xref: /freebsd/sys/dev/bxe/bxe.c (revision 4abd7edcbde21ba7a089c7d1a0bba8f87ebece06)
1 /*-
2  * Copyright (c) 2007-2013 Broadcom Corporation. All rights reserved.
3  *
4  * Eric Davis        <edavis@broadcom.com>
5  * David Christensen <davidch@broadcom.com>
6  * Gary Zambrano     <zambrano@broadcom.com>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written consent.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #define BXE_DRIVER_VERSION "1.78.76"
38 
39 #include "bxe.h"
40 #include "ecore_sp.h"
41 #include "ecore_init.h"
42 #include "ecore_init_ops.h"
43 
44 #include "57710_int_offsets.h"
45 #include "57711_int_offsets.h"
46 #include "57712_int_offsets.h"
47 
48 /*
49  * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
50  * explicitly here for older kernels that don't include this changeset.
51  */
52 #ifndef CTLTYPE_U64
53 #define CTLTYPE_U64      CTLTYPE_QUAD
54 #define sysctl_handle_64 sysctl_handle_quad
55 #endif
56 
57 /*
58  * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
59  * here as zero(0) for older kernels that don't include this changeset
60  * thereby masking the functionality.
61  */
62 #ifndef CSUM_TCP_IPV6
63 #define CSUM_TCP_IPV6 0
64 #define CSUM_UDP_IPV6 0
65 #endif
66 
67 /*
68  * pci_find_cap was added in r219865. Re-define this at pci_find_extcap
69  * for older kernels that don't include this changeset.
70  */
71 #if __FreeBSD_version < 900035
72 #define pci_find_cap pci_find_extcap
73 #endif
74 
75 #define BXE_DEF_SB_ATT_IDX 0x0001
76 #define BXE_DEF_SB_IDX     0x0002
77 
78 /*
79  * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
80  * function HW initialization.
81  */
82 #define FLR_WAIT_USEC     10000 /* 10 msecs */
83 #define FLR_WAIT_INTERVAL 50    /* usecs */
84 #define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
85 
86 struct pbf_pN_buf_regs {
87     int pN;
88     uint32_t init_crd;
89     uint32_t crd;
90     uint32_t crd_freed;
91 };
92 
93 struct pbf_pN_cmd_regs {
94     int pN;
95     uint32_t lines_occup;
96     uint32_t lines_freed;
97 };
98 
99 /*
100  * PCI Device ID Table used by bxe_probe().
101  */
102 #define BXE_DEVDESC_MAX 64
103 static struct bxe_device_type bxe_devs[] = {
104     {
105         BRCM_VENDORID,
106         CHIP_NUM_57710,
107         PCI_ANY_ID, PCI_ANY_ID,
108         "Broadcom NetXtreme II BCM57710 10GbE"
109     },
110     {
111         BRCM_VENDORID,
112         CHIP_NUM_57711,
113         PCI_ANY_ID, PCI_ANY_ID,
114         "Broadcom NetXtreme II BCM57711 10GbE"
115     },
116     {
117         BRCM_VENDORID,
118         CHIP_NUM_57711E,
119         PCI_ANY_ID, PCI_ANY_ID,
120         "Broadcom NetXtreme II BCM57711E 10GbE"
121     },
122     {
123         BRCM_VENDORID,
124         CHIP_NUM_57712,
125         PCI_ANY_ID, PCI_ANY_ID,
126         "Broadcom NetXtreme II BCM57712 10GbE"
127     },
128     {
129         BRCM_VENDORID,
130         CHIP_NUM_57712_MF,
131         PCI_ANY_ID, PCI_ANY_ID,
132         "Broadcom NetXtreme II BCM57712 MF 10GbE"
133     },
134 #if 0
135     {
136         BRCM_VENDORID,
137         CHIP_NUM_57712_VF,
138         PCI_ANY_ID, PCI_ANY_ID,
139         "Broadcom NetXtreme II BCM57712 VF 10GbE"
140     },
141 #endif
142     {
143         BRCM_VENDORID,
144         CHIP_NUM_57800,
145         PCI_ANY_ID, PCI_ANY_ID,
146         "Broadcom NetXtreme II BCM57800 10GbE"
147     },
148     {
149         BRCM_VENDORID,
150         CHIP_NUM_57800_MF,
151         PCI_ANY_ID, PCI_ANY_ID,
152         "Broadcom NetXtreme II BCM57800 MF 10GbE"
153     },
154 #if 0
155     {
156         BRCM_VENDORID,
157         CHIP_NUM_57800_VF,
158         PCI_ANY_ID, PCI_ANY_ID,
159         "Broadcom NetXtreme II BCM57800 VF 10GbE"
160     },
161 #endif
162     {
163         BRCM_VENDORID,
164         CHIP_NUM_57810,
165         PCI_ANY_ID, PCI_ANY_ID,
166         "Broadcom NetXtreme II BCM57810 10GbE"
167     },
168     {
169         BRCM_VENDORID,
170         CHIP_NUM_57810_MF,
171         PCI_ANY_ID, PCI_ANY_ID,
172         "Broadcom NetXtreme II BCM57810 MF 10GbE"
173     },
174 #if 0
175     {
176         BRCM_VENDORID,
177         CHIP_NUM_57810_VF,
178         PCI_ANY_ID, PCI_ANY_ID,
179         "Broadcom NetXtreme II BCM57810 VF 10GbE"
180     },
181 #endif
182     {
183         BRCM_VENDORID,
184         CHIP_NUM_57811,
185         PCI_ANY_ID, PCI_ANY_ID,
186         "Broadcom NetXtreme II BCM57811 10GbE"
187     },
188     {
189         BRCM_VENDORID,
190         CHIP_NUM_57811_MF,
191         PCI_ANY_ID, PCI_ANY_ID,
192         "Broadcom NetXtreme II BCM57811 MF 10GbE"
193     },
194 #if 0
195     {
196         BRCM_VENDORID,
197         CHIP_NUM_57811_VF,
198         PCI_ANY_ID, PCI_ANY_ID,
199         "Broadcom NetXtreme II BCM57811 VF 10GbE"
200     },
201 #endif
202     {
203         BRCM_VENDORID,
204         CHIP_NUM_57840_4_10,
205         PCI_ANY_ID, PCI_ANY_ID,
206         "Broadcom NetXtreme II BCM57840 4x10GbE"
207     },
208 #if 0
209     {
210         BRCM_VENDORID,
211         CHIP_NUM_57840_2_20,
212         PCI_ANY_ID, PCI_ANY_ID,
213         "Broadcom NetXtreme II BCM57840 2x20GbE"
214     },
215 #endif
216     {
217         BRCM_VENDORID,
218         CHIP_NUM_57840_MF,
219         PCI_ANY_ID, PCI_ANY_ID,
220         "Broadcom NetXtreme II BCM57840 MF 10GbE"
221     },
222 #if 0
223     {
224         BRCM_VENDORID,
225         CHIP_NUM_57840_VF,
226         PCI_ANY_ID, PCI_ANY_ID,
227         "Broadcom NetXtreme II BCM57840 VF 10GbE"
228     },
229 #endif
230     {
231         0, 0, 0, 0, NULL
232     }
233 };
234 
235 MALLOC_DECLARE(M_BXE_ILT);
236 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
237 
238 /*
239  * FreeBSD device entry points.
240  */
241 static int bxe_probe(device_t);
242 static int bxe_attach(device_t);
243 static int bxe_detach(device_t);
244 static int bxe_shutdown(device_t);
245 
246 /*
247  * FreeBSD KLD module/device interface event handler method.
248  */
249 static device_method_t bxe_methods[] = {
250     /* Device interface (device_if.h) */
251     DEVMETHOD(device_probe,     bxe_probe),
252     DEVMETHOD(device_attach,    bxe_attach),
253     DEVMETHOD(device_detach,    bxe_detach),
254     DEVMETHOD(device_shutdown,  bxe_shutdown),
255 #if 0
256     DEVMETHOD(device_suspend,   bxe_suspend),
257     DEVMETHOD(device_resume,    bxe_resume),
258 #endif
259     /* Bus interface (bus_if.h) */
260     DEVMETHOD(bus_print_child,  bus_generic_print_child),
261     DEVMETHOD(bus_driver_added, bus_generic_driver_added),
262     KOBJMETHOD_END
263 };
264 
265 /*
266  * FreeBSD KLD Module data declaration
267  */
268 static driver_t bxe_driver = {
269     "bxe",                   /* module name */
270     bxe_methods,             /* event handler */
271     sizeof(struct bxe_softc) /* extra data */
272 };
273 
274 /*
275  * FreeBSD dev class is needed to manage dev instances and
276  * to associate with a bus type
277  */
278 static devclass_t bxe_devclass;
279 
280 MODULE_DEPEND(bxe, pci, 1, 1, 1);
281 MODULE_DEPEND(bxe, ether, 1, 1, 1);
282 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0);
283 
284 /* resources needed for unloading a previously loaded device */
285 
286 #define BXE_PREV_WAIT_NEEDED 1
287 struct mtx bxe_prev_mtx;
288 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
289 struct bxe_prev_list_node {
290     LIST_ENTRY(bxe_prev_list_node) node;
291     uint8_t bus;
292     uint8_t slot;
293     uint8_t path;
294     uint8_t aer; /* XXX automatic error recovery */
295     uint8_t undi;
296 };
297 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
298 
299 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
300 
301 /* Tunable device values... */
302 
303 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters");
304 
305 /* Debug */
306 unsigned long bxe_debug = 0;
307 TUNABLE_ULONG("hw.bxe.debug", &bxe_debug);
308 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, (CTLFLAG_RDTUN),
309              &bxe_debug, 0, "Debug logging mode");
310 
311 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
312 static int bxe_interrupt_mode = INTR_MODE_MSIX;
313 TUNABLE_INT("hw.bxe.interrupt_mode", &bxe_interrupt_mode);
314 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
315            &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
316 
317 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
318 static int bxe_queue_count = 4;
319 TUNABLE_INT("hw.bxe.queue_count", &bxe_queue_count);
320 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
321            &bxe_queue_count, 0, "Multi-Queue queue count");
322 
323 /* max number of buffers per queue (default RX_BD_USABLE) */
324 static int bxe_max_rx_bufs = 0;
325 TUNABLE_INT("hw.bxe.max_rx_bufs", &bxe_max_rx_bufs);
326 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
327            &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
328 
329 /* Host interrupt coalescing RX tick timer (usecs) */
330 static int bxe_hc_rx_ticks = 25;
331 TUNABLE_INT("hw.bxe.hc_rx_ticks", &bxe_hc_rx_ticks);
332 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
333            &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
334 
335 /* Host interrupt coalescing TX tick timer (usecs) */
336 static int bxe_hc_tx_ticks = 50;
337 TUNABLE_INT("hw.bxe.hc_tx_ticks", &bxe_hc_tx_ticks);
338 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
339            &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
340 
341 /* Maximum number of Rx packets to process at a time */
342 static int bxe_rx_budget = 0xffffffff;
343 TUNABLE_INT("hw.bxe.rx_budget", &bxe_rx_budget);
344 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
345            &bxe_rx_budget, 0, "Rx processing budget");
346 
347 /* Maximum LRO aggregation size */
348 static int bxe_max_aggregation_size = 0;
349 TUNABLE_INT("hw.bxe.max_aggregation_size", &bxe_max_aggregation_size);
350 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
351            &bxe_max_aggregation_size, 0, "max aggregation size");
352 
353 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
354 static int bxe_mrrs = -1;
355 TUNABLE_INT("hw.bxe.mrrs", &bxe_mrrs);
356 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
357            &bxe_mrrs, 0, "PCIe maximum read request size");
358 
359 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
360 static int bxe_autogreeen = 0;
361 TUNABLE_INT("hw.bxe.autogreeen", &bxe_autogreeen);
362 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
363            &bxe_autogreeen, 0, "AutoGrEEEn support");
364 
365 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
366 static int bxe_udp_rss = 0;
367 TUNABLE_INT("hw.bxe.udp_rss", &bxe_udp_rss);
368 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
369            &bxe_udp_rss, 0, "UDP RSS support");
370 
371 
372 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
373 
374 #define STATS_OFFSET32(stat_name)                   \
375     (offsetof(struct bxe_eth_stats, stat_name) / 4)
376 
377 #define Q_STATS_OFFSET32(stat_name)                   \
378     (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
379 
380 static const struct {
381     uint32_t offset;
382     uint32_t size;
383     uint32_t flags;
384 #define STATS_FLAGS_PORT  1
385 #define STATS_FLAGS_FUNC  2 /* MF only cares about function stats */
386 #define STATS_FLAGS_BOTH  (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
387     char string[STAT_NAME_LEN];
388 } bxe_eth_stats_arr[] = {
389     { STATS_OFFSET32(total_bytes_received_hi),
390                 8, STATS_FLAGS_BOTH, "rx_bytes" },
391     { STATS_OFFSET32(error_bytes_received_hi),
392                 8, STATS_FLAGS_BOTH, "rx_error_bytes" },
393     { STATS_OFFSET32(total_unicast_packets_received_hi),
394                 8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
395     { STATS_OFFSET32(total_multicast_packets_received_hi),
396                 8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
397     { STATS_OFFSET32(total_broadcast_packets_received_hi),
398                 8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
399     { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
400                 8, STATS_FLAGS_PORT, "rx_crc_errors" },
401     { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
402                 8, STATS_FLAGS_PORT, "rx_align_errors" },
403     { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
404                 8, STATS_FLAGS_PORT, "rx_undersize_packets" },
405     { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
406                 8, STATS_FLAGS_PORT, "rx_oversize_packets" },
407     { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
408                 8, STATS_FLAGS_PORT, "rx_fragments" },
409     { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
410                 8, STATS_FLAGS_PORT, "rx_jabbers" },
411     { STATS_OFFSET32(no_buff_discard_hi),
412                 8, STATS_FLAGS_BOTH, "rx_discards" },
413     { STATS_OFFSET32(mac_filter_discard),
414                 4, STATS_FLAGS_PORT, "rx_filtered_packets" },
415     { STATS_OFFSET32(mf_tag_discard),
416                 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
417     { STATS_OFFSET32(pfc_frames_received_hi),
418                 8, STATS_FLAGS_PORT, "pfc_frames_received" },
419     { STATS_OFFSET32(pfc_frames_sent_hi),
420                 8, STATS_FLAGS_PORT, "pfc_frames_sent" },
421     { STATS_OFFSET32(brb_drop_hi),
422                 8, STATS_FLAGS_PORT, "rx_brb_discard" },
423     { STATS_OFFSET32(brb_truncate_hi),
424                 8, STATS_FLAGS_PORT, "rx_brb_truncate" },
425     { STATS_OFFSET32(pause_frames_received_hi),
426                 8, STATS_FLAGS_PORT, "rx_pause_frames" },
427     { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
428                 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
429     { STATS_OFFSET32(nig_timer_max),
430                 4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
431     { STATS_OFFSET32(total_bytes_transmitted_hi),
432                 8, STATS_FLAGS_BOTH, "tx_bytes" },
433     { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
434                 8, STATS_FLAGS_PORT, "tx_error_bytes" },
435     { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
436                 8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
437     { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
438                 8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
439     { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
440                 8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
441     { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
442                 8, STATS_FLAGS_PORT, "tx_mac_errors" },
443     { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
444                 8, STATS_FLAGS_PORT, "tx_carrier_errors" },
445     { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
446                 8, STATS_FLAGS_PORT, "tx_single_collisions" },
447     { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
448                 8, STATS_FLAGS_PORT, "tx_multi_collisions" },
449     { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
450                 8, STATS_FLAGS_PORT, "tx_deferred" },
451     { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
452                 8, STATS_FLAGS_PORT, "tx_excess_collisions" },
453     { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
454                 8, STATS_FLAGS_PORT, "tx_late_collisions" },
455     { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
456                 8, STATS_FLAGS_PORT, "tx_total_collisions" },
457     { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
458                 8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
459     { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
460                 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
461     { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
462                 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
463     { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
464                 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
465     { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
466                 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
467     { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
468                 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
469     { STATS_OFFSET32(etherstatspktsover1522octets_hi),
470                 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
471     { STATS_OFFSET32(pause_frames_sent_hi),
472                 8, STATS_FLAGS_PORT, "tx_pause_frames" },
473     { STATS_OFFSET32(total_tpa_aggregations_hi),
474                 8, STATS_FLAGS_FUNC, "tpa_aggregations" },
475     { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
476                 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
477     { STATS_OFFSET32(total_tpa_bytes_hi),
478                 8, STATS_FLAGS_FUNC, "tpa_bytes"},
479 #if 0
480     { STATS_OFFSET32(recoverable_error),
481                 4, STATS_FLAGS_FUNC, "recoverable_errors" },
482     { STATS_OFFSET32(unrecoverable_error),
483                 4, STATS_FLAGS_FUNC, "unrecoverable_errors" },
484 #endif
485     { STATS_OFFSET32(eee_tx_lpi),
486                 4, STATS_FLAGS_PORT, "eee_tx_lpi"},
487     { STATS_OFFSET32(rx_calls),
488                 4, STATS_FLAGS_FUNC, "rx_calls"},
489     { STATS_OFFSET32(rx_pkts),
490                 4, STATS_FLAGS_FUNC, "rx_pkts"},
491     { STATS_OFFSET32(rx_tpa_pkts),
492                 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
493     { STATS_OFFSET32(rx_soft_errors),
494                 4, STATS_FLAGS_FUNC, "rx_soft_errors"},
495     { STATS_OFFSET32(rx_hw_csum_errors),
496                 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
497     { STATS_OFFSET32(rx_ofld_frames_csum_ip),
498                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
499     { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
500                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
501     { STATS_OFFSET32(rx_budget_reached),
502                 4, STATS_FLAGS_FUNC, "rx_budget_reached"},
503     { STATS_OFFSET32(tx_pkts),
504                 4, STATS_FLAGS_FUNC, "tx_pkts"},
505     { STATS_OFFSET32(tx_soft_errors),
506                 4, STATS_FLAGS_FUNC, "tx_soft_errors"},
507     { STATS_OFFSET32(tx_ofld_frames_csum_ip),
508                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
509     { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
510                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
511     { STATS_OFFSET32(tx_ofld_frames_csum_udp),
512                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
513     { STATS_OFFSET32(tx_ofld_frames_lso),
514                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
515     { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
516                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
517     { STATS_OFFSET32(tx_encap_failures),
518                 4, STATS_FLAGS_FUNC, "tx_encap_failures"},
519     { STATS_OFFSET32(tx_hw_queue_full),
520                 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
521     { STATS_OFFSET32(tx_hw_max_queue_depth),
522                 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
523     { STATS_OFFSET32(tx_dma_mapping_failure),
524                 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
525     { STATS_OFFSET32(tx_max_drbr_queue_depth),
526                 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
527     { STATS_OFFSET32(tx_window_violation_std),
528                 4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
529     { STATS_OFFSET32(tx_window_violation_tso),
530                 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
531 #if 0
532     { STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
533                 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_ipv6"},
534     { STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
535                 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_not_tcp"},
536 #endif
537     { STATS_OFFSET32(tx_chain_lost_mbuf),
538                 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
539     { STATS_OFFSET32(tx_frames_deferred),
540                 4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
541     { STATS_OFFSET32(tx_queue_xoff),
542                 4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
543     { STATS_OFFSET32(mbuf_defrag_attempts),
544                 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
545     { STATS_OFFSET32(mbuf_defrag_failures),
546                 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
547     { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
548                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
549     { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
550                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
551     { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
552                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
553     { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
554                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
555     { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
556                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
557     { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
558                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
559     { STATS_OFFSET32(mbuf_alloc_tx),
560                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
561     { STATS_OFFSET32(mbuf_alloc_rx),
562                 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
563     { STATS_OFFSET32(mbuf_alloc_sge),
564                 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
565     { STATS_OFFSET32(mbuf_alloc_tpa),
566                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}
567 };
568 
569 static const struct {
570     uint32_t offset;
571     uint32_t size;
572     char string[STAT_NAME_LEN];
573 } bxe_eth_q_stats_arr[] = {
574     { Q_STATS_OFFSET32(total_bytes_received_hi),
575                 8, "rx_bytes" },
576     { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
577                 8, "rx_ucast_packets" },
578     { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
579                 8, "rx_mcast_packets" },
580     { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
581                 8, "rx_bcast_packets" },
582     { Q_STATS_OFFSET32(no_buff_discard_hi),
583                 8, "rx_discards" },
584     { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
585                 8, "tx_bytes" },
586     { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
587                 8, "tx_ucast_packets" },
588     { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
589                 8, "tx_mcast_packets" },
590     { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
591                 8, "tx_bcast_packets" },
592     { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
593                 8, "tpa_aggregations" },
594     { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
595                 8, "tpa_aggregated_frames"},
596     { Q_STATS_OFFSET32(total_tpa_bytes_hi),
597                 8, "tpa_bytes"},
598     { Q_STATS_OFFSET32(rx_calls),
599                 4, "rx_calls"},
600     { Q_STATS_OFFSET32(rx_pkts),
601                 4, "rx_pkts"},
602     { Q_STATS_OFFSET32(rx_tpa_pkts),
603                 4, "rx_tpa_pkts"},
604     { Q_STATS_OFFSET32(rx_soft_errors),
605                 4, "rx_soft_errors"},
606     { Q_STATS_OFFSET32(rx_hw_csum_errors),
607                 4, "rx_hw_csum_errors"},
608     { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
609                 4, "rx_ofld_frames_csum_ip"},
610     { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
611                 4, "rx_ofld_frames_csum_tcp_udp"},
612     { Q_STATS_OFFSET32(rx_budget_reached),
613                 4, "rx_budget_reached"},
614     { Q_STATS_OFFSET32(tx_pkts),
615                 4, "tx_pkts"},
616     { Q_STATS_OFFSET32(tx_soft_errors),
617                 4, "tx_soft_errors"},
618     { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
619                 4, "tx_ofld_frames_csum_ip"},
620     { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
621                 4, "tx_ofld_frames_csum_tcp"},
622     { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
623                 4, "tx_ofld_frames_csum_udp"},
624     { Q_STATS_OFFSET32(tx_ofld_frames_lso),
625                 4, "tx_ofld_frames_lso"},
626     { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
627                 4, "tx_ofld_frames_lso_hdr_splits"},
628     { Q_STATS_OFFSET32(tx_encap_failures),
629                 4, "tx_encap_failures"},
630     { Q_STATS_OFFSET32(tx_hw_queue_full),
631                 4, "tx_hw_queue_full"},
632     { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
633                 4, "tx_hw_max_queue_depth"},
634     { Q_STATS_OFFSET32(tx_dma_mapping_failure),
635                 4, "tx_dma_mapping_failure"},
636     { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
637                 4, "tx_max_drbr_queue_depth"},
638     { Q_STATS_OFFSET32(tx_window_violation_std),
639                 4, "tx_window_violation_std"},
640     { Q_STATS_OFFSET32(tx_window_violation_tso),
641                 4, "tx_window_violation_tso"},
642 #if 0
643     { Q_STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
644                 4, "tx_unsupported_tso_request_ipv6"},
645     { Q_STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
646                 4, "tx_unsupported_tso_request_not_tcp"},
647 #endif
648     { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
649                 4, "tx_chain_lost_mbuf"},
650     { Q_STATS_OFFSET32(tx_frames_deferred),
651                 4, "tx_frames_deferred"},
652     { Q_STATS_OFFSET32(tx_queue_xoff),
653                 4, "tx_queue_xoff"},
654     { Q_STATS_OFFSET32(mbuf_defrag_attempts),
655                 4, "mbuf_defrag_attempts"},
656     { Q_STATS_OFFSET32(mbuf_defrag_failures),
657                 4, "mbuf_defrag_failures"},
658     { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
659                 4, "mbuf_rx_bd_alloc_failed"},
660     { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
661                 4, "mbuf_rx_bd_mapping_failed"},
662     { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
663                 4, "mbuf_rx_tpa_alloc_failed"},
664     { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
665                 4, "mbuf_rx_tpa_mapping_failed"},
666     { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
667                 4, "mbuf_rx_sge_alloc_failed"},
668     { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
669                 4, "mbuf_rx_sge_mapping_failed"},
670     { Q_STATS_OFFSET32(mbuf_alloc_tx),
671                 4, "mbuf_alloc_tx"},
672     { Q_STATS_OFFSET32(mbuf_alloc_rx),
673                 4, "mbuf_alloc_rx"},
674     { Q_STATS_OFFSET32(mbuf_alloc_sge),
675                 4, "mbuf_alloc_sge"},
676     { Q_STATS_OFFSET32(mbuf_alloc_tpa),
677                 4, "mbuf_alloc_tpa"}
678 };
679 
680 #define BXE_NUM_ETH_STATS   ARRAY_SIZE(bxe_eth_stats_arr)
681 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
682 
683 
684 static void    bxe_cmng_fns_init(struct bxe_softc *sc,
685                                  uint8_t          read_cfg,
686                                  uint8_t          cmng_type);
687 static int     bxe_get_cmng_fns_mode(struct bxe_softc *sc);
688 static void    storm_memset_cmng(struct bxe_softc *sc,
689                                  struct cmng_init *cmng,
690                                  uint8_t          port);
691 static void    bxe_set_reset_global(struct bxe_softc *sc);
692 static void    bxe_set_reset_in_progress(struct bxe_softc *sc);
693 static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
694                                  int              engine);
695 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
696 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
697                                    uint8_t          *global,
698                                    uint8_t          print);
699 static void    bxe_int_disable(struct bxe_softc *sc);
700 static int     bxe_release_leader_lock(struct bxe_softc *sc);
701 static void    bxe_pf_disable(struct bxe_softc *sc);
702 static void    bxe_free_fp_buffers(struct bxe_softc *sc);
703 static inline void bxe_update_rx_prod(struct bxe_softc    *sc,
704                                       struct bxe_fastpath *fp,
705                                       uint16_t            rx_bd_prod,
706                                       uint16_t            rx_cq_prod,
707                                       uint16_t            rx_sge_prod);
708 static void    bxe_link_report_locked(struct bxe_softc *sc);
709 static void    bxe_link_report(struct bxe_softc *sc);
710 static void    bxe_link_status_update(struct bxe_softc *sc);
711 static void    bxe_periodic_callout_func(void *xsc);
712 static void    bxe_periodic_start(struct bxe_softc *sc);
713 static void    bxe_periodic_stop(struct bxe_softc *sc);
714 static int     bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
715                                     uint16_t prev_index,
716                                     uint16_t index);
717 static int     bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
718                                      int                 queue);
719 static int     bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
720                                      uint16_t            index);
721 static uint8_t bxe_txeof(struct bxe_softc *sc,
722                          struct bxe_fastpath *fp);
723 static void    bxe_task_fp(struct bxe_fastpath *fp);
724 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
725                                      struct mbuf      *m,
726                                      uint8_t          contents);
727 static int     bxe_alloc_mem(struct bxe_softc *sc);
728 static void    bxe_free_mem(struct bxe_softc *sc);
729 static int     bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
730 static void    bxe_free_fw_stats_mem(struct bxe_softc *sc);
731 static int     bxe_interrupt_attach(struct bxe_softc *sc);
732 static void    bxe_interrupt_detach(struct bxe_softc *sc);
733 static void    bxe_set_rx_mode(struct bxe_softc *sc);
734 static int     bxe_init_locked(struct bxe_softc *sc);
735 static int     bxe_stop_locked(struct bxe_softc *sc);
736 static __noinline int bxe_nic_load(struct bxe_softc *sc,
737                                    int              load_mode);
738 static __noinline int bxe_nic_unload(struct bxe_softc *sc,
739                                      uint32_t         unload_mode,
740                                      uint8_t          keep_link);
741 
742 static void bxe_handle_sp_tq(void *context, int pending);
743 static void bxe_handle_rx_mode_tq(void *context, int pending);
744 static void bxe_handle_fp_tq(void *context, int pending);
745 
746 
747 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
748 uint32_t
749 calc_crc32(uint8_t  *crc32_packet,
750            uint32_t crc32_length,
751            uint32_t crc32_seed,
752            uint8_t  complement)
753 {
754    uint32_t byte         = 0;
755    uint32_t bit          = 0;
756    uint8_t  msb          = 0;
757    uint32_t temp         = 0;
758    uint32_t shft         = 0;
759    uint8_t  current_byte = 0;
760    uint32_t crc32_result = crc32_seed;
761    const uint32_t CRC32_POLY = 0x1edc6f41;
762 
763    if ((crc32_packet == NULL) ||
764        (crc32_length == 0) ||
765        ((crc32_length % 8) != 0))
766     {
767         return (crc32_result);
768     }
769 
770     for (byte = 0; byte < crc32_length; byte = byte + 1)
771     {
772         current_byte = crc32_packet[byte];
773         for (bit = 0; bit < 8; bit = bit + 1)
774         {
775             /* msb = crc32_result[31]; */
776             msb = (uint8_t)(crc32_result >> 31);
777 
778             crc32_result = crc32_result << 1;
779 
780             /* it (msb != current_byte[bit]) */
781             if (msb != (0x1 & (current_byte >> bit)))
782             {
783                 crc32_result = crc32_result ^ CRC32_POLY;
784                 /* crc32_result[0] = 1 */
785                 crc32_result |= 1;
786             }
787         }
788     }
789 
790     /* Last step is to:
791      * 1. "mirror" every bit
792      * 2. swap the 4 bytes
793      * 3. complement each bit
794      */
795 
796     /* Mirror */
797     temp = crc32_result;
798     shft = sizeof(crc32_result) * 8 - 1;
799 
800     for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
801     {
802         temp <<= 1;
803         temp |= crc32_result & 1;
804         shft-- ;
805     }
806 
807     /* temp[31-bit] = crc32_result[bit] */
808     temp <<= shft;
809 
810     /* Swap */
811     /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
812     {
813         uint32_t t0, t1, t2, t3;
814         t0 = (0x000000ff & (temp >> 24));
815         t1 = (0x0000ff00 & (temp >> 8));
816         t2 = (0x00ff0000 & (temp << 8));
817         t3 = (0xff000000 & (temp << 24));
818         crc32_result = t0 | t1 | t2 | t3;
819     }
820 
821     /* Complement */
822     if (complement)
823     {
824         crc32_result = ~crc32_result;
825     }
826 
827     return (crc32_result);
828 }
829 
830 int
831 bxe_test_bit(int                    nr,
832              volatile unsigned long *addr)
833 {
834     return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
835 }
836 
837 void
838 bxe_set_bit(unsigned int           nr,
839             volatile unsigned long *addr)
840 {
841     atomic_set_acq_long(addr, (1 << nr));
842 }
843 
844 void
845 bxe_clear_bit(int                    nr,
846               volatile unsigned long *addr)
847 {
848     atomic_clear_acq_long(addr, (1 << nr));
849 }
850 
851 int
852 bxe_test_and_set_bit(int                    nr,
853                        volatile unsigned long *addr)
854 {
855     unsigned long x;
856     nr = (1 << nr);
857     do {
858         x = *addr;
859     } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
860     // if (x & nr) bit_was_set; else bit_was_not_set;
861     return (x & nr);
862 }
863 
864 int
865 bxe_test_and_clear_bit(int                    nr,
866                        volatile unsigned long *addr)
867 {
868     unsigned long x;
869     nr = (1 << nr);
870     do {
871         x = *addr;
872     } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
873     // if (x & nr) bit_was_set; else bit_was_not_set;
874     return (x & nr);
875 }
876 
877 int
878 bxe_cmpxchg(volatile int *addr,
879             int          old,
880             int          new)
881 {
882     int x;
883     do {
884         x = *addr;
885     } while (atomic_cmpset_acq_int(addr, old, new) == 0);
886     return (x);
887 }
888 
889 /*
890  * Get DMA memory from the OS.
891  *
892  * Validates that the OS has provided DMA buffers in response to a
893  * bus_dmamap_load call and saves the physical address of those buffers.
894  * When the callback is used the OS will return 0 for the mapping function
895  * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
896  * failures back to the caller.
897  *
898  * Returns:
899  *   Nothing.
900  */
901 static void
902 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
903 {
904     struct bxe_dma *dma = arg;
905 
906     if (error) {
907         dma->paddr = 0;
908         dma->nseg  = 0;
909         BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
910     } else {
911         dma->paddr = segs->ds_addr;
912         dma->nseg  = nseg;
913 #if 0
914         BLOGD(dma->sc, DBG_LOAD,,
915               "DMA alloc '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
916               dma->msg, dma->vaddr, (void *)dma->paddr,
917               dma->nseg, dma->size);
918 #endif
919     }
920 }
921 
922 /*
923  * Allocate a block of memory and map it for DMA. No partial completions
924  * allowed and release any resources acquired if we can't acquire all
925  * resources.
926  *
927  * Returns:
928  *   0 = Success, !0 = Failure
929  */
930 int
931 bxe_dma_alloc(struct bxe_softc *sc,
932               bus_size_t       size,
933               struct bxe_dma   *dma,
934               const char       *msg)
935 {
936     int rc;
937 
938     if (dma->size > 0) {
939         BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
940               (unsigned long)dma->size);
941         return (1);
942     }
943 
944     memset(dma, 0, sizeof(*dma)); /* sanity */
945     dma->sc   = sc;
946     dma->size = size;
947     snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
948 
949     rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
950                             BCM_PAGE_SIZE,      /* alignment */
951                             0,                  /* boundary limit */
952                             BUS_SPACE_MAXADDR,  /* restricted low */
953                             BUS_SPACE_MAXADDR,  /* restricted hi */
954                             NULL,               /* addr filter() */
955                             NULL,               /* addr filter() arg */
956                             size,               /* max map size */
957                             1,                  /* num discontinuous */
958                             size,               /* max seg size */
959                             BUS_DMA_ALLOCNOW,   /* flags */
960                             NULL,               /* lock() */
961                             NULL,               /* lock() arg */
962                             &dma->tag);         /* returned dma tag */
963     if (rc != 0) {
964         BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
965         memset(dma, 0, sizeof(*dma));
966         return (1);
967     }
968 
969     rc = bus_dmamem_alloc(dma->tag,
970                           (void **)&dma->vaddr,
971                           (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
972                           &dma->map);
973     if (rc != 0) {
974         BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
975         bus_dma_tag_destroy(dma->tag);
976         memset(dma, 0, sizeof(*dma));
977         return (1);
978     }
979 
980     rc = bus_dmamap_load(dma->tag,
981                          dma->map,
982                          dma->vaddr,
983                          size,
984                          bxe_dma_map_addr, /* BLOGD in here */
985                          dma,
986                          BUS_DMA_NOWAIT);
987     if (rc != 0) {
988         BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
989         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
990         bus_dma_tag_destroy(dma->tag);
991         memset(dma, 0, sizeof(*dma));
992         return (1);
993     }
994 
995     return (0);
996 }
997 
998 void
999 bxe_dma_free(struct bxe_softc *sc,
1000              struct bxe_dma   *dma)
1001 {
1002     if (dma->size > 0) {
1003 #if 0
1004         BLOGD(sc, DBG_LOAD,
1005               "DMA free '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
1006               dma->msg, dma->vaddr, (void *)dma->paddr,
1007               dma->nseg, dma->size);
1008 #endif
1009 
1010         DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
1011 
1012         bus_dmamap_sync(dma->tag, dma->map,
1013                         (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
1014         bus_dmamap_unload(dma->tag, dma->map);
1015         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1016         bus_dma_tag_destroy(dma->tag);
1017     }
1018 
1019     memset(dma, 0, sizeof(*dma));
1020 }
1021 
1022 /*
1023  * These indirect read and write routines are only during init.
1024  * The locking is handled by the MCP.
1025  */
1026 
1027 void
1028 bxe_reg_wr_ind(struct bxe_softc *sc,
1029                uint32_t         addr,
1030                uint32_t         val)
1031 {
1032     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1033     pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
1034     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1035 }
1036 
1037 uint32_t
1038 bxe_reg_rd_ind(struct bxe_softc *sc,
1039                uint32_t         addr)
1040 {
1041     uint32_t val;
1042 
1043     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1044     val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
1045     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1046 
1047     return (val);
1048 }
1049 
1050 #if 0
1051 void bxe_dp_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int msglvl)
1052 {
1053     uint32_t src_type = dmae->opcode & DMAE_COMMAND_SRC;
1054 
1055     switch (dmae->opcode & DMAE_COMMAND_DST) {
1056     case DMAE_CMD_DST_PCI:
1057         if (src_type == DMAE_CMD_SRC_PCI)
1058             DP(msglvl, "DMAE: opcode 0x%08x\n"
1059                "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
1060                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1061                dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1062                dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1063                dmae->comp_addr_hi, dmae->comp_addr_lo,
1064                dmae->comp_val);
1065         else
1066             DP(msglvl, "DMAE: opcode 0x%08x\n"
1067                "src [%08x], len [%d*4], dst [%x:%08x]\n"
1068                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1069                dmae->opcode, dmae->src_addr_lo >> 2,
1070                dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1071                dmae->comp_addr_hi, dmae->comp_addr_lo,
1072                dmae->comp_val);
1073         break;
1074     case DMAE_CMD_DST_GRC:
1075         if (src_type == DMAE_CMD_SRC_PCI)
1076             DP(msglvl, "DMAE: opcode 0x%08x\n"
1077                "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
1078                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1079                dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1080                dmae->len, dmae->dst_addr_lo >> 2,
1081                dmae->comp_addr_hi, dmae->comp_addr_lo,
1082                dmae->comp_val);
1083         else
1084             DP(msglvl, "DMAE: opcode 0x%08x\n"
1085                "src [%08x], len [%d*4], dst [%08x]\n"
1086                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1087                dmae->opcode, dmae->src_addr_lo >> 2,
1088                dmae->len, dmae->dst_addr_lo >> 2,
1089                dmae->comp_addr_hi, dmae->comp_addr_lo,
1090                dmae->comp_val);
1091         break;
1092     default:
1093         if (src_type == DMAE_CMD_SRC_PCI)
1094             DP(msglvl, "DMAE: opcode 0x%08x\n"
1095                "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
1096                "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1097                dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1098                dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1099                dmae->comp_val);
1100         else
1101             DP(msglvl, "DMAE: opcode 0x%08x\n"
1102                "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
1103                "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1104                dmae->opcode, dmae->src_addr_lo >> 2,
1105                dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1106                dmae->comp_val);
1107         break;
1108     }
1109 
1110 }
1111 #endif
1112 
1113 static int
1114 bxe_acquire_hw_lock(struct bxe_softc *sc,
1115                     uint32_t         resource)
1116 {
1117     uint32_t lock_status;
1118     uint32_t resource_bit = (1 << resource);
1119     int func = SC_FUNC(sc);
1120     uint32_t hw_lock_control_reg;
1121     int cnt;
1122 
1123     /* validate the resource is within range */
1124     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1125         BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1126         return (-1);
1127     }
1128 
1129     if (func <= 5) {
1130         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1131     } else {
1132         hw_lock_control_reg =
1133                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1134     }
1135 
1136     /* validate the resource is not already taken */
1137     lock_status = REG_RD(sc, hw_lock_control_reg);
1138     if (lock_status & resource_bit) {
1139         BLOGE(sc, "resource in use (status 0x%x bit 0x%x)\n",
1140               lock_status, resource_bit);
1141         return (-1);
1142     }
1143 
1144     /* try every 5ms for 5 seconds */
1145     for (cnt = 0; cnt < 1000; cnt++) {
1146         REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1147         lock_status = REG_RD(sc, hw_lock_control_reg);
1148         if (lock_status & resource_bit) {
1149             return (0);
1150         }
1151         DELAY(5000);
1152     }
1153 
1154     BLOGE(sc, "Resource lock timeout!\n");
1155     return (-1);
1156 }
1157 
1158 static int
1159 bxe_release_hw_lock(struct bxe_softc *sc,
1160                     uint32_t         resource)
1161 {
1162     uint32_t lock_status;
1163     uint32_t resource_bit = (1 << resource);
1164     int func = SC_FUNC(sc);
1165     uint32_t hw_lock_control_reg;
1166 
1167     /* validate the resource is within range */
1168     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1169         BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1170         return (-1);
1171     }
1172 
1173     if (func <= 5) {
1174         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1175     } else {
1176         hw_lock_control_reg =
1177                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1178     }
1179 
1180     /* validate the resource is currently taken */
1181     lock_status = REG_RD(sc, hw_lock_control_reg);
1182     if (!(lock_status & resource_bit)) {
1183         BLOGE(sc, "resource not in use (status 0x%x bit 0x%x)\n",
1184               lock_status, resource_bit);
1185         return (-1);
1186     }
1187 
1188     REG_WR(sc, hw_lock_control_reg, resource_bit);
1189     return (0);
1190 }
1191 
1192 /*
1193  * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1194  * had we done things the other way around, if two pfs from the same port
1195  * would attempt to access nvram at the same time, we could run into a
1196  * scenario such as:
1197  * pf A takes the port lock.
1198  * pf B succeeds in taking the same lock since they are from the same port.
1199  * pf A takes the per pf misc lock. Performs eeprom access.
1200  * pf A finishes. Unlocks the per pf misc lock.
1201  * Pf B takes the lock and proceeds to perform it's own access.
1202  * pf A unlocks the per port lock, while pf B is still working (!).
1203  * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1204  * access corrupted by pf B).*
1205  */
1206 static int
1207 bxe_acquire_nvram_lock(struct bxe_softc *sc)
1208 {
1209     int port = SC_PORT(sc);
1210     int count, i;
1211     uint32_t val = 0;
1212 
1213     /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1214     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1215 
1216     /* adjust timeout for emulation/FPGA */
1217     count = NVRAM_TIMEOUT_COUNT;
1218     if (CHIP_REV_IS_SLOW(sc)) {
1219         count *= 100;
1220     }
1221 
1222     /* request access to nvram interface */
1223     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1224            (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1225 
1226     for (i = 0; i < count*10; i++) {
1227         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1228         if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1229             break;
1230         }
1231 
1232         DELAY(5);
1233     }
1234 
1235     if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1236         BLOGE(sc, "Cannot get access to nvram interface\n");
1237         return (-1);
1238     }
1239 
1240     return (0);
1241 }
1242 
1243 static int
1244 bxe_release_nvram_lock(struct bxe_softc *sc)
1245 {
1246     int port = SC_PORT(sc);
1247     int count, i;
1248     uint32_t val = 0;
1249 
1250     /* adjust timeout for emulation/FPGA */
1251     count = NVRAM_TIMEOUT_COUNT;
1252     if (CHIP_REV_IS_SLOW(sc)) {
1253         count *= 100;
1254     }
1255 
1256     /* relinquish nvram interface */
1257     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1258            (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1259 
1260     for (i = 0; i < count*10; i++) {
1261         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1262         if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1263             break;
1264         }
1265 
1266         DELAY(5);
1267     }
1268 
1269     if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1270         BLOGE(sc, "Cannot free access to nvram interface\n");
1271         return (-1);
1272     }
1273 
1274     /* release HW lock: protect against other PFs in PF Direct Assignment */
1275     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1276 
1277     return (0);
1278 }
1279 
1280 static void
1281 bxe_enable_nvram_access(struct bxe_softc *sc)
1282 {
1283     uint32_t val;
1284 
1285     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1286 
1287     /* enable both bits, even on read */
1288     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1289            (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1290 }
1291 
1292 static void
1293 bxe_disable_nvram_access(struct bxe_softc *sc)
1294 {
1295     uint32_t val;
1296 
1297     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1298 
1299     /* disable both bits, even after read */
1300     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1301            (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1302                     MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1303 }
1304 
1305 static int
1306 bxe_nvram_read_dword(struct bxe_softc *sc,
1307                      uint32_t         offset,
1308                      uint32_t         *ret_val,
1309                      uint32_t         cmd_flags)
1310 {
1311     int count, i, rc;
1312     uint32_t val;
1313 
1314     /* build the command word */
1315     cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1316 
1317     /* need to clear DONE bit separately */
1318     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1319 
1320     /* address of the NVRAM to read from */
1321     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1322            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1323 
1324     /* issue a read command */
1325     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1326 
1327     /* adjust timeout for emulation/FPGA */
1328     count = NVRAM_TIMEOUT_COUNT;
1329     if (CHIP_REV_IS_SLOW(sc)) {
1330         count *= 100;
1331     }
1332 
1333     /* wait for completion */
1334     *ret_val = 0;
1335     rc = -1;
1336     for (i = 0; i < count; i++) {
1337         DELAY(5);
1338         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1339 
1340         if (val & MCPR_NVM_COMMAND_DONE) {
1341             val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1342             /* we read nvram data in cpu order
1343              * but ethtool sees it as an array of bytes
1344              * converting to big-endian will do the work
1345              */
1346             *ret_val = htobe32(val);
1347             rc = 0;
1348             break;
1349         }
1350     }
1351 
1352     if (rc == -1) {
1353         BLOGE(sc, "nvram read timeout expired\n");
1354     }
1355 
1356     return (rc);
1357 }
1358 
1359 static int
1360 bxe_nvram_read(struct bxe_softc *sc,
1361                uint32_t         offset,
1362                uint8_t          *ret_buf,
1363                int              buf_size)
1364 {
1365     uint32_t cmd_flags;
1366     uint32_t val;
1367     int rc;
1368 
1369     if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1370         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1371               offset, buf_size);
1372         return (-1);
1373     }
1374 
1375     if ((offset + buf_size) > sc->devinfo.flash_size) {
1376         BLOGE(sc, "Invalid parameter, "
1377                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1378               offset, buf_size, sc->devinfo.flash_size);
1379         return (-1);
1380     }
1381 
1382     /* request access to nvram interface */
1383     rc = bxe_acquire_nvram_lock(sc);
1384     if (rc) {
1385         return (rc);
1386     }
1387 
1388     /* enable access to nvram interface */
1389     bxe_enable_nvram_access(sc);
1390 
1391     /* read the first word(s) */
1392     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1393     while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1394         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1395         memcpy(ret_buf, &val, 4);
1396 
1397         /* advance to the next dword */
1398         offset += sizeof(uint32_t);
1399         ret_buf += sizeof(uint32_t);
1400         buf_size -= sizeof(uint32_t);
1401         cmd_flags = 0;
1402     }
1403 
1404     if (rc == 0) {
1405         cmd_flags |= MCPR_NVM_COMMAND_LAST;
1406         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1407         memcpy(ret_buf, &val, 4);
1408     }
1409 
1410     /* disable access to nvram interface */
1411     bxe_disable_nvram_access(sc);
1412     bxe_release_nvram_lock(sc);
1413 
1414     return (rc);
1415 }
1416 
1417 static int
1418 bxe_nvram_write_dword(struct bxe_softc *sc,
1419                       uint32_t         offset,
1420                       uint32_t         val,
1421                       uint32_t         cmd_flags)
1422 {
1423     int count, i, rc;
1424 
1425     /* build the command word */
1426     cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1427 
1428     /* need to clear DONE bit separately */
1429     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1430 
1431     /* write the data */
1432     REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1433 
1434     /* address of the NVRAM to write to */
1435     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1436            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1437 
1438     /* issue the write command */
1439     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1440 
1441     /* adjust timeout for emulation/FPGA */
1442     count = NVRAM_TIMEOUT_COUNT;
1443     if (CHIP_REV_IS_SLOW(sc)) {
1444         count *= 100;
1445     }
1446 
1447     /* wait for completion */
1448     rc = -1;
1449     for (i = 0; i < count; i++) {
1450         DELAY(5);
1451         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1452         if (val & MCPR_NVM_COMMAND_DONE) {
1453             rc = 0;
1454             break;
1455         }
1456     }
1457 
1458     if (rc == -1) {
1459         BLOGE(sc, "nvram write timeout expired\n");
1460     }
1461 
1462     return (rc);
1463 }
1464 
1465 #define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1466 
1467 static int
1468 bxe_nvram_write1(struct bxe_softc *sc,
1469                  uint32_t         offset,
1470                  uint8_t          *data_buf,
1471                  int              buf_size)
1472 {
1473     uint32_t cmd_flags;
1474     uint32_t align_offset;
1475     uint32_t val;
1476     int rc;
1477 
1478     if ((offset + buf_size) > sc->devinfo.flash_size) {
1479         BLOGE(sc, "Invalid parameter, "
1480                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1481               offset, buf_size, sc->devinfo.flash_size);
1482         return (-1);
1483     }
1484 
1485     /* request access to nvram interface */
1486     rc = bxe_acquire_nvram_lock(sc);
1487     if (rc) {
1488         return (rc);
1489     }
1490 
1491     /* enable access to nvram interface */
1492     bxe_enable_nvram_access(sc);
1493 
1494     cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1495     align_offset = (offset & ~0x03);
1496     rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1497 
1498     if (rc == 0) {
1499         val &= ~(0xff << BYTE_OFFSET(offset));
1500         val |= (*data_buf << BYTE_OFFSET(offset));
1501 
1502         /* nvram data is returned as an array of bytes
1503          * convert it back to cpu order
1504          */
1505         val = be32toh(val);
1506 
1507         rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1508     }
1509 
1510     /* disable access to nvram interface */
1511     bxe_disable_nvram_access(sc);
1512     bxe_release_nvram_lock(sc);
1513 
1514     return (rc);
1515 }
1516 
1517 static int
1518 bxe_nvram_write(struct bxe_softc *sc,
1519                 uint32_t         offset,
1520                 uint8_t          *data_buf,
1521                 int              buf_size)
1522 {
1523     uint32_t cmd_flags;
1524     uint32_t val;
1525     uint32_t written_so_far;
1526     int rc;
1527 
1528     if (buf_size == 1) {
1529         return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1530     }
1531 
1532     if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1533         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1534               offset, buf_size);
1535         return (-1);
1536     }
1537 
1538     if (buf_size == 0) {
1539         return (0); /* nothing to do */
1540     }
1541 
1542     if ((offset + buf_size) > sc->devinfo.flash_size) {
1543         BLOGE(sc, "Invalid parameter, "
1544                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1545               offset, buf_size, sc->devinfo.flash_size);
1546         return (-1);
1547     }
1548 
1549     /* request access to nvram interface */
1550     rc = bxe_acquire_nvram_lock(sc);
1551     if (rc) {
1552         return (rc);
1553     }
1554 
1555     /* enable access to nvram interface */
1556     bxe_enable_nvram_access(sc);
1557 
1558     written_so_far = 0;
1559     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1560     while ((written_so_far < buf_size) && (rc == 0)) {
1561         if (written_so_far == (buf_size - sizeof(uint32_t))) {
1562             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1563         } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1564             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1565         } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1566             cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1567         }
1568 
1569         memcpy(&val, data_buf, 4);
1570 
1571         rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1572 
1573         /* advance to the next dword */
1574         offset += sizeof(uint32_t);
1575         data_buf += sizeof(uint32_t);
1576         written_so_far += sizeof(uint32_t);
1577         cmd_flags = 0;
1578     }
1579 
1580     /* disable access to nvram interface */
1581     bxe_disable_nvram_access(sc);
1582     bxe_release_nvram_lock(sc);
1583 
1584     return (rc);
1585 }
1586 
1587 /* copy command into DMAE command memory and set DMAE command Go */
1588 void
1589 bxe_post_dmae(struct bxe_softc    *sc,
1590               struct dmae_command *dmae,
1591               int                 idx)
1592 {
1593     uint32_t cmd_offset;
1594     int i;
1595 
1596     cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx));
1597     for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) {
1598         REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1599     }
1600 
1601     REG_WR(sc, dmae_reg_go_c[idx], 1);
1602 }
1603 
1604 uint32_t
1605 bxe_dmae_opcode_add_comp(uint32_t opcode,
1606                          uint8_t  comp_type)
1607 {
1608     return (opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
1609                       DMAE_COMMAND_C_TYPE_ENABLE));
1610 }
1611 
1612 uint32_t
1613 bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1614 {
1615     return (opcode & ~DMAE_COMMAND_SRC_RESET);
1616 }
1617 
1618 uint32_t
1619 bxe_dmae_opcode(struct bxe_softc *sc,
1620                 uint8_t          src_type,
1621                 uint8_t          dst_type,
1622                 uint8_t          with_comp,
1623                 uint8_t          comp_type)
1624 {
1625     uint32_t opcode = 0;
1626 
1627     opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
1628                (dst_type << DMAE_COMMAND_DST_SHIFT));
1629 
1630     opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET);
1631 
1632     opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1633 
1634     opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) |
1635                (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT));
1636 
1637     opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
1638 
1639 #ifdef __BIG_ENDIAN
1640     opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1641 #else
1642     opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1643 #endif
1644 
1645     if (with_comp) {
1646         opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1647     }
1648 
1649     return (opcode);
1650 }
1651 
1652 static void
1653 bxe_prep_dmae_with_comp(struct bxe_softc    *sc,
1654                         struct dmae_command *dmae,
1655                         uint8_t             src_type,
1656                         uint8_t             dst_type)
1657 {
1658     memset(dmae, 0, sizeof(struct dmae_command));
1659 
1660     /* set the opcode */
1661     dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1662                                    TRUE, DMAE_COMP_PCI);
1663 
1664     /* fill in the completion parameters */
1665     dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1666     dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1667     dmae->comp_val     = DMAE_COMP_VAL;
1668 }
1669 
1670 /* issue a DMAE command over the init channel and wait for completion */
1671 static int
1672 bxe_issue_dmae_with_comp(struct bxe_softc    *sc,
1673                          struct dmae_command *dmae)
1674 {
1675     uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1676     int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1677 
1678     BXE_DMAE_LOCK(sc);
1679 
1680     /* reset completion */
1681     *wb_comp = 0;
1682 
1683     /* post the command on the channel used for initializations */
1684     bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1685 
1686     /* wait for completion */
1687     DELAY(5);
1688 
1689     while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1690         if (!timeout ||
1691             (sc->recovery_state != BXE_RECOVERY_DONE &&
1692              sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1693             BLOGE(sc, "DMAE timeout!\n");
1694             BXE_DMAE_UNLOCK(sc);
1695             return (DMAE_TIMEOUT);
1696         }
1697 
1698         timeout--;
1699         DELAY(50);
1700     }
1701 
1702     if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1703         BLOGE(sc, "DMAE PCI error!\n");
1704         BXE_DMAE_UNLOCK(sc);
1705         return (DMAE_PCI_ERROR);
1706     }
1707 
1708     BXE_DMAE_UNLOCK(sc);
1709     return (0);
1710 }
1711 
1712 void
1713 bxe_read_dmae(struct bxe_softc *sc,
1714               uint32_t         src_addr,
1715               uint32_t         len32)
1716 {
1717     struct dmae_command dmae;
1718     uint32_t *data;
1719     int i, rc;
1720 
1721     DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1722 
1723     if (!sc->dmae_ready) {
1724         data = BXE_SP(sc, wb_data[0]);
1725 
1726         for (i = 0; i < len32; i++) {
1727             data[i] = (CHIP_IS_E1(sc)) ?
1728                           bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1729                           REG_RD(sc, (src_addr + (i * 4)));
1730         }
1731 
1732         return;
1733     }
1734 
1735     /* set opcode and fixed command fields */
1736     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1737 
1738     /* fill in addresses and len */
1739     dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1740     dmae.src_addr_hi = 0;
1741     dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1742     dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1743     dmae.len         = len32;
1744 
1745     /* issue the command and wait for completion */
1746     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1747         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1748     };
1749 }
1750 
1751 void
1752 bxe_write_dmae(struct bxe_softc *sc,
1753                bus_addr_t       dma_addr,
1754                uint32_t         dst_addr,
1755                uint32_t         len32)
1756 {
1757     struct dmae_command dmae;
1758     int rc;
1759 
1760     if (!sc->dmae_ready) {
1761         DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1762 
1763         if (CHIP_IS_E1(sc)) {
1764             ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1765         } else {
1766             ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1767         }
1768 
1769         return;
1770     }
1771 
1772     /* set opcode and fixed command fields */
1773     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1774 
1775     /* fill in addresses and len */
1776     dmae.src_addr_lo = U64_LO(dma_addr);
1777     dmae.src_addr_hi = U64_HI(dma_addr);
1778     dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1779     dmae.dst_addr_hi = 0;
1780     dmae.len         = len32;
1781 
1782     /* issue the command and wait for completion */
1783     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1784         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1785     }
1786 }
1787 
1788 void
1789 bxe_write_dmae_phys_len(struct bxe_softc *sc,
1790                         bus_addr_t       phys_addr,
1791                         uint32_t         addr,
1792                         uint32_t         len)
1793 {
1794     int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1795     int offset = 0;
1796 
1797     while (len > dmae_wr_max) {
1798         bxe_write_dmae(sc,
1799                        (phys_addr + offset), /* src DMA address */
1800                        (addr + offset),      /* dst GRC address */
1801                        dmae_wr_max);
1802         offset += (dmae_wr_max * 4);
1803         len -= dmae_wr_max;
1804     }
1805 
1806     bxe_write_dmae(sc,
1807                    (phys_addr + offset), /* src DMA address */
1808                    (addr + offset),      /* dst GRC address */
1809                    len);
1810 }
1811 
1812 void
1813 bxe_set_ctx_validation(struct bxe_softc   *sc,
1814                        struct eth_context *cxt,
1815                        uint32_t           cid)
1816 {
1817     /* ustorm cxt validation */
1818     cxt->ustorm_ag_context.cdu_usage =
1819         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1820             CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1821     /* xcontext validation */
1822     cxt->xstorm_ag_context.cdu_reserved =
1823         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1824             CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1825 }
1826 
1827 static void
1828 bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1829                             uint8_t          port,
1830                             uint8_t          fw_sb_id,
1831                             uint8_t          sb_index,
1832                             uint8_t          ticks)
1833 {
1834     uint32_t addr =
1835         (BAR_CSTRORM_INTMEM +
1836          CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1837 
1838     REG_WR8(sc, addr, ticks);
1839 
1840     BLOGD(sc, DBG_LOAD,
1841           "port %d fw_sb_id %d sb_index %d ticks %d\n",
1842           port, fw_sb_id, sb_index, ticks);
1843 }
1844 
1845 static void
1846 bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1847                             uint8_t          port,
1848                             uint16_t         fw_sb_id,
1849                             uint8_t          sb_index,
1850                             uint8_t          disable)
1851 {
1852     uint32_t enable_flag =
1853         (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1854     uint32_t addr =
1855         (BAR_CSTRORM_INTMEM +
1856          CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1857     uint8_t flags;
1858 
1859     /* clear and set */
1860     flags = REG_RD8(sc, addr);
1861     flags &= ~HC_INDEX_DATA_HC_ENABLED;
1862     flags |= enable_flag;
1863     REG_WR8(sc, addr, flags);
1864 
1865     BLOGD(sc, DBG_LOAD,
1866           "port %d fw_sb_id %d sb_index %d disable %d\n",
1867           port, fw_sb_id, sb_index, disable);
1868 }
1869 
1870 void
1871 bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1872                              uint8_t          fw_sb_id,
1873                              uint8_t          sb_index,
1874                              uint8_t          disable,
1875                              uint16_t         usec)
1876 {
1877     int port = SC_PORT(sc);
1878     uint8_t ticks = (usec / 4); /* XXX ??? */
1879 
1880     bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1881 
1882     disable = (disable) ? 1 : ((usec) ? 0 : 1);
1883     bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1884 }
1885 
1886 void
1887 elink_cb_udelay(struct bxe_softc *sc,
1888                 uint32_t         usecs)
1889 {
1890     DELAY(usecs);
1891 }
1892 
1893 uint32_t
1894 elink_cb_reg_read(struct bxe_softc *sc,
1895                   uint32_t         reg_addr)
1896 {
1897     return (REG_RD(sc, reg_addr));
1898 }
1899 
1900 void
1901 elink_cb_reg_write(struct bxe_softc *sc,
1902                    uint32_t         reg_addr,
1903                    uint32_t         val)
1904 {
1905     REG_WR(sc, reg_addr, val);
1906 }
1907 
1908 void
1909 elink_cb_reg_wb_write(struct bxe_softc *sc,
1910                       uint32_t         offset,
1911                       uint32_t         *wb_write,
1912                       uint16_t         len)
1913 {
1914     REG_WR_DMAE(sc, offset, wb_write, len);
1915 }
1916 
1917 void
1918 elink_cb_reg_wb_read(struct bxe_softc *sc,
1919                      uint32_t         offset,
1920                      uint32_t         *wb_write,
1921                      uint16_t         len)
1922 {
1923     REG_RD_DMAE(sc, offset, wb_write, len);
1924 }
1925 
1926 uint8_t
1927 elink_cb_path_id(struct bxe_softc *sc)
1928 {
1929     return (SC_PATH(sc));
1930 }
1931 
1932 void
1933 elink_cb_event_log(struct bxe_softc     *sc,
1934                    const elink_log_id_t elink_log_id,
1935                    ...)
1936 {
1937     /* XXX */
1938 #if 0
1939     //va_list ap;
1940     va_start(ap, elink_log_id);
1941     _XXX_(sc, lm_log_id, ap);
1942     va_end(ap);
1943 #endif
1944     BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1945 }
1946 
1947 static int
1948 bxe_set_spio(struct bxe_softc *sc,
1949              int              spio,
1950              uint32_t         mode)
1951 {
1952     uint32_t spio_reg;
1953 
1954     /* Only 2 SPIOs are configurable */
1955     if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1956         BLOGE(sc, "Invalid SPIO 0x%x\n", spio);
1957         return (-1);
1958     }
1959 
1960     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1961 
1962     /* read SPIO and mask except the float bits */
1963     spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1964 
1965     switch (mode) {
1966     case MISC_SPIO_OUTPUT_LOW:
1967         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1968         /* clear FLOAT and set CLR */
1969         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1970         spio_reg |=  (spio << MISC_SPIO_CLR_POS);
1971         break;
1972 
1973     case MISC_SPIO_OUTPUT_HIGH:
1974         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1975         /* clear FLOAT and set SET */
1976         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1977         spio_reg |=  (spio << MISC_SPIO_SET_POS);
1978         break;
1979 
1980     case MISC_SPIO_INPUT_HI_Z:
1981         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1982         /* set FLOAT */
1983         spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1984         break;
1985 
1986     default:
1987         break;
1988     }
1989 
1990     REG_WR(sc, MISC_REG_SPIO, spio_reg);
1991     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1992 
1993     return (0);
1994 }
1995 
1996 static int
1997 bxe_gpio_read(struct bxe_softc *sc,
1998               int              gpio_num,
1999               uint8_t          port)
2000 {
2001     /* The GPIO should be swapped if swap register is set and active */
2002     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2003                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2004     int gpio_shift = (gpio_num +
2005                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2006     uint32_t gpio_mask = (1 << gpio_shift);
2007     uint32_t gpio_reg;
2008 
2009     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2010         BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2011         return (-1);
2012     }
2013 
2014     /* read GPIO value */
2015     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2016 
2017     /* get the requested pin value */
2018     return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
2019 }
2020 
2021 static int
2022 bxe_gpio_write(struct bxe_softc *sc,
2023                int              gpio_num,
2024                uint32_t         mode,
2025                uint8_t          port)
2026 {
2027     /* The GPIO should be swapped if swap register is set and active */
2028     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2029                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2030     int gpio_shift = (gpio_num +
2031                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2032     uint32_t gpio_mask = (1 << gpio_shift);
2033     uint32_t gpio_reg;
2034 
2035     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2036         BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2037         return (-1);
2038     }
2039 
2040     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2041 
2042     /* read GPIO and mask except the float bits */
2043     gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2044 
2045     switch (mode) {
2046     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2047         BLOGD(sc, DBG_PHY,
2048               "Set GPIO %d (shift %d) -> output low\n",
2049               gpio_num, gpio_shift);
2050         /* clear FLOAT and set CLR */
2051         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2052         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2053         break;
2054 
2055     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2056         BLOGD(sc, DBG_PHY,
2057               "Set GPIO %d (shift %d) -> output high\n",
2058               gpio_num, gpio_shift);
2059         /* clear FLOAT and set SET */
2060         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2061         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2062         break;
2063 
2064     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2065         BLOGD(sc, DBG_PHY,
2066               "Set GPIO %d (shift %d) -> input\n",
2067               gpio_num, gpio_shift);
2068         /* set FLOAT */
2069         gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2070         break;
2071 
2072     default:
2073         break;
2074     }
2075 
2076     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2077     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2078 
2079     return (0);
2080 }
2081 
2082 static int
2083 bxe_gpio_mult_write(struct bxe_softc *sc,
2084                     uint8_t          pins,
2085                     uint32_t         mode)
2086 {
2087     uint32_t gpio_reg;
2088 
2089     /* any port swapping should be handled by caller */
2090 
2091     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2092 
2093     /* read GPIO and mask except the float bits */
2094     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2095     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2096     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2097     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2098 
2099     switch (mode) {
2100     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2101         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
2102         /* set CLR */
2103         gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2104         break;
2105 
2106     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2107         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
2108         /* set SET */
2109         gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2110         break;
2111 
2112     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2113         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
2114         /* set FLOAT */
2115         gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2116         break;
2117 
2118     default:
2119         BLOGE(sc, "Invalid GPIO mode assignment %d\n", mode);
2120         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2121         return (-1);
2122     }
2123 
2124     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2125     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2126 
2127     return (0);
2128 }
2129 
2130 static int
2131 bxe_gpio_int_write(struct bxe_softc *sc,
2132                    int              gpio_num,
2133                    uint32_t         mode,
2134                    uint8_t          port)
2135 {
2136     /* The GPIO should be swapped if swap register is set and active */
2137     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2138                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2139     int gpio_shift = (gpio_num +
2140                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2141     uint32_t gpio_mask = (1 << gpio_shift);
2142     uint32_t gpio_reg;
2143 
2144     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2145         BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2146         return (-1);
2147     }
2148 
2149     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2150 
2151     /* read GPIO int */
2152     gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2153 
2154     switch (mode) {
2155     case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2156         BLOGD(sc, DBG_PHY,
2157               "Clear GPIO INT %d (shift %d) -> output low\n",
2158               gpio_num, gpio_shift);
2159         /* clear SET and set CLR */
2160         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2161         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2162         break;
2163 
2164     case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2165         BLOGD(sc, DBG_PHY,
2166               "Set GPIO INT %d (shift %d) -> output high\n",
2167               gpio_num, gpio_shift);
2168         /* clear CLR and set SET */
2169         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2170         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2171         break;
2172 
2173     default:
2174         break;
2175     }
2176 
2177     REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2178     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2179 
2180     return (0);
2181 }
2182 
2183 uint32_t
2184 elink_cb_gpio_read(struct bxe_softc *sc,
2185                    uint16_t         gpio_num,
2186                    uint8_t          port)
2187 {
2188     return (bxe_gpio_read(sc, gpio_num, port));
2189 }
2190 
2191 uint8_t
2192 elink_cb_gpio_write(struct bxe_softc *sc,
2193                     uint16_t         gpio_num,
2194                     uint8_t          mode, /* 0=low 1=high */
2195                     uint8_t          port)
2196 {
2197     return (bxe_gpio_write(sc, gpio_num, mode, port));
2198 }
2199 
2200 uint8_t
2201 elink_cb_gpio_mult_write(struct bxe_softc *sc,
2202                          uint8_t          pins,
2203                          uint8_t          mode) /* 0=low 1=high */
2204 {
2205     return (bxe_gpio_mult_write(sc, pins, mode));
2206 }
2207 
2208 uint8_t
2209 elink_cb_gpio_int_write(struct bxe_softc *sc,
2210                         uint16_t         gpio_num,
2211                         uint8_t          mode, /* 0=low 1=high */
2212                         uint8_t          port)
2213 {
2214     return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2215 }
2216 
2217 void
2218 elink_cb_notify_link_changed(struct bxe_softc *sc)
2219 {
2220     REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2221                 (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2222 }
2223 
2224 /* send the MCP a request, block until there is a reply */
2225 uint32_t
2226 elink_cb_fw_command(struct bxe_softc *sc,
2227                     uint32_t         command,
2228                     uint32_t         param)
2229 {
2230     int mb_idx = SC_FW_MB_IDX(sc);
2231     uint32_t seq;
2232     uint32_t rc = 0;
2233     uint32_t cnt = 1;
2234     uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2235 
2236     BXE_FWMB_LOCK(sc);
2237 
2238     seq = ++sc->fw_seq;
2239     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2240     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2241 
2242     BLOGD(sc, DBG_PHY,
2243           "wrote command 0x%08x to FW MB param 0x%08x\n",
2244           (command | seq), param);
2245 
2246     /* Let the FW do it's magic. GIve it up to 5 seconds... */
2247     do {
2248         DELAY(delay * 1000);
2249         rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2250     } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2251 
2252     BLOGD(sc, DBG_PHY,
2253           "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2254           cnt*delay, rc, seq);
2255 
2256     /* is this a reply to our command? */
2257     if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2258         rc &= FW_MSG_CODE_MASK;
2259     } else {
2260         /* Ruh-roh! */
2261         BLOGE(sc, "FW failed to respond!\n");
2262         // XXX bxe_fw_dump(sc);
2263         rc = 0;
2264     }
2265 
2266     BXE_FWMB_UNLOCK(sc);
2267     return (rc);
2268 }
2269 
2270 static uint32_t
2271 bxe_fw_command(struct bxe_softc *sc,
2272                uint32_t         command,
2273                uint32_t         param)
2274 {
2275     return (elink_cb_fw_command(sc, command, param));
2276 }
2277 
2278 static void
2279 __storm_memset_dma_mapping(struct bxe_softc *sc,
2280                            uint32_t         addr,
2281                            bus_addr_t       mapping)
2282 {
2283     REG_WR(sc, addr, U64_LO(mapping));
2284     REG_WR(sc, (addr + 4), U64_HI(mapping));
2285 }
2286 
2287 static void
2288 storm_memset_spq_addr(struct bxe_softc *sc,
2289                       bus_addr_t       mapping,
2290                       uint16_t         abs_fid)
2291 {
2292     uint32_t addr = (XSEM_REG_FAST_MEMORY +
2293                      XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2294     __storm_memset_dma_mapping(sc, addr, mapping);
2295 }
2296 
2297 static void
2298 storm_memset_vf_to_pf(struct bxe_softc *sc,
2299                       uint16_t         abs_fid,
2300                       uint16_t         pf_id)
2301 {
2302     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2303     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2304     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2305     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2306 }
2307 
2308 static void
2309 storm_memset_func_en(struct bxe_softc *sc,
2310                      uint16_t         abs_fid,
2311                      uint8_t          enable)
2312 {
2313     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2314     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2315     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2316     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2317 }
2318 
2319 static void
2320 storm_memset_eq_data(struct bxe_softc       *sc,
2321                      struct event_ring_data *eq_data,
2322                      uint16_t               pfid)
2323 {
2324     uint32_t addr;
2325     size_t size;
2326 
2327     addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2328     size = sizeof(struct event_ring_data);
2329     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2330 }
2331 
2332 static void
2333 storm_memset_eq_prod(struct bxe_softc *sc,
2334                      uint16_t         eq_prod,
2335                      uint16_t         pfid)
2336 {
2337     uint32_t addr = (BAR_CSTRORM_INTMEM +
2338                      CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2339     REG_WR16(sc, addr, eq_prod);
2340 }
2341 
2342 /*
2343  * Post a slowpath command.
2344  *
2345  * A slowpath command is used to propogate a configuration change through
2346  * the controller in a controlled manner, allowing each STORM processor and
2347  * other H/W blocks to phase in the change.  The commands sent on the
2348  * slowpath are referred to as ramrods.  Depending on the ramrod used the
2349  * completion of the ramrod will occur in different ways.  Here's a
2350  * breakdown of ramrods and how they complete:
2351  *
2352  * RAMROD_CMD_ID_ETH_PORT_SETUP
2353  *   Used to setup the leading connection on a port.  Completes on the
2354  *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
2355  *
2356  * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2357  *   Used to setup an additional connection on a port.  Completes on the
2358  *   RCQ of the multi-queue/RSS connection being initialized.
2359  *
2360  * RAMROD_CMD_ID_ETH_STAT_QUERY
2361  *   Used to force the storm processors to update the statistics database
2362  *   in host memory.  This ramrod is send on the leading connection CID and
2363  *   completes as an index increment of the CSTORM on the default status
2364  *   block.
2365  *
2366  * RAMROD_CMD_ID_ETH_UPDATE
2367  *   Used to update the state of the leading connection, usually to udpate
2368  *   the RSS indirection table.  Completes on the RCQ of the leading
2369  *   connection. (Not currently used under FreeBSD until OS support becomes
2370  *   available.)
2371  *
2372  * RAMROD_CMD_ID_ETH_HALT
2373  *   Used when tearing down a connection prior to driver unload.  Completes
2374  *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
2375  *   use this on the leading connection.
2376  *
2377  * RAMROD_CMD_ID_ETH_SET_MAC
2378  *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
2379  *   the RCQ of the leading connection.
2380  *
2381  * RAMROD_CMD_ID_ETH_CFC_DEL
2382  *   Used when tearing down a conneciton prior to driver unload.  Completes
2383  *   on the RCQ of the leading connection (since the current connection
2384  *   has been completely removed from controller memory).
2385  *
2386  * RAMROD_CMD_ID_ETH_PORT_DEL
2387  *   Used to tear down the leading connection prior to driver unload,
2388  *   typically fp[0].  Completes as an index increment of the CSTORM on the
2389  *   default status block.
2390  *
2391  * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2392  *   Used for connection offload.  Completes on the RCQ of the multi-queue
2393  *   RSS connection that is being offloaded.  (Not currently used under
2394  *   FreeBSD.)
2395  *
2396  * There can only be one command pending per function.
2397  *
2398  * Returns:
2399  *   0 = Success, !0 = Failure.
2400  */
2401 
2402 /* must be called under the spq lock */
2403 static inline
2404 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2405 {
2406     struct eth_spe *next_spe = sc->spq_prod_bd;
2407 
2408     if (sc->spq_prod_bd == sc->spq_last_bd) {
2409         /* wrap back to the first eth_spq */
2410         sc->spq_prod_bd = sc->spq;
2411         sc->spq_prod_idx = 0;
2412     } else {
2413         sc->spq_prod_bd++;
2414         sc->spq_prod_idx++;
2415     }
2416 
2417     return (next_spe);
2418 }
2419 
2420 /* must be called under the spq lock */
2421 static inline
2422 void bxe_sp_prod_update(struct bxe_softc *sc)
2423 {
2424     int func = SC_FUNC(sc);
2425 
2426     /*
2427      * Make sure that BD data is updated before writing the producer.
2428      * BD data is written to the memory, the producer is read from the
2429      * memory, thus we need a full memory barrier to ensure the ordering.
2430      */
2431     mb();
2432 
2433     REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2434              sc->spq_prod_idx);
2435 
2436     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2437                       BUS_SPACE_BARRIER_WRITE);
2438 }
2439 
2440 /**
2441  * bxe_is_contextless_ramrod - check if the current command ends on EQ
2442  *
2443  * @cmd:      command to check
2444  * @cmd_type: command type
2445  */
2446 static inline
2447 int bxe_is_contextless_ramrod(int cmd,
2448                               int cmd_type)
2449 {
2450     if ((cmd_type == NONE_CONNECTION_TYPE) ||
2451         (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2452         (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2453         (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2454         (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2455         (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2456         (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2457         return (TRUE);
2458     } else {
2459         return (FALSE);
2460     }
2461 }
2462 
2463 /**
2464  * bxe_sp_post - place a single command on an SP ring
2465  *
2466  * @sc:         driver handle
2467  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
2468  * @cid:        SW CID the command is related to
2469  * @data_hi:    command private data address (high 32 bits)
2470  * @data_lo:    command private data address (low 32 bits)
2471  * @cmd_type:   command type (e.g. NONE, ETH)
2472  *
2473  * SP data is handled as if it's always an address pair, thus data fields are
2474  * not swapped to little endian in upper functions. Instead this function swaps
2475  * data as if it's two uint32 fields.
2476  */
2477 int
2478 bxe_sp_post(struct bxe_softc *sc,
2479             int              command,
2480             int              cid,
2481             uint32_t         data_hi,
2482             uint32_t         data_lo,
2483             int              cmd_type)
2484 {
2485     struct eth_spe *spe;
2486     uint16_t type;
2487     int common;
2488 
2489     common = bxe_is_contextless_ramrod(command, cmd_type);
2490 
2491     BXE_SP_LOCK(sc);
2492 
2493     if (common) {
2494         if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2495             BLOGE(sc, "EQ ring is full!\n");
2496             BXE_SP_UNLOCK(sc);
2497             return (-1);
2498         }
2499     } else {
2500         if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2501             BLOGE(sc, "SPQ ring is full!\n");
2502             BXE_SP_UNLOCK(sc);
2503             return (-1);
2504         }
2505     }
2506 
2507     spe = bxe_sp_get_next(sc);
2508 
2509     /* CID needs port number to be encoded int it */
2510     spe->hdr.conn_and_cmd_data =
2511         htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid));
2512 
2513     type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
2514 
2515     /* TBD: Check if it works for VFs */
2516     type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) &
2517              SPE_HDR_FUNCTION_ID);
2518 
2519     spe->hdr.type = htole16(type);
2520 
2521     spe->data.update_data_addr.hi = htole32(data_hi);
2522     spe->data.update_data_addr.lo = htole32(data_lo);
2523 
2524     /*
2525      * It's ok if the actual decrement is issued towards the memory
2526      * somewhere between the lock and unlock. Thus no more explict
2527      * memory barrier is needed.
2528      */
2529     if (common) {
2530         atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2531     } else {
2532         atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2533     }
2534 
2535     BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2536     BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2537           BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2538     BLOGD(sc, DBG_SP,
2539           "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2540           sc->spq_prod_idx,
2541           (uint32_t)U64_HI(sc->spq_dma.paddr),
2542           (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2543           command,
2544           common,
2545           HW_CID(sc, cid),
2546           data_hi,
2547           data_lo,
2548           type,
2549           atomic_load_acq_long(&sc->cq_spq_left),
2550           atomic_load_acq_long(&sc->eq_spq_left));
2551 
2552     bxe_sp_prod_update(sc);
2553 
2554     BXE_SP_UNLOCK(sc);
2555     return (0);
2556 }
2557 
2558 /**
2559  * bxe_debug_print_ind_table - prints the indirection table configuration.
2560  *
2561  * @sc: driver hanlde
2562  * @p:  pointer to rss configuration
2563  */
2564 #if 0
2565 static void
2566 bxe_debug_print_ind_table(struct bxe_softc               *sc,
2567                           struct ecore_config_rss_params *p)
2568 {
2569     int i;
2570 
2571     BLOGD(sc, DBG_LOAD, "Setting indirection table to:\n");
2572     BLOGD(sc, DBG_LOAD, "    0x0000: ");
2573     for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
2574         BLOGD(sc, DBG_LOAD, "0x%02x ", p->ind_table[i]);
2575 
2576         /* Print 4 bytes in a line */
2577         if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) &&
2578             (((i + 1) & 0x3) == 0)) {
2579             BLOGD(sc, DBG_LOAD, "\n");
2580             BLOGD(sc, DBG_LOAD, "0x%04x: ", i + 1);
2581         }
2582     }
2583 
2584     BLOGD(sc, DBG_LOAD, "\n");
2585 }
2586 #endif
2587 
2588 /*
2589  * FreeBSD Device probe function.
2590  *
2591  * Compares the device found to the driver's list of supported devices and
2592  * reports back to the bsd loader whether this is the right driver for the device.
2593  * This is the driver entry function called from the "kldload" command.
2594  *
2595  * Returns:
2596  *   BUS_PROBE_DEFAULT on success, positive value on failure.
2597  */
2598 static int
2599 bxe_probe(device_t dev)
2600 {
2601     struct bxe_softc *sc;
2602     struct bxe_device_type *t;
2603     char *descbuf;
2604     uint16_t did, sdid, svid, vid;
2605 
2606     /* Find our device structure */
2607     sc = device_get_softc(dev);
2608     sc->dev = dev;
2609     t = bxe_devs;
2610 
2611     /* Get the data for the device to be probed. */
2612     vid  = pci_get_vendor(dev);
2613     did  = pci_get_device(dev);
2614     svid = pci_get_subvendor(dev);
2615     sdid = pci_get_subdevice(dev);
2616 
2617     BLOGD(sc, DBG_LOAD,
2618           "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
2619           "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
2620 
2621     /* Look through the list of known devices for a match. */
2622     while (t->bxe_name != NULL) {
2623         if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2624             ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2625             ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2626             descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
2627             if (descbuf == NULL)
2628                 return (ENOMEM);
2629 
2630             /* Print out the device identity. */
2631             snprintf(descbuf, BXE_DEVDESC_MAX,
2632                      "%s (%c%d) BXE v:%s\n", t->bxe_name,
2633                      (((pci_read_config(dev, PCIR_REVID, 4) &
2634                         0xf0) >> 4) + 'A'),
2635                      (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2636                      BXE_DRIVER_VERSION);
2637 
2638             device_set_desc_copy(dev, descbuf);
2639             free(descbuf, M_TEMP);
2640             return (BUS_PROBE_DEFAULT);
2641         }
2642         t++;
2643     }
2644 
2645     return (ENXIO);
2646 }
2647 
2648 static void
2649 bxe_init_mutexes(struct bxe_softc *sc)
2650 {
2651 #ifdef BXE_CORE_LOCK_SX
2652     snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2653              "bxe%d_core_lock", sc->unit);
2654     sx_init(&sc->core_sx, sc->core_sx_name);
2655 #else
2656     snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2657              "bxe%d_core_lock", sc->unit);
2658     mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2659 #endif
2660 
2661     snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2662              "bxe%d_sp_lock", sc->unit);
2663     mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2664 
2665     snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2666              "bxe%d_dmae_lock", sc->unit);
2667     mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2668 
2669     snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2670              "bxe%d_phy_lock", sc->unit);
2671     mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2672 
2673     snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2674              "bxe%d_fwmb_lock", sc->unit);
2675     mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2676 
2677     snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2678              "bxe%d_print_lock", sc->unit);
2679     mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2680 
2681     snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2682              "bxe%d_stats_lock", sc->unit);
2683     mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2684 
2685     snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2686              "bxe%d_mcast_lock", sc->unit);
2687     mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2688 }
2689 
2690 static void
2691 bxe_release_mutexes(struct bxe_softc *sc)
2692 {
2693 #ifdef BXE_CORE_LOCK_SX
2694     sx_destroy(&sc->core_sx);
2695 #else
2696     if (mtx_initialized(&sc->core_mtx)) {
2697         mtx_destroy(&sc->core_mtx);
2698     }
2699 #endif
2700 
2701     if (mtx_initialized(&sc->sp_mtx)) {
2702         mtx_destroy(&sc->sp_mtx);
2703     }
2704 
2705     if (mtx_initialized(&sc->dmae_mtx)) {
2706         mtx_destroy(&sc->dmae_mtx);
2707     }
2708 
2709     if (mtx_initialized(&sc->port.phy_mtx)) {
2710         mtx_destroy(&sc->port.phy_mtx);
2711     }
2712 
2713     if (mtx_initialized(&sc->fwmb_mtx)) {
2714         mtx_destroy(&sc->fwmb_mtx);
2715     }
2716 
2717     if (mtx_initialized(&sc->print_mtx)) {
2718         mtx_destroy(&sc->print_mtx);
2719     }
2720 
2721     if (mtx_initialized(&sc->stats_mtx)) {
2722         mtx_destroy(&sc->stats_mtx);
2723     }
2724 
2725     if (mtx_initialized(&sc->mcast_mtx)) {
2726         mtx_destroy(&sc->mcast_mtx);
2727     }
2728 }
2729 
2730 static void
2731 bxe_tx_disable(struct bxe_softc* sc)
2732 {
2733     struct ifnet *ifp = sc->ifnet;
2734 
2735     /* tell the stack the driver is stopped and TX queue is full */
2736     if (ifp != NULL) {
2737         ifp->if_drv_flags = 0;
2738     }
2739 }
2740 
2741 static void
2742 bxe_drv_pulse(struct bxe_softc *sc)
2743 {
2744     SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2745              sc->fw_drv_pulse_wr_seq);
2746 }
2747 
2748 static inline uint16_t
2749 bxe_tx_avail(struct bxe_softc *sc,
2750              struct bxe_fastpath *fp)
2751 {
2752     int16_t  used;
2753     uint16_t prod;
2754     uint16_t cons;
2755 
2756     prod = fp->tx_bd_prod;
2757     cons = fp->tx_bd_cons;
2758 
2759     used = SUB_S16(prod, cons);
2760 
2761 #if 0
2762     KASSERT((used < 0), ("used tx bds < 0"));
2763     KASSERT((used > sc->tx_ring_size), ("used tx bds > tx_ring_size"));
2764     KASSERT(((sc->tx_ring_size - used) > MAX_TX_AVAIL),
2765             ("invalid number of tx bds used"));
2766 #endif
2767 
2768     return (int16_t)(sc->tx_ring_size) - used;
2769 }
2770 
2771 static inline int
2772 bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2773 {
2774     uint16_t hw_cons;
2775 
2776     mb(); /* status block fields can change */
2777     hw_cons = le16toh(*fp->tx_cons_sb);
2778     return (hw_cons != fp->tx_pkt_cons);
2779 }
2780 
2781 static inline uint8_t
2782 bxe_has_tx_work(struct bxe_fastpath *fp)
2783 {
2784     /* expand this for multi-cos if ever supported */
2785     return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2786 }
2787 
2788 static inline int
2789 bxe_has_rx_work(struct bxe_fastpath *fp)
2790 {
2791     uint16_t rx_cq_cons_sb;
2792 
2793     mb(); /* status block fields can change */
2794     rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2795     if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2796         rx_cq_cons_sb++;
2797     return (fp->rx_cq_cons != rx_cq_cons_sb);
2798 }
2799 
2800 static void
2801 bxe_sp_event(struct bxe_softc    *sc,
2802              struct bxe_fastpath *fp,
2803              union eth_rx_cqe    *rr_cqe)
2804 {
2805     int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2806     int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2807     enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2808     struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2809 
2810     BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2811           fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2812 
2813 #if 0
2814     /*
2815      * If cid is within VF range, replace the slowpath object with the
2816      * one corresponding to this VF
2817      */
2818     if ((cid >= BXE_FIRST_VF_CID) && (cid < BXE_FIRST_VF_CID + BXE_VF_CIDS)) {
2819         bxe_iov_set_queue_sp_obj(sc, cid, &q_obj);
2820     }
2821 #endif
2822 
2823     switch (command) {
2824     case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2825         BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2826         drv_cmd = ECORE_Q_CMD_UPDATE;
2827         break;
2828 
2829     case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2830         BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2831         drv_cmd = ECORE_Q_CMD_SETUP;
2832         break;
2833 
2834     case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2835         BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2836         drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2837         break;
2838 
2839     case (RAMROD_CMD_ID_ETH_HALT):
2840         BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2841         drv_cmd = ECORE_Q_CMD_HALT;
2842         break;
2843 
2844     case (RAMROD_CMD_ID_ETH_TERMINATE):
2845         BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2846         drv_cmd = ECORE_Q_CMD_TERMINATE;
2847         break;
2848 
2849     case (RAMROD_CMD_ID_ETH_EMPTY):
2850         BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2851         drv_cmd = ECORE_Q_CMD_EMPTY;
2852         break;
2853 
2854     default:
2855         BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2856               command, fp->index);
2857         return;
2858     }
2859 
2860     if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2861         q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2862         /*
2863          * q_obj->complete_cmd() failure means that this was
2864          * an unexpected completion.
2865          *
2866          * In this case we don't want to increase the sc->spq_left
2867          * because apparently we haven't sent this command the first
2868          * place.
2869          */
2870         // bxe_panic(sc, ("Unexpected SP completion\n"));
2871         return;
2872     }
2873 
2874 #if 0
2875     /* SRIOV: reschedule any 'in_progress' operations */
2876     bxe_iov_sp_event(sc, cid, TRUE);
2877 #endif
2878 
2879     atomic_add_acq_long(&sc->cq_spq_left, 1);
2880 
2881     BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2882           atomic_load_acq_long(&sc->cq_spq_left));
2883 
2884 #if 0
2885     if ((drv_cmd == ECORE_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
2886         (!!bxe_test_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state))) {
2887         /*
2888          * If Queue update ramrod is completed for last Queue in AFEX VIF set
2889          * flow, then ACK MCP at the end. Mark pending ACK to MCP bit to
2890          * prevent case that both bits are cleared. At the end of load/unload
2891          * driver checks that sp_state is cleared and this order prevents
2892          * races.
2893          */
2894         bxe_set_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, &sc->sp_state);
2895         wmb();
2896         bxe_clear_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state);
2897 
2898         /* schedule the sp task as MCP ack is required */
2899         bxe_schedule_sp_task(sc);
2900     }
2901 #endif
2902 }
2903 
2904 /*
2905  * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2906  * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2907  * the current aggregation queue as in-progress.
2908  */
2909 static void
2910 bxe_tpa_start(struct bxe_softc            *sc,
2911               struct bxe_fastpath         *fp,
2912               uint16_t                    queue,
2913               uint16_t                    cons,
2914               uint16_t                    prod,
2915               struct eth_fast_path_rx_cqe *cqe)
2916 {
2917     struct bxe_sw_rx_bd tmp_bd;
2918     struct bxe_sw_rx_bd *rx_buf;
2919     struct eth_rx_bd *rx_bd;
2920     int max_agg_queues;
2921     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2922     uint16_t index;
2923 
2924     BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2925                        "cons=%d prod=%d\n",
2926           fp->index, queue, cons, prod);
2927 
2928     max_agg_queues = MAX_AGG_QS(sc);
2929 
2930     KASSERT((queue < max_agg_queues),
2931             ("fp[%02d] invalid aggr queue (%d >= %d)!",
2932              fp->index, queue, max_agg_queues));
2933 
2934     KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2935             ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2936              fp->index, queue));
2937 
2938     /* copy the existing mbuf and mapping from the TPA pool */
2939     tmp_bd = tpa_info->bd;
2940 
2941     if (tmp_bd.m == NULL) {
2942         BLOGE(sc, "fp[%02d].tpa[%02d] mbuf not allocated!\n",
2943               fp->index, queue);
2944         /* XXX Error handling? */
2945         return;
2946     }
2947 
2948     /* change the TPA queue to the start state */
2949     tpa_info->state            = BXE_TPA_STATE_START;
2950     tpa_info->placement_offset = cqe->placement_offset;
2951     tpa_info->parsing_flags    = le16toh(cqe->pars_flags.flags);
2952     tpa_info->vlan_tag         = le16toh(cqe->vlan_tag);
2953     tpa_info->len_on_bd        = le16toh(cqe->len_on_bd);
2954 
2955     fp->rx_tpa_queue_used |= (1 << queue);
2956 
2957     /*
2958      * If all the buffer descriptors are filled with mbufs then fill in
2959      * the current consumer index with a new BD. Else if a maximum Rx
2960      * buffer limit is imposed then fill in the next producer index.
2961      */
2962     index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2963                 prod : cons;
2964 
2965     /* move the received mbuf and mapping to TPA pool */
2966     tpa_info->bd = fp->rx_mbuf_chain[cons];
2967 
2968     /* release any existing RX BD mbuf mappings */
2969     if (cons != index) {
2970         rx_buf = &fp->rx_mbuf_chain[cons];
2971 
2972         if (rx_buf->m_map != NULL) {
2973             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2974                             BUS_DMASYNC_POSTREAD);
2975             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2976         }
2977 
2978         /*
2979          * We get here when the maximum number of rx buffers is less than
2980          * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2981          * it out here without concern of a memory leak.
2982          */
2983         fp->rx_mbuf_chain[cons].m = NULL;
2984     }
2985 
2986     /* update the Rx SW BD with the mbuf info from the TPA pool */
2987     fp->rx_mbuf_chain[index] = tmp_bd;
2988 
2989     /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2990     rx_bd = &fp->rx_chain[index];
2991     rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2992     rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
2993 }
2994 
2995 /*
2996  * When a TPA aggregation is completed, loop through the individual mbufs
2997  * of the aggregation, combining them into a single mbuf which will be sent
2998  * up the stack. Refill all freed SGEs with mbufs as we go along.
2999  */
3000 static int
3001 bxe_fill_frag_mbuf(struct bxe_softc          *sc,
3002                    struct bxe_fastpath       *fp,
3003                    struct bxe_sw_tpa_info    *tpa_info,
3004                    uint16_t                  queue,
3005                    uint16_t                  pages,
3006                    struct mbuf               *m,
3007 			       struct eth_end_agg_rx_cqe *cqe,
3008                    uint16_t                  cqe_idx)
3009 {
3010     struct mbuf *m_frag;
3011     uint32_t frag_len, frag_size, i;
3012     uint16_t sge_idx;
3013     int rc = 0;
3014     int j;
3015 
3016     frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
3017 
3018     BLOGD(sc, DBG_LRO,
3019           "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
3020           fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
3021 
3022     /* make sure the aggregated frame is not too big to handle */
3023     if (pages > 8 * PAGES_PER_SGE) {
3024         BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
3025                   "pkt_len=%d len_on_bd=%d frag_size=%d\n",
3026               fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
3027               tpa_info->len_on_bd, frag_size);
3028         bxe_panic(sc, ("sge page count error\n"));
3029         return (EINVAL);
3030     }
3031 
3032     /*
3033      * Scan through the scatter gather list pulling individual mbufs into a
3034      * single mbuf for the host stack.
3035      */
3036     for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
3037         sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
3038 
3039         /*
3040          * Firmware gives the indices of the SGE as if the ring is an array
3041          * (meaning that the "next" element will consume 2 indices).
3042          */
3043         frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
3044 
3045         BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
3046                            "sge_idx=%d frag_size=%d frag_len=%d\n",
3047               fp->index, queue, i, j, sge_idx, frag_size, frag_len);
3048 
3049         m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3050 
3051         /* allocate a new mbuf for the SGE */
3052         rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3053         if (rc) {
3054             /* Leave all remaining SGEs in the ring! */
3055             return (rc);
3056         }
3057 
3058         /* update the fragment length */
3059         m_frag->m_len = frag_len;
3060 
3061         /* concatenate the fragment to the head mbuf */
3062         m_cat(m, m_frag);
3063         fp->eth_q_stats.mbuf_alloc_sge--;
3064 
3065         /* update the TPA mbuf size and remaining fragment size */
3066         m->m_pkthdr.len += frag_len;
3067         frag_size -= frag_len;
3068     }
3069 
3070     BLOGD(sc, DBG_LRO,
3071           "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
3072           fp->index, queue, frag_size);
3073 
3074     return (rc);
3075 }
3076 
3077 static inline void
3078 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
3079 {
3080     int i, j;
3081 
3082     for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
3083         int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
3084 
3085         for (j = 0; j < 2; j++) {
3086             BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
3087             idx--;
3088         }
3089     }
3090 }
3091 
3092 static inline void
3093 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
3094 {
3095     /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
3096     memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
3097 
3098     /*
3099      * Clear the two last indices in the page to 1. These are the indices that
3100      * correspond to the "next" element, hence will never be indicated and
3101      * should be removed from the calculations.
3102      */
3103     bxe_clear_sge_mask_next_elems(fp);
3104 }
3105 
3106 static inline void
3107 bxe_update_last_max_sge(struct bxe_fastpath *fp,
3108                         uint16_t            idx)
3109 {
3110     uint16_t last_max = fp->last_max_sge;
3111 
3112     if (SUB_S16(idx, last_max) > 0) {
3113         fp->last_max_sge = idx;
3114     }
3115 }
3116 
3117 static inline void
3118 bxe_update_sge_prod(struct bxe_softc          *sc,
3119                     struct bxe_fastpath       *fp,
3120                     uint16_t                  sge_len,
3121                     struct eth_end_agg_rx_cqe *cqe)
3122 {
3123     uint16_t last_max, last_elem, first_elem;
3124     uint16_t delta = 0;
3125     uint16_t i;
3126 
3127     if (!sge_len) {
3128         return;
3129     }
3130 
3131     /* first mark all used pages */
3132     for (i = 0; i < sge_len; i++) {
3133         BIT_VEC64_CLEAR_BIT(fp->sge_mask,
3134                             RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[i])));
3135     }
3136 
3137     BLOGD(sc, DBG_LRO,
3138           "fp[%02d] fp_cqe->sgl[%d] = %d\n",
3139           fp->index, sge_len - 1,
3140           le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
3141 
3142     /* assume that the last SGE index is the biggest */
3143     bxe_update_last_max_sge(fp,
3144                             le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
3145 
3146     last_max = RX_SGE(fp->last_max_sge);
3147     last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
3148     first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
3149 
3150     /* if ring is not full */
3151     if (last_elem + 1 != first_elem) {
3152         last_elem++;
3153     }
3154 
3155     /* now update the prod */
3156     for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
3157         if (__predict_true(fp->sge_mask[i])) {
3158             break;
3159         }
3160 
3161         fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
3162         delta += BIT_VEC64_ELEM_SZ;
3163     }
3164 
3165     if (delta > 0) {
3166         fp->rx_sge_prod += delta;
3167         /* clear page-end entries */
3168         bxe_clear_sge_mask_next_elems(fp);
3169     }
3170 
3171     BLOGD(sc, DBG_LRO,
3172           "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
3173           fp->index, fp->last_max_sge, fp->rx_sge_prod);
3174 }
3175 
3176 /*
3177  * The aggregation on the current TPA queue has completed. Pull the individual
3178  * mbuf fragments together into a single mbuf, perform all necessary checksum
3179  * calculations, and send the resuting mbuf to the stack.
3180  */
3181 static void
3182 bxe_tpa_stop(struct bxe_softc          *sc,
3183              struct bxe_fastpath       *fp,
3184              struct bxe_sw_tpa_info    *tpa_info,
3185              uint16_t                  queue,
3186              uint16_t                  pages,
3187 			 struct eth_end_agg_rx_cqe *cqe,
3188              uint16_t                  cqe_idx)
3189 {
3190     struct ifnet *ifp = sc->ifnet;
3191     struct mbuf *m;
3192     int rc = 0;
3193 
3194     BLOGD(sc, DBG_LRO,
3195           "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3196           fp->index, queue, tpa_info->placement_offset,
3197           le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3198 
3199     m = tpa_info->bd.m;
3200 
3201     /* allocate a replacement before modifying existing mbuf */
3202     rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3203     if (rc) {
3204         /* drop the frame and log an error */
3205         fp->eth_q_stats.rx_soft_errors++;
3206         goto bxe_tpa_stop_exit;
3207     }
3208 
3209     /* we have a replacement, fixup the current mbuf */
3210     m_adj(m, tpa_info->placement_offset);
3211     m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3212 
3213     /* mark the checksums valid (taken care of by the firmware) */
3214     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3215     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3216     m->m_pkthdr.csum_data = 0xffff;
3217     m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3218                                CSUM_IP_VALID   |
3219                                CSUM_DATA_VALID |
3220                                CSUM_PSEUDO_HDR);
3221 
3222     /* aggregate all of the SGEs into a single mbuf */
3223     rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3224     if (rc) {
3225         /* drop the packet and log an error */
3226         fp->eth_q_stats.rx_soft_errors++;
3227         m_freem(m);
3228     } else {
3229         if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) {
3230             m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3231             m->m_flags |= M_VLANTAG;
3232         }
3233 
3234         /* assign packet to this interface interface */
3235         m->m_pkthdr.rcvif = ifp;
3236 
3237 #if __FreeBSD_version >= 800000
3238         /* specify what RSS queue was used for this flow */
3239         m->m_pkthdr.flowid = fp->index;
3240         m->m_flags |= M_FLOWID;
3241 #endif
3242 
3243         ifp->if_ipackets++;
3244         fp->eth_q_stats.rx_tpa_pkts++;
3245 
3246         /* pass the frame to the stack */
3247         (*ifp->if_input)(ifp, m);
3248     }
3249 
3250     /* we passed an mbuf up the stack or dropped the frame */
3251     fp->eth_q_stats.mbuf_alloc_tpa--;
3252 
3253 bxe_tpa_stop_exit:
3254 
3255     fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3256     fp->rx_tpa_queue_used &= ~(1 << queue);
3257 }
3258 
3259 static uint8_t
3260 bxe_rxeof(struct bxe_softc    *sc,
3261           struct bxe_fastpath *fp)
3262 {
3263     struct ifnet *ifp = sc->ifnet;
3264     uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3265     uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3266     int rx_pkts = 0;
3267     int rc;
3268 
3269     BXE_FP_RX_LOCK(fp);
3270 
3271     /* CQ "next element" is of the size of the regular element */
3272     hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3273     if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3274         hw_cq_cons++;
3275     }
3276 
3277     bd_cons = fp->rx_bd_cons;
3278     bd_prod = fp->rx_bd_prod;
3279     bd_prod_fw = bd_prod;
3280     sw_cq_cons = fp->rx_cq_cons;
3281     sw_cq_prod = fp->rx_cq_prod;
3282 
3283     /*
3284      * Memory barrier necessary as speculative reads of the rx
3285      * buffer can be ahead of the index in the status block
3286      */
3287     rmb();
3288 
3289     BLOGD(sc, DBG_RX,
3290           "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3291           fp->index, hw_cq_cons, sw_cq_cons);
3292 
3293     while (sw_cq_cons != hw_cq_cons) {
3294         struct bxe_sw_rx_bd *rx_buf = NULL;
3295         union eth_rx_cqe *cqe;
3296         struct eth_fast_path_rx_cqe *cqe_fp;
3297         uint8_t cqe_fp_flags;
3298         enum eth_rx_cqe_type cqe_fp_type;
3299         uint16_t len, pad;
3300         struct mbuf *m = NULL;
3301 
3302         comp_ring_cons = RCQ(sw_cq_cons);
3303         bd_prod = RX_BD(bd_prod);
3304         bd_cons = RX_BD(bd_cons);
3305 
3306         cqe          = &fp->rcq_chain[comp_ring_cons];
3307         cqe_fp       = &cqe->fast_path_cqe;
3308         cqe_fp_flags = cqe_fp->type_error_flags;
3309         cqe_fp_type  = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3310 
3311         BLOGD(sc, DBG_RX,
3312               "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3313               "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3314               "status=0x%x rss_hash=0x%x vlan=0x%x len=%u\n",
3315               fp->index,
3316               hw_cq_cons,
3317               sw_cq_cons,
3318               bd_prod,
3319               bd_cons,
3320               CQE_TYPE(cqe_fp_flags),
3321               cqe_fp_flags,
3322               cqe_fp->status_flags,
3323               le32toh(cqe_fp->rss_hash_result),
3324               le16toh(cqe_fp->vlan_tag),
3325               le16toh(cqe_fp->pkt_len_or_gro_seg_len));
3326 
3327         /* is this a slowpath msg? */
3328         if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3329             bxe_sp_event(sc, fp, cqe);
3330             goto next_cqe;
3331         }
3332 
3333         rx_buf = &fp->rx_mbuf_chain[bd_cons];
3334 
3335         if (!CQE_TYPE_FAST(cqe_fp_type)) {
3336             struct bxe_sw_tpa_info *tpa_info;
3337             uint16_t frag_size, pages;
3338             uint8_t queue;
3339 
3340 #if 0
3341             /* sanity check */
3342             if (!fp->tpa_enable &&
3343                 (CQE_TYPE_START(cqe_fp_type) || CQE_TYPE_STOP(cqe_fp_type))) {
3344                 BLOGE(sc, "START/STOP packet while !tpa_enable type (0x%x)\n",
3345                       CQE_TYPE(cqe_fp_type));
3346             }
3347 #endif
3348 
3349             if (CQE_TYPE_START(cqe_fp_type)) {
3350                 bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3351                               bd_cons, bd_prod, cqe_fp);
3352                 m = NULL; /* packet not ready yet */
3353                 goto next_rx;
3354             }
3355 
3356             KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3357                     ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3358 
3359             queue = cqe->end_agg_cqe.queue_index;
3360             tpa_info = &fp->rx_tpa_info[queue];
3361 
3362             BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3363                   fp->index, queue);
3364 
3365             frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3366                          tpa_info->len_on_bd);
3367             pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3368 
3369             bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3370                          &cqe->end_agg_cqe, comp_ring_cons);
3371 
3372             bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe);
3373 
3374             goto next_cqe;
3375         }
3376 
3377         /* non TPA */
3378 
3379         /* is this an error packet? */
3380         if (__predict_false(cqe_fp_flags &
3381                             ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3382             BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3383             fp->eth_q_stats.rx_soft_errors++;
3384             goto next_rx;
3385         }
3386 
3387         len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3388         pad = cqe_fp->placement_offset;
3389 
3390         m = rx_buf->m;
3391 
3392         if (__predict_false(m == NULL)) {
3393             BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3394                   bd_cons, fp->index);
3395             goto next_rx;
3396         }
3397 
3398         /* XXX double copy if packet length under a threshold */
3399 
3400         /*
3401          * If all the buffer descriptors are filled with mbufs then fill in
3402          * the current consumer index with a new BD. Else if a maximum Rx
3403          * buffer limit is imposed then fill in the next producer index.
3404          */
3405         rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3406                                   (sc->max_rx_bufs != RX_BD_USABLE) ?
3407                                       bd_prod : bd_cons);
3408         if (rc != 0) {
3409             BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3410                   fp->index, rc);
3411             fp->eth_q_stats.rx_soft_errors++;
3412 
3413             if (sc->max_rx_bufs != RX_BD_USABLE) {
3414                 /* copy this consumer index to the producer index */
3415                 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3416                        sizeof(struct bxe_sw_rx_bd));
3417                 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3418             }
3419 
3420             goto next_rx;
3421         }
3422 
3423         /* current mbuf was detached from the bd */
3424         fp->eth_q_stats.mbuf_alloc_rx--;
3425 
3426         /* we allocated a replacement mbuf, fixup the current one */
3427         m_adj(m, pad);
3428         m->m_pkthdr.len = m->m_len = len;
3429 
3430         /* assign packet to this interface interface */
3431         m->m_pkthdr.rcvif = ifp;
3432 
3433         /* assume no hardware checksum has complated */
3434         m->m_pkthdr.csum_flags = 0;
3435 
3436         /* validate checksum if offload enabled */
3437         if (ifp->if_capenable & IFCAP_RXCSUM) {
3438             /* check for a valid IP frame */
3439             if (!(cqe->fast_path_cqe.status_flags &
3440                   ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3441                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3442                 if (__predict_false(cqe_fp_flags &
3443                                     ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3444                     fp->eth_q_stats.rx_hw_csum_errors++;
3445                 } else {
3446                     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3447                     m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3448                 }
3449             }
3450 
3451             /* check for a valid TCP/UDP frame */
3452             if (!(cqe->fast_path_cqe.status_flags &
3453                   ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3454                 if (__predict_false(cqe_fp_flags &
3455                                     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3456                     fp->eth_q_stats.rx_hw_csum_errors++;
3457                 } else {
3458                     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3459                     m->m_pkthdr.csum_data = 0xFFFF;
3460                     m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3461                                                CSUM_PSEUDO_HDR);
3462                 }
3463             }
3464         }
3465 
3466         /* if there is a VLAN tag then flag that info */
3467         if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_VLAN) {
3468             m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3469             m->m_flags |= M_VLANTAG;
3470         }
3471 
3472 #if __FreeBSD_version >= 800000
3473         /* specify what RSS queue was used for this flow */
3474         m->m_pkthdr.flowid = fp->index;
3475         m->m_flags |= M_FLOWID;
3476 #endif
3477 
3478 next_rx:
3479 
3480         bd_cons    = RX_BD_NEXT(bd_cons);
3481         bd_prod    = RX_BD_NEXT(bd_prod);
3482         bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3483 
3484         /* pass the frame to the stack */
3485         if (__predict_true(m != NULL)) {
3486             ifp->if_ipackets++;
3487             rx_pkts++;
3488             (*ifp->if_input)(ifp, m);
3489         }
3490 
3491 next_cqe:
3492 
3493         sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3494         sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3495 
3496         /* limit spinning on the queue */
3497         if (rx_pkts == sc->rx_budget) {
3498             fp->eth_q_stats.rx_budget_reached++;
3499             break;
3500         }
3501     } /* while work to do */
3502 
3503     fp->rx_bd_cons = bd_cons;
3504     fp->rx_bd_prod = bd_prod_fw;
3505     fp->rx_cq_cons = sw_cq_cons;
3506     fp->rx_cq_prod = sw_cq_prod;
3507 
3508     /* Update producers */
3509     bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3510 
3511     fp->eth_q_stats.rx_pkts += rx_pkts;
3512     fp->eth_q_stats.rx_calls++;
3513 
3514     BXE_FP_RX_UNLOCK(fp);
3515 
3516     return (sw_cq_cons != hw_cq_cons);
3517 }
3518 
3519 static uint16_t
3520 bxe_free_tx_pkt(struct bxe_softc    *sc,
3521                 struct bxe_fastpath *fp,
3522                 uint16_t            idx)
3523 {
3524     struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3525     struct eth_tx_start_bd *tx_start_bd;
3526     uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3527     uint16_t new_cons;
3528     int nbd;
3529 
3530     /* unmap the mbuf from non-paged memory */
3531     bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3532 
3533     tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3534     nbd = le16toh(tx_start_bd->nbd) - 1;
3535 
3536 #if 0
3537     if ((nbd - 1) > (MAX_MBUF_FRAGS + 2)) {
3538         bxe_panic(sc, ("BAD nbd!\n"));
3539     }
3540 #endif
3541 
3542     new_cons = (tx_buf->first_bd + nbd);
3543 
3544 #if 0
3545     struct eth_tx_bd *tx_data_bd;
3546 
3547     /*
3548      * The following code doesn't do anything but is left here
3549      * for clarity on what the new value of new_cons skipped.
3550      */
3551 
3552     /* get the next bd */
3553     bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3554 
3555     /* skip the parse bd */
3556     --nbd;
3557     bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3558 
3559     /* skip the TSO split header bd since they have no mapping */
3560     if (tx_buf->flags & BXE_TSO_SPLIT_BD) {
3561         --nbd;
3562         bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3563     }
3564 
3565     /* now free frags */
3566     while (nbd > 0) {
3567         tx_data_bd = &fp->tx_chain[bd_idx].reg_bd;
3568         if (--nbd) {
3569             bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3570         }
3571     }
3572 #endif
3573 
3574     /* free the mbuf */
3575     if (__predict_true(tx_buf->m != NULL)) {
3576         m_freem(tx_buf->m);
3577         fp->eth_q_stats.mbuf_alloc_tx--;
3578     } else {
3579         fp->eth_q_stats.tx_chain_lost_mbuf++;
3580     }
3581 
3582     tx_buf->m = NULL;
3583     tx_buf->first_bd = 0;
3584 
3585     return (new_cons);
3586 }
3587 
3588 /* transmit timeout watchdog */
3589 static int
3590 bxe_watchdog(struct bxe_softc    *sc,
3591              struct bxe_fastpath *fp)
3592 {
3593     BXE_FP_TX_LOCK(fp);
3594 
3595     if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3596         BXE_FP_TX_UNLOCK(fp);
3597         return (0);
3598     }
3599 
3600     BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3601 
3602     BXE_FP_TX_UNLOCK(fp);
3603 
3604     atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
3605     taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
3606 
3607     return (-1);
3608 }
3609 
3610 /* processes transmit completions */
3611 static uint8_t
3612 bxe_txeof(struct bxe_softc    *sc,
3613           struct bxe_fastpath *fp)
3614 {
3615     struct ifnet *ifp = sc->ifnet;
3616     uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3617     uint16_t tx_bd_avail;
3618 
3619     BXE_FP_TX_LOCK_ASSERT(fp);
3620 
3621     bd_cons = fp->tx_bd_cons;
3622     hw_cons = le16toh(*fp->tx_cons_sb);
3623     sw_cons = fp->tx_pkt_cons;
3624 
3625     while (sw_cons != hw_cons) {
3626         pkt_cons = TX_BD(sw_cons);
3627 
3628         BLOGD(sc, DBG_TX,
3629               "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3630               fp->index, hw_cons, sw_cons, pkt_cons);
3631 
3632         bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3633 
3634         sw_cons++;
3635     }
3636 
3637     fp->tx_pkt_cons = sw_cons;
3638     fp->tx_bd_cons  = bd_cons;
3639 
3640     BLOGD(sc, DBG_TX,
3641           "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3642           fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3643 
3644     mb();
3645 
3646     tx_bd_avail = bxe_tx_avail(sc, fp);
3647 
3648     if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3649         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3650     } else {
3651         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3652     }
3653 
3654     if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3655         /* reset the watchdog timer if there are pending transmits */
3656         fp->watchdog_timer = BXE_TX_TIMEOUT;
3657         return (TRUE);
3658     } else {
3659         /* clear watchdog when there are no pending transmits */
3660         fp->watchdog_timer = 0;
3661         return (FALSE);
3662     }
3663 }
3664 
3665 static void
3666 bxe_drain_tx_queues(struct bxe_softc *sc)
3667 {
3668     struct bxe_fastpath *fp;
3669     int i, count;
3670 
3671     /* wait until all TX fastpath tasks have completed */
3672     for (i = 0; i < sc->num_queues; i++) {
3673         fp = &sc->fp[i];
3674 
3675         count = 1000;
3676 
3677         while (bxe_has_tx_work(fp)) {
3678 
3679             BXE_FP_TX_LOCK(fp);
3680             bxe_txeof(sc, fp);
3681             BXE_FP_TX_UNLOCK(fp);
3682 
3683             if (count == 0) {
3684                 BLOGE(sc, "Timeout waiting for fp[%d] "
3685                           "transmits to complete!\n", i);
3686                 bxe_panic(sc, ("tx drain failure\n"));
3687                 return;
3688             }
3689 
3690             count--;
3691             DELAY(1000);
3692             rmb();
3693         }
3694     }
3695 
3696     return;
3697 }
3698 
3699 static int
3700 bxe_del_all_macs(struct bxe_softc          *sc,
3701                  struct ecore_vlan_mac_obj *mac_obj,
3702                  int                       mac_type,
3703                  uint8_t                   wait_for_comp)
3704 {
3705     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3706     int rc;
3707 
3708     /* wait for completion of requested */
3709     if (wait_for_comp) {
3710         bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3711     }
3712 
3713     /* Set the mac type of addresses we want to clear */
3714     bxe_set_bit(mac_type, &vlan_mac_flags);
3715 
3716     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3717     if (rc < 0) {
3718         BLOGE(sc, "Failed to delete MACs (%d)\n", rc);
3719     }
3720 
3721     return (rc);
3722 }
3723 
3724 static int
3725 bxe_fill_accept_flags(struct bxe_softc *sc,
3726                       uint32_t         rx_mode,
3727                       unsigned long    *rx_accept_flags,
3728                       unsigned long    *tx_accept_flags)
3729 {
3730     /* Clear the flags first */
3731     *rx_accept_flags = 0;
3732     *tx_accept_flags = 0;
3733 
3734     switch (rx_mode) {
3735     case BXE_RX_MODE_NONE:
3736         /*
3737          * 'drop all' supersedes any accept flags that may have been
3738          * passed to the function.
3739          */
3740         break;
3741 
3742     case BXE_RX_MODE_NORMAL:
3743         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3744         bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3745         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3746 
3747         /* internal switching mode */
3748         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3749         bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3750         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3751 
3752         break;
3753 
3754     case BXE_RX_MODE_ALLMULTI:
3755         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3756         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3757         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3758 
3759         /* internal switching mode */
3760         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3761         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3762         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3763 
3764         break;
3765 
3766     case BXE_RX_MODE_PROMISC:
3767         /*
3768          * According to deffinition of SI mode, iface in promisc mode
3769          * should receive matched and unmatched (in resolution of port)
3770          * unicast packets.
3771          */
3772         bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3773         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3774         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3775         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3776 
3777         /* internal switching mode */
3778         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3779         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3780 
3781         if (IS_MF_SI(sc)) {
3782             bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3783         } else {
3784             bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3785         }
3786 
3787         break;
3788 
3789     default:
3790         BLOGE(sc, "Unknown rx_mode (%d)\n", rx_mode);
3791         return (-1);
3792     }
3793 
3794     /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3795     if (rx_mode != BXE_RX_MODE_NONE) {
3796         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3797         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3798     }
3799 
3800     return (0);
3801 }
3802 
3803 static int
3804 bxe_set_q_rx_mode(struct bxe_softc *sc,
3805                   uint8_t          cl_id,
3806                   unsigned long    rx_mode_flags,
3807                   unsigned long    rx_accept_flags,
3808                   unsigned long    tx_accept_flags,
3809                   unsigned long    ramrod_flags)
3810 {
3811     struct ecore_rx_mode_ramrod_params ramrod_param;
3812     int rc;
3813 
3814     memset(&ramrod_param, 0, sizeof(ramrod_param));
3815 
3816     /* Prepare ramrod parameters */
3817     ramrod_param.cid = 0;
3818     ramrod_param.cl_id = cl_id;
3819     ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3820     ramrod_param.func_id = SC_FUNC(sc);
3821 
3822     ramrod_param.pstate = &sc->sp_state;
3823     ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3824 
3825     ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3826     ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3827 
3828     bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3829 
3830     ramrod_param.ramrod_flags = ramrod_flags;
3831     ramrod_param.rx_mode_flags = rx_mode_flags;
3832 
3833     ramrod_param.rx_accept_flags = rx_accept_flags;
3834     ramrod_param.tx_accept_flags = tx_accept_flags;
3835 
3836     rc = ecore_config_rx_mode(sc, &ramrod_param);
3837     if (rc < 0) {
3838         BLOGE(sc, "Set rx_mode %d failed\n", sc->rx_mode);
3839         return (rc);
3840     }
3841 
3842     return (0);
3843 }
3844 
3845 static int
3846 bxe_set_storm_rx_mode(struct bxe_softc *sc)
3847 {
3848     unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3849     unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3850     int rc;
3851 
3852     rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3853                                &tx_accept_flags);
3854     if (rc) {
3855         return (rc);
3856     }
3857 
3858     bxe_set_bit(RAMROD_RX, &ramrod_flags);
3859     bxe_set_bit(RAMROD_TX, &ramrod_flags);
3860 
3861     /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3862     return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3863                               rx_accept_flags, tx_accept_flags,
3864                               ramrod_flags));
3865 }
3866 
3867 /* returns the "mcp load_code" according to global load_count array */
3868 static int
3869 bxe_nic_load_no_mcp(struct bxe_softc *sc)
3870 {
3871     int path = SC_PATH(sc);
3872     int port = SC_PORT(sc);
3873 
3874     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3875           path, load_count[path][0], load_count[path][1],
3876           load_count[path][2]);
3877     load_count[path][0]++;
3878     load_count[path][1 + port]++;
3879     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3880           path, load_count[path][0], load_count[path][1],
3881           load_count[path][2]);
3882     if (load_count[path][0] == 1) {
3883         return (FW_MSG_CODE_DRV_LOAD_COMMON);
3884     } else if (load_count[path][1 + port] == 1) {
3885         return (FW_MSG_CODE_DRV_LOAD_PORT);
3886     } else {
3887         return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3888     }
3889 }
3890 
3891 /* returns the "mcp load_code" according to global load_count array */
3892 static int
3893 bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3894 {
3895     int port = SC_PORT(sc);
3896     int path = SC_PATH(sc);
3897 
3898     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3899           path, load_count[path][0], load_count[path][1],
3900           load_count[path][2]);
3901     load_count[path][0]--;
3902     load_count[path][1 + port]--;
3903     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3904           path, load_count[path][0], load_count[path][1],
3905           load_count[path][2]);
3906     if (load_count[path][0] == 0) {
3907         return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3908     } else if (load_count[path][1 + port] == 0) {
3909         return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3910     } else {
3911         return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3912     }
3913 }
3914 
3915 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3916 static uint32_t
3917 bxe_send_unload_req(struct bxe_softc *sc,
3918                     int              unload_mode)
3919 {
3920     uint32_t reset_code = 0;
3921 #if 0
3922     int port = SC_PORT(sc);
3923     int path = SC_PATH(sc);
3924 #endif
3925 
3926     /* Select the UNLOAD request mode */
3927     if (unload_mode == UNLOAD_NORMAL) {
3928         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3929     }
3930 #if 0
3931     else if (sc->flags & BXE_NO_WOL_FLAG) {
3932         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
3933     } else if (sc->wol) {
3934         uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
3935         uint8_t *mac_addr = sc->dev->dev_addr;
3936         uint32_t val;
3937         uint16_t pmc;
3938 
3939         /*
3940          * The mac address is written to entries 1-4 to
3941          * preserve entry 0 which is used by the PMF
3942          */
3943         uint8_t entry = (SC_VN(sc) + 1)*8;
3944 
3945         val = (mac_addr[0] << 8) | mac_addr[1];
3946         EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry, val);
3947 
3948         val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3949               (mac_addr[4] << 8) | mac_addr[5];
3950         EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
3951 
3952         /* Enable the PME and clear the status */
3953         pmc = pci_read_config(sc->dev,
3954                               (sc->devinfo.pcie_pm_cap_reg +
3955                                PCIR_POWER_STATUS),
3956                               2);
3957         pmc |= PCIM_PSTAT_PMEENABLE | PCIM_PSTAT_PME;
3958         pci_write_config(sc->dev,
3959                          (sc->devinfo.pcie_pm_cap_reg +
3960                           PCIR_POWER_STATUS),
3961                          pmc, 4);
3962 
3963         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
3964     }
3965 #endif
3966     else {
3967         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3968     }
3969 
3970     /* Send the request to the MCP */
3971     if (!BXE_NOMCP(sc)) {
3972         reset_code = bxe_fw_command(sc, reset_code, 0);
3973     } else {
3974         reset_code = bxe_nic_unload_no_mcp(sc);
3975     }
3976 
3977     return (reset_code);
3978 }
3979 
3980 /* send UNLOAD_DONE command to the MCP */
3981 static void
3982 bxe_send_unload_done(struct bxe_softc *sc,
3983                      uint8_t          keep_link)
3984 {
3985     uint32_t reset_param =
3986         keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
3987 
3988     /* Report UNLOAD_DONE to MCP */
3989     if (!BXE_NOMCP(sc)) {
3990         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
3991     }
3992 }
3993 
3994 static int
3995 bxe_func_wait_started(struct bxe_softc *sc)
3996 {
3997     int tout = 50;
3998 
3999     if (!sc->port.pmf) {
4000         return (0);
4001     }
4002 
4003     /*
4004      * (assumption: No Attention from MCP at this stage)
4005      * PMF probably in the middle of TX disable/enable transaction
4006      * 1. Sync IRS for default SB
4007      * 2. Sync SP queue - this guarantees us that attention handling started
4008      * 3. Wait, that TX disable/enable transaction completes
4009      *
4010      * 1+2 guarantee that if DCBX attention was scheduled it already changed
4011      * pending bit of transaction from STARTED-->TX_STOPPED, if we already
4012      * received completion for the transaction the state is TX_STOPPED.
4013      * State will return to STARTED after completion of TX_STOPPED-->STARTED
4014      * transaction.
4015      */
4016 
4017     /* XXX make sure default SB ISR is done */
4018     /* need a way to synchronize an irq (intr_mtx?) */
4019 
4020     /* XXX flush any work queues */
4021 
4022     while (ecore_func_get_state(sc, &sc->func_obj) !=
4023            ECORE_F_STATE_STARTED && tout--) {
4024         DELAY(20000);
4025     }
4026 
4027     if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
4028         /*
4029          * Failed to complete the transaction in a "good way"
4030          * Force both transactions with CLR bit.
4031          */
4032         struct ecore_func_state_params func_params = { NULL };
4033 
4034         BLOGE(sc, "Unexpected function state! "
4035                   "Forcing STARTED-->TX_STOPPED-->STARTED\n");
4036 
4037         func_params.f_obj = &sc->func_obj;
4038         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4039 
4040         /* STARTED-->TX_STOPPED */
4041         func_params.cmd = ECORE_F_CMD_TX_STOP;
4042         ecore_func_state_change(sc, &func_params);
4043 
4044         /* TX_STOPPED-->STARTED */
4045         func_params.cmd = ECORE_F_CMD_TX_START;
4046         return (ecore_func_state_change(sc, &func_params));
4047     }
4048 
4049     return (0);
4050 }
4051 
4052 static int
4053 bxe_stop_queue(struct bxe_softc *sc,
4054                int              index)
4055 {
4056     struct bxe_fastpath *fp = &sc->fp[index];
4057     struct ecore_queue_state_params q_params = { NULL };
4058     int rc;
4059 
4060     BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
4061 
4062     q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
4063     /* We want to wait for completion in this context */
4064     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
4065 
4066     /* Stop the primary connection: */
4067 
4068     /* ...halt the connection */
4069     q_params.cmd = ECORE_Q_CMD_HALT;
4070     rc = ecore_queue_state_change(sc, &q_params);
4071     if (rc) {
4072         return (rc);
4073     }
4074 
4075     /* ...terminate the connection */
4076     q_params.cmd = ECORE_Q_CMD_TERMINATE;
4077     memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
4078     q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
4079     rc = ecore_queue_state_change(sc, &q_params);
4080     if (rc) {
4081         return (rc);
4082     }
4083 
4084     /* ...delete cfc entry */
4085     q_params.cmd = ECORE_Q_CMD_CFC_DEL;
4086     memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
4087     q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
4088     return (ecore_queue_state_change(sc, &q_params));
4089 }
4090 
4091 /* wait for the outstanding SP commands */
4092 static inline uint8_t
4093 bxe_wait_sp_comp(struct bxe_softc *sc,
4094                  unsigned long    mask)
4095 {
4096     unsigned long tmp;
4097     int tout = 5000; /* wait for 5 secs tops */
4098 
4099     while (tout--) {
4100         mb();
4101         if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
4102             return (TRUE);
4103         }
4104 
4105         DELAY(1000);
4106     }
4107 
4108     mb();
4109 
4110     tmp = atomic_load_acq_long(&sc->sp_state);
4111     if (tmp & mask) {
4112         BLOGE(sc, "Filtering completion timed out: "
4113                   "sp_state 0x%lx, mask 0x%lx\n",
4114               tmp, mask);
4115         return (FALSE);
4116     }
4117 
4118     return (FALSE);
4119 }
4120 
4121 static int
4122 bxe_func_stop(struct bxe_softc *sc)
4123 {
4124     struct ecore_func_state_params func_params = { NULL };
4125     int rc;
4126 
4127     /* prepare parameters for function state transitions */
4128     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4129     func_params.f_obj = &sc->func_obj;
4130     func_params.cmd = ECORE_F_CMD_STOP;
4131 
4132     /*
4133      * Try to stop the function the 'good way'. If it fails (in case
4134      * of a parity error during bxe_chip_cleanup()) and we are
4135      * not in a debug mode, perform a state transaction in order to
4136      * enable further HW_RESET transaction.
4137      */
4138     rc = ecore_func_state_change(sc, &func_params);
4139     if (rc) {
4140         BLOGE(sc, "FUNC_STOP ramrod failed. "
4141                   "Running a dry transaction\n");
4142         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4143         return (ecore_func_state_change(sc, &func_params));
4144     }
4145 
4146     return (0);
4147 }
4148 
4149 static int
4150 bxe_reset_hw(struct bxe_softc *sc,
4151              uint32_t         load_code)
4152 {
4153     struct ecore_func_state_params func_params = { NULL };
4154 
4155     /* Prepare parameters for function state transitions */
4156     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4157 
4158     func_params.f_obj = &sc->func_obj;
4159     func_params.cmd = ECORE_F_CMD_HW_RESET;
4160 
4161     func_params.params.hw_init.load_phase = load_code;
4162 
4163     return (ecore_func_state_change(sc, &func_params));
4164 }
4165 
4166 static void
4167 bxe_int_disable_sync(struct bxe_softc *sc,
4168                      int              disable_hw)
4169 {
4170     if (disable_hw) {
4171         /* prevent the HW from sending interrupts */
4172         bxe_int_disable(sc);
4173     }
4174 
4175     /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
4176     /* make sure all ISRs are done */
4177 
4178     /* XXX make sure sp_task is not running */
4179     /* cancel and flush work queues */
4180 }
4181 
4182 static void
4183 bxe_chip_cleanup(struct bxe_softc *sc,
4184                  uint32_t         unload_mode,
4185                  uint8_t          keep_link)
4186 {
4187     int port = SC_PORT(sc);
4188     struct ecore_mcast_ramrod_params rparam = { NULL };
4189     uint32_t reset_code;
4190     int i, rc = 0;
4191 
4192     bxe_drain_tx_queues(sc);
4193 
4194     /* give HW time to discard old tx messages */
4195     DELAY(1000);
4196 
4197     /* Clean all ETH MACs */
4198     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4199     if (rc < 0) {
4200         BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4201     }
4202 
4203     /* Clean up UC list  */
4204     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4205     if (rc < 0) {
4206         BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4207     }
4208 
4209     /* Disable LLH */
4210     if (!CHIP_IS_E1(sc)) {
4211         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4212     }
4213 
4214     /* Set "drop all" to stop Rx */
4215 
4216     /*
4217      * We need to take the BXE_MCAST_LOCK() here in order to prevent
4218      * a race between the completion code and this code.
4219      */
4220     BXE_MCAST_LOCK(sc);
4221 
4222     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4223         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4224     } else {
4225         bxe_set_storm_rx_mode(sc);
4226     }
4227 
4228     /* Clean up multicast configuration */
4229     rparam.mcast_obj = &sc->mcast_obj;
4230     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4231     if (rc < 0) {
4232         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4233     }
4234 
4235     BXE_MCAST_UNLOCK(sc);
4236 
4237     // XXX bxe_iov_chip_cleanup(sc);
4238 
4239     /*
4240      * Send the UNLOAD_REQUEST to the MCP. This will return if
4241      * this function should perform FUNCTION, PORT, or COMMON HW
4242      * reset.
4243      */
4244     reset_code = bxe_send_unload_req(sc, unload_mode);
4245 
4246     /*
4247      * (assumption: No Attention from MCP at this stage)
4248      * PMF probably in the middle of TX disable/enable transaction
4249      */
4250     rc = bxe_func_wait_started(sc);
4251     if (rc) {
4252         BLOGE(sc, "bxe_func_wait_started failed\n");
4253     }
4254 
4255     /*
4256      * Close multi and leading connections
4257      * Completions for ramrods are collected in a synchronous way
4258      */
4259     for (i = 0; i < sc->num_queues; i++) {
4260         if (bxe_stop_queue(sc, i)) {
4261             goto unload_error;
4262         }
4263     }
4264 
4265     /*
4266      * If SP settings didn't get completed so far - something
4267      * very wrong has happen.
4268      */
4269     if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4270         BLOGE(sc, "Common slow path ramrods got stuck!\n");
4271     }
4272 
4273 unload_error:
4274 
4275     rc = bxe_func_stop(sc);
4276     if (rc) {
4277         BLOGE(sc, "Function stop failed!\n");
4278     }
4279 
4280     /* disable HW interrupts */
4281     bxe_int_disable_sync(sc, TRUE);
4282 
4283     /* detach interrupts */
4284     bxe_interrupt_detach(sc);
4285 
4286     /* Reset the chip */
4287     rc = bxe_reset_hw(sc, reset_code);
4288     if (rc) {
4289         BLOGE(sc, "Hardware reset failed\n");
4290     }
4291 
4292     /* Report UNLOAD_DONE to MCP */
4293     bxe_send_unload_done(sc, keep_link);
4294 }
4295 
4296 static void
4297 bxe_disable_close_the_gate(struct bxe_softc *sc)
4298 {
4299     uint32_t val;
4300     int port = SC_PORT(sc);
4301 
4302     BLOGD(sc, DBG_LOAD,
4303           "Disabling 'close the gates'\n");
4304 
4305     if (CHIP_IS_E1(sc)) {
4306         uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4307                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
4308         val = REG_RD(sc, addr);
4309         val &= ~(0x300);
4310         REG_WR(sc, addr, val);
4311     } else {
4312         val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4313         val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4314                  MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4315         REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4316     }
4317 }
4318 
4319 /*
4320  * Cleans the object that have internal lists without sending
4321  * ramrods. Should be run when interrutps are disabled.
4322  */
4323 static void
4324 bxe_squeeze_objects(struct bxe_softc *sc)
4325 {
4326     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4327     struct ecore_mcast_ramrod_params rparam = { NULL };
4328     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4329     int rc;
4330 
4331     /* Cleanup MACs' object first... */
4332 
4333     /* Wait for completion of requested */
4334     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4335     /* Perform a dry cleanup */
4336     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4337 
4338     /* Clean ETH primary MAC */
4339     bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4340     rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4341                              &ramrod_flags);
4342     if (rc != 0) {
4343         BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4344     }
4345 
4346     /* Cleanup UC list */
4347     vlan_mac_flags = 0;
4348     bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4349     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4350                              &ramrod_flags);
4351     if (rc != 0) {
4352         BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4353     }
4354 
4355     /* Now clean mcast object... */
4356 
4357     rparam.mcast_obj = &sc->mcast_obj;
4358     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4359 
4360     /* Add a DEL command... */
4361     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4362     if (rc < 0) {
4363         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4364     }
4365 
4366     /* now wait until all pending commands are cleared */
4367 
4368     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4369     while (rc != 0) {
4370         if (rc < 0) {
4371             BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4372             return;
4373         }
4374 
4375         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4376     }
4377 }
4378 
4379 /* stop the controller */
4380 static __noinline int
4381 bxe_nic_unload(struct bxe_softc *sc,
4382                uint32_t         unload_mode,
4383                uint8_t          keep_link)
4384 {
4385     uint8_t global = FALSE;
4386     uint32_t val;
4387 
4388     BXE_CORE_LOCK_ASSERT(sc);
4389 
4390     BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4391 
4392     /* mark driver as unloaded in shmem2 */
4393     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4394         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4395         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4396                   val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4397     }
4398 
4399     if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4400         (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4401         /*
4402          * We can get here if the driver has been unloaded
4403          * during parity error recovery and is either waiting for a
4404          * leader to complete or for other functions to unload and
4405          * then ifconfig down has been issued. In this case we want to
4406          * unload and let other functions to complete a recovery
4407          * process.
4408          */
4409         sc->recovery_state = BXE_RECOVERY_DONE;
4410         sc->is_leader = 0;
4411         bxe_release_leader_lock(sc);
4412         mb();
4413 
4414         BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4415         BLOGE(sc, "Can't unload in closed or error state\n");
4416         return (-1);
4417     }
4418 
4419     /*
4420      * Nothing to do during unload if previous bxe_nic_load()
4421      * did not completed succesfully - all resourses are released.
4422      */
4423     if ((sc->state == BXE_STATE_CLOSED) ||
4424         (sc->state == BXE_STATE_ERROR)) {
4425         return (0);
4426     }
4427 
4428     sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4429     mb();
4430 
4431     /* stop tx */
4432     bxe_tx_disable(sc);
4433 
4434     sc->rx_mode = BXE_RX_MODE_NONE;
4435     /* XXX set rx mode ??? */
4436 
4437     if (IS_PF(sc)) {
4438         /* set ALWAYS_ALIVE bit in shmem */
4439         sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4440 
4441         bxe_drv_pulse(sc);
4442 
4443         bxe_stats_handle(sc, STATS_EVENT_STOP);
4444         bxe_save_statistics(sc);
4445     }
4446 
4447     /* wait till consumers catch up with producers in all queues */
4448     bxe_drain_tx_queues(sc);
4449 
4450     /* if VF indicate to PF this function is going down (PF will delete sp
4451      * elements and clear initializations
4452      */
4453     if (IS_VF(sc)) {
4454         ; /* bxe_vfpf_close_vf(sc); */
4455     } else if (unload_mode != UNLOAD_RECOVERY) {
4456         /* if this is a normal/close unload need to clean up chip */
4457         bxe_chip_cleanup(sc, unload_mode, keep_link);
4458     } else {
4459         /* Send the UNLOAD_REQUEST to the MCP */
4460         bxe_send_unload_req(sc, unload_mode);
4461 
4462         /*
4463          * Prevent transactions to host from the functions on the
4464          * engine that doesn't reset global blocks in case of global
4465          * attention once gloabl blocks are reset and gates are opened
4466          * (the engine which leader will perform the recovery
4467          * last).
4468          */
4469         if (!CHIP_IS_E1x(sc)) {
4470             bxe_pf_disable(sc);
4471         }
4472 
4473         /* disable HW interrupts */
4474         bxe_int_disable_sync(sc, TRUE);
4475 
4476         /* detach interrupts */
4477         bxe_interrupt_detach(sc);
4478 
4479         /* Report UNLOAD_DONE to MCP */
4480         bxe_send_unload_done(sc, FALSE);
4481     }
4482 
4483     /*
4484      * At this stage no more interrupts will arrive so we may safely clean
4485      * the queue'able objects here in case they failed to get cleaned so far.
4486      */
4487     if (IS_PF(sc)) {
4488         bxe_squeeze_objects(sc);
4489     }
4490 
4491     /* There should be no more pending SP commands at this stage */
4492     sc->sp_state = 0;
4493 
4494     sc->port.pmf = 0;
4495 
4496     bxe_free_fp_buffers(sc);
4497 
4498     if (IS_PF(sc)) {
4499         bxe_free_mem(sc);
4500     }
4501 
4502     bxe_free_fw_stats_mem(sc);
4503 
4504     sc->state = BXE_STATE_CLOSED;
4505 
4506     /*
4507      * Check if there are pending parity attentions. If there are - set
4508      * RECOVERY_IN_PROGRESS.
4509      */
4510     if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4511         bxe_set_reset_in_progress(sc);
4512 
4513         /* Set RESET_IS_GLOBAL if needed */
4514         if (global) {
4515             bxe_set_reset_global(sc);
4516         }
4517     }
4518 
4519     /*
4520      * The last driver must disable a "close the gate" if there is no
4521      * parity attention or "process kill" pending.
4522      */
4523     if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4524         bxe_reset_is_done(sc, SC_PATH(sc))) {
4525         bxe_disable_close_the_gate(sc);
4526     }
4527 
4528     BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4529 
4530     return (0);
4531 }
4532 
4533 /*
4534  * Called by the OS to set various media options (i.e. link, speed, etc.) when
4535  * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4536  */
4537 static int
4538 bxe_ifmedia_update(struct ifnet *ifp)
4539 {
4540     struct bxe_softc *sc = (struct bxe_softc *)ifp->if_softc;
4541     struct ifmedia *ifm;
4542 
4543     ifm = &sc->ifmedia;
4544 
4545     /* We only support Ethernet media type. */
4546     if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4547         return (EINVAL);
4548     }
4549 
4550     switch (IFM_SUBTYPE(ifm->ifm_media)) {
4551     case IFM_AUTO:
4552          break;
4553     case IFM_10G_CX4:
4554     case IFM_10G_SR:
4555     case IFM_10G_T:
4556     case IFM_10G_TWINAX:
4557     default:
4558         /* We don't support changing the media type. */
4559         BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4560               IFM_SUBTYPE(ifm->ifm_media));
4561         return (EINVAL);
4562     }
4563 
4564     return (0);
4565 }
4566 
4567 /*
4568  * Called by the OS to get the current media status (i.e. link, speed, etc.).
4569  */
4570 static void
4571 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
4572 {
4573     struct bxe_softc *sc = ifp->if_softc;
4574 
4575     /* Report link down if the driver isn't running. */
4576     if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4577         ifmr->ifm_active |= IFM_NONE;
4578         return;
4579     }
4580 
4581     /* Setup the default interface info. */
4582     ifmr->ifm_status = IFM_AVALID;
4583     ifmr->ifm_active = IFM_ETHER;
4584 
4585     if (sc->link_vars.link_up) {
4586         ifmr->ifm_status |= IFM_ACTIVE;
4587     } else {
4588         ifmr->ifm_active |= IFM_NONE;
4589         return;
4590     }
4591 
4592     ifmr->ifm_active |= sc->media;
4593 
4594     if (sc->link_vars.duplex == DUPLEX_FULL) {
4595         ifmr->ifm_active |= IFM_FDX;
4596     } else {
4597         ifmr->ifm_active |= IFM_HDX;
4598     }
4599 }
4600 
4601 static int
4602 bxe_ioctl_nvram(struct bxe_softc *sc,
4603                 uint32_t         priv_op,
4604                 struct ifreq     *ifr)
4605 {
4606     struct bxe_nvram_data nvdata_base;
4607     struct bxe_nvram_data *nvdata;
4608     int len;
4609     int error = 0;
4610 
4611     copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base));
4612 
4613     len = (sizeof(struct bxe_nvram_data) +
4614            nvdata_base.len -
4615            sizeof(uint32_t));
4616 
4617     if (len > sizeof(struct bxe_nvram_data)) {
4618         if ((nvdata = (struct bxe_nvram_data *)
4619                  malloc(len, M_DEVBUF,
4620                         (M_NOWAIT | M_ZERO))) == NULL) {
4621             BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed\n");
4622             return (1);
4623         }
4624         memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data));
4625     } else {
4626         nvdata = &nvdata_base;
4627     }
4628 
4629     if (priv_op == BXE_IOC_RD_NVRAM) {
4630         BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n",
4631               nvdata->offset, nvdata->len);
4632         error = bxe_nvram_read(sc,
4633                                nvdata->offset,
4634                                (uint8_t *)nvdata->value,
4635                                nvdata->len);
4636         copyout(nvdata, ifr->ifr_data, len);
4637     } else { /* BXE_IOC_WR_NVRAM */
4638         BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n",
4639               nvdata->offset, nvdata->len);
4640         copyin(ifr->ifr_data, nvdata, len);
4641         error = bxe_nvram_write(sc,
4642                                 nvdata->offset,
4643                                 (uint8_t *)nvdata->value,
4644                                 nvdata->len);
4645     }
4646 
4647     if (len > sizeof(struct bxe_nvram_data)) {
4648         free(nvdata, M_DEVBUF);
4649     }
4650 
4651     return (error);
4652 }
4653 
4654 static int
4655 bxe_ioctl_stats_show(struct bxe_softc *sc,
4656                      uint32_t         priv_op,
4657                      struct ifreq     *ifr)
4658 {
4659     const size_t str_size   = (BXE_NUM_ETH_STATS * STAT_NAME_LEN);
4660     const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t));
4661     caddr_t p_tmp;
4662     uint32_t *offset;
4663     int i;
4664 
4665     switch (priv_op)
4666     {
4667     case BXE_IOC_STATS_SHOW_NUM:
4668         memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data));
4669         ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num =
4670             BXE_NUM_ETH_STATS;
4671         ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len =
4672             STAT_NAME_LEN;
4673         return (0);
4674 
4675     case BXE_IOC_STATS_SHOW_STR:
4676         memset(ifr->ifr_data, 0, str_size);
4677         p_tmp = ifr->ifr_data;
4678         for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4679             strcpy(p_tmp, bxe_eth_stats_arr[i].string);
4680             p_tmp += STAT_NAME_LEN;
4681         }
4682         return (0);
4683 
4684     case BXE_IOC_STATS_SHOW_CNT:
4685         memset(ifr->ifr_data, 0, stats_size);
4686         p_tmp = ifr->ifr_data;
4687         for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4688             offset = ((uint32_t *)&sc->eth_stats +
4689                       bxe_eth_stats_arr[i].offset);
4690             switch (bxe_eth_stats_arr[i].size) {
4691             case 4:
4692                 *((uint64_t *)p_tmp) = (uint64_t)*offset;
4693                 break;
4694             case 8:
4695                 *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1));
4696                 break;
4697             default:
4698                 *((uint64_t *)p_tmp) = 0;
4699             }
4700             p_tmp += sizeof(uint64_t);
4701         }
4702         return (0);
4703 
4704     default:
4705         return (-1);
4706     }
4707 }
4708 
4709 static void
4710 bxe_handle_chip_tq(void *context,
4711                    int  pending)
4712 {
4713     struct bxe_softc *sc = (struct bxe_softc *)context;
4714     long work = atomic_load_acq_long(&sc->chip_tq_flags);
4715 
4716     switch (work)
4717     {
4718     case CHIP_TQ_START:
4719         if ((sc->ifnet->if_flags & IFF_UP) &&
4720             !(sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
4721             /* start the interface */
4722             BLOGD(sc, DBG_LOAD, "Starting the interface...\n");
4723             BXE_CORE_LOCK(sc);
4724             bxe_init_locked(sc);
4725             BXE_CORE_UNLOCK(sc);
4726         }
4727         break;
4728 
4729     case CHIP_TQ_STOP:
4730         if (!(sc->ifnet->if_flags & IFF_UP) &&
4731             (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
4732             /* bring down the interface */
4733             BLOGD(sc, DBG_LOAD, "Stopping the interface...\n");
4734             bxe_periodic_stop(sc);
4735             BXE_CORE_LOCK(sc);
4736             bxe_stop_locked(sc);
4737             BXE_CORE_UNLOCK(sc);
4738         }
4739         break;
4740 
4741     case CHIP_TQ_REINIT:
4742         if (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING) {
4743             /* restart the interface */
4744             BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4745             bxe_periodic_stop(sc);
4746             BXE_CORE_LOCK(sc);
4747             bxe_stop_locked(sc);
4748             bxe_init_locked(sc);
4749             BXE_CORE_UNLOCK(sc);
4750         }
4751         break;
4752 
4753     default:
4754         break;
4755     }
4756 }
4757 
4758 /*
4759  * Handles any IOCTL calls from the operating system.
4760  *
4761  * Returns:
4762  *   0 = Success, >0 Failure
4763  */
4764 static int
4765 bxe_ioctl(struct ifnet *ifp,
4766           u_long       command,
4767           caddr_t      data)
4768 {
4769     struct bxe_softc *sc = ifp->if_softc;
4770     struct ifreq *ifr = (struct ifreq *)data;
4771     struct bxe_nvram_data *nvdata;
4772     uint32_t priv_op;
4773     int mask = 0;
4774     int reinit = 0;
4775     int error = 0;
4776 
4777     int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4778     int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4779 
4780     switch (command)
4781     {
4782     case SIOCSIFMTU:
4783         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4784               ifr->ifr_mtu);
4785 
4786         if (sc->mtu == ifr->ifr_mtu) {
4787             /* nothing to change */
4788             break;
4789         }
4790 
4791         if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4792             BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4793                   ifr->ifr_mtu, mtu_min, mtu_max);
4794             error = EINVAL;
4795             break;
4796         }
4797 
4798         atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4799                              (unsigned long)ifr->ifr_mtu);
4800         atomic_store_rel_long((volatile unsigned long *)&ifp->if_mtu,
4801                               (unsigned long)ifr->ifr_mtu);
4802 
4803         reinit = 1;
4804         break;
4805 
4806     case SIOCSIFFLAGS:
4807         /* toggle the interface state up or down */
4808         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4809 
4810         /* check if the interface is up */
4811         if (ifp->if_flags & IFF_UP) {
4812             if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4813                 /* set the receive mode flags */
4814                 bxe_set_rx_mode(sc);
4815             } else {
4816                 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_START);
4817                 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4818             }
4819         } else {
4820             if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4821                 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_STOP);
4822                 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4823             }
4824         }
4825 
4826         break;
4827 
4828     case SIOCADDMULTI:
4829     case SIOCDELMULTI:
4830         /* add/delete multicast addresses */
4831         BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4832 
4833         /* check if the interface is up */
4834         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4835             /* set the receive mode flags */
4836             bxe_set_rx_mode(sc);
4837         }
4838 
4839         break;
4840 
4841     case SIOCSIFCAP:
4842         /* find out which capabilities have changed */
4843         mask = (ifr->ifr_reqcap ^ ifp->if_capenable);
4844 
4845         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4846               mask);
4847 
4848         /* toggle the LRO capabilites enable flag */
4849         if (mask & IFCAP_LRO) {
4850             ifp->if_capenable ^= IFCAP_LRO;
4851             BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4852                   (ifp->if_capenable & IFCAP_LRO) ? "ON" : "OFF");
4853             reinit = 1;
4854         }
4855 
4856         /* toggle the TXCSUM checksum capabilites enable flag */
4857         if (mask & IFCAP_TXCSUM) {
4858             ifp->if_capenable ^= IFCAP_TXCSUM;
4859             BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4860                   (ifp->if_capenable & IFCAP_TXCSUM) ? "ON" : "OFF");
4861             if (ifp->if_capenable & IFCAP_TXCSUM) {
4862                 ifp->if_hwassist = (CSUM_IP       |
4863                                     CSUM_TCP      |
4864                                     CSUM_UDP      |
4865                                     CSUM_TSO      |
4866                                     CSUM_TCP_IPV6 |
4867                                     CSUM_UDP_IPV6);
4868             } else {
4869                 ifp->if_hwassist = 0;
4870             }
4871         }
4872 
4873         /* toggle the RXCSUM checksum capabilities enable flag */
4874         if (mask & IFCAP_RXCSUM) {
4875             ifp->if_capenable ^= IFCAP_RXCSUM;
4876             BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4877                   (ifp->if_capenable & IFCAP_RXCSUM) ? "ON" : "OFF");
4878             if (ifp->if_capenable & IFCAP_RXCSUM) {
4879                 ifp->if_hwassist = (CSUM_IP       |
4880                                     CSUM_TCP      |
4881                                     CSUM_UDP      |
4882                                     CSUM_TSO      |
4883                                     CSUM_TCP_IPV6 |
4884                                     CSUM_UDP_IPV6);
4885             } else {
4886                 ifp->if_hwassist = 0;
4887             }
4888         }
4889 
4890         /* toggle TSO4 capabilities enabled flag */
4891         if (mask & IFCAP_TSO4) {
4892             ifp->if_capenable ^= IFCAP_TSO4;
4893             BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4894                   (ifp->if_capenable & IFCAP_TSO4) ? "ON" : "OFF");
4895         }
4896 
4897         /* toggle TSO6 capabilities enabled flag */
4898         if (mask & IFCAP_TSO6) {
4899             ifp->if_capenable ^= IFCAP_TSO6;
4900             BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4901                   (ifp->if_capenable & IFCAP_TSO6) ? "ON" : "OFF");
4902         }
4903 
4904         /* toggle VLAN_HWTSO capabilities enabled flag */
4905         if (mask & IFCAP_VLAN_HWTSO) {
4906             ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
4907             BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4908                   (ifp->if_capenable & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4909         }
4910 
4911         /* toggle VLAN_HWCSUM capabilities enabled flag */
4912         if (mask & IFCAP_VLAN_HWCSUM) {
4913             /* XXX investigate this... */
4914             BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4915             error = EINVAL;
4916         }
4917 
4918         /* toggle VLAN_MTU capabilities enable flag */
4919         if (mask & IFCAP_VLAN_MTU) {
4920             /* XXX investigate this... */
4921             BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4922             error = EINVAL;
4923         }
4924 
4925         /* toggle VLAN_HWTAGGING capabilities enabled flag */
4926         if (mask & IFCAP_VLAN_HWTAGGING) {
4927             /* XXX investigate this... */
4928             BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4929             error = EINVAL;
4930         }
4931 
4932         /* toggle VLAN_HWFILTER capabilities enabled flag */
4933         if (mask & IFCAP_VLAN_HWFILTER) {
4934             /* XXX investigate this... */
4935             BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4936             error = EINVAL;
4937         }
4938 
4939         /* XXX not yet...
4940          * IFCAP_WOL_MAGIC
4941          */
4942 
4943         break;
4944 
4945     case SIOCSIFMEDIA:
4946     case SIOCGIFMEDIA:
4947         /* set/get interface media */
4948         BLOGD(sc, DBG_IOCTL,
4949               "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4950               (command & 0xff));
4951         error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
4952         break;
4953 
4954     case SIOCGPRIVATE_0:
4955         copyin(ifr->ifr_data, &priv_op, sizeof(priv_op));
4956 
4957         switch (priv_op)
4958         {
4959         case BXE_IOC_RD_NVRAM:
4960         case BXE_IOC_WR_NVRAM:
4961             nvdata = (struct bxe_nvram_data *)ifr->ifr_data;
4962             BLOGD(sc, DBG_IOCTL,
4963                   "Received Private NVRAM ioctl addr=0x%x size=%u\n",
4964                   nvdata->offset, nvdata->len);
4965             error = bxe_ioctl_nvram(sc, priv_op, ifr);
4966             break;
4967 
4968         case BXE_IOC_STATS_SHOW_NUM:
4969         case BXE_IOC_STATS_SHOW_STR:
4970         case BXE_IOC_STATS_SHOW_CNT:
4971             BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n",
4972                   priv_op);
4973             error = bxe_ioctl_stats_show(sc, priv_op, ifr);
4974             break;
4975 
4976         default:
4977             BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op);
4978             error = EINVAL;
4979             break;
4980         }
4981 
4982         break;
4983 
4984     default:
4985         BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
4986               (command & 0xff));
4987         error = ether_ioctl(ifp, command, data);
4988         break;
4989     }
4990 
4991     if (reinit && (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
4992         BLOGD(sc, DBG_LOAD | DBG_IOCTL,
4993               "Re-initializing hardware from IOCTL change\n");
4994         atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
4995         taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4996     }
4997 
4998     return (error);
4999 }
5000 
5001 static __noinline void
5002 bxe_dump_mbuf(struct bxe_softc *sc,
5003               struct mbuf      *m,
5004               uint8_t          contents)
5005 {
5006     char * type;
5007     int i = 0;
5008 
5009     if (!(sc->debug & DBG_MBUF)) {
5010         return;
5011     }
5012 
5013     if (m == NULL) {
5014         BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
5015         return;
5016     }
5017 
5018     while (m) {
5019         BLOGD(sc, DBG_MBUF,
5020               "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
5021               i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
5022 
5023         if (m->m_flags & M_PKTHDR) {
5024              BLOGD(sc, DBG_MBUF,
5025                    "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
5026                    i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
5027                    (int)m->m_pkthdr.csum_flags, CSUM_BITS);
5028         }
5029 
5030         if (m->m_flags & M_EXT) {
5031             switch (m->m_ext.ext_type) {
5032             case EXT_CLUSTER:    type = "EXT_CLUSTER";    break;
5033             case EXT_SFBUF:      type = "EXT_SFBUF";      break;
5034             case EXT_JUMBOP:     type = "EXT_JUMBOP";     break;
5035             case EXT_JUMBO9:     type = "EXT_JUMBO9";     break;
5036             case EXT_JUMBO16:    type = "EXT_JUMBO16";    break;
5037             case EXT_PACKET:     type = "EXT_PACKET";     break;
5038             case EXT_MBUF:       type = "EXT_MBUF";       break;
5039             case EXT_NET_DRV:    type = "EXT_NET_DRV";    break;
5040             case EXT_MOD_TYPE:   type = "EXT_MOD_TYPE";   break;
5041             case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
5042             case EXT_EXTREF:     type = "EXT_EXTREF";     break;
5043             default:             type = "UNKNOWN";        break;
5044             }
5045 
5046             BLOGD(sc, DBG_MBUF,
5047                   "%02d: - m_ext: %p ext_size=%d type=%s\n",
5048                   i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
5049         }
5050 
5051         if (contents) {
5052             bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
5053         }
5054 
5055         m = m->m_next;
5056         i++;
5057     }
5058 }
5059 
5060 /*
5061  * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
5062  * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
5063  * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
5064  * The headers comes in a seperate bd in FreeBSD so 13-3=10.
5065  * Returns: 0 if OK to send, 1 if packet needs further defragmentation
5066  */
5067 static int
5068 bxe_chktso_window(struct bxe_softc  *sc,
5069                   int               nsegs,
5070                   bus_dma_segment_t *segs,
5071                   struct mbuf       *m)
5072 {
5073     uint32_t num_wnds, wnd_size, wnd_sum;
5074     int32_t frag_idx, wnd_idx;
5075     unsigned short lso_mss;
5076     int defrag;
5077 
5078     defrag = 0;
5079     wnd_sum = 0;
5080     wnd_size = 10;
5081     num_wnds = nsegs - wnd_size;
5082     lso_mss = htole16(m->m_pkthdr.tso_segsz);
5083 
5084     /*
5085      * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
5086      * first window sum of data while skipping the first assuming it is the
5087      * header in FreeBSD.
5088      */
5089     for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
5090         wnd_sum += htole16(segs[frag_idx].ds_len);
5091     }
5092 
5093     /* check the first 10 bd window size */
5094     if (wnd_sum < lso_mss) {
5095         return (1);
5096     }
5097 
5098     /* run through the windows */
5099     for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
5100         /* subtract the first mbuf->m_len of the last wndw(-header) */
5101         wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
5102         /* add the next mbuf len to the len of our new window */
5103         wnd_sum += htole16(segs[frag_idx].ds_len);
5104         if (wnd_sum < lso_mss) {
5105             return (1);
5106         }
5107     }
5108 
5109     return (0);
5110 }
5111 
5112 static uint8_t
5113 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
5114                     struct mbuf         *m,
5115                     uint32_t            *parsing_data)
5116 {
5117     struct ether_vlan_header *eh = NULL;
5118     struct ip *ip4 = NULL;
5119     struct ip6_hdr *ip6 = NULL;
5120     caddr_t ip = NULL;
5121     struct tcphdr *th = NULL;
5122     int e_hlen, ip_hlen, l4_off;
5123     uint16_t proto;
5124 
5125     if (m->m_pkthdr.csum_flags == CSUM_IP) {
5126         /* no L4 checksum offload needed */
5127         return (0);
5128     }
5129 
5130     /* get the Ethernet header */
5131     eh = mtod(m, struct ether_vlan_header *);
5132 
5133     /* handle VLAN encapsulation if present */
5134     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5135         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5136         proto  = ntohs(eh->evl_proto);
5137     } else {
5138         e_hlen = ETHER_HDR_LEN;
5139         proto  = ntohs(eh->evl_encap_proto);
5140     }
5141 
5142     switch (proto) {
5143     case ETHERTYPE_IP:
5144         /* get the IP header, if mbuf len < 20 then header in next mbuf */
5145         ip4 = (m->m_len < sizeof(struct ip)) ?
5146                   (struct ip *)m->m_next->m_data :
5147                   (struct ip *)(m->m_data + e_hlen);
5148         /* ip_hl is number of 32-bit words */
5149         ip_hlen = (ip4->ip_hl << 2);
5150         ip = (caddr_t)ip4;
5151         break;
5152     case ETHERTYPE_IPV6:
5153         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5154         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5155                   (struct ip6_hdr *)m->m_next->m_data :
5156                   (struct ip6_hdr *)(m->m_data + e_hlen);
5157         /* XXX cannot support offload with IPv6 extensions */
5158         ip_hlen = sizeof(struct ip6_hdr);
5159         ip = (caddr_t)ip6;
5160         break;
5161     default:
5162         /* We can't offload in this case... */
5163         /* XXX error stat ??? */
5164         return (0);
5165     }
5166 
5167     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5168     l4_off = (e_hlen + ip_hlen);
5169 
5170     *parsing_data |=
5171         (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
5172          ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
5173 
5174     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5175                                   CSUM_TSO |
5176                                   CSUM_TCP_IPV6)) {
5177         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5178         th = (struct tcphdr *)(ip + ip_hlen);
5179         /* th_off is number of 32-bit words */
5180         *parsing_data |= ((th->th_off <<
5181                            ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
5182                           ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
5183         return (l4_off + (th->th_off << 2)); /* entire header length */
5184     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5185                                          CSUM_UDP_IPV6)) {
5186         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5187         return (l4_off + sizeof(struct udphdr)); /* entire header length */
5188     } else {
5189         /* XXX error stat ??? */
5190         return (0);
5191     }
5192 }
5193 
5194 static uint8_t
5195 bxe_set_pbd_csum(struct bxe_fastpath        *fp,
5196                  struct mbuf                *m,
5197                  struct eth_tx_parse_bd_e1x *pbd)
5198 {
5199     struct ether_vlan_header *eh = NULL;
5200     struct ip *ip4 = NULL;
5201     struct ip6_hdr *ip6 = NULL;
5202     caddr_t ip = NULL;
5203     struct tcphdr *th = NULL;
5204     struct udphdr *uh = NULL;
5205     int e_hlen, ip_hlen;
5206     uint16_t proto;
5207     uint8_t hlen;
5208     uint16_t tmp_csum;
5209     uint32_t *tmp_uh;
5210 
5211     /* get the Ethernet header */
5212     eh = mtod(m, struct ether_vlan_header *);
5213 
5214     /* handle VLAN encapsulation if present */
5215     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5216         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5217         proto  = ntohs(eh->evl_proto);
5218     } else {
5219         e_hlen = ETHER_HDR_LEN;
5220         proto  = ntohs(eh->evl_encap_proto);
5221     }
5222 
5223     switch (proto) {
5224     case ETHERTYPE_IP:
5225         /* get the IP header, if mbuf len < 20 then header in next mbuf */
5226         ip4 = (m->m_len < sizeof(struct ip)) ?
5227                   (struct ip *)m->m_next->m_data :
5228                   (struct ip *)(m->m_data + e_hlen);
5229         /* ip_hl is number of 32-bit words */
5230         ip_hlen = (ip4->ip_hl << 1);
5231         ip = (caddr_t)ip4;
5232         break;
5233     case ETHERTYPE_IPV6:
5234         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5235         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5236                   (struct ip6_hdr *)m->m_next->m_data :
5237                   (struct ip6_hdr *)(m->m_data + e_hlen);
5238         /* XXX cannot support offload with IPv6 extensions */
5239         ip_hlen = (sizeof(struct ip6_hdr) >> 1);
5240         ip = (caddr_t)ip6;
5241         break;
5242     default:
5243         /* We can't offload in this case... */
5244         /* XXX error stat ??? */
5245         return (0);
5246     }
5247 
5248     hlen = (e_hlen >> 1);
5249 
5250     /* note that rest of global_data is indirectly zeroed here */
5251     if (m->m_flags & M_VLANTAG) {
5252         pbd->global_data =
5253             htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
5254     } else {
5255         pbd->global_data = htole16(hlen);
5256     }
5257 
5258     pbd->ip_hlen_w = ip_hlen;
5259 
5260     hlen += pbd->ip_hlen_w;
5261 
5262     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5263 
5264     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5265                                   CSUM_TSO |
5266                                   CSUM_TCP_IPV6)) {
5267         th = (struct tcphdr *)(ip + (ip_hlen << 1));
5268         /* th_off is number of 32-bit words */
5269         hlen += (uint16_t)(th->th_off << 1);
5270     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5271                                          CSUM_UDP_IPV6)) {
5272         uh = (struct udphdr *)(ip + (ip_hlen << 1));
5273         hlen += (sizeof(struct udphdr) / 2);
5274     } else {
5275         /* valid case as only CSUM_IP was set */
5276         return (0);
5277     }
5278 
5279     pbd->total_hlen_w = htole16(hlen);
5280 
5281     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5282                                   CSUM_TSO |
5283                                   CSUM_TCP_IPV6)) {
5284         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5285         pbd->tcp_pseudo_csum = ntohs(th->th_sum);
5286     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5287                                          CSUM_UDP_IPV6)) {
5288         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5289 
5290         /*
5291          * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
5292          * checksums and does not know anything about the UDP header and where
5293          * the checksum field is located. It only knows about TCP. Therefore
5294          * we "lie" to the hardware for outgoing UDP packets w/ checksum
5295          * offload. Since the checksum field offset for TCP is 16 bytes and
5296          * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
5297          * bytes less than the start of the UDP header. This allows the
5298          * hardware to write the checksum in the correct spot. But the
5299          * hardware will compute a checksum which includes the last 10 bytes
5300          * of the IP header. To correct this we tweak the stack computed
5301          * pseudo checksum by folding in the calculation of the inverse
5302          * checksum for those final 10 bytes of the IP header. This allows
5303          * the correct checksum to be computed by the hardware.
5304          */
5305 
5306         /* set pointer 10 bytes before UDP header */
5307         tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5308 
5309         /* calculate a pseudo header checksum over the first 10 bytes */
5310         tmp_csum = in_pseudo(*tmp_uh,
5311                              *(tmp_uh + 1),
5312                              *(uint16_t *)(tmp_uh + 2));
5313 
5314         pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5315     }
5316 
5317     return (hlen * 2); /* entire header length, number of bytes */
5318 }
5319 
5320 static void
5321 bxe_set_pbd_lso_e2(struct mbuf *m,
5322                    uint32_t    *parsing_data)
5323 {
5324     *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5325                        ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5326                       ETH_TX_PARSE_BD_E2_LSO_MSS);
5327 
5328     /* XXX test for IPv6 with extension header... */
5329 #if 0
5330     struct ip6_hdr *ip6;
5331     if (ip6 && ip6->ip6_nxt == 'some ipv6 extension header')
5332         *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
5333 #endif
5334 }
5335 
5336 static void
5337 bxe_set_pbd_lso(struct mbuf                *m,
5338                 struct eth_tx_parse_bd_e1x *pbd)
5339 {
5340     struct ether_vlan_header *eh = NULL;
5341     struct ip *ip = NULL;
5342     struct tcphdr *th = NULL;
5343     int e_hlen;
5344 
5345     /* get the Ethernet header */
5346     eh = mtod(m, struct ether_vlan_header *);
5347 
5348     /* handle VLAN encapsulation if present */
5349     e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5350                  (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5351 
5352     /* get the IP and TCP header, with LSO entire header in first mbuf */
5353     /* XXX assuming IPv4 */
5354     ip = (struct ip *)(m->m_data + e_hlen);
5355     th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5356 
5357     pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5358     pbd->tcp_send_seq = ntohl(th->th_seq);
5359     pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5360 
5361 #if 1
5362         /* XXX IPv4 */
5363         pbd->ip_id = ntohs(ip->ip_id);
5364         pbd->tcp_pseudo_csum =
5365             ntohs(in_pseudo(ip->ip_src.s_addr,
5366                             ip->ip_dst.s_addr,
5367                             htons(IPPROTO_TCP)));
5368 #else
5369         /* XXX IPv6 */
5370         pbd->tcp_pseudo_csum =
5371             ntohs(in_pseudo(&ip6->ip6_src,
5372                             &ip6->ip6_dst,
5373                             htons(IPPROTO_TCP)));
5374 #endif
5375 
5376     pbd->global_data |=
5377         htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5378 }
5379 
5380 /*
5381  * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5382  * visible to the controller.
5383  *
5384  * If an mbuf is submitted to this routine and cannot be given to the
5385  * controller (e.g. it has too many fragments) then the function may free
5386  * the mbuf and return to the caller.
5387  *
5388  * Returns:
5389  *   0 = Success, !0 = Failure
5390  *   Note the side effect that an mbuf may be freed if it causes a problem.
5391  */
5392 static int
5393 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5394 {
5395     bus_dma_segment_t segs[32];
5396     struct mbuf *m0;
5397     struct bxe_sw_tx_bd *tx_buf;
5398     struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5399     struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5400     /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5401     struct eth_tx_bd *tx_data_bd;
5402     struct eth_tx_bd *tx_total_pkt_size_bd;
5403     struct eth_tx_start_bd *tx_start_bd;
5404     uint16_t bd_prod, pkt_prod, total_pkt_size;
5405     uint8_t mac_type;
5406     int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5407     struct bxe_softc *sc;
5408     uint16_t tx_bd_avail;
5409     struct ether_vlan_header *eh;
5410     uint32_t pbd_e2_parsing_data = 0;
5411     uint8_t hlen = 0;
5412     int tmp_bd;
5413     int i;
5414 
5415     sc = fp->sc;
5416 
5417     M_ASSERTPKTHDR(*m_head);
5418 
5419     m0 = *m_head;
5420     rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5421     tx_start_bd = NULL;
5422     tx_data_bd = NULL;
5423     tx_total_pkt_size_bd = NULL;
5424 
5425     /* get the H/W pointer for packets and BDs */
5426     pkt_prod = fp->tx_pkt_prod;
5427     bd_prod = fp->tx_bd_prod;
5428 
5429     mac_type = UNICAST_ADDRESS;
5430 
5431     /* map the mbuf into the next open DMAable memory */
5432     tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5433     error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5434                                     tx_buf->m_map, m0,
5435                                     segs, &nsegs, BUS_DMA_NOWAIT);
5436 
5437     /* mapping errors */
5438     if(__predict_false(error != 0)) {
5439         fp->eth_q_stats.tx_dma_mapping_failure++;
5440         if (error == ENOMEM) {
5441             /* resource issue, try again later */
5442             rc = ENOMEM;
5443         } else if (error == EFBIG) {
5444             /* possibly recoverable with defragmentation */
5445             fp->eth_q_stats.mbuf_defrag_attempts++;
5446             m0 = m_defrag(*m_head, M_DONTWAIT);
5447             if (m0 == NULL) {
5448                 fp->eth_q_stats.mbuf_defrag_failures++;
5449                 rc = ENOBUFS;
5450             } else {
5451                 /* defrag successful, try mapping again */
5452                 *m_head = m0;
5453                 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5454                                                 tx_buf->m_map, m0,
5455                                                 segs, &nsegs, BUS_DMA_NOWAIT);
5456                 if (error) {
5457                     fp->eth_q_stats.tx_dma_mapping_failure++;
5458                     rc = error;
5459                 }
5460             }
5461         } else {
5462             /* unknown, unrecoverable mapping error */
5463             BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5464             bxe_dump_mbuf(sc, m0, FALSE);
5465             rc = error;
5466         }
5467 
5468         goto bxe_tx_encap_continue;
5469     }
5470 
5471     tx_bd_avail = bxe_tx_avail(sc, fp);
5472 
5473     /* make sure there is enough room in the send queue */
5474     if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5475         /* Recoverable, try again later. */
5476         fp->eth_q_stats.tx_hw_queue_full++;
5477         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5478         rc = ENOMEM;
5479         goto bxe_tx_encap_continue;
5480     }
5481 
5482     /* capture the current H/W TX chain high watermark */
5483     if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5484                         (TX_BD_USABLE - tx_bd_avail))) {
5485         fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5486     }
5487 
5488     /* make sure it fits in the packet window */
5489     if (__predict_false(nsegs > 12)) {
5490         /*
5491          * The mbuf may be to big for the controller to handle. If the frame
5492          * is a TSO frame we'll need to do an additional check.
5493          */
5494         if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5495             if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5496                 goto bxe_tx_encap_continue; /* OK to send */
5497             } else {
5498                 fp->eth_q_stats.tx_window_violation_tso++;
5499             }
5500         } else {
5501             fp->eth_q_stats.tx_window_violation_std++;
5502         }
5503 
5504         /* XXX I don't like this, change to double copy packet */
5505 
5506         /* no sense trying to defrag again, just drop the frame */
5507         rc = ENODEV;
5508     }
5509 
5510 bxe_tx_encap_continue:
5511 
5512     /* Check for errors */
5513     if (rc) {
5514         if (rc == ENOMEM) {
5515             /* recoverable try again later  */
5516         } else {
5517             fp->eth_q_stats.tx_soft_errors++;
5518             fp->eth_q_stats.mbuf_alloc_tx--;
5519             m_freem(*m_head);
5520             *m_head = NULL;
5521         }
5522 
5523         return (rc);
5524     }
5525 
5526     /* set flag according to packet type (UNICAST_ADDRESS is default) */
5527     if (m0->m_flags & M_BCAST) {
5528         mac_type = BROADCAST_ADDRESS;
5529     } else if (m0->m_flags & M_MCAST) {
5530         mac_type = MULTICAST_ADDRESS;
5531     }
5532 
5533     /* store the mbuf into the mbuf ring */
5534     tx_buf->m        = m0;
5535     tx_buf->first_bd = fp->tx_bd_prod;
5536     tx_buf->flags    = 0;
5537 
5538     /* prepare the first transmit (start) BD for the mbuf */
5539     tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5540 
5541     BLOGD(sc, DBG_TX,
5542           "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5543           pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5544 
5545     tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5546     tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5547     tx_start_bd->nbytes  = htole16(segs[0].ds_len);
5548     total_pkt_size += tx_start_bd->nbytes;
5549     tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5550 
5551     tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5552 
5553     /* all frames have at least Start BD + Parsing BD */
5554     nbds = nsegs + 1;
5555     tx_start_bd->nbd = htole16(nbds);
5556 
5557     if (m0->m_flags & M_VLANTAG) {
5558         tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5559         tx_start_bd->bd_flags.as_bitfield |=
5560             (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5561     } else {
5562         /* vf tx, start bd must hold the ethertype for fw to enforce it */
5563         if (IS_VF(sc)) {
5564             /* map ethernet header to find type and header length */
5565             eh = mtod(m0, struct ether_vlan_header *);
5566             tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5567         } else {
5568             /* used by FW for packet accounting */
5569             tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5570 #if 0
5571             /*
5572              * If NPAR-SD is active then FW should do the tagging regardless
5573              * of value of priority. Otherwise, if priority indicates this is
5574              * a control packet we need to indicate to FW to avoid tagging.
5575              */
5576             if (!IS_MF_AFEX(sc) && (mbuf priority == PRIO_CONTROL)) {
5577                 SET_FLAG(tx_start_bd->general_data,
5578                          ETH_TX_START_BD_FORCE_VLAN_MODE, 1);
5579             }
5580 #endif
5581         }
5582     }
5583 
5584     /*
5585      * add a parsing BD from the chain. The parsing BD is always added
5586      * though it is only used for TSO and chksum
5587      */
5588     bd_prod = TX_BD_NEXT(bd_prod);
5589 
5590     if (m0->m_pkthdr.csum_flags) {
5591         if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5592             fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5593             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5594         }
5595 
5596         if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5597             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5598                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5599         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5600             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6   |
5601                                                   ETH_TX_BD_FLAGS_IS_UDP |
5602                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5603         } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5604                    (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5605             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5606         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5607             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5608                                                   ETH_TX_BD_FLAGS_IS_UDP);
5609         }
5610     }
5611 
5612     if (!CHIP_IS_E1x(sc)) {
5613         pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5614         memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5615 
5616         if (m0->m_pkthdr.csum_flags) {
5617             hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5618         }
5619 
5620 #if 0
5621         /*
5622          * Add the MACs to the parsing BD if the module param was
5623          * explicitly set, if this is a vf, or in switch independent
5624          * mode.
5625          */
5626         if (sc->flags & BXE_TX_SWITCHING || IS_VF(sc) || IS_MF_SI(sc)) {
5627             eh = mtod(m0, struct ether_vlan_header *);
5628             bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
5629                                 &pbd_e2->data.mac_addr.src_mid,
5630                                 &pbd_e2->data.mac_addr.src_lo,
5631                                 eh->evl_shost);
5632             bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
5633                                 &pbd_e2->data.mac_addr.dst_mid,
5634                                 &pbd_e2->data.mac_addr.dst_lo,
5635                                 eh->evl_dhost);
5636         }
5637 #endif
5638 
5639         SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5640                  mac_type);
5641     } else {
5642         uint16_t global_data = 0;
5643 
5644         pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5645         memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5646 
5647         if (m0->m_pkthdr.csum_flags) {
5648             hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5649         }
5650 
5651         SET_FLAG(global_data,
5652                  ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5653         pbd_e1x->global_data |= htole16(global_data);
5654     }
5655 
5656     /* setup the parsing BD with TSO specific info */
5657     if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5658         fp->eth_q_stats.tx_ofld_frames_lso++;
5659         tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5660 
5661         if (__predict_false(tx_start_bd->nbytes > hlen)) {
5662             fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5663 
5664             /* split the first BD into header/data making the fw job easy */
5665             nbds++;
5666             tx_start_bd->nbd = htole16(nbds);
5667             tx_start_bd->nbytes = htole16(hlen);
5668 
5669             bd_prod = TX_BD_NEXT(bd_prod);
5670 
5671             /* new transmit BD after the tx_parse_bd */
5672             tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5673             tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5674             tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5675             tx_data_bd->nbytes  = htole16(segs[0].ds_len - hlen);
5676             if (tx_total_pkt_size_bd == NULL) {
5677                 tx_total_pkt_size_bd = tx_data_bd;
5678             }
5679 
5680             BLOGD(sc, DBG_TX,
5681                   "TSO split header size is %d (%x:%x) nbds %d\n",
5682                   le16toh(tx_start_bd->nbytes),
5683                   le32toh(tx_start_bd->addr_hi),
5684                   le32toh(tx_start_bd->addr_lo),
5685                   nbds);
5686         }
5687 
5688         if (!CHIP_IS_E1x(sc)) {
5689             bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5690         } else {
5691             bxe_set_pbd_lso(m0, pbd_e1x);
5692         }
5693     }
5694 
5695     if (pbd_e2_parsing_data) {
5696         pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5697     }
5698 
5699     /* prepare remaining BDs, start tx bd contains first seg/frag */
5700     for (i = 1; i < nsegs ; i++) {
5701         bd_prod = TX_BD_NEXT(bd_prod);
5702         tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5703         tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5704         tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5705         tx_data_bd->nbytes  = htole16(segs[i].ds_len);
5706         if (tx_total_pkt_size_bd == NULL) {
5707             tx_total_pkt_size_bd = tx_data_bd;
5708         }
5709         total_pkt_size += tx_data_bd->nbytes;
5710     }
5711 
5712     BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5713 
5714     if (tx_total_pkt_size_bd != NULL) {
5715         tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5716     }
5717 
5718     if (__predict_false(sc->debug & DBG_TX)) {
5719         tmp_bd = tx_buf->first_bd;
5720         for (i = 0; i < nbds; i++)
5721         {
5722             if (i == 0) {
5723                 BLOGD(sc, DBG_TX,
5724                       "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5725                       "bd_flags=0x%x hdr_nbds=%d\n",
5726                       tx_start_bd,
5727                       tmp_bd,
5728                       le16toh(tx_start_bd->nbd),
5729                       le16toh(tx_start_bd->vlan_or_ethertype),
5730                       tx_start_bd->bd_flags.as_bitfield,
5731                       (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5732             } else if (i == 1) {
5733                 if (pbd_e1x) {
5734                     BLOGD(sc, DBG_TX,
5735                           "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5736                           "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5737                           "tcp_seq=%u total_hlen_w=%u\n",
5738                           pbd_e1x,
5739                           tmp_bd,
5740                           pbd_e1x->global_data,
5741                           pbd_e1x->ip_hlen_w,
5742                           pbd_e1x->ip_id,
5743                           pbd_e1x->lso_mss,
5744                           pbd_e1x->tcp_flags,
5745                           pbd_e1x->tcp_pseudo_csum,
5746                           pbd_e1x->tcp_send_seq,
5747                           le16toh(pbd_e1x->total_hlen_w));
5748                 } else { /* if (pbd_e2) */
5749                     BLOGD(sc, DBG_TX,
5750                           "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5751                           "src=%02x:%02x:%02x parsing_data=0x%x\n",
5752                           pbd_e2,
5753                           tmp_bd,
5754                           pbd_e2->data.mac_addr.dst_hi,
5755                           pbd_e2->data.mac_addr.dst_mid,
5756                           pbd_e2->data.mac_addr.dst_lo,
5757                           pbd_e2->data.mac_addr.src_hi,
5758                           pbd_e2->data.mac_addr.src_mid,
5759                           pbd_e2->data.mac_addr.src_lo,
5760                           pbd_e2->parsing_data);
5761                 }
5762             }
5763 
5764             if (i != 1) { /* skip parse db as it doesn't hold data */
5765                 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5766                 BLOGD(sc, DBG_TX,
5767                       "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5768                       tx_data_bd,
5769                       tmp_bd,
5770                       le16toh(tx_data_bd->nbytes),
5771                       le32toh(tx_data_bd->addr_hi),
5772                       le32toh(tx_data_bd->addr_lo));
5773             }
5774 
5775             tmp_bd = TX_BD_NEXT(tmp_bd);
5776         }
5777     }
5778 
5779     BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5780 
5781     /* update TX BD producer index value for next TX */
5782     bd_prod = TX_BD_NEXT(bd_prod);
5783 
5784     /*
5785      * If the chain of tx_bd's describing this frame is adjacent to or spans
5786      * an eth_tx_next_bd element then we need to increment the nbds value.
5787      */
5788     if (TX_BD_IDX(bd_prod) < nbds) {
5789         nbds++;
5790     }
5791 
5792     /* don't allow reordering of writes for nbd and packets */
5793     mb();
5794 
5795     fp->tx_db.data.prod += nbds;
5796 
5797     /* producer points to the next free tx_bd at this point */
5798     fp->tx_pkt_prod++;
5799     fp->tx_bd_prod = bd_prod;
5800 
5801     DOORBELL(sc, fp->index, fp->tx_db.raw);
5802 
5803     fp->eth_q_stats.tx_pkts++;
5804 
5805     /* Prevent speculative reads from getting ahead of the status block. */
5806     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5807                       0, 0, BUS_SPACE_BARRIER_READ);
5808 
5809     /* Prevent speculative reads from getting ahead of the doorbell. */
5810     bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5811                       0, 0, BUS_SPACE_BARRIER_READ);
5812 
5813     return (0);
5814 }
5815 
5816 static void
5817 bxe_tx_start_locked(struct bxe_softc    *sc,
5818                     struct ifnet        *ifp,
5819                     struct bxe_fastpath *fp)
5820 {
5821     struct mbuf *m = NULL;
5822     int tx_count = 0;
5823     uint16_t tx_bd_avail;
5824 
5825     BXE_FP_TX_LOCK_ASSERT(fp);
5826 
5827     /* keep adding entries while there are frames to send */
5828     while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
5829 
5830         /*
5831          * check for any frames to send
5832          * dequeue can still be NULL even if queue is not empty
5833          */
5834         IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
5835         if (__predict_false(m == NULL)) {
5836             break;
5837         }
5838 
5839         /* the mbuf now belongs to us */
5840         fp->eth_q_stats.mbuf_alloc_tx++;
5841 
5842         /*
5843          * Put the frame into the transmit ring. If we don't have room,
5844          * place the mbuf back at the head of the TX queue, set the
5845          * OACTIVE flag, and wait for the NIC to drain the chain.
5846          */
5847         if (__predict_false(bxe_tx_encap(fp, &m))) {
5848             fp->eth_q_stats.tx_encap_failures++;
5849             if (m != NULL) {
5850                 /* mark the TX queue as full and return the frame */
5851                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5852                 IFQ_DRV_PREPEND(&ifp->if_snd, m);
5853                 fp->eth_q_stats.mbuf_alloc_tx--;
5854                 fp->eth_q_stats.tx_queue_xoff++;
5855             }
5856 
5857             /* stop looking for more work */
5858             break;
5859         }
5860 
5861         /* the frame was enqueued successfully */
5862         tx_count++;
5863 
5864         /* send a copy of the frame to any BPF listeners. */
5865         BPF_MTAP(ifp, m);
5866 
5867         tx_bd_avail = bxe_tx_avail(sc, fp);
5868 
5869         /* handle any completions if we're running low */
5870         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5871             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5872             bxe_txeof(sc, fp);
5873             if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
5874                 break;
5875             }
5876         }
5877     }
5878 
5879     /* all TX packets were dequeued and/or the tx ring is full */
5880     if (tx_count > 0) {
5881         /* reset the TX watchdog timeout timer */
5882         fp->watchdog_timer = BXE_TX_TIMEOUT;
5883     }
5884 }
5885 
5886 /* Legacy (non-RSS) dispatch routine */
5887 static void
5888 bxe_tx_start(struct ifnet *ifp)
5889 {
5890     struct bxe_softc *sc;
5891     struct bxe_fastpath *fp;
5892 
5893     sc = ifp->if_softc;
5894 
5895     if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
5896         BLOGW(sc, "Interface not running, ignoring transmit request\n");
5897         return;
5898     }
5899 
5900     if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
5901         BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
5902         return;
5903     }
5904 
5905     if (!sc->link_vars.link_up) {
5906         BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5907         return;
5908     }
5909 
5910     fp = &sc->fp[0];
5911 
5912     BXE_FP_TX_LOCK(fp);
5913     bxe_tx_start_locked(sc, ifp, fp);
5914     BXE_FP_TX_UNLOCK(fp);
5915 }
5916 
5917 #if __FreeBSD_version >= 800000
5918 
5919 static int
5920 bxe_tx_mq_start_locked(struct bxe_softc    *sc,
5921                        struct ifnet        *ifp,
5922                        struct bxe_fastpath *fp,
5923                        struct mbuf         *m)
5924 {
5925     struct buf_ring *tx_br = fp->tx_br;
5926     struct mbuf *next;
5927     int depth, rc, tx_count;
5928     uint16_t tx_bd_avail;
5929 
5930     rc = tx_count = 0;
5931 
5932     if (!tx_br) {
5933         BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
5934         return (EINVAL);
5935     }
5936 
5937     /* fetch the depth of the driver queue */
5938     depth = drbr_inuse(ifp, tx_br);
5939     if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
5940         fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
5941     }
5942 
5943     BXE_FP_TX_LOCK_ASSERT(fp);
5944 
5945     if (m == NULL) {
5946         /* no new work, check for pending frames */
5947         next = drbr_dequeue(ifp, tx_br);
5948     } else if (drbr_needs_enqueue(ifp, tx_br)) {
5949         /* have both new and pending work, maintain packet order */
5950         rc = drbr_enqueue(ifp, tx_br, m);
5951         if (rc != 0) {
5952             fp->eth_q_stats.tx_soft_errors++;
5953             goto bxe_tx_mq_start_locked_exit;
5954         }
5955         next = drbr_dequeue(ifp, tx_br);
5956     } else {
5957         /* new work only and nothing pending */
5958         next = m;
5959     }
5960 
5961     /* keep adding entries while there are frames to send */
5962     while (next != NULL) {
5963 
5964         /* the mbuf now belongs to us */
5965         fp->eth_q_stats.mbuf_alloc_tx++;
5966 
5967         /*
5968          * Put the frame into the transmit ring. If we don't have room,
5969          * place the mbuf back at the head of the TX queue, set the
5970          * OACTIVE flag, and wait for the NIC to drain the chain.
5971          */
5972         rc = bxe_tx_encap(fp, &next);
5973         if (__predict_false(rc != 0)) {
5974             fp->eth_q_stats.tx_encap_failures++;
5975             if (next != NULL) {
5976                 /* mark the TX queue as full and save the frame */
5977                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5978                 /* XXX this may reorder the frame */
5979                 rc = drbr_enqueue(ifp, tx_br, next);
5980                 fp->eth_q_stats.mbuf_alloc_tx--;
5981                 fp->eth_q_stats.tx_frames_deferred++;
5982             }
5983 
5984             /* stop looking for more work */
5985             break;
5986         }
5987 
5988         /* the transmit frame was enqueued successfully */
5989         tx_count++;
5990 
5991         /* send a copy of the frame to any BPF listeners */
5992         BPF_MTAP(ifp, next);
5993 
5994         tx_bd_avail = bxe_tx_avail(sc, fp);
5995 
5996         /* handle any completions if we're running low */
5997         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5998             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5999             bxe_txeof(sc, fp);
6000             if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
6001                 break;
6002             }
6003         }
6004 
6005         next = drbr_dequeue(ifp, tx_br);
6006     }
6007 
6008     /* all TX packets were dequeued and/or the tx ring is full */
6009     if (tx_count > 0) {
6010         /* reset the TX watchdog timeout timer */
6011         fp->watchdog_timer = BXE_TX_TIMEOUT;
6012     }
6013 
6014 bxe_tx_mq_start_locked_exit:
6015 
6016     return (rc);
6017 }
6018 
6019 /* Multiqueue (TSS) dispatch routine. */
6020 static int
6021 bxe_tx_mq_start(struct ifnet *ifp,
6022                 struct mbuf  *m)
6023 {
6024     struct bxe_softc *sc = ifp->if_softc;
6025     struct bxe_fastpath *fp;
6026     int fp_index, rc;
6027 
6028     fp_index = 0; /* default is the first queue */
6029 
6030     /* change the queue if using flow ID */
6031     if ((m->m_flags & M_FLOWID) != 0) {
6032         fp_index = (m->m_pkthdr.flowid % sc->num_queues);
6033     }
6034 
6035     fp = &sc->fp[fp_index];
6036 
6037     if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
6038         BLOGW(sc, "Interface not running, ignoring transmit request\n");
6039         return (ENETDOWN);
6040     }
6041 
6042     if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
6043         BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
6044         return (EBUSY);
6045     }
6046 
6047     if (!sc->link_vars.link_up) {
6048         BLOGW(sc, "Interface link is down, ignoring transmit request\n");
6049         return (ENETDOWN);
6050     }
6051 
6052     /* XXX change to TRYLOCK here and if failed then schedule taskqueue */
6053 
6054     BXE_FP_TX_LOCK(fp);
6055     rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
6056     BXE_FP_TX_UNLOCK(fp);
6057 
6058     return (rc);
6059 }
6060 
6061 static void
6062 bxe_mq_flush(struct ifnet *ifp)
6063 {
6064     struct bxe_softc *sc = ifp->if_softc;
6065     struct bxe_fastpath *fp;
6066     struct mbuf *m;
6067     int i;
6068 
6069     for (i = 0; i < sc->num_queues; i++) {
6070         fp = &sc->fp[i];
6071 
6072         if (fp->state != BXE_FP_STATE_OPEN) {
6073             BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
6074                   fp->index, fp->state);
6075             continue;
6076         }
6077 
6078         if (fp->tx_br != NULL) {
6079             BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
6080             BXE_FP_TX_LOCK(fp);
6081             while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6082                 m_freem(m);
6083             }
6084             BXE_FP_TX_UNLOCK(fp);
6085         }
6086     }
6087 
6088     if_qflush(ifp);
6089 }
6090 
6091 #endif /* FreeBSD_version >= 800000 */
6092 
6093 static uint16_t
6094 bxe_cid_ilt_lines(struct bxe_softc *sc)
6095 {
6096     if (IS_SRIOV(sc)) {
6097         return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
6098     }
6099     return (L2_ILT_LINES(sc));
6100 }
6101 
6102 static void
6103 bxe_ilt_set_info(struct bxe_softc *sc)
6104 {
6105     struct ilt_client_info *ilt_client;
6106     struct ecore_ilt *ilt = sc->ilt;
6107     uint16_t line = 0;
6108 
6109     ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
6110     BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
6111 
6112     /* CDU */
6113     ilt_client = &ilt->clients[ILT_CLIENT_CDU];
6114     ilt_client->client_num = ILT_CLIENT_CDU;
6115     ilt_client->page_size = CDU_ILT_PAGE_SZ;
6116     ilt_client->flags = ILT_CLIENT_SKIP_MEM;
6117     ilt_client->start = line;
6118     line += bxe_cid_ilt_lines(sc);
6119 
6120     if (CNIC_SUPPORT(sc)) {
6121         line += CNIC_ILT_LINES;
6122     }
6123 
6124     ilt_client->end = (line - 1);
6125 
6126     BLOGD(sc, DBG_LOAD,
6127           "ilt client[CDU]: start %d, end %d, "
6128           "psz 0x%x, flags 0x%x, hw psz %d\n",
6129           ilt_client->start, ilt_client->end,
6130           ilt_client->page_size,
6131           ilt_client->flags,
6132           ilog2(ilt_client->page_size >> 12));
6133 
6134     /* QM */
6135     if (QM_INIT(sc->qm_cid_count)) {
6136         ilt_client = &ilt->clients[ILT_CLIENT_QM];
6137         ilt_client->client_num = ILT_CLIENT_QM;
6138         ilt_client->page_size = QM_ILT_PAGE_SZ;
6139         ilt_client->flags = 0;
6140         ilt_client->start = line;
6141 
6142         /* 4 bytes for each cid */
6143         line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
6144                              QM_ILT_PAGE_SZ);
6145 
6146         ilt_client->end = (line - 1);
6147 
6148         BLOGD(sc, DBG_LOAD,
6149               "ilt client[QM]: start %d, end %d, "
6150               "psz 0x%x, flags 0x%x, hw psz %d\n",
6151               ilt_client->start, ilt_client->end,
6152               ilt_client->page_size, ilt_client->flags,
6153               ilog2(ilt_client->page_size >> 12));
6154     }
6155 
6156     if (CNIC_SUPPORT(sc)) {
6157         /* SRC */
6158         ilt_client = &ilt->clients[ILT_CLIENT_SRC];
6159         ilt_client->client_num = ILT_CLIENT_SRC;
6160         ilt_client->page_size = SRC_ILT_PAGE_SZ;
6161         ilt_client->flags = 0;
6162         ilt_client->start = line;
6163         line += SRC_ILT_LINES;
6164         ilt_client->end = (line - 1);
6165 
6166         BLOGD(sc, DBG_LOAD,
6167               "ilt client[SRC]: start %d, end %d, "
6168               "psz 0x%x, flags 0x%x, hw psz %d\n",
6169               ilt_client->start, ilt_client->end,
6170               ilt_client->page_size, ilt_client->flags,
6171               ilog2(ilt_client->page_size >> 12));
6172 
6173         /* TM */
6174         ilt_client = &ilt->clients[ILT_CLIENT_TM];
6175         ilt_client->client_num = ILT_CLIENT_TM;
6176         ilt_client->page_size = TM_ILT_PAGE_SZ;
6177         ilt_client->flags = 0;
6178         ilt_client->start = line;
6179         line += TM_ILT_LINES;
6180         ilt_client->end = (line - 1);
6181 
6182         BLOGD(sc, DBG_LOAD,
6183               "ilt client[TM]: start %d, end %d, "
6184               "psz 0x%x, flags 0x%x, hw psz %d\n",
6185               ilt_client->start, ilt_client->end,
6186               ilt_client->page_size, ilt_client->flags,
6187               ilog2(ilt_client->page_size >> 12));
6188     }
6189 
6190     KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
6191 }
6192 
6193 static void
6194 bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
6195 {
6196     int i;
6197 
6198     BLOGD(sc, DBG_LOAD, "mtu = %d\n", sc->mtu);
6199 
6200     for (i = 0; i < sc->num_queues; i++) {
6201         /* get the Rx buffer size for RX frames */
6202         sc->fp[i].rx_buf_size =
6203             (IP_HEADER_ALIGNMENT_PADDING +
6204              ETH_OVERHEAD +
6205              sc->mtu);
6206 
6207         BLOGD(sc, DBG_LOAD, "rx_buf_size for fp[%02d] = %d\n",
6208               i, sc->fp[i].rx_buf_size);
6209 
6210         /* get the mbuf allocation size for RX frames */
6211         if (sc->fp[i].rx_buf_size <= MCLBYTES) {
6212             sc->fp[i].mbuf_alloc_size = MCLBYTES;
6213         } else if (sc->fp[i].rx_buf_size <= BCM_PAGE_SIZE) {
6214             sc->fp[i].mbuf_alloc_size = PAGE_SIZE;
6215         } else {
6216             sc->fp[i].mbuf_alloc_size = MJUM9BYTES;
6217         }
6218 
6219         BLOGD(sc, DBG_LOAD, "mbuf_alloc_size for fp[%02d] = %d\n",
6220               i, sc->fp[i].mbuf_alloc_size);
6221     }
6222 }
6223 
6224 static int
6225 bxe_alloc_ilt_mem(struct bxe_softc *sc)
6226 {
6227     int rc = 0;
6228 
6229     if ((sc->ilt =
6230          (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
6231                                     M_BXE_ILT,
6232                                     (M_NOWAIT | M_ZERO))) == NULL) {
6233         rc = 1;
6234     }
6235 
6236     return (rc);
6237 }
6238 
6239 static int
6240 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
6241 {
6242     int rc = 0;
6243 
6244     if ((sc->ilt->lines =
6245          (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
6246                                     M_BXE_ILT,
6247                                     (M_NOWAIT | M_ZERO))) == NULL) {
6248         rc = 1;
6249     }
6250 
6251     return (rc);
6252 }
6253 
6254 static void
6255 bxe_free_ilt_mem(struct bxe_softc *sc)
6256 {
6257     if (sc->ilt != NULL) {
6258         free(sc->ilt, M_BXE_ILT);
6259         sc->ilt = NULL;
6260     }
6261 }
6262 
6263 static void
6264 bxe_free_ilt_lines_mem(struct bxe_softc *sc)
6265 {
6266     if (sc->ilt->lines != NULL) {
6267         free(sc->ilt->lines, M_BXE_ILT);
6268         sc->ilt->lines = NULL;
6269     }
6270 }
6271 
6272 static void
6273 bxe_free_mem(struct bxe_softc *sc)
6274 {
6275     int i;
6276 
6277 #if 0
6278     if (!CONFIGURE_NIC_MODE(sc)) {
6279         /* free searcher T2 table */
6280         bxe_dma_free(sc, &sc->t2);
6281     }
6282 #endif
6283 
6284     for (i = 0; i < L2_ILT_LINES(sc); i++) {
6285         bxe_dma_free(sc, &sc->context[i].vcxt_dma);
6286         sc->context[i].vcxt = NULL;
6287         sc->context[i].size = 0;
6288     }
6289 
6290     ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
6291 
6292     bxe_free_ilt_lines_mem(sc);
6293 
6294 #if 0
6295     bxe_iov_free_mem(sc);
6296 #endif
6297 }
6298 
6299 static int
6300 bxe_alloc_mem(struct bxe_softc *sc)
6301 {
6302     int context_size;
6303     int allocated;
6304     int i;
6305 
6306 #if 0
6307     if (!CONFIGURE_NIC_MODE(sc)) {
6308         /* allocate searcher T2 table */
6309         if (bxe_dma_alloc(sc, SRC_T2_SZ,
6310                           &sc->t2, "searcher t2 table") != 0) {
6311             return (-1);
6312         }
6313     }
6314 #endif
6315 
6316     /*
6317      * Allocate memory for CDU context:
6318      * This memory is allocated separately and not in the generic ILT
6319      * functions because CDU differs in few aspects:
6320      * 1. There can be multiple entities allocating memory for context -
6321      * regular L2, CNIC, and SRIOV drivers. Each separately controls
6322      * its own ILT lines.
6323      * 2. Since CDU page-size is not a single 4KB page (which is the case
6324      * for the other ILT clients), to be efficient we want to support
6325      * allocation of sub-page-size in the last entry.
6326      * 3. Context pointers are used by the driver to pass to FW / update
6327      * the context (for the other ILT clients the pointers are used just to
6328      * free the memory during unload).
6329      */
6330     context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
6331     for (i = 0, allocated = 0; allocated < context_size; i++) {
6332         sc->context[i].size = min(CDU_ILT_PAGE_SZ,
6333                                   (context_size - allocated));
6334 
6335         if (bxe_dma_alloc(sc, sc->context[i].size,
6336                           &sc->context[i].vcxt_dma,
6337                           "cdu context") != 0) {
6338             bxe_free_mem(sc);
6339             return (-1);
6340         }
6341 
6342         sc->context[i].vcxt =
6343             (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
6344 
6345         allocated += sc->context[i].size;
6346     }
6347 
6348     bxe_alloc_ilt_lines_mem(sc);
6349 
6350     BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6351           sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6352     {
6353         for (i = 0; i < 4; i++) {
6354             BLOGD(sc, DBG_LOAD,
6355                   "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6356                   i,
6357                   sc->ilt->clients[i].page_size,
6358                   sc->ilt->clients[i].start,
6359                   sc->ilt->clients[i].end,
6360                   sc->ilt->clients[i].client_num,
6361                   sc->ilt->clients[i].flags);
6362         }
6363     }
6364     if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6365         BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6366         bxe_free_mem(sc);
6367         return (-1);
6368     }
6369 
6370 #if 0
6371     if (bxe_iov_alloc_mem(sc)) {
6372         BLOGE(sc, "Failed to allocate memory for SRIOV\n");
6373         bxe_free_mem(sc);
6374         return (-1);
6375     }
6376 #endif
6377 
6378     return (0);
6379 }
6380 
6381 static void
6382 bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6383 {
6384     struct bxe_softc *sc;
6385     int i;
6386 
6387     sc = fp->sc;
6388 
6389     if (fp->rx_mbuf_tag == NULL) {
6390         return;
6391     }
6392 
6393     /* free all mbufs and unload all maps */
6394     for (i = 0; i < RX_BD_TOTAL; i++) {
6395         if (fp->rx_mbuf_chain[i].m_map != NULL) {
6396             bus_dmamap_sync(fp->rx_mbuf_tag,
6397                             fp->rx_mbuf_chain[i].m_map,
6398                             BUS_DMASYNC_POSTREAD);
6399             bus_dmamap_unload(fp->rx_mbuf_tag,
6400                               fp->rx_mbuf_chain[i].m_map);
6401         }
6402 
6403         if (fp->rx_mbuf_chain[i].m != NULL) {
6404             m_freem(fp->rx_mbuf_chain[i].m);
6405             fp->rx_mbuf_chain[i].m = NULL;
6406             fp->eth_q_stats.mbuf_alloc_rx--;
6407         }
6408     }
6409 }
6410 
6411 static void
6412 bxe_free_tpa_pool(struct bxe_fastpath *fp)
6413 {
6414     struct bxe_softc *sc;
6415     int i, max_agg_queues;
6416 
6417     sc = fp->sc;
6418 
6419     if (fp->rx_mbuf_tag == NULL) {
6420         return;
6421     }
6422 
6423     max_agg_queues = MAX_AGG_QS(sc);
6424 
6425     /* release all mbufs and unload all DMA maps in the TPA pool */
6426     for (i = 0; i < max_agg_queues; i++) {
6427         if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6428             bus_dmamap_sync(fp->rx_mbuf_tag,
6429                             fp->rx_tpa_info[i].bd.m_map,
6430                             BUS_DMASYNC_POSTREAD);
6431             bus_dmamap_unload(fp->rx_mbuf_tag,
6432                               fp->rx_tpa_info[i].bd.m_map);
6433         }
6434 
6435         if (fp->rx_tpa_info[i].bd.m != NULL) {
6436             m_freem(fp->rx_tpa_info[i].bd.m);
6437             fp->rx_tpa_info[i].bd.m = NULL;
6438             fp->eth_q_stats.mbuf_alloc_tpa--;
6439         }
6440     }
6441 }
6442 
6443 static void
6444 bxe_free_sge_chain(struct bxe_fastpath *fp)
6445 {
6446     struct bxe_softc *sc;
6447     int i;
6448 
6449     sc = fp->sc;
6450 
6451     if (fp->rx_sge_mbuf_tag == NULL) {
6452         return;
6453     }
6454 
6455     /* rree all mbufs and unload all maps */
6456     for (i = 0; i < RX_SGE_TOTAL; i++) {
6457         if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6458             bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6459                             fp->rx_sge_mbuf_chain[i].m_map,
6460                             BUS_DMASYNC_POSTREAD);
6461             bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6462                               fp->rx_sge_mbuf_chain[i].m_map);
6463         }
6464 
6465         if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6466             m_freem(fp->rx_sge_mbuf_chain[i].m);
6467             fp->rx_sge_mbuf_chain[i].m = NULL;
6468             fp->eth_q_stats.mbuf_alloc_sge--;
6469         }
6470     }
6471 }
6472 
6473 static void
6474 bxe_free_fp_buffers(struct bxe_softc *sc)
6475 {
6476     struct bxe_fastpath *fp;
6477     int i;
6478 
6479     for (i = 0; i < sc->num_queues; i++) {
6480         fp = &sc->fp[i];
6481 
6482 #if __FreeBSD_version >= 800000
6483         if (fp->tx_br != NULL) {
6484             struct mbuf *m;
6485             /* just in case bxe_mq_flush() wasn't called */
6486             while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6487                 m_freem(m);
6488             }
6489             buf_ring_free(fp->tx_br, M_DEVBUF);
6490             fp->tx_br = NULL;
6491         }
6492 #endif
6493 
6494         /* free all RX buffers */
6495         bxe_free_rx_bd_chain(fp);
6496         bxe_free_tpa_pool(fp);
6497         bxe_free_sge_chain(fp);
6498 
6499         if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6500             BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6501                   fp->eth_q_stats.mbuf_alloc_rx);
6502         }
6503 
6504         if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6505             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6506                   fp->eth_q_stats.mbuf_alloc_sge);
6507         }
6508 
6509         if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6510             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6511                   fp->eth_q_stats.mbuf_alloc_tpa);
6512         }
6513 
6514         if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6515             BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6516                   fp->eth_q_stats.mbuf_alloc_tx);
6517         }
6518 
6519         /* XXX verify all mbufs were reclaimed */
6520 
6521         if (mtx_initialized(&fp->tx_mtx)) {
6522             mtx_destroy(&fp->tx_mtx);
6523         }
6524 
6525         if (mtx_initialized(&fp->rx_mtx)) {
6526             mtx_destroy(&fp->rx_mtx);
6527         }
6528     }
6529 }
6530 
6531 static int
6532 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6533                      uint16_t            prev_index,
6534                      uint16_t            index)
6535 {
6536     struct bxe_sw_rx_bd *rx_buf;
6537     struct eth_rx_bd *rx_bd;
6538     bus_dma_segment_t segs[1];
6539     bus_dmamap_t map;
6540     struct mbuf *m;
6541     int nsegs, rc;
6542 
6543     rc = 0;
6544 
6545     /* allocate the new RX BD mbuf */
6546     m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6547     if (__predict_false(m == NULL)) {
6548         fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6549         return (ENOBUFS);
6550     }
6551 
6552     fp->eth_q_stats.mbuf_alloc_rx++;
6553 
6554     /* initialize the mbuf buffer length */
6555     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6556 
6557     /* map the mbuf into non-paged pool */
6558     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6559                                  fp->rx_mbuf_spare_map,
6560                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6561     if (__predict_false(rc != 0)) {
6562         fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6563         m_freem(m);
6564         fp->eth_q_stats.mbuf_alloc_rx--;
6565         return (rc);
6566     }
6567 
6568     /* all mbufs must map to a single segment */
6569     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6570 
6571     /* release any existing RX BD mbuf mappings */
6572 
6573     if (prev_index != index) {
6574         rx_buf = &fp->rx_mbuf_chain[prev_index];
6575 
6576         if (rx_buf->m_map != NULL) {
6577             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6578                             BUS_DMASYNC_POSTREAD);
6579             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6580         }
6581 
6582         /*
6583          * We only get here from bxe_rxeof() when the maximum number
6584          * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6585          * holds the mbuf in the prev_index so it's OK to NULL it out
6586          * here without concern of a memory leak.
6587          */
6588         fp->rx_mbuf_chain[prev_index].m = NULL;
6589     }
6590 
6591     rx_buf = &fp->rx_mbuf_chain[index];
6592 
6593     if (rx_buf->m_map != NULL) {
6594         bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6595                         BUS_DMASYNC_POSTREAD);
6596         bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6597     }
6598 
6599     /* save the mbuf and mapping info for a future packet */
6600     map = (prev_index != index) ?
6601               fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6602     rx_buf->m_map = fp->rx_mbuf_spare_map;
6603     fp->rx_mbuf_spare_map = map;
6604     bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6605                     BUS_DMASYNC_PREREAD);
6606     rx_buf->m = m;
6607 
6608     rx_bd = &fp->rx_chain[index];
6609     rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6610     rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6611 
6612     return (rc);
6613 }
6614 
6615 static int
6616 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6617                       int                 queue)
6618 {
6619     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6620     bus_dma_segment_t segs[1];
6621     bus_dmamap_t map;
6622     struct mbuf *m;
6623     int nsegs;
6624     int rc = 0;
6625 
6626     /* allocate the new TPA mbuf */
6627     m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6628     if (__predict_false(m == NULL)) {
6629         fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6630         return (ENOBUFS);
6631     }
6632 
6633     fp->eth_q_stats.mbuf_alloc_tpa++;
6634 
6635     /* initialize the mbuf buffer length */
6636     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6637 
6638     /* map the mbuf into non-paged pool */
6639     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6640                                  fp->rx_tpa_info_mbuf_spare_map,
6641                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6642     if (__predict_false(rc != 0)) {
6643         fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6644         m_free(m);
6645         fp->eth_q_stats.mbuf_alloc_tpa--;
6646         return (rc);
6647     }
6648 
6649     /* all mbufs must map to a single segment */
6650     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6651 
6652     /* release any existing TPA mbuf mapping */
6653     if (tpa_info->bd.m_map != NULL) {
6654         bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6655                         BUS_DMASYNC_POSTREAD);
6656         bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6657     }
6658 
6659     /* save the mbuf and mapping info for the TPA mbuf */
6660     map = tpa_info->bd.m_map;
6661     tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6662     fp->rx_tpa_info_mbuf_spare_map = map;
6663     bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6664                     BUS_DMASYNC_PREREAD);
6665     tpa_info->bd.m = m;
6666     tpa_info->seg = segs[0];
6667 
6668     return (rc);
6669 }
6670 
6671 /*
6672  * Allocate an mbuf and assign it to the receive scatter gather chain. The
6673  * caller must take care to save a copy of the existing mbuf in the SG mbuf
6674  * chain.
6675  */
6676 static int
6677 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6678                       uint16_t            index)
6679 {
6680     struct bxe_sw_rx_bd *sge_buf;
6681     struct eth_rx_sge *sge;
6682     bus_dma_segment_t segs[1];
6683     bus_dmamap_t map;
6684     struct mbuf *m;
6685     int nsegs;
6686     int rc = 0;
6687 
6688     /* allocate a new SGE mbuf */
6689     m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6690     if (__predict_false(m == NULL)) {
6691         fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6692         return (ENOMEM);
6693     }
6694 
6695     fp->eth_q_stats.mbuf_alloc_sge++;
6696 
6697     /* initialize the mbuf buffer length */
6698     m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6699 
6700     /* map the SGE mbuf into non-paged pool */
6701     rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6702                                  fp->rx_sge_mbuf_spare_map,
6703                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6704     if (__predict_false(rc != 0)) {
6705         fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6706         m_freem(m);
6707         fp->eth_q_stats.mbuf_alloc_sge--;
6708         return (rc);
6709     }
6710 
6711     /* all mbufs must map to a single segment */
6712     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6713 
6714     sge_buf = &fp->rx_sge_mbuf_chain[index];
6715 
6716     /* release any existing SGE mbuf mapping */
6717     if (sge_buf->m_map != NULL) {
6718         bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6719                         BUS_DMASYNC_POSTREAD);
6720         bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6721     }
6722 
6723     /* save the mbuf and mapping info for a future packet */
6724     map = sge_buf->m_map;
6725     sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6726     fp->rx_sge_mbuf_spare_map = map;
6727     bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6728                     BUS_DMASYNC_PREREAD);
6729     sge_buf->m = m;
6730 
6731     sge = &fp->rx_sge_chain[index];
6732     sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6733     sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6734 
6735     return (rc);
6736 }
6737 
6738 static __noinline int
6739 bxe_alloc_fp_buffers(struct bxe_softc *sc)
6740 {
6741     struct bxe_fastpath *fp;
6742     int i, j, rc = 0;
6743     int ring_prod, cqe_ring_prod;
6744     int max_agg_queues;
6745 
6746     for (i = 0; i < sc->num_queues; i++) {
6747         fp = &sc->fp[i];
6748 
6749 #if __FreeBSD_version >= 800000
6750         fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
6751                                    M_DONTWAIT, &fp->tx_mtx);
6752         if (fp->tx_br == NULL) {
6753             BLOGE(sc, "buf_ring alloc fail for fp[%02d]\n", i);
6754             goto bxe_alloc_fp_buffers_error;
6755         }
6756 #endif
6757 
6758         ring_prod = cqe_ring_prod = 0;
6759         fp->rx_bd_cons = 0;
6760         fp->rx_cq_cons = 0;
6761 
6762         /* allocate buffers for the RX BDs in RX BD chain */
6763         for (j = 0; j < sc->max_rx_bufs; j++) {
6764             rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6765             if (rc != 0) {
6766                 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6767                       i, rc);
6768                 goto bxe_alloc_fp_buffers_error;
6769             }
6770 
6771             ring_prod     = RX_BD_NEXT(ring_prod);
6772             cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6773         }
6774 
6775         fp->rx_bd_prod = ring_prod;
6776         fp->rx_cq_prod = cqe_ring_prod;
6777         fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6778 
6779         if (sc->ifnet->if_capenable & IFCAP_LRO) {
6780             max_agg_queues = MAX_AGG_QS(sc);
6781 
6782             fp->tpa_enable = TRUE;
6783 
6784             /* fill the TPA pool */
6785             for (j = 0; j < max_agg_queues; j++) {
6786                 rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6787                 if (rc != 0) {
6788                     BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6789                           i, j);
6790                     fp->tpa_enable = FALSE;
6791                     goto bxe_alloc_fp_buffers_error;
6792                 }
6793 
6794                 fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6795             }
6796 
6797             if (fp->tpa_enable) {
6798                 /* fill the RX SGE chain */
6799                 ring_prod = 0;
6800                 for (j = 0; j < RX_SGE_USABLE; j++) {
6801                     rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6802                     if (rc != 0) {
6803                         BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6804                               i, ring_prod);
6805                         fp->tpa_enable = FALSE;
6806                         ring_prod = 0;
6807                         goto bxe_alloc_fp_buffers_error;
6808                     }
6809 
6810                     ring_prod = RX_SGE_NEXT(ring_prod);
6811                 }
6812 
6813                 fp->rx_sge_prod = ring_prod;
6814             }
6815         }
6816     }
6817 
6818     return (0);
6819 
6820 bxe_alloc_fp_buffers_error:
6821 
6822     /* unwind what was already allocated */
6823     bxe_free_rx_bd_chain(fp);
6824     bxe_free_tpa_pool(fp);
6825     bxe_free_sge_chain(fp);
6826 
6827     return (ENOBUFS);
6828 }
6829 
6830 static void
6831 bxe_free_fw_stats_mem(struct bxe_softc *sc)
6832 {
6833     bxe_dma_free(sc, &sc->fw_stats_dma);
6834 
6835     sc->fw_stats_num = 0;
6836 
6837     sc->fw_stats_req_size = 0;
6838     sc->fw_stats_req = NULL;
6839     sc->fw_stats_req_mapping = 0;
6840 
6841     sc->fw_stats_data_size = 0;
6842     sc->fw_stats_data = NULL;
6843     sc->fw_stats_data_mapping = 0;
6844 }
6845 
6846 static int
6847 bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6848 {
6849     uint8_t num_queue_stats;
6850     int num_groups;
6851 
6852     /* number of queues for statistics is number of eth queues */
6853     num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6854 
6855     /*
6856      * Total number of FW statistics requests =
6857      *   1 for port stats + 1 for PF stats + num of queues
6858      */
6859     sc->fw_stats_num = (2 + num_queue_stats);
6860 
6861     /*
6862      * Request is built from stats_query_header and an array of
6863      * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6864      * rules. The real number or requests is configured in the
6865      * stats_query_header.
6866      */
6867     num_groups =
6868         ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6869          ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6870 
6871     BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6872           sc->fw_stats_num, num_groups);
6873 
6874     sc->fw_stats_req_size =
6875         (sizeof(struct stats_query_header) +
6876          (num_groups * sizeof(struct stats_query_cmd_group)));
6877 
6878     /*
6879      * Data for statistics requests + stats_counter.
6880      * stats_counter holds per-STORM counters that are incremented when
6881      * STORM has finished with the current request. Memory for FCoE
6882      * offloaded statistics are counted anyway, even if they will not be sent.
6883      * VF stats are not accounted for here as the data of VF stats is stored
6884      * in memory allocated by the VF, not here.
6885      */
6886     sc->fw_stats_data_size =
6887         (sizeof(struct stats_counter) +
6888          sizeof(struct per_port_stats) +
6889          sizeof(struct per_pf_stats) +
6890          /* sizeof(struct fcoe_statistics_params) + */
6891          (sizeof(struct per_queue_stats) * num_queue_stats));
6892 
6893     if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6894                       &sc->fw_stats_dma, "fw stats") != 0) {
6895         bxe_free_fw_stats_mem(sc);
6896         return (-1);
6897     }
6898 
6899     /* set up the shortcuts */
6900 
6901     sc->fw_stats_req =
6902         (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6903     sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6904 
6905     sc->fw_stats_data =
6906         (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6907                                      sc->fw_stats_req_size);
6908     sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6909                                  sc->fw_stats_req_size);
6910 
6911     BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6912           (uintmax_t)sc->fw_stats_req_mapping);
6913 
6914     BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6915           (uintmax_t)sc->fw_stats_data_mapping);
6916 
6917     return (0);
6918 }
6919 
6920 /*
6921  * Bits map:
6922  * 0-7  - Engine0 load counter.
6923  * 8-15 - Engine1 load counter.
6924  * 16   - Engine0 RESET_IN_PROGRESS bit.
6925  * 17   - Engine1 RESET_IN_PROGRESS bit.
6926  * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
6927  *        function on the engine
6928  * 19   - Engine1 ONE_IS_LOADED.
6929  * 20   - Chip reset flow bit. When set none-leader must wait for both engines
6930  *        leader to complete (check for both RESET_IN_PROGRESS bits and not
6931  *        for just the one belonging to its engine).
6932  */
6933 #define BXE_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
6934 #define BXE_PATH0_LOAD_CNT_MASK   0x000000ff
6935 #define BXE_PATH0_LOAD_CNT_SHIFT  0
6936 #define BXE_PATH1_LOAD_CNT_MASK   0x0000ff00
6937 #define BXE_PATH1_LOAD_CNT_SHIFT  8
6938 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
6939 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
6940 #define BXE_GLOBAL_RESET_BIT      0x00040000
6941 
6942 /* set the GLOBAL_RESET bit, should be run under rtnl lock */
6943 static void
6944 bxe_set_reset_global(struct bxe_softc *sc)
6945 {
6946     uint32_t val;
6947     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6948     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6949     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
6950     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6951 }
6952 
6953 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */
6954 static void
6955 bxe_clear_reset_global(struct bxe_softc *sc)
6956 {
6957     uint32_t val;
6958     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6959     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6960     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
6961     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6962 }
6963 
6964 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */
6965 static uint8_t
6966 bxe_reset_is_global(struct bxe_softc *sc)
6967 {
6968     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6969     BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
6970     return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
6971 }
6972 
6973 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
6974 static void
6975 bxe_set_reset_done(struct bxe_softc *sc)
6976 {
6977     uint32_t val;
6978     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6979                                  BXE_PATH0_RST_IN_PROG_BIT;
6980 
6981     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6982 
6983     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6984     /* Clear the bit */
6985     val &= ~bit;
6986     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6987 
6988     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6989 }
6990 
6991 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
6992 static void
6993 bxe_set_reset_in_progress(struct bxe_softc *sc)
6994 {
6995     uint32_t val;
6996     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6997                                  BXE_PATH0_RST_IN_PROG_BIT;
6998 
6999     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7000 
7001     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7002     /* Set the bit */
7003     val |= bit;
7004     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7005 
7006     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7007 }
7008 
7009 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
7010 static uint8_t
7011 bxe_reset_is_done(struct bxe_softc *sc,
7012                   int              engine)
7013 {
7014     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7015     uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
7016                             BXE_PATH0_RST_IN_PROG_BIT;
7017 
7018     /* return false if bit is set */
7019     return (val & bit) ? FALSE : TRUE;
7020 }
7021 
7022 /* get the load status for an engine, should be run under rtnl lock */
7023 static uint8_t
7024 bxe_get_load_status(struct bxe_softc *sc,
7025                     int              engine)
7026 {
7027     uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
7028                              BXE_PATH0_LOAD_CNT_MASK;
7029     uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
7030                               BXE_PATH0_LOAD_CNT_SHIFT;
7031     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7032 
7033     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7034 
7035     val = ((val & mask) >> shift);
7036 
7037     BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
7038 
7039     return (val != 0);
7040 }
7041 
7042 /* set pf load mark */
7043 /* XXX needs to be under rtnl lock */
7044 static void
7045 bxe_set_pf_load(struct bxe_softc *sc)
7046 {
7047     uint32_t val;
7048     uint32_t val1;
7049     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7050                                   BXE_PATH0_LOAD_CNT_MASK;
7051     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7052                                    BXE_PATH0_LOAD_CNT_SHIFT;
7053 
7054     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7055 
7056     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7057     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7058 
7059     /* get the current counter value */
7060     val1 = ((val & mask) >> shift);
7061 
7062     /* set bit of this PF */
7063     val1 |= (1 << SC_ABS_FUNC(sc));
7064 
7065     /* clear the old value */
7066     val &= ~mask;
7067 
7068     /* set the new one */
7069     val |= ((val1 << shift) & mask);
7070 
7071     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7072 
7073     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7074 }
7075 
7076 /* clear pf load mark */
7077 /* XXX needs to be under rtnl lock */
7078 static uint8_t
7079 bxe_clear_pf_load(struct bxe_softc *sc)
7080 {
7081     uint32_t val1, val;
7082     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7083                                   BXE_PATH0_LOAD_CNT_MASK;
7084     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7085                                    BXE_PATH0_LOAD_CNT_SHIFT;
7086 
7087     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7088     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7089     BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
7090 
7091     /* get the current counter value */
7092     val1 = (val & mask) >> shift;
7093 
7094     /* clear bit of that PF */
7095     val1 &= ~(1 << SC_ABS_FUNC(sc));
7096 
7097     /* clear the old value */
7098     val &= ~mask;
7099 
7100     /* set the new one */
7101     val |= ((val1 << shift) & mask);
7102 
7103     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7104     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7105     return (val1 != 0);
7106 }
7107 
7108 /* send load requrest to mcp and analyze response */
7109 static int
7110 bxe_nic_load_request(struct bxe_softc *sc,
7111                      uint32_t         *load_code)
7112 {
7113     /* init fw_seq */
7114     sc->fw_seq =
7115         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
7116          DRV_MSG_SEQ_NUMBER_MASK);
7117 
7118     BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
7119 
7120     /* get the current FW pulse sequence */
7121     sc->fw_drv_pulse_wr_seq =
7122         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
7123          DRV_PULSE_SEQ_MASK);
7124 
7125     BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
7126           sc->fw_drv_pulse_wr_seq);
7127 
7128     /* load request */
7129     (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
7130                                   DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
7131 
7132     /* if the MCP fails to respond we must abort */
7133     if (!(*load_code)) {
7134         BLOGE(sc, "MCP response failure!\n");
7135         return (-1);
7136     }
7137 
7138     /* if MCP refused then must abort */
7139     if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
7140         BLOGE(sc, "MCP refused load request\n");
7141         return (-1);
7142     }
7143 
7144     return (0);
7145 }
7146 
7147 /*
7148  * Check whether another PF has already loaded FW to chip. In virtualized
7149  * environments a pf from anoth VM may have already initialized the device
7150  * including loading FW.
7151  */
7152 static int
7153 bxe_nic_load_analyze_req(struct bxe_softc *sc,
7154                          uint32_t         load_code)
7155 {
7156     uint32_t my_fw, loaded_fw;
7157 
7158     /* is another pf loaded on this engine? */
7159     if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
7160         (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
7161         /* build my FW version dword */
7162         my_fw = (BCM_5710_FW_MAJOR_VERSION +
7163                  (BCM_5710_FW_MINOR_VERSION << 8 ) +
7164                  (BCM_5710_FW_REVISION_VERSION << 16) +
7165                  (BCM_5710_FW_ENGINEERING_VERSION << 24));
7166 
7167         /* read loaded FW from chip */
7168         loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
7169         BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
7170               loaded_fw, my_fw);
7171 
7172         /* abort nic load if version mismatch */
7173         if (my_fw != loaded_fw) {
7174             BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
7175                   loaded_fw, my_fw);
7176             return (-1);
7177         }
7178     }
7179 
7180     return (0);
7181 }
7182 
7183 /* mark PMF if applicable */
7184 static void
7185 bxe_nic_load_pmf(struct bxe_softc *sc,
7186                  uint32_t         load_code)
7187 {
7188     uint32_t ncsi_oem_data_addr;
7189 
7190     if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
7191         (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
7192         (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
7193         /*
7194          * Barrier here for ordering between the writing to sc->port.pmf here
7195          * and reading it from the periodic task.
7196          */
7197         sc->port.pmf = 1;
7198         mb();
7199     } else {
7200         sc->port.pmf = 0;
7201     }
7202 
7203     BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
7204 
7205     /* XXX needed? */
7206     if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
7207         if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
7208             ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
7209             if (ncsi_oem_data_addr) {
7210                 REG_WR(sc,
7211                        (ncsi_oem_data_addr +
7212                         offsetof(struct glob_ncsi_oem_data, driver_version)),
7213                        0);
7214             }
7215         }
7216     }
7217 }
7218 
7219 static void
7220 bxe_read_mf_cfg(struct bxe_softc *sc)
7221 {
7222     int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
7223     int abs_func;
7224     int vn;
7225 
7226     if (BXE_NOMCP(sc)) {
7227         return; /* what should be the default bvalue in this case */
7228     }
7229 
7230     /*
7231      * The formula for computing the absolute function number is...
7232      * For 2 port configuration (4 functions per port):
7233      *   abs_func = 2 * vn + SC_PORT + SC_PATH
7234      * For 4 port configuration (2 functions per port):
7235      *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
7236      */
7237     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
7238         abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
7239         if (abs_func >= E1H_FUNC_MAX) {
7240             break;
7241         }
7242         sc->devinfo.mf_info.mf_config[vn] =
7243             MFCFG_RD(sc, func_mf_config[abs_func].config);
7244     }
7245 
7246     if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
7247         FUNC_MF_CFG_FUNC_DISABLED) {
7248         BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
7249         sc->flags |= BXE_MF_FUNC_DIS;
7250     } else {
7251         BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
7252         sc->flags &= ~BXE_MF_FUNC_DIS;
7253     }
7254 }
7255 
7256 /* acquire split MCP access lock register */
7257 static int bxe_acquire_alr(struct bxe_softc *sc)
7258 {
7259     uint32_t j, val;
7260 
7261     for (j = 0; j < 1000; j++) {
7262         val = (1UL << 31);
7263         REG_WR(sc, GRCBASE_MCP + 0x9c, val);
7264         val = REG_RD(sc, GRCBASE_MCP + 0x9c);
7265         if (val & (1L << 31))
7266             break;
7267 
7268         DELAY(5000);
7269     }
7270 
7271     if (!(val & (1L << 31))) {
7272         BLOGE(sc, "Cannot acquire MCP access lock register\n");
7273         return (-1);
7274     }
7275 
7276     return (0);
7277 }
7278 
7279 /* release split MCP access lock register */
7280 static void bxe_release_alr(struct bxe_softc *sc)
7281 {
7282     REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
7283 }
7284 
7285 static void
7286 bxe_fan_failure(struct bxe_softc *sc)
7287 {
7288     int port = SC_PORT(sc);
7289     uint32_t ext_phy_config;
7290 
7291     /* mark the failure */
7292     ext_phy_config =
7293         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
7294 
7295     ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
7296     ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
7297     SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
7298              ext_phy_config);
7299 
7300     /* log the failure */
7301     BLOGW(sc, "Fan Failure has caused the driver to shutdown "
7302               "the card to prevent permanent damage. "
7303               "Please contact OEM Support for assistance\n");
7304 
7305     /* XXX */
7306 #if 1
7307     bxe_panic(sc, ("Schedule task to handle fan failure\n"));
7308 #else
7309     /*
7310      * Schedule device reset (unload)
7311      * This is due to some boards consuming sufficient power when driver is
7312      * up to overheat if fan fails.
7313      */
7314     bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
7315     schedule_delayed_work(&sc->sp_rtnl_task, 0);
7316 #endif
7317 }
7318 
7319 /* this function is called upon a link interrupt */
7320 static void
7321 bxe_link_attn(struct bxe_softc *sc)
7322 {
7323     uint32_t pause_enabled = 0;
7324     struct host_port_stats *pstats;
7325     int cmng_fns;
7326 
7327     /* Make sure that we are synced with the current statistics */
7328     bxe_stats_handle(sc, STATS_EVENT_STOP);
7329 
7330     elink_link_update(&sc->link_params, &sc->link_vars);
7331 
7332     if (sc->link_vars.link_up) {
7333 
7334         /* dropless flow control */
7335         if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
7336             pause_enabled = 0;
7337 
7338             if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
7339                 pause_enabled = 1;
7340             }
7341 
7342             REG_WR(sc,
7343                    (BAR_USTRORM_INTMEM +
7344                     USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
7345                    pause_enabled);
7346         }
7347 
7348         if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
7349             pstats = BXE_SP(sc, port_stats);
7350             /* reset old mac stats */
7351             memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
7352         }
7353 
7354         if (sc->state == BXE_STATE_OPEN) {
7355             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
7356         }
7357     }
7358 
7359     if (sc->link_vars.link_up && sc->link_vars.line_speed) {
7360         cmng_fns = bxe_get_cmng_fns_mode(sc);
7361 
7362         if (cmng_fns != CMNG_FNS_NONE) {
7363             bxe_cmng_fns_init(sc, FALSE, cmng_fns);
7364             storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7365         } else {
7366             /* rate shaping and fairness are disabled */
7367             BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
7368         }
7369     }
7370 
7371     bxe_link_report_locked(sc);
7372 
7373     if (IS_MF(sc)) {
7374         ; // XXX bxe_link_sync_notify(sc);
7375     }
7376 }
7377 
7378 static void
7379 bxe_attn_int_asserted(struct bxe_softc *sc,
7380                       uint32_t         asserted)
7381 {
7382     int port = SC_PORT(sc);
7383     uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7384                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
7385     uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7386                                         NIG_REG_MASK_INTERRUPT_PORT0;
7387     uint32_t aeu_mask;
7388     uint32_t nig_mask = 0;
7389     uint32_t reg_addr;
7390     uint32_t igu_acked;
7391     uint32_t cnt;
7392 
7393     if (sc->attn_state & asserted) {
7394         BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7395     }
7396 
7397     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7398 
7399     aeu_mask = REG_RD(sc, aeu_addr);
7400 
7401     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7402           aeu_mask, asserted);
7403 
7404     aeu_mask &= ~(asserted & 0x3ff);
7405 
7406     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7407 
7408     REG_WR(sc, aeu_addr, aeu_mask);
7409 
7410     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7411 
7412     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7413     sc->attn_state |= asserted;
7414     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7415 
7416     if (asserted & ATTN_HARD_WIRED_MASK) {
7417         if (asserted & ATTN_NIG_FOR_FUNC) {
7418 
7419             BXE_PHY_LOCK(sc);
7420 
7421             /* save nig interrupt mask */
7422             nig_mask = REG_RD(sc, nig_int_mask_addr);
7423 
7424             /* If nig_mask is not set, no need to call the update function */
7425             if (nig_mask) {
7426                 REG_WR(sc, nig_int_mask_addr, 0);
7427 
7428                 bxe_link_attn(sc);
7429             }
7430 
7431             /* handle unicore attn? */
7432         }
7433 
7434         if (asserted & ATTN_SW_TIMER_4_FUNC) {
7435             BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7436         }
7437 
7438         if (asserted & GPIO_2_FUNC) {
7439             BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7440         }
7441 
7442         if (asserted & GPIO_3_FUNC) {
7443             BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7444         }
7445 
7446         if (asserted & GPIO_4_FUNC) {
7447             BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7448         }
7449 
7450         if (port == 0) {
7451             if (asserted & ATTN_GENERAL_ATTN_1) {
7452                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7453                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7454             }
7455             if (asserted & ATTN_GENERAL_ATTN_2) {
7456                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7457                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7458             }
7459             if (asserted & ATTN_GENERAL_ATTN_3) {
7460                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7461                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7462             }
7463         } else {
7464             if (asserted & ATTN_GENERAL_ATTN_4) {
7465                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7466                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7467             }
7468             if (asserted & ATTN_GENERAL_ATTN_5) {
7469                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7470                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7471             }
7472             if (asserted & ATTN_GENERAL_ATTN_6) {
7473                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7474                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7475             }
7476         }
7477     } /* hardwired */
7478 
7479     if (sc->devinfo.int_block == INT_BLOCK_HC) {
7480         reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7481     } else {
7482         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7483     }
7484 
7485     BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7486           asserted,
7487           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7488     REG_WR(sc, reg_addr, asserted);
7489 
7490     /* now set back the mask */
7491     if (asserted & ATTN_NIG_FOR_FUNC) {
7492         /*
7493          * Verify that IGU ack through BAR was written before restoring
7494          * NIG mask. This loop should exit after 2-3 iterations max.
7495          */
7496         if (sc->devinfo.int_block != INT_BLOCK_HC) {
7497             cnt = 0;
7498 
7499             do {
7500                 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7501             } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7502                      (++cnt < MAX_IGU_ATTN_ACK_TO));
7503 
7504             if (!igu_acked) {
7505                 BLOGE(sc, "Failed to verify IGU ack on time\n");
7506             }
7507 
7508             mb();
7509         }
7510 
7511         REG_WR(sc, nig_int_mask_addr, nig_mask);
7512 
7513         BXE_PHY_UNLOCK(sc);
7514     }
7515 }
7516 
7517 static void
7518 bxe_print_next_block(struct bxe_softc *sc,
7519                      int              idx,
7520                      const char       *blk)
7521 {
7522     BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7523 }
7524 
7525 static int
7526 bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7527                               uint32_t         sig,
7528                               int              par_num,
7529                               uint8_t          print)
7530 {
7531     uint32_t cur_bit = 0;
7532     int i = 0;
7533 
7534     for (i = 0; sig; i++) {
7535         cur_bit = ((uint32_t)0x1 << i);
7536         if (sig & cur_bit) {
7537             switch (cur_bit) {
7538             case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7539                 if (print)
7540                     bxe_print_next_block(sc, par_num++, "BRB");
7541                 break;
7542             case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7543                 if (print)
7544                     bxe_print_next_block(sc, par_num++, "PARSER");
7545                 break;
7546             case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7547                 if (print)
7548                     bxe_print_next_block(sc, par_num++, "TSDM");
7549                 break;
7550             case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7551                 if (print)
7552                     bxe_print_next_block(sc, par_num++, "SEARCHER");
7553                 break;
7554             case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7555                 if (print)
7556                     bxe_print_next_block(sc, par_num++, "TCM");
7557                 break;
7558             case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7559                 if (print)
7560                     bxe_print_next_block(sc, par_num++, "TSEMI");
7561                 break;
7562             case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7563                 if (print)
7564                     bxe_print_next_block(sc, par_num++, "XPB");
7565                 break;
7566             }
7567 
7568             /* Clear the bit */
7569             sig &= ~cur_bit;
7570         }
7571     }
7572 
7573     return (par_num);
7574 }
7575 
7576 static int
7577 bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7578                               uint32_t         sig,
7579                               int              par_num,
7580                               uint8_t          *global,
7581                               uint8_t          print)
7582 {
7583     int i = 0;
7584     uint32_t cur_bit = 0;
7585     for (i = 0; sig; i++) {
7586         cur_bit = ((uint32_t)0x1 << i);
7587         if (sig & cur_bit) {
7588             switch (cur_bit) {
7589             case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7590                 if (print)
7591                     bxe_print_next_block(sc, par_num++, "PBF");
7592                 break;
7593             case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7594                 if (print)
7595                     bxe_print_next_block(sc, par_num++, "QM");
7596                 break;
7597             case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7598                 if (print)
7599                     bxe_print_next_block(sc, par_num++, "TM");
7600                 break;
7601             case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7602                 if (print)
7603                     bxe_print_next_block(sc, par_num++, "XSDM");
7604                 break;
7605             case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7606                 if (print)
7607                     bxe_print_next_block(sc, par_num++, "XCM");
7608                 break;
7609             case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7610                 if (print)
7611                     bxe_print_next_block(sc, par_num++, "XSEMI");
7612                 break;
7613             case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7614                 if (print)
7615                     bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7616                 break;
7617             case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7618                 if (print)
7619                     bxe_print_next_block(sc, par_num++, "NIG");
7620                 break;
7621             case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7622                 if (print)
7623                     bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7624                 *global = TRUE;
7625                 break;
7626             case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7627                 if (print)
7628                     bxe_print_next_block(sc, par_num++, "DEBUG");
7629                 break;
7630             case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7631                 if (print)
7632                     bxe_print_next_block(sc, par_num++, "USDM");
7633                 break;
7634             case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7635                 if (print)
7636                     bxe_print_next_block(sc, par_num++, "UCM");
7637                 break;
7638             case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7639                 if (print)
7640                     bxe_print_next_block(sc, par_num++, "USEMI");
7641                 break;
7642             case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7643                 if (print)
7644                     bxe_print_next_block(sc, par_num++, "UPB");
7645                 break;
7646             case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7647                 if (print)
7648                     bxe_print_next_block(sc, par_num++, "CSDM");
7649                 break;
7650             case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7651                 if (print)
7652                     bxe_print_next_block(sc, par_num++, "CCM");
7653                 break;
7654             }
7655 
7656             /* Clear the bit */
7657             sig &= ~cur_bit;
7658         }
7659     }
7660 
7661     return (par_num);
7662 }
7663 
7664 static int
7665 bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7666                               uint32_t         sig,
7667                               int              par_num,
7668                               uint8_t          print)
7669 {
7670     uint32_t cur_bit = 0;
7671     int i = 0;
7672 
7673     for (i = 0; sig; i++) {
7674         cur_bit = ((uint32_t)0x1 << i);
7675         if (sig & cur_bit) {
7676             switch (cur_bit) {
7677             case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7678                 if (print)
7679                     bxe_print_next_block(sc, par_num++, "CSEMI");
7680                 break;
7681             case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7682                 if (print)
7683                     bxe_print_next_block(sc, par_num++, "PXP");
7684                 break;
7685             case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7686                 if (print)
7687                     bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7688                 break;
7689             case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7690                 if (print)
7691                     bxe_print_next_block(sc, par_num++, "CFC");
7692                 break;
7693             case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7694                 if (print)
7695                     bxe_print_next_block(sc, par_num++, "CDU");
7696                 break;
7697             case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7698                 if (print)
7699                     bxe_print_next_block(sc, par_num++, "DMAE");
7700                 break;
7701             case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7702                 if (print)
7703                     bxe_print_next_block(sc, par_num++, "IGU");
7704                 break;
7705             case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7706                 if (print)
7707                     bxe_print_next_block(sc, par_num++, "MISC");
7708                 break;
7709             }
7710 
7711             /* Clear the bit */
7712             sig &= ~cur_bit;
7713         }
7714     }
7715 
7716     return (par_num);
7717 }
7718 
7719 static int
7720 bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7721                               uint32_t         sig,
7722                               int              par_num,
7723                               uint8_t          *global,
7724                               uint8_t          print)
7725 {
7726     uint32_t cur_bit = 0;
7727     int i = 0;
7728 
7729     for (i = 0; sig; i++) {
7730         cur_bit = ((uint32_t)0x1 << i);
7731         if (sig & cur_bit) {
7732             switch (cur_bit) {
7733             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7734                 if (print)
7735                     bxe_print_next_block(sc, par_num++, "MCP ROM");
7736                 *global = TRUE;
7737                 break;
7738             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7739                 if (print)
7740                     bxe_print_next_block(sc, par_num++,
7741                               "MCP UMP RX");
7742                 *global = TRUE;
7743                 break;
7744             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7745                 if (print)
7746                     bxe_print_next_block(sc, par_num++,
7747                               "MCP UMP TX");
7748                 *global = TRUE;
7749                 break;
7750             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7751                 if (print)
7752                     bxe_print_next_block(sc, par_num++,
7753                               "MCP SCPAD");
7754                 *global = TRUE;
7755                 break;
7756             }
7757 
7758             /* Clear the bit */
7759             sig &= ~cur_bit;
7760         }
7761     }
7762 
7763     return (par_num);
7764 }
7765 
7766 static int
7767 bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7768                               uint32_t         sig,
7769                               int              par_num,
7770                               uint8_t          print)
7771 {
7772     uint32_t cur_bit = 0;
7773     int i = 0;
7774 
7775     for (i = 0; sig; i++) {
7776         cur_bit = ((uint32_t)0x1 << i);
7777         if (sig & cur_bit) {
7778             switch (cur_bit) {
7779             case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7780                 if (print)
7781                     bxe_print_next_block(sc, par_num++, "PGLUE_B");
7782                 break;
7783             case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7784                 if (print)
7785                     bxe_print_next_block(sc, par_num++, "ATC");
7786                 break;
7787             }
7788 
7789             /* Clear the bit */
7790             sig &= ~cur_bit;
7791         }
7792     }
7793 
7794     return (par_num);
7795 }
7796 
7797 static uint8_t
7798 bxe_parity_attn(struct bxe_softc *sc,
7799                 uint8_t          *global,
7800                 uint8_t          print,
7801                 uint32_t         *sig)
7802 {
7803     int par_num = 0;
7804 
7805     if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7806         (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7807         (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7808         (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7809         (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7810         BLOGE(sc, "Parity error: HW block parity attention:\n"
7811                   "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7812               (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7813               (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7814               (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7815               (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7816               (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7817 
7818         if (print)
7819             BLOGI(sc, "Parity errors detected in blocks: ");
7820 
7821         par_num =
7822             bxe_check_blocks_with_parity0(sc, sig[0] &
7823                                           HW_PRTY_ASSERT_SET_0,
7824                                           par_num, print);
7825         par_num =
7826             bxe_check_blocks_with_parity1(sc, sig[1] &
7827                                           HW_PRTY_ASSERT_SET_1,
7828                                           par_num, global, print);
7829         par_num =
7830             bxe_check_blocks_with_parity2(sc, sig[2] &
7831                                           HW_PRTY_ASSERT_SET_2,
7832                                           par_num, print);
7833         par_num =
7834             bxe_check_blocks_with_parity3(sc, sig[3] &
7835                                           HW_PRTY_ASSERT_SET_3,
7836                                           par_num, global, print);
7837         par_num =
7838             bxe_check_blocks_with_parity4(sc, sig[4] &
7839                                           HW_PRTY_ASSERT_SET_4,
7840                                           par_num, print);
7841 
7842         if (print)
7843             BLOGI(sc, "\n");
7844 
7845         return (TRUE);
7846     }
7847 
7848     return (FALSE);
7849 }
7850 
7851 static uint8_t
7852 bxe_chk_parity_attn(struct bxe_softc *sc,
7853                     uint8_t          *global,
7854                     uint8_t          print)
7855 {
7856     struct attn_route attn = { {0} };
7857     int port = SC_PORT(sc);
7858 
7859     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7860     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7861     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7862     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7863 
7864     if (!CHIP_IS_E1x(sc))
7865         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7866 
7867     return (bxe_parity_attn(sc, global, print, attn.sig));
7868 }
7869 
7870 static void
7871 bxe_attn_int_deasserted4(struct bxe_softc *sc,
7872                          uint32_t         attn)
7873 {
7874     uint32_t val;
7875 
7876     if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7877         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7878         BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7879         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7880             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7881         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7882             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7883         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7884             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7885         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7886             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7887         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7888             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7889         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7890             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7891         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7892             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7893         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7894             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7895         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7896             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7897     }
7898 
7899     if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7900         val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7901         BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7902         if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7903             BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7904         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7905             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7906         if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7907             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7908         if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7909             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7910         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7911             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7912         if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7913             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7914     }
7915 
7916     if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7917                 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7918         BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7919               (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7920                                  AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7921     }
7922 }
7923 
7924 static void
7925 bxe_e1h_disable(struct bxe_softc *sc)
7926 {
7927     int port = SC_PORT(sc);
7928 
7929     bxe_tx_disable(sc);
7930 
7931     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7932 }
7933 
7934 static void
7935 bxe_e1h_enable(struct bxe_softc *sc)
7936 {
7937     int port = SC_PORT(sc);
7938 
7939     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7940 
7941     // XXX bxe_tx_enable(sc);
7942 }
7943 
7944 /*
7945  * called due to MCP event (on pmf):
7946  *   reread new bandwidth configuration
7947  *   configure FW
7948  *   notify others function about the change
7949  */
7950 static void
7951 bxe_config_mf_bw(struct bxe_softc *sc)
7952 {
7953     if (sc->link_vars.link_up) {
7954         bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
7955         // XXX bxe_link_sync_notify(sc);
7956     }
7957 
7958     storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7959 }
7960 
7961 static void
7962 bxe_set_mf_bw(struct bxe_softc *sc)
7963 {
7964     bxe_config_mf_bw(sc);
7965     bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
7966 }
7967 
7968 static void
7969 bxe_handle_eee_event(struct bxe_softc *sc)
7970 {
7971     BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
7972     bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
7973 }
7974 
7975 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
7976 
7977 static void
7978 bxe_drv_info_ether_stat(struct bxe_softc *sc)
7979 {
7980     struct eth_stats_info *ether_stat =
7981         &sc->sp->drv_info_to_mcp.ether_stat;
7982 
7983     strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
7984             ETH_STAT_INFO_VERSION_LEN);
7985 
7986     /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
7987     sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
7988                                           DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
7989                                           ether_stat->mac_local + MAC_PAD,
7990                                           MAC_PAD, ETH_ALEN);
7991 
7992     ether_stat->mtu_size = sc->mtu;
7993 
7994     ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
7995     if (sc->ifnet->if_capenable & (IFCAP_TSO4 | IFCAP_TSO6)) {
7996         ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
7997     }
7998 
7999     // XXX ether_stat->feature_flags |= ???;
8000 
8001     ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
8002 
8003     ether_stat->txq_size = sc->tx_ring_size;
8004     ether_stat->rxq_size = sc->rx_ring_size;
8005 }
8006 
8007 static void
8008 bxe_handle_drv_info_req(struct bxe_softc *sc)
8009 {
8010     enum drv_info_opcode op_code;
8011     uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
8012 
8013     /* if drv_info version supported by MFW doesn't match - send NACK */
8014     if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
8015         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8016         return;
8017     }
8018 
8019     op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
8020                DRV_INFO_CONTROL_OP_CODE_SHIFT);
8021 
8022     memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
8023 
8024     switch (op_code) {
8025     case ETH_STATS_OPCODE:
8026         bxe_drv_info_ether_stat(sc);
8027         break;
8028     case FCOE_STATS_OPCODE:
8029     case ISCSI_STATS_OPCODE:
8030     default:
8031         /* if op code isn't supported - send NACK */
8032         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8033         return;
8034     }
8035 
8036     /*
8037      * If we got drv_info attn from MFW then these fields are defined in
8038      * shmem2 for sure
8039      */
8040     SHMEM2_WR(sc, drv_info_host_addr_lo,
8041               U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8042     SHMEM2_WR(sc, drv_info_host_addr_hi,
8043               U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8044 
8045     bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
8046 }
8047 
8048 static void
8049 bxe_dcc_event(struct bxe_softc *sc,
8050               uint32_t         dcc_event)
8051 {
8052     BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
8053 
8054     if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
8055         /*
8056          * This is the only place besides the function initialization
8057          * where the sc->flags can change so it is done without any
8058          * locks
8059          */
8060         if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
8061             BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
8062             sc->flags |= BXE_MF_FUNC_DIS;
8063             bxe_e1h_disable(sc);
8064         } else {
8065             BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
8066             sc->flags &= ~BXE_MF_FUNC_DIS;
8067             bxe_e1h_enable(sc);
8068         }
8069         dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
8070     }
8071 
8072     if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
8073         bxe_config_mf_bw(sc);
8074         dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
8075     }
8076 
8077     /* Report results to MCP */
8078     if (dcc_event)
8079         bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
8080     else
8081         bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
8082 }
8083 
8084 static void
8085 bxe_pmf_update(struct bxe_softc *sc)
8086 {
8087     int port = SC_PORT(sc);
8088     uint32_t val;
8089 
8090     sc->port.pmf = 1;
8091     BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
8092 
8093     /*
8094      * We need the mb() to ensure the ordering between the writing to
8095      * sc->port.pmf here and reading it from the bxe_periodic_task().
8096      */
8097     mb();
8098 
8099     /* queue a periodic task */
8100     // XXX schedule task...
8101 
8102     // XXX bxe_dcbx_pmf_update(sc);
8103 
8104     /* enable nig attention */
8105     val = (0xff0f | (1 << (SC_VN(sc) + 4)));
8106     if (sc->devinfo.int_block == INT_BLOCK_HC) {
8107         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
8108         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
8109     } else if (!CHIP_IS_E1x(sc)) {
8110         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
8111         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
8112     }
8113 
8114     bxe_stats_handle(sc, STATS_EVENT_PMF);
8115 }
8116 
8117 static int
8118 bxe_mc_assert(struct bxe_softc *sc)
8119 {
8120     char last_idx;
8121     int i, rc = 0;
8122     uint32_t row0, row1, row2, row3;
8123 
8124     /* XSTORM */
8125     last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
8126     if (last_idx)
8127         BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8128 
8129     /* print the asserts */
8130     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8131 
8132         row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
8133         row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
8134         row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
8135         row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
8136 
8137         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8138             BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8139                   i, row3, row2, row1, row0);
8140             rc++;
8141         } else {
8142             break;
8143         }
8144     }
8145 
8146     /* TSTORM */
8147     last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
8148     if (last_idx) {
8149         BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8150     }
8151 
8152     /* print the asserts */
8153     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8154 
8155         row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
8156         row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
8157         row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
8158         row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
8159 
8160         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8161             BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8162                   i, row3, row2, row1, row0);
8163             rc++;
8164         } else {
8165             break;
8166         }
8167     }
8168 
8169     /* CSTORM */
8170     last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
8171     if (last_idx) {
8172         BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8173     }
8174 
8175     /* print the asserts */
8176     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8177 
8178         row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
8179         row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
8180         row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
8181         row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
8182 
8183         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8184             BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8185                   i, row3, row2, row1, row0);
8186             rc++;
8187         } else {
8188             break;
8189         }
8190     }
8191 
8192     /* USTORM */
8193     last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
8194     if (last_idx) {
8195         BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8196     }
8197 
8198     /* print the asserts */
8199     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8200 
8201         row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
8202         row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
8203         row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
8204         row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
8205 
8206         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8207             BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8208                   i, row3, row2, row1, row0);
8209             rc++;
8210         } else {
8211             break;
8212         }
8213     }
8214 
8215     return (rc);
8216 }
8217 
8218 static void
8219 bxe_attn_int_deasserted3(struct bxe_softc *sc,
8220                          uint32_t         attn)
8221 {
8222     int func = SC_FUNC(sc);
8223     uint32_t val;
8224 
8225     if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
8226 
8227         if (attn & BXE_PMF_LINK_ASSERT(sc)) {
8228 
8229             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8230             bxe_read_mf_cfg(sc);
8231             sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
8232                 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
8233             val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
8234 
8235             if (val & DRV_STATUS_DCC_EVENT_MASK)
8236                 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
8237 
8238             if (val & DRV_STATUS_SET_MF_BW)
8239                 bxe_set_mf_bw(sc);
8240 
8241             if (val & DRV_STATUS_DRV_INFO_REQ)
8242                 bxe_handle_drv_info_req(sc);
8243 
8244 #if 0
8245             if (val & DRV_STATUS_VF_DISABLED)
8246                 bxe_vf_handle_flr_event(sc);
8247 #endif
8248 
8249             if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
8250                 bxe_pmf_update(sc);
8251 
8252 #if 0
8253             if (sc->port.pmf &&
8254                 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
8255                 (sc->dcbx_enabled > 0))
8256                 /* start dcbx state machine */
8257                 bxe_dcbx_set_params(sc, BXE_DCBX_STATE_NEG_RECEIVED);
8258 #endif
8259 
8260 #if 0
8261             if (val & DRV_STATUS_AFEX_EVENT_MASK)
8262                 bxe_handle_afex_cmd(sc, val & DRV_STATUS_AFEX_EVENT_MASK);
8263 #endif
8264 
8265             if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
8266                 bxe_handle_eee_event(sc);
8267 
8268             if (sc->link_vars.periodic_flags &
8269                 ELINK_PERIODIC_FLAGS_LINK_EVENT) {
8270                 /* sync with link */
8271                 BXE_PHY_LOCK(sc);
8272                 sc->link_vars.periodic_flags &=
8273                     ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
8274                 BXE_PHY_UNLOCK(sc);
8275                 if (IS_MF(sc))
8276                     ; // XXX bxe_link_sync_notify(sc);
8277                 bxe_link_report(sc);
8278             }
8279 
8280             /*
8281              * Always call it here: bxe_link_report() will
8282              * prevent the link indication duplication.
8283              */
8284             bxe_link_status_update(sc);
8285 
8286         } else if (attn & BXE_MC_ASSERT_BITS) {
8287 
8288             BLOGE(sc, "MC assert!\n");
8289             bxe_mc_assert(sc);
8290             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
8291             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
8292             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
8293             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
8294             bxe_panic(sc, ("MC assert!\n"));
8295 
8296         } else if (attn & BXE_MCP_ASSERT) {
8297 
8298             BLOGE(sc, "MCP assert!\n");
8299             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
8300             // XXX bxe_fw_dump(sc);
8301 
8302         } else {
8303             BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
8304         }
8305     }
8306 
8307     if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
8308         BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
8309         if (attn & BXE_GRC_TIMEOUT) {
8310             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
8311             BLOGE(sc, "GRC time-out 0x%08x\n", val);
8312         }
8313         if (attn & BXE_GRC_RSV) {
8314             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
8315             BLOGE(sc, "GRC reserved 0x%08x\n", val);
8316         }
8317         REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
8318     }
8319 }
8320 
8321 static void
8322 bxe_attn_int_deasserted2(struct bxe_softc *sc,
8323                          uint32_t         attn)
8324 {
8325     int port = SC_PORT(sc);
8326     int reg_offset;
8327     uint32_t val0, mask0, val1, mask1;
8328     uint32_t val;
8329 
8330     if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
8331         val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
8332         BLOGE(sc, "CFC hw attention 0x%08x\n", val);
8333         /* CFC error attention */
8334         if (val & 0x2) {
8335             BLOGE(sc, "FATAL error from CFC\n");
8336         }
8337     }
8338 
8339     if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
8340         val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
8341         BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
8342         /* RQ_USDMDP_FIFO_OVERFLOW */
8343         if (val & 0x18000) {
8344             BLOGE(sc, "FATAL error from PXP\n");
8345         }
8346 
8347         if (!CHIP_IS_E1x(sc)) {
8348             val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
8349             BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
8350         }
8351     }
8352 
8353 #define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
8354 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
8355 
8356     if (attn & AEU_PXP2_HW_INT_BIT) {
8357         /*  CQ47854 workaround do not panic on
8358          *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8359          */
8360         if (!CHIP_IS_E1x(sc)) {
8361             mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
8362             val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
8363             mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
8364             val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
8365             /*
8366              * If the olny PXP2_EOP_ERROR_BIT is set in
8367              * STS0 and STS1 - clear it
8368              *
8369              * probably we lose additional attentions between
8370              * STS0 and STS_CLR0, in this case user will not
8371              * be notified about them
8372              */
8373             if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
8374                 !(val1 & mask1))
8375                 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
8376 
8377             /* print the register, since no one can restore it */
8378             BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8379 
8380             /*
8381              * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8382              * then notify
8383              */
8384             if (val0 & PXP2_EOP_ERROR_BIT) {
8385                 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8386 
8387                 /*
8388                  * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8389                  * set then clear attention from PXP2 block without panic
8390                  */
8391                 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8392                     ((val1 & mask1) == 0))
8393                     attn &= ~AEU_PXP2_HW_INT_BIT;
8394             }
8395         }
8396     }
8397 
8398     if (attn & HW_INTERRUT_ASSERT_SET_2) {
8399         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8400                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8401 
8402         val = REG_RD(sc, reg_offset);
8403         val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8404         REG_WR(sc, reg_offset, val);
8405 
8406         BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8407               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8408         bxe_panic(sc, ("HW block attention set2\n"));
8409     }
8410 }
8411 
8412 static void
8413 bxe_attn_int_deasserted1(struct bxe_softc *sc,
8414                          uint32_t         attn)
8415 {
8416     int port = SC_PORT(sc);
8417     int reg_offset;
8418     uint32_t val;
8419 
8420     if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8421         val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8422         BLOGE(sc, "DB hw attention 0x%08x\n", val);
8423         /* DORQ discard attention */
8424         if (val & 0x2) {
8425             BLOGE(sc, "FATAL error from DORQ\n");
8426         }
8427     }
8428 
8429     if (attn & HW_INTERRUT_ASSERT_SET_1) {
8430         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8431                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8432 
8433         val = REG_RD(sc, reg_offset);
8434         val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8435         REG_WR(sc, reg_offset, val);
8436 
8437         BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8438               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8439         bxe_panic(sc, ("HW block attention set1\n"));
8440     }
8441 }
8442 
8443 static void
8444 bxe_attn_int_deasserted0(struct bxe_softc *sc,
8445                          uint32_t         attn)
8446 {
8447     int port = SC_PORT(sc);
8448     int reg_offset;
8449     uint32_t val;
8450 
8451     reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8452                           MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8453 
8454     if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8455         val = REG_RD(sc, reg_offset);
8456         val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8457         REG_WR(sc, reg_offset, val);
8458 
8459         BLOGW(sc, "SPIO5 hw attention\n");
8460 
8461         /* Fan failure attention */
8462         elink_hw_reset_phy(&sc->link_params);
8463         bxe_fan_failure(sc);
8464     }
8465 
8466     if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8467         BXE_PHY_LOCK(sc);
8468         elink_handle_module_detect_int(&sc->link_params);
8469         BXE_PHY_UNLOCK(sc);
8470     }
8471 
8472     if (attn & HW_INTERRUT_ASSERT_SET_0) {
8473         val = REG_RD(sc, reg_offset);
8474         val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8475         REG_WR(sc, reg_offset, val);
8476 
8477         bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8478                        (attn & HW_INTERRUT_ASSERT_SET_0)));
8479     }
8480 }
8481 
8482 static void
8483 bxe_attn_int_deasserted(struct bxe_softc *sc,
8484                         uint32_t         deasserted)
8485 {
8486     struct attn_route attn;
8487     struct attn_route *group_mask;
8488     int port = SC_PORT(sc);
8489     int index;
8490     uint32_t reg_addr;
8491     uint32_t val;
8492     uint32_t aeu_mask;
8493     uint8_t global = FALSE;
8494 
8495     /*
8496      * Need to take HW lock because MCP or other port might also
8497      * try to handle this event.
8498      */
8499     bxe_acquire_alr(sc);
8500 
8501     if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8502         /* XXX
8503          * In case of parity errors don't handle attentions so that
8504          * other function would "see" parity errors.
8505          */
8506         sc->recovery_state = BXE_RECOVERY_INIT;
8507         // XXX schedule a recovery task...
8508         /* disable HW interrupts */
8509         bxe_int_disable(sc);
8510         bxe_release_alr(sc);
8511         return;
8512     }
8513 
8514     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8515     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8516     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8517     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8518     if (!CHIP_IS_E1x(sc)) {
8519         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8520     } else {
8521         attn.sig[4] = 0;
8522     }
8523 
8524     BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8525           attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8526 
8527     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8528         if (deasserted & (1 << index)) {
8529             group_mask = &sc->attn_group[index];
8530 
8531             BLOGD(sc, DBG_INTR,
8532                   "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8533                   group_mask->sig[0], group_mask->sig[1],
8534                   group_mask->sig[2], group_mask->sig[3],
8535                   group_mask->sig[4]);
8536 
8537             bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8538             bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8539             bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8540             bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8541             bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8542         }
8543     }
8544 
8545     bxe_release_alr(sc);
8546 
8547     if (sc->devinfo.int_block == INT_BLOCK_HC) {
8548         reg_addr = (HC_REG_COMMAND_REG + port*32 +
8549                     COMMAND_REG_ATTN_BITS_CLR);
8550     } else {
8551         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8552     }
8553 
8554     val = ~deasserted;
8555     BLOGD(sc, DBG_INTR,
8556           "about to mask 0x%08x at %s addr 0x%08x\n", val,
8557           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8558     REG_WR(sc, reg_addr, val);
8559 
8560     if (~sc->attn_state & deasserted) {
8561         BLOGE(sc, "IGU error\n");
8562     }
8563 
8564     reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8565                       MISC_REG_AEU_MASK_ATTN_FUNC_0;
8566 
8567     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8568 
8569     aeu_mask = REG_RD(sc, reg_addr);
8570 
8571     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8572           aeu_mask, deasserted);
8573     aeu_mask |= (deasserted & 0x3ff);
8574     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8575 
8576     REG_WR(sc, reg_addr, aeu_mask);
8577     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8578 
8579     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8580     sc->attn_state &= ~deasserted;
8581     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8582 }
8583 
8584 static void
8585 bxe_attn_int(struct bxe_softc *sc)
8586 {
8587     /* read local copy of bits */
8588     uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8589     uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8590     uint32_t attn_state = sc->attn_state;
8591 
8592     /* look for changed bits */
8593     uint32_t asserted   =  attn_bits & ~attn_ack & ~attn_state;
8594     uint32_t deasserted = ~attn_bits &  attn_ack &  attn_state;
8595 
8596     BLOGD(sc, DBG_INTR,
8597           "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8598           attn_bits, attn_ack, asserted, deasserted);
8599 
8600     if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8601         BLOGE(sc, "BAD attention state\n");
8602     }
8603 
8604     /* handle bits that were raised */
8605     if (asserted) {
8606         bxe_attn_int_asserted(sc, asserted);
8607     }
8608 
8609     if (deasserted) {
8610         bxe_attn_int_deasserted(sc, deasserted);
8611     }
8612 }
8613 
8614 static uint16_t
8615 bxe_update_dsb_idx(struct bxe_softc *sc)
8616 {
8617     struct host_sp_status_block *def_sb = sc->def_sb;
8618     uint16_t rc = 0;
8619 
8620     mb(); /* status block is written to by the chip */
8621 
8622     if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8623         sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8624         rc |= BXE_DEF_SB_ATT_IDX;
8625     }
8626 
8627     if (sc->def_idx != def_sb->sp_sb.running_index) {
8628         sc->def_idx = def_sb->sp_sb.running_index;
8629         rc |= BXE_DEF_SB_IDX;
8630     }
8631 
8632     mb();
8633 
8634     return (rc);
8635 }
8636 
8637 static inline struct ecore_queue_sp_obj *
8638 bxe_cid_to_q_obj(struct bxe_softc *sc,
8639                  uint32_t         cid)
8640 {
8641     BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8642     return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8643 }
8644 
8645 static void
8646 bxe_handle_mcast_eqe(struct bxe_softc *sc)
8647 {
8648     struct ecore_mcast_ramrod_params rparam;
8649     int rc;
8650 
8651     memset(&rparam, 0, sizeof(rparam));
8652 
8653     rparam.mcast_obj = &sc->mcast_obj;
8654 
8655     BXE_MCAST_LOCK(sc);
8656 
8657     /* clear pending state for the last command */
8658     sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8659 
8660     /* if there are pending mcast commands - send them */
8661     if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8662         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8663         if (rc < 0) {
8664             BLOGD(sc, DBG_SP,
8665                   "ERROR: Failed to send pending mcast commands (%d)\n",
8666                   rc);
8667         }
8668     }
8669 
8670     BXE_MCAST_UNLOCK(sc);
8671 }
8672 
8673 static void
8674 bxe_handle_classification_eqe(struct bxe_softc      *sc,
8675                               union event_ring_elem *elem)
8676 {
8677     unsigned long ramrod_flags = 0;
8678     int rc = 0;
8679     uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8680     struct ecore_vlan_mac_obj *vlan_mac_obj;
8681 
8682     /* always push next commands out, don't wait here */
8683     bit_set(&ramrod_flags, RAMROD_CONT);
8684 
8685     switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8686     case ECORE_FILTER_MAC_PENDING:
8687         BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8688         vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8689         break;
8690 
8691     case ECORE_FILTER_MCAST_PENDING:
8692         BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8693         /*
8694          * This is only relevant for 57710 where multicast MACs are
8695          * configured as unicast MACs using the same ramrod.
8696          */
8697         bxe_handle_mcast_eqe(sc);
8698         return;
8699 
8700     default:
8701         BLOGE(sc, "Unsupported classification command: %d\n",
8702               elem->message.data.eth_event.echo);
8703         return;
8704     }
8705 
8706     rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8707 
8708     if (rc < 0) {
8709         BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8710     } else if (rc > 0) {
8711         BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8712     }
8713 }
8714 
8715 static void
8716 bxe_handle_rx_mode_eqe(struct bxe_softc      *sc,
8717                        union event_ring_elem *elem)
8718 {
8719     bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8720 
8721     /* send rx_mode command again if was requested */
8722     if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8723                                &sc->sp_state)) {
8724         bxe_set_storm_rx_mode(sc);
8725     }
8726 #if 0
8727     else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_START_SCHED,
8728                                     &sc->sp_state)) {
8729         bxe_set_iscsi_eth_rx_mode(sc, TRUE);
8730     }
8731     else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_STOP_SCHED,
8732                                     &sc->sp_state)) {
8733         bxe_set_iscsi_eth_rx_mode(sc, FALSE);
8734     }
8735 #endif
8736 }
8737 
8738 static void
8739 bxe_update_eq_prod(struct bxe_softc *sc,
8740                    uint16_t         prod)
8741 {
8742     storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8743     wmb(); /* keep prod updates ordered */
8744 }
8745 
8746 static void
8747 bxe_eq_int(struct bxe_softc *sc)
8748 {
8749     uint16_t hw_cons, sw_cons, sw_prod;
8750     union event_ring_elem *elem;
8751     uint8_t echo;
8752     uint32_t cid;
8753     uint8_t opcode;
8754     int spqe_cnt = 0;
8755     struct ecore_queue_sp_obj *q_obj;
8756     struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8757     struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8758 
8759     hw_cons = le16toh(*sc->eq_cons_sb);
8760 
8761     /*
8762      * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8763      * when we get to the next-page we need to adjust so the loop
8764      * condition below will be met. The next element is the size of a
8765      * regular element and hence incrementing by 1
8766      */
8767     if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8768         hw_cons++;
8769     }
8770 
8771     /*
8772      * This function may never run in parallel with itself for a
8773      * specific sc and no need for a read memory barrier here.
8774      */
8775     sw_cons = sc->eq_cons;
8776     sw_prod = sc->eq_prod;
8777 
8778     BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8779           hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8780 
8781     for (;
8782          sw_cons != hw_cons;
8783          sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8784 
8785         elem = &sc->eq[EQ_DESC(sw_cons)];
8786 
8787 #if 0
8788         int rc;
8789         rc = bxe_iov_eq_sp_event(sc, elem);
8790         if (!rc) {
8791             BLOGE(sc, "bxe_iov_eq_sp_event returned %d\n", rc);
8792             goto next_spqe;
8793         }
8794 #endif
8795 
8796         /* elem CID originates from FW, actually LE */
8797         cid = SW_CID(elem->message.data.cfc_del_event.cid);
8798         opcode = elem->message.opcode;
8799 
8800         /* handle eq element */
8801         switch (opcode) {
8802 #if 0
8803         case EVENT_RING_OPCODE_VF_PF_CHANNEL:
8804             BLOGD(sc, DBG_SP, "vf/pf channel element on eq\n");
8805             bxe_vf_mbx(sc, &elem->message.data.vf_pf_event);
8806             continue;
8807 #endif
8808 
8809         case EVENT_RING_OPCODE_STAT_QUERY:
8810             BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8811                   sc->stats_comp++);
8812             /* nothing to do with stats comp */
8813             goto next_spqe;
8814 
8815         case EVENT_RING_OPCODE_CFC_DEL:
8816             /* handle according to cid range */
8817             /* we may want to verify here that the sc state is HALTING */
8818             BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8819             q_obj = bxe_cid_to_q_obj(sc, cid);
8820             if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8821                 break;
8822             }
8823             goto next_spqe;
8824 
8825         case EVENT_RING_OPCODE_STOP_TRAFFIC:
8826             BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8827             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8828                 break;
8829             }
8830             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8831             goto next_spqe;
8832 
8833         case EVENT_RING_OPCODE_START_TRAFFIC:
8834             BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8835             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8836                 break;
8837             }
8838             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8839             goto next_spqe;
8840 
8841         case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8842             echo = elem->message.data.function_update_event.echo;
8843             if (echo == SWITCH_UPDATE) {
8844                 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8845                 if (f_obj->complete_cmd(sc, f_obj,
8846                                         ECORE_F_CMD_SWITCH_UPDATE)) {
8847                     break;
8848                 }
8849             }
8850             else {
8851                 BLOGD(sc, DBG_SP,
8852                       "AFEX: ramrod completed FUNCTION_UPDATE\n");
8853 #if 0
8854                 f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_UPDATE);
8855                 /*
8856                  * We will perform the queues update from the sp_core_task as
8857                  * all queue SP operations should run with CORE_LOCK.
8858                  */
8859                 bxe_set_bit(BXE_SP_CORE_AFEX_F_UPDATE, &sc->sp_core_state);
8860                 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8861 #endif
8862             }
8863             goto next_spqe;
8864 
8865 #if 0
8866         case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
8867             f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_VIFLISTS);
8868             bxe_after_afex_vif_lists(sc, elem);
8869             goto next_spqe;
8870 #endif
8871 
8872         case EVENT_RING_OPCODE_FORWARD_SETUP:
8873             q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8874             if (q_obj->complete_cmd(sc, q_obj,
8875                                     ECORE_Q_CMD_SETUP_TX_ONLY)) {
8876                 break;
8877             }
8878             goto next_spqe;
8879 
8880         case EVENT_RING_OPCODE_FUNCTION_START:
8881             BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8882             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8883                 break;
8884             }
8885             goto next_spqe;
8886 
8887         case EVENT_RING_OPCODE_FUNCTION_STOP:
8888             BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8889             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8890                 break;
8891             }
8892             goto next_spqe;
8893         }
8894 
8895         switch (opcode | sc->state) {
8896         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8897         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8898             cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8899             BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8900             rss_raw->clear_pending(rss_raw);
8901             break;
8902 
8903         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8904         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8905         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8906         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8907         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8908         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8909             BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8910             bxe_handle_classification_eqe(sc, elem);
8911             break;
8912 
8913         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8914         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8915         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8916             BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8917             bxe_handle_mcast_eqe(sc);
8918             break;
8919 
8920         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8921         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8922         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8923             BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8924             bxe_handle_rx_mode_eqe(sc, elem);
8925             break;
8926 
8927         default:
8928             /* unknown event log error and continue */
8929             BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8930                   elem->message.opcode, sc->state);
8931         }
8932 
8933 next_spqe:
8934         spqe_cnt++;
8935     } /* for */
8936 
8937     mb();
8938     atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
8939 
8940     sc->eq_cons = sw_cons;
8941     sc->eq_prod = sw_prod;
8942 
8943     /* make sure that above mem writes were issued towards the memory */
8944     wmb();
8945 
8946     /* update producer */
8947     bxe_update_eq_prod(sc, sc->eq_prod);
8948 }
8949 
8950 static void
8951 bxe_handle_sp_tq(void *context,
8952                  int  pending)
8953 {
8954     struct bxe_softc *sc = (struct bxe_softc *)context;
8955     uint16_t status;
8956 
8957     BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
8958 
8959     /* what work needs to be performed? */
8960     status = bxe_update_dsb_idx(sc);
8961 
8962     BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
8963 
8964     /* HW attentions */
8965     if (status & BXE_DEF_SB_ATT_IDX) {
8966         BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
8967         bxe_attn_int(sc);
8968         status &= ~BXE_DEF_SB_ATT_IDX;
8969     }
8970 
8971     /* SP events: STAT_QUERY and others */
8972     if (status & BXE_DEF_SB_IDX) {
8973         /* handle EQ completions */
8974         BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
8975         bxe_eq_int(sc);
8976         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
8977                    le16toh(sc->def_idx), IGU_INT_NOP, 1);
8978         status &= ~BXE_DEF_SB_IDX;
8979     }
8980 
8981     /* if status is non zero then something went wrong */
8982     if (__predict_false(status)) {
8983         BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
8984     }
8985 
8986     /* ack status block only if something was actually handled */
8987     bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
8988                le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
8989 
8990     /*
8991      * Must be called after the EQ processing (since eq leads to sriov
8992      * ramrod completion flows).
8993      * This flow may have been scheduled by the arrival of a ramrod
8994      * completion, or by the sriov code rescheduling itself.
8995      */
8996     // XXX bxe_iov_sp_task(sc);
8997 
8998 #if 0
8999     /* AFEX - poll to check if VIFSET_ACK should be sent to MFW */
9000     if (bxe_test_and_clear_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK,
9001                                &sc->sp_state)) {
9002         bxe_link_report(sc);
9003         bxe_fw_command(sc, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
9004     }
9005 #endif
9006 }
9007 
9008 static void
9009 bxe_handle_fp_tq(void *context,
9010                  int  pending)
9011 {
9012     struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
9013     struct bxe_softc *sc = fp->sc;
9014     uint8_t more_tx = FALSE;
9015     uint8_t more_rx = FALSE;
9016 
9017     BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
9018 
9019     /* XXX
9020      * IFF_DRV_RUNNING state can't be checked here since we process
9021      * slowpath events on a client queue during setup. Instead
9022      * we need to add a "process/continue" flag here that the driver
9023      * can use to tell the task here not to do anything.
9024      */
9025 #if 0
9026     if (!(sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
9027         return;
9028     }
9029 #endif
9030 
9031     /* update the fastpath index */
9032     bxe_update_fp_sb_idx(fp);
9033 
9034     /* XXX add loop here if ever support multiple tx CoS */
9035     /* fp->txdata[cos] */
9036     if (bxe_has_tx_work(fp)) {
9037         BXE_FP_TX_LOCK(fp);
9038         more_tx = bxe_txeof(sc, fp);
9039         BXE_FP_TX_UNLOCK(fp);
9040     }
9041 
9042     if (bxe_has_rx_work(fp)) {
9043         more_rx = bxe_rxeof(sc, fp);
9044     }
9045 
9046     if (more_rx /*|| more_tx*/) {
9047         /* still more work to do */
9048         taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9049         return;
9050     }
9051 
9052     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9053                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9054 }
9055 
9056 static void
9057 bxe_task_fp(struct bxe_fastpath *fp)
9058 {
9059     struct bxe_softc *sc = fp->sc;
9060     uint8_t more_tx = FALSE;
9061     uint8_t more_rx = FALSE;
9062 
9063     BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
9064 
9065     /* update the fastpath index */
9066     bxe_update_fp_sb_idx(fp);
9067 
9068     /* XXX add loop here if ever support multiple tx CoS */
9069     /* fp->txdata[cos] */
9070     if (bxe_has_tx_work(fp)) {
9071         BXE_FP_TX_LOCK(fp);
9072         more_tx = bxe_txeof(sc, fp);
9073         BXE_FP_TX_UNLOCK(fp);
9074     }
9075 
9076     if (bxe_has_rx_work(fp)) {
9077         more_rx = bxe_rxeof(sc, fp);
9078     }
9079 
9080     if (more_rx /*|| more_tx*/) {
9081         /* still more work to do, bail out if this ISR and process later */
9082         taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9083         return;
9084     }
9085 
9086     /*
9087      * Here we write the fastpath index taken before doing any tx or rx work.
9088      * It is very well possible other hw events occurred up to this point and
9089      * they were actually processed accordingly above. Since we're going to
9090      * write an older fastpath index, an interrupt is coming which we might
9091      * not do any work in.
9092      */
9093     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9094                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9095 }
9096 
9097 /*
9098  * Legacy interrupt entry point.
9099  *
9100  * Verifies that the controller generated the interrupt and
9101  * then calls a separate routine to handle the various
9102  * interrupt causes: link, RX, and TX.
9103  */
9104 static void
9105 bxe_intr_legacy(void *xsc)
9106 {
9107     struct bxe_softc *sc = (struct bxe_softc *)xsc;
9108     struct bxe_fastpath *fp;
9109     uint16_t status, mask;
9110     int i;
9111 
9112     BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
9113 
9114 #if 0
9115     /* Don't handle any interrupts if we're not ready. */
9116     if (__predict_false(sc->intr_sem != 0)) {
9117         return;
9118     }
9119 #endif
9120 
9121     /*
9122      * 0 for ustorm, 1 for cstorm
9123      * the bits returned from ack_int() are 0-15
9124      * bit 0 = attention status block
9125      * bit 1 = fast path status block
9126      * a mask of 0x2 or more = tx/rx event
9127      * a mask of 1 = slow path event
9128      */
9129 
9130     status = bxe_ack_int(sc);
9131 
9132     /* the interrupt is not for us */
9133     if (__predict_false(status == 0)) {
9134         BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
9135         return;
9136     }
9137 
9138     BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
9139 
9140     FOR_EACH_ETH_QUEUE(sc, i) {
9141         fp = &sc->fp[i];
9142         mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
9143         if (status & mask) {
9144             /* acknowledge and disable further fastpath interrupts */
9145             bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9146             bxe_task_fp(fp);
9147             status &= ~mask;
9148         }
9149     }
9150 
9151 #if 0
9152     if (CNIC_SUPPORT(sc)) {
9153         mask = 0x2;
9154         if (status & (mask | 0x1)) {
9155             ...
9156             status &= ~mask;
9157         }
9158     }
9159 #endif
9160 
9161     if (__predict_false(status & 0x1)) {
9162         /* acknowledge and disable further slowpath interrupts */
9163         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9164 
9165         /* schedule slowpath handler */
9166         taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9167 
9168         status &= ~0x1;
9169     }
9170 
9171     if (__predict_false(status)) {
9172         BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
9173     }
9174 }
9175 
9176 /* slowpath interrupt entry point */
9177 static void
9178 bxe_intr_sp(void *xsc)
9179 {
9180     struct bxe_softc *sc = (struct bxe_softc *)xsc;
9181 
9182     BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
9183 
9184     /* acknowledge and disable further slowpath interrupts */
9185     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9186 
9187     /* schedule slowpath handler */
9188     taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9189 }
9190 
9191 /* fastpath interrupt entry point */
9192 static void
9193 bxe_intr_fp(void *xfp)
9194 {
9195     struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
9196     struct bxe_softc *sc = fp->sc;
9197 
9198     BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
9199 
9200     BLOGD(sc, DBG_INTR,
9201           "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
9202           curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
9203 
9204 #if 0
9205     /* Don't handle any interrupts if we're not ready. */
9206     if (__predict_false(sc->intr_sem != 0)) {
9207         return;
9208     }
9209 #endif
9210 
9211     /* acknowledge and disable further fastpath interrupts */
9212     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9213 
9214     bxe_task_fp(fp);
9215 }
9216 
9217 /* Release all interrupts allocated by the driver. */
9218 static void
9219 bxe_interrupt_free(struct bxe_softc *sc)
9220 {
9221     int i;
9222 
9223     switch (sc->interrupt_mode) {
9224     case INTR_MODE_INTX:
9225         BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
9226         if (sc->intr[0].resource != NULL) {
9227             bus_release_resource(sc->dev,
9228                                  SYS_RES_IRQ,
9229                                  sc->intr[0].rid,
9230                                  sc->intr[0].resource);
9231         }
9232         break;
9233     case INTR_MODE_MSI:
9234         for (i = 0; i < sc->intr_count; i++) {
9235             BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
9236             if (sc->intr[i].resource && sc->intr[i].rid) {
9237                 bus_release_resource(sc->dev,
9238                                      SYS_RES_IRQ,
9239                                      sc->intr[i].rid,
9240                                      sc->intr[i].resource);
9241             }
9242         }
9243         pci_release_msi(sc->dev);
9244         break;
9245     case INTR_MODE_MSIX:
9246         for (i = 0; i < sc->intr_count; i++) {
9247             BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
9248             if (sc->intr[i].resource && sc->intr[i].rid) {
9249                 bus_release_resource(sc->dev,
9250                                      SYS_RES_IRQ,
9251                                      sc->intr[i].rid,
9252                                      sc->intr[i].resource);
9253             }
9254         }
9255         pci_release_msi(sc->dev);
9256         break;
9257     default:
9258         /* nothing to do as initial allocation failed */
9259         break;
9260     }
9261 }
9262 
9263 /*
9264  * This function determines and allocates the appropriate
9265  * interrupt based on system capabilites and user request.
9266  *
9267  * The user may force a particular interrupt mode, specify
9268  * the number of receive queues, specify the method for
9269  * distribuitng received frames to receive queues, or use
9270  * the default settings which will automatically select the
9271  * best supported combination.  In addition, the OS may or
9272  * may not support certain combinations of these settings.
9273  * This routine attempts to reconcile the settings requested
9274  * by the user with the capabilites available from the system
9275  * to select the optimal combination of features.
9276  *
9277  * Returns:
9278  *   0 = Success, !0 = Failure.
9279  */
9280 static int
9281 bxe_interrupt_alloc(struct bxe_softc *sc)
9282 {
9283     int msix_count = 0;
9284     int msi_count = 0;
9285     int num_requested = 0;
9286     int num_allocated = 0;
9287     int rid, i, j;
9288     int rc;
9289 
9290     /* get the number of available MSI/MSI-X interrupts from the OS */
9291     if (sc->interrupt_mode > 0) {
9292         if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
9293             msix_count = pci_msix_count(sc->dev);
9294         }
9295 
9296         if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
9297             msi_count = pci_msi_count(sc->dev);
9298         }
9299 
9300         BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
9301               msi_count, msix_count);
9302     }
9303 
9304     do { /* try allocating MSI-X interrupt resources (at least 2) */
9305         if (sc->interrupt_mode != INTR_MODE_MSIX) {
9306             break;
9307         }
9308 
9309         if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
9310             (msix_count < 2)) {
9311             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9312             break;
9313         }
9314 
9315         /* ask for the necessary number of MSI-X vectors */
9316         num_requested = min((sc->num_queues + 1), msix_count);
9317 
9318         BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
9319 
9320         num_allocated = num_requested;
9321         if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
9322             BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
9323             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9324             break;
9325         }
9326 
9327         if (num_allocated < 2) { /* possible? */
9328             BLOGE(sc, "MSI-X allocation less than 2!\n");
9329             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9330             pci_release_msi(sc->dev);
9331             break;
9332         }
9333 
9334         BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
9335               num_requested, num_allocated);
9336 
9337         /* best effort so use the number of vectors allocated to us */
9338         sc->intr_count = num_allocated;
9339         sc->num_queues = num_allocated - 1;
9340 
9341         rid = 1; /* initial resource identifier */
9342 
9343         /* allocate the MSI-X vectors */
9344         for (i = 0; i < num_allocated; i++) {
9345             sc->intr[i].rid = (rid + i);
9346 
9347             if ((sc->intr[i].resource =
9348                  bus_alloc_resource_any(sc->dev,
9349                                         SYS_RES_IRQ,
9350                                         &sc->intr[i].rid,
9351                                         RF_ACTIVE)) == NULL) {
9352                 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
9353                       i, (rid + i));
9354 
9355                 for (j = (i - 1); j >= 0; j--) {
9356                     bus_release_resource(sc->dev,
9357                                          SYS_RES_IRQ,
9358                                          sc->intr[j].rid,
9359                                          sc->intr[j].resource);
9360                 }
9361 
9362                 sc->intr_count = 0;
9363                 sc->num_queues = 0;
9364                 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9365                 pci_release_msi(sc->dev);
9366                 break;
9367             }
9368 
9369             BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
9370         }
9371     } while (0);
9372 
9373     do { /* try allocating MSI vector resources (at least 2) */
9374         if (sc->interrupt_mode != INTR_MODE_MSI) {
9375             break;
9376         }
9377 
9378         if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
9379             (msi_count < 2)) {
9380             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9381             break;
9382         }
9383 
9384         /* ask for the necessary number of MSI vectors */
9385         num_requested = min((sc->num_queues + 1), msi_count);
9386 
9387         BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
9388 
9389         num_allocated = num_requested;
9390         if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
9391             BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
9392             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9393             break;
9394         }
9395 
9396         if (num_allocated < 2) { /* possible? */
9397             BLOGE(sc, "MSI allocation less than 2!\n");
9398             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9399             pci_release_msi(sc->dev);
9400             break;
9401         }
9402 
9403         BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
9404               num_requested, num_allocated);
9405 
9406         /* best effort so use the number of vectors allocated to us */
9407         sc->intr_count = num_allocated;
9408         sc->num_queues = num_allocated - 1;
9409 
9410         rid = 1; /* initial resource identifier */
9411 
9412         /* allocate the MSI vectors */
9413         for (i = 0; i < num_allocated; i++) {
9414             sc->intr[i].rid = (rid + i);
9415 
9416             if ((sc->intr[i].resource =
9417                  bus_alloc_resource_any(sc->dev,
9418                                         SYS_RES_IRQ,
9419                                         &sc->intr[i].rid,
9420                                         RF_ACTIVE)) == NULL) {
9421                 BLOGE(sc, "Failed to map MSI[%d] (rid=%d)!\n",
9422                       i, (rid + i));
9423 
9424                 for (j = (i - 1); j >= 0; j--) {
9425                     bus_release_resource(sc->dev,
9426                                          SYS_RES_IRQ,
9427                                          sc->intr[j].rid,
9428                                          sc->intr[j].resource);
9429                 }
9430 
9431                 sc->intr_count = 0;
9432                 sc->num_queues = 0;
9433                 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9434                 pci_release_msi(sc->dev);
9435                 break;
9436             }
9437 
9438             BLOGD(sc, DBG_LOAD, "Mapped MSI[%d] (rid=%d)\n", i, (rid + i));
9439         }
9440     } while (0);
9441 
9442     do { /* try allocating INTx vector resources */
9443         if (sc->interrupt_mode != INTR_MODE_INTX) {
9444             break;
9445         }
9446 
9447         BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
9448 
9449         /* only one vector for INTx */
9450         sc->intr_count = 1;
9451         sc->num_queues = 1;
9452 
9453         rid = 0; /* initial resource identifier */
9454 
9455         sc->intr[0].rid = rid;
9456 
9457         if ((sc->intr[0].resource =
9458              bus_alloc_resource_any(sc->dev,
9459                                     SYS_RES_IRQ,
9460                                     &sc->intr[0].rid,
9461                                     (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
9462             BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
9463             sc->intr_count = 0;
9464             sc->num_queues = 0;
9465             sc->interrupt_mode = -1; /* Failed! */
9466             break;
9467         }
9468 
9469         BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9470     } while (0);
9471 
9472     if (sc->interrupt_mode == -1) {
9473         BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9474         rc = 1;
9475     } else {
9476         BLOGD(sc, DBG_LOAD,
9477               "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9478               sc->interrupt_mode, sc->num_queues);
9479         rc = 0;
9480     }
9481 
9482     return (rc);
9483 }
9484 
9485 static void
9486 bxe_interrupt_detach(struct bxe_softc *sc)
9487 {
9488     struct bxe_fastpath *fp;
9489     int i;
9490 
9491     /* release interrupt resources */
9492     for (i = 0; i < sc->intr_count; i++) {
9493         if (sc->intr[i].resource && sc->intr[i].tag) {
9494             BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9495             bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9496         }
9497     }
9498 
9499     for (i = 0; i < sc->num_queues; i++) {
9500         fp = &sc->fp[i];
9501         if (fp->tq) {
9502             taskqueue_drain(fp->tq, &fp->tq_task);
9503             taskqueue_free(fp->tq);
9504             fp->tq = NULL;
9505         }
9506     }
9507 
9508     if (sc->rx_mode_tq) {
9509         taskqueue_drain(sc->rx_mode_tq, &sc->rx_mode_tq_task);
9510         taskqueue_free(sc->rx_mode_tq);
9511         sc->rx_mode_tq = NULL;
9512     }
9513 
9514     if (sc->sp_tq) {
9515         taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9516         taskqueue_free(sc->sp_tq);
9517         sc->sp_tq = NULL;
9518     }
9519 }
9520 
9521 /*
9522  * Enables interrupts and attach to the ISR.
9523  *
9524  * When using multiple MSI/MSI-X vectors the first vector
9525  * is used for slowpath operations while all remaining
9526  * vectors are used for fastpath operations.  If only a
9527  * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9528  * ISR must look for both slowpath and fastpath completions.
9529  */
9530 static int
9531 bxe_interrupt_attach(struct bxe_softc *sc)
9532 {
9533     struct bxe_fastpath *fp;
9534     int rc = 0;
9535     int i;
9536 
9537     snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9538              "bxe%d_sp_tq", sc->unit);
9539     TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9540     sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT,
9541                                       taskqueue_thread_enqueue,
9542                                       &sc->sp_tq);
9543     taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9544                             "%s", sc->sp_tq_name);
9545 
9546     snprintf(sc->rx_mode_tq_name, sizeof(sc->rx_mode_tq_name),
9547              "bxe%d_rx_mode_tq", sc->unit);
9548     TASK_INIT(&sc->rx_mode_tq_task, 0, bxe_handle_rx_mode_tq, sc);
9549     sc->rx_mode_tq = taskqueue_create_fast(sc->rx_mode_tq_name, M_NOWAIT,
9550                                            taskqueue_thread_enqueue,
9551                                            &sc->rx_mode_tq);
9552     taskqueue_start_threads(&sc->rx_mode_tq, 1, PWAIT, /* lower priority */
9553                             "%s", sc->rx_mode_tq_name);
9554 
9555     for (i = 0; i < sc->num_queues; i++) {
9556         fp = &sc->fp[i];
9557         snprintf(fp->tq_name, sizeof(fp->tq_name),
9558                  "bxe%d_fp%d_tq", sc->unit, i);
9559         TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9560         fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT,
9561                                        taskqueue_thread_enqueue,
9562                                        &fp->tq);
9563         taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9564                                 "%s", fp->tq_name);
9565     }
9566 
9567     /* setup interrupt handlers */
9568     if (sc->interrupt_mode == INTR_MODE_MSIX) {
9569         BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9570 
9571         /*
9572          * Setup the interrupt handler. Note that we pass the driver instance
9573          * to the interrupt handler for the slowpath.
9574          */
9575         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9576                                  (INTR_TYPE_NET | INTR_MPSAFE),
9577                                  NULL, bxe_intr_sp, sc,
9578                                  &sc->intr[0].tag)) != 0) {
9579             BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9580             goto bxe_interrupt_attach_exit;
9581         }
9582 
9583         bus_describe_intr(sc->dev, sc->intr[0].resource,
9584                           sc->intr[0].tag, "sp");
9585 
9586         /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9587 
9588         /* initialize the fastpath vectors (note the first was used for sp) */
9589         for (i = 0; i < sc->num_queues; i++) {
9590             fp = &sc->fp[i];
9591             BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9592 
9593             /*
9594              * Setup the interrupt handler. Note that we pass the
9595              * fastpath context to the interrupt handler in this
9596              * case.
9597              */
9598             if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9599                                      (INTR_TYPE_NET | INTR_MPSAFE),
9600                                      NULL, bxe_intr_fp, fp,
9601                                      &sc->intr[i + 1].tag)) != 0) {
9602                 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9603                       (i + 1), rc);
9604                 goto bxe_interrupt_attach_exit;
9605             }
9606 
9607             bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9608                               sc->intr[i + 1].tag, "fp%02d", i);
9609 
9610             /* bind the fastpath instance to a cpu */
9611             if (sc->num_queues > 1) {
9612                 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9613             }
9614 
9615             fp->state = BXE_FP_STATE_IRQ;
9616         }
9617     } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9618         BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI[0] vector.\n");
9619 
9620         /*
9621          * Setup the interrupt handler. Note that we pass the driver instance
9622          * to the interrupt handler for the slowpath.
9623          */
9624         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9625                                  (INTR_TYPE_NET | INTR_MPSAFE),
9626                                  NULL, bxe_intr_sp, sc,
9627                                  &sc->intr[0].tag)) != 0) {
9628             BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9629             goto bxe_interrupt_attach_exit;
9630         }
9631 
9632         bus_describe_intr(sc->dev, sc->intr[0].resource,
9633                           sc->intr[0].tag, "sp");
9634 
9635         /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9636 
9637         /* initialize the fastpath vectors (note the first was used for sp) */
9638         for (i = 0; i < sc->num_queues; i++) {
9639             fp = &sc->fp[i];
9640             BLOGD(sc, DBG_LOAD, "Enabling MSI[%d] vector\n", (i + 1));
9641 
9642             /*
9643              * Setup the interrupt handler. Note that we pass the
9644              * fastpath context to the interrupt handler in this
9645              * case.
9646              */
9647             if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9648                                      (INTR_TYPE_NET | INTR_MPSAFE),
9649                                      NULL, bxe_intr_fp, fp,
9650                                      &sc->intr[i + 1].tag)) != 0) {
9651                 BLOGE(sc, "Failed to allocate MSI[%d] vector (%d)\n",
9652                       (i + 1), rc);
9653                 goto bxe_interrupt_attach_exit;
9654             }
9655 
9656             bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9657                               sc->intr[i + 1].tag, "fp%02d", i);
9658 
9659             /* bind the fastpath instance to a cpu */
9660             if (sc->num_queues > 1) {
9661                 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9662             }
9663 
9664             fp->state = BXE_FP_STATE_IRQ;
9665         }
9666     } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9667         BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9668 
9669         /*
9670          * Setup the interrupt handler. Note that we pass the
9671          * driver instance to the interrupt handler which
9672          * will handle both the slowpath and fastpath.
9673          */
9674         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9675                                  (INTR_TYPE_NET | INTR_MPSAFE),
9676                                  NULL, bxe_intr_legacy, sc,
9677                                  &sc->intr[0].tag)) != 0) {
9678             BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9679             goto bxe_interrupt_attach_exit;
9680         }
9681     }
9682 
9683 bxe_interrupt_attach_exit:
9684 
9685     return (rc);
9686 }
9687 
9688 static int  bxe_init_hw_common_chip(struct bxe_softc *sc);
9689 static int  bxe_init_hw_common(struct bxe_softc *sc);
9690 static int  bxe_init_hw_port(struct bxe_softc *sc);
9691 static int  bxe_init_hw_func(struct bxe_softc *sc);
9692 static void bxe_reset_common(struct bxe_softc *sc);
9693 static void bxe_reset_port(struct bxe_softc *sc);
9694 static void bxe_reset_func(struct bxe_softc *sc);
9695 static int  bxe_gunzip_init(struct bxe_softc *sc);
9696 static void bxe_gunzip_end(struct bxe_softc *sc);
9697 static int  bxe_init_firmware(struct bxe_softc *sc);
9698 static void bxe_release_firmware(struct bxe_softc *sc);
9699 
9700 static struct
9701 ecore_func_sp_drv_ops bxe_func_sp_drv = {
9702     .init_hw_cmn_chip = bxe_init_hw_common_chip,
9703     .init_hw_cmn      = bxe_init_hw_common,
9704     .init_hw_port     = bxe_init_hw_port,
9705     .init_hw_func     = bxe_init_hw_func,
9706 
9707     .reset_hw_cmn     = bxe_reset_common,
9708     .reset_hw_port    = bxe_reset_port,
9709     .reset_hw_func    = bxe_reset_func,
9710 
9711     .gunzip_init      = bxe_gunzip_init,
9712     .gunzip_end       = bxe_gunzip_end,
9713 
9714     .init_fw          = bxe_init_firmware,
9715     .release_fw       = bxe_release_firmware,
9716 };
9717 
9718 static void
9719 bxe_init_func_obj(struct bxe_softc *sc)
9720 {
9721     sc->dmae_ready = 0;
9722 
9723     ecore_init_func_obj(sc,
9724                         &sc->func_obj,
9725                         BXE_SP(sc, func_rdata),
9726                         BXE_SP_MAPPING(sc, func_rdata),
9727                         BXE_SP(sc, func_afex_rdata),
9728                         BXE_SP_MAPPING(sc, func_afex_rdata),
9729                         &bxe_func_sp_drv);
9730 }
9731 
9732 static int
9733 bxe_init_hw(struct bxe_softc *sc,
9734             uint32_t         load_code)
9735 {
9736     struct ecore_func_state_params func_params = { NULL };
9737     int rc;
9738 
9739     /* prepare the parameters for function state transitions */
9740     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9741 
9742     func_params.f_obj = &sc->func_obj;
9743     func_params.cmd = ECORE_F_CMD_HW_INIT;
9744 
9745     func_params.params.hw_init.load_phase = load_code;
9746 
9747     /*
9748      * Via a plethora of function pointers, we will eventually reach
9749      * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9750      */
9751     rc = ecore_func_state_change(sc, &func_params);
9752 
9753     return (rc);
9754 }
9755 
9756 static void
9757 bxe_fill(struct bxe_softc *sc,
9758          uint32_t         addr,
9759          int              fill,
9760          uint32_t         len)
9761 {
9762     uint32_t i;
9763 
9764     if (!(len % 4) && !(addr % 4)) {
9765         for (i = 0; i < len; i += 4) {
9766             REG_WR(sc, (addr + i), fill);
9767         }
9768     } else {
9769         for (i = 0; i < len; i++) {
9770             REG_WR8(sc, (addr + i), fill);
9771         }
9772     }
9773 }
9774 
9775 /* writes FP SP data to FW - data_size in dwords */
9776 static void
9777 bxe_wr_fp_sb_data(struct bxe_softc *sc,
9778                   int              fw_sb_id,
9779                   uint32_t         *sb_data_p,
9780                   uint32_t         data_size)
9781 {
9782     int index;
9783 
9784     for (index = 0; index < data_size; index++) {
9785         REG_WR(sc,
9786                (BAR_CSTRORM_INTMEM +
9787                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9788                 (sizeof(uint32_t) * index)),
9789                *(sb_data_p + index));
9790     }
9791 }
9792 
9793 static void
9794 bxe_zero_fp_sb(struct bxe_softc *sc,
9795                int              fw_sb_id)
9796 {
9797     struct hc_status_block_data_e2 sb_data_e2;
9798     struct hc_status_block_data_e1x sb_data_e1x;
9799     uint32_t *sb_data_p;
9800     uint32_t data_size = 0;
9801 
9802     if (!CHIP_IS_E1x(sc)) {
9803         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9804         sb_data_e2.common.state = SB_DISABLED;
9805         sb_data_e2.common.p_func.vf_valid = FALSE;
9806         sb_data_p = (uint32_t *)&sb_data_e2;
9807         data_size = (sizeof(struct hc_status_block_data_e2) /
9808                      sizeof(uint32_t));
9809     } else {
9810         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9811         sb_data_e1x.common.state = SB_DISABLED;
9812         sb_data_e1x.common.p_func.vf_valid = FALSE;
9813         sb_data_p = (uint32_t *)&sb_data_e1x;
9814         data_size = (sizeof(struct hc_status_block_data_e1x) /
9815                      sizeof(uint32_t));
9816     }
9817 
9818     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9819 
9820     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9821              0, CSTORM_STATUS_BLOCK_SIZE);
9822     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9823              0, CSTORM_SYNC_BLOCK_SIZE);
9824 }
9825 
9826 static void
9827 bxe_wr_sp_sb_data(struct bxe_softc               *sc,
9828                   struct hc_sp_status_block_data *sp_sb_data)
9829 {
9830     int i;
9831 
9832     for (i = 0;
9833          i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9834          i++) {
9835         REG_WR(sc,
9836                (BAR_CSTRORM_INTMEM +
9837                 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9838                 (i * sizeof(uint32_t))),
9839                *((uint32_t *)sp_sb_data + i));
9840     }
9841 }
9842 
9843 static void
9844 bxe_zero_sp_sb(struct bxe_softc *sc)
9845 {
9846     struct hc_sp_status_block_data sp_sb_data;
9847 
9848     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9849 
9850     sp_sb_data.state           = SB_DISABLED;
9851     sp_sb_data.p_func.vf_valid = FALSE;
9852 
9853     bxe_wr_sp_sb_data(sc, &sp_sb_data);
9854 
9855     bxe_fill(sc,
9856              (BAR_CSTRORM_INTMEM +
9857               CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9858               0, CSTORM_SP_STATUS_BLOCK_SIZE);
9859     bxe_fill(sc,
9860              (BAR_CSTRORM_INTMEM +
9861               CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9862               0, CSTORM_SP_SYNC_BLOCK_SIZE);
9863 }
9864 
9865 static void
9866 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9867                              int                       igu_sb_id,
9868                              int                       igu_seg_id)
9869 {
9870     hc_sm->igu_sb_id      = igu_sb_id;
9871     hc_sm->igu_seg_id     = igu_seg_id;
9872     hc_sm->timer_value    = 0xFF;
9873     hc_sm->time_to_expire = 0xFFFFFFFF;
9874 }
9875 
9876 static void
9877 bxe_map_sb_state_machines(struct hc_index_data *index_data)
9878 {
9879     /* zero out state machine indices */
9880 
9881     /* rx indices */
9882     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9883 
9884     /* tx indices */
9885     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags      &= ~HC_INDEX_DATA_SM_ID;
9886     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9887     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9888     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9889 
9890     /* map indices */
9891 
9892     /* rx indices */
9893     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9894         (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9895 
9896     /* tx indices */
9897     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9898         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9899     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9900         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9901     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9902         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9903     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9904         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9905 }
9906 
9907 static void
9908 bxe_init_sb(struct bxe_softc *sc,
9909             bus_addr_t       busaddr,
9910             int              vfid,
9911             uint8_t          vf_valid,
9912             int              fw_sb_id,
9913             int              igu_sb_id)
9914 {
9915     struct hc_status_block_data_e2  sb_data_e2;
9916     struct hc_status_block_data_e1x sb_data_e1x;
9917     struct hc_status_block_sm       *hc_sm_p;
9918     uint32_t *sb_data_p;
9919     int igu_seg_id;
9920     int data_size;
9921 
9922     if (CHIP_INT_MODE_IS_BC(sc)) {
9923         igu_seg_id = HC_SEG_ACCESS_NORM;
9924     } else {
9925         igu_seg_id = IGU_SEG_ACCESS_NORM;
9926     }
9927 
9928     bxe_zero_fp_sb(sc, fw_sb_id);
9929 
9930     if (!CHIP_IS_E1x(sc)) {
9931         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9932         sb_data_e2.common.state = SB_ENABLED;
9933         sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9934         sb_data_e2.common.p_func.vf_id = vfid;
9935         sb_data_e2.common.p_func.vf_valid = vf_valid;
9936         sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9937         sb_data_e2.common.same_igu_sb_1b = TRUE;
9938         sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9939         sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9940         hc_sm_p = sb_data_e2.common.state_machine;
9941         sb_data_p = (uint32_t *)&sb_data_e2;
9942         data_size = (sizeof(struct hc_status_block_data_e2) /
9943                      sizeof(uint32_t));
9944         bxe_map_sb_state_machines(sb_data_e2.index_data);
9945     } else {
9946         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9947         sb_data_e1x.common.state = SB_ENABLED;
9948         sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9949         sb_data_e1x.common.p_func.vf_id = 0xff;
9950         sb_data_e1x.common.p_func.vf_valid = FALSE;
9951         sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9952         sb_data_e1x.common.same_igu_sb_1b = TRUE;
9953         sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9954         sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9955         hc_sm_p = sb_data_e1x.common.state_machine;
9956         sb_data_p = (uint32_t *)&sb_data_e1x;
9957         data_size = (sizeof(struct hc_status_block_data_e1x) /
9958                      sizeof(uint32_t));
9959         bxe_map_sb_state_machines(sb_data_e1x.index_data);
9960     }
9961 
9962     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9963     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9964 
9965     BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9966 
9967     /* write indices to HW - PCI guarantees endianity of regpairs */
9968     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9969 }
9970 
9971 static inline uint8_t
9972 bxe_fp_qzone_id(struct bxe_fastpath *fp)
9973 {
9974     if (CHIP_IS_E1x(fp->sc)) {
9975         return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9976     } else {
9977         return (fp->cl_id);
9978     }
9979 }
9980 
9981 static inline uint32_t
9982 bxe_rx_ustorm_prods_offset(struct bxe_softc    *sc,
9983                            struct bxe_fastpath *fp)
9984 {
9985     uint32_t offset = BAR_USTRORM_INTMEM;
9986 
9987 #if 0
9988     if (IS_VF(sc)) {
9989         return (PXP_VF_ADDR_USDM_QUEUES_START +
9990                 (sc->acquire_resp.resc.hw_qid[fp->index] *
9991                  sizeof(struct ustorm_queue_zone_data)));
9992     } else
9993 #endif
9994     if (!CHIP_IS_E1x(sc)) {
9995         offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
9996     } else {
9997         offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
9998     }
9999 
10000     return (offset);
10001 }
10002 
10003 static void
10004 bxe_init_eth_fp(struct bxe_softc *sc,
10005                 int              idx)
10006 {
10007     struct bxe_fastpath *fp = &sc->fp[idx];
10008     uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
10009     unsigned long q_type = 0;
10010     int cos;
10011 
10012     fp->sc    = sc;
10013     fp->index = idx;
10014 
10015     snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
10016              "bxe%d_fp%d_tx_lock", sc->unit, idx);
10017     mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
10018 
10019     snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
10020              "bxe%d_fp%d_rx_lock", sc->unit, idx);
10021     mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
10022 
10023     fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
10024     fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
10025 
10026     fp->cl_id = (CHIP_IS_E1x(sc)) ?
10027                     (SC_L_ID(sc) + idx) :
10028                     /* want client ID same as IGU SB ID for non-E1 */
10029                     fp->igu_sb_id;
10030     fp->cl_qzone_id = bxe_fp_qzone_id(fp);
10031 
10032     /* setup sb indices */
10033     if (!CHIP_IS_E1x(sc)) {
10034         fp->sb_index_values  = fp->status_block.e2_sb->sb.index_values;
10035         fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
10036     } else {
10037         fp->sb_index_values  = fp->status_block.e1x_sb->sb.index_values;
10038         fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
10039     }
10040 
10041     /* init shortcut */
10042     fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
10043 
10044     fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
10045 
10046     /*
10047      * XXX If multiple CoS is ever supported then each fastpath structure
10048      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
10049      */
10050     for (cos = 0; cos < sc->max_cos; cos++) {
10051         cids[cos] = idx;
10052     }
10053     fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
10054 
10055     /* nothing more for a VF to do */
10056     if (IS_VF(sc)) {
10057         return;
10058     }
10059 
10060     bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
10061                 fp->fw_sb_id, fp->igu_sb_id);
10062 
10063     bxe_update_fp_sb_idx(fp);
10064 
10065     /* Configure Queue State object */
10066     bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
10067     bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
10068 
10069     ecore_init_queue_obj(sc,
10070                          &sc->sp_objs[idx].q_obj,
10071                          fp->cl_id,
10072                          cids,
10073                          sc->max_cos,
10074                          SC_FUNC(sc),
10075                          BXE_SP(sc, q_rdata),
10076                          BXE_SP_MAPPING(sc, q_rdata),
10077                          q_type);
10078 
10079     /* configure classification DBs */
10080     ecore_init_mac_obj(sc,
10081                        &sc->sp_objs[idx].mac_obj,
10082                        fp->cl_id,
10083                        idx,
10084                        SC_FUNC(sc),
10085                        BXE_SP(sc, mac_rdata),
10086                        BXE_SP_MAPPING(sc, mac_rdata),
10087                        ECORE_FILTER_MAC_PENDING,
10088                        &sc->sp_state,
10089                        ECORE_OBJ_TYPE_RX_TX,
10090                        &sc->macs_pool);
10091 
10092     BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
10093           idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
10094 }
10095 
10096 static inline void
10097 bxe_update_rx_prod(struct bxe_softc    *sc,
10098                    struct bxe_fastpath *fp,
10099                    uint16_t            rx_bd_prod,
10100                    uint16_t            rx_cq_prod,
10101                    uint16_t            rx_sge_prod)
10102 {
10103     struct ustorm_eth_rx_producers rx_prods = { 0 };
10104     uint32_t i;
10105 
10106     /* update producers */
10107     rx_prods.bd_prod  = rx_bd_prod;
10108     rx_prods.cqe_prod = rx_cq_prod;
10109     rx_prods.sge_prod = rx_sge_prod;
10110 
10111     /*
10112      * Make sure that the BD and SGE data is updated before updating the
10113      * producers since FW might read the BD/SGE right after the producer
10114      * is updated.
10115      * This is only applicable for weak-ordered memory model archs such
10116      * as IA-64. The following barrier is also mandatory since FW will
10117      * assumes BDs must have buffers.
10118      */
10119     wmb();
10120 
10121     for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
10122         REG_WR(sc,
10123                (fp->ustorm_rx_prods_offset + (i * 4)),
10124                ((uint32_t *)&rx_prods)[i]);
10125     }
10126 
10127     wmb(); /* keep prod updates ordered */
10128 
10129     BLOGD(sc, DBG_RX,
10130           "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
10131           fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
10132 }
10133 
10134 static void
10135 bxe_init_rx_rings(struct bxe_softc *sc)
10136 {
10137     struct bxe_fastpath *fp;
10138     int i;
10139 
10140     for (i = 0; i < sc->num_queues; i++) {
10141         fp = &sc->fp[i];
10142 
10143         fp->rx_bd_cons = 0;
10144 
10145         /*
10146          * Activate the BD ring...
10147          * Warning, this will generate an interrupt (to the TSTORM)
10148          * so this can only be done after the chip is initialized
10149          */
10150         bxe_update_rx_prod(sc, fp,
10151                            fp->rx_bd_prod,
10152                            fp->rx_cq_prod,
10153                            fp->rx_sge_prod);
10154 
10155         if (i != 0) {
10156             continue;
10157         }
10158 
10159         if (CHIP_IS_E1(sc)) {
10160             REG_WR(sc,
10161                    (BAR_USTRORM_INTMEM +
10162                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
10163                    U64_LO(fp->rcq_dma.paddr));
10164             REG_WR(sc,
10165                    (BAR_USTRORM_INTMEM +
10166                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
10167                    U64_HI(fp->rcq_dma.paddr));
10168         }
10169     }
10170 }
10171 
10172 static void
10173 bxe_init_tx_ring_one(struct bxe_fastpath *fp)
10174 {
10175     SET_FLAG(fp->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
10176     fp->tx_db.data.zero_fill1 = 0;
10177     fp->tx_db.data.prod = 0;
10178 
10179     fp->tx_pkt_prod = 0;
10180     fp->tx_pkt_cons = 0;
10181     fp->tx_bd_prod = 0;
10182     fp->tx_bd_cons = 0;
10183     fp->eth_q_stats.tx_pkts = 0;
10184 }
10185 
10186 static inline void
10187 bxe_init_tx_rings(struct bxe_softc *sc)
10188 {
10189     int i;
10190 
10191     for (i = 0; i < sc->num_queues; i++) {
10192 #if 0
10193         uint8_t cos;
10194         for (cos = 0; cos < sc->max_cos; cos++) {
10195             bxe_init_tx_ring_one(&sc->fp[i].txdata[cos]);
10196         }
10197 #else
10198         bxe_init_tx_ring_one(&sc->fp[i]);
10199 #endif
10200     }
10201 }
10202 
10203 static void
10204 bxe_init_def_sb(struct bxe_softc *sc)
10205 {
10206     struct host_sp_status_block *def_sb = sc->def_sb;
10207     bus_addr_t mapping = sc->def_sb_dma.paddr;
10208     int igu_sp_sb_index;
10209     int igu_seg_id;
10210     int port = SC_PORT(sc);
10211     int func = SC_FUNC(sc);
10212     int reg_offset, reg_offset_en5;
10213     uint64_t section;
10214     int index, sindex;
10215     struct hc_sp_status_block_data sp_sb_data;
10216 
10217     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
10218 
10219     if (CHIP_INT_MODE_IS_BC(sc)) {
10220         igu_sp_sb_index = DEF_SB_IGU_ID;
10221         igu_seg_id = HC_SEG_ACCESS_DEF;
10222     } else {
10223         igu_sp_sb_index = sc->igu_dsb_id;
10224         igu_seg_id = IGU_SEG_ACCESS_DEF;
10225     }
10226 
10227     /* attentions */
10228     section = ((uint64_t)mapping +
10229                offsetof(struct host_sp_status_block, atten_status_block));
10230     def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
10231     sc->attn_state = 0;
10232 
10233     reg_offset = (port) ?
10234                      MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
10235                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
10236     reg_offset_en5 = (port) ?
10237                          MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
10238                          MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
10239 
10240     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
10241         /* take care of sig[0]..sig[4] */
10242         for (sindex = 0; sindex < 4; sindex++) {
10243             sc->attn_group[index].sig[sindex] =
10244                 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
10245         }
10246 
10247         if (!CHIP_IS_E1x(sc)) {
10248             /*
10249              * enable5 is separate from the rest of the registers,
10250              * and the address skip is 4 and not 16 between the
10251              * different groups
10252              */
10253             sc->attn_group[index].sig[4] =
10254                 REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
10255         } else {
10256             sc->attn_group[index].sig[4] = 0;
10257         }
10258     }
10259 
10260     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10261         reg_offset = (port) ?
10262                          HC_REG_ATTN_MSG1_ADDR_L :
10263                          HC_REG_ATTN_MSG0_ADDR_L;
10264         REG_WR(sc, reg_offset, U64_LO(section));
10265         REG_WR(sc, (reg_offset + 4), U64_HI(section));
10266     } else if (!CHIP_IS_E1x(sc)) {
10267         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
10268         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
10269     }
10270 
10271     section = ((uint64_t)mapping +
10272                offsetof(struct host_sp_status_block, sp_sb));
10273 
10274     bxe_zero_sp_sb(sc);
10275 
10276     /* PCI guarantees endianity of regpair */
10277     sp_sb_data.state           = SB_ENABLED;
10278     sp_sb_data.host_sb_addr.lo = U64_LO(section);
10279     sp_sb_data.host_sb_addr.hi = U64_HI(section);
10280     sp_sb_data.igu_sb_id       = igu_sp_sb_index;
10281     sp_sb_data.igu_seg_id      = igu_seg_id;
10282     sp_sb_data.p_func.pf_id    = func;
10283     sp_sb_data.p_func.vnic_id  = SC_VN(sc);
10284     sp_sb_data.p_func.vf_id    = 0xff;
10285 
10286     bxe_wr_sp_sb_data(sc, &sp_sb_data);
10287 
10288     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
10289 }
10290 
10291 static void
10292 bxe_init_sp_ring(struct bxe_softc *sc)
10293 {
10294     atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
10295     sc->spq_prod_idx = 0;
10296     sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
10297     sc->spq_prod_bd = sc->spq;
10298     sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
10299 }
10300 
10301 static void
10302 bxe_init_eq_ring(struct bxe_softc *sc)
10303 {
10304     union event_ring_elem *elem;
10305     int i;
10306 
10307     for (i = 1; i <= NUM_EQ_PAGES; i++) {
10308         elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
10309 
10310         elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
10311                                                  BCM_PAGE_SIZE *
10312                                                  (i % NUM_EQ_PAGES)));
10313         elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
10314                                                  BCM_PAGE_SIZE *
10315                                                  (i % NUM_EQ_PAGES)));
10316     }
10317 
10318     sc->eq_cons    = 0;
10319     sc->eq_prod    = NUM_EQ_DESC;
10320     sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
10321 
10322     atomic_store_rel_long(&sc->eq_spq_left,
10323                           (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
10324                                NUM_EQ_DESC) - 1));
10325 }
10326 
10327 static void
10328 bxe_init_internal_common(struct bxe_softc *sc)
10329 {
10330     int i;
10331 
10332     if (IS_MF_SI(sc)) {
10333         /*
10334          * In switch independent mode, the TSTORM needs to accept
10335          * packets that failed classification, since approximate match
10336          * mac addresses aren't written to NIG LLH.
10337          */
10338         REG_WR8(sc,
10339                 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10340                 2);
10341     } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */
10342         REG_WR8(sc,
10343                 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10344                 0);
10345     }
10346 
10347     /*
10348      * Zero this manually as its initialization is currently missing
10349      * in the initTool.
10350      */
10351     for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
10352         REG_WR(sc,
10353                (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
10354                0);
10355     }
10356 
10357     if (!CHIP_IS_E1x(sc)) {
10358         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
10359                 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
10360     }
10361 }
10362 
10363 static void
10364 bxe_init_internal(struct bxe_softc *sc,
10365                   uint32_t         load_code)
10366 {
10367     switch (load_code) {
10368     case FW_MSG_CODE_DRV_LOAD_COMMON:
10369     case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
10370         bxe_init_internal_common(sc);
10371         /* no break */
10372 
10373     case FW_MSG_CODE_DRV_LOAD_PORT:
10374         /* nothing to do */
10375         /* no break */
10376 
10377     case FW_MSG_CODE_DRV_LOAD_FUNCTION:
10378         /* internal memory per function is initialized inside bxe_pf_init */
10379         break;
10380 
10381     default:
10382         BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
10383         break;
10384     }
10385 }
10386 
10387 static void
10388 storm_memset_func_cfg(struct bxe_softc                         *sc,
10389                       struct tstorm_eth_function_common_config *tcfg,
10390                       uint16_t                                  abs_fid)
10391 {
10392     uint32_t addr;
10393     size_t size;
10394 
10395     addr = (BAR_TSTRORM_INTMEM +
10396             TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
10397     size = sizeof(struct tstorm_eth_function_common_config);
10398     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
10399 }
10400 
10401 static void
10402 bxe_func_init(struct bxe_softc            *sc,
10403               struct bxe_func_init_params *p)
10404 {
10405     struct tstorm_eth_function_common_config tcfg = { 0 };
10406 
10407     if (CHIP_IS_E1x(sc)) {
10408         storm_memset_func_cfg(sc, &tcfg, p->func_id);
10409     }
10410 
10411     /* Enable the function in the FW */
10412     storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
10413     storm_memset_func_en(sc, p->func_id, 1);
10414 
10415     /* spq */
10416     if (p->func_flgs & FUNC_FLG_SPQ) {
10417         storm_memset_spq_addr(sc, p->spq_map, p->func_id);
10418         REG_WR(sc,
10419                (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
10420                p->spq_prod);
10421     }
10422 }
10423 
10424 /*
10425  * Calculates the sum of vn_min_rates.
10426  * It's needed for further normalizing of the min_rates.
10427  * Returns:
10428  *   sum of vn_min_rates.
10429  *     or
10430  *   0 - if all the min_rates are 0.
10431  * In the later case fainess algorithm should be deactivated.
10432  * If all min rates are not zero then those that are zeroes will be set to 1.
10433  */
10434 static void
10435 bxe_calc_vn_min(struct bxe_softc       *sc,
10436                 struct cmng_init_input *input)
10437 {
10438     uint32_t vn_cfg;
10439     uint32_t vn_min_rate;
10440     int all_zero = 1;
10441     int vn;
10442 
10443     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10444         vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10445         vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
10446                         FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
10447 
10448         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10449             /* skip hidden VNs */
10450             vn_min_rate = 0;
10451         } else if (!vn_min_rate) {
10452             /* If min rate is zero - set it to 100 */
10453             vn_min_rate = DEF_MIN_RATE;
10454         } else {
10455             all_zero = 0;
10456         }
10457 
10458         input->vnic_min_rate[vn] = vn_min_rate;
10459     }
10460 
10461     /* if ETS or all min rates are zeros - disable fairness */
10462     if (BXE_IS_ETS_ENABLED(sc)) {
10463         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10464         BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
10465     } else if (all_zero) {
10466         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10467         BLOGD(sc, DBG_LOAD,
10468               "Fariness disabled (all MIN values are zeroes)\n");
10469     } else {
10470         input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10471     }
10472 }
10473 
10474 static inline uint16_t
10475 bxe_extract_max_cfg(struct bxe_softc *sc,
10476                     uint32_t         mf_cfg)
10477 {
10478     uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
10479                         FUNC_MF_CFG_MAX_BW_SHIFT);
10480 
10481     if (!max_cfg) {
10482         BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
10483         max_cfg = 100;
10484     }
10485 
10486     return (max_cfg);
10487 }
10488 
10489 static void
10490 bxe_calc_vn_max(struct bxe_softc       *sc,
10491                 int                    vn,
10492                 struct cmng_init_input *input)
10493 {
10494     uint16_t vn_max_rate;
10495     uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10496     uint32_t max_cfg;
10497 
10498     if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10499         vn_max_rate = 0;
10500     } else {
10501         max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
10502 
10503         if (IS_MF_SI(sc)) {
10504             /* max_cfg in percents of linkspeed */
10505             vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
10506         } else { /* SD modes */
10507             /* max_cfg is absolute in 100Mb units */
10508             vn_max_rate = (max_cfg * 100);
10509         }
10510     }
10511 
10512     BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
10513 
10514     input->vnic_max_rate[vn] = vn_max_rate;
10515 }
10516 
10517 static void
10518 bxe_cmng_fns_init(struct bxe_softc *sc,
10519                   uint8_t          read_cfg,
10520                   uint8_t          cmng_type)
10521 {
10522     struct cmng_init_input input;
10523     int vn;
10524 
10525     memset(&input, 0, sizeof(struct cmng_init_input));
10526 
10527     input.port_rate = sc->link_vars.line_speed;
10528 
10529     if (cmng_type == CMNG_FNS_MINMAX) {
10530         /* read mf conf from shmem */
10531         if (read_cfg) {
10532             bxe_read_mf_cfg(sc);
10533         }
10534 
10535         /* get VN min rate and enable fairness if not 0 */
10536         bxe_calc_vn_min(sc, &input);
10537 
10538         /* get VN max rate */
10539         if (sc->port.pmf) {
10540             for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10541                 bxe_calc_vn_max(sc, vn, &input);
10542             }
10543         }
10544 
10545         /* always enable rate shaping and fairness */
10546         input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
10547 
10548         ecore_init_cmng(&input, &sc->cmng);
10549         return;
10550     }
10551 
10552     /* rate shaping and fairness are disabled */
10553     BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10554 }
10555 
10556 static int
10557 bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10558 {
10559     if (CHIP_REV_IS_SLOW(sc)) {
10560         return (CMNG_FNS_NONE);
10561     }
10562 
10563     if (IS_MF(sc)) {
10564         return (CMNG_FNS_MINMAX);
10565     }
10566 
10567     return (CMNG_FNS_NONE);
10568 }
10569 
10570 static void
10571 storm_memset_cmng(struct bxe_softc *sc,
10572                   struct cmng_init *cmng,
10573                   uint8_t          port)
10574 {
10575     int vn;
10576     int func;
10577     uint32_t addr;
10578     size_t size;
10579 
10580     addr = (BAR_XSTRORM_INTMEM +
10581             XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10582     size = sizeof(struct cmng_struct_per_port);
10583     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10584 
10585     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10586         func = func_by_vn(sc, vn);
10587 
10588         addr = (BAR_XSTRORM_INTMEM +
10589                 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10590         size = sizeof(struct rate_shaping_vars_per_vn);
10591         ecore_storm_memset_struct(sc, addr, size,
10592                                   (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10593 
10594         addr = (BAR_XSTRORM_INTMEM +
10595                 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10596         size = sizeof(struct fairness_vars_per_vn);
10597         ecore_storm_memset_struct(sc, addr, size,
10598                                   (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10599     }
10600 }
10601 
10602 static void
10603 bxe_pf_init(struct bxe_softc *sc)
10604 {
10605     struct bxe_func_init_params func_init = { 0 };
10606     struct event_ring_data eq_data = { { 0 } };
10607     uint16_t flags;
10608 
10609     if (!CHIP_IS_E1x(sc)) {
10610         /* reset IGU PF statistics: MSIX + ATTN */
10611         /* PF */
10612         REG_WR(sc,
10613                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10614                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10615                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10616                0);
10617         /* ATTN */
10618         REG_WR(sc,
10619                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10620                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10621                 (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10622                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10623                0);
10624     }
10625 
10626     /* function setup flags */
10627     flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10628 
10629     /*
10630      * This flag is relevant for E1x only.
10631      * E2 doesn't have a TPA configuration in a function level.
10632      */
10633     flags |= (sc->ifnet->if_capenable & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10634 
10635     func_init.func_flgs = flags;
10636     func_init.pf_id     = SC_FUNC(sc);
10637     func_init.func_id   = SC_FUNC(sc);
10638     func_init.spq_map   = sc->spq_dma.paddr;
10639     func_init.spq_prod  = sc->spq_prod_idx;
10640 
10641     bxe_func_init(sc, &func_init);
10642 
10643     memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10644 
10645     /*
10646      * Congestion management values depend on the link rate.
10647      * There is no active link so initial link rate is set to 10Gbps.
10648      * When the link comes up the congestion management values are
10649      * re-calculated according to the actual link rate.
10650      */
10651     sc->link_vars.line_speed = SPEED_10000;
10652     bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10653 
10654     /* Only the PMF sets the HW */
10655     if (sc->port.pmf) {
10656         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10657     }
10658 
10659     /* init Event Queue - PCI bus guarantees correct endainity */
10660     eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10661     eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10662     eq_data.producer     = sc->eq_prod;
10663     eq_data.index_id     = HC_SP_INDEX_EQ_CONS;
10664     eq_data.sb_id        = DEF_SB_ID;
10665     storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10666 }
10667 
10668 static void
10669 bxe_hc_int_enable(struct bxe_softc *sc)
10670 {
10671     int port = SC_PORT(sc);
10672     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10673     uint32_t val = REG_RD(sc, addr);
10674     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10675     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10676                            (sc->intr_count == 1)) ? TRUE : FALSE;
10677     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10678 
10679     if (msix) {
10680         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10681                  HC_CONFIG_0_REG_INT_LINE_EN_0);
10682         val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10683                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10684         if (single_msix) {
10685             val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10686         }
10687     } else if (msi) {
10688         val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10689         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10690                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10691                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10692     } else {
10693         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10694                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10695                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10696                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10697 
10698         if (!CHIP_IS_E1(sc)) {
10699             BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10700                   val, port, addr);
10701 
10702             REG_WR(sc, addr, val);
10703 
10704             val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10705         }
10706     }
10707 
10708     if (CHIP_IS_E1(sc)) {
10709         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10710     }
10711 
10712     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10713           val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10714 
10715     REG_WR(sc, addr, val);
10716 
10717     /* ensure that HC_CONFIG is written before leading/trailing edge config */
10718     mb();
10719 
10720     if (!CHIP_IS_E1(sc)) {
10721         /* init leading/trailing edge */
10722         if (IS_MF(sc)) {
10723             val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10724             if (sc->port.pmf) {
10725                 /* enable nig and gpio3 attention */
10726                 val |= 0x1100;
10727             }
10728         } else {
10729             val = 0xffff;
10730         }
10731 
10732         REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10733         REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10734     }
10735 
10736     /* make sure that interrupts are indeed enabled from here on */
10737     mb();
10738 }
10739 
10740 static void
10741 bxe_igu_int_enable(struct bxe_softc *sc)
10742 {
10743     uint32_t val;
10744     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10745     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10746                            (sc->intr_count == 1)) ? TRUE : FALSE;
10747     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10748 
10749     val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10750 
10751     if (msix) {
10752         val &= ~(IGU_PF_CONF_INT_LINE_EN |
10753                  IGU_PF_CONF_SINGLE_ISR_EN);
10754         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10755                 IGU_PF_CONF_ATTN_BIT_EN);
10756         if (single_msix) {
10757             val |= IGU_PF_CONF_SINGLE_ISR_EN;
10758         }
10759     } else if (msi) {
10760         val &= ~IGU_PF_CONF_INT_LINE_EN;
10761         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10762                 IGU_PF_CONF_ATTN_BIT_EN |
10763                 IGU_PF_CONF_SINGLE_ISR_EN);
10764     } else {
10765         val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10766         val |= (IGU_PF_CONF_INT_LINE_EN |
10767                 IGU_PF_CONF_ATTN_BIT_EN |
10768                 IGU_PF_CONF_SINGLE_ISR_EN);
10769     }
10770 
10771     /* clean previous status - need to configure igu prior to ack*/
10772     if ((!msix) || single_msix) {
10773         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10774         bxe_ack_int(sc);
10775     }
10776 
10777     val |= IGU_PF_CONF_FUNC_EN;
10778 
10779     BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10780           val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10781 
10782     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10783 
10784     mb();
10785 
10786     /* init leading/trailing edge */
10787     if (IS_MF(sc)) {
10788         val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10789         if (sc->port.pmf) {
10790             /* enable nig and gpio3 attention */
10791             val |= 0x1100;
10792         }
10793     } else {
10794         val = 0xffff;
10795     }
10796 
10797     REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10798     REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10799 
10800     /* make sure that interrupts are indeed enabled from here on */
10801     mb();
10802 }
10803 
10804 static void
10805 bxe_int_enable(struct bxe_softc *sc)
10806 {
10807     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10808         bxe_hc_int_enable(sc);
10809     } else {
10810         bxe_igu_int_enable(sc);
10811     }
10812 }
10813 
10814 static void
10815 bxe_hc_int_disable(struct bxe_softc *sc)
10816 {
10817     int port = SC_PORT(sc);
10818     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10819     uint32_t val = REG_RD(sc, addr);
10820 
10821     /*
10822      * In E1 we must use only PCI configuration space to disable MSI/MSIX
10823      * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10824      * block
10825      */
10826     if (CHIP_IS_E1(sc)) {
10827         /*
10828          * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10829          * to prevent from HC sending interrupts after we exit the function
10830          */
10831         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10832 
10833         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10834                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10835                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10836     } else {
10837         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10838                  HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10839                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10840                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10841     }
10842 
10843     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10844 
10845     /* flush all outstanding writes */
10846     mb();
10847 
10848     REG_WR(sc, addr, val);
10849     if (REG_RD(sc, addr) != val) {
10850         BLOGE(sc, "proper val not read from HC IGU!\n");
10851     }
10852 }
10853 
10854 static void
10855 bxe_igu_int_disable(struct bxe_softc *sc)
10856 {
10857     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10858 
10859     val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10860              IGU_PF_CONF_INT_LINE_EN |
10861              IGU_PF_CONF_ATTN_BIT_EN);
10862 
10863     BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10864 
10865     /* flush all outstanding writes */
10866     mb();
10867 
10868     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10869     if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10870         BLOGE(sc, "proper val not read from IGU!\n");
10871     }
10872 }
10873 
10874 static void
10875 bxe_int_disable(struct bxe_softc *sc)
10876 {
10877     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10878         bxe_hc_int_disable(sc);
10879     } else {
10880         bxe_igu_int_disable(sc);
10881     }
10882 }
10883 
10884 static void
10885 bxe_nic_init(struct bxe_softc *sc,
10886              int              load_code)
10887 {
10888     int i;
10889 
10890     for (i = 0; i < sc->num_queues; i++) {
10891         bxe_init_eth_fp(sc, i);
10892     }
10893 
10894     rmb(); /* ensure status block indices were read */
10895 
10896     bxe_init_rx_rings(sc);
10897     bxe_init_tx_rings(sc);
10898 
10899     if (IS_VF(sc)) {
10900         return;
10901     }
10902 
10903     /* initialize MOD_ABS interrupts */
10904     elink_init_mod_abs_int(sc, &sc->link_vars,
10905                            sc->devinfo.chip_id,
10906                            sc->devinfo.shmem_base,
10907                            sc->devinfo.shmem2_base,
10908                            SC_PORT(sc));
10909 
10910     bxe_init_def_sb(sc);
10911     bxe_update_dsb_idx(sc);
10912     bxe_init_sp_ring(sc);
10913     bxe_init_eq_ring(sc);
10914     bxe_init_internal(sc, load_code);
10915     bxe_pf_init(sc);
10916     bxe_stats_init(sc);
10917 
10918     /* flush all before enabling interrupts */
10919     mb();
10920 
10921     bxe_int_enable(sc);
10922 
10923     /* check for SPIO5 */
10924     bxe_attn_int_deasserted0(sc,
10925                              REG_RD(sc,
10926                                     (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10927                                      SC_PORT(sc)*4)) &
10928                              AEU_INPUTS_ATTN_BITS_SPIO5);
10929 }
10930 
10931 static inline void
10932 bxe_init_objs(struct bxe_softc *sc)
10933 {
10934     /* mcast rules must be added to tx if tx switching is enabled */
10935     ecore_obj_type o_type =
10936         (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10937                                          ECORE_OBJ_TYPE_RX;
10938 
10939     /* RX_MODE controlling object */
10940     ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10941 
10942     /* multicast configuration controlling object */
10943     ecore_init_mcast_obj(sc,
10944                          &sc->mcast_obj,
10945                          sc->fp[0].cl_id,
10946                          sc->fp[0].index,
10947                          SC_FUNC(sc),
10948                          SC_FUNC(sc),
10949                          BXE_SP(sc, mcast_rdata),
10950                          BXE_SP_MAPPING(sc, mcast_rdata),
10951                          ECORE_FILTER_MCAST_PENDING,
10952                          &sc->sp_state,
10953                          o_type);
10954 
10955     /* Setup CAM credit pools */
10956     ecore_init_mac_credit_pool(sc,
10957                                &sc->macs_pool,
10958                                SC_FUNC(sc),
10959                                CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10960                                                  VNICS_PER_PATH(sc));
10961 
10962     ecore_init_vlan_credit_pool(sc,
10963                                 &sc->vlans_pool,
10964                                 SC_ABS_FUNC(sc) >> 1,
10965                                 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10966                                                   VNICS_PER_PATH(sc));
10967 
10968     /* RSS configuration object */
10969     ecore_init_rss_config_obj(sc,
10970                               &sc->rss_conf_obj,
10971                               sc->fp[0].cl_id,
10972                               sc->fp[0].index,
10973                               SC_FUNC(sc),
10974                               SC_FUNC(sc),
10975                               BXE_SP(sc, rss_rdata),
10976                               BXE_SP_MAPPING(sc, rss_rdata),
10977                               ECORE_FILTER_RSS_CONF_PENDING,
10978                               &sc->sp_state, ECORE_OBJ_TYPE_RX);
10979 }
10980 
10981 /*
10982  * Initialize the function. This must be called before sending CLIENT_SETUP
10983  * for the first client.
10984  */
10985 static inline int
10986 bxe_func_start(struct bxe_softc *sc)
10987 {
10988     struct ecore_func_state_params func_params = { NULL };
10989     struct ecore_func_start_params *start_params = &func_params.params.start;
10990 
10991     /* Prepare parameters for function state transitions */
10992     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
10993 
10994     func_params.f_obj = &sc->func_obj;
10995     func_params.cmd = ECORE_F_CMD_START;
10996 
10997     /* Function parameters */
10998     start_params->mf_mode     = sc->devinfo.mf_info.mf_mode;
10999     start_params->sd_vlan_tag = OVLAN(sc);
11000 
11001     if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
11002         start_params->network_cos_mode = STATIC_COS;
11003     } else { /* CHIP_IS_E1X */
11004         start_params->network_cos_mode = FW_WRR;
11005     }
11006 
11007     start_params->gre_tunnel_mode = 0;
11008     start_params->gre_tunnel_rss  = 0;
11009 
11010     return (ecore_func_state_change(sc, &func_params));
11011 }
11012 
11013 static int
11014 bxe_set_power_state(struct bxe_softc *sc,
11015                     uint8_t          state)
11016 {
11017     uint16_t pmcsr;
11018 
11019     /* If there is no power capability, silently succeed */
11020     if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
11021         BLOGW(sc, "No power capability\n");
11022         return (0);
11023     }
11024 
11025     pmcsr = pci_read_config(sc->dev,
11026                             (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11027                             2);
11028 
11029     switch (state) {
11030     case PCI_PM_D0:
11031         pci_write_config(sc->dev,
11032                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11033                          ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
11034 
11035         if (pmcsr & PCIM_PSTAT_DMASK) {
11036             /* delay required during transition out of D3hot */
11037             DELAY(20000);
11038         }
11039 
11040         break;
11041 
11042     case PCI_PM_D3hot:
11043         /* XXX if there are other clients above don't shut down the power */
11044 
11045         /* don't shut down the power for emulation and FPGA */
11046         if (CHIP_REV_IS_SLOW(sc)) {
11047             return (0);
11048         }
11049 
11050         pmcsr &= ~PCIM_PSTAT_DMASK;
11051         pmcsr |= PCIM_PSTAT_D3;
11052 
11053         if (sc->wol) {
11054             pmcsr |= PCIM_PSTAT_PMEENABLE;
11055         }
11056 
11057         pci_write_config(sc->dev,
11058                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11059                          pmcsr, 4);
11060 
11061         /*
11062          * No more memory access after this point until device is brought back
11063          * to D0 state.
11064          */
11065         break;
11066 
11067     default:
11068         BLOGE(sc, "Can't support PCI power state = %d\n", state);
11069         return (-1);
11070     }
11071 
11072     return (0);
11073 }
11074 
11075 
11076 /* return true if succeeded to acquire the lock */
11077 static uint8_t
11078 bxe_trylock_hw_lock(struct bxe_softc *sc,
11079                     uint32_t         resource)
11080 {
11081     uint32_t lock_status;
11082     uint32_t resource_bit = (1 << resource);
11083     int func = SC_FUNC(sc);
11084     uint32_t hw_lock_control_reg;
11085 
11086     BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
11087 
11088     /* Validating that the resource is within range */
11089     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
11090         BLOGD(sc, DBG_LOAD,
11091               "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
11092               resource, HW_LOCK_MAX_RESOURCE_VALUE);
11093         return (FALSE);
11094     }
11095 
11096     if (func <= 5) {
11097         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
11098     } else {
11099         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
11100     }
11101 
11102     /* try to acquire the lock */
11103     REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
11104     lock_status = REG_RD(sc, hw_lock_control_reg);
11105     if (lock_status & resource_bit) {
11106         return (TRUE);
11107     }
11108 
11109     BLOGE(sc, "Failed to get a resource lock 0x%x\n", resource);
11110 
11111     return (FALSE);
11112 }
11113 
11114 /*
11115  * Get the recovery leader resource id according to the engine this function
11116  * belongs to. Currently only only 2 engines is supported.
11117  */
11118 static int
11119 bxe_get_leader_lock_resource(struct bxe_softc *sc)
11120 {
11121     if (SC_PATH(sc)) {
11122         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
11123     } else {
11124         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
11125     }
11126 }
11127 
11128 /* try to acquire a leader lock for current engine */
11129 static uint8_t
11130 bxe_trylock_leader_lock(struct bxe_softc *sc)
11131 {
11132     return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11133 }
11134 
11135 static int
11136 bxe_release_leader_lock(struct bxe_softc *sc)
11137 {
11138     return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11139 }
11140 
11141 /* close gates #2, #3 and #4 */
11142 static void
11143 bxe_set_234_gates(struct bxe_softc *sc,
11144                   uint8_t          close)
11145 {
11146     uint32_t val;
11147 
11148     /* gates #2 and #4a are closed/opened for "not E1" only */
11149     if (!CHIP_IS_E1(sc)) {
11150         /* #4 */
11151         REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
11152         /* #2 */
11153         REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
11154     }
11155 
11156     /* #3 */
11157     if (CHIP_IS_E1x(sc)) {
11158         /* prevent interrupts from HC on both ports */
11159         val = REG_RD(sc, HC_REG_CONFIG_1);
11160         REG_WR(sc, HC_REG_CONFIG_1,
11161                (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
11162                (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
11163 
11164         val = REG_RD(sc, HC_REG_CONFIG_0);
11165         REG_WR(sc, HC_REG_CONFIG_0,
11166                (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
11167                (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
11168     } else {
11169         /* Prevent incomming interrupts in IGU */
11170         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
11171 
11172         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
11173                (!close) ?
11174                (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
11175                (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
11176     }
11177 
11178     BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
11179           close ? "closing" : "opening");
11180 
11181     wmb();
11182 }
11183 
11184 /* poll for pending writes bit, it should get cleared in no more than 1s */
11185 static int
11186 bxe_er_poll_igu_vq(struct bxe_softc *sc)
11187 {
11188     uint32_t cnt = 1000;
11189     uint32_t pend_bits = 0;
11190 
11191     do {
11192         pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
11193 
11194         if (pend_bits == 0) {
11195             break;
11196         }
11197 
11198         DELAY(1000);
11199     } while (--cnt > 0);
11200 
11201     if (cnt == 0) {
11202         BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
11203         return (-1);
11204     }
11205 
11206     return (0);
11207 }
11208 
11209 #define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
11210 
11211 static void
11212 bxe_clp_reset_prep(struct bxe_softc *sc,
11213                    uint32_t         *magic_val)
11214 {
11215     /* Do some magic... */
11216     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11217     *magic_val = val & SHARED_MF_CLP_MAGIC;
11218     MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
11219 }
11220 
11221 /* restore the value of the 'magic' bit */
11222 static void
11223 bxe_clp_reset_done(struct bxe_softc *sc,
11224                    uint32_t         magic_val)
11225 {
11226     /* Restore the 'magic' bit value... */
11227     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11228     MFCFG_WR(sc, shared_mf_config.clp_mb,
11229               (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
11230 }
11231 
11232 /* prepare for MCP reset, takes care of CLP configurations */
11233 static void
11234 bxe_reset_mcp_prep(struct bxe_softc *sc,
11235                    uint32_t         *magic_val)
11236 {
11237     uint32_t shmem;
11238     uint32_t validity_offset;
11239 
11240     /* set `magic' bit in order to save MF config */
11241     if (!CHIP_IS_E1(sc)) {
11242         bxe_clp_reset_prep(sc, magic_val);
11243     }
11244 
11245     /* get shmem offset */
11246     shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11247     validity_offset =
11248         offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
11249 
11250     /* Clear validity map flags */
11251     if (shmem > 0) {
11252         REG_WR(sc, shmem + validity_offset, 0);
11253     }
11254 }
11255 
11256 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
11257 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
11258 
11259 static void
11260 bxe_mcp_wait_one(struct bxe_softc *sc)
11261 {
11262     /* special handling for emulation and FPGA (10 times longer) */
11263     if (CHIP_REV_IS_SLOW(sc)) {
11264         DELAY((MCP_ONE_TIMEOUT*10) * 1000);
11265     } else {
11266         DELAY((MCP_ONE_TIMEOUT) * 1000);
11267     }
11268 }
11269 
11270 /* initialize shmem_base and waits for validity signature to appear */
11271 static int
11272 bxe_init_shmem(struct bxe_softc *sc)
11273 {
11274     int cnt = 0;
11275     uint32_t val = 0;
11276 
11277     do {
11278         sc->devinfo.shmem_base     =
11279         sc->link_params.shmem_base =
11280             REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11281 
11282         if (sc->devinfo.shmem_base) {
11283             val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
11284             if (val & SHR_MEM_VALIDITY_MB)
11285                 return (0);
11286         }
11287 
11288         bxe_mcp_wait_one(sc);
11289 
11290     } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
11291 
11292     BLOGE(sc, "BAD MCP validity signature\n");
11293 
11294     return (-1);
11295 }
11296 
11297 static int
11298 bxe_reset_mcp_comp(struct bxe_softc *sc,
11299                    uint32_t         magic_val)
11300 {
11301     int rc = bxe_init_shmem(sc);
11302 
11303     /* Restore the `magic' bit value */
11304     if (!CHIP_IS_E1(sc)) {
11305         bxe_clp_reset_done(sc, magic_val);
11306     }
11307 
11308     return (rc);
11309 }
11310 
11311 static void
11312 bxe_pxp_prep(struct bxe_softc *sc)
11313 {
11314     if (!CHIP_IS_E1(sc)) {
11315         REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
11316         REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
11317         wmb();
11318     }
11319 }
11320 
11321 /*
11322  * Reset the whole chip except for:
11323  *      - PCIE core
11324  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
11325  *      - IGU
11326  *      - MISC (including AEU)
11327  *      - GRC
11328  *      - RBCN, RBCP
11329  */
11330 static void
11331 bxe_process_kill_chip_reset(struct bxe_softc *sc,
11332                             uint8_t          global)
11333 {
11334     uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
11335     uint32_t global_bits2, stay_reset2;
11336 
11337     /*
11338      * Bits that have to be set in reset_mask2 if we want to reset 'global'
11339      * (per chip) blocks.
11340      */
11341     global_bits2 =
11342         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
11343         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
11344 
11345     /*
11346      * Don't reset the following blocks.
11347      * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
11348      *            reset, as in 4 port device they might still be owned
11349      *            by the MCP (there is only one leader per path).
11350      */
11351     not_reset_mask1 =
11352         MISC_REGISTERS_RESET_REG_1_RST_HC |
11353         MISC_REGISTERS_RESET_REG_1_RST_PXPV |
11354         MISC_REGISTERS_RESET_REG_1_RST_PXP;
11355 
11356     not_reset_mask2 =
11357         MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
11358         MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
11359         MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
11360         MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
11361         MISC_REGISTERS_RESET_REG_2_RST_RBCN |
11362         MISC_REGISTERS_RESET_REG_2_RST_GRC  |
11363         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
11364         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
11365         MISC_REGISTERS_RESET_REG_2_RST_ATC |
11366         MISC_REGISTERS_RESET_REG_2_PGLC |
11367         MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
11368         MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
11369         MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
11370         MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
11371         MISC_REGISTERS_RESET_REG_2_UMAC0 |
11372         MISC_REGISTERS_RESET_REG_2_UMAC1;
11373 
11374     /*
11375      * Keep the following blocks in reset:
11376      *  - all xxMACs are handled by the elink code.
11377      */
11378     stay_reset2 =
11379         MISC_REGISTERS_RESET_REG_2_XMAC |
11380         MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
11381 
11382     /* Full reset masks according to the chip */
11383     reset_mask1 = 0xffffffff;
11384 
11385     if (CHIP_IS_E1(sc))
11386         reset_mask2 = 0xffff;
11387     else if (CHIP_IS_E1H(sc))
11388         reset_mask2 = 0x1ffff;
11389     else if (CHIP_IS_E2(sc))
11390         reset_mask2 = 0xfffff;
11391     else /* CHIP_IS_E3 */
11392         reset_mask2 = 0x3ffffff;
11393 
11394     /* Don't reset global blocks unless we need to */
11395     if (!global)
11396         reset_mask2 &= ~global_bits2;
11397 
11398     /*
11399      * In case of attention in the QM, we need to reset PXP
11400      * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
11401      * because otherwise QM reset would release 'close the gates' shortly
11402      * before resetting the PXP, then the PSWRQ would send a write
11403      * request to PGLUE. Then when PXP is reset, PGLUE would try to
11404      * read the payload data from PSWWR, but PSWWR would not
11405      * respond. The write queue in PGLUE would stuck, dmae commands
11406      * would not return. Therefore it's important to reset the second
11407      * reset register (containing the
11408      * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
11409      * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
11410      * bit).
11411      */
11412     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
11413            reset_mask2 & (~not_reset_mask2));
11414 
11415     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
11416            reset_mask1 & (~not_reset_mask1));
11417 
11418     mb();
11419     wmb();
11420 
11421     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
11422            reset_mask2 & (~stay_reset2));
11423 
11424     mb();
11425     wmb();
11426 
11427     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
11428     wmb();
11429 }
11430 
11431 static int
11432 bxe_process_kill(struct bxe_softc *sc,
11433                  uint8_t          global)
11434 {
11435     int cnt = 1000;
11436     uint32_t val = 0;
11437     uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
11438     uint32_t tags_63_32 = 0;
11439 
11440     /* Empty the Tetris buffer, wait for 1s */
11441     do {
11442         sr_cnt  = REG_RD(sc, PXP2_REG_RD_SR_CNT);
11443         blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
11444         port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
11445         port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
11446         pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
11447         if (CHIP_IS_E3(sc)) {
11448             tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
11449         }
11450 
11451         if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
11452             ((port_is_idle_0 & 0x1) == 0x1) &&
11453             ((port_is_idle_1 & 0x1) == 0x1) &&
11454             (pgl_exp_rom2 == 0xffffffff) &&
11455             (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
11456             break;
11457         DELAY(1000);
11458     } while (cnt-- > 0);
11459 
11460     if (cnt <= 0) {
11461         BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
11462                   "are still outstanding read requests after 1s! "
11463                   "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
11464                   "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
11465               sr_cnt, blk_cnt, port_is_idle_0,
11466               port_is_idle_1, pgl_exp_rom2);
11467         return (-1);
11468     }
11469 
11470     mb();
11471 
11472     /* Close gates #2, #3 and #4 */
11473     bxe_set_234_gates(sc, TRUE);
11474 
11475     /* Poll for IGU VQs for 57712 and newer chips */
11476     if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
11477         return (-1);
11478     }
11479 
11480     /* XXX indicate that "process kill" is in progress to MCP */
11481 
11482     /* clear "unprepared" bit */
11483     REG_WR(sc, MISC_REG_UNPREPARED, 0);
11484     mb();
11485 
11486     /* Make sure all is written to the chip before the reset */
11487     wmb();
11488 
11489     /*
11490      * Wait for 1ms to empty GLUE and PCI-E core queues,
11491      * PSWHST, GRC and PSWRD Tetris buffer.
11492      */
11493     DELAY(1000);
11494 
11495     /* Prepare to chip reset: */
11496     /* MCP */
11497     if (global) {
11498         bxe_reset_mcp_prep(sc, &val);
11499     }
11500 
11501     /* PXP */
11502     bxe_pxp_prep(sc);
11503     mb();
11504 
11505     /* reset the chip */
11506     bxe_process_kill_chip_reset(sc, global);
11507     mb();
11508 
11509     /* Recover after reset: */
11510     /* MCP */
11511     if (global && bxe_reset_mcp_comp(sc, val)) {
11512         return (-1);
11513     }
11514 
11515     /* XXX add resetting the NO_MCP mode DB here */
11516 
11517     /* Open the gates #2, #3 and #4 */
11518     bxe_set_234_gates(sc, FALSE);
11519 
11520     /* XXX
11521      * IGU/AEU preparation bring back the AEU/IGU to a reset state
11522      * re-enable attentions
11523      */
11524 
11525     return (0);
11526 }
11527 
11528 static int
11529 bxe_leader_reset(struct bxe_softc *sc)
11530 {
11531     int rc = 0;
11532     uint8_t global = bxe_reset_is_global(sc);
11533     uint32_t load_code;
11534 
11535     /*
11536      * If not going to reset MCP, load "fake" driver to reset HW while
11537      * driver is owner of the HW.
11538      */
11539     if (!global && !BXE_NOMCP(sc)) {
11540         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11541                                    DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11542         if (!load_code) {
11543             BLOGE(sc, "MCP response failure, aborting\n");
11544             rc = -1;
11545             goto exit_leader_reset;
11546         }
11547 
11548         if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11549             (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11550             BLOGE(sc, "MCP unexpected response, aborting\n");
11551             rc = -1;
11552             goto exit_leader_reset2;
11553         }
11554 
11555         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11556         if (!load_code) {
11557             BLOGE(sc, "MCP response failure, aborting\n");
11558             rc = -1;
11559             goto exit_leader_reset2;
11560         }
11561     }
11562 
11563     /* try to recover after the failure */
11564     if (bxe_process_kill(sc, global)) {
11565         BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11566         rc = -1;
11567         goto exit_leader_reset2;
11568     }
11569 
11570     /*
11571      * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11572      * state.
11573      */
11574     bxe_set_reset_done(sc);
11575     if (global) {
11576         bxe_clear_reset_global(sc);
11577     }
11578 
11579 exit_leader_reset2:
11580 
11581     /* unload "fake driver" if it was loaded */
11582     if (!global && !BXE_NOMCP(sc)) {
11583         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11584         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11585     }
11586 
11587 exit_leader_reset:
11588 
11589     sc->is_leader = 0;
11590     bxe_release_leader_lock(sc);
11591 
11592     mb();
11593     return (rc);
11594 }
11595 
11596 /*
11597  * prepare INIT transition, parameters configured:
11598  *   - HC configuration
11599  *   - Queue's CDU context
11600  */
11601 static void
11602 bxe_pf_q_prep_init(struct bxe_softc               *sc,
11603                    struct bxe_fastpath            *fp,
11604                    struct ecore_queue_init_params *init_params)
11605 {
11606     uint8_t cos;
11607     int cxt_index, cxt_offset;
11608 
11609     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11610     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11611 
11612     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11613     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11614 
11615     /* HC rate */
11616     init_params->rx.hc_rate =
11617         sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11618     init_params->tx.hc_rate =
11619         sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11620 
11621     /* FW SB ID */
11622     init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11623 
11624     /* CQ index among the SB indices */
11625     init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11626     init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11627 
11628     /* set maximum number of COSs supported by this queue */
11629     init_params->max_cos = sc->max_cos;
11630 
11631     BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11632           fp->index, init_params->max_cos);
11633 
11634     /* set the context pointers queue object */
11635     for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11636         /* XXX change index/cid here if ever support multiple tx CoS */
11637         /* fp->txdata[cos]->cid */
11638         cxt_index = fp->index / ILT_PAGE_CIDS;
11639         cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11640         init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11641     }
11642 }
11643 
11644 /* set flags that are common for the Tx-only and not normal connections */
11645 static unsigned long
11646 bxe_get_common_flags(struct bxe_softc    *sc,
11647                      struct bxe_fastpath *fp,
11648                      uint8_t             zero_stats)
11649 {
11650     unsigned long flags = 0;
11651 
11652     /* PF driver will always initialize the Queue to an ACTIVE state */
11653     bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11654 
11655     /*
11656      * tx only connections collect statistics (on the same index as the
11657      * parent connection). The statistics are zeroed when the parent
11658      * connection is initialized.
11659      */
11660 
11661     bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11662     if (zero_stats) {
11663         bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11664     }
11665 
11666     /*
11667      * tx only connections can support tx-switching, though their
11668      * CoS-ness doesn't survive the loopback
11669      */
11670     if (sc->flags & BXE_TX_SWITCHING) {
11671         bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11672     }
11673 
11674     bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11675 
11676     return (flags);
11677 }
11678 
11679 static unsigned long
11680 bxe_get_q_flags(struct bxe_softc    *sc,
11681                 struct bxe_fastpath *fp,
11682                 uint8_t             leading)
11683 {
11684     unsigned long flags = 0;
11685 
11686     if (IS_MF_SD(sc)) {
11687         bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11688     }
11689 
11690     if (sc->ifnet->if_capenable & IFCAP_LRO) {
11691         bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11692         bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11693 #if 0
11694         if (fp->mode == TPA_MODE_GRO)
11695             __set_bit(ECORE_Q_FLG_TPA_GRO, &flags);
11696 #endif
11697     }
11698 
11699     if (leading) {
11700         bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11701         bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11702     }
11703 
11704     bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11705 
11706 #if 0
11707     /* configure silent vlan removal */
11708     if (IS_MF_AFEX(sc)) {
11709         bxe_set_bit(ECORE_Q_FLG_SILENT_VLAN_REM, &flags);
11710     }
11711 #endif
11712 
11713     /* merge with common flags */
11714     return (flags | bxe_get_common_flags(sc, fp, TRUE));
11715 }
11716 
11717 static void
11718 bxe_pf_q_prep_general(struct bxe_softc                  *sc,
11719                       struct bxe_fastpath               *fp,
11720                       struct ecore_general_setup_params *gen_init,
11721                       uint8_t                           cos)
11722 {
11723     gen_init->stat_id = bxe_stats_id(fp);
11724     gen_init->spcl_id = fp->cl_id;
11725     gen_init->mtu = sc->mtu;
11726     gen_init->cos = cos;
11727 }
11728 
11729 static void
11730 bxe_pf_rx_q_prep(struct bxe_softc              *sc,
11731                  struct bxe_fastpath           *fp,
11732                  struct rxq_pause_params       *pause,
11733                  struct ecore_rxq_setup_params *rxq_init)
11734 {
11735     uint8_t max_sge = 0;
11736     uint16_t sge_sz = 0;
11737     uint16_t tpa_agg_size = 0;
11738 
11739     if (sc->ifnet->if_capenable & IFCAP_LRO) {
11740         pause->sge_th_lo = SGE_TH_LO(sc);
11741         pause->sge_th_hi = SGE_TH_HI(sc);
11742 
11743         /* validate SGE ring has enough to cross high threshold */
11744         if (sc->dropless_fc &&
11745             (pause->sge_th_hi + FW_PREFETCH_CNT) >
11746             (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11747             BLOGW(sc, "sge ring threshold limit\n");
11748         }
11749 
11750         /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11751         tpa_agg_size = (2 * sc->mtu);
11752         if (tpa_agg_size < sc->max_aggregation_size) {
11753             tpa_agg_size = sc->max_aggregation_size;
11754         }
11755 
11756         max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11757         max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11758                    (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11759         sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11760     }
11761 
11762     /* pause - not for e1 */
11763     if (!CHIP_IS_E1(sc)) {
11764         pause->bd_th_lo = BD_TH_LO(sc);
11765         pause->bd_th_hi = BD_TH_HI(sc);
11766 
11767         pause->rcq_th_lo = RCQ_TH_LO(sc);
11768         pause->rcq_th_hi = RCQ_TH_HI(sc);
11769 
11770         /* validate rings have enough entries to cross high thresholds */
11771         if (sc->dropless_fc &&
11772             pause->bd_th_hi + FW_PREFETCH_CNT >
11773             sc->rx_ring_size) {
11774             BLOGW(sc, "rx bd ring threshold limit\n");
11775         }
11776 
11777         if (sc->dropless_fc &&
11778             pause->rcq_th_hi + FW_PREFETCH_CNT >
11779             RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11780             BLOGW(sc, "rcq ring threshold limit\n");
11781         }
11782 
11783         pause->pri_map = 1;
11784     }
11785 
11786     /* rxq setup */
11787     rxq_init->dscr_map   = fp->rx_dma.paddr;
11788     rxq_init->sge_map    = fp->rx_sge_dma.paddr;
11789     rxq_init->rcq_map    = fp->rcq_dma.paddr;
11790     rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11791 
11792     /*
11793      * This should be a maximum number of data bytes that may be
11794      * placed on the BD (not including paddings).
11795      */
11796     rxq_init->buf_sz = (fp->rx_buf_size -
11797                         IP_HEADER_ALIGNMENT_PADDING);
11798 
11799     rxq_init->cl_qzone_id     = fp->cl_qzone_id;
11800     rxq_init->tpa_agg_sz      = tpa_agg_size;
11801     rxq_init->sge_buf_sz      = sge_sz;
11802     rxq_init->max_sges_pkt    = max_sge;
11803     rxq_init->rss_engine_id   = SC_FUNC(sc);
11804     rxq_init->mcast_engine_id = SC_FUNC(sc);
11805 
11806     /*
11807      * Maximum number or simultaneous TPA aggregation for this Queue.
11808      * For PF Clients it should be the maximum available number.
11809      * VF driver(s) may want to define it to a smaller value.
11810      */
11811     rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11812 
11813     rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11814     rxq_init->fw_sb_id = fp->fw_sb_id;
11815 
11816     rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11817 
11818     /*
11819      * configure silent vlan removal
11820      * if multi function mode is afex, then mask default vlan
11821      */
11822     if (IS_MF_AFEX(sc)) {
11823         rxq_init->silent_removal_value =
11824             sc->devinfo.mf_info.afex_def_vlan_tag;
11825         rxq_init->silent_removal_mask = EVL_VLID_MASK;
11826     }
11827 }
11828 
11829 static void
11830 bxe_pf_tx_q_prep(struct bxe_softc              *sc,
11831                  struct bxe_fastpath           *fp,
11832                  struct ecore_txq_setup_params *txq_init,
11833                  uint8_t                       cos)
11834 {
11835     /*
11836      * XXX If multiple CoS is ever supported then each fastpath structure
11837      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11838      * fp->txdata[cos]->tx_dma.paddr;
11839      */
11840     txq_init->dscr_map     = fp->tx_dma.paddr;
11841     txq_init->sb_cq_index  = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11842     txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11843     txq_init->fw_sb_id     = fp->fw_sb_id;
11844 
11845     /*
11846      * set the TSS leading client id for TX classfication to the
11847      * leading RSS client id
11848      */
11849     txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11850 }
11851 
11852 /*
11853  * This function performs 2 steps in a queue state machine:
11854  *   1) RESET->INIT
11855  *   2) INIT->SETUP
11856  */
11857 static int
11858 bxe_setup_queue(struct bxe_softc    *sc,
11859                 struct bxe_fastpath *fp,
11860                 uint8_t             leading)
11861 {
11862     struct ecore_queue_state_params q_params = { NULL };
11863     struct ecore_queue_setup_params *setup_params =
11864                         &q_params.params.setup;
11865 #if 0
11866     struct ecore_queue_setup_tx_only_params *tx_only_params =
11867                         &q_params.params.tx_only;
11868     uint8_t tx_index;
11869 #endif
11870     int rc;
11871 
11872     BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11873 
11874     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11875 
11876     q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11877 
11878     /* we want to wait for completion in this context */
11879     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11880 
11881     /* prepare the INIT parameters */
11882     bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11883 
11884     /* Set the command */
11885     q_params.cmd = ECORE_Q_CMD_INIT;
11886 
11887     /* Change the state to INIT */
11888     rc = ecore_queue_state_change(sc, &q_params);
11889     if (rc) {
11890         BLOGE(sc, "Queue(%d) INIT failed\n", fp->index);
11891         return (rc);
11892     }
11893 
11894     BLOGD(sc, DBG_LOAD, "init complete\n");
11895 
11896     /* now move the Queue to the SETUP state */
11897     memset(setup_params, 0, sizeof(*setup_params));
11898 
11899     /* set Queue flags */
11900     setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11901 
11902     /* set general SETUP parameters */
11903     bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11904                           FIRST_TX_COS_INDEX);
11905 
11906     bxe_pf_rx_q_prep(sc, fp,
11907                      &setup_params->pause_params,
11908                      &setup_params->rxq_params);
11909 
11910     bxe_pf_tx_q_prep(sc, fp,
11911                      &setup_params->txq_params,
11912                      FIRST_TX_COS_INDEX);
11913 
11914     /* Set the command */
11915     q_params.cmd = ECORE_Q_CMD_SETUP;
11916 
11917     /* change the state to SETUP */
11918     rc = ecore_queue_state_change(sc, &q_params);
11919     if (rc) {
11920         BLOGE(sc, "Queue(%d) SETUP failed\n", fp->index);
11921         return (rc);
11922     }
11923 
11924 #if 0
11925     /* loop through the relevant tx-only indices */
11926     for (tx_index = FIRST_TX_ONLY_COS_INDEX;
11927          tx_index < sc->max_cos;
11928          tx_index++) {
11929         /* prepare and send tx-only ramrod*/
11930         rc = bxe_setup_tx_only(sc, fp, &q_params,
11931                                tx_only_params, tx_index, leading);
11932         if (rc) {
11933             BLOGE(sc, "Queue(%d.%d) TX_ONLY_SETUP failed\n",
11934                   fp->index, tx_index);
11935             return (rc);
11936         }
11937     }
11938 #endif
11939 
11940     return (rc);
11941 }
11942 
11943 static int
11944 bxe_setup_leading(struct bxe_softc *sc)
11945 {
11946     return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11947 }
11948 
11949 static int
11950 bxe_config_rss_pf(struct bxe_softc            *sc,
11951                   struct ecore_rss_config_obj *rss_obj,
11952                   uint8_t                     config_hash)
11953 {
11954     struct ecore_config_rss_params params = { NULL };
11955     int i;
11956 
11957     /*
11958      * Although RSS is meaningless when there is a single HW queue we
11959      * still need it enabled in order to have HW Rx hash generated.
11960      */
11961 
11962     params.rss_obj = rss_obj;
11963 
11964     bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11965 
11966     bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11967 
11968     /* RSS configuration */
11969     bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11970     bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11971     bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11972     bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11973     if (rss_obj->udp_rss_v4) {
11974         bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11975     }
11976     if (rss_obj->udp_rss_v6) {
11977         bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11978     }
11979 
11980     /* Hash bits */
11981     params.rss_result_mask = MULTI_MASK;
11982 
11983     memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
11984 
11985     if (config_hash) {
11986         /* RSS keys */
11987         for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
11988             params.rss_key[i] = arc4random();
11989         }
11990 
11991         bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
11992     }
11993 
11994     return (ecore_config_rss(sc, &params));
11995 }
11996 
11997 static int
11998 bxe_config_rss_eth(struct bxe_softc *sc,
11999                    uint8_t          config_hash)
12000 {
12001     return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
12002 }
12003 
12004 static int
12005 bxe_init_rss_pf(struct bxe_softc *sc)
12006 {
12007     uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
12008     int i;
12009 
12010     /*
12011      * Prepare the initial contents of the indirection table if
12012      * RSS is enabled
12013      */
12014     for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
12015         sc->rss_conf_obj.ind_table[i] =
12016             (sc->fp->cl_id + (i % num_eth_queues));
12017     }
12018 
12019     if (sc->udp_rss) {
12020         sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
12021     }
12022 
12023     /*
12024      * For 57710 and 57711 SEARCHER configuration (rss_keys) is
12025      * per-port, so if explicit configuration is needed, do it only
12026      * for a PMF.
12027      *
12028      * For 57712 and newer it's a per-function configuration.
12029      */
12030     return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
12031 }
12032 
12033 static int
12034 bxe_set_mac_one(struct bxe_softc          *sc,
12035                 uint8_t                   *mac,
12036                 struct ecore_vlan_mac_obj *obj,
12037                 uint8_t                   set,
12038                 int                       mac_type,
12039                 unsigned long             *ramrod_flags)
12040 {
12041     struct ecore_vlan_mac_ramrod_params ramrod_param;
12042     int rc;
12043 
12044     memset(&ramrod_param, 0, sizeof(ramrod_param));
12045 
12046     /* fill in general parameters */
12047     ramrod_param.vlan_mac_obj = obj;
12048     ramrod_param.ramrod_flags = *ramrod_flags;
12049 
12050     /* fill a user request section if needed */
12051     if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
12052         memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
12053 
12054         bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
12055 
12056         /* Set the command: ADD or DEL */
12057         ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
12058                                             ECORE_VLAN_MAC_DEL;
12059     }
12060 
12061     rc = ecore_config_vlan_mac(sc, &ramrod_param);
12062 
12063     if (rc == ECORE_EXISTS) {
12064         BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12065         /* do not treat adding same MAC as error */
12066         rc = 0;
12067     } else if (rc < 0) {
12068         BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
12069     }
12070 
12071     return (rc);
12072 }
12073 
12074 static int
12075 bxe_set_eth_mac(struct bxe_softc *sc,
12076                 uint8_t          set)
12077 {
12078     unsigned long ramrod_flags = 0;
12079 
12080     BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
12081 
12082     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12083 
12084     /* Eth MAC is set on RSS leading client (fp[0]) */
12085     return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
12086                             &sc->sp_objs->mac_obj,
12087                             set, ECORE_ETH_MAC, &ramrod_flags));
12088 }
12089 
12090 #if 0
12091 static void
12092 bxe_update_max_mf_config(struct bxe_softc *sc,
12093                          uint32_t         value)
12094 {
12095     /* load old values */
12096     uint32_t mf_cfg = sc->devinfo.mf_info.mf_config[SC_VN(sc)];
12097 
12098     if (value != bxe_extract_max_cfg(sc, mf_cfg)) {
12099         /* leave all but MAX value */
12100         mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
12101 
12102         /* set new MAX value */
12103         mf_cfg |= ((value << FUNC_MF_CFG_MAX_BW_SHIFT) &
12104                    FUNC_MF_CFG_MAX_BW_MASK);
12105 
12106         bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
12107     }
12108 }
12109 #endif
12110 
12111 static int
12112 bxe_get_cur_phy_idx(struct bxe_softc *sc)
12113 {
12114     uint32_t sel_phy_idx = 0;
12115 
12116     if (sc->link_params.num_phys <= 1) {
12117         return (ELINK_INT_PHY);
12118     }
12119 
12120     if (sc->link_vars.link_up) {
12121         sel_phy_idx = ELINK_EXT_PHY1;
12122         /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
12123         if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
12124             (sc->link_params.phy[ELINK_EXT_PHY2].supported &
12125              ELINK_SUPPORTED_FIBRE))
12126             sel_phy_idx = ELINK_EXT_PHY2;
12127     } else {
12128         switch (elink_phy_selection(&sc->link_params)) {
12129         case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
12130         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
12131         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
12132                sel_phy_idx = ELINK_EXT_PHY1;
12133                break;
12134         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
12135         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
12136                sel_phy_idx = ELINK_EXT_PHY2;
12137                break;
12138         }
12139     }
12140 
12141     return (sel_phy_idx);
12142 }
12143 
12144 static int
12145 bxe_get_link_cfg_idx(struct bxe_softc *sc)
12146 {
12147     uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
12148 
12149     /*
12150      * The selected activated PHY is always after swapping (in case PHY
12151      * swapping is enabled). So when swapping is enabled, we need to reverse
12152      * the configuration
12153      */
12154 
12155     if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
12156         if (sel_phy_idx == ELINK_EXT_PHY1)
12157             sel_phy_idx = ELINK_EXT_PHY2;
12158         else if (sel_phy_idx == ELINK_EXT_PHY2)
12159             sel_phy_idx = ELINK_EXT_PHY1;
12160     }
12161 
12162     return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
12163 }
12164 
12165 static void
12166 bxe_set_requested_fc(struct bxe_softc *sc)
12167 {
12168     /*
12169      * Initialize link parameters structure variables
12170      * It is recommended to turn off RX FC for jumbo frames
12171      * for better performance
12172      */
12173     if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
12174         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
12175     } else {
12176         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
12177     }
12178 }
12179 
12180 static void
12181 bxe_calc_fc_adv(struct bxe_softc *sc)
12182 {
12183     uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
12184     switch (sc->link_vars.ieee_fc &
12185             MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
12186     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
12187     default:
12188         sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
12189                                            ADVERTISED_Pause);
12190         break;
12191 
12192     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
12193         sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
12194                                           ADVERTISED_Pause);
12195         break;
12196 
12197     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
12198         sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
12199         break;
12200     }
12201 }
12202 
12203 static uint16_t
12204 bxe_get_mf_speed(struct bxe_softc *sc)
12205 {
12206     uint16_t line_speed = sc->link_vars.line_speed;
12207     if (IS_MF(sc)) {
12208         uint16_t maxCfg =
12209             bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
12210 
12211         /* calculate the current MAX line speed limit for the MF devices */
12212         if (IS_MF_SI(sc)) {
12213             line_speed = (line_speed * maxCfg) / 100;
12214         } else { /* SD mode */
12215             uint16_t vn_max_rate = maxCfg * 100;
12216 
12217             if (vn_max_rate < line_speed) {
12218                 line_speed = vn_max_rate;
12219             }
12220         }
12221     }
12222 
12223     return (line_speed);
12224 }
12225 
12226 static void
12227 bxe_fill_report_data(struct bxe_softc            *sc,
12228                      struct bxe_link_report_data *data)
12229 {
12230     uint16_t line_speed = bxe_get_mf_speed(sc);
12231 
12232     memset(data, 0, sizeof(*data));
12233 
12234     /* fill the report data with the effective line speed */
12235     data->line_speed = line_speed;
12236 
12237     /* Link is down */
12238     if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
12239         bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
12240     }
12241 
12242     /* Full DUPLEX */
12243     if (sc->link_vars.duplex == DUPLEX_FULL) {
12244         bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
12245     }
12246 
12247     /* Rx Flow Control is ON */
12248     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
12249         bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
12250     }
12251 
12252     /* Tx Flow Control is ON */
12253     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
12254         bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
12255     }
12256 }
12257 
12258 /* report link status to OS, should be called under phy_lock */
12259 static void
12260 bxe_link_report_locked(struct bxe_softc *sc)
12261 {
12262     struct bxe_link_report_data cur_data;
12263 
12264     /* reread mf_cfg */
12265     if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
12266         bxe_read_mf_cfg(sc);
12267     }
12268 
12269     /* Read the current link report info */
12270     bxe_fill_report_data(sc, &cur_data);
12271 
12272     /* Don't report link down or exactly the same link status twice */
12273     if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
12274         (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12275                       &sc->last_reported_link.link_report_flags) &&
12276          bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12277                       &cur_data.link_report_flags))) {
12278         return;
12279     }
12280 
12281     sc->link_cnt++;
12282 
12283     /* report new link params and remember the state for the next time */
12284     memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
12285 
12286     if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12287                      &cur_data.link_report_flags)) {
12288         if_link_state_change(sc->ifnet, LINK_STATE_DOWN);
12289         BLOGI(sc, "NIC Link is Down\n");
12290     } else {
12291         const char *duplex;
12292         const char *flow;
12293 
12294         if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
12295                                    &cur_data.link_report_flags)) {
12296             duplex = "full";
12297         } else {
12298             duplex = "half";
12299         }
12300 
12301         /*
12302          * Handle the FC at the end so that only these flags would be
12303          * possibly set. This way we may easily check if there is no FC
12304          * enabled.
12305          */
12306         if (cur_data.link_report_flags) {
12307             if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12308                              &cur_data.link_report_flags) &&
12309                 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12310                              &cur_data.link_report_flags)) {
12311                 flow = "ON - receive & transmit";
12312             } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12313                                     &cur_data.link_report_flags) &&
12314                        !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12315                                      &cur_data.link_report_flags)) {
12316                 flow = "ON - receive";
12317             } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12318                                      &cur_data.link_report_flags) &&
12319                        bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12320                                     &cur_data.link_report_flags)) {
12321                 flow = "ON - transmit";
12322             } else {
12323                 flow = "none"; /* possible? */
12324             }
12325         } else {
12326             flow = "none";
12327         }
12328 
12329         if_link_state_change(sc->ifnet, LINK_STATE_UP);
12330         BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
12331               cur_data.line_speed, duplex, flow);
12332     }
12333 }
12334 
12335 static void
12336 bxe_link_report(struct bxe_softc *sc)
12337 {
12338     BXE_PHY_LOCK(sc);
12339     bxe_link_report_locked(sc);
12340     BXE_PHY_UNLOCK(sc);
12341 }
12342 
12343 static void
12344 bxe_link_status_update(struct bxe_softc *sc)
12345 {
12346     if (sc->state != BXE_STATE_OPEN) {
12347         return;
12348     }
12349 
12350 #if 0
12351     /* read updated dcb configuration */
12352     if (IS_PF(sc))
12353         bxe_dcbx_pmf_update(sc);
12354 #endif
12355 
12356     if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
12357         elink_link_status_update(&sc->link_params, &sc->link_vars);
12358     } else {
12359         sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
12360                                   ELINK_SUPPORTED_10baseT_Full |
12361                                   ELINK_SUPPORTED_100baseT_Half |
12362                                   ELINK_SUPPORTED_100baseT_Full |
12363                                   ELINK_SUPPORTED_1000baseT_Full |
12364                                   ELINK_SUPPORTED_2500baseX_Full |
12365                                   ELINK_SUPPORTED_10000baseT_Full |
12366                                   ELINK_SUPPORTED_TP |
12367                                   ELINK_SUPPORTED_FIBRE |
12368                                   ELINK_SUPPORTED_Autoneg |
12369                                   ELINK_SUPPORTED_Pause |
12370                                   ELINK_SUPPORTED_Asym_Pause);
12371         sc->port.advertising[0] = sc->port.supported[0];
12372 
12373         sc->link_params.sc                = sc;
12374         sc->link_params.port              = SC_PORT(sc);
12375         sc->link_params.req_duplex[0]     = DUPLEX_FULL;
12376         sc->link_params.req_flow_ctrl[0]  = ELINK_FLOW_CTRL_NONE;
12377         sc->link_params.req_line_speed[0] = SPEED_10000;
12378         sc->link_params.speed_cap_mask[0] = 0x7f0000;
12379         sc->link_params.switch_cfg        = ELINK_SWITCH_CFG_10G;
12380 
12381         if (CHIP_REV_IS_FPGA(sc)) {
12382             sc->link_vars.mac_type    = ELINK_MAC_TYPE_EMAC;
12383             sc->link_vars.line_speed  = ELINK_SPEED_1000;
12384             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12385                                          LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
12386         } else {
12387             sc->link_vars.mac_type    = ELINK_MAC_TYPE_BMAC;
12388             sc->link_vars.line_speed  = ELINK_SPEED_10000;
12389             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12390                                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
12391         }
12392 
12393         sc->link_vars.link_up = 1;
12394 
12395         sc->link_vars.duplex    = DUPLEX_FULL;
12396         sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
12397 
12398         if (IS_PF(sc)) {
12399             REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
12400             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12401             bxe_link_report(sc);
12402         }
12403     }
12404 
12405     if (IS_PF(sc)) {
12406         if (sc->link_vars.link_up) {
12407             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12408         } else {
12409             bxe_stats_handle(sc, STATS_EVENT_STOP);
12410         }
12411         bxe_link_report(sc);
12412     } else {
12413         bxe_link_report(sc);
12414         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12415     }
12416 }
12417 
12418 static int
12419 bxe_initial_phy_init(struct bxe_softc *sc,
12420                      int              load_mode)
12421 {
12422     int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
12423     uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
12424     struct elink_params *lp = &sc->link_params;
12425 
12426     bxe_set_requested_fc(sc);
12427 
12428     if (CHIP_REV_IS_SLOW(sc)) {
12429         uint32_t bond = CHIP_BOND_ID(sc);
12430         uint32_t feat = 0;
12431 
12432         if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
12433             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12434         } else if (bond & 0x4) {
12435             if (CHIP_IS_E3(sc)) {
12436                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
12437             } else {
12438                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12439             }
12440         } else if (bond & 0x8) {
12441             if (CHIP_IS_E3(sc)) {
12442                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
12443             } else {
12444                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12445             }
12446         }
12447 
12448         /* disable EMAC for E3 and above */
12449         if (bond & 0x2) {
12450             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12451         }
12452 
12453         sc->link_params.feature_config_flags |= feat;
12454     }
12455 
12456     BXE_PHY_LOCK(sc);
12457 
12458     if (load_mode == LOAD_DIAG) {
12459         lp->loopback_mode = ELINK_LOOPBACK_XGXS;
12460         /* Prefer doing PHY loopback at 10G speed, if possible */
12461         if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
12462             if (lp->speed_cap_mask[cfg_idx] &
12463                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
12464                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
12465             } else {
12466                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
12467             }
12468         }
12469     }
12470 
12471     if (load_mode == LOAD_LOOPBACK_EXT) {
12472         lp->loopback_mode = ELINK_LOOPBACK_EXT;
12473     }
12474 
12475     rc = elink_phy_init(&sc->link_params, &sc->link_vars);
12476 
12477     BXE_PHY_UNLOCK(sc);
12478 
12479     bxe_calc_fc_adv(sc);
12480 
12481     if (sc->link_vars.link_up) {
12482         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12483         bxe_link_report(sc);
12484     }
12485 
12486     if (!CHIP_REV_IS_SLOW(sc)) {
12487         bxe_periodic_start(sc);
12488     }
12489 
12490     sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
12491     return (rc);
12492 }
12493 
12494 /* must be called under IF_ADDR_LOCK */
12495 static int
12496 bxe_init_mcast_macs_list(struct bxe_softc                 *sc,
12497                          struct ecore_mcast_ramrod_params *p)
12498 {
12499     struct ifnet *ifp = sc->ifnet;
12500     int mc_count = 0;
12501     struct ifmultiaddr *ifma;
12502     struct ecore_mcast_list_elem *mc_mac;
12503 
12504     TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
12505         if (ifma->ifma_addr->sa_family != AF_LINK) {
12506             continue;
12507         }
12508 
12509         mc_count++;
12510     }
12511 
12512     ECORE_LIST_INIT(&p->mcast_list);
12513     p->mcast_list_len = 0;
12514 
12515     if (!mc_count) {
12516         return (0);
12517     }
12518 
12519     mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF,
12520                     (M_NOWAIT | M_ZERO));
12521     if (!mc_mac) {
12522         BLOGE(sc, "Failed to allocate temp mcast list\n");
12523         return (-1);
12524     }
12525 
12526     TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
12527         if (ifma->ifma_addr->sa_family != AF_LINK) {
12528             continue;
12529         }
12530 
12531         mc_mac->mac = (uint8_t *)LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
12532         ECORE_LIST_PUSH_TAIL(&mc_mac->link, &p->mcast_list);
12533 
12534         BLOGD(sc, DBG_LOAD,
12535               "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n",
12536               mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2],
12537               mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]);
12538 
12539         mc_mac++;
12540     }
12541 
12542     p->mcast_list_len = mc_count;
12543 
12544     return (0);
12545 }
12546 
12547 static void
12548 bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p)
12549 {
12550     struct ecore_mcast_list_elem *mc_mac =
12551         ECORE_LIST_FIRST_ENTRY(&p->mcast_list,
12552                                struct ecore_mcast_list_elem,
12553                                link);
12554 
12555     if (mc_mac) {
12556         /* only a single free as all mc_macs are in the same heap array */
12557         free(mc_mac, M_DEVBUF);
12558     }
12559 }
12560 
12561 static int
12562 bxe_set_mc_list(struct bxe_softc *sc)
12563 {
12564     struct ecore_mcast_ramrod_params rparam = { NULL };
12565     int rc = 0;
12566 
12567     rparam.mcast_obj = &sc->mcast_obj;
12568 
12569     BXE_MCAST_LOCK(sc);
12570 
12571     /* first, clear all configured multicast MACs */
12572     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
12573     if (rc < 0) {
12574         BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
12575         return (rc);
12576     }
12577 
12578     /* configure a new MACs list */
12579     rc = bxe_init_mcast_macs_list(sc, &rparam);
12580     if (rc) {
12581         BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc);
12582         BXE_MCAST_UNLOCK(sc);
12583         return (rc);
12584     }
12585 
12586     /* Now add the new MACs */
12587     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
12588     if (rc < 0) {
12589         BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
12590     }
12591 
12592     bxe_free_mcast_macs_list(&rparam);
12593 
12594     BXE_MCAST_UNLOCK(sc);
12595 
12596     return (rc);
12597 }
12598 
12599 static int
12600 bxe_set_uc_list(struct bxe_softc *sc)
12601 {
12602     struct ifnet *ifp = sc->ifnet;
12603     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
12604     struct ifaddr *ifa;
12605     unsigned long ramrod_flags = 0;
12606     int rc;
12607 
12608 #if __FreeBSD_version < 800000
12609     IF_ADDR_LOCK(ifp);
12610 #else
12611     if_addr_rlock(ifp);
12612 #endif
12613 
12614     /* first schedule a cleanup up of old configuration */
12615     rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
12616     if (rc < 0) {
12617         BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
12618 #if __FreeBSD_version < 800000
12619         IF_ADDR_UNLOCK(ifp);
12620 #else
12621         if_addr_runlock(ifp);
12622 #endif
12623         return (rc);
12624     }
12625 
12626     ifa = ifp->if_addr;
12627     while (ifa) {
12628         if (ifa->ifa_addr->sa_family != AF_LINK) {
12629             ifa = TAILQ_NEXT(ifa, ifa_link);
12630             continue;
12631         }
12632 
12633         rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
12634                              mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags);
12635         if (rc == -EEXIST) {
12636             BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12637             /* do not treat adding same MAC as an error */
12638             rc = 0;
12639         } else if (rc < 0) {
12640             BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc);
12641 #if __FreeBSD_version < 800000
12642             IF_ADDR_UNLOCK(ifp);
12643 #else
12644             if_addr_runlock(ifp);
12645 #endif
12646             return (rc);
12647         }
12648 
12649         ifa = TAILQ_NEXT(ifa, ifa_link);
12650     }
12651 
12652 #if __FreeBSD_version < 800000
12653     IF_ADDR_UNLOCK(ifp);
12654 #else
12655     if_addr_runlock(ifp);
12656 #endif
12657 
12658     /* Execute the pending commands */
12659     bit_set(&ramrod_flags, RAMROD_CONT);
12660     return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12661                             ECORE_UC_LIST_MAC, &ramrod_flags));
12662 }
12663 
12664 static void
12665 bxe_handle_rx_mode_tq(void *context,
12666                       int  pending)
12667 {
12668     struct bxe_softc *sc = (struct bxe_softc *)context;
12669     struct ifnet *ifp = sc->ifnet;
12670     uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12671 
12672     BXE_CORE_LOCK(sc);
12673 
12674     if (sc->state != BXE_STATE_OPEN) {
12675         BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12676         BXE_CORE_UNLOCK(sc);
12677         return;
12678     }
12679 
12680     BLOGD(sc, DBG_SP, "ifp->if_flags=0x%x\n", ifp->if_flags);
12681 
12682     if (ifp->if_flags & IFF_PROMISC) {
12683         rx_mode = BXE_RX_MODE_PROMISC;
12684     } else if ((ifp->if_flags & IFF_ALLMULTI) ||
12685                ((ifp->if_amcount > BXE_MAX_MULTICAST) &&
12686                 CHIP_IS_E1(sc))) {
12687         rx_mode = BXE_RX_MODE_ALLMULTI;
12688     } else {
12689         if (IS_PF(sc)) {
12690             /* some multicasts */
12691             if (bxe_set_mc_list(sc) < 0) {
12692                 rx_mode = BXE_RX_MODE_ALLMULTI;
12693             }
12694             if (bxe_set_uc_list(sc) < 0) {
12695                 rx_mode = BXE_RX_MODE_PROMISC;
12696             }
12697         }
12698 #if 0
12699         else {
12700             /*
12701              * Configuring mcast to a VF involves sleeping (when we
12702              * wait for the PF's response). Since this function is
12703              * called from a non sleepable context we must schedule
12704              * a work item for this purpose
12705              */
12706             bxe_set_bit(BXE_SP_RTNL_VFPF_MCAST, &sc->sp_rtnl_state);
12707             schedule_delayed_work(&sc->sp_rtnl_task, 0);
12708         }
12709 #endif
12710     }
12711 
12712     sc->rx_mode = rx_mode;
12713 
12714     /* schedule the rx_mode command */
12715     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12716         BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12717         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12718         BXE_CORE_UNLOCK(sc);
12719         return;
12720     }
12721 
12722     if (IS_PF(sc)) {
12723         bxe_set_storm_rx_mode(sc);
12724     }
12725 #if 0
12726     else {
12727         /*
12728          * Configuring mcast to a VF involves sleeping (when we
12729          * wait for the PF's response). Since this function is
12730          * called from a non sleepable context we must schedule
12731          * a work item for this purpose
12732          */
12733         bxe_set_bit(BXE_SP_RTNL_VFPF_STORM_RX_MODE, &sc->sp_rtnl_state);
12734         schedule_delayed_work(&sc->sp_rtnl_task, 0);
12735     }
12736 #endif
12737 
12738     BXE_CORE_UNLOCK(sc);
12739 }
12740 
12741 static void
12742 bxe_set_rx_mode(struct bxe_softc *sc)
12743 {
12744     taskqueue_enqueue(sc->rx_mode_tq, &sc->rx_mode_tq_task);
12745 }
12746 
12747 /* update flags in shmem */
12748 static void
12749 bxe_update_drv_flags(struct bxe_softc *sc,
12750                      uint32_t         flags,
12751                      uint32_t         set)
12752 {
12753     uint32_t drv_flags;
12754 
12755     if (SHMEM2_HAS(sc, drv_flags)) {
12756         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12757         drv_flags = SHMEM2_RD(sc, drv_flags);
12758 
12759         if (set) {
12760             SET_FLAGS(drv_flags, flags);
12761         } else {
12762             RESET_FLAGS(drv_flags, flags);
12763         }
12764 
12765         SHMEM2_WR(sc, drv_flags, drv_flags);
12766         BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12767 
12768         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12769     }
12770 }
12771 
12772 /* periodic timer callout routine, only runs when the interface is up */
12773 
12774 static void
12775 bxe_periodic_callout_func(void *xsc)
12776 {
12777     struct bxe_softc *sc = (struct bxe_softc *)xsc;
12778     int i;
12779 
12780     if (!BXE_CORE_TRYLOCK(sc)) {
12781         /* just bail and try again next time */
12782 
12783         if ((sc->state == BXE_STATE_OPEN) &&
12784             (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12785             /* schedule the next periodic callout */
12786             callout_reset(&sc->periodic_callout, hz,
12787                           bxe_periodic_callout_func, sc);
12788         }
12789 
12790         return;
12791     }
12792 
12793     if ((sc->state != BXE_STATE_OPEN) ||
12794         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12795         BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12796         BXE_CORE_UNLOCK(sc);
12797         return;
12798     }
12799 
12800     /* Check for TX timeouts on any fastpath. */
12801     FOR_EACH_QUEUE(sc, i) {
12802         if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12803             /* Ruh-Roh, chip was reset! */
12804             break;
12805         }
12806     }
12807 
12808     if (!CHIP_REV_IS_SLOW(sc)) {
12809         /*
12810          * This barrier is needed to ensure the ordering between the writing
12811          * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12812          * the reading here.
12813          */
12814         mb();
12815         if (sc->port.pmf) {
12816             BXE_PHY_LOCK(sc);
12817             elink_period_func(&sc->link_params, &sc->link_vars);
12818             BXE_PHY_UNLOCK(sc);
12819         }
12820     }
12821 
12822     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
12823         int mb_idx = SC_FW_MB_IDX(sc);
12824         uint32_t drv_pulse;
12825         uint32_t mcp_pulse;
12826 
12827         ++sc->fw_drv_pulse_wr_seq;
12828         sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12829 
12830         drv_pulse = sc->fw_drv_pulse_wr_seq;
12831         bxe_drv_pulse(sc);
12832 
12833         mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12834                      MCP_PULSE_SEQ_MASK);
12835 
12836         /*
12837          * The delta between driver pulse and mcp response should
12838          * be 1 (before mcp response) or 0 (after mcp response).
12839          */
12840         if ((drv_pulse != mcp_pulse) &&
12841             (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12842             /* someone lost a heartbeat... */
12843             BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12844                   drv_pulse, mcp_pulse);
12845         }
12846     }
12847 
12848     /* state is BXE_STATE_OPEN */
12849     bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12850 
12851 #if 0
12852     /* sample VF bulletin board for new posts from PF */
12853     if (IS_VF(sc)) {
12854         bxe_sample_bulletin(sc);
12855     }
12856 #endif
12857 
12858     BXE_CORE_UNLOCK(sc);
12859 
12860     if ((sc->state == BXE_STATE_OPEN) &&
12861         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12862         /* schedule the next periodic callout */
12863         callout_reset(&sc->periodic_callout, hz,
12864                       bxe_periodic_callout_func, sc);
12865     }
12866 }
12867 
12868 static void
12869 bxe_periodic_start(struct bxe_softc *sc)
12870 {
12871     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12872     callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12873 }
12874 
12875 static void
12876 bxe_periodic_stop(struct bxe_softc *sc)
12877 {
12878     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12879     callout_drain(&sc->periodic_callout);
12880 }
12881 
12882 /* start the controller */
12883 static __noinline int
12884 bxe_nic_load(struct bxe_softc *sc,
12885              int              load_mode)
12886 {
12887     uint32_t val;
12888     int load_code = 0;
12889     int i, rc = 0;
12890 
12891     BXE_CORE_LOCK_ASSERT(sc);
12892 
12893     BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12894 
12895     sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12896 
12897     if (IS_PF(sc)) {
12898         /* must be called before memory allocation and HW init */
12899         bxe_ilt_set_info(sc);
12900     }
12901 
12902     sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12903 
12904     bxe_set_fp_rx_buf_size(sc);
12905 
12906     if (bxe_alloc_fp_buffers(sc) != 0) {
12907         BLOGE(sc, "Failed to allocate fastpath memory\n");
12908         sc->state = BXE_STATE_CLOSED;
12909         rc = ENOMEM;
12910         goto bxe_nic_load_error0;
12911     }
12912 
12913     if (bxe_alloc_mem(sc) != 0) {
12914         sc->state = BXE_STATE_CLOSED;
12915         rc = ENOMEM;
12916         goto bxe_nic_load_error0;
12917     }
12918 
12919     if (bxe_alloc_fw_stats_mem(sc) != 0) {
12920         sc->state = BXE_STATE_CLOSED;
12921         rc = ENOMEM;
12922         goto bxe_nic_load_error0;
12923     }
12924 
12925     if (IS_PF(sc)) {
12926         /* set pf load just before approaching the MCP */
12927         bxe_set_pf_load(sc);
12928 
12929         /* if MCP exists send load request and analyze response */
12930         if (!BXE_NOMCP(sc)) {
12931             /* attempt to load pf */
12932             if (bxe_nic_load_request(sc, &load_code) != 0) {
12933                 sc->state = BXE_STATE_CLOSED;
12934                 rc = ENXIO;
12935                 goto bxe_nic_load_error1;
12936             }
12937 
12938             /* what did the MCP say? */
12939             if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12940                 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12941                 sc->state = BXE_STATE_CLOSED;
12942                 rc = ENXIO;
12943                 goto bxe_nic_load_error2;
12944             }
12945         } else {
12946             BLOGI(sc, "Device has no MCP!\n");
12947             load_code = bxe_nic_load_no_mcp(sc);
12948         }
12949 
12950         /* mark PMF if applicable */
12951         bxe_nic_load_pmf(sc, load_code);
12952 
12953         /* Init Function state controlling object */
12954         bxe_init_func_obj(sc);
12955 
12956         /* Initialize HW */
12957         if (bxe_init_hw(sc, load_code) != 0) {
12958             BLOGE(sc, "HW init failed\n");
12959             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12960             sc->state = BXE_STATE_CLOSED;
12961             rc = ENXIO;
12962             goto bxe_nic_load_error2;
12963         }
12964     }
12965 
12966     /* attach interrupts */
12967     if (bxe_interrupt_attach(sc) != 0) {
12968         sc->state = BXE_STATE_CLOSED;
12969         rc = ENXIO;
12970         goto bxe_nic_load_error2;
12971     }
12972 
12973     bxe_nic_init(sc, load_code);
12974 
12975     /* Init per-function objects */
12976     if (IS_PF(sc)) {
12977         bxe_init_objs(sc);
12978         // XXX bxe_iov_nic_init(sc);
12979 
12980         /* set AFEX default VLAN tag to an invalid value */
12981         sc->devinfo.mf_info.afex_def_vlan_tag = -1;
12982         // XXX bxe_nic_load_afex_dcc(sc, load_code);
12983 
12984         sc->state = BXE_STATE_OPENING_WAITING_PORT;
12985         rc = bxe_func_start(sc);
12986         if (rc) {
12987             BLOGE(sc, "Function start failed!\n");
12988             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12989             sc->state = BXE_STATE_ERROR;
12990             goto bxe_nic_load_error3;
12991         }
12992 
12993         /* send LOAD_DONE command to MCP */
12994         if (!BXE_NOMCP(sc)) {
12995             load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12996             if (!load_code) {
12997                 BLOGE(sc, "MCP response failure, aborting\n");
12998                 sc->state = BXE_STATE_ERROR;
12999                 rc = ENXIO;
13000                 goto bxe_nic_load_error3;
13001             }
13002         }
13003 
13004         rc = bxe_setup_leading(sc);
13005         if (rc) {
13006             BLOGE(sc, "Setup leading failed!\n");
13007             sc->state = BXE_STATE_ERROR;
13008             goto bxe_nic_load_error3;
13009         }
13010 
13011         FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
13012             rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
13013             if (rc) {
13014                 BLOGE(sc, "Queue(%d) setup failed\n", i);
13015                 sc->state = BXE_STATE_ERROR;
13016                 goto bxe_nic_load_error3;
13017             }
13018         }
13019 
13020         rc = bxe_init_rss_pf(sc);
13021         if (rc) {
13022             BLOGE(sc, "PF RSS init failed\n");
13023             sc->state = BXE_STATE_ERROR;
13024             goto bxe_nic_load_error3;
13025         }
13026     }
13027     /* XXX VF */
13028 #if 0
13029     else { /* VF */
13030         FOR_EACH_ETH_QUEUE(sc, i) {
13031             rc = bxe_vfpf_setup_q(sc, i);
13032             if (rc) {
13033                 BLOGE(sc, "Queue(%d) setup failed\n", i);
13034                 sc->state = BXE_STATE_ERROR;
13035                 goto bxe_nic_load_error3;
13036             }
13037         }
13038     }
13039 #endif
13040 
13041     /* now when Clients are configured we are ready to work */
13042     sc->state = BXE_STATE_OPEN;
13043 
13044     /* Configure a ucast MAC */
13045     if (IS_PF(sc)) {
13046         rc = bxe_set_eth_mac(sc, TRUE);
13047     }
13048 #if 0
13049     else { /* IS_VF(sc) */
13050         rc = bxe_vfpf_set_mac(sc);
13051     }
13052 #endif
13053     if (rc) {
13054         BLOGE(sc, "Setting Ethernet MAC failed\n");
13055         sc->state = BXE_STATE_ERROR;
13056         goto bxe_nic_load_error3;
13057     }
13058 
13059 #if 0
13060     if (IS_PF(sc) && sc->pending_max) {
13061         /* for AFEX */
13062         bxe_update_max_mf_config(sc, sc->pending_max);
13063         sc->pending_max = 0;
13064     }
13065 #endif
13066 
13067     if (sc->port.pmf) {
13068         rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
13069         if (rc) {
13070             sc->state = BXE_STATE_ERROR;
13071             goto bxe_nic_load_error3;
13072         }
13073     }
13074 
13075     sc->link_params.feature_config_flags &=
13076         ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
13077 
13078     /* start fast path */
13079 
13080     /* Initialize Rx filter */
13081     bxe_set_rx_mode(sc);
13082 
13083     /* start the Tx */
13084     switch (/* XXX load_mode */LOAD_OPEN) {
13085     case LOAD_NORMAL:
13086     case LOAD_OPEN:
13087         break;
13088 
13089     case LOAD_DIAG:
13090     case LOAD_LOOPBACK_EXT:
13091         sc->state = BXE_STATE_DIAG;
13092         break;
13093 
13094     default:
13095         break;
13096     }
13097 
13098     if (sc->port.pmf) {
13099         bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
13100     } else {
13101         bxe_link_status_update(sc);
13102     }
13103 
13104     /* start the periodic timer callout */
13105     bxe_periodic_start(sc);
13106 
13107     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
13108         /* mark driver is loaded in shmem2 */
13109         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
13110         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
13111                   (val |
13112                    DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
13113                    DRV_FLAGS_CAPABILITIES_LOADED_L2));
13114     }
13115 
13116     /* wait for all pending SP commands to complete */
13117     if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
13118         BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
13119         bxe_periodic_stop(sc);
13120         bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
13121         return (ENXIO);
13122     }
13123 
13124 #if 0
13125     /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
13126     if (sc->port.pmf && (sc->state != BXE_STATE_DIAG)) {
13127         bxe_dcbx_init(sc, FALSE);
13128     }
13129 #endif
13130 
13131     /* Tell the stack the driver is running! */
13132     sc->ifnet->if_drv_flags = IFF_DRV_RUNNING;
13133 
13134     BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
13135 
13136     return (0);
13137 
13138 bxe_nic_load_error3:
13139 
13140     if (IS_PF(sc)) {
13141         bxe_int_disable_sync(sc, 1);
13142 
13143         /* clean out queued objects */
13144         bxe_squeeze_objects(sc);
13145     }
13146 
13147     bxe_interrupt_detach(sc);
13148 
13149 bxe_nic_load_error2:
13150 
13151     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
13152         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
13153         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
13154     }
13155 
13156     sc->port.pmf = 0;
13157 
13158 bxe_nic_load_error1:
13159 
13160     /* clear pf_load status, as it was already set */
13161     if (IS_PF(sc)) {
13162         bxe_clear_pf_load(sc);
13163     }
13164 
13165 bxe_nic_load_error0:
13166 
13167     bxe_free_fw_stats_mem(sc);
13168     bxe_free_fp_buffers(sc);
13169     bxe_free_mem(sc);
13170 
13171     return (rc);
13172 }
13173 
13174 static int
13175 bxe_init_locked(struct bxe_softc *sc)
13176 {
13177     int other_engine = SC_PATH(sc) ? 0 : 1;
13178     uint8_t other_load_status, load_status;
13179     uint8_t global = FALSE;
13180     int rc;
13181 
13182     BXE_CORE_LOCK_ASSERT(sc);
13183 
13184     /* check if the driver is already running */
13185     if (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING) {
13186         BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
13187         return (0);
13188     }
13189 
13190     bxe_set_power_state(sc, PCI_PM_D0);
13191 
13192     /*
13193      * If parity occurred during the unload, then attentions and/or
13194      * RECOVERY_IN_PROGRES may still be set. If so we want the first function
13195      * loaded on the current engine to complete the recovery. Parity recovery
13196      * is only relevant for PF driver.
13197      */
13198     if (IS_PF(sc)) {
13199         other_load_status = bxe_get_load_status(sc, other_engine);
13200         load_status = bxe_get_load_status(sc, SC_PATH(sc));
13201 
13202         if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
13203             bxe_chk_parity_attn(sc, &global, TRUE)) {
13204             do {
13205                 /*
13206                  * If there are attentions and they are in global blocks, set
13207                  * the GLOBAL_RESET bit regardless whether it will be this
13208                  * function that will complete the recovery or not.
13209                  */
13210                 if (global) {
13211                     bxe_set_reset_global(sc);
13212                 }
13213 
13214                 /*
13215                  * Only the first function on the current engine should try
13216                  * to recover in open. In case of attentions in global blocks
13217                  * only the first in the chip should try to recover.
13218                  */
13219                 if ((!load_status && (!global || !other_load_status)) &&
13220                     bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
13221                     BLOGI(sc, "Recovered during init\n");
13222                     break;
13223                 }
13224 
13225                 /* recovery has failed... */
13226                 bxe_set_power_state(sc, PCI_PM_D3hot);
13227                 sc->recovery_state = BXE_RECOVERY_FAILED;
13228 
13229                 BLOGE(sc, "Recovery flow hasn't properly "
13230                           "completed yet, try again later. "
13231                           "If you still see this message after a "
13232                           "few retries then power cycle is required.\n");
13233 
13234                 rc = ENXIO;
13235                 goto bxe_init_locked_done;
13236             } while (0);
13237         }
13238     }
13239 
13240     sc->recovery_state = BXE_RECOVERY_DONE;
13241 
13242     rc = bxe_nic_load(sc, LOAD_OPEN);
13243 
13244 bxe_init_locked_done:
13245 
13246     if (rc) {
13247         /* Tell the stack the driver is NOT running! */
13248         BLOGE(sc, "Initialization failed, "
13249                   "stack notified driver is NOT running!\n");
13250         sc->ifnet->if_drv_flags &= ~IFF_DRV_RUNNING;
13251     }
13252 
13253     return (rc);
13254 }
13255 
13256 static int
13257 bxe_stop_locked(struct bxe_softc *sc)
13258 {
13259     BXE_CORE_LOCK_ASSERT(sc);
13260     return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
13261 }
13262 
13263 /*
13264  * Handles controller initialization when called from an unlocked routine.
13265  * ifconfig calls this function.
13266  *
13267  * Returns:
13268  *   void
13269  */
13270 static void
13271 bxe_init(void *xsc)
13272 {
13273     struct bxe_softc *sc = (struct bxe_softc *)xsc;
13274 
13275     BXE_CORE_LOCK(sc);
13276     bxe_init_locked(sc);
13277     BXE_CORE_UNLOCK(sc);
13278 }
13279 
13280 static int
13281 bxe_init_ifnet(struct bxe_softc *sc)
13282 {
13283     struct ifnet *ifp;
13284 
13285     /* ifconfig entrypoint for media type/status reporting */
13286     ifmedia_init(&sc->ifmedia, IFM_IMASK,
13287                  bxe_ifmedia_update,
13288                  bxe_ifmedia_status);
13289 
13290     /* set the default interface values */
13291     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
13292     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
13293     ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
13294 
13295     sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
13296 
13297     /* allocate the ifnet structure */
13298     if ((ifp = if_alloc(IFT_ETHER)) == NULL) {
13299         BLOGE(sc, "Interface allocation failed!\n");
13300         return (ENXIO);
13301     }
13302 
13303     ifp->if_softc = sc;
13304     if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
13305     ifp->if_flags = (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
13306     ifp->if_ioctl = bxe_ioctl;
13307     ifp->if_start = bxe_tx_start;
13308 #if __FreeBSD_version >= 800000
13309     ifp->if_transmit = bxe_tx_mq_start;
13310     ifp->if_qflush = bxe_mq_flush;
13311 #endif
13312 #ifdef FreeBSD8_0
13313     ifp->if_timer = 0;
13314 #endif
13315     ifp->if_init = bxe_init;
13316     ifp->if_mtu = sc->mtu;
13317     ifp->if_hwassist = (CSUM_IP       |
13318                         CSUM_TCP      |
13319                         CSUM_UDP      |
13320                         CSUM_TSO      |
13321                         CSUM_TCP_IPV6 |
13322                         CSUM_UDP_IPV6);
13323     ifp->if_capabilities =
13324 #if __FreeBSD_version < 700000
13325         (IFCAP_VLAN_MTU       |
13326          IFCAP_VLAN_HWTAGGING |
13327          IFCAP_HWCSUM         |
13328          IFCAP_JUMBO_MTU      |
13329          IFCAP_LRO);
13330 #else
13331         (IFCAP_VLAN_MTU       |
13332          IFCAP_VLAN_HWTAGGING |
13333          IFCAP_VLAN_HWTSO     |
13334          IFCAP_VLAN_HWFILTER  |
13335          IFCAP_VLAN_HWCSUM    |
13336          IFCAP_HWCSUM         |
13337          IFCAP_JUMBO_MTU      |
13338          IFCAP_LRO            |
13339          IFCAP_TSO4           |
13340          IFCAP_TSO6           |
13341          IFCAP_WOL_MAGIC);
13342 #endif
13343     ifp->if_capenable = ifp->if_capabilities;
13344     ifp->if_capenable &= ~IFCAP_WOL_MAGIC; /* XXX not yet... */
13345 #if __FreeBSD_version < 1000025
13346     ifp->if_baudrate = 1000000000;
13347 #else
13348     if_initbaudrate(ifp, IF_Gbps(10));
13349 #endif
13350     ifp->if_snd.ifq_drv_maxlen = sc->tx_ring_size;
13351 
13352     IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
13353     IFQ_SET_READY(&ifp->if_snd);
13354 
13355     sc->ifnet = ifp;
13356 
13357     /* attach to the Ethernet interface list */
13358     ether_ifattach(ifp, sc->link_params.mac_addr);
13359 
13360     return (0);
13361 }
13362 
13363 static void
13364 bxe_deallocate_bars(struct bxe_softc *sc)
13365 {
13366     int i;
13367 
13368     for (i = 0; i < MAX_BARS; i++) {
13369         if (sc->bar[i].resource != NULL) {
13370             bus_release_resource(sc->dev,
13371                                  SYS_RES_MEMORY,
13372                                  sc->bar[i].rid,
13373                                  sc->bar[i].resource);
13374             BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
13375                   i, PCIR_BAR(i));
13376         }
13377     }
13378 }
13379 
13380 static int
13381 bxe_allocate_bars(struct bxe_softc *sc)
13382 {
13383     u_int flags;
13384     int i;
13385 
13386     memset(sc->bar, 0, sizeof(sc->bar));
13387 
13388     for (i = 0; i < MAX_BARS; i++) {
13389 
13390         /* memory resources reside at BARs 0, 2, 4 */
13391         /* Run `pciconf -lb` to see mappings */
13392         if ((i != 0) && (i != 2) && (i != 4)) {
13393             continue;
13394         }
13395 
13396         sc->bar[i].rid = PCIR_BAR(i);
13397 
13398         flags = RF_ACTIVE;
13399         if (i == 0) {
13400             flags |= RF_SHAREABLE;
13401         }
13402 
13403         if ((sc->bar[i].resource =
13404              bus_alloc_resource_any(sc->dev,
13405                                     SYS_RES_MEMORY,
13406                                     &sc->bar[i].rid,
13407                                     flags)) == NULL) {
13408 #if 0
13409             /* BAR4 doesn't exist for E1 */
13410             BLOGE(sc, "PCI BAR%d [%02x] memory allocation failed\n",
13411                   i, PCIR_BAR(i));
13412 #endif
13413             return (0);
13414         }
13415 
13416         sc->bar[i].tag    = rman_get_bustag(sc->bar[i].resource);
13417         sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
13418         sc->bar[i].kva    = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
13419 
13420         BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%ld) -> %p\n",
13421               i, PCIR_BAR(i),
13422               (void *)rman_get_start(sc->bar[i].resource),
13423               (void *)rman_get_end(sc->bar[i].resource),
13424               rman_get_size(sc->bar[i].resource),
13425               (void *)sc->bar[i].kva);
13426     }
13427 
13428     return (0);
13429 }
13430 
13431 static void
13432 bxe_get_function_num(struct bxe_softc *sc)
13433 {
13434     uint32_t val = 0;
13435 
13436     /*
13437      * Read the ME register to get the function number. The ME register
13438      * holds the relative-function number and absolute-function number. The
13439      * absolute-function number appears only in E2 and above. Before that
13440      * these bits always contained zero, therefore we cannot blindly use them.
13441      */
13442 
13443     val = REG_RD(sc, BAR_ME_REGISTER);
13444 
13445     sc->pfunc_rel =
13446         (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
13447     sc->path_id =
13448         (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
13449 
13450     if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13451         sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
13452     } else {
13453         sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
13454     }
13455 
13456     BLOGD(sc, DBG_LOAD,
13457           "Relative function %d, Absolute function %d, Path %d\n",
13458           sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
13459 }
13460 
13461 static uint32_t
13462 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
13463 {
13464     uint32_t shmem2_size;
13465     uint32_t offset;
13466     uint32_t mf_cfg_offset_value;
13467 
13468     /* Non 57712 */
13469     offset = (SHMEM_RD(sc, func_mb) +
13470               (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
13471 
13472     /* 57712 plus */
13473     if (sc->devinfo.shmem2_base != 0) {
13474         shmem2_size = SHMEM2_RD(sc, size);
13475         if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
13476             mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
13477             if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
13478                 offset = mf_cfg_offset_value;
13479             }
13480         }
13481     }
13482 
13483     return (offset);
13484 }
13485 
13486 static uint32_t
13487 bxe_pcie_capability_read(struct bxe_softc *sc,
13488                          int    reg,
13489                          int    width)
13490 {
13491     int pcie_reg;
13492 
13493     /* ensure PCIe capability is enabled */
13494     if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
13495         if (pcie_reg != 0) {
13496             BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
13497             return (pci_read_config(sc->dev, (pcie_reg + reg), width));
13498         }
13499     }
13500 
13501     BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
13502 
13503     return (0);
13504 }
13505 
13506 static uint8_t
13507 bxe_is_pcie_pending(struct bxe_softc *sc)
13508 {
13509     return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) &
13510             PCIM_EXP_STA_TRANSACTION_PND);
13511 }
13512 
13513 /*
13514  * Walk the PCI capabiites list for the device to find what features are
13515  * supported. These capabilites may be enabled/disabled by firmware so it's
13516  * best to walk the list rather than make assumptions.
13517  */
13518 static void
13519 bxe_probe_pci_caps(struct bxe_softc *sc)
13520 {
13521     uint16_t link_status;
13522     int reg;
13523 
13524     /* check if PCI Power Management is enabled */
13525     if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
13526         if (reg != 0) {
13527             BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
13528 
13529             sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
13530             sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
13531         }
13532     }
13533 
13534     link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2);
13535 
13536     /* handle PCIe 2.0 workarounds for 57710 */
13537     if (CHIP_IS_E1(sc)) {
13538         /* workaround for 57710 errata E4_57710_27462 */
13539         sc->devinfo.pcie_link_speed =
13540             (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
13541 
13542         /* workaround for 57710 errata E4_57710_27488 */
13543         sc->devinfo.pcie_link_width =
13544             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13545         if (sc->devinfo.pcie_link_speed > 1) {
13546             sc->devinfo.pcie_link_width =
13547                 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1;
13548         }
13549     } else {
13550         sc->devinfo.pcie_link_speed =
13551             (link_status & PCIM_LINK_STA_SPEED);
13552         sc->devinfo.pcie_link_width =
13553             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13554     }
13555 
13556     BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
13557           sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
13558 
13559     sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
13560     sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
13561 
13562     /* check if MSI capability is enabled */
13563     if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
13564         if (reg != 0) {
13565             BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
13566 
13567             sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
13568             sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
13569         }
13570     }
13571 
13572     /* check if MSI-X capability is enabled */
13573     if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
13574         if (reg != 0) {
13575             BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
13576 
13577             sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
13578             sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
13579         }
13580     }
13581 }
13582 
13583 static int
13584 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
13585 {
13586     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13587     uint32_t val;
13588 
13589     /* get the outer vlan if we're in switch-dependent mode */
13590 
13591     val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13592     mf_info->ext_id = (uint16_t)val;
13593 
13594     mf_info->multi_vnics_mode = 1;
13595 
13596     if (!VALID_OVLAN(mf_info->ext_id)) {
13597         BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
13598         return (1);
13599     }
13600 
13601     /* get the capabilities */
13602     if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13603         FUNC_MF_CFG_PROTOCOL_ISCSI) {
13604         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
13605     } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13606                FUNC_MF_CFG_PROTOCOL_FCOE) {
13607         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
13608     } else {
13609         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
13610     }
13611 
13612     mf_info->vnics_per_port =
13613         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13614 
13615     return (0);
13616 }
13617 
13618 static uint32_t
13619 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
13620 {
13621     uint32_t retval = 0;
13622     uint32_t val;
13623 
13624     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13625 
13626     if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
13627         if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
13628             retval |= MF_PROTO_SUPPORT_ETHERNET;
13629         }
13630         if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
13631             retval |= MF_PROTO_SUPPORT_ISCSI;
13632         }
13633         if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
13634             retval |= MF_PROTO_SUPPORT_FCOE;
13635         }
13636     }
13637 
13638     return (retval);
13639 }
13640 
13641 static int
13642 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
13643 {
13644     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13645     uint32_t val;
13646 
13647     /*
13648      * There is no outer vlan if we're in switch-independent mode.
13649      * If the mac is valid then assume multi-function.
13650      */
13651 
13652     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13653 
13654     mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
13655 
13656     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13657 
13658     mf_info->vnics_per_port =
13659         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13660 
13661     return (0);
13662 }
13663 
13664 static int
13665 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13666 {
13667     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13668     uint32_t e1hov_tag;
13669     uint32_t func_config;
13670     uint32_t niv_config;
13671 
13672     mf_info->multi_vnics_mode = 1;
13673 
13674     e1hov_tag   = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13675     func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13676     niv_config  = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13677 
13678     mf_info->ext_id =
13679         (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13680                    FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13681 
13682     mf_info->default_vlan =
13683         (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13684                    FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13685 
13686     mf_info->niv_allowed_priorities =
13687         (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13688                   FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13689 
13690     mf_info->niv_default_cos =
13691         (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13692                   FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13693 
13694     mf_info->afex_vlan_mode =
13695         ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13696          FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13697 
13698     mf_info->niv_mba_enabled =
13699         ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13700          FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13701 
13702     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13703 
13704     mf_info->vnics_per_port =
13705         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13706 
13707     return (0);
13708 }
13709 
13710 static int
13711 bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13712 {
13713     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13714     uint32_t mf_cfg1;
13715     uint32_t mf_cfg2;
13716     uint32_t ovlan1;
13717     uint32_t ovlan2;
13718     uint8_t i, j;
13719 
13720     BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13721           SC_PORT(sc));
13722     BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13723           mf_info->mf_config[SC_VN(sc)]);
13724     BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13725           mf_info->multi_vnics_mode);
13726     BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13727           mf_info->vnics_per_port);
13728     BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13729           mf_info->ext_id);
13730     BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13731           mf_info->min_bw[0], mf_info->min_bw[1],
13732           mf_info->min_bw[2], mf_info->min_bw[3]);
13733     BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13734           mf_info->max_bw[0], mf_info->max_bw[1],
13735           mf_info->max_bw[2], mf_info->max_bw[3]);
13736     BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13737           sc->mac_addr_str);
13738 
13739     /* various MF mode sanity checks... */
13740 
13741     if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13742         BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13743               SC_PORT(sc));
13744         return (1);
13745     }
13746 
13747     if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13748         BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13749               mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13750         return (1);
13751     }
13752 
13753     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13754         /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13755         if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13756             BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13757                   SC_VN(sc), OVLAN(sc));
13758             return (1);
13759         }
13760 
13761         if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13762             BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13763                   mf_info->multi_vnics_mode, OVLAN(sc));
13764             return (1);
13765         }
13766 
13767         /*
13768          * Verify all functions are either MF or SF mode. If MF, make sure
13769          * sure that all non-hidden functions have a valid ovlan. If SF,
13770          * make sure that all non-hidden functions have an invalid ovlan.
13771          */
13772         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13773             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13774             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13775             if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13776                 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13777                  ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13778                 BLOGE(sc, "mf_mode=SD function %d MF config "
13779                           "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13780                       i, mf_info->multi_vnics_mode, ovlan1);
13781                 return (1);
13782             }
13783         }
13784 
13785         /* Verify all funcs on the same port each have a different ovlan. */
13786         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13787             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13788             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13789             /* iterate from the next function on the port to the max func */
13790             for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13791                 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13792                 ovlan2  = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13793                 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13794                     VALID_OVLAN(ovlan1) &&
13795                     !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13796                     VALID_OVLAN(ovlan2) &&
13797                     (ovlan1 == ovlan2)) {
13798                     BLOGE(sc, "mf_mode=SD functions %d and %d "
13799                               "have the same ovlan (%d)\n",
13800                           i, j, ovlan1);
13801                     return (1);
13802                 }
13803             }
13804         }
13805     } /* MULTI_FUNCTION_SD */
13806 
13807     return (0);
13808 }
13809 
13810 static int
13811 bxe_get_mf_cfg_info(struct bxe_softc *sc)
13812 {
13813     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13814     uint32_t val, mac_upper;
13815     uint8_t i, vnic;
13816 
13817     /* initialize mf_info defaults */
13818     mf_info->vnics_per_port   = 1;
13819     mf_info->multi_vnics_mode = FALSE;
13820     mf_info->path_has_ovlan   = FALSE;
13821     mf_info->mf_mode          = SINGLE_FUNCTION;
13822 
13823     if (!CHIP_IS_MF_CAP(sc)) {
13824         return (0);
13825     }
13826 
13827     if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13828         BLOGE(sc, "Invalid mf_cfg_base!\n");
13829         return (1);
13830     }
13831 
13832     /* get the MF mode (switch dependent / independent / single-function) */
13833 
13834     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13835 
13836     switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13837     {
13838     case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13839 
13840         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13841 
13842         /* check for legal upper mac bytes */
13843         if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13844             mf_info->mf_mode = MULTI_FUNCTION_SI;
13845         } else {
13846             BLOGE(sc, "Invalid config for Switch Independent mode\n");
13847         }
13848 
13849         break;
13850 
13851     case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13852     case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13853 
13854         /* get outer vlan configuration */
13855         val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13856 
13857         if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13858             FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13859             mf_info->mf_mode = MULTI_FUNCTION_SD;
13860         } else {
13861             BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13862         }
13863 
13864         break;
13865 
13866     case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13867 
13868         /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13869         return (0);
13870 
13871     case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13872 
13873         /*
13874          * Mark MF mode as NIV if MCP version includes NPAR-SD support
13875          * and the MAC address is valid.
13876          */
13877         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13878 
13879         if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13880             (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13881             mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13882         } else {
13883             BLOGE(sc, "Invalid config for AFEX mode\n");
13884         }
13885 
13886         break;
13887 
13888     default:
13889 
13890         BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13891               (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13892 
13893         return (1);
13894     }
13895 
13896     /* set path mf_mode (which could be different than function mf_mode) */
13897     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13898         mf_info->path_has_ovlan = TRUE;
13899     } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13900         /*
13901          * Decide on path multi vnics mode. If we're not in MF mode and in
13902          * 4-port mode, this is good enough to check vnic-0 of the other port
13903          * on the same path
13904          */
13905         if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13906             uint8_t other_port = !(PORT_ID(sc) & 1);
13907             uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13908 
13909             val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13910 
13911             mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13912         }
13913     }
13914 
13915     if (mf_info->mf_mode == SINGLE_FUNCTION) {
13916         /* invalid MF config */
13917         if (SC_VN(sc) >= 1) {
13918             BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13919             return (1);
13920         }
13921 
13922         return (0);
13923     }
13924 
13925     /* get the MF configuration */
13926     mf_info->mf_config[SC_VN(sc)] =
13927         MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13928 
13929     switch(mf_info->mf_mode)
13930     {
13931     case MULTI_FUNCTION_SD:
13932 
13933         bxe_get_shmem_mf_cfg_info_sd(sc);
13934         break;
13935 
13936     case MULTI_FUNCTION_SI:
13937 
13938         bxe_get_shmem_mf_cfg_info_si(sc);
13939         break;
13940 
13941     case MULTI_FUNCTION_AFEX:
13942 
13943         bxe_get_shmem_mf_cfg_info_niv(sc);
13944         break;
13945 
13946     default:
13947 
13948         BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13949               mf_info->mf_mode);
13950         return (1);
13951     }
13952 
13953     /* get the congestion management parameters */
13954 
13955     vnic = 0;
13956     FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13957         /* get min/max bw */
13958         val = MFCFG_RD(sc, func_mf_config[i].config);
13959         mf_info->min_bw[vnic] =
13960             ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13961         mf_info->max_bw[vnic] =
13962             ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13963         vnic++;
13964     }
13965 
13966     return (bxe_check_valid_mf_cfg(sc));
13967 }
13968 
13969 static int
13970 bxe_get_shmem_info(struct bxe_softc *sc)
13971 {
13972     int port;
13973     uint32_t mac_hi, mac_lo, val;
13974 
13975     port = SC_PORT(sc);
13976     mac_hi = mac_lo = 0;
13977 
13978     sc->link_params.sc   = sc;
13979     sc->link_params.port = port;
13980 
13981     /* get the hardware config info */
13982     sc->devinfo.hw_config =
13983         SHMEM_RD(sc, dev_info.shared_hw_config.config);
13984     sc->devinfo.hw_config2 =
13985         SHMEM_RD(sc, dev_info.shared_hw_config.config2);
13986 
13987     sc->link_params.hw_led_mode =
13988         ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
13989          SHARED_HW_CFG_LED_MODE_SHIFT);
13990 
13991     /* get the port feature config */
13992     sc->port.config =
13993         SHMEM_RD(sc, dev_info.port_feature_config[port].config),
13994 
13995     /* get the link params */
13996     sc->link_params.speed_cap_mask[0] =
13997         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
13998     sc->link_params.speed_cap_mask[1] =
13999         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
14000 
14001     /* get the lane config */
14002     sc->link_params.lane_config =
14003         SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
14004 
14005     /* get the link config */
14006     val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
14007     sc->port.link_config[ELINK_INT_PHY] = val;
14008     sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
14009     sc->port.link_config[ELINK_EXT_PHY1] =
14010         SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
14011 
14012     /* get the override preemphasis flag and enable it or turn it off */
14013     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
14014     if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
14015         sc->link_params.feature_config_flags |=
14016             ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
14017     } else {
14018         sc->link_params.feature_config_flags &=
14019             ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
14020     }
14021 
14022     /* get the initial value of the link params */
14023     sc->link_params.multi_phy_config =
14024         SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
14025 
14026     /* get external phy info */
14027     sc->port.ext_phy_config =
14028         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
14029 
14030     /* get the multifunction configuration */
14031     bxe_get_mf_cfg_info(sc);
14032 
14033     /* get the mac address */
14034     if (IS_MF(sc)) {
14035         mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
14036         mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
14037     } else {
14038         mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
14039         mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
14040     }
14041 
14042     if ((mac_lo == 0) && (mac_hi == 0)) {
14043         *sc->mac_addr_str = 0;
14044         BLOGE(sc, "No Ethernet address programmed!\n");
14045     } else {
14046         sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
14047         sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
14048         sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
14049         sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
14050         sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
14051         sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
14052         snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
14053                  "%02x:%02x:%02x:%02x:%02x:%02x",
14054                  sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
14055                  sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
14056                  sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
14057         BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
14058     }
14059 
14060 #if 0
14061     if (!IS_MF(sc) &&
14062         ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14063          PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE)) {
14064         sc->flags |= BXE_NO_ISCSI;
14065     }
14066     if (!IS_MF(sc) &&
14067         ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14068          PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI)) {
14069         sc->flags |= BXE_NO_FCOE_FLAG;
14070     }
14071 #endif
14072 
14073     return (0);
14074 }
14075 
14076 static void
14077 bxe_get_tunable_params(struct bxe_softc *sc)
14078 {
14079     /* sanity checks */
14080 
14081     if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
14082         (bxe_interrupt_mode != INTR_MODE_MSI)  &&
14083         (bxe_interrupt_mode != INTR_MODE_MSIX)) {
14084         BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
14085         bxe_interrupt_mode = INTR_MODE_MSIX;
14086     }
14087 
14088     if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
14089         BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
14090         bxe_queue_count = 0;
14091     }
14092 
14093     if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
14094         if (bxe_max_rx_bufs == 0) {
14095             bxe_max_rx_bufs = RX_BD_USABLE;
14096         } else {
14097             BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
14098             bxe_max_rx_bufs = 2048;
14099         }
14100     }
14101 
14102     if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
14103         BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
14104         bxe_hc_rx_ticks = 25;
14105     }
14106 
14107     if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
14108         BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
14109         bxe_hc_tx_ticks = 50;
14110     }
14111 
14112     if (bxe_max_aggregation_size == 0) {
14113         bxe_max_aggregation_size = TPA_AGG_SIZE;
14114     }
14115 
14116     if (bxe_max_aggregation_size > 0xffff) {
14117         BLOGW(sc, "invalid max_aggregation_size (%d)\n",
14118               bxe_max_aggregation_size);
14119         bxe_max_aggregation_size = TPA_AGG_SIZE;
14120     }
14121 
14122     if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
14123         BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
14124         bxe_mrrs = -1;
14125     }
14126 
14127     if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
14128         BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
14129         bxe_autogreeen = 0;
14130     }
14131 
14132     if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
14133         BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
14134         bxe_udp_rss = 0;
14135     }
14136 
14137     /* pull in user settings */
14138 
14139     sc->interrupt_mode       = bxe_interrupt_mode;
14140     sc->max_rx_bufs          = bxe_max_rx_bufs;
14141     sc->hc_rx_ticks          = bxe_hc_rx_ticks;
14142     sc->hc_tx_ticks          = bxe_hc_tx_ticks;
14143     sc->max_aggregation_size = bxe_max_aggregation_size;
14144     sc->mrrs                 = bxe_mrrs;
14145     sc->autogreeen           = bxe_autogreeen;
14146     sc->udp_rss              = bxe_udp_rss;
14147 
14148     if (bxe_interrupt_mode == INTR_MODE_INTX) {
14149         sc->num_queues = 1;
14150     } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
14151         sc->num_queues =
14152             min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
14153                 MAX_RSS_CHAINS);
14154         if (sc->num_queues > mp_ncpus) {
14155             sc->num_queues = mp_ncpus;
14156         }
14157     }
14158 
14159     BLOGD(sc, DBG_LOAD,
14160           "User Config: "
14161           "debug=0x%lx "
14162           "interrupt_mode=%d "
14163           "queue_count=%d "
14164           "hc_rx_ticks=%d "
14165           "hc_tx_ticks=%d "
14166           "rx_budget=%d "
14167           "max_aggregation_size=%d "
14168           "mrrs=%d "
14169           "autogreeen=%d "
14170           "udp_rss=%d\n",
14171           bxe_debug,
14172           sc->interrupt_mode,
14173           sc->num_queues,
14174           sc->hc_rx_ticks,
14175           sc->hc_tx_ticks,
14176           bxe_rx_budget,
14177           sc->max_aggregation_size,
14178           sc->mrrs,
14179           sc->autogreeen,
14180           sc->udp_rss);
14181 }
14182 
14183 static void
14184 bxe_media_detect(struct bxe_softc *sc)
14185 {
14186     uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
14187     switch (sc->link_params.phy[phy_idx].media_type) {
14188     case ELINK_ETH_PHY_SFPP_10G_FIBER:
14189     case ELINK_ETH_PHY_XFP_FIBER:
14190         BLOGI(sc, "Found 10Gb Fiber media.\n");
14191         sc->media = IFM_10G_SR;
14192         break;
14193     case ELINK_ETH_PHY_SFP_1G_FIBER:
14194         BLOGI(sc, "Found 1Gb Fiber media.\n");
14195         sc->media = IFM_1000_SX;
14196         break;
14197     case ELINK_ETH_PHY_KR:
14198     case ELINK_ETH_PHY_CX4:
14199         BLOGI(sc, "Found 10GBase-CX4 media.\n");
14200         sc->media = IFM_10G_CX4;
14201         break;
14202     case ELINK_ETH_PHY_DA_TWINAX:
14203         BLOGI(sc, "Found 10Gb Twinax media.\n");
14204         sc->media = IFM_10G_TWINAX;
14205         break;
14206     case ELINK_ETH_PHY_BASE_T:
14207         if (sc->link_params.speed_cap_mask[0] &
14208             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
14209             BLOGI(sc, "Found 10GBase-T media.\n");
14210             sc->media = IFM_10G_T;
14211         } else {
14212             BLOGI(sc, "Found 1000Base-T media.\n");
14213             sc->media = IFM_1000_T;
14214         }
14215         break;
14216     case ELINK_ETH_PHY_NOT_PRESENT:
14217         BLOGI(sc, "Media not present.\n");
14218         sc->media = 0;
14219         break;
14220     case ELINK_ETH_PHY_UNSPECIFIED:
14221     default:
14222         BLOGI(sc, "Unknown media!\n");
14223         sc->media = 0;
14224         break;
14225     }
14226 }
14227 
14228 #define GET_FIELD(value, fname)                     \
14229     (((value) & (fname##_MASK)) >> (fname##_SHIFT))
14230 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
14231 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
14232 
14233 static int
14234 bxe_get_igu_cam_info(struct bxe_softc *sc)
14235 {
14236     int pfid = SC_FUNC(sc);
14237     int igu_sb_id;
14238     uint32_t val;
14239     uint8_t fid, igu_sb_cnt = 0;
14240 
14241     sc->igu_base_sb = 0xff;
14242 
14243     if (CHIP_INT_MODE_IS_BC(sc)) {
14244         int vn = SC_VN(sc);
14245         igu_sb_cnt = sc->igu_sb_cnt;
14246         sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
14247                            FP_SB_MAX_E1x);
14248         sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
14249                           (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
14250         return (0);
14251     }
14252 
14253     /* IGU in normal mode - read CAM */
14254     for (igu_sb_id = 0;
14255          igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
14256          igu_sb_id++) {
14257         val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
14258         if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
14259             continue;
14260         }
14261         fid = IGU_FID(val);
14262         if ((fid & IGU_FID_ENCODE_IS_PF)) {
14263             if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
14264                 continue;
14265             }
14266             if (IGU_VEC(val) == 0) {
14267                 /* default status block */
14268                 sc->igu_dsb_id = igu_sb_id;
14269             } else {
14270                 if (sc->igu_base_sb == 0xff) {
14271                     sc->igu_base_sb = igu_sb_id;
14272                 }
14273                 igu_sb_cnt++;
14274             }
14275         }
14276     }
14277 
14278     /*
14279      * Due to new PF resource allocation by MFW T7.4 and above, it's optional
14280      * that number of CAM entries will not be equal to the value advertised in
14281      * PCI. Driver should use the minimal value of both as the actual status
14282      * block count
14283      */
14284     sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
14285 
14286     if (igu_sb_cnt == 0) {
14287         BLOGE(sc, "CAM configuration error\n");
14288         return (-1);
14289     }
14290 
14291     return (0);
14292 }
14293 
14294 /*
14295  * Gather various information from the device config space, the device itself,
14296  * shmem, and the user input.
14297  */
14298 static int
14299 bxe_get_device_info(struct bxe_softc *sc)
14300 {
14301     uint32_t val;
14302     int rc;
14303 
14304     /* Get the data for the device */
14305     sc->devinfo.vendor_id    = pci_get_vendor(sc->dev);
14306     sc->devinfo.device_id    = pci_get_device(sc->dev);
14307     sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
14308     sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
14309 
14310     /* get the chip revision (chip metal comes from pci config space) */
14311     sc->devinfo.chip_id     =
14312     sc->link_params.chip_id =
14313         (((REG_RD(sc, MISC_REG_CHIP_NUM)                   & 0xffff) << 16) |
14314          ((REG_RD(sc, MISC_REG_CHIP_REV)                   & 0xf)    << 12) |
14315          (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf)    << 4)  |
14316          ((REG_RD(sc, MISC_REG_BOND_ID)                    & 0xf)    << 0));
14317 
14318     /* force 57811 according to MISC register */
14319     if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
14320         if (CHIP_IS_57810(sc)) {
14321             sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
14322                                    (sc->devinfo.chip_id & 0x0000ffff));
14323         } else if (CHIP_IS_57810_MF(sc)) {
14324             sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
14325                                    (sc->devinfo.chip_id & 0x0000ffff));
14326         }
14327         sc->devinfo.chip_id |= 0x1;
14328     }
14329 
14330     BLOGD(sc, DBG_LOAD,
14331           "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
14332           sc->devinfo.chip_id,
14333           ((sc->devinfo.chip_id >> 16) & 0xffff),
14334           ((sc->devinfo.chip_id >> 12) & 0xf),
14335           ((sc->devinfo.chip_id >>  4) & 0xff),
14336           ((sc->devinfo.chip_id >>  0) & 0xf));
14337 
14338     val = (REG_RD(sc, 0x2874) & 0x55);
14339     if ((sc->devinfo.chip_id & 0x1) ||
14340         (CHIP_IS_E1(sc) && val) ||
14341         (CHIP_IS_E1H(sc) && (val == 0x55))) {
14342         sc->flags |= BXE_ONE_PORT_FLAG;
14343         BLOGD(sc, DBG_LOAD, "single port device\n");
14344     }
14345 
14346     /* set the doorbell size */
14347     sc->doorbell_size = (1 << BXE_DB_SHIFT);
14348 
14349     /* determine whether the device is in 2 port or 4 port mode */
14350     sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
14351     if (CHIP_IS_E2E3(sc)) {
14352         /*
14353          * Read port4mode_en_ovwr[0]:
14354          *   If 1, four port mode is in port4mode_en_ovwr[1].
14355          *   If 0, four port mode is in port4mode_en[0].
14356          */
14357         val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
14358         if (val & 1) {
14359             val = ((val >> 1) & 1);
14360         } else {
14361             val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
14362         }
14363 
14364         sc->devinfo.chip_port_mode =
14365             (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
14366 
14367         BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
14368     }
14369 
14370     /* get the function and path info for the device */
14371     bxe_get_function_num(sc);
14372 
14373     /* get the shared memory base address */
14374     sc->devinfo.shmem_base     =
14375     sc->link_params.shmem_base =
14376         REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
14377     sc->devinfo.shmem2_base =
14378         REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
14379                                   MISC_REG_GENERIC_CR_0));
14380 
14381     BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
14382           sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
14383 
14384     if (!sc->devinfo.shmem_base) {
14385         /* this should ONLY prevent upcoming shmem reads */
14386         BLOGI(sc, "MCP not active\n");
14387         sc->flags |= BXE_NO_MCP_FLAG;
14388         return (0);
14389     }
14390 
14391     /* make sure the shared memory contents are valid */
14392     val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
14393     if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
14394         (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
14395         BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
14396         return (0);
14397     }
14398     BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
14399 
14400     /* get the bootcode version */
14401     sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
14402     snprintf(sc->devinfo.bc_ver_str,
14403              sizeof(sc->devinfo.bc_ver_str),
14404              "%d.%d.%d",
14405              ((sc->devinfo.bc_ver >> 24) & 0xff),
14406              ((sc->devinfo.bc_ver >> 16) & 0xff),
14407              ((sc->devinfo.bc_ver >>  8) & 0xff));
14408     BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
14409 
14410     /* get the bootcode shmem address */
14411     sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
14412     BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
14413 
14414     /* clean indirect addresses as they're not used */
14415     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
14416     if (IS_PF(sc)) {
14417         REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
14418         REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
14419         REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
14420         REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
14421         if (CHIP_IS_E1x(sc)) {
14422             REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
14423             REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
14424             REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
14425             REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
14426         }
14427 
14428         /*
14429          * Enable internal target-read (in case we are probed after PF
14430          * FLR). Must be done prior to any BAR read access. Only for
14431          * 57712 and up
14432          */
14433         if (!CHIP_IS_E1x(sc)) {
14434             REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
14435         }
14436     }
14437 
14438     /* get the nvram size */
14439     val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
14440     sc->devinfo.flash_size =
14441         (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
14442     BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
14443 
14444     /* get PCI capabilites */
14445     bxe_probe_pci_caps(sc);
14446 
14447     bxe_set_power_state(sc, PCI_PM_D0);
14448 
14449     /* get various configuration parameters from shmem */
14450     bxe_get_shmem_info(sc);
14451 
14452     if (sc->devinfo.pcie_msix_cap_reg != 0) {
14453         val = pci_read_config(sc->dev,
14454                               (sc->devinfo.pcie_msix_cap_reg +
14455                                PCIR_MSIX_CTRL),
14456                               2);
14457         sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
14458     } else {
14459         sc->igu_sb_cnt = 1;
14460     }
14461 
14462     sc->igu_base_addr = BAR_IGU_INTMEM;
14463 
14464     /* initialize IGU parameters */
14465     if (CHIP_IS_E1x(sc)) {
14466         sc->devinfo.int_block = INT_BLOCK_HC;
14467         sc->igu_dsb_id = DEF_SB_IGU_ID;
14468         sc->igu_base_sb = 0;
14469     } else {
14470         sc->devinfo.int_block = INT_BLOCK_IGU;
14471 
14472         /* do not allow device reset during IGU info preocessing */
14473         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14474 
14475         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
14476 
14477         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14478             int tout = 5000;
14479 
14480             BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
14481 
14482             val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
14483             REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
14484             REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
14485 
14486             while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14487                 tout--;
14488                 DELAY(1000);
14489             }
14490 
14491             if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14492                 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
14493                 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14494                 return (-1);
14495             }
14496         }
14497 
14498         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14499             BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
14500             sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
14501         } else {
14502             BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
14503         }
14504 
14505         rc = bxe_get_igu_cam_info(sc);
14506 
14507         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14508 
14509         if (rc) {
14510             return (rc);
14511         }
14512     }
14513 
14514     /*
14515      * Get base FW non-default (fast path) status block ID. This value is
14516      * used to initialize the fw_sb_id saved on the fp/queue structure to
14517      * determine the id used by the FW.
14518      */
14519     if (CHIP_IS_E1x(sc)) {
14520         sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
14521     } else {
14522         /*
14523          * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
14524          * the same queue are indicated on the same IGU SB). So we prefer
14525          * FW and IGU SBs to be the same value.
14526          */
14527         sc->base_fw_ndsb = sc->igu_base_sb;
14528     }
14529 
14530     BLOGD(sc, DBG_LOAD,
14531           "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
14532           sc->igu_dsb_id, sc->igu_base_sb,
14533           sc->igu_sb_cnt, sc->base_fw_ndsb);
14534 
14535     elink_phy_probe(&sc->link_params);
14536 
14537     return (0);
14538 }
14539 
14540 static void
14541 bxe_link_settings_supported(struct bxe_softc *sc,
14542                             uint32_t         switch_cfg)
14543 {
14544     uint32_t cfg_size = 0;
14545     uint32_t idx;
14546     uint8_t port = SC_PORT(sc);
14547 
14548     /* aggregation of supported attributes of all external phys */
14549     sc->port.supported[0] = 0;
14550     sc->port.supported[1] = 0;
14551 
14552     switch (sc->link_params.num_phys) {
14553     case 1:
14554         sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
14555         cfg_size = 1;
14556         break;
14557     case 2:
14558         sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
14559         cfg_size = 1;
14560         break;
14561     case 3:
14562         if (sc->link_params.multi_phy_config &
14563             PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
14564             sc->port.supported[1] =
14565                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
14566             sc->port.supported[0] =
14567                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
14568         } else {
14569             sc->port.supported[0] =
14570                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
14571             sc->port.supported[1] =
14572                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
14573         }
14574         cfg_size = 2;
14575         break;
14576     }
14577 
14578     if (!(sc->port.supported[0] || sc->port.supported[1])) {
14579         BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
14580               SHMEM_RD(sc,
14581                        dev_info.port_hw_config[port].external_phy_config),
14582               SHMEM_RD(sc,
14583                        dev_info.port_hw_config[port].external_phy_config2));
14584         return;
14585     }
14586 
14587     if (CHIP_IS_E3(sc))
14588         sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
14589     else {
14590         switch (switch_cfg) {
14591         case ELINK_SWITCH_CFG_1G:
14592             sc->port.phy_addr =
14593                 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
14594             break;
14595         case ELINK_SWITCH_CFG_10G:
14596             sc->port.phy_addr =
14597                 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
14598             break;
14599         default:
14600             BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
14601                   sc->port.link_config[0]);
14602             return;
14603         }
14604     }
14605 
14606     BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
14607 
14608     /* mask what we support according to speed_cap_mask per configuration */
14609     for (idx = 0; idx < cfg_size; idx++) {
14610         if (!(sc->link_params.speed_cap_mask[idx] &
14611               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
14612             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
14613         }
14614 
14615         if (!(sc->link_params.speed_cap_mask[idx] &
14616               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
14617             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
14618         }
14619 
14620         if (!(sc->link_params.speed_cap_mask[idx] &
14621               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
14622             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
14623         }
14624 
14625         if (!(sc->link_params.speed_cap_mask[idx] &
14626               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
14627             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
14628         }
14629 
14630         if (!(sc->link_params.speed_cap_mask[idx] &
14631               PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
14632             sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
14633         }
14634 
14635         if (!(sc->link_params.speed_cap_mask[idx] &
14636               PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
14637             sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
14638         }
14639 
14640         if (!(sc->link_params.speed_cap_mask[idx] &
14641               PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
14642             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
14643         }
14644 
14645         if (!(sc->link_params.speed_cap_mask[idx] &
14646               PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
14647             sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
14648         }
14649     }
14650 
14651     BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
14652           sc->port.supported[0], sc->port.supported[1]);
14653 }
14654 
14655 static void
14656 bxe_link_settings_requested(struct bxe_softc *sc)
14657 {
14658     uint32_t link_config;
14659     uint32_t idx;
14660     uint32_t cfg_size = 0;
14661 
14662     sc->port.advertising[0] = 0;
14663     sc->port.advertising[1] = 0;
14664 
14665     switch (sc->link_params.num_phys) {
14666     case 1:
14667     case 2:
14668         cfg_size = 1;
14669         break;
14670     case 3:
14671         cfg_size = 2;
14672         break;
14673     }
14674 
14675     for (idx = 0; idx < cfg_size; idx++) {
14676         sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14677         link_config = sc->port.link_config[idx];
14678 
14679         switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14680         case PORT_FEATURE_LINK_SPEED_AUTO:
14681             if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14682                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14683                 sc->port.advertising[idx] |= sc->port.supported[idx];
14684                 if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14685                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14686                     sc->port.advertising[idx] |=
14687                         (ELINK_SUPPORTED_100baseT_Half |
14688                          ELINK_SUPPORTED_100baseT_Full);
14689             } else {
14690                 /* force 10G, no AN */
14691                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14692                 sc->port.advertising[idx] |=
14693                     (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14694                 continue;
14695             }
14696             break;
14697 
14698         case PORT_FEATURE_LINK_SPEED_10M_FULL:
14699             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14700                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14701                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14702                                               ADVERTISED_TP);
14703             } else {
14704                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14705                           "speed_cap_mask=0x%08x\n",
14706                       link_config, sc->link_params.speed_cap_mask[idx]);
14707                 return;
14708             }
14709             break;
14710 
14711         case PORT_FEATURE_LINK_SPEED_10M_HALF:
14712             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14713                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14714                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14715                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14716                                               ADVERTISED_TP);
14717             } else {
14718                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14719                           "speed_cap_mask=0x%08x\n",
14720                       link_config, sc->link_params.speed_cap_mask[idx]);
14721                 return;
14722             }
14723             break;
14724 
14725         case PORT_FEATURE_LINK_SPEED_100M_FULL:
14726             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14727                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14728                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14729                                               ADVERTISED_TP);
14730             } else {
14731                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14732                           "speed_cap_mask=0x%08x\n",
14733                       link_config, sc->link_params.speed_cap_mask[idx]);
14734                 return;
14735             }
14736             break;
14737 
14738         case PORT_FEATURE_LINK_SPEED_100M_HALF:
14739             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14740                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14741                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14742                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14743                                               ADVERTISED_TP);
14744             } else {
14745                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14746                           "speed_cap_mask=0x%08x\n",
14747                       link_config, sc->link_params.speed_cap_mask[idx]);
14748                 return;
14749             }
14750             break;
14751 
14752         case PORT_FEATURE_LINK_SPEED_1G:
14753             if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14754                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14755                 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14756                                               ADVERTISED_TP);
14757             } else {
14758                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14759                           "speed_cap_mask=0x%08x\n",
14760                       link_config, sc->link_params.speed_cap_mask[idx]);
14761                 return;
14762             }
14763             break;
14764 
14765         case PORT_FEATURE_LINK_SPEED_2_5G:
14766             if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14767                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14768                 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14769                                               ADVERTISED_TP);
14770             } else {
14771                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14772                           "speed_cap_mask=0x%08x\n",
14773                       link_config, sc->link_params.speed_cap_mask[idx]);
14774                 return;
14775             }
14776             break;
14777 
14778         case PORT_FEATURE_LINK_SPEED_10G_CX4:
14779             if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14780                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14781                 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14782                                               ADVERTISED_FIBRE);
14783             } else {
14784                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14785                           "speed_cap_mask=0x%08x\n",
14786                       link_config, sc->link_params.speed_cap_mask[idx]);
14787                 return;
14788             }
14789             break;
14790 
14791         case PORT_FEATURE_LINK_SPEED_20G:
14792             sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14793             break;
14794 
14795         default:
14796             BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14797                       "speed_cap_mask=0x%08x\n",
14798                   link_config, sc->link_params.speed_cap_mask[idx]);
14799             sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14800             sc->port.advertising[idx] = sc->port.supported[idx];
14801             break;
14802         }
14803 
14804         sc->link_params.req_flow_ctrl[idx] =
14805             (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14806 
14807         if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14808             if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14809                 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14810             } else {
14811                 bxe_set_requested_fc(sc);
14812             }
14813         }
14814 
14815         BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14816                             "req_flow_ctrl=0x%x advertising=0x%x\n",
14817               sc->link_params.req_line_speed[idx],
14818               sc->link_params.req_duplex[idx],
14819               sc->link_params.req_flow_ctrl[idx],
14820               sc->port.advertising[idx]);
14821     }
14822 }
14823 
14824 static void
14825 bxe_get_phy_info(struct bxe_softc *sc)
14826 {
14827     uint8_t port = SC_PORT(sc);
14828     uint32_t config = sc->port.config;
14829     uint32_t eee_mode;
14830 
14831     /* shmem data already read in bxe_get_shmem_info() */
14832 
14833     BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14834                         "link_config0=0x%08x\n",
14835                sc->link_params.lane_config,
14836                sc->link_params.speed_cap_mask[0],
14837                sc->port.link_config[0]);
14838 
14839     bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14840     bxe_link_settings_requested(sc);
14841 
14842     if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14843         sc->link_params.feature_config_flags |=
14844             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14845     } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14846         sc->link_params.feature_config_flags &=
14847             ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14848     } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14849         sc->link_params.feature_config_flags |=
14850             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14851     }
14852 
14853     /* configure link feature according to nvram value */
14854     eee_mode =
14855         (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14856           PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14857          PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14858     if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14859         sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14860                                     ELINK_EEE_MODE_ENABLE_LPI |
14861                                     ELINK_EEE_MODE_OUTPUT_TIME);
14862     } else {
14863         sc->link_params.eee_mode = 0;
14864     }
14865 
14866     /* get the media type */
14867     bxe_media_detect(sc);
14868 }
14869 
14870 static void
14871 bxe_get_params(struct bxe_softc *sc)
14872 {
14873     /* get user tunable params */
14874     bxe_get_tunable_params(sc);
14875 
14876     /* select the RX and TX ring sizes */
14877     sc->tx_ring_size = TX_BD_USABLE;
14878     sc->rx_ring_size = RX_BD_USABLE;
14879 
14880     /* XXX disable WoL */
14881     sc->wol = 0;
14882 }
14883 
14884 static void
14885 bxe_set_modes_bitmap(struct bxe_softc *sc)
14886 {
14887     uint32_t flags = 0;
14888 
14889     if (CHIP_REV_IS_FPGA(sc)) {
14890         SET_FLAGS(flags, MODE_FPGA);
14891     } else if (CHIP_REV_IS_EMUL(sc)) {
14892         SET_FLAGS(flags, MODE_EMUL);
14893     } else {
14894         SET_FLAGS(flags, MODE_ASIC);
14895     }
14896 
14897     if (CHIP_IS_MODE_4_PORT(sc)) {
14898         SET_FLAGS(flags, MODE_PORT4);
14899     } else {
14900         SET_FLAGS(flags, MODE_PORT2);
14901     }
14902 
14903     if (CHIP_IS_E2(sc)) {
14904         SET_FLAGS(flags, MODE_E2);
14905     } else if (CHIP_IS_E3(sc)) {
14906         SET_FLAGS(flags, MODE_E3);
14907         if (CHIP_REV(sc) == CHIP_REV_Ax) {
14908             SET_FLAGS(flags, MODE_E3_A0);
14909         } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14910             SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14911         }
14912     }
14913 
14914     if (IS_MF(sc)) {
14915         SET_FLAGS(flags, MODE_MF);
14916         switch (sc->devinfo.mf_info.mf_mode) {
14917         case MULTI_FUNCTION_SD:
14918             SET_FLAGS(flags, MODE_MF_SD);
14919             break;
14920         case MULTI_FUNCTION_SI:
14921             SET_FLAGS(flags, MODE_MF_SI);
14922             break;
14923         case MULTI_FUNCTION_AFEX:
14924             SET_FLAGS(flags, MODE_MF_AFEX);
14925             break;
14926         }
14927     } else {
14928         SET_FLAGS(flags, MODE_SF);
14929     }
14930 
14931 #if defined(__LITTLE_ENDIAN)
14932     SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14933 #else /* __BIG_ENDIAN */
14934     SET_FLAGS(flags, MODE_BIG_ENDIAN);
14935 #endif
14936 
14937     INIT_MODE_FLAGS(sc) = flags;
14938 }
14939 
14940 static int
14941 bxe_alloc_hsi_mem(struct bxe_softc *sc)
14942 {
14943     struct bxe_fastpath *fp;
14944     bus_addr_t busaddr;
14945     int max_agg_queues;
14946     int max_segments;
14947     bus_size_t max_size;
14948     bus_size_t max_seg_size;
14949     char buf[32];
14950     int rc;
14951     int i, j;
14952 
14953     /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14954 
14955     /* allocate the parent bus DMA tag */
14956     rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14957                             1,                        /* alignment */
14958                             0,                        /* boundary limit */
14959                             BUS_SPACE_MAXADDR,        /* restricted low */
14960                             BUS_SPACE_MAXADDR,        /* restricted hi */
14961                             NULL,                     /* addr filter() */
14962                             NULL,                     /* addr filter() arg */
14963                             BUS_SPACE_MAXSIZE_32BIT,  /* max map size */
14964                             BUS_SPACE_UNRESTRICTED,   /* num discontinuous */
14965                             BUS_SPACE_MAXSIZE_32BIT,  /* max seg size */
14966                             0,                        /* flags */
14967                             NULL,                     /* lock() */
14968                             NULL,                     /* lock() arg */
14969                             &sc->parent_dma_tag);     /* returned dma tag */
14970     if (rc != 0) {
14971         BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14972         return (1);
14973     }
14974 
14975     /************************/
14976     /* DEFAULT STATUS BLOCK */
14977     /************************/
14978 
14979     if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14980                       &sc->def_sb_dma, "default status block") != 0) {
14981         /* XXX */
14982         bus_dma_tag_destroy(sc->parent_dma_tag);
14983         return (1);
14984     }
14985 
14986     sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
14987 
14988     /***************/
14989     /* EVENT QUEUE */
14990     /***************/
14991 
14992     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14993                       &sc->eq_dma, "event queue") != 0) {
14994         /* XXX */
14995         bxe_dma_free(sc, &sc->def_sb_dma);
14996         sc->def_sb = NULL;
14997         bus_dma_tag_destroy(sc->parent_dma_tag);
14998         return (1);
14999     }
15000 
15001     sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
15002 
15003     /*************/
15004     /* SLOW PATH */
15005     /*************/
15006 
15007     if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
15008                       &sc->sp_dma, "slow path") != 0) {
15009         /* XXX */
15010         bxe_dma_free(sc, &sc->eq_dma);
15011         sc->eq = NULL;
15012         bxe_dma_free(sc, &sc->def_sb_dma);
15013         sc->def_sb = NULL;
15014         bus_dma_tag_destroy(sc->parent_dma_tag);
15015         return (1);
15016     }
15017 
15018     sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
15019 
15020     /*******************/
15021     /* SLOW PATH QUEUE */
15022     /*******************/
15023 
15024     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
15025                       &sc->spq_dma, "slow path queue") != 0) {
15026         /* XXX */
15027         bxe_dma_free(sc, &sc->sp_dma);
15028         sc->sp = NULL;
15029         bxe_dma_free(sc, &sc->eq_dma);
15030         sc->eq = NULL;
15031         bxe_dma_free(sc, &sc->def_sb_dma);
15032         sc->def_sb = NULL;
15033         bus_dma_tag_destroy(sc->parent_dma_tag);
15034         return (1);
15035     }
15036 
15037     sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
15038 
15039     /***************************/
15040     /* FW DECOMPRESSION BUFFER */
15041     /***************************/
15042 
15043     if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
15044                       "fw decompression buffer") != 0) {
15045         /* XXX */
15046         bxe_dma_free(sc, &sc->spq_dma);
15047         sc->spq = NULL;
15048         bxe_dma_free(sc, &sc->sp_dma);
15049         sc->sp = NULL;
15050         bxe_dma_free(sc, &sc->eq_dma);
15051         sc->eq = NULL;
15052         bxe_dma_free(sc, &sc->def_sb_dma);
15053         sc->def_sb = NULL;
15054         bus_dma_tag_destroy(sc->parent_dma_tag);
15055         return (1);
15056     }
15057 
15058     sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
15059 
15060     if ((sc->gz_strm =
15061          malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
15062         /* XXX */
15063         bxe_dma_free(sc, &sc->gz_buf_dma);
15064         sc->gz_buf = NULL;
15065         bxe_dma_free(sc, &sc->spq_dma);
15066         sc->spq = NULL;
15067         bxe_dma_free(sc, &sc->sp_dma);
15068         sc->sp = NULL;
15069         bxe_dma_free(sc, &sc->eq_dma);
15070         sc->eq = NULL;
15071         bxe_dma_free(sc, &sc->def_sb_dma);
15072         sc->def_sb = NULL;
15073         bus_dma_tag_destroy(sc->parent_dma_tag);
15074         return (1);
15075     }
15076 
15077     /*************/
15078     /* FASTPATHS */
15079     /*************/
15080 
15081     /* allocate DMA memory for each fastpath structure */
15082     for (i = 0; i < sc->num_queues; i++) {
15083         fp = &sc->fp[i];
15084         fp->sc    = sc;
15085         fp->index = i;
15086 
15087         /*******************/
15088         /* FP STATUS BLOCK */
15089         /*******************/
15090 
15091         snprintf(buf, sizeof(buf), "fp %d status block", i);
15092         if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
15093                           &fp->sb_dma, buf) != 0) {
15094             /* XXX unwind and free previous fastpath allocations */
15095             BLOGE(sc, "Failed to alloc %s\n", buf);
15096             return (1);
15097         } else {
15098             if (CHIP_IS_E2E3(sc)) {
15099                 fp->status_block.e2_sb =
15100                     (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
15101             } else {
15102                 fp->status_block.e1x_sb =
15103                     (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
15104             }
15105         }
15106 
15107         /******************/
15108         /* FP TX BD CHAIN */
15109         /******************/
15110 
15111         snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
15112         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
15113                           &fp->tx_dma, buf) != 0) {
15114             /* XXX unwind and free previous fastpath allocations */
15115             BLOGE(sc, "Failed to alloc %s\n", buf);
15116             return (1);
15117         } else {
15118             fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
15119         }
15120 
15121         /* link together the tx bd chain pages */
15122         for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
15123             /* index into the tx bd chain array to last entry per page */
15124             struct eth_tx_next_bd *tx_next_bd =
15125                 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
15126             /* point to the next page and wrap from last page */
15127             busaddr = (fp->tx_dma.paddr +
15128                        (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
15129             tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
15130             tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
15131         }
15132 
15133         /******************/
15134         /* FP RX BD CHAIN */
15135         /******************/
15136 
15137         snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
15138         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
15139                           &fp->rx_dma, buf) != 0) {
15140             /* XXX unwind and free previous fastpath allocations */
15141             BLOGE(sc, "Failed to alloc %s\n", buf);
15142             return (1);
15143         } else {
15144             fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
15145         }
15146 
15147         /* link together the rx bd chain pages */
15148         for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
15149             /* index into the rx bd chain array to last entry per page */
15150             struct eth_rx_bd *rx_bd =
15151                 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
15152             /* point to the next page and wrap from last page */
15153             busaddr = (fp->rx_dma.paddr +
15154                        (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
15155             rx_bd->addr_hi = htole32(U64_HI(busaddr));
15156             rx_bd->addr_lo = htole32(U64_LO(busaddr));
15157         }
15158 
15159         /*******************/
15160         /* FP RX RCQ CHAIN */
15161         /*******************/
15162 
15163         snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
15164         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
15165                           &fp->rcq_dma, buf) != 0) {
15166             /* XXX unwind and free previous fastpath allocations */
15167             BLOGE(sc, "Failed to alloc %s\n", buf);
15168             return (1);
15169         } else {
15170             fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
15171         }
15172 
15173         /* link together the rcq chain pages */
15174         for (j = 1; j <= RCQ_NUM_PAGES; j++) {
15175             /* index into the rcq chain array to last entry per page */
15176             struct eth_rx_cqe_next_page *rx_cqe_next =
15177                 (struct eth_rx_cqe_next_page *)
15178                 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
15179             /* point to the next page and wrap from last page */
15180             busaddr = (fp->rcq_dma.paddr +
15181                        (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
15182             rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
15183             rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
15184         }
15185 
15186         /*******************/
15187         /* FP RX SGE CHAIN */
15188         /*******************/
15189 
15190         snprintf(buf, sizeof(buf), "fp %d sge chain", i);
15191         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
15192                           &fp->rx_sge_dma, buf) != 0) {
15193             /* XXX unwind and free previous fastpath allocations */
15194             BLOGE(sc, "Failed to alloc %s\n", buf);
15195             return (1);
15196         } else {
15197             fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
15198         }
15199 
15200         /* link together the sge chain pages */
15201         for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
15202             /* index into the rcq chain array to last entry per page */
15203             struct eth_rx_sge *rx_sge =
15204                 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
15205             /* point to the next page and wrap from last page */
15206             busaddr = (fp->rx_sge_dma.paddr +
15207                        (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
15208             rx_sge->addr_hi = htole32(U64_HI(busaddr));
15209             rx_sge->addr_lo = htole32(U64_LO(busaddr));
15210         }
15211 
15212         /***********************/
15213         /* FP TX MBUF DMA MAPS */
15214         /***********************/
15215 
15216         /* set required sizes before mapping to conserve resources */
15217         if (sc->ifnet->if_capenable & (IFCAP_TSO4 | IFCAP_TSO6)) {
15218             max_size     = BXE_TSO_MAX_SIZE;
15219             max_segments = BXE_TSO_MAX_SEGMENTS;
15220             max_seg_size = BXE_TSO_MAX_SEG_SIZE;
15221         } else {
15222             max_size     = (MCLBYTES * BXE_MAX_SEGMENTS);
15223             max_segments = BXE_MAX_SEGMENTS;
15224             max_seg_size = MCLBYTES;
15225         }
15226 
15227         /* create a dma tag for the tx mbufs */
15228         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15229                                 1,                  /* alignment */
15230                                 0,                  /* boundary limit */
15231                                 BUS_SPACE_MAXADDR,  /* restricted low */
15232                                 BUS_SPACE_MAXADDR,  /* restricted hi */
15233                                 NULL,               /* addr filter() */
15234                                 NULL,               /* addr filter() arg */
15235                                 max_size,           /* max map size */
15236                                 max_segments,       /* num discontinuous */
15237                                 max_seg_size,       /* max seg size */
15238                                 0,                  /* flags */
15239                                 NULL,               /* lock() */
15240                                 NULL,               /* lock() arg */
15241                                 &fp->tx_mbuf_tag);  /* returned dma tag */
15242         if (rc != 0) {
15243             /* XXX unwind and free previous fastpath allocations */
15244             BLOGE(sc, "Failed to create dma tag for "
15245                       "'fp %d tx mbufs' (%d)\n",
15246                   i, rc);
15247             return (1);
15248         }
15249 
15250         /* create dma maps for each of the tx mbuf clusters */
15251         for (j = 0; j < TX_BD_TOTAL; j++) {
15252             if (bus_dmamap_create(fp->tx_mbuf_tag,
15253                                   BUS_DMA_NOWAIT,
15254                                   &fp->tx_mbuf_chain[j].m_map)) {
15255                 /* XXX unwind and free previous fastpath allocations */
15256                 BLOGE(sc, "Failed to create dma map for "
15257                           "'fp %d tx mbuf %d' (%d)\n",
15258                       i, j, rc);
15259                 return (1);
15260             }
15261         }
15262 
15263         /***********************/
15264         /* FP RX MBUF DMA MAPS */
15265         /***********************/
15266 
15267         /* create a dma tag for the rx mbufs */
15268         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15269                                 1,                  /* alignment */
15270                                 0,                  /* boundary limit */
15271                                 BUS_SPACE_MAXADDR,  /* restricted low */
15272                                 BUS_SPACE_MAXADDR,  /* restricted hi */
15273                                 NULL,               /* addr filter() */
15274                                 NULL,               /* addr filter() arg */
15275                                 MJUM9BYTES,         /* max map size */
15276                                 1,                  /* num discontinuous */
15277                                 MJUM9BYTES,         /* max seg size */
15278                                 0,                  /* flags */
15279                                 NULL,               /* lock() */
15280                                 NULL,               /* lock() arg */
15281                                 &fp->rx_mbuf_tag);  /* returned dma tag */
15282         if (rc != 0) {
15283             /* XXX unwind and free previous fastpath allocations */
15284             BLOGE(sc, "Failed to create dma tag for "
15285                       "'fp %d rx mbufs' (%d)\n",
15286                   i, rc);
15287             return (1);
15288         }
15289 
15290         /* create dma maps for each of the rx mbuf clusters */
15291         for (j = 0; j < RX_BD_TOTAL; j++) {
15292             if (bus_dmamap_create(fp->rx_mbuf_tag,
15293                                   BUS_DMA_NOWAIT,
15294                                   &fp->rx_mbuf_chain[j].m_map)) {
15295                 /* XXX unwind and free previous fastpath allocations */
15296                 BLOGE(sc, "Failed to create dma map for "
15297                           "'fp %d rx mbuf %d' (%d)\n",
15298                       i, j, rc);
15299                 return (1);
15300             }
15301         }
15302 
15303         /* create dma map for the spare rx mbuf cluster */
15304         if (bus_dmamap_create(fp->rx_mbuf_tag,
15305                               BUS_DMA_NOWAIT,
15306                               &fp->rx_mbuf_spare_map)) {
15307             /* XXX unwind and free previous fastpath allocations */
15308             BLOGE(sc, "Failed to create dma map for "
15309                       "'fp %d spare rx mbuf' (%d)\n",
15310                   i, rc);
15311             return (1);
15312         }
15313 
15314         /***************************/
15315         /* FP RX SGE MBUF DMA MAPS */
15316         /***************************/
15317 
15318         /* create a dma tag for the rx sge mbufs */
15319         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15320                                 1,                  /* alignment */
15321                                 0,                  /* boundary limit */
15322                                 BUS_SPACE_MAXADDR,  /* restricted low */
15323                                 BUS_SPACE_MAXADDR,  /* restricted hi */
15324                                 NULL,               /* addr filter() */
15325                                 NULL,               /* addr filter() arg */
15326                                 BCM_PAGE_SIZE,      /* max map size */
15327                                 1,                  /* num discontinuous */
15328                                 BCM_PAGE_SIZE,      /* max seg size */
15329                                 0,                  /* flags */
15330                                 NULL,               /* lock() */
15331                                 NULL,               /* lock() arg */
15332                                 &fp->rx_sge_mbuf_tag); /* returned dma tag */
15333         if (rc != 0) {
15334             /* XXX unwind and free previous fastpath allocations */
15335             BLOGE(sc, "Failed to create dma tag for "
15336                       "'fp %d rx sge mbufs' (%d)\n",
15337                   i, rc);
15338             return (1);
15339         }
15340 
15341         /* create dma maps for the rx sge mbuf clusters */
15342         for (j = 0; j < RX_SGE_TOTAL; j++) {
15343             if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15344                                   BUS_DMA_NOWAIT,
15345                                   &fp->rx_sge_mbuf_chain[j].m_map)) {
15346                 /* XXX unwind and free previous fastpath allocations */
15347                 BLOGE(sc, "Failed to create dma map for "
15348                           "'fp %d rx sge mbuf %d' (%d)\n",
15349                       i, j, rc);
15350                 return (1);
15351             }
15352         }
15353 
15354         /* create dma map for the spare rx sge mbuf cluster */
15355         if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15356                               BUS_DMA_NOWAIT,
15357                               &fp->rx_sge_mbuf_spare_map)) {
15358             /* XXX unwind and free previous fastpath allocations */
15359             BLOGE(sc, "Failed to create dma map for "
15360                       "'fp %d spare rx sge mbuf' (%d)\n",
15361                   i, rc);
15362             return (1);
15363         }
15364 
15365         /***************************/
15366         /* FP RX TPA MBUF DMA MAPS */
15367         /***************************/
15368 
15369         /* create dma maps for the rx tpa mbuf clusters */
15370         max_agg_queues = MAX_AGG_QS(sc);
15371 
15372         for (j = 0; j < max_agg_queues; j++) {
15373             if (bus_dmamap_create(fp->rx_mbuf_tag,
15374                                   BUS_DMA_NOWAIT,
15375                                   &fp->rx_tpa_info[j].bd.m_map)) {
15376                 /* XXX unwind and free previous fastpath allocations */
15377                 BLOGE(sc, "Failed to create dma map for "
15378                           "'fp %d rx tpa mbuf %d' (%d)\n",
15379                       i, j, rc);
15380                 return (1);
15381             }
15382         }
15383 
15384         /* create dma map for the spare rx tpa mbuf cluster */
15385         if (bus_dmamap_create(fp->rx_mbuf_tag,
15386                               BUS_DMA_NOWAIT,
15387                               &fp->rx_tpa_info_mbuf_spare_map)) {
15388             /* XXX unwind and free previous fastpath allocations */
15389             BLOGE(sc, "Failed to create dma map for "
15390                       "'fp %d spare rx tpa mbuf' (%d)\n",
15391                   i, rc);
15392             return (1);
15393         }
15394 
15395         bxe_init_sge_ring_bit_mask(fp);
15396     }
15397 
15398     return (0);
15399 }
15400 
15401 static void
15402 bxe_free_hsi_mem(struct bxe_softc *sc)
15403 {
15404     struct bxe_fastpath *fp;
15405     int max_agg_queues;
15406     int i, j;
15407 
15408     if (sc->parent_dma_tag == NULL) {
15409         return; /* assume nothing was allocated */
15410     }
15411 
15412     for (i = 0; i < sc->num_queues; i++) {
15413         fp = &sc->fp[i];
15414 
15415         /*******************/
15416         /* FP STATUS BLOCK */
15417         /*******************/
15418 
15419         bxe_dma_free(sc, &fp->sb_dma);
15420         memset(&fp->status_block, 0, sizeof(fp->status_block));
15421 
15422         /******************/
15423         /* FP TX BD CHAIN */
15424         /******************/
15425 
15426         bxe_dma_free(sc, &fp->tx_dma);
15427         fp->tx_chain = NULL;
15428 
15429         /******************/
15430         /* FP RX BD CHAIN */
15431         /******************/
15432 
15433         bxe_dma_free(sc, &fp->rx_dma);
15434         fp->rx_chain = NULL;
15435 
15436         /*******************/
15437         /* FP RX RCQ CHAIN */
15438         /*******************/
15439 
15440         bxe_dma_free(sc, &fp->rcq_dma);
15441         fp->rcq_chain = NULL;
15442 
15443         /*******************/
15444         /* FP RX SGE CHAIN */
15445         /*******************/
15446 
15447         bxe_dma_free(sc, &fp->rx_sge_dma);
15448         fp->rx_sge_chain = NULL;
15449 
15450         /***********************/
15451         /* FP TX MBUF DMA MAPS */
15452         /***********************/
15453 
15454         if (fp->tx_mbuf_tag != NULL) {
15455             for (j = 0; j < TX_BD_TOTAL; j++) {
15456                 if (fp->tx_mbuf_chain[j].m_map != NULL) {
15457                     bus_dmamap_unload(fp->tx_mbuf_tag,
15458                                       fp->tx_mbuf_chain[j].m_map);
15459                     bus_dmamap_destroy(fp->tx_mbuf_tag,
15460                                        fp->tx_mbuf_chain[j].m_map);
15461                 }
15462             }
15463 
15464             bus_dma_tag_destroy(fp->tx_mbuf_tag);
15465             fp->tx_mbuf_tag = NULL;
15466         }
15467 
15468         /***********************/
15469         /* FP RX MBUF DMA MAPS */
15470         /***********************/
15471 
15472         if (fp->rx_mbuf_tag != NULL) {
15473             for (j = 0; j < RX_BD_TOTAL; j++) {
15474                 if (fp->rx_mbuf_chain[j].m_map != NULL) {
15475                     bus_dmamap_unload(fp->rx_mbuf_tag,
15476                                       fp->rx_mbuf_chain[j].m_map);
15477                     bus_dmamap_destroy(fp->rx_mbuf_tag,
15478                                        fp->rx_mbuf_chain[j].m_map);
15479                 }
15480             }
15481 
15482             if (fp->rx_mbuf_spare_map != NULL) {
15483                 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15484                 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15485             }
15486 
15487             /***************************/
15488             /* FP RX TPA MBUF DMA MAPS */
15489             /***************************/
15490 
15491             max_agg_queues = MAX_AGG_QS(sc);
15492 
15493             for (j = 0; j < max_agg_queues; j++) {
15494                 if (fp->rx_tpa_info[j].bd.m_map != NULL) {
15495                     bus_dmamap_unload(fp->rx_mbuf_tag,
15496                                       fp->rx_tpa_info[j].bd.m_map);
15497                     bus_dmamap_destroy(fp->rx_mbuf_tag,
15498                                        fp->rx_tpa_info[j].bd.m_map);
15499                 }
15500             }
15501 
15502             if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
15503                 bus_dmamap_unload(fp->rx_mbuf_tag,
15504                                   fp->rx_tpa_info_mbuf_spare_map);
15505                 bus_dmamap_destroy(fp->rx_mbuf_tag,
15506                                    fp->rx_tpa_info_mbuf_spare_map);
15507             }
15508 
15509             bus_dma_tag_destroy(fp->rx_mbuf_tag);
15510             fp->rx_mbuf_tag = NULL;
15511         }
15512 
15513         /***************************/
15514         /* FP RX SGE MBUF DMA MAPS */
15515         /***************************/
15516 
15517         if (fp->rx_sge_mbuf_tag != NULL) {
15518             for (j = 0; j < RX_SGE_TOTAL; j++) {
15519                 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
15520                     bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15521                                       fp->rx_sge_mbuf_chain[j].m_map);
15522                     bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15523                                        fp->rx_sge_mbuf_chain[j].m_map);
15524                 }
15525             }
15526 
15527             if (fp->rx_sge_mbuf_spare_map != NULL) {
15528                 bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15529                                   fp->rx_sge_mbuf_spare_map);
15530                 bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15531                                    fp->rx_sge_mbuf_spare_map);
15532             }
15533 
15534             bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
15535             fp->rx_sge_mbuf_tag = NULL;
15536         }
15537     }
15538 
15539     /***************************/
15540     /* FW DECOMPRESSION BUFFER */
15541     /***************************/
15542 
15543     bxe_dma_free(sc, &sc->gz_buf_dma);
15544     sc->gz_buf = NULL;
15545     free(sc->gz_strm, M_DEVBUF);
15546     sc->gz_strm = NULL;
15547 
15548     /*******************/
15549     /* SLOW PATH QUEUE */
15550     /*******************/
15551 
15552     bxe_dma_free(sc, &sc->spq_dma);
15553     sc->spq = NULL;
15554 
15555     /*************/
15556     /* SLOW PATH */
15557     /*************/
15558 
15559     bxe_dma_free(sc, &sc->sp_dma);
15560     sc->sp = NULL;
15561 
15562     /***************/
15563     /* EVENT QUEUE */
15564     /***************/
15565 
15566     bxe_dma_free(sc, &sc->eq_dma);
15567     sc->eq = NULL;
15568 
15569     /************************/
15570     /* DEFAULT STATUS BLOCK */
15571     /************************/
15572 
15573     bxe_dma_free(sc, &sc->def_sb_dma);
15574     sc->def_sb = NULL;
15575 
15576     bus_dma_tag_destroy(sc->parent_dma_tag);
15577     sc->parent_dma_tag = NULL;
15578 }
15579 
15580 /*
15581  * Previous driver DMAE transaction may have occurred when pre-boot stage
15582  * ended and boot began. This would invalidate the addresses of the
15583  * transaction, resulting in was-error bit set in the PCI causing all
15584  * hw-to-host PCIe transactions to timeout. If this happened we want to clear
15585  * the interrupt which detected this from the pglueb and the was-done bit
15586  */
15587 static void
15588 bxe_prev_interrupted_dmae(struct bxe_softc *sc)
15589 {
15590     uint32_t val;
15591 
15592     if (!CHIP_IS_E1x(sc)) {
15593         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
15594         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
15595             BLOGD(sc, DBG_LOAD,
15596                   "Clearing 'was-error' bit that was set in pglueb");
15597             REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
15598         }
15599     }
15600 }
15601 
15602 static int
15603 bxe_prev_mcp_done(struct bxe_softc *sc)
15604 {
15605     uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
15606                                  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
15607     if (!rc) {
15608         BLOGE(sc, "MCP response failure, aborting\n");
15609         return (-1);
15610     }
15611 
15612     return (0);
15613 }
15614 
15615 static struct bxe_prev_list_node *
15616 bxe_prev_path_get_entry(struct bxe_softc *sc)
15617 {
15618     struct bxe_prev_list_node *tmp;
15619 
15620     LIST_FOREACH(tmp, &bxe_prev_list, node) {
15621         if ((sc->pcie_bus == tmp->bus) &&
15622             (sc->pcie_device == tmp->slot) &&
15623             (SC_PATH(sc) == tmp->path)) {
15624             return (tmp);
15625         }
15626     }
15627 
15628     return (NULL);
15629 }
15630 
15631 static uint8_t
15632 bxe_prev_is_path_marked(struct bxe_softc *sc)
15633 {
15634     struct bxe_prev_list_node *tmp;
15635     int rc = FALSE;
15636 
15637     mtx_lock(&bxe_prev_mtx);
15638 
15639     tmp = bxe_prev_path_get_entry(sc);
15640     if (tmp) {
15641         if (tmp->aer) {
15642             BLOGD(sc, DBG_LOAD,
15643                   "Path %d/%d/%d was marked by AER\n",
15644                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15645         } else {
15646             rc = TRUE;
15647             BLOGD(sc, DBG_LOAD,
15648                   "Path %d/%d/%d was already cleaned from previous drivers\n",
15649                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15650         }
15651     }
15652 
15653     mtx_unlock(&bxe_prev_mtx);
15654 
15655     return (rc);
15656 }
15657 
15658 static int
15659 bxe_prev_mark_path(struct bxe_softc *sc,
15660                    uint8_t          after_undi)
15661 {
15662     struct bxe_prev_list_node *tmp;
15663 
15664     mtx_lock(&bxe_prev_mtx);
15665 
15666     /* Check whether the entry for this path already exists */
15667     tmp = bxe_prev_path_get_entry(sc);
15668     if (tmp) {
15669         if (!tmp->aer) {
15670             BLOGD(sc, DBG_LOAD,
15671                   "Re-marking AER in path %d/%d/%d\n",
15672                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15673         } else {
15674             BLOGD(sc, DBG_LOAD,
15675                   "Removing AER indication from path %d/%d/%d\n",
15676                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15677             tmp->aer = 0;
15678         }
15679 
15680         mtx_unlock(&bxe_prev_mtx);
15681         return (0);
15682     }
15683 
15684     mtx_unlock(&bxe_prev_mtx);
15685 
15686     /* Create an entry for this path and add it */
15687     tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15688                  (M_NOWAIT | M_ZERO));
15689     if (!tmp) {
15690         BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15691         return (-1);
15692     }
15693 
15694     tmp->bus  = sc->pcie_bus;
15695     tmp->slot = sc->pcie_device;
15696     tmp->path = SC_PATH(sc);
15697     tmp->aer  = 0;
15698     tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15699 
15700     mtx_lock(&bxe_prev_mtx);
15701 
15702     BLOGD(sc, DBG_LOAD,
15703           "Marked path %d/%d/%d - finished previous unload\n",
15704           sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15705     LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15706 
15707     mtx_unlock(&bxe_prev_mtx);
15708 
15709     return (0);
15710 }
15711 
15712 static int
15713 bxe_do_flr(struct bxe_softc *sc)
15714 {
15715     int i;
15716 
15717     /* only E2 and onwards support FLR */
15718     if (CHIP_IS_E1x(sc)) {
15719         BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15720         return (-1);
15721     }
15722 
15723     /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15724     if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15725         BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15726               sc->devinfo.bc_ver);
15727         return (-1);
15728     }
15729 
15730     /* Wait for Transaction Pending bit clean */
15731     for (i = 0; i < 4; i++) {
15732         if (i) {
15733             DELAY(((1 << (i - 1)) * 100) * 1000);
15734         }
15735 
15736         if (!bxe_is_pcie_pending(sc)) {
15737             goto clear;
15738         }
15739     }
15740 
15741     BLOGE(sc, "PCIE transaction is not cleared, "
15742               "proceeding with reset anyway\n");
15743 
15744 clear:
15745 
15746     BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15747     bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15748 
15749     return (0);
15750 }
15751 
15752 struct bxe_mac_vals {
15753     uint32_t xmac_addr;
15754     uint32_t xmac_val;
15755     uint32_t emac_addr;
15756     uint32_t emac_val;
15757     uint32_t umac_addr;
15758     uint32_t umac_val;
15759     uint32_t bmac_addr;
15760     uint32_t bmac_val[2];
15761 };
15762 
15763 static void
15764 bxe_prev_unload_close_mac(struct bxe_softc *sc,
15765                           struct bxe_mac_vals *vals)
15766 {
15767     uint32_t val, base_addr, offset, mask, reset_reg;
15768     uint8_t mac_stopped = FALSE;
15769     uint8_t port = SC_PORT(sc);
15770     uint32_t wb_data[2];
15771 
15772     /* reset addresses as they also mark which values were changed */
15773     vals->bmac_addr = 0;
15774     vals->umac_addr = 0;
15775     vals->xmac_addr = 0;
15776     vals->emac_addr = 0;
15777 
15778     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15779 
15780     if (!CHIP_IS_E3(sc)) {
15781         val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15782         mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15783         if ((mask & reset_reg) && val) {
15784             BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15785             base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15786                                     : NIG_REG_INGRESS_BMAC0_MEM;
15787             offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15788                                     : BIGMAC_REGISTER_BMAC_CONTROL;
15789 
15790             /*
15791              * use rd/wr since we cannot use dmae. This is safe
15792              * since MCP won't access the bus due to the request
15793              * to unload, and no function on the path can be
15794              * loaded at this time.
15795              */
15796             wb_data[0] = REG_RD(sc, base_addr + offset);
15797             wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15798             vals->bmac_addr = base_addr + offset;
15799             vals->bmac_val[0] = wb_data[0];
15800             vals->bmac_val[1] = wb_data[1];
15801             wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15802             REG_WR(sc, vals->bmac_addr, wb_data[0]);
15803             REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15804         }
15805 
15806         BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15807         vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15808         vals->emac_val = REG_RD(sc, vals->emac_addr);
15809         REG_WR(sc, vals->emac_addr, 0);
15810         mac_stopped = TRUE;
15811     } else {
15812         if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15813             BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15814             base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15815             val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15816             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15817             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15818             vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15819             vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15820             REG_WR(sc, vals->xmac_addr, 0);
15821             mac_stopped = TRUE;
15822         }
15823 
15824         mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15825         if (mask & reset_reg) {
15826             BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15827             base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15828             vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15829             vals->umac_val = REG_RD(sc, vals->umac_addr);
15830             REG_WR(sc, vals->umac_addr, 0);
15831             mac_stopped = TRUE;
15832         }
15833     }
15834 
15835     if (mac_stopped) {
15836         DELAY(20000);
15837     }
15838 }
15839 
15840 #define BXE_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15841 #define BXE_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
15842 #define BXE_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
15843 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15844 
15845 static void
15846 bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15847                          uint8_t          port,
15848                          uint8_t          inc)
15849 {
15850     uint16_t rcq, bd;
15851     uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15852 
15853     rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15854     bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15855 
15856     tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15857     REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15858 
15859     BLOGD(sc, DBG_LOAD,
15860           "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15861           port, bd, rcq);
15862 }
15863 
15864 static int
15865 bxe_prev_unload_common(struct bxe_softc *sc)
15866 {
15867     uint32_t reset_reg, tmp_reg = 0, rc;
15868     uint8_t prev_undi = FALSE;
15869     struct bxe_mac_vals mac_vals;
15870     uint32_t timer_count = 1000;
15871     uint32_t prev_brb;
15872 
15873     /*
15874      * It is possible a previous function received 'common' answer,
15875      * but hasn't loaded yet, therefore creating a scenario of
15876      * multiple functions receiving 'common' on the same path.
15877      */
15878     BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15879 
15880     memset(&mac_vals, 0, sizeof(mac_vals));
15881 
15882     if (bxe_prev_is_path_marked(sc)) {
15883         return (bxe_prev_mcp_done(sc));
15884     }
15885 
15886     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15887 
15888     /* Reset should be performed after BRB is emptied */
15889     if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15890         /* Close the MAC Rx to prevent BRB from filling up */
15891         bxe_prev_unload_close_mac(sc, &mac_vals);
15892 
15893         /* close LLH filters towards the BRB */
15894         elink_set_rx_filter(&sc->link_params, 0);
15895 
15896         /*
15897          * Check if the UNDI driver was previously loaded.
15898          * UNDI driver initializes CID offset for normal bell to 0x7
15899          */
15900         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15901             tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15902             if (tmp_reg == 0x7) {
15903                 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15904                 prev_undi = TRUE;
15905                 /* clear the UNDI indication */
15906                 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15907                 /* clear possible idle check errors */
15908                 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15909             }
15910         }
15911 
15912         /* wait until BRB is empty */
15913         tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15914         while (timer_count) {
15915             prev_brb = tmp_reg;
15916 
15917             tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15918             if (!tmp_reg) {
15919                 break;
15920             }
15921 
15922             BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15923 
15924             /* reset timer as long as BRB actually gets emptied */
15925             if (prev_brb > tmp_reg) {
15926                 timer_count = 1000;
15927             } else {
15928                 timer_count--;
15929             }
15930 
15931             /* If UNDI resides in memory, manually increment it */
15932             if (prev_undi) {
15933                 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15934             }
15935 
15936             DELAY(10);
15937         }
15938 
15939         if (!timer_count) {
15940             BLOGE(sc, "Failed to empty BRB\n");
15941         }
15942     }
15943 
15944     /* No packets are in the pipeline, path is ready for reset */
15945     bxe_reset_common(sc);
15946 
15947     if (mac_vals.xmac_addr) {
15948         REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15949     }
15950     if (mac_vals.umac_addr) {
15951         REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15952     }
15953     if (mac_vals.emac_addr) {
15954         REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15955     }
15956     if (mac_vals.bmac_addr) {
15957         REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15958         REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15959     }
15960 
15961     rc = bxe_prev_mark_path(sc, prev_undi);
15962     if (rc) {
15963         bxe_prev_mcp_done(sc);
15964         return (rc);
15965     }
15966 
15967     return (bxe_prev_mcp_done(sc));
15968 }
15969 
15970 static int
15971 bxe_prev_unload_uncommon(struct bxe_softc *sc)
15972 {
15973     int rc;
15974 
15975     BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15976 
15977     /* Test if previous unload process was already finished for this path */
15978     if (bxe_prev_is_path_marked(sc)) {
15979         return (bxe_prev_mcp_done(sc));
15980     }
15981 
15982     BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15983 
15984     /*
15985      * If function has FLR capabilities, and existing FW version matches
15986      * the one required, then FLR will be sufficient to clean any residue
15987      * left by previous driver
15988      */
15989     rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
15990     if (!rc) {
15991         /* fw version is good */
15992         BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
15993         rc = bxe_do_flr(sc);
15994     }
15995 
15996     if (!rc) {
15997         /* FLR was performed */
15998         BLOGD(sc, DBG_LOAD, "FLR successful\n");
15999         return (0);
16000     }
16001 
16002     BLOGD(sc, DBG_LOAD, "Could not FLR\n");
16003 
16004     /* Close the MCP request, return failure*/
16005     rc = bxe_prev_mcp_done(sc);
16006     if (!rc) {
16007         rc = BXE_PREV_WAIT_NEEDED;
16008     }
16009 
16010     return (rc);
16011 }
16012 
16013 static int
16014 bxe_prev_unload(struct bxe_softc *sc)
16015 {
16016     int time_counter = 10;
16017     uint32_t fw, hw_lock_reg, hw_lock_val;
16018     uint32_t rc = 0;
16019 
16020     /*
16021      * Clear HW from errors which may have resulted from an interrupted
16022      * DMAE transaction.
16023      */
16024     bxe_prev_interrupted_dmae(sc);
16025 
16026     /* Release previously held locks */
16027     hw_lock_reg =
16028         (SC_FUNC(sc) <= 5) ?
16029             (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
16030             (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
16031 
16032     hw_lock_val = (REG_RD(sc, hw_lock_reg));
16033     if (hw_lock_val) {
16034         if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
16035             BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
16036             REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
16037                    (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
16038         }
16039         BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
16040         REG_WR(sc, hw_lock_reg, 0xffffffff);
16041     } else {
16042         BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
16043     }
16044 
16045     if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
16046         BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
16047         REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
16048     }
16049 
16050     do {
16051         /* Lock MCP using an unload request */
16052         fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
16053         if (!fw) {
16054             BLOGE(sc, "MCP response failure, aborting\n");
16055             rc = -1;
16056             break;
16057         }
16058 
16059         if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
16060             rc = bxe_prev_unload_common(sc);
16061             break;
16062         }
16063 
16064         /* non-common reply from MCP night require looping */
16065         rc = bxe_prev_unload_uncommon(sc);
16066         if (rc != BXE_PREV_WAIT_NEEDED) {
16067             break;
16068         }
16069 
16070         DELAY(20000);
16071     } while (--time_counter);
16072 
16073     if (!time_counter || rc) {
16074         BLOGE(sc, "Failed to unload previous driver!\n");
16075         rc = -1;
16076     }
16077 
16078     return (rc);
16079 }
16080 
16081 void
16082 bxe_dcbx_set_state(struct bxe_softc *sc,
16083                    uint8_t          dcb_on,
16084                    uint32_t         dcbx_enabled)
16085 {
16086     if (!CHIP_IS_E1x(sc)) {
16087         sc->dcb_state = dcb_on;
16088         sc->dcbx_enabled = dcbx_enabled;
16089     } else {
16090         sc->dcb_state = FALSE;
16091         sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
16092     }
16093     BLOGD(sc, DBG_LOAD,
16094           "DCB state [%s:%s]\n",
16095           dcb_on ? "ON" : "OFF",
16096           (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
16097           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
16098           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
16099           "on-chip with negotiation" : "invalid");
16100 }
16101 
16102 /* must be called after sriov-enable */
16103 static int
16104 bxe_set_qm_cid_count(struct bxe_softc *sc)
16105 {
16106     int cid_count = BXE_L2_MAX_CID(sc);
16107 
16108     if (IS_SRIOV(sc)) {
16109         cid_count += BXE_VF_CIDS;
16110     }
16111 
16112     if (CNIC_SUPPORT(sc)) {
16113         cid_count += CNIC_CID_MAX;
16114     }
16115 
16116     return (roundup(cid_count, QM_CID_ROUND));
16117 }
16118 
16119 static void
16120 bxe_init_multi_cos(struct bxe_softc *sc)
16121 {
16122     int pri, cos;
16123 
16124     uint32_t pri_map = 0; /* XXX change to user config */
16125 
16126     for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
16127         cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
16128         if (cos < sc->max_cos) {
16129             sc->prio_to_cos[pri] = cos;
16130         } else {
16131             BLOGW(sc, "Invalid COS %d for priority %d "
16132                       "(max COS is %d), setting to 0\n",
16133                   cos, pri, (sc->max_cos - 1));
16134             sc->prio_to_cos[pri] = 0;
16135         }
16136     }
16137 }
16138 
16139 static int
16140 bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
16141 {
16142     struct bxe_softc *sc;
16143     int error, result;
16144 
16145     result = 0;
16146     error = sysctl_handle_int(oidp, &result, 0, req);
16147 
16148     if (error || !req->newptr) {
16149         return (error);
16150     }
16151 
16152     if (result == 1) {
16153         sc = (struct bxe_softc *)arg1;
16154         BLOGI(sc, "... dumping driver state ...\n");
16155         /* XXX */
16156     }
16157 
16158     return (error);
16159 }
16160 
16161 static int
16162 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
16163 {
16164     struct bxe_softc *sc = (struct bxe_softc *)arg1;
16165     uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
16166     uint32_t *offset;
16167     uint64_t value = 0;
16168     int index = (int)arg2;
16169 
16170     if (index >= BXE_NUM_ETH_STATS) {
16171         BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
16172         return (-1);
16173     }
16174 
16175     offset = (eth_stats + bxe_eth_stats_arr[index].offset);
16176 
16177     switch (bxe_eth_stats_arr[index].size) {
16178     case 4:
16179         value = (uint64_t)*offset;
16180         break;
16181     case 8:
16182         value = HILO_U64(*offset, *(offset + 1));
16183         break;
16184     default:
16185         BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
16186               index, bxe_eth_stats_arr[index].size);
16187         return (-1);
16188     }
16189 
16190     return (sysctl_handle_64(oidp, &value, 0, req));
16191 }
16192 
16193 static int
16194 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
16195 {
16196     struct bxe_softc *sc = (struct bxe_softc *)arg1;
16197     uint32_t *eth_stats;
16198     uint32_t *offset;
16199     uint64_t value = 0;
16200     uint32_t q_stat = (uint32_t)arg2;
16201     uint32_t fp_index = ((q_stat >> 16) & 0xffff);
16202     uint32_t index = (q_stat & 0xffff);
16203 
16204     eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
16205 
16206     if (index >= BXE_NUM_ETH_Q_STATS) {
16207         BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
16208         return (-1);
16209     }
16210 
16211     offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
16212 
16213     switch (bxe_eth_q_stats_arr[index].size) {
16214     case 4:
16215         value = (uint64_t)*offset;
16216         break;
16217     case 8:
16218         value = HILO_U64(*offset, *(offset + 1));
16219         break;
16220     default:
16221         BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
16222               index, bxe_eth_q_stats_arr[index].size);
16223         return (-1);
16224     }
16225 
16226     return (sysctl_handle_64(oidp, &value, 0, req));
16227 }
16228 
16229 static void
16230 bxe_add_sysctls(struct bxe_softc *sc)
16231 {
16232     struct sysctl_ctx_list *ctx;
16233     struct sysctl_oid_list *children;
16234     struct sysctl_oid *queue_top, *queue;
16235     struct sysctl_oid_list *queue_top_children, *queue_children;
16236     char queue_num_buf[32];
16237     uint32_t q_stat;
16238     int i, j;
16239 
16240     ctx = device_get_sysctl_ctx(sc->dev);
16241     children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
16242 
16243     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
16244                       CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
16245                       "version");
16246 
16247     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
16248                       CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0,
16249                       "bootcode version");
16250 
16251     snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
16252              BCM_5710_FW_MAJOR_VERSION,
16253              BCM_5710_FW_MINOR_VERSION,
16254              BCM_5710_FW_REVISION_VERSION,
16255              BCM_5710_FW_ENGINEERING_VERSION);
16256     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
16257                       CTLFLAG_RD, &sc->fw_ver_str, 0,
16258                       "firmware version");
16259 
16260     snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
16261         ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION)     ? "Single"  :
16262          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)   ? "MF-SD"   :
16263          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)   ? "MF-SI"   :
16264          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
16265                                                                 "Unknown"));
16266     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
16267                       CTLFLAG_RD, &sc->mf_mode_str, 0,
16268                       "multifunction mode");
16269 
16270     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
16271                     CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
16272                     "multifunction vnics per port");
16273 
16274     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
16275                       CTLFLAG_RD, &sc->mac_addr_str, 0,
16276                       "mac address");
16277 
16278     snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
16279         ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
16280          (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
16281          (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
16282                                               "???GT/s"),
16283         sc->devinfo.pcie_link_width);
16284     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
16285                       CTLFLAG_RD, &sc->pci_link_str, 0,
16286                       "pci link status");
16287 
16288     sc->debug = bxe_debug;
16289     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug",
16290                     CTLFLAG_RW, &sc->debug, 0,
16291                     "debug logging mode");
16292 
16293     sc->rx_budget = bxe_rx_budget;
16294     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
16295                     CTLFLAG_RW, &sc->rx_budget, 0,
16296                     "rx processing budget");
16297 
16298     SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
16299                     CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
16300                     bxe_sysctl_state, "IU", "dump driver state");
16301 
16302     for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
16303         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
16304                         bxe_eth_stats_arr[i].string,
16305                         CTLTYPE_U64 | CTLFLAG_RD, sc, i,
16306                         bxe_sysctl_eth_stat, "LU",
16307                         bxe_eth_stats_arr[i].string);
16308     }
16309 
16310     /* add a new parent node for all queues "dev.bxe.#.queue" */
16311     queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
16312                                 CTLFLAG_RD, NULL, "queue");
16313     queue_top_children = SYSCTL_CHILDREN(queue_top);
16314 
16315     for (i = 0; i < sc->num_queues; i++) {
16316         /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
16317         snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
16318         queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
16319                                 queue_num_buf, CTLFLAG_RD, NULL,
16320                                 "single queue");
16321         queue_children = SYSCTL_CHILDREN(queue);
16322 
16323         for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
16324             q_stat = ((i << 16) | j);
16325             SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
16326                             bxe_eth_q_stats_arr[j].string,
16327                             CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat,
16328                             bxe_sysctl_eth_q_stat, "LU",
16329                             bxe_eth_q_stats_arr[j].string);
16330         }
16331     }
16332 }
16333 
16334 /*
16335  * Device attach function.
16336  *
16337  * Allocates device resources, performs secondary chip identification, and
16338  * initializes driver instance variables. This function is called from driver
16339  * load after a successful probe.
16340  *
16341  * Returns:
16342  *   0 = Success, >0 = Failure
16343  */
16344 static int
16345 bxe_attach(device_t dev)
16346 {
16347     struct bxe_softc *sc;
16348 
16349     sc = device_get_softc(dev);
16350 
16351     BLOGD(sc, DBG_LOAD, "Starting attach...\n");
16352 
16353     sc->state = BXE_STATE_CLOSED;
16354 
16355     sc->dev  = dev;
16356     sc->unit = device_get_unit(dev);
16357 
16358     BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
16359 
16360     sc->pcie_bus    = pci_get_bus(dev);
16361     sc->pcie_device = pci_get_slot(dev);
16362     sc->pcie_func   = pci_get_function(dev);
16363 
16364     /* enable bus master capability */
16365     pci_enable_busmaster(dev);
16366 
16367     /* get the BARs */
16368     if (bxe_allocate_bars(sc) != 0) {
16369         return (ENXIO);
16370     }
16371 
16372     /* initialize the mutexes */
16373     bxe_init_mutexes(sc);
16374 
16375     /* prepare the periodic callout */
16376     callout_init(&sc->periodic_callout, 0);
16377 
16378     /* prepare the chip taskqueue */
16379     sc->chip_tq_flags = CHIP_TQ_NONE;
16380     snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
16381              "bxe%d_chip_tq", sc->unit);
16382     TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
16383     sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
16384                                    taskqueue_thread_enqueue,
16385                                    &sc->chip_tq);
16386     taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
16387                             "%s", sc->chip_tq_name);
16388 
16389     /* get device info and set params */
16390     if (bxe_get_device_info(sc) != 0) {
16391         BLOGE(sc, "getting device info\n");
16392         bxe_deallocate_bars(sc);
16393         pci_disable_busmaster(dev);
16394         return (ENXIO);
16395     }
16396 
16397     /* get final misc params */
16398     bxe_get_params(sc);
16399 
16400     /* set the default MTU (changed via ifconfig) */
16401     sc->mtu = ETHERMTU;
16402 
16403     bxe_set_modes_bitmap(sc);
16404 
16405     /* XXX
16406      * If in AFEX mode and the function is configured for FCoE
16407      * then bail... no L2 allowed.
16408      */
16409 
16410     /* get phy settings from shmem and 'and' against admin settings */
16411     bxe_get_phy_info(sc);
16412 
16413     /* initialize the FreeBSD ifnet interface */
16414     if (bxe_init_ifnet(sc) != 0) {
16415         bxe_release_mutexes(sc);
16416         bxe_deallocate_bars(sc);
16417         pci_disable_busmaster(dev);
16418         return (ENXIO);
16419     }
16420 
16421     /* allocate device interrupts */
16422     if (bxe_interrupt_alloc(sc) != 0) {
16423         if (sc->ifnet != NULL) {
16424             ether_ifdetach(sc->ifnet);
16425         }
16426         ifmedia_removeall(&sc->ifmedia);
16427         bxe_release_mutexes(sc);
16428         bxe_deallocate_bars(sc);
16429         pci_disable_busmaster(dev);
16430         return (ENXIO);
16431     }
16432 
16433     /* allocate ilt */
16434     if (bxe_alloc_ilt_mem(sc) != 0) {
16435         bxe_interrupt_free(sc);
16436         if (sc->ifnet != NULL) {
16437             ether_ifdetach(sc->ifnet);
16438         }
16439         ifmedia_removeall(&sc->ifmedia);
16440         bxe_release_mutexes(sc);
16441         bxe_deallocate_bars(sc);
16442         pci_disable_busmaster(dev);
16443         return (ENXIO);
16444     }
16445 
16446     /* allocate the host hardware/software hsi structures */
16447     if (bxe_alloc_hsi_mem(sc) != 0) {
16448         bxe_free_ilt_mem(sc);
16449         bxe_interrupt_free(sc);
16450         if (sc->ifnet != NULL) {
16451             ether_ifdetach(sc->ifnet);
16452         }
16453         ifmedia_removeall(&sc->ifmedia);
16454         bxe_release_mutexes(sc);
16455         bxe_deallocate_bars(sc);
16456         pci_disable_busmaster(dev);
16457         return (ENXIO);
16458     }
16459 
16460     /* need to reset chip if UNDI was active */
16461     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
16462         /* init fw_seq */
16463         sc->fw_seq =
16464             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
16465              DRV_MSG_SEQ_NUMBER_MASK);
16466         BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
16467         bxe_prev_unload(sc);
16468     }
16469 
16470 #if 1
16471     /* XXX */
16472     bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16473 #else
16474     if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
16475         SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
16476         SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
16477         SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
16478         bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
16479         bxe_dcbx_init_params(sc);
16480     } else {
16481         bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16482     }
16483 #endif
16484 
16485     /* calculate qm_cid_count */
16486     sc->qm_cid_count = bxe_set_qm_cid_count(sc);
16487     BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
16488 
16489     sc->max_cos = 1;
16490     bxe_init_multi_cos(sc);
16491 
16492     bxe_add_sysctls(sc);
16493 
16494     return (0);
16495 }
16496 
16497 /*
16498  * Device detach function.
16499  *
16500  * Stops the controller, resets the controller, and releases resources.
16501  *
16502  * Returns:
16503  *   0 = Success, >0 = Failure
16504  */
16505 static int
16506 bxe_detach(device_t dev)
16507 {
16508     struct bxe_softc *sc;
16509     struct ifnet *ifp;
16510 
16511     sc = device_get_softc(dev);
16512 
16513     BLOGD(sc, DBG_LOAD, "Starting detach...\n");
16514 
16515     ifp = sc->ifnet;
16516     if (ifp != NULL && ifp->if_vlantrunk != NULL) {
16517         BLOGE(sc, "Cannot detach while VLANs are in use.\n");
16518         return(EBUSY);
16519     }
16520 
16521     /* stop the periodic callout */
16522     bxe_periodic_stop(sc);
16523 
16524     /* stop the chip taskqueue */
16525     atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16526     if (sc->chip_tq) {
16527         taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16528         taskqueue_free(sc->chip_tq);
16529         sc->chip_tq = NULL;
16530     }
16531 
16532     /* stop and reset the controller if it was open */
16533     if (sc->state != BXE_STATE_CLOSED) {
16534         BXE_CORE_LOCK(sc);
16535         bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16536         BXE_CORE_UNLOCK(sc);
16537     }
16538 
16539     /* release the network interface */
16540     if (ifp != NULL) {
16541         ether_ifdetach(ifp);
16542     }
16543     ifmedia_removeall(&sc->ifmedia);
16544 
16545     /* XXX do the following based on driver state... */
16546 
16547     /* free the host hardware/software hsi structures */
16548     bxe_free_hsi_mem(sc);
16549 
16550     /* free ilt */
16551     bxe_free_ilt_mem(sc);
16552 
16553     /* release the interrupts */
16554     bxe_interrupt_free(sc);
16555 
16556     /* Release the mutexes*/
16557     bxe_release_mutexes(sc);
16558 
16559     /* Release the PCIe BAR mapped memory */
16560     bxe_deallocate_bars(sc);
16561 
16562     /* Release the FreeBSD interface. */
16563     if (sc->ifnet != NULL) {
16564         if_free(sc->ifnet);
16565     }
16566 
16567     pci_disable_busmaster(dev);
16568 
16569     return (0);
16570 }
16571 
16572 /*
16573  * Device shutdown function.
16574  *
16575  * Stops and resets the controller.
16576  *
16577  * Returns:
16578  *   Nothing
16579  */
16580 static int
16581 bxe_shutdown(device_t dev)
16582 {
16583     struct bxe_softc *sc;
16584 
16585     sc = device_get_softc(dev);
16586 
16587     BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16588 
16589     /* stop the periodic callout */
16590     bxe_periodic_stop(sc);
16591 
16592     BXE_CORE_LOCK(sc);
16593     bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16594     BXE_CORE_UNLOCK(sc);
16595 
16596     return (0);
16597 }
16598 
16599 void
16600 bxe_igu_ack_sb(struct bxe_softc *sc,
16601                uint8_t          igu_sb_id,
16602                uint8_t          segment,
16603                uint16_t         index,
16604                uint8_t          op,
16605                uint8_t          update)
16606 {
16607     uint32_t igu_addr = sc->igu_base_addr;
16608     igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16609     bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16610 }
16611 
16612 static void
16613 bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16614                      uint8_t          func,
16615                      uint8_t          idu_sb_id,
16616                      uint8_t          is_pf)
16617 {
16618     uint32_t data, ctl, cnt = 100;
16619     uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16620     uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16621     uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16622     uint32_t sb_bit =  1 << (idu_sb_id%32);
16623     uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16624     uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16625 
16626     /* Not supported in BC mode */
16627     if (CHIP_INT_MODE_IS_BC(sc)) {
16628         return;
16629     }
16630 
16631     data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16632              IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16633             IGU_REGULAR_CLEANUP_SET |
16634             IGU_REGULAR_BCLEANUP);
16635 
16636     ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16637            (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16638            (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16639 
16640     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16641             data, igu_addr_data);
16642     REG_WR(sc, igu_addr_data, data);
16643 
16644     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16645                       BUS_SPACE_BARRIER_WRITE);
16646     mb();
16647 
16648     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16649             ctl, igu_addr_ctl);
16650     REG_WR(sc, igu_addr_ctl, ctl);
16651 
16652     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16653                       BUS_SPACE_BARRIER_WRITE);
16654     mb();
16655 
16656     /* wait for clean up to finish */
16657     while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16658         DELAY(20000);
16659     }
16660 
16661     if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16662         BLOGD(sc, DBG_LOAD,
16663               "Unable to finish IGU cleanup: "
16664               "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16665               idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16666     }
16667 }
16668 
16669 static void
16670 bxe_igu_clear_sb(struct bxe_softc *sc,
16671                  uint8_t          idu_sb_id)
16672 {
16673     bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16674 }
16675 
16676 
16677 
16678 
16679 
16680 
16681 
16682 /*******************/
16683 /* ECORE CALLBACKS */
16684 /*******************/
16685 
16686 static void
16687 bxe_reset_common(struct bxe_softc *sc)
16688 {
16689     uint32_t val = 0x1400;
16690 
16691     /* reset_common */
16692     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16693 
16694     if (CHIP_IS_E3(sc)) {
16695         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16696         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16697     }
16698 
16699     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16700 }
16701 
16702 static void
16703 bxe_common_init_phy(struct bxe_softc *sc)
16704 {
16705     uint32_t shmem_base[2];
16706     uint32_t shmem2_base[2];
16707 
16708     /* Avoid common init in case MFW supports LFA */
16709     if (SHMEM2_RD(sc, size) >
16710         (uint32_t)offsetof(struct shmem2_region,
16711                            lfa_host_addr[SC_PORT(sc)])) {
16712         return;
16713     }
16714 
16715     shmem_base[0]  = sc->devinfo.shmem_base;
16716     shmem2_base[0] = sc->devinfo.shmem2_base;
16717 
16718     if (!CHIP_IS_E1x(sc)) {
16719         shmem_base[1]  = SHMEM2_RD(sc, other_shmem_base_addr);
16720         shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16721     }
16722 
16723     BXE_PHY_LOCK(sc);
16724     elink_common_init_phy(sc, shmem_base, shmem2_base,
16725                           sc->devinfo.chip_id, 0);
16726     BXE_PHY_UNLOCK(sc);
16727 }
16728 
16729 static void
16730 bxe_pf_disable(struct bxe_softc *sc)
16731 {
16732     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16733 
16734     val &= ~IGU_PF_CONF_FUNC_EN;
16735 
16736     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16737     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16738     REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16739 }
16740 
16741 static void
16742 bxe_init_pxp(struct bxe_softc *sc)
16743 {
16744     uint16_t devctl;
16745     int r_order, w_order;
16746 
16747     devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2);
16748 
16749     BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16750 
16751     w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
16752 
16753     if (sc->mrrs == -1) {
16754         r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
16755     } else {
16756         BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16757         r_order = sc->mrrs;
16758     }
16759 
16760     ecore_init_pxp_arb(sc, r_order, w_order);
16761 }
16762 
16763 static uint32_t
16764 bxe_get_pretend_reg(struct bxe_softc *sc)
16765 {
16766     uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16767     uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16768     return (base + (SC_ABS_FUNC(sc)) * stride);
16769 }
16770 
16771 /*
16772  * Called only on E1H or E2.
16773  * When pretending to be PF, the pretend value is the function number 0..7.
16774  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16775  * combination.
16776  */
16777 static int
16778 bxe_pretend_func(struct bxe_softc *sc,
16779                  uint16_t         pretend_func_val)
16780 {
16781     uint32_t pretend_reg;
16782 
16783     if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16784         return (-1);
16785     }
16786 
16787     /* get my own pretend register */
16788     pretend_reg = bxe_get_pretend_reg(sc);
16789     REG_WR(sc, pretend_reg, pretend_func_val);
16790     REG_RD(sc, pretend_reg);
16791     return (0);
16792 }
16793 
16794 static void
16795 bxe_iov_init_dmae(struct bxe_softc *sc)
16796 {
16797     return;
16798 #if 0
16799     BLOGD(sc, DBG_LOAD, "SRIOV is %s\n", IS_SRIOV(sc) ? "ON" : "OFF");
16800 
16801     if (!IS_SRIOV(sc)) {
16802         return;
16803     }
16804 
16805     REG_WR(sc, DMAE_REG_BACKWARD_COMP_EN, 0);
16806 #endif
16807 }
16808 
16809 #if 0
16810 static int
16811 bxe_iov_init_ilt(struct bxe_softc *sc,
16812                  uint16_t         line)
16813 {
16814     return (line);
16815 #if 0
16816     int i;
16817     struct ecore_ilt* ilt = sc->ilt;
16818 
16819     if (!IS_SRIOV(sc)) {
16820         return (line);
16821     }
16822 
16823     /* set vfs ilt lines */
16824     for (i = 0; i < BXE_VF_CIDS/ILT_PAGE_CIDS ; i++) {
16825         struct hw_dma *hw_cxt = SC_VF_CXT_PAGE(sc,i);
16826         ilt->lines[line+i].page = hw_cxt->addr;
16827         ilt->lines[line+i].page_mapping = hw_cxt->mapping;
16828         ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
16829     }
16830     return (line+i);
16831 #endif
16832 }
16833 #endif
16834 
16835 static void
16836 bxe_iov_init_dq(struct bxe_softc *sc)
16837 {
16838     return;
16839 #if 0
16840     if (!IS_SRIOV(sc)) {
16841         return;
16842     }
16843 
16844     /* Set the DQ such that the CID reflect the abs_vfid */
16845     REG_WR(sc, DORQ_REG_VF_NORM_VF_BASE, 0);
16846     REG_WR(sc, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
16847 
16848     /*
16849      * Set VFs starting CID. If its > 0 the preceding CIDs are belong to
16850      * the PF L2 queues
16851      */
16852     REG_WR(sc, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
16853 
16854     /* The VF window size is the log2 of the max number of CIDs per VF */
16855     REG_WR(sc, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
16856 
16857     /*
16858      * The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
16859      * the Pf doorbell size although the 2 are independent.
16860      */
16861     REG_WR(sc, DORQ_REG_VF_NORM_CID_OFST,
16862            BNX2X_DB_SHIFT - BNX2X_DB_MIN_SHIFT);
16863 
16864     /*
16865      * No security checks for now -
16866      * configure single rule (out of 16) mask = 0x1, value = 0x0,
16867      * CID range 0 - 0x1ffff
16868      */
16869     REG_WR(sc, DORQ_REG_VF_TYPE_MASK_0, 1);
16870     REG_WR(sc, DORQ_REG_VF_TYPE_VALUE_0, 0);
16871     REG_WR(sc, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
16872     REG_WR(sc, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
16873 
16874     /* set the number of VF alllowed doorbells to the full DQ range */
16875     REG_WR(sc, DORQ_REG_VF_NORM_MAX_CID_COUNT, 0x20000);
16876 
16877     /* set the VF doorbell threshold */
16878     REG_WR(sc, DORQ_REG_VF_USAGE_CT_LIMIT, 4);
16879 #endif
16880 }
16881 
16882 /* send a NIG loopback debug packet */
16883 static void
16884 bxe_lb_pckt(struct bxe_softc *sc)
16885 {
16886     uint32_t wb_write[3];
16887 
16888     /* Ethernet source and destination addresses */
16889     wb_write[0] = 0x55555555;
16890     wb_write[1] = 0x55555555;
16891     wb_write[2] = 0x20;     /* SOP */
16892     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16893 
16894     /* NON-IP protocol */
16895     wb_write[0] = 0x09000000;
16896     wb_write[1] = 0x55555555;
16897     wb_write[2] = 0x10;     /* EOP, eop_bvalid = 0 */
16898     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16899 }
16900 
16901 /*
16902  * Some of the internal memories are not directly readable from the driver.
16903  * To test them we send debug packets.
16904  */
16905 static int
16906 bxe_int_mem_test(struct bxe_softc *sc)
16907 {
16908     int factor;
16909     int count, i;
16910     uint32_t val = 0;
16911 
16912     if (CHIP_REV_IS_FPGA(sc)) {
16913         factor = 120;
16914     } else if (CHIP_REV_IS_EMUL(sc)) {
16915         factor = 200;
16916     } else {
16917         factor = 1;
16918     }
16919 
16920     /* disable inputs of parser neighbor blocks */
16921     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16922     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16923     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16924     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16925 
16926     /*  write 0 to parser credits for CFC search request */
16927     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16928 
16929     /* send Ethernet packet */
16930     bxe_lb_pckt(sc);
16931 
16932     /* TODO do i reset NIG statistic? */
16933     /* Wait until NIG register shows 1 packet of size 0x10 */
16934     count = 1000 * factor;
16935     while (count) {
16936         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16937         val = *BXE_SP(sc, wb_data[0]);
16938         if (val == 0x10) {
16939             break;
16940         }
16941 
16942         DELAY(10000);
16943         count--;
16944     }
16945 
16946     if (val != 0x10) {
16947         BLOGE(sc, "NIG timeout val=0x%x\n", val);
16948         return (-1);
16949     }
16950 
16951     /* wait until PRS register shows 1 packet */
16952     count = (1000 * factor);
16953     while (count) {
16954         val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16955         if (val == 1) {
16956             break;
16957         }
16958 
16959         DELAY(10000);
16960         count--;
16961     }
16962 
16963     if (val != 0x1) {
16964         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16965         return (-2);
16966     }
16967 
16968     /* Reset and init BRB, PRS */
16969     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16970     DELAY(50000);
16971     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16972     DELAY(50000);
16973     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16974     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16975 
16976     /* Disable inputs of parser neighbor blocks */
16977     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16978     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16979     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16980     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16981 
16982     /* Write 0 to parser credits for CFC search request */
16983     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16984 
16985     /* send 10 Ethernet packets */
16986     for (i = 0; i < 10; i++) {
16987         bxe_lb_pckt(sc);
16988     }
16989 
16990     /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
16991     count = (1000 * factor);
16992     while (count) {
16993         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16994         val = *BXE_SP(sc, wb_data[0]);
16995         if (val == 0xb0) {
16996             break;
16997         }
16998 
16999         DELAY(10000);
17000         count--;
17001     }
17002 
17003     if (val != 0xb0) {
17004         BLOGE(sc, "NIG timeout val=0x%x\n", val);
17005         return (-3);
17006     }
17007 
17008     /* Wait until PRS register shows 2 packets */
17009     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
17010     if (val != 2) {
17011         BLOGE(sc, "PRS timeout val=0x%x\n", val);
17012     }
17013 
17014     /* Write 1 to parser credits for CFC search request */
17015     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
17016 
17017     /* Wait until PRS register shows 3 packets */
17018     DELAY(10000 * factor);
17019 
17020     /* Wait until NIG register shows 1 packet of size 0x10 */
17021     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
17022     if (val != 3) {
17023         BLOGE(sc, "PRS timeout val=0x%x\n", val);
17024     }
17025 
17026     /* clear NIG EOP FIFO */
17027     for (i = 0; i < 11; i++) {
17028         REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
17029     }
17030 
17031     val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
17032     if (val != 1) {
17033         BLOGE(sc, "clear of NIG failed\n");
17034         return (-4);
17035     }
17036 
17037     /* Reset and init BRB, PRS, NIG */
17038     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
17039     DELAY(50000);
17040     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
17041     DELAY(50000);
17042     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17043     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17044     if (!CNIC_SUPPORT(sc)) {
17045         /* set NIC mode */
17046         REG_WR(sc, PRS_REG_NIC_MODE, 1);
17047     }
17048 
17049     /* Enable inputs of parser neighbor blocks */
17050     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
17051     REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
17052     REG_WR(sc, CFC_REG_DEBUG0, 0x0);
17053     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
17054 
17055     return (0);
17056 }
17057 
17058 static void
17059 bxe_setup_fan_failure_detection(struct bxe_softc *sc)
17060 {
17061     int is_required;
17062     uint32_t val;
17063     int port;
17064 
17065     is_required = 0;
17066     val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
17067            SHARED_HW_CFG_FAN_FAILURE_MASK);
17068 
17069     if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
17070         is_required = 1;
17071     }
17072     /*
17073      * The fan failure mechanism is usually related to the PHY type since
17074      * the power consumption of the board is affected by the PHY. Currently,
17075      * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
17076      */
17077     else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
17078         for (port = PORT_0; port < PORT_MAX; port++) {
17079             is_required |= elink_fan_failure_det_req(sc,
17080                                                      sc->devinfo.shmem_base,
17081                                                      sc->devinfo.shmem2_base,
17082                                                      port);
17083         }
17084     }
17085 
17086     BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
17087 
17088     if (is_required == 0) {
17089         return;
17090     }
17091 
17092     /* Fan failure is indicated by SPIO 5 */
17093     bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
17094 
17095     /* set to active low mode */
17096     val = REG_RD(sc, MISC_REG_SPIO_INT);
17097     val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
17098     REG_WR(sc, MISC_REG_SPIO_INT, val);
17099 
17100     /* enable interrupt to signal the IGU */
17101     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17102     val |= MISC_SPIO_SPIO5;
17103     REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
17104 }
17105 
17106 static void
17107 bxe_enable_blocks_attention(struct bxe_softc *sc)
17108 {
17109     uint32_t val;
17110 
17111     REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17112     if (!CHIP_IS_E1x(sc)) {
17113         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
17114     } else {
17115         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
17116     }
17117     REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17118     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17119     /*
17120      * mask read length error interrupts in brb for parser
17121      * (parsing unit and 'checksum and crc' unit)
17122      * these errors are legal (PU reads fixed length and CAC can cause
17123      * read length error on truncated packets)
17124      */
17125     REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
17126     REG_WR(sc, QM_REG_QM_INT_MASK, 0);
17127     REG_WR(sc, TM_REG_TM_INT_MASK, 0);
17128     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
17129     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
17130     REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
17131 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
17132 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
17133     REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
17134     REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
17135     REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
17136 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
17137 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
17138     REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
17139     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
17140     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
17141     REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
17142 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
17143 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
17144 
17145     val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
17146            PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
17147            PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
17148     if (!CHIP_IS_E1x(sc)) {
17149         val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
17150                 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
17151     }
17152     REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
17153 
17154     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
17155     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
17156     REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
17157 /*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
17158 
17159     if (!CHIP_IS_E1x(sc)) {
17160         /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
17161         REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
17162     }
17163 
17164     REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
17165     REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
17166 /*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
17167     REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18);     /* bit 3,4 masked */
17168 }
17169 
17170 /**
17171  * bxe_init_hw_common - initialize the HW at the COMMON phase.
17172  *
17173  * @sc:     driver handle
17174  */
17175 static int
17176 bxe_init_hw_common(struct bxe_softc *sc)
17177 {
17178     uint8_t abs_func_id;
17179     uint32_t val;
17180 
17181     BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
17182           SC_ABS_FUNC(sc));
17183 
17184     /*
17185      * take the RESET lock to protect undi_unload flow from accessing
17186      * registers while we are resetting the chip
17187      */
17188     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17189 
17190     bxe_reset_common(sc);
17191 
17192     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
17193 
17194     val = 0xfffc;
17195     if (CHIP_IS_E3(sc)) {
17196         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
17197         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
17198     }
17199 
17200     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
17201 
17202     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17203 
17204     ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
17205     BLOGD(sc, DBG_LOAD, "after misc block init\n");
17206 
17207     if (!CHIP_IS_E1x(sc)) {
17208         /*
17209          * 4-port mode or 2-port mode we need to turn off master-enable for
17210          * everyone. After that we turn it back on for self. So, we disregard
17211          * multi-function, and always disable all functions on the given path,
17212          * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
17213          */
17214         for (abs_func_id = SC_PATH(sc);
17215              abs_func_id < (E2_FUNC_MAX * 2);
17216              abs_func_id += 2) {
17217             if (abs_func_id == SC_ABS_FUNC(sc)) {
17218                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17219                 continue;
17220             }
17221 
17222             bxe_pretend_func(sc, abs_func_id);
17223 
17224             /* clear pf enable */
17225             bxe_pf_disable(sc);
17226 
17227             bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17228         }
17229     }
17230 
17231     BLOGD(sc, DBG_LOAD, "after pf disable\n");
17232 
17233     ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
17234 
17235     if (CHIP_IS_E1(sc)) {
17236         /*
17237          * enable HW interrupt from PXP on USDM overflow
17238          * bit 16 on INT_MASK_0
17239          */
17240         REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17241     }
17242 
17243     ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
17244     bxe_init_pxp(sc);
17245 
17246 #ifdef __BIG_ENDIAN
17247     REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
17248     REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
17249     REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
17250     REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
17251     REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
17252     /* make sure this value is 0 */
17253     REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
17254 
17255     //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
17256     REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
17257     REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
17258     REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
17259     REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
17260 #endif
17261 
17262     ecore_ilt_init_page_size(sc, INITOP_SET);
17263 
17264     if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
17265         REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
17266     }
17267 
17268     /* let the HW do it's magic... */
17269     DELAY(100000);
17270 
17271     /* finish PXP init */
17272     val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
17273     if (val != 1) {
17274         BLOGE(sc, "PXP2 CFG failed\n");
17275         return (-1);
17276     }
17277     val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
17278     if (val != 1) {
17279         BLOGE(sc, "PXP2 RD_INIT failed\n");
17280         return (-1);
17281     }
17282 
17283     BLOGD(sc, DBG_LOAD, "after pxp init\n");
17284 
17285     /*
17286      * Timer bug workaround for E2 only. We need to set the entire ILT to have
17287      * entries with value "0" and valid bit on. This needs to be done by the
17288      * first PF that is loaded in a path (i.e. common phase)
17289      */
17290     if (!CHIP_IS_E1x(sc)) {
17291 /*
17292  * In E2 there is a bug in the timers block that can cause function 6 / 7
17293  * (i.e. vnic3) to start even if it is marked as "scan-off".
17294  * This occurs when a different function (func2,3) is being marked
17295  * as "scan-off". Real-life scenario for example: if a driver is being
17296  * load-unloaded while func6,7 are down. This will cause the timer to access
17297  * the ilt, translate to a logical address and send a request to read/write.
17298  * Since the ilt for the function that is down is not valid, this will cause
17299  * a translation error which is unrecoverable.
17300  * The Workaround is intended to make sure that when this happens nothing
17301  * fatal will occur. The workaround:
17302  *  1.  First PF driver which loads on a path will:
17303  *      a.  After taking the chip out of reset, by using pretend,
17304  *          it will write "0" to the following registers of
17305  *          the other vnics.
17306  *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
17307  *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
17308  *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
17309  *          And for itself it will write '1' to
17310  *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
17311  *          dmae-operations (writing to pram for example.)
17312  *          note: can be done for only function 6,7 but cleaner this
17313  *            way.
17314  *      b.  Write zero+valid to the entire ILT.
17315  *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
17316  *          VNIC3 (of that port). The range allocated will be the
17317  *          entire ILT. This is needed to prevent  ILT range error.
17318  *  2.  Any PF driver load flow:
17319  *      a.  ILT update with the physical addresses of the allocated
17320  *          logical pages.
17321  *      b.  Wait 20msec. - note that this timeout is needed to make
17322  *          sure there are no requests in one of the PXP internal
17323  *          queues with "old" ILT addresses.
17324  *      c.  PF enable in the PGLC.
17325  *      d.  Clear the was_error of the PF in the PGLC. (could have
17326  *          occurred while driver was down)
17327  *      e.  PF enable in the CFC (WEAK + STRONG)
17328  *      f.  Timers scan enable
17329  *  3.  PF driver unload flow:
17330  *      a.  Clear the Timers scan_en.
17331  *      b.  Polling for scan_on=0 for that PF.
17332  *      c.  Clear the PF enable bit in the PXP.
17333  *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
17334  *      e.  Write zero+valid to all ILT entries (The valid bit must
17335  *          stay set)
17336  *      f.  If this is VNIC 3 of a port then also init
17337  *          first_timers_ilt_entry to zero and last_timers_ilt_entry
17338  *          to the last enrty in the ILT.
17339  *
17340  *      Notes:
17341  *      Currently the PF error in the PGLC is non recoverable.
17342  *      In the future the there will be a recovery routine for this error.
17343  *      Currently attention is masked.
17344  *      Having an MCP lock on the load/unload process does not guarantee that
17345  *      there is no Timer disable during Func6/7 enable. This is because the
17346  *      Timers scan is currently being cleared by the MCP on FLR.
17347  *      Step 2.d can be done only for PF6/7 and the driver can also check if
17348  *      there is error before clearing it. But the flow above is simpler and
17349  *      more general.
17350  *      All ILT entries are written by zero+valid and not just PF6/7
17351  *      ILT entries since in the future the ILT entries allocation for
17352  *      PF-s might be dynamic.
17353  */
17354         struct ilt_client_info ilt_cli;
17355         struct ecore_ilt ilt;
17356 
17357         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
17358         memset(&ilt, 0, sizeof(struct ecore_ilt));
17359 
17360         /* initialize dummy TM client */
17361         ilt_cli.start      = 0;
17362         ilt_cli.end        = ILT_NUM_PAGE_ENTRIES - 1;
17363         ilt_cli.client_num = ILT_CLIENT_TM;
17364 
17365         /*
17366          * Step 1: set zeroes to all ilt page entries with valid bit on
17367          * Step 2: set the timers first/last ilt entry to point
17368          * to the entire range to prevent ILT range error for 3rd/4th
17369          * vnic (this code assumes existence of the vnic)
17370          *
17371          * both steps performed by call to ecore_ilt_client_init_op()
17372          * with dummy TM client
17373          *
17374          * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
17375          * and his brother are split registers
17376          */
17377 
17378         bxe_pretend_func(sc, (SC_PATH(sc) + 6));
17379         ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
17380         bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17381 
17382         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
17383         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
17384         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
17385     }
17386 
17387     REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
17388     REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
17389 
17390     if (!CHIP_IS_E1x(sc)) {
17391         int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
17392                      (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
17393 
17394         ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
17395         ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
17396 
17397         /* let the HW do it's magic... */
17398         do {
17399             DELAY(200000);
17400             val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
17401         } while (factor-- && (val != 1));
17402 
17403         if (val != 1) {
17404             BLOGE(sc, "ATC_INIT failed\n");
17405             return (-1);
17406         }
17407     }
17408 
17409     BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
17410 
17411     ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
17412 
17413     bxe_iov_init_dmae(sc);
17414 
17415     /* clean the DMAE memory */
17416     sc->dmae_ready = 1;
17417     ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
17418 
17419     ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
17420 
17421     ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
17422 
17423     ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
17424 
17425     ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
17426 
17427     bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
17428     bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
17429     bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
17430     bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
17431 
17432     ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
17433 
17434     /* QM queues pointers table */
17435     ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
17436 
17437     /* soft reset pulse */
17438     REG_WR(sc, QM_REG_SOFT_RESET, 1);
17439     REG_WR(sc, QM_REG_SOFT_RESET, 0);
17440 
17441     if (CNIC_SUPPORT(sc))
17442         ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
17443 
17444     ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
17445     REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
17446     if (!CHIP_REV_IS_SLOW(sc)) {
17447         /* enable hw interrupt from doorbell Q */
17448         REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17449     }
17450 
17451     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17452 
17453     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17454     REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
17455 
17456     if (!CHIP_IS_E1(sc)) {
17457         REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
17458     }
17459 
17460     if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
17461         if (IS_MF_AFEX(sc)) {
17462             /*
17463              * configure that AFEX and VLAN headers must be
17464              * received in AFEX mode
17465              */
17466             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
17467             REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
17468             REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
17469             REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
17470             REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
17471         } else {
17472             /*
17473              * Bit-map indicating which L2 hdrs may appear
17474              * after the basic Ethernet header
17475              */
17476             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
17477                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17478         }
17479     }
17480 
17481     ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
17482     ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
17483     ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
17484     ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
17485 
17486     if (!CHIP_IS_E1x(sc)) {
17487         /* reset VFC memories */
17488         REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17489                VFC_MEMORIES_RST_REG_CAM_RST |
17490                VFC_MEMORIES_RST_REG_RAM_RST);
17491         REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17492                VFC_MEMORIES_RST_REG_CAM_RST |
17493                VFC_MEMORIES_RST_REG_RAM_RST);
17494 
17495         DELAY(20000);
17496     }
17497 
17498     ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
17499     ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
17500     ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
17501     ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
17502 
17503     /* sync semi rtc */
17504     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
17505            0x80000000);
17506     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
17507            0x80000000);
17508 
17509     ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
17510     ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
17511     ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
17512 
17513     if (!CHIP_IS_E1x(sc)) {
17514         if (IS_MF_AFEX(sc)) {
17515             /*
17516              * configure that AFEX and VLAN headers must be
17517              * sent in AFEX mode
17518              */
17519             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
17520             REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
17521             REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
17522             REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
17523             REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
17524         } else {
17525             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
17526                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17527         }
17528     }
17529 
17530     REG_WR(sc, SRC_REG_SOFT_RST, 1);
17531 
17532     ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
17533 
17534     if (CNIC_SUPPORT(sc)) {
17535         REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
17536         REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
17537         REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
17538         REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
17539         REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
17540         REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
17541         REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
17542         REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
17543         REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
17544         REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
17545     }
17546     REG_WR(sc, SRC_REG_SOFT_RST, 0);
17547 
17548     if (sizeof(union cdu_context) != 1024) {
17549         /* we currently assume that a context is 1024 bytes */
17550         BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
17551               (long)sizeof(union cdu_context));
17552     }
17553 
17554     ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
17555     val = (4 << 24) + (0 << 12) + 1024;
17556     REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
17557 
17558     ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
17559 
17560     REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
17561     /* enable context validation interrupt from CFC */
17562     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17563 
17564     /* set the thresholds to prevent CFC/CDU race */
17565     REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
17566     ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
17567 
17568     if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
17569         REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
17570     }
17571 
17572     ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
17573     ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
17574 
17575     /* Reset PCIE errors for debug */
17576     REG_WR(sc, 0x2814, 0xffffffff);
17577     REG_WR(sc, 0x3820, 0xffffffff);
17578 
17579     if (!CHIP_IS_E1x(sc)) {
17580         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
17581                (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
17582                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
17583         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
17584                (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
17585                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
17586                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
17587         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
17588                (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17589                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17590                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17591     }
17592 
17593     ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17594 
17595     if (!CHIP_IS_E1(sc)) {
17596         /* in E3 this done in per-port section */
17597         if (!CHIP_IS_E3(sc))
17598             REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17599     }
17600 
17601     if (CHIP_IS_E1H(sc)) {
17602         /* not applicable for E2 (and above ...) */
17603         REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17604     }
17605 
17606     if (CHIP_REV_IS_SLOW(sc)) {
17607         DELAY(200000);
17608     }
17609 
17610     /* finish CFC init */
17611     val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17612     if (val != 1) {
17613         BLOGE(sc, "CFC LL_INIT failed\n");
17614         return (-1);
17615     }
17616     val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17617     if (val != 1) {
17618         BLOGE(sc, "CFC AC_INIT failed\n");
17619         return (-1);
17620     }
17621     val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17622     if (val != 1) {
17623         BLOGE(sc, "CFC CAM_INIT failed\n");
17624         return (-1);
17625     }
17626     REG_WR(sc, CFC_REG_DEBUG0, 0);
17627 
17628     if (CHIP_IS_E1(sc)) {
17629         /* read NIG statistic to see if this is our first up since powerup */
17630         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17631         val = *BXE_SP(sc, wb_data[0]);
17632 
17633         /* do internal memory self test */
17634         if ((val == 0) && bxe_int_mem_test(sc)) {
17635             BLOGE(sc, "internal mem self test failed\n");
17636             return (-1);
17637         }
17638     }
17639 
17640     bxe_setup_fan_failure_detection(sc);
17641 
17642     /* clear PXP2 attentions */
17643     REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17644 
17645     bxe_enable_blocks_attention(sc);
17646 
17647     if (!CHIP_REV_IS_SLOW(sc)) {
17648         ecore_enable_blocks_parity(sc);
17649     }
17650 
17651     if (!BXE_NOMCP(sc)) {
17652         if (CHIP_IS_E1x(sc)) {
17653             bxe_common_init_phy(sc);
17654         }
17655     }
17656 
17657     return (0);
17658 }
17659 
17660 /**
17661  * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17662  *
17663  * @sc:     driver handle
17664  */
17665 static int
17666 bxe_init_hw_common_chip(struct bxe_softc *sc)
17667 {
17668     int rc = bxe_init_hw_common(sc);
17669 
17670     if (rc) {
17671         return (rc);
17672     }
17673 
17674     /* In E2 2-PORT mode, same ext phy is used for the two paths */
17675     if (!BXE_NOMCP(sc)) {
17676         bxe_common_init_phy(sc);
17677     }
17678 
17679     return (0);
17680 }
17681 
17682 static int
17683 bxe_init_hw_port(struct bxe_softc *sc)
17684 {
17685     int port = SC_PORT(sc);
17686     int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17687     uint32_t low, high;
17688     uint32_t val;
17689 
17690     BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17691 
17692     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17693 
17694     ecore_init_block(sc, BLOCK_MISC, init_phase);
17695     ecore_init_block(sc, BLOCK_PXP, init_phase);
17696     ecore_init_block(sc, BLOCK_PXP2, init_phase);
17697 
17698     /*
17699      * Timers bug workaround: disables the pf_master bit in pglue at
17700      * common phase, we need to enable it here before any dmae access are
17701      * attempted. Therefore we manually added the enable-master to the
17702      * port phase (it also happens in the function phase)
17703      */
17704     if (!CHIP_IS_E1x(sc)) {
17705         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17706     }
17707 
17708     ecore_init_block(sc, BLOCK_ATC, init_phase);
17709     ecore_init_block(sc, BLOCK_DMAE, init_phase);
17710     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17711     ecore_init_block(sc, BLOCK_QM, init_phase);
17712 
17713     ecore_init_block(sc, BLOCK_TCM, init_phase);
17714     ecore_init_block(sc, BLOCK_UCM, init_phase);
17715     ecore_init_block(sc, BLOCK_CCM, init_phase);
17716     ecore_init_block(sc, BLOCK_XCM, init_phase);
17717 
17718     /* QM cid (connection) count */
17719     ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17720 
17721     if (CNIC_SUPPORT(sc)) {
17722         ecore_init_block(sc, BLOCK_TM, init_phase);
17723         REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17724         REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17725     }
17726 
17727     ecore_init_block(sc, BLOCK_DORQ, init_phase);
17728 
17729     ecore_init_block(sc, BLOCK_BRB1, init_phase);
17730 
17731     if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17732         if (IS_MF(sc)) {
17733             low = (BXE_ONE_PORT(sc) ? 160 : 246);
17734         } else if (sc->mtu > 4096) {
17735             if (BXE_ONE_PORT(sc)) {
17736                 low = 160;
17737             } else {
17738                 val = sc->mtu;
17739                 /* (24*1024 + val*4)/256 */
17740                 low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17741             }
17742         } else {
17743             low = (BXE_ONE_PORT(sc) ? 80 : 160);
17744         }
17745         high = (low + 56); /* 14*1024/256 */
17746         REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17747         REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17748     }
17749 
17750     if (CHIP_IS_MODE_4_PORT(sc)) {
17751         REG_WR(sc, SC_PORT(sc) ?
17752                BRB1_REG_MAC_GUARANTIED_1 :
17753                BRB1_REG_MAC_GUARANTIED_0, 40);
17754     }
17755 
17756     ecore_init_block(sc, BLOCK_PRS, init_phase);
17757     if (CHIP_IS_E3B0(sc)) {
17758         if (IS_MF_AFEX(sc)) {
17759             /* configure headers for AFEX mode */
17760             REG_WR(sc, SC_PORT(sc) ?
17761                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17762                    PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17763             REG_WR(sc, SC_PORT(sc) ?
17764                    PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17765                    PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17766             REG_WR(sc, SC_PORT(sc) ?
17767                    PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17768                    PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17769         } else {
17770             /* Ovlan exists only if we are in multi-function +
17771              * switch-dependent mode, in switch-independent there
17772              * is no ovlan headers
17773              */
17774             REG_WR(sc, SC_PORT(sc) ?
17775                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17776                    PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17777                    (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17778         }
17779     }
17780 
17781     ecore_init_block(sc, BLOCK_TSDM, init_phase);
17782     ecore_init_block(sc, BLOCK_CSDM, init_phase);
17783     ecore_init_block(sc, BLOCK_USDM, init_phase);
17784     ecore_init_block(sc, BLOCK_XSDM, init_phase);
17785 
17786     ecore_init_block(sc, BLOCK_TSEM, init_phase);
17787     ecore_init_block(sc, BLOCK_USEM, init_phase);
17788     ecore_init_block(sc, BLOCK_CSEM, init_phase);
17789     ecore_init_block(sc, BLOCK_XSEM, init_phase);
17790 
17791     ecore_init_block(sc, BLOCK_UPB, init_phase);
17792     ecore_init_block(sc, BLOCK_XPB, init_phase);
17793 
17794     ecore_init_block(sc, BLOCK_PBF, init_phase);
17795 
17796     if (CHIP_IS_E1x(sc)) {
17797         /* configure PBF to work without PAUSE mtu 9000 */
17798         REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17799 
17800         /* update threshold */
17801         REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17802         /* update init credit */
17803         REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17804 
17805         /* probe changes */
17806         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17807         DELAY(50);
17808         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17809     }
17810 
17811     if (CNIC_SUPPORT(sc)) {
17812         ecore_init_block(sc, BLOCK_SRC, init_phase);
17813     }
17814 
17815     ecore_init_block(sc, BLOCK_CDU, init_phase);
17816     ecore_init_block(sc, BLOCK_CFC, init_phase);
17817 
17818     if (CHIP_IS_E1(sc)) {
17819         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17820         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17821     }
17822     ecore_init_block(sc, BLOCK_HC, init_phase);
17823 
17824     ecore_init_block(sc, BLOCK_IGU, init_phase);
17825 
17826     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17827     /* init aeu_mask_attn_func_0/1:
17828      *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17829      *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17830      *             bits 4-7 are used for "per vn group attention" */
17831     val = IS_MF(sc) ? 0xF7 : 0x7;
17832     /* Enable DCBX attention for all but E1 */
17833     val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17834     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17835 
17836     ecore_init_block(sc, BLOCK_NIG, init_phase);
17837 
17838     if (!CHIP_IS_E1x(sc)) {
17839         /* Bit-map indicating which L2 hdrs may appear after the
17840          * basic Ethernet header
17841          */
17842         if (IS_MF_AFEX(sc)) {
17843             REG_WR(sc, SC_PORT(sc) ?
17844                    NIG_REG_P1_HDRS_AFTER_BASIC :
17845                    NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17846         } else {
17847             REG_WR(sc, SC_PORT(sc) ?
17848                    NIG_REG_P1_HDRS_AFTER_BASIC :
17849                    NIG_REG_P0_HDRS_AFTER_BASIC,
17850                    IS_MF_SD(sc) ? 7 : 6);
17851         }
17852 
17853         if (CHIP_IS_E3(sc)) {
17854             REG_WR(sc, SC_PORT(sc) ?
17855                    NIG_REG_LLH1_MF_MODE :
17856                    NIG_REG_LLH_MF_MODE, IS_MF(sc));
17857         }
17858     }
17859     if (!CHIP_IS_E3(sc)) {
17860         REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17861     }
17862 
17863     if (!CHIP_IS_E1(sc)) {
17864         /* 0x2 disable mf_ov, 0x1 enable */
17865         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17866                (IS_MF_SD(sc) ? 0x1 : 0x2));
17867 
17868         if (!CHIP_IS_E1x(sc)) {
17869             val = 0;
17870             switch (sc->devinfo.mf_info.mf_mode) {
17871             case MULTI_FUNCTION_SD:
17872                 val = 1;
17873                 break;
17874             case MULTI_FUNCTION_SI:
17875             case MULTI_FUNCTION_AFEX:
17876                 val = 2;
17877                 break;
17878             }
17879 
17880             REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17881                         NIG_REG_LLH0_CLS_TYPE), val);
17882         }
17883         REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17884         REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17885         REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17886     }
17887 
17888     /* If SPIO5 is set to generate interrupts, enable it for this port */
17889     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17890     if (val & MISC_SPIO_SPIO5) {
17891         uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17892                                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17893         val = REG_RD(sc, reg_addr);
17894         val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17895         REG_WR(sc, reg_addr, val);
17896     }
17897 
17898     return (0);
17899 }
17900 
17901 static uint32_t
17902 bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17903                        uint32_t         reg,
17904                        uint32_t         expected,
17905                        uint32_t         poll_count)
17906 {
17907     uint32_t cur_cnt = poll_count;
17908     uint32_t val;
17909 
17910     while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17911         DELAY(FLR_WAIT_INTERVAL);
17912     }
17913 
17914     return (val);
17915 }
17916 
17917 static int
17918 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17919                               uint32_t         reg,
17920                               char             *msg,
17921                               uint32_t         poll_cnt)
17922 {
17923     uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17924 
17925     if (val != 0) {
17926         BLOGE(sc, "%s usage count=%d\n", msg, val);
17927         return (1);
17928     }
17929 
17930     return (0);
17931 }
17932 
17933 /* Common routines with VF FLR cleanup */
17934 static uint32_t
17935 bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17936 {
17937     /* adjust polling timeout */
17938     if (CHIP_REV_IS_EMUL(sc)) {
17939         return (FLR_POLL_CNT * 2000);
17940     }
17941 
17942     if (CHIP_REV_IS_FPGA(sc)) {
17943         return (FLR_POLL_CNT * 120);
17944     }
17945 
17946     return (FLR_POLL_CNT);
17947 }
17948 
17949 static int
17950 bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17951                            uint32_t         poll_cnt)
17952 {
17953     /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17954     if (bxe_flr_clnup_poll_hw_counter(sc,
17955                                       CFC_REG_NUM_LCIDS_INSIDE_PF,
17956                                       "CFC PF usage counter timed out",
17957                                       poll_cnt)) {
17958         return (1);
17959     }
17960 
17961     /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17962     if (bxe_flr_clnup_poll_hw_counter(sc,
17963                                       DORQ_REG_PF_USAGE_CNT,
17964                                       "DQ PF usage counter timed out",
17965                                       poll_cnt)) {
17966         return (1);
17967     }
17968 
17969     /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17970     if (bxe_flr_clnup_poll_hw_counter(sc,
17971                                       QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17972                                       "QM PF usage counter timed out",
17973                                       poll_cnt)) {
17974         return (1);
17975     }
17976 
17977     /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17978     if (bxe_flr_clnup_poll_hw_counter(sc,
17979                                       TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
17980                                       "Timers VNIC usage counter timed out",
17981                                       poll_cnt)) {
17982         return (1);
17983     }
17984 
17985     if (bxe_flr_clnup_poll_hw_counter(sc,
17986                                       TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
17987                                       "Timers NUM_SCANS usage counter timed out",
17988                                       poll_cnt)) {
17989         return (1);
17990     }
17991 
17992     /* Wait DMAE PF usage counter to zero */
17993     if (bxe_flr_clnup_poll_hw_counter(sc,
17994                                       dmae_reg_go_c[INIT_DMAE_C(sc)],
17995                                       "DMAE dommand register timed out",
17996                                       poll_cnt)) {
17997         return (1);
17998     }
17999 
18000     return (0);
18001 }
18002 
18003 #define OP_GEN_PARAM(param)                                            \
18004     (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
18005 #define OP_GEN_TYPE(type)                                           \
18006     (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
18007 #define OP_GEN_AGG_VECT(index)                                             \
18008     (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
18009 
18010 static int
18011 bxe_send_final_clnup(struct bxe_softc *sc,
18012                      uint8_t          clnup_func,
18013                      uint32_t         poll_cnt)
18014 {
18015     uint32_t op_gen_command = 0;
18016     uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
18017                           CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
18018     int ret = 0;
18019 
18020     if (REG_RD(sc, comp_addr)) {
18021         BLOGE(sc, "Cleanup complete was not 0 before sending\n");
18022         return (1);
18023     }
18024 
18025     op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
18026     op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
18027     op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
18028     op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
18029 
18030     BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
18031     REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
18032 
18033     if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
18034         BLOGE(sc, "FW final cleanup did not succeed\n");
18035         BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
18036               (REG_RD(sc, comp_addr)));
18037         bxe_panic(sc, ("FLR cleanup failed\n"));
18038         return (1);
18039     }
18040 
18041     /* Zero completion for nxt FLR */
18042     REG_WR(sc, comp_addr, 0);
18043 
18044     return (ret);
18045 }
18046 
18047 static void
18048 bxe_pbf_pN_buf_flushed(struct bxe_softc       *sc,
18049                        struct pbf_pN_buf_regs *regs,
18050                        uint32_t               poll_count)
18051 {
18052     uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
18053     uint32_t cur_cnt = poll_count;
18054 
18055     crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
18056     crd = crd_start = REG_RD(sc, regs->crd);
18057     init_crd = REG_RD(sc, regs->init_crd);
18058 
18059     BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
18060     BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
18061     BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
18062 
18063     while ((crd != init_crd) &&
18064            ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
18065             (init_crd - crd_start))) {
18066         if (cur_cnt--) {
18067             DELAY(FLR_WAIT_INTERVAL);
18068             crd = REG_RD(sc, regs->crd);
18069             crd_freed = REG_RD(sc, regs->crd_freed);
18070         } else {
18071             BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
18072             BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : c:%x\n", regs->pN, crd);
18073             BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
18074             break;
18075         }
18076     }
18077 
18078     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
18079           poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18080 }
18081 
18082 static void
18083 bxe_pbf_pN_cmd_flushed(struct bxe_softc       *sc,
18084                        struct pbf_pN_cmd_regs *regs,
18085                        uint32_t               poll_count)
18086 {
18087     uint32_t occup, to_free, freed, freed_start;
18088     uint32_t cur_cnt = poll_count;
18089 
18090     occup = to_free = REG_RD(sc, regs->lines_occup);
18091     freed = freed_start = REG_RD(sc, regs->lines_freed);
18092 
18093     BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18094     BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18095 
18096     while (occup &&
18097            ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
18098         if (cur_cnt--) {
18099             DELAY(FLR_WAIT_INTERVAL);
18100             occup = REG_RD(sc, regs->lines_occup);
18101             freed = REG_RD(sc, regs->lines_freed);
18102         } else {
18103             BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
18104             BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18105             BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18106             break;
18107         }
18108     }
18109 
18110     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
18111           poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18112 }
18113 
18114 static void
18115 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
18116 {
18117     struct pbf_pN_cmd_regs cmd_regs[] = {
18118         {0, (CHIP_IS_E3B0(sc)) ?
18119             PBF_REG_TQ_OCCUPANCY_Q0 :
18120             PBF_REG_P0_TQ_OCCUPANCY,
18121             (CHIP_IS_E3B0(sc)) ?
18122             PBF_REG_TQ_LINES_FREED_CNT_Q0 :
18123             PBF_REG_P0_TQ_LINES_FREED_CNT},
18124         {1, (CHIP_IS_E3B0(sc)) ?
18125             PBF_REG_TQ_OCCUPANCY_Q1 :
18126             PBF_REG_P1_TQ_OCCUPANCY,
18127             (CHIP_IS_E3B0(sc)) ?
18128             PBF_REG_TQ_LINES_FREED_CNT_Q1 :
18129             PBF_REG_P1_TQ_LINES_FREED_CNT},
18130         {4, (CHIP_IS_E3B0(sc)) ?
18131             PBF_REG_TQ_OCCUPANCY_LB_Q :
18132             PBF_REG_P4_TQ_OCCUPANCY,
18133             (CHIP_IS_E3B0(sc)) ?
18134             PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
18135             PBF_REG_P4_TQ_LINES_FREED_CNT}
18136     };
18137 
18138     struct pbf_pN_buf_regs buf_regs[] = {
18139         {0, (CHIP_IS_E3B0(sc)) ?
18140             PBF_REG_INIT_CRD_Q0 :
18141             PBF_REG_P0_INIT_CRD ,
18142             (CHIP_IS_E3B0(sc)) ?
18143             PBF_REG_CREDIT_Q0 :
18144             PBF_REG_P0_CREDIT,
18145             (CHIP_IS_E3B0(sc)) ?
18146             PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
18147             PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
18148         {1, (CHIP_IS_E3B0(sc)) ?
18149             PBF_REG_INIT_CRD_Q1 :
18150             PBF_REG_P1_INIT_CRD,
18151             (CHIP_IS_E3B0(sc)) ?
18152             PBF_REG_CREDIT_Q1 :
18153             PBF_REG_P1_CREDIT,
18154             (CHIP_IS_E3B0(sc)) ?
18155             PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
18156             PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
18157         {4, (CHIP_IS_E3B0(sc)) ?
18158             PBF_REG_INIT_CRD_LB_Q :
18159             PBF_REG_P4_INIT_CRD,
18160             (CHIP_IS_E3B0(sc)) ?
18161             PBF_REG_CREDIT_LB_Q :
18162             PBF_REG_P4_CREDIT,
18163             (CHIP_IS_E3B0(sc)) ?
18164             PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
18165             PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
18166     };
18167 
18168     int i;
18169 
18170     /* Verify the command queues are flushed P0, P1, P4 */
18171     for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
18172         bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
18173     }
18174 
18175     /* Verify the transmission buffers are flushed P0, P1, P4 */
18176     for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
18177         bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
18178     }
18179 }
18180 
18181 static void
18182 bxe_hw_enable_status(struct bxe_softc *sc)
18183 {
18184     uint32_t val;
18185 
18186     val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
18187     BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
18188 
18189     val = REG_RD(sc, PBF_REG_DISABLE_PF);
18190     BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
18191 
18192     val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
18193     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
18194 
18195     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
18196     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
18197 
18198     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
18199     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
18200 
18201     val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
18202     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
18203 
18204     val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
18205     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
18206 
18207     val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
18208     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
18209 }
18210 
18211 static int
18212 bxe_pf_flr_clnup(struct bxe_softc *sc)
18213 {
18214     uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
18215 
18216     BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
18217 
18218     /* Re-enable PF target read access */
18219     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
18220 
18221     /* Poll HW usage counters */
18222     BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
18223     if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
18224         return (-1);
18225     }
18226 
18227     /* Zero the igu 'trailing edge' and 'leading edge' */
18228 
18229     /* Send the FW cleanup command */
18230     if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
18231         return (-1);
18232     }
18233 
18234     /* ATC cleanup */
18235 
18236     /* Verify TX hw is flushed */
18237     bxe_tx_hw_flushed(sc, poll_cnt);
18238 
18239     /* Wait 100ms (not adjusted according to platform) */
18240     DELAY(100000);
18241 
18242     /* Verify no pending pci transactions */
18243     if (bxe_is_pcie_pending(sc)) {
18244         BLOGE(sc, "PCIE Transactions still pending\n");
18245     }
18246 
18247     /* Debug */
18248     bxe_hw_enable_status(sc);
18249 
18250     /*
18251      * Master enable - Due to WB DMAE writes performed before this
18252      * register is re-initialized as part of the regular function init
18253      */
18254     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18255 
18256     return (0);
18257 }
18258 
18259 #if 0
18260 static void
18261 bxe_init_searcher(struct bxe_softc *sc)
18262 {
18263     int port = SC_PORT(sc);
18264     ecore_src_init_t2(sc, sc->t2, sc->t2_mapping, SRC_CONN_NUM);
18265     /* T1 hash bits value determines the T1 number of entries */
18266     REG_WR(sc, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
18267 }
18268 #endif
18269 
18270 static int
18271 bxe_init_hw_func(struct bxe_softc *sc)
18272 {
18273     int port = SC_PORT(sc);
18274     int func = SC_FUNC(sc);
18275     int init_phase = PHASE_PF0 + func;
18276     struct ecore_ilt *ilt = sc->ilt;
18277     uint16_t cdu_ilt_start;
18278     uint32_t addr, val;
18279     uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
18280     int i, main_mem_width, rc;
18281 
18282     BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
18283 
18284     /* FLR cleanup */
18285     if (!CHIP_IS_E1x(sc)) {
18286         rc = bxe_pf_flr_clnup(sc);
18287         if (rc) {
18288             BLOGE(sc, "FLR cleanup failed!\n");
18289             // XXX bxe_fw_dump(sc);
18290             // XXX bxe_idle_chk(sc);
18291             return (rc);
18292         }
18293     }
18294 
18295     /* set MSI reconfigure capability */
18296     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18297         addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
18298         val = REG_RD(sc, addr);
18299         val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
18300         REG_WR(sc, addr, val);
18301     }
18302 
18303     ecore_init_block(sc, BLOCK_PXP, init_phase);
18304     ecore_init_block(sc, BLOCK_PXP2, init_phase);
18305 
18306     ilt = sc->ilt;
18307     cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18308 
18309 #if 0
18310     if (IS_SRIOV(sc)) {
18311         cdu_ilt_start += BXE_FIRST_VF_CID/ILT_PAGE_CIDS;
18312     }
18313     cdu_ilt_start = bxe_iov_init_ilt(sc, cdu_ilt_start);
18314 
18315 #if (BXE_FIRST_VF_CID > 0)
18316     /*
18317      * If BXE_FIRST_VF_CID > 0 then the PF L2 cids precedes
18318      * those of the VFs, so start line should be reset
18319      */
18320     cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18321 #endif
18322 #endif
18323 
18324     for (i = 0; i < L2_ILT_LINES(sc); i++) {
18325         ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
18326         ilt->lines[cdu_ilt_start + i].page_mapping =
18327             sc->context[i].vcxt_dma.paddr;
18328         ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
18329     }
18330     ecore_ilt_init_op(sc, INITOP_SET);
18331 
18332 #if 0
18333     if (!CONFIGURE_NIC_MODE(sc)) {
18334         bxe_init_searcher(sc);
18335         REG_WR(sc, PRS_REG_NIC_MODE, 0);
18336         BLOGD(sc, DBG_LOAD, "NIC MODE disabled\n");
18337     } else
18338 #endif
18339     {
18340         /* Set NIC mode */
18341         REG_WR(sc, PRS_REG_NIC_MODE, 1);
18342         BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
18343     }
18344 
18345     if (!CHIP_IS_E1x(sc)) {
18346         uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
18347 
18348         /* Turn on a single ISR mode in IGU if driver is going to use
18349          * INT#x or MSI
18350          */
18351         if (sc->interrupt_mode != INTR_MODE_MSIX) {
18352             pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
18353         }
18354 
18355         /*
18356          * Timers workaround bug: function init part.
18357          * Need to wait 20msec after initializing ILT,
18358          * needed to make sure there are no requests in
18359          * one of the PXP internal queues with "old" ILT addresses
18360          */
18361         DELAY(20000);
18362 
18363         /*
18364          * Master enable - Due to WB DMAE writes performed before this
18365          * register is re-initialized as part of the regular function
18366          * init
18367          */
18368         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18369         /* Enable the function in IGU */
18370         REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
18371     }
18372 
18373     sc->dmae_ready = 1;
18374 
18375     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
18376 
18377     if (!CHIP_IS_E1x(sc))
18378         REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
18379 
18380     ecore_init_block(sc, BLOCK_ATC, init_phase);
18381     ecore_init_block(sc, BLOCK_DMAE, init_phase);
18382     ecore_init_block(sc, BLOCK_NIG, init_phase);
18383     ecore_init_block(sc, BLOCK_SRC, init_phase);
18384     ecore_init_block(sc, BLOCK_MISC, init_phase);
18385     ecore_init_block(sc, BLOCK_TCM, init_phase);
18386     ecore_init_block(sc, BLOCK_UCM, init_phase);
18387     ecore_init_block(sc, BLOCK_CCM, init_phase);
18388     ecore_init_block(sc, BLOCK_XCM, init_phase);
18389     ecore_init_block(sc, BLOCK_TSEM, init_phase);
18390     ecore_init_block(sc, BLOCK_USEM, init_phase);
18391     ecore_init_block(sc, BLOCK_CSEM, init_phase);
18392     ecore_init_block(sc, BLOCK_XSEM, init_phase);
18393 
18394     if (!CHIP_IS_E1x(sc))
18395         REG_WR(sc, QM_REG_PF_EN, 1);
18396 
18397     if (!CHIP_IS_E1x(sc)) {
18398         REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18399         REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18400         REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18401         REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18402     }
18403     ecore_init_block(sc, BLOCK_QM, init_phase);
18404 
18405     ecore_init_block(sc, BLOCK_TM, init_phase);
18406     ecore_init_block(sc, BLOCK_DORQ, init_phase);
18407 
18408     bxe_iov_init_dq(sc);
18409 
18410     ecore_init_block(sc, BLOCK_BRB1, init_phase);
18411     ecore_init_block(sc, BLOCK_PRS, init_phase);
18412     ecore_init_block(sc, BLOCK_TSDM, init_phase);
18413     ecore_init_block(sc, BLOCK_CSDM, init_phase);
18414     ecore_init_block(sc, BLOCK_USDM, init_phase);
18415     ecore_init_block(sc, BLOCK_XSDM, init_phase);
18416     ecore_init_block(sc, BLOCK_UPB, init_phase);
18417     ecore_init_block(sc, BLOCK_XPB, init_phase);
18418     ecore_init_block(sc, BLOCK_PBF, init_phase);
18419     if (!CHIP_IS_E1x(sc))
18420         REG_WR(sc, PBF_REG_DISABLE_PF, 0);
18421 
18422     ecore_init_block(sc, BLOCK_CDU, init_phase);
18423 
18424     ecore_init_block(sc, BLOCK_CFC, init_phase);
18425 
18426     if (!CHIP_IS_E1x(sc))
18427         REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
18428 
18429     if (IS_MF(sc)) {
18430         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
18431         REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
18432     }
18433 
18434     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
18435 
18436     /* HC init per function */
18437     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18438         if (CHIP_IS_E1H(sc)) {
18439             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18440 
18441             REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18442             REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18443         }
18444         ecore_init_block(sc, BLOCK_HC, init_phase);
18445 
18446     } else {
18447         int num_segs, sb_idx, prod_offset;
18448 
18449         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18450 
18451         if (!CHIP_IS_E1x(sc)) {
18452             REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18453             REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18454         }
18455 
18456         ecore_init_block(sc, BLOCK_IGU, init_phase);
18457 
18458         if (!CHIP_IS_E1x(sc)) {
18459             int dsb_idx = 0;
18460             /**
18461              * Producer memory:
18462              * E2 mode: address 0-135 match to the mapping memory;
18463              * 136 - PF0 default prod; 137 - PF1 default prod;
18464              * 138 - PF2 default prod; 139 - PF3 default prod;
18465              * 140 - PF0 attn prod;    141 - PF1 attn prod;
18466              * 142 - PF2 attn prod;    143 - PF3 attn prod;
18467              * 144-147 reserved.
18468              *
18469              * E1.5 mode - In backward compatible mode;
18470              * for non default SB; each even line in the memory
18471              * holds the U producer and each odd line hold
18472              * the C producer. The first 128 producers are for
18473              * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
18474              * producers are for the DSB for each PF.
18475              * Each PF has five segments: (the order inside each
18476              * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
18477              * 132-135 C prods; 136-139 X prods; 140-143 T prods;
18478              * 144-147 attn prods;
18479              */
18480             /* non-default-status-blocks */
18481             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18482                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
18483             for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
18484                 prod_offset = (sc->igu_base_sb + sb_idx) *
18485                     num_segs;
18486 
18487                 for (i = 0; i < num_segs; i++) {
18488                     addr = IGU_REG_PROD_CONS_MEMORY +
18489                             (prod_offset + i) * 4;
18490                     REG_WR(sc, addr, 0);
18491                 }
18492                 /* send consumer update with value 0 */
18493                 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
18494                            USTORM_ID, 0, IGU_INT_NOP, 1);
18495                 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
18496             }
18497 
18498             /* default-status-blocks */
18499             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18500                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
18501 
18502             if (CHIP_IS_MODE_4_PORT(sc))
18503                 dsb_idx = SC_FUNC(sc);
18504             else
18505                 dsb_idx = SC_VN(sc);
18506 
18507             prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
18508                        IGU_BC_BASE_DSB_PROD + dsb_idx :
18509                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
18510 
18511             /*
18512              * igu prods come in chunks of E1HVN_MAX (4) -
18513              * does not matters what is the current chip mode
18514              */
18515             for (i = 0; i < (num_segs * E1HVN_MAX);
18516                  i += E1HVN_MAX) {
18517                 addr = IGU_REG_PROD_CONS_MEMORY +
18518                             (prod_offset + i)*4;
18519                 REG_WR(sc, addr, 0);
18520             }
18521             /* send consumer update with 0 */
18522             if (CHIP_INT_MODE_IS_BC(sc)) {
18523                 bxe_ack_sb(sc, sc->igu_dsb_id,
18524                            USTORM_ID, 0, IGU_INT_NOP, 1);
18525                 bxe_ack_sb(sc, sc->igu_dsb_id,
18526                            CSTORM_ID, 0, IGU_INT_NOP, 1);
18527                 bxe_ack_sb(sc, sc->igu_dsb_id,
18528                            XSTORM_ID, 0, IGU_INT_NOP, 1);
18529                 bxe_ack_sb(sc, sc->igu_dsb_id,
18530                            TSTORM_ID, 0, IGU_INT_NOP, 1);
18531                 bxe_ack_sb(sc, sc->igu_dsb_id,
18532                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
18533             } else {
18534                 bxe_ack_sb(sc, sc->igu_dsb_id,
18535                            USTORM_ID, 0, IGU_INT_NOP, 1);
18536                 bxe_ack_sb(sc, sc->igu_dsb_id,
18537                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
18538             }
18539             bxe_igu_clear_sb(sc, sc->igu_dsb_id);
18540 
18541             /* !!! these should become driver const once
18542                rf-tool supports split-68 const */
18543             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
18544             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
18545             REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
18546             REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
18547             REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
18548             REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
18549         }
18550     }
18551 
18552     /* Reset PCIE errors for debug */
18553     REG_WR(sc, 0x2114, 0xffffffff);
18554     REG_WR(sc, 0x2120, 0xffffffff);
18555 
18556     if (CHIP_IS_E1x(sc)) {
18557         main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
18558         main_mem_base = HC_REG_MAIN_MEMORY +
18559                 SC_PORT(sc) * (main_mem_size * 4);
18560         main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
18561         main_mem_width = 8;
18562 
18563         val = REG_RD(sc, main_mem_prty_clr);
18564         if (val) {
18565             BLOGD(sc, DBG_LOAD,
18566                   "Parity errors in HC block during function init (0x%x)!\n",
18567                   val);
18568         }
18569 
18570         /* Clear "false" parity errors in MSI-X table */
18571         for (i = main_mem_base;
18572              i < main_mem_base + main_mem_size * 4;
18573              i += main_mem_width) {
18574             bxe_read_dmae(sc, i, main_mem_width / 4);
18575             bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
18576                            i, main_mem_width / 4);
18577         }
18578         /* Clear HC parity attention */
18579         REG_RD(sc, main_mem_prty_clr);
18580     }
18581 
18582 #if 1
18583     /* Enable STORMs SP logging */
18584     REG_WR8(sc, BAR_USTRORM_INTMEM +
18585            USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18586     REG_WR8(sc, BAR_TSTRORM_INTMEM +
18587            TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18588     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18589            CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18590     REG_WR8(sc, BAR_XSTRORM_INTMEM +
18591            XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18592 #endif
18593 
18594     elink_phy_probe(&sc->link_params);
18595 
18596     return (0);
18597 }
18598 
18599 static void
18600 bxe_link_reset(struct bxe_softc *sc)
18601 {
18602     if (!BXE_NOMCP(sc)) {
18603         BXE_PHY_LOCK(sc);
18604         elink_lfa_reset(&sc->link_params, &sc->link_vars);
18605         BXE_PHY_UNLOCK(sc);
18606     } else {
18607         if (!CHIP_REV_IS_SLOW(sc)) {
18608             BLOGW(sc, "Bootcode is missing - cannot reset link\n");
18609         }
18610     }
18611 }
18612 
18613 static void
18614 bxe_reset_port(struct bxe_softc *sc)
18615 {
18616     int port = SC_PORT(sc);
18617     uint32_t val;
18618 
18619     /* reset physical Link */
18620     bxe_link_reset(sc);
18621 
18622     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18623 
18624     /* Do not rcv packets to BRB */
18625     REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18626     /* Do not direct rcv packets that are not for MCP to the BRB */
18627     REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18628                NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18629 
18630     /* Configure AEU */
18631     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18632 
18633     DELAY(100000);
18634 
18635     /* Check for BRB port occupancy */
18636     val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18637     if (val) {
18638         BLOGD(sc, DBG_LOAD,
18639               "BRB1 is not empty, %d blocks are occupied\n", val);
18640     }
18641 
18642     /* TODO: Close Doorbell port? */
18643 }
18644 
18645 static void
18646 bxe_ilt_wr(struct bxe_softc *sc,
18647            uint32_t         index,
18648            bus_addr_t       addr)
18649 {
18650     int reg;
18651     uint32_t wb_write[2];
18652 
18653     if (CHIP_IS_E1(sc)) {
18654         reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18655     } else {
18656         reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18657     }
18658 
18659     wb_write[0] = ONCHIP_ADDR1(addr);
18660     wb_write[1] = ONCHIP_ADDR2(addr);
18661     REG_WR_DMAE(sc, reg, wb_write, 2);
18662 }
18663 
18664 static void
18665 bxe_clear_func_ilt(struct bxe_softc *sc,
18666                    uint32_t         func)
18667 {
18668     uint32_t i, base = FUNC_ILT_BASE(func);
18669     for (i = base; i < base + ILT_PER_FUNC; i++) {
18670         bxe_ilt_wr(sc, i, 0);
18671     }
18672 }
18673 
18674 static void
18675 bxe_reset_func(struct bxe_softc *sc)
18676 {
18677     struct bxe_fastpath *fp;
18678     int port = SC_PORT(sc);
18679     int func = SC_FUNC(sc);
18680     int i;
18681 
18682     /* Disable the function in the FW */
18683     REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18684     REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18685     REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18686     REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18687 
18688     /* FP SBs */
18689     FOR_EACH_ETH_QUEUE(sc, i) {
18690         fp = &sc->fp[i];
18691         REG_WR8(sc, BAR_CSTRORM_INTMEM +
18692                 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18693                 SB_DISABLED);
18694     }
18695 
18696 #if 0
18697     if (CNIC_LOADED(sc)) {
18698         /* CNIC SB */
18699         REG_WR8(sc, BAR_CSTRORM_INTMEM +
18700                 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
18701                 (bxe_cnic_fw_sb_id(sc)), SB_DISABLED);
18702     }
18703 #endif
18704 
18705     /* SP SB */
18706     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18707             CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18708             SB_DISABLED);
18709 
18710     for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18711         REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18712     }
18713 
18714     /* Configure IGU */
18715     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18716         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18717         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18718     } else {
18719         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18720         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18721     }
18722 
18723     if (CNIC_LOADED(sc)) {
18724         /* Disable Timer scan */
18725         REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18726         /*
18727          * Wait for at least 10ms and up to 2 second for the timers
18728          * scan to complete
18729          */
18730         for (i = 0; i < 200; i++) {
18731             DELAY(10000);
18732             if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18733                 break;
18734         }
18735     }
18736 
18737     /* Clear ILT */
18738     bxe_clear_func_ilt(sc, func);
18739 
18740     /*
18741      * Timers workaround bug for E2: if this is vnic-3,
18742      * we need to set the entire ilt range for this timers.
18743      */
18744     if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18745         struct ilt_client_info ilt_cli;
18746         /* use dummy TM client */
18747         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18748         ilt_cli.start = 0;
18749         ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18750         ilt_cli.client_num = ILT_CLIENT_TM;
18751 
18752         ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18753     }
18754 
18755     /* this assumes that reset_port() called before reset_func()*/
18756     if (!CHIP_IS_E1x(sc)) {
18757         bxe_pf_disable(sc);
18758     }
18759 
18760     sc->dmae_ready = 0;
18761 }
18762 
18763 static int
18764 bxe_gunzip_init(struct bxe_softc *sc)
18765 {
18766     return (0);
18767 }
18768 
18769 static void
18770 bxe_gunzip_end(struct bxe_softc *sc)
18771 {
18772     return;
18773 }
18774 
18775 static int
18776 bxe_init_firmware(struct bxe_softc *sc)
18777 {
18778     if (CHIP_IS_E1(sc)) {
18779         ecore_init_e1_firmware(sc);
18780         sc->iro_array = e1_iro_arr;
18781     } else if (CHIP_IS_E1H(sc)) {
18782         ecore_init_e1h_firmware(sc);
18783         sc->iro_array = e1h_iro_arr;
18784     } else if (!CHIP_IS_E1x(sc)) {
18785         ecore_init_e2_firmware(sc);
18786         sc->iro_array = e2_iro_arr;
18787     } else {
18788         BLOGE(sc, "Unsupported chip revision\n");
18789         return (-1);
18790     }
18791 
18792     return (0);
18793 }
18794 
18795 static void
18796 bxe_release_firmware(struct bxe_softc *sc)
18797 {
18798     /* Do nothing */
18799     return;
18800 }
18801 
18802 static int
18803 ecore_gunzip(struct bxe_softc *sc,
18804              const uint8_t    *zbuf,
18805              int              len)
18806 {
18807     /* XXX : Implement... */
18808     BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18809     return (FALSE);
18810 }
18811 
18812 static void
18813 ecore_reg_wr_ind(struct bxe_softc *sc,
18814                  uint32_t         addr,
18815                  uint32_t         val)
18816 {
18817     bxe_reg_wr_ind(sc, addr, val);
18818 }
18819 
18820 static void
18821 ecore_write_dmae_phys_len(struct bxe_softc *sc,
18822                           bus_addr_t       phys_addr,
18823                           uint32_t         addr,
18824                           uint32_t         len)
18825 {
18826     bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18827 }
18828 
18829 void
18830 ecore_storm_memset_struct(struct bxe_softc *sc,
18831                           uint32_t         addr,
18832                           size_t           size,
18833                           uint32_t         *data)
18834 {
18835     uint8_t i;
18836     for (i = 0; i < size/4; i++) {
18837         REG_WR(sc, addr + (i * 4), data[i]);
18838     }
18839 }
18840 
18841