1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 26 * THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #define BXE_DRIVER_VERSION "1.78.91" 33 34 #include "bxe.h" 35 #include "ecore_sp.h" 36 #include "ecore_init.h" 37 #include "ecore_init_ops.h" 38 39 #include "57710_int_offsets.h" 40 #include "57711_int_offsets.h" 41 #include "57712_int_offsets.h" 42 43 /* 44 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these 45 * explicitly here for older kernels that don't include this changeset. 46 */ 47 #ifndef CTLTYPE_U64 48 #define CTLTYPE_U64 CTLTYPE_QUAD 49 #define sysctl_handle_64 sysctl_handle_quad 50 #endif 51 52 /* 53 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these 54 * here as zero(0) for older kernels that don't include this changeset 55 * thereby masking the functionality. 56 */ 57 #ifndef CSUM_TCP_IPV6 58 #define CSUM_TCP_IPV6 0 59 #define CSUM_UDP_IPV6 0 60 #endif 61 62 /* 63 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap 64 * for older kernels that don't include this changeset. 65 */ 66 #if __FreeBSD_version < 900035 67 #define pci_find_cap pci_find_extcap 68 #endif 69 70 #define BXE_DEF_SB_ATT_IDX 0x0001 71 #define BXE_DEF_SB_IDX 0x0002 72 73 /* 74 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per 75 * function HW initialization. 76 */ 77 #define FLR_WAIT_USEC 10000 /* 10 msecs */ 78 #define FLR_WAIT_INTERVAL 50 /* usecs */ 79 #define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */ 80 81 struct pbf_pN_buf_regs { 82 int pN; 83 uint32_t init_crd; 84 uint32_t crd; 85 uint32_t crd_freed; 86 }; 87 88 struct pbf_pN_cmd_regs { 89 int pN; 90 uint32_t lines_occup; 91 uint32_t lines_freed; 92 }; 93 94 /* 95 * PCI Device ID Table used by bxe_probe(). 96 */ 97 #define BXE_DEVDESC_MAX 64 98 static struct bxe_device_type bxe_devs[] = { 99 { 100 BRCM_VENDORID, 101 CHIP_NUM_57710, 102 PCI_ANY_ID, PCI_ANY_ID, 103 "QLogic NetXtreme II BCM57710 10GbE" 104 }, 105 { 106 BRCM_VENDORID, 107 CHIP_NUM_57711, 108 PCI_ANY_ID, PCI_ANY_ID, 109 "QLogic NetXtreme II BCM57711 10GbE" 110 }, 111 { 112 BRCM_VENDORID, 113 CHIP_NUM_57711E, 114 PCI_ANY_ID, PCI_ANY_ID, 115 "QLogic NetXtreme II BCM57711E 10GbE" 116 }, 117 { 118 BRCM_VENDORID, 119 CHIP_NUM_57712, 120 PCI_ANY_ID, PCI_ANY_ID, 121 "QLogic NetXtreme II BCM57712 10GbE" 122 }, 123 { 124 BRCM_VENDORID, 125 CHIP_NUM_57712_MF, 126 PCI_ANY_ID, PCI_ANY_ID, 127 "QLogic NetXtreme II BCM57712 MF 10GbE" 128 }, 129 { 130 BRCM_VENDORID, 131 CHIP_NUM_57800, 132 PCI_ANY_ID, PCI_ANY_ID, 133 "QLogic NetXtreme II BCM57800 10GbE" 134 }, 135 { 136 BRCM_VENDORID, 137 CHIP_NUM_57800_MF, 138 PCI_ANY_ID, PCI_ANY_ID, 139 "QLogic NetXtreme II BCM57800 MF 10GbE" 140 }, 141 { 142 BRCM_VENDORID, 143 CHIP_NUM_57810, 144 PCI_ANY_ID, PCI_ANY_ID, 145 "QLogic NetXtreme II BCM57810 10GbE" 146 }, 147 { 148 BRCM_VENDORID, 149 CHIP_NUM_57810_MF, 150 PCI_ANY_ID, PCI_ANY_ID, 151 "QLogic NetXtreme II BCM57810 MF 10GbE" 152 }, 153 { 154 BRCM_VENDORID, 155 CHIP_NUM_57811, 156 PCI_ANY_ID, PCI_ANY_ID, 157 "QLogic NetXtreme II BCM57811 10GbE" 158 }, 159 { 160 BRCM_VENDORID, 161 CHIP_NUM_57811_MF, 162 PCI_ANY_ID, PCI_ANY_ID, 163 "QLogic NetXtreme II BCM57811 MF 10GbE" 164 }, 165 { 166 BRCM_VENDORID, 167 CHIP_NUM_57840_4_10, 168 PCI_ANY_ID, PCI_ANY_ID, 169 "QLogic NetXtreme II BCM57840 4x10GbE" 170 }, 171 { 172 QLOGIC_VENDORID, 173 CHIP_NUM_57840_4_10, 174 PCI_ANY_ID, PCI_ANY_ID, 175 "QLogic NetXtreme II BCM57840 4x10GbE" 176 }, 177 { 178 BRCM_VENDORID, 179 CHIP_NUM_57840_2_20, 180 PCI_ANY_ID, PCI_ANY_ID, 181 "QLogic NetXtreme II BCM57840 2x20GbE" 182 }, 183 { 184 BRCM_VENDORID, 185 CHIP_NUM_57840_MF, 186 PCI_ANY_ID, PCI_ANY_ID, 187 "QLogic NetXtreme II BCM57840 MF 10GbE" 188 }, 189 { 190 0, 0, 0, 0, NULL 191 } 192 }; 193 194 MALLOC_DECLARE(M_BXE_ILT); 195 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer"); 196 197 /* 198 * FreeBSD device entry points. 199 */ 200 static int bxe_probe(device_t); 201 static int bxe_attach(device_t); 202 static int bxe_detach(device_t); 203 static int bxe_shutdown(device_t); 204 205 /* 206 * FreeBSD KLD module/device interface event handler method. 207 */ 208 static device_method_t bxe_methods[] = { 209 /* Device interface (device_if.h) */ 210 DEVMETHOD(device_probe, bxe_probe), 211 DEVMETHOD(device_attach, bxe_attach), 212 DEVMETHOD(device_detach, bxe_detach), 213 DEVMETHOD(device_shutdown, bxe_shutdown), 214 /* Bus interface (bus_if.h) */ 215 DEVMETHOD(bus_print_child, bus_generic_print_child), 216 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 217 KOBJMETHOD_END 218 }; 219 220 /* 221 * FreeBSD KLD Module data declaration 222 */ 223 static driver_t bxe_driver = { 224 "bxe", /* module name */ 225 bxe_methods, /* event handler */ 226 sizeof(struct bxe_softc) /* extra data */ 227 }; 228 229 /* 230 * FreeBSD dev class is needed to manage dev instances and 231 * to associate with a bus type 232 */ 233 static devclass_t bxe_devclass; 234 235 MODULE_DEPEND(bxe, pci, 1, 1, 1); 236 MODULE_DEPEND(bxe, ether, 1, 1, 1); 237 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0); 238 239 NETDUMP_DEFINE(bxe); 240 241 /* resources needed for unloading a previously loaded device */ 242 243 #define BXE_PREV_WAIT_NEEDED 1 244 struct mtx bxe_prev_mtx; 245 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF); 246 struct bxe_prev_list_node { 247 LIST_ENTRY(bxe_prev_list_node) node; 248 uint8_t bus; 249 uint8_t slot; 250 uint8_t path; 251 uint8_t aer; /* XXX automatic error recovery */ 252 uint8_t undi; 253 }; 254 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list); 255 256 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 257 258 /* Tunable device values... */ 259 260 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters"); 261 262 /* Debug */ 263 unsigned long bxe_debug = 0; 264 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN, 265 &bxe_debug, 0, "Debug logging mode"); 266 267 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 268 static int bxe_interrupt_mode = INTR_MODE_MSIX; 269 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN, 270 &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode"); 271 272 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */ 273 static int bxe_queue_count = 4; 274 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN, 275 &bxe_queue_count, 0, "Multi-Queue queue count"); 276 277 /* max number of buffers per queue (default RX_BD_USABLE) */ 278 static int bxe_max_rx_bufs = 0; 279 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN, 280 &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue"); 281 282 /* Host interrupt coalescing RX tick timer (usecs) */ 283 static int bxe_hc_rx_ticks = 25; 284 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN, 285 &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks"); 286 287 /* Host interrupt coalescing TX tick timer (usecs) */ 288 static int bxe_hc_tx_ticks = 50; 289 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN, 290 &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks"); 291 292 /* Maximum number of Rx packets to process at a time */ 293 static int bxe_rx_budget = 0xffffffff; 294 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN, 295 &bxe_rx_budget, 0, "Rx processing budget"); 296 297 /* Maximum LRO aggregation size */ 298 static int bxe_max_aggregation_size = 0; 299 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN, 300 &bxe_max_aggregation_size, 0, "max aggregation size"); 301 302 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */ 303 static int bxe_mrrs = -1; 304 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN, 305 &bxe_mrrs, 0, "PCIe maximum read request size"); 306 307 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */ 308 static int bxe_autogreeen = 0; 309 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN, 310 &bxe_autogreeen, 0, "AutoGrEEEn support"); 311 312 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */ 313 static int bxe_udp_rss = 0; 314 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN, 315 &bxe_udp_rss, 0, "UDP RSS support"); 316 317 318 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */ 319 320 #define STATS_OFFSET32(stat_name) \ 321 (offsetof(struct bxe_eth_stats, stat_name) / 4) 322 323 #define Q_STATS_OFFSET32(stat_name) \ 324 (offsetof(struct bxe_eth_q_stats, stat_name) / 4) 325 326 static const struct { 327 uint32_t offset; 328 uint32_t size; 329 uint32_t flags; 330 #define STATS_FLAGS_PORT 1 331 #define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */ 332 #define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT) 333 char string[STAT_NAME_LEN]; 334 } bxe_eth_stats_arr[] = { 335 { STATS_OFFSET32(total_bytes_received_hi), 336 8, STATS_FLAGS_BOTH, "rx_bytes" }, 337 { STATS_OFFSET32(error_bytes_received_hi), 338 8, STATS_FLAGS_BOTH, "rx_error_bytes" }, 339 { STATS_OFFSET32(total_unicast_packets_received_hi), 340 8, STATS_FLAGS_BOTH, "rx_ucast_packets" }, 341 { STATS_OFFSET32(total_multicast_packets_received_hi), 342 8, STATS_FLAGS_BOTH, "rx_mcast_packets" }, 343 { STATS_OFFSET32(total_broadcast_packets_received_hi), 344 8, STATS_FLAGS_BOTH, "rx_bcast_packets" }, 345 { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi), 346 8, STATS_FLAGS_PORT, "rx_crc_errors" }, 347 { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi), 348 8, STATS_FLAGS_PORT, "rx_align_errors" }, 349 { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi), 350 8, STATS_FLAGS_PORT, "rx_undersize_packets" }, 351 { STATS_OFFSET32(etherstatsoverrsizepkts_hi), 352 8, STATS_FLAGS_PORT, "rx_oversize_packets" }, 353 { STATS_OFFSET32(rx_stat_etherstatsfragments_hi), 354 8, STATS_FLAGS_PORT, "rx_fragments" }, 355 { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi), 356 8, STATS_FLAGS_PORT, "rx_jabbers" }, 357 { STATS_OFFSET32(no_buff_discard_hi), 358 8, STATS_FLAGS_BOTH, "rx_discards" }, 359 { STATS_OFFSET32(mac_filter_discard), 360 4, STATS_FLAGS_PORT, "rx_filtered_packets" }, 361 { STATS_OFFSET32(mf_tag_discard), 362 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" }, 363 { STATS_OFFSET32(pfc_frames_received_hi), 364 8, STATS_FLAGS_PORT, "pfc_frames_received" }, 365 { STATS_OFFSET32(pfc_frames_sent_hi), 366 8, STATS_FLAGS_PORT, "pfc_frames_sent" }, 367 { STATS_OFFSET32(brb_drop_hi), 368 8, STATS_FLAGS_PORT, "rx_brb_discard" }, 369 { STATS_OFFSET32(brb_truncate_hi), 370 8, STATS_FLAGS_PORT, "rx_brb_truncate" }, 371 { STATS_OFFSET32(pause_frames_received_hi), 372 8, STATS_FLAGS_PORT, "rx_pause_frames" }, 373 { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi), 374 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" }, 375 { STATS_OFFSET32(nig_timer_max), 376 4, STATS_FLAGS_PORT, "rx_constant_pause_events" }, 377 { STATS_OFFSET32(total_bytes_transmitted_hi), 378 8, STATS_FLAGS_BOTH, "tx_bytes" }, 379 { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi), 380 8, STATS_FLAGS_PORT, "tx_error_bytes" }, 381 { STATS_OFFSET32(total_unicast_packets_transmitted_hi), 382 8, STATS_FLAGS_BOTH, "tx_ucast_packets" }, 383 { STATS_OFFSET32(total_multicast_packets_transmitted_hi), 384 8, STATS_FLAGS_BOTH, "tx_mcast_packets" }, 385 { STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 386 8, STATS_FLAGS_BOTH, "tx_bcast_packets" }, 387 { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi), 388 8, STATS_FLAGS_PORT, "tx_mac_errors" }, 389 { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi), 390 8, STATS_FLAGS_PORT, "tx_carrier_errors" }, 391 { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi), 392 8, STATS_FLAGS_PORT, "tx_single_collisions" }, 393 { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi), 394 8, STATS_FLAGS_PORT, "tx_multi_collisions" }, 395 { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi), 396 8, STATS_FLAGS_PORT, "tx_deferred" }, 397 { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi), 398 8, STATS_FLAGS_PORT, "tx_excess_collisions" }, 399 { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi), 400 8, STATS_FLAGS_PORT, "tx_late_collisions" }, 401 { STATS_OFFSET32(tx_stat_etherstatscollisions_hi), 402 8, STATS_FLAGS_PORT, "tx_total_collisions" }, 403 { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi), 404 8, STATS_FLAGS_PORT, "tx_64_byte_packets" }, 405 { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi), 406 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" }, 407 { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi), 408 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" }, 409 { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi), 410 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" }, 411 { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi), 412 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" }, 413 { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi), 414 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" }, 415 { STATS_OFFSET32(etherstatspktsover1522octets_hi), 416 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" }, 417 { STATS_OFFSET32(pause_frames_sent_hi), 418 8, STATS_FLAGS_PORT, "tx_pause_frames" }, 419 { STATS_OFFSET32(total_tpa_aggregations_hi), 420 8, STATS_FLAGS_FUNC, "tpa_aggregations" }, 421 { STATS_OFFSET32(total_tpa_aggregated_frames_hi), 422 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"}, 423 { STATS_OFFSET32(total_tpa_bytes_hi), 424 8, STATS_FLAGS_FUNC, "tpa_bytes"}, 425 { STATS_OFFSET32(eee_tx_lpi), 426 4, STATS_FLAGS_PORT, "eee_tx_lpi"}, 427 { STATS_OFFSET32(rx_calls), 428 4, STATS_FLAGS_FUNC, "rx_calls"}, 429 { STATS_OFFSET32(rx_pkts), 430 4, STATS_FLAGS_FUNC, "rx_pkts"}, 431 { STATS_OFFSET32(rx_tpa_pkts), 432 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"}, 433 { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts), 434 4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"}, 435 { STATS_OFFSET32(rx_bxe_service_rxsgl), 436 4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"}, 437 { STATS_OFFSET32(rx_jumbo_sge_pkts), 438 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"}, 439 { STATS_OFFSET32(rx_soft_errors), 440 4, STATS_FLAGS_FUNC, "rx_soft_errors"}, 441 { STATS_OFFSET32(rx_hw_csum_errors), 442 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"}, 443 { STATS_OFFSET32(rx_ofld_frames_csum_ip), 444 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"}, 445 { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 446 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"}, 447 { STATS_OFFSET32(rx_budget_reached), 448 4, STATS_FLAGS_FUNC, "rx_budget_reached"}, 449 { STATS_OFFSET32(tx_pkts), 450 4, STATS_FLAGS_FUNC, "tx_pkts"}, 451 { STATS_OFFSET32(tx_soft_errors), 452 4, STATS_FLAGS_FUNC, "tx_soft_errors"}, 453 { STATS_OFFSET32(tx_ofld_frames_csum_ip), 454 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"}, 455 { STATS_OFFSET32(tx_ofld_frames_csum_tcp), 456 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"}, 457 { STATS_OFFSET32(tx_ofld_frames_csum_udp), 458 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"}, 459 { STATS_OFFSET32(tx_ofld_frames_lso), 460 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"}, 461 { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 462 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"}, 463 { STATS_OFFSET32(tx_encap_failures), 464 4, STATS_FLAGS_FUNC, "tx_encap_failures"}, 465 { STATS_OFFSET32(tx_hw_queue_full), 466 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"}, 467 { STATS_OFFSET32(tx_hw_max_queue_depth), 468 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"}, 469 { STATS_OFFSET32(tx_dma_mapping_failure), 470 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"}, 471 { STATS_OFFSET32(tx_max_drbr_queue_depth), 472 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"}, 473 { STATS_OFFSET32(tx_window_violation_std), 474 4, STATS_FLAGS_FUNC, "tx_window_violation_std"}, 475 { STATS_OFFSET32(tx_window_violation_tso), 476 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"}, 477 { STATS_OFFSET32(tx_chain_lost_mbuf), 478 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"}, 479 { STATS_OFFSET32(tx_frames_deferred), 480 4, STATS_FLAGS_FUNC, "tx_frames_deferred"}, 481 { STATS_OFFSET32(tx_queue_xoff), 482 4, STATS_FLAGS_FUNC, "tx_queue_xoff"}, 483 { STATS_OFFSET32(mbuf_defrag_attempts), 484 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"}, 485 { STATS_OFFSET32(mbuf_defrag_failures), 486 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"}, 487 { STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 488 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"}, 489 { STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 490 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"}, 491 { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 492 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"}, 493 { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 494 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"}, 495 { STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 496 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"}, 497 { STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 498 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"}, 499 { STATS_OFFSET32(mbuf_alloc_tx), 500 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"}, 501 { STATS_OFFSET32(mbuf_alloc_rx), 502 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"}, 503 { STATS_OFFSET32(mbuf_alloc_sge), 504 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"}, 505 { STATS_OFFSET32(mbuf_alloc_tpa), 506 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}, 507 { STATS_OFFSET32(tx_queue_full_return), 508 4, STATS_FLAGS_FUNC, "tx_queue_full_return"}, 509 { STATS_OFFSET32(bxe_tx_mq_sc_state_failures), 510 4, STATS_FLAGS_FUNC, "bxe_tx_mq_sc_state_failures"}, 511 { STATS_OFFSET32(tx_request_link_down_failures), 512 4, STATS_FLAGS_FUNC, "tx_request_link_down_failures"}, 513 { STATS_OFFSET32(bd_avail_too_less_failures), 514 4, STATS_FLAGS_FUNC, "bd_avail_too_less_failures"}, 515 { STATS_OFFSET32(tx_mq_not_empty), 516 4, STATS_FLAGS_FUNC, "tx_mq_not_empty"}, 517 { STATS_OFFSET32(nsegs_path1_errors), 518 4, STATS_FLAGS_FUNC, "nsegs_path1_errors"}, 519 { STATS_OFFSET32(nsegs_path2_errors), 520 4, STATS_FLAGS_FUNC, "nsegs_path2_errors"} 521 522 523 }; 524 525 static const struct { 526 uint32_t offset; 527 uint32_t size; 528 char string[STAT_NAME_LEN]; 529 } bxe_eth_q_stats_arr[] = { 530 { Q_STATS_OFFSET32(total_bytes_received_hi), 531 8, "rx_bytes" }, 532 { Q_STATS_OFFSET32(total_unicast_packets_received_hi), 533 8, "rx_ucast_packets" }, 534 { Q_STATS_OFFSET32(total_multicast_packets_received_hi), 535 8, "rx_mcast_packets" }, 536 { Q_STATS_OFFSET32(total_broadcast_packets_received_hi), 537 8, "rx_bcast_packets" }, 538 { Q_STATS_OFFSET32(no_buff_discard_hi), 539 8, "rx_discards" }, 540 { Q_STATS_OFFSET32(total_bytes_transmitted_hi), 541 8, "tx_bytes" }, 542 { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi), 543 8, "tx_ucast_packets" }, 544 { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi), 545 8, "tx_mcast_packets" }, 546 { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 547 8, "tx_bcast_packets" }, 548 { Q_STATS_OFFSET32(total_tpa_aggregations_hi), 549 8, "tpa_aggregations" }, 550 { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi), 551 8, "tpa_aggregated_frames"}, 552 { Q_STATS_OFFSET32(total_tpa_bytes_hi), 553 8, "tpa_bytes"}, 554 { Q_STATS_OFFSET32(rx_calls), 555 4, "rx_calls"}, 556 { Q_STATS_OFFSET32(rx_pkts), 557 4, "rx_pkts"}, 558 { Q_STATS_OFFSET32(rx_tpa_pkts), 559 4, "rx_tpa_pkts"}, 560 { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts), 561 4, "rx_erroneous_jumbo_sge_pkts"}, 562 { Q_STATS_OFFSET32(rx_bxe_service_rxsgl), 563 4, "rx_bxe_service_rxsgl"}, 564 { Q_STATS_OFFSET32(rx_jumbo_sge_pkts), 565 4, "rx_jumbo_sge_pkts"}, 566 { Q_STATS_OFFSET32(rx_soft_errors), 567 4, "rx_soft_errors"}, 568 { Q_STATS_OFFSET32(rx_hw_csum_errors), 569 4, "rx_hw_csum_errors"}, 570 { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip), 571 4, "rx_ofld_frames_csum_ip"}, 572 { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 573 4, "rx_ofld_frames_csum_tcp_udp"}, 574 { Q_STATS_OFFSET32(rx_budget_reached), 575 4, "rx_budget_reached"}, 576 { Q_STATS_OFFSET32(tx_pkts), 577 4, "tx_pkts"}, 578 { Q_STATS_OFFSET32(tx_soft_errors), 579 4, "tx_soft_errors"}, 580 { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip), 581 4, "tx_ofld_frames_csum_ip"}, 582 { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp), 583 4, "tx_ofld_frames_csum_tcp"}, 584 { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp), 585 4, "tx_ofld_frames_csum_udp"}, 586 { Q_STATS_OFFSET32(tx_ofld_frames_lso), 587 4, "tx_ofld_frames_lso"}, 588 { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 589 4, "tx_ofld_frames_lso_hdr_splits"}, 590 { Q_STATS_OFFSET32(tx_encap_failures), 591 4, "tx_encap_failures"}, 592 { Q_STATS_OFFSET32(tx_hw_queue_full), 593 4, "tx_hw_queue_full"}, 594 { Q_STATS_OFFSET32(tx_hw_max_queue_depth), 595 4, "tx_hw_max_queue_depth"}, 596 { Q_STATS_OFFSET32(tx_dma_mapping_failure), 597 4, "tx_dma_mapping_failure"}, 598 { Q_STATS_OFFSET32(tx_max_drbr_queue_depth), 599 4, "tx_max_drbr_queue_depth"}, 600 { Q_STATS_OFFSET32(tx_window_violation_std), 601 4, "tx_window_violation_std"}, 602 { Q_STATS_OFFSET32(tx_window_violation_tso), 603 4, "tx_window_violation_tso"}, 604 { Q_STATS_OFFSET32(tx_chain_lost_mbuf), 605 4, "tx_chain_lost_mbuf"}, 606 { Q_STATS_OFFSET32(tx_frames_deferred), 607 4, "tx_frames_deferred"}, 608 { Q_STATS_OFFSET32(tx_queue_xoff), 609 4, "tx_queue_xoff"}, 610 { Q_STATS_OFFSET32(mbuf_defrag_attempts), 611 4, "mbuf_defrag_attempts"}, 612 { Q_STATS_OFFSET32(mbuf_defrag_failures), 613 4, "mbuf_defrag_failures"}, 614 { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 615 4, "mbuf_rx_bd_alloc_failed"}, 616 { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 617 4, "mbuf_rx_bd_mapping_failed"}, 618 { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 619 4, "mbuf_rx_tpa_alloc_failed"}, 620 { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 621 4, "mbuf_rx_tpa_mapping_failed"}, 622 { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 623 4, "mbuf_rx_sge_alloc_failed"}, 624 { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 625 4, "mbuf_rx_sge_mapping_failed"}, 626 { Q_STATS_OFFSET32(mbuf_alloc_tx), 627 4, "mbuf_alloc_tx"}, 628 { Q_STATS_OFFSET32(mbuf_alloc_rx), 629 4, "mbuf_alloc_rx"}, 630 { Q_STATS_OFFSET32(mbuf_alloc_sge), 631 4, "mbuf_alloc_sge"}, 632 { Q_STATS_OFFSET32(mbuf_alloc_tpa), 633 4, "mbuf_alloc_tpa"}, 634 { Q_STATS_OFFSET32(tx_queue_full_return), 635 4, "tx_queue_full_return"}, 636 { Q_STATS_OFFSET32(bxe_tx_mq_sc_state_failures), 637 4, "bxe_tx_mq_sc_state_failures"}, 638 { Q_STATS_OFFSET32(tx_request_link_down_failures), 639 4, "tx_request_link_down_failures"}, 640 { Q_STATS_OFFSET32(bd_avail_too_less_failures), 641 4, "bd_avail_too_less_failures"}, 642 { Q_STATS_OFFSET32(tx_mq_not_empty), 643 4, "tx_mq_not_empty"}, 644 { Q_STATS_OFFSET32(nsegs_path1_errors), 645 4, "nsegs_path1_errors"}, 646 { Q_STATS_OFFSET32(nsegs_path2_errors), 647 4, "nsegs_path2_errors"} 648 649 650 }; 651 652 #define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr) 653 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr) 654 655 656 static void bxe_cmng_fns_init(struct bxe_softc *sc, 657 uint8_t read_cfg, 658 uint8_t cmng_type); 659 static int bxe_get_cmng_fns_mode(struct bxe_softc *sc); 660 static void storm_memset_cmng(struct bxe_softc *sc, 661 struct cmng_init *cmng, 662 uint8_t port); 663 static void bxe_set_reset_global(struct bxe_softc *sc); 664 static void bxe_set_reset_in_progress(struct bxe_softc *sc); 665 static uint8_t bxe_reset_is_done(struct bxe_softc *sc, 666 int engine); 667 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc); 668 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc, 669 uint8_t *global, 670 uint8_t print); 671 static void bxe_int_disable(struct bxe_softc *sc); 672 static int bxe_release_leader_lock(struct bxe_softc *sc); 673 static void bxe_pf_disable(struct bxe_softc *sc); 674 static void bxe_free_fp_buffers(struct bxe_softc *sc); 675 static inline void bxe_update_rx_prod(struct bxe_softc *sc, 676 struct bxe_fastpath *fp, 677 uint16_t rx_bd_prod, 678 uint16_t rx_cq_prod, 679 uint16_t rx_sge_prod); 680 static void bxe_link_report_locked(struct bxe_softc *sc); 681 static void bxe_link_report(struct bxe_softc *sc); 682 static void bxe_link_status_update(struct bxe_softc *sc); 683 static void bxe_periodic_callout_func(void *xsc); 684 static void bxe_periodic_start(struct bxe_softc *sc); 685 static void bxe_periodic_stop(struct bxe_softc *sc); 686 static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 687 uint16_t prev_index, 688 uint16_t index); 689 static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 690 int queue); 691 static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 692 uint16_t index); 693 static uint8_t bxe_txeof(struct bxe_softc *sc, 694 struct bxe_fastpath *fp); 695 static void bxe_task_fp(struct bxe_fastpath *fp); 696 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc, 697 struct mbuf *m, 698 uint8_t contents); 699 static int bxe_alloc_mem(struct bxe_softc *sc); 700 static void bxe_free_mem(struct bxe_softc *sc); 701 static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc); 702 static void bxe_free_fw_stats_mem(struct bxe_softc *sc); 703 static int bxe_interrupt_attach(struct bxe_softc *sc); 704 static void bxe_interrupt_detach(struct bxe_softc *sc); 705 static void bxe_set_rx_mode(struct bxe_softc *sc); 706 static int bxe_init_locked(struct bxe_softc *sc); 707 static int bxe_stop_locked(struct bxe_softc *sc); 708 static __noinline int bxe_nic_load(struct bxe_softc *sc, 709 int load_mode); 710 static __noinline int bxe_nic_unload(struct bxe_softc *sc, 711 uint32_t unload_mode, 712 uint8_t keep_link); 713 714 static void bxe_handle_sp_tq(void *context, int pending); 715 static void bxe_handle_fp_tq(void *context, int pending); 716 717 static int bxe_add_cdev(struct bxe_softc *sc); 718 static void bxe_del_cdev(struct bxe_softc *sc); 719 int bxe_grc_dump(struct bxe_softc *sc); 720 static int bxe_alloc_buf_rings(struct bxe_softc *sc); 721 static void bxe_free_buf_rings(struct bxe_softc *sc); 722 723 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */ 724 uint32_t 725 calc_crc32(uint8_t *crc32_packet, 726 uint32_t crc32_length, 727 uint32_t crc32_seed, 728 uint8_t complement) 729 { 730 uint32_t byte = 0; 731 uint32_t bit = 0; 732 uint8_t msb = 0; 733 uint32_t temp = 0; 734 uint32_t shft = 0; 735 uint8_t current_byte = 0; 736 uint32_t crc32_result = crc32_seed; 737 const uint32_t CRC32_POLY = 0x1edc6f41; 738 739 if ((crc32_packet == NULL) || 740 (crc32_length == 0) || 741 ((crc32_length % 8) != 0)) 742 { 743 return (crc32_result); 744 } 745 746 for (byte = 0; byte < crc32_length; byte = byte + 1) 747 { 748 current_byte = crc32_packet[byte]; 749 for (bit = 0; bit < 8; bit = bit + 1) 750 { 751 /* msb = crc32_result[31]; */ 752 msb = (uint8_t)(crc32_result >> 31); 753 754 crc32_result = crc32_result << 1; 755 756 /* it (msb != current_byte[bit]) */ 757 if (msb != (0x1 & (current_byte >> bit))) 758 { 759 crc32_result = crc32_result ^ CRC32_POLY; 760 /* crc32_result[0] = 1 */ 761 crc32_result |= 1; 762 } 763 } 764 } 765 766 /* Last step is to: 767 * 1. "mirror" every bit 768 * 2. swap the 4 bytes 769 * 3. complement each bit 770 */ 771 772 /* Mirror */ 773 temp = crc32_result; 774 shft = sizeof(crc32_result) * 8 - 1; 775 776 for (crc32_result >>= 1; crc32_result; crc32_result >>= 1) 777 { 778 temp <<= 1; 779 temp |= crc32_result & 1; 780 shft-- ; 781 } 782 783 /* temp[31-bit] = crc32_result[bit] */ 784 temp <<= shft; 785 786 /* Swap */ 787 /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */ 788 { 789 uint32_t t0, t1, t2, t3; 790 t0 = (0x000000ff & (temp >> 24)); 791 t1 = (0x0000ff00 & (temp >> 8)); 792 t2 = (0x00ff0000 & (temp << 8)); 793 t3 = (0xff000000 & (temp << 24)); 794 crc32_result = t0 | t1 | t2 | t3; 795 } 796 797 /* Complement */ 798 if (complement) 799 { 800 crc32_result = ~crc32_result; 801 } 802 803 return (crc32_result); 804 } 805 806 int 807 bxe_test_bit(int nr, 808 volatile unsigned long *addr) 809 { 810 return ((atomic_load_acq_long(addr) & (1 << nr)) != 0); 811 } 812 813 void 814 bxe_set_bit(unsigned int nr, 815 volatile unsigned long *addr) 816 { 817 atomic_set_acq_long(addr, (1 << nr)); 818 } 819 820 void 821 bxe_clear_bit(int nr, 822 volatile unsigned long *addr) 823 { 824 atomic_clear_acq_long(addr, (1 << nr)); 825 } 826 827 int 828 bxe_test_and_set_bit(int nr, 829 volatile unsigned long *addr) 830 { 831 unsigned long x; 832 nr = (1 << nr); 833 do { 834 x = *addr; 835 } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0); 836 // if (x & nr) bit_was_set; else bit_was_not_set; 837 return (x & nr); 838 } 839 840 int 841 bxe_test_and_clear_bit(int nr, 842 volatile unsigned long *addr) 843 { 844 unsigned long x; 845 nr = (1 << nr); 846 do { 847 x = *addr; 848 } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0); 849 // if (x & nr) bit_was_set; else bit_was_not_set; 850 return (x & nr); 851 } 852 853 int 854 bxe_cmpxchg(volatile int *addr, 855 int old, 856 int new) 857 { 858 int x; 859 do { 860 x = *addr; 861 } while (atomic_cmpset_acq_int(addr, old, new) == 0); 862 return (x); 863 } 864 865 /* 866 * Get DMA memory from the OS. 867 * 868 * Validates that the OS has provided DMA buffers in response to a 869 * bus_dmamap_load call and saves the physical address of those buffers. 870 * When the callback is used the OS will return 0 for the mapping function 871 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any 872 * failures back to the caller. 873 * 874 * Returns: 875 * Nothing. 876 */ 877 static void 878 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 879 { 880 struct bxe_dma *dma = arg; 881 882 if (error) { 883 dma->paddr = 0; 884 dma->nseg = 0; 885 BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error); 886 } else { 887 dma->paddr = segs->ds_addr; 888 dma->nseg = nseg; 889 } 890 } 891 892 /* 893 * Allocate a block of memory and map it for DMA. No partial completions 894 * allowed and release any resources acquired if we can't acquire all 895 * resources. 896 * 897 * Returns: 898 * 0 = Success, !0 = Failure 899 */ 900 int 901 bxe_dma_alloc(struct bxe_softc *sc, 902 bus_size_t size, 903 struct bxe_dma *dma, 904 const char *msg) 905 { 906 int rc; 907 908 if (dma->size > 0) { 909 BLOGE(sc, "dma block '%s' already has size %lu\n", msg, 910 (unsigned long)dma->size); 911 return (1); 912 } 913 914 memset(dma, 0, sizeof(*dma)); /* sanity */ 915 dma->sc = sc; 916 dma->size = size; 917 snprintf(dma->msg, sizeof(dma->msg), "%s", msg); 918 919 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 920 BCM_PAGE_SIZE, /* alignment */ 921 0, /* boundary limit */ 922 BUS_SPACE_MAXADDR, /* restricted low */ 923 BUS_SPACE_MAXADDR, /* restricted hi */ 924 NULL, /* addr filter() */ 925 NULL, /* addr filter() arg */ 926 size, /* max map size */ 927 1, /* num discontinuous */ 928 size, /* max seg size */ 929 BUS_DMA_ALLOCNOW, /* flags */ 930 NULL, /* lock() */ 931 NULL, /* lock() arg */ 932 &dma->tag); /* returned dma tag */ 933 if (rc != 0) { 934 BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc); 935 memset(dma, 0, sizeof(*dma)); 936 return (1); 937 } 938 939 rc = bus_dmamem_alloc(dma->tag, 940 (void **)&dma->vaddr, 941 (BUS_DMA_NOWAIT | BUS_DMA_ZERO), 942 &dma->map); 943 if (rc != 0) { 944 BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc); 945 bus_dma_tag_destroy(dma->tag); 946 memset(dma, 0, sizeof(*dma)); 947 return (1); 948 } 949 950 rc = bus_dmamap_load(dma->tag, 951 dma->map, 952 dma->vaddr, 953 size, 954 bxe_dma_map_addr, /* BLOGD in here */ 955 dma, 956 BUS_DMA_NOWAIT); 957 if (rc != 0) { 958 BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc); 959 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 960 bus_dma_tag_destroy(dma->tag); 961 memset(dma, 0, sizeof(*dma)); 962 return (1); 963 } 964 965 return (0); 966 } 967 968 void 969 bxe_dma_free(struct bxe_softc *sc, 970 struct bxe_dma *dma) 971 { 972 if (dma->size > 0) { 973 DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL")); 974 975 bus_dmamap_sync(dma->tag, dma->map, 976 (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)); 977 bus_dmamap_unload(dma->tag, dma->map); 978 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 979 bus_dma_tag_destroy(dma->tag); 980 } 981 982 memset(dma, 0, sizeof(*dma)); 983 } 984 985 /* 986 * These indirect read and write routines are only during init. 987 * The locking is handled by the MCP. 988 */ 989 990 void 991 bxe_reg_wr_ind(struct bxe_softc *sc, 992 uint32_t addr, 993 uint32_t val) 994 { 995 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 996 pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4); 997 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 998 } 999 1000 uint32_t 1001 bxe_reg_rd_ind(struct bxe_softc *sc, 1002 uint32_t addr) 1003 { 1004 uint32_t val; 1005 1006 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 1007 val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4); 1008 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 1009 1010 return (val); 1011 } 1012 1013 static int 1014 bxe_acquire_hw_lock(struct bxe_softc *sc, 1015 uint32_t resource) 1016 { 1017 uint32_t lock_status; 1018 uint32_t resource_bit = (1 << resource); 1019 int func = SC_FUNC(sc); 1020 uint32_t hw_lock_control_reg; 1021 int cnt; 1022 1023 /* validate the resource is within range */ 1024 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1025 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)" 1026 " resource_bit 0x%x\n", resource, resource_bit); 1027 return (-1); 1028 } 1029 1030 if (func <= 5) { 1031 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1032 } else { 1033 hw_lock_control_reg = 1034 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1035 } 1036 1037 /* validate the resource is not already taken */ 1038 lock_status = REG_RD(sc, hw_lock_control_reg); 1039 if (lock_status & resource_bit) { 1040 BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n", 1041 resource, lock_status, resource_bit); 1042 return (-1); 1043 } 1044 1045 /* try every 5ms for 5 seconds */ 1046 for (cnt = 0; cnt < 1000; cnt++) { 1047 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit); 1048 lock_status = REG_RD(sc, hw_lock_control_reg); 1049 if (lock_status & resource_bit) { 1050 return (0); 1051 } 1052 DELAY(5000); 1053 } 1054 1055 BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n", 1056 resource, resource_bit); 1057 return (-1); 1058 } 1059 1060 static int 1061 bxe_release_hw_lock(struct bxe_softc *sc, 1062 uint32_t resource) 1063 { 1064 uint32_t lock_status; 1065 uint32_t resource_bit = (1 << resource); 1066 int func = SC_FUNC(sc); 1067 uint32_t hw_lock_control_reg; 1068 1069 /* validate the resource is within range */ 1070 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1071 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)" 1072 " resource_bit 0x%x\n", resource, resource_bit); 1073 return (-1); 1074 } 1075 1076 if (func <= 5) { 1077 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1078 } else { 1079 hw_lock_control_reg = 1080 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1081 } 1082 1083 /* validate the resource is currently taken */ 1084 lock_status = REG_RD(sc, hw_lock_control_reg); 1085 if (!(lock_status & resource_bit)) { 1086 BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n", 1087 resource, lock_status, resource_bit); 1088 return (-1); 1089 } 1090 1091 REG_WR(sc, hw_lock_control_reg, resource_bit); 1092 return (0); 1093 } 1094 static void bxe_acquire_phy_lock(struct bxe_softc *sc) 1095 { 1096 BXE_PHY_LOCK(sc); 1097 bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1098 } 1099 1100 static void bxe_release_phy_lock(struct bxe_softc *sc) 1101 { 1102 bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1103 BXE_PHY_UNLOCK(sc); 1104 } 1105 /* 1106 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise, 1107 * had we done things the other way around, if two pfs from the same port 1108 * would attempt to access nvram at the same time, we could run into a 1109 * scenario such as: 1110 * pf A takes the port lock. 1111 * pf B succeeds in taking the same lock since they are from the same port. 1112 * pf A takes the per pf misc lock. Performs eeprom access. 1113 * pf A finishes. Unlocks the per pf misc lock. 1114 * Pf B takes the lock and proceeds to perform it's own access. 1115 * pf A unlocks the per port lock, while pf B is still working (!). 1116 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own 1117 * access corrupted by pf B).* 1118 */ 1119 static int 1120 bxe_acquire_nvram_lock(struct bxe_softc *sc) 1121 { 1122 int port = SC_PORT(sc); 1123 int count, i; 1124 uint32_t val = 0; 1125 1126 /* acquire HW lock: protect against other PFs in PF Direct Assignment */ 1127 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1128 1129 /* adjust timeout for emulation/FPGA */ 1130 count = NVRAM_TIMEOUT_COUNT; 1131 if (CHIP_REV_IS_SLOW(sc)) { 1132 count *= 100; 1133 } 1134 1135 /* request access to nvram interface */ 1136 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1137 (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port)); 1138 1139 for (i = 0; i < count*10; i++) { 1140 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1141 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1142 break; 1143 } 1144 1145 DELAY(5); 1146 } 1147 1148 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1149 BLOGE(sc, "Cannot get access to nvram interface " 1150 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n", 1151 port, val); 1152 return (-1); 1153 } 1154 1155 return (0); 1156 } 1157 1158 static int 1159 bxe_release_nvram_lock(struct bxe_softc *sc) 1160 { 1161 int port = SC_PORT(sc); 1162 int count, i; 1163 uint32_t val = 0; 1164 1165 /* adjust timeout for emulation/FPGA */ 1166 count = NVRAM_TIMEOUT_COUNT; 1167 if (CHIP_REV_IS_SLOW(sc)) { 1168 count *= 100; 1169 } 1170 1171 /* relinquish nvram interface */ 1172 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1173 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port)); 1174 1175 for (i = 0; i < count*10; i++) { 1176 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1177 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1178 break; 1179 } 1180 1181 DELAY(5); 1182 } 1183 1184 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1185 BLOGE(sc, "Cannot free access to nvram interface " 1186 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n", 1187 port, val); 1188 return (-1); 1189 } 1190 1191 /* release HW lock: protect against other PFs in PF Direct Assignment */ 1192 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1193 1194 return (0); 1195 } 1196 1197 static void 1198 bxe_enable_nvram_access(struct bxe_softc *sc) 1199 { 1200 uint32_t val; 1201 1202 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1203 1204 /* enable both bits, even on read */ 1205 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1206 (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN)); 1207 } 1208 1209 static void 1210 bxe_disable_nvram_access(struct bxe_softc *sc) 1211 { 1212 uint32_t val; 1213 1214 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1215 1216 /* disable both bits, even after read */ 1217 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1218 (val & ~(MCPR_NVM_ACCESS_ENABLE_EN | 1219 MCPR_NVM_ACCESS_ENABLE_WR_EN))); 1220 } 1221 1222 static int 1223 bxe_nvram_read_dword(struct bxe_softc *sc, 1224 uint32_t offset, 1225 uint32_t *ret_val, 1226 uint32_t cmd_flags) 1227 { 1228 int count, i, rc; 1229 uint32_t val; 1230 1231 /* build the command word */ 1232 cmd_flags |= MCPR_NVM_COMMAND_DOIT; 1233 1234 /* need to clear DONE bit separately */ 1235 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1236 1237 /* address of the NVRAM to read from */ 1238 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1239 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1240 1241 /* issue a read command */ 1242 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1243 1244 /* adjust timeout for emulation/FPGA */ 1245 count = NVRAM_TIMEOUT_COUNT; 1246 if (CHIP_REV_IS_SLOW(sc)) { 1247 count *= 100; 1248 } 1249 1250 /* wait for completion */ 1251 *ret_val = 0; 1252 rc = -1; 1253 for (i = 0; i < count; i++) { 1254 DELAY(5); 1255 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1256 1257 if (val & MCPR_NVM_COMMAND_DONE) { 1258 val = REG_RD(sc, MCP_REG_MCPR_NVM_READ); 1259 /* we read nvram data in cpu order 1260 * but ethtool sees it as an array of bytes 1261 * converting to big-endian will do the work 1262 */ 1263 *ret_val = htobe32(val); 1264 rc = 0; 1265 break; 1266 } 1267 } 1268 1269 if (rc == -1) { 1270 BLOGE(sc, "nvram read timeout expired " 1271 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n", 1272 offset, cmd_flags, val); 1273 } 1274 1275 return (rc); 1276 } 1277 1278 static int 1279 bxe_nvram_read(struct bxe_softc *sc, 1280 uint32_t offset, 1281 uint8_t *ret_buf, 1282 int buf_size) 1283 { 1284 uint32_t cmd_flags; 1285 uint32_t val; 1286 int rc; 1287 1288 if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) { 1289 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1290 offset, buf_size); 1291 return (-1); 1292 } 1293 1294 if ((offset + buf_size) > sc->devinfo.flash_size) { 1295 BLOGE(sc, "Invalid parameter, " 1296 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1297 offset, buf_size, sc->devinfo.flash_size); 1298 return (-1); 1299 } 1300 1301 /* request access to nvram interface */ 1302 rc = bxe_acquire_nvram_lock(sc); 1303 if (rc) { 1304 return (rc); 1305 } 1306 1307 /* enable access to nvram interface */ 1308 bxe_enable_nvram_access(sc); 1309 1310 /* read the first word(s) */ 1311 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1312 while ((buf_size > sizeof(uint32_t)) && (rc == 0)) { 1313 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1314 memcpy(ret_buf, &val, 4); 1315 1316 /* advance to the next dword */ 1317 offset += sizeof(uint32_t); 1318 ret_buf += sizeof(uint32_t); 1319 buf_size -= sizeof(uint32_t); 1320 cmd_flags = 0; 1321 } 1322 1323 if (rc == 0) { 1324 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1325 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1326 memcpy(ret_buf, &val, 4); 1327 } 1328 1329 /* disable access to nvram interface */ 1330 bxe_disable_nvram_access(sc); 1331 bxe_release_nvram_lock(sc); 1332 1333 return (rc); 1334 } 1335 1336 static int 1337 bxe_nvram_write_dword(struct bxe_softc *sc, 1338 uint32_t offset, 1339 uint32_t val, 1340 uint32_t cmd_flags) 1341 { 1342 int count, i, rc; 1343 1344 /* build the command word */ 1345 cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR); 1346 1347 /* need to clear DONE bit separately */ 1348 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1349 1350 /* write the data */ 1351 REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val); 1352 1353 /* address of the NVRAM to write to */ 1354 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1355 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1356 1357 /* issue the write command */ 1358 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1359 1360 /* adjust timeout for emulation/FPGA */ 1361 count = NVRAM_TIMEOUT_COUNT; 1362 if (CHIP_REV_IS_SLOW(sc)) { 1363 count *= 100; 1364 } 1365 1366 /* wait for completion */ 1367 rc = -1; 1368 for (i = 0; i < count; i++) { 1369 DELAY(5); 1370 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1371 if (val & MCPR_NVM_COMMAND_DONE) { 1372 rc = 0; 1373 break; 1374 } 1375 } 1376 1377 if (rc == -1) { 1378 BLOGE(sc, "nvram write timeout expired " 1379 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n", 1380 offset, cmd_flags, val); 1381 } 1382 1383 return (rc); 1384 } 1385 1386 #define BYTE_OFFSET(offset) (8 * (offset & 0x03)) 1387 1388 static int 1389 bxe_nvram_write1(struct bxe_softc *sc, 1390 uint32_t offset, 1391 uint8_t *data_buf, 1392 int buf_size) 1393 { 1394 uint32_t cmd_flags; 1395 uint32_t align_offset; 1396 uint32_t val; 1397 int rc; 1398 1399 if ((offset + buf_size) > sc->devinfo.flash_size) { 1400 BLOGE(sc, "Invalid parameter, " 1401 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1402 offset, buf_size, sc->devinfo.flash_size); 1403 return (-1); 1404 } 1405 1406 /* request access to nvram interface */ 1407 rc = bxe_acquire_nvram_lock(sc); 1408 if (rc) { 1409 return (rc); 1410 } 1411 1412 /* enable access to nvram interface */ 1413 bxe_enable_nvram_access(sc); 1414 1415 cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST); 1416 align_offset = (offset & ~0x03); 1417 rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags); 1418 1419 if (rc == 0) { 1420 val &= ~(0xff << BYTE_OFFSET(offset)); 1421 val |= (*data_buf << BYTE_OFFSET(offset)); 1422 1423 /* nvram data is returned as an array of bytes 1424 * convert it back to cpu order 1425 */ 1426 val = be32toh(val); 1427 1428 rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags); 1429 } 1430 1431 /* disable access to nvram interface */ 1432 bxe_disable_nvram_access(sc); 1433 bxe_release_nvram_lock(sc); 1434 1435 return (rc); 1436 } 1437 1438 static int 1439 bxe_nvram_write(struct bxe_softc *sc, 1440 uint32_t offset, 1441 uint8_t *data_buf, 1442 int buf_size) 1443 { 1444 uint32_t cmd_flags; 1445 uint32_t val; 1446 uint32_t written_so_far; 1447 int rc; 1448 1449 if (buf_size == 1) { 1450 return (bxe_nvram_write1(sc, offset, data_buf, buf_size)); 1451 } 1452 1453 if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) { 1454 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1455 offset, buf_size); 1456 return (-1); 1457 } 1458 1459 if (buf_size == 0) { 1460 return (0); /* nothing to do */ 1461 } 1462 1463 if ((offset + buf_size) > sc->devinfo.flash_size) { 1464 BLOGE(sc, "Invalid parameter, " 1465 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1466 offset, buf_size, sc->devinfo.flash_size); 1467 return (-1); 1468 } 1469 1470 /* request access to nvram interface */ 1471 rc = bxe_acquire_nvram_lock(sc); 1472 if (rc) { 1473 return (rc); 1474 } 1475 1476 /* enable access to nvram interface */ 1477 bxe_enable_nvram_access(sc); 1478 1479 written_so_far = 0; 1480 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1481 while ((written_so_far < buf_size) && (rc == 0)) { 1482 if (written_so_far == (buf_size - sizeof(uint32_t))) { 1483 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1484 } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) { 1485 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1486 } else if ((offset % NVRAM_PAGE_SIZE) == 0) { 1487 cmd_flags |= MCPR_NVM_COMMAND_FIRST; 1488 } 1489 1490 memcpy(&val, data_buf, 4); 1491 1492 rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags); 1493 1494 /* advance to the next dword */ 1495 offset += sizeof(uint32_t); 1496 data_buf += sizeof(uint32_t); 1497 written_so_far += sizeof(uint32_t); 1498 cmd_flags = 0; 1499 } 1500 1501 /* disable access to nvram interface */ 1502 bxe_disable_nvram_access(sc); 1503 bxe_release_nvram_lock(sc); 1504 1505 return (rc); 1506 } 1507 1508 /* copy command into DMAE command memory and set DMAE command Go */ 1509 void 1510 bxe_post_dmae(struct bxe_softc *sc, 1511 struct dmae_cmd *dmae, 1512 int idx) 1513 { 1514 uint32_t cmd_offset; 1515 int i; 1516 1517 cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx)); 1518 for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) { 1519 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i)); 1520 } 1521 1522 REG_WR(sc, dmae_reg_go_c[idx], 1); 1523 } 1524 1525 uint32_t 1526 bxe_dmae_opcode_add_comp(uint32_t opcode, 1527 uint8_t comp_type) 1528 { 1529 return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) | 1530 DMAE_CMD_C_TYPE_ENABLE)); 1531 } 1532 1533 uint32_t 1534 bxe_dmae_opcode_clr_src_reset(uint32_t opcode) 1535 { 1536 return (opcode & ~DMAE_CMD_SRC_RESET); 1537 } 1538 1539 uint32_t 1540 bxe_dmae_opcode(struct bxe_softc *sc, 1541 uint8_t src_type, 1542 uint8_t dst_type, 1543 uint8_t with_comp, 1544 uint8_t comp_type) 1545 { 1546 uint32_t opcode = 0; 1547 1548 opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) | 1549 (dst_type << DMAE_CMD_DST_SHIFT)); 1550 1551 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET); 1552 1553 opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 1554 1555 opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) | 1556 (SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT)); 1557 1558 opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT); 1559 1560 #ifdef __BIG_ENDIAN 1561 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 1562 #else 1563 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 1564 #endif 1565 1566 if (with_comp) { 1567 opcode = bxe_dmae_opcode_add_comp(opcode, comp_type); 1568 } 1569 1570 return (opcode); 1571 } 1572 1573 static void 1574 bxe_prep_dmae_with_comp(struct bxe_softc *sc, 1575 struct dmae_cmd *dmae, 1576 uint8_t src_type, 1577 uint8_t dst_type) 1578 { 1579 memset(dmae, 0, sizeof(struct dmae_cmd)); 1580 1581 /* set the opcode */ 1582 dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type, 1583 TRUE, DMAE_COMP_PCI); 1584 1585 /* fill in the completion parameters */ 1586 dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp)); 1587 dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp)); 1588 dmae->comp_val = DMAE_COMP_VAL; 1589 } 1590 1591 /* issue a DMAE command over the init channel and wait for completion */ 1592 static int 1593 bxe_issue_dmae_with_comp(struct bxe_softc *sc, 1594 struct dmae_cmd *dmae) 1595 { 1596 uint32_t *wb_comp = BXE_SP(sc, wb_comp); 1597 int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000; 1598 1599 BXE_DMAE_LOCK(sc); 1600 1601 /* reset completion */ 1602 *wb_comp = 0; 1603 1604 /* post the command on the channel used for initializations */ 1605 bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc)); 1606 1607 /* wait for completion */ 1608 DELAY(5); 1609 1610 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 1611 if (!timeout || 1612 (sc->recovery_state != BXE_RECOVERY_DONE && 1613 sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) { 1614 BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n", 1615 *wb_comp, sc->recovery_state); 1616 BXE_DMAE_UNLOCK(sc); 1617 return (DMAE_TIMEOUT); 1618 } 1619 1620 timeout--; 1621 DELAY(50); 1622 } 1623 1624 if (*wb_comp & DMAE_PCI_ERR_FLAG) { 1625 BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n", 1626 *wb_comp, sc->recovery_state); 1627 BXE_DMAE_UNLOCK(sc); 1628 return (DMAE_PCI_ERROR); 1629 } 1630 1631 BXE_DMAE_UNLOCK(sc); 1632 return (0); 1633 } 1634 1635 void 1636 bxe_read_dmae(struct bxe_softc *sc, 1637 uint32_t src_addr, 1638 uint32_t len32) 1639 { 1640 struct dmae_cmd dmae; 1641 uint32_t *data; 1642 int i, rc; 1643 1644 DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32)); 1645 1646 if (!sc->dmae_ready) { 1647 data = BXE_SP(sc, wb_data[0]); 1648 1649 for (i = 0; i < len32; i++) { 1650 data[i] = (CHIP_IS_E1(sc)) ? 1651 bxe_reg_rd_ind(sc, (src_addr + (i * 4))) : 1652 REG_RD(sc, (src_addr + (i * 4))); 1653 } 1654 1655 return; 1656 } 1657 1658 /* set opcode and fixed command fields */ 1659 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 1660 1661 /* fill in addresses and len */ 1662 dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */ 1663 dmae.src_addr_hi = 0; 1664 dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data)); 1665 dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data)); 1666 dmae.len = len32; 1667 1668 /* issue the command and wait for completion */ 1669 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1670 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1671 } 1672 } 1673 1674 void 1675 bxe_write_dmae(struct bxe_softc *sc, 1676 bus_addr_t dma_addr, 1677 uint32_t dst_addr, 1678 uint32_t len32) 1679 { 1680 struct dmae_cmd dmae; 1681 int rc; 1682 1683 if (!sc->dmae_ready) { 1684 DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32)); 1685 1686 if (CHIP_IS_E1(sc)) { 1687 ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1688 } else { 1689 ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1690 } 1691 1692 return; 1693 } 1694 1695 /* set opcode and fixed command fields */ 1696 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 1697 1698 /* fill in addresses and len */ 1699 dmae.src_addr_lo = U64_LO(dma_addr); 1700 dmae.src_addr_hi = U64_HI(dma_addr); 1701 dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */ 1702 dmae.dst_addr_hi = 0; 1703 dmae.len = len32; 1704 1705 /* issue the command and wait for completion */ 1706 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1707 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1708 } 1709 } 1710 1711 void 1712 bxe_write_dmae_phys_len(struct bxe_softc *sc, 1713 bus_addr_t phys_addr, 1714 uint32_t addr, 1715 uint32_t len) 1716 { 1717 int dmae_wr_max = DMAE_LEN32_WR_MAX(sc); 1718 int offset = 0; 1719 1720 while (len > dmae_wr_max) { 1721 bxe_write_dmae(sc, 1722 (phys_addr + offset), /* src DMA address */ 1723 (addr + offset), /* dst GRC address */ 1724 dmae_wr_max); 1725 offset += (dmae_wr_max * 4); 1726 len -= dmae_wr_max; 1727 } 1728 1729 bxe_write_dmae(sc, 1730 (phys_addr + offset), /* src DMA address */ 1731 (addr + offset), /* dst GRC address */ 1732 len); 1733 } 1734 1735 void 1736 bxe_set_ctx_validation(struct bxe_softc *sc, 1737 struct eth_context *cxt, 1738 uint32_t cid) 1739 { 1740 /* ustorm cxt validation */ 1741 cxt->ustorm_ag_context.cdu_usage = 1742 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1743 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 1744 /* xcontext validation */ 1745 cxt->xstorm_ag_context.cdu_reserved = 1746 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1747 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 1748 } 1749 1750 static void 1751 bxe_storm_memset_hc_timeout(struct bxe_softc *sc, 1752 uint8_t port, 1753 uint8_t fw_sb_id, 1754 uint8_t sb_index, 1755 uint8_t ticks) 1756 { 1757 uint32_t addr = 1758 (BAR_CSTRORM_INTMEM + 1759 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index)); 1760 1761 REG_WR8(sc, addr, ticks); 1762 1763 BLOGD(sc, DBG_LOAD, 1764 "port %d fw_sb_id %d sb_index %d ticks %d\n", 1765 port, fw_sb_id, sb_index, ticks); 1766 } 1767 1768 static void 1769 bxe_storm_memset_hc_disable(struct bxe_softc *sc, 1770 uint8_t port, 1771 uint16_t fw_sb_id, 1772 uint8_t sb_index, 1773 uint8_t disable) 1774 { 1775 uint32_t enable_flag = 1776 (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 1777 uint32_t addr = 1778 (BAR_CSTRORM_INTMEM + 1779 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index)); 1780 uint8_t flags; 1781 1782 /* clear and set */ 1783 flags = REG_RD8(sc, addr); 1784 flags &= ~HC_INDEX_DATA_HC_ENABLED; 1785 flags |= enable_flag; 1786 REG_WR8(sc, addr, flags); 1787 1788 BLOGD(sc, DBG_LOAD, 1789 "port %d fw_sb_id %d sb_index %d disable %d\n", 1790 port, fw_sb_id, sb_index, disable); 1791 } 1792 1793 void 1794 bxe_update_coalesce_sb_index(struct bxe_softc *sc, 1795 uint8_t fw_sb_id, 1796 uint8_t sb_index, 1797 uint8_t disable, 1798 uint16_t usec) 1799 { 1800 int port = SC_PORT(sc); 1801 uint8_t ticks = (usec / 4); /* XXX ??? */ 1802 1803 bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks); 1804 1805 disable = (disable) ? 1 : ((usec) ? 0 : 1); 1806 bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable); 1807 } 1808 1809 void 1810 elink_cb_udelay(struct bxe_softc *sc, 1811 uint32_t usecs) 1812 { 1813 DELAY(usecs); 1814 } 1815 1816 uint32_t 1817 elink_cb_reg_read(struct bxe_softc *sc, 1818 uint32_t reg_addr) 1819 { 1820 return (REG_RD(sc, reg_addr)); 1821 } 1822 1823 void 1824 elink_cb_reg_write(struct bxe_softc *sc, 1825 uint32_t reg_addr, 1826 uint32_t val) 1827 { 1828 REG_WR(sc, reg_addr, val); 1829 } 1830 1831 void 1832 elink_cb_reg_wb_write(struct bxe_softc *sc, 1833 uint32_t offset, 1834 uint32_t *wb_write, 1835 uint16_t len) 1836 { 1837 REG_WR_DMAE(sc, offset, wb_write, len); 1838 } 1839 1840 void 1841 elink_cb_reg_wb_read(struct bxe_softc *sc, 1842 uint32_t offset, 1843 uint32_t *wb_write, 1844 uint16_t len) 1845 { 1846 REG_RD_DMAE(sc, offset, wb_write, len); 1847 } 1848 1849 uint8_t 1850 elink_cb_path_id(struct bxe_softc *sc) 1851 { 1852 return (SC_PATH(sc)); 1853 } 1854 1855 void 1856 elink_cb_event_log(struct bxe_softc *sc, 1857 const elink_log_id_t elink_log_id, 1858 ...) 1859 { 1860 /* XXX */ 1861 BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id); 1862 } 1863 1864 static int 1865 bxe_set_spio(struct bxe_softc *sc, 1866 int spio, 1867 uint32_t mode) 1868 { 1869 uint32_t spio_reg; 1870 1871 /* Only 2 SPIOs are configurable */ 1872 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 1873 BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode); 1874 return (-1); 1875 } 1876 1877 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1878 1879 /* read SPIO and mask except the float bits */ 1880 spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 1881 1882 switch (mode) { 1883 case MISC_SPIO_OUTPUT_LOW: 1884 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio); 1885 /* clear FLOAT and set CLR */ 1886 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1887 spio_reg |= (spio << MISC_SPIO_CLR_POS); 1888 break; 1889 1890 case MISC_SPIO_OUTPUT_HIGH: 1891 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio); 1892 /* clear FLOAT and set SET */ 1893 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1894 spio_reg |= (spio << MISC_SPIO_SET_POS); 1895 break; 1896 1897 case MISC_SPIO_INPUT_HI_Z: 1898 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio); 1899 /* set FLOAT */ 1900 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 1901 break; 1902 1903 default: 1904 break; 1905 } 1906 1907 REG_WR(sc, MISC_REG_SPIO, spio_reg); 1908 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1909 1910 return (0); 1911 } 1912 1913 static int 1914 bxe_gpio_read(struct bxe_softc *sc, 1915 int gpio_num, 1916 uint8_t port) 1917 { 1918 /* The GPIO should be swapped if swap register is set and active */ 1919 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1920 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1921 int gpio_shift = (gpio_num + 1922 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1923 uint32_t gpio_mask = (1 << gpio_shift); 1924 uint32_t gpio_reg; 1925 1926 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1927 BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d" 1928 " gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift, 1929 gpio_mask); 1930 return (-1); 1931 } 1932 1933 /* read GPIO value */ 1934 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 1935 1936 /* get the requested pin value */ 1937 return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0; 1938 } 1939 1940 static int 1941 bxe_gpio_write(struct bxe_softc *sc, 1942 int gpio_num, 1943 uint32_t mode, 1944 uint8_t port) 1945 { 1946 /* The GPIO should be swapped if swap register is set and active */ 1947 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1948 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1949 int gpio_shift = (gpio_num + 1950 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1951 uint32_t gpio_mask = (1 << gpio_shift); 1952 uint32_t gpio_reg; 1953 1954 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1955 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d" 1956 " gpio_shift %d gpio_mask 0x%x\n", 1957 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask); 1958 return (-1); 1959 } 1960 1961 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1962 1963 /* read GPIO and mask except the float bits */ 1964 gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 1965 1966 switch (mode) { 1967 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 1968 BLOGD(sc, DBG_PHY, 1969 "Set GPIO %d (shift %d) -> output low\n", 1970 gpio_num, gpio_shift); 1971 /* clear FLOAT and set CLR */ 1972 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1973 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 1974 break; 1975 1976 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 1977 BLOGD(sc, DBG_PHY, 1978 "Set GPIO %d (shift %d) -> output high\n", 1979 gpio_num, gpio_shift); 1980 /* clear FLOAT and set SET */ 1981 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1982 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 1983 break; 1984 1985 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 1986 BLOGD(sc, DBG_PHY, 1987 "Set GPIO %d (shift %d) -> input\n", 1988 gpio_num, gpio_shift); 1989 /* set FLOAT */ 1990 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1991 break; 1992 1993 default: 1994 break; 1995 } 1996 1997 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 1998 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1999 2000 return (0); 2001 } 2002 2003 static int 2004 bxe_gpio_mult_write(struct bxe_softc *sc, 2005 uint8_t pins, 2006 uint32_t mode) 2007 { 2008 uint32_t gpio_reg; 2009 2010 /* any port swapping should be handled by caller */ 2011 2012 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2013 2014 /* read GPIO and mask except the float bits */ 2015 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 2016 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2017 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 2018 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 2019 2020 switch (mode) { 2021 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2022 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins); 2023 /* set CLR */ 2024 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 2025 break; 2026 2027 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2028 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins); 2029 /* set SET */ 2030 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 2031 break; 2032 2033 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2034 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins); 2035 /* set FLOAT */ 2036 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2037 break; 2038 2039 default: 2040 BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x" 2041 " gpio_reg 0x%x\n", pins, mode, gpio_reg); 2042 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2043 return (-1); 2044 } 2045 2046 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 2047 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2048 2049 return (0); 2050 } 2051 2052 static int 2053 bxe_gpio_int_write(struct bxe_softc *sc, 2054 int gpio_num, 2055 uint32_t mode, 2056 uint8_t port) 2057 { 2058 /* The GPIO should be swapped if swap register is set and active */ 2059 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2060 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2061 int gpio_shift = (gpio_num + 2062 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2063 uint32_t gpio_mask = (1 << gpio_shift); 2064 uint32_t gpio_reg; 2065 2066 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2067 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d" 2068 " gpio_shift %d gpio_mask 0x%x\n", 2069 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask); 2070 return (-1); 2071 } 2072 2073 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2074 2075 /* read GPIO int */ 2076 gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT); 2077 2078 switch (mode) { 2079 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2080 BLOGD(sc, DBG_PHY, 2081 "Clear GPIO INT %d (shift %d) -> output low\n", 2082 gpio_num, gpio_shift); 2083 /* clear SET and set CLR */ 2084 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2085 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2086 break; 2087 2088 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2089 BLOGD(sc, DBG_PHY, 2090 "Set GPIO INT %d (shift %d) -> output high\n", 2091 gpio_num, gpio_shift); 2092 /* clear CLR and set SET */ 2093 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2094 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2095 break; 2096 2097 default: 2098 break; 2099 } 2100 2101 REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg); 2102 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2103 2104 return (0); 2105 } 2106 2107 uint32_t 2108 elink_cb_gpio_read(struct bxe_softc *sc, 2109 uint16_t gpio_num, 2110 uint8_t port) 2111 { 2112 return (bxe_gpio_read(sc, gpio_num, port)); 2113 } 2114 2115 uint8_t 2116 elink_cb_gpio_write(struct bxe_softc *sc, 2117 uint16_t gpio_num, 2118 uint8_t mode, /* 0=low 1=high */ 2119 uint8_t port) 2120 { 2121 return (bxe_gpio_write(sc, gpio_num, mode, port)); 2122 } 2123 2124 uint8_t 2125 elink_cb_gpio_mult_write(struct bxe_softc *sc, 2126 uint8_t pins, 2127 uint8_t mode) /* 0=low 1=high */ 2128 { 2129 return (bxe_gpio_mult_write(sc, pins, mode)); 2130 } 2131 2132 uint8_t 2133 elink_cb_gpio_int_write(struct bxe_softc *sc, 2134 uint16_t gpio_num, 2135 uint8_t mode, /* 0=low 1=high */ 2136 uint8_t port) 2137 { 2138 return (bxe_gpio_int_write(sc, gpio_num, mode, port)); 2139 } 2140 2141 void 2142 elink_cb_notify_link_changed(struct bxe_softc *sc) 2143 { 2144 REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 + 2145 (SC_FUNC(sc) * sizeof(uint32_t))), 1); 2146 } 2147 2148 /* send the MCP a request, block until there is a reply */ 2149 uint32_t 2150 elink_cb_fw_command(struct bxe_softc *sc, 2151 uint32_t command, 2152 uint32_t param) 2153 { 2154 int mb_idx = SC_FW_MB_IDX(sc); 2155 uint32_t seq; 2156 uint32_t rc = 0; 2157 uint32_t cnt = 1; 2158 uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10; 2159 2160 BXE_FWMB_LOCK(sc); 2161 2162 seq = ++sc->fw_seq; 2163 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param); 2164 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq)); 2165 2166 BLOGD(sc, DBG_PHY, 2167 "wrote command 0x%08x to FW MB param 0x%08x\n", 2168 (command | seq), param); 2169 2170 /* Let the FW do it's magic. GIve it up to 5 seconds... */ 2171 do { 2172 DELAY(delay * 1000); 2173 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header); 2174 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 2175 2176 BLOGD(sc, DBG_PHY, 2177 "[after %d ms] read 0x%x seq 0x%x from FW MB\n", 2178 cnt*delay, rc, seq); 2179 2180 /* is this a reply to our command? */ 2181 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) { 2182 rc &= FW_MSG_CODE_MASK; 2183 } else { 2184 /* Ruh-roh! */ 2185 BLOGE(sc, "FW failed to respond!\n"); 2186 // XXX bxe_fw_dump(sc); 2187 rc = 0; 2188 } 2189 2190 BXE_FWMB_UNLOCK(sc); 2191 return (rc); 2192 } 2193 2194 static uint32_t 2195 bxe_fw_command(struct bxe_softc *sc, 2196 uint32_t command, 2197 uint32_t param) 2198 { 2199 return (elink_cb_fw_command(sc, command, param)); 2200 } 2201 2202 static void 2203 __storm_memset_dma_mapping(struct bxe_softc *sc, 2204 uint32_t addr, 2205 bus_addr_t mapping) 2206 { 2207 REG_WR(sc, addr, U64_LO(mapping)); 2208 REG_WR(sc, (addr + 4), U64_HI(mapping)); 2209 } 2210 2211 static void 2212 storm_memset_spq_addr(struct bxe_softc *sc, 2213 bus_addr_t mapping, 2214 uint16_t abs_fid) 2215 { 2216 uint32_t addr = (XSEM_REG_FAST_MEMORY + 2217 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid)); 2218 __storm_memset_dma_mapping(sc, addr, mapping); 2219 } 2220 2221 static void 2222 storm_memset_vf_to_pf(struct bxe_softc *sc, 2223 uint16_t abs_fid, 2224 uint16_t pf_id) 2225 { 2226 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2227 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2228 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2229 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2230 } 2231 2232 static void 2233 storm_memset_func_en(struct bxe_softc *sc, 2234 uint16_t abs_fid, 2235 uint8_t enable) 2236 { 2237 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2238 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2239 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2240 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2241 } 2242 2243 static void 2244 storm_memset_eq_data(struct bxe_softc *sc, 2245 struct event_ring_data *eq_data, 2246 uint16_t pfid) 2247 { 2248 uint32_t addr; 2249 size_t size; 2250 2251 addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid)); 2252 size = sizeof(struct event_ring_data); 2253 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data); 2254 } 2255 2256 static void 2257 storm_memset_eq_prod(struct bxe_softc *sc, 2258 uint16_t eq_prod, 2259 uint16_t pfid) 2260 { 2261 uint32_t addr = (BAR_CSTRORM_INTMEM + 2262 CSTORM_EVENT_RING_PROD_OFFSET(pfid)); 2263 REG_WR16(sc, addr, eq_prod); 2264 } 2265 2266 /* 2267 * Post a slowpath command. 2268 * 2269 * A slowpath command is used to propagate a configuration change through 2270 * the controller in a controlled manner, allowing each STORM processor and 2271 * other H/W blocks to phase in the change. The commands sent on the 2272 * slowpath are referred to as ramrods. Depending on the ramrod used the 2273 * completion of the ramrod will occur in different ways. Here's a 2274 * breakdown of ramrods and how they complete: 2275 * 2276 * RAMROD_CMD_ID_ETH_PORT_SETUP 2277 * Used to setup the leading connection on a port. Completes on the 2278 * Receive Completion Queue (RCQ) of that port (typically fp[0]). 2279 * 2280 * RAMROD_CMD_ID_ETH_CLIENT_SETUP 2281 * Used to setup an additional connection on a port. Completes on the 2282 * RCQ of the multi-queue/RSS connection being initialized. 2283 * 2284 * RAMROD_CMD_ID_ETH_STAT_QUERY 2285 * Used to force the storm processors to update the statistics database 2286 * in host memory. This ramrod is send on the leading connection CID and 2287 * completes as an index increment of the CSTORM on the default status 2288 * block. 2289 * 2290 * RAMROD_CMD_ID_ETH_UPDATE 2291 * Used to update the state of the leading connection, usually to udpate 2292 * the RSS indirection table. Completes on the RCQ of the leading 2293 * connection. (Not currently used under FreeBSD until OS support becomes 2294 * available.) 2295 * 2296 * RAMROD_CMD_ID_ETH_HALT 2297 * Used when tearing down a connection prior to driver unload. Completes 2298 * on the RCQ of the multi-queue/RSS connection being torn down. Don't 2299 * use this on the leading connection. 2300 * 2301 * RAMROD_CMD_ID_ETH_SET_MAC 2302 * Sets the Unicast/Broadcast/Multicast used by the port. Completes on 2303 * the RCQ of the leading connection. 2304 * 2305 * RAMROD_CMD_ID_ETH_CFC_DEL 2306 * Used when tearing down a conneciton prior to driver unload. Completes 2307 * on the RCQ of the leading connection (since the current connection 2308 * has been completely removed from controller memory). 2309 * 2310 * RAMROD_CMD_ID_ETH_PORT_DEL 2311 * Used to tear down the leading connection prior to driver unload, 2312 * typically fp[0]. Completes as an index increment of the CSTORM on the 2313 * default status block. 2314 * 2315 * RAMROD_CMD_ID_ETH_FORWARD_SETUP 2316 * Used for connection offload. Completes on the RCQ of the multi-queue 2317 * RSS connection that is being offloaded. (Not currently used under 2318 * FreeBSD.) 2319 * 2320 * There can only be one command pending per function. 2321 * 2322 * Returns: 2323 * 0 = Success, !0 = Failure. 2324 */ 2325 2326 /* must be called under the spq lock */ 2327 static inline 2328 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc) 2329 { 2330 struct eth_spe *next_spe = sc->spq_prod_bd; 2331 2332 if (sc->spq_prod_bd == sc->spq_last_bd) { 2333 /* wrap back to the first eth_spq */ 2334 sc->spq_prod_bd = sc->spq; 2335 sc->spq_prod_idx = 0; 2336 } else { 2337 sc->spq_prod_bd++; 2338 sc->spq_prod_idx++; 2339 } 2340 2341 return (next_spe); 2342 } 2343 2344 /* must be called under the spq lock */ 2345 static inline 2346 void bxe_sp_prod_update(struct bxe_softc *sc) 2347 { 2348 int func = SC_FUNC(sc); 2349 2350 /* 2351 * Make sure that BD data is updated before writing the producer. 2352 * BD data is written to the memory, the producer is read from the 2353 * memory, thus we need a full memory barrier to ensure the ordering. 2354 */ 2355 mb(); 2356 2357 REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)), 2358 sc->spq_prod_idx); 2359 2360 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 2361 BUS_SPACE_BARRIER_WRITE); 2362 } 2363 2364 /** 2365 * bxe_is_contextless_ramrod - check if the current command ends on EQ 2366 * 2367 * @cmd: command to check 2368 * @cmd_type: command type 2369 */ 2370 static inline 2371 int bxe_is_contextless_ramrod(int cmd, 2372 int cmd_type) 2373 { 2374 if ((cmd_type == NONE_CONNECTION_TYPE) || 2375 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 2376 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 2377 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 2378 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 2379 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 2380 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) { 2381 return (TRUE); 2382 } else { 2383 return (FALSE); 2384 } 2385 } 2386 2387 /** 2388 * bxe_sp_post - place a single command on an SP ring 2389 * 2390 * @sc: driver handle 2391 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 2392 * @cid: SW CID the command is related to 2393 * @data_hi: command private data address (high 32 bits) 2394 * @data_lo: command private data address (low 32 bits) 2395 * @cmd_type: command type (e.g. NONE, ETH) 2396 * 2397 * SP data is handled as if it's always an address pair, thus data fields are 2398 * not swapped to little endian in upper functions. Instead this function swaps 2399 * data as if it's two uint32 fields. 2400 */ 2401 int 2402 bxe_sp_post(struct bxe_softc *sc, 2403 int command, 2404 int cid, 2405 uint32_t data_hi, 2406 uint32_t data_lo, 2407 int cmd_type) 2408 { 2409 struct eth_spe *spe; 2410 uint16_t type; 2411 int common; 2412 2413 common = bxe_is_contextless_ramrod(command, cmd_type); 2414 2415 BXE_SP_LOCK(sc); 2416 2417 if (common) { 2418 if (!atomic_load_acq_long(&sc->eq_spq_left)) { 2419 BLOGE(sc, "EQ ring is full!\n"); 2420 BXE_SP_UNLOCK(sc); 2421 return (-1); 2422 } 2423 } else { 2424 if (!atomic_load_acq_long(&sc->cq_spq_left)) { 2425 BLOGE(sc, "SPQ ring is full!\n"); 2426 BXE_SP_UNLOCK(sc); 2427 return (-1); 2428 } 2429 } 2430 2431 spe = bxe_sp_get_next(sc); 2432 2433 /* CID needs port number to be encoded int it */ 2434 spe->hdr.conn_and_cmd_data = 2435 htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid)); 2436 2437 type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE; 2438 2439 /* TBD: Check if it works for VFs */ 2440 type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) & 2441 SPE_HDR_T_FUNCTION_ID); 2442 2443 spe->hdr.type = htole16(type); 2444 2445 spe->data.update_data_addr.hi = htole32(data_hi); 2446 spe->data.update_data_addr.lo = htole32(data_lo); 2447 2448 /* 2449 * It's ok if the actual decrement is issued towards the memory 2450 * somewhere between the lock and unlock. Thus no more explict 2451 * memory barrier is needed. 2452 */ 2453 if (common) { 2454 atomic_subtract_acq_long(&sc->eq_spq_left, 1); 2455 } else { 2456 atomic_subtract_acq_long(&sc->cq_spq_left, 1); 2457 } 2458 2459 BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr); 2460 BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n", 2461 BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata)); 2462 BLOGD(sc, DBG_SP, 2463 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n", 2464 sc->spq_prod_idx, 2465 (uint32_t)U64_HI(sc->spq_dma.paddr), 2466 (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq), 2467 command, 2468 common, 2469 HW_CID(sc, cid), 2470 data_hi, 2471 data_lo, 2472 type, 2473 atomic_load_acq_long(&sc->cq_spq_left), 2474 atomic_load_acq_long(&sc->eq_spq_left)); 2475 2476 bxe_sp_prod_update(sc); 2477 2478 BXE_SP_UNLOCK(sc); 2479 return (0); 2480 } 2481 2482 /** 2483 * bxe_debug_print_ind_table - prints the indirection table configuration. 2484 * 2485 * @sc: driver hanlde 2486 * @p: pointer to rss configuration 2487 */ 2488 2489 /* 2490 * FreeBSD Device probe function. 2491 * 2492 * Compares the device found to the driver's list of supported devices and 2493 * reports back to the bsd loader whether this is the right driver for the device. 2494 * This is the driver entry function called from the "kldload" command. 2495 * 2496 * Returns: 2497 * BUS_PROBE_DEFAULT on success, positive value on failure. 2498 */ 2499 static int 2500 bxe_probe(device_t dev) 2501 { 2502 struct bxe_device_type *t; 2503 char *descbuf; 2504 uint16_t did, sdid, svid, vid; 2505 2506 /* Find our device structure */ 2507 t = bxe_devs; 2508 2509 /* Get the data for the device to be probed. */ 2510 vid = pci_get_vendor(dev); 2511 did = pci_get_device(dev); 2512 svid = pci_get_subvendor(dev); 2513 sdid = pci_get_subdevice(dev); 2514 2515 /* Look through the list of known devices for a match. */ 2516 while (t->bxe_name != NULL) { 2517 if ((vid == t->bxe_vid) && (did == t->bxe_did) && 2518 ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) && 2519 ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) { 2520 descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 2521 if (descbuf == NULL) 2522 return (ENOMEM); 2523 2524 /* Print out the device identity. */ 2525 snprintf(descbuf, BXE_DEVDESC_MAX, 2526 "%s (%c%d) BXE v:%s\n", t->bxe_name, 2527 (((pci_read_config(dev, PCIR_REVID, 4) & 2528 0xf0) >> 4) + 'A'), 2529 (pci_read_config(dev, PCIR_REVID, 4) & 0xf), 2530 BXE_DRIVER_VERSION); 2531 2532 device_set_desc_copy(dev, descbuf); 2533 free(descbuf, M_TEMP); 2534 return (BUS_PROBE_DEFAULT); 2535 } 2536 t++; 2537 } 2538 2539 return (ENXIO); 2540 } 2541 2542 static void 2543 bxe_init_mutexes(struct bxe_softc *sc) 2544 { 2545 #ifdef BXE_CORE_LOCK_SX 2546 snprintf(sc->core_sx_name, sizeof(sc->core_sx_name), 2547 "bxe%d_core_lock", sc->unit); 2548 sx_init(&sc->core_sx, sc->core_sx_name); 2549 #else 2550 snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name), 2551 "bxe%d_core_lock", sc->unit); 2552 mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF); 2553 #endif 2554 2555 snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name), 2556 "bxe%d_sp_lock", sc->unit); 2557 mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF); 2558 2559 snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name), 2560 "bxe%d_dmae_lock", sc->unit); 2561 mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF); 2562 2563 snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name), 2564 "bxe%d_phy_lock", sc->unit); 2565 mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF); 2566 2567 snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name), 2568 "bxe%d_fwmb_lock", sc->unit); 2569 mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF); 2570 2571 snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name), 2572 "bxe%d_print_lock", sc->unit); 2573 mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF); 2574 2575 snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name), 2576 "bxe%d_stats_lock", sc->unit); 2577 mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF); 2578 2579 snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name), 2580 "bxe%d_mcast_lock", sc->unit); 2581 mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF); 2582 } 2583 2584 static void 2585 bxe_release_mutexes(struct bxe_softc *sc) 2586 { 2587 #ifdef BXE_CORE_LOCK_SX 2588 sx_destroy(&sc->core_sx); 2589 #else 2590 if (mtx_initialized(&sc->core_mtx)) { 2591 mtx_destroy(&sc->core_mtx); 2592 } 2593 #endif 2594 2595 if (mtx_initialized(&sc->sp_mtx)) { 2596 mtx_destroy(&sc->sp_mtx); 2597 } 2598 2599 if (mtx_initialized(&sc->dmae_mtx)) { 2600 mtx_destroy(&sc->dmae_mtx); 2601 } 2602 2603 if (mtx_initialized(&sc->port.phy_mtx)) { 2604 mtx_destroy(&sc->port.phy_mtx); 2605 } 2606 2607 if (mtx_initialized(&sc->fwmb_mtx)) { 2608 mtx_destroy(&sc->fwmb_mtx); 2609 } 2610 2611 if (mtx_initialized(&sc->print_mtx)) { 2612 mtx_destroy(&sc->print_mtx); 2613 } 2614 2615 if (mtx_initialized(&sc->stats_mtx)) { 2616 mtx_destroy(&sc->stats_mtx); 2617 } 2618 2619 if (mtx_initialized(&sc->mcast_mtx)) { 2620 mtx_destroy(&sc->mcast_mtx); 2621 } 2622 } 2623 2624 static void 2625 bxe_tx_disable(struct bxe_softc* sc) 2626 { 2627 if_t ifp = sc->ifp; 2628 2629 /* tell the stack the driver is stopped and TX queue is full */ 2630 if (ifp != NULL) { 2631 if_setdrvflags(ifp, 0); 2632 } 2633 } 2634 2635 static void 2636 bxe_drv_pulse(struct bxe_softc *sc) 2637 { 2638 SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb, 2639 sc->fw_drv_pulse_wr_seq); 2640 } 2641 2642 static inline uint16_t 2643 bxe_tx_avail(struct bxe_softc *sc, 2644 struct bxe_fastpath *fp) 2645 { 2646 int16_t used; 2647 uint16_t prod; 2648 uint16_t cons; 2649 2650 prod = fp->tx_bd_prod; 2651 cons = fp->tx_bd_cons; 2652 2653 used = SUB_S16(prod, cons); 2654 2655 return (int16_t)(sc->tx_ring_size) - used; 2656 } 2657 2658 static inline int 2659 bxe_tx_queue_has_work(struct bxe_fastpath *fp) 2660 { 2661 uint16_t hw_cons; 2662 2663 mb(); /* status block fields can change */ 2664 hw_cons = le16toh(*fp->tx_cons_sb); 2665 return (hw_cons != fp->tx_pkt_cons); 2666 } 2667 2668 static inline uint8_t 2669 bxe_has_tx_work(struct bxe_fastpath *fp) 2670 { 2671 /* expand this for multi-cos if ever supported */ 2672 return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE; 2673 } 2674 2675 static inline int 2676 bxe_has_rx_work(struct bxe_fastpath *fp) 2677 { 2678 uint16_t rx_cq_cons_sb; 2679 2680 mb(); /* status block fields can change */ 2681 rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb); 2682 if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX) 2683 rx_cq_cons_sb++; 2684 return (fp->rx_cq_cons != rx_cq_cons_sb); 2685 } 2686 2687 static void 2688 bxe_sp_event(struct bxe_softc *sc, 2689 struct bxe_fastpath *fp, 2690 union eth_rx_cqe *rr_cqe) 2691 { 2692 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2693 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2694 enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX; 2695 struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 2696 2697 BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n", 2698 fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type); 2699 2700 switch (command) { 2701 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 2702 BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid); 2703 drv_cmd = ECORE_Q_CMD_UPDATE; 2704 break; 2705 2706 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 2707 BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid); 2708 drv_cmd = ECORE_Q_CMD_SETUP; 2709 break; 2710 2711 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 2712 BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 2713 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY; 2714 break; 2715 2716 case (RAMROD_CMD_ID_ETH_HALT): 2717 BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid); 2718 drv_cmd = ECORE_Q_CMD_HALT; 2719 break; 2720 2721 case (RAMROD_CMD_ID_ETH_TERMINATE): 2722 BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid); 2723 drv_cmd = ECORE_Q_CMD_TERMINATE; 2724 break; 2725 2726 case (RAMROD_CMD_ID_ETH_EMPTY): 2727 BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid); 2728 drv_cmd = ECORE_Q_CMD_EMPTY; 2729 break; 2730 2731 default: 2732 BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n", 2733 command, fp->index); 2734 return; 2735 } 2736 2737 if ((drv_cmd != ECORE_Q_CMD_MAX) && 2738 q_obj->complete_cmd(sc, q_obj, drv_cmd)) { 2739 /* 2740 * q_obj->complete_cmd() failure means that this was 2741 * an unexpected completion. 2742 * 2743 * In this case we don't want to increase the sc->spq_left 2744 * because apparently we haven't sent this command the first 2745 * place. 2746 */ 2747 // bxe_panic(sc, ("Unexpected SP completion\n")); 2748 return; 2749 } 2750 2751 atomic_add_acq_long(&sc->cq_spq_left, 1); 2752 2753 BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n", 2754 atomic_load_acq_long(&sc->cq_spq_left)); 2755 } 2756 2757 /* 2758 * The current mbuf is part of an aggregation. Move the mbuf into the TPA 2759 * aggregation queue, put an empty mbuf back onto the receive chain, and mark 2760 * the current aggregation queue as in-progress. 2761 */ 2762 static void 2763 bxe_tpa_start(struct bxe_softc *sc, 2764 struct bxe_fastpath *fp, 2765 uint16_t queue, 2766 uint16_t cons, 2767 uint16_t prod, 2768 struct eth_fast_path_rx_cqe *cqe) 2769 { 2770 struct bxe_sw_rx_bd tmp_bd; 2771 struct bxe_sw_rx_bd *rx_buf; 2772 struct eth_rx_bd *rx_bd; 2773 int max_agg_queues; 2774 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 2775 uint16_t index; 2776 2777 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START " 2778 "cons=%d prod=%d\n", 2779 fp->index, queue, cons, prod); 2780 2781 max_agg_queues = MAX_AGG_QS(sc); 2782 2783 KASSERT((queue < max_agg_queues), 2784 ("fp[%02d] invalid aggr queue (%d >= %d)!", 2785 fp->index, queue, max_agg_queues)); 2786 2787 KASSERT((tpa_info->state == BXE_TPA_STATE_STOP), 2788 ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!", 2789 fp->index, queue)); 2790 2791 /* copy the existing mbuf and mapping from the TPA pool */ 2792 tmp_bd = tpa_info->bd; 2793 2794 if (tmp_bd.m == NULL) { 2795 uint32_t *tmp; 2796 2797 tmp = (uint32_t *)cqe; 2798 2799 BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n", 2800 fp->index, queue, cons, prod); 2801 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n", 2802 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 2803 2804 /* XXX Error handling? */ 2805 return; 2806 } 2807 2808 /* change the TPA queue to the start state */ 2809 tpa_info->state = BXE_TPA_STATE_START; 2810 tpa_info->placement_offset = cqe->placement_offset; 2811 tpa_info->parsing_flags = le16toh(cqe->pars_flags.flags); 2812 tpa_info->vlan_tag = le16toh(cqe->vlan_tag); 2813 tpa_info->len_on_bd = le16toh(cqe->len_on_bd); 2814 2815 fp->rx_tpa_queue_used |= (1 << queue); 2816 2817 /* 2818 * If all the buffer descriptors are filled with mbufs then fill in 2819 * the current consumer index with a new BD. Else if a maximum Rx 2820 * buffer limit is imposed then fill in the next producer index. 2821 */ 2822 index = (sc->max_rx_bufs != RX_BD_USABLE) ? 2823 prod : cons; 2824 2825 /* move the received mbuf and mapping to TPA pool */ 2826 tpa_info->bd = fp->rx_mbuf_chain[cons]; 2827 2828 /* release any existing RX BD mbuf mappings */ 2829 if (cons != index) { 2830 rx_buf = &fp->rx_mbuf_chain[cons]; 2831 2832 if (rx_buf->m_map != NULL) { 2833 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 2834 BUS_DMASYNC_POSTREAD); 2835 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 2836 } 2837 2838 /* 2839 * We get here when the maximum number of rx buffers is less than 2840 * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL 2841 * it out here without concern of a memory leak. 2842 */ 2843 fp->rx_mbuf_chain[cons].m = NULL; 2844 } 2845 2846 /* update the Rx SW BD with the mbuf info from the TPA pool */ 2847 fp->rx_mbuf_chain[index] = tmp_bd; 2848 2849 /* update the Rx BD with the empty mbuf phys address from the TPA pool */ 2850 rx_bd = &fp->rx_chain[index]; 2851 rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr)); 2852 rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr)); 2853 } 2854 2855 /* 2856 * When a TPA aggregation is completed, loop through the individual mbufs 2857 * of the aggregation, combining them into a single mbuf which will be sent 2858 * up the stack. Refill all freed SGEs with mbufs as we go along. 2859 */ 2860 static int 2861 bxe_fill_frag_mbuf(struct bxe_softc *sc, 2862 struct bxe_fastpath *fp, 2863 struct bxe_sw_tpa_info *tpa_info, 2864 uint16_t queue, 2865 uint16_t pages, 2866 struct mbuf *m, 2867 struct eth_end_agg_rx_cqe *cqe, 2868 uint16_t cqe_idx) 2869 { 2870 struct mbuf *m_frag; 2871 uint32_t frag_len, frag_size, i; 2872 uint16_t sge_idx; 2873 int rc = 0; 2874 int j; 2875 2876 frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd; 2877 2878 BLOGD(sc, DBG_LRO, 2879 "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n", 2880 fp->index, queue, tpa_info->len_on_bd, frag_size, pages); 2881 2882 /* make sure the aggregated frame is not too big to handle */ 2883 if (pages > 8 * PAGES_PER_SGE) { 2884 2885 uint32_t *tmp = (uint32_t *)cqe; 2886 2887 BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! " 2888 "pkt_len=%d len_on_bd=%d frag_size=%d\n", 2889 fp->index, cqe_idx, pages, le16toh(cqe->pkt_len), 2890 tpa_info->len_on_bd, frag_size); 2891 2892 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n", 2893 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 2894 2895 bxe_panic(sc, ("sge page count error\n")); 2896 return (EINVAL); 2897 } 2898 2899 /* 2900 * Scan through the scatter gather list pulling individual mbufs into a 2901 * single mbuf for the host stack. 2902 */ 2903 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 2904 sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j])); 2905 2906 /* 2907 * Firmware gives the indices of the SGE as if the ring is an array 2908 * (meaning that the "next" element will consume 2 indices). 2909 */ 2910 frag_len = min(frag_size, (uint32_t)(SGE_PAGES)); 2911 2912 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d " 2913 "sge_idx=%d frag_size=%d frag_len=%d\n", 2914 fp->index, queue, i, j, sge_idx, frag_size, frag_len); 2915 2916 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 2917 2918 /* allocate a new mbuf for the SGE */ 2919 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 2920 if (rc) { 2921 /* Leave all remaining SGEs in the ring! */ 2922 return (rc); 2923 } 2924 2925 /* update the fragment length */ 2926 m_frag->m_len = frag_len; 2927 2928 /* concatenate the fragment to the head mbuf */ 2929 m_cat(m, m_frag); 2930 fp->eth_q_stats.mbuf_alloc_sge--; 2931 2932 /* update the TPA mbuf size and remaining fragment size */ 2933 m->m_pkthdr.len += frag_len; 2934 frag_size -= frag_len; 2935 } 2936 2937 BLOGD(sc, DBG_LRO, 2938 "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n", 2939 fp->index, queue, frag_size); 2940 2941 return (rc); 2942 } 2943 2944 static inline void 2945 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp) 2946 { 2947 int i, j; 2948 2949 for (i = 1; i <= RX_SGE_NUM_PAGES; i++) { 2950 int idx = RX_SGE_TOTAL_PER_PAGE * i - 1; 2951 2952 for (j = 0; j < 2; j++) { 2953 BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx); 2954 idx--; 2955 } 2956 } 2957 } 2958 2959 static inline void 2960 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp) 2961 { 2962 /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */ 2963 memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask)); 2964 2965 /* 2966 * Clear the two last indices in the page to 1. These are the indices that 2967 * correspond to the "next" element, hence will never be indicated and 2968 * should be removed from the calculations. 2969 */ 2970 bxe_clear_sge_mask_next_elems(fp); 2971 } 2972 2973 static inline void 2974 bxe_update_last_max_sge(struct bxe_fastpath *fp, 2975 uint16_t idx) 2976 { 2977 uint16_t last_max = fp->last_max_sge; 2978 2979 if (SUB_S16(idx, last_max) > 0) { 2980 fp->last_max_sge = idx; 2981 } 2982 } 2983 2984 static inline void 2985 bxe_update_sge_prod(struct bxe_softc *sc, 2986 struct bxe_fastpath *fp, 2987 uint16_t sge_len, 2988 union eth_sgl_or_raw_data *cqe) 2989 { 2990 uint16_t last_max, last_elem, first_elem; 2991 uint16_t delta = 0; 2992 uint16_t i; 2993 2994 if (!sge_len) { 2995 return; 2996 } 2997 2998 /* first mark all used pages */ 2999 for (i = 0; i < sge_len; i++) { 3000 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 3001 RX_SGE(le16toh(cqe->sgl[i]))); 3002 } 3003 3004 BLOGD(sc, DBG_LRO, 3005 "fp[%02d] fp_cqe->sgl[%d] = %d\n", 3006 fp->index, sge_len - 1, 3007 le16toh(cqe->sgl[sge_len - 1])); 3008 3009 /* assume that the last SGE index is the biggest */ 3010 bxe_update_last_max_sge(fp, 3011 le16toh(cqe->sgl[sge_len - 1])); 3012 3013 last_max = RX_SGE(fp->last_max_sge); 3014 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 3015 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 3016 3017 /* if ring is not full */ 3018 if (last_elem + 1 != first_elem) { 3019 last_elem++; 3020 } 3021 3022 /* now update the prod */ 3023 for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) { 3024 if (__predict_true(fp->sge_mask[i])) { 3025 break; 3026 } 3027 3028 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 3029 delta += BIT_VEC64_ELEM_SZ; 3030 } 3031 3032 if (delta > 0) { 3033 fp->rx_sge_prod += delta; 3034 /* clear page-end entries */ 3035 bxe_clear_sge_mask_next_elems(fp); 3036 } 3037 3038 BLOGD(sc, DBG_LRO, 3039 "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n", 3040 fp->index, fp->last_max_sge, fp->rx_sge_prod); 3041 } 3042 3043 /* 3044 * The aggregation on the current TPA queue has completed. Pull the individual 3045 * mbuf fragments together into a single mbuf, perform all necessary checksum 3046 * calculations, and send the resuting mbuf to the stack. 3047 */ 3048 static void 3049 bxe_tpa_stop(struct bxe_softc *sc, 3050 struct bxe_fastpath *fp, 3051 struct bxe_sw_tpa_info *tpa_info, 3052 uint16_t queue, 3053 uint16_t pages, 3054 struct eth_end_agg_rx_cqe *cqe, 3055 uint16_t cqe_idx) 3056 { 3057 if_t ifp = sc->ifp; 3058 struct mbuf *m; 3059 int rc = 0; 3060 3061 BLOGD(sc, DBG_LRO, 3062 "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n", 3063 fp->index, queue, tpa_info->placement_offset, 3064 le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag); 3065 3066 m = tpa_info->bd.m; 3067 3068 /* allocate a replacement before modifying existing mbuf */ 3069 rc = bxe_alloc_rx_tpa_mbuf(fp, queue); 3070 if (rc) { 3071 /* drop the frame and log an error */ 3072 fp->eth_q_stats.rx_soft_errors++; 3073 goto bxe_tpa_stop_exit; 3074 } 3075 3076 /* we have a replacement, fixup the current mbuf */ 3077 m_adj(m, tpa_info->placement_offset); 3078 m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd; 3079 3080 /* mark the checksums valid (taken care of by the firmware) */ 3081 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3082 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3083 m->m_pkthdr.csum_data = 0xffff; 3084 m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | 3085 CSUM_IP_VALID | 3086 CSUM_DATA_VALID | 3087 CSUM_PSEUDO_HDR); 3088 3089 /* aggregate all of the SGEs into a single mbuf */ 3090 rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx); 3091 if (rc) { 3092 /* drop the packet and log an error */ 3093 fp->eth_q_stats.rx_soft_errors++; 3094 m_freem(m); 3095 } else { 3096 if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) { 3097 m->m_pkthdr.ether_vtag = tpa_info->vlan_tag; 3098 m->m_flags |= M_VLANTAG; 3099 } 3100 3101 /* assign packet to this interface interface */ 3102 if_setrcvif(m, ifp); 3103 3104 #if __FreeBSD_version >= 800000 3105 /* specify what RSS queue was used for this flow */ 3106 m->m_pkthdr.flowid = fp->index; 3107 BXE_SET_FLOWID(m); 3108 #endif 3109 3110 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3111 fp->eth_q_stats.rx_tpa_pkts++; 3112 3113 /* pass the frame to the stack */ 3114 if_input(ifp, m); 3115 } 3116 3117 /* we passed an mbuf up the stack or dropped the frame */ 3118 fp->eth_q_stats.mbuf_alloc_tpa--; 3119 3120 bxe_tpa_stop_exit: 3121 3122 fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP; 3123 fp->rx_tpa_queue_used &= ~(1 << queue); 3124 } 3125 3126 static uint8_t 3127 bxe_service_rxsgl( 3128 struct bxe_fastpath *fp, 3129 uint16_t len, 3130 uint16_t lenonbd, 3131 struct mbuf *m, 3132 struct eth_fast_path_rx_cqe *cqe_fp) 3133 { 3134 struct mbuf *m_frag; 3135 uint16_t frags, frag_len; 3136 uint16_t sge_idx = 0; 3137 uint16_t j; 3138 uint8_t i, rc = 0; 3139 uint32_t frag_size; 3140 3141 /* adjust the mbuf */ 3142 m->m_len = lenonbd; 3143 3144 frag_size = len - lenonbd; 3145 frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3146 3147 for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) { 3148 sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j])); 3149 3150 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 3151 frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE)); 3152 m_frag->m_len = frag_len; 3153 3154 /* allocate a new mbuf for the SGE */ 3155 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 3156 if (rc) { 3157 /* Leave all remaining SGEs in the ring! */ 3158 return (rc); 3159 } 3160 fp->eth_q_stats.mbuf_alloc_sge--; 3161 3162 /* concatenate the fragment to the head mbuf */ 3163 m_cat(m, m_frag); 3164 3165 frag_size -= frag_len; 3166 } 3167 3168 bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data); 3169 3170 return rc; 3171 } 3172 3173 static uint8_t 3174 bxe_rxeof(struct bxe_softc *sc, 3175 struct bxe_fastpath *fp) 3176 { 3177 if_t ifp = sc->ifp; 3178 uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 3179 uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod; 3180 int rx_pkts = 0; 3181 int rc = 0; 3182 3183 BXE_FP_RX_LOCK(fp); 3184 3185 /* CQ "next element" is of the size of the regular element */ 3186 hw_cq_cons = le16toh(*fp->rx_cq_cons_sb); 3187 if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) { 3188 hw_cq_cons++; 3189 } 3190 3191 bd_cons = fp->rx_bd_cons; 3192 bd_prod = fp->rx_bd_prod; 3193 bd_prod_fw = bd_prod; 3194 sw_cq_cons = fp->rx_cq_cons; 3195 sw_cq_prod = fp->rx_cq_prod; 3196 3197 /* 3198 * Memory barrier necessary as speculative reads of the rx 3199 * buffer can be ahead of the index in the status block 3200 */ 3201 rmb(); 3202 3203 BLOGD(sc, DBG_RX, 3204 "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n", 3205 fp->index, hw_cq_cons, sw_cq_cons); 3206 3207 while (sw_cq_cons != hw_cq_cons) { 3208 struct bxe_sw_rx_bd *rx_buf = NULL; 3209 union eth_rx_cqe *cqe; 3210 struct eth_fast_path_rx_cqe *cqe_fp; 3211 uint8_t cqe_fp_flags; 3212 enum eth_rx_cqe_type cqe_fp_type; 3213 uint16_t len, lenonbd, pad; 3214 struct mbuf *m = NULL; 3215 3216 comp_ring_cons = RCQ(sw_cq_cons); 3217 bd_prod = RX_BD(bd_prod); 3218 bd_cons = RX_BD(bd_cons); 3219 3220 cqe = &fp->rcq_chain[comp_ring_cons]; 3221 cqe_fp = &cqe->fast_path_cqe; 3222 cqe_fp_flags = cqe_fp->type_error_flags; 3223 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 3224 3225 BLOGD(sc, DBG_RX, 3226 "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d " 3227 "BD prod=%d cons=%d CQE type=0x%x err=0x%x " 3228 "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n", 3229 fp->index, 3230 hw_cq_cons, 3231 sw_cq_cons, 3232 bd_prod, 3233 bd_cons, 3234 CQE_TYPE(cqe_fp_flags), 3235 cqe_fp_flags, 3236 cqe_fp->status_flags, 3237 le32toh(cqe_fp->rss_hash_result), 3238 le16toh(cqe_fp->vlan_tag), 3239 le16toh(cqe_fp->pkt_len_or_gro_seg_len), 3240 le16toh(cqe_fp->len_on_bd)); 3241 3242 /* is this a slowpath msg? */ 3243 if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) { 3244 bxe_sp_event(sc, fp, cqe); 3245 goto next_cqe; 3246 } 3247 3248 rx_buf = &fp->rx_mbuf_chain[bd_cons]; 3249 3250 if (!CQE_TYPE_FAST(cqe_fp_type)) { 3251 struct bxe_sw_tpa_info *tpa_info; 3252 uint16_t frag_size, pages; 3253 uint8_t queue; 3254 3255 if (CQE_TYPE_START(cqe_fp_type)) { 3256 bxe_tpa_start(sc, fp, cqe_fp->queue_index, 3257 bd_cons, bd_prod, cqe_fp); 3258 m = NULL; /* packet not ready yet */ 3259 goto next_rx; 3260 } 3261 3262 KASSERT(CQE_TYPE_STOP(cqe_fp_type), 3263 ("CQE type is not STOP! (0x%x)\n", cqe_fp_type)); 3264 3265 queue = cqe->end_agg_cqe.queue_index; 3266 tpa_info = &fp->rx_tpa_info[queue]; 3267 3268 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n", 3269 fp->index, queue); 3270 3271 frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) - 3272 tpa_info->len_on_bd); 3273 pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3274 3275 bxe_tpa_stop(sc, fp, tpa_info, queue, pages, 3276 &cqe->end_agg_cqe, comp_ring_cons); 3277 3278 bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data); 3279 3280 goto next_cqe; 3281 } 3282 3283 /* non TPA */ 3284 3285 /* is this an error packet? */ 3286 if (__predict_false(cqe_fp_flags & 3287 ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) { 3288 BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons); 3289 fp->eth_q_stats.rx_soft_errors++; 3290 goto next_rx; 3291 } 3292 3293 len = le16toh(cqe_fp->pkt_len_or_gro_seg_len); 3294 lenonbd = le16toh(cqe_fp->len_on_bd); 3295 pad = cqe_fp->placement_offset; 3296 3297 m = rx_buf->m; 3298 3299 if (__predict_false(m == NULL)) { 3300 BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n", 3301 bd_cons, fp->index); 3302 goto next_rx; 3303 } 3304 3305 /* XXX double copy if packet length under a threshold */ 3306 3307 /* 3308 * If all the buffer descriptors are filled with mbufs then fill in 3309 * the current consumer index with a new BD. Else if a maximum Rx 3310 * buffer limit is imposed then fill in the next producer index. 3311 */ 3312 rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons, 3313 (sc->max_rx_bufs != RX_BD_USABLE) ? 3314 bd_prod : bd_cons); 3315 if (rc != 0) { 3316 3317 /* we simply reuse the received mbuf and don't post it to the stack */ 3318 m = NULL; 3319 3320 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 3321 fp->index, rc); 3322 fp->eth_q_stats.rx_soft_errors++; 3323 3324 if (sc->max_rx_bufs != RX_BD_USABLE) { 3325 /* copy this consumer index to the producer index */ 3326 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf, 3327 sizeof(struct bxe_sw_rx_bd)); 3328 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd)); 3329 } 3330 3331 goto next_rx; 3332 } 3333 3334 /* current mbuf was detached from the bd */ 3335 fp->eth_q_stats.mbuf_alloc_rx--; 3336 3337 /* we allocated a replacement mbuf, fixup the current one */ 3338 m_adj(m, pad); 3339 m->m_pkthdr.len = m->m_len = len; 3340 3341 if ((len > 60) && (len > lenonbd)) { 3342 fp->eth_q_stats.rx_bxe_service_rxsgl++; 3343 rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp); 3344 if (rc) 3345 break; 3346 fp->eth_q_stats.rx_jumbo_sge_pkts++; 3347 } else if (lenonbd < len) { 3348 fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++; 3349 } 3350 3351 /* assign packet to this interface interface */ 3352 if_setrcvif(m, ifp); 3353 3354 /* assume no hardware checksum has complated */ 3355 m->m_pkthdr.csum_flags = 0; 3356 3357 /* validate checksum if offload enabled */ 3358 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 3359 /* check for a valid IP frame */ 3360 if (!(cqe->fast_path_cqe.status_flags & 3361 ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) { 3362 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3363 if (__predict_false(cqe_fp_flags & 3364 ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) { 3365 fp->eth_q_stats.rx_hw_csum_errors++; 3366 } else { 3367 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3368 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3369 } 3370 } 3371 3372 /* check for a valid TCP/UDP frame */ 3373 if (!(cqe->fast_path_cqe.status_flags & 3374 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) { 3375 if (__predict_false(cqe_fp_flags & 3376 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) { 3377 fp->eth_q_stats.rx_hw_csum_errors++; 3378 } else { 3379 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3380 m->m_pkthdr.csum_data = 0xFFFF; 3381 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | 3382 CSUM_PSEUDO_HDR); 3383 } 3384 } 3385 } 3386 3387 /* if there is a VLAN tag then flag that info */ 3388 if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) { 3389 m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag; 3390 m->m_flags |= M_VLANTAG; 3391 } 3392 3393 #if __FreeBSD_version >= 800000 3394 /* specify what RSS queue was used for this flow */ 3395 m->m_pkthdr.flowid = fp->index; 3396 BXE_SET_FLOWID(m); 3397 #endif 3398 3399 next_rx: 3400 3401 bd_cons = RX_BD_NEXT(bd_cons); 3402 bd_prod = RX_BD_NEXT(bd_prod); 3403 bd_prod_fw = RX_BD_NEXT(bd_prod_fw); 3404 3405 /* pass the frame to the stack */ 3406 if (__predict_true(m != NULL)) { 3407 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3408 rx_pkts++; 3409 if_input(ifp, m); 3410 } 3411 3412 next_cqe: 3413 3414 sw_cq_prod = RCQ_NEXT(sw_cq_prod); 3415 sw_cq_cons = RCQ_NEXT(sw_cq_cons); 3416 3417 /* limit spinning on the queue */ 3418 if (rc != 0) 3419 break; 3420 3421 if (rx_pkts == sc->rx_budget) { 3422 fp->eth_q_stats.rx_budget_reached++; 3423 break; 3424 } 3425 } /* while work to do */ 3426 3427 fp->rx_bd_cons = bd_cons; 3428 fp->rx_bd_prod = bd_prod_fw; 3429 fp->rx_cq_cons = sw_cq_cons; 3430 fp->rx_cq_prod = sw_cq_prod; 3431 3432 /* Update producers */ 3433 bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod); 3434 3435 fp->eth_q_stats.rx_pkts += rx_pkts; 3436 fp->eth_q_stats.rx_calls++; 3437 3438 BXE_FP_RX_UNLOCK(fp); 3439 3440 return (sw_cq_cons != hw_cq_cons); 3441 } 3442 3443 static uint16_t 3444 bxe_free_tx_pkt(struct bxe_softc *sc, 3445 struct bxe_fastpath *fp, 3446 uint16_t idx) 3447 { 3448 struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx]; 3449 struct eth_tx_start_bd *tx_start_bd; 3450 uint16_t bd_idx = TX_BD(tx_buf->first_bd); 3451 uint16_t new_cons; 3452 int nbd; 3453 3454 /* unmap the mbuf from non-paged memory */ 3455 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 3456 3457 tx_start_bd = &fp->tx_chain[bd_idx].start_bd; 3458 nbd = le16toh(tx_start_bd->nbd) - 1; 3459 3460 new_cons = (tx_buf->first_bd + nbd); 3461 3462 /* free the mbuf */ 3463 if (__predict_true(tx_buf->m != NULL)) { 3464 m_freem(tx_buf->m); 3465 fp->eth_q_stats.mbuf_alloc_tx--; 3466 } else { 3467 fp->eth_q_stats.tx_chain_lost_mbuf++; 3468 } 3469 3470 tx_buf->m = NULL; 3471 tx_buf->first_bd = 0; 3472 3473 return (new_cons); 3474 } 3475 3476 /* transmit timeout watchdog */ 3477 static int 3478 bxe_watchdog(struct bxe_softc *sc, 3479 struct bxe_fastpath *fp) 3480 { 3481 BXE_FP_TX_LOCK(fp); 3482 3483 if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) { 3484 BXE_FP_TX_UNLOCK(fp); 3485 return (0); 3486 } 3487 3488 BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index); 3489 if(sc->trigger_grcdump) { 3490 /* taking grcdump */ 3491 bxe_grc_dump(sc); 3492 } 3493 3494 BXE_FP_TX_UNLOCK(fp); 3495 3496 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT); 3497 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 3498 3499 return (-1); 3500 } 3501 3502 /* processes transmit completions */ 3503 static uint8_t 3504 bxe_txeof(struct bxe_softc *sc, 3505 struct bxe_fastpath *fp) 3506 { 3507 if_t ifp = sc->ifp; 3508 uint16_t bd_cons, hw_cons, sw_cons, pkt_cons; 3509 uint16_t tx_bd_avail; 3510 3511 BXE_FP_TX_LOCK_ASSERT(fp); 3512 3513 bd_cons = fp->tx_bd_cons; 3514 hw_cons = le16toh(*fp->tx_cons_sb); 3515 sw_cons = fp->tx_pkt_cons; 3516 3517 while (sw_cons != hw_cons) { 3518 pkt_cons = TX_BD(sw_cons); 3519 3520 BLOGD(sc, DBG_TX, 3521 "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n", 3522 fp->index, hw_cons, sw_cons, pkt_cons); 3523 3524 bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons); 3525 3526 sw_cons++; 3527 } 3528 3529 fp->tx_pkt_cons = sw_cons; 3530 fp->tx_bd_cons = bd_cons; 3531 3532 BLOGD(sc, DBG_TX, 3533 "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n", 3534 fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod); 3535 3536 mb(); 3537 3538 tx_bd_avail = bxe_tx_avail(sc, fp); 3539 3540 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 3541 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 3542 } else { 3543 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 3544 } 3545 3546 if (fp->tx_pkt_prod != fp->tx_pkt_cons) { 3547 /* reset the watchdog timer if there are pending transmits */ 3548 fp->watchdog_timer = BXE_TX_TIMEOUT; 3549 return (TRUE); 3550 } else { 3551 /* clear watchdog when there are no pending transmits */ 3552 fp->watchdog_timer = 0; 3553 return (FALSE); 3554 } 3555 } 3556 3557 static void 3558 bxe_drain_tx_queues(struct bxe_softc *sc) 3559 { 3560 struct bxe_fastpath *fp; 3561 int i, count; 3562 3563 /* wait until all TX fastpath tasks have completed */ 3564 for (i = 0; i < sc->num_queues; i++) { 3565 fp = &sc->fp[i]; 3566 3567 count = 1000; 3568 3569 while (bxe_has_tx_work(fp)) { 3570 3571 BXE_FP_TX_LOCK(fp); 3572 bxe_txeof(sc, fp); 3573 BXE_FP_TX_UNLOCK(fp); 3574 3575 if (count == 0) { 3576 BLOGE(sc, "Timeout waiting for fp[%d] " 3577 "transmits to complete!\n", i); 3578 bxe_panic(sc, ("tx drain failure\n")); 3579 return; 3580 } 3581 3582 count--; 3583 DELAY(1000); 3584 rmb(); 3585 } 3586 } 3587 3588 return; 3589 } 3590 3591 static int 3592 bxe_del_all_macs(struct bxe_softc *sc, 3593 struct ecore_vlan_mac_obj *mac_obj, 3594 int mac_type, 3595 uint8_t wait_for_comp) 3596 { 3597 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 3598 int rc; 3599 3600 /* wait for completion of requested */ 3601 if (wait_for_comp) { 3602 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 3603 } 3604 3605 /* Set the mac type of addresses we want to clear */ 3606 bxe_set_bit(mac_type, &vlan_mac_flags); 3607 3608 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags); 3609 if (rc < 0) { 3610 BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n", 3611 rc, mac_type, wait_for_comp); 3612 } 3613 3614 return (rc); 3615 } 3616 3617 static int 3618 bxe_fill_accept_flags(struct bxe_softc *sc, 3619 uint32_t rx_mode, 3620 unsigned long *rx_accept_flags, 3621 unsigned long *tx_accept_flags) 3622 { 3623 /* Clear the flags first */ 3624 *rx_accept_flags = 0; 3625 *tx_accept_flags = 0; 3626 3627 switch (rx_mode) { 3628 case BXE_RX_MODE_NONE: 3629 /* 3630 * 'drop all' supersedes any accept flags that may have been 3631 * passed to the function. 3632 */ 3633 break; 3634 3635 case BXE_RX_MODE_NORMAL: 3636 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3637 bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags); 3638 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3639 3640 /* internal switching mode */ 3641 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3642 bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags); 3643 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3644 3645 break; 3646 3647 case BXE_RX_MODE_ALLMULTI: 3648 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3649 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3650 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3651 3652 /* internal switching mode */ 3653 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3654 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3655 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3656 3657 break; 3658 3659 case BXE_RX_MODE_PROMISC: 3660 /* 3661 * According to deffinition of SI mode, iface in promisc mode 3662 * should receive matched and unmatched (in resolution of port) 3663 * unicast packets. 3664 */ 3665 bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags); 3666 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3667 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3668 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3669 3670 /* internal switching mode */ 3671 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3672 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3673 3674 if (IS_MF_SI(sc)) { 3675 bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags); 3676 } else { 3677 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3678 } 3679 3680 break; 3681 3682 default: 3683 BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode); 3684 return (-1); 3685 } 3686 3687 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ 3688 if (rx_mode != BXE_RX_MODE_NONE) { 3689 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags); 3690 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags); 3691 } 3692 3693 return (0); 3694 } 3695 3696 static int 3697 bxe_set_q_rx_mode(struct bxe_softc *sc, 3698 uint8_t cl_id, 3699 unsigned long rx_mode_flags, 3700 unsigned long rx_accept_flags, 3701 unsigned long tx_accept_flags, 3702 unsigned long ramrod_flags) 3703 { 3704 struct ecore_rx_mode_ramrod_params ramrod_param; 3705 int rc; 3706 3707 memset(&ramrod_param, 0, sizeof(ramrod_param)); 3708 3709 /* Prepare ramrod parameters */ 3710 ramrod_param.cid = 0; 3711 ramrod_param.cl_id = cl_id; 3712 ramrod_param.rx_mode_obj = &sc->rx_mode_obj; 3713 ramrod_param.func_id = SC_FUNC(sc); 3714 3715 ramrod_param.pstate = &sc->sp_state; 3716 ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING; 3717 3718 ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata); 3719 ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata); 3720 3721 bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 3722 3723 ramrod_param.ramrod_flags = ramrod_flags; 3724 ramrod_param.rx_mode_flags = rx_mode_flags; 3725 3726 ramrod_param.rx_accept_flags = rx_accept_flags; 3727 ramrod_param.tx_accept_flags = tx_accept_flags; 3728 3729 rc = ecore_config_rx_mode(sc, &ramrod_param); 3730 if (rc < 0) { 3731 BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x " 3732 "rx_accept_flags 0x%x tx_accept_flags 0x%x " 3733 "ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id, 3734 (uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags, 3735 (uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc); 3736 return (rc); 3737 } 3738 3739 return (0); 3740 } 3741 3742 static int 3743 bxe_set_storm_rx_mode(struct bxe_softc *sc) 3744 { 3745 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 3746 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 3747 int rc; 3748 3749 rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags, 3750 &tx_accept_flags); 3751 if (rc) { 3752 return (rc); 3753 } 3754 3755 bxe_set_bit(RAMROD_RX, &ramrod_flags); 3756 bxe_set_bit(RAMROD_TX, &ramrod_flags); 3757 3758 /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */ 3759 return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags, 3760 rx_accept_flags, tx_accept_flags, 3761 ramrod_flags)); 3762 } 3763 3764 /* returns the "mcp load_code" according to global load_count array */ 3765 static int 3766 bxe_nic_load_no_mcp(struct bxe_softc *sc) 3767 { 3768 int path = SC_PATH(sc); 3769 int port = SC_PORT(sc); 3770 3771 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3772 path, load_count[path][0], load_count[path][1], 3773 load_count[path][2]); 3774 load_count[path][0]++; 3775 load_count[path][1 + port]++; 3776 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3777 path, load_count[path][0], load_count[path][1], 3778 load_count[path][2]); 3779 if (load_count[path][0] == 1) { 3780 return (FW_MSG_CODE_DRV_LOAD_COMMON); 3781 } else if (load_count[path][1 + port] == 1) { 3782 return (FW_MSG_CODE_DRV_LOAD_PORT); 3783 } else { 3784 return (FW_MSG_CODE_DRV_LOAD_FUNCTION); 3785 } 3786 } 3787 3788 /* returns the "mcp load_code" according to global load_count array */ 3789 static int 3790 bxe_nic_unload_no_mcp(struct bxe_softc *sc) 3791 { 3792 int port = SC_PORT(sc); 3793 int path = SC_PATH(sc); 3794 3795 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3796 path, load_count[path][0], load_count[path][1], 3797 load_count[path][2]); 3798 load_count[path][0]--; 3799 load_count[path][1 + port]--; 3800 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3801 path, load_count[path][0], load_count[path][1], 3802 load_count[path][2]); 3803 if (load_count[path][0] == 0) { 3804 return (FW_MSG_CODE_DRV_UNLOAD_COMMON); 3805 } else if (load_count[path][1 + port] == 0) { 3806 return (FW_MSG_CODE_DRV_UNLOAD_PORT); 3807 } else { 3808 return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION); 3809 } 3810 } 3811 3812 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */ 3813 static uint32_t 3814 bxe_send_unload_req(struct bxe_softc *sc, 3815 int unload_mode) 3816 { 3817 uint32_t reset_code = 0; 3818 3819 /* Select the UNLOAD request mode */ 3820 if (unload_mode == UNLOAD_NORMAL) { 3821 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3822 } else { 3823 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3824 } 3825 3826 /* Send the request to the MCP */ 3827 if (!BXE_NOMCP(sc)) { 3828 reset_code = bxe_fw_command(sc, reset_code, 0); 3829 } else { 3830 reset_code = bxe_nic_unload_no_mcp(sc); 3831 } 3832 3833 return (reset_code); 3834 } 3835 3836 /* send UNLOAD_DONE command to the MCP */ 3837 static void 3838 bxe_send_unload_done(struct bxe_softc *sc, 3839 uint8_t keep_link) 3840 { 3841 uint32_t reset_param = 3842 keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 3843 3844 /* Report UNLOAD_DONE to MCP */ 3845 if (!BXE_NOMCP(sc)) { 3846 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 3847 } 3848 } 3849 3850 static int 3851 bxe_func_wait_started(struct bxe_softc *sc) 3852 { 3853 int tout = 50; 3854 3855 if (!sc->port.pmf) { 3856 return (0); 3857 } 3858 3859 /* 3860 * (assumption: No Attention from MCP at this stage) 3861 * PMF probably in the middle of TX disable/enable transaction 3862 * 1. Sync IRS for default SB 3863 * 2. Sync SP queue - this guarantees us that attention handling started 3864 * 3. Wait, that TX disable/enable transaction completes 3865 * 3866 * 1+2 guarantee that if DCBX attention was scheduled it already changed 3867 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 3868 * received completion for the transaction the state is TX_STOPPED. 3869 * State will return to STARTED after completion of TX_STOPPED-->STARTED 3870 * transaction. 3871 */ 3872 3873 /* XXX make sure default SB ISR is done */ 3874 /* need a way to synchronize an irq (intr_mtx?) */ 3875 3876 /* XXX flush any work queues */ 3877 3878 while (ecore_func_get_state(sc, &sc->func_obj) != 3879 ECORE_F_STATE_STARTED && tout--) { 3880 DELAY(20000); 3881 } 3882 3883 if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) { 3884 /* 3885 * Failed to complete the transaction in a "good way" 3886 * Force both transactions with CLR bit. 3887 */ 3888 struct ecore_func_state_params func_params = { NULL }; 3889 3890 BLOGE(sc, "Unexpected function state! " 3891 "Forcing STARTED-->TX_STOPPED-->STARTED\n"); 3892 3893 func_params.f_obj = &sc->func_obj; 3894 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 3895 3896 /* STARTED-->TX_STOPPED */ 3897 func_params.cmd = ECORE_F_CMD_TX_STOP; 3898 ecore_func_state_change(sc, &func_params); 3899 3900 /* TX_STOPPED-->STARTED */ 3901 func_params.cmd = ECORE_F_CMD_TX_START; 3902 return (ecore_func_state_change(sc, &func_params)); 3903 } 3904 3905 return (0); 3906 } 3907 3908 static int 3909 bxe_stop_queue(struct bxe_softc *sc, 3910 int index) 3911 { 3912 struct bxe_fastpath *fp = &sc->fp[index]; 3913 struct ecore_queue_state_params q_params = { NULL }; 3914 int rc; 3915 3916 BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index); 3917 3918 q_params.q_obj = &sc->sp_objs[fp->index].q_obj; 3919 /* We want to wait for completion in this context */ 3920 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 3921 3922 /* Stop the primary connection: */ 3923 3924 /* ...halt the connection */ 3925 q_params.cmd = ECORE_Q_CMD_HALT; 3926 rc = ecore_queue_state_change(sc, &q_params); 3927 if (rc) { 3928 return (rc); 3929 } 3930 3931 /* ...terminate the connection */ 3932 q_params.cmd = ECORE_Q_CMD_TERMINATE; 3933 memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate)); 3934 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 3935 rc = ecore_queue_state_change(sc, &q_params); 3936 if (rc) { 3937 return (rc); 3938 } 3939 3940 /* ...delete cfc entry */ 3941 q_params.cmd = ECORE_Q_CMD_CFC_DEL; 3942 memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del)); 3943 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 3944 return (ecore_queue_state_change(sc, &q_params)); 3945 } 3946 3947 /* wait for the outstanding SP commands */ 3948 static inline uint8_t 3949 bxe_wait_sp_comp(struct bxe_softc *sc, 3950 unsigned long mask) 3951 { 3952 unsigned long tmp; 3953 int tout = 5000; /* wait for 5 secs tops */ 3954 3955 while (tout--) { 3956 mb(); 3957 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) { 3958 return (TRUE); 3959 } 3960 3961 DELAY(1000); 3962 } 3963 3964 mb(); 3965 3966 tmp = atomic_load_acq_long(&sc->sp_state); 3967 if (tmp & mask) { 3968 BLOGE(sc, "Filtering completion timed out: " 3969 "sp_state 0x%lx, mask 0x%lx\n", 3970 tmp, mask); 3971 return (FALSE); 3972 } 3973 3974 return (FALSE); 3975 } 3976 3977 static int 3978 bxe_func_stop(struct bxe_softc *sc) 3979 { 3980 struct ecore_func_state_params func_params = { NULL }; 3981 int rc; 3982 3983 /* prepare parameters for function state transitions */ 3984 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 3985 func_params.f_obj = &sc->func_obj; 3986 func_params.cmd = ECORE_F_CMD_STOP; 3987 3988 /* 3989 * Try to stop the function the 'good way'. If it fails (in case 3990 * of a parity error during bxe_chip_cleanup()) and we are 3991 * not in a debug mode, perform a state transaction in order to 3992 * enable further HW_RESET transaction. 3993 */ 3994 rc = ecore_func_state_change(sc, &func_params); 3995 if (rc) { 3996 BLOGE(sc, "FUNC_STOP ramrod failed. " 3997 "Running a dry transaction (%d)\n", rc); 3998 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 3999 return (ecore_func_state_change(sc, &func_params)); 4000 } 4001 4002 return (0); 4003 } 4004 4005 static int 4006 bxe_reset_hw(struct bxe_softc *sc, 4007 uint32_t load_code) 4008 { 4009 struct ecore_func_state_params func_params = { NULL }; 4010 4011 /* Prepare parameters for function state transitions */ 4012 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 4013 4014 func_params.f_obj = &sc->func_obj; 4015 func_params.cmd = ECORE_F_CMD_HW_RESET; 4016 4017 func_params.params.hw_init.load_phase = load_code; 4018 4019 return (ecore_func_state_change(sc, &func_params)); 4020 } 4021 4022 static void 4023 bxe_int_disable_sync(struct bxe_softc *sc, 4024 int disable_hw) 4025 { 4026 if (disable_hw) { 4027 /* prevent the HW from sending interrupts */ 4028 bxe_int_disable(sc); 4029 } 4030 4031 /* XXX need a way to synchronize ALL irqs (intr_mtx?) */ 4032 /* make sure all ISRs are done */ 4033 4034 /* XXX make sure sp_task is not running */ 4035 /* cancel and flush work queues */ 4036 } 4037 4038 static void 4039 bxe_chip_cleanup(struct bxe_softc *sc, 4040 uint32_t unload_mode, 4041 uint8_t keep_link) 4042 { 4043 int port = SC_PORT(sc); 4044 struct ecore_mcast_ramrod_params rparam = { NULL }; 4045 uint32_t reset_code; 4046 int i, rc = 0; 4047 4048 bxe_drain_tx_queues(sc); 4049 4050 /* give HW time to discard old tx messages */ 4051 DELAY(1000); 4052 4053 /* Clean all ETH MACs */ 4054 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE); 4055 if (rc < 0) { 4056 BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc); 4057 } 4058 4059 /* Clean up UC list */ 4060 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE); 4061 if (rc < 0) { 4062 BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc); 4063 } 4064 4065 /* Disable LLH */ 4066 if (!CHIP_IS_E1(sc)) { 4067 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 4068 } 4069 4070 /* Set "drop all" to stop Rx */ 4071 4072 /* 4073 * We need to take the BXE_MCAST_LOCK() here in order to prevent 4074 * a race between the completion code and this code. 4075 */ 4076 BXE_MCAST_LOCK(sc); 4077 4078 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 4079 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 4080 } else { 4081 bxe_set_storm_rx_mode(sc); 4082 } 4083 4084 /* Clean up multicast configuration */ 4085 rparam.mcast_obj = &sc->mcast_obj; 4086 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4087 if (rc < 0) { 4088 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4089 } 4090 4091 BXE_MCAST_UNLOCK(sc); 4092 4093 // XXX bxe_iov_chip_cleanup(sc); 4094 4095 /* 4096 * Send the UNLOAD_REQUEST to the MCP. This will return if 4097 * this function should perform FUNCTION, PORT, or COMMON HW 4098 * reset. 4099 */ 4100 reset_code = bxe_send_unload_req(sc, unload_mode); 4101 4102 /* 4103 * (assumption: No Attention from MCP at this stage) 4104 * PMF probably in the middle of TX disable/enable transaction 4105 */ 4106 rc = bxe_func_wait_started(sc); 4107 if (rc) { 4108 BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc); 4109 } 4110 4111 /* 4112 * Close multi and leading connections 4113 * Completions for ramrods are collected in a synchronous way 4114 */ 4115 for (i = 0; i < sc->num_queues; i++) { 4116 if (bxe_stop_queue(sc, i)) { 4117 goto unload_error; 4118 } 4119 } 4120 4121 /* 4122 * If SP settings didn't get completed so far - something 4123 * very wrong has happen. 4124 */ 4125 if (!bxe_wait_sp_comp(sc, ~0x0UL)) { 4126 BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc); 4127 } 4128 4129 unload_error: 4130 4131 rc = bxe_func_stop(sc); 4132 if (rc) { 4133 BLOGE(sc, "Function stop failed!(%d)\n", rc); 4134 } 4135 4136 /* disable HW interrupts */ 4137 bxe_int_disable_sync(sc, TRUE); 4138 4139 /* detach interrupts */ 4140 bxe_interrupt_detach(sc); 4141 4142 /* Reset the chip */ 4143 rc = bxe_reset_hw(sc, reset_code); 4144 if (rc) { 4145 BLOGE(sc, "Hardware reset failed(%d)\n", rc); 4146 } 4147 4148 /* Report UNLOAD_DONE to MCP */ 4149 bxe_send_unload_done(sc, keep_link); 4150 } 4151 4152 static void 4153 bxe_disable_close_the_gate(struct bxe_softc *sc) 4154 { 4155 uint32_t val; 4156 int port = SC_PORT(sc); 4157 4158 BLOGD(sc, DBG_LOAD, 4159 "Disabling 'close the gates'\n"); 4160 4161 if (CHIP_IS_E1(sc)) { 4162 uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 4163 MISC_REG_AEU_MASK_ATTN_FUNC_0; 4164 val = REG_RD(sc, addr); 4165 val &= ~(0x300); 4166 REG_WR(sc, addr, val); 4167 } else { 4168 val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK); 4169 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 4170 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 4171 REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val); 4172 } 4173 } 4174 4175 /* 4176 * Cleans the object that have internal lists without sending 4177 * ramrods. Should be run when interrutps are disabled. 4178 */ 4179 static void 4180 bxe_squeeze_objects(struct bxe_softc *sc) 4181 { 4182 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 4183 struct ecore_mcast_ramrod_params rparam = { NULL }; 4184 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 4185 int rc; 4186 4187 /* Cleanup MACs' object first... */ 4188 4189 /* Wait for completion of requested */ 4190 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 4191 /* Perform a dry cleanup */ 4192 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 4193 4194 /* Clean ETH primary MAC */ 4195 bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags); 4196 rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags, 4197 &ramrod_flags); 4198 if (rc != 0) { 4199 BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc); 4200 } 4201 4202 /* Cleanup UC list */ 4203 vlan_mac_flags = 0; 4204 bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags); 4205 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, 4206 &ramrod_flags); 4207 if (rc != 0) { 4208 BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc); 4209 } 4210 4211 /* Now clean mcast object... */ 4212 4213 rparam.mcast_obj = &sc->mcast_obj; 4214 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 4215 4216 /* Add a DEL command... */ 4217 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4218 if (rc < 0) { 4219 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4220 } 4221 4222 /* now wait until all pending commands are cleared */ 4223 4224 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4225 while (rc != 0) { 4226 if (rc < 0) { 4227 BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc); 4228 return; 4229 } 4230 4231 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4232 } 4233 } 4234 4235 /* stop the controller */ 4236 static __noinline int 4237 bxe_nic_unload(struct bxe_softc *sc, 4238 uint32_t unload_mode, 4239 uint8_t keep_link) 4240 { 4241 uint8_t global = FALSE; 4242 uint32_t val; 4243 int i; 4244 4245 BXE_CORE_LOCK_ASSERT(sc); 4246 4247 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 4248 4249 for (i = 0; i < sc->num_queues; i++) { 4250 struct bxe_fastpath *fp; 4251 4252 fp = &sc->fp[i]; 4253 BXE_FP_TX_LOCK(fp); 4254 BXE_FP_TX_UNLOCK(fp); 4255 } 4256 4257 BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n"); 4258 4259 /* mark driver as unloaded in shmem2 */ 4260 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 4261 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 4262 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 4263 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 4264 } 4265 4266 if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE && 4267 (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) { 4268 /* 4269 * We can get here if the driver has been unloaded 4270 * during parity error recovery and is either waiting for a 4271 * leader to complete or for other functions to unload and 4272 * then ifconfig down has been issued. In this case we want to 4273 * unload and let other functions to complete a recovery 4274 * process. 4275 */ 4276 sc->recovery_state = BXE_RECOVERY_DONE; 4277 sc->is_leader = 0; 4278 bxe_release_leader_lock(sc); 4279 mb(); 4280 4281 BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n"); 4282 BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x" 4283 " state = 0x%x\n", sc->recovery_state, sc->state); 4284 return (-1); 4285 } 4286 4287 /* 4288 * Nothing to do during unload if previous bxe_nic_load() 4289 * did not completed successfully - all resourses are released. 4290 */ 4291 if ((sc->state == BXE_STATE_CLOSED) || 4292 (sc->state == BXE_STATE_ERROR)) { 4293 return (0); 4294 } 4295 4296 sc->state = BXE_STATE_CLOSING_WAITING_HALT; 4297 mb(); 4298 4299 /* stop tx */ 4300 bxe_tx_disable(sc); 4301 4302 sc->rx_mode = BXE_RX_MODE_NONE; 4303 /* XXX set rx mode ??? */ 4304 4305 if (IS_PF(sc) && !sc->grcdump_done) { 4306 /* set ALWAYS_ALIVE bit in shmem */ 4307 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 4308 4309 bxe_drv_pulse(sc); 4310 4311 bxe_stats_handle(sc, STATS_EVENT_STOP); 4312 bxe_save_statistics(sc); 4313 } 4314 4315 /* wait till consumers catch up with producers in all queues */ 4316 bxe_drain_tx_queues(sc); 4317 4318 /* if VF indicate to PF this function is going down (PF will delete sp 4319 * elements and clear initializations 4320 */ 4321 if (IS_VF(sc)) { 4322 ; /* bxe_vfpf_close_vf(sc); */ 4323 } else if (unload_mode != UNLOAD_RECOVERY) { 4324 /* if this is a normal/close unload need to clean up chip */ 4325 if (!sc->grcdump_done) 4326 bxe_chip_cleanup(sc, unload_mode, keep_link); 4327 } else { 4328 /* Send the UNLOAD_REQUEST to the MCP */ 4329 bxe_send_unload_req(sc, unload_mode); 4330 4331 /* 4332 * Prevent transactions to host from the functions on the 4333 * engine that doesn't reset global blocks in case of global 4334 * attention once gloabl blocks are reset and gates are opened 4335 * (the engine which leader will perform the recovery 4336 * last). 4337 */ 4338 if (!CHIP_IS_E1x(sc)) { 4339 bxe_pf_disable(sc); 4340 } 4341 4342 /* disable HW interrupts */ 4343 bxe_int_disable_sync(sc, TRUE); 4344 4345 /* detach interrupts */ 4346 bxe_interrupt_detach(sc); 4347 4348 /* Report UNLOAD_DONE to MCP */ 4349 bxe_send_unload_done(sc, FALSE); 4350 } 4351 4352 /* 4353 * At this stage no more interrupts will arrive so we may safely clean 4354 * the queue'able objects here in case they failed to get cleaned so far. 4355 */ 4356 if (IS_PF(sc)) { 4357 bxe_squeeze_objects(sc); 4358 } 4359 4360 /* There should be no more pending SP commands at this stage */ 4361 sc->sp_state = 0; 4362 4363 sc->port.pmf = 0; 4364 4365 bxe_free_fp_buffers(sc); 4366 4367 if (IS_PF(sc)) { 4368 bxe_free_mem(sc); 4369 } 4370 4371 bxe_free_fw_stats_mem(sc); 4372 4373 sc->state = BXE_STATE_CLOSED; 4374 4375 /* 4376 * Check if there are pending parity attentions. If there are - set 4377 * RECOVERY_IN_PROGRESS. 4378 */ 4379 if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) { 4380 bxe_set_reset_in_progress(sc); 4381 4382 /* Set RESET_IS_GLOBAL if needed */ 4383 if (global) { 4384 bxe_set_reset_global(sc); 4385 } 4386 } 4387 4388 /* 4389 * The last driver must disable a "close the gate" if there is no 4390 * parity attention or "process kill" pending. 4391 */ 4392 if (IS_PF(sc) && !bxe_clear_pf_load(sc) && 4393 bxe_reset_is_done(sc, SC_PATH(sc))) { 4394 bxe_disable_close_the_gate(sc); 4395 } 4396 4397 BLOGD(sc, DBG_LOAD, "Ended NIC unload\n"); 4398 4399 return (0); 4400 } 4401 4402 /* 4403 * Called by the OS to set various media options (i.e. link, speed, etc.) when 4404 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...". 4405 */ 4406 static int 4407 bxe_ifmedia_update(struct ifnet *ifp) 4408 { 4409 struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp); 4410 struct ifmedia *ifm; 4411 4412 ifm = &sc->ifmedia; 4413 4414 /* We only support Ethernet media type. */ 4415 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) { 4416 return (EINVAL); 4417 } 4418 4419 switch (IFM_SUBTYPE(ifm->ifm_media)) { 4420 case IFM_AUTO: 4421 break; 4422 case IFM_10G_CX4: 4423 case IFM_10G_SR: 4424 case IFM_10G_T: 4425 case IFM_10G_TWINAX: 4426 default: 4427 /* We don't support changing the media type. */ 4428 BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n", 4429 IFM_SUBTYPE(ifm->ifm_media)); 4430 return (EINVAL); 4431 } 4432 4433 return (0); 4434 } 4435 4436 /* 4437 * Called by the OS to get the current media status (i.e. link, speed, etc.). 4438 */ 4439 static void 4440 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr) 4441 { 4442 struct bxe_softc *sc = if_getsoftc(ifp); 4443 4444 /* Report link down if the driver isn't running. */ 4445 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { 4446 ifmr->ifm_active |= IFM_NONE; 4447 return; 4448 } 4449 4450 /* Setup the default interface info. */ 4451 ifmr->ifm_status = IFM_AVALID; 4452 ifmr->ifm_active = IFM_ETHER; 4453 4454 if (sc->link_vars.link_up) { 4455 ifmr->ifm_status |= IFM_ACTIVE; 4456 } else { 4457 ifmr->ifm_active |= IFM_NONE; 4458 return; 4459 } 4460 4461 ifmr->ifm_active |= sc->media; 4462 4463 if (sc->link_vars.duplex == DUPLEX_FULL) { 4464 ifmr->ifm_active |= IFM_FDX; 4465 } else { 4466 ifmr->ifm_active |= IFM_HDX; 4467 } 4468 } 4469 4470 static void 4471 bxe_handle_chip_tq(void *context, 4472 int pending) 4473 { 4474 struct bxe_softc *sc = (struct bxe_softc *)context; 4475 long work = atomic_load_acq_long(&sc->chip_tq_flags); 4476 4477 switch (work) 4478 { 4479 4480 case CHIP_TQ_REINIT: 4481 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 4482 /* restart the interface */ 4483 BLOGD(sc, DBG_LOAD, "Restarting the interface...\n"); 4484 bxe_periodic_stop(sc); 4485 BXE_CORE_LOCK(sc); 4486 bxe_stop_locked(sc); 4487 bxe_init_locked(sc); 4488 BXE_CORE_UNLOCK(sc); 4489 } 4490 break; 4491 4492 default: 4493 break; 4494 } 4495 } 4496 4497 /* 4498 * Handles any IOCTL calls from the operating system. 4499 * 4500 * Returns: 4501 * 0 = Success, >0 Failure 4502 */ 4503 static int 4504 bxe_ioctl(if_t ifp, 4505 u_long command, 4506 caddr_t data) 4507 { 4508 struct bxe_softc *sc = if_getsoftc(ifp); 4509 struct ifreq *ifr = (struct ifreq *)data; 4510 int mask = 0; 4511 int reinit = 0; 4512 int error = 0; 4513 4514 int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN); 4515 int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING); 4516 4517 switch (command) 4518 { 4519 case SIOCSIFMTU: 4520 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n", 4521 ifr->ifr_mtu); 4522 4523 if (sc->mtu == ifr->ifr_mtu) { 4524 /* nothing to change */ 4525 break; 4526 } 4527 4528 if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) { 4529 BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n", 4530 ifr->ifr_mtu, mtu_min, mtu_max); 4531 error = EINVAL; 4532 break; 4533 } 4534 4535 atomic_store_rel_int((volatile unsigned int *)&sc->mtu, 4536 (unsigned long)ifr->ifr_mtu); 4537 /* 4538 atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp), 4539 (unsigned long)ifr->ifr_mtu); 4540 XXX - Not sure why it needs to be atomic 4541 */ 4542 if_setmtu(ifp, ifr->ifr_mtu); 4543 reinit = 1; 4544 break; 4545 4546 case SIOCSIFFLAGS: 4547 /* toggle the interface state up or down */ 4548 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n"); 4549 4550 BXE_CORE_LOCK(sc); 4551 /* check if the interface is up */ 4552 if (if_getflags(ifp) & IFF_UP) { 4553 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4554 /* set the receive mode flags */ 4555 bxe_set_rx_mode(sc); 4556 } else if(sc->state != BXE_STATE_DISABLED) { 4557 bxe_init_locked(sc); 4558 } 4559 } else { 4560 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4561 bxe_periodic_stop(sc); 4562 bxe_stop_locked(sc); 4563 } 4564 } 4565 BXE_CORE_UNLOCK(sc); 4566 4567 break; 4568 4569 case SIOCADDMULTI: 4570 case SIOCDELMULTI: 4571 /* add/delete multicast addresses */ 4572 BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n"); 4573 4574 /* check if the interface is up */ 4575 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4576 /* set the receive mode flags */ 4577 BXE_CORE_LOCK(sc); 4578 bxe_set_rx_mode(sc); 4579 BXE_CORE_UNLOCK(sc); 4580 } 4581 4582 break; 4583 4584 case SIOCSIFCAP: 4585 /* find out which capabilities have changed */ 4586 mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp)); 4587 4588 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n", 4589 mask); 4590 4591 /* toggle the LRO capabilites enable flag */ 4592 if (mask & IFCAP_LRO) { 4593 if_togglecapenable(ifp, IFCAP_LRO); 4594 BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n", 4595 (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF"); 4596 reinit = 1; 4597 } 4598 4599 /* toggle the TXCSUM checksum capabilites enable flag */ 4600 if (mask & IFCAP_TXCSUM) { 4601 if_togglecapenable(ifp, IFCAP_TXCSUM); 4602 BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n", 4603 (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF"); 4604 if (if_getcapenable(ifp) & IFCAP_TXCSUM) { 4605 if_sethwassistbits(ifp, (CSUM_IP | 4606 CSUM_TCP | 4607 CSUM_UDP | 4608 CSUM_TSO | 4609 CSUM_TCP_IPV6 | 4610 CSUM_UDP_IPV6), 0); 4611 } else { 4612 if_clearhwassist(ifp); /* XXX */ 4613 } 4614 } 4615 4616 /* toggle the RXCSUM checksum capabilities enable flag */ 4617 if (mask & IFCAP_RXCSUM) { 4618 if_togglecapenable(ifp, IFCAP_RXCSUM); 4619 BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n", 4620 (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF"); 4621 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 4622 if_sethwassistbits(ifp, (CSUM_IP | 4623 CSUM_TCP | 4624 CSUM_UDP | 4625 CSUM_TSO | 4626 CSUM_TCP_IPV6 | 4627 CSUM_UDP_IPV6), 0); 4628 } else { 4629 if_clearhwassist(ifp); /* XXX */ 4630 } 4631 } 4632 4633 /* toggle TSO4 capabilities enabled flag */ 4634 if (mask & IFCAP_TSO4) { 4635 if_togglecapenable(ifp, IFCAP_TSO4); 4636 BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n", 4637 (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF"); 4638 } 4639 4640 /* toggle TSO6 capabilities enabled flag */ 4641 if (mask & IFCAP_TSO6) { 4642 if_togglecapenable(ifp, IFCAP_TSO6); 4643 BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n", 4644 (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF"); 4645 } 4646 4647 /* toggle VLAN_HWTSO capabilities enabled flag */ 4648 if (mask & IFCAP_VLAN_HWTSO) { 4649 4650 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 4651 BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n", 4652 (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF"); 4653 } 4654 4655 /* toggle VLAN_HWCSUM capabilities enabled flag */ 4656 if (mask & IFCAP_VLAN_HWCSUM) { 4657 /* XXX investigate this... */ 4658 BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n"); 4659 error = EINVAL; 4660 } 4661 4662 /* toggle VLAN_MTU capabilities enable flag */ 4663 if (mask & IFCAP_VLAN_MTU) { 4664 /* XXX investigate this... */ 4665 BLOGE(sc, "Changing VLAN_MTU is not supported!\n"); 4666 error = EINVAL; 4667 } 4668 4669 /* toggle VLAN_HWTAGGING capabilities enabled flag */ 4670 if (mask & IFCAP_VLAN_HWTAGGING) { 4671 /* XXX investigate this... */ 4672 BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n"); 4673 error = EINVAL; 4674 } 4675 4676 /* toggle VLAN_HWFILTER capabilities enabled flag */ 4677 if (mask & IFCAP_VLAN_HWFILTER) { 4678 /* XXX investigate this... */ 4679 BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n"); 4680 error = EINVAL; 4681 } 4682 4683 /* XXX not yet... 4684 * IFCAP_WOL_MAGIC 4685 */ 4686 4687 break; 4688 4689 case SIOCSIFMEDIA: 4690 case SIOCGIFMEDIA: 4691 /* set/get interface media */ 4692 BLOGD(sc, DBG_IOCTL, 4693 "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n", 4694 (command & 0xff)); 4695 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); 4696 break; 4697 4698 default: 4699 BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n", 4700 (command & 0xff)); 4701 error = ether_ioctl(ifp, command, data); 4702 break; 4703 } 4704 4705 if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 4706 BLOGD(sc, DBG_LOAD | DBG_IOCTL, 4707 "Re-initializing hardware from IOCTL change\n"); 4708 bxe_periodic_stop(sc); 4709 BXE_CORE_LOCK(sc); 4710 bxe_stop_locked(sc); 4711 bxe_init_locked(sc); 4712 BXE_CORE_UNLOCK(sc); 4713 } 4714 4715 return (error); 4716 } 4717 4718 static __noinline void 4719 bxe_dump_mbuf(struct bxe_softc *sc, 4720 struct mbuf *m, 4721 uint8_t contents) 4722 { 4723 char * type; 4724 int i = 0; 4725 4726 if (!(sc->debug & DBG_MBUF)) { 4727 return; 4728 } 4729 4730 if (m == NULL) { 4731 BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n"); 4732 return; 4733 } 4734 4735 while (m) { 4736 4737 #if __FreeBSD_version >= 1000000 4738 BLOGD(sc, DBG_MBUF, 4739 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 4740 i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data); 4741 4742 if (m->m_flags & M_PKTHDR) { 4743 BLOGD(sc, DBG_MBUF, 4744 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 4745 i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS, 4746 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 4747 } 4748 #else 4749 BLOGD(sc, DBG_MBUF, 4750 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 4751 i, m, m->m_len, m->m_flags, 4752 "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", m->m_data); 4753 4754 if (m->m_flags & M_PKTHDR) { 4755 BLOGD(sc, DBG_MBUF, 4756 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 4757 i, m->m_pkthdr.len, m->m_flags, 4758 "\20\12M_BCAST\13M_MCAST\14M_FRAG" 4759 "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG" 4760 "\22M_PROMISC\23M_NOFREE", 4761 (int)m->m_pkthdr.csum_flags, 4762 "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS" 4763 "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED" 4764 "\12CSUM_IP_VALID\13CSUM_DATA_VALID" 4765 "\14CSUM_PSEUDO_HDR"); 4766 } 4767 #endif /* #if __FreeBSD_version >= 1000000 */ 4768 4769 if (m->m_flags & M_EXT) { 4770 switch (m->m_ext.ext_type) { 4771 case EXT_CLUSTER: type = "EXT_CLUSTER"; break; 4772 case EXT_SFBUF: type = "EXT_SFBUF"; break; 4773 case EXT_JUMBOP: type = "EXT_JUMBOP"; break; 4774 case EXT_JUMBO9: type = "EXT_JUMBO9"; break; 4775 case EXT_JUMBO16: type = "EXT_JUMBO16"; break; 4776 case EXT_PACKET: type = "EXT_PACKET"; break; 4777 case EXT_MBUF: type = "EXT_MBUF"; break; 4778 case EXT_NET_DRV: type = "EXT_NET_DRV"; break; 4779 case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break; 4780 case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break; 4781 case EXT_EXTREF: type = "EXT_EXTREF"; break; 4782 default: type = "UNKNOWN"; break; 4783 } 4784 4785 BLOGD(sc, DBG_MBUF, 4786 "%02d: - m_ext: %p ext_size=%d type=%s\n", 4787 i, m->m_ext.ext_buf, m->m_ext.ext_size, type); 4788 } 4789 4790 if (contents) { 4791 bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE); 4792 } 4793 4794 m = m->m_next; 4795 i++; 4796 } 4797 } 4798 4799 /* 4800 * Checks to ensure the 13 bd sliding window is >= MSS for TSO. 4801 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS. 4802 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD 4803 * The headers comes in a separate bd in FreeBSD so 13-3=10. 4804 * Returns: 0 if OK to send, 1 if packet needs further defragmentation 4805 */ 4806 static int 4807 bxe_chktso_window(struct bxe_softc *sc, 4808 int nsegs, 4809 bus_dma_segment_t *segs, 4810 struct mbuf *m) 4811 { 4812 uint32_t num_wnds, wnd_size, wnd_sum; 4813 int32_t frag_idx, wnd_idx; 4814 unsigned short lso_mss; 4815 int defrag; 4816 4817 defrag = 0; 4818 wnd_sum = 0; 4819 wnd_size = 10; 4820 num_wnds = nsegs - wnd_size; 4821 lso_mss = htole16(m->m_pkthdr.tso_segsz); 4822 4823 /* 4824 * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the 4825 * first window sum of data while skipping the first assuming it is the 4826 * header in FreeBSD. 4827 */ 4828 for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) { 4829 wnd_sum += htole16(segs[frag_idx].ds_len); 4830 } 4831 4832 /* check the first 10 bd window size */ 4833 if (wnd_sum < lso_mss) { 4834 return (1); 4835 } 4836 4837 /* run through the windows */ 4838 for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) { 4839 /* subtract the first mbuf->m_len of the last wndw(-header) */ 4840 wnd_sum -= htole16(segs[wnd_idx+1].ds_len); 4841 /* add the next mbuf len to the len of our new window */ 4842 wnd_sum += htole16(segs[frag_idx].ds_len); 4843 if (wnd_sum < lso_mss) { 4844 return (1); 4845 } 4846 } 4847 4848 return (0); 4849 } 4850 4851 static uint8_t 4852 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp, 4853 struct mbuf *m, 4854 uint32_t *parsing_data) 4855 { 4856 struct ether_vlan_header *eh = NULL; 4857 struct ip *ip4 = NULL; 4858 struct ip6_hdr *ip6 = NULL; 4859 caddr_t ip = NULL; 4860 struct tcphdr *th = NULL; 4861 int e_hlen, ip_hlen, l4_off; 4862 uint16_t proto; 4863 4864 if (m->m_pkthdr.csum_flags == CSUM_IP) { 4865 /* no L4 checksum offload needed */ 4866 return (0); 4867 } 4868 4869 /* get the Ethernet header */ 4870 eh = mtod(m, struct ether_vlan_header *); 4871 4872 /* handle VLAN encapsulation if present */ 4873 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 4874 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 4875 proto = ntohs(eh->evl_proto); 4876 } else { 4877 e_hlen = ETHER_HDR_LEN; 4878 proto = ntohs(eh->evl_encap_proto); 4879 } 4880 4881 switch (proto) { 4882 case ETHERTYPE_IP: 4883 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 4884 ip4 = (m->m_len < sizeof(struct ip)) ? 4885 (struct ip *)m->m_next->m_data : 4886 (struct ip *)(m->m_data + e_hlen); 4887 /* ip_hl is number of 32-bit words */ 4888 ip_hlen = (ip4->ip_hl << 2); 4889 ip = (caddr_t)ip4; 4890 break; 4891 case ETHERTYPE_IPV6: 4892 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 4893 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 4894 (struct ip6_hdr *)m->m_next->m_data : 4895 (struct ip6_hdr *)(m->m_data + e_hlen); 4896 /* XXX cannot support offload with IPv6 extensions */ 4897 ip_hlen = sizeof(struct ip6_hdr); 4898 ip = (caddr_t)ip6; 4899 break; 4900 default: 4901 /* We can't offload in this case... */ 4902 /* XXX error stat ??? */ 4903 return (0); 4904 } 4905 4906 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 4907 l4_off = (e_hlen + ip_hlen); 4908 4909 *parsing_data |= 4910 (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 4911 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W); 4912 4913 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 4914 CSUM_TSO | 4915 CSUM_TCP_IPV6)) { 4916 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 4917 th = (struct tcphdr *)(ip + ip_hlen); 4918 /* th_off is number of 32-bit words */ 4919 *parsing_data |= ((th->th_off << 4920 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 4921 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW); 4922 return (l4_off + (th->th_off << 2)); /* entire header length */ 4923 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 4924 CSUM_UDP_IPV6)) { 4925 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 4926 return (l4_off + sizeof(struct udphdr)); /* entire header length */ 4927 } else { 4928 /* XXX error stat ??? */ 4929 return (0); 4930 } 4931 } 4932 4933 static uint8_t 4934 bxe_set_pbd_csum(struct bxe_fastpath *fp, 4935 struct mbuf *m, 4936 struct eth_tx_parse_bd_e1x *pbd) 4937 { 4938 struct ether_vlan_header *eh = NULL; 4939 struct ip *ip4 = NULL; 4940 struct ip6_hdr *ip6 = NULL; 4941 caddr_t ip = NULL; 4942 struct tcphdr *th = NULL; 4943 struct udphdr *uh = NULL; 4944 int e_hlen, ip_hlen; 4945 uint16_t proto; 4946 uint8_t hlen; 4947 uint16_t tmp_csum; 4948 uint32_t *tmp_uh; 4949 4950 /* get the Ethernet header */ 4951 eh = mtod(m, struct ether_vlan_header *); 4952 4953 /* handle VLAN encapsulation if present */ 4954 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 4955 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 4956 proto = ntohs(eh->evl_proto); 4957 } else { 4958 e_hlen = ETHER_HDR_LEN; 4959 proto = ntohs(eh->evl_encap_proto); 4960 } 4961 4962 switch (proto) { 4963 case ETHERTYPE_IP: 4964 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 4965 ip4 = (m->m_len < sizeof(struct ip)) ? 4966 (struct ip *)m->m_next->m_data : 4967 (struct ip *)(m->m_data + e_hlen); 4968 /* ip_hl is number of 32-bit words */ 4969 ip_hlen = (ip4->ip_hl << 1); 4970 ip = (caddr_t)ip4; 4971 break; 4972 case ETHERTYPE_IPV6: 4973 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 4974 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 4975 (struct ip6_hdr *)m->m_next->m_data : 4976 (struct ip6_hdr *)(m->m_data + e_hlen); 4977 /* XXX cannot support offload with IPv6 extensions */ 4978 ip_hlen = (sizeof(struct ip6_hdr) >> 1); 4979 ip = (caddr_t)ip6; 4980 break; 4981 default: 4982 /* We can't offload in this case... */ 4983 /* XXX error stat ??? */ 4984 return (0); 4985 } 4986 4987 hlen = (e_hlen >> 1); 4988 4989 /* note that rest of global_data is indirectly zeroed here */ 4990 if (m->m_flags & M_VLANTAG) { 4991 pbd->global_data = 4992 htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 4993 } else { 4994 pbd->global_data = htole16(hlen); 4995 } 4996 4997 pbd->ip_hlen_w = ip_hlen; 4998 4999 hlen += pbd->ip_hlen_w; 5000 5001 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 5002 5003 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5004 CSUM_TSO | 5005 CSUM_TCP_IPV6)) { 5006 th = (struct tcphdr *)(ip + (ip_hlen << 1)); 5007 /* th_off is number of 32-bit words */ 5008 hlen += (uint16_t)(th->th_off << 1); 5009 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5010 CSUM_UDP_IPV6)) { 5011 uh = (struct udphdr *)(ip + (ip_hlen << 1)); 5012 hlen += (sizeof(struct udphdr) / 2); 5013 } else { 5014 /* valid case as only CSUM_IP was set */ 5015 return (0); 5016 } 5017 5018 pbd->total_hlen_w = htole16(hlen); 5019 5020 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5021 CSUM_TSO | 5022 CSUM_TCP_IPV6)) { 5023 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 5024 pbd->tcp_pseudo_csum = ntohs(th->th_sum); 5025 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5026 CSUM_UDP_IPV6)) { 5027 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 5028 5029 /* 5030 * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP 5031 * checksums and does not know anything about the UDP header and where 5032 * the checksum field is located. It only knows about TCP. Therefore 5033 * we "lie" to the hardware for outgoing UDP packets w/ checksum 5034 * offload. Since the checksum field offset for TCP is 16 bytes and 5035 * for UDP it is 6 bytes we pass a pointer to the hardware that is 10 5036 * bytes less than the start of the UDP header. This allows the 5037 * hardware to write the checksum in the correct spot. But the 5038 * hardware will compute a checksum which includes the last 10 bytes 5039 * of the IP header. To correct this we tweak the stack computed 5040 * pseudo checksum by folding in the calculation of the inverse 5041 * checksum for those final 10 bytes of the IP header. This allows 5042 * the correct checksum to be computed by the hardware. 5043 */ 5044 5045 /* set pointer 10 bytes before UDP header */ 5046 tmp_uh = (uint32_t *)((uint8_t *)uh - 10); 5047 5048 /* calculate a pseudo header checksum over the first 10 bytes */ 5049 tmp_csum = in_pseudo(*tmp_uh, 5050 *(tmp_uh + 1), 5051 *(uint16_t *)(tmp_uh + 2)); 5052 5053 pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum)); 5054 } 5055 5056 return (hlen * 2); /* entire header length, number of bytes */ 5057 } 5058 5059 static void 5060 bxe_set_pbd_lso_e2(struct mbuf *m, 5061 uint32_t *parsing_data) 5062 { 5063 *parsing_data |= ((m->m_pkthdr.tso_segsz << 5064 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 5065 ETH_TX_PARSE_BD_E2_LSO_MSS); 5066 5067 /* XXX test for IPv6 with extension header... */ 5068 } 5069 5070 static void 5071 bxe_set_pbd_lso(struct mbuf *m, 5072 struct eth_tx_parse_bd_e1x *pbd) 5073 { 5074 struct ether_vlan_header *eh = NULL; 5075 struct ip *ip = NULL; 5076 struct tcphdr *th = NULL; 5077 int e_hlen; 5078 5079 /* get the Ethernet header */ 5080 eh = mtod(m, struct ether_vlan_header *); 5081 5082 /* handle VLAN encapsulation if present */ 5083 e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ? 5084 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN; 5085 5086 /* get the IP and TCP header, with LSO entire header in first mbuf */ 5087 /* XXX assuming IPv4 */ 5088 ip = (struct ip *)(m->m_data + e_hlen); 5089 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 5090 5091 pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz); 5092 pbd->tcp_send_seq = ntohl(th->th_seq); 5093 pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff); 5094 5095 #if 1 5096 /* XXX IPv4 */ 5097 pbd->ip_id = ntohs(ip->ip_id); 5098 pbd->tcp_pseudo_csum = 5099 ntohs(in_pseudo(ip->ip_src.s_addr, 5100 ip->ip_dst.s_addr, 5101 htons(IPPROTO_TCP))); 5102 #else 5103 /* XXX IPv6 */ 5104 pbd->tcp_pseudo_csum = 5105 ntohs(in_pseudo(&ip6->ip6_src, 5106 &ip6->ip6_dst, 5107 htons(IPPROTO_TCP))); 5108 #endif 5109 5110 pbd->global_data |= 5111 htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 5112 } 5113 5114 /* 5115 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory 5116 * visible to the controller. 5117 * 5118 * If an mbuf is submitted to this routine and cannot be given to the 5119 * controller (e.g. it has too many fragments) then the function may free 5120 * the mbuf and return to the caller. 5121 * 5122 * Returns: 5123 * 0 = Success, !0 = Failure 5124 * Note the side effect that an mbuf may be freed if it causes a problem. 5125 */ 5126 static int 5127 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head) 5128 { 5129 bus_dma_segment_t segs[32]; 5130 struct mbuf *m0; 5131 struct bxe_sw_tx_bd *tx_buf; 5132 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 5133 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 5134 /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */ 5135 struct eth_tx_bd *tx_data_bd; 5136 struct eth_tx_bd *tx_total_pkt_size_bd; 5137 struct eth_tx_start_bd *tx_start_bd; 5138 uint16_t bd_prod, pkt_prod, total_pkt_size; 5139 uint8_t mac_type; 5140 int defragged, error, nsegs, rc, nbds, vlan_off, ovlan; 5141 struct bxe_softc *sc; 5142 uint16_t tx_bd_avail; 5143 struct ether_vlan_header *eh; 5144 uint32_t pbd_e2_parsing_data = 0; 5145 uint8_t hlen = 0; 5146 int tmp_bd; 5147 int i; 5148 5149 sc = fp->sc; 5150 5151 #if __FreeBSD_version >= 800000 5152 M_ASSERTPKTHDR(*m_head); 5153 #endif /* #if __FreeBSD_version >= 800000 */ 5154 5155 m0 = *m_head; 5156 rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0; 5157 tx_start_bd = NULL; 5158 tx_data_bd = NULL; 5159 tx_total_pkt_size_bd = NULL; 5160 5161 /* get the H/W pointer for packets and BDs */ 5162 pkt_prod = fp->tx_pkt_prod; 5163 bd_prod = fp->tx_bd_prod; 5164 5165 mac_type = UNICAST_ADDRESS; 5166 5167 /* map the mbuf into the next open DMAable memory */ 5168 tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)]; 5169 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5170 tx_buf->m_map, m0, 5171 segs, &nsegs, BUS_DMA_NOWAIT); 5172 5173 /* mapping errors */ 5174 if(__predict_false(error != 0)) { 5175 fp->eth_q_stats.tx_dma_mapping_failure++; 5176 if (error == ENOMEM) { 5177 /* resource issue, try again later */ 5178 rc = ENOMEM; 5179 } else if (error == EFBIG) { 5180 /* possibly recoverable with defragmentation */ 5181 fp->eth_q_stats.mbuf_defrag_attempts++; 5182 m0 = m_defrag(*m_head, M_NOWAIT); 5183 if (m0 == NULL) { 5184 fp->eth_q_stats.mbuf_defrag_failures++; 5185 rc = ENOBUFS; 5186 } else { 5187 /* defrag successful, try mapping again */ 5188 *m_head = m0; 5189 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5190 tx_buf->m_map, m0, 5191 segs, &nsegs, BUS_DMA_NOWAIT); 5192 if (error) { 5193 fp->eth_q_stats.tx_dma_mapping_failure++; 5194 rc = error; 5195 } 5196 } 5197 } else { 5198 /* unknown, unrecoverable mapping error */ 5199 BLOGE(sc, "Unknown TX mapping error rc=%d\n", error); 5200 bxe_dump_mbuf(sc, m0, FALSE); 5201 rc = error; 5202 } 5203 5204 goto bxe_tx_encap_continue; 5205 } 5206 5207 tx_bd_avail = bxe_tx_avail(sc, fp); 5208 5209 /* make sure there is enough room in the send queue */ 5210 if (__predict_false(tx_bd_avail < (nsegs + 2))) { 5211 /* Recoverable, try again later. */ 5212 fp->eth_q_stats.tx_hw_queue_full++; 5213 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5214 rc = ENOMEM; 5215 goto bxe_tx_encap_continue; 5216 } 5217 5218 /* capture the current H/W TX chain high watermark */ 5219 if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth < 5220 (TX_BD_USABLE - tx_bd_avail))) { 5221 fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail); 5222 } 5223 5224 /* make sure it fits in the packet window */ 5225 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5226 /* 5227 * The mbuf may be to big for the controller to handle. If the frame 5228 * is a TSO frame we'll need to do an additional check. 5229 */ 5230 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5231 if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) { 5232 goto bxe_tx_encap_continue; /* OK to send */ 5233 } else { 5234 fp->eth_q_stats.tx_window_violation_tso++; 5235 } 5236 } else { 5237 fp->eth_q_stats.tx_window_violation_std++; 5238 } 5239 5240 /* lets try to defragment this mbuf and remap it */ 5241 fp->eth_q_stats.mbuf_defrag_attempts++; 5242 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5243 5244 m0 = m_defrag(*m_head, M_NOWAIT); 5245 if (m0 == NULL) { 5246 fp->eth_q_stats.mbuf_defrag_failures++; 5247 /* Ugh, just drop the frame... :( */ 5248 rc = ENOBUFS; 5249 } else { 5250 /* defrag successful, try mapping again */ 5251 *m_head = m0; 5252 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5253 tx_buf->m_map, m0, 5254 segs, &nsegs, BUS_DMA_NOWAIT); 5255 if (error) { 5256 fp->eth_q_stats.tx_dma_mapping_failure++; 5257 /* No sense in trying to defrag/copy chain, drop it. :( */ 5258 rc = error; 5259 } else { 5260 /* if the chain is still too long then drop it */ 5261 if(m0->m_pkthdr.csum_flags & CSUM_TSO) { 5262 /* 5263 * in case TSO is enabled nsegs should be checked against 5264 * BXE_TSO_MAX_SEGMENTS 5265 */ 5266 if (__predict_false(nsegs > BXE_TSO_MAX_SEGMENTS)) { 5267 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5268 fp->eth_q_stats.nsegs_path1_errors++; 5269 rc = ENODEV; 5270 } 5271 } else { 5272 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5273 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5274 fp->eth_q_stats.nsegs_path2_errors++; 5275 rc = ENODEV; 5276 } 5277 } 5278 } 5279 } 5280 } 5281 5282 bxe_tx_encap_continue: 5283 5284 /* Check for errors */ 5285 if (rc) { 5286 if (rc == ENOMEM) { 5287 /* recoverable try again later */ 5288 } else { 5289 fp->eth_q_stats.tx_soft_errors++; 5290 fp->eth_q_stats.mbuf_alloc_tx--; 5291 m_freem(*m_head); 5292 *m_head = NULL; 5293 } 5294 5295 return (rc); 5296 } 5297 5298 /* set flag according to packet type (UNICAST_ADDRESS is default) */ 5299 if (m0->m_flags & M_BCAST) { 5300 mac_type = BROADCAST_ADDRESS; 5301 } else if (m0->m_flags & M_MCAST) { 5302 mac_type = MULTICAST_ADDRESS; 5303 } 5304 5305 /* store the mbuf into the mbuf ring */ 5306 tx_buf->m = m0; 5307 tx_buf->first_bd = fp->tx_bd_prod; 5308 tx_buf->flags = 0; 5309 5310 /* prepare the first transmit (start) BD for the mbuf */ 5311 tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd; 5312 5313 BLOGD(sc, DBG_TX, 5314 "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n", 5315 pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd); 5316 5317 tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 5318 tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 5319 tx_start_bd->nbytes = htole16(segs[0].ds_len); 5320 total_pkt_size += tx_start_bd->nbytes; 5321 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 5322 5323 tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT); 5324 5325 /* all frames have at least Start BD + Parsing BD */ 5326 nbds = nsegs + 1; 5327 tx_start_bd->nbd = htole16(nbds); 5328 5329 if (m0->m_flags & M_VLANTAG) { 5330 tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag); 5331 tx_start_bd->bd_flags.as_bitfield |= 5332 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 5333 } else { 5334 /* vf tx, start bd must hold the ethertype for fw to enforce it */ 5335 if (IS_VF(sc)) { 5336 /* map ethernet header to find type and header length */ 5337 eh = mtod(m0, struct ether_vlan_header *); 5338 tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto; 5339 } else { 5340 /* used by FW for packet accounting */ 5341 tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod); 5342 } 5343 } 5344 5345 /* 5346 * add a parsing BD from the chain. The parsing BD is always added 5347 * though it is only used for TSO and chksum 5348 */ 5349 bd_prod = TX_BD_NEXT(bd_prod); 5350 5351 if (m0->m_pkthdr.csum_flags) { 5352 if (m0->m_pkthdr.csum_flags & CSUM_IP) { 5353 fp->eth_q_stats.tx_ofld_frames_csum_ip++; 5354 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM; 5355 } 5356 5357 if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) { 5358 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5359 ETH_TX_BD_FLAGS_L4_CSUM); 5360 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) { 5361 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5362 ETH_TX_BD_FLAGS_IS_UDP | 5363 ETH_TX_BD_FLAGS_L4_CSUM); 5364 } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) || 5365 (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5366 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 5367 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) { 5368 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM | 5369 ETH_TX_BD_FLAGS_IS_UDP); 5370 } 5371 } 5372 5373 if (!CHIP_IS_E1x(sc)) { 5374 pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2; 5375 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 5376 5377 if (m0->m_pkthdr.csum_flags) { 5378 hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data); 5379 } 5380 5381 SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, 5382 mac_type); 5383 } else { 5384 uint16_t global_data = 0; 5385 5386 pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x; 5387 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 5388 5389 if (m0->m_pkthdr.csum_flags) { 5390 hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x); 5391 } 5392 5393 SET_FLAG(global_data, 5394 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 5395 pbd_e1x->global_data |= htole16(global_data); 5396 } 5397 5398 /* setup the parsing BD with TSO specific info */ 5399 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5400 fp->eth_q_stats.tx_ofld_frames_lso++; 5401 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 5402 5403 if (__predict_false(tx_start_bd->nbytes > hlen)) { 5404 fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++; 5405 5406 /* split the first BD into header/data making the fw job easy */ 5407 nbds++; 5408 tx_start_bd->nbd = htole16(nbds); 5409 tx_start_bd->nbytes = htole16(hlen); 5410 5411 bd_prod = TX_BD_NEXT(bd_prod); 5412 5413 /* new transmit BD after the tx_parse_bd */ 5414 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5415 tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen)); 5416 tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen)); 5417 tx_data_bd->nbytes = htole16(segs[0].ds_len - hlen); 5418 if (tx_total_pkt_size_bd == NULL) { 5419 tx_total_pkt_size_bd = tx_data_bd; 5420 } 5421 5422 BLOGD(sc, DBG_TX, 5423 "TSO split header size is %d (%x:%x) nbds %d\n", 5424 le16toh(tx_start_bd->nbytes), 5425 le32toh(tx_start_bd->addr_hi), 5426 le32toh(tx_start_bd->addr_lo), 5427 nbds); 5428 } 5429 5430 if (!CHIP_IS_E1x(sc)) { 5431 bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data); 5432 } else { 5433 bxe_set_pbd_lso(m0, pbd_e1x); 5434 } 5435 } 5436 5437 if (pbd_e2_parsing_data) { 5438 pbd_e2->parsing_data = htole32(pbd_e2_parsing_data); 5439 } 5440 5441 /* prepare remaining BDs, start tx bd contains first seg/frag */ 5442 for (i = 1; i < nsegs ; i++) { 5443 bd_prod = TX_BD_NEXT(bd_prod); 5444 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5445 tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr)); 5446 tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr)); 5447 tx_data_bd->nbytes = htole16(segs[i].ds_len); 5448 if (tx_total_pkt_size_bd == NULL) { 5449 tx_total_pkt_size_bd = tx_data_bd; 5450 } 5451 total_pkt_size += tx_data_bd->nbytes; 5452 } 5453 5454 BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd); 5455 5456 if (tx_total_pkt_size_bd != NULL) { 5457 tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size; 5458 } 5459 5460 if (__predict_false(sc->debug & DBG_TX)) { 5461 tmp_bd = tx_buf->first_bd; 5462 for (i = 0; i < nbds; i++) 5463 { 5464 if (i == 0) { 5465 BLOGD(sc, DBG_TX, 5466 "TX Strt: %p bd=%d nbd=%d vlan=0x%x " 5467 "bd_flags=0x%x hdr_nbds=%d\n", 5468 tx_start_bd, 5469 tmp_bd, 5470 le16toh(tx_start_bd->nbd), 5471 le16toh(tx_start_bd->vlan_or_ethertype), 5472 tx_start_bd->bd_flags.as_bitfield, 5473 (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS)); 5474 } else if (i == 1) { 5475 if (pbd_e1x) { 5476 BLOGD(sc, DBG_TX, 5477 "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u " 5478 "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x " 5479 "tcp_seq=%u total_hlen_w=%u\n", 5480 pbd_e1x, 5481 tmp_bd, 5482 pbd_e1x->global_data, 5483 pbd_e1x->ip_hlen_w, 5484 pbd_e1x->ip_id, 5485 pbd_e1x->lso_mss, 5486 pbd_e1x->tcp_flags, 5487 pbd_e1x->tcp_pseudo_csum, 5488 pbd_e1x->tcp_send_seq, 5489 le16toh(pbd_e1x->total_hlen_w)); 5490 } else { /* if (pbd_e2) */ 5491 BLOGD(sc, DBG_TX, 5492 "-> Parse: %p bd=%d dst=%02x:%02x:%02x " 5493 "src=%02x:%02x:%02x parsing_data=0x%x\n", 5494 pbd_e2, 5495 tmp_bd, 5496 pbd_e2->data.mac_addr.dst_hi, 5497 pbd_e2->data.mac_addr.dst_mid, 5498 pbd_e2->data.mac_addr.dst_lo, 5499 pbd_e2->data.mac_addr.src_hi, 5500 pbd_e2->data.mac_addr.src_mid, 5501 pbd_e2->data.mac_addr.src_lo, 5502 pbd_e2->parsing_data); 5503 } 5504 } 5505 5506 if (i != 1) { /* skip parse db as it doesn't hold data */ 5507 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd; 5508 BLOGD(sc, DBG_TX, 5509 "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n", 5510 tx_data_bd, 5511 tmp_bd, 5512 le16toh(tx_data_bd->nbytes), 5513 le32toh(tx_data_bd->addr_hi), 5514 le32toh(tx_data_bd->addr_lo)); 5515 } 5516 5517 tmp_bd = TX_BD_NEXT(tmp_bd); 5518 } 5519 } 5520 5521 BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod); 5522 5523 /* update TX BD producer index value for next TX */ 5524 bd_prod = TX_BD_NEXT(bd_prod); 5525 5526 /* 5527 * If the chain of tx_bd's describing this frame is adjacent to or spans 5528 * an eth_tx_next_bd element then we need to increment the nbds value. 5529 */ 5530 if (TX_BD_IDX(bd_prod) < nbds) { 5531 nbds++; 5532 } 5533 5534 /* don't allow reordering of writes for nbd and packets */ 5535 mb(); 5536 5537 fp->tx_db.data.prod += nbds; 5538 5539 /* producer points to the next free tx_bd at this point */ 5540 fp->tx_pkt_prod++; 5541 fp->tx_bd_prod = bd_prod; 5542 5543 DOORBELL(sc, fp->index, fp->tx_db.raw); 5544 5545 fp->eth_q_stats.tx_pkts++; 5546 5547 /* Prevent speculative reads from getting ahead of the status block. */ 5548 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 5549 0, 0, BUS_SPACE_BARRIER_READ); 5550 5551 /* Prevent speculative reads from getting ahead of the doorbell. */ 5552 bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle, 5553 0, 0, BUS_SPACE_BARRIER_READ); 5554 5555 return (0); 5556 } 5557 5558 static void 5559 bxe_tx_start_locked(struct bxe_softc *sc, 5560 if_t ifp, 5561 struct bxe_fastpath *fp) 5562 { 5563 struct mbuf *m = NULL; 5564 int tx_count = 0; 5565 uint16_t tx_bd_avail; 5566 5567 BXE_FP_TX_LOCK_ASSERT(fp); 5568 5569 /* keep adding entries while there are frames to send */ 5570 while (!if_sendq_empty(ifp)) { 5571 5572 /* 5573 * check for any frames to send 5574 * dequeue can still be NULL even if queue is not empty 5575 */ 5576 m = if_dequeue(ifp); 5577 if (__predict_false(m == NULL)) { 5578 break; 5579 } 5580 5581 /* the mbuf now belongs to us */ 5582 fp->eth_q_stats.mbuf_alloc_tx++; 5583 5584 /* 5585 * Put the frame into the transmit ring. If we don't have room, 5586 * place the mbuf back at the head of the TX queue, set the 5587 * OACTIVE flag, and wait for the NIC to drain the chain. 5588 */ 5589 if (__predict_false(bxe_tx_encap(fp, &m))) { 5590 fp->eth_q_stats.tx_encap_failures++; 5591 if (m != NULL) { 5592 /* mark the TX queue as full and return the frame */ 5593 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5594 if_sendq_prepend(ifp, m); 5595 fp->eth_q_stats.mbuf_alloc_tx--; 5596 fp->eth_q_stats.tx_queue_xoff++; 5597 } 5598 5599 /* stop looking for more work */ 5600 break; 5601 } 5602 5603 /* the frame was enqueued successfully */ 5604 tx_count++; 5605 5606 /* send a copy of the frame to any BPF listeners. */ 5607 if_etherbpfmtap(ifp, m); 5608 5609 tx_bd_avail = bxe_tx_avail(sc, fp); 5610 5611 /* handle any completions if we're running low */ 5612 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5613 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5614 bxe_txeof(sc, fp); 5615 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5616 break; 5617 } 5618 } 5619 } 5620 5621 /* all TX packets were dequeued and/or the tx ring is full */ 5622 if (tx_count > 0) { 5623 /* reset the TX watchdog timeout timer */ 5624 fp->watchdog_timer = BXE_TX_TIMEOUT; 5625 } 5626 } 5627 5628 /* Legacy (non-RSS) dispatch routine */ 5629 static void 5630 bxe_tx_start(if_t ifp) 5631 { 5632 struct bxe_softc *sc; 5633 struct bxe_fastpath *fp; 5634 5635 sc = if_getsoftc(ifp); 5636 5637 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 5638 BLOGW(sc, "Interface not running, ignoring transmit request\n"); 5639 return; 5640 } 5641 5642 if (!sc->link_vars.link_up) { 5643 BLOGW(sc, "Interface link is down, ignoring transmit request\n"); 5644 return; 5645 } 5646 5647 fp = &sc->fp[0]; 5648 5649 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5650 fp->eth_q_stats.tx_queue_full_return++; 5651 return; 5652 } 5653 5654 BXE_FP_TX_LOCK(fp); 5655 bxe_tx_start_locked(sc, ifp, fp); 5656 BXE_FP_TX_UNLOCK(fp); 5657 } 5658 5659 #if __FreeBSD_version >= 901504 5660 5661 static int 5662 bxe_tx_mq_start_locked(struct bxe_softc *sc, 5663 if_t ifp, 5664 struct bxe_fastpath *fp, 5665 struct mbuf *m) 5666 { 5667 struct buf_ring *tx_br = fp->tx_br; 5668 struct mbuf *next; 5669 int depth, rc, tx_count; 5670 uint16_t tx_bd_avail; 5671 5672 rc = tx_count = 0; 5673 5674 BXE_FP_TX_LOCK_ASSERT(fp); 5675 5676 if (sc->state != BXE_STATE_OPEN) { 5677 fp->eth_q_stats.bxe_tx_mq_sc_state_failures++; 5678 return ENETDOWN; 5679 } 5680 5681 if (!tx_br) { 5682 BLOGE(sc, "Multiqueue TX and no buf_ring!\n"); 5683 return (EINVAL); 5684 } 5685 5686 if (m != NULL) { 5687 rc = drbr_enqueue(ifp, tx_br, m); 5688 if (rc != 0) { 5689 fp->eth_q_stats.tx_soft_errors++; 5690 goto bxe_tx_mq_start_locked_exit; 5691 } 5692 } 5693 5694 if (!sc->link_vars.link_up || !(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 5695 fp->eth_q_stats.tx_request_link_down_failures++; 5696 goto bxe_tx_mq_start_locked_exit; 5697 } 5698 5699 /* fetch the depth of the driver queue */ 5700 depth = drbr_inuse_drv(ifp, tx_br); 5701 if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) { 5702 fp->eth_q_stats.tx_max_drbr_queue_depth = depth; 5703 } 5704 5705 /* keep adding entries while there are frames to send */ 5706 while ((next = drbr_peek(ifp, tx_br)) != NULL) { 5707 /* handle any completions if we're running low */ 5708 tx_bd_avail = bxe_tx_avail(sc, fp); 5709 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5710 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5711 bxe_txeof(sc, fp); 5712 tx_bd_avail = bxe_tx_avail(sc, fp); 5713 if (tx_bd_avail < (BXE_TSO_MAX_SEGMENTS + 1)) { 5714 fp->eth_q_stats.bd_avail_too_less_failures++; 5715 m_freem(next); 5716 drbr_advance(ifp, tx_br); 5717 rc = ENOBUFS; 5718 break; 5719 } 5720 } 5721 5722 /* the mbuf now belongs to us */ 5723 fp->eth_q_stats.mbuf_alloc_tx++; 5724 5725 /* 5726 * Put the frame into the transmit ring. If we don't have room, 5727 * place the mbuf back at the head of the TX queue, set the 5728 * OACTIVE flag, and wait for the NIC to drain the chain. 5729 */ 5730 rc = bxe_tx_encap(fp, &next); 5731 if (__predict_false(rc != 0)) { 5732 fp->eth_q_stats.tx_encap_failures++; 5733 if (next != NULL) { 5734 /* mark the TX queue as full and save the frame */ 5735 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5736 drbr_putback(ifp, tx_br, next); 5737 fp->eth_q_stats.mbuf_alloc_tx--; 5738 fp->eth_q_stats.tx_frames_deferred++; 5739 } else 5740 drbr_advance(ifp, tx_br); 5741 5742 /* stop looking for more work */ 5743 break; 5744 } 5745 5746 /* the transmit frame was enqueued successfully */ 5747 tx_count++; 5748 5749 /* send a copy of the frame to any BPF listeners */ 5750 if_etherbpfmtap(ifp, next); 5751 5752 drbr_advance(ifp, tx_br); 5753 } 5754 5755 /* all TX packets were dequeued and/or the tx ring is full */ 5756 if (tx_count > 0) { 5757 /* reset the TX watchdog timeout timer */ 5758 fp->watchdog_timer = BXE_TX_TIMEOUT; 5759 } 5760 5761 bxe_tx_mq_start_locked_exit: 5762 /* If we didn't drain the drbr, enqueue a task in the future to do it. */ 5763 if (!drbr_empty(ifp, tx_br)) { 5764 fp->eth_q_stats.tx_mq_not_empty++; 5765 taskqueue_enqueue_timeout(fp->tq, &fp->tx_timeout_task, 1); 5766 } 5767 5768 return (rc); 5769 } 5770 5771 static void 5772 bxe_tx_mq_start_deferred(void *arg, 5773 int pending) 5774 { 5775 struct bxe_fastpath *fp = (struct bxe_fastpath *)arg; 5776 struct bxe_softc *sc = fp->sc; 5777 if_t ifp = sc->ifp; 5778 5779 BXE_FP_TX_LOCK(fp); 5780 bxe_tx_mq_start_locked(sc, ifp, fp, NULL); 5781 BXE_FP_TX_UNLOCK(fp); 5782 } 5783 5784 /* Multiqueue (TSS) dispatch routine. */ 5785 static int 5786 bxe_tx_mq_start(struct ifnet *ifp, 5787 struct mbuf *m) 5788 { 5789 struct bxe_softc *sc = if_getsoftc(ifp); 5790 struct bxe_fastpath *fp; 5791 int fp_index, rc; 5792 5793 fp_index = 0; /* default is the first queue */ 5794 5795 /* check if flowid is set */ 5796 5797 if (BXE_VALID_FLOWID(m)) 5798 fp_index = (m->m_pkthdr.flowid % sc->num_queues); 5799 5800 fp = &sc->fp[fp_index]; 5801 5802 if (sc->state != BXE_STATE_OPEN) { 5803 fp->eth_q_stats.bxe_tx_mq_sc_state_failures++; 5804 return ENETDOWN; 5805 } 5806 5807 if (BXE_FP_TX_TRYLOCK(fp)) { 5808 rc = bxe_tx_mq_start_locked(sc, ifp, fp, m); 5809 BXE_FP_TX_UNLOCK(fp); 5810 } else { 5811 rc = drbr_enqueue(ifp, fp->tx_br, m); 5812 taskqueue_enqueue(fp->tq, &fp->tx_task); 5813 } 5814 5815 return (rc); 5816 } 5817 5818 static void 5819 bxe_mq_flush(struct ifnet *ifp) 5820 { 5821 struct bxe_softc *sc = if_getsoftc(ifp); 5822 struct bxe_fastpath *fp; 5823 struct mbuf *m; 5824 int i; 5825 5826 for (i = 0; i < sc->num_queues; i++) { 5827 fp = &sc->fp[i]; 5828 5829 if (fp->state != BXE_FP_STATE_IRQ) { 5830 BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n", 5831 fp->index, fp->state); 5832 continue; 5833 } 5834 5835 if (fp->tx_br != NULL) { 5836 BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index); 5837 BXE_FP_TX_LOCK(fp); 5838 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { 5839 m_freem(m); 5840 } 5841 BXE_FP_TX_UNLOCK(fp); 5842 } 5843 } 5844 5845 if_qflush(ifp); 5846 } 5847 5848 #endif /* FreeBSD_version >= 901504 */ 5849 5850 static uint16_t 5851 bxe_cid_ilt_lines(struct bxe_softc *sc) 5852 { 5853 if (IS_SRIOV(sc)) { 5854 return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS); 5855 } 5856 return (L2_ILT_LINES(sc)); 5857 } 5858 5859 static void 5860 bxe_ilt_set_info(struct bxe_softc *sc) 5861 { 5862 struct ilt_client_info *ilt_client; 5863 struct ecore_ilt *ilt = sc->ilt; 5864 uint16_t line = 0; 5865 5866 ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc)); 5867 BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line); 5868 5869 /* CDU */ 5870 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 5871 ilt_client->client_num = ILT_CLIENT_CDU; 5872 ilt_client->page_size = CDU_ILT_PAGE_SZ; 5873 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 5874 ilt_client->start = line; 5875 line += bxe_cid_ilt_lines(sc); 5876 5877 if (CNIC_SUPPORT(sc)) { 5878 line += CNIC_ILT_LINES; 5879 } 5880 5881 ilt_client->end = (line - 1); 5882 5883 BLOGD(sc, DBG_LOAD, 5884 "ilt client[CDU]: start %d, end %d, " 5885 "psz 0x%x, flags 0x%x, hw psz %d\n", 5886 ilt_client->start, ilt_client->end, 5887 ilt_client->page_size, 5888 ilt_client->flags, 5889 ilog2(ilt_client->page_size >> 12)); 5890 5891 /* QM */ 5892 if (QM_INIT(sc->qm_cid_count)) { 5893 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 5894 ilt_client->client_num = ILT_CLIENT_QM; 5895 ilt_client->page_size = QM_ILT_PAGE_SZ; 5896 ilt_client->flags = 0; 5897 ilt_client->start = line; 5898 5899 /* 4 bytes for each cid */ 5900 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 5901 QM_ILT_PAGE_SZ); 5902 5903 ilt_client->end = (line - 1); 5904 5905 BLOGD(sc, DBG_LOAD, 5906 "ilt client[QM]: start %d, end %d, " 5907 "psz 0x%x, flags 0x%x, hw psz %d\n", 5908 ilt_client->start, ilt_client->end, 5909 ilt_client->page_size, ilt_client->flags, 5910 ilog2(ilt_client->page_size >> 12)); 5911 } 5912 5913 if (CNIC_SUPPORT(sc)) { 5914 /* SRC */ 5915 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 5916 ilt_client->client_num = ILT_CLIENT_SRC; 5917 ilt_client->page_size = SRC_ILT_PAGE_SZ; 5918 ilt_client->flags = 0; 5919 ilt_client->start = line; 5920 line += SRC_ILT_LINES; 5921 ilt_client->end = (line - 1); 5922 5923 BLOGD(sc, DBG_LOAD, 5924 "ilt client[SRC]: start %d, end %d, " 5925 "psz 0x%x, flags 0x%x, hw psz %d\n", 5926 ilt_client->start, ilt_client->end, 5927 ilt_client->page_size, ilt_client->flags, 5928 ilog2(ilt_client->page_size >> 12)); 5929 5930 /* TM */ 5931 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 5932 ilt_client->client_num = ILT_CLIENT_TM; 5933 ilt_client->page_size = TM_ILT_PAGE_SZ; 5934 ilt_client->flags = 0; 5935 ilt_client->start = line; 5936 line += TM_ILT_LINES; 5937 ilt_client->end = (line - 1); 5938 5939 BLOGD(sc, DBG_LOAD, 5940 "ilt client[TM]: start %d, end %d, " 5941 "psz 0x%x, flags 0x%x, hw psz %d\n", 5942 ilt_client->start, ilt_client->end, 5943 ilt_client->page_size, ilt_client->flags, 5944 ilog2(ilt_client->page_size >> 12)); 5945 } 5946 5947 KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!")); 5948 } 5949 5950 static void 5951 bxe_set_fp_rx_buf_size(struct bxe_softc *sc) 5952 { 5953 int i; 5954 uint32_t rx_buf_size; 5955 5956 rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu); 5957 5958 for (i = 0; i < sc->num_queues; i++) { 5959 if(rx_buf_size <= MCLBYTES){ 5960 sc->fp[i].rx_buf_size = rx_buf_size; 5961 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5962 }else if (rx_buf_size <= MJUMPAGESIZE){ 5963 sc->fp[i].rx_buf_size = rx_buf_size; 5964 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 5965 }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){ 5966 sc->fp[i].rx_buf_size = MCLBYTES; 5967 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5968 }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){ 5969 sc->fp[i].rx_buf_size = MJUMPAGESIZE; 5970 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 5971 }else { 5972 sc->fp[i].rx_buf_size = MCLBYTES; 5973 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5974 } 5975 } 5976 } 5977 5978 static int 5979 bxe_alloc_ilt_mem(struct bxe_softc *sc) 5980 { 5981 int rc = 0; 5982 5983 if ((sc->ilt = 5984 (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt), 5985 M_BXE_ILT, 5986 (M_NOWAIT | M_ZERO))) == NULL) { 5987 rc = 1; 5988 } 5989 5990 return (rc); 5991 } 5992 5993 static int 5994 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc) 5995 { 5996 int rc = 0; 5997 5998 if ((sc->ilt->lines = 5999 (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES), 6000 M_BXE_ILT, 6001 (M_NOWAIT | M_ZERO))) == NULL) { 6002 rc = 1; 6003 } 6004 6005 return (rc); 6006 } 6007 6008 static void 6009 bxe_free_ilt_mem(struct bxe_softc *sc) 6010 { 6011 if (sc->ilt != NULL) { 6012 free(sc->ilt, M_BXE_ILT); 6013 sc->ilt = NULL; 6014 } 6015 } 6016 6017 static void 6018 bxe_free_ilt_lines_mem(struct bxe_softc *sc) 6019 { 6020 if (sc->ilt->lines != NULL) { 6021 free(sc->ilt->lines, M_BXE_ILT); 6022 sc->ilt->lines = NULL; 6023 } 6024 } 6025 6026 static void 6027 bxe_free_mem(struct bxe_softc *sc) 6028 { 6029 int i; 6030 6031 for (i = 0; i < L2_ILT_LINES(sc); i++) { 6032 bxe_dma_free(sc, &sc->context[i].vcxt_dma); 6033 sc->context[i].vcxt = NULL; 6034 sc->context[i].size = 0; 6035 } 6036 6037 ecore_ilt_mem_op(sc, ILT_MEMOP_FREE); 6038 6039 bxe_free_ilt_lines_mem(sc); 6040 6041 } 6042 6043 static int 6044 bxe_alloc_mem(struct bxe_softc *sc) 6045 { 6046 6047 int context_size; 6048 int allocated; 6049 int i; 6050 6051 /* 6052 * Allocate memory for CDU context: 6053 * This memory is allocated separately and not in the generic ILT 6054 * functions because CDU differs in few aspects: 6055 * 1. There can be multiple entities allocating memory for context - 6056 * regular L2, CNIC, and SRIOV drivers. Each separately controls 6057 * its own ILT lines. 6058 * 2. Since CDU page-size is not a single 4KB page (which is the case 6059 * for the other ILT clients), to be efficient we want to support 6060 * allocation of sub-page-size in the last entry. 6061 * 3. Context pointers are used by the driver to pass to FW / update 6062 * the context (for the other ILT clients the pointers are used just to 6063 * free the memory during unload). 6064 */ 6065 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc)); 6066 for (i = 0, allocated = 0; allocated < context_size; i++) { 6067 sc->context[i].size = min(CDU_ILT_PAGE_SZ, 6068 (context_size - allocated)); 6069 6070 if (bxe_dma_alloc(sc, sc->context[i].size, 6071 &sc->context[i].vcxt_dma, 6072 "cdu context") != 0) { 6073 bxe_free_mem(sc); 6074 return (-1); 6075 } 6076 6077 sc->context[i].vcxt = 6078 (union cdu_context *)sc->context[i].vcxt_dma.vaddr; 6079 6080 allocated += sc->context[i].size; 6081 } 6082 6083 bxe_alloc_ilt_lines_mem(sc); 6084 6085 BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n", 6086 sc->ilt, sc->ilt->start_line, sc->ilt->lines); 6087 { 6088 for (i = 0; i < 4; i++) { 6089 BLOGD(sc, DBG_LOAD, 6090 "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n", 6091 i, 6092 sc->ilt->clients[i].page_size, 6093 sc->ilt->clients[i].start, 6094 sc->ilt->clients[i].end, 6095 sc->ilt->clients[i].client_num, 6096 sc->ilt->clients[i].flags); 6097 } 6098 } 6099 if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) { 6100 BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n"); 6101 bxe_free_mem(sc); 6102 return (-1); 6103 } 6104 6105 return (0); 6106 } 6107 6108 static void 6109 bxe_free_rx_bd_chain(struct bxe_fastpath *fp) 6110 { 6111 struct bxe_softc *sc; 6112 int i; 6113 6114 sc = fp->sc; 6115 6116 if (fp->rx_mbuf_tag == NULL) { 6117 return; 6118 } 6119 6120 /* free all mbufs and unload all maps */ 6121 for (i = 0; i < RX_BD_TOTAL; i++) { 6122 if (fp->rx_mbuf_chain[i].m_map != NULL) { 6123 bus_dmamap_sync(fp->rx_mbuf_tag, 6124 fp->rx_mbuf_chain[i].m_map, 6125 BUS_DMASYNC_POSTREAD); 6126 bus_dmamap_unload(fp->rx_mbuf_tag, 6127 fp->rx_mbuf_chain[i].m_map); 6128 } 6129 6130 if (fp->rx_mbuf_chain[i].m != NULL) { 6131 m_freem(fp->rx_mbuf_chain[i].m); 6132 fp->rx_mbuf_chain[i].m = NULL; 6133 fp->eth_q_stats.mbuf_alloc_rx--; 6134 } 6135 } 6136 } 6137 6138 static void 6139 bxe_free_tpa_pool(struct bxe_fastpath *fp) 6140 { 6141 struct bxe_softc *sc; 6142 int i, max_agg_queues; 6143 6144 sc = fp->sc; 6145 6146 if (fp->rx_mbuf_tag == NULL) { 6147 return; 6148 } 6149 6150 max_agg_queues = MAX_AGG_QS(sc); 6151 6152 /* release all mbufs and unload all DMA maps in the TPA pool */ 6153 for (i = 0; i < max_agg_queues; i++) { 6154 if (fp->rx_tpa_info[i].bd.m_map != NULL) { 6155 bus_dmamap_sync(fp->rx_mbuf_tag, 6156 fp->rx_tpa_info[i].bd.m_map, 6157 BUS_DMASYNC_POSTREAD); 6158 bus_dmamap_unload(fp->rx_mbuf_tag, 6159 fp->rx_tpa_info[i].bd.m_map); 6160 } 6161 6162 if (fp->rx_tpa_info[i].bd.m != NULL) { 6163 m_freem(fp->rx_tpa_info[i].bd.m); 6164 fp->rx_tpa_info[i].bd.m = NULL; 6165 fp->eth_q_stats.mbuf_alloc_tpa--; 6166 } 6167 } 6168 } 6169 6170 static void 6171 bxe_free_sge_chain(struct bxe_fastpath *fp) 6172 { 6173 struct bxe_softc *sc; 6174 int i; 6175 6176 sc = fp->sc; 6177 6178 if (fp->rx_sge_mbuf_tag == NULL) { 6179 return; 6180 } 6181 6182 /* rree all mbufs and unload all maps */ 6183 for (i = 0; i < RX_SGE_TOTAL; i++) { 6184 if (fp->rx_sge_mbuf_chain[i].m_map != NULL) { 6185 bus_dmamap_sync(fp->rx_sge_mbuf_tag, 6186 fp->rx_sge_mbuf_chain[i].m_map, 6187 BUS_DMASYNC_POSTREAD); 6188 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 6189 fp->rx_sge_mbuf_chain[i].m_map); 6190 } 6191 6192 if (fp->rx_sge_mbuf_chain[i].m != NULL) { 6193 m_freem(fp->rx_sge_mbuf_chain[i].m); 6194 fp->rx_sge_mbuf_chain[i].m = NULL; 6195 fp->eth_q_stats.mbuf_alloc_sge--; 6196 } 6197 } 6198 } 6199 6200 static void 6201 bxe_free_fp_buffers(struct bxe_softc *sc) 6202 { 6203 struct bxe_fastpath *fp; 6204 int i; 6205 6206 for (i = 0; i < sc->num_queues; i++) { 6207 fp = &sc->fp[i]; 6208 6209 #if __FreeBSD_version >= 901504 6210 if (fp->tx_br != NULL) { 6211 /* just in case bxe_mq_flush() wasn't called */ 6212 if (mtx_initialized(&fp->tx_mtx)) { 6213 struct mbuf *m; 6214 6215 BXE_FP_TX_LOCK(fp); 6216 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) 6217 m_freem(m); 6218 BXE_FP_TX_UNLOCK(fp); 6219 } 6220 } 6221 #endif 6222 6223 /* free all RX buffers */ 6224 bxe_free_rx_bd_chain(fp); 6225 bxe_free_tpa_pool(fp); 6226 bxe_free_sge_chain(fp); 6227 6228 if (fp->eth_q_stats.mbuf_alloc_rx != 0) { 6229 BLOGE(sc, "failed to claim all rx mbufs (%d left)\n", 6230 fp->eth_q_stats.mbuf_alloc_rx); 6231 } 6232 6233 if (fp->eth_q_stats.mbuf_alloc_sge != 0) { 6234 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6235 fp->eth_q_stats.mbuf_alloc_sge); 6236 } 6237 6238 if (fp->eth_q_stats.mbuf_alloc_tpa != 0) { 6239 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6240 fp->eth_q_stats.mbuf_alloc_tpa); 6241 } 6242 6243 if (fp->eth_q_stats.mbuf_alloc_tx != 0) { 6244 BLOGE(sc, "failed to release tx mbufs (%d left)\n", 6245 fp->eth_q_stats.mbuf_alloc_tx); 6246 } 6247 6248 /* XXX verify all mbufs were reclaimed */ 6249 } 6250 } 6251 6252 static int 6253 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 6254 uint16_t prev_index, 6255 uint16_t index) 6256 { 6257 struct bxe_sw_rx_bd *rx_buf; 6258 struct eth_rx_bd *rx_bd; 6259 bus_dma_segment_t segs[1]; 6260 bus_dmamap_t map; 6261 struct mbuf *m; 6262 int nsegs, rc; 6263 6264 rc = 0; 6265 6266 /* allocate the new RX BD mbuf */ 6267 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6268 if (__predict_false(m == NULL)) { 6269 fp->eth_q_stats.mbuf_rx_bd_alloc_failed++; 6270 return (ENOBUFS); 6271 } 6272 6273 fp->eth_q_stats.mbuf_alloc_rx++; 6274 6275 /* initialize the mbuf buffer length */ 6276 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6277 6278 /* map the mbuf into non-paged pool */ 6279 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6280 fp->rx_mbuf_spare_map, 6281 m, segs, &nsegs, BUS_DMA_NOWAIT); 6282 if (__predict_false(rc != 0)) { 6283 fp->eth_q_stats.mbuf_rx_bd_mapping_failed++; 6284 m_freem(m); 6285 fp->eth_q_stats.mbuf_alloc_rx--; 6286 return (rc); 6287 } 6288 6289 /* all mbufs must map to a single segment */ 6290 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6291 6292 /* release any existing RX BD mbuf mappings */ 6293 6294 if (prev_index != index) { 6295 rx_buf = &fp->rx_mbuf_chain[prev_index]; 6296 6297 if (rx_buf->m_map != NULL) { 6298 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6299 BUS_DMASYNC_POSTREAD); 6300 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6301 } 6302 6303 /* 6304 * We only get here from bxe_rxeof() when the maximum number 6305 * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already 6306 * holds the mbuf in the prev_index so it's OK to NULL it out 6307 * here without concern of a memory leak. 6308 */ 6309 fp->rx_mbuf_chain[prev_index].m = NULL; 6310 } 6311 6312 rx_buf = &fp->rx_mbuf_chain[index]; 6313 6314 if (rx_buf->m_map != NULL) { 6315 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6316 BUS_DMASYNC_POSTREAD); 6317 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6318 } 6319 6320 /* save the mbuf and mapping info for a future packet */ 6321 map = (prev_index != index) ? 6322 fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map; 6323 rx_buf->m_map = fp->rx_mbuf_spare_map; 6324 fp->rx_mbuf_spare_map = map; 6325 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6326 BUS_DMASYNC_PREREAD); 6327 rx_buf->m = m; 6328 6329 rx_bd = &fp->rx_chain[index]; 6330 rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6331 rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6332 6333 return (rc); 6334 } 6335 6336 static int 6337 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 6338 int queue) 6339 { 6340 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 6341 bus_dma_segment_t segs[1]; 6342 bus_dmamap_t map; 6343 struct mbuf *m; 6344 int nsegs; 6345 int rc = 0; 6346 6347 /* allocate the new TPA mbuf */ 6348 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6349 if (__predict_false(m == NULL)) { 6350 fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++; 6351 return (ENOBUFS); 6352 } 6353 6354 fp->eth_q_stats.mbuf_alloc_tpa++; 6355 6356 /* initialize the mbuf buffer length */ 6357 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6358 6359 /* map the mbuf into non-paged pool */ 6360 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6361 fp->rx_tpa_info_mbuf_spare_map, 6362 m, segs, &nsegs, BUS_DMA_NOWAIT); 6363 if (__predict_false(rc != 0)) { 6364 fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++; 6365 m_free(m); 6366 fp->eth_q_stats.mbuf_alloc_tpa--; 6367 return (rc); 6368 } 6369 6370 /* all mbufs must map to a single segment */ 6371 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6372 6373 /* release any existing TPA mbuf mapping */ 6374 if (tpa_info->bd.m_map != NULL) { 6375 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6376 BUS_DMASYNC_POSTREAD); 6377 bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map); 6378 } 6379 6380 /* save the mbuf and mapping info for the TPA mbuf */ 6381 map = tpa_info->bd.m_map; 6382 tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map; 6383 fp->rx_tpa_info_mbuf_spare_map = map; 6384 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6385 BUS_DMASYNC_PREREAD); 6386 tpa_info->bd.m = m; 6387 tpa_info->seg = segs[0]; 6388 6389 return (rc); 6390 } 6391 6392 /* 6393 * Allocate an mbuf and assign it to the receive scatter gather chain. The 6394 * caller must take care to save a copy of the existing mbuf in the SG mbuf 6395 * chain. 6396 */ 6397 static int 6398 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 6399 uint16_t index) 6400 { 6401 struct bxe_sw_rx_bd *sge_buf; 6402 struct eth_rx_sge *sge; 6403 bus_dma_segment_t segs[1]; 6404 bus_dmamap_t map; 6405 struct mbuf *m; 6406 int nsegs; 6407 int rc = 0; 6408 6409 /* allocate a new SGE mbuf */ 6410 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE); 6411 if (__predict_false(m == NULL)) { 6412 fp->eth_q_stats.mbuf_rx_sge_alloc_failed++; 6413 return (ENOMEM); 6414 } 6415 6416 fp->eth_q_stats.mbuf_alloc_sge++; 6417 6418 /* initialize the mbuf buffer length */ 6419 m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE; 6420 6421 /* map the SGE mbuf into non-paged pool */ 6422 rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag, 6423 fp->rx_sge_mbuf_spare_map, 6424 m, segs, &nsegs, BUS_DMA_NOWAIT); 6425 if (__predict_false(rc != 0)) { 6426 fp->eth_q_stats.mbuf_rx_sge_mapping_failed++; 6427 m_freem(m); 6428 fp->eth_q_stats.mbuf_alloc_sge--; 6429 return (rc); 6430 } 6431 6432 /* all mbufs must map to a single segment */ 6433 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6434 6435 sge_buf = &fp->rx_sge_mbuf_chain[index]; 6436 6437 /* release any existing SGE mbuf mapping */ 6438 if (sge_buf->m_map != NULL) { 6439 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6440 BUS_DMASYNC_POSTREAD); 6441 bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map); 6442 } 6443 6444 /* save the mbuf and mapping info for a future packet */ 6445 map = sge_buf->m_map; 6446 sge_buf->m_map = fp->rx_sge_mbuf_spare_map; 6447 fp->rx_sge_mbuf_spare_map = map; 6448 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6449 BUS_DMASYNC_PREREAD); 6450 sge_buf->m = m; 6451 6452 sge = &fp->rx_sge_chain[index]; 6453 sge->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6454 sge->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6455 6456 return (rc); 6457 } 6458 6459 static __noinline int 6460 bxe_alloc_fp_buffers(struct bxe_softc *sc) 6461 { 6462 struct bxe_fastpath *fp; 6463 int i, j, rc = 0; 6464 int ring_prod, cqe_ring_prod; 6465 int max_agg_queues; 6466 6467 for (i = 0; i < sc->num_queues; i++) { 6468 fp = &sc->fp[i]; 6469 6470 ring_prod = cqe_ring_prod = 0; 6471 fp->rx_bd_cons = 0; 6472 fp->rx_cq_cons = 0; 6473 6474 /* allocate buffers for the RX BDs in RX BD chain */ 6475 for (j = 0; j < sc->max_rx_bufs; j++) { 6476 rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod); 6477 if (rc != 0) { 6478 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 6479 i, rc); 6480 goto bxe_alloc_fp_buffers_error; 6481 } 6482 6483 ring_prod = RX_BD_NEXT(ring_prod); 6484 cqe_ring_prod = RCQ_NEXT(cqe_ring_prod); 6485 } 6486 6487 fp->rx_bd_prod = ring_prod; 6488 fp->rx_cq_prod = cqe_ring_prod; 6489 fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0; 6490 6491 max_agg_queues = MAX_AGG_QS(sc); 6492 6493 fp->tpa_enable = TRUE; 6494 6495 /* fill the TPA pool */ 6496 for (j = 0; j < max_agg_queues; j++) { 6497 rc = bxe_alloc_rx_tpa_mbuf(fp, j); 6498 if (rc != 0) { 6499 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n", 6500 i, j); 6501 fp->tpa_enable = FALSE; 6502 goto bxe_alloc_fp_buffers_error; 6503 } 6504 6505 fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP; 6506 } 6507 6508 if (fp->tpa_enable) { 6509 /* fill the RX SGE chain */ 6510 ring_prod = 0; 6511 for (j = 0; j < RX_SGE_USABLE; j++) { 6512 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod); 6513 if (rc != 0) { 6514 BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n", 6515 i, ring_prod); 6516 fp->tpa_enable = FALSE; 6517 ring_prod = 0; 6518 goto bxe_alloc_fp_buffers_error; 6519 } 6520 6521 ring_prod = RX_SGE_NEXT(ring_prod); 6522 } 6523 6524 fp->rx_sge_prod = ring_prod; 6525 } 6526 } 6527 6528 return (0); 6529 6530 bxe_alloc_fp_buffers_error: 6531 6532 /* unwind what was already allocated */ 6533 bxe_free_rx_bd_chain(fp); 6534 bxe_free_tpa_pool(fp); 6535 bxe_free_sge_chain(fp); 6536 6537 return (ENOBUFS); 6538 } 6539 6540 static void 6541 bxe_free_fw_stats_mem(struct bxe_softc *sc) 6542 { 6543 bxe_dma_free(sc, &sc->fw_stats_dma); 6544 6545 sc->fw_stats_num = 0; 6546 6547 sc->fw_stats_req_size = 0; 6548 sc->fw_stats_req = NULL; 6549 sc->fw_stats_req_mapping = 0; 6550 6551 sc->fw_stats_data_size = 0; 6552 sc->fw_stats_data = NULL; 6553 sc->fw_stats_data_mapping = 0; 6554 } 6555 6556 static int 6557 bxe_alloc_fw_stats_mem(struct bxe_softc *sc) 6558 { 6559 uint8_t num_queue_stats; 6560 int num_groups; 6561 6562 /* number of queues for statistics is number of eth queues */ 6563 num_queue_stats = BXE_NUM_ETH_QUEUES(sc); 6564 6565 /* 6566 * Total number of FW statistics requests = 6567 * 1 for port stats + 1 for PF stats + num of queues 6568 */ 6569 sc->fw_stats_num = (2 + num_queue_stats); 6570 6571 /* 6572 * Request is built from stats_query_header and an array of 6573 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT 6574 * rules. The real number or requests is configured in the 6575 * stats_query_header. 6576 */ 6577 num_groups = 6578 ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) + 6579 ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0)); 6580 6581 BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n", 6582 sc->fw_stats_num, num_groups); 6583 6584 sc->fw_stats_req_size = 6585 (sizeof(struct stats_query_header) + 6586 (num_groups * sizeof(struct stats_query_cmd_group))); 6587 6588 /* 6589 * Data for statistics requests + stats_counter. 6590 * stats_counter holds per-STORM counters that are incremented when 6591 * STORM has finished with the current request. Memory for FCoE 6592 * offloaded statistics are counted anyway, even if they will not be sent. 6593 * VF stats are not accounted for here as the data of VF stats is stored 6594 * in memory allocated by the VF, not here. 6595 */ 6596 sc->fw_stats_data_size = 6597 (sizeof(struct stats_counter) + 6598 sizeof(struct per_port_stats) + 6599 sizeof(struct per_pf_stats) + 6600 /* sizeof(struct fcoe_statistics_params) + */ 6601 (sizeof(struct per_queue_stats) * num_queue_stats)); 6602 6603 if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size), 6604 &sc->fw_stats_dma, "fw stats") != 0) { 6605 bxe_free_fw_stats_mem(sc); 6606 return (-1); 6607 } 6608 6609 /* set up the shortcuts */ 6610 6611 sc->fw_stats_req = 6612 (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr; 6613 sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr; 6614 6615 sc->fw_stats_data = 6616 (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr + 6617 sc->fw_stats_req_size); 6618 sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr + 6619 sc->fw_stats_req_size); 6620 6621 BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n", 6622 (uintmax_t)sc->fw_stats_req_mapping); 6623 6624 BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n", 6625 (uintmax_t)sc->fw_stats_data_mapping); 6626 6627 return (0); 6628 } 6629 6630 /* 6631 * Bits map: 6632 * 0-7 - Engine0 load counter. 6633 * 8-15 - Engine1 load counter. 6634 * 16 - Engine0 RESET_IN_PROGRESS bit. 6635 * 17 - Engine1 RESET_IN_PROGRESS bit. 6636 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active 6637 * function on the engine 6638 * 19 - Engine1 ONE_IS_LOADED. 6639 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 6640 * leader to complete (check for both RESET_IN_PROGRESS bits and not 6641 * for just the one belonging to its engine). 6642 */ 6643 #define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 6644 #define BXE_PATH0_LOAD_CNT_MASK 0x000000ff 6645 #define BXE_PATH0_LOAD_CNT_SHIFT 0 6646 #define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00 6647 #define BXE_PATH1_LOAD_CNT_SHIFT 8 6648 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000 6649 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000 6650 #define BXE_GLOBAL_RESET_BIT 0x00040000 6651 6652 /* set the GLOBAL_RESET bit, should be run under rtnl lock */ 6653 static void 6654 bxe_set_reset_global(struct bxe_softc *sc) 6655 { 6656 uint32_t val; 6657 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6658 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6659 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT); 6660 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6661 } 6662 6663 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */ 6664 static void 6665 bxe_clear_reset_global(struct bxe_softc *sc) 6666 { 6667 uint32_t val; 6668 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6669 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6670 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT)); 6671 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6672 } 6673 6674 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */ 6675 static uint8_t 6676 bxe_reset_is_global(struct bxe_softc *sc) 6677 { 6678 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6679 BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val); 6680 return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE; 6681 } 6682 6683 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */ 6684 static void 6685 bxe_set_reset_done(struct bxe_softc *sc) 6686 { 6687 uint32_t val; 6688 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6689 BXE_PATH0_RST_IN_PROG_BIT; 6690 6691 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6692 6693 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6694 /* Clear the bit */ 6695 val &= ~bit; 6696 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6697 6698 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6699 } 6700 6701 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */ 6702 static void 6703 bxe_set_reset_in_progress(struct bxe_softc *sc) 6704 { 6705 uint32_t val; 6706 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6707 BXE_PATH0_RST_IN_PROG_BIT; 6708 6709 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6710 6711 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6712 /* Set the bit */ 6713 val |= bit; 6714 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6715 6716 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6717 } 6718 6719 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */ 6720 static uint8_t 6721 bxe_reset_is_done(struct bxe_softc *sc, 6722 int engine) 6723 { 6724 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6725 uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT : 6726 BXE_PATH0_RST_IN_PROG_BIT; 6727 6728 /* return false if bit is set */ 6729 return (val & bit) ? FALSE : TRUE; 6730 } 6731 6732 /* get the load status for an engine, should be run under rtnl lock */ 6733 static uint8_t 6734 bxe_get_load_status(struct bxe_softc *sc, 6735 int engine) 6736 { 6737 uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK : 6738 BXE_PATH0_LOAD_CNT_MASK; 6739 uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT : 6740 BXE_PATH0_LOAD_CNT_SHIFT; 6741 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6742 6743 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 6744 6745 val = ((val & mask) >> shift); 6746 6747 BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val); 6748 6749 return (val != 0); 6750 } 6751 6752 /* set pf load mark */ 6753 /* XXX needs to be under rtnl lock */ 6754 static void 6755 bxe_set_pf_load(struct bxe_softc *sc) 6756 { 6757 uint32_t val; 6758 uint32_t val1; 6759 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 6760 BXE_PATH0_LOAD_CNT_MASK; 6761 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 6762 BXE_PATH0_LOAD_CNT_SHIFT; 6763 6764 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6765 6766 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6767 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 6768 6769 /* get the current counter value */ 6770 val1 = ((val & mask) >> shift); 6771 6772 /* set bit of this PF */ 6773 val1 |= (1 << SC_ABS_FUNC(sc)); 6774 6775 /* clear the old value */ 6776 val &= ~mask; 6777 6778 /* set the new one */ 6779 val |= ((val1 << shift) & mask); 6780 6781 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6782 6783 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6784 } 6785 6786 /* clear pf load mark */ 6787 /* XXX needs to be under rtnl lock */ 6788 static uint8_t 6789 bxe_clear_pf_load(struct bxe_softc *sc) 6790 { 6791 uint32_t val1, val; 6792 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 6793 BXE_PATH0_LOAD_CNT_MASK; 6794 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 6795 BXE_PATH0_LOAD_CNT_SHIFT; 6796 6797 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6798 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6799 BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val); 6800 6801 /* get the current counter value */ 6802 val1 = (val & mask) >> shift; 6803 6804 /* clear bit of that PF */ 6805 val1 &= ~(1 << SC_ABS_FUNC(sc)); 6806 6807 /* clear the old value */ 6808 val &= ~mask; 6809 6810 /* set the new one */ 6811 val |= ((val1 << shift) & mask); 6812 6813 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6814 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6815 return (val1 != 0); 6816 } 6817 6818 /* send load requrest to mcp and analyze response */ 6819 static int 6820 bxe_nic_load_request(struct bxe_softc *sc, 6821 uint32_t *load_code) 6822 { 6823 /* init fw_seq */ 6824 sc->fw_seq = 6825 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 6826 DRV_MSG_SEQ_NUMBER_MASK); 6827 6828 BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq); 6829 6830 /* get the current FW pulse sequence */ 6831 sc->fw_drv_pulse_wr_seq = 6832 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) & 6833 DRV_PULSE_SEQ_MASK); 6834 6835 BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n", 6836 sc->fw_drv_pulse_wr_seq); 6837 6838 /* load request */ 6839 (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 6840 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 6841 6842 /* if the MCP fails to respond we must abort */ 6843 if (!(*load_code)) { 6844 BLOGE(sc, "MCP response failure!\n"); 6845 return (-1); 6846 } 6847 6848 /* if MCP refused then must abort */ 6849 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 6850 BLOGE(sc, "MCP refused load request\n"); 6851 return (-1); 6852 } 6853 6854 return (0); 6855 } 6856 6857 /* 6858 * Check whether another PF has already loaded FW to chip. In virtualized 6859 * environments a pf from anoth VM may have already initialized the device 6860 * including loading FW. 6861 */ 6862 static int 6863 bxe_nic_load_analyze_req(struct bxe_softc *sc, 6864 uint32_t load_code) 6865 { 6866 uint32_t my_fw, loaded_fw; 6867 6868 /* is another pf loaded on this engine? */ 6869 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 6870 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 6871 /* build my FW version dword */ 6872 my_fw = (BCM_5710_FW_MAJOR_VERSION + 6873 (BCM_5710_FW_MINOR_VERSION << 8 ) + 6874 (BCM_5710_FW_REVISION_VERSION << 16) + 6875 (BCM_5710_FW_ENGINEERING_VERSION << 24)); 6876 6877 /* read loaded FW from chip */ 6878 loaded_fw = REG_RD(sc, XSEM_REG_PRAM); 6879 BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n", 6880 loaded_fw, my_fw); 6881 6882 /* abort nic load if version mismatch */ 6883 if (my_fw != loaded_fw) { 6884 BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)", 6885 loaded_fw, my_fw); 6886 return (-1); 6887 } 6888 } 6889 6890 return (0); 6891 } 6892 6893 /* mark PMF if applicable */ 6894 static void 6895 bxe_nic_load_pmf(struct bxe_softc *sc, 6896 uint32_t load_code) 6897 { 6898 uint32_t ncsi_oem_data_addr; 6899 6900 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 6901 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 6902 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 6903 /* 6904 * Barrier here for ordering between the writing to sc->port.pmf here 6905 * and reading it from the periodic task. 6906 */ 6907 sc->port.pmf = 1; 6908 mb(); 6909 } else { 6910 sc->port.pmf = 0; 6911 } 6912 6913 BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf); 6914 6915 /* XXX needed? */ 6916 if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) { 6917 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) { 6918 ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr); 6919 if (ncsi_oem_data_addr) { 6920 REG_WR(sc, 6921 (ncsi_oem_data_addr + 6922 offsetof(struct glob_ncsi_oem_data, driver_version)), 6923 0); 6924 } 6925 } 6926 } 6927 } 6928 6929 static void 6930 bxe_read_mf_cfg(struct bxe_softc *sc) 6931 { 6932 int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1); 6933 int abs_func; 6934 int vn; 6935 6936 if (BXE_NOMCP(sc)) { 6937 return; /* what should be the default bvalue in this case */ 6938 } 6939 6940 /* 6941 * The formula for computing the absolute function number is... 6942 * For 2 port configuration (4 functions per port): 6943 * abs_func = 2 * vn + SC_PORT + SC_PATH 6944 * For 4 port configuration (2 functions per port): 6945 * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH 6946 */ 6947 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 6948 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc)); 6949 if (abs_func >= E1H_FUNC_MAX) { 6950 break; 6951 } 6952 sc->devinfo.mf_info.mf_config[vn] = 6953 MFCFG_RD(sc, func_mf_config[abs_func].config); 6954 } 6955 6956 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & 6957 FUNC_MF_CFG_FUNC_DISABLED) { 6958 BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n"); 6959 sc->flags |= BXE_MF_FUNC_DIS; 6960 } else { 6961 BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n"); 6962 sc->flags &= ~BXE_MF_FUNC_DIS; 6963 } 6964 } 6965 6966 /* acquire split MCP access lock register */ 6967 static int bxe_acquire_alr(struct bxe_softc *sc) 6968 { 6969 uint32_t j, val; 6970 6971 for (j = 0; j < 1000; j++) { 6972 val = (1UL << 31); 6973 REG_WR(sc, GRCBASE_MCP + 0x9c, val); 6974 val = REG_RD(sc, GRCBASE_MCP + 0x9c); 6975 if (val & (1L << 31)) 6976 break; 6977 6978 DELAY(5000); 6979 } 6980 6981 if (!(val & (1L << 31))) { 6982 BLOGE(sc, "Cannot acquire MCP access lock register\n"); 6983 return (-1); 6984 } 6985 6986 return (0); 6987 } 6988 6989 /* release split MCP access lock register */ 6990 static void bxe_release_alr(struct bxe_softc *sc) 6991 { 6992 REG_WR(sc, GRCBASE_MCP + 0x9c, 0); 6993 } 6994 6995 static void 6996 bxe_fan_failure(struct bxe_softc *sc) 6997 { 6998 int port = SC_PORT(sc); 6999 uint32_t ext_phy_config; 7000 7001 /* mark the failure */ 7002 ext_phy_config = 7003 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 7004 7005 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 7006 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 7007 SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config, 7008 ext_phy_config); 7009 7010 /* log the failure */ 7011 BLOGW(sc, "Fan Failure has caused the driver to shutdown " 7012 "the card to prevent permanent damage. " 7013 "Please contact OEM Support for assistance\n"); 7014 7015 /* XXX */ 7016 #if 1 7017 bxe_panic(sc, ("Schedule task to handle fan failure\n")); 7018 #else 7019 /* 7020 * Schedule device reset (unload) 7021 * This is due to some boards consuming sufficient power when driver is 7022 * up to overheat if fan fails. 7023 */ 7024 bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state); 7025 schedule_delayed_work(&sc->sp_rtnl_task, 0); 7026 #endif 7027 } 7028 7029 /* this function is called upon a link interrupt */ 7030 static void 7031 bxe_link_attn(struct bxe_softc *sc) 7032 { 7033 uint32_t pause_enabled = 0; 7034 struct host_port_stats *pstats; 7035 int cmng_fns; 7036 struct bxe_fastpath *fp; 7037 int i; 7038 7039 /* Make sure that we are synced with the current statistics */ 7040 bxe_stats_handle(sc, STATS_EVENT_STOP); 7041 BLOGI(sc, "link_vars phy_flags : %x\n", sc->link_vars.phy_flags); 7042 elink_link_update(&sc->link_params, &sc->link_vars); 7043 7044 if (sc->link_vars.link_up) { 7045 7046 /* dropless flow control */ 7047 if (!CHIP_IS_E1(sc) && sc->dropless_fc) { 7048 pause_enabled = 0; 7049 7050 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 7051 pause_enabled = 1; 7052 } 7053 7054 REG_WR(sc, 7055 (BAR_USTRORM_INTMEM + 7056 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))), 7057 pause_enabled); 7058 } 7059 7060 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) { 7061 pstats = BXE_SP(sc, port_stats); 7062 /* reset old mac stats */ 7063 memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx)); 7064 } 7065 7066 if (sc->state == BXE_STATE_OPEN) { 7067 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 7068 } 7069 7070 /* Restart tx when the link comes back. */ 7071 FOR_EACH_ETH_QUEUE(sc, i) { 7072 fp = &sc->fp[i]; 7073 taskqueue_enqueue(fp->tq, &fp->tx_task); 7074 } 7075 } 7076 7077 if (sc->link_vars.link_up && sc->link_vars.line_speed) { 7078 cmng_fns = bxe_get_cmng_fns_mode(sc); 7079 7080 if (cmng_fns != CMNG_FNS_NONE) { 7081 bxe_cmng_fns_init(sc, FALSE, cmng_fns); 7082 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7083 } else { 7084 /* rate shaping and fairness are disabled */ 7085 BLOGD(sc, DBG_LOAD, "single function mode without fairness\n"); 7086 } 7087 } 7088 7089 bxe_link_report_locked(sc); 7090 7091 if (IS_MF(sc)) { 7092 ; // XXX bxe_link_sync_notify(sc); 7093 } 7094 } 7095 7096 static void 7097 bxe_attn_int_asserted(struct bxe_softc *sc, 7098 uint32_t asserted) 7099 { 7100 int port = SC_PORT(sc); 7101 uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 7102 MISC_REG_AEU_MASK_ATTN_FUNC_0; 7103 uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 7104 NIG_REG_MASK_INTERRUPT_PORT0; 7105 uint32_t aeu_mask; 7106 uint32_t nig_mask = 0; 7107 uint32_t reg_addr; 7108 uint32_t igu_acked; 7109 uint32_t cnt; 7110 7111 if (sc->attn_state & asserted) { 7112 BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted); 7113 } 7114 7115 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7116 7117 aeu_mask = REG_RD(sc, aeu_addr); 7118 7119 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n", 7120 aeu_mask, asserted); 7121 7122 aeu_mask &= ~(asserted & 0x3ff); 7123 7124 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 7125 7126 REG_WR(sc, aeu_addr, aeu_mask); 7127 7128 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7129 7130 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 7131 sc->attn_state |= asserted; 7132 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 7133 7134 if (asserted & ATTN_HARD_WIRED_MASK) { 7135 if (asserted & ATTN_NIG_FOR_FUNC) { 7136 7137 bxe_acquire_phy_lock(sc); 7138 /* save nig interrupt mask */ 7139 nig_mask = REG_RD(sc, nig_int_mask_addr); 7140 7141 /* If nig_mask is not set, no need to call the update function */ 7142 if (nig_mask) { 7143 REG_WR(sc, nig_int_mask_addr, 0); 7144 7145 bxe_link_attn(sc); 7146 } 7147 7148 /* handle unicore attn? */ 7149 } 7150 7151 if (asserted & ATTN_SW_TIMER_4_FUNC) { 7152 BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n"); 7153 } 7154 7155 if (asserted & GPIO_2_FUNC) { 7156 BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n"); 7157 } 7158 7159 if (asserted & GPIO_3_FUNC) { 7160 BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n"); 7161 } 7162 7163 if (asserted & GPIO_4_FUNC) { 7164 BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n"); 7165 } 7166 7167 if (port == 0) { 7168 if (asserted & ATTN_GENERAL_ATTN_1) { 7169 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n"); 7170 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 7171 } 7172 if (asserted & ATTN_GENERAL_ATTN_2) { 7173 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n"); 7174 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 7175 } 7176 if (asserted & ATTN_GENERAL_ATTN_3) { 7177 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n"); 7178 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 7179 } 7180 } else { 7181 if (asserted & ATTN_GENERAL_ATTN_4) { 7182 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n"); 7183 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 7184 } 7185 if (asserted & ATTN_GENERAL_ATTN_5) { 7186 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n"); 7187 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 7188 } 7189 if (asserted & ATTN_GENERAL_ATTN_6) { 7190 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n"); 7191 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 7192 } 7193 } 7194 } /* hardwired */ 7195 7196 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7197 reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET); 7198 } else { 7199 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 7200 } 7201 7202 BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n", 7203 asserted, 7204 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 7205 REG_WR(sc, reg_addr, asserted); 7206 7207 /* now set back the mask */ 7208 if (asserted & ATTN_NIG_FOR_FUNC) { 7209 /* 7210 * Verify that IGU ack through BAR was written before restoring 7211 * NIG mask. This loop should exit after 2-3 iterations max. 7212 */ 7213 if (sc->devinfo.int_block != INT_BLOCK_HC) { 7214 cnt = 0; 7215 7216 do { 7217 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS); 7218 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 7219 (++cnt < MAX_IGU_ATTN_ACK_TO)); 7220 7221 if (!igu_acked) { 7222 BLOGE(sc, "Failed to verify IGU ack on time\n"); 7223 } 7224 7225 mb(); 7226 } 7227 7228 REG_WR(sc, nig_int_mask_addr, nig_mask); 7229 7230 bxe_release_phy_lock(sc); 7231 } 7232 } 7233 7234 static void 7235 bxe_print_next_block(struct bxe_softc *sc, 7236 int idx, 7237 const char *blk) 7238 { 7239 BLOGI(sc, "%s%s", idx ? ", " : "", blk); 7240 } 7241 7242 static int 7243 bxe_check_blocks_with_parity0(struct bxe_softc *sc, 7244 uint32_t sig, 7245 int par_num, 7246 uint8_t print) 7247 { 7248 uint32_t cur_bit = 0; 7249 int i = 0; 7250 7251 for (i = 0; sig; i++) { 7252 cur_bit = ((uint32_t)0x1 << i); 7253 if (sig & cur_bit) { 7254 switch (cur_bit) { 7255 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 7256 if (print) 7257 bxe_print_next_block(sc, par_num++, "BRB"); 7258 break; 7259 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 7260 if (print) 7261 bxe_print_next_block(sc, par_num++, "PARSER"); 7262 break; 7263 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 7264 if (print) 7265 bxe_print_next_block(sc, par_num++, "TSDM"); 7266 break; 7267 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 7268 if (print) 7269 bxe_print_next_block(sc, par_num++, "SEARCHER"); 7270 break; 7271 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 7272 if (print) 7273 bxe_print_next_block(sc, par_num++, "TCM"); 7274 break; 7275 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 7276 if (print) 7277 bxe_print_next_block(sc, par_num++, "TSEMI"); 7278 break; 7279 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 7280 if (print) 7281 bxe_print_next_block(sc, par_num++, "XPB"); 7282 break; 7283 } 7284 7285 /* Clear the bit */ 7286 sig &= ~cur_bit; 7287 } 7288 } 7289 7290 return (par_num); 7291 } 7292 7293 static int 7294 bxe_check_blocks_with_parity1(struct bxe_softc *sc, 7295 uint32_t sig, 7296 int par_num, 7297 uint8_t *global, 7298 uint8_t print) 7299 { 7300 int i = 0; 7301 uint32_t cur_bit = 0; 7302 for (i = 0; sig; i++) { 7303 cur_bit = ((uint32_t)0x1 << i); 7304 if (sig & cur_bit) { 7305 switch (cur_bit) { 7306 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 7307 if (print) 7308 bxe_print_next_block(sc, par_num++, "PBF"); 7309 break; 7310 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 7311 if (print) 7312 bxe_print_next_block(sc, par_num++, "QM"); 7313 break; 7314 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 7315 if (print) 7316 bxe_print_next_block(sc, par_num++, "TM"); 7317 break; 7318 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 7319 if (print) 7320 bxe_print_next_block(sc, par_num++, "XSDM"); 7321 break; 7322 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 7323 if (print) 7324 bxe_print_next_block(sc, par_num++, "XCM"); 7325 break; 7326 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 7327 if (print) 7328 bxe_print_next_block(sc, par_num++, "XSEMI"); 7329 break; 7330 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 7331 if (print) 7332 bxe_print_next_block(sc, par_num++, "DOORBELLQ"); 7333 break; 7334 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 7335 if (print) 7336 bxe_print_next_block(sc, par_num++, "NIG"); 7337 break; 7338 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 7339 if (print) 7340 bxe_print_next_block(sc, par_num++, "VAUX PCI CORE"); 7341 *global = TRUE; 7342 break; 7343 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 7344 if (print) 7345 bxe_print_next_block(sc, par_num++, "DEBUG"); 7346 break; 7347 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 7348 if (print) 7349 bxe_print_next_block(sc, par_num++, "USDM"); 7350 break; 7351 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 7352 if (print) 7353 bxe_print_next_block(sc, par_num++, "UCM"); 7354 break; 7355 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 7356 if (print) 7357 bxe_print_next_block(sc, par_num++, "USEMI"); 7358 break; 7359 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 7360 if (print) 7361 bxe_print_next_block(sc, par_num++, "UPB"); 7362 break; 7363 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 7364 if (print) 7365 bxe_print_next_block(sc, par_num++, "CSDM"); 7366 break; 7367 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 7368 if (print) 7369 bxe_print_next_block(sc, par_num++, "CCM"); 7370 break; 7371 } 7372 7373 /* Clear the bit */ 7374 sig &= ~cur_bit; 7375 } 7376 } 7377 7378 return (par_num); 7379 } 7380 7381 static int 7382 bxe_check_blocks_with_parity2(struct bxe_softc *sc, 7383 uint32_t sig, 7384 int par_num, 7385 uint8_t print) 7386 { 7387 uint32_t cur_bit = 0; 7388 int i = 0; 7389 7390 for (i = 0; sig; i++) { 7391 cur_bit = ((uint32_t)0x1 << i); 7392 if (sig & cur_bit) { 7393 switch (cur_bit) { 7394 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 7395 if (print) 7396 bxe_print_next_block(sc, par_num++, "CSEMI"); 7397 break; 7398 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 7399 if (print) 7400 bxe_print_next_block(sc, par_num++, "PXP"); 7401 break; 7402 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 7403 if (print) 7404 bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT"); 7405 break; 7406 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 7407 if (print) 7408 bxe_print_next_block(sc, par_num++, "CFC"); 7409 break; 7410 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 7411 if (print) 7412 bxe_print_next_block(sc, par_num++, "CDU"); 7413 break; 7414 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 7415 if (print) 7416 bxe_print_next_block(sc, par_num++, "DMAE"); 7417 break; 7418 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 7419 if (print) 7420 bxe_print_next_block(sc, par_num++, "IGU"); 7421 break; 7422 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 7423 if (print) 7424 bxe_print_next_block(sc, par_num++, "MISC"); 7425 break; 7426 } 7427 7428 /* Clear the bit */ 7429 sig &= ~cur_bit; 7430 } 7431 } 7432 7433 return (par_num); 7434 } 7435 7436 static int 7437 bxe_check_blocks_with_parity3(struct bxe_softc *sc, 7438 uint32_t sig, 7439 int par_num, 7440 uint8_t *global, 7441 uint8_t print) 7442 { 7443 uint32_t cur_bit = 0; 7444 int i = 0; 7445 7446 for (i = 0; sig; i++) { 7447 cur_bit = ((uint32_t)0x1 << i); 7448 if (sig & cur_bit) { 7449 switch (cur_bit) { 7450 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 7451 if (print) 7452 bxe_print_next_block(sc, par_num++, "MCP ROM"); 7453 *global = TRUE; 7454 break; 7455 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 7456 if (print) 7457 bxe_print_next_block(sc, par_num++, 7458 "MCP UMP RX"); 7459 *global = TRUE; 7460 break; 7461 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 7462 if (print) 7463 bxe_print_next_block(sc, par_num++, 7464 "MCP UMP TX"); 7465 *global = TRUE; 7466 break; 7467 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 7468 if (print) 7469 bxe_print_next_block(sc, par_num++, 7470 "MCP SCPAD"); 7471 *global = TRUE; 7472 break; 7473 } 7474 7475 /* Clear the bit */ 7476 sig &= ~cur_bit; 7477 } 7478 } 7479 7480 return (par_num); 7481 } 7482 7483 static int 7484 bxe_check_blocks_with_parity4(struct bxe_softc *sc, 7485 uint32_t sig, 7486 int par_num, 7487 uint8_t print) 7488 { 7489 uint32_t cur_bit = 0; 7490 int i = 0; 7491 7492 for (i = 0; sig; i++) { 7493 cur_bit = ((uint32_t)0x1 << i); 7494 if (sig & cur_bit) { 7495 switch (cur_bit) { 7496 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 7497 if (print) 7498 bxe_print_next_block(sc, par_num++, "PGLUE_B"); 7499 break; 7500 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 7501 if (print) 7502 bxe_print_next_block(sc, par_num++, "ATC"); 7503 break; 7504 } 7505 7506 /* Clear the bit */ 7507 sig &= ~cur_bit; 7508 } 7509 } 7510 7511 return (par_num); 7512 } 7513 7514 static uint8_t 7515 bxe_parity_attn(struct bxe_softc *sc, 7516 uint8_t *global, 7517 uint8_t print, 7518 uint32_t *sig) 7519 { 7520 int par_num = 0; 7521 7522 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 7523 (sig[1] & HW_PRTY_ASSERT_SET_1) || 7524 (sig[2] & HW_PRTY_ASSERT_SET_2) || 7525 (sig[3] & HW_PRTY_ASSERT_SET_3) || 7526 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 7527 BLOGE(sc, "Parity error: HW block parity attention:\n" 7528 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 7529 (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0), 7530 (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1), 7531 (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2), 7532 (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3), 7533 (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4)); 7534 7535 if (print) 7536 BLOGI(sc, "Parity errors detected in blocks: "); 7537 7538 par_num = 7539 bxe_check_blocks_with_parity0(sc, sig[0] & 7540 HW_PRTY_ASSERT_SET_0, 7541 par_num, print); 7542 par_num = 7543 bxe_check_blocks_with_parity1(sc, sig[1] & 7544 HW_PRTY_ASSERT_SET_1, 7545 par_num, global, print); 7546 par_num = 7547 bxe_check_blocks_with_parity2(sc, sig[2] & 7548 HW_PRTY_ASSERT_SET_2, 7549 par_num, print); 7550 par_num = 7551 bxe_check_blocks_with_parity3(sc, sig[3] & 7552 HW_PRTY_ASSERT_SET_3, 7553 par_num, global, print); 7554 par_num = 7555 bxe_check_blocks_with_parity4(sc, sig[4] & 7556 HW_PRTY_ASSERT_SET_4, 7557 par_num, print); 7558 7559 if (print) 7560 BLOGI(sc, "\n"); 7561 7562 return (TRUE); 7563 } 7564 7565 return (FALSE); 7566 } 7567 7568 static uint8_t 7569 bxe_chk_parity_attn(struct bxe_softc *sc, 7570 uint8_t *global, 7571 uint8_t print) 7572 { 7573 struct attn_route attn = { {0} }; 7574 int port = SC_PORT(sc); 7575 7576 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 7577 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 7578 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 7579 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 7580 7581 /* 7582 * Since MCP attentions can't be disabled inside the block, we need to 7583 * read AEU registers to see whether they're currently disabled 7584 */ 7585 attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0 7586 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) & 7587 MISC_AEU_ENABLE_MCP_PRTY_BITS) | 7588 ~MISC_AEU_ENABLE_MCP_PRTY_BITS); 7589 7590 7591 if (!CHIP_IS_E1x(sc)) 7592 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 7593 7594 return (bxe_parity_attn(sc, global, print, attn.sig)); 7595 } 7596 7597 static void 7598 bxe_attn_int_deasserted4(struct bxe_softc *sc, 7599 uint32_t attn) 7600 { 7601 uint32_t val; 7602 7603 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 7604 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 7605 BLOGE(sc, "PGLUE hw attention 0x%08x\n", val); 7606 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 7607 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 7608 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 7609 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 7610 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 7611 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 7612 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 7613 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 7614 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 7615 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 7616 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 7617 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 7618 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 7619 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 7620 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 7621 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 7622 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 7623 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 7624 } 7625 7626 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 7627 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR); 7628 BLOGE(sc, "ATC hw attention 0x%08x\n", val); 7629 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 7630 BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 7631 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 7632 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 7633 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 7634 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 7635 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 7636 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 7637 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 7638 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 7639 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 7640 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 7641 } 7642 7643 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7644 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 7645 BLOGE(sc, "FATAL parity attention set4 0x%08x\n", 7646 (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7647 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 7648 } 7649 } 7650 7651 static void 7652 bxe_e1h_disable(struct bxe_softc *sc) 7653 { 7654 int port = SC_PORT(sc); 7655 7656 bxe_tx_disable(sc); 7657 7658 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 7659 } 7660 7661 static void 7662 bxe_e1h_enable(struct bxe_softc *sc) 7663 { 7664 int port = SC_PORT(sc); 7665 7666 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 7667 7668 // XXX bxe_tx_enable(sc); 7669 } 7670 7671 /* 7672 * called due to MCP event (on pmf): 7673 * reread new bandwidth configuration 7674 * configure FW 7675 * notify others function about the change 7676 */ 7677 static void 7678 bxe_config_mf_bw(struct bxe_softc *sc) 7679 { 7680 if (sc->link_vars.link_up) { 7681 bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX); 7682 // XXX bxe_link_sync_notify(sc); 7683 } 7684 7685 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7686 } 7687 7688 static void 7689 bxe_set_mf_bw(struct bxe_softc *sc) 7690 { 7691 bxe_config_mf_bw(sc); 7692 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 7693 } 7694 7695 static void 7696 bxe_handle_eee_event(struct bxe_softc *sc) 7697 { 7698 BLOGD(sc, DBG_INTR, "EEE - LLDP event\n"); 7699 bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 7700 } 7701 7702 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 7703 7704 static void 7705 bxe_drv_info_ether_stat(struct bxe_softc *sc) 7706 { 7707 struct eth_stats_info *ether_stat = 7708 &sc->sp->drv_info_to_mcp.ether_stat; 7709 7710 strlcpy(ether_stat->version, BXE_DRIVER_VERSION, 7711 ETH_STAT_INFO_VERSION_LEN); 7712 7713 /* XXX (+ MAC_PAD) taken from other driver... verify this is right */ 7714 sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj, 7715 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 7716 ether_stat->mac_local + MAC_PAD, 7717 MAC_PAD, ETH_ALEN); 7718 7719 ether_stat->mtu_size = sc->mtu; 7720 7721 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 7722 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 7723 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 7724 } 7725 7726 // XXX ether_stat->feature_flags |= ???; 7727 7728 ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0; 7729 7730 ether_stat->txq_size = sc->tx_ring_size; 7731 ether_stat->rxq_size = sc->rx_ring_size; 7732 } 7733 7734 static void 7735 bxe_handle_drv_info_req(struct bxe_softc *sc) 7736 { 7737 enum drv_info_opcode op_code; 7738 uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control); 7739 7740 /* if drv_info version supported by MFW doesn't match - send NACK */ 7741 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 7742 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 7743 return; 7744 } 7745 7746 op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 7747 DRV_INFO_CONTROL_OP_CODE_SHIFT); 7748 7749 memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp)); 7750 7751 switch (op_code) { 7752 case ETH_STATS_OPCODE: 7753 bxe_drv_info_ether_stat(sc); 7754 break; 7755 case FCOE_STATS_OPCODE: 7756 case ISCSI_STATS_OPCODE: 7757 default: 7758 /* if op code isn't supported - send NACK */ 7759 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 7760 return; 7761 } 7762 7763 /* 7764 * If we got drv_info attn from MFW then these fields are defined in 7765 * shmem2 for sure 7766 */ 7767 SHMEM2_WR(sc, drv_info_host_addr_lo, 7768 U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 7769 SHMEM2_WR(sc, drv_info_host_addr_hi, 7770 U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 7771 7772 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0); 7773 } 7774 7775 static void 7776 bxe_dcc_event(struct bxe_softc *sc, 7777 uint32_t dcc_event) 7778 { 7779 BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event); 7780 7781 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { 7782 /* 7783 * This is the only place besides the function initialization 7784 * where the sc->flags can change so it is done without any 7785 * locks 7786 */ 7787 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) { 7788 BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n"); 7789 sc->flags |= BXE_MF_FUNC_DIS; 7790 bxe_e1h_disable(sc); 7791 } else { 7792 BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n"); 7793 sc->flags &= ~BXE_MF_FUNC_DIS; 7794 bxe_e1h_enable(sc); 7795 } 7796 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; 7797 } 7798 7799 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { 7800 bxe_config_mf_bw(sc); 7801 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; 7802 } 7803 7804 /* Report results to MCP */ 7805 if (dcc_event) 7806 bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0); 7807 else 7808 bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0); 7809 } 7810 7811 static void 7812 bxe_pmf_update(struct bxe_softc *sc) 7813 { 7814 int port = SC_PORT(sc); 7815 uint32_t val; 7816 7817 sc->port.pmf = 1; 7818 BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf); 7819 7820 /* 7821 * We need the mb() to ensure the ordering between the writing to 7822 * sc->port.pmf here and reading it from the bxe_periodic_task(). 7823 */ 7824 mb(); 7825 7826 /* queue a periodic task */ 7827 // XXX schedule task... 7828 7829 // XXX bxe_dcbx_pmf_update(sc); 7830 7831 /* enable nig attention */ 7832 val = (0xff0f | (1 << (SC_VN(sc) + 4))); 7833 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7834 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val); 7835 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val); 7836 } else if (!CHIP_IS_E1x(sc)) { 7837 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 7838 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 7839 } 7840 7841 bxe_stats_handle(sc, STATS_EVENT_PMF); 7842 } 7843 7844 static int 7845 bxe_mc_assert(struct bxe_softc *sc) 7846 { 7847 char last_idx; 7848 int i, rc = 0; 7849 uint32_t row0, row1, row2, row3; 7850 7851 /* XSTORM */ 7852 last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET); 7853 if (last_idx) 7854 BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7855 7856 /* print the asserts */ 7857 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7858 7859 row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i)); 7860 row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4); 7861 row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8); 7862 row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12); 7863 7864 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7865 BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7866 i, row3, row2, row1, row0); 7867 rc++; 7868 } else { 7869 break; 7870 } 7871 } 7872 7873 /* TSTORM */ 7874 last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET); 7875 if (last_idx) { 7876 BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7877 } 7878 7879 /* print the asserts */ 7880 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7881 7882 row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i)); 7883 row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4); 7884 row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8); 7885 row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12); 7886 7887 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7888 BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7889 i, row3, row2, row1, row0); 7890 rc++; 7891 } else { 7892 break; 7893 } 7894 } 7895 7896 /* CSTORM */ 7897 last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET); 7898 if (last_idx) { 7899 BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7900 } 7901 7902 /* print the asserts */ 7903 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7904 7905 row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i)); 7906 row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4); 7907 row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8); 7908 row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12); 7909 7910 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7911 BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7912 i, row3, row2, row1, row0); 7913 rc++; 7914 } else { 7915 break; 7916 } 7917 } 7918 7919 /* USTORM */ 7920 last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET); 7921 if (last_idx) { 7922 BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7923 } 7924 7925 /* print the asserts */ 7926 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7927 7928 row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i)); 7929 row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4); 7930 row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8); 7931 row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12); 7932 7933 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7934 BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7935 i, row3, row2, row1, row0); 7936 rc++; 7937 } else { 7938 break; 7939 } 7940 } 7941 7942 return (rc); 7943 } 7944 7945 static void 7946 bxe_attn_int_deasserted3(struct bxe_softc *sc, 7947 uint32_t attn) 7948 { 7949 int func = SC_FUNC(sc); 7950 uint32_t val; 7951 7952 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 7953 7954 if (attn & BXE_PMF_LINK_ASSERT(sc)) { 7955 7956 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 7957 bxe_read_mf_cfg(sc); 7958 sc->devinfo.mf_info.mf_config[SC_VN(sc)] = 7959 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 7960 val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status); 7961 7962 if (val & DRV_STATUS_DCC_EVENT_MASK) 7963 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK)); 7964 7965 if (val & DRV_STATUS_SET_MF_BW) 7966 bxe_set_mf_bw(sc); 7967 7968 if (val & DRV_STATUS_DRV_INFO_REQ) 7969 bxe_handle_drv_info_req(sc); 7970 7971 if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF)) 7972 bxe_pmf_update(sc); 7973 7974 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 7975 bxe_handle_eee_event(sc); 7976 7977 if (sc->link_vars.periodic_flags & 7978 ELINK_PERIODIC_FLAGS_LINK_EVENT) { 7979 /* sync with link */ 7980 bxe_acquire_phy_lock(sc); 7981 sc->link_vars.periodic_flags &= 7982 ~ELINK_PERIODIC_FLAGS_LINK_EVENT; 7983 bxe_release_phy_lock(sc); 7984 if (IS_MF(sc)) 7985 ; // XXX bxe_link_sync_notify(sc); 7986 bxe_link_report(sc); 7987 } 7988 7989 /* 7990 * Always call it here: bxe_link_report() will 7991 * prevent the link indication duplication. 7992 */ 7993 bxe_link_status_update(sc); 7994 7995 } else if (attn & BXE_MC_ASSERT_BITS) { 7996 7997 BLOGE(sc, "MC assert!\n"); 7998 bxe_mc_assert(sc); 7999 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0); 8000 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0); 8001 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0); 8002 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0); 8003 bxe_panic(sc, ("MC assert!\n")); 8004 8005 } else if (attn & BXE_MCP_ASSERT) { 8006 8007 BLOGE(sc, "MCP assert!\n"); 8008 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0); 8009 // XXX bxe_fw_dump(sc); 8010 8011 } else { 8012 BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn); 8013 } 8014 } 8015 8016 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 8017 BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn); 8018 if (attn & BXE_GRC_TIMEOUT) { 8019 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN); 8020 BLOGE(sc, "GRC time-out 0x%08x\n", val); 8021 } 8022 if (attn & BXE_GRC_RSV) { 8023 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN); 8024 BLOGE(sc, "GRC reserved 0x%08x\n", val); 8025 } 8026 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 8027 } 8028 } 8029 8030 static void 8031 bxe_attn_int_deasserted2(struct bxe_softc *sc, 8032 uint32_t attn) 8033 { 8034 int port = SC_PORT(sc); 8035 int reg_offset; 8036 uint32_t val0, mask0, val1, mask1; 8037 uint32_t val; 8038 8039 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 8040 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR); 8041 BLOGE(sc, "CFC hw attention 0x%08x\n", val); 8042 /* CFC error attention */ 8043 if (val & 0x2) { 8044 BLOGE(sc, "FATAL error from CFC\n"); 8045 } 8046 } 8047 8048 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 8049 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0); 8050 BLOGE(sc, "PXP hw attention-0 0x%08x\n", val); 8051 /* RQ_USDMDP_FIFO_OVERFLOW */ 8052 if (val & 0x18000) { 8053 BLOGE(sc, "FATAL error from PXP\n"); 8054 } 8055 8056 if (!CHIP_IS_E1x(sc)) { 8057 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1); 8058 BLOGE(sc, "PXP hw attention-1 0x%08x\n", val); 8059 } 8060 } 8061 8062 #define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR 8063 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT 8064 8065 if (attn & AEU_PXP2_HW_INT_BIT) { 8066 /* CQ47854 workaround do not panic on 8067 * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8068 */ 8069 if (!CHIP_IS_E1x(sc)) { 8070 mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0); 8071 val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1); 8072 mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1); 8073 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0); 8074 /* 8075 * If the only PXP2_EOP_ERROR_BIT is set in 8076 * STS0 and STS1 - clear it 8077 * 8078 * probably we lose additional attentions between 8079 * STS0 and STS_CLR0, in this case user will not 8080 * be notified about them 8081 */ 8082 if (val0 & mask0 & PXP2_EOP_ERROR_BIT && 8083 !(val1 & mask1)) 8084 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 8085 8086 /* print the register, since no one can restore it */ 8087 BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0); 8088 8089 /* 8090 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8091 * then notify 8092 */ 8093 if (val0 & PXP2_EOP_ERROR_BIT) { 8094 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n"); 8095 8096 /* 8097 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is 8098 * set then clear attention from PXP2 block without panic 8099 */ 8100 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) && 8101 ((val1 & mask1) == 0)) 8102 attn &= ~AEU_PXP2_HW_INT_BIT; 8103 } 8104 } 8105 } 8106 8107 if (attn & HW_INTERRUT_ASSERT_SET_2) { 8108 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 8109 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 8110 8111 val = REG_RD(sc, reg_offset); 8112 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); 8113 REG_WR(sc, reg_offset, val); 8114 8115 BLOGE(sc, "FATAL HW block attention set2 0x%x\n", 8116 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2)); 8117 bxe_panic(sc, ("HW block attention set2\n")); 8118 } 8119 } 8120 8121 static void 8122 bxe_attn_int_deasserted1(struct bxe_softc *sc, 8123 uint32_t attn) 8124 { 8125 int port = SC_PORT(sc); 8126 int reg_offset; 8127 uint32_t val; 8128 8129 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 8130 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR); 8131 BLOGE(sc, "DB hw attention 0x%08x\n", val); 8132 /* DORQ discard attention */ 8133 if (val & 0x2) { 8134 BLOGE(sc, "FATAL error from DORQ\n"); 8135 } 8136 } 8137 8138 if (attn & HW_INTERRUT_ASSERT_SET_1) { 8139 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 8140 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 8141 8142 val = REG_RD(sc, reg_offset); 8143 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); 8144 REG_WR(sc, reg_offset, val); 8145 8146 BLOGE(sc, "FATAL HW block attention set1 0x%08x\n", 8147 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1)); 8148 bxe_panic(sc, ("HW block attention set1\n")); 8149 } 8150 } 8151 8152 static void 8153 bxe_attn_int_deasserted0(struct bxe_softc *sc, 8154 uint32_t attn) 8155 { 8156 int port = SC_PORT(sc); 8157 int reg_offset; 8158 uint32_t val; 8159 8160 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 8161 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 8162 8163 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 8164 val = REG_RD(sc, reg_offset); 8165 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 8166 REG_WR(sc, reg_offset, val); 8167 8168 BLOGW(sc, "SPIO5 hw attention\n"); 8169 8170 /* Fan failure attention */ 8171 elink_hw_reset_phy(&sc->link_params); 8172 bxe_fan_failure(sc); 8173 } 8174 8175 if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) { 8176 bxe_acquire_phy_lock(sc); 8177 elink_handle_module_detect_int(&sc->link_params); 8178 bxe_release_phy_lock(sc); 8179 } 8180 8181 if (attn & HW_INTERRUT_ASSERT_SET_0) { 8182 val = REG_RD(sc, reg_offset); 8183 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); 8184 REG_WR(sc, reg_offset, val); 8185 8186 bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n", 8187 (attn & HW_INTERRUT_ASSERT_SET_0))); 8188 } 8189 } 8190 8191 static void 8192 bxe_attn_int_deasserted(struct bxe_softc *sc, 8193 uint32_t deasserted) 8194 { 8195 struct attn_route attn; 8196 struct attn_route *group_mask; 8197 int port = SC_PORT(sc); 8198 int index; 8199 uint32_t reg_addr; 8200 uint32_t val; 8201 uint32_t aeu_mask; 8202 uint8_t global = FALSE; 8203 8204 /* 8205 * Need to take HW lock because MCP or other port might also 8206 * try to handle this event. 8207 */ 8208 bxe_acquire_alr(sc); 8209 8210 if (bxe_chk_parity_attn(sc, &global, TRUE)) { 8211 /* XXX 8212 * In case of parity errors don't handle attentions so that 8213 * other function would "see" parity errors. 8214 */ 8215 sc->recovery_state = BXE_RECOVERY_INIT; 8216 // XXX schedule a recovery task... 8217 /* disable HW interrupts */ 8218 bxe_int_disable(sc); 8219 bxe_release_alr(sc); 8220 return; 8221 } 8222 8223 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 8224 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 8225 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 8226 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 8227 if (!CHIP_IS_E1x(sc)) { 8228 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 8229 } else { 8230 attn.sig[4] = 0; 8231 } 8232 8233 BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", 8234 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 8235 8236 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 8237 if (deasserted & (1 << index)) { 8238 group_mask = &sc->attn_group[index]; 8239 8240 BLOGD(sc, DBG_INTR, 8241 "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index, 8242 group_mask->sig[0], group_mask->sig[1], 8243 group_mask->sig[2], group_mask->sig[3], 8244 group_mask->sig[4]); 8245 8246 bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]); 8247 bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]); 8248 bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]); 8249 bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]); 8250 bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]); 8251 } 8252 } 8253 8254 bxe_release_alr(sc); 8255 8256 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8257 reg_addr = (HC_REG_COMMAND_REG + port*32 + 8258 COMMAND_REG_ATTN_BITS_CLR); 8259 } else { 8260 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 8261 } 8262 8263 val = ~deasserted; 8264 BLOGD(sc, DBG_INTR, 8265 "about to mask 0x%08x at %s addr 0x%08x\n", val, 8266 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 8267 REG_WR(sc, reg_addr, val); 8268 8269 if (~sc->attn_state & deasserted) { 8270 BLOGE(sc, "IGU error\n"); 8271 } 8272 8273 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 8274 MISC_REG_AEU_MASK_ATTN_FUNC_0; 8275 8276 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8277 8278 aeu_mask = REG_RD(sc, reg_addr); 8279 8280 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n", 8281 aeu_mask, deasserted); 8282 aeu_mask |= (deasserted & 0x3ff); 8283 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 8284 8285 REG_WR(sc, reg_addr, aeu_mask); 8286 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8287 8288 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 8289 sc->attn_state &= ~deasserted; 8290 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 8291 } 8292 8293 static void 8294 bxe_attn_int(struct bxe_softc *sc) 8295 { 8296 /* read local copy of bits */ 8297 uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits); 8298 uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack); 8299 uint32_t attn_state = sc->attn_state; 8300 8301 /* look for changed bits */ 8302 uint32_t asserted = attn_bits & ~attn_ack & ~attn_state; 8303 uint32_t deasserted = ~attn_bits & attn_ack & attn_state; 8304 8305 BLOGD(sc, DBG_INTR, 8306 "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n", 8307 attn_bits, attn_ack, asserted, deasserted); 8308 8309 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) { 8310 BLOGE(sc, "BAD attention state\n"); 8311 } 8312 8313 /* handle bits that were raised */ 8314 if (asserted) { 8315 bxe_attn_int_asserted(sc, asserted); 8316 } 8317 8318 if (deasserted) { 8319 bxe_attn_int_deasserted(sc, deasserted); 8320 } 8321 } 8322 8323 static uint16_t 8324 bxe_update_dsb_idx(struct bxe_softc *sc) 8325 { 8326 struct host_sp_status_block *def_sb = sc->def_sb; 8327 uint16_t rc = 0; 8328 8329 mb(); /* status block is written to by the chip */ 8330 8331 if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 8332 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index; 8333 rc |= BXE_DEF_SB_ATT_IDX; 8334 } 8335 8336 if (sc->def_idx != def_sb->sp_sb.running_index) { 8337 sc->def_idx = def_sb->sp_sb.running_index; 8338 rc |= BXE_DEF_SB_IDX; 8339 } 8340 8341 mb(); 8342 8343 return (rc); 8344 } 8345 8346 static inline struct ecore_queue_sp_obj * 8347 bxe_cid_to_q_obj(struct bxe_softc *sc, 8348 uint32_t cid) 8349 { 8350 BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid); 8351 return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj); 8352 } 8353 8354 static void 8355 bxe_handle_mcast_eqe(struct bxe_softc *sc) 8356 { 8357 struct ecore_mcast_ramrod_params rparam; 8358 int rc; 8359 8360 memset(&rparam, 0, sizeof(rparam)); 8361 8362 rparam.mcast_obj = &sc->mcast_obj; 8363 8364 BXE_MCAST_LOCK(sc); 8365 8366 /* clear pending state for the last command */ 8367 sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw); 8368 8369 /* if there are pending mcast commands - send them */ 8370 if (sc->mcast_obj.check_pending(&sc->mcast_obj)) { 8371 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 8372 if (rc < 0) { 8373 BLOGD(sc, DBG_SP, 8374 "ERROR: Failed to send pending mcast commands (%d)\n", rc); 8375 } 8376 } 8377 8378 BXE_MCAST_UNLOCK(sc); 8379 } 8380 8381 static void 8382 bxe_handle_classification_eqe(struct bxe_softc *sc, 8383 union event_ring_elem *elem) 8384 { 8385 unsigned long ramrod_flags = 0; 8386 int rc = 0; 8387 uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8388 struct ecore_vlan_mac_obj *vlan_mac_obj; 8389 8390 /* always push next commands out, don't wait here */ 8391 bit_set(&ramrod_flags, RAMROD_CONT); 8392 8393 switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) { 8394 case ECORE_FILTER_MAC_PENDING: 8395 BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n"); 8396 vlan_mac_obj = &sc->sp_objs[cid].mac_obj; 8397 break; 8398 8399 case ECORE_FILTER_MCAST_PENDING: 8400 BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n"); 8401 /* 8402 * This is only relevant for 57710 where multicast MACs are 8403 * configured as unicast MACs using the same ramrod. 8404 */ 8405 bxe_handle_mcast_eqe(sc); 8406 return; 8407 8408 default: 8409 BLOGE(sc, "Unsupported classification command: %d\n", 8410 elem->message.data.eth_event.echo); 8411 return; 8412 } 8413 8414 rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags); 8415 8416 if (rc < 0) { 8417 BLOGE(sc, "Failed to schedule new commands (%d)\n", rc); 8418 } else if (rc > 0) { 8419 BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n"); 8420 } 8421 } 8422 8423 static void 8424 bxe_handle_rx_mode_eqe(struct bxe_softc *sc, 8425 union event_ring_elem *elem) 8426 { 8427 bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 8428 8429 /* send rx_mode command again if was requested */ 8430 if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, 8431 &sc->sp_state)) { 8432 bxe_set_storm_rx_mode(sc); 8433 } 8434 } 8435 8436 static void 8437 bxe_update_eq_prod(struct bxe_softc *sc, 8438 uint16_t prod) 8439 { 8440 storm_memset_eq_prod(sc, prod, SC_FUNC(sc)); 8441 wmb(); /* keep prod updates ordered */ 8442 } 8443 8444 static void 8445 bxe_eq_int(struct bxe_softc *sc) 8446 { 8447 uint16_t hw_cons, sw_cons, sw_prod; 8448 union event_ring_elem *elem; 8449 uint8_t echo; 8450 uint32_t cid; 8451 uint8_t opcode; 8452 int spqe_cnt = 0; 8453 struct ecore_queue_sp_obj *q_obj; 8454 struct ecore_func_sp_obj *f_obj = &sc->func_obj; 8455 struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw; 8456 8457 hw_cons = le16toh(*sc->eq_cons_sb); 8458 8459 /* 8460 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256. 8461 * when we get to the next-page we need to adjust so the loop 8462 * condition below will be met. The next element is the size of a 8463 * regular element and hence incrementing by 1 8464 */ 8465 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) { 8466 hw_cons++; 8467 } 8468 8469 /* 8470 * This function may never run in parallel with itself for a 8471 * specific sc and no need for a read memory barrier here. 8472 */ 8473 sw_cons = sc->eq_cons; 8474 sw_prod = sc->eq_prod; 8475 8476 BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n", 8477 hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left)); 8478 8479 for (; 8480 sw_cons != hw_cons; 8481 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 8482 8483 elem = &sc->eq[EQ_DESC(sw_cons)]; 8484 8485 /* elem CID originates from FW, actually LE */ 8486 cid = SW_CID(elem->message.data.cfc_del_event.cid); 8487 opcode = elem->message.opcode; 8488 8489 /* handle eq element */ 8490 switch (opcode) { 8491 8492 case EVENT_RING_OPCODE_STAT_QUERY: 8493 BLOGD(sc, DBG_SP, "got statistics completion event %d\n", 8494 sc->stats_comp++); 8495 /* nothing to do with stats comp */ 8496 goto next_spqe; 8497 8498 case EVENT_RING_OPCODE_CFC_DEL: 8499 /* handle according to cid range */ 8500 /* we may want to verify here that the sc state is HALTING */ 8501 BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid); 8502 q_obj = bxe_cid_to_q_obj(sc, cid); 8503 if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) { 8504 break; 8505 } 8506 goto next_spqe; 8507 8508 case EVENT_RING_OPCODE_STOP_TRAFFIC: 8509 BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n"); 8510 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) { 8511 break; 8512 } 8513 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED); 8514 goto next_spqe; 8515 8516 case EVENT_RING_OPCODE_START_TRAFFIC: 8517 BLOGD(sc, DBG_SP, "got START TRAFFIC\n"); 8518 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) { 8519 break; 8520 } 8521 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED); 8522 goto next_spqe; 8523 8524 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 8525 echo = elem->message.data.function_update_event.echo; 8526 if (echo == SWITCH_UPDATE) { 8527 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n"); 8528 if (f_obj->complete_cmd(sc, f_obj, 8529 ECORE_F_CMD_SWITCH_UPDATE)) { 8530 break; 8531 } 8532 } 8533 else { 8534 BLOGD(sc, DBG_SP, 8535 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 8536 } 8537 goto next_spqe; 8538 8539 case EVENT_RING_OPCODE_FORWARD_SETUP: 8540 q_obj = &bxe_fwd_sp_obj(sc, q_obj); 8541 if (q_obj->complete_cmd(sc, q_obj, 8542 ECORE_Q_CMD_SETUP_TX_ONLY)) { 8543 break; 8544 } 8545 goto next_spqe; 8546 8547 case EVENT_RING_OPCODE_FUNCTION_START: 8548 BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n"); 8549 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) { 8550 break; 8551 } 8552 goto next_spqe; 8553 8554 case EVENT_RING_OPCODE_FUNCTION_STOP: 8555 BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n"); 8556 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) { 8557 break; 8558 } 8559 goto next_spqe; 8560 } 8561 8562 switch (opcode | sc->state) { 8563 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN): 8564 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT): 8565 cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8566 BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid); 8567 rss_raw->clear_pending(rss_raw); 8568 break; 8569 8570 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN): 8571 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG): 8572 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT): 8573 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN): 8574 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG): 8575 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8576 BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n"); 8577 bxe_handle_classification_eqe(sc, elem); 8578 break; 8579 8580 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN): 8581 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG): 8582 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8583 BLOGD(sc, DBG_SP, "got mcast ramrod\n"); 8584 bxe_handle_mcast_eqe(sc); 8585 break; 8586 8587 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN): 8588 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG): 8589 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8590 BLOGD(sc, DBG_SP, "got rx_mode ramrod\n"); 8591 bxe_handle_rx_mode_eqe(sc, elem); 8592 break; 8593 8594 default: 8595 /* unknown event log error and continue */ 8596 BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n", 8597 elem->message.opcode, sc->state); 8598 } 8599 8600 next_spqe: 8601 spqe_cnt++; 8602 } /* for */ 8603 8604 mb(); 8605 atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt); 8606 8607 sc->eq_cons = sw_cons; 8608 sc->eq_prod = sw_prod; 8609 8610 /* make sure that above mem writes were issued towards the memory */ 8611 wmb(); 8612 8613 /* update producer */ 8614 bxe_update_eq_prod(sc, sc->eq_prod); 8615 } 8616 8617 static void 8618 bxe_handle_sp_tq(void *context, 8619 int pending) 8620 { 8621 struct bxe_softc *sc = (struct bxe_softc *)context; 8622 uint16_t status; 8623 8624 BLOGD(sc, DBG_SP, "---> SP TASK <---\n"); 8625 8626 /* what work needs to be performed? */ 8627 status = bxe_update_dsb_idx(sc); 8628 8629 BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status); 8630 8631 /* HW attentions */ 8632 if (status & BXE_DEF_SB_ATT_IDX) { 8633 BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n"); 8634 bxe_attn_int(sc); 8635 status &= ~BXE_DEF_SB_ATT_IDX; 8636 } 8637 8638 /* SP events: STAT_QUERY and others */ 8639 if (status & BXE_DEF_SB_IDX) { 8640 /* handle EQ completions */ 8641 BLOGD(sc, DBG_SP, "---> EQ INTR <---\n"); 8642 bxe_eq_int(sc); 8643 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 8644 le16toh(sc->def_idx), IGU_INT_NOP, 1); 8645 status &= ~BXE_DEF_SB_IDX; 8646 } 8647 8648 /* if status is non zero then something went wrong */ 8649 if (__predict_false(status)) { 8650 BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status); 8651 } 8652 8653 /* ack status block only if something was actually handled */ 8654 bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID, 8655 le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1); 8656 8657 /* 8658 * Must be called after the EQ processing (since eq leads to sriov 8659 * ramrod completion flows). 8660 * This flow may have been scheduled by the arrival of a ramrod 8661 * completion, or by the sriov code rescheduling itself. 8662 */ 8663 // XXX bxe_iov_sp_task(sc); 8664 8665 } 8666 8667 static void 8668 bxe_handle_fp_tq(void *context, 8669 int pending) 8670 { 8671 struct bxe_fastpath *fp = (struct bxe_fastpath *)context; 8672 struct bxe_softc *sc = fp->sc; 8673 uint8_t more_tx = FALSE; 8674 uint8_t more_rx = FALSE; 8675 8676 BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index); 8677 8678 /* XXX 8679 * IFF_DRV_RUNNING state can't be checked here since we process 8680 * slowpath events on a client queue during setup. Instead 8681 * we need to add a "process/continue" flag here that the driver 8682 * can use to tell the task here not to do anything. 8683 */ 8684 #if 0 8685 if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 8686 return; 8687 } 8688 #endif 8689 8690 /* update the fastpath index */ 8691 bxe_update_fp_sb_idx(fp); 8692 8693 /* XXX add loop here if ever support multiple tx CoS */ 8694 /* fp->txdata[cos] */ 8695 if (bxe_has_tx_work(fp)) { 8696 BXE_FP_TX_LOCK(fp); 8697 more_tx = bxe_txeof(sc, fp); 8698 BXE_FP_TX_UNLOCK(fp); 8699 } 8700 8701 if (bxe_has_rx_work(fp)) { 8702 more_rx = bxe_rxeof(sc, fp); 8703 } 8704 8705 if (more_rx /*|| more_tx*/) { 8706 /* still more work to do */ 8707 taskqueue_enqueue(fp->tq, &fp->tq_task); 8708 return; 8709 } 8710 8711 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 8712 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 8713 } 8714 8715 static void 8716 bxe_task_fp(struct bxe_fastpath *fp) 8717 { 8718 struct bxe_softc *sc = fp->sc; 8719 uint8_t more_tx = FALSE; 8720 uint8_t more_rx = FALSE; 8721 8722 BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index); 8723 8724 /* update the fastpath index */ 8725 bxe_update_fp_sb_idx(fp); 8726 8727 /* XXX add loop here if ever support multiple tx CoS */ 8728 /* fp->txdata[cos] */ 8729 if (bxe_has_tx_work(fp)) { 8730 BXE_FP_TX_LOCK(fp); 8731 more_tx = bxe_txeof(sc, fp); 8732 BXE_FP_TX_UNLOCK(fp); 8733 } 8734 8735 if (bxe_has_rx_work(fp)) { 8736 more_rx = bxe_rxeof(sc, fp); 8737 } 8738 8739 if (more_rx /*|| more_tx*/) { 8740 /* still more work to do, bail out if this ISR and process later */ 8741 taskqueue_enqueue(fp->tq, &fp->tq_task); 8742 return; 8743 } 8744 8745 /* 8746 * Here we write the fastpath index taken before doing any tx or rx work. 8747 * It is very well possible other hw events occurred up to this point and 8748 * they were actually processed accordingly above. Since we're going to 8749 * write an older fastpath index, an interrupt is coming which we might 8750 * not do any work in. 8751 */ 8752 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 8753 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 8754 } 8755 8756 /* 8757 * Legacy interrupt entry point. 8758 * 8759 * Verifies that the controller generated the interrupt and 8760 * then calls a separate routine to handle the various 8761 * interrupt causes: link, RX, and TX. 8762 */ 8763 static void 8764 bxe_intr_legacy(void *xsc) 8765 { 8766 struct bxe_softc *sc = (struct bxe_softc *)xsc; 8767 struct bxe_fastpath *fp; 8768 uint16_t status, mask; 8769 int i; 8770 8771 BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n"); 8772 8773 /* 8774 * 0 for ustorm, 1 for cstorm 8775 * the bits returned from ack_int() are 0-15 8776 * bit 0 = attention status block 8777 * bit 1 = fast path status block 8778 * a mask of 0x2 or more = tx/rx event 8779 * a mask of 1 = slow path event 8780 */ 8781 8782 status = bxe_ack_int(sc); 8783 8784 /* the interrupt is not for us */ 8785 if (__predict_false(status == 0)) { 8786 BLOGD(sc, DBG_INTR, "Not our interrupt!\n"); 8787 return; 8788 } 8789 8790 BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status); 8791 8792 FOR_EACH_ETH_QUEUE(sc, i) { 8793 fp = &sc->fp[i]; 8794 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc))); 8795 if (status & mask) { 8796 /* acknowledge and disable further fastpath interrupts */ 8797 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8798 bxe_task_fp(fp); 8799 status &= ~mask; 8800 } 8801 } 8802 8803 if (__predict_false(status & 0x1)) { 8804 /* acknowledge and disable further slowpath interrupts */ 8805 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8806 8807 /* schedule slowpath handler */ 8808 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8809 8810 status &= ~0x1; 8811 } 8812 8813 if (__predict_false(status)) { 8814 BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status); 8815 } 8816 } 8817 8818 /* slowpath interrupt entry point */ 8819 static void 8820 bxe_intr_sp(void *xsc) 8821 { 8822 struct bxe_softc *sc = (struct bxe_softc *)xsc; 8823 8824 BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n"); 8825 8826 /* acknowledge and disable further slowpath interrupts */ 8827 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8828 8829 /* schedule slowpath handler */ 8830 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8831 } 8832 8833 /* fastpath interrupt entry point */ 8834 static void 8835 bxe_intr_fp(void *xfp) 8836 { 8837 struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp; 8838 struct bxe_softc *sc = fp->sc; 8839 8840 BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index); 8841 8842 BLOGD(sc, DBG_INTR, 8843 "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n", 8844 curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id); 8845 8846 /* acknowledge and disable further fastpath interrupts */ 8847 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8848 8849 bxe_task_fp(fp); 8850 } 8851 8852 /* Release all interrupts allocated by the driver. */ 8853 static void 8854 bxe_interrupt_free(struct bxe_softc *sc) 8855 { 8856 int i; 8857 8858 switch (sc->interrupt_mode) { 8859 case INTR_MODE_INTX: 8860 BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n"); 8861 if (sc->intr[0].resource != NULL) { 8862 bus_release_resource(sc->dev, 8863 SYS_RES_IRQ, 8864 sc->intr[0].rid, 8865 sc->intr[0].resource); 8866 } 8867 break; 8868 case INTR_MODE_MSI: 8869 for (i = 0; i < sc->intr_count; i++) { 8870 BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i); 8871 if (sc->intr[i].resource && sc->intr[i].rid) { 8872 bus_release_resource(sc->dev, 8873 SYS_RES_IRQ, 8874 sc->intr[i].rid, 8875 sc->intr[i].resource); 8876 } 8877 } 8878 pci_release_msi(sc->dev); 8879 break; 8880 case INTR_MODE_MSIX: 8881 for (i = 0; i < sc->intr_count; i++) { 8882 BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i); 8883 if (sc->intr[i].resource && sc->intr[i].rid) { 8884 bus_release_resource(sc->dev, 8885 SYS_RES_IRQ, 8886 sc->intr[i].rid, 8887 sc->intr[i].resource); 8888 } 8889 } 8890 pci_release_msi(sc->dev); 8891 break; 8892 default: 8893 /* nothing to do as initial allocation failed */ 8894 break; 8895 } 8896 } 8897 8898 /* 8899 * This function determines and allocates the appropriate 8900 * interrupt based on system capabilites and user request. 8901 * 8902 * The user may force a particular interrupt mode, specify 8903 * the number of receive queues, specify the method for 8904 * distribuitng received frames to receive queues, or use 8905 * the default settings which will automatically select the 8906 * best supported combination. In addition, the OS may or 8907 * may not support certain combinations of these settings. 8908 * This routine attempts to reconcile the settings requested 8909 * by the user with the capabilites available from the system 8910 * to select the optimal combination of features. 8911 * 8912 * Returns: 8913 * 0 = Success, !0 = Failure. 8914 */ 8915 static int 8916 bxe_interrupt_alloc(struct bxe_softc *sc) 8917 { 8918 int msix_count = 0; 8919 int msi_count = 0; 8920 int num_requested = 0; 8921 int num_allocated = 0; 8922 int rid, i, j; 8923 int rc; 8924 8925 /* get the number of available MSI/MSI-X interrupts from the OS */ 8926 if (sc->interrupt_mode > 0) { 8927 if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) { 8928 msix_count = pci_msix_count(sc->dev); 8929 } 8930 8931 if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) { 8932 msi_count = pci_msi_count(sc->dev); 8933 } 8934 8935 BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n", 8936 msi_count, msix_count); 8937 } 8938 8939 do { /* try allocating MSI-X interrupt resources (at least 2) */ 8940 if (sc->interrupt_mode != INTR_MODE_MSIX) { 8941 break; 8942 } 8943 8944 if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) || 8945 (msix_count < 2)) { 8946 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8947 break; 8948 } 8949 8950 /* ask for the necessary number of MSI-X vectors */ 8951 num_requested = min((sc->num_queues + 1), msix_count); 8952 8953 BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested); 8954 8955 num_allocated = num_requested; 8956 if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) { 8957 BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc); 8958 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8959 break; 8960 } 8961 8962 if (num_allocated < 2) { /* possible? */ 8963 BLOGE(sc, "MSI-X allocation less than 2!\n"); 8964 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8965 pci_release_msi(sc->dev); 8966 break; 8967 } 8968 8969 BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n", 8970 num_requested, num_allocated); 8971 8972 /* best effort so use the number of vectors allocated to us */ 8973 sc->intr_count = num_allocated; 8974 sc->num_queues = num_allocated - 1; 8975 8976 rid = 1; /* initial resource identifier */ 8977 8978 /* allocate the MSI-X vectors */ 8979 for (i = 0; i < num_allocated; i++) { 8980 sc->intr[i].rid = (rid + i); 8981 8982 if ((sc->intr[i].resource = 8983 bus_alloc_resource_any(sc->dev, 8984 SYS_RES_IRQ, 8985 &sc->intr[i].rid, 8986 RF_ACTIVE)) == NULL) { 8987 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n", 8988 i, (rid + i)); 8989 8990 for (j = (i - 1); j >= 0; j--) { 8991 bus_release_resource(sc->dev, 8992 SYS_RES_IRQ, 8993 sc->intr[j].rid, 8994 sc->intr[j].resource); 8995 } 8996 8997 sc->intr_count = 0; 8998 sc->num_queues = 0; 8999 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9000 pci_release_msi(sc->dev); 9001 break; 9002 } 9003 9004 BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i)); 9005 } 9006 } while (0); 9007 9008 do { /* try allocating MSI vector resources (at least 2) */ 9009 if (sc->interrupt_mode != INTR_MODE_MSI) { 9010 break; 9011 } 9012 9013 if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) || 9014 (msi_count < 1)) { 9015 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9016 break; 9017 } 9018 9019 /* ask for a single MSI vector */ 9020 num_requested = 1; 9021 9022 BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested); 9023 9024 num_allocated = num_requested; 9025 if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) { 9026 BLOGE(sc, "MSI alloc failed (%d)!\n", rc); 9027 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9028 break; 9029 } 9030 9031 if (num_allocated != 1) { /* possible? */ 9032 BLOGE(sc, "MSI allocation is not 1!\n"); 9033 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9034 pci_release_msi(sc->dev); 9035 break; 9036 } 9037 9038 BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n", 9039 num_requested, num_allocated); 9040 9041 /* best effort so use the number of vectors allocated to us */ 9042 sc->intr_count = num_allocated; 9043 sc->num_queues = num_allocated; 9044 9045 rid = 1; /* initial resource identifier */ 9046 9047 sc->intr[0].rid = rid; 9048 9049 if ((sc->intr[0].resource = 9050 bus_alloc_resource_any(sc->dev, 9051 SYS_RES_IRQ, 9052 &sc->intr[0].rid, 9053 RF_ACTIVE)) == NULL) { 9054 BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid); 9055 sc->intr_count = 0; 9056 sc->num_queues = 0; 9057 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9058 pci_release_msi(sc->dev); 9059 break; 9060 } 9061 9062 BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid); 9063 } while (0); 9064 9065 do { /* try allocating INTx vector resources */ 9066 if (sc->interrupt_mode != INTR_MODE_INTX) { 9067 break; 9068 } 9069 9070 BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n"); 9071 9072 /* only one vector for INTx */ 9073 sc->intr_count = 1; 9074 sc->num_queues = 1; 9075 9076 rid = 0; /* initial resource identifier */ 9077 9078 sc->intr[0].rid = rid; 9079 9080 if ((sc->intr[0].resource = 9081 bus_alloc_resource_any(sc->dev, 9082 SYS_RES_IRQ, 9083 &sc->intr[0].rid, 9084 (RF_ACTIVE | RF_SHAREABLE))) == NULL) { 9085 BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid); 9086 sc->intr_count = 0; 9087 sc->num_queues = 0; 9088 sc->interrupt_mode = -1; /* Failed! */ 9089 break; 9090 } 9091 9092 BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid); 9093 } while (0); 9094 9095 if (sc->interrupt_mode == -1) { 9096 BLOGE(sc, "Interrupt Allocation: FAILED!!!\n"); 9097 rc = 1; 9098 } else { 9099 BLOGD(sc, DBG_LOAD, 9100 "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n", 9101 sc->interrupt_mode, sc->num_queues); 9102 rc = 0; 9103 } 9104 9105 return (rc); 9106 } 9107 9108 static void 9109 bxe_interrupt_detach(struct bxe_softc *sc) 9110 { 9111 struct bxe_fastpath *fp; 9112 int i; 9113 9114 /* release interrupt resources */ 9115 for (i = 0; i < sc->intr_count; i++) { 9116 if (sc->intr[i].resource && sc->intr[i].tag) { 9117 BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i); 9118 bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag); 9119 } 9120 } 9121 9122 for (i = 0; i < sc->num_queues; i++) { 9123 fp = &sc->fp[i]; 9124 if (fp->tq) { 9125 taskqueue_drain(fp->tq, &fp->tq_task); 9126 taskqueue_drain(fp->tq, &fp->tx_task); 9127 while (taskqueue_cancel_timeout(fp->tq, &fp->tx_timeout_task, 9128 NULL)) 9129 taskqueue_drain_timeout(fp->tq, &fp->tx_timeout_task); 9130 taskqueue_free(fp->tq); 9131 fp->tq = NULL; 9132 } 9133 } 9134 9135 9136 if (sc->sp_tq) { 9137 taskqueue_drain(sc->sp_tq, &sc->sp_tq_task); 9138 taskqueue_free(sc->sp_tq); 9139 sc->sp_tq = NULL; 9140 } 9141 } 9142 9143 /* 9144 * Enables interrupts and attach to the ISR. 9145 * 9146 * When using multiple MSI/MSI-X vectors the first vector 9147 * is used for slowpath operations while all remaining 9148 * vectors are used for fastpath operations. If only a 9149 * single MSI/MSI-X vector is used (SINGLE_ISR) then the 9150 * ISR must look for both slowpath and fastpath completions. 9151 */ 9152 static int 9153 bxe_interrupt_attach(struct bxe_softc *sc) 9154 { 9155 struct bxe_fastpath *fp; 9156 int rc = 0; 9157 int i; 9158 9159 snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name), 9160 "bxe%d_sp_tq", sc->unit); 9161 TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc); 9162 sc->sp_tq = taskqueue_create(sc->sp_tq_name, M_NOWAIT, 9163 taskqueue_thread_enqueue, 9164 &sc->sp_tq); 9165 taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */ 9166 "%s", sc->sp_tq_name); 9167 9168 9169 for (i = 0; i < sc->num_queues; i++) { 9170 fp = &sc->fp[i]; 9171 snprintf(fp->tq_name, sizeof(fp->tq_name), 9172 "bxe%d_fp%d_tq", sc->unit, i); 9173 TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp); 9174 TASK_INIT(&fp->tx_task, 0, bxe_tx_mq_start_deferred, fp); 9175 fp->tq = taskqueue_create(fp->tq_name, M_NOWAIT, 9176 taskqueue_thread_enqueue, 9177 &fp->tq); 9178 TIMEOUT_TASK_INIT(fp->tq, &fp->tx_timeout_task, 0, 9179 bxe_tx_mq_start_deferred, fp); 9180 taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */ 9181 "%s", fp->tq_name); 9182 } 9183 9184 /* setup interrupt handlers */ 9185 if (sc->interrupt_mode == INTR_MODE_MSIX) { 9186 BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n"); 9187 9188 /* 9189 * Setup the interrupt handler. Note that we pass the driver instance 9190 * to the interrupt handler for the slowpath. 9191 */ 9192 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9193 (INTR_TYPE_NET | INTR_MPSAFE), 9194 NULL, bxe_intr_sp, sc, 9195 &sc->intr[0].tag)) != 0) { 9196 BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc); 9197 goto bxe_interrupt_attach_exit; 9198 } 9199 9200 bus_describe_intr(sc->dev, sc->intr[0].resource, 9201 sc->intr[0].tag, "sp"); 9202 9203 /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */ 9204 9205 /* initialize the fastpath vectors (note the first was used for sp) */ 9206 for (i = 0; i < sc->num_queues; i++) { 9207 fp = &sc->fp[i]; 9208 BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1)); 9209 9210 /* 9211 * Setup the interrupt handler. Note that we pass the 9212 * fastpath context to the interrupt handler in this 9213 * case. 9214 */ 9215 if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource, 9216 (INTR_TYPE_NET | INTR_MPSAFE), 9217 NULL, bxe_intr_fp, fp, 9218 &sc->intr[i + 1].tag)) != 0) { 9219 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n", 9220 (i + 1), rc); 9221 goto bxe_interrupt_attach_exit; 9222 } 9223 9224 bus_describe_intr(sc->dev, sc->intr[i + 1].resource, 9225 sc->intr[i + 1].tag, "fp%02d", i); 9226 9227 /* bind the fastpath instance to a cpu */ 9228 if (sc->num_queues > 1) { 9229 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i); 9230 } 9231 9232 fp->state = BXE_FP_STATE_IRQ; 9233 } 9234 } else if (sc->interrupt_mode == INTR_MODE_MSI) { 9235 BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n"); 9236 9237 /* 9238 * Setup the interrupt handler. Note that we pass the 9239 * driver instance to the interrupt handler which 9240 * will handle both the slowpath and fastpath. 9241 */ 9242 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9243 (INTR_TYPE_NET | INTR_MPSAFE), 9244 NULL, bxe_intr_legacy, sc, 9245 &sc->intr[0].tag)) != 0) { 9246 BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc); 9247 goto bxe_interrupt_attach_exit; 9248 } 9249 9250 } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */ 9251 BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n"); 9252 9253 /* 9254 * Setup the interrupt handler. Note that we pass the 9255 * driver instance to the interrupt handler which 9256 * will handle both the slowpath and fastpath. 9257 */ 9258 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9259 (INTR_TYPE_NET | INTR_MPSAFE), 9260 NULL, bxe_intr_legacy, sc, 9261 &sc->intr[0].tag)) != 0) { 9262 BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc); 9263 goto bxe_interrupt_attach_exit; 9264 } 9265 } 9266 9267 bxe_interrupt_attach_exit: 9268 9269 return (rc); 9270 } 9271 9272 static int bxe_init_hw_common_chip(struct bxe_softc *sc); 9273 static int bxe_init_hw_common(struct bxe_softc *sc); 9274 static int bxe_init_hw_port(struct bxe_softc *sc); 9275 static int bxe_init_hw_func(struct bxe_softc *sc); 9276 static void bxe_reset_common(struct bxe_softc *sc); 9277 static void bxe_reset_port(struct bxe_softc *sc); 9278 static void bxe_reset_func(struct bxe_softc *sc); 9279 static int bxe_gunzip_init(struct bxe_softc *sc); 9280 static void bxe_gunzip_end(struct bxe_softc *sc); 9281 static int bxe_init_firmware(struct bxe_softc *sc); 9282 static void bxe_release_firmware(struct bxe_softc *sc); 9283 9284 static struct 9285 ecore_func_sp_drv_ops bxe_func_sp_drv = { 9286 .init_hw_cmn_chip = bxe_init_hw_common_chip, 9287 .init_hw_cmn = bxe_init_hw_common, 9288 .init_hw_port = bxe_init_hw_port, 9289 .init_hw_func = bxe_init_hw_func, 9290 9291 .reset_hw_cmn = bxe_reset_common, 9292 .reset_hw_port = bxe_reset_port, 9293 .reset_hw_func = bxe_reset_func, 9294 9295 .gunzip_init = bxe_gunzip_init, 9296 .gunzip_end = bxe_gunzip_end, 9297 9298 .init_fw = bxe_init_firmware, 9299 .release_fw = bxe_release_firmware, 9300 }; 9301 9302 static void 9303 bxe_init_func_obj(struct bxe_softc *sc) 9304 { 9305 sc->dmae_ready = 0; 9306 9307 ecore_init_func_obj(sc, 9308 &sc->func_obj, 9309 BXE_SP(sc, func_rdata), 9310 BXE_SP_MAPPING(sc, func_rdata), 9311 BXE_SP(sc, func_afex_rdata), 9312 BXE_SP_MAPPING(sc, func_afex_rdata), 9313 &bxe_func_sp_drv); 9314 } 9315 9316 static int 9317 bxe_init_hw(struct bxe_softc *sc, 9318 uint32_t load_code) 9319 { 9320 struct ecore_func_state_params func_params = { NULL }; 9321 int rc; 9322 9323 /* prepare the parameters for function state transitions */ 9324 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 9325 9326 func_params.f_obj = &sc->func_obj; 9327 func_params.cmd = ECORE_F_CMD_HW_INIT; 9328 9329 func_params.params.hw_init.load_phase = load_code; 9330 9331 /* 9332 * Via a plethora of function pointers, we will eventually reach 9333 * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func(). 9334 */ 9335 rc = ecore_func_state_change(sc, &func_params); 9336 9337 return (rc); 9338 } 9339 9340 static void 9341 bxe_fill(struct bxe_softc *sc, 9342 uint32_t addr, 9343 int fill, 9344 uint32_t len) 9345 { 9346 uint32_t i; 9347 9348 if (!(len % 4) && !(addr % 4)) { 9349 for (i = 0; i < len; i += 4) { 9350 REG_WR(sc, (addr + i), fill); 9351 } 9352 } else { 9353 for (i = 0; i < len; i++) { 9354 REG_WR8(sc, (addr + i), fill); 9355 } 9356 } 9357 } 9358 9359 /* writes FP SP data to FW - data_size in dwords */ 9360 static void 9361 bxe_wr_fp_sb_data(struct bxe_softc *sc, 9362 int fw_sb_id, 9363 uint32_t *sb_data_p, 9364 uint32_t data_size) 9365 { 9366 int index; 9367 9368 for (index = 0; index < data_size; index++) { 9369 REG_WR(sc, 9370 (BAR_CSTRORM_INTMEM + 9371 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 9372 (sizeof(uint32_t) * index)), 9373 *(sb_data_p + index)); 9374 } 9375 } 9376 9377 static void 9378 bxe_zero_fp_sb(struct bxe_softc *sc, 9379 int fw_sb_id) 9380 { 9381 struct hc_status_block_data_e2 sb_data_e2; 9382 struct hc_status_block_data_e1x sb_data_e1x; 9383 uint32_t *sb_data_p; 9384 uint32_t data_size = 0; 9385 9386 if (!CHIP_IS_E1x(sc)) { 9387 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9388 sb_data_e2.common.state = SB_DISABLED; 9389 sb_data_e2.common.p_func.vf_valid = FALSE; 9390 sb_data_p = (uint32_t *)&sb_data_e2; 9391 data_size = (sizeof(struct hc_status_block_data_e2) / 9392 sizeof(uint32_t)); 9393 } else { 9394 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9395 sb_data_e1x.common.state = SB_DISABLED; 9396 sb_data_e1x.common.p_func.vf_valid = FALSE; 9397 sb_data_p = (uint32_t *)&sb_data_e1x; 9398 data_size = (sizeof(struct hc_status_block_data_e1x) / 9399 sizeof(uint32_t)); 9400 } 9401 9402 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9403 9404 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 9405 0, CSTORM_STATUS_BLOCK_SIZE); 9406 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)), 9407 0, CSTORM_SYNC_BLOCK_SIZE); 9408 } 9409 9410 static void 9411 bxe_wr_sp_sb_data(struct bxe_softc *sc, 9412 struct hc_sp_status_block_data *sp_sb_data) 9413 { 9414 int i; 9415 9416 for (i = 0; 9417 i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t)); 9418 i++) { 9419 REG_WR(sc, 9420 (BAR_CSTRORM_INTMEM + 9421 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) + 9422 (i * sizeof(uint32_t))), 9423 *((uint32_t *)sp_sb_data + i)); 9424 } 9425 } 9426 9427 static void 9428 bxe_zero_sp_sb(struct bxe_softc *sc) 9429 { 9430 struct hc_sp_status_block_data sp_sb_data; 9431 9432 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9433 9434 sp_sb_data.state = SB_DISABLED; 9435 sp_sb_data.p_func.vf_valid = FALSE; 9436 9437 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9438 9439 bxe_fill(sc, 9440 (BAR_CSTRORM_INTMEM + 9441 CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))), 9442 0, CSTORM_SP_STATUS_BLOCK_SIZE); 9443 bxe_fill(sc, 9444 (BAR_CSTRORM_INTMEM + 9445 CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))), 9446 0, CSTORM_SP_SYNC_BLOCK_SIZE); 9447 } 9448 9449 static void 9450 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 9451 int igu_sb_id, 9452 int igu_seg_id) 9453 { 9454 hc_sm->igu_sb_id = igu_sb_id; 9455 hc_sm->igu_seg_id = igu_seg_id; 9456 hc_sm->timer_value = 0xFF; 9457 hc_sm->time_to_expire = 0xFFFFFFFF; 9458 } 9459 9460 static void 9461 bxe_map_sb_state_machines(struct hc_index_data *index_data) 9462 { 9463 /* zero out state machine indices */ 9464 9465 /* rx indices */ 9466 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9467 9468 /* tx indices */ 9469 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9470 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 9471 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 9472 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 9473 9474 /* map indices */ 9475 9476 /* rx indices */ 9477 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 9478 (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9479 9480 /* tx indices */ 9481 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 9482 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9483 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 9484 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9485 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 9486 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9487 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 9488 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9489 } 9490 9491 static void 9492 bxe_init_sb(struct bxe_softc *sc, 9493 bus_addr_t busaddr, 9494 int vfid, 9495 uint8_t vf_valid, 9496 int fw_sb_id, 9497 int igu_sb_id) 9498 { 9499 struct hc_status_block_data_e2 sb_data_e2; 9500 struct hc_status_block_data_e1x sb_data_e1x; 9501 struct hc_status_block_sm *hc_sm_p; 9502 uint32_t *sb_data_p; 9503 int igu_seg_id; 9504 int data_size; 9505 9506 if (CHIP_INT_MODE_IS_BC(sc)) { 9507 igu_seg_id = HC_SEG_ACCESS_NORM; 9508 } else { 9509 igu_seg_id = IGU_SEG_ACCESS_NORM; 9510 } 9511 9512 bxe_zero_fp_sb(sc, fw_sb_id); 9513 9514 if (!CHIP_IS_E1x(sc)) { 9515 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9516 sb_data_e2.common.state = SB_ENABLED; 9517 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc); 9518 sb_data_e2.common.p_func.vf_id = vfid; 9519 sb_data_e2.common.p_func.vf_valid = vf_valid; 9520 sb_data_e2.common.p_func.vnic_id = SC_VN(sc); 9521 sb_data_e2.common.same_igu_sb_1b = TRUE; 9522 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr); 9523 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr); 9524 hc_sm_p = sb_data_e2.common.state_machine; 9525 sb_data_p = (uint32_t *)&sb_data_e2; 9526 data_size = (sizeof(struct hc_status_block_data_e2) / 9527 sizeof(uint32_t)); 9528 bxe_map_sb_state_machines(sb_data_e2.index_data); 9529 } else { 9530 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9531 sb_data_e1x.common.state = SB_ENABLED; 9532 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc); 9533 sb_data_e1x.common.p_func.vf_id = 0xff; 9534 sb_data_e1x.common.p_func.vf_valid = FALSE; 9535 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc); 9536 sb_data_e1x.common.same_igu_sb_1b = TRUE; 9537 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr); 9538 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr); 9539 hc_sm_p = sb_data_e1x.common.state_machine; 9540 sb_data_p = (uint32_t *)&sb_data_e1x; 9541 data_size = (sizeof(struct hc_status_block_data_e1x) / 9542 sizeof(uint32_t)); 9543 bxe_map_sb_state_machines(sb_data_e1x.index_data); 9544 } 9545 9546 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id); 9547 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id); 9548 9549 BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id); 9550 9551 /* write indices to HW - PCI guarantees endianity of regpairs */ 9552 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9553 } 9554 9555 static inline uint8_t 9556 bxe_fp_qzone_id(struct bxe_fastpath *fp) 9557 { 9558 if (CHIP_IS_E1x(fp->sc)) { 9559 return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H); 9560 } else { 9561 return (fp->cl_id); 9562 } 9563 } 9564 9565 static inline uint32_t 9566 bxe_rx_ustorm_prods_offset(struct bxe_softc *sc, 9567 struct bxe_fastpath *fp) 9568 { 9569 uint32_t offset = BAR_USTRORM_INTMEM; 9570 9571 if (!CHIP_IS_E1x(sc)) { 9572 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 9573 } else { 9574 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id); 9575 } 9576 9577 return (offset); 9578 } 9579 9580 static void 9581 bxe_init_eth_fp(struct bxe_softc *sc, 9582 int idx) 9583 { 9584 struct bxe_fastpath *fp = &sc->fp[idx]; 9585 uint32_t cids[ECORE_MULTI_TX_COS] = { 0 }; 9586 unsigned long q_type = 0; 9587 int cos; 9588 9589 fp->sc = sc; 9590 fp->index = idx; 9591 9592 fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc)); 9593 fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc)); 9594 9595 fp->cl_id = (CHIP_IS_E1x(sc)) ? 9596 (SC_L_ID(sc) + idx) : 9597 /* want client ID same as IGU SB ID for non-E1 */ 9598 fp->igu_sb_id; 9599 fp->cl_qzone_id = bxe_fp_qzone_id(fp); 9600 9601 /* setup sb indices */ 9602 if (!CHIP_IS_E1x(sc)) { 9603 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values; 9604 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index; 9605 } else { 9606 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values; 9607 fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index; 9608 } 9609 9610 /* init shortcut */ 9611 fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp); 9612 9613 fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]; 9614 9615 /* 9616 * XXX If multiple CoS is ever supported then each fastpath structure 9617 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 9618 */ 9619 for (cos = 0; cos < sc->max_cos; cos++) { 9620 cids[cos] = idx; 9621 } 9622 fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]; 9623 9624 /* nothing more for a VF to do */ 9625 if (IS_VF(sc)) { 9626 return; 9627 } 9628 9629 bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE, 9630 fp->fw_sb_id, fp->igu_sb_id); 9631 9632 bxe_update_fp_sb_idx(fp); 9633 9634 /* Configure Queue State object */ 9635 bit_set(&q_type, ECORE_Q_TYPE_HAS_RX); 9636 bit_set(&q_type, ECORE_Q_TYPE_HAS_TX); 9637 9638 ecore_init_queue_obj(sc, 9639 &sc->sp_objs[idx].q_obj, 9640 fp->cl_id, 9641 cids, 9642 sc->max_cos, 9643 SC_FUNC(sc), 9644 BXE_SP(sc, q_rdata), 9645 BXE_SP_MAPPING(sc, q_rdata), 9646 q_type); 9647 9648 /* configure classification DBs */ 9649 ecore_init_mac_obj(sc, 9650 &sc->sp_objs[idx].mac_obj, 9651 fp->cl_id, 9652 idx, 9653 SC_FUNC(sc), 9654 BXE_SP(sc, mac_rdata), 9655 BXE_SP_MAPPING(sc, mac_rdata), 9656 ECORE_FILTER_MAC_PENDING, 9657 &sc->sp_state, 9658 ECORE_OBJ_TYPE_RX_TX, 9659 &sc->macs_pool); 9660 9661 BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n", 9662 idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id); 9663 } 9664 9665 static inline void 9666 bxe_update_rx_prod(struct bxe_softc *sc, 9667 struct bxe_fastpath *fp, 9668 uint16_t rx_bd_prod, 9669 uint16_t rx_cq_prod, 9670 uint16_t rx_sge_prod) 9671 { 9672 struct ustorm_eth_rx_producers rx_prods = { 0 }; 9673 uint32_t i; 9674 9675 /* update producers */ 9676 rx_prods.bd_prod = rx_bd_prod; 9677 rx_prods.cqe_prod = rx_cq_prod; 9678 rx_prods.sge_prod = rx_sge_prod; 9679 9680 /* 9681 * Make sure that the BD and SGE data is updated before updating the 9682 * producers since FW might read the BD/SGE right after the producer 9683 * is updated. 9684 * This is only applicable for weak-ordered memory model archs such 9685 * as IA-64. The following barrier is also mandatory since FW will 9686 * assumes BDs must have buffers. 9687 */ 9688 wmb(); 9689 9690 for (i = 0; i < (sizeof(rx_prods) / 4); i++) { 9691 REG_WR(sc, 9692 (fp->ustorm_rx_prods_offset + (i * 4)), 9693 ((uint32_t *)&rx_prods)[i]); 9694 } 9695 9696 wmb(); /* keep prod updates ordered */ 9697 9698 BLOGD(sc, DBG_RX, 9699 "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n", 9700 fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod); 9701 } 9702 9703 static void 9704 bxe_init_rx_rings(struct bxe_softc *sc) 9705 { 9706 struct bxe_fastpath *fp; 9707 int i; 9708 9709 for (i = 0; i < sc->num_queues; i++) { 9710 fp = &sc->fp[i]; 9711 9712 fp->rx_bd_cons = 0; 9713 9714 /* 9715 * Activate the BD ring... 9716 * Warning, this will generate an interrupt (to the TSTORM) 9717 * so this can only be done after the chip is initialized 9718 */ 9719 bxe_update_rx_prod(sc, fp, 9720 fp->rx_bd_prod, 9721 fp->rx_cq_prod, 9722 fp->rx_sge_prod); 9723 9724 if (i != 0) { 9725 continue; 9726 } 9727 9728 if (CHIP_IS_E1(sc)) { 9729 REG_WR(sc, 9730 (BAR_USTRORM_INTMEM + 9731 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))), 9732 U64_LO(fp->rcq_dma.paddr)); 9733 REG_WR(sc, 9734 (BAR_USTRORM_INTMEM + 9735 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4), 9736 U64_HI(fp->rcq_dma.paddr)); 9737 } 9738 } 9739 } 9740 9741 static void 9742 bxe_init_tx_ring_one(struct bxe_fastpath *fp) 9743 { 9744 SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1); 9745 fp->tx_db.data.zero_fill1 = 0; 9746 fp->tx_db.data.prod = 0; 9747 9748 fp->tx_pkt_prod = 0; 9749 fp->tx_pkt_cons = 0; 9750 fp->tx_bd_prod = 0; 9751 fp->tx_bd_cons = 0; 9752 fp->eth_q_stats.tx_pkts = 0; 9753 } 9754 9755 static inline void 9756 bxe_init_tx_rings(struct bxe_softc *sc) 9757 { 9758 int i; 9759 9760 for (i = 0; i < sc->num_queues; i++) { 9761 bxe_init_tx_ring_one(&sc->fp[i]); 9762 } 9763 } 9764 9765 static void 9766 bxe_init_def_sb(struct bxe_softc *sc) 9767 { 9768 struct host_sp_status_block *def_sb = sc->def_sb; 9769 bus_addr_t mapping = sc->def_sb_dma.paddr; 9770 int igu_sp_sb_index; 9771 int igu_seg_id; 9772 int port = SC_PORT(sc); 9773 int func = SC_FUNC(sc); 9774 int reg_offset, reg_offset_en5; 9775 uint64_t section; 9776 int index, sindex; 9777 struct hc_sp_status_block_data sp_sb_data; 9778 9779 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9780 9781 if (CHIP_INT_MODE_IS_BC(sc)) { 9782 igu_sp_sb_index = DEF_SB_IGU_ID; 9783 igu_seg_id = HC_SEG_ACCESS_DEF; 9784 } else { 9785 igu_sp_sb_index = sc->igu_dsb_id; 9786 igu_seg_id = IGU_SEG_ACCESS_DEF; 9787 } 9788 9789 /* attentions */ 9790 section = ((uint64_t)mapping + 9791 offsetof(struct host_sp_status_block, atten_status_block)); 9792 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 9793 sc->attn_state = 0; 9794 9795 reg_offset = (port) ? 9796 MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 9797 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 9798 reg_offset_en5 = (port) ? 9799 MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 9800 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0; 9801 9802 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 9803 /* take care of sig[0]..sig[4] */ 9804 for (sindex = 0; sindex < 4; sindex++) { 9805 sc->attn_group[index].sig[sindex] = 9806 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index))); 9807 } 9808 9809 if (!CHIP_IS_E1x(sc)) { 9810 /* 9811 * enable5 is separate from the rest of the registers, 9812 * and the address skip is 4 and not 16 between the 9813 * different groups 9814 */ 9815 sc->attn_group[index].sig[4] = 9816 REG_RD(sc, (reg_offset_en5 + (0x4 * index))); 9817 } else { 9818 sc->attn_group[index].sig[4] = 0; 9819 } 9820 } 9821 9822 if (sc->devinfo.int_block == INT_BLOCK_HC) { 9823 reg_offset = (port) ? 9824 HC_REG_ATTN_MSG1_ADDR_L : 9825 HC_REG_ATTN_MSG0_ADDR_L; 9826 REG_WR(sc, reg_offset, U64_LO(section)); 9827 REG_WR(sc, (reg_offset + 4), U64_HI(section)); 9828 } else if (!CHIP_IS_E1x(sc)) { 9829 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 9830 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 9831 } 9832 9833 section = ((uint64_t)mapping + 9834 offsetof(struct host_sp_status_block, sp_sb)); 9835 9836 bxe_zero_sp_sb(sc); 9837 9838 /* PCI guarantees endianity of regpair */ 9839 sp_sb_data.state = SB_ENABLED; 9840 sp_sb_data.host_sb_addr.lo = U64_LO(section); 9841 sp_sb_data.host_sb_addr.hi = U64_HI(section); 9842 sp_sb_data.igu_sb_id = igu_sp_sb_index; 9843 sp_sb_data.igu_seg_id = igu_seg_id; 9844 sp_sb_data.p_func.pf_id = func; 9845 sp_sb_data.p_func.vnic_id = SC_VN(sc); 9846 sp_sb_data.p_func.vf_id = 0xff; 9847 9848 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9849 9850 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 9851 } 9852 9853 static void 9854 bxe_init_sp_ring(struct bxe_softc *sc) 9855 { 9856 atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING); 9857 sc->spq_prod_idx = 0; 9858 sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS]; 9859 sc->spq_prod_bd = sc->spq; 9860 sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT); 9861 } 9862 9863 static void 9864 bxe_init_eq_ring(struct bxe_softc *sc) 9865 { 9866 union event_ring_elem *elem; 9867 int i; 9868 9869 for (i = 1; i <= NUM_EQ_PAGES; i++) { 9870 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1]; 9871 9872 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr + 9873 BCM_PAGE_SIZE * 9874 (i % NUM_EQ_PAGES))); 9875 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr + 9876 BCM_PAGE_SIZE * 9877 (i % NUM_EQ_PAGES))); 9878 } 9879 9880 sc->eq_cons = 0; 9881 sc->eq_prod = NUM_EQ_DESC; 9882 sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS]; 9883 9884 atomic_store_rel_long(&sc->eq_spq_left, 9885 (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING), 9886 NUM_EQ_DESC) - 1)); 9887 } 9888 9889 static void 9890 bxe_init_internal_common(struct bxe_softc *sc) 9891 { 9892 int i; 9893 9894 /* 9895 * Zero this manually as its initialization is currently missing 9896 * in the initTool. 9897 */ 9898 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) { 9899 REG_WR(sc, 9900 (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)), 9901 0); 9902 } 9903 9904 if (!CHIP_IS_E1x(sc)) { 9905 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET), 9906 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 9907 } 9908 } 9909 9910 static void 9911 bxe_init_internal(struct bxe_softc *sc, 9912 uint32_t load_code) 9913 { 9914 switch (load_code) { 9915 case FW_MSG_CODE_DRV_LOAD_COMMON: 9916 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 9917 bxe_init_internal_common(sc); 9918 /* no break */ 9919 9920 case FW_MSG_CODE_DRV_LOAD_PORT: 9921 /* nothing to do */ 9922 /* no break */ 9923 9924 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 9925 /* internal memory per function is initialized inside bxe_pf_init */ 9926 break; 9927 9928 default: 9929 BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code); 9930 break; 9931 } 9932 } 9933 9934 static void 9935 storm_memset_func_cfg(struct bxe_softc *sc, 9936 struct tstorm_eth_function_common_config *tcfg, 9937 uint16_t abs_fid) 9938 { 9939 uint32_t addr; 9940 size_t size; 9941 9942 addr = (BAR_TSTRORM_INTMEM + 9943 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid)); 9944 size = sizeof(struct tstorm_eth_function_common_config); 9945 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg); 9946 } 9947 9948 static void 9949 bxe_func_init(struct bxe_softc *sc, 9950 struct bxe_func_init_params *p) 9951 { 9952 struct tstorm_eth_function_common_config tcfg = { 0 }; 9953 9954 if (CHIP_IS_E1x(sc)) { 9955 storm_memset_func_cfg(sc, &tcfg, p->func_id); 9956 } 9957 9958 /* Enable the function in the FW */ 9959 storm_memset_vf_to_pf(sc, p->func_id, p->pf_id); 9960 storm_memset_func_en(sc, p->func_id, 1); 9961 9962 /* spq */ 9963 if (p->func_flgs & FUNC_FLG_SPQ) { 9964 storm_memset_spq_addr(sc, p->spq_map, p->func_id); 9965 REG_WR(sc, 9966 (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)), 9967 p->spq_prod); 9968 } 9969 } 9970 9971 /* 9972 * Calculates the sum of vn_min_rates. 9973 * It's needed for further normalizing of the min_rates. 9974 * Returns: 9975 * sum of vn_min_rates. 9976 * or 9977 * 0 - if all the min_rates are 0. 9978 * In the later case fainess algorithm should be deactivated. 9979 * If all min rates are not zero then those that are zeroes will be set to 1. 9980 */ 9981 static void 9982 bxe_calc_vn_min(struct bxe_softc *sc, 9983 struct cmng_init_input *input) 9984 { 9985 uint32_t vn_cfg; 9986 uint32_t vn_min_rate; 9987 int all_zero = 1; 9988 int vn; 9989 9990 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 9991 vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 9992 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 9993 FUNC_MF_CFG_MIN_BW_SHIFT) * 100); 9994 9995 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 9996 /* skip hidden VNs */ 9997 vn_min_rate = 0; 9998 } else if (!vn_min_rate) { 9999 /* If min rate is zero - set it to 100 */ 10000 vn_min_rate = DEF_MIN_RATE; 10001 } else { 10002 all_zero = 0; 10003 } 10004 10005 input->vnic_min_rate[vn] = vn_min_rate; 10006 } 10007 10008 /* if ETS or all min rates are zeros - disable fairness */ 10009 if (BXE_IS_ETS_ENABLED(sc)) { 10010 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10011 BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n"); 10012 } else if (all_zero) { 10013 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10014 BLOGD(sc, DBG_LOAD, 10015 "Fariness disabled (all MIN values are zeroes)\n"); 10016 } else { 10017 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10018 } 10019 } 10020 10021 static inline uint16_t 10022 bxe_extract_max_cfg(struct bxe_softc *sc, 10023 uint32_t mf_cfg) 10024 { 10025 uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >> 10026 FUNC_MF_CFG_MAX_BW_SHIFT); 10027 10028 if (!max_cfg) { 10029 BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n"); 10030 max_cfg = 100; 10031 } 10032 10033 return (max_cfg); 10034 } 10035 10036 static void 10037 bxe_calc_vn_max(struct bxe_softc *sc, 10038 int vn, 10039 struct cmng_init_input *input) 10040 { 10041 uint16_t vn_max_rate; 10042 uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10043 uint32_t max_cfg; 10044 10045 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10046 vn_max_rate = 0; 10047 } else { 10048 max_cfg = bxe_extract_max_cfg(sc, vn_cfg); 10049 10050 if (IS_MF_SI(sc)) { 10051 /* max_cfg in percents of linkspeed */ 10052 vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100); 10053 } else { /* SD modes */ 10054 /* max_cfg is absolute in 100Mb units */ 10055 vn_max_rate = (max_cfg * 100); 10056 } 10057 } 10058 10059 BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 10060 10061 input->vnic_max_rate[vn] = vn_max_rate; 10062 } 10063 10064 static void 10065 bxe_cmng_fns_init(struct bxe_softc *sc, 10066 uint8_t read_cfg, 10067 uint8_t cmng_type) 10068 { 10069 struct cmng_init_input input; 10070 int vn; 10071 10072 memset(&input, 0, sizeof(struct cmng_init_input)); 10073 10074 input.port_rate = sc->link_vars.line_speed; 10075 10076 if (cmng_type == CMNG_FNS_MINMAX) { 10077 /* read mf conf from shmem */ 10078 if (read_cfg) { 10079 bxe_read_mf_cfg(sc); 10080 } 10081 10082 /* get VN min rate and enable fairness if not 0 */ 10083 bxe_calc_vn_min(sc, &input); 10084 10085 /* get VN max rate */ 10086 if (sc->port.pmf) { 10087 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10088 bxe_calc_vn_max(sc, vn, &input); 10089 } 10090 } 10091 10092 /* always enable rate shaping and fairness */ 10093 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 10094 10095 ecore_init_cmng(&input, &sc->cmng); 10096 return; 10097 } 10098 10099 /* rate shaping and fairness are disabled */ 10100 BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n"); 10101 } 10102 10103 static int 10104 bxe_get_cmng_fns_mode(struct bxe_softc *sc) 10105 { 10106 if (CHIP_REV_IS_SLOW(sc)) { 10107 return (CMNG_FNS_NONE); 10108 } 10109 10110 if (IS_MF(sc)) { 10111 return (CMNG_FNS_MINMAX); 10112 } 10113 10114 return (CMNG_FNS_NONE); 10115 } 10116 10117 static void 10118 storm_memset_cmng(struct bxe_softc *sc, 10119 struct cmng_init *cmng, 10120 uint8_t port) 10121 { 10122 int vn; 10123 int func; 10124 uint32_t addr; 10125 size_t size; 10126 10127 addr = (BAR_XSTRORM_INTMEM + 10128 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port)); 10129 size = sizeof(struct cmng_struct_per_port); 10130 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port); 10131 10132 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10133 func = func_by_vn(sc, vn); 10134 10135 addr = (BAR_XSTRORM_INTMEM + 10136 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func)); 10137 size = sizeof(struct rate_shaping_vars_per_vn); 10138 ecore_storm_memset_struct(sc, addr, size, 10139 (uint32_t *)&cmng->vnic.vnic_max_rate[vn]); 10140 10141 addr = (BAR_XSTRORM_INTMEM + 10142 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func)); 10143 size = sizeof(struct fairness_vars_per_vn); 10144 ecore_storm_memset_struct(sc, addr, size, 10145 (uint32_t *)&cmng->vnic.vnic_min_rate[vn]); 10146 } 10147 } 10148 10149 static void 10150 bxe_pf_init(struct bxe_softc *sc) 10151 { 10152 struct bxe_func_init_params func_init = { 0 }; 10153 struct event_ring_data eq_data = { { 0 } }; 10154 uint16_t flags; 10155 10156 if (!CHIP_IS_E1x(sc)) { 10157 /* reset IGU PF statistics: MSIX + ATTN */ 10158 /* PF */ 10159 REG_WR(sc, 10160 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10161 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10162 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10163 0); 10164 /* ATTN */ 10165 REG_WR(sc, 10166 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10167 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10168 (BXE_IGU_STAS_MSG_PF_CNT * 4) + 10169 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10170 0); 10171 } 10172 10173 /* function setup flags */ 10174 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); 10175 10176 /* 10177 * This flag is relevant for E1x only. 10178 * E2 doesn't have a TPA configuration in a function level. 10179 */ 10180 flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0; 10181 10182 func_init.func_flgs = flags; 10183 func_init.pf_id = SC_FUNC(sc); 10184 func_init.func_id = SC_FUNC(sc); 10185 func_init.spq_map = sc->spq_dma.paddr; 10186 func_init.spq_prod = sc->spq_prod_idx; 10187 10188 bxe_func_init(sc, &func_init); 10189 10190 memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port)); 10191 10192 /* 10193 * Congestion management values depend on the link rate. 10194 * There is no active link so initial link rate is set to 10Gbps. 10195 * When the link comes up the congestion management values are 10196 * re-calculated according to the actual link rate. 10197 */ 10198 sc->link_vars.line_speed = SPEED_10000; 10199 bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc)); 10200 10201 /* Only the PMF sets the HW */ 10202 if (sc->port.pmf) { 10203 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 10204 } 10205 10206 /* init Event Queue - PCI bus guarantees correct endainity */ 10207 eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr); 10208 eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr); 10209 eq_data.producer = sc->eq_prod; 10210 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 10211 eq_data.sb_id = DEF_SB_ID; 10212 storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc)); 10213 } 10214 10215 static void 10216 bxe_hc_int_enable(struct bxe_softc *sc) 10217 { 10218 int port = SC_PORT(sc); 10219 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10220 uint32_t val = REG_RD(sc, addr); 10221 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10222 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10223 (sc->intr_count == 1)) ? TRUE : FALSE; 10224 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10225 10226 if (msix) { 10227 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10228 HC_CONFIG_0_REG_INT_LINE_EN_0); 10229 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10230 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10231 if (single_msix) { 10232 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 10233 } 10234 } else if (msi) { 10235 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 10236 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10237 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10238 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10239 } else { 10240 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10241 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10242 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10243 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10244 10245 if (!CHIP_IS_E1(sc)) { 10246 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", 10247 val, port, addr); 10248 10249 REG_WR(sc, addr, val); 10250 10251 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 10252 } 10253 } 10254 10255 if (CHIP_IS_E1(sc)) { 10256 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF); 10257 } 10258 10259 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n", 10260 val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10261 10262 REG_WR(sc, addr, val); 10263 10264 /* ensure that HC_CONFIG is written before leading/trailing edge config */ 10265 mb(); 10266 10267 if (!CHIP_IS_E1(sc)) { 10268 /* init leading/trailing edge */ 10269 if (IS_MF(sc)) { 10270 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10271 if (sc->port.pmf) { 10272 /* enable nig and gpio3 attention */ 10273 val |= 0x1100; 10274 } 10275 } else { 10276 val = 0xffff; 10277 } 10278 10279 REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val); 10280 REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val); 10281 } 10282 10283 /* make sure that interrupts are indeed enabled from here on */ 10284 mb(); 10285 } 10286 10287 static void 10288 bxe_igu_int_enable(struct bxe_softc *sc) 10289 { 10290 uint32_t val; 10291 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10292 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10293 (sc->intr_count == 1)) ? TRUE : FALSE; 10294 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10295 10296 val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10297 10298 if (msix) { 10299 val &= ~(IGU_PF_CONF_INT_LINE_EN | 10300 IGU_PF_CONF_SINGLE_ISR_EN); 10301 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10302 IGU_PF_CONF_ATTN_BIT_EN); 10303 if (single_msix) { 10304 val |= IGU_PF_CONF_SINGLE_ISR_EN; 10305 } 10306 } else if (msi) { 10307 val &= ~IGU_PF_CONF_INT_LINE_EN; 10308 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10309 IGU_PF_CONF_ATTN_BIT_EN | 10310 IGU_PF_CONF_SINGLE_ISR_EN); 10311 } else { 10312 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 10313 val |= (IGU_PF_CONF_INT_LINE_EN | 10314 IGU_PF_CONF_ATTN_BIT_EN | 10315 IGU_PF_CONF_SINGLE_ISR_EN); 10316 } 10317 10318 /* clean previous status - need to configure igu prior to ack*/ 10319 if ((!msix) || single_msix) { 10320 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10321 bxe_ack_int(sc); 10322 } 10323 10324 val |= IGU_PF_CONF_FUNC_EN; 10325 10326 BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n", 10327 val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10328 10329 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10330 10331 mb(); 10332 10333 /* init leading/trailing edge */ 10334 if (IS_MF(sc)) { 10335 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10336 if (sc->port.pmf) { 10337 /* enable nig and gpio3 attention */ 10338 val |= 0x1100; 10339 } 10340 } else { 10341 val = 0xffff; 10342 } 10343 10344 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 10345 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 10346 10347 /* make sure that interrupts are indeed enabled from here on */ 10348 mb(); 10349 } 10350 10351 static void 10352 bxe_int_enable(struct bxe_softc *sc) 10353 { 10354 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10355 bxe_hc_int_enable(sc); 10356 } else { 10357 bxe_igu_int_enable(sc); 10358 } 10359 } 10360 10361 static void 10362 bxe_hc_int_disable(struct bxe_softc *sc) 10363 { 10364 int port = SC_PORT(sc); 10365 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10366 uint32_t val = REG_RD(sc, addr); 10367 10368 /* 10369 * In E1 we must use only PCI configuration space to disable MSI/MSIX 10370 * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC 10371 * block 10372 */ 10373 if (CHIP_IS_E1(sc)) { 10374 /* 10375 * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register 10376 * to prevent from HC sending interrupts after we exit the function 10377 */ 10378 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0); 10379 10380 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10381 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10382 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10383 } else { 10384 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10385 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10386 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10387 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10388 } 10389 10390 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr); 10391 10392 /* flush all outstanding writes */ 10393 mb(); 10394 10395 REG_WR(sc, addr, val); 10396 if (REG_RD(sc, addr) != val) { 10397 BLOGE(sc, "proper val not read from HC IGU!\n"); 10398 } 10399 } 10400 10401 static void 10402 bxe_igu_int_disable(struct bxe_softc *sc) 10403 { 10404 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10405 10406 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 10407 IGU_PF_CONF_INT_LINE_EN | 10408 IGU_PF_CONF_ATTN_BIT_EN); 10409 10410 BLOGD(sc, DBG_INTR, "write %x to IGU\n", val); 10411 10412 /* flush all outstanding writes */ 10413 mb(); 10414 10415 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10416 if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) { 10417 BLOGE(sc, "proper val not read from IGU!\n"); 10418 } 10419 } 10420 10421 static void 10422 bxe_int_disable(struct bxe_softc *sc) 10423 { 10424 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10425 bxe_hc_int_disable(sc); 10426 } else { 10427 bxe_igu_int_disable(sc); 10428 } 10429 } 10430 10431 static void 10432 bxe_nic_init(struct bxe_softc *sc, 10433 int load_code) 10434 { 10435 int i; 10436 10437 for (i = 0; i < sc->num_queues; i++) { 10438 bxe_init_eth_fp(sc, i); 10439 } 10440 10441 rmb(); /* ensure status block indices were read */ 10442 10443 bxe_init_rx_rings(sc); 10444 bxe_init_tx_rings(sc); 10445 10446 if (IS_VF(sc)) { 10447 return; 10448 } 10449 10450 /* initialize MOD_ABS interrupts */ 10451 elink_init_mod_abs_int(sc, &sc->link_vars, 10452 sc->devinfo.chip_id, 10453 sc->devinfo.shmem_base, 10454 sc->devinfo.shmem2_base, 10455 SC_PORT(sc)); 10456 10457 bxe_init_def_sb(sc); 10458 bxe_update_dsb_idx(sc); 10459 bxe_init_sp_ring(sc); 10460 bxe_init_eq_ring(sc); 10461 bxe_init_internal(sc, load_code); 10462 bxe_pf_init(sc); 10463 bxe_stats_init(sc); 10464 10465 /* flush all before enabling interrupts */ 10466 mb(); 10467 10468 bxe_int_enable(sc); 10469 10470 /* check for SPIO5 */ 10471 bxe_attn_int_deasserted0(sc, 10472 REG_RD(sc, 10473 (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 10474 SC_PORT(sc)*4)) & 10475 AEU_INPUTS_ATTN_BITS_SPIO5); 10476 } 10477 10478 static inline void 10479 bxe_init_objs(struct bxe_softc *sc) 10480 { 10481 /* mcast rules must be added to tx if tx switching is enabled */ 10482 ecore_obj_type o_type = 10483 (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX : 10484 ECORE_OBJ_TYPE_RX; 10485 10486 /* RX_MODE controlling object */ 10487 ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj); 10488 10489 /* multicast configuration controlling object */ 10490 ecore_init_mcast_obj(sc, 10491 &sc->mcast_obj, 10492 sc->fp[0].cl_id, 10493 sc->fp[0].index, 10494 SC_FUNC(sc), 10495 SC_FUNC(sc), 10496 BXE_SP(sc, mcast_rdata), 10497 BXE_SP_MAPPING(sc, mcast_rdata), 10498 ECORE_FILTER_MCAST_PENDING, 10499 &sc->sp_state, 10500 o_type); 10501 10502 /* Setup CAM credit pools */ 10503 ecore_init_mac_credit_pool(sc, 10504 &sc->macs_pool, 10505 SC_FUNC(sc), 10506 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10507 VNICS_PER_PATH(sc)); 10508 10509 ecore_init_vlan_credit_pool(sc, 10510 &sc->vlans_pool, 10511 SC_ABS_FUNC(sc) >> 1, 10512 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10513 VNICS_PER_PATH(sc)); 10514 10515 /* RSS configuration object */ 10516 ecore_init_rss_config_obj(sc, 10517 &sc->rss_conf_obj, 10518 sc->fp[0].cl_id, 10519 sc->fp[0].index, 10520 SC_FUNC(sc), 10521 SC_FUNC(sc), 10522 BXE_SP(sc, rss_rdata), 10523 BXE_SP_MAPPING(sc, rss_rdata), 10524 ECORE_FILTER_RSS_CONF_PENDING, 10525 &sc->sp_state, ECORE_OBJ_TYPE_RX); 10526 } 10527 10528 /* 10529 * Initialize the function. This must be called before sending CLIENT_SETUP 10530 * for the first client. 10531 */ 10532 static inline int 10533 bxe_func_start(struct bxe_softc *sc) 10534 { 10535 struct ecore_func_state_params func_params = { NULL }; 10536 struct ecore_func_start_params *start_params = &func_params.params.start; 10537 10538 /* Prepare parameters for function state transitions */ 10539 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 10540 10541 func_params.f_obj = &sc->func_obj; 10542 func_params.cmd = ECORE_F_CMD_START; 10543 10544 /* Function parameters */ 10545 start_params->mf_mode = sc->devinfo.mf_info.mf_mode; 10546 start_params->sd_vlan_tag = OVLAN(sc); 10547 10548 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 10549 start_params->network_cos_mode = STATIC_COS; 10550 } else { /* CHIP_IS_E1X */ 10551 start_params->network_cos_mode = FW_WRR; 10552 } 10553 10554 //start_params->gre_tunnel_mode = 0; 10555 //start_params->gre_tunnel_rss = 0; 10556 10557 return (ecore_func_state_change(sc, &func_params)); 10558 } 10559 10560 static int 10561 bxe_set_power_state(struct bxe_softc *sc, 10562 uint8_t state) 10563 { 10564 uint16_t pmcsr; 10565 10566 /* If there is no power capability, silently succeed */ 10567 if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) { 10568 BLOGW(sc, "No power capability\n"); 10569 return (0); 10570 } 10571 10572 pmcsr = pci_read_config(sc->dev, 10573 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10574 2); 10575 10576 switch (state) { 10577 case PCI_PM_D0: 10578 pci_write_config(sc->dev, 10579 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10580 ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2); 10581 10582 if (pmcsr & PCIM_PSTAT_DMASK) { 10583 /* delay required during transition out of D3hot */ 10584 DELAY(20000); 10585 } 10586 10587 break; 10588 10589 case PCI_PM_D3hot: 10590 /* XXX if there are other clients above don't shut down the power */ 10591 10592 /* don't shut down the power for emulation and FPGA */ 10593 if (CHIP_REV_IS_SLOW(sc)) { 10594 return (0); 10595 } 10596 10597 pmcsr &= ~PCIM_PSTAT_DMASK; 10598 pmcsr |= PCIM_PSTAT_D3; 10599 10600 if (sc->wol) { 10601 pmcsr |= PCIM_PSTAT_PMEENABLE; 10602 } 10603 10604 pci_write_config(sc->dev, 10605 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10606 pmcsr, 4); 10607 10608 /* 10609 * No more memory access after this point until device is brought back 10610 * to D0 state. 10611 */ 10612 break; 10613 10614 default: 10615 BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n", 10616 state, pmcsr); 10617 return (-1); 10618 } 10619 10620 return (0); 10621 } 10622 10623 10624 /* return true if succeeded to acquire the lock */ 10625 static uint8_t 10626 bxe_trylock_hw_lock(struct bxe_softc *sc, 10627 uint32_t resource) 10628 { 10629 uint32_t lock_status; 10630 uint32_t resource_bit = (1 << resource); 10631 int func = SC_FUNC(sc); 10632 uint32_t hw_lock_control_reg; 10633 10634 BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource); 10635 10636 /* Validating that the resource is within range */ 10637 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 10638 BLOGD(sc, DBG_LOAD, 10639 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 10640 resource, HW_LOCK_MAX_RESOURCE_VALUE); 10641 return (FALSE); 10642 } 10643 10644 if (func <= 5) { 10645 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 10646 } else { 10647 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 10648 } 10649 10650 /* try to acquire the lock */ 10651 REG_WR(sc, hw_lock_control_reg + 4, resource_bit); 10652 lock_status = REG_RD(sc, hw_lock_control_reg); 10653 if (lock_status & resource_bit) { 10654 return (TRUE); 10655 } 10656 10657 BLOGE(sc, "Failed to get a resource lock 0x%x func %d " 10658 "lock_status 0x%x resource_bit 0x%x\n", resource, func, 10659 lock_status, resource_bit); 10660 10661 return (FALSE); 10662 } 10663 10664 /* 10665 * Get the recovery leader resource id according to the engine this function 10666 * belongs to. Currently only only 2 engines is supported. 10667 */ 10668 static int 10669 bxe_get_leader_lock_resource(struct bxe_softc *sc) 10670 { 10671 if (SC_PATH(sc)) { 10672 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1); 10673 } else { 10674 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0); 10675 } 10676 } 10677 10678 /* try to acquire a leader lock for current engine */ 10679 static uint8_t 10680 bxe_trylock_leader_lock(struct bxe_softc *sc) 10681 { 10682 return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 10683 } 10684 10685 static int 10686 bxe_release_leader_lock(struct bxe_softc *sc) 10687 { 10688 return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 10689 } 10690 10691 /* close gates #2, #3 and #4 */ 10692 static void 10693 bxe_set_234_gates(struct bxe_softc *sc, 10694 uint8_t close) 10695 { 10696 uint32_t val; 10697 10698 /* gates #2 and #4a are closed/opened for "not E1" only */ 10699 if (!CHIP_IS_E1(sc)) { 10700 /* #4 */ 10701 REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 10702 /* #2 */ 10703 REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 10704 } 10705 10706 /* #3 */ 10707 if (CHIP_IS_E1x(sc)) { 10708 /* prevent interrupts from HC on both ports */ 10709 val = REG_RD(sc, HC_REG_CONFIG_1); 10710 REG_WR(sc, HC_REG_CONFIG_1, 10711 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 10712 (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 10713 10714 val = REG_RD(sc, HC_REG_CONFIG_0); 10715 REG_WR(sc, HC_REG_CONFIG_0, 10716 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 10717 (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 10718 } else { 10719 /* Prevent incoming interrupts in IGU */ 10720 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 10721 10722 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, 10723 (!close) ? 10724 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 10725 (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 10726 } 10727 10728 BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n", 10729 close ? "closing" : "opening"); 10730 10731 wmb(); 10732 } 10733 10734 /* poll for pending writes bit, it should get cleared in no more than 1s */ 10735 static int 10736 bxe_er_poll_igu_vq(struct bxe_softc *sc) 10737 { 10738 uint32_t cnt = 1000; 10739 uint32_t pend_bits = 0; 10740 10741 do { 10742 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS); 10743 10744 if (pend_bits == 0) { 10745 break; 10746 } 10747 10748 DELAY(1000); 10749 } while (--cnt > 0); 10750 10751 if (cnt == 0) { 10752 BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits); 10753 return (-1); 10754 } 10755 10756 return (0); 10757 } 10758 10759 #define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */ 10760 10761 static void 10762 bxe_clp_reset_prep(struct bxe_softc *sc, 10763 uint32_t *magic_val) 10764 { 10765 /* Do some magic... */ 10766 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 10767 *magic_val = val & SHARED_MF_CLP_MAGIC; 10768 MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 10769 } 10770 10771 /* restore the value of the 'magic' bit */ 10772 static void 10773 bxe_clp_reset_done(struct bxe_softc *sc, 10774 uint32_t magic_val) 10775 { 10776 /* Restore the 'magic' bit value... */ 10777 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 10778 MFCFG_WR(sc, shared_mf_config.clp_mb, 10779 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 10780 } 10781 10782 /* prepare for MCP reset, takes care of CLP configurations */ 10783 static void 10784 bxe_reset_mcp_prep(struct bxe_softc *sc, 10785 uint32_t *magic_val) 10786 { 10787 uint32_t shmem; 10788 uint32_t validity_offset; 10789 10790 /* set `magic' bit in order to save MF config */ 10791 if (!CHIP_IS_E1(sc)) { 10792 bxe_clp_reset_prep(sc, magic_val); 10793 } 10794 10795 /* get shmem offset */ 10796 shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 10797 validity_offset = 10798 offsetof(struct shmem_region, validity_map[SC_PORT(sc)]); 10799 10800 /* Clear validity map flags */ 10801 if (shmem > 0) { 10802 REG_WR(sc, shmem + validity_offset, 0); 10803 } 10804 } 10805 10806 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 10807 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 10808 10809 static void 10810 bxe_mcp_wait_one(struct bxe_softc *sc) 10811 { 10812 /* special handling for emulation and FPGA (10 times longer) */ 10813 if (CHIP_REV_IS_SLOW(sc)) { 10814 DELAY((MCP_ONE_TIMEOUT*10) * 1000); 10815 } else { 10816 DELAY((MCP_ONE_TIMEOUT) * 1000); 10817 } 10818 } 10819 10820 /* initialize shmem_base and waits for validity signature to appear */ 10821 static int 10822 bxe_init_shmem(struct bxe_softc *sc) 10823 { 10824 int cnt = 0; 10825 uint32_t val = 0; 10826 10827 do { 10828 sc->devinfo.shmem_base = 10829 sc->link_params.shmem_base = 10830 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 10831 10832 if (sc->devinfo.shmem_base) { 10833 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 10834 if (val & SHR_MEM_VALIDITY_MB) 10835 return (0); 10836 } 10837 10838 bxe_mcp_wait_one(sc); 10839 10840 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 10841 10842 BLOGE(sc, "BAD MCP validity signature\n"); 10843 10844 return (-1); 10845 } 10846 10847 static int 10848 bxe_reset_mcp_comp(struct bxe_softc *sc, 10849 uint32_t magic_val) 10850 { 10851 int rc = bxe_init_shmem(sc); 10852 10853 /* Restore the `magic' bit value */ 10854 if (!CHIP_IS_E1(sc)) { 10855 bxe_clp_reset_done(sc, magic_val); 10856 } 10857 10858 return (rc); 10859 } 10860 10861 static void 10862 bxe_pxp_prep(struct bxe_softc *sc) 10863 { 10864 if (!CHIP_IS_E1(sc)) { 10865 REG_WR(sc, PXP2_REG_RD_START_INIT, 0); 10866 REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0); 10867 wmb(); 10868 } 10869 } 10870 10871 /* 10872 * Reset the whole chip except for: 10873 * - PCIE core 10874 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit) 10875 * - IGU 10876 * - MISC (including AEU) 10877 * - GRC 10878 * - RBCN, RBCP 10879 */ 10880 static void 10881 bxe_process_kill_chip_reset(struct bxe_softc *sc, 10882 uint8_t global) 10883 { 10884 uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 10885 uint32_t global_bits2, stay_reset2; 10886 10887 /* 10888 * Bits that have to be set in reset_mask2 if we want to reset 'global' 10889 * (per chip) blocks. 10890 */ 10891 global_bits2 = 10892 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 10893 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 10894 10895 /* 10896 * Don't reset the following blocks. 10897 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 10898 * reset, as in 4 port device they might still be owned 10899 * by the MCP (there is only one leader per path). 10900 */ 10901 not_reset_mask1 = 10902 MISC_REGISTERS_RESET_REG_1_RST_HC | 10903 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 10904 MISC_REGISTERS_RESET_REG_1_RST_PXP; 10905 10906 not_reset_mask2 = 10907 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 10908 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 10909 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 10910 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 10911 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 10912 MISC_REGISTERS_RESET_REG_2_RST_GRC | 10913 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 10914 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 10915 MISC_REGISTERS_RESET_REG_2_RST_ATC | 10916 MISC_REGISTERS_RESET_REG_2_PGLC | 10917 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 10918 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 10919 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 10920 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 10921 MISC_REGISTERS_RESET_REG_2_UMAC0 | 10922 MISC_REGISTERS_RESET_REG_2_UMAC1; 10923 10924 /* 10925 * Keep the following blocks in reset: 10926 * - all xxMACs are handled by the elink code. 10927 */ 10928 stay_reset2 = 10929 MISC_REGISTERS_RESET_REG_2_XMAC | 10930 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 10931 10932 /* Full reset masks according to the chip */ 10933 reset_mask1 = 0xffffffff; 10934 10935 if (CHIP_IS_E1(sc)) 10936 reset_mask2 = 0xffff; 10937 else if (CHIP_IS_E1H(sc)) 10938 reset_mask2 = 0x1ffff; 10939 else if (CHIP_IS_E2(sc)) 10940 reset_mask2 = 0xfffff; 10941 else /* CHIP_IS_E3 */ 10942 reset_mask2 = 0x3ffffff; 10943 10944 /* Don't reset global blocks unless we need to */ 10945 if (!global) 10946 reset_mask2 &= ~global_bits2; 10947 10948 /* 10949 * In case of attention in the QM, we need to reset PXP 10950 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 10951 * because otherwise QM reset would release 'close the gates' shortly 10952 * before resetting the PXP, then the PSWRQ would send a write 10953 * request to PGLUE. Then when PXP is reset, PGLUE would try to 10954 * read the payload data from PSWWR, but PSWWR would not 10955 * respond. The write queue in PGLUE would stuck, dmae commands 10956 * would not return. Therefore it's important to reset the second 10957 * reset register (containing the 10958 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 10959 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 10960 * bit). 10961 */ 10962 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 10963 reset_mask2 & (~not_reset_mask2)); 10964 10965 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 10966 reset_mask1 & (~not_reset_mask1)); 10967 10968 mb(); 10969 wmb(); 10970 10971 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 10972 reset_mask2 & (~stay_reset2)); 10973 10974 mb(); 10975 wmb(); 10976 10977 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 10978 wmb(); 10979 } 10980 10981 static int 10982 bxe_process_kill(struct bxe_softc *sc, 10983 uint8_t global) 10984 { 10985 int cnt = 1000; 10986 uint32_t val = 0; 10987 uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 10988 uint32_t tags_63_32 = 0; 10989 10990 /* Empty the Tetris buffer, wait for 1s */ 10991 do { 10992 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT); 10993 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT); 10994 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0); 10995 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1); 10996 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2); 10997 if (CHIP_IS_E3(sc)) { 10998 tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32); 10999 } 11000 11001 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 11002 ((port_is_idle_0 & 0x1) == 0x1) && 11003 ((port_is_idle_1 & 0x1) == 0x1) && 11004 (pgl_exp_rom2 == 0xffffffff) && 11005 (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff))) 11006 break; 11007 DELAY(1000); 11008 } while (cnt-- > 0); 11009 11010 if (cnt <= 0) { 11011 BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there " 11012 "are still outstanding read requests after 1s! " 11013 "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, " 11014 "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 11015 sr_cnt, blk_cnt, port_is_idle_0, 11016 port_is_idle_1, pgl_exp_rom2); 11017 return (-1); 11018 } 11019 11020 mb(); 11021 11022 /* Close gates #2, #3 and #4 */ 11023 bxe_set_234_gates(sc, TRUE); 11024 11025 /* Poll for IGU VQs for 57712 and newer chips */ 11026 if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) { 11027 return (-1); 11028 } 11029 11030 /* XXX indicate that "process kill" is in progress to MCP */ 11031 11032 /* clear "unprepared" bit */ 11033 REG_WR(sc, MISC_REG_UNPREPARED, 0); 11034 mb(); 11035 11036 /* Make sure all is written to the chip before the reset */ 11037 wmb(); 11038 11039 /* 11040 * Wait for 1ms to empty GLUE and PCI-E core queues, 11041 * PSWHST, GRC and PSWRD Tetris buffer. 11042 */ 11043 DELAY(1000); 11044 11045 /* Prepare to chip reset: */ 11046 /* MCP */ 11047 if (global) { 11048 bxe_reset_mcp_prep(sc, &val); 11049 } 11050 11051 /* PXP */ 11052 bxe_pxp_prep(sc); 11053 mb(); 11054 11055 /* reset the chip */ 11056 bxe_process_kill_chip_reset(sc, global); 11057 mb(); 11058 11059 /* clear errors in PGB */ 11060 if (!CHIP_IS_E1(sc)) 11061 REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f); 11062 11063 /* Recover after reset: */ 11064 /* MCP */ 11065 if (global && bxe_reset_mcp_comp(sc, val)) { 11066 return (-1); 11067 } 11068 11069 /* XXX add resetting the NO_MCP mode DB here */ 11070 11071 /* Open the gates #2, #3 and #4 */ 11072 bxe_set_234_gates(sc, FALSE); 11073 11074 /* XXX 11075 * IGU/AEU preparation bring back the AEU/IGU to a reset state 11076 * re-enable attentions 11077 */ 11078 11079 return (0); 11080 } 11081 11082 static int 11083 bxe_leader_reset(struct bxe_softc *sc) 11084 { 11085 int rc = 0; 11086 uint8_t global = bxe_reset_is_global(sc); 11087 uint32_t load_code; 11088 11089 /* 11090 * If not going to reset MCP, load "fake" driver to reset HW while 11091 * driver is owner of the HW. 11092 */ 11093 if (!global && !BXE_NOMCP(sc)) { 11094 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 11095 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 11096 if (!load_code) { 11097 BLOGE(sc, "MCP response failure, aborting\n"); 11098 rc = -1; 11099 goto exit_leader_reset; 11100 } 11101 11102 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 11103 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 11104 BLOGE(sc, "MCP unexpected response, aborting\n"); 11105 rc = -1; 11106 goto exit_leader_reset2; 11107 } 11108 11109 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 11110 if (!load_code) { 11111 BLOGE(sc, "MCP response failure, aborting\n"); 11112 rc = -1; 11113 goto exit_leader_reset2; 11114 } 11115 } 11116 11117 /* try to recover after the failure */ 11118 if (bxe_process_kill(sc, global)) { 11119 BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc)); 11120 rc = -1; 11121 goto exit_leader_reset2; 11122 } 11123 11124 /* 11125 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver 11126 * state. 11127 */ 11128 bxe_set_reset_done(sc); 11129 if (global) { 11130 bxe_clear_reset_global(sc); 11131 } 11132 11133 exit_leader_reset2: 11134 11135 /* unload "fake driver" if it was loaded */ 11136 if (!global && !BXE_NOMCP(sc)) { 11137 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 11138 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 11139 } 11140 11141 exit_leader_reset: 11142 11143 sc->is_leader = 0; 11144 bxe_release_leader_lock(sc); 11145 11146 mb(); 11147 return (rc); 11148 } 11149 11150 /* 11151 * prepare INIT transition, parameters configured: 11152 * - HC configuration 11153 * - Queue's CDU context 11154 */ 11155 static void 11156 bxe_pf_q_prep_init(struct bxe_softc *sc, 11157 struct bxe_fastpath *fp, 11158 struct ecore_queue_init_params *init_params) 11159 { 11160 uint8_t cos; 11161 int cxt_index, cxt_offset; 11162 11163 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags); 11164 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags); 11165 11166 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags); 11167 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags); 11168 11169 /* HC rate */ 11170 init_params->rx.hc_rate = 11171 sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0; 11172 init_params->tx.hc_rate = 11173 sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0; 11174 11175 /* FW SB ID */ 11176 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id; 11177 11178 /* CQ index among the SB indices */ 11179 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11180 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 11181 11182 /* set maximum number of COSs supported by this queue */ 11183 init_params->max_cos = sc->max_cos; 11184 11185 BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n", 11186 fp->index, init_params->max_cos); 11187 11188 /* set the context pointers queue object */ 11189 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 11190 /* XXX change index/cid here if ever support multiple tx CoS */ 11191 /* fp->txdata[cos]->cid */ 11192 cxt_index = fp->index / ILT_PAGE_CIDS; 11193 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS); 11194 init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth; 11195 } 11196 } 11197 11198 /* set flags that are common for the Tx-only and not normal connections */ 11199 static unsigned long 11200 bxe_get_common_flags(struct bxe_softc *sc, 11201 struct bxe_fastpath *fp, 11202 uint8_t zero_stats) 11203 { 11204 unsigned long flags = 0; 11205 11206 /* PF driver will always initialize the Queue to an ACTIVE state */ 11207 bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags); 11208 11209 /* 11210 * tx only connections collect statistics (on the same index as the 11211 * parent connection). The statistics are zeroed when the parent 11212 * connection is initialized. 11213 */ 11214 11215 bxe_set_bit(ECORE_Q_FLG_STATS, &flags); 11216 if (zero_stats) { 11217 bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags); 11218 } 11219 11220 /* 11221 * tx only connections can support tx-switching, though their 11222 * CoS-ness doesn't survive the loopback 11223 */ 11224 if (sc->flags & BXE_TX_SWITCHING) { 11225 bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags); 11226 } 11227 11228 bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags); 11229 11230 return (flags); 11231 } 11232 11233 static unsigned long 11234 bxe_get_q_flags(struct bxe_softc *sc, 11235 struct bxe_fastpath *fp, 11236 uint8_t leading) 11237 { 11238 unsigned long flags = 0; 11239 11240 if (IS_MF_SD(sc)) { 11241 bxe_set_bit(ECORE_Q_FLG_OV, &flags); 11242 } 11243 11244 if (if_getcapenable(sc->ifp) & IFCAP_LRO) { 11245 bxe_set_bit(ECORE_Q_FLG_TPA, &flags); 11246 #if __FreeBSD_version >= 800000 11247 bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags); 11248 #endif 11249 } 11250 11251 if (leading) { 11252 bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags); 11253 bxe_set_bit(ECORE_Q_FLG_MCAST, &flags); 11254 } 11255 11256 bxe_set_bit(ECORE_Q_FLG_VLAN, &flags); 11257 11258 /* merge with common flags */ 11259 return (flags | bxe_get_common_flags(sc, fp, TRUE)); 11260 } 11261 11262 static void 11263 bxe_pf_q_prep_general(struct bxe_softc *sc, 11264 struct bxe_fastpath *fp, 11265 struct ecore_general_setup_params *gen_init, 11266 uint8_t cos) 11267 { 11268 gen_init->stat_id = bxe_stats_id(fp); 11269 gen_init->spcl_id = fp->cl_id; 11270 gen_init->mtu = sc->mtu; 11271 gen_init->cos = cos; 11272 } 11273 11274 static void 11275 bxe_pf_rx_q_prep(struct bxe_softc *sc, 11276 struct bxe_fastpath *fp, 11277 struct rxq_pause_params *pause, 11278 struct ecore_rxq_setup_params *rxq_init) 11279 { 11280 uint8_t max_sge = 0; 11281 uint16_t sge_sz = 0; 11282 uint16_t tpa_agg_size = 0; 11283 11284 pause->sge_th_lo = SGE_TH_LO(sc); 11285 pause->sge_th_hi = SGE_TH_HI(sc); 11286 11287 /* validate SGE ring has enough to cross high threshold */ 11288 if (sc->dropless_fc && 11289 (pause->sge_th_hi + FW_PREFETCH_CNT) > 11290 (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) { 11291 BLOGW(sc, "sge ring threshold limit\n"); 11292 } 11293 11294 /* minimum max_aggregation_size is 2*MTU (two full buffers) */ 11295 tpa_agg_size = (2 * sc->mtu); 11296 if (tpa_agg_size < sc->max_aggregation_size) { 11297 tpa_agg_size = sc->max_aggregation_size; 11298 } 11299 11300 max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT; 11301 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 11302 (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT; 11303 sge_sz = (uint16_t)min(SGE_PAGES, 0xffff); 11304 11305 /* pause - not for e1 */ 11306 if (!CHIP_IS_E1(sc)) { 11307 pause->bd_th_lo = BD_TH_LO(sc); 11308 pause->bd_th_hi = BD_TH_HI(sc); 11309 11310 pause->rcq_th_lo = RCQ_TH_LO(sc); 11311 pause->rcq_th_hi = RCQ_TH_HI(sc); 11312 11313 /* validate rings have enough entries to cross high thresholds */ 11314 if (sc->dropless_fc && 11315 pause->bd_th_hi + FW_PREFETCH_CNT > 11316 sc->rx_ring_size) { 11317 BLOGW(sc, "rx bd ring threshold limit\n"); 11318 } 11319 11320 if (sc->dropless_fc && 11321 pause->rcq_th_hi + FW_PREFETCH_CNT > 11322 RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) { 11323 BLOGW(sc, "rcq ring threshold limit\n"); 11324 } 11325 11326 pause->pri_map = 1; 11327 } 11328 11329 /* rxq setup */ 11330 rxq_init->dscr_map = fp->rx_dma.paddr; 11331 rxq_init->sge_map = fp->rx_sge_dma.paddr; 11332 rxq_init->rcq_map = fp->rcq_dma.paddr; 11333 rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE); 11334 11335 /* 11336 * This should be a maximum number of data bytes that may be 11337 * placed on the BD (not including paddings). 11338 */ 11339 rxq_init->buf_sz = (fp->rx_buf_size - 11340 IP_HEADER_ALIGNMENT_PADDING); 11341 11342 rxq_init->cl_qzone_id = fp->cl_qzone_id; 11343 rxq_init->tpa_agg_sz = tpa_agg_size; 11344 rxq_init->sge_buf_sz = sge_sz; 11345 rxq_init->max_sges_pkt = max_sge; 11346 rxq_init->rss_engine_id = SC_FUNC(sc); 11347 rxq_init->mcast_engine_id = SC_FUNC(sc); 11348 11349 /* 11350 * Maximum number or simultaneous TPA aggregation for this Queue. 11351 * For PF Clients it should be the maximum available number. 11352 * VF driver(s) may want to define it to a smaller value. 11353 */ 11354 rxq_init->max_tpa_queues = MAX_AGG_QS(sc); 11355 11356 rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT; 11357 rxq_init->fw_sb_id = fp->fw_sb_id; 11358 11359 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11360 11361 /* 11362 * configure silent vlan removal 11363 * if multi function mode is afex, then mask default vlan 11364 */ 11365 if (IS_MF_AFEX(sc)) { 11366 rxq_init->silent_removal_value = 11367 sc->devinfo.mf_info.afex_def_vlan_tag; 11368 rxq_init->silent_removal_mask = EVL_VLID_MASK; 11369 } 11370 } 11371 11372 static void 11373 bxe_pf_tx_q_prep(struct bxe_softc *sc, 11374 struct bxe_fastpath *fp, 11375 struct ecore_txq_setup_params *txq_init, 11376 uint8_t cos) 11377 { 11378 /* 11379 * XXX If multiple CoS is ever supported then each fastpath structure 11380 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 11381 * fp->txdata[cos]->tx_dma.paddr; 11382 */ 11383 txq_init->dscr_map = fp->tx_dma.paddr; 11384 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 11385 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 11386 txq_init->fw_sb_id = fp->fw_sb_id; 11387 11388 /* 11389 * set the TSS leading client id for TX classfication to the 11390 * leading RSS client id 11391 */ 11392 txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id); 11393 } 11394 11395 /* 11396 * This function performs 2 steps in a queue state machine: 11397 * 1) RESET->INIT 11398 * 2) INIT->SETUP 11399 */ 11400 static int 11401 bxe_setup_queue(struct bxe_softc *sc, 11402 struct bxe_fastpath *fp, 11403 uint8_t leading) 11404 { 11405 struct ecore_queue_state_params q_params = { NULL }; 11406 struct ecore_queue_setup_params *setup_params = 11407 &q_params.params.setup; 11408 int rc; 11409 11410 BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index); 11411 11412 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 11413 11414 q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 11415 11416 /* we want to wait for completion in this context */ 11417 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 11418 11419 /* prepare the INIT parameters */ 11420 bxe_pf_q_prep_init(sc, fp, &q_params.params.init); 11421 11422 /* Set the command */ 11423 q_params.cmd = ECORE_Q_CMD_INIT; 11424 11425 /* Change the state to INIT */ 11426 rc = ecore_queue_state_change(sc, &q_params); 11427 if (rc) { 11428 BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc); 11429 return (rc); 11430 } 11431 11432 BLOGD(sc, DBG_LOAD, "init complete\n"); 11433 11434 /* now move the Queue to the SETUP state */ 11435 memset(setup_params, 0, sizeof(*setup_params)); 11436 11437 /* set Queue flags */ 11438 setup_params->flags = bxe_get_q_flags(sc, fp, leading); 11439 11440 /* set general SETUP parameters */ 11441 bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params, 11442 FIRST_TX_COS_INDEX); 11443 11444 bxe_pf_rx_q_prep(sc, fp, 11445 &setup_params->pause_params, 11446 &setup_params->rxq_params); 11447 11448 bxe_pf_tx_q_prep(sc, fp, 11449 &setup_params->txq_params, 11450 FIRST_TX_COS_INDEX); 11451 11452 /* Set the command */ 11453 q_params.cmd = ECORE_Q_CMD_SETUP; 11454 11455 /* change the state to SETUP */ 11456 rc = ecore_queue_state_change(sc, &q_params); 11457 if (rc) { 11458 BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc); 11459 return (rc); 11460 } 11461 11462 return (rc); 11463 } 11464 11465 static int 11466 bxe_setup_leading(struct bxe_softc *sc) 11467 { 11468 return (bxe_setup_queue(sc, &sc->fp[0], TRUE)); 11469 } 11470 11471 static int 11472 bxe_config_rss_pf(struct bxe_softc *sc, 11473 struct ecore_rss_config_obj *rss_obj, 11474 uint8_t config_hash) 11475 { 11476 struct ecore_config_rss_params params = { NULL }; 11477 int i; 11478 11479 /* 11480 * Although RSS is meaningless when there is a single HW queue we 11481 * still need it enabled in order to have HW Rx hash generated. 11482 */ 11483 11484 params.rss_obj = rss_obj; 11485 11486 bxe_set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 11487 11488 bxe_set_bit(ECORE_RSS_MODE_REGULAR, ¶ms.rss_flags); 11489 11490 /* RSS configuration */ 11491 bxe_set_bit(ECORE_RSS_IPV4, ¶ms.rss_flags); 11492 bxe_set_bit(ECORE_RSS_IPV4_TCP, ¶ms.rss_flags); 11493 bxe_set_bit(ECORE_RSS_IPV6, ¶ms.rss_flags); 11494 bxe_set_bit(ECORE_RSS_IPV6_TCP, ¶ms.rss_flags); 11495 if (rss_obj->udp_rss_v4) { 11496 bxe_set_bit(ECORE_RSS_IPV4_UDP, ¶ms.rss_flags); 11497 } 11498 if (rss_obj->udp_rss_v6) { 11499 bxe_set_bit(ECORE_RSS_IPV6_UDP, ¶ms.rss_flags); 11500 } 11501 11502 /* Hash bits */ 11503 params.rss_result_mask = MULTI_MASK; 11504 11505 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 11506 11507 if (config_hash) { 11508 /* RSS keys */ 11509 for (i = 0; i < sizeof(params.rss_key) / 4; i++) { 11510 params.rss_key[i] = arc4random(); 11511 } 11512 11513 bxe_set_bit(ECORE_RSS_SET_SRCH, ¶ms.rss_flags); 11514 } 11515 11516 return (ecore_config_rss(sc, ¶ms)); 11517 } 11518 11519 static int 11520 bxe_config_rss_eth(struct bxe_softc *sc, 11521 uint8_t config_hash) 11522 { 11523 return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash)); 11524 } 11525 11526 static int 11527 bxe_init_rss_pf(struct bxe_softc *sc) 11528 { 11529 uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc); 11530 int i; 11531 11532 /* 11533 * Prepare the initial contents of the indirection table if 11534 * RSS is enabled 11535 */ 11536 for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) { 11537 sc->rss_conf_obj.ind_table[i] = 11538 (sc->fp->cl_id + (i % num_eth_queues)); 11539 } 11540 11541 if (sc->udp_rss) { 11542 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1; 11543 } 11544 11545 /* 11546 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 11547 * per-port, so if explicit configuration is needed, do it only 11548 * for a PMF. 11549 * 11550 * For 57712 and newer it's a per-function configuration. 11551 */ 11552 return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc))); 11553 } 11554 11555 static int 11556 bxe_set_mac_one(struct bxe_softc *sc, 11557 uint8_t *mac, 11558 struct ecore_vlan_mac_obj *obj, 11559 uint8_t set, 11560 int mac_type, 11561 unsigned long *ramrod_flags) 11562 { 11563 struct ecore_vlan_mac_ramrod_params ramrod_param; 11564 int rc; 11565 11566 memset(&ramrod_param, 0, sizeof(ramrod_param)); 11567 11568 /* fill in general parameters */ 11569 ramrod_param.vlan_mac_obj = obj; 11570 ramrod_param.ramrod_flags = *ramrod_flags; 11571 11572 /* fill a user request section if needed */ 11573 if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) { 11574 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 11575 11576 bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 11577 11578 /* Set the command: ADD or DEL */ 11579 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD : 11580 ECORE_VLAN_MAC_DEL; 11581 } 11582 11583 rc = ecore_config_vlan_mac(sc, &ramrod_param); 11584 11585 if (rc == ECORE_EXISTS) { 11586 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 11587 /* do not treat adding same MAC as error */ 11588 rc = 0; 11589 } else if (rc < 0) { 11590 BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc); 11591 } 11592 11593 return (rc); 11594 } 11595 11596 static int 11597 bxe_set_eth_mac(struct bxe_softc *sc, 11598 uint8_t set) 11599 { 11600 unsigned long ramrod_flags = 0; 11601 11602 BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n"); 11603 11604 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 11605 11606 /* Eth MAC is set on RSS leading client (fp[0]) */ 11607 return (bxe_set_mac_one(sc, sc->link_params.mac_addr, 11608 &sc->sp_objs->mac_obj, 11609 set, ECORE_ETH_MAC, &ramrod_flags)); 11610 } 11611 11612 static int 11613 bxe_get_cur_phy_idx(struct bxe_softc *sc) 11614 { 11615 uint32_t sel_phy_idx = 0; 11616 11617 if (sc->link_params.num_phys <= 1) { 11618 return (ELINK_INT_PHY); 11619 } 11620 11621 if (sc->link_vars.link_up) { 11622 sel_phy_idx = ELINK_EXT_PHY1; 11623 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */ 11624 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 11625 (sc->link_params.phy[ELINK_EXT_PHY2].supported & 11626 ELINK_SUPPORTED_FIBRE)) 11627 sel_phy_idx = ELINK_EXT_PHY2; 11628 } else { 11629 switch (elink_phy_selection(&sc->link_params)) { 11630 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 11631 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 11632 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 11633 sel_phy_idx = ELINK_EXT_PHY1; 11634 break; 11635 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 11636 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 11637 sel_phy_idx = ELINK_EXT_PHY2; 11638 break; 11639 } 11640 } 11641 11642 return (sel_phy_idx); 11643 } 11644 11645 static int 11646 bxe_get_link_cfg_idx(struct bxe_softc *sc) 11647 { 11648 uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc); 11649 11650 /* 11651 * The selected activated PHY is always after swapping (in case PHY 11652 * swapping is enabled). So when swapping is enabled, we need to reverse 11653 * the configuration 11654 */ 11655 11656 if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 11657 if (sel_phy_idx == ELINK_EXT_PHY1) 11658 sel_phy_idx = ELINK_EXT_PHY2; 11659 else if (sel_phy_idx == ELINK_EXT_PHY2) 11660 sel_phy_idx = ELINK_EXT_PHY1; 11661 } 11662 11663 return (ELINK_LINK_CONFIG_IDX(sel_phy_idx)); 11664 } 11665 11666 static void 11667 bxe_set_requested_fc(struct bxe_softc *sc) 11668 { 11669 /* 11670 * Initialize link parameters structure variables 11671 * It is recommended to turn off RX FC for jumbo frames 11672 * for better performance 11673 */ 11674 if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) { 11675 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX; 11676 } else { 11677 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH; 11678 } 11679 } 11680 11681 static void 11682 bxe_calc_fc_adv(struct bxe_softc *sc) 11683 { 11684 uint8_t cfg_idx = bxe_get_link_cfg_idx(sc); 11685 11686 11687 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 11688 ADVERTISED_Pause); 11689 11690 switch (sc->link_vars.ieee_fc & 11691 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 11692 11693 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 11694 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 11695 ADVERTISED_Pause); 11696 break; 11697 11698 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 11699 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 11700 break; 11701 11702 default: 11703 break; 11704 11705 } 11706 } 11707 11708 static uint16_t 11709 bxe_get_mf_speed(struct bxe_softc *sc) 11710 { 11711 uint16_t line_speed = sc->link_vars.line_speed; 11712 if (IS_MF(sc)) { 11713 uint16_t maxCfg = 11714 bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]); 11715 11716 /* calculate the current MAX line speed limit for the MF devices */ 11717 if (IS_MF_SI(sc)) { 11718 line_speed = (line_speed * maxCfg) / 100; 11719 } else { /* SD mode */ 11720 uint16_t vn_max_rate = maxCfg * 100; 11721 11722 if (vn_max_rate < line_speed) { 11723 line_speed = vn_max_rate; 11724 } 11725 } 11726 } 11727 11728 return (line_speed); 11729 } 11730 11731 static void 11732 bxe_fill_report_data(struct bxe_softc *sc, 11733 struct bxe_link_report_data *data) 11734 { 11735 uint16_t line_speed = bxe_get_mf_speed(sc); 11736 11737 memset(data, 0, sizeof(*data)); 11738 11739 /* fill the report data with the effective line speed */ 11740 data->line_speed = line_speed; 11741 11742 /* Link is down */ 11743 if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) { 11744 bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags); 11745 } 11746 11747 /* Full DUPLEX */ 11748 if (sc->link_vars.duplex == DUPLEX_FULL) { 11749 bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags); 11750 } 11751 11752 /* Rx Flow Control is ON */ 11753 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) { 11754 bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags); 11755 } 11756 11757 /* Tx Flow Control is ON */ 11758 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 11759 bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags); 11760 } 11761 } 11762 11763 /* report link status to OS, should be called under phy_lock */ 11764 static void 11765 bxe_link_report_locked(struct bxe_softc *sc) 11766 { 11767 struct bxe_link_report_data cur_data; 11768 11769 /* reread mf_cfg */ 11770 if (IS_PF(sc) && !CHIP_IS_E1(sc)) { 11771 bxe_read_mf_cfg(sc); 11772 } 11773 11774 /* Read the current link report info */ 11775 bxe_fill_report_data(sc, &cur_data); 11776 11777 /* Don't report link down or exactly the same link status twice */ 11778 if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) || 11779 (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11780 &sc->last_reported_link.link_report_flags) && 11781 bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11782 &cur_data.link_report_flags))) { 11783 return; 11784 } 11785 11786 ELINK_DEBUG_P2(sc, "Change in link status : cur_data = %x, last_reported_link = %x\n", 11787 cur_data.link_report_flags, sc->last_reported_link.link_report_flags); 11788 sc->link_cnt++; 11789 11790 ELINK_DEBUG_P1(sc, "link status change count = %x\n", sc->link_cnt); 11791 /* report new link params and remember the state for the next time */ 11792 memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data)); 11793 11794 if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11795 &cur_data.link_report_flags)) { 11796 if_link_state_change(sc->ifp, LINK_STATE_DOWN); 11797 } else { 11798 const char *duplex; 11799 const char *flow; 11800 11801 if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX, 11802 &cur_data.link_report_flags)) { 11803 duplex = "full"; 11804 ELINK_DEBUG_P0(sc, "link set to full duplex\n"); 11805 } else { 11806 duplex = "half"; 11807 ELINK_DEBUG_P0(sc, "link set to half duplex\n"); 11808 } 11809 11810 /* 11811 * Handle the FC at the end so that only these flags would be 11812 * possibly set. This way we may easily check if there is no FC 11813 * enabled. 11814 */ 11815 if (cur_data.link_report_flags) { 11816 if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11817 &cur_data.link_report_flags) && 11818 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11819 &cur_data.link_report_flags)) { 11820 flow = "ON - receive & transmit"; 11821 } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11822 &cur_data.link_report_flags) && 11823 !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11824 &cur_data.link_report_flags)) { 11825 flow = "ON - receive"; 11826 } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11827 &cur_data.link_report_flags) && 11828 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11829 &cur_data.link_report_flags)) { 11830 flow = "ON - transmit"; 11831 } else { 11832 flow = "none"; /* possible? */ 11833 } 11834 } else { 11835 flow = "none"; 11836 } 11837 11838 if_link_state_change(sc->ifp, LINK_STATE_UP); 11839 BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 11840 cur_data.line_speed, duplex, flow); 11841 } 11842 } 11843 11844 static void 11845 bxe_link_report(struct bxe_softc *sc) 11846 { 11847 bxe_acquire_phy_lock(sc); 11848 bxe_link_report_locked(sc); 11849 bxe_release_phy_lock(sc); 11850 } 11851 11852 static void 11853 bxe_link_status_update(struct bxe_softc *sc) 11854 { 11855 if (sc->state != BXE_STATE_OPEN) { 11856 return; 11857 } 11858 11859 if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) { 11860 elink_link_status_update(&sc->link_params, &sc->link_vars); 11861 } else { 11862 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half | 11863 ELINK_SUPPORTED_10baseT_Full | 11864 ELINK_SUPPORTED_100baseT_Half | 11865 ELINK_SUPPORTED_100baseT_Full | 11866 ELINK_SUPPORTED_1000baseT_Full | 11867 ELINK_SUPPORTED_2500baseX_Full | 11868 ELINK_SUPPORTED_10000baseT_Full | 11869 ELINK_SUPPORTED_TP | 11870 ELINK_SUPPORTED_FIBRE | 11871 ELINK_SUPPORTED_Autoneg | 11872 ELINK_SUPPORTED_Pause | 11873 ELINK_SUPPORTED_Asym_Pause); 11874 sc->port.advertising[0] = sc->port.supported[0]; 11875 11876 sc->link_params.sc = sc; 11877 sc->link_params.port = SC_PORT(sc); 11878 sc->link_params.req_duplex[0] = DUPLEX_FULL; 11879 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE; 11880 sc->link_params.req_line_speed[0] = SPEED_10000; 11881 sc->link_params.speed_cap_mask[0] = 0x7f0000; 11882 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G; 11883 11884 if (CHIP_REV_IS_FPGA(sc)) { 11885 sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC; 11886 sc->link_vars.line_speed = ELINK_SPEED_1000; 11887 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 11888 LINK_STATUS_SPEED_AND_DUPLEX_1000TFD); 11889 } else { 11890 sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC; 11891 sc->link_vars.line_speed = ELINK_SPEED_10000; 11892 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 11893 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 11894 } 11895 11896 sc->link_vars.link_up = 1; 11897 11898 sc->link_vars.duplex = DUPLEX_FULL; 11899 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE; 11900 11901 if (IS_PF(sc)) { 11902 REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0); 11903 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11904 bxe_link_report(sc); 11905 } 11906 } 11907 11908 if (IS_PF(sc)) { 11909 if (sc->link_vars.link_up) { 11910 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11911 } else { 11912 bxe_stats_handle(sc, STATS_EVENT_STOP); 11913 } 11914 bxe_link_report(sc); 11915 } else { 11916 bxe_link_report(sc); 11917 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11918 } 11919 } 11920 11921 static int 11922 bxe_initial_phy_init(struct bxe_softc *sc, 11923 int load_mode) 11924 { 11925 int rc, cfg_idx = bxe_get_link_cfg_idx(sc); 11926 uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx]; 11927 struct elink_params *lp = &sc->link_params; 11928 11929 bxe_set_requested_fc(sc); 11930 11931 if (CHIP_REV_IS_SLOW(sc)) { 11932 uint32_t bond = CHIP_BOND_ID(sc); 11933 uint32_t feat = 0; 11934 11935 if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) { 11936 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 11937 } else if (bond & 0x4) { 11938 if (CHIP_IS_E3(sc)) { 11939 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC; 11940 } else { 11941 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 11942 } 11943 } else if (bond & 0x8) { 11944 if (CHIP_IS_E3(sc)) { 11945 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC; 11946 } else { 11947 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 11948 } 11949 } 11950 11951 /* disable EMAC for E3 and above */ 11952 if (bond & 0x2) { 11953 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 11954 } 11955 11956 sc->link_params.feature_config_flags |= feat; 11957 } 11958 11959 bxe_acquire_phy_lock(sc); 11960 11961 if (load_mode == LOAD_DIAG) { 11962 lp->loopback_mode = ELINK_LOOPBACK_XGXS; 11963 /* Prefer doing PHY loopback at 10G speed, if possible */ 11964 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) { 11965 if (lp->speed_cap_mask[cfg_idx] & 11966 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 11967 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000; 11968 } else { 11969 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000; 11970 } 11971 } 11972 } 11973 11974 if (load_mode == LOAD_LOOPBACK_EXT) { 11975 lp->loopback_mode = ELINK_LOOPBACK_EXT; 11976 } 11977 11978 rc = elink_phy_init(&sc->link_params, &sc->link_vars); 11979 11980 bxe_release_phy_lock(sc); 11981 11982 bxe_calc_fc_adv(sc); 11983 11984 if (sc->link_vars.link_up) { 11985 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11986 bxe_link_report(sc); 11987 } 11988 11989 if (!CHIP_REV_IS_SLOW(sc)) { 11990 bxe_periodic_start(sc); 11991 } 11992 11993 sc->link_params.req_line_speed[cfg_idx] = req_line_speed; 11994 return (rc); 11995 } 11996 11997 /* must be called under IF_ADDR_LOCK */ 11998 static int 11999 bxe_init_mcast_macs_list(struct bxe_softc *sc, 12000 struct ecore_mcast_ramrod_params *p) 12001 { 12002 if_t ifp = sc->ifp; 12003 int mc_count = 0; 12004 struct ifmultiaddr *ifma; 12005 struct ecore_mcast_list_elem *mc_mac; 12006 12007 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 12008 if (ifma->ifma_addr->sa_family != AF_LINK) { 12009 continue; 12010 } 12011 12012 mc_count++; 12013 } 12014 12015 ECORE_LIST_INIT(&p->mcast_list); 12016 p->mcast_list_len = 0; 12017 12018 if (!mc_count) { 12019 return (0); 12020 } 12021 12022 mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, 12023 (M_NOWAIT | M_ZERO)); 12024 if (!mc_mac) { 12025 BLOGE(sc, "Failed to allocate temp mcast list\n"); 12026 return (-1); 12027 } 12028 bzero(mc_mac, (sizeof(*mc_mac) * mc_count)); 12029 12030 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 12031 if (ifma->ifma_addr->sa_family != AF_LINK) { 12032 continue; 12033 } 12034 12035 mc_mac->mac = (uint8_t *)LLADDR((struct sockaddr_dl *)ifma->ifma_addr); 12036 ECORE_LIST_PUSH_TAIL(&mc_mac->link, &p->mcast_list); 12037 12038 BLOGD(sc, DBG_LOAD, 12039 "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X and mc_count %d\n", 12040 mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2], 12041 mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5], mc_count); 12042 mc_mac++; 12043 } 12044 12045 p->mcast_list_len = mc_count; 12046 12047 return (0); 12048 } 12049 12050 static void 12051 bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p) 12052 { 12053 struct ecore_mcast_list_elem *mc_mac = 12054 ECORE_LIST_FIRST_ENTRY(&p->mcast_list, 12055 struct ecore_mcast_list_elem, 12056 link); 12057 12058 if (mc_mac) { 12059 /* only a single free as all mc_macs are in the same heap array */ 12060 free(mc_mac, M_DEVBUF); 12061 } 12062 } 12063 static int 12064 bxe_set_mc_list(struct bxe_softc *sc) 12065 { 12066 struct ecore_mcast_ramrod_params rparam = { NULL }; 12067 int rc = 0; 12068 12069 rparam.mcast_obj = &sc->mcast_obj; 12070 12071 BXE_MCAST_LOCK(sc); 12072 12073 /* first, clear all configured multicast MACs */ 12074 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 12075 if (rc < 0) { 12076 BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc); 12077 /* Manual backport parts of FreeBSD upstream r284470. */ 12078 BXE_MCAST_UNLOCK(sc); 12079 return (rc); 12080 } 12081 12082 /* configure a new MACs list */ 12083 rc = bxe_init_mcast_macs_list(sc, &rparam); 12084 if (rc) { 12085 BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc); 12086 BXE_MCAST_UNLOCK(sc); 12087 return (rc); 12088 } 12089 12090 /* Now add the new MACs */ 12091 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD); 12092 if (rc < 0) { 12093 BLOGE(sc, "Failed to set new mcast config (%d)\n", rc); 12094 } 12095 12096 bxe_free_mcast_macs_list(&rparam); 12097 12098 BXE_MCAST_UNLOCK(sc); 12099 12100 return (rc); 12101 } 12102 12103 static int 12104 bxe_set_uc_list(struct bxe_softc *sc) 12105 { 12106 if_t ifp = sc->ifp; 12107 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 12108 struct ifaddr *ifa; 12109 unsigned long ramrod_flags = 0; 12110 int rc; 12111 12112 #if __FreeBSD_version < 800000 12113 IF_ADDR_LOCK(ifp); 12114 #else 12115 if_addr_rlock(ifp); 12116 #endif 12117 12118 /* first schedule a cleanup up of old configuration */ 12119 rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE); 12120 if (rc < 0) { 12121 BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc); 12122 #if __FreeBSD_version < 800000 12123 IF_ADDR_UNLOCK(ifp); 12124 #else 12125 if_addr_runlock(ifp); 12126 #endif 12127 return (rc); 12128 } 12129 12130 ifa = if_getifaddr(ifp); /* XXX Is this structure */ 12131 while (ifa) { 12132 if (ifa->ifa_addr->sa_family != AF_LINK) { 12133 ifa = CK_STAILQ_NEXT(ifa, ifa_link); 12134 continue; 12135 } 12136 12137 rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr), 12138 mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags); 12139 if (rc == -EEXIST) { 12140 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12141 /* do not treat adding same MAC as an error */ 12142 rc = 0; 12143 } else if (rc < 0) { 12144 BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc); 12145 #if __FreeBSD_version < 800000 12146 IF_ADDR_UNLOCK(ifp); 12147 #else 12148 if_addr_runlock(ifp); 12149 #endif 12150 return (rc); 12151 } 12152 12153 ifa = CK_STAILQ_NEXT(ifa, ifa_link); 12154 } 12155 12156 #if __FreeBSD_version < 800000 12157 IF_ADDR_UNLOCK(ifp); 12158 #else 12159 if_addr_runlock(ifp); 12160 #endif 12161 12162 /* Execute the pending commands */ 12163 bit_set(&ramrod_flags, RAMROD_CONT); 12164 return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */, 12165 ECORE_UC_LIST_MAC, &ramrod_flags)); 12166 } 12167 12168 static void 12169 bxe_set_rx_mode(struct bxe_softc *sc) 12170 { 12171 if_t ifp = sc->ifp; 12172 uint32_t rx_mode = BXE_RX_MODE_NORMAL; 12173 12174 if (sc->state != BXE_STATE_OPEN) { 12175 BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state); 12176 return; 12177 } 12178 12179 BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp)); 12180 12181 if (if_getflags(ifp) & IFF_PROMISC) { 12182 rx_mode = BXE_RX_MODE_PROMISC; 12183 } else if ((if_getflags(ifp) & IFF_ALLMULTI) || 12184 ((if_getamcount(ifp) > BXE_MAX_MULTICAST) && 12185 CHIP_IS_E1(sc))) { 12186 rx_mode = BXE_RX_MODE_ALLMULTI; 12187 } else { 12188 if (IS_PF(sc)) { 12189 /* some multicasts */ 12190 if (bxe_set_mc_list(sc) < 0) { 12191 rx_mode = BXE_RX_MODE_ALLMULTI; 12192 } 12193 if (bxe_set_uc_list(sc) < 0) { 12194 rx_mode = BXE_RX_MODE_PROMISC; 12195 } 12196 } 12197 } 12198 12199 sc->rx_mode = rx_mode; 12200 12201 /* schedule the rx_mode command */ 12202 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 12203 BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n"); 12204 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 12205 return; 12206 } 12207 12208 if (IS_PF(sc)) { 12209 bxe_set_storm_rx_mode(sc); 12210 } 12211 } 12212 12213 12214 /* update flags in shmem */ 12215 static void 12216 bxe_update_drv_flags(struct bxe_softc *sc, 12217 uint32_t flags, 12218 uint32_t set) 12219 { 12220 uint32_t drv_flags; 12221 12222 if (SHMEM2_HAS(sc, drv_flags)) { 12223 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12224 drv_flags = SHMEM2_RD(sc, drv_flags); 12225 12226 if (set) { 12227 SET_FLAGS(drv_flags, flags); 12228 } else { 12229 RESET_FLAGS(drv_flags, flags); 12230 } 12231 12232 SHMEM2_WR(sc, drv_flags, drv_flags); 12233 BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags); 12234 12235 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12236 } 12237 } 12238 12239 /* periodic timer callout routine, only runs when the interface is up */ 12240 12241 static void 12242 bxe_periodic_callout_func(void *xsc) 12243 { 12244 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12245 int i; 12246 12247 if (!BXE_CORE_TRYLOCK(sc)) { 12248 /* just bail and try again next time */ 12249 12250 if ((sc->state == BXE_STATE_OPEN) && 12251 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12252 /* schedule the next periodic callout */ 12253 callout_reset(&sc->periodic_callout, hz, 12254 bxe_periodic_callout_func, sc); 12255 } 12256 12257 return; 12258 } 12259 12260 if ((sc->state != BXE_STATE_OPEN) || 12261 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) { 12262 BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state); 12263 BXE_CORE_UNLOCK(sc); 12264 return; 12265 } 12266 12267 12268 /* Check for TX timeouts on any fastpath. */ 12269 FOR_EACH_QUEUE(sc, i) { 12270 if (bxe_watchdog(sc, &sc->fp[i]) != 0) { 12271 /* Ruh-Roh, chip was reset! */ 12272 break; 12273 } 12274 } 12275 12276 if (!CHIP_REV_IS_SLOW(sc)) { 12277 /* 12278 * This barrier is needed to ensure the ordering between the writing 12279 * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and 12280 * the reading here. 12281 */ 12282 mb(); 12283 if (sc->port.pmf) { 12284 bxe_acquire_phy_lock(sc); 12285 elink_period_func(&sc->link_params, &sc->link_vars); 12286 bxe_release_phy_lock(sc); 12287 } 12288 } 12289 12290 if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) { 12291 int mb_idx = SC_FW_MB_IDX(sc); 12292 uint32_t drv_pulse; 12293 uint32_t mcp_pulse; 12294 12295 ++sc->fw_drv_pulse_wr_seq; 12296 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 12297 12298 drv_pulse = sc->fw_drv_pulse_wr_seq; 12299 bxe_drv_pulse(sc); 12300 12301 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) & 12302 MCP_PULSE_SEQ_MASK); 12303 12304 /* 12305 * The delta between driver pulse and mcp response should 12306 * be 1 (before mcp response) or 0 (after mcp response). 12307 */ 12308 if ((drv_pulse != mcp_pulse) && 12309 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) { 12310 /* someone lost a heartbeat... */ 12311 BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 12312 drv_pulse, mcp_pulse); 12313 } 12314 } 12315 12316 /* state is BXE_STATE_OPEN */ 12317 bxe_stats_handle(sc, STATS_EVENT_UPDATE); 12318 12319 BXE_CORE_UNLOCK(sc); 12320 12321 if ((sc->state == BXE_STATE_OPEN) && 12322 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12323 /* schedule the next periodic callout */ 12324 callout_reset(&sc->periodic_callout, hz, 12325 bxe_periodic_callout_func, sc); 12326 } 12327 } 12328 12329 static void 12330 bxe_periodic_start(struct bxe_softc *sc) 12331 { 12332 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO); 12333 callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc); 12334 } 12335 12336 static void 12337 bxe_periodic_stop(struct bxe_softc *sc) 12338 { 12339 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP); 12340 callout_drain(&sc->periodic_callout); 12341 } 12342 12343 /* start the controller */ 12344 static __noinline int 12345 bxe_nic_load(struct bxe_softc *sc, 12346 int load_mode) 12347 { 12348 uint32_t val; 12349 int load_code = 0; 12350 int i, rc = 0; 12351 12352 BXE_CORE_LOCK_ASSERT(sc); 12353 12354 BLOGD(sc, DBG_LOAD, "Starting NIC load...\n"); 12355 12356 sc->state = BXE_STATE_OPENING_WAITING_LOAD; 12357 12358 if (IS_PF(sc)) { 12359 /* must be called before memory allocation and HW init */ 12360 bxe_ilt_set_info(sc); 12361 } 12362 12363 sc->last_reported_link_state = LINK_STATE_UNKNOWN; 12364 12365 bxe_set_fp_rx_buf_size(sc); 12366 12367 if (bxe_alloc_fp_buffers(sc) != 0) { 12368 BLOGE(sc, "Failed to allocate fastpath memory\n"); 12369 sc->state = BXE_STATE_CLOSED; 12370 rc = ENOMEM; 12371 goto bxe_nic_load_error0; 12372 } 12373 12374 if (bxe_alloc_mem(sc) != 0) { 12375 sc->state = BXE_STATE_CLOSED; 12376 rc = ENOMEM; 12377 goto bxe_nic_load_error0; 12378 } 12379 12380 if (bxe_alloc_fw_stats_mem(sc) != 0) { 12381 sc->state = BXE_STATE_CLOSED; 12382 rc = ENOMEM; 12383 goto bxe_nic_load_error0; 12384 } 12385 12386 if (IS_PF(sc)) { 12387 /* set pf load just before approaching the MCP */ 12388 bxe_set_pf_load(sc); 12389 12390 /* if MCP exists send load request and analyze response */ 12391 if (!BXE_NOMCP(sc)) { 12392 /* attempt to load pf */ 12393 if (bxe_nic_load_request(sc, &load_code) != 0) { 12394 sc->state = BXE_STATE_CLOSED; 12395 rc = ENXIO; 12396 goto bxe_nic_load_error1; 12397 } 12398 12399 /* what did the MCP say? */ 12400 if (bxe_nic_load_analyze_req(sc, load_code) != 0) { 12401 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12402 sc->state = BXE_STATE_CLOSED; 12403 rc = ENXIO; 12404 goto bxe_nic_load_error2; 12405 } 12406 } else { 12407 BLOGI(sc, "Device has no MCP!\n"); 12408 load_code = bxe_nic_load_no_mcp(sc); 12409 } 12410 12411 /* mark PMF if applicable */ 12412 bxe_nic_load_pmf(sc, load_code); 12413 12414 /* Init Function state controlling object */ 12415 bxe_init_func_obj(sc); 12416 12417 /* Initialize HW */ 12418 if (bxe_init_hw(sc, load_code) != 0) { 12419 BLOGE(sc, "HW init failed\n"); 12420 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12421 sc->state = BXE_STATE_CLOSED; 12422 rc = ENXIO; 12423 goto bxe_nic_load_error2; 12424 } 12425 } 12426 12427 /* set ALWAYS_ALIVE bit in shmem */ 12428 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 12429 bxe_drv_pulse(sc); 12430 sc->flags |= BXE_NO_PULSE; 12431 12432 /* attach interrupts */ 12433 if (bxe_interrupt_attach(sc) != 0) { 12434 sc->state = BXE_STATE_CLOSED; 12435 rc = ENXIO; 12436 goto bxe_nic_load_error2; 12437 } 12438 12439 bxe_nic_init(sc, load_code); 12440 12441 /* Init per-function objects */ 12442 if (IS_PF(sc)) { 12443 bxe_init_objs(sc); 12444 // XXX bxe_iov_nic_init(sc); 12445 12446 /* set AFEX default VLAN tag to an invalid value */ 12447 sc->devinfo.mf_info.afex_def_vlan_tag = -1; 12448 // XXX bxe_nic_load_afex_dcc(sc, load_code); 12449 12450 sc->state = BXE_STATE_OPENING_WAITING_PORT; 12451 rc = bxe_func_start(sc); 12452 if (rc) { 12453 BLOGE(sc, "Function start failed! rc = %d\n", rc); 12454 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12455 sc->state = BXE_STATE_ERROR; 12456 goto bxe_nic_load_error3; 12457 } 12458 12459 /* send LOAD_DONE command to MCP */ 12460 if (!BXE_NOMCP(sc)) { 12461 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12462 if (!load_code) { 12463 BLOGE(sc, "MCP response failure, aborting\n"); 12464 sc->state = BXE_STATE_ERROR; 12465 rc = ENXIO; 12466 goto bxe_nic_load_error3; 12467 } 12468 } 12469 12470 rc = bxe_setup_leading(sc); 12471 if (rc) { 12472 BLOGE(sc, "Setup leading failed! rc = %d\n", rc); 12473 sc->state = BXE_STATE_ERROR; 12474 goto bxe_nic_load_error3; 12475 } 12476 12477 FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) { 12478 rc = bxe_setup_queue(sc, &sc->fp[i], FALSE); 12479 if (rc) { 12480 BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc); 12481 sc->state = BXE_STATE_ERROR; 12482 goto bxe_nic_load_error3; 12483 } 12484 } 12485 12486 rc = bxe_init_rss_pf(sc); 12487 if (rc) { 12488 BLOGE(sc, "PF RSS init failed\n"); 12489 sc->state = BXE_STATE_ERROR; 12490 goto bxe_nic_load_error3; 12491 } 12492 } 12493 /* XXX VF */ 12494 12495 /* now when Clients are configured we are ready to work */ 12496 sc->state = BXE_STATE_OPEN; 12497 12498 /* Configure a ucast MAC */ 12499 if (IS_PF(sc)) { 12500 rc = bxe_set_eth_mac(sc, TRUE); 12501 } 12502 if (rc) { 12503 BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc); 12504 sc->state = BXE_STATE_ERROR; 12505 goto bxe_nic_load_error3; 12506 } 12507 12508 if (sc->port.pmf) { 12509 rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN); 12510 if (rc) { 12511 sc->state = BXE_STATE_ERROR; 12512 goto bxe_nic_load_error3; 12513 } 12514 } 12515 12516 sc->link_params.feature_config_flags &= 12517 ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN; 12518 12519 /* start fast path */ 12520 12521 /* Initialize Rx filter */ 12522 bxe_set_rx_mode(sc); 12523 12524 /* start the Tx */ 12525 switch (/* XXX load_mode */LOAD_OPEN) { 12526 case LOAD_NORMAL: 12527 case LOAD_OPEN: 12528 break; 12529 12530 case LOAD_DIAG: 12531 case LOAD_LOOPBACK_EXT: 12532 sc->state = BXE_STATE_DIAG; 12533 break; 12534 12535 default: 12536 break; 12537 } 12538 12539 if (sc->port.pmf) { 12540 bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0); 12541 } else { 12542 bxe_link_status_update(sc); 12543 } 12544 12545 /* start the periodic timer callout */ 12546 bxe_periodic_start(sc); 12547 12548 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 12549 /* mark driver is loaded in shmem2 */ 12550 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 12551 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 12552 (val | 12553 DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 12554 DRV_FLAGS_CAPABILITIES_LOADED_L2)); 12555 } 12556 12557 /* wait for all pending SP commands to complete */ 12558 if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) { 12559 BLOGE(sc, "Timeout waiting for all SPs to complete!\n"); 12560 bxe_periodic_stop(sc); 12561 bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE); 12562 return (ENXIO); 12563 } 12564 12565 /* Tell the stack the driver is running! */ 12566 if_setdrvflags(sc->ifp, IFF_DRV_RUNNING); 12567 12568 BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n"); 12569 12570 return (0); 12571 12572 bxe_nic_load_error3: 12573 12574 if (IS_PF(sc)) { 12575 bxe_int_disable_sync(sc, 1); 12576 12577 /* clean out queued objects */ 12578 bxe_squeeze_objects(sc); 12579 } 12580 12581 bxe_interrupt_detach(sc); 12582 12583 bxe_nic_load_error2: 12584 12585 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 12586 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 12587 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 12588 } 12589 12590 sc->port.pmf = 0; 12591 12592 bxe_nic_load_error1: 12593 12594 /* clear pf_load status, as it was already set */ 12595 if (IS_PF(sc)) { 12596 bxe_clear_pf_load(sc); 12597 } 12598 12599 bxe_nic_load_error0: 12600 12601 bxe_free_fw_stats_mem(sc); 12602 bxe_free_fp_buffers(sc); 12603 bxe_free_mem(sc); 12604 12605 return (rc); 12606 } 12607 12608 static int 12609 bxe_init_locked(struct bxe_softc *sc) 12610 { 12611 int other_engine = SC_PATH(sc) ? 0 : 1; 12612 uint8_t other_load_status, load_status; 12613 uint8_t global = FALSE; 12614 int rc; 12615 12616 BXE_CORE_LOCK_ASSERT(sc); 12617 12618 /* check if the driver is already running */ 12619 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 12620 BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n"); 12621 return (0); 12622 } 12623 12624 bxe_set_power_state(sc, PCI_PM_D0); 12625 12626 /* 12627 * If parity occurred during the unload, then attentions and/or 12628 * RECOVERY_IN_PROGRES may still be set. If so we want the first function 12629 * loaded on the current engine to complete the recovery. Parity recovery 12630 * is only relevant for PF driver. 12631 */ 12632 if (IS_PF(sc)) { 12633 other_load_status = bxe_get_load_status(sc, other_engine); 12634 load_status = bxe_get_load_status(sc, SC_PATH(sc)); 12635 12636 if (!bxe_reset_is_done(sc, SC_PATH(sc)) || 12637 bxe_chk_parity_attn(sc, &global, TRUE)) { 12638 do { 12639 /* 12640 * If there are attentions and they are in global blocks, set 12641 * the GLOBAL_RESET bit regardless whether it will be this 12642 * function that will complete the recovery or not. 12643 */ 12644 if (global) { 12645 bxe_set_reset_global(sc); 12646 } 12647 12648 /* 12649 * Only the first function on the current engine should try 12650 * to recover in open. In case of attentions in global blocks 12651 * only the first in the chip should try to recover. 12652 */ 12653 if ((!load_status && (!global || !other_load_status)) && 12654 bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) { 12655 BLOGI(sc, "Recovered during init\n"); 12656 break; 12657 } 12658 12659 /* recovery has failed... */ 12660 bxe_set_power_state(sc, PCI_PM_D3hot); 12661 sc->recovery_state = BXE_RECOVERY_FAILED; 12662 12663 BLOGE(sc, "Recovery flow hasn't properly " 12664 "completed yet, try again later. " 12665 "If you still see this message after a " 12666 "few retries then power cycle is required.\n"); 12667 12668 rc = ENXIO; 12669 goto bxe_init_locked_done; 12670 } while (0); 12671 } 12672 } 12673 12674 sc->recovery_state = BXE_RECOVERY_DONE; 12675 12676 rc = bxe_nic_load(sc, LOAD_OPEN); 12677 12678 bxe_init_locked_done: 12679 12680 if (rc) { 12681 /* Tell the stack the driver is NOT running! */ 12682 BLOGE(sc, "Initialization failed, " 12683 "stack notified driver is NOT running!\n"); 12684 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 12685 } 12686 12687 return (rc); 12688 } 12689 12690 static int 12691 bxe_stop_locked(struct bxe_softc *sc) 12692 { 12693 BXE_CORE_LOCK_ASSERT(sc); 12694 return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE)); 12695 } 12696 12697 /* 12698 * Handles controller initialization when called from an unlocked routine. 12699 * ifconfig calls this function. 12700 * 12701 * Returns: 12702 * void 12703 */ 12704 static void 12705 bxe_init(void *xsc) 12706 { 12707 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12708 12709 BXE_CORE_LOCK(sc); 12710 bxe_init_locked(sc); 12711 BXE_CORE_UNLOCK(sc); 12712 } 12713 12714 static int 12715 bxe_init_ifnet(struct bxe_softc *sc) 12716 { 12717 if_t ifp; 12718 int capabilities; 12719 12720 /* ifconfig entrypoint for media type/status reporting */ 12721 ifmedia_init(&sc->ifmedia, IFM_IMASK, 12722 bxe_ifmedia_update, 12723 bxe_ifmedia_status); 12724 12725 /* set the default interface values */ 12726 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL); 12727 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL); 12728 ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO)); 12729 12730 sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */ 12731 BLOGI(sc, "IFMEDIA flags : %x\n", sc->ifmedia.ifm_media); 12732 12733 /* allocate the ifnet structure */ 12734 if ((ifp = if_gethandle(IFT_ETHER)) == NULL) { 12735 BLOGE(sc, "Interface allocation failed!\n"); 12736 return (ENXIO); 12737 } 12738 12739 if_setsoftc(ifp, sc); 12740 if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); 12741 if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST)); 12742 if_setioctlfn(ifp, bxe_ioctl); 12743 if_setstartfn(ifp, bxe_tx_start); 12744 if_setgetcounterfn(ifp, bxe_get_counter); 12745 #if __FreeBSD_version >= 901504 12746 if_settransmitfn(ifp, bxe_tx_mq_start); 12747 if_setqflushfn(ifp, bxe_mq_flush); 12748 #endif 12749 #ifdef FreeBSD8_0 12750 if_settimer(ifp, 0); 12751 #endif 12752 if_setinitfn(ifp, bxe_init); 12753 if_setmtu(ifp, sc->mtu); 12754 if_sethwassist(ifp, (CSUM_IP | 12755 CSUM_TCP | 12756 CSUM_UDP | 12757 CSUM_TSO | 12758 CSUM_TCP_IPV6 | 12759 CSUM_UDP_IPV6)); 12760 12761 capabilities = 12762 #if __FreeBSD_version < 700000 12763 (IFCAP_VLAN_MTU | 12764 IFCAP_VLAN_HWTAGGING | 12765 IFCAP_HWCSUM | 12766 IFCAP_JUMBO_MTU | 12767 IFCAP_LRO); 12768 #else 12769 (IFCAP_VLAN_MTU | 12770 IFCAP_VLAN_HWTAGGING | 12771 IFCAP_VLAN_HWTSO | 12772 IFCAP_VLAN_HWFILTER | 12773 IFCAP_VLAN_HWCSUM | 12774 IFCAP_HWCSUM | 12775 IFCAP_JUMBO_MTU | 12776 IFCAP_LRO | 12777 IFCAP_TSO4 | 12778 IFCAP_TSO6 | 12779 IFCAP_WOL_MAGIC); 12780 #endif 12781 if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */ 12782 if_setcapenable(ifp, if_getcapabilities(ifp)); 12783 if_setbaudrate(ifp, IF_Gbps(10)); 12784 /* XXX */ 12785 if_setsendqlen(ifp, sc->tx_ring_size); 12786 if_setsendqready(ifp); 12787 /* XXX */ 12788 12789 sc->ifp = ifp; 12790 12791 /* attach to the Ethernet interface list */ 12792 ether_ifattach(ifp, sc->link_params.mac_addr); 12793 12794 /* Attach driver netdump methods. */ 12795 NETDUMP_SET(ifp, bxe); 12796 12797 return (0); 12798 } 12799 12800 static void 12801 bxe_deallocate_bars(struct bxe_softc *sc) 12802 { 12803 int i; 12804 12805 for (i = 0; i < MAX_BARS; i++) { 12806 if (sc->bar[i].resource != NULL) { 12807 bus_release_resource(sc->dev, 12808 SYS_RES_MEMORY, 12809 sc->bar[i].rid, 12810 sc->bar[i].resource); 12811 BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n", 12812 i, PCIR_BAR(i)); 12813 } 12814 } 12815 } 12816 12817 static int 12818 bxe_allocate_bars(struct bxe_softc *sc) 12819 { 12820 u_int flags; 12821 int i; 12822 12823 memset(sc->bar, 0, sizeof(sc->bar)); 12824 12825 for (i = 0; i < MAX_BARS; i++) { 12826 12827 /* memory resources reside at BARs 0, 2, 4 */ 12828 /* Run `pciconf -lb` to see mappings */ 12829 if ((i != 0) && (i != 2) && (i != 4)) { 12830 continue; 12831 } 12832 12833 sc->bar[i].rid = PCIR_BAR(i); 12834 12835 flags = RF_ACTIVE; 12836 if (i == 0) { 12837 flags |= RF_SHAREABLE; 12838 } 12839 12840 if ((sc->bar[i].resource = 12841 bus_alloc_resource_any(sc->dev, 12842 SYS_RES_MEMORY, 12843 &sc->bar[i].rid, 12844 flags)) == NULL) { 12845 return (0); 12846 } 12847 12848 sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource); 12849 sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource); 12850 sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource); 12851 12852 BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%jd) -> %p\n", 12853 i, PCIR_BAR(i), 12854 (void *)rman_get_start(sc->bar[i].resource), 12855 (void *)rman_get_end(sc->bar[i].resource), 12856 rman_get_size(sc->bar[i].resource), 12857 (void *)sc->bar[i].kva); 12858 } 12859 12860 return (0); 12861 } 12862 12863 static void 12864 bxe_get_function_num(struct bxe_softc *sc) 12865 { 12866 uint32_t val = 0; 12867 12868 /* 12869 * Read the ME register to get the function number. The ME register 12870 * holds the relative-function number and absolute-function number. The 12871 * absolute-function number appears only in E2 and above. Before that 12872 * these bits always contained zero, therefore we cannot blindly use them. 12873 */ 12874 12875 val = REG_RD(sc, BAR_ME_REGISTER); 12876 12877 sc->pfunc_rel = 12878 (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT); 12879 sc->path_id = 12880 (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1; 12881 12882 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 12883 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id); 12884 } else { 12885 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id); 12886 } 12887 12888 BLOGD(sc, DBG_LOAD, 12889 "Relative function %d, Absolute function %d, Path %d\n", 12890 sc->pfunc_rel, sc->pfunc_abs, sc->path_id); 12891 } 12892 12893 static uint32_t 12894 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc) 12895 { 12896 uint32_t shmem2_size; 12897 uint32_t offset; 12898 uint32_t mf_cfg_offset_value; 12899 12900 /* Non 57712 */ 12901 offset = (SHMEM_RD(sc, func_mb) + 12902 (MAX_FUNC_NUM * sizeof(struct drv_func_mb))); 12903 12904 /* 57712 plus */ 12905 if (sc->devinfo.shmem2_base != 0) { 12906 shmem2_size = SHMEM2_RD(sc, size); 12907 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) { 12908 mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr); 12909 if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) { 12910 offset = mf_cfg_offset_value; 12911 } 12912 } 12913 } 12914 12915 return (offset); 12916 } 12917 12918 static uint32_t 12919 bxe_pcie_capability_read(struct bxe_softc *sc, 12920 int reg, 12921 int width) 12922 { 12923 int pcie_reg; 12924 12925 /* ensure PCIe capability is enabled */ 12926 if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) { 12927 if (pcie_reg != 0) { 12928 BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg); 12929 return (pci_read_config(sc->dev, (pcie_reg + reg), width)); 12930 } 12931 } 12932 12933 BLOGE(sc, "PCIe capability NOT FOUND!!!\n"); 12934 12935 return (0); 12936 } 12937 12938 static uint8_t 12939 bxe_is_pcie_pending(struct bxe_softc *sc) 12940 { 12941 return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) & 12942 PCIM_EXP_STA_TRANSACTION_PND); 12943 } 12944 12945 /* 12946 * Walk the PCI capabiites list for the device to find what features are 12947 * supported. These capabilites may be enabled/disabled by firmware so it's 12948 * best to walk the list rather than make assumptions. 12949 */ 12950 static void 12951 bxe_probe_pci_caps(struct bxe_softc *sc) 12952 { 12953 uint16_t link_status; 12954 int reg; 12955 12956 /* check if PCI Power Management is enabled */ 12957 if (pci_find_cap(sc->dev, PCIY_PMG, ®) == 0) { 12958 if (reg != 0) { 12959 BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg); 12960 12961 sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG; 12962 sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg; 12963 } 12964 } 12965 12966 link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2); 12967 12968 /* handle PCIe 2.0 workarounds for 57710 */ 12969 if (CHIP_IS_E1(sc)) { 12970 /* workaround for 57710 errata E4_57710_27462 */ 12971 sc->devinfo.pcie_link_speed = 12972 (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1; 12973 12974 /* workaround for 57710 errata E4_57710_27488 */ 12975 sc->devinfo.pcie_link_width = 12976 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 12977 if (sc->devinfo.pcie_link_speed > 1) { 12978 sc->devinfo.pcie_link_width = 12979 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1; 12980 } 12981 } else { 12982 sc->devinfo.pcie_link_speed = 12983 (link_status & PCIM_LINK_STA_SPEED); 12984 sc->devinfo.pcie_link_width = 12985 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 12986 } 12987 12988 BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n", 12989 sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width); 12990 12991 sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG; 12992 sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg; 12993 12994 /* check if MSI capability is enabled */ 12995 if (pci_find_cap(sc->dev, PCIY_MSI, ®) == 0) { 12996 if (reg != 0) { 12997 BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg); 12998 12999 sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG; 13000 sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg; 13001 } 13002 } 13003 13004 /* check if MSI-X capability is enabled */ 13005 if (pci_find_cap(sc->dev, PCIY_MSIX, ®) == 0) { 13006 if (reg != 0) { 13007 BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg); 13008 13009 sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG; 13010 sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg; 13011 } 13012 } 13013 } 13014 13015 static int 13016 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc) 13017 { 13018 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13019 uint32_t val; 13020 13021 /* get the outer vlan if we're in switch-dependent mode */ 13022 13023 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13024 mf_info->ext_id = (uint16_t)val; 13025 13026 mf_info->multi_vnics_mode = 1; 13027 13028 if (!VALID_OVLAN(mf_info->ext_id)) { 13029 BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id); 13030 return (1); 13031 } 13032 13033 /* get the capabilities */ 13034 if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13035 FUNC_MF_CFG_PROTOCOL_ISCSI) { 13036 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI; 13037 } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13038 FUNC_MF_CFG_PROTOCOL_FCOE) { 13039 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE; 13040 } else { 13041 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET; 13042 } 13043 13044 mf_info->vnics_per_port = 13045 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13046 13047 return (0); 13048 } 13049 13050 static uint32_t 13051 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc) 13052 { 13053 uint32_t retval = 0; 13054 uint32_t val; 13055 13056 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13057 13058 if (val & MACP_FUNC_CFG_FLAGS_ENABLED) { 13059 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) { 13060 retval |= MF_PROTO_SUPPORT_ETHERNET; 13061 } 13062 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 13063 retval |= MF_PROTO_SUPPORT_ISCSI; 13064 } 13065 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 13066 retval |= MF_PROTO_SUPPORT_FCOE; 13067 } 13068 } 13069 13070 return (retval); 13071 } 13072 13073 static int 13074 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc) 13075 { 13076 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13077 uint32_t val; 13078 13079 /* 13080 * There is no outer vlan if we're in switch-independent mode. 13081 * If the mac is valid then assume multi-function. 13082 */ 13083 13084 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13085 13086 mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0); 13087 13088 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13089 13090 mf_info->vnics_per_port = 13091 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13092 13093 return (0); 13094 } 13095 13096 static int 13097 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc) 13098 { 13099 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13100 uint32_t e1hov_tag; 13101 uint32_t func_config; 13102 uint32_t niv_config; 13103 13104 mf_info->multi_vnics_mode = 1; 13105 13106 e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13107 func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13108 niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config); 13109 13110 mf_info->ext_id = 13111 (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >> 13112 FUNC_MF_CFG_E1HOV_TAG_SHIFT); 13113 13114 mf_info->default_vlan = 13115 (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >> 13116 FUNC_MF_CFG_AFEX_VLAN_SHIFT); 13117 13118 mf_info->niv_allowed_priorities = 13119 (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 13120 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT); 13121 13122 mf_info->niv_default_cos = 13123 (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 13124 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT); 13125 13126 mf_info->afex_vlan_mode = 13127 ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 13128 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT); 13129 13130 mf_info->niv_mba_enabled = 13131 ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >> 13132 FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT); 13133 13134 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13135 13136 mf_info->vnics_per_port = 13137 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13138 13139 return (0); 13140 } 13141 13142 static int 13143 bxe_check_valid_mf_cfg(struct bxe_softc *sc) 13144 { 13145 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13146 uint32_t mf_cfg1; 13147 uint32_t mf_cfg2; 13148 uint32_t ovlan1; 13149 uint32_t ovlan2; 13150 uint8_t i, j; 13151 13152 BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n", 13153 SC_PORT(sc)); 13154 BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n", 13155 mf_info->mf_config[SC_VN(sc)]); 13156 BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n", 13157 mf_info->multi_vnics_mode); 13158 BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n", 13159 mf_info->vnics_per_port); 13160 BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n", 13161 mf_info->ext_id); 13162 BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n", 13163 mf_info->min_bw[0], mf_info->min_bw[1], 13164 mf_info->min_bw[2], mf_info->min_bw[3]); 13165 BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n", 13166 mf_info->max_bw[0], mf_info->max_bw[1], 13167 mf_info->max_bw[2], mf_info->max_bw[3]); 13168 BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n", 13169 sc->mac_addr_str); 13170 13171 /* various MF mode sanity checks... */ 13172 13173 if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) { 13174 BLOGE(sc, "Enumerated function %d is marked as hidden\n", 13175 SC_PORT(sc)); 13176 return (1); 13177 } 13178 13179 if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) { 13180 BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n", 13181 mf_info->vnics_per_port, mf_info->multi_vnics_mode); 13182 return (1); 13183 } 13184 13185 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13186 /* vnic id > 0 must have valid ovlan in switch-dependent mode */ 13187 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) { 13188 BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n", 13189 SC_VN(sc), OVLAN(sc)); 13190 return (1); 13191 } 13192 13193 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) { 13194 BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n", 13195 mf_info->multi_vnics_mode, OVLAN(sc)); 13196 return (1); 13197 } 13198 13199 /* 13200 * Verify all functions are either MF or SF mode. If MF, make sure 13201 * sure that all non-hidden functions have a valid ovlan. If SF, 13202 * make sure that all non-hidden functions have an invalid ovlan. 13203 */ 13204 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13205 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13206 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13207 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13208 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) || 13209 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) { 13210 BLOGE(sc, "mf_mode=SD function %d MF config " 13211 "mismatch, multi_vnics_mode=%d ovlan=%d\n", 13212 i, mf_info->multi_vnics_mode, ovlan1); 13213 return (1); 13214 } 13215 } 13216 13217 /* Verify all funcs on the same port each have a different ovlan. */ 13218 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13219 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13220 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13221 /* iterate from the next function on the port to the max func */ 13222 for (j = i + 2; j < MAX_FUNC_NUM; j += 2) { 13223 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config); 13224 ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag); 13225 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13226 VALID_OVLAN(ovlan1) && 13227 !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) && 13228 VALID_OVLAN(ovlan2) && 13229 (ovlan1 == ovlan2)) { 13230 BLOGE(sc, "mf_mode=SD functions %d and %d " 13231 "have the same ovlan (%d)\n", 13232 i, j, ovlan1); 13233 return (1); 13234 } 13235 } 13236 } 13237 } /* MULTI_FUNCTION_SD */ 13238 13239 return (0); 13240 } 13241 13242 static int 13243 bxe_get_mf_cfg_info(struct bxe_softc *sc) 13244 { 13245 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13246 uint32_t val, mac_upper; 13247 uint8_t i, vnic; 13248 13249 /* initialize mf_info defaults */ 13250 mf_info->vnics_per_port = 1; 13251 mf_info->multi_vnics_mode = FALSE; 13252 mf_info->path_has_ovlan = FALSE; 13253 mf_info->mf_mode = SINGLE_FUNCTION; 13254 13255 if (!CHIP_IS_MF_CAP(sc)) { 13256 return (0); 13257 } 13258 13259 if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) { 13260 BLOGE(sc, "Invalid mf_cfg_base!\n"); 13261 return (1); 13262 } 13263 13264 /* get the MF mode (switch dependent / independent / single-function) */ 13265 13266 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13267 13268 switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) 13269 { 13270 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 13271 13272 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13273 13274 /* check for legal upper mac bytes */ 13275 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) { 13276 mf_info->mf_mode = MULTI_FUNCTION_SI; 13277 } else { 13278 BLOGE(sc, "Invalid config for Switch Independent mode\n"); 13279 } 13280 13281 break; 13282 13283 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 13284 case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4: 13285 13286 /* get outer vlan configuration */ 13287 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13288 13289 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) != 13290 FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 13291 mf_info->mf_mode = MULTI_FUNCTION_SD; 13292 } else { 13293 BLOGE(sc, "Invalid config for Switch Dependent mode\n"); 13294 } 13295 13296 break; 13297 13298 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 13299 13300 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */ 13301 return (0); 13302 13303 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 13304 13305 /* 13306 * Mark MF mode as NIV if MCP version includes NPAR-SD support 13307 * and the MAC address is valid. 13308 */ 13309 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13310 13311 if ((SHMEM2_HAS(sc, afex_driver_support)) && 13312 (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) { 13313 mf_info->mf_mode = MULTI_FUNCTION_AFEX; 13314 } else { 13315 BLOGE(sc, "Invalid config for AFEX mode\n"); 13316 } 13317 13318 break; 13319 13320 default: 13321 13322 BLOGE(sc, "Unknown MF mode (0x%08x)\n", 13323 (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)); 13324 13325 return (1); 13326 } 13327 13328 /* set path mf_mode (which could be different than function mf_mode) */ 13329 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13330 mf_info->path_has_ovlan = TRUE; 13331 } else if (mf_info->mf_mode == SINGLE_FUNCTION) { 13332 /* 13333 * Decide on path multi vnics mode. If we're not in MF mode and in 13334 * 4-port mode, this is good enough to check vnic-0 of the other port 13335 * on the same path 13336 */ 13337 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13338 uint8_t other_port = !(PORT_ID(sc) & 1); 13339 uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port)); 13340 13341 val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag); 13342 13343 mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0; 13344 } 13345 } 13346 13347 if (mf_info->mf_mode == SINGLE_FUNCTION) { 13348 /* invalid MF config */ 13349 if (SC_VN(sc) >= 1) { 13350 BLOGE(sc, "VNIC ID >= 1 in SF mode\n"); 13351 return (1); 13352 } 13353 13354 return (0); 13355 } 13356 13357 /* get the MF configuration */ 13358 mf_info->mf_config[SC_VN(sc)] = 13359 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13360 13361 switch(mf_info->mf_mode) 13362 { 13363 case MULTI_FUNCTION_SD: 13364 13365 bxe_get_shmem_mf_cfg_info_sd(sc); 13366 break; 13367 13368 case MULTI_FUNCTION_SI: 13369 13370 bxe_get_shmem_mf_cfg_info_si(sc); 13371 break; 13372 13373 case MULTI_FUNCTION_AFEX: 13374 13375 bxe_get_shmem_mf_cfg_info_niv(sc); 13376 break; 13377 13378 default: 13379 13380 BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n", 13381 mf_info->mf_mode); 13382 return (1); 13383 } 13384 13385 /* get the congestion management parameters */ 13386 13387 vnic = 0; 13388 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13389 /* get min/max bw */ 13390 val = MFCFG_RD(sc, func_mf_config[i].config); 13391 mf_info->min_bw[vnic] = 13392 ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT); 13393 mf_info->max_bw[vnic] = 13394 ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT); 13395 vnic++; 13396 } 13397 13398 return (bxe_check_valid_mf_cfg(sc)); 13399 } 13400 13401 static int 13402 bxe_get_shmem_info(struct bxe_softc *sc) 13403 { 13404 int port; 13405 uint32_t mac_hi, mac_lo, val; 13406 13407 port = SC_PORT(sc); 13408 mac_hi = mac_lo = 0; 13409 13410 sc->link_params.sc = sc; 13411 sc->link_params.port = port; 13412 13413 /* get the hardware config info */ 13414 sc->devinfo.hw_config = 13415 SHMEM_RD(sc, dev_info.shared_hw_config.config); 13416 sc->devinfo.hw_config2 = 13417 SHMEM_RD(sc, dev_info.shared_hw_config.config2); 13418 13419 sc->link_params.hw_led_mode = 13420 ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >> 13421 SHARED_HW_CFG_LED_MODE_SHIFT); 13422 13423 /* get the port feature config */ 13424 sc->port.config = 13425 SHMEM_RD(sc, dev_info.port_feature_config[port].config); 13426 13427 /* get the link params */ 13428 sc->link_params.speed_cap_mask[0] = 13429 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask); 13430 sc->link_params.speed_cap_mask[1] = 13431 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2); 13432 13433 /* get the lane config */ 13434 sc->link_params.lane_config = 13435 SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config); 13436 13437 /* get the link config */ 13438 val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config); 13439 sc->port.link_config[ELINK_INT_PHY] = val; 13440 sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK); 13441 sc->port.link_config[ELINK_EXT_PHY1] = 13442 SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2); 13443 13444 /* get the override preemphasis flag and enable it or turn it off */ 13445 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13446 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) { 13447 sc->link_params.feature_config_flags |= 13448 ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13449 } else { 13450 sc->link_params.feature_config_flags &= 13451 ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13452 } 13453 13454 /* get the initial value of the link params */ 13455 sc->link_params.multi_phy_config = 13456 SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config); 13457 13458 /* get external phy info */ 13459 sc->port.ext_phy_config = 13460 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 13461 13462 /* get the multifunction configuration */ 13463 bxe_get_mf_cfg_info(sc); 13464 13465 /* get the mac address */ 13466 if (IS_MF(sc)) { 13467 mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13468 mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower); 13469 } else { 13470 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper); 13471 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower); 13472 } 13473 13474 if ((mac_lo == 0) && (mac_hi == 0)) { 13475 *sc->mac_addr_str = 0; 13476 BLOGE(sc, "No Ethernet address programmed!\n"); 13477 } else { 13478 sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8); 13479 sc->link_params.mac_addr[1] = (uint8_t)(mac_hi); 13480 sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24); 13481 sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16); 13482 sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8); 13483 sc->link_params.mac_addr[5] = (uint8_t)(mac_lo); 13484 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str), 13485 "%02x:%02x:%02x:%02x:%02x:%02x", 13486 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1], 13487 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3], 13488 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]); 13489 BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str); 13490 } 13491 13492 return (0); 13493 } 13494 13495 static void 13496 bxe_get_tunable_params(struct bxe_softc *sc) 13497 { 13498 /* sanity checks */ 13499 13500 if ((bxe_interrupt_mode != INTR_MODE_INTX) && 13501 (bxe_interrupt_mode != INTR_MODE_MSI) && 13502 (bxe_interrupt_mode != INTR_MODE_MSIX)) { 13503 BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode); 13504 bxe_interrupt_mode = INTR_MODE_MSIX; 13505 } 13506 13507 if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) { 13508 BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count); 13509 bxe_queue_count = 0; 13510 } 13511 13512 if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) { 13513 if (bxe_max_rx_bufs == 0) { 13514 bxe_max_rx_bufs = RX_BD_USABLE; 13515 } else { 13516 BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs); 13517 bxe_max_rx_bufs = 2048; 13518 } 13519 } 13520 13521 if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) { 13522 BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks); 13523 bxe_hc_rx_ticks = 25; 13524 } 13525 13526 if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) { 13527 BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks); 13528 bxe_hc_tx_ticks = 50; 13529 } 13530 13531 if (bxe_max_aggregation_size == 0) { 13532 bxe_max_aggregation_size = TPA_AGG_SIZE; 13533 } 13534 13535 if (bxe_max_aggregation_size > 0xffff) { 13536 BLOGW(sc, "invalid max_aggregation_size (%d)\n", 13537 bxe_max_aggregation_size); 13538 bxe_max_aggregation_size = TPA_AGG_SIZE; 13539 } 13540 13541 if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) { 13542 BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs); 13543 bxe_mrrs = -1; 13544 } 13545 13546 if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) { 13547 BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen); 13548 bxe_autogreeen = 0; 13549 } 13550 13551 if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) { 13552 BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss); 13553 bxe_udp_rss = 0; 13554 } 13555 13556 /* pull in user settings */ 13557 13558 sc->interrupt_mode = bxe_interrupt_mode; 13559 sc->max_rx_bufs = bxe_max_rx_bufs; 13560 sc->hc_rx_ticks = bxe_hc_rx_ticks; 13561 sc->hc_tx_ticks = bxe_hc_tx_ticks; 13562 sc->max_aggregation_size = bxe_max_aggregation_size; 13563 sc->mrrs = bxe_mrrs; 13564 sc->autogreeen = bxe_autogreeen; 13565 sc->udp_rss = bxe_udp_rss; 13566 13567 if (bxe_interrupt_mode == INTR_MODE_INTX) { 13568 sc->num_queues = 1; 13569 } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */ 13570 sc->num_queues = 13571 min((bxe_queue_count ? bxe_queue_count : mp_ncpus), 13572 MAX_RSS_CHAINS); 13573 if (sc->num_queues > mp_ncpus) { 13574 sc->num_queues = mp_ncpus; 13575 } 13576 } 13577 13578 BLOGD(sc, DBG_LOAD, 13579 "User Config: " 13580 "debug=0x%lx " 13581 "interrupt_mode=%d " 13582 "queue_count=%d " 13583 "hc_rx_ticks=%d " 13584 "hc_tx_ticks=%d " 13585 "rx_budget=%d " 13586 "max_aggregation_size=%d " 13587 "mrrs=%d " 13588 "autogreeen=%d " 13589 "udp_rss=%d\n", 13590 bxe_debug, 13591 sc->interrupt_mode, 13592 sc->num_queues, 13593 sc->hc_rx_ticks, 13594 sc->hc_tx_ticks, 13595 bxe_rx_budget, 13596 sc->max_aggregation_size, 13597 sc->mrrs, 13598 sc->autogreeen, 13599 sc->udp_rss); 13600 } 13601 13602 static int 13603 bxe_media_detect(struct bxe_softc *sc) 13604 { 13605 int port_type; 13606 uint32_t phy_idx = bxe_get_cur_phy_idx(sc); 13607 13608 switch (sc->link_params.phy[phy_idx].media_type) { 13609 case ELINK_ETH_PHY_SFPP_10G_FIBER: 13610 case ELINK_ETH_PHY_XFP_FIBER: 13611 BLOGI(sc, "Found 10Gb Fiber media.\n"); 13612 sc->media = IFM_10G_SR; 13613 port_type = PORT_FIBRE; 13614 break; 13615 case ELINK_ETH_PHY_SFP_1G_FIBER: 13616 BLOGI(sc, "Found 1Gb Fiber media.\n"); 13617 sc->media = IFM_1000_SX; 13618 port_type = PORT_FIBRE; 13619 break; 13620 case ELINK_ETH_PHY_KR: 13621 case ELINK_ETH_PHY_CX4: 13622 BLOGI(sc, "Found 10GBase-CX4 media.\n"); 13623 sc->media = IFM_10G_CX4; 13624 port_type = PORT_FIBRE; 13625 break; 13626 case ELINK_ETH_PHY_DA_TWINAX: 13627 BLOGI(sc, "Found 10Gb Twinax media.\n"); 13628 sc->media = IFM_10G_TWINAX; 13629 port_type = PORT_DA; 13630 break; 13631 case ELINK_ETH_PHY_BASE_T: 13632 if (sc->link_params.speed_cap_mask[0] & 13633 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 13634 BLOGI(sc, "Found 10GBase-T media.\n"); 13635 sc->media = IFM_10G_T; 13636 port_type = PORT_TP; 13637 } else { 13638 BLOGI(sc, "Found 1000Base-T media.\n"); 13639 sc->media = IFM_1000_T; 13640 port_type = PORT_TP; 13641 } 13642 break; 13643 case ELINK_ETH_PHY_NOT_PRESENT: 13644 BLOGI(sc, "Media not present.\n"); 13645 sc->media = 0; 13646 port_type = PORT_OTHER; 13647 break; 13648 case ELINK_ETH_PHY_UNSPECIFIED: 13649 default: 13650 BLOGI(sc, "Unknown media!\n"); 13651 sc->media = 0; 13652 port_type = PORT_OTHER; 13653 break; 13654 } 13655 return port_type; 13656 } 13657 13658 #define GET_FIELD(value, fname) \ 13659 (((value) & (fname##_MASK)) >> (fname##_SHIFT)) 13660 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 13661 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 13662 13663 static int 13664 bxe_get_igu_cam_info(struct bxe_softc *sc) 13665 { 13666 int pfid = SC_FUNC(sc); 13667 int igu_sb_id; 13668 uint32_t val; 13669 uint8_t fid, igu_sb_cnt = 0; 13670 13671 sc->igu_base_sb = 0xff; 13672 13673 if (CHIP_INT_MODE_IS_BC(sc)) { 13674 int vn = SC_VN(sc); 13675 igu_sb_cnt = sc->igu_sb_cnt; 13676 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) * 13677 FP_SB_MAX_E1x); 13678 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x + 13679 (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn)); 13680 return (0); 13681 } 13682 13683 /* IGU in normal mode - read CAM */ 13684 for (igu_sb_id = 0; 13685 igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 13686 igu_sb_id++) { 13687 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 13688 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) { 13689 continue; 13690 } 13691 fid = IGU_FID(val); 13692 if ((fid & IGU_FID_ENCODE_IS_PF)) { 13693 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) { 13694 continue; 13695 } 13696 if (IGU_VEC(val) == 0) { 13697 /* default status block */ 13698 sc->igu_dsb_id = igu_sb_id; 13699 } else { 13700 if (sc->igu_base_sb == 0xff) { 13701 sc->igu_base_sb = igu_sb_id; 13702 } 13703 igu_sb_cnt++; 13704 } 13705 } 13706 } 13707 13708 /* 13709 * Due to new PF resource allocation by MFW T7.4 and above, it's optional 13710 * that number of CAM entries will not be equal to the value advertised in 13711 * PCI. Driver should use the minimal value of both as the actual status 13712 * block count 13713 */ 13714 sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt); 13715 13716 if (igu_sb_cnt == 0) { 13717 BLOGE(sc, "CAM configuration error\n"); 13718 return (-1); 13719 } 13720 13721 return (0); 13722 } 13723 13724 /* 13725 * Gather various information from the device config space, the device itself, 13726 * shmem, and the user input. 13727 */ 13728 static int 13729 bxe_get_device_info(struct bxe_softc *sc) 13730 { 13731 uint32_t val; 13732 int rc; 13733 13734 /* Get the data for the device */ 13735 sc->devinfo.vendor_id = pci_get_vendor(sc->dev); 13736 sc->devinfo.device_id = pci_get_device(sc->dev); 13737 sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev); 13738 sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev); 13739 13740 /* get the chip revision (chip metal comes from pci config space) */ 13741 sc->devinfo.chip_id = 13742 sc->link_params.chip_id = 13743 (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) | 13744 ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) | 13745 (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) | 13746 ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0)); 13747 13748 /* force 57811 according to MISC register */ 13749 if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 13750 if (CHIP_IS_57810(sc)) { 13751 sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) | 13752 (sc->devinfo.chip_id & 0x0000ffff)); 13753 } else if (CHIP_IS_57810_MF(sc)) { 13754 sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) | 13755 (sc->devinfo.chip_id & 0x0000ffff)); 13756 } 13757 sc->devinfo.chip_id |= 0x1; 13758 } 13759 13760 BLOGD(sc, DBG_LOAD, 13761 "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n", 13762 sc->devinfo.chip_id, 13763 ((sc->devinfo.chip_id >> 16) & 0xffff), 13764 ((sc->devinfo.chip_id >> 12) & 0xf), 13765 ((sc->devinfo.chip_id >> 4) & 0xff), 13766 ((sc->devinfo.chip_id >> 0) & 0xf)); 13767 13768 val = (REG_RD(sc, 0x2874) & 0x55); 13769 if ((sc->devinfo.chip_id & 0x1) || 13770 (CHIP_IS_E1(sc) && val) || 13771 (CHIP_IS_E1H(sc) && (val == 0x55))) { 13772 sc->flags |= BXE_ONE_PORT_FLAG; 13773 BLOGD(sc, DBG_LOAD, "single port device\n"); 13774 } 13775 13776 /* set the doorbell size */ 13777 sc->doorbell_size = (1 << BXE_DB_SHIFT); 13778 13779 /* determine whether the device is in 2 port or 4 port mode */ 13780 sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/ 13781 if (CHIP_IS_E2E3(sc)) { 13782 /* 13783 * Read port4mode_en_ovwr[0]: 13784 * If 1, four port mode is in port4mode_en_ovwr[1]. 13785 * If 0, four port mode is in port4mode_en[0]. 13786 */ 13787 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR); 13788 if (val & 1) { 13789 val = ((val >> 1) & 1); 13790 } else { 13791 val = REG_RD(sc, MISC_REG_PORT4MODE_EN); 13792 } 13793 13794 sc->devinfo.chip_port_mode = 13795 (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE; 13796 13797 BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2"); 13798 } 13799 13800 /* get the function and path info for the device */ 13801 bxe_get_function_num(sc); 13802 13803 /* get the shared memory base address */ 13804 sc->devinfo.shmem_base = 13805 sc->link_params.shmem_base = 13806 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 13807 sc->devinfo.shmem2_base = 13808 REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 : 13809 MISC_REG_GENERIC_CR_0)); 13810 13811 BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n", 13812 sc->devinfo.shmem_base, sc->devinfo.shmem2_base); 13813 13814 if (!sc->devinfo.shmem_base) { 13815 /* this should ONLY prevent upcoming shmem reads */ 13816 BLOGI(sc, "MCP not active\n"); 13817 sc->flags |= BXE_NO_MCP_FLAG; 13818 return (0); 13819 } 13820 13821 /* make sure the shared memory contents are valid */ 13822 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 13823 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) != 13824 (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) { 13825 BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val); 13826 return (0); 13827 } 13828 BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val); 13829 13830 /* get the bootcode version */ 13831 sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev); 13832 snprintf(sc->devinfo.bc_ver_str, 13833 sizeof(sc->devinfo.bc_ver_str), 13834 "%d.%d.%d", 13835 ((sc->devinfo.bc_ver >> 24) & 0xff), 13836 ((sc->devinfo.bc_ver >> 16) & 0xff), 13837 ((sc->devinfo.bc_ver >> 8) & 0xff)); 13838 BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str); 13839 13840 /* get the bootcode shmem address */ 13841 sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc); 13842 BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base); 13843 13844 /* clean indirect addresses as they're not used */ 13845 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 13846 if (IS_PF(sc)) { 13847 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0); 13848 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0); 13849 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0); 13850 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0); 13851 if (CHIP_IS_E1x(sc)) { 13852 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0); 13853 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0); 13854 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0); 13855 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0); 13856 } 13857 13858 /* 13859 * Enable internal target-read (in case we are probed after PF 13860 * FLR). Must be done prior to any BAR read access. Only for 13861 * 57712 and up 13862 */ 13863 if (!CHIP_IS_E1x(sc)) { 13864 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 13865 } 13866 } 13867 13868 /* get the nvram size */ 13869 val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4); 13870 sc->devinfo.flash_size = 13871 (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE)); 13872 BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size); 13873 13874 /* get PCI capabilites */ 13875 bxe_probe_pci_caps(sc); 13876 13877 bxe_set_power_state(sc, PCI_PM_D0); 13878 13879 /* get various configuration parameters from shmem */ 13880 bxe_get_shmem_info(sc); 13881 13882 if (sc->devinfo.pcie_msix_cap_reg != 0) { 13883 val = pci_read_config(sc->dev, 13884 (sc->devinfo.pcie_msix_cap_reg + 13885 PCIR_MSIX_CTRL), 13886 2); 13887 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE); 13888 } else { 13889 sc->igu_sb_cnt = 1; 13890 } 13891 13892 sc->igu_base_addr = BAR_IGU_INTMEM; 13893 13894 /* initialize IGU parameters */ 13895 if (CHIP_IS_E1x(sc)) { 13896 sc->devinfo.int_block = INT_BLOCK_HC; 13897 sc->igu_dsb_id = DEF_SB_IGU_ID; 13898 sc->igu_base_sb = 0; 13899 } else { 13900 sc->devinfo.int_block = INT_BLOCK_IGU; 13901 13902 /* do not allow device reset during IGU info preocessing */ 13903 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 13904 13905 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 13906 13907 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 13908 int tout = 5000; 13909 13910 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n"); 13911 13912 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 13913 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val); 13914 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f); 13915 13916 while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 13917 tout--; 13918 DELAY(1000); 13919 } 13920 13921 if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 13922 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n"); 13923 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 13924 return (-1); 13925 } 13926 } 13927 13928 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 13929 BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n"); 13930 sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP; 13931 } else { 13932 BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n"); 13933 } 13934 13935 rc = bxe_get_igu_cam_info(sc); 13936 13937 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 13938 13939 if (rc) { 13940 return (rc); 13941 } 13942 } 13943 13944 /* 13945 * Get base FW non-default (fast path) status block ID. This value is 13946 * used to initialize the fw_sb_id saved on the fp/queue structure to 13947 * determine the id used by the FW. 13948 */ 13949 if (CHIP_IS_E1x(sc)) { 13950 sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc)); 13951 } else { 13952 /* 13953 * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of 13954 * the same queue are indicated on the same IGU SB). So we prefer 13955 * FW and IGU SBs to be the same value. 13956 */ 13957 sc->base_fw_ndsb = sc->igu_base_sb; 13958 } 13959 13960 BLOGD(sc, DBG_LOAD, 13961 "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n", 13962 sc->igu_dsb_id, sc->igu_base_sb, 13963 sc->igu_sb_cnt, sc->base_fw_ndsb); 13964 13965 elink_phy_probe(&sc->link_params); 13966 13967 return (0); 13968 } 13969 13970 static void 13971 bxe_link_settings_supported(struct bxe_softc *sc, 13972 uint32_t switch_cfg) 13973 { 13974 uint32_t cfg_size = 0; 13975 uint32_t idx; 13976 uint8_t port = SC_PORT(sc); 13977 13978 /* aggregation of supported attributes of all external phys */ 13979 sc->port.supported[0] = 0; 13980 sc->port.supported[1] = 0; 13981 13982 switch (sc->link_params.num_phys) { 13983 case 1: 13984 sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported; 13985 cfg_size = 1; 13986 break; 13987 case 2: 13988 sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported; 13989 cfg_size = 1; 13990 break; 13991 case 3: 13992 if (sc->link_params.multi_phy_config & 13993 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 13994 sc->port.supported[1] = 13995 sc->link_params.phy[ELINK_EXT_PHY1].supported; 13996 sc->port.supported[0] = 13997 sc->link_params.phy[ELINK_EXT_PHY2].supported; 13998 } else { 13999 sc->port.supported[0] = 14000 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14001 sc->port.supported[1] = 14002 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14003 } 14004 cfg_size = 2; 14005 break; 14006 } 14007 14008 if (!(sc->port.supported[0] || sc->port.supported[1])) { 14009 BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n", 14010 SHMEM_RD(sc, 14011 dev_info.port_hw_config[port].external_phy_config), 14012 SHMEM_RD(sc, 14013 dev_info.port_hw_config[port].external_phy_config2)); 14014 return; 14015 } 14016 14017 if (CHIP_IS_E3(sc)) 14018 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR); 14019 else { 14020 switch (switch_cfg) { 14021 case ELINK_SWITCH_CFG_1G: 14022 sc->port.phy_addr = 14023 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 14024 break; 14025 case ELINK_SWITCH_CFG_10G: 14026 sc->port.phy_addr = 14027 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 14028 break; 14029 default: 14030 BLOGE(sc, "Invalid switch config in link_config=0x%08x\n", 14031 sc->port.link_config[0]); 14032 return; 14033 } 14034 } 14035 14036 BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr); 14037 14038 /* mask what we support according to speed_cap_mask per configuration */ 14039 for (idx = 0; idx < cfg_size; idx++) { 14040 if (!(sc->link_params.speed_cap_mask[idx] & 14041 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) { 14042 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half; 14043 } 14044 14045 if (!(sc->link_params.speed_cap_mask[idx] & 14046 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) { 14047 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full; 14048 } 14049 14050 if (!(sc->link_params.speed_cap_mask[idx] & 14051 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) { 14052 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half; 14053 } 14054 14055 if (!(sc->link_params.speed_cap_mask[idx] & 14056 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) { 14057 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full; 14058 } 14059 14060 if (!(sc->link_params.speed_cap_mask[idx] & 14061 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) { 14062 sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full; 14063 } 14064 14065 if (!(sc->link_params.speed_cap_mask[idx] & 14066 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) { 14067 sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full; 14068 } 14069 14070 if (!(sc->link_params.speed_cap_mask[idx] & 14071 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) { 14072 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full; 14073 } 14074 14075 if (!(sc->link_params.speed_cap_mask[idx] & 14076 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) { 14077 sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full; 14078 } 14079 } 14080 14081 BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n", 14082 sc->port.supported[0], sc->port.supported[1]); 14083 ELINK_DEBUG_P2(sc, "PHY supported 0=0x%08x 1=0x%08x\n", 14084 sc->port.supported[0], sc->port.supported[1]); 14085 } 14086 14087 static void 14088 bxe_link_settings_requested(struct bxe_softc *sc) 14089 { 14090 uint32_t link_config; 14091 uint32_t idx; 14092 uint32_t cfg_size = 0; 14093 14094 sc->port.advertising[0] = 0; 14095 sc->port.advertising[1] = 0; 14096 14097 switch (sc->link_params.num_phys) { 14098 case 1: 14099 case 2: 14100 cfg_size = 1; 14101 break; 14102 case 3: 14103 cfg_size = 2; 14104 break; 14105 } 14106 14107 for (idx = 0; idx < cfg_size; idx++) { 14108 sc->link_params.req_duplex[idx] = DUPLEX_FULL; 14109 link_config = sc->port.link_config[idx]; 14110 14111 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 14112 case PORT_FEATURE_LINK_SPEED_AUTO: 14113 if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) { 14114 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14115 sc->port.advertising[idx] |= sc->port.supported[idx]; 14116 if (sc->link_params.phy[ELINK_EXT_PHY1].type == 14117 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 14118 sc->port.advertising[idx] |= 14119 (ELINK_SUPPORTED_100baseT_Half | 14120 ELINK_SUPPORTED_100baseT_Full); 14121 } else { 14122 /* force 10G, no AN */ 14123 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14124 sc->port.advertising[idx] |= 14125 (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); 14126 continue; 14127 } 14128 break; 14129 14130 case PORT_FEATURE_LINK_SPEED_10M_FULL: 14131 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) { 14132 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14133 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full | 14134 ADVERTISED_TP); 14135 } else { 14136 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14137 "speed_cap_mask=0x%08x\n", 14138 link_config, sc->link_params.speed_cap_mask[idx]); 14139 return; 14140 } 14141 break; 14142 14143 case PORT_FEATURE_LINK_SPEED_10M_HALF: 14144 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) { 14145 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14146 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14147 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half | 14148 ADVERTISED_TP); 14149 ELINK_DEBUG_P1(sc, "driver requesting DUPLEX_HALF req_duplex = %x!\n", 14150 sc->link_params.req_duplex[idx]); 14151 } else { 14152 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14153 "speed_cap_mask=0x%08x\n", 14154 link_config, sc->link_params.speed_cap_mask[idx]); 14155 return; 14156 } 14157 break; 14158 14159 case PORT_FEATURE_LINK_SPEED_100M_FULL: 14160 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) { 14161 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14162 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full | 14163 ADVERTISED_TP); 14164 } else { 14165 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14166 "speed_cap_mask=0x%08x\n", 14167 link_config, sc->link_params.speed_cap_mask[idx]); 14168 return; 14169 } 14170 break; 14171 14172 case PORT_FEATURE_LINK_SPEED_100M_HALF: 14173 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) { 14174 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14175 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14176 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half | 14177 ADVERTISED_TP); 14178 } else { 14179 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14180 "speed_cap_mask=0x%08x\n", 14181 link_config, sc->link_params.speed_cap_mask[idx]); 14182 return; 14183 } 14184 break; 14185 14186 case PORT_FEATURE_LINK_SPEED_1G: 14187 if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) { 14188 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000; 14189 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full | 14190 ADVERTISED_TP); 14191 } else { 14192 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14193 "speed_cap_mask=0x%08x\n", 14194 link_config, sc->link_params.speed_cap_mask[idx]); 14195 return; 14196 } 14197 break; 14198 14199 case PORT_FEATURE_LINK_SPEED_2_5G: 14200 if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) { 14201 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500; 14202 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full | 14203 ADVERTISED_TP); 14204 } else { 14205 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14206 "speed_cap_mask=0x%08x\n", 14207 link_config, sc->link_params.speed_cap_mask[idx]); 14208 return; 14209 } 14210 break; 14211 14212 case PORT_FEATURE_LINK_SPEED_10G_CX4: 14213 if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) { 14214 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14215 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full | 14216 ADVERTISED_FIBRE); 14217 } else { 14218 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14219 "speed_cap_mask=0x%08x\n", 14220 link_config, sc->link_params.speed_cap_mask[idx]); 14221 return; 14222 } 14223 break; 14224 14225 case PORT_FEATURE_LINK_SPEED_20G: 14226 sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000; 14227 break; 14228 14229 default: 14230 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14231 "speed_cap_mask=0x%08x\n", 14232 link_config, sc->link_params.speed_cap_mask[idx]); 14233 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14234 sc->port.advertising[idx] = sc->port.supported[idx]; 14235 break; 14236 } 14237 14238 sc->link_params.req_flow_ctrl[idx] = 14239 (link_config & PORT_FEATURE_FLOW_CONTROL_MASK); 14240 14241 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) { 14242 if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) { 14243 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE; 14244 } else { 14245 bxe_set_requested_fc(sc); 14246 } 14247 } 14248 14249 BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d " 14250 "req_flow_ctrl=0x%x advertising=0x%x\n", 14251 sc->link_params.req_line_speed[idx], 14252 sc->link_params.req_duplex[idx], 14253 sc->link_params.req_flow_ctrl[idx], 14254 sc->port.advertising[idx]); 14255 ELINK_DEBUG_P3(sc, "req_line_speed=%d req_duplex=%d " 14256 "advertising=0x%x\n", 14257 sc->link_params.req_line_speed[idx], 14258 sc->link_params.req_duplex[idx], 14259 sc->port.advertising[idx]); 14260 } 14261 } 14262 14263 static void 14264 bxe_get_phy_info(struct bxe_softc *sc) 14265 { 14266 uint8_t port = SC_PORT(sc); 14267 uint32_t config = sc->port.config; 14268 uint32_t eee_mode; 14269 14270 /* shmem data already read in bxe_get_shmem_info() */ 14271 14272 ELINK_DEBUG_P3(sc, "lane_config=0x%08x speed_cap_mask0=0x%08x " 14273 "link_config0=0x%08x\n", 14274 sc->link_params.lane_config, 14275 sc->link_params.speed_cap_mask[0], 14276 sc->port.link_config[0]); 14277 14278 14279 bxe_link_settings_supported(sc, sc->link_params.switch_cfg); 14280 bxe_link_settings_requested(sc); 14281 14282 if (sc->autogreeen == AUTO_GREEN_FORCE_ON) { 14283 sc->link_params.feature_config_flags |= 14284 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14285 } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) { 14286 sc->link_params.feature_config_flags &= 14287 ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14288 } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) { 14289 sc->link_params.feature_config_flags |= 14290 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14291 } 14292 14293 /* configure link feature according to nvram value */ 14294 eee_mode = 14295 (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) & 14296 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 14297 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 14298 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 14299 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI | 14300 ELINK_EEE_MODE_ENABLE_LPI | 14301 ELINK_EEE_MODE_OUTPUT_TIME); 14302 } else { 14303 sc->link_params.eee_mode = 0; 14304 } 14305 14306 /* get the media type */ 14307 bxe_media_detect(sc); 14308 ELINK_DEBUG_P1(sc, "detected media type\n", sc->media); 14309 } 14310 14311 static void 14312 bxe_get_params(struct bxe_softc *sc) 14313 { 14314 /* get user tunable params */ 14315 bxe_get_tunable_params(sc); 14316 14317 /* select the RX and TX ring sizes */ 14318 sc->tx_ring_size = TX_BD_USABLE; 14319 sc->rx_ring_size = RX_BD_USABLE; 14320 14321 /* XXX disable WoL */ 14322 sc->wol = 0; 14323 } 14324 14325 static void 14326 bxe_set_modes_bitmap(struct bxe_softc *sc) 14327 { 14328 uint32_t flags = 0; 14329 14330 if (CHIP_REV_IS_FPGA(sc)) { 14331 SET_FLAGS(flags, MODE_FPGA); 14332 } else if (CHIP_REV_IS_EMUL(sc)) { 14333 SET_FLAGS(flags, MODE_EMUL); 14334 } else { 14335 SET_FLAGS(flags, MODE_ASIC); 14336 } 14337 14338 if (CHIP_IS_MODE_4_PORT(sc)) { 14339 SET_FLAGS(flags, MODE_PORT4); 14340 } else { 14341 SET_FLAGS(flags, MODE_PORT2); 14342 } 14343 14344 if (CHIP_IS_E2(sc)) { 14345 SET_FLAGS(flags, MODE_E2); 14346 } else if (CHIP_IS_E3(sc)) { 14347 SET_FLAGS(flags, MODE_E3); 14348 if (CHIP_REV(sc) == CHIP_REV_Ax) { 14349 SET_FLAGS(flags, MODE_E3_A0); 14350 } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ { 14351 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 14352 } 14353 } 14354 14355 if (IS_MF(sc)) { 14356 SET_FLAGS(flags, MODE_MF); 14357 switch (sc->devinfo.mf_info.mf_mode) { 14358 case MULTI_FUNCTION_SD: 14359 SET_FLAGS(flags, MODE_MF_SD); 14360 break; 14361 case MULTI_FUNCTION_SI: 14362 SET_FLAGS(flags, MODE_MF_SI); 14363 break; 14364 case MULTI_FUNCTION_AFEX: 14365 SET_FLAGS(flags, MODE_MF_AFEX); 14366 break; 14367 } 14368 } else { 14369 SET_FLAGS(flags, MODE_SF); 14370 } 14371 14372 #if defined(__LITTLE_ENDIAN) 14373 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 14374 #else /* __BIG_ENDIAN */ 14375 SET_FLAGS(flags, MODE_BIG_ENDIAN); 14376 #endif 14377 14378 INIT_MODE_FLAGS(sc) = flags; 14379 } 14380 14381 static int 14382 bxe_alloc_hsi_mem(struct bxe_softc *sc) 14383 { 14384 struct bxe_fastpath *fp; 14385 bus_addr_t busaddr; 14386 int max_agg_queues; 14387 int max_segments; 14388 bus_size_t max_size; 14389 bus_size_t max_seg_size; 14390 char buf[32]; 14391 int rc; 14392 int i, j; 14393 14394 /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */ 14395 14396 /* allocate the parent bus DMA tag */ 14397 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */ 14398 1, /* alignment */ 14399 0, /* boundary limit */ 14400 BUS_SPACE_MAXADDR, /* restricted low */ 14401 BUS_SPACE_MAXADDR, /* restricted hi */ 14402 NULL, /* addr filter() */ 14403 NULL, /* addr filter() arg */ 14404 BUS_SPACE_MAXSIZE_32BIT, /* max map size */ 14405 BUS_SPACE_UNRESTRICTED, /* num discontinuous */ 14406 BUS_SPACE_MAXSIZE_32BIT, /* max seg size */ 14407 0, /* flags */ 14408 NULL, /* lock() */ 14409 NULL, /* lock() arg */ 14410 &sc->parent_dma_tag); /* returned dma tag */ 14411 if (rc != 0) { 14412 BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc); 14413 return (1); 14414 } 14415 14416 /************************/ 14417 /* DEFAULT STATUS BLOCK */ 14418 /************************/ 14419 14420 if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block), 14421 &sc->def_sb_dma, "default status block") != 0) { 14422 /* XXX */ 14423 bus_dma_tag_destroy(sc->parent_dma_tag); 14424 return (1); 14425 } 14426 14427 sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr; 14428 14429 /***************/ 14430 /* EVENT QUEUE */ 14431 /***************/ 14432 14433 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14434 &sc->eq_dma, "event queue") != 0) { 14435 /* XXX */ 14436 bxe_dma_free(sc, &sc->def_sb_dma); 14437 sc->def_sb = NULL; 14438 bus_dma_tag_destroy(sc->parent_dma_tag); 14439 return (1); 14440 } 14441 14442 sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr; 14443 14444 /*************/ 14445 /* SLOW PATH */ 14446 /*************/ 14447 14448 if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath), 14449 &sc->sp_dma, "slow path") != 0) { 14450 /* XXX */ 14451 bxe_dma_free(sc, &sc->eq_dma); 14452 sc->eq = NULL; 14453 bxe_dma_free(sc, &sc->def_sb_dma); 14454 sc->def_sb = NULL; 14455 bus_dma_tag_destroy(sc->parent_dma_tag); 14456 return (1); 14457 } 14458 14459 sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr; 14460 14461 /*******************/ 14462 /* SLOW PATH QUEUE */ 14463 /*******************/ 14464 14465 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14466 &sc->spq_dma, "slow path queue") != 0) { 14467 /* XXX */ 14468 bxe_dma_free(sc, &sc->sp_dma); 14469 sc->sp = NULL; 14470 bxe_dma_free(sc, &sc->eq_dma); 14471 sc->eq = NULL; 14472 bxe_dma_free(sc, &sc->def_sb_dma); 14473 sc->def_sb = NULL; 14474 bus_dma_tag_destroy(sc->parent_dma_tag); 14475 return (1); 14476 } 14477 14478 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr; 14479 14480 /***************************/ 14481 /* FW DECOMPRESSION BUFFER */ 14482 /***************************/ 14483 14484 if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma, 14485 "fw decompression buffer") != 0) { 14486 /* XXX */ 14487 bxe_dma_free(sc, &sc->spq_dma); 14488 sc->spq = NULL; 14489 bxe_dma_free(sc, &sc->sp_dma); 14490 sc->sp = NULL; 14491 bxe_dma_free(sc, &sc->eq_dma); 14492 sc->eq = NULL; 14493 bxe_dma_free(sc, &sc->def_sb_dma); 14494 sc->def_sb = NULL; 14495 bus_dma_tag_destroy(sc->parent_dma_tag); 14496 return (1); 14497 } 14498 14499 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr; 14500 14501 if ((sc->gz_strm = 14502 malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) { 14503 /* XXX */ 14504 bxe_dma_free(sc, &sc->gz_buf_dma); 14505 sc->gz_buf = NULL; 14506 bxe_dma_free(sc, &sc->spq_dma); 14507 sc->spq = NULL; 14508 bxe_dma_free(sc, &sc->sp_dma); 14509 sc->sp = NULL; 14510 bxe_dma_free(sc, &sc->eq_dma); 14511 sc->eq = NULL; 14512 bxe_dma_free(sc, &sc->def_sb_dma); 14513 sc->def_sb = NULL; 14514 bus_dma_tag_destroy(sc->parent_dma_tag); 14515 return (1); 14516 } 14517 14518 /*************/ 14519 /* FASTPATHS */ 14520 /*************/ 14521 14522 /* allocate DMA memory for each fastpath structure */ 14523 for (i = 0; i < sc->num_queues; i++) { 14524 fp = &sc->fp[i]; 14525 fp->sc = sc; 14526 fp->index = i; 14527 14528 /*******************/ 14529 /* FP STATUS BLOCK */ 14530 /*******************/ 14531 14532 snprintf(buf, sizeof(buf), "fp %d status block", i); 14533 if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block), 14534 &fp->sb_dma, buf) != 0) { 14535 /* XXX unwind and free previous fastpath allocations */ 14536 BLOGE(sc, "Failed to alloc %s\n", buf); 14537 return (1); 14538 } else { 14539 if (CHIP_IS_E2E3(sc)) { 14540 fp->status_block.e2_sb = 14541 (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr; 14542 } else { 14543 fp->status_block.e1x_sb = 14544 (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr; 14545 } 14546 } 14547 14548 /******************/ 14549 /* FP TX BD CHAIN */ 14550 /******************/ 14551 14552 snprintf(buf, sizeof(buf), "fp %d tx bd chain", i); 14553 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES), 14554 &fp->tx_dma, buf) != 0) { 14555 /* XXX unwind and free previous fastpath allocations */ 14556 BLOGE(sc, "Failed to alloc %s\n", buf); 14557 return (1); 14558 } else { 14559 fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr; 14560 } 14561 14562 /* link together the tx bd chain pages */ 14563 for (j = 1; j <= TX_BD_NUM_PAGES; j++) { 14564 /* index into the tx bd chain array to last entry per page */ 14565 struct eth_tx_next_bd *tx_next_bd = 14566 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd; 14567 /* point to the next page and wrap from last page */ 14568 busaddr = (fp->tx_dma.paddr + 14569 (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES))); 14570 tx_next_bd->addr_hi = htole32(U64_HI(busaddr)); 14571 tx_next_bd->addr_lo = htole32(U64_LO(busaddr)); 14572 } 14573 14574 /******************/ 14575 /* FP RX BD CHAIN */ 14576 /******************/ 14577 14578 snprintf(buf, sizeof(buf), "fp %d rx bd chain", i); 14579 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES), 14580 &fp->rx_dma, buf) != 0) { 14581 /* XXX unwind and free previous fastpath allocations */ 14582 BLOGE(sc, "Failed to alloc %s\n", buf); 14583 return (1); 14584 } else { 14585 fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr; 14586 } 14587 14588 /* link together the rx bd chain pages */ 14589 for (j = 1; j <= RX_BD_NUM_PAGES; j++) { 14590 /* index into the rx bd chain array to last entry per page */ 14591 struct eth_rx_bd *rx_bd = 14592 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2]; 14593 /* point to the next page and wrap from last page */ 14594 busaddr = (fp->rx_dma.paddr + 14595 (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES))); 14596 rx_bd->addr_hi = htole32(U64_HI(busaddr)); 14597 rx_bd->addr_lo = htole32(U64_LO(busaddr)); 14598 } 14599 14600 /*******************/ 14601 /* FP RX RCQ CHAIN */ 14602 /*******************/ 14603 14604 snprintf(buf, sizeof(buf), "fp %d rcq chain", i); 14605 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES), 14606 &fp->rcq_dma, buf) != 0) { 14607 /* XXX unwind and free previous fastpath allocations */ 14608 BLOGE(sc, "Failed to alloc %s\n", buf); 14609 return (1); 14610 } else { 14611 fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr; 14612 } 14613 14614 /* link together the rcq chain pages */ 14615 for (j = 1; j <= RCQ_NUM_PAGES; j++) { 14616 /* index into the rcq chain array to last entry per page */ 14617 struct eth_rx_cqe_next_page *rx_cqe_next = 14618 (struct eth_rx_cqe_next_page *) 14619 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1]; 14620 /* point to the next page and wrap from last page */ 14621 busaddr = (fp->rcq_dma.paddr + 14622 (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES))); 14623 rx_cqe_next->addr_hi = htole32(U64_HI(busaddr)); 14624 rx_cqe_next->addr_lo = htole32(U64_LO(busaddr)); 14625 } 14626 14627 /*******************/ 14628 /* FP RX SGE CHAIN */ 14629 /*******************/ 14630 14631 snprintf(buf, sizeof(buf), "fp %d sge chain", i); 14632 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES), 14633 &fp->rx_sge_dma, buf) != 0) { 14634 /* XXX unwind and free previous fastpath allocations */ 14635 BLOGE(sc, "Failed to alloc %s\n", buf); 14636 return (1); 14637 } else { 14638 fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr; 14639 } 14640 14641 /* link together the sge chain pages */ 14642 for (j = 1; j <= RX_SGE_NUM_PAGES; j++) { 14643 /* index into the rcq chain array to last entry per page */ 14644 struct eth_rx_sge *rx_sge = 14645 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2]; 14646 /* point to the next page and wrap from last page */ 14647 busaddr = (fp->rx_sge_dma.paddr + 14648 (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES))); 14649 rx_sge->addr_hi = htole32(U64_HI(busaddr)); 14650 rx_sge->addr_lo = htole32(U64_LO(busaddr)); 14651 } 14652 14653 /***********************/ 14654 /* FP TX MBUF DMA MAPS */ 14655 /***********************/ 14656 14657 /* set required sizes before mapping to conserve resources */ 14658 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 14659 max_size = BXE_TSO_MAX_SIZE; 14660 max_segments = BXE_TSO_MAX_SEGMENTS; 14661 max_seg_size = BXE_TSO_MAX_SEG_SIZE; 14662 } else { 14663 max_size = (MCLBYTES * BXE_MAX_SEGMENTS); 14664 max_segments = BXE_MAX_SEGMENTS; 14665 max_seg_size = MCLBYTES; 14666 } 14667 14668 /* create a dma tag for the tx mbufs */ 14669 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14670 1, /* alignment */ 14671 0, /* boundary limit */ 14672 BUS_SPACE_MAXADDR, /* restricted low */ 14673 BUS_SPACE_MAXADDR, /* restricted hi */ 14674 NULL, /* addr filter() */ 14675 NULL, /* addr filter() arg */ 14676 max_size, /* max map size */ 14677 max_segments, /* num discontinuous */ 14678 max_seg_size, /* max seg size */ 14679 0, /* flags */ 14680 NULL, /* lock() */ 14681 NULL, /* lock() arg */ 14682 &fp->tx_mbuf_tag); /* returned dma tag */ 14683 if (rc != 0) { 14684 /* XXX unwind and free previous fastpath allocations */ 14685 BLOGE(sc, "Failed to create dma tag for " 14686 "'fp %d tx mbufs' (%d)\n", i, rc); 14687 return (1); 14688 } 14689 14690 /* create dma maps for each of the tx mbuf clusters */ 14691 for (j = 0; j < TX_BD_TOTAL; j++) { 14692 if (bus_dmamap_create(fp->tx_mbuf_tag, 14693 BUS_DMA_NOWAIT, 14694 &fp->tx_mbuf_chain[j].m_map)) { 14695 /* XXX unwind and free previous fastpath allocations */ 14696 BLOGE(sc, "Failed to create dma map for " 14697 "'fp %d tx mbuf %d' (%d)\n", i, j, rc); 14698 return (1); 14699 } 14700 } 14701 14702 /***********************/ 14703 /* FP RX MBUF DMA MAPS */ 14704 /***********************/ 14705 14706 /* create a dma tag for the rx mbufs */ 14707 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14708 1, /* alignment */ 14709 0, /* boundary limit */ 14710 BUS_SPACE_MAXADDR, /* restricted low */ 14711 BUS_SPACE_MAXADDR, /* restricted hi */ 14712 NULL, /* addr filter() */ 14713 NULL, /* addr filter() arg */ 14714 MJUM9BYTES, /* max map size */ 14715 1, /* num discontinuous */ 14716 MJUM9BYTES, /* max seg size */ 14717 0, /* flags */ 14718 NULL, /* lock() */ 14719 NULL, /* lock() arg */ 14720 &fp->rx_mbuf_tag); /* returned dma tag */ 14721 if (rc != 0) { 14722 /* XXX unwind and free previous fastpath allocations */ 14723 BLOGE(sc, "Failed to create dma tag for " 14724 "'fp %d rx mbufs' (%d)\n", i, rc); 14725 return (1); 14726 } 14727 14728 /* create dma maps for each of the rx mbuf clusters */ 14729 for (j = 0; j < RX_BD_TOTAL; j++) { 14730 if (bus_dmamap_create(fp->rx_mbuf_tag, 14731 BUS_DMA_NOWAIT, 14732 &fp->rx_mbuf_chain[j].m_map)) { 14733 /* XXX unwind and free previous fastpath allocations */ 14734 BLOGE(sc, "Failed to create dma map for " 14735 "'fp %d rx mbuf %d' (%d)\n", i, j, rc); 14736 return (1); 14737 } 14738 } 14739 14740 /* create dma map for the spare rx mbuf cluster */ 14741 if (bus_dmamap_create(fp->rx_mbuf_tag, 14742 BUS_DMA_NOWAIT, 14743 &fp->rx_mbuf_spare_map)) { 14744 /* XXX unwind and free previous fastpath allocations */ 14745 BLOGE(sc, "Failed to create dma map for " 14746 "'fp %d spare rx mbuf' (%d)\n", i, rc); 14747 return (1); 14748 } 14749 14750 /***************************/ 14751 /* FP RX SGE MBUF DMA MAPS */ 14752 /***************************/ 14753 14754 /* create a dma tag for the rx sge mbufs */ 14755 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14756 1, /* alignment */ 14757 0, /* boundary limit */ 14758 BUS_SPACE_MAXADDR, /* restricted low */ 14759 BUS_SPACE_MAXADDR, /* restricted hi */ 14760 NULL, /* addr filter() */ 14761 NULL, /* addr filter() arg */ 14762 BCM_PAGE_SIZE, /* max map size */ 14763 1, /* num discontinuous */ 14764 BCM_PAGE_SIZE, /* max seg size */ 14765 0, /* flags */ 14766 NULL, /* lock() */ 14767 NULL, /* lock() arg */ 14768 &fp->rx_sge_mbuf_tag); /* returned dma tag */ 14769 if (rc != 0) { 14770 /* XXX unwind and free previous fastpath allocations */ 14771 BLOGE(sc, "Failed to create dma tag for " 14772 "'fp %d rx sge mbufs' (%d)\n", i, rc); 14773 return (1); 14774 } 14775 14776 /* create dma maps for the rx sge mbuf clusters */ 14777 for (j = 0; j < RX_SGE_TOTAL; j++) { 14778 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 14779 BUS_DMA_NOWAIT, 14780 &fp->rx_sge_mbuf_chain[j].m_map)) { 14781 /* XXX unwind and free previous fastpath allocations */ 14782 BLOGE(sc, "Failed to create dma map for " 14783 "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc); 14784 return (1); 14785 } 14786 } 14787 14788 /* create dma map for the spare rx sge mbuf cluster */ 14789 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 14790 BUS_DMA_NOWAIT, 14791 &fp->rx_sge_mbuf_spare_map)) { 14792 /* XXX unwind and free previous fastpath allocations */ 14793 BLOGE(sc, "Failed to create dma map for " 14794 "'fp %d spare rx sge mbuf' (%d)\n", i, rc); 14795 return (1); 14796 } 14797 14798 /***************************/ 14799 /* FP RX TPA MBUF DMA MAPS */ 14800 /***************************/ 14801 14802 /* create dma maps for the rx tpa mbuf clusters */ 14803 max_agg_queues = MAX_AGG_QS(sc); 14804 14805 for (j = 0; j < max_agg_queues; j++) { 14806 if (bus_dmamap_create(fp->rx_mbuf_tag, 14807 BUS_DMA_NOWAIT, 14808 &fp->rx_tpa_info[j].bd.m_map)) { 14809 /* XXX unwind and free previous fastpath allocations */ 14810 BLOGE(sc, "Failed to create dma map for " 14811 "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc); 14812 return (1); 14813 } 14814 } 14815 14816 /* create dma map for the spare rx tpa mbuf cluster */ 14817 if (bus_dmamap_create(fp->rx_mbuf_tag, 14818 BUS_DMA_NOWAIT, 14819 &fp->rx_tpa_info_mbuf_spare_map)) { 14820 /* XXX unwind and free previous fastpath allocations */ 14821 BLOGE(sc, "Failed to create dma map for " 14822 "'fp %d spare rx tpa mbuf' (%d)\n", i, rc); 14823 return (1); 14824 } 14825 14826 bxe_init_sge_ring_bit_mask(fp); 14827 } 14828 14829 return (0); 14830 } 14831 14832 static void 14833 bxe_free_hsi_mem(struct bxe_softc *sc) 14834 { 14835 struct bxe_fastpath *fp; 14836 int max_agg_queues; 14837 int i, j; 14838 14839 if (sc->parent_dma_tag == NULL) { 14840 return; /* assume nothing was allocated */ 14841 } 14842 14843 for (i = 0; i < sc->num_queues; i++) { 14844 fp = &sc->fp[i]; 14845 14846 /*******************/ 14847 /* FP STATUS BLOCK */ 14848 /*******************/ 14849 14850 bxe_dma_free(sc, &fp->sb_dma); 14851 memset(&fp->status_block, 0, sizeof(fp->status_block)); 14852 14853 /******************/ 14854 /* FP TX BD CHAIN */ 14855 /******************/ 14856 14857 bxe_dma_free(sc, &fp->tx_dma); 14858 fp->tx_chain = NULL; 14859 14860 /******************/ 14861 /* FP RX BD CHAIN */ 14862 /******************/ 14863 14864 bxe_dma_free(sc, &fp->rx_dma); 14865 fp->rx_chain = NULL; 14866 14867 /*******************/ 14868 /* FP RX RCQ CHAIN */ 14869 /*******************/ 14870 14871 bxe_dma_free(sc, &fp->rcq_dma); 14872 fp->rcq_chain = NULL; 14873 14874 /*******************/ 14875 /* FP RX SGE CHAIN */ 14876 /*******************/ 14877 14878 bxe_dma_free(sc, &fp->rx_sge_dma); 14879 fp->rx_sge_chain = NULL; 14880 14881 /***********************/ 14882 /* FP TX MBUF DMA MAPS */ 14883 /***********************/ 14884 14885 if (fp->tx_mbuf_tag != NULL) { 14886 for (j = 0; j < TX_BD_TOTAL; j++) { 14887 if (fp->tx_mbuf_chain[j].m_map != NULL) { 14888 bus_dmamap_unload(fp->tx_mbuf_tag, 14889 fp->tx_mbuf_chain[j].m_map); 14890 bus_dmamap_destroy(fp->tx_mbuf_tag, 14891 fp->tx_mbuf_chain[j].m_map); 14892 } 14893 } 14894 14895 bus_dma_tag_destroy(fp->tx_mbuf_tag); 14896 fp->tx_mbuf_tag = NULL; 14897 } 14898 14899 /***********************/ 14900 /* FP RX MBUF DMA MAPS */ 14901 /***********************/ 14902 14903 if (fp->rx_mbuf_tag != NULL) { 14904 for (j = 0; j < RX_BD_TOTAL; j++) { 14905 if (fp->rx_mbuf_chain[j].m_map != NULL) { 14906 bus_dmamap_unload(fp->rx_mbuf_tag, 14907 fp->rx_mbuf_chain[j].m_map); 14908 bus_dmamap_destroy(fp->rx_mbuf_tag, 14909 fp->rx_mbuf_chain[j].m_map); 14910 } 14911 } 14912 14913 if (fp->rx_mbuf_spare_map != NULL) { 14914 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 14915 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 14916 } 14917 14918 /***************************/ 14919 /* FP RX TPA MBUF DMA MAPS */ 14920 /***************************/ 14921 14922 max_agg_queues = MAX_AGG_QS(sc); 14923 14924 for (j = 0; j < max_agg_queues; j++) { 14925 if (fp->rx_tpa_info[j].bd.m_map != NULL) { 14926 bus_dmamap_unload(fp->rx_mbuf_tag, 14927 fp->rx_tpa_info[j].bd.m_map); 14928 bus_dmamap_destroy(fp->rx_mbuf_tag, 14929 fp->rx_tpa_info[j].bd.m_map); 14930 } 14931 } 14932 14933 if (fp->rx_tpa_info_mbuf_spare_map != NULL) { 14934 bus_dmamap_unload(fp->rx_mbuf_tag, 14935 fp->rx_tpa_info_mbuf_spare_map); 14936 bus_dmamap_destroy(fp->rx_mbuf_tag, 14937 fp->rx_tpa_info_mbuf_spare_map); 14938 } 14939 14940 bus_dma_tag_destroy(fp->rx_mbuf_tag); 14941 fp->rx_mbuf_tag = NULL; 14942 } 14943 14944 /***************************/ 14945 /* FP RX SGE MBUF DMA MAPS */ 14946 /***************************/ 14947 14948 if (fp->rx_sge_mbuf_tag != NULL) { 14949 for (j = 0; j < RX_SGE_TOTAL; j++) { 14950 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) { 14951 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 14952 fp->rx_sge_mbuf_chain[j].m_map); 14953 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 14954 fp->rx_sge_mbuf_chain[j].m_map); 14955 } 14956 } 14957 14958 if (fp->rx_sge_mbuf_spare_map != NULL) { 14959 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 14960 fp->rx_sge_mbuf_spare_map); 14961 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 14962 fp->rx_sge_mbuf_spare_map); 14963 } 14964 14965 bus_dma_tag_destroy(fp->rx_sge_mbuf_tag); 14966 fp->rx_sge_mbuf_tag = NULL; 14967 } 14968 } 14969 14970 /***************************/ 14971 /* FW DECOMPRESSION BUFFER */ 14972 /***************************/ 14973 14974 bxe_dma_free(sc, &sc->gz_buf_dma); 14975 sc->gz_buf = NULL; 14976 free(sc->gz_strm, M_DEVBUF); 14977 sc->gz_strm = NULL; 14978 14979 /*******************/ 14980 /* SLOW PATH QUEUE */ 14981 /*******************/ 14982 14983 bxe_dma_free(sc, &sc->spq_dma); 14984 sc->spq = NULL; 14985 14986 /*************/ 14987 /* SLOW PATH */ 14988 /*************/ 14989 14990 bxe_dma_free(sc, &sc->sp_dma); 14991 sc->sp = NULL; 14992 14993 /***************/ 14994 /* EVENT QUEUE */ 14995 /***************/ 14996 14997 bxe_dma_free(sc, &sc->eq_dma); 14998 sc->eq = NULL; 14999 15000 /************************/ 15001 /* DEFAULT STATUS BLOCK */ 15002 /************************/ 15003 15004 bxe_dma_free(sc, &sc->def_sb_dma); 15005 sc->def_sb = NULL; 15006 15007 bus_dma_tag_destroy(sc->parent_dma_tag); 15008 sc->parent_dma_tag = NULL; 15009 } 15010 15011 /* 15012 * Previous driver DMAE transaction may have occurred when pre-boot stage 15013 * ended and boot began. This would invalidate the addresses of the 15014 * transaction, resulting in was-error bit set in the PCI causing all 15015 * hw-to-host PCIe transactions to timeout. If this happened we want to clear 15016 * the interrupt which detected this from the pglueb and the was-done bit 15017 */ 15018 static void 15019 bxe_prev_interrupted_dmae(struct bxe_softc *sc) 15020 { 15021 uint32_t val; 15022 15023 if (!CHIP_IS_E1x(sc)) { 15024 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS); 15025 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { 15026 BLOGD(sc, DBG_LOAD, 15027 "Clearing 'was-error' bit that was set in pglueb"); 15028 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc)); 15029 } 15030 } 15031 } 15032 15033 static int 15034 bxe_prev_mcp_done(struct bxe_softc *sc) 15035 { 15036 uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 15037 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 15038 if (!rc) { 15039 BLOGE(sc, "MCP response failure, aborting\n"); 15040 return (-1); 15041 } 15042 15043 return (0); 15044 } 15045 15046 static struct bxe_prev_list_node * 15047 bxe_prev_path_get_entry(struct bxe_softc *sc) 15048 { 15049 struct bxe_prev_list_node *tmp; 15050 15051 LIST_FOREACH(tmp, &bxe_prev_list, node) { 15052 if ((sc->pcie_bus == tmp->bus) && 15053 (sc->pcie_device == tmp->slot) && 15054 (SC_PATH(sc) == tmp->path)) { 15055 return (tmp); 15056 } 15057 } 15058 15059 return (NULL); 15060 } 15061 15062 static uint8_t 15063 bxe_prev_is_path_marked(struct bxe_softc *sc) 15064 { 15065 struct bxe_prev_list_node *tmp; 15066 int rc = FALSE; 15067 15068 mtx_lock(&bxe_prev_mtx); 15069 15070 tmp = bxe_prev_path_get_entry(sc); 15071 if (tmp) { 15072 if (tmp->aer) { 15073 BLOGD(sc, DBG_LOAD, 15074 "Path %d/%d/%d was marked by AER\n", 15075 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15076 } else { 15077 rc = TRUE; 15078 BLOGD(sc, DBG_LOAD, 15079 "Path %d/%d/%d was already cleaned from previous drivers\n", 15080 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15081 } 15082 } 15083 15084 mtx_unlock(&bxe_prev_mtx); 15085 15086 return (rc); 15087 } 15088 15089 static int 15090 bxe_prev_mark_path(struct bxe_softc *sc, 15091 uint8_t after_undi) 15092 { 15093 struct bxe_prev_list_node *tmp; 15094 15095 mtx_lock(&bxe_prev_mtx); 15096 15097 /* Check whether the entry for this path already exists */ 15098 tmp = bxe_prev_path_get_entry(sc); 15099 if (tmp) { 15100 if (!tmp->aer) { 15101 BLOGD(sc, DBG_LOAD, 15102 "Re-marking AER in path %d/%d/%d\n", 15103 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15104 } else { 15105 BLOGD(sc, DBG_LOAD, 15106 "Removing AER indication from path %d/%d/%d\n", 15107 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15108 tmp->aer = 0; 15109 } 15110 15111 mtx_unlock(&bxe_prev_mtx); 15112 return (0); 15113 } 15114 15115 mtx_unlock(&bxe_prev_mtx); 15116 15117 /* Create an entry for this path and add it */ 15118 tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF, 15119 (M_NOWAIT | M_ZERO)); 15120 if (!tmp) { 15121 BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n"); 15122 return (-1); 15123 } 15124 15125 tmp->bus = sc->pcie_bus; 15126 tmp->slot = sc->pcie_device; 15127 tmp->path = SC_PATH(sc); 15128 tmp->aer = 0; 15129 tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0; 15130 15131 mtx_lock(&bxe_prev_mtx); 15132 15133 BLOGD(sc, DBG_LOAD, 15134 "Marked path %d/%d/%d - finished previous unload\n", 15135 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15136 LIST_INSERT_HEAD(&bxe_prev_list, tmp, node); 15137 15138 mtx_unlock(&bxe_prev_mtx); 15139 15140 return (0); 15141 } 15142 15143 static int 15144 bxe_do_flr(struct bxe_softc *sc) 15145 { 15146 int i; 15147 15148 /* only E2 and onwards support FLR */ 15149 if (CHIP_IS_E1x(sc)) { 15150 BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n"); 15151 return (-1); 15152 } 15153 15154 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 15155 if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 15156 BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n", 15157 sc->devinfo.bc_ver); 15158 return (-1); 15159 } 15160 15161 /* Wait for Transaction Pending bit clean */ 15162 for (i = 0; i < 4; i++) { 15163 if (i) { 15164 DELAY(((1 << (i - 1)) * 100) * 1000); 15165 } 15166 15167 if (!bxe_is_pcie_pending(sc)) { 15168 goto clear; 15169 } 15170 } 15171 15172 BLOGE(sc, "PCIE transaction is not cleared, " 15173 "proceeding with reset anyway\n"); 15174 15175 clear: 15176 15177 BLOGD(sc, DBG_LOAD, "Initiating FLR\n"); 15178 bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0); 15179 15180 return (0); 15181 } 15182 15183 struct bxe_mac_vals { 15184 uint32_t xmac_addr; 15185 uint32_t xmac_val; 15186 uint32_t emac_addr; 15187 uint32_t emac_val; 15188 uint32_t umac_addr; 15189 uint32_t umac_val; 15190 uint32_t bmac_addr; 15191 uint32_t bmac_val[2]; 15192 }; 15193 15194 static void 15195 bxe_prev_unload_close_mac(struct bxe_softc *sc, 15196 struct bxe_mac_vals *vals) 15197 { 15198 uint32_t val, base_addr, offset, mask, reset_reg; 15199 uint8_t mac_stopped = FALSE; 15200 uint8_t port = SC_PORT(sc); 15201 uint32_t wb_data[2]; 15202 15203 /* reset addresses as they also mark which values were changed */ 15204 vals->bmac_addr = 0; 15205 vals->umac_addr = 0; 15206 vals->xmac_addr = 0; 15207 vals->emac_addr = 0; 15208 15209 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2); 15210 15211 if (!CHIP_IS_E3(sc)) { 15212 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 15213 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 15214 if ((mask & reset_reg) && val) { 15215 BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n"); 15216 base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM 15217 : NIG_REG_INGRESS_BMAC0_MEM; 15218 offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL 15219 : BIGMAC_REGISTER_BMAC_CONTROL; 15220 15221 /* 15222 * use rd/wr since we cannot use dmae. This is safe 15223 * since MCP won't access the bus due to the request 15224 * to unload, and no function on the path can be 15225 * loaded at this time. 15226 */ 15227 wb_data[0] = REG_RD(sc, base_addr + offset); 15228 wb_data[1] = REG_RD(sc, base_addr + offset + 0x4); 15229 vals->bmac_addr = base_addr + offset; 15230 vals->bmac_val[0] = wb_data[0]; 15231 vals->bmac_val[1] = wb_data[1]; 15232 wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE; 15233 REG_WR(sc, vals->bmac_addr, wb_data[0]); 15234 REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]); 15235 } 15236 15237 BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n"); 15238 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4; 15239 vals->emac_val = REG_RD(sc, vals->emac_addr); 15240 REG_WR(sc, vals->emac_addr, 0); 15241 mac_stopped = TRUE; 15242 } else { 15243 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 15244 BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n"); 15245 base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 15246 val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI); 15247 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1)); 15248 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1)); 15249 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 15250 vals->xmac_val = REG_RD(sc, vals->xmac_addr); 15251 REG_WR(sc, vals->xmac_addr, 0); 15252 mac_stopped = TRUE; 15253 } 15254 15255 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 15256 if (mask & reset_reg) { 15257 BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n"); 15258 base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 15259 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; 15260 vals->umac_val = REG_RD(sc, vals->umac_addr); 15261 REG_WR(sc, vals->umac_addr, 0); 15262 mac_stopped = TRUE; 15263 } 15264 } 15265 15266 if (mac_stopped) { 15267 DELAY(20000); 15268 } 15269 } 15270 15271 #define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 15272 #define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff) 15273 #define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 15274 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 15275 15276 static void 15277 bxe_prev_unload_undi_inc(struct bxe_softc *sc, 15278 uint8_t port, 15279 uint8_t inc) 15280 { 15281 uint16_t rcq, bd; 15282 uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port)); 15283 15284 rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc; 15285 bd = BXE_PREV_UNDI_BD(tmp_reg) + inc; 15286 15287 tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd); 15288 REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg); 15289 15290 BLOGD(sc, DBG_LOAD, 15291 "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n", 15292 port, bd, rcq); 15293 } 15294 15295 static int 15296 bxe_prev_unload_common(struct bxe_softc *sc) 15297 { 15298 uint32_t reset_reg, tmp_reg = 0, rc; 15299 uint8_t prev_undi = FALSE; 15300 struct bxe_mac_vals mac_vals; 15301 uint32_t timer_count = 1000; 15302 uint32_t prev_brb; 15303 15304 /* 15305 * It is possible a previous function received 'common' answer, 15306 * but hasn't loaded yet, therefore creating a scenario of 15307 * multiple functions receiving 'common' on the same path. 15308 */ 15309 BLOGD(sc, DBG_LOAD, "Common unload Flow\n"); 15310 15311 memset(&mac_vals, 0, sizeof(mac_vals)); 15312 15313 if (bxe_prev_is_path_marked(sc)) { 15314 return (bxe_prev_mcp_done(sc)); 15315 } 15316 15317 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1); 15318 15319 /* Reset should be performed after BRB is emptied */ 15320 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 15321 /* Close the MAC Rx to prevent BRB from filling up */ 15322 bxe_prev_unload_close_mac(sc, &mac_vals); 15323 15324 /* close LLH filters towards the BRB */ 15325 elink_set_rx_filter(&sc->link_params, 0); 15326 15327 /* 15328 * Check if the UNDI driver was previously loaded. 15329 * UNDI driver initializes CID offset for normal bell to 0x7 15330 */ 15331 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { 15332 tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST); 15333 if (tmp_reg == 0x7) { 15334 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n"); 15335 prev_undi = TRUE; 15336 /* clear the UNDI indication */ 15337 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0); 15338 /* clear possible idle check errors */ 15339 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0); 15340 } 15341 } 15342 15343 /* wait until BRB is empty */ 15344 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15345 while (timer_count) { 15346 prev_brb = tmp_reg; 15347 15348 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15349 if (!tmp_reg) { 15350 break; 15351 } 15352 15353 BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg); 15354 15355 /* reset timer as long as BRB actually gets emptied */ 15356 if (prev_brb > tmp_reg) { 15357 timer_count = 1000; 15358 } else { 15359 timer_count--; 15360 } 15361 15362 /* If UNDI resides in memory, manually increment it */ 15363 if (prev_undi) { 15364 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1); 15365 } 15366 15367 DELAY(10); 15368 } 15369 15370 if (!timer_count) { 15371 BLOGE(sc, "Failed to empty BRB\n"); 15372 } 15373 } 15374 15375 /* No packets are in the pipeline, path is ready for reset */ 15376 bxe_reset_common(sc); 15377 15378 if (mac_vals.xmac_addr) { 15379 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val); 15380 } 15381 if (mac_vals.umac_addr) { 15382 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val); 15383 } 15384 if (mac_vals.emac_addr) { 15385 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val); 15386 } 15387 if (mac_vals.bmac_addr) { 15388 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 15389 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 15390 } 15391 15392 rc = bxe_prev_mark_path(sc, prev_undi); 15393 if (rc) { 15394 bxe_prev_mcp_done(sc); 15395 return (rc); 15396 } 15397 15398 return (bxe_prev_mcp_done(sc)); 15399 } 15400 15401 static int 15402 bxe_prev_unload_uncommon(struct bxe_softc *sc) 15403 { 15404 int rc; 15405 15406 BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n"); 15407 15408 /* Test if previous unload process was already finished for this path */ 15409 if (bxe_prev_is_path_marked(sc)) { 15410 return (bxe_prev_mcp_done(sc)); 15411 } 15412 15413 BLOGD(sc, DBG_LOAD, "Path is unmarked\n"); 15414 15415 /* 15416 * If function has FLR capabilities, and existing FW version matches 15417 * the one required, then FLR will be sufficient to clean any residue 15418 * left by previous driver 15419 */ 15420 rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION); 15421 if (!rc) { 15422 /* fw version is good */ 15423 BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n"); 15424 rc = bxe_do_flr(sc); 15425 } 15426 15427 if (!rc) { 15428 /* FLR was performed */ 15429 BLOGD(sc, DBG_LOAD, "FLR successful\n"); 15430 return (0); 15431 } 15432 15433 BLOGD(sc, DBG_LOAD, "Could not FLR\n"); 15434 15435 /* Close the MCP request, return failure*/ 15436 rc = bxe_prev_mcp_done(sc); 15437 if (!rc) { 15438 rc = BXE_PREV_WAIT_NEEDED; 15439 } 15440 15441 return (rc); 15442 } 15443 15444 static int 15445 bxe_prev_unload(struct bxe_softc *sc) 15446 { 15447 int time_counter = 10; 15448 uint32_t fw, hw_lock_reg, hw_lock_val; 15449 uint32_t rc = 0; 15450 15451 /* 15452 * Clear HW from errors which may have resulted from an interrupted 15453 * DMAE transaction. 15454 */ 15455 bxe_prev_interrupted_dmae(sc); 15456 15457 /* Release previously held locks */ 15458 hw_lock_reg = 15459 (SC_FUNC(sc) <= 5) ? 15460 (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) : 15461 (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8); 15462 15463 hw_lock_val = (REG_RD(sc, hw_lock_reg)); 15464 if (hw_lock_val) { 15465 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 15466 BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n"); 15467 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 15468 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc))); 15469 } 15470 BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n"); 15471 REG_WR(sc, hw_lock_reg, 0xffffffff); 15472 } else { 15473 BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n"); 15474 } 15475 15476 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) { 15477 BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n"); 15478 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0); 15479 } 15480 15481 do { 15482 /* Lock MCP using an unload request */ 15483 fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 15484 if (!fw) { 15485 BLOGE(sc, "MCP response failure, aborting\n"); 15486 rc = -1; 15487 break; 15488 } 15489 15490 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) { 15491 rc = bxe_prev_unload_common(sc); 15492 break; 15493 } 15494 15495 /* non-common reply from MCP night require looping */ 15496 rc = bxe_prev_unload_uncommon(sc); 15497 if (rc != BXE_PREV_WAIT_NEEDED) { 15498 break; 15499 } 15500 15501 DELAY(20000); 15502 } while (--time_counter); 15503 15504 if (!time_counter || rc) { 15505 BLOGE(sc, "Failed to unload previous driver!" 15506 " time_counter %d rc %d\n", time_counter, rc); 15507 rc = -1; 15508 } 15509 15510 return (rc); 15511 } 15512 15513 void 15514 bxe_dcbx_set_state(struct bxe_softc *sc, 15515 uint8_t dcb_on, 15516 uint32_t dcbx_enabled) 15517 { 15518 if (!CHIP_IS_E1x(sc)) { 15519 sc->dcb_state = dcb_on; 15520 sc->dcbx_enabled = dcbx_enabled; 15521 } else { 15522 sc->dcb_state = FALSE; 15523 sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID; 15524 } 15525 BLOGD(sc, DBG_LOAD, 15526 "DCB state [%s:%s]\n", 15527 dcb_on ? "ON" : "OFF", 15528 (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" : 15529 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" : 15530 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ? 15531 "on-chip with negotiation" : "invalid"); 15532 } 15533 15534 /* must be called after sriov-enable */ 15535 static int 15536 bxe_set_qm_cid_count(struct bxe_softc *sc) 15537 { 15538 int cid_count = BXE_L2_MAX_CID(sc); 15539 15540 if (IS_SRIOV(sc)) { 15541 cid_count += BXE_VF_CIDS; 15542 } 15543 15544 if (CNIC_SUPPORT(sc)) { 15545 cid_count += CNIC_CID_MAX; 15546 } 15547 15548 return (roundup(cid_count, QM_CID_ROUND)); 15549 } 15550 15551 static void 15552 bxe_init_multi_cos(struct bxe_softc *sc) 15553 { 15554 int pri, cos; 15555 15556 uint32_t pri_map = 0; /* XXX change to user config */ 15557 15558 for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) { 15559 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4)); 15560 if (cos < sc->max_cos) { 15561 sc->prio_to_cos[pri] = cos; 15562 } else { 15563 BLOGW(sc, "Invalid COS %d for priority %d " 15564 "(max COS is %d), setting to 0\n", 15565 cos, pri, (sc->max_cos - 1)); 15566 sc->prio_to_cos[pri] = 0; 15567 } 15568 } 15569 } 15570 15571 static int 15572 bxe_sysctl_state(SYSCTL_HANDLER_ARGS) 15573 { 15574 struct bxe_softc *sc; 15575 int error, result; 15576 15577 result = 0; 15578 error = sysctl_handle_int(oidp, &result, 0, req); 15579 15580 if (error || !req->newptr) { 15581 return (error); 15582 } 15583 15584 if (result == 1) { 15585 uint32_t temp; 15586 sc = (struct bxe_softc *)arg1; 15587 15588 BLOGI(sc, "... dumping driver state ...\n"); 15589 temp = SHMEM2_RD(sc, temperature_in_half_celsius); 15590 BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2)); 15591 } 15592 15593 return (error); 15594 } 15595 15596 static int 15597 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS) 15598 { 15599 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15600 uint32_t *eth_stats = (uint32_t *)&sc->eth_stats; 15601 uint32_t *offset; 15602 uint64_t value = 0; 15603 int index = (int)arg2; 15604 15605 if (index >= BXE_NUM_ETH_STATS) { 15606 BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index); 15607 return (-1); 15608 } 15609 15610 offset = (eth_stats + bxe_eth_stats_arr[index].offset); 15611 15612 switch (bxe_eth_stats_arr[index].size) { 15613 case 4: 15614 value = (uint64_t)*offset; 15615 break; 15616 case 8: 15617 value = HILO_U64(*offset, *(offset + 1)); 15618 break; 15619 default: 15620 BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n", 15621 index, bxe_eth_stats_arr[index].size); 15622 return (-1); 15623 } 15624 15625 return (sysctl_handle_64(oidp, &value, 0, req)); 15626 } 15627 15628 static int 15629 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS) 15630 { 15631 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15632 uint32_t *eth_stats; 15633 uint32_t *offset; 15634 uint64_t value = 0; 15635 uint32_t q_stat = (uint32_t)arg2; 15636 uint32_t fp_index = ((q_stat >> 16) & 0xffff); 15637 uint32_t index = (q_stat & 0xffff); 15638 15639 eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats; 15640 15641 if (index >= BXE_NUM_ETH_Q_STATS) { 15642 BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index); 15643 return (-1); 15644 } 15645 15646 offset = (eth_stats + bxe_eth_q_stats_arr[index].offset); 15647 15648 switch (bxe_eth_q_stats_arr[index].size) { 15649 case 4: 15650 value = (uint64_t)*offset; 15651 break; 15652 case 8: 15653 value = HILO_U64(*offset, *(offset + 1)); 15654 break; 15655 default: 15656 BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n", 15657 index, bxe_eth_q_stats_arr[index].size); 15658 return (-1); 15659 } 15660 15661 return (sysctl_handle_64(oidp, &value, 0, req)); 15662 } 15663 15664 static void bxe_force_link_reset(struct bxe_softc *sc) 15665 { 15666 15667 bxe_acquire_phy_lock(sc); 15668 elink_link_reset(&sc->link_params, &sc->link_vars, 1); 15669 bxe_release_phy_lock(sc); 15670 } 15671 15672 static int 15673 bxe_sysctl_pauseparam(SYSCTL_HANDLER_ARGS) 15674 { 15675 struct bxe_softc *sc = (struct bxe_softc *)arg1;; 15676 uint32_t cfg_idx = bxe_get_link_cfg_idx(sc); 15677 int rc = 0; 15678 int error; 15679 int result; 15680 15681 15682 error = sysctl_handle_int(oidp, &sc->bxe_pause_param, 0, req); 15683 15684 if (error || !req->newptr) { 15685 return (error); 15686 } 15687 if ((sc->bxe_pause_param < 0) || (sc->bxe_pause_param > 8)) { 15688 BLOGW(sc, "invalid pause param (%d) - use intergers between 1 & 8\n",sc->bxe_pause_param); 15689 sc->bxe_pause_param = 8; 15690 } 15691 15692 result = (sc->bxe_pause_param << PORT_FEATURE_FLOW_CONTROL_SHIFT); 15693 15694 15695 if((result & 0x400) && !(sc->port.supported[cfg_idx] & ELINK_SUPPORTED_Autoneg)) { 15696 BLOGW(sc, "Does not support Autoneg pause_param %d\n", sc->bxe_pause_param); 15697 return -EINVAL; 15698 } 15699 15700 if(IS_MF(sc)) 15701 return 0; 15702 sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_AUTO; 15703 if(result & ELINK_FLOW_CTRL_RX) 15704 sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_RX; 15705 15706 if(result & ELINK_FLOW_CTRL_TX) 15707 sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_TX; 15708 if(sc->link_params.req_flow_ctrl[cfg_idx] == ELINK_FLOW_CTRL_AUTO) 15709 sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_NONE; 15710 15711 if(result & 0x400) { 15712 if (sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) { 15713 sc->link_params.req_flow_ctrl[cfg_idx] = 15714 ELINK_FLOW_CTRL_AUTO; 15715 } 15716 sc->link_params.req_fc_auto_adv = 0; 15717 if (result & ELINK_FLOW_CTRL_RX) 15718 sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_RX; 15719 15720 if (result & ELINK_FLOW_CTRL_TX) 15721 sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_TX; 15722 if (!sc->link_params.req_fc_auto_adv) 15723 sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_NONE; 15724 } 15725 if (IS_PF(sc)) { 15726 if (sc->link_vars.link_up) { 15727 bxe_stats_handle(sc, STATS_EVENT_STOP); 15728 } 15729 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 15730 bxe_force_link_reset(sc); 15731 bxe_acquire_phy_lock(sc); 15732 15733 rc = elink_phy_init(&sc->link_params, &sc->link_vars); 15734 15735 bxe_release_phy_lock(sc); 15736 15737 bxe_calc_fc_adv(sc); 15738 } 15739 } 15740 return rc; 15741 } 15742 15743 15744 static void 15745 bxe_add_sysctls(struct bxe_softc *sc) 15746 { 15747 struct sysctl_ctx_list *ctx; 15748 struct sysctl_oid_list *children; 15749 struct sysctl_oid *queue_top, *queue; 15750 struct sysctl_oid_list *queue_top_children, *queue_children; 15751 char queue_num_buf[32]; 15752 uint32_t q_stat; 15753 int i, j; 15754 15755 ctx = device_get_sysctl_ctx(sc->dev); 15756 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 15757 15758 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version", 15759 CTLFLAG_RD, BXE_DRIVER_VERSION, 0, 15760 "version"); 15761 15762 snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d", 15763 BCM_5710_FW_MAJOR_VERSION, 15764 BCM_5710_FW_MINOR_VERSION, 15765 BCM_5710_FW_REVISION_VERSION, 15766 BCM_5710_FW_ENGINEERING_VERSION); 15767 15768 snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s", 15769 ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" : 15770 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" : 15771 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" : 15772 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" : 15773 "Unknown")); 15774 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics", 15775 CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0, 15776 "multifunction vnics per port"); 15777 15778 snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d", 15779 ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" : 15780 (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" : 15781 (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" : 15782 "???GT/s"), 15783 sc->devinfo.pcie_link_width); 15784 15785 sc->debug = bxe_debug; 15786 15787 #if __FreeBSD_version >= 900000 15788 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 15789 CTLFLAG_RD, sc->devinfo.bc_ver_str, 0, 15790 "bootcode version"); 15791 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 15792 CTLFLAG_RD, sc->fw_ver_str, 0, 15793 "firmware version"); 15794 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 15795 CTLFLAG_RD, sc->mf_mode_str, 0, 15796 "multifunction mode"); 15797 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 15798 CTLFLAG_RD, sc->mac_addr_str, 0, 15799 "mac address"); 15800 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 15801 CTLFLAG_RD, sc->pci_link_str, 0, 15802 "pci link status"); 15803 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug", 15804 CTLFLAG_RW, &sc->debug, 15805 "debug logging mode"); 15806 #else 15807 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 15808 CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0, 15809 "bootcode version"); 15810 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 15811 CTLFLAG_RD, &sc->fw_ver_str, 0, 15812 "firmware version"); 15813 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 15814 CTLFLAG_RD, &sc->mf_mode_str, 0, 15815 "multifunction mode"); 15816 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 15817 CTLFLAG_RD, &sc->mac_addr_str, 0, 15818 "mac address"); 15819 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 15820 CTLFLAG_RD, &sc->pci_link_str, 0, 15821 "pci link status"); 15822 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug", 15823 CTLFLAG_RW, &sc->debug, 0, 15824 "debug logging mode"); 15825 #endif /* #if __FreeBSD_version >= 900000 */ 15826 15827 sc->trigger_grcdump = 0; 15828 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "trigger_grcdump", 15829 CTLFLAG_RW, &sc->trigger_grcdump, 0, 15830 "trigger grcdump should be invoked" 15831 " before collecting grcdump"); 15832 15833 sc->grcdump_started = 0; 15834 sc->grcdump_done = 0; 15835 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done", 15836 CTLFLAG_RD, &sc->grcdump_done, 0, 15837 "set by driver when grcdump is done"); 15838 15839 sc->rx_budget = bxe_rx_budget; 15840 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget", 15841 CTLFLAG_RW, &sc->rx_budget, 0, 15842 "rx processing budget"); 15843 15844 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_param", 15845 CTLTYPE_UINT | CTLFLAG_RW, sc, 0, 15846 bxe_sysctl_pauseparam, "IU", 15847 "need pause frames- DEF:0/TX:1/RX:2/BOTH:3/AUTO:4/AUTOTX:5/AUTORX:6/AUTORXTX:7/NONE:8"); 15848 15849 15850 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state", 15851 CTLTYPE_UINT | CTLFLAG_RW, sc, 0, 15852 bxe_sysctl_state, "IU", "dump driver state"); 15853 15854 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 15855 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 15856 bxe_eth_stats_arr[i].string, 15857 CTLTYPE_U64 | CTLFLAG_RD, sc, i, 15858 bxe_sysctl_eth_stat, "LU", 15859 bxe_eth_stats_arr[i].string); 15860 } 15861 15862 /* add a new parent node for all queues "dev.bxe.#.queue" */ 15863 queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue", 15864 CTLFLAG_RD, NULL, "queue"); 15865 queue_top_children = SYSCTL_CHILDREN(queue_top); 15866 15867 for (i = 0; i < sc->num_queues; i++) { 15868 /* add a new parent node for a single queue "dev.bxe.#.queue.#" */ 15869 snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i); 15870 queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO, 15871 queue_num_buf, CTLFLAG_RD, NULL, 15872 "single queue"); 15873 queue_children = SYSCTL_CHILDREN(queue); 15874 15875 for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) { 15876 q_stat = ((i << 16) | j); 15877 SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO, 15878 bxe_eth_q_stats_arr[j].string, 15879 CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat, 15880 bxe_sysctl_eth_q_stat, "LU", 15881 bxe_eth_q_stats_arr[j].string); 15882 } 15883 } 15884 } 15885 15886 static int 15887 bxe_alloc_buf_rings(struct bxe_softc *sc) 15888 { 15889 #if __FreeBSD_version >= 901504 15890 15891 int i; 15892 struct bxe_fastpath *fp; 15893 15894 for (i = 0; i < sc->num_queues; i++) { 15895 15896 fp = &sc->fp[i]; 15897 15898 fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF, 15899 M_NOWAIT, &fp->tx_mtx); 15900 if (fp->tx_br == NULL) 15901 return (-1); 15902 } 15903 #endif 15904 return (0); 15905 } 15906 15907 static void 15908 bxe_free_buf_rings(struct bxe_softc *sc) 15909 { 15910 #if __FreeBSD_version >= 901504 15911 15912 int i; 15913 struct bxe_fastpath *fp; 15914 15915 for (i = 0; i < sc->num_queues; i++) { 15916 15917 fp = &sc->fp[i]; 15918 15919 if (fp->tx_br) { 15920 buf_ring_free(fp->tx_br, M_DEVBUF); 15921 fp->tx_br = NULL; 15922 } 15923 } 15924 15925 #endif 15926 } 15927 15928 static void 15929 bxe_init_fp_mutexs(struct bxe_softc *sc) 15930 { 15931 int i; 15932 struct bxe_fastpath *fp; 15933 15934 for (i = 0; i < sc->num_queues; i++) { 15935 15936 fp = &sc->fp[i]; 15937 15938 snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name), 15939 "bxe%d_fp%d_tx_lock", sc->unit, i); 15940 mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF); 15941 15942 snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name), 15943 "bxe%d_fp%d_rx_lock", sc->unit, i); 15944 mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF); 15945 } 15946 } 15947 15948 static void 15949 bxe_destroy_fp_mutexs(struct bxe_softc *sc) 15950 { 15951 int i; 15952 struct bxe_fastpath *fp; 15953 15954 for (i = 0; i < sc->num_queues; i++) { 15955 15956 fp = &sc->fp[i]; 15957 15958 if (mtx_initialized(&fp->tx_mtx)) { 15959 mtx_destroy(&fp->tx_mtx); 15960 } 15961 15962 if (mtx_initialized(&fp->rx_mtx)) { 15963 mtx_destroy(&fp->rx_mtx); 15964 } 15965 } 15966 } 15967 15968 15969 /* 15970 * Device attach function. 15971 * 15972 * Allocates device resources, performs secondary chip identification, and 15973 * initializes driver instance variables. This function is called from driver 15974 * load after a successful probe. 15975 * 15976 * Returns: 15977 * 0 = Success, >0 = Failure 15978 */ 15979 static int 15980 bxe_attach(device_t dev) 15981 { 15982 struct bxe_softc *sc; 15983 15984 sc = device_get_softc(dev); 15985 15986 BLOGD(sc, DBG_LOAD, "Starting attach...\n"); 15987 15988 sc->state = BXE_STATE_CLOSED; 15989 15990 sc->dev = dev; 15991 sc->unit = device_get_unit(dev); 15992 15993 BLOGD(sc, DBG_LOAD, "softc = %p\n", sc); 15994 15995 sc->pcie_bus = pci_get_bus(dev); 15996 sc->pcie_device = pci_get_slot(dev); 15997 sc->pcie_func = pci_get_function(dev); 15998 15999 /* enable bus master capability */ 16000 pci_enable_busmaster(dev); 16001 16002 /* get the BARs */ 16003 if (bxe_allocate_bars(sc) != 0) { 16004 return (ENXIO); 16005 } 16006 16007 /* initialize the mutexes */ 16008 bxe_init_mutexes(sc); 16009 16010 /* prepare the periodic callout */ 16011 callout_init(&sc->periodic_callout, 0); 16012 16013 /* prepare the chip taskqueue */ 16014 sc->chip_tq_flags = CHIP_TQ_NONE; 16015 snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name), 16016 "bxe%d_chip_tq", sc->unit); 16017 TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc); 16018 sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT, 16019 taskqueue_thread_enqueue, 16020 &sc->chip_tq); 16021 taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */ 16022 "%s", sc->chip_tq_name); 16023 16024 /* get device info and set params */ 16025 if (bxe_get_device_info(sc) != 0) { 16026 BLOGE(sc, "getting device info\n"); 16027 bxe_deallocate_bars(sc); 16028 pci_disable_busmaster(dev); 16029 return (ENXIO); 16030 } 16031 16032 /* get final misc params */ 16033 bxe_get_params(sc); 16034 16035 /* set the default MTU (changed via ifconfig) */ 16036 sc->mtu = ETHERMTU; 16037 16038 bxe_set_modes_bitmap(sc); 16039 16040 /* XXX 16041 * If in AFEX mode and the function is configured for FCoE 16042 * then bail... no L2 allowed. 16043 */ 16044 16045 /* get phy settings from shmem and 'and' against admin settings */ 16046 bxe_get_phy_info(sc); 16047 16048 /* initialize the FreeBSD ifnet interface */ 16049 if (bxe_init_ifnet(sc) != 0) { 16050 bxe_release_mutexes(sc); 16051 bxe_deallocate_bars(sc); 16052 pci_disable_busmaster(dev); 16053 return (ENXIO); 16054 } 16055 16056 if (bxe_add_cdev(sc) != 0) { 16057 if (sc->ifp != NULL) { 16058 ether_ifdetach(sc->ifp); 16059 } 16060 ifmedia_removeall(&sc->ifmedia); 16061 bxe_release_mutexes(sc); 16062 bxe_deallocate_bars(sc); 16063 pci_disable_busmaster(dev); 16064 return (ENXIO); 16065 } 16066 16067 /* allocate device interrupts */ 16068 if (bxe_interrupt_alloc(sc) != 0) { 16069 bxe_del_cdev(sc); 16070 if (sc->ifp != NULL) { 16071 ether_ifdetach(sc->ifp); 16072 } 16073 ifmedia_removeall(&sc->ifmedia); 16074 bxe_release_mutexes(sc); 16075 bxe_deallocate_bars(sc); 16076 pci_disable_busmaster(dev); 16077 return (ENXIO); 16078 } 16079 16080 bxe_init_fp_mutexs(sc); 16081 16082 if (bxe_alloc_buf_rings(sc) != 0) { 16083 bxe_free_buf_rings(sc); 16084 bxe_interrupt_free(sc); 16085 bxe_del_cdev(sc); 16086 if (sc->ifp != NULL) { 16087 ether_ifdetach(sc->ifp); 16088 } 16089 ifmedia_removeall(&sc->ifmedia); 16090 bxe_release_mutexes(sc); 16091 bxe_deallocate_bars(sc); 16092 pci_disable_busmaster(dev); 16093 return (ENXIO); 16094 } 16095 16096 /* allocate ilt */ 16097 if (bxe_alloc_ilt_mem(sc) != 0) { 16098 bxe_free_buf_rings(sc); 16099 bxe_interrupt_free(sc); 16100 bxe_del_cdev(sc); 16101 if (sc->ifp != NULL) { 16102 ether_ifdetach(sc->ifp); 16103 } 16104 ifmedia_removeall(&sc->ifmedia); 16105 bxe_release_mutexes(sc); 16106 bxe_deallocate_bars(sc); 16107 pci_disable_busmaster(dev); 16108 return (ENXIO); 16109 } 16110 16111 /* allocate the host hardware/software hsi structures */ 16112 if (bxe_alloc_hsi_mem(sc) != 0) { 16113 bxe_free_ilt_mem(sc); 16114 bxe_free_buf_rings(sc); 16115 bxe_interrupt_free(sc); 16116 bxe_del_cdev(sc); 16117 if (sc->ifp != NULL) { 16118 ether_ifdetach(sc->ifp); 16119 } 16120 ifmedia_removeall(&sc->ifmedia); 16121 bxe_release_mutexes(sc); 16122 bxe_deallocate_bars(sc); 16123 pci_disable_busmaster(dev); 16124 return (ENXIO); 16125 } 16126 16127 /* need to reset chip if UNDI was active */ 16128 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 16129 /* init fw_seq */ 16130 sc->fw_seq = 16131 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 16132 DRV_MSG_SEQ_NUMBER_MASK); 16133 BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq); 16134 bxe_prev_unload(sc); 16135 } 16136 16137 #if 1 16138 /* XXX */ 16139 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16140 #else 16141 if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) && 16142 SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) && 16143 SHMEM2_RD(sc, dcbx_lldp_params_offset) && 16144 SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) { 16145 bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON); 16146 bxe_dcbx_init_params(sc); 16147 } else { 16148 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16149 } 16150 #endif 16151 16152 /* calculate qm_cid_count */ 16153 sc->qm_cid_count = bxe_set_qm_cid_count(sc); 16154 BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count); 16155 16156 sc->max_cos = 1; 16157 bxe_init_multi_cos(sc); 16158 16159 bxe_add_sysctls(sc); 16160 16161 return (0); 16162 } 16163 16164 /* 16165 * Device detach function. 16166 * 16167 * Stops the controller, resets the controller, and releases resources. 16168 * 16169 * Returns: 16170 * 0 = Success, >0 = Failure 16171 */ 16172 static int 16173 bxe_detach(device_t dev) 16174 { 16175 struct bxe_softc *sc; 16176 if_t ifp; 16177 16178 sc = device_get_softc(dev); 16179 16180 BLOGD(sc, DBG_LOAD, "Starting detach...\n"); 16181 16182 ifp = sc->ifp; 16183 if (ifp != NULL && if_vlantrunkinuse(ifp)) { 16184 BLOGE(sc, "Cannot detach while VLANs are in use.\n"); 16185 return(EBUSY); 16186 } 16187 16188 bxe_del_cdev(sc); 16189 16190 /* stop the periodic callout */ 16191 bxe_periodic_stop(sc); 16192 16193 /* stop the chip taskqueue */ 16194 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE); 16195 if (sc->chip_tq) { 16196 taskqueue_drain(sc->chip_tq, &sc->chip_tq_task); 16197 taskqueue_free(sc->chip_tq); 16198 sc->chip_tq = NULL; 16199 } 16200 16201 /* stop and reset the controller if it was open */ 16202 if (sc->state != BXE_STATE_CLOSED) { 16203 BXE_CORE_LOCK(sc); 16204 bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE); 16205 sc->state = BXE_STATE_DISABLED; 16206 BXE_CORE_UNLOCK(sc); 16207 } 16208 16209 /* release the network interface */ 16210 if (ifp != NULL) { 16211 ether_ifdetach(ifp); 16212 } 16213 ifmedia_removeall(&sc->ifmedia); 16214 16215 /* XXX do the following based on driver state... */ 16216 16217 /* free the host hardware/software hsi structures */ 16218 bxe_free_hsi_mem(sc); 16219 16220 /* free ilt */ 16221 bxe_free_ilt_mem(sc); 16222 16223 bxe_free_buf_rings(sc); 16224 16225 /* release the interrupts */ 16226 bxe_interrupt_free(sc); 16227 16228 /* Release the mutexes*/ 16229 bxe_destroy_fp_mutexs(sc); 16230 bxe_release_mutexes(sc); 16231 16232 16233 /* Release the PCIe BAR mapped memory */ 16234 bxe_deallocate_bars(sc); 16235 16236 /* Release the FreeBSD interface. */ 16237 if (sc->ifp != NULL) { 16238 if_free(sc->ifp); 16239 } 16240 16241 pci_disable_busmaster(dev); 16242 16243 return (0); 16244 } 16245 16246 /* 16247 * Device shutdown function. 16248 * 16249 * Stops and resets the controller. 16250 * 16251 * Returns: 16252 * Nothing 16253 */ 16254 static int 16255 bxe_shutdown(device_t dev) 16256 { 16257 struct bxe_softc *sc; 16258 16259 sc = device_get_softc(dev); 16260 16261 BLOGD(sc, DBG_LOAD, "Starting shutdown...\n"); 16262 16263 /* stop the periodic callout */ 16264 bxe_periodic_stop(sc); 16265 16266 BXE_CORE_LOCK(sc); 16267 bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE); 16268 BXE_CORE_UNLOCK(sc); 16269 16270 return (0); 16271 } 16272 16273 void 16274 bxe_igu_ack_sb(struct bxe_softc *sc, 16275 uint8_t igu_sb_id, 16276 uint8_t segment, 16277 uint16_t index, 16278 uint8_t op, 16279 uint8_t update) 16280 { 16281 uint32_t igu_addr = sc->igu_base_addr; 16282 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 16283 bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr); 16284 } 16285 16286 static void 16287 bxe_igu_clear_sb_gen(struct bxe_softc *sc, 16288 uint8_t func, 16289 uint8_t idu_sb_id, 16290 uint8_t is_pf) 16291 { 16292 uint32_t data, ctl, cnt = 100; 16293 uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 16294 uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 16295 uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 16296 uint32_t sb_bit = 1 << (idu_sb_id%32); 16297 uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 16298 uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 16299 16300 /* Not supported in BC mode */ 16301 if (CHIP_INT_MODE_IS_BC(sc)) { 16302 return; 16303 } 16304 16305 data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup << 16306 IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 16307 IGU_REGULAR_CLEANUP_SET | 16308 IGU_REGULAR_BCLEANUP); 16309 16310 ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) | 16311 (func_encode << IGU_CTRL_REG_FID_SHIFT) | 16312 (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT)); 16313 16314 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16315 data, igu_addr_data); 16316 REG_WR(sc, igu_addr_data, data); 16317 16318 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16319 BUS_SPACE_BARRIER_WRITE); 16320 mb(); 16321 16322 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16323 ctl, igu_addr_ctl); 16324 REG_WR(sc, igu_addr_ctl, ctl); 16325 16326 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16327 BUS_SPACE_BARRIER_WRITE); 16328 mb(); 16329 16330 /* wait for clean up to finish */ 16331 while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) { 16332 DELAY(20000); 16333 } 16334 16335 if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) { 16336 BLOGD(sc, DBG_LOAD, 16337 "Unable to finish IGU cleanup: " 16338 "idu_sb_id %d offset %d bit %d (cnt %d)\n", 16339 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 16340 } 16341 } 16342 16343 static void 16344 bxe_igu_clear_sb(struct bxe_softc *sc, 16345 uint8_t idu_sb_id) 16346 { 16347 bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/); 16348 } 16349 16350 16351 16352 16353 16354 16355 16356 /*******************/ 16357 /* ECORE CALLBACKS */ 16358 /*******************/ 16359 16360 static void 16361 bxe_reset_common(struct bxe_softc *sc) 16362 { 16363 uint32_t val = 0x1400; 16364 16365 /* reset_common */ 16366 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f); 16367 16368 if (CHIP_IS_E3(sc)) { 16369 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16370 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16371 } 16372 16373 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val); 16374 } 16375 16376 static void 16377 bxe_common_init_phy(struct bxe_softc *sc) 16378 { 16379 uint32_t shmem_base[2]; 16380 uint32_t shmem2_base[2]; 16381 16382 /* Avoid common init in case MFW supports LFA */ 16383 if (SHMEM2_RD(sc, size) > 16384 (uint32_t)offsetof(struct shmem2_region, 16385 lfa_host_addr[SC_PORT(sc)])) { 16386 return; 16387 } 16388 16389 shmem_base[0] = sc->devinfo.shmem_base; 16390 shmem2_base[0] = sc->devinfo.shmem2_base; 16391 16392 if (!CHIP_IS_E1x(sc)) { 16393 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr); 16394 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr); 16395 } 16396 16397 bxe_acquire_phy_lock(sc); 16398 elink_common_init_phy(sc, shmem_base, shmem2_base, 16399 sc->devinfo.chip_id, 0); 16400 bxe_release_phy_lock(sc); 16401 } 16402 16403 static void 16404 bxe_pf_disable(struct bxe_softc *sc) 16405 { 16406 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 16407 16408 val &= ~IGU_PF_CONF_FUNC_EN; 16409 16410 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 16411 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16412 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0); 16413 } 16414 16415 static void 16416 bxe_init_pxp(struct bxe_softc *sc) 16417 { 16418 uint16_t devctl; 16419 int r_order, w_order; 16420 16421 devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2); 16422 16423 BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl); 16424 16425 w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5); 16426 16427 if (sc->mrrs == -1) { 16428 r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12); 16429 } else { 16430 BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs); 16431 r_order = sc->mrrs; 16432 } 16433 16434 ecore_init_pxp_arb(sc, r_order, w_order); 16435 } 16436 16437 static uint32_t 16438 bxe_get_pretend_reg(struct bxe_softc *sc) 16439 { 16440 uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0; 16441 uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base); 16442 return (base + (SC_ABS_FUNC(sc)) * stride); 16443 } 16444 16445 /* 16446 * Called only on E1H or E2. 16447 * When pretending to be PF, the pretend value is the function number 0..7. 16448 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 16449 * combination. 16450 */ 16451 static int 16452 bxe_pretend_func(struct bxe_softc *sc, 16453 uint16_t pretend_func_val) 16454 { 16455 uint32_t pretend_reg; 16456 16457 if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) { 16458 return (-1); 16459 } 16460 16461 /* get my own pretend register */ 16462 pretend_reg = bxe_get_pretend_reg(sc); 16463 REG_WR(sc, pretend_reg, pretend_func_val); 16464 REG_RD(sc, pretend_reg); 16465 return (0); 16466 } 16467 16468 static void 16469 bxe_iov_init_dmae(struct bxe_softc *sc) 16470 { 16471 return; 16472 } 16473 16474 static void 16475 bxe_iov_init_dq(struct bxe_softc *sc) 16476 { 16477 return; 16478 } 16479 16480 /* send a NIG loopback debug packet */ 16481 static void 16482 bxe_lb_pckt(struct bxe_softc *sc) 16483 { 16484 uint32_t wb_write[3]; 16485 16486 /* Ethernet source and destination addresses */ 16487 wb_write[0] = 0x55555555; 16488 wb_write[1] = 0x55555555; 16489 wb_write[2] = 0x20; /* SOP */ 16490 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16491 16492 /* NON-IP protocol */ 16493 wb_write[0] = 0x09000000; 16494 wb_write[1] = 0x55555555; 16495 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 16496 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16497 } 16498 16499 /* 16500 * Some of the internal memories are not directly readable from the driver. 16501 * To test them we send debug packets. 16502 */ 16503 static int 16504 bxe_int_mem_test(struct bxe_softc *sc) 16505 { 16506 int factor; 16507 int count, i; 16508 uint32_t val = 0; 16509 16510 if (CHIP_REV_IS_FPGA(sc)) { 16511 factor = 120; 16512 } else if (CHIP_REV_IS_EMUL(sc)) { 16513 factor = 200; 16514 } else { 16515 factor = 1; 16516 } 16517 16518 /* disable inputs of parser neighbor blocks */ 16519 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16520 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16521 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16522 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16523 16524 /* write 0 to parser credits for CFC search request */ 16525 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16526 16527 /* send Ethernet packet */ 16528 bxe_lb_pckt(sc); 16529 16530 /* TODO do i reset NIG statistic? */ 16531 /* Wait until NIG register shows 1 packet of size 0x10 */ 16532 count = 1000 * factor; 16533 while (count) { 16534 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16535 val = *BXE_SP(sc, wb_data[0]); 16536 if (val == 0x10) { 16537 break; 16538 } 16539 16540 DELAY(10000); 16541 count--; 16542 } 16543 16544 if (val != 0x10) { 16545 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16546 return (-1); 16547 } 16548 16549 /* wait until PRS register shows 1 packet */ 16550 count = (1000 * factor); 16551 while (count) { 16552 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16553 if (val == 1) { 16554 break; 16555 } 16556 16557 DELAY(10000); 16558 count--; 16559 } 16560 16561 if (val != 0x1) { 16562 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16563 return (-2); 16564 } 16565 16566 /* Reset and init BRB, PRS */ 16567 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16568 DELAY(50000); 16569 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16570 DELAY(50000); 16571 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16572 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16573 16574 /* Disable inputs of parser neighbor blocks */ 16575 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16576 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16577 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16578 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16579 16580 /* Write 0 to parser credits for CFC search request */ 16581 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16582 16583 /* send 10 Ethernet packets */ 16584 for (i = 0; i < 10; i++) { 16585 bxe_lb_pckt(sc); 16586 } 16587 16588 /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */ 16589 count = (1000 * factor); 16590 while (count) { 16591 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16592 val = *BXE_SP(sc, wb_data[0]); 16593 if (val == 0xb0) { 16594 break; 16595 } 16596 16597 DELAY(10000); 16598 count--; 16599 } 16600 16601 if (val != 0xb0) { 16602 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16603 return (-3); 16604 } 16605 16606 /* Wait until PRS register shows 2 packets */ 16607 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16608 if (val != 2) { 16609 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16610 } 16611 16612 /* Write 1 to parser credits for CFC search request */ 16613 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 16614 16615 /* Wait until PRS register shows 3 packets */ 16616 DELAY(10000 * factor); 16617 16618 /* Wait until NIG register shows 1 packet of size 0x10 */ 16619 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16620 if (val != 3) { 16621 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16622 } 16623 16624 /* clear NIG EOP FIFO */ 16625 for (i = 0; i < 11; i++) { 16626 REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO); 16627 } 16628 16629 val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY); 16630 if (val != 1) { 16631 BLOGE(sc, "clear of NIG failed val=0x%x\n", val); 16632 return (-4); 16633 } 16634 16635 /* Reset and init BRB, PRS, NIG */ 16636 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16637 DELAY(50000); 16638 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16639 DELAY(50000); 16640 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16641 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16642 if (!CNIC_SUPPORT(sc)) { 16643 /* set NIC mode */ 16644 REG_WR(sc, PRS_REG_NIC_MODE, 1); 16645 } 16646 16647 /* Enable inputs of parser neighbor blocks */ 16648 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff); 16649 REG_WR(sc, TCM_REG_PRS_IFEN, 0x1); 16650 REG_WR(sc, CFC_REG_DEBUG0, 0x0); 16651 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1); 16652 16653 return (0); 16654 } 16655 16656 static void 16657 bxe_setup_fan_failure_detection(struct bxe_softc *sc) 16658 { 16659 int is_required; 16660 uint32_t val; 16661 int port; 16662 16663 is_required = 0; 16664 val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) & 16665 SHARED_HW_CFG_FAN_FAILURE_MASK); 16666 16667 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) { 16668 is_required = 1; 16669 } 16670 /* 16671 * The fan failure mechanism is usually related to the PHY type since 16672 * the power consumption of the board is affected by the PHY. Currently, 16673 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 16674 */ 16675 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) { 16676 for (port = PORT_0; port < PORT_MAX; port++) { 16677 is_required |= elink_fan_failure_det_req(sc, 16678 sc->devinfo.shmem_base, 16679 sc->devinfo.shmem2_base, 16680 port); 16681 } 16682 } 16683 16684 BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required); 16685 16686 if (is_required == 0) { 16687 return; 16688 } 16689 16690 /* Fan failure is indicated by SPIO 5 */ 16691 bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 16692 16693 /* set to active low mode */ 16694 val = REG_RD(sc, MISC_REG_SPIO_INT); 16695 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 16696 REG_WR(sc, MISC_REG_SPIO_INT, val); 16697 16698 /* enable interrupt to signal the IGU */ 16699 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 16700 val |= MISC_SPIO_SPIO5; 16701 REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val); 16702 } 16703 16704 static void 16705 bxe_enable_blocks_attention(struct bxe_softc *sc) 16706 { 16707 uint32_t val; 16708 16709 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 16710 if (!CHIP_IS_E1x(sc)) { 16711 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40); 16712 } else { 16713 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0); 16714 } 16715 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 16716 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 16717 /* 16718 * mask read length error interrupts in brb for parser 16719 * (parsing unit and 'checksum and crc' unit) 16720 * these errors are legal (PU reads fixed length and CAC can cause 16721 * read length error on truncated packets) 16722 */ 16723 REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00); 16724 REG_WR(sc, QM_REG_QM_INT_MASK, 0); 16725 REG_WR(sc, TM_REG_TM_INT_MASK, 0); 16726 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0); 16727 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0); 16728 REG_WR(sc, XCM_REG_XCM_INT_MASK, 0); 16729 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */ 16730 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */ 16731 REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0); 16732 REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0); 16733 REG_WR(sc, UCM_REG_UCM_INT_MASK, 0); 16734 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */ 16735 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */ 16736 REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 16737 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0); 16738 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0); 16739 REG_WR(sc, CCM_REG_CCM_INT_MASK, 0); 16740 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */ 16741 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */ 16742 16743 val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 16744 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 16745 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN); 16746 if (!CHIP_IS_E1x(sc)) { 16747 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 16748 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED); 16749 } 16750 REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val); 16751 16752 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0); 16753 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0); 16754 REG_WR(sc, TCM_REG_TCM_INT_MASK, 0); 16755 /* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */ 16756 16757 if (!CHIP_IS_E1x(sc)) { 16758 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 16759 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 16760 } 16761 16762 REG_WR(sc, CDU_REG_CDU_INT_MASK, 0); 16763 REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0); 16764 /* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */ 16765 REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 16766 } 16767 16768 /** 16769 * bxe_init_hw_common - initialize the HW at the COMMON phase. 16770 * 16771 * @sc: driver handle 16772 */ 16773 static int 16774 bxe_init_hw_common(struct bxe_softc *sc) 16775 { 16776 uint8_t abs_func_id; 16777 uint32_t val; 16778 16779 BLOGD(sc, DBG_LOAD, "starting common init for func %d\n", 16780 SC_ABS_FUNC(sc)); 16781 16782 /* 16783 * take the RESET lock to protect undi_unload flow from accessing 16784 * registers while we are resetting the chip 16785 */ 16786 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 16787 16788 bxe_reset_common(sc); 16789 16790 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff); 16791 16792 val = 0xfffc; 16793 if (CHIP_IS_E3(sc)) { 16794 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16795 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16796 } 16797 16798 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val); 16799 16800 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 16801 16802 ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON); 16803 BLOGD(sc, DBG_LOAD, "after misc block init\n"); 16804 16805 if (!CHIP_IS_E1x(sc)) { 16806 /* 16807 * 4-port mode or 2-port mode we need to turn off master-enable for 16808 * everyone. After that we turn it back on for self. So, we disregard 16809 * multi-function, and always disable all functions on the given path, 16810 * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1 16811 */ 16812 for (abs_func_id = SC_PATH(sc); 16813 abs_func_id < (E2_FUNC_MAX * 2); 16814 abs_func_id += 2) { 16815 if (abs_func_id == SC_ABS_FUNC(sc)) { 16816 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 16817 continue; 16818 } 16819 16820 bxe_pretend_func(sc, abs_func_id); 16821 16822 /* clear pf enable */ 16823 bxe_pf_disable(sc); 16824 16825 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 16826 } 16827 } 16828 16829 BLOGD(sc, DBG_LOAD, "after pf disable\n"); 16830 16831 ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON); 16832 16833 if (CHIP_IS_E1(sc)) { 16834 /* 16835 * enable HW interrupt from PXP on USDM overflow 16836 * bit 16 on INT_MASK_0 16837 */ 16838 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 16839 } 16840 16841 ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON); 16842 bxe_init_pxp(sc); 16843 16844 #ifdef __BIG_ENDIAN 16845 REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1); 16846 REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1); 16847 REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1); 16848 REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1); 16849 REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1); 16850 /* make sure this value is 0 */ 16851 REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0); 16852 16853 //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1); 16854 REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1); 16855 REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1); 16856 REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1); 16857 REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1); 16858 #endif 16859 16860 ecore_ilt_init_page_size(sc, INITOP_SET); 16861 16862 if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) { 16863 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 16864 } 16865 16866 /* let the HW do it's magic... */ 16867 DELAY(100000); 16868 16869 /* finish PXP init */ 16870 val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE); 16871 if (val != 1) { 16872 BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n", 16873 val); 16874 return (-1); 16875 } 16876 val = REG_RD(sc, PXP2_REG_RD_INIT_DONE); 16877 if (val != 1) { 16878 BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val); 16879 return (-1); 16880 } 16881 16882 BLOGD(sc, DBG_LOAD, "after pxp init\n"); 16883 16884 /* 16885 * Timer bug workaround for E2 only. We need to set the entire ILT to have 16886 * entries with value "0" and valid bit on. This needs to be done by the 16887 * first PF that is loaded in a path (i.e. common phase) 16888 */ 16889 if (!CHIP_IS_E1x(sc)) { 16890 /* 16891 * In E2 there is a bug in the timers block that can cause function 6 / 7 16892 * (i.e. vnic3) to start even if it is marked as "scan-off". 16893 * This occurs when a different function (func2,3) is being marked 16894 * as "scan-off". Real-life scenario for example: if a driver is being 16895 * load-unloaded while func6,7 are down. This will cause the timer to access 16896 * the ilt, translate to a logical address and send a request to read/write. 16897 * Since the ilt for the function that is down is not valid, this will cause 16898 * a translation error which is unrecoverable. 16899 * The Workaround is intended to make sure that when this happens nothing 16900 * fatal will occur. The workaround: 16901 * 1. First PF driver which loads on a path will: 16902 * a. After taking the chip out of reset, by using pretend, 16903 * it will write "0" to the following registers of 16904 * the other vnics. 16905 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16906 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 16907 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 16908 * And for itself it will write '1' to 16909 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 16910 * dmae-operations (writing to pram for example.) 16911 * note: can be done for only function 6,7 but cleaner this 16912 * way. 16913 * b. Write zero+valid to the entire ILT. 16914 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 16915 * VNIC3 (of that port). The range allocated will be the 16916 * entire ILT. This is needed to prevent ILT range error. 16917 * 2. Any PF driver load flow: 16918 * a. ILT update with the physical addresses of the allocated 16919 * logical pages. 16920 * b. Wait 20msec. - note that this timeout is needed to make 16921 * sure there are no requests in one of the PXP internal 16922 * queues with "old" ILT addresses. 16923 * c. PF enable in the PGLC. 16924 * d. Clear the was_error of the PF in the PGLC. (could have 16925 * occurred while driver was down) 16926 * e. PF enable in the CFC (WEAK + STRONG) 16927 * f. Timers scan enable 16928 * 3. PF driver unload flow: 16929 * a. Clear the Timers scan_en. 16930 * b. Polling for scan_on=0 for that PF. 16931 * c. Clear the PF enable bit in the PXP. 16932 * d. Clear the PF enable in the CFC (WEAK + STRONG) 16933 * e. Write zero+valid to all ILT entries (The valid bit must 16934 * stay set) 16935 * f. If this is VNIC 3 of a port then also init 16936 * first_timers_ilt_entry to zero and last_timers_ilt_entry 16937 * to the last enrty in the ILT. 16938 * 16939 * Notes: 16940 * Currently the PF error in the PGLC is non recoverable. 16941 * In the future the there will be a recovery routine for this error. 16942 * Currently attention is masked. 16943 * Having an MCP lock on the load/unload process does not guarantee that 16944 * there is no Timer disable during Func6/7 enable. This is because the 16945 * Timers scan is currently being cleared by the MCP on FLR. 16946 * Step 2.d can be done only for PF6/7 and the driver can also check if 16947 * there is error before clearing it. But the flow above is simpler and 16948 * more general. 16949 * All ILT entries are written by zero+valid and not just PF6/7 16950 * ILT entries since in the future the ILT entries allocation for 16951 * PF-s might be dynamic. 16952 */ 16953 struct ilt_client_info ilt_cli; 16954 struct ecore_ilt ilt; 16955 16956 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 16957 memset(&ilt, 0, sizeof(struct ecore_ilt)); 16958 16959 /* initialize dummy TM client */ 16960 ilt_cli.start = 0; 16961 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 16962 ilt_cli.client_num = ILT_CLIENT_TM; 16963 16964 /* 16965 * Step 1: set zeroes to all ilt page entries with valid bit on 16966 * Step 2: set the timers first/last ilt entry to point 16967 * to the entire range to prevent ILT range error for 3rd/4th 16968 * vnic (this code assumes existence of the vnic) 16969 * 16970 * both steps performed by call to ecore_ilt_client_init_op() 16971 * with dummy TM client 16972 * 16973 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 16974 * and his brother are split registers 16975 */ 16976 16977 bxe_pretend_func(sc, (SC_PATH(sc) + 6)); 16978 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR); 16979 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 16980 16981 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN); 16982 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN); 16983 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 16984 } 16985 16986 REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0); 16987 REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0); 16988 16989 if (!CHIP_IS_E1x(sc)) { 16990 int factor = CHIP_REV_IS_EMUL(sc) ? 1000 : 16991 (CHIP_REV_IS_FPGA(sc) ? 400 : 0); 16992 16993 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON); 16994 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON); 16995 16996 /* let the HW do it's magic... */ 16997 do { 16998 DELAY(200000); 16999 val = REG_RD(sc, ATC_REG_ATC_INIT_DONE); 17000 } while (factor-- && (val != 1)); 17001 17002 if (val != 1) { 17003 BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val); 17004 return (-1); 17005 } 17006 } 17007 17008 BLOGD(sc, DBG_LOAD, "after pglue and atc init\n"); 17009 17010 ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON); 17011 17012 bxe_iov_init_dmae(sc); 17013 17014 /* clean the DMAE memory */ 17015 sc->dmae_ready = 1; 17016 ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1); 17017 17018 ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON); 17019 17020 ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON); 17021 17022 ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON); 17023 17024 ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON); 17025 17026 bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3); 17027 bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3); 17028 bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3); 17029 bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3); 17030 17031 ecore_init_block(sc, BLOCK_QM, PHASE_COMMON); 17032 17033 /* QM queues pointers table */ 17034 ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET); 17035 17036 /* soft reset pulse */ 17037 REG_WR(sc, QM_REG_SOFT_RESET, 1); 17038 REG_WR(sc, QM_REG_SOFT_RESET, 0); 17039 17040 if (CNIC_SUPPORT(sc)) 17041 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON); 17042 17043 ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON); 17044 REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT); 17045 if (!CHIP_REV_IS_SLOW(sc)) { 17046 /* enable hw interrupt from doorbell Q */ 17047 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 17048 } 17049 17050 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 17051 17052 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 17053 REG_WR(sc, PRS_REG_A_PRSU_20, 0xf); 17054 17055 if (!CHIP_IS_E1(sc)) { 17056 REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan); 17057 } 17058 17059 if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) { 17060 if (IS_MF_AFEX(sc)) { 17061 /* 17062 * configure that AFEX and VLAN headers must be 17063 * received in AFEX mode 17064 */ 17065 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE); 17066 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA); 17067 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 17068 REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 17069 REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4); 17070 } else { 17071 /* 17072 * Bit-map indicating which L2 hdrs may appear 17073 * after the basic Ethernet header 17074 */ 17075 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 17076 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17077 } 17078 } 17079 17080 ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON); 17081 ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON); 17082 ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON); 17083 ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON); 17084 17085 if (!CHIP_IS_E1x(sc)) { 17086 /* reset VFC memories */ 17087 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17088 VFC_MEMORIES_RST_REG_CAM_RST | 17089 VFC_MEMORIES_RST_REG_RAM_RST); 17090 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17091 VFC_MEMORIES_RST_REG_CAM_RST | 17092 VFC_MEMORIES_RST_REG_RAM_RST); 17093 17094 DELAY(20000); 17095 } 17096 17097 ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON); 17098 ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON); 17099 ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON); 17100 ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON); 17101 17102 /* sync semi rtc */ 17103 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 17104 0x80000000); 17105 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 17106 0x80000000); 17107 17108 ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON); 17109 ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON); 17110 ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON); 17111 17112 if (!CHIP_IS_E1x(sc)) { 17113 if (IS_MF_AFEX(sc)) { 17114 /* 17115 * configure that AFEX and VLAN headers must be 17116 * sent in AFEX mode 17117 */ 17118 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE); 17119 REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA); 17120 REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 17121 REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 17122 REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4); 17123 } else { 17124 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 17125 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17126 } 17127 } 17128 17129 REG_WR(sc, SRC_REG_SOFT_RST, 1); 17130 17131 ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON); 17132 17133 if (CNIC_SUPPORT(sc)) { 17134 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672); 17135 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 17136 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b); 17137 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a); 17138 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116); 17139 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 17140 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf); 17141 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 17142 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f); 17143 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7); 17144 } 17145 REG_WR(sc, SRC_REG_SOFT_RST, 0); 17146 17147 if (sizeof(union cdu_context) != 1024) { 17148 /* we currently assume that a context is 1024 bytes */ 17149 BLOGE(sc, "please adjust the size of cdu_context(%ld)\n", 17150 (long)sizeof(union cdu_context)); 17151 } 17152 17153 ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON); 17154 val = (4 << 24) + (0 << 12) + 1024; 17155 REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val); 17156 17157 ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON); 17158 17159 REG_WR(sc, CFC_REG_INIT_REG, 0x7FF); 17160 /* enable context validation interrupt from CFC */ 17161 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 17162 17163 /* set the thresholds to prevent CFC/CDU race */ 17164 REG_WR(sc, CFC_REG_DEBUG0, 0x20020000); 17165 ecore_init_block(sc, BLOCK_HC, PHASE_COMMON); 17166 17167 if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) { 17168 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36); 17169 } 17170 17171 ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON); 17172 ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON); 17173 17174 /* Reset PCIE errors for debug */ 17175 REG_WR(sc, 0x2814, 0xffffffff); 17176 REG_WR(sc, 0x3820, 0xffffffff); 17177 17178 if (!CHIP_IS_E1x(sc)) { 17179 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 17180 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 17181 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 17182 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 17183 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 17184 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 17185 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 17186 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 17187 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 17188 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 17189 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 17190 } 17191 17192 ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON); 17193 17194 if (!CHIP_IS_E1(sc)) { 17195 /* in E3 this done in per-port section */ 17196 if (!CHIP_IS_E3(sc)) 17197 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17198 } 17199 17200 if (CHIP_IS_E1H(sc)) { 17201 /* not applicable for E2 (and above ...) */ 17202 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc)); 17203 } 17204 17205 if (CHIP_REV_IS_SLOW(sc)) { 17206 DELAY(200000); 17207 } 17208 17209 /* finish CFC init */ 17210 val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10); 17211 if (val != 1) { 17212 BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val); 17213 return (-1); 17214 } 17215 val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10); 17216 if (val != 1) { 17217 BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val); 17218 return (-1); 17219 } 17220 val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 17221 if (val != 1) { 17222 BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val); 17223 return (-1); 17224 } 17225 REG_WR(sc, CFC_REG_DEBUG0, 0); 17226 17227 if (CHIP_IS_E1(sc)) { 17228 /* read NIG statistic to see if this is our first up since powerup */ 17229 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 17230 val = *BXE_SP(sc, wb_data[0]); 17231 17232 /* do internal memory self test */ 17233 if ((val == 0) && bxe_int_mem_test(sc)) { 17234 BLOGE(sc, "internal mem self test failed val=0x%x\n", val); 17235 return (-1); 17236 } 17237 } 17238 17239 bxe_setup_fan_failure_detection(sc); 17240 17241 /* clear PXP2 attentions */ 17242 REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 17243 17244 bxe_enable_blocks_attention(sc); 17245 17246 if (!CHIP_REV_IS_SLOW(sc)) { 17247 ecore_enable_blocks_parity(sc); 17248 } 17249 17250 if (!BXE_NOMCP(sc)) { 17251 if (CHIP_IS_E1x(sc)) { 17252 bxe_common_init_phy(sc); 17253 } 17254 } 17255 17256 return (0); 17257 } 17258 17259 /** 17260 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase. 17261 * 17262 * @sc: driver handle 17263 */ 17264 static int 17265 bxe_init_hw_common_chip(struct bxe_softc *sc) 17266 { 17267 int rc = bxe_init_hw_common(sc); 17268 17269 if (rc) { 17270 BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc); 17271 return (rc); 17272 } 17273 17274 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 17275 if (!BXE_NOMCP(sc)) { 17276 bxe_common_init_phy(sc); 17277 } 17278 17279 return (0); 17280 } 17281 17282 static int 17283 bxe_init_hw_port(struct bxe_softc *sc) 17284 { 17285 int port = SC_PORT(sc); 17286 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 17287 uint32_t low, high; 17288 uint32_t val; 17289 17290 BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port); 17291 17292 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 17293 17294 ecore_init_block(sc, BLOCK_MISC, init_phase); 17295 ecore_init_block(sc, BLOCK_PXP, init_phase); 17296 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17297 17298 /* 17299 * Timers bug workaround: disables the pf_master bit in pglue at 17300 * common phase, we need to enable it here before any dmae access are 17301 * attempted. Therefore we manually added the enable-master to the 17302 * port phase (it also happens in the function phase) 17303 */ 17304 if (!CHIP_IS_E1x(sc)) { 17305 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17306 } 17307 17308 ecore_init_block(sc, BLOCK_ATC, init_phase); 17309 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17310 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17311 ecore_init_block(sc, BLOCK_QM, init_phase); 17312 17313 ecore_init_block(sc, BLOCK_TCM, init_phase); 17314 ecore_init_block(sc, BLOCK_UCM, init_phase); 17315 ecore_init_block(sc, BLOCK_CCM, init_phase); 17316 ecore_init_block(sc, BLOCK_XCM, init_phase); 17317 17318 /* QM cid (connection) count */ 17319 ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET); 17320 17321 if (CNIC_SUPPORT(sc)) { 17322 ecore_init_block(sc, BLOCK_TM, init_phase); 17323 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20); 17324 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 17325 } 17326 17327 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17328 17329 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17330 17331 if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) { 17332 if (IS_MF(sc)) { 17333 low = (BXE_ONE_PORT(sc) ? 160 : 246); 17334 } else if (sc->mtu > 4096) { 17335 if (BXE_ONE_PORT(sc)) { 17336 low = 160; 17337 } else { 17338 val = sc->mtu; 17339 /* (24*1024 + val*4)/256 */ 17340 low = (96 + (val / 64) + ((val % 64) ? 1 : 0)); 17341 } 17342 } else { 17343 low = (BXE_ONE_PORT(sc) ? 80 : 160); 17344 } 17345 high = (low + 56); /* 14*1024/256 */ 17346 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 17347 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 17348 } 17349 17350 if (CHIP_IS_MODE_4_PORT(sc)) { 17351 REG_WR(sc, SC_PORT(sc) ? 17352 BRB1_REG_MAC_GUARANTIED_1 : 17353 BRB1_REG_MAC_GUARANTIED_0, 40); 17354 } 17355 17356 ecore_init_block(sc, BLOCK_PRS, init_phase); 17357 if (CHIP_IS_E3B0(sc)) { 17358 if (IS_MF_AFEX(sc)) { 17359 /* configure headers for AFEX mode */ 17360 REG_WR(sc, SC_PORT(sc) ? 17361 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17362 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 17363 REG_WR(sc, SC_PORT(sc) ? 17364 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 17365 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 17366 REG_WR(sc, SC_PORT(sc) ? 17367 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 17368 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 17369 } else { 17370 /* Ovlan exists only if we are in multi-function + 17371 * switch-dependent mode, in switch-independent there 17372 * is no ovlan headers 17373 */ 17374 REG_WR(sc, SC_PORT(sc) ? 17375 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17376 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 17377 (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6)); 17378 } 17379 } 17380 17381 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17382 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17383 ecore_init_block(sc, BLOCK_USDM, init_phase); 17384 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17385 17386 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17387 ecore_init_block(sc, BLOCK_USEM, init_phase); 17388 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17389 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17390 17391 ecore_init_block(sc, BLOCK_UPB, init_phase); 17392 ecore_init_block(sc, BLOCK_XPB, init_phase); 17393 17394 ecore_init_block(sc, BLOCK_PBF, init_phase); 17395 17396 if (CHIP_IS_E1x(sc)) { 17397 /* configure PBF to work without PAUSE mtu 9000 */ 17398 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 17399 17400 /* update threshold */ 17401 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 17402 /* update init credit */ 17403 REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 17404 17405 /* probe changes */ 17406 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1); 17407 DELAY(50); 17408 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0); 17409 } 17410 17411 if (CNIC_SUPPORT(sc)) { 17412 ecore_init_block(sc, BLOCK_SRC, init_phase); 17413 } 17414 17415 ecore_init_block(sc, BLOCK_CDU, init_phase); 17416 ecore_init_block(sc, BLOCK_CFC, init_phase); 17417 17418 if (CHIP_IS_E1(sc)) { 17419 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17420 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17421 } 17422 ecore_init_block(sc, BLOCK_HC, init_phase); 17423 17424 ecore_init_block(sc, BLOCK_IGU, init_phase); 17425 17426 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17427 /* init aeu_mask_attn_func_0/1: 17428 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use 17429 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF 17430 * bits 4-7 are used for "per vn group attention" */ 17431 val = IS_MF(sc) ? 0xF7 : 0x7; 17432 /* Enable DCBX attention for all but E1 */ 17433 val |= CHIP_IS_E1(sc) ? 0 : 0x10; 17434 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 17435 17436 ecore_init_block(sc, BLOCK_NIG, init_phase); 17437 17438 if (!CHIP_IS_E1x(sc)) { 17439 /* Bit-map indicating which L2 hdrs may appear after the 17440 * basic Ethernet header 17441 */ 17442 if (IS_MF_AFEX(sc)) { 17443 REG_WR(sc, SC_PORT(sc) ? 17444 NIG_REG_P1_HDRS_AFTER_BASIC : 17445 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 17446 } else { 17447 REG_WR(sc, SC_PORT(sc) ? 17448 NIG_REG_P1_HDRS_AFTER_BASIC : 17449 NIG_REG_P0_HDRS_AFTER_BASIC, 17450 IS_MF_SD(sc) ? 7 : 6); 17451 } 17452 17453 if (CHIP_IS_E3(sc)) { 17454 REG_WR(sc, SC_PORT(sc) ? 17455 NIG_REG_LLH1_MF_MODE : 17456 NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17457 } 17458 } 17459 if (!CHIP_IS_E3(sc)) { 17460 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 17461 } 17462 17463 if (!CHIP_IS_E1(sc)) { 17464 /* 0x2 disable mf_ov, 0x1 enable */ 17465 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 17466 (IS_MF_SD(sc) ? 0x1 : 0x2)); 17467 17468 if (!CHIP_IS_E1x(sc)) { 17469 val = 0; 17470 switch (sc->devinfo.mf_info.mf_mode) { 17471 case MULTI_FUNCTION_SD: 17472 val = 1; 17473 break; 17474 case MULTI_FUNCTION_SI: 17475 case MULTI_FUNCTION_AFEX: 17476 val = 2; 17477 break; 17478 } 17479 17480 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE : 17481 NIG_REG_LLH0_CLS_TYPE), val); 17482 } 17483 REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 17484 REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 17485 REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 17486 } 17487 17488 /* If SPIO5 is set to generate interrupts, enable it for this port */ 17489 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17490 if (val & MISC_SPIO_SPIO5) { 17491 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 17492 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 17493 val = REG_RD(sc, reg_addr); 17494 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 17495 REG_WR(sc, reg_addr, val); 17496 } 17497 17498 return (0); 17499 } 17500 17501 static uint32_t 17502 bxe_flr_clnup_reg_poll(struct bxe_softc *sc, 17503 uint32_t reg, 17504 uint32_t expected, 17505 uint32_t poll_count) 17506 { 17507 uint32_t cur_cnt = poll_count; 17508 uint32_t val; 17509 17510 while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) { 17511 DELAY(FLR_WAIT_INTERVAL); 17512 } 17513 17514 return (val); 17515 } 17516 17517 static int 17518 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc, 17519 uint32_t reg, 17520 char *msg, 17521 uint32_t poll_cnt) 17522 { 17523 uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt); 17524 17525 if (val != 0) { 17526 BLOGE(sc, "%s usage count=%d\n", msg, val); 17527 return (1); 17528 } 17529 17530 return (0); 17531 } 17532 17533 /* Common routines with VF FLR cleanup */ 17534 static uint32_t 17535 bxe_flr_clnup_poll_count(struct bxe_softc *sc) 17536 { 17537 /* adjust polling timeout */ 17538 if (CHIP_REV_IS_EMUL(sc)) { 17539 return (FLR_POLL_CNT * 2000); 17540 } 17541 17542 if (CHIP_REV_IS_FPGA(sc)) { 17543 return (FLR_POLL_CNT * 120); 17544 } 17545 17546 return (FLR_POLL_CNT); 17547 } 17548 17549 static int 17550 bxe_poll_hw_usage_counters(struct bxe_softc *sc, 17551 uint32_t poll_cnt) 17552 { 17553 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 17554 if (bxe_flr_clnup_poll_hw_counter(sc, 17555 CFC_REG_NUM_LCIDS_INSIDE_PF, 17556 "CFC PF usage counter timed out", 17557 poll_cnt)) { 17558 return (1); 17559 } 17560 17561 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 17562 if (bxe_flr_clnup_poll_hw_counter(sc, 17563 DORQ_REG_PF_USAGE_CNT, 17564 "DQ PF usage counter timed out", 17565 poll_cnt)) { 17566 return (1); 17567 } 17568 17569 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 17570 if (bxe_flr_clnup_poll_hw_counter(sc, 17571 QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc), 17572 "QM PF usage counter timed out", 17573 poll_cnt)) { 17574 return (1); 17575 } 17576 17577 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 17578 if (bxe_flr_clnup_poll_hw_counter(sc, 17579 TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc), 17580 "Timers VNIC usage counter timed out", 17581 poll_cnt)) { 17582 return (1); 17583 } 17584 17585 if (bxe_flr_clnup_poll_hw_counter(sc, 17586 TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc), 17587 "Timers NUM_SCANS usage counter timed out", 17588 poll_cnt)) { 17589 return (1); 17590 } 17591 17592 /* Wait DMAE PF usage counter to zero */ 17593 if (bxe_flr_clnup_poll_hw_counter(sc, 17594 dmae_reg_go_c[INIT_DMAE_C(sc)], 17595 "DMAE dommand register timed out", 17596 poll_cnt)) { 17597 return (1); 17598 } 17599 17600 return (0); 17601 } 17602 17603 #define OP_GEN_PARAM(param) \ 17604 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 17605 #define OP_GEN_TYPE(type) \ 17606 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 17607 #define OP_GEN_AGG_VECT(index) \ 17608 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 17609 17610 static int 17611 bxe_send_final_clnup(struct bxe_softc *sc, 17612 uint8_t clnup_func, 17613 uint32_t poll_cnt) 17614 { 17615 uint32_t op_gen_command = 0; 17616 uint32_t comp_addr = (BAR_CSTRORM_INTMEM + 17617 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func)); 17618 int ret = 0; 17619 17620 if (REG_RD(sc, comp_addr)) { 17621 BLOGE(sc, "Cleanup complete was not 0 before sending\n"); 17622 return (1); 17623 } 17624 17625 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 17626 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 17627 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 17628 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 17629 17630 BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n"); 17631 REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command); 17632 17633 if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) { 17634 BLOGE(sc, "FW final cleanup did not succeed\n"); 17635 BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n", 17636 (REG_RD(sc, comp_addr))); 17637 bxe_panic(sc, ("FLR cleanup failed\n")); 17638 return (1); 17639 } 17640 17641 /* Zero completion for nxt FLR */ 17642 REG_WR(sc, comp_addr, 0); 17643 17644 return (ret); 17645 } 17646 17647 static void 17648 bxe_pbf_pN_buf_flushed(struct bxe_softc *sc, 17649 struct pbf_pN_buf_regs *regs, 17650 uint32_t poll_count) 17651 { 17652 uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start; 17653 uint32_t cur_cnt = poll_count; 17654 17655 crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed); 17656 crd = crd_start = REG_RD(sc, regs->crd); 17657 init_crd = REG_RD(sc, regs->init_crd); 17658 17659 BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 17660 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd); 17661 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 17662 17663 while ((crd != init_crd) && 17664 ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) < 17665 (init_crd - crd_start))) { 17666 if (cur_cnt--) { 17667 DELAY(FLR_WAIT_INTERVAL); 17668 crd = REG_RD(sc, regs->crd); 17669 crd_freed = REG_RD(sc, regs->crd_freed); 17670 } else { 17671 BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN); 17672 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd); 17673 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed); 17674 break; 17675 } 17676 } 17677 17678 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n", 17679 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 17680 } 17681 17682 static void 17683 bxe_pbf_pN_cmd_flushed(struct bxe_softc *sc, 17684 struct pbf_pN_cmd_regs *regs, 17685 uint32_t poll_count) 17686 { 17687 uint32_t occup, to_free, freed, freed_start; 17688 uint32_t cur_cnt = poll_count; 17689 17690 occup = to_free = REG_RD(sc, regs->lines_occup); 17691 freed = freed_start = REG_RD(sc, regs->lines_freed); 17692 17693 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 17694 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 17695 17696 while (occup && 17697 ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) { 17698 if (cur_cnt--) { 17699 DELAY(FLR_WAIT_INTERVAL); 17700 occup = REG_RD(sc, regs->lines_occup); 17701 freed = REG_RD(sc, regs->lines_freed); 17702 } else { 17703 BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN); 17704 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 17705 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 17706 break; 17707 } 17708 } 17709 17710 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n", 17711 poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 17712 } 17713 17714 static void 17715 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count) 17716 { 17717 struct pbf_pN_cmd_regs cmd_regs[] = { 17718 {0, (CHIP_IS_E3B0(sc)) ? 17719 PBF_REG_TQ_OCCUPANCY_Q0 : 17720 PBF_REG_P0_TQ_OCCUPANCY, 17721 (CHIP_IS_E3B0(sc)) ? 17722 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 17723 PBF_REG_P0_TQ_LINES_FREED_CNT}, 17724 {1, (CHIP_IS_E3B0(sc)) ? 17725 PBF_REG_TQ_OCCUPANCY_Q1 : 17726 PBF_REG_P1_TQ_OCCUPANCY, 17727 (CHIP_IS_E3B0(sc)) ? 17728 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 17729 PBF_REG_P1_TQ_LINES_FREED_CNT}, 17730 {4, (CHIP_IS_E3B0(sc)) ? 17731 PBF_REG_TQ_OCCUPANCY_LB_Q : 17732 PBF_REG_P4_TQ_OCCUPANCY, 17733 (CHIP_IS_E3B0(sc)) ? 17734 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 17735 PBF_REG_P4_TQ_LINES_FREED_CNT} 17736 }; 17737 17738 struct pbf_pN_buf_regs buf_regs[] = { 17739 {0, (CHIP_IS_E3B0(sc)) ? 17740 PBF_REG_INIT_CRD_Q0 : 17741 PBF_REG_P0_INIT_CRD , 17742 (CHIP_IS_E3B0(sc)) ? 17743 PBF_REG_CREDIT_Q0 : 17744 PBF_REG_P0_CREDIT, 17745 (CHIP_IS_E3B0(sc)) ? 17746 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 17747 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 17748 {1, (CHIP_IS_E3B0(sc)) ? 17749 PBF_REG_INIT_CRD_Q1 : 17750 PBF_REG_P1_INIT_CRD, 17751 (CHIP_IS_E3B0(sc)) ? 17752 PBF_REG_CREDIT_Q1 : 17753 PBF_REG_P1_CREDIT, 17754 (CHIP_IS_E3B0(sc)) ? 17755 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 17756 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 17757 {4, (CHIP_IS_E3B0(sc)) ? 17758 PBF_REG_INIT_CRD_LB_Q : 17759 PBF_REG_P4_INIT_CRD, 17760 (CHIP_IS_E3B0(sc)) ? 17761 PBF_REG_CREDIT_LB_Q : 17762 PBF_REG_P4_CREDIT, 17763 (CHIP_IS_E3B0(sc)) ? 17764 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 17765 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 17766 }; 17767 17768 int i; 17769 17770 /* Verify the command queues are flushed P0, P1, P4 */ 17771 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) { 17772 bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count); 17773 } 17774 17775 /* Verify the transmission buffers are flushed P0, P1, P4 */ 17776 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) { 17777 bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count); 17778 } 17779 } 17780 17781 static void 17782 bxe_hw_enable_status(struct bxe_softc *sc) 17783 { 17784 uint32_t val; 17785 17786 val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF); 17787 BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 17788 17789 val = REG_RD(sc, PBF_REG_DISABLE_PF); 17790 BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val); 17791 17792 val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN); 17793 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 17794 17795 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN); 17796 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 17797 17798 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 17799 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 17800 17801 val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 17802 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 17803 17804 val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 17805 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 17806 17807 val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 17808 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val); 17809 } 17810 17811 static int 17812 bxe_pf_flr_clnup(struct bxe_softc *sc) 17813 { 17814 uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc); 17815 17816 BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc)); 17817 17818 /* Re-enable PF target read access */ 17819 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 17820 17821 /* Poll HW usage counters */ 17822 BLOGD(sc, DBG_LOAD, "Polling usage counters\n"); 17823 if (bxe_poll_hw_usage_counters(sc, poll_cnt)) { 17824 return (-1); 17825 } 17826 17827 /* Zero the igu 'trailing edge' and 'leading edge' */ 17828 17829 /* Send the FW cleanup command */ 17830 if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) { 17831 return (-1); 17832 } 17833 17834 /* ATC cleanup */ 17835 17836 /* Verify TX hw is flushed */ 17837 bxe_tx_hw_flushed(sc, poll_cnt); 17838 17839 /* Wait 100ms (not adjusted according to platform) */ 17840 DELAY(100000); 17841 17842 /* Verify no pending pci transactions */ 17843 if (bxe_is_pcie_pending(sc)) { 17844 BLOGE(sc, "PCIE Transactions still pending\n"); 17845 } 17846 17847 /* Debug */ 17848 bxe_hw_enable_status(sc); 17849 17850 /* 17851 * Master enable - Due to WB DMAE writes performed before this 17852 * register is re-initialized as part of the regular function init 17853 */ 17854 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17855 17856 return (0); 17857 } 17858 17859 static int 17860 bxe_init_hw_func(struct bxe_softc *sc) 17861 { 17862 int port = SC_PORT(sc); 17863 int func = SC_FUNC(sc); 17864 int init_phase = PHASE_PF0 + func; 17865 struct ecore_ilt *ilt = sc->ilt; 17866 uint16_t cdu_ilt_start; 17867 uint32_t addr, val; 17868 uint32_t main_mem_base, main_mem_size, main_mem_prty_clr; 17869 int i, main_mem_width, rc; 17870 17871 BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func); 17872 17873 /* FLR cleanup */ 17874 if (!CHIP_IS_E1x(sc)) { 17875 rc = bxe_pf_flr_clnup(sc); 17876 if (rc) { 17877 BLOGE(sc, "FLR cleanup failed!\n"); 17878 // XXX bxe_fw_dump(sc); 17879 // XXX bxe_idle_chk(sc); 17880 return (rc); 17881 } 17882 } 17883 17884 /* set MSI reconfigure capability */ 17885 if (sc->devinfo.int_block == INT_BLOCK_HC) { 17886 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 17887 val = REG_RD(sc, addr); 17888 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 17889 REG_WR(sc, addr, val); 17890 } 17891 17892 ecore_init_block(sc, BLOCK_PXP, init_phase); 17893 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17894 17895 ilt = sc->ilt; 17896 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 17897 17898 for (i = 0; i < L2_ILT_LINES(sc); i++) { 17899 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt; 17900 ilt->lines[cdu_ilt_start + i].page_mapping = 17901 sc->context[i].vcxt_dma.paddr; 17902 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size; 17903 } 17904 ecore_ilt_init_op(sc, INITOP_SET); 17905 17906 /* Set NIC mode */ 17907 REG_WR(sc, PRS_REG_NIC_MODE, 1); 17908 BLOGD(sc, DBG_LOAD, "NIC MODE configured\n"); 17909 17910 if (!CHIP_IS_E1x(sc)) { 17911 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN; 17912 17913 /* Turn on a single ISR mode in IGU if driver is going to use 17914 * INT#x or MSI 17915 */ 17916 if (sc->interrupt_mode != INTR_MODE_MSIX) { 17917 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 17918 } 17919 17920 /* 17921 * Timers workaround bug: function init part. 17922 * Need to wait 20msec after initializing ILT, 17923 * needed to make sure there are no requests in 17924 * one of the PXP internal queues with "old" ILT addresses 17925 */ 17926 DELAY(20000); 17927 17928 /* 17929 * Master enable - Due to WB DMAE writes performed before this 17930 * register is re-initialized as part of the regular function 17931 * init 17932 */ 17933 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17934 /* Enable the function in IGU */ 17935 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf); 17936 } 17937 17938 sc->dmae_ready = 1; 17939 17940 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17941 17942 if (!CHIP_IS_E1x(sc)) 17943 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); 17944 17945 ecore_init_block(sc, BLOCK_ATC, init_phase); 17946 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17947 ecore_init_block(sc, BLOCK_NIG, init_phase); 17948 ecore_init_block(sc, BLOCK_SRC, init_phase); 17949 ecore_init_block(sc, BLOCK_MISC, init_phase); 17950 ecore_init_block(sc, BLOCK_TCM, init_phase); 17951 ecore_init_block(sc, BLOCK_UCM, init_phase); 17952 ecore_init_block(sc, BLOCK_CCM, init_phase); 17953 ecore_init_block(sc, BLOCK_XCM, init_phase); 17954 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17955 ecore_init_block(sc, BLOCK_USEM, init_phase); 17956 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17957 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17958 17959 if (!CHIP_IS_E1x(sc)) 17960 REG_WR(sc, QM_REG_PF_EN, 1); 17961 17962 if (!CHIP_IS_E1x(sc)) { 17963 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17964 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17965 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17966 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17967 } 17968 ecore_init_block(sc, BLOCK_QM, init_phase); 17969 17970 ecore_init_block(sc, BLOCK_TM, init_phase); 17971 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17972 17973 bxe_iov_init_dq(sc); 17974 17975 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17976 ecore_init_block(sc, BLOCK_PRS, init_phase); 17977 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17978 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17979 ecore_init_block(sc, BLOCK_USDM, init_phase); 17980 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17981 ecore_init_block(sc, BLOCK_UPB, init_phase); 17982 ecore_init_block(sc, BLOCK_XPB, init_phase); 17983 ecore_init_block(sc, BLOCK_PBF, init_phase); 17984 if (!CHIP_IS_E1x(sc)) 17985 REG_WR(sc, PBF_REG_DISABLE_PF, 0); 17986 17987 ecore_init_block(sc, BLOCK_CDU, init_phase); 17988 17989 ecore_init_block(sc, BLOCK_CFC, init_phase); 17990 17991 if (!CHIP_IS_E1x(sc)) 17992 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1); 17993 17994 if (IS_MF(sc)) { 17995 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 17996 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc)); 17997 } 17998 17999 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 18000 18001 /* HC init per function */ 18002 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18003 if (CHIP_IS_E1H(sc)) { 18004 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 18005 18006 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18007 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18008 } 18009 ecore_init_block(sc, BLOCK_HC, init_phase); 18010 18011 } else { 18012 int num_segs, sb_idx, prod_offset; 18013 18014 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 18015 18016 if (!CHIP_IS_E1x(sc)) { 18017 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18018 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18019 } 18020 18021 ecore_init_block(sc, BLOCK_IGU, init_phase); 18022 18023 if (!CHIP_IS_E1x(sc)) { 18024 int dsb_idx = 0; 18025 /** 18026 * Producer memory: 18027 * E2 mode: address 0-135 match to the mapping memory; 18028 * 136 - PF0 default prod; 137 - PF1 default prod; 18029 * 138 - PF2 default prod; 139 - PF3 default prod; 18030 * 140 - PF0 attn prod; 141 - PF1 attn prod; 18031 * 142 - PF2 attn prod; 143 - PF3 attn prod; 18032 * 144-147 reserved. 18033 * 18034 * E1.5 mode - In backward compatible mode; 18035 * for non default SB; each even line in the memory 18036 * holds the U producer and each odd line hold 18037 * the C producer. The first 128 producers are for 18038 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 18039 * producers are for the DSB for each PF. 18040 * Each PF has five segments: (the order inside each 18041 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 18042 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 18043 * 144-147 attn prods; 18044 */ 18045 /* non-default-status-blocks */ 18046 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18047 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 18048 for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) { 18049 prod_offset = (sc->igu_base_sb + sb_idx) * 18050 num_segs; 18051 18052 for (i = 0; i < num_segs; i++) { 18053 addr = IGU_REG_PROD_CONS_MEMORY + 18054 (prod_offset + i) * 4; 18055 REG_WR(sc, addr, 0); 18056 } 18057 /* send consumer update with value 0 */ 18058 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx, 18059 USTORM_ID, 0, IGU_INT_NOP, 1); 18060 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx); 18061 } 18062 18063 /* default-status-blocks */ 18064 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18065 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 18066 18067 if (CHIP_IS_MODE_4_PORT(sc)) 18068 dsb_idx = SC_FUNC(sc); 18069 else 18070 dsb_idx = SC_VN(sc); 18071 18072 prod_offset = (CHIP_INT_MODE_IS_BC(sc) ? 18073 IGU_BC_BASE_DSB_PROD + dsb_idx : 18074 IGU_NORM_BASE_DSB_PROD + dsb_idx); 18075 18076 /* 18077 * igu prods come in chunks of E1HVN_MAX (4) - 18078 * does not matters what is the current chip mode 18079 */ 18080 for (i = 0; i < (num_segs * E1HVN_MAX); 18081 i += E1HVN_MAX) { 18082 addr = IGU_REG_PROD_CONS_MEMORY + 18083 (prod_offset + i)*4; 18084 REG_WR(sc, addr, 0); 18085 } 18086 /* send consumer update with 0 */ 18087 if (CHIP_INT_MODE_IS_BC(sc)) { 18088 bxe_ack_sb(sc, sc->igu_dsb_id, 18089 USTORM_ID, 0, IGU_INT_NOP, 1); 18090 bxe_ack_sb(sc, sc->igu_dsb_id, 18091 CSTORM_ID, 0, IGU_INT_NOP, 1); 18092 bxe_ack_sb(sc, sc->igu_dsb_id, 18093 XSTORM_ID, 0, IGU_INT_NOP, 1); 18094 bxe_ack_sb(sc, sc->igu_dsb_id, 18095 TSTORM_ID, 0, IGU_INT_NOP, 1); 18096 bxe_ack_sb(sc, sc->igu_dsb_id, 18097 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18098 } else { 18099 bxe_ack_sb(sc, sc->igu_dsb_id, 18100 USTORM_ID, 0, IGU_INT_NOP, 1); 18101 bxe_ack_sb(sc, sc->igu_dsb_id, 18102 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18103 } 18104 bxe_igu_clear_sb(sc, sc->igu_dsb_id); 18105 18106 /* !!! these should become driver const once 18107 rf-tool supports split-68 const */ 18108 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 18109 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 18110 REG_WR(sc, IGU_REG_SB_MASK_LSB, 0); 18111 REG_WR(sc, IGU_REG_SB_MASK_MSB, 0); 18112 REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0); 18113 REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0); 18114 } 18115 } 18116 18117 /* Reset PCIE errors for debug */ 18118 REG_WR(sc, 0x2114, 0xffffffff); 18119 REG_WR(sc, 0x2120, 0xffffffff); 18120 18121 if (CHIP_IS_E1x(sc)) { 18122 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 18123 main_mem_base = HC_REG_MAIN_MEMORY + 18124 SC_PORT(sc) * (main_mem_size * 4); 18125 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 18126 main_mem_width = 8; 18127 18128 val = REG_RD(sc, main_mem_prty_clr); 18129 if (val) { 18130 BLOGD(sc, DBG_LOAD, 18131 "Parity errors in HC block during function init (0x%x)!\n", 18132 val); 18133 } 18134 18135 /* Clear "false" parity errors in MSI-X table */ 18136 for (i = main_mem_base; 18137 i < main_mem_base + main_mem_size * 4; 18138 i += main_mem_width) { 18139 bxe_read_dmae(sc, i, main_mem_width / 4); 18140 bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), 18141 i, main_mem_width / 4); 18142 } 18143 /* Clear HC parity attention */ 18144 REG_RD(sc, main_mem_prty_clr); 18145 } 18146 18147 #if 1 18148 /* Enable STORMs SP logging */ 18149 REG_WR8(sc, BAR_USTRORM_INTMEM + 18150 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18151 REG_WR8(sc, BAR_TSTRORM_INTMEM + 18152 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18153 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18154 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18155 REG_WR8(sc, BAR_XSTRORM_INTMEM + 18156 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18157 #endif 18158 18159 elink_phy_probe(&sc->link_params); 18160 18161 return (0); 18162 } 18163 18164 static void 18165 bxe_link_reset(struct bxe_softc *sc) 18166 { 18167 if (!BXE_NOMCP(sc)) { 18168 bxe_acquire_phy_lock(sc); 18169 elink_lfa_reset(&sc->link_params, &sc->link_vars); 18170 bxe_release_phy_lock(sc); 18171 } else { 18172 if (!CHIP_REV_IS_SLOW(sc)) { 18173 BLOGW(sc, "Bootcode is missing - cannot reset link\n"); 18174 } 18175 } 18176 } 18177 18178 static void 18179 bxe_reset_port(struct bxe_softc *sc) 18180 { 18181 int port = SC_PORT(sc); 18182 uint32_t val; 18183 18184 ELINK_DEBUG_P0(sc, "bxe_reset_port called\n"); 18185 /* reset physical Link */ 18186 bxe_link_reset(sc); 18187 18188 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 18189 18190 /* Do not rcv packets to BRB */ 18191 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 18192 /* Do not direct rcv packets that are not for MCP to the BRB */ 18193 REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 18194 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 18195 18196 /* Configure AEU */ 18197 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 18198 18199 DELAY(100000); 18200 18201 /* Check for BRB port occupancy */ 18202 val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 18203 if (val) { 18204 BLOGD(sc, DBG_LOAD, 18205 "BRB1 is not empty, %d blocks are occupied\n", val); 18206 } 18207 18208 /* TODO: Close Doorbell port? */ 18209 } 18210 18211 static void 18212 bxe_ilt_wr(struct bxe_softc *sc, 18213 uint32_t index, 18214 bus_addr_t addr) 18215 { 18216 int reg; 18217 uint32_t wb_write[2]; 18218 18219 if (CHIP_IS_E1(sc)) { 18220 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 18221 } else { 18222 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 18223 } 18224 18225 wb_write[0] = ONCHIP_ADDR1(addr); 18226 wb_write[1] = ONCHIP_ADDR2(addr); 18227 REG_WR_DMAE(sc, reg, wb_write, 2); 18228 } 18229 18230 static void 18231 bxe_clear_func_ilt(struct bxe_softc *sc, 18232 uint32_t func) 18233 { 18234 uint32_t i, base = FUNC_ILT_BASE(func); 18235 for (i = base; i < base + ILT_PER_FUNC; i++) { 18236 bxe_ilt_wr(sc, i, 0); 18237 } 18238 } 18239 18240 static void 18241 bxe_reset_func(struct bxe_softc *sc) 18242 { 18243 struct bxe_fastpath *fp; 18244 int port = SC_PORT(sc); 18245 int func = SC_FUNC(sc); 18246 int i; 18247 18248 /* Disable the function in the FW */ 18249 REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 18250 REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 18251 REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 18252 REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 18253 18254 /* FP SBs */ 18255 FOR_EACH_ETH_QUEUE(sc, i) { 18256 fp = &sc->fp[i]; 18257 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18258 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 18259 SB_DISABLED); 18260 } 18261 18262 /* SP SB */ 18263 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18264 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 18265 SB_DISABLED); 18266 18267 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) { 18268 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0); 18269 } 18270 18271 /* Configure IGU */ 18272 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18273 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18274 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18275 } else { 18276 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18277 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18278 } 18279 18280 if (CNIC_LOADED(sc)) { 18281 /* Disable Timer scan */ 18282 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 18283 /* 18284 * Wait for at least 10ms and up to 2 second for the timers 18285 * scan to complete 18286 */ 18287 for (i = 0; i < 200; i++) { 18288 DELAY(10000); 18289 if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4)) 18290 break; 18291 } 18292 } 18293 18294 /* Clear ILT */ 18295 bxe_clear_func_ilt(sc, func); 18296 18297 /* 18298 * Timers workaround bug for E2: if this is vnic-3, 18299 * we need to set the entire ilt range for this timers. 18300 */ 18301 if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) { 18302 struct ilt_client_info ilt_cli; 18303 /* use dummy TM client */ 18304 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 18305 ilt_cli.start = 0; 18306 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 18307 ilt_cli.client_num = ILT_CLIENT_TM; 18308 18309 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR); 18310 } 18311 18312 /* this assumes that reset_port() called before reset_func()*/ 18313 if (!CHIP_IS_E1x(sc)) { 18314 bxe_pf_disable(sc); 18315 } 18316 18317 sc->dmae_ready = 0; 18318 } 18319 18320 static int 18321 bxe_gunzip_init(struct bxe_softc *sc) 18322 { 18323 return (0); 18324 } 18325 18326 static void 18327 bxe_gunzip_end(struct bxe_softc *sc) 18328 { 18329 return; 18330 } 18331 18332 static int 18333 bxe_init_firmware(struct bxe_softc *sc) 18334 { 18335 if (CHIP_IS_E1(sc)) { 18336 ecore_init_e1_firmware(sc); 18337 sc->iro_array = e1_iro_arr; 18338 } else if (CHIP_IS_E1H(sc)) { 18339 ecore_init_e1h_firmware(sc); 18340 sc->iro_array = e1h_iro_arr; 18341 } else if (!CHIP_IS_E1x(sc)) { 18342 ecore_init_e2_firmware(sc); 18343 sc->iro_array = e2_iro_arr; 18344 } else { 18345 BLOGE(sc, "Unsupported chip revision\n"); 18346 return (-1); 18347 } 18348 18349 return (0); 18350 } 18351 18352 static void 18353 bxe_release_firmware(struct bxe_softc *sc) 18354 { 18355 /* Do nothing */ 18356 return; 18357 } 18358 18359 static int 18360 ecore_gunzip(struct bxe_softc *sc, 18361 const uint8_t *zbuf, 18362 int len) 18363 { 18364 /* XXX : Implement... */ 18365 BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n"); 18366 return (FALSE); 18367 } 18368 18369 static void 18370 ecore_reg_wr_ind(struct bxe_softc *sc, 18371 uint32_t addr, 18372 uint32_t val) 18373 { 18374 bxe_reg_wr_ind(sc, addr, val); 18375 } 18376 18377 static void 18378 ecore_write_dmae_phys_len(struct bxe_softc *sc, 18379 bus_addr_t phys_addr, 18380 uint32_t addr, 18381 uint32_t len) 18382 { 18383 bxe_write_dmae_phys_len(sc, phys_addr, addr, len); 18384 } 18385 18386 void 18387 ecore_storm_memset_struct(struct bxe_softc *sc, 18388 uint32_t addr, 18389 size_t size, 18390 uint32_t *data) 18391 { 18392 uint8_t i; 18393 for (i = 0; i < size/4; i++) { 18394 REG_WR(sc, addr + (i * 4), data[i]); 18395 } 18396 } 18397 18398 18399 /* 18400 * character device - ioctl interface definitions 18401 */ 18402 18403 18404 #include "bxe_dump.h" 18405 #include "bxe_ioctl.h" 18406 #include <sys/conf.h> 18407 18408 static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 18409 struct thread *td); 18410 18411 static struct cdevsw bxe_cdevsw = { 18412 .d_version = D_VERSION, 18413 .d_ioctl = bxe_eioctl, 18414 .d_name = "bxecnic", 18415 }; 18416 18417 #define BXE_PATH(sc) (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1)) 18418 18419 18420 #define DUMP_ALL_PRESETS 0x1FFF 18421 #define DUMP_MAX_PRESETS 13 18422 #define IS_E1_REG(chips) ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1) 18423 #define IS_E1H_REG(chips) ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H) 18424 #define IS_E2_REG(chips) ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2) 18425 #define IS_E3A0_REG(chips) ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0) 18426 #define IS_E3B0_REG(chips) ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0) 18427 18428 #define IS_REG_IN_PRESET(presets, idx) \ 18429 ((presets & (1 << (idx-1))) == (1 << (idx-1))) 18430 18431 18432 static int 18433 bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset) 18434 { 18435 if (CHIP_IS_E1(sc)) 18436 return dump_num_registers[0][preset-1]; 18437 else if (CHIP_IS_E1H(sc)) 18438 return dump_num_registers[1][preset-1]; 18439 else if (CHIP_IS_E2(sc)) 18440 return dump_num_registers[2][preset-1]; 18441 else if (CHIP_IS_E3A0(sc)) 18442 return dump_num_registers[3][preset-1]; 18443 else if (CHIP_IS_E3B0(sc)) 18444 return dump_num_registers[4][preset-1]; 18445 else 18446 return 0; 18447 } 18448 18449 static int 18450 bxe_get_total_regs_len32(struct bxe_softc *sc) 18451 { 18452 uint32_t preset_idx; 18453 int regdump_len32 = 0; 18454 18455 18456 /* Calculate the total preset regs length */ 18457 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { 18458 regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx); 18459 } 18460 18461 return regdump_len32; 18462 } 18463 18464 static const uint32_t * 18465 __bxe_get_page_addr_ar(struct bxe_softc *sc) 18466 { 18467 if (CHIP_IS_E2(sc)) 18468 return page_vals_e2; 18469 else if (CHIP_IS_E3(sc)) 18470 return page_vals_e3; 18471 else 18472 return NULL; 18473 } 18474 18475 static uint32_t 18476 __bxe_get_page_reg_num(struct bxe_softc *sc) 18477 { 18478 if (CHIP_IS_E2(sc)) 18479 return PAGE_MODE_VALUES_E2; 18480 else if (CHIP_IS_E3(sc)) 18481 return PAGE_MODE_VALUES_E3; 18482 else 18483 return 0; 18484 } 18485 18486 static const uint32_t * 18487 __bxe_get_page_write_ar(struct bxe_softc *sc) 18488 { 18489 if (CHIP_IS_E2(sc)) 18490 return page_write_regs_e2; 18491 else if (CHIP_IS_E3(sc)) 18492 return page_write_regs_e3; 18493 else 18494 return NULL; 18495 } 18496 18497 static uint32_t 18498 __bxe_get_page_write_num(struct bxe_softc *sc) 18499 { 18500 if (CHIP_IS_E2(sc)) 18501 return PAGE_WRITE_REGS_E2; 18502 else if (CHIP_IS_E3(sc)) 18503 return PAGE_WRITE_REGS_E3; 18504 else 18505 return 0; 18506 } 18507 18508 static const struct reg_addr * 18509 __bxe_get_page_read_ar(struct bxe_softc *sc) 18510 { 18511 if (CHIP_IS_E2(sc)) 18512 return page_read_regs_e2; 18513 else if (CHIP_IS_E3(sc)) 18514 return page_read_regs_e3; 18515 else 18516 return NULL; 18517 } 18518 18519 static uint32_t 18520 __bxe_get_page_read_num(struct bxe_softc *sc) 18521 { 18522 if (CHIP_IS_E2(sc)) 18523 return PAGE_READ_REGS_E2; 18524 else if (CHIP_IS_E3(sc)) 18525 return PAGE_READ_REGS_E3; 18526 else 18527 return 0; 18528 } 18529 18530 static bool 18531 bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info) 18532 { 18533 if (CHIP_IS_E1(sc)) 18534 return IS_E1_REG(reg_info->chips); 18535 else if (CHIP_IS_E1H(sc)) 18536 return IS_E1H_REG(reg_info->chips); 18537 else if (CHIP_IS_E2(sc)) 18538 return IS_E2_REG(reg_info->chips); 18539 else if (CHIP_IS_E3A0(sc)) 18540 return IS_E3A0_REG(reg_info->chips); 18541 else if (CHIP_IS_E3B0(sc)) 18542 return IS_E3B0_REG(reg_info->chips); 18543 else 18544 return 0; 18545 } 18546 18547 static bool 18548 bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info) 18549 { 18550 if (CHIP_IS_E1(sc)) 18551 return IS_E1_REG(wreg_info->chips); 18552 else if (CHIP_IS_E1H(sc)) 18553 return IS_E1H_REG(wreg_info->chips); 18554 else if (CHIP_IS_E2(sc)) 18555 return IS_E2_REG(wreg_info->chips); 18556 else if (CHIP_IS_E3A0(sc)) 18557 return IS_E3A0_REG(wreg_info->chips); 18558 else if (CHIP_IS_E3B0(sc)) 18559 return IS_E3B0_REG(wreg_info->chips); 18560 else 18561 return 0; 18562 } 18563 18564 /** 18565 * bxe_read_pages_regs - read "paged" registers 18566 * 18567 * @bp device handle 18568 * @p output buffer 18569 * 18570 * Reads "paged" memories: memories that may only be read by first writing to a 18571 * specific address ("write address") and then reading from a specific address 18572 * ("read address"). There may be more than one write address per "page" and 18573 * more than one read address per write address. 18574 */ 18575 static void 18576 bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset) 18577 { 18578 uint32_t i, j, k, n; 18579 18580 /* addresses of the paged registers */ 18581 const uint32_t *page_addr = __bxe_get_page_addr_ar(sc); 18582 /* number of paged registers */ 18583 int num_pages = __bxe_get_page_reg_num(sc); 18584 /* write addresses */ 18585 const uint32_t *write_addr = __bxe_get_page_write_ar(sc); 18586 /* number of write addresses */ 18587 int write_num = __bxe_get_page_write_num(sc); 18588 /* read addresses info */ 18589 const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc); 18590 /* number of read addresses */ 18591 int read_num = __bxe_get_page_read_num(sc); 18592 uint32_t addr, size; 18593 18594 for (i = 0; i < num_pages; i++) { 18595 for (j = 0; j < write_num; j++) { 18596 REG_WR(sc, write_addr[j], page_addr[i]); 18597 18598 for (k = 0; k < read_num; k++) { 18599 if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) { 18600 size = read_addr[k].size; 18601 for (n = 0; n < size; n++) { 18602 addr = read_addr[k].addr + n*4; 18603 *p++ = REG_RD(sc, addr); 18604 } 18605 } 18606 } 18607 } 18608 } 18609 return; 18610 } 18611 18612 18613 static int 18614 bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset) 18615 { 18616 uint32_t i, j, addr; 18617 const struct wreg_addr *wreg_addr_p = NULL; 18618 18619 if (CHIP_IS_E1(sc)) 18620 wreg_addr_p = &wreg_addr_e1; 18621 else if (CHIP_IS_E1H(sc)) 18622 wreg_addr_p = &wreg_addr_e1h; 18623 else if (CHIP_IS_E2(sc)) 18624 wreg_addr_p = &wreg_addr_e2; 18625 else if (CHIP_IS_E3A0(sc)) 18626 wreg_addr_p = &wreg_addr_e3; 18627 else if (CHIP_IS_E3B0(sc)) 18628 wreg_addr_p = &wreg_addr_e3b0; 18629 else 18630 return (-1); 18631 18632 /* Read the idle_chk registers */ 18633 for (i = 0; i < IDLE_REGS_COUNT; i++) { 18634 if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) && 18635 IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) { 18636 for (j = 0; j < idle_reg_addrs[i].size; j++) 18637 *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4); 18638 } 18639 } 18640 18641 /* Read the regular registers */ 18642 for (i = 0; i < REGS_COUNT; i++) { 18643 if (bxe_is_reg_in_chip(sc, ®_addrs[i]) && 18644 IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) { 18645 for (j = 0; j < reg_addrs[i].size; j++) 18646 *p++ = REG_RD(sc, reg_addrs[i].addr + j*4); 18647 } 18648 } 18649 18650 /* Read the CAM registers */ 18651 if (bxe_is_wreg_in_chip(sc, wreg_addr_p) && 18652 IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) { 18653 for (i = 0; i < wreg_addr_p->size; i++) { 18654 *p++ = REG_RD(sc, wreg_addr_p->addr + i*4); 18655 18656 /* In case of wreg_addr register, read additional 18657 registers from read_regs array 18658 */ 18659 for (j = 0; j < wreg_addr_p->read_regs_count; j++) { 18660 addr = *(wreg_addr_p->read_regs); 18661 *p++ = REG_RD(sc, addr + j*4); 18662 } 18663 } 18664 } 18665 18666 /* Paged registers are supported in E2 & E3 only */ 18667 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 18668 /* Read "paged" registers */ 18669 bxe_read_pages_regs(sc, p, preset); 18670 } 18671 18672 return 0; 18673 } 18674 18675 int 18676 bxe_grc_dump(struct bxe_softc *sc) 18677 { 18678 int rval = 0; 18679 uint32_t preset_idx; 18680 uint8_t *buf; 18681 uint32_t size; 18682 struct dump_header *d_hdr; 18683 uint32_t i; 18684 uint32_t reg_val; 18685 uint32_t reg_addr; 18686 uint32_t cmd_offset; 18687 struct ecore_ilt *ilt = SC_ILT(sc); 18688 struct bxe_fastpath *fp; 18689 struct ilt_client_info *ilt_cli; 18690 int grc_dump_size; 18691 18692 18693 if (sc->grcdump_done || sc->grcdump_started) 18694 return (rval); 18695 18696 sc->grcdump_started = 1; 18697 BLOGI(sc, "Started collecting grcdump\n"); 18698 18699 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 18700 sizeof(struct dump_header); 18701 18702 sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT); 18703 18704 if (sc->grc_dump == NULL) { 18705 BLOGW(sc, "Unable to allocate memory for grcdump collection\n"); 18706 return(ENOMEM); 18707 } 18708 18709 18710 18711 /* Disable parity attentions as long as following dump may 18712 * cause false alarms by reading never written registers. We 18713 * will re-enable parity attentions right after the dump. 18714 */ 18715 18716 /* Disable parity on path 0 */ 18717 bxe_pretend_func(sc, 0); 18718 18719 ecore_disable_blocks_parity(sc); 18720 18721 /* Disable parity on path 1 */ 18722 bxe_pretend_func(sc, 1); 18723 ecore_disable_blocks_parity(sc); 18724 18725 /* Return to current function */ 18726 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 18727 18728 buf = sc->grc_dump; 18729 d_hdr = sc->grc_dump; 18730 18731 d_hdr->header_size = (sizeof(struct dump_header) >> 2) - 1; 18732 d_hdr->version = BNX2X_DUMP_VERSION; 18733 d_hdr->preset = DUMP_ALL_PRESETS; 18734 18735 if (CHIP_IS_E1(sc)) { 18736 d_hdr->dump_meta_data = DUMP_CHIP_E1; 18737 } else if (CHIP_IS_E1H(sc)) { 18738 d_hdr->dump_meta_data = DUMP_CHIP_E1H; 18739 } else if (CHIP_IS_E2(sc)) { 18740 d_hdr->dump_meta_data = DUMP_CHIP_E2 | 18741 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18742 } else if (CHIP_IS_E3A0(sc)) { 18743 d_hdr->dump_meta_data = DUMP_CHIP_E3A0 | 18744 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18745 } else if (CHIP_IS_E3B0(sc)) { 18746 d_hdr->dump_meta_data = DUMP_CHIP_E3B0 | 18747 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18748 } 18749 18750 buf += sizeof(struct dump_header); 18751 18752 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { 18753 18754 /* Skip presets with IOR */ 18755 if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) || 18756 (preset_idx == 11)) 18757 continue; 18758 18759 rval = bxe_get_preset_regs(sc, (uint32_t *)buf, preset_idx); 18760 18761 if (rval) 18762 break; 18763 18764 size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t)); 18765 18766 buf += size; 18767 } 18768 18769 bxe_pretend_func(sc, 0); 18770 ecore_clear_blocks_parity(sc); 18771 ecore_enable_blocks_parity(sc); 18772 18773 bxe_pretend_func(sc, 1); 18774 ecore_clear_blocks_parity(sc); 18775 ecore_enable_blocks_parity(sc); 18776 18777 /* Return to current function */ 18778 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 18779 18780 18781 18782 if(sc->state == BXE_STATE_OPEN) { 18783 if(sc->fw_stats_req != NULL) { 18784 BLOGI(sc, "fw stats start_paddr %#jx end_paddr %#jx vaddr %p size 0x%x\n", 18785 (uintmax_t)sc->fw_stats_req_mapping, 18786 (uintmax_t)sc->fw_stats_data_mapping, 18787 sc->fw_stats_req, (sc->fw_stats_req_size + sc->fw_stats_data_size)); 18788 } 18789 if(sc->def_sb != NULL) { 18790 BLOGI(sc, "def_status_block paddr %p vaddr %p size 0x%zx\n", 18791 (void *)sc->def_sb_dma.paddr, sc->def_sb, 18792 sizeof(struct host_sp_status_block)); 18793 } 18794 if(sc->eq_dma.vaddr != NULL) { 18795 BLOGI(sc, "event_queue paddr %#jx vaddr %p size 0x%x\n", 18796 (uintmax_t)sc->eq_dma.paddr, sc->eq_dma.vaddr, BCM_PAGE_SIZE); 18797 } 18798 if(sc->sp_dma.vaddr != NULL) { 18799 BLOGI(sc, "slow path paddr %#jx vaddr %p size 0x%zx\n", 18800 (uintmax_t)sc->sp_dma.paddr, sc->sp_dma.vaddr, 18801 sizeof(struct bxe_slowpath)); 18802 } 18803 if(sc->spq_dma.vaddr != NULL) { 18804 BLOGI(sc, "slow path queue paddr %#jx vaddr %p size 0x%x\n", 18805 (uintmax_t)sc->spq_dma.paddr, sc->spq_dma.vaddr, BCM_PAGE_SIZE); 18806 } 18807 if(sc->gz_buf_dma.vaddr != NULL) { 18808 BLOGI(sc, "fw_buf paddr %#jx vaddr %p size 0x%x\n", 18809 (uintmax_t)sc->gz_buf_dma.paddr, sc->gz_buf_dma.vaddr, 18810 FW_BUF_SIZE); 18811 } 18812 for (i = 0; i < sc->num_queues; i++) { 18813 fp = &sc->fp[i]; 18814 if(fp->sb_dma.vaddr != NULL && fp->tx_dma.vaddr != NULL && 18815 fp->rx_dma.vaddr != NULL && fp->rcq_dma.vaddr != NULL && 18816 fp->rx_sge_dma.vaddr != NULL) { 18817 18818 BLOGI(sc, "FP status block fp %d paddr %#jx vaddr %p size 0x%zx\n", i, 18819 (uintmax_t)fp->sb_dma.paddr, fp->sb_dma.vaddr, 18820 sizeof(union bxe_host_hc_status_block)); 18821 BLOGI(sc, "TX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 18822 (uintmax_t)fp->tx_dma.paddr, fp->tx_dma.vaddr, 18823 (BCM_PAGE_SIZE * TX_BD_NUM_PAGES)); 18824 BLOGI(sc, "RX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 18825 (uintmax_t)fp->rx_dma.paddr, fp->rx_dma.vaddr, 18826 (BCM_PAGE_SIZE * RX_BD_NUM_PAGES)); 18827 BLOGI(sc, "RX RCQ CHAIN fp %d paddr %#jx vaddr %p size 0x%zx\n", i, 18828 (uintmax_t)fp->rcq_dma.paddr, fp->rcq_dma.vaddr, 18829 (BCM_PAGE_SIZE * RCQ_NUM_PAGES)); 18830 BLOGI(sc, "RX SGE CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 18831 (uintmax_t)fp->rx_sge_dma.paddr, fp->rx_sge_dma.vaddr, 18832 (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES)); 18833 } 18834 } 18835 if(ilt != NULL ) { 18836 ilt_cli = &ilt->clients[1]; 18837 if(ilt->lines != NULL) { 18838 for (i = ilt_cli->start; i <= ilt_cli->end; i++) { 18839 BLOGI(sc, "ECORE_ILT paddr %#jx vaddr %p size 0x%x\n", 18840 (uintmax_t)(((struct bxe_dma *)((&ilt->lines[i])->page))->paddr), 18841 ((struct bxe_dma *)((&ilt->lines[i])->page))->vaddr, BCM_PAGE_SIZE); 18842 } 18843 } 18844 } 18845 18846 18847 cmd_offset = DMAE_REG_CMD_MEM; 18848 for (i = 0; i < 224; i++) { 18849 reg_addr = (cmd_offset +(i * 4)); 18850 reg_val = REG_RD(sc, reg_addr); 18851 BLOGI(sc, "DMAE_REG_CMD_MEM i=%d reg_addr 0x%x reg_val 0x%08x\n",i, 18852 reg_addr, reg_val); 18853 } 18854 } 18855 18856 BLOGI(sc, "Collection of grcdump done\n"); 18857 sc->grcdump_done = 1; 18858 return(rval); 18859 } 18860 18861 static int 18862 bxe_add_cdev(struct bxe_softc *sc) 18863 { 18864 sc->eeprom = malloc(BXE_EEPROM_MAX_DATA_LEN, M_DEVBUF, M_NOWAIT); 18865 18866 if (sc->eeprom == NULL) { 18867 BLOGW(sc, "Unable to alloc for eeprom size buffer\n"); 18868 return (-1); 18869 } 18870 18871 sc->ioctl_dev = make_dev(&bxe_cdevsw, 18872 sc->ifp->if_dunit, 18873 UID_ROOT, 18874 GID_WHEEL, 18875 0600, 18876 "%s", 18877 if_name(sc->ifp)); 18878 18879 if (sc->ioctl_dev == NULL) { 18880 free(sc->eeprom, M_DEVBUF); 18881 sc->eeprom = NULL; 18882 return (-1); 18883 } 18884 18885 sc->ioctl_dev->si_drv1 = sc; 18886 18887 return (0); 18888 } 18889 18890 static void 18891 bxe_del_cdev(struct bxe_softc *sc) 18892 { 18893 if (sc->ioctl_dev != NULL) 18894 destroy_dev(sc->ioctl_dev); 18895 18896 if (sc->eeprom != NULL) { 18897 free(sc->eeprom, M_DEVBUF); 18898 sc->eeprom = NULL; 18899 } 18900 sc->ioctl_dev = NULL; 18901 18902 return; 18903 } 18904 18905 static bool bxe_is_nvram_accessible(struct bxe_softc *sc) 18906 { 18907 18908 if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0) 18909 return FALSE; 18910 18911 return TRUE; 18912 } 18913 18914 18915 static int 18916 bxe_wr_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len) 18917 { 18918 int rval = 0; 18919 18920 if(!bxe_is_nvram_accessible(sc)) { 18921 BLOGW(sc, "Cannot access eeprom when interface is down\n"); 18922 return (-EAGAIN); 18923 } 18924 rval = bxe_nvram_write(sc, offset, (uint8_t *)data, len); 18925 18926 18927 return (rval); 18928 } 18929 18930 static int 18931 bxe_rd_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len) 18932 { 18933 int rval = 0; 18934 18935 if(!bxe_is_nvram_accessible(sc)) { 18936 BLOGW(sc, "Cannot access eeprom when interface is down\n"); 18937 return (-EAGAIN); 18938 } 18939 rval = bxe_nvram_read(sc, offset, (uint8_t *)data, len); 18940 18941 return (rval); 18942 } 18943 18944 static int 18945 bxe_eeprom_rd_wr(struct bxe_softc *sc, bxe_eeprom_t *eeprom) 18946 { 18947 int rval = 0; 18948 18949 switch (eeprom->eeprom_cmd) { 18950 18951 case BXE_EEPROM_CMD_SET_EEPROM: 18952 18953 rval = copyin(eeprom->eeprom_data, sc->eeprom, 18954 eeprom->eeprom_data_len); 18955 18956 if (rval) 18957 break; 18958 18959 rval = bxe_wr_eeprom(sc, sc->eeprom, eeprom->eeprom_offset, 18960 eeprom->eeprom_data_len); 18961 break; 18962 18963 case BXE_EEPROM_CMD_GET_EEPROM: 18964 18965 rval = bxe_rd_eeprom(sc, sc->eeprom, eeprom->eeprom_offset, 18966 eeprom->eeprom_data_len); 18967 18968 if (rval) { 18969 break; 18970 } 18971 18972 rval = copyout(sc->eeprom, eeprom->eeprom_data, 18973 eeprom->eeprom_data_len); 18974 break; 18975 18976 default: 18977 rval = EINVAL; 18978 break; 18979 } 18980 18981 if (rval) { 18982 BLOGW(sc, "ioctl cmd %d failed rval %d\n", eeprom->eeprom_cmd, rval); 18983 } 18984 18985 return (rval); 18986 } 18987 18988 static int 18989 bxe_get_settings(struct bxe_softc *sc, bxe_dev_setting_t *dev_p) 18990 { 18991 uint32_t ext_phy_config; 18992 int port = SC_PORT(sc); 18993 int cfg_idx = bxe_get_link_cfg_idx(sc); 18994 18995 dev_p->supported = sc->port.supported[cfg_idx] | 18996 (sc->port.supported[cfg_idx ^ 1] & 18997 (ELINK_SUPPORTED_TP | ELINK_SUPPORTED_FIBRE)); 18998 dev_p->advertising = sc->port.advertising[cfg_idx]; 18999 if(sc->link_params.phy[bxe_get_cur_phy_idx(sc)].media_type == 19000 ELINK_ETH_PHY_SFP_1G_FIBER) { 19001 dev_p->supported = ~(ELINK_SUPPORTED_10000baseT_Full); 19002 dev_p->advertising &= ~(ADVERTISED_10000baseT_Full); 19003 } 19004 if ((sc->state == BXE_STATE_OPEN) && sc->link_vars.link_up && 19005 !(sc->flags & BXE_MF_FUNC_DIS)) { 19006 dev_p->duplex = sc->link_vars.duplex; 19007 if (IS_MF(sc) && !BXE_NOMCP(sc)) 19008 dev_p->speed = bxe_get_mf_speed(sc); 19009 else 19010 dev_p->speed = sc->link_vars.line_speed; 19011 } else { 19012 dev_p->duplex = DUPLEX_UNKNOWN; 19013 dev_p->speed = SPEED_UNKNOWN; 19014 } 19015 19016 dev_p->port = bxe_media_detect(sc); 19017 19018 ext_phy_config = SHMEM_RD(sc, 19019 dev_info.port_hw_config[port].external_phy_config); 19020 if((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) == 19021 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) 19022 dev_p->phy_address = sc->port.phy_addr; 19023 else if(((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) != 19024 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) && 19025 ((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) != 19026 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN)) 19027 dev_p->phy_address = ELINK_XGXS_EXT_PHY_ADDR(ext_phy_config); 19028 else 19029 dev_p->phy_address = 0; 19030 19031 if(sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) 19032 dev_p->autoneg = AUTONEG_ENABLE; 19033 else 19034 dev_p->autoneg = AUTONEG_DISABLE; 19035 19036 19037 return 0; 19038 } 19039 19040 static int 19041 bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 19042 struct thread *td) 19043 { 19044 struct bxe_softc *sc; 19045 int rval = 0; 19046 device_t pci_dev; 19047 bxe_grcdump_t *dump = NULL; 19048 int grc_dump_size; 19049 bxe_drvinfo_t *drv_infop = NULL; 19050 bxe_dev_setting_t *dev_p; 19051 bxe_dev_setting_t dev_set; 19052 bxe_get_regs_t *reg_p; 19053 bxe_reg_rdw_t *reg_rdw_p; 19054 bxe_pcicfg_rdw_t *cfg_rdw_p; 19055 bxe_perm_mac_addr_t *mac_addr_p; 19056 19057 19058 if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL) 19059 return ENXIO; 19060 19061 pci_dev= sc->dev; 19062 19063 dump = (bxe_grcdump_t *)data; 19064 19065 switch(cmd) { 19066 19067 case BXE_GRC_DUMP_SIZE: 19068 dump->pci_func = sc->pcie_func; 19069 dump->grcdump_size = 19070 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 19071 sizeof(struct dump_header); 19072 break; 19073 19074 case BXE_GRC_DUMP: 19075 19076 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 19077 sizeof(struct dump_header); 19078 if ((!sc->trigger_grcdump) || (dump->grcdump == NULL) || 19079 (dump->grcdump_size < grc_dump_size)) { 19080 rval = EINVAL; 19081 break; 19082 } 19083 19084 if((sc->trigger_grcdump) && (!sc->grcdump_done) && 19085 (!sc->grcdump_started)) { 19086 rval = bxe_grc_dump(sc); 19087 } 19088 19089 if((!rval) && (sc->grcdump_done) && (sc->grcdump_started) && 19090 (sc->grc_dump != NULL)) { 19091 dump->grcdump_dwords = grc_dump_size >> 2; 19092 rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size); 19093 free(sc->grc_dump, M_DEVBUF); 19094 sc->grc_dump = NULL; 19095 sc->grcdump_started = 0; 19096 sc->grcdump_done = 0; 19097 } 19098 19099 break; 19100 19101 case BXE_DRV_INFO: 19102 drv_infop = (bxe_drvinfo_t *)data; 19103 snprintf(drv_infop->drv_name, BXE_DRV_NAME_LENGTH, "%s", "bxe"); 19104 snprintf(drv_infop->drv_version, BXE_DRV_VERSION_LENGTH, "v:%s", 19105 BXE_DRIVER_VERSION); 19106 snprintf(drv_infop->mfw_version, BXE_MFW_VERSION_LENGTH, "%s", 19107 sc->devinfo.bc_ver_str); 19108 snprintf(drv_infop->stormfw_version, BXE_STORMFW_VERSION_LENGTH, 19109 "%s", sc->fw_ver_str); 19110 drv_infop->eeprom_dump_len = sc->devinfo.flash_size; 19111 drv_infop->reg_dump_len = 19112 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) 19113 + sizeof(struct dump_header); 19114 snprintf(drv_infop->bus_info, BXE_BUS_INFO_LENGTH, "%d:%d:%d", 19115 sc->pcie_bus, sc->pcie_device, sc->pcie_func); 19116 break; 19117 19118 case BXE_DEV_SETTING: 19119 dev_p = (bxe_dev_setting_t *)data; 19120 bxe_get_settings(sc, &dev_set); 19121 dev_p->supported = dev_set.supported; 19122 dev_p->advertising = dev_set.advertising; 19123 dev_p->speed = dev_set.speed; 19124 dev_p->duplex = dev_set.duplex; 19125 dev_p->port = dev_set.port; 19126 dev_p->phy_address = dev_set.phy_address; 19127 dev_p->autoneg = dev_set.autoneg; 19128 19129 break; 19130 19131 case BXE_GET_REGS: 19132 19133 reg_p = (bxe_get_regs_t *)data; 19134 grc_dump_size = reg_p->reg_buf_len; 19135 19136 if((!sc->grcdump_done) && (!sc->grcdump_started)) { 19137 bxe_grc_dump(sc); 19138 } 19139 if((sc->grcdump_done) && (sc->grcdump_started) && 19140 (sc->grc_dump != NULL)) { 19141 rval = copyout(sc->grc_dump, reg_p->reg_buf, grc_dump_size); 19142 free(sc->grc_dump, M_DEVBUF); 19143 sc->grc_dump = NULL; 19144 sc->grcdump_started = 0; 19145 sc->grcdump_done = 0; 19146 } 19147 19148 break; 19149 19150 case BXE_RDW_REG: 19151 reg_rdw_p = (bxe_reg_rdw_t *)data; 19152 if((reg_rdw_p->reg_cmd == BXE_READ_REG_CMD) && 19153 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT)) 19154 reg_rdw_p->reg_val = REG_RD(sc, reg_rdw_p->reg_id); 19155 19156 if((reg_rdw_p->reg_cmd == BXE_WRITE_REG_CMD) && 19157 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT)) 19158 REG_WR(sc, reg_rdw_p->reg_id, reg_rdw_p->reg_val); 19159 19160 break; 19161 19162 case BXE_RDW_PCICFG: 19163 cfg_rdw_p = (bxe_pcicfg_rdw_t *)data; 19164 if(cfg_rdw_p->cfg_cmd == BXE_READ_PCICFG) { 19165 19166 cfg_rdw_p->cfg_val = pci_read_config(sc->dev, cfg_rdw_p->cfg_id, 19167 cfg_rdw_p->cfg_width); 19168 19169 } else if(cfg_rdw_p->cfg_cmd == BXE_WRITE_PCICFG) { 19170 pci_write_config(sc->dev, cfg_rdw_p->cfg_id, cfg_rdw_p->cfg_val, 19171 cfg_rdw_p->cfg_width); 19172 } else { 19173 BLOGW(sc, "BXE_RDW_PCICFG ioctl wrong cmd passed\n"); 19174 } 19175 break; 19176 19177 case BXE_MAC_ADDR: 19178 mac_addr_p = (bxe_perm_mac_addr_t *)data; 19179 snprintf(mac_addr_p->mac_addr_str, sizeof(sc->mac_addr_str), "%s", 19180 sc->mac_addr_str); 19181 break; 19182 19183 case BXE_EEPROM: 19184 rval = bxe_eeprom_rd_wr(sc, (bxe_eeprom_t *)data); 19185 break; 19186 19187 19188 default: 19189 break; 19190 } 19191 19192 return (rval); 19193 } 19194 19195 #ifdef NETDUMP 19196 static void 19197 bxe_netdump_init(struct ifnet *ifp, int *nrxr, int *ncl, int *clsize) 19198 { 19199 struct bxe_softc *sc; 19200 19201 sc = if_getsoftc(ifp); 19202 BXE_CORE_LOCK(sc); 19203 *nrxr = sc->num_queues; 19204 *ncl = NETDUMP_MAX_IN_FLIGHT; 19205 *clsize = sc->fp[0].mbuf_alloc_size; 19206 BXE_CORE_UNLOCK(sc); 19207 } 19208 19209 static void 19210 bxe_netdump_event(struct ifnet *ifp __unused, enum netdump_ev event __unused) 19211 { 19212 } 19213 19214 static int 19215 bxe_netdump_transmit(struct ifnet *ifp, struct mbuf *m) 19216 { 19217 struct bxe_softc *sc; 19218 int error; 19219 19220 sc = if_getsoftc(ifp); 19221 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 19222 IFF_DRV_RUNNING || !sc->link_vars.link_up) 19223 return (ENOENT); 19224 19225 error = bxe_tx_encap(&sc->fp[0], &m); 19226 if (error != 0 && m != NULL) 19227 m_freem(m); 19228 return (error); 19229 } 19230 19231 static int 19232 bxe_netdump_poll(struct ifnet *ifp, int count) 19233 { 19234 struct bxe_softc *sc; 19235 int i; 19236 19237 sc = if_getsoftc(ifp); 19238 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 || 19239 !sc->link_vars.link_up) 19240 return (ENOENT); 19241 19242 for (i = 0; i < sc->num_queues; i++) 19243 (void)bxe_rxeof(sc, &sc->fp[i]); 19244 (void)bxe_txeof(sc, &sc->fp[0]); 19245 return (0); 19246 } 19247 #endif /* NETDUMP */ 19248