1 /*- 2 * Copyright (c) 2007-2013 Broadcom Corporation. All rights reserved. 3 * 4 * Eric Davis <edavis@broadcom.com> 5 * David Christensen <davidch@broadcom.com> 6 * Gary Zambrano <zambrano@broadcom.com> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written consent. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 31 * THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #define BXE_DRIVER_VERSION "1.78.76" 38 39 #include "bxe.h" 40 #include "ecore_sp.h" 41 #include "ecore_init.h" 42 #include "ecore_init_ops.h" 43 44 #include "57710_int_offsets.h" 45 #include "57711_int_offsets.h" 46 #include "57712_int_offsets.h" 47 48 /* 49 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these 50 * explicitly here for older kernels that don't include this changeset. 51 */ 52 #ifndef CTLTYPE_U64 53 #define CTLTYPE_U64 CTLTYPE_QUAD 54 #define sysctl_handle_64 sysctl_handle_quad 55 #endif 56 57 /* 58 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these 59 * here as zero(0) for older kernels that don't include this changeset 60 * thereby masking the functionality. 61 */ 62 #ifndef CSUM_TCP_IPV6 63 #define CSUM_TCP_IPV6 0 64 #define CSUM_UDP_IPV6 0 65 #endif 66 67 /* 68 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap 69 * for older kernels that don't include this changeset. 70 */ 71 #if __FreeBSD_version < 900035 72 #define pci_find_cap pci_find_extcap 73 #endif 74 75 #define BXE_DEF_SB_ATT_IDX 0x0001 76 #define BXE_DEF_SB_IDX 0x0002 77 78 /* 79 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per 80 * function HW initialization. 81 */ 82 #define FLR_WAIT_USEC 10000 /* 10 msecs */ 83 #define FLR_WAIT_INTERVAL 50 /* usecs */ 84 #define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */ 85 86 struct pbf_pN_buf_regs { 87 int pN; 88 uint32_t init_crd; 89 uint32_t crd; 90 uint32_t crd_freed; 91 }; 92 93 struct pbf_pN_cmd_regs { 94 int pN; 95 uint32_t lines_occup; 96 uint32_t lines_freed; 97 }; 98 99 /* 100 * PCI Device ID Table used by bxe_probe(). 101 */ 102 #define BXE_DEVDESC_MAX 64 103 static struct bxe_device_type bxe_devs[] = { 104 { 105 BRCM_VENDORID, 106 CHIP_NUM_57710, 107 PCI_ANY_ID, PCI_ANY_ID, 108 "Broadcom NetXtreme II BCM57710 10GbE" 109 }, 110 { 111 BRCM_VENDORID, 112 CHIP_NUM_57711, 113 PCI_ANY_ID, PCI_ANY_ID, 114 "Broadcom NetXtreme II BCM57711 10GbE" 115 }, 116 { 117 BRCM_VENDORID, 118 CHIP_NUM_57711E, 119 PCI_ANY_ID, PCI_ANY_ID, 120 "Broadcom NetXtreme II BCM57711E 10GbE" 121 }, 122 { 123 BRCM_VENDORID, 124 CHIP_NUM_57712, 125 PCI_ANY_ID, PCI_ANY_ID, 126 "Broadcom NetXtreme II BCM57712 10GbE" 127 }, 128 { 129 BRCM_VENDORID, 130 CHIP_NUM_57712_MF, 131 PCI_ANY_ID, PCI_ANY_ID, 132 "Broadcom NetXtreme II BCM57712 MF 10GbE" 133 }, 134 #if 0 135 { 136 BRCM_VENDORID, 137 CHIP_NUM_57712_VF, 138 PCI_ANY_ID, PCI_ANY_ID, 139 "Broadcom NetXtreme II BCM57712 VF 10GbE" 140 }, 141 #endif 142 { 143 BRCM_VENDORID, 144 CHIP_NUM_57800, 145 PCI_ANY_ID, PCI_ANY_ID, 146 "Broadcom NetXtreme II BCM57800 10GbE" 147 }, 148 { 149 BRCM_VENDORID, 150 CHIP_NUM_57800_MF, 151 PCI_ANY_ID, PCI_ANY_ID, 152 "Broadcom NetXtreme II BCM57800 MF 10GbE" 153 }, 154 #if 0 155 { 156 BRCM_VENDORID, 157 CHIP_NUM_57800_VF, 158 PCI_ANY_ID, PCI_ANY_ID, 159 "Broadcom NetXtreme II BCM57800 VF 10GbE" 160 }, 161 #endif 162 { 163 BRCM_VENDORID, 164 CHIP_NUM_57810, 165 PCI_ANY_ID, PCI_ANY_ID, 166 "Broadcom NetXtreme II BCM57810 10GbE" 167 }, 168 { 169 BRCM_VENDORID, 170 CHIP_NUM_57810_MF, 171 PCI_ANY_ID, PCI_ANY_ID, 172 "Broadcom NetXtreme II BCM57810 MF 10GbE" 173 }, 174 #if 0 175 { 176 BRCM_VENDORID, 177 CHIP_NUM_57810_VF, 178 PCI_ANY_ID, PCI_ANY_ID, 179 "Broadcom NetXtreme II BCM57810 VF 10GbE" 180 }, 181 #endif 182 { 183 BRCM_VENDORID, 184 CHIP_NUM_57811, 185 PCI_ANY_ID, PCI_ANY_ID, 186 "Broadcom NetXtreme II BCM57811 10GbE" 187 }, 188 { 189 BRCM_VENDORID, 190 CHIP_NUM_57811_MF, 191 PCI_ANY_ID, PCI_ANY_ID, 192 "Broadcom NetXtreme II BCM57811 MF 10GbE" 193 }, 194 #if 0 195 { 196 BRCM_VENDORID, 197 CHIP_NUM_57811_VF, 198 PCI_ANY_ID, PCI_ANY_ID, 199 "Broadcom NetXtreme II BCM57811 VF 10GbE" 200 }, 201 #endif 202 { 203 BRCM_VENDORID, 204 CHIP_NUM_57840_4_10, 205 PCI_ANY_ID, PCI_ANY_ID, 206 "Broadcom NetXtreme II BCM57840 4x10GbE" 207 }, 208 #if 0 209 { 210 BRCM_VENDORID, 211 CHIP_NUM_57840_2_20, 212 PCI_ANY_ID, PCI_ANY_ID, 213 "Broadcom NetXtreme II BCM57840 2x20GbE" 214 }, 215 #endif 216 { 217 BRCM_VENDORID, 218 CHIP_NUM_57840_MF, 219 PCI_ANY_ID, PCI_ANY_ID, 220 "Broadcom NetXtreme II BCM57840 MF 10GbE" 221 }, 222 #if 0 223 { 224 BRCM_VENDORID, 225 CHIP_NUM_57840_VF, 226 PCI_ANY_ID, PCI_ANY_ID, 227 "Broadcom NetXtreme II BCM57840 VF 10GbE" 228 }, 229 #endif 230 { 231 0, 0, 0, 0, NULL 232 } 233 }; 234 235 MALLOC_DECLARE(M_BXE_ILT); 236 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer"); 237 238 /* 239 * FreeBSD device entry points. 240 */ 241 static int bxe_probe(device_t); 242 static int bxe_attach(device_t); 243 static int bxe_detach(device_t); 244 static int bxe_shutdown(device_t); 245 246 /* 247 * FreeBSD KLD module/device interface event handler method. 248 */ 249 static device_method_t bxe_methods[] = { 250 /* Device interface (device_if.h) */ 251 DEVMETHOD(device_probe, bxe_probe), 252 DEVMETHOD(device_attach, bxe_attach), 253 DEVMETHOD(device_detach, bxe_detach), 254 DEVMETHOD(device_shutdown, bxe_shutdown), 255 #if 0 256 DEVMETHOD(device_suspend, bxe_suspend), 257 DEVMETHOD(device_resume, bxe_resume), 258 #endif 259 /* Bus interface (bus_if.h) */ 260 DEVMETHOD(bus_print_child, bus_generic_print_child), 261 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 262 KOBJMETHOD_END 263 }; 264 265 /* 266 * FreeBSD KLD Module data declaration 267 */ 268 static driver_t bxe_driver = { 269 "bxe", /* module name */ 270 bxe_methods, /* event handler */ 271 sizeof(struct bxe_softc) /* extra data */ 272 }; 273 274 /* 275 * FreeBSD dev class is needed to manage dev instances and 276 * to associate with a bus type 277 */ 278 static devclass_t bxe_devclass; 279 280 MODULE_DEPEND(bxe, pci, 1, 1, 1); 281 MODULE_DEPEND(bxe, ether, 1, 1, 1); 282 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0); 283 284 /* resources needed for unloading a previously loaded device */ 285 286 #define BXE_PREV_WAIT_NEEDED 1 287 struct mtx bxe_prev_mtx; 288 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF); 289 struct bxe_prev_list_node { 290 LIST_ENTRY(bxe_prev_list_node) node; 291 uint8_t bus; 292 uint8_t slot; 293 uint8_t path; 294 uint8_t aer; /* XXX automatic error recovery */ 295 uint8_t undi; 296 }; 297 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list); 298 299 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 300 301 /* Tunable device values... */ 302 303 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters"); 304 305 /* Debug */ 306 unsigned long bxe_debug = 0; 307 TUNABLE_ULONG("hw.bxe.debug", &bxe_debug); 308 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, (CTLFLAG_RDTUN), 309 &bxe_debug, 0, "Debug logging mode"); 310 311 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 312 static int bxe_interrupt_mode = INTR_MODE_MSIX; 313 TUNABLE_INT("hw.bxe.interrupt_mode", &bxe_interrupt_mode); 314 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN, 315 &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode"); 316 317 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */ 318 static int bxe_queue_count = 4; 319 TUNABLE_INT("hw.bxe.queue_count", &bxe_queue_count); 320 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN, 321 &bxe_queue_count, 0, "Multi-Queue queue count"); 322 323 /* max number of buffers per queue (default RX_BD_USABLE) */ 324 static int bxe_max_rx_bufs = 0; 325 TUNABLE_INT("hw.bxe.max_rx_bufs", &bxe_max_rx_bufs); 326 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN, 327 &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue"); 328 329 /* Host interrupt coalescing RX tick timer (usecs) */ 330 static int bxe_hc_rx_ticks = 25; 331 TUNABLE_INT("hw.bxe.hc_rx_ticks", &bxe_hc_rx_ticks); 332 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN, 333 &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks"); 334 335 /* Host interrupt coalescing TX tick timer (usecs) */ 336 static int bxe_hc_tx_ticks = 50; 337 TUNABLE_INT("hw.bxe.hc_tx_ticks", &bxe_hc_tx_ticks); 338 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN, 339 &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks"); 340 341 /* Maximum number of Rx packets to process at a time */ 342 static int bxe_rx_budget = 0xffffffff; 343 TUNABLE_INT("hw.bxe.rx_budget", &bxe_rx_budget); 344 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN, 345 &bxe_rx_budget, 0, "Rx processing budget"); 346 347 /* Maximum LRO aggregation size */ 348 static int bxe_max_aggregation_size = 0; 349 TUNABLE_INT("hw.bxe.max_aggregation_size", &bxe_max_aggregation_size); 350 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN, 351 &bxe_max_aggregation_size, 0, "max aggregation size"); 352 353 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */ 354 static int bxe_mrrs = -1; 355 TUNABLE_INT("hw.bxe.mrrs", &bxe_mrrs); 356 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN, 357 &bxe_mrrs, 0, "PCIe maximum read request size"); 358 359 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */ 360 static int bxe_autogreeen = 0; 361 TUNABLE_INT("hw.bxe.autogreeen", &bxe_autogreeen); 362 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN, 363 &bxe_autogreeen, 0, "AutoGrEEEn support"); 364 365 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */ 366 static int bxe_udp_rss = 0; 367 TUNABLE_INT("hw.bxe.udp_rss", &bxe_udp_rss); 368 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN, 369 &bxe_udp_rss, 0, "UDP RSS support"); 370 371 372 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */ 373 374 #define STATS_OFFSET32(stat_name) \ 375 (offsetof(struct bxe_eth_stats, stat_name) / 4) 376 377 #define Q_STATS_OFFSET32(stat_name) \ 378 (offsetof(struct bxe_eth_q_stats, stat_name) / 4) 379 380 static const struct { 381 uint32_t offset; 382 uint32_t size; 383 uint32_t flags; 384 #define STATS_FLAGS_PORT 1 385 #define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */ 386 #define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT) 387 char string[STAT_NAME_LEN]; 388 } bxe_eth_stats_arr[] = { 389 { STATS_OFFSET32(total_bytes_received_hi), 390 8, STATS_FLAGS_BOTH, "rx_bytes" }, 391 { STATS_OFFSET32(error_bytes_received_hi), 392 8, STATS_FLAGS_BOTH, "rx_error_bytes" }, 393 { STATS_OFFSET32(total_unicast_packets_received_hi), 394 8, STATS_FLAGS_BOTH, "rx_ucast_packets" }, 395 { STATS_OFFSET32(total_multicast_packets_received_hi), 396 8, STATS_FLAGS_BOTH, "rx_mcast_packets" }, 397 { STATS_OFFSET32(total_broadcast_packets_received_hi), 398 8, STATS_FLAGS_BOTH, "rx_bcast_packets" }, 399 { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi), 400 8, STATS_FLAGS_PORT, "rx_crc_errors" }, 401 { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi), 402 8, STATS_FLAGS_PORT, "rx_align_errors" }, 403 { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi), 404 8, STATS_FLAGS_PORT, "rx_undersize_packets" }, 405 { STATS_OFFSET32(etherstatsoverrsizepkts_hi), 406 8, STATS_FLAGS_PORT, "rx_oversize_packets" }, 407 { STATS_OFFSET32(rx_stat_etherstatsfragments_hi), 408 8, STATS_FLAGS_PORT, "rx_fragments" }, 409 { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi), 410 8, STATS_FLAGS_PORT, "rx_jabbers" }, 411 { STATS_OFFSET32(no_buff_discard_hi), 412 8, STATS_FLAGS_BOTH, "rx_discards" }, 413 { STATS_OFFSET32(mac_filter_discard), 414 4, STATS_FLAGS_PORT, "rx_filtered_packets" }, 415 { STATS_OFFSET32(mf_tag_discard), 416 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" }, 417 { STATS_OFFSET32(pfc_frames_received_hi), 418 8, STATS_FLAGS_PORT, "pfc_frames_received" }, 419 { STATS_OFFSET32(pfc_frames_sent_hi), 420 8, STATS_FLAGS_PORT, "pfc_frames_sent" }, 421 { STATS_OFFSET32(brb_drop_hi), 422 8, STATS_FLAGS_PORT, "rx_brb_discard" }, 423 { STATS_OFFSET32(brb_truncate_hi), 424 8, STATS_FLAGS_PORT, "rx_brb_truncate" }, 425 { STATS_OFFSET32(pause_frames_received_hi), 426 8, STATS_FLAGS_PORT, "rx_pause_frames" }, 427 { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi), 428 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" }, 429 { STATS_OFFSET32(nig_timer_max), 430 4, STATS_FLAGS_PORT, "rx_constant_pause_events" }, 431 { STATS_OFFSET32(total_bytes_transmitted_hi), 432 8, STATS_FLAGS_BOTH, "tx_bytes" }, 433 { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi), 434 8, STATS_FLAGS_PORT, "tx_error_bytes" }, 435 { STATS_OFFSET32(total_unicast_packets_transmitted_hi), 436 8, STATS_FLAGS_BOTH, "tx_ucast_packets" }, 437 { STATS_OFFSET32(total_multicast_packets_transmitted_hi), 438 8, STATS_FLAGS_BOTH, "tx_mcast_packets" }, 439 { STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 440 8, STATS_FLAGS_BOTH, "tx_bcast_packets" }, 441 { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi), 442 8, STATS_FLAGS_PORT, "tx_mac_errors" }, 443 { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi), 444 8, STATS_FLAGS_PORT, "tx_carrier_errors" }, 445 { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi), 446 8, STATS_FLAGS_PORT, "tx_single_collisions" }, 447 { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi), 448 8, STATS_FLAGS_PORT, "tx_multi_collisions" }, 449 { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi), 450 8, STATS_FLAGS_PORT, "tx_deferred" }, 451 { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi), 452 8, STATS_FLAGS_PORT, "tx_excess_collisions" }, 453 { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi), 454 8, STATS_FLAGS_PORT, "tx_late_collisions" }, 455 { STATS_OFFSET32(tx_stat_etherstatscollisions_hi), 456 8, STATS_FLAGS_PORT, "tx_total_collisions" }, 457 { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi), 458 8, STATS_FLAGS_PORT, "tx_64_byte_packets" }, 459 { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi), 460 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" }, 461 { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi), 462 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" }, 463 { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi), 464 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" }, 465 { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi), 466 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" }, 467 { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi), 468 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" }, 469 { STATS_OFFSET32(etherstatspktsover1522octets_hi), 470 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" }, 471 { STATS_OFFSET32(pause_frames_sent_hi), 472 8, STATS_FLAGS_PORT, "tx_pause_frames" }, 473 { STATS_OFFSET32(total_tpa_aggregations_hi), 474 8, STATS_FLAGS_FUNC, "tpa_aggregations" }, 475 { STATS_OFFSET32(total_tpa_aggregated_frames_hi), 476 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"}, 477 { STATS_OFFSET32(total_tpa_bytes_hi), 478 8, STATS_FLAGS_FUNC, "tpa_bytes"}, 479 #if 0 480 { STATS_OFFSET32(recoverable_error), 481 4, STATS_FLAGS_FUNC, "recoverable_errors" }, 482 { STATS_OFFSET32(unrecoverable_error), 483 4, STATS_FLAGS_FUNC, "unrecoverable_errors" }, 484 #endif 485 { STATS_OFFSET32(eee_tx_lpi), 486 4, STATS_FLAGS_PORT, "eee_tx_lpi"}, 487 { STATS_OFFSET32(rx_calls), 488 4, STATS_FLAGS_FUNC, "rx_calls"}, 489 { STATS_OFFSET32(rx_pkts), 490 4, STATS_FLAGS_FUNC, "rx_pkts"}, 491 { STATS_OFFSET32(rx_tpa_pkts), 492 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"}, 493 { STATS_OFFSET32(rx_soft_errors), 494 4, STATS_FLAGS_FUNC, "rx_soft_errors"}, 495 { STATS_OFFSET32(rx_hw_csum_errors), 496 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"}, 497 { STATS_OFFSET32(rx_ofld_frames_csum_ip), 498 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"}, 499 { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 500 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"}, 501 { STATS_OFFSET32(rx_budget_reached), 502 4, STATS_FLAGS_FUNC, "rx_budget_reached"}, 503 { STATS_OFFSET32(tx_pkts), 504 4, STATS_FLAGS_FUNC, "tx_pkts"}, 505 { STATS_OFFSET32(tx_soft_errors), 506 4, STATS_FLAGS_FUNC, "tx_soft_errors"}, 507 { STATS_OFFSET32(tx_ofld_frames_csum_ip), 508 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"}, 509 { STATS_OFFSET32(tx_ofld_frames_csum_tcp), 510 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"}, 511 { STATS_OFFSET32(tx_ofld_frames_csum_udp), 512 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"}, 513 { STATS_OFFSET32(tx_ofld_frames_lso), 514 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"}, 515 { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 516 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"}, 517 { STATS_OFFSET32(tx_encap_failures), 518 4, STATS_FLAGS_FUNC, "tx_encap_failures"}, 519 { STATS_OFFSET32(tx_hw_queue_full), 520 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"}, 521 { STATS_OFFSET32(tx_hw_max_queue_depth), 522 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"}, 523 { STATS_OFFSET32(tx_dma_mapping_failure), 524 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"}, 525 { STATS_OFFSET32(tx_max_drbr_queue_depth), 526 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"}, 527 { STATS_OFFSET32(tx_window_violation_std), 528 4, STATS_FLAGS_FUNC, "tx_window_violation_std"}, 529 { STATS_OFFSET32(tx_window_violation_tso), 530 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"}, 531 #if 0 532 { STATS_OFFSET32(tx_unsupported_tso_request_ipv6), 533 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_ipv6"}, 534 { STATS_OFFSET32(tx_unsupported_tso_request_not_tcp), 535 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_not_tcp"}, 536 #endif 537 { STATS_OFFSET32(tx_chain_lost_mbuf), 538 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"}, 539 { STATS_OFFSET32(tx_frames_deferred), 540 4, STATS_FLAGS_FUNC, "tx_frames_deferred"}, 541 { STATS_OFFSET32(tx_queue_xoff), 542 4, STATS_FLAGS_FUNC, "tx_queue_xoff"}, 543 { STATS_OFFSET32(mbuf_defrag_attempts), 544 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"}, 545 { STATS_OFFSET32(mbuf_defrag_failures), 546 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"}, 547 { STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 548 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"}, 549 { STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 550 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"}, 551 { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 552 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"}, 553 { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 554 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"}, 555 { STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 556 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"}, 557 { STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 558 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"}, 559 { STATS_OFFSET32(mbuf_alloc_tx), 560 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"}, 561 { STATS_OFFSET32(mbuf_alloc_rx), 562 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"}, 563 { STATS_OFFSET32(mbuf_alloc_sge), 564 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"}, 565 { STATS_OFFSET32(mbuf_alloc_tpa), 566 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"} 567 }; 568 569 static const struct { 570 uint32_t offset; 571 uint32_t size; 572 char string[STAT_NAME_LEN]; 573 } bxe_eth_q_stats_arr[] = { 574 { Q_STATS_OFFSET32(total_bytes_received_hi), 575 8, "rx_bytes" }, 576 { Q_STATS_OFFSET32(total_unicast_packets_received_hi), 577 8, "rx_ucast_packets" }, 578 { Q_STATS_OFFSET32(total_multicast_packets_received_hi), 579 8, "rx_mcast_packets" }, 580 { Q_STATS_OFFSET32(total_broadcast_packets_received_hi), 581 8, "rx_bcast_packets" }, 582 { Q_STATS_OFFSET32(no_buff_discard_hi), 583 8, "rx_discards" }, 584 { Q_STATS_OFFSET32(total_bytes_transmitted_hi), 585 8, "tx_bytes" }, 586 { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi), 587 8, "tx_ucast_packets" }, 588 { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi), 589 8, "tx_mcast_packets" }, 590 { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 591 8, "tx_bcast_packets" }, 592 { Q_STATS_OFFSET32(total_tpa_aggregations_hi), 593 8, "tpa_aggregations" }, 594 { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi), 595 8, "tpa_aggregated_frames"}, 596 { Q_STATS_OFFSET32(total_tpa_bytes_hi), 597 8, "tpa_bytes"}, 598 { Q_STATS_OFFSET32(rx_calls), 599 4, "rx_calls"}, 600 { Q_STATS_OFFSET32(rx_pkts), 601 4, "rx_pkts"}, 602 { Q_STATS_OFFSET32(rx_tpa_pkts), 603 4, "rx_tpa_pkts"}, 604 { Q_STATS_OFFSET32(rx_soft_errors), 605 4, "rx_soft_errors"}, 606 { Q_STATS_OFFSET32(rx_hw_csum_errors), 607 4, "rx_hw_csum_errors"}, 608 { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip), 609 4, "rx_ofld_frames_csum_ip"}, 610 { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 611 4, "rx_ofld_frames_csum_tcp_udp"}, 612 { Q_STATS_OFFSET32(rx_budget_reached), 613 4, "rx_budget_reached"}, 614 { Q_STATS_OFFSET32(tx_pkts), 615 4, "tx_pkts"}, 616 { Q_STATS_OFFSET32(tx_soft_errors), 617 4, "tx_soft_errors"}, 618 { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip), 619 4, "tx_ofld_frames_csum_ip"}, 620 { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp), 621 4, "tx_ofld_frames_csum_tcp"}, 622 { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp), 623 4, "tx_ofld_frames_csum_udp"}, 624 { Q_STATS_OFFSET32(tx_ofld_frames_lso), 625 4, "tx_ofld_frames_lso"}, 626 { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 627 4, "tx_ofld_frames_lso_hdr_splits"}, 628 { Q_STATS_OFFSET32(tx_encap_failures), 629 4, "tx_encap_failures"}, 630 { Q_STATS_OFFSET32(tx_hw_queue_full), 631 4, "tx_hw_queue_full"}, 632 { Q_STATS_OFFSET32(tx_hw_max_queue_depth), 633 4, "tx_hw_max_queue_depth"}, 634 { Q_STATS_OFFSET32(tx_dma_mapping_failure), 635 4, "tx_dma_mapping_failure"}, 636 { Q_STATS_OFFSET32(tx_max_drbr_queue_depth), 637 4, "tx_max_drbr_queue_depth"}, 638 { Q_STATS_OFFSET32(tx_window_violation_std), 639 4, "tx_window_violation_std"}, 640 { Q_STATS_OFFSET32(tx_window_violation_tso), 641 4, "tx_window_violation_tso"}, 642 #if 0 643 { Q_STATS_OFFSET32(tx_unsupported_tso_request_ipv6), 644 4, "tx_unsupported_tso_request_ipv6"}, 645 { Q_STATS_OFFSET32(tx_unsupported_tso_request_not_tcp), 646 4, "tx_unsupported_tso_request_not_tcp"}, 647 #endif 648 { Q_STATS_OFFSET32(tx_chain_lost_mbuf), 649 4, "tx_chain_lost_mbuf"}, 650 { Q_STATS_OFFSET32(tx_frames_deferred), 651 4, "tx_frames_deferred"}, 652 { Q_STATS_OFFSET32(tx_queue_xoff), 653 4, "tx_queue_xoff"}, 654 { Q_STATS_OFFSET32(mbuf_defrag_attempts), 655 4, "mbuf_defrag_attempts"}, 656 { Q_STATS_OFFSET32(mbuf_defrag_failures), 657 4, "mbuf_defrag_failures"}, 658 { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 659 4, "mbuf_rx_bd_alloc_failed"}, 660 { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 661 4, "mbuf_rx_bd_mapping_failed"}, 662 { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 663 4, "mbuf_rx_tpa_alloc_failed"}, 664 { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 665 4, "mbuf_rx_tpa_mapping_failed"}, 666 { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 667 4, "mbuf_rx_sge_alloc_failed"}, 668 { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 669 4, "mbuf_rx_sge_mapping_failed"}, 670 { Q_STATS_OFFSET32(mbuf_alloc_tx), 671 4, "mbuf_alloc_tx"}, 672 { Q_STATS_OFFSET32(mbuf_alloc_rx), 673 4, "mbuf_alloc_rx"}, 674 { Q_STATS_OFFSET32(mbuf_alloc_sge), 675 4, "mbuf_alloc_sge"}, 676 { Q_STATS_OFFSET32(mbuf_alloc_tpa), 677 4, "mbuf_alloc_tpa"} 678 }; 679 680 #define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr) 681 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr) 682 683 684 static void bxe_cmng_fns_init(struct bxe_softc *sc, 685 uint8_t read_cfg, 686 uint8_t cmng_type); 687 static int bxe_get_cmng_fns_mode(struct bxe_softc *sc); 688 static void storm_memset_cmng(struct bxe_softc *sc, 689 struct cmng_init *cmng, 690 uint8_t port); 691 static void bxe_set_reset_global(struct bxe_softc *sc); 692 static void bxe_set_reset_in_progress(struct bxe_softc *sc); 693 static uint8_t bxe_reset_is_done(struct bxe_softc *sc, 694 int engine); 695 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc); 696 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc, 697 uint8_t *global, 698 uint8_t print); 699 static void bxe_int_disable(struct bxe_softc *sc); 700 static int bxe_release_leader_lock(struct bxe_softc *sc); 701 static void bxe_pf_disable(struct bxe_softc *sc); 702 static void bxe_free_fp_buffers(struct bxe_softc *sc); 703 static inline void bxe_update_rx_prod(struct bxe_softc *sc, 704 struct bxe_fastpath *fp, 705 uint16_t rx_bd_prod, 706 uint16_t rx_cq_prod, 707 uint16_t rx_sge_prod); 708 static void bxe_link_report_locked(struct bxe_softc *sc); 709 static void bxe_link_report(struct bxe_softc *sc); 710 static void bxe_link_status_update(struct bxe_softc *sc); 711 static void bxe_periodic_callout_func(void *xsc); 712 static void bxe_periodic_start(struct bxe_softc *sc); 713 static void bxe_periodic_stop(struct bxe_softc *sc); 714 static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 715 uint16_t prev_index, 716 uint16_t index); 717 static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 718 int queue); 719 static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 720 uint16_t index); 721 static uint8_t bxe_txeof(struct bxe_softc *sc, 722 struct bxe_fastpath *fp); 723 static void bxe_task_fp(struct bxe_fastpath *fp); 724 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc, 725 struct mbuf *m, 726 uint8_t contents); 727 static int bxe_alloc_mem(struct bxe_softc *sc); 728 static void bxe_free_mem(struct bxe_softc *sc); 729 static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc); 730 static void bxe_free_fw_stats_mem(struct bxe_softc *sc); 731 static int bxe_interrupt_attach(struct bxe_softc *sc); 732 static void bxe_interrupt_detach(struct bxe_softc *sc); 733 static void bxe_set_rx_mode(struct bxe_softc *sc); 734 static int bxe_init_locked(struct bxe_softc *sc); 735 static int bxe_stop_locked(struct bxe_softc *sc); 736 static __noinline int bxe_nic_load(struct bxe_softc *sc, 737 int load_mode); 738 static __noinline int bxe_nic_unload(struct bxe_softc *sc, 739 uint32_t unload_mode, 740 uint8_t keep_link); 741 742 static void bxe_handle_sp_tq(void *context, int pending); 743 static void bxe_handle_rx_mode_tq(void *context, int pending); 744 static void bxe_handle_fp_tq(void *context, int pending); 745 746 747 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */ 748 uint32_t 749 calc_crc32(uint8_t *crc32_packet, 750 uint32_t crc32_length, 751 uint32_t crc32_seed, 752 uint8_t complement) 753 { 754 uint32_t byte = 0; 755 uint32_t bit = 0; 756 uint8_t msb = 0; 757 uint32_t temp = 0; 758 uint32_t shft = 0; 759 uint8_t current_byte = 0; 760 uint32_t crc32_result = crc32_seed; 761 const uint32_t CRC32_POLY = 0x1edc6f41; 762 763 if ((crc32_packet == NULL) || 764 (crc32_length == 0) || 765 ((crc32_length % 8) != 0)) 766 { 767 return (crc32_result); 768 } 769 770 for (byte = 0; byte < crc32_length; byte = byte + 1) 771 { 772 current_byte = crc32_packet[byte]; 773 for (bit = 0; bit < 8; bit = bit + 1) 774 { 775 /* msb = crc32_result[31]; */ 776 msb = (uint8_t)(crc32_result >> 31); 777 778 crc32_result = crc32_result << 1; 779 780 /* it (msb != current_byte[bit]) */ 781 if (msb != (0x1 & (current_byte >> bit))) 782 { 783 crc32_result = crc32_result ^ CRC32_POLY; 784 /* crc32_result[0] = 1 */ 785 crc32_result |= 1; 786 } 787 } 788 } 789 790 /* Last step is to: 791 * 1. "mirror" every bit 792 * 2. swap the 4 bytes 793 * 3. complement each bit 794 */ 795 796 /* Mirror */ 797 temp = crc32_result; 798 shft = sizeof(crc32_result) * 8 - 1; 799 800 for (crc32_result >>= 1; crc32_result; crc32_result >>= 1) 801 { 802 temp <<= 1; 803 temp |= crc32_result & 1; 804 shft-- ; 805 } 806 807 /* temp[31-bit] = crc32_result[bit] */ 808 temp <<= shft; 809 810 /* Swap */ 811 /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */ 812 { 813 uint32_t t0, t1, t2, t3; 814 t0 = (0x000000ff & (temp >> 24)); 815 t1 = (0x0000ff00 & (temp >> 8)); 816 t2 = (0x00ff0000 & (temp << 8)); 817 t3 = (0xff000000 & (temp << 24)); 818 crc32_result = t0 | t1 | t2 | t3; 819 } 820 821 /* Complement */ 822 if (complement) 823 { 824 crc32_result = ~crc32_result; 825 } 826 827 return (crc32_result); 828 } 829 830 int 831 bxe_test_bit(int nr, 832 volatile unsigned long *addr) 833 { 834 return ((atomic_load_acq_long(addr) & (1 << nr)) != 0); 835 } 836 837 void 838 bxe_set_bit(unsigned int nr, 839 volatile unsigned long *addr) 840 { 841 atomic_set_acq_long(addr, (1 << nr)); 842 } 843 844 void 845 bxe_clear_bit(int nr, 846 volatile unsigned long *addr) 847 { 848 atomic_clear_acq_long(addr, (1 << nr)); 849 } 850 851 int 852 bxe_test_and_set_bit(int nr, 853 volatile unsigned long *addr) 854 { 855 unsigned long x; 856 nr = (1 << nr); 857 do { 858 x = *addr; 859 } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0); 860 // if (x & nr) bit_was_set; else bit_was_not_set; 861 return (x & nr); 862 } 863 864 int 865 bxe_test_and_clear_bit(int nr, 866 volatile unsigned long *addr) 867 { 868 unsigned long x; 869 nr = (1 << nr); 870 do { 871 x = *addr; 872 } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0); 873 // if (x & nr) bit_was_set; else bit_was_not_set; 874 return (x & nr); 875 } 876 877 int 878 bxe_cmpxchg(volatile int *addr, 879 int old, 880 int new) 881 { 882 int x; 883 do { 884 x = *addr; 885 } while (atomic_cmpset_acq_int(addr, old, new) == 0); 886 return (x); 887 } 888 889 /* 890 * Get DMA memory from the OS. 891 * 892 * Validates that the OS has provided DMA buffers in response to a 893 * bus_dmamap_load call and saves the physical address of those buffers. 894 * When the callback is used the OS will return 0 for the mapping function 895 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any 896 * failures back to the caller. 897 * 898 * Returns: 899 * Nothing. 900 */ 901 static void 902 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 903 { 904 struct bxe_dma *dma = arg; 905 906 if (error) { 907 dma->paddr = 0; 908 dma->nseg = 0; 909 BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error); 910 } else { 911 dma->paddr = segs->ds_addr; 912 dma->nseg = nseg; 913 #if 0 914 BLOGD(dma->sc, DBG_LOAD,, 915 "DMA alloc '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n", 916 dma->msg, dma->vaddr, (void *)dma->paddr, 917 dma->nseg, dma->size); 918 #endif 919 } 920 } 921 922 /* 923 * Allocate a block of memory and map it for DMA. No partial completions 924 * allowed and release any resources acquired if we can't acquire all 925 * resources. 926 * 927 * Returns: 928 * 0 = Success, !0 = Failure 929 */ 930 int 931 bxe_dma_alloc(struct bxe_softc *sc, 932 bus_size_t size, 933 struct bxe_dma *dma, 934 const char *msg) 935 { 936 int rc; 937 938 if (dma->size > 0) { 939 BLOGE(sc, "dma block '%s' already has size %lu\n", msg, 940 (unsigned long)dma->size); 941 return (1); 942 } 943 944 memset(dma, 0, sizeof(*dma)); /* sanity */ 945 dma->sc = sc; 946 dma->size = size; 947 snprintf(dma->msg, sizeof(dma->msg), "%s", msg); 948 949 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 950 BCM_PAGE_SIZE, /* alignment */ 951 0, /* boundary limit */ 952 BUS_SPACE_MAXADDR, /* restricted low */ 953 BUS_SPACE_MAXADDR, /* restricted hi */ 954 NULL, /* addr filter() */ 955 NULL, /* addr filter() arg */ 956 size, /* max map size */ 957 1, /* num discontinuous */ 958 size, /* max seg size */ 959 BUS_DMA_ALLOCNOW, /* flags */ 960 NULL, /* lock() */ 961 NULL, /* lock() arg */ 962 &dma->tag); /* returned dma tag */ 963 if (rc != 0) { 964 BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc); 965 memset(dma, 0, sizeof(*dma)); 966 return (1); 967 } 968 969 rc = bus_dmamem_alloc(dma->tag, 970 (void **)&dma->vaddr, 971 (BUS_DMA_NOWAIT | BUS_DMA_ZERO), 972 &dma->map); 973 if (rc != 0) { 974 BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc); 975 bus_dma_tag_destroy(dma->tag); 976 memset(dma, 0, sizeof(*dma)); 977 return (1); 978 } 979 980 rc = bus_dmamap_load(dma->tag, 981 dma->map, 982 dma->vaddr, 983 size, 984 bxe_dma_map_addr, /* BLOGD in here */ 985 dma, 986 BUS_DMA_NOWAIT); 987 if (rc != 0) { 988 BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc); 989 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 990 bus_dma_tag_destroy(dma->tag); 991 memset(dma, 0, sizeof(*dma)); 992 return (1); 993 } 994 995 return (0); 996 } 997 998 void 999 bxe_dma_free(struct bxe_softc *sc, 1000 struct bxe_dma *dma) 1001 { 1002 if (dma->size > 0) { 1003 #if 0 1004 BLOGD(sc, DBG_LOAD, 1005 "DMA free '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n", 1006 dma->msg, dma->vaddr, (void *)dma->paddr, 1007 dma->nseg, dma->size); 1008 #endif 1009 1010 DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL")); 1011 1012 bus_dmamap_sync(dma->tag, dma->map, 1013 (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)); 1014 bus_dmamap_unload(dma->tag, dma->map); 1015 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 1016 bus_dma_tag_destroy(dma->tag); 1017 } 1018 1019 memset(dma, 0, sizeof(*dma)); 1020 } 1021 1022 /* 1023 * These indirect read and write routines are only during init. 1024 * The locking is handled by the MCP. 1025 */ 1026 1027 void 1028 bxe_reg_wr_ind(struct bxe_softc *sc, 1029 uint32_t addr, 1030 uint32_t val) 1031 { 1032 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 1033 pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4); 1034 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 1035 } 1036 1037 uint32_t 1038 bxe_reg_rd_ind(struct bxe_softc *sc, 1039 uint32_t addr) 1040 { 1041 uint32_t val; 1042 1043 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 1044 val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4); 1045 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 1046 1047 return (val); 1048 } 1049 1050 #if 0 1051 void bxe_dp_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int msglvl) 1052 { 1053 uint32_t src_type = dmae->opcode & DMAE_COMMAND_SRC; 1054 1055 switch (dmae->opcode & DMAE_COMMAND_DST) { 1056 case DMAE_CMD_DST_PCI: 1057 if (src_type == DMAE_CMD_SRC_PCI) 1058 DP(msglvl, "DMAE: opcode 0x%08x\n" 1059 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n" 1060 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1061 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 1062 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 1063 dmae->comp_addr_hi, dmae->comp_addr_lo, 1064 dmae->comp_val); 1065 else 1066 DP(msglvl, "DMAE: opcode 0x%08x\n" 1067 "src [%08x], len [%d*4], dst [%x:%08x]\n" 1068 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1069 dmae->opcode, dmae->src_addr_lo >> 2, 1070 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 1071 dmae->comp_addr_hi, dmae->comp_addr_lo, 1072 dmae->comp_val); 1073 break; 1074 case DMAE_CMD_DST_GRC: 1075 if (src_type == DMAE_CMD_SRC_PCI) 1076 DP(msglvl, "DMAE: opcode 0x%08x\n" 1077 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n" 1078 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1079 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 1080 dmae->len, dmae->dst_addr_lo >> 2, 1081 dmae->comp_addr_hi, dmae->comp_addr_lo, 1082 dmae->comp_val); 1083 else 1084 DP(msglvl, "DMAE: opcode 0x%08x\n" 1085 "src [%08x], len [%d*4], dst [%08x]\n" 1086 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1087 dmae->opcode, dmae->src_addr_lo >> 2, 1088 dmae->len, dmae->dst_addr_lo >> 2, 1089 dmae->comp_addr_hi, dmae->comp_addr_lo, 1090 dmae->comp_val); 1091 break; 1092 default: 1093 if (src_type == DMAE_CMD_SRC_PCI) 1094 DP(msglvl, "DMAE: opcode 0x%08x\n" 1095 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n" 1096 "comp_addr [%x:%08x] comp_val 0x%08x\n", 1097 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 1098 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 1099 dmae->comp_val); 1100 else 1101 DP(msglvl, "DMAE: opcode 0x%08x\n" 1102 "src_addr [%08x] len [%d * 4] dst_addr [none]\n" 1103 "comp_addr [%x:%08x] comp_val 0x%08x\n", 1104 dmae->opcode, dmae->src_addr_lo >> 2, 1105 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 1106 dmae->comp_val); 1107 break; 1108 } 1109 1110 } 1111 #endif 1112 1113 static int 1114 bxe_acquire_hw_lock(struct bxe_softc *sc, 1115 uint32_t resource) 1116 { 1117 uint32_t lock_status; 1118 uint32_t resource_bit = (1 << resource); 1119 int func = SC_FUNC(sc); 1120 uint32_t hw_lock_control_reg; 1121 int cnt; 1122 1123 /* validate the resource is within range */ 1124 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1125 BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource); 1126 return (-1); 1127 } 1128 1129 if (func <= 5) { 1130 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1131 } else { 1132 hw_lock_control_reg = 1133 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1134 } 1135 1136 /* validate the resource is not already taken */ 1137 lock_status = REG_RD(sc, hw_lock_control_reg); 1138 if (lock_status & resource_bit) { 1139 BLOGE(sc, "resource in use (status 0x%x bit 0x%x)\n", 1140 lock_status, resource_bit); 1141 return (-1); 1142 } 1143 1144 /* try every 5ms for 5 seconds */ 1145 for (cnt = 0; cnt < 1000; cnt++) { 1146 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit); 1147 lock_status = REG_RD(sc, hw_lock_control_reg); 1148 if (lock_status & resource_bit) { 1149 return (0); 1150 } 1151 DELAY(5000); 1152 } 1153 1154 BLOGE(sc, "Resource lock timeout!\n"); 1155 return (-1); 1156 } 1157 1158 static int 1159 bxe_release_hw_lock(struct bxe_softc *sc, 1160 uint32_t resource) 1161 { 1162 uint32_t lock_status; 1163 uint32_t resource_bit = (1 << resource); 1164 int func = SC_FUNC(sc); 1165 uint32_t hw_lock_control_reg; 1166 1167 /* validate the resource is within range */ 1168 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1169 BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource); 1170 return (-1); 1171 } 1172 1173 if (func <= 5) { 1174 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1175 } else { 1176 hw_lock_control_reg = 1177 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1178 } 1179 1180 /* validate the resource is currently taken */ 1181 lock_status = REG_RD(sc, hw_lock_control_reg); 1182 if (!(lock_status & resource_bit)) { 1183 BLOGE(sc, "resource not in use (status 0x%x bit 0x%x)\n", 1184 lock_status, resource_bit); 1185 return (-1); 1186 } 1187 1188 REG_WR(sc, hw_lock_control_reg, resource_bit); 1189 return (0); 1190 } 1191 1192 /* 1193 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise, 1194 * had we done things the other way around, if two pfs from the same port 1195 * would attempt to access nvram at the same time, we could run into a 1196 * scenario such as: 1197 * pf A takes the port lock. 1198 * pf B succeeds in taking the same lock since they are from the same port. 1199 * pf A takes the per pf misc lock. Performs eeprom access. 1200 * pf A finishes. Unlocks the per pf misc lock. 1201 * Pf B takes the lock and proceeds to perform it's own access. 1202 * pf A unlocks the per port lock, while pf B is still working (!). 1203 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own 1204 * access corrupted by pf B).* 1205 */ 1206 static int 1207 bxe_acquire_nvram_lock(struct bxe_softc *sc) 1208 { 1209 int port = SC_PORT(sc); 1210 int count, i; 1211 uint32_t val = 0; 1212 1213 /* acquire HW lock: protect against other PFs in PF Direct Assignment */ 1214 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1215 1216 /* adjust timeout for emulation/FPGA */ 1217 count = NVRAM_TIMEOUT_COUNT; 1218 if (CHIP_REV_IS_SLOW(sc)) { 1219 count *= 100; 1220 } 1221 1222 /* request access to nvram interface */ 1223 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1224 (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port)); 1225 1226 for (i = 0; i < count*10; i++) { 1227 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1228 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1229 break; 1230 } 1231 1232 DELAY(5); 1233 } 1234 1235 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1236 BLOGE(sc, "Cannot get access to nvram interface\n"); 1237 return (-1); 1238 } 1239 1240 return (0); 1241 } 1242 1243 static int 1244 bxe_release_nvram_lock(struct bxe_softc *sc) 1245 { 1246 int port = SC_PORT(sc); 1247 int count, i; 1248 uint32_t val = 0; 1249 1250 /* adjust timeout for emulation/FPGA */ 1251 count = NVRAM_TIMEOUT_COUNT; 1252 if (CHIP_REV_IS_SLOW(sc)) { 1253 count *= 100; 1254 } 1255 1256 /* relinquish nvram interface */ 1257 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1258 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port)); 1259 1260 for (i = 0; i < count*10; i++) { 1261 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1262 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1263 break; 1264 } 1265 1266 DELAY(5); 1267 } 1268 1269 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1270 BLOGE(sc, "Cannot free access to nvram interface\n"); 1271 return (-1); 1272 } 1273 1274 /* release HW lock: protect against other PFs in PF Direct Assignment */ 1275 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1276 1277 return (0); 1278 } 1279 1280 static void 1281 bxe_enable_nvram_access(struct bxe_softc *sc) 1282 { 1283 uint32_t val; 1284 1285 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1286 1287 /* enable both bits, even on read */ 1288 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1289 (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN)); 1290 } 1291 1292 static void 1293 bxe_disable_nvram_access(struct bxe_softc *sc) 1294 { 1295 uint32_t val; 1296 1297 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1298 1299 /* disable both bits, even after read */ 1300 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1301 (val & ~(MCPR_NVM_ACCESS_ENABLE_EN | 1302 MCPR_NVM_ACCESS_ENABLE_WR_EN))); 1303 } 1304 1305 static int 1306 bxe_nvram_read_dword(struct bxe_softc *sc, 1307 uint32_t offset, 1308 uint32_t *ret_val, 1309 uint32_t cmd_flags) 1310 { 1311 int count, i, rc; 1312 uint32_t val; 1313 1314 /* build the command word */ 1315 cmd_flags |= MCPR_NVM_COMMAND_DOIT; 1316 1317 /* need to clear DONE bit separately */ 1318 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1319 1320 /* address of the NVRAM to read from */ 1321 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1322 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1323 1324 /* issue a read command */ 1325 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1326 1327 /* adjust timeout for emulation/FPGA */ 1328 count = NVRAM_TIMEOUT_COUNT; 1329 if (CHIP_REV_IS_SLOW(sc)) { 1330 count *= 100; 1331 } 1332 1333 /* wait for completion */ 1334 *ret_val = 0; 1335 rc = -1; 1336 for (i = 0; i < count; i++) { 1337 DELAY(5); 1338 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1339 1340 if (val & MCPR_NVM_COMMAND_DONE) { 1341 val = REG_RD(sc, MCP_REG_MCPR_NVM_READ); 1342 /* we read nvram data in cpu order 1343 * but ethtool sees it as an array of bytes 1344 * converting to big-endian will do the work 1345 */ 1346 *ret_val = htobe32(val); 1347 rc = 0; 1348 break; 1349 } 1350 } 1351 1352 if (rc == -1) { 1353 BLOGE(sc, "nvram read timeout expired\n"); 1354 } 1355 1356 return (rc); 1357 } 1358 1359 static int 1360 bxe_nvram_read(struct bxe_softc *sc, 1361 uint32_t offset, 1362 uint8_t *ret_buf, 1363 int buf_size) 1364 { 1365 uint32_t cmd_flags; 1366 uint32_t val; 1367 int rc; 1368 1369 if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) { 1370 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1371 offset, buf_size); 1372 return (-1); 1373 } 1374 1375 if ((offset + buf_size) > sc->devinfo.flash_size) { 1376 BLOGE(sc, "Invalid parameter, " 1377 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1378 offset, buf_size, sc->devinfo.flash_size); 1379 return (-1); 1380 } 1381 1382 /* request access to nvram interface */ 1383 rc = bxe_acquire_nvram_lock(sc); 1384 if (rc) { 1385 return (rc); 1386 } 1387 1388 /* enable access to nvram interface */ 1389 bxe_enable_nvram_access(sc); 1390 1391 /* read the first word(s) */ 1392 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1393 while ((buf_size > sizeof(uint32_t)) && (rc == 0)) { 1394 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1395 memcpy(ret_buf, &val, 4); 1396 1397 /* advance to the next dword */ 1398 offset += sizeof(uint32_t); 1399 ret_buf += sizeof(uint32_t); 1400 buf_size -= sizeof(uint32_t); 1401 cmd_flags = 0; 1402 } 1403 1404 if (rc == 0) { 1405 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1406 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1407 memcpy(ret_buf, &val, 4); 1408 } 1409 1410 /* disable access to nvram interface */ 1411 bxe_disable_nvram_access(sc); 1412 bxe_release_nvram_lock(sc); 1413 1414 return (rc); 1415 } 1416 1417 static int 1418 bxe_nvram_write_dword(struct bxe_softc *sc, 1419 uint32_t offset, 1420 uint32_t val, 1421 uint32_t cmd_flags) 1422 { 1423 int count, i, rc; 1424 1425 /* build the command word */ 1426 cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR); 1427 1428 /* need to clear DONE bit separately */ 1429 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1430 1431 /* write the data */ 1432 REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val); 1433 1434 /* address of the NVRAM to write to */ 1435 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1436 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1437 1438 /* issue the write command */ 1439 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1440 1441 /* adjust timeout for emulation/FPGA */ 1442 count = NVRAM_TIMEOUT_COUNT; 1443 if (CHIP_REV_IS_SLOW(sc)) { 1444 count *= 100; 1445 } 1446 1447 /* wait for completion */ 1448 rc = -1; 1449 for (i = 0; i < count; i++) { 1450 DELAY(5); 1451 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1452 if (val & MCPR_NVM_COMMAND_DONE) { 1453 rc = 0; 1454 break; 1455 } 1456 } 1457 1458 if (rc == -1) { 1459 BLOGE(sc, "nvram write timeout expired\n"); 1460 } 1461 1462 return (rc); 1463 } 1464 1465 #define BYTE_OFFSET(offset) (8 * (offset & 0x03)) 1466 1467 static int 1468 bxe_nvram_write1(struct bxe_softc *sc, 1469 uint32_t offset, 1470 uint8_t *data_buf, 1471 int buf_size) 1472 { 1473 uint32_t cmd_flags; 1474 uint32_t align_offset; 1475 uint32_t val; 1476 int rc; 1477 1478 if ((offset + buf_size) > sc->devinfo.flash_size) { 1479 BLOGE(sc, "Invalid parameter, " 1480 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1481 offset, buf_size, sc->devinfo.flash_size); 1482 return (-1); 1483 } 1484 1485 /* request access to nvram interface */ 1486 rc = bxe_acquire_nvram_lock(sc); 1487 if (rc) { 1488 return (rc); 1489 } 1490 1491 /* enable access to nvram interface */ 1492 bxe_enable_nvram_access(sc); 1493 1494 cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST); 1495 align_offset = (offset & ~0x03); 1496 rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags); 1497 1498 if (rc == 0) { 1499 val &= ~(0xff << BYTE_OFFSET(offset)); 1500 val |= (*data_buf << BYTE_OFFSET(offset)); 1501 1502 /* nvram data is returned as an array of bytes 1503 * convert it back to cpu order 1504 */ 1505 val = be32toh(val); 1506 1507 rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags); 1508 } 1509 1510 /* disable access to nvram interface */ 1511 bxe_disable_nvram_access(sc); 1512 bxe_release_nvram_lock(sc); 1513 1514 return (rc); 1515 } 1516 1517 static int 1518 bxe_nvram_write(struct bxe_softc *sc, 1519 uint32_t offset, 1520 uint8_t *data_buf, 1521 int buf_size) 1522 { 1523 uint32_t cmd_flags; 1524 uint32_t val; 1525 uint32_t written_so_far; 1526 int rc; 1527 1528 if (buf_size == 1) { 1529 return (bxe_nvram_write1(sc, offset, data_buf, buf_size)); 1530 } 1531 1532 if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) { 1533 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1534 offset, buf_size); 1535 return (-1); 1536 } 1537 1538 if (buf_size == 0) { 1539 return (0); /* nothing to do */ 1540 } 1541 1542 if ((offset + buf_size) > sc->devinfo.flash_size) { 1543 BLOGE(sc, "Invalid parameter, " 1544 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1545 offset, buf_size, sc->devinfo.flash_size); 1546 return (-1); 1547 } 1548 1549 /* request access to nvram interface */ 1550 rc = bxe_acquire_nvram_lock(sc); 1551 if (rc) { 1552 return (rc); 1553 } 1554 1555 /* enable access to nvram interface */ 1556 bxe_enable_nvram_access(sc); 1557 1558 written_so_far = 0; 1559 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1560 while ((written_so_far < buf_size) && (rc == 0)) { 1561 if (written_so_far == (buf_size - sizeof(uint32_t))) { 1562 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1563 } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) { 1564 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1565 } else if ((offset % NVRAM_PAGE_SIZE) == 0) { 1566 cmd_flags |= MCPR_NVM_COMMAND_FIRST; 1567 } 1568 1569 memcpy(&val, data_buf, 4); 1570 1571 rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags); 1572 1573 /* advance to the next dword */ 1574 offset += sizeof(uint32_t); 1575 data_buf += sizeof(uint32_t); 1576 written_so_far += sizeof(uint32_t); 1577 cmd_flags = 0; 1578 } 1579 1580 /* disable access to nvram interface */ 1581 bxe_disable_nvram_access(sc); 1582 bxe_release_nvram_lock(sc); 1583 1584 return (rc); 1585 } 1586 1587 /* copy command into DMAE command memory and set DMAE command Go */ 1588 void 1589 bxe_post_dmae(struct bxe_softc *sc, 1590 struct dmae_command *dmae, 1591 int idx) 1592 { 1593 uint32_t cmd_offset; 1594 int i; 1595 1596 cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx)); 1597 for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) { 1598 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i)); 1599 } 1600 1601 REG_WR(sc, dmae_reg_go_c[idx], 1); 1602 } 1603 1604 uint32_t 1605 bxe_dmae_opcode_add_comp(uint32_t opcode, 1606 uint8_t comp_type) 1607 { 1608 return (opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) | 1609 DMAE_COMMAND_C_TYPE_ENABLE)); 1610 } 1611 1612 uint32_t 1613 bxe_dmae_opcode_clr_src_reset(uint32_t opcode) 1614 { 1615 return (opcode & ~DMAE_COMMAND_SRC_RESET); 1616 } 1617 1618 uint32_t 1619 bxe_dmae_opcode(struct bxe_softc *sc, 1620 uint8_t src_type, 1621 uint8_t dst_type, 1622 uint8_t with_comp, 1623 uint8_t comp_type) 1624 { 1625 uint32_t opcode = 0; 1626 1627 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) | 1628 (dst_type << DMAE_COMMAND_DST_SHIFT)); 1629 1630 opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET); 1631 1632 opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 1633 1634 opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) | 1635 (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT)); 1636 1637 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT); 1638 1639 #ifdef __BIG_ENDIAN 1640 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 1641 #else 1642 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 1643 #endif 1644 1645 if (with_comp) { 1646 opcode = bxe_dmae_opcode_add_comp(opcode, comp_type); 1647 } 1648 1649 return (opcode); 1650 } 1651 1652 static void 1653 bxe_prep_dmae_with_comp(struct bxe_softc *sc, 1654 struct dmae_command *dmae, 1655 uint8_t src_type, 1656 uint8_t dst_type) 1657 { 1658 memset(dmae, 0, sizeof(struct dmae_command)); 1659 1660 /* set the opcode */ 1661 dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type, 1662 TRUE, DMAE_COMP_PCI); 1663 1664 /* fill in the completion parameters */ 1665 dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp)); 1666 dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp)); 1667 dmae->comp_val = DMAE_COMP_VAL; 1668 } 1669 1670 /* issue a DMAE command over the init channel and wait for completion */ 1671 static int 1672 bxe_issue_dmae_with_comp(struct bxe_softc *sc, 1673 struct dmae_command *dmae) 1674 { 1675 uint32_t *wb_comp = BXE_SP(sc, wb_comp); 1676 int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000; 1677 1678 BXE_DMAE_LOCK(sc); 1679 1680 /* reset completion */ 1681 *wb_comp = 0; 1682 1683 /* post the command on the channel used for initializations */ 1684 bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc)); 1685 1686 /* wait for completion */ 1687 DELAY(5); 1688 1689 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 1690 if (!timeout || 1691 (sc->recovery_state != BXE_RECOVERY_DONE && 1692 sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) { 1693 BLOGE(sc, "DMAE timeout!\n"); 1694 BXE_DMAE_UNLOCK(sc); 1695 return (DMAE_TIMEOUT); 1696 } 1697 1698 timeout--; 1699 DELAY(50); 1700 } 1701 1702 if (*wb_comp & DMAE_PCI_ERR_FLAG) { 1703 BLOGE(sc, "DMAE PCI error!\n"); 1704 BXE_DMAE_UNLOCK(sc); 1705 return (DMAE_PCI_ERROR); 1706 } 1707 1708 BXE_DMAE_UNLOCK(sc); 1709 return (0); 1710 } 1711 1712 void 1713 bxe_read_dmae(struct bxe_softc *sc, 1714 uint32_t src_addr, 1715 uint32_t len32) 1716 { 1717 struct dmae_command dmae; 1718 uint32_t *data; 1719 int i, rc; 1720 1721 DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32)); 1722 1723 if (!sc->dmae_ready) { 1724 data = BXE_SP(sc, wb_data[0]); 1725 1726 for (i = 0; i < len32; i++) { 1727 data[i] = (CHIP_IS_E1(sc)) ? 1728 bxe_reg_rd_ind(sc, (src_addr + (i * 4))) : 1729 REG_RD(sc, (src_addr + (i * 4))); 1730 } 1731 1732 return; 1733 } 1734 1735 /* set opcode and fixed command fields */ 1736 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 1737 1738 /* fill in addresses and len */ 1739 dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */ 1740 dmae.src_addr_hi = 0; 1741 dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data)); 1742 dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data)); 1743 dmae.len = len32; 1744 1745 /* issue the command and wait for completion */ 1746 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1747 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1748 }; 1749 } 1750 1751 void 1752 bxe_write_dmae(struct bxe_softc *sc, 1753 bus_addr_t dma_addr, 1754 uint32_t dst_addr, 1755 uint32_t len32) 1756 { 1757 struct dmae_command dmae; 1758 int rc; 1759 1760 if (!sc->dmae_ready) { 1761 DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32)); 1762 1763 if (CHIP_IS_E1(sc)) { 1764 ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1765 } else { 1766 ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1767 } 1768 1769 return; 1770 } 1771 1772 /* set opcode and fixed command fields */ 1773 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 1774 1775 /* fill in addresses and len */ 1776 dmae.src_addr_lo = U64_LO(dma_addr); 1777 dmae.src_addr_hi = U64_HI(dma_addr); 1778 dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */ 1779 dmae.dst_addr_hi = 0; 1780 dmae.len = len32; 1781 1782 /* issue the command and wait for completion */ 1783 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1784 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1785 } 1786 } 1787 1788 void 1789 bxe_write_dmae_phys_len(struct bxe_softc *sc, 1790 bus_addr_t phys_addr, 1791 uint32_t addr, 1792 uint32_t len) 1793 { 1794 int dmae_wr_max = DMAE_LEN32_WR_MAX(sc); 1795 int offset = 0; 1796 1797 while (len > dmae_wr_max) { 1798 bxe_write_dmae(sc, 1799 (phys_addr + offset), /* src DMA address */ 1800 (addr + offset), /* dst GRC address */ 1801 dmae_wr_max); 1802 offset += (dmae_wr_max * 4); 1803 len -= dmae_wr_max; 1804 } 1805 1806 bxe_write_dmae(sc, 1807 (phys_addr + offset), /* src DMA address */ 1808 (addr + offset), /* dst GRC address */ 1809 len); 1810 } 1811 1812 void 1813 bxe_set_ctx_validation(struct bxe_softc *sc, 1814 struct eth_context *cxt, 1815 uint32_t cid) 1816 { 1817 /* ustorm cxt validation */ 1818 cxt->ustorm_ag_context.cdu_usage = 1819 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1820 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 1821 /* xcontext validation */ 1822 cxt->xstorm_ag_context.cdu_reserved = 1823 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1824 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 1825 } 1826 1827 static void 1828 bxe_storm_memset_hc_timeout(struct bxe_softc *sc, 1829 uint8_t port, 1830 uint8_t fw_sb_id, 1831 uint8_t sb_index, 1832 uint8_t ticks) 1833 { 1834 uint32_t addr = 1835 (BAR_CSTRORM_INTMEM + 1836 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index)); 1837 1838 REG_WR8(sc, addr, ticks); 1839 1840 BLOGD(sc, DBG_LOAD, 1841 "port %d fw_sb_id %d sb_index %d ticks %d\n", 1842 port, fw_sb_id, sb_index, ticks); 1843 } 1844 1845 static void 1846 bxe_storm_memset_hc_disable(struct bxe_softc *sc, 1847 uint8_t port, 1848 uint16_t fw_sb_id, 1849 uint8_t sb_index, 1850 uint8_t disable) 1851 { 1852 uint32_t enable_flag = 1853 (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 1854 uint32_t addr = 1855 (BAR_CSTRORM_INTMEM + 1856 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index)); 1857 uint8_t flags; 1858 1859 /* clear and set */ 1860 flags = REG_RD8(sc, addr); 1861 flags &= ~HC_INDEX_DATA_HC_ENABLED; 1862 flags |= enable_flag; 1863 REG_WR8(sc, addr, flags); 1864 1865 BLOGD(sc, DBG_LOAD, 1866 "port %d fw_sb_id %d sb_index %d disable %d\n", 1867 port, fw_sb_id, sb_index, disable); 1868 } 1869 1870 void 1871 bxe_update_coalesce_sb_index(struct bxe_softc *sc, 1872 uint8_t fw_sb_id, 1873 uint8_t sb_index, 1874 uint8_t disable, 1875 uint16_t usec) 1876 { 1877 int port = SC_PORT(sc); 1878 uint8_t ticks = (usec / 4); /* XXX ??? */ 1879 1880 bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks); 1881 1882 disable = (disable) ? 1 : ((usec) ? 0 : 1); 1883 bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable); 1884 } 1885 1886 void 1887 elink_cb_udelay(struct bxe_softc *sc, 1888 uint32_t usecs) 1889 { 1890 DELAY(usecs); 1891 } 1892 1893 uint32_t 1894 elink_cb_reg_read(struct bxe_softc *sc, 1895 uint32_t reg_addr) 1896 { 1897 return (REG_RD(sc, reg_addr)); 1898 } 1899 1900 void 1901 elink_cb_reg_write(struct bxe_softc *sc, 1902 uint32_t reg_addr, 1903 uint32_t val) 1904 { 1905 REG_WR(sc, reg_addr, val); 1906 } 1907 1908 void 1909 elink_cb_reg_wb_write(struct bxe_softc *sc, 1910 uint32_t offset, 1911 uint32_t *wb_write, 1912 uint16_t len) 1913 { 1914 REG_WR_DMAE(sc, offset, wb_write, len); 1915 } 1916 1917 void 1918 elink_cb_reg_wb_read(struct bxe_softc *sc, 1919 uint32_t offset, 1920 uint32_t *wb_write, 1921 uint16_t len) 1922 { 1923 REG_RD_DMAE(sc, offset, wb_write, len); 1924 } 1925 1926 uint8_t 1927 elink_cb_path_id(struct bxe_softc *sc) 1928 { 1929 return (SC_PATH(sc)); 1930 } 1931 1932 void 1933 elink_cb_event_log(struct bxe_softc *sc, 1934 const elink_log_id_t elink_log_id, 1935 ...) 1936 { 1937 /* XXX */ 1938 #if 0 1939 //va_list ap; 1940 va_start(ap, elink_log_id); 1941 _XXX_(sc, lm_log_id, ap); 1942 va_end(ap); 1943 #endif 1944 BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id); 1945 } 1946 1947 static int 1948 bxe_set_spio(struct bxe_softc *sc, 1949 int spio, 1950 uint32_t mode) 1951 { 1952 uint32_t spio_reg; 1953 1954 /* Only 2 SPIOs are configurable */ 1955 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 1956 BLOGE(sc, "Invalid SPIO 0x%x\n", spio); 1957 return (-1); 1958 } 1959 1960 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1961 1962 /* read SPIO and mask except the float bits */ 1963 spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 1964 1965 switch (mode) { 1966 case MISC_SPIO_OUTPUT_LOW: 1967 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio); 1968 /* clear FLOAT and set CLR */ 1969 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1970 spio_reg |= (spio << MISC_SPIO_CLR_POS); 1971 break; 1972 1973 case MISC_SPIO_OUTPUT_HIGH: 1974 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio); 1975 /* clear FLOAT and set SET */ 1976 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1977 spio_reg |= (spio << MISC_SPIO_SET_POS); 1978 break; 1979 1980 case MISC_SPIO_INPUT_HI_Z: 1981 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio); 1982 /* set FLOAT */ 1983 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 1984 break; 1985 1986 default: 1987 break; 1988 } 1989 1990 REG_WR(sc, MISC_REG_SPIO, spio_reg); 1991 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1992 1993 return (0); 1994 } 1995 1996 static int 1997 bxe_gpio_read(struct bxe_softc *sc, 1998 int gpio_num, 1999 uint8_t port) 2000 { 2001 /* The GPIO should be swapped if swap register is set and active */ 2002 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2003 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2004 int gpio_shift = (gpio_num + 2005 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2006 uint32_t gpio_mask = (1 << gpio_shift); 2007 uint32_t gpio_reg; 2008 2009 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2010 BLOGE(sc, "Invalid GPIO %d\n", gpio_num); 2011 return (-1); 2012 } 2013 2014 /* read GPIO value */ 2015 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 2016 2017 /* get the requested pin value */ 2018 return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0; 2019 } 2020 2021 static int 2022 bxe_gpio_write(struct bxe_softc *sc, 2023 int gpio_num, 2024 uint32_t mode, 2025 uint8_t port) 2026 { 2027 /* The GPIO should be swapped if swap register is set and active */ 2028 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2029 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2030 int gpio_shift = (gpio_num + 2031 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2032 uint32_t gpio_mask = (1 << gpio_shift); 2033 uint32_t gpio_reg; 2034 2035 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2036 BLOGE(sc, "Invalid GPIO %d\n", gpio_num); 2037 return (-1); 2038 } 2039 2040 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2041 2042 /* read GPIO and mask except the float bits */ 2043 gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 2044 2045 switch (mode) { 2046 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2047 BLOGD(sc, DBG_PHY, 2048 "Set GPIO %d (shift %d) -> output low\n", 2049 gpio_num, gpio_shift); 2050 /* clear FLOAT and set CLR */ 2051 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2052 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 2053 break; 2054 2055 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2056 BLOGD(sc, DBG_PHY, 2057 "Set GPIO %d (shift %d) -> output high\n", 2058 gpio_num, gpio_shift); 2059 /* clear FLOAT and set SET */ 2060 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2061 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 2062 break; 2063 2064 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2065 BLOGD(sc, DBG_PHY, 2066 "Set GPIO %d (shift %d) -> input\n", 2067 gpio_num, gpio_shift); 2068 /* set FLOAT */ 2069 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2070 break; 2071 2072 default: 2073 break; 2074 } 2075 2076 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 2077 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2078 2079 return (0); 2080 } 2081 2082 static int 2083 bxe_gpio_mult_write(struct bxe_softc *sc, 2084 uint8_t pins, 2085 uint32_t mode) 2086 { 2087 uint32_t gpio_reg; 2088 2089 /* any port swapping should be handled by caller */ 2090 2091 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2092 2093 /* read GPIO and mask except the float bits */ 2094 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 2095 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2096 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 2097 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 2098 2099 switch (mode) { 2100 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2101 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins); 2102 /* set CLR */ 2103 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 2104 break; 2105 2106 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2107 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins); 2108 /* set SET */ 2109 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 2110 break; 2111 2112 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2113 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins); 2114 /* set FLOAT */ 2115 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2116 break; 2117 2118 default: 2119 BLOGE(sc, "Invalid GPIO mode assignment %d\n", mode); 2120 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2121 return (-1); 2122 } 2123 2124 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 2125 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2126 2127 return (0); 2128 } 2129 2130 static int 2131 bxe_gpio_int_write(struct bxe_softc *sc, 2132 int gpio_num, 2133 uint32_t mode, 2134 uint8_t port) 2135 { 2136 /* The GPIO should be swapped if swap register is set and active */ 2137 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2138 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2139 int gpio_shift = (gpio_num + 2140 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2141 uint32_t gpio_mask = (1 << gpio_shift); 2142 uint32_t gpio_reg; 2143 2144 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2145 BLOGE(sc, "Invalid GPIO %d\n", gpio_num); 2146 return (-1); 2147 } 2148 2149 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2150 2151 /* read GPIO int */ 2152 gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT); 2153 2154 switch (mode) { 2155 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2156 BLOGD(sc, DBG_PHY, 2157 "Clear GPIO INT %d (shift %d) -> output low\n", 2158 gpio_num, gpio_shift); 2159 /* clear SET and set CLR */ 2160 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2161 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2162 break; 2163 2164 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2165 BLOGD(sc, DBG_PHY, 2166 "Set GPIO INT %d (shift %d) -> output high\n", 2167 gpio_num, gpio_shift); 2168 /* clear CLR and set SET */ 2169 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2170 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2171 break; 2172 2173 default: 2174 break; 2175 } 2176 2177 REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg); 2178 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2179 2180 return (0); 2181 } 2182 2183 uint32_t 2184 elink_cb_gpio_read(struct bxe_softc *sc, 2185 uint16_t gpio_num, 2186 uint8_t port) 2187 { 2188 return (bxe_gpio_read(sc, gpio_num, port)); 2189 } 2190 2191 uint8_t 2192 elink_cb_gpio_write(struct bxe_softc *sc, 2193 uint16_t gpio_num, 2194 uint8_t mode, /* 0=low 1=high */ 2195 uint8_t port) 2196 { 2197 return (bxe_gpio_write(sc, gpio_num, mode, port)); 2198 } 2199 2200 uint8_t 2201 elink_cb_gpio_mult_write(struct bxe_softc *sc, 2202 uint8_t pins, 2203 uint8_t mode) /* 0=low 1=high */ 2204 { 2205 return (bxe_gpio_mult_write(sc, pins, mode)); 2206 } 2207 2208 uint8_t 2209 elink_cb_gpio_int_write(struct bxe_softc *sc, 2210 uint16_t gpio_num, 2211 uint8_t mode, /* 0=low 1=high */ 2212 uint8_t port) 2213 { 2214 return (bxe_gpio_int_write(sc, gpio_num, mode, port)); 2215 } 2216 2217 void 2218 elink_cb_notify_link_changed(struct bxe_softc *sc) 2219 { 2220 REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 + 2221 (SC_FUNC(sc) * sizeof(uint32_t))), 1); 2222 } 2223 2224 /* send the MCP a request, block until there is a reply */ 2225 uint32_t 2226 elink_cb_fw_command(struct bxe_softc *sc, 2227 uint32_t command, 2228 uint32_t param) 2229 { 2230 int mb_idx = SC_FW_MB_IDX(sc); 2231 uint32_t seq; 2232 uint32_t rc = 0; 2233 uint32_t cnt = 1; 2234 uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10; 2235 2236 BXE_FWMB_LOCK(sc); 2237 2238 seq = ++sc->fw_seq; 2239 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param); 2240 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq)); 2241 2242 BLOGD(sc, DBG_PHY, 2243 "wrote command 0x%08x to FW MB param 0x%08x\n", 2244 (command | seq), param); 2245 2246 /* Let the FW do it's magic. GIve it up to 5 seconds... */ 2247 do { 2248 DELAY(delay * 1000); 2249 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header); 2250 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 2251 2252 BLOGD(sc, DBG_PHY, 2253 "[after %d ms] read 0x%x seq 0x%x from FW MB\n", 2254 cnt*delay, rc, seq); 2255 2256 /* is this a reply to our command? */ 2257 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) { 2258 rc &= FW_MSG_CODE_MASK; 2259 } else { 2260 /* Ruh-roh! */ 2261 BLOGE(sc, "FW failed to respond!\n"); 2262 // XXX bxe_fw_dump(sc); 2263 rc = 0; 2264 } 2265 2266 BXE_FWMB_UNLOCK(sc); 2267 return (rc); 2268 } 2269 2270 static uint32_t 2271 bxe_fw_command(struct bxe_softc *sc, 2272 uint32_t command, 2273 uint32_t param) 2274 { 2275 return (elink_cb_fw_command(sc, command, param)); 2276 } 2277 2278 static void 2279 __storm_memset_dma_mapping(struct bxe_softc *sc, 2280 uint32_t addr, 2281 bus_addr_t mapping) 2282 { 2283 REG_WR(sc, addr, U64_LO(mapping)); 2284 REG_WR(sc, (addr + 4), U64_HI(mapping)); 2285 } 2286 2287 static void 2288 storm_memset_spq_addr(struct bxe_softc *sc, 2289 bus_addr_t mapping, 2290 uint16_t abs_fid) 2291 { 2292 uint32_t addr = (XSEM_REG_FAST_MEMORY + 2293 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid)); 2294 __storm_memset_dma_mapping(sc, addr, mapping); 2295 } 2296 2297 static void 2298 storm_memset_vf_to_pf(struct bxe_softc *sc, 2299 uint16_t abs_fid, 2300 uint16_t pf_id) 2301 { 2302 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2303 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2304 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2305 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2306 } 2307 2308 static void 2309 storm_memset_func_en(struct bxe_softc *sc, 2310 uint16_t abs_fid, 2311 uint8_t enable) 2312 { 2313 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2314 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2315 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2316 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2317 } 2318 2319 static void 2320 storm_memset_eq_data(struct bxe_softc *sc, 2321 struct event_ring_data *eq_data, 2322 uint16_t pfid) 2323 { 2324 uint32_t addr; 2325 size_t size; 2326 2327 addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid)); 2328 size = sizeof(struct event_ring_data); 2329 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data); 2330 } 2331 2332 static void 2333 storm_memset_eq_prod(struct bxe_softc *sc, 2334 uint16_t eq_prod, 2335 uint16_t pfid) 2336 { 2337 uint32_t addr = (BAR_CSTRORM_INTMEM + 2338 CSTORM_EVENT_RING_PROD_OFFSET(pfid)); 2339 REG_WR16(sc, addr, eq_prod); 2340 } 2341 2342 /* 2343 * Post a slowpath command. 2344 * 2345 * A slowpath command is used to propogate a configuration change through 2346 * the controller in a controlled manner, allowing each STORM processor and 2347 * other H/W blocks to phase in the change. The commands sent on the 2348 * slowpath are referred to as ramrods. Depending on the ramrod used the 2349 * completion of the ramrod will occur in different ways. Here's a 2350 * breakdown of ramrods and how they complete: 2351 * 2352 * RAMROD_CMD_ID_ETH_PORT_SETUP 2353 * Used to setup the leading connection on a port. Completes on the 2354 * Receive Completion Queue (RCQ) of that port (typically fp[0]). 2355 * 2356 * RAMROD_CMD_ID_ETH_CLIENT_SETUP 2357 * Used to setup an additional connection on a port. Completes on the 2358 * RCQ of the multi-queue/RSS connection being initialized. 2359 * 2360 * RAMROD_CMD_ID_ETH_STAT_QUERY 2361 * Used to force the storm processors to update the statistics database 2362 * in host memory. This ramrod is send on the leading connection CID and 2363 * completes as an index increment of the CSTORM on the default status 2364 * block. 2365 * 2366 * RAMROD_CMD_ID_ETH_UPDATE 2367 * Used to update the state of the leading connection, usually to udpate 2368 * the RSS indirection table. Completes on the RCQ of the leading 2369 * connection. (Not currently used under FreeBSD until OS support becomes 2370 * available.) 2371 * 2372 * RAMROD_CMD_ID_ETH_HALT 2373 * Used when tearing down a connection prior to driver unload. Completes 2374 * on the RCQ of the multi-queue/RSS connection being torn down. Don't 2375 * use this on the leading connection. 2376 * 2377 * RAMROD_CMD_ID_ETH_SET_MAC 2378 * Sets the Unicast/Broadcast/Multicast used by the port. Completes on 2379 * the RCQ of the leading connection. 2380 * 2381 * RAMROD_CMD_ID_ETH_CFC_DEL 2382 * Used when tearing down a conneciton prior to driver unload. Completes 2383 * on the RCQ of the leading connection (since the current connection 2384 * has been completely removed from controller memory). 2385 * 2386 * RAMROD_CMD_ID_ETH_PORT_DEL 2387 * Used to tear down the leading connection prior to driver unload, 2388 * typically fp[0]. Completes as an index increment of the CSTORM on the 2389 * default status block. 2390 * 2391 * RAMROD_CMD_ID_ETH_FORWARD_SETUP 2392 * Used for connection offload. Completes on the RCQ of the multi-queue 2393 * RSS connection that is being offloaded. (Not currently used under 2394 * FreeBSD.) 2395 * 2396 * There can only be one command pending per function. 2397 * 2398 * Returns: 2399 * 0 = Success, !0 = Failure. 2400 */ 2401 2402 /* must be called under the spq lock */ 2403 static inline 2404 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc) 2405 { 2406 struct eth_spe *next_spe = sc->spq_prod_bd; 2407 2408 if (sc->spq_prod_bd == sc->spq_last_bd) { 2409 /* wrap back to the first eth_spq */ 2410 sc->spq_prod_bd = sc->spq; 2411 sc->spq_prod_idx = 0; 2412 } else { 2413 sc->spq_prod_bd++; 2414 sc->spq_prod_idx++; 2415 } 2416 2417 return (next_spe); 2418 } 2419 2420 /* must be called under the spq lock */ 2421 static inline 2422 void bxe_sp_prod_update(struct bxe_softc *sc) 2423 { 2424 int func = SC_FUNC(sc); 2425 2426 /* 2427 * Make sure that BD data is updated before writing the producer. 2428 * BD data is written to the memory, the producer is read from the 2429 * memory, thus we need a full memory barrier to ensure the ordering. 2430 */ 2431 mb(); 2432 2433 REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)), 2434 sc->spq_prod_idx); 2435 2436 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 2437 BUS_SPACE_BARRIER_WRITE); 2438 } 2439 2440 /** 2441 * bxe_is_contextless_ramrod - check if the current command ends on EQ 2442 * 2443 * @cmd: command to check 2444 * @cmd_type: command type 2445 */ 2446 static inline 2447 int bxe_is_contextless_ramrod(int cmd, 2448 int cmd_type) 2449 { 2450 if ((cmd_type == NONE_CONNECTION_TYPE) || 2451 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 2452 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 2453 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 2454 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 2455 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 2456 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) { 2457 return (TRUE); 2458 } else { 2459 return (FALSE); 2460 } 2461 } 2462 2463 /** 2464 * bxe_sp_post - place a single command on an SP ring 2465 * 2466 * @sc: driver handle 2467 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 2468 * @cid: SW CID the command is related to 2469 * @data_hi: command private data address (high 32 bits) 2470 * @data_lo: command private data address (low 32 bits) 2471 * @cmd_type: command type (e.g. NONE, ETH) 2472 * 2473 * SP data is handled as if it's always an address pair, thus data fields are 2474 * not swapped to little endian in upper functions. Instead this function swaps 2475 * data as if it's two uint32 fields. 2476 */ 2477 int 2478 bxe_sp_post(struct bxe_softc *sc, 2479 int command, 2480 int cid, 2481 uint32_t data_hi, 2482 uint32_t data_lo, 2483 int cmd_type) 2484 { 2485 struct eth_spe *spe; 2486 uint16_t type; 2487 int common; 2488 2489 common = bxe_is_contextless_ramrod(command, cmd_type); 2490 2491 BXE_SP_LOCK(sc); 2492 2493 if (common) { 2494 if (!atomic_load_acq_long(&sc->eq_spq_left)) { 2495 BLOGE(sc, "EQ ring is full!\n"); 2496 BXE_SP_UNLOCK(sc); 2497 return (-1); 2498 } 2499 } else { 2500 if (!atomic_load_acq_long(&sc->cq_spq_left)) { 2501 BLOGE(sc, "SPQ ring is full!\n"); 2502 BXE_SP_UNLOCK(sc); 2503 return (-1); 2504 } 2505 } 2506 2507 spe = bxe_sp_get_next(sc); 2508 2509 /* CID needs port number to be encoded int it */ 2510 spe->hdr.conn_and_cmd_data = 2511 htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid)); 2512 2513 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE; 2514 2515 /* TBD: Check if it works for VFs */ 2516 type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) & 2517 SPE_HDR_FUNCTION_ID); 2518 2519 spe->hdr.type = htole16(type); 2520 2521 spe->data.update_data_addr.hi = htole32(data_hi); 2522 spe->data.update_data_addr.lo = htole32(data_lo); 2523 2524 /* 2525 * It's ok if the actual decrement is issued towards the memory 2526 * somewhere between the lock and unlock. Thus no more explict 2527 * memory barrier is needed. 2528 */ 2529 if (common) { 2530 atomic_subtract_acq_long(&sc->eq_spq_left, 1); 2531 } else { 2532 atomic_subtract_acq_long(&sc->cq_spq_left, 1); 2533 } 2534 2535 BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr); 2536 BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n", 2537 BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata)); 2538 BLOGD(sc, DBG_SP, 2539 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n", 2540 sc->spq_prod_idx, 2541 (uint32_t)U64_HI(sc->spq_dma.paddr), 2542 (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq), 2543 command, 2544 common, 2545 HW_CID(sc, cid), 2546 data_hi, 2547 data_lo, 2548 type, 2549 atomic_load_acq_long(&sc->cq_spq_left), 2550 atomic_load_acq_long(&sc->eq_spq_left)); 2551 2552 bxe_sp_prod_update(sc); 2553 2554 BXE_SP_UNLOCK(sc); 2555 return (0); 2556 } 2557 2558 /** 2559 * bxe_debug_print_ind_table - prints the indirection table configuration. 2560 * 2561 * @sc: driver hanlde 2562 * @p: pointer to rss configuration 2563 */ 2564 #if 0 2565 static void 2566 bxe_debug_print_ind_table(struct bxe_softc *sc, 2567 struct ecore_config_rss_params *p) 2568 { 2569 int i; 2570 2571 BLOGD(sc, DBG_LOAD, "Setting indirection table to:\n"); 2572 BLOGD(sc, DBG_LOAD, " 0x0000: "); 2573 for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) { 2574 BLOGD(sc, DBG_LOAD, "0x%02x ", p->ind_table[i]); 2575 2576 /* Print 4 bytes in a line */ 2577 if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) && 2578 (((i + 1) & 0x3) == 0)) { 2579 BLOGD(sc, DBG_LOAD, "\n"); 2580 BLOGD(sc, DBG_LOAD, "0x%04x: ", i + 1); 2581 } 2582 } 2583 2584 BLOGD(sc, DBG_LOAD, "\n"); 2585 } 2586 #endif 2587 2588 /* 2589 * FreeBSD Device probe function. 2590 * 2591 * Compares the device found to the driver's list of supported devices and 2592 * reports back to the bsd loader whether this is the right driver for the device. 2593 * This is the driver entry function called from the "kldload" command. 2594 * 2595 * Returns: 2596 * BUS_PROBE_DEFAULT on success, positive value on failure. 2597 */ 2598 static int 2599 bxe_probe(device_t dev) 2600 { 2601 struct bxe_softc *sc; 2602 struct bxe_device_type *t; 2603 char *descbuf; 2604 uint16_t did, sdid, svid, vid; 2605 2606 /* Find our device structure */ 2607 sc = device_get_softc(dev); 2608 sc->dev = dev; 2609 t = bxe_devs; 2610 2611 /* Get the data for the device to be probed. */ 2612 vid = pci_get_vendor(dev); 2613 did = pci_get_device(dev); 2614 svid = pci_get_subvendor(dev); 2615 sdid = pci_get_subdevice(dev); 2616 2617 BLOGD(sc, DBG_LOAD, 2618 "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, " 2619 "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid); 2620 2621 /* Look through the list of known devices for a match. */ 2622 while (t->bxe_name != NULL) { 2623 if ((vid == t->bxe_vid) && (did == t->bxe_did) && 2624 ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) && 2625 ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) { 2626 descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 2627 if (descbuf == NULL) 2628 return (ENOMEM); 2629 2630 /* Print out the device identity. */ 2631 snprintf(descbuf, BXE_DEVDESC_MAX, 2632 "%s (%c%d) BXE v:%s\n", t->bxe_name, 2633 (((pci_read_config(dev, PCIR_REVID, 4) & 2634 0xf0) >> 4) + 'A'), 2635 (pci_read_config(dev, PCIR_REVID, 4) & 0xf), 2636 BXE_DRIVER_VERSION); 2637 2638 device_set_desc_copy(dev, descbuf); 2639 free(descbuf, M_TEMP); 2640 return (BUS_PROBE_DEFAULT); 2641 } 2642 t++; 2643 } 2644 2645 return (ENXIO); 2646 } 2647 2648 static void 2649 bxe_init_mutexes(struct bxe_softc *sc) 2650 { 2651 #ifdef BXE_CORE_LOCK_SX 2652 snprintf(sc->core_sx_name, sizeof(sc->core_sx_name), 2653 "bxe%d_core_lock", sc->unit); 2654 sx_init(&sc->core_sx, sc->core_sx_name); 2655 #else 2656 snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name), 2657 "bxe%d_core_lock", sc->unit); 2658 mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF); 2659 #endif 2660 2661 snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name), 2662 "bxe%d_sp_lock", sc->unit); 2663 mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF); 2664 2665 snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name), 2666 "bxe%d_dmae_lock", sc->unit); 2667 mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF); 2668 2669 snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name), 2670 "bxe%d_phy_lock", sc->unit); 2671 mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF); 2672 2673 snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name), 2674 "bxe%d_fwmb_lock", sc->unit); 2675 mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF); 2676 2677 snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name), 2678 "bxe%d_print_lock", sc->unit); 2679 mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF); 2680 2681 snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name), 2682 "bxe%d_stats_lock", sc->unit); 2683 mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF); 2684 2685 snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name), 2686 "bxe%d_mcast_lock", sc->unit); 2687 mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF); 2688 } 2689 2690 static void 2691 bxe_release_mutexes(struct bxe_softc *sc) 2692 { 2693 #ifdef BXE_CORE_LOCK_SX 2694 sx_destroy(&sc->core_sx); 2695 #else 2696 if (mtx_initialized(&sc->core_mtx)) { 2697 mtx_destroy(&sc->core_mtx); 2698 } 2699 #endif 2700 2701 if (mtx_initialized(&sc->sp_mtx)) { 2702 mtx_destroy(&sc->sp_mtx); 2703 } 2704 2705 if (mtx_initialized(&sc->dmae_mtx)) { 2706 mtx_destroy(&sc->dmae_mtx); 2707 } 2708 2709 if (mtx_initialized(&sc->port.phy_mtx)) { 2710 mtx_destroy(&sc->port.phy_mtx); 2711 } 2712 2713 if (mtx_initialized(&sc->fwmb_mtx)) { 2714 mtx_destroy(&sc->fwmb_mtx); 2715 } 2716 2717 if (mtx_initialized(&sc->print_mtx)) { 2718 mtx_destroy(&sc->print_mtx); 2719 } 2720 2721 if (mtx_initialized(&sc->stats_mtx)) { 2722 mtx_destroy(&sc->stats_mtx); 2723 } 2724 2725 if (mtx_initialized(&sc->mcast_mtx)) { 2726 mtx_destroy(&sc->mcast_mtx); 2727 } 2728 } 2729 2730 static void 2731 bxe_tx_disable(struct bxe_softc* sc) 2732 { 2733 struct ifnet *ifp = sc->ifnet; 2734 2735 /* tell the stack the driver is stopped and TX queue is full */ 2736 if (ifp != NULL) { 2737 ifp->if_drv_flags = 0; 2738 } 2739 } 2740 2741 static void 2742 bxe_drv_pulse(struct bxe_softc *sc) 2743 { 2744 SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb, 2745 sc->fw_drv_pulse_wr_seq); 2746 } 2747 2748 static inline uint16_t 2749 bxe_tx_avail(struct bxe_softc *sc, 2750 struct bxe_fastpath *fp) 2751 { 2752 int16_t used; 2753 uint16_t prod; 2754 uint16_t cons; 2755 2756 prod = fp->tx_bd_prod; 2757 cons = fp->tx_bd_cons; 2758 2759 used = SUB_S16(prod, cons); 2760 2761 #if 0 2762 KASSERT((used < 0), ("used tx bds < 0")); 2763 KASSERT((used > sc->tx_ring_size), ("used tx bds > tx_ring_size")); 2764 KASSERT(((sc->tx_ring_size - used) > MAX_TX_AVAIL), 2765 ("invalid number of tx bds used")); 2766 #endif 2767 2768 return (int16_t)(sc->tx_ring_size) - used; 2769 } 2770 2771 static inline int 2772 bxe_tx_queue_has_work(struct bxe_fastpath *fp) 2773 { 2774 uint16_t hw_cons; 2775 2776 mb(); /* status block fields can change */ 2777 hw_cons = le16toh(*fp->tx_cons_sb); 2778 return (hw_cons != fp->tx_pkt_cons); 2779 } 2780 2781 static inline uint8_t 2782 bxe_has_tx_work(struct bxe_fastpath *fp) 2783 { 2784 /* expand this for multi-cos if ever supported */ 2785 return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE; 2786 } 2787 2788 static inline int 2789 bxe_has_rx_work(struct bxe_fastpath *fp) 2790 { 2791 uint16_t rx_cq_cons_sb; 2792 2793 mb(); /* status block fields can change */ 2794 rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb); 2795 if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX) 2796 rx_cq_cons_sb++; 2797 return (fp->rx_cq_cons != rx_cq_cons_sb); 2798 } 2799 2800 static void 2801 bxe_sp_event(struct bxe_softc *sc, 2802 struct bxe_fastpath *fp, 2803 union eth_rx_cqe *rr_cqe) 2804 { 2805 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2806 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2807 enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX; 2808 struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 2809 2810 BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n", 2811 fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type); 2812 2813 #if 0 2814 /* 2815 * If cid is within VF range, replace the slowpath object with the 2816 * one corresponding to this VF 2817 */ 2818 if ((cid >= BXE_FIRST_VF_CID) && (cid < BXE_FIRST_VF_CID + BXE_VF_CIDS)) { 2819 bxe_iov_set_queue_sp_obj(sc, cid, &q_obj); 2820 } 2821 #endif 2822 2823 switch (command) { 2824 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 2825 BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid); 2826 drv_cmd = ECORE_Q_CMD_UPDATE; 2827 break; 2828 2829 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 2830 BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid); 2831 drv_cmd = ECORE_Q_CMD_SETUP; 2832 break; 2833 2834 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 2835 BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 2836 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY; 2837 break; 2838 2839 case (RAMROD_CMD_ID_ETH_HALT): 2840 BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid); 2841 drv_cmd = ECORE_Q_CMD_HALT; 2842 break; 2843 2844 case (RAMROD_CMD_ID_ETH_TERMINATE): 2845 BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid); 2846 drv_cmd = ECORE_Q_CMD_TERMINATE; 2847 break; 2848 2849 case (RAMROD_CMD_ID_ETH_EMPTY): 2850 BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid); 2851 drv_cmd = ECORE_Q_CMD_EMPTY; 2852 break; 2853 2854 default: 2855 BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n", 2856 command, fp->index); 2857 return; 2858 } 2859 2860 if ((drv_cmd != ECORE_Q_CMD_MAX) && 2861 q_obj->complete_cmd(sc, q_obj, drv_cmd)) { 2862 /* 2863 * q_obj->complete_cmd() failure means that this was 2864 * an unexpected completion. 2865 * 2866 * In this case we don't want to increase the sc->spq_left 2867 * because apparently we haven't sent this command the first 2868 * place. 2869 */ 2870 // bxe_panic(sc, ("Unexpected SP completion\n")); 2871 return; 2872 } 2873 2874 #if 0 2875 /* SRIOV: reschedule any 'in_progress' operations */ 2876 bxe_iov_sp_event(sc, cid, TRUE); 2877 #endif 2878 2879 atomic_add_acq_long(&sc->cq_spq_left, 1); 2880 2881 BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n", 2882 atomic_load_acq_long(&sc->cq_spq_left)); 2883 2884 #if 0 2885 if ((drv_cmd == ECORE_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) && 2886 (!!bxe_test_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state))) { 2887 /* 2888 * If Queue update ramrod is completed for last Queue in AFEX VIF set 2889 * flow, then ACK MCP at the end. Mark pending ACK to MCP bit to 2890 * prevent case that both bits are cleared. At the end of load/unload 2891 * driver checks that sp_state is cleared and this order prevents 2892 * races. 2893 */ 2894 bxe_set_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, &sc->sp_state); 2895 wmb(); 2896 bxe_clear_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state); 2897 2898 /* schedule the sp task as MCP ack is required */ 2899 bxe_schedule_sp_task(sc); 2900 } 2901 #endif 2902 } 2903 2904 /* 2905 * The current mbuf is part of an aggregation. Move the mbuf into the TPA 2906 * aggregation queue, put an empty mbuf back onto the receive chain, and mark 2907 * the current aggregation queue as in-progress. 2908 */ 2909 static void 2910 bxe_tpa_start(struct bxe_softc *sc, 2911 struct bxe_fastpath *fp, 2912 uint16_t queue, 2913 uint16_t cons, 2914 uint16_t prod, 2915 struct eth_fast_path_rx_cqe *cqe) 2916 { 2917 struct bxe_sw_rx_bd tmp_bd; 2918 struct bxe_sw_rx_bd *rx_buf; 2919 struct eth_rx_bd *rx_bd; 2920 int max_agg_queues; 2921 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 2922 uint16_t index; 2923 2924 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START " 2925 "cons=%d prod=%d\n", 2926 fp->index, queue, cons, prod); 2927 2928 max_agg_queues = MAX_AGG_QS(sc); 2929 2930 KASSERT((queue < max_agg_queues), 2931 ("fp[%02d] invalid aggr queue (%d >= %d)!", 2932 fp->index, queue, max_agg_queues)); 2933 2934 KASSERT((tpa_info->state == BXE_TPA_STATE_STOP), 2935 ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!", 2936 fp->index, queue)); 2937 2938 /* copy the existing mbuf and mapping from the TPA pool */ 2939 tmp_bd = tpa_info->bd; 2940 2941 if (tmp_bd.m == NULL) { 2942 BLOGE(sc, "fp[%02d].tpa[%02d] mbuf not allocated!\n", 2943 fp->index, queue); 2944 /* XXX Error handling? */ 2945 return; 2946 } 2947 2948 /* change the TPA queue to the start state */ 2949 tpa_info->state = BXE_TPA_STATE_START; 2950 tpa_info->placement_offset = cqe->placement_offset; 2951 tpa_info->parsing_flags = le16toh(cqe->pars_flags.flags); 2952 tpa_info->vlan_tag = le16toh(cqe->vlan_tag); 2953 tpa_info->len_on_bd = le16toh(cqe->len_on_bd); 2954 2955 fp->rx_tpa_queue_used |= (1 << queue); 2956 2957 /* 2958 * If all the buffer descriptors are filled with mbufs then fill in 2959 * the current consumer index with a new BD. Else if a maximum Rx 2960 * buffer limit is imposed then fill in the next producer index. 2961 */ 2962 index = (sc->max_rx_bufs != RX_BD_USABLE) ? 2963 prod : cons; 2964 2965 /* move the received mbuf and mapping to TPA pool */ 2966 tpa_info->bd = fp->rx_mbuf_chain[cons]; 2967 2968 /* release any existing RX BD mbuf mappings */ 2969 if (cons != index) { 2970 rx_buf = &fp->rx_mbuf_chain[cons]; 2971 2972 if (rx_buf->m_map != NULL) { 2973 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 2974 BUS_DMASYNC_POSTREAD); 2975 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 2976 } 2977 2978 /* 2979 * We get here when the maximum number of rx buffers is less than 2980 * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL 2981 * it out here without concern of a memory leak. 2982 */ 2983 fp->rx_mbuf_chain[cons].m = NULL; 2984 } 2985 2986 /* update the Rx SW BD with the mbuf info from the TPA pool */ 2987 fp->rx_mbuf_chain[index] = tmp_bd; 2988 2989 /* update the Rx BD with the empty mbuf phys address from the TPA pool */ 2990 rx_bd = &fp->rx_chain[index]; 2991 rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr)); 2992 rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr)); 2993 } 2994 2995 /* 2996 * When a TPA aggregation is completed, loop through the individual mbufs 2997 * of the aggregation, combining them into a single mbuf which will be sent 2998 * up the stack. Refill all freed SGEs with mbufs as we go along. 2999 */ 3000 static int 3001 bxe_fill_frag_mbuf(struct bxe_softc *sc, 3002 struct bxe_fastpath *fp, 3003 struct bxe_sw_tpa_info *tpa_info, 3004 uint16_t queue, 3005 uint16_t pages, 3006 struct mbuf *m, 3007 struct eth_end_agg_rx_cqe *cqe, 3008 uint16_t cqe_idx) 3009 { 3010 struct mbuf *m_frag; 3011 uint32_t frag_len, frag_size, i; 3012 uint16_t sge_idx; 3013 int rc = 0; 3014 int j; 3015 3016 frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd; 3017 3018 BLOGD(sc, DBG_LRO, 3019 "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n", 3020 fp->index, queue, tpa_info->len_on_bd, frag_size, pages); 3021 3022 /* make sure the aggregated frame is not too big to handle */ 3023 if (pages > 8 * PAGES_PER_SGE) { 3024 BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! " 3025 "pkt_len=%d len_on_bd=%d frag_size=%d\n", 3026 fp->index, cqe_idx, pages, le16toh(cqe->pkt_len), 3027 tpa_info->len_on_bd, frag_size); 3028 bxe_panic(sc, ("sge page count error\n")); 3029 return (EINVAL); 3030 } 3031 3032 /* 3033 * Scan through the scatter gather list pulling individual mbufs into a 3034 * single mbuf for the host stack. 3035 */ 3036 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 3037 sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j])); 3038 3039 /* 3040 * Firmware gives the indices of the SGE as if the ring is an array 3041 * (meaning that the "next" element will consume 2 indices). 3042 */ 3043 frag_len = min(frag_size, (uint32_t)(SGE_PAGES)); 3044 3045 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d " 3046 "sge_idx=%d frag_size=%d frag_len=%d\n", 3047 fp->index, queue, i, j, sge_idx, frag_size, frag_len); 3048 3049 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 3050 3051 /* allocate a new mbuf for the SGE */ 3052 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 3053 if (rc) { 3054 /* Leave all remaining SGEs in the ring! */ 3055 return (rc); 3056 } 3057 3058 /* update the fragment length */ 3059 m_frag->m_len = frag_len; 3060 3061 /* concatenate the fragment to the head mbuf */ 3062 m_cat(m, m_frag); 3063 fp->eth_q_stats.mbuf_alloc_sge--; 3064 3065 /* update the TPA mbuf size and remaining fragment size */ 3066 m->m_pkthdr.len += frag_len; 3067 frag_size -= frag_len; 3068 } 3069 3070 BLOGD(sc, DBG_LRO, 3071 "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n", 3072 fp->index, queue, frag_size); 3073 3074 return (rc); 3075 } 3076 3077 static inline void 3078 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp) 3079 { 3080 int i, j; 3081 3082 for (i = 1; i <= RX_SGE_NUM_PAGES; i++) { 3083 int idx = RX_SGE_TOTAL_PER_PAGE * i - 1; 3084 3085 for (j = 0; j < 2; j++) { 3086 BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx); 3087 idx--; 3088 } 3089 } 3090 } 3091 3092 static inline void 3093 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp) 3094 { 3095 /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */ 3096 memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask)); 3097 3098 /* 3099 * Clear the two last indices in the page to 1. These are the indices that 3100 * correspond to the "next" element, hence will never be indicated and 3101 * should be removed from the calculations. 3102 */ 3103 bxe_clear_sge_mask_next_elems(fp); 3104 } 3105 3106 static inline void 3107 bxe_update_last_max_sge(struct bxe_fastpath *fp, 3108 uint16_t idx) 3109 { 3110 uint16_t last_max = fp->last_max_sge; 3111 3112 if (SUB_S16(idx, last_max) > 0) { 3113 fp->last_max_sge = idx; 3114 } 3115 } 3116 3117 static inline void 3118 bxe_update_sge_prod(struct bxe_softc *sc, 3119 struct bxe_fastpath *fp, 3120 uint16_t sge_len, 3121 struct eth_end_agg_rx_cqe *cqe) 3122 { 3123 uint16_t last_max, last_elem, first_elem; 3124 uint16_t delta = 0; 3125 uint16_t i; 3126 3127 if (!sge_len) { 3128 return; 3129 } 3130 3131 /* first mark all used pages */ 3132 for (i = 0; i < sge_len; i++) { 3133 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 3134 RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[i]))); 3135 } 3136 3137 BLOGD(sc, DBG_LRO, 3138 "fp[%02d] fp_cqe->sgl[%d] = %d\n", 3139 fp->index, sge_len - 1, 3140 le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 3141 3142 /* assume that the last SGE index is the biggest */ 3143 bxe_update_last_max_sge(fp, 3144 le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 3145 3146 last_max = RX_SGE(fp->last_max_sge); 3147 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 3148 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 3149 3150 /* if ring is not full */ 3151 if (last_elem + 1 != first_elem) { 3152 last_elem++; 3153 } 3154 3155 /* now update the prod */ 3156 for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) { 3157 if (__predict_true(fp->sge_mask[i])) { 3158 break; 3159 } 3160 3161 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 3162 delta += BIT_VEC64_ELEM_SZ; 3163 } 3164 3165 if (delta > 0) { 3166 fp->rx_sge_prod += delta; 3167 /* clear page-end entries */ 3168 bxe_clear_sge_mask_next_elems(fp); 3169 } 3170 3171 BLOGD(sc, DBG_LRO, 3172 "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n", 3173 fp->index, fp->last_max_sge, fp->rx_sge_prod); 3174 } 3175 3176 /* 3177 * The aggregation on the current TPA queue has completed. Pull the individual 3178 * mbuf fragments together into a single mbuf, perform all necessary checksum 3179 * calculations, and send the resuting mbuf to the stack. 3180 */ 3181 static void 3182 bxe_tpa_stop(struct bxe_softc *sc, 3183 struct bxe_fastpath *fp, 3184 struct bxe_sw_tpa_info *tpa_info, 3185 uint16_t queue, 3186 uint16_t pages, 3187 struct eth_end_agg_rx_cqe *cqe, 3188 uint16_t cqe_idx) 3189 { 3190 struct ifnet *ifp = sc->ifnet; 3191 struct mbuf *m; 3192 int rc = 0; 3193 3194 BLOGD(sc, DBG_LRO, 3195 "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n", 3196 fp->index, queue, tpa_info->placement_offset, 3197 le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag); 3198 3199 m = tpa_info->bd.m; 3200 3201 /* allocate a replacement before modifying existing mbuf */ 3202 rc = bxe_alloc_rx_tpa_mbuf(fp, queue); 3203 if (rc) { 3204 /* drop the frame and log an error */ 3205 fp->eth_q_stats.rx_soft_errors++; 3206 goto bxe_tpa_stop_exit; 3207 } 3208 3209 /* we have a replacement, fixup the current mbuf */ 3210 m_adj(m, tpa_info->placement_offset); 3211 m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd; 3212 3213 /* mark the checksums valid (taken care of by the firmware) */ 3214 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3215 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3216 m->m_pkthdr.csum_data = 0xffff; 3217 m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | 3218 CSUM_IP_VALID | 3219 CSUM_DATA_VALID | 3220 CSUM_PSEUDO_HDR); 3221 3222 /* aggregate all of the SGEs into a single mbuf */ 3223 rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx); 3224 if (rc) { 3225 /* drop the packet and log an error */ 3226 fp->eth_q_stats.rx_soft_errors++; 3227 m_freem(m); 3228 } else { 3229 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) { 3230 m->m_pkthdr.ether_vtag = tpa_info->vlan_tag; 3231 m->m_flags |= M_VLANTAG; 3232 } 3233 3234 /* assign packet to this interface interface */ 3235 m->m_pkthdr.rcvif = ifp; 3236 3237 #if __FreeBSD_version >= 800000 3238 /* specify what RSS queue was used for this flow */ 3239 m->m_pkthdr.flowid = fp->index; 3240 m->m_flags |= M_FLOWID; 3241 #endif 3242 3243 ifp->if_ipackets++; 3244 fp->eth_q_stats.rx_tpa_pkts++; 3245 3246 /* pass the frame to the stack */ 3247 (*ifp->if_input)(ifp, m); 3248 } 3249 3250 /* we passed an mbuf up the stack or dropped the frame */ 3251 fp->eth_q_stats.mbuf_alloc_tpa--; 3252 3253 bxe_tpa_stop_exit: 3254 3255 fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP; 3256 fp->rx_tpa_queue_used &= ~(1 << queue); 3257 } 3258 3259 static uint8_t 3260 bxe_rxeof(struct bxe_softc *sc, 3261 struct bxe_fastpath *fp) 3262 { 3263 struct ifnet *ifp = sc->ifnet; 3264 uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 3265 uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod; 3266 int rx_pkts = 0; 3267 int rc; 3268 3269 BXE_FP_RX_LOCK(fp); 3270 3271 /* CQ "next element" is of the size of the regular element */ 3272 hw_cq_cons = le16toh(*fp->rx_cq_cons_sb); 3273 if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) { 3274 hw_cq_cons++; 3275 } 3276 3277 bd_cons = fp->rx_bd_cons; 3278 bd_prod = fp->rx_bd_prod; 3279 bd_prod_fw = bd_prod; 3280 sw_cq_cons = fp->rx_cq_cons; 3281 sw_cq_prod = fp->rx_cq_prod; 3282 3283 /* 3284 * Memory barrier necessary as speculative reads of the rx 3285 * buffer can be ahead of the index in the status block 3286 */ 3287 rmb(); 3288 3289 BLOGD(sc, DBG_RX, 3290 "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n", 3291 fp->index, hw_cq_cons, sw_cq_cons); 3292 3293 while (sw_cq_cons != hw_cq_cons) { 3294 struct bxe_sw_rx_bd *rx_buf = NULL; 3295 union eth_rx_cqe *cqe; 3296 struct eth_fast_path_rx_cqe *cqe_fp; 3297 uint8_t cqe_fp_flags; 3298 enum eth_rx_cqe_type cqe_fp_type; 3299 uint16_t len, pad; 3300 struct mbuf *m = NULL; 3301 3302 comp_ring_cons = RCQ(sw_cq_cons); 3303 bd_prod = RX_BD(bd_prod); 3304 bd_cons = RX_BD(bd_cons); 3305 3306 cqe = &fp->rcq_chain[comp_ring_cons]; 3307 cqe_fp = &cqe->fast_path_cqe; 3308 cqe_fp_flags = cqe_fp->type_error_flags; 3309 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 3310 3311 BLOGD(sc, DBG_RX, 3312 "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d " 3313 "BD prod=%d cons=%d CQE type=0x%x err=0x%x " 3314 "status=0x%x rss_hash=0x%x vlan=0x%x len=%u\n", 3315 fp->index, 3316 hw_cq_cons, 3317 sw_cq_cons, 3318 bd_prod, 3319 bd_cons, 3320 CQE_TYPE(cqe_fp_flags), 3321 cqe_fp_flags, 3322 cqe_fp->status_flags, 3323 le32toh(cqe_fp->rss_hash_result), 3324 le16toh(cqe_fp->vlan_tag), 3325 le16toh(cqe_fp->pkt_len_or_gro_seg_len)); 3326 3327 /* is this a slowpath msg? */ 3328 if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) { 3329 bxe_sp_event(sc, fp, cqe); 3330 goto next_cqe; 3331 } 3332 3333 rx_buf = &fp->rx_mbuf_chain[bd_cons]; 3334 3335 if (!CQE_TYPE_FAST(cqe_fp_type)) { 3336 struct bxe_sw_tpa_info *tpa_info; 3337 uint16_t frag_size, pages; 3338 uint8_t queue; 3339 3340 #if 0 3341 /* sanity check */ 3342 if (!fp->tpa_enable && 3343 (CQE_TYPE_START(cqe_fp_type) || CQE_TYPE_STOP(cqe_fp_type))) { 3344 BLOGE(sc, "START/STOP packet while !tpa_enable type (0x%x)\n", 3345 CQE_TYPE(cqe_fp_type)); 3346 } 3347 #endif 3348 3349 if (CQE_TYPE_START(cqe_fp_type)) { 3350 bxe_tpa_start(sc, fp, cqe_fp->queue_index, 3351 bd_cons, bd_prod, cqe_fp); 3352 m = NULL; /* packet not ready yet */ 3353 goto next_rx; 3354 } 3355 3356 KASSERT(CQE_TYPE_STOP(cqe_fp_type), 3357 ("CQE type is not STOP! (0x%x)\n", cqe_fp_type)); 3358 3359 queue = cqe->end_agg_cqe.queue_index; 3360 tpa_info = &fp->rx_tpa_info[queue]; 3361 3362 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n", 3363 fp->index, queue); 3364 3365 frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) - 3366 tpa_info->len_on_bd); 3367 pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3368 3369 bxe_tpa_stop(sc, fp, tpa_info, queue, pages, 3370 &cqe->end_agg_cqe, comp_ring_cons); 3371 3372 bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe); 3373 3374 goto next_cqe; 3375 } 3376 3377 /* non TPA */ 3378 3379 /* is this an error packet? */ 3380 if (__predict_false(cqe_fp_flags & 3381 ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) { 3382 BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons); 3383 fp->eth_q_stats.rx_soft_errors++; 3384 goto next_rx; 3385 } 3386 3387 len = le16toh(cqe_fp->pkt_len_or_gro_seg_len); 3388 pad = cqe_fp->placement_offset; 3389 3390 m = rx_buf->m; 3391 3392 if (__predict_false(m == NULL)) { 3393 BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n", 3394 bd_cons, fp->index); 3395 goto next_rx; 3396 } 3397 3398 /* XXX double copy if packet length under a threshold */ 3399 3400 /* 3401 * If all the buffer descriptors are filled with mbufs then fill in 3402 * the current consumer index with a new BD. Else if a maximum Rx 3403 * buffer limit is imposed then fill in the next producer index. 3404 */ 3405 rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons, 3406 (sc->max_rx_bufs != RX_BD_USABLE) ? 3407 bd_prod : bd_cons); 3408 if (rc != 0) { 3409 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 3410 fp->index, rc); 3411 fp->eth_q_stats.rx_soft_errors++; 3412 3413 if (sc->max_rx_bufs != RX_BD_USABLE) { 3414 /* copy this consumer index to the producer index */ 3415 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf, 3416 sizeof(struct bxe_sw_rx_bd)); 3417 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd)); 3418 } 3419 3420 goto next_rx; 3421 } 3422 3423 /* current mbuf was detached from the bd */ 3424 fp->eth_q_stats.mbuf_alloc_rx--; 3425 3426 /* we allocated a replacement mbuf, fixup the current one */ 3427 m_adj(m, pad); 3428 m->m_pkthdr.len = m->m_len = len; 3429 3430 /* assign packet to this interface interface */ 3431 m->m_pkthdr.rcvif = ifp; 3432 3433 /* assume no hardware checksum has complated */ 3434 m->m_pkthdr.csum_flags = 0; 3435 3436 /* validate checksum if offload enabled */ 3437 if (ifp->if_capenable & IFCAP_RXCSUM) { 3438 /* check for a valid IP frame */ 3439 if (!(cqe->fast_path_cqe.status_flags & 3440 ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) { 3441 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3442 if (__predict_false(cqe_fp_flags & 3443 ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) { 3444 fp->eth_q_stats.rx_hw_csum_errors++; 3445 } else { 3446 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3447 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3448 } 3449 } 3450 3451 /* check for a valid TCP/UDP frame */ 3452 if (!(cqe->fast_path_cqe.status_flags & 3453 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) { 3454 if (__predict_false(cqe_fp_flags & 3455 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) { 3456 fp->eth_q_stats.rx_hw_csum_errors++; 3457 } else { 3458 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3459 m->m_pkthdr.csum_data = 0xFFFF; 3460 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | 3461 CSUM_PSEUDO_HDR); 3462 } 3463 } 3464 } 3465 3466 /* if there is a VLAN tag then flag that info */ 3467 if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_VLAN) { 3468 m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag; 3469 m->m_flags |= M_VLANTAG; 3470 } 3471 3472 #if __FreeBSD_version >= 800000 3473 /* specify what RSS queue was used for this flow */ 3474 m->m_pkthdr.flowid = fp->index; 3475 m->m_flags |= M_FLOWID; 3476 #endif 3477 3478 next_rx: 3479 3480 bd_cons = RX_BD_NEXT(bd_cons); 3481 bd_prod = RX_BD_NEXT(bd_prod); 3482 bd_prod_fw = RX_BD_NEXT(bd_prod_fw); 3483 3484 /* pass the frame to the stack */ 3485 if (__predict_true(m != NULL)) { 3486 ifp->if_ipackets++; 3487 rx_pkts++; 3488 (*ifp->if_input)(ifp, m); 3489 } 3490 3491 next_cqe: 3492 3493 sw_cq_prod = RCQ_NEXT(sw_cq_prod); 3494 sw_cq_cons = RCQ_NEXT(sw_cq_cons); 3495 3496 /* limit spinning on the queue */ 3497 if (rx_pkts == sc->rx_budget) { 3498 fp->eth_q_stats.rx_budget_reached++; 3499 break; 3500 } 3501 } /* while work to do */ 3502 3503 fp->rx_bd_cons = bd_cons; 3504 fp->rx_bd_prod = bd_prod_fw; 3505 fp->rx_cq_cons = sw_cq_cons; 3506 fp->rx_cq_prod = sw_cq_prod; 3507 3508 /* Update producers */ 3509 bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod); 3510 3511 fp->eth_q_stats.rx_pkts += rx_pkts; 3512 fp->eth_q_stats.rx_calls++; 3513 3514 BXE_FP_RX_UNLOCK(fp); 3515 3516 return (sw_cq_cons != hw_cq_cons); 3517 } 3518 3519 static uint16_t 3520 bxe_free_tx_pkt(struct bxe_softc *sc, 3521 struct bxe_fastpath *fp, 3522 uint16_t idx) 3523 { 3524 struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx]; 3525 struct eth_tx_start_bd *tx_start_bd; 3526 uint16_t bd_idx = TX_BD(tx_buf->first_bd); 3527 uint16_t new_cons; 3528 int nbd; 3529 3530 /* unmap the mbuf from non-paged memory */ 3531 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 3532 3533 tx_start_bd = &fp->tx_chain[bd_idx].start_bd; 3534 nbd = le16toh(tx_start_bd->nbd) - 1; 3535 3536 #if 0 3537 if ((nbd - 1) > (MAX_MBUF_FRAGS + 2)) { 3538 bxe_panic(sc, ("BAD nbd!\n")); 3539 } 3540 #endif 3541 3542 new_cons = (tx_buf->first_bd + nbd); 3543 3544 #if 0 3545 struct eth_tx_bd *tx_data_bd; 3546 3547 /* 3548 * The following code doesn't do anything but is left here 3549 * for clarity on what the new value of new_cons skipped. 3550 */ 3551 3552 /* get the next bd */ 3553 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3554 3555 /* skip the parse bd */ 3556 --nbd; 3557 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3558 3559 /* skip the TSO split header bd since they have no mapping */ 3560 if (tx_buf->flags & BXE_TSO_SPLIT_BD) { 3561 --nbd; 3562 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3563 } 3564 3565 /* now free frags */ 3566 while (nbd > 0) { 3567 tx_data_bd = &fp->tx_chain[bd_idx].reg_bd; 3568 if (--nbd) { 3569 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3570 } 3571 } 3572 #endif 3573 3574 /* free the mbuf */ 3575 if (__predict_true(tx_buf->m != NULL)) { 3576 m_freem(tx_buf->m); 3577 fp->eth_q_stats.mbuf_alloc_tx--; 3578 } else { 3579 fp->eth_q_stats.tx_chain_lost_mbuf++; 3580 } 3581 3582 tx_buf->m = NULL; 3583 tx_buf->first_bd = 0; 3584 3585 return (new_cons); 3586 } 3587 3588 /* transmit timeout watchdog */ 3589 static int 3590 bxe_watchdog(struct bxe_softc *sc, 3591 struct bxe_fastpath *fp) 3592 { 3593 BXE_FP_TX_LOCK(fp); 3594 3595 if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) { 3596 BXE_FP_TX_UNLOCK(fp); 3597 return (0); 3598 } 3599 3600 BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index); 3601 3602 BXE_FP_TX_UNLOCK(fp); 3603 3604 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT); 3605 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 3606 3607 return (-1); 3608 } 3609 3610 /* processes transmit completions */ 3611 static uint8_t 3612 bxe_txeof(struct bxe_softc *sc, 3613 struct bxe_fastpath *fp) 3614 { 3615 struct ifnet *ifp = sc->ifnet; 3616 uint16_t bd_cons, hw_cons, sw_cons, pkt_cons; 3617 uint16_t tx_bd_avail; 3618 3619 BXE_FP_TX_LOCK_ASSERT(fp); 3620 3621 bd_cons = fp->tx_bd_cons; 3622 hw_cons = le16toh(*fp->tx_cons_sb); 3623 sw_cons = fp->tx_pkt_cons; 3624 3625 while (sw_cons != hw_cons) { 3626 pkt_cons = TX_BD(sw_cons); 3627 3628 BLOGD(sc, DBG_TX, 3629 "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n", 3630 fp->index, hw_cons, sw_cons, pkt_cons); 3631 3632 bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons); 3633 3634 sw_cons++; 3635 } 3636 3637 fp->tx_pkt_cons = sw_cons; 3638 fp->tx_bd_cons = bd_cons; 3639 3640 BLOGD(sc, DBG_TX, 3641 "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n", 3642 fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod); 3643 3644 mb(); 3645 3646 tx_bd_avail = bxe_tx_avail(sc, fp); 3647 3648 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 3649 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3650 } else { 3651 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3652 } 3653 3654 if (fp->tx_pkt_prod != fp->tx_pkt_cons) { 3655 /* reset the watchdog timer if there are pending transmits */ 3656 fp->watchdog_timer = BXE_TX_TIMEOUT; 3657 return (TRUE); 3658 } else { 3659 /* clear watchdog when there are no pending transmits */ 3660 fp->watchdog_timer = 0; 3661 return (FALSE); 3662 } 3663 } 3664 3665 static void 3666 bxe_drain_tx_queues(struct bxe_softc *sc) 3667 { 3668 struct bxe_fastpath *fp; 3669 int i, count; 3670 3671 /* wait until all TX fastpath tasks have completed */ 3672 for (i = 0; i < sc->num_queues; i++) { 3673 fp = &sc->fp[i]; 3674 3675 count = 1000; 3676 3677 while (bxe_has_tx_work(fp)) { 3678 3679 BXE_FP_TX_LOCK(fp); 3680 bxe_txeof(sc, fp); 3681 BXE_FP_TX_UNLOCK(fp); 3682 3683 if (count == 0) { 3684 BLOGE(sc, "Timeout waiting for fp[%d] " 3685 "transmits to complete!\n", i); 3686 bxe_panic(sc, ("tx drain failure\n")); 3687 return; 3688 } 3689 3690 count--; 3691 DELAY(1000); 3692 rmb(); 3693 } 3694 } 3695 3696 return; 3697 } 3698 3699 static int 3700 bxe_del_all_macs(struct bxe_softc *sc, 3701 struct ecore_vlan_mac_obj *mac_obj, 3702 int mac_type, 3703 uint8_t wait_for_comp) 3704 { 3705 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 3706 int rc; 3707 3708 /* wait for completion of requested */ 3709 if (wait_for_comp) { 3710 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 3711 } 3712 3713 /* Set the mac type of addresses we want to clear */ 3714 bxe_set_bit(mac_type, &vlan_mac_flags); 3715 3716 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags); 3717 if (rc < 0) { 3718 BLOGE(sc, "Failed to delete MACs (%d)\n", rc); 3719 } 3720 3721 return (rc); 3722 } 3723 3724 static int 3725 bxe_fill_accept_flags(struct bxe_softc *sc, 3726 uint32_t rx_mode, 3727 unsigned long *rx_accept_flags, 3728 unsigned long *tx_accept_flags) 3729 { 3730 /* Clear the flags first */ 3731 *rx_accept_flags = 0; 3732 *tx_accept_flags = 0; 3733 3734 switch (rx_mode) { 3735 case BXE_RX_MODE_NONE: 3736 /* 3737 * 'drop all' supersedes any accept flags that may have been 3738 * passed to the function. 3739 */ 3740 break; 3741 3742 case BXE_RX_MODE_NORMAL: 3743 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3744 bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags); 3745 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3746 3747 /* internal switching mode */ 3748 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3749 bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags); 3750 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3751 3752 break; 3753 3754 case BXE_RX_MODE_ALLMULTI: 3755 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3756 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3757 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3758 3759 /* internal switching mode */ 3760 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3761 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3762 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3763 3764 break; 3765 3766 case BXE_RX_MODE_PROMISC: 3767 /* 3768 * According to deffinition of SI mode, iface in promisc mode 3769 * should receive matched and unmatched (in resolution of port) 3770 * unicast packets. 3771 */ 3772 bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags); 3773 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3774 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3775 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3776 3777 /* internal switching mode */ 3778 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3779 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3780 3781 if (IS_MF_SI(sc)) { 3782 bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags); 3783 } else { 3784 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3785 } 3786 3787 break; 3788 3789 default: 3790 BLOGE(sc, "Unknown rx_mode (%d)\n", rx_mode); 3791 return (-1); 3792 } 3793 3794 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ 3795 if (rx_mode != BXE_RX_MODE_NONE) { 3796 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags); 3797 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags); 3798 } 3799 3800 return (0); 3801 } 3802 3803 static int 3804 bxe_set_q_rx_mode(struct bxe_softc *sc, 3805 uint8_t cl_id, 3806 unsigned long rx_mode_flags, 3807 unsigned long rx_accept_flags, 3808 unsigned long tx_accept_flags, 3809 unsigned long ramrod_flags) 3810 { 3811 struct ecore_rx_mode_ramrod_params ramrod_param; 3812 int rc; 3813 3814 memset(&ramrod_param, 0, sizeof(ramrod_param)); 3815 3816 /* Prepare ramrod parameters */ 3817 ramrod_param.cid = 0; 3818 ramrod_param.cl_id = cl_id; 3819 ramrod_param.rx_mode_obj = &sc->rx_mode_obj; 3820 ramrod_param.func_id = SC_FUNC(sc); 3821 3822 ramrod_param.pstate = &sc->sp_state; 3823 ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING; 3824 3825 ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata); 3826 ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata); 3827 3828 bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 3829 3830 ramrod_param.ramrod_flags = ramrod_flags; 3831 ramrod_param.rx_mode_flags = rx_mode_flags; 3832 3833 ramrod_param.rx_accept_flags = rx_accept_flags; 3834 ramrod_param.tx_accept_flags = tx_accept_flags; 3835 3836 rc = ecore_config_rx_mode(sc, &ramrod_param); 3837 if (rc < 0) { 3838 BLOGE(sc, "Set rx_mode %d failed\n", sc->rx_mode); 3839 return (rc); 3840 } 3841 3842 return (0); 3843 } 3844 3845 static int 3846 bxe_set_storm_rx_mode(struct bxe_softc *sc) 3847 { 3848 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 3849 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 3850 int rc; 3851 3852 rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags, 3853 &tx_accept_flags); 3854 if (rc) { 3855 return (rc); 3856 } 3857 3858 bxe_set_bit(RAMROD_RX, &ramrod_flags); 3859 bxe_set_bit(RAMROD_TX, &ramrod_flags); 3860 3861 /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */ 3862 return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags, 3863 rx_accept_flags, tx_accept_flags, 3864 ramrod_flags)); 3865 } 3866 3867 /* returns the "mcp load_code" according to global load_count array */ 3868 static int 3869 bxe_nic_load_no_mcp(struct bxe_softc *sc) 3870 { 3871 int path = SC_PATH(sc); 3872 int port = SC_PORT(sc); 3873 3874 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3875 path, load_count[path][0], load_count[path][1], 3876 load_count[path][2]); 3877 load_count[path][0]++; 3878 load_count[path][1 + port]++; 3879 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3880 path, load_count[path][0], load_count[path][1], 3881 load_count[path][2]); 3882 if (load_count[path][0] == 1) { 3883 return (FW_MSG_CODE_DRV_LOAD_COMMON); 3884 } else if (load_count[path][1 + port] == 1) { 3885 return (FW_MSG_CODE_DRV_LOAD_PORT); 3886 } else { 3887 return (FW_MSG_CODE_DRV_LOAD_FUNCTION); 3888 } 3889 } 3890 3891 /* returns the "mcp load_code" according to global load_count array */ 3892 static int 3893 bxe_nic_unload_no_mcp(struct bxe_softc *sc) 3894 { 3895 int port = SC_PORT(sc); 3896 int path = SC_PATH(sc); 3897 3898 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3899 path, load_count[path][0], load_count[path][1], 3900 load_count[path][2]); 3901 load_count[path][0]--; 3902 load_count[path][1 + port]--; 3903 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3904 path, load_count[path][0], load_count[path][1], 3905 load_count[path][2]); 3906 if (load_count[path][0] == 0) { 3907 return (FW_MSG_CODE_DRV_UNLOAD_COMMON); 3908 } else if (load_count[path][1 + port] == 0) { 3909 return (FW_MSG_CODE_DRV_UNLOAD_PORT); 3910 } else { 3911 return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION); 3912 } 3913 } 3914 3915 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */ 3916 static uint32_t 3917 bxe_send_unload_req(struct bxe_softc *sc, 3918 int unload_mode) 3919 { 3920 uint32_t reset_code = 0; 3921 #if 0 3922 int port = SC_PORT(sc); 3923 int path = SC_PATH(sc); 3924 #endif 3925 3926 /* Select the UNLOAD request mode */ 3927 if (unload_mode == UNLOAD_NORMAL) { 3928 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3929 } 3930 #if 0 3931 else if (sc->flags & BXE_NO_WOL_FLAG) { 3932 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP; 3933 } else if (sc->wol) { 3934 uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0; 3935 uint8_t *mac_addr = sc->dev->dev_addr; 3936 uint32_t val; 3937 uint16_t pmc; 3938 3939 /* 3940 * The mac address is written to entries 1-4 to 3941 * preserve entry 0 which is used by the PMF 3942 */ 3943 uint8_t entry = (SC_VN(sc) + 1)*8; 3944 3945 val = (mac_addr[0] << 8) | mac_addr[1]; 3946 EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry, val); 3947 3948 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 3949 (mac_addr[4] << 8) | mac_addr[5]; 3950 EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val); 3951 3952 /* Enable the PME and clear the status */ 3953 pmc = pci_read_config(sc->dev, 3954 (sc->devinfo.pcie_pm_cap_reg + 3955 PCIR_POWER_STATUS), 3956 2); 3957 pmc |= PCIM_PSTAT_PMEENABLE | PCIM_PSTAT_PME; 3958 pci_write_config(sc->dev, 3959 (sc->devinfo.pcie_pm_cap_reg + 3960 PCIR_POWER_STATUS), 3961 pmc, 4); 3962 3963 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN; 3964 } 3965 #endif 3966 else { 3967 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3968 } 3969 3970 /* Send the request to the MCP */ 3971 if (!BXE_NOMCP(sc)) { 3972 reset_code = bxe_fw_command(sc, reset_code, 0); 3973 } else { 3974 reset_code = bxe_nic_unload_no_mcp(sc); 3975 } 3976 3977 return (reset_code); 3978 } 3979 3980 /* send UNLOAD_DONE command to the MCP */ 3981 static void 3982 bxe_send_unload_done(struct bxe_softc *sc, 3983 uint8_t keep_link) 3984 { 3985 uint32_t reset_param = 3986 keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 3987 3988 /* Report UNLOAD_DONE to MCP */ 3989 if (!BXE_NOMCP(sc)) { 3990 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 3991 } 3992 } 3993 3994 static int 3995 bxe_func_wait_started(struct bxe_softc *sc) 3996 { 3997 int tout = 50; 3998 3999 if (!sc->port.pmf) { 4000 return (0); 4001 } 4002 4003 /* 4004 * (assumption: No Attention from MCP at this stage) 4005 * PMF probably in the middle of TX disable/enable transaction 4006 * 1. Sync IRS for default SB 4007 * 2. Sync SP queue - this guarantees us that attention handling started 4008 * 3. Wait, that TX disable/enable transaction completes 4009 * 4010 * 1+2 guarantee that if DCBX attention was scheduled it already changed 4011 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 4012 * received completion for the transaction the state is TX_STOPPED. 4013 * State will return to STARTED after completion of TX_STOPPED-->STARTED 4014 * transaction. 4015 */ 4016 4017 /* XXX make sure default SB ISR is done */ 4018 /* need a way to synchronize an irq (intr_mtx?) */ 4019 4020 /* XXX flush any work queues */ 4021 4022 while (ecore_func_get_state(sc, &sc->func_obj) != 4023 ECORE_F_STATE_STARTED && tout--) { 4024 DELAY(20000); 4025 } 4026 4027 if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) { 4028 /* 4029 * Failed to complete the transaction in a "good way" 4030 * Force both transactions with CLR bit. 4031 */ 4032 struct ecore_func_state_params func_params = { NULL }; 4033 4034 BLOGE(sc, "Unexpected function state! " 4035 "Forcing STARTED-->TX_STOPPED-->STARTED\n"); 4036 4037 func_params.f_obj = &sc->func_obj; 4038 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 4039 4040 /* STARTED-->TX_STOPPED */ 4041 func_params.cmd = ECORE_F_CMD_TX_STOP; 4042 ecore_func_state_change(sc, &func_params); 4043 4044 /* TX_STOPPED-->STARTED */ 4045 func_params.cmd = ECORE_F_CMD_TX_START; 4046 return (ecore_func_state_change(sc, &func_params)); 4047 } 4048 4049 return (0); 4050 } 4051 4052 static int 4053 bxe_stop_queue(struct bxe_softc *sc, 4054 int index) 4055 { 4056 struct bxe_fastpath *fp = &sc->fp[index]; 4057 struct ecore_queue_state_params q_params = { NULL }; 4058 int rc; 4059 4060 BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index); 4061 4062 q_params.q_obj = &sc->sp_objs[fp->index].q_obj; 4063 /* We want to wait for completion in this context */ 4064 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 4065 4066 /* Stop the primary connection: */ 4067 4068 /* ...halt the connection */ 4069 q_params.cmd = ECORE_Q_CMD_HALT; 4070 rc = ecore_queue_state_change(sc, &q_params); 4071 if (rc) { 4072 return (rc); 4073 } 4074 4075 /* ...terminate the connection */ 4076 q_params.cmd = ECORE_Q_CMD_TERMINATE; 4077 memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate)); 4078 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 4079 rc = ecore_queue_state_change(sc, &q_params); 4080 if (rc) { 4081 return (rc); 4082 } 4083 4084 /* ...delete cfc entry */ 4085 q_params.cmd = ECORE_Q_CMD_CFC_DEL; 4086 memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del)); 4087 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 4088 return (ecore_queue_state_change(sc, &q_params)); 4089 } 4090 4091 /* wait for the outstanding SP commands */ 4092 static inline uint8_t 4093 bxe_wait_sp_comp(struct bxe_softc *sc, 4094 unsigned long mask) 4095 { 4096 unsigned long tmp; 4097 int tout = 5000; /* wait for 5 secs tops */ 4098 4099 while (tout--) { 4100 mb(); 4101 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) { 4102 return (TRUE); 4103 } 4104 4105 DELAY(1000); 4106 } 4107 4108 mb(); 4109 4110 tmp = atomic_load_acq_long(&sc->sp_state); 4111 if (tmp & mask) { 4112 BLOGE(sc, "Filtering completion timed out: " 4113 "sp_state 0x%lx, mask 0x%lx\n", 4114 tmp, mask); 4115 return (FALSE); 4116 } 4117 4118 return (FALSE); 4119 } 4120 4121 static int 4122 bxe_func_stop(struct bxe_softc *sc) 4123 { 4124 struct ecore_func_state_params func_params = { NULL }; 4125 int rc; 4126 4127 /* prepare parameters for function state transitions */ 4128 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 4129 func_params.f_obj = &sc->func_obj; 4130 func_params.cmd = ECORE_F_CMD_STOP; 4131 4132 /* 4133 * Try to stop the function the 'good way'. If it fails (in case 4134 * of a parity error during bxe_chip_cleanup()) and we are 4135 * not in a debug mode, perform a state transaction in order to 4136 * enable further HW_RESET transaction. 4137 */ 4138 rc = ecore_func_state_change(sc, &func_params); 4139 if (rc) { 4140 BLOGE(sc, "FUNC_STOP ramrod failed. " 4141 "Running a dry transaction\n"); 4142 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 4143 return (ecore_func_state_change(sc, &func_params)); 4144 } 4145 4146 return (0); 4147 } 4148 4149 static int 4150 bxe_reset_hw(struct bxe_softc *sc, 4151 uint32_t load_code) 4152 { 4153 struct ecore_func_state_params func_params = { NULL }; 4154 4155 /* Prepare parameters for function state transitions */ 4156 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 4157 4158 func_params.f_obj = &sc->func_obj; 4159 func_params.cmd = ECORE_F_CMD_HW_RESET; 4160 4161 func_params.params.hw_init.load_phase = load_code; 4162 4163 return (ecore_func_state_change(sc, &func_params)); 4164 } 4165 4166 static void 4167 bxe_int_disable_sync(struct bxe_softc *sc, 4168 int disable_hw) 4169 { 4170 if (disable_hw) { 4171 /* prevent the HW from sending interrupts */ 4172 bxe_int_disable(sc); 4173 } 4174 4175 /* XXX need a way to synchronize ALL irqs (intr_mtx?) */ 4176 /* make sure all ISRs are done */ 4177 4178 /* XXX make sure sp_task is not running */ 4179 /* cancel and flush work queues */ 4180 } 4181 4182 static void 4183 bxe_chip_cleanup(struct bxe_softc *sc, 4184 uint32_t unload_mode, 4185 uint8_t keep_link) 4186 { 4187 int port = SC_PORT(sc); 4188 struct ecore_mcast_ramrod_params rparam = { NULL }; 4189 uint32_t reset_code; 4190 int i, rc = 0; 4191 4192 bxe_drain_tx_queues(sc); 4193 4194 /* give HW time to discard old tx messages */ 4195 DELAY(1000); 4196 4197 /* Clean all ETH MACs */ 4198 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE); 4199 if (rc < 0) { 4200 BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc); 4201 } 4202 4203 /* Clean up UC list */ 4204 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE); 4205 if (rc < 0) { 4206 BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc); 4207 } 4208 4209 /* Disable LLH */ 4210 if (!CHIP_IS_E1(sc)) { 4211 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 4212 } 4213 4214 /* Set "drop all" to stop Rx */ 4215 4216 /* 4217 * We need to take the BXE_MCAST_LOCK() here in order to prevent 4218 * a race between the completion code and this code. 4219 */ 4220 BXE_MCAST_LOCK(sc); 4221 4222 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 4223 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 4224 } else { 4225 bxe_set_storm_rx_mode(sc); 4226 } 4227 4228 /* Clean up multicast configuration */ 4229 rparam.mcast_obj = &sc->mcast_obj; 4230 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4231 if (rc < 0) { 4232 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4233 } 4234 4235 BXE_MCAST_UNLOCK(sc); 4236 4237 // XXX bxe_iov_chip_cleanup(sc); 4238 4239 /* 4240 * Send the UNLOAD_REQUEST to the MCP. This will return if 4241 * this function should perform FUNCTION, PORT, or COMMON HW 4242 * reset. 4243 */ 4244 reset_code = bxe_send_unload_req(sc, unload_mode); 4245 4246 /* 4247 * (assumption: No Attention from MCP at this stage) 4248 * PMF probably in the middle of TX disable/enable transaction 4249 */ 4250 rc = bxe_func_wait_started(sc); 4251 if (rc) { 4252 BLOGE(sc, "bxe_func_wait_started failed\n"); 4253 } 4254 4255 /* 4256 * Close multi and leading connections 4257 * Completions for ramrods are collected in a synchronous way 4258 */ 4259 for (i = 0; i < sc->num_queues; i++) { 4260 if (bxe_stop_queue(sc, i)) { 4261 goto unload_error; 4262 } 4263 } 4264 4265 /* 4266 * If SP settings didn't get completed so far - something 4267 * very wrong has happen. 4268 */ 4269 if (!bxe_wait_sp_comp(sc, ~0x0UL)) { 4270 BLOGE(sc, "Common slow path ramrods got stuck!\n"); 4271 } 4272 4273 unload_error: 4274 4275 rc = bxe_func_stop(sc); 4276 if (rc) { 4277 BLOGE(sc, "Function stop failed!\n"); 4278 } 4279 4280 /* disable HW interrupts */ 4281 bxe_int_disable_sync(sc, TRUE); 4282 4283 /* detach interrupts */ 4284 bxe_interrupt_detach(sc); 4285 4286 /* Reset the chip */ 4287 rc = bxe_reset_hw(sc, reset_code); 4288 if (rc) { 4289 BLOGE(sc, "Hardware reset failed\n"); 4290 } 4291 4292 /* Report UNLOAD_DONE to MCP */ 4293 bxe_send_unload_done(sc, keep_link); 4294 } 4295 4296 static void 4297 bxe_disable_close_the_gate(struct bxe_softc *sc) 4298 { 4299 uint32_t val; 4300 int port = SC_PORT(sc); 4301 4302 BLOGD(sc, DBG_LOAD, 4303 "Disabling 'close the gates'\n"); 4304 4305 if (CHIP_IS_E1(sc)) { 4306 uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 4307 MISC_REG_AEU_MASK_ATTN_FUNC_0; 4308 val = REG_RD(sc, addr); 4309 val &= ~(0x300); 4310 REG_WR(sc, addr, val); 4311 } else { 4312 val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK); 4313 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 4314 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 4315 REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val); 4316 } 4317 } 4318 4319 /* 4320 * Cleans the object that have internal lists without sending 4321 * ramrods. Should be run when interrutps are disabled. 4322 */ 4323 static void 4324 bxe_squeeze_objects(struct bxe_softc *sc) 4325 { 4326 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 4327 struct ecore_mcast_ramrod_params rparam = { NULL }; 4328 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 4329 int rc; 4330 4331 /* Cleanup MACs' object first... */ 4332 4333 /* Wait for completion of requested */ 4334 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 4335 /* Perform a dry cleanup */ 4336 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 4337 4338 /* Clean ETH primary MAC */ 4339 bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags); 4340 rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags, 4341 &ramrod_flags); 4342 if (rc != 0) { 4343 BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc); 4344 } 4345 4346 /* Cleanup UC list */ 4347 vlan_mac_flags = 0; 4348 bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags); 4349 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, 4350 &ramrod_flags); 4351 if (rc != 0) { 4352 BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc); 4353 } 4354 4355 /* Now clean mcast object... */ 4356 4357 rparam.mcast_obj = &sc->mcast_obj; 4358 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 4359 4360 /* Add a DEL command... */ 4361 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4362 if (rc < 0) { 4363 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4364 } 4365 4366 /* now wait until all pending commands are cleared */ 4367 4368 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4369 while (rc != 0) { 4370 if (rc < 0) { 4371 BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc); 4372 return; 4373 } 4374 4375 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4376 } 4377 } 4378 4379 /* stop the controller */ 4380 static __noinline int 4381 bxe_nic_unload(struct bxe_softc *sc, 4382 uint32_t unload_mode, 4383 uint8_t keep_link) 4384 { 4385 uint8_t global = FALSE; 4386 uint32_t val; 4387 4388 BXE_CORE_LOCK_ASSERT(sc); 4389 4390 BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n"); 4391 4392 /* mark driver as unloaded in shmem2 */ 4393 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 4394 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 4395 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 4396 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 4397 } 4398 4399 if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE && 4400 (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) { 4401 /* 4402 * We can get here if the driver has been unloaded 4403 * during parity error recovery and is either waiting for a 4404 * leader to complete or for other functions to unload and 4405 * then ifconfig down has been issued. In this case we want to 4406 * unload and let other functions to complete a recovery 4407 * process. 4408 */ 4409 sc->recovery_state = BXE_RECOVERY_DONE; 4410 sc->is_leader = 0; 4411 bxe_release_leader_lock(sc); 4412 mb(); 4413 4414 BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n"); 4415 BLOGE(sc, "Can't unload in closed or error state\n"); 4416 return (-1); 4417 } 4418 4419 /* 4420 * Nothing to do during unload if previous bxe_nic_load() 4421 * did not completed succesfully - all resourses are released. 4422 */ 4423 if ((sc->state == BXE_STATE_CLOSED) || 4424 (sc->state == BXE_STATE_ERROR)) { 4425 return (0); 4426 } 4427 4428 sc->state = BXE_STATE_CLOSING_WAITING_HALT; 4429 mb(); 4430 4431 /* stop tx */ 4432 bxe_tx_disable(sc); 4433 4434 sc->rx_mode = BXE_RX_MODE_NONE; 4435 /* XXX set rx mode ??? */ 4436 4437 if (IS_PF(sc)) { 4438 /* set ALWAYS_ALIVE bit in shmem */ 4439 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 4440 4441 bxe_drv_pulse(sc); 4442 4443 bxe_stats_handle(sc, STATS_EVENT_STOP); 4444 bxe_save_statistics(sc); 4445 } 4446 4447 /* wait till consumers catch up with producers in all queues */ 4448 bxe_drain_tx_queues(sc); 4449 4450 /* if VF indicate to PF this function is going down (PF will delete sp 4451 * elements and clear initializations 4452 */ 4453 if (IS_VF(sc)) { 4454 ; /* bxe_vfpf_close_vf(sc); */ 4455 } else if (unload_mode != UNLOAD_RECOVERY) { 4456 /* if this is a normal/close unload need to clean up chip */ 4457 bxe_chip_cleanup(sc, unload_mode, keep_link); 4458 } else { 4459 /* Send the UNLOAD_REQUEST to the MCP */ 4460 bxe_send_unload_req(sc, unload_mode); 4461 4462 /* 4463 * Prevent transactions to host from the functions on the 4464 * engine that doesn't reset global blocks in case of global 4465 * attention once gloabl blocks are reset and gates are opened 4466 * (the engine which leader will perform the recovery 4467 * last). 4468 */ 4469 if (!CHIP_IS_E1x(sc)) { 4470 bxe_pf_disable(sc); 4471 } 4472 4473 /* disable HW interrupts */ 4474 bxe_int_disable_sync(sc, TRUE); 4475 4476 /* detach interrupts */ 4477 bxe_interrupt_detach(sc); 4478 4479 /* Report UNLOAD_DONE to MCP */ 4480 bxe_send_unload_done(sc, FALSE); 4481 } 4482 4483 /* 4484 * At this stage no more interrupts will arrive so we may safely clean 4485 * the queue'able objects here in case they failed to get cleaned so far. 4486 */ 4487 if (IS_PF(sc)) { 4488 bxe_squeeze_objects(sc); 4489 } 4490 4491 /* There should be no more pending SP commands at this stage */ 4492 sc->sp_state = 0; 4493 4494 sc->port.pmf = 0; 4495 4496 bxe_free_fp_buffers(sc); 4497 4498 if (IS_PF(sc)) { 4499 bxe_free_mem(sc); 4500 } 4501 4502 bxe_free_fw_stats_mem(sc); 4503 4504 sc->state = BXE_STATE_CLOSED; 4505 4506 /* 4507 * Check if there are pending parity attentions. If there are - set 4508 * RECOVERY_IN_PROGRESS. 4509 */ 4510 if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) { 4511 bxe_set_reset_in_progress(sc); 4512 4513 /* Set RESET_IS_GLOBAL if needed */ 4514 if (global) { 4515 bxe_set_reset_global(sc); 4516 } 4517 } 4518 4519 /* 4520 * The last driver must disable a "close the gate" if there is no 4521 * parity attention or "process kill" pending. 4522 */ 4523 if (IS_PF(sc) && !bxe_clear_pf_load(sc) && 4524 bxe_reset_is_done(sc, SC_PATH(sc))) { 4525 bxe_disable_close_the_gate(sc); 4526 } 4527 4528 BLOGD(sc, DBG_LOAD, "Ended NIC unload\n"); 4529 4530 return (0); 4531 } 4532 4533 /* 4534 * Called by the OS to set various media options (i.e. link, speed, etc.) when 4535 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...". 4536 */ 4537 static int 4538 bxe_ifmedia_update(struct ifnet *ifp) 4539 { 4540 struct bxe_softc *sc = (struct bxe_softc *)ifp->if_softc; 4541 struct ifmedia *ifm; 4542 4543 ifm = &sc->ifmedia; 4544 4545 /* We only support Ethernet media type. */ 4546 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) { 4547 return (EINVAL); 4548 } 4549 4550 switch (IFM_SUBTYPE(ifm->ifm_media)) { 4551 case IFM_AUTO: 4552 break; 4553 case IFM_10G_CX4: 4554 case IFM_10G_SR: 4555 case IFM_10G_T: 4556 case IFM_10G_TWINAX: 4557 default: 4558 /* We don't support changing the media type. */ 4559 BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n", 4560 IFM_SUBTYPE(ifm->ifm_media)); 4561 return (EINVAL); 4562 } 4563 4564 return (0); 4565 } 4566 4567 /* 4568 * Called by the OS to get the current media status (i.e. link, speed, etc.). 4569 */ 4570 static void 4571 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr) 4572 { 4573 struct bxe_softc *sc = ifp->if_softc; 4574 4575 /* Report link down if the driver isn't running. */ 4576 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 4577 ifmr->ifm_active |= IFM_NONE; 4578 return; 4579 } 4580 4581 /* Setup the default interface info. */ 4582 ifmr->ifm_status = IFM_AVALID; 4583 ifmr->ifm_active = IFM_ETHER; 4584 4585 if (sc->link_vars.link_up) { 4586 ifmr->ifm_status |= IFM_ACTIVE; 4587 } else { 4588 ifmr->ifm_active |= IFM_NONE; 4589 return; 4590 } 4591 4592 ifmr->ifm_active |= sc->media; 4593 4594 if (sc->link_vars.duplex == DUPLEX_FULL) { 4595 ifmr->ifm_active |= IFM_FDX; 4596 } else { 4597 ifmr->ifm_active |= IFM_HDX; 4598 } 4599 } 4600 4601 static int 4602 bxe_ioctl_nvram(struct bxe_softc *sc, 4603 uint32_t priv_op, 4604 struct ifreq *ifr) 4605 { 4606 struct bxe_nvram_data nvdata_base; 4607 struct bxe_nvram_data *nvdata; 4608 int len; 4609 int error = 0; 4610 4611 copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base)); 4612 4613 len = (sizeof(struct bxe_nvram_data) + 4614 nvdata_base.len - 4615 sizeof(uint32_t)); 4616 4617 if (len > sizeof(struct bxe_nvram_data)) { 4618 if ((nvdata = (struct bxe_nvram_data *) 4619 malloc(len, M_DEVBUF, 4620 (M_NOWAIT | M_ZERO))) == NULL) { 4621 BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed\n"); 4622 return (1); 4623 } 4624 memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data)); 4625 } else { 4626 nvdata = &nvdata_base; 4627 } 4628 4629 if (priv_op == BXE_IOC_RD_NVRAM) { 4630 BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n", 4631 nvdata->offset, nvdata->len); 4632 error = bxe_nvram_read(sc, 4633 nvdata->offset, 4634 (uint8_t *)nvdata->value, 4635 nvdata->len); 4636 copyout(nvdata, ifr->ifr_data, len); 4637 } else { /* BXE_IOC_WR_NVRAM */ 4638 BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n", 4639 nvdata->offset, nvdata->len); 4640 copyin(ifr->ifr_data, nvdata, len); 4641 error = bxe_nvram_write(sc, 4642 nvdata->offset, 4643 (uint8_t *)nvdata->value, 4644 nvdata->len); 4645 } 4646 4647 if (len > sizeof(struct bxe_nvram_data)) { 4648 free(nvdata, M_DEVBUF); 4649 } 4650 4651 return (error); 4652 } 4653 4654 static int 4655 bxe_ioctl_stats_show(struct bxe_softc *sc, 4656 uint32_t priv_op, 4657 struct ifreq *ifr) 4658 { 4659 const size_t str_size = (BXE_NUM_ETH_STATS * STAT_NAME_LEN); 4660 const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t)); 4661 caddr_t p_tmp; 4662 uint32_t *offset; 4663 int i; 4664 4665 switch (priv_op) 4666 { 4667 case BXE_IOC_STATS_SHOW_NUM: 4668 memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data)); 4669 ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num = 4670 BXE_NUM_ETH_STATS; 4671 ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len = 4672 STAT_NAME_LEN; 4673 return (0); 4674 4675 case BXE_IOC_STATS_SHOW_STR: 4676 memset(ifr->ifr_data, 0, str_size); 4677 p_tmp = ifr->ifr_data; 4678 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 4679 strcpy(p_tmp, bxe_eth_stats_arr[i].string); 4680 p_tmp += STAT_NAME_LEN; 4681 } 4682 return (0); 4683 4684 case BXE_IOC_STATS_SHOW_CNT: 4685 memset(ifr->ifr_data, 0, stats_size); 4686 p_tmp = ifr->ifr_data; 4687 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 4688 offset = ((uint32_t *)&sc->eth_stats + 4689 bxe_eth_stats_arr[i].offset); 4690 switch (bxe_eth_stats_arr[i].size) { 4691 case 4: 4692 *((uint64_t *)p_tmp) = (uint64_t)*offset; 4693 break; 4694 case 8: 4695 *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1)); 4696 break; 4697 default: 4698 *((uint64_t *)p_tmp) = 0; 4699 } 4700 p_tmp += sizeof(uint64_t); 4701 } 4702 return (0); 4703 4704 default: 4705 return (-1); 4706 } 4707 } 4708 4709 static void 4710 bxe_handle_chip_tq(void *context, 4711 int pending) 4712 { 4713 struct bxe_softc *sc = (struct bxe_softc *)context; 4714 long work = atomic_load_acq_long(&sc->chip_tq_flags); 4715 4716 switch (work) 4717 { 4718 case CHIP_TQ_START: 4719 if ((sc->ifnet->if_flags & IFF_UP) && 4720 !(sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) { 4721 /* start the interface */ 4722 BLOGD(sc, DBG_LOAD, "Starting the interface...\n"); 4723 BXE_CORE_LOCK(sc); 4724 bxe_init_locked(sc); 4725 BXE_CORE_UNLOCK(sc); 4726 } 4727 break; 4728 4729 case CHIP_TQ_STOP: 4730 if (!(sc->ifnet->if_flags & IFF_UP) && 4731 (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) { 4732 /* bring down the interface */ 4733 BLOGD(sc, DBG_LOAD, "Stopping the interface...\n"); 4734 bxe_periodic_stop(sc); 4735 BXE_CORE_LOCK(sc); 4736 bxe_stop_locked(sc); 4737 BXE_CORE_UNLOCK(sc); 4738 } 4739 break; 4740 4741 case CHIP_TQ_REINIT: 4742 if (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING) { 4743 /* restart the interface */ 4744 BLOGD(sc, DBG_LOAD, "Restarting the interface...\n"); 4745 bxe_periodic_stop(sc); 4746 BXE_CORE_LOCK(sc); 4747 bxe_stop_locked(sc); 4748 bxe_init_locked(sc); 4749 BXE_CORE_UNLOCK(sc); 4750 } 4751 break; 4752 4753 default: 4754 break; 4755 } 4756 } 4757 4758 /* 4759 * Handles any IOCTL calls from the operating system. 4760 * 4761 * Returns: 4762 * 0 = Success, >0 Failure 4763 */ 4764 static int 4765 bxe_ioctl(struct ifnet *ifp, 4766 u_long command, 4767 caddr_t data) 4768 { 4769 struct bxe_softc *sc = ifp->if_softc; 4770 struct ifreq *ifr = (struct ifreq *)data; 4771 struct bxe_nvram_data *nvdata; 4772 uint32_t priv_op; 4773 int mask = 0; 4774 int reinit = 0; 4775 int error = 0; 4776 4777 int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN); 4778 int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING); 4779 4780 switch (command) 4781 { 4782 case SIOCSIFMTU: 4783 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n", 4784 ifr->ifr_mtu); 4785 4786 if (sc->mtu == ifr->ifr_mtu) { 4787 /* nothing to change */ 4788 break; 4789 } 4790 4791 if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) { 4792 BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n", 4793 ifr->ifr_mtu, mtu_min, mtu_max); 4794 error = EINVAL; 4795 break; 4796 } 4797 4798 atomic_store_rel_int((volatile unsigned int *)&sc->mtu, 4799 (unsigned long)ifr->ifr_mtu); 4800 atomic_store_rel_long((volatile unsigned long *)&ifp->if_mtu, 4801 (unsigned long)ifr->ifr_mtu); 4802 4803 reinit = 1; 4804 break; 4805 4806 case SIOCSIFFLAGS: 4807 /* toggle the interface state up or down */ 4808 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n"); 4809 4810 /* check if the interface is up */ 4811 if (ifp->if_flags & IFF_UP) { 4812 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 4813 /* set the receive mode flags */ 4814 bxe_set_rx_mode(sc); 4815 } else { 4816 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_START); 4817 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 4818 } 4819 } else { 4820 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 4821 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_STOP); 4822 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 4823 } 4824 } 4825 4826 break; 4827 4828 case SIOCADDMULTI: 4829 case SIOCDELMULTI: 4830 /* add/delete multicast addresses */ 4831 BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n"); 4832 4833 /* check if the interface is up */ 4834 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 4835 /* set the receive mode flags */ 4836 bxe_set_rx_mode(sc); 4837 } 4838 4839 break; 4840 4841 case SIOCSIFCAP: 4842 /* find out which capabilities have changed */ 4843 mask = (ifr->ifr_reqcap ^ ifp->if_capenable); 4844 4845 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n", 4846 mask); 4847 4848 /* toggle the LRO capabilites enable flag */ 4849 if (mask & IFCAP_LRO) { 4850 ifp->if_capenable ^= IFCAP_LRO; 4851 BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n", 4852 (ifp->if_capenable & IFCAP_LRO) ? "ON" : "OFF"); 4853 reinit = 1; 4854 } 4855 4856 /* toggle the TXCSUM checksum capabilites enable flag */ 4857 if (mask & IFCAP_TXCSUM) { 4858 ifp->if_capenable ^= IFCAP_TXCSUM; 4859 BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n", 4860 (ifp->if_capenable & IFCAP_TXCSUM) ? "ON" : "OFF"); 4861 if (ifp->if_capenable & IFCAP_TXCSUM) { 4862 ifp->if_hwassist = (CSUM_IP | 4863 CSUM_TCP | 4864 CSUM_UDP | 4865 CSUM_TSO | 4866 CSUM_TCP_IPV6 | 4867 CSUM_UDP_IPV6); 4868 } else { 4869 ifp->if_hwassist = 0; 4870 } 4871 } 4872 4873 /* toggle the RXCSUM checksum capabilities enable flag */ 4874 if (mask & IFCAP_RXCSUM) { 4875 ifp->if_capenable ^= IFCAP_RXCSUM; 4876 BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n", 4877 (ifp->if_capenable & IFCAP_RXCSUM) ? "ON" : "OFF"); 4878 if (ifp->if_capenable & IFCAP_RXCSUM) { 4879 ifp->if_hwassist = (CSUM_IP | 4880 CSUM_TCP | 4881 CSUM_UDP | 4882 CSUM_TSO | 4883 CSUM_TCP_IPV6 | 4884 CSUM_UDP_IPV6); 4885 } else { 4886 ifp->if_hwassist = 0; 4887 } 4888 } 4889 4890 /* toggle TSO4 capabilities enabled flag */ 4891 if (mask & IFCAP_TSO4) { 4892 ifp->if_capenable ^= IFCAP_TSO4; 4893 BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n", 4894 (ifp->if_capenable & IFCAP_TSO4) ? "ON" : "OFF"); 4895 } 4896 4897 /* toggle TSO6 capabilities enabled flag */ 4898 if (mask & IFCAP_TSO6) { 4899 ifp->if_capenable ^= IFCAP_TSO6; 4900 BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n", 4901 (ifp->if_capenable & IFCAP_TSO6) ? "ON" : "OFF"); 4902 } 4903 4904 /* toggle VLAN_HWTSO capabilities enabled flag */ 4905 if (mask & IFCAP_VLAN_HWTSO) { 4906 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 4907 BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n", 4908 (ifp->if_capenable & IFCAP_VLAN_HWTSO) ? "ON" : "OFF"); 4909 } 4910 4911 /* toggle VLAN_HWCSUM capabilities enabled flag */ 4912 if (mask & IFCAP_VLAN_HWCSUM) { 4913 /* XXX investigate this... */ 4914 BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n"); 4915 error = EINVAL; 4916 } 4917 4918 /* toggle VLAN_MTU capabilities enable flag */ 4919 if (mask & IFCAP_VLAN_MTU) { 4920 /* XXX investigate this... */ 4921 BLOGE(sc, "Changing VLAN_MTU is not supported!\n"); 4922 error = EINVAL; 4923 } 4924 4925 /* toggle VLAN_HWTAGGING capabilities enabled flag */ 4926 if (mask & IFCAP_VLAN_HWTAGGING) { 4927 /* XXX investigate this... */ 4928 BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n"); 4929 error = EINVAL; 4930 } 4931 4932 /* toggle VLAN_HWFILTER capabilities enabled flag */ 4933 if (mask & IFCAP_VLAN_HWFILTER) { 4934 /* XXX investigate this... */ 4935 BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n"); 4936 error = EINVAL; 4937 } 4938 4939 /* XXX not yet... 4940 * IFCAP_WOL_MAGIC 4941 */ 4942 4943 break; 4944 4945 case SIOCSIFMEDIA: 4946 case SIOCGIFMEDIA: 4947 /* set/get interface media */ 4948 BLOGD(sc, DBG_IOCTL, 4949 "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n", 4950 (command & 0xff)); 4951 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); 4952 break; 4953 4954 case SIOCGPRIVATE_0: 4955 copyin(ifr->ifr_data, &priv_op, sizeof(priv_op)); 4956 4957 switch (priv_op) 4958 { 4959 case BXE_IOC_RD_NVRAM: 4960 case BXE_IOC_WR_NVRAM: 4961 nvdata = (struct bxe_nvram_data *)ifr->ifr_data; 4962 BLOGD(sc, DBG_IOCTL, 4963 "Received Private NVRAM ioctl addr=0x%x size=%u\n", 4964 nvdata->offset, nvdata->len); 4965 error = bxe_ioctl_nvram(sc, priv_op, ifr); 4966 break; 4967 4968 case BXE_IOC_STATS_SHOW_NUM: 4969 case BXE_IOC_STATS_SHOW_STR: 4970 case BXE_IOC_STATS_SHOW_CNT: 4971 BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n", 4972 priv_op); 4973 error = bxe_ioctl_stats_show(sc, priv_op, ifr); 4974 break; 4975 4976 default: 4977 BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op); 4978 error = EINVAL; 4979 break; 4980 } 4981 4982 break; 4983 4984 default: 4985 BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n", 4986 (command & 0xff)); 4987 error = ether_ioctl(ifp, command, data); 4988 break; 4989 } 4990 4991 if (reinit && (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) { 4992 BLOGD(sc, DBG_LOAD | DBG_IOCTL, 4993 "Re-initializing hardware from IOCTL change\n"); 4994 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT); 4995 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 4996 } 4997 4998 return (error); 4999 } 5000 5001 static __noinline void 5002 bxe_dump_mbuf(struct bxe_softc *sc, 5003 struct mbuf *m, 5004 uint8_t contents) 5005 { 5006 char * type; 5007 int i = 0; 5008 5009 if (!(sc->debug & DBG_MBUF)) { 5010 return; 5011 } 5012 5013 if (m == NULL) { 5014 BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n"); 5015 return; 5016 } 5017 5018 while (m) { 5019 BLOGD(sc, DBG_MBUF, 5020 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 5021 i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data); 5022 5023 if (m->m_flags & M_PKTHDR) { 5024 BLOGD(sc, DBG_MBUF, 5025 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 5026 i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS, 5027 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 5028 } 5029 5030 if (m->m_flags & M_EXT) { 5031 switch (m->m_ext.ext_type) { 5032 case EXT_CLUSTER: type = "EXT_CLUSTER"; break; 5033 case EXT_SFBUF: type = "EXT_SFBUF"; break; 5034 case EXT_JUMBOP: type = "EXT_JUMBOP"; break; 5035 case EXT_JUMBO9: type = "EXT_JUMBO9"; break; 5036 case EXT_JUMBO16: type = "EXT_JUMBO16"; break; 5037 case EXT_PACKET: type = "EXT_PACKET"; break; 5038 case EXT_MBUF: type = "EXT_MBUF"; break; 5039 case EXT_NET_DRV: type = "EXT_NET_DRV"; break; 5040 case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break; 5041 case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break; 5042 case EXT_EXTREF: type = "EXT_EXTREF"; break; 5043 default: type = "UNKNOWN"; break; 5044 } 5045 5046 BLOGD(sc, DBG_MBUF, 5047 "%02d: - m_ext: %p ext_size=%d type=%s\n", 5048 i, m->m_ext.ext_buf, m->m_ext.ext_size, type); 5049 } 5050 5051 if (contents) { 5052 bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE); 5053 } 5054 5055 m = m->m_next; 5056 i++; 5057 } 5058 } 5059 5060 /* 5061 * Checks to ensure the 13 bd sliding window is >= MSS for TSO. 5062 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS. 5063 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD 5064 * The headers comes in a seperate bd in FreeBSD so 13-3=10. 5065 * Returns: 0 if OK to send, 1 if packet needs further defragmentation 5066 */ 5067 static int 5068 bxe_chktso_window(struct bxe_softc *sc, 5069 int nsegs, 5070 bus_dma_segment_t *segs, 5071 struct mbuf *m) 5072 { 5073 uint32_t num_wnds, wnd_size, wnd_sum; 5074 int32_t frag_idx, wnd_idx; 5075 unsigned short lso_mss; 5076 int defrag; 5077 5078 defrag = 0; 5079 wnd_sum = 0; 5080 wnd_size = 10; 5081 num_wnds = nsegs - wnd_size; 5082 lso_mss = htole16(m->m_pkthdr.tso_segsz); 5083 5084 /* 5085 * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the 5086 * first window sum of data while skipping the first assuming it is the 5087 * header in FreeBSD. 5088 */ 5089 for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) { 5090 wnd_sum += htole16(segs[frag_idx].ds_len); 5091 } 5092 5093 /* check the first 10 bd window size */ 5094 if (wnd_sum < lso_mss) { 5095 return (1); 5096 } 5097 5098 /* run through the windows */ 5099 for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) { 5100 /* subtract the first mbuf->m_len of the last wndw(-header) */ 5101 wnd_sum -= htole16(segs[wnd_idx+1].ds_len); 5102 /* add the next mbuf len to the len of our new window */ 5103 wnd_sum += htole16(segs[frag_idx].ds_len); 5104 if (wnd_sum < lso_mss) { 5105 return (1); 5106 } 5107 } 5108 5109 return (0); 5110 } 5111 5112 static uint8_t 5113 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp, 5114 struct mbuf *m, 5115 uint32_t *parsing_data) 5116 { 5117 struct ether_vlan_header *eh = NULL; 5118 struct ip *ip4 = NULL; 5119 struct ip6_hdr *ip6 = NULL; 5120 caddr_t ip = NULL; 5121 struct tcphdr *th = NULL; 5122 int e_hlen, ip_hlen, l4_off; 5123 uint16_t proto; 5124 5125 if (m->m_pkthdr.csum_flags == CSUM_IP) { 5126 /* no L4 checksum offload needed */ 5127 return (0); 5128 } 5129 5130 /* get the Ethernet header */ 5131 eh = mtod(m, struct ether_vlan_header *); 5132 5133 /* handle VLAN encapsulation if present */ 5134 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 5135 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 5136 proto = ntohs(eh->evl_proto); 5137 } else { 5138 e_hlen = ETHER_HDR_LEN; 5139 proto = ntohs(eh->evl_encap_proto); 5140 } 5141 5142 switch (proto) { 5143 case ETHERTYPE_IP: 5144 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 5145 ip4 = (m->m_len < sizeof(struct ip)) ? 5146 (struct ip *)m->m_next->m_data : 5147 (struct ip *)(m->m_data + e_hlen); 5148 /* ip_hl is number of 32-bit words */ 5149 ip_hlen = (ip4->ip_hl << 2); 5150 ip = (caddr_t)ip4; 5151 break; 5152 case ETHERTYPE_IPV6: 5153 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 5154 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 5155 (struct ip6_hdr *)m->m_next->m_data : 5156 (struct ip6_hdr *)(m->m_data + e_hlen); 5157 /* XXX cannot support offload with IPv6 extensions */ 5158 ip_hlen = sizeof(struct ip6_hdr); 5159 ip = (caddr_t)ip6; 5160 break; 5161 default: 5162 /* We can't offload in this case... */ 5163 /* XXX error stat ??? */ 5164 return (0); 5165 } 5166 5167 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 5168 l4_off = (e_hlen + ip_hlen); 5169 5170 *parsing_data |= 5171 (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 5172 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W); 5173 5174 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5175 CSUM_TSO | 5176 CSUM_TCP_IPV6)) { 5177 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 5178 th = (struct tcphdr *)(ip + ip_hlen); 5179 /* th_off is number of 32-bit words */ 5180 *parsing_data |= ((th->th_off << 5181 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 5182 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW); 5183 return (l4_off + (th->th_off << 2)); /* entire header length */ 5184 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5185 CSUM_UDP_IPV6)) { 5186 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 5187 return (l4_off + sizeof(struct udphdr)); /* entire header length */ 5188 } else { 5189 /* XXX error stat ??? */ 5190 return (0); 5191 } 5192 } 5193 5194 static uint8_t 5195 bxe_set_pbd_csum(struct bxe_fastpath *fp, 5196 struct mbuf *m, 5197 struct eth_tx_parse_bd_e1x *pbd) 5198 { 5199 struct ether_vlan_header *eh = NULL; 5200 struct ip *ip4 = NULL; 5201 struct ip6_hdr *ip6 = NULL; 5202 caddr_t ip = NULL; 5203 struct tcphdr *th = NULL; 5204 struct udphdr *uh = NULL; 5205 int e_hlen, ip_hlen; 5206 uint16_t proto; 5207 uint8_t hlen; 5208 uint16_t tmp_csum; 5209 uint32_t *tmp_uh; 5210 5211 /* get the Ethernet header */ 5212 eh = mtod(m, struct ether_vlan_header *); 5213 5214 /* handle VLAN encapsulation if present */ 5215 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 5216 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 5217 proto = ntohs(eh->evl_proto); 5218 } else { 5219 e_hlen = ETHER_HDR_LEN; 5220 proto = ntohs(eh->evl_encap_proto); 5221 } 5222 5223 switch (proto) { 5224 case ETHERTYPE_IP: 5225 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 5226 ip4 = (m->m_len < sizeof(struct ip)) ? 5227 (struct ip *)m->m_next->m_data : 5228 (struct ip *)(m->m_data + e_hlen); 5229 /* ip_hl is number of 32-bit words */ 5230 ip_hlen = (ip4->ip_hl << 1); 5231 ip = (caddr_t)ip4; 5232 break; 5233 case ETHERTYPE_IPV6: 5234 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 5235 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 5236 (struct ip6_hdr *)m->m_next->m_data : 5237 (struct ip6_hdr *)(m->m_data + e_hlen); 5238 /* XXX cannot support offload with IPv6 extensions */ 5239 ip_hlen = (sizeof(struct ip6_hdr) >> 1); 5240 ip = (caddr_t)ip6; 5241 break; 5242 default: 5243 /* We can't offload in this case... */ 5244 /* XXX error stat ??? */ 5245 return (0); 5246 } 5247 5248 hlen = (e_hlen >> 1); 5249 5250 /* note that rest of global_data is indirectly zeroed here */ 5251 if (m->m_flags & M_VLANTAG) { 5252 pbd->global_data = 5253 htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 5254 } else { 5255 pbd->global_data = htole16(hlen); 5256 } 5257 5258 pbd->ip_hlen_w = ip_hlen; 5259 5260 hlen += pbd->ip_hlen_w; 5261 5262 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 5263 5264 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5265 CSUM_TSO | 5266 CSUM_TCP_IPV6)) { 5267 th = (struct tcphdr *)(ip + (ip_hlen << 1)); 5268 /* th_off is number of 32-bit words */ 5269 hlen += (uint16_t)(th->th_off << 1); 5270 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5271 CSUM_UDP_IPV6)) { 5272 uh = (struct udphdr *)(ip + (ip_hlen << 1)); 5273 hlen += (sizeof(struct udphdr) / 2); 5274 } else { 5275 /* valid case as only CSUM_IP was set */ 5276 return (0); 5277 } 5278 5279 pbd->total_hlen_w = htole16(hlen); 5280 5281 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5282 CSUM_TSO | 5283 CSUM_TCP_IPV6)) { 5284 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 5285 pbd->tcp_pseudo_csum = ntohs(th->th_sum); 5286 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5287 CSUM_UDP_IPV6)) { 5288 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 5289 5290 /* 5291 * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP 5292 * checksums and does not know anything about the UDP header and where 5293 * the checksum field is located. It only knows about TCP. Therefore 5294 * we "lie" to the hardware for outgoing UDP packets w/ checksum 5295 * offload. Since the checksum field offset for TCP is 16 bytes and 5296 * for UDP it is 6 bytes we pass a pointer to the hardware that is 10 5297 * bytes less than the start of the UDP header. This allows the 5298 * hardware to write the checksum in the correct spot. But the 5299 * hardware will compute a checksum which includes the last 10 bytes 5300 * of the IP header. To correct this we tweak the stack computed 5301 * pseudo checksum by folding in the calculation of the inverse 5302 * checksum for those final 10 bytes of the IP header. This allows 5303 * the correct checksum to be computed by the hardware. 5304 */ 5305 5306 /* set pointer 10 bytes before UDP header */ 5307 tmp_uh = (uint32_t *)((uint8_t *)uh - 10); 5308 5309 /* calculate a pseudo header checksum over the first 10 bytes */ 5310 tmp_csum = in_pseudo(*tmp_uh, 5311 *(tmp_uh + 1), 5312 *(uint16_t *)(tmp_uh + 2)); 5313 5314 pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum)); 5315 } 5316 5317 return (hlen * 2); /* entire header length, number of bytes */ 5318 } 5319 5320 static void 5321 bxe_set_pbd_lso_e2(struct mbuf *m, 5322 uint32_t *parsing_data) 5323 { 5324 *parsing_data |= ((m->m_pkthdr.tso_segsz << 5325 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 5326 ETH_TX_PARSE_BD_E2_LSO_MSS); 5327 5328 /* XXX test for IPv6 with extension header... */ 5329 #if 0 5330 struct ip6_hdr *ip6; 5331 if (ip6 && ip6->ip6_nxt == 'some ipv6 extension header') 5332 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR; 5333 #endif 5334 } 5335 5336 static void 5337 bxe_set_pbd_lso(struct mbuf *m, 5338 struct eth_tx_parse_bd_e1x *pbd) 5339 { 5340 struct ether_vlan_header *eh = NULL; 5341 struct ip *ip = NULL; 5342 struct tcphdr *th = NULL; 5343 int e_hlen; 5344 5345 /* get the Ethernet header */ 5346 eh = mtod(m, struct ether_vlan_header *); 5347 5348 /* handle VLAN encapsulation if present */ 5349 e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ? 5350 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN; 5351 5352 /* get the IP and TCP header, with LSO entire header in first mbuf */ 5353 /* XXX assuming IPv4 */ 5354 ip = (struct ip *)(m->m_data + e_hlen); 5355 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 5356 5357 pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz); 5358 pbd->tcp_send_seq = ntohl(th->th_seq); 5359 pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff); 5360 5361 #if 1 5362 /* XXX IPv4 */ 5363 pbd->ip_id = ntohs(ip->ip_id); 5364 pbd->tcp_pseudo_csum = 5365 ntohs(in_pseudo(ip->ip_src.s_addr, 5366 ip->ip_dst.s_addr, 5367 htons(IPPROTO_TCP))); 5368 #else 5369 /* XXX IPv6 */ 5370 pbd->tcp_pseudo_csum = 5371 ntohs(in_pseudo(&ip6->ip6_src, 5372 &ip6->ip6_dst, 5373 htons(IPPROTO_TCP))); 5374 #endif 5375 5376 pbd->global_data |= 5377 htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 5378 } 5379 5380 /* 5381 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory 5382 * visible to the controller. 5383 * 5384 * If an mbuf is submitted to this routine and cannot be given to the 5385 * controller (e.g. it has too many fragments) then the function may free 5386 * the mbuf and return to the caller. 5387 * 5388 * Returns: 5389 * 0 = Success, !0 = Failure 5390 * Note the side effect that an mbuf may be freed if it causes a problem. 5391 */ 5392 static int 5393 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head) 5394 { 5395 bus_dma_segment_t segs[32]; 5396 struct mbuf *m0; 5397 struct bxe_sw_tx_bd *tx_buf; 5398 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 5399 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 5400 /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */ 5401 struct eth_tx_bd *tx_data_bd; 5402 struct eth_tx_bd *tx_total_pkt_size_bd; 5403 struct eth_tx_start_bd *tx_start_bd; 5404 uint16_t bd_prod, pkt_prod, total_pkt_size; 5405 uint8_t mac_type; 5406 int defragged, error, nsegs, rc, nbds, vlan_off, ovlan; 5407 struct bxe_softc *sc; 5408 uint16_t tx_bd_avail; 5409 struct ether_vlan_header *eh; 5410 uint32_t pbd_e2_parsing_data = 0; 5411 uint8_t hlen = 0; 5412 int tmp_bd; 5413 int i; 5414 5415 sc = fp->sc; 5416 5417 M_ASSERTPKTHDR(*m_head); 5418 5419 m0 = *m_head; 5420 rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0; 5421 tx_start_bd = NULL; 5422 tx_data_bd = NULL; 5423 tx_total_pkt_size_bd = NULL; 5424 5425 /* get the H/W pointer for packets and BDs */ 5426 pkt_prod = fp->tx_pkt_prod; 5427 bd_prod = fp->tx_bd_prod; 5428 5429 mac_type = UNICAST_ADDRESS; 5430 5431 /* map the mbuf into the next open DMAable memory */ 5432 tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)]; 5433 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5434 tx_buf->m_map, m0, 5435 segs, &nsegs, BUS_DMA_NOWAIT); 5436 5437 /* mapping errors */ 5438 if(__predict_false(error != 0)) { 5439 fp->eth_q_stats.tx_dma_mapping_failure++; 5440 if (error == ENOMEM) { 5441 /* resource issue, try again later */ 5442 rc = ENOMEM; 5443 } else if (error == EFBIG) { 5444 /* possibly recoverable with defragmentation */ 5445 fp->eth_q_stats.mbuf_defrag_attempts++; 5446 m0 = m_defrag(*m_head, M_DONTWAIT); 5447 if (m0 == NULL) { 5448 fp->eth_q_stats.mbuf_defrag_failures++; 5449 rc = ENOBUFS; 5450 } else { 5451 /* defrag successful, try mapping again */ 5452 *m_head = m0; 5453 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5454 tx_buf->m_map, m0, 5455 segs, &nsegs, BUS_DMA_NOWAIT); 5456 if (error) { 5457 fp->eth_q_stats.tx_dma_mapping_failure++; 5458 rc = error; 5459 } 5460 } 5461 } else { 5462 /* unknown, unrecoverable mapping error */ 5463 BLOGE(sc, "Unknown TX mapping error rc=%d\n", error); 5464 bxe_dump_mbuf(sc, m0, FALSE); 5465 rc = error; 5466 } 5467 5468 goto bxe_tx_encap_continue; 5469 } 5470 5471 tx_bd_avail = bxe_tx_avail(sc, fp); 5472 5473 /* make sure there is enough room in the send queue */ 5474 if (__predict_false(tx_bd_avail < (nsegs + 2))) { 5475 /* Recoverable, try again later. */ 5476 fp->eth_q_stats.tx_hw_queue_full++; 5477 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5478 rc = ENOMEM; 5479 goto bxe_tx_encap_continue; 5480 } 5481 5482 /* capture the current H/W TX chain high watermark */ 5483 if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth < 5484 (TX_BD_USABLE - tx_bd_avail))) { 5485 fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail); 5486 } 5487 5488 /* make sure it fits in the packet window */ 5489 if (__predict_false(nsegs > 12)) { 5490 /* 5491 * The mbuf may be to big for the controller to handle. If the frame 5492 * is a TSO frame we'll need to do an additional check. 5493 */ 5494 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5495 if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) { 5496 goto bxe_tx_encap_continue; /* OK to send */ 5497 } else { 5498 fp->eth_q_stats.tx_window_violation_tso++; 5499 } 5500 } else { 5501 fp->eth_q_stats.tx_window_violation_std++; 5502 } 5503 5504 /* XXX I don't like this, change to double copy packet */ 5505 5506 /* no sense trying to defrag again, just drop the frame */ 5507 rc = ENODEV; 5508 } 5509 5510 bxe_tx_encap_continue: 5511 5512 /* Check for errors */ 5513 if (rc) { 5514 if (rc == ENOMEM) { 5515 /* recoverable try again later */ 5516 } else { 5517 fp->eth_q_stats.tx_soft_errors++; 5518 fp->eth_q_stats.mbuf_alloc_tx--; 5519 m_freem(*m_head); 5520 *m_head = NULL; 5521 } 5522 5523 return (rc); 5524 } 5525 5526 /* set flag according to packet type (UNICAST_ADDRESS is default) */ 5527 if (m0->m_flags & M_BCAST) { 5528 mac_type = BROADCAST_ADDRESS; 5529 } else if (m0->m_flags & M_MCAST) { 5530 mac_type = MULTICAST_ADDRESS; 5531 } 5532 5533 /* store the mbuf into the mbuf ring */ 5534 tx_buf->m = m0; 5535 tx_buf->first_bd = fp->tx_bd_prod; 5536 tx_buf->flags = 0; 5537 5538 /* prepare the first transmit (start) BD for the mbuf */ 5539 tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd; 5540 5541 BLOGD(sc, DBG_TX, 5542 "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n", 5543 pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd); 5544 5545 tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 5546 tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 5547 tx_start_bd->nbytes = htole16(segs[0].ds_len); 5548 total_pkt_size += tx_start_bd->nbytes; 5549 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 5550 5551 tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT); 5552 5553 /* all frames have at least Start BD + Parsing BD */ 5554 nbds = nsegs + 1; 5555 tx_start_bd->nbd = htole16(nbds); 5556 5557 if (m0->m_flags & M_VLANTAG) { 5558 tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag); 5559 tx_start_bd->bd_flags.as_bitfield |= 5560 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 5561 } else { 5562 /* vf tx, start bd must hold the ethertype for fw to enforce it */ 5563 if (IS_VF(sc)) { 5564 /* map ethernet header to find type and header length */ 5565 eh = mtod(m0, struct ether_vlan_header *); 5566 tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto; 5567 } else { 5568 /* used by FW for packet accounting */ 5569 tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod); 5570 #if 0 5571 /* 5572 * If NPAR-SD is active then FW should do the tagging regardless 5573 * of value of priority. Otherwise, if priority indicates this is 5574 * a control packet we need to indicate to FW to avoid tagging. 5575 */ 5576 if (!IS_MF_AFEX(sc) && (mbuf priority == PRIO_CONTROL)) { 5577 SET_FLAG(tx_start_bd->general_data, 5578 ETH_TX_START_BD_FORCE_VLAN_MODE, 1); 5579 } 5580 #endif 5581 } 5582 } 5583 5584 /* 5585 * add a parsing BD from the chain. The parsing BD is always added 5586 * though it is only used for TSO and chksum 5587 */ 5588 bd_prod = TX_BD_NEXT(bd_prod); 5589 5590 if (m0->m_pkthdr.csum_flags) { 5591 if (m0->m_pkthdr.csum_flags & CSUM_IP) { 5592 fp->eth_q_stats.tx_ofld_frames_csum_ip++; 5593 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM; 5594 } 5595 5596 if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) { 5597 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5598 ETH_TX_BD_FLAGS_L4_CSUM); 5599 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) { 5600 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5601 ETH_TX_BD_FLAGS_IS_UDP | 5602 ETH_TX_BD_FLAGS_L4_CSUM); 5603 } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) || 5604 (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5605 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 5606 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) { 5607 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM | 5608 ETH_TX_BD_FLAGS_IS_UDP); 5609 } 5610 } 5611 5612 if (!CHIP_IS_E1x(sc)) { 5613 pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2; 5614 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 5615 5616 if (m0->m_pkthdr.csum_flags) { 5617 hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data); 5618 } 5619 5620 #if 0 5621 /* 5622 * Add the MACs to the parsing BD if the module param was 5623 * explicitly set, if this is a vf, or in switch independent 5624 * mode. 5625 */ 5626 if (sc->flags & BXE_TX_SWITCHING || IS_VF(sc) || IS_MF_SI(sc)) { 5627 eh = mtod(m0, struct ether_vlan_header *); 5628 bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, 5629 &pbd_e2->data.mac_addr.src_mid, 5630 &pbd_e2->data.mac_addr.src_lo, 5631 eh->evl_shost); 5632 bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi, 5633 &pbd_e2->data.mac_addr.dst_mid, 5634 &pbd_e2->data.mac_addr.dst_lo, 5635 eh->evl_dhost); 5636 } 5637 #endif 5638 5639 SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, 5640 mac_type); 5641 } else { 5642 uint16_t global_data = 0; 5643 5644 pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x; 5645 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 5646 5647 if (m0->m_pkthdr.csum_flags) { 5648 hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x); 5649 } 5650 5651 SET_FLAG(global_data, 5652 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 5653 pbd_e1x->global_data |= htole16(global_data); 5654 } 5655 5656 /* setup the parsing BD with TSO specific info */ 5657 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5658 fp->eth_q_stats.tx_ofld_frames_lso++; 5659 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 5660 5661 if (__predict_false(tx_start_bd->nbytes > hlen)) { 5662 fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++; 5663 5664 /* split the first BD into header/data making the fw job easy */ 5665 nbds++; 5666 tx_start_bd->nbd = htole16(nbds); 5667 tx_start_bd->nbytes = htole16(hlen); 5668 5669 bd_prod = TX_BD_NEXT(bd_prod); 5670 5671 /* new transmit BD after the tx_parse_bd */ 5672 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5673 tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen)); 5674 tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen)); 5675 tx_data_bd->nbytes = htole16(segs[0].ds_len - hlen); 5676 if (tx_total_pkt_size_bd == NULL) { 5677 tx_total_pkt_size_bd = tx_data_bd; 5678 } 5679 5680 BLOGD(sc, DBG_TX, 5681 "TSO split header size is %d (%x:%x) nbds %d\n", 5682 le16toh(tx_start_bd->nbytes), 5683 le32toh(tx_start_bd->addr_hi), 5684 le32toh(tx_start_bd->addr_lo), 5685 nbds); 5686 } 5687 5688 if (!CHIP_IS_E1x(sc)) { 5689 bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data); 5690 } else { 5691 bxe_set_pbd_lso(m0, pbd_e1x); 5692 } 5693 } 5694 5695 if (pbd_e2_parsing_data) { 5696 pbd_e2->parsing_data = htole32(pbd_e2_parsing_data); 5697 } 5698 5699 /* prepare remaining BDs, start tx bd contains first seg/frag */ 5700 for (i = 1; i < nsegs ; i++) { 5701 bd_prod = TX_BD_NEXT(bd_prod); 5702 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5703 tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr)); 5704 tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr)); 5705 tx_data_bd->nbytes = htole16(segs[i].ds_len); 5706 if (tx_total_pkt_size_bd == NULL) { 5707 tx_total_pkt_size_bd = tx_data_bd; 5708 } 5709 total_pkt_size += tx_data_bd->nbytes; 5710 } 5711 5712 BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd); 5713 5714 if (tx_total_pkt_size_bd != NULL) { 5715 tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size; 5716 } 5717 5718 if (__predict_false(sc->debug & DBG_TX)) { 5719 tmp_bd = tx_buf->first_bd; 5720 for (i = 0; i < nbds; i++) 5721 { 5722 if (i == 0) { 5723 BLOGD(sc, DBG_TX, 5724 "TX Strt: %p bd=%d nbd=%d vlan=0x%x " 5725 "bd_flags=0x%x hdr_nbds=%d\n", 5726 tx_start_bd, 5727 tmp_bd, 5728 le16toh(tx_start_bd->nbd), 5729 le16toh(tx_start_bd->vlan_or_ethertype), 5730 tx_start_bd->bd_flags.as_bitfield, 5731 (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS)); 5732 } else if (i == 1) { 5733 if (pbd_e1x) { 5734 BLOGD(sc, DBG_TX, 5735 "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u " 5736 "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x " 5737 "tcp_seq=%u total_hlen_w=%u\n", 5738 pbd_e1x, 5739 tmp_bd, 5740 pbd_e1x->global_data, 5741 pbd_e1x->ip_hlen_w, 5742 pbd_e1x->ip_id, 5743 pbd_e1x->lso_mss, 5744 pbd_e1x->tcp_flags, 5745 pbd_e1x->tcp_pseudo_csum, 5746 pbd_e1x->tcp_send_seq, 5747 le16toh(pbd_e1x->total_hlen_w)); 5748 } else { /* if (pbd_e2) */ 5749 BLOGD(sc, DBG_TX, 5750 "-> Parse: %p bd=%d dst=%02x:%02x:%02x " 5751 "src=%02x:%02x:%02x parsing_data=0x%x\n", 5752 pbd_e2, 5753 tmp_bd, 5754 pbd_e2->data.mac_addr.dst_hi, 5755 pbd_e2->data.mac_addr.dst_mid, 5756 pbd_e2->data.mac_addr.dst_lo, 5757 pbd_e2->data.mac_addr.src_hi, 5758 pbd_e2->data.mac_addr.src_mid, 5759 pbd_e2->data.mac_addr.src_lo, 5760 pbd_e2->parsing_data); 5761 } 5762 } 5763 5764 if (i != 1) { /* skip parse db as it doesn't hold data */ 5765 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd; 5766 BLOGD(sc, DBG_TX, 5767 "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n", 5768 tx_data_bd, 5769 tmp_bd, 5770 le16toh(tx_data_bd->nbytes), 5771 le32toh(tx_data_bd->addr_hi), 5772 le32toh(tx_data_bd->addr_lo)); 5773 } 5774 5775 tmp_bd = TX_BD_NEXT(tmp_bd); 5776 } 5777 } 5778 5779 BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod); 5780 5781 /* update TX BD producer index value for next TX */ 5782 bd_prod = TX_BD_NEXT(bd_prod); 5783 5784 /* 5785 * If the chain of tx_bd's describing this frame is adjacent to or spans 5786 * an eth_tx_next_bd element then we need to increment the nbds value. 5787 */ 5788 if (TX_BD_IDX(bd_prod) < nbds) { 5789 nbds++; 5790 } 5791 5792 /* don't allow reordering of writes for nbd and packets */ 5793 mb(); 5794 5795 fp->tx_db.data.prod += nbds; 5796 5797 /* producer points to the next free tx_bd at this point */ 5798 fp->tx_pkt_prod++; 5799 fp->tx_bd_prod = bd_prod; 5800 5801 DOORBELL(sc, fp->index, fp->tx_db.raw); 5802 5803 fp->eth_q_stats.tx_pkts++; 5804 5805 /* Prevent speculative reads from getting ahead of the status block. */ 5806 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 5807 0, 0, BUS_SPACE_BARRIER_READ); 5808 5809 /* Prevent speculative reads from getting ahead of the doorbell. */ 5810 bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle, 5811 0, 0, BUS_SPACE_BARRIER_READ); 5812 5813 return (0); 5814 } 5815 5816 static void 5817 bxe_tx_start_locked(struct bxe_softc *sc, 5818 struct ifnet *ifp, 5819 struct bxe_fastpath *fp) 5820 { 5821 struct mbuf *m = NULL; 5822 int tx_count = 0; 5823 uint16_t tx_bd_avail; 5824 5825 BXE_FP_TX_LOCK_ASSERT(fp); 5826 5827 /* keep adding entries while there are frames to send */ 5828 while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 5829 5830 /* 5831 * check for any frames to send 5832 * dequeue can still be NULL even if queue is not empty 5833 */ 5834 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 5835 if (__predict_false(m == NULL)) { 5836 break; 5837 } 5838 5839 /* the mbuf now belongs to us */ 5840 fp->eth_q_stats.mbuf_alloc_tx++; 5841 5842 /* 5843 * Put the frame into the transmit ring. If we don't have room, 5844 * place the mbuf back at the head of the TX queue, set the 5845 * OACTIVE flag, and wait for the NIC to drain the chain. 5846 */ 5847 if (__predict_false(bxe_tx_encap(fp, &m))) { 5848 fp->eth_q_stats.tx_encap_failures++; 5849 if (m != NULL) { 5850 /* mark the TX queue as full and return the frame */ 5851 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 5852 IFQ_DRV_PREPEND(&ifp->if_snd, m); 5853 fp->eth_q_stats.mbuf_alloc_tx--; 5854 fp->eth_q_stats.tx_queue_xoff++; 5855 } 5856 5857 /* stop looking for more work */ 5858 break; 5859 } 5860 5861 /* the frame was enqueued successfully */ 5862 tx_count++; 5863 5864 /* send a copy of the frame to any BPF listeners. */ 5865 BPF_MTAP(ifp, m); 5866 5867 tx_bd_avail = bxe_tx_avail(sc, fp); 5868 5869 /* handle any completions if we're running low */ 5870 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5871 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5872 bxe_txeof(sc, fp); 5873 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 5874 break; 5875 } 5876 } 5877 } 5878 5879 /* all TX packets were dequeued and/or the tx ring is full */ 5880 if (tx_count > 0) { 5881 /* reset the TX watchdog timeout timer */ 5882 fp->watchdog_timer = BXE_TX_TIMEOUT; 5883 } 5884 } 5885 5886 /* Legacy (non-RSS) dispatch routine */ 5887 static void 5888 bxe_tx_start(struct ifnet *ifp) 5889 { 5890 struct bxe_softc *sc; 5891 struct bxe_fastpath *fp; 5892 5893 sc = ifp->if_softc; 5894 5895 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 5896 BLOGW(sc, "Interface not running, ignoring transmit request\n"); 5897 return; 5898 } 5899 5900 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 5901 BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n"); 5902 return; 5903 } 5904 5905 if (!sc->link_vars.link_up) { 5906 BLOGW(sc, "Interface link is down, ignoring transmit request\n"); 5907 return; 5908 } 5909 5910 fp = &sc->fp[0]; 5911 5912 BXE_FP_TX_LOCK(fp); 5913 bxe_tx_start_locked(sc, ifp, fp); 5914 BXE_FP_TX_UNLOCK(fp); 5915 } 5916 5917 #if __FreeBSD_version >= 800000 5918 5919 static int 5920 bxe_tx_mq_start_locked(struct bxe_softc *sc, 5921 struct ifnet *ifp, 5922 struct bxe_fastpath *fp, 5923 struct mbuf *m) 5924 { 5925 struct buf_ring *tx_br = fp->tx_br; 5926 struct mbuf *next; 5927 int depth, rc, tx_count; 5928 uint16_t tx_bd_avail; 5929 5930 rc = tx_count = 0; 5931 5932 if (!tx_br) { 5933 BLOGE(sc, "Multiqueue TX and no buf_ring!\n"); 5934 return (EINVAL); 5935 } 5936 5937 /* fetch the depth of the driver queue */ 5938 depth = drbr_inuse(ifp, tx_br); 5939 if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) { 5940 fp->eth_q_stats.tx_max_drbr_queue_depth = depth; 5941 } 5942 5943 BXE_FP_TX_LOCK_ASSERT(fp); 5944 5945 if (m == NULL) { 5946 /* no new work, check for pending frames */ 5947 next = drbr_dequeue(ifp, tx_br); 5948 } else if (drbr_needs_enqueue(ifp, tx_br)) { 5949 /* have both new and pending work, maintain packet order */ 5950 rc = drbr_enqueue(ifp, tx_br, m); 5951 if (rc != 0) { 5952 fp->eth_q_stats.tx_soft_errors++; 5953 goto bxe_tx_mq_start_locked_exit; 5954 } 5955 next = drbr_dequeue(ifp, tx_br); 5956 } else { 5957 /* new work only and nothing pending */ 5958 next = m; 5959 } 5960 5961 /* keep adding entries while there are frames to send */ 5962 while (next != NULL) { 5963 5964 /* the mbuf now belongs to us */ 5965 fp->eth_q_stats.mbuf_alloc_tx++; 5966 5967 /* 5968 * Put the frame into the transmit ring. If we don't have room, 5969 * place the mbuf back at the head of the TX queue, set the 5970 * OACTIVE flag, and wait for the NIC to drain the chain. 5971 */ 5972 rc = bxe_tx_encap(fp, &next); 5973 if (__predict_false(rc != 0)) { 5974 fp->eth_q_stats.tx_encap_failures++; 5975 if (next != NULL) { 5976 /* mark the TX queue as full and save the frame */ 5977 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 5978 /* XXX this may reorder the frame */ 5979 rc = drbr_enqueue(ifp, tx_br, next); 5980 fp->eth_q_stats.mbuf_alloc_tx--; 5981 fp->eth_q_stats.tx_frames_deferred++; 5982 } 5983 5984 /* stop looking for more work */ 5985 break; 5986 } 5987 5988 /* the transmit frame was enqueued successfully */ 5989 tx_count++; 5990 5991 /* send a copy of the frame to any BPF listeners */ 5992 BPF_MTAP(ifp, next); 5993 5994 tx_bd_avail = bxe_tx_avail(sc, fp); 5995 5996 /* handle any completions if we're running low */ 5997 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5998 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5999 bxe_txeof(sc, fp); 6000 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 6001 break; 6002 } 6003 } 6004 6005 next = drbr_dequeue(ifp, tx_br); 6006 } 6007 6008 /* all TX packets were dequeued and/or the tx ring is full */ 6009 if (tx_count > 0) { 6010 /* reset the TX watchdog timeout timer */ 6011 fp->watchdog_timer = BXE_TX_TIMEOUT; 6012 } 6013 6014 bxe_tx_mq_start_locked_exit: 6015 6016 return (rc); 6017 } 6018 6019 /* Multiqueue (TSS) dispatch routine. */ 6020 static int 6021 bxe_tx_mq_start(struct ifnet *ifp, 6022 struct mbuf *m) 6023 { 6024 struct bxe_softc *sc = ifp->if_softc; 6025 struct bxe_fastpath *fp; 6026 int fp_index, rc; 6027 6028 fp_index = 0; /* default is the first queue */ 6029 6030 /* change the queue if using flow ID */ 6031 if ((m->m_flags & M_FLOWID) != 0) { 6032 fp_index = (m->m_pkthdr.flowid % sc->num_queues); 6033 } 6034 6035 fp = &sc->fp[fp_index]; 6036 6037 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 6038 BLOGW(sc, "Interface not running, ignoring transmit request\n"); 6039 return (ENETDOWN); 6040 } 6041 6042 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 6043 BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n"); 6044 return (EBUSY); 6045 } 6046 6047 if (!sc->link_vars.link_up) { 6048 BLOGW(sc, "Interface link is down, ignoring transmit request\n"); 6049 return (ENETDOWN); 6050 } 6051 6052 /* XXX change to TRYLOCK here and if failed then schedule taskqueue */ 6053 6054 BXE_FP_TX_LOCK(fp); 6055 rc = bxe_tx_mq_start_locked(sc, ifp, fp, m); 6056 BXE_FP_TX_UNLOCK(fp); 6057 6058 return (rc); 6059 } 6060 6061 static void 6062 bxe_mq_flush(struct ifnet *ifp) 6063 { 6064 struct bxe_softc *sc = ifp->if_softc; 6065 struct bxe_fastpath *fp; 6066 struct mbuf *m; 6067 int i; 6068 6069 for (i = 0; i < sc->num_queues; i++) { 6070 fp = &sc->fp[i]; 6071 6072 if (fp->state != BXE_FP_STATE_OPEN) { 6073 BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n", 6074 fp->index, fp->state); 6075 continue; 6076 } 6077 6078 if (fp->tx_br != NULL) { 6079 BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index); 6080 BXE_FP_TX_LOCK(fp); 6081 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { 6082 m_freem(m); 6083 } 6084 BXE_FP_TX_UNLOCK(fp); 6085 } 6086 } 6087 6088 if_qflush(ifp); 6089 } 6090 6091 #endif /* FreeBSD_version >= 800000 */ 6092 6093 static uint16_t 6094 bxe_cid_ilt_lines(struct bxe_softc *sc) 6095 { 6096 if (IS_SRIOV(sc)) { 6097 return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS); 6098 } 6099 return (L2_ILT_LINES(sc)); 6100 } 6101 6102 static void 6103 bxe_ilt_set_info(struct bxe_softc *sc) 6104 { 6105 struct ilt_client_info *ilt_client; 6106 struct ecore_ilt *ilt = sc->ilt; 6107 uint16_t line = 0; 6108 6109 ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc)); 6110 BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line); 6111 6112 /* CDU */ 6113 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 6114 ilt_client->client_num = ILT_CLIENT_CDU; 6115 ilt_client->page_size = CDU_ILT_PAGE_SZ; 6116 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 6117 ilt_client->start = line; 6118 line += bxe_cid_ilt_lines(sc); 6119 6120 if (CNIC_SUPPORT(sc)) { 6121 line += CNIC_ILT_LINES; 6122 } 6123 6124 ilt_client->end = (line - 1); 6125 6126 BLOGD(sc, DBG_LOAD, 6127 "ilt client[CDU]: start %d, end %d, " 6128 "psz 0x%x, flags 0x%x, hw psz %d\n", 6129 ilt_client->start, ilt_client->end, 6130 ilt_client->page_size, 6131 ilt_client->flags, 6132 ilog2(ilt_client->page_size >> 12)); 6133 6134 /* QM */ 6135 if (QM_INIT(sc->qm_cid_count)) { 6136 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 6137 ilt_client->client_num = ILT_CLIENT_QM; 6138 ilt_client->page_size = QM_ILT_PAGE_SZ; 6139 ilt_client->flags = 0; 6140 ilt_client->start = line; 6141 6142 /* 4 bytes for each cid */ 6143 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 6144 QM_ILT_PAGE_SZ); 6145 6146 ilt_client->end = (line - 1); 6147 6148 BLOGD(sc, DBG_LOAD, 6149 "ilt client[QM]: start %d, end %d, " 6150 "psz 0x%x, flags 0x%x, hw psz %d\n", 6151 ilt_client->start, ilt_client->end, 6152 ilt_client->page_size, ilt_client->flags, 6153 ilog2(ilt_client->page_size >> 12)); 6154 } 6155 6156 if (CNIC_SUPPORT(sc)) { 6157 /* SRC */ 6158 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 6159 ilt_client->client_num = ILT_CLIENT_SRC; 6160 ilt_client->page_size = SRC_ILT_PAGE_SZ; 6161 ilt_client->flags = 0; 6162 ilt_client->start = line; 6163 line += SRC_ILT_LINES; 6164 ilt_client->end = (line - 1); 6165 6166 BLOGD(sc, DBG_LOAD, 6167 "ilt client[SRC]: start %d, end %d, " 6168 "psz 0x%x, flags 0x%x, hw psz %d\n", 6169 ilt_client->start, ilt_client->end, 6170 ilt_client->page_size, ilt_client->flags, 6171 ilog2(ilt_client->page_size >> 12)); 6172 6173 /* TM */ 6174 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 6175 ilt_client->client_num = ILT_CLIENT_TM; 6176 ilt_client->page_size = TM_ILT_PAGE_SZ; 6177 ilt_client->flags = 0; 6178 ilt_client->start = line; 6179 line += TM_ILT_LINES; 6180 ilt_client->end = (line - 1); 6181 6182 BLOGD(sc, DBG_LOAD, 6183 "ilt client[TM]: start %d, end %d, " 6184 "psz 0x%x, flags 0x%x, hw psz %d\n", 6185 ilt_client->start, ilt_client->end, 6186 ilt_client->page_size, ilt_client->flags, 6187 ilog2(ilt_client->page_size >> 12)); 6188 } 6189 6190 KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!")); 6191 } 6192 6193 static void 6194 bxe_set_fp_rx_buf_size(struct bxe_softc *sc) 6195 { 6196 int i; 6197 6198 BLOGD(sc, DBG_LOAD, "mtu = %d\n", sc->mtu); 6199 6200 for (i = 0; i < sc->num_queues; i++) { 6201 /* get the Rx buffer size for RX frames */ 6202 sc->fp[i].rx_buf_size = 6203 (IP_HEADER_ALIGNMENT_PADDING + 6204 ETH_OVERHEAD + 6205 sc->mtu); 6206 6207 BLOGD(sc, DBG_LOAD, "rx_buf_size for fp[%02d] = %d\n", 6208 i, sc->fp[i].rx_buf_size); 6209 6210 /* get the mbuf allocation size for RX frames */ 6211 if (sc->fp[i].rx_buf_size <= MCLBYTES) { 6212 sc->fp[i].mbuf_alloc_size = MCLBYTES; 6213 } else if (sc->fp[i].rx_buf_size <= BCM_PAGE_SIZE) { 6214 sc->fp[i].mbuf_alloc_size = PAGE_SIZE; 6215 } else { 6216 sc->fp[i].mbuf_alloc_size = MJUM9BYTES; 6217 } 6218 6219 BLOGD(sc, DBG_LOAD, "mbuf_alloc_size for fp[%02d] = %d\n", 6220 i, sc->fp[i].mbuf_alloc_size); 6221 } 6222 } 6223 6224 static int 6225 bxe_alloc_ilt_mem(struct bxe_softc *sc) 6226 { 6227 int rc = 0; 6228 6229 if ((sc->ilt = 6230 (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt), 6231 M_BXE_ILT, 6232 (M_NOWAIT | M_ZERO))) == NULL) { 6233 rc = 1; 6234 } 6235 6236 return (rc); 6237 } 6238 6239 static int 6240 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc) 6241 { 6242 int rc = 0; 6243 6244 if ((sc->ilt->lines = 6245 (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES), 6246 M_BXE_ILT, 6247 (M_NOWAIT | M_ZERO))) == NULL) { 6248 rc = 1; 6249 } 6250 6251 return (rc); 6252 } 6253 6254 static void 6255 bxe_free_ilt_mem(struct bxe_softc *sc) 6256 { 6257 if (sc->ilt != NULL) { 6258 free(sc->ilt, M_BXE_ILT); 6259 sc->ilt = NULL; 6260 } 6261 } 6262 6263 static void 6264 bxe_free_ilt_lines_mem(struct bxe_softc *sc) 6265 { 6266 if (sc->ilt->lines != NULL) { 6267 free(sc->ilt->lines, M_BXE_ILT); 6268 sc->ilt->lines = NULL; 6269 } 6270 } 6271 6272 static void 6273 bxe_free_mem(struct bxe_softc *sc) 6274 { 6275 int i; 6276 6277 #if 0 6278 if (!CONFIGURE_NIC_MODE(sc)) { 6279 /* free searcher T2 table */ 6280 bxe_dma_free(sc, &sc->t2); 6281 } 6282 #endif 6283 6284 for (i = 0; i < L2_ILT_LINES(sc); i++) { 6285 bxe_dma_free(sc, &sc->context[i].vcxt_dma); 6286 sc->context[i].vcxt = NULL; 6287 sc->context[i].size = 0; 6288 } 6289 6290 ecore_ilt_mem_op(sc, ILT_MEMOP_FREE); 6291 6292 bxe_free_ilt_lines_mem(sc); 6293 6294 #if 0 6295 bxe_iov_free_mem(sc); 6296 #endif 6297 } 6298 6299 static int 6300 bxe_alloc_mem(struct bxe_softc *sc) 6301 { 6302 int context_size; 6303 int allocated; 6304 int i; 6305 6306 #if 0 6307 if (!CONFIGURE_NIC_MODE(sc)) { 6308 /* allocate searcher T2 table */ 6309 if (bxe_dma_alloc(sc, SRC_T2_SZ, 6310 &sc->t2, "searcher t2 table") != 0) { 6311 return (-1); 6312 } 6313 } 6314 #endif 6315 6316 /* 6317 * Allocate memory for CDU context: 6318 * This memory is allocated separately and not in the generic ILT 6319 * functions because CDU differs in few aspects: 6320 * 1. There can be multiple entities allocating memory for context - 6321 * regular L2, CNIC, and SRIOV drivers. Each separately controls 6322 * its own ILT lines. 6323 * 2. Since CDU page-size is not a single 4KB page (which is the case 6324 * for the other ILT clients), to be efficient we want to support 6325 * allocation of sub-page-size in the last entry. 6326 * 3. Context pointers are used by the driver to pass to FW / update 6327 * the context (for the other ILT clients the pointers are used just to 6328 * free the memory during unload). 6329 */ 6330 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc)); 6331 for (i = 0, allocated = 0; allocated < context_size; i++) { 6332 sc->context[i].size = min(CDU_ILT_PAGE_SZ, 6333 (context_size - allocated)); 6334 6335 if (bxe_dma_alloc(sc, sc->context[i].size, 6336 &sc->context[i].vcxt_dma, 6337 "cdu context") != 0) { 6338 bxe_free_mem(sc); 6339 return (-1); 6340 } 6341 6342 sc->context[i].vcxt = 6343 (union cdu_context *)sc->context[i].vcxt_dma.vaddr; 6344 6345 allocated += sc->context[i].size; 6346 } 6347 6348 bxe_alloc_ilt_lines_mem(sc); 6349 6350 BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n", 6351 sc->ilt, sc->ilt->start_line, sc->ilt->lines); 6352 { 6353 for (i = 0; i < 4; i++) { 6354 BLOGD(sc, DBG_LOAD, 6355 "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n", 6356 i, 6357 sc->ilt->clients[i].page_size, 6358 sc->ilt->clients[i].start, 6359 sc->ilt->clients[i].end, 6360 sc->ilt->clients[i].client_num, 6361 sc->ilt->clients[i].flags); 6362 } 6363 } 6364 if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) { 6365 BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n"); 6366 bxe_free_mem(sc); 6367 return (-1); 6368 } 6369 6370 #if 0 6371 if (bxe_iov_alloc_mem(sc)) { 6372 BLOGE(sc, "Failed to allocate memory for SRIOV\n"); 6373 bxe_free_mem(sc); 6374 return (-1); 6375 } 6376 #endif 6377 6378 return (0); 6379 } 6380 6381 static void 6382 bxe_free_rx_bd_chain(struct bxe_fastpath *fp) 6383 { 6384 struct bxe_softc *sc; 6385 int i; 6386 6387 sc = fp->sc; 6388 6389 if (fp->rx_mbuf_tag == NULL) { 6390 return; 6391 } 6392 6393 /* free all mbufs and unload all maps */ 6394 for (i = 0; i < RX_BD_TOTAL; i++) { 6395 if (fp->rx_mbuf_chain[i].m_map != NULL) { 6396 bus_dmamap_sync(fp->rx_mbuf_tag, 6397 fp->rx_mbuf_chain[i].m_map, 6398 BUS_DMASYNC_POSTREAD); 6399 bus_dmamap_unload(fp->rx_mbuf_tag, 6400 fp->rx_mbuf_chain[i].m_map); 6401 } 6402 6403 if (fp->rx_mbuf_chain[i].m != NULL) { 6404 m_freem(fp->rx_mbuf_chain[i].m); 6405 fp->rx_mbuf_chain[i].m = NULL; 6406 fp->eth_q_stats.mbuf_alloc_rx--; 6407 } 6408 } 6409 } 6410 6411 static void 6412 bxe_free_tpa_pool(struct bxe_fastpath *fp) 6413 { 6414 struct bxe_softc *sc; 6415 int i, max_agg_queues; 6416 6417 sc = fp->sc; 6418 6419 if (fp->rx_mbuf_tag == NULL) { 6420 return; 6421 } 6422 6423 max_agg_queues = MAX_AGG_QS(sc); 6424 6425 /* release all mbufs and unload all DMA maps in the TPA pool */ 6426 for (i = 0; i < max_agg_queues; i++) { 6427 if (fp->rx_tpa_info[i].bd.m_map != NULL) { 6428 bus_dmamap_sync(fp->rx_mbuf_tag, 6429 fp->rx_tpa_info[i].bd.m_map, 6430 BUS_DMASYNC_POSTREAD); 6431 bus_dmamap_unload(fp->rx_mbuf_tag, 6432 fp->rx_tpa_info[i].bd.m_map); 6433 } 6434 6435 if (fp->rx_tpa_info[i].bd.m != NULL) { 6436 m_freem(fp->rx_tpa_info[i].bd.m); 6437 fp->rx_tpa_info[i].bd.m = NULL; 6438 fp->eth_q_stats.mbuf_alloc_tpa--; 6439 } 6440 } 6441 } 6442 6443 static void 6444 bxe_free_sge_chain(struct bxe_fastpath *fp) 6445 { 6446 struct bxe_softc *sc; 6447 int i; 6448 6449 sc = fp->sc; 6450 6451 if (fp->rx_sge_mbuf_tag == NULL) { 6452 return; 6453 } 6454 6455 /* rree all mbufs and unload all maps */ 6456 for (i = 0; i < RX_SGE_TOTAL; i++) { 6457 if (fp->rx_sge_mbuf_chain[i].m_map != NULL) { 6458 bus_dmamap_sync(fp->rx_sge_mbuf_tag, 6459 fp->rx_sge_mbuf_chain[i].m_map, 6460 BUS_DMASYNC_POSTREAD); 6461 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 6462 fp->rx_sge_mbuf_chain[i].m_map); 6463 } 6464 6465 if (fp->rx_sge_mbuf_chain[i].m != NULL) { 6466 m_freem(fp->rx_sge_mbuf_chain[i].m); 6467 fp->rx_sge_mbuf_chain[i].m = NULL; 6468 fp->eth_q_stats.mbuf_alloc_sge--; 6469 } 6470 } 6471 } 6472 6473 static void 6474 bxe_free_fp_buffers(struct bxe_softc *sc) 6475 { 6476 struct bxe_fastpath *fp; 6477 int i; 6478 6479 for (i = 0; i < sc->num_queues; i++) { 6480 fp = &sc->fp[i]; 6481 6482 #if __FreeBSD_version >= 800000 6483 if (fp->tx_br != NULL) { 6484 struct mbuf *m; 6485 /* just in case bxe_mq_flush() wasn't called */ 6486 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { 6487 m_freem(m); 6488 } 6489 buf_ring_free(fp->tx_br, M_DEVBUF); 6490 fp->tx_br = NULL; 6491 } 6492 #endif 6493 6494 /* free all RX buffers */ 6495 bxe_free_rx_bd_chain(fp); 6496 bxe_free_tpa_pool(fp); 6497 bxe_free_sge_chain(fp); 6498 6499 if (fp->eth_q_stats.mbuf_alloc_rx != 0) { 6500 BLOGE(sc, "failed to claim all rx mbufs (%d left)\n", 6501 fp->eth_q_stats.mbuf_alloc_rx); 6502 } 6503 6504 if (fp->eth_q_stats.mbuf_alloc_sge != 0) { 6505 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6506 fp->eth_q_stats.mbuf_alloc_sge); 6507 } 6508 6509 if (fp->eth_q_stats.mbuf_alloc_tpa != 0) { 6510 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6511 fp->eth_q_stats.mbuf_alloc_tpa); 6512 } 6513 6514 if (fp->eth_q_stats.mbuf_alloc_tx != 0) { 6515 BLOGE(sc, "failed to release tx mbufs (%d left)\n", 6516 fp->eth_q_stats.mbuf_alloc_tx); 6517 } 6518 6519 /* XXX verify all mbufs were reclaimed */ 6520 6521 if (mtx_initialized(&fp->tx_mtx)) { 6522 mtx_destroy(&fp->tx_mtx); 6523 } 6524 6525 if (mtx_initialized(&fp->rx_mtx)) { 6526 mtx_destroy(&fp->rx_mtx); 6527 } 6528 } 6529 } 6530 6531 static int 6532 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 6533 uint16_t prev_index, 6534 uint16_t index) 6535 { 6536 struct bxe_sw_rx_bd *rx_buf; 6537 struct eth_rx_bd *rx_bd; 6538 bus_dma_segment_t segs[1]; 6539 bus_dmamap_t map; 6540 struct mbuf *m; 6541 int nsegs, rc; 6542 6543 rc = 0; 6544 6545 /* allocate the new RX BD mbuf */ 6546 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6547 if (__predict_false(m == NULL)) { 6548 fp->eth_q_stats.mbuf_rx_bd_alloc_failed++; 6549 return (ENOBUFS); 6550 } 6551 6552 fp->eth_q_stats.mbuf_alloc_rx++; 6553 6554 /* initialize the mbuf buffer length */ 6555 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6556 6557 /* map the mbuf into non-paged pool */ 6558 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6559 fp->rx_mbuf_spare_map, 6560 m, segs, &nsegs, BUS_DMA_NOWAIT); 6561 if (__predict_false(rc != 0)) { 6562 fp->eth_q_stats.mbuf_rx_bd_mapping_failed++; 6563 m_freem(m); 6564 fp->eth_q_stats.mbuf_alloc_rx--; 6565 return (rc); 6566 } 6567 6568 /* all mbufs must map to a single segment */ 6569 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6570 6571 /* release any existing RX BD mbuf mappings */ 6572 6573 if (prev_index != index) { 6574 rx_buf = &fp->rx_mbuf_chain[prev_index]; 6575 6576 if (rx_buf->m_map != NULL) { 6577 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6578 BUS_DMASYNC_POSTREAD); 6579 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6580 } 6581 6582 /* 6583 * We only get here from bxe_rxeof() when the maximum number 6584 * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already 6585 * holds the mbuf in the prev_index so it's OK to NULL it out 6586 * here without concern of a memory leak. 6587 */ 6588 fp->rx_mbuf_chain[prev_index].m = NULL; 6589 } 6590 6591 rx_buf = &fp->rx_mbuf_chain[index]; 6592 6593 if (rx_buf->m_map != NULL) { 6594 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6595 BUS_DMASYNC_POSTREAD); 6596 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6597 } 6598 6599 /* save the mbuf and mapping info for a future packet */ 6600 map = (prev_index != index) ? 6601 fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map; 6602 rx_buf->m_map = fp->rx_mbuf_spare_map; 6603 fp->rx_mbuf_spare_map = map; 6604 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6605 BUS_DMASYNC_PREREAD); 6606 rx_buf->m = m; 6607 6608 rx_bd = &fp->rx_chain[index]; 6609 rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6610 rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6611 6612 return (rc); 6613 } 6614 6615 static int 6616 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 6617 int queue) 6618 { 6619 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 6620 bus_dma_segment_t segs[1]; 6621 bus_dmamap_t map; 6622 struct mbuf *m; 6623 int nsegs; 6624 int rc = 0; 6625 6626 /* allocate the new TPA mbuf */ 6627 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6628 if (__predict_false(m == NULL)) { 6629 fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++; 6630 return (ENOBUFS); 6631 } 6632 6633 fp->eth_q_stats.mbuf_alloc_tpa++; 6634 6635 /* initialize the mbuf buffer length */ 6636 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6637 6638 /* map the mbuf into non-paged pool */ 6639 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6640 fp->rx_tpa_info_mbuf_spare_map, 6641 m, segs, &nsegs, BUS_DMA_NOWAIT); 6642 if (__predict_false(rc != 0)) { 6643 fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++; 6644 m_free(m); 6645 fp->eth_q_stats.mbuf_alloc_tpa--; 6646 return (rc); 6647 } 6648 6649 /* all mbufs must map to a single segment */ 6650 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6651 6652 /* release any existing TPA mbuf mapping */ 6653 if (tpa_info->bd.m_map != NULL) { 6654 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6655 BUS_DMASYNC_POSTREAD); 6656 bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map); 6657 } 6658 6659 /* save the mbuf and mapping info for the TPA mbuf */ 6660 map = tpa_info->bd.m_map; 6661 tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map; 6662 fp->rx_tpa_info_mbuf_spare_map = map; 6663 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6664 BUS_DMASYNC_PREREAD); 6665 tpa_info->bd.m = m; 6666 tpa_info->seg = segs[0]; 6667 6668 return (rc); 6669 } 6670 6671 /* 6672 * Allocate an mbuf and assign it to the receive scatter gather chain. The 6673 * caller must take care to save a copy of the existing mbuf in the SG mbuf 6674 * chain. 6675 */ 6676 static int 6677 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 6678 uint16_t index) 6679 { 6680 struct bxe_sw_rx_bd *sge_buf; 6681 struct eth_rx_sge *sge; 6682 bus_dma_segment_t segs[1]; 6683 bus_dmamap_t map; 6684 struct mbuf *m; 6685 int nsegs; 6686 int rc = 0; 6687 6688 /* allocate a new SGE mbuf */ 6689 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE); 6690 if (__predict_false(m == NULL)) { 6691 fp->eth_q_stats.mbuf_rx_sge_alloc_failed++; 6692 return (ENOMEM); 6693 } 6694 6695 fp->eth_q_stats.mbuf_alloc_sge++; 6696 6697 /* initialize the mbuf buffer length */ 6698 m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE; 6699 6700 /* map the SGE mbuf into non-paged pool */ 6701 rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag, 6702 fp->rx_sge_mbuf_spare_map, 6703 m, segs, &nsegs, BUS_DMA_NOWAIT); 6704 if (__predict_false(rc != 0)) { 6705 fp->eth_q_stats.mbuf_rx_sge_mapping_failed++; 6706 m_freem(m); 6707 fp->eth_q_stats.mbuf_alloc_sge--; 6708 return (rc); 6709 } 6710 6711 /* all mbufs must map to a single segment */ 6712 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6713 6714 sge_buf = &fp->rx_sge_mbuf_chain[index]; 6715 6716 /* release any existing SGE mbuf mapping */ 6717 if (sge_buf->m_map != NULL) { 6718 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6719 BUS_DMASYNC_POSTREAD); 6720 bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map); 6721 } 6722 6723 /* save the mbuf and mapping info for a future packet */ 6724 map = sge_buf->m_map; 6725 sge_buf->m_map = fp->rx_sge_mbuf_spare_map; 6726 fp->rx_sge_mbuf_spare_map = map; 6727 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6728 BUS_DMASYNC_PREREAD); 6729 sge_buf->m = m; 6730 6731 sge = &fp->rx_sge_chain[index]; 6732 sge->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6733 sge->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6734 6735 return (rc); 6736 } 6737 6738 static __noinline int 6739 bxe_alloc_fp_buffers(struct bxe_softc *sc) 6740 { 6741 struct bxe_fastpath *fp; 6742 int i, j, rc = 0; 6743 int ring_prod, cqe_ring_prod; 6744 int max_agg_queues; 6745 6746 for (i = 0; i < sc->num_queues; i++) { 6747 fp = &sc->fp[i]; 6748 6749 #if __FreeBSD_version >= 800000 6750 fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF, 6751 M_DONTWAIT, &fp->tx_mtx); 6752 if (fp->tx_br == NULL) { 6753 BLOGE(sc, "buf_ring alloc fail for fp[%02d]\n", i); 6754 goto bxe_alloc_fp_buffers_error; 6755 } 6756 #endif 6757 6758 ring_prod = cqe_ring_prod = 0; 6759 fp->rx_bd_cons = 0; 6760 fp->rx_cq_cons = 0; 6761 6762 /* allocate buffers for the RX BDs in RX BD chain */ 6763 for (j = 0; j < sc->max_rx_bufs; j++) { 6764 rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod); 6765 if (rc != 0) { 6766 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 6767 i, rc); 6768 goto bxe_alloc_fp_buffers_error; 6769 } 6770 6771 ring_prod = RX_BD_NEXT(ring_prod); 6772 cqe_ring_prod = RCQ_NEXT(cqe_ring_prod); 6773 } 6774 6775 fp->rx_bd_prod = ring_prod; 6776 fp->rx_cq_prod = cqe_ring_prod; 6777 fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0; 6778 6779 if (sc->ifnet->if_capenable & IFCAP_LRO) { 6780 max_agg_queues = MAX_AGG_QS(sc); 6781 6782 fp->tpa_enable = TRUE; 6783 6784 /* fill the TPA pool */ 6785 for (j = 0; j < max_agg_queues; j++) { 6786 rc = bxe_alloc_rx_tpa_mbuf(fp, j); 6787 if (rc != 0) { 6788 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n", 6789 i, j); 6790 fp->tpa_enable = FALSE; 6791 goto bxe_alloc_fp_buffers_error; 6792 } 6793 6794 fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP; 6795 } 6796 6797 if (fp->tpa_enable) { 6798 /* fill the RX SGE chain */ 6799 ring_prod = 0; 6800 for (j = 0; j < RX_SGE_USABLE; j++) { 6801 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod); 6802 if (rc != 0) { 6803 BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n", 6804 i, ring_prod); 6805 fp->tpa_enable = FALSE; 6806 ring_prod = 0; 6807 goto bxe_alloc_fp_buffers_error; 6808 } 6809 6810 ring_prod = RX_SGE_NEXT(ring_prod); 6811 } 6812 6813 fp->rx_sge_prod = ring_prod; 6814 } 6815 } 6816 } 6817 6818 return (0); 6819 6820 bxe_alloc_fp_buffers_error: 6821 6822 /* unwind what was already allocated */ 6823 bxe_free_rx_bd_chain(fp); 6824 bxe_free_tpa_pool(fp); 6825 bxe_free_sge_chain(fp); 6826 6827 return (ENOBUFS); 6828 } 6829 6830 static void 6831 bxe_free_fw_stats_mem(struct bxe_softc *sc) 6832 { 6833 bxe_dma_free(sc, &sc->fw_stats_dma); 6834 6835 sc->fw_stats_num = 0; 6836 6837 sc->fw_stats_req_size = 0; 6838 sc->fw_stats_req = NULL; 6839 sc->fw_stats_req_mapping = 0; 6840 6841 sc->fw_stats_data_size = 0; 6842 sc->fw_stats_data = NULL; 6843 sc->fw_stats_data_mapping = 0; 6844 } 6845 6846 static int 6847 bxe_alloc_fw_stats_mem(struct bxe_softc *sc) 6848 { 6849 uint8_t num_queue_stats; 6850 int num_groups; 6851 6852 /* number of queues for statistics is number of eth queues */ 6853 num_queue_stats = BXE_NUM_ETH_QUEUES(sc); 6854 6855 /* 6856 * Total number of FW statistics requests = 6857 * 1 for port stats + 1 for PF stats + num of queues 6858 */ 6859 sc->fw_stats_num = (2 + num_queue_stats); 6860 6861 /* 6862 * Request is built from stats_query_header and an array of 6863 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT 6864 * rules. The real number or requests is configured in the 6865 * stats_query_header. 6866 */ 6867 num_groups = 6868 ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) + 6869 ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0)); 6870 6871 BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n", 6872 sc->fw_stats_num, num_groups); 6873 6874 sc->fw_stats_req_size = 6875 (sizeof(struct stats_query_header) + 6876 (num_groups * sizeof(struct stats_query_cmd_group))); 6877 6878 /* 6879 * Data for statistics requests + stats_counter. 6880 * stats_counter holds per-STORM counters that are incremented when 6881 * STORM has finished with the current request. Memory for FCoE 6882 * offloaded statistics are counted anyway, even if they will not be sent. 6883 * VF stats are not accounted for here as the data of VF stats is stored 6884 * in memory allocated by the VF, not here. 6885 */ 6886 sc->fw_stats_data_size = 6887 (sizeof(struct stats_counter) + 6888 sizeof(struct per_port_stats) + 6889 sizeof(struct per_pf_stats) + 6890 /* sizeof(struct fcoe_statistics_params) + */ 6891 (sizeof(struct per_queue_stats) * num_queue_stats)); 6892 6893 if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size), 6894 &sc->fw_stats_dma, "fw stats") != 0) { 6895 bxe_free_fw_stats_mem(sc); 6896 return (-1); 6897 } 6898 6899 /* set up the shortcuts */ 6900 6901 sc->fw_stats_req = 6902 (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr; 6903 sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr; 6904 6905 sc->fw_stats_data = 6906 (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr + 6907 sc->fw_stats_req_size); 6908 sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr + 6909 sc->fw_stats_req_size); 6910 6911 BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n", 6912 (uintmax_t)sc->fw_stats_req_mapping); 6913 6914 BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n", 6915 (uintmax_t)sc->fw_stats_data_mapping); 6916 6917 return (0); 6918 } 6919 6920 /* 6921 * Bits map: 6922 * 0-7 - Engine0 load counter. 6923 * 8-15 - Engine1 load counter. 6924 * 16 - Engine0 RESET_IN_PROGRESS bit. 6925 * 17 - Engine1 RESET_IN_PROGRESS bit. 6926 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active 6927 * function on the engine 6928 * 19 - Engine1 ONE_IS_LOADED. 6929 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 6930 * leader to complete (check for both RESET_IN_PROGRESS bits and not 6931 * for just the one belonging to its engine). 6932 */ 6933 #define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 6934 #define BXE_PATH0_LOAD_CNT_MASK 0x000000ff 6935 #define BXE_PATH0_LOAD_CNT_SHIFT 0 6936 #define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00 6937 #define BXE_PATH1_LOAD_CNT_SHIFT 8 6938 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000 6939 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000 6940 #define BXE_GLOBAL_RESET_BIT 0x00040000 6941 6942 /* set the GLOBAL_RESET bit, should be run under rtnl lock */ 6943 static void 6944 bxe_set_reset_global(struct bxe_softc *sc) 6945 { 6946 uint32_t val; 6947 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6948 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6949 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT); 6950 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6951 } 6952 6953 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */ 6954 static void 6955 bxe_clear_reset_global(struct bxe_softc *sc) 6956 { 6957 uint32_t val; 6958 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6959 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6960 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT)); 6961 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6962 } 6963 6964 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */ 6965 static uint8_t 6966 bxe_reset_is_global(struct bxe_softc *sc) 6967 { 6968 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6969 BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val); 6970 return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE; 6971 } 6972 6973 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */ 6974 static void 6975 bxe_set_reset_done(struct bxe_softc *sc) 6976 { 6977 uint32_t val; 6978 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6979 BXE_PATH0_RST_IN_PROG_BIT; 6980 6981 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6982 6983 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6984 /* Clear the bit */ 6985 val &= ~bit; 6986 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6987 6988 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6989 } 6990 6991 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */ 6992 static void 6993 bxe_set_reset_in_progress(struct bxe_softc *sc) 6994 { 6995 uint32_t val; 6996 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6997 BXE_PATH0_RST_IN_PROG_BIT; 6998 6999 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7000 7001 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7002 /* Set the bit */ 7003 val |= bit; 7004 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 7005 7006 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7007 } 7008 7009 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */ 7010 static uint8_t 7011 bxe_reset_is_done(struct bxe_softc *sc, 7012 int engine) 7013 { 7014 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7015 uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT : 7016 BXE_PATH0_RST_IN_PROG_BIT; 7017 7018 /* return false if bit is set */ 7019 return (val & bit) ? FALSE : TRUE; 7020 } 7021 7022 /* get the load status for an engine, should be run under rtnl lock */ 7023 static uint8_t 7024 bxe_get_load_status(struct bxe_softc *sc, 7025 int engine) 7026 { 7027 uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK : 7028 BXE_PATH0_LOAD_CNT_MASK; 7029 uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT : 7030 BXE_PATH0_LOAD_CNT_SHIFT; 7031 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7032 7033 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 7034 7035 val = ((val & mask) >> shift); 7036 7037 BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val); 7038 7039 return (val != 0); 7040 } 7041 7042 /* set pf load mark */ 7043 /* XXX needs to be under rtnl lock */ 7044 static void 7045 bxe_set_pf_load(struct bxe_softc *sc) 7046 { 7047 uint32_t val; 7048 uint32_t val1; 7049 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 7050 BXE_PATH0_LOAD_CNT_MASK; 7051 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 7052 BXE_PATH0_LOAD_CNT_SHIFT; 7053 7054 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7055 7056 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7057 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 7058 7059 /* get the current counter value */ 7060 val1 = ((val & mask) >> shift); 7061 7062 /* set bit of this PF */ 7063 val1 |= (1 << SC_ABS_FUNC(sc)); 7064 7065 /* clear the old value */ 7066 val &= ~mask; 7067 7068 /* set the new one */ 7069 val |= ((val1 << shift) & mask); 7070 7071 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 7072 7073 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7074 } 7075 7076 /* clear pf load mark */ 7077 /* XXX needs to be under rtnl lock */ 7078 static uint8_t 7079 bxe_clear_pf_load(struct bxe_softc *sc) 7080 { 7081 uint32_t val1, val; 7082 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 7083 BXE_PATH0_LOAD_CNT_MASK; 7084 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 7085 BXE_PATH0_LOAD_CNT_SHIFT; 7086 7087 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7088 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7089 BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val); 7090 7091 /* get the current counter value */ 7092 val1 = (val & mask) >> shift; 7093 7094 /* clear bit of that PF */ 7095 val1 &= ~(1 << SC_ABS_FUNC(sc)); 7096 7097 /* clear the old value */ 7098 val &= ~mask; 7099 7100 /* set the new one */ 7101 val |= ((val1 << shift) & mask); 7102 7103 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 7104 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7105 return (val1 != 0); 7106 } 7107 7108 /* send load requrest to mcp and analyze response */ 7109 static int 7110 bxe_nic_load_request(struct bxe_softc *sc, 7111 uint32_t *load_code) 7112 { 7113 /* init fw_seq */ 7114 sc->fw_seq = 7115 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 7116 DRV_MSG_SEQ_NUMBER_MASK); 7117 7118 BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq); 7119 7120 /* get the current FW pulse sequence */ 7121 sc->fw_drv_pulse_wr_seq = 7122 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) & 7123 DRV_PULSE_SEQ_MASK); 7124 7125 BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n", 7126 sc->fw_drv_pulse_wr_seq); 7127 7128 /* load request */ 7129 (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 7130 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 7131 7132 /* if the MCP fails to respond we must abort */ 7133 if (!(*load_code)) { 7134 BLOGE(sc, "MCP response failure!\n"); 7135 return (-1); 7136 } 7137 7138 /* if MCP refused then must abort */ 7139 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 7140 BLOGE(sc, "MCP refused load request\n"); 7141 return (-1); 7142 } 7143 7144 return (0); 7145 } 7146 7147 /* 7148 * Check whether another PF has already loaded FW to chip. In virtualized 7149 * environments a pf from anoth VM may have already initialized the device 7150 * including loading FW. 7151 */ 7152 static int 7153 bxe_nic_load_analyze_req(struct bxe_softc *sc, 7154 uint32_t load_code) 7155 { 7156 uint32_t my_fw, loaded_fw; 7157 7158 /* is another pf loaded on this engine? */ 7159 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 7160 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 7161 /* build my FW version dword */ 7162 my_fw = (BCM_5710_FW_MAJOR_VERSION + 7163 (BCM_5710_FW_MINOR_VERSION << 8 ) + 7164 (BCM_5710_FW_REVISION_VERSION << 16) + 7165 (BCM_5710_FW_ENGINEERING_VERSION << 24)); 7166 7167 /* read loaded FW from chip */ 7168 loaded_fw = REG_RD(sc, XSEM_REG_PRAM); 7169 BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n", 7170 loaded_fw, my_fw); 7171 7172 /* abort nic load if version mismatch */ 7173 if (my_fw != loaded_fw) { 7174 BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)", 7175 loaded_fw, my_fw); 7176 return (-1); 7177 } 7178 } 7179 7180 return (0); 7181 } 7182 7183 /* mark PMF if applicable */ 7184 static void 7185 bxe_nic_load_pmf(struct bxe_softc *sc, 7186 uint32_t load_code) 7187 { 7188 uint32_t ncsi_oem_data_addr; 7189 7190 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 7191 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 7192 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 7193 /* 7194 * Barrier here for ordering between the writing to sc->port.pmf here 7195 * and reading it from the periodic task. 7196 */ 7197 sc->port.pmf = 1; 7198 mb(); 7199 } else { 7200 sc->port.pmf = 0; 7201 } 7202 7203 BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf); 7204 7205 /* XXX needed? */ 7206 if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) { 7207 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) { 7208 ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr); 7209 if (ncsi_oem_data_addr) { 7210 REG_WR(sc, 7211 (ncsi_oem_data_addr + 7212 offsetof(struct glob_ncsi_oem_data, driver_version)), 7213 0); 7214 } 7215 } 7216 } 7217 } 7218 7219 static void 7220 bxe_read_mf_cfg(struct bxe_softc *sc) 7221 { 7222 int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1); 7223 int abs_func; 7224 int vn; 7225 7226 if (BXE_NOMCP(sc)) { 7227 return; /* what should be the default bvalue in this case */ 7228 } 7229 7230 /* 7231 * The formula for computing the absolute function number is... 7232 * For 2 port configuration (4 functions per port): 7233 * abs_func = 2 * vn + SC_PORT + SC_PATH 7234 * For 4 port configuration (2 functions per port): 7235 * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH 7236 */ 7237 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 7238 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc)); 7239 if (abs_func >= E1H_FUNC_MAX) { 7240 break; 7241 } 7242 sc->devinfo.mf_info.mf_config[vn] = 7243 MFCFG_RD(sc, func_mf_config[abs_func].config); 7244 } 7245 7246 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & 7247 FUNC_MF_CFG_FUNC_DISABLED) { 7248 BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n"); 7249 sc->flags |= BXE_MF_FUNC_DIS; 7250 } else { 7251 BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n"); 7252 sc->flags &= ~BXE_MF_FUNC_DIS; 7253 } 7254 } 7255 7256 /* acquire split MCP access lock register */ 7257 static int bxe_acquire_alr(struct bxe_softc *sc) 7258 { 7259 uint32_t j, val; 7260 7261 for (j = 0; j < 1000; j++) { 7262 val = (1UL << 31); 7263 REG_WR(sc, GRCBASE_MCP + 0x9c, val); 7264 val = REG_RD(sc, GRCBASE_MCP + 0x9c); 7265 if (val & (1L << 31)) 7266 break; 7267 7268 DELAY(5000); 7269 } 7270 7271 if (!(val & (1L << 31))) { 7272 BLOGE(sc, "Cannot acquire MCP access lock register\n"); 7273 return (-1); 7274 } 7275 7276 return (0); 7277 } 7278 7279 /* release split MCP access lock register */ 7280 static void bxe_release_alr(struct bxe_softc *sc) 7281 { 7282 REG_WR(sc, GRCBASE_MCP + 0x9c, 0); 7283 } 7284 7285 static void 7286 bxe_fan_failure(struct bxe_softc *sc) 7287 { 7288 int port = SC_PORT(sc); 7289 uint32_t ext_phy_config; 7290 7291 /* mark the failure */ 7292 ext_phy_config = 7293 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 7294 7295 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 7296 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 7297 SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config, 7298 ext_phy_config); 7299 7300 /* log the failure */ 7301 BLOGW(sc, "Fan Failure has caused the driver to shutdown " 7302 "the card to prevent permanent damage. " 7303 "Please contact OEM Support for assistance\n"); 7304 7305 /* XXX */ 7306 #if 1 7307 bxe_panic(sc, ("Schedule task to handle fan failure\n")); 7308 #else 7309 /* 7310 * Schedule device reset (unload) 7311 * This is due to some boards consuming sufficient power when driver is 7312 * up to overheat if fan fails. 7313 */ 7314 bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state); 7315 schedule_delayed_work(&sc->sp_rtnl_task, 0); 7316 #endif 7317 } 7318 7319 /* this function is called upon a link interrupt */ 7320 static void 7321 bxe_link_attn(struct bxe_softc *sc) 7322 { 7323 uint32_t pause_enabled = 0; 7324 struct host_port_stats *pstats; 7325 int cmng_fns; 7326 7327 /* Make sure that we are synced with the current statistics */ 7328 bxe_stats_handle(sc, STATS_EVENT_STOP); 7329 7330 elink_link_update(&sc->link_params, &sc->link_vars); 7331 7332 if (sc->link_vars.link_up) { 7333 7334 /* dropless flow control */ 7335 if (!CHIP_IS_E1(sc) && sc->dropless_fc) { 7336 pause_enabled = 0; 7337 7338 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 7339 pause_enabled = 1; 7340 } 7341 7342 REG_WR(sc, 7343 (BAR_USTRORM_INTMEM + 7344 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))), 7345 pause_enabled); 7346 } 7347 7348 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) { 7349 pstats = BXE_SP(sc, port_stats); 7350 /* reset old mac stats */ 7351 memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx)); 7352 } 7353 7354 if (sc->state == BXE_STATE_OPEN) { 7355 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 7356 } 7357 } 7358 7359 if (sc->link_vars.link_up && sc->link_vars.line_speed) { 7360 cmng_fns = bxe_get_cmng_fns_mode(sc); 7361 7362 if (cmng_fns != CMNG_FNS_NONE) { 7363 bxe_cmng_fns_init(sc, FALSE, cmng_fns); 7364 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7365 } else { 7366 /* rate shaping and fairness are disabled */ 7367 BLOGD(sc, DBG_LOAD, "single function mode without fairness\n"); 7368 } 7369 } 7370 7371 bxe_link_report_locked(sc); 7372 7373 if (IS_MF(sc)) { 7374 ; // XXX bxe_link_sync_notify(sc); 7375 } 7376 } 7377 7378 static void 7379 bxe_attn_int_asserted(struct bxe_softc *sc, 7380 uint32_t asserted) 7381 { 7382 int port = SC_PORT(sc); 7383 uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 7384 MISC_REG_AEU_MASK_ATTN_FUNC_0; 7385 uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 7386 NIG_REG_MASK_INTERRUPT_PORT0; 7387 uint32_t aeu_mask; 7388 uint32_t nig_mask = 0; 7389 uint32_t reg_addr; 7390 uint32_t igu_acked; 7391 uint32_t cnt; 7392 7393 if (sc->attn_state & asserted) { 7394 BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted); 7395 } 7396 7397 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7398 7399 aeu_mask = REG_RD(sc, aeu_addr); 7400 7401 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n", 7402 aeu_mask, asserted); 7403 7404 aeu_mask &= ~(asserted & 0x3ff); 7405 7406 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 7407 7408 REG_WR(sc, aeu_addr, aeu_mask); 7409 7410 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7411 7412 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 7413 sc->attn_state |= asserted; 7414 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 7415 7416 if (asserted & ATTN_HARD_WIRED_MASK) { 7417 if (asserted & ATTN_NIG_FOR_FUNC) { 7418 7419 BXE_PHY_LOCK(sc); 7420 7421 /* save nig interrupt mask */ 7422 nig_mask = REG_RD(sc, nig_int_mask_addr); 7423 7424 /* If nig_mask is not set, no need to call the update function */ 7425 if (nig_mask) { 7426 REG_WR(sc, nig_int_mask_addr, 0); 7427 7428 bxe_link_attn(sc); 7429 } 7430 7431 /* handle unicore attn? */ 7432 } 7433 7434 if (asserted & ATTN_SW_TIMER_4_FUNC) { 7435 BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n"); 7436 } 7437 7438 if (asserted & GPIO_2_FUNC) { 7439 BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n"); 7440 } 7441 7442 if (asserted & GPIO_3_FUNC) { 7443 BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n"); 7444 } 7445 7446 if (asserted & GPIO_4_FUNC) { 7447 BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n"); 7448 } 7449 7450 if (port == 0) { 7451 if (asserted & ATTN_GENERAL_ATTN_1) { 7452 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n"); 7453 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 7454 } 7455 if (asserted & ATTN_GENERAL_ATTN_2) { 7456 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n"); 7457 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 7458 } 7459 if (asserted & ATTN_GENERAL_ATTN_3) { 7460 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n"); 7461 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 7462 } 7463 } else { 7464 if (asserted & ATTN_GENERAL_ATTN_4) { 7465 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n"); 7466 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 7467 } 7468 if (asserted & ATTN_GENERAL_ATTN_5) { 7469 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n"); 7470 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 7471 } 7472 if (asserted & ATTN_GENERAL_ATTN_6) { 7473 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n"); 7474 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 7475 } 7476 } 7477 } /* hardwired */ 7478 7479 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7480 reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET); 7481 } else { 7482 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 7483 } 7484 7485 BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n", 7486 asserted, 7487 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 7488 REG_WR(sc, reg_addr, asserted); 7489 7490 /* now set back the mask */ 7491 if (asserted & ATTN_NIG_FOR_FUNC) { 7492 /* 7493 * Verify that IGU ack through BAR was written before restoring 7494 * NIG mask. This loop should exit after 2-3 iterations max. 7495 */ 7496 if (sc->devinfo.int_block != INT_BLOCK_HC) { 7497 cnt = 0; 7498 7499 do { 7500 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS); 7501 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 7502 (++cnt < MAX_IGU_ATTN_ACK_TO)); 7503 7504 if (!igu_acked) { 7505 BLOGE(sc, "Failed to verify IGU ack on time\n"); 7506 } 7507 7508 mb(); 7509 } 7510 7511 REG_WR(sc, nig_int_mask_addr, nig_mask); 7512 7513 BXE_PHY_UNLOCK(sc); 7514 } 7515 } 7516 7517 static void 7518 bxe_print_next_block(struct bxe_softc *sc, 7519 int idx, 7520 const char *blk) 7521 { 7522 BLOGI(sc, "%s%s", idx ? ", " : "", blk); 7523 } 7524 7525 static int 7526 bxe_check_blocks_with_parity0(struct bxe_softc *sc, 7527 uint32_t sig, 7528 int par_num, 7529 uint8_t print) 7530 { 7531 uint32_t cur_bit = 0; 7532 int i = 0; 7533 7534 for (i = 0; sig; i++) { 7535 cur_bit = ((uint32_t)0x1 << i); 7536 if (sig & cur_bit) { 7537 switch (cur_bit) { 7538 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 7539 if (print) 7540 bxe_print_next_block(sc, par_num++, "BRB"); 7541 break; 7542 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 7543 if (print) 7544 bxe_print_next_block(sc, par_num++, "PARSER"); 7545 break; 7546 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 7547 if (print) 7548 bxe_print_next_block(sc, par_num++, "TSDM"); 7549 break; 7550 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 7551 if (print) 7552 bxe_print_next_block(sc, par_num++, "SEARCHER"); 7553 break; 7554 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 7555 if (print) 7556 bxe_print_next_block(sc, par_num++, "TCM"); 7557 break; 7558 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 7559 if (print) 7560 bxe_print_next_block(sc, par_num++, "TSEMI"); 7561 break; 7562 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 7563 if (print) 7564 bxe_print_next_block(sc, par_num++, "XPB"); 7565 break; 7566 } 7567 7568 /* Clear the bit */ 7569 sig &= ~cur_bit; 7570 } 7571 } 7572 7573 return (par_num); 7574 } 7575 7576 static int 7577 bxe_check_blocks_with_parity1(struct bxe_softc *sc, 7578 uint32_t sig, 7579 int par_num, 7580 uint8_t *global, 7581 uint8_t print) 7582 { 7583 int i = 0; 7584 uint32_t cur_bit = 0; 7585 for (i = 0; sig; i++) { 7586 cur_bit = ((uint32_t)0x1 << i); 7587 if (sig & cur_bit) { 7588 switch (cur_bit) { 7589 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 7590 if (print) 7591 bxe_print_next_block(sc, par_num++, "PBF"); 7592 break; 7593 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 7594 if (print) 7595 bxe_print_next_block(sc, par_num++, "QM"); 7596 break; 7597 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 7598 if (print) 7599 bxe_print_next_block(sc, par_num++, "TM"); 7600 break; 7601 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 7602 if (print) 7603 bxe_print_next_block(sc, par_num++, "XSDM"); 7604 break; 7605 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 7606 if (print) 7607 bxe_print_next_block(sc, par_num++, "XCM"); 7608 break; 7609 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 7610 if (print) 7611 bxe_print_next_block(sc, par_num++, "XSEMI"); 7612 break; 7613 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 7614 if (print) 7615 bxe_print_next_block(sc, par_num++, "DOORBELLQ"); 7616 break; 7617 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 7618 if (print) 7619 bxe_print_next_block(sc, par_num++, "NIG"); 7620 break; 7621 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 7622 if (print) 7623 bxe_print_next_block(sc, par_num++, "VAUX PCI CORE"); 7624 *global = TRUE; 7625 break; 7626 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 7627 if (print) 7628 bxe_print_next_block(sc, par_num++, "DEBUG"); 7629 break; 7630 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 7631 if (print) 7632 bxe_print_next_block(sc, par_num++, "USDM"); 7633 break; 7634 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 7635 if (print) 7636 bxe_print_next_block(sc, par_num++, "UCM"); 7637 break; 7638 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 7639 if (print) 7640 bxe_print_next_block(sc, par_num++, "USEMI"); 7641 break; 7642 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 7643 if (print) 7644 bxe_print_next_block(sc, par_num++, "UPB"); 7645 break; 7646 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 7647 if (print) 7648 bxe_print_next_block(sc, par_num++, "CSDM"); 7649 break; 7650 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 7651 if (print) 7652 bxe_print_next_block(sc, par_num++, "CCM"); 7653 break; 7654 } 7655 7656 /* Clear the bit */ 7657 sig &= ~cur_bit; 7658 } 7659 } 7660 7661 return (par_num); 7662 } 7663 7664 static int 7665 bxe_check_blocks_with_parity2(struct bxe_softc *sc, 7666 uint32_t sig, 7667 int par_num, 7668 uint8_t print) 7669 { 7670 uint32_t cur_bit = 0; 7671 int i = 0; 7672 7673 for (i = 0; sig; i++) { 7674 cur_bit = ((uint32_t)0x1 << i); 7675 if (sig & cur_bit) { 7676 switch (cur_bit) { 7677 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 7678 if (print) 7679 bxe_print_next_block(sc, par_num++, "CSEMI"); 7680 break; 7681 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 7682 if (print) 7683 bxe_print_next_block(sc, par_num++, "PXP"); 7684 break; 7685 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 7686 if (print) 7687 bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT"); 7688 break; 7689 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 7690 if (print) 7691 bxe_print_next_block(sc, par_num++, "CFC"); 7692 break; 7693 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 7694 if (print) 7695 bxe_print_next_block(sc, par_num++, "CDU"); 7696 break; 7697 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 7698 if (print) 7699 bxe_print_next_block(sc, par_num++, "DMAE"); 7700 break; 7701 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 7702 if (print) 7703 bxe_print_next_block(sc, par_num++, "IGU"); 7704 break; 7705 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 7706 if (print) 7707 bxe_print_next_block(sc, par_num++, "MISC"); 7708 break; 7709 } 7710 7711 /* Clear the bit */ 7712 sig &= ~cur_bit; 7713 } 7714 } 7715 7716 return (par_num); 7717 } 7718 7719 static int 7720 bxe_check_blocks_with_parity3(struct bxe_softc *sc, 7721 uint32_t sig, 7722 int par_num, 7723 uint8_t *global, 7724 uint8_t print) 7725 { 7726 uint32_t cur_bit = 0; 7727 int i = 0; 7728 7729 for (i = 0; sig; i++) { 7730 cur_bit = ((uint32_t)0x1 << i); 7731 if (sig & cur_bit) { 7732 switch (cur_bit) { 7733 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 7734 if (print) 7735 bxe_print_next_block(sc, par_num++, "MCP ROM"); 7736 *global = TRUE; 7737 break; 7738 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 7739 if (print) 7740 bxe_print_next_block(sc, par_num++, 7741 "MCP UMP RX"); 7742 *global = TRUE; 7743 break; 7744 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 7745 if (print) 7746 bxe_print_next_block(sc, par_num++, 7747 "MCP UMP TX"); 7748 *global = TRUE; 7749 break; 7750 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 7751 if (print) 7752 bxe_print_next_block(sc, par_num++, 7753 "MCP SCPAD"); 7754 *global = TRUE; 7755 break; 7756 } 7757 7758 /* Clear the bit */ 7759 sig &= ~cur_bit; 7760 } 7761 } 7762 7763 return (par_num); 7764 } 7765 7766 static int 7767 bxe_check_blocks_with_parity4(struct bxe_softc *sc, 7768 uint32_t sig, 7769 int par_num, 7770 uint8_t print) 7771 { 7772 uint32_t cur_bit = 0; 7773 int i = 0; 7774 7775 for (i = 0; sig; i++) { 7776 cur_bit = ((uint32_t)0x1 << i); 7777 if (sig & cur_bit) { 7778 switch (cur_bit) { 7779 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 7780 if (print) 7781 bxe_print_next_block(sc, par_num++, "PGLUE_B"); 7782 break; 7783 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 7784 if (print) 7785 bxe_print_next_block(sc, par_num++, "ATC"); 7786 break; 7787 } 7788 7789 /* Clear the bit */ 7790 sig &= ~cur_bit; 7791 } 7792 } 7793 7794 return (par_num); 7795 } 7796 7797 static uint8_t 7798 bxe_parity_attn(struct bxe_softc *sc, 7799 uint8_t *global, 7800 uint8_t print, 7801 uint32_t *sig) 7802 { 7803 int par_num = 0; 7804 7805 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 7806 (sig[1] & HW_PRTY_ASSERT_SET_1) || 7807 (sig[2] & HW_PRTY_ASSERT_SET_2) || 7808 (sig[3] & HW_PRTY_ASSERT_SET_3) || 7809 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 7810 BLOGE(sc, "Parity error: HW block parity attention:\n" 7811 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 7812 (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0), 7813 (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1), 7814 (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2), 7815 (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3), 7816 (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4)); 7817 7818 if (print) 7819 BLOGI(sc, "Parity errors detected in blocks: "); 7820 7821 par_num = 7822 bxe_check_blocks_with_parity0(sc, sig[0] & 7823 HW_PRTY_ASSERT_SET_0, 7824 par_num, print); 7825 par_num = 7826 bxe_check_blocks_with_parity1(sc, sig[1] & 7827 HW_PRTY_ASSERT_SET_1, 7828 par_num, global, print); 7829 par_num = 7830 bxe_check_blocks_with_parity2(sc, sig[2] & 7831 HW_PRTY_ASSERT_SET_2, 7832 par_num, print); 7833 par_num = 7834 bxe_check_blocks_with_parity3(sc, sig[3] & 7835 HW_PRTY_ASSERT_SET_3, 7836 par_num, global, print); 7837 par_num = 7838 bxe_check_blocks_with_parity4(sc, sig[4] & 7839 HW_PRTY_ASSERT_SET_4, 7840 par_num, print); 7841 7842 if (print) 7843 BLOGI(sc, "\n"); 7844 7845 return (TRUE); 7846 } 7847 7848 return (FALSE); 7849 } 7850 7851 static uint8_t 7852 bxe_chk_parity_attn(struct bxe_softc *sc, 7853 uint8_t *global, 7854 uint8_t print) 7855 { 7856 struct attn_route attn = { {0} }; 7857 int port = SC_PORT(sc); 7858 7859 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 7860 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 7861 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 7862 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 7863 7864 if (!CHIP_IS_E1x(sc)) 7865 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 7866 7867 return (bxe_parity_attn(sc, global, print, attn.sig)); 7868 } 7869 7870 static void 7871 bxe_attn_int_deasserted4(struct bxe_softc *sc, 7872 uint32_t attn) 7873 { 7874 uint32_t val; 7875 7876 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 7877 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 7878 BLOGE(sc, "PGLUE hw attention 0x%08x\n", val); 7879 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 7880 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 7881 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 7882 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 7883 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 7884 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 7885 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 7886 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 7887 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 7888 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 7889 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 7890 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 7891 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 7892 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 7893 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 7894 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 7895 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 7896 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 7897 } 7898 7899 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 7900 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR); 7901 BLOGE(sc, "ATC hw attention 0x%08x\n", val); 7902 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 7903 BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 7904 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 7905 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 7906 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 7907 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 7908 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 7909 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 7910 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 7911 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 7912 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 7913 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 7914 } 7915 7916 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7917 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 7918 BLOGE(sc, "FATAL parity attention set4 0x%08x\n", 7919 (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7920 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 7921 } 7922 } 7923 7924 static void 7925 bxe_e1h_disable(struct bxe_softc *sc) 7926 { 7927 int port = SC_PORT(sc); 7928 7929 bxe_tx_disable(sc); 7930 7931 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 7932 } 7933 7934 static void 7935 bxe_e1h_enable(struct bxe_softc *sc) 7936 { 7937 int port = SC_PORT(sc); 7938 7939 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 7940 7941 // XXX bxe_tx_enable(sc); 7942 } 7943 7944 /* 7945 * called due to MCP event (on pmf): 7946 * reread new bandwidth configuration 7947 * configure FW 7948 * notify others function about the change 7949 */ 7950 static void 7951 bxe_config_mf_bw(struct bxe_softc *sc) 7952 { 7953 if (sc->link_vars.link_up) { 7954 bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX); 7955 // XXX bxe_link_sync_notify(sc); 7956 } 7957 7958 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7959 } 7960 7961 static void 7962 bxe_set_mf_bw(struct bxe_softc *sc) 7963 { 7964 bxe_config_mf_bw(sc); 7965 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 7966 } 7967 7968 static void 7969 bxe_handle_eee_event(struct bxe_softc *sc) 7970 { 7971 BLOGD(sc, DBG_INTR, "EEE - LLDP event\n"); 7972 bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 7973 } 7974 7975 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 7976 7977 static void 7978 bxe_drv_info_ether_stat(struct bxe_softc *sc) 7979 { 7980 struct eth_stats_info *ether_stat = 7981 &sc->sp->drv_info_to_mcp.ether_stat; 7982 7983 strlcpy(ether_stat->version, BXE_DRIVER_VERSION, 7984 ETH_STAT_INFO_VERSION_LEN); 7985 7986 /* XXX (+ MAC_PAD) taken from other driver... verify this is right */ 7987 sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj, 7988 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 7989 ether_stat->mac_local + MAC_PAD, 7990 MAC_PAD, ETH_ALEN); 7991 7992 ether_stat->mtu_size = sc->mtu; 7993 7994 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 7995 if (sc->ifnet->if_capenable & (IFCAP_TSO4 | IFCAP_TSO6)) { 7996 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 7997 } 7998 7999 // XXX ether_stat->feature_flags |= ???; 8000 8001 ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0; 8002 8003 ether_stat->txq_size = sc->tx_ring_size; 8004 ether_stat->rxq_size = sc->rx_ring_size; 8005 } 8006 8007 static void 8008 bxe_handle_drv_info_req(struct bxe_softc *sc) 8009 { 8010 enum drv_info_opcode op_code; 8011 uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control); 8012 8013 /* if drv_info version supported by MFW doesn't match - send NACK */ 8014 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 8015 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 8016 return; 8017 } 8018 8019 op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 8020 DRV_INFO_CONTROL_OP_CODE_SHIFT); 8021 8022 memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp)); 8023 8024 switch (op_code) { 8025 case ETH_STATS_OPCODE: 8026 bxe_drv_info_ether_stat(sc); 8027 break; 8028 case FCOE_STATS_OPCODE: 8029 case ISCSI_STATS_OPCODE: 8030 default: 8031 /* if op code isn't supported - send NACK */ 8032 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 8033 return; 8034 } 8035 8036 /* 8037 * If we got drv_info attn from MFW then these fields are defined in 8038 * shmem2 for sure 8039 */ 8040 SHMEM2_WR(sc, drv_info_host_addr_lo, 8041 U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 8042 SHMEM2_WR(sc, drv_info_host_addr_hi, 8043 U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 8044 8045 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0); 8046 } 8047 8048 static void 8049 bxe_dcc_event(struct bxe_softc *sc, 8050 uint32_t dcc_event) 8051 { 8052 BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event); 8053 8054 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { 8055 /* 8056 * This is the only place besides the function initialization 8057 * where the sc->flags can change so it is done without any 8058 * locks 8059 */ 8060 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) { 8061 BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n"); 8062 sc->flags |= BXE_MF_FUNC_DIS; 8063 bxe_e1h_disable(sc); 8064 } else { 8065 BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n"); 8066 sc->flags &= ~BXE_MF_FUNC_DIS; 8067 bxe_e1h_enable(sc); 8068 } 8069 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; 8070 } 8071 8072 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { 8073 bxe_config_mf_bw(sc); 8074 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; 8075 } 8076 8077 /* Report results to MCP */ 8078 if (dcc_event) 8079 bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0); 8080 else 8081 bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0); 8082 } 8083 8084 static void 8085 bxe_pmf_update(struct bxe_softc *sc) 8086 { 8087 int port = SC_PORT(sc); 8088 uint32_t val; 8089 8090 sc->port.pmf = 1; 8091 BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf); 8092 8093 /* 8094 * We need the mb() to ensure the ordering between the writing to 8095 * sc->port.pmf here and reading it from the bxe_periodic_task(). 8096 */ 8097 mb(); 8098 8099 /* queue a periodic task */ 8100 // XXX schedule task... 8101 8102 // XXX bxe_dcbx_pmf_update(sc); 8103 8104 /* enable nig attention */ 8105 val = (0xff0f | (1 << (SC_VN(sc) + 4))); 8106 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8107 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val); 8108 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val); 8109 } else if (!CHIP_IS_E1x(sc)) { 8110 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 8111 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 8112 } 8113 8114 bxe_stats_handle(sc, STATS_EVENT_PMF); 8115 } 8116 8117 static int 8118 bxe_mc_assert(struct bxe_softc *sc) 8119 { 8120 char last_idx; 8121 int i, rc = 0; 8122 uint32_t row0, row1, row2, row3; 8123 8124 /* XSTORM */ 8125 last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET); 8126 if (last_idx) 8127 BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8128 8129 /* print the asserts */ 8130 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8131 8132 row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i)); 8133 row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4); 8134 row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8); 8135 row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12); 8136 8137 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8138 BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8139 i, row3, row2, row1, row0); 8140 rc++; 8141 } else { 8142 break; 8143 } 8144 } 8145 8146 /* TSTORM */ 8147 last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET); 8148 if (last_idx) { 8149 BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8150 } 8151 8152 /* print the asserts */ 8153 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8154 8155 row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i)); 8156 row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4); 8157 row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8); 8158 row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12); 8159 8160 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8161 BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8162 i, row3, row2, row1, row0); 8163 rc++; 8164 } else { 8165 break; 8166 } 8167 } 8168 8169 /* CSTORM */ 8170 last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET); 8171 if (last_idx) { 8172 BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8173 } 8174 8175 /* print the asserts */ 8176 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8177 8178 row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i)); 8179 row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4); 8180 row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8); 8181 row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12); 8182 8183 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8184 BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8185 i, row3, row2, row1, row0); 8186 rc++; 8187 } else { 8188 break; 8189 } 8190 } 8191 8192 /* USTORM */ 8193 last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET); 8194 if (last_idx) { 8195 BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8196 } 8197 8198 /* print the asserts */ 8199 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8200 8201 row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i)); 8202 row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4); 8203 row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8); 8204 row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12); 8205 8206 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8207 BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8208 i, row3, row2, row1, row0); 8209 rc++; 8210 } else { 8211 break; 8212 } 8213 } 8214 8215 return (rc); 8216 } 8217 8218 static void 8219 bxe_attn_int_deasserted3(struct bxe_softc *sc, 8220 uint32_t attn) 8221 { 8222 int func = SC_FUNC(sc); 8223 uint32_t val; 8224 8225 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 8226 8227 if (attn & BXE_PMF_LINK_ASSERT(sc)) { 8228 8229 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 8230 bxe_read_mf_cfg(sc); 8231 sc->devinfo.mf_info.mf_config[SC_VN(sc)] = 8232 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 8233 val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status); 8234 8235 if (val & DRV_STATUS_DCC_EVENT_MASK) 8236 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK)); 8237 8238 if (val & DRV_STATUS_SET_MF_BW) 8239 bxe_set_mf_bw(sc); 8240 8241 if (val & DRV_STATUS_DRV_INFO_REQ) 8242 bxe_handle_drv_info_req(sc); 8243 8244 #if 0 8245 if (val & DRV_STATUS_VF_DISABLED) 8246 bxe_vf_handle_flr_event(sc); 8247 #endif 8248 8249 if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF)) 8250 bxe_pmf_update(sc); 8251 8252 #if 0 8253 if (sc->port.pmf && 8254 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) && 8255 (sc->dcbx_enabled > 0)) 8256 /* start dcbx state machine */ 8257 bxe_dcbx_set_params(sc, BXE_DCBX_STATE_NEG_RECEIVED); 8258 #endif 8259 8260 #if 0 8261 if (val & DRV_STATUS_AFEX_EVENT_MASK) 8262 bxe_handle_afex_cmd(sc, val & DRV_STATUS_AFEX_EVENT_MASK); 8263 #endif 8264 8265 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 8266 bxe_handle_eee_event(sc); 8267 8268 if (sc->link_vars.periodic_flags & 8269 ELINK_PERIODIC_FLAGS_LINK_EVENT) { 8270 /* sync with link */ 8271 BXE_PHY_LOCK(sc); 8272 sc->link_vars.periodic_flags &= 8273 ~ELINK_PERIODIC_FLAGS_LINK_EVENT; 8274 BXE_PHY_UNLOCK(sc); 8275 if (IS_MF(sc)) 8276 ; // XXX bxe_link_sync_notify(sc); 8277 bxe_link_report(sc); 8278 } 8279 8280 /* 8281 * Always call it here: bxe_link_report() will 8282 * prevent the link indication duplication. 8283 */ 8284 bxe_link_status_update(sc); 8285 8286 } else if (attn & BXE_MC_ASSERT_BITS) { 8287 8288 BLOGE(sc, "MC assert!\n"); 8289 bxe_mc_assert(sc); 8290 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0); 8291 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0); 8292 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0); 8293 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0); 8294 bxe_panic(sc, ("MC assert!\n")); 8295 8296 } else if (attn & BXE_MCP_ASSERT) { 8297 8298 BLOGE(sc, "MCP assert!\n"); 8299 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0); 8300 // XXX bxe_fw_dump(sc); 8301 8302 } else { 8303 BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn); 8304 } 8305 } 8306 8307 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 8308 BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn); 8309 if (attn & BXE_GRC_TIMEOUT) { 8310 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN); 8311 BLOGE(sc, "GRC time-out 0x%08x\n", val); 8312 } 8313 if (attn & BXE_GRC_RSV) { 8314 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN); 8315 BLOGE(sc, "GRC reserved 0x%08x\n", val); 8316 } 8317 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 8318 } 8319 } 8320 8321 static void 8322 bxe_attn_int_deasserted2(struct bxe_softc *sc, 8323 uint32_t attn) 8324 { 8325 int port = SC_PORT(sc); 8326 int reg_offset; 8327 uint32_t val0, mask0, val1, mask1; 8328 uint32_t val; 8329 8330 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 8331 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR); 8332 BLOGE(sc, "CFC hw attention 0x%08x\n", val); 8333 /* CFC error attention */ 8334 if (val & 0x2) { 8335 BLOGE(sc, "FATAL error from CFC\n"); 8336 } 8337 } 8338 8339 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 8340 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0); 8341 BLOGE(sc, "PXP hw attention-0 0x%08x\n", val); 8342 /* RQ_USDMDP_FIFO_OVERFLOW */ 8343 if (val & 0x18000) { 8344 BLOGE(sc, "FATAL error from PXP\n"); 8345 } 8346 8347 if (!CHIP_IS_E1x(sc)) { 8348 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1); 8349 BLOGE(sc, "PXP hw attention-1 0x%08x\n", val); 8350 } 8351 } 8352 8353 #define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR 8354 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT 8355 8356 if (attn & AEU_PXP2_HW_INT_BIT) { 8357 /* CQ47854 workaround do not panic on 8358 * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8359 */ 8360 if (!CHIP_IS_E1x(sc)) { 8361 mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0); 8362 val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1); 8363 mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1); 8364 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0); 8365 /* 8366 * If the olny PXP2_EOP_ERROR_BIT is set in 8367 * STS0 and STS1 - clear it 8368 * 8369 * probably we lose additional attentions between 8370 * STS0 and STS_CLR0, in this case user will not 8371 * be notified about them 8372 */ 8373 if (val0 & mask0 & PXP2_EOP_ERROR_BIT && 8374 !(val1 & mask1)) 8375 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 8376 8377 /* print the register, since no one can restore it */ 8378 BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0); 8379 8380 /* 8381 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8382 * then notify 8383 */ 8384 if (val0 & PXP2_EOP_ERROR_BIT) { 8385 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n"); 8386 8387 /* 8388 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is 8389 * set then clear attention from PXP2 block without panic 8390 */ 8391 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) && 8392 ((val1 & mask1) == 0)) 8393 attn &= ~AEU_PXP2_HW_INT_BIT; 8394 } 8395 } 8396 } 8397 8398 if (attn & HW_INTERRUT_ASSERT_SET_2) { 8399 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 8400 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 8401 8402 val = REG_RD(sc, reg_offset); 8403 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); 8404 REG_WR(sc, reg_offset, val); 8405 8406 BLOGE(sc, "FATAL HW block attention set2 0x%x\n", 8407 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2)); 8408 bxe_panic(sc, ("HW block attention set2\n")); 8409 } 8410 } 8411 8412 static void 8413 bxe_attn_int_deasserted1(struct bxe_softc *sc, 8414 uint32_t attn) 8415 { 8416 int port = SC_PORT(sc); 8417 int reg_offset; 8418 uint32_t val; 8419 8420 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 8421 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR); 8422 BLOGE(sc, "DB hw attention 0x%08x\n", val); 8423 /* DORQ discard attention */ 8424 if (val & 0x2) { 8425 BLOGE(sc, "FATAL error from DORQ\n"); 8426 } 8427 } 8428 8429 if (attn & HW_INTERRUT_ASSERT_SET_1) { 8430 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 8431 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 8432 8433 val = REG_RD(sc, reg_offset); 8434 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); 8435 REG_WR(sc, reg_offset, val); 8436 8437 BLOGE(sc, "FATAL HW block attention set1 0x%08x\n", 8438 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1)); 8439 bxe_panic(sc, ("HW block attention set1\n")); 8440 } 8441 } 8442 8443 static void 8444 bxe_attn_int_deasserted0(struct bxe_softc *sc, 8445 uint32_t attn) 8446 { 8447 int port = SC_PORT(sc); 8448 int reg_offset; 8449 uint32_t val; 8450 8451 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 8452 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 8453 8454 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 8455 val = REG_RD(sc, reg_offset); 8456 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 8457 REG_WR(sc, reg_offset, val); 8458 8459 BLOGW(sc, "SPIO5 hw attention\n"); 8460 8461 /* Fan failure attention */ 8462 elink_hw_reset_phy(&sc->link_params); 8463 bxe_fan_failure(sc); 8464 } 8465 8466 if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) { 8467 BXE_PHY_LOCK(sc); 8468 elink_handle_module_detect_int(&sc->link_params); 8469 BXE_PHY_UNLOCK(sc); 8470 } 8471 8472 if (attn & HW_INTERRUT_ASSERT_SET_0) { 8473 val = REG_RD(sc, reg_offset); 8474 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); 8475 REG_WR(sc, reg_offset, val); 8476 8477 bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n", 8478 (attn & HW_INTERRUT_ASSERT_SET_0))); 8479 } 8480 } 8481 8482 static void 8483 bxe_attn_int_deasserted(struct bxe_softc *sc, 8484 uint32_t deasserted) 8485 { 8486 struct attn_route attn; 8487 struct attn_route *group_mask; 8488 int port = SC_PORT(sc); 8489 int index; 8490 uint32_t reg_addr; 8491 uint32_t val; 8492 uint32_t aeu_mask; 8493 uint8_t global = FALSE; 8494 8495 /* 8496 * Need to take HW lock because MCP or other port might also 8497 * try to handle this event. 8498 */ 8499 bxe_acquire_alr(sc); 8500 8501 if (bxe_chk_parity_attn(sc, &global, TRUE)) { 8502 /* XXX 8503 * In case of parity errors don't handle attentions so that 8504 * other function would "see" parity errors. 8505 */ 8506 sc->recovery_state = BXE_RECOVERY_INIT; 8507 // XXX schedule a recovery task... 8508 /* disable HW interrupts */ 8509 bxe_int_disable(sc); 8510 bxe_release_alr(sc); 8511 return; 8512 } 8513 8514 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 8515 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 8516 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 8517 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 8518 if (!CHIP_IS_E1x(sc)) { 8519 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 8520 } else { 8521 attn.sig[4] = 0; 8522 } 8523 8524 BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", 8525 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 8526 8527 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 8528 if (deasserted & (1 << index)) { 8529 group_mask = &sc->attn_group[index]; 8530 8531 BLOGD(sc, DBG_INTR, 8532 "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index, 8533 group_mask->sig[0], group_mask->sig[1], 8534 group_mask->sig[2], group_mask->sig[3], 8535 group_mask->sig[4]); 8536 8537 bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]); 8538 bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]); 8539 bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]); 8540 bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]); 8541 bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]); 8542 } 8543 } 8544 8545 bxe_release_alr(sc); 8546 8547 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8548 reg_addr = (HC_REG_COMMAND_REG + port*32 + 8549 COMMAND_REG_ATTN_BITS_CLR); 8550 } else { 8551 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 8552 } 8553 8554 val = ~deasserted; 8555 BLOGD(sc, DBG_INTR, 8556 "about to mask 0x%08x at %s addr 0x%08x\n", val, 8557 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 8558 REG_WR(sc, reg_addr, val); 8559 8560 if (~sc->attn_state & deasserted) { 8561 BLOGE(sc, "IGU error\n"); 8562 } 8563 8564 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 8565 MISC_REG_AEU_MASK_ATTN_FUNC_0; 8566 8567 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8568 8569 aeu_mask = REG_RD(sc, reg_addr); 8570 8571 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n", 8572 aeu_mask, deasserted); 8573 aeu_mask |= (deasserted & 0x3ff); 8574 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 8575 8576 REG_WR(sc, reg_addr, aeu_mask); 8577 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8578 8579 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 8580 sc->attn_state &= ~deasserted; 8581 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 8582 } 8583 8584 static void 8585 bxe_attn_int(struct bxe_softc *sc) 8586 { 8587 /* read local copy of bits */ 8588 uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits); 8589 uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack); 8590 uint32_t attn_state = sc->attn_state; 8591 8592 /* look for changed bits */ 8593 uint32_t asserted = attn_bits & ~attn_ack & ~attn_state; 8594 uint32_t deasserted = ~attn_bits & attn_ack & attn_state; 8595 8596 BLOGD(sc, DBG_INTR, 8597 "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n", 8598 attn_bits, attn_ack, asserted, deasserted); 8599 8600 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) { 8601 BLOGE(sc, "BAD attention state\n"); 8602 } 8603 8604 /* handle bits that were raised */ 8605 if (asserted) { 8606 bxe_attn_int_asserted(sc, asserted); 8607 } 8608 8609 if (deasserted) { 8610 bxe_attn_int_deasserted(sc, deasserted); 8611 } 8612 } 8613 8614 static uint16_t 8615 bxe_update_dsb_idx(struct bxe_softc *sc) 8616 { 8617 struct host_sp_status_block *def_sb = sc->def_sb; 8618 uint16_t rc = 0; 8619 8620 mb(); /* status block is written to by the chip */ 8621 8622 if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 8623 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index; 8624 rc |= BXE_DEF_SB_ATT_IDX; 8625 } 8626 8627 if (sc->def_idx != def_sb->sp_sb.running_index) { 8628 sc->def_idx = def_sb->sp_sb.running_index; 8629 rc |= BXE_DEF_SB_IDX; 8630 } 8631 8632 mb(); 8633 8634 return (rc); 8635 } 8636 8637 static inline struct ecore_queue_sp_obj * 8638 bxe_cid_to_q_obj(struct bxe_softc *sc, 8639 uint32_t cid) 8640 { 8641 BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid); 8642 return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj); 8643 } 8644 8645 static void 8646 bxe_handle_mcast_eqe(struct bxe_softc *sc) 8647 { 8648 struct ecore_mcast_ramrod_params rparam; 8649 int rc; 8650 8651 memset(&rparam, 0, sizeof(rparam)); 8652 8653 rparam.mcast_obj = &sc->mcast_obj; 8654 8655 BXE_MCAST_LOCK(sc); 8656 8657 /* clear pending state for the last command */ 8658 sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw); 8659 8660 /* if there are pending mcast commands - send them */ 8661 if (sc->mcast_obj.check_pending(&sc->mcast_obj)) { 8662 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 8663 if (rc < 0) { 8664 BLOGD(sc, DBG_SP, 8665 "ERROR: Failed to send pending mcast commands (%d)\n", 8666 rc); 8667 } 8668 } 8669 8670 BXE_MCAST_UNLOCK(sc); 8671 } 8672 8673 static void 8674 bxe_handle_classification_eqe(struct bxe_softc *sc, 8675 union event_ring_elem *elem) 8676 { 8677 unsigned long ramrod_flags = 0; 8678 int rc = 0; 8679 uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8680 struct ecore_vlan_mac_obj *vlan_mac_obj; 8681 8682 /* always push next commands out, don't wait here */ 8683 bit_set(&ramrod_flags, RAMROD_CONT); 8684 8685 switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) { 8686 case ECORE_FILTER_MAC_PENDING: 8687 BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n"); 8688 vlan_mac_obj = &sc->sp_objs[cid].mac_obj; 8689 break; 8690 8691 case ECORE_FILTER_MCAST_PENDING: 8692 BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n"); 8693 /* 8694 * This is only relevant for 57710 where multicast MACs are 8695 * configured as unicast MACs using the same ramrod. 8696 */ 8697 bxe_handle_mcast_eqe(sc); 8698 return; 8699 8700 default: 8701 BLOGE(sc, "Unsupported classification command: %d\n", 8702 elem->message.data.eth_event.echo); 8703 return; 8704 } 8705 8706 rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags); 8707 8708 if (rc < 0) { 8709 BLOGE(sc, "Failed to schedule new commands (%d)\n", rc); 8710 } else if (rc > 0) { 8711 BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n"); 8712 } 8713 } 8714 8715 static void 8716 bxe_handle_rx_mode_eqe(struct bxe_softc *sc, 8717 union event_ring_elem *elem) 8718 { 8719 bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 8720 8721 /* send rx_mode command again if was requested */ 8722 if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, 8723 &sc->sp_state)) { 8724 bxe_set_storm_rx_mode(sc); 8725 } 8726 #if 0 8727 else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_START_SCHED, 8728 &sc->sp_state)) { 8729 bxe_set_iscsi_eth_rx_mode(sc, TRUE); 8730 } 8731 else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_STOP_SCHED, 8732 &sc->sp_state)) { 8733 bxe_set_iscsi_eth_rx_mode(sc, FALSE); 8734 } 8735 #endif 8736 } 8737 8738 static void 8739 bxe_update_eq_prod(struct bxe_softc *sc, 8740 uint16_t prod) 8741 { 8742 storm_memset_eq_prod(sc, prod, SC_FUNC(sc)); 8743 wmb(); /* keep prod updates ordered */ 8744 } 8745 8746 static void 8747 bxe_eq_int(struct bxe_softc *sc) 8748 { 8749 uint16_t hw_cons, sw_cons, sw_prod; 8750 union event_ring_elem *elem; 8751 uint8_t echo; 8752 uint32_t cid; 8753 uint8_t opcode; 8754 int spqe_cnt = 0; 8755 struct ecore_queue_sp_obj *q_obj; 8756 struct ecore_func_sp_obj *f_obj = &sc->func_obj; 8757 struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw; 8758 8759 hw_cons = le16toh(*sc->eq_cons_sb); 8760 8761 /* 8762 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256. 8763 * when we get to the next-page we need to adjust so the loop 8764 * condition below will be met. The next element is the size of a 8765 * regular element and hence incrementing by 1 8766 */ 8767 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) { 8768 hw_cons++; 8769 } 8770 8771 /* 8772 * This function may never run in parallel with itself for a 8773 * specific sc and no need for a read memory barrier here. 8774 */ 8775 sw_cons = sc->eq_cons; 8776 sw_prod = sc->eq_prod; 8777 8778 BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n", 8779 hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left)); 8780 8781 for (; 8782 sw_cons != hw_cons; 8783 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 8784 8785 elem = &sc->eq[EQ_DESC(sw_cons)]; 8786 8787 #if 0 8788 int rc; 8789 rc = bxe_iov_eq_sp_event(sc, elem); 8790 if (!rc) { 8791 BLOGE(sc, "bxe_iov_eq_sp_event returned %d\n", rc); 8792 goto next_spqe; 8793 } 8794 #endif 8795 8796 /* elem CID originates from FW, actually LE */ 8797 cid = SW_CID(elem->message.data.cfc_del_event.cid); 8798 opcode = elem->message.opcode; 8799 8800 /* handle eq element */ 8801 switch (opcode) { 8802 #if 0 8803 case EVENT_RING_OPCODE_VF_PF_CHANNEL: 8804 BLOGD(sc, DBG_SP, "vf/pf channel element on eq\n"); 8805 bxe_vf_mbx(sc, &elem->message.data.vf_pf_event); 8806 continue; 8807 #endif 8808 8809 case EVENT_RING_OPCODE_STAT_QUERY: 8810 BLOGD(sc, DBG_SP, "got statistics completion event %d\n", 8811 sc->stats_comp++); 8812 /* nothing to do with stats comp */ 8813 goto next_spqe; 8814 8815 case EVENT_RING_OPCODE_CFC_DEL: 8816 /* handle according to cid range */ 8817 /* we may want to verify here that the sc state is HALTING */ 8818 BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid); 8819 q_obj = bxe_cid_to_q_obj(sc, cid); 8820 if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) { 8821 break; 8822 } 8823 goto next_spqe; 8824 8825 case EVENT_RING_OPCODE_STOP_TRAFFIC: 8826 BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n"); 8827 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) { 8828 break; 8829 } 8830 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED); 8831 goto next_spqe; 8832 8833 case EVENT_RING_OPCODE_START_TRAFFIC: 8834 BLOGD(sc, DBG_SP, "got START TRAFFIC\n"); 8835 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) { 8836 break; 8837 } 8838 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED); 8839 goto next_spqe; 8840 8841 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 8842 echo = elem->message.data.function_update_event.echo; 8843 if (echo == SWITCH_UPDATE) { 8844 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n"); 8845 if (f_obj->complete_cmd(sc, f_obj, 8846 ECORE_F_CMD_SWITCH_UPDATE)) { 8847 break; 8848 } 8849 } 8850 else { 8851 BLOGD(sc, DBG_SP, 8852 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 8853 #if 0 8854 f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_UPDATE); 8855 /* 8856 * We will perform the queues update from the sp_core_task as 8857 * all queue SP operations should run with CORE_LOCK. 8858 */ 8859 bxe_set_bit(BXE_SP_CORE_AFEX_F_UPDATE, &sc->sp_core_state); 8860 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8861 #endif 8862 } 8863 goto next_spqe; 8864 8865 #if 0 8866 case EVENT_RING_OPCODE_AFEX_VIF_LISTS: 8867 f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_VIFLISTS); 8868 bxe_after_afex_vif_lists(sc, elem); 8869 goto next_spqe; 8870 #endif 8871 8872 case EVENT_RING_OPCODE_FORWARD_SETUP: 8873 q_obj = &bxe_fwd_sp_obj(sc, q_obj); 8874 if (q_obj->complete_cmd(sc, q_obj, 8875 ECORE_Q_CMD_SETUP_TX_ONLY)) { 8876 break; 8877 } 8878 goto next_spqe; 8879 8880 case EVENT_RING_OPCODE_FUNCTION_START: 8881 BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n"); 8882 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) { 8883 break; 8884 } 8885 goto next_spqe; 8886 8887 case EVENT_RING_OPCODE_FUNCTION_STOP: 8888 BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n"); 8889 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) { 8890 break; 8891 } 8892 goto next_spqe; 8893 } 8894 8895 switch (opcode | sc->state) { 8896 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN): 8897 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT): 8898 cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8899 BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid); 8900 rss_raw->clear_pending(rss_raw); 8901 break; 8902 8903 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN): 8904 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG): 8905 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT): 8906 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN): 8907 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG): 8908 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8909 BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n"); 8910 bxe_handle_classification_eqe(sc, elem); 8911 break; 8912 8913 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN): 8914 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG): 8915 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8916 BLOGD(sc, DBG_SP, "got mcast ramrod\n"); 8917 bxe_handle_mcast_eqe(sc); 8918 break; 8919 8920 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN): 8921 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG): 8922 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8923 BLOGD(sc, DBG_SP, "got rx_mode ramrod\n"); 8924 bxe_handle_rx_mode_eqe(sc, elem); 8925 break; 8926 8927 default: 8928 /* unknown event log error and continue */ 8929 BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n", 8930 elem->message.opcode, sc->state); 8931 } 8932 8933 next_spqe: 8934 spqe_cnt++; 8935 } /* for */ 8936 8937 mb(); 8938 atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt); 8939 8940 sc->eq_cons = sw_cons; 8941 sc->eq_prod = sw_prod; 8942 8943 /* make sure that above mem writes were issued towards the memory */ 8944 wmb(); 8945 8946 /* update producer */ 8947 bxe_update_eq_prod(sc, sc->eq_prod); 8948 } 8949 8950 static void 8951 bxe_handle_sp_tq(void *context, 8952 int pending) 8953 { 8954 struct bxe_softc *sc = (struct bxe_softc *)context; 8955 uint16_t status; 8956 8957 BLOGD(sc, DBG_SP, "---> SP TASK <---\n"); 8958 8959 /* what work needs to be performed? */ 8960 status = bxe_update_dsb_idx(sc); 8961 8962 BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status); 8963 8964 /* HW attentions */ 8965 if (status & BXE_DEF_SB_ATT_IDX) { 8966 BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n"); 8967 bxe_attn_int(sc); 8968 status &= ~BXE_DEF_SB_ATT_IDX; 8969 } 8970 8971 /* SP events: STAT_QUERY and others */ 8972 if (status & BXE_DEF_SB_IDX) { 8973 /* handle EQ completions */ 8974 BLOGD(sc, DBG_SP, "---> EQ INTR <---\n"); 8975 bxe_eq_int(sc); 8976 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 8977 le16toh(sc->def_idx), IGU_INT_NOP, 1); 8978 status &= ~BXE_DEF_SB_IDX; 8979 } 8980 8981 /* if status is non zero then something went wrong */ 8982 if (__predict_false(status)) { 8983 BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status); 8984 } 8985 8986 /* ack status block only if something was actually handled */ 8987 bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID, 8988 le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1); 8989 8990 /* 8991 * Must be called after the EQ processing (since eq leads to sriov 8992 * ramrod completion flows). 8993 * This flow may have been scheduled by the arrival of a ramrod 8994 * completion, or by the sriov code rescheduling itself. 8995 */ 8996 // XXX bxe_iov_sp_task(sc); 8997 8998 #if 0 8999 /* AFEX - poll to check if VIFSET_ACK should be sent to MFW */ 9000 if (bxe_test_and_clear_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, 9001 &sc->sp_state)) { 9002 bxe_link_report(sc); 9003 bxe_fw_command(sc, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 9004 } 9005 #endif 9006 } 9007 9008 static void 9009 bxe_handle_fp_tq(void *context, 9010 int pending) 9011 { 9012 struct bxe_fastpath *fp = (struct bxe_fastpath *)context; 9013 struct bxe_softc *sc = fp->sc; 9014 uint8_t more_tx = FALSE; 9015 uint8_t more_rx = FALSE; 9016 9017 BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index); 9018 9019 /* XXX 9020 * IFF_DRV_RUNNING state can't be checked here since we process 9021 * slowpath events on a client queue during setup. Instead 9022 * we need to add a "process/continue" flag here that the driver 9023 * can use to tell the task here not to do anything. 9024 */ 9025 #if 0 9026 if (!(sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) { 9027 return; 9028 } 9029 #endif 9030 9031 /* update the fastpath index */ 9032 bxe_update_fp_sb_idx(fp); 9033 9034 /* XXX add loop here if ever support multiple tx CoS */ 9035 /* fp->txdata[cos] */ 9036 if (bxe_has_tx_work(fp)) { 9037 BXE_FP_TX_LOCK(fp); 9038 more_tx = bxe_txeof(sc, fp); 9039 BXE_FP_TX_UNLOCK(fp); 9040 } 9041 9042 if (bxe_has_rx_work(fp)) { 9043 more_rx = bxe_rxeof(sc, fp); 9044 } 9045 9046 if (more_rx /*|| more_tx*/) { 9047 /* still more work to do */ 9048 taskqueue_enqueue_fast(fp->tq, &fp->tq_task); 9049 return; 9050 } 9051 9052 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 9053 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 9054 } 9055 9056 static void 9057 bxe_task_fp(struct bxe_fastpath *fp) 9058 { 9059 struct bxe_softc *sc = fp->sc; 9060 uint8_t more_tx = FALSE; 9061 uint8_t more_rx = FALSE; 9062 9063 BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index); 9064 9065 /* update the fastpath index */ 9066 bxe_update_fp_sb_idx(fp); 9067 9068 /* XXX add loop here if ever support multiple tx CoS */ 9069 /* fp->txdata[cos] */ 9070 if (bxe_has_tx_work(fp)) { 9071 BXE_FP_TX_LOCK(fp); 9072 more_tx = bxe_txeof(sc, fp); 9073 BXE_FP_TX_UNLOCK(fp); 9074 } 9075 9076 if (bxe_has_rx_work(fp)) { 9077 more_rx = bxe_rxeof(sc, fp); 9078 } 9079 9080 if (more_rx /*|| more_tx*/) { 9081 /* still more work to do, bail out if this ISR and process later */ 9082 taskqueue_enqueue_fast(fp->tq, &fp->tq_task); 9083 return; 9084 } 9085 9086 /* 9087 * Here we write the fastpath index taken before doing any tx or rx work. 9088 * It is very well possible other hw events occurred up to this point and 9089 * they were actually processed accordingly above. Since we're going to 9090 * write an older fastpath index, an interrupt is coming which we might 9091 * not do any work in. 9092 */ 9093 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 9094 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 9095 } 9096 9097 /* 9098 * Legacy interrupt entry point. 9099 * 9100 * Verifies that the controller generated the interrupt and 9101 * then calls a separate routine to handle the various 9102 * interrupt causes: link, RX, and TX. 9103 */ 9104 static void 9105 bxe_intr_legacy(void *xsc) 9106 { 9107 struct bxe_softc *sc = (struct bxe_softc *)xsc; 9108 struct bxe_fastpath *fp; 9109 uint16_t status, mask; 9110 int i; 9111 9112 BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n"); 9113 9114 #if 0 9115 /* Don't handle any interrupts if we're not ready. */ 9116 if (__predict_false(sc->intr_sem != 0)) { 9117 return; 9118 } 9119 #endif 9120 9121 /* 9122 * 0 for ustorm, 1 for cstorm 9123 * the bits returned from ack_int() are 0-15 9124 * bit 0 = attention status block 9125 * bit 1 = fast path status block 9126 * a mask of 0x2 or more = tx/rx event 9127 * a mask of 1 = slow path event 9128 */ 9129 9130 status = bxe_ack_int(sc); 9131 9132 /* the interrupt is not for us */ 9133 if (__predict_false(status == 0)) { 9134 BLOGD(sc, DBG_INTR, "Not our interrupt!\n"); 9135 return; 9136 } 9137 9138 BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status); 9139 9140 FOR_EACH_ETH_QUEUE(sc, i) { 9141 fp = &sc->fp[i]; 9142 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc))); 9143 if (status & mask) { 9144 /* acknowledge and disable further fastpath interrupts */ 9145 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9146 bxe_task_fp(fp); 9147 status &= ~mask; 9148 } 9149 } 9150 9151 #if 0 9152 if (CNIC_SUPPORT(sc)) { 9153 mask = 0x2; 9154 if (status & (mask | 0x1)) { 9155 ... 9156 status &= ~mask; 9157 } 9158 } 9159 #endif 9160 9161 if (__predict_false(status & 0x1)) { 9162 /* acknowledge and disable further slowpath interrupts */ 9163 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9164 9165 /* schedule slowpath handler */ 9166 taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task); 9167 9168 status &= ~0x1; 9169 } 9170 9171 if (__predict_false(status)) { 9172 BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status); 9173 } 9174 } 9175 9176 /* slowpath interrupt entry point */ 9177 static void 9178 bxe_intr_sp(void *xsc) 9179 { 9180 struct bxe_softc *sc = (struct bxe_softc *)xsc; 9181 9182 BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n"); 9183 9184 /* acknowledge and disable further slowpath interrupts */ 9185 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9186 9187 /* schedule slowpath handler */ 9188 taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task); 9189 } 9190 9191 /* fastpath interrupt entry point */ 9192 static void 9193 bxe_intr_fp(void *xfp) 9194 { 9195 struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp; 9196 struct bxe_softc *sc = fp->sc; 9197 9198 BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index); 9199 9200 BLOGD(sc, DBG_INTR, 9201 "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n", 9202 curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id); 9203 9204 #if 0 9205 /* Don't handle any interrupts if we're not ready. */ 9206 if (__predict_false(sc->intr_sem != 0)) { 9207 return; 9208 } 9209 #endif 9210 9211 /* acknowledge and disable further fastpath interrupts */ 9212 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9213 9214 bxe_task_fp(fp); 9215 } 9216 9217 /* Release all interrupts allocated by the driver. */ 9218 static void 9219 bxe_interrupt_free(struct bxe_softc *sc) 9220 { 9221 int i; 9222 9223 switch (sc->interrupt_mode) { 9224 case INTR_MODE_INTX: 9225 BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n"); 9226 if (sc->intr[0].resource != NULL) { 9227 bus_release_resource(sc->dev, 9228 SYS_RES_IRQ, 9229 sc->intr[0].rid, 9230 sc->intr[0].resource); 9231 } 9232 break; 9233 case INTR_MODE_MSI: 9234 for (i = 0; i < sc->intr_count; i++) { 9235 BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i); 9236 if (sc->intr[i].resource && sc->intr[i].rid) { 9237 bus_release_resource(sc->dev, 9238 SYS_RES_IRQ, 9239 sc->intr[i].rid, 9240 sc->intr[i].resource); 9241 } 9242 } 9243 pci_release_msi(sc->dev); 9244 break; 9245 case INTR_MODE_MSIX: 9246 for (i = 0; i < sc->intr_count; i++) { 9247 BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i); 9248 if (sc->intr[i].resource && sc->intr[i].rid) { 9249 bus_release_resource(sc->dev, 9250 SYS_RES_IRQ, 9251 sc->intr[i].rid, 9252 sc->intr[i].resource); 9253 } 9254 } 9255 pci_release_msi(sc->dev); 9256 break; 9257 default: 9258 /* nothing to do as initial allocation failed */ 9259 break; 9260 } 9261 } 9262 9263 /* 9264 * This function determines and allocates the appropriate 9265 * interrupt based on system capabilites and user request. 9266 * 9267 * The user may force a particular interrupt mode, specify 9268 * the number of receive queues, specify the method for 9269 * distribuitng received frames to receive queues, or use 9270 * the default settings which will automatically select the 9271 * best supported combination. In addition, the OS may or 9272 * may not support certain combinations of these settings. 9273 * This routine attempts to reconcile the settings requested 9274 * by the user with the capabilites available from the system 9275 * to select the optimal combination of features. 9276 * 9277 * Returns: 9278 * 0 = Success, !0 = Failure. 9279 */ 9280 static int 9281 bxe_interrupt_alloc(struct bxe_softc *sc) 9282 { 9283 int msix_count = 0; 9284 int msi_count = 0; 9285 int num_requested = 0; 9286 int num_allocated = 0; 9287 int rid, i, j; 9288 int rc; 9289 9290 /* get the number of available MSI/MSI-X interrupts from the OS */ 9291 if (sc->interrupt_mode > 0) { 9292 if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) { 9293 msix_count = pci_msix_count(sc->dev); 9294 } 9295 9296 if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) { 9297 msi_count = pci_msi_count(sc->dev); 9298 } 9299 9300 BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n", 9301 msi_count, msix_count); 9302 } 9303 9304 do { /* try allocating MSI-X interrupt resources (at least 2) */ 9305 if (sc->interrupt_mode != INTR_MODE_MSIX) { 9306 break; 9307 } 9308 9309 if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) || 9310 (msix_count < 2)) { 9311 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9312 break; 9313 } 9314 9315 /* ask for the necessary number of MSI-X vectors */ 9316 num_requested = min((sc->num_queues + 1), msix_count); 9317 9318 BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested); 9319 9320 num_allocated = num_requested; 9321 if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) { 9322 BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc); 9323 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9324 break; 9325 } 9326 9327 if (num_allocated < 2) { /* possible? */ 9328 BLOGE(sc, "MSI-X allocation less than 2!\n"); 9329 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9330 pci_release_msi(sc->dev); 9331 break; 9332 } 9333 9334 BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n", 9335 num_requested, num_allocated); 9336 9337 /* best effort so use the number of vectors allocated to us */ 9338 sc->intr_count = num_allocated; 9339 sc->num_queues = num_allocated - 1; 9340 9341 rid = 1; /* initial resource identifier */ 9342 9343 /* allocate the MSI-X vectors */ 9344 for (i = 0; i < num_allocated; i++) { 9345 sc->intr[i].rid = (rid + i); 9346 9347 if ((sc->intr[i].resource = 9348 bus_alloc_resource_any(sc->dev, 9349 SYS_RES_IRQ, 9350 &sc->intr[i].rid, 9351 RF_ACTIVE)) == NULL) { 9352 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n", 9353 i, (rid + i)); 9354 9355 for (j = (i - 1); j >= 0; j--) { 9356 bus_release_resource(sc->dev, 9357 SYS_RES_IRQ, 9358 sc->intr[j].rid, 9359 sc->intr[j].resource); 9360 } 9361 9362 sc->intr_count = 0; 9363 sc->num_queues = 0; 9364 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9365 pci_release_msi(sc->dev); 9366 break; 9367 } 9368 9369 BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i)); 9370 } 9371 } while (0); 9372 9373 do { /* try allocating MSI vector resources (at least 2) */ 9374 if (sc->interrupt_mode != INTR_MODE_MSI) { 9375 break; 9376 } 9377 9378 if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) || 9379 (msi_count < 2)) { 9380 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9381 break; 9382 } 9383 9384 /* ask for the necessary number of MSI vectors */ 9385 num_requested = min((sc->num_queues + 1), msi_count); 9386 9387 BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested); 9388 9389 num_allocated = num_requested; 9390 if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) { 9391 BLOGE(sc, "MSI alloc failed (%d)!\n", rc); 9392 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9393 break; 9394 } 9395 9396 if (num_allocated < 2) { /* possible? */ 9397 BLOGE(sc, "MSI allocation less than 2!\n"); 9398 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9399 pci_release_msi(sc->dev); 9400 break; 9401 } 9402 9403 BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n", 9404 num_requested, num_allocated); 9405 9406 /* best effort so use the number of vectors allocated to us */ 9407 sc->intr_count = num_allocated; 9408 sc->num_queues = num_allocated - 1; 9409 9410 rid = 1; /* initial resource identifier */ 9411 9412 /* allocate the MSI vectors */ 9413 for (i = 0; i < num_allocated; i++) { 9414 sc->intr[i].rid = (rid + i); 9415 9416 if ((sc->intr[i].resource = 9417 bus_alloc_resource_any(sc->dev, 9418 SYS_RES_IRQ, 9419 &sc->intr[i].rid, 9420 RF_ACTIVE)) == NULL) { 9421 BLOGE(sc, "Failed to map MSI[%d] (rid=%d)!\n", 9422 i, (rid + i)); 9423 9424 for (j = (i - 1); j >= 0; j--) { 9425 bus_release_resource(sc->dev, 9426 SYS_RES_IRQ, 9427 sc->intr[j].rid, 9428 sc->intr[j].resource); 9429 } 9430 9431 sc->intr_count = 0; 9432 sc->num_queues = 0; 9433 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9434 pci_release_msi(sc->dev); 9435 break; 9436 } 9437 9438 BLOGD(sc, DBG_LOAD, "Mapped MSI[%d] (rid=%d)\n", i, (rid + i)); 9439 } 9440 } while (0); 9441 9442 do { /* try allocating INTx vector resources */ 9443 if (sc->interrupt_mode != INTR_MODE_INTX) { 9444 break; 9445 } 9446 9447 BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n"); 9448 9449 /* only one vector for INTx */ 9450 sc->intr_count = 1; 9451 sc->num_queues = 1; 9452 9453 rid = 0; /* initial resource identifier */ 9454 9455 sc->intr[0].rid = rid; 9456 9457 if ((sc->intr[0].resource = 9458 bus_alloc_resource_any(sc->dev, 9459 SYS_RES_IRQ, 9460 &sc->intr[0].rid, 9461 (RF_ACTIVE | RF_SHAREABLE))) == NULL) { 9462 BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid); 9463 sc->intr_count = 0; 9464 sc->num_queues = 0; 9465 sc->interrupt_mode = -1; /* Failed! */ 9466 break; 9467 } 9468 9469 BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid); 9470 } while (0); 9471 9472 if (sc->interrupt_mode == -1) { 9473 BLOGE(sc, "Interrupt Allocation: FAILED!!!\n"); 9474 rc = 1; 9475 } else { 9476 BLOGD(sc, DBG_LOAD, 9477 "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n", 9478 sc->interrupt_mode, sc->num_queues); 9479 rc = 0; 9480 } 9481 9482 return (rc); 9483 } 9484 9485 static void 9486 bxe_interrupt_detach(struct bxe_softc *sc) 9487 { 9488 struct bxe_fastpath *fp; 9489 int i; 9490 9491 /* release interrupt resources */ 9492 for (i = 0; i < sc->intr_count; i++) { 9493 if (sc->intr[i].resource && sc->intr[i].tag) { 9494 BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i); 9495 bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag); 9496 } 9497 } 9498 9499 for (i = 0; i < sc->num_queues; i++) { 9500 fp = &sc->fp[i]; 9501 if (fp->tq) { 9502 taskqueue_drain(fp->tq, &fp->tq_task); 9503 taskqueue_free(fp->tq); 9504 fp->tq = NULL; 9505 } 9506 } 9507 9508 if (sc->rx_mode_tq) { 9509 taskqueue_drain(sc->rx_mode_tq, &sc->rx_mode_tq_task); 9510 taskqueue_free(sc->rx_mode_tq); 9511 sc->rx_mode_tq = NULL; 9512 } 9513 9514 if (sc->sp_tq) { 9515 taskqueue_drain(sc->sp_tq, &sc->sp_tq_task); 9516 taskqueue_free(sc->sp_tq); 9517 sc->sp_tq = NULL; 9518 } 9519 } 9520 9521 /* 9522 * Enables interrupts and attach to the ISR. 9523 * 9524 * When using multiple MSI/MSI-X vectors the first vector 9525 * is used for slowpath operations while all remaining 9526 * vectors are used for fastpath operations. If only a 9527 * single MSI/MSI-X vector is used (SINGLE_ISR) then the 9528 * ISR must look for both slowpath and fastpath completions. 9529 */ 9530 static int 9531 bxe_interrupt_attach(struct bxe_softc *sc) 9532 { 9533 struct bxe_fastpath *fp; 9534 int rc = 0; 9535 int i; 9536 9537 snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name), 9538 "bxe%d_sp_tq", sc->unit); 9539 TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc); 9540 sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT, 9541 taskqueue_thread_enqueue, 9542 &sc->sp_tq); 9543 taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */ 9544 "%s", sc->sp_tq_name); 9545 9546 snprintf(sc->rx_mode_tq_name, sizeof(sc->rx_mode_tq_name), 9547 "bxe%d_rx_mode_tq", sc->unit); 9548 TASK_INIT(&sc->rx_mode_tq_task, 0, bxe_handle_rx_mode_tq, sc); 9549 sc->rx_mode_tq = taskqueue_create_fast(sc->rx_mode_tq_name, M_NOWAIT, 9550 taskqueue_thread_enqueue, 9551 &sc->rx_mode_tq); 9552 taskqueue_start_threads(&sc->rx_mode_tq, 1, PWAIT, /* lower priority */ 9553 "%s", sc->rx_mode_tq_name); 9554 9555 for (i = 0; i < sc->num_queues; i++) { 9556 fp = &sc->fp[i]; 9557 snprintf(fp->tq_name, sizeof(fp->tq_name), 9558 "bxe%d_fp%d_tq", sc->unit, i); 9559 TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp); 9560 fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT, 9561 taskqueue_thread_enqueue, 9562 &fp->tq); 9563 taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */ 9564 "%s", fp->tq_name); 9565 } 9566 9567 /* setup interrupt handlers */ 9568 if (sc->interrupt_mode == INTR_MODE_MSIX) { 9569 BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n"); 9570 9571 /* 9572 * Setup the interrupt handler. Note that we pass the driver instance 9573 * to the interrupt handler for the slowpath. 9574 */ 9575 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9576 (INTR_TYPE_NET | INTR_MPSAFE), 9577 NULL, bxe_intr_sp, sc, 9578 &sc->intr[0].tag)) != 0) { 9579 BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc); 9580 goto bxe_interrupt_attach_exit; 9581 } 9582 9583 bus_describe_intr(sc->dev, sc->intr[0].resource, 9584 sc->intr[0].tag, "sp"); 9585 9586 /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */ 9587 9588 /* initialize the fastpath vectors (note the first was used for sp) */ 9589 for (i = 0; i < sc->num_queues; i++) { 9590 fp = &sc->fp[i]; 9591 BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1)); 9592 9593 /* 9594 * Setup the interrupt handler. Note that we pass the 9595 * fastpath context to the interrupt handler in this 9596 * case. 9597 */ 9598 if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource, 9599 (INTR_TYPE_NET | INTR_MPSAFE), 9600 NULL, bxe_intr_fp, fp, 9601 &sc->intr[i + 1].tag)) != 0) { 9602 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n", 9603 (i + 1), rc); 9604 goto bxe_interrupt_attach_exit; 9605 } 9606 9607 bus_describe_intr(sc->dev, sc->intr[i + 1].resource, 9608 sc->intr[i + 1].tag, "fp%02d", i); 9609 9610 /* bind the fastpath instance to a cpu */ 9611 if (sc->num_queues > 1) { 9612 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i); 9613 } 9614 9615 fp->state = BXE_FP_STATE_IRQ; 9616 } 9617 } else if (sc->interrupt_mode == INTR_MODE_MSI) { 9618 BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI[0] vector.\n"); 9619 9620 /* 9621 * Setup the interrupt handler. Note that we pass the driver instance 9622 * to the interrupt handler for the slowpath. 9623 */ 9624 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9625 (INTR_TYPE_NET | INTR_MPSAFE), 9626 NULL, bxe_intr_sp, sc, 9627 &sc->intr[0].tag)) != 0) { 9628 BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc); 9629 goto bxe_interrupt_attach_exit; 9630 } 9631 9632 bus_describe_intr(sc->dev, sc->intr[0].resource, 9633 sc->intr[0].tag, "sp"); 9634 9635 /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */ 9636 9637 /* initialize the fastpath vectors (note the first was used for sp) */ 9638 for (i = 0; i < sc->num_queues; i++) { 9639 fp = &sc->fp[i]; 9640 BLOGD(sc, DBG_LOAD, "Enabling MSI[%d] vector\n", (i + 1)); 9641 9642 /* 9643 * Setup the interrupt handler. Note that we pass the 9644 * fastpath context to the interrupt handler in this 9645 * case. 9646 */ 9647 if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource, 9648 (INTR_TYPE_NET | INTR_MPSAFE), 9649 NULL, bxe_intr_fp, fp, 9650 &sc->intr[i + 1].tag)) != 0) { 9651 BLOGE(sc, "Failed to allocate MSI[%d] vector (%d)\n", 9652 (i + 1), rc); 9653 goto bxe_interrupt_attach_exit; 9654 } 9655 9656 bus_describe_intr(sc->dev, sc->intr[i + 1].resource, 9657 sc->intr[i + 1].tag, "fp%02d", i); 9658 9659 /* bind the fastpath instance to a cpu */ 9660 if (sc->num_queues > 1) { 9661 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i); 9662 } 9663 9664 fp->state = BXE_FP_STATE_IRQ; 9665 } 9666 } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */ 9667 BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n"); 9668 9669 /* 9670 * Setup the interrupt handler. Note that we pass the 9671 * driver instance to the interrupt handler which 9672 * will handle both the slowpath and fastpath. 9673 */ 9674 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9675 (INTR_TYPE_NET | INTR_MPSAFE), 9676 NULL, bxe_intr_legacy, sc, 9677 &sc->intr[0].tag)) != 0) { 9678 BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc); 9679 goto bxe_interrupt_attach_exit; 9680 } 9681 } 9682 9683 bxe_interrupt_attach_exit: 9684 9685 return (rc); 9686 } 9687 9688 static int bxe_init_hw_common_chip(struct bxe_softc *sc); 9689 static int bxe_init_hw_common(struct bxe_softc *sc); 9690 static int bxe_init_hw_port(struct bxe_softc *sc); 9691 static int bxe_init_hw_func(struct bxe_softc *sc); 9692 static void bxe_reset_common(struct bxe_softc *sc); 9693 static void bxe_reset_port(struct bxe_softc *sc); 9694 static void bxe_reset_func(struct bxe_softc *sc); 9695 static int bxe_gunzip_init(struct bxe_softc *sc); 9696 static void bxe_gunzip_end(struct bxe_softc *sc); 9697 static int bxe_init_firmware(struct bxe_softc *sc); 9698 static void bxe_release_firmware(struct bxe_softc *sc); 9699 9700 static struct 9701 ecore_func_sp_drv_ops bxe_func_sp_drv = { 9702 .init_hw_cmn_chip = bxe_init_hw_common_chip, 9703 .init_hw_cmn = bxe_init_hw_common, 9704 .init_hw_port = bxe_init_hw_port, 9705 .init_hw_func = bxe_init_hw_func, 9706 9707 .reset_hw_cmn = bxe_reset_common, 9708 .reset_hw_port = bxe_reset_port, 9709 .reset_hw_func = bxe_reset_func, 9710 9711 .gunzip_init = bxe_gunzip_init, 9712 .gunzip_end = bxe_gunzip_end, 9713 9714 .init_fw = bxe_init_firmware, 9715 .release_fw = bxe_release_firmware, 9716 }; 9717 9718 static void 9719 bxe_init_func_obj(struct bxe_softc *sc) 9720 { 9721 sc->dmae_ready = 0; 9722 9723 ecore_init_func_obj(sc, 9724 &sc->func_obj, 9725 BXE_SP(sc, func_rdata), 9726 BXE_SP_MAPPING(sc, func_rdata), 9727 BXE_SP(sc, func_afex_rdata), 9728 BXE_SP_MAPPING(sc, func_afex_rdata), 9729 &bxe_func_sp_drv); 9730 } 9731 9732 static int 9733 bxe_init_hw(struct bxe_softc *sc, 9734 uint32_t load_code) 9735 { 9736 struct ecore_func_state_params func_params = { NULL }; 9737 int rc; 9738 9739 /* prepare the parameters for function state transitions */ 9740 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 9741 9742 func_params.f_obj = &sc->func_obj; 9743 func_params.cmd = ECORE_F_CMD_HW_INIT; 9744 9745 func_params.params.hw_init.load_phase = load_code; 9746 9747 /* 9748 * Via a plethora of function pointers, we will eventually reach 9749 * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func(). 9750 */ 9751 rc = ecore_func_state_change(sc, &func_params); 9752 9753 return (rc); 9754 } 9755 9756 static void 9757 bxe_fill(struct bxe_softc *sc, 9758 uint32_t addr, 9759 int fill, 9760 uint32_t len) 9761 { 9762 uint32_t i; 9763 9764 if (!(len % 4) && !(addr % 4)) { 9765 for (i = 0; i < len; i += 4) { 9766 REG_WR(sc, (addr + i), fill); 9767 } 9768 } else { 9769 for (i = 0; i < len; i++) { 9770 REG_WR8(sc, (addr + i), fill); 9771 } 9772 } 9773 } 9774 9775 /* writes FP SP data to FW - data_size in dwords */ 9776 static void 9777 bxe_wr_fp_sb_data(struct bxe_softc *sc, 9778 int fw_sb_id, 9779 uint32_t *sb_data_p, 9780 uint32_t data_size) 9781 { 9782 int index; 9783 9784 for (index = 0; index < data_size; index++) { 9785 REG_WR(sc, 9786 (BAR_CSTRORM_INTMEM + 9787 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 9788 (sizeof(uint32_t) * index)), 9789 *(sb_data_p + index)); 9790 } 9791 } 9792 9793 static void 9794 bxe_zero_fp_sb(struct bxe_softc *sc, 9795 int fw_sb_id) 9796 { 9797 struct hc_status_block_data_e2 sb_data_e2; 9798 struct hc_status_block_data_e1x sb_data_e1x; 9799 uint32_t *sb_data_p; 9800 uint32_t data_size = 0; 9801 9802 if (!CHIP_IS_E1x(sc)) { 9803 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9804 sb_data_e2.common.state = SB_DISABLED; 9805 sb_data_e2.common.p_func.vf_valid = FALSE; 9806 sb_data_p = (uint32_t *)&sb_data_e2; 9807 data_size = (sizeof(struct hc_status_block_data_e2) / 9808 sizeof(uint32_t)); 9809 } else { 9810 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9811 sb_data_e1x.common.state = SB_DISABLED; 9812 sb_data_e1x.common.p_func.vf_valid = FALSE; 9813 sb_data_p = (uint32_t *)&sb_data_e1x; 9814 data_size = (sizeof(struct hc_status_block_data_e1x) / 9815 sizeof(uint32_t)); 9816 } 9817 9818 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9819 9820 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 9821 0, CSTORM_STATUS_BLOCK_SIZE); 9822 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)), 9823 0, CSTORM_SYNC_BLOCK_SIZE); 9824 } 9825 9826 static void 9827 bxe_wr_sp_sb_data(struct bxe_softc *sc, 9828 struct hc_sp_status_block_data *sp_sb_data) 9829 { 9830 int i; 9831 9832 for (i = 0; 9833 i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t)); 9834 i++) { 9835 REG_WR(sc, 9836 (BAR_CSTRORM_INTMEM + 9837 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) + 9838 (i * sizeof(uint32_t))), 9839 *((uint32_t *)sp_sb_data + i)); 9840 } 9841 } 9842 9843 static void 9844 bxe_zero_sp_sb(struct bxe_softc *sc) 9845 { 9846 struct hc_sp_status_block_data sp_sb_data; 9847 9848 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9849 9850 sp_sb_data.state = SB_DISABLED; 9851 sp_sb_data.p_func.vf_valid = FALSE; 9852 9853 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9854 9855 bxe_fill(sc, 9856 (BAR_CSTRORM_INTMEM + 9857 CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))), 9858 0, CSTORM_SP_STATUS_BLOCK_SIZE); 9859 bxe_fill(sc, 9860 (BAR_CSTRORM_INTMEM + 9861 CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))), 9862 0, CSTORM_SP_SYNC_BLOCK_SIZE); 9863 } 9864 9865 static void 9866 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 9867 int igu_sb_id, 9868 int igu_seg_id) 9869 { 9870 hc_sm->igu_sb_id = igu_sb_id; 9871 hc_sm->igu_seg_id = igu_seg_id; 9872 hc_sm->timer_value = 0xFF; 9873 hc_sm->time_to_expire = 0xFFFFFFFF; 9874 } 9875 9876 static void 9877 bxe_map_sb_state_machines(struct hc_index_data *index_data) 9878 { 9879 /* zero out state machine indices */ 9880 9881 /* rx indices */ 9882 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9883 9884 /* tx indices */ 9885 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9886 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 9887 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 9888 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 9889 9890 /* map indices */ 9891 9892 /* rx indices */ 9893 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 9894 (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9895 9896 /* tx indices */ 9897 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 9898 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9899 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 9900 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9901 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 9902 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9903 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 9904 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9905 } 9906 9907 static void 9908 bxe_init_sb(struct bxe_softc *sc, 9909 bus_addr_t busaddr, 9910 int vfid, 9911 uint8_t vf_valid, 9912 int fw_sb_id, 9913 int igu_sb_id) 9914 { 9915 struct hc_status_block_data_e2 sb_data_e2; 9916 struct hc_status_block_data_e1x sb_data_e1x; 9917 struct hc_status_block_sm *hc_sm_p; 9918 uint32_t *sb_data_p; 9919 int igu_seg_id; 9920 int data_size; 9921 9922 if (CHIP_INT_MODE_IS_BC(sc)) { 9923 igu_seg_id = HC_SEG_ACCESS_NORM; 9924 } else { 9925 igu_seg_id = IGU_SEG_ACCESS_NORM; 9926 } 9927 9928 bxe_zero_fp_sb(sc, fw_sb_id); 9929 9930 if (!CHIP_IS_E1x(sc)) { 9931 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9932 sb_data_e2.common.state = SB_ENABLED; 9933 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc); 9934 sb_data_e2.common.p_func.vf_id = vfid; 9935 sb_data_e2.common.p_func.vf_valid = vf_valid; 9936 sb_data_e2.common.p_func.vnic_id = SC_VN(sc); 9937 sb_data_e2.common.same_igu_sb_1b = TRUE; 9938 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr); 9939 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr); 9940 hc_sm_p = sb_data_e2.common.state_machine; 9941 sb_data_p = (uint32_t *)&sb_data_e2; 9942 data_size = (sizeof(struct hc_status_block_data_e2) / 9943 sizeof(uint32_t)); 9944 bxe_map_sb_state_machines(sb_data_e2.index_data); 9945 } else { 9946 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9947 sb_data_e1x.common.state = SB_ENABLED; 9948 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc); 9949 sb_data_e1x.common.p_func.vf_id = 0xff; 9950 sb_data_e1x.common.p_func.vf_valid = FALSE; 9951 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc); 9952 sb_data_e1x.common.same_igu_sb_1b = TRUE; 9953 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr); 9954 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr); 9955 hc_sm_p = sb_data_e1x.common.state_machine; 9956 sb_data_p = (uint32_t *)&sb_data_e1x; 9957 data_size = (sizeof(struct hc_status_block_data_e1x) / 9958 sizeof(uint32_t)); 9959 bxe_map_sb_state_machines(sb_data_e1x.index_data); 9960 } 9961 9962 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id); 9963 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id); 9964 9965 BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id); 9966 9967 /* write indices to HW - PCI guarantees endianity of regpairs */ 9968 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9969 } 9970 9971 static inline uint8_t 9972 bxe_fp_qzone_id(struct bxe_fastpath *fp) 9973 { 9974 if (CHIP_IS_E1x(fp->sc)) { 9975 return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H); 9976 } else { 9977 return (fp->cl_id); 9978 } 9979 } 9980 9981 static inline uint32_t 9982 bxe_rx_ustorm_prods_offset(struct bxe_softc *sc, 9983 struct bxe_fastpath *fp) 9984 { 9985 uint32_t offset = BAR_USTRORM_INTMEM; 9986 9987 #if 0 9988 if (IS_VF(sc)) { 9989 return (PXP_VF_ADDR_USDM_QUEUES_START + 9990 (sc->acquire_resp.resc.hw_qid[fp->index] * 9991 sizeof(struct ustorm_queue_zone_data))); 9992 } else 9993 #endif 9994 if (!CHIP_IS_E1x(sc)) { 9995 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 9996 } else { 9997 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id); 9998 } 9999 10000 return (offset); 10001 } 10002 10003 static void 10004 bxe_init_eth_fp(struct bxe_softc *sc, 10005 int idx) 10006 { 10007 struct bxe_fastpath *fp = &sc->fp[idx]; 10008 uint32_t cids[ECORE_MULTI_TX_COS] = { 0 }; 10009 unsigned long q_type = 0; 10010 int cos; 10011 10012 fp->sc = sc; 10013 fp->index = idx; 10014 10015 snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name), 10016 "bxe%d_fp%d_tx_lock", sc->unit, idx); 10017 mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF); 10018 10019 snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name), 10020 "bxe%d_fp%d_rx_lock", sc->unit, idx); 10021 mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF); 10022 10023 fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc)); 10024 fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc)); 10025 10026 fp->cl_id = (CHIP_IS_E1x(sc)) ? 10027 (SC_L_ID(sc) + idx) : 10028 /* want client ID same as IGU SB ID for non-E1 */ 10029 fp->igu_sb_id; 10030 fp->cl_qzone_id = bxe_fp_qzone_id(fp); 10031 10032 /* setup sb indices */ 10033 if (!CHIP_IS_E1x(sc)) { 10034 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values; 10035 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index; 10036 } else { 10037 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values; 10038 fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index; 10039 } 10040 10041 /* init shortcut */ 10042 fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp); 10043 10044 fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]; 10045 10046 /* 10047 * XXX If multiple CoS is ever supported then each fastpath structure 10048 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 10049 */ 10050 for (cos = 0; cos < sc->max_cos; cos++) { 10051 cids[cos] = idx; 10052 } 10053 fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]; 10054 10055 /* nothing more for a VF to do */ 10056 if (IS_VF(sc)) { 10057 return; 10058 } 10059 10060 bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE, 10061 fp->fw_sb_id, fp->igu_sb_id); 10062 10063 bxe_update_fp_sb_idx(fp); 10064 10065 /* Configure Queue State object */ 10066 bit_set(&q_type, ECORE_Q_TYPE_HAS_RX); 10067 bit_set(&q_type, ECORE_Q_TYPE_HAS_TX); 10068 10069 ecore_init_queue_obj(sc, 10070 &sc->sp_objs[idx].q_obj, 10071 fp->cl_id, 10072 cids, 10073 sc->max_cos, 10074 SC_FUNC(sc), 10075 BXE_SP(sc, q_rdata), 10076 BXE_SP_MAPPING(sc, q_rdata), 10077 q_type); 10078 10079 /* configure classification DBs */ 10080 ecore_init_mac_obj(sc, 10081 &sc->sp_objs[idx].mac_obj, 10082 fp->cl_id, 10083 idx, 10084 SC_FUNC(sc), 10085 BXE_SP(sc, mac_rdata), 10086 BXE_SP_MAPPING(sc, mac_rdata), 10087 ECORE_FILTER_MAC_PENDING, 10088 &sc->sp_state, 10089 ECORE_OBJ_TYPE_RX_TX, 10090 &sc->macs_pool); 10091 10092 BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n", 10093 idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id); 10094 } 10095 10096 static inline void 10097 bxe_update_rx_prod(struct bxe_softc *sc, 10098 struct bxe_fastpath *fp, 10099 uint16_t rx_bd_prod, 10100 uint16_t rx_cq_prod, 10101 uint16_t rx_sge_prod) 10102 { 10103 struct ustorm_eth_rx_producers rx_prods = { 0 }; 10104 uint32_t i; 10105 10106 /* update producers */ 10107 rx_prods.bd_prod = rx_bd_prod; 10108 rx_prods.cqe_prod = rx_cq_prod; 10109 rx_prods.sge_prod = rx_sge_prod; 10110 10111 /* 10112 * Make sure that the BD and SGE data is updated before updating the 10113 * producers since FW might read the BD/SGE right after the producer 10114 * is updated. 10115 * This is only applicable for weak-ordered memory model archs such 10116 * as IA-64. The following barrier is also mandatory since FW will 10117 * assumes BDs must have buffers. 10118 */ 10119 wmb(); 10120 10121 for (i = 0; i < (sizeof(rx_prods) / 4); i++) { 10122 REG_WR(sc, 10123 (fp->ustorm_rx_prods_offset + (i * 4)), 10124 ((uint32_t *)&rx_prods)[i]); 10125 } 10126 10127 wmb(); /* keep prod updates ordered */ 10128 10129 BLOGD(sc, DBG_RX, 10130 "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n", 10131 fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod); 10132 } 10133 10134 static void 10135 bxe_init_rx_rings(struct bxe_softc *sc) 10136 { 10137 struct bxe_fastpath *fp; 10138 int i; 10139 10140 for (i = 0; i < sc->num_queues; i++) { 10141 fp = &sc->fp[i]; 10142 10143 fp->rx_bd_cons = 0; 10144 10145 /* 10146 * Activate the BD ring... 10147 * Warning, this will generate an interrupt (to the TSTORM) 10148 * so this can only be done after the chip is initialized 10149 */ 10150 bxe_update_rx_prod(sc, fp, 10151 fp->rx_bd_prod, 10152 fp->rx_cq_prod, 10153 fp->rx_sge_prod); 10154 10155 if (i != 0) { 10156 continue; 10157 } 10158 10159 if (CHIP_IS_E1(sc)) { 10160 REG_WR(sc, 10161 (BAR_USTRORM_INTMEM + 10162 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))), 10163 U64_LO(fp->rcq_dma.paddr)); 10164 REG_WR(sc, 10165 (BAR_USTRORM_INTMEM + 10166 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4), 10167 U64_HI(fp->rcq_dma.paddr)); 10168 } 10169 } 10170 } 10171 10172 static void 10173 bxe_init_tx_ring_one(struct bxe_fastpath *fp) 10174 { 10175 SET_FLAG(fp->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1); 10176 fp->tx_db.data.zero_fill1 = 0; 10177 fp->tx_db.data.prod = 0; 10178 10179 fp->tx_pkt_prod = 0; 10180 fp->tx_pkt_cons = 0; 10181 fp->tx_bd_prod = 0; 10182 fp->tx_bd_cons = 0; 10183 fp->eth_q_stats.tx_pkts = 0; 10184 } 10185 10186 static inline void 10187 bxe_init_tx_rings(struct bxe_softc *sc) 10188 { 10189 int i; 10190 10191 for (i = 0; i < sc->num_queues; i++) { 10192 #if 0 10193 uint8_t cos; 10194 for (cos = 0; cos < sc->max_cos; cos++) { 10195 bxe_init_tx_ring_one(&sc->fp[i].txdata[cos]); 10196 } 10197 #else 10198 bxe_init_tx_ring_one(&sc->fp[i]); 10199 #endif 10200 } 10201 } 10202 10203 static void 10204 bxe_init_def_sb(struct bxe_softc *sc) 10205 { 10206 struct host_sp_status_block *def_sb = sc->def_sb; 10207 bus_addr_t mapping = sc->def_sb_dma.paddr; 10208 int igu_sp_sb_index; 10209 int igu_seg_id; 10210 int port = SC_PORT(sc); 10211 int func = SC_FUNC(sc); 10212 int reg_offset, reg_offset_en5; 10213 uint64_t section; 10214 int index, sindex; 10215 struct hc_sp_status_block_data sp_sb_data; 10216 10217 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 10218 10219 if (CHIP_INT_MODE_IS_BC(sc)) { 10220 igu_sp_sb_index = DEF_SB_IGU_ID; 10221 igu_seg_id = HC_SEG_ACCESS_DEF; 10222 } else { 10223 igu_sp_sb_index = sc->igu_dsb_id; 10224 igu_seg_id = IGU_SEG_ACCESS_DEF; 10225 } 10226 10227 /* attentions */ 10228 section = ((uint64_t)mapping + 10229 offsetof(struct host_sp_status_block, atten_status_block)); 10230 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 10231 sc->attn_state = 0; 10232 10233 reg_offset = (port) ? 10234 MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 10235 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 10236 reg_offset_en5 = (port) ? 10237 MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 10238 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0; 10239 10240 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 10241 /* take care of sig[0]..sig[4] */ 10242 for (sindex = 0; sindex < 4; sindex++) { 10243 sc->attn_group[index].sig[sindex] = 10244 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index))); 10245 } 10246 10247 if (!CHIP_IS_E1x(sc)) { 10248 /* 10249 * enable5 is separate from the rest of the registers, 10250 * and the address skip is 4 and not 16 between the 10251 * different groups 10252 */ 10253 sc->attn_group[index].sig[4] = 10254 REG_RD(sc, (reg_offset_en5 + (0x4 * index))); 10255 } else { 10256 sc->attn_group[index].sig[4] = 0; 10257 } 10258 } 10259 10260 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10261 reg_offset = (port) ? 10262 HC_REG_ATTN_MSG1_ADDR_L : 10263 HC_REG_ATTN_MSG0_ADDR_L; 10264 REG_WR(sc, reg_offset, U64_LO(section)); 10265 REG_WR(sc, (reg_offset + 4), U64_HI(section)); 10266 } else if (!CHIP_IS_E1x(sc)) { 10267 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 10268 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 10269 } 10270 10271 section = ((uint64_t)mapping + 10272 offsetof(struct host_sp_status_block, sp_sb)); 10273 10274 bxe_zero_sp_sb(sc); 10275 10276 /* PCI guarantees endianity of regpair */ 10277 sp_sb_data.state = SB_ENABLED; 10278 sp_sb_data.host_sb_addr.lo = U64_LO(section); 10279 sp_sb_data.host_sb_addr.hi = U64_HI(section); 10280 sp_sb_data.igu_sb_id = igu_sp_sb_index; 10281 sp_sb_data.igu_seg_id = igu_seg_id; 10282 sp_sb_data.p_func.pf_id = func; 10283 sp_sb_data.p_func.vnic_id = SC_VN(sc); 10284 sp_sb_data.p_func.vf_id = 0xff; 10285 10286 bxe_wr_sp_sb_data(sc, &sp_sb_data); 10287 10288 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 10289 } 10290 10291 static void 10292 bxe_init_sp_ring(struct bxe_softc *sc) 10293 { 10294 atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING); 10295 sc->spq_prod_idx = 0; 10296 sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS]; 10297 sc->spq_prod_bd = sc->spq; 10298 sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT); 10299 } 10300 10301 static void 10302 bxe_init_eq_ring(struct bxe_softc *sc) 10303 { 10304 union event_ring_elem *elem; 10305 int i; 10306 10307 for (i = 1; i <= NUM_EQ_PAGES; i++) { 10308 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1]; 10309 10310 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr + 10311 BCM_PAGE_SIZE * 10312 (i % NUM_EQ_PAGES))); 10313 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr + 10314 BCM_PAGE_SIZE * 10315 (i % NUM_EQ_PAGES))); 10316 } 10317 10318 sc->eq_cons = 0; 10319 sc->eq_prod = NUM_EQ_DESC; 10320 sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS]; 10321 10322 atomic_store_rel_long(&sc->eq_spq_left, 10323 (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING), 10324 NUM_EQ_DESC) - 1)); 10325 } 10326 10327 static void 10328 bxe_init_internal_common(struct bxe_softc *sc) 10329 { 10330 int i; 10331 10332 if (IS_MF_SI(sc)) { 10333 /* 10334 * In switch independent mode, the TSTORM needs to accept 10335 * packets that failed classification, since approximate match 10336 * mac addresses aren't written to NIG LLH. 10337 */ 10338 REG_WR8(sc, 10339 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 10340 2); 10341 } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */ 10342 REG_WR8(sc, 10343 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 10344 0); 10345 } 10346 10347 /* 10348 * Zero this manually as its initialization is currently missing 10349 * in the initTool. 10350 */ 10351 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) { 10352 REG_WR(sc, 10353 (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)), 10354 0); 10355 } 10356 10357 if (!CHIP_IS_E1x(sc)) { 10358 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET), 10359 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 10360 } 10361 } 10362 10363 static void 10364 bxe_init_internal(struct bxe_softc *sc, 10365 uint32_t load_code) 10366 { 10367 switch (load_code) { 10368 case FW_MSG_CODE_DRV_LOAD_COMMON: 10369 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 10370 bxe_init_internal_common(sc); 10371 /* no break */ 10372 10373 case FW_MSG_CODE_DRV_LOAD_PORT: 10374 /* nothing to do */ 10375 /* no break */ 10376 10377 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 10378 /* internal memory per function is initialized inside bxe_pf_init */ 10379 break; 10380 10381 default: 10382 BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code); 10383 break; 10384 } 10385 } 10386 10387 static void 10388 storm_memset_func_cfg(struct bxe_softc *sc, 10389 struct tstorm_eth_function_common_config *tcfg, 10390 uint16_t abs_fid) 10391 { 10392 uint32_t addr; 10393 size_t size; 10394 10395 addr = (BAR_TSTRORM_INTMEM + 10396 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid)); 10397 size = sizeof(struct tstorm_eth_function_common_config); 10398 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg); 10399 } 10400 10401 static void 10402 bxe_func_init(struct bxe_softc *sc, 10403 struct bxe_func_init_params *p) 10404 { 10405 struct tstorm_eth_function_common_config tcfg = { 0 }; 10406 10407 if (CHIP_IS_E1x(sc)) { 10408 storm_memset_func_cfg(sc, &tcfg, p->func_id); 10409 } 10410 10411 /* Enable the function in the FW */ 10412 storm_memset_vf_to_pf(sc, p->func_id, p->pf_id); 10413 storm_memset_func_en(sc, p->func_id, 1); 10414 10415 /* spq */ 10416 if (p->func_flgs & FUNC_FLG_SPQ) { 10417 storm_memset_spq_addr(sc, p->spq_map, p->func_id); 10418 REG_WR(sc, 10419 (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)), 10420 p->spq_prod); 10421 } 10422 } 10423 10424 /* 10425 * Calculates the sum of vn_min_rates. 10426 * It's needed for further normalizing of the min_rates. 10427 * Returns: 10428 * sum of vn_min_rates. 10429 * or 10430 * 0 - if all the min_rates are 0. 10431 * In the later case fainess algorithm should be deactivated. 10432 * If all min rates are not zero then those that are zeroes will be set to 1. 10433 */ 10434 static void 10435 bxe_calc_vn_min(struct bxe_softc *sc, 10436 struct cmng_init_input *input) 10437 { 10438 uint32_t vn_cfg; 10439 uint32_t vn_min_rate; 10440 int all_zero = 1; 10441 int vn; 10442 10443 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10444 vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10445 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 10446 FUNC_MF_CFG_MIN_BW_SHIFT) * 100); 10447 10448 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10449 /* skip hidden VNs */ 10450 vn_min_rate = 0; 10451 } else if (!vn_min_rate) { 10452 /* If min rate is zero - set it to 100 */ 10453 vn_min_rate = DEF_MIN_RATE; 10454 } else { 10455 all_zero = 0; 10456 } 10457 10458 input->vnic_min_rate[vn] = vn_min_rate; 10459 } 10460 10461 /* if ETS or all min rates are zeros - disable fairness */ 10462 if (BXE_IS_ETS_ENABLED(sc)) { 10463 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10464 BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n"); 10465 } else if (all_zero) { 10466 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10467 BLOGD(sc, DBG_LOAD, 10468 "Fariness disabled (all MIN values are zeroes)\n"); 10469 } else { 10470 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10471 } 10472 } 10473 10474 static inline uint16_t 10475 bxe_extract_max_cfg(struct bxe_softc *sc, 10476 uint32_t mf_cfg) 10477 { 10478 uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >> 10479 FUNC_MF_CFG_MAX_BW_SHIFT); 10480 10481 if (!max_cfg) { 10482 BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n"); 10483 max_cfg = 100; 10484 } 10485 10486 return (max_cfg); 10487 } 10488 10489 static void 10490 bxe_calc_vn_max(struct bxe_softc *sc, 10491 int vn, 10492 struct cmng_init_input *input) 10493 { 10494 uint16_t vn_max_rate; 10495 uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10496 uint32_t max_cfg; 10497 10498 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10499 vn_max_rate = 0; 10500 } else { 10501 max_cfg = bxe_extract_max_cfg(sc, vn_cfg); 10502 10503 if (IS_MF_SI(sc)) { 10504 /* max_cfg in percents of linkspeed */ 10505 vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100); 10506 } else { /* SD modes */ 10507 /* max_cfg is absolute in 100Mb units */ 10508 vn_max_rate = (max_cfg * 100); 10509 } 10510 } 10511 10512 BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 10513 10514 input->vnic_max_rate[vn] = vn_max_rate; 10515 } 10516 10517 static void 10518 bxe_cmng_fns_init(struct bxe_softc *sc, 10519 uint8_t read_cfg, 10520 uint8_t cmng_type) 10521 { 10522 struct cmng_init_input input; 10523 int vn; 10524 10525 memset(&input, 0, sizeof(struct cmng_init_input)); 10526 10527 input.port_rate = sc->link_vars.line_speed; 10528 10529 if (cmng_type == CMNG_FNS_MINMAX) { 10530 /* read mf conf from shmem */ 10531 if (read_cfg) { 10532 bxe_read_mf_cfg(sc); 10533 } 10534 10535 /* get VN min rate and enable fairness if not 0 */ 10536 bxe_calc_vn_min(sc, &input); 10537 10538 /* get VN max rate */ 10539 if (sc->port.pmf) { 10540 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10541 bxe_calc_vn_max(sc, vn, &input); 10542 } 10543 } 10544 10545 /* always enable rate shaping and fairness */ 10546 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 10547 10548 ecore_init_cmng(&input, &sc->cmng); 10549 return; 10550 } 10551 10552 /* rate shaping and fairness are disabled */ 10553 BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n"); 10554 } 10555 10556 static int 10557 bxe_get_cmng_fns_mode(struct bxe_softc *sc) 10558 { 10559 if (CHIP_REV_IS_SLOW(sc)) { 10560 return (CMNG_FNS_NONE); 10561 } 10562 10563 if (IS_MF(sc)) { 10564 return (CMNG_FNS_MINMAX); 10565 } 10566 10567 return (CMNG_FNS_NONE); 10568 } 10569 10570 static void 10571 storm_memset_cmng(struct bxe_softc *sc, 10572 struct cmng_init *cmng, 10573 uint8_t port) 10574 { 10575 int vn; 10576 int func; 10577 uint32_t addr; 10578 size_t size; 10579 10580 addr = (BAR_XSTRORM_INTMEM + 10581 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port)); 10582 size = sizeof(struct cmng_struct_per_port); 10583 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port); 10584 10585 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10586 func = func_by_vn(sc, vn); 10587 10588 addr = (BAR_XSTRORM_INTMEM + 10589 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func)); 10590 size = sizeof(struct rate_shaping_vars_per_vn); 10591 ecore_storm_memset_struct(sc, addr, size, 10592 (uint32_t *)&cmng->vnic.vnic_max_rate[vn]); 10593 10594 addr = (BAR_XSTRORM_INTMEM + 10595 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func)); 10596 size = sizeof(struct fairness_vars_per_vn); 10597 ecore_storm_memset_struct(sc, addr, size, 10598 (uint32_t *)&cmng->vnic.vnic_min_rate[vn]); 10599 } 10600 } 10601 10602 static void 10603 bxe_pf_init(struct bxe_softc *sc) 10604 { 10605 struct bxe_func_init_params func_init = { 0 }; 10606 struct event_ring_data eq_data = { { 0 } }; 10607 uint16_t flags; 10608 10609 if (!CHIP_IS_E1x(sc)) { 10610 /* reset IGU PF statistics: MSIX + ATTN */ 10611 /* PF */ 10612 REG_WR(sc, 10613 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10614 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10615 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10616 0); 10617 /* ATTN */ 10618 REG_WR(sc, 10619 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10620 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10621 (BXE_IGU_STAS_MSG_PF_CNT * 4) + 10622 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10623 0); 10624 } 10625 10626 /* function setup flags */ 10627 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); 10628 10629 /* 10630 * This flag is relevant for E1x only. 10631 * E2 doesn't have a TPA configuration in a function level. 10632 */ 10633 flags |= (sc->ifnet->if_capenable & IFCAP_LRO) ? FUNC_FLG_TPA : 0; 10634 10635 func_init.func_flgs = flags; 10636 func_init.pf_id = SC_FUNC(sc); 10637 func_init.func_id = SC_FUNC(sc); 10638 func_init.spq_map = sc->spq_dma.paddr; 10639 func_init.spq_prod = sc->spq_prod_idx; 10640 10641 bxe_func_init(sc, &func_init); 10642 10643 memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port)); 10644 10645 /* 10646 * Congestion management values depend on the link rate. 10647 * There is no active link so initial link rate is set to 10Gbps. 10648 * When the link comes up the congestion management values are 10649 * re-calculated according to the actual link rate. 10650 */ 10651 sc->link_vars.line_speed = SPEED_10000; 10652 bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc)); 10653 10654 /* Only the PMF sets the HW */ 10655 if (sc->port.pmf) { 10656 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 10657 } 10658 10659 /* init Event Queue - PCI bus guarantees correct endainity */ 10660 eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr); 10661 eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr); 10662 eq_data.producer = sc->eq_prod; 10663 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 10664 eq_data.sb_id = DEF_SB_ID; 10665 storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc)); 10666 } 10667 10668 static void 10669 bxe_hc_int_enable(struct bxe_softc *sc) 10670 { 10671 int port = SC_PORT(sc); 10672 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10673 uint32_t val = REG_RD(sc, addr); 10674 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10675 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10676 (sc->intr_count == 1)) ? TRUE : FALSE; 10677 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10678 10679 if (msix) { 10680 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10681 HC_CONFIG_0_REG_INT_LINE_EN_0); 10682 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10683 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10684 if (single_msix) { 10685 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 10686 } 10687 } else if (msi) { 10688 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 10689 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10690 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10691 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10692 } else { 10693 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10694 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10695 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10696 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10697 10698 if (!CHIP_IS_E1(sc)) { 10699 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", 10700 val, port, addr); 10701 10702 REG_WR(sc, addr, val); 10703 10704 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 10705 } 10706 } 10707 10708 if (CHIP_IS_E1(sc)) { 10709 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF); 10710 } 10711 10712 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n", 10713 val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10714 10715 REG_WR(sc, addr, val); 10716 10717 /* ensure that HC_CONFIG is written before leading/trailing edge config */ 10718 mb(); 10719 10720 if (!CHIP_IS_E1(sc)) { 10721 /* init leading/trailing edge */ 10722 if (IS_MF(sc)) { 10723 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10724 if (sc->port.pmf) { 10725 /* enable nig and gpio3 attention */ 10726 val |= 0x1100; 10727 } 10728 } else { 10729 val = 0xffff; 10730 } 10731 10732 REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val); 10733 REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val); 10734 } 10735 10736 /* make sure that interrupts are indeed enabled from here on */ 10737 mb(); 10738 } 10739 10740 static void 10741 bxe_igu_int_enable(struct bxe_softc *sc) 10742 { 10743 uint32_t val; 10744 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10745 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10746 (sc->intr_count == 1)) ? TRUE : FALSE; 10747 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10748 10749 val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10750 10751 if (msix) { 10752 val &= ~(IGU_PF_CONF_INT_LINE_EN | 10753 IGU_PF_CONF_SINGLE_ISR_EN); 10754 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10755 IGU_PF_CONF_ATTN_BIT_EN); 10756 if (single_msix) { 10757 val |= IGU_PF_CONF_SINGLE_ISR_EN; 10758 } 10759 } else if (msi) { 10760 val &= ~IGU_PF_CONF_INT_LINE_EN; 10761 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10762 IGU_PF_CONF_ATTN_BIT_EN | 10763 IGU_PF_CONF_SINGLE_ISR_EN); 10764 } else { 10765 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 10766 val |= (IGU_PF_CONF_INT_LINE_EN | 10767 IGU_PF_CONF_ATTN_BIT_EN | 10768 IGU_PF_CONF_SINGLE_ISR_EN); 10769 } 10770 10771 /* clean previous status - need to configure igu prior to ack*/ 10772 if ((!msix) || single_msix) { 10773 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10774 bxe_ack_int(sc); 10775 } 10776 10777 val |= IGU_PF_CONF_FUNC_EN; 10778 10779 BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n", 10780 val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10781 10782 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10783 10784 mb(); 10785 10786 /* init leading/trailing edge */ 10787 if (IS_MF(sc)) { 10788 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10789 if (sc->port.pmf) { 10790 /* enable nig and gpio3 attention */ 10791 val |= 0x1100; 10792 } 10793 } else { 10794 val = 0xffff; 10795 } 10796 10797 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 10798 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 10799 10800 /* make sure that interrupts are indeed enabled from here on */ 10801 mb(); 10802 } 10803 10804 static void 10805 bxe_int_enable(struct bxe_softc *sc) 10806 { 10807 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10808 bxe_hc_int_enable(sc); 10809 } else { 10810 bxe_igu_int_enable(sc); 10811 } 10812 } 10813 10814 static void 10815 bxe_hc_int_disable(struct bxe_softc *sc) 10816 { 10817 int port = SC_PORT(sc); 10818 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10819 uint32_t val = REG_RD(sc, addr); 10820 10821 /* 10822 * In E1 we must use only PCI configuration space to disable MSI/MSIX 10823 * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC 10824 * block 10825 */ 10826 if (CHIP_IS_E1(sc)) { 10827 /* 10828 * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register 10829 * to prevent from HC sending interrupts after we exit the function 10830 */ 10831 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0); 10832 10833 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10834 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10835 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10836 } else { 10837 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10838 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10839 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10840 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10841 } 10842 10843 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr); 10844 10845 /* flush all outstanding writes */ 10846 mb(); 10847 10848 REG_WR(sc, addr, val); 10849 if (REG_RD(sc, addr) != val) { 10850 BLOGE(sc, "proper val not read from HC IGU!\n"); 10851 } 10852 } 10853 10854 static void 10855 bxe_igu_int_disable(struct bxe_softc *sc) 10856 { 10857 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10858 10859 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 10860 IGU_PF_CONF_INT_LINE_EN | 10861 IGU_PF_CONF_ATTN_BIT_EN); 10862 10863 BLOGD(sc, DBG_INTR, "write %x to IGU\n", val); 10864 10865 /* flush all outstanding writes */ 10866 mb(); 10867 10868 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10869 if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) { 10870 BLOGE(sc, "proper val not read from IGU!\n"); 10871 } 10872 } 10873 10874 static void 10875 bxe_int_disable(struct bxe_softc *sc) 10876 { 10877 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10878 bxe_hc_int_disable(sc); 10879 } else { 10880 bxe_igu_int_disable(sc); 10881 } 10882 } 10883 10884 static void 10885 bxe_nic_init(struct bxe_softc *sc, 10886 int load_code) 10887 { 10888 int i; 10889 10890 for (i = 0; i < sc->num_queues; i++) { 10891 bxe_init_eth_fp(sc, i); 10892 } 10893 10894 rmb(); /* ensure status block indices were read */ 10895 10896 bxe_init_rx_rings(sc); 10897 bxe_init_tx_rings(sc); 10898 10899 if (IS_VF(sc)) { 10900 return; 10901 } 10902 10903 /* initialize MOD_ABS interrupts */ 10904 elink_init_mod_abs_int(sc, &sc->link_vars, 10905 sc->devinfo.chip_id, 10906 sc->devinfo.shmem_base, 10907 sc->devinfo.shmem2_base, 10908 SC_PORT(sc)); 10909 10910 bxe_init_def_sb(sc); 10911 bxe_update_dsb_idx(sc); 10912 bxe_init_sp_ring(sc); 10913 bxe_init_eq_ring(sc); 10914 bxe_init_internal(sc, load_code); 10915 bxe_pf_init(sc); 10916 bxe_stats_init(sc); 10917 10918 /* flush all before enabling interrupts */ 10919 mb(); 10920 10921 bxe_int_enable(sc); 10922 10923 /* check for SPIO5 */ 10924 bxe_attn_int_deasserted0(sc, 10925 REG_RD(sc, 10926 (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 10927 SC_PORT(sc)*4)) & 10928 AEU_INPUTS_ATTN_BITS_SPIO5); 10929 } 10930 10931 static inline void 10932 bxe_init_objs(struct bxe_softc *sc) 10933 { 10934 /* mcast rules must be added to tx if tx switching is enabled */ 10935 ecore_obj_type o_type = 10936 (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX : 10937 ECORE_OBJ_TYPE_RX; 10938 10939 /* RX_MODE controlling object */ 10940 ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj); 10941 10942 /* multicast configuration controlling object */ 10943 ecore_init_mcast_obj(sc, 10944 &sc->mcast_obj, 10945 sc->fp[0].cl_id, 10946 sc->fp[0].index, 10947 SC_FUNC(sc), 10948 SC_FUNC(sc), 10949 BXE_SP(sc, mcast_rdata), 10950 BXE_SP_MAPPING(sc, mcast_rdata), 10951 ECORE_FILTER_MCAST_PENDING, 10952 &sc->sp_state, 10953 o_type); 10954 10955 /* Setup CAM credit pools */ 10956 ecore_init_mac_credit_pool(sc, 10957 &sc->macs_pool, 10958 SC_FUNC(sc), 10959 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10960 VNICS_PER_PATH(sc)); 10961 10962 ecore_init_vlan_credit_pool(sc, 10963 &sc->vlans_pool, 10964 SC_ABS_FUNC(sc) >> 1, 10965 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10966 VNICS_PER_PATH(sc)); 10967 10968 /* RSS configuration object */ 10969 ecore_init_rss_config_obj(sc, 10970 &sc->rss_conf_obj, 10971 sc->fp[0].cl_id, 10972 sc->fp[0].index, 10973 SC_FUNC(sc), 10974 SC_FUNC(sc), 10975 BXE_SP(sc, rss_rdata), 10976 BXE_SP_MAPPING(sc, rss_rdata), 10977 ECORE_FILTER_RSS_CONF_PENDING, 10978 &sc->sp_state, ECORE_OBJ_TYPE_RX); 10979 } 10980 10981 /* 10982 * Initialize the function. This must be called before sending CLIENT_SETUP 10983 * for the first client. 10984 */ 10985 static inline int 10986 bxe_func_start(struct bxe_softc *sc) 10987 { 10988 struct ecore_func_state_params func_params = { NULL }; 10989 struct ecore_func_start_params *start_params = &func_params.params.start; 10990 10991 /* Prepare parameters for function state transitions */ 10992 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 10993 10994 func_params.f_obj = &sc->func_obj; 10995 func_params.cmd = ECORE_F_CMD_START; 10996 10997 /* Function parameters */ 10998 start_params->mf_mode = sc->devinfo.mf_info.mf_mode; 10999 start_params->sd_vlan_tag = OVLAN(sc); 11000 11001 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 11002 start_params->network_cos_mode = STATIC_COS; 11003 } else { /* CHIP_IS_E1X */ 11004 start_params->network_cos_mode = FW_WRR; 11005 } 11006 11007 start_params->gre_tunnel_mode = 0; 11008 start_params->gre_tunnel_rss = 0; 11009 11010 return (ecore_func_state_change(sc, &func_params)); 11011 } 11012 11013 static int 11014 bxe_set_power_state(struct bxe_softc *sc, 11015 uint8_t state) 11016 { 11017 uint16_t pmcsr; 11018 11019 /* If there is no power capability, silently succeed */ 11020 if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) { 11021 BLOGW(sc, "No power capability\n"); 11022 return (0); 11023 } 11024 11025 pmcsr = pci_read_config(sc->dev, 11026 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 11027 2); 11028 11029 switch (state) { 11030 case PCI_PM_D0: 11031 pci_write_config(sc->dev, 11032 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 11033 ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2); 11034 11035 if (pmcsr & PCIM_PSTAT_DMASK) { 11036 /* delay required during transition out of D3hot */ 11037 DELAY(20000); 11038 } 11039 11040 break; 11041 11042 case PCI_PM_D3hot: 11043 /* XXX if there are other clients above don't shut down the power */ 11044 11045 /* don't shut down the power for emulation and FPGA */ 11046 if (CHIP_REV_IS_SLOW(sc)) { 11047 return (0); 11048 } 11049 11050 pmcsr &= ~PCIM_PSTAT_DMASK; 11051 pmcsr |= PCIM_PSTAT_D3; 11052 11053 if (sc->wol) { 11054 pmcsr |= PCIM_PSTAT_PMEENABLE; 11055 } 11056 11057 pci_write_config(sc->dev, 11058 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 11059 pmcsr, 4); 11060 11061 /* 11062 * No more memory access after this point until device is brought back 11063 * to D0 state. 11064 */ 11065 break; 11066 11067 default: 11068 BLOGE(sc, "Can't support PCI power state = %d\n", state); 11069 return (-1); 11070 } 11071 11072 return (0); 11073 } 11074 11075 11076 /* return true if succeeded to acquire the lock */ 11077 static uint8_t 11078 bxe_trylock_hw_lock(struct bxe_softc *sc, 11079 uint32_t resource) 11080 { 11081 uint32_t lock_status; 11082 uint32_t resource_bit = (1 << resource); 11083 int func = SC_FUNC(sc); 11084 uint32_t hw_lock_control_reg; 11085 11086 BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource); 11087 11088 /* Validating that the resource is within range */ 11089 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 11090 BLOGD(sc, DBG_LOAD, 11091 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 11092 resource, HW_LOCK_MAX_RESOURCE_VALUE); 11093 return (FALSE); 11094 } 11095 11096 if (func <= 5) { 11097 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 11098 } else { 11099 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 11100 } 11101 11102 /* try to acquire the lock */ 11103 REG_WR(sc, hw_lock_control_reg + 4, resource_bit); 11104 lock_status = REG_RD(sc, hw_lock_control_reg); 11105 if (lock_status & resource_bit) { 11106 return (TRUE); 11107 } 11108 11109 BLOGE(sc, "Failed to get a resource lock 0x%x\n", resource); 11110 11111 return (FALSE); 11112 } 11113 11114 /* 11115 * Get the recovery leader resource id according to the engine this function 11116 * belongs to. Currently only only 2 engines is supported. 11117 */ 11118 static int 11119 bxe_get_leader_lock_resource(struct bxe_softc *sc) 11120 { 11121 if (SC_PATH(sc)) { 11122 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1); 11123 } else { 11124 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0); 11125 } 11126 } 11127 11128 /* try to acquire a leader lock for current engine */ 11129 static uint8_t 11130 bxe_trylock_leader_lock(struct bxe_softc *sc) 11131 { 11132 return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 11133 } 11134 11135 static int 11136 bxe_release_leader_lock(struct bxe_softc *sc) 11137 { 11138 return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 11139 } 11140 11141 /* close gates #2, #3 and #4 */ 11142 static void 11143 bxe_set_234_gates(struct bxe_softc *sc, 11144 uint8_t close) 11145 { 11146 uint32_t val; 11147 11148 /* gates #2 and #4a are closed/opened for "not E1" only */ 11149 if (!CHIP_IS_E1(sc)) { 11150 /* #4 */ 11151 REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 11152 /* #2 */ 11153 REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 11154 } 11155 11156 /* #3 */ 11157 if (CHIP_IS_E1x(sc)) { 11158 /* prevent interrupts from HC on both ports */ 11159 val = REG_RD(sc, HC_REG_CONFIG_1); 11160 REG_WR(sc, HC_REG_CONFIG_1, 11161 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 11162 (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 11163 11164 val = REG_RD(sc, HC_REG_CONFIG_0); 11165 REG_WR(sc, HC_REG_CONFIG_0, 11166 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 11167 (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 11168 } else { 11169 /* Prevent incomming interrupts in IGU */ 11170 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 11171 11172 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, 11173 (!close) ? 11174 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 11175 (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 11176 } 11177 11178 BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n", 11179 close ? "closing" : "opening"); 11180 11181 wmb(); 11182 } 11183 11184 /* poll for pending writes bit, it should get cleared in no more than 1s */ 11185 static int 11186 bxe_er_poll_igu_vq(struct bxe_softc *sc) 11187 { 11188 uint32_t cnt = 1000; 11189 uint32_t pend_bits = 0; 11190 11191 do { 11192 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS); 11193 11194 if (pend_bits == 0) { 11195 break; 11196 } 11197 11198 DELAY(1000); 11199 } while (--cnt > 0); 11200 11201 if (cnt == 0) { 11202 BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits); 11203 return (-1); 11204 } 11205 11206 return (0); 11207 } 11208 11209 #define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */ 11210 11211 static void 11212 bxe_clp_reset_prep(struct bxe_softc *sc, 11213 uint32_t *magic_val) 11214 { 11215 /* Do some magic... */ 11216 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 11217 *magic_val = val & SHARED_MF_CLP_MAGIC; 11218 MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 11219 } 11220 11221 /* restore the value of the 'magic' bit */ 11222 static void 11223 bxe_clp_reset_done(struct bxe_softc *sc, 11224 uint32_t magic_val) 11225 { 11226 /* Restore the 'magic' bit value... */ 11227 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 11228 MFCFG_WR(sc, shared_mf_config.clp_mb, 11229 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 11230 } 11231 11232 /* prepare for MCP reset, takes care of CLP configurations */ 11233 static void 11234 bxe_reset_mcp_prep(struct bxe_softc *sc, 11235 uint32_t *magic_val) 11236 { 11237 uint32_t shmem; 11238 uint32_t validity_offset; 11239 11240 /* set `magic' bit in order to save MF config */ 11241 if (!CHIP_IS_E1(sc)) { 11242 bxe_clp_reset_prep(sc, magic_val); 11243 } 11244 11245 /* get shmem offset */ 11246 shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 11247 validity_offset = 11248 offsetof(struct shmem_region, validity_map[SC_PORT(sc)]); 11249 11250 /* Clear validity map flags */ 11251 if (shmem > 0) { 11252 REG_WR(sc, shmem + validity_offset, 0); 11253 } 11254 } 11255 11256 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 11257 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 11258 11259 static void 11260 bxe_mcp_wait_one(struct bxe_softc *sc) 11261 { 11262 /* special handling for emulation and FPGA (10 times longer) */ 11263 if (CHIP_REV_IS_SLOW(sc)) { 11264 DELAY((MCP_ONE_TIMEOUT*10) * 1000); 11265 } else { 11266 DELAY((MCP_ONE_TIMEOUT) * 1000); 11267 } 11268 } 11269 11270 /* initialize shmem_base and waits for validity signature to appear */ 11271 static int 11272 bxe_init_shmem(struct bxe_softc *sc) 11273 { 11274 int cnt = 0; 11275 uint32_t val = 0; 11276 11277 do { 11278 sc->devinfo.shmem_base = 11279 sc->link_params.shmem_base = 11280 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 11281 11282 if (sc->devinfo.shmem_base) { 11283 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 11284 if (val & SHR_MEM_VALIDITY_MB) 11285 return (0); 11286 } 11287 11288 bxe_mcp_wait_one(sc); 11289 11290 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 11291 11292 BLOGE(sc, "BAD MCP validity signature\n"); 11293 11294 return (-1); 11295 } 11296 11297 static int 11298 bxe_reset_mcp_comp(struct bxe_softc *sc, 11299 uint32_t magic_val) 11300 { 11301 int rc = bxe_init_shmem(sc); 11302 11303 /* Restore the `magic' bit value */ 11304 if (!CHIP_IS_E1(sc)) { 11305 bxe_clp_reset_done(sc, magic_val); 11306 } 11307 11308 return (rc); 11309 } 11310 11311 static void 11312 bxe_pxp_prep(struct bxe_softc *sc) 11313 { 11314 if (!CHIP_IS_E1(sc)) { 11315 REG_WR(sc, PXP2_REG_RD_START_INIT, 0); 11316 REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0); 11317 wmb(); 11318 } 11319 } 11320 11321 /* 11322 * Reset the whole chip except for: 11323 * - PCIE core 11324 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit) 11325 * - IGU 11326 * - MISC (including AEU) 11327 * - GRC 11328 * - RBCN, RBCP 11329 */ 11330 static void 11331 bxe_process_kill_chip_reset(struct bxe_softc *sc, 11332 uint8_t global) 11333 { 11334 uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 11335 uint32_t global_bits2, stay_reset2; 11336 11337 /* 11338 * Bits that have to be set in reset_mask2 if we want to reset 'global' 11339 * (per chip) blocks. 11340 */ 11341 global_bits2 = 11342 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 11343 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 11344 11345 /* 11346 * Don't reset the following blocks. 11347 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 11348 * reset, as in 4 port device they might still be owned 11349 * by the MCP (there is only one leader per path). 11350 */ 11351 not_reset_mask1 = 11352 MISC_REGISTERS_RESET_REG_1_RST_HC | 11353 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 11354 MISC_REGISTERS_RESET_REG_1_RST_PXP; 11355 11356 not_reset_mask2 = 11357 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 11358 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 11359 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 11360 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 11361 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 11362 MISC_REGISTERS_RESET_REG_2_RST_GRC | 11363 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 11364 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 11365 MISC_REGISTERS_RESET_REG_2_RST_ATC | 11366 MISC_REGISTERS_RESET_REG_2_PGLC | 11367 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 11368 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 11369 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 11370 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 11371 MISC_REGISTERS_RESET_REG_2_UMAC0 | 11372 MISC_REGISTERS_RESET_REG_2_UMAC1; 11373 11374 /* 11375 * Keep the following blocks in reset: 11376 * - all xxMACs are handled by the elink code. 11377 */ 11378 stay_reset2 = 11379 MISC_REGISTERS_RESET_REG_2_XMAC | 11380 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 11381 11382 /* Full reset masks according to the chip */ 11383 reset_mask1 = 0xffffffff; 11384 11385 if (CHIP_IS_E1(sc)) 11386 reset_mask2 = 0xffff; 11387 else if (CHIP_IS_E1H(sc)) 11388 reset_mask2 = 0x1ffff; 11389 else if (CHIP_IS_E2(sc)) 11390 reset_mask2 = 0xfffff; 11391 else /* CHIP_IS_E3 */ 11392 reset_mask2 = 0x3ffffff; 11393 11394 /* Don't reset global blocks unless we need to */ 11395 if (!global) 11396 reset_mask2 &= ~global_bits2; 11397 11398 /* 11399 * In case of attention in the QM, we need to reset PXP 11400 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 11401 * because otherwise QM reset would release 'close the gates' shortly 11402 * before resetting the PXP, then the PSWRQ would send a write 11403 * request to PGLUE. Then when PXP is reset, PGLUE would try to 11404 * read the payload data from PSWWR, but PSWWR would not 11405 * respond. The write queue in PGLUE would stuck, dmae commands 11406 * would not return. Therefore it's important to reset the second 11407 * reset register (containing the 11408 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 11409 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 11410 * bit). 11411 */ 11412 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 11413 reset_mask2 & (~not_reset_mask2)); 11414 11415 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 11416 reset_mask1 & (~not_reset_mask1)); 11417 11418 mb(); 11419 wmb(); 11420 11421 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 11422 reset_mask2 & (~stay_reset2)); 11423 11424 mb(); 11425 wmb(); 11426 11427 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 11428 wmb(); 11429 } 11430 11431 static int 11432 bxe_process_kill(struct bxe_softc *sc, 11433 uint8_t global) 11434 { 11435 int cnt = 1000; 11436 uint32_t val = 0; 11437 uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 11438 uint32_t tags_63_32 = 0; 11439 11440 /* Empty the Tetris buffer, wait for 1s */ 11441 do { 11442 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT); 11443 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT); 11444 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0); 11445 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1); 11446 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2); 11447 if (CHIP_IS_E3(sc)) { 11448 tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32); 11449 } 11450 11451 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 11452 ((port_is_idle_0 & 0x1) == 0x1) && 11453 ((port_is_idle_1 & 0x1) == 0x1) && 11454 (pgl_exp_rom2 == 0xffffffff) && 11455 (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff))) 11456 break; 11457 DELAY(1000); 11458 } while (cnt-- > 0); 11459 11460 if (cnt <= 0) { 11461 BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there " 11462 "are still outstanding read requests after 1s! " 11463 "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, " 11464 "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 11465 sr_cnt, blk_cnt, port_is_idle_0, 11466 port_is_idle_1, pgl_exp_rom2); 11467 return (-1); 11468 } 11469 11470 mb(); 11471 11472 /* Close gates #2, #3 and #4 */ 11473 bxe_set_234_gates(sc, TRUE); 11474 11475 /* Poll for IGU VQs for 57712 and newer chips */ 11476 if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) { 11477 return (-1); 11478 } 11479 11480 /* XXX indicate that "process kill" is in progress to MCP */ 11481 11482 /* clear "unprepared" bit */ 11483 REG_WR(sc, MISC_REG_UNPREPARED, 0); 11484 mb(); 11485 11486 /* Make sure all is written to the chip before the reset */ 11487 wmb(); 11488 11489 /* 11490 * Wait for 1ms to empty GLUE and PCI-E core queues, 11491 * PSWHST, GRC and PSWRD Tetris buffer. 11492 */ 11493 DELAY(1000); 11494 11495 /* Prepare to chip reset: */ 11496 /* MCP */ 11497 if (global) { 11498 bxe_reset_mcp_prep(sc, &val); 11499 } 11500 11501 /* PXP */ 11502 bxe_pxp_prep(sc); 11503 mb(); 11504 11505 /* reset the chip */ 11506 bxe_process_kill_chip_reset(sc, global); 11507 mb(); 11508 11509 /* Recover after reset: */ 11510 /* MCP */ 11511 if (global && bxe_reset_mcp_comp(sc, val)) { 11512 return (-1); 11513 } 11514 11515 /* XXX add resetting the NO_MCP mode DB here */ 11516 11517 /* Open the gates #2, #3 and #4 */ 11518 bxe_set_234_gates(sc, FALSE); 11519 11520 /* XXX 11521 * IGU/AEU preparation bring back the AEU/IGU to a reset state 11522 * re-enable attentions 11523 */ 11524 11525 return (0); 11526 } 11527 11528 static int 11529 bxe_leader_reset(struct bxe_softc *sc) 11530 { 11531 int rc = 0; 11532 uint8_t global = bxe_reset_is_global(sc); 11533 uint32_t load_code; 11534 11535 /* 11536 * If not going to reset MCP, load "fake" driver to reset HW while 11537 * driver is owner of the HW. 11538 */ 11539 if (!global && !BXE_NOMCP(sc)) { 11540 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 11541 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 11542 if (!load_code) { 11543 BLOGE(sc, "MCP response failure, aborting\n"); 11544 rc = -1; 11545 goto exit_leader_reset; 11546 } 11547 11548 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 11549 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 11550 BLOGE(sc, "MCP unexpected response, aborting\n"); 11551 rc = -1; 11552 goto exit_leader_reset2; 11553 } 11554 11555 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 11556 if (!load_code) { 11557 BLOGE(sc, "MCP response failure, aborting\n"); 11558 rc = -1; 11559 goto exit_leader_reset2; 11560 } 11561 } 11562 11563 /* try to recover after the failure */ 11564 if (bxe_process_kill(sc, global)) { 11565 BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc)); 11566 rc = -1; 11567 goto exit_leader_reset2; 11568 } 11569 11570 /* 11571 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver 11572 * state. 11573 */ 11574 bxe_set_reset_done(sc); 11575 if (global) { 11576 bxe_clear_reset_global(sc); 11577 } 11578 11579 exit_leader_reset2: 11580 11581 /* unload "fake driver" if it was loaded */ 11582 if (!global && !BXE_NOMCP(sc)) { 11583 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 11584 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 11585 } 11586 11587 exit_leader_reset: 11588 11589 sc->is_leader = 0; 11590 bxe_release_leader_lock(sc); 11591 11592 mb(); 11593 return (rc); 11594 } 11595 11596 /* 11597 * prepare INIT transition, parameters configured: 11598 * - HC configuration 11599 * - Queue's CDU context 11600 */ 11601 static void 11602 bxe_pf_q_prep_init(struct bxe_softc *sc, 11603 struct bxe_fastpath *fp, 11604 struct ecore_queue_init_params *init_params) 11605 { 11606 uint8_t cos; 11607 int cxt_index, cxt_offset; 11608 11609 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags); 11610 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags); 11611 11612 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags); 11613 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags); 11614 11615 /* HC rate */ 11616 init_params->rx.hc_rate = 11617 sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0; 11618 init_params->tx.hc_rate = 11619 sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0; 11620 11621 /* FW SB ID */ 11622 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id; 11623 11624 /* CQ index among the SB indices */ 11625 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11626 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 11627 11628 /* set maximum number of COSs supported by this queue */ 11629 init_params->max_cos = sc->max_cos; 11630 11631 BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n", 11632 fp->index, init_params->max_cos); 11633 11634 /* set the context pointers queue object */ 11635 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 11636 /* XXX change index/cid here if ever support multiple tx CoS */ 11637 /* fp->txdata[cos]->cid */ 11638 cxt_index = fp->index / ILT_PAGE_CIDS; 11639 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS); 11640 init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth; 11641 } 11642 } 11643 11644 /* set flags that are common for the Tx-only and not normal connections */ 11645 static unsigned long 11646 bxe_get_common_flags(struct bxe_softc *sc, 11647 struct bxe_fastpath *fp, 11648 uint8_t zero_stats) 11649 { 11650 unsigned long flags = 0; 11651 11652 /* PF driver will always initialize the Queue to an ACTIVE state */ 11653 bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags); 11654 11655 /* 11656 * tx only connections collect statistics (on the same index as the 11657 * parent connection). The statistics are zeroed when the parent 11658 * connection is initialized. 11659 */ 11660 11661 bxe_set_bit(ECORE_Q_FLG_STATS, &flags); 11662 if (zero_stats) { 11663 bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags); 11664 } 11665 11666 /* 11667 * tx only connections can support tx-switching, though their 11668 * CoS-ness doesn't survive the loopback 11669 */ 11670 if (sc->flags & BXE_TX_SWITCHING) { 11671 bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags); 11672 } 11673 11674 bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags); 11675 11676 return (flags); 11677 } 11678 11679 static unsigned long 11680 bxe_get_q_flags(struct bxe_softc *sc, 11681 struct bxe_fastpath *fp, 11682 uint8_t leading) 11683 { 11684 unsigned long flags = 0; 11685 11686 if (IS_MF_SD(sc)) { 11687 bxe_set_bit(ECORE_Q_FLG_OV, &flags); 11688 } 11689 11690 if (sc->ifnet->if_capenable & IFCAP_LRO) { 11691 bxe_set_bit(ECORE_Q_FLG_TPA, &flags); 11692 bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags); 11693 #if 0 11694 if (fp->mode == TPA_MODE_GRO) 11695 __set_bit(ECORE_Q_FLG_TPA_GRO, &flags); 11696 #endif 11697 } 11698 11699 if (leading) { 11700 bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags); 11701 bxe_set_bit(ECORE_Q_FLG_MCAST, &flags); 11702 } 11703 11704 bxe_set_bit(ECORE_Q_FLG_VLAN, &flags); 11705 11706 #if 0 11707 /* configure silent vlan removal */ 11708 if (IS_MF_AFEX(sc)) { 11709 bxe_set_bit(ECORE_Q_FLG_SILENT_VLAN_REM, &flags); 11710 } 11711 #endif 11712 11713 /* merge with common flags */ 11714 return (flags | bxe_get_common_flags(sc, fp, TRUE)); 11715 } 11716 11717 static void 11718 bxe_pf_q_prep_general(struct bxe_softc *sc, 11719 struct bxe_fastpath *fp, 11720 struct ecore_general_setup_params *gen_init, 11721 uint8_t cos) 11722 { 11723 gen_init->stat_id = bxe_stats_id(fp); 11724 gen_init->spcl_id = fp->cl_id; 11725 gen_init->mtu = sc->mtu; 11726 gen_init->cos = cos; 11727 } 11728 11729 static void 11730 bxe_pf_rx_q_prep(struct bxe_softc *sc, 11731 struct bxe_fastpath *fp, 11732 struct rxq_pause_params *pause, 11733 struct ecore_rxq_setup_params *rxq_init) 11734 { 11735 uint8_t max_sge = 0; 11736 uint16_t sge_sz = 0; 11737 uint16_t tpa_agg_size = 0; 11738 11739 if (sc->ifnet->if_capenable & IFCAP_LRO) { 11740 pause->sge_th_lo = SGE_TH_LO(sc); 11741 pause->sge_th_hi = SGE_TH_HI(sc); 11742 11743 /* validate SGE ring has enough to cross high threshold */ 11744 if (sc->dropless_fc && 11745 (pause->sge_th_hi + FW_PREFETCH_CNT) > 11746 (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) { 11747 BLOGW(sc, "sge ring threshold limit\n"); 11748 } 11749 11750 /* minimum max_aggregation_size is 2*MTU (two full buffers) */ 11751 tpa_agg_size = (2 * sc->mtu); 11752 if (tpa_agg_size < sc->max_aggregation_size) { 11753 tpa_agg_size = sc->max_aggregation_size; 11754 } 11755 11756 max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT; 11757 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 11758 (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT; 11759 sge_sz = (uint16_t)min(SGE_PAGES, 0xffff); 11760 } 11761 11762 /* pause - not for e1 */ 11763 if (!CHIP_IS_E1(sc)) { 11764 pause->bd_th_lo = BD_TH_LO(sc); 11765 pause->bd_th_hi = BD_TH_HI(sc); 11766 11767 pause->rcq_th_lo = RCQ_TH_LO(sc); 11768 pause->rcq_th_hi = RCQ_TH_HI(sc); 11769 11770 /* validate rings have enough entries to cross high thresholds */ 11771 if (sc->dropless_fc && 11772 pause->bd_th_hi + FW_PREFETCH_CNT > 11773 sc->rx_ring_size) { 11774 BLOGW(sc, "rx bd ring threshold limit\n"); 11775 } 11776 11777 if (sc->dropless_fc && 11778 pause->rcq_th_hi + FW_PREFETCH_CNT > 11779 RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) { 11780 BLOGW(sc, "rcq ring threshold limit\n"); 11781 } 11782 11783 pause->pri_map = 1; 11784 } 11785 11786 /* rxq setup */ 11787 rxq_init->dscr_map = fp->rx_dma.paddr; 11788 rxq_init->sge_map = fp->rx_sge_dma.paddr; 11789 rxq_init->rcq_map = fp->rcq_dma.paddr; 11790 rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE); 11791 11792 /* 11793 * This should be a maximum number of data bytes that may be 11794 * placed on the BD (not including paddings). 11795 */ 11796 rxq_init->buf_sz = (fp->rx_buf_size - 11797 IP_HEADER_ALIGNMENT_PADDING); 11798 11799 rxq_init->cl_qzone_id = fp->cl_qzone_id; 11800 rxq_init->tpa_agg_sz = tpa_agg_size; 11801 rxq_init->sge_buf_sz = sge_sz; 11802 rxq_init->max_sges_pkt = max_sge; 11803 rxq_init->rss_engine_id = SC_FUNC(sc); 11804 rxq_init->mcast_engine_id = SC_FUNC(sc); 11805 11806 /* 11807 * Maximum number or simultaneous TPA aggregation for this Queue. 11808 * For PF Clients it should be the maximum available number. 11809 * VF driver(s) may want to define it to a smaller value. 11810 */ 11811 rxq_init->max_tpa_queues = MAX_AGG_QS(sc); 11812 11813 rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT; 11814 rxq_init->fw_sb_id = fp->fw_sb_id; 11815 11816 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11817 11818 /* 11819 * configure silent vlan removal 11820 * if multi function mode is afex, then mask default vlan 11821 */ 11822 if (IS_MF_AFEX(sc)) { 11823 rxq_init->silent_removal_value = 11824 sc->devinfo.mf_info.afex_def_vlan_tag; 11825 rxq_init->silent_removal_mask = EVL_VLID_MASK; 11826 } 11827 } 11828 11829 static void 11830 bxe_pf_tx_q_prep(struct bxe_softc *sc, 11831 struct bxe_fastpath *fp, 11832 struct ecore_txq_setup_params *txq_init, 11833 uint8_t cos) 11834 { 11835 /* 11836 * XXX If multiple CoS is ever supported then each fastpath structure 11837 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 11838 * fp->txdata[cos]->tx_dma.paddr; 11839 */ 11840 txq_init->dscr_map = fp->tx_dma.paddr; 11841 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 11842 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 11843 txq_init->fw_sb_id = fp->fw_sb_id; 11844 11845 /* 11846 * set the TSS leading client id for TX classfication to the 11847 * leading RSS client id 11848 */ 11849 txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id); 11850 } 11851 11852 /* 11853 * This function performs 2 steps in a queue state machine: 11854 * 1) RESET->INIT 11855 * 2) INIT->SETUP 11856 */ 11857 static int 11858 bxe_setup_queue(struct bxe_softc *sc, 11859 struct bxe_fastpath *fp, 11860 uint8_t leading) 11861 { 11862 struct ecore_queue_state_params q_params = { NULL }; 11863 struct ecore_queue_setup_params *setup_params = 11864 &q_params.params.setup; 11865 #if 0 11866 struct ecore_queue_setup_tx_only_params *tx_only_params = 11867 &q_params.params.tx_only; 11868 uint8_t tx_index; 11869 #endif 11870 int rc; 11871 11872 BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index); 11873 11874 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 11875 11876 q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 11877 11878 /* we want to wait for completion in this context */ 11879 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 11880 11881 /* prepare the INIT parameters */ 11882 bxe_pf_q_prep_init(sc, fp, &q_params.params.init); 11883 11884 /* Set the command */ 11885 q_params.cmd = ECORE_Q_CMD_INIT; 11886 11887 /* Change the state to INIT */ 11888 rc = ecore_queue_state_change(sc, &q_params); 11889 if (rc) { 11890 BLOGE(sc, "Queue(%d) INIT failed\n", fp->index); 11891 return (rc); 11892 } 11893 11894 BLOGD(sc, DBG_LOAD, "init complete\n"); 11895 11896 /* now move the Queue to the SETUP state */ 11897 memset(setup_params, 0, sizeof(*setup_params)); 11898 11899 /* set Queue flags */ 11900 setup_params->flags = bxe_get_q_flags(sc, fp, leading); 11901 11902 /* set general SETUP parameters */ 11903 bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params, 11904 FIRST_TX_COS_INDEX); 11905 11906 bxe_pf_rx_q_prep(sc, fp, 11907 &setup_params->pause_params, 11908 &setup_params->rxq_params); 11909 11910 bxe_pf_tx_q_prep(sc, fp, 11911 &setup_params->txq_params, 11912 FIRST_TX_COS_INDEX); 11913 11914 /* Set the command */ 11915 q_params.cmd = ECORE_Q_CMD_SETUP; 11916 11917 /* change the state to SETUP */ 11918 rc = ecore_queue_state_change(sc, &q_params); 11919 if (rc) { 11920 BLOGE(sc, "Queue(%d) SETUP failed\n", fp->index); 11921 return (rc); 11922 } 11923 11924 #if 0 11925 /* loop through the relevant tx-only indices */ 11926 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 11927 tx_index < sc->max_cos; 11928 tx_index++) { 11929 /* prepare and send tx-only ramrod*/ 11930 rc = bxe_setup_tx_only(sc, fp, &q_params, 11931 tx_only_params, tx_index, leading); 11932 if (rc) { 11933 BLOGE(sc, "Queue(%d.%d) TX_ONLY_SETUP failed\n", 11934 fp->index, tx_index); 11935 return (rc); 11936 } 11937 } 11938 #endif 11939 11940 return (rc); 11941 } 11942 11943 static int 11944 bxe_setup_leading(struct bxe_softc *sc) 11945 { 11946 return (bxe_setup_queue(sc, &sc->fp[0], TRUE)); 11947 } 11948 11949 static int 11950 bxe_config_rss_pf(struct bxe_softc *sc, 11951 struct ecore_rss_config_obj *rss_obj, 11952 uint8_t config_hash) 11953 { 11954 struct ecore_config_rss_params params = { NULL }; 11955 int i; 11956 11957 /* 11958 * Although RSS is meaningless when there is a single HW queue we 11959 * still need it enabled in order to have HW Rx hash generated. 11960 */ 11961 11962 params.rss_obj = rss_obj; 11963 11964 bxe_set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 11965 11966 bxe_set_bit(ECORE_RSS_MODE_REGULAR, ¶ms.rss_flags); 11967 11968 /* RSS configuration */ 11969 bxe_set_bit(ECORE_RSS_IPV4, ¶ms.rss_flags); 11970 bxe_set_bit(ECORE_RSS_IPV4_TCP, ¶ms.rss_flags); 11971 bxe_set_bit(ECORE_RSS_IPV6, ¶ms.rss_flags); 11972 bxe_set_bit(ECORE_RSS_IPV6_TCP, ¶ms.rss_flags); 11973 if (rss_obj->udp_rss_v4) { 11974 bxe_set_bit(ECORE_RSS_IPV4_UDP, ¶ms.rss_flags); 11975 } 11976 if (rss_obj->udp_rss_v6) { 11977 bxe_set_bit(ECORE_RSS_IPV6_UDP, ¶ms.rss_flags); 11978 } 11979 11980 /* Hash bits */ 11981 params.rss_result_mask = MULTI_MASK; 11982 11983 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 11984 11985 if (config_hash) { 11986 /* RSS keys */ 11987 for (i = 0; i < sizeof(params.rss_key) / 4; i++) { 11988 params.rss_key[i] = arc4random(); 11989 } 11990 11991 bxe_set_bit(ECORE_RSS_SET_SRCH, ¶ms.rss_flags); 11992 } 11993 11994 return (ecore_config_rss(sc, ¶ms)); 11995 } 11996 11997 static int 11998 bxe_config_rss_eth(struct bxe_softc *sc, 11999 uint8_t config_hash) 12000 { 12001 return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash)); 12002 } 12003 12004 static int 12005 bxe_init_rss_pf(struct bxe_softc *sc) 12006 { 12007 uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc); 12008 int i; 12009 12010 /* 12011 * Prepare the initial contents of the indirection table if 12012 * RSS is enabled 12013 */ 12014 for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) { 12015 sc->rss_conf_obj.ind_table[i] = 12016 (sc->fp->cl_id + (i % num_eth_queues)); 12017 } 12018 12019 if (sc->udp_rss) { 12020 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1; 12021 } 12022 12023 /* 12024 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 12025 * per-port, so if explicit configuration is needed, do it only 12026 * for a PMF. 12027 * 12028 * For 57712 and newer it's a per-function configuration. 12029 */ 12030 return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc))); 12031 } 12032 12033 static int 12034 bxe_set_mac_one(struct bxe_softc *sc, 12035 uint8_t *mac, 12036 struct ecore_vlan_mac_obj *obj, 12037 uint8_t set, 12038 int mac_type, 12039 unsigned long *ramrod_flags) 12040 { 12041 struct ecore_vlan_mac_ramrod_params ramrod_param; 12042 int rc; 12043 12044 memset(&ramrod_param, 0, sizeof(ramrod_param)); 12045 12046 /* fill in general parameters */ 12047 ramrod_param.vlan_mac_obj = obj; 12048 ramrod_param.ramrod_flags = *ramrod_flags; 12049 12050 /* fill a user request section if needed */ 12051 if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) { 12052 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 12053 12054 bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 12055 12056 /* Set the command: ADD or DEL */ 12057 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD : 12058 ECORE_VLAN_MAC_DEL; 12059 } 12060 12061 rc = ecore_config_vlan_mac(sc, &ramrod_param); 12062 12063 if (rc == ECORE_EXISTS) { 12064 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12065 /* do not treat adding same MAC as error */ 12066 rc = 0; 12067 } else if (rc < 0) { 12068 BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc); 12069 } 12070 12071 return (rc); 12072 } 12073 12074 static int 12075 bxe_set_eth_mac(struct bxe_softc *sc, 12076 uint8_t set) 12077 { 12078 unsigned long ramrod_flags = 0; 12079 12080 BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n"); 12081 12082 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 12083 12084 /* Eth MAC is set on RSS leading client (fp[0]) */ 12085 return (bxe_set_mac_one(sc, sc->link_params.mac_addr, 12086 &sc->sp_objs->mac_obj, 12087 set, ECORE_ETH_MAC, &ramrod_flags)); 12088 } 12089 12090 #if 0 12091 static void 12092 bxe_update_max_mf_config(struct bxe_softc *sc, 12093 uint32_t value) 12094 { 12095 /* load old values */ 12096 uint32_t mf_cfg = sc->devinfo.mf_info.mf_config[SC_VN(sc)]; 12097 12098 if (value != bxe_extract_max_cfg(sc, mf_cfg)) { 12099 /* leave all but MAX value */ 12100 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK; 12101 12102 /* set new MAX value */ 12103 mf_cfg |= ((value << FUNC_MF_CFG_MAX_BW_SHIFT) & 12104 FUNC_MF_CFG_MAX_BW_MASK); 12105 12106 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW, mf_cfg); 12107 } 12108 } 12109 #endif 12110 12111 static int 12112 bxe_get_cur_phy_idx(struct bxe_softc *sc) 12113 { 12114 uint32_t sel_phy_idx = 0; 12115 12116 if (sc->link_params.num_phys <= 1) { 12117 return (ELINK_INT_PHY); 12118 } 12119 12120 if (sc->link_vars.link_up) { 12121 sel_phy_idx = ELINK_EXT_PHY1; 12122 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */ 12123 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 12124 (sc->link_params.phy[ELINK_EXT_PHY2].supported & 12125 ELINK_SUPPORTED_FIBRE)) 12126 sel_phy_idx = ELINK_EXT_PHY2; 12127 } else { 12128 switch (elink_phy_selection(&sc->link_params)) { 12129 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 12130 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 12131 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 12132 sel_phy_idx = ELINK_EXT_PHY1; 12133 break; 12134 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 12135 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 12136 sel_phy_idx = ELINK_EXT_PHY2; 12137 break; 12138 } 12139 } 12140 12141 return (sel_phy_idx); 12142 } 12143 12144 static int 12145 bxe_get_link_cfg_idx(struct bxe_softc *sc) 12146 { 12147 uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc); 12148 12149 /* 12150 * The selected activated PHY is always after swapping (in case PHY 12151 * swapping is enabled). So when swapping is enabled, we need to reverse 12152 * the configuration 12153 */ 12154 12155 if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 12156 if (sel_phy_idx == ELINK_EXT_PHY1) 12157 sel_phy_idx = ELINK_EXT_PHY2; 12158 else if (sel_phy_idx == ELINK_EXT_PHY2) 12159 sel_phy_idx = ELINK_EXT_PHY1; 12160 } 12161 12162 return (ELINK_LINK_CONFIG_IDX(sel_phy_idx)); 12163 } 12164 12165 static void 12166 bxe_set_requested_fc(struct bxe_softc *sc) 12167 { 12168 /* 12169 * Initialize link parameters structure variables 12170 * It is recommended to turn off RX FC for jumbo frames 12171 * for better performance 12172 */ 12173 if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) { 12174 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX; 12175 } else { 12176 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH; 12177 } 12178 } 12179 12180 static void 12181 bxe_calc_fc_adv(struct bxe_softc *sc) 12182 { 12183 uint8_t cfg_idx = bxe_get_link_cfg_idx(sc); 12184 switch (sc->link_vars.ieee_fc & 12185 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 12186 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE: 12187 default: 12188 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 12189 ADVERTISED_Pause); 12190 break; 12191 12192 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 12193 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 12194 ADVERTISED_Pause); 12195 break; 12196 12197 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 12198 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 12199 break; 12200 } 12201 } 12202 12203 static uint16_t 12204 bxe_get_mf_speed(struct bxe_softc *sc) 12205 { 12206 uint16_t line_speed = sc->link_vars.line_speed; 12207 if (IS_MF(sc)) { 12208 uint16_t maxCfg = 12209 bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]); 12210 12211 /* calculate the current MAX line speed limit for the MF devices */ 12212 if (IS_MF_SI(sc)) { 12213 line_speed = (line_speed * maxCfg) / 100; 12214 } else { /* SD mode */ 12215 uint16_t vn_max_rate = maxCfg * 100; 12216 12217 if (vn_max_rate < line_speed) { 12218 line_speed = vn_max_rate; 12219 } 12220 } 12221 } 12222 12223 return (line_speed); 12224 } 12225 12226 static void 12227 bxe_fill_report_data(struct bxe_softc *sc, 12228 struct bxe_link_report_data *data) 12229 { 12230 uint16_t line_speed = bxe_get_mf_speed(sc); 12231 12232 memset(data, 0, sizeof(*data)); 12233 12234 /* fill the report data with the effective line speed */ 12235 data->line_speed = line_speed; 12236 12237 /* Link is down */ 12238 if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) { 12239 bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags); 12240 } 12241 12242 /* Full DUPLEX */ 12243 if (sc->link_vars.duplex == DUPLEX_FULL) { 12244 bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags); 12245 } 12246 12247 /* Rx Flow Control is ON */ 12248 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) { 12249 bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags); 12250 } 12251 12252 /* Tx Flow Control is ON */ 12253 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 12254 bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags); 12255 } 12256 } 12257 12258 /* report link status to OS, should be called under phy_lock */ 12259 static void 12260 bxe_link_report_locked(struct bxe_softc *sc) 12261 { 12262 struct bxe_link_report_data cur_data; 12263 12264 /* reread mf_cfg */ 12265 if (IS_PF(sc) && !CHIP_IS_E1(sc)) { 12266 bxe_read_mf_cfg(sc); 12267 } 12268 12269 /* Read the current link report info */ 12270 bxe_fill_report_data(sc, &cur_data); 12271 12272 /* Don't report link down or exactly the same link status twice */ 12273 if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) || 12274 (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 12275 &sc->last_reported_link.link_report_flags) && 12276 bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 12277 &cur_data.link_report_flags))) { 12278 return; 12279 } 12280 12281 sc->link_cnt++; 12282 12283 /* report new link params and remember the state for the next time */ 12284 memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data)); 12285 12286 if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 12287 &cur_data.link_report_flags)) { 12288 if_link_state_change(sc->ifnet, LINK_STATE_DOWN); 12289 BLOGI(sc, "NIC Link is Down\n"); 12290 } else { 12291 const char *duplex; 12292 const char *flow; 12293 12294 if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX, 12295 &cur_data.link_report_flags)) { 12296 duplex = "full"; 12297 } else { 12298 duplex = "half"; 12299 } 12300 12301 /* 12302 * Handle the FC at the end so that only these flags would be 12303 * possibly set. This way we may easily check if there is no FC 12304 * enabled. 12305 */ 12306 if (cur_data.link_report_flags) { 12307 if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 12308 &cur_data.link_report_flags) && 12309 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 12310 &cur_data.link_report_flags)) { 12311 flow = "ON - receive & transmit"; 12312 } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 12313 &cur_data.link_report_flags) && 12314 !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 12315 &cur_data.link_report_flags)) { 12316 flow = "ON - receive"; 12317 } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 12318 &cur_data.link_report_flags) && 12319 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 12320 &cur_data.link_report_flags)) { 12321 flow = "ON - transmit"; 12322 } else { 12323 flow = "none"; /* possible? */ 12324 } 12325 } else { 12326 flow = "none"; 12327 } 12328 12329 if_link_state_change(sc->ifnet, LINK_STATE_UP); 12330 BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 12331 cur_data.line_speed, duplex, flow); 12332 } 12333 } 12334 12335 static void 12336 bxe_link_report(struct bxe_softc *sc) 12337 { 12338 BXE_PHY_LOCK(sc); 12339 bxe_link_report_locked(sc); 12340 BXE_PHY_UNLOCK(sc); 12341 } 12342 12343 static void 12344 bxe_link_status_update(struct bxe_softc *sc) 12345 { 12346 if (sc->state != BXE_STATE_OPEN) { 12347 return; 12348 } 12349 12350 #if 0 12351 /* read updated dcb configuration */ 12352 if (IS_PF(sc)) 12353 bxe_dcbx_pmf_update(sc); 12354 #endif 12355 12356 if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) { 12357 elink_link_status_update(&sc->link_params, &sc->link_vars); 12358 } else { 12359 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half | 12360 ELINK_SUPPORTED_10baseT_Full | 12361 ELINK_SUPPORTED_100baseT_Half | 12362 ELINK_SUPPORTED_100baseT_Full | 12363 ELINK_SUPPORTED_1000baseT_Full | 12364 ELINK_SUPPORTED_2500baseX_Full | 12365 ELINK_SUPPORTED_10000baseT_Full | 12366 ELINK_SUPPORTED_TP | 12367 ELINK_SUPPORTED_FIBRE | 12368 ELINK_SUPPORTED_Autoneg | 12369 ELINK_SUPPORTED_Pause | 12370 ELINK_SUPPORTED_Asym_Pause); 12371 sc->port.advertising[0] = sc->port.supported[0]; 12372 12373 sc->link_params.sc = sc; 12374 sc->link_params.port = SC_PORT(sc); 12375 sc->link_params.req_duplex[0] = DUPLEX_FULL; 12376 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE; 12377 sc->link_params.req_line_speed[0] = SPEED_10000; 12378 sc->link_params.speed_cap_mask[0] = 0x7f0000; 12379 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G; 12380 12381 if (CHIP_REV_IS_FPGA(sc)) { 12382 sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC; 12383 sc->link_vars.line_speed = ELINK_SPEED_1000; 12384 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 12385 LINK_STATUS_SPEED_AND_DUPLEX_1000TFD); 12386 } else { 12387 sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC; 12388 sc->link_vars.line_speed = ELINK_SPEED_10000; 12389 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 12390 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 12391 } 12392 12393 sc->link_vars.link_up = 1; 12394 12395 sc->link_vars.duplex = DUPLEX_FULL; 12396 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE; 12397 12398 if (IS_PF(sc)) { 12399 REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0); 12400 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12401 bxe_link_report(sc); 12402 } 12403 } 12404 12405 if (IS_PF(sc)) { 12406 if (sc->link_vars.link_up) { 12407 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12408 } else { 12409 bxe_stats_handle(sc, STATS_EVENT_STOP); 12410 } 12411 bxe_link_report(sc); 12412 } else { 12413 bxe_link_report(sc); 12414 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12415 } 12416 } 12417 12418 static int 12419 bxe_initial_phy_init(struct bxe_softc *sc, 12420 int load_mode) 12421 { 12422 int rc, cfg_idx = bxe_get_link_cfg_idx(sc); 12423 uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx]; 12424 struct elink_params *lp = &sc->link_params; 12425 12426 bxe_set_requested_fc(sc); 12427 12428 if (CHIP_REV_IS_SLOW(sc)) { 12429 uint32_t bond = CHIP_BOND_ID(sc); 12430 uint32_t feat = 0; 12431 12432 if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) { 12433 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 12434 } else if (bond & 0x4) { 12435 if (CHIP_IS_E3(sc)) { 12436 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC; 12437 } else { 12438 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 12439 } 12440 } else if (bond & 0x8) { 12441 if (CHIP_IS_E3(sc)) { 12442 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC; 12443 } else { 12444 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 12445 } 12446 } 12447 12448 /* disable EMAC for E3 and above */ 12449 if (bond & 0x2) { 12450 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 12451 } 12452 12453 sc->link_params.feature_config_flags |= feat; 12454 } 12455 12456 BXE_PHY_LOCK(sc); 12457 12458 if (load_mode == LOAD_DIAG) { 12459 lp->loopback_mode = ELINK_LOOPBACK_XGXS; 12460 /* Prefer doing PHY loopback at 10G speed, if possible */ 12461 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) { 12462 if (lp->speed_cap_mask[cfg_idx] & 12463 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 12464 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000; 12465 } else { 12466 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000; 12467 } 12468 } 12469 } 12470 12471 if (load_mode == LOAD_LOOPBACK_EXT) { 12472 lp->loopback_mode = ELINK_LOOPBACK_EXT; 12473 } 12474 12475 rc = elink_phy_init(&sc->link_params, &sc->link_vars); 12476 12477 BXE_PHY_UNLOCK(sc); 12478 12479 bxe_calc_fc_adv(sc); 12480 12481 if (sc->link_vars.link_up) { 12482 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12483 bxe_link_report(sc); 12484 } 12485 12486 if (!CHIP_REV_IS_SLOW(sc)) { 12487 bxe_periodic_start(sc); 12488 } 12489 12490 sc->link_params.req_line_speed[cfg_idx] = req_line_speed; 12491 return (rc); 12492 } 12493 12494 /* must be called under IF_ADDR_LOCK */ 12495 static int 12496 bxe_init_mcast_macs_list(struct bxe_softc *sc, 12497 struct ecore_mcast_ramrod_params *p) 12498 { 12499 struct ifnet *ifp = sc->ifnet; 12500 int mc_count = 0; 12501 struct ifmultiaddr *ifma; 12502 struct ecore_mcast_list_elem *mc_mac; 12503 12504 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 12505 if (ifma->ifma_addr->sa_family != AF_LINK) { 12506 continue; 12507 } 12508 12509 mc_count++; 12510 } 12511 12512 ECORE_LIST_INIT(&p->mcast_list); 12513 p->mcast_list_len = 0; 12514 12515 if (!mc_count) { 12516 return (0); 12517 } 12518 12519 mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, 12520 (M_NOWAIT | M_ZERO)); 12521 if (!mc_mac) { 12522 BLOGE(sc, "Failed to allocate temp mcast list\n"); 12523 return (-1); 12524 } 12525 12526 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 12527 if (ifma->ifma_addr->sa_family != AF_LINK) { 12528 continue; 12529 } 12530 12531 mc_mac->mac = (uint8_t *)LLADDR((struct sockaddr_dl *)ifma->ifma_addr); 12532 ECORE_LIST_PUSH_TAIL(&mc_mac->link, &p->mcast_list); 12533 12534 BLOGD(sc, DBG_LOAD, 12535 "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n", 12536 mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2], 12537 mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]); 12538 12539 mc_mac++; 12540 } 12541 12542 p->mcast_list_len = mc_count; 12543 12544 return (0); 12545 } 12546 12547 static void 12548 bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p) 12549 { 12550 struct ecore_mcast_list_elem *mc_mac = 12551 ECORE_LIST_FIRST_ENTRY(&p->mcast_list, 12552 struct ecore_mcast_list_elem, 12553 link); 12554 12555 if (mc_mac) { 12556 /* only a single free as all mc_macs are in the same heap array */ 12557 free(mc_mac, M_DEVBUF); 12558 } 12559 } 12560 12561 static int 12562 bxe_set_mc_list(struct bxe_softc *sc) 12563 { 12564 struct ecore_mcast_ramrod_params rparam = { NULL }; 12565 int rc = 0; 12566 12567 rparam.mcast_obj = &sc->mcast_obj; 12568 12569 BXE_MCAST_LOCK(sc); 12570 12571 /* first, clear all configured multicast MACs */ 12572 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 12573 if (rc < 0) { 12574 BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc); 12575 return (rc); 12576 } 12577 12578 /* configure a new MACs list */ 12579 rc = bxe_init_mcast_macs_list(sc, &rparam); 12580 if (rc) { 12581 BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc); 12582 BXE_MCAST_UNLOCK(sc); 12583 return (rc); 12584 } 12585 12586 /* Now add the new MACs */ 12587 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD); 12588 if (rc < 0) { 12589 BLOGE(sc, "Failed to set new mcast config (%d)\n", rc); 12590 } 12591 12592 bxe_free_mcast_macs_list(&rparam); 12593 12594 BXE_MCAST_UNLOCK(sc); 12595 12596 return (rc); 12597 } 12598 12599 static int 12600 bxe_set_uc_list(struct bxe_softc *sc) 12601 { 12602 struct ifnet *ifp = sc->ifnet; 12603 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 12604 struct ifaddr *ifa; 12605 unsigned long ramrod_flags = 0; 12606 int rc; 12607 12608 #if __FreeBSD_version < 800000 12609 IF_ADDR_LOCK(ifp); 12610 #else 12611 if_addr_rlock(ifp); 12612 #endif 12613 12614 /* first schedule a cleanup up of old configuration */ 12615 rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE); 12616 if (rc < 0) { 12617 BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc); 12618 #if __FreeBSD_version < 800000 12619 IF_ADDR_UNLOCK(ifp); 12620 #else 12621 if_addr_runlock(ifp); 12622 #endif 12623 return (rc); 12624 } 12625 12626 ifa = ifp->if_addr; 12627 while (ifa) { 12628 if (ifa->ifa_addr->sa_family != AF_LINK) { 12629 ifa = TAILQ_NEXT(ifa, ifa_link); 12630 continue; 12631 } 12632 12633 rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr), 12634 mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags); 12635 if (rc == -EEXIST) { 12636 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12637 /* do not treat adding same MAC as an error */ 12638 rc = 0; 12639 } else if (rc < 0) { 12640 BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc); 12641 #if __FreeBSD_version < 800000 12642 IF_ADDR_UNLOCK(ifp); 12643 #else 12644 if_addr_runlock(ifp); 12645 #endif 12646 return (rc); 12647 } 12648 12649 ifa = TAILQ_NEXT(ifa, ifa_link); 12650 } 12651 12652 #if __FreeBSD_version < 800000 12653 IF_ADDR_UNLOCK(ifp); 12654 #else 12655 if_addr_runlock(ifp); 12656 #endif 12657 12658 /* Execute the pending commands */ 12659 bit_set(&ramrod_flags, RAMROD_CONT); 12660 return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */, 12661 ECORE_UC_LIST_MAC, &ramrod_flags)); 12662 } 12663 12664 static void 12665 bxe_handle_rx_mode_tq(void *context, 12666 int pending) 12667 { 12668 struct bxe_softc *sc = (struct bxe_softc *)context; 12669 struct ifnet *ifp = sc->ifnet; 12670 uint32_t rx_mode = BXE_RX_MODE_NORMAL; 12671 12672 BXE_CORE_LOCK(sc); 12673 12674 if (sc->state != BXE_STATE_OPEN) { 12675 BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state); 12676 BXE_CORE_UNLOCK(sc); 12677 return; 12678 } 12679 12680 BLOGD(sc, DBG_SP, "ifp->if_flags=0x%x\n", ifp->if_flags); 12681 12682 if (ifp->if_flags & IFF_PROMISC) { 12683 rx_mode = BXE_RX_MODE_PROMISC; 12684 } else if ((ifp->if_flags & IFF_ALLMULTI) || 12685 ((ifp->if_amcount > BXE_MAX_MULTICAST) && 12686 CHIP_IS_E1(sc))) { 12687 rx_mode = BXE_RX_MODE_ALLMULTI; 12688 } else { 12689 if (IS_PF(sc)) { 12690 /* some multicasts */ 12691 if (bxe_set_mc_list(sc) < 0) { 12692 rx_mode = BXE_RX_MODE_ALLMULTI; 12693 } 12694 if (bxe_set_uc_list(sc) < 0) { 12695 rx_mode = BXE_RX_MODE_PROMISC; 12696 } 12697 } 12698 #if 0 12699 else { 12700 /* 12701 * Configuring mcast to a VF involves sleeping (when we 12702 * wait for the PF's response). Since this function is 12703 * called from a non sleepable context we must schedule 12704 * a work item for this purpose 12705 */ 12706 bxe_set_bit(BXE_SP_RTNL_VFPF_MCAST, &sc->sp_rtnl_state); 12707 schedule_delayed_work(&sc->sp_rtnl_task, 0); 12708 } 12709 #endif 12710 } 12711 12712 sc->rx_mode = rx_mode; 12713 12714 /* schedule the rx_mode command */ 12715 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 12716 BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n"); 12717 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 12718 BXE_CORE_UNLOCK(sc); 12719 return; 12720 } 12721 12722 if (IS_PF(sc)) { 12723 bxe_set_storm_rx_mode(sc); 12724 } 12725 #if 0 12726 else { 12727 /* 12728 * Configuring mcast to a VF involves sleeping (when we 12729 * wait for the PF's response). Since this function is 12730 * called from a non sleepable context we must schedule 12731 * a work item for this purpose 12732 */ 12733 bxe_set_bit(BXE_SP_RTNL_VFPF_STORM_RX_MODE, &sc->sp_rtnl_state); 12734 schedule_delayed_work(&sc->sp_rtnl_task, 0); 12735 } 12736 #endif 12737 12738 BXE_CORE_UNLOCK(sc); 12739 } 12740 12741 static void 12742 bxe_set_rx_mode(struct bxe_softc *sc) 12743 { 12744 taskqueue_enqueue(sc->rx_mode_tq, &sc->rx_mode_tq_task); 12745 } 12746 12747 /* update flags in shmem */ 12748 static void 12749 bxe_update_drv_flags(struct bxe_softc *sc, 12750 uint32_t flags, 12751 uint32_t set) 12752 { 12753 uint32_t drv_flags; 12754 12755 if (SHMEM2_HAS(sc, drv_flags)) { 12756 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12757 drv_flags = SHMEM2_RD(sc, drv_flags); 12758 12759 if (set) { 12760 SET_FLAGS(drv_flags, flags); 12761 } else { 12762 RESET_FLAGS(drv_flags, flags); 12763 } 12764 12765 SHMEM2_WR(sc, drv_flags, drv_flags); 12766 BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags); 12767 12768 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12769 } 12770 } 12771 12772 /* periodic timer callout routine, only runs when the interface is up */ 12773 12774 static void 12775 bxe_periodic_callout_func(void *xsc) 12776 { 12777 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12778 int i; 12779 12780 if (!BXE_CORE_TRYLOCK(sc)) { 12781 /* just bail and try again next time */ 12782 12783 if ((sc->state == BXE_STATE_OPEN) && 12784 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12785 /* schedule the next periodic callout */ 12786 callout_reset(&sc->periodic_callout, hz, 12787 bxe_periodic_callout_func, sc); 12788 } 12789 12790 return; 12791 } 12792 12793 if ((sc->state != BXE_STATE_OPEN) || 12794 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) { 12795 BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state); 12796 BXE_CORE_UNLOCK(sc); 12797 return; 12798 } 12799 12800 /* Check for TX timeouts on any fastpath. */ 12801 FOR_EACH_QUEUE(sc, i) { 12802 if (bxe_watchdog(sc, &sc->fp[i]) != 0) { 12803 /* Ruh-Roh, chip was reset! */ 12804 break; 12805 } 12806 } 12807 12808 if (!CHIP_REV_IS_SLOW(sc)) { 12809 /* 12810 * This barrier is needed to ensure the ordering between the writing 12811 * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and 12812 * the reading here. 12813 */ 12814 mb(); 12815 if (sc->port.pmf) { 12816 BXE_PHY_LOCK(sc); 12817 elink_period_func(&sc->link_params, &sc->link_vars); 12818 BXE_PHY_UNLOCK(sc); 12819 } 12820 } 12821 12822 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 12823 int mb_idx = SC_FW_MB_IDX(sc); 12824 uint32_t drv_pulse; 12825 uint32_t mcp_pulse; 12826 12827 ++sc->fw_drv_pulse_wr_seq; 12828 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 12829 12830 drv_pulse = sc->fw_drv_pulse_wr_seq; 12831 bxe_drv_pulse(sc); 12832 12833 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) & 12834 MCP_PULSE_SEQ_MASK); 12835 12836 /* 12837 * The delta between driver pulse and mcp response should 12838 * be 1 (before mcp response) or 0 (after mcp response). 12839 */ 12840 if ((drv_pulse != mcp_pulse) && 12841 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) { 12842 /* someone lost a heartbeat... */ 12843 BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 12844 drv_pulse, mcp_pulse); 12845 } 12846 } 12847 12848 /* state is BXE_STATE_OPEN */ 12849 bxe_stats_handle(sc, STATS_EVENT_UPDATE); 12850 12851 #if 0 12852 /* sample VF bulletin board for new posts from PF */ 12853 if (IS_VF(sc)) { 12854 bxe_sample_bulletin(sc); 12855 } 12856 #endif 12857 12858 BXE_CORE_UNLOCK(sc); 12859 12860 if ((sc->state == BXE_STATE_OPEN) && 12861 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12862 /* schedule the next periodic callout */ 12863 callout_reset(&sc->periodic_callout, hz, 12864 bxe_periodic_callout_func, sc); 12865 } 12866 } 12867 12868 static void 12869 bxe_periodic_start(struct bxe_softc *sc) 12870 { 12871 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO); 12872 callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc); 12873 } 12874 12875 static void 12876 bxe_periodic_stop(struct bxe_softc *sc) 12877 { 12878 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP); 12879 callout_drain(&sc->periodic_callout); 12880 } 12881 12882 /* start the controller */ 12883 static __noinline int 12884 bxe_nic_load(struct bxe_softc *sc, 12885 int load_mode) 12886 { 12887 uint32_t val; 12888 int load_code = 0; 12889 int i, rc = 0; 12890 12891 BXE_CORE_LOCK_ASSERT(sc); 12892 12893 BLOGD(sc, DBG_LOAD, "Starting NIC load...\n"); 12894 12895 sc->state = BXE_STATE_OPENING_WAITING_LOAD; 12896 12897 if (IS_PF(sc)) { 12898 /* must be called before memory allocation and HW init */ 12899 bxe_ilt_set_info(sc); 12900 } 12901 12902 sc->last_reported_link_state = LINK_STATE_UNKNOWN; 12903 12904 bxe_set_fp_rx_buf_size(sc); 12905 12906 if (bxe_alloc_fp_buffers(sc) != 0) { 12907 BLOGE(sc, "Failed to allocate fastpath memory\n"); 12908 sc->state = BXE_STATE_CLOSED; 12909 rc = ENOMEM; 12910 goto bxe_nic_load_error0; 12911 } 12912 12913 if (bxe_alloc_mem(sc) != 0) { 12914 sc->state = BXE_STATE_CLOSED; 12915 rc = ENOMEM; 12916 goto bxe_nic_load_error0; 12917 } 12918 12919 if (bxe_alloc_fw_stats_mem(sc) != 0) { 12920 sc->state = BXE_STATE_CLOSED; 12921 rc = ENOMEM; 12922 goto bxe_nic_load_error0; 12923 } 12924 12925 if (IS_PF(sc)) { 12926 /* set pf load just before approaching the MCP */ 12927 bxe_set_pf_load(sc); 12928 12929 /* if MCP exists send load request and analyze response */ 12930 if (!BXE_NOMCP(sc)) { 12931 /* attempt to load pf */ 12932 if (bxe_nic_load_request(sc, &load_code) != 0) { 12933 sc->state = BXE_STATE_CLOSED; 12934 rc = ENXIO; 12935 goto bxe_nic_load_error1; 12936 } 12937 12938 /* what did the MCP say? */ 12939 if (bxe_nic_load_analyze_req(sc, load_code) != 0) { 12940 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12941 sc->state = BXE_STATE_CLOSED; 12942 rc = ENXIO; 12943 goto bxe_nic_load_error2; 12944 } 12945 } else { 12946 BLOGI(sc, "Device has no MCP!\n"); 12947 load_code = bxe_nic_load_no_mcp(sc); 12948 } 12949 12950 /* mark PMF if applicable */ 12951 bxe_nic_load_pmf(sc, load_code); 12952 12953 /* Init Function state controlling object */ 12954 bxe_init_func_obj(sc); 12955 12956 /* Initialize HW */ 12957 if (bxe_init_hw(sc, load_code) != 0) { 12958 BLOGE(sc, "HW init failed\n"); 12959 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12960 sc->state = BXE_STATE_CLOSED; 12961 rc = ENXIO; 12962 goto bxe_nic_load_error2; 12963 } 12964 } 12965 12966 /* attach interrupts */ 12967 if (bxe_interrupt_attach(sc) != 0) { 12968 sc->state = BXE_STATE_CLOSED; 12969 rc = ENXIO; 12970 goto bxe_nic_load_error2; 12971 } 12972 12973 bxe_nic_init(sc, load_code); 12974 12975 /* Init per-function objects */ 12976 if (IS_PF(sc)) { 12977 bxe_init_objs(sc); 12978 // XXX bxe_iov_nic_init(sc); 12979 12980 /* set AFEX default VLAN tag to an invalid value */ 12981 sc->devinfo.mf_info.afex_def_vlan_tag = -1; 12982 // XXX bxe_nic_load_afex_dcc(sc, load_code); 12983 12984 sc->state = BXE_STATE_OPENING_WAITING_PORT; 12985 rc = bxe_func_start(sc); 12986 if (rc) { 12987 BLOGE(sc, "Function start failed!\n"); 12988 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12989 sc->state = BXE_STATE_ERROR; 12990 goto bxe_nic_load_error3; 12991 } 12992 12993 /* send LOAD_DONE command to MCP */ 12994 if (!BXE_NOMCP(sc)) { 12995 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12996 if (!load_code) { 12997 BLOGE(sc, "MCP response failure, aborting\n"); 12998 sc->state = BXE_STATE_ERROR; 12999 rc = ENXIO; 13000 goto bxe_nic_load_error3; 13001 } 13002 } 13003 13004 rc = bxe_setup_leading(sc); 13005 if (rc) { 13006 BLOGE(sc, "Setup leading failed!\n"); 13007 sc->state = BXE_STATE_ERROR; 13008 goto bxe_nic_load_error3; 13009 } 13010 13011 FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) { 13012 rc = bxe_setup_queue(sc, &sc->fp[i], FALSE); 13013 if (rc) { 13014 BLOGE(sc, "Queue(%d) setup failed\n", i); 13015 sc->state = BXE_STATE_ERROR; 13016 goto bxe_nic_load_error3; 13017 } 13018 } 13019 13020 rc = bxe_init_rss_pf(sc); 13021 if (rc) { 13022 BLOGE(sc, "PF RSS init failed\n"); 13023 sc->state = BXE_STATE_ERROR; 13024 goto bxe_nic_load_error3; 13025 } 13026 } 13027 /* XXX VF */ 13028 #if 0 13029 else { /* VF */ 13030 FOR_EACH_ETH_QUEUE(sc, i) { 13031 rc = bxe_vfpf_setup_q(sc, i); 13032 if (rc) { 13033 BLOGE(sc, "Queue(%d) setup failed\n", i); 13034 sc->state = BXE_STATE_ERROR; 13035 goto bxe_nic_load_error3; 13036 } 13037 } 13038 } 13039 #endif 13040 13041 /* now when Clients are configured we are ready to work */ 13042 sc->state = BXE_STATE_OPEN; 13043 13044 /* Configure a ucast MAC */ 13045 if (IS_PF(sc)) { 13046 rc = bxe_set_eth_mac(sc, TRUE); 13047 } 13048 #if 0 13049 else { /* IS_VF(sc) */ 13050 rc = bxe_vfpf_set_mac(sc); 13051 } 13052 #endif 13053 if (rc) { 13054 BLOGE(sc, "Setting Ethernet MAC failed\n"); 13055 sc->state = BXE_STATE_ERROR; 13056 goto bxe_nic_load_error3; 13057 } 13058 13059 #if 0 13060 if (IS_PF(sc) && sc->pending_max) { 13061 /* for AFEX */ 13062 bxe_update_max_mf_config(sc, sc->pending_max); 13063 sc->pending_max = 0; 13064 } 13065 #endif 13066 13067 if (sc->port.pmf) { 13068 rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN); 13069 if (rc) { 13070 sc->state = BXE_STATE_ERROR; 13071 goto bxe_nic_load_error3; 13072 } 13073 } 13074 13075 sc->link_params.feature_config_flags &= 13076 ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN; 13077 13078 /* start fast path */ 13079 13080 /* Initialize Rx filter */ 13081 bxe_set_rx_mode(sc); 13082 13083 /* start the Tx */ 13084 switch (/* XXX load_mode */LOAD_OPEN) { 13085 case LOAD_NORMAL: 13086 case LOAD_OPEN: 13087 break; 13088 13089 case LOAD_DIAG: 13090 case LOAD_LOOPBACK_EXT: 13091 sc->state = BXE_STATE_DIAG; 13092 break; 13093 13094 default: 13095 break; 13096 } 13097 13098 if (sc->port.pmf) { 13099 bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0); 13100 } else { 13101 bxe_link_status_update(sc); 13102 } 13103 13104 /* start the periodic timer callout */ 13105 bxe_periodic_start(sc); 13106 13107 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 13108 /* mark driver is loaded in shmem2 */ 13109 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 13110 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 13111 (val | 13112 DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 13113 DRV_FLAGS_CAPABILITIES_LOADED_L2)); 13114 } 13115 13116 /* wait for all pending SP commands to complete */ 13117 if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) { 13118 BLOGE(sc, "Timeout waiting for all SPs to complete!\n"); 13119 bxe_periodic_stop(sc); 13120 bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE); 13121 return (ENXIO); 13122 } 13123 13124 #if 0 13125 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */ 13126 if (sc->port.pmf && (sc->state != BXE_STATE_DIAG)) { 13127 bxe_dcbx_init(sc, FALSE); 13128 } 13129 #endif 13130 13131 /* Tell the stack the driver is running! */ 13132 sc->ifnet->if_drv_flags = IFF_DRV_RUNNING; 13133 13134 BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n"); 13135 13136 return (0); 13137 13138 bxe_nic_load_error3: 13139 13140 if (IS_PF(sc)) { 13141 bxe_int_disable_sync(sc, 1); 13142 13143 /* clean out queued objects */ 13144 bxe_squeeze_objects(sc); 13145 } 13146 13147 bxe_interrupt_detach(sc); 13148 13149 bxe_nic_load_error2: 13150 13151 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 13152 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 13153 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 13154 } 13155 13156 sc->port.pmf = 0; 13157 13158 bxe_nic_load_error1: 13159 13160 /* clear pf_load status, as it was already set */ 13161 if (IS_PF(sc)) { 13162 bxe_clear_pf_load(sc); 13163 } 13164 13165 bxe_nic_load_error0: 13166 13167 bxe_free_fw_stats_mem(sc); 13168 bxe_free_fp_buffers(sc); 13169 bxe_free_mem(sc); 13170 13171 return (rc); 13172 } 13173 13174 static int 13175 bxe_init_locked(struct bxe_softc *sc) 13176 { 13177 int other_engine = SC_PATH(sc) ? 0 : 1; 13178 uint8_t other_load_status, load_status; 13179 uint8_t global = FALSE; 13180 int rc; 13181 13182 BXE_CORE_LOCK_ASSERT(sc); 13183 13184 /* check if the driver is already running */ 13185 if (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING) { 13186 BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n"); 13187 return (0); 13188 } 13189 13190 bxe_set_power_state(sc, PCI_PM_D0); 13191 13192 /* 13193 * If parity occurred during the unload, then attentions and/or 13194 * RECOVERY_IN_PROGRES may still be set. If so we want the first function 13195 * loaded on the current engine to complete the recovery. Parity recovery 13196 * is only relevant for PF driver. 13197 */ 13198 if (IS_PF(sc)) { 13199 other_load_status = bxe_get_load_status(sc, other_engine); 13200 load_status = bxe_get_load_status(sc, SC_PATH(sc)); 13201 13202 if (!bxe_reset_is_done(sc, SC_PATH(sc)) || 13203 bxe_chk_parity_attn(sc, &global, TRUE)) { 13204 do { 13205 /* 13206 * If there are attentions and they are in global blocks, set 13207 * the GLOBAL_RESET bit regardless whether it will be this 13208 * function that will complete the recovery or not. 13209 */ 13210 if (global) { 13211 bxe_set_reset_global(sc); 13212 } 13213 13214 /* 13215 * Only the first function on the current engine should try 13216 * to recover in open. In case of attentions in global blocks 13217 * only the first in the chip should try to recover. 13218 */ 13219 if ((!load_status && (!global || !other_load_status)) && 13220 bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) { 13221 BLOGI(sc, "Recovered during init\n"); 13222 break; 13223 } 13224 13225 /* recovery has failed... */ 13226 bxe_set_power_state(sc, PCI_PM_D3hot); 13227 sc->recovery_state = BXE_RECOVERY_FAILED; 13228 13229 BLOGE(sc, "Recovery flow hasn't properly " 13230 "completed yet, try again later. " 13231 "If you still see this message after a " 13232 "few retries then power cycle is required.\n"); 13233 13234 rc = ENXIO; 13235 goto bxe_init_locked_done; 13236 } while (0); 13237 } 13238 } 13239 13240 sc->recovery_state = BXE_RECOVERY_DONE; 13241 13242 rc = bxe_nic_load(sc, LOAD_OPEN); 13243 13244 bxe_init_locked_done: 13245 13246 if (rc) { 13247 /* Tell the stack the driver is NOT running! */ 13248 BLOGE(sc, "Initialization failed, " 13249 "stack notified driver is NOT running!\n"); 13250 sc->ifnet->if_drv_flags &= ~IFF_DRV_RUNNING; 13251 } 13252 13253 return (rc); 13254 } 13255 13256 static int 13257 bxe_stop_locked(struct bxe_softc *sc) 13258 { 13259 BXE_CORE_LOCK_ASSERT(sc); 13260 return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE)); 13261 } 13262 13263 /* 13264 * Handles controller initialization when called from an unlocked routine. 13265 * ifconfig calls this function. 13266 * 13267 * Returns: 13268 * void 13269 */ 13270 static void 13271 bxe_init(void *xsc) 13272 { 13273 struct bxe_softc *sc = (struct bxe_softc *)xsc; 13274 13275 BXE_CORE_LOCK(sc); 13276 bxe_init_locked(sc); 13277 BXE_CORE_UNLOCK(sc); 13278 } 13279 13280 static int 13281 bxe_init_ifnet(struct bxe_softc *sc) 13282 { 13283 struct ifnet *ifp; 13284 13285 /* ifconfig entrypoint for media type/status reporting */ 13286 ifmedia_init(&sc->ifmedia, IFM_IMASK, 13287 bxe_ifmedia_update, 13288 bxe_ifmedia_status); 13289 13290 /* set the default interface values */ 13291 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL); 13292 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL); 13293 ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO)); 13294 13295 sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */ 13296 13297 /* allocate the ifnet structure */ 13298 if ((ifp = if_alloc(IFT_ETHER)) == NULL) { 13299 BLOGE(sc, "Interface allocation failed!\n"); 13300 return (ENXIO); 13301 } 13302 13303 ifp->if_softc = sc; 13304 if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); 13305 ifp->if_flags = (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 13306 ifp->if_ioctl = bxe_ioctl; 13307 ifp->if_start = bxe_tx_start; 13308 #if __FreeBSD_version >= 800000 13309 ifp->if_transmit = bxe_tx_mq_start; 13310 ifp->if_qflush = bxe_mq_flush; 13311 #endif 13312 #ifdef FreeBSD8_0 13313 ifp->if_timer = 0; 13314 #endif 13315 ifp->if_init = bxe_init; 13316 ifp->if_mtu = sc->mtu; 13317 ifp->if_hwassist = (CSUM_IP | 13318 CSUM_TCP | 13319 CSUM_UDP | 13320 CSUM_TSO | 13321 CSUM_TCP_IPV6 | 13322 CSUM_UDP_IPV6); 13323 ifp->if_capabilities = 13324 #if __FreeBSD_version < 700000 13325 (IFCAP_VLAN_MTU | 13326 IFCAP_VLAN_HWTAGGING | 13327 IFCAP_HWCSUM | 13328 IFCAP_JUMBO_MTU | 13329 IFCAP_LRO); 13330 #else 13331 (IFCAP_VLAN_MTU | 13332 IFCAP_VLAN_HWTAGGING | 13333 IFCAP_VLAN_HWTSO | 13334 IFCAP_VLAN_HWFILTER | 13335 IFCAP_VLAN_HWCSUM | 13336 IFCAP_HWCSUM | 13337 IFCAP_JUMBO_MTU | 13338 IFCAP_LRO | 13339 IFCAP_TSO4 | 13340 IFCAP_TSO6 | 13341 IFCAP_WOL_MAGIC); 13342 #endif 13343 ifp->if_capenable = ifp->if_capabilities; 13344 ifp->if_capenable &= ~IFCAP_WOL_MAGIC; /* XXX not yet... */ 13345 #if __FreeBSD_version < 1000025 13346 ifp->if_baudrate = 1000000000; 13347 #else 13348 if_initbaudrate(ifp, IF_Gbps(10)); 13349 #endif 13350 ifp->if_snd.ifq_drv_maxlen = sc->tx_ring_size; 13351 13352 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 13353 IFQ_SET_READY(&ifp->if_snd); 13354 13355 sc->ifnet = ifp; 13356 13357 /* attach to the Ethernet interface list */ 13358 ether_ifattach(ifp, sc->link_params.mac_addr); 13359 13360 return (0); 13361 } 13362 13363 static void 13364 bxe_deallocate_bars(struct bxe_softc *sc) 13365 { 13366 int i; 13367 13368 for (i = 0; i < MAX_BARS; i++) { 13369 if (sc->bar[i].resource != NULL) { 13370 bus_release_resource(sc->dev, 13371 SYS_RES_MEMORY, 13372 sc->bar[i].rid, 13373 sc->bar[i].resource); 13374 BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n", 13375 i, PCIR_BAR(i)); 13376 } 13377 } 13378 } 13379 13380 static int 13381 bxe_allocate_bars(struct bxe_softc *sc) 13382 { 13383 u_int flags; 13384 int i; 13385 13386 memset(sc->bar, 0, sizeof(sc->bar)); 13387 13388 for (i = 0; i < MAX_BARS; i++) { 13389 13390 /* memory resources reside at BARs 0, 2, 4 */ 13391 /* Run `pciconf -lb` to see mappings */ 13392 if ((i != 0) && (i != 2) && (i != 4)) { 13393 continue; 13394 } 13395 13396 sc->bar[i].rid = PCIR_BAR(i); 13397 13398 flags = RF_ACTIVE; 13399 if (i == 0) { 13400 flags |= RF_SHAREABLE; 13401 } 13402 13403 if ((sc->bar[i].resource = 13404 bus_alloc_resource_any(sc->dev, 13405 SYS_RES_MEMORY, 13406 &sc->bar[i].rid, 13407 flags)) == NULL) { 13408 #if 0 13409 /* BAR4 doesn't exist for E1 */ 13410 BLOGE(sc, "PCI BAR%d [%02x] memory allocation failed\n", 13411 i, PCIR_BAR(i)); 13412 #endif 13413 return (0); 13414 } 13415 13416 sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource); 13417 sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource); 13418 sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource); 13419 13420 BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%ld) -> %p\n", 13421 i, PCIR_BAR(i), 13422 (void *)rman_get_start(sc->bar[i].resource), 13423 (void *)rman_get_end(sc->bar[i].resource), 13424 rman_get_size(sc->bar[i].resource), 13425 (void *)sc->bar[i].kva); 13426 } 13427 13428 return (0); 13429 } 13430 13431 static void 13432 bxe_get_function_num(struct bxe_softc *sc) 13433 { 13434 uint32_t val = 0; 13435 13436 /* 13437 * Read the ME register to get the function number. The ME register 13438 * holds the relative-function number and absolute-function number. The 13439 * absolute-function number appears only in E2 and above. Before that 13440 * these bits always contained zero, therefore we cannot blindly use them. 13441 */ 13442 13443 val = REG_RD(sc, BAR_ME_REGISTER); 13444 13445 sc->pfunc_rel = 13446 (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT); 13447 sc->path_id = 13448 (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1; 13449 13450 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13451 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id); 13452 } else { 13453 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id); 13454 } 13455 13456 BLOGD(sc, DBG_LOAD, 13457 "Relative function %d, Absolute function %d, Path %d\n", 13458 sc->pfunc_rel, sc->pfunc_abs, sc->path_id); 13459 } 13460 13461 static uint32_t 13462 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc) 13463 { 13464 uint32_t shmem2_size; 13465 uint32_t offset; 13466 uint32_t mf_cfg_offset_value; 13467 13468 /* Non 57712 */ 13469 offset = (SHMEM_RD(sc, func_mb) + 13470 (MAX_FUNC_NUM * sizeof(struct drv_func_mb))); 13471 13472 /* 57712 plus */ 13473 if (sc->devinfo.shmem2_base != 0) { 13474 shmem2_size = SHMEM2_RD(sc, size); 13475 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) { 13476 mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr); 13477 if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) { 13478 offset = mf_cfg_offset_value; 13479 } 13480 } 13481 } 13482 13483 return (offset); 13484 } 13485 13486 static uint32_t 13487 bxe_pcie_capability_read(struct bxe_softc *sc, 13488 int reg, 13489 int width) 13490 { 13491 int pcie_reg; 13492 13493 /* ensure PCIe capability is enabled */ 13494 if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) { 13495 if (pcie_reg != 0) { 13496 BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg); 13497 return (pci_read_config(sc->dev, (pcie_reg + reg), width)); 13498 } 13499 } 13500 13501 BLOGE(sc, "PCIe capability NOT FOUND!!!\n"); 13502 13503 return (0); 13504 } 13505 13506 static uint8_t 13507 bxe_is_pcie_pending(struct bxe_softc *sc) 13508 { 13509 return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) & 13510 PCIM_EXP_STA_TRANSACTION_PND); 13511 } 13512 13513 /* 13514 * Walk the PCI capabiites list for the device to find what features are 13515 * supported. These capabilites may be enabled/disabled by firmware so it's 13516 * best to walk the list rather than make assumptions. 13517 */ 13518 static void 13519 bxe_probe_pci_caps(struct bxe_softc *sc) 13520 { 13521 uint16_t link_status; 13522 int reg; 13523 13524 /* check if PCI Power Management is enabled */ 13525 if (pci_find_cap(sc->dev, PCIY_PMG, ®) == 0) { 13526 if (reg != 0) { 13527 BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg); 13528 13529 sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG; 13530 sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg; 13531 } 13532 } 13533 13534 link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2); 13535 13536 /* handle PCIe 2.0 workarounds for 57710 */ 13537 if (CHIP_IS_E1(sc)) { 13538 /* workaround for 57710 errata E4_57710_27462 */ 13539 sc->devinfo.pcie_link_speed = 13540 (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1; 13541 13542 /* workaround for 57710 errata E4_57710_27488 */ 13543 sc->devinfo.pcie_link_width = 13544 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 13545 if (sc->devinfo.pcie_link_speed > 1) { 13546 sc->devinfo.pcie_link_width = 13547 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1; 13548 } 13549 } else { 13550 sc->devinfo.pcie_link_speed = 13551 (link_status & PCIM_LINK_STA_SPEED); 13552 sc->devinfo.pcie_link_width = 13553 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 13554 } 13555 13556 BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n", 13557 sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width); 13558 13559 sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG; 13560 sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg; 13561 13562 /* check if MSI capability is enabled */ 13563 if (pci_find_cap(sc->dev, PCIY_MSI, ®) == 0) { 13564 if (reg != 0) { 13565 BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg); 13566 13567 sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG; 13568 sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg; 13569 } 13570 } 13571 13572 /* check if MSI-X capability is enabled */ 13573 if (pci_find_cap(sc->dev, PCIY_MSIX, ®) == 0) { 13574 if (reg != 0) { 13575 BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg); 13576 13577 sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG; 13578 sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg; 13579 } 13580 } 13581 } 13582 13583 static int 13584 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc) 13585 { 13586 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13587 uint32_t val; 13588 13589 /* get the outer vlan if we're in switch-dependent mode */ 13590 13591 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13592 mf_info->ext_id = (uint16_t)val; 13593 13594 mf_info->multi_vnics_mode = 1; 13595 13596 if (!VALID_OVLAN(mf_info->ext_id)) { 13597 BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id); 13598 return (1); 13599 } 13600 13601 /* get the capabilities */ 13602 if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13603 FUNC_MF_CFG_PROTOCOL_ISCSI) { 13604 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI; 13605 } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13606 FUNC_MF_CFG_PROTOCOL_FCOE) { 13607 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE; 13608 } else { 13609 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET; 13610 } 13611 13612 mf_info->vnics_per_port = 13613 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13614 13615 return (0); 13616 } 13617 13618 static uint32_t 13619 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc) 13620 { 13621 uint32_t retval = 0; 13622 uint32_t val; 13623 13624 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13625 13626 if (val & MACP_FUNC_CFG_FLAGS_ENABLED) { 13627 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) { 13628 retval |= MF_PROTO_SUPPORT_ETHERNET; 13629 } 13630 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 13631 retval |= MF_PROTO_SUPPORT_ISCSI; 13632 } 13633 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 13634 retval |= MF_PROTO_SUPPORT_FCOE; 13635 } 13636 } 13637 13638 return (retval); 13639 } 13640 13641 static int 13642 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc) 13643 { 13644 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13645 uint32_t val; 13646 13647 /* 13648 * There is no outer vlan if we're in switch-independent mode. 13649 * If the mac is valid then assume multi-function. 13650 */ 13651 13652 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13653 13654 mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0); 13655 13656 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13657 13658 mf_info->vnics_per_port = 13659 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13660 13661 return (0); 13662 } 13663 13664 static int 13665 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc) 13666 { 13667 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13668 uint32_t e1hov_tag; 13669 uint32_t func_config; 13670 uint32_t niv_config; 13671 13672 mf_info->multi_vnics_mode = 1; 13673 13674 e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13675 func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13676 niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config); 13677 13678 mf_info->ext_id = 13679 (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >> 13680 FUNC_MF_CFG_E1HOV_TAG_SHIFT); 13681 13682 mf_info->default_vlan = 13683 (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >> 13684 FUNC_MF_CFG_AFEX_VLAN_SHIFT); 13685 13686 mf_info->niv_allowed_priorities = 13687 (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 13688 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT); 13689 13690 mf_info->niv_default_cos = 13691 (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 13692 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT); 13693 13694 mf_info->afex_vlan_mode = 13695 ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 13696 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT); 13697 13698 mf_info->niv_mba_enabled = 13699 ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >> 13700 FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT); 13701 13702 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13703 13704 mf_info->vnics_per_port = 13705 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13706 13707 return (0); 13708 } 13709 13710 static int 13711 bxe_check_valid_mf_cfg(struct bxe_softc *sc) 13712 { 13713 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13714 uint32_t mf_cfg1; 13715 uint32_t mf_cfg2; 13716 uint32_t ovlan1; 13717 uint32_t ovlan2; 13718 uint8_t i, j; 13719 13720 BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n", 13721 SC_PORT(sc)); 13722 BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n", 13723 mf_info->mf_config[SC_VN(sc)]); 13724 BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n", 13725 mf_info->multi_vnics_mode); 13726 BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n", 13727 mf_info->vnics_per_port); 13728 BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n", 13729 mf_info->ext_id); 13730 BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n", 13731 mf_info->min_bw[0], mf_info->min_bw[1], 13732 mf_info->min_bw[2], mf_info->min_bw[3]); 13733 BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n", 13734 mf_info->max_bw[0], mf_info->max_bw[1], 13735 mf_info->max_bw[2], mf_info->max_bw[3]); 13736 BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n", 13737 sc->mac_addr_str); 13738 13739 /* various MF mode sanity checks... */ 13740 13741 if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) { 13742 BLOGE(sc, "Enumerated function %d is marked as hidden\n", 13743 SC_PORT(sc)); 13744 return (1); 13745 } 13746 13747 if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) { 13748 BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n", 13749 mf_info->vnics_per_port, mf_info->multi_vnics_mode); 13750 return (1); 13751 } 13752 13753 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13754 /* vnic id > 0 must have valid ovlan in switch-dependent mode */ 13755 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) { 13756 BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n", 13757 SC_VN(sc), OVLAN(sc)); 13758 return (1); 13759 } 13760 13761 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) { 13762 BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n", 13763 mf_info->multi_vnics_mode, OVLAN(sc)); 13764 return (1); 13765 } 13766 13767 /* 13768 * Verify all functions are either MF or SF mode. If MF, make sure 13769 * sure that all non-hidden functions have a valid ovlan. If SF, 13770 * make sure that all non-hidden functions have an invalid ovlan. 13771 */ 13772 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13773 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13774 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13775 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13776 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) || 13777 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) { 13778 BLOGE(sc, "mf_mode=SD function %d MF config " 13779 "mismatch, multi_vnics_mode=%d ovlan=%d\n", 13780 i, mf_info->multi_vnics_mode, ovlan1); 13781 return (1); 13782 } 13783 } 13784 13785 /* Verify all funcs on the same port each have a different ovlan. */ 13786 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13787 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13788 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13789 /* iterate from the next function on the port to the max func */ 13790 for (j = i + 2; j < MAX_FUNC_NUM; j += 2) { 13791 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config); 13792 ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag); 13793 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13794 VALID_OVLAN(ovlan1) && 13795 !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) && 13796 VALID_OVLAN(ovlan2) && 13797 (ovlan1 == ovlan2)) { 13798 BLOGE(sc, "mf_mode=SD functions %d and %d " 13799 "have the same ovlan (%d)\n", 13800 i, j, ovlan1); 13801 return (1); 13802 } 13803 } 13804 } 13805 } /* MULTI_FUNCTION_SD */ 13806 13807 return (0); 13808 } 13809 13810 static int 13811 bxe_get_mf_cfg_info(struct bxe_softc *sc) 13812 { 13813 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13814 uint32_t val, mac_upper; 13815 uint8_t i, vnic; 13816 13817 /* initialize mf_info defaults */ 13818 mf_info->vnics_per_port = 1; 13819 mf_info->multi_vnics_mode = FALSE; 13820 mf_info->path_has_ovlan = FALSE; 13821 mf_info->mf_mode = SINGLE_FUNCTION; 13822 13823 if (!CHIP_IS_MF_CAP(sc)) { 13824 return (0); 13825 } 13826 13827 if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) { 13828 BLOGE(sc, "Invalid mf_cfg_base!\n"); 13829 return (1); 13830 } 13831 13832 /* get the MF mode (switch dependent / independent / single-function) */ 13833 13834 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13835 13836 switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) 13837 { 13838 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 13839 13840 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13841 13842 /* check for legal upper mac bytes */ 13843 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) { 13844 mf_info->mf_mode = MULTI_FUNCTION_SI; 13845 } else { 13846 BLOGE(sc, "Invalid config for Switch Independent mode\n"); 13847 } 13848 13849 break; 13850 13851 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 13852 case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4: 13853 13854 /* get outer vlan configuration */ 13855 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13856 13857 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) != 13858 FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 13859 mf_info->mf_mode = MULTI_FUNCTION_SD; 13860 } else { 13861 BLOGE(sc, "Invalid config for Switch Dependent mode\n"); 13862 } 13863 13864 break; 13865 13866 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 13867 13868 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */ 13869 return (0); 13870 13871 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 13872 13873 /* 13874 * Mark MF mode as NIV if MCP version includes NPAR-SD support 13875 * and the MAC address is valid. 13876 */ 13877 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13878 13879 if ((SHMEM2_HAS(sc, afex_driver_support)) && 13880 (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) { 13881 mf_info->mf_mode = MULTI_FUNCTION_AFEX; 13882 } else { 13883 BLOGE(sc, "Invalid config for AFEX mode\n"); 13884 } 13885 13886 break; 13887 13888 default: 13889 13890 BLOGE(sc, "Unknown MF mode (0x%08x)\n", 13891 (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)); 13892 13893 return (1); 13894 } 13895 13896 /* set path mf_mode (which could be different than function mf_mode) */ 13897 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13898 mf_info->path_has_ovlan = TRUE; 13899 } else if (mf_info->mf_mode == SINGLE_FUNCTION) { 13900 /* 13901 * Decide on path multi vnics mode. If we're not in MF mode and in 13902 * 4-port mode, this is good enough to check vnic-0 of the other port 13903 * on the same path 13904 */ 13905 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13906 uint8_t other_port = !(PORT_ID(sc) & 1); 13907 uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port)); 13908 13909 val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag); 13910 13911 mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0; 13912 } 13913 } 13914 13915 if (mf_info->mf_mode == SINGLE_FUNCTION) { 13916 /* invalid MF config */ 13917 if (SC_VN(sc) >= 1) { 13918 BLOGE(sc, "VNIC ID >= 1 in SF mode\n"); 13919 return (1); 13920 } 13921 13922 return (0); 13923 } 13924 13925 /* get the MF configuration */ 13926 mf_info->mf_config[SC_VN(sc)] = 13927 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13928 13929 switch(mf_info->mf_mode) 13930 { 13931 case MULTI_FUNCTION_SD: 13932 13933 bxe_get_shmem_mf_cfg_info_sd(sc); 13934 break; 13935 13936 case MULTI_FUNCTION_SI: 13937 13938 bxe_get_shmem_mf_cfg_info_si(sc); 13939 break; 13940 13941 case MULTI_FUNCTION_AFEX: 13942 13943 bxe_get_shmem_mf_cfg_info_niv(sc); 13944 break; 13945 13946 default: 13947 13948 BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n", 13949 mf_info->mf_mode); 13950 return (1); 13951 } 13952 13953 /* get the congestion management parameters */ 13954 13955 vnic = 0; 13956 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13957 /* get min/max bw */ 13958 val = MFCFG_RD(sc, func_mf_config[i].config); 13959 mf_info->min_bw[vnic] = 13960 ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT); 13961 mf_info->max_bw[vnic] = 13962 ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT); 13963 vnic++; 13964 } 13965 13966 return (bxe_check_valid_mf_cfg(sc)); 13967 } 13968 13969 static int 13970 bxe_get_shmem_info(struct bxe_softc *sc) 13971 { 13972 int port; 13973 uint32_t mac_hi, mac_lo, val; 13974 13975 port = SC_PORT(sc); 13976 mac_hi = mac_lo = 0; 13977 13978 sc->link_params.sc = sc; 13979 sc->link_params.port = port; 13980 13981 /* get the hardware config info */ 13982 sc->devinfo.hw_config = 13983 SHMEM_RD(sc, dev_info.shared_hw_config.config); 13984 sc->devinfo.hw_config2 = 13985 SHMEM_RD(sc, dev_info.shared_hw_config.config2); 13986 13987 sc->link_params.hw_led_mode = 13988 ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >> 13989 SHARED_HW_CFG_LED_MODE_SHIFT); 13990 13991 /* get the port feature config */ 13992 sc->port.config = 13993 SHMEM_RD(sc, dev_info.port_feature_config[port].config), 13994 13995 /* get the link params */ 13996 sc->link_params.speed_cap_mask[0] = 13997 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask); 13998 sc->link_params.speed_cap_mask[1] = 13999 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2); 14000 14001 /* get the lane config */ 14002 sc->link_params.lane_config = 14003 SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config); 14004 14005 /* get the link config */ 14006 val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config); 14007 sc->port.link_config[ELINK_INT_PHY] = val; 14008 sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK); 14009 sc->port.link_config[ELINK_EXT_PHY1] = 14010 SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2); 14011 14012 /* get the override preemphasis flag and enable it or turn it off */ 14013 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 14014 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) { 14015 sc->link_params.feature_config_flags |= 14016 ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 14017 } else { 14018 sc->link_params.feature_config_flags &= 14019 ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 14020 } 14021 14022 /* get the initial value of the link params */ 14023 sc->link_params.multi_phy_config = 14024 SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config); 14025 14026 /* get external phy info */ 14027 sc->port.ext_phy_config = 14028 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 14029 14030 /* get the multifunction configuration */ 14031 bxe_get_mf_cfg_info(sc); 14032 14033 /* get the mac address */ 14034 if (IS_MF(sc)) { 14035 mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 14036 mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower); 14037 } else { 14038 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper); 14039 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower); 14040 } 14041 14042 if ((mac_lo == 0) && (mac_hi == 0)) { 14043 *sc->mac_addr_str = 0; 14044 BLOGE(sc, "No Ethernet address programmed!\n"); 14045 } else { 14046 sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8); 14047 sc->link_params.mac_addr[1] = (uint8_t)(mac_hi); 14048 sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24); 14049 sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16); 14050 sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8); 14051 sc->link_params.mac_addr[5] = (uint8_t)(mac_lo); 14052 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str), 14053 "%02x:%02x:%02x:%02x:%02x:%02x", 14054 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1], 14055 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3], 14056 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]); 14057 BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str); 14058 } 14059 14060 #if 0 14061 if (!IS_MF(sc) && 14062 ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 14063 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE)) { 14064 sc->flags |= BXE_NO_ISCSI; 14065 } 14066 if (!IS_MF(sc) && 14067 ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 14068 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI)) { 14069 sc->flags |= BXE_NO_FCOE_FLAG; 14070 } 14071 #endif 14072 14073 return (0); 14074 } 14075 14076 static void 14077 bxe_get_tunable_params(struct bxe_softc *sc) 14078 { 14079 /* sanity checks */ 14080 14081 if ((bxe_interrupt_mode != INTR_MODE_INTX) && 14082 (bxe_interrupt_mode != INTR_MODE_MSI) && 14083 (bxe_interrupt_mode != INTR_MODE_MSIX)) { 14084 BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode); 14085 bxe_interrupt_mode = INTR_MODE_MSIX; 14086 } 14087 14088 if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) { 14089 BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count); 14090 bxe_queue_count = 0; 14091 } 14092 14093 if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) { 14094 if (bxe_max_rx_bufs == 0) { 14095 bxe_max_rx_bufs = RX_BD_USABLE; 14096 } else { 14097 BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs); 14098 bxe_max_rx_bufs = 2048; 14099 } 14100 } 14101 14102 if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) { 14103 BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks); 14104 bxe_hc_rx_ticks = 25; 14105 } 14106 14107 if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) { 14108 BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks); 14109 bxe_hc_tx_ticks = 50; 14110 } 14111 14112 if (bxe_max_aggregation_size == 0) { 14113 bxe_max_aggregation_size = TPA_AGG_SIZE; 14114 } 14115 14116 if (bxe_max_aggregation_size > 0xffff) { 14117 BLOGW(sc, "invalid max_aggregation_size (%d)\n", 14118 bxe_max_aggregation_size); 14119 bxe_max_aggregation_size = TPA_AGG_SIZE; 14120 } 14121 14122 if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) { 14123 BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs); 14124 bxe_mrrs = -1; 14125 } 14126 14127 if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) { 14128 BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen); 14129 bxe_autogreeen = 0; 14130 } 14131 14132 if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) { 14133 BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss); 14134 bxe_udp_rss = 0; 14135 } 14136 14137 /* pull in user settings */ 14138 14139 sc->interrupt_mode = bxe_interrupt_mode; 14140 sc->max_rx_bufs = bxe_max_rx_bufs; 14141 sc->hc_rx_ticks = bxe_hc_rx_ticks; 14142 sc->hc_tx_ticks = bxe_hc_tx_ticks; 14143 sc->max_aggregation_size = bxe_max_aggregation_size; 14144 sc->mrrs = bxe_mrrs; 14145 sc->autogreeen = bxe_autogreeen; 14146 sc->udp_rss = bxe_udp_rss; 14147 14148 if (bxe_interrupt_mode == INTR_MODE_INTX) { 14149 sc->num_queues = 1; 14150 } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */ 14151 sc->num_queues = 14152 min((bxe_queue_count ? bxe_queue_count : mp_ncpus), 14153 MAX_RSS_CHAINS); 14154 if (sc->num_queues > mp_ncpus) { 14155 sc->num_queues = mp_ncpus; 14156 } 14157 } 14158 14159 BLOGD(sc, DBG_LOAD, 14160 "User Config: " 14161 "debug=0x%lx " 14162 "interrupt_mode=%d " 14163 "queue_count=%d " 14164 "hc_rx_ticks=%d " 14165 "hc_tx_ticks=%d " 14166 "rx_budget=%d " 14167 "max_aggregation_size=%d " 14168 "mrrs=%d " 14169 "autogreeen=%d " 14170 "udp_rss=%d\n", 14171 bxe_debug, 14172 sc->interrupt_mode, 14173 sc->num_queues, 14174 sc->hc_rx_ticks, 14175 sc->hc_tx_ticks, 14176 bxe_rx_budget, 14177 sc->max_aggregation_size, 14178 sc->mrrs, 14179 sc->autogreeen, 14180 sc->udp_rss); 14181 } 14182 14183 static void 14184 bxe_media_detect(struct bxe_softc *sc) 14185 { 14186 uint32_t phy_idx = bxe_get_cur_phy_idx(sc); 14187 switch (sc->link_params.phy[phy_idx].media_type) { 14188 case ELINK_ETH_PHY_SFPP_10G_FIBER: 14189 case ELINK_ETH_PHY_XFP_FIBER: 14190 BLOGI(sc, "Found 10Gb Fiber media.\n"); 14191 sc->media = IFM_10G_SR; 14192 break; 14193 case ELINK_ETH_PHY_SFP_1G_FIBER: 14194 BLOGI(sc, "Found 1Gb Fiber media.\n"); 14195 sc->media = IFM_1000_SX; 14196 break; 14197 case ELINK_ETH_PHY_KR: 14198 case ELINK_ETH_PHY_CX4: 14199 BLOGI(sc, "Found 10GBase-CX4 media.\n"); 14200 sc->media = IFM_10G_CX4; 14201 break; 14202 case ELINK_ETH_PHY_DA_TWINAX: 14203 BLOGI(sc, "Found 10Gb Twinax media.\n"); 14204 sc->media = IFM_10G_TWINAX; 14205 break; 14206 case ELINK_ETH_PHY_BASE_T: 14207 if (sc->link_params.speed_cap_mask[0] & 14208 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 14209 BLOGI(sc, "Found 10GBase-T media.\n"); 14210 sc->media = IFM_10G_T; 14211 } else { 14212 BLOGI(sc, "Found 1000Base-T media.\n"); 14213 sc->media = IFM_1000_T; 14214 } 14215 break; 14216 case ELINK_ETH_PHY_NOT_PRESENT: 14217 BLOGI(sc, "Media not present.\n"); 14218 sc->media = 0; 14219 break; 14220 case ELINK_ETH_PHY_UNSPECIFIED: 14221 default: 14222 BLOGI(sc, "Unknown media!\n"); 14223 sc->media = 0; 14224 break; 14225 } 14226 } 14227 14228 #define GET_FIELD(value, fname) \ 14229 (((value) & (fname##_MASK)) >> (fname##_SHIFT)) 14230 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 14231 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 14232 14233 static int 14234 bxe_get_igu_cam_info(struct bxe_softc *sc) 14235 { 14236 int pfid = SC_FUNC(sc); 14237 int igu_sb_id; 14238 uint32_t val; 14239 uint8_t fid, igu_sb_cnt = 0; 14240 14241 sc->igu_base_sb = 0xff; 14242 14243 if (CHIP_INT_MODE_IS_BC(sc)) { 14244 int vn = SC_VN(sc); 14245 igu_sb_cnt = sc->igu_sb_cnt; 14246 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) * 14247 FP_SB_MAX_E1x); 14248 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x + 14249 (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn)); 14250 return (0); 14251 } 14252 14253 /* IGU in normal mode - read CAM */ 14254 for (igu_sb_id = 0; 14255 igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 14256 igu_sb_id++) { 14257 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 14258 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) { 14259 continue; 14260 } 14261 fid = IGU_FID(val); 14262 if ((fid & IGU_FID_ENCODE_IS_PF)) { 14263 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) { 14264 continue; 14265 } 14266 if (IGU_VEC(val) == 0) { 14267 /* default status block */ 14268 sc->igu_dsb_id = igu_sb_id; 14269 } else { 14270 if (sc->igu_base_sb == 0xff) { 14271 sc->igu_base_sb = igu_sb_id; 14272 } 14273 igu_sb_cnt++; 14274 } 14275 } 14276 } 14277 14278 /* 14279 * Due to new PF resource allocation by MFW T7.4 and above, it's optional 14280 * that number of CAM entries will not be equal to the value advertised in 14281 * PCI. Driver should use the minimal value of both as the actual status 14282 * block count 14283 */ 14284 sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt); 14285 14286 if (igu_sb_cnt == 0) { 14287 BLOGE(sc, "CAM configuration error\n"); 14288 return (-1); 14289 } 14290 14291 return (0); 14292 } 14293 14294 /* 14295 * Gather various information from the device config space, the device itself, 14296 * shmem, and the user input. 14297 */ 14298 static int 14299 bxe_get_device_info(struct bxe_softc *sc) 14300 { 14301 uint32_t val; 14302 int rc; 14303 14304 /* Get the data for the device */ 14305 sc->devinfo.vendor_id = pci_get_vendor(sc->dev); 14306 sc->devinfo.device_id = pci_get_device(sc->dev); 14307 sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev); 14308 sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev); 14309 14310 /* get the chip revision (chip metal comes from pci config space) */ 14311 sc->devinfo.chip_id = 14312 sc->link_params.chip_id = 14313 (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) | 14314 ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) | 14315 (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) | 14316 ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0)); 14317 14318 /* force 57811 according to MISC register */ 14319 if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 14320 if (CHIP_IS_57810(sc)) { 14321 sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) | 14322 (sc->devinfo.chip_id & 0x0000ffff)); 14323 } else if (CHIP_IS_57810_MF(sc)) { 14324 sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) | 14325 (sc->devinfo.chip_id & 0x0000ffff)); 14326 } 14327 sc->devinfo.chip_id |= 0x1; 14328 } 14329 14330 BLOGD(sc, DBG_LOAD, 14331 "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n", 14332 sc->devinfo.chip_id, 14333 ((sc->devinfo.chip_id >> 16) & 0xffff), 14334 ((sc->devinfo.chip_id >> 12) & 0xf), 14335 ((sc->devinfo.chip_id >> 4) & 0xff), 14336 ((sc->devinfo.chip_id >> 0) & 0xf)); 14337 14338 val = (REG_RD(sc, 0x2874) & 0x55); 14339 if ((sc->devinfo.chip_id & 0x1) || 14340 (CHIP_IS_E1(sc) && val) || 14341 (CHIP_IS_E1H(sc) && (val == 0x55))) { 14342 sc->flags |= BXE_ONE_PORT_FLAG; 14343 BLOGD(sc, DBG_LOAD, "single port device\n"); 14344 } 14345 14346 /* set the doorbell size */ 14347 sc->doorbell_size = (1 << BXE_DB_SHIFT); 14348 14349 /* determine whether the device is in 2 port or 4 port mode */ 14350 sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/ 14351 if (CHIP_IS_E2E3(sc)) { 14352 /* 14353 * Read port4mode_en_ovwr[0]: 14354 * If 1, four port mode is in port4mode_en_ovwr[1]. 14355 * If 0, four port mode is in port4mode_en[0]. 14356 */ 14357 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR); 14358 if (val & 1) { 14359 val = ((val >> 1) & 1); 14360 } else { 14361 val = REG_RD(sc, MISC_REG_PORT4MODE_EN); 14362 } 14363 14364 sc->devinfo.chip_port_mode = 14365 (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE; 14366 14367 BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2"); 14368 } 14369 14370 /* get the function and path info for the device */ 14371 bxe_get_function_num(sc); 14372 14373 /* get the shared memory base address */ 14374 sc->devinfo.shmem_base = 14375 sc->link_params.shmem_base = 14376 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 14377 sc->devinfo.shmem2_base = 14378 REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 : 14379 MISC_REG_GENERIC_CR_0)); 14380 14381 BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n", 14382 sc->devinfo.shmem_base, sc->devinfo.shmem2_base); 14383 14384 if (!sc->devinfo.shmem_base) { 14385 /* this should ONLY prevent upcoming shmem reads */ 14386 BLOGI(sc, "MCP not active\n"); 14387 sc->flags |= BXE_NO_MCP_FLAG; 14388 return (0); 14389 } 14390 14391 /* make sure the shared memory contents are valid */ 14392 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 14393 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) != 14394 (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) { 14395 BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val); 14396 return (0); 14397 } 14398 BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val); 14399 14400 /* get the bootcode version */ 14401 sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev); 14402 snprintf(sc->devinfo.bc_ver_str, 14403 sizeof(sc->devinfo.bc_ver_str), 14404 "%d.%d.%d", 14405 ((sc->devinfo.bc_ver >> 24) & 0xff), 14406 ((sc->devinfo.bc_ver >> 16) & 0xff), 14407 ((sc->devinfo.bc_ver >> 8) & 0xff)); 14408 BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str); 14409 14410 /* get the bootcode shmem address */ 14411 sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc); 14412 BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base); 14413 14414 /* clean indirect addresses as they're not used */ 14415 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 14416 if (IS_PF(sc)) { 14417 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0); 14418 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0); 14419 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0); 14420 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0); 14421 if (CHIP_IS_E1x(sc)) { 14422 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0); 14423 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0); 14424 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0); 14425 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0); 14426 } 14427 14428 /* 14429 * Enable internal target-read (in case we are probed after PF 14430 * FLR). Must be done prior to any BAR read access. Only for 14431 * 57712 and up 14432 */ 14433 if (!CHIP_IS_E1x(sc)) { 14434 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 14435 } 14436 } 14437 14438 /* get the nvram size */ 14439 val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4); 14440 sc->devinfo.flash_size = 14441 (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE)); 14442 BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size); 14443 14444 /* get PCI capabilites */ 14445 bxe_probe_pci_caps(sc); 14446 14447 bxe_set_power_state(sc, PCI_PM_D0); 14448 14449 /* get various configuration parameters from shmem */ 14450 bxe_get_shmem_info(sc); 14451 14452 if (sc->devinfo.pcie_msix_cap_reg != 0) { 14453 val = pci_read_config(sc->dev, 14454 (sc->devinfo.pcie_msix_cap_reg + 14455 PCIR_MSIX_CTRL), 14456 2); 14457 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE); 14458 } else { 14459 sc->igu_sb_cnt = 1; 14460 } 14461 14462 sc->igu_base_addr = BAR_IGU_INTMEM; 14463 14464 /* initialize IGU parameters */ 14465 if (CHIP_IS_E1x(sc)) { 14466 sc->devinfo.int_block = INT_BLOCK_HC; 14467 sc->igu_dsb_id = DEF_SB_IGU_ID; 14468 sc->igu_base_sb = 0; 14469 } else { 14470 sc->devinfo.int_block = INT_BLOCK_IGU; 14471 14472 /* do not allow device reset during IGU info preocessing */ 14473 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14474 14475 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 14476 14477 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 14478 int tout = 5000; 14479 14480 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n"); 14481 14482 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 14483 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val); 14484 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f); 14485 14486 while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 14487 tout--; 14488 DELAY(1000); 14489 } 14490 14491 if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 14492 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n"); 14493 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14494 return (-1); 14495 } 14496 } 14497 14498 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 14499 BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n"); 14500 sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP; 14501 } else { 14502 BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n"); 14503 } 14504 14505 rc = bxe_get_igu_cam_info(sc); 14506 14507 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14508 14509 if (rc) { 14510 return (rc); 14511 } 14512 } 14513 14514 /* 14515 * Get base FW non-default (fast path) status block ID. This value is 14516 * used to initialize the fw_sb_id saved on the fp/queue structure to 14517 * determine the id used by the FW. 14518 */ 14519 if (CHIP_IS_E1x(sc)) { 14520 sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc)); 14521 } else { 14522 /* 14523 * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of 14524 * the same queue are indicated on the same IGU SB). So we prefer 14525 * FW and IGU SBs to be the same value. 14526 */ 14527 sc->base_fw_ndsb = sc->igu_base_sb; 14528 } 14529 14530 BLOGD(sc, DBG_LOAD, 14531 "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n", 14532 sc->igu_dsb_id, sc->igu_base_sb, 14533 sc->igu_sb_cnt, sc->base_fw_ndsb); 14534 14535 elink_phy_probe(&sc->link_params); 14536 14537 return (0); 14538 } 14539 14540 static void 14541 bxe_link_settings_supported(struct bxe_softc *sc, 14542 uint32_t switch_cfg) 14543 { 14544 uint32_t cfg_size = 0; 14545 uint32_t idx; 14546 uint8_t port = SC_PORT(sc); 14547 14548 /* aggregation of supported attributes of all external phys */ 14549 sc->port.supported[0] = 0; 14550 sc->port.supported[1] = 0; 14551 14552 switch (sc->link_params.num_phys) { 14553 case 1: 14554 sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported; 14555 cfg_size = 1; 14556 break; 14557 case 2: 14558 sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported; 14559 cfg_size = 1; 14560 break; 14561 case 3: 14562 if (sc->link_params.multi_phy_config & 14563 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 14564 sc->port.supported[1] = 14565 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14566 sc->port.supported[0] = 14567 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14568 } else { 14569 sc->port.supported[0] = 14570 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14571 sc->port.supported[1] = 14572 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14573 } 14574 cfg_size = 2; 14575 break; 14576 } 14577 14578 if (!(sc->port.supported[0] || sc->port.supported[1])) { 14579 BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n", 14580 SHMEM_RD(sc, 14581 dev_info.port_hw_config[port].external_phy_config), 14582 SHMEM_RD(sc, 14583 dev_info.port_hw_config[port].external_phy_config2)); 14584 return; 14585 } 14586 14587 if (CHIP_IS_E3(sc)) 14588 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR); 14589 else { 14590 switch (switch_cfg) { 14591 case ELINK_SWITCH_CFG_1G: 14592 sc->port.phy_addr = 14593 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 14594 break; 14595 case ELINK_SWITCH_CFG_10G: 14596 sc->port.phy_addr = 14597 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 14598 break; 14599 default: 14600 BLOGE(sc, "Invalid switch config in link_config=0x%08x\n", 14601 sc->port.link_config[0]); 14602 return; 14603 } 14604 } 14605 14606 BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr); 14607 14608 /* mask what we support according to speed_cap_mask per configuration */ 14609 for (idx = 0; idx < cfg_size; idx++) { 14610 if (!(sc->link_params.speed_cap_mask[idx] & 14611 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) { 14612 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half; 14613 } 14614 14615 if (!(sc->link_params.speed_cap_mask[idx] & 14616 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) { 14617 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full; 14618 } 14619 14620 if (!(sc->link_params.speed_cap_mask[idx] & 14621 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) { 14622 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half; 14623 } 14624 14625 if (!(sc->link_params.speed_cap_mask[idx] & 14626 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) { 14627 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full; 14628 } 14629 14630 if (!(sc->link_params.speed_cap_mask[idx] & 14631 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) { 14632 sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full; 14633 } 14634 14635 if (!(sc->link_params.speed_cap_mask[idx] & 14636 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) { 14637 sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full; 14638 } 14639 14640 if (!(sc->link_params.speed_cap_mask[idx] & 14641 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) { 14642 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full; 14643 } 14644 14645 if (!(sc->link_params.speed_cap_mask[idx] & 14646 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) { 14647 sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full; 14648 } 14649 } 14650 14651 BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n", 14652 sc->port.supported[0], sc->port.supported[1]); 14653 } 14654 14655 static void 14656 bxe_link_settings_requested(struct bxe_softc *sc) 14657 { 14658 uint32_t link_config; 14659 uint32_t idx; 14660 uint32_t cfg_size = 0; 14661 14662 sc->port.advertising[0] = 0; 14663 sc->port.advertising[1] = 0; 14664 14665 switch (sc->link_params.num_phys) { 14666 case 1: 14667 case 2: 14668 cfg_size = 1; 14669 break; 14670 case 3: 14671 cfg_size = 2; 14672 break; 14673 } 14674 14675 for (idx = 0; idx < cfg_size; idx++) { 14676 sc->link_params.req_duplex[idx] = DUPLEX_FULL; 14677 link_config = sc->port.link_config[idx]; 14678 14679 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 14680 case PORT_FEATURE_LINK_SPEED_AUTO: 14681 if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) { 14682 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14683 sc->port.advertising[idx] |= sc->port.supported[idx]; 14684 if (sc->link_params.phy[ELINK_EXT_PHY1].type == 14685 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 14686 sc->port.advertising[idx] |= 14687 (ELINK_SUPPORTED_100baseT_Half | 14688 ELINK_SUPPORTED_100baseT_Full); 14689 } else { 14690 /* force 10G, no AN */ 14691 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14692 sc->port.advertising[idx] |= 14693 (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); 14694 continue; 14695 } 14696 break; 14697 14698 case PORT_FEATURE_LINK_SPEED_10M_FULL: 14699 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) { 14700 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14701 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full | 14702 ADVERTISED_TP); 14703 } else { 14704 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14705 "speed_cap_mask=0x%08x\n", 14706 link_config, sc->link_params.speed_cap_mask[idx]); 14707 return; 14708 } 14709 break; 14710 14711 case PORT_FEATURE_LINK_SPEED_10M_HALF: 14712 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) { 14713 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14714 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14715 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half | 14716 ADVERTISED_TP); 14717 } else { 14718 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14719 "speed_cap_mask=0x%08x\n", 14720 link_config, sc->link_params.speed_cap_mask[idx]); 14721 return; 14722 } 14723 break; 14724 14725 case PORT_FEATURE_LINK_SPEED_100M_FULL: 14726 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) { 14727 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14728 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full | 14729 ADVERTISED_TP); 14730 } else { 14731 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14732 "speed_cap_mask=0x%08x\n", 14733 link_config, sc->link_params.speed_cap_mask[idx]); 14734 return; 14735 } 14736 break; 14737 14738 case PORT_FEATURE_LINK_SPEED_100M_HALF: 14739 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) { 14740 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14741 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14742 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half | 14743 ADVERTISED_TP); 14744 } else { 14745 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14746 "speed_cap_mask=0x%08x\n", 14747 link_config, sc->link_params.speed_cap_mask[idx]); 14748 return; 14749 } 14750 break; 14751 14752 case PORT_FEATURE_LINK_SPEED_1G: 14753 if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) { 14754 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000; 14755 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full | 14756 ADVERTISED_TP); 14757 } else { 14758 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14759 "speed_cap_mask=0x%08x\n", 14760 link_config, sc->link_params.speed_cap_mask[idx]); 14761 return; 14762 } 14763 break; 14764 14765 case PORT_FEATURE_LINK_SPEED_2_5G: 14766 if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) { 14767 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500; 14768 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full | 14769 ADVERTISED_TP); 14770 } else { 14771 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14772 "speed_cap_mask=0x%08x\n", 14773 link_config, sc->link_params.speed_cap_mask[idx]); 14774 return; 14775 } 14776 break; 14777 14778 case PORT_FEATURE_LINK_SPEED_10G_CX4: 14779 if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) { 14780 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14781 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full | 14782 ADVERTISED_FIBRE); 14783 } else { 14784 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14785 "speed_cap_mask=0x%08x\n", 14786 link_config, sc->link_params.speed_cap_mask[idx]); 14787 return; 14788 } 14789 break; 14790 14791 case PORT_FEATURE_LINK_SPEED_20G: 14792 sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000; 14793 break; 14794 14795 default: 14796 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14797 "speed_cap_mask=0x%08x\n", 14798 link_config, sc->link_params.speed_cap_mask[idx]); 14799 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14800 sc->port.advertising[idx] = sc->port.supported[idx]; 14801 break; 14802 } 14803 14804 sc->link_params.req_flow_ctrl[idx] = 14805 (link_config & PORT_FEATURE_FLOW_CONTROL_MASK); 14806 14807 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) { 14808 if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) { 14809 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE; 14810 } else { 14811 bxe_set_requested_fc(sc); 14812 } 14813 } 14814 14815 BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d " 14816 "req_flow_ctrl=0x%x advertising=0x%x\n", 14817 sc->link_params.req_line_speed[idx], 14818 sc->link_params.req_duplex[idx], 14819 sc->link_params.req_flow_ctrl[idx], 14820 sc->port.advertising[idx]); 14821 } 14822 } 14823 14824 static void 14825 bxe_get_phy_info(struct bxe_softc *sc) 14826 { 14827 uint8_t port = SC_PORT(sc); 14828 uint32_t config = sc->port.config; 14829 uint32_t eee_mode; 14830 14831 /* shmem data already read in bxe_get_shmem_info() */ 14832 14833 BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x " 14834 "link_config0=0x%08x\n", 14835 sc->link_params.lane_config, 14836 sc->link_params.speed_cap_mask[0], 14837 sc->port.link_config[0]); 14838 14839 bxe_link_settings_supported(sc, sc->link_params.switch_cfg); 14840 bxe_link_settings_requested(sc); 14841 14842 if (sc->autogreeen == AUTO_GREEN_FORCE_ON) { 14843 sc->link_params.feature_config_flags |= 14844 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14845 } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) { 14846 sc->link_params.feature_config_flags &= 14847 ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14848 } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) { 14849 sc->link_params.feature_config_flags |= 14850 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14851 } 14852 14853 /* configure link feature according to nvram value */ 14854 eee_mode = 14855 (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) & 14856 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 14857 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 14858 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 14859 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI | 14860 ELINK_EEE_MODE_ENABLE_LPI | 14861 ELINK_EEE_MODE_OUTPUT_TIME); 14862 } else { 14863 sc->link_params.eee_mode = 0; 14864 } 14865 14866 /* get the media type */ 14867 bxe_media_detect(sc); 14868 } 14869 14870 static void 14871 bxe_get_params(struct bxe_softc *sc) 14872 { 14873 /* get user tunable params */ 14874 bxe_get_tunable_params(sc); 14875 14876 /* select the RX and TX ring sizes */ 14877 sc->tx_ring_size = TX_BD_USABLE; 14878 sc->rx_ring_size = RX_BD_USABLE; 14879 14880 /* XXX disable WoL */ 14881 sc->wol = 0; 14882 } 14883 14884 static void 14885 bxe_set_modes_bitmap(struct bxe_softc *sc) 14886 { 14887 uint32_t flags = 0; 14888 14889 if (CHIP_REV_IS_FPGA(sc)) { 14890 SET_FLAGS(flags, MODE_FPGA); 14891 } else if (CHIP_REV_IS_EMUL(sc)) { 14892 SET_FLAGS(flags, MODE_EMUL); 14893 } else { 14894 SET_FLAGS(flags, MODE_ASIC); 14895 } 14896 14897 if (CHIP_IS_MODE_4_PORT(sc)) { 14898 SET_FLAGS(flags, MODE_PORT4); 14899 } else { 14900 SET_FLAGS(flags, MODE_PORT2); 14901 } 14902 14903 if (CHIP_IS_E2(sc)) { 14904 SET_FLAGS(flags, MODE_E2); 14905 } else if (CHIP_IS_E3(sc)) { 14906 SET_FLAGS(flags, MODE_E3); 14907 if (CHIP_REV(sc) == CHIP_REV_Ax) { 14908 SET_FLAGS(flags, MODE_E3_A0); 14909 } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ { 14910 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 14911 } 14912 } 14913 14914 if (IS_MF(sc)) { 14915 SET_FLAGS(flags, MODE_MF); 14916 switch (sc->devinfo.mf_info.mf_mode) { 14917 case MULTI_FUNCTION_SD: 14918 SET_FLAGS(flags, MODE_MF_SD); 14919 break; 14920 case MULTI_FUNCTION_SI: 14921 SET_FLAGS(flags, MODE_MF_SI); 14922 break; 14923 case MULTI_FUNCTION_AFEX: 14924 SET_FLAGS(flags, MODE_MF_AFEX); 14925 break; 14926 } 14927 } else { 14928 SET_FLAGS(flags, MODE_SF); 14929 } 14930 14931 #if defined(__LITTLE_ENDIAN) 14932 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 14933 #else /* __BIG_ENDIAN */ 14934 SET_FLAGS(flags, MODE_BIG_ENDIAN); 14935 #endif 14936 14937 INIT_MODE_FLAGS(sc) = flags; 14938 } 14939 14940 static int 14941 bxe_alloc_hsi_mem(struct bxe_softc *sc) 14942 { 14943 struct bxe_fastpath *fp; 14944 bus_addr_t busaddr; 14945 int max_agg_queues; 14946 int max_segments; 14947 bus_size_t max_size; 14948 bus_size_t max_seg_size; 14949 char buf[32]; 14950 int rc; 14951 int i, j; 14952 14953 /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */ 14954 14955 /* allocate the parent bus DMA tag */ 14956 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */ 14957 1, /* alignment */ 14958 0, /* boundary limit */ 14959 BUS_SPACE_MAXADDR, /* restricted low */ 14960 BUS_SPACE_MAXADDR, /* restricted hi */ 14961 NULL, /* addr filter() */ 14962 NULL, /* addr filter() arg */ 14963 BUS_SPACE_MAXSIZE_32BIT, /* max map size */ 14964 BUS_SPACE_UNRESTRICTED, /* num discontinuous */ 14965 BUS_SPACE_MAXSIZE_32BIT, /* max seg size */ 14966 0, /* flags */ 14967 NULL, /* lock() */ 14968 NULL, /* lock() arg */ 14969 &sc->parent_dma_tag); /* returned dma tag */ 14970 if (rc != 0) { 14971 BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc); 14972 return (1); 14973 } 14974 14975 /************************/ 14976 /* DEFAULT STATUS BLOCK */ 14977 /************************/ 14978 14979 if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block), 14980 &sc->def_sb_dma, "default status block") != 0) { 14981 /* XXX */ 14982 bus_dma_tag_destroy(sc->parent_dma_tag); 14983 return (1); 14984 } 14985 14986 sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr; 14987 14988 /***************/ 14989 /* EVENT QUEUE */ 14990 /***************/ 14991 14992 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14993 &sc->eq_dma, "event queue") != 0) { 14994 /* XXX */ 14995 bxe_dma_free(sc, &sc->def_sb_dma); 14996 sc->def_sb = NULL; 14997 bus_dma_tag_destroy(sc->parent_dma_tag); 14998 return (1); 14999 } 15000 15001 sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr; 15002 15003 /*************/ 15004 /* SLOW PATH */ 15005 /*************/ 15006 15007 if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath), 15008 &sc->sp_dma, "slow path") != 0) { 15009 /* XXX */ 15010 bxe_dma_free(sc, &sc->eq_dma); 15011 sc->eq = NULL; 15012 bxe_dma_free(sc, &sc->def_sb_dma); 15013 sc->def_sb = NULL; 15014 bus_dma_tag_destroy(sc->parent_dma_tag); 15015 return (1); 15016 } 15017 15018 sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr; 15019 15020 /*******************/ 15021 /* SLOW PATH QUEUE */ 15022 /*******************/ 15023 15024 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 15025 &sc->spq_dma, "slow path queue") != 0) { 15026 /* XXX */ 15027 bxe_dma_free(sc, &sc->sp_dma); 15028 sc->sp = NULL; 15029 bxe_dma_free(sc, &sc->eq_dma); 15030 sc->eq = NULL; 15031 bxe_dma_free(sc, &sc->def_sb_dma); 15032 sc->def_sb = NULL; 15033 bus_dma_tag_destroy(sc->parent_dma_tag); 15034 return (1); 15035 } 15036 15037 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr; 15038 15039 /***************************/ 15040 /* FW DECOMPRESSION BUFFER */ 15041 /***************************/ 15042 15043 if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma, 15044 "fw decompression buffer") != 0) { 15045 /* XXX */ 15046 bxe_dma_free(sc, &sc->spq_dma); 15047 sc->spq = NULL; 15048 bxe_dma_free(sc, &sc->sp_dma); 15049 sc->sp = NULL; 15050 bxe_dma_free(sc, &sc->eq_dma); 15051 sc->eq = NULL; 15052 bxe_dma_free(sc, &sc->def_sb_dma); 15053 sc->def_sb = NULL; 15054 bus_dma_tag_destroy(sc->parent_dma_tag); 15055 return (1); 15056 } 15057 15058 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr; 15059 15060 if ((sc->gz_strm = 15061 malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) { 15062 /* XXX */ 15063 bxe_dma_free(sc, &sc->gz_buf_dma); 15064 sc->gz_buf = NULL; 15065 bxe_dma_free(sc, &sc->spq_dma); 15066 sc->spq = NULL; 15067 bxe_dma_free(sc, &sc->sp_dma); 15068 sc->sp = NULL; 15069 bxe_dma_free(sc, &sc->eq_dma); 15070 sc->eq = NULL; 15071 bxe_dma_free(sc, &sc->def_sb_dma); 15072 sc->def_sb = NULL; 15073 bus_dma_tag_destroy(sc->parent_dma_tag); 15074 return (1); 15075 } 15076 15077 /*************/ 15078 /* FASTPATHS */ 15079 /*************/ 15080 15081 /* allocate DMA memory for each fastpath structure */ 15082 for (i = 0; i < sc->num_queues; i++) { 15083 fp = &sc->fp[i]; 15084 fp->sc = sc; 15085 fp->index = i; 15086 15087 /*******************/ 15088 /* FP STATUS BLOCK */ 15089 /*******************/ 15090 15091 snprintf(buf, sizeof(buf), "fp %d status block", i); 15092 if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block), 15093 &fp->sb_dma, buf) != 0) { 15094 /* XXX unwind and free previous fastpath allocations */ 15095 BLOGE(sc, "Failed to alloc %s\n", buf); 15096 return (1); 15097 } else { 15098 if (CHIP_IS_E2E3(sc)) { 15099 fp->status_block.e2_sb = 15100 (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr; 15101 } else { 15102 fp->status_block.e1x_sb = 15103 (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr; 15104 } 15105 } 15106 15107 /******************/ 15108 /* FP TX BD CHAIN */ 15109 /******************/ 15110 15111 snprintf(buf, sizeof(buf), "fp %d tx bd chain", i); 15112 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES), 15113 &fp->tx_dma, buf) != 0) { 15114 /* XXX unwind and free previous fastpath allocations */ 15115 BLOGE(sc, "Failed to alloc %s\n", buf); 15116 return (1); 15117 } else { 15118 fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr; 15119 } 15120 15121 /* link together the tx bd chain pages */ 15122 for (j = 1; j <= TX_BD_NUM_PAGES; j++) { 15123 /* index into the tx bd chain array to last entry per page */ 15124 struct eth_tx_next_bd *tx_next_bd = 15125 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd; 15126 /* point to the next page and wrap from last page */ 15127 busaddr = (fp->tx_dma.paddr + 15128 (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES))); 15129 tx_next_bd->addr_hi = htole32(U64_HI(busaddr)); 15130 tx_next_bd->addr_lo = htole32(U64_LO(busaddr)); 15131 } 15132 15133 /******************/ 15134 /* FP RX BD CHAIN */ 15135 /******************/ 15136 15137 snprintf(buf, sizeof(buf), "fp %d rx bd chain", i); 15138 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES), 15139 &fp->rx_dma, buf) != 0) { 15140 /* XXX unwind and free previous fastpath allocations */ 15141 BLOGE(sc, "Failed to alloc %s\n", buf); 15142 return (1); 15143 } else { 15144 fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr; 15145 } 15146 15147 /* link together the rx bd chain pages */ 15148 for (j = 1; j <= RX_BD_NUM_PAGES; j++) { 15149 /* index into the rx bd chain array to last entry per page */ 15150 struct eth_rx_bd *rx_bd = 15151 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2]; 15152 /* point to the next page and wrap from last page */ 15153 busaddr = (fp->rx_dma.paddr + 15154 (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES))); 15155 rx_bd->addr_hi = htole32(U64_HI(busaddr)); 15156 rx_bd->addr_lo = htole32(U64_LO(busaddr)); 15157 } 15158 15159 /*******************/ 15160 /* FP RX RCQ CHAIN */ 15161 /*******************/ 15162 15163 snprintf(buf, sizeof(buf), "fp %d rcq chain", i); 15164 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES), 15165 &fp->rcq_dma, buf) != 0) { 15166 /* XXX unwind and free previous fastpath allocations */ 15167 BLOGE(sc, "Failed to alloc %s\n", buf); 15168 return (1); 15169 } else { 15170 fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr; 15171 } 15172 15173 /* link together the rcq chain pages */ 15174 for (j = 1; j <= RCQ_NUM_PAGES; j++) { 15175 /* index into the rcq chain array to last entry per page */ 15176 struct eth_rx_cqe_next_page *rx_cqe_next = 15177 (struct eth_rx_cqe_next_page *) 15178 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1]; 15179 /* point to the next page and wrap from last page */ 15180 busaddr = (fp->rcq_dma.paddr + 15181 (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES))); 15182 rx_cqe_next->addr_hi = htole32(U64_HI(busaddr)); 15183 rx_cqe_next->addr_lo = htole32(U64_LO(busaddr)); 15184 } 15185 15186 /*******************/ 15187 /* FP RX SGE CHAIN */ 15188 /*******************/ 15189 15190 snprintf(buf, sizeof(buf), "fp %d sge chain", i); 15191 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES), 15192 &fp->rx_sge_dma, buf) != 0) { 15193 /* XXX unwind and free previous fastpath allocations */ 15194 BLOGE(sc, "Failed to alloc %s\n", buf); 15195 return (1); 15196 } else { 15197 fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr; 15198 } 15199 15200 /* link together the sge chain pages */ 15201 for (j = 1; j <= RX_SGE_NUM_PAGES; j++) { 15202 /* index into the rcq chain array to last entry per page */ 15203 struct eth_rx_sge *rx_sge = 15204 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2]; 15205 /* point to the next page and wrap from last page */ 15206 busaddr = (fp->rx_sge_dma.paddr + 15207 (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES))); 15208 rx_sge->addr_hi = htole32(U64_HI(busaddr)); 15209 rx_sge->addr_lo = htole32(U64_LO(busaddr)); 15210 } 15211 15212 /***********************/ 15213 /* FP TX MBUF DMA MAPS */ 15214 /***********************/ 15215 15216 /* set required sizes before mapping to conserve resources */ 15217 if (sc->ifnet->if_capenable & (IFCAP_TSO4 | IFCAP_TSO6)) { 15218 max_size = BXE_TSO_MAX_SIZE; 15219 max_segments = BXE_TSO_MAX_SEGMENTS; 15220 max_seg_size = BXE_TSO_MAX_SEG_SIZE; 15221 } else { 15222 max_size = (MCLBYTES * BXE_MAX_SEGMENTS); 15223 max_segments = BXE_MAX_SEGMENTS; 15224 max_seg_size = MCLBYTES; 15225 } 15226 15227 /* create a dma tag for the tx mbufs */ 15228 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 15229 1, /* alignment */ 15230 0, /* boundary limit */ 15231 BUS_SPACE_MAXADDR, /* restricted low */ 15232 BUS_SPACE_MAXADDR, /* restricted hi */ 15233 NULL, /* addr filter() */ 15234 NULL, /* addr filter() arg */ 15235 max_size, /* max map size */ 15236 max_segments, /* num discontinuous */ 15237 max_seg_size, /* max seg size */ 15238 0, /* flags */ 15239 NULL, /* lock() */ 15240 NULL, /* lock() arg */ 15241 &fp->tx_mbuf_tag); /* returned dma tag */ 15242 if (rc != 0) { 15243 /* XXX unwind and free previous fastpath allocations */ 15244 BLOGE(sc, "Failed to create dma tag for " 15245 "'fp %d tx mbufs' (%d)\n", 15246 i, rc); 15247 return (1); 15248 } 15249 15250 /* create dma maps for each of the tx mbuf clusters */ 15251 for (j = 0; j < TX_BD_TOTAL; j++) { 15252 if (bus_dmamap_create(fp->tx_mbuf_tag, 15253 BUS_DMA_NOWAIT, 15254 &fp->tx_mbuf_chain[j].m_map)) { 15255 /* XXX unwind and free previous fastpath allocations */ 15256 BLOGE(sc, "Failed to create dma map for " 15257 "'fp %d tx mbuf %d' (%d)\n", 15258 i, j, rc); 15259 return (1); 15260 } 15261 } 15262 15263 /***********************/ 15264 /* FP RX MBUF DMA MAPS */ 15265 /***********************/ 15266 15267 /* create a dma tag for the rx mbufs */ 15268 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 15269 1, /* alignment */ 15270 0, /* boundary limit */ 15271 BUS_SPACE_MAXADDR, /* restricted low */ 15272 BUS_SPACE_MAXADDR, /* restricted hi */ 15273 NULL, /* addr filter() */ 15274 NULL, /* addr filter() arg */ 15275 MJUM9BYTES, /* max map size */ 15276 1, /* num discontinuous */ 15277 MJUM9BYTES, /* max seg size */ 15278 0, /* flags */ 15279 NULL, /* lock() */ 15280 NULL, /* lock() arg */ 15281 &fp->rx_mbuf_tag); /* returned dma tag */ 15282 if (rc != 0) { 15283 /* XXX unwind and free previous fastpath allocations */ 15284 BLOGE(sc, "Failed to create dma tag for " 15285 "'fp %d rx mbufs' (%d)\n", 15286 i, rc); 15287 return (1); 15288 } 15289 15290 /* create dma maps for each of the rx mbuf clusters */ 15291 for (j = 0; j < RX_BD_TOTAL; j++) { 15292 if (bus_dmamap_create(fp->rx_mbuf_tag, 15293 BUS_DMA_NOWAIT, 15294 &fp->rx_mbuf_chain[j].m_map)) { 15295 /* XXX unwind and free previous fastpath allocations */ 15296 BLOGE(sc, "Failed to create dma map for " 15297 "'fp %d rx mbuf %d' (%d)\n", 15298 i, j, rc); 15299 return (1); 15300 } 15301 } 15302 15303 /* create dma map for the spare rx mbuf cluster */ 15304 if (bus_dmamap_create(fp->rx_mbuf_tag, 15305 BUS_DMA_NOWAIT, 15306 &fp->rx_mbuf_spare_map)) { 15307 /* XXX unwind and free previous fastpath allocations */ 15308 BLOGE(sc, "Failed to create dma map for " 15309 "'fp %d spare rx mbuf' (%d)\n", 15310 i, rc); 15311 return (1); 15312 } 15313 15314 /***************************/ 15315 /* FP RX SGE MBUF DMA MAPS */ 15316 /***************************/ 15317 15318 /* create a dma tag for the rx sge mbufs */ 15319 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 15320 1, /* alignment */ 15321 0, /* boundary limit */ 15322 BUS_SPACE_MAXADDR, /* restricted low */ 15323 BUS_SPACE_MAXADDR, /* restricted hi */ 15324 NULL, /* addr filter() */ 15325 NULL, /* addr filter() arg */ 15326 BCM_PAGE_SIZE, /* max map size */ 15327 1, /* num discontinuous */ 15328 BCM_PAGE_SIZE, /* max seg size */ 15329 0, /* flags */ 15330 NULL, /* lock() */ 15331 NULL, /* lock() arg */ 15332 &fp->rx_sge_mbuf_tag); /* returned dma tag */ 15333 if (rc != 0) { 15334 /* XXX unwind and free previous fastpath allocations */ 15335 BLOGE(sc, "Failed to create dma tag for " 15336 "'fp %d rx sge mbufs' (%d)\n", 15337 i, rc); 15338 return (1); 15339 } 15340 15341 /* create dma maps for the rx sge mbuf clusters */ 15342 for (j = 0; j < RX_SGE_TOTAL; j++) { 15343 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 15344 BUS_DMA_NOWAIT, 15345 &fp->rx_sge_mbuf_chain[j].m_map)) { 15346 /* XXX unwind and free previous fastpath allocations */ 15347 BLOGE(sc, "Failed to create dma map for " 15348 "'fp %d rx sge mbuf %d' (%d)\n", 15349 i, j, rc); 15350 return (1); 15351 } 15352 } 15353 15354 /* create dma map for the spare rx sge mbuf cluster */ 15355 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 15356 BUS_DMA_NOWAIT, 15357 &fp->rx_sge_mbuf_spare_map)) { 15358 /* XXX unwind and free previous fastpath allocations */ 15359 BLOGE(sc, "Failed to create dma map for " 15360 "'fp %d spare rx sge mbuf' (%d)\n", 15361 i, rc); 15362 return (1); 15363 } 15364 15365 /***************************/ 15366 /* FP RX TPA MBUF DMA MAPS */ 15367 /***************************/ 15368 15369 /* create dma maps for the rx tpa mbuf clusters */ 15370 max_agg_queues = MAX_AGG_QS(sc); 15371 15372 for (j = 0; j < max_agg_queues; j++) { 15373 if (bus_dmamap_create(fp->rx_mbuf_tag, 15374 BUS_DMA_NOWAIT, 15375 &fp->rx_tpa_info[j].bd.m_map)) { 15376 /* XXX unwind and free previous fastpath allocations */ 15377 BLOGE(sc, "Failed to create dma map for " 15378 "'fp %d rx tpa mbuf %d' (%d)\n", 15379 i, j, rc); 15380 return (1); 15381 } 15382 } 15383 15384 /* create dma map for the spare rx tpa mbuf cluster */ 15385 if (bus_dmamap_create(fp->rx_mbuf_tag, 15386 BUS_DMA_NOWAIT, 15387 &fp->rx_tpa_info_mbuf_spare_map)) { 15388 /* XXX unwind and free previous fastpath allocations */ 15389 BLOGE(sc, "Failed to create dma map for " 15390 "'fp %d spare rx tpa mbuf' (%d)\n", 15391 i, rc); 15392 return (1); 15393 } 15394 15395 bxe_init_sge_ring_bit_mask(fp); 15396 } 15397 15398 return (0); 15399 } 15400 15401 static void 15402 bxe_free_hsi_mem(struct bxe_softc *sc) 15403 { 15404 struct bxe_fastpath *fp; 15405 int max_agg_queues; 15406 int i, j; 15407 15408 if (sc->parent_dma_tag == NULL) { 15409 return; /* assume nothing was allocated */ 15410 } 15411 15412 for (i = 0; i < sc->num_queues; i++) { 15413 fp = &sc->fp[i]; 15414 15415 /*******************/ 15416 /* FP STATUS BLOCK */ 15417 /*******************/ 15418 15419 bxe_dma_free(sc, &fp->sb_dma); 15420 memset(&fp->status_block, 0, sizeof(fp->status_block)); 15421 15422 /******************/ 15423 /* FP TX BD CHAIN */ 15424 /******************/ 15425 15426 bxe_dma_free(sc, &fp->tx_dma); 15427 fp->tx_chain = NULL; 15428 15429 /******************/ 15430 /* FP RX BD CHAIN */ 15431 /******************/ 15432 15433 bxe_dma_free(sc, &fp->rx_dma); 15434 fp->rx_chain = NULL; 15435 15436 /*******************/ 15437 /* FP RX RCQ CHAIN */ 15438 /*******************/ 15439 15440 bxe_dma_free(sc, &fp->rcq_dma); 15441 fp->rcq_chain = NULL; 15442 15443 /*******************/ 15444 /* FP RX SGE CHAIN */ 15445 /*******************/ 15446 15447 bxe_dma_free(sc, &fp->rx_sge_dma); 15448 fp->rx_sge_chain = NULL; 15449 15450 /***********************/ 15451 /* FP TX MBUF DMA MAPS */ 15452 /***********************/ 15453 15454 if (fp->tx_mbuf_tag != NULL) { 15455 for (j = 0; j < TX_BD_TOTAL; j++) { 15456 if (fp->tx_mbuf_chain[j].m_map != NULL) { 15457 bus_dmamap_unload(fp->tx_mbuf_tag, 15458 fp->tx_mbuf_chain[j].m_map); 15459 bus_dmamap_destroy(fp->tx_mbuf_tag, 15460 fp->tx_mbuf_chain[j].m_map); 15461 } 15462 } 15463 15464 bus_dma_tag_destroy(fp->tx_mbuf_tag); 15465 fp->tx_mbuf_tag = NULL; 15466 } 15467 15468 /***********************/ 15469 /* FP RX MBUF DMA MAPS */ 15470 /***********************/ 15471 15472 if (fp->rx_mbuf_tag != NULL) { 15473 for (j = 0; j < RX_BD_TOTAL; j++) { 15474 if (fp->rx_mbuf_chain[j].m_map != NULL) { 15475 bus_dmamap_unload(fp->rx_mbuf_tag, 15476 fp->rx_mbuf_chain[j].m_map); 15477 bus_dmamap_destroy(fp->rx_mbuf_tag, 15478 fp->rx_mbuf_chain[j].m_map); 15479 } 15480 } 15481 15482 if (fp->rx_mbuf_spare_map != NULL) { 15483 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 15484 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 15485 } 15486 15487 /***************************/ 15488 /* FP RX TPA MBUF DMA MAPS */ 15489 /***************************/ 15490 15491 max_agg_queues = MAX_AGG_QS(sc); 15492 15493 for (j = 0; j < max_agg_queues; j++) { 15494 if (fp->rx_tpa_info[j].bd.m_map != NULL) { 15495 bus_dmamap_unload(fp->rx_mbuf_tag, 15496 fp->rx_tpa_info[j].bd.m_map); 15497 bus_dmamap_destroy(fp->rx_mbuf_tag, 15498 fp->rx_tpa_info[j].bd.m_map); 15499 } 15500 } 15501 15502 if (fp->rx_tpa_info_mbuf_spare_map != NULL) { 15503 bus_dmamap_unload(fp->rx_mbuf_tag, 15504 fp->rx_tpa_info_mbuf_spare_map); 15505 bus_dmamap_destroy(fp->rx_mbuf_tag, 15506 fp->rx_tpa_info_mbuf_spare_map); 15507 } 15508 15509 bus_dma_tag_destroy(fp->rx_mbuf_tag); 15510 fp->rx_mbuf_tag = NULL; 15511 } 15512 15513 /***************************/ 15514 /* FP RX SGE MBUF DMA MAPS */ 15515 /***************************/ 15516 15517 if (fp->rx_sge_mbuf_tag != NULL) { 15518 for (j = 0; j < RX_SGE_TOTAL; j++) { 15519 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) { 15520 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 15521 fp->rx_sge_mbuf_chain[j].m_map); 15522 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 15523 fp->rx_sge_mbuf_chain[j].m_map); 15524 } 15525 } 15526 15527 if (fp->rx_sge_mbuf_spare_map != NULL) { 15528 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 15529 fp->rx_sge_mbuf_spare_map); 15530 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 15531 fp->rx_sge_mbuf_spare_map); 15532 } 15533 15534 bus_dma_tag_destroy(fp->rx_sge_mbuf_tag); 15535 fp->rx_sge_mbuf_tag = NULL; 15536 } 15537 } 15538 15539 /***************************/ 15540 /* FW DECOMPRESSION BUFFER */ 15541 /***************************/ 15542 15543 bxe_dma_free(sc, &sc->gz_buf_dma); 15544 sc->gz_buf = NULL; 15545 free(sc->gz_strm, M_DEVBUF); 15546 sc->gz_strm = NULL; 15547 15548 /*******************/ 15549 /* SLOW PATH QUEUE */ 15550 /*******************/ 15551 15552 bxe_dma_free(sc, &sc->spq_dma); 15553 sc->spq = NULL; 15554 15555 /*************/ 15556 /* SLOW PATH */ 15557 /*************/ 15558 15559 bxe_dma_free(sc, &sc->sp_dma); 15560 sc->sp = NULL; 15561 15562 /***************/ 15563 /* EVENT QUEUE */ 15564 /***************/ 15565 15566 bxe_dma_free(sc, &sc->eq_dma); 15567 sc->eq = NULL; 15568 15569 /************************/ 15570 /* DEFAULT STATUS BLOCK */ 15571 /************************/ 15572 15573 bxe_dma_free(sc, &sc->def_sb_dma); 15574 sc->def_sb = NULL; 15575 15576 bus_dma_tag_destroy(sc->parent_dma_tag); 15577 sc->parent_dma_tag = NULL; 15578 } 15579 15580 /* 15581 * Previous driver DMAE transaction may have occurred when pre-boot stage 15582 * ended and boot began. This would invalidate the addresses of the 15583 * transaction, resulting in was-error bit set in the PCI causing all 15584 * hw-to-host PCIe transactions to timeout. If this happened we want to clear 15585 * the interrupt which detected this from the pglueb and the was-done bit 15586 */ 15587 static void 15588 bxe_prev_interrupted_dmae(struct bxe_softc *sc) 15589 { 15590 uint32_t val; 15591 15592 if (!CHIP_IS_E1x(sc)) { 15593 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS); 15594 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { 15595 BLOGD(sc, DBG_LOAD, 15596 "Clearing 'was-error' bit that was set in pglueb"); 15597 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc)); 15598 } 15599 } 15600 } 15601 15602 static int 15603 bxe_prev_mcp_done(struct bxe_softc *sc) 15604 { 15605 uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 15606 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 15607 if (!rc) { 15608 BLOGE(sc, "MCP response failure, aborting\n"); 15609 return (-1); 15610 } 15611 15612 return (0); 15613 } 15614 15615 static struct bxe_prev_list_node * 15616 bxe_prev_path_get_entry(struct bxe_softc *sc) 15617 { 15618 struct bxe_prev_list_node *tmp; 15619 15620 LIST_FOREACH(tmp, &bxe_prev_list, node) { 15621 if ((sc->pcie_bus == tmp->bus) && 15622 (sc->pcie_device == tmp->slot) && 15623 (SC_PATH(sc) == tmp->path)) { 15624 return (tmp); 15625 } 15626 } 15627 15628 return (NULL); 15629 } 15630 15631 static uint8_t 15632 bxe_prev_is_path_marked(struct bxe_softc *sc) 15633 { 15634 struct bxe_prev_list_node *tmp; 15635 int rc = FALSE; 15636 15637 mtx_lock(&bxe_prev_mtx); 15638 15639 tmp = bxe_prev_path_get_entry(sc); 15640 if (tmp) { 15641 if (tmp->aer) { 15642 BLOGD(sc, DBG_LOAD, 15643 "Path %d/%d/%d was marked by AER\n", 15644 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15645 } else { 15646 rc = TRUE; 15647 BLOGD(sc, DBG_LOAD, 15648 "Path %d/%d/%d was already cleaned from previous drivers\n", 15649 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15650 } 15651 } 15652 15653 mtx_unlock(&bxe_prev_mtx); 15654 15655 return (rc); 15656 } 15657 15658 static int 15659 bxe_prev_mark_path(struct bxe_softc *sc, 15660 uint8_t after_undi) 15661 { 15662 struct bxe_prev_list_node *tmp; 15663 15664 mtx_lock(&bxe_prev_mtx); 15665 15666 /* Check whether the entry for this path already exists */ 15667 tmp = bxe_prev_path_get_entry(sc); 15668 if (tmp) { 15669 if (!tmp->aer) { 15670 BLOGD(sc, DBG_LOAD, 15671 "Re-marking AER in path %d/%d/%d\n", 15672 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15673 } else { 15674 BLOGD(sc, DBG_LOAD, 15675 "Removing AER indication from path %d/%d/%d\n", 15676 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15677 tmp->aer = 0; 15678 } 15679 15680 mtx_unlock(&bxe_prev_mtx); 15681 return (0); 15682 } 15683 15684 mtx_unlock(&bxe_prev_mtx); 15685 15686 /* Create an entry for this path and add it */ 15687 tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF, 15688 (M_NOWAIT | M_ZERO)); 15689 if (!tmp) { 15690 BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n"); 15691 return (-1); 15692 } 15693 15694 tmp->bus = sc->pcie_bus; 15695 tmp->slot = sc->pcie_device; 15696 tmp->path = SC_PATH(sc); 15697 tmp->aer = 0; 15698 tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0; 15699 15700 mtx_lock(&bxe_prev_mtx); 15701 15702 BLOGD(sc, DBG_LOAD, 15703 "Marked path %d/%d/%d - finished previous unload\n", 15704 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15705 LIST_INSERT_HEAD(&bxe_prev_list, tmp, node); 15706 15707 mtx_unlock(&bxe_prev_mtx); 15708 15709 return (0); 15710 } 15711 15712 static int 15713 bxe_do_flr(struct bxe_softc *sc) 15714 { 15715 int i; 15716 15717 /* only E2 and onwards support FLR */ 15718 if (CHIP_IS_E1x(sc)) { 15719 BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n"); 15720 return (-1); 15721 } 15722 15723 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 15724 if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 15725 BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n", 15726 sc->devinfo.bc_ver); 15727 return (-1); 15728 } 15729 15730 /* Wait for Transaction Pending bit clean */ 15731 for (i = 0; i < 4; i++) { 15732 if (i) { 15733 DELAY(((1 << (i - 1)) * 100) * 1000); 15734 } 15735 15736 if (!bxe_is_pcie_pending(sc)) { 15737 goto clear; 15738 } 15739 } 15740 15741 BLOGE(sc, "PCIE transaction is not cleared, " 15742 "proceeding with reset anyway\n"); 15743 15744 clear: 15745 15746 BLOGD(sc, DBG_LOAD, "Initiating FLR\n"); 15747 bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0); 15748 15749 return (0); 15750 } 15751 15752 struct bxe_mac_vals { 15753 uint32_t xmac_addr; 15754 uint32_t xmac_val; 15755 uint32_t emac_addr; 15756 uint32_t emac_val; 15757 uint32_t umac_addr; 15758 uint32_t umac_val; 15759 uint32_t bmac_addr; 15760 uint32_t bmac_val[2]; 15761 }; 15762 15763 static void 15764 bxe_prev_unload_close_mac(struct bxe_softc *sc, 15765 struct bxe_mac_vals *vals) 15766 { 15767 uint32_t val, base_addr, offset, mask, reset_reg; 15768 uint8_t mac_stopped = FALSE; 15769 uint8_t port = SC_PORT(sc); 15770 uint32_t wb_data[2]; 15771 15772 /* reset addresses as they also mark which values were changed */ 15773 vals->bmac_addr = 0; 15774 vals->umac_addr = 0; 15775 vals->xmac_addr = 0; 15776 vals->emac_addr = 0; 15777 15778 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2); 15779 15780 if (!CHIP_IS_E3(sc)) { 15781 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 15782 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 15783 if ((mask & reset_reg) && val) { 15784 BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n"); 15785 base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM 15786 : NIG_REG_INGRESS_BMAC0_MEM; 15787 offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL 15788 : BIGMAC_REGISTER_BMAC_CONTROL; 15789 15790 /* 15791 * use rd/wr since we cannot use dmae. This is safe 15792 * since MCP won't access the bus due to the request 15793 * to unload, and no function on the path can be 15794 * loaded at this time. 15795 */ 15796 wb_data[0] = REG_RD(sc, base_addr + offset); 15797 wb_data[1] = REG_RD(sc, base_addr + offset + 0x4); 15798 vals->bmac_addr = base_addr + offset; 15799 vals->bmac_val[0] = wb_data[0]; 15800 vals->bmac_val[1] = wb_data[1]; 15801 wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE; 15802 REG_WR(sc, vals->bmac_addr, wb_data[0]); 15803 REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]); 15804 } 15805 15806 BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n"); 15807 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4; 15808 vals->emac_val = REG_RD(sc, vals->emac_addr); 15809 REG_WR(sc, vals->emac_addr, 0); 15810 mac_stopped = TRUE; 15811 } else { 15812 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 15813 BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n"); 15814 base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 15815 val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI); 15816 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1)); 15817 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1)); 15818 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 15819 vals->xmac_val = REG_RD(sc, vals->xmac_addr); 15820 REG_WR(sc, vals->xmac_addr, 0); 15821 mac_stopped = TRUE; 15822 } 15823 15824 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 15825 if (mask & reset_reg) { 15826 BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n"); 15827 base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 15828 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; 15829 vals->umac_val = REG_RD(sc, vals->umac_addr); 15830 REG_WR(sc, vals->umac_addr, 0); 15831 mac_stopped = TRUE; 15832 } 15833 } 15834 15835 if (mac_stopped) { 15836 DELAY(20000); 15837 } 15838 } 15839 15840 #define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 15841 #define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff) 15842 #define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 15843 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 15844 15845 static void 15846 bxe_prev_unload_undi_inc(struct bxe_softc *sc, 15847 uint8_t port, 15848 uint8_t inc) 15849 { 15850 uint16_t rcq, bd; 15851 uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port)); 15852 15853 rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc; 15854 bd = BXE_PREV_UNDI_BD(tmp_reg) + inc; 15855 15856 tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd); 15857 REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg); 15858 15859 BLOGD(sc, DBG_LOAD, 15860 "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n", 15861 port, bd, rcq); 15862 } 15863 15864 static int 15865 bxe_prev_unload_common(struct bxe_softc *sc) 15866 { 15867 uint32_t reset_reg, tmp_reg = 0, rc; 15868 uint8_t prev_undi = FALSE; 15869 struct bxe_mac_vals mac_vals; 15870 uint32_t timer_count = 1000; 15871 uint32_t prev_brb; 15872 15873 /* 15874 * It is possible a previous function received 'common' answer, 15875 * but hasn't loaded yet, therefore creating a scenario of 15876 * multiple functions receiving 'common' on the same path. 15877 */ 15878 BLOGD(sc, DBG_LOAD, "Common unload Flow\n"); 15879 15880 memset(&mac_vals, 0, sizeof(mac_vals)); 15881 15882 if (bxe_prev_is_path_marked(sc)) { 15883 return (bxe_prev_mcp_done(sc)); 15884 } 15885 15886 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1); 15887 15888 /* Reset should be performed after BRB is emptied */ 15889 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 15890 /* Close the MAC Rx to prevent BRB from filling up */ 15891 bxe_prev_unload_close_mac(sc, &mac_vals); 15892 15893 /* close LLH filters towards the BRB */ 15894 elink_set_rx_filter(&sc->link_params, 0); 15895 15896 /* 15897 * Check if the UNDI driver was previously loaded. 15898 * UNDI driver initializes CID offset for normal bell to 0x7 15899 */ 15900 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { 15901 tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST); 15902 if (tmp_reg == 0x7) { 15903 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n"); 15904 prev_undi = TRUE; 15905 /* clear the UNDI indication */ 15906 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0); 15907 /* clear possible idle check errors */ 15908 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0); 15909 } 15910 } 15911 15912 /* wait until BRB is empty */ 15913 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15914 while (timer_count) { 15915 prev_brb = tmp_reg; 15916 15917 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15918 if (!tmp_reg) { 15919 break; 15920 } 15921 15922 BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg); 15923 15924 /* reset timer as long as BRB actually gets emptied */ 15925 if (prev_brb > tmp_reg) { 15926 timer_count = 1000; 15927 } else { 15928 timer_count--; 15929 } 15930 15931 /* If UNDI resides in memory, manually increment it */ 15932 if (prev_undi) { 15933 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1); 15934 } 15935 15936 DELAY(10); 15937 } 15938 15939 if (!timer_count) { 15940 BLOGE(sc, "Failed to empty BRB\n"); 15941 } 15942 } 15943 15944 /* No packets are in the pipeline, path is ready for reset */ 15945 bxe_reset_common(sc); 15946 15947 if (mac_vals.xmac_addr) { 15948 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val); 15949 } 15950 if (mac_vals.umac_addr) { 15951 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val); 15952 } 15953 if (mac_vals.emac_addr) { 15954 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val); 15955 } 15956 if (mac_vals.bmac_addr) { 15957 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 15958 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 15959 } 15960 15961 rc = bxe_prev_mark_path(sc, prev_undi); 15962 if (rc) { 15963 bxe_prev_mcp_done(sc); 15964 return (rc); 15965 } 15966 15967 return (bxe_prev_mcp_done(sc)); 15968 } 15969 15970 static int 15971 bxe_prev_unload_uncommon(struct bxe_softc *sc) 15972 { 15973 int rc; 15974 15975 BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n"); 15976 15977 /* Test if previous unload process was already finished for this path */ 15978 if (bxe_prev_is_path_marked(sc)) { 15979 return (bxe_prev_mcp_done(sc)); 15980 } 15981 15982 BLOGD(sc, DBG_LOAD, "Path is unmarked\n"); 15983 15984 /* 15985 * If function has FLR capabilities, and existing FW version matches 15986 * the one required, then FLR will be sufficient to clean any residue 15987 * left by previous driver 15988 */ 15989 rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION); 15990 if (!rc) { 15991 /* fw version is good */ 15992 BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n"); 15993 rc = bxe_do_flr(sc); 15994 } 15995 15996 if (!rc) { 15997 /* FLR was performed */ 15998 BLOGD(sc, DBG_LOAD, "FLR successful\n"); 15999 return (0); 16000 } 16001 16002 BLOGD(sc, DBG_LOAD, "Could not FLR\n"); 16003 16004 /* Close the MCP request, return failure*/ 16005 rc = bxe_prev_mcp_done(sc); 16006 if (!rc) { 16007 rc = BXE_PREV_WAIT_NEEDED; 16008 } 16009 16010 return (rc); 16011 } 16012 16013 static int 16014 bxe_prev_unload(struct bxe_softc *sc) 16015 { 16016 int time_counter = 10; 16017 uint32_t fw, hw_lock_reg, hw_lock_val; 16018 uint32_t rc = 0; 16019 16020 /* 16021 * Clear HW from errors which may have resulted from an interrupted 16022 * DMAE transaction. 16023 */ 16024 bxe_prev_interrupted_dmae(sc); 16025 16026 /* Release previously held locks */ 16027 hw_lock_reg = 16028 (SC_FUNC(sc) <= 5) ? 16029 (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) : 16030 (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8); 16031 16032 hw_lock_val = (REG_RD(sc, hw_lock_reg)); 16033 if (hw_lock_val) { 16034 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 16035 BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n"); 16036 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 16037 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc))); 16038 } 16039 BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n"); 16040 REG_WR(sc, hw_lock_reg, 0xffffffff); 16041 } else { 16042 BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n"); 16043 } 16044 16045 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) { 16046 BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n"); 16047 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0); 16048 } 16049 16050 do { 16051 /* Lock MCP using an unload request */ 16052 fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 16053 if (!fw) { 16054 BLOGE(sc, "MCP response failure, aborting\n"); 16055 rc = -1; 16056 break; 16057 } 16058 16059 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) { 16060 rc = bxe_prev_unload_common(sc); 16061 break; 16062 } 16063 16064 /* non-common reply from MCP night require looping */ 16065 rc = bxe_prev_unload_uncommon(sc); 16066 if (rc != BXE_PREV_WAIT_NEEDED) { 16067 break; 16068 } 16069 16070 DELAY(20000); 16071 } while (--time_counter); 16072 16073 if (!time_counter || rc) { 16074 BLOGE(sc, "Failed to unload previous driver!\n"); 16075 rc = -1; 16076 } 16077 16078 return (rc); 16079 } 16080 16081 void 16082 bxe_dcbx_set_state(struct bxe_softc *sc, 16083 uint8_t dcb_on, 16084 uint32_t dcbx_enabled) 16085 { 16086 if (!CHIP_IS_E1x(sc)) { 16087 sc->dcb_state = dcb_on; 16088 sc->dcbx_enabled = dcbx_enabled; 16089 } else { 16090 sc->dcb_state = FALSE; 16091 sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID; 16092 } 16093 BLOGD(sc, DBG_LOAD, 16094 "DCB state [%s:%s]\n", 16095 dcb_on ? "ON" : "OFF", 16096 (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" : 16097 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" : 16098 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ? 16099 "on-chip with negotiation" : "invalid"); 16100 } 16101 16102 /* must be called after sriov-enable */ 16103 static int 16104 bxe_set_qm_cid_count(struct bxe_softc *sc) 16105 { 16106 int cid_count = BXE_L2_MAX_CID(sc); 16107 16108 if (IS_SRIOV(sc)) { 16109 cid_count += BXE_VF_CIDS; 16110 } 16111 16112 if (CNIC_SUPPORT(sc)) { 16113 cid_count += CNIC_CID_MAX; 16114 } 16115 16116 return (roundup(cid_count, QM_CID_ROUND)); 16117 } 16118 16119 static void 16120 bxe_init_multi_cos(struct bxe_softc *sc) 16121 { 16122 int pri, cos; 16123 16124 uint32_t pri_map = 0; /* XXX change to user config */ 16125 16126 for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) { 16127 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4)); 16128 if (cos < sc->max_cos) { 16129 sc->prio_to_cos[pri] = cos; 16130 } else { 16131 BLOGW(sc, "Invalid COS %d for priority %d " 16132 "(max COS is %d), setting to 0\n", 16133 cos, pri, (sc->max_cos - 1)); 16134 sc->prio_to_cos[pri] = 0; 16135 } 16136 } 16137 } 16138 16139 static int 16140 bxe_sysctl_state(SYSCTL_HANDLER_ARGS) 16141 { 16142 struct bxe_softc *sc; 16143 int error, result; 16144 16145 result = 0; 16146 error = sysctl_handle_int(oidp, &result, 0, req); 16147 16148 if (error || !req->newptr) { 16149 return (error); 16150 } 16151 16152 if (result == 1) { 16153 sc = (struct bxe_softc *)arg1; 16154 BLOGI(sc, "... dumping driver state ...\n"); 16155 /* XXX */ 16156 } 16157 16158 return (error); 16159 } 16160 16161 static int 16162 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS) 16163 { 16164 struct bxe_softc *sc = (struct bxe_softc *)arg1; 16165 uint32_t *eth_stats = (uint32_t *)&sc->eth_stats; 16166 uint32_t *offset; 16167 uint64_t value = 0; 16168 int index = (int)arg2; 16169 16170 if (index >= BXE_NUM_ETH_STATS) { 16171 BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index); 16172 return (-1); 16173 } 16174 16175 offset = (eth_stats + bxe_eth_stats_arr[index].offset); 16176 16177 switch (bxe_eth_stats_arr[index].size) { 16178 case 4: 16179 value = (uint64_t)*offset; 16180 break; 16181 case 8: 16182 value = HILO_U64(*offset, *(offset + 1)); 16183 break; 16184 default: 16185 BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n", 16186 index, bxe_eth_stats_arr[index].size); 16187 return (-1); 16188 } 16189 16190 return (sysctl_handle_64(oidp, &value, 0, req)); 16191 } 16192 16193 static int 16194 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS) 16195 { 16196 struct bxe_softc *sc = (struct bxe_softc *)arg1; 16197 uint32_t *eth_stats; 16198 uint32_t *offset; 16199 uint64_t value = 0; 16200 uint32_t q_stat = (uint32_t)arg2; 16201 uint32_t fp_index = ((q_stat >> 16) & 0xffff); 16202 uint32_t index = (q_stat & 0xffff); 16203 16204 eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats; 16205 16206 if (index >= BXE_NUM_ETH_Q_STATS) { 16207 BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index); 16208 return (-1); 16209 } 16210 16211 offset = (eth_stats + bxe_eth_q_stats_arr[index].offset); 16212 16213 switch (bxe_eth_q_stats_arr[index].size) { 16214 case 4: 16215 value = (uint64_t)*offset; 16216 break; 16217 case 8: 16218 value = HILO_U64(*offset, *(offset + 1)); 16219 break; 16220 default: 16221 BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n", 16222 index, bxe_eth_q_stats_arr[index].size); 16223 return (-1); 16224 } 16225 16226 return (sysctl_handle_64(oidp, &value, 0, req)); 16227 } 16228 16229 static void 16230 bxe_add_sysctls(struct bxe_softc *sc) 16231 { 16232 struct sysctl_ctx_list *ctx; 16233 struct sysctl_oid_list *children; 16234 struct sysctl_oid *queue_top, *queue; 16235 struct sysctl_oid_list *queue_top_children, *queue_children; 16236 char queue_num_buf[32]; 16237 uint32_t q_stat; 16238 int i, j; 16239 16240 ctx = device_get_sysctl_ctx(sc->dev); 16241 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 16242 16243 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version", 16244 CTLFLAG_RD, BXE_DRIVER_VERSION, 0, 16245 "version"); 16246 16247 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 16248 CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0, 16249 "bootcode version"); 16250 16251 snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d", 16252 BCM_5710_FW_MAJOR_VERSION, 16253 BCM_5710_FW_MINOR_VERSION, 16254 BCM_5710_FW_REVISION_VERSION, 16255 BCM_5710_FW_ENGINEERING_VERSION); 16256 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 16257 CTLFLAG_RD, &sc->fw_ver_str, 0, 16258 "firmware version"); 16259 16260 snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s", 16261 ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" : 16262 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" : 16263 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" : 16264 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" : 16265 "Unknown")); 16266 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 16267 CTLFLAG_RD, &sc->mf_mode_str, 0, 16268 "multifunction mode"); 16269 16270 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics", 16271 CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0, 16272 "multifunction vnics per port"); 16273 16274 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 16275 CTLFLAG_RD, &sc->mac_addr_str, 0, 16276 "mac address"); 16277 16278 snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d", 16279 ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" : 16280 (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" : 16281 (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" : 16282 "???GT/s"), 16283 sc->devinfo.pcie_link_width); 16284 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 16285 CTLFLAG_RD, &sc->pci_link_str, 0, 16286 "pci link status"); 16287 16288 sc->debug = bxe_debug; 16289 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug", 16290 CTLFLAG_RW, &sc->debug, 0, 16291 "debug logging mode"); 16292 16293 sc->rx_budget = bxe_rx_budget; 16294 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget", 16295 CTLFLAG_RW, &sc->rx_budget, 0, 16296 "rx processing budget"); 16297 16298 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state", 16299 CTLTYPE_UINT | CTLFLAG_RW, sc, 0, 16300 bxe_sysctl_state, "IU", "dump driver state"); 16301 16302 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 16303 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 16304 bxe_eth_stats_arr[i].string, 16305 CTLTYPE_U64 | CTLFLAG_RD, sc, i, 16306 bxe_sysctl_eth_stat, "LU", 16307 bxe_eth_stats_arr[i].string); 16308 } 16309 16310 /* add a new parent node for all queues "dev.bxe.#.queue" */ 16311 queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue", 16312 CTLFLAG_RD, NULL, "queue"); 16313 queue_top_children = SYSCTL_CHILDREN(queue_top); 16314 16315 for (i = 0; i < sc->num_queues; i++) { 16316 /* add a new parent node for a single queue "dev.bxe.#.queue.#" */ 16317 snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i); 16318 queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO, 16319 queue_num_buf, CTLFLAG_RD, NULL, 16320 "single queue"); 16321 queue_children = SYSCTL_CHILDREN(queue); 16322 16323 for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) { 16324 q_stat = ((i << 16) | j); 16325 SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO, 16326 bxe_eth_q_stats_arr[j].string, 16327 CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat, 16328 bxe_sysctl_eth_q_stat, "LU", 16329 bxe_eth_q_stats_arr[j].string); 16330 } 16331 } 16332 } 16333 16334 /* 16335 * Device attach function. 16336 * 16337 * Allocates device resources, performs secondary chip identification, and 16338 * initializes driver instance variables. This function is called from driver 16339 * load after a successful probe. 16340 * 16341 * Returns: 16342 * 0 = Success, >0 = Failure 16343 */ 16344 static int 16345 bxe_attach(device_t dev) 16346 { 16347 struct bxe_softc *sc; 16348 16349 sc = device_get_softc(dev); 16350 16351 BLOGD(sc, DBG_LOAD, "Starting attach...\n"); 16352 16353 sc->state = BXE_STATE_CLOSED; 16354 16355 sc->dev = dev; 16356 sc->unit = device_get_unit(dev); 16357 16358 BLOGD(sc, DBG_LOAD, "softc = %p\n", sc); 16359 16360 sc->pcie_bus = pci_get_bus(dev); 16361 sc->pcie_device = pci_get_slot(dev); 16362 sc->pcie_func = pci_get_function(dev); 16363 16364 /* enable bus master capability */ 16365 pci_enable_busmaster(dev); 16366 16367 /* get the BARs */ 16368 if (bxe_allocate_bars(sc) != 0) { 16369 return (ENXIO); 16370 } 16371 16372 /* initialize the mutexes */ 16373 bxe_init_mutexes(sc); 16374 16375 /* prepare the periodic callout */ 16376 callout_init(&sc->periodic_callout, 0); 16377 16378 /* prepare the chip taskqueue */ 16379 sc->chip_tq_flags = CHIP_TQ_NONE; 16380 snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name), 16381 "bxe%d_chip_tq", sc->unit); 16382 TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc); 16383 sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT, 16384 taskqueue_thread_enqueue, 16385 &sc->chip_tq); 16386 taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */ 16387 "%s", sc->chip_tq_name); 16388 16389 /* get device info and set params */ 16390 if (bxe_get_device_info(sc) != 0) { 16391 BLOGE(sc, "getting device info\n"); 16392 bxe_deallocate_bars(sc); 16393 pci_disable_busmaster(dev); 16394 return (ENXIO); 16395 } 16396 16397 /* get final misc params */ 16398 bxe_get_params(sc); 16399 16400 /* set the default MTU (changed via ifconfig) */ 16401 sc->mtu = ETHERMTU; 16402 16403 bxe_set_modes_bitmap(sc); 16404 16405 /* XXX 16406 * If in AFEX mode and the function is configured for FCoE 16407 * then bail... no L2 allowed. 16408 */ 16409 16410 /* get phy settings from shmem and 'and' against admin settings */ 16411 bxe_get_phy_info(sc); 16412 16413 /* initialize the FreeBSD ifnet interface */ 16414 if (bxe_init_ifnet(sc) != 0) { 16415 bxe_release_mutexes(sc); 16416 bxe_deallocate_bars(sc); 16417 pci_disable_busmaster(dev); 16418 return (ENXIO); 16419 } 16420 16421 /* allocate device interrupts */ 16422 if (bxe_interrupt_alloc(sc) != 0) { 16423 if (sc->ifnet != NULL) { 16424 ether_ifdetach(sc->ifnet); 16425 } 16426 ifmedia_removeall(&sc->ifmedia); 16427 bxe_release_mutexes(sc); 16428 bxe_deallocate_bars(sc); 16429 pci_disable_busmaster(dev); 16430 return (ENXIO); 16431 } 16432 16433 /* allocate ilt */ 16434 if (bxe_alloc_ilt_mem(sc) != 0) { 16435 bxe_interrupt_free(sc); 16436 if (sc->ifnet != NULL) { 16437 ether_ifdetach(sc->ifnet); 16438 } 16439 ifmedia_removeall(&sc->ifmedia); 16440 bxe_release_mutexes(sc); 16441 bxe_deallocate_bars(sc); 16442 pci_disable_busmaster(dev); 16443 return (ENXIO); 16444 } 16445 16446 /* allocate the host hardware/software hsi structures */ 16447 if (bxe_alloc_hsi_mem(sc) != 0) { 16448 bxe_free_ilt_mem(sc); 16449 bxe_interrupt_free(sc); 16450 if (sc->ifnet != NULL) { 16451 ether_ifdetach(sc->ifnet); 16452 } 16453 ifmedia_removeall(&sc->ifmedia); 16454 bxe_release_mutexes(sc); 16455 bxe_deallocate_bars(sc); 16456 pci_disable_busmaster(dev); 16457 return (ENXIO); 16458 } 16459 16460 /* need to reset chip if UNDI was active */ 16461 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 16462 /* init fw_seq */ 16463 sc->fw_seq = 16464 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 16465 DRV_MSG_SEQ_NUMBER_MASK); 16466 BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq); 16467 bxe_prev_unload(sc); 16468 } 16469 16470 #if 1 16471 /* XXX */ 16472 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16473 #else 16474 if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) && 16475 SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) && 16476 SHMEM2_RD(sc, dcbx_lldp_params_offset) && 16477 SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) { 16478 bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON); 16479 bxe_dcbx_init_params(sc); 16480 } else { 16481 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16482 } 16483 #endif 16484 16485 /* calculate qm_cid_count */ 16486 sc->qm_cid_count = bxe_set_qm_cid_count(sc); 16487 BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count); 16488 16489 sc->max_cos = 1; 16490 bxe_init_multi_cos(sc); 16491 16492 bxe_add_sysctls(sc); 16493 16494 return (0); 16495 } 16496 16497 /* 16498 * Device detach function. 16499 * 16500 * Stops the controller, resets the controller, and releases resources. 16501 * 16502 * Returns: 16503 * 0 = Success, >0 = Failure 16504 */ 16505 static int 16506 bxe_detach(device_t dev) 16507 { 16508 struct bxe_softc *sc; 16509 struct ifnet *ifp; 16510 16511 sc = device_get_softc(dev); 16512 16513 BLOGD(sc, DBG_LOAD, "Starting detach...\n"); 16514 16515 ifp = sc->ifnet; 16516 if (ifp != NULL && ifp->if_vlantrunk != NULL) { 16517 BLOGE(sc, "Cannot detach while VLANs are in use.\n"); 16518 return(EBUSY); 16519 } 16520 16521 /* stop the periodic callout */ 16522 bxe_periodic_stop(sc); 16523 16524 /* stop the chip taskqueue */ 16525 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE); 16526 if (sc->chip_tq) { 16527 taskqueue_drain(sc->chip_tq, &sc->chip_tq_task); 16528 taskqueue_free(sc->chip_tq); 16529 sc->chip_tq = NULL; 16530 } 16531 16532 /* stop and reset the controller if it was open */ 16533 if (sc->state != BXE_STATE_CLOSED) { 16534 BXE_CORE_LOCK(sc); 16535 bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE); 16536 BXE_CORE_UNLOCK(sc); 16537 } 16538 16539 /* release the network interface */ 16540 if (ifp != NULL) { 16541 ether_ifdetach(ifp); 16542 } 16543 ifmedia_removeall(&sc->ifmedia); 16544 16545 /* XXX do the following based on driver state... */ 16546 16547 /* free the host hardware/software hsi structures */ 16548 bxe_free_hsi_mem(sc); 16549 16550 /* free ilt */ 16551 bxe_free_ilt_mem(sc); 16552 16553 /* release the interrupts */ 16554 bxe_interrupt_free(sc); 16555 16556 /* Release the mutexes*/ 16557 bxe_release_mutexes(sc); 16558 16559 /* Release the PCIe BAR mapped memory */ 16560 bxe_deallocate_bars(sc); 16561 16562 /* Release the FreeBSD interface. */ 16563 if (sc->ifnet != NULL) { 16564 if_free(sc->ifnet); 16565 } 16566 16567 pci_disable_busmaster(dev); 16568 16569 return (0); 16570 } 16571 16572 /* 16573 * Device shutdown function. 16574 * 16575 * Stops and resets the controller. 16576 * 16577 * Returns: 16578 * Nothing 16579 */ 16580 static int 16581 bxe_shutdown(device_t dev) 16582 { 16583 struct bxe_softc *sc; 16584 16585 sc = device_get_softc(dev); 16586 16587 BLOGD(sc, DBG_LOAD, "Starting shutdown...\n"); 16588 16589 /* stop the periodic callout */ 16590 bxe_periodic_stop(sc); 16591 16592 BXE_CORE_LOCK(sc); 16593 bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE); 16594 BXE_CORE_UNLOCK(sc); 16595 16596 return (0); 16597 } 16598 16599 void 16600 bxe_igu_ack_sb(struct bxe_softc *sc, 16601 uint8_t igu_sb_id, 16602 uint8_t segment, 16603 uint16_t index, 16604 uint8_t op, 16605 uint8_t update) 16606 { 16607 uint32_t igu_addr = sc->igu_base_addr; 16608 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 16609 bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr); 16610 } 16611 16612 static void 16613 bxe_igu_clear_sb_gen(struct bxe_softc *sc, 16614 uint8_t func, 16615 uint8_t idu_sb_id, 16616 uint8_t is_pf) 16617 { 16618 uint32_t data, ctl, cnt = 100; 16619 uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 16620 uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 16621 uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 16622 uint32_t sb_bit = 1 << (idu_sb_id%32); 16623 uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 16624 uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 16625 16626 /* Not supported in BC mode */ 16627 if (CHIP_INT_MODE_IS_BC(sc)) { 16628 return; 16629 } 16630 16631 data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup << 16632 IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 16633 IGU_REGULAR_CLEANUP_SET | 16634 IGU_REGULAR_BCLEANUP); 16635 16636 ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) | 16637 (func_encode << IGU_CTRL_REG_FID_SHIFT) | 16638 (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT)); 16639 16640 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16641 data, igu_addr_data); 16642 REG_WR(sc, igu_addr_data, data); 16643 16644 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16645 BUS_SPACE_BARRIER_WRITE); 16646 mb(); 16647 16648 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16649 ctl, igu_addr_ctl); 16650 REG_WR(sc, igu_addr_ctl, ctl); 16651 16652 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16653 BUS_SPACE_BARRIER_WRITE); 16654 mb(); 16655 16656 /* wait for clean up to finish */ 16657 while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) { 16658 DELAY(20000); 16659 } 16660 16661 if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) { 16662 BLOGD(sc, DBG_LOAD, 16663 "Unable to finish IGU cleanup: " 16664 "idu_sb_id %d offset %d bit %d (cnt %d)\n", 16665 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 16666 } 16667 } 16668 16669 static void 16670 bxe_igu_clear_sb(struct bxe_softc *sc, 16671 uint8_t idu_sb_id) 16672 { 16673 bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/); 16674 } 16675 16676 16677 16678 16679 16680 16681 16682 /*******************/ 16683 /* ECORE CALLBACKS */ 16684 /*******************/ 16685 16686 static void 16687 bxe_reset_common(struct bxe_softc *sc) 16688 { 16689 uint32_t val = 0x1400; 16690 16691 /* reset_common */ 16692 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f); 16693 16694 if (CHIP_IS_E3(sc)) { 16695 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16696 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16697 } 16698 16699 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val); 16700 } 16701 16702 static void 16703 bxe_common_init_phy(struct bxe_softc *sc) 16704 { 16705 uint32_t shmem_base[2]; 16706 uint32_t shmem2_base[2]; 16707 16708 /* Avoid common init in case MFW supports LFA */ 16709 if (SHMEM2_RD(sc, size) > 16710 (uint32_t)offsetof(struct shmem2_region, 16711 lfa_host_addr[SC_PORT(sc)])) { 16712 return; 16713 } 16714 16715 shmem_base[0] = sc->devinfo.shmem_base; 16716 shmem2_base[0] = sc->devinfo.shmem2_base; 16717 16718 if (!CHIP_IS_E1x(sc)) { 16719 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr); 16720 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr); 16721 } 16722 16723 BXE_PHY_LOCK(sc); 16724 elink_common_init_phy(sc, shmem_base, shmem2_base, 16725 sc->devinfo.chip_id, 0); 16726 BXE_PHY_UNLOCK(sc); 16727 } 16728 16729 static void 16730 bxe_pf_disable(struct bxe_softc *sc) 16731 { 16732 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 16733 16734 val &= ~IGU_PF_CONF_FUNC_EN; 16735 16736 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 16737 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16738 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0); 16739 } 16740 16741 static void 16742 bxe_init_pxp(struct bxe_softc *sc) 16743 { 16744 uint16_t devctl; 16745 int r_order, w_order; 16746 16747 devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2); 16748 16749 BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl); 16750 16751 w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5); 16752 16753 if (sc->mrrs == -1) { 16754 r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12); 16755 } else { 16756 BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs); 16757 r_order = sc->mrrs; 16758 } 16759 16760 ecore_init_pxp_arb(sc, r_order, w_order); 16761 } 16762 16763 static uint32_t 16764 bxe_get_pretend_reg(struct bxe_softc *sc) 16765 { 16766 uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0; 16767 uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base); 16768 return (base + (SC_ABS_FUNC(sc)) * stride); 16769 } 16770 16771 /* 16772 * Called only on E1H or E2. 16773 * When pretending to be PF, the pretend value is the function number 0..7. 16774 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 16775 * combination. 16776 */ 16777 static int 16778 bxe_pretend_func(struct bxe_softc *sc, 16779 uint16_t pretend_func_val) 16780 { 16781 uint32_t pretend_reg; 16782 16783 if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) { 16784 return (-1); 16785 } 16786 16787 /* get my own pretend register */ 16788 pretend_reg = bxe_get_pretend_reg(sc); 16789 REG_WR(sc, pretend_reg, pretend_func_val); 16790 REG_RD(sc, pretend_reg); 16791 return (0); 16792 } 16793 16794 static void 16795 bxe_iov_init_dmae(struct bxe_softc *sc) 16796 { 16797 return; 16798 #if 0 16799 BLOGD(sc, DBG_LOAD, "SRIOV is %s\n", IS_SRIOV(sc) ? "ON" : "OFF"); 16800 16801 if (!IS_SRIOV(sc)) { 16802 return; 16803 } 16804 16805 REG_WR(sc, DMAE_REG_BACKWARD_COMP_EN, 0); 16806 #endif 16807 } 16808 16809 #if 0 16810 static int 16811 bxe_iov_init_ilt(struct bxe_softc *sc, 16812 uint16_t line) 16813 { 16814 return (line); 16815 #if 0 16816 int i; 16817 struct ecore_ilt* ilt = sc->ilt; 16818 16819 if (!IS_SRIOV(sc)) { 16820 return (line); 16821 } 16822 16823 /* set vfs ilt lines */ 16824 for (i = 0; i < BXE_VF_CIDS/ILT_PAGE_CIDS ; i++) { 16825 struct hw_dma *hw_cxt = SC_VF_CXT_PAGE(sc,i); 16826 ilt->lines[line+i].page = hw_cxt->addr; 16827 ilt->lines[line+i].page_mapping = hw_cxt->mapping; 16828 ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */ 16829 } 16830 return (line+i); 16831 #endif 16832 } 16833 #endif 16834 16835 static void 16836 bxe_iov_init_dq(struct bxe_softc *sc) 16837 { 16838 return; 16839 #if 0 16840 if (!IS_SRIOV(sc)) { 16841 return; 16842 } 16843 16844 /* Set the DQ such that the CID reflect the abs_vfid */ 16845 REG_WR(sc, DORQ_REG_VF_NORM_VF_BASE, 0); 16846 REG_WR(sc, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS)); 16847 16848 /* 16849 * Set VFs starting CID. If its > 0 the preceding CIDs are belong to 16850 * the PF L2 queues 16851 */ 16852 REG_WR(sc, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID); 16853 16854 /* The VF window size is the log2 of the max number of CIDs per VF */ 16855 REG_WR(sc, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND); 16856 16857 /* 16858 * The VF doorbell size 0 - *B, 4 - 128B. We set it here to match 16859 * the Pf doorbell size although the 2 are independent. 16860 */ 16861 REG_WR(sc, DORQ_REG_VF_NORM_CID_OFST, 16862 BNX2X_DB_SHIFT - BNX2X_DB_MIN_SHIFT); 16863 16864 /* 16865 * No security checks for now - 16866 * configure single rule (out of 16) mask = 0x1, value = 0x0, 16867 * CID range 0 - 0x1ffff 16868 */ 16869 REG_WR(sc, DORQ_REG_VF_TYPE_MASK_0, 1); 16870 REG_WR(sc, DORQ_REG_VF_TYPE_VALUE_0, 0); 16871 REG_WR(sc, DORQ_REG_VF_TYPE_MIN_MCID_0, 0); 16872 REG_WR(sc, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff); 16873 16874 /* set the number of VF alllowed doorbells to the full DQ range */ 16875 REG_WR(sc, DORQ_REG_VF_NORM_MAX_CID_COUNT, 0x20000); 16876 16877 /* set the VF doorbell threshold */ 16878 REG_WR(sc, DORQ_REG_VF_USAGE_CT_LIMIT, 4); 16879 #endif 16880 } 16881 16882 /* send a NIG loopback debug packet */ 16883 static void 16884 bxe_lb_pckt(struct bxe_softc *sc) 16885 { 16886 uint32_t wb_write[3]; 16887 16888 /* Ethernet source and destination addresses */ 16889 wb_write[0] = 0x55555555; 16890 wb_write[1] = 0x55555555; 16891 wb_write[2] = 0x20; /* SOP */ 16892 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16893 16894 /* NON-IP protocol */ 16895 wb_write[0] = 0x09000000; 16896 wb_write[1] = 0x55555555; 16897 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 16898 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16899 } 16900 16901 /* 16902 * Some of the internal memories are not directly readable from the driver. 16903 * To test them we send debug packets. 16904 */ 16905 static int 16906 bxe_int_mem_test(struct bxe_softc *sc) 16907 { 16908 int factor; 16909 int count, i; 16910 uint32_t val = 0; 16911 16912 if (CHIP_REV_IS_FPGA(sc)) { 16913 factor = 120; 16914 } else if (CHIP_REV_IS_EMUL(sc)) { 16915 factor = 200; 16916 } else { 16917 factor = 1; 16918 } 16919 16920 /* disable inputs of parser neighbor blocks */ 16921 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16922 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16923 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16924 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16925 16926 /* write 0 to parser credits for CFC search request */ 16927 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16928 16929 /* send Ethernet packet */ 16930 bxe_lb_pckt(sc); 16931 16932 /* TODO do i reset NIG statistic? */ 16933 /* Wait until NIG register shows 1 packet of size 0x10 */ 16934 count = 1000 * factor; 16935 while (count) { 16936 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16937 val = *BXE_SP(sc, wb_data[0]); 16938 if (val == 0x10) { 16939 break; 16940 } 16941 16942 DELAY(10000); 16943 count--; 16944 } 16945 16946 if (val != 0x10) { 16947 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16948 return (-1); 16949 } 16950 16951 /* wait until PRS register shows 1 packet */ 16952 count = (1000 * factor); 16953 while (count) { 16954 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16955 if (val == 1) { 16956 break; 16957 } 16958 16959 DELAY(10000); 16960 count--; 16961 } 16962 16963 if (val != 0x1) { 16964 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16965 return (-2); 16966 } 16967 16968 /* Reset and init BRB, PRS */ 16969 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16970 DELAY(50000); 16971 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16972 DELAY(50000); 16973 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16974 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16975 16976 /* Disable inputs of parser neighbor blocks */ 16977 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16978 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16979 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16980 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16981 16982 /* Write 0 to parser credits for CFC search request */ 16983 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16984 16985 /* send 10 Ethernet packets */ 16986 for (i = 0; i < 10; i++) { 16987 bxe_lb_pckt(sc); 16988 } 16989 16990 /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */ 16991 count = (1000 * factor); 16992 while (count) { 16993 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16994 val = *BXE_SP(sc, wb_data[0]); 16995 if (val == 0xb0) { 16996 break; 16997 } 16998 16999 DELAY(10000); 17000 count--; 17001 } 17002 17003 if (val != 0xb0) { 17004 BLOGE(sc, "NIG timeout val=0x%x\n", val); 17005 return (-3); 17006 } 17007 17008 /* Wait until PRS register shows 2 packets */ 17009 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 17010 if (val != 2) { 17011 BLOGE(sc, "PRS timeout val=0x%x\n", val); 17012 } 17013 17014 /* Write 1 to parser credits for CFC search request */ 17015 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 17016 17017 /* Wait until PRS register shows 3 packets */ 17018 DELAY(10000 * factor); 17019 17020 /* Wait until NIG register shows 1 packet of size 0x10 */ 17021 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 17022 if (val != 3) { 17023 BLOGE(sc, "PRS timeout val=0x%x\n", val); 17024 } 17025 17026 /* clear NIG EOP FIFO */ 17027 for (i = 0; i < 11; i++) { 17028 REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO); 17029 } 17030 17031 val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY); 17032 if (val != 1) { 17033 BLOGE(sc, "clear of NIG failed\n"); 17034 return (-4); 17035 } 17036 17037 /* Reset and init BRB, PRS, NIG */ 17038 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 17039 DELAY(50000); 17040 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 17041 DELAY(50000); 17042 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 17043 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 17044 if (!CNIC_SUPPORT(sc)) { 17045 /* set NIC mode */ 17046 REG_WR(sc, PRS_REG_NIC_MODE, 1); 17047 } 17048 17049 /* Enable inputs of parser neighbor blocks */ 17050 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff); 17051 REG_WR(sc, TCM_REG_PRS_IFEN, 0x1); 17052 REG_WR(sc, CFC_REG_DEBUG0, 0x0); 17053 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1); 17054 17055 return (0); 17056 } 17057 17058 static void 17059 bxe_setup_fan_failure_detection(struct bxe_softc *sc) 17060 { 17061 int is_required; 17062 uint32_t val; 17063 int port; 17064 17065 is_required = 0; 17066 val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) & 17067 SHARED_HW_CFG_FAN_FAILURE_MASK); 17068 17069 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) { 17070 is_required = 1; 17071 } 17072 /* 17073 * The fan failure mechanism is usually related to the PHY type since 17074 * the power consumption of the board is affected by the PHY. Currently, 17075 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 17076 */ 17077 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) { 17078 for (port = PORT_0; port < PORT_MAX; port++) { 17079 is_required |= elink_fan_failure_det_req(sc, 17080 sc->devinfo.shmem_base, 17081 sc->devinfo.shmem2_base, 17082 port); 17083 } 17084 } 17085 17086 BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required); 17087 17088 if (is_required == 0) { 17089 return; 17090 } 17091 17092 /* Fan failure is indicated by SPIO 5 */ 17093 bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 17094 17095 /* set to active low mode */ 17096 val = REG_RD(sc, MISC_REG_SPIO_INT); 17097 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 17098 REG_WR(sc, MISC_REG_SPIO_INT, val); 17099 17100 /* enable interrupt to signal the IGU */ 17101 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17102 val |= MISC_SPIO_SPIO5; 17103 REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val); 17104 } 17105 17106 static void 17107 bxe_enable_blocks_attention(struct bxe_softc *sc) 17108 { 17109 uint32_t val; 17110 17111 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 17112 if (!CHIP_IS_E1x(sc)) { 17113 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40); 17114 } else { 17115 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0); 17116 } 17117 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 17118 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 17119 /* 17120 * mask read length error interrupts in brb for parser 17121 * (parsing unit and 'checksum and crc' unit) 17122 * these errors are legal (PU reads fixed length and CAC can cause 17123 * read length error on truncated packets) 17124 */ 17125 REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00); 17126 REG_WR(sc, QM_REG_QM_INT_MASK, 0); 17127 REG_WR(sc, TM_REG_TM_INT_MASK, 0); 17128 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0); 17129 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0); 17130 REG_WR(sc, XCM_REG_XCM_INT_MASK, 0); 17131 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */ 17132 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */ 17133 REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0); 17134 REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0); 17135 REG_WR(sc, UCM_REG_UCM_INT_MASK, 0); 17136 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */ 17137 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */ 17138 REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 17139 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0); 17140 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0); 17141 REG_WR(sc, CCM_REG_CCM_INT_MASK, 0); 17142 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */ 17143 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */ 17144 17145 val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 17146 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 17147 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN); 17148 if (!CHIP_IS_E1x(sc)) { 17149 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 17150 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED); 17151 } 17152 REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val); 17153 17154 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0); 17155 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0); 17156 REG_WR(sc, TCM_REG_TCM_INT_MASK, 0); 17157 /* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */ 17158 17159 if (!CHIP_IS_E1x(sc)) { 17160 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 17161 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 17162 } 17163 17164 REG_WR(sc, CDU_REG_CDU_INT_MASK, 0); 17165 REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0); 17166 /* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */ 17167 REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 17168 } 17169 17170 /** 17171 * bxe_init_hw_common - initialize the HW at the COMMON phase. 17172 * 17173 * @sc: driver handle 17174 */ 17175 static int 17176 bxe_init_hw_common(struct bxe_softc *sc) 17177 { 17178 uint8_t abs_func_id; 17179 uint32_t val; 17180 17181 BLOGD(sc, DBG_LOAD, "starting common init for func %d\n", 17182 SC_ABS_FUNC(sc)); 17183 17184 /* 17185 * take the RESET lock to protect undi_unload flow from accessing 17186 * registers while we are resetting the chip 17187 */ 17188 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 17189 17190 bxe_reset_common(sc); 17191 17192 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff); 17193 17194 val = 0xfffc; 17195 if (CHIP_IS_E3(sc)) { 17196 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 17197 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 17198 } 17199 17200 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val); 17201 17202 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 17203 17204 ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON); 17205 BLOGD(sc, DBG_LOAD, "after misc block init\n"); 17206 17207 if (!CHIP_IS_E1x(sc)) { 17208 /* 17209 * 4-port mode or 2-port mode we need to turn off master-enable for 17210 * everyone. After that we turn it back on for self. So, we disregard 17211 * multi-function, and always disable all functions on the given path, 17212 * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1 17213 */ 17214 for (abs_func_id = SC_PATH(sc); 17215 abs_func_id < (E2_FUNC_MAX * 2); 17216 abs_func_id += 2) { 17217 if (abs_func_id == SC_ABS_FUNC(sc)) { 17218 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17219 continue; 17220 } 17221 17222 bxe_pretend_func(sc, abs_func_id); 17223 17224 /* clear pf enable */ 17225 bxe_pf_disable(sc); 17226 17227 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 17228 } 17229 } 17230 17231 BLOGD(sc, DBG_LOAD, "after pf disable\n"); 17232 17233 ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON); 17234 17235 if (CHIP_IS_E1(sc)) { 17236 /* 17237 * enable HW interrupt from PXP on USDM overflow 17238 * bit 16 on INT_MASK_0 17239 */ 17240 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 17241 } 17242 17243 ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON); 17244 bxe_init_pxp(sc); 17245 17246 #ifdef __BIG_ENDIAN 17247 REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1); 17248 REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1); 17249 REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1); 17250 REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1); 17251 REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1); 17252 /* make sure this value is 0 */ 17253 REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0); 17254 17255 //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1); 17256 REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1); 17257 REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1); 17258 REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1); 17259 REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1); 17260 #endif 17261 17262 ecore_ilt_init_page_size(sc, INITOP_SET); 17263 17264 if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) { 17265 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 17266 } 17267 17268 /* let the HW do it's magic... */ 17269 DELAY(100000); 17270 17271 /* finish PXP init */ 17272 val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE); 17273 if (val != 1) { 17274 BLOGE(sc, "PXP2 CFG failed\n"); 17275 return (-1); 17276 } 17277 val = REG_RD(sc, PXP2_REG_RD_INIT_DONE); 17278 if (val != 1) { 17279 BLOGE(sc, "PXP2 RD_INIT failed\n"); 17280 return (-1); 17281 } 17282 17283 BLOGD(sc, DBG_LOAD, "after pxp init\n"); 17284 17285 /* 17286 * Timer bug workaround for E2 only. We need to set the entire ILT to have 17287 * entries with value "0" and valid bit on. This needs to be done by the 17288 * first PF that is loaded in a path (i.e. common phase) 17289 */ 17290 if (!CHIP_IS_E1x(sc)) { 17291 /* 17292 * In E2 there is a bug in the timers block that can cause function 6 / 7 17293 * (i.e. vnic3) to start even if it is marked as "scan-off". 17294 * This occurs when a different function (func2,3) is being marked 17295 * as "scan-off". Real-life scenario for example: if a driver is being 17296 * load-unloaded while func6,7 are down. This will cause the timer to access 17297 * the ilt, translate to a logical address and send a request to read/write. 17298 * Since the ilt for the function that is down is not valid, this will cause 17299 * a translation error which is unrecoverable. 17300 * The Workaround is intended to make sure that when this happens nothing 17301 * fatal will occur. The workaround: 17302 * 1. First PF driver which loads on a path will: 17303 * a. After taking the chip out of reset, by using pretend, 17304 * it will write "0" to the following registers of 17305 * the other vnics. 17306 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 17307 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 17308 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 17309 * And for itself it will write '1' to 17310 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 17311 * dmae-operations (writing to pram for example.) 17312 * note: can be done for only function 6,7 but cleaner this 17313 * way. 17314 * b. Write zero+valid to the entire ILT. 17315 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 17316 * VNIC3 (of that port). The range allocated will be the 17317 * entire ILT. This is needed to prevent ILT range error. 17318 * 2. Any PF driver load flow: 17319 * a. ILT update with the physical addresses of the allocated 17320 * logical pages. 17321 * b. Wait 20msec. - note that this timeout is needed to make 17322 * sure there are no requests in one of the PXP internal 17323 * queues with "old" ILT addresses. 17324 * c. PF enable in the PGLC. 17325 * d. Clear the was_error of the PF in the PGLC. (could have 17326 * occurred while driver was down) 17327 * e. PF enable in the CFC (WEAK + STRONG) 17328 * f. Timers scan enable 17329 * 3. PF driver unload flow: 17330 * a. Clear the Timers scan_en. 17331 * b. Polling for scan_on=0 for that PF. 17332 * c. Clear the PF enable bit in the PXP. 17333 * d. Clear the PF enable in the CFC (WEAK + STRONG) 17334 * e. Write zero+valid to all ILT entries (The valid bit must 17335 * stay set) 17336 * f. If this is VNIC 3 of a port then also init 17337 * first_timers_ilt_entry to zero and last_timers_ilt_entry 17338 * to the last enrty in the ILT. 17339 * 17340 * Notes: 17341 * Currently the PF error in the PGLC is non recoverable. 17342 * In the future the there will be a recovery routine for this error. 17343 * Currently attention is masked. 17344 * Having an MCP lock on the load/unload process does not guarantee that 17345 * there is no Timer disable during Func6/7 enable. This is because the 17346 * Timers scan is currently being cleared by the MCP on FLR. 17347 * Step 2.d can be done only for PF6/7 and the driver can also check if 17348 * there is error before clearing it. But the flow above is simpler and 17349 * more general. 17350 * All ILT entries are written by zero+valid and not just PF6/7 17351 * ILT entries since in the future the ILT entries allocation for 17352 * PF-s might be dynamic. 17353 */ 17354 struct ilt_client_info ilt_cli; 17355 struct ecore_ilt ilt; 17356 17357 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 17358 memset(&ilt, 0, sizeof(struct ecore_ilt)); 17359 17360 /* initialize dummy TM client */ 17361 ilt_cli.start = 0; 17362 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 17363 ilt_cli.client_num = ILT_CLIENT_TM; 17364 17365 /* 17366 * Step 1: set zeroes to all ilt page entries with valid bit on 17367 * Step 2: set the timers first/last ilt entry to point 17368 * to the entire range to prevent ILT range error for 3rd/4th 17369 * vnic (this code assumes existence of the vnic) 17370 * 17371 * both steps performed by call to ecore_ilt_client_init_op() 17372 * with dummy TM client 17373 * 17374 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 17375 * and his brother are split registers 17376 */ 17377 17378 bxe_pretend_func(sc, (SC_PATH(sc) + 6)); 17379 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR); 17380 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 17381 17382 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN); 17383 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN); 17384 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 17385 } 17386 17387 REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0); 17388 REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0); 17389 17390 if (!CHIP_IS_E1x(sc)) { 17391 int factor = CHIP_REV_IS_EMUL(sc) ? 1000 : 17392 (CHIP_REV_IS_FPGA(sc) ? 400 : 0); 17393 17394 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON); 17395 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON); 17396 17397 /* let the HW do it's magic... */ 17398 do { 17399 DELAY(200000); 17400 val = REG_RD(sc, ATC_REG_ATC_INIT_DONE); 17401 } while (factor-- && (val != 1)); 17402 17403 if (val != 1) { 17404 BLOGE(sc, "ATC_INIT failed\n"); 17405 return (-1); 17406 } 17407 } 17408 17409 BLOGD(sc, DBG_LOAD, "after pglue and atc init\n"); 17410 17411 ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON); 17412 17413 bxe_iov_init_dmae(sc); 17414 17415 /* clean the DMAE memory */ 17416 sc->dmae_ready = 1; 17417 ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1); 17418 17419 ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON); 17420 17421 ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON); 17422 17423 ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON); 17424 17425 ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON); 17426 17427 bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3); 17428 bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3); 17429 bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3); 17430 bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3); 17431 17432 ecore_init_block(sc, BLOCK_QM, PHASE_COMMON); 17433 17434 /* QM queues pointers table */ 17435 ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET); 17436 17437 /* soft reset pulse */ 17438 REG_WR(sc, QM_REG_SOFT_RESET, 1); 17439 REG_WR(sc, QM_REG_SOFT_RESET, 0); 17440 17441 if (CNIC_SUPPORT(sc)) 17442 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON); 17443 17444 ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON); 17445 REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT); 17446 if (!CHIP_REV_IS_SLOW(sc)) { 17447 /* enable hw interrupt from doorbell Q */ 17448 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 17449 } 17450 17451 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 17452 17453 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 17454 REG_WR(sc, PRS_REG_A_PRSU_20, 0xf); 17455 17456 if (!CHIP_IS_E1(sc)) { 17457 REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan); 17458 } 17459 17460 if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) { 17461 if (IS_MF_AFEX(sc)) { 17462 /* 17463 * configure that AFEX and VLAN headers must be 17464 * received in AFEX mode 17465 */ 17466 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE); 17467 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA); 17468 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 17469 REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 17470 REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4); 17471 } else { 17472 /* 17473 * Bit-map indicating which L2 hdrs may appear 17474 * after the basic Ethernet header 17475 */ 17476 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 17477 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17478 } 17479 } 17480 17481 ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON); 17482 ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON); 17483 ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON); 17484 ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON); 17485 17486 if (!CHIP_IS_E1x(sc)) { 17487 /* reset VFC memories */ 17488 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17489 VFC_MEMORIES_RST_REG_CAM_RST | 17490 VFC_MEMORIES_RST_REG_RAM_RST); 17491 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17492 VFC_MEMORIES_RST_REG_CAM_RST | 17493 VFC_MEMORIES_RST_REG_RAM_RST); 17494 17495 DELAY(20000); 17496 } 17497 17498 ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON); 17499 ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON); 17500 ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON); 17501 ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON); 17502 17503 /* sync semi rtc */ 17504 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 17505 0x80000000); 17506 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 17507 0x80000000); 17508 17509 ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON); 17510 ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON); 17511 ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON); 17512 17513 if (!CHIP_IS_E1x(sc)) { 17514 if (IS_MF_AFEX(sc)) { 17515 /* 17516 * configure that AFEX and VLAN headers must be 17517 * sent in AFEX mode 17518 */ 17519 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE); 17520 REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA); 17521 REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 17522 REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 17523 REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4); 17524 } else { 17525 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 17526 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17527 } 17528 } 17529 17530 REG_WR(sc, SRC_REG_SOFT_RST, 1); 17531 17532 ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON); 17533 17534 if (CNIC_SUPPORT(sc)) { 17535 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672); 17536 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 17537 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b); 17538 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a); 17539 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116); 17540 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 17541 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf); 17542 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 17543 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f); 17544 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7); 17545 } 17546 REG_WR(sc, SRC_REG_SOFT_RST, 0); 17547 17548 if (sizeof(union cdu_context) != 1024) { 17549 /* we currently assume that a context is 1024 bytes */ 17550 BLOGE(sc, "please adjust the size of cdu_context(%ld)\n", 17551 (long)sizeof(union cdu_context)); 17552 } 17553 17554 ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON); 17555 val = (4 << 24) + (0 << 12) + 1024; 17556 REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val); 17557 17558 ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON); 17559 17560 REG_WR(sc, CFC_REG_INIT_REG, 0x7FF); 17561 /* enable context validation interrupt from CFC */ 17562 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 17563 17564 /* set the thresholds to prevent CFC/CDU race */ 17565 REG_WR(sc, CFC_REG_DEBUG0, 0x20020000); 17566 ecore_init_block(sc, BLOCK_HC, PHASE_COMMON); 17567 17568 if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) { 17569 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36); 17570 } 17571 17572 ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON); 17573 ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON); 17574 17575 /* Reset PCIE errors for debug */ 17576 REG_WR(sc, 0x2814, 0xffffffff); 17577 REG_WR(sc, 0x3820, 0xffffffff); 17578 17579 if (!CHIP_IS_E1x(sc)) { 17580 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 17581 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 17582 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 17583 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 17584 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 17585 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 17586 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 17587 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 17588 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 17589 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 17590 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 17591 } 17592 17593 ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON); 17594 17595 if (!CHIP_IS_E1(sc)) { 17596 /* in E3 this done in per-port section */ 17597 if (!CHIP_IS_E3(sc)) 17598 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17599 } 17600 17601 if (CHIP_IS_E1H(sc)) { 17602 /* not applicable for E2 (and above ...) */ 17603 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc)); 17604 } 17605 17606 if (CHIP_REV_IS_SLOW(sc)) { 17607 DELAY(200000); 17608 } 17609 17610 /* finish CFC init */ 17611 val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10); 17612 if (val != 1) { 17613 BLOGE(sc, "CFC LL_INIT failed\n"); 17614 return (-1); 17615 } 17616 val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10); 17617 if (val != 1) { 17618 BLOGE(sc, "CFC AC_INIT failed\n"); 17619 return (-1); 17620 } 17621 val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 17622 if (val != 1) { 17623 BLOGE(sc, "CFC CAM_INIT failed\n"); 17624 return (-1); 17625 } 17626 REG_WR(sc, CFC_REG_DEBUG0, 0); 17627 17628 if (CHIP_IS_E1(sc)) { 17629 /* read NIG statistic to see if this is our first up since powerup */ 17630 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 17631 val = *BXE_SP(sc, wb_data[0]); 17632 17633 /* do internal memory self test */ 17634 if ((val == 0) && bxe_int_mem_test(sc)) { 17635 BLOGE(sc, "internal mem self test failed\n"); 17636 return (-1); 17637 } 17638 } 17639 17640 bxe_setup_fan_failure_detection(sc); 17641 17642 /* clear PXP2 attentions */ 17643 REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 17644 17645 bxe_enable_blocks_attention(sc); 17646 17647 if (!CHIP_REV_IS_SLOW(sc)) { 17648 ecore_enable_blocks_parity(sc); 17649 } 17650 17651 if (!BXE_NOMCP(sc)) { 17652 if (CHIP_IS_E1x(sc)) { 17653 bxe_common_init_phy(sc); 17654 } 17655 } 17656 17657 return (0); 17658 } 17659 17660 /** 17661 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase. 17662 * 17663 * @sc: driver handle 17664 */ 17665 static int 17666 bxe_init_hw_common_chip(struct bxe_softc *sc) 17667 { 17668 int rc = bxe_init_hw_common(sc); 17669 17670 if (rc) { 17671 return (rc); 17672 } 17673 17674 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 17675 if (!BXE_NOMCP(sc)) { 17676 bxe_common_init_phy(sc); 17677 } 17678 17679 return (0); 17680 } 17681 17682 static int 17683 bxe_init_hw_port(struct bxe_softc *sc) 17684 { 17685 int port = SC_PORT(sc); 17686 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 17687 uint32_t low, high; 17688 uint32_t val; 17689 17690 BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port); 17691 17692 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 17693 17694 ecore_init_block(sc, BLOCK_MISC, init_phase); 17695 ecore_init_block(sc, BLOCK_PXP, init_phase); 17696 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17697 17698 /* 17699 * Timers bug workaround: disables the pf_master bit in pglue at 17700 * common phase, we need to enable it here before any dmae access are 17701 * attempted. Therefore we manually added the enable-master to the 17702 * port phase (it also happens in the function phase) 17703 */ 17704 if (!CHIP_IS_E1x(sc)) { 17705 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17706 } 17707 17708 ecore_init_block(sc, BLOCK_ATC, init_phase); 17709 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17710 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17711 ecore_init_block(sc, BLOCK_QM, init_phase); 17712 17713 ecore_init_block(sc, BLOCK_TCM, init_phase); 17714 ecore_init_block(sc, BLOCK_UCM, init_phase); 17715 ecore_init_block(sc, BLOCK_CCM, init_phase); 17716 ecore_init_block(sc, BLOCK_XCM, init_phase); 17717 17718 /* QM cid (connection) count */ 17719 ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET); 17720 17721 if (CNIC_SUPPORT(sc)) { 17722 ecore_init_block(sc, BLOCK_TM, init_phase); 17723 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20); 17724 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 17725 } 17726 17727 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17728 17729 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17730 17731 if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) { 17732 if (IS_MF(sc)) { 17733 low = (BXE_ONE_PORT(sc) ? 160 : 246); 17734 } else if (sc->mtu > 4096) { 17735 if (BXE_ONE_PORT(sc)) { 17736 low = 160; 17737 } else { 17738 val = sc->mtu; 17739 /* (24*1024 + val*4)/256 */ 17740 low = (96 + (val / 64) + ((val % 64) ? 1 : 0)); 17741 } 17742 } else { 17743 low = (BXE_ONE_PORT(sc) ? 80 : 160); 17744 } 17745 high = (low + 56); /* 14*1024/256 */ 17746 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 17747 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 17748 } 17749 17750 if (CHIP_IS_MODE_4_PORT(sc)) { 17751 REG_WR(sc, SC_PORT(sc) ? 17752 BRB1_REG_MAC_GUARANTIED_1 : 17753 BRB1_REG_MAC_GUARANTIED_0, 40); 17754 } 17755 17756 ecore_init_block(sc, BLOCK_PRS, init_phase); 17757 if (CHIP_IS_E3B0(sc)) { 17758 if (IS_MF_AFEX(sc)) { 17759 /* configure headers for AFEX mode */ 17760 REG_WR(sc, SC_PORT(sc) ? 17761 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17762 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 17763 REG_WR(sc, SC_PORT(sc) ? 17764 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 17765 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 17766 REG_WR(sc, SC_PORT(sc) ? 17767 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 17768 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 17769 } else { 17770 /* Ovlan exists only if we are in multi-function + 17771 * switch-dependent mode, in switch-independent there 17772 * is no ovlan headers 17773 */ 17774 REG_WR(sc, SC_PORT(sc) ? 17775 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17776 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 17777 (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6)); 17778 } 17779 } 17780 17781 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17782 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17783 ecore_init_block(sc, BLOCK_USDM, init_phase); 17784 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17785 17786 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17787 ecore_init_block(sc, BLOCK_USEM, init_phase); 17788 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17789 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17790 17791 ecore_init_block(sc, BLOCK_UPB, init_phase); 17792 ecore_init_block(sc, BLOCK_XPB, init_phase); 17793 17794 ecore_init_block(sc, BLOCK_PBF, init_phase); 17795 17796 if (CHIP_IS_E1x(sc)) { 17797 /* configure PBF to work without PAUSE mtu 9000 */ 17798 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 17799 17800 /* update threshold */ 17801 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 17802 /* update init credit */ 17803 REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 17804 17805 /* probe changes */ 17806 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1); 17807 DELAY(50); 17808 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0); 17809 } 17810 17811 if (CNIC_SUPPORT(sc)) { 17812 ecore_init_block(sc, BLOCK_SRC, init_phase); 17813 } 17814 17815 ecore_init_block(sc, BLOCK_CDU, init_phase); 17816 ecore_init_block(sc, BLOCK_CFC, init_phase); 17817 17818 if (CHIP_IS_E1(sc)) { 17819 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17820 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17821 } 17822 ecore_init_block(sc, BLOCK_HC, init_phase); 17823 17824 ecore_init_block(sc, BLOCK_IGU, init_phase); 17825 17826 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17827 /* init aeu_mask_attn_func_0/1: 17828 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use 17829 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF 17830 * bits 4-7 are used for "per vn group attention" */ 17831 val = IS_MF(sc) ? 0xF7 : 0x7; 17832 /* Enable DCBX attention for all but E1 */ 17833 val |= CHIP_IS_E1(sc) ? 0 : 0x10; 17834 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 17835 17836 ecore_init_block(sc, BLOCK_NIG, init_phase); 17837 17838 if (!CHIP_IS_E1x(sc)) { 17839 /* Bit-map indicating which L2 hdrs may appear after the 17840 * basic Ethernet header 17841 */ 17842 if (IS_MF_AFEX(sc)) { 17843 REG_WR(sc, SC_PORT(sc) ? 17844 NIG_REG_P1_HDRS_AFTER_BASIC : 17845 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 17846 } else { 17847 REG_WR(sc, SC_PORT(sc) ? 17848 NIG_REG_P1_HDRS_AFTER_BASIC : 17849 NIG_REG_P0_HDRS_AFTER_BASIC, 17850 IS_MF_SD(sc) ? 7 : 6); 17851 } 17852 17853 if (CHIP_IS_E3(sc)) { 17854 REG_WR(sc, SC_PORT(sc) ? 17855 NIG_REG_LLH1_MF_MODE : 17856 NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17857 } 17858 } 17859 if (!CHIP_IS_E3(sc)) { 17860 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 17861 } 17862 17863 if (!CHIP_IS_E1(sc)) { 17864 /* 0x2 disable mf_ov, 0x1 enable */ 17865 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 17866 (IS_MF_SD(sc) ? 0x1 : 0x2)); 17867 17868 if (!CHIP_IS_E1x(sc)) { 17869 val = 0; 17870 switch (sc->devinfo.mf_info.mf_mode) { 17871 case MULTI_FUNCTION_SD: 17872 val = 1; 17873 break; 17874 case MULTI_FUNCTION_SI: 17875 case MULTI_FUNCTION_AFEX: 17876 val = 2; 17877 break; 17878 } 17879 17880 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE : 17881 NIG_REG_LLH0_CLS_TYPE), val); 17882 } 17883 REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 17884 REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 17885 REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 17886 } 17887 17888 /* If SPIO5 is set to generate interrupts, enable it for this port */ 17889 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17890 if (val & MISC_SPIO_SPIO5) { 17891 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 17892 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 17893 val = REG_RD(sc, reg_addr); 17894 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 17895 REG_WR(sc, reg_addr, val); 17896 } 17897 17898 return (0); 17899 } 17900 17901 static uint32_t 17902 bxe_flr_clnup_reg_poll(struct bxe_softc *sc, 17903 uint32_t reg, 17904 uint32_t expected, 17905 uint32_t poll_count) 17906 { 17907 uint32_t cur_cnt = poll_count; 17908 uint32_t val; 17909 17910 while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) { 17911 DELAY(FLR_WAIT_INTERVAL); 17912 } 17913 17914 return (val); 17915 } 17916 17917 static int 17918 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc, 17919 uint32_t reg, 17920 char *msg, 17921 uint32_t poll_cnt) 17922 { 17923 uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt); 17924 17925 if (val != 0) { 17926 BLOGE(sc, "%s usage count=%d\n", msg, val); 17927 return (1); 17928 } 17929 17930 return (0); 17931 } 17932 17933 /* Common routines with VF FLR cleanup */ 17934 static uint32_t 17935 bxe_flr_clnup_poll_count(struct bxe_softc *sc) 17936 { 17937 /* adjust polling timeout */ 17938 if (CHIP_REV_IS_EMUL(sc)) { 17939 return (FLR_POLL_CNT * 2000); 17940 } 17941 17942 if (CHIP_REV_IS_FPGA(sc)) { 17943 return (FLR_POLL_CNT * 120); 17944 } 17945 17946 return (FLR_POLL_CNT); 17947 } 17948 17949 static int 17950 bxe_poll_hw_usage_counters(struct bxe_softc *sc, 17951 uint32_t poll_cnt) 17952 { 17953 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 17954 if (bxe_flr_clnup_poll_hw_counter(sc, 17955 CFC_REG_NUM_LCIDS_INSIDE_PF, 17956 "CFC PF usage counter timed out", 17957 poll_cnt)) { 17958 return (1); 17959 } 17960 17961 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 17962 if (bxe_flr_clnup_poll_hw_counter(sc, 17963 DORQ_REG_PF_USAGE_CNT, 17964 "DQ PF usage counter timed out", 17965 poll_cnt)) { 17966 return (1); 17967 } 17968 17969 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 17970 if (bxe_flr_clnup_poll_hw_counter(sc, 17971 QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc), 17972 "QM PF usage counter timed out", 17973 poll_cnt)) { 17974 return (1); 17975 } 17976 17977 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 17978 if (bxe_flr_clnup_poll_hw_counter(sc, 17979 TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc), 17980 "Timers VNIC usage counter timed out", 17981 poll_cnt)) { 17982 return (1); 17983 } 17984 17985 if (bxe_flr_clnup_poll_hw_counter(sc, 17986 TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc), 17987 "Timers NUM_SCANS usage counter timed out", 17988 poll_cnt)) { 17989 return (1); 17990 } 17991 17992 /* Wait DMAE PF usage counter to zero */ 17993 if (bxe_flr_clnup_poll_hw_counter(sc, 17994 dmae_reg_go_c[INIT_DMAE_C(sc)], 17995 "DMAE dommand register timed out", 17996 poll_cnt)) { 17997 return (1); 17998 } 17999 18000 return (0); 18001 } 18002 18003 #define OP_GEN_PARAM(param) \ 18004 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 18005 #define OP_GEN_TYPE(type) \ 18006 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 18007 #define OP_GEN_AGG_VECT(index) \ 18008 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 18009 18010 static int 18011 bxe_send_final_clnup(struct bxe_softc *sc, 18012 uint8_t clnup_func, 18013 uint32_t poll_cnt) 18014 { 18015 uint32_t op_gen_command = 0; 18016 uint32_t comp_addr = (BAR_CSTRORM_INTMEM + 18017 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func)); 18018 int ret = 0; 18019 18020 if (REG_RD(sc, comp_addr)) { 18021 BLOGE(sc, "Cleanup complete was not 0 before sending\n"); 18022 return (1); 18023 } 18024 18025 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 18026 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 18027 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 18028 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 18029 18030 BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n"); 18031 REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command); 18032 18033 if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) { 18034 BLOGE(sc, "FW final cleanup did not succeed\n"); 18035 BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n", 18036 (REG_RD(sc, comp_addr))); 18037 bxe_panic(sc, ("FLR cleanup failed\n")); 18038 return (1); 18039 } 18040 18041 /* Zero completion for nxt FLR */ 18042 REG_WR(sc, comp_addr, 0); 18043 18044 return (ret); 18045 } 18046 18047 static void 18048 bxe_pbf_pN_buf_flushed(struct bxe_softc *sc, 18049 struct pbf_pN_buf_regs *regs, 18050 uint32_t poll_count) 18051 { 18052 uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start; 18053 uint32_t cur_cnt = poll_count; 18054 18055 crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed); 18056 crd = crd_start = REG_RD(sc, regs->crd); 18057 init_crd = REG_RD(sc, regs->init_crd); 18058 18059 BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 18060 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd); 18061 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 18062 18063 while ((crd != init_crd) && 18064 ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) < 18065 (init_crd - crd_start))) { 18066 if (cur_cnt--) { 18067 DELAY(FLR_WAIT_INTERVAL); 18068 crd = REG_RD(sc, regs->crd); 18069 crd_freed = REG_RD(sc, regs->crd_freed); 18070 } else { 18071 BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN); 18072 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd); 18073 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed); 18074 break; 18075 } 18076 } 18077 18078 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n", 18079 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 18080 } 18081 18082 static void 18083 bxe_pbf_pN_cmd_flushed(struct bxe_softc *sc, 18084 struct pbf_pN_cmd_regs *regs, 18085 uint32_t poll_count) 18086 { 18087 uint32_t occup, to_free, freed, freed_start; 18088 uint32_t cur_cnt = poll_count; 18089 18090 occup = to_free = REG_RD(sc, regs->lines_occup); 18091 freed = freed_start = REG_RD(sc, regs->lines_freed); 18092 18093 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 18094 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 18095 18096 while (occup && 18097 ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) { 18098 if (cur_cnt--) { 18099 DELAY(FLR_WAIT_INTERVAL); 18100 occup = REG_RD(sc, regs->lines_occup); 18101 freed = REG_RD(sc, regs->lines_freed); 18102 } else { 18103 BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN); 18104 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 18105 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 18106 break; 18107 } 18108 } 18109 18110 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n", 18111 poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 18112 } 18113 18114 static void 18115 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count) 18116 { 18117 struct pbf_pN_cmd_regs cmd_regs[] = { 18118 {0, (CHIP_IS_E3B0(sc)) ? 18119 PBF_REG_TQ_OCCUPANCY_Q0 : 18120 PBF_REG_P0_TQ_OCCUPANCY, 18121 (CHIP_IS_E3B0(sc)) ? 18122 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 18123 PBF_REG_P0_TQ_LINES_FREED_CNT}, 18124 {1, (CHIP_IS_E3B0(sc)) ? 18125 PBF_REG_TQ_OCCUPANCY_Q1 : 18126 PBF_REG_P1_TQ_OCCUPANCY, 18127 (CHIP_IS_E3B0(sc)) ? 18128 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 18129 PBF_REG_P1_TQ_LINES_FREED_CNT}, 18130 {4, (CHIP_IS_E3B0(sc)) ? 18131 PBF_REG_TQ_OCCUPANCY_LB_Q : 18132 PBF_REG_P4_TQ_OCCUPANCY, 18133 (CHIP_IS_E3B0(sc)) ? 18134 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 18135 PBF_REG_P4_TQ_LINES_FREED_CNT} 18136 }; 18137 18138 struct pbf_pN_buf_regs buf_regs[] = { 18139 {0, (CHIP_IS_E3B0(sc)) ? 18140 PBF_REG_INIT_CRD_Q0 : 18141 PBF_REG_P0_INIT_CRD , 18142 (CHIP_IS_E3B0(sc)) ? 18143 PBF_REG_CREDIT_Q0 : 18144 PBF_REG_P0_CREDIT, 18145 (CHIP_IS_E3B0(sc)) ? 18146 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 18147 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 18148 {1, (CHIP_IS_E3B0(sc)) ? 18149 PBF_REG_INIT_CRD_Q1 : 18150 PBF_REG_P1_INIT_CRD, 18151 (CHIP_IS_E3B0(sc)) ? 18152 PBF_REG_CREDIT_Q1 : 18153 PBF_REG_P1_CREDIT, 18154 (CHIP_IS_E3B0(sc)) ? 18155 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 18156 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 18157 {4, (CHIP_IS_E3B0(sc)) ? 18158 PBF_REG_INIT_CRD_LB_Q : 18159 PBF_REG_P4_INIT_CRD, 18160 (CHIP_IS_E3B0(sc)) ? 18161 PBF_REG_CREDIT_LB_Q : 18162 PBF_REG_P4_CREDIT, 18163 (CHIP_IS_E3B0(sc)) ? 18164 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 18165 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 18166 }; 18167 18168 int i; 18169 18170 /* Verify the command queues are flushed P0, P1, P4 */ 18171 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) { 18172 bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count); 18173 } 18174 18175 /* Verify the transmission buffers are flushed P0, P1, P4 */ 18176 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) { 18177 bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count); 18178 } 18179 } 18180 18181 static void 18182 bxe_hw_enable_status(struct bxe_softc *sc) 18183 { 18184 uint32_t val; 18185 18186 val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF); 18187 BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 18188 18189 val = REG_RD(sc, PBF_REG_DISABLE_PF); 18190 BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val); 18191 18192 val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN); 18193 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 18194 18195 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN); 18196 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 18197 18198 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 18199 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 18200 18201 val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 18202 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 18203 18204 val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 18205 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 18206 18207 val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 18208 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val); 18209 } 18210 18211 static int 18212 bxe_pf_flr_clnup(struct bxe_softc *sc) 18213 { 18214 uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc); 18215 18216 BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc)); 18217 18218 /* Re-enable PF target read access */ 18219 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 18220 18221 /* Poll HW usage counters */ 18222 BLOGD(sc, DBG_LOAD, "Polling usage counters\n"); 18223 if (bxe_poll_hw_usage_counters(sc, poll_cnt)) { 18224 return (-1); 18225 } 18226 18227 /* Zero the igu 'trailing edge' and 'leading edge' */ 18228 18229 /* Send the FW cleanup command */ 18230 if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) { 18231 return (-1); 18232 } 18233 18234 /* ATC cleanup */ 18235 18236 /* Verify TX hw is flushed */ 18237 bxe_tx_hw_flushed(sc, poll_cnt); 18238 18239 /* Wait 100ms (not adjusted according to platform) */ 18240 DELAY(100000); 18241 18242 /* Verify no pending pci transactions */ 18243 if (bxe_is_pcie_pending(sc)) { 18244 BLOGE(sc, "PCIE Transactions still pending\n"); 18245 } 18246 18247 /* Debug */ 18248 bxe_hw_enable_status(sc); 18249 18250 /* 18251 * Master enable - Due to WB DMAE writes performed before this 18252 * register is re-initialized as part of the regular function init 18253 */ 18254 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 18255 18256 return (0); 18257 } 18258 18259 #if 0 18260 static void 18261 bxe_init_searcher(struct bxe_softc *sc) 18262 { 18263 int port = SC_PORT(sc); 18264 ecore_src_init_t2(sc, sc->t2, sc->t2_mapping, SRC_CONN_NUM); 18265 /* T1 hash bits value determines the T1 number of entries */ 18266 REG_WR(sc, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS); 18267 } 18268 #endif 18269 18270 static int 18271 bxe_init_hw_func(struct bxe_softc *sc) 18272 { 18273 int port = SC_PORT(sc); 18274 int func = SC_FUNC(sc); 18275 int init_phase = PHASE_PF0 + func; 18276 struct ecore_ilt *ilt = sc->ilt; 18277 uint16_t cdu_ilt_start; 18278 uint32_t addr, val; 18279 uint32_t main_mem_base, main_mem_size, main_mem_prty_clr; 18280 int i, main_mem_width, rc; 18281 18282 BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func); 18283 18284 /* FLR cleanup */ 18285 if (!CHIP_IS_E1x(sc)) { 18286 rc = bxe_pf_flr_clnup(sc); 18287 if (rc) { 18288 BLOGE(sc, "FLR cleanup failed!\n"); 18289 // XXX bxe_fw_dump(sc); 18290 // XXX bxe_idle_chk(sc); 18291 return (rc); 18292 } 18293 } 18294 18295 /* set MSI reconfigure capability */ 18296 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18297 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 18298 val = REG_RD(sc, addr); 18299 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 18300 REG_WR(sc, addr, val); 18301 } 18302 18303 ecore_init_block(sc, BLOCK_PXP, init_phase); 18304 ecore_init_block(sc, BLOCK_PXP2, init_phase); 18305 18306 ilt = sc->ilt; 18307 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 18308 18309 #if 0 18310 if (IS_SRIOV(sc)) { 18311 cdu_ilt_start += BXE_FIRST_VF_CID/ILT_PAGE_CIDS; 18312 } 18313 cdu_ilt_start = bxe_iov_init_ilt(sc, cdu_ilt_start); 18314 18315 #if (BXE_FIRST_VF_CID > 0) 18316 /* 18317 * If BXE_FIRST_VF_CID > 0 then the PF L2 cids precedes 18318 * those of the VFs, so start line should be reset 18319 */ 18320 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 18321 #endif 18322 #endif 18323 18324 for (i = 0; i < L2_ILT_LINES(sc); i++) { 18325 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt; 18326 ilt->lines[cdu_ilt_start + i].page_mapping = 18327 sc->context[i].vcxt_dma.paddr; 18328 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size; 18329 } 18330 ecore_ilt_init_op(sc, INITOP_SET); 18331 18332 #if 0 18333 if (!CONFIGURE_NIC_MODE(sc)) { 18334 bxe_init_searcher(sc); 18335 REG_WR(sc, PRS_REG_NIC_MODE, 0); 18336 BLOGD(sc, DBG_LOAD, "NIC MODE disabled\n"); 18337 } else 18338 #endif 18339 { 18340 /* Set NIC mode */ 18341 REG_WR(sc, PRS_REG_NIC_MODE, 1); 18342 BLOGD(sc, DBG_LOAD, "NIC MODE configured\n"); 18343 } 18344 18345 if (!CHIP_IS_E1x(sc)) { 18346 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN; 18347 18348 /* Turn on a single ISR mode in IGU if driver is going to use 18349 * INT#x or MSI 18350 */ 18351 if (sc->interrupt_mode != INTR_MODE_MSIX) { 18352 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 18353 } 18354 18355 /* 18356 * Timers workaround bug: function init part. 18357 * Need to wait 20msec after initializing ILT, 18358 * needed to make sure there are no requests in 18359 * one of the PXP internal queues with "old" ILT addresses 18360 */ 18361 DELAY(20000); 18362 18363 /* 18364 * Master enable - Due to WB DMAE writes performed before this 18365 * register is re-initialized as part of the regular function 18366 * init 18367 */ 18368 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 18369 /* Enable the function in IGU */ 18370 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf); 18371 } 18372 18373 sc->dmae_ready = 1; 18374 18375 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 18376 18377 if (!CHIP_IS_E1x(sc)) 18378 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); 18379 18380 ecore_init_block(sc, BLOCK_ATC, init_phase); 18381 ecore_init_block(sc, BLOCK_DMAE, init_phase); 18382 ecore_init_block(sc, BLOCK_NIG, init_phase); 18383 ecore_init_block(sc, BLOCK_SRC, init_phase); 18384 ecore_init_block(sc, BLOCK_MISC, init_phase); 18385 ecore_init_block(sc, BLOCK_TCM, init_phase); 18386 ecore_init_block(sc, BLOCK_UCM, init_phase); 18387 ecore_init_block(sc, BLOCK_CCM, init_phase); 18388 ecore_init_block(sc, BLOCK_XCM, init_phase); 18389 ecore_init_block(sc, BLOCK_TSEM, init_phase); 18390 ecore_init_block(sc, BLOCK_USEM, init_phase); 18391 ecore_init_block(sc, BLOCK_CSEM, init_phase); 18392 ecore_init_block(sc, BLOCK_XSEM, init_phase); 18393 18394 if (!CHIP_IS_E1x(sc)) 18395 REG_WR(sc, QM_REG_PF_EN, 1); 18396 18397 if (!CHIP_IS_E1x(sc)) { 18398 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18399 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18400 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18401 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18402 } 18403 ecore_init_block(sc, BLOCK_QM, init_phase); 18404 18405 ecore_init_block(sc, BLOCK_TM, init_phase); 18406 ecore_init_block(sc, BLOCK_DORQ, init_phase); 18407 18408 bxe_iov_init_dq(sc); 18409 18410 ecore_init_block(sc, BLOCK_BRB1, init_phase); 18411 ecore_init_block(sc, BLOCK_PRS, init_phase); 18412 ecore_init_block(sc, BLOCK_TSDM, init_phase); 18413 ecore_init_block(sc, BLOCK_CSDM, init_phase); 18414 ecore_init_block(sc, BLOCK_USDM, init_phase); 18415 ecore_init_block(sc, BLOCK_XSDM, init_phase); 18416 ecore_init_block(sc, BLOCK_UPB, init_phase); 18417 ecore_init_block(sc, BLOCK_XPB, init_phase); 18418 ecore_init_block(sc, BLOCK_PBF, init_phase); 18419 if (!CHIP_IS_E1x(sc)) 18420 REG_WR(sc, PBF_REG_DISABLE_PF, 0); 18421 18422 ecore_init_block(sc, BLOCK_CDU, init_phase); 18423 18424 ecore_init_block(sc, BLOCK_CFC, init_phase); 18425 18426 if (!CHIP_IS_E1x(sc)) 18427 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1); 18428 18429 if (IS_MF(sc)) { 18430 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 18431 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc)); 18432 } 18433 18434 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 18435 18436 /* HC init per function */ 18437 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18438 if (CHIP_IS_E1H(sc)) { 18439 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 18440 18441 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18442 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18443 } 18444 ecore_init_block(sc, BLOCK_HC, init_phase); 18445 18446 } else { 18447 int num_segs, sb_idx, prod_offset; 18448 18449 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 18450 18451 if (!CHIP_IS_E1x(sc)) { 18452 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18453 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18454 } 18455 18456 ecore_init_block(sc, BLOCK_IGU, init_phase); 18457 18458 if (!CHIP_IS_E1x(sc)) { 18459 int dsb_idx = 0; 18460 /** 18461 * Producer memory: 18462 * E2 mode: address 0-135 match to the mapping memory; 18463 * 136 - PF0 default prod; 137 - PF1 default prod; 18464 * 138 - PF2 default prod; 139 - PF3 default prod; 18465 * 140 - PF0 attn prod; 141 - PF1 attn prod; 18466 * 142 - PF2 attn prod; 143 - PF3 attn prod; 18467 * 144-147 reserved. 18468 * 18469 * E1.5 mode - In backward compatible mode; 18470 * for non default SB; each even line in the memory 18471 * holds the U producer and each odd line hold 18472 * the C producer. The first 128 producers are for 18473 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 18474 * producers are for the DSB for each PF. 18475 * Each PF has five segments: (the order inside each 18476 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 18477 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 18478 * 144-147 attn prods; 18479 */ 18480 /* non-default-status-blocks */ 18481 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18482 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 18483 for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) { 18484 prod_offset = (sc->igu_base_sb + sb_idx) * 18485 num_segs; 18486 18487 for (i = 0; i < num_segs; i++) { 18488 addr = IGU_REG_PROD_CONS_MEMORY + 18489 (prod_offset + i) * 4; 18490 REG_WR(sc, addr, 0); 18491 } 18492 /* send consumer update with value 0 */ 18493 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx, 18494 USTORM_ID, 0, IGU_INT_NOP, 1); 18495 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx); 18496 } 18497 18498 /* default-status-blocks */ 18499 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18500 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 18501 18502 if (CHIP_IS_MODE_4_PORT(sc)) 18503 dsb_idx = SC_FUNC(sc); 18504 else 18505 dsb_idx = SC_VN(sc); 18506 18507 prod_offset = (CHIP_INT_MODE_IS_BC(sc) ? 18508 IGU_BC_BASE_DSB_PROD + dsb_idx : 18509 IGU_NORM_BASE_DSB_PROD + dsb_idx); 18510 18511 /* 18512 * igu prods come in chunks of E1HVN_MAX (4) - 18513 * does not matters what is the current chip mode 18514 */ 18515 for (i = 0; i < (num_segs * E1HVN_MAX); 18516 i += E1HVN_MAX) { 18517 addr = IGU_REG_PROD_CONS_MEMORY + 18518 (prod_offset + i)*4; 18519 REG_WR(sc, addr, 0); 18520 } 18521 /* send consumer update with 0 */ 18522 if (CHIP_INT_MODE_IS_BC(sc)) { 18523 bxe_ack_sb(sc, sc->igu_dsb_id, 18524 USTORM_ID, 0, IGU_INT_NOP, 1); 18525 bxe_ack_sb(sc, sc->igu_dsb_id, 18526 CSTORM_ID, 0, IGU_INT_NOP, 1); 18527 bxe_ack_sb(sc, sc->igu_dsb_id, 18528 XSTORM_ID, 0, IGU_INT_NOP, 1); 18529 bxe_ack_sb(sc, sc->igu_dsb_id, 18530 TSTORM_ID, 0, IGU_INT_NOP, 1); 18531 bxe_ack_sb(sc, sc->igu_dsb_id, 18532 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18533 } else { 18534 bxe_ack_sb(sc, sc->igu_dsb_id, 18535 USTORM_ID, 0, IGU_INT_NOP, 1); 18536 bxe_ack_sb(sc, sc->igu_dsb_id, 18537 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18538 } 18539 bxe_igu_clear_sb(sc, sc->igu_dsb_id); 18540 18541 /* !!! these should become driver const once 18542 rf-tool supports split-68 const */ 18543 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 18544 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 18545 REG_WR(sc, IGU_REG_SB_MASK_LSB, 0); 18546 REG_WR(sc, IGU_REG_SB_MASK_MSB, 0); 18547 REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0); 18548 REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0); 18549 } 18550 } 18551 18552 /* Reset PCIE errors for debug */ 18553 REG_WR(sc, 0x2114, 0xffffffff); 18554 REG_WR(sc, 0x2120, 0xffffffff); 18555 18556 if (CHIP_IS_E1x(sc)) { 18557 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 18558 main_mem_base = HC_REG_MAIN_MEMORY + 18559 SC_PORT(sc) * (main_mem_size * 4); 18560 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 18561 main_mem_width = 8; 18562 18563 val = REG_RD(sc, main_mem_prty_clr); 18564 if (val) { 18565 BLOGD(sc, DBG_LOAD, 18566 "Parity errors in HC block during function init (0x%x)!\n", 18567 val); 18568 } 18569 18570 /* Clear "false" parity errors in MSI-X table */ 18571 for (i = main_mem_base; 18572 i < main_mem_base + main_mem_size * 4; 18573 i += main_mem_width) { 18574 bxe_read_dmae(sc, i, main_mem_width / 4); 18575 bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), 18576 i, main_mem_width / 4); 18577 } 18578 /* Clear HC parity attention */ 18579 REG_RD(sc, main_mem_prty_clr); 18580 } 18581 18582 #if 1 18583 /* Enable STORMs SP logging */ 18584 REG_WR8(sc, BAR_USTRORM_INTMEM + 18585 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18586 REG_WR8(sc, BAR_TSTRORM_INTMEM + 18587 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18588 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18589 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18590 REG_WR8(sc, BAR_XSTRORM_INTMEM + 18591 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18592 #endif 18593 18594 elink_phy_probe(&sc->link_params); 18595 18596 return (0); 18597 } 18598 18599 static void 18600 bxe_link_reset(struct bxe_softc *sc) 18601 { 18602 if (!BXE_NOMCP(sc)) { 18603 BXE_PHY_LOCK(sc); 18604 elink_lfa_reset(&sc->link_params, &sc->link_vars); 18605 BXE_PHY_UNLOCK(sc); 18606 } else { 18607 if (!CHIP_REV_IS_SLOW(sc)) { 18608 BLOGW(sc, "Bootcode is missing - cannot reset link\n"); 18609 } 18610 } 18611 } 18612 18613 static void 18614 bxe_reset_port(struct bxe_softc *sc) 18615 { 18616 int port = SC_PORT(sc); 18617 uint32_t val; 18618 18619 /* reset physical Link */ 18620 bxe_link_reset(sc); 18621 18622 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 18623 18624 /* Do not rcv packets to BRB */ 18625 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 18626 /* Do not direct rcv packets that are not for MCP to the BRB */ 18627 REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 18628 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 18629 18630 /* Configure AEU */ 18631 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 18632 18633 DELAY(100000); 18634 18635 /* Check for BRB port occupancy */ 18636 val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 18637 if (val) { 18638 BLOGD(sc, DBG_LOAD, 18639 "BRB1 is not empty, %d blocks are occupied\n", val); 18640 } 18641 18642 /* TODO: Close Doorbell port? */ 18643 } 18644 18645 static void 18646 bxe_ilt_wr(struct bxe_softc *sc, 18647 uint32_t index, 18648 bus_addr_t addr) 18649 { 18650 int reg; 18651 uint32_t wb_write[2]; 18652 18653 if (CHIP_IS_E1(sc)) { 18654 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 18655 } else { 18656 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 18657 } 18658 18659 wb_write[0] = ONCHIP_ADDR1(addr); 18660 wb_write[1] = ONCHIP_ADDR2(addr); 18661 REG_WR_DMAE(sc, reg, wb_write, 2); 18662 } 18663 18664 static void 18665 bxe_clear_func_ilt(struct bxe_softc *sc, 18666 uint32_t func) 18667 { 18668 uint32_t i, base = FUNC_ILT_BASE(func); 18669 for (i = base; i < base + ILT_PER_FUNC; i++) { 18670 bxe_ilt_wr(sc, i, 0); 18671 } 18672 } 18673 18674 static void 18675 bxe_reset_func(struct bxe_softc *sc) 18676 { 18677 struct bxe_fastpath *fp; 18678 int port = SC_PORT(sc); 18679 int func = SC_FUNC(sc); 18680 int i; 18681 18682 /* Disable the function in the FW */ 18683 REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 18684 REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 18685 REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 18686 REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 18687 18688 /* FP SBs */ 18689 FOR_EACH_ETH_QUEUE(sc, i) { 18690 fp = &sc->fp[i]; 18691 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18692 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 18693 SB_DISABLED); 18694 } 18695 18696 #if 0 18697 if (CNIC_LOADED(sc)) { 18698 /* CNIC SB */ 18699 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18700 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET 18701 (bxe_cnic_fw_sb_id(sc)), SB_DISABLED); 18702 } 18703 #endif 18704 18705 /* SP SB */ 18706 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18707 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 18708 SB_DISABLED); 18709 18710 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) { 18711 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0); 18712 } 18713 18714 /* Configure IGU */ 18715 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18716 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18717 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18718 } else { 18719 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18720 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18721 } 18722 18723 if (CNIC_LOADED(sc)) { 18724 /* Disable Timer scan */ 18725 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 18726 /* 18727 * Wait for at least 10ms and up to 2 second for the timers 18728 * scan to complete 18729 */ 18730 for (i = 0; i < 200; i++) { 18731 DELAY(10000); 18732 if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4)) 18733 break; 18734 } 18735 } 18736 18737 /* Clear ILT */ 18738 bxe_clear_func_ilt(sc, func); 18739 18740 /* 18741 * Timers workaround bug for E2: if this is vnic-3, 18742 * we need to set the entire ilt range for this timers. 18743 */ 18744 if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) { 18745 struct ilt_client_info ilt_cli; 18746 /* use dummy TM client */ 18747 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 18748 ilt_cli.start = 0; 18749 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 18750 ilt_cli.client_num = ILT_CLIENT_TM; 18751 18752 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR); 18753 } 18754 18755 /* this assumes that reset_port() called before reset_func()*/ 18756 if (!CHIP_IS_E1x(sc)) { 18757 bxe_pf_disable(sc); 18758 } 18759 18760 sc->dmae_ready = 0; 18761 } 18762 18763 static int 18764 bxe_gunzip_init(struct bxe_softc *sc) 18765 { 18766 return (0); 18767 } 18768 18769 static void 18770 bxe_gunzip_end(struct bxe_softc *sc) 18771 { 18772 return; 18773 } 18774 18775 static int 18776 bxe_init_firmware(struct bxe_softc *sc) 18777 { 18778 if (CHIP_IS_E1(sc)) { 18779 ecore_init_e1_firmware(sc); 18780 sc->iro_array = e1_iro_arr; 18781 } else if (CHIP_IS_E1H(sc)) { 18782 ecore_init_e1h_firmware(sc); 18783 sc->iro_array = e1h_iro_arr; 18784 } else if (!CHIP_IS_E1x(sc)) { 18785 ecore_init_e2_firmware(sc); 18786 sc->iro_array = e2_iro_arr; 18787 } else { 18788 BLOGE(sc, "Unsupported chip revision\n"); 18789 return (-1); 18790 } 18791 18792 return (0); 18793 } 18794 18795 static void 18796 bxe_release_firmware(struct bxe_softc *sc) 18797 { 18798 /* Do nothing */ 18799 return; 18800 } 18801 18802 static int 18803 ecore_gunzip(struct bxe_softc *sc, 18804 const uint8_t *zbuf, 18805 int len) 18806 { 18807 /* XXX : Implement... */ 18808 BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n"); 18809 return (FALSE); 18810 } 18811 18812 static void 18813 ecore_reg_wr_ind(struct bxe_softc *sc, 18814 uint32_t addr, 18815 uint32_t val) 18816 { 18817 bxe_reg_wr_ind(sc, addr, val); 18818 } 18819 18820 static void 18821 ecore_write_dmae_phys_len(struct bxe_softc *sc, 18822 bus_addr_t phys_addr, 18823 uint32_t addr, 18824 uint32_t len) 18825 { 18826 bxe_write_dmae_phys_len(sc, phys_addr, addr, len); 18827 } 18828 18829 void 18830 ecore_storm_memset_struct(struct bxe_softc *sc, 18831 uint32_t addr, 18832 size_t size, 18833 uint32_t *data) 18834 { 18835 uint8_t i; 18836 for (i = 0; i < size/4; i++) { 18837 REG_WR(sc, addr + (i * 4), data[i]); 18838 } 18839 } 18840 18841