xref: /freebsd/sys/dev/bxe/bxe.c (revision 480f4e946db51c7de558c4cd1ba3d88caeaceec8)
1 /*-
2  * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24  * THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #define BXE_DRIVER_VERSION "1.78.81"
31 
32 #include "bxe.h"
33 #include "ecore_sp.h"
34 #include "ecore_init.h"
35 #include "ecore_init_ops.h"
36 
37 #include "57710_int_offsets.h"
38 #include "57711_int_offsets.h"
39 #include "57712_int_offsets.h"
40 
41 /*
42  * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
43  * explicitly here for older kernels that don't include this changeset.
44  */
45 #ifndef CTLTYPE_U64
46 #define CTLTYPE_U64      CTLTYPE_QUAD
47 #define sysctl_handle_64 sysctl_handle_quad
48 #endif
49 
50 /*
51  * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
52  * here as zero(0) for older kernels that don't include this changeset
53  * thereby masking the functionality.
54  */
55 #ifndef CSUM_TCP_IPV6
56 #define CSUM_TCP_IPV6 0
57 #define CSUM_UDP_IPV6 0
58 #endif
59 
60 /*
61  * pci_find_cap was added in r219865. Re-define this at pci_find_extcap
62  * for older kernels that don't include this changeset.
63  */
64 #if __FreeBSD_version < 900035
65 #define pci_find_cap pci_find_extcap
66 #endif
67 
68 #define BXE_DEF_SB_ATT_IDX 0x0001
69 #define BXE_DEF_SB_IDX     0x0002
70 
71 /*
72  * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
73  * function HW initialization.
74  */
75 #define FLR_WAIT_USEC     10000 /* 10 msecs */
76 #define FLR_WAIT_INTERVAL 50    /* usecs */
77 #define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
78 
79 struct pbf_pN_buf_regs {
80     int pN;
81     uint32_t init_crd;
82     uint32_t crd;
83     uint32_t crd_freed;
84 };
85 
86 struct pbf_pN_cmd_regs {
87     int pN;
88     uint32_t lines_occup;
89     uint32_t lines_freed;
90 };
91 
92 /*
93  * PCI Device ID Table used by bxe_probe().
94  */
95 #define BXE_DEVDESC_MAX 64
96 static struct bxe_device_type bxe_devs[] = {
97     {
98         BRCM_VENDORID,
99         CHIP_NUM_57710,
100         PCI_ANY_ID, PCI_ANY_ID,
101         "QLogic NetXtreme II BCM57710 10GbE"
102     },
103     {
104         BRCM_VENDORID,
105         CHIP_NUM_57711,
106         PCI_ANY_ID, PCI_ANY_ID,
107         "QLogic NetXtreme II BCM57711 10GbE"
108     },
109     {
110         BRCM_VENDORID,
111         CHIP_NUM_57711E,
112         PCI_ANY_ID, PCI_ANY_ID,
113         "QLogic NetXtreme II BCM57711E 10GbE"
114     },
115     {
116         BRCM_VENDORID,
117         CHIP_NUM_57712,
118         PCI_ANY_ID, PCI_ANY_ID,
119         "QLogic NetXtreme II BCM57712 10GbE"
120     },
121     {
122         BRCM_VENDORID,
123         CHIP_NUM_57712_MF,
124         PCI_ANY_ID, PCI_ANY_ID,
125         "QLogic NetXtreme II BCM57712 MF 10GbE"
126     },
127     {
128         BRCM_VENDORID,
129         CHIP_NUM_57800,
130         PCI_ANY_ID, PCI_ANY_ID,
131         "QLogic NetXtreme II BCM57800 10GbE"
132     },
133     {
134         BRCM_VENDORID,
135         CHIP_NUM_57800_MF,
136         PCI_ANY_ID, PCI_ANY_ID,
137         "QLogic NetXtreme II BCM57800 MF 10GbE"
138     },
139     {
140         BRCM_VENDORID,
141         CHIP_NUM_57810,
142         PCI_ANY_ID, PCI_ANY_ID,
143         "QLogic NetXtreme II BCM57810 10GbE"
144     },
145     {
146         BRCM_VENDORID,
147         CHIP_NUM_57810_MF,
148         PCI_ANY_ID, PCI_ANY_ID,
149         "QLogic NetXtreme II BCM57810 MF 10GbE"
150     },
151     {
152         BRCM_VENDORID,
153         CHIP_NUM_57811,
154         PCI_ANY_ID, PCI_ANY_ID,
155         "QLogic NetXtreme II BCM57811 10GbE"
156     },
157     {
158         BRCM_VENDORID,
159         CHIP_NUM_57811_MF,
160         PCI_ANY_ID, PCI_ANY_ID,
161         "QLogic NetXtreme II BCM57811 MF 10GbE"
162     },
163     {
164         BRCM_VENDORID,
165         CHIP_NUM_57840_4_10,
166         PCI_ANY_ID, PCI_ANY_ID,
167         "QLogic NetXtreme II BCM57840 4x10GbE"
168     },
169     {
170         BRCM_VENDORID,
171         CHIP_NUM_57840_MF,
172         PCI_ANY_ID, PCI_ANY_ID,
173         "QLogic NetXtreme II BCM57840 MF 10GbE"
174     },
175     {
176         0, 0, 0, 0, NULL
177     }
178 };
179 
180 MALLOC_DECLARE(M_BXE_ILT);
181 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
182 
183 /*
184  * FreeBSD device entry points.
185  */
186 static int bxe_probe(device_t);
187 static int bxe_attach(device_t);
188 static int bxe_detach(device_t);
189 static int bxe_shutdown(device_t);
190 
191 /*
192  * FreeBSD KLD module/device interface event handler method.
193  */
194 static device_method_t bxe_methods[] = {
195     /* Device interface (device_if.h) */
196     DEVMETHOD(device_probe,     bxe_probe),
197     DEVMETHOD(device_attach,    bxe_attach),
198     DEVMETHOD(device_detach,    bxe_detach),
199     DEVMETHOD(device_shutdown,  bxe_shutdown),
200     /* Bus interface (bus_if.h) */
201     DEVMETHOD(bus_print_child,  bus_generic_print_child),
202     DEVMETHOD(bus_driver_added, bus_generic_driver_added),
203     KOBJMETHOD_END
204 };
205 
206 /*
207  * FreeBSD KLD Module data declaration
208  */
209 static driver_t bxe_driver = {
210     "bxe",                   /* module name */
211     bxe_methods,             /* event handler */
212     sizeof(struct bxe_softc) /* extra data */
213 };
214 
215 /*
216  * FreeBSD dev class is needed to manage dev instances and
217  * to associate with a bus type
218  */
219 static devclass_t bxe_devclass;
220 
221 MODULE_DEPEND(bxe, pci, 1, 1, 1);
222 MODULE_DEPEND(bxe, ether, 1, 1, 1);
223 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0);
224 
225 /* resources needed for unloading a previously loaded device */
226 
227 #define BXE_PREV_WAIT_NEEDED 1
228 struct mtx bxe_prev_mtx;
229 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
230 struct bxe_prev_list_node {
231     LIST_ENTRY(bxe_prev_list_node) node;
232     uint8_t bus;
233     uint8_t slot;
234     uint8_t path;
235     uint8_t aer; /* XXX automatic error recovery */
236     uint8_t undi;
237 };
238 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
239 
240 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
241 
242 /* Tunable device values... */
243 
244 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters");
245 
246 /* Debug */
247 unsigned long bxe_debug = 0;
248 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN,
249              &bxe_debug, 0, "Debug logging mode");
250 
251 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
252 static int bxe_interrupt_mode = INTR_MODE_MSIX;
253 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
254            &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
255 
256 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
257 static int bxe_queue_count = 4;
258 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
259            &bxe_queue_count, 0, "Multi-Queue queue count");
260 
261 /* max number of buffers per queue (default RX_BD_USABLE) */
262 static int bxe_max_rx_bufs = 0;
263 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
264            &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
265 
266 /* Host interrupt coalescing RX tick timer (usecs) */
267 static int bxe_hc_rx_ticks = 25;
268 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
269            &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
270 
271 /* Host interrupt coalescing TX tick timer (usecs) */
272 static int bxe_hc_tx_ticks = 50;
273 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
274            &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
275 
276 /* Maximum number of Rx packets to process at a time */
277 static int bxe_rx_budget = 0xffffffff;
278 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
279            &bxe_rx_budget, 0, "Rx processing budget");
280 
281 /* Maximum LRO aggregation size */
282 static int bxe_max_aggregation_size = 0;
283 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
284            &bxe_max_aggregation_size, 0, "max aggregation size");
285 
286 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
287 static int bxe_mrrs = -1;
288 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
289            &bxe_mrrs, 0, "PCIe maximum read request size");
290 
291 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
292 static int bxe_autogreeen = 0;
293 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
294            &bxe_autogreeen, 0, "AutoGrEEEn support");
295 
296 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
297 static int bxe_udp_rss = 0;
298 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
299            &bxe_udp_rss, 0, "UDP RSS support");
300 
301 
302 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
303 
304 #define STATS_OFFSET32(stat_name)                   \
305     (offsetof(struct bxe_eth_stats, stat_name) / 4)
306 
307 #define Q_STATS_OFFSET32(stat_name)                   \
308     (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
309 
310 static const struct {
311     uint32_t offset;
312     uint32_t size;
313     uint32_t flags;
314 #define STATS_FLAGS_PORT  1
315 #define STATS_FLAGS_FUNC  2 /* MF only cares about function stats */
316 #define STATS_FLAGS_BOTH  (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
317     char string[STAT_NAME_LEN];
318 } bxe_eth_stats_arr[] = {
319     { STATS_OFFSET32(total_bytes_received_hi),
320                 8, STATS_FLAGS_BOTH, "rx_bytes" },
321     { STATS_OFFSET32(error_bytes_received_hi),
322                 8, STATS_FLAGS_BOTH, "rx_error_bytes" },
323     { STATS_OFFSET32(total_unicast_packets_received_hi),
324                 8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
325     { STATS_OFFSET32(total_multicast_packets_received_hi),
326                 8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
327     { STATS_OFFSET32(total_broadcast_packets_received_hi),
328                 8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
329     { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
330                 8, STATS_FLAGS_PORT, "rx_crc_errors" },
331     { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
332                 8, STATS_FLAGS_PORT, "rx_align_errors" },
333     { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
334                 8, STATS_FLAGS_PORT, "rx_undersize_packets" },
335     { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
336                 8, STATS_FLAGS_PORT, "rx_oversize_packets" },
337     { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
338                 8, STATS_FLAGS_PORT, "rx_fragments" },
339     { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
340                 8, STATS_FLAGS_PORT, "rx_jabbers" },
341     { STATS_OFFSET32(no_buff_discard_hi),
342                 8, STATS_FLAGS_BOTH, "rx_discards" },
343     { STATS_OFFSET32(mac_filter_discard),
344                 4, STATS_FLAGS_PORT, "rx_filtered_packets" },
345     { STATS_OFFSET32(mf_tag_discard),
346                 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
347     { STATS_OFFSET32(pfc_frames_received_hi),
348                 8, STATS_FLAGS_PORT, "pfc_frames_received" },
349     { STATS_OFFSET32(pfc_frames_sent_hi),
350                 8, STATS_FLAGS_PORT, "pfc_frames_sent" },
351     { STATS_OFFSET32(brb_drop_hi),
352                 8, STATS_FLAGS_PORT, "rx_brb_discard" },
353     { STATS_OFFSET32(brb_truncate_hi),
354                 8, STATS_FLAGS_PORT, "rx_brb_truncate" },
355     { STATS_OFFSET32(pause_frames_received_hi),
356                 8, STATS_FLAGS_PORT, "rx_pause_frames" },
357     { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
358                 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
359     { STATS_OFFSET32(nig_timer_max),
360                 4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
361     { STATS_OFFSET32(total_bytes_transmitted_hi),
362                 8, STATS_FLAGS_BOTH, "tx_bytes" },
363     { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
364                 8, STATS_FLAGS_PORT, "tx_error_bytes" },
365     { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
366                 8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
367     { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
368                 8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
369     { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
370                 8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
371     { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
372                 8, STATS_FLAGS_PORT, "tx_mac_errors" },
373     { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
374                 8, STATS_FLAGS_PORT, "tx_carrier_errors" },
375     { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
376                 8, STATS_FLAGS_PORT, "tx_single_collisions" },
377     { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
378                 8, STATS_FLAGS_PORT, "tx_multi_collisions" },
379     { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
380                 8, STATS_FLAGS_PORT, "tx_deferred" },
381     { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
382                 8, STATS_FLAGS_PORT, "tx_excess_collisions" },
383     { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
384                 8, STATS_FLAGS_PORT, "tx_late_collisions" },
385     { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
386                 8, STATS_FLAGS_PORT, "tx_total_collisions" },
387     { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
388                 8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
389     { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
390                 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
391     { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
392                 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
393     { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
394                 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
395     { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
396                 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
397     { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
398                 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
399     { STATS_OFFSET32(etherstatspktsover1522octets_hi),
400                 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
401     { STATS_OFFSET32(pause_frames_sent_hi),
402                 8, STATS_FLAGS_PORT, "tx_pause_frames" },
403     { STATS_OFFSET32(total_tpa_aggregations_hi),
404                 8, STATS_FLAGS_FUNC, "tpa_aggregations" },
405     { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
406                 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
407     { STATS_OFFSET32(total_tpa_bytes_hi),
408                 8, STATS_FLAGS_FUNC, "tpa_bytes"},
409     { STATS_OFFSET32(eee_tx_lpi),
410                 4, STATS_FLAGS_PORT, "eee_tx_lpi"},
411     { STATS_OFFSET32(rx_calls),
412                 4, STATS_FLAGS_FUNC, "rx_calls"},
413     { STATS_OFFSET32(rx_pkts),
414                 4, STATS_FLAGS_FUNC, "rx_pkts"},
415     { STATS_OFFSET32(rx_tpa_pkts),
416                 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
417     { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
418                 4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"},
419     { STATS_OFFSET32(rx_bxe_service_rxsgl),
420                 4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"},
421     { STATS_OFFSET32(rx_jumbo_sge_pkts),
422                 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"},
423     { STATS_OFFSET32(rx_soft_errors),
424                 4, STATS_FLAGS_FUNC, "rx_soft_errors"},
425     { STATS_OFFSET32(rx_hw_csum_errors),
426                 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
427     { STATS_OFFSET32(rx_ofld_frames_csum_ip),
428                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
429     { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
430                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
431     { STATS_OFFSET32(rx_budget_reached),
432                 4, STATS_FLAGS_FUNC, "rx_budget_reached"},
433     { STATS_OFFSET32(tx_pkts),
434                 4, STATS_FLAGS_FUNC, "tx_pkts"},
435     { STATS_OFFSET32(tx_soft_errors),
436                 4, STATS_FLAGS_FUNC, "tx_soft_errors"},
437     { STATS_OFFSET32(tx_ofld_frames_csum_ip),
438                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
439     { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
440                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
441     { STATS_OFFSET32(tx_ofld_frames_csum_udp),
442                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
443     { STATS_OFFSET32(tx_ofld_frames_lso),
444                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
445     { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
446                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
447     { STATS_OFFSET32(tx_encap_failures),
448                 4, STATS_FLAGS_FUNC, "tx_encap_failures"},
449     { STATS_OFFSET32(tx_hw_queue_full),
450                 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
451     { STATS_OFFSET32(tx_hw_max_queue_depth),
452                 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
453     { STATS_OFFSET32(tx_dma_mapping_failure),
454                 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
455     { STATS_OFFSET32(tx_max_drbr_queue_depth),
456                 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
457     { STATS_OFFSET32(tx_window_violation_std),
458                 4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
459     { STATS_OFFSET32(tx_window_violation_tso),
460                 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
461     { STATS_OFFSET32(tx_chain_lost_mbuf),
462                 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
463     { STATS_OFFSET32(tx_frames_deferred),
464                 4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
465     { STATS_OFFSET32(tx_queue_xoff),
466                 4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
467     { STATS_OFFSET32(mbuf_defrag_attempts),
468                 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
469     { STATS_OFFSET32(mbuf_defrag_failures),
470                 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
471     { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
472                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
473     { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
474                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
475     { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
476                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
477     { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
478                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
479     { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
480                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
481     { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
482                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
483     { STATS_OFFSET32(mbuf_alloc_tx),
484                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
485     { STATS_OFFSET32(mbuf_alloc_rx),
486                 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
487     { STATS_OFFSET32(mbuf_alloc_sge),
488                 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
489     { STATS_OFFSET32(mbuf_alloc_tpa),
490                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}
491 };
492 
493 static const struct {
494     uint32_t offset;
495     uint32_t size;
496     char string[STAT_NAME_LEN];
497 } bxe_eth_q_stats_arr[] = {
498     { Q_STATS_OFFSET32(total_bytes_received_hi),
499                 8, "rx_bytes" },
500     { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
501                 8, "rx_ucast_packets" },
502     { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
503                 8, "rx_mcast_packets" },
504     { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
505                 8, "rx_bcast_packets" },
506     { Q_STATS_OFFSET32(no_buff_discard_hi),
507                 8, "rx_discards" },
508     { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
509                 8, "tx_bytes" },
510     { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
511                 8, "tx_ucast_packets" },
512     { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
513                 8, "tx_mcast_packets" },
514     { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
515                 8, "tx_bcast_packets" },
516     { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
517                 8, "tpa_aggregations" },
518     { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
519                 8, "tpa_aggregated_frames"},
520     { Q_STATS_OFFSET32(total_tpa_bytes_hi),
521                 8, "tpa_bytes"},
522     { Q_STATS_OFFSET32(rx_calls),
523                 4, "rx_calls"},
524     { Q_STATS_OFFSET32(rx_pkts),
525                 4, "rx_pkts"},
526     { Q_STATS_OFFSET32(rx_tpa_pkts),
527                 4, "rx_tpa_pkts"},
528     { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
529                 4, "rx_erroneous_jumbo_sge_pkts"},
530     { Q_STATS_OFFSET32(rx_bxe_service_rxsgl),
531                 4, "rx_bxe_service_rxsgl"},
532     { Q_STATS_OFFSET32(rx_jumbo_sge_pkts),
533                 4, "rx_jumbo_sge_pkts"},
534     { Q_STATS_OFFSET32(rx_soft_errors),
535                 4, "rx_soft_errors"},
536     { Q_STATS_OFFSET32(rx_hw_csum_errors),
537                 4, "rx_hw_csum_errors"},
538     { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
539                 4, "rx_ofld_frames_csum_ip"},
540     { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
541                 4, "rx_ofld_frames_csum_tcp_udp"},
542     { Q_STATS_OFFSET32(rx_budget_reached),
543                 4, "rx_budget_reached"},
544     { Q_STATS_OFFSET32(tx_pkts),
545                 4, "tx_pkts"},
546     { Q_STATS_OFFSET32(tx_soft_errors),
547                 4, "tx_soft_errors"},
548     { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
549                 4, "tx_ofld_frames_csum_ip"},
550     { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
551                 4, "tx_ofld_frames_csum_tcp"},
552     { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
553                 4, "tx_ofld_frames_csum_udp"},
554     { Q_STATS_OFFSET32(tx_ofld_frames_lso),
555                 4, "tx_ofld_frames_lso"},
556     { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
557                 4, "tx_ofld_frames_lso_hdr_splits"},
558     { Q_STATS_OFFSET32(tx_encap_failures),
559                 4, "tx_encap_failures"},
560     { Q_STATS_OFFSET32(tx_hw_queue_full),
561                 4, "tx_hw_queue_full"},
562     { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
563                 4, "tx_hw_max_queue_depth"},
564     { Q_STATS_OFFSET32(tx_dma_mapping_failure),
565                 4, "tx_dma_mapping_failure"},
566     { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
567                 4, "tx_max_drbr_queue_depth"},
568     { Q_STATS_OFFSET32(tx_window_violation_std),
569                 4, "tx_window_violation_std"},
570     { Q_STATS_OFFSET32(tx_window_violation_tso),
571                 4, "tx_window_violation_tso"},
572     { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
573                 4, "tx_chain_lost_mbuf"},
574     { Q_STATS_OFFSET32(tx_frames_deferred),
575                 4, "tx_frames_deferred"},
576     { Q_STATS_OFFSET32(tx_queue_xoff),
577                 4, "tx_queue_xoff"},
578     { Q_STATS_OFFSET32(mbuf_defrag_attempts),
579                 4, "mbuf_defrag_attempts"},
580     { Q_STATS_OFFSET32(mbuf_defrag_failures),
581                 4, "mbuf_defrag_failures"},
582     { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
583                 4, "mbuf_rx_bd_alloc_failed"},
584     { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
585                 4, "mbuf_rx_bd_mapping_failed"},
586     { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
587                 4, "mbuf_rx_tpa_alloc_failed"},
588     { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
589                 4, "mbuf_rx_tpa_mapping_failed"},
590     { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
591                 4, "mbuf_rx_sge_alloc_failed"},
592     { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
593                 4, "mbuf_rx_sge_mapping_failed"},
594     { Q_STATS_OFFSET32(mbuf_alloc_tx),
595                 4, "mbuf_alloc_tx"},
596     { Q_STATS_OFFSET32(mbuf_alloc_rx),
597                 4, "mbuf_alloc_rx"},
598     { Q_STATS_OFFSET32(mbuf_alloc_sge),
599                 4, "mbuf_alloc_sge"},
600     { Q_STATS_OFFSET32(mbuf_alloc_tpa),
601                 4, "mbuf_alloc_tpa"}
602 };
603 
604 #define BXE_NUM_ETH_STATS   ARRAY_SIZE(bxe_eth_stats_arr)
605 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
606 
607 
608 static void    bxe_cmng_fns_init(struct bxe_softc *sc,
609                                  uint8_t          read_cfg,
610                                  uint8_t          cmng_type);
611 static int     bxe_get_cmng_fns_mode(struct bxe_softc *sc);
612 static void    storm_memset_cmng(struct bxe_softc *sc,
613                                  struct cmng_init *cmng,
614                                  uint8_t          port);
615 static void    bxe_set_reset_global(struct bxe_softc *sc);
616 static void    bxe_set_reset_in_progress(struct bxe_softc *sc);
617 static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
618                                  int              engine);
619 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
620 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
621                                    uint8_t          *global,
622                                    uint8_t          print);
623 static void    bxe_int_disable(struct bxe_softc *sc);
624 static int     bxe_release_leader_lock(struct bxe_softc *sc);
625 static void    bxe_pf_disable(struct bxe_softc *sc);
626 static void    bxe_free_fp_buffers(struct bxe_softc *sc);
627 static inline void bxe_update_rx_prod(struct bxe_softc    *sc,
628                                       struct bxe_fastpath *fp,
629                                       uint16_t            rx_bd_prod,
630                                       uint16_t            rx_cq_prod,
631                                       uint16_t            rx_sge_prod);
632 static void    bxe_link_report_locked(struct bxe_softc *sc);
633 static void    bxe_link_report(struct bxe_softc *sc);
634 static void    bxe_link_status_update(struct bxe_softc *sc);
635 static void    bxe_periodic_callout_func(void *xsc);
636 static void    bxe_periodic_start(struct bxe_softc *sc);
637 static void    bxe_periodic_stop(struct bxe_softc *sc);
638 static int     bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
639                                     uint16_t prev_index,
640                                     uint16_t index);
641 static int     bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
642                                      int                 queue);
643 static int     bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
644                                      uint16_t            index);
645 static uint8_t bxe_txeof(struct bxe_softc *sc,
646                          struct bxe_fastpath *fp);
647 static void    bxe_task_fp(struct bxe_fastpath *fp);
648 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
649                                      struct mbuf      *m,
650                                      uint8_t          contents);
651 static int     bxe_alloc_mem(struct bxe_softc *sc);
652 static void    bxe_free_mem(struct bxe_softc *sc);
653 static int     bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
654 static void    bxe_free_fw_stats_mem(struct bxe_softc *sc);
655 static int     bxe_interrupt_attach(struct bxe_softc *sc);
656 static void    bxe_interrupt_detach(struct bxe_softc *sc);
657 static void    bxe_set_rx_mode(struct bxe_softc *sc);
658 static int     bxe_init_locked(struct bxe_softc *sc);
659 static int     bxe_stop_locked(struct bxe_softc *sc);
660 static __noinline int bxe_nic_load(struct bxe_softc *sc,
661                                    int              load_mode);
662 static __noinline int bxe_nic_unload(struct bxe_softc *sc,
663                                      uint32_t         unload_mode,
664                                      uint8_t          keep_link);
665 
666 static void bxe_handle_sp_tq(void *context, int pending);
667 static void bxe_handle_fp_tq(void *context, int pending);
668 
669 static int bxe_add_cdev(struct bxe_softc *sc);
670 static void bxe_del_cdev(struct bxe_softc *sc);
671 static int bxe_grc_dump(struct bxe_softc *sc);
672 static int bxe_alloc_buf_rings(struct bxe_softc *sc);
673 static void bxe_free_buf_rings(struct bxe_softc *sc);
674 
675 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
676 uint32_t
677 calc_crc32(uint8_t  *crc32_packet,
678            uint32_t crc32_length,
679            uint32_t crc32_seed,
680            uint8_t  complement)
681 {
682    uint32_t byte         = 0;
683    uint32_t bit          = 0;
684    uint8_t  msb          = 0;
685    uint32_t temp         = 0;
686    uint32_t shft         = 0;
687    uint8_t  current_byte = 0;
688    uint32_t crc32_result = crc32_seed;
689    const uint32_t CRC32_POLY = 0x1edc6f41;
690 
691    if ((crc32_packet == NULL) ||
692        (crc32_length == 0) ||
693        ((crc32_length % 8) != 0))
694     {
695         return (crc32_result);
696     }
697 
698     for (byte = 0; byte < crc32_length; byte = byte + 1)
699     {
700         current_byte = crc32_packet[byte];
701         for (bit = 0; bit < 8; bit = bit + 1)
702         {
703             /* msb = crc32_result[31]; */
704             msb = (uint8_t)(crc32_result >> 31);
705 
706             crc32_result = crc32_result << 1;
707 
708             /* it (msb != current_byte[bit]) */
709             if (msb != (0x1 & (current_byte >> bit)))
710             {
711                 crc32_result = crc32_result ^ CRC32_POLY;
712                 /* crc32_result[0] = 1 */
713                 crc32_result |= 1;
714             }
715         }
716     }
717 
718     /* Last step is to:
719      * 1. "mirror" every bit
720      * 2. swap the 4 bytes
721      * 3. complement each bit
722      */
723 
724     /* Mirror */
725     temp = crc32_result;
726     shft = sizeof(crc32_result) * 8 - 1;
727 
728     for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
729     {
730         temp <<= 1;
731         temp |= crc32_result & 1;
732         shft-- ;
733     }
734 
735     /* temp[31-bit] = crc32_result[bit] */
736     temp <<= shft;
737 
738     /* Swap */
739     /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
740     {
741         uint32_t t0, t1, t2, t3;
742         t0 = (0x000000ff & (temp >> 24));
743         t1 = (0x0000ff00 & (temp >> 8));
744         t2 = (0x00ff0000 & (temp << 8));
745         t3 = (0xff000000 & (temp << 24));
746         crc32_result = t0 | t1 | t2 | t3;
747     }
748 
749     /* Complement */
750     if (complement)
751     {
752         crc32_result = ~crc32_result;
753     }
754 
755     return (crc32_result);
756 }
757 
758 int
759 bxe_test_bit(int                    nr,
760              volatile unsigned long *addr)
761 {
762     return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
763 }
764 
765 void
766 bxe_set_bit(unsigned int           nr,
767             volatile unsigned long *addr)
768 {
769     atomic_set_acq_long(addr, (1 << nr));
770 }
771 
772 void
773 bxe_clear_bit(int                    nr,
774               volatile unsigned long *addr)
775 {
776     atomic_clear_acq_long(addr, (1 << nr));
777 }
778 
779 int
780 bxe_test_and_set_bit(int                    nr,
781                        volatile unsigned long *addr)
782 {
783     unsigned long x;
784     nr = (1 << nr);
785     do {
786         x = *addr;
787     } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
788     // if (x & nr) bit_was_set; else bit_was_not_set;
789     return (x & nr);
790 }
791 
792 int
793 bxe_test_and_clear_bit(int                    nr,
794                        volatile unsigned long *addr)
795 {
796     unsigned long x;
797     nr = (1 << nr);
798     do {
799         x = *addr;
800     } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
801     // if (x & nr) bit_was_set; else bit_was_not_set;
802     return (x & nr);
803 }
804 
805 int
806 bxe_cmpxchg(volatile int *addr,
807             int          old,
808             int          new)
809 {
810     int x;
811     do {
812         x = *addr;
813     } while (atomic_cmpset_acq_int(addr, old, new) == 0);
814     return (x);
815 }
816 
817 /*
818  * Get DMA memory from the OS.
819  *
820  * Validates that the OS has provided DMA buffers in response to a
821  * bus_dmamap_load call and saves the physical address of those buffers.
822  * When the callback is used the OS will return 0 for the mapping function
823  * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
824  * failures back to the caller.
825  *
826  * Returns:
827  *   Nothing.
828  */
829 static void
830 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
831 {
832     struct bxe_dma *dma = arg;
833 
834     if (error) {
835         dma->paddr = 0;
836         dma->nseg  = 0;
837         BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
838     } else {
839         dma->paddr = segs->ds_addr;
840         dma->nseg  = nseg;
841     }
842 }
843 
844 /*
845  * Allocate a block of memory and map it for DMA. No partial completions
846  * allowed and release any resources acquired if we can't acquire all
847  * resources.
848  *
849  * Returns:
850  *   0 = Success, !0 = Failure
851  */
852 int
853 bxe_dma_alloc(struct bxe_softc *sc,
854               bus_size_t       size,
855               struct bxe_dma   *dma,
856               const char       *msg)
857 {
858     int rc;
859 
860     if (dma->size > 0) {
861         BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
862               (unsigned long)dma->size);
863         return (1);
864     }
865 
866     memset(dma, 0, sizeof(*dma)); /* sanity */
867     dma->sc   = sc;
868     dma->size = size;
869     snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
870 
871     rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
872                             BCM_PAGE_SIZE,      /* alignment */
873                             0,                  /* boundary limit */
874                             BUS_SPACE_MAXADDR,  /* restricted low */
875                             BUS_SPACE_MAXADDR,  /* restricted hi */
876                             NULL,               /* addr filter() */
877                             NULL,               /* addr filter() arg */
878                             size,               /* max map size */
879                             1,                  /* num discontinuous */
880                             size,               /* max seg size */
881                             BUS_DMA_ALLOCNOW,   /* flags */
882                             NULL,               /* lock() */
883                             NULL,               /* lock() arg */
884                             &dma->tag);         /* returned dma tag */
885     if (rc != 0) {
886         BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
887         memset(dma, 0, sizeof(*dma));
888         return (1);
889     }
890 
891     rc = bus_dmamem_alloc(dma->tag,
892                           (void **)&dma->vaddr,
893                           (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
894                           &dma->map);
895     if (rc != 0) {
896         BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
897         bus_dma_tag_destroy(dma->tag);
898         memset(dma, 0, sizeof(*dma));
899         return (1);
900     }
901 
902     rc = bus_dmamap_load(dma->tag,
903                          dma->map,
904                          dma->vaddr,
905                          size,
906                          bxe_dma_map_addr, /* BLOGD in here */
907                          dma,
908                          BUS_DMA_NOWAIT);
909     if (rc != 0) {
910         BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
911         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
912         bus_dma_tag_destroy(dma->tag);
913         memset(dma, 0, sizeof(*dma));
914         return (1);
915     }
916 
917     return (0);
918 }
919 
920 void
921 bxe_dma_free(struct bxe_softc *sc,
922              struct bxe_dma   *dma)
923 {
924     if (dma->size > 0) {
925         DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
926 
927         bus_dmamap_sync(dma->tag, dma->map,
928                         (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
929         bus_dmamap_unload(dma->tag, dma->map);
930         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
931         bus_dma_tag_destroy(dma->tag);
932     }
933 
934     memset(dma, 0, sizeof(*dma));
935 }
936 
937 /*
938  * These indirect read and write routines are only during init.
939  * The locking is handled by the MCP.
940  */
941 
942 void
943 bxe_reg_wr_ind(struct bxe_softc *sc,
944                uint32_t         addr,
945                uint32_t         val)
946 {
947     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
948     pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
949     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
950 }
951 
952 uint32_t
953 bxe_reg_rd_ind(struct bxe_softc *sc,
954                uint32_t         addr)
955 {
956     uint32_t val;
957 
958     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
959     val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
960     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
961 
962     return (val);
963 }
964 
965 static int
966 bxe_acquire_hw_lock(struct bxe_softc *sc,
967                     uint32_t         resource)
968 {
969     uint32_t lock_status;
970     uint32_t resource_bit = (1 << resource);
971     int func = SC_FUNC(sc);
972     uint32_t hw_lock_control_reg;
973     int cnt;
974 
975     /* validate the resource is within range */
976     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
977         BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
978             " resource_bit 0x%x\n", resource, resource_bit);
979         return (-1);
980     }
981 
982     if (func <= 5) {
983         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
984     } else {
985         hw_lock_control_reg =
986                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
987     }
988 
989     /* validate the resource is not already taken */
990     lock_status = REG_RD(sc, hw_lock_control_reg);
991     if (lock_status & resource_bit) {
992         BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n",
993               resource, lock_status, resource_bit);
994         return (-1);
995     }
996 
997     /* try every 5ms for 5 seconds */
998     for (cnt = 0; cnt < 1000; cnt++) {
999         REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1000         lock_status = REG_RD(sc, hw_lock_control_reg);
1001         if (lock_status & resource_bit) {
1002             return (0);
1003         }
1004         DELAY(5000);
1005     }
1006 
1007     BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n",
1008         resource, resource_bit);
1009     return (-1);
1010 }
1011 
1012 static int
1013 bxe_release_hw_lock(struct bxe_softc *sc,
1014                     uint32_t         resource)
1015 {
1016     uint32_t lock_status;
1017     uint32_t resource_bit = (1 << resource);
1018     int func = SC_FUNC(sc);
1019     uint32_t hw_lock_control_reg;
1020 
1021     /* validate the resource is within range */
1022     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1023         BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
1024             " resource_bit 0x%x\n", resource, resource_bit);
1025         return (-1);
1026     }
1027 
1028     if (func <= 5) {
1029         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1030     } else {
1031         hw_lock_control_reg =
1032                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1033     }
1034 
1035     /* validate the resource is currently taken */
1036     lock_status = REG_RD(sc, hw_lock_control_reg);
1037     if (!(lock_status & resource_bit)) {
1038         BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n",
1039               resource, lock_status, resource_bit);
1040         return (-1);
1041     }
1042 
1043     REG_WR(sc, hw_lock_control_reg, resource_bit);
1044     return (0);
1045 }
1046 static void bxe_acquire_phy_lock(struct bxe_softc *sc)
1047 {
1048 	BXE_PHY_LOCK(sc);
1049 	bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1050 }
1051 
1052 static void bxe_release_phy_lock(struct bxe_softc *sc)
1053 {
1054 	bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1055 	BXE_PHY_UNLOCK(sc);
1056 }
1057 /*
1058  * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1059  * had we done things the other way around, if two pfs from the same port
1060  * would attempt to access nvram at the same time, we could run into a
1061  * scenario such as:
1062  * pf A takes the port lock.
1063  * pf B succeeds in taking the same lock since they are from the same port.
1064  * pf A takes the per pf misc lock. Performs eeprom access.
1065  * pf A finishes. Unlocks the per pf misc lock.
1066  * Pf B takes the lock and proceeds to perform it's own access.
1067  * pf A unlocks the per port lock, while pf B is still working (!).
1068  * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1069  * access corrupted by pf B).*
1070  */
1071 static int
1072 bxe_acquire_nvram_lock(struct bxe_softc *sc)
1073 {
1074     int port = SC_PORT(sc);
1075     int count, i;
1076     uint32_t val = 0;
1077 
1078     /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1079     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1080 
1081     /* adjust timeout for emulation/FPGA */
1082     count = NVRAM_TIMEOUT_COUNT;
1083     if (CHIP_REV_IS_SLOW(sc)) {
1084         count *= 100;
1085     }
1086 
1087     /* request access to nvram interface */
1088     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1089            (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1090 
1091     for (i = 0; i < count*10; i++) {
1092         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1093         if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1094             break;
1095         }
1096 
1097         DELAY(5);
1098     }
1099 
1100     if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1101         BLOGE(sc, "Cannot get access to nvram interface "
1102             "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
1103             port, val);
1104         return (-1);
1105     }
1106 
1107     return (0);
1108 }
1109 
1110 static int
1111 bxe_release_nvram_lock(struct bxe_softc *sc)
1112 {
1113     int port = SC_PORT(sc);
1114     int count, i;
1115     uint32_t val = 0;
1116 
1117     /* adjust timeout for emulation/FPGA */
1118     count = NVRAM_TIMEOUT_COUNT;
1119     if (CHIP_REV_IS_SLOW(sc)) {
1120         count *= 100;
1121     }
1122 
1123     /* relinquish nvram interface */
1124     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1125            (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1126 
1127     for (i = 0; i < count*10; i++) {
1128         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1129         if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1130             break;
1131         }
1132 
1133         DELAY(5);
1134     }
1135 
1136     if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1137         BLOGE(sc, "Cannot free access to nvram interface "
1138             "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
1139             port, val);
1140         return (-1);
1141     }
1142 
1143     /* release HW lock: protect against other PFs in PF Direct Assignment */
1144     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1145 
1146     return (0);
1147 }
1148 
1149 static void
1150 bxe_enable_nvram_access(struct bxe_softc *sc)
1151 {
1152     uint32_t val;
1153 
1154     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1155 
1156     /* enable both bits, even on read */
1157     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1158            (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1159 }
1160 
1161 static void
1162 bxe_disable_nvram_access(struct bxe_softc *sc)
1163 {
1164     uint32_t val;
1165 
1166     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1167 
1168     /* disable both bits, even after read */
1169     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1170            (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1171                     MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1172 }
1173 
1174 static int
1175 bxe_nvram_read_dword(struct bxe_softc *sc,
1176                      uint32_t         offset,
1177                      uint32_t         *ret_val,
1178                      uint32_t         cmd_flags)
1179 {
1180     int count, i, rc;
1181     uint32_t val;
1182 
1183     /* build the command word */
1184     cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1185 
1186     /* need to clear DONE bit separately */
1187     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1188 
1189     /* address of the NVRAM to read from */
1190     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1191            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1192 
1193     /* issue a read command */
1194     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1195 
1196     /* adjust timeout for emulation/FPGA */
1197     count = NVRAM_TIMEOUT_COUNT;
1198     if (CHIP_REV_IS_SLOW(sc)) {
1199         count *= 100;
1200     }
1201 
1202     /* wait for completion */
1203     *ret_val = 0;
1204     rc = -1;
1205     for (i = 0; i < count; i++) {
1206         DELAY(5);
1207         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1208 
1209         if (val & MCPR_NVM_COMMAND_DONE) {
1210             val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1211             /* we read nvram data in cpu order
1212              * but ethtool sees it as an array of bytes
1213              * converting to big-endian will do the work
1214              */
1215             *ret_val = htobe32(val);
1216             rc = 0;
1217             break;
1218         }
1219     }
1220 
1221     if (rc == -1) {
1222         BLOGE(sc, "nvram read timeout expired "
1223             "(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
1224             offset, cmd_flags, val);
1225     }
1226 
1227     return (rc);
1228 }
1229 
1230 static int
1231 bxe_nvram_read(struct bxe_softc *sc,
1232                uint32_t         offset,
1233                uint8_t          *ret_buf,
1234                int              buf_size)
1235 {
1236     uint32_t cmd_flags;
1237     uint32_t val;
1238     int rc;
1239 
1240     if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1241         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1242               offset, buf_size);
1243         return (-1);
1244     }
1245 
1246     if ((offset + buf_size) > sc->devinfo.flash_size) {
1247         BLOGE(sc, "Invalid parameter, "
1248                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1249               offset, buf_size, sc->devinfo.flash_size);
1250         return (-1);
1251     }
1252 
1253     /* request access to nvram interface */
1254     rc = bxe_acquire_nvram_lock(sc);
1255     if (rc) {
1256         return (rc);
1257     }
1258 
1259     /* enable access to nvram interface */
1260     bxe_enable_nvram_access(sc);
1261 
1262     /* read the first word(s) */
1263     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1264     while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1265         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1266         memcpy(ret_buf, &val, 4);
1267 
1268         /* advance to the next dword */
1269         offset += sizeof(uint32_t);
1270         ret_buf += sizeof(uint32_t);
1271         buf_size -= sizeof(uint32_t);
1272         cmd_flags = 0;
1273     }
1274 
1275     if (rc == 0) {
1276         cmd_flags |= MCPR_NVM_COMMAND_LAST;
1277         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1278         memcpy(ret_buf, &val, 4);
1279     }
1280 
1281     /* disable access to nvram interface */
1282     bxe_disable_nvram_access(sc);
1283     bxe_release_nvram_lock(sc);
1284 
1285     return (rc);
1286 }
1287 
1288 static int
1289 bxe_nvram_write_dword(struct bxe_softc *sc,
1290                       uint32_t         offset,
1291                       uint32_t         val,
1292                       uint32_t         cmd_flags)
1293 {
1294     int count, i, rc;
1295 
1296     /* build the command word */
1297     cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1298 
1299     /* need to clear DONE bit separately */
1300     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1301 
1302     /* write the data */
1303     REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1304 
1305     /* address of the NVRAM to write to */
1306     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1307            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1308 
1309     /* issue the write command */
1310     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1311 
1312     /* adjust timeout for emulation/FPGA */
1313     count = NVRAM_TIMEOUT_COUNT;
1314     if (CHIP_REV_IS_SLOW(sc)) {
1315         count *= 100;
1316     }
1317 
1318     /* wait for completion */
1319     rc = -1;
1320     for (i = 0; i < count; i++) {
1321         DELAY(5);
1322         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1323         if (val & MCPR_NVM_COMMAND_DONE) {
1324             rc = 0;
1325             break;
1326         }
1327     }
1328 
1329     if (rc == -1) {
1330         BLOGE(sc, "nvram write timeout expired "
1331             "(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
1332             offset, cmd_flags, val);
1333     }
1334 
1335     return (rc);
1336 }
1337 
1338 #define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1339 
1340 static int
1341 bxe_nvram_write1(struct bxe_softc *sc,
1342                  uint32_t         offset,
1343                  uint8_t          *data_buf,
1344                  int              buf_size)
1345 {
1346     uint32_t cmd_flags;
1347     uint32_t align_offset;
1348     uint32_t val;
1349     int rc;
1350 
1351     if ((offset + buf_size) > sc->devinfo.flash_size) {
1352         BLOGE(sc, "Invalid parameter, "
1353                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1354               offset, buf_size, sc->devinfo.flash_size);
1355         return (-1);
1356     }
1357 
1358     /* request access to nvram interface */
1359     rc = bxe_acquire_nvram_lock(sc);
1360     if (rc) {
1361         return (rc);
1362     }
1363 
1364     /* enable access to nvram interface */
1365     bxe_enable_nvram_access(sc);
1366 
1367     cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1368     align_offset = (offset & ~0x03);
1369     rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1370 
1371     if (rc == 0) {
1372         val &= ~(0xff << BYTE_OFFSET(offset));
1373         val |= (*data_buf << BYTE_OFFSET(offset));
1374 
1375         /* nvram data is returned as an array of bytes
1376          * convert it back to cpu order
1377          */
1378         val = be32toh(val);
1379 
1380         rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1381     }
1382 
1383     /* disable access to nvram interface */
1384     bxe_disable_nvram_access(sc);
1385     bxe_release_nvram_lock(sc);
1386 
1387     return (rc);
1388 }
1389 
1390 static int
1391 bxe_nvram_write(struct bxe_softc *sc,
1392                 uint32_t         offset,
1393                 uint8_t          *data_buf,
1394                 int              buf_size)
1395 {
1396     uint32_t cmd_flags;
1397     uint32_t val;
1398     uint32_t written_so_far;
1399     int rc;
1400 
1401     if (buf_size == 1) {
1402         return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1403     }
1404 
1405     if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1406         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1407               offset, buf_size);
1408         return (-1);
1409     }
1410 
1411     if (buf_size == 0) {
1412         return (0); /* nothing to do */
1413     }
1414 
1415     if ((offset + buf_size) > sc->devinfo.flash_size) {
1416         BLOGE(sc, "Invalid parameter, "
1417                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1418               offset, buf_size, sc->devinfo.flash_size);
1419         return (-1);
1420     }
1421 
1422     /* request access to nvram interface */
1423     rc = bxe_acquire_nvram_lock(sc);
1424     if (rc) {
1425         return (rc);
1426     }
1427 
1428     /* enable access to nvram interface */
1429     bxe_enable_nvram_access(sc);
1430 
1431     written_so_far = 0;
1432     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1433     while ((written_so_far < buf_size) && (rc == 0)) {
1434         if (written_so_far == (buf_size - sizeof(uint32_t))) {
1435             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1436         } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1437             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1438         } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1439             cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1440         }
1441 
1442         memcpy(&val, data_buf, 4);
1443 
1444         rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1445 
1446         /* advance to the next dword */
1447         offset += sizeof(uint32_t);
1448         data_buf += sizeof(uint32_t);
1449         written_so_far += sizeof(uint32_t);
1450         cmd_flags = 0;
1451     }
1452 
1453     /* disable access to nvram interface */
1454     bxe_disable_nvram_access(sc);
1455     bxe_release_nvram_lock(sc);
1456 
1457     return (rc);
1458 }
1459 
1460 /* copy command into DMAE command memory and set DMAE command Go */
1461 void
1462 bxe_post_dmae(struct bxe_softc    *sc,
1463               struct dmae_cmd *dmae,
1464               int                 idx)
1465 {
1466     uint32_t cmd_offset;
1467     int i;
1468 
1469     cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx));
1470     for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) {
1471         REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1472     }
1473 
1474     REG_WR(sc, dmae_reg_go_c[idx], 1);
1475 }
1476 
1477 uint32_t
1478 bxe_dmae_opcode_add_comp(uint32_t opcode,
1479                          uint8_t  comp_type)
1480 {
1481     return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) |
1482                       DMAE_CMD_C_TYPE_ENABLE));
1483 }
1484 
1485 uint32_t
1486 bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1487 {
1488     return (opcode & ~DMAE_CMD_SRC_RESET);
1489 }
1490 
1491 uint32_t
1492 bxe_dmae_opcode(struct bxe_softc *sc,
1493                 uint8_t          src_type,
1494                 uint8_t          dst_type,
1495                 uint8_t          with_comp,
1496                 uint8_t          comp_type)
1497 {
1498     uint32_t opcode = 0;
1499 
1500     opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) |
1501                (dst_type << DMAE_CMD_DST_SHIFT));
1502 
1503     opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
1504 
1505     opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1506 
1507     opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) |
1508                (SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT));
1509 
1510     opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT);
1511 
1512 #ifdef __BIG_ENDIAN
1513     opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1514 #else
1515     opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1516 #endif
1517 
1518     if (with_comp) {
1519         opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1520     }
1521 
1522     return (opcode);
1523 }
1524 
1525 static void
1526 bxe_prep_dmae_with_comp(struct bxe_softc    *sc,
1527                         struct dmae_cmd *dmae,
1528                         uint8_t             src_type,
1529                         uint8_t             dst_type)
1530 {
1531     memset(dmae, 0, sizeof(struct dmae_cmd));
1532 
1533     /* set the opcode */
1534     dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1535                                    TRUE, DMAE_COMP_PCI);
1536 
1537     /* fill in the completion parameters */
1538     dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1539     dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1540     dmae->comp_val     = DMAE_COMP_VAL;
1541 }
1542 
1543 /* issue a DMAE command over the init channel and wait for completion */
1544 static int
1545 bxe_issue_dmae_with_comp(struct bxe_softc    *sc,
1546                          struct dmae_cmd *dmae)
1547 {
1548     uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1549     int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1550 
1551     BXE_DMAE_LOCK(sc);
1552 
1553     /* reset completion */
1554     *wb_comp = 0;
1555 
1556     /* post the command on the channel used for initializations */
1557     bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1558 
1559     /* wait for completion */
1560     DELAY(5);
1561 
1562     while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1563         if (!timeout ||
1564             (sc->recovery_state != BXE_RECOVERY_DONE &&
1565              sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1566             BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n",
1567                 *wb_comp, sc->recovery_state);
1568             BXE_DMAE_UNLOCK(sc);
1569             return (DMAE_TIMEOUT);
1570         }
1571 
1572         timeout--;
1573         DELAY(50);
1574     }
1575 
1576     if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1577         BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n",
1578                 *wb_comp, sc->recovery_state);
1579         BXE_DMAE_UNLOCK(sc);
1580         return (DMAE_PCI_ERROR);
1581     }
1582 
1583     BXE_DMAE_UNLOCK(sc);
1584     return (0);
1585 }
1586 
1587 void
1588 bxe_read_dmae(struct bxe_softc *sc,
1589               uint32_t         src_addr,
1590               uint32_t         len32)
1591 {
1592     struct dmae_cmd dmae;
1593     uint32_t *data;
1594     int i, rc;
1595 
1596     DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1597 
1598     if (!sc->dmae_ready) {
1599         data = BXE_SP(sc, wb_data[0]);
1600 
1601         for (i = 0; i < len32; i++) {
1602             data[i] = (CHIP_IS_E1(sc)) ?
1603                           bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1604                           REG_RD(sc, (src_addr + (i * 4)));
1605         }
1606 
1607         return;
1608     }
1609 
1610     /* set opcode and fixed command fields */
1611     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1612 
1613     /* fill in addresses and len */
1614     dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1615     dmae.src_addr_hi = 0;
1616     dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1617     dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1618     dmae.len         = len32;
1619 
1620     /* issue the command and wait for completion */
1621     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1622         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1623     };
1624 }
1625 
1626 void
1627 bxe_write_dmae(struct bxe_softc *sc,
1628                bus_addr_t       dma_addr,
1629                uint32_t         dst_addr,
1630                uint32_t         len32)
1631 {
1632     struct dmae_cmd dmae;
1633     int rc;
1634 
1635     if (!sc->dmae_ready) {
1636         DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1637 
1638         if (CHIP_IS_E1(sc)) {
1639             ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1640         } else {
1641             ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1642         }
1643 
1644         return;
1645     }
1646 
1647     /* set opcode and fixed command fields */
1648     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1649 
1650     /* fill in addresses and len */
1651     dmae.src_addr_lo = U64_LO(dma_addr);
1652     dmae.src_addr_hi = U64_HI(dma_addr);
1653     dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1654     dmae.dst_addr_hi = 0;
1655     dmae.len         = len32;
1656 
1657     /* issue the command and wait for completion */
1658     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1659         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1660     }
1661 }
1662 
1663 void
1664 bxe_write_dmae_phys_len(struct bxe_softc *sc,
1665                         bus_addr_t       phys_addr,
1666                         uint32_t         addr,
1667                         uint32_t         len)
1668 {
1669     int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1670     int offset = 0;
1671 
1672     while (len > dmae_wr_max) {
1673         bxe_write_dmae(sc,
1674                        (phys_addr + offset), /* src DMA address */
1675                        (addr + offset),      /* dst GRC address */
1676                        dmae_wr_max);
1677         offset += (dmae_wr_max * 4);
1678         len -= dmae_wr_max;
1679     }
1680 
1681     bxe_write_dmae(sc,
1682                    (phys_addr + offset), /* src DMA address */
1683                    (addr + offset),      /* dst GRC address */
1684                    len);
1685 }
1686 
1687 void
1688 bxe_set_ctx_validation(struct bxe_softc   *sc,
1689                        struct eth_context *cxt,
1690                        uint32_t           cid)
1691 {
1692     /* ustorm cxt validation */
1693     cxt->ustorm_ag_context.cdu_usage =
1694         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1695             CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1696     /* xcontext validation */
1697     cxt->xstorm_ag_context.cdu_reserved =
1698         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1699             CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1700 }
1701 
1702 static void
1703 bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1704                             uint8_t          port,
1705                             uint8_t          fw_sb_id,
1706                             uint8_t          sb_index,
1707                             uint8_t          ticks)
1708 {
1709     uint32_t addr =
1710         (BAR_CSTRORM_INTMEM +
1711          CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1712 
1713     REG_WR8(sc, addr, ticks);
1714 
1715     BLOGD(sc, DBG_LOAD,
1716           "port %d fw_sb_id %d sb_index %d ticks %d\n",
1717           port, fw_sb_id, sb_index, ticks);
1718 }
1719 
1720 static void
1721 bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1722                             uint8_t          port,
1723                             uint16_t         fw_sb_id,
1724                             uint8_t          sb_index,
1725                             uint8_t          disable)
1726 {
1727     uint32_t enable_flag =
1728         (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1729     uint32_t addr =
1730         (BAR_CSTRORM_INTMEM +
1731          CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1732     uint8_t flags;
1733 
1734     /* clear and set */
1735     flags = REG_RD8(sc, addr);
1736     flags &= ~HC_INDEX_DATA_HC_ENABLED;
1737     flags |= enable_flag;
1738     REG_WR8(sc, addr, flags);
1739 
1740     BLOGD(sc, DBG_LOAD,
1741           "port %d fw_sb_id %d sb_index %d disable %d\n",
1742           port, fw_sb_id, sb_index, disable);
1743 }
1744 
1745 void
1746 bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1747                              uint8_t          fw_sb_id,
1748                              uint8_t          sb_index,
1749                              uint8_t          disable,
1750                              uint16_t         usec)
1751 {
1752     int port = SC_PORT(sc);
1753     uint8_t ticks = (usec / 4); /* XXX ??? */
1754 
1755     bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1756 
1757     disable = (disable) ? 1 : ((usec) ? 0 : 1);
1758     bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1759 }
1760 
1761 void
1762 elink_cb_udelay(struct bxe_softc *sc,
1763                 uint32_t         usecs)
1764 {
1765     DELAY(usecs);
1766 }
1767 
1768 uint32_t
1769 elink_cb_reg_read(struct bxe_softc *sc,
1770                   uint32_t         reg_addr)
1771 {
1772     return (REG_RD(sc, reg_addr));
1773 }
1774 
1775 void
1776 elink_cb_reg_write(struct bxe_softc *sc,
1777                    uint32_t         reg_addr,
1778                    uint32_t         val)
1779 {
1780     REG_WR(sc, reg_addr, val);
1781 }
1782 
1783 void
1784 elink_cb_reg_wb_write(struct bxe_softc *sc,
1785                       uint32_t         offset,
1786                       uint32_t         *wb_write,
1787                       uint16_t         len)
1788 {
1789     REG_WR_DMAE(sc, offset, wb_write, len);
1790 }
1791 
1792 void
1793 elink_cb_reg_wb_read(struct bxe_softc *sc,
1794                      uint32_t         offset,
1795                      uint32_t         *wb_write,
1796                      uint16_t         len)
1797 {
1798     REG_RD_DMAE(sc, offset, wb_write, len);
1799 }
1800 
1801 uint8_t
1802 elink_cb_path_id(struct bxe_softc *sc)
1803 {
1804     return (SC_PATH(sc));
1805 }
1806 
1807 void
1808 elink_cb_event_log(struct bxe_softc     *sc,
1809                    const elink_log_id_t elink_log_id,
1810                    ...)
1811 {
1812     /* XXX */
1813     BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1814 }
1815 
1816 static int
1817 bxe_set_spio(struct bxe_softc *sc,
1818              int              spio,
1819              uint32_t         mode)
1820 {
1821     uint32_t spio_reg;
1822 
1823     /* Only 2 SPIOs are configurable */
1824     if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1825         BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode);
1826         return (-1);
1827     }
1828 
1829     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1830 
1831     /* read SPIO and mask except the float bits */
1832     spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1833 
1834     switch (mode) {
1835     case MISC_SPIO_OUTPUT_LOW:
1836         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1837         /* clear FLOAT and set CLR */
1838         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1839         spio_reg |=  (spio << MISC_SPIO_CLR_POS);
1840         break;
1841 
1842     case MISC_SPIO_OUTPUT_HIGH:
1843         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1844         /* clear FLOAT and set SET */
1845         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1846         spio_reg |=  (spio << MISC_SPIO_SET_POS);
1847         break;
1848 
1849     case MISC_SPIO_INPUT_HI_Z:
1850         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1851         /* set FLOAT */
1852         spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1853         break;
1854 
1855     default:
1856         break;
1857     }
1858 
1859     REG_WR(sc, MISC_REG_SPIO, spio_reg);
1860     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1861 
1862     return (0);
1863 }
1864 
1865 static int
1866 bxe_gpio_read(struct bxe_softc *sc,
1867               int              gpio_num,
1868               uint8_t          port)
1869 {
1870     /* The GPIO should be swapped if swap register is set and active */
1871     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1872                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1873     int gpio_shift = (gpio_num +
1874                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1875     uint32_t gpio_mask = (1 << gpio_shift);
1876     uint32_t gpio_reg;
1877 
1878     if (gpio_num > MISC_REGISTERS_GPIO_3) {
1879         BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d"
1880             " gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift,
1881             gpio_mask);
1882         return (-1);
1883     }
1884 
1885     /* read GPIO value */
1886     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
1887 
1888     /* get the requested pin value */
1889     return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
1890 }
1891 
1892 static int
1893 bxe_gpio_write(struct bxe_softc *sc,
1894                int              gpio_num,
1895                uint32_t         mode,
1896                uint8_t          port)
1897 {
1898     /* The GPIO should be swapped if swap register is set and active */
1899     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1900                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1901     int gpio_shift = (gpio_num +
1902                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1903     uint32_t gpio_mask = (1 << gpio_shift);
1904     uint32_t gpio_reg;
1905 
1906     if (gpio_num > MISC_REGISTERS_GPIO_3) {
1907         BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
1908             " gpio_shift %d gpio_mask 0x%x\n",
1909             gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
1910         return (-1);
1911     }
1912 
1913     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1914 
1915     /* read GPIO and mask except the float bits */
1916     gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1917 
1918     switch (mode) {
1919     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1920         BLOGD(sc, DBG_PHY,
1921               "Set GPIO %d (shift %d) -> output low\n",
1922               gpio_num, gpio_shift);
1923         /* clear FLOAT and set CLR */
1924         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1925         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1926         break;
1927 
1928     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1929         BLOGD(sc, DBG_PHY,
1930               "Set GPIO %d (shift %d) -> output high\n",
1931               gpio_num, gpio_shift);
1932         /* clear FLOAT and set SET */
1933         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1934         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1935         break;
1936 
1937     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1938         BLOGD(sc, DBG_PHY,
1939               "Set GPIO %d (shift %d) -> input\n",
1940               gpio_num, gpio_shift);
1941         /* set FLOAT */
1942         gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1943         break;
1944 
1945     default:
1946         break;
1947     }
1948 
1949     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
1950     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1951 
1952     return (0);
1953 }
1954 
1955 static int
1956 bxe_gpio_mult_write(struct bxe_softc *sc,
1957                     uint8_t          pins,
1958                     uint32_t         mode)
1959 {
1960     uint32_t gpio_reg;
1961 
1962     /* any port swapping should be handled by caller */
1963 
1964     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1965 
1966     /* read GPIO and mask except the float bits */
1967     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
1968     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1969     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
1970     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
1971 
1972     switch (mode) {
1973     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1974         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
1975         /* set CLR */
1976         gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
1977         break;
1978 
1979     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1980         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
1981         /* set SET */
1982         gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
1983         break;
1984 
1985     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1986         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
1987         /* set FLOAT */
1988         gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1989         break;
1990 
1991     default:
1992         BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x"
1993             " gpio_reg 0x%x\n", pins, mode, gpio_reg);
1994         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1995         return (-1);
1996     }
1997 
1998     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
1999     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2000 
2001     return (0);
2002 }
2003 
2004 static int
2005 bxe_gpio_int_write(struct bxe_softc *sc,
2006                    int              gpio_num,
2007                    uint32_t         mode,
2008                    uint8_t          port)
2009 {
2010     /* The GPIO should be swapped if swap register is set and active */
2011     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2012                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2013     int gpio_shift = (gpio_num +
2014                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2015     uint32_t gpio_mask = (1 << gpio_shift);
2016     uint32_t gpio_reg;
2017 
2018     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2019         BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
2020             " gpio_shift %d gpio_mask 0x%x\n",
2021             gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
2022         return (-1);
2023     }
2024 
2025     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2026 
2027     /* read GPIO int */
2028     gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2029 
2030     switch (mode) {
2031     case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2032         BLOGD(sc, DBG_PHY,
2033               "Clear GPIO INT %d (shift %d) -> output low\n",
2034               gpio_num, gpio_shift);
2035         /* clear SET and set CLR */
2036         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2037         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2038         break;
2039 
2040     case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2041         BLOGD(sc, DBG_PHY,
2042               "Set GPIO INT %d (shift %d) -> output high\n",
2043               gpio_num, gpio_shift);
2044         /* clear CLR and set SET */
2045         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2046         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2047         break;
2048 
2049     default:
2050         break;
2051     }
2052 
2053     REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2054     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2055 
2056     return (0);
2057 }
2058 
2059 uint32_t
2060 elink_cb_gpio_read(struct bxe_softc *sc,
2061                    uint16_t         gpio_num,
2062                    uint8_t          port)
2063 {
2064     return (bxe_gpio_read(sc, gpio_num, port));
2065 }
2066 
2067 uint8_t
2068 elink_cb_gpio_write(struct bxe_softc *sc,
2069                     uint16_t         gpio_num,
2070                     uint8_t          mode, /* 0=low 1=high */
2071                     uint8_t          port)
2072 {
2073     return (bxe_gpio_write(sc, gpio_num, mode, port));
2074 }
2075 
2076 uint8_t
2077 elink_cb_gpio_mult_write(struct bxe_softc *sc,
2078                          uint8_t          pins,
2079                          uint8_t          mode) /* 0=low 1=high */
2080 {
2081     return (bxe_gpio_mult_write(sc, pins, mode));
2082 }
2083 
2084 uint8_t
2085 elink_cb_gpio_int_write(struct bxe_softc *sc,
2086                         uint16_t         gpio_num,
2087                         uint8_t          mode, /* 0=low 1=high */
2088                         uint8_t          port)
2089 {
2090     return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2091 }
2092 
2093 void
2094 elink_cb_notify_link_changed(struct bxe_softc *sc)
2095 {
2096     REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2097                 (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2098 }
2099 
2100 /* send the MCP a request, block until there is a reply */
2101 uint32_t
2102 elink_cb_fw_command(struct bxe_softc *sc,
2103                     uint32_t         command,
2104                     uint32_t         param)
2105 {
2106     int mb_idx = SC_FW_MB_IDX(sc);
2107     uint32_t seq;
2108     uint32_t rc = 0;
2109     uint32_t cnt = 1;
2110     uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2111 
2112     BXE_FWMB_LOCK(sc);
2113 
2114     seq = ++sc->fw_seq;
2115     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2116     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2117 
2118     BLOGD(sc, DBG_PHY,
2119           "wrote command 0x%08x to FW MB param 0x%08x\n",
2120           (command | seq), param);
2121 
2122     /* Let the FW do it's magic. GIve it up to 5 seconds... */
2123     do {
2124         DELAY(delay * 1000);
2125         rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2126     } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2127 
2128     BLOGD(sc, DBG_PHY,
2129           "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2130           cnt*delay, rc, seq);
2131 
2132     /* is this a reply to our command? */
2133     if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2134         rc &= FW_MSG_CODE_MASK;
2135     } else {
2136         /* Ruh-roh! */
2137         BLOGE(sc, "FW failed to respond!\n");
2138         // XXX bxe_fw_dump(sc);
2139         rc = 0;
2140     }
2141 
2142     BXE_FWMB_UNLOCK(sc);
2143     return (rc);
2144 }
2145 
2146 static uint32_t
2147 bxe_fw_command(struct bxe_softc *sc,
2148                uint32_t         command,
2149                uint32_t         param)
2150 {
2151     return (elink_cb_fw_command(sc, command, param));
2152 }
2153 
2154 static void
2155 __storm_memset_dma_mapping(struct bxe_softc *sc,
2156                            uint32_t         addr,
2157                            bus_addr_t       mapping)
2158 {
2159     REG_WR(sc, addr, U64_LO(mapping));
2160     REG_WR(sc, (addr + 4), U64_HI(mapping));
2161 }
2162 
2163 static void
2164 storm_memset_spq_addr(struct bxe_softc *sc,
2165                       bus_addr_t       mapping,
2166                       uint16_t         abs_fid)
2167 {
2168     uint32_t addr = (XSEM_REG_FAST_MEMORY +
2169                      XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2170     __storm_memset_dma_mapping(sc, addr, mapping);
2171 }
2172 
2173 static void
2174 storm_memset_vf_to_pf(struct bxe_softc *sc,
2175                       uint16_t         abs_fid,
2176                       uint16_t         pf_id)
2177 {
2178     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2179     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2180     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2181     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2182 }
2183 
2184 static void
2185 storm_memset_func_en(struct bxe_softc *sc,
2186                      uint16_t         abs_fid,
2187                      uint8_t          enable)
2188 {
2189     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2190     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2191     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2192     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2193 }
2194 
2195 static void
2196 storm_memset_eq_data(struct bxe_softc       *sc,
2197                      struct event_ring_data *eq_data,
2198                      uint16_t               pfid)
2199 {
2200     uint32_t addr;
2201     size_t size;
2202 
2203     addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2204     size = sizeof(struct event_ring_data);
2205     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2206 }
2207 
2208 static void
2209 storm_memset_eq_prod(struct bxe_softc *sc,
2210                      uint16_t         eq_prod,
2211                      uint16_t         pfid)
2212 {
2213     uint32_t addr = (BAR_CSTRORM_INTMEM +
2214                      CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2215     REG_WR16(sc, addr, eq_prod);
2216 }
2217 
2218 /*
2219  * Post a slowpath command.
2220  *
2221  * A slowpath command is used to propogate a configuration change through
2222  * the controller in a controlled manner, allowing each STORM processor and
2223  * other H/W blocks to phase in the change.  The commands sent on the
2224  * slowpath are referred to as ramrods.  Depending on the ramrod used the
2225  * completion of the ramrod will occur in different ways.  Here's a
2226  * breakdown of ramrods and how they complete:
2227  *
2228  * RAMROD_CMD_ID_ETH_PORT_SETUP
2229  *   Used to setup the leading connection on a port.  Completes on the
2230  *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
2231  *
2232  * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2233  *   Used to setup an additional connection on a port.  Completes on the
2234  *   RCQ of the multi-queue/RSS connection being initialized.
2235  *
2236  * RAMROD_CMD_ID_ETH_STAT_QUERY
2237  *   Used to force the storm processors to update the statistics database
2238  *   in host memory.  This ramrod is send on the leading connection CID and
2239  *   completes as an index increment of the CSTORM on the default status
2240  *   block.
2241  *
2242  * RAMROD_CMD_ID_ETH_UPDATE
2243  *   Used to update the state of the leading connection, usually to udpate
2244  *   the RSS indirection table.  Completes on the RCQ of the leading
2245  *   connection. (Not currently used under FreeBSD until OS support becomes
2246  *   available.)
2247  *
2248  * RAMROD_CMD_ID_ETH_HALT
2249  *   Used when tearing down a connection prior to driver unload.  Completes
2250  *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
2251  *   use this on the leading connection.
2252  *
2253  * RAMROD_CMD_ID_ETH_SET_MAC
2254  *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
2255  *   the RCQ of the leading connection.
2256  *
2257  * RAMROD_CMD_ID_ETH_CFC_DEL
2258  *   Used when tearing down a conneciton prior to driver unload.  Completes
2259  *   on the RCQ of the leading connection (since the current connection
2260  *   has been completely removed from controller memory).
2261  *
2262  * RAMROD_CMD_ID_ETH_PORT_DEL
2263  *   Used to tear down the leading connection prior to driver unload,
2264  *   typically fp[0].  Completes as an index increment of the CSTORM on the
2265  *   default status block.
2266  *
2267  * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2268  *   Used for connection offload.  Completes on the RCQ of the multi-queue
2269  *   RSS connection that is being offloaded.  (Not currently used under
2270  *   FreeBSD.)
2271  *
2272  * There can only be one command pending per function.
2273  *
2274  * Returns:
2275  *   0 = Success, !0 = Failure.
2276  */
2277 
2278 /* must be called under the spq lock */
2279 static inline
2280 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2281 {
2282     struct eth_spe *next_spe = sc->spq_prod_bd;
2283 
2284     if (sc->spq_prod_bd == sc->spq_last_bd) {
2285         /* wrap back to the first eth_spq */
2286         sc->spq_prod_bd = sc->spq;
2287         sc->spq_prod_idx = 0;
2288     } else {
2289         sc->spq_prod_bd++;
2290         sc->spq_prod_idx++;
2291     }
2292 
2293     return (next_spe);
2294 }
2295 
2296 /* must be called under the spq lock */
2297 static inline
2298 void bxe_sp_prod_update(struct bxe_softc *sc)
2299 {
2300     int func = SC_FUNC(sc);
2301 
2302     /*
2303      * Make sure that BD data is updated before writing the producer.
2304      * BD data is written to the memory, the producer is read from the
2305      * memory, thus we need a full memory barrier to ensure the ordering.
2306      */
2307     mb();
2308 
2309     REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2310              sc->spq_prod_idx);
2311 
2312     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2313                       BUS_SPACE_BARRIER_WRITE);
2314 }
2315 
2316 /**
2317  * bxe_is_contextless_ramrod - check if the current command ends on EQ
2318  *
2319  * @cmd:      command to check
2320  * @cmd_type: command type
2321  */
2322 static inline
2323 int bxe_is_contextless_ramrod(int cmd,
2324                               int cmd_type)
2325 {
2326     if ((cmd_type == NONE_CONNECTION_TYPE) ||
2327         (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2328         (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2329         (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2330         (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2331         (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2332         (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2333         return (TRUE);
2334     } else {
2335         return (FALSE);
2336     }
2337 }
2338 
2339 /**
2340  * bxe_sp_post - place a single command on an SP ring
2341  *
2342  * @sc:         driver handle
2343  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
2344  * @cid:        SW CID the command is related to
2345  * @data_hi:    command private data address (high 32 bits)
2346  * @data_lo:    command private data address (low 32 bits)
2347  * @cmd_type:   command type (e.g. NONE, ETH)
2348  *
2349  * SP data is handled as if it's always an address pair, thus data fields are
2350  * not swapped to little endian in upper functions. Instead this function swaps
2351  * data as if it's two uint32 fields.
2352  */
2353 int
2354 bxe_sp_post(struct bxe_softc *sc,
2355             int              command,
2356             int              cid,
2357             uint32_t         data_hi,
2358             uint32_t         data_lo,
2359             int              cmd_type)
2360 {
2361     struct eth_spe *spe;
2362     uint16_t type;
2363     int common;
2364 
2365     common = bxe_is_contextless_ramrod(command, cmd_type);
2366 
2367     BXE_SP_LOCK(sc);
2368 
2369     if (common) {
2370         if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2371             BLOGE(sc, "EQ ring is full!\n");
2372             BXE_SP_UNLOCK(sc);
2373             return (-1);
2374         }
2375     } else {
2376         if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2377             BLOGE(sc, "SPQ ring is full!\n");
2378             BXE_SP_UNLOCK(sc);
2379             return (-1);
2380         }
2381     }
2382 
2383     spe = bxe_sp_get_next(sc);
2384 
2385     /* CID needs port number to be encoded int it */
2386     spe->hdr.conn_and_cmd_data =
2387         htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid));
2388 
2389     type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE;
2390 
2391     /* TBD: Check if it works for VFs */
2392     type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) &
2393              SPE_HDR_T_FUNCTION_ID);
2394 
2395     spe->hdr.type = htole16(type);
2396 
2397     spe->data.update_data_addr.hi = htole32(data_hi);
2398     spe->data.update_data_addr.lo = htole32(data_lo);
2399 
2400     /*
2401      * It's ok if the actual decrement is issued towards the memory
2402      * somewhere between the lock and unlock. Thus no more explict
2403      * memory barrier is needed.
2404      */
2405     if (common) {
2406         atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2407     } else {
2408         atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2409     }
2410 
2411     BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2412     BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2413           BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2414     BLOGD(sc, DBG_SP,
2415           "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2416           sc->spq_prod_idx,
2417           (uint32_t)U64_HI(sc->spq_dma.paddr),
2418           (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2419           command,
2420           common,
2421           HW_CID(sc, cid),
2422           data_hi,
2423           data_lo,
2424           type,
2425           atomic_load_acq_long(&sc->cq_spq_left),
2426           atomic_load_acq_long(&sc->eq_spq_left));
2427 
2428     bxe_sp_prod_update(sc);
2429 
2430     BXE_SP_UNLOCK(sc);
2431     return (0);
2432 }
2433 
2434 /**
2435  * bxe_debug_print_ind_table - prints the indirection table configuration.
2436  *
2437  * @sc: driver hanlde
2438  * @p:  pointer to rss configuration
2439  */
2440 
2441 /*
2442  * FreeBSD Device probe function.
2443  *
2444  * Compares the device found to the driver's list of supported devices and
2445  * reports back to the bsd loader whether this is the right driver for the device.
2446  * This is the driver entry function called from the "kldload" command.
2447  *
2448  * Returns:
2449  *   BUS_PROBE_DEFAULT on success, positive value on failure.
2450  */
2451 static int
2452 bxe_probe(device_t dev)
2453 {
2454     struct bxe_softc *sc;
2455     struct bxe_device_type *t;
2456     char *descbuf;
2457     uint16_t did, sdid, svid, vid;
2458 
2459     /* Find our device structure */
2460     sc = device_get_softc(dev);
2461     sc->dev = dev;
2462     t = bxe_devs;
2463 
2464     /* Get the data for the device to be probed. */
2465     vid  = pci_get_vendor(dev);
2466     did  = pci_get_device(dev);
2467     svid = pci_get_subvendor(dev);
2468     sdid = pci_get_subdevice(dev);
2469 
2470     BLOGD(sc, DBG_LOAD,
2471           "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
2472           "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
2473 
2474     /* Look through the list of known devices for a match. */
2475     while (t->bxe_name != NULL) {
2476         if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2477             ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2478             ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2479             descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
2480             if (descbuf == NULL)
2481                 return (ENOMEM);
2482 
2483             /* Print out the device identity. */
2484             snprintf(descbuf, BXE_DEVDESC_MAX,
2485                      "%s (%c%d) BXE v:%s\n", t->bxe_name,
2486                      (((pci_read_config(dev, PCIR_REVID, 4) &
2487                         0xf0) >> 4) + 'A'),
2488                      (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2489                      BXE_DRIVER_VERSION);
2490 
2491             device_set_desc_copy(dev, descbuf);
2492             free(descbuf, M_TEMP);
2493             return (BUS_PROBE_DEFAULT);
2494         }
2495         t++;
2496     }
2497 
2498     return (ENXIO);
2499 }
2500 
2501 static void
2502 bxe_init_mutexes(struct bxe_softc *sc)
2503 {
2504 #ifdef BXE_CORE_LOCK_SX
2505     snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2506              "bxe%d_core_lock", sc->unit);
2507     sx_init(&sc->core_sx, sc->core_sx_name);
2508 #else
2509     snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2510              "bxe%d_core_lock", sc->unit);
2511     mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2512 #endif
2513 
2514     snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2515              "bxe%d_sp_lock", sc->unit);
2516     mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2517 
2518     snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2519              "bxe%d_dmae_lock", sc->unit);
2520     mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2521 
2522     snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2523              "bxe%d_phy_lock", sc->unit);
2524     mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2525 
2526     snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2527              "bxe%d_fwmb_lock", sc->unit);
2528     mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2529 
2530     snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2531              "bxe%d_print_lock", sc->unit);
2532     mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2533 
2534     snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2535              "bxe%d_stats_lock", sc->unit);
2536     mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2537 
2538     snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2539              "bxe%d_mcast_lock", sc->unit);
2540     mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2541 }
2542 
2543 static void
2544 bxe_release_mutexes(struct bxe_softc *sc)
2545 {
2546 #ifdef BXE_CORE_LOCK_SX
2547     sx_destroy(&sc->core_sx);
2548 #else
2549     if (mtx_initialized(&sc->core_mtx)) {
2550         mtx_destroy(&sc->core_mtx);
2551     }
2552 #endif
2553 
2554     if (mtx_initialized(&sc->sp_mtx)) {
2555         mtx_destroy(&sc->sp_mtx);
2556     }
2557 
2558     if (mtx_initialized(&sc->dmae_mtx)) {
2559         mtx_destroy(&sc->dmae_mtx);
2560     }
2561 
2562     if (mtx_initialized(&sc->port.phy_mtx)) {
2563         mtx_destroy(&sc->port.phy_mtx);
2564     }
2565 
2566     if (mtx_initialized(&sc->fwmb_mtx)) {
2567         mtx_destroy(&sc->fwmb_mtx);
2568     }
2569 
2570     if (mtx_initialized(&sc->print_mtx)) {
2571         mtx_destroy(&sc->print_mtx);
2572     }
2573 
2574     if (mtx_initialized(&sc->stats_mtx)) {
2575         mtx_destroy(&sc->stats_mtx);
2576     }
2577 
2578     if (mtx_initialized(&sc->mcast_mtx)) {
2579         mtx_destroy(&sc->mcast_mtx);
2580     }
2581 }
2582 
2583 static void
2584 bxe_tx_disable(struct bxe_softc* sc)
2585 {
2586     if_t ifp = sc->ifp;
2587 
2588     /* tell the stack the driver is stopped and TX queue is full */
2589     if (ifp !=  NULL) {
2590         if_setdrvflags(ifp, 0);
2591     }
2592 }
2593 
2594 static void
2595 bxe_drv_pulse(struct bxe_softc *sc)
2596 {
2597     SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2598              sc->fw_drv_pulse_wr_seq);
2599 }
2600 
2601 static inline uint16_t
2602 bxe_tx_avail(struct bxe_softc *sc,
2603              struct bxe_fastpath *fp)
2604 {
2605     int16_t  used;
2606     uint16_t prod;
2607     uint16_t cons;
2608 
2609     prod = fp->tx_bd_prod;
2610     cons = fp->tx_bd_cons;
2611 
2612     used = SUB_S16(prod, cons);
2613 
2614     return (int16_t)(sc->tx_ring_size) - used;
2615 }
2616 
2617 static inline int
2618 bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2619 {
2620     uint16_t hw_cons;
2621 
2622     mb(); /* status block fields can change */
2623     hw_cons = le16toh(*fp->tx_cons_sb);
2624     return (hw_cons != fp->tx_pkt_cons);
2625 }
2626 
2627 static inline uint8_t
2628 bxe_has_tx_work(struct bxe_fastpath *fp)
2629 {
2630     /* expand this for multi-cos if ever supported */
2631     return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2632 }
2633 
2634 static inline int
2635 bxe_has_rx_work(struct bxe_fastpath *fp)
2636 {
2637     uint16_t rx_cq_cons_sb;
2638 
2639     mb(); /* status block fields can change */
2640     rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2641     if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2642         rx_cq_cons_sb++;
2643     return (fp->rx_cq_cons != rx_cq_cons_sb);
2644 }
2645 
2646 static void
2647 bxe_sp_event(struct bxe_softc    *sc,
2648              struct bxe_fastpath *fp,
2649              union eth_rx_cqe    *rr_cqe)
2650 {
2651     int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2652     int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2653     enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2654     struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2655 
2656     BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2657           fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2658 
2659     switch (command) {
2660     case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2661         BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2662         drv_cmd = ECORE_Q_CMD_UPDATE;
2663         break;
2664 
2665     case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2666         BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2667         drv_cmd = ECORE_Q_CMD_SETUP;
2668         break;
2669 
2670     case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2671         BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2672         drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2673         break;
2674 
2675     case (RAMROD_CMD_ID_ETH_HALT):
2676         BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2677         drv_cmd = ECORE_Q_CMD_HALT;
2678         break;
2679 
2680     case (RAMROD_CMD_ID_ETH_TERMINATE):
2681         BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2682         drv_cmd = ECORE_Q_CMD_TERMINATE;
2683         break;
2684 
2685     case (RAMROD_CMD_ID_ETH_EMPTY):
2686         BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2687         drv_cmd = ECORE_Q_CMD_EMPTY;
2688         break;
2689 
2690     default:
2691         BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2692               command, fp->index);
2693         return;
2694     }
2695 
2696     if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2697         q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2698         /*
2699          * q_obj->complete_cmd() failure means that this was
2700          * an unexpected completion.
2701          *
2702          * In this case we don't want to increase the sc->spq_left
2703          * because apparently we haven't sent this command the first
2704          * place.
2705          */
2706         // bxe_panic(sc, ("Unexpected SP completion\n"));
2707         return;
2708     }
2709 
2710     atomic_add_acq_long(&sc->cq_spq_left, 1);
2711 
2712     BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2713           atomic_load_acq_long(&sc->cq_spq_left));
2714 }
2715 
2716 /*
2717  * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2718  * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2719  * the current aggregation queue as in-progress.
2720  */
2721 static void
2722 bxe_tpa_start(struct bxe_softc            *sc,
2723               struct bxe_fastpath         *fp,
2724               uint16_t                    queue,
2725               uint16_t                    cons,
2726               uint16_t                    prod,
2727               struct eth_fast_path_rx_cqe *cqe)
2728 {
2729     struct bxe_sw_rx_bd tmp_bd;
2730     struct bxe_sw_rx_bd *rx_buf;
2731     struct eth_rx_bd *rx_bd;
2732     int max_agg_queues;
2733     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2734     uint16_t index;
2735 
2736     BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2737                        "cons=%d prod=%d\n",
2738           fp->index, queue, cons, prod);
2739 
2740     max_agg_queues = MAX_AGG_QS(sc);
2741 
2742     KASSERT((queue < max_agg_queues),
2743             ("fp[%02d] invalid aggr queue (%d >= %d)!",
2744              fp->index, queue, max_agg_queues));
2745 
2746     KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2747             ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2748              fp->index, queue));
2749 
2750     /* copy the existing mbuf and mapping from the TPA pool */
2751     tmp_bd = tpa_info->bd;
2752 
2753     if (tmp_bd.m == NULL) {
2754         uint32_t *tmp;
2755 
2756         tmp = (uint32_t *)cqe;
2757 
2758         BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n",
2759               fp->index, queue, cons, prod);
2760         BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
2761             *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
2762 
2763         /* XXX Error handling? */
2764         return;
2765     }
2766 
2767     /* change the TPA queue to the start state */
2768     tpa_info->state            = BXE_TPA_STATE_START;
2769     tpa_info->placement_offset = cqe->placement_offset;
2770     tpa_info->parsing_flags    = le16toh(cqe->pars_flags.flags);
2771     tpa_info->vlan_tag         = le16toh(cqe->vlan_tag);
2772     tpa_info->len_on_bd        = le16toh(cqe->len_on_bd);
2773 
2774     fp->rx_tpa_queue_used |= (1 << queue);
2775 
2776     /*
2777      * If all the buffer descriptors are filled with mbufs then fill in
2778      * the current consumer index with a new BD. Else if a maximum Rx
2779      * buffer limit is imposed then fill in the next producer index.
2780      */
2781     index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2782                 prod : cons;
2783 
2784     /* move the received mbuf and mapping to TPA pool */
2785     tpa_info->bd = fp->rx_mbuf_chain[cons];
2786 
2787     /* release any existing RX BD mbuf mappings */
2788     if (cons != index) {
2789         rx_buf = &fp->rx_mbuf_chain[cons];
2790 
2791         if (rx_buf->m_map != NULL) {
2792             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2793                             BUS_DMASYNC_POSTREAD);
2794             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2795         }
2796 
2797         /*
2798          * We get here when the maximum number of rx buffers is less than
2799          * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2800          * it out here without concern of a memory leak.
2801          */
2802         fp->rx_mbuf_chain[cons].m = NULL;
2803     }
2804 
2805     /* update the Rx SW BD with the mbuf info from the TPA pool */
2806     fp->rx_mbuf_chain[index] = tmp_bd;
2807 
2808     /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2809     rx_bd = &fp->rx_chain[index];
2810     rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2811     rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
2812 }
2813 
2814 /*
2815  * When a TPA aggregation is completed, loop through the individual mbufs
2816  * of the aggregation, combining them into a single mbuf which will be sent
2817  * up the stack. Refill all freed SGEs with mbufs as we go along.
2818  */
2819 static int
2820 bxe_fill_frag_mbuf(struct bxe_softc          *sc,
2821                    struct bxe_fastpath       *fp,
2822                    struct bxe_sw_tpa_info    *tpa_info,
2823                    uint16_t                  queue,
2824                    uint16_t                  pages,
2825                    struct mbuf               *m,
2826 			       struct eth_end_agg_rx_cqe *cqe,
2827                    uint16_t                  cqe_idx)
2828 {
2829     struct mbuf *m_frag;
2830     uint32_t frag_len, frag_size, i;
2831     uint16_t sge_idx;
2832     int rc = 0;
2833     int j;
2834 
2835     frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
2836 
2837     BLOGD(sc, DBG_LRO,
2838           "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
2839           fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
2840 
2841     /* make sure the aggregated frame is not too big to handle */
2842     if (pages > 8 * PAGES_PER_SGE) {
2843 
2844         uint32_t *tmp = (uint32_t *)cqe;
2845 
2846         BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
2847                   "pkt_len=%d len_on_bd=%d frag_size=%d\n",
2848               fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
2849               tpa_info->len_on_bd, frag_size);
2850 
2851         BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
2852             *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
2853 
2854         bxe_panic(sc, ("sge page count error\n"));
2855         return (EINVAL);
2856     }
2857 
2858     /*
2859      * Scan through the scatter gather list pulling individual mbufs into a
2860      * single mbuf for the host stack.
2861      */
2862     for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
2863         sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
2864 
2865         /*
2866          * Firmware gives the indices of the SGE as if the ring is an array
2867          * (meaning that the "next" element will consume 2 indices).
2868          */
2869         frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
2870 
2871         BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
2872                            "sge_idx=%d frag_size=%d frag_len=%d\n",
2873               fp->index, queue, i, j, sge_idx, frag_size, frag_len);
2874 
2875         m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
2876 
2877         /* allocate a new mbuf for the SGE */
2878         rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
2879         if (rc) {
2880             /* Leave all remaining SGEs in the ring! */
2881             return (rc);
2882         }
2883 
2884         /* update the fragment length */
2885         m_frag->m_len = frag_len;
2886 
2887         /* concatenate the fragment to the head mbuf */
2888         m_cat(m, m_frag);
2889         fp->eth_q_stats.mbuf_alloc_sge--;
2890 
2891         /* update the TPA mbuf size and remaining fragment size */
2892         m->m_pkthdr.len += frag_len;
2893         frag_size -= frag_len;
2894     }
2895 
2896     BLOGD(sc, DBG_LRO,
2897           "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
2898           fp->index, queue, frag_size);
2899 
2900     return (rc);
2901 }
2902 
2903 static inline void
2904 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
2905 {
2906     int i, j;
2907 
2908     for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
2909         int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
2910 
2911         for (j = 0; j < 2; j++) {
2912             BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
2913             idx--;
2914         }
2915     }
2916 }
2917 
2918 static inline void
2919 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
2920 {
2921     /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
2922     memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
2923 
2924     /*
2925      * Clear the two last indices in the page to 1. These are the indices that
2926      * correspond to the "next" element, hence will never be indicated and
2927      * should be removed from the calculations.
2928      */
2929     bxe_clear_sge_mask_next_elems(fp);
2930 }
2931 
2932 static inline void
2933 bxe_update_last_max_sge(struct bxe_fastpath *fp,
2934                         uint16_t            idx)
2935 {
2936     uint16_t last_max = fp->last_max_sge;
2937 
2938     if (SUB_S16(idx, last_max) > 0) {
2939         fp->last_max_sge = idx;
2940     }
2941 }
2942 
2943 static inline void
2944 bxe_update_sge_prod(struct bxe_softc          *sc,
2945                     struct bxe_fastpath       *fp,
2946                     uint16_t                  sge_len,
2947                     union eth_sgl_or_raw_data *cqe)
2948 {
2949     uint16_t last_max, last_elem, first_elem;
2950     uint16_t delta = 0;
2951     uint16_t i;
2952 
2953     if (!sge_len) {
2954         return;
2955     }
2956 
2957     /* first mark all used pages */
2958     for (i = 0; i < sge_len; i++) {
2959         BIT_VEC64_CLEAR_BIT(fp->sge_mask,
2960                             RX_SGE(le16toh(cqe->sgl[i])));
2961     }
2962 
2963     BLOGD(sc, DBG_LRO,
2964           "fp[%02d] fp_cqe->sgl[%d] = %d\n",
2965           fp->index, sge_len - 1,
2966           le16toh(cqe->sgl[sge_len - 1]));
2967 
2968     /* assume that the last SGE index is the biggest */
2969     bxe_update_last_max_sge(fp,
2970                             le16toh(cqe->sgl[sge_len - 1]));
2971 
2972     last_max = RX_SGE(fp->last_max_sge);
2973     last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
2974     first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
2975 
2976     /* if ring is not full */
2977     if (last_elem + 1 != first_elem) {
2978         last_elem++;
2979     }
2980 
2981     /* now update the prod */
2982     for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
2983         if (__predict_true(fp->sge_mask[i])) {
2984             break;
2985         }
2986 
2987         fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
2988         delta += BIT_VEC64_ELEM_SZ;
2989     }
2990 
2991     if (delta > 0) {
2992         fp->rx_sge_prod += delta;
2993         /* clear page-end entries */
2994         bxe_clear_sge_mask_next_elems(fp);
2995     }
2996 
2997     BLOGD(sc, DBG_LRO,
2998           "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
2999           fp->index, fp->last_max_sge, fp->rx_sge_prod);
3000 }
3001 
3002 /*
3003  * The aggregation on the current TPA queue has completed. Pull the individual
3004  * mbuf fragments together into a single mbuf, perform all necessary checksum
3005  * calculations, and send the resuting mbuf to the stack.
3006  */
3007 static void
3008 bxe_tpa_stop(struct bxe_softc          *sc,
3009              struct bxe_fastpath       *fp,
3010              struct bxe_sw_tpa_info    *tpa_info,
3011              uint16_t                  queue,
3012              uint16_t                  pages,
3013 			 struct eth_end_agg_rx_cqe *cqe,
3014              uint16_t                  cqe_idx)
3015 {
3016     if_t ifp = sc->ifp;
3017     struct mbuf *m;
3018     int rc = 0;
3019 
3020     BLOGD(sc, DBG_LRO,
3021           "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3022           fp->index, queue, tpa_info->placement_offset,
3023           le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3024 
3025     m = tpa_info->bd.m;
3026 
3027     /* allocate a replacement before modifying existing mbuf */
3028     rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3029     if (rc) {
3030         /* drop the frame and log an error */
3031         fp->eth_q_stats.rx_soft_errors++;
3032         goto bxe_tpa_stop_exit;
3033     }
3034 
3035     /* we have a replacement, fixup the current mbuf */
3036     m_adj(m, tpa_info->placement_offset);
3037     m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3038 
3039     /* mark the checksums valid (taken care of by the firmware) */
3040     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3041     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3042     m->m_pkthdr.csum_data = 0xffff;
3043     m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3044                                CSUM_IP_VALID   |
3045                                CSUM_DATA_VALID |
3046                                CSUM_PSEUDO_HDR);
3047 
3048     /* aggregate all of the SGEs into a single mbuf */
3049     rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3050     if (rc) {
3051         /* drop the packet and log an error */
3052         fp->eth_q_stats.rx_soft_errors++;
3053         m_freem(m);
3054     } else {
3055         if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
3056             m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3057             m->m_flags |= M_VLANTAG;
3058         }
3059 
3060         /* assign packet to this interface interface */
3061         if_setrcvif(m, ifp);
3062 
3063 #if __FreeBSD_version >= 800000
3064         /* specify what RSS queue was used for this flow */
3065         m->m_pkthdr.flowid = fp->index;
3066         BXE_SET_FLOWID(m);
3067 #endif
3068 
3069         if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3070         fp->eth_q_stats.rx_tpa_pkts++;
3071 
3072         /* pass the frame to the stack */
3073         if_input(ifp, m);
3074     }
3075 
3076     /* we passed an mbuf up the stack or dropped the frame */
3077     fp->eth_q_stats.mbuf_alloc_tpa--;
3078 
3079 bxe_tpa_stop_exit:
3080 
3081     fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3082     fp->rx_tpa_queue_used &= ~(1 << queue);
3083 }
3084 
3085 static uint8_t
3086 bxe_service_rxsgl(
3087                  struct bxe_fastpath *fp,
3088                  uint16_t len,
3089                  uint16_t lenonbd,
3090                  struct mbuf *m,
3091                  struct eth_fast_path_rx_cqe *cqe_fp)
3092 {
3093     struct mbuf *m_frag;
3094     uint16_t frags, frag_len;
3095     uint16_t sge_idx = 0;
3096     uint16_t j;
3097     uint8_t i, rc = 0;
3098     uint32_t frag_size;
3099 
3100     /* adjust the mbuf */
3101     m->m_len = lenonbd;
3102 
3103     frag_size =  len - lenonbd;
3104     frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3105 
3106     for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) {
3107         sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j]));
3108 
3109         m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3110         frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE));
3111         m_frag->m_len = frag_len;
3112 
3113        /* allocate a new mbuf for the SGE */
3114         rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3115         if (rc) {
3116             /* Leave all remaining SGEs in the ring! */
3117             return (rc);
3118         }
3119         fp->eth_q_stats.mbuf_alloc_sge--;
3120 
3121         /* concatenate the fragment to the head mbuf */
3122         m_cat(m, m_frag);
3123 
3124         frag_size -= frag_len;
3125     }
3126 
3127     bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data);
3128 
3129     return rc;
3130 }
3131 
3132 static uint8_t
3133 bxe_rxeof(struct bxe_softc    *sc,
3134           struct bxe_fastpath *fp)
3135 {
3136     if_t ifp = sc->ifp;
3137     uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3138     uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3139     int rx_pkts = 0;
3140     int rc = 0;
3141 
3142     BXE_FP_RX_LOCK(fp);
3143 
3144     /* CQ "next element" is of the size of the regular element */
3145     hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3146     if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3147         hw_cq_cons++;
3148     }
3149 
3150     bd_cons = fp->rx_bd_cons;
3151     bd_prod = fp->rx_bd_prod;
3152     bd_prod_fw = bd_prod;
3153     sw_cq_cons = fp->rx_cq_cons;
3154     sw_cq_prod = fp->rx_cq_prod;
3155 
3156     /*
3157      * Memory barrier necessary as speculative reads of the rx
3158      * buffer can be ahead of the index in the status block
3159      */
3160     rmb();
3161 
3162     BLOGD(sc, DBG_RX,
3163           "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3164           fp->index, hw_cq_cons, sw_cq_cons);
3165 
3166     while (sw_cq_cons != hw_cq_cons) {
3167         struct bxe_sw_rx_bd *rx_buf = NULL;
3168         union eth_rx_cqe *cqe;
3169         struct eth_fast_path_rx_cqe *cqe_fp;
3170         uint8_t cqe_fp_flags;
3171         enum eth_rx_cqe_type cqe_fp_type;
3172         uint16_t len, lenonbd,  pad;
3173         struct mbuf *m = NULL;
3174 
3175         comp_ring_cons = RCQ(sw_cq_cons);
3176         bd_prod = RX_BD(bd_prod);
3177         bd_cons = RX_BD(bd_cons);
3178 
3179         cqe          = &fp->rcq_chain[comp_ring_cons];
3180         cqe_fp       = &cqe->fast_path_cqe;
3181         cqe_fp_flags = cqe_fp->type_error_flags;
3182         cqe_fp_type  = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3183 
3184         BLOGD(sc, DBG_RX,
3185               "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3186               "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3187               "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n",
3188               fp->index,
3189               hw_cq_cons,
3190               sw_cq_cons,
3191               bd_prod,
3192               bd_cons,
3193               CQE_TYPE(cqe_fp_flags),
3194               cqe_fp_flags,
3195               cqe_fp->status_flags,
3196               le32toh(cqe_fp->rss_hash_result),
3197               le16toh(cqe_fp->vlan_tag),
3198               le16toh(cqe_fp->pkt_len_or_gro_seg_len),
3199               le16toh(cqe_fp->len_on_bd));
3200 
3201         /* is this a slowpath msg? */
3202         if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3203             bxe_sp_event(sc, fp, cqe);
3204             goto next_cqe;
3205         }
3206 
3207         rx_buf = &fp->rx_mbuf_chain[bd_cons];
3208 
3209         if (!CQE_TYPE_FAST(cqe_fp_type)) {
3210             struct bxe_sw_tpa_info *tpa_info;
3211             uint16_t frag_size, pages;
3212             uint8_t queue;
3213 
3214             if (CQE_TYPE_START(cqe_fp_type)) {
3215                 bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3216                               bd_cons, bd_prod, cqe_fp);
3217                 m = NULL; /* packet not ready yet */
3218                 goto next_rx;
3219             }
3220 
3221             KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3222                     ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3223 
3224             queue = cqe->end_agg_cqe.queue_index;
3225             tpa_info = &fp->rx_tpa_info[queue];
3226 
3227             BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3228                   fp->index, queue);
3229 
3230             frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3231                          tpa_info->len_on_bd);
3232             pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3233 
3234             bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3235                          &cqe->end_agg_cqe, comp_ring_cons);
3236 
3237             bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data);
3238 
3239             goto next_cqe;
3240         }
3241 
3242         /* non TPA */
3243 
3244         /* is this an error packet? */
3245         if (__predict_false(cqe_fp_flags &
3246                             ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3247             BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3248             fp->eth_q_stats.rx_soft_errors++;
3249             goto next_rx;
3250         }
3251 
3252         len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3253         lenonbd = le16toh(cqe_fp->len_on_bd);
3254         pad = cqe_fp->placement_offset;
3255 
3256         m = rx_buf->m;
3257 
3258         if (__predict_false(m == NULL)) {
3259             BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3260                   bd_cons, fp->index);
3261             goto next_rx;
3262         }
3263 
3264         /* XXX double copy if packet length under a threshold */
3265 
3266         /*
3267          * If all the buffer descriptors are filled with mbufs then fill in
3268          * the current consumer index with a new BD. Else if a maximum Rx
3269          * buffer limit is imposed then fill in the next producer index.
3270          */
3271         rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3272                                   (sc->max_rx_bufs != RX_BD_USABLE) ?
3273                                       bd_prod : bd_cons);
3274         if (rc != 0) {
3275 
3276             /* we simply reuse the received mbuf and don't post it to the stack */
3277             m = NULL;
3278 
3279             BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3280                   fp->index, rc);
3281             fp->eth_q_stats.rx_soft_errors++;
3282 
3283             if (sc->max_rx_bufs != RX_BD_USABLE) {
3284                 /* copy this consumer index to the producer index */
3285                 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3286                        sizeof(struct bxe_sw_rx_bd));
3287                 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3288             }
3289 
3290             goto next_rx;
3291         }
3292 
3293         /* current mbuf was detached from the bd */
3294         fp->eth_q_stats.mbuf_alloc_rx--;
3295 
3296         /* we allocated a replacement mbuf, fixup the current one */
3297         m_adj(m, pad);
3298         m->m_pkthdr.len = m->m_len = len;
3299 
3300         if ((len > 60) && (len > lenonbd)) {
3301             fp->eth_q_stats.rx_bxe_service_rxsgl++;
3302             rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp);
3303             if (rc)
3304                 break;
3305             fp->eth_q_stats.rx_jumbo_sge_pkts++;
3306         } else if (lenonbd < len) {
3307             fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++;
3308         }
3309 
3310         /* assign packet to this interface interface */
3311 	if_setrcvif(m, ifp);
3312 
3313         /* assume no hardware checksum has complated */
3314         m->m_pkthdr.csum_flags = 0;
3315 
3316         /* validate checksum if offload enabled */
3317         if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3318             /* check for a valid IP frame */
3319             if (!(cqe->fast_path_cqe.status_flags &
3320                   ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3321                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3322                 if (__predict_false(cqe_fp_flags &
3323                                     ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3324                     fp->eth_q_stats.rx_hw_csum_errors++;
3325                 } else {
3326                     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3327                     m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3328                 }
3329             }
3330 
3331             /* check for a valid TCP/UDP frame */
3332             if (!(cqe->fast_path_cqe.status_flags &
3333                   ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3334                 if (__predict_false(cqe_fp_flags &
3335                                     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3336                     fp->eth_q_stats.rx_hw_csum_errors++;
3337                 } else {
3338                     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3339                     m->m_pkthdr.csum_data = 0xFFFF;
3340                     m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3341                                                CSUM_PSEUDO_HDR);
3342                 }
3343             }
3344         }
3345 
3346         /* if there is a VLAN tag then flag that info */
3347         if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
3348             m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3349             m->m_flags |= M_VLANTAG;
3350         }
3351 
3352 #if __FreeBSD_version >= 800000
3353         /* specify what RSS queue was used for this flow */
3354         m->m_pkthdr.flowid = fp->index;
3355         BXE_SET_FLOWID(m);
3356 #endif
3357 
3358 next_rx:
3359 
3360         bd_cons    = RX_BD_NEXT(bd_cons);
3361         bd_prod    = RX_BD_NEXT(bd_prod);
3362         bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3363 
3364         /* pass the frame to the stack */
3365         if (__predict_true(m != NULL)) {
3366             if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3367             rx_pkts++;
3368             if_input(ifp, m);
3369         }
3370 
3371 next_cqe:
3372 
3373         sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3374         sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3375 
3376         /* limit spinning on the queue */
3377         if (rc != 0)
3378             break;
3379 
3380         if (rx_pkts == sc->rx_budget) {
3381             fp->eth_q_stats.rx_budget_reached++;
3382             break;
3383         }
3384     } /* while work to do */
3385 
3386     fp->rx_bd_cons = bd_cons;
3387     fp->rx_bd_prod = bd_prod_fw;
3388     fp->rx_cq_cons = sw_cq_cons;
3389     fp->rx_cq_prod = sw_cq_prod;
3390 
3391     /* Update producers */
3392     bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3393 
3394     fp->eth_q_stats.rx_pkts += rx_pkts;
3395     fp->eth_q_stats.rx_calls++;
3396 
3397     BXE_FP_RX_UNLOCK(fp);
3398 
3399     return (sw_cq_cons != hw_cq_cons);
3400 }
3401 
3402 static uint16_t
3403 bxe_free_tx_pkt(struct bxe_softc    *sc,
3404                 struct bxe_fastpath *fp,
3405                 uint16_t            idx)
3406 {
3407     struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3408     struct eth_tx_start_bd *tx_start_bd;
3409     uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3410     uint16_t new_cons;
3411     int nbd;
3412 
3413     /* unmap the mbuf from non-paged memory */
3414     bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3415 
3416     tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3417     nbd = le16toh(tx_start_bd->nbd) - 1;
3418 
3419     new_cons = (tx_buf->first_bd + nbd);
3420 
3421     /* free the mbuf */
3422     if (__predict_true(tx_buf->m != NULL)) {
3423         m_freem(tx_buf->m);
3424         fp->eth_q_stats.mbuf_alloc_tx--;
3425     } else {
3426         fp->eth_q_stats.tx_chain_lost_mbuf++;
3427     }
3428 
3429     tx_buf->m = NULL;
3430     tx_buf->first_bd = 0;
3431 
3432     return (new_cons);
3433 }
3434 
3435 /* transmit timeout watchdog */
3436 static int
3437 bxe_watchdog(struct bxe_softc    *sc,
3438              struct bxe_fastpath *fp)
3439 {
3440     BXE_FP_TX_LOCK(fp);
3441 
3442     if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3443         BXE_FP_TX_UNLOCK(fp);
3444         return (0);
3445     }
3446 
3447     BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3448 
3449     BXE_FP_TX_UNLOCK(fp);
3450 
3451     atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
3452     taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
3453 
3454     return (-1);
3455 }
3456 
3457 /* processes transmit completions */
3458 static uint8_t
3459 bxe_txeof(struct bxe_softc    *sc,
3460           struct bxe_fastpath *fp)
3461 {
3462     if_t ifp = sc->ifp;
3463     uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3464     uint16_t tx_bd_avail;
3465 
3466     BXE_FP_TX_LOCK_ASSERT(fp);
3467 
3468     bd_cons = fp->tx_bd_cons;
3469     hw_cons = le16toh(*fp->tx_cons_sb);
3470     sw_cons = fp->tx_pkt_cons;
3471 
3472     while (sw_cons != hw_cons) {
3473         pkt_cons = TX_BD(sw_cons);
3474 
3475         BLOGD(sc, DBG_TX,
3476               "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3477               fp->index, hw_cons, sw_cons, pkt_cons);
3478 
3479         bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3480 
3481         sw_cons++;
3482     }
3483 
3484     fp->tx_pkt_cons = sw_cons;
3485     fp->tx_bd_cons  = bd_cons;
3486 
3487     BLOGD(sc, DBG_TX,
3488           "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3489           fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3490 
3491     mb();
3492 
3493     tx_bd_avail = bxe_tx_avail(sc, fp);
3494 
3495     if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3496         if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
3497     } else {
3498         if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3499     }
3500 
3501     if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3502         /* reset the watchdog timer if there are pending transmits */
3503         fp->watchdog_timer = BXE_TX_TIMEOUT;
3504         return (TRUE);
3505     } else {
3506         /* clear watchdog when there are no pending transmits */
3507         fp->watchdog_timer = 0;
3508         return (FALSE);
3509     }
3510 }
3511 
3512 static void
3513 bxe_drain_tx_queues(struct bxe_softc *sc)
3514 {
3515     struct bxe_fastpath *fp;
3516     int i, count;
3517 
3518     /* wait until all TX fastpath tasks have completed */
3519     for (i = 0; i < sc->num_queues; i++) {
3520         fp = &sc->fp[i];
3521 
3522         count = 1000;
3523 
3524         while (bxe_has_tx_work(fp)) {
3525 
3526             BXE_FP_TX_LOCK(fp);
3527             bxe_txeof(sc, fp);
3528             BXE_FP_TX_UNLOCK(fp);
3529 
3530             if (count == 0) {
3531                 BLOGE(sc, "Timeout waiting for fp[%d] "
3532                           "transmits to complete!\n", i);
3533                 bxe_panic(sc, ("tx drain failure\n"));
3534                 return;
3535             }
3536 
3537             count--;
3538             DELAY(1000);
3539             rmb();
3540         }
3541     }
3542 
3543     return;
3544 }
3545 
3546 static int
3547 bxe_del_all_macs(struct bxe_softc          *sc,
3548                  struct ecore_vlan_mac_obj *mac_obj,
3549                  int                       mac_type,
3550                  uint8_t                   wait_for_comp)
3551 {
3552     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3553     int rc;
3554 
3555     /* wait for completion of requested */
3556     if (wait_for_comp) {
3557         bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3558     }
3559 
3560     /* Set the mac type of addresses we want to clear */
3561     bxe_set_bit(mac_type, &vlan_mac_flags);
3562 
3563     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3564     if (rc < 0) {
3565         BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n",
3566             rc, mac_type, wait_for_comp);
3567     }
3568 
3569     return (rc);
3570 }
3571 
3572 static int
3573 bxe_fill_accept_flags(struct bxe_softc *sc,
3574                       uint32_t         rx_mode,
3575                       unsigned long    *rx_accept_flags,
3576                       unsigned long    *tx_accept_flags)
3577 {
3578     /* Clear the flags first */
3579     *rx_accept_flags = 0;
3580     *tx_accept_flags = 0;
3581 
3582     switch (rx_mode) {
3583     case BXE_RX_MODE_NONE:
3584         /*
3585          * 'drop all' supersedes any accept flags that may have been
3586          * passed to the function.
3587          */
3588         break;
3589 
3590     case BXE_RX_MODE_NORMAL:
3591         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3592         bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3593         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3594 
3595         /* internal switching mode */
3596         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3597         bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3598         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3599 
3600         break;
3601 
3602     case BXE_RX_MODE_ALLMULTI:
3603         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3604         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3605         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3606 
3607         /* internal switching mode */
3608         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3609         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3610         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3611 
3612         break;
3613 
3614     case BXE_RX_MODE_PROMISC:
3615         /*
3616          * According to deffinition of SI mode, iface in promisc mode
3617          * should receive matched and unmatched (in resolution of port)
3618          * unicast packets.
3619          */
3620         bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3621         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3622         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3623         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3624 
3625         /* internal switching mode */
3626         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3627         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3628 
3629         if (IS_MF_SI(sc)) {
3630             bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3631         } else {
3632             bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3633         }
3634 
3635         break;
3636 
3637     default:
3638         BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode);
3639         return (-1);
3640     }
3641 
3642     /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3643     if (rx_mode != BXE_RX_MODE_NONE) {
3644         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3645         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3646     }
3647 
3648     return (0);
3649 }
3650 
3651 static int
3652 bxe_set_q_rx_mode(struct bxe_softc *sc,
3653                   uint8_t          cl_id,
3654                   unsigned long    rx_mode_flags,
3655                   unsigned long    rx_accept_flags,
3656                   unsigned long    tx_accept_flags,
3657                   unsigned long    ramrod_flags)
3658 {
3659     struct ecore_rx_mode_ramrod_params ramrod_param;
3660     int rc;
3661 
3662     memset(&ramrod_param, 0, sizeof(ramrod_param));
3663 
3664     /* Prepare ramrod parameters */
3665     ramrod_param.cid = 0;
3666     ramrod_param.cl_id = cl_id;
3667     ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3668     ramrod_param.func_id = SC_FUNC(sc);
3669 
3670     ramrod_param.pstate = &sc->sp_state;
3671     ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3672 
3673     ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3674     ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3675 
3676     bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3677 
3678     ramrod_param.ramrod_flags = ramrod_flags;
3679     ramrod_param.rx_mode_flags = rx_mode_flags;
3680 
3681     ramrod_param.rx_accept_flags = rx_accept_flags;
3682     ramrod_param.tx_accept_flags = tx_accept_flags;
3683 
3684     rc = ecore_config_rx_mode(sc, &ramrod_param);
3685     if (rc < 0) {
3686         BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x "
3687             "rx_accept_flags 0x%x tx_accept_flags 0x%x "
3688             "ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id,
3689             (uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags,
3690             (uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc);
3691         return (rc);
3692     }
3693 
3694     return (0);
3695 }
3696 
3697 static int
3698 bxe_set_storm_rx_mode(struct bxe_softc *sc)
3699 {
3700     unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3701     unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3702     int rc;
3703 
3704     rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3705                                &tx_accept_flags);
3706     if (rc) {
3707         return (rc);
3708     }
3709 
3710     bxe_set_bit(RAMROD_RX, &ramrod_flags);
3711     bxe_set_bit(RAMROD_TX, &ramrod_flags);
3712 
3713     /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3714     return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3715                               rx_accept_flags, tx_accept_flags,
3716                               ramrod_flags));
3717 }
3718 
3719 /* returns the "mcp load_code" according to global load_count array */
3720 static int
3721 bxe_nic_load_no_mcp(struct bxe_softc *sc)
3722 {
3723     int path = SC_PATH(sc);
3724     int port = SC_PORT(sc);
3725 
3726     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3727           path, load_count[path][0], load_count[path][1],
3728           load_count[path][2]);
3729     load_count[path][0]++;
3730     load_count[path][1 + port]++;
3731     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3732           path, load_count[path][0], load_count[path][1],
3733           load_count[path][2]);
3734     if (load_count[path][0] == 1) {
3735         return (FW_MSG_CODE_DRV_LOAD_COMMON);
3736     } else if (load_count[path][1 + port] == 1) {
3737         return (FW_MSG_CODE_DRV_LOAD_PORT);
3738     } else {
3739         return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3740     }
3741 }
3742 
3743 /* returns the "mcp load_code" according to global load_count array */
3744 static int
3745 bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3746 {
3747     int port = SC_PORT(sc);
3748     int path = SC_PATH(sc);
3749 
3750     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3751           path, load_count[path][0], load_count[path][1],
3752           load_count[path][2]);
3753     load_count[path][0]--;
3754     load_count[path][1 + port]--;
3755     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3756           path, load_count[path][0], load_count[path][1],
3757           load_count[path][2]);
3758     if (load_count[path][0] == 0) {
3759         return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3760     } else if (load_count[path][1 + port] == 0) {
3761         return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3762     } else {
3763         return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3764     }
3765 }
3766 
3767 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3768 static uint32_t
3769 bxe_send_unload_req(struct bxe_softc *sc,
3770                     int              unload_mode)
3771 {
3772     uint32_t reset_code = 0;
3773 
3774     /* Select the UNLOAD request mode */
3775     if (unload_mode == UNLOAD_NORMAL) {
3776         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3777     } else {
3778         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3779     }
3780 
3781     /* Send the request to the MCP */
3782     if (!BXE_NOMCP(sc)) {
3783         reset_code = bxe_fw_command(sc, reset_code, 0);
3784     } else {
3785         reset_code = bxe_nic_unload_no_mcp(sc);
3786     }
3787 
3788     return (reset_code);
3789 }
3790 
3791 /* send UNLOAD_DONE command to the MCP */
3792 static void
3793 bxe_send_unload_done(struct bxe_softc *sc,
3794                      uint8_t          keep_link)
3795 {
3796     uint32_t reset_param =
3797         keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
3798 
3799     /* Report UNLOAD_DONE to MCP */
3800     if (!BXE_NOMCP(sc)) {
3801         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
3802     }
3803 }
3804 
3805 static int
3806 bxe_func_wait_started(struct bxe_softc *sc)
3807 {
3808     int tout = 50;
3809 
3810     if (!sc->port.pmf) {
3811         return (0);
3812     }
3813 
3814     /*
3815      * (assumption: No Attention from MCP at this stage)
3816      * PMF probably in the middle of TX disable/enable transaction
3817      * 1. Sync IRS for default SB
3818      * 2. Sync SP queue - this guarantees us that attention handling started
3819      * 3. Wait, that TX disable/enable transaction completes
3820      *
3821      * 1+2 guarantee that if DCBX attention was scheduled it already changed
3822      * pending bit of transaction from STARTED-->TX_STOPPED, if we already
3823      * received completion for the transaction the state is TX_STOPPED.
3824      * State will return to STARTED after completion of TX_STOPPED-->STARTED
3825      * transaction.
3826      */
3827 
3828     /* XXX make sure default SB ISR is done */
3829     /* need a way to synchronize an irq (intr_mtx?) */
3830 
3831     /* XXX flush any work queues */
3832 
3833     while (ecore_func_get_state(sc, &sc->func_obj) !=
3834            ECORE_F_STATE_STARTED && tout--) {
3835         DELAY(20000);
3836     }
3837 
3838     if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
3839         /*
3840          * Failed to complete the transaction in a "good way"
3841          * Force both transactions with CLR bit.
3842          */
3843         struct ecore_func_state_params func_params = { NULL };
3844 
3845         BLOGE(sc, "Unexpected function state! "
3846                   "Forcing STARTED-->TX_STOPPED-->STARTED\n");
3847 
3848         func_params.f_obj = &sc->func_obj;
3849         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
3850 
3851         /* STARTED-->TX_STOPPED */
3852         func_params.cmd = ECORE_F_CMD_TX_STOP;
3853         ecore_func_state_change(sc, &func_params);
3854 
3855         /* TX_STOPPED-->STARTED */
3856         func_params.cmd = ECORE_F_CMD_TX_START;
3857         return (ecore_func_state_change(sc, &func_params));
3858     }
3859 
3860     return (0);
3861 }
3862 
3863 static int
3864 bxe_stop_queue(struct bxe_softc *sc,
3865                int              index)
3866 {
3867     struct bxe_fastpath *fp = &sc->fp[index];
3868     struct ecore_queue_state_params q_params = { NULL };
3869     int rc;
3870 
3871     BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
3872 
3873     q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
3874     /* We want to wait for completion in this context */
3875     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
3876 
3877     /* Stop the primary connection: */
3878 
3879     /* ...halt the connection */
3880     q_params.cmd = ECORE_Q_CMD_HALT;
3881     rc = ecore_queue_state_change(sc, &q_params);
3882     if (rc) {
3883         return (rc);
3884     }
3885 
3886     /* ...terminate the connection */
3887     q_params.cmd = ECORE_Q_CMD_TERMINATE;
3888     memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
3889     q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
3890     rc = ecore_queue_state_change(sc, &q_params);
3891     if (rc) {
3892         return (rc);
3893     }
3894 
3895     /* ...delete cfc entry */
3896     q_params.cmd = ECORE_Q_CMD_CFC_DEL;
3897     memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
3898     q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
3899     return (ecore_queue_state_change(sc, &q_params));
3900 }
3901 
3902 /* wait for the outstanding SP commands */
3903 static inline uint8_t
3904 bxe_wait_sp_comp(struct bxe_softc *sc,
3905                  unsigned long    mask)
3906 {
3907     unsigned long tmp;
3908     int tout = 5000; /* wait for 5 secs tops */
3909 
3910     while (tout--) {
3911         mb();
3912         if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
3913             return (TRUE);
3914         }
3915 
3916         DELAY(1000);
3917     }
3918 
3919     mb();
3920 
3921     tmp = atomic_load_acq_long(&sc->sp_state);
3922     if (tmp & mask) {
3923         BLOGE(sc, "Filtering completion timed out: "
3924                   "sp_state 0x%lx, mask 0x%lx\n",
3925               tmp, mask);
3926         return (FALSE);
3927     }
3928 
3929     return (FALSE);
3930 }
3931 
3932 static int
3933 bxe_func_stop(struct bxe_softc *sc)
3934 {
3935     struct ecore_func_state_params func_params = { NULL };
3936     int rc;
3937 
3938     /* prepare parameters for function state transitions */
3939     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
3940     func_params.f_obj = &sc->func_obj;
3941     func_params.cmd = ECORE_F_CMD_STOP;
3942 
3943     /*
3944      * Try to stop the function the 'good way'. If it fails (in case
3945      * of a parity error during bxe_chip_cleanup()) and we are
3946      * not in a debug mode, perform a state transaction in order to
3947      * enable further HW_RESET transaction.
3948      */
3949     rc = ecore_func_state_change(sc, &func_params);
3950     if (rc) {
3951         BLOGE(sc, "FUNC_STOP ramrod failed. "
3952                   "Running a dry transaction (%d)\n", rc);
3953         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
3954         return (ecore_func_state_change(sc, &func_params));
3955     }
3956 
3957     return (0);
3958 }
3959 
3960 static int
3961 bxe_reset_hw(struct bxe_softc *sc,
3962              uint32_t         load_code)
3963 {
3964     struct ecore_func_state_params func_params = { NULL };
3965 
3966     /* Prepare parameters for function state transitions */
3967     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
3968 
3969     func_params.f_obj = &sc->func_obj;
3970     func_params.cmd = ECORE_F_CMD_HW_RESET;
3971 
3972     func_params.params.hw_init.load_phase = load_code;
3973 
3974     return (ecore_func_state_change(sc, &func_params));
3975 }
3976 
3977 static void
3978 bxe_int_disable_sync(struct bxe_softc *sc,
3979                      int              disable_hw)
3980 {
3981     if (disable_hw) {
3982         /* prevent the HW from sending interrupts */
3983         bxe_int_disable(sc);
3984     }
3985 
3986     /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
3987     /* make sure all ISRs are done */
3988 
3989     /* XXX make sure sp_task is not running */
3990     /* cancel and flush work queues */
3991 }
3992 
3993 static void
3994 bxe_chip_cleanup(struct bxe_softc *sc,
3995                  uint32_t         unload_mode,
3996                  uint8_t          keep_link)
3997 {
3998     int port = SC_PORT(sc);
3999     struct ecore_mcast_ramrod_params rparam = { NULL };
4000     uint32_t reset_code;
4001     int i, rc = 0;
4002 
4003     bxe_drain_tx_queues(sc);
4004 
4005     /* give HW time to discard old tx messages */
4006     DELAY(1000);
4007 
4008     /* Clean all ETH MACs */
4009     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4010     if (rc < 0) {
4011         BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4012     }
4013 
4014     /* Clean up UC list  */
4015     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4016     if (rc < 0) {
4017         BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4018     }
4019 
4020     /* Disable LLH */
4021     if (!CHIP_IS_E1(sc)) {
4022         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4023     }
4024 
4025     /* Set "drop all" to stop Rx */
4026 
4027     /*
4028      * We need to take the BXE_MCAST_LOCK() here in order to prevent
4029      * a race between the completion code and this code.
4030      */
4031     BXE_MCAST_LOCK(sc);
4032 
4033     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4034         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4035     } else {
4036         bxe_set_storm_rx_mode(sc);
4037     }
4038 
4039     /* Clean up multicast configuration */
4040     rparam.mcast_obj = &sc->mcast_obj;
4041     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4042     if (rc < 0) {
4043         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4044     }
4045 
4046     BXE_MCAST_UNLOCK(sc);
4047 
4048     // XXX bxe_iov_chip_cleanup(sc);
4049 
4050     /*
4051      * Send the UNLOAD_REQUEST to the MCP. This will return if
4052      * this function should perform FUNCTION, PORT, or COMMON HW
4053      * reset.
4054      */
4055     reset_code = bxe_send_unload_req(sc, unload_mode);
4056 
4057     /*
4058      * (assumption: No Attention from MCP at this stage)
4059      * PMF probably in the middle of TX disable/enable transaction
4060      */
4061     rc = bxe_func_wait_started(sc);
4062     if (rc) {
4063         BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc);
4064     }
4065 
4066     /*
4067      * Close multi and leading connections
4068      * Completions for ramrods are collected in a synchronous way
4069      */
4070     for (i = 0; i < sc->num_queues; i++) {
4071         if (bxe_stop_queue(sc, i)) {
4072             goto unload_error;
4073         }
4074     }
4075 
4076     /*
4077      * If SP settings didn't get completed so far - something
4078      * very wrong has happen.
4079      */
4080     if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4081         BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc);
4082     }
4083 
4084 unload_error:
4085 
4086     rc = bxe_func_stop(sc);
4087     if (rc) {
4088         BLOGE(sc, "Function stop failed!(%d)\n", rc);
4089     }
4090 
4091     /* disable HW interrupts */
4092     bxe_int_disable_sync(sc, TRUE);
4093 
4094     /* detach interrupts */
4095     bxe_interrupt_detach(sc);
4096 
4097     /* Reset the chip */
4098     rc = bxe_reset_hw(sc, reset_code);
4099     if (rc) {
4100         BLOGE(sc, "Hardware reset failed(%d)\n", rc);
4101     }
4102 
4103     /* Report UNLOAD_DONE to MCP */
4104     bxe_send_unload_done(sc, keep_link);
4105 }
4106 
4107 static void
4108 bxe_disable_close_the_gate(struct bxe_softc *sc)
4109 {
4110     uint32_t val;
4111     int port = SC_PORT(sc);
4112 
4113     BLOGD(sc, DBG_LOAD,
4114           "Disabling 'close the gates'\n");
4115 
4116     if (CHIP_IS_E1(sc)) {
4117         uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4118                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
4119         val = REG_RD(sc, addr);
4120         val &= ~(0x300);
4121         REG_WR(sc, addr, val);
4122     } else {
4123         val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4124         val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4125                  MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4126         REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4127     }
4128 }
4129 
4130 /*
4131  * Cleans the object that have internal lists without sending
4132  * ramrods. Should be run when interrutps are disabled.
4133  */
4134 static void
4135 bxe_squeeze_objects(struct bxe_softc *sc)
4136 {
4137     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4138     struct ecore_mcast_ramrod_params rparam = { NULL };
4139     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4140     int rc;
4141 
4142     /* Cleanup MACs' object first... */
4143 
4144     /* Wait for completion of requested */
4145     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4146     /* Perform a dry cleanup */
4147     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4148 
4149     /* Clean ETH primary MAC */
4150     bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4151     rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4152                              &ramrod_flags);
4153     if (rc != 0) {
4154         BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4155     }
4156 
4157     /* Cleanup UC list */
4158     vlan_mac_flags = 0;
4159     bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4160     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4161                              &ramrod_flags);
4162     if (rc != 0) {
4163         BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4164     }
4165 
4166     /* Now clean mcast object... */
4167 
4168     rparam.mcast_obj = &sc->mcast_obj;
4169     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4170 
4171     /* Add a DEL command... */
4172     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4173     if (rc < 0) {
4174         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4175     }
4176 
4177     /* now wait until all pending commands are cleared */
4178 
4179     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4180     while (rc != 0) {
4181         if (rc < 0) {
4182             BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4183             return;
4184         }
4185 
4186         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4187     }
4188 }
4189 
4190 /* stop the controller */
4191 static __noinline int
4192 bxe_nic_unload(struct bxe_softc *sc,
4193                uint32_t         unload_mode,
4194                uint8_t          keep_link)
4195 {
4196     uint8_t global = FALSE;
4197     uint32_t val;
4198     int i;
4199 
4200     BXE_CORE_LOCK_ASSERT(sc);
4201 
4202     if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
4203 
4204     for (i = 0; i < sc->num_queues; i++) {
4205         struct bxe_fastpath *fp;
4206 
4207         fp = &sc->fp[i];
4208         BXE_FP_TX_LOCK(fp);
4209         BXE_FP_TX_UNLOCK(fp);
4210     }
4211 
4212     BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4213 
4214     /* mark driver as unloaded in shmem2 */
4215     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4216         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4217         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4218                   val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4219     }
4220 
4221     if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4222         (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4223         /*
4224          * We can get here if the driver has been unloaded
4225          * during parity error recovery and is either waiting for a
4226          * leader to complete or for other functions to unload and
4227          * then ifconfig down has been issued. In this case we want to
4228          * unload and let other functions to complete a recovery
4229          * process.
4230          */
4231         sc->recovery_state = BXE_RECOVERY_DONE;
4232         sc->is_leader = 0;
4233         bxe_release_leader_lock(sc);
4234         mb();
4235 
4236         BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4237         BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x"
4238             " state = 0x%x\n", sc->recovery_state, sc->state);
4239         return (-1);
4240     }
4241 
4242     /*
4243      * Nothing to do during unload if previous bxe_nic_load()
4244      * did not completed succesfully - all resourses are released.
4245      */
4246     if ((sc->state == BXE_STATE_CLOSED) ||
4247         (sc->state == BXE_STATE_ERROR)) {
4248         return (0);
4249     }
4250 
4251     sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4252     mb();
4253 
4254     /* stop tx */
4255     bxe_tx_disable(sc);
4256 
4257     sc->rx_mode = BXE_RX_MODE_NONE;
4258     /* XXX set rx mode ??? */
4259 
4260     if (IS_PF(sc) && !sc->grcdump_done) {
4261         /* set ALWAYS_ALIVE bit in shmem */
4262         sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4263 
4264         bxe_drv_pulse(sc);
4265 
4266         bxe_stats_handle(sc, STATS_EVENT_STOP);
4267         bxe_save_statistics(sc);
4268     }
4269 
4270     /* wait till consumers catch up with producers in all queues */
4271     bxe_drain_tx_queues(sc);
4272 
4273     /* if VF indicate to PF this function is going down (PF will delete sp
4274      * elements and clear initializations
4275      */
4276     if (IS_VF(sc)) {
4277         ; /* bxe_vfpf_close_vf(sc); */
4278     } else if (unload_mode != UNLOAD_RECOVERY) {
4279         /* if this is a normal/close unload need to clean up chip */
4280         if (!sc->grcdump_done)
4281             bxe_chip_cleanup(sc, unload_mode, keep_link);
4282     } else {
4283         /* Send the UNLOAD_REQUEST to the MCP */
4284         bxe_send_unload_req(sc, unload_mode);
4285 
4286         /*
4287          * Prevent transactions to host from the functions on the
4288          * engine that doesn't reset global blocks in case of global
4289          * attention once gloabl blocks are reset and gates are opened
4290          * (the engine which leader will perform the recovery
4291          * last).
4292          */
4293         if (!CHIP_IS_E1x(sc)) {
4294             bxe_pf_disable(sc);
4295         }
4296 
4297         /* disable HW interrupts */
4298         bxe_int_disable_sync(sc, TRUE);
4299 
4300         /* detach interrupts */
4301         bxe_interrupt_detach(sc);
4302 
4303         /* Report UNLOAD_DONE to MCP */
4304         bxe_send_unload_done(sc, FALSE);
4305     }
4306 
4307     /*
4308      * At this stage no more interrupts will arrive so we may safely clean
4309      * the queue'able objects here in case they failed to get cleaned so far.
4310      */
4311     if (IS_PF(sc)) {
4312         bxe_squeeze_objects(sc);
4313     }
4314 
4315     /* There should be no more pending SP commands at this stage */
4316     sc->sp_state = 0;
4317 
4318     sc->port.pmf = 0;
4319 
4320     bxe_free_fp_buffers(sc);
4321 
4322     if (IS_PF(sc)) {
4323         bxe_free_mem(sc);
4324     }
4325 
4326     bxe_free_fw_stats_mem(sc);
4327 
4328     sc->state = BXE_STATE_CLOSED;
4329 
4330     /*
4331      * Check if there are pending parity attentions. If there are - set
4332      * RECOVERY_IN_PROGRESS.
4333      */
4334     if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4335         bxe_set_reset_in_progress(sc);
4336 
4337         /* Set RESET_IS_GLOBAL if needed */
4338         if (global) {
4339             bxe_set_reset_global(sc);
4340         }
4341     }
4342 
4343     /*
4344      * The last driver must disable a "close the gate" if there is no
4345      * parity attention or "process kill" pending.
4346      */
4347     if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4348         bxe_reset_is_done(sc, SC_PATH(sc))) {
4349         bxe_disable_close_the_gate(sc);
4350     }
4351 
4352     BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4353 
4354     return (0);
4355 }
4356 
4357 /*
4358  * Called by the OS to set various media options (i.e. link, speed, etc.) when
4359  * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4360  */
4361 static int
4362 bxe_ifmedia_update(struct ifnet  *ifp)
4363 {
4364     struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp);
4365     struct ifmedia *ifm;
4366 
4367     ifm = &sc->ifmedia;
4368 
4369     /* We only support Ethernet media type. */
4370     if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4371         return (EINVAL);
4372     }
4373 
4374     switch (IFM_SUBTYPE(ifm->ifm_media)) {
4375     case IFM_AUTO:
4376          break;
4377     case IFM_10G_CX4:
4378     case IFM_10G_SR:
4379     case IFM_10G_T:
4380     case IFM_10G_TWINAX:
4381     default:
4382         /* We don't support changing the media type. */
4383         BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4384               IFM_SUBTYPE(ifm->ifm_media));
4385         return (EINVAL);
4386     }
4387 
4388     return (0);
4389 }
4390 
4391 /*
4392  * Called by the OS to get the current media status (i.e. link, speed, etc.).
4393  */
4394 static void
4395 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
4396 {
4397     struct bxe_softc *sc = if_getsoftc(ifp);
4398 
4399     /* Report link down if the driver isn't running. */
4400     if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4401         ifmr->ifm_active |= IFM_NONE;
4402         return;
4403     }
4404 
4405     /* Setup the default interface info. */
4406     ifmr->ifm_status = IFM_AVALID;
4407     ifmr->ifm_active = IFM_ETHER;
4408 
4409     if (sc->link_vars.link_up) {
4410         ifmr->ifm_status |= IFM_ACTIVE;
4411     } else {
4412         ifmr->ifm_active |= IFM_NONE;
4413         return;
4414     }
4415 
4416     ifmr->ifm_active |= sc->media;
4417 
4418     if (sc->link_vars.duplex == DUPLEX_FULL) {
4419         ifmr->ifm_active |= IFM_FDX;
4420     } else {
4421         ifmr->ifm_active |= IFM_HDX;
4422     }
4423 }
4424 
4425 static int
4426 bxe_ioctl_nvram(struct bxe_softc *sc,
4427                 uint32_t         priv_op,
4428                 struct ifreq     *ifr)
4429 {
4430     struct bxe_nvram_data nvdata_base;
4431     struct bxe_nvram_data *nvdata;
4432     int len;
4433     int error = 0;
4434 
4435     copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base));
4436 
4437     len = (sizeof(struct bxe_nvram_data) +
4438            nvdata_base.len -
4439            sizeof(uint32_t));
4440 
4441     if (len > sizeof(struct bxe_nvram_data)) {
4442         if ((nvdata = (struct bxe_nvram_data *)
4443                  malloc(len, M_DEVBUF,
4444                         (M_NOWAIT | M_ZERO))) == NULL) {
4445             BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed priv_op 0x%x "
4446                 " len = 0x%x\n", priv_op, len);
4447             return (1);
4448         }
4449         memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data));
4450     } else {
4451         nvdata = &nvdata_base;
4452     }
4453 
4454     if (priv_op == BXE_IOC_RD_NVRAM) {
4455         BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n",
4456               nvdata->offset, nvdata->len);
4457         error = bxe_nvram_read(sc,
4458                                nvdata->offset,
4459                                (uint8_t *)nvdata->value,
4460                                nvdata->len);
4461         copyout(nvdata, ifr->ifr_data, len);
4462     } else { /* BXE_IOC_WR_NVRAM */
4463         BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n",
4464               nvdata->offset, nvdata->len);
4465         copyin(ifr->ifr_data, nvdata, len);
4466         error = bxe_nvram_write(sc,
4467                                 nvdata->offset,
4468                                 (uint8_t *)nvdata->value,
4469                                 nvdata->len);
4470     }
4471 
4472     if (len > sizeof(struct bxe_nvram_data)) {
4473         free(nvdata, M_DEVBUF);
4474     }
4475 
4476     return (error);
4477 }
4478 
4479 static int
4480 bxe_ioctl_stats_show(struct bxe_softc *sc,
4481                      uint32_t         priv_op,
4482                      struct ifreq     *ifr)
4483 {
4484     const size_t str_size   = (BXE_NUM_ETH_STATS * STAT_NAME_LEN);
4485     const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t));
4486     caddr_t p_tmp;
4487     uint32_t *offset;
4488     int i;
4489 
4490     switch (priv_op)
4491     {
4492     case BXE_IOC_STATS_SHOW_NUM:
4493         memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data));
4494         ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num =
4495             BXE_NUM_ETH_STATS;
4496         ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len =
4497             STAT_NAME_LEN;
4498         return (0);
4499 
4500     case BXE_IOC_STATS_SHOW_STR:
4501         memset(ifr->ifr_data, 0, str_size);
4502         p_tmp = ifr->ifr_data;
4503         for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4504             strcpy(p_tmp, bxe_eth_stats_arr[i].string);
4505             p_tmp += STAT_NAME_LEN;
4506         }
4507         return (0);
4508 
4509     case BXE_IOC_STATS_SHOW_CNT:
4510         memset(ifr->ifr_data, 0, stats_size);
4511         p_tmp = ifr->ifr_data;
4512         for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4513             offset = ((uint32_t *)&sc->eth_stats +
4514                       bxe_eth_stats_arr[i].offset);
4515             switch (bxe_eth_stats_arr[i].size) {
4516             case 4:
4517                 *((uint64_t *)p_tmp) = (uint64_t)*offset;
4518                 break;
4519             case 8:
4520                 *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1));
4521                 break;
4522             default:
4523                 *((uint64_t *)p_tmp) = 0;
4524             }
4525             p_tmp += sizeof(uint64_t);
4526         }
4527         return (0);
4528 
4529     default:
4530         return (-1);
4531     }
4532 }
4533 
4534 static void
4535 bxe_handle_chip_tq(void *context,
4536                    int  pending)
4537 {
4538     struct bxe_softc *sc = (struct bxe_softc *)context;
4539     long work = atomic_load_acq_long(&sc->chip_tq_flags);
4540 
4541     switch (work)
4542     {
4543 
4544     case CHIP_TQ_REINIT:
4545         if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
4546             /* restart the interface */
4547             BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4548             bxe_periodic_stop(sc);
4549             BXE_CORE_LOCK(sc);
4550             bxe_stop_locked(sc);
4551             bxe_init_locked(sc);
4552             BXE_CORE_UNLOCK(sc);
4553         }
4554         break;
4555 
4556     default:
4557         break;
4558     }
4559 }
4560 
4561 /*
4562  * Handles any IOCTL calls from the operating system.
4563  *
4564  * Returns:
4565  *   0 = Success, >0 Failure
4566  */
4567 static int
4568 bxe_ioctl(if_t ifp,
4569           u_long       command,
4570           caddr_t      data)
4571 {
4572     struct bxe_softc *sc = if_getsoftc(ifp);
4573     struct ifreq *ifr = (struct ifreq *)data;
4574     struct bxe_nvram_data *nvdata;
4575     uint32_t priv_op;
4576     int mask = 0;
4577     int reinit = 0;
4578     int error = 0;
4579 
4580     int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4581     int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4582 
4583     switch (command)
4584     {
4585     case SIOCSIFMTU:
4586         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4587               ifr->ifr_mtu);
4588 
4589         if (sc->mtu == ifr->ifr_mtu) {
4590             /* nothing to change */
4591             break;
4592         }
4593 
4594         if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4595             BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4596                   ifr->ifr_mtu, mtu_min, mtu_max);
4597             error = EINVAL;
4598             break;
4599         }
4600 
4601         atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4602                              (unsigned long)ifr->ifr_mtu);
4603 	/*
4604         atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp),
4605                               (unsigned long)ifr->ifr_mtu);
4606 	XXX - Not sure why it needs to be atomic
4607 	*/
4608 	if_setmtu(ifp, ifr->ifr_mtu);
4609         reinit = 1;
4610         break;
4611 
4612     case SIOCSIFFLAGS:
4613         /* toggle the interface state up or down */
4614         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4615 
4616 	BXE_CORE_LOCK(sc);
4617         /* check if the interface is up */
4618         if (if_getflags(ifp) & IFF_UP) {
4619             if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4620                 /* set the receive mode flags */
4621                 bxe_set_rx_mode(sc);
4622             } else {
4623 		bxe_init_locked(sc);
4624             }
4625         } else {
4626             if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4627 		bxe_periodic_stop(sc);
4628 		bxe_stop_locked(sc);
4629             }
4630         }
4631 	BXE_CORE_UNLOCK(sc);
4632 
4633         break;
4634 
4635     case SIOCADDMULTI:
4636     case SIOCDELMULTI:
4637         /* add/delete multicast addresses */
4638         BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4639 
4640         /* check if the interface is up */
4641         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4642             /* set the receive mode flags */
4643 	    BXE_CORE_LOCK(sc);
4644             bxe_set_rx_mode(sc);
4645 	    BXE_CORE_UNLOCK(sc);
4646         }
4647 
4648         break;
4649 
4650     case SIOCSIFCAP:
4651         /* find out which capabilities have changed */
4652         mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp));
4653 
4654         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4655               mask);
4656 
4657         /* toggle the LRO capabilites enable flag */
4658         if (mask & IFCAP_LRO) {
4659 	    if_togglecapenable(ifp, IFCAP_LRO);
4660             BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4661                   (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF");
4662             reinit = 1;
4663         }
4664 
4665         /* toggle the TXCSUM checksum capabilites enable flag */
4666         if (mask & IFCAP_TXCSUM) {
4667 	    if_togglecapenable(ifp, IFCAP_TXCSUM);
4668             BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4669                   (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF");
4670             if (if_getcapenable(ifp) & IFCAP_TXCSUM) {
4671                 if_sethwassistbits(ifp, (CSUM_IP      |
4672                                     CSUM_TCP      |
4673                                     CSUM_UDP      |
4674                                     CSUM_TSO      |
4675                                     CSUM_TCP_IPV6 |
4676                                     CSUM_UDP_IPV6), 0);
4677             } else {
4678 		if_clearhwassist(ifp); /* XXX */
4679             }
4680         }
4681 
4682         /* toggle the RXCSUM checksum capabilities enable flag */
4683         if (mask & IFCAP_RXCSUM) {
4684 	    if_togglecapenable(ifp, IFCAP_RXCSUM);
4685             BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4686                   (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF");
4687             if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
4688                 if_sethwassistbits(ifp, (CSUM_IP      |
4689                                     CSUM_TCP      |
4690                                     CSUM_UDP      |
4691                                     CSUM_TSO      |
4692                                     CSUM_TCP_IPV6 |
4693                                     CSUM_UDP_IPV6), 0);
4694             } else {
4695 		if_clearhwassist(ifp); /* XXX */
4696             }
4697         }
4698 
4699         /* toggle TSO4 capabilities enabled flag */
4700         if (mask & IFCAP_TSO4) {
4701             if_togglecapenable(ifp, IFCAP_TSO4);
4702             BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4703                   (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF");
4704         }
4705 
4706         /* toggle TSO6 capabilities enabled flag */
4707         if (mask & IFCAP_TSO6) {
4708 	    if_togglecapenable(ifp, IFCAP_TSO6);
4709             BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4710                   (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF");
4711         }
4712 
4713         /* toggle VLAN_HWTSO capabilities enabled flag */
4714         if (mask & IFCAP_VLAN_HWTSO) {
4715 
4716 	    if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
4717             BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4718                   (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4719         }
4720 
4721         /* toggle VLAN_HWCSUM capabilities enabled flag */
4722         if (mask & IFCAP_VLAN_HWCSUM) {
4723             /* XXX investigate this... */
4724             BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4725             error = EINVAL;
4726         }
4727 
4728         /* toggle VLAN_MTU capabilities enable flag */
4729         if (mask & IFCAP_VLAN_MTU) {
4730             /* XXX investigate this... */
4731             BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4732             error = EINVAL;
4733         }
4734 
4735         /* toggle VLAN_HWTAGGING capabilities enabled flag */
4736         if (mask & IFCAP_VLAN_HWTAGGING) {
4737             /* XXX investigate this... */
4738             BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4739             error = EINVAL;
4740         }
4741 
4742         /* toggle VLAN_HWFILTER capabilities enabled flag */
4743         if (mask & IFCAP_VLAN_HWFILTER) {
4744             /* XXX investigate this... */
4745             BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4746             error = EINVAL;
4747         }
4748 
4749         /* XXX not yet...
4750          * IFCAP_WOL_MAGIC
4751          */
4752 
4753         break;
4754 
4755     case SIOCSIFMEDIA:
4756     case SIOCGIFMEDIA:
4757         /* set/get interface media */
4758         BLOGD(sc, DBG_IOCTL,
4759               "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4760               (command & 0xff));
4761         error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
4762         break;
4763 
4764     case SIOCGPRIVATE_0:
4765         copyin(ifr->ifr_data, &priv_op, sizeof(priv_op));
4766 
4767         switch (priv_op)
4768         {
4769         case BXE_IOC_RD_NVRAM:
4770         case BXE_IOC_WR_NVRAM:
4771             nvdata = (struct bxe_nvram_data *)ifr->ifr_data;
4772             BLOGD(sc, DBG_IOCTL,
4773                   "Received Private NVRAM ioctl addr=0x%x size=%u\n",
4774                   nvdata->offset, nvdata->len);
4775             error = bxe_ioctl_nvram(sc, priv_op, ifr);
4776             break;
4777 
4778         case BXE_IOC_STATS_SHOW_NUM:
4779         case BXE_IOC_STATS_SHOW_STR:
4780         case BXE_IOC_STATS_SHOW_CNT:
4781             BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n",
4782                   priv_op);
4783             error = bxe_ioctl_stats_show(sc, priv_op, ifr);
4784             break;
4785 
4786         default:
4787             BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op);
4788             error = EINVAL;
4789             break;
4790         }
4791 
4792         break;
4793 
4794     default:
4795         BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
4796               (command & 0xff));
4797         error = ether_ioctl(ifp, command, data);
4798         break;
4799     }
4800 
4801     if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
4802         BLOGD(sc, DBG_LOAD | DBG_IOCTL,
4803               "Re-initializing hardware from IOCTL change\n");
4804 	bxe_periodic_stop(sc);
4805 	BXE_CORE_LOCK(sc);
4806 	bxe_stop_locked(sc);
4807 	bxe_init_locked(sc);
4808 	BXE_CORE_UNLOCK(sc);
4809     }
4810 
4811     return (error);
4812 }
4813 
4814 static __noinline void
4815 bxe_dump_mbuf(struct bxe_softc *sc,
4816               struct mbuf      *m,
4817               uint8_t          contents)
4818 {
4819     char * type;
4820     int i = 0;
4821 
4822     if (!(sc->debug & DBG_MBUF)) {
4823         return;
4824     }
4825 
4826     if (m == NULL) {
4827         BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
4828         return;
4829     }
4830 
4831     while (m) {
4832 
4833 #if __FreeBSD_version >= 1000000
4834         BLOGD(sc, DBG_MBUF,
4835               "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
4836               i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
4837 
4838         if (m->m_flags & M_PKTHDR) {
4839              BLOGD(sc, DBG_MBUF,
4840                    "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
4841                    i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
4842                    (int)m->m_pkthdr.csum_flags, CSUM_BITS);
4843         }
4844 #else
4845         BLOGD(sc, DBG_MBUF,
4846               "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
4847               i, m, m->m_len, m->m_flags,
4848               "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", m->m_data);
4849 
4850         if (m->m_flags & M_PKTHDR) {
4851              BLOGD(sc, DBG_MBUF,
4852                    "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
4853                    i, m->m_pkthdr.len, m->m_flags,
4854                    "\20\12M_BCAST\13M_MCAST\14M_FRAG"
4855                    "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG"
4856                    "\22M_PROMISC\23M_NOFREE",
4857                    (int)m->m_pkthdr.csum_flags,
4858                    "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS"
4859                    "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
4860                    "\12CSUM_IP_VALID\13CSUM_DATA_VALID"
4861                    "\14CSUM_PSEUDO_HDR");
4862         }
4863 #endif /* #if __FreeBSD_version >= 1000000 */
4864 
4865         if (m->m_flags & M_EXT) {
4866             switch (m->m_ext.ext_type) {
4867             case EXT_CLUSTER:    type = "EXT_CLUSTER";    break;
4868             case EXT_SFBUF:      type = "EXT_SFBUF";      break;
4869             case EXT_JUMBOP:     type = "EXT_JUMBOP";     break;
4870             case EXT_JUMBO9:     type = "EXT_JUMBO9";     break;
4871             case EXT_JUMBO16:    type = "EXT_JUMBO16";    break;
4872             case EXT_PACKET:     type = "EXT_PACKET";     break;
4873             case EXT_MBUF:       type = "EXT_MBUF";       break;
4874             case EXT_NET_DRV:    type = "EXT_NET_DRV";    break;
4875             case EXT_MOD_TYPE:   type = "EXT_MOD_TYPE";   break;
4876             case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
4877             case EXT_EXTREF:     type = "EXT_EXTREF";     break;
4878             default:             type = "UNKNOWN";        break;
4879             }
4880 
4881             BLOGD(sc, DBG_MBUF,
4882                   "%02d: - m_ext: %p ext_size=%d type=%s\n",
4883                   i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
4884         }
4885 
4886         if (contents) {
4887             bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
4888         }
4889 
4890         m = m->m_next;
4891         i++;
4892     }
4893 }
4894 
4895 /*
4896  * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
4897  * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
4898  * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
4899  * The headers comes in a seperate bd in FreeBSD so 13-3=10.
4900  * Returns: 0 if OK to send, 1 if packet needs further defragmentation
4901  */
4902 static int
4903 bxe_chktso_window(struct bxe_softc  *sc,
4904                   int               nsegs,
4905                   bus_dma_segment_t *segs,
4906                   struct mbuf       *m)
4907 {
4908     uint32_t num_wnds, wnd_size, wnd_sum;
4909     int32_t frag_idx, wnd_idx;
4910     unsigned short lso_mss;
4911     int defrag;
4912 
4913     defrag = 0;
4914     wnd_sum = 0;
4915     wnd_size = 10;
4916     num_wnds = nsegs - wnd_size;
4917     lso_mss = htole16(m->m_pkthdr.tso_segsz);
4918 
4919     /*
4920      * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
4921      * first window sum of data while skipping the first assuming it is the
4922      * header in FreeBSD.
4923      */
4924     for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
4925         wnd_sum += htole16(segs[frag_idx].ds_len);
4926     }
4927 
4928     /* check the first 10 bd window size */
4929     if (wnd_sum < lso_mss) {
4930         return (1);
4931     }
4932 
4933     /* run through the windows */
4934     for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
4935         /* subtract the first mbuf->m_len of the last wndw(-header) */
4936         wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
4937         /* add the next mbuf len to the len of our new window */
4938         wnd_sum += htole16(segs[frag_idx].ds_len);
4939         if (wnd_sum < lso_mss) {
4940             return (1);
4941         }
4942     }
4943 
4944     return (0);
4945 }
4946 
4947 static uint8_t
4948 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
4949                     struct mbuf         *m,
4950                     uint32_t            *parsing_data)
4951 {
4952     struct ether_vlan_header *eh = NULL;
4953     struct ip *ip4 = NULL;
4954     struct ip6_hdr *ip6 = NULL;
4955     caddr_t ip = NULL;
4956     struct tcphdr *th = NULL;
4957     int e_hlen, ip_hlen, l4_off;
4958     uint16_t proto;
4959 
4960     if (m->m_pkthdr.csum_flags == CSUM_IP) {
4961         /* no L4 checksum offload needed */
4962         return (0);
4963     }
4964 
4965     /* get the Ethernet header */
4966     eh = mtod(m, struct ether_vlan_header *);
4967 
4968     /* handle VLAN encapsulation if present */
4969     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
4970         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
4971         proto  = ntohs(eh->evl_proto);
4972     } else {
4973         e_hlen = ETHER_HDR_LEN;
4974         proto  = ntohs(eh->evl_encap_proto);
4975     }
4976 
4977     switch (proto) {
4978     case ETHERTYPE_IP:
4979         /* get the IP header, if mbuf len < 20 then header in next mbuf */
4980         ip4 = (m->m_len < sizeof(struct ip)) ?
4981                   (struct ip *)m->m_next->m_data :
4982                   (struct ip *)(m->m_data + e_hlen);
4983         /* ip_hl is number of 32-bit words */
4984         ip_hlen = (ip4->ip_hl << 2);
4985         ip = (caddr_t)ip4;
4986         break;
4987     case ETHERTYPE_IPV6:
4988         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
4989         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
4990                   (struct ip6_hdr *)m->m_next->m_data :
4991                   (struct ip6_hdr *)(m->m_data + e_hlen);
4992         /* XXX cannot support offload with IPv6 extensions */
4993         ip_hlen = sizeof(struct ip6_hdr);
4994         ip = (caddr_t)ip6;
4995         break;
4996     default:
4997         /* We can't offload in this case... */
4998         /* XXX error stat ??? */
4999         return (0);
5000     }
5001 
5002     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5003     l4_off = (e_hlen + ip_hlen);
5004 
5005     *parsing_data |=
5006         (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
5007          ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
5008 
5009     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5010                                   CSUM_TSO |
5011                                   CSUM_TCP_IPV6)) {
5012         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5013         th = (struct tcphdr *)(ip + ip_hlen);
5014         /* th_off is number of 32-bit words */
5015         *parsing_data |= ((th->th_off <<
5016                            ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
5017                           ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
5018         return (l4_off + (th->th_off << 2)); /* entire header length */
5019     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5020                                          CSUM_UDP_IPV6)) {
5021         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5022         return (l4_off + sizeof(struct udphdr)); /* entire header length */
5023     } else {
5024         /* XXX error stat ??? */
5025         return (0);
5026     }
5027 }
5028 
5029 static uint8_t
5030 bxe_set_pbd_csum(struct bxe_fastpath        *fp,
5031                  struct mbuf                *m,
5032                  struct eth_tx_parse_bd_e1x *pbd)
5033 {
5034     struct ether_vlan_header *eh = NULL;
5035     struct ip *ip4 = NULL;
5036     struct ip6_hdr *ip6 = NULL;
5037     caddr_t ip = NULL;
5038     struct tcphdr *th = NULL;
5039     struct udphdr *uh = NULL;
5040     int e_hlen, ip_hlen;
5041     uint16_t proto;
5042     uint8_t hlen;
5043     uint16_t tmp_csum;
5044     uint32_t *tmp_uh;
5045 
5046     /* get the Ethernet header */
5047     eh = mtod(m, struct ether_vlan_header *);
5048 
5049     /* handle VLAN encapsulation if present */
5050     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5051         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5052         proto  = ntohs(eh->evl_proto);
5053     } else {
5054         e_hlen = ETHER_HDR_LEN;
5055         proto  = ntohs(eh->evl_encap_proto);
5056     }
5057 
5058     switch (proto) {
5059     case ETHERTYPE_IP:
5060         /* get the IP header, if mbuf len < 20 then header in next mbuf */
5061         ip4 = (m->m_len < sizeof(struct ip)) ?
5062                   (struct ip *)m->m_next->m_data :
5063                   (struct ip *)(m->m_data + e_hlen);
5064         /* ip_hl is number of 32-bit words */
5065         ip_hlen = (ip4->ip_hl << 1);
5066         ip = (caddr_t)ip4;
5067         break;
5068     case ETHERTYPE_IPV6:
5069         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5070         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5071                   (struct ip6_hdr *)m->m_next->m_data :
5072                   (struct ip6_hdr *)(m->m_data + e_hlen);
5073         /* XXX cannot support offload with IPv6 extensions */
5074         ip_hlen = (sizeof(struct ip6_hdr) >> 1);
5075         ip = (caddr_t)ip6;
5076         break;
5077     default:
5078         /* We can't offload in this case... */
5079         /* XXX error stat ??? */
5080         return (0);
5081     }
5082 
5083     hlen = (e_hlen >> 1);
5084 
5085     /* note that rest of global_data is indirectly zeroed here */
5086     if (m->m_flags & M_VLANTAG) {
5087         pbd->global_data =
5088             htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
5089     } else {
5090         pbd->global_data = htole16(hlen);
5091     }
5092 
5093     pbd->ip_hlen_w = ip_hlen;
5094 
5095     hlen += pbd->ip_hlen_w;
5096 
5097     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5098 
5099     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5100                                   CSUM_TSO |
5101                                   CSUM_TCP_IPV6)) {
5102         th = (struct tcphdr *)(ip + (ip_hlen << 1));
5103         /* th_off is number of 32-bit words */
5104         hlen += (uint16_t)(th->th_off << 1);
5105     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5106                                          CSUM_UDP_IPV6)) {
5107         uh = (struct udphdr *)(ip + (ip_hlen << 1));
5108         hlen += (sizeof(struct udphdr) / 2);
5109     } else {
5110         /* valid case as only CSUM_IP was set */
5111         return (0);
5112     }
5113 
5114     pbd->total_hlen_w = htole16(hlen);
5115 
5116     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5117                                   CSUM_TSO |
5118                                   CSUM_TCP_IPV6)) {
5119         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5120         pbd->tcp_pseudo_csum = ntohs(th->th_sum);
5121     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5122                                          CSUM_UDP_IPV6)) {
5123         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5124 
5125         /*
5126          * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
5127          * checksums and does not know anything about the UDP header and where
5128          * the checksum field is located. It only knows about TCP. Therefore
5129          * we "lie" to the hardware for outgoing UDP packets w/ checksum
5130          * offload. Since the checksum field offset for TCP is 16 bytes and
5131          * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
5132          * bytes less than the start of the UDP header. This allows the
5133          * hardware to write the checksum in the correct spot. But the
5134          * hardware will compute a checksum which includes the last 10 bytes
5135          * of the IP header. To correct this we tweak the stack computed
5136          * pseudo checksum by folding in the calculation of the inverse
5137          * checksum for those final 10 bytes of the IP header. This allows
5138          * the correct checksum to be computed by the hardware.
5139          */
5140 
5141         /* set pointer 10 bytes before UDP header */
5142         tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5143 
5144         /* calculate a pseudo header checksum over the first 10 bytes */
5145         tmp_csum = in_pseudo(*tmp_uh,
5146                              *(tmp_uh + 1),
5147                              *(uint16_t *)(tmp_uh + 2));
5148 
5149         pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5150     }
5151 
5152     return (hlen * 2); /* entire header length, number of bytes */
5153 }
5154 
5155 static void
5156 bxe_set_pbd_lso_e2(struct mbuf *m,
5157                    uint32_t    *parsing_data)
5158 {
5159     *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5160                        ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5161                       ETH_TX_PARSE_BD_E2_LSO_MSS);
5162 
5163     /* XXX test for IPv6 with extension header... */
5164 }
5165 
5166 static void
5167 bxe_set_pbd_lso(struct mbuf                *m,
5168                 struct eth_tx_parse_bd_e1x *pbd)
5169 {
5170     struct ether_vlan_header *eh = NULL;
5171     struct ip *ip = NULL;
5172     struct tcphdr *th = NULL;
5173     int e_hlen;
5174 
5175     /* get the Ethernet header */
5176     eh = mtod(m, struct ether_vlan_header *);
5177 
5178     /* handle VLAN encapsulation if present */
5179     e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5180                  (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5181 
5182     /* get the IP and TCP header, with LSO entire header in first mbuf */
5183     /* XXX assuming IPv4 */
5184     ip = (struct ip *)(m->m_data + e_hlen);
5185     th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5186 
5187     pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5188     pbd->tcp_send_seq = ntohl(th->th_seq);
5189     pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5190 
5191 #if 1
5192         /* XXX IPv4 */
5193         pbd->ip_id = ntohs(ip->ip_id);
5194         pbd->tcp_pseudo_csum =
5195             ntohs(in_pseudo(ip->ip_src.s_addr,
5196                             ip->ip_dst.s_addr,
5197                             htons(IPPROTO_TCP)));
5198 #else
5199         /* XXX IPv6 */
5200         pbd->tcp_pseudo_csum =
5201             ntohs(in_pseudo(&ip6->ip6_src,
5202                             &ip6->ip6_dst,
5203                             htons(IPPROTO_TCP)));
5204 #endif
5205 
5206     pbd->global_data |=
5207         htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5208 }
5209 
5210 /*
5211  * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5212  * visible to the controller.
5213  *
5214  * If an mbuf is submitted to this routine and cannot be given to the
5215  * controller (e.g. it has too many fragments) then the function may free
5216  * the mbuf and return to the caller.
5217  *
5218  * Returns:
5219  *   0 = Success, !0 = Failure
5220  *   Note the side effect that an mbuf may be freed if it causes a problem.
5221  */
5222 static int
5223 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5224 {
5225     bus_dma_segment_t segs[32];
5226     struct mbuf *m0;
5227     struct bxe_sw_tx_bd *tx_buf;
5228     struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5229     struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5230     /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5231     struct eth_tx_bd *tx_data_bd;
5232     struct eth_tx_bd *tx_total_pkt_size_bd;
5233     struct eth_tx_start_bd *tx_start_bd;
5234     uint16_t bd_prod, pkt_prod, total_pkt_size;
5235     uint8_t mac_type;
5236     int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5237     struct bxe_softc *sc;
5238     uint16_t tx_bd_avail;
5239     struct ether_vlan_header *eh;
5240     uint32_t pbd_e2_parsing_data = 0;
5241     uint8_t hlen = 0;
5242     int tmp_bd;
5243     int i;
5244 
5245     sc = fp->sc;
5246 
5247 #if __FreeBSD_version >= 800000
5248     M_ASSERTPKTHDR(*m_head);
5249 #endif /* #if __FreeBSD_version >= 800000 */
5250 
5251     m0 = *m_head;
5252     rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5253     tx_start_bd = NULL;
5254     tx_data_bd = NULL;
5255     tx_total_pkt_size_bd = NULL;
5256 
5257     /* get the H/W pointer for packets and BDs */
5258     pkt_prod = fp->tx_pkt_prod;
5259     bd_prod = fp->tx_bd_prod;
5260 
5261     mac_type = UNICAST_ADDRESS;
5262 
5263     /* map the mbuf into the next open DMAable memory */
5264     tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5265     error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5266                                     tx_buf->m_map, m0,
5267                                     segs, &nsegs, BUS_DMA_NOWAIT);
5268 
5269     /* mapping errors */
5270     if(__predict_false(error != 0)) {
5271         fp->eth_q_stats.tx_dma_mapping_failure++;
5272         if (error == ENOMEM) {
5273             /* resource issue, try again later */
5274             rc = ENOMEM;
5275         } else if (error == EFBIG) {
5276             /* possibly recoverable with defragmentation */
5277             fp->eth_q_stats.mbuf_defrag_attempts++;
5278             m0 = m_defrag(*m_head, M_NOWAIT);
5279             if (m0 == NULL) {
5280                 fp->eth_q_stats.mbuf_defrag_failures++;
5281                 rc = ENOBUFS;
5282             } else {
5283                 /* defrag successful, try mapping again */
5284                 *m_head = m0;
5285                 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5286                                                 tx_buf->m_map, m0,
5287                                                 segs, &nsegs, BUS_DMA_NOWAIT);
5288                 if (error) {
5289                     fp->eth_q_stats.tx_dma_mapping_failure++;
5290                     rc = error;
5291                 }
5292             }
5293         } else {
5294             /* unknown, unrecoverable mapping error */
5295             BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5296             bxe_dump_mbuf(sc, m0, FALSE);
5297             rc = error;
5298         }
5299 
5300         goto bxe_tx_encap_continue;
5301     }
5302 
5303     tx_bd_avail = bxe_tx_avail(sc, fp);
5304 
5305     /* make sure there is enough room in the send queue */
5306     if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5307         /* Recoverable, try again later. */
5308         fp->eth_q_stats.tx_hw_queue_full++;
5309         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5310         rc = ENOMEM;
5311         goto bxe_tx_encap_continue;
5312     }
5313 
5314     /* capture the current H/W TX chain high watermark */
5315     if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5316                         (TX_BD_USABLE - tx_bd_avail))) {
5317         fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5318     }
5319 
5320     /* make sure it fits in the packet window */
5321     if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5322         /*
5323          * The mbuf may be to big for the controller to handle. If the frame
5324          * is a TSO frame we'll need to do an additional check.
5325          */
5326         if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5327             if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5328                 goto bxe_tx_encap_continue; /* OK to send */
5329             } else {
5330                 fp->eth_q_stats.tx_window_violation_tso++;
5331             }
5332         } else {
5333             fp->eth_q_stats.tx_window_violation_std++;
5334         }
5335 
5336         /* lets try to defragment this mbuf and remap it */
5337         fp->eth_q_stats.mbuf_defrag_attempts++;
5338         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5339 
5340         m0 = m_defrag(*m_head, M_NOWAIT);
5341         if (m0 == NULL) {
5342             fp->eth_q_stats.mbuf_defrag_failures++;
5343             /* Ugh, just drop the frame... :( */
5344             rc = ENOBUFS;
5345         } else {
5346             /* defrag successful, try mapping again */
5347             *m_head = m0;
5348             error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5349                                             tx_buf->m_map, m0,
5350                                             segs, &nsegs, BUS_DMA_NOWAIT);
5351             if (error) {
5352                 fp->eth_q_stats.tx_dma_mapping_failure++;
5353                 /* No sense in trying to defrag/copy chain, drop it. :( */
5354                 rc = error;
5355             }
5356             else {
5357                 /* if the chain is still too long then drop it */
5358                 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5359                     bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5360                     rc = ENODEV;
5361                 }
5362             }
5363         }
5364     }
5365 
5366 bxe_tx_encap_continue:
5367 
5368     /* Check for errors */
5369     if (rc) {
5370         if (rc == ENOMEM) {
5371             /* recoverable try again later  */
5372         } else {
5373             fp->eth_q_stats.tx_soft_errors++;
5374             fp->eth_q_stats.mbuf_alloc_tx--;
5375             m_freem(*m_head);
5376             *m_head = NULL;
5377         }
5378 
5379         return (rc);
5380     }
5381 
5382     /* set flag according to packet type (UNICAST_ADDRESS is default) */
5383     if (m0->m_flags & M_BCAST) {
5384         mac_type = BROADCAST_ADDRESS;
5385     } else if (m0->m_flags & M_MCAST) {
5386         mac_type = MULTICAST_ADDRESS;
5387     }
5388 
5389     /* store the mbuf into the mbuf ring */
5390     tx_buf->m        = m0;
5391     tx_buf->first_bd = fp->tx_bd_prod;
5392     tx_buf->flags    = 0;
5393 
5394     /* prepare the first transmit (start) BD for the mbuf */
5395     tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5396 
5397     BLOGD(sc, DBG_TX,
5398           "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5399           pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5400 
5401     tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5402     tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5403     tx_start_bd->nbytes  = htole16(segs[0].ds_len);
5404     total_pkt_size += tx_start_bd->nbytes;
5405     tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5406 
5407     tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5408 
5409     /* all frames have at least Start BD + Parsing BD */
5410     nbds = nsegs + 1;
5411     tx_start_bd->nbd = htole16(nbds);
5412 
5413     if (m0->m_flags & M_VLANTAG) {
5414         tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5415         tx_start_bd->bd_flags.as_bitfield |=
5416             (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5417     } else {
5418         /* vf tx, start bd must hold the ethertype for fw to enforce it */
5419         if (IS_VF(sc)) {
5420             /* map ethernet header to find type and header length */
5421             eh = mtod(m0, struct ether_vlan_header *);
5422             tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5423         } else {
5424             /* used by FW for packet accounting */
5425             tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5426         }
5427     }
5428 
5429     /*
5430      * add a parsing BD from the chain. The parsing BD is always added
5431      * though it is only used for TSO and chksum
5432      */
5433     bd_prod = TX_BD_NEXT(bd_prod);
5434 
5435     if (m0->m_pkthdr.csum_flags) {
5436         if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5437             fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5438             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5439         }
5440 
5441         if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5442             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5443                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5444         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5445             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6   |
5446                                                   ETH_TX_BD_FLAGS_IS_UDP |
5447                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5448         } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5449                    (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5450             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5451         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5452             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5453                                                   ETH_TX_BD_FLAGS_IS_UDP);
5454         }
5455     }
5456 
5457     if (!CHIP_IS_E1x(sc)) {
5458         pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5459         memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5460 
5461         if (m0->m_pkthdr.csum_flags) {
5462             hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5463         }
5464 
5465         SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5466                  mac_type);
5467     } else {
5468         uint16_t global_data = 0;
5469 
5470         pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5471         memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5472 
5473         if (m0->m_pkthdr.csum_flags) {
5474             hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5475         }
5476 
5477         SET_FLAG(global_data,
5478                  ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5479         pbd_e1x->global_data |= htole16(global_data);
5480     }
5481 
5482     /* setup the parsing BD with TSO specific info */
5483     if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5484         fp->eth_q_stats.tx_ofld_frames_lso++;
5485         tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5486 
5487         if (__predict_false(tx_start_bd->nbytes > hlen)) {
5488             fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5489 
5490             /* split the first BD into header/data making the fw job easy */
5491             nbds++;
5492             tx_start_bd->nbd = htole16(nbds);
5493             tx_start_bd->nbytes = htole16(hlen);
5494 
5495             bd_prod = TX_BD_NEXT(bd_prod);
5496 
5497             /* new transmit BD after the tx_parse_bd */
5498             tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5499             tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5500             tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5501             tx_data_bd->nbytes  = htole16(segs[0].ds_len - hlen);
5502             if (tx_total_pkt_size_bd == NULL) {
5503                 tx_total_pkt_size_bd = tx_data_bd;
5504             }
5505 
5506             BLOGD(sc, DBG_TX,
5507                   "TSO split header size is %d (%x:%x) nbds %d\n",
5508                   le16toh(tx_start_bd->nbytes),
5509                   le32toh(tx_start_bd->addr_hi),
5510                   le32toh(tx_start_bd->addr_lo),
5511                   nbds);
5512         }
5513 
5514         if (!CHIP_IS_E1x(sc)) {
5515             bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5516         } else {
5517             bxe_set_pbd_lso(m0, pbd_e1x);
5518         }
5519     }
5520 
5521     if (pbd_e2_parsing_data) {
5522         pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5523     }
5524 
5525     /* prepare remaining BDs, start tx bd contains first seg/frag */
5526     for (i = 1; i < nsegs ; i++) {
5527         bd_prod = TX_BD_NEXT(bd_prod);
5528         tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5529         tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5530         tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5531         tx_data_bd->nbytes  = htole16(segs[i].ds_len);
5532         if (tx_total_pkt_size_bd == NULL) {
5533             tx_total_pkt_size_bd = tx_data_bd;
5534         }
5535         total_pkt_size += tx_data_bd->nbytes;
5536     }
5537 
5538     BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5539 
5540     if (tx_total_pkt_size_bd != NULL) {
5541         tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5542     }
5543 
5544     if (__predict_false(sc->debug & DBG_TX)) {
5545         tmp_bd = tx_buf->first_bd;
5546         for (i = 0; i < nbds; i++)
5547         {
5548             if (i == 0) {
5549                 BLOGD(sc, DBG_TX,
5550                       "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5551                       "bd_flags=0x%x hdr_nbds=%d\n",
5552                       tx_start_bd,
5553                       tmp_bd,
5554                       le16toh(tx_start_bd->nbd),
5555                       le16toh(tx_start_bd->vlan_or_ethertype),
5556                       tx_start_bd->bd_flags.as_bitfield,
5557                       (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5558             } else if (i == 1) {
5559                 if (pbd_e1x) {
5560                     BLOGD(sc, DBG_TX,
5561                           "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5562                           "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5563                           "tcp_seq=%u total_hlen_w=%u\n",
5564                           pbd_e1x,
5565                           tmp_bd,
5566                           pbd_e1x->global_data,
5567                           pbd_e1x->ip_hlen_w,
5568                           pbd_e1x->ip_id,
5569                           pbd_e1x->lso_mss,
5570                           pbd_e1x->tcp_flags,
5571                           pbd_e1x->tcp_pseudo_csum,
5572                           pbd_e1x->tcp_send_seq,
5573                           le16toh(pbd_e1x->total_hlen_w));
5574                 } else { /* if (pbd_e2) */
5575                     BLOGD(sc, DBG_TX,
5576                           "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5577                           "src=%02x:%02x:%02x parsing_data=0x%x\n",
5578                           pbd_e2,
5579                           tmp_bd,
5580                           pbd_e2->data.mac_addr.dst_hi,
5581                           pbd_e2->data.mac_addr.dst_mid,
5582                           pbd_e2->data.mac_addr.dst_lo,
5583                           pbd_e2->data.mac_addr.src_hi,
5584                           pbd_e2->data.mac_addr.src_mid,
5585                           pbd_e2->data.mac_addr.src_lo,
5586                           pbd_e2->parsing_data);
5587                 }
5588             }
5589 
5590             if (i != 1) { /* skip parse db as it doesn't hold data */
5591                 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5592                 BLOGD(sc, DBG_TX,
5593                       "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5594                       tx_data_bd,
5595                       tmp_bd,
5596                       le16toh(tx_data_bd->nbytes),
5597                       le32toh(tx_data_bd->addr_hi),
5598                       le32toh(tx_data_bd->addr_lo));
5599             }
5600 
5601             tmp_bd = TX_BD_NEXT(tmp_bd);
5602         }
5603     }
5604 
5605     BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5606 
5607     /* update TX BD producer index value for next TX */
5608     bd_prod = TX_BD_NEXT(bd_prod);
5609 
5610     /*
5611      * If the chain of tx_bd's describing this frame is adjacent to or spans
5612      * an eth_tx_next_bd element then we need to increment the nbds value.
5613      */
5614     if (TX_BD_IDX(bd_prod) < nbds) {
5615         nbds++;
5616     }
5617 
5618     /* don't allow reordering of writes for nbd and packets */
5619     mb();
5620 
5621     fp->tx_db.data.prod += nbds;
5622 
5623     /* producer points to the next free tx_bd at this point */
5624     fp->tx_pkt_prod++;
5625     fp->tx_bd_prod = bd_prod;
5626 
5627     DOORBELL(sc, fp->index, fp->tx_db.raw);
5628 
5629     fp->eth_q_stats.tx_pkts++;
5630 
5631     /* Prevent speculative reads from getting ahead of the status block. */
5632     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5633                       0, 0, BUS_SPACE_BARRIER_READ);
5634 
5635     /* Prevent speculative reads from getting ahead of the doorbell. */
5636     bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5637                       0, 0, BUS_SPACE_BARRIER_READ);
5638 
5639     return (0);
5640 }
5641 
5642 static void
5643 bxe_tx_start_locked(struct bxe_softc *sc,
5644                     if_t ifp,
5645                     struct bxe_fastpath *fp)
5646 {
5647     struct mbuf *m = NULL;
5648     int tx_count = 0;
5649     uint16_t tx_bd_avail;
5650 
5651     BXE_FP_TX_LOCK_ASSERT(fp);
5652 
5653     /* keep adding entries while there are frames to send */
5654     while (!if_sendq_empty(ifp)) {
5655 
5656         /*
5657          * check for any frames to send
5658          * dequeue can still be NULL even if queue is not empty
5659          */
5660         m = if_dequeue(ifp);
5661         if (__predict_false(m == NULL)) {
5662             break;
5663         }
5664 
5665         /* the mbuf now belongs to us */
5666         fp->eth_q_stats.mbuf_alloc_tx++;
5667 
5668         /*
5669          * Put the frame into the transmit ring. If we don't have room,
5670          * place the mbuf back at the head of the TX queue, set the
5671          * OACTIVE flag, and wait for the NIC to drain the chain.
5672          */
5673         if (__predict_false(bxe_tx_encap(fp, &m))) {
5674             fp->eth_q_stats.tx_encap_failures++;
5675             if (m != NULL) {
5676                 /* mark the TX queue as full and return the frame */
5677                 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5678 		if_sendq_prepend(ifp, m);
5679                 fp->eth_q_stats.mbuf_alloc_tx--;
5680                 fp->eth_q_stats.tx_queue_xoff++;
5681             }
5682 
5683             /* stop looking for more work */
5684             break;
5685         }
5686 
5687         /* the frame was enqueued successfully */
5688         tx_count++;
5689 
5690         /* send a copy of the frame to any BPF listeners. */
5691         if_etherbpfmtap(ifp, m);
5692 
5693         tx_bd_avail = bxe_tx_avail(sc, fp);
5694 
5695         /* handle any completions if we're running low */
5696         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5697             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5698             bxe_txeof(sc, fp);
5699             if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5700                 break;
5701             }
5702         }
5703     }
5704 
5705     /* all TX packets were dequeued and/or the tx ring is full */
5706     if (tx_count > 0) {
5707         /* reset the TX watchdog timeout timer */
5708         fp->watchdog_timer = BXE_TX_TIMEOUT;
5709     }
5710 }
5711 
5712 /* Legacy (non-RSS) dispatch routine */
5713 static void
5714 bxe_tx_start(if_t ifp)
5715 {
5716     struct bxe_softc *sc;
5717     struct bxe_fastpath *fp;
5718 
5719     sc = if_getsoftc(ifp);
5720 
5721     if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5722         BLOGW(sc, "Interface not running, ignoring transmit request\n");
5723         return;
5724     }
5725 
5726     if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5727         BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
5728         return;
5729     }
5730 
5731     if (!sc->link_vars.link_up) {
5732         BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5733         return;
5734     }
5735 
5736     fp = &sc->fp[0];
5737 
5738     BXE_FP_TX_LOCK(fp);
5739     bxe_tx_start_locked(sc, ifp, fp);
5740     BXE_FP_TX_UNLOCK(fp);
5741 }
5742 
5743 #if __FreeBSD_version >= 800000
5744 
5745 static int
5746 bxe_tx_mq_start_locked(struct bxe_softc    *sc,
5747                        if_t                ifp,
5748                        struct bxe_fastpath *fp,
5749                        struct mbuf         *m)
5750 {
5751     struct buf_ring *tx_br = fp->tx_br;
5752     struct mbuf *next;
5753     int depth, rc, tx_count;
5754     uint16_t tx_bd_avail;
5755 
5756     rc = tx_count = 0;
5757 
5758     BXE_FP_TX_LOCK_ASSERT(fp);
5759 
5760     if (!tx_br) {
5761         BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
5762         return (EINVAL);
5763     }
5764 
5765     if (!sc->link_vars.link_up ||
5766         (if_getdrvflags(ifp) &
5767         (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) {
5768         rc = drbr_enqueue(ifp, tx_br, m);
5769         goto bxe_tx_mq_start_locked_exit;
5770     }
5771 
5772     /* fetch the depth of the driver queue */
5773     depth = drbr_inuse_drv(ifp, tx_br);
5774     if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
5775         fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
5776     }
5777 
5778     if (m == NULL) {
5779         /* no new work, check for pending frames */
5780         next = drbr_dequeue_drv(ifp, tx_br);
5781     } else if (drbr_needs_enqueue_drv(ifp, tx_br)) {
5782         /* have both new and pending work, maintain packet order */
5783         rc = drbr_enqueue(ifp, tx_br, m);
5784         if (rc != 0) {
5785             fp->eth_q_stats.tx_soft_errors++;
5786             goto bxe_tx_mq_start_locked_exit;
5787         }
5788         next = drbr_dequeue_drv(ifp, tx_br);
5789     } else {
5790         /* new work only and nothing pending */
5791         next = m;
5792     }
5793 
5794     /* keep adding entries while there are frames to send */
5795     while (next != NULL) {
5796 
5797         /* the mbuf now belongs to us */
5798         fp->eth_q_stats.mbuf_alloc_tx++;
5799 
5800         /*
5801          * Put the frame into the transmit ring. If we don't have room,
5802          * place the mbuf back at the head of the TX queue, set the
5803          * OACTIVE flag, and wait for the NIC to drain the chain.
5804          */
5805         rc = bxe_tx_encap(fp, &next);
5806         if (__predict_false(rc != 0)) {
5807             fp->eth_q_stats.tx_encap_failures++;
5808             if (next != NULL) {
5809                 /* mark the TX queue as full and save the frame */
5810                 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5811                 /* XXX this may reorder the frame */
5812                 rc = drbr_enqueue(ifp, tx_br, next);
5813                 fp->eth_q_stats.mbuf_alloc_tx--;
5814                 fp->eth_q_stats.tx_frames_deferred++;
5815             }
5816 
5817             /* stop looking for more work */
5818             break;
5819         }
5820 
5821         /* the transmit frame was enqueued successfully */
5822         tx_count++;
5823 
5824         /* send a copy of the frame to any BPF listeners */
5825 	if_etherbpfmtap(ifp, next);
5826 
5827         tx_bd_avail = bxe_tx_avail(sc, fp);
5828 
5829         /* handle any completions if we're running low */
5830         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5831             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5832             bxe_txeof(sc, fp);
5833             if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5834                 break;
5835             }
5836         }
5837 
5838         next = drbr_dequeue_drv(ifp, tx_br);
5839     }
5840 
5841     /* all TX packets were dequeued and/or the tx ring is full */
5842     if (tx_count > 0) {
5843         /* reset the TX watchdog timeout timer */
5844         fp->watchdog_timer = BXE_TX_TIMEOUT;
5845     }
5846 
5847 bxe_tx_mq_start_locked_exit:
5848 
5849     return (rc);
5850 }
5851 
5852 /* Multiqueue (TSS) dispatch routine. */
5853 static int
5854 bxe_tx_mq_start(struct ifnet *ifp,
5855                 struct mbuf  *m)
5856 {
5857     struct bxe_softc *sc = if_getsoftc(ifp);
5858     struct bxe_fastpath *fp;
5859     int fp_index, rc;
5860 
5861     fp_index = 0; /* default is the first queue */
5862 
5863     /* check if flowid is set */
5864 
5865     if (BXE_VALID_FLOWID(m))
5866         fp_index = (m->m_pkthdr.flowid % sc->num_queues);
5867 
5868     fp = &sc->fp[fp_index];
5869 
5870     if (BXE_FP_TX_TRYLOCK(fp)) {
5871         rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
5872         BXE_FP_TX_UNLOCK(fp);
5873     } else
5874         rc = drbr_enqueue(ifp, fp->tx_br, m);
5875 
5876     return (rc);
5877 }
5878 
5879 static void
5880 bxe_mq_flush(struct ifnet *ifp)
5881 {
5882     struct bxe_softc *sc = if_getsoftc(ifp);
5883     struct bxe_fastpath *fp;
5884     struct mbuf *m;
5885     int i;
5886 
5887     for (i = 0; i < sc->num_queues; i++) {
5888         fp = &sc->fp[i];
5889 
5890         if (fp->state != BXE_FP_STATE_OPEN) {
5891             BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
5892                   fp->index, fp->state);
5893             continue;
5894         }
5895 
5896         if (fp->tx_br != NULL) {
5897             BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
5898             BXE_FP_TX_LOCK(fp);
5899             while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
5900                 m_freem(m);
5901             }
5902             BXE_FP_TX_UNLOCK(fp);
5903         }
5904     }
5905 
5906     if_qflush(ifp);
5907 }
5908 
5909 #endif /* FreeBSD_version >= 800000 */
5910 
5911 static uint16_t
5912 bxe_cid_ilt_lines(struct bxe_softc *sc)
5913 {
5914     if (IS_SRIOV(sc)) {
5915         return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
5916     }
5917     return (L2_ILT_LINES(sc));
5918 }
5919 
5920 static void
5921 bxe_ilt_set_info(struct bxe_softc *sc)
5922 {
5923     struct ilt_client_info *ilt_client;
5924     struct ecore_ilt *ilt = sc->ilt;
5925     uint16_t line = 0;
5926 
5927     ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
5928     BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
5929 
5930     /* CDU */
5931     ilt_client = &ilt->clients[ILT_CLIENT_CDU];
5932     ilt_client->client_num = ILT_CLIENT_CDU;
5933     ilt_client->page_size = CDU_ILT_PAGE_SZ;
5934     ilt_client->flags = ILT_CLIENT_SKIP_MEM;
5935     ilt_client->start = line;
5936     line += bxe_cid_ilt_lines(sc);
5937 
5938     if (CNIC_SUPPORT(sc)) {
5939         line += CNIC_ILT_LINES;
5940     }
5941 
5942     ilt_client->end = (line - 1);
5943 
5944     BLOGD(sc, DBG_LOAD,
5945           "ilt client[CDU]: start %d, end %d, "
5946           "psz 0x%x, flags 0x%x, hw psz %d\n",
5947           ilt_client->start, ilt_client->end,
5948           ilt_client->page_size,
5949           ilt_client->flags,
5950           ilog2(ilt_client->page_size >> 12));
5951 
5952     /* QM */
5953     if (QM_INIT(sc->qm_cid_count)) {
5954         ilt_client = &ilt->clients[ILT_CLIENT_QM];
5955         ilt_client->client_num = ILT_CLIENT_QM;
5956         ilt_client->page_size = QM_ILT_PAGE_SZ;
5957         ilt_client->flags = 0;
5958         ilt_client->start = line;
5959 
5960         /* 4 bytes for each cid */
5961         line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
5962                              QM_ILT_PAGE_SZ);
5963 
5964         ilt_client->end = (line - 1);
5965 
5966         BLOGD(sc, DBG_LOAD,
5967               "ilt client[QM]: start %d, end %d, "
5968               "psz 0x%x, flags 0x%x, hw psz %d\n",
5969               ilt_client->start, ilt_client->end,
5970               ilt_client->page_size, ilt_client->flags,
5971               ilog2(ilt_client->page_size >> 12));
5972     }
5973 
5974     if (CNIC_SUPPORT(sc)) {
5975         /* SRC */
5976         ilt_client = &ilt->clients[ILT_CLIENT_SRC];
5977         ilt_client->client_num = ILT_CLIENT_SRC;
5978         ilt_client->page_size = SRC_ILT_PAGE_SZ;
5979         ilt_client->flags = 0;
5980         ilt_client->start = line;
5981         line += SRC_ILT_LINES;
5982         ilt_client->end = (line - 1);
5983 
5984         BLOGD(sc, DBG_LOAD,
5985               "ilt client[SRC]: start %d, end %d, "
5986               "psz 0x%x, flags 0x%x, hw psz %d\n",
5987               ilt_client->start, ilt_client->end,
5988               ilt_client->page_size, ilt_client->flags,
5989               ilog2(ilt_client->page_size >> 12));
5990 
5991         /* TM */
5992         ilt_client = &ilt->clients[ILT_CLIENT_TM];
5993         ilt_client->client_num = ILT_CLIENT_TM;
5994         ilt_client->page_size = TM_ILT_PAGE_SZ;
5995         ilt_client->flags = 0;
5996         ilt_client->start = line;
5997         line += TM_ILT_LINES;
5998         ilt_client->end = (line - 1);
5999 
6000         BLOGD(sc, DBG_LOAD,
6001               "ilt client[TM]: start %d, end %d, "
6002               "psz 0x%x, flags 0x%x, hw psz %d\n",
6003               ilt_client->start, ilt_client->end,
6004               ilt_client->page_size, ilt_client->flags,
6005               ilog2(ilt_client->page_size >> 12));
6006     }
6007 
6008     KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
6009 }
6010 
6011 static void
6012 bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
6013 {
6014     int i;
6015     uint32_t rx_buf_size;
6016 
6017     rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
6018 
6019     for (i = 0; i < sc->num_queues; i++) {
6020         if(rx_buf_size <= MCLBYTES){
6021             sc->fp[i].rx_buf_size = rx_buf_size;
6022             sc->fp[i].mbuf_alloc_size = MCLBYTES;
6023         }else if (rx_buf_size <= MJUMPAGESIZE){
6024             sc->fp[i].rx_buf_size = rx_buf_size;
6025             sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
6026         }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){
6027             sc->fp[i].rx_buf_size = MCLBYTES;
6028             sc->fp[i].mbuf_alloc_size = MCLBYTES;
6029         }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){
6030             sc->fp[i].rx_buf_size = MJUMPAGESIZE;
6031             sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
6032         }else {
6033             sc->fp[i].rx_buf_size = MCLBYTES;
6034             sc->fp[i].mbuf_alloc_size = MCLBYTES;
6035         }
6036     }
6037 }
6038 
6039 static int
6040 bxe_alloc_ilt_mem(struct bxe_softc *sc)
6041 {
6042     int rc = 0;
6043 
6044     if ((sc->ilt =
6045          (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
6046                                     M_BXE_ILT,
6047                                     (M_NOWAIT | M_ZERO))) == NULL) {
6048         rc = 1;
6049     }
6050 
6051     return (rc);
6052 }
6053 
6054 static int
6055 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
6056 {
6057     int rc = 0;
6058 
6059     if ((sc->ilt->lines =
6060          (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
6061                                     M_BXE_ILT,
6062                                     (M_NOWAIT | M_ZERO))) == NULL) {
6063         rc = 1;
6064     }
6065 
6066     return (rc);
6067 }
6068 
6069 static void
6070 bxe_free_ilt_mem(struct bxe_softc *sc)
6071 {
6072     if (sc->ilt != NULL) {
6073         free(sc->ilt, M_BXE_ILT);
6074         sc->ilt = NULL;
6075     }
6076 }
6077 
6078 static void
6079 bxe_free_ilt_lines_mem(struct bxe_softc *sc)
6080 {
6081     if (sc->ilt->lines != NULL) {
6082         free(sc->ilt->lines, M_BXE_ILT);
6083         sc->ilt->lines = NULL;
6084     }
6085 }
6086 
6087 static void
6088 bxe_free_mem(struct bxe_softc *sc)
6089 {
6090     int i;
6091 
6092     for (i = 0; i < L2_ILT_LINES(sc); i++) {
6093         bxe_dma_free(sc, &sc->context[i].vcxt_dma);
6094         sc->context[i].vcxt = NULL;
6095         sc->context[i].size = 0;
6096     }
6097 
6098     ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
6099 
6100     bxe_free_ilt_lines_mem(sc);
6101 
6102 }
6103 
6104 static int
6105 bxe_alloc_mem(struct bxe_softc *sc)
6106 {
6107     int context_size;
6108     int allocated;
6109     int i;
6110 
6111     /*
6112      * Allocate memory for CDU context:
6113      * This memory is allocated separately and not in the generic ILT
6114      * functions because CDU differs in few aspects:
6115      * 1. There can be multiple entities allocating memory for context -
6116      * regular L2, CNIC, and SRIOV drivers. Each separately controls
6117      * its own ILT lines.
6118      * 2. Since CDU page-size is not a single 4KB page (which is the case
6119      * for the other ILT clients), to be efficient we want to support
6120      * allocation of sub-page-size in the last entry.
6121      * 3. Context pointers are used by the driver to pass to FW / update
6122      * the context (for the other ILT clients the pointers are used just to
6123      * free the memory during unload).
6124      */
6125     context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
6126     for (i = 0, allocated = 0; allocated < context_size; i++) {
6127         sc->context[i].size = min(CDU_ILT_PAGE_SZ,
6128                                   (context_size - allocated));
6129 
6130         if (bxe_dma_alloc(sc, sc->context[i].size,
6131                           &sc->context[i].vcxt_dma,
6132                           "cdu context") != 0) {
6133             bxe_free_mem(sc);
6134             return (-1);
6135         }
6136 
6137         sc->context[i].vcxt =
6138             (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
6139 
6140         allocated += sc->context[i].size;
6141     }
6142 
6143     bxe_alloc_ilt_lines_mem(sc);
6144 
6145     BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6146           sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6147     {
6148         for (i = 0; i < 4; i++) {
6149             BLOGD(sc, DBG_LOAD,
6150                   "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6151                   i,
6152                   sc->ilt->clients[i].page_size,
6153                   sc->ilt->clients[i].start,
6154                   sc->ilt->clients[i].end,
6155                   sc->ilt->clients[i].client_num,
6156                   sc->ilt->clients[i].flags);
6157         }
6158     }
6159     if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6160         BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6161         bxe_free_mem(sc);
6162         return (-1);
6163     }
6164 
6165     return (0);
6166 }
6167 
6168 static void
6169 bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6170 {
6171     struct bxe_softc *sc;
6172     int i;
6173 
6174     sc = fp->sc;
6175 
6176     if (fp->rx_mbuf_tag == NULL) {
6177         return;
6178     }
6179 
6180     /* free all mbufs and unload all maps */
6181     for (i = 0; i < RX_BD_TOTAL; i++) {
6182         if (fp->rx_mbuf_chain[i].m_map != NULL) {
6183             bus_dmamap_sync(fp->rx_mbuf_tag,
6184                             fp->rx_mbuf_chain[i].m_map,
6185                             BUS_DMASYNC_POSTREAD);
6186             bus_dmamap_unload(fp->rx_mbuf_tag,
6187                               fp->rx_mbuf_chain[i].m_map);
6188         }
6189 
6190         if (fp->rx_mbuf_chain[i].m != NULL) {
6191             m_freem(fp->rx_mbuf_chain[i].m);
6192             fp->rx_mbuf_chain[i].m = NULL;
6193             fp->eth_q_stats.mbuf_alloc_rx--;
6194         }
6195     }
6196 }
6197 
6198 static void
6199 bxe_free_tpa_pool(struct bxe_fastpath *fp)
6200 {
6201     struct bxe_softc *sc;
6202     int i, max_agg_queues;
6203 
6204     sc = fp->sc;
6205 
6206     if (fp->rx_mbuf_tag == NULL) {
6207         return;
6208     }
6209 
6210     max_agg_queues = MAX_AGG_QS(sc);
6211 
6212     /* release all mbufs and unload all DMA maps in the TPA pool */
6213     for (i = 0; i < max_agg_queues; i++) {
6214         if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6215             bus_dmamap_sync(fp->rx_mbuf_tag,
6216                             fp->rx_tpa_info[i].bd.m_map,
6217                             BUS_DMASYNC_POSTREAD);
6218             bus_dmamap_unload(fp->rx_mbuf_tag,
6219                               fp->rx_tpa_info[i].bd.m_map);
6220         }
6221 
6222         if (fp->rx_tpa_info[i].bd.m != NULL) {
6223             m_freem(fp->rx_tpa_info[i].bd.m);
6224             fp->rx_tpa_info[i].bd.m = NULL;
6225             fp->eth_q_stats.mbuf_alloc_tpa--;
6226         }
6227     }
6228 }
6229 
6230 static void
6231 bxe_free_sge_chain(struct bxe_fastpath *fp)
6232 {
6233     struct bxe_softc *sc;
6234     int i;
6235 
6236     sc = fp->sc;
6237 
6238     if (fp->rx_sge_mbuf_tag == NULL) {
6239         return;
6240     }
6241 
6242     /* rree all mbufs and unload all maps */
6243     for (i = 0; i < RX_SGE_TOTAL; i++) {
6244         if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6245             bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6246                             fp->rx_sge_mbuf_chain[i].m_map,
6247                             BUS_DMASYNC_POSTREAD);
6248             bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6249                               fp->rx_sge_mbuf_chain[i].m_map);
6250         }
6251 
6252         if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6253             m_freem(fp->rx_sge_mbuf_chain[i].m);
6254             fp->rx_sge_mbuf_chain[i].m = NULL;
6255             fp->eth_q_stats.mbuf_alloc_sge--;
6256         }
6257     }
6258 }
6259 
6260 static void
6261 bxe_free_fp_buffers(struct bxe_softc *sc)
6262 {
6263     struct bxe_fastpath *fp;
6264     int i;
6265 
6266     for (i = 0; i < sc->num_queues; i++) {
6267         fp = &sc->fp[i];
6268 
6269 #if __FreeBSD_version >= 800000
6270         if (fp->tx_br != NULL) {
6271             /* just in case bxe_mq_flush() wasn't called */
6272             if (mtx_initialized(&fp->tx_mtx)) {
6273                 struct mbuf *m;
6274 
6275                 BXE_FP_TX_LOCK(fp);
6276                 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL)
6277                     m_freem(m);
6278                 BXE_FP_TX_UNLOCK(fp);
6279             }
6280         }
6281 #endif
6282 
6283         /* free all RX buffers */
6284         bxe_free_rx_bd_chain(fp);
6285         bxe_free_tpa_pool(fp);
6286         bxe_free_sge_chain(fp);
6287 
6288         if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6289             BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6290                   fp->eth_q_stats.mbuf_alloc_rx);
6291         }
6292 
6293         if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6294             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6295                   fp->eth_q_stats.mbuf_alloc_sge);
6296         }
6297 
6298         if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6299             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6300                   fp->eth_q_stats.mbuf_alloc_tpa);
6301         }
6302 
6303         if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6304             BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6305                   fp->eth_q_stats.mbuf_alloc_tx);
6306         }
6307 
6308         /* XXX verify all mbufs were reclaimed */
6309     }
6310 }
6311 
6312 static int
6313 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6314                      uint16_t            prev_index,
6315                      uint16_t            index)
6316 {
6317     struct bxe_sw_rx_bd *rx_buf;
6318     struct eth_rx_bd *rx_bd;
6319     bus_dma_segment_t segs[1];
6320     bus_dmamap_t map;
6321     struct mbuf *m;
6322     int nsegs, rc;
6323 
6324     rc = 0;
6325 
6326     /* allocate the new RX BD mbuf */
6327     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6328     if (__predict_false(m == NULL)) {
6329         fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6330         return (ENOBUFS);
6331     }
6332 
6333     fp->eth_q_stats.mbuf_alloc_rx++;
6334 
6335     /* initialize the mbuf buffer length */
6336     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6337 
6338     /* map the mbuf into non-paged pool */
6339     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6340                                  fp->rx_mbuf_spare_map,
6341                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6342     if (__predict_false(rc != 0)) {
6343         fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6344         m_freem(m);
6345         fp->eth_q_stats.mbuf_alloc_rx--;
6346         return (rc);
6347     }
6348 
6349     /* all mbufs must map to a single segment */
6350     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6351 
6352     /* release any existing RX BD mbuf mappings */
6353 
6354     if (prev_index != index) {
6355         rx_buf = &fp->rx_mbuf_chain[prev_index];
6356 
6357         if (rx_buf->m_map != NULL) {
6358             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6359                             BUS_DMASYNC_POSTREAD);
6360             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6361         }
6362 
6363         /*
6364          * We only get here from bxe_rxeof() when the maximum number
6365          * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6366          * holds the mbuf in the prev_index so it's OK to NULL it out
6367          * here without concern of a memory leak.
6368          */
6369         fp->rx_mbuf_chain[prev_index].m = NULL;
6370     }
6371 
6372     rx_buf = &fp->rx_mbuf_chain[index];
6373 
6374     if (rx_buf->m_map != NULL) {
6375         bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6376                         BUS_DMASYNC_POSTREAD);
6377         bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6378     }
6379 
6380     /* save the mbuf and mapping info for a future packet */
6381     map = (prev_index != index) ?
6382               fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6383     rx_buf->m_map = fp->rx_mbuf_spare_map;
6384     fp->rx_mbuf_spare_map = map;
6385     bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6386                     BUS_DMASYNC_PREREAD);
6387     rx_buf->m = m;
6388 
6389     rx_bd = &fp->rx_chain[index];
6390     rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6391     rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6392 
6393     return (rc);
6394 }
6395 
6396 static int
6397 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6398                       int                 queue)
6399 {
6400     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6401     bus_dma_segment_t segs[1];
6402     bus_dmamap_t map;
6403     struct mbuf *m;
6404     int nsegs;
6405     int rc = 0;
6406 
6407     /* allocate the new TPA mbuf */
6408     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6409     if (__predict_false(m == NULL)) {
6410         fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6411         return (ENOBUFS);
6412     }
6413 
6414     fp->eth_q_stats.mbuf_alloc_tpa++;
6415 
6416     /* initialize the mbuf buffer length */
6417     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6418 
6419     /* map the mbuf into non-paged pool */
6420     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6421                                  fp->rx_tpa_info_mbuf_spare_map,
6422                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6423     if (__predict_false(rc != 0)) {
6424         fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6425         m_free(m);
6426         fp->eth_q_stats.mbuf_alloc_tpa--;
6427         return (rc);
6428     }
6429 
6430     /* all mbufs must map to a single segment */
6431     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6432 
6433     /* release any existing TPA mbuf mapping */
6434     if (tpa_info->bd.m_map != NULL) {
6435         bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6436                         BUS_DMASYNC_POSTREAD);
6437         bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6438     }
6439 
6440     /* save the mbuf and mapping info for the TPA mbuf */
6441     map = tpa_info->bd.m_map;
6442     tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6443     fp->rx_tpa_info_mbuf_spare_map = map;
6444     bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6445                     BUS_DMASYNC_PREREAD);
6446     tpa_info->bd.m = m;
6447     tpa_info->seg = segs[0];
6448 
6449     return (rc);
6450 }
6451 
6452 /*
6453  * Allocate an mbuf and assign it to the receive scatter gather chain. The
6454  * caller must take care to save a copy of the existing mbuf in the SG mbuf
6455  * chain.
6456  */
6457 static int
6458 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6459                       uint16_t            index)
6460 {
6461     struct bxe_sw_rx_bd *sge_buf;
6462     struct eth_rx_sge *sge;
6463     bus_dma_segment_t segs[1];
6464     bus_dmamap_t map;
6465     struct mbuf *m;
6466     int nsegs;
6467     int rc = 0;
6468 
6469     /* allocate a new SGE mbuf */
6470     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6471     if (__predict_false(m == NULL)) {
6472         fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6473         return (ENOMEM);
6474     }
6475 
6476     fp->eth_q_stats.mbuf_alloc_sge++;
6477 
6478     /* initialize the mbuf buffer length */
6479     m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6480 
6481     /* map the SGE mbuf into non-paged pool */
6482     rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6483                                  fp->rx_sge_mbuf_spare_map,
6484                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6485     if (__predict_false(rc != 0)) {
6486         fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6487         m_freem(m);
6488         fp->eth_q_stats.mbuf_alloc_sge--;
6489         return (rc);
6490     }
6491 
6492     /* all mbufs must map to a single segment */
6493     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6494 
6495     sge_buf = &fp->rx_sge_mbuf_chain[index];
6496 
6497     /* release any existing SGE mbuf mapping */
6498     if (sge_buf->m_map != NULL) {
6499         bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6500                         BUS_DMASYNC_POSTREAD);
6501         bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6502     }
6503 
6504     /* save the mbuf and mapping info for a future packet */
6505     map = sge_buf->m_map;
6506     sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6507     fp->rx_sge_mbuf_spare_map = map;
6508     bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6509                     BUS_DMASYNC_PREREAD);
6510     sge_buf->m = m;
6511 
6512     sge = &fp->rx_sge_chain[index];
6513     sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6514     sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6515 
6516     return (rc);
6517 }
6518 
6519 static __noinline int
6520 bxe_alloc_fp_buffers(struct bxe_softc *sc)
6521 {
6522     struct bxe_fastpath *fp;
6523     int i, j, rc = 0;
6524     int ring_prod, cqe_ring_prod;
6525     int max_agg_queues;
6526 
6527     for (i = 0; i < sc->num_queues; i++) {
6528         fp = &sc->fp[i];
6529 
6530         ring_prod = cqe_ring_prod = 0;
6531         fp->rx_bd_cons = 0;
6532         fp->rx_cq_cons = 0;
6533 
6534         /* allocate buffers for the RX BDs in RX BD chain */
6535         for (j = 0; j < sc->max_rx_bufs; j++) {
6536             rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6537             if (rc != 0) {
6538                 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6539                       i, rc);
6540                 goto bxe_alloc_fp_buffers_error;
6541             }
6542 
6543             ring_prod     = RX_BD_NEXT(ring_prod);
6544             cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6545         }
6546 
6547         fp->rx_bd_prod = ring_prod;
6548         fp->rx_cq_prod = cqe_ring_prod;
6549         fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6550 
6551         max_agg_queues = MAX_AGG_QS(sc);
6552 
6553         fp->tpa_enable = TRUE;
6554 
6555         /* fill the TPA pool */
6556         for (j = 0; j < max_agg_queues; j++) {
6557             rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6558             if (rc != 0) {
6559                 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6560                           i, j);
6561                 fp->tpa_enable = FALSE;
6562                 goto bxe_alloc_fp_buffers_error;
6563             }
6564 
6565             fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6566         }
6567 
6568         if (fp->tpa_enable) {
6569             /* fill the RX SGE chain */
6570             ring_prod = 0;
6571             for (j = 0; j < RX_SGE_USABLE; j++) {
6572                 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6573                 if (rc != 0) {
6574                     BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6575                               i, ring_prod);
6576                     fp->tpa_enable = FALSE;
6577                     ring_prod = 0;
6578                     goto bxe_alloc_fp_buffers_error;
6579                 }
6580 
6581                 ring_prod = RX_SGE_NEXT(ring_prod);
6582             }
6583 
6584             fp->rx_sge_prod = ring_prod;
6585         }
6586     }
6587 
6588     return (0);
6589 
6590 bxe_alloc_fp_buffers_error:
6591 
6592     /* unwind what was already allocated */
6593     bxe_free_rx_bd_chain(fp);
6594     bxe_free_tpa_pool(fp);
6595     bxe_free_sge_chain(fp);
6596 
6597     return (ENOBUFS);
6598 }
6599 
6600 static void
6601 bxe_free_fw_stats_mem(struct bxe_softc *sc)
6602 {
6603     bxe_dma_free(sc, &sc->fw_stats_dma);
6604 
6605     sc->fw_stats_num = 0;
6606 
6607     sc->fw_stats_req_size = 0;
6608     sc->fw_stats_req = NULL;
6609     sc->fw_stats_req_mapping = 0;
6610 
6611     sc->fw_stats_data_size = 0;
6612     sc->fw_stats_data = NULL;
6613     sc->fw_stats_data_mapping = 0;
6614 }
6615 
6616 static int
6617 bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6618 {
6619     uint8_t num_queue_stats;
6620     int num_groups;
6621 
6622     /* number of queues for statistics is number of eth queues */
6623     num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6624 
6625     /*
6626      * Total number of FW statistics requests =
6627      *   1 for port stats + 1 for PF stats + num of queues
6628      */
6629     sc->fw_stats_num = (2 + num_queue_stats);
6630 
6631     /*
6632      * Request is built from stats_query_header and an array of
6633      * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6634      * rules. The real number or requests is configured in the
6635      * stats_query_header.
6636      */
6637     num_groups =
6638         ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6639          ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6640 
6641     BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6642           sc->fw_stats_num, num_groups);
6643 
6644     sc->fw_stats_req_size =
6645         (sizeof(struct stats_query_header) +
6646          (num_groups * sizeof(struct stats_query_cmd_group)));
6647 
6648     /*
6649      * Data for statistics requests + stats_counter.
6650      * stats_counter holds per-STORM counters that are incremented when
6651      * STORM has finished with the current request. Memory for FCoE
6652      * offloaded statistics are counted anyway, even if they will not be sent.
6653      * VF stats are not accounted for here as the data of VF stats is stored
6654      * in memory allocated by the VF, not here.
6655      */
6656     sc->fw_stats_data_size =
6657         (sizeof(struct stats_counter) +
6658          sizeof(struct per_port_stats) +
6659          sizeof(struct per_pf_stats) +
6660          /* sizeof(struct fcoe_statistics_params) + */
6661          (sizeof(struct per_queue_stats) * num_queue_stats));
6662 
6663     if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6664                       &sc->fw_stats_dma, "fw stats") != 0) {
6665         bxe_free_fw_stats_mem(sc);
6666         return (-1);
6667     }
6668 
6669     /* set up the shortcuts */
6670 
6671     sc->fw_stats_req =
6672         (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6673     sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6674 
6675     sc->fw_stats_data =
6676         (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6677                                      sc->fw_stats_req_size);
6678     sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6679                                  sc->fw_stats_req_size);
6680 
6681     BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6682           (uintmax_t)sc->fw_stats_req_mapping);
6683 
6684     BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6685           (uintmax_t)sc->fw_stats_data_mapping);
6686 
6687     return (0);
6688 }
6689 
6690 /*
6691  * Bits map:
6692  * 0-7  - Engine0 load counter.
6693  * 8-15 - Engine1 load counter.
6694  * 16   - Engine0 RESET_IN_PROGRESS bit.
6695  * 17   - Engine1 RESET_IN_PROGRESS bit.
6696  * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
6697  *        function on the engine
6698  * 19   - Engine1 ONE_IS_LOADED.
6699  * 20   - Chip reset flow bit. When set none-leader must wait for both engines
6700  *        leader to complete (check for both RESET_IN_PROGRESS bits and not
6701  *        for just the one belonging to its engine).
6702  */
6703 #define BXE_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
6704 #define BXE_PATH0_LOAD_CNT_MASK   0x000000ff
6705 #define BXE_PATH0_LOAD_CNT_SHIFT  0
6706 #define BXE_PATH1_LOAD_CNT_MASK   0x0000ff00
6707 #define BXE_PATH1_LOAD_CNT_SHIFT  8
6708 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
6709 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
6710 #define BXE_GLOBAL_RESET_BIT      0x00040000
6711 
6712 /* set the GLOBAL_RESET bit, should be run under rtnl lock */
6713 static void
6714 bxe_set_reset_global(struct bxe_softc *sc)
6715 {
6716     uint32_t val;
6717     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6718     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6719     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
6720     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6721 }
6722 
6723 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */
6724 static void
6725 bxe_clear_reset_global(struct bxe_softc *sc)
6726 {
6727     uint32_t val;
6728     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6729     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6730     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
6731     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6732 }
6733 
6734 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */
6735 static uint8_t
6736 bxe_reset_is_global(struct bxe_softc *sc)
6737 {
6738     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6739     BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
6740     return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
6741 }
6742 
6743 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
6744 static void
6745 bxe_set_reset_done(struct bxe_softc *sc)
6746 {
6747     uint32_t val;
6748     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6749                                  BXE_PATH0_RST_IN_PROG_BIT;
6750 
6751     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6752 
6753     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6754     /* Clear the bit */
6755     val &= ~bit;
6756     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6757 
6758     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6759 }
6760 
6761 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
6762 static void
6763 bxe_set_reset_in_progress(struct bxe_softc *sc)
6764 {
6765     uint32_t val;
6766     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6767                                  BXE_PATH0_RST_IN_PROG_BIT;
6768 
6769     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6770 
6771     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6772     /* Set the bit */
6773     val |= bit;
6774     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6775 
6776     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6777 }
6778 
6779 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
6780 static uint8_t
6781 bxe_reset_is_done(struct bxe_softc *sc,
6782                   int              engine)
6783 {
6784     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6785     uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
6786                             BXE_PATH0_RST_IN_PROG_BIT;
6787 
6788     /* return false if bit is set */
6789     return (val & bit) ? FALSE : TRUE;
6790 }
6791 
6792 /* get the load status for an engine, should be run under rtnl lock */
6793 static uint8_t
6794 bxe_get_load_status(struct bxe_softc *sc,
6795                     int              engine)
6796 {
6797     uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
6798                              BXE_PATH0_LOAD_CNT_MASK;
6799     uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
6800                               BXE_PATH0_LOAD_CNT_SHIFT;
6801     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6802 
6803     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
6804 
6805     val = ((val & mask) >> shift);
6806 
6807     BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
6808 
6809     return (val != 0);
6810 }
6811 
6812 /* set pf load mark */
6813 /* XXX needs to be under rtnl lock */
6814 static void
6815 bxe_set_pf_load(struct bxe_softc *sc)
6816 {
6817     uint32_t val;
6818     uint32_t val1;
6819     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
6820                                   BXE_PATH0_LOAD_CNT_MASK;
6821     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
6822                                    BXE_PATH0_LOAD_CNT_SHIFT;
6823 
6824     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6825 
6826     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6827     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
6828 
6829     /* get the current counter value */
6830     val1 = ((val & mask) >> shift);
6831 
6832     /* set bit of this PF */
6833     val1 |= (1 << SC_ABS_FUNC(sc));
6834 
6835     /* clear the old value */
6836     val &= ~mask;
6837 
6838     /* set the new one */
6839     val |= ((val1 << shift) & mask);
6840 
6841     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6842 
6843     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6844 }
6845 
6846 /* clear pf load mark */
6847 /* XXX needs to be under rtnl lock */
6848 static uint8_t
6849 bxe_clear_pf_load(struct bxe_softc *sc)
6850 {
6851     uint32_t val1, val;
6852     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
6853                                   BXE_PATH0_LOAD_CNT_MASK;
6854     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
6855                                    BXE_PATH0_LOAD_CNT_SHIFT;
6856 
6857     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6858     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6859     BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
6860 
6861     /* get the current counter value */
6862     val1 = (val & mask) >> shift;
6863 
6864     /* clear bit of that PF */
6865     val1 &= ~(1 << SC_ABS_FUNC(sc));
6866 
6867     /* clear the old value */
6868     val &= ~mask;
6869 
6870     /* set the new one */
6871     val |= ((val1 << shift) & mask);
6872 
6873     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6874     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6875     return (val1 != 0);
6876 }
6877 
6878 /* send load requrest to mcp and analyze response */
6879 static int
6880 bxe_nic_load_request(struct bxe_softc *sc,
6881                      uint32_t         *load_code)
6882 {
6883     /* init fw_seq */
6884     sc->fw_seq =
6885         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
6886          DRV_MSG_SEQ_NUMBER_MASK);
6887 
6888     BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
6889 
6890     /* get the current FW pulse sequence */
6891     sc->fw_drv_pulse_wr_seq =
6892         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
6893          DRV_PULSE_SEQ_MASK);
6894 
6895     BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
6896           sc->fw_drv_pulse_wr_seq);
6897 
6898     /* load request */
6899     (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
6900                                   DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
6901 
6902     /* if the MCP fails to respond we must abort */
6903     if (!(*load_code)) {
6904         BLOGE(sc, "MCP response failure!\n");
6905         return (-1);
6906     }
6907 
6908     /* if MCP refused then must abort */
6909     if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
6910         BLOGE(sc, "MCP refused load request\n");
6911         return (-1);
6912     }
6913 
6914     return (0);
6915 }
6916 
6917 /*
6918  * Check whether another PF has already loaded FW to chip. In virtualized
6919  * environments a pf from anoth VM may have already initialized the device
6920  * including loading FW.
6921  */
6922 static int
6923 bxe_nic_load_analyze_req(struct bxe_softc *sc,
6924                          uint32_t         load_code)
6925 {
6926     uint32_t my_fw, loaded_fw;
6927 
6928     /* is another pf loaded on this engine? */
6929     if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
6930         (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
6931         /* build my FW version dword */
6932         my_fw = (BCM_5710_FW_MAJOR_VERSION +
6933                  (BCM_5710_FW_MINOR_VERSION << 8 ) +
6934                  (BCM_5710_FW_REVISION_VERSION << 16) +
6935                  (BCM_5710_FW_ENGINEERING_VERSION << 24));
6936 
6937         /* read loaded FW from chip */
6938         loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
6939         BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
6940               loaded_fw, my_fw);
6941 
6942         /* abort nic load if version mismatch */
6943         if (my_fw != loaded_fw) {
6944             BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
6945                   loaded_fw, my_fw);
6946             return (-1);
6947         }
6948     }
6949 
6950     return (0);
6951 }
6952 
6953 /* mark PMF if applicable */
6954 static void
6955 bxe_nic_load_pmf(struct bxe_softc *sc,
6956                  uint32_t         load_code)
6957 {
6958     uint32_t ncsi_oem_data_addr;
6959 
6960     if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
6961         (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
6962         (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
6963         /*
6964          * Barrier here for ordering between the writing to sc->port.pmf here
6965          * and reading it from the periodic task.
6966          */
6967         sc->port.pmf = 1;
6968         mb();
6969     } else {
6970         sc->port.pmf = 0;
6971     }
6972 
6973     BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
6974 
6975     /* XXX needed? */
6976     if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
6977         if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
6978             ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
6979             if (ncsi_oem_data_addr) {
6980                 REG_WR(sc,
6981                        (ncsi_oem_data_addr +
6982                         offsetof(struct glob_ncsi_oem_data, driver_version)),
6983                        0);
6984             }
6985         }
6986     }
6987 }
6988 
6989 static void
6990 bxe_read_mf_cfg(struct bxe_softc *sc)
6991 {
6992     int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
6993     int abs_func;
6994     int vn;
6995 
6996     if (BXE_NOMCP(sc)) {
6997         return; /* what should be the default bvalue in this case */
6998     }
6999 
7000     /*
7001      * The formula for computing the absolute function number is...
7002      * For 2 port configuration (4 functions per port):
7003      *   abs_func = 2 * vn + SC_PORT + SC_PATH
7004      * For 4 port configuration (2 functions per port):
7005      *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
7006      */
7007     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
7008         abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
7009         if (abs_func >= E1H_FUNC_MAX) {
7010             break;
7011         }
7012         sc->devinfo.mf_info.mf_config[vn] =
7013             MFCFG_RD(sc, func_mf_config[abs_func].config);
7014     }
7015 
7016     if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
7017         FUNC_MF_CFG_FUNC_DISABLED) {
7018         BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
7019         sc->flags |= BXE_MF_FUNC_DIS;
7020     } else {
7021         BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
7022         sc->flags &= ~BXE_MF_FUNC_DIS;
7023     }
7024 }
7025 
7026 /* acquire split MCP access lock register */
7027 static int bxe_acquire_alr(struct bxe_softc *sc)
7028 {
7029     uint32_t j, val;
7030 
7031     for (j = 0; j < 1000; j++) {
7032         val = (1UL << 31);
7033         REG_WR(sc, GRCBASE_MCP + 0x9c, val);
7034         val = REG_RD(sc, GRCBASE_MCP + 0x9c);
7035         if (val & (1L << 31))
7036             break;
7037 
7038         DELAY(5000);
7039     }
7040 
7041     if (!(val & (1L << 31))) {
7042         BLOGE(sc, "Cannot acquire MCP access lock register\n");
7043         return (-1);
7044     }
7045 
7046     return (0);
7047 }
7048 
7049 /* release split MCP access lock register */
7050 static void bxe_release_alr(struct bxe_softc *sc)
7051 {
7052     REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
7053 }
7054 
7055 static void
7056 bxe_fan_failure(struct bxe_softc *sc)
7057 {
7058     int port = SC_PORT(sc);
7059     uint32_t ext_phy_config;
7060 
7061     /* mark the failure */
7062     ext_phy_config =
7063         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
7064 
7065     ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
7066     ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
7067     SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
7068              ext_phy_config);
7069 
7070     /* log the failure */
7071     BLOGW(sc, "Fan Failure has caused the driver to shutdown "
7072               "the card to prevent permanent damage. "
7073               "Please contact OEM Support for assistance\n");
7074 
7075     /* XXX */
7076 #if 1
7077     bxe_panic(sc, ("Schedule task to handle fan failure\n"));
7078 #else
7079     /*
7080      * Schedule device reset (unload)
7081      * This is due to some boards consuming sufficient power when driver is
7082      * up to overheat if fan fails.
7083      */
7084     bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
7085     schedule_delayed_work(&sc->sp_rtnl_task, 0);
7086 #endif
7087 }
7088 
7089 /* this function is called upon a link interrupt */
7090 static void
7091 bxe_link_attn(struct bxe_softc *sc)
7092 {
7093     uint32_t pause_enabled = 0;
7094     struct host_port_stats *pstats;
7095     int cmng_fns;
7096 
7097     /* Make sure that we are synced with the current statistics */
7098     bxe_stats_handle(sc, STATS_EVENT_STOP);
7099 
7100     elink_link_update(&sc->link_params, &sc->link_vars);
7101 
7102     if (sc->link_vars.link_up) {
7103 
7104         /* dropless flow control */
7105         if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
7106             pause_enabled = 0;
7107 
7108             if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
7109                 pause_enabled = 1;
7110             }
7111 
7112             REG_WR(sc,
7113                    (BAR_USTRORM_INTMEM +
7114                     USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
7115                    pause_enabled);
7116         }
7117 
7118         if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
7119             pstats = BXE_SP(sc, port_stats);
7120             /* reset old mac stats */
7121             memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
7122         }
7123 
7124         if (sc->state == BXE_STATE_OPEN) {
7125             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
7126         }
7127     }
7128 
7129     if (sc->link_vars.link_up && sc->link_vars.line_speed) {
7130         cmng_fns = bxe_get_cmng_fns_mode(sc);
7131 
7132         if (cmng_fns != CMNG_FNS_NONE) {
7133             bxe_cmng_fns_init(sc, FALSE, cmng_fns);
7134             storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7135         } else {
7136             /* rate shaping and fairness are disabled */
7137             BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
7138         }
7139     }
7140 
7141     bxe_link_report_locked(sc);
7142 
7143     if (IS_MF(sc)) {
7144         ; // XXX bxe_link_sync_notify(sc);
7145     }
7146 }
7147 
7148 static void
7149 bxe_attn_int_asserted(struct bxe_softc *sc,
7150                       uint32_t         asserted)
7151 {
7152     int port = SC_PORT(sc);
7153     uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7154                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
7155     uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7156                                         NIG_REG_MASK_INTERRUPT_PORT0;
7157     uint32_t aeu_mask;
7158     uint32_t nig_mask = 0;
7159     uint32_t reg_addr;
7160     uint32_t igu_acked;
7161     uint32_t cnt;
7162 
7163     if (sc->attn_state & asserted) {
7164         BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7165     }
7166 
7167     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7168 
7169     aeu_mask = REG_RD(sc, aeu_addr);
7170 
7171     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7172           aeu_mask, asserted);
7173 
7174     aeu_mask &= ~(asserted & 0x3ff);
7175 
7176     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7177 
7178     REG_WR(sc, aeu_addr, aeu_mask);
7179 
7180     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7181 
7182     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7183     sc->attn_state |= asserted;
7184     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7185 
7186     if (asserted & ATTN_HARD_WIRED_MASK) {
7187         if (asserted & ATTN_NIG_FOR_FUNC) {
7188 
7189 	    bxe_acquire_phy_lock(sc);
7190             /* save nig interrupt mask */
7191             nig_mask = REG_RD(sc, nig_int_mask_addr);
7192 
7193             /* If nig_mask is not set, no need to call the update function */
7194             if (nig_mask) {
7195                 REG_WR(sc, nig_int_mask_addr, 0);
7196 
7197                 bxe_link_attn(sc);
7198             }
7199 
7200             /* handle unicore attn? */
7201         }
7202 
7203         if (asserted & ATTN_SW_TIMER_4_FUNC) {
7204             BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7205         }
7206 
7207         if (asserted & GPIO_2_FUNC) {
7208             BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7209         }
7210 
7211         if (asserted & GPIO_3_FUNC) {
7212             BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7213         }
7214 
7215         if (asserted & GPIO_4_FUNC) {
7216             BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7217         }
7218 
7219         if (port == 0) {
7220             if (asserted & ATTN_GENERAL_ATTN_1) {
7221                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7222                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7223             }
7224             if (asserted & ATTN_GENERAL_ATTN_2) {
7225                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7226                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7227             }
7228             if (asserted & ATTN_GENERAL_ATTN_3) {
7229                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7230                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7231             }
7232         } else {
7233             if (asserted & ATTN_GENERAL_ATTN_4) {
7234                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7235                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7236             }
7237             if (asserted & ATTN_GENERAL_ATTN_5) {
7238                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7239                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7240             }
7241             if (asserted & ATTN_GENERAL_ATTN_6) {
7242                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7243                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7244             }
7245         }
7246     } /* hardwired */
7247 
7248     if (sc->devinfo.int_block == INT_BLOCK_HC) {
7249         reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7250     } else {
7251         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7252     }
7253 
7254     BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7255           asserted,
7256           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7257     REG_WR(sc, reg_addr, asserted);
7258 
7259     /* now set back the mask */
7260     if (asserted & ATTN_NIG_FOR_FUNC) {
7261         /*
7262          * Verify that IGU ack through BAR was written before restoring
7263          * NIG mask. This loop should exit after 2-3 iterations max.
7264          */
7265         if (sc->devinfo.int_block != INT_BLOCK_HC) {
7266             cnt = 0;
7267 
7268             do {
7269                 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7270             } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7271                      (++cnt < MAX_IGU_ATTN_ACK_TO));
7272 
7273             if (!igu_acked) {
7274                 BLOGE(sc, "Failed to verify IGU ack on time\n");
7275             }
7276 
7277             mb();
7278         }
7279 
7280         REG_WR(sc, nig_int_mask_addr, nig_mask);
7281 
7282 	bxe_release_phy_lock(sc);
7283     }
7284 }
7285 
7286 static void
7287 bxe_print_next_block(struct bxe_softc *sc,
7288                      int              idx,
7289                      const char       *blk)
7290 {
7291     BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7292 }
7293 
7294 static int
7295 bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7296                               uint32_t         sig,
7297                               int              par_num,
7298                               uint8_t          print)
7299 {
7300     uint32_t cur_bit = 0;
7301     int i = 0;
7302 
7303     for (i = 0; sig; i++) {
7304         cur_bit = ((uint32_t)0x1 << i);
7305         if (sig & cur_bit) {
7306             switch (cur_bit) {
7307             case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7308                 if (print)
7309                     bxe_print_next_block(sc, par_num++, "BRB");
7310                 break;
7311             case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7312                 if (print)
7313                     bxe_print_next_block(sc, par_num++, "PARSER");
7314                 break;
7315             case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7316                 if (print)
7317                     bxe_print_next_block(sc, par_num++, "TSDM");
7318                 break;
7319             case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7320                 if (print)
7321                     bxe_print_next_block(sc, par_num++, "SEARCHER");
7322                 break;
7323             case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7324                 if (print)
7325                     bxe_print_next_block(sc, par_num++, "TCM");
7326                 break;
7327             case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7328                 if (print)
7329                     bxe_print_next_block(sc, par_num++, "TSEMI");
7330                 break;
7331             case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7332                 if (print)
7333                     bxe_print_next_block(sc, par_num++, "XPB");
7334                 break;
7335             }
7336 
7337             /* Clear the bit */
7338             sig &= ~cur_bit;
7339         }
7340     }
7341 
7342     return (par_num);
7343 }
7344 
7345 static int
7346 bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7347                               uint32_t         sig,
7348                               int              par_num,
7349                               uint8_t          *global,
7350                               uint8_t          print)
7351 {
7352     int i = 0;
7353     uint32_t cur_bit = 0;
7354     for (i = 0; sig; i++) {
7355         cur_bit = ((uint32_t)0x1 << i);
7356         if (sig & cur_bit) {
7357             switch (cur_bit) {
7358             case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7359                 if (print)
7360                     bxe_print_next_block(sc, par_num++, "PBF");
7361                 break;
7362             case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7363                 if (print)
7364                     bxe_print_next_block(sc, par_num++, "QM");
7365                 break;
7366             case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7367                 if (print)
7368                     bxe_print_next_block(sc, par_num++, "TM");
7369                 break;
7370             case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7371                 if (print)
7372                     bxe_print_next_block(sc, par_num++, "XSDM");
7373                 break;
7374             case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7375                 if (print)
7376                     bxe_print_next_block(sc, par_num++, "XCM");
7377                 break;
7378             case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7379                 if (print)
7380                     bxe_print_next_block(sc, par_num++, "XSEMI");
7381                 break;
7382             case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7383                 if (print)
7384                     bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7385                 break;
7386             case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7387                 if (print)
7388                     bxe_print_next_block(sc, par_num++, "NIG");
7389                 break;
7390             case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7391                 if (print)
7392                     bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7393                 *global = TRUE;
7394                 break;
7395             case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7396                 if (print)
7397                     bxe_print_next_block(sc, par_num++, "DEBUG");
7398                 break;
7399             case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7400                 if (print)
7401                     bxe_print_next_block(sc, par_num++, "USDM");
7402                 break;
7403             case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7404                 if (print)
7405                     bxe_print_next_block(sc, par_num++, "UCM");
7406                 break;
7407             case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7408                 if (print)
7409                     bxe_print_next_block(sc, par_num++, "USEMI");
7410                 break;
7411             case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7412                 if (print)
7413                     bxe_print_next_block(sc, par_num++, "UPB");
7414                 break;
7415             case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7416                 if (print)
7417                     bxe_print_next_block(sc, par_num++, "CSDM");
7418                 break;
7419             case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7420                 if (print)
7421                     bxe_print_next_block(sc, par_num++, "CCM");
7422                 break;
7423             }
7424 
7425             /* Clear the bit */
7426             sig &= ~cur_bit;
7427         }
7428     }
7429 
7430     return (par_num);
7431 }
7432 
7433 static int
7434 bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7435                               uint32_t         sig,
7436                               int              par_num,
7437                               uint8_t          print)
7438 {
7439     uint32_t cur_bit = 0;
7440     int i = 0;
7441 
7442     for (i = 0; sig; i++) {
7443         cur_bit = ((uint32_t)0x1 << i);
7444         if (sig & cur_bit) {
7445             switch (cur_bit) {
7446             case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7447                 if (print)
7448                     bxe_print_next_block(sc, par_num++, "CSEMI");
7449                 break;
7450             case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7451                 if (print)
7452                     bxe_print_next_block(sc, par_num++, "PXP");
7453                 break;
7454             case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7455                 if (print)
7456                     bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7457                 break;
7458             case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7459                 if (print)
7460                     bxe_print_next_block(sc, par_num++, "CFC");
7461                 break;
7462             case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7463                 if (print)
7464                     bxe_print_next_block(sc, par_num++, "CDU");
7465                 break;
7466             case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7467                 if (print)
7468                     bxe_print_next_block(sc, par_num++, "DMAE");
7469                 break;
7470             case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7471                 if (print)
7472                     bxe_print_next_block(sc, par_num++, "IGU");
7473                 break;
7474             case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7475                 if (print)
7476                     bxe_print_next_block(sc, par_num++, "MISC");
7477                 break;
7478             }
7479 
7480             /* Clear the bit */
7481             sig &= ~cur_bit;
7482         }
7483     }
7484 
7485     return (par_num);
7486 }
7487 
7488 static int
7489 bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7490                               uint32_t         sig,
7491                               int              par_num,
7492                               uint8_t          *global,
7493                               uint8_t          print)
7494 {
7495     uint32_t cur_bit = 0;
7496     int i = 0;
7497 
7498     for (i = 0; sig; i++) {
7499         cur_bit = ((uint32_t)0x1 << i);
7500         if (sig & cur_bit) {
7501             switch (cur_bit) {
7502             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7503                 if (print)
7504                     bxe_print_next_block(sc, par_num++, "MCP ROM");
7505                 *global = TRUE;
7506                 break;
7507             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7508                 if (print)
7509                     bxe_print_next_block(sc, par_num++,
7510                               "MCP UMP RX");
7511                 *global = TRUE;
7512                 break;
7513             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7514                 if (print)
7515                     bxe_print_next_block(sc, par_num++,
7516                               "MCP UMP TX");
7517                 *global = TRUE;
7518                 break;
7519             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7520                 if (print)
7521                     bxe_print_next_block(sc, par_num++,
7522                               "MCP SCPAD");
7523                 *global = TRUE;
7524                 break;
7525             }
7526 
7527             /* Clear the bit */
7528             sig &= ~cur_bit;
7529         }
7530     }
7531 
7532     return (par_num);
7533 }
7534 
7535 static int
7536 bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7537                               uint32_t         sig,
7538                               int              par_num,
7539                               uint8_t          print)
7540 {
7541     uint32_t cur_bit = 0;
7542     int i = 0;
7543 
7544     for (i = 0; sig; i++) {
7545         cur_bit = ((uint32_t)0x1 << i);
7546         if (sig & cur_bit) {
7547             switch (cur_bit) {
7548             case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7549                 if (print)
7550                     bxe_print_next_block(sc, par_num++, "PGLUE_B");
7551                 break;
7552             case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7553                 if (print)
7554                     bxe_print_next_block(sc, par_num++, "ATC");
7555                 break;
7556             }
7557 
7558             /* Clear the bit */
7559             sig &= ~cur_bit;
7560         }
7561     }
7562 
7563     return (par_num);
7564 }
7565 
7566 static uint8_t
7567 bxe_parity_attn(struct bxe_softc *sc,
7568                 uint8_t          *global,
7569                 uint8_t          print,
7570                 uint32_t         *sig)
7571 {
7572     int par_num = 0;
7573 
7574     if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7575         (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7576         (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7577         (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7578         (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7579         BLOGE(sc, "Parity error: HW block parity attention:\n"
7580                   "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7581               (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7582               (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7583               (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7584               (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7585               (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7586 
7587         if (print)
7588             BLOGI(sc, "Parity errors detected in blocks: ");
7589 
7590         par_num =
7591             bxe_check_blocks_with_parity0(sc, sig[0] &
7592                                           HW_PRTY_ASSERT_SET_0,
7593                                           par_num, print);
7594         par_num =
7595             bxe_check_blocks_with_parity1(sc, sig[1] &
7596                                           HW_PRTY_ASSERT_SET_1,
7597                                           par_num, global, print);
7598         par_num =
7599             bxe_check_blocks_with_parity2(sc, sig[2] &
7600                                           HW_PRTY_ASSERT_SET_2,
7601                                           par_num, print);
7602         par_num =
7603             bxe_check_blocks_with_parity3(sc, sig[3] &
7604                                           HW_PRTY_ASSERT_SET_3,
7605                                           par_num, global, print);
7606         par_num =
7607             bxe_check_blocks_with_parity4(sc, sig[4] &
7608                                           HW_PRTY_ASSERT_SET_4,
7609                                           par_num, print);
7610 
7611         if (print)
7612             BLOGI(sc, "\n");
7613 
7614         return (TRUE);
7615     }
7616 
7617     return (FALSE);
7618 }
7619 
7620 static uint8_t
7621 bxe_chk_parity_attn(struct bxe_softc *sc,
7622                     uint8_t          *global,
7623                     uint8_t          print)
7624 {
7625     struct attn_route attn = { {0} };
7626     int port = SC_PORT(sc);
7627 
7628     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7629     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7630     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7631     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7632 
7633     /*
7634      * Since MCP attentions can't be disabled inside the block, we need to
7635      * read AEU registers to see whether they're currently disabled
7636      */
7637     attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
7638                                       : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) &
7639                          MISC_AEU_ENABLE_MCP_PRTY_BITS) |
7640                         ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
7641 
7642 
7643     if (!CHIP_IS_E1x(sc))
7644         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7645 
7646     return (bxe_parity_attn(sc, global, print, attn.sig));
7647 }
7648 
7649 static void
7650 bxe_attn_int_deasserted4(struct bxe_softc *sc,
7651                          uint32_t         attn)
7652 {
7653     uint32_t val;
7654 
7655     if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7656         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7657         BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7658         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7659             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7660         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7661             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7662         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7663             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7664         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7665             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7666         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7667             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7668         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7669             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7670         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7671             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7672         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7673             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7674         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7675             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7676     }
7677 
7678     if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7679         val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7680         BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7681         if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7682             BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7683         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7684             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7685         if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7686             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7687         if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7688             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7689         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7690             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7691         if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7692             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7693     }
7694 
7695     if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7696                 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7697         BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7698               (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7699                                  AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7700     }
7701 }
7702 
7703 static void
7704 bxe_e1h_disable(struct bxe_softc *sc)
7705 {
7706     int port = SC_PORT(sc);
7707 
7708     bxe_tx_disable(sc);
7709 
7710     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7711 }
7712 
7713 static void
7714 bxe_e1h_enable(struct bxe_softc *sc)
7715 {
7716     int port = SC_PORT(sc);
7717 
7718     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7719 
7720     // XXX bxe_tx_enable(sc);
7721 }
7722 
7723 /*
7724  * called due to MCP event (on pmf):
7725  *   reread new bandwidth configuration
7726  *   configure FW
7727  *   notify others function about the change
7728  */
7729 static void
7730 bxe_config_mf_bw(struct bxe_softc *sc)
7731 {
7732     if (sc->link_vars.link_up) {
7733         bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
7734         // XXX bxe_link_sync_notify(sc);
7735     }
7736 
7737     storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7738 }
7739 
7740 static void
7741 bxe_set_mf_bw(struct bxe_softc *sc)
7742 {
7743     bxe_config_mf_bw(sc);
7744     bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
7745 }
7746 
7747 static void
7748 bxe_handle_eee_event(struct bxe_softc *sc)
7749 {
7750     BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
7751     bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
7752 }
7753 
7754 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
7755 
7756 static void
7757 bxe_drv_info_ether_stat(struct bxe_softc *sc)
7758 {
7759     struct eth_stats_info *ether_stat =
7760         &sc->sp->drv_info_to_mcp.ether_stat;
7761 
7762     strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
7763             ETH_STAT_INFO_VERSION_LEN);
7764 
7765     /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
7766     sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
7767                                           DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
7768                                           ether_stat->mac_local + MAC_PAD,
7769                                           MAC_PAD, ETH_ALEN);
7770 
7771     ether_stat->mtu_size = sc->mtu;
7772 
7773     ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
7774     if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
7775         ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
7776     }
7777 
7778     // XXX ether_stat->feature_flags |= ???;
7779 
7780     ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
7781 
7782     ether_stat->txq_size = sc->tx_ring_size;
7783     ether_stat->rxq_size = sc->rx_ring_size;
7784 }
7785 
7786 static void
7787 bxe_handle_drv_info_req(struct bxe_softc *sc)
7788 {
7789     enum drv_info_opcode op_code;
7790     uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
7791 
7792     /* if drv_info version supported by MFW doesn't match - send NACK */
7793     if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
7794         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
7795         return;
7796     }
7797 
7798     op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
7799                DRV_INFO_CONTROL_OP_CODE_SHIFT);
7800 
7801     memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
7802 
7803     switch (op_code) {
7804     case ETH_STATS_OPCODE:
7805         bxe_drv_info_ether_stat(sc);
7806         break;
7807     case FCOE_STATS_OPCODE:
7808     case ISCSI_STATS_OPCODE:
7809     default:
7810         /* if op code isn't supported - send NACK */
7811         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
7812         return;
7813     }
7814 
7815     /*
7816      * If we got drv_info attn from MFW then these fields are defined in
7817      * shmem2 for sure
7818      */
7819     SHMEM2_WR(sc, drv_info_host_addr_lo,
7820               U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
7821     SHMEM2_WR(sc, drv_info_host_addr_hi,
7822               U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
7823 
7824     bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
7825 }
7826 
7827 static void
7828 bxe_dcc_event(struct bxe_softc *sc,
7829               uint32_t         dcc_event)
7830 {
7831     BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
7832 
7833     if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
7834         /*
7835          * This is the only place besides the function initialization
7836          * where the sc->flags can change so it is done without any
7837          * locks
7838          */
7839         if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
7840             BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
7841             sc->flags |= BXE_MF_FUNC_DIS;
7842             bxe_e1h_disable(sc);
7843         } else {
7844             BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
7845             sc->flags &= ~BXE_MF_FUNC_DIS;
7846             bxe_e1h_enable(sc);
7847         }
7848         dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
7849     }
7850 
7851     if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
7852         bxe_config_mf_bw(sc);
7853         dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
7854     }
7855 
7856     /* Report results to MCP */
7857     if (dcc_event)
7858         bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
7859     else
7860         bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
7861 }
7862 
7863 static void
7864 bxe_pmf_update(struct bxe_softc *sc)
7865 {
7866     int port = SC_PORT(sc);
7867     uint32_t val;
7868 
7869     sc->port.pmf = 1;
7870     BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
7871 
7872     /*
7873      * We need the mb() to ensure the ordering between the writing to
7874      * sc->port.pmf here and reading it from the bxe_periodic_task().
7875      */
7876     mb();
7877 
7878     /* queue a periodic task */
7879     // XXX schedule task...
7880 
7881     // XXX bxe_dcbx_pmf_update(sc);
7882 
7883     /* enable nig attention */
7884     val = (0xff0f | (1 << (SC_VN(sc) + 4)));
7885     if (sc->devinfo.int_block == INT_BLOCK_HC) {
7886         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
7887         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
7888     } else if (!CHIP_IS_E1x(sc)) {
7889         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
7890         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
7891     }
7892 
7893     bxe_stats_handle(sc, STATS_EVENT_PMF);
7894 }
7895 
7896 static int
7897 bxe_mc_assert(struct bxe_softc *sc)
7898 {
7899     char last_idx;
7900     int i, rc = 0;
7901     uint32_t row0, row1, row2, row3;
7902 
7903     /* XSTORM */
7904     last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
7905     if (last_idx)
7906         BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7907 
7908     /* print the asserts */
7909     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7910 
7911         row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
7912         row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
7913         row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
7914         row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
7915 
7916         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7917             BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7918                   i, row3, row2, row1, row0);
7919             rc++;
7920         } else {
7921             break;
7922         }
7923     }
7924 
7925     /* TSTORM */
7926     last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
7927     if (last_idx) {
7928         BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7929     }
7930 
7931     /* print the asserts */
7932     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7933 
7934         row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
7935         row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
7936         row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
7937         row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
7938 
7939         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7940             BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7941                   i, row3, row2, row1, row0);
7942             rc++;
7943         } else {
7944             break;
7945         }
7946     }
7947 
7948     /* CSTORM */
7949     last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
7950     if (last_idx) {
7951         BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7952     }
7953 
7954     /* print the asserts */
7955     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7956 
7957         row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
7958         row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
7959         row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
7960         row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
7961 
7962         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7963             BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7964                   i, row3, row2, row1, row0);
7965             rc++;
7966         } else {
7967             break;
7968         }
7969     }
7970 
7971     /* USTORM */
7972     last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
7973     if (last_idx) {
7974         BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7975     }
7976 
7977     /* print the asserts */
7978     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7979 
7980         row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
7981         row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
7982         row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
7983         row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
7984 
7985         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7986             BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7987                   i, row3, row2, row1, row0);
7988             rc++;
7989         } else {
7990             break;
7991         }
7992     }
7993 
7994     return (rc);
7995 }
7996 
7997 static void
7998 bxe_attn_int_deasserted3(struct bxe_softc *sc,
7999                          uint32_t         attn)
8000 {
8001     int func = SC_FUNC(sc);
8002     uint32_t val;
8003 
8004     if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
8005 
8006         if (attn & BXE_PMF_LINK_ASSERT(sc)) {
8007 
8008             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8009             bxe_read_mf_cfg(sc);
8010             sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
8011                 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
8012             val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
8013 
8014             if (val & DRV_STATUS_DCC_EVENT_MASK)
8015                 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
8016 
8017             if (val & DRV_STATUS_SET_MF_BW)
8018                 bxe_set_mf_bw(sc);
8019 
8020             if (val & DRV_STATUS_DRV_INFO_REQ)
8021                 bxe_handle_drv_info_req(sc);
8022 
8023             if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
8024                 bxe_pmf_update(sc);
8025 
8026             if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
8027                 bxe_handle_eee_event(sc);
8028 
8029             if (sc->link_vars.periodic_flags &
8030                 ELINK_PERIODIC_FLAGS_LINK_EVENT) {
8031                 /* sync with link */
8032 		bxe_acquire_phy_lock(sc);
8033                 sc->link_vars.periodic_flags &=
8034                     ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
8035 		bxe_release_phy_lock(sc);
8036                 if (IS_MF(sc))
8037                     ; // XXX bxe_link_sync_notify(sc);
8038                 bxe_link_report(sc);
8039             }
8040 
8041             /*
8042              * Always call it here: bxe_link_report() will
8043              * prevent the link indication duplication.
8044              */
8045             bxe_link_status_update(sc);
8046 
8047         } else if (attn & BXE_MC_ASSERT_BITS) {
8048 
8049             BLOGE(sc, "MC assert!\n");
8050             bxe_mc_assert(sc);
8051             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
8052             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
8053             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
8054             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
8055             bxe_panic(sc, ("MC assert!\n"));
8056 
8057         } else if (attn & BXE_MCP_ASSERT) {
8058 
8059             BLOGE(sc, "MCP assert!\n");
8060             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
8061             // XXX bxe_fw_dump(sc);
8062 
8063         } else {
8064             BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
8065         }
8066     }
8067 
8068     if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
8069         BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
8070         if (attn & BXE_GRC_TIMEOUT) {
8071             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
8072             BLOGE(sc, "GRC time-out 0x%08x\n", val);
8073         }
8074         if (attn & BXE_GRC_RSV) {
8075             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
8076             BLOGE(sc, "GRC reserved 0x%08x\n", val);
8077         }
8078         REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
8079     }
8080 }
8081 
8082 static void
8083 bxe_attn_int_deasserted2(struct bxe_softc *sc,
8084                          uint32_t         attn)
8085 {
8086     int port = SC_PORT(sc);
8087     int reg_offset;
8088     uint32_t val0, mask0, val1, mask1;
8089     uint32_t val;
8090 
8091     if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
8092         val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
8093         BLOGE(sc, "CFC hw attention 0x%08x\n", val);
8094         /* CFC error attention */
8095         if (val & 0x2) {
8096             BLOGE(sc, "FATAL error from CFC\n");
8097         }
8098     }
8099 
8100     if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
8101         val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
8102         BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
8103         /* RQ_USDMDP_FIFO_OVERFLOW */
8104         if (val & 0x18000) {
8105             BLOGE(sc, "FATAL error from PXP\n");
8106         }
8107 
8108         if (!CHIP_IS_E1x(sc)) {
8109             val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
8110             BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
8111         }
8112     }
8113 
8114 #define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
8115 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
8116 
8117     if (attn & AEU_PXP2_HW_INT_BIT) {
8118         /*  CQ47854 workaround do not panic on
8119          *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8120          */
8121         if (!CHIP_IS_E1x(sc)) {
8122             mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
8123             val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
8124             mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
8125             val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
8126             /*
8127              * If the olny PXP2_EOP_ERROR_BIT is set in
8128              * STS0 and STS1 - clear it
8129              *
8130              * probably we lose additional attentions between
8131              * STS0 and STS_CLR0, in this case user will not
8132              * be notified about them
8133              */
8134             if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
8135                 !(val1 & mask1))
8136                 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
8137 
8138             /* print the register, since no one can restore it */
8139             BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8140 
8141             /*
8142              * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8143              * then notify
8144              */
8145             if (val0 & PXP2_EOP_ERROR_BIT) {
8146                 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8147 
8148                 /*
8149                  * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8150                  * set then clear attention from PXP2 block without panic
8151                  */
8152                 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8153                     ((val1 & mask1) == 0))
8154                     attn &= ~AEU_PXP2_HW_INT_BIT;
8155             }
8156         }
8157     }
8158 
8159     if (attn & HW_INTERRUT_ASSERT_SET_2) {
8160         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8161                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8162 
8163         val = REG_RD(sc, reg_offset);
8164         val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8165         REG_WR(sc, reg_offset, val);
8166 
8167         BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8168               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8169         bxe_panic(sc, ("HW block attention set2\n"));
8170     }
8171 }
8172 
8173 static void
8174 bxe_attn_int_deasserted1(struct bxe_softc *sc,
8175                          uint32_t         attn)
8176 {
8177     int port = SC_PORT(sc);
8178     int reg_offset;
8179     uint32_t val;
8180 
8181     if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8182         val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8183         BLOGE(sc, "DB hw attention 0x%08x\n", val);
8184         /* DORQ discard attention */
8185         if (val & 0x2) {
8186             BLOGE(sc, "FATAL error from DORQ\n");
8187         }
8188     }
8189 
8190     if (attn & HW_INTERRUT_ASSERT_SET_1) {
8191         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8192                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8193 
8194         val = REG_RD(sc, reg_offset);
8195         val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8196         REG_WR(sc, reg_offset, val);
8197 
8198         BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8199               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8200         bxe_panic(sc, ("HW block attention set1\n"));
8201     }
8202 }
8203 
8204 static void
8205 bxe_attn_int_deasserted0(struct bxe_softc *sc,
8206                          uint32_t         attn)
8207 {
8208     int port = SC_PORT(sc);
8209     int reg_offset;
8210     uint32_t val;
8211 
8212     reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8213                           MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8214 
8215     if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8216         val = REG_RD(sc, reg_offset);
8217         val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8218         REG_WR(sc, reg_offset, val);
8219 
8220         BLOGW(sc, "SPIO5 hw attention\n");
8221 
8222         /* Fan failure attention */
8223         elink_hw_reset_phy(&sc->link_params);
8224         bxe_fan_failure(sc);
8225     }
8226 
8227     if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8228 	bxe_acquire_phy_lock(sc);
8229         elink_handle_module_detect_int(&sc->link_params);
8230 	bxe_release_phy_lock(sc);
8231     }
8232 
8233     if (attn & HW_INTERRUT_ASSERT_SET_0) {
8234         val = REG_RD(sc, reg_offset);
8235         val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8236         REG_WR(sc, reg_offset, val);
8237 
8238         bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8239                        (attn & HW_INTERRUT_ASSERT_SET_0)));
8240     }
8241 }
8242 
8243 static void
8244 bxe_attn_int_deasserted(struct bxe_softc *sc,
8245                         uint32_t         deasserted)
8246 {
8247     struct attn_route attn;
8248     struct attn_route *group_mask;
8249     int port = SC_PORT(sc);
8250     int index;
8251     uint32_t reg_addr;
8252     uint32_t val;
8253     uint32_t aeu_mask;
8254     uint8_t global = FALSE;
8255 
8256     /*
8257      * Need to take HW lock because MCP or other port might also
8258      * try to handle this event.
8259      */
8260     bxe_acquire_alr(sc);
8261 
8262     if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8263         /* XXX
8264          * In case of parity errors don't handle attentions so that
8265          * other function would "see" parity errors.
8266          */
8267         sc->recovery_state = BXE_RECOVERY_INIT;
8268         // XXX schedule a recovery task...
8269         /* disable HW interrupts */
8270         bxe_int_disable(sc);
8271         bxe_release_alr(sc);
8272         return;
8273     }
8274 
8275     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8276     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8277     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8278     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8279     if (!CHIP_IS_E1x(sc)) {
8280         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8281     } else {
8282         attn.sig[4] = 0;
8283     }
8284 
8285     BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8286           attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8287 
8288     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8289         if (deasserted & (1 << index)) {
8290             group_mask = &sc->attn_group[index];
8291 
8292             BLOGD(sc, DBG_INTR,
8293                   "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8294                   group_mask->sig[0], group_mask->sig[1],
8295                   group_mask->sig[2], group_mask->sig[3],
8296                   group_mask->sig[4]);
8297 
8298             bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8299             bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8300             bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8301             bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8302             bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8303         }
8304     }
8305 
8306     bxe_release_alr(sc);
8307 
8308     if (sc->devinfo.int_block == INT_BLOCK_HC) {
8309         reg_addr = (HC_REG_COMMAND_REG + port*32 +
8310                     COMMAND_REG_ATTN_BITS_CLR);
8311     } else {
8312         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8313     }
8314 
8315     val = ~deasserted;
8316     BLOGD(sc, DBG_INTR,
8317           "about to mask 0x%08x at %s addr 0x%08x\n", val,
8318           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8319     REG_WR(sc, reg_addr, val);
8320 
8321     if (~sc->attn_state & deasserted) {
8322         BLOGE(sc, "IGU error\n");
8323     }
8324 
8325     reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8326                       MISC_REG_AEU_MASK_ATTN_FUNC_0;
8327 
8328     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8329 
8330     aeu_mask = REG_RD(sc, reg_addr);
8331 
8332     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8333           aeu_mask, deasserted);
8334     aeu_mask |= (deasserted & 0x3ff);
8335     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8336 
8337     REG_WR(sc, reg_addr, aeu_mask);
8338     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8339 
8340     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8341     sc->attn_state &= ~deasserted;
8342     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8343 }
8344 
8345 static void
8346 bxe_attn_int(struct bxe_softc *sc)
8347 {
8348     /* read local copy of bits */
8349     uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8350     uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8351     uint32_t attn_state = sc->attn_state;
8352 
8353     /* look for changed bits */
8354     uint32_t asserted   =  attn_bits & ~attn_ack & ~attn_state;
8355     uint32_t deasserted = ~attn_bits &  attn_ack &  attn_state;
8356 
8357     BLOGD(sc, DBG_INTR,
8358           "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8359           attn_bits, attn_ack, asserted, deasserted);
8360 
8361     if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8362         BLOGE(sc, "BAD attention state\n");
8363     }
8364 
8365     /* handle bits that were raised */
8366     if (asserted) {
8367         bxe_attn_int_asserted(sc, asserted);
8368     }
8369 
8370     if (deasserted) {
8371         bxe_attn_int_deasserted(sc, deasserted);
8372     }
8373 }
8374 
8375 static uint16_t
8376 bxe_update_dsb_idx(struct bxe_softc *sc)
8377 {
8378     struct host_sp_status_block *def_sb = sc->def_sb;
8379     uint16_t rc = 0;
8380 
8381     mb(); /* status block is written to by the chip */
8382 
8383     if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8384         sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8385         rc |= BXE_DEF_SB_ATT_IDX;
8386     }
8387 
8388     if (sc->def_idx != def_sb->sp_sb.running_index) {
8389         sc->def_idx = def_sb->sp_sb.running_index;
8390         rc |= BXE_DEF_SB_IDX;
8391     }
8392 
8393     mb();
8394 
8395     return (rc);
8396 }
8397 
8398 static inline struct ecore_queue_sp_obj *
8399 bxe_cid_to_q_obj(struct bxe_softc *sc,
8400                  uint32_t         cid)
8401 {
8402     BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8403     return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8404 }
8405 
8406 static void
8407 bxe_handle_mcast_eqe(struct bxe_softc *sc)
8408 {
8409     struct ecore_mcast_ramrod_params rparam;
8410     int rc;
8411 
8412     memset(&rparam, 0, sizeof(rparam));
8413 
8414     rparam.mcast_obj = &sc->mcast_obj;
8415 
8416     BXE_MCAST_LOCK(sc);
8417 
8418     /* clear pending state for the last command */
8419     sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8420 
8421     /* if there are pending mcast commands - send them */
8422     if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8423         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8424         if (rc < 0) {
8425             BLOGD(sc, DBG_SP,
8426                 "ERROR: Failed to send pending mcast commands (%d)\n", rc);
8427         }
8428     }
8429 
8430     BXE_MCAST_UNLOCK(sc);
8431 }
8432 
8433 static void
8434 bxe_handle_classification_eqe(struct bxe_softc      *sc,
8435                               union event_ring_elem *elem)
8436 {
8437     unsigned long ramrod_flags = 0;
8438     int rc = 0;
8439     uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8440     struct ecore_vlan_mac_obj *vlan_mac_obj;
8441 
8442     /* always push next commands out, don't wait here */
8443     bit_set(&ramrod_flags, RAMROD_CONT);
8444 
8445     switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8446     case ECORE_FILTER_MAC_PENDING:
8447         BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8448         vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8449         break;
8450 
8451     case ECORE_FILTER_MCAST_PENDING:
8452         BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8453         /*
8454          * This is only relevant for 57710 where multicast MACs are
8455          * configured as unicast MACs using the same ramrod.
8456          */
8457         bxe_handle_mcast_eqe(sc);
8458         return;
8459 
8460     default:
8461         BLOGE(sc, "Unsupported classification command: %d\n",
8462               elem->message.data.eth_event.echo);
8463         return;
8464     }
8465 
8466     rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8467 
8468     if (rc < 0) {
8469         BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8470     } else if (rc > 0) {
8471         BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8472     }
8473 }
8474 
8475 static void
8476 bxe_handle_rx_mode_eqe(struct bxe_softc      *sc,
8477                        union event_ring_elem *elem)
8478 {
8479     bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8480 
8481     /* send rx_mode command again if was requested */
8482     if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8483                                &sc->sp_state)) {
8484         bxe_set_storm_rx_mode(sc);
8485     }
8486 }
8487 
8488 static void
8489 bxe_update_eq_prod(struct bxe_softc *sc,
8490                    uint16_t         prod)
8491 {
8492     storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8493     wmb(); /* keep prod updates ordered */
8494 }
8495 
8496 static void
8497 bxe_eq_int(struct bxe_softc *sc)
8498 {
8499     uint16_t hw_cons, sw_cons, sw_prod;
8500     union event_ring_elem *elem;
8501     uint8_t echo;
8502     uint32_t cid;
8503     uint8_t opcode;
8504     int spqe_cnt = 0;
8505     struct ecore_queue_sp_obj *q_obj;
8506     struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8507     struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8508 
8509     hw_cons = le16toh(*sc->eq_cons_sb);
8510 
8511     /*
8512      * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8513      * when we get to the next-page we need to adjust so the loop
8514      * condition below will be met. The next element is the size of a
8515      * regular element and hence incrementing by 1
8516      */
8517     if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8518         hw_cons++;
8519     }
8520 
8521     /*
8522      * This function may never run in parallel with itself for a
8523      * specific sc and no need for a read memory barrier here.
8524      */
8525     sw_cons = sc->eq_cons;
8526     sw_prod = sc->eq_prod;
8527 
8528     BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8529           hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8530 
8531     for (;
8532          sw_cons != hw_cons;
8533          sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8534 
8535         elem = &sc->eq[EQ_DESC(sw_cons)];
8536 
8537         /* elem CID originates from FW, actually LE */
8538         cid = SW_CID(elem->message.data.cfc_del_event.cid);
8539         opcode = elem->message.opcode;
8540 
8541         /* handle eq element */
8542         switch (opcode) {
8543 
8544         case EVENT_RING_OPCODE_STAT_QUERY:
8545             BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8546                   sc->stats_comp++);
8547             /* nothing to do with stats comp */
8548             goto next_spqe;
8549 
8550         case EVENT_RING_OPCODE_CFC_DEL:
8551             /* handle according to cid range */
8552             /* we may want to verify here that the sc state is HALTING */
8553             BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8554             q_obj = bxe_cid_to_q_obj(sc, cid);
8555             if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8556                 break;
8557             }
8558             goto next_spqe;
8559 
8560         case EVENT_RING_OPCODE_STOP_TRAFFIC:
8561             BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8562             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8563                 break;
8564             }
8565             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8566             goto next_spqe;
8567 
8568         case EVENT_RING_OPCODE_START_TRAFFIC:
8569             BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8570             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8571                 break;
8572             }
8573             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8574             goto next_spqe;
8575 
8576         case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8577             echo = elem->message.data.function_update_event.echo;
8578             if (echo == SWITCH_UPDATE) {
8579                 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8580                 if (f_obj->complete_cmd(sc, f_obj,
8581                                         ECORE_F_CMD_SWITCH_UPDATE)) {
8582                     break;
8583                 }
8584             }
8585             else {
8586                 BLOGD(sc, DBG_SP,
8587                       "AFEX: ramrod completed FUNCTION_UPDATE\n");
8588             }
8589             goto next_spqe;
8590 
8591         case EVENT_RING_OPCODE_FORWARD_SETUP:
8592             q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8593             if (q_obj->complete_cmd(sc, q_obj,
8594                                     ECORE_Q_CMD_SETUP_TX_ONLY)) {
8595                 break;
8596             }
8597             goto next_spqe;
8598 
8599         case EVENT_RING_OPCODE_FUNCTION_START:
8600             BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8601             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8602                 break;
8603             }
8604             goto next_spqe;
8605 
8606         case EVENT_RING_OPCODE_FUNCTION_STOP:
8607             BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8608             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8609                 break;
8610             }
8611             goto next_spqe;
8612         }
8613 
8614         switch (opcode | sc->state) {
8615         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8616         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8617             cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8618             BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8619             rss_raw->clear_pending(rss_raw);
8620             break;
8621 
8622         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8623         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8624         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8625         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8626         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8627         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8628             BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8629             bxe_handle_classification_eqe(sc, elem);
8630             break;
8631 
8632         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8633         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8634         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8635             BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8636             bxe_handle_mcast_eqe(sc);
8637             break;
8638 
8639         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8640         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8641         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8642             BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8643             bxe_handle_rx_mode_eqe(sc, elem);
8644             break;
8645 
8646         default:
8647             /* unknown event log error and continue */
8648             BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8649                   elem->message.opcode, sc->state);
8650         }
8651 
8652 next_spqe:
8653         spqe_cnt++;
8654     } /* for */
8655 
8656     mb();
8657     atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
8658 
8659     sc->eq_cons = sw_cons;
8660     sc->eq_prod = sw_prod;
8661 
8662     /* make sure that above mem writes were issued towards the memory */
8663     wmb();
8664 
8665     /* update producer */
8666     bxe_update_eq_prod(sc, sc->eq_prod);
8667 }
8668 
8669 static void
8670 bxe_handle_sp_tq(void *context,
8671                  int  pending)
8672 {
8673     struct bxe_softc *sc = (struct bxe_softc *)context;
8674     uint16_t status;
8675 
8676     BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
8677 
8678     /* what work needs to be performed? */
8679     status = bxe_update_dsb_idx(sc);
8680 
8681     BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
8682 
8683     /* HW attentions */
8684     if (status & BXE_DEF_SB_ATT_IDX) {
8685         BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
8686         bxe_attn_int(sc);
8687         status &= ~BXE_DEF_SB_ATT_IDX;
8688     }
8689 
8690     /* SP events: STAT_QUERY and others */
8691     if (status & BXE_DEF_SB_IDX) {
8692         /* handle EQ completions */
8693         BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
8694         bxe_eq_int(sc);
8695         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
8696                    le16toh(sc->def_idx), IGU_INT_NOP, 1);
8697         status &= ~BXE_DEF_SB_IDX;
8698     }
8699 
8700     /* if status is non zero then something went wrong */
8701     if (__predict_false(status)) {
8702         BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
8703     }
8704 
8705     /* ack status block only if something was actually handled */
8706     bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
8707                le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
8708 
8709     /*
8710      * Must be called after the EQ processing (since eq leads to sriov
8711      * ramrod completion flows).
8712      * This flow may have been scheduled by the arrival of a ramrod
8713      * completion, or by the sriov code rescheduling itself.
8714      */
8715     // XXX bxe_iov_sp_task(sc);
8716 
8717 }
8718 
8719 static void
8720 bxe_handle_fp_tq(void *context,
8721                  int  pending)
8722 {
8723     struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
8724     struct bxe_softc *sc = fp->sc;
8725     uint8_t more_tx = FALSE;
8726     uint8_t more_rx = FALSE;
8727 
8728     BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
8729 
8730     /* XXX
8731      * IFF_DRV_RUNNING state can't be checked here since we process
8732      * slowpath events on a client queue during setup. Instead
8733      * we need to add a "process/continue" flag here that the driver
8734      * can use to tell the task here not to do anything.
8735      */
8736 #if 0
8737     if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
8738         return;
8739     }
8740 #endif
8741 
8742     /* update the fastpath index */
8743     bxe_update_fp_sb_idx(fp);
8744 
8745     /* XXX add loop here if ever support multiple tx CoS */
8746     /* fp->txdata[cos] */
8747     if (bxe_has_tx_work(fp)) {
8748         BXE_FP_TX_LOCK(fp);
8749         more_tx = bxe_txeof(sc, fp);
8750         BXE_FP_TX_UNLOCK(fp);
8751     }
8752 
8753     if (bxe_has_rx_work(fp)) {
8754         more_rx = bxe_rxeof(sc, fp);
8755     }
8756 
8757     if (more_rx /*|| more_tx*/) {
8758         /* still more work to do */
8759         taskqueue_enqueue(fp->tq, &fp->tq_task);
8760         return;
8761     }
8762 
8763     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
8764                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
8765 }
8766 
8767 static void
8768 bxe_task_fp(struct bxe_fastpath *fp)
8769 {
8770     struct bxe_softc *sc = fp->sc;
8771     uint8_t more_tx = FALSE;
8772     uint8_t more_rx = FALSE;
8773 
8774     BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
8775 
8776     /* update the fastpath index */
8777     bxe_update_fp_sb_idx(fp);
8778 
8779     /* XXX add loop here if ever support multiple tx CoS */
8780     /* fp->txdata[cos] */
8781     if (bxe_has_tx_work(fp)) {
8782         BXE_FP_TX_LOCK(fp);
8783         more_tx = bxe_txeof(sc, fp);
8784         BXE_FP_TX_UNLOCK(fp);
8785     }
8786 
8787     if (bxe_has_rx_work(fp)) {
8788         more_rx = bxe_rxeof(sc, fp);
8789     }
8790 
8791     if (more_rx /*|| more_tx*/) {
8792         /* still more work to do, bail out if this ISR and process later */
8793         taskqueue_enqueue(fp->tq, &fp->tq_task);
8794         return;
8795     }
8796 
8797     /*
8798      * Here we write the fastpath index taken before doing any tx or rx work.
8799      * It is very well possible other hw events occurred up to this point and
8800      * they were actually processed accordingly above. Since we're going to
8801      * write an older fastpath index, an interrupt is coming which we might
8802      * not do any work in.
8803      */
8804     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
8805                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
8806 }
8807 
8808 /*
8809  * Legacy interrupt entry point.
8810  *
8811  * Verifies that the controller generated the interrupt and
8812  * then calls a separate routine to handle the various
8813  * interrupt causes: link, RX, and TX.
8814  */
8815 static void
8816 bxe_intr_legacy(void *xsc)
8817 {
8818     struct bxe_softc *sc = (struct bxe_softc *)xsc;
8819     struct bxe_fastpath *fp;
8820     uint16_t status, mask;
8821     int i;
8822 
8823     BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
8824 
8825     /*
8826      * 0 for ustorm, 1 for cstorm
8827      * the bits returned from ack_int() are 0-15
8828      * bit 0 = attention status block
8829      * bit 1 = fast path status block
8830      * a mask of 0x2 or more = tx/rx event
8831      * a mask of 1 = slow path event
8832      */
8833 
8834     status = bxe_ack_int(sc);
8835 
8836     /* the interrupt is not for us */
8837     if (__predict_false(status == 0)) {
8838         BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
8839         return;
8840     }
8841 
8842     BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
8843 
8844     FOR_EACH_ETH_QUEUE(sc, i) {
8845         fp = &sc->fp[i];
8846         mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
8847         if (status & mask) {
8848             /* acknowledge and disable further fastpath interrupts */
8849             bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8850             bxe_task_fp(fp);
8851             status &= ~mask;
8852         }
8853     }
8854 
8855     if (__predict_false(status & 0x1)) {
8856         /* acknowledge and disable further slowpath interrupts */
8857         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8858 
8859         /* schedule slowpath handler */
8860         taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8861 
8862         status &= ~0x1;
8863     }
8864 
8865     if (__predict_false(status)) {
8866         BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
8867     }
8868 }
8869 
8870 /* slowpath interrupt entry point */
8871 static void
8872 bxe_intr_sp(void *xsc)
8873 {
8874     struct bxe_softc *sc = (struct bxe_softc *)xsc;
8875 
8876     BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
8877 
8878     /* acknowledge and disable further slowpath interrupts */
8879     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8880 
8881     /* schedule slowpath handler */
8882     taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8883 }
8884 
8885 /* fastpath interrupt entry point */
8886 static void
8887 bxe_intr_fp(void *xfp)
8888 {
8889     struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
8890     struct bxe_softc *sc = fp->sc;
8891 
8892     BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
8893 
8894     BLOGD(sc, DBG_INTR,
8895           "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
8896           curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
8897 
8898     /* acknowledge and disable further fastpath interrupts */
8899     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8900 
8901     bxe_task_fp(fp);
8902 }
8903 
8904 /* Release all interrupts allocated by the driver. */
8905 static void
8906 bxe_interrupt_free(struct bxe_softc *sc)
8907 {
8908     int i;
8909 
8910     switch (sc->interrupt_mode) {
8911     case INTR_MODE_INTX:
8912         BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
8913         if (sc->intr[0].resource != NULL) {
8914             bus_release_resource(sc->dev,
8915                                  SYS_RES_IRQ,
8916                                  sc->intr[0].rid,
8917                                  sc->intr[0].resource);
8918         }
8919         break;
8920     case INTR_MODE_MSI:
8921         for (i = 0; i < sc->intr_count; i++) {
8922             BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
8923             if (sc->intr[i].resource && sc->intr[i].rid) {
8924                 bus_release_resource(sc->dev,
8925                                      SYS_RES_IRQ,
8926                                      sc->intr[i].rid,
8927                                      sc->intr[i].resource);
8928             }
8929         }
8930         pci_release_msi(sc->dev);
8931         break;
8932     case INTR_MODE_MSIX:
8933         for (i = 0; i < sc->intr_count; i++) {
8934             BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
8935             if (sc->intr[i].resource && sc->intr[i].rid) {
8936                 bus_release_resource(sc->dev,
8937                                      SYS_RES_IRQ,
8938                                      sc->intr[i].rid,
8939                                      sc->intr[i].resource);
8940             }
8941         }
8942         pci_release_msi(sc->dev);
8943         break;
8944     default:
8945         /* nothing to do as initial allocation failed */
8946         break;
8947     }
8948 }
8949 
8950 /*
8951  * This function determines and allocates the appropriate
8952  * interrupt based on system capabilites and user request.
8953  *
8954  * The user may force a particular interrupt mode, specify
8955  * the number of receive queues, specify the method for
8956  * distribuitng received frames to receive queues, or use
8957  * the default settings which will automatically select the
8958  * best supported combination.  In addition, the OS may or
8959  * may not support certain combinations of these settings.
8960  * This routine attempts to reconcile the settings requested
8961  * by the user with the capabilites available from the system
8962  * to select the optimal combination of features.
8963  *
8964  * Returns:
8965  *   0 = Success, !0 = Failure.
8966  */
8967 static int
8968 bxe_interrupt_alloc(struct bxe_softc *sc)
8969 {
8970     int msix_count = 0;
8971     int msi_count = 0;
8972     int num_requested = 0;
8973     int num_allocated = 0;
8974     int rid, i, j;
8975     int rc;
8976 
8977     /* get the number of available MSI/MSI-X interrupts from the OS */
8978     if (sc->interrupt_mode > 0) {
8979         if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
8980             msix_count = pci_msix_count(sc->dev);
8981         }
8982 
8983         if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
8984             msi_count = pci_msi_count(sc->dev);
8985         }
8986 
8987         BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
8988               msi_count, msix_count);
8989     }
8990 
8991     do { /* try allocating MSI-X interrupt resources (at least 2) */
8992         if (sc->interrupt_mode != INTR_MODE_MSIX) {
8993             break;
8994         }
8995 
8996         if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
8997             (msix_count < 2)) {
8998             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8999             break;
9000         }
9001 
9002         /* ask for the necessary number of MSI-X vectors */
9003         num_requested = min((sc->num_queues + 1), msix_count);
9004 
9005         BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
9006 
9007         num_allocated = num_requested;
9008         if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
9009             BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
9010             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9011             break;
9012         }
9013 
9014         if (num_allocated < 2) { /* possible? */
9015             BLOGE(sc, "MSI-X allocation less than 2!\n");
9016             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9017             pci_release_msi(sc->dev);
9018             break;
9019         }
9020 
9021         BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
9022               num_requested, num_allocated);
9023 
9024         /* best effort so use the number of vectors allocated to us */
9025         sc->intr_count = num_allocated;
9026         sc->num_queues = num_allocated - 1;
9027 
9028         rid = 1; /* initial resource identifier */
9029 
9030         /* allocate the MSI-X vectors */
9031         for (i = 0; i < num_allocated; i++) {
9032             sc->intr[i].rid = (rid + i);
9033 
9034             if ((sc->intr[i].resource =
9035                  bus_alloc_resource_any(sc->dev,
9036                                         SYS_RES_IRQ,
9037                                         &sc->intr[i].rid,
9038                                         RF_ACTIVE)) == NULL) {
9039                 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
9040                       i, (rid + i));
9041 
9042                 for (j = (i - 1); j >= 0; j--) {
9043                     bus_release_resource(sc->dev,
9044                                          SYS_RES_IRQ,
9045                                          sc->intr[j].rid,
9046                                          sc->intr[j].resource);
9047                 }
9048 
9049                 sc->intr_count = 0;
9050                 sc->num_queues = 0;
9051                 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9052                 pci_release_msi(sc->dev);
9053                 break;
9054             }
9055 
9056             BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
9057         }
9058     } while (0);
9059 
9060     do { /* try allocating MSI vector resources (at least 2) */
9061         if (sc->interrupt_mode != INTR_MODE_MSI) {
9062             break;
9063         }
9064 
9065         if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
9066             (msi_count < 1)) {
9067             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9068             break;
9069         }
9070 
9071         /* ask for a single MSI vector */
9072         num_requested = 1;
9073 
9074         BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
9075 
9076         num_allocated = num_requested;
9077         if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
9078             BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
9079             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9080             break;
9081         }
9082 
9083         if (num_allocated != 1) { /* possible? */
9084             BLOGE(sc, "MSI allocation is not 1!\n");
9085             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9086             pci_release_msi(sc->dev);
9087             break;
9088         }
9089 
9090         BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
9091               num_requested, num_allocated);
9092 
9093         /* best effort so use the number of vectors allocated to us */
9094         sc->intr_count = num_allocated;
9095         sc->num_queues = num_allocated;
9096 
9097         rid = 1; /* initial resource identifier */
9098 
9099         sc->intr[0].rid = rid;
9100 
9101         if ((sc->intr[0].resource =
9102              bus_alloc_resource_any(sc->dev,
9103                                     SYS_RES_IRQ,
9104                                     &sc->intr[0].rid,
9105                                     RF_ACTIVE)) == NULL) {
9106             BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid);
9107             sc->intr_count = 0;
9108             sc->num_queues = 0;
9109             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9110             pci_release_msi(sc->dev);
9111             break;
9112         }
9113 
9114         BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid);
9115     } while (0);
9116 
9117     do { /* try allocating INTx vector resources */
9118         if (sc->interrupt_mode != INTR_MODE_INTX) {
9119             break;
9120         }
9121 
9122         BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
9123 
9124         /* only one vector for INTx */
9125         sc->intr_count = 1;
9126         sc->num_queues = 1;
9127 
9128         rid = 0; /* initial resource identifier */
9129 
9130         sc->intr[0].rid = rid;
9131 
9132         if ((sc->intr[0].resource =
9133              bus_alloc_resource_any(sc->dev,
9134                                     SYS_RES_IRQ,
9135                                     &sc->intr[0].rid,
9136                                     (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
9137             BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
9138             sc->intr_count = 0;
9139             sc->num_queues = 0;
9140             sc->interrupt_mode = -1; /* Failed! */
9141             break;
9142         }
9143 
9144         BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9145     } while (0);
9146 
9147     if (sc->interrupt_mode == -1) {
9148         BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9149         rc = 1;
9150     } else {
9151         BLOGD(sc, DBG_LOAD,
9152               "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9153               sc->interrupt_mode, sc->num_queues);
9154         rc = 0;
9155     }
9156 
9157     return (rc);
9158 }
9159 
9160 static void
9161 bxe_interrupt_detach(struct bxe_softc *sc)
9162 {
9163     struct bxe_fastpath *fp;
9164     int i;
9165 
9166     /* release interrupt resources */
9167     for (i = 0; i < sc->intr_count; i++) {
9168         if (sc->intr[i].resource && sc->intr[i].tag) {
9169             BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9170             bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9171         }
9172     }
9173 
9174     for (i = 0; i < sc->num_queues; i++) {
9175         fp = &sc->fp[i];
9176         if (fp->tq) {
9177             taskqueue_drain(fp->tq, &fp->tq_task);
9178             taskqueue_free(fp->tq);
9179             fp->tq = NULL;
9180         }
9181     }
9182 
9183 
9184     if (sc->sp_tq) {
9185         taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9186         taskqueue_free(sc->sp_tq);
9187         sc->sp_tq = NULL;
9188     }
9189 }
9190 
9191 /*
9192  * Enables interrupts and attach to the ISR.
9193  *
9194  * When using multiple MSI/MSI-X vectors the first vector
9195  * is used for slowpath operations while all remaining
9196  * vectors are used for fastpath operations.  If only a
9197  * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9198  * ISR must look for both slowpath and fastpath completions.
9199  */
9200 static int
9201 bxe_interrupt_attach(struct bxe_softc *sc)
9202 {
9203     struct bxe_fastpath *fp;
9204     int rc = 0;
9205     int i;
9206 
9207     snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9208              "bxe%d_sp_tq", sc->unit);
9209     TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9210     sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT,
9211                                       taskqueue_thread_enqueue,
9212                                       &sc->sp_tq);
9213     taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9214                             "%s", sc->sp_tq_name);
9215 
9216 
9217     for (i = 0; i < sc->num_queues; i++) {
9218         fp = &sc->fp[i];
9219         snprintf(fp->tq_name, sizeof(fp->tq_name),
9220                  "bxe%d_fp%d_tq", sc->unit, i);
9221         TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9222         fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT,
9223                                        taskqueue_thread_enqueue,
9224                                        &fp->tq);
9225         taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9226                                 "%s", fp->tq_name);
9227     }
9228 
9229     /* setup interrupt handlers */
9230     if (sc->interrupt_mode == INTR_MODE_MSIX) {
9231         BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9232 
9233         /*
9234          * Setup the interrupt handler. Note that we pass the driver instance
9235          * to the interrupt handler for the slowpath.
9236          */
9237         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9238                                  (INTR_TYPE_NET | INTR_MPSAFE),
9239                                  NULL, bxe_intr_sp, sc,
9240                                  &sc->intr[0].tag)) != 0) {
9241             BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9242             goto bxe_interrupt_attach_exit;
9243         }
9244 
9245         bus_describe_intr(sc->dev, sc->intr[0].resource,
9246                           sc->intr[0].tag, "sp");
9247 
9248         /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9249 
9250         /* initialize the fastpath vectors (note the first was used for sp) */
9251         for (i = 0; i < sc->num_queues; i++) {
9252             fp = &sc->fp[i];
9253             BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9254 
9255             /*
9256              * Setup the interrupt handler. Note that we pass the
9257              * fastpath context to the interrupt handler in this
9258              * case.
9259              */
9260             if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9261                                      (INTR_TYPE_NET | INTR_MPSAFE),
9262                                      NULL, bxe_intr_fp, fp,
9263                                      &sc->intr[i + 1].tag)) != 0) {
9264                 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9265                       (i + 1), rc);
9266                 goto bxe_interrupt_attach_exit;
9267             }
9268 
9269             bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9270                               sc->intr[i + 1].tag, "fp%02d", i);
9271 
9272             /* bind the fastpath instance to a cpu */
9273             if (sc->num_queues > 1) {
9274                 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9275             }
9276 
9277             fp->state = BXE_FP_STATE_IRQ;
9278         }
9279     } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9280         BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n");
9281 
9282         /*
9283          * Setup the interrupt handler. Note that we pass the
9284          * driver instance to the interrupt handler which
9285          * will handle both the slowpath and fastpath.
9286          */
9287         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9288                                  (INTR_TYPE_NET | INTR_MPSAFE),
9289                                  NULL, bxe_intr_legacy, sc,
9290                                  &sc->intr[0].tag)) != 0) {
9291             BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9292             goto bxe_interrupt_attach_exit;
9293         }
9294 
9295     } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9296         BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9297 
9298         /*
9299          * Setup the interrupt handler. Note that we pass the
9300          * driver instance to the interrupt handler which
9301          * will handle both the slowpath and fastpath.
9302          */
9303         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9304                                  (INTR_TYPE_NET | INTR_MPSAFE),
9305                                  NULL, bxe_intr_legacy, sc,
9306                                  &sc->intr[0].tag)) != 0) {
9307             BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9308             goto bxe_interrupt_attach_exit;
9309         }
9310     }
9311 
9312 bxe_interrupt_attach_exit:
9313 
9314     return (rc);
9315 }
9316 
9317 static int  bxe_init_hw_common_chip(struct bxe_softc *sc);
9318 static int  bxe_init_hw_common(struct bxe_softc *sc);
9319 static int  bxe_init_hw_port(struct bxe_softc *sc);
9320 static int  bxe_init_hw_func(struct bxe_softc *sc);
9321 static void bxe_reset_common(struct bxe_softc *sc);
9322 static void bxe_reset_port(struct bxe_softc *sc);
9323 static void bxe_reset_func(struct bxe_softc *sc);
9324 static int  bxe_gunzip_init(struct bxe_softc *sc);
9325 static void bxe_gunzip_end(struct bxe_softc *sc);
9326 static int  bxe_init_firmware(struct bxe_softc *sc);
9327 static void bxe_release_firmware(struct bxe_softc *sc);
9328 
9329 static struct
9330 ecore_func_sp_drv_ops bxe_func_sp_drv = {
9331     .init_hw_cmn_chip = bxe_init_hw_common_chip,
9332     .init_hw_cmn      = bxe_init_hw_common,
9333     .init_hw_port     = bxe_init_hw_port,
9334     .init_hw_func     = bxe_init_hw_func,
9335 
9336     .reset_hw_cmn     = bxe_reset_common,
9337     .reset_hw_port    = bxe_reset_port,
9338     .reset_hw_func    = bxe_reset_func,
9339 
9340     .gunzip_init      = bxe_gunzip_init,
9341     .gunzip_end       = bxe_gunzip_end,
9342 
9343     .init_fw          = bxe_init_firmware,
9344     .release_fw       = bxe_release_firmware,
9345 };
9346 
9347 static void
9348 bxe_init_func_obj(struct bxe_softc *sc)
9349 {
9350     sc->dmae_ready = 0;
9351 
9352     ecore_init_func_obj(sc,
9353                         &sc->func_obj,
9354                         BXE_SP(sc, func_rdata),
9355                         BXE_SP_MAPPING(sc, func_rdata),
9356                         BXE_SP(sc, func_afex_rdata),
9357                         BXE_SP_MAPPING(sc, func_afex_rdata),
9358                         &bxe_func_sp_drv);
9359 }
9360 
9361 static int
9362 bxe_init_hw(struct bxe_softc *sc,
9363             uint32_t         load_code)
9364 {
9365     struct ecore_func_state_params func_params = { NULL };
9366     int rc;
9367 
9368     /* prepare the parameters for function state transitions */
9369     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9370 
9371     func_params.f_obj = &sc->func_obj;
9372     func_params.cmd = ECORE_F_CMD_HW_INIT;
9373 
9374     func_params.params.hw_init.load_phase = load_code;
9375 
9376     /*
9377      * Via a plethora of function pointers, we will eventually reach
9378      * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9379      */
9380     rc = ecore_func_state_change(sc, &func_params);
9381 
9382     return (rc);
9383 }
9384 
9385 static void
9386 bxe_fill(struct bxe_softc *sc,
9387          uint32_t         addr,
9388          int              fill,
9389          uint32_t         len)
9390 {
9391     uint32_t i;
9392 
9393     if (!(len % 4) && !(addr % 4)) {
9394         for (i = 0; i < len; i += 4) {
9395             REG_WR(sc, (addr + i), fill);
9396         }
9397     } else {
9398         for (i = 0; i < len; i++) {
9399             REG_WR8(sc, (addr + i), fill);
9400         }
9401     }
9402 }
9403 
9404 /* writes FP SP data to FW - data_size in dwords */
9405 static void
9406 bxe_wr_fp_sb_data(struct bxe_softc *sc,
9407                   int              fw_sb_id,
9408                   uint32_t         *sb_data_p,
9409                   uint32_t         data_size)
9410 {
9411     int index;
9412 
9413     for (index = 0; index < data_size; index++) {
9414         REG_WR(sc,
9415                (BAR_CSTRORM_INTMEM +
9416                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9417                 (sizeof(uint32_t) * index)),
9418                *(sb_data_p + index));
9419     }
9420 }
9421 
9422 static void
9423 bxe_zero_fp_sb(struct bxe_softc *sc,
9424                int              fw_sb_id)
9425 {
9426     struct hc_status_block_data_e2 sb_data_e2;
9427     struct hc_status_block_data_e1x sb_data_e1x;
9428     uint32_t *sb_data_p;
9429     uint32_t data_size = 0;
9430 
9431     if (!CHIP_IS_E1x(sc)) {
9432         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9433         sb_data_e2.common.state = SB_DISABLED;
9434         sb_data_e2.common.p_func.vf_valid = FALSE;
9435         sb_data_p = (uint32_t *)&sb_data_e2;
9436         data_size = (sizeof(struct hc_status_block_data_e2) /
9437                      sizeof(uint32_t));
9438     } else {
9439         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9440         sb_data_e1x.common.state = SB_DISABLED;
9441         sb_data_e1x.common.p_func.vf_valid = FALSE;
9442         sb_data_p = (uint32_t *)&sb_data_e1x;
9443         data_size = (sizeof(struct hc_status_block_data_e1x) /
9444                      sizeof(uint32_t));
9445     }
9446 
9447     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9448 
9449     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9450              0, CSTORM_STATUS_BLOCK_SIZE);
9451     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9452              0, CSTORM_SYNC_BLOCK_SIZE);
9453 }
9454 
9455 static void
9456 bxe_wr_sp_sb_data(struct bxe_softc               *sc,
9457                   struct hc_sp_status_block_data *sp_sb_data)
9458 {
9459     int i;
9460 
9461     for (i = 0;
9462          i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9463          i++) {
9464         REG_WR(sc,
9465                (BAR_CSTRORM_INTMEM +
9466                 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9467                 (i * sizeof(uint32_t))),
9468                *((uint32_t *)sp_sb_data + i));
9469     }
9470 }
9471 
9472 static void
9473 bxe_zero_sp_sb(struct bxe_softc *sc)
9474 {
9475     struct hc_sp_status_block_data sp_sb_data;
9476 
9477     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9478 
9479     sp_sb_data.state           = SB_DISABLED;
9480     sp_sb_data.p_func.vf_valid = FALSE;
9481 
9482     bxe_wr_sp_sb_data(sc, &sp_sb_data);
9483 
9484     bxe_fill(sc,
9485              (BAR_CSTRORM_INTMEM +
9486               CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9487               0, CSTORM_SP_STATUS_BLOCK_SIZE);
9488     bxe_fill(sc,
9489              (BAR_CSTRORM_INTMEM +
9490               CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9491               0, CSTORM_SP_SYNC_BLOCK_SIZE);
9492 }
9493 
9494 static void
9495 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9496                              int                       igu_sb_id,
9497                              int                       igu_seg_id)
9498 {
9499     hc_sm->igu_sb_id      = igu_sb_id;
9500     hc_sm->igu_seg_id     = igu_seg_id;
9501     hc_sm->timer_value    = 0xFF;
9502     hc_sm->time_to_expire = 0xFFFFFFFF;
9503 }
9504 
9505 static void
9506 bxe_map_sb_state_machines(struct hc_index_data *index_data)
9507 {
9508     /* zero out state machine indices */
9509 
9510     /* rx indices */
9511     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9512 
9513     /* tx indices */
9514     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags      &= ~HC_INDEX_DATA_SM_ID;
9515     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9516     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9517     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9518 
9519     /* map indices */
9520 
9521     /* rx indices */
9522     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9523         (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9524 
9525     /* tx indices */
9526     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9527         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9528     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9529         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9530     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9531         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9532     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9533         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9534 }
9535 
9536 static void
9537 bxe_init_sb(struct bxe_softc *sc,
9538             bus_addr_t       busaddr,
9539             int              vfid,
9540             uint8_t          vf_valid,
9541             int              fw_sb_id,
9542             int              igu_sb_id)
9543 {
9544     struct hc_status_block_data_e2  sb_data_e2;
9545     struct hc_status_block_data_e1x sb_data_e1x;
9546     struct hc_status_block_sm       *hc_sm_p;
9547     uint32_t *sb_data_p;
9548     int igu_seg_id;
9549     int data_size;
9550 
9551     if (CHIP_INT_MODE_IS_BC(sc)) {
9552         igu_seg_id = HC_SEG_ACCESS_NORM;
9553     } else {
9554         igu_seg_id = IGU_SEG_ACCESS_NORM;
9555     }
9556 
9557     bxe_zero_fp_sb(sc, fw_sb_id);
9558 
9559     if (!CHIP_IS_E1x(sc)) {
9560         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9561         sb_data_e2.common.state = SB_ENABLED;
9562         sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9563         sb_data_e2.common.p_func.vf_id = vfid;
9564         sb_data_e2.common.p_func.vf_valid = vf_valid;
9565         sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9566         sb_data_e2.common.same_igu_sb_1b = TRUE;
9567         sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9568         sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9569         hc_sm_p = sb_data_e2.common.state_machine;
9570         sb_data_p = (uint32_t *)&sb_data_e2;
9571         data_size = (sizeof(struct hc_status_block_data_e2) /
9572                      sizeof(uint32_t));
9573         bxe_map_sb_state_machines(sb_data_e2.index_data);
9574     } else {
9575         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9576         sb_data_e1x.common.state = SB_ENABLED;
9577         sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9578         sb_data_e1x.common.p_func.vf_id = 0xff;
9579         sb_data_e1x.common.p_func.vf_valid = FALSE;
9580         sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9581         sb_data_e1x.common.same_igu_sb_1b = TRUE;
9582         sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9583         sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9584         hc_sm_p = sb_data_e1x.common.state_machine;
9585         sb_data_p = (uint32_t *)&sb_data_e1x;
9586         data_size = (sizeof(struct hc_status_block_data_e1x) /
9587                      sizeof(uint32_t));
9588         bxe_map_sb_state_machines(sb_data_e1x.index_data);
9589     }
9590 
9591     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9592     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9593 
9594     BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9595 
9596     /* write indices to HW - PCI guarantees endianity of regpairs */
9597     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9598 }
9599 
9600 static inline uint8_t
9601 bxe_fp_qzone_id(struct bxe_fastpath *fp)
9602 {
9603     if (CHIP_IS_E1x(fp->sc)) {
9604         return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9605     } else {
9606         return (fp->cl_id);
9607     }
9608 }
9609 
9610 static inline uint32_t
9611 bxe_rx_ustorm_prods_offset(struct bxe_softc    *sc,
9612                            struct bxe_fastpath *fp)
9613 {
9614     uint32_t offset = BAR_USTRORM_INTMEM;
9615 
9616     if (!CHIP_IS_E1x(sc)) {
9617         offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
9618     } else {
9619         offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
9620     }
9621 
9622     return (offset);
9623 }
9624 
9625 static void
9626 bxe_init_eth_fp(struct bxe_softc *sc,
9627                 int              idx)
9628 {
9629     struct bxe_fastpath *fp = &sc->fp[idx];
9630     uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
9631     unsigned long q_type = 0;
9632     int cos;
9633 
9634     fp->sc    = sc;
9635     fp->index = idx;
9636 
9637     fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
9638     fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
9639 
9640     fp->cl_id = (CHIP_IS_E1x(sc)) ?
9641                     (SC_L_ID(sc) + idx) :
9642                     /* want client ID same as IGU SB ID for non-E1 */
9643                     fp->igu_sb_id;
9644     fp->cl_qzone_id = bxe_fp_qzone_id(fp);
9645 
9646     /* setup sb indices */
9647     if (!CHIP_IS_E1x(sc)) {
9648         fp->sb_index_values  = fp->status_block.e2_sb->sb.index_values;
9649         fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
9650     } else {
9651         fp->sb_index_values  = fp->status_block.e1x_sb->sb.index_values;
9652         fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
9653     }
9654 
9655     /* init shortcut */
9656     fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
9657 
9658     fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
9659 
9660     /*
9661      * XXX If multiple CoS is ever supported then each fastpath structure
9662      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
9663      */
9664     for (cos = 0; cos < sc->max_cos; cos++) {
9665         cids[cos] = idx;
9666     }
9667     fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
9668 
9669     /* nothing more for a VF to do */
9670     if (IS_VF(sc)) {
9671         return;
9672     }
9673 
9674     bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
9675                 fp->fw_sb_id, fp->igu_sb_id);
9676 
9677     bxe_update_fp_sb_idx(fp);
9678 
9679     /* Configure Queue State object */
9680     bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
9681     bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
9682 
9683     ecore_init_queue_obj(sc,
9684                          &sc->sp_objs[idx].q_obj,
9685                          fp->cl_id,
9686                          cids,
9687                          sc->max_cos,
9688                          SC_FUNC(sc),
9689                          BXE_SP(sc, q_rdata),
9690                          BXE_SP_MAPPING(sc, q_rdata),
9691                          q_type);
9692 
9693     /* configure classification DBs */
9694     ecore_init_mac_obj(sc,
9695                        &sc->sp_objs[idx].mac_obj,
9696                        fp->cl_id,
9697                        idx,
9698                        SC_FUNC(sc),
9699                        BXE_SP(sc, mac_rdata),
9700                        BXE_SP_MAPPING(sc, mac_rdata),
9701                        ECORE_FILTER_MAC_PENDING,
9702                        &sc->sp_state,
9703                        ECORE_OBJ_TYPE_RX_TX,
9704                        &sc->macs_pool);
9705 
9706     BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
9707           idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
9708 }
9709 
9710 static inline void
9711 bxe_update_rx_prod(struct bxe_softc    *sc,
9712                    struct bxe_fastpath *fp,
9713                    uint16_t            rx_bd_prod,
9714                    uint16_t            rx_cq_prod,
9715                    uint16_t            rx_sge_prod)
9716 {
9717     struct ustorm_eth_rx_producers rx_prods = { 0 };
9718     uint32_t i;
9719 
9720     /* update producers */
9721     rx_prods.bd_prod  = rx_bd_prod;
9722     rx_prods.cqe_prod = rx_cq_prod;
9723     rx_prods.sge_prod = rx_sge_prod;
9724 
9725     /*
9726      * Make sure that the BD and SGE data is updated before updating the
9727      * producers since FW might read the BD/SGE right after the producer
9728      * is updated.
9729      * This is only applicable for weak-ordered memory model archs such
9730      * as IA-64. The following barrier is also mandatory since FW will
9731      * assumes BDs must have buffers.
9732      */
9733     wmb();
9734 
9735     for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
9736         REG_WR(sc,
9737                (fp->ustorm_rx_prods_offset + (i * 4)),
9738                ((uint32_t *)&rx_prods)[i]);
9739     }
9740 
9741     wmb(); /* keep prod updates ordered */
9742 
9743     BLOGD(sc, DBG_RX,
9744           "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
9745           fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
9746 }
9747 
9748 static void
9749 bxe_init_rx_rings(struct bxe_softc *sc)
9750 {
9751     struct bxe_fastpath *fp;
9752     int i;
9753 
9754     for (i = 0; i < sc->num_queues; i++) {
9755         fp = &sc->fp[i];
9756 
9757         fp->rx_bd_cons = 0;
9758 
9759         /*
9760          * Activate the BD ring...
9761          * Warning, this will generate an interrupt (to the TSTORM)
9762          * so this can only be done after the chip is initialized
9763          */
9764         bxe_update_rx_prod(sc, fp,
9765                            fp->rx_bd_prod,
9766                            fp->rx_cq_prod,
9767                            fp->rx_sge_prod);
9768 
9769         if (i != 0) {
9770             continue;
9771         }
9772 
9773         if (CHIP_IS_E1(sc)) {
9774             REG_WR(sc,
9775                    (BAR_USTRORM_INTMEM +
9776                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
9777                    U64_LO(fp->rcq_dma.paddr));
9778             REG_WR(sc,
9779                    (BAR_USTRORM_INTMEM +
9780                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
9781                    U64_HI(fp->rcq_dma.paddr));
9782         }
9783     }
9784 }
9785 
9786 static void
9787 bxe_init_tx_ring_one(struct bxe_fastpath *fp)
9788 {
9789     SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1);
9790     fp->tx_db.data.zero_fill1 = 0;
9791     fp->tx_db.data.prod = 0;
9792 
9793     fp->tx_pkt_prod = 0;
9794     fp->tx_pkt_cons = 0;
9795     fp->tx_bd_prod = 0;
9796     fp->tx_bd_cons = 0;
9797     fp->eth_q_stats.tx_pkts = 0;
9798 }
9799 
9800 static inline void
9801 bxe_init_tx_rings(struct bxe_softc *sc)
9802 {
9803     int i;
9804 
9805     for (i = 0; i < sc->num_queues; i++) {
9806         bxe_init_tx_ring_one(&sc->fp[i]);
9807     }
9808 }
9809 
9810 static void
9811 bxe_init_def_sb(struct bxe_softc *sc)
9812 {
9813     struct host_sp_status_block *def_sb = sc->def_sb;
9814     bus_addr_t mapping = sc->def_sb_dma.paddr;
9815     int igu_sp_sb_index;
9816     int igu_seg_id;
9817     int port = SC_PORT(sc);
9818     int func = SC_FUNC(sc);
9819     int reg_offset, reg_offset_en5;
9820     uint64_t section;
9821     int index, sindex;
9822     struct hc_sp_status_block_data sp_sb_data;
9823 
9824     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9825 
9826     if (CHIP_INT_MODE_IS_BC(sc)) {
9827         igu_sp_sb_index = DEF_SB_IGU_ID;
9828         igu_seg_id = HC_SEG_ACCESS_DEF;
9829     } else {
9830         igu_sp_sb_index = sc->igu_dsb_id;
9831         igu_seg_id = IGU_SEG_ACCESS_DEF;
9832     }
9833 
9834     /* attentions */
9835     section = ((uint64_t)mapping +
9836                offsetof(struct host_sp_status_block, atten_status_block));
9837     def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
9838     sc->attn_state = 0;
9839 
9840     reg_offset = (port) ?
9841                      MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
9842                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
9843     reg_offset_en5 = (port) ?
9844                          MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
9845                          MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
9846 
9847     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
9848         /* take care of sig[0]..sig[4] */
9849         for (sindex = 0; sindex < 4; sindex++) {
9850             sc->attn_group[index].sig[sindex] =
9851                 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
9852         }
9853 
9854         if (!CHIP_IS_E1x(sc)) {
9855             /*
9856              * enable5 is separate from the rest of the registers,
9857              * and the address skip is 4 and not 16 between the
9858              * different groups
9859              */
9860             sc->attn_group[index].sig[4] =
9861                 REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
9862         } else {
9863             sc->attn_group[index].sig[4] = 0;
9864         }
9865     }
9866 
9867     if (sc->devinfo.int_block == INT_BLOCK_HC) {
9868         reg_offset = (port) ?
9869                          HC_REG_ATTN_MSG1_ADDR_L :
9870                          HC_REG_ATTN_MSG0_ADDR_L;
9871         REG_WR(sc, reg_offset, U64_LO(section));
9872         REG_WR(sc, (reg_offset + 4), U64_HI(section));
9873     } else if (!CHIP_IS_E1x(sc)) {
9874         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
9875         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
9876     }
9877 
9878     section = ((uint64_t)mapping +
9879                offsetof(struct host_sp_status_block, sp_sb));
9880 
9881     bxe_zero_sp_sb(sc);
9882 
9883     /* PCI guarantees endianity of regpair */
9884     sp_sb_data.state           = SB_ENABLED;
9885     sp_sb_data.host_sb_addr.lo = U64_LO(section);
9886     sp_sb_data.host_sb_addr.hi = U64_HI(section);
9887     sp_sb_data.igu_sb_id       = igu_sp_sb_index;
9888     sp_sb_data.igu_seg_id      = igu_seg_id;
9889     sp_sb_data.p_func.pf_id    = func;
9890     sp_sb_data.p_func.vnic_id  = SC_VN(sc);
9891     sp_sb_data.p_func.vf_id    = 0xff;
9892 
9893     bxe_wr_sp_sb_data(sc, &sp_sb_data);
9894 
9895     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
9896 }
9897 
9898 static void
9899 bxe_init_sp_ring(struct bxe_softc *sc)
9900 {
9901     atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
9902     sc->spq_prod_idx = 0;
9903     sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
9904     sc->spq_prod_bd = sc->spq;
9905     sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
9906 }
9907 
9908 static void
9909 bxe_init_eq_ring(struct bxe_softc *sc)
9910 {
9911     union event_ring_elem *elem;
9912     int i;
9913 
9914     for (i = 1; i <= NUM_EQ_PAGES; i++) {
9915         elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
9916 
9917         elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
9918                                                  BCM_PAGE_SIZE *
9919                                                  (i % NUM_EQ_PAGES)));
9920         elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
9921                                                  BCM_PAGE_SIZE *
9922                                                  (i % NUM_EQ_PAGES)));
9923     }
9924 
9925     sc->eq_cons    = 0;
9926     sc->eq_prod    = NUM_EQ_DESC;
9927     sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
9928 
9929     atomic_store_rel_long(&sc->eq_spq_left,
9930                           (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
9931                                NUM_EQ_DESC) - 1));
9932 }
9933 
9934 static void
9935 bxe_init_internal_common(struct bxe_softc *sc)
9936 {
9937     int i;
9938 
9939     if (IS_MF_SI(sc)) {
9940         /*
9941          * In switch independent mode, the TSTORM needs to accept
9942          * packets that failed classification, since approximate match
9943          * mac addresses aren't written to NIG LLH.
9944          */
9945         REG_WR8(sc,
9946                 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
9947                 2);
9948     } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */
9949         REG_WR8(sc,
9950                 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
9951                 0);
9952     }
9953 
9954     /*
9955      * Zero this manually as its initialization is currently missing
9956      * in the initTool.
9957      */
9958     for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
9959         REG_WR(sc,
9960                (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
9961                0);
9962     }
9963 
9964     if (!CHIP_IS_E1x(sc)) {
9965         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
9966                 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
9967     }
9968 }
9969 
9970 static void
9971 bxe_init_internal(struct bxe_softc *sc,
9972                   uint32_t         load_code)
9973 {
9974     switch (load_code) {
9975     case FW_MSG_CODE_DRV_LOAD_COMMON:
9976     case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
9977         bxe_init_internal_common(sc);
9978         /* no break */
9979 
9980     case FW_MSG_CODE_DRV_LOAD_PORT:
9981         /* nothing to do */
9982         /* no break */
9983 
9984     case FW_MSG_CODE_DRV_LOAD_FUNCTION:
9985         /* internal memory per function is initialized inside bxe_pf_init */
9986         break;
9987 
9988     default:
9989         BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
9990         break;
9991     }
9992 }
9993 
9994 static void
9995 storm_memset_func_cfg(struct bxe_softc                         *sc,
9996                       struct tstorm_eth_function_common_config *tcfg,
9997                       uint16_t                                  abs_fid)
9998 {
9999     uint32_t addr;
10000     size_t size;
10001 
10002     addr = (BAR_TSTRORM_INTMEM +
10003             TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
10004     size = sizeof(struct tstorm_eth_function_common_config);
10005     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
10006 }
10007 
10008 static void
10009 bxe_func_init(struct bxe_softc            *sc,
10010               struct bxe_func_init_params *p)
10011 {
10012     struct tstorm_eth_function_common_config tcfg = { 0 };
10013 
10014     if (CHIP_IS_E1x(sc)) {
10015         storm_memset_func_cfg(sc, &tcfg, p->func_id);
10016     }
10017 
10018     /* Enable the function in the FW */
10019     storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
10020     storm_memset_func_en(sc, p->func_id, 1);
10021 
10022     /* spq */
10023     if (p->func_flgs & FUNC_FLG_SPQ) {
10024         storm_memset_spq_addr(sc, p->spq_map, p->func_id);
10025         REG_WR(sc,
10026                (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
10027                p->spq_prod);
10028     }
10029 }
10030 
10031 /*
10032  * Calculates the sum of vn_min_rates.
10033  * It's needed for further normalizing of the min_rates.
10034  * Returns:
10035  *   sum of vn_min_rates.
10036  *     or
10037  *   0 - if all the min_rates are 0.
10038  * In the later case fainess algorithm should be deactivated.
10039  * If all min rates are not zero then those that are zeroes will be set to 1.
10040  */
10041 static void
10042 bxe_calc_vn_min(struct bxe_softc       *sc,
10043                 struct cmng_init_input *input)
10044 {
10045     uint32_t vn_cfg;
10046     uint32_t vn_min_rate;
10047     int all_zero = 1;
10048     int vn;
10049 
10050     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10051         vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10052         vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
10053                         FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
10054 
10055         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10056             /* skip hidden VNs */
10057             vn_min_rate = 0;
10058         } else if (!vn_min_rate) {
10059             /* If min rate is zero - set it to 100 */
10060             vn_min_rate = DEF_MIN_RATE;
10061         } else {
10062             all_zero = 0;
10063         }
10064 
10065         input->vnic_min_rate[vn] = vn_min_rate;
10066     }
10067 
10068     /* if ETS or all min rates are zeros - disable fairness */
10069     if (BXE_IS_ETS_ENABLED(sc)) {
10070         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10071         BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
10072     } else if (all_zero) {
10073         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10074         BLOGD(sc, DBG_LOAD,
10075               "Fariness disabled (all MIN values are zeroes)\n");
10076     } else {
10077         input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10078     }
10079 }
10080 
10081 static inline uint16_t
10082 bxe_extract_max_cfg(struct bxe_softc *sc,
10083                     uint32_t         mf_cfg)
10084 {
10085     uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
10086                         FUNC_MF_CFG_MAX_BW_SHIFT);
10087 
10088     if (!max_cfg) {
10089         BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
10090         max_cfg = 100;
10091     }
10092 
10093     return (max_cfg);
10094 }
10095 
10096 static void
10097 bxe_calc_vn_max(struct bxe_softc       *sc,
10098                 int                    vn,
10099                 struct cmng_init_input *input)
10100 {
10101     uint16_t vn_max_rate;
10102     uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10103     uint32_t max_cfg;
10104 
10105     if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10106         vn_max_rate = 0;
10107     } else {
10108         max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
10109 
10110         if (IS_MF_SI(sc)) {
10111             /* max_cfg in percents of linkspeed */
10112             vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
10113         } else { /* SD modes */
10114             /* max_cfg is absolute in 100Mb units */
10115             vn_max_rate = (max_cfg * 100);
10116         }
10117     }
10118 
10119     BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
10120 
10121     input->vnic_max_rate[vn] = vn_max_rate;
10122 }
10123 
10124 static void
10125 bxe_cmng_fns_init(struct bxe_softc *sc,
10126                   uint8_t          read_cfg,
10127                   uint8_t          cmng_type)
10128 {
10129     struct cmng_init_input input;
10130     int vn;
10131 
10132     memset(&input, 0, sizeof(struct cmng_init_input));
10133 
10134     input.port_rate = sc->link_vars.line_speed;
10135 
10136     if (cmng_type == CMNG_FNS_MINMAX) {
10137         /* read mf conf from shmem */
10138         if (read_cfg) {
10139             bxe_read_mf_cfg(sc);
10140         }
10141 
10142         /* get VN min rate and enable fairness if not 0 */
10143         bxe_calc_vn_min(sc, &input);
10144 
10145         /* get VN max rate */
10146         if (sc->port.pmf) {
10147             for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10148                 bxe_calc_vn_max(sc, vn, &input);
10149             }
10150         }
10151 
10152         /* always enable rate shaping and fairness */
10153         input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
10154 
10155         ecore_init_cmng(&input, &sc->cmng);
10156         return;
10157     }
10158 
10159     /* rate shaping and fairness are disabled */
10160     BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10161 }
10162 
10163 static int
10164 bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10165 {
10166     if (CHIP_REV_IS_SLOW(sc)) {
10167         return (CMNG_FNS_NONE);
10168     }
10169 
10170     if (IS_MF(sc)) {
10171         return (CMNG_FNS_MINMAX);
10172     }
10173 
10174     return (CMNG_FNS_NONE);
10175 }
10176 
10177 static void
10178 storm_memset_cmng(struct bxe_softc *sc,
10179                   struct cmng_init *cmng,
10180                   uint8_t          port)
10181 {
10182     int vn;
10183     int func;
10184     uint32_t addr;
10185     size_t size;
10186 
10187     addr = (BAR_XSTRORM_INTMEM +
10188             XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10189     size = sizeof(struct cmng_struct_per_port);
10190     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10191 
10192     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10193         func = func_by_vn(sc, vn);
10194 
10195         addr = (BAR_XSTRORM_INTMEM +
10196                 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10197         size = sizeof(struct rate_shaping_vars_per_vn);
10198         ecore_storm_memset_struct(sc, addr, size,
10199                                   (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10200 
10201         addr = (BAR_XSTRORM_INTMEM +
10202                 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10203         size = sizeof(struct fairness_vars_per_vn);
10204         ecore_storm_memset_struct(sc, addr, size,
10205                                   (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10206     }
10207 }
10208 
10209 static void
10210 bxe_pf_init(struct bxe_softc *sc)
10211 {
10212     struct bxe_func_init_params func_init = { 0 };
10213     struct event_ring_data eq_data = { { 0 } };
10214     uint16_t flags;
10215 
10216     if (!CHIP_IS_E1x(sc)) {
10217         /* reset IGU PF statistics: MSIX + ATTN */
10218         /* PF */
10219         REG_WR(sc,
10220                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10221                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10222                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10223                0);
10224         /* ATTN */
10225         REG_WR(sc,
10226                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10227                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10228                 (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10229                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10230                0);
10231     }
10232 
10233     /* function setup flags */
10234     flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10235 
10236     /*
10237      * This flag is relevant for E1x only.
10238      * E2 doesn't have a TPA configuration in a function level.
10239      */
10240     flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10241 
10242     func_init.func_flgs = flags;
10243     func_init.pf_id     = SC_FUNC(sc);
10244     func_init.func_id   = SC_FUNC(sc);
10245     func_init.spq_map   = sc->spq_dma.paddr;
10246     func_init.spq_prod  = sc->spq_prod_idx;
10247 
10248     bxe_func_init(sc, &func_init);
10249 
10250     memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10251 
10252     /*
10253      * Congestion management values depend on the link rate.
10254      * There is no active link so initial link rate is set to 10Gbps.
10255      * When the link comes up the congestion management values are
10256      * re-calculated according to the actual link rate.
10257      */
10258     sc->link_vars.line_speed = SPEED_10000;
10259     bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10260 
10261     /* Only the PMF sets the HW */
10262     if (sc->port.pmf) {
10263         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10264     }
10265 
10266     /* init Event Queue - PCI bus guarantees correct endainity */
10267     eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10268     eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10269     eq_data.producer     = sc->eq_prod;
10270     eq_data.index_id     = HC_SP_INDEX_EQ_CONS;
10271     eq_data.sb_id        = DEF_SB_ID;
10272     storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10273 }
10274 
10275 static void
10276 bxe_hc_int_enable(struct bxe_softc *sc)
10277 {
10278     int port = SC_PORT(sc);
10279     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10280     uint32_t val = REG_RD(sc, addr);
10281     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10282     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10283                            (sc->intr_count == 1)) ? TRUE : FALSE;
10284     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10285 
10286     if (msix) {
10287         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10288                  HC_CONFIG_0_REG_INT_LINE_EN_0);
10289         val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10290                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10291         if (single_msix) {
10292             val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10293         }
10294     } else if (msi) {
10295         val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10296         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10297                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10298                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10299     } else {
10300         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10301                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10302                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10303                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10304 
10305         if (!CHIP_IS_E1(sc)) {
10306             BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10307                   val, port, addr);
10308 
10309             REG_WR(sc, addr, val);
10310 
10311             val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10312         }
10313     }
10314 
10315     if (CHIP_IS_E1(sc)) {
10316         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10317     }
10318 
10319     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10320           val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10321 
10322     REG_WR(sc, addr, val);
10323 
10324     /* ensure that HC_CONFIG is written before leading/trailing edge config */
10325     mb();
10326 
10327     if (!CHIP_IS_E1(sc)) {
10328         /* init leading/trailing edge */
10329         if (IS_MF(sc)) {
10330             val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10331             if (sc->port.pmf) {
10332                 /* enable nig and gpio3 attention */
10333                 val |= 0x1100;
10334             }
10335         } else {
10336             val = 0xffff;
10337         }
10338 
10339         REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10340         REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10341     }
10342 
10343     /* make sure that interrupts are indeed enabled from here on */
10344     mb();
10345 }
10346 
10347 static void
10348 bxe_igu_int_enable(struct bxe_softc *sc)
10349 {
10350     uint32_t val;
10351     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10352     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10353                            (sc->intr_count == 1)) ? TRUE : FALSE;
10354     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10355 
10356     val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10357 
10358     if (msix) {
10359         val &= ~(IGU_PF_CONF_INT_LINE_EN |
10360                  IGU_PF_CONF_SINGLE_ISR_EN);
10361         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10362                 IGU_PF_CONF_ATTN_BIT_EN);
10363         if (single_msix) {
10364             val |= IGU_PF_CONF_SINGLE_ISR_EN;
10365         }
10366     } else if (msi) {
10367         val &= ~IGU_PF_CONF_INT_LINE_EN;
10368         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10369                 IGU_PF_CONF_ATTN_BIT_EN |
10370                 IGU_PF_CONF_SINGLE_ISR_EN);
10371     } else {
10372         val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10373         val |= (IGU_PF_CONF_INT_LINE_EN |
10374                 IGU_PF_CONF_ATTN_BIT_EN |
10375                 IGU_PF_CONF_SINGLE_ISR_EN);
10376     }
10377 
10378     /* clean previous status - need to configure igu prior to ack*/
10379     if ((!msix) || single_msix) {
10380         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10381         bxe_ack_int(sc);
10382     }
10383 
10384     val |= IGU_PF_CONF_FUNC_EN;
10385 
10386     BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10387           val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10388 
10389     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10390 
10391     mb();
10392 
10393     /* init leading/trailing edge */
10394     if (IS_MF(sc)) {
10395         val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10396         if (sc->port.pmf) {
10397             /* enable nig and gpio3 attention */
10398             val |= 0x1100;
10399         }
10400     } else {
10401         val = 0xffff;
10402     }
10403 
10404     REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10405     REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10406 
10407     /* make sure that interrupts are indeed enabled from here on */
10408     mb();
10409 }
10410 
10411 static void
10412 bxe_int_enable(struct bxe_softc *sc)
10413 {
10414     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10415         bxe_hc_int_enable(sc);
10416     } else {
10417         bxe_igu_int_enable(sc);
10418     }
10419 }
10420 
10421 static void
10422 bxe_hc_int_disable(struct bxe_softc *sc)
10423 {
10424     int port = SC_PORT(sc);
10425     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10426     uint32_t val = REG_RD(sc, addr);
10427 
10428     /*
10429      * In E1 we must use only PCI configuration space to disable MSI/MSIX
10430      * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10431      * block
10432      */
10433     if (CHIP_IS_E1(sc)) {
10434         /*
10435          * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10436          * to prevent from HC sending interrupts after we exit the function
10437          */
10438         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10439 
10440         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10441                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10442                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10443     } else {
10444         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10445                  HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10446                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10447                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10448     }
10449 
10450     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10451 
10452     /* flush all outstanding writes */
10453     mb();
10454 
10455     REG_WR(sc, addr, val);
10456     if (REG_RD(sc, addr) != val) {
10457         BLOGE(sc, "proper val not read from HC IGU!\n");
10458     }
10459 }
10460 
10461 static void
10462 bxe_igu_int_disable(struct bxe_softc *sc)
10463 {
10464     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10465 
10466     val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10467              IGU_PF_CONF_INT_LINE_EN |
10468              IGU_PF_CONF_ATTN_BIT_EN);
10469 
10470     BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10471 
10472     /* flush all outstanding writes */
10473     mb();
10474 
10475     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10476     if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10477         BLOGE(sc, "proper val not read from IGU!\n");
10478     }
10479 }
10480 
10481 static void
10482 bxe_int_disable(struct bxe_softc *sc)
10483 {
10484     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10485         bxe_hc_int_disable(sc);
10486     } else {
10487         bxe_igu_int_disable(sc);
10488     }
10489 }
10490 
10491 static void
10492 bxe_nic_init(struct bxe_softc *sc,
10493              int              load_code)
10494 {
10495     int i;
10496 
10497     for (i = 0; i < sc->num_queues; i++) {
10498         bxe_init_eth_fp(sc, i);
10499     }
10500 
10501     rmb(); /* ensure status block indices were read */
10502 
10503     bxe_init_rx_rings(sc);
10504     bxe_init_tx_rings(sc);
10505 
10506     if (IS_VF(sc)) {
10507         return;
10508     }
10509 
10510     /* initialize MOD_ABS interrupts */
10511     elink_init_mod_abs_int(sc, &sc->link_vars,
10512                            sc->devinfo.chip_id,
10513                            sc->devinfo.shmem_base,
10514                            sc->devinfo.shmem2_base,
10515                            SC_PORT(sc));
10516 
10517     bxe_init_def_sb(sc);
10518     bxe_update_dsb_idx(sc);
10519     bxe_init_sp_ring(sc);
10520     bxe_init_eq_ring(sc);
10521     bxe_init_internal(sc, load_code);
10522     bxe_pf_init(sc);
10523     bxe_stats_init(sc);
10524 
10525     /* flush all before enabling interrupts */
10526     mb();
10527 
10528     bxe_int_enable(sc);
10529 
10530     /* check for SPIO5 */
10531     bxe_attn_int_deasserted0(sc,
10532                              REG_RD(sc,
10533                                     (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10534                                      SC_PORT(sc)*4)) &
10535                              AEU_INPUTS_ATTN_BITS_SPIO5);
10536 }
10537 
10538 static inline void
10539 bxe_init_objs(struct bxe_softc *sc)
10540 {
10541     /* mcast rules must be added to tx if tx switching is enabled */
10542     ecore_obj_type o_type =
10543         (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10544                                          ECORE_OBJ_TYPE_RX;
10545 
10546     /* RX_MODE controlling object */
10547     ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10548 
10549     /* multicast configuration controlling object */
10550     ecore_init_mcast_obj(sc,
10551                          &sc->mcast_obj,
10552                          sc->fp[0].cl_id,
10553                          sc->fp[0].index,
10554                          SC_FUNC(sc),
10555                          SC_FUNC(sc),
10556                          BXE_SP(sc, mcast_rdata),
10557                          BXE_SP_MAPPING(sc, mcast_rdata),
10558                          ECORE_FILTER_MCAST_PENDING,
10559                          &sc->sp_state,
10560                          o_type);
10561 
10562     /* Setup CAM credit pools */
10563     ecore_init_mac_credit_pool(sc,
10564                                &sc->macs_pool,
10565                                SC_FUNC(sc),
10566                                CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10567                                                  VNICS_PER_PATH(sc));
10568 
10569     ecore_init_vlan_credit_pool(sc,
10570                                 &sc->vlans_pool,
10571                                 SC_ABS_FUNC(sc) >> 1,
10572                                 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10573                                                   VNICS_PER_PATH(sc));
10574 
10575     /* RSS configuration object */
10576     ecore_init_rss_config_obj(sc,
10577                               &sc->rss_conf_obj,
10578                               sc->fp[0].cl_id,
10579                               sc->fp[0].index,
10580                               SC_FUNC(sc),
10581                               SC_FUNC(sc),
10582                               BXE_SP(sc, rss_rdata),
10583                               BXE_SP_MAPPING(sc, rss_rdata),
10584                               ECORE_FILTER_RSS_CONF_PENDING,
10585                               &sc->sp_state, ECORE_OBJ_TYPE_RX);
10586 }
10587 
10588 /*
10589  * Initialize the function. This must be called before sending CLIENT_SETUP
10590  * for the first client.
10591  */
10592 static inline int
10593 bxe_func_start(struct bxe_softc *sc)
10594 {
10595     struct ecore_func_state_params func_params = { NULL };
10596     struct ecore_func_start_params *start_params = &func_params.params.start;
10597 
10598     /* Prepare parameters for function state transitions */
10599     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
10600 
10601     func_params.f_obj = &sc->func_obj;
10602     func_params.cmd = ECORE_F_CMD_START;
10603 
10604     /* Function parameters */
10605     start_params->mf_mode     = sc->devinfo.mf_info.mf_mode;
10606     start_params->sd_vlan_tag = OVLAN(sc);
10607 
10608     if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
10609         start_params->network_cos_mode = STATIC_COS;
10610     } else { /* CHIP_IS_E1X */
10611         start_params->network_cos_mode = FW_WRR;
10612     }
10613 
10614     //start_params->gre_tunnel_mode = 0;
10615     //start_params->gre_tunnel_rss  = 0;
10616 
10617     return (ecore_func_state_change(sc, &func_params));
10618 }
10619 
10620 static int
10621 bxe_set_power_state(struct bxe_softc *sc,
10622                     uint8_t          state)
10623 {
10624     uint16_t pmcsr;
10625 
10626     /* If there is no power capability, silently succeed */
10627     if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
10628         BLOGW(sc, "No power capability\n");
10629         return (0);
10630     }
10631 
10632     pmcsr = pci_read_config(sc->dev,
10633                             (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10634                             2);
10635 
10636     switch (state) {
10637     case PCI_PM_D0:
10638         pci_write_config(sc->dev,
10639                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10640                          ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
10641 
10642         if (pmcsr & PCIM_PSTAT_DMASK) {
10643             /* delay required during transition out of D3hot */
10644             DELAY(20000);
10645         }
10646 
10647         break;
10648 
10649     case PCI_PM_D3hot:
10650         /* XXX if there are other clients above don't shut down the power */
10651 
10652         /* don't shut down the power for emulation and FPGA */
10653         if (CHIP_REV_IS_SLOW(sc)) {
10654             return (0);
10655         }
10656 
10657         pmcsr &= ~PCIM_PSTAT_DMASK;
10658         pmcsr |= PCIM_PSTAT_D3;
10659 
10660         if (sc->wol) {
10661             pmcsr |= PCIM_PSTAT_PMEENABLE;
10662         }
10663 
10664         pci_write_config(sc->dev,
10665                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10666                          pmcsr, 4);
10667 
10668         /*
10669          * No more memory access after this point until device is brought back
10670          * to D0 state.
10671          */
10672         break;
10673 
10674     default:
10675         BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n",
10676             state, pmcsr);
10677         return (-1);
10678     }
10679 
10680     return (0);
10681 }
10682 
10683 
10684 /* return true if succeeded to acquire the lock */
10685 static uint8_t
10686 bxe_trylock_hw_lock(struct bxe_softc *sc,
10687                     uint32_t         resource)
10688 {
10689     uint32_t lock_status;
10690     uint32_t resource_bit = (1 << resource);
10691     int func = SC_FUNC(sc);
10692     uint32_t hw_lock_control_reg;
10693 
10694     BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
10695 
10696     /* Validating that the resource is within range */
10697     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
10698         BLOGD(sc, DBG_LOAD,
10699               "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
10700               resource, HW_LOCK_MAX_RESOURCE_VALUE);
10701         return (FALSE);
10702     }
10703 
10704     if (func <= 5) {
10705         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
10706     } else {
10707         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
10708     }
10709 
10710     /* try to acquire the lock */
10711     REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
10712     lock_status = REG_RD(sc, hw_lock_control_reg);
10713     if (lock_status & resource_bit) {
10714         return (TRUE);
10715     }
10716 
10717     BLOGE(sc, "Failed to get a resource lock 0x%x func %d "
10718         "lock_status 0x%x resource_bit 0x%x\n", resource, func,
10719         lock_status, resource_bit);
10720 
10721     return (FALSE);
10722 }
10723 
10724 /*
10725  * Get the recovery leader resource id according to the engine this function
10726  * belongs to. Currently only only 2 engines is supported.
10727  */
10728 static int
10729 bxe_get_leader_lock_resource(struct bxe_softc *sc)
10730 {
10731     if (SC_PATH(sc)) {
10732         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
10733     } else {
10734         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
10735     }
10736 }
10737 
10738 /* try to acquire a leader lock for current engine */
10739 static uint8_t
10740 bxe_trylock_leader_lock(struct bxe_softc *sc)
10741 {
10742     return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
10743 }
10744 
10745 static int
10746 bxe_release_leader_lock(struct bxe_softc *sc)
10747 {
10748     return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
10749 }
10750 
10751 /* close gates #2, #3 and #4 */
10752 static void
10753 bxe_set_234_gates(struct bxe_softc *sc,
10754                   uint8_t          close)
10755 {
10756     uint32_t val;
10757 
10758     /* gates #2 and #4a are closed/opened for "not E1" only */
10759     if (!CHIP_IS_E1(sc)) {
10760         /* #4 */
10761         REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
10762         /* #2 */
10763         REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
10764     }
10765 
10766     /* #3 */
10767     if (CHIP_IS_E1x(sc)) {
10768         /* prevent interrupts from HC on both ports */
10769         val = REG_RD(sc, HC_REG_CONFIG_1);
10770         REG_WR(sc, HC_REG_CONFIG_1,
10771                (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
10772                (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
10773 
10774         val = REG_RD(sc, HC_REG_CONFIG_0);
10775         REG_WR(sc, HC_REG_CONFIG_0,
10776                (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
10777                (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
10778     } else {
10779         /* Prevent incomming interrupts in IGU */
10780         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
10781 
10782         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
10783                (!close) ?
10784                (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
10785                (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
10786     }
10787 
10788     BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
10789           close ? "closing" : "opening");
10790 
10791     wmb();
10792 }
10793 
10794 /* poll for pending writes bit, it should get cleared in no more than 1s */
10795 static int
10796 bxe_er_poll_igu_vq(struct bxe_softc *sc)
10797 {
10798     uint32_t cnt = 1000;
10799     uint32_t pend_bits = 0;
10800 
10801     do {
10802         pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
10803 
10804         if (pend_bits == 0) {
10805             break;
10806         }
10807 
10808         DELAY(1000);
10809     } while (--cnt > 0);
10810 
10811     if (cnt == 0) {
10812         BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
10813         return (-1);
10814     }
10815 
10816     return (0);
10817 }
10818 
10819 #define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
10820 
10821 static void
10822 bxe_clp_reset_prep(struct bxe_softc *sc,
10823                    uint32_t         *magic_val)
10824 {
10825     /* Do some magic... */
10826     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10827     *magic_val = val & SHARED_MF_CLP_MAGIC;
10828     MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
10829 }
10830 
10831 /* restore the value of the 'magic' bit */
10832 static void
10833 bxe_clp_reset_done(struct bxe_softc *sc,
10834                    uint32_t         magic_val)
10835 {
10836     /* Restore the 'magic' bit value... */
10837     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10838     MFCFG_WR(sc, shared_mf_config.clp_mb,
10839               (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
10840 }
10841 
10842 /* prepare for MCP reset, takes care of CLP configurations */
10843 static void
10844 bxe_reset_mcp_prep(struct bxe_softc *sc,
10845                    uint32_t         *magic_val)
10846 {
10847     uint32_t shmem;
10848     uint32_t validity_offset;
10849 
10850     /* set `magic' bit in order to save MF config */
10851     if (!CHIP_IS_E1(sc)) {
10852         bxe_clp_reset_prep(sc, magic_val);
10853     }
10854 
10855     /* get shmem offset */
10856     shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10857     validity_offset =
10858         offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
10859 
10860     /* Clear validity map flags */
10861     if (shmem > 0) {
10862         REG_WR(sc, shmem + validity_offset, 0);
10863     }
10864 }
10865 
10866 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
10867 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
10868 
10869 static void
10870 bxe_mcp_wait_one(struct bxe_softc *sc)
10871 {
10872     /* special handling for emulation and FPGA (10 times longer) */
10873     if (CHIP_REV_IS_SLOW(sc)) {
10874         DELAY((MCP_ONE_TIMEOUT*10) * 1000);
10875     } else {
10876         DELAY((MCP_ONE_TIMEOUT) * 1000);
10877     }
10878 }
10879 
10880 /* initialize shmem_base and waits for validity signature to appear */
10881 static int
10882 bxe_init_shmem(struct bxe_softc *sc)
10883 {
10884     int cnt = 0;
10885     uint32_t val = 0;
10886 
10887     do {
10888         sc->devinfo.shmem_base     =
10889         sc->link_params.shmem_base =
10890             REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10891 
10892         if (sc->devinfo.shmem_base) {
10893             val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
10894             if (val & SHR_MEM_VALIDITY_MB)
10895                 return (0);
10896         }
10897 
10898         bxe_mcp_wait_one(sc);
10899 
10900     } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
10901 
10902     BLOGE(sc, "BAD MCP validity signature\n");
10903 
10904     return (-1);
10905 }
10906 
10907 static int
10908 bxe_reset_mcp_comp(struct bxe_softc *sc,
10909                    uint32_t         magic_val)
10910 {
10911     int rc = bxe_init_shmem(sc);
10912 
10913     /* Restore the `magic' bit value */
10914     if (!CHIP_IS_E1(sc)) {
10915         bxe_clp_reset_done(sc, magic_val);
10916     }
10917 
10918     return (rc);
10919 }
10920 
10921 static void
10922 bxe_pxp_prep(struct bxe_softc *sc)
10923 {
10924     if (!CHIP_IS_E1(sc)) {
10925         REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
10926         REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
10927         wmb();
10928     }
10929 }
10930 
10931 /*
10932  * Reset the whole chip except for:
10933  *      - PCIE core
10934  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
10935  *      - IGU
10936  *      - MISC (including AEU)
10937  *      - GRC
10938  *      - RBCN, RBCP
10939  */
10940 static void
10941 bxe_process_kill_chip_reset(struct bxe_softc *sc,
10942                             uint8_t          global)
10943 {
10944     uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
10945     uint32_t global_bits2, stay_reset2;
10946 
10947     /*
10948      * Bits that have to be set in reset_mask2 if we want to reset 'global'
10949      * (per chip) blocks.
10950      */
10951     global_bits2 =
10952         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
10953         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
10954 
10955     /*
10956      * Don't reset the following blocks.
10957      * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
10958      *            reset, as in 4 port device they might still be owned
10959      *            by the MCP (there is only one leader per path).
10960      */
10961     not_reset_mask1 =
10962         MISC_REGISTERS_RESET_REG_1_RST_HC |
10963         MISC_REGISTERS_RESET_REG_1_RST_PXPV |
10964         MISC_REGISTERS_RESET_REG_1_RST_PXP;
10965 
10966     not_reset_mask2 =
10967         MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
10968         MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
10969         MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
10970         MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
10971         MISC_REGISTERS_RESET_REG_2_RST_RBCN |
10972         MISC_REGISTERS_RESET_REG_2_RST_GRC  |
10973         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
10974         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
10975         MISC_REGISTERS_RESET_REG_2_RST_ATC |
10976         MISC_REGISTERS_RESET_REG_2_PGLC |
10977         MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
10978         MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
10979         MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
10980         MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
10981         MISC_REGISTERS_RESET_REG_2_UMAC0 |
10982         MISC_REGISTERS_RESET_REG_2_UMAC1;
10983 
10984     /*
10985      * Keep the following blocks in reset:
10986      *  - all xxMACs are handled by the elink code.
10987      */
10988     stay_reset2 =
10989         MISC_REGISTERS_RESET_REG_2_XMAC |
10990         MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
10991 
10992     /* Full reset masks according to the chip */
10993     reset_mask1 = 0xffffffff;
10994 
10995     if (CHIP_IS_E1(sc))
10996         reset_mask2 = 0xffff;
10997     else if (CHIP_IS_E1H(sc))
10998         reset_mask2 = 0x1ffff;
10999     else if (CHIP_IS_E2(sc))
11000         reset_mask2 = 0xfffff;
11001     else /* CHIP_IS_E3 */
11002         reset_mask2 = 0x3ffffff;
11003 
11004     /* Don't reset global blocks unless we need to */
11005     if (!global)
11006         reset_mask2 &= ~global_bits2;
11007 
11008     /*
11009      * In case of attention in the QM, we need to reset PXP
11010      * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
11011      * because otherwise QM reset would release 'close the gates' shortly
11012      * before resetting the PXP, then the PSWRQ would send a write
11013      * request to PGLUE. Then when PXP is reset, PGLUE would try to
11014      * read the payload data from PSWWR, but PSWWR would not
11015      * respond. The write queue in PGLUE would stuck, dmae commands
11016      * would not return. Therefore it's important to reset the second
11017      * reset register (containing the
11018      * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
11019      * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
11020      * bit).
11021      */
11022     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
11023            reset_mask2 & (~not_reset_mask2));
11024 
11025     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
11026            reset_mask1 & (~not_reset_mask1));
11027 
11028     mb();
11029     wmb();
11030 
11031     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
11032            reset_mask2 & (~stay_reset2));
11033 
11034     mb();
11035     wmb();
11036 
11037     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
11038     wmb();
11039 }
11040 
11041 static int
11042 bxe_process_kill(struct bxe_softc *sc,
11043                  uint8_t          global)
11044 {
11045     int cnt = 1000;
11046     uint32_t val = 0;
11047     uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
11048     uint32_t tags_63_32 = 0;
11049 
11050     /* Empty the Tetris buffer, wait for 1s */
11051     do {
11052         sr_cnt  = REG_RD(sc, PXP2_REG_RD_SR_CNT);
11053         blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
11054         port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
11055         port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
11056         pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
11057         if (CHIP_IS_E3(sc)) {
11058             tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
11059         }
11060 
11061         if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
11062             ((port_is_idle_0 & 0x1) == 0x1) &&
11063             ((port_is_idle_1 & 0x1) == 0x1) &&
11064             (pgl_exp_rom2 == 0xffffffff) &&
11065             (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
11066             break;
11067         DELAY(1000);
11068     } while (cnt-- > 0);
11069 
11070     if (cnt <= 0) {
11071         BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
11072                   "are still outstanding read requests after 1s! "
11073                   "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
11074                   "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
11075               sr_cnt, blk_cnt, port_is_idle_0,
11076               port_is_idle_1, pgl_exp_rom2);
11077         return (-1);
11078     }
11079 
11080     mb();
11081 
11082     /* Close gates #2, #3 and #4 */
11083     bxe_set_234_gates(sc, TRUE);
11084 
11085     /* Poll for IGU VQs for 57712 and newer chips */
11086     if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
11087         return (-1);
11088     }
11089 
11090     /* XXX indicate that "process kill" is in progress to MCP */
11091 
11092     /* clear "unprepared" bit */
11093     REG_WR(sc, MISC_REG_UNPREPARED, 0);
11094     mb();
11095 
11096     /* Make sure all is written to the chip before the reset */
11097     wmb();
11098 
11099     /*
11100      * Wait for 1ms to empty GLUE and PCI-E core queues,
11101      * PSWHST, GRC and PSWRD Tetris buffer.
11102      */
11103     DELAY(1000);
11104 
11105     /* Prepare to chip reset: */
11106     /* MCP */
11107     if (global) {
11108         bxe_reset_mcp_prep(sc, &val);
11109     }
11110 
11111     /* PXP */
11112     bxe_pxp_prep(sc);
11113     mb();
11114 
11115     /* reset the chip */
11116     bxe_process_kill_chip_reset(sc, global);
11117     mb();
11118 
11119     /* clear errors in PGB */
11120     if (!CHIP_IS_E1(sc))
11121         REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
11122 
11123     /* Recover after reset: */
11124     /* MCP */
11125     if (global && bxe_reset_mcp_comp(sc, val)) {
11126         return (-1);
11127     }
11128 
11129     /* XXX add resetting the NO_MCP mode DB here */
11130 
11131     /* Open the gates #2, #3 and #4 */
11132     bxe_set_234_gates(sc, FALSE);
11133 
11134     /* XXX
11135      * IGU/AEU preparation bring back the AEU/IGU to a reset state
11136      * re-enable attentions
11137      */
11138 
11139     return (0);
11140 }
11141 
11142 static int
11143 bxe_leader_reset(struct bxe_softc *sc)
11144 {
11145     int rc = 0;
11146     uint8_t global = bxe_reset_is_global(sc);
11147     uint32_t load_code;
11148 
11149     /*
11150      * If not going to reset MCP, load "fake" driver to reset HW while
11151      * driver is owner of the HW.
11152      */
11153     if (!global && !BXE_NOMCP(sc)) {
11154         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11155                                    DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11156         if (!load_code) {
11157             BLOGE(sc, "MCP response failure, aborting\n");
11158             rc = -1;
11159             goto exit_leader_reset;
11160         }
11161 
11162         if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11163             (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11164             BLOGE(sc, "MCP unexpected response, aborting\n");
11165             rc = -1;
11166             goto exit_leader_reset2;
11167         }
11168 
11169         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11170         if (!load_code) {
11171             BLOGE(sc, "MCP response failure, aborting\n");
11172             rc = -1;
11173             goto exit_leader_reset2;
11174         }
11175     }
11176 
11177     /* try to recover after the failure */
11178     if (bxe_process_kill(sc, global)) {
11179         BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11180         rc = -1;
11181         goto exit_leader_reset2;
11182     }
11183 
11184     /*
11185      * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11186      * state.
11187      */
11188     bxe_set_reset_done(sc);
11189     if (global) {
11190         bxe_clear_reset_global(sc);
11191     }
11192 
11193 exit_leader_reset2:
11194 
11195     /* unload "fake driver" if it was loaded */
11196     if (!global && !BXE_NOMCP(sc)) {
11197         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11198         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11199     }
11200 
11201 exit_leader_reset:
11202 
11203     sc->is_leader = 0;
11204     bxe_release_leader_lock(sc);
11205 
11206     mb();
11207     return (rc);
11208 }
11209 
11210 /*
11211  * prepare INIT transition, parameters configured:
11212  *   - HC configuration
11213  *   - Queue's CDU context
11214  */
11215 static void
11216 bxe_pf_q_prep_init(struct bxe_softc               *sc,
11217                    struct bxe_fastpath            *fp,
11218                    struct ecore_queue_init_params *init_params)
11219 {
11220     uint8_t cos;
11221     int cxt_index, cxt_offset;
11222 
11223     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11224     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11225 
11226     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11227     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11228 
11229     /* HC rate */
11230     init_params->rx.hc_rate =
11231         sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11232     init_params->tx.hc_rate =
11233         sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11234 
11235     /* FW SB ID */
11236     init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11237 
11238     /* CQ index among the SB indices */
11239     init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11240     init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11241 
11242     /* set maximum number of COSs supported by this queue */
11243     init_params->max_cos = sc->max_cos;
11244 
11245     BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11246           fp->index, init_params->max_cos);
11247 
11248     /* set the context pointers queue object */
11249     for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11250         /* XXX change index/cid here if ever support multiple tx CoS */
11251         /* fp->txdata[cos]->cid */
11252         cxt_index = fp->index / ILT_PAGE_CIDS;
11253         cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11254         init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11255     }
11256 }
11257 
11258 /* set flags that are common for the Tx-only and not normal connections */
11259 static unsigned long
11260 bxe_get_common_flags(struct bxe_softc    *sc,
11261                      struct bxe_fastpath *fp,
11262                      uint8_t             zero_stats)
11263 {
11264     unsigned long flags = 0;
11265 
11266     /* PF driver will always initialize the Queue to an ACTIVE state */
11267     bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11268 
11269     /*
11270      * tx only connections collect statistics (on the same index as the
11271      * parent connection). The statistics are zeroed when the parent
11272      * connection is initialized.
11273      */
11274 
11275     bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11276     if (zero_stats) {
11277         bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11278     }
11279 
11280     /*
11281      * tx only connections can support tx-switching, though their
11282      * CoS-ness doesn't survive the loopback
11283      */
11284     if (sc->flags & BXE_TX_SWITCHING) {
11285         bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11286     }
11287 
11288     bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11289 
11290     return (flags);
11291 }
11292 
11293 static unsigned long
11294 bxe_get_q_flags(struct bxe_softc    *sc,
11295                 struct bxe_fastpath *fp,
11296                 uint8_t             leading)
11297 {
11298     unsigned long flags = 0;
11299 
11300     if (IS_MF_SD(sc)) {
11301         bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11302     }
11303 
11304     if (if_getcapenable(sc->ifp) & IFCAP_LRO) {
11305         bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11306         bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11307     }
11308 
11309     if (leading) {
11310         bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11311         bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11312     }
11313 
11314     bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11315 
11316     /* merge with common flags */
11317     return (flags | bxe_get_common_flags(sc, fp, TRUE));
11318 }
11319 
11320 static void
11321 bxe_pf_q_prep_general(struct bxe_softc                  *sc,
11322                       struct bxe_fastpath               *fp,
11323                       struct ecore_general_setup_params *gen_init,
11324                       uint8_t                           cos)
11325 {
11326     gen_init->stat_id = bxe_stats_id(fp);
11327     gen_init->spcl_id = fp->cl_id;
11328     gen_init->mtu = sc->mtu;
11329     gen_init->cos = cos;
11330 }
11331 
11332 static void
11333 bxe_pf_rx_q_prep(struct bxe_softc              *sc,
11334                  struct bxe_fastpath           *fp,
11335                  struct rxq_pause_params       *pause,
11336                  struct ecore_rxq_setup_params *rxq_init)
11337 {
11338     uint8_t max_sge = 0;
11339     uint16_t sge_sz = 0;
11340     uint16_t tpa_agg_size = 0;
11341 
11342     pause->sge_th_lo = SGE_TH_LO(sc);
11343     pause->sge_th_hi = SGE_TH_HI(sc);
11344 
11345     /* validate SGE ring has enough to cross high threshold */
11346     if (sc->dropless_fc &&
11347             (pause->sge_th_hi + FW_PREFETCH_CNT) >
11348             (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11349         BLOGW(sc, "sge ring threshold limit\n");
11350     }
11351 
11352     /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11353     tpa_agg_size = (2 * sc->mtu);
11354     if (tpa_agg_size < sc->max_aggregation_size) {
11355         tpa_agg_size = sc->max_aggregation_size;
11356     }
11357 
11358     max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11359     max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11360                    (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11361     sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11362 
11363     /* pause - not for e1 */
11364     if (!CHIP_IS_E1(sc)) {
11365         pause->bd_th_lo = BD_TH_LO(sc);
11366         pause->bd_th_hi = BD_TH_HI(sc);
11367 
11368         pause->rcq_th_lo = RCQ_TH_LO(sc);
11369         pause->rcq_th_hi = RCQ_TH_HI(sc);
11370 
11371         /* validate rings have enough entries to cross high thresholds */
11372         if (sc->dropless_fc &&
11373             pause->bd_th_hi + FW_PREFETCH_CNT >
11374             sc->rx_ring_size) {
11375             BLOGW(sc, "rx bd ring threshold limit\n");
11376         }
11377 
11378         if (sc->dropless_fc &&
11379             pause->rcq_th_hi + FW_PREFETCH_CNT >
11380             RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11381             BLOGW(sc, "rcq ring threshold limit\n");
11382         }
11383 
11384         pause->pri_map = 1;
11385     }
11386 
11387     /* rxq setup */
11388     rxq_init->dscr_map   = fp->rx_dma.paddr;
11389     rxq_init->sge_map    = fp->rx_sge_dma.paddr;
11390     rxq_init->rcq_map    = fp->rcq_dma.paddr;
11391     rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11392 
11393     /*
11394      * This should be a maximum number of data bytes that may be
11395      * placed on the BD (not including paddings).
11396      */
11397     rxq_init->buf_sz = (fp->rx_buf_size -
11398                         IP_HEADER_ALIGNMENT_PADDING);
11399 
11400     rxq_init->cl_qzone_id     = fp->cl_qzone_id;
11401     rxq_init->tpa_agg_sz      = tpa_agg_size;
11402     rxq_init->sge_buf_sz      = sge_sz;
11403     rxq_init->max_sges_pkt    = max_sge;
11404     rxq_init->rss_engine_id   = SC_FUNC(sc);
11405     rxq_init->mcast_engine_id = SC_FUNC(sc);
11406 
11407     /*
11408      * Maximum number or simultaneous TPA aggregation for this Queue.
11409      * For PF Clients it should be the maximum available number.
11410      * VF driver(s) may want to define it to a smaller value.
11411      */
11412     rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11413 
11414     rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11415     rxq_init->fw_sb_id = fp->fw_sb_id;
11416 
11417     rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11418 
11419     /*
11420      * configure silent vlan removal
11421      * if multi function mode is afex, then mask default vlan
11422      */
11423     if (IS_MF_AFEX(sc)) {
11424         rxq_init->silent_removal_value =
11425             sc->devinfo.mf_info.afex_def_vlan_tag;
11426         rxq_init->silent_removal_mask = EVL_VLID_MASK;
11427     }
11428 }
11429 
11430 static void
11431 bxe_pf_tx_q_prep(struct bxe_softc              *sc,
11432                  struct bxe_fastpath           *fp,
11433                  struct ecore_txq_setup_params *txq_init,
11434                  uint8_t                       cos)
11435 {
11436     /*
11437      * XXX If multiple CoS is ever supported then each fastpath structure
11438      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11439      * fp->txdata[cos]->tx_dma.paddr;
11440      */
11441     txq_init->dscr_map     = fp->tx_dma.paddr;
11442     txq_init->sb_cq_index  = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11443     txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11444     txq_init->fw_sb_id     = fp->fw_sb_id;
11445 
11446     /*
11447      * set the TSS leading client id for TX classfication to the
11448      * leading RSS client id
11449      */
11450     txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11451 }
11452 
11453 /*
11454  * This function performs 2 steps in a queue state machine:
11455  *   1) RESET->INIT
11456  *   2) INIT->SETUP
11457  */
11458 static int
11459 bxe_setup_queue(struct bxe_softc    *sc,
11460                 struct bxe_fastpath *fp,
11461                 uint8_t             leading)
11462 {
11463     struct ecore_queue_state_params q_params = { NULL };
11464     struct ecore_queue_setup_params *setup_params =
11465                         &q_params.params.setup;
11466     int rc;
11467 
11468     BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11469 
11470     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11471 
11472     q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11473 
11474     /* we want to wait for completion in this context */
11475     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11476 
11477     /* prepare the INIT parameters */
11478     bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11479 
11480     /* Set the command */
11481     q_params.cmd = ECORE_Q_CMD_INIT;
11482 
11483     /* Change the state to INIT */
11484     rc = ecore_queue_state_change(sc, &q_params);
11485     if (rc) {
11486         BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc);
11487         return (rc);
11488     }
11489 
11490     BLOGD(sc, DBG_LOAD, "init complete\n");
11491 
11492     /* now move the Queue to the SETUP state */
11493     memset(setup_params, 0, sizeof(*setup_params));
11494 
11495     /* set Queue flags */
11496     setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11497 
11498     /* set general SETUP parameters */
11499     bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11500                           FIRST_TX_COS_INDEX);
11501 
11502     bxe_pf_rx_q_prep(sc, fp,
11503                      &setup_params->pause_params,
11504                      &setup_params->rxq_params);
11505 
11506     bxe_pf_tx_q_prep(sc, fp,
11507                      &setup_params->txq_params,
11508                      FIRST_TX_COS_INDEX);
11509 
11510     /* Set the command */
11511     q_params.cmd = ECORE_Q_CMD_SETUP;
11512 
11513     /* change the state to SETUP */
11514     rc = ecore_queue_state_change(sc, &q_params);
11515     if (rc) {
11516         BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc);
11517         return (rc);
11518     }
11519 
11520     return (rc);
11521 }
11522 
11523 static int
11524 bxe_setup_leading(struct bxe_softc *sc)
11525 {
11526     return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11527 }
11528 
11529 static int
11530 bxe_config_rss_pf(struct bxe_softc            *sc,
11531                   struct ecore_rss_config_obj *rss_obj,
11532                   uint8_t                     config_hash)
11533 {
11534     struct ecore_config_rss_params params = { NULL };
11535     int i;
11536 
11537     /*
11538      * Although RSS is meaningless when there is a single HW queue we
11539      * still need it enabled in order to have HW Rx hash generated.
11540      */
11541 
11542     params.rss_obj = rss_obj;
11543 
11544     bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11545 
11546     bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11547 
11548     /* RSS configuration */
11549     bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11550     bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11551     bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11552     bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11553     if (rss_obj->udp_rss_v4) {
11554         bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11555     }
11556     if (rss_obj->udp_rss_v6) {
11557         bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11558     }
11559 
11560     /* Hash bits */
11561     params.rss_result_mask = MULTI_MASK;
11562 
11563     memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
11564 
11565     if (config_hash) {
11566         /* RSS keys */
11567         for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
11568             params.rss_key[i] = arc4random();
11569         }
11570 
11571         bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
11572     }
11573 
11574     return (ecore_config_rss(sc, &params));
11575 }
11576 
11577 static int
11578 bxe_config_rss_eth(struct bxe_softc *sc,
11579                    uint8_t          config_hash)
11580 {
11581     return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
11582 }
11583 
11584 static int
11585 bxe_init_rss_pf(struct bxe_softc *sc)
11586 {
11587     uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
11588     int i;
11589 
11590     /*
11591      * Prepare the initial contents of the indirection table if
11592      * RSS is enabled
11593      */
11594     for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
11595         sc->rss_conf_obj.ind_table[i] =
11596             (sc->fp->cl_id + (i % num_eth_queues));
11597     }
11598 
11599     if (sc->udp_rss) {
11600         sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
11601     }
11602 
11603     /*
11604      * For 57710 and 57711 SEARCHER configuration (rss_keys) is
11605      * per-port, so if explicit configuration is needed, do it only
11606      * for a PMF.
11607      *
11608      * For 57712 and newer it's a per-function configuration.
11609      */
11610     return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
11611 }
11612 
11613 static int
11614 bxe_set_mac_one(struct bxe_softc          *sc,
11615                 uint8_t                   *mac,
11616                 struct ecore_vlan_mac_obj *obj,
11617                 uint8_t                   set,
11618                 int                       mac_type,
11619                 unsigned long             *ramrod_flags)
11620 {
11621     struct ecore_vlan_mac_ramrod_params ramrod_param;
11622     int rc;
11623 
11624     memset(&ramrod_param, 0, sizeof(ramrod_param));
11625 
11626     /* fill in general parameters */
11627     ramrod_param.vlan_mac_obj = obj;
11628     ramrod_param.ramrod_flags = *ramrod_flags;
11629 
11630     /* fill a user request section if needed */
11631     if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
11632         memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
11633 
11634         bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
11635 
11636         /* Set the command: ADD or DEL */
11637         ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
11638                                             ECORE_VLAN_MAC_DEL;
11639     }
11640 
11641     rc = ecore_config_vlan_mac(sc, &ramrod_param);
11642 
11643     if (rc == ECORE_EXISTS) {
11644         BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
11645         /* do not treat adding same MAC as error */
11646         rc = 0;
11647     } else if (rc < 0) {
11648         BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
11649     }
11650 
11651     return (rc);
11652 }
11653 
11654 static int
11655 bxe_set_eth_mac(struct bxe_softc *sc,
11656                 uint8_t          set)
11657 {
11658     unsigned long ramrod_flags = 0;
11659 
11660     BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
11661 
11662     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11663 
11664     /* Eth MAC is set on RSS leading client (fp[0]) */
11665     return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
11666                             &sc->sp_objs->mac_obj,
11667                             set, ECORE_ETH_MAC, &ramrod_flags));
11668 }
11669 
11670 static int
11671 bxe_get_cur_phy_idx(struct bxe_softc *sc)
11672 {
11673     uint32_t sel_phy_idx = 0;
11674 
11675     if (sc->link_params.num_phys <= 1) {
11676         return (ELINK_INT_PHY);
11677     }
11678 
11679     if (sc->link_vars.link_up) {
11680         sel_phy_idx = ELINK_EXT_PHY1;
11681         /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
11682         if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
11683             (sc->link_params.phy[ELINK_EXT_PHY2].supported &
11684              ELINK_SUPPORTED_FIBRE))
11685             sel_phy_idx = ELINK_EXT_PHY2;
11686     } else {
11687         switch (elink_phy_selection(&sc->link_params)) {
11688         case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
11689         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
11690         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
11691                sel_phy_idx = ELINK_EXT_PHY1;
11692                break;
11693         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
11694         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
11695                sel_phy_idx = ELINK_EXT_PHY2;
11696                break;
11697         }
11698     }
11699 
11700     return (sel_phy_idx);
11701 }
11702 
11703 static int
11704 bxe_get_link_cfg_idx(struct bxe_softc *sc)
11705 {
11706     uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
11707 
11708     /*
11709      * The selected activated PHY is always after swapping (in case PHY
11710      * swapping is enabled). So when swapping is enabled, we need to reverse
11711      * the configuration
11712      */
11713 
11714     if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11715         if (sel_phy_idx == ELINK_EXT_PHY1)
11716             sel_phy_idx = ELINK_EXT_PHY2;
11717         else if (sel_phy_idx == ELINK_EXT_PHY2)
11718             sel_phy_idx = ELINK_EXT_PHY1;
11719     }
11720 
11721     return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
11722 }
11723 
11724 static void
11725 bxe_set_requested_fc(struct bxe_softc *sc)
11726 {
11727     /*
11728      * Initialize link parameters structure variables
11729      * It is recommended to turn off RX FC for jumbo frames
11730      * for better performance
11731      */
11732     if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
11733         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
11734     } else {
11735         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
11736     }
11737 }
11738 
11739 static void
11740 bxe_calc_fc_adv(struct bxe_softc *sc)
11741 {
11742     uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
11743     switch (sc->link_vars.ieee_fc &
11744             MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
11745     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
11746     default:
11747         sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
11748                                            ADVERTISED_Pause);
11749         break;
11750 
11751     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
11752         sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
11753                                           ADVERTISED_Pause);
11754         break;
11755 
11756     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
11757         sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
11758         break;
11759     }
11760 }
11761 
11762 static uint16_t
11763 bxe_get_mf_speed(struct bxe_softc *sc)
11764 {
11765     uint16_t line_speed = sc->link_vars.line_speed;
11766     if (IS_MF(sc)) {
11767         uint16_t maxCfg =
11768             bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
11769 
11770         /* calculate the current MAX line speed limit for the MF devices */
11771         if (IS_MF_SI(sc)) {
11772             line_speed = (line_speed * maxCfg) / 100;
11773         } else { /* SD mode */
11774             uint16_t vn_max_rate = maxCfg * 100;
11775 
11776             if (vn_max_rate < line_speed) {
11777                 line_speed = vn_max_rate;
11778             }
11779         }
11780     }
11781 
11782     return (line_speed);
11783 }
11784 
11785 static void
11786 bxe_fill_report_data(struct bxe_softc            *sc,
11787                      struct bxe_link_report_data *data)
11788 {
11789     uint16_t line_speed = bxe_get_mf_speed(sc);
11790 
11791     memset(data, 0, sizeof(*data));
11792 
11793     /* fill the report data with the effective line speed */
11794     data->line_speed = line_speed;
11795 
11796     /* Link is down */
11797     if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
11798         bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
11799     }
11800 
11801     /* Full DUPLEX */
11802     if (sc->link_vars.duplex == DUPLEX_FULL) {
11803         bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
11804     }
11805 
11806     /* Rx Flow Control is ON */
11807     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
11808         bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
11809     }
11810 
11811     /* Tx Flow Control is ON */
11812     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
11813         bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
11814     }
11815 }
11816 
11817 /* report link status to OS, should be called under phy_lock */
11818 static void
11819 bxe_link_report_locked(struct bxe_softc *sc)
11820 {
11821     struct bxe_link_report_data cur_data;
11822 
11823     /* reread mf_cfg */
11824     if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
11825         bxe_read_mf_cfg(sc);
11826     }
11827 
11828     /* Read the current link report info */
11829     bxe_fill_report_data(sc, &cur_data);
11830 
11831     /* Don't report link down or exactly the same link status twice */
11832     if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
11833         (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11834                       &sc->last_reported_link.link_report_flags) &&
11835          bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11836                       &cur_data.link_report_flags))) {
11837         return;
11838     }
11839 
11840     sc->link_cnt++;
11841 
11842     /* report new link params and remember the state for the next time */
11843     memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
11844 
11845     if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11846                      &cur_data.link_report_flags)) {
11847         if_link_state_change(sc->ifp, LINK_STATE_DOWN);
11848         BLOGI(sc, "NIC Link is Down\n");
11849     } else {
11850         const char *duplex;
11851         const char *flow;
11852 
11853         if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
11854                                    &cur_data.link_report_flags)) {
11855             duplex = "full";
11856         } else {
11857             duplex = "half";
11858         }
11859 
11860         /*
11861          * Handle the FC at the end so that only these flags would be
11862          * possibly set. This way we may easily check if there is no FC
11863          * enabled.
11864          */
11865         if (cur_data.link_report_flags) {
11866             if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11867                              &cur_data.link_report_flags) &&
11868                 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11869                              &cur_data.link_report_flags)) {
11870                 flow = "ON - receive & transmit";
11871             } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11872                                     &cur_data.link_report_flags) &&
11873                        !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11874                                      &cur_data.link_report_flags)) {
11875                 flow = "ON - receive";
11876             } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11877                                      &cur_data.link_report_flags) &&
11878                        bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11879                                     &cur_data.link_report_flags)) {
11880                 flow = "ON - transmit";
11881             } else {
11882                 flow = "none"; /* possible? */
11883             }
11884         } else {
11885             flow = "none";
11886         }
11887 
11888         if_link_state_change(sc->ifp, LINK_STATE_UP);
11889         BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
11890               cur_data.line_speed, duplex, flow);
11891     }
11892 }
11893 
11894 static void
11895 bxe_link_report(struct bxe_softc *sc)
11896 {
11897     bxe_acquire_phy_lock(sc);
11898     bxe_link_report_locked(sc);
11899     bxe_release_phy_lock(sc);
11900 }
11901 
11902 static void
11903 bxe_link_status_update(struct bxe_softc *sc)
11904 {
11905     if (sc->state != BXE_STATE_OPEN) {
11906         return;
11907     }
11908 
11909     if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
11910         elink_link_status_update(&sc->link_params, &sc->link_vars);
11911     } else {
11912         sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
11913                                   ELINK_SUPPORTED_10baseT_Full |
11914                                   ELINK_SUPPORTED_100baseT_Half |
11915                                   ELINK_SUPPORTED_100baseT_Full |
11916                                   ELINK_SUPPORTED_1000baseT_Full |
11917                                   ELINK_SUPPORTED_2500baseX_Full |
11918                                   ELINK_SUPPORTED_10000baseT_Full |
11919                                   ELINK_SUPPORTED_TP |
11920                                   ELINK_SUPPORTED_FIBRE |
11921                                   ELINK_SUPPORTED_Autoneg |
11922                                   ELINK_SUPPORTED_Pause |
11923                                   ELINK_SUPPORTED_Asym_Pause);
11924         sc->port.advertising[0] = sc->port.supported[0];
11925 
11926         sc->link_params.sc                = sc;
11927         sc->link_params.port              = SC_PORT(sc);
11928         sc->link_params.req_duplex[0]     = DUPLEX_FULL;
11929         sc->link_params.req_flow_ctrl[0]  = ELINK_FLOW_CTRL_NONE;
11930         sc->link_params.req_line_speed[0] = SPEED_10000;
11931         sc->link_params.speed_cap_mask[0] = 0x7f0000;
11932         sc->link_params.switch_cfg        = ELINK_SWITCH_CFG_10G;
11933 
11934         if (CHIP_REV_IS_FPGA(sc)) {
11935             sc->link_vars.mac_type    = ELINK_MAC_TYPE_EMAC;
11936             sc->link_vars.line_speed  = ELINK_SPEED_1000;
11937             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
11938                                          LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
11939         } else {
11940             sc->link_vars.mac_type    = ELINK_MAC_TYPE_BMAC;
11941             sc->link_vars.line_speed  = ELINK_SPEED_10000;
11942             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
11943                                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
11944         }
11945 
11946         sc->link_vars.link_up = 1;
11947 
11948         sc->link_vars.duplex    = DUPLEX_FULL;
11949         sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
11950 
11951         if (IS_PF(sc)) {
11952             REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
11953             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11954             bxe_link_report(sc);
11955         }
11956     }
11957 
11958     if (IS_PF(sc)) {
11959         if (sc->link_vars.link_up) {
11960             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11961         } else {
11962             bxe_stats_handle(sc, STATS_EVENT_STOP);
11963         }
11964         bxe_link_report(sc);
11965     } else {
11966         bxe_link_report(sc);
11967         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11968     }
11969 }
11970 
11971 static int
11972 bxe_initial_phy_init(struct bxe_softc *sc,
11973                      int              load_mode)
11974 {
11975     int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
11976     uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
11977     struct elink_params *lp = &sc->link_params;
11978 
11979     bxe_set_requested_fc(sc);
11980 
11981     if (CHIP_REV_IS_SLOW(sc)) {
11982         uint32_t bond = CHIP_BOND_ID(sc);
11983         uint32_t feat = 0;
11984 
11985         if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
11986             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
11987         } else if (bond & 0x4) {
11988             if (CHIP_IS_E3(sc)) {
11989                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
11990             } else {
11991                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
11992             }
11993         } else if (bond & 0x8) {
11994             if (CHIP_IS_E3(sc)) {
11995                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
11996             } else {
11997                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
11998             }
11999         }
12000 
12001         /* disable EMAC for E3 and above */
12002         if (bond & 0x2) {
12003             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12004         }
12005 
12006         sc->link_params.feature_config_flags |= feat;
12007     }
12008 
12009     bxe_acquire_phy_lock(sc);
12010 
12011     if (load_mode == LOAD_DIAG) {
12012         lp->loopback_mode = ELINK_LOOPBACK_XGXS;
12013         /* Prefer doing PHY loopback at 10G speed, if possible */
12014         if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
12015             if (lp->speed_cap_mask[cfg_idx] &
12016                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
12017                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
12018             } else {
12019                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
12020             }
12021         }
12022     }
12023 
12024     if (load_mode == LOAD_LOOPBACK_EXT) {
12025         lp->loopback_mode = ELINK_LOOPBACK_EXT;
12026     }
12027 
12028     rc = elink_phy_init(&sc->link_params, &sc->link_vars);
12029 
12030     bxe_release_phy_lock(sc);
12031 
12032     bxe_calc_fc_adv(sc);
12033 
12034     if (sc->link_vars.link_up) {
12035         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12036         bxe_link_report(sc);
12037     }
12038 
12039     if (!CHIP_REV_IS_SLOW(sc)) {
12040         bxe_periodic_start(sc);
12041     }
12042 
12043     sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
12044     return (rc);
12045 }
12046 
12047 /* must be called under IF_ADDR_LOCK */
12048 
12049 static int
12050 bxe_set_mc_list(struct bxe_softc *sc)
12051 {
12052     struct ecore_mcast_ramrod_params rparam = { NULL };
12053     int rc = 0;
12054     int mc_count = 0;
12055     int mcnt, i;
12056     struct ecore_mcast_list_elem *mc_mac, *mc_mac_start;
12057     unsigned char *mta;
12058     if_t ifp = sc->ifp;
12059 
12060     mc_count = if_multiaddr_count(ifp, -1);/* XXX they don't have a limit */
12061     if (!mc_count)
12062         return (0);
12063 
12064     mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN *
12065             mc_count, M_DEVBUF, M_NOWAIT);
12066 
12067     if(mta == NULL) {
12068         BLOGE(sc, "Failed to allocate temp mcast list\n");
12069         return (-1);
12070     }
12071     bzero(mta, (sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count));
12072 
12073     mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, (M_NOWAIT | M_ZERO));
12074     mc_mac_start = mc_mac;
12075 
12076     if (!mc_mac) {
12077         free(mta, M_DEVBUF);
12078         BLOGE(sc, "Failed to allocate temp mcast list\n");
12079         return (-1);
12080     }
12081     bzero(mc_mac, (sizeof(*mc_mac) * mc_count));
12082 
12083     /* mta and mcnt not expected to be  different */
12084     if_multiaddr_array(ifp, mta, &mcnt, mc_count);
12085 
12086 
12087     rparam.mcast_obj = &sc->mcast_obj;
12088     ECORE_LIST_INIT(&rparam.mcast_list);
12089 
12090     for(i=0; i< mcnt; i++) {
12091 
12092         mc_mac->mac = (uint8_t *)(mta + (i * ETHER_ADDR_LEN));
12093         ECORE_LIST_PUSH_TAIL(&mc_mac->link, &rparam.mcast_list);
12094 
12095         BLOGD(sc, DBG_LOAD,
12096               "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n",
12097               mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2],
12098               mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]);
12099 
12100         mc_mac++;
12101     }
12102     rparam.mcast_list_len = mc_count;
12103 
12104     BXE_MCAST_LOCK(sc);
12105 
12106     /* first, clear all configured multicast MACs */
12107     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
12108     if (rc < 0) {
12109         BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
12110         BXE_MCAST_UNLOCK(sc);
12111     	free(mc_mac_start, M_DEVBUF);
12112         free(mta, M_DEVBUF);
12113         return (rc);
12114     }
12115 
12116     /* Now add the new MACs */
12117     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
12118     if (rc < 0) {
12119         BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
12120     }
12121 
12122     BXE_MCAST_UNLOCK(sc);
12123 
12124     free(mc_mac_start, M_DEVBUF);
12125     free(mta, M_DEVBUF);
12126 
12127     return (rc);
12128 }
12129 
12130 static int
12131 bxe_set_uc_list(struct bxe_softc *sc)
12132 {
12133     if_t ifp = sc->ifp;
12134     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
12135     struct ifaddr *ifa;
12136     unsigned long ramrod_flags = 0;
12137     int rc;
12138 
12139 #if __FreeBSD_version < 800000
12140     IF_ADDR_LOCK(ifp);
12141 #else
12142     if_addr_rlock(ifp);
12143 #endif
12144 
12145     /* first schedule a cleanup up of old configuration */
12146     rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
12147     if (rc < 0) {
12148         BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
12149 #if __FreeBSD_version < 800000
12150         IF_ADDR_UNLOCK(ifp);
12151 #else
12152         if_addr_runlock(ifp);
12153 #endif
12154         return (rc);
12155     }
12156 
12157     ifa = if_getifaddr(ifp); /* XXX Is this structure */
12158     while (ifa) {
12159         if (ifa->ifa_addr->sa_family != AF_LINK) {
12160             ifa = TAILQ_NEXT(ifa, ifa_link);
12161             continue;
12162         }
12163 
12164         rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
12165                              mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags);
12166         if (rc == -EEXIST) {
12167             BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12168             /* do not treat adding same MAC as an error */
12169             rc = 0;
12170         } else if (rc < 0) {
12171             BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc);
12172 #if __FreeBSD_version < 800000
12173             IF_ADDR_UNLOCK(ifp);
12174 #else
12175             if_addr_runlock(ifp);
12176 #endif
12177             return (rc);
12178         }
12179 
12180         ifa = TAILQ_NEXT(ifa, ifa_link);
12181     }
12182 
12183 #if __FreeBSD_version < 800000
12184     IF_ADDR_UNLOCK(ifp);
12185 #else
12186     if_addr_runlock(ifp);
12187 #endif
12188 
12189     /* Execute the pending commands */
12190     bit_set(&ramrod_flags, RAMROD_CONT);
12191     return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12192                             ECORE_UC_LIST_MAC, &ramrod_flags));
12193 }
12194 
12195 static void
12196 bxe_set_rx_mode(struct bxe_softc *sc)
12197 {
12198     if_t ifp = sc->ifp;
12199     uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12200 
12201     if (sc->state != BXE_STATE_OPEN) {
12202         BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12203         return;
12204     }
12205 
12206     BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp));
12207 
12208     if (if_getflags(ifp) & IFF_PROMISC) {
12209         rx_mode = BXE_RX_MODE_PROMISC;
12210     } else if ((if_getflags(ifp) & IFF_ALLMULTI) ||
12211                ((if_getamcount(ifp) > BXE_MAX_MULTICAST) &&
12212                 CHIP_IS_E1(sc))) {
12213         rx_mode = BXE_RX_MODE_ALLMULTI;
12214     } else {
12215         if (IS_PF(sc)) {
12216             /* some multicasts */
12217             if (bxe_set_mc_list(sc) < 0) {
12218                 rx_mode = BXE_RX_MODE_ALLMULTI;
12219             }
12220             if (bxe_set_uc_list(sc) < 0) {
12221                 rx_mode = BXE_RX_MODE_PROMISC;
12222             }
12223         }
12224     }
12225 
12226     sc->rx_mode = rx_mode;
12227 
12228     /* schedule the rx_mode command */
12229     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12230         BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12231         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12232         return;
12233     }
12234 
12235     if (IS_PF(sc)) {
12236         bxe_set_storm_rx_mode(sc);
12237     }
12238 }
12239 
12240 
12241 /* update flags in shmem */
12242 static void
12243 bxe_update_drv_flags(struct bxe_softc *sc,
12244                      uint32_t         flags,
12245                      uint32_t         set)
12246 {
12247     uint32_t drv_flags;
12248 
12249     if (SHMEM2_HAS(sc, drv_flags)) {
12250         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12251         drv_flags = SHMEM2_RD(sc, drv_flags);
12252 
12253         if (set) {
12254             SET_FLAGS(drv_flags, flags);
12255         } else {
12256             RESET_FLAGS(drv_flags, flags);
12257         }
12258 
12259         SHMEM2_WR(sc, drv_flags, drv_flags);
12260         BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12261 
12262         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12263     }
12264 }
12265 
12266 /* periodic timer callout routine, only runs when the interface is up */
12267 
12268 static void
12269 bxe_periodic_callout_func(void *xsc)
12270 {
12271     struct bxe_softc *sc = (struct bxe_softc *)xsc;
12272     int i;
12273 
12274     if (!BXE_CORE_TRYLOCK(sc)) {
12275         /* just bail and try again next time */
12276 
12277         if ((sc->state == BXE_STATE_OPEN) &&
12278             (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12279             /* schedule the next periodic callout */
12280             callout_reset(&sc->periodic_callout, hz,
12281                           bxe_periodic_callout_func, sc);
12282         }
12283 
12284         return;
12285     }
12286 
12287     if ((sc->state != BXE_STATE_OPEN) ||
12288         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12289         BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12290         BXE_CORE_UNLOCK(sc);
12291         return;
12292     }
12293 
12294     /* Check for TX timeouts on any fastpath. */
12295     FOR_EACH_QUEUE(sc, i) {
12296         if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12297             /* Ruh-Roh, chip was reset! */
12298             break;
12299         }
12300     }
12301 
12302     if (!CHIP_REV_IS_SLOW(sc)) {
12303         /*
12304          * This barrier is needed to ensure the ordering between the writing
12305          * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12306          * the reading here.
12307          */
12308         mb();
12309         if (sc->port.pmf) {
12310 	    bxe_acquire_phy_lock(sc);
12311             elink_period_func(&sc->link_params, &sc->link_vars);
12312 	    bxe_release_phy_lock(sc);
12313         }
12314     }
12315 
12316     if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) {
12317         int mb_idx = SC_FW_MB_IDX(sc);
12318         uint32_t drv_pulse;
12319         uint32_t mcp_pulse;
12320 
12321         ++sc->fw_drv_pulse_wr_seq;
12322         sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12323 
12324         drv_pulse = sc->fw_drv_pulse_wr_seq;
12325         bxe_drv_pulse(sc);
12326 
12327         mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12328                      MCP_PULSE_SEQ_MASK);
12329 
12330         /*
12331          * The delta between driver pulse and mcp response should
12332          * be 1 (before mcp response) or 0 (after mcp response).
12333          */
12334         if ((drv_pulse != mcp_pulse) &&
12335             (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12336             /* someone lost a heartbeat... */
12337             BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12338                   drv_pulse, mcp_pulse);
12339         }
12340     }
12341 
12342     /* state is BXE_STATE_OPEN */
12343     bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12344 
12345     BXE_CORE_UNLOCK(sc);
12346 
12347     if ((sc->state == BXE_STATE_OPEN) &&
12348         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12349         /* schedule the next periodic callout */
12350         callout_reset(&sc->periodic_callout, hz,
12351                       bxe_periodic_callout_func, sc);
12352     }
12353 }
12354 
12355 static void
12356 bxe_periodic_start(struct bxe_softc *sc)
12357 {
12358     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12359     callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12360 }
12361 
12362 static void
12363 bxe_periodic_stop(struct bxe_softc *sc)
12364 {
12365     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12366     callout_drain(&sc->periodic_callout);
12367 }
12368 
12369 /* start the controller */
12370 static __noinline int
12371 bxe_nic_load(struct bxe_softc *sc,
12372              int              load_mode)
12373 {
12374     uint32_t val;
12375     int load_code = 0;
12376     int i, rc = 0;
12377 
12378     BXE_CORE_LOCK_ASSERT(sc);
12379 
12380     BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12381 
12382     sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12383 
12384     if (IS_PF(sc)) {
12385         /* must be called before memory allocation and HW init */
12386         bxe_ilt_set_info(sc);
12387     }
12388 
12389     sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12390 
12391     bxe_set_fp_rx_buf_size(sc);
12392 
12393     if (bxe_alloc_fp_buffers(sc) != 0) {
12394         BLOGE(sc, "Failed to allocate fastpath memory\n");
12395         sc->state = BXE_STATE_CLOSED;
12396         rc = ENOMEM;
12397         goto bxe_nic_load_error0;
12398     }
12399 
12400     if (bxe_alloc_mem(sc) != 0) {
12401         sc->state = BXE_STATE_CLOSED;
12402         rc = ENOMEM;
12403         goto bxe_nic_load_error0;
12404     }
12405 
12406     if (bxe_alloc_fw_stats_mem(sc) != 0) {
12407         sc->state = BXE_STATE_CLOSED;
12408         rc = ENOMEM;
12409         goto bxe_nic_load_error0;
12410     }
12411 
12412     if (IS_PF(sc)) {
12413         /* set pf load just before approaching the MCP */
12414         bxe_set_pf_load(sc);
12415 
12416         /* if MCP exists send load request and analyze response */
12417         if (!BXE_NOMCP(sc)) {
12418             /* attempt to load pf */
12419             if (bxe_nic_load_request(sc, &load_code) != 0) {
12420                 sc->state = BXE_STATE_CLOSED;
12421                 rc = ENXIO;
12422                 goto bxe_nic_load_error1;
12423             }
12424 
12425             /* what did the MCP say? */
12426             if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12427                 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12428                 sc->state = BXE_STATE_CLOSED;
12429                 rc = ENXIO;
12430                 goto bxe_nic_load_error2;
12431             }
12432         } else {
12433             BLOGI(sc, "Device has no MCP!\n");
12434             load_code = bxe_nic_load_no_mcp(sc);
12435         }
12436 
12437         /* mark PMF if applicable */
12438         bxe_nic_load_pmf(sc, load_code);
12439 
12440         /* Init Function state controlling object */
12441         bxe_init_func_obj(sc);
12442 
12443         /* Initialize HW */
12444         if (bxe_init_hw(sc, load_code) != 0) {
12445             BLOGE(sc, "HW init failed\n");
12446             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12447             sc->state = BXE_STATE_CLOSED;
12448             rc = ENXIO;
12449             goto bxe_nic_load_error2;
12450         }
12451     }
12452 
12453     /* set ALWAYS_ALIVE bit in shmem */
12454     sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
12455     bxe_drv_pulse(sc);
12456     sc->flags |= BXE_NO_PULSE;
12457 
12458     /* attach interrupts */
12459     if (bxe_interrupt_attach(sc) != 0) {
12460         sc->state = BXE_STATE_CLOSED;
12461         rc = ENXIO;
12462         goto bxe_nic_load_error2;
12463     }
12464 
12465     bxe_nic_init(sc, load_code);
12466 
12467     /* Init per-function objects */
12468     if (IS_PF(sc)) {
12469         bxe_init_objs(sc);
12470         // XXX bxe_iov_nic_init(sc);
12471 
12472         /* set AFEX default VLAN tag to an invalid value */
12473         sc->devinfo.mf_info.afex_def_vlan_tag = -1;
12474         // XXX bxe_nic_load_afex_dcc(sc, load_code);
12475 
12476         sc->state = BXE_STATE_OPENING_WAITING_PORT;
12477         rc = bxe_func_start(sc);
12478         if (rc) {
12479             BLOGE(sc, "Function start failed! rc = %d\n", rc);
12480             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12481             sc->state = BXE_STATE_ERROR;
12482             goto bxe_nic_load_error3;
12483         }
12484 
12485         /* send LOAD_DONE command to MCP */
12486         if (!BXE_NOMCP(sc)) {
12487             load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12488             if (!load_code) {
12489                 BLOGE(sc, "MCP response failure, aborting\n");
12490                 sc->state = BXE_STATE_ERROR;
12491                 rc = ENXIO;
12492                 goto bxe_nic_load_error3;
12493             }
12494         }
12495 
12496         rc = bxe_setup_leading(sc);
12497         if (rc) {
12498             BLOGE(sc, "Setup leading failed! rc = %d\n", rc);
12499             sc->state = BXE_STATE_ERROR;
12500             goto bxe_nic_load_error3;
12501         }
12502 
12503         FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
12504             rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
12505             if (rc) {
12506                 BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc);
12507                 sc->state = BXE_STATE_ERROR;
12508                 goto bxe_nic_load_error3;
12509             }
12510         }
12511 
12512         rc = bxe_init_rss_pf(sc);
12513         if (rc) {
12514             BLOGE(sc, "PF RSS init failed\n");
12515             sc->state = BXE_STATE_ERROR;
12516             goto bxe_nic_load_error3;
12517         }
12518     }
12519     /* XXX VF */
12520 
12521     /* now when Clients are configured we are ready to work */
12522     sc->state = BXE_STATE_OPEN;
12523 
12524     /* Configure a ucast MAC */
12525     if (IS_PF(sc)) {
12526         rc = bxe_set_eth_mac(sc, TRUE);
12527     }
12528     if (rc) {
12529         BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc);
12530         sc->state = BXE_STATE_ERROR;
12531         goto bxe_nic_load_error3;
12532     }
12533 
12534     if (sc->port.pmf) {
12535         rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
12536         if (rc) {
12537             sc->state = BXE_STATE_ERROR;
12538             goto bxe_nic_load_error3;
12539         }
12540     }
12541 
12542     sc->link_params.feature_config_flags &=
12543         ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
12544 
12545     /* start fast path */
12546 
12547     /* Initialize Rx filter */
12548     bxe_set_rx_mode(sc);
12549 
12550     /* start the Tx */
12551     switch (/* XXX load_mode */LOAD_OPEN) {
12552     case LOAD_NORMAL:
12553     case LOAD_OPEN:
12554         break;
12555 
12556     case LOAD_DIAG:
12557     case LOAD_LOOPBACK_EXT:
12558         sc->state = BXE_STATE_DIAG;
12559         break;
12560 
12561     default:
12562         break;
12563     }
12564 
12565     if (sc->port.pmf) {
12566         bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
12567     } else {
12568         bxe_link_status_update(sc);
12569     }
12570 
12571     /* start the periodic timer callout */
12572     bxe_periodic_start(sc);
12573 
12574     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
12575         /* mark driver is loaded in shmem2 */
12576         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
12577         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
12578                   (val |
12579                    DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
12580                    DRV_FLAGS_CAPABILITIES_LOADED_L2));
12581     }
12582 
12583     /* wait for all pending SP commands to complete */
12584     if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
12585         BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
12586         bxe_periodic_stop(sc);
12587         bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
12588         return (ENXIO);
12589     }
12590 
12591     /* Tell the stack the driver is running! */
12592     if_setdrvflags(sc->ifp, IFF_DRV_RUNNING);
12593 
12594     BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
12595 
12596     return (0);
12597 
12598 bxe_nic_load_error3:
12599 
12600     if (IS_PF(sc)) {
12601         bxe_int_disable_sync(sc, 1);
12602 
12603         /* clean out queued objects */
12604         bxe_squeeze_objects(sc);
12605     }
12606 
12607     bxe_interrupt_detach(sc);
12608 
12609 bxe_nic_load_error2:
12610 
12611     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
12612         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
12613         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
12614     }
12615 
12616     sc->port.pmf = 0;
12617 
12618 bxe_nic_load_error1:
12619 
12620     /* clear pf_load status, as it was already set */
12621     if (IS_PF(sc)) {
12622         bxe_clear_pf_load(sc);
12623     }
12624 
12625 bxe_nic_load_error0:
12626 
12627     bxe_free_fw_stats_mem(sc);
12628     bxe_free_fp_buffers(sc);
12629     bxe_free_mem(sc);
12630 
12631     return (rc);
12632 }
12633 
12634 static int
12635 bxe_init_locked(struct bxe_softc *sc)
12636 {
12637     int other_engine = SC_PATH(sc) ? 0 : 1;
12638     uint8_t other_load_status, load_status;
12639     uint8_t global = FALSE;
12640     int rc;
12641 
12642     BXE_CORE_LOCK_ASSERT(sc);
12643 
12644     /* check if the driver is already running */
12645     if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
12646         BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
12647         return (0);
12648     }
12649 
12650     bxe_set_power_state(sc, PCI_PM_D0);
12651 
12652     /*
12653      * If parity occurred during the unload, then attentions and/or
12654      * RECOVERY_IN_PROGRES may still be set. If so we want the first function
12655      * loaded on the current engine to complete the recovery. Parity recovery
12656      * is only relevant for PF driver.
12657      */
12658     if (IS_PF(sc)) {
12659         other_load_status = bxe_get_load_status(sc, other_engine);
12660         load_status = bxe_get_load_status(sc, SC_PATH(sc));
12661 
12662         if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
12663             bxe_chk_parity_attn(sc, &global, TRUE)) {
12664             do {
12665                 /*
12666                  * If there are attentions and they are in global blocks, set
12667                  * the GLOBAL_RESET bit regardless whether it will be this
12668                  * function that will complete the recovery or not.
12669                  */
12670                 if (global) {
12671                     bxe_set_reset_global(sc);
12672                 }
12673 
12674                 /*
12675                  * Only the first function on the current engine should try
12676                  * to recover in open. In case of attentions in global blocks
12677                  * only the first in the chip should try to recover.
12678                  */
12679                 if ((!load_status && (!global || !other_load_status)) &&
12680                     bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
12681                     BLOGI(sc, "Recovered during init\n");
12682                     break;
12683                 }
12684 
12685                 /* recovery has failed... */
12686                 bxe_set_power_state(sc, PCI_PM_D3hot);
12687                 sc->recovery_state = BXE_RECOVERY_FAILED;
12688 
12689                 BLOGE(sc, "Recovery flow hasn't properly "
12690                           "completed yet, try again later. "
12691                           "If you still see this message after a "
12692                           "few retries then power cycle is required.\n");
12693 
12694                 rc = ENXIO;
12695                 goto bxe_init_locked_done;
12696             } while (0);
12697         }
12698     }
12699 
12700     sc->recovery_state = BXE_RECOVERY_DONE;
12701 
12702     rc = bxe_nic_load(sc, LOAD_OPEN);
12703 
12704 bxe_init_locked_done:
12705 
12706     if (rc) {
12707         /* Tell the stack the driver is NOT running! */
12708         BLOGE(sc, "Initialization failed, "
12709                   "stack notified driver is NOT running!\n");
12710 	if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
12711     }
12712 
12713     return (rc);
12714 }
12715 
12716 static int
12717 bxe_stop_locked(struct bxe_softc *sc)
12718 {
12719     BXE_CORE_LOCK_ASSERT(sc);
12720     return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
12721 }
12722 
12723 /*
12724  * Handles controller initialization when called from an unlocked routine.
12725  * ifconfig calls this function.
12726  *
12727  * Returns:
12728  *   void
12729  */
12730 static void
12731 bxe_init(void *xsc)
12732 {
12733     struct bxe_softc *sc = (struct bxe_softc *)xsc;
12734 
12735     BXE_CORE_LOCK(sc);
12736     bxe_init_locked(sc);
12737     BXE_CORE_UNLOCK(sc);
12738 }
12739 
12740 static int
12741 bxe_init_ifnet(struct bxe_softc *sc)
12742 {
12743     if_t ifp;
12744     int capabilities;
12745 
12746     /* ifconfig entrypoint for media type/status reporting */
12747     ifmedia_init(&sc->ifmedia, IFM_IMASK,
12748                  bxe_ifmedia_update,
12749                  bxe_ifmedia_status);
12750 
12751     /* set the default interface values */
12752     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
12753     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
12754     ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
12755 
12756     sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
12757 
12758     /* allocate the ifnet structure */
12759     if ((ifp = if_gethandle(IFT_ETHER)) == NULL) {
12760         BLOGE(sc, "Interface allocation failed!\n");
12761         return (ENXIO);
12762     }
12763 
12764     if_setsoftc(ifp, sc);
12765     if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
12766     if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST));
12767     if_setioctlfn(ifp, bxe_ioctl);
12768     if_setstartfn(ifp, bxe_tx_start);
12769     if_setgetcounterfn(ifp, bxe_get_counter);
12770 #if __FreeBSD_version >= 800000
12771     if_settransmitfn(ifp, bxe_tx_mq_start);
12772     if_setqflushfn(ifp, bxe_mq_flush);
12773 #endif
12774 #ifdef FreeBSD8_0
12775     if_settimer(ifp, 0);
12776 #endif
12777     if_setinitfn(ifp, bxe_init);
12778     if_setmtu(ifp, sc->mtu);
12779     if_sethwassist(ifp, (CSUM_IP      |
12780                         CSUM_TCP      |
12781                         CSUM_UDP      |
12782                         CSUM_TSO      |
12783                         CSUM_TCP_IPV6 |
12784                         CSUM_UDP_IPV6));
12785 
12786     capabilities =
12787 #if __FreeBSD_version < 700000
12788         (IFCAP_VLAN_MTU       |
12789          IFCAP_VLAN_HWTAGGING |
12790          IFCAP_HWCSUM         |
12791          IFCAP_JUMBO_MTU      |
12792          IFCAP_LRO);
12793 #else
12794         (IFCAP_VLAN_MTU       |
12795          IFCAP_VLAN_HWTAGGING |
12796          IFCAP_VLAN_HWTSO     |
12797          IFCAP_VLAN_HWFILTER  |
12798          IFCAP_VLAN_HWCSUM    |
12799          IFCAP_HWCSUM         |
12800          IFCAP_JUMBO_MTU      |
12801          IFCAP_LRO            |
12802          IFCAP_TSO4           |
12803          IFCAP_TSO6           |
12804          IFCAP_WOL_MAGIC);
12805 #endif
12806     if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */
12807     if_setbaudrate(ifp, IF_Gbps(10));
12808 /* XXX */
12809     if_setsendqlen(ifp, sc->tx_ring_size);
12810     if_setsendqready(ifp);
12811 /* XXX */
12812 
12813     sc->ifp = ifp;
12814 
12815     /* attach to the Ethernet interface list */
12816     ether_ifattach(ifp, sc->link_params.mac_addr);
12817 
12818     return (0);
12819 }
12820 
12821 static void
12822 bxe_deallocate_bars(struct bxe_softc *sc)
12823 {
12824     int i;
12825 
12826     for (i = 0; i < MAX_BARS; i++) {
12827         if (sc->bar[i].resource != NULL) {
12828             bus_release_resource(sc->dev,
12829                                  SYS_RES_MEMORY,
12830                                  sc->bar[i].rid,
12831                                  sc->bar[i].resource);
12832             BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
12833                   i, PCIR_BAR(i));
12834         }
12835     }
12836 }
12837 
12838 static int
12839 bxe_allocate_bars(struct bxe_softc *sc)
12840 {
12841     u_int flags;
12842     int i;
12843 
12844     memset(sc->bar, 0, sizeof(sc->bar));
12845 
12846     for (i = 0; i < MAX_BARS; i++) {
12847 
12848         /* memory resources reside at BARs 0, 2, 4 */
12849         /* Run `pciconf -lb` to see mappings */
12850         if ((i != 0) && (i != 2) && (i != 4)) {
12851             continue;
12852         }
12853 
12854         sc->bar[i].rid = PCIR_BAR(i);
12855 
12856         flags = RF_ACTIVE;
12857         if (i == 0) {
12858             flags |= RF_SHAREABLE;
12859         }
12860 
12861         if ((sc->bar[i].resource =
12862              bus_alloc_resource_any(sc->dev,
12863                                     SYS_RES_MEMORY,
12864                                     &sc->bar[i].rid,
12865                                     flags)) == NULL) {
12866             return (0);
12867         }
12868 
12869         sc->bar[i].tag    = rman_get_bustag(sc->bar[i].resource);
12870         sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
12871         sc->bar[i].kva    = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
12872 
12873         BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%jd) -> %p\n",
12874               i, PCIR_BAR(i),
12875               (void *)rman_get_start(sc->bar[i].resource),
12876               (void *)rman_get_end(sc->bar[i].resource),
12877               rman_get_size(sc->bar[i].resource),
12878               (void *)sc->bar[i].kva);
12879     }
12880 
12881     return (0);
12882 }
12883 
12884 static void
12885 bxe_get_function_num(struct bxe_softc *sc)
12886 {
12887     uint32_t val = 0;
12888 
12889     /*
12890      * Read the ME register to get the function number. The ME register
12891      * holds the relative-function number and absolute-function number. The
12892      * absolute-function number appears only in E2 and above. Before that
12893      * these bits always contained zero, therefore we cannot blindly use them.
12894      */
12895 
12896     val = REG_RD(sc, BAR_ME_REGISTER);
12897 
12898     sc->pfunc_rel =
12899         (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
12900     sc->path_id =
12901         (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
12902 
12903     if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
12904         sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
12905     } else {
12906         sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
12907     }
12908 
12909     BLOGD(sc, DBG_LOAD,
12910           "Relative function %d, Absolute function %d, Path %d\n",
12911           sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
12912 }
12913 
12914 static uint32_t
12915 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
12916 {
12917     uint32_t shmem2_size;
12918     uint32_t offset;
12919     uint32_t mf_cfg_offset_value;
12920 
12921     /* Non 57712 */
12922     offset = (SHMEM_RD(sc, func_mb) +
12923               (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
12924 
12925     /* 57712 plus */
12926     if (sc->devinfo.shmem2_base != 0) {
12927         shmem2_size = SHMEM2_RD(sc, size);
12928         if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
12929             mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
12930             if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
12931                 offset = mf_cfg_offset_value;
12932             }
12933         }
12934     }
12935 
12936     return (offset);
12937 }
12938 
12939 static uint32_t
12940 bxe_pcie_capability_read(struct bxe_softc *sc,
12941                          int    reg,
12942                          int    width)
12943 {
12944     int pcie_reg;
12945 
12946     /* ensure PCIe capability is enabled */
12947     if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
12948         if (pcie_reg != 0) {
12949             BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
12950             return (pci_read_config(sc->dev, (pcie_reg + reg), width));
12951         }
12952     }
12953 
12954     BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
12955 
12956     return (0);
12957 }
12958 
12959 static uint8_t
12960 bxe_is_pcie_pending(struct bxe_softc *sc)
12961 {
12962     return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) &
12963             PCIM_EXP_STA_TRANSACTION_PND);
12964 }
12965 
12966 /*
12967  * Walk the PCI capabiites list for the device to find what features are
12968  * supported. These capabilites may be enabled/disabled by firmware so it's
12969  * best to walk the list rather than make assumptions.
12970  */
12971 static void
12972 bxe_probe_pci_caps(struct bxe_softc *sc)
12973 {
12974     uint16_t link_status;
12975     int reg;
12976 
12977     /* check if PCI Power Management is enabled */
12978     if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
12979         if (reg != 0) {
12980             BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
12981 
12982             sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
12983             sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
12984         }
12985     }
12986 
12987     link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2);
12988 
12989     /* handle PCIe 2.0 workarounds for 57710 */
12990     if (CHIP_IS_E1(sc)) {
12991         /* workaround for 57710 errata E4_57710_27462 */
12992         sc->devinfo.pcie_link_speed =
12993             (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
12994 
12995         /* workaround for 57710 errata E4_57710_27488 */
12996         sc->devinfo.pcie_link_width =
12997             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
12998         if (sc->devinfo.pcie_link_speed > 1) {
12999             sc->devinfo.pcie_link_width =
13000                 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1;
13001         }
13002     } else {
13003         sc->devinfo.pcie_link_speed =
13004             (link_status & PCIM_LINK_STA_SPEED);
13005         sc->devinfo.pcie_link_width =
13006             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13007     }
13008 
13009     BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
13010           sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
13011 
13012     sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
13013     sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
13014 
13015     /* check if MSI capability is enabled */
13016     if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
13017         if (reg != 0) {
13018             BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
13019 
13020             sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
13021             sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
13022         }
13023     }
13024 
13025     /* check if MSI-X capability is enabled */
13026     if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
13027         if (reg != 0) {
13028             BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
13029 
13030             sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
13031             sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
13032         }
13033     }
13034 }
13035 
13036 static int
13037 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
13038 {
13039     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13040     uint32_t val;
13041 
13042     /* get the outer vlan if we're in switch-dependent mode */
13043 
13044     val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13045     mf_info->ext_id = (uint16_t)val;
13046 
13047     mf_info->multi_vnics_mode = 1;
13048 
13049     if (!VALID_OVLAN(mf_info->ext_id)) {
13050         BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
13051         return (1);
13052     }
13053 
13054     /* get the capabilities */
13055     if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13056         FUNC_MF_CFG_PROTOCOL_ISCSI) {
13057         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
13058     } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13059                FUNC_MF_CFG_PROTOCOL_FCOE) {
13060         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
13061     } else {
13062         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
13063     }
13064 
13065     mf_info->vnics_per_port =
13066         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13067 
13068     return (0);
13069 }
13070 
13071 static uint32_t
13072 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
13073 {
13074     uint32_t retval = 0;
13075     uint32_t val;
13076 
13077     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13078 
13079     if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
13080         if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
13081             retval |= MF_PROTO_SUPPORT_ETHERNET;
13082         }
13083         if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
13084             retval |= MF_PROTO_SUPPORT_ISCSI;
13085         }
13086         if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
13087             retval |= MF_PROTO_SUPPORT_FCOE;
13088         }
13089     }
13090 
13091     return (retval);
13092 }
13093 
13094 static int
13095 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
13096 {
13097     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13098     uint32_t val;
13099 
13100     /*
13101      * There is no outer vlan if we're in switch-independent mode.
13102      * If the mac is valid then assume multi-function.
13103      */
13104 
13105     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13106 
13107     mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
13108 
13109     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13110 
13111     mf_info->vnics_per_port =
13112         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13113 
13114     return (0);
13115 }
13116 
13117 static int
13118 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13119 {
13120     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13121     uint32_t e1hov_tag;
13122     uint32_t func_config;
13123     uint32_t niv_config;
13124 
13125     mf_info->multi_vnics_mode = 1;
13126 
13127     e1hov_tag   = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13128     func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13129     niv_config  = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13130 
13131     mf_info->ext_id =
13132         (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13133                    FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13134 
13135     mf_info->default_vlan =
13136         (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13137                    FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13138 
13139     mf_info->niv_allowed_priorities =
13140         (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13141                   FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13142 
13143     mf_info->niv_default_cos =
13144         (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13145                   FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13146 
13147     mf_info->afex_vlan_mode =
13148         ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13149          FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13150 
13151     mf_info->niv_mba_enabled =
13152         ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13153          FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13154 
13155     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13156 
13157     mf_info->vnics_per_port =
13158         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13159 
13160     return (0);
13161 }
13162 
13163 static int
13164 bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13165 {
13166     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13167     uint32_t mf_cfg1;
13168     uint32_t mf_cfg2;
13169     uint32_t ovlan1;
13170     uint32_t ovlan2;
13171     uint8_t i, j;
13172 
13173     BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13174           SC_PORT(sc));
13175     BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13176           mf_info->mf_config[SC_VN(sc)]);
13177     BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13178           mf_info->multi_vnics_mode);
13179     BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13180           mf_info->vnics_per_port);
13181     BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13182           mf_info->ext_id);
13183     BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13184           mf_info->min_bw[0], mf_info->min_bw[1],
13185           mf_info->min_bw[2], mf_info->min_bw[3]);
13186     BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13187           mf_info->max_bw[0], mf_info->max_bw[1],
13188           mf_info->max_bw[2], mf_info->max_bw[3]);
13189     BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13190           sc->mac_addr_str);
13191 
13192     /* various MF mode sanity checks... */
13193 
13194     if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13195         BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13196               SC_PORT(sc));
13197         return (1);
13198     }
13199 
13200     if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13201         BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13202               mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13203         return (1);
13204     }
13205 
13206     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13207         /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13208         if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13209             BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13210                   SC_VN(sc), OVLAN(sc));
13211             return (1);
13212         }
13213 
13214         if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13215             BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13216                   mf_info->multi_vnics_mode, OVLAN(sc));
13217             return (1);
13218         }
13219 
13220         /*
13221          * Verify all functions are either MF or SF mode. If MF, make sure
13222          * sure that all non-hidden functions have a valid ovlan. If SF,
13223          * make sure that all non-hidden functions have an invalid ovlan.
13224          */
13225         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13226             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13227             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13228             if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13229                 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13230                  ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13231                 BLOGE(sc, "mf_mode=SD function %d MF config "
13232                           "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13233                       i, mf_info->multi_vnics_mode, ovlan1);
13234                 return (1);
13235             }
13236         }
13237 
13238         /* Verify all funcs on the same port each have a different ovlan. */
13239         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13240             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13241             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13242             /* iterate from the next function on the port to the max func */
13243             for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13244                 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13245                 ovlan2  = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13246                 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13247                     VALID_OVLAN(ovlan1) &&
13248                     !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13249                     VALID_OVLAN(ovlan2) &&
13250                     (ovlan1 == ovlan2)) {
13251                     BLOGE(sc, "mf_mode=SD functions %d and %d "
13252                               "have the same ovlan (%d)\n",
13253                           i, j, ovlan1);
13254                     return (1);
13255                 }
13256             }
13257         }
13258     } /* MULTI_FUNCTION_SD */
13259 
13260     return (0);
13261 }
13262 
13263 static int
13264 bxe_get_mf_cfg_info(struct bxe_softc *sc)
13265 {
13266     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13267     uint32_t val, mac_upper;
13268     uint8_t i, vnic;
13269 
13270     /* initialize mf_info defaults */
13271     mf_info->vnics_per_port   = 1;
13272     mf_info->multi_vnics_mode = FALSE;
13273     mf_info->path_has_ovlan   = FALSE;
13274     mf_info->mf_mode          = SINGLE_FUNCTION;
13275 
13276     if (!CHIP_IS_MF_CAP(sc)) {
13277         return (0);
13278     }
13279 
13280     if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13281         BLOGE(sc, "Invalid mf_cfg_base!\n");
13282         return (1);
13283     }
13284 
13285     /* get the MF mode (switch dependent / independent / single-function) */
13286 
13287     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13288 
13289     switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13290     {
13291     case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13292 
13293         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13294 
13295         /* check for legal upper mac bytes */
13296         if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13297             mf_info->mf_mode = MULTI_FUNCTION_SI;
13298         } else {
13299             BLOGE(sc, "Invalid config for Switch Independent mode\n");
13300         }
13301 
13302         break;
13303 
13304     case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13305     case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13306 
13307         /* get outer vlan configuration */
13308         val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13309 
13310         if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13311             FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13312             mf_info->mf_mode = MULTI_FUNCTION_SD;
13313         } else {
13314             BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13315         }
13316 
13317         break;
13318 
13319     case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13320 
13321         /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13322         return (0);
13323 
13324     case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13325 
13326         /*
13327          * Mark MF mode as NIV if MCP version includes NPAR-SD support
13328          * and the MAC address is valid.
13329          */
13330         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13331 
13332         if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13333             (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13334             mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13335         } else {
13336             BLOGE(sc, "Invalid config for AFEX mode\n");
13337         }
13338 
13339         break;
13340 
13341     default:
13342 
13343         BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13344               (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13345 
13346         return (1);
13347     }
13348 
13349     /* set path mf_mode (which could be different than function mf_mode) */
13350     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13351         mf_info->path_has_ovlan = TRUE;
13352     } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13353         /*
13354          * Decide on path multi vnics mode. If we're not in MF mode and in
13355          * 4-port mode, this is good enough to check vnic-0 of the other port
13356          * on the same path
13357          */
13358         if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13359             uint8_t other_port = !(PORT_ID(sc) & 1);
13360             uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13361 
13362             val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13363 
13364             mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13365         }
13366     }
13367 
13368     if (mf_info->mf_mode == SINGLE_FUNCTION) {
13369         /* invalid MF config */
13370         if (SC_VN(sc) >= 1) {
13371             BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13372             return (1);
13373         }
13374 
13375         return (0);
13376     }
13377 
13378     /* get the MF configuration */
13379     mf_info->mf_config[SC_VN(sc)] =
13380         MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13381 
13382     switch(mf_info->mf_mode)
13383     {
13384     case MULTI_FUNCTION_SD:
13385 
13386         bxe_get_shmem_mf_cfg_info_sd(sc);
13387         break;
13388 
13389     case MULTI_FUNCTION_SI:
13390 
13391         bxe_get_shmem_mf_cfg_info_si(sc);
13392         break;
13393 
13394     case MULTI_FUNCTION_AFEX:
13395 
13396         bxe_get_shmem_mf_cfg_info_niv(sc);
13397         break;
13398 
13399     default:
13400 
13401         BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13402               mf_info->mf_mode);
13403         return (1);
13404     }
13405 
13406     /* get the congestion management parameters */
13407 
13408     vnic = 0;
13409     FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13410         /* get min/max bw */
13411         val = MFCFG_RD(sc, func_mf_config[i].config);
13412         mf_info->min_bw[vnic] =
13413             ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13414         mf_info->max_bw[vnic] =
13415             ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13416         vnic++;
13417     }
13418 
13419     return (bxe_check_valid_mf_cfg(sc));
13420 }
13421 
13422 static int
13423 bxe_get_shmem_info(struct bxe_softc *sc)
13424 {
13425     int port;
13426     uint32_t mac_hi, mac_lo, val;
13427 
13428     port = SC_PORT(sc);
13429     mac_hi = mac_lo = 0;
13430 
13431     sc->link_params.sc   = sc;
13432     sc->link_params.port = port;
13433 
13434     /* get the hardware config info */
13435     sc->devinfo.hw_config =
13436         SHMEM_RD(sc, dev_info.shared_hw_config.config);
13437     sc->devinfo.hw_config2 =
13438         SHMEM_RD(sc, dev_info.shared_hw_config.config2);
13439 
13440     sc->link_params.hw_led_mode =
13441         ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
13442          SHARED_HW_CFG_LED_MODE_SHIFT);
13443 
13444     /* get the port feature config */
13445     sc->port.config =
13446         SHMEM_RD(sc, dev_info.port_feature_config[port].config),
13447 
13448     /* get the link params */
13449     sc->link_params.speed_cap_mask[0] =
13450         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
13451     sc->link_params.speed_cap_mask[1] =
13452         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
13453 
13454     /* get the lane config */
13455     sc->link_params.lane_config =
13456         SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
13457 
13458     /* get the link config */
13459     val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
13460     sc->port.link_config[ELINK_INT_PHY] = val;
13461     sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
13462     sc->port.link_config[ELINK_EXT_PHY1] =
13463         SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
13464 
13465     /* get the override preemphasis flag and enable it or turn it off */
13466     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13467     if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
13468         sc->link_params.feature_config_flags |=
13469             ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13470     } else {
13471         sc->link_params.feature_config_flags &=
13472             ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13473     }
13474 
13475     /* get the initial value of the link params */
13476     sc->link_params.multi_phy_config =
13477         SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
13478 
13479     /* get external phy info */
13480     sc->port.ext_phy_config =
13481         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
13482 
13483     /* get the multifunction configuration */
13484     bxe_get_mf_cfg_info(sc);
13485 
13486     /* get the mac address */
13487     if (IS_MF(sc)) {
13488         mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13489         mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
13490     } else {
13491         mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
13492         mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
13493     }
13494 
13495     if ((mac_lo == 0) && (mac_hi == 0)) {
13496         *sc->mac_addr_str = 0;
13497         BLOGE(sc, "No Ethernet address programmed!\n");
13498     } else {
13499         sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
13500         sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
13501         sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
13502         sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
13503         sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
13504         sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
13505         snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
13506                  "%02x:%02x:%02x:%02x:%02x:%02x",
13507                  sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
13508                  sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
13509                  sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
13510         BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
13511     }
13512 
13513     return (0);
13514 }
13515 
13516 static void
13517 bxe_get_tunable_params(struct bxe_softc *sc)
13518 {
13519     /* sanity checks */
13520 
13521     if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
13522         (bxe_interrupt_mode != INTR_MODE_MSI)  &&
13523         (bxe_interrupt_mode != INTR_MODE_MSIX)) {
13524         BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
13525         bxe_interrupt_mode = INTR_MODE_MSIX;
13526     }
13527 
13528     if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
13529         BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
13530         bxe_queue_count = 0;
13531     }
13532 
13533     if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
13534         if (bxe_max_rx_bufs == 0) {
13535             bxe_max_rx_bufs = RX_BD_USABLE;
13536         } else {
13537             BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
13538             bxe_max_rx_bufs = 2048;
13539         }
13540     }
13541 
13542     if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
13543         BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
13544         bxe_hc_rx_ticks = 25;
13545     }
13546 
13547     if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
13548         BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
13549         bxe_hc_tx_ticks = 50;
13550     }
13551 
13552     if (bxe_max_aggregation_size == 0) {
13553         bxe_max_aggregation_size = TPA_AGG_SIZE;
13554     }
13555 
13556     if (bxe_max_aggregation_size > 0xffff) {
13557         BLOGW(sc, "invalid max_aggregation_size (%d)\n",
13558               bxe_max_aggregation_size);
13559         bxe_max_aggregation_size = TPA_AGG_SIZE;
13560     }
13561 
13562     if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
13563         BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
13564         bxe_mrrs = -1;
13565     }
13566 
13567     if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
13568         BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
13569         bxe_autogreeen = 0;
13570     }
13571 
13572     if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
13573         BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
13574         bxe_udp_rss = 0;
13575     }
13576 
13577     /* pull in user settings */
13578 
13579     sc->interrupt_mode       = bxe_interrupt_mode;
13580     sc->max_rx_bufs          = bxe_max_rx_bufs;
13581     sc->hc_rx_ticks          = bxe_hc_rx_ticks;
13582     sc->hc_tx_ticks          = bxe_hc_tx_ticks;
13583     sc->max_aggregation_size = bxe_max_aggregation_size;
13584     sc->mrrs                 = bxe_mrrs;
13585     sc->autogreeen           = bxe_autogreeen;
13586     sc->udp_rss              = bxe_udp_rss;
13587 
13588     if (bxe_interrupt_mode == INTR_MODE_INTX) {
13589         sc->num_queues = 1;
13590     } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
13591         sc->num_queues =
13592             min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
13593                 MAX_RSS_CHAINS);
13594         if (sc->num_queues > mp_ncpus) {
13595             sc->num_queues = mp_ncpus;
13596         }
13597     }
13598 
13599     BLOGD(sc, DBG_LOAD,
13600           "User Config: "
13601           "debug=0x%lx "
13602           "interrupt_mode=%d "
13603           "queue_count=%d "
13604           "hc_rx_ticks=%d "
13605           "hc_tx_ticks=%d "
13606           "rx_budget=%d "
13607           "max_aggregation_size=%d "
13608           "mrrs=%d "
13609           "autogreeen=%d "
13610           "udp_rss=%d\n",
13611           bxe_debug,
13612           sc->interrupt_mode,
13613           sc->num_queues,
13614           sc->hc_rx_ticks,
13615           sc->hc_tx_ticks,
13616           bxe_rx_budget,
13617           sc->max_aggregation_size,
13618           sc->mrrs,
13619           sc->autogreeen,
13620           sc->udp_rss);
13621 }
13622 
13623 static void
13624 bxe_media_detect(struct bxe_softc *sc)
13625 {
13626     uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
13627     switch (sc->link_params.phy[phy_idx].media_type) {
13628     case ELINK_ETH_PHY_SFPP_10G_FIBER:
13629     case ELINK_ETH_PHY_XFP_FIBER:
13630         BLOGI(sc, "Found 10Gb Fiber media.\n");
13631         sc->media = IFM_10G_SR;
13632         break;
13633     case ELINK_ETH_PHY_SFP_1G_FIBER:
13634         BLOGI(sc, "Found 1Gb Fiber media.\n");
13635         sc->media = IFM_1000_SX;
13636         break;
13637     case ELINK_ETH_PHY_KR:
13638     case ELINK_ETH_PHY_CX4:
13639         BLOGI(sc, "Found 10GBase-CX4 media.\n");
13640         sc->media = IFM_10G_CX4;
13641         break;
13642     case ELINK_ETH_PHY_DA_TWINAX:
13643         BLOGI(sc, "Found 10Gb Twinax media.\n");
13644         sc->media = IFM_10G_TWINAX;
13645         break;
13646     case ELINK_ETH_PHY_BASE_T:
13647         if (sc->link_params.speed_cap_mask[0] &
13648             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
13649             BLOGI(sc, "Found 10GBase-T media.\n");
13650             sc->media = IFM_10G_T;
13651         } else {
13652             BLOGI(sc, "Found 1000Base-T media.\n");
13653             sc->media = IFM_1000_T;
13654         }
13655         break;
13656     case ELINK_ETH_PHY_NOT_PRESENT:
13657         BLOGI(sc, "Media not present.\n");
13658         sc->media = 0;
13659         break;
13660     case ELINK_ETH_PHY_UNSPECIFIED:
13661     default:
13662         BLOGI(sc, "Unknown media!\n");
13663         sc->media = 0;
13664         break;
13665     }
13666 }
13667 
13668 #define GET_FIELD(value, fname)                     \
13669     (((value) & (fname##_MASK)) >> (fname##_SHIFT))
13670 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
13671 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
13672 
13673 static int
13674 bxe_get_igu_cam_info(struct bxe_softc *sc)
13675 {
13676     int pfid = SC_FUNC(sc);
13677     int igu_sb_id;
13678     uint32_t val;
13679     uint8_t fid, igu_sb_cnt = 0;
13680 
13681     sc->igu_base_sb = 0xff;
13682 
13683     if (CHIP_INT_MODE_IS_BC(sc)) {
13684         int vn = SC_VN(sc);
13685         igu_sb_cnt = sc->igu_sb_cnt;
13686         sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
13687                            FP_SB_MAX_E1x);
13688         sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
13689                           (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
13690         return (0);
13691     }
13692 
13693     /* IGU in normal mode - read CAM */
13694     for (igu_sb_id = 0;
13695          igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
13696          igu_sb_id++) {
13697         val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
13698         if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
13699             continue;
13700         }
13701         fid = IGU_FID(val);
13702         if ((fid & IGU_FID_ENCODE_IS_PF)) {
13703             if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
13704                 continue;
13705             }
13706             if (IGU_VEC(val) == 0) {
13707                 /* default status block */
13708                 sc->igu_dsb_id = igu_sb_id;
13709             } else {
13710                 if (sc->igu_base_sb == 0xff) {
13711                     sc->igu_base_sb = igu_sb_id;
13712                 }
13713                 igu_sb_cnt++;
13714             }
13715         }
13716     }
13717 
13718     /*
13719      * Due to new PF resource allocation by MFW T7.4 and above, it's optional
13720      * that number of CAM entries will not be equal to the value advertised in
13721      * PCI. Driver should use the minimal value of both as the actual status
13722      * block count
13723      */
13724     sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
13725 
13726     if (igu_sb_cnt == 0) {
13727         BLOGE(sc, "CAM configuration error\n");
13728         return (-1);
13729     }
13730 
13731     return (0);
13732 }
13733 
13734 /*
13735  * Gather various information from the device config space, the device itself,
13736  * shmem, and the user input.
13737  */
13738 static int
13739 bxe_get_device_info(struct bxe_softc *sc)
13740 {
13741     uint32_t val;
13742     int rc;
13743 
13744     /* Get the data for the device */
13745     sc->devinfo.vendor_id    = pci_get_vendor(sc->dev);
13746     sc->devinfo.device_id    = pci_get_device(sc->dev);
13747     sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
13748     sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
13749 
13750     /* get the chip revision (chip metal comes from pci config space) */
13751     sc->devinfo.chip_id     =
13752     sc->link_params.chip_id =
13753         (((REG_RD(sc, MISC_REG_CHIP_NUM)                   & 0xffff) << 16) |
13754          ((REG_RD(sc, MISC_REG_CHIP_REV)                   & 0xf)    << 12) |
13755          (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf)    << 4)  |
13756          ((REG_RD(sc, MISC_REG_BOND_ID)                    & 0xf)    << 0));
13757 
13758     /* force 57811 according to MISC register */
13759     if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
13760         if (CHIP_IS_57810(sc)) {
13761             sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
13762                                    (sc->devinfo.chip_id & 0x0000ffff));
13763         } else if (CHIP_IS_57810_MF(sc)) {
13764             sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
13765                                    (sc->devinfo.chip_id & 0x0000ffff));
13766         }
13767         sc->devinfo.chip_id |= 0x1;
13768     }
13769 
13770     BLOGD(sc, DBG_LOAD,
13771           "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
13772           sc->devinfo.chip_id,
13773           ((sc->devinfo.chip_id >> 16) & 0xffff),
13774           ((sc->devinfo.chip_id >> 12) & 0xf),
13775           ((sc->devinfo.chip_id >>  4) & 0xff),
13776           ((sc->devinfo.chip_id >>  0) & 0xf));
13777 
13778     val = (REG_RD(sc, 0x2874) & 0x55);
13779     if ((sc->devinfo.chip_id & 0x1) ||
13780         (CHIP_IS_E1(sc) && val) ||
13781         (CHIP_IS_E1H(sc) && (val == 0x55))) {
13782         sc->flags |= BXE_ONE_PORT_FLAG;
13783         BLOGD(sc, DBG_LOAD, "single port device\n");
13784     }
13785 
13786     /* set the doorbell size */
13787     sc->doorbell_size = (1 << BXE_DB_SHIFT);
13788 
13789     /* determine whether the device is in 2 port or 4 port mode */
13790     sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
13791     if (CHIP_IS_E2E3(sc)) {
13792         /*
13793          * Read port4mode_en_ovwr[0]:
13794          *   If 1, four port mode is in port4mode_en_ovwr[1].
13795          *   If 0, four port mode is in port4mode_en[0].
13796          */
13797         val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
13798         if (val & 1) {
13799             val = ((val >> 1) & 1);
13800         } else {
13801             val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
13802         }
13803 
13804         sc->devinfo.chip_port_mode =
13805             (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
13806 
13807         BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
13808     }
13809 
13810     /* get the function and path info for the device */
13811     bxe_get_function_num(sc);
13812 
13813     /* get the shared memory base address */
13814     sc->devinfo.shmem_base     =
13815     sc->link_params.shmem_base =
13816         REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
13817     sc->devinfo.shmem2_base =
13818         REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
13819                                   MISC_REG_GENERIC_CR_0));
13820 
13821     BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
13822           sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
13823 
13824     if (!sc->devinfo.shmem_base) {
13825         /* this should ONLY prevent upcoming shmem reads */
13826         BLOGI(sc, "MCP not active\n");
13827         sc->flags |= BXE_NO_MCP_FLAG;
13828         return (0);
13829     }
13830 
13831     /* make sure the shared memory contents are valid */
13832     val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
13833     if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
13834         (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
13835         BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
13836         return (0);
13837     }
13838     BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
13839 
13840     /* get the bootcode version */
13841     sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
13842     snprintf(sc->devinfo.bc_ver_str,
13843              sizeof(sc->devinfo.bc_ver_str),
13844              "%d.%d.%d",
13845              ((sc->devinfo.bc_ver >> 24) & 0xff),
13846              ((sc->devinfo.bc_ver >> 16) & 0xff),
13847              ((sc->devinfo.bc_ver >>  8) & 0xff));
13848     BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
13849 
13850     /* get the bootcode shmem address */
13851     sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
13852     BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
13853 
13854     /* clean indirect addresses as they're not used */
13855     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
13856     if (IS_PF(sc)) {
13857         REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
13858         REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
13859         REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
13860         REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
13861         if (CHIP_IS_E1x(sc)) {
13862             REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
13863             REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
13864             REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
13865             REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
13866         }
13867 
13868         /*
13869          * Enable internal target-read (in case we are probed after PF
13870          * FLR). Must be done prior to any BAR read access. Only for
13871          * 57712 and up
13872          */
13873         if (!CHIP_IS_E1x(sc)) {
13874             REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13875         }
13876     }
13877 
13878     /* get the nvram size */
13879     val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
13880     sc->devinfo.flash_size =
13881         (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
13882     BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
13883 
13884     /* get PCI capabilites */
13885     bxe_probe_pci_caps(sc);
13886 
13887     bxe_set_power_state(sc, PCI_PM_D0);
13888 
13889     /* get various configuration parameters from shmem */
13890     bxe_get_shmem_info(sc);
13891 
13892     if (sc->devinfo.pcie_msix_cap_reg != 0) {
13893         val = pci_read_config(sc->dev,
13894                               (sc->devinfo.pcie_msix_cap_reg +
13895                                PCIR_MSIX_CTRL),
13896                               2);
13897         sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
13898     } else {
13899         sc->igu_sb_cnt = 1;
13900     }
13901 
13902     sc->igu_base_addr = BAR_IGU_INTMEM;
13903 
13904     /* initialize IGU parameters */
13905     if (CHIP_IS_E1x(sc)) {
13906         sc->devinfo.int_block = INT_BLOCK_HC;
13907         sc->igu_dsb_id = DEF_SB_IGU_ID;
13908         sc->igu_base_sb = 0;
13909     } else {
13910         sc->devinfo.int_block = INT_BLOCK_IGU;
13911 
13912         /* do not allow device reset during IGU info preocessing */
13913         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
13914 
13915         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
13916 
13917         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
13918             int tout = 5000;
13919 
13920             BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
13921 
13922             val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
13923             REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
13924             REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
13925 
13926             while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
13927                 tout--;
13928                 DELAY(1000);
13929             }
13930 
13931             if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
13932                 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
13933                 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
13934                 return (-1);
13935             }
13936         }
13937 
13938         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
13939             BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
13940             sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
13941         } else {
13942             BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
13943         }
13944 
13945         rc = bxe_get_igu_cam_info(sc);
13946 
13947         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
13948 
13949         if (rc) {
13950             return (rc);
13951         }
13952     }
13953 
13954     /*
13955      * Get base FW non-default (fast path) status block ID. This value is
13956      * used to initialize the fw_sb_id saved on the fp/queue structure to
13957      * determine the id used by the FW.
13958      */
13959     if (CHIP_IS_E1x(sc)) {
13960         sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
13961     } else {
13962         /*
13963          * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
13964          * the same queue are indicated on the same IGU SB). So we prefer
13965          * FW and IGU SBs to be the same value.
13966          */
13967         sc->base_fw_ndsb = sc->igu_base_sb;
13968     }
13969 
13970     BLOGD(sc, DBG_LOAD,
13971           "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
13972           sc->igu_dsb_id, sc->igu_base_sb,
13973           sc->igu_sb_cnt, sc->base_fw_ndsb);
13974 
13975     elink_phy_probe(&sc->link_params);
13976 
13977     return (0);
13978 }
13979 
13980 static void
13981 bxe_link_settings_supported(struct bxe_softc *sc,
13982                             uint32_t         switch_cfg)
13983 {
13984     uint32_t cfg_size = 0;
13985     uint32_t idx;
13986     uint8_t port = SC_PORT(sc);
13987 
13988     /* aggregation of supported attributes of all external phys */
13989     sc->port.supported[0] = 0;
13990     sc->port.supported[1] = 0;
13991 
13992     switch (sc->link_params.num_phys) {
13993     case 1:
13994         sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
13995         cfg_size = 1;
13996         break;
13997     case 2:
13998         sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
13999         cfg_size = 1;
14000         break;
14001     case 3:
14002         if (sc->link_params.multi_phy_config &
14003             PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
14004             sc->port.supported[1] =
14005                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
14006             sc->port.supported[0] =
14007                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
14008         } else {
14009             sc->port.supported[0] =
14010                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
14011             sc->port.supported[1] =
14012                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
14013         }
14014         cfg_size = 2;
14015         break;
14016     }
14017 
14018     if (!(sc->port.supported[0] || sc->port.supported[1])) {
14019         BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
14020               SHMEM_RD(sc,
14021                        dev_info.port_hw_config[port].external_phy_config),
14022               SHMEM_RD(sc,
14023                        dev_info.port_hw_config[port].external_phy_config2));
14024         return;
14025     }
14026 
14027     if (CHIP_IS_E3(sc))
14028         sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
14029     else {
14030         switch (switch_cfg) {
14031         case ELINK_SWITCH_CFG_1G:
14032             sc->port.phy_addr =
14033                 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
14034             break;
14035         case ELINK_SWITCH_CFG_10G:
14036             sc->port.phy_addr =
14037                 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
14038             break;
14039         default:
14040             BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
14041                   sc->port.link_config[0]);
14042             return;
14043         }
14044     }
14045 
14046     BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
14047 
14048     /* mask what we support according to speed_cap_mask per configuration */
14049     for (idx = 0; idx < cfg_size; idx++) {
14050         if (!(sc->link_params.speed_cap_mask[idx] &
14051               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
14052             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
14053         }
14054 
14055         if (!(sc->link_params.speed_cap_mask[idx] &
14056               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
14057             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
14058         }
14059 
14060         if (!(sc->link_params.speed_cap_mask[idx] &
14061               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
14062             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
14063         }
14064 
14065         if (!(sc->link_params.speed_cap_mask[idx] &
14066               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
14067             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
14068         }
14069 
14070         if (!(sc->link_params.speed_cap_mask[idx] &
14071               PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
14072             sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
14073         }
14074 
14075         if (!(sc->link_params.speed_cap_mask[idx] &
14076               PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
14077             sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
14078         }
14079 
14080         if (!(sc->link_params.speed_cap_mask[idx] &
14081               PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
14082             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
14083         }
14084 
14085         if (!(sc->link_params.speed_cap_mask[idx] &
14086               PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
14087             sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
14088         }
14089     }
14090 
14091     BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
14092           sc->port.supported[0], sc->port.supported[1]);
14093 }
14094 
14095 static void
14096 bxe_link_settings_requested(struct bxe_softc *sc)
14097 {
14098     uint32_t link_config;
14099     uint32_t idx;
14100     uint32_t cfg_size = 0;
14101 
14102     sc->port.advertising[0] = 0;
14103     sc->port.advertising[1] = 0;
14104 
14105     switch (sc->link_params.num_phys) {
14106     case 1:
14107     case 2:
14108         cfg_size = 1;
14109         break;
14110     case 3:
14111         cfg_size = 2;
14112         break;
14113     }
14114 
14115     for (idx = 0; idx < cfg_size; idx++) {
14116         sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14117         link_config = sc->port.link_config[idx];
14118 
14119         switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14120         case PORT_FEATURE_LINK_SPEED_AUTO:
14121             if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14122                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14123                 sc->port.advertising[idx] |= sc->port.supported[idx];
14124                 if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14125                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14126                     sc->port.advertising[idx] |=
14127                         (ELINK_SUPPORTED_100baseT_Half |
14128                          ELINK_SUPPORTED_100baseT_Full);
14129             } else {
14130                 /* force 10G, no AN */
14131                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14132                 sc->port.advertising[idx] |=
14133                     (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14134                 continue;
14135             }
14136             break;
14137 
14138         case PORT_FEATURE_LINK_SPEED_10M_FULL:
14139             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14140                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14141                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14142                                               ADVERTISED_TP);
14143             } else {
14144                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14145                           "speed_cap_mask=0x%08x\n",
14146                       link_config, sc->link_params.speed_cap_mask[idx]);
14147                 return;
14148             }
14149             break;
14150 
14151         case PORT_FEATURE_LINK_SPEED_10M_HALF:
14152             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14153                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14154                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14155                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14156                                               ADVERTISED_TP);
14157             } else {
14158                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14159                           "speed_cap_mask=0x%08x\n",
14160                       link_config, sc->link_params.speed_cap_mask[idx]);
14161                 return;
14162             }
14163             break;
14164 
14165         case PORT_FEATURE_LINK_SPEED_100M_FULL:
14166             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14167                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14168                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14169                                               ADVERTISED_TP);
14170             } else {
14171                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14172                           "speed_cap_mask=0x%08x\n",
14173                       link_config, sc->link_params.speed_cap_mask[idx]);
14174                 return;
14175             }
14176             break;
14177 
14178         case PORT_FEATURE_LINK_SPEED_100M_HALF:
14179             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14180                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14181                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14182                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14183                                               ADVERTISED_TP);
14184             } else {
14185                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14186                           "speed_cap_mask=0x%08x\n",
14187                       link_config, sc->link_params.speed_cap_mask[idx]);
14188                 return;
14189             }
14190             break;
14191 
14192         case PORT_FEATURE_LINK_SPEED_1G:
14193             if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14194                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14195                 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14196                                               ADVERTISED_TP);
14197             } else {
14198                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14199                           "speed_cap_mask=0x%08x\n",
14200                       link_config, sc->link_params.speed_cap_mask[idx]);
14201                 return;
14202             }
14203             break;
14204 
14205         case PORT_FEATURE_LINK_SPEED_2_5G:
14206             if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14207                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14208                 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14209                                               ADVERTISED_TP);
14210             } else {
14211                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14212                           "speed_cap_mask=0x%08x\n",
14213                       link_config, sc->link_params.speed_cap_mask[idx]);
14214                 return;
14215             }
14216             break;
14217 
14218         case PORT_FEATURE_LINK_SPEED_10G_CX4:
14219             if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14220                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14221                 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14222                                               ADVERTISED_FIBRE);
14223             } else {
14224                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14225                           "speed_cap_mask=0x%08x\n",
14226                       link_config, sc->link_params.speed_cap_mask[idx]);
14227                 return;
14228             }
14229             break;
14230 
14231         case PORT_FEATURE_LINK_SPEED_20G:
14232             sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14233             break;
14234 
14235         default:
14236             BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14237                       "speed_cap_mask=0x%08x\n",
14238                   link_config, sc->link_params.speed_cap_mask[idx]);
14239             sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14240             sc->port.advertising[idx] = sc->port.supported[idx];
14241             break;
14242         }
14243 
14244         sc->link_params.req_flow_ctrl[idx] =
14245             (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14246 
14247         if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14248             if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14249                 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14250             } else {
14251                 bxe_set_requested_fc(sc);
14252             }
14253         }
14254 
14255         BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14256                             "req_flow_ctrl=0x%x advertising=0x%x\n",
14257               sc->link_params.req_line_speed[idx],
14258               sc->link_params.req_duplex[idx],
14259               sc->link_params.req_flow_ctrl[idx],
14260               sc->port.advertising[idx]);
14261     }
14262 }
14263 
14264 static void
14265 bxe_get_phy_info(struct bxe_softc *sc)
14266 {
14267     uint8_t port = SC_PORT(sc);
14268     uint32_t config = sc->port.config;
14269     uint32_t eee_mode;
14270 
14271     /* shmem data already read in bxe_get_shmem_info() */
14272 
14273     BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14274                         "link_config0=0x%08x\n",
14275                sc->link_params.lane_config,
14276                sc->link_params.speed_cap_mask[0],
14277                sc->port.link_config[0]);
14278 
14279     bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14280     bxe_link_settings_requested(sc);
14281 
14282     if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14283         sc->link_params.feature_config_flags |=
14284             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14285     } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14286         sc->link_params.feature_config_flags &=
14287             ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14288     } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14289         sc->link_params.feature_config_flags |=
14290             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14291     }
14292 
14293     /* configure link feature according to nvram value */
14294     eee_mode =
14295         (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14296           PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14297          PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14298     if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14299         sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14300                                     ELINK_EEE_MODE_ENABLE_LPI |
14301                                     ELINK_EEE_MODE_OUTPUT_TIME);
14302     } else {
14303         sc->link_params.eee_mode = 0;
14304     }
14305 
14306     /* get the media type */
14307     bxe_media_detect(sc);
14308 }
14309 
14310 static void
14311 bxe_get_params(struct bxe_softc *sc)
14312 {
14313     /* get user tunable params */
14314     bxe_get_tunable_params(sc);
14315 
14316     /* select the RX and TX ring sizes */
14317     sc->tx_ring_size = TX_BD_USABLE;
14318     sc->rx_ring_size = RX_BD_USABLE;
14319 
14320     /* XXX disable WoL */
14321     sc->wol = 0;
14322 }
14323 
14324 static void
14325 bxe_set_modes_bitmap(struct bxe_softc *sc)
14326 {
14327     uint32_t flags = 0;
14328 
14329     if (CHIP_REV_IS_FPGA(sc)) {
14330         SET_FLAGS(flags, MODE_FPGA);
14331     } else if (CHIP_REV_IS_EMUL(sc)) {
14332         SET_FLAGS(flags, MODE_EMUL);
14333     } else {
14334         SET_FLAGS(flags, MODE_ASIC);
14335     }
14336 
14337     if (CHIP_IS_MODE_4_PORT(sc)) {
14338         SET_FLAGS(flags, MODE_PORT4);
14339     } else {
14340         SET_FLAGS(flags, MODE_PORT2);
14341     }
14342 
14343     if (CHIP_IS_E2(sc)) {
14344         SET_FLAGS(flags, MODE_E2);
14345     } else if (CHIP_IS_E3(sc)) {
14346         SET_FLAGS(flags, MODE_E3);
14347         if (CHIP_REV(sc) == CHIP_REV_Ax) {
14348             SET_FLAGS(flags, MODE_E3_A0);
14349         } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14350             SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14351         }
14352     }
14353 
14354     if (IS_MF(sc)) {
14355         SET_FLAGS(flags, MODE_MF);
14356         switch (sc->devinfo.mf_info.mf_mode) {
14357         case MULTI_FUNCTION_SD:
14358             SET_FLAGS(flags, MODE_MF_SD);
14359             break;
14360         case MULTI_FUNCTION_SI:
14361             SET_FLAGS(flags, MODE_MF_SI);
14362             break;
14363         case MULTI_FUNCTION_AFEX:
14364             SET_FLAGS(flags, MODE_MF_AFEX);
14365             break;
14366         }
14367     } else {
14368         SET_FLAGS(flags, MODE_SF);
14369     }
14370 
14371 #if defined(__LITTLE_ENDIAN)
14372     SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14373 #else /* __BIG_ENDIAN */
14374     SET_FLAGS(flags, MODE_BIG_ENDIAN);
14375 #endif
14376 
14377     INIT_MODE_FLAGS(sc) = flags;
14378 }
14379 
14380 static int
14381 bxe_alloc_hsi_mem(struct bxe_softc *sc)
14382 {
14383     struct bxe_fastpath *fp;
14384     bus_addr_t busaddr;
14385     int max_agg_queues;
14386     int max_segments;
14387     bus_size_t max_size;
14388     bus_size_t max_seg_size;
14389     char buf[32];
14390     int rc;
14391     int i, j;
14392 
14393     /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14394 
14395     /* allocate the parent bus DMA tag */
14396     rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14397                             1,                        /* alignment */
14398                             0,                        /* boundary limit */
14399                             BUS_SPACE_MAXADDR,        /* restricted low */
14400                             BUS_SPACE_MAXADDR,        /* restricted hi */
14401                             NULL,                     /* addr filter() */
14402                             NULL,                     /* addr filter() arg */
14403                             BUS_SPACE_MAXSIZE_32BIT,  /* max map size */
14404                             BUS_SPACE_UNRESTRICTED,   /* num discontinuous */
14405                             BUS_SPACE_MAXSIZE_32BIT,  /* max seg size */
14406                             0,                        /* flags */
14407                             NULL,                     /* lock() */
14408                             NULL,                     /* lock() arg */
14409                             &sc->parent_dma_tag);     /* returned dma tag */
14410     if (rc != 0) {
14411         BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14412         return (1);
14413     }
14414 
14415     /************************/
14416     /* DEFAULT STATUS BLOCK */
14417     /************************/
14418 
14419     if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14420                       &sc->def_sb_dma, "default status block") != 0) {
14421         /* XXX */
14422         bus_dma_tag_destroy(sc->parent_dma_tag);
14423         return (1);
14424     }
14425 
14426     sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
14427 
14428     /***************/
14429     /* EVENT QUEUE */
14430     /***************/
14431 
14432     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14433                       &sc->eq_dma, "event queue") != 0) {
14434         /* XXX */
14435         bxe_dma_free(sc, &sc->def_sb_dma);
14436         sc->def_sb = NULL;
14437         bus_dma_tag_destroy(sc->parent_dma_tag);
14438         return (1);
14439     }
14440 
14441     sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
14442 
14443     /*************/
14444     /* SLOW PATH */
14445     /*************/
14446 
14447     if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
14448                       &sc->sp_dma, "slow path") != 0) {
14449         /* XXX */
14450         bxe_dma_free(sc, &sc->eq_dma);
14451         sc->eq = NULL;
14452         bxe_dma_free(sc, &sc->def_sb_dma);
14453         sc->def_sb = NULL;
14454         bus_dma_tag_destroy(sc->parent_dma_tag);
14455         return (1);
14456     }
14457 
14458     sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
14459 
14460     /*******************/
14461     /* SLOW PATH QUEUE */
14462     /*******************/
14463 
14464     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14465                       &sc->spq_dma, "slow path queue") != 0) {
14466         /* XXX */
14467         bxe_dma_free(sc, &sc->sp_dma);
14468         sc->sp = NULL;
14469         bxe_dma_free(sc, &sc->eq_dma);
14470         sc->eq = NULL;
14471         bxe_dma_free(sc, &sc->def_sb_dma);
14472         sc->def_sb = NULL;
14473         bus_dma_tag_destroy(sc->parent_dma_tag);
14474         return (1);
14475     }
14476 
14477     sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
14478 
14479     /***************************/
14480     /* FW DECOMPRESSION BUFFER */
14481     /***************************/
14482 
14483     if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
14484                       "fw decompression buffer") != 0) {
14485         /* XXX */
14486         bxe_dma_free(sc, &sc->spq_dma);
14487         sc->spq = NULL;
14488         bxe_dma_free(sc, &sc->sp_dma);
14489         sc->sp = NULL;
14490         bxe_dma_free(sc, &sc->eq_dma);
14491         sc->eq = NULL;
14492         bxe_dma_free(sc, &sc->def_sb_dma);
14493         sc->def_sb = NULL;
14494         bus_dma_tag_destroy(sc->parent_dma_tag);
14495         return (1);
14496     }
14497 
14498     sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
14499 
14500     if ((sc->gz_strm =
14501          malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
14502         /* XXX */
14503         bxe_dma_free(sc, &sc->gz_buf_dma);
14504         sc->gz_buf = NULL;
14505         bxe_dma_free(sc, &sc->spq_dma);
14506         sc->spq = NULL;
14507         bxe_dma_free(sc, &sc->sp_dma);
14508         sc->sp = NULL;
14509         bxe_dma_free(sc, &sc->eq_dma);
14510         sc->eq = NULL;
14511         bxe_dma_free(sc, &sc->def_sb_dma);
14512         sc->def_sb = NULL;
14513         bus_dma_tag_destroy(sc->parent_dma_tag);
14514         return (1);
14515     }
14516 
14517     /*************/
14518     /* FASTPATHS */
14519     /*************/
14520 
14521     /* allocate DMA memory for each fastpath structure */
14522     for (i = 0; i < sc->num_queues; i++) {
14523         fp = &sc->fp[i];
14524         fp->sc    = sc;
14525         fp->index = i;
14526 
14527         /*******************/
14528         /* FP STATUS BLOCK */
14529         /*******************/
14530 
14531         snprintf(buf, sizeof(buf), "fp %d status block", i);
14532         if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
14533                           &fp->sb_dma, buf) != 0) {
14534             /* XXX unwind and free previous fastpath allocations */
14535             BLOGE(sc, "Failed to alloc %s\n", buf);
14536             return (1);
14537         } else {
14538             if (CHIP_IS_E2E3(sc)) {
14539                 fp->status_block.e2_sb =
14540                     (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
14541             } else {
14542                 fp->status_block.e1x_sb =
14543                     (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
14544             }
14545         }
14546 
14547         /******************/
14548         /* FP TX BD CHAIN */
14549         /******************/
14550 
14551         snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
14552         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
14553                           &fp->tx_dma, buf) != 0) {
14554             /* XXX unwind and free previous fastpath allocations */
14555             BLOGE(sc, "Failed to alloc %s\n", buf);
14556             return (1);
14557         } else {
14558             fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
14559         }
14560 
14561         /* link together the tx bd chain pages */
14562         for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
14563             /* index into the tx bd chain array to last entry per page */
14564             struct eth_tx_next_bd *tx_next_bd =
14565                 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
14566             /* point to the next page and wrap from last page */
14567             busaddr = (fp->tx_dma.paddr +
14568                        (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
14569             tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
14570             tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
14571         }
14572 
14573         /******************/
14574         /* FP RX BD CHAIN */
14575         /******************/
14576 
14577         snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
14578         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
14579                           &fp->rx_dma, buf) != 0) {
14580             /* XXX unwind and free previous fastpath allocations */
14581             BLOGE(sc, "Failed to alloc %s\n", buf);
14582             return (1);
14583         } else {
14584             fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
14585         }
14586 
14587         /* link together the rx bd chain pages */
14588         for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
14589             /* index into the rx bd chain array to last entry per page */
14590             struct eth_rx_bd *rx_bd =
14591                 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
14592             /* point to the next page and wrap from last page */
14593             busaddr = (fp->rx_dma.paddr +
14594                        (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
14595             rx_bd->addr_hi = htole32(U64_HI(busaddr));
14596             rx_bd->addr_lo = htole32(U64_LO(busaddr));
14597         }
14598 
14599         /*******************/
14600         /* FP RX RCQ CHAIN */
14601         /*******************/
14602 
14603         snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
14604         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
14605                           &fp->rcq_dma, buf) != 0) {
14606             /* XXX unwind and free previous fastpath allocations */
14607             BLOGE(sc, "Failed to alloc %s\n", buf);
14608             return (1);
14609         } else {
14610             fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
14611         }
14612 
14613         /* link together the rcq chain pages */
14614         for (j = 1; j <= RCQ_NUM_PAGES; j++) {
14615             /* index into the rcq chain array to last entry per page */
14616             struct eth_rx_cqe_next_page *rx_cqe_next =
14617                 (struct eth_rx_cqe_next_page *)
14618                 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
14619             /* point to the next page and wrap from last page */
14620             busaddr = (fp->rcq_dma.paddr +
14621                        (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
14622             rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
14623             rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
14624         }
14625 
14626         /*******************/
14627         /* FP RX SGE CHAIN */
14628         /*******************/
14629 
14630         snprintf(buf, sizeof(buf), "fp %d sge chain", i);
14631         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
14632                           &fp->rx_sge_dma, buf) != 0) {
14633             /* XXX unwind and free previous fastpath allocations */
14634             BLOGE(sc, "Failed to alloc %s\n", buf);
14635             return (1);
14636         } else {
14637             fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
14638         }
14639 
14640         /* link together the sge chain pages */
14641         for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
14642             /* index into the rcq chain array to last entry per page */
14643             struct eth_rx_sge *rx_sge =
14644                 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
14645             /* point to the next page and wrap from last page */
14646             busaddr = (fp->rx_sge_dma.paddr +
14647                        (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
14648             rx_sge->addr_hi = htole32(U64_HI(busaddr));
14649             rx_sge->addr_lo = htole32(U64_LO(busaddr));
14650         }
14651 
14652         /***********************/
14653         /* FP TX MBUF DMA MAPS */
14654         /***********************/
14655 
14656         /* set required sizes before mapping to conserve resources */
14657         if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
14658             max_size     = BXE_TSO_MAX_SIZE;
14659             max_segments = BXE_TSO_MAX_SEGMENTS;
14660             max_seg_size = BXE_TSO_MAX_SEG_SIZE;
14661         } else {
14662             max_size     = (MCLBYTES * BXE_MAX_SEGMENTS);
14663             max_segments = BXE_MAX_SEGMENTS;
14664             max_seg_size = MCLBYTES;
14665         }
14666 
14667         /* create a dma tag for the tx mbufs */
14668         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14669                                 1,                  /* alignment */
14670                                 0,                  /* boundary limit */
14671                                 BUS_SPACE_MAXADDR,  /* restricted low */
14672                                 BUS_SPACE_MAXADDR,  /* restricted hi */
14673                                 NULL,               /* addr filter() */
14674                                 NULL,               /* addr filter() arg */
14675                                 max_size,           /* max map size */
14676                                 max_segments,       /* num discontinuous */
14677                                 max_seg_size,       /* max seg size */
14678                                 0,                  /* flags */
14679                                 NULL,               /* lock() */
14680                                 NULL,               /* lock() arg */
14681                                 &fp->tx_mbuf_tag);  /* returned dma tag */
14682         if (rc != 0) {
14683             /* XXX unwind and free previous fastpath allocations */
14684             BLOGE(sc, "Failed to create dma tag for "
14685                       "'fp %d tx mbufs' (%d)\n", i, rc);
14686             return (1);
14687         }
14688 
14689         /* create dma maps for each of the tx mbuf clusters */
14690         for (j = 0; j < TX_BD_TOTAL; j++) {
14691             if (bus_dmamap_create(fp->tx_mbuf_tag,
14692                                   BUS_DMA_NOWAIT,
14693                                   &fp->tx_mbuf_chain[j].m_map)) {
14694                 /* XXX unwind and free previous fastpath allocations */
14695                 BLOGE(sc, "Failed to create dma map for "
14696                           "'fp %d tx mbuf %d' (%d)\n", i, j, rc);
14697                 return (1);
14698             }
14699         }
14700 
14701         /***********************/
14702         /* FP RX MBUF DMA MAPS */
14703         /***********************/
14704 
14705         /* create a dma tag for the rx mbufs */
14706         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14707                                 1,                  /* alignment */
14708                                 0,                  /* boundary limit */
14709                                 BUS_SPACE_MAXADDR,  /* restricted low */
14710                                 BUS_SPACE_MAXADDR,  /* restricted hi */
14711                                 NULL,               /* addr filter() */
14712                                 NULL,               /* addr filter() arg */
14713                                 MJUM9BYTES,         /* max map size */
14714                                 1,                  /* num discontinuous */
14715                                 MJUM9BYTES,         /* max seg size */
14716                                 0,                  /* flags */
14717                                 NULL,               /* lock() */
14718                                 NULL,               /* lock() arg */
14719                                 &fp->rx_mbuf_tag);  /* returned dma tag */
14720         if (rc != 0) {
14721             /* XXX unwind and free previous fastpath allocations */
14722             BLOGE(sc, "Failed to create dma tag for "
14723                       "'fp %d rx mbufs' (%d)\n", i, rc);
14724             return (1);
14725         }
14726 
14727         /* create dma maps for each of the rx mbuf clusters */
14728         for (j = 0; j < RX_BD_TOTAL; j++) {
14729             if (bus_dmamap_create(fp->rx_mbuf_tag,
14730                                   BUS_DMA_NOWAIT,
14731                                   &fp->rx_mbuf_chain[j].m_map)) {
14732                 /* XXX unwind and free previous fastpath allocations */
14733                 BLOGE(sc, "Failed to create dma map for "
14734                           "'fp %d rx mbuf %d' (%d)\n", i, j, rc);
14735                 return (1);
14736             }
14737         }
14738 
14739         /* create dma map for the spare rx mbuf cluster */
14740         if (bus_dmamap_create(fp->rx_mbuf_tag,
14741                               BUS_DMA_NOWAIT,
14742                               &fp->rx_mbuf_spare_map)) {
14743             /* XXX unwind and free previous fastpath allocations */
14744             BLOGE(sc, "Failed to create dma map for "
14745                       "'fp %d spare rx mbuf' (%d)\n", i, rc);
14746             return (1);
14747         }
14748 
14749         /***************************/
14750         /* FP RX SGE MBUF DMA MAPS */
14751         /***************************/
14752 
14753         /* create a dma tag for the rx sge mbufs */
14754         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14755                                 1,                  /* alignment */
14756                                 0,                  /* boundary limit */
14757                                 BUS_SPACE_MAXADDR,  /* restricted low */
14758                                 BUS_SPACE_MAXADDR,  /* restricted hi */
14759                                 NULL,               /* addr filter() */
14760                                 NULL,               /* addr filter() arg */
14761                                 BCM_PAGE_SIZE,      /* max map size */
14762                                 1,                  /* num discontinuous */
14763                                 BCM_PAGE_SIZE,      /* max seg size */
14764                                 0,                  /* flags */
14765                                 NULL,               /* lock() */
14766                                 NULL,               /* lock() arg */
14767                                 &fp->rx_sge_mbuf_tag); /* returned dma tag */
14768         if (rc != 0) {
14769             /* XXX unwind and free previous fastpath allocations */
14770             BLOGE(sc, "Failed to create dma tag for "
14771                       "'fp %d rx sge mbufs' (%d)\n", i, rc);
14772             return (1);
14773         }
14774 
14775         /* create dma maps for the rx sge mbuf clusters */
14776         for (j = 0; j < RX_SGE_TOTAL; j++) {
14777             if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
14778                                   BUS_DMA_NOWAIT,
14779                                   &fp->rx_sge_mbuf_chain[j].m_map)) {
14780                 /* XXX unwind and free previous fastpath allocations */
14781                 BLOGE(sc, "Failed to create dma map for "
14782                           "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc);
14783                 return (1);
14784             }
14785         }
14786 
14787         /* create dma map for the spare rx sge mbuf cluster */
14788         if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
14789                               BUS_DMA_NOWAIT,
14790                               &fp->rx_sge_mbuf_spare_map)) {
14791             /* XXX unwind and free previous fastpath allocations */
14792             BLOGE(sc, "Failed to create dma map for "
14793                       "'fp %d spare rx sge mbuf' (%d)\n", i, rc);
14794             return (1);
14795         }
14796 
14797         /***************************/
14798         /* FP RX TPA MBUF DMA MAPS */
14799         /***************************/
14800 
14801         /* create dma maps for the rx tpa mbuf clusters */
14802         max_agg_queues = MAX_AGG_QS(sc);
14803 
14804         for (j = 0; j < max_agg_queues; j++) {
14805             if (bus_dmamap_create(fp->rx_mbuf_tag,
14806                                   BUS_DMA_NOWAIT,
14807                                   &fp->rx_tpa_info[j].bd.m_map)) {
14808                 /* XXX unwind and free previous fastpath allocations */
14809                 BLOGE(sc, "Failed to create dma map for "
14810                           "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc);
14811                 return (1);
14812             }
14813         }
14814 
14815         /* create dma map for the spare rx tpa mbuf cluster */
14816         if (bus_dmamap_create(fp->rx_mbuf_tag,
14817                               BUS_DMA_NOWAIT,
14818                               &fp->rx_tpa_info_mbuf_spare_map)) {
14819             /* XXX unwind and free previous fastpath allocations */
14820             BLOGE(sc, "Failed to create dma map for "
14821                       "'fp %d spare rx tpa mbuf' (%d)\n", i, rc);
14822             return (1);
14823         }
14824 
14825         bxe_init_sge_ring_bit_mask(fp);
14826     }
14827 
14828     return (0);
14829 }
14830 
14831 static void
14832 bxe_free_hsi_mem(struct bxe_softc *sc)
14833 {
14834     struct bxe_fastpath *fp;
14835     int max_agg_queues;
14836     int i, j;
14837 
14838     if (sc->parent_dma_tag == NULL) {
14839         return; /* assume nothing was allocated */
14840     }
14841 
14842     for (i = 0; i < sc->num_queues; i++) {
14843         fp = &sc->fp[i];
14844 
14845         /*******************/
14846         /* FP STATUS BLOCK */
14847         /*******************/
14848 
14849         bxe_dma_free(sc, &fp->sb_dma);
14850         memset(&fp->status_block, 0, sizeof(fp->status_block));
14851 
14852         /******************/
14853         /* FP TX BD CHAIN */
14854         /******************/
14855 
14856         bxe_dma_free(sc, &fp->tx_dma);
14857         fp->tx_chain = NULL;
14858 
14859         /******************/
14860         /* FP RX BD CHAIN */
14861         /******************/
14862 
14863         bxe_dma_free(sc, &fp->rx_dma);
14864         fp->rx_chain = NULL;
14865 
14866         /*******************/
14867         /* FP RX RCQ CHAIN */
14868         /*******************/
14869 
14870         bxe_dma_free(sc, &fp->rcq_dma);
14871         fp->rcq_chain = NULL;
14872 
14873         /*******************/
14874         /* FP RX SGE CHAIN */
14875         /*******************/
14876 
14877         bxe_dma_free(sc, &fp->rx_sge_dma);
14878         fp->rx_sge_chain = NULL;
14879 
14880         /***********************/
14881         /* FP TX MBUF DMA MAPS */
14882         /***********************/
14883 
14884         if (fp->tx_mbuf_tag != NULL) {
14885             for (j = 0; j < TX_BD_TOTAL; j++) {
14886                 if (fp->tx_mbuf_chain[j].m_map != NULL) {
14887                     bus_dmamap_unload(fp->tx_mbuf_tag,
14888                                       fp->tx_mbuf_chain[j].m_map);
14889                     bus_dmamap_destroy(fp->tx_mbuf_tag,
14890                                        fp->tx_mbuf_chain[j].m_map);
14891                 }
14892             }
14893 
14894             bus_dma_tag_destroy(fp->tx_mbuf_tag);
14895             fp->tx_mbuf_tag = NULL;
14896         }
14897 
14898         /***********************/
14899         /* FP RX MBUF DMA MAPS */
14900         /***********************/
14901 
14902         if (fp->rx_mbuf_tag != NULL) {
14903             for (j = 0; j < RX_BD_TOTAL; j++) {
14904                 if (fp->rx_mbuf_chain[j].m_map != NULL) {
14905                     bus_dmamap_unload(fp->rx_mbuf_tag,
14906                                       fp->rx_mbuf_chain[j].m_map);
14907                     bus_dmamap_destroy(fp->rx_mbuf_tag,
14908                                        fp->rx_mbuf_chain[j].m_map);
14909                 }
14910             }
14911 
14912             if (fp->rx_mbuf_spare_map != NULL) {
14913                 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
14914                 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
14915             }
14916 
14917             /***************************/
14918             /* FP RX TPA MBUF DMA MAPS */
14919             /***************************/
14920 
14921             max_agg_queues = MAX_AGG_QS(sc);
14922 
14923             for (j = 0; j < max_agg_queues; j++) {
14924                 if (fp->rx_tpa_info[j].bd.m_map != NULL) {
14925                     bus_dmamap_unload(fp->rx_mbuf_tag,
14926                                       fp->rx_tpa_info[j].bd.m_map);
14927                     bus_dmamap_destroy(fp->rx_mbuf_tag,
14928                                        fp->rx_tpa_info[j].bd.m_map);
14929                 }
14930             }
14931 
14932             if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
14933                 bus_dmamap_unload(fp->rx_mbuf_tag,
14934                                   fp->rx_tpa_info_mbuf_spare_map);
14935                 bus_dmamap_destroy(fp->rx_mbuf_tag,
14936                                    fp->rx_tpa_info_mbuf_spare_map);
14937             }
14938 
14939             bus_dma_tag_destroy(fp->rx_mbuf_tag);
14940             fp->rx_mbuf_tag = NULL;
14941         }
14942 
14943         /***************************/
14944         /* FP RX SGE MBUF DMA MAPS */
14945         /***************************/
14946 
14947         if (fp->rx_sge_mbuf_tag != NULL) {
14948             for (j = 0; j < RX_SGE_TOTAL; j++) {
14949                 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
14950                     bus_dmamap_unload(fp->rx_sge_mbuf_tag,
14951                                       fp->rx_sge_mbuf_chain[j].m_map);
14952                     bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
14953                                        fp->rx_sge_mbuf_chain[j].m_map);
14954                 }
14955             }
14956 
14957             if (fp->rx_sge_mbuf_spare_map != NULL) {
14958                 bus_dmamap_unload(fp->rx_sge_mbuf_tag,
14959                                   fp->rx_sge_mbuf_spare_map);
14960                 bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
14961                                    fp->rx_sge_mbuf_spare_map);
14962             }
14963 
14964             bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
14965             fp->rx_sge_mbuf_tag = NULL;
14966         }
14967     }
14968 
14969     /***************************/
14970     /* FW DECOMPRESSION BUFFER */
14971     /***************************/
14972 
14973     bxe_dma_free(sc, &sc->gz_buf_dma);
14974     sc->gz_buf = NULL;
14975     free(sc->gz_strm, M_DEVBUF);
14976     sc->gz_strm = NULL;
14977 
14978     /*******************/
14979     /* SLOW PATH QUEUE */
14980     /*******************/
14981 
14982     bxe_dma_free(sc, &sc->spq_dma);
14983     sc->spq = NULL;
14984 
14985     /*************/
14986     /* SLOW PATH */
14987     /*************/
14988 
14989     bxe_dma_free(sc, &sc->sp_dma);
14990     sc->sp = NULL;
14991 
14992     /***************/
14993     /* EVENT QUEUE */
14994     /***************/
14995 
14996     bxe_dma_free(sc, &sc->eq_dma);
14997     sc->eq = NULL;
14998 
14999     /************************/
15000     /* DEFAULT STATUS BLOCK */
15001     /************************/
15002 
15003     bxe_dma_free(sc, &sc->def_sb_dma);
15004     sc->def_sb = NULL;
15005 
15006     bus_dma_tag_destroy(sc->parent_dma_tag);
15007     sc->parent_dma_tag = NULL;
15008 }
15009 
15010 /*
15011  * Previous driver DMAE transaction may have occurred when pre-boot stage
15012  * ended and boot began. This would invalidate the addresses of the
15013  * transaction, resulting in was-error bit set in the PCI causing all
15014  * hw-to-host PCIe transactions to timeout. If this happened we want to clear
15015  * the interrupt which detected this from the pglueb and the was-done bit
15016  */
15017 static void
15018 bxe_prev_interrupted_dmae(struct bxe_softc *sc)
15019 {
15020     uint32_t val;
15021 
15022     if (!CHIP_IS_E1x(sc)) {
15023         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
15024         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
15025             BLOGD(sc, DBG_LOAD,
15026                   "Clearing 'was-error' bit that was set in pglueb");
15027             REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
15028         }
15029     }
15030 }
15031 
15032 static int
15033 bxe_prev_mcp_done(struct bxe_softc *sc)
15034 {
15035     uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
15036                                  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
15037     if (!rc) {
15038         BLOGE(sc, "MCP response failure, aborting\n");
15039         return (-1);
15040     }
15041 
15042     return (0);
15043 }
15044 
15045 static struct bxe_prev_list_node *
15046 bxe_prev_path_get_entry(struct bxe_softc *sc)
15047 {
15048     struct bxe_prev_list_node *tmp;
15049 
15050     LIST_FOREACH(tmp, &bxe_prev_list, node) {
15051         if ((sc->pcie_bus == tmp->bus) &&
15052             (sc->pcie_device == tmp->slot) &&
15053             (SC_PATH(sc) == tmp->path)) {
15054             return (tmp);
15055         }
15056     }
15057 
15058     return (NULL);
15059 }
15060 
15061 static uint8_t
15062 bxe_prev_is_path_marked(struct bxe_softc *sc)
15063 {
15064     struct bxe_prev_list_node *tmp;
15065     int rc = FALSE;
15066 
15067     mtx_lock(&bxe_prev_mtx);
15068 
15069     tmp = bxe_prev_path_get_entry(sc);
15070     if (tmp) {
15071         if (tmp->aer) {
15072             BLOGD(sc, DBG_LOAD,
15073                   "Path %d/%d/%d was marked by AER\n",
15074                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15075         } else {
15076             rc = TRUE;
15077             BLOGD(sc, DBG_LOAD,
15078                   "Path %d/%d/%d was already cleaned from previous drivers\n",
15079                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15080         }
15081     }
15082 
15083     mtx_unlock(&bxe_prev_mtx);
15084 
15085     return (rc);
15086 }
15087 
15088 static int
15089 bxe_prev_mark_path(struct bxe_softc *sc,
15090                    uint8_t          after_undi)
15091 {
15092     struct bxe_prev_list_node *tmp;
15093 
15094     mtx_lock(&bxe_prev_mtx);
15095 
15096     /* Check whether the entry for this path already exists */
15097     tmp = bxe_prev_path_get_entry(sc);
15098     if (tmp) {
15099         if (!tmp->aer) {
15100             BLOGD(sc, DBG_LOAD,
15101                   "Re-marking AER in path %d/%d/%d\n",
15102                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15103         } else {
15104             BLOGD(sc, DBG_LOAD,
15105                   "Removing AER indication from path %d/%d/%d\n",
15106                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15107             tmp->aer = 0;
15108         }
15109 
15110         mtx_unlock(&bxe_prev_mtx);
15111         return (0);
15112     }
15113 
15114     mtx_unlock(&bxe_prev_mtx);
15115 
15116     /* Create an entry for this path and add it */
15117     tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15118                  (M_NOWAIT | M_ZERO));
15119     if (!tmp) {
15120         BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15121         return (-1);
15122     }
15123 
15124     tmp->bus  = sc->pcie_bus;
15125     tmp->slot = sc->pcie_device;
15126     tmp->path = SC_PATH(sc);
15127     tmp->aer  = 0;
15128     tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15129 
15130     mtx_lock(&bxe_prev_mtx);
15131 
15132     BLOGD(sc, DBG_LOAD,
15133           "Marked path %d/%d/%d - finished previous unload\n",
15134           sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15135     LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15136 
15137     mtx_unlock(&bxe_prev_mtx);
15138 
15139     return (0);
15140 }
15141 
15142 static int
15143 bxe_do_flr(struct bxe_softc *sc)
15144 {
15145     int i;
15146 
15147     /* only E2 and onwards support FLR */
15148     if (CHIP_IS_E1x(sc)) {
15149         BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15150         return (-1);
15151     }
15152 
15153     /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15154     if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15155         BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15156               sc->devinfo.bc_ver);
15157         return (-1);
15158     }
15159 
15160     /* Wait for Transaction Pending bit clean */
15161     for (i = 0; i < 4; i++) {
15162         if (i) {
15163             DELAY(((1 << (i - 1)) * 100) * 1000);
15164         }
15165 
15166         if (!bxe_is_pcie_pending(sc)) {
15167             goto clear;
15168         }
15169     }
15170 
15171     BLOGE(sc, "PCIE transaction is not cleared, "
15172               "proceeding with reset anyway\n");
15173 
15174 clear:
15175 
15176     BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15177     bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15178 
15179     return (0);
15180 }
15181 
15182 struct bxe_mac_vals {
15183     uint32_t xmac_addr;
15184     uint32_t xmac_val;
15185     uint32_t emac_addr;
15186     uint32_t emac_val;
15187     uint32_t umac_addr;
15188     uint32_t umac_val;
15189     uint32_t bmac_addr;
15190     uint32_t bmac_val[2];
15191 };
15192 
15193 static void
15194 bxe_prev_unload_close_mac(struct bxe_softc *sc,
15195                           struct bxe_mac_vals *vals)
15196 {
15197     uint32_t val, base_addr, offset, mask, reset_reg;
15198     uint8_t mac_stopped = FALSE;
15199     uint8_t port = SC_PORT(sc);
15200     uint32_t wb_data[2];
15201 
15202     /* reset addresses as they also mark which values were changed */
15203     vals->bmac_addr = 0;
15204     vals->umac_addr = 0;
15205     vals->xmac_addr = 0;
15206     vals->emac_addr = 0;
15207 
15208     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15209 
15210     if (!CHIP_IS_E3(sc)) {
15211         val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15212         mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15213         if ((mask & reset_reg) && val) {
15214             BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15215             base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15216                                     : NIG_REG_INGRESS_BMAC0_MEM;
15217             offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15218                                     : BIGMAC_REGISTER_BMAC_CONTROL;
15219 
15220             /*
15221              * use rd/wr since we cannot use dmae. This is safe
15222              * since MCP won't access the bus due to the request
15223              * to unload, and no function on the path can be
15224              * loaded at this time.
15225              */
15226             wb_data[0] = REG_RD(sc, base_addr + offset);
15227             wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15228             vals->bmac_addr = base_addr + offset;
15229             vals->bmac_val[0] = wb_data[0];
15230             vals->bmac_val[1] = wb_data[1];
15231             wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15232             REG_WR(sc, vals->bmac_addr, wb_data[0]);
15233             REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15234         }
15235 
15236         BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15237         vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15238         vals->emac_val = REG_RD(sc, vals->emac_addr);
15239         REG_WR(sc, vals->emac_addr, 0);
15240         mac_stopped = TRUE;
15241     } else {
15242         if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15243             BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15244             base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15245             val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15246             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15247             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15248             vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15249             vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15250             REG_WR(sc, vals->xmac_addr, 0);
15251             mac_stopped = TRUE;
15252         }
15253 
15254         mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15255         if (mask & reset_reg) {
15256             BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15257             base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15258             vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15259             vals->umac_val = REG_RD(sc, vals->umac_addr);
15260             REG_WR(sc, vals->umac_addr, 0);
15261             mac_stopped = TRUE;
15262         }
15263     }
15264 
15265     if (mac_stopped) {
15266         DELAY(20000);
15267     }
15268 }
15269 
15270 #define BXE_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15271 #define BXE_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
15272 #define BXE_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
15273 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15274 
15275 static void
15276 bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15277                          uint8_t          port,
15278                          uint8_t          inc)
15279 {
15280     uint16_t rcq, bd;
15281     uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15282 
15283     rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15284     bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15285 
15286     tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15287     REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15288 
15289     BLOGD(sc, DBG_LOAD,
15290           "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15291           port, bd, rcq);
15292 }
15293 
15294 static int
15295 bxe_prev_unload_common(struct bxe_softc *sc)
15296 {
15297     uint32_t reset_reg, tmp_reg = 0, rc;
15298     uint8_t prev_undi = FALSE;
15299     struct bxe_mac_vals mac_vals;
15300     uint32_t timer_count = 1000;
15301     uint32_t prev_brb;
15302 
15303     /*
15304      * It is possible a previous function received 'common' answer,
15305      * but hasn't loaded yet, therefore creating a scenario of
15306      * multiple functions receiving 'common' on the same path.
15307      */
15308     BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15309 
15310     memset(&mac_vals, 0, sizeof(mac_vals));
15311 
15312     if (bxe_prev_is_path_marked(sc)) {
15313         return (bxe_prev_mcp_done(sc));
15314     }
15315 
15316     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15317 
15318     /* Reset should be performed after BRB is emptied */
15319     if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15320         /* Close the MAC Rx to prevent BRB from filling up */
15321         bxe_prev_unload_close_mac(sc, &mac_vals);
15322 
15323         /* close LLH filters towards the BRB */
15324         elink_set_rx_filter(&sc->link_params, 0);
15325 
15326         /*
15327          * Check if the UNDI driver was previously loaded.
15328          * UNDI driver initializes CID offset for normal bell to 0x7
15329          */
15330         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15331             tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15332             if (tmp_reg == 0x7) {
15333                 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15334                 prev_undi = TRUE;
15335                 /* clear the UNDI indication */
15336                 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15337                 /* clear possible idle check errors */
15338                 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15339             }
15340         }
15341 
15342         /* wait until BRB is empty */
15343         tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15344         while (timer_count) {
15345             prev_brb = tmp_reg;
15346 
15347             tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15348             if (!tmp_reg) {
15349                 break;
15350             }
15351 
15352             BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15353 
15354             /* reset timer as long as BRB actually gets emptied */
15355             if (prev_brb > tmp_reg) {
15356                 timer_count = 1000;
15357             } else {
15358                 timer_count--;
15359             }
15360 
15361             /* If UNDI resides in memory, manually increment it */
15362             if (prev_undi) {
15363                 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15364             }
15365 
15366             DELAY(10);
15367         }
15368 
15369         if (!timer_count) {
15370             BLOGE(sc, "Failed to empty BRB\n");
15371         }
15372     }
15373 
15374     /* No packets are in the pipeline, path is ready for reset */
15375     bxe_reset_common(sc);
15376 
15377     if (mac_vals.xmac_addr) {
15378         REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15379     }
15380     if (mac_vals.umac_addr) {
15381         REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15382     }
15383     if (mac_vals.emac_addr) {
15384         REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15385     }
15386     if (mac_vals.bmac_addr) {
15387         REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15388         REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15389     }
15390 
15391     rc = bxe_prev_mark_path(sc, prev_undi);
15392     if (rc) {
15393         bxe_prev_mcp_done(sc);
15394         return (rc);
15395     }
15396 
15397     return (bxe_prev_mcp_done(sc));
15398 }
15399 
15400 static int
15401 bxe_prev_unload_uncommon(struct bxe_softc *sc)
15402 {
15403     int rc;
15404 
15405     BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15406 
15407     /* Test if previous unload process was already finished for this path */
15408     if (bxe_prev_is_path_marked(sc)) {
15409         return (bxe_prev_mcp_done(sc));
15410     }
15411 
15412     BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15413 
15414     /*
15415      * If function has FLR capabilities, and existing FW version matches
15416      * the one required, then FLR will be sufficient to clean any residue
15417      * left by previous driver
15418      */
15419     rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
15420     if (!rc) {
15421         /* fw version is good */
15422         BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
15423         rc = bxe_do_flr(sc);
15424     }
15425 
15426     if (!rc) {
15427         /* FLR was performed */
15428         BLOGD(sc, DBG_LOAD, "FLR successful\n");
15429         return (0);
15430     }
15431 
15432     BLOGD(sc, DBG_LOAD, "Could not FLR\n");
15433 
15434     /* Close the MCP request, return failure*/
15435     rc = bxe_prev_mcp_done(sc);
15436     if (!rc) {
15437         rc = BXE_PREV_WAIT_NEEDED;
15438     }
15439 
15440     return (rc);
15441 }
15442 
15443 static int
15444 bxe_prev_unload(struct bxe_softc *sc)
15445 {
15446     int time_counter = 10;
15447     uint32_t fw, hw_lock_reg, hw_lock_val;
15448     uint32_t rc = 0;
15449 
15450     /*
15451      * Clear HW from errors which may have resulted from an interrupted
15452      * DMAE transaction.
15453      */
15454     bxe_prev_interrupted_dmae(sc);
15455 
15456     /* Release previously held locks */
15457     hw_lock_reg =
15458         (SC_FUNC(sc) <= 5) ?
15459             (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
15460             (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
15461 
15462     hw_lock_val = (REG_RD(sc, hw_lock_reg));
15463     if (hw_lock_val) {
15464         if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
15465             BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
15466             REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
15467                    (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
15468         }
15469         BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
15470         REG_WR(sc, hw_lock_reg, 0xffffffff);
15471     } else {
15472         BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
15473     }
15474 
15475     if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
15476         BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
15477         REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
15478     }
15479 
15480     do {
15481         /* Lock MCP using an unload request */
15482         fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
15483         if (!fw) {
15484             BLOGE(sc, "MCP response failure, aborting\n");
15485             rc = -1;
15486             break;
15487         }
15488 
15489         if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
15490             rc = bxe_prev_unload_common(sc);
15491             break;
15492         }
15493 
15494         /* non-common reply from MCP night require looping */
15495         rc = bxe_prev_unload_uncommon(sc);
15496         if (rc != BXE_PREV_WAIT_NEEDED) {
15497             break;
15498         }
15499 
15500         DELAY(20000);
15501     } while (--time_counter);
15502 
15503     if (!time_counter || rc) {
15504         BLOGE(sc, "Failed to unload previous driver!"
15505             " time_counter %d rc %d\n", time_counter, rc);
15506         rc = -1;
15507     }
15508 
15509     return (rc);
15510 }
15511 
15512 void
15513 bxe_dcbx_set_state(struct bxe_softc *sc,
15514                    uint8_t          dcb_on,
15515                    uint32_t         dcbx_enabled)
15516 {
15517     if (!CHIP_IS_E1x(sc)) {
15518         sc->dcb_state = dcb_on;
15519         sc->dcbx_enabled = dcbx_enabled;
15520     } else {
15521         sc->dcb_state = FALSE;
15522         sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
15523     }
15524     BLOGD(sc, DBG_LOAD,
15525           "DCB state [%s:%s]\n",
15526           dcb_on ? "ON" : "OFF",
15527           (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
15528           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
15529           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
15530           "on-chip with negotiation" : "invalid");
15531 }
15532 
15533 /* must be called after sriov-enable */
15534 static int
15535 bxe_set_qm_cid_count(struct bxe_softc *sc)
15536 {
15537     int cid_count = BXE_L2_MAX_CID(sc);
15538 
15539     if (IS_SRIOV(sc)) {
15540         cid_count += BXE_VF_CIDS;
15541     }
15542 
15543     if (CNIC_SUPPORT(sc)) {
15544         cid_count += CNIC_CID_MAX;
15545     }
15546 
15547     return (roundup(cid_count, QM_CID_ROUND));
15548 }
15549 
15550 static void
15551 bxe_init_multi_cos(struct bxe_softc *sc)
15552 {
15553     int pri, cos;
15554 
15555     uint32_t pri_map = 0; /* XXX change to user config */
15556 
15557     for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
15558         cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
15559         if (cos < sc->max_cos) {
15560             sc->prio_to_cos[pri] = cos;
15561         } else {
15562             BLOGW(sc, "Invalid COS %d for priority %d "
15563                       "(max COS is %d), setting to 0\n",
15564                   cos, pri, (sc->max_cos - 1));
15565             sc->prio_to_cos[pri] = 0;
15566         }
15567     }
15568 }
15569 
15570 static int
15571 bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
15572 {
15573     struct bxe_softc *sc;
15574     int error, result;
15575 
15576     result = 0;
15577     error = sysctl_handle_int(oidp, &result, 0, req);
15578 
15579     if (error || !req->newptr) {
15580         return (error);
15581     }
15582 
15583     if (result == 1) {
15584         uint32_t  temp;
15585         sc = (struct bxe_softc *)arg1;
15586 
15587         BLOGI(sc, "... dumping driver state ...\n");
15588         temp = SHMEM2_RD(sc, temperature_in_half_celsius);
15589         BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2));
15590     }
15591 
15592     return (error);
15593 }
15594 
15595 static int
15596 bxe_sysctl_trigger_grcdump(SYSCTL_HANDLER_ARGS)
15597 {
15598     struct bxe_softc *sc;
15599     int error, result;
15600 
15601     result = 0;
15602     error = sysctl_handle_int(oidp, &result, 0, req);
15603 
15604     if (error || !req->newptr) {
15605         return (error);
15606     }
15607 
15608     if (result == 1) {
15609         sc = (struct bxe_softc *)arg1;
15610 
15611         BLOGI(sc, "... grcdump start ...\n");
15612         bxe_grc_dump(sc);
15613         BLOGI(sc, "... grcdump done ...\n");
15614     }
15615 
15616     return (error);
15617 }
15618 
15619 static int
15620 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
15621 {
15622     struct bxe_softc *sc = (struct bxe_softc *)arg1;
15623     uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
15624     uint32_t *offset;
15625     uint64_t value = 0;
15626     int index = (int)arg2;
15627 
15628     if (index >= BXE_NUM_ETH_STATS) {
15629         BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
15630         return (-1);
15631     }
15632 
15633     offset = (eth_stats + bxe_eth_stats_arr[index].offset);
15634 
15635     switch (bxe_eth_stats_arr[index].size) {
15636     case 4:
15637         value = (uint64_t)*offset;
15638         break;
15639     case 8:
15640         value = HILO_U64(*offset, *(offset + 1));
15641         break;
15642     default:
15643         BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
15644               index, bxe_eth_stats_arr[index].size);
15645         return (-1);
15646     }
15647 
15648     return (sysctl_handle_64(oidp, &value, 0, req));
15649 }
15650 
15651 static int
15652 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
15653 {
15654     struct bxe_softc *sc = (struct bxe_softc *)arg1;
15655     uint32_t *eth_stats;
15656     uint32_t *offset;
15657     uint64_t value = 0;
15658     uint32_t q_stat = (uint32_t)arg2;
15659     uint32_t fp_index = ((q_stat >> 16) & 0xffff);
15660     uint32_t index = (q_stat & 0xffff);
15661 
15662     eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
15663 
15664     if (index >= BXE_NUM_ETH_Q_STATS) {
15665         BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
15666         return (-1);
15667     }
15668 
15669     offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
15670 
15671     switch (bxe_eth_q_stats_arr[index].size) {
15672     case 4:
15673         value = (uint64_t)*offset;
15674         break;
15675     case 8:
15676         value = HILO_U64(*offset, *(offset + 1));
15677         break;
15678     default:
15679         BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
15680               index, bxe_eth_q_stats_arr[index].size);
15681         return (-1);
15682     }
15683 
15684     return (sysctl_handle_64(oidp, &value, 0, req));
15685 }
15686 
15687 static void
15688 bxe_add_sysctls(struct bxe_softc *sc)
15689 {
15690     struct sysctl_ctx_list *ctx;
15691     struct sysctl_oid_list *children;
15692     struct sysctl_oid *queue_top, *queue;
15693     struct sysctl_oid_list *queue_top_children, *queue_children;
15694     char queue_num_buf[32];
15695     uint32_t q_stat;
15696     int i, j;
15697 
15698     ctx = device_get_sysctl_ctx(sc->dev);
15699     children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
15700 
15701     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
15702                       CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
15703                       "version");
15704 
15705     snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
15706              BCM_5710_FW_MAJOR_VERSION,
15707              BCM_5710_FW_MINOR_VERSION,
15708              BCM_5710_FW_REVISION_VERSION,
15709              BCM_5710_FW_ENGINEERING_VERSION);
15710 
15711     snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
15712         ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION)     ? "Single"  :
15713          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)   ? "MF-SD"   :
15714          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)   ? "MF-SI"   :
15715          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
15716                                                                 "Unknown"));
15717     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
15718                     CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
15719                     "multifunction vnics per port");
15720 
15721     snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
15722         ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
15723          (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
15724          (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
15725                                               "???GT/s"),
15726         sc->devinfo.pcie_link_width);
15727 
15728     sc->debug = bxe_debug;
15729 
15730 #if __FreeBSD_version >= 900000
15731     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
15732                       CTLFLAG_RD, sc->devinfo.bc_ver_str, 0,
15733                       "bootcode version");
15734     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
15735                       CTLFLAG_RD, sc->fw_ver_str, 0,
15736                       "firmware version");
15737     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
15738                       CTLFLAG_RD, sc->mf_mode_str, 0,
15739                       "multifunction mode");
15740     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
15741                       CTLFLAG_RD, sc->mac_addr_str, 0,
15742                       "mac address");
15743     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
15744                       CTLFLAG_RD, sc->pci_link_str, 0,
15745                       "pci link status");
15746     SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug",
15747                     CTLFLAG_RW, &sc->debug,
15748                     "debug logging mode");
15749 #else
15750     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
15751                       CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0,
15752                       "bootcode version");
15753     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
15754                       CTLFLAG_RD, &sc->fw_ver_str, 0,
15755                       "firmware version");
15756     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
15757                       CTLFLAG_RD, &sc->mf_mode_str, 0,
15758                       "multifunction mode");
15759     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
15760                       CTLFLAG_RD, &sc->mac_addr_str, 0,
15761                       "mac address");
15762     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
15763                       CTLFLAG_RD, &sc->pci_link_str, 0,
15764                       "pci link status");
15765     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug",
15766                     CTLFLAG_RW, &sc->debug, 0,
15767                     "debug logging mode");
15768 #endif /* #if __FreeBSD_version >= 900000 */
15769 
15770     SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "trigger_grcdump",
15771                     CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
15772                     bxe_sysctl_trigger_grcdump, "IU",
15773                     "set by driver when a grcdump is needed");
15774 
15775     sc->grcdump_done = 0;
15776     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done",
15777                    CTLFLAG_RW, &sc->grcdump_done, 0,
15778                    "set by driver when grcdump is done");
15779 
15780     sc->rx_budget = bxe_rx_budget;
15781     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
15782                     CTLFLAG_RW, &sc->rx_budget, 0,
15783                     "rx processing budget");
15784 
15785     SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
15786                     CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
15787                     bxe_sysctl_state, "IU", "dump driver state");
15788 
15789     for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
15790         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
15791                         bxe_eth_stats_arr[i].string,
15792                         CTLTYPE_U64 | CTLFLAG_RD, sc, i,
15793                         bxe_sysctl_eth_stat, "LU",
15794                         bxe_eth_stats_arr[i].string);
15795     }
15796 
15797     /* add a new parent node for all queues "dev.bxe.#.queue" */
15798     queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
15799                                 CTLFLAG_RD, NULL, "queue");
15800     queue_top_children = SYSCTL_CHILDREN(queue_top);
15801 
15802     for (i = 0; i < sc->num_queues; i++) {
15803         /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
15804         snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
15805         queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
15806                                 queue_num_buf, CTLFLAG_RD, NULL,
15807                                 "single queue");
15808         queue_children = SYSCTL_CHILDREN(queue);
15809 
15810         for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
15811             q_stat = ((i << 16) | j);
15812             SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
15813                             bxe_eth_q_stats_arr[j].string,
15814                             CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat,
15815                             bxe_sysctl_eth_q_stat, "LU",
15816                             bxe_eth_q_stats_arr[j].string);
15817         }
15818     }
15819 }
15820 
15821 static int
15822 bxe_alloc_buf_rings(struct bxe_softc *sc)
15823 {
15824 #if __FreeBSD_version >= 800000
15825 
15826     int i;
15827     struct bxe_fastpath *fp;
15828 
15829     for (i = 0; i < sc->num_queues; i++) {
15830 
15831         fp = &sc->fp[i];
15832 
15833         fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
15834                                    M_NOWAIT, &fp->tx_mtx);
15835         if (fp->tx_br == NULL)
15836             return (-1);
15837     }
15838 #endif
15839     return (0);
15840 }
15841 
15842 static void
15843 bxe_free_buf_rings(struct bxe_softc *sc)
15844 {
15845 #if __FreeBSD_version >= 800000
15846 
15847     int i;
15848     struct bxe_fastpath *fp;
15849 
15850     for (i = 0; i < sc->num_queues; i++) {
15851 
15852         fp = &sc->fp[i];
15853 
15854         if (fp->tx_br) {
15855             buf_ring_free(fp->tx_br, M_DEVBUF);
15856             fp->tx_br = NULL;
15857         }
15858     }
15859 
15860 #endif
15861 }
15862 
15863 static void
15864 bxe_init_fp_mutexs(struct bxe_softc *sc)
15865 {
15866     int i;
15867     struct bxe_fastpath *fp;
15868 
15869     for (i = 0; i < sc->num_queues; i++) {
15870 
15871         fp = &sc->fp[i];
15872 
15873         snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
15874             "bxe%d_fp%d_tx_lock", sc->unit, i);
15875         mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
15876 
15877         snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
15878             "bxe%d_fp%d_rx_lock", sc->unit, i);
15879         mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
15880     }
15881 }
15882 
15883 static void
15884 bxe_destroy_fp_mutexs(struct bxe_softc *sc)
15885 {
15886     int i;
15887     struct bxe_fastpath *fp;
15888 
15889     for (i = 0; i < sc->num_queues; i++) {
15890 
15891         fp = &sc->fp[i];
15892 
15893         if (mtx_initialized(&fp->tx_mtx)) {
15894             mtx_destroy(&fp->tx_mtx);
15895         }
15896 
15897         if (mtx_initialized(&fp->rx_mtx)) {
15898             mtx_destroy(&fp->rx_mtx);
15899         }
15900     }
15901 }
15902 
15903 
15904 /*
15905  * Device attach function.
15906  *
15907  * Allocates device resources, performs secondary chip identification, and
15908  * initializes driver instance variables. This function is called from driver
15909  * load after a successful probe.
15910  *
15911  * Returns:
15912  *   0 = Success, >0 = Failure
15913  */
15914 static int
15915 bxe_attach(device_t dev)
15916 {
15917     struct bxe_softc *sc;
15918 
15919     sc = device_get_softc(dev);
15920 
15921     BLOGD(sc, DBG_LOAD, "Starting attach...\n");
15922 
15923     sc->state = BXE_STATE_CLOSED;
15924 
15925     sc->dev  = dev;
15926     sc->unit = device_get_unit(dev);
15927 
15928     BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
15929 
15930     sc->pcie_bus    = pci_get_bus(dev);
15931     sc->pcie_device = pci_get_slot(dev);
15932     sc->pcie_func   = pci_get_function(dev);
15933 
15934     /* enable bus master capability */
15935     pci_enable_busmaster(dev);
15936 
15937     /* get the BARs */
15938     if (bxe_allocate_bars(sc) != 0) {
15939         return (ENXIO);
15940     }
15941 
15942     /* initialize the mutexes */
15943     bxe_init_mutexes(sc);
15944 
15945     /* prepare the periodic callout */
15946     callout_init(&sc->periodic_callout, 0);
15947 
15948     /* prepare the chip taskqueue */
15949     sc->chip_tq_flags = CHIP_TQ_NONE;
15950     snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
15951              "bxe%d_chip_tq", sc->unit);
15952     TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
15953     sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
15954                                    taskqueue_thread_enqueue,
15955                                    &sc->chip_tq);
15956     taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
15957                             "%s", sc->chip_tq_name);
15958 
15959     /* get device info and set params */
15960     if (bxe_get_device_info(sc) != 0) {
15961         BLOGE(sc, "getting device info\n");
15962         bxe_deallocate_bars(sc);
15963         pci_disable_busmaster(dev);
15964         return (ENXIO);
15965     }
15966 
15967     /* get final misc params */
15968     bxe_get_params(sc);
15969 
15970     /* set the default MTU (changed via ifconfig) */
15971     sc->mtu = ETHERMTU;
15972 
15973     bxe_set_modes_bitmap(sc);
15974 
15975     /* XXX
15976      * If in AFEX mode and the function is configured for FCoE
15977      * then bail... no L2 allowed.
15978      */
15979 
15980     /* get phy settings from shmem and 'and' against admin settings */
15981     bxe_get_phy_info(sc);
15982 
15983     /* initialize the FreeBSD ifnet interface */
15984     if (bxe_init_ifnet(sc) != 0) {
15985         bxe_release_mutexes(sc);
15986         bxe_deallocate_bars(sc);
15987         pci_disable_busmaster(dev);
15988         return (ENXIO);
15989     }
15990 
15991     if (bxe_add_cdev(sc) != 0) {
15992         if (sc->ifp != NULL) {
15993             ether_ifdetach(sc->ifp);
15994         }
15995         ifmedia_removeall(&sc->ifmedia);
15996         bxe_release_mutexes(sc);
15997         bxe_deallocate_bars(sc);
15998         pci_disable_busmaster(dev);
15999         return (ENXIO);
16000     }
16001 
16002     /* allocate device interrupts */
16003     if (bxe_interrupt_alloc(sc) != 0) {
16004         bxe_del_cdev(sc);
16005         if (sc->ifp != NULL) {
16006             ether_ifdetach(sc->ifp);
16007         }
16008         ifmedia_removeall(&sc->ifmedia);
16009         bxe_release_mutexes(sc);
16010         bxe_deallocate_bars(sc);
16011         pci_disable_busmaster(dev);
16012         return (ENXIO);
16013     }
16014 
16015     bxe_init_fp_mutexs(sc);
16016 
16017     if (bxe_alloc_buf_rings(sc) != 0) {
16018 	bxe_free_buf_rings(sc);
16019         bxe_interrupt_free(sc);
16020         bxe_del_cdev(sc);
16021         if (sc->ifp != NULL) {
16022             ether_ifdetach(sc->ifp);
16023         }
16024         ifmedia_removeall(&sc->ifmedia);
16025         bxe_release_mutexes(sc);
16026         bxe_deallocate_bars(sc);
16027         pci_disable_busmaster(dev);
16028         return (ENXIO);
16029     }
16030 
16031     /* allocate ilt */
16032     if (bxe_alloc_ilt_mem(sc) != 0) {
16033 	bxe_free_buf_rings(sc);
16034         bxe_interrupt_free(sc);
16035         bxe_del_cdev(sc);
16036         if (sc->ifp != NULL) {
16037             ether_ifdetach(sc->ifp);
16038         }
16039         ifmedia_removeall(&sc->ifmedia);
16040         bxe_release_mutexes(sc);
16041         bxe_deallocate_bars(sc);
16042         pci_disable_busmaster(dev);
16043         return (ENXIO);
16044     }
16045 
16046     /* allocate the host hardware/software hsi structures */
16047     if (bxe_alloc_hsi_mem(sc) != 0) {
16048         bxe_free_ilt_mem(sc);
16049 	bxe_free_buf_rings(sc);
16050         bxe_interrupt_free(sc);
16051         bxe_del_cdev(sc);
16052         if (sc->ifp != NULL) {
16053             ether_ifdetach(sc->ifp);
16054         }
16055         ifmedia_removeall(&sc->ifmedia);
16056         bxe_release_mutexes(sc);
16057         bxe_deallocate_bars(sc);
16058         pci_disable_busmaster(dev);
16059         return (ENXIO);
16060     }
16061 
16062     /* need to reset chip if UNDI was active */
16063     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
16064         /* init fw_seq */
16065         sc->fw_seq =
16066             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
16067              DRV_MSG_SEQ_NUMBER_MASK);
16068         BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
16069         bxe_prev_unload(sc);
16070     }
16071 
16072 #if 1
16073     /* XXX */
16074     bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16075 #else
16076     if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
16077         SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
16078         SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
16079         SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
16080         bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
16081         bxe_dcbx_init_params(sc);
16082     } else {
16083         bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16084     }
16085 #endif
16086 
16087     /* calculate qm_cid_count */
16088     sc->qm_cid_count = bxe_set_qm_cid_count(sc);
16089     BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
16090 
16091     sc->max_cos = 1;
16092     bxe_init_multi_cos(sc);
16093 
16094     bxe_add_sysctls(sc);
16095 
16096     return (0);
16097 }
16098 
16099 /*
16100  * Device detach function.
16101  *
16102  * Stops the controller, resets the controller, and releases resources.
16103  *
16104  * Returns:
16105  *   0 = Success, >0 = Failure
16106  */
16107 static int
16108 bxe_detach(device_t dev)
16109 {
16110     struct bxe_softc *sc;
16111     if_t ifp;
16112 
16113     sc = device_get_softc(dev);
16114 
16115     BLOGD(sc, DBG_LOAD, "Starting detach...\n");
16116 
16117     ifp = sc->ifp;
16118     if (ifp != NULL && if_vlantrunkinuse(ifp)) {
16119         BLOGE(sc, "Cannot detach while VLANs are in use.\n");
16120         return(EBUSY);
16121     }
16122 
16123     bxe_del_cdev(sc);
16124 
16125     /* stop the periodic callout */
16126     bxe_periodic_stop(sc);
16127 
16128     /* stop the chip taskqueue */
16129     atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16130     if (sc->chip_tq) {
16131         taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16132         taskqueue_free(sc->chip_tq);
16133         sc->chip_tq = NULL;
16134     }
16135 
16136     /* stop and reset the controller if it was open */
16137     if (sc->state != BXE_STATE_CLOSED) {
16138         BXE_CORE_LOCK(sc);
16139         bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16140         BXE_CORE_UNLOCK(sc);
16141     }
16142 
16143     /* release the network interface */
16144     if (ifp != NULL) {
16145         ether_ifdetach(ifp);
16146     }
16147     ifmedia_removeall(&sc->ifmedia);
16148 
16149     /* XXX do the following based on driver state... */
16150 
16151     /* free the host hardware/software hsi structures */
16152     bxe_free_hsi_mem(sc);
16153 
16154     /* free ilt */
16155     bxe_free_ilt_mem(sc);
16156 
16157     bxe_free_buf_rings(sc);
16158 
16159     /* release the interrupts */
16160     bxe_interrupt_free(sc);
16161 
16162     /* Release the mutexes*/
16163     bxe_destroy_fp_mutexs(sc);
16164     bxe_release_mutexes(sc);
16165 
16166 
16167     /* Release the PCIe BAR mapped memory */
16168     bxe_deallocate_bars(sc);
16169 
16170     /* Release the FreeBSD interface. */
16171     if (sc->ifp != NULL) {
16172         if_free(sc->ifp);
16173     }
16174 
16175     pci_disable_busmaster(dev);
16176 
16177     return (0);
16178 }
16179 
16180 /*
16181  * Device shutdown function.
16182  *
16183  * Stops and resets the controller.
16184  *
16185  * Returns:
16186  *   Nothing
16187  */
16188 static int
16189 bxe_shutdown(device_t dev)
16190 {
16191     struct bxe_softc *sc;
16192 
16193     sc = device_get_softc(dev);
16194 
16195     BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16196 
16197     /* stop the periodic callout */
16198     bxe_periodic_stop(sc);
16199 
16200     BXE_CORE_LOCK(sc);
16201     bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16202     BXE_CORE_UNLOCK(sc);
16203 
16204     return (0);
16205 }
16206 
16207 void
16208 bxe_igu_ack_sb(struct bxe_softc *sc,
16209                uint8_t          igu_sb_id,
16210                uint8_t          segment,
16211                uint16_t         index,
16212                uint8_t          op,
16213                uint8_t          update)
16214 {
16215     uint32_t igu_addr = sc->igu_base_addr;
16216     igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16217     bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16218 }
16219 
16220 static void
16221 bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16222                      uint8_t          func,
16223                      uint8_t          idu_sb_id,
16224                      uint8_t          is_pf)
16225 {
16226     uint32_t data, ctl, cnt = 100;
16227     uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16228     uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16229     uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16230     uint32_t sb_bit =  1 << (idu_sb_id%32);
16231     uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16232     uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16233 
16234     /* Not supported in BC mode */
16235     if (CHIP_INT_MODE_IS_BC(sc)) {
16236         return;
16237     }
16238 
16239     data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16240              IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16241             IGU_REGULAR_CLEANUP_SET |
16242             IGU_REGULAR_BCLEANUP);
16243 
16244     ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16245            (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16246            (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16247 
16248     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16249             data, igu_addr_data);
16250     REG_WR(sc, igu_addr_data, data);
16251 
16252     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16253                       BUS_SPACE_BARRIER_WRITE);
16254     mb();
16255 
16256     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16257             ctl, igu_addr_ctl);
16258     REG_WR(sc, igu_addr_ctl, ctl);
16259 
16260     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16261                       BUS_SPACE_BARRIER_WRITE);
16262     mb();
16263 
16264     /* wait for clean up to finish */
16265     while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16266         DELAY(20000);
16267     }
16268 
16269     if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16270         BLOGD(sc, DBG_LOAD,
16271               "Unable to finish IGU cleanup: "
16272               "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16273               idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16274     }
16275 }
16276 
16277 static void
16278 bxe_igu_clear_sb(struct bxe_softc *sc,
16279                  uint8_t          idu_sb_id)
16280 {
16281     bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16282 }
16283 
16284 
16285 
16286 
16287 
16288 
16289 
16290 /*******************/
16291 /* ECORE CALLBACKS */
16292 /*******************/
16293 
16294 static void
16295 bxe_reset_common(struct bxe_softc *sc)
16296 {
16297     uint32_t val = 0x1400;
16298 
16299     /* reset_common */
16300     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16301 
16302     if (CHIP_IS_E3(sc)) {
16303         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16304         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16305     }
16306 
16307     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16308 }
16309 
16310 static void
16311 bxe_common_init_phy(struct bxe_softc *sc)
16312 {
16313     uint32_t shmem_base[2];
16314     uint32_t shmem2_base[2];
16315 
16316     /* Avoid common init in case MFW supports LFA */
16317     if (SHMEM2_RD(sc, size) >
16318         (uint32_t)offsetof(struct shmem2_region,
16319                            lfa_host_addr[SC_PORT(sc)])) {
16320         return;
16321     }
16322 
16323     shmem_base[0]  = sc->devinfo.shmem_base;
16324     shmem2_base[0] = sc->devinfo.shmem2_base;
16325 
16326     if (!CHIP_IS_E1x(sc)) {
16327         shmem_base[1]  = SHMEM2_RD(sc, other_shmem_base_addr);
16328         shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16329     }
16330 
16331     bxe_acquire_phy_lock(sc);
16332     elink_common_init_phy(sc, shmem_base, shmem2_base,
16333                           sc->devinfo.chip_id, 0);
16334     bxe_release_phy_lock(sc);
16335 }
16336 
16337 static void
16338 bxe_pf_disable(struct bxe_softc *sc)
16339 {
16340     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16341 
16342     val &= ~IGU_PF_CONF_FUNC_EN;
16343 
16344     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16345     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16346     REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16347 }
16348 
16349 static void
16350 bxe_init_pxp(struct bxe_softc *sc)
16351 {
16352     uint16_t devctl;
16353     int r_order, w_order;
16354 
16355     devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2);
16356 
16357     BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16358 
16359     w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
16360 
16361     if (sc->mrrs == -1) {
16362         r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
16363     } else {
16364         BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16365         r_order = sc->mrrs;
16366     }
16367 
16368     ecore_init_pxp_arb(sc, r_order, w_order);
16369 }
16370 
16371 static uint32_t
16372 bxe_get_pretend_reg(struct bxe_softc *sc)
16373 {
16374     uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16375     uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16376     return (base + (SC_ABS_FUNC(sc)) * stride);
16377 }
16378 
16379 /*
16380  * Called only on E1H or E2.
16381  * When pretending to be PF, the pretend value is the function number 0..7.
16382  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16383  * combination.
16384  */
16385 static int
16386 bxe_pretend_func(struct bxe_softc *sc,
16387                  uint16_t         pretend_func_val)
16388 {
16389     uint32_t pretend_reg;
16390 
16391     if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16392         return (-1);
16393     }
16394 
16395     /* get my own pretend register */
16396     pretend_reg = bxe_get_pretend_reg(sc);
16397     REG_WR(sc, pretend_reg, pretend_func_val);
16398     REG_RD(sc, pretend_reg);
16399     return (0);
16400 }
16401 
16402 static void
16403 bxe_iov_init_dmae(struct bxe_softc *sc)
16404 {
16405     return;
16406 }
16407 
16408 static void
16409 bxe_iov_init_dq(struct bxe_softc *sc)
16410 {
16411     return;
16412 }
16413 
16414 /* send a NIG loopback debug packet */
16415 static void
16416 bxe_lb_pckt(struct bxe_softc *sc)
16417 {
16418     uint32_t wb_write[3];
16419 
16420     /* Ethernet source and destination addresses */
16421     wb_write[0] = 0x55555555;
16422     wb_write[1] = 0x55555555;
16423     wb_write[2] = 0x20;     /* SOP */
16424     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16425 
16426     /* NON-IP protocol */
16427     wb_write[0] = 0x09000000;
16428     wb_write[1] = 0x55555555;
16429     wb_write[2] = 0x10;     /* EOP, eop_bvalid = 0 */
16430     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16431 }
16432 
16433 /*
16434  * Some of the internal memories are not directly readable from the driver.
16435  * To test them we send debug packets.
16436  */
16437 static int
16438 bxe_int_mem_test(struct bxe_softc *sc)
16439 {
16440     int factor;
16441     int count, i;
16442     uint32_t val = 0;
16443 
16444     if (CHIP_REV_IS_FPGA(sc)) {
16445         factor = 120;
16446     } else if (CHIP_REV_IS_EMUL(sc)) {
16447         factor = 200;
16448     } else {
16449         factor = 1;
16450     }
16451 
16452     /* disable inputs of parser neighbor blocks */
16453     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16454     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16455     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16456     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16457 
16458     /*  write 0 to parser credits for CFC search request */
16459     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16460 
16461     /* send Ethernet packet */
16462     bxe_lb_pckt(sc);
16463 
16464     /* TODO do i reset NIG statistic? */
16465     /* Wait until NIG register shows 1 packet of size 0x10 */
16466     count = 1000 * factor;
16467     while (count) {
16468         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16469         val = *BXE_SP(sc, wb_data[0]);
16470         if (val == 0x10) {
16471             break;
16472         }
16473 
16474         DELAY(10000);
16475         count--;
16476     }
16477 
16478     if (val != 0x10) {
16479         BLOGE(sc, "NIG timeout val=0x%x\n", val);
16480         return (-1);
16481     }
16482 
16483     /* wait until PRS register shows 1 packet */
16484     count = (1000 * factor);
16485     while (count) {
16486         val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16487         if (val == 1) {
16488             break;
16489         }
16490 
16491         DELAY(10000);
16492         count--;
16493     }
16494 
16495     if (val != 0x1) {
16496         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16497         return (-2);
16498     }
16499 
16500     /* Reset and init BRB, PRS */
16501     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16502     DELAY(50000);
16503     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16504     DELAY(50000);
16505     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16506     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16507 
16508     /* Disable inputs of parser neighbor blocks */
16509     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16510     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16511     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16512     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16513 
16514     /* Write 0 to parser credits for CFC search request */
16515     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16516 
16517     /* send 10 Ethernet packets */
16518     for (i = 0; i < 10; i++) {
16519         bxe_lb_pckt(sc);
16520     }
16521 
16522     /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
16523     count = (1000 * factor);
16524     while (count) {
16525         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16526         val = *BXE_SP(sc, wb_data[0]);
16527         if (val == 0xb0) {
16528             break;
16529         }
16530 
16531         DELAY(10000);
16532         count--;
16533     }
16534 
16535     if (val != 0xb0) {
16536         BLOGE(sc, "NIG timeout val=0x%x\n", val);
16537         return (-3);
16538     }
16539 
16540     /* Wait until PRS register shows 2 packets */
16541     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16542     if (val != 2) {
16543         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16544     }
16545 
16546     /* Write 1 to parser credits for CFC search request */
16547     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
16548 
16549     /* Wait until PRS register shows 3 packets */
16550     DELAY(10000 * factor);
16551 
16552     /* Wait until NIG register shows 1 packet of size 0x10 */
16553     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16554     if (val != 3) {
16555         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16556     }
16557 
16558     /* clear NIG EOP FIFO */
16559     for (i = 0; i < 11; i++) {
16560         REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
16561     }
16562 
16563     val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
16564     if (val != 1) {
16565         BLOGE(sc, "clear of NIG failed val=0x%x\n", val);
16566         return (-4);
16567     }
16568 
16569     /* Reset and init BRB, PRS, NIG */
16570     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16571     DELAY(50000);
16572     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16573     DELAY(50000);
16574     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16575     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16576     if (!CNIC_SUPPORT(sc)) {
16577         /* set NIC mode */
16578         REG_WR(sc, PRS_REG_NIC_MODE, 1);
16579     }
16580 
16581     /* Enable inputs of parser neighbor blocks */
16582     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
16583     REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
16584     REG_WR(sc, CFC_REG_DEBUG0, 0x0);
16585     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
16586 
16587     return (0);
16588 }
16589 
16590 static void
16591 bxe_setup_fan_failure_detection(struct bxe_softc *sc)
16592 {
16593     int is_required;
16594     uint32_t val;
16595     int port;
16596 
16597     is_required = 0;
16598     val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
16599            SHARED_HW_CFG_FAN_FAILURE_MASK);
16600 
16601     if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
16602         is_required = 1;
16603     }
16604     /*
16605      * The fan failure mechanism is usually related to the PHY type since
16606      * the power consumption of the board is affected by the PHY. Currently,
16607      * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
16608      */
16609     else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
16610         for (port = PORT_0; port < PORT_MAX; port++) {
16611             is_required |= elink_fan_failure_det_req(sc,
16612                                                      sc->devinfo.shmem_base,
16613                                                      sc->devinfo.shmem2_base,
16614                                                      port);
16615         }
16616     }
16617 
16618     BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
16619 
16620     if (is_required == 0) {
16621         return;
16622     }
16623 
16624     /* Fan failure is indicated by SPIO 5 */
16625     bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
16626 
16627     /* set to active low mode */
16628     val = REG_RD(sc, MISC_REG_SPIO_INT);
16629     val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
16630     REG_WR(sc, MISC_REG_SPIO_INT, val);
16631 
16632     /* enable interrupt to signal the IGU */
16633     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
16634     val |= MISC_SPIO_SPIO5;
16635     REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
16636 }
16637 
16638 static void
16639 bxe_enable_blocks_attention(struct bxe_softc *sc)
16640 {
16641     uint32_t val;
16642 
16643     REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
16644     if (!CHIP_IS_E1x(sc)) {
16645         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
16646     } else {
16647         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
16648     }
16649     REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
16650     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
16651     /*
16652      * mask read length error interrupts in brb for parser
16653      * (parsing unit and 'checksum and crc' unit)
16654      * these errors are legal (PU reads fixed length and CAC can cause
16655      * read length error on truncated packets)
16656      */
16657     REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
16658     REG_WR(sc, QM_REG_QM_INT_MASK, 0);
16659     REG_WR(sc, TM_REG_TM_INT_MASK, 0);
16660     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
16661     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
16662     REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
16663 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
16664 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
16665     REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
16666     REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
16667     REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
16668 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
16669 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
16670     REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
16671     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
16672     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
16673     REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
16674 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
16675 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
16676 
16677     val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
16678            PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
16679            PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
16680     if (!CHIP_IS_E1x(sc)) {
16681         val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
16682                 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
16683     }
16684     REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
16685 
16686     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
16687     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
16688     REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
16689 /*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
16690 
16691     if (!CHIP_IS_E1x(sc)) {
16692         /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
16693         REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
16694     }
16695 
16696     REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
16697     REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
16698 /*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
16699     REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18);     /* bit 3,4 masked */
16700 }
16701 
16702 /**
16703  * bxe_init_hw_common - initialize the HW at the COMMON phase.
16704  *
16705  * @sc:     driver handle
16706  */
16707 static int
16708 bxe_init_hw_common(struct bxe_softc *sc)
16709 {
16710     uint8_t abs_func_id;
16711     uint32_t val;
16712 
16713     BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
16714           SC_ABS_FUNC(sc));
16715 
16716     /*
16717      * take the RESET lock to protect undi_unload flow from accessing
16718      * registers while we are resetting the chip
16719      */
16720     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
16721 
16722     bxe_reset_common(sc);
16723 
16724     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
16725 
16726     val = 0xfffc;
16727     if (CHIP_IS_E3(sc)) {
16728         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16729         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16730     }
16731 
16732     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
16733 
16734     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
16735 
16736     ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
16737     BLOGD(sc, DBG_LOAD, "after misc block init\n");
16738 
16739     if (!CHIP_IS_E1x(sc)) {
16740         /*
16741          * 4-port mode or 2-port mode we need to turn off master-enable for
16742          * everyone. After that we turn it back on for self. So, we disregard
16743          * multi-function, and always disable all functions on the given path,
16744          * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
16745          */
16746         for (abs_func_id = SC_PATH(sc);
16747              abs_func_id < (E2_FUNC_MAX * 2);
16748              abs_func_id += 2) {
16749             if (abs_func_id == SC_ABS_FUNC(sc)) {
16750                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
16751                 continue;
16752             }
16753 
16754             bxe_pretend_func(sc, abs_func_id);
16755 
16756             /* clear pf enable */
16757             bxe_pf_disable(sc);
16758 
16759             bxe_pretend_func(sc, SC_ABS_FUNC(sc));
16760         }
16761     }
16762 
16763     BLOGD(sc, DBG_LOAD, "after pf disable\n");
16764 
16765     ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
16766 
16767     if (CHIP_IS_E1(sc)) {
16768         /*
16769          * enable HW interrupt from PXP on USDM overflow
16770          * bit 16 on INT_MASK_0
16771          */
16772         REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
16773     }
16774 
16775     ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
16776     bxe_init_pxp(sc);
16777 
16778 #ifdef __BIG_ENDIAN
16779     REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
16780     REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
16781     REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
16782     REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
16783     REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
16784     /* make sure this value is 0 */
16785     REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
16786 
16787     //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
16788     REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
16789     REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
16790     REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
16791     REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
16792 #endif
16793 
16794     ecore_ilt_init_page_size(sc, INITOP_SET);
16795 
16796     if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
16797         REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
16798     }
16799 
16800     /* let the HW do it's magic... */
16801     DELAY(100000);
16802 
16803     /* finish PXP init */
16804     val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
16805     if (val != 1) {
16806         BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n",
16807             val);
16808         return (-1);
16809     }
16810     val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
16811     if (val != 1) {
16812         BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val);
16813         return (-1);
16814     }
16815 
16816     BLOGD(sc, DBG_LOAD, "after pxp init\n");
16817 
16818     /*
16819      * Timer bug workaround for E2 only. We need to set the entire ILT to have
16820      * entries with value "0" and valid bit on. This needs to be done by the
16821      * first PF that is loaded in a path (i.e. common phase)
16822      */
16823     if (!CHIP_IS_E1x(sc)) {
16824 /*
16825  * In E2 there is a bug in the timers block that can cause function 6 / 7
16826  * (i.e. vnic3) to start even if it is marked as "scan-off".
16827  * This occurs when a different function (func2,3) is being marked
16828  * as "scan-off". Real-life scenario for example: if a driver is being
16829  * load-unloaded while func6,7 are down. This will cause the timer to access
16830  * the ilt, translate to a logical address and send a request to read/write.
16831  * Since the ilt for the function that is down is not valid, this will cause
16832  * a translation error which is unrecoverable.
16833  * The Workaround is intended to make sure that when this happens nothing
16834  * fatal will occur. The workaround:
16835  *  1.  First PF driver which loads on a path will:
16836  *      a.  After taking the chip out of reset, by using pretend,
16837  *          it will write "0" to the following registers of
16838  *          the other vnics.
16839  *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16840  *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
16841  *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
16842  *          And for itself it will write '1' to
16843  *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
16844  *          dmae-operations (writing to pram for example.)
16845  *          note: can be done for only function 6,7 but cleaner this
16846  *            way.
16847  *      b.  Write zero+valid to the entire ILT.
16848  *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
16849  *          VNIC3 (of that port). The range allocated will be the
16850  *          entire ILT. This is needed to prevent  ILT range error.
16851  *  2.  Any PF driver load flow:
16852  *      a.  ILT update with the physical addresses of the allocated
16853  *          logical pages.
16854  *      b.  Wait 20msec. - note that this timeout is needed to make
16855  *          sure there are no requests in one of the PXP internal
16856  *          queues with "old" ILT addresses.
16857  *      c.  PF enable in the PGLC.
16858  *      d.  Clear the was_error of the PF in the PGLC. (could have
16859  *          occurred while driver was down)
16860  *      e.  PF enable in the CFC (WEAK + STRONG)
16861  *      f.  Timers scan enable
16862  *  3.  PF driver unload flow:
16863  *      a.  Clear the Timers scan_en.
16864  *      b.  Polling for scan_on=0 for that PF.
16865  *      c.  Clear the PF enable bit in the PXP.
16866  *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
16867  *      e.  Write zero+valid to all ILT entries (The valid bit must
16868  *          stay set)
16869  *      f.  If this is VNIC 3 of a port then also init
16870  *          first_timers_ilt_entry to zero and last_timers_ilt_entry
16871  *          to the last enrty in the ILT.
16872  *
16873  *      Notes:
16874  *      Currently the PF error in the PGLC is non recoverable.
16875  *      In the future the there will be a recovery routine for this error.
16876  *      Currently attention is masked.
16877  *      Having an MCP lock on the load/unload process does not guarantee that
16878  *      there is no Timer disable during Func6/7 enable. This is because the
16879  *      Timers scan is currently being cleared by the MCP on FLR.
16880  *      Step 2.d can be done only for PF6/7 and the driver can also check if
16881  *      there is error before clearing it. But the flow above is simpler and
16882  *      more general.
16883  *      All ILT entries are written by zero+valid and not just PF6/7
16884  *      ILT entries since in the future the ILT entries allocation for
16885  *      PF-s might be dynamic.
16886  */
16887         struct ilt_client_info ilt_cli;
16888         struct ecore_ilt ilt;
16889 
16890         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
16891         memset(&ilt, 0, sizeof(struct ecore_ilt));
16892 
16893         /* initialize dummy TM client */
16894         ilt_cli.start      = 0;
16895         ilt_cli.end        = ILT_NUM_PAGE_ENTRIES - 1;
16896         ilt_cli.client_num = ILT_CLIENT_TM;
16897 
16898         /*
16899          * Step 1: set zeroes to all ilt page entries with valid bit on
16900          * Step 2: set the timers first/last ilt entry to point
16901          * to the entire range to prevent ILT range error for 3rd/4th
16902          * vnic (this code assumes existence of the vnic)
16903          *
16904          * both steps performed by call to ecore_ilt_client_init_op()
16905          * with dummy TM client
16906          *
16907          * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
16908          * and his brother are split registers
16909          */
16910 
16911         bxe_pretend_func(sc, (SC_PATH(sc) + 6));
16912         ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
16913         bxe_pretend_func(sc, SC_ABS_FUNC(sc));
16914 
16915         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
16916         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
16917         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
16918     }
16919 
16920     REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
16921     REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
16922 
16923     if (!CHIP_IS_E1x(sc)) {
16924         int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
16925                      (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
16926 
16927         ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
16928         ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
16929 
16930         /* let the HW do it's magic... */
16931         do {
16932             DELAY(200000);
16933             val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
16934         } while (factor-- && (val != 1));
16935 
16936         if (val != 1) {
16937             BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val);
16938             return (-1);
16939         }
16940     }
16941 
16942     BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
16943 
16944     ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
16945 
16946     bxe_iov_init_dmae(sc);
16947 
16948     /* clean the DMAE memory */
16949     sc->dmae_ready = 1;
16950     ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
16951 
16952     ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
16953 
16954     ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
16955 
16956     ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
16957 
16958     ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
16959 
16960     bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
16961     bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
16962     bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
16963     bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
16964 
16965     ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
16966 
16967     /* QM queues pointers table */
16968     ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
16969 
16970     /* soft reset pulse */
16971     REG_WR(sc, QM_REG_SOFT_RESET, 1);
16972     REG_WR(sc, QM_REG_SOFT_RESET, 0);
16973 
16974     if (CNIC_SUPPORT(sc))
16975         ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
16976 
16977     ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
16978     REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
16979     if (!CHIP_REV_IS_SLOW(sc)) {
16980         /* enable hw interrupt from doorbell Q */
16981         REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
16982     }
16983 
16984     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16985 
16986     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16987     REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
16988 
16989     if (!CHIP_IS_E1(sc)) {
16990         REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
16991     }
16992 
16993     if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
16994         if (IS_MF_AFEX(sc)) {
16995             /*
16996              * configure that AFEX and VLAN headers must be
16997              * received in AFEX mode
16998              */
16999             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
17000             REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
17001             REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
17002             REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
17003             REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
17004         } else {
17005             /*
17006              * Bit-map indicating which L2 hdrs may appear
17007              * after the basic Ethernet header
17008              */
17009             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
17010                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17011         }
17012     }
17013 
17014     ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
17015     ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
17016     ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
17017     ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
17018 
17019     if (!CHIP_IS_E1x(sc)) {
17020         /* reset VFC memories */
17021         REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17022                VFC_MEMORIES_RST_REG_CAM_RST |
17023                VFC_MEMORIES_RST_REG_RAM_RST);
17024         REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17025                VFC_MEMORIES_RST_REG_CAM_RST |
17026                VFC_MEMORIES_RST_REG_RAM_RST);
17027 
17028         DELAY(20000);
17029     }
17030 
17031     ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
17032     ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
17033     ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
17034     ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
17035 
17036     /* sync semi rtc */
17037     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
17038            0x80000000);
17039     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
17040            0x80000000);
17041 
17042     ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
17043     ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
17044     ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
17045 
17046     if (!CHIP_IS_E1x(sc)) {
17047         if (IS_MF_AFEX(sc)) {
17048             /*
17049              * configure that AFEX and VLAN headers must be
17050              * sent in AFEX mode
17051              */
17052             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
17053             REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
17054             REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
17055             REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
17056             REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
17057         } else {
17058             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
17059                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17060         }
17061     }
17062 
17063     REG_WR(sc, SRC_REG_SOFT_RST, 1);
17064 
17065     ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
17066 
17067     if (CNIC_SUPPORT(sc)) {
17068         REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
17069         REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
17070         REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
17071         REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
17072         REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
17073         REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
17074         REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
17075         REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
17076         REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
17077         REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
17078     }
17079     REG_WR(sc, SRC_REG_SOFT_RST, 0);
17080 
17081     if (sizeof(union cdu_context) != 1024) {
17082         /* we currently assume that a context is 1024 bytes */
17083         BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
17084               (long)sizeof(union cdu_context));
17085     }
17086 
17087     ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
17088     val = (4 << 24) + (0 << 12) + 1024;
17089     REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
17090 
17091     ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
17092 
17093     REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
17094     /* enable context validation interrupt from CFC */
17095     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17096 
17097     /* set the thresholds to prevent CFC/CDU race */
17098     REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
17099     ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
17100 
17101     if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
17102         REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
17103     }
17104 
17105     ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
17106     ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
17107 
17108     /* Reset PCIE errors for debug */
17109     REG_WR(sc, 0x2814, 0xffffffff);
17110     REG_WR(sc, 0x3820, 0xffffffff);
17111 
17112     if (!CHIP_IS_E1x(sc)) {
17113         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
17114                (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
17115                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
17116         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
17117                (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
17118                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
17119                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
17120         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
17121                (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17122                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17123                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17124     }
17125 
17126     ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17127 
17128     if (!CHIP_IS_E1(sc)) {
17129         /* in E3 this done in per-port section */
17130         if (!CHIP_IS_E3(sc))
17131             REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17132     }
17133 
17134     if (CHIP_IS_E1H(sc)) {
17135         /* not applicable for E2 (and above ...) */
17136         REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17137     }
17138 
17139     if (CHIP_REV_IS_SLOW(sc)) {
17140         DELAY(200000);
17141     }
17142 
17143     /* finish CFC init */
17144     val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17145     if (val != 1) {
17146         BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val);
17147         return (-1);
17148     }
17149     val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17150     if (val != 1) {
17151         BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val);
17152         return (-1);
17153     }
17154     val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17155     if (val != 1) {
17156         BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val);
17157         return (-1);
17158     }
17159     REG_WR(sc, CFC_REG_DEBUG0, 0);
17160 
17161     if (CHIP_IS_E1(sc)) {
17162         /* read NIG statistic to see if this is our first up since powerup */
17163         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17164         val = *BXE_SP(sc, wb_data[0]);
17165 
17166         /* do internal memory self test */
17167         if ((val == 0) && bxe_int_mem_test(sc)) {
17168             BLOGE(sc, "internal mem self test failed val=0x%x\n", val);
17169             return (-1);
17170         }
17171     }
17172 
17173     bxe_setup_fan_failure_detection(sc);
17174 
17175     /* clear PXP2 attentions */
17176     REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17177 
17178     bxe_enable_blocks_attention(sc);
17179 
17180     if (!CHIP_REV_IS_SLOW(sc)) {
17181         ecore_enable_blocks_parity(sc);
17182     }
17183 
17184     if (!BXE_NOMCP(sc)) {
17185         if (CHIP_IS_E1x(sc)) {
17186             bxe_common_init_phy(sc);
17187         }
17188     }
17189 
17190     return (0);
17191 }
17192 
17193 /**
17194  * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17195  *
17196  * @sc:     driver handle
17197  */
17198 static int
17199 bxe_init_hw_common_chip(struct bxe_softc *sc)
17200 {
17201     int rc = bxe_init_hw_common(sc);
17202 
17203     if (rc) {
17204         BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc);
17205         return (rc);
17206     }
17207 
17208     /* In E2 2-PORT mode, same ext phy is used for the two paths */
17209     if (!BXE_NOMCP(sc)) {
17210         bxe_common_init_phy(sc);
17211     }
17212 
17213     return (0);
17214 }
17215 
17216 static int
17217 bxe_init_hw_port(struct bxe_softc *sc)
17218 {
17219     int port = SC_PORT(sc);
17220     int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17221     uint32_t low, high;
17222     uint32_t val;
17223 
17224     BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17225 
17226     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17227 
17228     ecore_init_block(sc, BLOCK_MISC, init_phase);
17229     ecore_init_block(sc, BLOCK_PXP, init_phase);
17230     ecore_init_block(sc, BLOCK_PXP2, init_phase);
17231 
17232     /*
17233      * Timers bug workaround: disables the pf_master bit in pglue at
17234      * common phase, we need to enable it here before any dmae access are
17235      * attempted. Therefore we manually added the enable-master to the
17236      * port phase (it also happens in the function phase)
17237      */
17238     if (!CHIP_IS_E1x(sc)) {
17239         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17240     }
17241 
17242     ecore_init_block(sc, BLOCK_ATC, init_phase);
17243     ecore_init_block(sc, BLOCK_DMAE, init_phase);
17244     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17245     ecore_init_block(sc, BLOCK_QM, init_phase);
17246 
17247     ecore_init_block(sc, BLOCK_TCM, init_phase);
17248     ecore_init_block(sc, BLOCK_UCM, init_phase);
17249     ecore_init_block(sc, BLOCK_CCM, init_phase);
17250     ecore_init_block(sc, BLOCK_XCM, init_phase);
17251 
17252     /* QM cid (connection) count */
17253     ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17254 
17255     if (CNIC_SUPPORT(sc)) {
17256         ecore_init_block(sc, BLOCK_TM, init_phase);
17257         REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17258         REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17259     }
17260 
17261     ecore_init_block(sc, BLOCK_DORQ, init_phase);
17262 
17263     ecore_init_block(sc, BLOCK_BRB1, init_phase);
17264 
17265     if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17266         if (IS_MF(sc)) {
17267             low = (BXE_ONE_PORT(sc) ? 160 : 246);
17268         } else if (sc->mtu > 4096) {
17269             if (BXE_ONE_PORT(sc)) {
17270                 low = 160;
17271             } else {
17272                 val = sc->mtu;
17273                 /* (24*1024 + val*4)/256 */
17274                 low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17275             }
17276         } else {
17277             low = (BXE_ONE_PORT(sc) ? 80 : 160);
17278         }
17279         high = (low + 56); /* 14*1024/256 */
17280         REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17281         REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17282     }
17283 
17284     if (CHIP_IS_MODE_4_PORT(sc)) {
17285         REG_WR(sc, SC_PORT(sc) ?
17286                BRB1_REG_MAC_GUARANTIED_1 :
17287                BRB1_REG_MAC_GUARANTIED_0, 40);
17288     }
17289 
17290     ecore_init_block(sc, BLOCK_PRS, init_phase);
17291     if (CHIP_IS_E3B0(sc)) {
17292         if (IS_MF_AFEX(sc)) {
17293             /* configure headers for AFEX mode */
17294             REG_WR(sc, SC_PORT(sc) ?
17295                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17296                    PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17297             REG_WR(sc, SC_PORT(sc) ?
17298                    PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17299                    PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17300             REG_WR(sc, SC_PORT(sc) ?
17301                    PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17302                    PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17303         } else {
17304             /* Ovlan exists only if we are in multi-function +
17305              * switch-dependent mode, in switch-independent there
17306              * is no ovlan headers
17307              */
17308             REG_WR(sc, SC_PORT(sc) ?
17309                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17310                    PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17311                    (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17312         }
17313     }
17314 
17315     ecore_init_block(sc, BLOCK_TSDM, init_phase);
17316     ecore_init_block(sc, BLOCK_CSDM, init_phase);
17317     ecore_init_block(sc, BLOCK_USDM, init_phase);
17318     ecore_init_block(sc, BLOCK_XSDM, init_phase);
17319 
17320     ecore_init_block(sc, BLOCK_TSEM, init_phase);
17321     ecore_init_block(sc, BLOCK_USEM, init_phase);
17322     ecore_init_block(sc, BLOCK_CSEM, init_phase);
17323     ecore_init_block(sc, BLOCK_XSEM, init_phase);
17324 
17325     ecore_init_block(sc, BLOCK_UPB, init_phase);
17326     ecore_init_block(sc, BLOCK_XPB, init_phase);
17327 
17328     ecore_init_block(sc, BLOCK_PBF, init_phase);
17329 
17330     if (CHIP_IS_E1x(sc)) {
17331         /* configure PBF to work without PAUSE mtu 9000 */
17332         REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17333 
17334         /* update threshold */
17335         REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17336         /* update init credit */
17337         REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17338 
17339         /* probe changes */
17340         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17341         DELAY(50);
17342         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17343     }
17344 
17345     if (CNIC_SUPPORT(sc)) {
17346         ecore_init_block(sc, BLOCK_SRC, init_phase);
17347     }
17348 
17349     ecore_init_block(sc, BLOCK_CDU, init_phase);
17350     ecore_init_block(sc, BLOCK_CFC, init_phase);
17351 
17352     if (CHIP_IS_E1(sc)) {
17353         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17354         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17355     }
17356     ecore_init_block(sc, BLOCK_HC, init_phase);
17357 
17358     ecore_init_block(sc, BLOCK_IGU, init_phase);
17359 
17360     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17361     /* init aeu_mask_attn_func_0/1:
17362      *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17363      *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17364      *             bits 4-7 are used for "per vn group attention" */
17365     val = IS_MF(sc) ? 0xF7 : 0x7;
17366     /* Enable DCBX attention for all but E1 */
17367     val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17368     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17369 
17370     ecore_init_block(sc, BLOCK_NIG, init_phase);
17371 
17372     if (!CHIP_IS_E1x(sc)) {
17373         /* Bit-map indicating which L2 hdrs may appear after the
17374          * basic Ethernet header
17375          */
17376         if (IS_MF_AFEX(sc)) {
17377             REG_WR(sc, SC_PORT(sc) ?
17378                    NIG_REG_P1_HDRS_AFTER_BASIC :
17379                    NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17380         } else {
17381             REG_WR(sc, SC_PORT(sc) ?
17382                    NIG_REG_P1_HDRS_AFTER_BASIC :
17383                    NIG_REG_P0_HDRS_AFTER_BASIC,
17384                    IS_MF_SD(sc) ? 7 : 6);
17385         }
17386 
17387         if (CHIP_IS_E3(sc)) {
17388             REG_WR(sc, SC_PORT(sc) ?
17389                    NIG_REG_LLH1_MF_MODE :
17390                    NIG_REG_LLH_MF_MODE, IS_MF(sc));
17391         }
17392     }
17393     if (!CHIP_IS_E3(sc)) {
17394         REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17395     }
17396 
17397     if (!CHIP_IS_E1(sc)) {
17398         /* 0x2 disable mf_ov, 0x1 enable */
17399         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17400                (IS_MF_SD(sc) ? 0x1 : 0x2));
17401 
17402         if (!CHIP_IS_E1x(sc)) {
17403             val = 0;
17404             switch (sc->devinfo.mf_info.mf_mode) {
17405             case MULTI_FUNCTION_SD:
17406                 val = 1;
17407                 break;
17408             case MULTI_FUNCTION_SI:
17409             case MULTI_FUNCTION_AFEX:
17410                 val = 2;
17411                 break;
17412             }
17413 
17414             REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17415                         NIG_REG_LLH0_CLS_TYPE), val);
17416         }
17417         REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17418         REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17419         REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17420     }
17421 
17422     /* If SPIO5 is set to generate interrupts, enable it for this port */
17423     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17424     if (val & MISC_SPIO_SPIO5) {
17425         uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17426                                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17427         val = REG_RD(sc, reg_addr);
17428         val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17429         REG_WR(sc, reg_addr, val);
17430     }
17431 
17432     return (0);
17433 }
17434 
17435 static uint32_t
17436 bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17437                        uint32_t         reg,
17438                        uint32_t         expected,
17439                        uint32_t         poll_count)
17440 {
17441     uint32_t cur_cnt = poll_count;
17442     uint32_t val;
17443 
17444     while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17445         DELAY(FLR_WAIT_INTERVAL);
17446     }
17447 
17448     return (val);
17449 }
17450 
17451 static int
17452 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17453                               uint32_t         reg,
17454                               char             *msg,
17455                               uint32_t         poll_cnt)
17456 {
17457     uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17458 
17459     if (val != 0) {
17460         BLOGE(sc, "%s usage count=%d\n", msg, val);
17461         return (1);
17462     }
17463 
17464     return (0);
17465 }
17466 
17467 /* Common routines with VF FLR cleanup */
17468 static uint32_t
17469 bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17470 {
17471     /* adjust polling timeout */
17472     if (CHIP_REV_IS_EMUL(sc)) {
17473         return (FLR_POLL_CNT * 2000);
17474     }
17475 
17476     if (CHIP_REV_IS_FPGA(sc)) {
17477         return (FLR_POLL_CNT * 120);
17478     }
17479 
17480     return (FLR_POLL_CNT);
17481 }
17482 
17483 static int
17484 bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17485                            uint32_t         poll_cnt)
17486 {
17487     /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17488     if (bxe_flr_clnup_poll_hw_counter(sc,
17489                                       CFC_REG_NUM_LCIDS_INSIDE_PF,
17490                                       "CFC PF usage counter timed out",
17491                                       poll_cnt)) {
17492         return (1);
17493     }
17494 
17495     /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17496     if (bxe_flr_clnup_poll_hw_counter(sc,
17497                                       DORQ_REG_PF_USAGE_CNT,
17498                                       "DQ PF usage counter timed out",
17499                                       poll_cnt)) {
17500         return (1);
17501     }
17502 
17503     /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17504     if (bxe_flr_clnup_poll_hw_counter(sc,
17505                                       QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17506                                       "QM PF usage counter timed out",
17507                                       poll_cnt)) {
17508         return (1);
17509     }
17510 
17511     /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17512     if (bxe_flr_clnup_poll_hw_counter(sc,
17513                                       TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
17514                                       "Timers VNIC usage counter timed out",
17515                                       poll_cnt)) {
17516         return (1);
17517     }
17518 
17519     if (bxe_flr_clnup_poll_hw_counter(sc,
17520                                       TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
17521                                       "Timers NUM_SCANS usage counter timed out",
17522                                       poll_cnt)) {
17523         return (1);
17524     }
17525 
17526     /* Wait DMAE PF usage counter to zero */
17527     if (bxe_flr_clnup_poll_hw_counter(sc,
17528                                       dmae_reg_go_c[INIT_DMAE_C(sc)],
17529                                       "DMAE dommand register timed out",
17530                                       poll_cnt)) {
17531         return (1);
17532     }
17533 
17534     return (0);
17535 }
17536 
17537 #define OP_GEN_PARAM(param)                                            \
17538     (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
17539 #define OP_GEN_TYPE(type)                                           \
17540     (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
17541 #define OP_GEN_AGG_VECT(index)                                             \
17542     (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
17543 
17544 static int
17545 bxe_send_final_clnup(struct bxe_softc *sc,
17546                      uint8_t          clnup_func,
17547                      uint32_t         poll_cnt)
17548 {
17549     uint32_t op_gen_command = 0;
17550     uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
17551                           CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
17552     int ret = 0;
17553 
17554     if (REG_RD(sc, comp_addr)) {
17555         BLOGE(sc, "Cleanup complete was not 0 before sending\n");
17556         return (1);
17557     }
17558 
17559     op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
17560     op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
17561     op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
17562     op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
17563 
17564     BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
17565     REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
17566 
17567     if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
17568         BLOGE(sc, "FW final cleanup did not succeed\n");
17569         BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
17570               (REG_RD(sc, comp_addr)));
17571         bxe_panic(sc, ("FLR cleanup failed\n"));
17572         return (1);
17573     }
17574 
17575     /* Zero completion for nxt FLR */
17576     REG_WR(sc, comp_addr, 0);
17577 
17578     return (ret);
17579 }
17580 
17581 static void
17582 bxe_pbf_pN_buf_flushed(struct bxe_softc       *sc,
17583                        struct pbf_pN_buf_regs *regs,
17584                        uint32_t               poll_count)
17585 {
17586     uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
17587     uint32_t cur_cnt = poll_count;
17588 
17589     crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
17590     crd = crd_start = REG_RD(sc, regs->crd);
17591     init_crd = REG_RD(sc, regs->init_crd);
17592 
17593     BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
17594     BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
17595     BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
17596 
17597     while ((crd != init_crd) &&
17598            ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
17599             (init_crd - crd_start))) {
17600         if (cur_cnt--) {
17601             DELAY(FLR_WAIT_INTERVAL);
17602             crd = REG_RD(sc, regs->crd);
17603             crd_freed = REG_RD(sc, regs->crd_freed);
17604         } else {
17605             BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
17606             BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : c:%x\n", regs->pN, crd);
17607             BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
17608             break;
17609         }
17610     }
17611 
17612     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
17613           poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17614 }
17615 
17616 static void
17617 bxe_pbf_pN_cmd_flushed(struct bxe_softc       *sc,
17618                        struct pbf_pN_cmd_regs *regs,
17619                        uint32_t               poll_count)
17620 {
17621     uint32_t occup, to_free, freed, freed_start;
17622     uint32_t cur_cnt = poll_count;
17623 
17624     occup = to_free = REG_RD(sc, regs->lines_occup);
17625     freed = freed_start = REG_RD(sc, regs->lines_freed);
17626 
17627     BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
17628     BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17629 
17630     while (occup &&
17631            ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
17632         if (cur_cnt--) {
17633             DELAY(FLR_WAIT_INTERVAL);
17634             occup = REG_RD(sc, regs->lines_occup);
17635             freed = REG_RD(sc, regs->lines_freed);
17636         } else {
17637             BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
17638             BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
17639             BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17640             break;
17641         }
17642     }
17643 
17644     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
17645           poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17646 }
17647 
17648 static void
17649 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
17650 {
17651     struct pbf_pN_cmd_regs cmd_regs[] = {
17652         {0, (CHIP_IS_E3B0(sc)) ?
17653             PBF_REG_TQ_OCCUPANCY_Q0 :
17654             PBF_REG_P0_TQ_OCCUPANCY,
17655             (CHIP_IS_E3B0(sc)) ?
17656             PBF_REG_TQ_LINES_FREED_CNT_Q0 :
17657             PBF_REG_P0_TQ_LINES_FREED_CNT},
17658         {1, (CHIP_IS_E3B0(sc)) ?
17659             PBF_REG_TQ_OCCUPANCY_Q1 :
17660             PBF_REG_P1_TQ_OCCUPANCY,
17661             (CHIP_IS_E3B0(sc)) ?
17662             PBF_REG_TQ_LINES_FREED_CNT_Q1 :
17663             PBF_REG_P1_TQ_LINES_FREED_CNT},
17664         {4, (CHIP_IS_E3B0(sc)) ?
17665             PBF_REG_TQ_OCCUPANCY_LB_Q :
17666             PBF_REG_P4_TQ_OCCUPANCY,
17667             (CHIP_IS_E3B0(sc)) ?
17668             PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
17669             PBF_REG_P4_TQ_LINES_FREED_CNT}
17670     };
17671 
17672     struct pbf_pN_buf_regs buf_regs[] = {
17673         {0, (CHIP_IS_E3B0(sc)) ?
17674             PBF_REG_INIT_CRD_Q0 :
17675             PBF_REG_P0_INIT_CRD ,
17676             (CHIP_IS_E3B0(sc)) ?
17677             PBF_REG_CREDIT_Q0 :
17678             PBF_REG_P0_CREDIT,
17679             (CHIP_IS_E3B0(sc)) ?
17680             PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
17681             PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
17682         {1, (CHIP_IS_E3B0(sc)) ?
17683             PBF_REG_INIT_CRD_Q1 :
17684             PBF_REG_P1_INIT_CRD,
17685             (CHIP_IS_E3B0(sc)) ?
17686             PBF_REG_CREDIT_Q1 :
17687             PBF_REG_P1_CREDIT,
17688             (CHIP_IS_E3B0(sc)) ?
17689             PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
17690             PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
17691         {4, (CHIP_IS_E3B0(sc)) ?
17692             PBF_REG_INIT_CRD_LB_Q :
17693             PBF_REG_P4_INIT_CRD,
17694             (CHIP_IS_E3B0(sc)) ?
17695             PBF_REG_CREDIT_LB_Q :
17696             PBF_REG_P4_CREDIT,
17697             (CHIP_IS_E3B0(sc)) ?
17698             PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
17699             PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
17700     };
17701 
17702     int i;
17703 
17704     /* Verify the command queues are flushed P0, P1, P4 */
17705     for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
17706         bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
17707     }
17708 
17709     /* Verify the transmission buffers are flushed P0, P1, P4 */
17710     for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
17711         bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
17712     }
17713 }
17714 
17715 static void
17716 bxe_hw_enable_status(struct bxe_softc *sc)
17717 {
17718     uint32_t val;
17719 
17720     val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
17721     BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
17722 
17723     val = REG_RD(sc, PBF_REG_DISABLE_PF);
17724     BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
17725 
17726     val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
17727     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
17728 
17729     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
17730     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
17731 
17732     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
17733     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
17734 
17735     val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
17736     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
17737 
17738     val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
17739     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
17740 
17741     val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
17742     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
17743 }
17744 
17745 static int
17746 bxe_pf_flr_clnup(struct bxe_softc *sc)
17747 {
17748     uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
17749 
17750     BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
17751 
17752     /* Re-enable PF target read access */
17753     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
17754 
17755     /* Poll HW usage counters */
17756     BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
17757     if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
17758         return (-1);
17759     }
17760 
17761     /* Zero the igu 'trailing edge' and 'leading edge' */
17762 
17763     /* Send the FW cleanup command */
17764     if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
17765         return (-1);
17766     }
17767 
17768     /* ATC cleanup */
17769 
17770     /* Verify TX hw is flushed */
17771     bxe_tx_hw_flushed(sc, poll_cnt);
17772 
17773     /* Wait 100ms (not adjusted according to platform) */
17774     DELAY(100000);
17775 
17776     /* Verify no pending pci transactions */
17777     if (bxe_is_pcie_pending(sc)) {
17778         BLOGE(sc, "PCIE Transactions still pending\n");
17779     }
17780 
17781     /* Debug */
17782     bxe_hw_enable_status(sc);
17783 
17784     /*
17785      * Master enable - Due to WB DMAE writes performed before this
17786      * register is re-initialized as part of the regular function init
17787      */
17788     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17789 
17790     return (0);
17791 }
17792 
17793 static int
17794 bxe_init_hw_func(struct bxe_softc *sc)
17795 {
17796     int port = SC_PORT(sc);
17797     int func = SC_FUNC(sc);
17798     int init_phase = PHASE_PF0 + func;
17799     struct ecore_ilt *ilt = sc->ilt;
17800     uint16_t cdu_ilt_start;
17801     uint32_t addr, val;
17802     uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
17803     int i, main_mem_width, rc;
17804 
17805     BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
17806 
17807     /* FLR cleanup */
17808     if (!CHIP_IS_E1x(sc)) {
17809         rc = bxe_pf_flr_clnup(sc);
17810         if (rc) {
17811             BLOGE(sc, "FLR cleanup failed!\n");
17812             // XXX bxe_fw_dump(sc);
17813             // XXX bxe_idle_chk(sc);
17814             return (rc);
17815         }
17816     }
17817 
17818     /* set MSI reconfigure capability */
17819     if (sc->devinfo.int_block == INT_BLOCK_HC) {
17820         addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
17821         val = REG_RD(sc, addr);
17822         val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
17823         REG_WR(sc, addr, val);
17824     }
17825 
17826     ecore_init_block(sc, BLOCK_PXP, init_phase);
17827     ecore_init_block(sc, BLOCK_PXP2, init_phase);
17828 
17829     ilt = sc->ilt;
17830     cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
17831 
17832     for (i = 0; i < L2_ILT_LINES(sc); i++) {
17833         ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
17834         ilt->lines[cdu_ilt_start + i].page_mapping =
17835             sc->context[i].vcxt_dma.paddr;
17836         ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
17837     }
17838     ecore_ilt_init_op(sc, INITOP_SET);
17839 
17840     /* Set NIC mode */
17841     REG_WR(sc, PRS_REG_NIC_MODE, 1);
17842     BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
17843 
17844     if (!CHIP_IS_E1x(sc)) {
17845         uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
17846 
17847         /* Turn on a single ISR mode in IGU if driver is going to use
17848          * INT#x or MSI
17849          */
17850         if (sc->interrupt_mode != INTR_MODE_MSIX) {
17851             pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
17852         }
17853 
17854         /*
17855          * Timers workaround bug: function init part.
17856          * Need to wait 20msec after initializing ILT,
17857          * needed to make sure there are no requests in
17858          * one of the PXP internal queues with "old" ILT addresses
17859          */
17860         DELAY(20000);
17861 
17862         /*
17863          * Master enable - Due to WB DMAE writes performed before this
17864          * register is re-initialized as part of the regular function
17865          * init
17866          */
17867         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17868         /* Enable the function in IGU */
17869         REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
17870     }
17871 
17872     sc->dmae_ready = 1;
17873 
17874     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17875 
17876     if (!CHIP_IS_E1x(sc))
17877         REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
17878 
17879     ecore_init_block(sc, BLOCK_ATC, init_phase);
17880     ecore_init_block(sc, BLOCK_DMAE, init_phase);
17881     ecore_init_block(sc, BLOCK_NIG, init_phase);
17882     ecore_init_block(sc, BLOCK_SRC, init_phase);
17883     ecore_init_block(sc, BLOCK_MISC, init_phase);
17884     ecore_init_block(sc, BLOCK_TCM, init_phase);
17885     ecore_init_block(sc, BLOCK_UCM, init_phase);
17886     ecore_init_block(sc, BLOCK_CCM, init_phase);
17887     ecore_init_block(sc, BLOCK_XCM, init_phase);
17888     ecore_init_block(sc, BLOCK_TSEM, init_phase);
17889     ecore_init_block(sc, BLOCK_USEM, init_phase);
17890     ecore_init_block(sc, BLOCK_CSEM, init_phase);
17891     ecore_init_block(sc, BLOCK_XSEM, init_phase);
17892 
17893     if (!CHIP_IS_E1x(sc))
17894         REG_WR(sc, QM_REG_PF_EN, 1);
17895 
17896     if (!CHIP_IS_E1x(sc)) {
17897         REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17898         REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17899         REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17900         REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17901     }
17902     ecore_init_block(sc, BLOCK_QM, init_phase);
17903 
17904     ecore_init_block(sc, BLOCK_TM, init_phase);
17905     ecore_init_block(sc, BLOCK_DORQ, init_phase);
17906 
17907     bxe_iov_init_dq(sc);
17908 
17909     ecore_init_block(sc, BLOCK_BRB1, init_phase);
17910     ecore_init_block(sc, BLOCK_PRS, init_phase);
17911     ecore_init_block(sc, BLOCK_TSDM, init_phase);
17912     ecore_init_block(sc, BLOCK_CSDM, init_phase);
17913     ecore_init_block(sc, BLOCK_USDM, init_phase);
17914     ecore_init_block(sc, BLOCK_XSDM, init_phase);
17915     ecore_init_block(sc, BLOCK_UPB, init_phase);
17916     ecore_init_block(sc, BLOCK_XPB, init_phase);
17917     ecore_init_block(sc, BLOCK_PBF, init_phase);
17918     if (!CHIP_IS_E1x(sc))
17919         REG_WR(sc, PBF_REG_DISABLE_PF, 0);
17920 
17921     ecore_init_block(sc, BLOCK_CDU, init_phase);
17922 
17923     ecore_init_block(sc, BLOCK_CFC, init_phase);
17924 
17925     if (!CHIP_IS_E1x(sc))
17926         REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
17927 
17928     if (IS_MF(sc)) {
17929         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
17930         REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
17931     }
17932 
17933     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17934 
17935     /* HC init per function */
17936     if (sc->devinfo.int_block == INT_BLOCK_HC) {
17937         if (CHIP_IS_E1H(sc)) {
17938             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
17939 
17940             REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17941             REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17942         }
17943         ecore_init_block(sc, BLOCK_HC, init_phase);
17944 
17945     } else {
17946         int num_segs, sb_idx, prod_offset;
17947 
17948         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
17949 
17950         if (!CHIP_IS_E1x(sc)) {
17951             REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
17952             REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
17953         }
17954 
17955         ecore_init_block(sc, BLOCK_IGU, init_phase);
17956 
17957         if (!CHIP_IS_E1x(sc)) {
17958             int dsb_idx = 0;
17959             /**
17960              * Producer memory:
17961              * E2 mode: address 0-135 match to the mapping memory;
17962              * 136 - PF0 default prod; 137 - PF1 default prod;
17963              * 138 - PF2 default prod; 139 - PF3 default prod;
17964              * 140 - PF0 attn prod;    141 - PF1 attn prod;
17965              * 142 - PF2 attn prod;    143 - PF3 attn prod;
17966              * 144-147 reserved.
17967              *
17968              * E1.5 mode - In backward compatible mode;
17969              * for non default SB; each even line in the memory
17970              * holds the U producer and each odd line hold
17971              * the C producer. The first 128 producers are for
17972              * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
17973              * producers are for the DSB for each PF.
17974              * Each PF has five segments: (the order inside each
17975              * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
17976              * 132-135 C prods; 136-139 X prods; 140-143 T prods;
17977              * 144-147 attn prods;
17978              */
17979             /* non-default-status-blocks */
17980             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
17981                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
17982             for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
17983                 prod_offset = (sc->igu_base_sb + sb_idx) *
17984                     num_segs;
17985 
17986                 for (i = 0; i < num_segs; i++) {
17987                     addr = IGU_REG_PROD_CONS_MEMORY +
17988                             (prod_offset + i) * 4;
17989                     REG_WR(sc, addr, 0);
17990                 }
17991                 /* send consumer update with value 0 */
17992                 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
17993                            USTORM_ID, 0, IGU_INT_NOP, 1);
17994                 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
17995             }
17996 
17997             /* default-status-blocks */
17998             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
17999                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
18000 
18001             if (CHIP_IS_MODE_4_PORT(sc))
18002                 dsb_idx = SC_FUNC(sc);
18003             else
18004                 dsb_idx = SC_VN(sc);
18005 
18006             prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
18007                        IGU_BC_BASE_DSB_PROD + dsb_idx :
18008                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
18009 
18010             /*
18011              * igu prods come in chunks of E1HVN_MAX (4) -
18012              * does not matters what is the current chip mode
18013              */
18014             for (i = 0; i < (num_segs * E1HVN_MAX);
18015                  i += E1HVN_MAX) {
18016                 addr = IGU_REG_PROD_CONS_MEMORY +
18017                             (prod_offset + i)*4;
18018                 REG_WR(sc, addr, 0);
18019             }
18020             /* send consumer update with 0 */
18021             if (CHIP_INT_MODE_IS_BC(sc)) {
18022                 bxe_ack_sb(sc, sc->igu_dsb_id,
18023                            USTORM_ID, 0, IGU_INT_NOP, 1);
18024                 bxe_ack_sb(sc, sc->igu_dsb_id,
18025                            CSTORM_ID, 0, IGU_INT_NOP, 1);
18026                 bxe_ack_sb(sc, sc->igu_dsb_id,
18027                            XSTORM_ID, 0, IGU_INT_NOP, 1);
18028                 bxe_ack_sb(sc, sc->igu_dsb_id,
18029                            TSTORM_ID, 0, IGU_INT_NOP, 1);
18030                 bxe_ack_sb(sc, sc->igu_dsb_id,
18031                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
18032             } else {
18033                 bxe_ack_sb(sc, sc->igu_dsb_id,
18034                            USTORM_ID, 0, IGU_INT_NOP, 1);
18035                 bxe_ack_sb(sc, sc->igu_dsb_id,
18036                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
18037             }
18038             bxe_igu_clear_sb(sc, sc->igu_dsb_id);
18039 
18040             /* !!! these should become driver const once
18041                rf-tool supports split-68 const */
18042             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
18043             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
18044             REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
18045             REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
18046             REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
18047             REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
18048         }
18049     }
18050 
18051     /* Reset PCIE errors for debug */
18052     REG_WR(sc, 0x2114, 0xffffffff);
18053     REG_WR(sc, 0x2120, 0xffffffff);
18054 
18055     if (CHIP_IS_E1x(sc)) {
18056         main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
18057         main_mem_base = HC_REG_MAIN_MEMORY +
18058                 SC_PORT(sc) * (main_mem_size * 4);
18059         main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
18060         main_mem_width = 8;
18061 
18062         val = REG_RD(sc, main_mem_prty_clr);
18063         if (val) {
18064             BLOGD(sc, DBG_LOAD,
18065                   "Parity errors in HC block during function init (0x%x)!\n",
18066                   val);
18067         }
18068 
18069         /* Clear "false" parity errors in MSI-X table */
18070         for (i = main_mem_base;
18071              i < main_mem_base + main_mem_size * 4;
18072              i += main_mem_width) {
18073             bxe_read_dmae(sc, i, main_mem_width / 4);
18074             bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
18075                            i, main_mem_width / 4);
18076         }
18077         /* Clear HC parity attention */
18078         REG_RD(sc, main_mem_prty_clr);
18079     }
18080 
18081 #if 1
18082     /* Enable STORMs SP logging */
18083     REG_WR8(sc, BAR_USTRORM_INTMEM +
18084            USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18085     REG_WR8(sc, BAR_TSTRORM_INTMEM +
18086            TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18087     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18088            CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18089     REG_WR8(sc, BAR_XSTRORM_INTMEM +
18090            XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18091 #endif
18092 
18093     elink_phy_probe(&sc->link_params);
18094 
18095     return (0);
18096 }
18097 
18098 static void
18099 bxe_link_reset(struct bxe_softc *sc)
18100 {
18101     if (!BXE_NOMCP(sc)) {
18102 	bxe_acquire_phy_lock(sc);
18103         elink_lfa_reset(&sc->link_params, &sc->link_vars);
18104 	bxe_release_phy_lock(sc);
18105     } else {
18106         if (!CHIP_REV_IS_SLOW(sc)) {
18107             BLOGW(sc, "Bootcode is missing - cannot reset link\n");
18108         }
18109     }
18110 }
18111 
18112 static void
18113 bxe_reset_port(struct bxe_softc *sc)
18114 {
18115     int port = SC_PORT(sc);
18116     uint32_t val;
18117 
18118     /* reset physical Link */
18119     bxe_link_reset(sc);
18120 
18121     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18122 
18123     /* Do not rcv packets to BRB */
18124     REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18125     /* Do not direct rcv packets that are not for MCP to the BRB */
18126     REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18127                NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18128 
18129     /* Configure AEU */
18130     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18131 
18132     DELAY(100000);
18133 
18134     /* Check for BRB port occupancy */
18135     val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18136     if (val) {
18137         BLOGD(sc, DBG_LOAD,
18138               "BRB1 is not empty, %d blocks are occupied\n", val);
18139     }
18140 
18141     /* TODO: Close Doorbell port? */
18142 }
18143 
18144 static void
18145 bxe_ilt_wr(struct bxe_softc *sc,
18146            uint32_t         index,
18147            bus_addr_t       addr)
18148 {
18149     int reg;
18150     uint32_t wb_write[2];
18151 
18152     if (CHIP_IS_E1(sc)) {
18153         reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18154     } else {
18155         reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18156     }
18157 
18158     wb_write[0] = ONCHIP_ADDR1(addr);
18159     wb_write[1] = ONCHIP_ADDR2(addr);
18160     REG_WR_DMAE(sc, reg, wb_write, 2);
18161 }
18162 
18163 static void
18164 bxe_clear_func_ilt(struct bxe_softc *sc,
18165                    uint32_t         func)
18166 {
18167     uint32_t i, base = FUNC_ILT_BASE(func);
18168     for (i = base; i < base + ILT_PER_FUNC; i++) {
18169         bxe_ilt_wr(sc, i, 0);
18170     }
18171 }
18172 
18173 static void
18174 bxe_reset_func(struct bxe_softc *sc)
18175 {
18176     struct bxe_fastpath *fp;
18177     int port = SC_PORT(sc);
18178     int func = SC_FUNC(sc);
18179     int i;
18180 
18181     /* Disable the function in the FW */
18182     REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18183     REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18184     REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18185     REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18186 
18187     /* FP SBs */
18188     FOR_EACH_ETH_QUEUE(sc, i) {
18189         fp = &sc->fp[i];
18190         REG_WR8(sc, BAR_CSTRORM_INTMEM +
18191                 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18192                 SB_DISABLED);
18193     }
18194 
18195     /* SP SB */
18196     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18197             CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18198             SB_DISABLED);
18199 
18200     for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18201         REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18202     }
18203 
18204     /* Configure IGU */
18205     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18206         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18207         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18208     } else {
18209         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18210         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18211     }
18212 
18213     if (CNIC_LOADED(sc)) {
18214         /* Disable Timer scan */
18215         REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18216         /*
18217          * Wait for at least 10ms and up to 2 second for the timers
18218          * scan to complete
18219          */
18220         for (i = 0; i < 200; i++) {
18221             DELAY(10000);
18222             if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18223                 break;
18224         }
18225     }
18226 
18227     /* Clear ILT */
18228     bxe_clear_func_ilt(sc, func);
18229 
18230     /*
18231      * Timers workaround bug for E2: if this is vnic-3,
18232      * we need to set the entire ilt range for this timers.
18233      */
18234     if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18235         struct ilt_client_info ilt_cli;
18236         /* use dummy TM client */
18237         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18238         ilt_cli.start = 0;
18239         ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18240         ilt_cli.client_num = ILT_CLIENT_TM;
18241 
18242         ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18243     }
18244 
18245     /* this assumes that reset_port() called before reset_func()*/
18246     if (!CHIP_IS_E1x(sc)) {
18247         bxe_pf_disable(sc);
18248     }
18249 
18250     sc->dmae_ready = 0;
18251 }
18252 
18253 static int
18254 bxe_gunzip_init(struct bxe_softc *sc)
18255 {
18256     return (0);
18257 }
18258 
18259 static void
18260 bxe_gunzip_end(struct bxe_softc *sc)
18261 {
18262     return;
18263 }
18264 
18265 static int
18266 bxe_init_firmware(struct bxe_softc *sc)
18267 {
18268     if (CHIP_IS_E1(sc)) {
18269         ecore_init_e1_firmware(sc);
18270         sc->iro_array = e1_iro_arr;
18271     } else if (CHIP_IS_E1H(sc)) {
18272         ecore_init_e1h_firmware(sc);
18273         sc->iro_array = e1h_iro_arr;
18274     } else if (!CHIP_IS_E1x(sc)) {
18275         ecore_init_e2_firmware(sc);
18276         sc->iro_array = e2_iro_arr;
18277     } else {
18278         BLOGE(sc, "Unsupported chip revision\n");
18279         return (-1);
18280     }
18281 
18282     return (0);
18283 }
18284 
18285 static void
18286 bxe_release_firmware(struct bxe_softc *sc)
18287 {
18288     /* Do nothing */
18289     return;
18290 }
18291 
18292 static int
18293 ecore_gunzip(struct bxe_softc *sc,
18294              const uint8_t    *zbuf,
18295              int              len)
18296 {
18297     /* XXX : Implement... */
18298     BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18299     return (FALSE);
18300 }
18301 
18302 static void
18303 ecore_reg_wr_ind(struct bxe_softc *sc,
18304                  uint32_t         addr,
18305                  uint32_t         val)
18306 {
18307     bxe_reg_wr_ind(sc, addr, val);
18308 }
18309 
18310 static void
18311 ecore_write_dmae_phys_len(struct bxe_softc *sc,
18312                           bus_addr_t       phys_addr,
18313                           uint32_t         addr,
18314                           uint32_t         len)
18315 {
18316     bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18317 }
18318 
18319 void
18320 ecore_storm_memset_struct(struct bxe_softc *sc,
18321                           uint32_t         addr,
18322                           size_t           size,
18323                           uint32_t         *data)
18324 {
18325     uint8_t i;
18326     for (i = 0; i < size/4; i++) {
18327         REG_WR(sc, addr + (i * 4), data[i]);
18328     }
18329 }
18330 
18331 
18332 /*
18333  * character device - ioctl interface definitions
18334  */
18335 
18336 
18337 #include "bxe_dump.h"
18338 #include "bxe_ioctl.h"
18339 #include <sys/conf.h>
18340 
18341 static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
18342                 struct thread *td);
18343 
18344 static struct cdevsw bxe_cdevsw = {
18345     .d_version = D_VERSION,
18346     .d_ioctl = bxe_eioctl,
18347     .d_name = "bxecnic",
18348 };
18349 
18350 #define BXE_PATH(sc)    (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1))
18351 
18352 
18353 #define DUMP_ALL_PRESETS        0x1FFF
18354 #define DUMP_MAX_PRESETS        13
18355 #define IS_E1_REG(chips)        ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1)
18356 #define IS_E1H_REG(chips)       ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H)
18357 #define IS_E2_REG(chips)        ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2)
18358 #define IS_E3A0_REG(chips)      ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0)
18359 #define IS_E3B0_REG(chips)      ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0)
18360 
18361 #define IS_REG_IN_PRESET(presets, idx)  \
18362                 ((presets & (1 << (idx-1))) == (1 << (idx-1)))
18363 
18364 
18365 static int
18366 bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset)
18367 {
18368     if (CHIP_IS_E1(sc))
18369         return dump_num_registers[0][preset-1];
18370     else if (CHIP_IS_E1H(sc))
18371         return dump_num_registers[1][preset-1];
18372     else if (CHIP_IS_E2(sc))
18373         return dump_num_registers[2][preset-1];
18374     else if (CHIP_IS_E3A0(sc))
18375         return dump_num_registers[3][preset-1];
18376     else if (CHIP_IS_E3B0(sc))
18377         return dump_num_registers[4][preset-1];
18378     else
18379         return 0;
18380 }
18381 
18382 static int
18383 bxe_get_total_regs_len32(struct bxe_softc *sc)
18384 {
18385     uint32_t preset_idx;
18386     int regdump_len32 = 0;
18387 
18388 
18389     /* Calculate the total preset regs length */
18390     for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18391         regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx);
18392     }
18393 
18394     return regdump_len32;
18395 }
18396 
18397 static const uint32_t *
18398 __bxe_get_page_addr_ar(struct bxe_softc *sc)
18399 {
18400     if (CHIP_IS_E2(sc))
18401         return page_vals_e2;
18402     else if (CHIP_IS_E3(sc))
18403         return page_vals_e3;
18404     else
18405         return NULL;
18406 }
18407 
18408 static uint32_t
18409 __bxe_get_page_reg_num(struct bxe_softc *sc)
18410 {
18411     if (CHIP_IS_E2(sc))
18412         return PAGE_MODE_VALUES_E2;
18413     else if (CHIP_IS_E3(sc))
18414         return PAGE_MODE_VALUES_E3;
18415     else
18416         return 0;
18417 }
18418 
18419 static const uint32_t *
18420 __bxe_get_page_write_ar(struct bxe_softc *sc)
18421 {
18422     if (CHIP_IS_E2(sc))
18423         return page_write_regs_e2;
18424     else if (CHIP_IS_E3(sc))
18425         return page_write_regs_e3;
18426     else
18427         return NULL;
18428 }
18429 
18430 static uint32_t
18431 __bxe_get_page_write_num(struct bxe_softc *sc)
18432 {
18433     if (CHIP_IS_E2(sc))
18434         return PAGE_WRITE_REGS_E2;
18435     else if (CHIP_IS_E3(sc))
18436         return PAGE_WRITE_REGS_E3;
18437     else
18438         return 0;
18439 }
18440 
18441 static const struct reg_addr *
18442 __bxe_get_page_read_ar(struct bxe_softc *sc)
18443 {
18444     if (CHIP_IS_E2(sc))
18445         return page_read_regs_e2;
18446     else if (CHIP_IS_E3(sc))
18447         return page_read_regs_e3;
18448     else
18449         return NULL;
18450 }
18451 
18452 static uint32_t
18453 __bxe_get_page_read_num(struct bxe_softc *sc)
18454 {
18455     if (CHIP_IS_E2(sc))
18456         return PAGE_READ_REGS_E2;
18457     else if (CHIP_IS_E3(sc))
18458         return PAGE_READ_REGS_E3;
18459     else
18460         return 0;
18461 }
18462 
18463 static bool
18464 bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info)
18465 {
18466     if (CHIP_IS_E1(sc))
18467         return IS_E1_REG(reg_info->chips);
18468     else if (CHIP_IS_E1H(sc))
18469         return IS_E1H_REG(reg_info->chips);
18470     else if (CHIP_IS_E2(sc))
18471         return IS_E2_REG(reg_info->chips);
18472     else if (CHIP_IS_E3A0(sc))
18473         return IS_E3A0_REG(reg_info->chips);
18474     else if (CHIP_IS_E3B0(sc))
18475         return IS_E3B0_REG(reg_info->chips);
18476     else
18477         return 0;
18478 }
18479 
18480 static bool
18481 bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info)
18482 {
18483     if (CHIP_IS_E1(sc))
18484         return IS_E1_REG(wreg_info->chips);
18485     else if (CHIP_IS_E1H(sc))
18486         return IS_E1H_REG(wreg_info->chips);
18487     else if (CHIP_IS_E2(sc))
18488         return IS_E2_REG(wreg_info->chips);
18489     else if (CHIP_IS_E3A0(sc))
18490         return IS_E3A0_REG(wreg_info->chips);
18491     else if (CHIP_IS_E3B0(sc))
18492         return IS_E3B0_REG(wreg_info->chips);
18493     else
18494         return 0;
18495 }
18496 
18497 /**
18498  * bxe_read_pages_regs - read "paged" registers
18499  *
18500  * @bp          device handle
18501  * @p           output buffer
18502  *
18503  * Reads "paged" memories: memories that may only be read by first writing to a
18504  * specific address ("write address") and then reading from a specific address
18505  * ("read address"). There may be more than one write address per "page" and
18506  * more than one read address per write address.
18507  */
18508 static void
18509 bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18510 {
18511     uint32_t i, j, k, n;
18512 
18513     /* addresses of the paged registers */
18514     const uint32_t *page_addr = __bxe_get_page_addr_ar(sc);
18515     /* number of paged registers */
18516     int num_pages = __bxe_get_page_reg_num(sc);
18517     /* write addresses */
18518     const uint32_t *write_addr = __bxe_get_page_write_ar(sc);
18519     /* number of write addresses */
18520     int write_num = __bxe_get_page_write_num(sc);
18521     /* read addresses info */
18522     const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc);
18523     /* number of read addresses */
18524     int read_num = __bxe_get_page_read_num(sc);
18525     uint32_t addr, size;
18526 
18527     for (i = 0; i < num_pages; i++) {
18528         for (j = 0; j < write_num; j++) {
18529             REG_WR(sc, write_addr[j], page_addr[i]);
18530 
18531             for (k = 0; k < read_num; k++) {
18532                 if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) {
18533                     size = read_addr[k].size;
18534                     for (n = 0; n < size; n++) {
18535                         addr = read_addr[k].addr + n*4;
18536                         *p++ = REG_RD(sc, addr);
18537                     }
18538                 }
18539             }
18540         }
18541     }
18542     return;
18543 }
18544 
18545 
18546 static int
18547 bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18548 {
18549     uint32_t i, j, addr;
18550     const struct wreg_addr *wreg_addr_p = NULL;
18551 
18552     if (CHIP_IS_E1(sc))
18553         wreg_addr_p = &wreg_addr_e1;
18554     else if (CHIP_IS_E1H(sc))
18555         wreg_addr_p = &wreg_addr_e1h;
18556     else if (CHIP_IS_E2(sc))
18557         wreg_addr_p = &wreg_addr_e2;
18558     else if (CHIP_IS_E3A0(sc))
18559         wreg_addr_p = &wreg_addr_e3;
18560     else if (CHIP_IS_E3B0(sc))
18561         wreg_addr_p = &wreg_addr_e3b0;
18562     else
18563         return (-1);
18564 
18565     /* Read the idle_chk registers */
18566     for (i = 0; i < IDLE_REGS_COUNT; i++) {
18567         if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) &&
18568             IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) {
18569             for (j = 0; j < idle_reg_addrs[i].size; j++)
18570                 *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4);
18571         }
18572     }
18573 
18574     /* Read the regular registers */
18575     for (i = 0; i < REGS_COUNT; i++) {
18576         if (bxe_is_reg_in_chip(sc, &reg_addrs[i]) &&
18577             IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) {
18578             for (j = 0; j < reg_addrs[i].size; j++)
18579                 *p++ = REG_RD(sc, reg_addrs[i].addr + j*4);
18580         }
18581     }
18582 
18583     /* Read the CAM registers */
18584     if (bxe_is_wreg_in_chip(sc, wreg_addr_p) &&
18585         IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) {
18586         for (i = 0; i < wreg_addr_p->size; i++) {
18587             *p++ = REG_RD(sc, wreg_addr_p->addr + i*4);
18588 
18589             /* In case of wreg_addr register, read additional
18590                registers from read_regs array
18591              */
18592             for (j = 0; j < wreg_addr_p->read_regs_count; j++) {
18593                 addr = *(wreg_addr_p->read_regs);
18594                 *p++ = REG_RD(sc, addr + j*4);
18595             }
18596         }
18597     }
18598 
18599     /* Paged registers are supported in E2 & E3 only */
18600     if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
18601         /* Read "paged" registers */
18602         bxe_read_pages_regs(sc, p, preset);
18603     }
18604 
18605     return 0;
18606 }
18607 
18608 static int
18609 bxe_grc_dump(struct bxe_softc *sc)
18610 {
18611     int rval = 0;
18612     uint32_t preset_idx;
18613     uint8_t *buf;
18614     uint32_t size;
18615     struct  dump_header *d_hdr;
18616 
18617     if (sc->grcdump_done)
18618 	return (rval);
18619 
18620     ecore_disable_blocks_parity(sc);
18621 
18622     buf = sc->grc_dump;
18623     d_hdr = sc->grc_dump;
18624 
18625     d_hdr->header_size = (sizeof(struct  dump_header) >> 2) - 1;
18626     d_hdr->version = BNX2X_DUMP_VERSION;
18627     d_hdr->preset = DUMP_ALL_PRESETS;
18628 
18629     if (CHIP_IS_E1(sc)) {
18630         d_hdr->dump_meta_data = DUMP_CHIP_E1;
18631     } else if (CHIP_IS_E1H(sc)) {
18632         d_hdr->dump_meta_data = DUMP_CHIP_E1H;
18633     } else if (CHIP_IS_E2(sc)) {
18634         d_hdr->dump_meta_data = DUMP_CHIP_E2 |
18635                 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18636     } else if (CHIP_IS_E3A0(sc)) {
18637         d_hdr->dump_meta_data = DUMP_CHIP_E3A0 |
18638                 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18639     } else if (CHIP_IS_E3B0(sc)) {
18640         d_hdr->dump_meta_data = DUMP_CHIP_E3B0 |
18641                 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18642     }
18643 
18644     buf += sizeof(struct  dump_header);
18645 
18646     for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18647 
18648         /* Skip presets with IOR */
18649         if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) ||
18650             (preset_idx == 11))
18651             continue;
18652 
18653         rval = bxe_get_preset_regs(sc, sc->grc_dump, preset_idx);
18654 
18655 	if (rval)
18656             break;
18657 
18658         size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t));
18659 
18660         buf += size;
18661     }
18662 
18663     ecore_clear_blocks_parity(sc);
18664     ecore_enable_blocks_parity(sc);
18665 
18666     sc->grcdump_done = 1;
18667     return(rval);
18668 }
18669 
18670 static int
18671 bxe_add_cdev(struct bxe_softc *sc)
18672 {
18673     int grc_dump_size;
18674 
18675     grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
18676 				sizeof(struct  dump_header);
18677 
18678     sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT);
18679 
18680     if (sc->grc_dump == NULL)
18681         return (-1);
18682 
18683     sc->ioctl_dev = make_dev(&bxe_cdevsw,
18684                             sc->ifp->if_dunit,
18685                             UID_ROOT,
18686                             GID_WHEEL,
18687                             0600,
18688                             "%s",
18689                             if_name(sc->ifp));
18690 
18691     if (sc->ioctl_dev == NULL) {
18692 
18693         free(sc->grc_dump, M_DEVBUF);
18694 
18695         return (-1);
18696     }
18697 
18698     sc->ioctl_dev->si_drv1 = sc;
18699 
18700     return (0);
18701 }
18702 
18703 static void
18704 bxe_del_cdev(struct bxe_softc *sc)
18705 {
18706     if (sc->ioctl_dev != NULL)
18707         destroy_dev(sc->ioctl_dev);
18708 
18709     if (sc->grc_dump == NULL)
18710         free(sc->grc_dump, M_DEVBUF);
18711 
18712     return;
18713 }
18714 
18715 static int
18716 bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
18717         struct thread *td)
18718 {
18719     struct bxe_softc    *sc;
18720     int                 rval = 0;
18721     device_t            pci_dev;
18722     bxe_grcdump_t       *dump = NULL;
18723     int grc_dump_size;
18724 
18725     if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL)
18726         return ENXIO;
18727 
18728     pci_dev= sc->dev;
18729 
18730     dump = (bxe_grcdump_t *)data;
18731 
18732     switch(cmd) {
18733 
18734         case BXE_GRC_DUMP_SIZE:
18735             dump->pci_func = sc->pcie_func;
18736             dump->grcdump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
18737 					sizeof(struct  dump_header);
18738             break;
18739 
18740         case BXE_GRC_DUMP:
18741 
18742             grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
18743 				sizeof(struct  dump_header);
18744 
18745             if ((sc->grc_dump == NULL) || (dump->grcdump == NULL) ||
18746                 (dump->grcdump_size < grc_dump_size) || (!sc->grcdump_done)) {
18747                 rval = EINVAL;
18748                 break;
18749             }
18750 	    dump->grcdump_dwords = grc_dump_size >> 2;
18751             rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size);
18752             sc->grcdump_done = 0;
18753 
18754             break;
18755 
18756         default:
18757             break;
18758     }
18759 
18760     return (rval);
18761 }
18762