val);
18589         }
18590 
18591         /* Clear "false" parity errors in MSI-X table */
18592         for (i = main_mem_base;
18593              i < main_mem_base + main_mem_size * 4;
18594              i += main_mem_width) {
18595             bxe_read_dmae(sc, i, main_mem_width / 4);
18596             bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
18597                            i, main_mem_width / 4);
18598         }
18599         /* Clear HC parity attention */
18600         REG_RD(sc, main_mem_prty_clr);
18601     }
18602 
18603 #if 1
18604     /* Enable STORMs SP logging */
18605     REG_WR8(sc, BAR_USTRORM_INTMEM +
18606            USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18607     REG_WR8(sc, BAR_TSTRORM_INTMEM +
18608            TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18609     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18610            CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18611     REG_WR8(sc, BAR_XSTRORM_INTMEM +
18612            XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18613 #endif
18614 
18615     elink_phy_probe(&sc->link_params);
18616 
18617     return (0);
18618 }
18619 
18620 static void
18621 bxe_link_reset(struct bxe_softc *sc)
18622 {
18623     if (!BXE_NOMCP(sc)) {
18624         BXE_PHY_LOCK(sc);
18625         elink_lfa_reset(&sc->link_params, &sc->link_vars);
18626         BXE_PHY_UNLOCK(sc);
18627     } else {
18628         if (!CHIP_REV_IS_SLOW(sc)) {
18629             BLOGW(sc, "Bootcode is missing - cannot reset link\n");
18630         }
18631     }
18632 }
18633 
18634 static void
18635 bxe_reset_port(struct bxe_softc *sc)
18636 {
18637     int port = SC_PORT(sc);
18638     uint32_t val;
18639 
18640     /* reset physical Link */
18641     bxe_link_reset(sc);
18642 
18643     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18644 
18645     /* Do not rcv packets to BRB */
18646     REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18647     /* Do not direct rcv packets that are not for MCP to the BRB */
18648     REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18649                NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18650 
18651     /* Configure AEU */
18652     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18653 
18654     DELAY(100000);
18655 
18656     /* Check for BRB port occupancy */
18657     val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18658     if (val) {
18659         BLOGD(sc, DBG_LOAD,
18660               "BRB1 is not empty, %d blocks are occupied\n", val);
18661     }
18662 
18663     /* TODO: Close Doorbell port? */
18664 }
18665 
18666 static void
18667 bxe_ilt_wr(struct bxe_softc *sc,
18668            uint32_t         index,
18669            bus_addr_t       addr)
18670 {
18671     int reg;
18672     uint32_t wb_write[2];
18673 
18674     if (CHIP_IS_E1(sc)) {
18675         reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18676     } else {
18677         reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18678     }
18679 
18680     wb_write[0] = ONCHIP_ADDR1(addr);
18681     wb_write[1] = ONCHIP_ADDR2(addr);
18682     REG_WR_DMAE(sc, reg, wb_write, 2);
18683 }
18684 
18685 static void
18686 bxe_clear_func_ilt(struct bxe_softc *sc,
18687                    uint32_t         func)
18688 {
18689     uint32_t i, base = FUNC_ILT_BASE(func);
18690     for (i = base; i < base + ILT_PER_FUNC; i++) {
18691         bxe_ilt_wr(sc, i, 0);
18692     }
18693 }
18694 
18695 static void
18696 bxe_reset_func(struct bxe_softc *sc)
18697 {
18698     struct bxe_fastpath *fp;
18699     int port = SC_PORT(sc);
18700     int func = SC_FUNC(sc);
18701     int i;
18702 
18703     /* Disable the function in the FW */
18704     REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18705     REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18706     REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18707     REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18708 
18709     /* FP SBs */
18710     FOR_EACH_ETH_QUEUE(sc, i) {
18711         fp = &sc->fp[i];
18712         REG_WR8(sc, BAR_CSTRORM_INTMEM +
18713                 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18714                 SB_DISABLED);
18715     }
18716 
18717 #if 0
18718     if (CNIC_LOADED(sc)) {
18719         /* CNIC SB */
18720         REG_WR8(sc, BAR_CSTRORM_INTMEM +
18721                 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
18722                 (bxe_cnic_fw_sb_id(sc)), SB_DISABLED);
18723     }
18724 #endif
18725 
18726     /* SP SB */
18727     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18728             CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18729             SB_DISABLED);
18730 
18731     for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18732         REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18733     }
18734 
18735     /* Configure IGU */
18736     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18737         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18738         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18739     } else {
18740         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18741         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18742     }
18743 
18744     if (CNIC_LOADED(sc)) {
18745         /* Disable Timer scan */
18746         REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18747         /*
18748          * Wait for at least 10ms and up to 2 second for the timers
18749          * scan to complete
18750          */
18751         for (i = 0; i < 200; i++) {
18752             DELAY(10000);
18753             if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18754                 break;
18755         }
18756     }
18757 
18758     /* Clear ILT */
18759     bxe_clear_func_ilt(sc, func);
18760 
18761     /*
18762      * Timers workaround bug for E2: if this is vnic-3,
18763      * we need to set the entire ilt range for this timers.
18764      */
18765     if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18766         struct ilt_client_info ilt_cli;
18767         /* use dummy TM client */
18768         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18769         ilt_cli.start = 0;
18770         ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18771         ilt_cli.client_num = ILT_CLIENT_TM;
18772 
18773         ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18774     }
18775 
18776     /* this assumes that reset_port() called before reset_func()*/
18777     if (!CHIP_IS_E1x(sc)) {
18778         bxe_pf_disable(sc);
18779     }
18780 
18781     sc->dmae_ready = 0;
18782 }
18783 
18784 static int
18785 bxe_gunzip_init(struct bxe_softc *sc)
18786 {
18787     return (0);
18788 }
18789 
18790 static void
18791 bxe_gunzip_end(struct bxe_softc *sc)
18792 {
18793     return;
18794 }
18795 
18796 static int
18797 bxe_init_firmware(struct bxe_softc *sc)
18798 {
18799     if (CHIP_IS_E1(sc)) {
18800         ecore_init_e1_firmware(sc);
18801         sc->iro_array = e1_iro_arr;
18802     } else if (CHIP_IS_E1H(sc)) {
18803         ecore_init_e1h_firmware(sc);
18804         sc->iro_array = e1h_iro_arr;
18805     } else if (!CHIP_IS_E1x(sc)) {
18806         ecore_init_e2_firmware(sc);
18807         sc->iro_array = e2_iro_arr;
18808     } else {
18809         BLOGE(sc, "Unsupported chip revision\n");
18810         return (-1);
18811     }
18812 
18813     return (0);
18814 }
18815 
18816 static void
18817 bxe_release_firmware(struct bxe_softc *sc)
18818 {
18819     /* Do nothing */
18820     return;
18821 }
18822 
18823 static int
18824 ecore_gunzip(struct bxe_softc *sc,
18825              const uint8_t    *zbuf,
18826              int              len)
18827 {
18828     /* XXX : Implement... */
18829     BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18830     return (FALSE);
18831 }
18832 
18833 static void
18834 ecore_reg_wr_ind(struct bxe_softc *sc,
18835                  uint32_t         addr,
18836                  uint32_t         val)
18837 {
18838     bxe_reg_wr_ind(sc, addr, val);
18839 }
18840 
18841 static void
18842 ecore_write_dmae_phys_len(struct bxe_softc *sc,
18843                           bus_addr_t       phys_addr,
18844                           uint32_t         addr,
18845                           uint32_t         len)
18846 {
18847     bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18848 }
18849 
18850 void
18851 ecore_storm_memset_struct(struct bxe_softc *sc,
18852                           uint32_t         addr,
18853                           size_t           size,
18854                           uint32_t         *data)
18855 {
18856     uint8_t i;
18857     for (i = 0; i < size/4; i++) {
18858         REG_WR(sc, addr + (i * 4), data[i]);
18859     }
18860 }
18861 
18862