1 /*- 2 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 15 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 18 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 19 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 20 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 21 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 22 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 23 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 24 * THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #define BXE_DRIVER_VERSION "1.78.81" 31 32 #include "bxe.h" 33 #include "ecore_sp.h" 34 #include "ecore_init.h" 35 #include "ecore_init_ops.h" 36 37 #include "57710_int_offsets.h" 38 #include "57711_int_offsets.h" 39 #include "57712_int_offsets.h" 40 41 /* 42 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these 43 * explicitly here for older kernels that don't include this changeset. 44 */ 45 #ifndef CTLTYPE_U64 46 #define CTLTYPE_U64 CTLTYPE_QUAD 47 #define sysctl_handle_64 sysctl_handle_quad 48 #endif 49 50 /* 51 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these 52 * here as zero(0) for older kernels that don't include this changeset 53 * thereby masking the functionality. 54 */ 55 #ifndef CSUM_TCP_IPV6 56 #define CSUM_TCP_IPV6 0 57 #define CSUM_UDP_IPV6 0 58 #endif 59 60 /* 61 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap 62 * for older kernels that don't include this changeset. 63 */ 64 #if __FreeBSD_version < 900035 65 #define pci_find_cap pci_find_extcap 66 #endif 67 68 #define BXE_DEF_SB_ATT_IDX 0x0001 69 #define BXE_DEF_SB_IDX 0x0002 70 71 /* 72 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per 73 * function HW initialization. 74 */ 75 #define FLR_WAIT_USEC 10000 /* 10 msecs */ 76 #define FLR_WAIT_INTERVAL 50 /* usecs */ 77 #define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */ 78 79 struct pbf_pN_buf_regs { 80 int pN; 81 uint32_t init_crd; 82 uint32_t crd; 83 uint32_t crd_freed; 84 }; 85 86 struct pbf_pN_cmd_regs { 87 int pN; 88 uint32_t lines_occup; 89 uint32_t lines_freed; 90 }; 91 92 /* 93 * PCI Device ID Table used by bxe_probe(). 94 */ 95 #define BXE_DEVDESC_MAX 64 96 static struct bxe_device_type bxe_devs[] = { 97 { 98 BRCM_VENDORID, 99 CHIP_NUM_57710, 100 PCI_ANY_ID, PCI_ANY_ID, 101 "QLogic NetXtreme II BCM57710 10GbE" 102 }, 103 { 104 BRCM_VENDORID, 105 CHIP_NUM_57711, 106 PCI_ANY_ID, PCI_ANY_ID, 107 "QLogic NetXtreme II BCM57711 10GbE" 108 }, 109 { 110 BRCM_VENDORID, 111 CHIP_NUM_57711E, 112 PCI_ANY_ID, PCI_ANY_ID, 113 "QLogic NetXtreme II BCM57711E 10GbE" 114 }, 115 { 116 BRCM_VENDORID, 117 CHIP_NUM_57712, 118 PCI_ANY_ID, PCI_ANY_ID, 119 "QLogic NetXtreme II BCM57712 10GbE" 120 }, 121 { 122 BRCM_VENDORID, 123 CHIP_NUM_57712_MF, 124 PCI_ANY_ID, PCI_ANY_ID, 125 "QLogic NetXtreme II BCM57712 MF 10GbE" 126 }, 127 { 128 BRCM_VENDORID, 129 CHIP_NUM_57800, 130 PCI_ANY_ID, PCI_ANY_ID, 131 "QLogic NetXtreme II BCM57800 10GbE" 132 }, 133 { 134 BRCM_VENDORID, 135 CHIP_NUM_57800_MF, 136 PCI_ANY_ID, PCI_ANY_ID, 137 "QLogic NetXtreme II BCM57800 MF 10GbE" 138 }, 139 { 140 BRCM_VENDORID, 141 CHIP_NUM_57810, 142 PCI_ANY_ID, PCI_ANY_ID, 143 "QLogic NetXtreme II BCM57810 10GbE" 144 }, 145 { 146 BRCM_VENDORID, 147 CHIP_NUM_57810_MF, 148 PCI_ANY_ID, PCI_ANY_ID, 149 "QLogic NetXtreme II BCM57810 MF 10GbE" 150 }, 151 { 152 BRCM_VENDORID, 153 CHIP_NUM_57811, 154 PCI_ANY_ID, PCI_ANY_ID, 155 "QLogic NetXtreme II BCM57811 10GbE" 156 }, 157 { 158 BRCM_VENDORID, 159 CHIP_NUM_57811_MF, 160 PCI_ANY_ID, PCI_ANY_ID, 161 "QLogic NetXtreme II BCM57811 MF 10GbE" 162 }, 163 { 164 BRCM_VENDORID, 165 CHIP_NUM_57840_4_10, 166 PCI_ANY_ID, PCI_ANY_ID, 167 "QLogic NetXtreme II BCM57840 4x10GbE" 168 }, 169 { 170 BRCM_VENDORID, 171 CHIP_NUM_57840_MF, 172 PCI_ANY_ID, PCI_ANY_ID, 173 "QLogic NetXtreme II BCM57840 MF 10GbE" 174 }, 175 { 176 0, 0, 0, 0, NULL 177 } 178 }; 179 180 MALLOC_DECLARE(M_BXE_ILT); 181 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer"); 182 183 /* 184 * FreeBSD device entry points. 185 */ 186 static int bxe_probe(device_t); 187 static int bxe_attach(device_t); 188 static int bxe_detach(device_t); 189 static int bxe_shutdown(device_t); 190 191 /* 192 * FreeBSD KLD module/device interface event handler method. 193 */ 194 static device_method_t bxe_methods[] = { 195 /* Device interface (device_if.h) */ 196 DEVMETHOD(device_probe, bxe_probe), 197 DEVMETHOD(device_attach, bxe_attach), 198 DEVMETHOD(device_detach, bxe_detach), 199 DEVMETHOD(device_shutdown, bxe_shutdown), 200 /* Bus interface (bus_if.h) */ 201 DEVMETHOD(bus_print_child, bus_generic_print_child), 202 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 203 KOBJMETHOD_END 204 }; 205 206 /* 207 * FreeBSD KLD Module data declaration 208 */ 209 static driver_t bxe_driver = { 210 "bxe", /* module name */ 211 bxe_methods, /* event handler */ 212 sizeof(struct bxe_softc) /* extra data */ 213 }; 214 215 /* 216 * FreeBSD dev class is needed to manage dev instances and 217 * to associate with a bus type 218 */ 219 static devclass_t bxe_devclass; 220 221 MODULE_DEPEND(bxe, pci, 1, 1, 1); 222 MODULE_DEPEND(bxe, ether, 1, 1, 1); 223 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0); 224 225 /* resources needed for unloading a previously loaded device */ 226 227 #define BXE_PREV_WAIT_NEEDED 1 228 struct mtx bxe_prev_mtx; 229 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF); 230 struct bxe_prev_list_node { 231 LIST_ENTRY(bxe_prev_list_node) node; 232 uint8_t bus; 233 uint8_t slot; 234 uint8_t path; 235 uint8_t aer; /* XXX automatic error recovery */ 236 uint8_t undi; 237 }; 238 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list); 239 240 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 241 242 /* Tunable device values... */ 243 244 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters"); 245 246 /* Debug */ 247 unsigned long bxe_debug = 0; 248 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN, 249 &bxe_debug, 0, "Debug logging mode"); 250 251 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 252 static int bxe_interrupt_mode = INTR_MODE_MSIX; 253 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN, 254 &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode"); 255 256 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */ 257 static int bxe_queue_count = 4; 258 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN, 259 &bxe_queue_count, 0, "Multi-Queue queue count"); 260 261 /* max number of buffers per queue (default RX_BD_USABLE) */ 262 static int bxe_max_rx_bufs = 0; 263 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN, 264 &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue"); 265 266 /* Host interrupt coalescing RX tick timer (usecs) */ 267 static int bxe_hc_rx_ticks = 25; 268 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN, 269 &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks"); 270 271 /* Host interrupt coalescing TX tick timer (usecs) */ 272 static int bxe_hc_tx_ticks = 50; 273 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN, 274 &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks"); 275 276 /* Maximum number of Rx packets to process at a time */ 277 static int bxe_rx_budget = 0xffffffff; 278 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN, 279 &bxe_rx_budget, 0, "Rx processing budget"); 280 281 /* Maximum LRO aggregation size */ 282 static int bxe_max_aggregation_size = 0; 283 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN, 284 &bxe_max_aggregation_size, 0, "max aggregation size"); 285 286 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */ 287 static int bxe_mrrs = -1; 288 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN, 289 &bxe_mrrs, 0, "PCIe maximum read request size"); 290 291 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */ 292 static int bxe_autogreeen = 0; 293 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN, 294 &bxe_autogreeen, 0, "AutoGrEEEn support"); 295 296 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */ 297 static int bxe_udp_rss = 0; 298 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN, 299 &bxe_udp_rss, 0, "UDP RSS support"); 300 301 302 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */ 303 304 #define STATS_OFFSET32(stat_name) \ 305 (offsetof(struct bxe_eth_stats, stat_name) / 4) 306 307 #define Q_STATS_OFFSET32(stat_name) \ 308 (offsetof(struct bxe_eth_q_stats, stat_name) / 4) 309 310 static const struct { 311 uint32_t offset; 312 uint32_t size; 313 uint32_t flags; 314 #define STATS_FLAGS_PORT 1 315 #define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */ 316 #define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT) 317 char string[STAT_NAME_LEN]; 318 } bxe_eth_stats_arr[] = { 319 { STATS_OFFSET32(total_bytes_received_hi), 320 8, STATS_FLAGS_BOTH, "rx_bytes" }, 321 { STATS_OFFSET32(error_bytes_received_hi), 322 8, STATS_FLAGS_BOTH, "rx_error_bytes" }, 323 { STATS_OFFSET32(total_unicast_packets_received_hi), 324 8, STATS_FLAGS_BOTH, "rx_ucast_packets" }, 325 { STATS_OFFSET32(total_multicast_packets_received_hi), 326 8, STATS_FLAGS_BOTH, "rx_mcast_packets" }, 327 { STATS_OFFSET32(total_broadcast_packets_received_hi), 328 8, STATS_FLAGS_BOTH, "rx_bcast_packets" }, 329 { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi), 330 8, STATS_FLAGS_PORT, "rx_crc_errors" }, 331 { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi), 332 8, STATS_FLAGS_PORT, "rx_align_errors" }, 333 { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi), 334 8, STATS_FLAGS_PORT, "rx_undersize_packets" }, 335 { STATS_OFFSET32(etherstatsoverrsizepkts_hi), 336 8, STATS_FLAGS_PORT, "rx_oversize_packets" }, 337 { STATS_OFFSET32(rx_stat_etherstatsfragments_hi), 338 8, STATS_FLAGS_PORT, "rx_fragments" }, 339 { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi), 340 8, STATS_FLAGS_PORT, "rx_jabbers" }, 341 { STATS_OFFSET32(no_buff_discard_hi), 342 8, STATS_FLAGS_BOTH, "rx_discards" }, 343 { STATS_OFFSET32(mac_filter_discard), 344 4, STATS_FLAGS_PORT, "rx_filtered_packets" }, 345 { STATS_OFFSET32(mf_tag_discard), 346 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" }, 347 { STATS_OFFSET32(pfc_frames_received_hi), 348 8, STATS_FLAGS_PORT, "pfc_frames_received" }, 349 { STATS_OFFSET32(pfc_frames_sent_hi), 350 8, STATS_FLAGS_PORT, "pfc_frames_sent" }, 351 { STATS_OFFSET32(brb_drop_hi), 352 8, STATS_FLAGS_PORT, "rx_brb_discard" }, 353 { STATS_OFFSET32(brb_truncate_hi), 354 8, STATS_FLAGS_PORT, "rx_brb_truncate" }, 355 { STATS_OFFSET32(pause_frames_received_hi), 356 8, STATS_FLAGS_PORT, "rx_pause_frames" }, 357 { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi), 358 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" }, 359 { STATS_OFFSET32(nig_timer_max), 360 4, STATS_FLAGS_PORT, "rx_constant_pause_events" }, 361 { STATS_OFFSET32(total_bytes_transmitted_hi), 362 8, STATS_FLAGS_BOTH, "tx_bytes" }, 363 { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi), 364 8, STATS_FLAGS_PORT, "tx_error_bytes" }, 365 { STATS_OFFSET32(total_unicast_packets_transmitted_hi), 366 8, STATS_FLAGS_BOTH, "tx_ucast_packets" }, 367 { STATS_OFFSET32(total_multicast_packets_transmitted_hi), 368 8, STATS_FLAGS_BOTH, "tx_mcast_packets" }, 369 { STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 370 8, STATS_FLAGS_BOTH, "tx_bcast_packets" }, 371 { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi), 372 8, STATS_FLAGS_PORT, "tx_mac_errors" }, 373 { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi), 374 8, STATS_FLAGS_PORT, "tx_carrier_errors" }, 375 { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi), 376 8, STATS_FLAGS_PORT, "tx_single_collisions" }, 377 { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi), 378 8, STATS_FLAGS_PORT, "tx_multi_collisions" }, 379 { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi), 380 8, STATS_FLAGS_PORT, "tx_deferred" }, 381 { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi), 382 8, STATS_FLAGS_PORT, "tx_excess_collisions" }, 383 { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi), 384 8, STATS_FLAGS_PORT, "tx_late_collisions" }, 385 { STATS_OFFSET32(tx_stat_etherstatscollisions_hi), 386 8, STATS_FLAGS_PORT, "tx_total_collisions" }, 387 { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi), 388 8, STATS_FLAGS_PORT, "tx_64_byte_packets" }, 389 { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi), 390 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" }, 391 { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi), 392 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" }, 393 { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi), 394 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" }, 395 { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi), 396 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" }, 397 { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi), 398 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" }, 399 { STATS_OFFSET32(etherstatspktsover1522octets_hi), 400 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" }, 401 { STATS_OFFSET32(pause_frames_sent_hi), 402 8, STATS_FLAGS_PORT, "tx_pause_frames" }, 403 { STATS_OFFSET32(total_tpa_aggregations_hi), 404 8, STATS_FLAGS_FUNC, "tpa_aggregations" }, 405 { STATS_OFFSET32(total_tpa_aggregated_frames_hi), 406 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"}, 407 { STATS_OFFSET32(total_tpa_bytes_hi), 408 8, STATS_FLAGS_FUNC, "tpa_bytes"}, 409 { STATS_OFFSET32(eee_tx_lpi), 410 4, STATS_FLAGS_PORT, "eee_tx_lpi"}, 411 { STATS_OFFSET32(rx_calls), 412 4, STATS_FLAGS_FUNC, "rx_calls"}, 413 { STATS_OFFSET32(rx_pkts), 414 4, STATS_FLAGS_FUNC, "rx_pkts"}, 415 { STATS_OFFSET32(rx_tpa_pkts), 416 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"}, 417 { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts), 418 4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"}, 419 { STATS_OFFSET32(rx_bxe_service_rxsgl), 420 4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"}, 421 { STATS_OFFSET32(rx_jumbo_sge_pkts), 422 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"}, 423 { STATS_OFFSET32(rx_soft_errors), 424 4, STATS_FLAGS_FUNC, "rx_soft_errors"}, 425 { STATS_OFFSET32(rx_hw_csum_errors), 426 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"}, 427 { STATS_OFFSET32(rx_ofld_frames_csum_ip), 428 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"}, 429 { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 430 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"}, 431 { STATS_OFFSET32(rx_budget_reached), 432 4, STATS_FLAGS_FUNC, "rx_budget_reached"}, 433 { STATS_OFFSET32(tx_pkts), 434 4, STATS_FLAGS_FUNC, "tx_pkts"}, 435 { STATS_OFFSET32(tx_soft_errors), 436 4, STATS_FLAGS_FUNC, "tx_soft_errors"}, 437 { STATS_OFFSET32(tx_ofld_frames_csum_ip), 438 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"}, 439 { STATS_OFFSET32(tx_ofld_frames_csum_tcp), 440 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"}, 441 { STATS_OFFSET32(tx_ofld_frames_csum_udp), 442 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"}, 443 { STATS_OFFSET32(tx_ofld_frames_lso), 444 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"}, 445 { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 446 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"}, 447 { STATS_OFFSET32(tx_encap_failures), 448 4, STATS_FLAGS_FUNC, "tx_encap_failures"}, 449 { STATS_OFFSET32(tx_hw_queue_full), 450 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"}, 451 { STATS_OFFSET32(tx_hw_max_queue_depth), 452 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"}, 453 { STATS_OFFSET32(tx_dma_mapping_failure), 454 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"}, 455 { STATS_OFFSET32(tx_max_drbr_queue_depth), 456 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"}, 457 { STATS_OFFSET32(tx_window_violation_std), 458 4, STATS_FLAGS_FUNC, "tx_window_violation_std"}, 459 { STATS_OFFSET32(tx_window_violation_tso), 460 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"}, 461 { STATS_OFFSET32(tx_chain_lost_mbuf), 462 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"}, 463 { STATS_OFFSET32(tx_frames_deferred), 464 4, STATS_FLAGS_FUNC, "tx_frames_deferred"}, 465 { STATS_OFFSET32(tx_queue_xoff), 466 4, STATS_FLAGS_FUNC, "tx_queue_xoff"}, 467 { STATS_OFFSET32(mbuf_defrag_attempts), 468 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"}, 469 { STATS_OFFSET32(mbuf_defrag_failures), 470 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"}, 471 { STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 472 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"}, 473 { STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 474 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"}, 475 { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 476 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"}, 477 { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 478 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"}, 479 { STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 480 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"}, 481 { STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 482 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"}, 483 { STATS_OFFSET32(mbuf_alloc_tx), 484 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"}, 485 { STATS_OFFSET32(mbuf_alloc_rx), 486 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"}, 487 { STATS_OFFSET32(mbuf_alloc_sge), 488 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"}, 489 { STATS_OFFSET32(mbuf_alloc_tpa), 490 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"} 491 }; 492 493 static const struct { 494 uint32_t offset; 495 uint32_t size; 496 char string[STAT_NAME_LEN]; 497 } bxe_eth_q_stats_arr[] = { 498 { Q_STATS_OFFSET32(total_bytes_received_hi), 499 8, "rx_bytes" }, 500 { Q_STATS_OFFSET32(total_unicast_packets_received_hi), 501 8, "rx_ucast_packets" }, 502 { Q_STATS_OFFSET32(total_multicast_packets_received_hi), 503 8, "rx_mcast_packets" }, 504 { Q_STATS_OFFSET32(total_broadcast_packets_received_hi), 505 8, "rx_bcast_packets" }, 506 { Q_STATS_OFFSET32(no_buff_discard_hi), 507 8, "rx_discards" }, 508 { Q_STATS_OFFSET32(total_bytes_transmitted_hi), 509 8, "tx_bytes" }, 510 { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi), 511 8, "tx_ucast_packets" }, 512 { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi), 513 8, "tx_mcast_packets" }, 514 { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 515 8, "tx_bcast_packets" }, 516 { Q_STATS_OFFSET32(total_tpa_aggregations_hi), 517 8, "tpa_aggregations" }, 518 { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi), 519 8, "tpa_aggregated_frames"}, 520 { Q_STATS_OFFSET32(total_tpa_bytes_hi), 521 8, "tpa_bytes"}, 522 { Q_STATS_OFFSET32(rx_calls), 523 4, "rx_calls"}, 524 { Q_STATS_OFFSET32(rx_pkts), 525 4, "rx_pkts"}, 526 { Q_STATS_OFFSET32(rx_tpa_pkts), 527 4, "rx_tpa_pkts"}, 528 { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts), 529 4, "rx_erroneous_jumbo_sge_pkts"}, 530 { Q_STATS_OFFSET32(rx_bxe_service_rxsgl), 531 4, "rx_bxe_service_rxsgl"}, 532 { Q_STATS_OFFSET32(rx_jumbo_sge_pkts), 533 4, "rx_jumbo_sge_pkts"}, 534 { Q_STATS_OFFSET32(rx_soft_errors), 535 4, "rx_soft_errors"}, 536 { Q_STATS_OFFSET32(rx_hw_csum_errors), 537 4, "rx_hw_csum_errors"}, 538 { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip), 539 4, "rx_ofld_frames_csum_ip"}, 540 { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 541 4, "rx_ofld_frames_csum_tcp_udp"}, 542 { Q_STATS_OFFSET32(rx_budget_reached), 543 4, "rx_budget_reached"}, 544 { Q_STATS_OFFSET32(tx_pkts), 545 4, "tx_pkts"}, 546 { Q_STATS_OFFSET32(tx_soft_errors), 547 4, "tx_soft_errors"}, 548 { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip), 549 4, "tx_ofld_frames_csum_ip"}, 550 { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp), 551 4, "tx_ofld_frames_csum_tcp"}, 552 { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp), 553 4, "tx_ofld_frames_csum_udp"}, 554 { Q_STATS_OFFSET32(tx_ofld_frames_lso), 555 4, "tx_ofld_frames_lso"}, 556 { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 557 4, "tx_ofld_frames_lso_hdr_splits"}, 558 { Q_STATS_OFFSET32(tx_encap_failures), 559 4, "tx_encap_failures"}, 560 { Q_STATS_OFFSET32(tx_hw_queue_full), 561 4, "tx_hw_queue_full"}, 562 { Q_STATS_OFFSET32(tx_hw_max_queue_depth), 563 4, "tx_hw_max_queue_depth"}, 564 { Q_STATS_OFFSET32(tx_dma_mapping_failure), 565 4, "tx_dma_mapping_failure"}, 566 { Q_STATS_OFFSET32(tx_max_drbr_queue_depth), 567 4, "tx_max_drbr_queue_depth"}, 568 { Q_STATS_OFFSET32(tx_window_violation_std), 569 4, "tx_window_violation_std"}, 570 { Q_STATS_OFFSET32(tx_window_violation_tso), 571 4, "tx_window_violation_tso"}, 572 { Q_STATS_OFFSET32(tx_chain_lost_mbuf), 573 4, "tx_chain_lost_mbuf"}, 574 { Q_STATS_OFFSET32(tx_frames_deferred), 575 4, "tx_frames_deferred"}, 576 { Q_STATS_OFFSET32(tx_queue_xoff), 577 4, "tx_queue_xoff"}, 578 { Q_STATS_OFFSET32(mbuf_defrag_attempts), 579 4, "mbuf_defrag_attempts"}, 580 { Q_STATS_OFFSET32(mbuf_defrag_failures), 581 4, "mbuf_defrag_failures"}, 582 { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 583 4, "mbuf_rx_bd_alloc_failed"}, 584 { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 585 4, "mbuf_rx_bd_mapping_failed"}, 586 { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 587 4, "mbuf_rx_tpa_alloc_failed"}, 588 { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 589 4, "mbuf_rx_tpa_mapping_failed"}, 590 { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 591 4, "mbuf_rx_sge_alloc_failed"}, 592 { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 593 4, "mbuf_rx_sge_mapping_failed"}, 594 { Q_STATS_OFFSET32(mbuf_alloc_tx), 595 4, "mbuf_alloc_tx"}, 596 { Q_STATS_OFFSET32(mbuf_alloc_rx), 597 4, "mbuf_alloc_rx"}, 598 { Q_STATS_OFFSET32(mbuf_alloc_sge), 599 4, "mbuf_alloc_sge"}, 600 { Q_STATS_OFFSET32(mbuf_alloc_tpa), 601 4, "mbuf_alloc_tpa"} 602 }; 603 604 #define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr) 605 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr) 606 607 608 static void bxe_cmng_fns_init(struct bxe_softc *sc, 609 uint8_t read_cfg, 610 uint8_t cmng_type); 611 static int bxe_get_cmng_fns_mode(struct bxe_softc *sc); 612 static void storm_memset_cmng(struct bxe_softc *sc, 613 struct cmng_init *cmng, 614 uint8_t port); 615 static void bxe_set_reset_global(struct bxe_softc *sc); 616 static void bxe_set_reset_in_progress(struct bxe_softc *sc); 617 static uint8_t bxe_reset_is_done(struct bxe_softc *sc, 618 int engine); 619 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc); 620 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc, 621 uint8_t *global, 622 uint8_t print); 623 static void bxe_int_disable(struct bxe_softc *sc); 624 static int bxe_release_leader_lock(struct bxe_softc *sc); 625 static void bxe_pf_disable(struct bxe_softc *sc); 626 static void bxe_free_fp_buffers(struct bxe_softc *sc); 627 static inline void bxe_update_rx_prod(struct bxe_softc *sc, 628 struct bxe_fastpath *fp, 629 uint16_t rx_bd_prod, 630 uint16_t rx_cq_prod, 631 uint16_t rx_sge_prod); 632 static void bxe_link_report_locked(struct bxe_softc *sc); 633 static void bxe_link_report(struct bxe_softc *sc); 634 static void bxe_link_status_update(struct bxe_softc *sc); 635 static void bxe_periodic_callout_func(void *xsc); 636 static void bxe_periodic_start(struct bxe_softc *sc); 637 static void bxe_periodic_stop(struct bxe_softc *sc); 638 static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 639 uint16_t prev_index, 640 uint16_t index); 641 static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 642 int queue); 643 static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 644 uint16_t index); 645 static uint8_t bxe_txeof(struct bxe_softc *sc, 646 struct bxe_fastpath *fp); 647 static void bxe_task_fp(struct bxe_fastpath *fp); 648 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc, 649 struct mbuf *m, 650 uint8_t contents); 651 static int bxe_alloc_mem(struct bxe_softc *sc); 652 static void bxe_free_mem(struct bxe_softc *sc); 653 static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc); 654 static void bxe_free_fw_stats_mem(struct bxe_softc *sc); 655 static int bxe_interrupt_attach(struct bxe_softc *sc); 656 static void bxe_interrupt_detach(struct bxe_softc *sc); 657 static void bxe_set_rx_mode(struct bxe_softc *sc); 658 static int bxe_init_locked(struct bxe_softc *sc); 659 static int bxe_stop_locked(struct bxe_softc *sc); 660 static __noinline int bxe_nic_load(struct bxe_softc *sc, 661 int load_mode); 662 static __noinline int bxe_nic_unload(struct bxe_softc *sc, 663 uint32_t unload_mode, 664 uint8_t keep_link); 665 666 static void bxe_handle_sp_tq(void *context, int pending); 667 static void bxe_handle_fp_tq(void *context, int pending); 668 669 static int bxe_add_cdev(struct bxe_softc *sc); 670 static void bxe_del_cdev(struct bxe_softc *sc); 671 static int bxe_grc_dump(struct bxe_softc *sc); 672 static int bxe_alloc_buf_rings(struct bxe_softc *sc); 673 static void bxe_free_buf_rings(struct bxe_softc *sc); 674 675 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */ 676 uint32_t 677 calc_crc32(uint8_t *crc32_packet, 678 uint32_t crc32_length, 679 uint32_t crc32_seed, 680 uint8_t complement) 681 { 682 uint32_t byte = 0; 683 uint32_t bit = 0; 684 uint8_t msb = 0; 685 uint32_t temp = 0; 686 uint32_t shft = 0; 687 uint8_t current_byte = 0; 688 uint32_t crc32_result = crc32_seed; 689 const uint32_t CRC32_POLY = 0x1edc6f41; 690 691 if ((crc32_packet == NULL) || 692 (crc32_length == 0) || 693 ((crc32_length % 8) != 0)) 694 { 695 return (crc32_result); 696 } 697 698 for (byte = 0; byte < crc32_length; byte = byte + 1) 699 { 700 current_byte = crc32_packet[byte]; 701 for (bit = 0; bit < 8; bit = bit + 1) 702 { 703 /* msb = crc32_result[31]; */ 704 msb = (uint8_t)(crc32_result >> 31); 705 706 crc32_result = crc32_result << 1; 707 708 /* it (msb != current_byte[bit]) */ 709 if (msb != (0x1 & (current_byte >> bit))) 710 { 711 crc32_result = crc32_result ^ CRC32_POLY; 712 /* crc32_result[0] = 1 */ 713 crc32_result |= 1; 714 } 715 } 716 } 717 718 /* Last step is to: 719 * 1. "mirror" every bit 720 * 2. swap the 4 bytes 721 * 3. complement each bit 722 */ 723 724 /* Mirror */ 725 temp = crc32_result; 726 shft = sizeof(crc32_result) * 8 - 1; 727 728 for (crc32_result >>= 1; crc32_result; crc32_result >>= 1) 729 { 730 temp <<= 1; 731 temp |= crc32_result & 1; 732 shft-- ; 733 } 734 735 /* temp[31-bit] = crc32_result[bit] */ 736 temp <<= shft; 737 738 /* Swap */ 739 /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */ 740 { 741 uint32_t t0, t1, t2, t3; 742 t0 = (0x000000ff & (temp >> 24)); 743 t1 = (0x0000ff00 & (temp >> 8)); 744 t2 = (0x00ff0000 & (temp << 8)); 745 t3 = (0xff000000 & (temp << 24)); 746 crc32_result = t0 | t1 | t2 | t3; 747 } 748 749 /* Complement */ 750 if (complement) 751 { 752 crc32_result = ~crc32_result; 753 } 754 755 return (crc32_result); 756 } 757 758 int 759 bxe_test_bit(int nr, 760 volatile unsigned long *addr) 761 { 762 return ((atomic_load_acq_long(addr) & (1 << nr)) != 0); 763 } 764 765 void 766 bxe_set_bit(unsigned int nr, 767 volatile unsigned long *addr) 768 { 769 atomic_set_acq_long(addr, (1 << nr)); 770 } 771 772 void 773 bxe_clear_bit(int nr, 774 volatile unsigned long *addr) 775 { 776 atomic_clear_acq_long(addr, (1 << nr)); 777 } 778 779 int 780 bxe_test_and_set_bit(int nr, 781 volatile unsigned long *addr) 782 { 783 unsigned long x; 784 nr = (1 << nr); 785 do { 786 x = *addr; 787 } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0); 788 // if (x & nr) bit_was_set; else bit_was_not_set; 789 return (x & nr); 790 } 791 792 int 793 bxe_test_and_clear_bit(int nr, 794 volatile unsigned long *addr) 795 { 796 unsigned long x; 797 nr = (1 << nr); 798 do { 799 x = *addr; 800 } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0); 801 // if (x & nr) bit_was_set; else bit_was_not_set; 802 return (x & nr); 803 } 804 805 int 806 bxe_cmpxchg(volatile int *addr, 807 int old, 808 int new) 809 { 810 int x; 811 do { 812 x = *addr; 813 } while (atomic_cmpset_acq_int(addr, old, new) == 0); 814 return (x); 815 } 816 817 /* 818 * Get DMA memory from the OS. 819 * 820 * Validates that the OS has provided DMA buffers in response to a 821 * bus_dmamap_load call and saves the physical address of those buffers. 822 * When the callback is used the OS will return 0 for the mapping function 823 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any 824 * failures back to the caller. 825 * 826 * Returns: 827 * Nothing. 828 */ 829 static void 830 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 831 { 832 struct bxe_dma *dma = arg; 833 834 if (error) { 835 dma->paddr = 0; 836 dma->nseg = 0; 837 BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error); 838 } else { 839 dma->paddr = segs->ds_addr; 840 dma->nseg = nseg; 841 } 842 } 843 844 /* 845 * Allocate a block of memory and map it for DMA. No partial completions 846 * allowed and release any resources acquired if we can't acquire all 847 * resources. 848 * 849 * Returns: 850 * 0 = Success, !0 = Failure 851 */ 852 int 853 bxe_dma_alloc(struct bxe_softc *sc, 854 bus_size_t size, 855 struct bxe_dma *dma, 856 const char *msg) 857 { 858 int rc; 859 860 if (dma->size > 0) { 861 BLOGE(sc, "dma block '%s' already has size %lu\n", msg, 862 (unsigned long)dma->size); 863 return (1); 864 } 865 866 memset(dma, 0, sizeof(*dma)); /* sanity */ 867 dma->sc = sc; 868 dma->size = size; 869 snprintf(dma->msg, sizeof(dma->msg), "%s", msg); 870 871 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 872 BCM_PAGE_SIZE, /* alignment */ 873 0, /* boundary limit */ 874 BUS_SPACE_MAXADDR, /* restricted low */ 875 BUS_SPACE_MAXADDR, /* restricted hi */ 876 NULL, /* addr filter() */ 877 NULL, /* addr filter() arg */ 878 size, /* max map size */ 879 1, /* num discontinuous */ 880 size, /* max seg size */ 881 BUS_DMA_ALLOCNOW, /* flags */ 882 NULL, /* lock() */ 883 NULL, /* lock() arg */ 884 &dma->tag); /* returned dma tag */ 885 if (rc != 0) { 886 BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc); 887 memset(dma, 0, sizeof(*dma)); 888 return (1); 889 } 890 891 rc = bus_dmamem_alloc(dma->tag, 892 (void **)&dma->vaddr, 893 (BUS_DMA_NOWAIT | BUS_DMA_ZERO), 894 &dma->map); 895 if (rc != 0) { 896 BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc); 897 bus_dma_tag_destroy(dma->tag); 898 memset(dma, 0, sizeof(*dma)); 899 return (1); 900 } 901 902 rc = bus_dmamap_load(dma->tag, 903 dma->map, 904 dma->vaddr, 905 size, 906 bxe_dma_map_addr, /* BLOGD in here */ 907 dma, 908 BUS_DMA_NOWAIT); 909 if (rc != 0) { 910 BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc); 911 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 912 bus_dma_tag_destroy(dma->tag); 913 memset(dma, 0, sizeof(*dma)); 914 return (1); 915 } 916 917 return (0); 918 } 919 920 void 921 bxe_dma_free(struct bxe_softc *sc, 922 struct bxe_dma *dma) 923 { 924 if (dma->size > 0) { 925 DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL")); 926 927 bus_dmamap_sync(dma->tag, dma->map, 928 (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)); 929 bus_dmamap_unload(dma->tag, dma->map); 930 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 931 bus_dma_tag_destroy(dma->tag); 932 } 933 934 memset(dma, 0, sizeof(*dma)); 935 } 936 937 /* 938 * These indirect read and write routines are only during init. 939 * The locking is handled by the MCP. 940 */ 941 942 void 943 bxe_reg_wr_ind(struct bxe_softc *sc, 944 uint32_t addr, 945 uint32_t val) 946 { 947 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 948 pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4); 949 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 950 } 951 952 uint32_t 953 bxe_reg_rd_ind(struct bxe_softc *sc, 954 uint32_t addr) 955 { 956 uint32_t val; 957 958 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 959 val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4); 960 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 961 962 return (val); 963 } 964 965 static int 966 bxe_acquire_hw_lock(struct bxe_softc *sc, 967 uint32_t resource) 968 { 969 uint32_t lock_status; 970 uint32_t resource_bit = (1 << resource); 971 int func = SC_FUNC(sc); 972 uint32_t hw_lock_control_reg; 973 int cnt; 974 975 /* validate the resource is within range */ 976 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 977 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)" 978 " resource_bit 0x%x\n", resource, resource_bit); 979 return (-1); 980 } 981 982 if (func <= 5) { 983 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 984 } else { 985 hw_lock_control_reg = 986 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 987 } 988 989 /* validate the resource is not already taken */ 990 lock_status = REG_RD(sc, hw_lock_control_reg); 991 if (lock_status & resource_bit) { 992 BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n", 993 resource, lock_status, resource_bit); 994 return (-1); 995 } 996 997 /* try every 5ms for 5 seconds */ 998 for (cnt = 0; cnt < 1000; cnt++) { 999 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit); 1000 lock_status = REG_RD(sc, hw_lock_control_reg); 1001 if (lock_status & resource_bit) { 1002 return (0); 1003 } 1004 DELAY(5000); 1005 } 1006 1007 BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n", 1008 resource, resource_bit); 1009 return (-1); 1010 } 1011 1012 static int 1013 bxe_release_hw_lock(struct bxe_softc *sc, 1014 uint32_t resource) 1015 { 1016 uint32_t lock_status; 1017 uint32_t resource_bit = (1 << resource); 1018 int func = SC_FUNC(sc); 1019 uint32_t hw_lock_control_reg; 1020 1021 /* validate the resource is within range */ 1022 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1023 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)" 1024 " resource_bit 0x%x\n", resource, resource_bit); 1025 return (-1); 1026 } 1027 1028 if (func <= 5) { 1029 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1030 } else { 1031 hw_lock_control_reg = 1032 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1033 } 1034 1035 /* validate the resource is currently taken */ 1036 lock_status = REG_RD(sc, hw_lock_control_reg); 1037 if (!(lock_status & resource_bit)) { 1038 BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n", 1039 resource, lock_status, resource_bit); 1040 return (-1); 1041 } 1042 1043 REG_WR(sc, hw_lock_control_reg, resource_bit); 1044 return (0); 1045 } 1046 static void bxe_acquire_phy_lock(struct bxe_softc *sc) 1047 { 1048 BXE_PHY_LOCK(sc); 1049 bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1050 } 1051 1052 static void bxe_release_phy_lock(struct bxe_softc *sc) 1053 { 1054 bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1055 BXE_PHY_UNLOCK(sc); 1056 } 1057 /* 1058 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise, 1059 * had we done things the other way around, if two pfs from the same port 1060 * would attempt to access nvram at the same time, we could run into a 1061 * scenario such as: 1062 * pf A takes the port lock. 1063 * pf B succeeds in taking the same lock since they are from the same port. 1064 * pf A takes the per pf misc lock. Performs eeprom access. 1065 * pf A finishes. Unlocks the per pf misc lock. 1066 * Pf B takes the lock and proceeds to perform it's own access. 1067 * pf A unlocks the per port lock, while pf B is still working (!). 1068 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own 1069 * access corrupted by pf B).* 1070 */ 1071 static int 1072 bxe_acquire_nvram_lock(struct bxe_softc *sc) 1073 { 1074 int port = SC_PORT(sc); 1075 int count, i; 1076 uint32_t val = 0; 1077 1078 /* acquire HW lock: protect against other PFs in PF Direct Assignment */ 1079 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1080 1081 /* adjust timeout for emulation/FPGA */ 1082 count = NVRAM_TIMEOUT_COUNT; 1083 if (CHIP_REV_IS_SLOW(sc)) { 1084 count *= 100; 1085 } 1086 1087 /* request access to nvram interface */ 1088 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1089 (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port)); 1090 1091 for (i = 0; i < count*10; i++) { 1092 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1093 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1094 break; 1095 } 1096 1097 DELAY(5); 1098 } 1099 1100 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1101 BLOGE(sc, "Cannot get access to nvram interface " 1102 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n", 1103 port, val); 1104 return (-1); 1105 } 1106 1107 return (0); 1108 } 1109 1110 static int 1111 bxe_release_nvram_lock(struct bxe_softc *sc) 1112 { 1113 int port = SC_PORT(sc); 1114 int count, i; 1115 uint32_t val = 0; 1116 1117 /* adjust timeout for emulation/FPGA */ 1118 count = NVRAM_TIMEOUT_COUNT; 1119 if (CHIP_REV_IS_SLOW(sc)) { 1120 count *= 100; 1121 } 1122 1123 /* relinquish nvram interface */ 1124 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1125 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port)); 1126 1127 for (i = 0; i < count*10; i++) { 1128 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1129 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1130 break; 1131 } 1132 1133 DELAY(5); 1134 } 1135 1136 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1137 BLOGE(sc, "Cannot free access to nvram interface " 1138 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n", 1139 port, val); 1140 return (-1); 1141 } 1142 1143 /* release HW lock: protect against other PFs in PF Direct Assignment */ 1144 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1145 1146 return (0); 1147 } 1148 1149 static void 1150 bxe_enable_nvram_access(struct bxe_softc *sc) 1151 { 1152 uint32_t val; 1153 1154 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1155 1156 /* enable both bits, even on read */ 1157 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1158 (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN)); 1159 } 1160 1161 static void 1162 bxe_disable_nvram_access(struct bxe_softc *sc) 1163 { 1164 uint32_t val; 1165 1166 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1167 1168 /* disable both bits, even after read */ 1169 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1170 (val & ~(MCPR_NVM_ACCESS_ENABLE_EN | 1171 MCPR_NVM_ACCESS_ENABLE_WR_EN))); 1172 } 1173 1174 static int 1175 bxe_nvram_read_dword(struct bxe_softc *sc, 1176 uint32_t offset, 1177 uint32_t *ret_val, 1178 uint32_t cmd_flags) 1179 { 1180 int count, i, rc; 1181 uint32_t val; 1182 1183 /* build the command word */ 1184 cmd_flags |= MCPR_NVM_COMMAND_DOIT; 1185 1186 /* need to clear DONE bit separately */ 1187 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1188 1189 /* address of the NVRAM to read from */ 1190 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1191 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1192 1193 /* issue a read command */ 1194 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1195 1196 /* adjust timeout for emulation/FPGA */ 1197 count = NVRAM_TIMEOUT_COUNT; 1198 if (CHIP_REV_IS_SLOW(sc)) { 1199 count *= 100; 1200 } 1201 1202 /* wait for completion */ 1203 *ret_val = 0; 1204 rc = -1; 1205 for (i = 0; i < count; i++) { 1206 DELAY(5); 1207 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1208 1209 if (val & MCPR_NVM_COMMAND_DONE) { 1210 val = REG_RD(sc, MCP_REG_MCPR_NVM_READ); 1211 /* we read nvram data in cpu order 1212 * but ethtool sees it as an array of bytes 1213 * converting to big-endian will do the work 1214 */ 1215 *ret_val = htobe32(val); 1216 rc = 0; 1217 break; 1218 } 1219 } 1220 1221 if (rc == -1) { 1222 BLOGE(sc, "nvram read timeout expired " 1223 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n", 1224 offset, cmd_flags, val); 1225 } 1226 1227 return (rc); 1228 } 1229 1230 static int 1231 bxe_nvram_read(struct bxe_softc *sc, 1232 uint32_t offset, 1233 uint8_t *ret_buf, 1234 int buf_size) 1235 { 1236 uint32_t cmd_flags; 1237 uint32_t val; 1238 int rc; 1239 1240 if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) { 1241 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1242 offset, buf_size); 1243 return (-1); 1244 } 1245 1246 if ((offset + buf_size) > sc->devinfo.flash_size) { 1247 BLOGE(sc, "Invalid parameter, " 1248 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1249 offset, buf_size, sc->devinfo.flash_size); 1250 return (-1); 1251 } 1252 1253 /* request access to nvram interface */ 1254 rc = bxe_acquire_nvram_lock(sc); 1255 if (rc) { 1256 return (rc); 1257 } 1258 1259 /* enable access to nvram interface */ 1260 bxe_enable_nvram_access(sc); 1261 1262 /* read the first word(s) */ 1263 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1264 while ((buf_size > sizeof(uint32_t)) && (rc == 0)) { 1265 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1266 memcpy(ret_buf, &val, 4); 1267 1268 /* advance to the next dword */ 1269 offset += sizeof(uint32_t); 1270 ret_buf += sizeof(uint32_t); 1271 buf_size -= sizeof(uint32_t); 1272 cmd_flags = 0; 1273 } 1274 1275 if (rc == 0) { 1276 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1277 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1278 memcpy(ret_buf, &val, 4); 1279 } 1280 1281 /* disable access to nvram interface */ 1282 bxe_disable_nvram_access(sc); 1283 bxe_release_nvram_lock(sc); 1284 1285 return (rc); 1286 } 1287 1288 static int 1289 bxe_nvram_write_dword(struct bxe_softc *sc, 1290 uint32_t offset, 1291 uint32_t val, 1292 uint32_t cmd_flags) 1293 { 1294 int count, i, rc; 1295 1296 /* build the command word */ 1297 cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR); 1298 1299 /* need to clear DONE bit separately */ 1300 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1301 1302 /* write the data */ 1303 REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val); 1304 1305 /* address of the NVRAM to write to */ 1306 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1307 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1308 1309 /* issue the write command */ 1310 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1311 1312 /* adjust timeout for emulation/FPGA */ 1313 count = NVRAM_TIMEOUT_COUNT; 1314 if (CHIP_REV_IS_SLOW(sc)) { 1315 count *= 100; 1316 } 1317 1318 /* wait for completion */ 1319 rc = -1; 1320 for (i = 0; i < count; i++) { 1321 DELAY(5); 1322 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1323 if (val & MCPR_NVM_COMMAND_DONE) { 1324 rc = 0; 1325 break; 1326 } 1327 } 1328 1329 if (rc == -1) { 1330 BLOGE(sc, "nvram write timeout expired " 1331 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n", 1332 offset, cmd_flags, val); 1333 } 1334 1335 return (rc); 1336 } 1337 1338 #define BYTE_OFFSET(offset) (8 * (offset & 0x03)) 1339 1340 static int 1341 bxe_nvram_write1(struct bxe_softc *sc, 1342 uint32_t offset, 1343 uint8_t *data_buf, 1344 int buf_size) 1345 { 1346 uint32_t cmd_flags; 1347 uint32_t align_offset; 1348 uint32_t val; 1349 int rc; 1350 1351 if ((offset + buf_size) > sc->devinfo.flash_size) { 1352 BLOGE(sc, "Invalid parameter, " 1353 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1354 offset, buf_size, sc->devinfo.flash_size); 1355 return (-1); 1356 } 1357 1358 /* request access to nvram interface */ 1359 rc = bxe_acquire_nvram_lock(sc); 1360 if (rc) { 1361 return (rc); 1362 } 1363 1364 /* enable access to nvram interface */ 1365 bxe_enable_nvram_access(sc); 1366 1367 cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST); 1368 align_offset = (offset & ~0x03); 1369 rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags); 1370 1371 if (rc == 0) { 1372 val &= ~(0xff << BYTE_OFFSET(offset)); 1373 val |= (*data_buf << BYTE_OFFSET(offset)); 1374 1375 /* nvram data is returned as an array of bytes 1376 * convert it back to cpu order 1377 */ 1378 val = be32toh(val); 1379 1380 rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags); 1381 } 1382 1383 /* disable access to nvram interface */ 1384 bxe_disable_nvram_access(sc); 1385 bxe_release_nvram_lock(sc); 1386 1387 return (rc); 1388 } 1389 1390 static int 1391 bxe_nvram_write(struct bxe_softc *sc, 1392 uint32_t offset, 1393 uint8_t *data_buf, 1394 int buf_size) 1395 { 1396 uint32_t cmd_flags; 1397 uint32_t val; 1398 uint32_t written_so_far; 1399 int rc; 1400 1401 if (buf_size == 1) { 1402 return (bxe_nvram_write1(sc, offset, data_buf, buf_size)); 1403 } 1404 1405 if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) { 1406 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1407 offset, buf_size); 1408 return (-1); 1409 } 1410 1411 if (buf_size == 0) { 1412 return (0); /* nothing to do */ 1413 } 1414 1415 if ((offset + buf_size) > sc->devinfo.flash_size) { 1416 BLOGE(sc, "Invalid parameter, " 1417 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1418 offset, buf_size, sc->devinfo.flash_size); 1419 return (-1); 1420 } 1421 1422 /* request access to nvram interface */ 1423 rc = bxe_acquire_nvram_lock(sc); 1424 if (rc) { 1425 return (rc); 1426 } 1427 1428 /* enable access to nvram interface */ 1429 bxe_enable_nvram_access(sc); 1430 1431 written_so_far = 0; 1432 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1433 while ((written_so_far < buf_size) && (rc == 0)) { 1434 if (written_so_far == (buf_size - sizeof(uint32_t))) { 1435 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1436 } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) { 1437 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1438 } else if ((offset % NVRAM_PAGE_SIZE) == 0) { 1439 cmd_flags |= MCPR_NVM_COMMAND_FIRST; 1440 } 1441 1442 memcpy(&val, data_buf, 4); 1443 1444 rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags); 1445 1446 /* advance to the next dword */ 1447 offset += sizeof(uint32_t); 1448 data_buf += sizeof(uint32_t); 1449 written_so_far += sizeof(uint32_t); 1450 cmd_flags = 0; 1451 } 1452 1453 /* disable access to nvram interface */ 1454 bxe_disable_nvram_access(sc); 1455 bxe_release_nvram_lock(sc); 1456 1457 return (rc); 1458 } 1459 1460 /* copy command into DMAE command memory and set DMAE command Go */ 1461 void 1462 bxe_post_dmae(struct bxe_softc *sc, 1463 struct dmae_cmd *dmae, 1464 int idx) 1465 { 1466 uint32_t cmd_offset; 1467 int i; 1468 1469 cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx)); 1470 for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) { 1471 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i)); 1472 } 1473 1474 REG_WR(sc, dmae_reg_go_c[idx], 1); 1475 } 1476 1477 uint32_t 1478 bxe_dmae_opcode_add_comp(uint32_t opcode, 1479 uint8_t comp_type) 1480 { 1481 return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) | 1482 DMAE_CMD_C_TYPE_ENABLE)); 1483 } 1484 1485 uint32_t 1486 bxe_dmae_opcode_clr_src_reset(uint32_t opcode) 1487 { 1488 return (opcode & ~DMAE_CMD_SRC_RESET); 1489 } 1490 1491 uint32_t 1492 bxe_dmae_opcode(struct bxe_softc *sc, 1493 uint8_t src_type, 1494 uint8_t dst_type, 1495 uint8_t with_comp, 1496 uint8_t comp_type) 1497 { 1498 uint32_t opcode = 0; 1499 1500 opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) | 1501 (dst_type << DMAE_CMD_DST_SHIFT)); 1502 1503 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET); 1504 1505 opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 1506 1507 opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) | 1508 (SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT)); 1509 1510 opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT); 1511 1512 #ifdef __BIG_ENDIAN 1513 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 1514 #else 1515 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 1516 #endif 1517 1518 if (with_comp) { 1519 opcode = bxe_dmae_opcode_add_comp(opcode, comp_type); 1520 } 1521 1522 return (opcode); 1523 } 1524 1525 static void 1526 bxe_prep_dmae_with_comp(struct bxe_softc *sc, 1527 struct dmae_cmd *dmae, 1528 uint8_t src_type, 1529 uint8_t dst_type) 1530 { 1531 memset(dmae, 0, sizeof(struct dmae_cmd)); 1532 1533 /* set the opcode */ 1534 dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type, 1535 TRUE, DMAE_COMP_PCI); 1536 1537 /* fill in the completion parameters */ 1538 dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp)); 1539 dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp)); 1540 dmae->comp_val = DMAE_COMP_VAL; 1541 } 1542 1543 /* issue a DMAE command over the init channel and wait for completion */ 1544 static int 1545 bxe_issue_dmae_with_comp(struct bxe_softc *sc, 1546 struct dmae_cmd *dmae) 1547 { 1548 uint32_t *wb_comp = BXE_SP(sc, wb_comp); 1549 int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000; 1550 1551 BXE_DMAE_LOCK(sc); 1552 1553 /* reset completion */ 1554 *wb_comp = 0; 1555 1556 /* post the command on the channel used for initializations */ 1557 bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc)); 1558 1559 /* wait for completion */ 1560 DELAY(5); 1561 1562 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 1563 if (!timeout || 1564 (sc->recovery_state != BXE_RECOVERY_DONE && 1565 sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) { 1566 BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n", 1567 *wb_comp, sc->recovery_state); 1568 BXE_DMAE_UNLOCK(sc); 1569 return (DMAE_TIMEOUT); 1570 } 1571 1572 timeout--; 1573 DELAY(50); 1574 } 1575 1576 if (*wb_comp & DMAE_PCI_ERR_FLAG) { 1577 BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n", 1578 *wb_comp, sc->recovery_state); 1579 BXE_DMAE_UNLOCK(sc); 1580 return (DMAE_PCI_ERROR); 1581 } 1582 1583 BXE_DMAE_UNLOCK(sc); 1584 return (0); 1585 } 1586 1587 void 1588 bxe_read_dmae(struct bxe_softc *sc, 1589 uint32_t src_addr, 1590 uint32_t len32) 1591 { 1592 struct dmae_cmd dmae; 1593 uint32_t *data; 1594 int i, rc; 1595 1596 DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32)); 1597 1598 if (!sc->dmae_ready) { 1599 data = BXE_SP(sc, wb_data[0]); 1600 1601 for (i = 0; i < len32; i++) { 1602 data[i] = (CHIP_IS_E1(sc)) ? 1603 bxe_reg_rd_ind(sc, (src_addr + (i * 4))) : 1604 REG_RD(sc, (src_addr + (i * 4))); 1605 } 1606 1607 return; 1608 } 1609 1610 /* set opcode and fixed command fields */ 1611 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 1612 1613 /* fill in addresses and len */ 1614 dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */ 1615 dmae.src_addr_hi = 0; 1616 dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data)); 1617 dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data)); 1618 dmae.len = len32; 1619 1620 /* issue the command and wait for completion */ 1621 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1622 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1623 }; 1624 } 1625 1626 void 1627 bxe_write_dmae(struct bxe_softc *sc, 1628 bus_addr_t dma_addr, 1629 uint32_t dst_addr, 1630 uint32_t len32) 1631 { 1632 struct dmae_cmd dmae; 1633 int rc; 1634 1635 if (!sc->dmae_ready) { 1636 DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32)); 1637 1638 if (CHIP_IS_E1(sc)) { 1639 ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1640 } else { 1641 ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1642 } 1643 1644 return; 1645 } 1646 1647 /* set opcode and fixed command fields */ 1648 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 1649 1650 /* fill in addresses and len */ 1651 dmae.src_addr_lo = U64_LO(dma_addr); 1652 dmae.src_addr_hi = U64_HI(dma_addr); 1653 dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */ 1654 dmae.dst_addr_hi = 0; 1655 dmae.len = len32; 1656 1657 /* issue the command and wait for completion */ 1658 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1659 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1660 } 1661 } 1662 1663 void 1664 bxe_write_dmae_phys_len(struct bxe_softc *sc, 1665 bus_addr_t phys_addr, 1666 uint32_t addr, 1667 uint32_t len) 1668 { 1669 int dmae_wr_max = DMAE_LEN32_WR_MAX(sc); 1670 int offset = 0; 1671 1672 while (len > dmae_wr_max) { 1673 bxe_write_dmae(sc, 1674 (phys_addr + offset), /* src DMA address */ 1675 (addr + offset), /* dst GRC address */ 1676 dmae_wr_max); 1677 offset += (dmae_wr_max * 4); 1678 len -= dmae_wr_max; 1679 } 1680 1681 bxe_write_dmae(sc, 1682 (phys_addr + offset), /* src DMA address */ 1683 (addr + offset), /* dst GRC address */ 1684 len); 1685 } 1686 1687 void 1688 bxe_set_ctx_validation(struct bxe_softc *sc, 1689 struct eth_context *cxt, 1690 uint32_t cid) 1691 { 1692 /* ustorm cxt validation */ 1693 cxt->ustorm_ag_context.cdu_usage = 1694 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1695 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 1696 /* xcontext validation */ 1697 cxt->xstorm_ag_context.cdu_reserved = 1698 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1699 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 1700 } 1701 1702 static void 1703 bxe_storm_memset_hc_timeout(struct bxe_softc *sc, 1704 uint8_t port, 1705 uint8_t fw_sb_id, 1706 uint8_t sb_index, 1707 uint8_t ticks) 1708 { 1709 uint32_t addr = 1710 (BAR_CSTRORM_INTMEM + 1711 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index)); 1712 1713 REG_WR8(sc, addr, ticks); 1714 1715 BLOGD(sc, DBG_LOAD, 1716 "port %d fw_sb_id %d sb_index %d ticks %d\n", 1717 port, fw_sb_id, sb_index, ticks); 1718 } 1719 1720 static void 1721 bxe_storm_memset_hc_disable(struct bxe_softc *sc, 1722 uint8_t port, 1723 uint16_t fw_sb_id, 1724 uint8_t sb_index, 1725 uint8_t disable) 1726 { 1727 uint32_t enable_flag = 1728 (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 1729 uint32_t addr = 1730 (BAR_CSTRORM_INTMEM + 1731 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index)); 1732 uint8_t flags; 1733 1734 /* clear and set */ 1735 flags = REG_RD8(sc, addr); 1736 flags &= ~HC_INDEX_DATA_HC_ENABLED; 1737 flags |= enable_flag; 1738 REG_WR8(sc, addr, flags); 1739 1740 BLOGD(sc, DBG_LOAD, 1741 "port %d fw_sb_id %d sb_index %d disable %d\n", 1742 port, fw_sb_id, sb_index, disable); 1743 } 1744 1745 void 1746 bxe_update_coalesce_sb_index(struct bxe_softc *sc, 1747 uint8_t fw_sb_id, 1748 uint8_t sb_index, 1749 uint8_t disable, 1750 uint16_t usec) 1751 { 1752 int port = SC_PORT(sc); 1753 uint8_t ticks = (usec / 4); /* XXX ??? */ 1754 1755 bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks); 1756 1757 disable = (disable) ? 1 : ((usec) ? 0 : 1); 1758 bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable); 1759 } 1760 1761 void 1762 elink_cb_udelay(struct bxe_softc *sc, 1763 uint32_t usecs) 1764 { 1765 DELAY(usecs); 1766 } 1767 1768 uint32_t 1769 elink_cb_reg_read(struct bxe_softc *sc, 1770 uint32_t reg_addr) 1771 { 1772 return (REG_RD(sc, reg_addr)); 1773 } 1774 1775 void 1776 elink_cb_reg_write(struct bxe_softc *sc, 1777 uint32_t reg_addr, 1778 uint32_t val) 1779 { 1780 REG_WR(sc, reg_addr, val); 1781 } 1782 1783 void 1784 elink_cb_reg_wb_write(struct bxe_softc *sc, 1785 uint32_t offset, 1786 uint32_t *wb_write, 1787 uint16_t len) 1788 { 1789 REG_WR_DMAE(sc, offset, wb_write, len); 1790 } 1791 1792 void 1793 elink_cb_reg_wb_read(struct bxe_softc *sc, 1794 uint32_t offset, 1795 uint32_t *wb_write, 1796 uint16_t len) 1797 { 1798 REG_RD_DMAE(sc, offset, wb_write, len); 1799 } 1800 1801 uint8_t 1802 elink_cb_path_id(struct bxe_softc *sc) 1803 { 1804 return (SC_PATH(sc)); 1805 } 1806 1807 void 1808 elink_cb_event_log(struct bxe_softc *sc, 1809 const elink_log_id_t elink_log_id, 1810 ...) 1811 { 1812 /* XXX */ 1813 BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id); 1814 } 1815 1816 static int 1817 bxe_set_spio(struct bxe_softc *sc, 1818 int spio, 1819 uint32_t mode) 1820 { 1821 uint32_t spio_reg; 1822 1823 /* Only 2 SPIOs are configurable */ 1824 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 1825 BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode); 1826 return (-1); 1827 } 1828 1829 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1830 1831 /* read SPIO and mask except the float bits */ 1832 spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 1833 1834 switch (mode) { 1835 case MISC_SPIO_OUTPUT_LOW: 1836 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio); 1837 /* clear FLOAT and set CLR */ 1838 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1839 spio_reg |= (spio << MISC_SPIO_CLR_POS); 1840 break; 1841 1842 case MISC_SPIO_OUTPUT_HIGH: 1843 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio); 1844 /* clear FLOAT and set SET */ 1845 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1846 spio_reg |= (spio << MISC_SPIO_SET_POS); 1847 break; 1848 1849 case MISC_SPIO_INPUT_HI_Z: 1850 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio); 1851 /* set FLOAT */ 1852 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 1853 break; 1854 1855 default: 1856 break; 1857 } 1858 1859 REG_WR(sc, MISC_REG_SPIO, spio_reg); 1860 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1861 1862 return (0); 1863 } 1864 1865 static int 1866 bxe_gpio_read(struct bxe_softc *sc, 1867 int gpio_num, 1868 uint8_t port) 1869 { 1870 /* The GPIO should be swapped if swap register is set and active */ 1871 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1872 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1873 int gpio_shift = (gpio_num + 1874 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1875 uint32_t gpio_mask = (1 << gpio_shift); 1876 uint32_t gpio_reg; 1877 1878 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1879 BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d" 1880 " gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift, 1881 gpio_mask); 1882 return (-1); 1883 } 1884 1885 /* read GPIO value */ 1886 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 1887 1888 /* get the requested pin value */ 1889 return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0; 1890 } 1891 1892 static int 1893 bxe_gpio_write(struct bxe_softc *sc, 1894 int gpio_num, 1895 uint32_t mode, 1896 uint8_t port) 1897 { 1898 /* The GPIO should be swapped if swap register is set and active */ 1899 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1900 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1901 int gpio_shift = (gpio_num + 1902 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1903 uint32_t gpio_mask = (1 << gpio_shift); 1904 uint32_t gpio_reg; 1905 1906 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1907 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d" 1908 " gpio_shift %d gpio_mask 0x%x\n", 1909 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask); 1910 return (-1); 1911 } 1912 1913 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1914 1915 /* read GPIO and mask except the float bits */ 1916 gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 1917 1918 switch (mode) { 1919 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 1920 BLOGD(sc, DBG_PHY, 1921 "Set GPIO %d (shift %d) -> output low\n", 1922 gpio_num, gpio_shift); 1923 /* clear FLOAT and set CLR */ 1924 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1925 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 1926 break; 1927 1928 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 1929 BLOGD(sc, DBG_PHY, 1930 "Set GPIO %d (shift %d) -> output high\n", 1931 gpio_num, gpio_shift); 1932 /* clear FLOAT and set SET */ 1933 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1934 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 1935 break; 1936 1937 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 1938 BLOGD(sc, DBG_PHY, 1939 "Set GPIO %d (shift %d) -> input\n", 1940 gpio_num, gpio_shift); 1941 /* set FLOAT */ 1942 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1943 break; 1944 1945 default: 1946 break; 1947 } 1948 1949 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 1950 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1951 1952 return (0); 1953 } 1954 1955 static int 1956 bxe_gpio_mult_write(struct bxe_softc *sc, 1957 uint8_t pins, 1958 uint32_t mode) 1959 { 1960 uint32_t gpio_reg; 1961 1962 /* any port swapping should be handled by caller */ 1963 1964 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1965 1966 /* read GPIO and mask except the float bits */ 1967 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 1968 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 1969 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 1970 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 1971 1972 switch (mode) { 1973 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 1974 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins); 1975 /* set CLR */ 1976 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 1977 break; 1978 1979 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 1980 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins); 1981 /* set SET */ 1982 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 1983 break; 1984 1985 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 1986 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins); 1987 /* set FLOAT */ 1988 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 1989 break; 1990 1991 default: 1992 BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x" 1993 " gpio_reg 0x%x\n", pins, mode, gpio_reg); 1994 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1995 return (-1); 1996 } 1997 1998 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 1999 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2000 2001 return (0); 2002 } 2003 2004 static int 2005 bxe_gpio_int_write(struct bxe_softc *sc, 2006 int gpio_num, 2007 uint32_t mode, 2008 uint8_t port) 2009 { 2010 /* The GPIO should be swapped if swap register is set and active */ 2011 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2012 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2013 int gpio_shift = (gpio_num + 2014 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2015 uint32_t gpio_mask = (1 << gpio_shift); 2016 uint32_t gpio_reg; 2017 2018 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2019 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d" 2020 " gpio_shift %d gpio_mask 0x%x\n", 2021 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask); 2022 return (-1); 2023 } 2024 2025 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2026 2027 /* read GPIO int */ 2028 gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT); 2029 2030 switch (mode) { 2031 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2032 BLOGD(sc, DBG_PHY, 2033 "Clear GPIO INT %d (shift %d) -> output low\n", 2034 gpio_num, gpio_shift); 2035 /* clear SET and set CLR */ 2036 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2037 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2038 break; 2039 2040 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2041 BLOGD(sc, DBG_PHY, 2042 "Set GPIO INT %d (shift %d) -> output high\n", 2043 gpio_num, gpio_shift); 2044 /* clear CLR and set SET */ 2045 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2046 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2047 break; 2048 2049 default: 2050 break; 2051 } 2052 2053 REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg); 2054 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2055 2056 return (0); 2057 } 2058 2059 uint32_t 2060 elink_cb_gpio_read(struct bxe_softc *sc, 2061 uint16_t gpio_num, 2062 uint8_t port) 2063 { 2064 return (bxe_gpio_read(sc, gpio_num, port)); 2065 } 2066 2067 uint8_t 2068 elink_cb_gpio_write(struct bxe_softc *sc, 2069 uint16_t gpio_num, 2070 uint8_t mode, /* 0=low 1=high */ 2071 uint8_t port) 2072 { 2073 return (bxe_gpio_write(sc, gpio_num, mode, port)); 2074 } 2075 2076 uint8_t 2077 elink_cb_gpio_mult_write(struct bxe_softc *sc, 2078 uint8_t pins, 2079 uint8_t mode) /* 0=low 1=high */ 2080 { 2081 return (bxe_gpio_mult_write(sc, pins, mode)); 2082 } 2083 2084 uint8_t 2085 elink_cb_gpio_int_write(struct bxe_softc *sc, 2086 uint16_t gpio_num, 2087 uint8_t mode, /* 0=low 1=high */ 2088 uint8_t port) 2089 { 2090 return (bxe_gpio_int_write(sc, gpio_num, mode, port)); 2091 } 2092 2093 void 2094 elink_cb_notify_link_changed(struct bxe_softc *sc) 2095 { 2096 REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 + 2097 (SC_FUNC(sc) * sizeof(uint32_t))), 1); 2098 } 2099 2100 /* send the MCP a request, block until there is a reply */ 2101 uint32_t 2102 elink_cb_fw_command(struct bxe_softc *sc, 2103 uint32_t command, 2104 uint32_t param) 2105 { 2106 int mb_idx = SC_FW_MB_IDX(sc); 2107 uint32_t seq; 2108 uint32_t rc = 0; 2109 uint32_t cnt = 1; 2110 uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10; 2111 2112 BXE_FWMB_LOCK(sc); 2113 2114 seq = ++sc->fw_seq; 2115 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param); 2116 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq)); 2117 2118 BLOGD(sc, DBG_PHY, 2119 "wrote command 0x%08x to FW MB param 0x%08x\n", 2120 (command | seq), param); 2121 2122 /* Let the FW do it's magic. GIve it up to 5 seconds... */ 2123 do { 2124 DELAY(delay * 1000); 2125 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header); 2126 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 2127 2128 BLOGD(sc, DBG_PHY, 2129 "[after %d ms] read 0x%x seq 0x%x from FW MB\n", 2130 cnt*delay, rc, seq); 2131 2132 /* is this a reply to our command? */ 2133 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) { 2134 rc &= FW_MSG_CODE_MASK; 2135 } else { 2136 /* Ruh-roh! */ 2137 BLOGE(sc, "FW failed to respond!\n"); 2138 // XXX bxe_fw_dump(sc); 2139 rc = 0; 2140 } 2141 2142 BXE_FWMB_UNLOCK(sc); 2143 return (rc); 2144 } 2145 2146 static uint32_t 2147 bxe_fw_command(struct bxe_softc *sc, 2148 uint32_t command, 2149 uint32_t param) 2150 { 2151 return (elink_cb_fw_command(sc, command, param)); 2152 } 2153 2154 static void 2155 __storm_memset_dma_mapping(struct bxe_softc *sc, 2156 uint32_t addr, 2157 bus_addr_t mapping) 2158 { 2159 REG_WR(sc, addr, U64_LO(mapping)); 2160 REG_WR(sc, (addr + 4), U64_HI(mapping)); 2161 } 2162 2163 static void 2164 storm_memset_spq_addr(struct bxe_softc *sc, 2165 bus_addr_t mapping, 2166 uint16_t abs_fid) 2167 { 2168 uint32_t addr = (XSEM_REG_FAST_MEMORY + 2169 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid)); 2170 __storm_memset_dma_mapping(sc, addr, mapping); 2171 } 2172 2173 static void 2174 storm_memset_vf_to_pf(struct bxe_softc *sc, 2175 uint16_t abs_fid, 2176 uint16_t pf_id) 2177 { 2178 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2179 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2180 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2181 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2182 } 2183 2184 static void 2185 storm_memset_func_en(struct bxe_softc *sc, 2186 uint16_t abs_fid, 2187 uint8_t enable) 2188 { 2189 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2190 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2191 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2192 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2193 } 2194 2195 static void 2196 storm_memset_eq_data(struct bxe_softc *sc, 2197 struct event_ring_data *eq_data, 2198 uint16_t pfid) 2199 { 2200 uint32_t addr; 2201 size_t size; 2202 2203 addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid)); 2204 size = sizeof(struct event_ring_data); 2205 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data); 2206 } 2207 2208 static void 2209 storm_memset_eq_prod(struct bxe_softc *sc, 2210 uint16_t eq_prod, 2211 uint16_t pfid) 2212 { 2213 uint32_t addr = (BAR_CSTRORM_INTMEM + 2214 CSTORM_EVENT_RING_PROD_OFFSET(pfid)); 2215 REG_WR16(sc, addr, eq_prod); 2216 } 2217 2218 /* 2219 * Post a slowpath command. 2220 * 2221 * A slowpath command is used to propogate a configuration change through 2222 * the controller in a controlled manner, allowing each STORM processor and 2223 * other H/W blocks to phase in the change. The commands sent on the 2224 * slowpath are referred to as ramrods. Depending on the ramrod used the 2225 * completion of the ramrod will occur in different ways. Here's a 2226 * breakdown of ramrods and how they complete: 2227 * 2228 * RAMROD_CMD_ID_ETH_PORT_SETUP 2229 * Used to setup the leading connection on a port. Completes on the 2230 * Receive Completion Queue (RCQ) of that port (typically fp[0]). 2231 * 2232 * RAMROD_CMD_ID_ETH_CLIENT_SETUP 2233 * Used to setup an additional connection on a port. Completes on the 2234 * RCQ of the multi-queue/RSS connection being initialized. 2235 * 2236 * RAMROD_CMD_ID_ETH_STAT_QUERY 2237 * Used to force the storm processors to update the statistics database 2238 * in host memory. This ramrod is send on the leading connection CID and 2239 * completes as an index increment of the CSTORM on the default status 2240 * block. 2241 * 2242 * RAMROD_CMD_ID_ETH_UPDATE 2243 * Used to update the state of the leading connection, usually to udpate 2244 * the RSS indirection table. Completes on the RCQ of the leading 2245 * connection. (Not currently used under FreeBSD until OS support becomes 2246 * available.) 2247 * 2248 * RAMROD_CMD_ID_ETH_HALT 2249 * Used when tearing down a connection prior to driver unload. Completes 2250 * on the RCQ of the multi-queue/RSS connection being torn down. Don't 2251 * use this on the leading connection. 2252 * 2253 * RAMROD_CMD_ID_ETH_SET_MAC 2254 * Sets the Unicast/Broadcast/Multicast used by the port. Completes on 2255 * the RCQ of the leading connection. 2256 * 2257 * RAMROD_CMD_ID_ETH_CFC_DEL 2258 * Used when tearing down a conneciton prior to driver unload. Completes 2259 * on the RCQ of the leading connection (since the current connection 2260 * has been completely removed from controller memory). 2261 * 2262 * RAMROD_CMD_ID_ETH_PORT_DEL 2263 * Used to tear down the leading connection prior to driver unload, 2264 * typically fp[0]. Completes as an index increment of the CSTORM on the 2265 * default status block. 2266 * 2267 * RAMROD_CMD_ID_ETH_FORWARD_SETUP 2268 * Used for connection offload. Completes on the RCQ of the multi-queue 2269 * RSS connection that is being offloaded. (Not currently used under 2270 * FreeBSD.) 2271 * 2272 * There can only be one command pending per function. 2273 * 2274 * Returns: 2275 * 0 = Success, !0 = Failure. 2276 */ 2277 2278 /* must be called under the spq lock */ 2279 static inline 2280 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc) 2281 { 2282 struct eth_spe *next_spe = sc->spq_prod_bd; 2283 2284 if (sc->spq_prod_bd == sc->spq_last_bd) { 2285 /* wrap back to the first eth_spq */ 2286 sc->spq_prod_bd = sc->spq; 2287 sc->spq_prod_idx = 0; 2288 } else { 2289 sc->spq_prod_bd++; 2290 sc->spq_prod_idx++; 2291 } 2292 2293 return (next_spe); 2294 } 2295 2296 /* must be called under the spq lock */ 2297 static inline 2298 void bxe_sp_prod_update(struct bxe_softc *sc) 2299 { 2300 int func = SC_FUNC(sc); 2301 2302 /* 2303 * Make sure that BD data is updated before writing the producer. 2304 * BD data is written to the memory, the producer is read from the 2305 * memory, thus we need a full memory barrier to ensure the ordering. 2306 */ 2307 mb(); 2308 2309 REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)), 2310 sc->spq_prod_idx); 2311 2312 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 2313 BUS_SPACE_BARRIER_WRITE); 2314 } 2315 2316 /** 2317 * bxe_is_contextless_ramrod - check if the current command ends on EQ 2318 * 2319 * @cmd: command to check 2320 * @cmd_type: command type 2321 */ 2322 static inline 2323 int bxe_is_contextless_ramrod(int cmd, 2324 int cmd_type) 2325 { 2326 if ((cmd_type == NONE_CONNECTION_TYPE) || 2327 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 2328 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 2329 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 2330 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 2331 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 2332 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) { 2333 return (TRUE); 2334 } else { 2335 return (FALSE); 2336 } 2337 } 2338 2339 /** 2340 * bxe_sp_post - place a single command on an SP ring 2341 * 2342 * @sc: driver handle 2343 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 2344 * @cid: SW CID the command is related to 2345 * @data_hi: command private data address (high 32 bits) 2346 * @data_lo: command private data address (low 32 bits) 2347 * @cmd_type: command type (e.g. NONE, ETH) 2348 * 2349 * SP data is handled as if it's always an address pair, thus data fields are 2350 * not swapped to little endian in upper functions. Instead this function swaps 2351 * data as if it's two uint32 fields. 2352 */ 2353 int 2354 bxe_sp_post(struct bxe_softc *sc, 2355 int command, 2356 int cid, 2357 uint32_t data_hi, 2358 uint32_t data_lo, 2359 int cmd_type) 2360 { 2361 struct eth_spe *spe; 2362 uint16_t type; 2363 int common; 2364 2365 common = bxe_is_contextless_ramrod(command, cmd_type); 2366 2367 BXE_SP_LOCK(sc); 2368 2369 if (common) { 2370 if (!atomic_load_acq_long(&sc->eq_spq_left)) { 2371 BLOGE(sc, "EQ ring is full!\n"); 2372 BXE_SP_UNLOCK(sc); 2373 return (-1); 2374 } 2375 } else { 2376 if (!atomic_load_acq_long(&sc->cq_spq_left)) { 2377 BLOGE(sc, "SPQ ring is full!\n"); 2378 BXE_SP_UNLOCK(sc); 2379 return (-1); 2380 } 2381 } 2382 2383 spe = bxe_sp_get_next(sc); 2384 2385 /* CID needs port number to be encoded int it */ 2386 spe->hdr.conn_and_cmd_data = 2387 htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid)); 2388 2389 type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE; 2390 2391 /* TBD: Check if it works for VFs */ 2392 type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) & 2393 SPE_HDR_T_FUNCTION_ID); 2394 2395 spe->hdr.type = htole16(type); 2396 2397 spe->data.update_data_addr.hi = htole32(data_hi); 2398 spe->data.update_data_addr.lo = htole32(data_lo); 2399 2400 /* 2401 * It's ok if the actual decrement is issued towards the memory 2402 * somewhere between the lock and unlock. Thus no more explict 2403 * memory barrier is needed. 2404 */ 2405 if (common) { 2406 atomic_subtract_acq_long(&sc->eq_spq_left, 1); 2407 } else { 2408 atomic_subtract_acq_long(&sc->cq_spq_left, 1); 2409 } 2410 2411 BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr); 2412 BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n", 2413 BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata)); 2414 BLOGD(sc, DBG_SP, 2415 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n", 2416 sc->spq_prod_idx, 2417 (uint32_t)U64_HI(sc->spq_dma.paddr), 2418 (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq), 2419 command, 2420 common, 2421 HW_CID(sc, cid), 2422 data_hi, 2423 data_lo, 2424 type, 2425 atomic_load_acq_long(&sc->cq_spq_left), 2426 atomic_load_acq_long(&sc->eq_spq_left)); 2427 2428 bxe_sp_prod_update(sc); 2429 2430 BXE_SP_UNLOCK(sc); 2431 return (0); 2432 } 2433 2434 /** 2435 * bxe_debug_print_ind_table - prints the indirection table configuration. 2436 * 2437 * @sc: driver hanlde 2438 * @p: pointer to rss configuration 2439 */ 2440 2441 /* 2442 * FreeBSD Device probe function. 2443 * 2444 * Compares the device found to the driver's list of supported devices and 2445 * reports back to the bsd loader whether this is the right driver for the device. 2446 * This is the driver entry function called from the "kldload" command. 2447 * 2448 * Returns: 2449 * BUS_PROBE_DEFAULT on success, positive value on failure. 2450 */ 2451 static int 2452 bxe_probe(device_t dev) 2453 { 2454 struct bxe_softc *sc; 2455 struct bxe_device_type *t; 2456 char *descbuf; 2457 uint16_t did, sdid, svid, vid; 2458 2459 /* Find our device structure */ 2460 sc = device_get_softc(dev); 2461 sc->dev = dev; 2462 t = bxe_devs; 2463 2464 /* Get the data for the device to be probed. */ 2465 vid = pci_get_vendor(dev); 2466 did = pci_get_device(dev); 2467 svid = pci_get_subvendor(dev); 2468 sdid = pci_get_subdevice(dev); 2469 2470 BLOGD(sc, DBG_LOAD, 2471 "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, " 2472 "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid); 2473 2474 /* Look through the list of known devices for a match. */ 2475 while (t->bxe_name != NULL) { 2476 if ((vid == t->bxe_vid) && (did == t->bxe_did) && 2477 ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) && 2478 ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) { 2479 descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 2480 if (descbuf == NULL) 2481 return (ENOMEM); 2482 2483 /* Print out the device identity. */ 2484 snprintf(descbuf, BXE_DEVDESC_MAX, 2485 "%s (%c%d) BXE v:%s\n", t->bxe_name, 2486 (((pci_read_config(dev, PCIR_REVID, 4) & 2487 0xf0) >> 4) + 'A'), 2488 (pci_read_config(dev, PCIR_REVID, 4) & 0xf), 2489 BXE_DRIVER_VERSION); 2490 2491 device_set_desc_copy(dev, descbuf); 2492 free(descbuf, M_TEMP); 2493 return (BUS_PROBE_DEFAULT); 2494 } 2495 t++; 2496 } 2497 2498 return (ENXIO); 2499 } 2500 2501 static void 2502 bxe_init_mutexes(struct bxe_softc *sc) 2503 { 2504 #ifdef BXE_CORE_LOCK_SX 2505 snprintf(sc->core_sx_name, sizeof(sc->core_sx_name), 2506 "bxe%d_core_lock", sc->unit); 2507 sx_init(&sc->core_sx, sc->core_sx_name); 2508 #else 2509 snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name), 2510 "bxe%d_core_lock", sc->unit); 2511 mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF); 2512 #endif 2513 2514 snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name), 2515 "bxe%d_sp_lock", sc->unit); 2516 mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF); 2517 2518 snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name), 2519 "bxe%d_dmae_lock", sc->unit); 2520 mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF); 2521 2522 snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name), 2523 "bxe%d_phy_lock", sc->unit); 2524 mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF); 2525 2526 snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name), 2527 "bxe%d_fwmb_lock", sc->unit); 2528 mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF); 2529 2530 snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name), 2531 "bxe%d_print_lock", sc->unit); 2532 mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF); 2533 2534 snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name), 2535 "bxe%d_stats_lock", sc->unit); 2536 mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF); 2537 2538 snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name), 2539 "bxe%d_mcast_lock", sc->unit); 2540 mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF); 2541 } 2542 2543 static void 2544 bxe_release_mutexes(struct bxe_softc *sc) 2545 { 2546 #ifdef BXE_CORE_LOCK_SX 2547 sx_destroy(&sc->core_sx); 2548 #else 2549 if (mtx_initialized(&sc->core_mtx)) { 2550 mtx_destroy(&sc->core_mtx); 2551 } 2552 #endif 2553 2554 if (mtx_initialized(&sc->sp_mtx)) { 2555 mtx_destroy(&sc->sp_mtx); 2556 } 2557 2558 if (mtx_initialized(&sc->dmae_mtx)) { 2559 mtx_destroy(&sc->dmae_mtx); 2560 } 2561 2562 if (mtx_initialized(&sc->port.phy_mtx)) { 2563 mtx_destroy(&sc->port.phy_mtx); 2564 } 2565 2566 if (mtx_initialized(&sc->fwmb_mtx)) { 2567 mtx_destroy(&sc->fwmb_mtx); 2568 } 2569 2570 if (mtx_initialized(&sc->print_mtx)) { 2571 mtx_destroy(&sc->print_mtx); 2572 } 2573 2574 if (mtx_initialized(&sc->stats_mtx)) { 2575 mtx_destroy(&sc->stats_mtx); 2576 } 2577 2578 if (mtx_initialized(&sc->mcast_mtx)) { 2579 mtx_destroy(&sc->mcast_mtx); 2580 } 2581 } 2582 2583 static void 2584 bxe_tx_disable(struct bxe_softc* sc) 2585 { 2586 if_t ifp = sc->ifp; 2587 2588 /* tell the stack the driver is stopped and TX queue is full */ 2589 if (ifp != NULL) { 2590 if_setdrvflags(ifp, 0); 2591 } 2592 } 2593 2594 static void 2595 bxe_drv_pulse(struct bxe_softc *sc) 2596 { 2597 SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb, 2598 sc->fw_drv_pulse_wr_seq); 2599 } 2600 2601 static inline uint16_t 2602 bxe_tx_avail(struct bxe_softc *sc, 2603 struct bxe_fastpath *fp) 2604 { 2605 int16_t used; 2606 uint16_t prod; 2607 uint16_t cons; 2608 2609 prod = fp->tx_bd_prod; 2610 cons = fp->tx_bd_cons; 2611 2612 used = SUB_S16(prod, cons); 2613 2614 return (int16_t)(sc->tx_ring_size) - used; 2615 } 2616 2617 static inline int 2618 bxe_tx_queue_has_work(struct bxe_fastpath *fp) 2619 { 2620 uint16_t hw_cons; 2621 2622 mb(); /* status block fields can change */ 2623 hw_cons = le16toh(*fp->tx_cons_sb); 2624 return (hw_cons != fp->tx_pkt_cons); 2625 } 2626 2627 static inline uint8_t 2628 bxe_has_tx_work(struct bxe_fastpath *fp) 2629 { 2630 /* expand this for multi-cos if ever supported */ 2631 return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE; 2632 } 2633 2634 static inline int 2635 bxe_has_rx_work(struct bxe_fastpath *fp) 2636 { 2637 uint16_t rx_cq_cons_sb; 2638 2639 mb(); /* status block fields can change */ 2640 rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb); 2641 if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX) 2642 rx_cq_cons_sb++; 2643 return (fp->rx_cq_cons != rx_cq_cons_sb); 2644 } 2645 2646 static void 2647 bxe_sp_event(struct bxe_softc *sc, 2648 struct bxe_fastpath *fp, 2649 union eth_rx_cqe *rr_cqe) 2650 { 2651 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2652 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2653 enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX; 2654 struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 2655 2656 BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n", 2657 fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type); 2658 2659 switch (command) { 2660 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 2661 BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid); 2662 drv_cmd = ECORE_Q_CMD_UPDATE; 2663 break; 2664 2665 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 2666 BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid); 2667 drv_cmd = ECORE_Q_CMD_SETUP; 2668 break; 2669 2670 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 2671 BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 2672 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY; 2673 break; 2674 2675 case (RAMROD_CMD_ID_ETH_HALT): 2676 BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid); 2677 drv_cmd = ECORE_Q_CMD_HALT; 2678 break; 2679 2680 case (RAMROD_CMD_ID_ETH_TERMINATE): 2681 BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid); 2682 drv_cmd = ECORE_Q_CMD_TERMINATE; 2683 break; 2684 2685 case (RAMROD_CMD_ID_ETH_EMPTY): 2686 BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid); 2687 drv_cmd = ECORE_Q_CMD_EMPTY; 2688 break; 2689 2690 default: 2691 BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n", 2692 command, fp->index); 2693 return; 2694 } 2695 2696 if ((drv_cmd != ECORE_Q_CMD_MAX) && 2697 q_obj->complete_cmd(sc, q_obj, drv_cmd)) { 2698 /* 2699 * q_obj->complete_cmd() failure means that this was 2700 * an unexpected completion. 2701 * 2702 * In this case we don't want to increase the sc->spq_left 2703 * because apparently we haven't sent this command the first 2704 * place. 2705 */ 2706 // bxe_panic(sc, ("Unexpected SP completion\n")); 2707 return; 2708 } 2709 2710 atomic_add_acq_long(&sc->cq_spq_left, 1); 2711 2712 BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n", 2713 atomic_load_acq_long(&sc->cq_spq_left)); 2714 } 2715 2716 /* 2717 * The current mbuf is part of an aggregation. Move the mbuf into the TPA 2718 * aggregation queue, put an empty mbuf back onto the receive chain, and mark 2719 * the current aggregation queue as in-progress. 2720 */ 2721 static void 2722 bxe_tpa_start(struct bxe_softc *sc, 2723 struct bxe_fastpath *fp, 2724 uint16_t queue, 2725 uint16_t cons, 2726 uint16_t prod, 2727 struct eth_fast_path_rx_cqe *cqe) 2728 { 2729 struct bxe_sw_rx_bd tmp_bd; 2730 struct bxe_sw_rx_bd *rx_buf; 2731 struct eth_rx_bd *rx_bd; 2732 int max_agg_queues; 2733 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 2734 uint16_t index; 2735 2736 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START " 2737 "cons=%d prod=%d\n", 2738 fp->index, queue, cons, prod); 2739 2740 max_agg_queues = MAX_AGG_QS(sc); 2741 2742 KASSERT((queue < max_agg_queues), 2743 ("fp[%02d] invalid aggr queue (%d >= %d)!", 2744 fp->index, queue, max_agg_queues)); 2745 2746 KASSERT((tpa_info->state == BXE_TPA_STATE_STOP), 2747 ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!", 2748 fp->index, queue)); 2749 2750 /* copy the existing mbuf and mapping from the TPA pool */ 2751 tmp_bd = tpa_info->bd; 2752 2753 if (tmp_bd.m == NULL) { 2754 uint32_t *tmp; 2755 2756 tmp = (uint32_t *)cqe; 2757 2758 BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n", 2759 fp->index, queue, cons, prod); 2760 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n", 2761 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 2762 2763 /* XXX Error handling? */ 2764 return; 2765 } 2766 2767 /* change the TPA queue to the start state */ 2768 tpa_info->state = BXE_TPA_STATE_START; 2769 tpa_info->placement_offset = cqe->placement_offset; 2770 tpa_info->parsing_flags = le16toh(cqe->pars_flags.flags); 2771 tpa_info->vlan_tag = le16toh(cqe->vlan_tag); 2772 tpa_info->len_on_bd = le16toh(cqe->len_on_bd); 2773 2774 fp->rx_tpa_queue_used |= (1 << queue); 2775 2776 /* 2777 * If all the buffer descriptors are filled with mbufs then fill in 2778 * the current consumer index with a new BD. Else if a maximum Rx 2779 * buffer limit is imposed then fill in the next producer index. 2780 */ 2781 index = (sc->max_rx_bufs != RX_BD_USABLE) ? 2782 prod : cons; 2783 2784 /* move the received mbuf and mapping to TPA pool */ 2785 tpa_info->bd = fp->rx_mbuf_chain[cons]; 2786 2787 /* release any existing RX BD mbuf mappings */ 2788 if (cons != index) { 2789 rx_buf = &fp->rx_mbuf_chain[cons]; 2790 2791 if (rx_buf->m_map != NULL) { 2792 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 2793 BUS_DMASYNC_POSTREAD); 2794 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 2795 } 2796 2797 /* 2798 * We get here when the maximum number of rx buffers is less than 2799 * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL 2800 * it out here without concern of a memory leak. 2801 */ 2802 fp->rx_mbuf_chain[cons].m = NULL; 2803 } 2804 2805 /* update the Rx SW BD with the mbuf info from the TPA pool */ 2806 fp->rx_mbuf_chain[index] = tmp_bd; 2807 2808 /* update the Rx BD with the empty mbuf phys address from the TPA pool */ 2809 rx_bd = &fp->rx_chain[index]; 2810 rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr)); 2811 rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr)); 2812 } 2813 2814 /* 2815 * When a TPA aggregation is completed, loop through the individual mbufs 2816 * of the aggregation, combining them into a single mbuf which will be sent 2817 * up the stack. Refill all freed SGEs with mbufs as we go along. 2818 */ 2819 static int 2820 bxe_fill_frag_mbuf(struct bxe_softc *sc, 2821 struct bxe_fastpath *fp, 2822 struct bxe_sw_tpa_info *tpa_info, 2823 uint16_t queue, 2824 uint16_t pages, 2825 struct mbuf *m, 2826 struct eth_end_agg_rx_cqe *cqe, 2827 uint16_t cqe_idx) 2828 { 2829 struct mbuf *m_frag; 2830 uint32_t frag_len, frag_size, i; 2831 uint16_t sge_idx; 2832 int rc = 0; 2833 int j; 2834 2835 frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd; 2836 2837 BLOGD(sc, DBG_LRO, 2838 "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n", 2839 fp->index, queue, tpa_info->len_on_bd, frag_size, pages); 2840 2841 /* make sure the aggregated frame is not too big to handle */ 2842 if (pages > 8 * PAGES_PER_SGE) { 2843 2844 uint32_t *tmp = (uint32_t *)cqe; 2845 2846 BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! " 2847 "pkt_len=%d len_on_bd=%d frag_size=%d\n", 2848 fp->index, cqe_idx, pages, le16toh(cqe->pkt_len), 2849 tpa_info->len_on_bd, frag_size); 2850 2851 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n", 2852 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 2853 2854 bxe_panic(sc, ("sge page count error\n")); 2855 return (EINVAL); 2856 } 2857 2858 /* 2859 * Scan through the scatter gather list pulling individual mbufs into a 2860 * single mbuf for the host stack. 2861 */ 2862 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 2863 sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j])); 2864 2865 /* 2866 * Firmware gives the indices of the SGE as if the ring is an array 2867 * (meaning that the "next" element will consume 2 indices). 2868 */ 2869 frag_len = min(frag_size, (uint32_t)(SGE_PAGES)); 2870 2871 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d " 2872 "sge_idx=%d frag_size=%d frag_len=%d\n", 2873 fp->index, queue, i, j, sge_idx, frag_size, frag_len); 2874 2875 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 2876 2877 /* allocate a new mbuf for the SGE */ 2878 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 2879 if (rc) { 2880 /* Leave all remaining SGEs in the ring! */ 2881 return (rc); 2882 } 2883 2884 /* update the fragment length */ 2885 m_frag->m_len = frag_len; 2886 2887 /* concatenate the fragment to the head mbuf */ 2888 m_cat(m, m_frag); 2889 fp->eth_q_stats.mbuf_alloc_sge--; 2890 2891 /* update the TPA mbuf size and remaining fragment size */ 2892 m->m_pkthdr.len += frag_len; 2893 frag_size -= frag_len; 2894 } 2895 2896 BLOGD(sc, DBG_LRO, 2897 "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n", 2898 fp->index, queue, frag_size); 2899 2900 return (rc); 2901 } 2902 2903 static inline void 2904 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp) 2905 { 2906 int i, j; 2907 2908 for (i = 1; i <= RX_SGE_NUM_PAGES; i++) { 2909 int idx = RX_SGE_TOTAL_PER_PAGE * i - 1; 2910 2911 for (j = 0; j < 2; j++) { 2912 BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx); 2913 idx--; 2914 } 2915 } 2916 } 2917 2918 static inline void 2919 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp) 2920 { 2921 /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */ 2922 memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask)); 2923 2924 /* 2925 * Clear the two last indices in the page to 1. These are the indices that 2926 * correspond to the "next" element, hence will never be indicated and 2927 * should be removed from the calculations. 2928 */ 2929 bxe_clear_sge_mask_next_elems(fp); 2930 } 2931 2932 static inline void 2933 bxe_update_last_max_sge(struct bxe_fastpath *fp, 2934 uint16_t idx) 2935 { 2936 uint16_t last_max = fp->last_max_sge; 2937 2938 if (SUB_S16(idx, last_max) > 0) { 2939 fp->last_max_sge = idx; 2940 } 2941 } 2942 2943 static inline void 2944 bxe_update_sge_prod(struct bxe_softc *sc, 2945 struct bxe_fastpath *fp, 2946 uint16_t sge_len, 2947 union eth_sgl_or_raw_data *cqe) 2948 { 2949 uint16_t last_max, last_elem, first_elem; 2950 uint16_t delta = 0; 2951 uint16_t i; 2952 2953 if (!sge_len) { 2954 return; 2955 } 2956 2957 /* first mark all used pages */ 2958 for (i = 0; i < sge_len; i++) { 2959 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 2960 RX_SGE(le16toh(cqe->sgl[i]))); 2961 } 2962 2963 BLOGD(sc, DBG_LRO, 2964 "fp[%02d] fp_cqe->sgl[%d] = %d\n", 2965 fp->index, sge_len - 1, 2966 le16toh(cqe->sgl[sge_len - 1])); 2967 2968 /* assume that the last SGE index is the biggest */ 2969 bxe_update_last_max_sge(fp, 2970 le16toh(cqe->sgl[sge_len - 1])); 2971 2972 last_max = RX_SGE(fp->last_max_sge); 2973 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 2974 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 2975 2976 /* if ring is not full */ 2977 if (last_elem + 1 != first_elem) { 2978 last_elem++; 2979 } 2980 2981 /* now update the prod */ 2982 for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) { 2983 if (__predict_true(fp->sge_mask[i])) { 2984 break; 2985 } 2986 2987 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 2988 delta += BIT_VEC64_ELEM_SZ; 2989 } 2990 2991 if (delta > 0) { 2992 fp->rx_sge_prod += delta; 2993 /* clear page-end entries */ 2994 bxe_clear_sge_mask_next_elems(fp); 2995 } 2996 2997 BLOGD(sc, DBG_LRO, 2998 "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n", 2999 fp->index, fp->last_max_sge, fp->rx_sge_prod); 3000 } 3001 3002 /* 3003 * The aggregation on the current TPA queue has completed. Pull the individual 3004 * mbuf fragments together into a single mbuf, perform all necessary checksum 3005 * calculations, and send the resuting mbuf to the stack. 3006 */ 3007 static void 3008 bxe_tpa_stop(struct bxe_softc *sc, 3009 struct bxe_fastpath *fp, 3010 struct bxe_sw_tpa_info *tpa_info, 3011 uint16_t queue, 3012 uint16_t pages, 3013 struct eth_end_agg_rx_cqe *cqe, 3014 uint16_t cqe_idx) 3015 { 3016 if_t ifp = sc->ifp; 3017 struct mbuf *m; 3018 int rc = 0; 3019 3020 BLOGD(sc, DBG_LRO, 3021 "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n", 3022 fp->index, queue, tpa_info->placement_offset, 3023 le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag); 3024 3025 m = tpa_info->bd.m; 3026 3027 /* allocate a replacement before modifying existing mbuf */ 3028 rc = bxe_alloc_rx_tpa_mbuf(fp, queue); 3029 if (rc) { 3030 /* drop the frame and log an error */ 3031 fp->eth_q_stats.rx_soft_errors++; 3032 goto bxe_tpa_stop_exit; 3033 } 3034 3035 /* we have a replacement, fixup the current mbuf */ 3036 m_adj(m, tpa_info->placement_offset); 3037 m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd; 3038 3039 /* mark the checksums valid (taken care of by the firmware) */ 3040 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3041 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3042 m->m_pkthdr.csum_data = 0xffff; 3043 m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | 3044 CSUM_IP_VALID | 3045 CSUM_DATA_VALID | 3046 CSUM_PSEUDO_HDR); 3047 3048 /* aggregate all of the SGEs into a single mbuf */ 3049 rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx); 3050 if (rc) { 3051 /* drop the packet and log an error */ 3052 fp->eth_q_stats.rx_soft_errors++; 3053 m_freem(m); 3054 } else { 3055 if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) { 3056 m->m_pkthdr.ether_vtag = tpa_info->vlan_tag; 3057 m->m_flags |= M_VLANTAG; 3058 } 3059 3060 /* assign packet to this interface interface */ 3061 if_setrcvif(m, ifp); 3062 3063 #if __FreeBSD_version >= 800000 3064 /* specify what RSS queue was used for this flow */ 3065 m->m_pkthdr.flowid = fp->index; 3066 BXE_SET_FLOWID(m); 3067 #endif 3068 3069 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3070 fp->eth_q_stats.rx_tpa_pkts++; 3071 3072 /* pass the frame to the stack */ 3073 if_input(ifp, m); 3074 } 3075 3076 /* we passed an mbuf up the stack or dropped the frame */ 3077 fp->eth_q_stats.mbuf_alloc_tpa--; 3078 3079 bxe_tpa_stop_exit: 3080 3081 fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP; 3082 fp->rx_tpa_queue_used &= ~(1 << queue); 3083 } 3084 3085 static uint8_t 3086 bxe_service_rxsgl( 3087 struct bxe_fastpath *fp, 3088 uint16_t len, 3089 uint16_t lenonbd, 3090 struct mbuf *m, 3091 struct eth_fast_path_rx_cqe *cqe_fp) 3092 { 3093 struct mbuf *m_frag; 3094 uint16_t frags, frag_len; 3095 uint16_t sge_idx = 0; 3096 uint16_t j; 3097 uint8_t i, rc = 0; 3098 uint32_t frag_size; 3099 3100 /* adjust the mbuf */ 3101 m->m_len = lenonbd; 3102 3103 frag_size = len - lenonbd; 3104 frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3105 3106 for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) { 3107 sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j])); 3108 3109 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 3110 frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE)); 3111 m_frag->m_len = frag_len; 3112 3113 /* allocate a new mbuf for the SGE */ 3114 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 3115 if (rc) { 3116 /* Leave all remaining SGEs in the ring! */ 3117 return (rc); 3118 } 3119 fp->eth_q_stats.mbuf_alloc_sge--; 3120 3121 /* concatenate the fragment to the head mbuf */ 3122 m_cat(m, m_frag); 3123 3124 frag_size -= frag_len; 3125 } 3126 3127 bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data); 3128 3129 return rc; 3130 } 3131 3132 static uint8_t 3133 bxe_rxeof(struct bxe_softc *sc, 3134 struct bxe_fastpath *fp) 3135 { 3136 if_t ifp = sc->ifp; 3137 uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 3138 uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod; 3139 int rx_pkts = 0; 3140 int rc = 0; 3141 3142 BXE_FP_RX_LOCK(fp); 3143 3144 /* CQ "next element" is of the size of the regular element */ 3145 hw_cq_cons = le16toh(*fp->rx_cq_cons_sb); 3146 if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) { 3147 hw_cq_cons++; 3148 } 3149 3150 bd_cons = fp->rx_bd_cons; 3151 bd_prod = fp->rx_bd_prod; 3152 bd_prod_fw = bd_prod; 3153 sw_cq_cons = fp->rx_cq_cons; 3154 sw_cq_prod = fp->rx_cq_prod; 3155 3156 /* 3157 * Memory barrier necessary as speculative reads of the rx 3158 * buffer can be ahead of the index in the status block 3159 */ 3160 rmb(); 3161 3162 BLOGD(sc, DBG_RX, 3163 "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n", 3164 fp->index, hw_cq_cons, sw_cq_cons); 3165 3166 while (sw_cq_cons != hw_cq_cons) { 3167 struct bxe_sw_rx_bd *rx_buf = NULL; 3168 union eth_rx_cqe *cqe; 3169 struct eth_fast_path_rx_cqe *cqe_fp; 3170 uint8_t cqe_fp_flags; 3171 enum eth_rx_cqe_type cqe_fp_type; 3172 uint16_t len, lenonbd, pad; 3173 struct mbuf *m = NULL; 3174 3175 comp_ring_cons = RCQ(sw_cq_cons); 3176 bd_prod = RX_BD(bd_prod); 3177 bd_cons = RX_BD(bd_cons); 3178 3179 cqe = &fp->rcq_chain[comp_ring_cons]; 3180 cqe_fp = &cqe->fast_path_cqe; 3181 cqe_fp_flags = cqe_fp->type_error_flags; 3182 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 3183 3184 BLOGD(sc, DBG_RX, 3185 "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d " 3186 "BD prod=%d cons=%d CQE type=0x%x err=0x%x " 3187 "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n", 3188 fp->index, 3189 hw_cq_cons, 3190 sw_cq_cons, 3191 bd_prod, 3192 bd_cons, 3193 CQE_TYPE(cqe_fp_flags), 3194 cqe_fp_flags, 3195 cqe_fp->status_flags, 3196 le32toh(cqe_fp->rss_hash_result), 3197 le16toh(cqe_fp->vlan_tag), 3198 le16toh(cqe_fp->pkt_len_or_gro_seg_len), 3199 le16toh(cqe_fp->len_on_bd)); 3200 3201 /* is this a slowpath msg? */ 3202 if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) { 3203 bxe_sp_event(sc, fp, cqe); 3204 goto next_cqe; 3205 } 3206 3207 rx_buf = &fp->rx_mbuf_chain[bd_cons]; 3208 3209 if (!CQE_TYPE_FAST(cqe_fp_type)) { 3210 struct bxe_sw_tpa_info *tpa_info; 3211 uint16_t frag_size, pages; 3212 uint8_t queue; 3213 3214 if (CQE_TYPE_START(cqe_fp_type)) { 3215 bxe_tpa_start(sc, fp, cqe_fp->queue_index, 3216 bd_cons, bd_prod, cqe_fp); 3217 m = NULL; /* packet not ready yet */ 3218 goto next_rx; 3219 } 3220 3221 KASSERT(CQE_TYPE_STOP(cqe_fp_type), 3222 ("CQE type is not STOP! (0x%x)\n", cqe_fp_type)); 3223 3224 queue = cqe->end_agg_cqe.queue_index; 3225 tpa_info = &fp->rx_tpa_info[queue]; 3226 3227 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n", 3228 fp->index, queue); 3229 3230 frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) - 3231 tpa_info->len_on_bd); 3232 pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3233 3234 bxe_tpa_stop(sc, fp, tpa_info, queue, pages, 3235 &cqe->end_agg_cqe, comp_ring_cons); 3236 3237 bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data); 3238 3239 goto next_cqe; 3240 } 3241 3242 /* non TPA */ 3243 3244 /* is this an error packet? */ 3245 if (__predict_false(cqe_fp_flags & 3246 ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) { 3247 BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons); 3248 fp->eth_q_stats.rx_soft_errors++; 3249 goto next_rx; 3250 } 3251 3252 len = le16toh(cqe_fp->pkt_len_or_gro_seg_len); 3253 lenonbd = le16toh(cqe_fp->len_on_bd); 3254 pad = cqe_fp->placement_offset; 3255 3256 m = rx_buf->m; 3257 3258 if (__predict_false(m == NULL)) { 3259 BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n", 3260 bd_cons, fp->index); 3261 goto next_rx; 3262 } 3263 3264 /* XXX double copy if packet length under a threshold */ 3265 3266 /* 3267 * If all the buffer descriptors are filled with mbufs then fill in 3268 * the current consumer index with a new BD. Else if a maximum Rx 3269 * buffer limit is imposed then fill in the next producer index. 3270 */ 3271 rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons, 3272 (sc->max_rx_bufs != RX_BD_USABLE) ? 3273 bd_prod : bd_cons); 3274 if (rc != 0) { 3275 3276 /* we simply reuse the received mbuf and don't post it to the stack */ 3277 m = NULL; 3278 3279 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 3280 fp->index, rc); 3281 fp->eth_q_stats.rx_soft_errors++; 3282 3283 if (sc->max_rx_bufs != RX_BD_USABLE) { 3284 /* copy this consumer index to the producer index */ 3285 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf, 3286 sizeof(struct bxe_sw_rx_bd)); 3287 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd)); 3288 } 3289 3290 goto next_rx; 3291 } 3292 3293 /* current mbuf was detached from the bd */ 3294 fp->eth_q_stats.mbuf_alloc_rx--; 3295 3296 /* we allocated a replacement mbuf, fixup the current one */ 3297 m_adj(m, pad); 3298 m->m_pkthdr.len = m->m_len = len; 3299 3300 if ((len > 60) && (len > lenonbd)) { 3301 fp->eth_q_stats.rx_bxe_service_rxsgl++; 3302 rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp); 3303 if (rc) 3304 break; 3305 fp->eth_q_stats.rx_jumbo_sge_pkts++; 3306 } else if (lenonbd < len) { 3307 fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++; 3308 } 3309 3310 /* assign packet to this interface interface */ 3311 if_setrcvif(m, ifp); 3312 3313 /* assume no hardware checksum has complated */ 3314 m->m_pkthdr.csum_flags = 0; 3315 3316 /* validate checksum if offload enabled */ 3317 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 3318 /* check for a valid IP frame */ 3319 if (!(cqe->fast_path_cqe.status_flags & 3320 ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) { 3321 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3322 if (__predict_false(cqe_fp_flags & 3323 ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) { 3324 fp->eth_q_stats.rx_hw_csum_errors++; 3325 } else { 3326 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3327 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3328 } 3329 } 3330 3331 /* check for a valid TCP/UDP frame */ 3332 if (!(cqe->fast_path_cqe.status_flags & 3333 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) { 3334 if (__predict_false(cqe_fp_flags & 3335 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) { 3336 fp->eth_q_stats.rx_hw_csum_errors++; 3337 } else { 3338 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3339 m->m_pkthdr.csum_data = 0xFFFF; 3340 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | 3341 CSUM_PSEUDO_HDR); 3342 } 3343 } 3344 } 3345 3346 /* if there is a VLAN tag then flag that info */ 3347 if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) { 3348 m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag; 3349 m->m_flags |= M_VLANTAG; 3350 } 3351 3352 #if __FreeBSD_version >= 800000 3353 /* specify what RSS queue was used for this flow */ 3354 m->m_pkthdr.flowid = fp->index; 3355 BXE_SET_FLOWID(m); 3356 #endif 3357 3358 next_rx: 3359 3360 bd_cons = RX_BD_NEXT(bd_cons); 3361 bd_prod = RX_BD_NEXT(bd_prod); 3362 bd_prod_fw = RX_BD_NEXT(bd_prod_fw); 3363 3364 /* pass the frame to the stack */ 3365 if (__predict_true(m != NULL)) { 3366 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3367 rx_pkts++; 3368 if_input(ifp, m); 3369 } 3370 3371 next_cqe: 3372 3373 sw_cq_prod = RCQ_NEXT(sw_cq_prod); 3374 sw_cq_cons = RCQ_NEXT(sw_cq_cons); 3375 3376 /* limit spinning on the queue */ 3377 if (rc != 0) 3378 break; 3379 3380 if (rx_pkts == sc->rx_budget) { 3381 fp->eth_q_stats.rx_budget_reached++; 3382 break; 3383 } 3384 } /* while work to do */ 3385 3386 fp->rx_bd_cons = bd_cons; 3387 fp->rx_bd_prod = bd_prod_fw; 3388 fp->rx_cq_cons = sw_cq_cons; 3389 fp->rx_cq_prod = sw_cq_prod; 3390 3391 /* Update producers */ 3392 bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod); 3393 3394 fp->eth_q_stats.rx_pkts += rx_pkts; 3395 fp->eth_q_stats.rx_calls++; 3396 3397 BXE_FP_RX_UNLOCK(fp); 3398 3399 return (sw_cq_cons != hw_cq_cons); 3400 } 3401 3402 static uint16_t 3403 bxe_free_tx_pkt(struct bxe_softc *sc, 3404 struct bxe_fastpath *fp, 3405 uint16_t idx) 3406 { 3407 struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx]; 3408 struct eth_tx_start_bd *tx_start_bd; 3409 uint16_t bd_idx = TX_BD(tx_buf->first_bd); 3410 uint16_t new_cons; 3411 int nbd; 3412 3413 /* unmap the mbuf from non-paged memory */ 3414 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 3415 3416 tx_start_bd = &fp->tx_chain[bd_idx].start_bd; 3417 nbd = le16toh(tx_start_bd->nbd) - 1; 3418 3419 new_cons = (tx_buf->first_bd + nbd); 3420 3421 /* free the mbuf */ 3422 if (__predict_true(tx_buf->m != NULL)) { 3423 m_freem(tx_buf->m); 3424 fp->eth_q_stats.mbuf_alloc_tx--; 3425 } else { 3426 fp->eth_q_stats.tx_chain_lost_mbuf++; 3427 } 3428 3429 tx_buf->m = NULL; 3430 tx_buf->first_bd = 0; 3431 3432 return (new_cons); 3433 } 3434 3435 /* transmit timeout watchdog */ 3436 static int 3437 bxe_watchdog(struct bxe_softc *sc, 3438 struct bxe_fastpath *fp) 3439 { 3440 BXE_FP_TX_LOCK(fp); 3441 3442 if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) { 3443 BXE_FP_TX_UNLOCK(fp); 3444 return (0); 3445 } 3446 3447 BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index); 3448 3449 BXE_FP_TX_UNLOCK(fp); 3450 3451 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT); 3452 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 3453 3454 return (-1); 3455 } 3456 3457 /* processes transmit completions */ 3458 static uint8_t 3459 bxe_txeof(struct bxe_softc *sc, 3460 struct bxe_fastpath *fp) 3461 { 3462 if_t ifp = sc->ifp; 3463 uint16_t bd_cons, hw_cons, sw_cons, pkt_cons; 3464 uint16_t tx_bd_avail; 3465 3466 BXE_FP_TX_LOCK_ASSERT(fp); 3467 3468 bd_cons = fp->tx_bd_cons; 3469 hw_cons = le16toh(*fp->tx_cons_sb); 3470 sw_cons = fp->tx_pkt_cons; 3471 3472 while (sw_cons != hw_cons) { 3473 pkt_cons = TX_BD(sw_cons); 3474 3475 BLOGD(sc, DBG_TX, 3476 "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n", 3477 fp->index, hw_cons, sw_cons, pkt_cons); 3478 3479 bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons); 3480 3481 sw_cons++; 3482 } 3483 3484 fp->tx_pkt_cons = sw_cons; 3485 fp->tx_bd_cons = bd_cons; 3486 3487 BLOGD(sc, DBG_TX, 3488 "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n", 3489 fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod); 3490 3491 mb(); 3492 3493 tx_bd_avail = bxe_tx_avail(sc, fp); 3494 3495 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 3496 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 3497 } else { 3498 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 3499 } 3500 3501 if (fp->tx_pkt_prod != fp->tx_pkt_cons) { 3502 /* reset the watchdog timer if there are pending transmits */ 3503 fp->watchdog_timer = BXE_TX_TIMEOUT; 3504 return (TRUE); 3505 } else { 3506 /* clear watchdog when there are no pending transmits */ 3507 fp->watchdog_timer = 0; 3508 return (FALSE); 3509 } 3510 } 3511 3512 static void 3513 bxe_drain_tx_queues(struct bxe_softc *sc) 3514 { 3515 struct bxe_fastpath *fp; 3516 int i, count; 3517 3518 /* wait until all TX fastpath tasks have completed */ 3519 for (i = 0; i < sc->num_queues; i++) { 3520 fp = &sc->fp[i]; 3521 3522 count = 1000; 3523 3524 while (bxe_has_tx_work(fp)) { 3525 3526 BXE_FP_TX_LOCK(fp); 3527 bxe_txeof(sc, fp); 3528 BXE_FP_TX_UNLOCK(fp); 3529 3530 if (count == 0) { 3531 BLOGE(sc, "Timeout waiting for fp[%d] " 3532 "transmits to complete!\n", i); 3533 bxe_panic(sc, ("tx drain failure\n")); 3534 return; 3535 } 3536 3537 count--; 3538 DELAY(1000); 3539 rmb(); 3540 } 3541 } 3542 3543 return; 3544 } 3545 3546 static int 3547 bxe_del_all_macs(struct bxe_softc *sc, 3548 struct ecore_vlan_mac_obj *mac_obj, 3549 int mac_type, 3550 uint8_t wait_for_comp) 3551 { 3552 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 3553 int rc; 3554 3555 /* wait for completion of requested */ 3556 if (wait_for_comp) { 3557 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 3558 } 3559 3560 /* Set the mac type of addresses we want to clear */ 3561 bxe_set_bit(mac_type, &vlan_mac_flags); 3562 3563 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags); 3564 if (rc < 0) { 3565 BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n", 3566 rc, mac_type, wait_for_comp); 3567 } 3568 3569 return (rc); 3570 } 3571 3572 static int 3573 bxe_fill_accept_flags(struct bxe_softc *sc, 3574 uint32_t rx_mode, 3575 unsigned long *rx_accept_flags, 3576 unsigned long *tx_accept_flags) 3577 { 3578 /* Clear the flags first */ 3579 *rx_accept_flags = 0; 3580 *tx_accept_flags = 0; 3581 3582 switch (rx_mode) { 3583 case BXE_RX_MODE_NONE: 3584 /* 3585 * 'drop all' supersedes any accept flags that may have been 3586 * passed to the function. 3587 */ 3588 break; 3589 3590 case BXE_RX_MODE_NORMAL: 3591 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3592 bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags); 3593 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3594 3595 /* internal switching mode */ 3596 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3597 bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags); 3598 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3599 3600 break; 3601 3602 case BXE_RX_MODE_ALLMULTI: 3603 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3604 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3605 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3606 3607 /* internal switching mode */ 3608 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3609 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3610 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3611 3612 break; 3613 3614 case BXE_RX_MODE_PROMISC: 3615 /* 3616 * According to deffinition of SI mode, iface in promisc mode 3617 * should receive matched and unmatched (in resolution of port) 3618 * unicast packets. 3619 */ 3620 bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags); 3621 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3622 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3623 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3624 3625 /* internal switching mode */ 3626 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3627 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3628 3629 if (IS_MF_SI(sc)) { 3630 bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags); 3631 } else { 3632 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3633 } 3634 3635 break; 3636 3637 default: 3638 BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode); 3639 return (-1); 3640 } 3641 3642 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ 3643 if (rx_mode != BXE_RX_MODE_NONE) { 3644 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags); 3645 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags); 3646 } 3647 3648 return (0); 3649 } 3650 3651 static int 3652 bxe_set_q_rx_mode(struct bxe_softc *sc, 3653 uint8_t cl_id, 3654 unsigned long rx_mode_flags, 3655 unsigned long rx_accept_flags, 3656 unsigned long tx_accept_flags, 3657 unsigned long ramrod_flags) 3658 { 3659 struct ecore_rx_mode_ramrod_params ramrod_param; 3660 int rc; 3661 3662 memset(&ramrod_param, 0, sizeof(ramrod_param)); 3663 3664 /* Prepare ramrod parameters */ 3665 ramrod_param.cid = 0; 3666 ramrod_param.cl_id = cl_id; 3667 ramrod_param.rx_mode_obj = &sc->rx_mode_obj; 3668 ramrod_param.func_id = SC_FUNC(sc); 3669 3670 ramrod_param.pstate = &sc->sp_state; 3671 ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING; 3672 3673 ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata); 3674 ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata); 3675 3676 bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 3677 3678 ramrod_param.ramrod_flags = ramrod_flags; 3679 ramrod_param.rx_mode_flags = rx_mode_flags; 3680 3681 ramrod_param.rx_accept_flags = rx_accept_flags; 3682 ramrod_param.tx_accept_flags = tx_accept_flags; 3683 3684 rc = ecore_config_rx_mode(sc, &ramrod_param); 3685 if (rc < 0) { 3686 BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x " 3687 "rx_accept_flags 0x%x tx_accept_flags 0x%x " 3688 "ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id, 3689 (uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags, 3690 (uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc); 3691 return (rc); 3692 } 3693 3694 return (0); 3695 } 3696 3697 static int 3698 bxe_set_storm_rx_mode(struct bxe_softc *sc) 3699 { 3700 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 3701 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 3702 int rc; 3703 3704 rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags, 3705 &tx_accept_flags); 3706 if (rc) { 3707 return (rc); 3708 } 3709 3710 bxe_set_bit(RAMROD_RX, &ramrod_flags); 3711 bxe_set_bit(RAMROD_TX, &ramrod_flags); 3712 3713 /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */ 3714 return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags, 3715 rx_accept_flags, tx_accept_flags, 3716 ramrod_flags)); 3717 } 3718 3719 /* returns the "mcp load_code" according to global load_count array */ 3720 static int 3721 bxe_nic_load_no_mcp(struct bxe_softc *sc) 3722 { 3723 int path = SC_PATH(sc); 3724 int port = SC_PORT(sc); 3725 3726 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3727 path, load_count[path][0], load_count[path][1], 3728 load_count[path][2]); 3729 load_count[path][0]++; 3730 load_count[path][1 + port]++; 3731 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3732 path, load_count[path][0], load_count[path][1], 3733 load_count[path][2]); 3734 if (load_count[path][0] == 1) { 3735 return (FW_MSG_CODE_DRV_LOAD_COMMON); 3736 } else if (load_count[path][1 + port] == 1) { 3737 return (FW_MSG_CODE_DRV_LOAD_PORT); 3738 } else { 3739 return (FW_MSG_CODE_DRV_LOAD_FUNCTION); 3740 } 3741 } 3742 3743 /* returns the "mcp load_code" according to global load_count array */ 3744 static int 3745 bxe_nic_unload_no_mcp(struct bxe_softc *sc) 3746 { 3747 int port = SC_PORT(sc); 3748 int path = SC_PATH(sc); 3749 3750 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3751 path, load_count[path][0], load_count[path][1], 3752 load_count[path][2]); 3753 load_count[path][0]--; 3754 load_count[path][1 + port]--; 3755 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3756 path, load_count[path][0], load_count[path][1], 3757 load_count[path][2]); 3758 if (load_count[path][0] == 0) { 3759 return (FW_MSG_CODE_DRV_UNLOAD_COMMON); 3760 } else if (load_count[path][1 + port] == 0) { 3761 return (FW_MSG_CODE_DRV_UNLOAD_PORT); 3762 } else { 3763 return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION); 3764 } 3765 } 3766 3767 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */ 3768 static uint32_t 3769 bxe_send_unload_req(struct bxe_softc *sc, 3770 int unload_mode) 3771 { 3772 uint32_t reset_code = 0; 3773 3774 /* Select the UNLOAD request mode */ 3775 if (unload_mode == UNLOAD_NORMAL) { 3776 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3777 } else { 3778 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3779 } 3780 3781 /* Send the request to the MCP */ 3782 if (!BXE_NOMCP(sc)) { 3783 reset_code = bxe_fw_command(sc, reset_code, 0); 3784 } else { 3785 reset_code = bxe_nic_unload_no_mcp(sc); 3786 } 3787 3788 return (reset_code); 3789 } 3790 3791 /* send UNLOAD_DONE command to the MCP */ 3792 static void 3793 bxe_send_unload_done(struct bxe_softc *sc, 3794 uint8_t keep_link) 3795 { 3796 uint32_t reset_param = 3797 keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 3798 3799 /* Report UNLOAD_DONE to MCP */ 3800 if (!BXE_NOMCP(sc)) { 3801 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 3802 } 3803 } 3804 3805 static int 3806 bxe_func_wait_started(struct bxe_softc *sc) 3807 { 3808 int tout = 50; 3809 3810 if (!sc->port.pmf) { 3811 return (0); 3812 } 3813 3814 /* 3815 * (assumption: No Attention from MCP at this stage) 3816 * PMF probably in the middle of TX disable/enable transaction 3817 * 1. Sync IRS for default SB 3818 * 2. Sync SP queue - this guarantees us that attention handling started 3819 * 3. Wait, that TX disable/enable transaction completes 3820 * 3821 * 1+2 guarantee that if DCBX attention was scheduled it already changed 3822 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 3823 * received completion for the transaction the state is TX_STOPPED. 3824 * State will return to STARTED after completion of TX_STOPPED-->STARTED 3825 * transaction. 3826 */ 3827 3828 /* XXX make sure default SB ISR is done */ 3829 /* need a way to synchronize an irq (intr_mtx?) */ 3830 3831 /* XXX flush any work queues */ 3832 3833 while (ecore_func_get_state(sc, &sc->func_obj) != 3834 ECORE_F_STATE_STARTED && tout--) { 3835 DELAY(20000); 3836 } 3837 3838 if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) { 3839 /* 3840 * Failed to complete the transaction in a "good way" 3841 * Force both transactions with CLR bit. 3842 */ 3843 struct ecore_func_state_params func_params = { NULL }; 3844 3845 BLOGE(sc, "Unexpected function state! " 3846 "Forcing STARTED-->TX_STOPPED-->STARTED\n"); 3847 3848 func_params.f_obj = &sc->func_obj; 3849 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 3850 3851 /* STARTED-->TX_STOPPED */ 3852 func_params.cmd = ECORE_F_CMD_TX_STOP; 3853 ecore_func_state_change(sc, &func_params); 3854 3855 /* TX_STOPPED-->STARTED */ 3856 func_params.cmd = ECORE_F_CMD_TX_START; 3857 return (ecore_func_state_change(sc, &func_params)); 3858 } 3859 3860 return (0); 3861 } 3862 3863 static int 3864 bxe_stop_queue(struct bxe_softc *sc, 3865 int index) 3866 { 3867 struct bxe_fastpath *fp = &sc->fp[index]; 3868 struct ecore_queue_state_params q_params = { NULL }; 3869 int rc; 3870 3871 BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index); 3872 3873 q_params.q_obj = &sc->sp_objs[fp->index].q_obj; 3874 /* We want to wait for completion in this context */ 3875 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 3876 3877 /* Stop the primary connection: */ 3878 3879 /* ...halt the connection */ 3880 q_params.cmd = ECORE_Q_CMD_HALT; 3881 rc = ecore_queue_state_change(sc, &q_params); 3882 if (rc) { 3883 return (rc); 3884 } 3885 3886 /* ...terminate the connection */ 3887 q_params.cmd = ECORE_Q_CMD_TERMINATE; 3888 memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate)); 3889 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 3890 rc = ecore_queue_state_change(sc, &q_params); 3891 if (rc) { 3892 return (rc); 3893 } 3894 3895 /* ...delete cfc entry */ 3896 q_params.cmd = ECORE_Q_CMD_CFC_DEL; 3897 memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del)); 3898 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 3899 return (ecore_queue_state_change(sc, &q_params)); 3900 } 3901 3902 /* wait for the outstanding SP commands */ 3903 static inline uint8_t 3904 bxe_wait_sp_comp(struct bxe_softc *sc, 3905 unsigned long mask) 3906 { 3907 unsigned long tmp; 3908 int tout = 5000; /* wait for 5 secs tops */ 3909 3910 while (tout--) { 3911 mb(); 3912 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) { 3913 return (TRUE); 3914 } 3915 3916 DELAY(1000); 3917 } 3918 3919 mb(); 3920 3921 tmp = atomic_load_acq_long(&sc->sp_state); 3922 if (tmp & mask) { 3923 BLOGE(sc, "Filtering completion timed out: " 3924 "sp_state 0x%lx, mask 0x%lx\n", 3925 tmp, mask); 3926 return (FALSE); 3927 } 3928 3929 return (FALSE); 3930 } 3931 3932 static int 3933 bxe_func_stop(struct bxe_softc *sc) 3934 { 3935 struct ecore_func_state_params func_params = { NULL }; 3936 int rc; 3937 3938 /* prepare parameters for function state transitions */ 3939 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 3940 func_params.f_obj = &sc->func_obj; 3941 func_params.cmd = ECORE_F_CMD_STOP; 3942 3943 /* 3944 * Try to stop the function the 'good way'. If it fails (in case 3945 * of a parity error during bxe_chip_cleanup()) and we are 3946 * not in a debug mode, perform a state transaction in order to 3947 * enable further HW_RESET transaction. 3948 */ 3949 rc = ecore_func_state_change(sc, &func_params); 3950 if (rc) { 3951 BLOGE(sc, "FUNC_STOP ramrod failed. " 3952 "Running a dry transaction (%d)\n", rc); 3953 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 3954 return (ecore_func_state_change(sc, &func_params)); 3955 } 3956 3957 return (0); 3958 } 3959 3960 static int 3961 bxe_reset_hw(struct bxe_softc *sc, 3962 uint32_t load_code) 3963 { 3964 struct ecore_func_state_params func_params = { NULL }; 3965 3966 /* Prepare parameters for function state transitions */ 3967 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 3968 3969 func_params.f_obj = &sc->func_obj; 3970 func_params.cmd = ECORE_F_CMD_HW_RESET; 3971 3972 func_params.params.hw_init.load_phase = load_code; 3973 3974 return (ecore_func_state_change(sc, &func_params)); 3975 } 3976 3977 static void 3978 bxe_int_disable_sync(struct bxe_softc *sc, 3979 int disable_hw) 3980 { 3981 if (disable_hw) { 3982 /* prevent the HW from sending interrupts */ 3983 bxe_int_disable(sc); 3984 } 3985 3986 /* XXX need a way to synchronize ALL irqs (intr_mtx?) */ 3987 /* make sure all ISRs are done */ 3988 3989 /* XXX make sure sp_task is not running */ 3990 /* cancel and flush work queues */ 3991 } 3992 3993 static void 3994 bxe_chip_cleanup(struct bxe_softc *sc, 3995 uint32_t unload_mode, 3996 uint8_t keep_link) 3997 { 3998 int port = SC_PORT(sc); 3999 struct ecore_mcast_ramrod_params rparam = { NULL }; 4000 uint32_t reset_code; 4001 int i, rc = 0; 4002 4003 bxe_drain_tx_queues(sc); 4004 4005 /* give HW time to discard old tx messages */ 4006 DELAY(1000); 4007 4008 /* Clean all ETH MACs */ 4009 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE); 4010 if (rc < 0) { 4011 BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc); 4012 } 4013 4014 /* Clean up UC list */ 4015 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE); 4016 if (rc < 0) { 4017 BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc); 4018 } 4019 4020 /* Disable LLH */ 4021 if (!CHIP_IS_E1(sc)) { 4022 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 4023 } 4024 4025 /* Set "drop all" to stop Rx */ 4026 4027 /* 4028 * We need to take the BXE_MCAST_LOCK() here in order to prevent 4029 * a race between the completion code and this code. 4030 */ 4031 BXE_MCAST_LOCK(sc); 4032 4033 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 4034 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 4035 } else { 4036 bxe_set_storm_rx_mode(sc); 4037 } 4038 4039 /* Clean up multicast configuration */ 4040 rparam.mcast_obj = &sc->mcast_obj; 4041 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4042 if (rc < 0) { 4043 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4044 } 4045 4046 BXE_MCAST_UNLOCK(sc); 4047 4048 // XXX bxe_iov_chip_cleanup(sc); 4049 4050 /* 4051 * Send the UNLOAD_REQUEST to the MCP. This will return if 4052 * this function should perform FUNCTION, PORT, or COMMON HW 4053 * reset. 4054 */ 4055 reset_code = bxe_send_unload_req(sc, unload_mode); 4056 4057 /* 4058 * (assumption: No Attention from MCP at this stage) 4059 * PMF probably in the middle of TX disable/enable transaction 4060 */ 4061 rc = bxe_func_wait_started(sc); 4062 if (rc) { 4063 BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc); 4064 } 4065 4066 /* 4067 * Close multi and leading connections 4068 * Completions for ramrods are collected in a synchronous way 4069 */ 4070 for (i = 0; i < sc->num_queues; i++) { 4071 if (bxe_stop_queue(sc, i)) { 4072 goto unload_error; 4073 } 4074 } 4075 4076 /* 4077 * If SP settings didn't get completed so far - something 4078 * very wrong has happen. 4079 */ 4080 if (!bxe_wait_sp_comp(sc, ~0x0UL)) { 4081 BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc); 4082 } 4083 4084 unload_error: 4085 4086 rc = bxe_func_stop(sc); 4087 if (rc) { 4088 BLOGE(sc, "Function stop failed!(%d)\n", rc); 4089 } 4090 4091 /* disable HW interrupts */ 4092 bxe_int_disable_sync(sc, TRUE); 4093 4094 /* detach interrupts */ 4095 bxe_interrupt_detach(sc); 4096 4097 /* Reset the chip */ 4098 rc = bxe_reset_hw(sc, reset_code); 4099 if (rc) { 4100 BLOGE(sc, "Hardware reset failed(%d)\n", rc); 4101 } 4102 4103 /* Report UNLOAD_DONE to MCP */ 4104 bxe_send_unload_done(sc, keep_link); 4105 } 4106 4107 static void 4108 bxe_disable_close_the_gate(struct bxe_softc *sc) 4109 { 4110 uint32_t val; 4111 int port = SC_PORT(sc); 4112 4113 BLOGD(sc, DBG_LOAD, 4114 "Disabling 'close the gates'\n"); 4115 4116 if (CHIP_IS_E1(sc)) { 4117 uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 4118 MISC_REG_AEU_MASK_ATTN_FUNC_0; 4119 val = REG_RD(sc, addr); 4120 val &= ~(0x300); 4121 REG_WR(sc, addr, val); 4122 } else { 4123 val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK); 4124 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 4125 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 4126 REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val); 4127 } 4128 } 4129 4130 /* 4131 * Cleans the object that have internal lists without sending 4132 * ramrods. Should be run when interrutps are disabled. 4133 */ 4134 static void 4135 bxe_squeeze_objects(struct bxe_softc *sc) 4136 { 4137 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 4138 struct ecore_mcast_ramrod_params rparam = { NULL }; 4139 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 4140 int rc; 4141 4142 /* Cleanup MACs' object first... */ 4143 4144 /* Wait for completion of requested */ 4145 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 4146 /* Perform a dry cleanup */ 4147 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 4148 4149 /* Clean ETH primary MAC */ 4150 bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags); 4151 rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags, 4152 &ramrod_flags); 4153 if (rc != 0) { 4154 BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc); 4155 } 4156 4157 /* Cleanup UC list */ 4158 vlan_mac_flags = 0; 4159 bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags); 4160 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, 4161 &ramrod_flags); 4162 if (rc != 0) { 4163 BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc); 4164 } 4165 4166 /* Now clean mcast object... */ 4167 4168 rparam.mcast_obj = &sc->mcast_obj; 4169 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 4170 4171 /* Add a DEL command... */ 4172 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4173 if (rc < 0) { 4174 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4175 } 4176 4177 /* now wait until all pending commands are cleared */ 4178 4179 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4180 while (rc != 0) { 4181 if (rc < 0) { 4182 BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc); 4183 return; 4184 } 4185 4186 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4187 } 4188 } 4189 4190 /* stop the controller */ 4191 static __noinline int 4192 bxe_nic_unload(struct bxe_softc *sc, 4193 uint32_t unload_mode, 4194 uint8_t keep_link) 4195 { 4196 uint8_t global = FALSE; 4197 uint32_t val; 4198 int i; 4199 4200 BXE_CORE_LOCK_ASSERT(sc); 4201 4202 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 4203 4204 for (i = 0; i < sc->num_queues; i++) { 4205 struct bxe_fastpath *fp; 4206 4207 fp = &sc->fp[i]; 4208 BXE_FP_TX_LOCK(fp); 4209 BXE_FP_TX_UNLOCK(fp); 4210 } 4211 4212 BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n"); 4213 4214 /* mark driver as unloaded in shmem2 */ 4215 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 4216 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 4217 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 4218 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 4219 } 4220 4221 if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE && 4222 (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) { 4223 /* 4224 * We can get here if the driver has been unloaded 4225 * during parity error recovery and is either waiting for a 4226 * leader to complete or for other functions to unload and 4227 * then ifconfig down has been issued. In this case we want to 4228 * unload and let other functions to complete a recovery 4229 * process. 4230 */ 4231 sc->recovery_state = BXE_RECOVERY_DONE; 4232 sc->is_leader = 0; 4233 bxe_release_leader_lock(sc); 4234 mb(); 4235 4236 BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n"); 4237 BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x" 4238 " state = 0x%x\n", sc->recovery_state, sc->state); 4239 return (-1); 4240 } 4241 4242 /* 4243 * Nothing to do during unload if previous bxe_nic_load() 4244 * did not completed succesfully - all resourses are released. 4245 */ 4246 if ((sc->state == BXE_STATE_CLOSED) || 4247 (sc->state == BXE_STATE_ERROR)) { 4248 return (0); 4249 } 4250 4251 sc->state = BXE_STATE_CLOSING_WAITING_HALT; 4252 mb(); 4253 4254 /* stop tx */ 4255 bxe_tx_disable(sc); 4256 4257 sc->rx_mode = BXE_RX_MODE_NONE; 4258 /* XXX set rx mode ??? */ 4259 4260 if (IS_PF(sc) && !sc->grcdump_done) { 4261 /* set ALWAYS_ALIVE bit in shmem */ 4262 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 4263 4264 bxe_drv_pulse(sc); 4265 4266 bxe_stats_handle(sc, STATS_EVENT_STOP); 4267 bxe_save_statistics(sc); 4268 } 4269 4270 /* wait till consumers catch up with producers in all queues */ 4271 bxe_drain_tx_queues(sc); 4272 4273 /* if VF indicate to PF this function is going down (PF will delete sp 4274 * elements and clear initializations 4275 */ 4276 if (IS_VF(sc)) { 4277 ; /* bxe_vfpf_close_vf(sc); */ 4278 } else if (unload_mode != UNLOAD_RECOVERY) { 4279 /* if this is a normal/close unload need to clean up chip */ 4280 if (!sc->grcdump_done) 4281 bxe_chip_cleanup(sc, unload_mode, keep_link); 4282 } else { 4283 /* Send the UNLOAD_REQUEST to the MCP */ 4284 bxe_send_unload_req(sc, unload_mode); 4285 4286 /* 4287 * Prevent transactions to host from the functions on the 4288 * engine that doesn't reset global blocks in case of global 4289 * attention once gloabl blocks are reset and gates are opened 4290 * (the engine which leader will perform the recovery 4291 * last). 4292 */ 4293 if (!CHIP_IS_E1x(sc)) { 4294 bxe_pf_disable(sc); 4295 } 4296 4297 /* disable HW interrupts */ 4298 bxe_int_disable_sync(sc, TRUE); 4299 4300 /* detach interrupts */ 4301 bxe_interrupt_detach(sc); 4302 4303 /* Report UNLOAD_DONE to MCP */ 4304 bxe_send_unload_done(sc, FALSE); 4305 } 4306 4307 /* 4308 * At this stage no more interrupts will arrive so we may safely clean 4309 * the queue'able objects here in case they failed to get cleaned so far. 4310 */ 4311 if (IS_PF(sc)) { 4312 bxe_squeeze_objects(sc); 4313 } 4314 4315 /* There should be no more pending SP commands at this stage */ 4316 sc->sp_state = 0; 4317 4318 sc->port.pmf = 0; 4319 4320 bxe_free_fp_buffers(sc); 4321 4322 if (IS_PF(sc)) { 4323 bxe_free_mem(sc); 4324 } 4325 4326 bxe_free_fw_stats_mem(sc); 4327 4328 sc->state = BXE_STATE_CLOSED; 4329 4330 /* 4331 * Check if there are pending parity attentions. If there are - set 4332 * RECOVERY_IN_PROGRESS. 4333 */ 4334 if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) { 4335 bxe_set_reset_in_progress(sc); 4336 4337 /* Set RESET_IS_GLOBAL if needed */ 4338 if (global) { 4339 bxe_set_reset_global(sc); 4340 } 4341 } 4342 4343 /* 4344 * The last driver must disable a "close the gate" if there is no 4345 * parity attention or "process kill" pending. 4346 */ 4347 if (IS_PF(sc) && !bxe_clear_pf_load(sc) && 4348 bxe_reset_is_done(sc, SC_PATH(sc))) { 4349 bxe_disable_close_the_gate(sc); 4350 } 4351 4352 BLOGD(sc, DBG_LOAD, "Ended NIC unload\n"); 4353 4354 return (0); 4355 } 4356 4357 /* 4358 * Called by the OS to set various media options (i.e. link, speed, etc.) when 4359 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...". 4360 */ 4361 static int 4362 bxe_ifmedia_update(struct ifnet *ifp) 4363 { 4364 struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp); 4365 struct ifmedia *ifm; 4366 4367 ifm = &sc->ifmedia; 4368 4369 /* We only support Ethernet media type. */ 4370 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) { 4371 return (EINVAL); 4372 } 4373 4374 switch (IFM_SUBTYPE(ifm->ifm_media)) { 4375 case IFM_AUTO: 4376 break; 4377 case IFM_10G_CX4: 4378 case IFM_10G_SR: 4379 case IFM_10G_T: 4380 case IFM_10G_TWINAX: 4381 default: 4382 /* We don't support changing the media type. */ 4383 BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n", 4384 IFM_SUBTYPE(ifm->ifm_media)); 4385 return (EINVAL); 4386 } 4387 4388 return (0); 4389 } 4390 4391 /* 4392 * Called by the OS to get the current media status (i.e. link, speed, etc.). 4393 */ 4394 static void 4395 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr) 4396 { 4397 struct bxe_softc *sc = if_getsoftc(ifp); 4398 4399 /* Report link down if the driver isn't running. */ 4400 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { 4401 ifmr->ifm_active |= IFM_NONE; 4402 return; 4403 } 4404 4405 /* Setup the default interface info. */ 4406 ifmr->ifm_status = IFM_AVALID; 4407 ifmr->ifm_active = IFM_ETHER; 4408 4409 if (sc->link_vars.link_up) { 4410 ifmr->ifm_status |= IFM_ACTIVE; 4411 } else { 4412 ifmr->ifm_active |= IFM_NONE; 4413 return; 4414 } 4415 4416 ifmr->ifm_active |= sc->media; 4417 4418 if (sc->link_vars.duplex == DUPLEX_FULL) { 4419 ifmr->ifm_active |= IFM_FDX; 4420 } else { 4421 ifmr->ifm_active |= IFM_HDX; 4422 } 4423 } 4424 4425 static int 4426 bxe_ioctl_nvram(struct bxe_softc *sc, 4427 uint32_t priv_op, 4428 struct ifreq *ifr) 4429 { 4430 struct bxe_nvram_data nvdata_base; 4431 struct bxe_nvram_data *nvdata; 4432 int len; 4433 int error = 0; 4434 4435 copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base)); 4436 4437 len = (sizeof(struct bxe_nvram_data) + 4438 nvdata_base.len - 4439 sizeof(uint32_t)); 4440 4441 if (len > sizeof(struct bxe_nvram_data)) { 4442 if ((nvdata = (struct bxe_nvram_data *) 4443 malloc(len, M_DEVBUF, 4444 (M_NOWAIT | M_ZERO))) == NULL) { 4445 BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed priv_op 0x%x " 4446 " len = 0x%x\n", priv_op, len); 4447 return (1); 4448 } 4449 memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data)); 4450 } else { 4451 nvdata = &nvdata_base; 4452 } 4453 4454 if (priv_op == BXE_IOC_RD_NVRAM) { 4455 BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n", 4456 nvdata->offset, nvdata->len); 4457 error = bxe_nvram_read(sc, 4458 nvdata->offset, 4459 (uint8_t *)nvdata->value, 4460 nvdata->len); 4461 copyout(nvdata, ifr->ifr_data, len); 4462 } else { /* BXE_IOC_WR_NVRAM */ 4463 BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n", 4464 nvdata->offset, nvdata->len); 4465 copyin(ifr->ifr_data, nvdata, len); 4466 error = bxe_nvram_write(sc, 4467 nvdata->offset, 4468 (uint8_t *)nvdata->value, 4469 nvdata->len); 4470 } 4471 4472 if (len > sizeof(struct bxe_nvram_data)) { 4473 free(nvdata, M_DEVBUF); 4474 } 4475 4476 return (error); 4477 } 4478 4479 static int 4480 bxe_ioctl_stats_show(struct bxe_softc *sc, 4481 uint32_t priv_op, 4482 struct ifreq *ifr) 4483 { 4484 const size_t str_size = (BXE_NUM_ETH_STATS * STAT_NAME_LEN); 4485 const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t)); 4486 caddr_t p_tmp; 4487 uint32_t *offset; 4488 int i; 4489 4490 switch (priv_op) 4491 { 4492 case BXE_IOC_STATS_SHOW_NUM: 4493 memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data)); 4494 ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num = 4495 BXE_NUM_ETH_STATS; 4496 ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len = 4497 STAT_NAME_LEN; 4498 return (0); 4499 4500 case BXE_IOC_STATS_SHOW_STR: 4501 memset(ifr->ifr_data, 0, str_size); 4502 p_tmp = ifr->ifr_data; 4503 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 4504 strcpy(p_tmp, bxe_eth_stats_arr[i].string); 4505 p_tmp += STAT_NAME_LEN; 4506 } 4507 return (0); 4508 4509 case BXE_IOC_STATS_SHOW_CNT: 4510 memset(ifr->ifr_data, 0, stats_size); 4511 p_tmp = ifr->ifr_data; 4512 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 4513 offset = ((uint32_t *)&sc->eth_stats + 4514 bxe_eth_stats_arr[i].offset); 4515 switch (bxe_eth_stats_arr[i].size) { 4516 case 4: 4517 *((uint64_t *)p_tmp) = (uint64_t)*offset; 4518 break; 4519 case 8: 4520 *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1)); 4521 break; 4522 default: 4523 *((uint64_t *)p_tmp) = 0; 4524 } 4525 p_tmp += sizeof(uint64_t); 4526 } 4527 return (0); 4528 4529 default: 4530 return (-1); 4531 } 4532 } 4533 4534 static void 4535 bxe_handle_chip_tq(void *context, 4536 int pending) 4537 { 4538 struct bxe_softc *sc = (struct bxe_softc *)context; 4539 long work = atomic_load_acq_long(&sc->chip_tq_flags); 4540 4541 switch (work) 4542 { 4543 4544 case CHIP_TQ_REINIT: 4545 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 4546 /* restart the interface */ 4547 BLOGD(sc, DBG_LOAD, "Restarting the interface...\n"); 4548 bxe_periodic_stop(sc); 4549 BXE_CORE_LOCK(sc); 4550 bxe_stop_locked(sc); 4551 bxe_init_locked(sc); 4552 BXE_CORE_UNLOCK(sc); 4553 } 4554 break; 4555 4556 default: 4557 break; 4558 } 4559 } 4560 4561 /* 4562 * Handles any IOCTL calls from the operating system. 4563 * 4564 * Returns: 4565 * 0 = Success, >0 Failure 4566 */ 4567 static int 4568 bxe_ioctl(if_t ifp, 4569 u_long command, 4570 caddr_t data) 4571 { 4572 struct bxe_softc *sc = if_getsoftc(ifp); 4573 struct ifreq *ifr = (struct ifreq *)data; 4574 struct bxe_nvram_data *nvdata; 4575 uint32_t priv_op; 4576 int mask = 0; 4577 int reinit = 0; 4578 int error = 0; 4579 4580 int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN); 4581 int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING); 4582 4583 switch (command) 4584 { 4585 case SIOCSIFMTU: 4586 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n", 4587 ifr->ifr_mtu); 4588 4589 if (sc->mtu == ifr->ifr_mtu) { 4590 /* nothing to change */ 4591 break; 4592 } 4593 4594 if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) { 4595 BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n", 4596 ifr->ifr_mtu, mtu_min, mtu_max); 4597 error = EINVAL; 4598 break; 4599 } 4600 4601 atomic_store_rel_int((volatile unsigned int *)&sc->mtu, 4602 (unsigned long)ifr->ifr_mtu); 4603 /* 4604 atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp), 4605 (unsigned long)ifr->ifr_mtu); 4606 XXX - Not sure why it needs to be atomic 4607 */ 4608 if_setmtu(ifp, ifr->ifr_mtu); 4609 reinit = 1; 4610 break; 4611 4612 case SIOCSIFFLAGS: 4613 /* toggle the interface state up or down */ 4614 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n"); 4615 4616 BXE_CORE_LOCK(sc); 4617 /* check if the interface is up */ 4618 if (if_getflags(ifp) & IFF_UP) { 4619 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4620 /* set the receive mode flags */ 4621 bxe_set_rx_mode(sc); 4622 } else { 4623 bxe_init_locked(sc); 4624 } 4625 } else { 4626 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4627 bxe_periodic_stop(sc); 4628 bxe_stop_locked(sc); 4629 } 4630 } 4631 BXE_CORE_UNLOCK(sc); 4632 4633 break; 4634 4635 case SIOCADDMULTI: 4636 case SIOCDELMULTI: 4637 /* add/delete multicast addresses */ 4638 BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n"); 4639 4640 /* check if the interface is up */ 4641 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4642 /* set the receive mode flags */ 4643 BXE_CORE_LOCK(sc); 4644 bxe_set_rx_mode(sc); 4645 BXE_CORE_UNLOCK(sc); 4646 } 4647 4648 break; 4649 4650 case SIOCSIFCAP: 4651 /* find out which capabilities have changed */ 4652 mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp)); 4653 4654 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n", 4655 mask); 4656 4657 /* toggle the LRO capabilites enable flag */ 4658 if (mask & IFCAP_LRO) { 4659 if_togglecapenable(ifp, IFCAP_LRO); 4660 BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n", 4661 (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF"); 4662 reinit = 1; 4663 } 4664 4665 /* toggle the TXCSUM checksum capabilites enable flag */ 4666 if (mask & IFCAP_TXCSUM) { 4667 if_togglecapenable(ifp, IFCAP_TXCSUM); 4668 BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n", 4669 (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF"); 4670 if (if_getcapenable(ifp) & IFCAP_TXCSUM) { 4671 if_sethwassistbits(ifp, (CSUM_IP | 4672 CSUM_TCP | 4673 CSUM_UDP | 4674 CSUM_TSO | 4675 CSUM_TCP_IPV6 | 4676 CSUM_UDP_IPV6), 0); 4677 } else { 4678 if_clearhwassist(ifp); /* XXX */ 4679 } 4680 } 4681 4682 /* toggle the RXCSUM checksum capabilities enable flag */ 4683 if (mask & IFCAP_RXCSUM) { 4684 if_togglecapenable(ifp, IFCAP_RXCSUM); 4685 BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n", 4686 (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF"); 4687 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 4688 if_sethwassistbits(ifp, (CSUM_IP | 4689 CSUM_TCP | 4690 CSUM_UDP | 4691 CSUM_TSO | 4692 CSUM_TCP_IPV6 | 4693 CSUM_UDP_IPV6), 0); 4694 } else { 4695 if_clearhwassist(ifp); /* XXX */ 4696 } 4697 } 4698 4699 /* toggle TSO4 capabilities enabled flag */ 4700 if (mask & IFCAP_TSO4) { 4701 if_togglecapenable(ifp, IFCAP_TSO4); 4702 BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n", 4703 (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF"); 4704 } 4705 4706 /* toggle TSO6 capabilities enabled flag */ 4707 if (mask & IFCAP_TSO6) { 4708 if_togglecapenable(ifp, IFCAP_TSO6); 4709 BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n", 4710 (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF"); 4711 } 4712 4713 /* toggle VLAN_HWTSO capabilities enabled flag */ 4714 if (mask & IFCAP_VLAN_HWTSO) { 4715 4716 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 4717 BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n", 4718 (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF"); 4719 } 4720 4721 /* toggle VLAN_HWCSUM capabilities enabled flag */ 4722 if (mask & IFCAP_VLAN_HWCSUM) { 4723 /* XXX investigate this... */ 4724 BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n"); 4725 error = EINVAL; 4726 } 4727 4728 /* toggle VLAN_MTU capabilities enable flag */ 4729 if (mask & IFCAP_VLAN_MTU) { 4730 /* XXX investigate this... */ 4731 BLOGE(sc, "Changing VLAN_MTU is not supported!\n"); 4732 error = EINVAL; 4733 } 4734 4735 /* toggle VLAN_HWTAGGING capabilities enabled flag */ 4736 if (mask & IFCAP_VLAN_HWTAGGING) { 4737 /* XXX investigate this... */ 4738 BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n"); 4739 error = EINVAL; 4740 } 4741 4742 /* toggle VLAN_HWFILTER capabilities enabled flag */ 4743 if (mask & IFCAP_VLAN_HWFILTER) { 4744 /* XXX investigate this... */ 4745 BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n"); 4746 error = EINVAL; 4747 } 4748 4749 /* XXX not yet... 4750 * IFCAP_WOL_MAGIC 4751 */ 4752 4753 break; 4754 4755 case SIOCSIFMEDIA: 4756 case SIOCGIFMEDIA: 4757 /* set/get interface media */ 4758 BLOGD(sc, DBG_IOCTL, 4759 "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n", 4760 (command & 0xff)); 4761 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); 4762 break; 4763 4764 case SIOCGPRIVATE_0: 4765 copyin(ifr->ifr_data, &priv_op, sizeof(priv_op)); 4766 4767 switch (priv_op) 4768 { 4769 case BXE_IOC_RD_NVRAM: 4770 case BXE_IOC_WR_NVRAM: 4771 nvdata = (struct bxe_nvram_data *)ifr->ifr_data; 4772 BLOGD(sc, DBG_IOCTL, 4773 "Received Private NVRAM ioctl addr=0x%x size=%u\n", 4774 nvdata->offset, nvdata->len); 4775 error = bxe_ioctl_nvram(sc, priv_op, ifr); 4776 break; 4777 4778 case BXE_IOC_STATS_SHOW_NUM: 4779 case BXE_IOC_STATS_SHOW_STR: 4780 case BXE_IOC_STATS_SHOW_CNT: 4781 BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n", 4782 priv_op); 4783 error = bxe_ioctl_stats_show(sc, priv_op, ifr); 4784 break; 4785 4786 default: 4787 BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op); 4788 error = EINVAL; 4789 break; 4790 } 4791 4792 break; 4793 4794 default: 4795 BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n", 4796 (command & 0xff)); 4797 error = ether_ioctl(ifp, command, data); 4798 break; 4799 } 4800 4801 if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 4802 BLOGD(sc, DBG_LOAD | DBG_IOCTL, 4803 "Re-initializing hardware from IOCTL change\n"); 4804 bxe_periodic_stop(sc); 4805 BXE_CORE_LOCK(sc); 4806 bxe_stop_locked(sc); 4807 bxe_init_locked(sc); 4808 BXE_CORE_UNLOCK(sc); 4809 } 4810 4811 return (error); 4812 } 4813 4814 static __noinline void 4815 bxe_dump_mbuf(struct bxe_softc *sc, 4816 struct mbuf *m, 4817 uint8_t contents) 4818 { 4819 char * type; 4820 int i = 0; 4821 4822 if (!(sc->debug & DBG_MBUF)) { 4823 return; 4824 } 4825 4826 if (m == NULL) { 4827 BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n"); 4828 return; 4829 } 4830 4831 while (m) { 4832 4833 #if __FreeBSD_version >= 1000000 4834 BLOGD(sc, DBG_MBUF, 4835 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 4836 i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data); 4837 4838 if (m->m_flags & M_PKTHDR) { 4839 BLOGD(sc, DBG_MBUF, 4840 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 4841 i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS, 4842 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 4843 } 4844 #else 4845 BLOGD(sc, DBG_MBUF, 4846 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 4847 i, m, m->m_len, m->m_flags, 4848 "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", m->m_data); 4849 4850 if (m->m_flags & M_PKTHDR) { 4851 BLOGD(sc, DBG_MBUF, 4852 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 4853 i, m->m_pkthdr.len, m->m_flags, 4854 "\20\12M_BCAST\13M_MCAST\14M_FRAG" 4855 "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG" 4856 "\22M_PROMISC\23M_NOFREE", 4857 (int)m->m_pkthdr.csum_flags, 4858 "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS" 4859 "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED" 4860 "\12CSUM_IP_VALID\13CSUM_DATA_VALID" 4861 "\14CSUM_PSEUDO_HDR"); 4862 } 4863 #endif /* #if __FreeBSD_version >= 1000000 */ 4864 4865 if (m->m_flags & M_EXT) { 4866 switch (m->m_ext.ext_type) { 4867 case EXT_CLUSTER: type = "EXT_CLUSTER"; break; 4868 case EXT_SFBUF: type = "EXT_SFBUF"; break; 4869 case EXT_JUMBOP: type = "EXT_JUMBOP"; break; 4870 case EXT_JUMBO9: type = "EXT_JUMBO9"; break; 4871 case EXT_JUMBO16: type = "EXT_JUMBO16"; break; 4872 case EXT_PACKET: type = "EXT_PACKET"; break; 4873 case EXT_MBUF: type = "EXT_MBUF"; break; 4874 case EXT_NET_DRV: type = "EXT_NET_DRV"; break; 4875 case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break; 4876 case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break; 4877 case EXT_EXTREF: type = "EXT_EXTREF"; break; 4878 default: type = "UNKNOWN"; break; 4879 } 4880 4881 BLOGD(sc, DBG_MBUF, 4882 "%02d: - m_ext: %p ext_size=%d type=%s\n", 4883 i, m->m_ext.ext_buf, m->m_ext.ext_size, type); 4884 } 4885 4886 if (contents) { 4887 bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE); 4888 } 4889 4890 m = m->m_next; 4891 i++; 4892 } 4893 } 4894 4895 /* 4896 * Checks to ensure the 13 bd sliding window is >= MSS for TSO. 4897 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS. 4898 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD 4899 * The headers comes in a seperate bd in FreeBSD so 13-3=10. 4900 * Returns: 0 if OK to send, 1 if packet needs further defragmentation 4901 */ 4902 static int 4903 bxe_chktso_window(struct bxe_softc *sc, 4904 int nsegs, 4905 bus_dma_segment_t *segs, 4906 struct mbuf *m) 4907 { 4908 uint32_t num_wnds, wnd_size, wnd_sum; 4909 int32_t frag_idx, wnd_idx; 4910 unsigned short lso_mss; 4911 int defrag; 4912 4913 defrag = 0; 4914 wnd_sum = 0; 4915 wnd_size = 10; 4916 num_wnds = nsegs - wnd_size; 4917 lso_mss = htole16(m->m_pkthdr.tso_segsz); 4918 4919 /* 4920 * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the 4921 * first window sum of data while skipping the first assuming it is the 4922 * header in FreeBSD. 4923 */ 4924 for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) { 4925 wnd_sum += htole16(segs[frag_idx].ds_len); 4926 } 4927 4928 /* check the first 10 bd window size */ 4929 if (wnd_sum < lso_mss) { 4930 return (1); 4931 } 4932 4933 /* run through the windows */ 4934 for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) { 4935 /* subtract the first mbuf->m_len of the last wndw(-header) */ 4936 wnd_sum -= htole16(segs[wnd_idx+1].ds_len); 4937 /* add the next mbuf len to the len of our new window */ 4938 wnd_sum += htole16(segs[frag_idx].ds_len); 4939 if (wnd_sum < lso_mss) { 4940 return (1); 4941 } 4942 } 4943 4944 return (0); 4945 } 4946 4947 static uint8_t 4948 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp, 4949 struct mbuf *m, 4950 uint32_t *parsing_data) 4951 { 4952 struct ether_vlan_header *eh = NULL; 4953 struct ip *ip4 = NULL; 4954 struct ip6_hdr *ip6 = NULL; 4955 caddr_t ip = NULL; 4956 struct tcphdr *th = NULL; 4957 int e_hlen, ip_hlen, l4_off; 4958 uint16_t proto; 4959 4960 if (m->m_pkthdr.csum_flags == CSUM_IP) { 4961 /* no L4 checksum offload needed */ 4962 return (0); 4963 } 4964 4965 /* get the Ethernet header */ 4966 eh = mtod(m, struct ether_vlan_header *); 4967 4968 /* handle VLAN encapsulation if present */ 4969 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 4970 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 4971 proto = ntohs(eh->evl_proto); 4972 } else { 4973 e_hlen = ETHER_HDR_LEN; 4974 proto = ntohs(eh->evl_encap_proto); 4975 } 4976 4977 switch (proto) { 4978 case ETHERTYPE_IP: 4979 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 4980 ip4 = (m->m_len < sizeof(struct ip)) ? 4981 (struct ip *)m->m_next->m_data : 4982 (struct ip *)(m->m_data + e_hlen); 4983 /* ip_hl is number of 32-bit words */ 4984 ip_hlen = (ip4->ip_hl << 2); 4985 ip = (caddr_t)ip4; 4986 break; 4987 case ETHERTYPE_IPV6: 4988 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 4989 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 4990 (struct ip6_hdr *)m->m_next->m_data : 4991 (struct ip6_hdr *)(m->m_data + e_hlen); 4992 /* XXX cannot support offload with IPv6 extensions */ 4993 ip_hlen = sizeof(struct ip6_hdr); 4994 ip = (caddr_t)ip6; 4995 break; 4996 default: 4997 /* We can't offload in this case... */ 4998 /* XXX error stat ??? */ 4999 return (0); 5000 } 5001 5002 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 5003 l4_off = (e_hlen + ip_hlen); 5004 5005 *parsing_data |= 5006 (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 5007 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W); 5008 5009 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5010 CSUM_TSO | 5011 CSUM_TCP_IPV6)) { 5012 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 5013 th = (struct tcphdr *)(ip + ip_hlen); 5014 /* th_off is number of 32-bit words */ 5015 *parsing_data |= ((th->th_off << 5016 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 5017 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW); 5018 return (l4_off + (th->th_off << 2)); /* entire header length */ 5019 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5020 CSUM_UDP_IPV6)) { 5021 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 5022 return (l4_off + sizeof(struct udphdr)); /* entire header length */ 5023 } else { 5024 /* XXX error stat ??? */ 5025 return (0); 5026 } 5027 } 5028 5029 static uint8_t 5030 bxe_set_pbd_csum(struct bxe_fastpath *fp, 5031 struct mbuf *m, 5032 struct eth_tx_parse_bd_e1x *pbd) 5033 { 5034 struct ether_vlan_header *eh = NULL; 5035 struct ip *ip4 = NULL; 5036 struct ip6_hdr *ip6 = NULL; 5037 caddr_t ip = NULL; 5038 struct tcphdr *th = NULL; 5039 struct udphdr *uh = NULL; 5040 int e_hlen, ip_hlen; 5041 uint16_t proto; 5042 uint8_t hlen; 5043 uint16_t tmp_csum; 5044 uint32_t *tmp_uh; 5045 5046 /* get the Ethernet header */ 5047 eh = mtod(m, struct ether_vlan_header *); 5048 5049 /* handle VLAN encapsulation if present */ 5050 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 5051 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 5052 proto = ntohs(eh->evl_proto); 5053 } else { 5054 e_hlen = ETHER_HDR_LEN; 5055 proto = ntohs(eh->evl_encap_proto); 5056 } 5057 5058 switch (proto) { 5059 case ETHERTYPE_IP: 5060 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 5061 ip4 = (m->m_len < sizeof(struct ip)) ? 5062 (struct ip *)m->m_next->m_data : 5063 (struct ip *)(m->m_data + e_hlen); 5064 /* ip_hl is number of 32-bit words */ 5065 ip_hlen = (ip4->ip_hl << 1); 5066 ip = (caddr_t)ip4; 5067 break; 5068 case ETHERTYPE_IPV6: 5069 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 5070 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 5071 (struct ip6_hdr *)m->m_next->m_data : 5072 (struct ip6_hdr *)(m->m_data + e_hlen); 5073 /* XXX cannot support offload with IPv6 extensions */ 5074 ip_hlen = (sizeof(struct ip6_hdr) >> 1); 5075 ip = (caddr_t)ip6; 5076 break; 5077 default: 5078 /* We can't offload in this case... */ 5079 /* XXX error stat ??? */ 5080 return (0); 5081 } 5082 5083 hlen = (e_hlen >> 1); 5084 5085 /* note that rest of global_data is indirectly zeroed here */ 5086 if (m->m_flags & M_VLANTAG) { 5087 pbd->global_data = 5088 htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 5089 } else { 5090 pbd->global_data = htole16(hlen); 5091 } 5092 5093 pbd->ip_hlen_w = ip_hlen; 5094 5095 hlen += pbd->ip_hlen_w; 5096 5097 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 5098 5099 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5100 CSUM_TSO | 5101 CSUM_TCP_IPV6)) { 5102 th = (struct tcphdr *)(ip + (ip_hlen << 1)); 5103 /* th_off is number of 32-bit words */ 5104 hlen += (uint16_t)(th->th_off << 1); 5105 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5106 CSUM_UDP_IPV6)) { 5107 uh = (struct udphdr *)(ip + (ip_hlen << 1)); 5108 hlen += (sizeof(struct udphdr) / 2); 5109 } else { 5110 /* valid case as only CSUM_IP was set */ 5111 return (0); 5112 } 5113 5114 pbd->total_hlen_w = htole16(hlen); 5115 5116 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5117 CSUM_TSO | 5118 CSUM_TCP_IPV6)) { 5119 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 5120 pbd->tcp_pseudo_csum = ntohs(th->th_sum); 5121 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5122 CSUM_UDP_IPV6)) { 5123 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 5124 5125 /* 5126 * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP 5127 * checksums and does not know anything about the UDP header and where 5128 * the checksum field is located. It only knows about TCP. Therefore 5129 * we "lie" to the hardware for outgoing UDP packets w/ checksum 5130 * offload. Since the checksum field offset for TCP is 16 bytes and 5131 * for UDP it is 6 bytes we pass a pointer to the hardware that is 10 5132 * bytes less than the start of the UDP header. This allows the 5133 * hardware to write the checksum in the correct spot. But the 5134 * hardware will compute a checksum which includes the last 10 bytes 5135 * of the IP header. To correct this we tweak the stack computed 5136 * pseudo checksum by folding in the calculation of the inverse 5137 * checksum for those final 10 bytes of the IP header. This allows 5138 * the correct checksum to be computed by the hardware. 5139 */ 5140 5141 /* set pointer 10 bytes before UDP header */ 5142 tmp_uh = (uint32_t *)((uint8_t *)uh - 10); 5143 5144 /* calculate a pseudo header checksum over the first 10 bytes */ 5145 tmp_csum = in_pseudo(*tmp_uh, 5146 *(tmp_uh + 1), 5147 *(uint16_t *)(tmp_uh + 2)); 5148 5149 pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum)); 5150 } 5151 5152 return (hlen * 2); /* entire header length, number of bytes */ 5153 } 5154 5155 static void 5156 bxe_set_pbd_lso_e2(struct mbuf *m, 5157 uint32_t *parsing_data) 5158 { 5159 *parsing_data |= ((m->m_pkthdr.tso_segsz << 5160 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 5161 ETH_TX_PARSE_BD_E2_LSO_MSS); 5162 5163 /* XXX test for IPv6 with extension header... */ 5164 } 5165 5166 static void 5167 bxe_set_pbd_lso(struct mbuf *m, 5168 struct eth_tx_parse_bd_e1x *pbd) 5169 { 5170 struct ether_vlan_header *eh = NULL; 5171 struct ip *ip = NULL; 5172 struct tcphdr *th = NULL; 5173 int e_hlen; 5174 5175 /* get the Ethernet header */ 5176 eh = mtod(m, struct ether_vlan_header *); 5177 5178 /* handle VLAN encapsulation if present */ 5179 e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ? 5180 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN; 5181 5182 /* get the IP and TCP header, with LSO entire header in first mbuf */ 5183 /* XXX assuming IPv4 */ 5184 ip = (struct ip *)(m->m_data + e_hlen); 5185 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 5186 5187 pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz); 5188 pbd->tcp_send_seq = ntohl(th->th_seq); 5189 pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff); 5190 5191 #if 1 5192 /* XXX IPv4 */ 5193 pbd->ip_id = ntohs(ip->ip_id); 5194 pbd->tcp_pseudo_csum = 5195 ntohs(in_pseudo(ip->ip_src.s_addr, 5196 ip->ip_dst.s_addr, 5197 htons(IPPROTO_TCP))); 5198 #else 5199 /* XXX IPv6 */ 5200 pbd->tcp_pseudo_csum = 5201 ntohs(in_pseudo(&ip6->ip6_src, 5202 &ip6->ip6_dst, 5203 htons(IPPROTO_TCP))); 5204 #endif 5205 5206 pbd->global_data |= 5207 htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 5208 } 5209 5210 /* 5211 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory 5212 * visible to the controller. 5213 * 5214 * If an mbuf is submitted to this routine and cannot be given to the 5215 * controller (e.g. it has too many fragments) then the function may free 5216 * the mbuf and return to the caller. 5217 * 5218 * Returns: 5219 * 0 = Success, !0 = Failure 5220 * Note the side effect that an mbuf may be freed if it causes a problem. 5221 */ 5222 static int 5223 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head) 5224 { 5225 bus_dma_segment_t segs[32]; 5226 struct mbuf *m0; 5227 struct bxe_sw_tx_bd *tx_buf; 5228 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 5229 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 5230 /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */ 5231 struct eth_tx_bd *tx_data_bd; 5232 struct eth_tx_bd *tx_total_pkt_size_bd; 5233 struct eth_tx_start_bd *tx_start_bd; 5234 uint16_t bd_prod, pkt_prod, total_pkt_size; 5235 uint8_t mac_type; 5236 int defragged, error, nsegs, rc, nbds, vlan_off, ovlan; 5237 struct bxe_softc *sc; 5238 uint16_t tx_bd_avail; 5239 struct ether_vlan_header *eh; 5240 uint32_t pbd_e2_parsing_data = 0; 5241 uint8_t hlen = 0; 5242 int tmp_bd; 5243 int i; 5244 5245 sc = fp->sc; 5246 5247 #if __FreeBSD_version >= 800000 5248 M_ASSERTPKTHDR(*m_head); 5249 #endif /* #if __FreeBSD_version >= 800000 */ 5250 5251 m0 = *m_head; 5252 rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0; 5253 tx_start_bd = NULL; 5254 tx_data_bd = NULL; 5255 tx_total_pkt_size_bd = NULL; 5256 5257 /* get the H/W pointer for packets and BDs */ 5258 pkt_prod = fp->tx_pkt_prod; 5259 bd_prod = fp->tx_bd_prod; 5260 5261 mac_type = UNICAST_ADDRESS; 5262 5263 /* map the mbuf into the next open DMAable memory */ 5264 tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)]; 5265 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5266 tx_buf->m_map, m0, 5267 segs, &nsegs, BUS_DMA_NOWAIT); 5268 5269 /* mapping errors */ 5270 if(__predict_false(error != 0)) { 5271 fp->eth_q_stats.tx_dma_mapping_failure++; 5272 if (error == ENOMEM) { 5273 /* resource issue, try again later */ 5274 rc = ENOMEM; 5275 } else if (error == EFBIG) { 5276 /* possibly recoverable with defragmentation */ 5277 fp->eth_q_stats.mbuf_defrag_attempts++; 5278 m0 = m_defrag(*m_head, M_NOWAIT); 5279 if (m0 == NULL) { 5280 fp->eth_q_stats.mbuf_defrag_failures++; 5281 rc = ENOBUFS; 5282 } else { 5283 /* defrag successful, try mapping again */ 5284 *m_head = m0; 5285 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5286 tx_buf->m_map, m0, 5287 segs, &nsegs, BUS_DMA_NOWAIT); 5288 if (error) { 5289 fp->eth_q_stats.tx_dma_mapping_failure++; 5290 rc = error; 5291 } 5292 } 5293 } else { 5294 /* unknown, unrecoverable mapping error */ 5295 BLOGE(sc, "Unknown TX mapping error rc=%d\n", error); 5296 bxe_dump_mbuf(sc, m0, FALSE); 5297 rc = error; 5298 } 5299 5300 goto bxe_tx_encap_continue; 5301 } 5302 5303 tx_bd_avail = bxe_tx_avail(sc, fp); 5304 5305 /* make sure there is enough room in the send queue */ 5306 if (__predict_false(tx_bd_avail < (nsegs + 2))) { 5307 /* Recoverable, try again later. */ 5308 fp->eth_q_stats.tx_hw_queue_full++; 5309 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5310 rc = ENOMEM; 5311 goto bxe_tx_encap_continue; 5312 } 5313 5314 /* capture the current H/W TX chain high watermark */ 5315 if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth < 5316 (TX_BD_USABLE - tx_bd_avail))) { 5317 fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail); 5318 } 5319 5320 /* make sure it fits in the packet window */ 5321 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5322 /* 5323 * The mbuf may be to big for the controller to handle. If the frame 5324 * is a TSO frame we'll need to do an additional check. 5325 */ 5326 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5327 if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) { 5328 goto bxe_tx_encap_continue; /* OK to send */ 5329 } else { 5330 fp->eth_q_stats.tx_window_violation_tso++; 5331 } 5332 } else { 5333 fp->eth_q_stats.tx_window_violation_std++; 5334 } 5335 5336 /* lets try to defragment this mbuf and remap it */ 5337 fp->eth_q_stats.mbuf_defrag_attempts++; 5338 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5339 5340 m0 = m_defrag(*m_head, M_NOWAIT); 5341 if (m0 == NULL) { 5342 fp->eth_q_stats.mbuf_defrag_failures++; 5343 /* Ugh, just drop the frame... :( */ 5344 rc = ENOBUFS; 5345 } else { 5346 /* defrag successful, try mapping again */ 5347 *m_head = m0; 5348 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5349 tx_buf->m_map, m0, 5350 segs, &nsegs, BUS_DMA_NOWAIT); 5351 if (error) { 5352 fp->eth_q_stats.tx_dma_mapping_failure++; 5353 /* No sense in trying to defrag/copy chain, drop it. :( */ 5354 rc = error; 5355 } 5356 else { 5357 /* if the chain is still too long then drop it */ 5358 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5359 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5360 rc = ENODEV; 5361 } 5362 } 5363 } 5364 } 5365 5366 bxe_tx_encap_continue: 5367 5368 /* Check for errors */ 5369 if (rc) { 5370 if (rc == ENOMEM) { 5371 /* recoverable try again later */ 5372 } else { 5373 fp->eth_q_stats.tx_soft_errors++; 5374 fp->eth_q_stats.mbuf_alloc_tx--; 5375 m_freem(*m_head); 5376 *m_head = NULL; 5377 } 5378 5379 return (rc); 5380 } 5381 5382 /* set flag according to packet type (UNICAST_ADDRESS is default) */ 5383 if (m0->m_flags & M_BCAST) { 5384 mac_type = BROADCAST_ADDRESS; 5385 } else if (m0->m_flags & M_MCAST) { 5386 mac_type = MULTICAST_ADDRESS; 5387 } 5388 5389 /* store the mbuf into the mbuf ring */ 5390 tx_buf->m = m0; 5391 tx_buf->first_bd = fp->tx_bd_prod; 5392 tx_buf->flags = 0; 5393 5394 /* prepare the first transmit (start) BD for the mbuf */ 5395 tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd; 5396 5397 BLOGD(sc, DBG_TX, 5398 "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n", 5399 pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd); 5400 5401 tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 5402 tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 5403 tx_start_bd->nbytes = htole16(segs[0].ds_len); 5404 total_pkt_size += tx_start_bd->nbytes; 5405 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 5406 5407 tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT); 5408 5409 /* all frames have at least Start BD + Parsing BD */ 5410 nbds = nsegs + 1; 5411 tx_start_bd->nbd = htole16(nbds); 5412 5413 if (m0->m_flags & M_VLANTAG) { 5414 tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag); 5415 tx_start_bd->bd_flags.as_bitfield |= 5416 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 5417 } else { 5418 /* vf tx, start bd must hold the ethertype for fw to enforce it */ 5419 if (IS_VF(sc)) { 5420 /* map ethernet header to find type and header length */ 5421 eh = mtod(m0, struct ether_vlan_header *); 5422 tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto; 5423 } else { 5424 /* used by FW for packet accounting */ 5425 tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod); 5426 } 5427 } 5428 5429 /* 5430 * add a parsing BD from the chain. The parsing BD is always added 5431 * though it is only used for TSO and chksum 5432 */ 5433 bd_prod = TX_BD_NEXT(bd_prod); 5434 5435 if (m0->m_pkthdr.csum_flags) { 5436 if (m0->m_pkthdr.csum_flags & CSUM_IP) { 5437 fp->eth_q_stats.tx_ofld_frames_csum_ip++; 5438 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM; 5439 } 5440 5441 if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) { 5442 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5443 ETH_TX_BD_FLAGS_L4_CSUM); 5444 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) { 5445 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5446 ETH_TX_BD_FLAGS_IS_UDP | 5447 ETH_TX_BD_FLAGS_L4_CSUM); 5448 } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) || 5449 (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5450 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 5451 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) { 5452 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM | 5453 ETH_TX_BD_FLAGS_IS_UDP); 5454 } 5455 } 5456 5457 if (!CHIP_IS_E1x(sc)) { 5458 pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2; 5459 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 5460 5461 if (m0->m_pkthdr.csum_flags) { 5462 hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data); 5463 } 5464 5465 SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, 5466 mac_type); 5467 } else { 5468 uint16_t global_data = 0; 5469 5470 pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x; 5471 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 5472 5473 if (m0->m_pkthdr.csum_flags) { 5474 hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x); 5475 } 5476 5477 SET_FLAG(global_data, 5478 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 5479 pbd_e1x->global_data |= htole16(global_data); 5480 } 5481 5482 /* setup the parsing BD with TSO specific info */ 5483 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5484 fp->eth_q_stats.tx_ofld_frames_lso++; 5485 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 5486 5487 if (__predict_false(tx_start_bd->nbytes > hlen)) { 5488 fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++; 5489 5490 /* split the first BD into header/data making the fw job easy */ 5491 nbds++; 5492 tx_start_bd->nbd = htole16(nbds); 5493 tx_start_bd->nbytes = htole16(hlen); 5494 5495 bd_prod = TX_BD_NEXT(bd_prod); 5496 5497 /* new transmit BD after the tx_parse_bd */ 5498 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5499 tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen)); 5500 tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen)); 5501 tx_data_bd->nbytes = htole16(segs[0].ds_len - hlen); 5502 if (tx_total_pkt_size_bd == NULL) { 5503 tx_total_pkt_size_bd = tx_data_bd; 5504 } 5505 5506 BLOGD(sc, DBG_TX, 5507 "TSO split header size is %d (%x:%x) nbds %d\n", 5508 le16toh(tx_start_bd->nbytes), 5509 le32toh(tx_start_bd->addr_hi), 5510 le32toh(tx_start_bd->addr_lo), 5511 nbds); 5512 } 5513 5514 if (!CHIP_IS_E1x(sc)) { 5515 bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data); 5516 } else { 5517 bxe_set_pbd_lso(m0, pbd_e1x); 5518 } 5519 } 5520 5521 if (pbd_e2_parsing_data) { 5522 pbd_e2->parsing_data = htole32(pbd_e2_parsing_data); 5523 } 5524 5525 /* prepare remaining BDs, start tx bd contains first seg/frag */ 5526 for (i = 1; i < nsegs ; i++) { 5527 bd_prod = TX_BD_NEXT(bd_prod); 5528 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5529 tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr)); 5530 tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr)); 5531 tx_data_bd->nbytes = htole16(segs[i].ds_len); 5532 if (tx_total_pkt_size_bd == NULL) { 5533 tx_total_pkt_size_bd = tx_data_bd; 5534 } 5535 total_pkt_size += tx_data_bd->nbytes; 5536 } 5537 5538 BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd); 5539 5540 if (tx_total_pkt_size_bd != NULL) { 5541 tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size; 5542 } 5543 5544 if (__predict_false(sc->debug & DBG_TX)) { 5545 tmp_bd = tx_buf->first_bd; 5546 for (i = 0; i < nbds; i++) 5547 { 5548 if (i == 0) { 5549 BLOGD(sc, DBG_TX, 5550 "TX Strt: %p bd=%d nbd=%d vlan=0x%x " 5551 "bd_flags=0x%x hdr_nbds=%d\n", 5552 tx_start_bd, 5553 tmp_bd, 5554 le16toh(tx_start_bd->nbd), 5555 le16toh(tx_start_bd->vlan_or_ethertype), 5556 tx_start_bd->bd_flags.as_bitfield, 5557 (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS)); 5558 } else if (i == 1) { 5559 if (pbd_e1x) { 5560 BLOGD(sc, DBG_TX, 5561 "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u " 5562 "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x " 5563 "tcp_seq=%u total_hlen_w=%u\n", 5564 pbd_e1x, 5565 tmp_bd, 5566 pbd_e1x->global_data, 5567 pbd_e1x->ip_hlen_w, 5568 pbd_e1x->ip_id, 5569 pbd_e1x->lso_mss, 5570 pbd_e1x->tcp_flags, 5571 pbd_e1x->tcp_pseudo_csum, 5572 pbd_e1x->tcp_send_seq, 5573 le16toh(pbd_e1x->total_hlen_w)); 5574 } else { /* if (pbd_e2) */ 5575 BLOGD(sc, DBG_TX, 5576 "-> Parse: %p bd=%d dst=%02x:%02x:%02x " 5577 "src=%02x:%02x:%02x parsing_data=0x%x\n", 5578 pbd_e2, 5579 tmp_bd, 5580 pbd_e2->data.mac_addr.dst_hi, 5581 pbd_e2->data.mac_addr.dst_mid, 5582 pbd_e2->data.mac_addr.dst_lo, 5583 pbd_e2->data.mac_addr.src_hi, 5584 pbd_e2->data.mac_addr.src_mid, 5585 pbd_e2->data.mac_addr.src_lo, 5586 pbd_e2->parsing_data); 5587 } 5588 } 5589 5590 if (i != 1) { /* skip parse db as it doesn't hold data */ 5591 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd; 5592 BLOGD(sc, DBG_TX, 5593 "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n", 5594 tx_data_bd, 5595 tmp_bd, 5596 le16toh(tx_data_bd->nbytes), 5597 le32toh(tx_data_bd->addr_hi), 5598 le32toh(tx_data_bd->addr_lo)); 5599 } 5600 5601 tmp_bd = TX_BD_NEXT(tmp_bd); 5602 } 5603 } 5604 5605 BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod); 5606 5607 /* update TX BD producer index value for next TX */ 5608 bd_prod = TX_BD_NEXT(bd_prod); 5609 5610 /* 5611 * If the chain of tx_bd's describing this frame is adjacent to or spans 5612 * an eth_tx_next_bd element then we need to increment the nbds value. 5613 */ 5614 if (TX_BD_IDX(bd_prod) < nbds) { 5615 nbds++; 5616 } 5617 5618 /* don't allow reordering of writes for nbd and packets */ 5619 mb(); 5620 5621 fp->tx_db.data.prod += nbds; 5622 5623 /* producer points to the next free tx_bd at this point */ 5624 fp->tx_pkt_prod++; 5625 fp->tx_bd_prod = bd_prod; 5626 5627 DOORBELL(sc, fp->index, fp->tx_db.raw); 5628 5629 fp->eth_q_stats.tx_pkts++; 5630 5631 /* Prevent speculative reads from getting ahead of the status block. */ 5632 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 5633 0, 0, BUS_SPACE_BARRIER_READ); 5634 5635 /* Prevent speculative reads from getting ahead of the doorbell. */ 5636 bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle, 5637 0, 0, BUS_SPACE_BARRIER_READ); 5638 5639 return (0); 5640 } 5641 5642 static void 5643 bxe_tx_start_locked(struct bxe_softc *sc, 5644 if_t ifp, 5645 struct bxe_fastpath *fp) 5646 { 5647 struct mbuf *m = NULL; 5648 int tx_count = 0; 5649 uint16_t tx_bd_avail; 5650 5651 BXE_FP_TX_LOCK_ASSERT(fp); 5652 5653 /* keep adding entries while there are frames to send */ 5654 while (!if_sendq_empty(ifp)) { 5655 5656 /* 5657 * check for any frames to send 5658 * dequeue can still be NULL even if queue is not empty 5659 */ 5660 m = if_dequeue(ifp); 5661 if (__predict_false(m == NULL)) { 5662 break; 5663 } 5664 5665 /* the mbuf now belongs to us */ 5666 fp->eth_q_stats.mbuf_alloc_tx++; 5667 5668 /* 5669 * Put the frame into the transmit ring. If we don't have room, 5670 * place the mbuf back at the head of the TX queue, set the 5671 * OACTIVE flag, and wait for the NIC to drain the chain. 5672 */ 5673 if (__predict_false(bxe_tx_encap(fp, &m))) { 5674 fp->eth_q_stats.tx_encap_failures++; 5675 if (m != NULL) { 5676 /* mark the TX queue as full and return the frame */ 5677 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5678 if_sendq_prepend(ifp, m); 5679 fp->eth_q_stats.mbuf_alloc_tx--; 5680 fp->eth_q_stats.tx_queue_xoff++; 5681 } 5682 5683 /* stop looking for more work */ 5684 break; 5685 } 5686 5687 /* the frame was enqueued successfully */ 5688 tx_count++; 5689 5690 /* send a copy of the frame to any BPF listeners. */ 5691 if_etherbpfmtap(ifp, m); 5692 5693 tx_bd_avail = bxe_tx_avail(sc, fp); 5694 5695 /* handle any completions if we're running low */ 5696 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5697 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5698 bxe_txeof(sc, fp); 5699 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5700 break; 5701 } 5702 } 5703 } 5704 5705 /* all TX packets were dequeued and/or the tx ring is full */ 5706 if (tx_count > 0) { 5707 /* reset the TX watchdog timeout timer */ 5708 fp->watchdog_timer = BXE_TX_TIMEOUT; 5709 } 5710 } 5711 5712 /* Legacy (non-RSS) dispatch routine */ 5713 static void 5714 bxe_tx_start(if_t ifp) 5715 { 5716 struct bxe_softc *sc; 5717 struct bxe_fastpath *fp; 5718 5719 sc = if_getsoftc(ifp); 5720 5721 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 5722 BLOGW(sc, "Interface not running, ignoring transmit request\n"); 5723 return; 5724 } 5725 5726 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5727 BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n"); 5728 return; 5729 } 5730 5731 if (!sc->link_vars.link_up) { 5732 BLOGW(sc, "Interface link is down, ignoring transmit request\n"); 5733 return; 5734 } 5735 5736 fp = &sc->fp[0]; 5737 5738 BXE_FP_TX_LOCK(fp); 5739 bxe_tx_start_locked(sc, ifp, fp); 5740 BXE_FP_TX_UNLOCK(fp); 5741 } 5742 5743 #if __FreeBSD_version >= 800000 5744 5745 static int 5746 bxe_tx_mq_start_locked(struct bxe_softc *sc, 5747 if_t ifp, 5748 struct bxe_fastpath *fp, 5749 struct mbuf *m) 5750 { 5751 struct buf_ring *tx_br = fp->tx_br; 5752 struct mbuf *next; 5753 int depth, rc, tx_count; 5754 uint16_t tx_bd_avail; 5755 5756 rc = tx_count = 0; 5757 5758 BXE_FP_TX_LOCK_ASSERT(fp); 5759 5760 if (!tx_br) { 5761 BLOGE(sc, "Multiqueue TX and no buf_ring!\n"); 5762 return (EINVAL); 5763 } 5764 5765 if (!sc->link_vars.link_up || 5766 (if_getdrvflags(ifp) & 5767 (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) { 5768 rc = drbr_enqueue(ifp, tx_br, m); 5769 goto bxe_tx_mq_start_locked_exit; 5770 } 5771 5772 /* fetch the depth of the driver queue */ 5773 depth = drbr_inuse_drv(ifp, tx_br); 5774 if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) { 5775 fp->eth_q_stats.tx_max_drbr_queue_depth = depth; 5776 } 5777 5778 if (m == NULL) { 5779 /* no new work, check for pending frames */ 5780 next = drbr_dequeue_drv(ifp, tx_br); 5781 } else if (drbr_needs_enqueue_drv(ifp, tx_br)) { 5782 /* have both new and pending work, maintain packet order */ 5783 rc = drbr_enqueue(ifp, tx_br, m); 5784 if (rc != 0) { 5785 fp->eth_q_stats.tx_soft_errors++; 5786 goto bxe_tx_mq_start_locked_exit; 5787 } 5788 next = drbr_dequeue_drv(ifp, tx_br); 5789 } else { 5790 /* new work only and nothing pending */ 5791 next = m; 5792 } 5793 5794 /* keep adding entries while there are frames to send */ 5795 while (next != NULL) { 5796 5797 /* the mbuf now belongs to us */ 5798 fp->eth_q_stats.mbuf_alloc_tx++; 5799 5800 /* 5801 * Put the frame into the transmit ring. If we don't have room, 5802 * place the mbuf back at the head of the TX queue, set the 5803 * OACTIVE flag, and wait for the NIC to drain the chain. 5804 */ 5805 rc = bxe_tx_encap(fp, &next); 5806 if (__predict_false(rc != 0)) { 5807 fp->eth_q_stats.tx_encap_failures++; 5808 if (next != NULL) { 5809 /* mark the TX queue as full and save the frame */ 5810 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5811 /* XXX this may reorder the frame */ 5812 rc = drbr_enqueue(ifp, tx_br, next); 5813 fp->eth_q_stats.mbuf_alloc_tx--; 5814 fp->eth_q_stats.tx_frames_deferred++; 5815 } 5816 5817 /* stop looking for more work */ 5818 break; 5819 } 5820 5821 /* the transmit frame was enqueued successfully */ 5822 tx_count++; 5823 5824 /* send a copy of the frame to any BPF listeners */ 5825 if_etherbpfmtap(ifp, next); 5826 5827 tx_bd_avail = bxe_tx_avail(sc, fp); 5828 5829 /* handle any completions if we're running low */ 5830 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5831 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5832 bxe_txeof(sc, fp); 5833 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5834 break; 5835 } 5836 } 5837 5838 next = drbr_dequeue_drv(ifp, tx_br); 5839 } 5840 5841 /* all TX packets were dequeued and/or the tx ring is full */ 5842 if (tx_count > 0) { 5843 /* reset the TX watchdog timeout timer */ 5844 fp->watchdog_timer = BXE_TX_TIMEOUT; 5845 } 5846 5847 bxe_tx_mq_start_locked_exit: 5848 5849 return (rc); 5850 } 5851 5852 /* Multiqueue (TSS) dispatch routine. */ 5853 static int 5854 bxe_tx_mq_start(struct ifnet *ifp, 5855 struct mbuf *m) 5856 { 5857 struct bxe_softc *sc = if_getsoftc(ifp); 5858 struct bxe_fastpath *fp; 5859 int fp_index, rc; 5860 5861 fp_index = 0; /* default is the first queue */ 5862 5863 /* check if flowid is set */ 5864 5865 if (BXE_VALID_FLOWID(m)) 5866 fp_index = (m->m_pkthdr.flowid % sc->num_queues); 5867 5868 fp = &sc->fp[fp_index]; 5869 5870 if (BXE_FP_TX_TRYLOCK(fp)) { 5871 rc = bxe_tx_mq_start_locked(sc, ifp, fp, m); 5872 BXE_FP_TX_UNLOCK(fp); 5873 } else 5874 rc = drbr_enqueue(ifp, fp->tx_br, m); 5875 5876 return (rc); 5877 } 5878 5879 static void 5880 bxe_mq_flush(struct ifnet *ifp) 5881 { 5882 struct bxe_softc *sc = if_getsoftc(ifp); 5883 struct bxe_fastpath *fp; 5884 struct mbuf *m; 5885 int i; 5886 5887 for (i = 0; i < sc->num_queues; i++) { 5888 fp = &sc->fp[i]; 5889 5890 if (fp->state != BXE_FP_STATE_OPEN) { 5891 BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n", 5892 fp->index, fp->state); 5893 continue; 5894 } 5895 5896 if (fp->tx_br != NULL) { 5897 BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index); 5898 BXE_FP_TX_LOCK(fp); 5899 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { 5900 m_freem(m); 5901 } 5902 BXE_FP_TX_UNLOCK(fp); 5903 } 5904 } 5905 5906 if_qflush(ifp); 5907 } 5908 5909 #endif /* FreeBSD_version >= 800000 */ 5910 5911 static uint16_t 5912 bxe_cid_ilt_lines(struct bxe_softc *sc) 5913 { 5914 if (IS_SRIOV(sc)) { 5915 return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS); 5916 } 5917 return (L2_ILT_LINES(sc)); 5918 } 5919 5920 static void 5921 bxe_ilt_set_info(struct bxe_softc *sc) 5922 { 5923 struct ilt_client_info *ilt_client; 5924 struct ecore_ilt *ilt = sc->ilt; 5925 uint16_t line = 0; 5926 5927 ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc)); 5928 BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line); 5929 5930 /* CDU */ 5931 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 5932 ilt_client->client_num = ILT_CLIENT_CDU; 5933 ilt_client->page_size = CDU_ILT_PAGE_SZ; 5934 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 5935 ilt_client->start = line; 5936 line += bxe_cid_ilt_lines(sc); 5937 5938 if (CNIC_SUPPORT(sc)) { 5939 line += CNIC_ILT_LINES; 5940 } 5941 5942 ilt_client->end = (line - 1); 5943 5944 BLOGD(sc, DBG_LOAD, 5945 "ilt client[CDU]: start %d, end %d, " 5946 "psz 0x%x, flags 0x%x, hw psz %d\n", 5947 ilt_client->start, ilt_client->end, 5948 ilt_client->page_size, 5949 ilt_client->flags, 5950 ilog2(ilt_client->page_size >> 12)); 5951 5952 /* QM */ 5953 if (QM_INIT(sc->qm_cid_count)) { 5954 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 5955 ilt_client->client_num = ILT_CLIENT_QM; 5956 ilt_client->page_size = QM_ILT_PAGE_SZ; 5957 ilt_client->flags = 0; 5958 ilt_client->start = line; 5959 5960 /* 4 bytes for each cid */ 5961 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 5962 QM_ILT_PAGE_SZ); 5963 5964 ilt_client->end = (line - 1); 5965 5966 BLOGD(sc, DBG_LOAD, 5967 "ilt client[QM]: start %d, end %d, " 5968 "psz 0x%x, flags 0x%x, hw psz %d\n", 5969 ilt_client->start, ilt_client->end, 5970 ilt_client->page_size, ilt_client->flags, 5971 ilog2(ilt_client->page_size >> 12)); 5972 } 5973 5974 if (CNIC_SUPPORT(sc)) { 5975 /* SRC */ 5976 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 5977 ilt_client->client_num = ILT_CLIENT_SRC; 5978 ilt_client->page_size = SRC_ILT_PAGE_SZ; 5979 ilt_client->flags = 0; 5980 ilt_client->start = line; 5981 line += SRC_ILT_LINES; 5982 ilt_client->end = (line - 1); 5983 5984 BLOGD(sc, DBG_LOAD, 5985 "ilt client[SRC]: start %d, end %d, " 5986 "psz 0x%x, flags 0x%x, hw psz %d\n", 5987 ilt_client->start, ilt_client->end, 5988 ilt_client->page_size, ilt_client->flags, 5989 ilog2(ilt_client->page_size >> 12)); 5990 5991 /* TM */ 5992 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 5993 ilt_client->client_num = ILT_CLIENT_TM; 5994 ilt_client->page_size = TM_ILT_PAGE_SZ; 5995 ilt_client->flags = 0; 5996 ilt_client->start = line; 5997 line += TM_ILT_LINES; 5998 ilt_client->end = (line - 1); 5999 6000 BLOGD(sc, DBG_LOAD, 6001 "ilt client[TM]: start %d, end %d, " 6002 "psz 0x%x, flags 0x%x, hw psz %d\n", 6003 ilt_client->start, ilt_client->end, 6004 ilt_client->page_size, ilt_client->flags, 6005 ilog2(ilt_client->page_size >> 12)); 6006 } 6007 6008 KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!")); 6009 } 6010 6011 static void 6012 bxe_set_fp_rx_buf_size(struct bxe_softc *sc) 6013 { 6014 int i; 6015 uint32_t rx_buf_size; 6016 6017 rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu); 6018 6019 for (i = 0; i < sc->num_queues; i++) { 6020 if(rx_buf_size <= MCLBYTES){ 6021 sc->fp[i].rx_buf_size = rx_buf_size; 6022 sc->fp[i].mbuf_alloc_size = MCLBYTES; 6023 }else if (rx_buf_size <= MJUMPAGESIZE){ 6024 sc->fp[i].rx_buf_size = rx_buf_size; 6025 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 6026 }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){ 6027 sc->fp[i].rx_buf_size = MCLBYTES; 6028 sc->fp[i].mbuf_alloc_size = MCLBYTES; 6029 }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){ 6030 sc->fp[i].rx_buf_size = MJUMPAGESIZE; 6031 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 6032 }else { 6033 sc->fp[i].rx_buf_size = MCLBYTES; 6034 sc->fp[i].mbuf_alloc_size = MCLBYTES; 6035 } 6036 } 6037 } 6038 6039 static int 6040 bxe_alloc_ilt_mem(struct bxe_softc *sc) 6041 { 6042 int rc = 0; 6043 6044 if ((sc->ilt = 6045 (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt), 6046 M_BXE_ILT, 6047 (M_NOWAIT | M_ZERO))) == NULL) { 6048 rc = 1; 6049 } 6050 6051 return (rc); 6052 } 6053 6054 static int 6055 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc) 6056 { 6057 int rc = 0; 6058 6059 if ((sc->ilt->lines = 6060 (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES), 6061 M_BXE_ILT, 6062 (M_NOWAIT | M_ZERO))) == NULL) { 6063 rc = 1; 6064 } 6065 6066 return (rc); 6067 } 6068 6069 static void 6070 bxe_free_ilt_mem(struct bxe_softc *sc) 6071 { 6072 if (sc->ilt != NULL) { 6073 free(sc->ilt, M_BXE_ILT); 6074 sc->ilt = NULL; 6075 } 6076 } 6077 6078 static void 6079 bxe_free_ilt_lines_mem(struct bxe_softc *sc) 6080 { 6081 if (sc->ilt->lines != NULL) { 6082 free(sc->ilt->lines, M_BXE_ILT); 6083 sc->ilt->lines = NULL; 6084 } 6085 } 6086 6087 static void 6088 bxe_free_mem(struct bxe_softc *sc) 6089 { 6090 int i; 6091 6092 for (i = 0; i < L2_ILT_LINES(sc); i++) { 6093 bxe_dma_free(sc, &sc->context[i].vcxt_dma); 6094 sc->context[i].vcxt = NULL; 6095 sc->context[i].size = 0; 6096 } 6097 6098 ecore_ilt_mem_op(sc, ILT_MEMOP_FREE); 6099 6100 bxe_free_ilt_lines_mem(sc); 6101 6102 } 6103 6104 static int 6105 bxe_alloc_mem(struct bxe_softc *sc) 6106 { 6107 int context_size; 6108 int allocated; 6109 int i; 6110 6111 /* 6112 * Allocate memory for CDU context: 6113 * This memory is allocated separately and not in the generic ILT 6114 * functions because CDU differs in few aspects: 6115 * 1. There can be multiple entities allocating memory for context - 6116 * regular L2, CNIC, and SRIOV drivers. Each separately controls 6117 * its own ILT lines. 6118 * 2. Since CDU page-size is not a single 4KB page (which is the case 6119 * for the other ILT clients), to be efficient we want to support 6120 * allocation of sub-page-size in the last entry. 6121 * 3. Context pointers are used by the driver to pass to FW / update 6122 * the context (for the other ILT clients the pointers are used just to 6123 * free the memory during unload). 6124 */ 6125 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc)); 6126 for (i = 0, allocated = 0; allocated < context_size; i++) { 6127 sc->context[i].size = min(CDU_ILT_PAGE_SZ, 6128 (context_size - allocated)); 6129 6130 if (bxe_dma_alloc(sc, sc->context[i].size, 6131 &sc->context[i].vcxt_dma, 6132 "cdu context") != 0) { 6133 bxe_free_mem(sc); 6134 return (-1); 6135 } 6136 6137 sc->context[i].vcxt = 6138 (union cdu_context *)sc->context[i].vcxt_dma.vaddr; 6139 6140 allocated += sc->context[i].size; 6141 } 6142 6143 bxe_alloc_ilt_lines_mem(sc); 6144 6145 BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n", 6146 sc->ilt, sc->ilt->start_line, sc->ilt->lines); 6147 { 6148 for (i = 0; i < 4; i++) { 6149 BLOGD(sc, DBG_LOAD, 6150 "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n", 6151 i, 6152 sc->ilt->clients[i].page_size, 6153 sc->ilt->clients[i].start, 6154 sc->ilt->clients[i].end, 6155 sc->ilt->clients[i].client_num, 6156 sc->ilt->clients[i].flags); 6157 } 6158 } 6159 if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) { 6160 BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n"); 6161 bxe_free_mem(sc); 6162 return (-1); 6163 } 6164 6165 return (0); 6166 } 6167 6168 static void 6169 bxe_free_rx_bd_chain(struct bxe_fastpath *fp) 6170 { 6171 struct bxe_softc *sc; 6172 int i; 6173 6174 sc = fp->sc; 6175 6176 if (fp->rx_mbuf_tag == NULL) { 6177 return; 6178 } 6179 6180 /* free all mbufs and unload all maps */ 6181 for (i = 0; i < RX_BD_TOTAL; i++) { 6182 if (fp->rx_mbuf_chain[i].m_map != NULL) { 6183 bus_dmamap_sync(fp->rx_mbuf_tag, 6184 fp->rx_mbuf_chain[i].m_map, 6185 BUS_DMASYNC_POSTREAD); 6186 bus_dmamap_unload(fp->rx_mbuf_tag, 6187 fp->rx_mbuf_chain[i].m_map); 6188 } 6189 6190 if (fp->rx_mbuf_chain[i].m != NULL) { 6191 m_freem(fp->rx_mbuf_chain[i].m); 6192 fp->rx_mbuf_chain[i].m = NULL; 6193 fp->eth_q_stats.mbuf_alloc_rx--; 6194 } 6195 } 6196 } 6197 6198 static void 6199 bxe_free_tpa_pool(struct bxe_fastpath *fp) 6200 { 6201 struct bxe_softc *sc; 6202 int i, max_agg_queues; 6203 6204 sc = fp->sc; 6205 6206 if (fp->rx_mbuf_tag == NULL) { 6207 return; 6208 } 6209 6210 max_agg_queues = MAX_AGG_QS(sc); 6211 6212 /* release all mbufs and unload all DMA maps in the TPA pool */ 6213 for (i = 0; i < max_agg_queues; i++) { 6214 if (fp->rx_tpa_info[i].bd.m_map != NULL) { 6215 bus_dmamap_sync(fp->rx_mbuf_tag, 6216 fp->rx_tpa_info[i].bd.m_map, 6217 BUS_DMASYNC_POSTREAD); 6218 bus_dmamap_unload(fp->rx_mbuf_tag, 6219 fp->rx_tpa_info[i].bd.m_map); 6220 } 6221 6222 if (fp->rx_tpa_info[i].bd.m != NULL) { 6223 m_freem(fp->rx_tpa_info[i].bd.m); 6224 fp->rx_tpa_info[i].bd.m = NULL; 6225 fp->eth_q_stats.mbuf_alloc_tpa--; 6226 } 6227 } 6228 } 6229 6230 static void 6231 bxe_free_sge_chain(struct bxe_fastpath *fp) 6232 { 6233 struct bxe_softc *sc; 6234 int i; 6235 6236 sc = fp->sc; 6237 6238 if (fp->rx_sge_mbuf_tag == NULL) { 6239 return; 6240 } 6241 6242 /* rree all mbufs and unload all maps */ 6243 for (i = 0; i < RX_SGE_TOTAL; i++) { 6244 if (fp->rx_sge_mbuf_chain[i].m_map != NULL) { 6245 bus_dmamap_sync(fp->rx_sge_mbuf_tag, 6246 fp->rx_sge_mbuf_chain[i].m_map, 6247 BUS_DMASYNC_POSTREAD); 6248 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 6249 fp->rx_sge_mbuf_chain[i].m_map); 6250 } 6251 6252 if (fp->rx_sge_mbuf_chain[i].m != NULL) { 6253 m_freem(fp->rx_sge_mbuf_chain[i].m); 6254 fp->rx_sge_mbuf_chain[i].m = NULL; 6255 fp->eth_q_stats.mbuf_alloc_sge--; 6256 } 6257 } 6258 } 6259 6260 static void 6261 bxe_free_fp_buffers(struct bxe_softc *sc) 6262 { 6263 struct bxe_fastpath *fp; 6264 int i; 6265 6266 for (i = 0; i < sc->num_queues; i++) { 6267 fp = &sc->fp[i]; 6268 6269 #if __FreeBSD_version >= 800000 6270 if (fp->tx_br != NULL) { 6271 /* just in case bxe_mq_flush() wasn't called */ 6272 if (mtx_initialized(&fp->tx_mtx)) { 6273 struct mbuf *m; 6274 6275 BXE_FP_TX_LOCK(fp); 6276 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) 6277 m_freem(m); 6278 BXE_FP_TX_UNLOCK(fp); 6279 } 6280 } 6281 #endif 6282 6283 /* free all RX buffers */ 6284 bxe_free_rx_bd_chain(fp); 6285 bxe_free_tpa_pool(fp); 6286 bxe_free_sge_chain(fp); 6287 6288 if (fp->eth_q_stats.mbuf_alloc_rx != 0) { 6289 BLOGE(sc, "failed to claim all rx mbufs (%d left)\n", 6290 fp->eth_q_stats.mbuf_alloc_rx); 6291 } 6292 6293 if (fp->eth_q_stats.mbuf_alloc_sge != 0) { 6294 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6295 fp->eth_q_stats.mbuf_alloc_sge); 6296 } 6297 6298 if (fp->eth_q_stats.mbuf_alloc_tpa != 0) { 6299 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6300 fp->eth_q_stats.mbuf_alloc_tpa); 6301 } 6302 6303 if (fp->eth_q_stats.mbuf_alloc_tx != 0) { 6304 BLOGE(sc, "failed to release tx mbufs (%d left)\n", 6305 fp->eth_q_stats.mbuf_alloc_tx); 6306 } 6307 6308 /* XXX verify all mbufs were reclaimed */ 6309 } 6310 } 6311 6312 static int 6313 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 6314 uint16_t prev_index, 6315 uint16_t index) 6316 { 6317 struct bxe_sw_rx_bd *rx_buf; 6318 struct eth_rx_bd *rx_bd; 6319 bus_dma_segment_t segs[1]; 6320 bus_dmamap_t map; 6321 struct mbuf *m; 6322 int nsegs, rc; 6323 6324 rc = 0; 6325 6326 /* allocate the new RX BD mbuf */ 6327 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6328 if (__predict_false(m == NULL)) { 6329 fp->eth_q_stats.mbuf_rx_bd_alloc_failed++; 6330 return (ENOBUFS); 6331 } 6332 6333 fp->eth_q_stats.mbuf_alloc_rx++; 6334 6335 /* initialize the mbuf buffer length */ 6336 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6337 6338 /* map the mbuf into non-paged pool */ 6339 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6340 fp->rx_mbuf_spare_map, 6341 m, segs, &nsegs, BUS_DMA_NOWAIT); 6342 if (__predict_false(rc != 0)) { 6343 fp->eth_q_stats.mbuf_rx_bd_mapping_failed++; 6344 m_freem(m); 6345 fp->eth_q_stats.mbuf_alloc_rx--; 6346 return (rc); 6347 } 6348 6349 /* all mbufs must map to a single segment */ 6350 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6351 6352 /* release any existing RX BD mbuf mappings */ 6353 6354 if (prev_index != index) { 6355 rx_buf = &fp->rx_mbuf_chain[prev_index]; 6356 6357 if (rx_buf->m_map != NULL) { 6358 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6359 BUS_DMASYNC_POSTREAD); 6360 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6361 } 6362 6363 /* 6364 * We only get here from bxe_rxeof() when the maximum number 6365 * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already 6366 * holds the mbuf in the prev_index so it's OK to NULL it out 6367 * here without concern of a memory leak. 6368 */ 6369 fp->rx_mbuf_chain[prev_index].m = NULL; 6370 } 6371 6372 rx_buf = &fp->rx_mbuf_chain[index]; 6373 6374 if (rx_buf->m_map != NULL) { 6375 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6376 BUS_DMASYNC_POSTREAD); 6377 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6378 } 6379 6380 /* save the mbuf and mapping info for a future packet */ 6381 map = (prev_index != index) ? 6382 fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map; 6383 rx_buf->m_map = fp->rx_mbuf_spare_map; 6384 fp->rx_mbuf_spare_map = map; 6385 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6386 BUS_DMASYNC_PREREAD); 6387 rx_buf->m = m; 6388 6389 rx_bd = &fp->rx_chain[index]; 6390 rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6391 rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6392 6393 return (rc); 6394 } 6395 6396 static int 6397 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 6398 int queue) 6399 { 6400 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 6401 bus_dma_segment_t segs[1]; 6402 bus_dmamap_t map; 6403 struct mbuf *m; 6404 int nsegs; 6405 int rc = 0; 6406 6407 /* allocate the new TPA mbuf */ 6408 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6409 if (__predict_false(m == NULL)) { 6410 fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++; 6411 return (ENOBUFS); 6412 } 6413 6414 fp->eth_q_stats.mbuf_alloc_tpa++; 6415 6416 /* initialize the mbuf buffer length */ 6417 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6418 6419 /* map the mbuf into non-paged pool */ 6420 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6421 fp->rx_tpa_info_mbuf_spare_map, 6422 m, segs, &nsegs, BUS_DMA_NOWAIT); 6423 if (__predict_false(rc != 0)) { 6424 fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++; 6425 m_free(m); 6426 fp->eth_q_stats.mbuf_alloc_tpa--; 6427 return (rc); 6428 } 6429 6430 /* all mbufs must map to a single segment */ 6431 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6432 6433 /* release any existing TPA mbuf mapping */ 6434 if (tpa_info->bd.m_map != NULL) { 6435 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6436 BUS_DMASYNC_POSTREAD); 6437 bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map); 6438 } 6439 6440 /* save the mbuf and mapping info for the TPA mbuf */ 6441 map = tpa_info->bd.m_map; 6442 tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map; 6443 fp->rx_tpa_info_mbuf_spare_map = map; 6444 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6445 BUS_DMASYNC_PREREAD); 6446 tpa_info->bd.m = m; 6447 tpa_info->seg = segs[0]; 6448 6449 return (rc); 6450 } 6451 6452 /* 6453 * Allocate an mbuf and assign it to the receive scatter gather chain. The 6454 * caller must take care to save a copy of the existing mbuf in the SG mbuf 6455 * chain. 6456 */ 6457 static int 6458 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 6459 uint16_t index) 6460 { 6461 struct bxe_sw_rx_bd *sge_buf; 6462 struct eth_rx_sge *sge; 6463 bus_dma_segment_t segs[1]; 6464 bus_dmamap_t map; 6465 struct mbuf *m; 6466 int nsegs; 6467 int rc = 0; 6468 6469 /* allocate a new SGE mbuf */ 6470 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE); 6471 if (__predict_false(m == NULL)) { 6472 fp->eth_q_stats.mbuf_rx_sge_alloc_failed++; 6473 return (ENOMEM); 6474 } 6475 6476 fp->eth_q_stats.mbuf_alloc_sge++; 6477 6478 /* initialize the mbuf buffer length */ 6479 m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE; 6480 6481 /* map the SGE mbuf into non-paged pool */ 6482 rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag, 6483 fp->rx_sge_mbuf_spare_map, 6484 m, segs, &nsegs, BUS_DMA_NOWAIT); 6485 if (__predict_false(rc != 0)) { 6486 fp->eth_q_stats.mbuf_rx_sge_mapping_failed++; 6487 m_freem(m); 6488 fp->eth_q_stats.mbuf_alloc_sge--; 6489 return (rc); 6490 } 6491 6492 /* all mbufs must map to a single segment */ 6493 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6494 6495 sge_buf = &fp->rx_sge_mbuf_chain[index]; 6496 6497 /* release any existing SGE mbuf mapping */ 6498 if (sge_buf->m_map != NULL) { 6499 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6500 BUS_DMASYNC_POSTREAD); 6501 bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map); 6502 } 6503 6504 /* save the mbuf and mapping info for a future packet */ 6505 map = sge_buf->m_map; 6506 sge_buf->m_map = fp->rx_sge_mbuf_spare_map; 6507 fp->rx_sge_mbuf_spare_map = map; 6508 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6509 BUS_DMASYNC_PREREAD); 6510 sge_buf->m = m; 6511 6512 sge = &fp->rx_sge_chain[index]; 6513 sge->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6514 sge->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6515 6516 return (rc); 6517 } 6518 6519 static __noinline int 6520 bxe_alloc_fp_buffers(struct bxe_softc *sc) 6521 { 6522 struct bxe_fastpath *fp; 6523 int i, j, rc = 0; 6524 int ring_prod, cqe_ring_prod; 6525 int max_agg_queues; 6526 6527 for (i = 0; i < sc->num_queues; i++) { 6528 fp = &sc->fp[i]; 6529 6530 ring_prod = cqe_ring_prod = 0; 6531 fp->rx_bd_cons = 0; 6532 fp->rx_cq_cons = 0; 6533 6534 /* allocate buffers for the RX BDs in RX BD chain */ 6535 for (j = 0; j < sc->max_rx_bufs; j++) { 6536 rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod); 6537 if (rc != 0) { 6538 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 6539 i, rc); 6540 goto bxe_alloc_fp_buffers_error; 6541 } 6542 6543 ring_prod = RX_BD_NEXT(ring_prod); 6544 cqe_ring_prod = RCQ_NEXT(cqe_ring_prod); 6545 } 6546 6547 fp->rx_bd_prod = ring_prod; 6548 fp->rx_cq_prod = cqe_ring_prod; 6549 fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0; 6550 6551 max_agg_queues = MAX_AGG_QS(sc); 6552 6553 fp->tpa_enable = TRUE; 6554 6555 /* fill the TPA pool */ 6556 for (j = 0; j < max_agg_queues; j++) { 6557 rc = bxe_alloc_rx_tpa_mbuf(fp, j); 6558 if (rc != 0) { 6559 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n", 6560 i, j); 6561 fp->tpa_enable = FALSE; 6562 goto bxe_alloc_fp_buffers_error; 6563 } 6564 6565 fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP; 6566 } 6567 6568 if (fp->tpa_enable) { 6569 /* fill the RX SGE chain */ 6570 ring_prod = 0; 6571 for (j = 0; j < RX_SGE_USABLE; j++) { 6572 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod); 6573 if (rc != 0) { 6574 BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n", 6575 i, ring_prod); 6576 fp->tpa_enable = FALSE; 6577 ring_prod = 0; 6578 goto bxe_alloc_fp_buffers_error; 6579 } 6580 6581 ring_prod = RX_SGE_NEXT(ring_prod); 6582 } 6583 6584 fp->rx_sge_prod = ring_prod; 6585 } 6586 } 6587 6588 return (0); 6589 6590 bxe_alloc_fp_buffers_error: 6591 6592 /* unwind what was already allocated */ 6593 bxe_free_rx_bd_chain(fp); 6594 bxe_free_tpa_pool(fp); 6595 bxe_free_sge_chain(fp); 6596 6597 return (ENOBUFS); 6598 } 6599 6600 static void 6601 bxe_free_fw_stats_mem(struct bxe_softc *sc) 6602 { 6603 bxe_dma_free(sc, &sc->fw_stats_dma); 6604 6605 sc->fw_stats_num = 0; 6606 6607 sc->fw_stats_req_size = 0; 6608 sc->fw_stats_req = NULL; 6609 sc->fw_stats_req_mapping = 0; 6610 6611 sc->fw_stats_data_size = 0; 6612 sc->fw_stats_data = NULL; 6613 sc->fw_stats_data_mapping = 0; 6614 } 6615 6616 static int 6617 bxe_alloc_fw_stats_mem(struct bxe_softc *sc) 6618 { 6619 uint8_t num_queue_stats; 6620 int num_groups; 6621 6622 /* number of queues for statistics is number of eth queues */ 6623 num_queue_stats = BXE_NUM_ETH_QUEUES(sc); 6624 6625 /* 6626 * Total number of FW statistics requests = 6627 * 1 for port stats + 1 for PF stats + num of queues 6628 */ 6629 sc->fw_stats_num = (2 + num_queue_stats); 6630 6631 /* 6632 * Request is built from stats_query_header and an array of 6633 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT 6634 * rules. The real number or requests is configured in the 6635 * stats_query_header. 6636 */ 6637 num_groups = 6638 ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) + 6639 ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0)); 6640 6641 BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n", 6642 sc->fw_stats_num, num_groups); 6643 6644 sc->fw_stats_req_size = 6645 (sizeof(struct stats_query_header) + 6646 (num_groups * sizeof(struct stats_query_cmd_group))); 6647 6648 /* 6649 * Data for statistics requests + stats_counter. 6650 * stats_counter holds per-STORM counters that are incremented when 6651 * STORM has finished with the current request. Memory for FCoE 6652 * offloaded statistics are counted anyway, even if they will not be sent. 6653 * VF stats are not accounted for here as the data of VF stats is stored 6654 * in memory allocated by the VF, not here. 6655 */ 6656 sc->fw_stats_data_size = 6657 (sizeof(struct stats_counter) + 6658 sizeof(struct per_port_stats) + 6659 sizeof(struct per_pf_stats) + 6660 /* sizeof(struct fcoe_statistics_params) + */ 6661 (sizeof(struct per_queue_stats) * num_queue_stats)); 6662 6663 if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size), 6664 &sc->fw_stats_dma, "fw stats") != 0) { 6665 bxe_free_fw_stats_mem(sc); 6666 return (-1); 6667 } 6668 6669 /* set up the shortcuts */ 6670 6671 sc->fw_stats_req = 6672 (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr; 6673 sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr; 6674 6675 sc->fw_stats_data = 6676 (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr + 6677 sc->fw_stats_req_size); 6678 sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr + 6679 sc->fw_stats_req_size); 6680 6681 BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n", 6682 (uintmax_t)sc->fw_stats_req_mapping); 6683 6684 BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n", 6685 (uintmax_t)sc->fw_stats_data_mapping); 6686 6687 return (0); 6688 } 6689 6690 /* 6691 * Bits map: 6692 * 0-7 - Engine0 load counter. 6693 * 8-15 - Engine1 load counter. 6694 * 16 - Engine0 RESET_IN_PROGRESS bit. 6695 * 17 - Engine1 RESET_IN_PROGRESS bit. 6696 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active 6697 * function on the engine 6698 * 19 - Engine1 ONE_IS_LOADED. 6699 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 6700 * leader to complete (check for both RESET_IN_PROGRESS bits and not 6701 * for just the one belonging to its engine). 6702 */ 6703 #define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 6704 #define BXE_PATH0_LOAD_CNT_MASK 0x000000ff 6705 #define BXE_PATH0_LOAD_CNT_SHIFT 0 6706 #define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00 6707 #define BXE_PATH1_LOAD_CNT_SHIFT 8 6708 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000 6709 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000 6710 #define BXE_GLOBAL_RESET_BIT 0x00040000 6711 6712 /* set the GLOBAL_RESET bit, should be run under rtnl lock */ 6713 static void 6714 bxe_set_reset_global(struct bxe_softc *sc) 6715 { 6716 uint32_t val; 6717 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6718 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6719 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT); 6720 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6721 } 6722 6723 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */ 6724 static void 6725 bxe_clear_reset_global(struct bxe_softc *sc) 6726 { 6727 uint32_t val; 6728 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6729 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6730 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT)); 6731 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6732 } 6733 6734 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */ 6735 static uint8_t 6736 bxe_reset_is_global(struct bxe_softc *sc) 6737 { 6738 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6739 BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val); 6740 return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE; 6741 } 6742 6743 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */ 6744 static void 6745 bxe_set_reset_done(struct bxe_softc *sc) 6746 { 6747 uint32_t val; 6748 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6749 BXE_PATH0_RST_IN_PROG_BIT; 6750 6751 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6752 6753 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6754 /* Clear the bit */ 6755 val &= ~bit; 6756 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6757 6758 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6759 } 6760 6761 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */ 6762 static void 6763 bxe_set_reset_in_progress(struct bxe_softc *sc) 6764 { 6765 uint32_t val; 6766 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6767 BXE_PATH0_RST_IN_PROG_BIT; 6768 6769 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6770 6771 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6772 /* Set the bit */ 6773 val |= bit; 6774 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6775 6776 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6777 } 6778 6779 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */ 6780 static uint8_t 6781 bxe_reset_is_done(struct bxe_softc *sc, 6782 int engine) 6783 { 6784 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6785 uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT : 6786 BXE_PATH0_RST_IN_PROG_BIT; 6787 6788 /* return false if bit is set */ 6789 return (val & bit) ? FALSE : TRUE; 6790 } 6791 6792 /* get the load status for an engine, should be run under rtnl lock */ 6793 static uint8_t 6794 bxe_get_load_status(struct bxe_softc *sc, 6795 int engine) 6796 { 6797 uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK : 6798 BXE_PATH0_LOAD_CNT_MASK; 6799 uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT : 6800 BXE_PATH0_LOAD_CNT_SHIFT; 6801 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6802 6803 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 6804 6805 val = ((val & mask) >> shift); 6806 6807 BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val); 6808 6809 return (val != 0); 6810 } 6811 6812 /* set pf load mark */ 6813 /* XXX needs to be under rtnl lock */ 6814 static void 6815 bxe_set_pf_load(struct bxe_softc *sc) 6816 { 6817 uint32_t val; 6818 uint32_t val1; 6819 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 6820 BXE_PATH0_LOAD_CNT_MASK; 6821 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 6822 BXE_PATH0_LOAD_CNT_SHIFT; 6823 6824 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6825 6826 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6827 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 6828 6829 /* get the current counter value */ 6830 val1 = ((val & mask) >> shift); 6831 6832 /* set bit of this PF */ 6833 val1 |= (1 << SC_ABS_FUNC(sc)); 6834 6835 /* clear the old value */ 6836 val &= ~mask; 6837 6838 /* set the new one */ 6839 val |= ((val1 << shift) & mask); 6840 6841 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6842 6843 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6844 } 6845 6846 /* clear pf load mark */ 6847 /* XXX needs to be under rtnl lock */ 6848 static uint8_t 6849 bxe_clear_pf_load(struct bxe_softc *sc) 6850 { 6851 uint32_t val1, val; 6852 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 6853 BXE_PATH0_LOAD_CNT_MASK; 6854 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 6855 BXE_PATH0_LOAD_CNT_SHIFT; 6856 6857 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6858 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6859 BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val); 6860 6861 /* get the current counter value */ 6862 val1 = (val & mask) >> shift; 6863 6864 /* clear bit of that PF */ 6865 val1 &= ~(1 << SC_ABS_FUNC(sc)); 6866 6867 /* clear the old value */ 6868 val &= ~mask; 6869 6870 /* set the new one */ 6871 val |= ((val1 << shift) & mask); 6872 6873 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6874 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6875 return (val1 != 0); 6876 } 6877 6878 /* send load requrest to mcp and analyze response */ 6879 static int 6880 bxe_nic_load_request(struct bxe_softc *sc, 6881 uint32_t *load_code) 6882 { 6883 /* init fw_seq */ 6884 sc->fw_seq = 6885 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 6886 DRV_MSG_SEQ_NUMBER_MASK); 6887 6888 BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq); 6889 6890 /* get the current FW pulse sequence */ 6891 sc->fw_drv_pulse_wr_seq = 6892 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) & 6893 DRV_PULSE_SEQ_MASK); 6894 6895 BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n", 6896 sc->fw_drv_pulse_wr_seq); 6897 6898 /* load request */ 6899 (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 6900 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 6901 6902 /* if the MCP fails to respond we must abort */ 6903 if (!(*load_code)) { 6904 BLOGE(sc, "MCP response failure!\n"); 6905 return (-1); 6906 } 6907 6908 /* if MCP refused then must abort */ 6909 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 6910 BLOGE(sc, "MCP refused load request\n"); 6911 return (-1); 6912 } 6913 6914 return (0); 6915 } 6916 6917 /* 6918 * Check whether another PF has already loaded FW to chip. In virtualized 6919 * environments a pf from anoth VM may have already initialized the device 6920 * including loading FW. 6921 */ 6922 static int 6923 bxe_nic_load_analyze_req(struct bxe_softc *sc, 6924 uint32_t load_code) 6925 { 6926 uint32_t my_fw, loaded_fw; 6927 6928 /* is another pf loaded on this engine? */ 6929 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 6930 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 6931 /* build my FW version dword */ 6932 my_fw = (BCM_5710_FW_MAJOR_VERSION + 6933 (BCM_5710_FW_MINOR_VERSION << 8 ) + 6934 (BCM_5710_FW_REVISION_VERSION << 16) + 6935 (BCM_5710_FW_ENGINEERING_VERSION << 24)); 6936 6937 /* read loaded FW from chip */ 6938 loaded_fw = REG_RD(sc, XSEM_REG_PRAM); 6939 BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n", 6940 loaded_fw, my_fw); 6941 6942 /* abort nic load if version mismatch */ 6943 if (my_fw != loaded_fw) { 6944 BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)", 6945 loaded_fw, my_fw); 6946 return (-1); 6947 } 6948 } 6949 6950 return (0); 6951 } 6952 6953 /* mark PMF if applicable */ 6954 static void 6955 bxe_nic_load_pmf(struct bxe_softc *sc, 6956 uint32_t load_code) 6957 { 6958 uint32_t ncsi_oem_data_addr; 6959 6960 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 6961 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 6962 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 6963 /* 6964 * Barrier here for ordering between the writing to sc->port.pmf here 6965 * and reading it from the periodic task. 6966 */ 6967 sc->port.pmf = 1; 6968 mb(); 6969 } else { 6970 sc->port.pmf = 0; 6971 } 6972 6973 BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf); 6974 6975 /* XXX needed? */ 6976 if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) { 6977 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) { 6978 ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr); 6979 if (ncsi_oem_data_addr) { 6980 REG_WR(sc, 6981 (ncsi_oem_data_addr + 6982 offsetof(struct glob_ncsi_oem_data, driver_version)), 6983 0); 6984 } 6985 } 6986 } 6987 } 6988 6989 static void 6990 bxe_read_mf_cfg(struct bxe_softc *sc) 6991 { 6992 int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1); 6993 int abs_func; 6994 int vn; 6995 6996 if (BXE_NOMCP(sc)) { 6997 return; /* what should be the default bvalue in this case */ 6998 } 6999 7000 /* 7001 * The formula for computing the absolute function number is... 7002 * For 2 port configuration (4 functions per port): 7003 * abs_func = 2 * vn + SC_PORT + SC_PATH 7004 * For 4 port configuration (2 functions per port): 7005 * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH 7006 */ 7007 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 7008 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc)); 7009 if (abs_func >= E1H_FUNC_MAX) { 7010 break; 7011 } 7012 sc->devinfo.mf_info.mf_config[vn] = 7013 MFCFG_RD(sc, func_mf_config[abs_func].config); 7014 } 7015 7016 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & 7017 FUNC_MF_CFG_FUNC_DISABLED) { 7018 BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n"); 7019 sc->flags |= BXE_MF_FUNC_DIS; 7020 } else { 7021 BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n"); 7022 sc->flags &= ~BXE_MF_FUNC_DIS; 7023 } 7024 } 7025 7026 /* acquire split MCP access lock register */ 7027 static int bxe_acquire_alr(struct bxe_softc *sc) 7028 { 7029 uint32_t j, val; 7030 7031 for (j = 0; j < 1000; j++) { 7032 val = (1UL << 31); 7033 REG_WR(sc, GRCBASE_MCP + 0x9c, val); 7034 val = REG_RD(sc, GRCBASE_MCP + 0x9c); 7035 if (val & (1L << 31)) 7036 break; 7037 7038 DELAY(5000); 7039 } 7040 7041 if (!(val & (1L << 31))) { 7042 BLOGE(sc, "Cannot acquire MCP access lock register\n"); 7043 return (-1); 7044 } 7045 7046 return (0); 7047 } 7048 7049 /* release split MCP access lock register */ 7050 static void bxe_release_alr(struct bxe_softc *sc) 7051 { 7052 REG_WR(sc, GRCBASE_MCP + 0x9c, 0); 7053 } 7054 7055 static void 7056 bxe_fan_failure(struct bxe_softc *sc) 7057 { 7058 int port = SC_PORT(sc); 7059 uint32_t ext_phy_config; 7060 7061 /* mark the failure */ 7062 ext_phy_config = 7063 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 7064 7065 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 7066 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 7067 SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config, 7068 ext_phy_config); 7069 7070 /* log the failure */ 7071 BLOGW(sc, "Fan Failure has caused the driver to shutdown " 7072 "the card to prevent permanent damage. " 7073 "Please contact OEM Support for assistance\n"); 7074 7075 /* XXX */ 7076 #if 1 7077 bxe_panic(sc, ("Schedule task to handle fan failure\n")); 7078 #else 7079 /* 7080 * Schedule device reset (unload) 7081 * This is due to some boards consuming sufficient power when driver is 7082 * up to overheat if fan fails. 7083 */ 7084 bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state); 7085 schedule_delayed_work(&sc->sp_rtnl_task, 0); 7086 #endif 7087 } 7088 7089 /* this function is called upon a link interrupt */ 7090 static void 7091 bxe_link_attn(struct bxe_softc *sc) 7092 { 7093 uint32_t pause_enabled = 0; 7094 struct host_port_stats *pstats; 7095 int cmng_fns; 7096 7097 /* Make sure that we are synced with the current statistics */ 7098 bxe_stats_handle(sc, STATS_EVENT_STOP); 7099 7100 elink_link_update(&sc->link_params, &sc->link_vars); 7101 7102 if (sc->link_vars.link_up) { 7103 7104 /* dropless flow control */ 7105 if (!CHIP_IS_E1(sc) && sc->dropless_fc) { 7106 pause_enabled = 0; 7107 7108 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 7109 pause_enabled = 1; 7110 } 7111 7112 REG_WR(sc, 7113 (BAR_USTRORM_INTMEM + 7114 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))), 7115 pause_enabled); 7116 } 7117 7118 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) { 7119 pstats = BXE_SP(sc, port_stats); 7120 /* reset old mac stats */ 7121 memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx)); 7122 } 7123 7124 if (sc->state == BXE_STATE_OPEN) { 7125 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 7126 } 7127 } 7128 7129 if (sc->link_vars.link_up && sc->link_vars.line_speed) { 7130 cmng_fns = bxe_get_cmng_fns_mode(sc); 7131 7132 if (cmng_fns != CMNG_FNS_NONE) { 7133 bxe_cmng_fns_init(sc, FALSE, cmng_fns); 7134 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7135 } else { 7136 /* rate shaping and fairness are disabled */ 7137 BLOGD(sc, DBG_LOAD, "single function mode without fairness\n"); 7138 } 7139 } 7140 7141 bxe_link_report_locked(sc); 7142 7143 if (IS_MF(sc)) { 7144 ; // XXX bxe_link_sync_notify(sc); 7145 } 7146 } 7147 7148 static void 7149 bxe_attn_int_asserted(struct bxe_softc *sc, 7150 uint32_t asserted) 7151 { 7152 int port = SC_PORT(sc); 7153 uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 7154 MISC_REG_AEU_MASK_ATTN_FUNC_0; 7155 uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 7156 NIG_REG_MASK_INTERRUPT_PORT0; 7157 uint32_t aeu_mask; 7158 uint32_t nig_mask = 0; 7159 uint32_t reg_addr; 7160 uint32_t igu_acked; 7161 uint32_t cnt; 7162 7163 if (sc->attn_state & asserted) { 7164 BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted); 7165 } 7166 7167 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7168 7169 aeu_mask = REG_RD(sc, aeu_addr); 7170 7171 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n", 7172 aeu_mask, asserted); 7173 7174 aeu_mask &= ~(asserted & 0x3ff); 7175 7176 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 7177 7178 REG_WR(sc, aeu_addr, aeu_mask); 7179 7180 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7181 7182 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 7183 sc->attn_state |= asserted; 7184 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 7185 7186 if (asserted & ATTN_HARD_WIRED_MASK) { 7187 if (asserted & ATTN_NIG_FOR_FUNC) { 7188 7189 bxe_acquire_phy_lock(sc); 7190 /* save nig interrupt mask */ 7191 nig_mask = REG_RD(sc, nig_int_mask_addr); 7192 7193 /* If nig_mask is not set, no need to call the update function */ 7194 if (nig_mask) { 7195 REG_WR(sc, nig_int_mask_addr, 0); 7196 7197 bxe_link_attn(sc); 7198 } 7199 7200 /* handle unicore attn? */ 7201 } 7202 7203 if (asserted & ATTN_SW_TIMER_4_FUNC) { 7204 BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n"); 7205 } 7206 7207 if (asserted & GPIO_2_FUNC) { 7208 BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n"); 7209 } 7210 7211 if (asserted & GPIO_3_FUNC) { 7212 BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n"); 7213 } 7214 7215 if (asserted & GPIO_4_FUNC) { 7216 BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n"); 7217 } 7218 7219 if (port == 0) { 7220 if (asserted & ATTN_GENERAL_ATTN_1) { 7221 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n"); 7222 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 7223 } 7224 if (asserted & ATTN_GENERAL_ATTN_2) { 7225 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n"); 7226 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 7227 } 7228 if (asserted & ATTN_GENERAL_ATTN_3) { 7229 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n"); 7230 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 7231 } 7232 } else { 7233 if (asserted & ATTN_GENERAL_ATTN_4) { 7234 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n"); 7235 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 7236 } 7237 if (asserted & ATTN_GENERAL_ATTN_5) { 7238 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n"); 7239 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 7240 } 7241 if (asserted & ATTN_GENERAL_ATTN_6) { 7242 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n"); 7243 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 7244 } 7245 } 7246 } /* hardwired */ 7247 7248 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7249 reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET); 7250 } else { 7251 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 7252 } 7253 7254 BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n", 7255 asserted, 7256 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 7257 REG_WR(sc, reg_addr, asserted); 7258 7259 /* now set back the mask */ 7260 if (asserted & ATTN_NIG_FOR_FUNC) { 7261 /* 7262 * Verify that IGU ack through BAR was written before restoring 7263 * NIG mask. This loop should exit after 2-3 iterations max. 7264 */ 7265 if (sc->devinfo.int_block != INT_BLOCK_HC) { 7266 cnt = 0; 7267 7268 do { 7269 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS); 7270 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 7271 (++cnt < MAX_IGU_ATTN_ACK_TO)); 7272 7273 if (!igu_acked) { 7274 BLOGE(sc, "Failed to verify IGU ack on time\n"); 7275 } 7276 7277 mb(); 7278 } 7279 7280 REG_WR(sc, nig_int_mask_addr, nig_mask); 7281 7282 bxe_release_phy_lock(sc); 7283 } 7284 } 7285 7286 static void 7287 bxe_print_next_block(struct bxe_softc *sc, 7288 int idx, 7289 const char *blk) 7290 { 7291 BLOGI(sc, "%s%s", idx ? ", " : "", blk); 7292 } 7293 7294 static int 7295 bxe_check_blocks_with_parity0(struct bxe_softc *sc, 7296 uint32_t sig, 7297 int par_num, 7298 uint8_t print) 7299 { 7300 uint32_t cur_bit = 0; 7301 int i = 0; 7302 7303 for (i = 0; sig; i++) { 7304 cur_bit = ((uint32_t)0x1 << i); 7305 if (sig & cur_bit) { 7306 switch (cur_bit) { 7307 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 7308 if (print) 7309 bxe_print_next_block(sc, par_num++, "BRB"); 7310 break; 7311 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 7312 if (print) 7313 bxe_print_next_block(sc, par_num++, "PARSER"); 7314 break; 7315 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 7316 if (print) 7317 bxe_print_next_block(sc, par_num++, "TSDM"); 7318 break; 7319 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 7320 if (print) 7321 bxe_print_next_block(sc, par_num++, "SEARCHER"); 7322 break; 7323 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 7324 if (print) 7325 bxe_print_next_block(sc, par_num++, "TCM"); 7326 break; 7327 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 7328 if (print) 7329 bxe_print_next_block(sc, par_num++, "TSEMI"); 7330 break; 7331 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 7332 if (print) 7333 bxe_print_next_block(sc, par_num++, "XPB"); 7334 break; 7335 } 7336 7337 /* Clear the bit */ 7338 sig &= ~cur_bit; 7339 } 7340 } 7341 7342 return (par_num); 7343 } 7344 7345 static int 7346 bxe_check_blocks_with_parity1(struct bxe_softc *sc, 7347 uint32_t sig, 7348 int par_num, 7349 uint8_t *global, 7350 uint8_t print) 7351 { 7352 int i = 0; 7353 uint32_t cur_bit = 0; 7354 for (i = 0; sig; i++) { 7355 cur_bit = ((uint32_t)0x1 << i); 7356 if (sig & cur_bit) { 7357 switch (cur_bit) { 7358 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 7359 if (print) 7360 bxe_print_next_block(sc, par_num++, "PBF"); 7361 break; 7362 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 7363 if (print) 7364 bxe_print_next_block(sc, par_num++, "QM"); 7365 break; 7366 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 7367 if (print) 7368 bxe_print_next_block(sc, par_num++, "TM"); 7369 break; 7370 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 7371 if (print) 7372 bxe_print_next_block(sc, par_num++, "XSDM"); 7373 break; 7374 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 7375 if (print) 7376 bxe_print_next_block(sc, par_num++, "XCM"); 7377 break; 7378 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 7379 if (print) 7380 bxe_print_next_block(sc, par_num++, "XSEMI"); 7381 break; 7382 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 7383 if (print) 7384 bxe_print_next_block(sc, par_num++, "DOORBELLQ"); 7385 break; 7386 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 7387 if (print) 7388 bxe_print_next_block(sc, par_num++, "NIG"); 7389 break; 7390 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 7391 if (print) 7392 bxe_print_next_block(sc, par_num++, "VAUX PCI CORE"); 7393 *global = TRUE; 7394 break; 7395 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 7396 if (print) 7397 bxe_print_next_block(sc, par_num++, "DEBUG"); 7398 break; 7399 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 7400 if (print) 7401 bxe_print_next_block(sc, par_num++, "USDM"); 7402 break; 7403 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 7404 if (print) 7405 bxe_print_next_block(sc, par_num++, "UCM"); 7406 break; 7407 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 7408 if (print) 7409 bxe_print_next_block(sc, par_num++, "USEMI"); 7410 break; 7411 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 7412 if (print) 7413 bxe_print_next_block(sc, par_num++, "UPB"); 7414 break; 7415 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 7416 if (print) 7417 bxe_print_next_block(sc, par_num++, "CSDM"); 7418 break; 7419 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 7420 if (print) 7421 bxe_print_next_block(sc, par_num++, "CCM"); 7422 break; 7423 } 7424 7425 /* Clear the bit */ 7426 sig &= ~cur_bit; 7427 } 7428 } 7429 7430 return (par_num); 7431 } 7432 7433 static int 7434 bxe_check_blocks_with_parity2(struct bxe_softc *sc, 7435 uint32_t sig, 7436 int par_num, 7437 uint8_t print) 7438 { 7439 uint32_t cur_bit = 0; 7440 int i = 0; 7441 7442 for (i = 0; sig; i++) { 7443 cur_bit = ((uint32_t)0x1 << i); 7444 if (sig & cur_bit) { 7445 switch (cur_bit) { 7446 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 7447 if (print) 7448 bxe_print_next_block(sc, par_num++, "CSEMI"); 7449 break; 7450 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 7451 if (print) 7452 bxe_print_next_block(sc, par_num++, "PXP"); 7453 break; 7454 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 7455 if (print) 7456 bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT"); 7457 break; 7458 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 7459 if (print) 7460 bxe_print_next_block(sc, par_num++, "CFC"); 7461 break; 7462 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 7463 if (print) 7464 bxe_print_next_block(sc, par_num++, "CDU"); 7465 break; 7466 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 7467 if (print) 7468 bxe_print_next_block(sc, par_num++, "DMAE"); 7469 break; 7470 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 7471 if (print) 7472 bxe_print_next_block(sc, par_num++, "IGU"); 7473 break; 7474 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 7475 if (print) 7476 bxe_print_next_block(sc, par_num++, "MISC"); 7477 break; 7478 } 7479 7480 /* Clear the bit */ 7481 sig &= ~cur_bit; 7482 } 7483 } 7484 7485 return (par_num); 7486 } 7487 7488 static int 7489 bxe_check_blocks_with_parity3(struct bxe_softc *sc, 7490 uint32_t sig, 7491 int par_num, 7492 uint8_t *global, 7493 uint8_t print) 7494 { 7495 uint32_t cur_bit = 0; 7496 int i = 0; 7497 7498 for (i = 0; sig; i++) { 7499 cur_bit = ((uint32_t)0x1 << i); 7500 if (sig & cur_bit) { 7501 switch (cur_bit) { 7502 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 7503 if (print) 7504 bxe_print_next_block(sc, par_num++, "MCP ROM"); 7505 *global = TRUE; 7506 break; 7507 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 7508 if (print) 7509 bxe_print_next_block(sc, par_num++, 7510 "MCP UMP RX"); 7511 *global = TRUE; 7512 break; 7513 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 7514 if (print) 7515 bxe_print_next_block(sc, par_num++, 7516 "MCP UMP TX"); 7517 *global = TRUE; 7518 break; 7519 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 7520 if (print) 7521 bxe_print_next_block(sc, par_num++, 7522 "MCP SCPAD"); 7523 *global = TRUE; 7524 break; 7525 } 7526 7527 /* Clear the bit */ 7528 sig &= ~cur_bit; 7529 } 7530 } 7531 7532 return (par_num); 7533 } 7534 7535 static int 7536 bxe_check_blocks_with_parity4(struct bxe_softc *sc, 7537 uint32_t sig, 7538 int par_num, 7539 uint8_t print) 7540 { 7541 uint32_t cur_bit = 0; 7542 int i = 0; 7543 7544 for (i = 0; sig; i++) { 7545 cur_bit = ((uint32_t)0x1 << i); 7546 if (sig & cur_bit) { 7547 switch (cur_bit) { 7548 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 7549 if (print) 7550 bxe_print_next_block(sc, par_num++, "PGLUE_B"); 7551 break; 7552 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 7553 if (print) 7554 bxe_print_next_block(sc, par_num++, "ATC"); 7555 break; 7556 } 7557 7558 /* Clear the bit */ 7559 sig &= ~cur_bit; 7560 } 7561 } 7562 7563 return (par_num); 7564 } 7565 7566 static uint8_t 7567 bxe_parity_attn(struct bxe_softc *sc, 7568 uint8_t *global, 7569 uint8_t print, 7570 uint32_t *sig) 7571 { 7572 int par_num = 0; 7573 7574 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 7575 (sig[1] & HW_PRTY_ASSERT_SET_1) || 7576 (sig[2] & HW_PRTY_ASSERT_SET_2) || 7577 (sig[3] & HW_PRTY_ASSERT_SET_3) || 7578 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 7579 BLOGE(sc, "Parity error: HW block parity attention:\n" 7580 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 7581 (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0), 7582 (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1), 7583 (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2), 7584 (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3), 7585 (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4)); 7586 7587 if (print) 7588 BLOGI(sc, "Parity errors detected in blocks: "); 7589 7590 par_num = 7591 bxe_check_blocks_with_parity0(sc, sig[0] & 7592 HW_PRTY_ASSERT_SET_0, 7593 par_num, print); 7594 par_num = 7595 bxe_check_blocks_with_parity1(sc, sig[1] & 7596 HW_PRTY_ASSERT_SET_1, 7597 par_num, global, print); 7598 par_num = 7599 bxe_check_blocks_with_parity2(sc, sig[2] & 7600 HW_PRTY_ASSERT_SET_2, 7601 par_num, print); 7602 par_num = 7603 bxe_check_blocks_with_parity3(sc, sig[3] & 7604 HW_PRTY_ASSERT_SET_3, 7605 par_num, global, print); 7606 par_num = 7607 bxe_check_blocks_with_parity4(sc, sig[4] & 7608 HW_PRTY_ASSERT_SET_4, 7609 par_num, print); 7610 7611 if (print) 7612 BLOGI(sc, "\n"); 7613 7614 return (TRUE); 7615 } 7616 7617 return (FALSE); 7618 } 7619 7620 static uint8_t 7621 bxe_chk_parity_attn(struct bxe_softc *sc, 7622 uint8_t *global, 7623 uint8_t print) 7624 { 7625 struct attn_route attn = { {0} }; 7626 int port = SC_PORT(sc); 7627 7628 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 7629 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 7630 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 7631 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 7632 7633 /* 7634 * Since MCP attentions can't be disabled inside the block, we need to 7635 * read AEU registers to see whether they're currently disabled 7636 */ 7637 attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0 7638 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) & 7639 MISC_AEU_ENABLE_MCP_PRTY_BITS) | 7640 ~MISC_AEU_ENABLE_MCP_PRTY_BITS); 7641 7642 7643 if (!CHIP_IS_E1x(sc)) 7644 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 7645 7646 return (bxe_parity_attn(sc, global, print, attn.sig)); 7647 } 7648 7649 static void 7650 bxe_attn_int_deasserted4(struct bxe_softc *sc, 7651 uint32_t attn) 7652 { 7653 uint32_t val; 7654 7655 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 7656 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 7657 BLOGE(sc, "PGLUE hw attention 0x%08x\n", val); 7658 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 7659 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 7660 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 7661 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 7662 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 7663 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 7664 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 7665 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 7666 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 7667 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 7668 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 7669 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 7670 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 7671 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 7672 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 7673 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 7674 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 7675 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 7676 } 7677 7678 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 7679 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR); 7680 BLOGE(sc, "ATC hw attention 0x%08x\n", val); 7681 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 7682 BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 7683 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 7684 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 7685 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 7686 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 7687 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 7688 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 7689 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 7690 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 7691 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 7692 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 7693 } 7694 7695 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7696 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 7697 BLOGE(sc, "FATAL parity attention set4 0x%08x\n", 7698 (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7699 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 7700 } 7701 } 7702 7703 static void 7704 bxe_e1h_disable(struct bxe_softc *sc) 7705 { 7706 int port = SC_PORT(sc); 7707 7708 bxe_tx_disable(sc); 7709 7710 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 7711 } 7712 7713 static void 7714 bxe_e1h_enable(struct bxe_softc *sc) 7715 { 7716 int port = SC_PORT(sc); 7717 7718 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 7719 7720 // XXX bxe_tx_enable(sc); 7721 } 7722 7723 /* 7724 * called due to MCP event (on pmf): 7725 * reread new bandwidth configuration 7726 * configure FW 7727 * notify others function about the change 7728 */ 7729 static void 7730 bxe_config_mf_bw(struct bxe_softc *sc) 7731 { 7732 if (sc->link_vars.link_up) { 7733 bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX); 7734 // XXX bxe_link_sync_notify(sc); 7735 } 7736 7737 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7738 } 7739 7740 static void 7741 bxe_set_mf_bw(struct bxe_softc *sc) 7742 { 7743 bxe_config_mf_bw(sc); 7744 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 7745 } 7746 7747 static void 7748 bxe_handle_eee_event(struct bxe_softc *sc) 7749 { 7750 BLOGD(sc, DBG_INTR, "EEE - LLDP event\n"); 7751 bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 7752 } 7753 7754 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 7755 7756 static void 7757 bxe_drv_info_ether_stat(struct bxe_softc *sc) 7758 { 7759 struct eth_stats_info *ether_stat = 7760 &sc->sp->drv_info_to_mcp.ether_stat; 7761 7762 strlcpy(ether_stat->version, BXE_DRIVER_VERSION, 7763 ETH_STAT_INFO_VERSION_LEN); 7764 7765 /* XXX (+ MAC_PAD) taken from other driver... verify this is right */ 7766 sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj, 7767 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 7768 ether_stat->mac_local + MAC_PAD, 7769 MAC_PAD, ETH_ALEN); 7770 7771 ether_stat->mtu_size = sc->mtu; 7772 7773 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 7774 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 7775 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 7776 } 7777 7778 // XXX ether_stat->feature_flags |= ???; 7779 7780 ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0; 7781 7782 ether_stat->txq_size = sc->tx_ring_size; 7783 ether_stat->rxq_size = sc->rx_ring_size; 7784 } 7785 7786 static void 7787 bxe_handle_drv_info_req(struct bxe_softc *sc) 7788 { 7789 enum drv_info_opcode op_code; 7790 uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control); 7791 7792 /* if drv_info version supported by MFW doesn't match - send NACK */ 7793 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 7794 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 7795 return; 7796 } 7797 7798 op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 7799 DRV_INFO_CONTROL_OP_CODE_SHIFT); 7800 7801 memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp)); 7802 7803 switch (op_code) { 7804 case ETH_STATS_OPCODE: 7805 bxe_drv_info_ether_stat(sc); 7806 break; 7807 case FCOE_STATS_OPCODE: 7808 case ISCSI_STATS_OPCODE: 7809 default: 7810 /* if op code isn't supported - send NACK */ 7811 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 7812 return; 7813 } 7814 7815 /* 7816 * If we got drv_info attn from MFW then these fields are defined in 7817 * shmem2 for sure 7818 */ 7819 SHMEM2_WR(sc, drv_info_host_addr_lo, 7820 U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 7821 SHMEM2_WR(sc, drv_info_host_addr_hi, 7822 U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 7823 7824 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0); 7825 } 7826 7827 static void 7828 bxe_dcc_event(struct bxe_softc *sc, 7829 uint32_t dcc_event) 7830 { 7831 BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event); 7832 7833 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { 7834 /* 7835 * This is the only place besides the function initialization 7836 * where the sc->flags can change so it is done without any 7837 * locks 7838 */ 7839 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) { 7840 BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n"); 7841 sc->flags |= BXE_MF_FUNC_DIS; 7842 bxe_e1h_disable(sc); 7843 } else { 7844 BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n"); 7845 sc->flags &= ~BXE_MF_FUNC_DIS; 7846 bxe_e1h_enable(sc); 7847 } 7848 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; 7849 } 7850 7851 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { 7852 bxe_config_mf_bw(sc); 7853 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; 7854 } 7855 7856 /* Report results to MCP */ 7857 if (dcc_event) 7858 bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0); 7859 else 7860 bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0); 7861 } 7862 7863 static void 7864 bxe_pmf_update(struct bxe_softc *sc) 7865 { 7866 int port = SC_PORT(sc); 7867 uint32_t val; 7868 7869 sc->port.pmf = 1; 7870 BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf); 7871 7872 /* 7873 * We need the mb() to ensure the ordering between the writing to 7874 * sc->port.pmf here and reading it from the bxe_periodic_task(). 7875 */ 7876 mb(); 7877 7878 /* queue a periodic task */ 7879 // XXX schedule task... 7880 7881 // XXX bxe_dcbx_pmf_update(sc); 7882 7883 /* enable nig attention */ 7884 val = (0xff0f | (1 << (SC_VN(sc) + 4))); 7885 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7886 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val); 7887 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val); 7888 } else if (!CHIP_IS_E1x(sc)) { 7889 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 7890 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 7891 } 7892 7893 bxe_stats_handle(sc, STATS_EVENT_PMF); 7894 } 7895 7896 static int 7897 bxe_mc_assert(struct bxe_softc *sc) 7898 { 7899 char last_idx; 7900 int i, rc = 0; 7901 uint32_t row0, row1, row2, row3; 7902 7903 /* XSTORM */ 7904 last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET); 7905 if (last_idx) 7906 BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7907 7908 /* print the asserts */ 7909 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7910 7911 row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i)); 7912 row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4); 7913 row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8); 7914 row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12); 7915 7916 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7917 BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7918 i, row3, row2, row1, row0); 7919 rc++; 7920 } else { 7921 break; 7922 } 7923 } 7924 7925 /* TSTORM */ 7926 last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET); 7927 if (last_idx) { 7928 BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7929 } 7930 7931 /* print the asserts */ 7932 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7933 7934 row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i)); 7935 row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4); 7936 row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8); 7937 row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12); 7938 7939 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7940 BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7941 i, row3, row2, row1, row0); 7942 rc++; 7943 } else { 7944 break; 7945 } 7946 } 7947 7948 /* CSTORM */ 7949 last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET); 7950 if (last_idx) { 7951 BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7952 } 7953 7954 /* print the asserts */ 7955 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7956 7957 row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i)); 7958 row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4); 7959 row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8); 7960 row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12); 7961 7962 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7963 BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7964 i, row3, row2, row1, row0); 7965 rc++; 7966 } else { 7967 break; 7968 } 7969 } 7970 7971 /* USTORM */ 7972 last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET); 7973 if (last_idx) { 7974 BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7975 } 7976 7977 /* print the asserts */ 7978 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7979 7980 row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i)); 7981 row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4); 7982 row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8); 7983 row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12); 7984 7985 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7986 BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7987 i, row3, row2, row1, row0); 7988 rc++; 7989 } else { 7990 break; 7991 } 7992 } 7993 7994 return (rc); 7995 } 7996 7997 static void 7998 bxe_attn_int_deasserted3(struct bxe_softc *sc, 7999 uint32_t attn) 8000 { 8001 int func = SC_FUNC(sc); 8002 uint32_t val; 8003 8004 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 8005 8006 if (attn & BXE_PMF_LINK_ASSERT(sc)) { 8007 8008 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 8009 bxe_read_mf_cfg(sc); 8010 sc->devinfo.mf_info.mf_config[SC_VN(sc)] = 8011 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 8012 val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status); 8013 8014 if (val & DRV_STATUS_DCC_EVENT_MASK) 8015 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK)); 8016 8017 if (val & DRV_STATUS_SET_MF_BW) 8018 bxe_set_mf_bw(sc); 8019 8020 if (val & DRV_STATUS_DRV_INFO_REQ) 8021 bxe_handle_drv_info_req(sc); 8022 8023 if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF)) 8024 bxe_pmf_update(sc); 8025 8026 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 8027 bxe_handle_eee_event(sc); 8028 8029 if (sc->link_vars.periodic_flags & 8030 ELINK_PERIODIC_FLAGS_LINK_EVENT) { 8031 /* sync with link */ 8032 bxe_acquire_phy_lock(sc); 8033 sc->link_vars.periodic_flags &= 8034 ~ELINK_PERIODIC_FLAGS_LINK_EVENT; 8035 bxe_release_phy_lock(sc); 8036 if (IS_MF(sc)) 8037 ; // XXX bxe_link_sync_notify(sc); 8038 bxe_link_report(sc); 8039 } 8040 8041 /* 8042 * Always call it here: bxe_link_report() will 8043 * prevent the link indication duplication. 8044 */ 8045 bxe_link_status_update(sc); 8046 8047 } else if (attn & BXE_MC_ASSERT_BITS) { 8048 8049 BLOGE(sc, "MC assert!\n"); 8050 bxe_mc_assert(sc); 8051 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0); 8052 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0); 8053 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0); 8054 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0); 8055 bxe_panic(sc, ("MC assert!\n")); 8056 8057 } else if (attn & BXE_MCP_ASSERT) { 8058 8059 BLOGE(sc, "MCP assert!\n"); 8060 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0); 8061 // XXX bxe_fw_dump(sc); 8062 8063 } else { 8064 BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn); 8065 } 8066 } 8067 8068 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 8069 BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn); 8070 if (attn & BXE_GRC_TIMEOUT) { 8071 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN); 8072 BLOGE(sc, "GRC time-out 0x%08x\n", val); 8073 } 8074 if (attn & BXE_GRC_RSV) { 8075 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN); 8076 BLOGE(sc, "GRC reserved 0x%08x\n", val); 8077 } 8078 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 8079 } 8080 } 8081 8082 static void 8083 bxe_attn_int_deasserted2(struct bxe_softc *sc, 8084 uint32_t attn) 8085 { 8086 int port = SC_PORT(sc); 8087 int reg_offset; 8088 uint32_t val0, mask0, val1, mask1; 8089 uint32_t val; 8090 8091 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 8092 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR); 8093 BLOGE(sc, "CFC hw attention 0x%08x\n", val); 8094 /* CFC error attention */ 8095 if (val & 0x2) { 8096 BLOGE(sc, "FATAL error from CFC\n"); 8097 } 8098 } 8099 8100 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 8101 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0); 8102 BLOGE(sc, "PXP hw attention-0 0x%08x\n", val); 8103 /* RQ_USDMDP_FIFO_OVERFLOW */ 8104 if (val & 0x18000) { 8105 BLOGE(sc, "FATAL error from PXP\n"); 8106 } 8107 8108 if (!CHIP_IS_E1x(sc)) { 8109 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1); 8110 BLOGE(sc, "PXP hw attention-1 0x%08x\n", val); 8111 } 8112 } 8113 8114 #define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR 8115 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT 8116 8117 if (attn & AEU_PXP2_HW_INT_BIT) { 8118 /* CQ47854 workaround do not panic on 8119 * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8120 */ 8121 if (!CHIP_IS_E1x(sc)) { 8122 mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0); 8123 val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1); 8124 mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1); 8125 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0); 8126 /* 8127 * If the olny PXP2_EOP_ERROR_BIT is set in 8128 * STS0 and STS1 - clear it 8129 * 8130 * probably we lose additional attentions between 8131 * STS0 and STS_CLR0, in this case user will not 8132 * be notified about them 8133 */ 8134 if (val0 & mask0 & PXP2_EOP_ERROR_BIT && 8135 !(val1 & mask1)) 8136 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 8137 8138 /* print the register, since no one can restore it */ 8139 BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0); 8140 8141 /* 8142 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8143 * then notify 8144 */ 8145 if (val0 & PXP2_EOP_ERROR_BIT) { 8146 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n"); 8147 8148 /* 8149 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is 8150 * set then clear attention from PXP2 block without panic 8151 */ 8152 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) && 8153 ((val1 & mask1) == 0)) 8154 attn &= ~AEU_PXP2_HW_INT_BIT; 8155 } 8156 } 8157 } 8158 8159 if (attn & HW_INTERRUT_ASSERT_SET_2) { 8160 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 8161 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 8162 8163 val = REG_RD(sc, reg_offset); 8164 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); 8165 REG_WR(sc, reg_offset, val); 8166 8167 BLOGE(sc, "FATAL HW block attention set2 0x%x\n", 8168 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2)); 8169 bxe_panic(sc, ("HW block attention set2\n")); 8170 } 8171 } 8172 8173 static void 8174 bxe_attn_int_deasserted1(struct bxe_softc *sc, 8175 uint32_t attn) 8176 { 8177 int port = SC_PORT(sc); 8178 int reg_offset; 8179 uint32_t val; 8180 8181 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 8182 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR); 8183 BLOGE(sc, "DB hw attention 0x%08x\n", val); 8184 /* DORQ discard attention */ 8185 if (val & 0x2) { 8186 BLOGE(sc, "FATAL error from DORQ\n"); 8187 } 8188 } 8189 8190 if (attn & HW_INTERRUT_ASSERT_SET_1) { 8191 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 8192 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 8193 8194 val = REG_RD(sc, reg_offset); 8195 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); 8196 REG_WR(sc, reg_offset, val); 8197 8198 BLOGE(sc, "FATAL HW block attention set1 0x%08x\n", 8199 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1)); 8200 bxe_panic(sc, ("HW block attention set1\n")); 8201 } 8202 } 8203 8204 static void 8205 bxe_attn_int_deasserted0(struct bxe_softc *sc, 8206 uint32_t attn) 8207 { 8208 int port = SC_PORT(sc); 8209 int reg_offset; 8210 uint32_t val; 8211 8212 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 8213 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 8214 8215 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 8216 val = REG_RD(sc, reg_offset); 8217 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 8218 REG_WR(sc, reg_offset, val); 8219 8220 BLOGW(sc, "SPIO5 hw attention\n"); 8221 8222 /* Fan failure attention */ 8223 elink_hw_reset_phy(&sc->link_params); 8224 bxe_fan_failure(sc); 8225 } 8226 8227 if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) { 8228 bxe_acquire_phy_lock(sc); 8229 elink_handle_module_detect_int(&sc->link_params); 8230 bxe_release_phy_lock(sc); 8231 } 8232 8233 if (attn & HW_INTERRUT_ASSERT_SET_0) { 8234 val = REG_RD(sc, reg_offset); 8235 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); 8236 REG_WR(sc, reg_offset, val); 8237 8238 bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n", 8239 (attn & HW_INTERRUT_ASSERT_SET_0))); 8240 } 8241 } 8242 8243 static void 8244 bxe_attn_int_deasserted(struct bxe_softc *sc, 8245 uint32_t deasserted) 8246 { 8247 struct attn_route attn; 8248 struct attn_route *group_mask; 8249 int port = SC_PORT(sc); 8250 int index; 8251 uint32_t reg_addr; 8252 uint32_t val; 8253 uint32_t aeu_mask; 8254 uint8_t global = FALSE; 8255 8256 /* 8257 * Need to take HW lock because MCP or other port might also 8258 * try to handle this event. 8259 */ 8260 bxe_acquire_alr(sc); 8261 8262 if (bxe_chk_parity_attn(sc, &global, TRUE)) { 8263 /* XXX 8264 * In case of parity errors don't handle attentions so that 8265 * other function would "see" parity errors. 8266 */ 8267 sc->recovery_state = BXE_RECOVERY_INIT; 8268 // XXX schedule a recovery task... 8269 /* disable HW interrupts */ 8270 bxe_int_disable(sc); 8271 bxe_release_alr(sc); 8272 return; 8273 } 8274 8275 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 8276 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 8277 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 8278 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 8279 if (!CHIP_IS_E1x(sc)) { 8280 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 8281 } else { 8282 attn.sig[4] = 0; 8283 } 8284 8285 BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", 8286 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 8287 8288 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 8289 if (deasserted & (1 << index)) { 8290 group_mask = &sc->attn_group[index]; 8291 8292 BLOGD(sc, DBG_INTR, 8293 "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index, 8294 group_mask->sig[0], group_mask->sig[1], 8295 group_mask->sig[2], group_mask->sig[3], 8296 group_mask->sig[4]); 8297 8298 bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]); 8299 bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]); 8300 bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]); 8301 bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]); 8302 bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]); 8303 } 8304 } 8305 8306 bxe_release_alr(sc); 8307 8308 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8309 reg_addr = (HC_REG_COMMAND_REG + port*32 + 8310 COMMAND_REG_ATTN_BITS_CLR); 8311 } else { 8312 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 8313 } 8314 8315 val = ~deasserted; 8316 BLOGD(sc, DBG_INTR, 8317 "about to mask 0x%08x at %s addr 0x%08x\n", val, 8318 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 8319 REG_WR(sc, reg_addr, val); 8320 8321 if (~sc->attn_state & deasserted) { 8322 BLOGE(sc, "IGU error\n"); 8323 } 8324 8325 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 8326 MISC_REG_AEU_MASK_ATTN_FUNC_0; 8327 8328 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8329 8330 aeu_mask = REG_RD(sc, reg_addr); 8331 8332 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n", 8333 aeu_mask, deasserted); 8334 aeu_mask |= (deasserted & 0x3ff); 8335 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 8336 8337 REG_WR(sc, reg_addr, aeu_mask); 8338 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8339 8340 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 8341 sc->attn_state &= ~deasserted; 8342 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 8343 } 8344 8345 static void 8346 bxe_attn_int(struct bxe_softc *sc) 8347 { 8348 /* read local copy of bits */ 8349 uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits); 8350 uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack); 8351 uint32_t attn_state = sc->attn_state; 8352 8353 /* look for changed bits */ 8354 uint32_t asserted = attn_bits & ~attn_ack & ~attn_state; 8355 uint32_t deasserted = ~attn_bits & attn_ack & attn_state; 8356 8357 BLOGD(sc, DBG_INTR, 8358 "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n", 8359 attn_bits, attn_ack, asserted, deasserted); 8360 8361 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) { 8362 BLOGE(sc, "BAD attention state\n"); 8363 } 8364 8365 /* handle bits that were raised */ 8366 if (asserted) { 8367 bxe_attn_int_asserted(sc, asserted); 8368 } 8369 8370 if (deasserted) { 8371 bxe_attn_int_deasserted(sc, deasserted); 8372 } 8373 } 8374 8375 static uint16_t 8376 bxe_update_dsb_idx(struct bxe_softc *sc) 8377 { 8378 struct host_sp_status_block *def_sb = sc->def_sb; 8379 uint16_t rc = 0; 8380 8381 mb(); /* status block is written to by the chip */ 8382 8383 if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 8384 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index; 8385 rc |= BXE_DEF_SB_ATT_IDX; 8386 } 8387 8388 if (sc->def_idx != def_sb->sp_sb.running_index) { 8389 sc->def_idx = def_sb->sp_sb.running_index; 8390 rc |= BXE_DEF_SB_IDX; 8391 } 8392 8393 mb(); 8394 8395 return (rc); 8396 } 8397 8398 static inline struct ecore_queue_sp_obj * 8399 bxe_cid_to_q_obj(struct bxe_softc *sc, 8400 uint32_t cid) 8401 { 8402 BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid); 8403 return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj); 8404 } 8405 8406 static void 8407 bxe_handle_mcast_eqe(struct bxe_softc *sc) 8408 { 8409 struct ecore_mcast_ramrod_params rparam; 8410 int rc; 8411 8412 memset(&rparam, 0, sizeof(rparam)); 8413 8414 rparam.mcast_obj = &sc->mcast_obj; 8415 8416 BXE_MCAST_LOCK(sc); 8417 8418 /* clear pending state for the last command */ 8419 sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw); 8420 8421 /* if there are pending mcast commands - send them */ 8422 if (sc->mcast_obj.check_pending(&sc->mcast_obj)) { 8423 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 8424 if (rc < 0) { 8425 BLOGD(sc, DBG_SP, 8426 "ERROR: Failed to send pending mcast commands (%d)\n", rc); 8427 } 8428 } 8429 8430 BXE_MCAST_UNLOCK(sc); 8431 } 8432 8433 static void 8434 bxe_handle_classification_eqe(struct bxe_softc *sc, 8435 union event_ring_elem *elem) 8436 { 8437 unsigned long ramrod_flags = 0; 8438 int rc = 0; 8439 uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8440 struct ecore_vlan_mac_obj *vlan_mac_obj; 8441 8442 /* always push next commands out, don't wait here */ 8443 bit_set(&ramrod_flags, RAMROD_CONT); 8444 8445 switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) { 8446 case ECORE_FILTER_MAC_PENDING: 8447 BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n"); 8448 vlan_mac_obj = &sc->sp_objs[cid].mac_obj; 8449 break; 8450 8451 case ECORE_FILTER_MCAST_PENDING: 8452 BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n"); 8453 /* 8454 * This is only relevant for 57710 where multicast MACs are 8455 * configured as unicast MACs using the same ramrod. 8456 */ 8457 bxe_handle_mcast_eqe(sc); 8458 return; 8459 8460 default: 8461 BLOGE(sc, "Unsupported classification command: %d\n", 8462 elem->message.data.eth_event.echo); 8463 return; 8464 } 8465 8466 rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags); 8467 8468 if (rc < 0) { 8469 BLOGE(sc, "Failed to schedule new commands (%d)\n", rc); 8470 } else if (rc > 0) { 8471 BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n"); 8472 } 8473 } 8474 8475 static void 8476 bxe_handle_rx_mode_eqe(struct bxe_softc *sc, 8477 union event_ring_elem *elem) 8478 { 8479 bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 8480 8481 /* send rx_mode command again if was requested */ 8482 if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, 8483 &sc->sp_state)) { 8484 bxe_set_storm_rx_mode(sc); 8485 } 8486 } 8487 8488 static void 8489 bxe_update_eq_prod(struct bxe_softc *sc, 8490 uint16_t prod) 8491 { 8492 storm_memset_eq_prod(sc, prod, SC_FUNC(sc)); 8493 wmb(); /* keep prod updates ordered */ 8494 } 8495 8496 static void 8497 bxe_eq_int(struct bxe_softc *sc) 8498 { 8499 uint16_t hw_cons, sw_cons, sw_prod; 8500 union event_ring_elem *elem; 8501 uint8_t echo; 8502 uint32_t cid; 8503 uint8_t opcode; 8504 int spqe_cnt = 0; 8505 struct ecore_queue_sp_obj *q_obj; 8506 struct ecore_func_sp_obj *f_obj = &sc->func_obj; 8507 struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw; 8508 8509 hw_cons = le16toh(*sc->eq_cons_sb); 8510 8511 /* 8512 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256. 8513 * when we get to the next-page we need to adjust so the loop 8514 * condition below will be met. The next element is the size of a 8515 * regular element and hence incrementing by 1 8516 */ 8517 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) { 8518 hw_cons++; 8519 } 8520 8521 /* 8522 * This function may never run in parallel with itself for a 8523 * specific sc and no need for a read memory barrier here. 8524 */ 8525 sw_cons = sc->eq_cons; 8526 sw_prod = sc->eq_prod; 8527 8528 BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n", 8529 hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left)); 8530 8531 for (; 8532 sw_cons != hw_cons; 8533 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 8534 8535 elem = &sc->eq[EQ_DESC(sw_cons)]; 8536 8537 /* elem CID originates from FW, actually LE */ 8538 cid = SW_CID(elem->message.data.cfc_del_event.cid); 8539 opcode = elem->message.opcode; 8540 8541 /* handle eq element */ 8542 switch (opcode) { 8543 8544 case EVENT_RING_OPCODE_STAT_QUERY: 8545 BLOGD(sc, DBG_SP, "got statistics completion event %d\n", 8546 sc->stats_comp++); 8547 /* nothing to do with stats comp */ 8548 goto next_spqe; 8549 8550 case EVENT_RING_OPCODE_CFC_DEL: 8551 /* handle according to cid range */ 8552 /* we may want to verify here that the sc state is HALTING */ 8553 BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid); 8554 q_obj = bxe_cid_to_q_obj(sc, cid); 8555 if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) { 8556 break; 8557 } 8558 goto next_spqe; 8559 8560 case EVENT_RING_OPCODE_STOP_TRAFFIC: 8561 BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n"); 8562 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) { 8563 break; 8564 } 8565 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED); 8566 goto next_spqe; 8567 8568 case EVENT_RING_OPCODE_START_TRAFFIC: 8569 BLOGD(sc, DBG_SP, "got START TRAFFIC\n"); 8570 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) { 8571 break; 8572 } 8573 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED); 8574 goto next_spqe; 8575 8576 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 8577 echo = elem->message.data.function_update_event.echo; 8578 if (echo == SWITCH_UPDATE) { 8579 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n"); 8580 if (f_obj->complete_cmd(sc, f_obj, 8581 ECORE_F_CMD_SWITCH_UPDATE)) { 8582 break; 8583 } 8584 } 8585 else { 8586 BLOGD(sc, DBG_SP, 8587 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 8588 } 8589 goto next_spqe; 8590 8591 case EVENT_RING_OPCODE_FORWARD_SETUP: 8592 q_obj = &bxe_fwd_sp_obj(sc, q_obj); 8593 if (q_obj->complete_cmd(sc, q_obj, 8594 ECORE_Q_CMD_SETUP_TX_ONLY)) { 8595 break; 8596 } 8597 goto next_spqe; 8598 8599 case EVENT_RING_OPCODE_FUNCTION_START: 8600 BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n"); 8601 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) { 8602 break; 8603 } 8604 goto next_spqe; 8605 8606 case EVENT_RING_OPCODE_FUNCTION_STOP: 8607 BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n"); 8608 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) { 8609 break; 8610 } 8611 goto next_spqe; 8612 } 8613 8614 switch (opcode | sc->state) { 8615 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN): 8616 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT): 8617 cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8618 BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid); 8619 rss_raw->clear_pending(rss_raw); 8620 break; 8621 8622 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN): 8623 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG): 8624 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT): 8625 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN): 8626 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG): 8627 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8628 BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n"); 8629 bxe_handle_classification_eqe(sc, elem); 8630 break; 8631 8632 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN): 8633 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG): 8634 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8635 BLOGD(sc, DBG_SP, "got mcast ramrod\n"); 8636 bxe_handle_mcast_eqe(sc); 8637 break; 8638 8639 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN): 8640 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG): 8641 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8642 BLOGD(sc, DBG_SP, "got rx_mode ramrod\n"); 8643 bxe_handle_rx_mode_eqe(sc, elem); 8644 break; 8645 8646 default: 8647 /* unknown event log error and continue */ 8648 BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n", 8649 elem->message.opcode, sc->state); 8650 } 8651 8652 next_spqe: 8653 spqe_cnt++; 8654 } /* for */ 8655 8656 mb(); 8657 atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt); 8658 8659 sc->eq_cons = sw_cons; 8660 sc->eq_prod = sw_prod; 8661 8662 /* make sure that above mem writes were issued towards the memory */ 8663 wmb(); 8664 8665 /* update producer */ 8666 bxe_update_eq_prod(sc, sc->eq_prod); 8667 } 8668 8669 static void 8670 bxe_handle_sp_tq(void *context, 8671 int pending) 8672 { 8673 struct bxe_softc *sc = (struct bxe_softc *)context; 8674 uint16_t status; 8675 8676 BLOGD(sc, DBG_SP, "---> SP TASK <---\n"); 8677 8678 /* what work needs to be performed? */ 8679 status = bxe_update_dsb_idx(sc); 8680 8681 BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status); 8682 8683 /* HW attentions */ 8684 if (status & BXE_DEF_SB_ATT_IDX) { 8685 BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n"); 8686 bxe_attn_int(sc); 8687 status &= ~BXE_DEF_SB_ATT_IDX; 8688 } 8689 8690 /* SP events: STAT_QUERY and others */ 8691 if (status & BXE_DEF_SB_IDX) { 8692 /* handle EQ completions */ 8693 BLOGD(sc, DBG_SP, "---> EQ INTR <---\n"); 8694 bxe_eq_int(sc); 8695 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 8696 le16toh(sc->def_idx), IGU_INT_NOP, 1); 8697 status &= ~BXE_DEF_SB_IDX; 8698 } 8699 8700 /* if status is non zero then something went wrong */ 8701 if (__predict_false(status)) { 8702 BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status); 8703 } 8704 8705 /* ack status block only if something was actually handled */ 8706 bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID, 8707 le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1); 8708 8709 /* 8710 * Must be called after the EQ processing (since eq leads to sriov 8711 * ramrod completion flows). 8712 * This flow may have been scheduled by the arrival of a ramrod 8713 * completion, or by the sriov code rescheduling itself. 8714 */ 8715 // XXX bxe_iov_sp_task(sc); 8716 8717 } 8718 8719 static void 8720 bxe_handle_fp_tq(void *context, 8721 int pending) 8722 { 8723 struct bxe_fastpath *fp = (struct bxe_fastpath *)context; 8724 struct bxe_softc *sc = fp->sc; 8725 uint8_t more_tx = FALSE; 8726 uint8_t more_rx = FALSE; 8727 8728 BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index); 8729 8730 /* XXX 8731 * IFF_DRV_RUNNING state can't be checked here since we process 8732 * slowpath events on a client queue during setup. Instead 8733 * we need to add a "process/continue" flag here that the driver 8734 * can use to tell the task here not to do anything. 8735 */ 8736 #if 0 8737 if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 8738 return; 8739 } 8740 #endif 8741 8742 /* update the fastpath index */ 8743 bxe_update_fp_sb_idx(fp); 8744 8745 /* XXX add loop here if ever support multiple tx CoS */ 8746 /* fp->txdata[cos] */ 8747 if (bxe_has_tx_work(fp)) { 8748 BXE_FP_TX_LOCK(fp); 8749 more_tx = bxe_txeof(sc, fp); 8750 BXE_FP_TX_UNLOCK(fp); 8751 } 8752 8753 if (bxe_has_rx_work(fp)) { 8754 more_rx = bxe_rxeof(sc, fp); 8755 } 8756 8757 if (more_rx /*|| more_tx*/) { 8758 /* still more work to do */ 8759 taskqueue_enqueue(fp->tq, &fp->tq_task); 8760 return; 8761 } 8762 8763 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 8764 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 8765 } 8766 8767 static void 8768 bxe_task_fp(struct bxe_fastpath *fp) 8769 { 8770 struct bxe_softc *sc = fp->sc; 8771 uint8_t more_tx = FALSE; 8772 uint8_t more_rx = FALSE; 8773 8774 BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index); 8775 8776 /* update the fastpath index */ 8777 bxe_update_fp_sb_idx(fp); 8778 8779 /* XXX add loop here if ever support multiple tx CoS */ 8780 /* fp->txdata[cos] */ 8781 if (bxe_has_tx_work(fp)) { 8782 BXE_FP_TX_LOCK(fp); 8783 more_tx = bxe_txeof(sc, fp); 8784 BXE_FP_TX_UNLOCK(fp); 8785 } 8786 8787 if (bxe_has_rx_work(fp)) { 8788 more_rx = bxe_rxeof(sc, fp); 8789 } 8790 8791 if (more_rx /*|| more_tx*/) { 8792 /* still more work to do, bail out if this ISR and process later */ 8793 taskqueue_enqueue(fp->tq, &fp->tq_task); 8794 return; 8795 } 8796 8797 /* 8798 * Here we write the fastpath index taken before doing any tx or rx work. 8799 * It is very well possible other hw events occurred up to this point and 8800 * they were actually processed accordingly above. Since we're going to 8801 * write an older fastpath index, an interrupt is coming which we might 8802 * not do any work in. 8803 */ 8804 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 8805 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 8806 } 8807 8808 /* 8809 * Legacy interrupt entry point. 8810 * 8811 * Verifies that the controller generated the interrupt and 8812 * then calls a separate routine to handle the various 8813 * interrupt causes: link, RX, and TX. 8814 */ 8815 static void 8816 bxe_intr_legacy(void *xsc) 8817 { 8818 struct bxe_softc *sc = (struct bxe_softc *)xsc; 8819 struct bxe_fastpath *fp; 8820 uint16_t status, mask; 8821 int i; 8822 8823 BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n"); 8824 8825 /* 8826 * 0 for ustorm, 1 for cstorm 8827 * the bits returned from ack_int() are 0-15 8828 * bit 0 = attention status block 8829 * bit 1 = fast path status block 8830 * a mask of 0x2 or more = tx/rx event 8831 * a mask of 1 = slow path event 8832 */ 8833 8834 status = bxe_ack_int(sc); 8835 8836 /* the interrupt is not for us */ 8837 if (__predict_false(status == 0)) { 8838 BLOGD(sc, DBG_INTR, "Not our interrupt!\n"); 8839 return; 8840 } 8841 8842 BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status); 8843 8844 FOR_EACH_ETH_QUEUE(sc, i) { 8845 fp = &sc->fp[i]; 8846 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc))); 8847 if (status & mask) { 8848 /* acknowledge and disable further fastpath interrupts */ 8849 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8850 bxe_task_fp(fp); 8851 status &= ~mask; 8852 } 8853 } 8854 8855 if (__predict_false(status & 0x1)) { 8856 /* acknowledge and disable further slowpath interrupts */ 8857 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8858 8859 /* schedule slowpath handler */ 8860 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8861 8862 status &= ~0x1; 8863 } 8864 8865 if (__predict_false(status)) { 8866 BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status); 8867 } 8868 } 8869 8870 /* slowpath interrupt entry point */ 8871 static void 8872 bxe_intr_sp(void *xsc) 8873 { 8874 struct bxe_softc *sc = (struct bxe_softc *)xsc; 8875 8876 BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n"); 8877 8878 /* acknowledge and disable further slowpath interrupts */ 8879 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8880 8881 /* schedule slowpath handler */ 8882 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8883 } 8884 8885 /* fastpath interrupt entry point */ 8886 static void 8887 bxe_intr_fp(void *xfp) 8888 { 8889 struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp; 8890 struct bxe_softc *sc = fp->sc; 8891 8892 BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index); 8893 8894 BLOGD(sc, DBG_INTR, 8895 "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n", 8896 curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id); 8897 8898 /* acknowledge and disable further fastpath interrupts */ 8899 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8900 8901 bxe_task_fp(fp); 8902 } 8903 8904 /* Release all interrupts allocated by the driver. */ 8905 static void 8906 bxe_interrupt_free(struct bxe_softc *sc) 8907 { 8908 int i; 8909 8910 switch (sc->interrupt_mode) { 8911 case INTR_MODE_INTX: 8912 BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n"); 8913 if (sc->intr[0].resource != NULL) { 8914 bus_release_resource(sc->dev, 8915 SYS_RES_IRQ, 8916 sc->intr[0].rid, 8917 sc->intr[0].resource); 8918 } 8919 break; 8920 case INTR_MODE_MSI: 8921 for (i = 0; i < sc->intr_count; i++) { 8922 BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i); 8923 if (sc->intr[i].resource && sc->intr[i].rid) { 8924 bus_release_resource(sc->dev, 8925 SYS_RES_IRQ, 8926 sc->intr[i].rid, 8927 sc->intr[i].resource); 8928 } 8929 } 8930 pci_release_msi(sc->dev); 8931 break; 8932 case INTR_MODE_MSIX: 8933 for (i = 0; i < sc->intr_count; i++) { 8934 BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i); 8935 if (sc->intr[i].resource && sc->intr[i].rid) { 8936 bus_release_resource(sc->dev, 8937 SYS_RES_IRQ, 8938 sc->intr[i].rid, 8939 sc->intr[i].resource); 8940 } 8941 } 8942 pci_release_msi(sc->dev); 8943 break; 8944 default: 8945 /* nothing to do as initial allocation failed */ 8946 break; 8947 } 8948 } 8949 8950 /* 8951 * This function determines and allocates the appropriate 8952 * interrupt based on system capabilites and user request. 8953 * 8954 * The user may force a particular interrupt mode, specify 8955 * the number of receive queues, specify the method for 8956 * distribuitng received frames to receive queues, or use 8957 * the default settings which will automatically select the 8958 * best supported combination. In addition, the OS may or 8959 * may not support certain combinations of these settings. 8960 * This routine attempts to reconcile the settings requested 8961 * by the user with the capabilites available from the system 8962 * to select the optimal combination of features. 8963 * 8964 * Returns: 8965 * 0 = Success, !0 = Failure. 8966 */ 8967 static int 8968 bxe_interrupt_alloc(struct bxe_softc *sc) 8969 { 8970 int msix_count = 0; 8971 int msi_count = 0; 8972 int num_requested = 0; 8973 int num_allocated = 0; 8974 int rid, i, j; 8975 int rc; 8976 8977 /* get the number of available MSI/MSI-X interrupts from the OS */ 8978 if (sc->interrupt_mode > 0) { 8979 if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) { 8980 msix_count = pci_msix_count(sc->dev); 8981 } 8982 8983 if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) { 8984 msi_count = pci_msi_count(sc->dev); 8985 } 8986 8987 BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n", 8988 msi_count, msix_count); 8989 } 8990 8991 do { /* try allocating MSI-X interrupt resources (at least 2) */ 8992 if (sc->interrupt_mode != INTR_MODE_MSIX) { 8993 break; 8994 } 8995 8996 if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) || 8997 (msix_count < 2)) { 8998 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8999 break; 9000 } 9001 9002 /* ask for the necessary number of MSI-X vectors */ 9003 num_requested = min((sc->num_queues + 1), msix_count); 9004 9005 BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested); 9006 9007 num_allocated = num_requested; 9008 if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) { 9009 BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc); 9010 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9011 break; 9012 } 9013 9014 if (num_allocated < 2) { /* possible? */ 9015 BLOGE(sc, "MSI-X allocation less than 2!\n"); 9016 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9017 pci_release_msi(sc->dev); 9018 break; 9019 } 9020 9021 BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n", 9022 num_requested, num_allocated); 9023 9024 /* best effort so use the number of vectors allocated to us */ 9025 sc->intr_count = num_allocated; 9026 sc->num_queues = num_allocated - 1; 9027 9028 rid = 1; /* initial resource identifier */ 9029 9030 /* allocate the MSI-X vectors */ 9031 for (i = 0; i < num_allocated; i++) { 9032 sc->intr[i].rid = (rid + i); 9033 9034 if ((sc->intr[i].resource = 9035 bus_alloc_resource_any(sc->dev, 9036 SYS_RES_IRQ, 9037 &sc->intr[i].rid, 9038 RF_ACTIVE)) == NULL) { 9039 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n", 9040 i, (rid + i)); 9041 9042 for (j = (i - 1); j >= 0; j--) { 9043 bus_release_resource(sc->dev, 9044 SYS_RES_IRQ, 9045 sc->intr[j].rid, 9046 sc->intr[j].resource); 9047 } 9048 9049 sc->intr_count = 0; 9050 sc->num_queues = 0; 9051 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9052 pci_release_msi(sc->dev); 9053 break; 9054 } 9055 9056 BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i)); 9057 } 9058 } while (0); 9059 9060 do { /* try allocating MSI vector resources (at least 2) */ 9061 if (sc->interrupt_mode != INTR_MODE_MSI) { 9062 break; 9063 } 9064 9065 if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) || 9066 (msi_count < 1)) { 9067 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9068 break; 9069 } 9070 9071 /* ask for a single MSI vector */ 9072 num_requested = 1; 9073 9074 BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested); 9075 9076 num_allocated = num_requested; 9077 if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) { 9078 BLOGE(sc, "MSI alloc failed (%d)!\n", rc); 9079 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9080 break; 9081 } 9082 9083 if (num_allocated != 1) { /* possible? */ 9084 BLOGE(sc, "MSI allocation is not 1!\n"); 9085 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9086 pci_release_msi(sc->dev); 9087 break; 9088 } 9089 9090 BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n", 9091 num_requested, num_allocated); 9092 9093 /* best effort so use the number of vectors allocated to us */ 9094 sc->intr_count = num_allocated; 9095 sc->num_queues = num_allocated; 9096 9097 rid = 1; /* initial resource identifier */ 9098 9099 sc->intr[0].rid = rid; 9100 9101 if ((sc->intr[0].resource = 9102 bus_alloc_resource_any(sc->dev, 9103 SYS_RES_IRQ, 9104 &sc->intr[0].rid, 9105 RF_ACTIVE)) == NULL) { 9106 BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid); 9107 sc->intr_count = 0; 9108 sc->num_queues = 0; 9109 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9110 pci_release_msi(sc->dev); 9111 break; 9112 } 9113 9114 BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid); 9115 } while (0); 9116 9117 do { /* try allocating INTx vector resources */ 9118 if (sc->interrupt_mode != INTR_MODE_INTX) { 9119 break; 9120 } 9121 9122 BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n"); 9123 9124 /* only one vector for INTx */ 9125 sc->intr_count = 1; 9126 sc->num_queues = 1; 9127 9128 rid = 0; /* initial resource identifier */ 9129 9130 sc->intr[0].rid = rid; 9131 9132 if ((sc->intr[0].resource = 9133 bus_alloc_resource_any(sc->dev, 9134 SYS_RES_IRQ, 9135 &sc->intr[0].rid, 9136 (RF_ACTIVE | RF_SHAREABLE))) == NULL) { 9137 BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid); 9138 sc->intr_count = 0; 9139 sc->num_queues = 0; 9140 sc->interrupt_mode = -1; /* Failed! */ 9141 break; 9142 } 9143 9144 BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid); 9145 } while (0); 9146 9147 if (sc->interrupt_mode == -1) { 9148 BLOGE(sc, "Interrupt Allocation: FAILED!!!\n"); 9149 rc = 1; 9150 } else { 9151 BLOGD(sc, DBG_LOAD, 9152 "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n", 9153 sc->interrupt_mode, sc->num_queues); 9154 rc = 0; 9155 } 9156 9157 return (rc); 9158 } 9159 9160 static void 9161 bxe_interrupt_detach(struct bxe_softc *sc) 9162 { 9163 struct bxe_fastpath *fp; 9164 int i; 9165 9166 /* release interrupt resources */ 9167 for (i = 0; i < sc->intr_count; i++) { 9168 if (sc->intr[i].resource && sc->intr[i].tag) { 9169 BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i); 9170 bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag); 9171 } 9172 } 9173 9174 for (i = 0; i < sc->num_queues; i++) { 9175 fp = &sc->fp[i]; 9176 if (fp->tq) { 9177 taskqueue_drain(fp->tq, &fp->tq_task); 9178 taskqueue_free(fp->tq); 9179 fp->tq = NULL; 9180 } 9181 } 9182 9183 9184 if (sc->sp_tq) { 9185 taskqueue_drain(sc->sp_tq, &sc->sp_tq_task); 9186 taskqueue_free(sc->sp_tq); 9187 sc->sp_tq = NULL; 9188 } 9189 } 9190 9191 /* 9192 * Enables interrupts and attach to the ISR. 9193 * 9194 * When using multiple MSI/MSI-X vectors the first vector 9195 * is used for slowpath operations while all remaining 9196 * vectors are used for fastpath operations. If only a 9197 * single MSI/MSI-X vector is used (SINGLE_ISR) then the 9198 * ISR must look for both slowpath and fastpath completions. 9199 */ 9200 static int 9201 bxe_interrupt_attach(struct bxe_softc *sc) 9202 { 9203 struct bxe_fastpath *fp; 9204 int rc = 0; 9205 int i; 9206 9207 snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name), 9208 "bxe%d_sp_tq", sc->unit); 9209 TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc); 9210 sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT, 9211 taskqueue_thread_enqueue, 9212 &sc->sp_tq); 9213 taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */ 9214 "%s", sc->sp_tq_name); 9215 9216 9217 for (i = 0; i < sc->num_queues; i++) { 9218 fp = &sc->fp[i]; 9219 snprintf(fp->tq_name, sizeof(fp->tq_name), 9220 "bxe%d_fp%d_tq", sc->unit, i); 9221 TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp); 9222 fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT, 9223 taskqueue_thread_enqueue, 9224 &fp->tq); 9225 taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */ 9226 "%s", fp->tq_name); 9227 } 9228 9229 /* setup interrupt handlers */ 9230 if (sc->interrupt_mode == INTR_MODE_MSIX) { 9231 BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n"); 9232 9233 /* 9234 * Setup the interrupt handler. Note that we pass the driver instance 9235 * to the interrupt handler for the slowpath. 9236 */ 9237 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9238 (INTR_TYPE_NET | INTR_MPSAFE), 9239 NULL, bxe_intr_sp, sc, 9240 &sc->intr[0].tag)) != 0) { 9241 BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc); 9242 goto bxe_interrupt_attach_exit; 9243 } 9244 9245 bus_describe_intr(sc->dev, sc->intr[0].resource, 9246 sc->intr[0].tag, "sp"); 9247 9248 /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */ 9249 9250 /* initialize the fastpath vectors (note the first was used for sp) */ 9251 for (i = 0; i < sc->num_queues; i++) { 9252 fp = &sc->fp[i]; 9253 BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1)); 9254 9255 /* 9256 * Setup the interrupt handler. Note that we pass the 9257 * fastpath context to the interrupt handler in this 9258 * case. 9259 */ 9260 if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource, 9261 (INTR_TYPE_NET | INTR_MPSAFE), 9262 NULL, bxe_intr_fp, fp, 9263 &sc->intr[i + 1].tag)) != 0) { 9264 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n", 9265 (i + 1), rc); 9266 goto bxe_interrupt_attach_exit; 9267 } 9268 9269 bus_describe_intr(sc->dev, sc->intr[i + 1].resource, 9270 sc->intr[i + 1].tag, "fp%02d", i); 9271 9272 /* bind the fastpath instance to a cpu */ 9273 if (sc->num_queues > 1) { 9274 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i); 9275 } 9276 9277 fp->state = BXE_FP_STATE_IRQ; 9278 } 9279 } else if (sc->interrupt_mode == INTR_MODE_MSI) { 9280 BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n"); 9281 9282 /* 9283 * Setup the interrupt handler. Note that we pass the 9284 * driver instance to the interrupt handler which 9285 * will handle both the slowpath and fastpath. 9286 */ 9287 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9288 (INTR_TYPE_NET | INTR_MPSAFE), 9289 NULL, bxe_intr_legacy, sc, 9290 &sc->intr[0].tag)) != 0) { 9291 BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc); 9292 goto bxe_interrupt_attach_exit; 9293 } 9294 9295 } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */ 9296 BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n"); 9297 9298 /* 9299 * Setup the interrupt handler. Note that we pass the 9300 * driver instance to the interrupt handler which 9301 * will handle both the slowpath and fastpath. 9302 */ 9303 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9304 (INTR_TYPE_NET | INTR_MPSAFE), 9305 NULL, bxe_intr_legacy, sc, 9306 &sc->intr[0].tag)) != 0) { 9307 BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc); 9308 goto bxe_interrupt_attach_exit; 9309 } 9310 } 9311 9312 bxe_interrupt_attach_exit: 9313 9314 return (rc); 9315 } 9316 9317 static int bxe_init_hw_common_chip(struct bxe_softc *sc); 9318 static int bxe_init_hw_common(struct bxe_softc *sc); 9319 static int bxe_init_hw_port(struct bxe_softc *sc); 9320 static int bxe_init_hw_func(struct bxe_softc *sc); 9321 static void bxe_reset_common(struct bxe_softc *sc); 9322 static void bxe_reset_port(struct bxe_softc *sc); 9323 static void bxe_reset_func(struct bxe_softc *sc); 9324 static int bxe_gunzip_init(struct bxe_softc *sc); 9325 static void bxe_gunzip_end(struct bxe_softc *sc); 9326 static int bxe_init_firmware(struct bxe_softc *sc); 9327 static void bxe_release_firmware(struct bxe_softc *sc); 9328 9329 static struct 9330 ecore_func_sp_drv_ops bxe_func_sp_drv = { 9331 .init_hw_cmn_chip = bxe_init_hw_common_chip, 9332 .init_hw_cmn = bxe_init_hw_common, 9333 .init_hw_port = bxe_init_hw_port, 9334 .init_hw_func = bxe_init_hw_func, 9335 9336 .reset_hw_cmn = bxe_reset_common, 9337 .reset_hw_port = bxe_reset_port, 9338 .reset_hw_func = bxe_reset_func, 9339 9340 .gunzip_init = bxe_gunzip_init, 9341 .gunzip_end = bxe_gunzip_end, 9342 9343 .init_fw = bxe_init_firmware, 9344 .release_fw = bxe_release_firmware, 9345 }; 9346 9347 static void 9348 bxe_init_func_obj(struct bxe_softc *sc) 9349 { 9350 sc->dmae_ready = 0; 9351 9352 ecore_init_func_obj(sc, 9353 &sc->func_obj, 9354 BXE_SP(sc, func_rdata), 9355 BXE_SP_MAPPING(sc, func_rdata), 9356 BXE_SP(sc, func_afex_rdata), 9357 BXE_SP_MAPPING(sc, func_afex_rdata), 9358 &bxe_func_sp_drv); 9359 } 9360 9361 static int 9362 bxe_init_hw(struct bxe_softc *sc, 9363 uint32_t load_code) 9364 { 9365 struct ecore_func_state_params func_params = { NULL }; 9366 int rc; 9367 9368 /* prepare the parameters for function state transitions */ 9369 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 9370 9371 func_params.f_obj = &sc->func_obj; 9372 func_params.cmd = ECORE_F_CMD_HW_INIT; 9373 9374 func_params.params.hw_init.load_phase = load_code; 9375 9376 /* 9377 * Via a plethora of function pointers, we will eventually reach 9378 * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func(). 9379 */ 9380 rc = ecore_func_state_change(sc, &func_params); 9381 9382 return (rc); 9383 } 9384 9385 static void 9386 bxe_fill(struct bxe_softc *sc, 9387 uint32_t addr, 9388 int fill, 9389 uint32_t len) 9390 { 9391 uint32_t i; 9392 9393 if (!(len % 4) && !(addr % 4)) { 9394 for (i = 0; i < len; i += 4) { 9395 REG_WR(sc, (addr + i), fill); 9396 } 9397 } else { 9398 for (i = 0; i < len; i++) { 9399 REG_WR8(sc, (addr + i), fill); 9400 } 9401 } 9402 } 9403 9404 /* writes FP SP data to FW - data_size in dwords */ 9405 static void 9406 bxe_wr_fp_sb_data(struct bxe_softc *sc, 9407 int fw_sb_id, 9408 uint32_t *sb_data_p, 9409 uint32_t data_size) 9410 { 9411 int index; 9412 9413 for (index = 0; index < data_size; index++) { 9414 REG_WR(sc, 9415 (BAR_CSTRORM_INTMEM + 9416 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 9417 (sizeof(uint32_t) * index)), 9418 *(sb_data_p + index)); 9419 } 9420 } 9421 9422 static void 9423 bxe_zero_fp_sb(struct bxe_softc *sc, 9424 int fw_sb_id) 9425 { 9426 struct hc_status_block_data_e2 sb_data_e2; 9427 struct hc_status_block_data_e1x sb_data_e1x; 9428 uint32_t *sb_data_p; 9429 uint32_t data_size = 0; 9430 9431 if (!CHIP_IS_E1x(sc)) { 9432 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9433 sb_data_e2.common.state = SB_DISABLED; 9434 sb_data_e2.common.p_func.vf_valid = FALSE; 9435 sb_data_p = (uint32_t *)&sb_data_e2; 9436 data_size = (sizeof(struct hc_status_block_data_e2) / 9437 sizeof(uint32_t)); 9438 } else { 9439 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9440 sb_data_e1x.common.state = SB_DISABLED; 9441 sb_data_e1x.common.p_func.vf_valid = FALSE; 9442 sb_data_p = (uint32_t *)&sb_data_e1x; 9443 data_size = (sizeof(struct hc_status_block_data_e1x) / 9444 sizeof(uint32_t)); 9445 } 9446 9447 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9448 9449 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 9450 0, CSTORM_STATUS_BLOCK_SIZE); 9451 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)), 9452 0, CSTORM_SYNC_BLOCK_SIZE); 9453 } 9454 9455 static void 9456 bxe_wr_sp_sb_data(struct bxe_softc *sc, 9457 struct hc_sp_status_block_data *sp_sb_data) 9458 { 9459 int i; 9460 9461 for (i = 0; 9462 i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t)); 9463 i++) { 9464 REG_WR(sc, 9465 (BAR_CSTRORM_INTMEM + 9466 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) + 9467 (i * sizeof(uint32_t))), 9468 *((uint32_t *)sp_sb_data + i)); 9469 } 9470 } 9471 9472 static void 9473 bxe_zero_sp_sb(struct bxe_softc *sc) 9474 { 9475 struct hc_sp_status_block_data sp_sb_data; 9476 9477 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9478 9479 sp_sb_data.state = SB_DISABLED; 9480 sp_sb_data.p_func.vf_valid = FALSE; 9481 9482 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9483 9484 bxe_fill(sc, 9485 (BAR_CSTRORM_INTMEM + 9486 CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))), 9487 0, CSTORM_SP_STATUS_BLOCK_SIZE); 9488 bxe_fill(sc, 9489 (BAR_CSTRORM_INTMEM + 9490 CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))), 9491 0, CSTORM_SP_SYNC_BLOCK_SIZE); 9492 } 9493 9494 static void 9495 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 9496 int igu_sb_id, 9497 int igu_seg_id) 9498 { 9499 hc_sm->igu_sb_id = igu_sb_id; 9500 hc_sm->igu_seg_id = igu_seg_id; 9501 hc_sm->timer_value = 0xFF; 9502 hc_sm->time_to_expire = 0xFFFFFFFF; 9503 } 9504 9505 static void 9506 bxe_map_sb_state_machines(struct hc_index_data *index_data) 9507 { 9508 /* zero out state machine indices */ 9509 9510 /* rx indices */ 9511 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9512 9513 /* tx indices */ 9514 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9515 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 9516 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 9517 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 9518 9519 /* map indices */ 9520 9521 /* rx indices */ 9522 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 9523 (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9524 9525 /* tx indices */ 9526 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 9527 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9528 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 9529 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9530 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 9531 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9532 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 9533 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9534 } 9535 9536 static void 9537 bxe_init_sb(struct bxe_softc *sc, 9538 bus_addr_t busaddr, 9539 int vfid, 9540 uint8_t vf_valid, 9541 int fw_sb_id, 9542 int igu_sb_id) 9543 { 9544 struct hc_status_block_data_e2 sb_data_e2; 9545 struct hc_status_block_data_e1x sb_data_e1x; 9546 struct hc_status_block_sm *hc_sm_p; 9547 uint32_t *sb_data_p; 9548 int igu_seg_id; 9549 int data_size; 9550 9551 if (CHIP_INT_MODE_IS_BC(sc)) { 9552 igu_seg_id = HC_SEG_ACCESS_NORM; 9553 } else { 9554 igu_seg_id = IGU_SEG_ACCESS_NORM; 9555 } 9556 9557 bxe_zero_fp_sb(sc, fw_sb_id); 9558 9559 if (!CHIP_IS_E1x(sc)) { 9560 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9561 sb_data_e2.common.state = SB_ENABLED; 9562 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc); 9563 sb_data_e2.common.p_func.vf_id = vfid; 9564 sb_data_e2.common.p_func.vf_valid = vf_valid; 9565 sb_data_e2.common.p_func.vnic_id = SC_VN(sc); 9566 sb_data_e2.common.same_igu_sb_1b = TRUE; 9567 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr); 9568 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr); 9569 hc_sm_p = sb_data_e2.common.state_machine; 9570 sb_data_p = (uint32_t *)&sb_data_e2; 9571 data_size = (sizeof(struct hc_status_block_data_e2) / 9572 sizeof(uint32_t)); 9573 bxe_map_sb_state_machines(sb_data_e2.index_data); 9574 } else { 9575 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9576 sb_data_e1x.common.state = SB_ENABLED; 9577 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc); 9578 sb_data_e1x.common.p_func.vf_id = 0xff; 9579 sb_data_e1x.common.p_func.vf_valid = FALSE; 9580 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc); 9581 sb_data_e1x.common.same_igu_sb_1b = TRUE; 9582 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr); 9583 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr); 9584 hc_sm_p = sb_data_e1x.common.state_machine; 9585 sb_data_p = (uint32_t *)&sb_data_e1x; 9586 data_size = (sizeof(struct hc_status_block_data_e1x) / 9587 sizeof(uint32_t)); 9588 bxe_map_sb_state_machines(sb_data_e1x.index_data); 9589 } 9590 9591 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id); 9592 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id); 9593 9594 BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id); 9595 9596 /* write indices to HW - PCI guarantees endianity of regpairs */ 9597 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9598 } 9599 9600 static inline uint8_t 9601 bxe_fp_qzone_id(struct bxe_fastpath *fp) 9602 { 9603 if (CHIP_IS_E1x(fp->sc)) { 9604 return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H); 9605 } else { 9606 return (fp->cl_id); 9607 } 9608 } 9609 9610 static inline uint32_t 9611 bxe_rx_ustorm_prods_offset(struct bxe_softc *sc, 9612 struct bxe_fastpath *fp) 9613 { 9614 uint32_t offset = BAR_USTRORM_INTMEM; 9615 9616 if (!CHIP_IS_E1x(sc)) { 9617 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 9618 } else { 9619 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id); 9620 } 9621 9622 return (offset); 9623 } 9624 9625 static void 9626 bxe_init_eth_fp(struct bxe_softc *sc, 9627 int idx) 9628 { 9629 struct bxe_fastpath *fp = &sc->fp[idx]; 9630 uint32_t cids[ECORE_MULTI_TX_COS] = { 0 }; 9631 unsigned long q_type = 0; 9632 int cos; 9633 9634 fp->sc = sc; 9635 fp->index = idx; 9636 9637 fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc)); 9638 fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc)); 9639 9640 fp->cl_id = (CHIP_IS_E1x(sc)) ? 9641 (SC_L_ID(sc) + idx) : 9642 /* want client ID same as IGU SB ID for non-E1 */ 9643 fp->igu_sb_id; 9644 fp->cl_qzone_id = bxe_fp_qzone_id(fp); 9645 9646 /* setup sb indices */ 9647 if (!CHIP_IS_E1x(sc)) { 9648 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values; 9649 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index; 9650 } else { 9651 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values; 9652 fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index; 9653 } 9654 9655 /* init shortcut */ 9656 fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp); 9657 9658 fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]; 9659 9660 /* 9661 * XXX If multiple CoS is ever supported then each fastpath structure 9662 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 9663 */ 9664 for (cos = 0; cos < sc->max_cos; cos++) { 9665 cids[cos] = idx; 9666 } 9667 fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]; 9668 9669 /* nothing more for a VF to do */ 9670 if (IS_VF(sc)) { 9671 return; 9672 } 9673 9674 bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE, 9675 fp->fw_sb_id, fp->igu_sb_id); 9676 9677 bxe_update_fp_sb_idx(fp); 9678 9679 /* Configure Queue State object */ 9680 bit_set(&q_type, ECORE_Q_TYPE_HAS_RX); 9681 bit_set(&q_type, ECORE_Q_TYPE_HAS_TX); 9682 9683 ecore_init_queue_obj(sc, 9684 &sc->sp_objs[idx].q_obj, 9685 fp->cl_id, 9686 cids, 9687 sc->max_cos, 9688 SC_FUNC(sc), 9689 BXE_SP(sc, q_rdata), 9690 BXE_SP_MAPPING(sc, q_rdata), 9691 q_type); 9692 9693 /* configure classification DBs */ 9694 ecore_init_mac_obj(sc, 9695 &sc->sp_objs[idx].mac_obj, 9696 fp->cl_id, 9697 idx, 9698 SC_FUNC(sc), 9699 BXE_SP(sc, mac_rdata), 9700 BXE_SP_MAPPING(sc, mac_rdata), 9701 ECORE_FILTER_MAC_PENDING, 9702 &sc->sp_state, 9703 ECORE_OBJ_TYPE_RX_TX, 9704 &sc->macs_pool); 9705 9706 BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n", 9707 idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id); 9708 } 9709 9710 static inline void 9711 bxe_update_rx_prod(struct bxe_softc *sc, 9712 struct bxe_fastpath *fp, 9713 uint16_t rx_bd_prod, 9714 uint16_t rx_cq_prod, 9715 uint16_t rx_sge_prod) 9716 { 9717 struct ustorm_eth_rx_producers rx_prods = { 0 }; 9718 uint32_t i; 9719 9720 /* update producers */ 9721 rx_prods.bd_prod = rx_bd_prod; 9722 rx_prods.cqe_prod = rx_cq_prod; 9723 rx_prods.sge_prod = rx_sge_prod; 9724 9725 /* 9726 * Make sure that the BD and SGE data is updated before updating the 9727 * producers since FW might read the BD/SGE right after the producer 9728 * is updated. 9729 * This is only applicable for weak-ordered memory model archs such 9730 * as IA-64. The following barrier is also mandatory since FW will 9731 * assumes BDs must have buffers. 9732 */ 9733 wmb(); 9734 9735 for (i = 0; i < (sizeof(rx_prods) / 4); i++) { 9736 REG_WR(sc, 9737 (fp->ustorm_rx_prods_offset + (i * 4)), 9738 ((uint32_t *)&rx_prods)[i]); 9739 } 9740 9741 wmb(); /* keep prod updates ordered */ 9742 9743 BLOGD(sc, DBG_RX, 9744 "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n", 9745 fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod); 9746 } 9747 9748 static void 9749 bxe_init_rx_rings(struct bxe_softc *sc) 9750 { 9751 struct bxe_fastpath *fp; 9752 int i; 9753 9754 for (i = 0; i < sc->num_queues; i++) { 9755 fp = &sc->fp[i]; 9756 9757 fp->rx_bd_cons = 0; 9758 9759 /* 9760 * Activate the BD ring... 9761 * Warning, this will generate an interrupt (to the TSTORM) 9762 * so this can only be done after the chip is initialized 9763 */ 9764 bxe_update_rx_prod(sc, fp, 9765 fp->rx_bd_prod, 9766 fp->rx_cq_prod, 9767 fp->rx_sge_prod); 9768 9769 if (i != 0) { 9770 continue; 9771 } 9772 9773 if (CHIP_IS_E1(sc)) { 9774 REG_WR(sc, 9775 (BAR_USTRORM_INTMEM + 9776 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))), 9777 U64_LO(fp->rcq_dma.paddr)); 9778 REG_WR(sc, 9779 (BAR_USTRORM_INTMEM + 9780 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4), 9781 U64_HI(fp->rcq_dma.paddr)); 9782 } 9783 } 9784 } 9785 9786 static void 9787 bxe_init_tx_ring_one(struct bxe_fastpath *fp) 9788 { 9789 SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1); 9790 fp->tx_db.data.zero_fill1 = 0; 9791 fp->tx_db.data.prod = 0; 9792 9793 fp->tx_pkt_prod = 0; 9794 fp->tx_pkt_cons = 0; 9795 fp->tx_bd_prod = 0; 9796 fp->tx_bd_cons = 0; 9797 fp->eth_q_stats.tx_pkts = 0; 9798 } 9799 9800 static inline void 9801 bxe_init_tx_rings(struct bxe_softc *sc) 9802 { 9803 int i; 9804 9805 for (i = 0; i < sc->num_queues; i++) { 9806 bxe_init_tx_ring_one(&sc->fp[i]); 9807 } 9808 } 9809 9810 static void 9811 bxe_init_def_sb(struct bxe_softc *sc) 9812 { 9813 struct host_sp_status_block *def_sb = sc->def_sb; 9814 bus_addr_t mapping = sc->def_sb_dma.paddr; 9815 int igu_sp_sb_index; 9816 int igu_seg_id; 9817 int port = SC_PORT(sc); 9818 int func = SC_FUNC(sc); 9819 int reg_offset, reg_offset_en5; 9820 uint64_t section; 9821 int index, sindex; 9822 struct hc_sp_status_block_data sp_sb_data; 9823 9824 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9825 9826 if (CHIP_INT_MODE_IS_BC(sc)) { 9827 igu_sp_sb_index = DEF_SB_IGU_ID; 9828 igu_seg_id = HC_SEG_ACCESS_DEF; 9829 } else { 9830 igu_sp_sb_index = sc->igu_dsb_id; 9831 igu_seg_id = IGU_SEG_ACCESS_DEF; 9832 } 9833 9834 /* attentions */ 9835 section = ((uint64_t)mapping + 9836 offsetof(struct host_sp_status_block, atten_status_block)); 9837 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 9838 sc->attn_state = 0; 9839 9840 reg_offset = (port) ? 9841 MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 9842 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 9843 reg_offset_en5 = (port) ? 9844 MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 9845 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0; 9846 9847 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 9848 /* take care of sig[0]..sig[4] */ 9849 for (sindex = 0; sindex < 4; sindex++) { 9850 sc->attn_group[index].sig[sindex] = 9851 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index))); 9852 } 9853 9854 if (!CHIP_IS_E1x(sc)) { 9855 /* 9856 * enable5 is separate from the rest of the registers, 9857 * and the address skip is 4 and not 16 between the 9858 * different groups 9859 */ 9860 sc->attn_group[index].sig[4] = 9861 REG_RD(sc, (reg_offset_en5 + (0x4 * index))); 9862 } else { 9863 sc->attn_group[index].sig[4] = 0; 9864 } 9865 } 9866 9867 if (sc->devinfo.int_block == INT_BLOCK_HC) { 9868 reg_offset = (port) ? 9869 HC_REG_ATTN_MSG1_ADDR_L : 9870 HC_REG_ATTN_MSG0_ADDR_L; 9871 REG_WR(sc, reg_offset, U64_LO(section)); 9872 REG_WR(sc, (reg_offset + 4), U64_HI(section)); 9873 } else if (!CHIP_IS_E1x(sc)) { 9874 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 9875 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 9876 } 9877 9878 section = ((uint64_t)mapping + 9879 offsetof(struct host_sp_status_block, sp_sb)); 9880 9881 bxe_zero_sp_sb(sc); 9882 9883 /* PCI guarantees endianity of regpair */ 9884 sp_sb_data.state = SB_ENABLED; 9885 sp_sb_data.host_sb_addr.lo = U64_LO(section); 9886 sp_sb_data.host_sb_addr.hi = U64_HI(section); 9887 sp_sb_data.igu_sb_id = igu_sp_sb_index; 9888 sp_sb_data.igu_seg_id = igu_seg_id; 9889 sp_sb_data.p_func.pf_id = func; 9890 sp_sb_data.p_func.vnic_id = SC_VN(sc); 9891 sp_sb_data.p_func.vf_id = 0xff; 9892 9893 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9894 9895 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 9896 } 9897 9898 static void 9899 bxe_init_sp_ring(struct bxe_softc *sc) 9900 { 9901 atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING); 9902 sc->spq_prod_idx = 0; 9903 sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS]; 9904 sc->spq_prod_bd = sc->spq; 9905 sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT); 9906 } 9907 9908 static void 9909 bxe_init_eq_ring(struct bxe_softc *sc) 9910 { 9911 union event_ring_elem *elem; 9912 int i; 9913 9914 for (i = 1; i <= NUM_EQ_PAGES; i++) { 9915 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1]; 9916 9917 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr + 9918 BCM_PAGE_SIZE * 9919 (i % NUM_EQ_PAGES))); 9920 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr + 9921 BCM_PAGE_SIZE * 9922 (i % NUM_EQ_PAGES))); 9923 } 9924 9925 sc->eq_cons = 0; 9926 sc->eq_prod = NUM_EQ_DESC; 9927 sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS]; 9928 9929 atomic_store_rel_long(&sc->eq_spq_left, 9930 (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING), 9931 NUM_EQ_DESC) - 1)); 9932 } 9933 9934 static void 9935 bxe_init_internal_common(struct bxe_softc *sc) 9936 { 9937 int i; 9938 9939 if (IS_MF_SI(sc)) { 9940 /* 9941 * In switch independent mode, the TSTORM needs to accept 9942 * packets that failed classification, since approximate match 9943 * mac addresses aren't written to NIG LLH. 9944 */ 9945 REG_WR8(sc, 9946 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 9947 2); 9948 } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */ 9949 REG_WR8(sc, 9950 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 9951 0); 9952 } 9953 9954 /* 9955 * Zero this manually as its initialization is currently missing 9956 * in the initTool. 9957 */ 9958 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) { 9959 REG_WR(sc, 9960 (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)), 9961 0); 9962 } 9963 9964 if (!CHIP_IS_E1x(sc)) { 9965 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET), 9966 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 9967 } 9968 } 9969 9970 static void 9971 bxe_init_internal(struct bxe_softc *sc, 9972 uint32_t load_code) 9973 { 9974 switch (load_code) { 9975 case FW_MSG_CODE_DRV_LOAD_COMMON: 9976 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 9977 bxe_init_internal_common(sc); 9978 /* no break */ 9979 9980 case FW_MSG_CODE_DRV_LOAD_PORT: 9981 /* nothing to do */ 9982 /* no break */ 9983 9984 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 9985 /* internal memory per function is initialized inside bxe_pf_init */ 9986 break; 9987 9988 default: 9989 BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code); 9990 break; 9991 } 9992 } 9993 9994 static void 9995 storm_memset_func_cfg(struct bxe_softc *sc, 9996 struct tstorm_eth_function_common_config *tcfg, 9997 uint16_t abs_fid) 9998 { 9999 uint32_t addr; 10000 size_t size; 10001 10002 addr = (BAR_TSTRORM_INTMEM + 10003 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid)); 10004 size = sizeof(struct tstorm_eth_function_common_config); 10005 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg); 10006 } 10007 10008 static void 10009 bxe_func_init(struct bxe_softc *sc, 10010 struct bxe_func_init_params *p) 10011 { 10012 struct tstorm_eth_function_common_config tcfg = { 0 }; 10013 10014 if (CHIP_IS_E1x(sc)) { 10015 storm_memset_func_cfg(sc, &tcfg, p->func_id); 10016 } 10017 10018 /* Enable the function in the FW */ 10019 storm_memset_vf_to_pf(sc, p->func_id, p->pf_id); 10020 storm_memset_func_en(sc, p->func_id, 1); 10021 10022 /* spq */ 10023 if (p->func_flgs & FUNC_FLG_SPQ) { 10024 storm_memset_spq_addr(sc, p->spq_map, p->func_id); 10025 REG_WR(sc, 10026 (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)), 10027 p->spq_prod); 10028 } 10029 } 10030 10031 /* 10032 * Calculates the sum of vn_min_rates. 10033 * It's needed for further normalizing of the min_rates. 10034 * Returns: 10035 * sum of vn_min_rates. 10036 * or 10037 * 0 - if all the min_rates are 0. 10038 * In the later case fainess algorithm should be deactivated. 10039 * If all min rates are not zero then those that are zeroes will be set to 1. 10040 */ 10041 static void 10042 bxe_calc_vn_min(struct bxe_softc *sc, 10043 struct cmng_init_input *input) 10044 { 10045 uint32_t vn_cfg; 10046 uint32_t vn_min_rate; 10047 int all_zero = 1; 10048 int vn; 10049 10050 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10051 vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10052 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 10053 FUNC_MF_CFG_MIN_BW_SHIFT) * 100); 10054 10055 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10056 /* skip hidden VNs */ 10057 vn_min_rate = 0; 10058 } else if (!vn_min_rate) { 10059 /* If min rate is zero - set it to 100 */ 10060 vn_min_rate = DEF_MIN_RATE; 10061 } else { 10062 all_zero = 0; 10063 } 10064 10065 input->vnic_min_rate[vn] = vn_min_rate; 10066 } 10067 10068 /* if ETS or all min rates are zeros - disable fairness */ 10069 if (BXE_IS_ETS_ENABLED(sc)) { 10070 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10071 BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n"); 10072 } else if (all_zero) { 10073 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10074 BLOGD(sc, DBG_LOAD, 10075 "Fariness disabled (all MIN values are zeroes)\n"); 10076 } else { 10077 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10078 } 10079 } 10080 10081 static inline uint16_t 10082 bxe_extract_max_cfg(struct bxe_softc *sc, 10083 uint32_t mf_cfg) 10084 { 10085 uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >> 10086 FUNC_MF_CFG_MAX_BW_SHIFT); 10087 10088 if (!max_cfg) { 10089 BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n"); 10090 max_cfg = 100; 10091 } 10092 10093 return (max_cfg); 10094 } 10095 10096 static void 10097 bxe_calc_vn_max(struct bxe_softc *sc, 10098 int vn, 10099 struct cmng_init_input *input) 10100 { 10101 uint16_t vn_max_rate; 10102 uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10103 uint32_t max_cfg; 10104 10105 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10106 vn_max_rate = 0; 10107 } else { 10108 max_cfg = bxe_extract_max_cfg(sc, vn_cfg); 10109 10110 if (IS_MF_SI(sc)) { 10111 /* max_cfg in percents of linkspeed */ 10112 vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100); 10113 } else { /* SD modes */ 10114 /* max_cfg is absolute in 100Mb units */ 10115 vn_max_rate = (max_cfg * 100); 10116 } 10117 } 10118 10119 BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 10120 10121 input->vnic_max_rate[vn] = vn_max_rate; 10122 } 10123 10124 static void 10125 bxe_cmng_fns_init(struct bxe_softc *sc, 10126 uint8_t read_cfg, 10127 uint8_t cmng_type) 10128 { 10129 struct cmng_init_input input; 10130 int vn; 10131 10132 memset(&input, 0, sizeof(struct cmng_init_input)); 10133 10134 input.port_rate = sc->link_vars.line_speed; 10135 10136 if (cmng_type == CMNG_FNS_MINMAX) { 10137 /* read mf conf from shmem */ 10138 if (read_cfg) { 10139 bxe_read_mf_cfg(sc); 10140 } 10141 10142 /* get VN min rate and enable fairness if not 0 */ 10143 bxe_calc_vn_min(sc, &input); 10144 10145 /* get VN max rate */ 10146 if (sc->port.pmf) { 10147 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10148 bxe_calc_vn_max(sc, vn, &input); 10149 } 10150 } 10151 10152 /* always enable rate shaping and fairness */ 10153 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 10154 10155 ecore_init_cmng(&input, &sc->cmng); 10156 return; 10157 } 10158 10159 /* rate shaping and fairness are disabled */ 10160 BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n"); 10161 } 10162 10163 static int 10164 bxe_get_cmng_fns_mode(struct bxe_softc *sc) 10165 { 10166 if (CHIP_REV_IS_SLOW(sc)) { 10167 return (CMNG_FNS_NONE); 10168 } 10169 10170 if (IS_MF(sc)) { 10171 return (CMNG_FNS_MINMAX); 10172 } 10173 10174 return (CMNG_FNS_NONE); 10175 } 10176 10177 static void 10178 storm_memset_cmng(struct bxe_softc *sc, 10179 struct cmng_init *cmng, 10180 uint8_t port) 10181 { 10182 int vn; 10183 int func; 10184 uint32_t addr; 10185 size_t size; 10186 10187 addr = (BAR_XSTRORM_INTMEM + 10188 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port)); 10189 size = sizeof(struct cmng_struct_per_port); 10190 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port); 10191 10192 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10193 func = func_by_vn(sc, vn); 10194 10195 addr = (BAR_XSTRORM_INTMEM + 10196 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func)); 10197 size = sizeof(struct rate_shaping_vars_per_vn); 10198 ecore_storm_memset_struct(sc, addr, size, 10199 (uint32_t *)&cmng->vnic.vnic_max_rate[vn]); 10200 10201 addr = (BAR_XSTRORM_INTMEM + 10202 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func)); 10203 size = sizeof(struct fairness_vars_per_vn); 10204 ecore_storm_memset_struct(sc, addr, size, 10205 (uint32_t *)&cmng->vnic.vnic_min_rate[vn]); 10206 } 10207 } 10208 10209 static void 10210 bxe_pf_init(struct bxe_softc *sc) 10211 { 10212 struct bxe_func_init_params func_init = { 0 }; 10213 struct event_ring_data eq_data = { { 0 } }; 10214 uint16_t flags; 10215 10216 if (!CHIP_IS_E1x(sc)) { 10217 /* reset IGU PF statistics: MSIX + ATTN */ 10218 /* PF */ 10219 REG_WR(sc, 10220 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10221 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10222 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10223 0); 10224 /* ATTN */ 10225 REG_WR(sc, 10226 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10227 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10228 (BXE_IGU_STAS_MSG_PF_CNT * 4) + 10229 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10230 0); 10231 } 10232 10233 /* function setup flags */ 10234 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); 10235 10236 /* 10237 * This flag is relevant for E1x only. 10238 * E2 doesn't have a TPA configuration in a function level. 10239 */ 10240 flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0; 10241 10242 func_init.func_flgs = flags; 10243 func_init.pf_id = SC_FUNC(sc); 10244 func_init.func_id = SC_FUNC(sc); 10245 func_init.spq_map = sc->spq_dma.paddr; 10246 func_init.spq_prod = sc->spq_prod_idx; 10247 10248 bxe_func_init(sc, &func_init); 10249 10250 memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port)); 10251 10252 /* 10253 * Congestion management values depend on the link rate. 10254 * There is no active link so initial link rate is set to 10Gbps. 10255 * When the link comes up the congestion management values are 10256 * re-calculated according to the actual link rate. 10257 */ 10258 sc->link_vars.line_speed = SPEED_10000; 10259 bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc)); 10260 10261 /* Only the PMF sets the HW */ 10262 if (sc->port.pmf) { 10263 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 10264 } 10265 10266 /* init Event Queue - PCI bus guarantees correct endainity */ 10267 eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr); 10268 eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr); 10269 eq_data.producer = sc->eq_prod; 10270 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 10271 eq_data.sb_id = DEF_SB_ID; 10272 storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc)); 10273 } 10274 10275 static void 10276 bxe_hc_int_enable(struct bxe_softc *sc) 10277 { 10278 int port = SC_PORT(sc); 10279 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10280 uint32_t val = REG_RD(sc, addr); 10281 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10282 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10283 (sc->intr_count == 1)) ? TRUE : FALSE; 10284 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10285 10286 if (msix) { 10287 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10288 HC_CONFIG_0_REG_INT_LINE_EN_0); 10289 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10290 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10291 if (single_msix) { 10292 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 10293 } 10294 } else if (msi) { 10295 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 10296 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10297 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10298 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10299 } else { 10300 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10301 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10302 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10303 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10304 10305 if (!CHIP_IS_E1(sc)) { 10306 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", 10307 val, port, addr); 10308 10309 REG_WR(sc, addr, val); 10310 10311 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 10312 } 10313 } 10314 10315 if (CHIP_IS_E1(sc)) { 10316 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF); 10317 } 10318 10319 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n", 10320 val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10321 10322 REG_WR(sc, addr, val); 10323 10324 /* ensure that HC_CONFIG is written before leading/trailing edge config */ 10325 mb(); 10326 10327 if (!CHIP_IS_E1(sc)) { 10328 /* init leading/trailing edge */ 10329 if (IS_MF(sc)) { 10330 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10331 if (sc->port.pmf) { 10332 /* enable nig and gpio3 attention */ 10333 val |= 0x1100; 10334 } 10335 } else { 10336 val = 0xffff; 10337 } 10338 10339 REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val); 10340 REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val); 10341 } 10342 10343 /* make sure that interrupts are indeed enabled from here on */ 10344 mb(); 10345 } 10346 10347 static void 10348 bxe_igu_int_enable(struct bxe_softc *sc) 10349 { 10350 uint32_t val; 10351 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10352 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10353 (sc->intr_count == 1)) ? TRUE : FALSE; 10354 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10355 10356 val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10357 10358 if (msix) { 10359 val &= ~(IGU_PF_CONF_INT_LINE_EN | 10360 IGU_PF_CONF_SINGLE_ISR_EN); 10361 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10362 IGU_PF_CONF_ATTN_BIT_EN); 10363 if (single_msix) { 10364 val |= IGU_PF_CONF_SINGLE_ISR_EN; 10365 } 10366 } else if (msi) { 10367 val &= ~IGU_PF_CONF_INT_LINE_EN; 10368 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10369 IGU_PF_CONF_ATTN_BIT_EN | 10370 IGU_PF_CONF_SINGLE_ISR_EN); 10371 } else { 10372 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 10373 val |= (IGU_PF_CONF_INT_LINE_EN | 10374 IGU_PF_CONF_ATTN_BIT_EN | 10375 IGU_PF_CONF_SINGLE_ISR_EN); 10376 } 10377 10378 /* clean previous status - need to configure igu prior to ack*/ 10379 if ((!msix) || single_msix) { 10380 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10381 bxe_ack_int(sc); 10382 } 10383 10384 val |= IGU_PF_CONF_FUNC_EN; 10385 10386 BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n", 10387 val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10388 10389 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10390 10391 mb(); 10392 10393 /* init leading/trailing edge */ 10394 if (IS_MF(sc)) { 10395 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10396 if (sc->port.pmf) { 10397 /* enable nig and gpio3 attention */ 10398 val |= 0x1100; 10399 } 10400 } else { 10401 val = 0xffff; 10402 } 10403 10404 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 10405 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 10406 10407 /* make sure that interrupts are indeed enabled from here on */ 10408 mb(); 10409 } 10410 10411 static void 10412 bxe_int_enable(struct bxe_softc *sc) 10413 { 10414 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10415 bxe_hc_int_enable(sc); 10416 } else { 10417 bxe_igu_int_enable(sc); 10418 } 10419 } 10420 10421 static void 10422 bxe_hc_int_disable(struct bxe_softc *sc) 10423 { 10424 int port = SC_PORT(sc); 10425 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10426 uint32_t val = REG_RD(sc, addr); 10427 10428 /* 10429 * In E1 we must use only PCI configuration space to disable MSI/MSIX 10430 * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC 10431 * block 10432 */ 10433 if (CHIP_IS_E1(sc)) { 10434 /* 10435 * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register 10436 * to prevent from HC sending interrupts after we exit the function 10437 */ 10438 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0); 10439 10440 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10441 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10442 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10443 } else { 10444 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10445 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10446 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10447 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10448 } 10449 10450 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr); 10451 10452 /* flush all outstanding writes */ 10453 mb(); 10454 10455 REG_WR(sc, addr, val); 10456 if (REG_RD(sc, addr) != val) { 10457 BLOGE(sc, "proper val not read from HC IGU!\n"); 10458 } 10459 } 10460 10461 static void 10462 bxe_igu_int_disable(struct bxe_softc *sc) 10463 { 10464 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10465 10466 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 10467 IGU_PF_CONF_INT_LINE_EN | 10468 IGU_PF_CONF_ATTN_BIT_EN); 10469 10470 BLOGD(sc, DBG_INTR, "write %x to IGU\n", val); 10471 10472 /* flush all outstanding writes */ 10473 mb(); 10474 10475 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10476 if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) { 10477 BLOGE(sc, "proper val not read from IGU!\n"); 10478 } 10479 } 10480 10481 static void 10482 bxe_int_disable(struct bxe_softc *sc) 10483 { 10484 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10485 bxe_hc_int_disable(sc); 10486 } else { 10487 bxe_igu_int_disable(sc); 10488 } 10489 } 10490 10491 static void 10492 bxe_nic_init(struct bxe_softc *sc, 10493 int load_code) 10494 { 10495 int i; 10496 10497 for (i = 0; i < sc->num_queues; i++) { 10498 bxe_init_eth_fp(sc, i); 10499 } 10500 10501 rmb(); /* ensure status block indices were read */ 10502 10503 bxe_init_rx_rings(sc); 10504 bxe_init_tx_rings(sc); 10505 10506 if (IS_VF(sc)) { 10507 return; 10508 } 10509 10510 /* initialize MOD_ABS interrupts */ 10511 elink_init_mod_abs_int(sc, &sc->link_vars, 10512 sc->devinfo.chip_id, 10513 sc->devinfo.shmem_base, 10514 sc->devinfo.shmem2_base, 10515 SC_PORT(sc)); 10516 10517 bxe_init_def_sb(sc); 10518 bxe_update_dsb_idx(sc); 10519 bxe_init_sp_ring(sc); 10520 bxe_init_eq_ring(sc); 10521 bxe_init_internal(sc, load_code); 10522 bxe_pf_init(sc); 10523 bxe_stats_init(sc); 10524 10525 /* flush all before enabling interrupts */ 10526 mb(); 10527 10528 bxe_int_enable(sc); 10529 10530 /* check for SPIO5 */ 10531 bxe_attn_int_deasserted0(sc, 10532 REG_RD(sc, 10533 (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 10534 SC_PORT(sc)*4)) & 10535 AEU_INPUTS_ATTN_BITS_SPIO5); 10536 } 10537 10538 static inline void 10539 bxe_init_objs(struct bxe_softc *sc) 10540 { 10541 /* mcast rules must be added to tx if tx switching is enabled */ 10542 ecore_obj_type o_type = 10543 (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX : 10544 ECORE_OBJ_TYPE_RX; 10545 10546 /* RX_MODE controlling object */ 10547 ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj); 10548 10549 /* multicast configuration controlling object */ 10550 ecore_init_mcast_obj(sc, 10551 &sc->mcast_obj, 10552 sc->fp[0].cl_id, 10553 sc->fp[0].index, 10554 SC_FUNC(sc), 10555 SC_FUNC(sc), 10556 BXE_SP(sc, mcast_rdata), 10557 BXE_SP_MAPPING(sc, mcast_rdata), 10558 ECORE_FILTER_MCAST_PENDING, 10559 &sc->sp_state, 10560 o_type); 10561 10562 /* Setup CAM credit pools */ 10563 ecore_init_mac_credit_pool(sc, 10564 &sc->macs_pool, 10565 SC_FUNC(sc), 10566 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10567 VNICS_PER_PATH(sc)); 10568 10569 ecore_init_vlan_credit_pool(sc, 10570 &sc->vlans_pool, 10571 SC_ABS_FUNC(sc) >> 1, 10572 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10573 VNICS_PER_PATH(sc)); 10574 10575 /* RSS configuration object */ 10576 ecore_init_rss_config_obj(sc, 10577 &sc->rss_conf_obj, 10578 sc->fp[0].cl_id, 10579 sc->fp[0].index, 10580 SC_FUNC(sc), 10581 SC_FUNC(sc), 10582 BXE_SP(sc, rss_rdata), 10583 BXE_SP_MAPPING(sc, rss_rdata), 10584 ECORE_FILTER_RSS_CONF_PENDING, 10585 &sc->sp_state, ECORE_OBJ_TYPE_RX); 10586 } 10587 10588 /* 10589 * Initialize the function. This must be called before sending CLIENT_SETUP 10590 * for the first client. 10591 */ 10592 static inline int 10593 bxe_func_start(struct bxe_softc *sc) 10594 { 10595 struct ecore_func_state_params func_params = { NULL }; 10596 struct ecore_func_start_params *start_params = &func_params.params.start; 10597 10598 /* Prepare parameters for function state transitions */ 10599 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 10600 10601 func_params.f_obj = &sc->func_obj; 10602 func_params.cmd = ECORE_F_CMD_START; 10603 10604 /* Function parameters */ 10605 start_params->mf_mode = sc->devinfo.mf_info.mf_mode; 10606 start_params->sd_vlan_tag = OVLAN(sc); 10607 10608 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 10609 start_params->network_cos_mode = STATIC_COS; 10610 } else { /* CHIP_IS_E1X */ 10611 start_params->network_cos_mode = FW_WRR; 10612 } 10613 10614 //start_params->gre_tunnel_mode = 0; 10615 //start_params->gre_tunnel_rss = 0; 10616 10617 return (ecore_func_state_change(sc, &func_params)); 10618 } 10619 10620 static int 10621 bxe_set_power_state(struct bxe_softc *sc, 10622 uint8_t state) 10623 { 10624 uint16_t pmcsr; 10625 10626 /* If there is no power capability, silently succeed */ 10627 if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) { 10628 BLOGW(sc, "No power capability\n"); 10629 return (0); 10630 } 10631 10632 pmcsr = pci_read_config(sc->dev, 10633 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10634 2); 10635 10636 switch (state) { 10637 case PCI_PM_D0: 10638 pci_write_config(sc->dev, 10639 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10640 ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2); 10641 10642 if (pmcsr & PCIM_PSTAT_DMASK) { 10643 /* delay required during transition out of D3hot */ 10644 DELAY(20000); 10645 } 10646 10647 break; 10648 10649 case PCI_PM_D3hot: 10650 /* XXX if there are other clients above don't shut down the power */ 10651 10652 /* don't shut down the power for emulation and FPGA */ 10653 if (CHIP_REV_IS_SLOW(sc)) { 10654 return (0); 10655 } 10656 10657 pmcsr &= ~PCIM_PSTAT_DMASK; 10658 pmcsr |= PCIM_PSTAT_D3; 10659 10660 if (sc->wol) { 10661 pmcsr |= PCIM_PSTAT_PMEENABLE; 10662 } 10663 10664 pci_write_config(sc->dev, 10665 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10666 pmcsr, 4); 10667 10668 /* 10669 * No more memory access after this point until device is brought back 10670 * to D0 state. 10671 */ 10672 break; 10673 10674 default: 10675 BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n", 10676 state, pmcsr); 10677 return (-1); 10678 } 10679 10680 return (0); 10681 } 10682 10683 10684 /* return true if succeeded to acquire the lock */ 10685 static uint8_t 10686 bxe_trylock_hw_lock(struct bxe_softc *sc, 10687 uint32_t resource) 10688 { 10689 uint32_t lock_status; 10690 uint32_t resource_bit = (1 << resource); 10691 int func = SC_FUNC(sc); 10692 uint32_t hw_lock_control_reg; 10693 10694 BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource); 10695 10696 /* Validating that the resource is within range */ 10697 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 10698 BLOGD(sc, DBG_LOAD, 10699 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 10700 resource, HW_LOCK_MAX_RESOURCE_VALUE); 10701 return (FALSE); 10702 } 10703 10704 if (func <= 5) { 10705 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 10706 } else { 10707 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 10708 } 10709 10710 /* try to acquire the lock */ 10711 REG_WR(sc, hw_lock_control_reg + 4, resource_bit); 10712 lock_status = REG_RD(sc, hw_lock_control_reg); 10713 if (lock_status & resource_bit) { 10714 return (TRUE); 10715 } 10716 10717 BLOGE(sc, "Failed to get a resource lock 0x%x func %d " 10718 "lock_status 0x%x resource_bit 0x%x\n", resource, func, 10719 lock_status, resource_bit); 10720 10721 return (FALSE); 10722 } 10723 10724 /* 10725 * Get the recovery leader resource id according to the engine this function 10726 * belongs to. Currently only only 2 engines is supported. 10727 */ 10728 static int 10729 bxe_get_leader_lock_resource(struct bxe_softc *sc) 10730 { 10731 if (SC_PATH(sc)) { 10732 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1); 10733 } else { 10734 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0); 10735 } 10736 } 10737 10738 /* try to acquire a leader lock for current engine */ 10739 static uint8_t 10740 bxe_trylock_leader_lock(struct bxe_softc *sc) 10741 { 10742 return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 10743 } 10744 10745 static int 10746 bxe_release_leader_lock(struct bxe_softc *sc) 10747 { 10748 return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 10749 } 10750 10751 /* close gates #2, #3 and #4 */ 10752 static void 10753 bxe_set_234_gates(struct bxe_softc *sc, 10754 uint8_t close) 10755 { 10756 uint32_t val; 10757 10758 /* gates #2 and #4a are closed/opened for "not E1" only */ 10759 if (!CHIP_IS_E1(sc)) { 10760 /* #4 */ 10761 REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 10762 /* #2 */ 10763 REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 10764 } 10765 10766 /* #3 */ 10767 if (CHIP_IS_E1x(sc)) { 10768 /* prevent interrupts from HC on both ports */ 10769 val = REG_RD(sc, HC_REG_CONFIG_1); 10770 REG_WR(sc, HC_REG_CONFIG_1, 10771 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 10772 (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 10773 10774 val = REG_RD(sc, HC_REG_CONFIG_0); 10775 REG_WR(sc, HC_REG_CONFIG_0, 10776 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 10777 (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 10778 } else { 10779 /* Prevent incomming interrupts in IGU */ 10780 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 10781 10782 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, 10783 (!close) ? 10784 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 10785 (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 10786 } 10787 10788 BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n", 10789 close ? "closing" : "opening"); 10790 10791 wmb(); 10792 } 10793 10794 /* poll for pending writes bit, it should get cleared in no more than 1s */ 10795 static int 10796 bxe_er_poll_igu_vq(struct bxe_softc *sc) 10797 { 10798 uint32_t cnt = 1000; 10799 uint32_t pend_bits = 0; 10800 10801 do { 10802 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS); 10803 10804 if (pend_bits == 0) { 10805 break; 10806 } 10807 10808 DELAY(1000); 10809 } while (--cnt > 0); 10810 10811 if (cnt == 0) { 10812 BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits); 10813 return (-1); 10814 } 10815 10816 return (0); 10817 } 10818 10819 #define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */ 10820 10821 static void 10822 bxe_clp_reset_prep(struct bxe_softc *sc, 10823 uint32_t *magic_val) 10824 { 10825 /* Do some magic... */ 10826 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 10827 *magic_val = val & SHARED_MF_CLP_MAGIC; 10828 MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 10829 } 10830 10831 /* restore the value of the 'magic' bit */ 10832 static void 10833 bxe_clp_reset_done(struct bxe_softc *sc, 10834 uint32_t magic_val) 10835 { 10836 /* Restore the 'magic' bit value... */ 10837 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 10838 MFCFG_WR(sc, shared_mf_config.clp_mb, 10839 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 10840 } 10841 10842 /* prepare for MCP reset, takes care of CLP configurations */ 10843 static void 10844 bxe_reset_mcp_prep(struct bxe_softc *sc, 10845 uint32_t *magic_val) 10846 { 10847 uint32_t shmem; 10848 uint32_t validity_offset; 10849 10850 /* set `magic' bit in order to save MF config */ 10851 if (!CHIP_IS_E1(sc)) { 10852 bxe_clp_reset_prep(sc, magic_val); 10853 } 10854 10855 /* get shmem offset */ 10856 shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 10857 validity_offset = 10858 offsetof(struct shmem_region, validity_map[SC_PORT(sc)]); 10859 10860 /* Clear validity map flags */ 10861 if (shmem > 0) { 10862 REG_WR(sc, shmem + validity_offset, 0); 10863 } 10864 } 10865 10866 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 10867 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 10868 10869 static void 10870 bxe_mcp_wait_one(struct bxe_softc *sc) 10871 { 10872 /* special handling for emulation and FPGA (10 times longer) */ 10873 if (CHIP_REV_IS_SLOW(sc)) { 10874 DELAY((MCP_ONE_TIMEOUT*10) * 1000); 10875 } else { 10876 DELAY((MCP_ONE_TIMEOUT) * 1000); 10877 } 10878 } 10879 10880 /* initialize shmem_base and waits for validity signature to appear */ 10881 static int 10882 bxe_init_shmem(struct bxe_softc *sc) 10883 { 10884 int cnt = 0; 10885 uint32_t val = 0; 10886 10887 do { 10888 sc->devinfo.shmem_base = 10889 sc->link_params.shmem_base = 10890 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 10891 10892 if (sc->devinfo.shmem_base) { 10893 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 10894 if (val & SHR_MEM_VALIDITY_MB) 10895 return (0); 10896 } 10897 10898 bxe_mcp_wait_one(sc); 10899 10900 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 10901 10902 BLOGE(sc, "BAD MCP validity signature\n"); 10903 10904 return (-1); 10905 } 10906 10907 static int 10908 bxe_reset_mcp_comp(struct bxe_softc *sc, 10909 uint32_t magic_val) 10910 { 10911 int rc = bxe_init_shmem(sc); 10912 10913 /* Restore the `magic' bit value */ 10914 if (!CHIP_IS_E1(sc)) { 10915 bxe_clp_reset_done(sc, magic_val); 10916 } 10917 10918 return (rc); 10919 } 10920 10921 static void 10922 bxe_pxp_prep(struct bxe_softc *sc) 10923 { 10924 if (!CHIP_IS_E1(sc)) { 10925 REG_WR(sc, PXP2_REG_RD_START_INIT, 0); 10926 REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0); 10927 wmb(); 10928 } 10929 } 10930 10931 /* 10932 * Reset the whole chip except for: 10933 * - PCIE core 10934 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit) 10935 * - IGU 10936 * - MISC (including AEU) 10937 * - GRC 10938 * - RBCN, RBCP 10939 */ 10940 static void 10941 bxe_process_kill_chip_reset(struct bxe_softc *sc, 10942 uint8_t global) 10943 { 10944 uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 10945 uint32_t global_bits2, stay_reset2; 10946 10947 /* 10948 * Bits that have to be set in reset_mask2 if we want to reset 'global' 10949 * (per chip) blocks. 10950 */ 10951 global_bits2 = 10952 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 10953 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 10954 10955 /* 10956 * Don't reset the following blocks. 10957 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 10958 * reset, as in 4 port device they might still be owned 10959 * by the MCP (there is only one leader per path). 10960 */ 10961 not_reset_mask1 = 10962 MISC_REGISTERS_RESET_REG_1_RST_HC | 10963 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 10964 MISC_REGISTERS_RESET_REG_1_RST_PXP; 10965 10966 not_reset_mask2 = 10967 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 10968 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 10969 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 10970 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 10971 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 10972 MISC_REGISTERS_RESET_REG_2_RST_GRC | 10973 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 10974 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 10975 MISC_REGISTERS_RESET_REG_2_RST_ATC | 10976 MISC_REGISTERS_RESET_REG_2_PGLC | 10977 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 10978 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 10979 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 10980 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 10981 MISC_REGISTERS_RESET_REG_2_UMAC0 | 10982 MISC_REGISTERS_RESET_REG_2_UMAC1; 10983 10984 /* 10985 * Keep the following blocks in reset: 10986 * - all xxMACs are handled by the elink code. 10987 */ 10988 stay_reset2 = 10989 MISC_REGISTERS_RESET_REG_2_XMAC | 10990 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 10991 10992 /* Full reset masks according to the chip */ 10993 reset_mask1 = 0xffffffff; 10994 10995 if (CHIP_IS_E1(sc)) 10996 reset_mask2 = 0xffff; 10997 else if (CHIP_IS_E1H(sc)) 10998 reset_mask2 = 0x1ffff; 10999 else if (CHIP_IS_E2(sc)) 11000 reset_mask2 = 0xfffff; 11001 else /* CHIP_IS_E3 */ 11002 reset_mask2 = 0x3ffffff; 11003 11004 /* Don't reset global blocks unless we need to */ 11005 if (!global) 11006 reset_mask2 &= ~global_bits2; 11007 11008 /* 11009 * In case of attention in the QM, we need to reset PXP 11010 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 11011 * because otherwise QM reset would release 'close the gates' shortly 11012 * before resetting the PXP, then the PSWRQ would send a write 11013 * request to PGLUE. Then when PXP is reset, PGLUE would try to 11014 * read the payload data from PSWWR, but PSWWR would not 11015 * respond. The write queue in PGLUE would stuck, dmae commands 11016 * would not return. Therefore it's important to reset the second 11017 * reset register (containing the 11018 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 11019 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 11020 * bit). 11021 */ 11022 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 11023 reset_mask2 & (~not_reset_mask2)); 11024 11025 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 11026 reset_mask1 & (~not_reset_mask1)); 11027 11028 mb(); 11029 wmb(); 11030 11031 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 11032 reset_mask2 & (~stay_reset2)); 11033 11034 mb(); 11035 wmb(); 11036 11037 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 11038 wmb(); 11039 } 11040 11041 static int 11042 bxe_process_kill(struct bxe_softc *sc, 11043 uint8_t global) 11044 { 11045 int cnt = 1000; 11046 uint32_t val = 0; 11047 uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 11048 uint32_t tags_63_32 = 0; 11049 11050 /* Empty the Tetris buffer, wait for 1s */ 11051 do { 11052 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT); 11053 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT); 11054 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0); 11055 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1); 11056 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2); 11057 if (CHIP_IS_E3(sc)) { 11058 tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32); 11059 } 11060 11061 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 11062 ((port_is_idle_0 & 0x1) == 0x1) && 11063 ((port_is_idle_1 & 0x1) == 0x1) && 11064 (pgl_exp_rom2 == 0xffffffff) && 11065 (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff))) 11066 break; 11067 DELAY(1000); 11068 } while (cnt-- > 0); 11069 11070 if (cnt <= 0) { 11071 BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there " 11072 "are still outstanding read requests after 1s! " 11073 "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, " 11074 "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 11075 sr_cnt, blk_cnt, port_is_idle_0, 11076 port_is_idle_1, pgl_exp_rom2); 11077 return (-1); 11078 } 11079 11080 mb(); 11081 11082 /* Close gates #2, #3 and #4 */ 11083 bxe_set_234_gates(sc, TRUE); 11084 11085 /* Poll for IGU VQs for 57712 and newer chips */ 11086 if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) { 11087 return (-1); 11088 } 11089 11090 /* XXX indicate that "process kill" is in progress to MCP */ 11091 11092 /* clear "unprepared" bit */ 11093 REG_WR(sc, MISC_REG_UNPREPARED, 0); 11094 mb(); 11095 11096 /* Make sure all is written to the chip before the reset */ 11097 wmb(); 11098 11099 /* 11100 * Wait for 1ms to empty GLUE and PCI-E core queues, 11101 * PSWHST, GRC and PSWRD Tetris buffer. 11102 */ 11103 DELAY(1000); 11104 11105 /* Prepare to chip reset: */ 11106 /* MCP */ 11107 if (global) { 11108 bxe_reset_mcp_prep(sc, &val); 11109 } 11110 11111 /* PXP */ 11112 bxe_pxp_prep(sc); 11113 mb(); 11114 11115 /* reset the chip */ 11116 bxe_process_kill_chip_reset(sc, global); 11117 mb(); 11118 11119 /* clear errors in PGB */ 11120 if (!CHIP_IS_E1(sc)) 11121 REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f); 11122 11123 /* Recover after reset: */ 11124 /* MCP */ 11125 if (global && bxe_reset_mcp_comp(sc, val)) { 11126 return (-1); 11127 } 11128 11129 /* XXX add resetting the NO_MCP mode DB here */ 11130 11131 /* Open the gates #2, #3 and #4 */ 11132 bxe_set_234_gates(sc, FALSE); 11133 11134 /* XXX 11135 * IGU/AEU preparation bring back the AEU/IGU to a reset state 11136 * re-enable attentions 11137 */ 11138 11139 return (0); 11140 } 11141 11142 static int 11143 bxe_leader_reset(struct bxe_softc *sc) 11144 { 11145 int rc = 0; 11146 uint8_t global = bxe_reset_is_global(sc); 11147 uint32_t load_code; 11148 11149 /* 11150 * If not going to reset MCP, load "fake" driver to reset HW while 11151 * driver is owner of the HW. 11152 */ 11153 if (!global && !BXE_NOMCP(sc)) { 11154 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 11155 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 11156 if (!load_code) { 11157 BLOGE(sc, "MCP response failure, aborting\n"); 11158 rc = -1; 11159 goto exit_leader_reset; 11160 } 11161 11162 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 11163 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 11164 BLOGE(sc, "MCP unexpected response, aborting\n"); 11165 rc = -1; 11166 goto exit_leader_reset2; 11167 } 11168 11169 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 11170 if (!load_code) { 11171 BLOGE(sc, "MCP response failure, aborting\n"); 11172 rc = -1; 11173 goto exit_leader_reset2; 11174 } 11175 } 11176 11177 /* try to recover after the failure */ 11178 if (bxe_process_kill(sc, global)) { 11179 BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc)); 11180 rc = -1; 11181 goto exit_leader_reset2; 11182 } 11183 11184 /* 11185 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver 11186 * state. 11187 */ 11188 bxe_set_reset_done(sc); 11189 if (global) { 11190 bxe_clear_reset_global(sc); 11191 } 11192 11193 exit_leader_reset2: 11194 11195 /* unload "fake driver" if it was loaded */ 11196 if (!global && !BXE_NOMCP(sc)) { 11197 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 11198 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 11199 } 11200 11201 exit_leader_reset: 11202 11203 sc->is_leader = 0; 11204 bxe_release_leader_lock(sc); 11205 11206 mb(); 11207 return (rc); 11208 } 11209 11210 /* 11211 * prepare INIT transition, parameters configured: 11212 * - HC configuration 11213 * - Queue's CDU context 11214 */ 11215 static void 11216 bxe_pf_q_prep_init(struct bxe_softc *sc, 11217 struct bxe_fastpath *fp, 11218 struct ecore_queue_init_params *init_params) 11219 { 11220 uint8_t cos; 11221 int cxt_index, cxt_offset; 11222 11223 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags); 11224 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags); 11225 11226 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags); 11227 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags); 11228 11229 /* HC rate */ 11230 init_params->rx.hc_rate = 11231 sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0; 11232 init_params->tx.hc_rate = 11233 sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0; 11234 11235 /* FW SB ID */ 11236 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id; 11237 11238 /* CQ index among the SB indices */ 11239 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11240 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 11241 11242 /* set maximum number of COSs supported by this queue */ 11243 init_params->max_cos = sc->max_cos; 11244 11245 BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n", 11246 fp->index, init_params->max_cos); 11247 11248 /* set the context pointers queue object */ 11249 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 11250 /* XXX change index/cid here if ever support multiple tx CoS */ 11251 /* fp->txdata[cos]->cid */ 11252 cxt_index = fp->index / ILT_PAGE_CIDS; 11253 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS); 11254 init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth; 11255 } 11256 } 11257 11258 /* set flags that are common for the Tx-only and not normal connections */ 11259 static unsigned long 11260 bxe_get_common_flags(struct bxe_softc *sc, 11261 struct bxe_fastpath *fp, 11262 uint8_t zero_stats) 11263 { 11264 unsigned long flags = 0; 11265 11266 /* PF driver will always initialize the Queue to an ACTIVE state */ 11267 bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags); 11268 11269 /* 11270 * tx only connections collect statistics (on the same index as the 11271 * parent connection). The statistics are zeroed when the parent 11272 * connection is initialized. 11273 */ 11274 11275 bxe_set_bit(ECORE_Q_FLG_STATS, &flags); 11276 if (zero_stats) { 11277 bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags); 11278 } 11279 11280 /* 11281 * tx only connections can support tx-switching, though their 11282 * CoS-ness doesn't survive the loopback 11283 */ 11284 if (sc->flags & BXE_TX_SWITCHING) { 11285 bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags); 11286 } 11287 11288 bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags); 11289 11290 return (flags); 11291 } 11292 11293 static unsigned long 11294 bxe_get_q_flags(struct bxe_softc *sc, 11295 struct bxe_fastpath *fp, 11296 uint8_t leading) 11297 { 11298 unsigned long flags = 0; 11299 11300 if (IS_MF_SD(sc)) { 11301 bxe_set_bit(ECORE_Q_FLG_OV, &flags); 11302 } 11303 11304 if (if_getcapenable(sc->ifp) & IFCAP_LRO) { 11305 bxe_set_bit(ECORE_Q_FLG_TPA, &flags); 11306 bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags); 11307 } 11308 11309 if (leading) { 11310 bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags); 11311 bxe_set_bit(ECORE_Q_FLG_MCAST, &flags); 11312 } 11313 11314 bxe_set_bit(ECORE_Q_FLG_VLAN, &flags); 11315 11316 /* merge with common flags */ 11317 return (flags | bxe_get_common_flags(sc, fp, TRUE)); 11318 } 11319 11320 static void 11321 bxe_pf_q_prep_general(struct bxe_softc *sc, 11322 struct bxe_fastpath *fp, 11323 struct ecore_general_setup_params *gen_init, 11324 uint8_t cos) 11325 { 11326 gen_init->stat_id = bxe_stats_id(fp); 11327 gen_init->spcl_id = fp->cl_id; 11328 gen_init->mtu = sc->mtu; 11329 gen_init->cos = cos; 11330 } 11331 11332 static void 11333 bxe_pf_rx_q_prep(struct bxe_softc *sc, 11334 struct bxe_fastpath *fp, 11335 struct rxq_pause_params *pause, 11336 struct ecore_rxq_setup_params *rxq_init) 11337 { 11338 uint8_t max_sge = 0; 11339 uint16_t sge_sz = 0; 11340 uint16_t tpa_agg_size = 0; 11341 11342 pause->sge_th_lo = SGE_TH_LO(sc); 11343 pause->sge_th_hi = SGE_TH_HI(sc); 11344 11345 /* validate SGE ring has enough to cross high threshold */ 11346 if (sc->dropless_fc && 11347 (pause->sge_th_hi + FW_PREFETCH_CNT) > 11348 (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) { 11349 BLOGW(sc, "sge ring threshold limit\n"); 11350 } 11351 11352 /* minimum max_aggregation_size is 2*MTU (two full buffers) */ 11353 tpa_agg_size = (2 * sc->mtu); 11354 if (tpa_agg_size < sc->max_aggregation_size) { 11355 tpa_agg_size = sc->max_aggregation_size; 11356 } 11357 11358 max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT; 11359 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 11360 (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT; 11361 sge_sz = (uint16_t)min(SGE_PAGES, 0xffff); 11362 11363 /* pause - not for e1 */ 11364 if (!CHIP_IS_E1(sc)) { 11365 pause->bd_th_lo = BD_TH_LO(sc); 11366 pause->bd_th_hi = BD_TH_HI(sc); 11367 11368 pause->rcq_th_lo = RCQ_TH_LO(sc); 11369 pause->rcq_th_hi = RCQ_TH_HI(sc); 11370 11371 /* validate rings have enough entries to cross high thresholds */ 11372 if (sc->dropless_fc && 11373 pause->bd_th_hi + FW_PREFETCH_CNT > 11374 sc->rx_ring_size) { 11375 BLOGW(sc, "rx bd ring threshold limit\n"); 11376 } 11377 11378 if (sc->dropless_fc && 11379 pause->rcq_th_hi + FW_PREFETCH_CNT > 11380 RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) { 11381 BLOGW(sc, "rcq ring threshold limit\n"); 11382 } 11383 11384 pause->pri_map = 1; 11385 } 11386 11387 /* rxq setup */ 11388 rxq_init->dscr_map = fp->rx_dma.paddr; 11389 rxq_init->sge_map = fp->rx_sge_dma.paddr; 11390 rxq_init->rcq_map = fp->rcq_dma.paddr; 11391 rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE); 11392 11393 /* 11394 * This should be a maximum number of data bytes that may be 11395 * placed on the BD (not including paddings). 11396 */ 11397 rxq_init->buf_sz = (fp->rx_buf_size - 11398 IP_HEADER_ALIGNMENT_PADDING); 11399 11400 rxq_init->cl_qzone_id = fp->cl_qzone_id; 11401 rxq_init->tpa_agg_sz = tpa_agg_size; 11402 rxq_init->sge_buf_sz = sge_sz; 11403 rxq_init->max_sges_pkt = max_sge; 11404 rxq_init->rss_engine_id = SC_FUNC(sc); 11405 rxq_init->mcast_engine_id = SC_FUNC(sc); 11406 11407 /* 11408 * Maximum number or simultaneous TPA aggregation for this Queue. 11409 * For PF Clients it should be the maximum available number. 11410 * VF driver(s) may want to define it to a smaller value. 11411 */ 11412 rxq_init->max_tpa_queues = MAX_AGG_QS(sc); 11413 11414 rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT; 11415 rxq_init->fw_sb_id = fp->fw_sb_id; 11416 11417 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11418 11419 /* 11420 * configure silent vlan removal 11421 * if multi function mode is afex, then mask default vlan 11422 */ 11423 if (IS_MF_AFEX(sc)) { 11424 rxq_init->silent_removal_value = 11425 sc->devinfo.mf_info.afex_def_vlan_tag; 11426 rxq_init->silent_removal_mask = EVL_VLID_MASK; 11427 } 11428 } 11429 11430 static void 11431 bxe_pf_tx_q_prep(struct bxe_softc *sc, 11432 struct bxe_fastpath *fp, 11433 struct ecore_txq_setup_params *txq_init, 11434 uint8_t cos) 11435 { 11436 /* 11437 * XXX If multiple CoS is ever supported then each fastpath structure 11438 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 11439 * fp->txdata[cos]->tx_dma.paddr; 11440 */ 11441 txq_init->dscr_map = fp->tx_dma.paddr; 11442 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 11443 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 11444 txq_init->fw_sb_id = fp->fw_sb_id; 11445 11446 /* 11447 * set the TSS leading client id for TX classfication to the 11448 * leading RSS client id 11449 */ 11450 txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id); 11451 } 11452 11453 /* 11454 * This function performs 2 steps in a queue state machine: 11455 * 1) RESET->INIT 11456 * 2) INIT->SETUP 11457 */ 11458 static int 11459 bxe_setup_queue(struct bxe_softc *sc, 11460 struct bxe_fastpath *fp, 11461 uint8_t leading) 11462 { 11463 struct ecore_queue_state_params q_params = { NULL }; 11464 struct ecore_queue_setup_params *setup_params = 11465 &q_params.params.setup; 11466 int rc; 11467 11468 BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index); 11469 11470 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 11471 11472 q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 11473 11474 /* we want to wait for completion in this context */ 11475 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 11476 11477 /* prepare the INIT parameters */ 11478 bxe_pf_q_prep_init(sc, fp, &q_params.params.init); 11479 11480 /* Set the command */ 11481 q_params.cmd = ECORE_Q_CMD_INIT; 11482 11483 /* Change the state to INIT */ 11484 rc = ecore_queue_state_change(sc, &q_params); 11485 if (rc) { 11486 BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc); 11487 return (rc); 11488 } 11489 11490 BLOGD(sc, DBG_LOAD, "init complete\n"); 11491 11492 /* now move the Queue to the SETUP state */ 11493 memset(setup_params, 0, sizeof(*setup_params)); 11494 11495 /* set Queue flags */ 11496 setup_params->flags = bxe_get_q_flags(sc, fp, leading); 11497 11498 /* set general SETUP parameters */ 11499 bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params, 11500 FIRST_TX_COS_INDEX); 11501 11502 bxe_pf_rx_q_prep(sc, fp, 11503 &setup_params->pause_params, 11504 &setup_params->rxq_params); 11505 11506 bxe_pf_tx_q_prep(sc, fp, 11507 &setup_params->txq_params, 11508 FIRST_TX_COS_INDEX); 11509 11510 /* Set the command */ 11511 q_params.cmd = ECORE_Q_CMD_SETUP; 11512 11513 /* change the state to SETUP */ 11514 rc = ecore_queue_state_change(sc, &q_params); 11515 if (rc) { 11516 BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc); 11517 return (rc); 11518 } 11519 11520 return (rc); 11521 } 11522 11523 static int 11524 bxe_setup_leading(struct bxe_softc *sc) 11525 { 11526 return (bxe_setup_queue(sc, &sc->fp[0], TRUE)); 11527 } 11528 11529 static int 11530 bxe_config_rss_pf(struct bxe_softc *sc, 11531 struct ecore_rss_config_obj *rss_obj, 11532 uint8_t config_hash) 11533 { 11534 struct ecore_config_rss_params params = { NULL }; 11535 int i; 11536 11537 /* 11538 * Although RSS is meaningless when there is a single HW queue we 11539 * still need it enabled in order to have HW Rx hash generated. 11540 */ 11541 11542 params.rss_obj = rss_obj; 11543 11544 bxe_set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 11545 11546 bxe_set_bit(ECORE_RSS_MODE_REGULAR, ¶ms.rss_flags); 11547 11548 /* RSS configuration */ 11549 bxe_set_bit(ECORE_RSS_IPV4, ¶ms.rss_flags); 11550 bxe_set_bit(ECORE_RSS_IPV4_TCP, ¶ms.rss_flags); 11551 bxe_set_bit(ECORE_RSS_IPV6, ¶ms.rss_flags); 11552 bxe_set_bit(ECORE_RSS_IPV6_TCP, ¶ms.rss_flags); 11553 if (rss_obj->udp_rss_v4) { 11554 bxe_set_bit(ECORE_RSS_IPV4_UDP, ¶ms.rss_flags); 11555 } 11556 if (rss_obj->udp_rss_v6) { 11557 bxe_set_bit(ECORE_RSS_IPV6_UDP, ¶ms.rss_flags); 11558 } 11559 11560 /* Hash bits */ 11561 params.rss_result_mask = MULTI_MASK; 11562 11563 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 11564 11565 if (config_hash) { 11566 /* RSS keys */ 11567 for (i = 0; i < sizeof(params.rss_key) / 4; i++) { 11568 params.rss_key[i] = arc4random(); 11569 } 11570 11571 bxe_set_bit(ECORE_RSS_SET_SRCH, ¶ms.rss_flags); 11572 } 11573 11574 return (ecore_config_rss(sc, ¶ms)); 11575 } 11576 11577 static int 11578 bxe_config_rss_eth(struct bxe_softc *sc, 11579 uint8_t config_hash) 11580 { 11581 return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash)); 11582 } 11583 11584 static int 11585 bxe_init_rss_pf(struct bxe_softc *sc) 11586 { 11587 uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc); 11588 int i; 11589 11590 /* 11591 * Prepare the initial contents of the indirection table if 11592 * RSS is enabled 11593 */ 11594 for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) { 11595 sc->rss_conf_obj.ind_table[i] = 11596 (sc->fp->cl_id + (i % num_eth_queues)); 11597 } 11598 11599 if (sc->udp_rss) { 11600 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1; 11601 } 11602 11603 /* 11604 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 11605 * per-port, so if explicit configuration is needed, do it only 11606 * for a PMF. 11607 * 11608 * For 57712 and newer it's a per-function configuration. 11609 */ 11610 return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc))); 11611 } 11612 11613 static int 11614 bxe_set_mac_one(struct bxe_softc *sc, 11615 uint8_t *mac, 11616 struct ecore_vlan_mac_obj *obj, 11617 uint8_t set, 11618 int mac_type, 11619 unsigned long *ramrod_flags) 11620 { 11621 struct ecore_vlan_mac_ramrod_params ramrod_param; 11622 int rc; 11623 11624 memset(&ramrod_param, 0, sizeof(ramrod_param)); 11625 11626 /* fill in general parameters */ 11627 ramrod_param.vlan_mac_obj = obj; 11628 ramrod_param.ramrod_flags = *ramrod_flags; 11629 11630 /* fill a user request section if needed */ 11631 if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) { 11632 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 11633 11634 bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 11635 11636 /* Set the command: ADD or DEL */ 11637 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD : 11638 ECORE_VLAN_MAC_DEL; 11639 } 11640 11641 rc = ecore_config_vlan_mac(sc, &ramrod_param); 11642 11643 if (rc == ECORE_EXISTS) { 11644 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 11645 /* do not treat adding same MAC as error */ 11646 rc = 0; 11647 } else if (rc < 0) { 11648 BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc); 11649 } 11650 11651 return (rc); 11652 } 11653 11654 static int 11655 bxe_set_eth_mac(struct bxe_softc *sc, 11656 uint8_t set) 11657 { 11658 unsigned long ramrod_flags = 0; 11659 11660 BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n"); 11661 11662 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 11663 11664 /* Eth MAC is set on RSS leading client (fp[0]) */ 11665 return (bxe_set_mac_one(sc, sc->link_params.mac_addr, 11666 &sc->sp_objs->mac_obj, 11667 set, ECORE_ETH_MAC, &ramrod_flags)); 11668 } 11669 11670 static int 11671 bxe_get_cur_phy_idx(struct bxe_softc *sc) 11672 { 11673 uint32_t sel_phy_idx = 0; 11674 11675 if (sc->link_params.num_phys <= 1) { 11676 return (ELINK_INT_PHY); 11677 } 11678 11679 if (sc->link_vars.link_up) { 11680 sel_phy_idx = ELINK_EXT_PHY1; 11681 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */ 11682 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 11683 (sc->link_params.phy[ELINK_EXT_PHY2].supported & 11684 ELINK_SUPPORTED_FIBRE)) 11685 sel_phy_idx = ELINK_EXT_PHY2; 11686 } else { 11687 switch (elink_phy_selection(&sc->link_params)) { 11688 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 11689 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 11690 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 11691 sel_phy_idx = ELINK_EXT_PHY1; 11692 break; 11693 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 11694 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 11695 sel_phy_idx = ELINK_EXT_PHY2; 11696 break; 11697 } 11698 } 11699 11700 return (sel_phy_idx); 11701 } 11702 11703 static int 11704 bxe_get_link_cfg_idx(struct bxe_softc *sc) 11705 { 11706 uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc); 11707 11708 /* 11709 * The selected activated PHY is always after swapping (in case PHY 11710 * swapping is enabled). So when swapping is enabled, we need to reverse 11711 * the configuration 11712 */ 11713 11714 if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 11715 if (sel_phy_idx == ELINK_EXT_PHY1) 11716 sel_phy_idx = ELINK_EXT_PHY2; 11717 else if (sel_phy_idx == ELINK_EXT_PHY2) 11718 sel_phy_idx = ELINK_EXT_PHY1; 11719 } 11720 11721 return (ELINK_LINK_CONFIG_IDX(sel_phy_idx)); 11722 } 11723 11724 static void 11725 bxe_set_requested_fc(struct bxe_softc *sc) 11726 { 11727 /* 11728 * Initialize link parameters structure variables 11729 * It is recommended to turn off RX FC for jumbo frames 11730 * for better performance 11731 */ 11732 if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) { 11733 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX; 11734 } else { 11735 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH; 11736 } 11737 } 11738 11739 static void 11740 bxe_calc_fc_adv(struct bxe_softc *sc) 11741 { 11742 uint8_t cfg_idx = bxe_get_link_cfg_idx(sc); 11743 switch (sc->link_vars.ieee_fc & 11744 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 11745 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE: 11746 default: 11747 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 11748 ADVERTISED_Pause); 11749 break; 11750 11751 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 11752 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 11753 ADVERTISED_Pause); 11754 break; 11755 11756 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 11757 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 11758 break; 11759 } 11760 } 11761 11762 static uint16_t 11763 bxe_get_mf_speed(struct bxe_softc *sc) 11764 { 11765 uint16_t line_speed = sc->link_vars.line_speed; 11766 if (IS_MF(sc)) { 11767 uint16_t maxCfg = 11768 bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]); 11769 11770 /* calculate the current MAX line speed limit for the MF devices */ 11771 if (IS_MF_SI(sc)) { 11772 line_speed = (line_speed * maxCfg) / 100; 11773 } else { /* SD mode */ 11774 uint16_t vn_max_rate = maxCfg * 100; 11775 11776 if (vn_max_rate < line_speed) { 11777 line_speed = vn_max_rate; 11778 } 11779 } 11780 } 11781 11782 return (line_speed); 11783 } 11784 11785 static void 11786 bxe_fill_report_data(struct bxe_softc *sc, 11787 struct bxe_link_report_data *data) 11788 { 11789 uint16_t line_speed = bxe_get_mf_speed(sc); 11790 11791 memset(data, 0, sizeof(*data)); 11792 11793 /* fill the report data with the effective line speed */ 11794 data->line_speed = line_speed; 11795 11796 /* Link is down */ 11797 if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) { 11798 bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags); 11799 } 11800 11801 /* Full DUPLEX */ 11802 if (sc->link_vars.duplex == DUPLEX_FULL) { 11803 bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags); 11804 } 11805 11806 /* Rx Flow Control is ON */ 11807 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) { 11808 bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags); 11809 } 11810 11811 /* Tx Flow Control is ON */ 11812 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 11813 bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags); 11814 } 11815 } 11816 11817 /* report link status to OS, should be called under phy_lock */ 11818 static void 11819 bxe_link_report_locked(struct bxe_softc *sc) 11820 { 11821 struct bxe_link_report_data cur_data; 11822 11823 /* reread mf_cfg */ 11824 if (IS_PF(sc) && !CHIP_IS_E1(sc)) { 11825 bxe_read_mf_cfg(sc); 11826 } 11827 11828 /* Read the current link report info */ 11829 bxe_fill_report_data(sc, &cur_data); 11830 11831 /* Don't report link down or exactly the same link status twice */ 11832 if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) || 11833 (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11834 &sc->last_reported_link.link_report_flags) && 11835 bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11836 &cur_data.link_report_flags))) { 11837 return; 11838 } 11839 11840 sc->link_cnt++; 11841 11842 /* report new link params and remember the state for the next time */ 11843 memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data)); 11844 11845 if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11846 &cur_data.link_report_flags)) { 11847 if_link_state_change(sc->ifp, LINK_STATE_DOWN); 11848 BLOGI(sc, "NIC Link is Down\n"); 11849 } else { 11850 const char *duplex; 11851 const char *flow; 11852 11853 if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX, 11854 &cur_data.link_report_flags)) { 11855 duplex = "full"; 11856 } else { 11857 duplex = "half"; 11858 } 11859 11860 /* 11861 * Handle the FC at the end so that only these flags would be 11862 * possibly set. This way we may easily check if there is no FC 11863 * enabled. 11864 */ 11865 if (cur_data.link_report_flags) { 11866 if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11867 &cur_data.link_report_flags) && 11868 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11869 &cur_data.link_report_flags)) { 11870 flow = "ON - receive & transmit"; 11871 } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11872 &cur_data.link_report_flags) && 11873 !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11874 &cur_data.link_report_flags)) { 11875 flow = "ON - receive"; 11876 } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11877 &cur_data.link_report_flags) && 11878 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11879 &cur_data.link_report_flags)) { 11880 flow = "ON - transmit"; 11881 } else { 11882 flow = "none"; /* possible? */ 11883 } 11884 } else { 11885 flow = "none"; 11886 } 11887 11888 if_link_state_change(sc->ifp, LINK_STATE_UP); 11889 BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 11890 cur_data.line_speed, duplex, flow); 11891 } 11892 } 11893 11894 static void 11895 bxe_link_report(struct bxe_softc *sc) 11896 { 11897 bxe_acquire_phy_lock(sc); 11898 bxe_link_report_locked(sc); 11899 bxe_release_phy_lock(sc); 11900 } 11901 11902 static void 11903 bxe_link_status_update(struct bxe_softc *sc) 11904 { 11905 if (sc->state != BXE_STATE_OPEN) { 11906 return; 11907 } 11908 11909 if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) { 11910 elink_link_status_update(&sc->link_params, &sc->link_vars); 11911 } else { 11912 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half | 11913 ELINK_SUPPORTED_10baseT_Full | 11914 ELINK_SUPPORTED_100baseT_Half | 11915 ELINK_SUPPORTED_100baseT_Full | 11916 ELINK_SUPPORTED_1000baseT_Full | 11917 ELINK_SUPPORTED_2500baseX_Full | 11918 ELINK_SUPPORTED_10000baseT_Full | 11919 ELINK_SUPPORTED_TP | 11920 ELINK_SUPPORTED_FIBRE | 11921 ELINK_SUPPORTED_Autoneg | 11922 ELINK_SUPPORTED_Pause | 11923 ELINK_SUPPORTED_Asym_Pause); 11924 sc->port.advertising[0] = sc->port.supported[0]; 11925 11926 sc->link_params.sc = sc; 11927 sc->link_params.port = SC_PORT(sc); 11928 sc->link_params.req_duplex[0] = DUPLEX_FULL; 11929 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE; 11930 sc->link_params.req_line_speed[0] = SPEED_10000; 11931 sc->link_params.speed_cap_mask[0] = 0x7f0000; 11932 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G; 11933 11934 if (CHIP_REV_IS_FPGA(sc)) { 11935 sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC; 11936 sc->link_vars.line_speed = ELINK_SPEED_1000; 11937 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 11938 LINK_STATUS_SPEED_AND_DUPLEX_1000TFD); 11939 } else { 11940 sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC; 11941 sc->link_vars.line_speed = ELINK_SPEED_10000; 11942 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 11943 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 11944 } 11945 11946 sc->link_vars.link_up = 1; 11947 11948 sc->link_vars.duplex = DUPLEX_FULL; 11949 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE; 11950 11951 if (IS_PF(sc)) { 11952 REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0); 11953 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11954 bxe_link_report(sc); 11955 } 11956 } 11957 11958 if (IS_PF(sc)) { 11959 if (sc->link_vars.link_up) { 11960 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11961 } else { 11962 bxe_stats_handle(sc, STATS_EVENT_STOP); 11963 } 11964 bxe_link_report(sc); 11965 } else { 11966 bxe_link_report(sc); 11967 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11968 } 11969 } 11970 11971 static int 11972 bxe_initial_phy_init(struct bxe_softc *sc, 11973 int load_mode) 11974 { 11975 int rc, cfg_idx = bxe_get_link_cfg_idx(sc); 11976 uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx]; 11977 struct elink_params *lp = &sc->link_params; 11978 11979 bxe_set_requested_fc(sc); 11980 11981 if (CHIP_REV_IS_SLOW(sc)) { 11982 uint32_t bond = CHIP_BOND_ID(sc); 11983 uint32_t feat = 0; 11984 11985 if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) { 11986 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 11987 } else if (bond & 0x4) { 11988 if (CHIP_IS_E3(sc)) { 11989 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC; 11990 } else { 11991 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 11992 } 11993 } else if (bond & 0x8) { 11994 if (CHIP_IS_E3(sc)) { 11995 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC; 11996 } else { 11997 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 11998 } 11999 } 12000 12001 /* disable EMAC for E3 and above */ 12002 if (bond & 0x2) { 12003 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 12004 } 12005 12006 sc->link_params.feature_config_flags |= feat; 12007 } 12008 12009 bxe_acquire_phy_lock(sc); 12010 12011 if (load_mode == LOAD_DIAG) { 12012 lp->loopback_mode = ELINK_LOOPBACK_XGXS; 12013 /* Prefer doing PHY loopback at 10G speed, if possible */ 12014 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) { 12015 if (lp->speed_cap_mask[cfg_idx] & 12016 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 12017 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000; 12018 } else { 12019 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000; 12020 } 12021 } 12022 } 12023 12024 if (load_mode == LOAD_LOOPBACK_EXT) { 12025 lp->loopback_mode = ELINK_LOOPBACK_EXT; 12026 } 12027 12028 rc = elink_phy_init(&sc->link_params, &sc->link_vars); 12029 12030 bxe_release_phy_lock(sc); 12031 12032 bxe_calc_fc_adv(sc); 12033 12034 if (sc->link_vars.link_up) { 12035 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12036 bxe_link_report(sc); 12037 } 12038 12039 if (!CHIP_REV_IS_SLOW(sc)) { 12040 bxe_periodic_start(sc); 12041 } 12042 12043 sc->link_params.req_line_speed[cfg_idx] = req_line_speed; 12044 return (rc); 12045 } 12046 12047 /* must be called under IF_ADDR_LOCK */ 12048 12049 static int 12050 bxe_set_mc_list(struct bxe_softc *sc) 12051 { 12052 struct ecore_mcast_ramrod_params rparam = { NULL }; 12053 int rc = 0; 12054 int mc_count = 0; 12055 int mcnt, i; 12056 struct ecore_mcast_list_elem *mc_mac, *mc_mac_start; 12057 unsigned char *mta; 12058 if_t ifp = sc->ifp; 12059 12060 mc_count = if_multiaddr_count(ifp, -1);/* XXX they don't have a limit */ 12061 if (!mc_count) 12062 return (0); 12063 12064 mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN * 12065 mc_count, M_DEVBUF, M_NOWAIT); 12066 12067 if(mta == NULL) { 12068 BLOGE(sc, "Failed to allocate temp mcast list\n"); 12069 return (-1); 12070 } 12071 bzero(mta, (sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count)); 12072 12073 mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, (M_NOWAIT | M_ZERO)); 12074 mc_mac_start = mc_mac; 12075 12076 if (!mc_mac) { 12077 free(mta, M_DEVBUF); 12078 BLOGE(sc, "Failed to allocate temp mcast list\n"); 12079 return (-1); 12080 } 12081 bzero(mc_mac, (sizeof(*mc_mac) * mc_count)); 12082 12083 /* mta and mcnt not expected to be different */ 12084 if_multiaddr_array(ifp, mta, &mcnt, mc_count); 12085 12086 12087 rparam.mcast_obj = &sc->mcast_obj; 12088 ECORE_LIST_INIT(&rparam.mcast_list); 12089 12090 for(i=0; i< mcnt; i++) { 12091 12092 mc_mac->mac = (uint8_t *)(mta + (i * ETHER_ADDR_LEN)); 12093 ECORE_LIST_PUSH_TAIL(&mc_mac->link, &rparam.mcast_list); 12094 12095 BLOGD(sc, DBG_LOAD, 12096 "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n", 12097 mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2], 12098 mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]); 12099 12100 mc_mac++; 12101 } 12102 rparam.mcast_list_len = mc_count; 12103 12104 BXE_MCAST_LOCK(sc); 12105 12106 /* first, clear all configured multicast MACs */ 12107 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 12108 if (rc < 0) { 12109 BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc); 12110 BXE_MCAST_UNLOCK(sc); 12111 free(mc_mac_start, M_DEVBUF); 12112 free(mta, M_DEVBUF); 12113 return (rc); 12114 } 12115 12116 /* Now add the new MACs */ 12117 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD); 12118 if (rc < 0) { 12119 BLOGE(sc, "Failed to set new mcast config (%d)\n", rc); 12120 } 12121 12122 BXE_MCAST_UNLOCK(sc); 12123 12124 free(mc_mac_start, M_DEVBUF); 12125 free(mta, M_DEVBUF); 12126 12127 return (rc); 12128 } 12129 12130 static int 12131 bxe_set_uc_list(struct bxe_softc *sc) 12132 { 12133 if_t ifp = sc->ifp; 12134 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 12135 struct ifaddr *ifa; 12136 unsigned long ramrod_flags = 0; 12137 int rc; 12138 12139 #if __FreeBSD_version < 800000 12140 IF_ADDR_LOCK(ifp); 12141 #else 12142 if_addr_rlock(ifp); 12143 #endif 12144 12145 /* first schedule a cleanup up of old configuration */ 12146 rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE); 12147 if (rc < 0) { 12148 BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc); 12149 #if __FreeBSD_version < 800000 12150 IF_ADDR_UNLOCK(ifp); 12151 #else 12152 if_addr_runlock(ifp); 12153 #endif 12154 return (rc); 12155 } 12156 12157 ifa = if_getifaddr(ifp); /* XXX Is this structure */ 12158 while (ifa) { 12159 if (ifa->ifa_addr->sa_family != AF_LINK) { 12160 ifa = TAILQ_NEXT(ifa, ifa_link); 12161 continue; 12162 } 12163 12164 rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr), 12165 mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags); 12166 if (rc == -EEXIST) { 12167 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12168 /* do not treat adding same MAC as an error */ 12169 rc = 0; 12170 } else if (rc < 0) { 12171 BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc); 12172 #if __FreeBSD_version < 800000 12173 IF_ADDR_UNLOCK(ifp); 12174 #else 12175 if_addr_runlock(ifp); 12176 #endif 12177 return (rc); 12178 } 12179 12180 ifa = TAILQ_NEXT(ifa, ifa_link); 12181 } 12182 12183 #if __FreeBSD_version < 800000 12184 IF_ADDR_UNLOCK(ifp); 12185 #else 12186 if_addr_runlock(ifp); 12187 #endif 12188 12189 /* Execute the pending commands */ 12190 bit_set(&ramrod_flags, RAMROD_CONT); 12191 return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */, 12192 ECORE_UC_LIST_MAC, &ramrod_flags)); 12193 } 12194 12195 static void 12196 bxe_set_rx_mode(struct bxe_softc *sc) 12197 { 12198 if_t ifp = sc->ifp; 12199 uint32_t rx_mode = BXE_RX_MODE_NORMAL; 12200 12201 if (sc->state != BXE_STATE_OPEN) { 12202 BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state); 12203 return; 12204 } 12205 12206 BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp)); 12207 12208 if (if_getflags(ifp) & IFF_PROMISC) { 12209 rx_mode = BXE_RX_MODE_PROMISC; 12210 } else if ((if_getflags(ifp) & IFF_ALLMULTI) || 12211 ((if_getamcount(ifp) > BXE_MAX_MULTICAST) && 12212 CHIP_IS_E1(sc))) { 12213 rx_mode = BXE_RX_MODE_ALLMULTI; 12214 } else { 12215 if (IS_PF(sc)) { 12216 /* some multicasts */ 12217 if (bxe_set_mc_list(sc) < 0) { 12218 rx_mode = BXE_RX_MODE_ALLMULTI; 12219 } 12220 if (bxe_set_uc_list(sc) < 0) { 12221 rx_mode = BXE_RX_MODE_PROMISC; 12222 } 12223 } 12224 } 12225 12226 sc->rx_mode = rx_mode; 12227 12228 /* schedule the rx_mode command */ 12229 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 12230 BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n"); 12231 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 12232 return; 12233 } 12234 12235 if (IS_PF(sc)) { 12236 bxe_set_storm_rx_mode(sc); 12237 } 12238 } 12239 12240 12241 /* update flags in shmem */ 12242 static void 12243 bxe_update_drv_flags(struct bxe_softc *sc, 12244 uint32_t flags, 12245 uint32_t set) 12246 { 12247 uint32_t drv_flags; 12248 12249 if (SHMEM2_HAS(sc, drv_flags)) { 12250 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12251 drv_flags = SHMEM2_RD(sc, drv_flags); 12252 12253 if (set) { 12254 SET_FLAGS(drv_flags, flags); 12255 } else { 12256 RESET_FLAGS(drv_flags, flags); 12257 } 12258 12259 SHMEM2_WR(sc, drv_flags, drv_flags); 12260 BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags); 12261 12262 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12263 } 12264 } 12265 12266 /* periodic timer callout routine, only runs when the interface is up */ 12267 12268 static void 12269 bxe_periodic_callout_func(void *xsc) 12270 { 12271 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12272 int i; 12273 12274 if (!BXE_CORE_TRYLOCK(sc)) { 12275 /* just bail and try again next time */ 12276 12277 if ((sc->state == BXE_STATE_OPEN) && 12278 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12279 /* schedule the next periodic callout */ 12280 callout_reset(&sc->periodic_callout, hz, 12281 bxe_periodic_callout_func, sc); 12282 } 12283 12284 return; 12285 } 12286 12287 if ((sc->state != BXE_STATE_OPEN) || 12288 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) { 12289 BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state); 12290 BXE_CORE_UNLOCK(sc); 12291 return; 12292 } 12293 12294 /* Check for TX timeouts on any fastpath. */ 12295 FOR_EACH_QUEUE(sc, i) { 12296 if (bxe_watchdog(sc, &sc->fp[i]) != 0) { 12297 /* Ruh-Roh, chip was reset! */ 12298 break; 12299 } 12300 } 12301 12302 if (!CHIP_REV_IS_SLOW(sc)) { 12303 /* 12304 * This barrier is needed to ensure the ordering between the writing 12305 * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and 12306 * the reading here. 12307 */ 12308 mb(); 12309 if (sc->port.pmf) { 12310 bxe_acquire_phy_lock(sc); 12311 elink_period_func(&sc->link_params, &sc->link_vars); 12312 bxe_release_phy_lock(sc); 12313 } 12314 } 12315 12316 if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) { 12317 int mb_idx = SC_FW_MB_IDX(sc); 12318 uint32_t drv_pulse; 12319 uint32_t mcp_pulse; 12320 12321 ++sc->fw_drv_pulse_wr_seq; 12322 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 12323 12324 drv_pulse = sc->fw_drv_pulse_wr_seq; 12325 bxe_drv_pulse(sc); 12326 12327 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) & 12328 MCP_PULSE_SEQ_MASK); 12329 12330 /* 12331 * The delta between driver pulse and mcp response should 12332 * be 1 (before mcp response) or 0 (after mcp response). 12333 */ 12334 if ((drv_pulse != mcp_pulse) && 12335 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) { 12336 /* someone lost a heartbeat... */ 12337 BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 12338 drv_pulse, mcp_pulse); 12339 } 12340 } 12341 12342 /* state is BXE_STATE_OPEN */ 12343 bxe_stats_handle(sc, STATS_EVENT_UPDATE); 12344 12345 BXE_CORE_UNLOCK(sc); 12346 12347 if ((sc->state == BXE_STATE_OPEN) && 12348 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12349 /* schedule the next periodic callout */ 12350 callout_reset(&sc->periodic_callout, hz, 12351 bxe_periodic_callout_func, sc); 12352 } 12353 } 12354 12355 static void 12356 bxe_periodic_start(struct bxe_softc *sc) 12357 { 12358 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO); 12359 callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc); 12360 } 12361 12362 static void 12363 bxe_periodic_stop(struct bxe_softc *sc) 12364 { 12365 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP); 12366 callout_drain(&sc->periodic_callout); 12367 } 12368 12369 /* start the controller */ 12370 static __noinline int 12371 bxe_nic_load(struct bxe_softc *sc, 12372 int load_mode) 12373 { 12374 uint32_t val; 12375 int load_code = 0; 12376 int i, rc = 0; 12377 12378 BXE_CORE_LOCK_ASSERT(sc); 12379 12380 BLOGD(sc, DBG_LOAD, "Starting NIC load...\n"); 12381 12382 sc->state = BXE_STATE_OPENING_WAITING_LOAD; 12383 12384 if (IS_PF(sc)) { 12385 /* must be called before memory allocation and HW init */ 12386 bxe_ilt_set_info(sc); 12387 } 12388 12389 sc->last_reported_link_state = LINK_STATE_UNKNOWN; 12390 12391 bxe_set_fp_rx_buf_size(sc); 12392 12393 if (bxe_alloc_fp_buffers(sc) != 0) { 12394 BLOGE(sc, "Failed to allocate fastpath memory\n"); 12395 sc->state = BXE_STATE_CLOSED; 12396 rc = ENOMEM; 12397 goto bxe_nic_load_error0; 12398 } 12399 12400 if (bxe_alloc_mem(sc) != 0) { 12401 sc->state = BXE_STATE_CLOSED; 12402 rc = ENOMEM; 12403 goto bxe_nic_load_error0; 12404 } 12405 12406 if (bxe_alloc_fw_stats_mem(sc) != 0) { 12407 sc->state = BXE_STATE_CLOSED; 12408 rc = ENOMEM; 12409 goto bxe_nic_load_error0; 12410 } 12411 12412 if (IS_PF(sc)) { 12413 /* set pf load just before approaching the MCP */ 12414 bxe_set_pf_load(sc); 12415 12416 /* if MCP exists send load request and analyze response */ 12417 if (!BXE_NOMCP(sc)) { 12418 /* attempt to load pf */ 12419 if (bxe_nic_load_request(sc, &load_code) != 0) { 12420 sc->state = BXE_STATE_CLOSED; 12421 rc = ENXIO; 12422 goto bxe_nic_load_error1; 12423 } 12424 12425 /* what did the MCP say? */ 12426 if (bxe_nic_load_analyze_req(sc, load_code) != 0) { 12427 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12428 sc->state = BXE_STATE_CLOSED; 12429 rc = ENXIO; 12430 goto bxe_nic_load_error2; 12431 } 12432 } else { 12433 BLOGI(sc, "Device has no MCP!\n"); 12434 load_code = bxe_nic_load_no_mcp(sc); 12435 } 12436 12437 /* mark PMF if applicable */ 12438 bxe_nic_load_pmf(sc, load_code); 12439 12440 /* Init Function state controlling object */ 12441 bxe_init_func_obj(sc); 12442 12443 /* Initialize HW */ 12444 if (bxe_init_hw(sc, load_code) != 0) { 12445 BLOGE(sc, "HW init failed\n"); 12446 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12447 sc->state = BXE_STATE_CLOSED; 12448 rc = ENXIO; 12449 goto bxe_nic_load_error2; 12450 } 12451 } 12452 12453 /* set ALWAYS_ALIVE bit in shmem */ 12454 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 12455 bxe_drv_pulse(sc); 12456 sc->flags |= BXE_NO_PULSE; 12457 12458 /* attach interrupts */ 12459 if (bxe_interrupt_attach(sc) != 0) { 12460 sc->state = BXE_STATE_CLOSED; 12461 rc = ENXIO; 12462 goto bxe_nic_load_error2; 12463 } 12464 12465 bxe_nic_init(sc, load_code); 12466 12467 /* Init per-function objects */ 12468 if (IS_PF(sc)) { 12469 bxe_init_objs(sc); 12470 // XXX bxe_iov_nic_init(sc); 12471 12472 /* set AFEX default VLAN tag to an invalid value */ 12473 sc->devinfo.mf_info.afex_def_vlan_tag = -1; 12474 // XXX bxe_nic_load_afex_dcc(sc, load_code); 12475 12476 sc->state = BXE_STATE_OPENING_WAITING_PORT; 12477 rc = bxe_func_start(sc); 12478 if (rc) { 12479 BLOGE(sc, "Function start failed! rc = %d\n", rc); 12480 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12481 sc->state = BXE_STATE_ERROR; 12482 goto bxe_nic_load_error3; 12483 } 12484 12485 /* send LOAD_DONE command to MCP */ 12486 if (!BXE_NOMCP(sc)) { 12487 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12488 if (!load_code) { 12489 BLOGE(sc, "MCP response failure, aborting\n"); 12490 sc->state = BXE_STATE_ERROR; 12491 rc = ENXIO; 12492 goto bxe_nic_load_error3; 12493 } 12494 } 12495 12496 rc = bxe_setup_leading(sc); 12497 if (rc) { 12498 BLOGE(sc, "Setup leading failed! rc = %d\n", rc); 12499 sc->state = BXE_STATE_ERROR; 12500 goto bxe_nic_load_error3; 12501 } 12502 12503 FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) { 12504 rc = bxe_setup_queue(sc, &sc->fp[i], FALSE); 12505 if (rc) { 12506 BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc); 12507 sc->state = BXE_STATE_ERROR; 12508 goto bxe_nic_load_error3; 12509 } 12510 } 12511 12512 rc = bxe_init_rss_pf(sc); 12513 if (rc) { 12514 BLOGE(sc, "PF RSS init failed\n"); 12515 sc->state = BXE_STATE_ERROR; 12516 goto bxe_nic_load_error3; 12517 } 12518 } 12519 /* XXX VF */ 12520 12521 /* now when Clients are configured we are ready to work */ 12522 sc->state = BXE_STATE_OPEN; 12523 12524 /* Configure a ucast MAC */ 12525 if (IS_PF(sc)) { 12526 rc = bxe_set_eth_mac(sc, TRUE); 12527 } 12528 if (rc) { 12529 BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc); 12530 sc->state = BXE_STATE_ERROR; 12531 goto bxe_nic_load_error3; 12532 } 12533 12534 if (sc->port.pmf) { 12535 rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN); 12536 if (rc) { 12537 sc->state = BXE_STATE_ERROR; 12538 goto bxe_nic_load_error3; 12539 } 12540 } 12541 12542 sc->link_params.feature_config_flags &= 12543 ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN; 12544 12545 /* start fast path */ 12546 12547 /* Initialize Rx filter */ 12548 bxe_set_rx_mode(sc); 12549 12550 /* start the Tx */ 12551 switch (/* XXX load_mode */LOAD_OPEN) { 12552 case LOAD_NORMAL: 12553 case LOAD_OPEN: 12554 break; 12555 12556 case LOAD_DIAG: 12557 case LOAD_LOOPBACK_EXT: 12558 sc->state = BXE_STATE_DIAG; 12559 break; 12560 12561 default: 12562 break; 12563 } 12564 12565 if (sc->port.pmf) { 12566 bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0); 12567 } else { 12568 bxe_link_status_update(sc); 12569 } 12570 12571 /* start the periodic timer callout */ 12572 bxe_periodic_start(sc); 12573 12574 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 12575 /* mark driver is loaded in shmem2 */ 12576 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 12577 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 12578 (val | 12579 DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 12580 DRV_FLAGS_CAPABILITIES_LOADED_L2)); 12581 } 12582 12583 /* wait for all pending SP commands to complete */ 12584 if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) { 12585 BLOGE(sc, "Timeout waiting for all SPs to complete!\n"); 12586 bxe_periodic_stop(sc); 12587 bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE); 12588 return (ENXIO); 12589 } 12590 12591 /* Tell the stack the driver is running! */ 12592 if_setdrvflags(sc->ifp, IFF_DRV_RUNNING); 12593 12594 BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n"); 12595 12596 return (0); 12597 12598 bxe_nic_load_error3: 12599 12600 if (IS_PF(sc)) { 12601 bxe_int_disable_sync(sc, 1); 12602 12603 /* clean out queued objects */ 12604 bxe_squeeze_objects(sc); 12605 } 12606 12607 bxe_interrupt_detach(sc); 12608 12609 bxe_nic_load_error2: 12610 12611 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 12612 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 12613 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 12614 } 12615 12616 sc->port.pmf = 0; 12617 12618 bxe_nic_load_error1: 12619 12620 /* clear pf_load status, as it was already set */ 12621 if (IS_PF(sc)) { 12622 bxe_clear_pf_load(sc); 12623 } 12624 12625 bxe_nic_load_error0: 12626 12627 bxe_free_fw_stats_mem(sc); 12628 bxe_free_fp_buffers(sc); 12629 bxe_free_mem(sc); 12630 12631 return (rc); 12632 } 12633 12634 static int 12635 bxe_init_locked(struct bxe_softc *sc) 12636 { 12637 int other_engine = SC_PATH(sc) ? 0 : 1; 12638 uint8_t other_load_status, load_status; 12639 uint8_t global = FALSE; 12640 int rc; 12641 12642 BXE_CORE_LOCK_ASSERT(sc); 12643 12644 /* check if the driver is already running */ 12645 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 12646 BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n"); 12647 return (0); 12648 } 12649 12650 bxe_set_power_state(sc, PCI_PM_D0); 12651 12652 /* 12653 * If parity occurred during the unload, then attentions and/or 12654 * RECOVERY_IN_PROGRES may still be set. If so we want the first function 12655 * loaded on the current engine to complete the recovery. Parity recovery 12656 * is only relevant for PF driver. 12657 */ 12658 if (IS_PF(sc)) { 12659 other_load_status = bxe_get_load_status(sc, other_engine); 12660 load_status = bxe_get_load_status(sc, SC_PATH(sc)); 12661 12662 if (!bxe_reset_is_done(sc, SC_PATH(sc)) || 12663 bxe_chk_parity_attn(sc, &global, TRUE)) { 12664 do { 12665 /* 12666 * If there are attentions and they are in global blocks, set 12667 * the GLOBAL_RESET bit regardless whether it will be this 12668 * function that will complete the recovery or not. 12669 */ 12670 if (global) { 12671 bxe_set_reset_global(sc); 12672 } 12673 12674 /* 12675 * Only the first function on the current engine should try 12676 * to recover in open. In case of attentions in global blocks 12677 * only the first in the chip should try to recover. 12678 */ 12679 if ((!load_status && (!global || !other_load_status)) && 12680 bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) { 12681 BLOGI(sc, "Recovered during init\n"); 12682 break; 12683 } 12684 12685 /* recovery has failed... */ 12686 bxe_set_power_state(sc, PCI_PM_D3hot); 12687 sc->recovery_state = BXE_RECOVERY_FAILED; 12688 12689 BLOGE(sc, "Recovery flow hasn't properly " 12690 "completed yet, try again later. " 12691 "If you still see this message after a " 12692 "few retries then power cycle is required.\n"); 12693 12694 rc = ENXIO; 12695 goto bxe_init_locked_done; 12696 } while (0); 12697 } 12698 } 12699 12700 sc->recovery_state = BXE_RECOVERY_DONE; 12701 12702 rc = bxe_nic_load(sc, LOAD_OPEN); 12703 12704 bxe_init_locked_done: 12705 12706 if (rc) { 12707 /* Tell the stack the driver is NOT running! */ 12708 BLOGE(sc, "Initialization failed, " 12709 "stack notified driver is NOT running!\n"); 12710 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 12711 } 12712 12713 return (rc); 12714 } 12715 12716 static int 12717 bxe_stop_locked(struct bxe_softc *sc) 12718 { 12719 BXE_CORE_LOCK_ASSERT(sc); 12720 return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE)); 12721 } 12722 12723 /* 12724 * Handles controller initialization when called from an unlocked routine. 12725 * ifconfig calls this function. 12726 * 12727 * Returns: 12728 * void 12729 */ 12730 static void 12731 bxe_init(void *xsc) 12732 { 12733 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12734 12735 BXE_CORE_LOCK(sc); 12736 bxe_init_locked(sc); 12737 BXE_CORE_UNLOCK(sc); 12738 } 12739 12740 static int 12741 bxe_init_ifnet(struct bxe_softc *sc) 12742 { 12743 if_t ifp; 12744 int capabilities; 12745 12746 /* ifconfig entrypoint for media type/status reporting */ 12747 ifmedia_init(&sc->ifmedia, IFM_IMASK, 12748 bxe_ifmedia_update, 12749 bxe_ifmedia_status); 12750 12751 /* set the default interface values */ 12752 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL); 12753 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL); 12754 ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO)); 12755 12756 sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */ 12757 12758 /* allocate the ifnet structure */ 12759 if ((ifp = if_gethandle(IFT_ETHER)) == NULL) { 12760 BLOGE(sc, "Interface allocation failed!\n"); 12761 return (ENXIO); 12762 } 12763 12764 if_setsoftc(ifp, sc); 12765 if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); 12766 if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST)); 12767 if_setioctlfn(ifp, bxe_ioctl); 12768 if_setstartfn(ifp, bxe_tx_start); 12769 if_setgetcounterfn(ifp, bxe_get_counter); 12770 #if __FreeBSD_version >= 800000 12771 if_settransmitfn(ifp, bxe_tx_mq_start); 12772 if_setqflushfn(ifp, bxe_mq_flush); 12773 #endif 12774 #ifdef FreeBSD8_0 12775 if_settimer(ifp, 0); 12776 #endif 12777 if_setinitfn(ifp, bxe_init); 12778 if_setmtu(ifp, sc->mtu); 12779 if_sethwassist(ifp, (CSUM_IP | 12780 CSUM_TCP | 12781 CSUM_UDP | 12782 CSUM_TSO | 12783 CSUM_TCP_IPV6 | 12784 CSUM_UDP_IPV6)); 12785 12786 capabilities = 12787 #if __FreeBSD_version < 700000 12788 (IFCAP_VLAN_MTU | 12789 IFCAP_VLAN_HWTAGGING | 12790 IFCAP_HWCSUM | 12791 IFCAP_JUMBO_MTU | 12792 IFCAP_LRO); 12793 #else 12794 (IFCAP_VLAN_MTU | 12795 IFCAP_VLAN_HWTAGGING | 12796 IFCAP_VLAN_HWTSO | 12797 IFCAP_VLAN_HWFILTER | 12798 IFCAP_VLAN_HWCSUM | 12799 IFCAP_HWCSUM | 12800 IFCAP_JUMBO_MTU | 12801 IFCAP_LRO | 12802 IFCAP_TSO4 | 12803 IFCAP_TSO6 | 12804 IFCAP_WOL_MAGIC); 12805 #endif 12806 if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */ 12807 if_setbaudrate(ifp, IF_Gbps(10)); 12808 /* XXX */ 12809 if_setsendqlen(ifp, sc->tx_ring_size); 12810 if_setsendqready(ifp); 12811 /* XXX */ 12812 12813 sc->ifp = ifp; 12814 12815 /* attach to the Ethernet interface list */ 12816 ether_ifattach(ifp, sc->link_params.mac_addr); 12817 12818 return (0); 12819 } 12820 12821 static void 12822 bxe_deallocate_bars(struct bxe_softc *sc) 12823 { 12824 int i; 12825 12826 for (i = 0; i < MAX_BARS; i++) { 12827 if (sc->bar[i].resource != NULL) { 12828 bus_release_resource(sc->dev, 12829 SYS_RES_MEMORY, 12830 sc->bar[i].rid, 12831 sc->bar[i].resource); 12832 BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n", 12833 i, PCIR_BAR(i)); 12834 } 12835 } 12836 } 12837 12838 static int 12839 bxe_allocate_bars(struct bxe_softc *sc) 12840 { 12841 u_int flags; 12842 int i; 12843 12844 memset(sc->bar, 0, sizeof(sc->bar)); 12845 12846 for (i = 0; i < MAX_BARS; i++) { 12847 12848 /* memory resources reside at BARs 0, 2, 4 */ 12849 /* Run `pciconf -lb` to see mappings */ 12850 if ((i != 0) && (i != 2) && (i != 4)) { 12851 continue; 12852 } 12853 12854 sc->bar[i].rid = PCIR_BAR(i); 12855 12856 flags = RF_ACTIVE; 12857 if (i == 0) { 12858 flags |= RF_SHAREABLE; 12859 } 12860 12861 if ((sc->bar[i].resource = 12862 bus_alloc_resource_any(sc->dev, 12863 SYS_RES_MEMORY, 12864 &sc->bar[i].rid, 12865 flags)) == NULL) { 12866 return (0); 12867 } 12868 12869 sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource); 12870 sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource); 12871 sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource); 12872 12873 BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%jd) -> %p\n", 12874 i, PCIR_BAR(i), 12875 (void *)rman_get_start(sc->bar[i].resource), 12876 (void *)rman_get_end(sc->bar[i].resource), 12877 rman_get_size(sc->bar[i].resource), 12878 (void *)sc->bar[i].kva); 12879 } 12880 12881 return (0); 12882 } 12883 12884 static void 12885 bxe_get_function_num(struct bxe_softc *sc) 12886 { 12887 uint32_t val = 0; 12888 12889 /* 12890 * Read the ME register to get the function number. The ME register 12891 * holds the relative-function number and absolute-function number. The 12892 * absolute-function number appears only in E2 and above. Before that 12893 * these bits always contained zero, therefore we cannot blindly use them. 12894 */ 12895 12896 val = REG_RD(sc, BAR_ME_REGISTER); 12897 12898 sc->pfunc_rel = 12899 (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT); 12900 sc->path_id = 12901 (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1; 12902 12903 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 12904 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id); 12905 } else { 12906 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id); 12907 } 12908 12909 BLOGD(sc, DBG_LOAD, 12910 "Relative function %d, Absolute function %d, Path %d\n", 12911 sc->pfunc_rel, sc->pfunc_abs, sc->path_id); 12912 } 12913 12914 static uint32_t 12915 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc) 12916 { 12917 uint32_t shmem2_size; 12918 uint32_t offset; 12919 uint32_t mf_cfg_offset_value; 12920 12921 /* Non 57712 */ 12922 offset = (SHMEM_RD(sc, func_mb) + 12923 (MAX_FUNC_NUM * sizeof(struct drv_func_mb))); 12924 12925 /* 57712 plus */ 12926 if (sc->devinfo.shmem2_base != 0) { 12927 shmem2_size = SHMEM2_RD(sc, size); 12928 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) { 12929 mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr); 12930 if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) { 12931 offset = mf_cfg_offset_value; 12932 } 12933 } 12934 } 12935 12936 return (offset); 12937 } 12938 12939 static uint32_t 12940 bxe_pcie_capability_read(struct bxe_softc *sc, 12941 int reg, 12942 int width) 12943 { 12944 int pcie_reg; 12945 12946 /* ensure PCIe capability is enabled */ 12947 if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) { 12948 if (pcie_reg != 0) { 12949 BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg); 12950 return (pci_read_config(sc->dev, (pcie_reg + reg), width)); 12951 } 12952 } 12953 12954 BLOGE(sc, "PCIe capability NOT FOUND!!!\n"); 12955 12956 return (0); 12957 } 12958 12959 static uint8_t 12960 bxe_is_pcie_pending(struct bxe_softc *sc) 12961 { 12962 return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) & 12963 PCIM_EXP_STA_TRANSACTION_PND); 12964 } 12965 12966 /* 12967 * Walk the PCI capabiites list for the device to find what features are 12968 * supported. These capabilites may be enabled/disabled by firmware so it's 12969 * best to walk the list rather than make assumptions. 12970 */ 12971 static void 12972 bxe_probe_pci_caps(struct bxe_softc *sc) 12973 { 12974 uint16_t link_status; 12975 int reg; 12976 12977 /* check if PCI Power Management is enabled */ 12978 if (pci_find_cap(sc->dev, PCIY_PMG, ®) == 0) { 12979 if (reg != 0) { 12980 BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg); 12981 12982 sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG; 12983 sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg; 12984 } 12985 } 12986 12987 link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2); 12988 12989 /* handle PCIe 2.0 workarounds for 57710 */ 12990 if (CHIP_IS_E1(sc)) { 12991 /* workaround for 57710 errata E4_57710_27462 */ 12992 sc->devinfo.pcie_link_speed = 12993 (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1; 12994 12995 /* workaround for 57710 errata E4_57710_27488 */ 12996 sc->devinfo.pcie_link_width = 12997 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 12998 if (sc->devinfo.pcie_link_speed > 1) { 12999 sc->devinfo.pcie_link_width = 13000 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1; 13001 } 13002 } else { 13003 sc->devinfo.pcie_link_speed = 13004 (link_status & PCIM_LINK_STA_SPEED); 13005 sc->devinfo.pcie_link_width = 13006 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 13007 } 13008 13009 BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n", 13010 sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width); 13011 13012 sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG; 13013 sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg; 13014 13015 /* check if MSI capability is enabled */ 13016 if (pci_find_cap(sc->dev, PCIY_MSI, ®) == 0) { 13017 if (reg != 0) { 13018 BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg); 13019 13020 sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG; 13021 sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg; 13022 } 13023 } 13024 13025 /* check if MSI-X capability is enabled */ 13026 if (pci_find_cap(sc->dev, PCIY_MSIX, ®) == 0) { 13027 if (reg != 0) { 13028 BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg); 13029 13030 sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG; 13031 sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg; 13032 } 13033 } 13034 } 13035 13036 static int 13037 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc) 13038 { 13039 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13040 uint32_t val; 13041 13042 /* get the outer vlan if we're in switch-dependent mode */ 13043 13044 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13045 mf_info->ext_id = (uint16_t)val; 13046 13047 mf_info->multi_vnics_mode = 1; 13048 13049 if (!VALID_OVLAN(mf_info->ext_id)) { 13050 BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id); 13051 return (1); 13052 } 13053 13054 /* get the capabilities */ 13055 if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13056 FUNC_MF_CFG_PROTOCOL_ISCSI) { 13057 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI; 13058 } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13059 FUNC_MF_CFG_PROTOCOL_FCOE) { 13060 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE; 13061 } else { 13062 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET; 13063 } 13064 13065 mf_info->vnics_per_port = 13066 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13067 13068 return (0); 13069 } 13070 13071 static uint32_t 13072 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc) 13073 { 13074 uint32_t retval = 0; 13075 uint32_t val; 13076 13077 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13078 13079 if (val & MACP_FUNC_CFG_FLAGS_ENABLED) { 13080 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) { 13081 retval |= MF_PROTO_SUPPORT_ETHERNET; 13082 } 13083 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 13084 retval |= MF_PROTO_SUPPORT_ISCSI; 13085 } 13086 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 13087 retval |= MF_PROTO_SUPPORT_FCOE; 13088 } 13089 } 13090 13091 return (retval); 13092 } 13093 13094 static int 13095 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc) 13096 { 13097 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13098 uint32_t val; 13099 13100 /* 13101 * There is no outer vlan if we're in switch-independent mode. 13102 * If the mac is valid then assume multi-function. 13103 */ 13104 13105 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13106 13107 mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0); 13108 13109 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13110 13111 mf_info->vnics_per_port = 13112 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13113 13114 return (0); 13115 } 13116 13117 static int 13118 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc) 13119 { 13120 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13121 uint32_t e1hov_tag; 13122 uint32_t func_config; 13123 uint32_t niv_config; 13124 13125 mf_info->multi_vnics_mode = 1; 13126 13127 e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13128 func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13129 niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config); 13130 13131 mf_info->ext_id = 13132 (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >> 13133 FUNC_MF_CFG_E1HOV_TAG_SHIFT); 13134 13135 mf_info->default_vlan = 13136 (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >> 13137 FUNC_MF_CFG_AFEX_VLAN_SHIFT); 13138 13139 mf_info->niv_allowed_priorities = 13140 (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 13141 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT); 13142 13143 mf_info->niv_default_cos = 13144 (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 13145 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT); 13146 13147 mf_info->afex_vlan_mode = 13148 ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 13149 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT); 13150 13151 mf_info->niv_mba_enabled = 13152 ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >> 13153 FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT); 13154 13155 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13156 13157 mf_info->vnics_per_port = 13158 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13159 13160 return (0); 13161 } 13162 13163 static int 13164 bxe_check_valid_mf_cfg(struct bxe_softc *sc) 13165 { 13166 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13167 uint32_t mf_cfg1; 13168 uint32_t mf_cfg2; 13169 uint32_t ovlan1; 13170 uint32_t ovlan2; 13171 uint8_t i, j; 13172 13173 BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n", 13174 SC_PORT(sc)); 13175 BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n", 13176 mf_info->mf_config[SC_VN(sc)]); 13177 BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n", 13178 mf_info->multi_vnics_mode); 13179 BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n", 13180 mf_info->vnics_per_port); 13181 BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n", 13182 mf_info->ext_id); 13183 BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n", 13184 mf_info->min_bw[0], mf_info->min_bw[1], 13185 mf_info->min_bw[2], mf_info->min_bw[3]); 13186 BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n", 13187 mf_info->max_bw[0], mf_info->max_bw[1], 13188 mf_info->max_bw[2], mf_info->max_bw[3]); 13189 BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n", 13190 sc->mac_addr_str); 13191 13192 /* various MF mode sanity checks... */ 13193 13194 if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) { 13195 BLOGE(sc, "Enumerated function %d is marked as hidden\n", 13196 SC_PORT(sc)); 13197 return (1); 13198 } 13199 13200 if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) { 13201 BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n", 13202 mf_info->vnics_per_port, mf_info->multi_vnics_mode); 13203 return (1); 13204 } 13205 13206 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13207 /* vnic id > 0 must have valid ovlan in switch-dependent mode */ 13208 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) { 13209 BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n", 13210 SC_VN(sc), OVLAN(sc)); 13211 return (1); 13212 } 13213 13214 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) { 13215 BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n", 13216 mf_info->multi_vnics_mode, OVLAN(sc)); 13217 return (1); 13218 } 13219 13220 /* 13221 * Verify all functions are either MF or SF mode. If MF, make sure 13222 * sure that all non-hidden functions have a valid ovlan. If SF, 13223 * make sure that all non-hidden functions have an invalid ovlan. 13224 */ 13225 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13226 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13227 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13228 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13229 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) || 13230 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) { 13231 BLOGE(sc, "mf_mode=SD function %d MF config " 13232 "mismatch, multi_vnics_mode=%d ovlan=%d\n", 13233 i, mf_info->multi_vnics_mode, ovlan1); 13234 return (1); 13235 } 13236 } 13237 13238 /* Verify all funcs on the same port each have a different ovlan. */ 13239 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13240 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13241 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13242 /* iterate from the next function on the port to the max func */ 13243 for (j = i + 2; j < MAX_FUNC_NUM; j += 2) { 13244 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config); 13245 ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag); 13246 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13247 VALID_OVLAN(ovlan1) && 13248 !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) && 13249 VALID_OVLAN(ovlan2) && 13250 (ovlan1 == ovlan2)) { 13251 BLOGE(sc, "mf_mode=SD functions %d and %d " 13252 "have the same ovlan (%d)\n", 13253 i, j, ovlan1); 13254 return (1); 13255 } 13256 } 13257 } 13258 } /* MULTI_FUNCTION_SD */ 13259 13260 return (0); 13261 } 13262 13263 static int 13264 bxe_get_mf_cfg_info(struct bxe_softc *sc) 13265 { 13266 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13267 uint32_t val, mac_upper; 13268 uint8_t i, vnic; 13269 13270 /* initialize mf_info defaults */ 13271 mf_info->vnics_per_port = 1; 13272 mf_info->multi_vnics_mode = FALSE; 13273 mf_info->path_has_ovlan = FALSE; 13274 mf_info->mf_mode = SINGLE_FUNCTION; 13275 13276 if (!CHIP_IS_MF_CAP(sc)) { 13277 return (0); 13278 } 13279 13280 if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) { 13281 BLOGE(sc, "Invalid mf_cfg_base!\n"); 13282 return (1); 13283 } 13284 13285 /* get the MF mode (switch dependent / independent / single-function) */ 13286 13287 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13288 13289 switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) 13290 { 13291 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 13292 13293 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13294 13295 /* check for legal upper mac bytes */ 13296 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) { 13297 mf_info->mf_mode = MULTI_FUNCTION_SI; 13298 } else { 13299 BLOGE(sc, "Invalid config for Switch Independent mode\n"); 13300 } 13301 13302 break; 13303 13304 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 13305 case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4: 13306 13307 /* get outer vlan configuration */ 13308 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13309 13310 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) != 13311 FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 13312 mf_info->mf_mode = MULTI_FUNCTION_SD; 13313 } else { 13314 BLOGE(sc, "Invalid config for Switch Dependent mode\n"); 13315 } 13316 13317 break; 13318 13319 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 13320 13321 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */ 13322 return (0); 13323 13324 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 13325 13326 /* 13327 * Mark MF mode as NIV if MCP version includes NPAR-SD support 13328 * and the MAC address is valid. 13329 */ 13330 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13331 13332 if ((SHMEM2_HAS(sc, afex_driver_support)) && 13333 (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) { 13334 mf_info->mf_mode = MULTI_FUNCTION_AFEX; 13335 } else { 13336 BLOGE(sc, "Invalid config for AFEX mode\n"); 13337 } 13338 13339 break; 13340 13341 default: 13342 13343 BLOGE(sc, "Unknown MF mode (0x%08x)\n", 13344 (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)); 13345 13346 return (1); 13347 } 13348 13349 /* set path mf_mode (which could be different than function mf_mode) */ 13350 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13351 mf_info->path_has_ovlan = TRUE; 13352 } else if (mf_info->mf_mode == SINGLE_FUNCTION) { 13353 /* 13354 * Decide on path multi vnics mode. If we're not in MF mode and in 13355 * 4-port mode, this is good enough to check vnic-0 of the other port 13356 * on the same path 13357 */ 13358 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13359 uint8_t other_port = !(PORT_ID(sc) & 1); 13360 uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port)); 13361 13362 val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag); 13363 13364 mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0; 13365 } 13366 } 13367 13368 if (mf_info->mf_mode == SINGLE_FUNCTION) { 13369 /* invalid MF config */ 13370 if (SC_VN(sc) >= 1) { 13371 BLOGE(sc, "VNIC ID >= 1 in SF mode\n"); 13372 return (1); 13373 } 13374 13375 return (0); 13376 } 13377 13378 /* get the MF configuration */ 13379 mf_info->mf_config[SC_VN(sc)] = 13380 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13381 13382 switch(mf_info->mf_mode) 13383 { 13384 case MULTI_FUNCTION_SD: 13385 13386 bxe_get_shmem_mf_cfg_info_sd(sc); 13387 break; 13388 13389 case MULTI_FUNCTION_SI: 13390 13391 bxe_get_shmem_mf_cfg_info_si(sc); 13392 break; 13393 13394 case MULTI_FUNCTION_AFEX: 13395 13396 bxe_get_shmem_mf_cfg_info_niv(sc); 13397 break; 13398 13399 default: 13400 13401 BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n", 13402 mf_info->mf_mode); 13403 return (1); 13404 } 13405 13406 /* get the congestion management parameters */ 13407 13408 vnic = 0; 13409 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13410 /* get min/max bw */ 13411 val = MFCFG_RD(sc, func_mf_config[i].config); 13412 mf_info->min_bw[vnic] = 13413 ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT); 13414 mf_info->max_bw[vnic] = 13415 ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT); 13416 vnic++; 13417 } 13418 13419 return (bxe_check_valid_mf_cfg(sc)); 13420 } 13421 13422 static int 13423 bxe_get_shmem_info(struct bxe_softc *sc) 13424 { 13425 int port; 13426 uint32_t mac_hi, mac_lo, val; 13427 13428 port = SC_PORT(sc); 13429 mac_hi = mac_lo = 0; 13430 13431 sc->link_params.sc = sc; 13432 sc->link_params.port = port; 13433 13434 /* get the hardware config info */ 13435 sc->devinfo.hw_config = 13436 SHMEM_RD(sc, dev_info.shared_hw_config.config); 13437 sc->devinfo.hw_config2 = 13438 SHMEM_RD(sc, dev_info.shared_hw_config.config2); 13439 13440 sc->link_params.hw_led_mode = 13441 ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >> 13442 SHARED_HW_CFG_LED_MODE_SHIFT); 13443 13444 /* get the port feature config */ 13445 sc->port.config = 13446 SHMEM_RD(sc, dev_info.port_feature_config[port].config), 13447 13448 /* get the link params */ 13449 sc->link_params.speed_cap_mask[0] = 13450 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask); 13451 sc->link_params.speed_cap_mask[1] = 13452 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2); 13453 13454 /* get the lane config */ 13455 sc->link_params.lane_config = 13456 SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config); 13457 13458 /* get the link config */ 13459 val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config); 13460 sc->port.link_config[ELINK_INT_PHY] = val; 13461 sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK); 13462 sc->port.link_config[ELINK_EXT_PHY1] = 13463 SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2); 13464 13465 /* get the override preemphasis flag and enable it or turn it off */ 13466 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13467 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) { 13468 sc->link_params.feature_config_flags |= 13469 ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13470 } else { 13471 sc->link_params.feature_config_flags &= 13472 ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13473 } 13474 13475 /* get the initial value of the link params */ 13476 sc->link_params.multi_phy_config = 13477 SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config); 13478 13479 /* get external phy info */ 13480 sc->port.ext_phy_config = 13481 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 13482 13483 /* get the multifunction configuration */ 13484 bxe_get_mf_cfg_info(sc); 13485 13486 /* get the mac address */ 13487 if (IS_MF(sc)) { 13488 mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13489 mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower); 13490 } else { 13491 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper); 13492 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower); 13493 } 13494 13495 if ((mac_lo == 0) && (mac_hi == 0)) { 13496 *sc->mac_addr_str = 0; 13497 BLOGE(sc, "No Ethernet address programmed!\n"); 13498 } else { 13499 sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8); 13500 sc->link_params.mac_addr[1] = (uint8_t)(mac_hi); 13501 sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24); 13502 sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16); 13503 sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8); 13504 sc->link_params.mac_addr[5] = (uint8_t)(mac_lo); 13505 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str), 13506 "%02x:%02x:%02x:%02x:%02x:%02x", 13507 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1], 13508 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3], 13509 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]); 13510 BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str); 13511 } 13512 13513 return (0); 13514 } 13515 13516 static void 13517 bxe_get_tunable_params(struct bxe_softc *sc) 13518 { 13519 /* sanity checks */ 13520 13521 if ((bxe_interrupt_mode != INTR_MODE_INTX) && 13522 (bxe_interrupt_mode != INTR_MODE_MSI) && 13523 (bxe_interrupt_mode != INTR_MODE_MSIX)) { 13524 BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode); 13525 bxe_interrupt_mode = INTR_MODE_MSIX; 13526 } 13527 13528 if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) { 13529 BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count); 13530 bxe_queue_count = 0; 13531 } 13532 13533 if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) { 13534 if (bxe_max_rx_bufs == 0) { 13535 bxe_max_rx_bufs = RX_BD_USABLE; 13536 } else { 13537 BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs); 13538 bxe_max_rx_bufs = 2048; 13539 } 13540 } 13541 13542 if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) { 13543 BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks); 13544 bxe_hc_rx_ticks = 25; 13545 } 13546 13547 if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) { 13548 BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks); 13549 bxe_hc_tx_ticks = 50; 13550 } 13551 13552 if (bxe_max_aggregation_size == 0) { 13553 bxe_max_aggregation_size = TPA_AGG_SIZE; 13554 } 13555 13556 if (bxe_max_aggregation_size > 0xffff) { 13557 BLOGW(sc, "invalid max_aggregation_size (%d)\n", 13558 bxe_max_aggregation_size); 13559 bxe_max_aggregation_size = TPA_AGG_SIZE; 13560 } 13561 13562 if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) { 13563 BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs); 13564 bxe_mrrs = -1; 13565 } 13566 13567 if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) { 13568 BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen); 13569 bxe_autogreeen = 0; 13570 } 13571 13572 if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) { 13573 BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss); 13574 bxe_udp_rss = 0; 13575 } 13576 13577 /* pull in user settings */ 13578 13579 sc->interrupt_mode = bxe_interrupt_mode; 13580 sc->max_rx_bufs = bxe_max_rx_bufs; 13581 sc->hc_rx_ticks = bxe_hc_rx_ticks; 13582 sc->hc_tx_ticks = bxe_hc_tx_ticks; 13583 sc->max_aggregation_size = bxe_max_aggregation_size; 13584 sc->mrrs = bxe_mrrs; 13585 sc->autogreeen = bxe_autogreeen; 13586 sc->udp_rss = bxe_udp_rss; 13587 13588 if (bxe_interrupt_mode == INTR_MODE_INTX) { 13589 sc->num_queues = 1; 13590 } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */ 13591 sc->num_queues = 13592 min((bxe_queue_count ? bxe_queue_count : mp_ncpus), 13593 MAX_RSS_CHAINS); 13594 if (sc->num_queues > mp_ncpus) { 13595 sc->num_queues = mp_ncpus; 13596 } 13597 } 13598 13599 BLOGD(sc, DBG_LOAD, 13600 "User Config: " 13601 "debug=0x%lx " 13602 "interrupt_mode=%d " 13603 "queue_count=%d " 13604 "hc_rx_ticks=%d " 13605 "hc_tx_ticks=%d " 13606 "rx_budget=%d " 13607 "max_aggregation_size=%d " 13608 "mrrs=%d " 13609 "autogreeen=%d " 13610 "udp_rss=%d\n", 13611 bxe_debug, 13612 sc->interrupt_mode, 13613 sc->num_queues, 13614 sc->hc_rx_ticks, 13615 sc->hc_tx_ticks, 13616 bxe_rx_budget, 13617 sc->max_aggregation_size, 13618 sc->mrrs, 13619 sc->autogreeen, 13620 sc->udp_rss); 13621 } 13622 13623 static void 13624 bxe_media_detect(struct bxe_softc *sc) 13625 { 13626 uint32_t phy_idx = bxe_get_cur_phy_idx(sc); 13627 switch (sc->link_params.phy[phy_idx].media_type) { 13628 case ELINK_ETH_PHY_SFPP_10G_FIBER: 13629 case ELINK_ETH_PHY_XFP_FIBER: 13630 BLOGI(sc, "Found 10Gb Fiber media.\n"); 13631 sc->media = IFM_10G_SR; 13632 break; 13633 case ELINK_ETH_PHY_SFP_1G_FIBER: 13634 BLOGI(sc, "Found 1Gb Fiber media.\n"); 13635 sc->media = IFM_1000_SX; 13636 break; 13637 case ELINK_ETH_PHY_KR: 13638 case ELINK_ETH_PHY_CX4: 13639 BLOGI(sc, "Found 10GBase-CX4 media.\n"); 13640 sc->media = IFM_10G_CX4; 13641 break; 13642 case ELINK_ETH_PHY_DA_TWINAX: 13643 BLOGI(sc, "Found 10Gb Twinax media.\n"); 13644 sc->media = IFM_10G_TWINAX; 13645 break; 13646 case ELINK_ETH_PHY_BASE_T: 13647 if (sc->link_params.speed_cap_mask[0] & 13648 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 13649 BLOGI(sc, "Found 10GBase-T media.\n"); 13650 sc->media = IFM_10G_T; 13651 } else { 13652 BLOGI(sc, "Found 1000Base-T media.\n"); 13653 sc->media = IFM_1000_T; 13654 } 13655 break; 13656 case ELINK_ETH_PHY_NOT_PRESENT: 13657 BLOGI(sc, "Media not present.\n"); 13658 sc->media = 0; 13659 break; 13660 case ELINK_ETH_PHY_UNSPECIFIED: 13661 default: 13662 BLOGI(sc, "Unknown media!\n"); 13663 sc->media = 0; 13664 break; 13665 } 13666 } 13667 13668 #define GET_FIELD(value, fname) \ 13669 (((value) & (fname##_MASK)) >> (fname##_SHIFT)) 13670 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 13671 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 13672 13673 static int 13674 bxe_get_igu_cam_info(struct bxe_softc *sc) 13675 { 13676 int pfid = SC_FUNC(sc); 13677 int igu_sb_id; 13678 uint32_t val; 13679 uint8_t fid, igu_sb_cnt = 0; 13680 13681 sc->igu_base_sb = 0xff; 13682 13683 if (CHIP_INT_MODE_IS_BC(sc)) { 13684 int vn = SC_VN(sc); 13685 igu_sb_cnt = sc->igu_sb_cnt; 13686 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) * 13687 FP_SB_MAX_E1x); 13688 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x + 13689 (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn)); 13690 return (0); 13691 } 13692 13693 /* IGU in normal mode - read CAM */ 13694 for (igu_sb_id = 0; 13695 igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 13696 igu_sb_id++) { 13697 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 13698 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) { 13699 continue; 13700 } 13701 fid = IGU_FID(val); 13702 if ((fid & IGU_FID_ENCODE_IS_PF)) { 13703 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) { 13704 continue; 13705 } 13706 if (IGU_VEC(val) == 0) { 13707 /* default status block */ 13708 sc->igu_dsb_id = igu_sb_id; 13709 } else { 13710 if (sc->igu_base_sb == 0xff) { 13711 sc->igu_base_sb = igu_sb_id; 13712 } 13713 igu_sb_cnt++; 13714 } 13715 } 13716 } 13717 13718 /* 13719 * Due to new PF resource allocation by MFW T7.4 and above, it's optional 13720 * that number of CAM entries will not be equal to the value advertised in 13721 * PCI. Driver should use the minimal value of both as the actual status 13722 * block count 13723 */ 13724 sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt); 13725 13726 if (igu_sb_cnt == 0) { 13727 BLOGE(sc, "CAM configuration error\n"); 13728 return (-1); 13729 } 13730 13731 return (0); 13732 } 13733 13734 /* 13735 * Gather various information from the device config space, the device itself, 13736 * shmem, and the user input. 13737 */ 13738 static int 13739 bxe_get_device_info(struct bxe_softc *sc) 13740 { 13741 uint32_t val; 13742 int rc; 13743 13744 /* Get the data for the device */ 13745 sc->devinfo.vendor_id = pci_get_vendor(sc->dev); 13746 sc->devinfo.device_id = pci_get_device(sc->dev); 13747 sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev); 13748 sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev); 13749 13750 /* get the chip revision (chip metal comes from pci config space) */ 13751 sc->devinfo.chip_id = 13752 sc->link_params.chip_id = 13753 (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) | 13754 ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) | 13755 (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) | 13756 ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0)); 13757 13758 /* force 57811 according to MISC register */ 13759 if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 13760 if (CHIP_IS_57810(sc)) { 13761 sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) | 13762 (sc->devinfo.chip_id & 0x0000ffff)); 13763 } else if (CHIP_IS_57810_MF(sc)) { 13764 sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) | 13765 (sc->devinfo.chip_id & 0x0000ffff)); 13766 } 13767 sc->devinfo.chip_id |= 0x1; 13768 } 13769 13770 BLOGD(sc, DBG_LOAD, 13771 "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n", 13772 sc->devinfo.chip_id, 13773 ((sc->devinfo.chip_id >> 16) & 0xffff), 13774 ((sc->devinfo.chip_id >> 12) & 0xf), 13775 ((sc->devinfo.chip_id >> 4) & 0xff), 13776 ((sc->devinfo.chip_id >> 0) & 0xf)); 13777 13778 val = (REG_RD(sc, 0x2874) & 0x55); 13779 if ((sc->devinfo.chip_id & 0x1) || 13780 (CHIP_IS_E1(sc) && val) || 13781 (CHIP_IS_E1H(sc) && (val == 0x55))) { 13782 sc->flags |= BXE_ONE_PORT_FLAG; 13783 BLOGD(sc, DBG_LOAD, "single port device\n"); 13784 } 13785 13786 /* set the doorbell size */ 13787 sc->doorbell_size = (1 << BXE_DB_SHIFT); 13788 13789 /* determine whether the device is in 2 port or 4 port mode */ 13790 sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/ 13791 if (CHIP_IS_E2E3(sc)) { 13792 /* 13793 * Read port4mode_en_ovwr[0]: 13794 * If 1, four port mode is in port4mode_en_ovwr[1]. 13795 * If 0, four port mode is in port4mode_en[0]. 13796 */ 13797 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR); 13798 if (val & 1) { 13799 val = ((val >> 1) & 1); 13800 } else { 13801 val = REG_RD(sc, MISC_REG_PORT4MODE_EN); 13802 } 13803 13804 sc->devinfo.chip_port_mode = 13805 (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE; 13806 13807 BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2"); 13808 } 13809 13810 /* get the function and path info for the device */ 13811 bxe_get_function_num(sc); 13812 13813 /* get the shared memory base address */ 13814 sc->devinfo.shmem_base = 13815 sc->link_params.shmem_base = 13816 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 13817 sc->devinfo.shmem2_base = 13818 REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 : 13819 MISC_REG_GENERIC_CR_0)); 13820 13821 BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n", 13822 sc->devinfo.shmem_base, sc->devinfo.shmem2_base); 13823 13824 if (!sc->devinfo.shmem_base) { 13825 /* this should ONLY prevent upcoming shmem reads */ 13826 BLOGI(sc, "MCP not active\n"); 13827 sc->flags |= BXE_NO_MCP_FLAG; 13828 return (0); 13829 } 13830 13831 /* make sure the shared memory contents are valid */ 13832 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 13833 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) != 13834 (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) { 13835 BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val); 13836 return (0); 13837 } 13838 BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val); 13839 13840 /* get the bootcode version */ 13841 sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev); 13842 snprintf(sc->devinfo.bc_ver_str, 13843 sizeof(sc->devinfo.bc_ver_str), 13844 "%d.%d.%d", 13845 ((sc->devinfo.bc_ver >> 24) & 0xff), 13846 ((sc->devinfo.bc_ver >> 16) & 0xff), 13847 ((sc->devinfo.bc_ver >> 8) & 0xff)); 13848 BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str); 13849 13850 /* get the bootcode shmem address */ 13851 sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc); 13852 BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base); 13853 13854 /* clean indirect addresses as they're not used */ 13855 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 13856 if (IS_PF(sc)) { 13857 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0); 13858 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0); 13859 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0); 13860 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0); 13861 if (CHIP_IS_E1x(sc)) { 13862 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0); 13863 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0); 13864 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0); 13865 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0); 13866 } 13867 13868 /* 13869 * Enable internal target-read (in case we are probed after PF 13870 * FLR). Must be done prior to any BAR read access. Only for 13871 * 57712 and up 13872 */ 13873 if (!CHIP_IS_E1x(sc)) { 13874 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 13875 } 13876 } 13877 13878 /* get the nvram size */ 13879 val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4); 13880 sc->devinfo.flash_size = 13881 (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE)); 13882 BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size); 13883 13884 /* get PCI capabilites */ 13885 bxe_probe_pci_caps(sc); 13886 13887 bxe_set_power_state(sc, PCI_PM_D0); 13888 13889 /* get various configuration parameters from shmem */ 13890 bxe_get_shmem_info(sc); 13891 13892 if (sc->devinfo.pcie_msix_cap_reg != 0) { 13893 val = pci_read_config(sc->dev, 13894 (sc->devinfo.pcie_msix_cap_reg + 13895 PCIR_MSIX_CTRL), 13896 2); 13897 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE); 13898 } else { 13899 sc->igu_sb_cnt = 1; 13900 } 13901 13902 sc->igu_base_addr = BAR_IGU_INTMEM; 13903 13904 /* initialize IGU parameters */ 13905 if (CHIP_IS_E1x(sc)) { 13906 sc->devinfo.int_block = INT_BLOCK_HC; 13907 sc->igu_dsb_id = DEF_SB_IGU_ID; 13908 sc->igu_base_sb = 0; 13909 } else { 13910 sc->devinfo.int_block = INT_BLOCK_IGU; 13911 13912 /* do not allow device reset during IGU info preocessing */ 13913 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 13914 13915 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 13916 13917 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 13918 int tout = 5000; 13919 13920 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n"); 13921 13922 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 13923 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val); 13924 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f); 13925 13926 while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 13927 tout--; 13928 DELAY(1000); 13929 } 13930 13931 if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 13932 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n"); 13933 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 13934 return (-1); 13935 } 13936 } 13937 13938 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 13939 BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n"); 13940 sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP; 13941 } else { 13942 BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n"); 13943 } 13944 13945 rc = bxe_get_igu_cam_info(sc); 13946 13947 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 13948 13949 if (rc) { 13950 return (rc); 13951 } 13952 } 13953 13954 /* 13955 * Get base FW non-default (fast path) status block ID. This value is 13956 * used to initialize the fw_sb_id saved on the fp/queue structure to 13957 * determine the id used by the FW. 13958 */ 13959 if (CHIP_IS_E1x(sc)) { 13960 sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc)); 13961 } else { 13962 /* 13963 * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of 13964 * the same queue are indicated on the same IGU SB). So we prefer 13965 * FW and IGU SBs to be the same value. 13966 */ 13967 sc->base_fw_ndsb = sc->igu_base_sb; 13968 } 13969 13970 BLOGD(sc, DBG_LOAD, 13971 "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n", 13972 sc->igu_dsb_id, sc->igu_base_sb, 13973 sc->igu_sb_cnt, sc->base_fw_ndsb); 13974 13975 elink_phy_probe(&sc->link_params); 13976 13977 return (0); 13978 } 13979 13980 static void 13981 bxe_link_settings_supported(struct bxe_softc *sc, 13982 uint32_t switch_cfg) 13983 { 13984 uint32_t cfg_size = 0; 13985 uint32_t idx; 13986 uint8_t port = SC_PORT(sc); 13987 13988 /* aggregation of supported attributes of all external phys */ 13989 sc->port.supported[0] = 0; 13990 sc->port.supported[1] = 0; 13991 13992 switch (sc->link_params.num_phys) { 13993 case 1: 13994 sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported; 13995 cfg_size = 1; 13996 break; 13997 case 2: 13998 sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported; 13999 cfg_size = 1; 14000 break; 14001 case 3: 14002 if (sc->link_params.multi_phy_config & 14003 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 14004 sc->port.supported[1] = 14005 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14006 sc->port.supported[0] = 14007 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14008 } else { 14009 sc->port.supported[0] = 14010 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14011 sc->port.supported[1] = 14012 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14013 } 14014 cfg_size = 2; 14015 break; 14016 } 14017 14018 if (!(sc->port.supported[0] || sc->port.supported[1])) { 14019 BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n", 14020 SHMEM_RD(sc, 14021 dev_info.port_hw_config[port].external_phy_config), 14022 SHMEM_RD(sc, 14023 dev_info.port_hw_config[port].external_phy_config2)); 14024 return; 14025 } 14026 14027 if (CHIP_IS_E3(sc)) 14028 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR); 14029 else { 14030 switch (switch_cfg) { 14031 case ELINK_SWITCH_CFG_1G: 14032 sc->port.phy_addr = 14033 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 14034 break; 14035 case ELINK_SWITCH_CFG_10G: 14036 sc->port.phy_addr = 14037 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 14038 break; 14039 default: 14040 BLOGE(sc, "Invalid switch config in link_config=0x%08x\n", 14041 sc->port.link_config[0]); 14042 return; 14043 } 14044 } 14045 14046 BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr); 14047 14048 /* mask what we support according to speed_cap_mask per configuration */ 14049 for (idx = 0; idx < cfg_size; idx++) { 14050 if (!(sc->link_params.speed_cap_mask[idx] & 14051 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) { 14052 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half; 14053 } 14054 14055 if (!(sc->link_params.speed_cap_mask[idx] & 14056 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) { 14057 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full; 14058 } 14059 14060 if (!(sc->link_params.speed_cap_mask[idx] & 14061 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) { 14062 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half; 14063 } 14064 14065 if (!(sc->link_params.speed_cap_mask[idx] & 14066 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) { 14067 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full; 14068 } 14069 14070 if (!(sc->link_params.speed_cap_mask[idx] & 14071 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) { 14072 sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full; 14073 } 14074 14075 if (!(sc->link_params.speed_cap_mask[idx] & 14076 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) { 14077 sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full; 14078 } 14079 14080 if (!(sc->link_params.speed_cap_mask[idx] & 14081 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) { 14082 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full; 14083 } 14084 14085 if (!(sc->link_params.speed_cap_mask[idx] & 14086 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) { 14087 sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full; 14088 } 14089 } 14090 14091 BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n", 14092 sc->port.supported[0], sc->port.supported[1]); 14093 } 14094 14095 static void 14096 bxe_link_settings_requested(struct bxe_softc *sc) 14097 { 14098 uint32_t link_config; 14099 uint32_t idx; 14100 uint32_t cfg_size = 0; 14101 14102 sc->port.advertising[0] = 0; 14103 sc->port.advertising[1] = 0; 14104 14105 switch (sc->link_params.num_phys) { 14106 case 1: 14107 case 2: 14108 cfg_size = 1; 14109 break; 14110 case 3: 14111 cfg_size = 2; 14112 break; 14113 } 14114 14115 for (idx = 0; idx < cfg_size; idx++) { 14116 sc->link_params.req_duplex[idx] = DUPLEX_FULL; 14117 link_config = sc->port.link_config[idx]; 14118 14119 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 14120 case PORT_FEATURE_LINK_SPEED_AUTO: 14121 if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) { 14122 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14123 sc->port.advertising[idx] |= sc->port.supported[idx]; 14124 if (sc->link_params.phy[ELINK_EXT_PHY1].type == 14125 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 14126 sc->port.advertising[idx] |= 14127 (ELINK_SUPPORTED_100baseT_Half | 14128 ELINK_SUPPORTED_100baseT_Full); 14129 } else { 14130 /* force 10G, no AN */ 14131 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14132 sc->port.advertising[idx] |= 14133 (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); 14134 continue; 14135 } 14136 break; 14137 14138 case PORT_FEATURE_LINK_SPEED_10M_FULL: 14139 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) { 14140 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14141 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full | 14142 ADVERTISED_TP); 14143 } else { 14144 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14145 "speed_cap_mask=0x%08x\n", 14146 link_config, sc->link_params.speed_cap_mask[idx]); 14147 return; 14148 } 14149 break; 14150 14151 case PORT_FEATURE_LINK_SPEED_10M_HALF: 14152 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) { 14153 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14154 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14155 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half | 14156 ADVERTISED_TP); 14157 } else { 14158 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14159 "speed_cap_mask=0x%08x\n", 14160 link_config, sc->link_params.speed_cap_mask[idx]); 14161 return; 14162 } 14163 break; 14164 14165 case PORT_FEATURE_LINK_SPEED_100M_FULL: 14166 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) { 14167 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14168 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full | 14169 ADVERTISED_TP); 14170 } else { 14171 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14172 "speed_cap_mask=0x%08x\n", 14173 link_config, sc->link_params.speed_cap_mask[idx]); 14174 return; 14175 } 14176 break; 14177 14178 case PORT_FEATURE_LINK_SPEED_100M_HALF: 14179 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) { 14180 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14181 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14182 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half | 14183 ADVERTISED_TP); 14184 } else { 14185 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14186 "speed_cap_mask=0x%08x\n", 14187 link_config, sc->link_params.speed_cap_mask[idx]); 14188 return; 14189 } 14190 break; 14191 14192 case PORT_FEATURE_LINK_SPEED_1G: 14193 if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) { 14194 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000; 14195 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full | 14196 ADVERTISED_TP); 14197 } else { 14198 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14199 "speed_cap_mask=0x%08x\n", 14200 link_config, sc->link_params.speed_cap_mask[idx]); 14201 return; 14202 } 14203 break; 14204 14205 case PORT_FEATURE_LINK_SPEED_2_5G: 14206 if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) { 14207 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500; 14208 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full | 14209 ADVERTISED_TP); 14210 } else { 14211 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14212 "speed_cap_mask=0x%08x\n", 14213 link_config, sc->link_params.speed_cap_mask[idx]); 14214 return; 14215 } 14216 break; 14217 14218 case PORT_FEATURE_LINK_SPEED_10G_CX4: 14219 if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) { 14220 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14221 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full | 14222 ADVERTISED_FIBRE); 14223 } else { 14224 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14225 "speed_cap_mask=0x%08x\n", 14226 link_config, sc->link_params.speed_cap_mask[idx]); 14227 return; 14228 } 14229 break; 14230 14231 case PORT_FEATURE_LINK_SPEED_20G: 14232 sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000; 14233 break; 14234 14235 default: 14236 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14237 "speed_cap_mask=0x%08x\n", 14238 link_config, sc->link_params.speed_cap_mask[idx]); 14239 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14240 sc->port.advertising[idx] = sc->port.supported[idx]; 14241 break; 14242 } 14243 14244 sc->link_params.req_flow_ctrl[idx] = 14245 (link_config & PORT_FEATURE_FLOW_CONTROL_MASK); 14246 14247 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) { 14248 if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) { 14249 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE; 14250 } else { 14251 bxe_set_requested_fc(sc); 14252 } 14253 } 14254 14255 BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d " 14256 "req_flow_ctrl=0x%x advertising=0x%x\n", 14257 sc->link_params.req_line_speed[idx], 14258 sc->link_params.req_duplex[idx], 14259 sc->link_params.req_flow_ctrl[idx], 14260 sc->port.advertising[idx]); 14261 } 14262 } 14263 14264 static void 14265 bxe_get_phy_info(struct bxe_softc *sc) 14266 { 14267 uint8_t port = SC_PORT(sc); 14268 uint32_t config = sc->port.config; 14269 uint32_t eee_mode; 14270 14271 /* shmem data already read in bxe_get_shmem_info() */ 14272 14273 BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x " 14274 "link_config0=0x%08x\n", 14275 sc->link_params.lane_config, 14276 sc->link_params.speed_cap_mask[0], 14277 sc->port.link_config[0]); 14278 14279 bxe_link_settings_supported(sc, sc->link_params.switch_cfg); 14280 bxe_link_settings_requested(sc); 14281 14282 if (sc->autogreeen == AUTO_GREEN_FORCE_ON) { 14283 sc->link_params.feature_config_flags |= 14284 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14285 } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) { 14286 sc->link_params.feature_config_flags &= 14287 ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14288 } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) { 14289 sc->link_params.feature_config_flags |= 14290 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14291 } 14292 14293 /* configure link feature according to nvram value */ 14294 eee_mode = 14295 (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) & 14296 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 14297 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 14298 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 14299 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI | 14300 ELINK_EEE_MODE_ENABLE_LPI | 14301 ELINK_EEE_MODE_OUTPUT_TIME); 14302 } else { 14303 sc->link_params.eee_mode = 0; 14304 } 14305 14306 /* get the media type */ 14307 bxe_media_detect(sc); 14308 } 14309 14310 static void 14311 bxe_get_params(struct bxe_softc *sc) 14312 { 14313 /* get user tunable params */ 14314 bxe_get_tunable_params(sc); 14315 14316 /* select the RX and TX ring sizes */ 14317 sc->tx_ring_size = TX_BD_USABLE; 14318 sc->rx_ring_size = RX_BD_USABLE; 14319 14320 /* XXX disable WoL */ 14321 sc->wol = 0; 14322 } 14323 14324 static void 14325 bxe_set_modes_bitmap(struct bxe_softc *sc) 14326 { 14327 uint32_t flags = 0; 14328 14329 if (CHIP_REV_IS_FPGA(sc)) { 14330 SET_FLAGS(flags, MODE_FPGA); 14331 } else if (CHIP_REV_IS_EMUL(sc)) { 14332 SET_FLAGS(flags, MODE_EMUL); 14333 } else { 14334 SET_FLAGS(flags, MODE_ASIC); 14335 } 14336 14337 if (CHIP_IS_MODE_4_PORT(sc)) { 14338 SET_FLAGS(flags, MODE_PORT4); 14339 } else { 14340 SET_FLAGS(flags, MODE_PORT2); 14341 } 14342 14343 if (CHIP_IS_E2(sc)) { 14344 SET_FLAGS(flags, MODE_E2); 14345 } else if (CHIP_IS_E3(sc)) { 14346 SET_FLAGS(flags, MODE_E3); 14347 if (CHIP_REV(sc) == CHIP_REV_Ax) { 14348 SET_FLAGS(flags, MODE_E3_A0); 14349 } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ { 14350 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 14351 } 14352 } 14353 14354 if (IS_MF(sc)) { 14355 SET_FLAGS(flags, MODE_MF); 14356 switch (sc->devinfo.mf_info.mf_mode) { 14357 case MULTI_FUNCTION_SD: 14358 SET_FLAGS(flags, MODE_MF_SD); 14359 break; 14360 case MULTI_FUNCTION_SI: 14361 SET_FLAGS(flags, MODE_MF_SI); 14362 break; 14363 case MULTI_FUNCTION_AFEX: 14364 SET_FLAGS(flags, MODE_MF_AFEX); 14365 break; 14366 } 14367 } else { 14368 SET_FLAGS(flags, MODE_SF); 14369 } 14370 14371 #if defined(__LITTLE_ENDIAN) 14372 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 14373 #else /* __BIG_ENDIAN */ 14374 SET_FLAGS(flags, MODE_BIG_ENDIAN); 14375 #endif 14376 14377 INIT_MODE_FLAGS(sc) = flags; 14378 } 14379 14380 static int 14381 bxe_alloc_hsi_mem(struct bxe_softc *sc) 14382 { 14383 struct bxe_fastpath *fp; 14384 bus_addr_t busaddr; 14385 int max_agg_queues; 14386 int max_segments; 14387 bus_size_t max_size; 14388 bus_size_t max_seg_size; 14389 char buf[32]; 14390 int rc; 14391 int i, j; 14392 14393 /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */ 14394 14395 /* allocate the parent bus DMA tag */ 14396 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */ 14397 1, /* alignment */ 14398 0, /* boundary limit */ 14399 BUS_SPACE_MAXADDR, /* restricted low */ 14400 BUS_SPACE_MAXADDR, /* restricted hi */ 14401 NULL, /* addr filter() */ 14402 NULL, /* addr filter() arg */ 14403 BUS_SPACE_MAXSIZE_32BIT, /* max map size */ 14404 BUS_SPACE_UNRESTRICTED, /* num discontinuous */ 14405 BUS_SPACE_MAXSIZE_32BIT, /* max seg size */ 14406 0, /* flags */ 14407 NULL, /* lock() */ 14408 NULL, /* lock() arg */ 14409 &sc->parent_dma_tag); /* returned dma tag */ 14410 if (rc != 0) { 14411 BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc); 14412 return (1); 14413 } 14414 14415 /************************/ 14416 /* DEFAULT STATUS BLOCK */ 14417 /************************/ 14418 14419 if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block), 14420 &sc->def_sb_dma, "default status block") != 0) { 14421 /* XXX */ 14422 bus_dma_tag_destroy(sc->parent_dma_tag); 14423 return (1); 14424 } 14425 14426 sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr; 14427 14428 /***************/ 14429 /* EVENT QUEUE */ 14430 /***************/ 14431 14432 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14433 &sc->eq_dma, "event queue") != 0) { 14434 /* XXX */ 14435 bxe_dma_free(sc, &sc->def_sb_dma); 14436 sc->def_sb = NULL; 14437 bus_dma_tag_destroy(sc->parent_dma_tag); 14438 return (1); 14439 } 14440 14441 sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr; 14442 14443 /*************/ 14444 /* SLOW PATH */ 14445 /*************/ 14446 14447 if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath), 14448 &sc->sp_dma, "slow path") != 0) { 14449 /* XXX */ 14450 bxe_dma_free(sc, &sc->eq_dma); 14451 sc->eq = NULL; 14452 bxe_dma_free(sc, &sc->def_sb_dma); 14453 sc->def_sb = NULL; 14454 bus_dma_tag_destroy(sc->parent_dma_tag); 14455 return (1); 14456 } 14457 14458 sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr; 14459 14460 /*******************/ 14461 /* SLOW PATH QUEUE */ 14462 /*******************/ 14463 14464 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14465 &sc->spq_dma, "slow path queue") != 0) { 14466 /* XXX */ 14467 bxe_dma_free(sc, &sc->sp_dma); 14468 sc->sp = NULL; 14469 bxe_dma_free(sc, &sc->eq_dma); 14470 sc->eq = NULL; 14471 bxe_dma_free(sc, &sc->def_sb_dma); 14472 sc->def_sb = NULL; 14473 bus_dma_tag_destroy(sc->parent_dma_tag); 14474 return (1); 14475 } 14476 14477 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr; 14478 14479 /***************************/ 14480 /* FW DECOMPRESSION BUFFER */ 14481 /***************************/ 14482 14483 if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma, 14484 "fw decompression buffer") != 0) { 14485 /* XXX */ 14486 bxe_dma_free(sc, &sc->spq_dma); 14487 sc->spq = NULL; 14488 bxe_dma_free(sc, &sc->sp_dma); 14489 sc->sp = NULL; 14490 bxe_dma_free(sc, &sc->eq_dma); 14491 sc->eq = NULL; 14492 bxe_dma_free(sc, &sc->def_sb_dma); 14493 sc->def_sb = NULL; 14494 bus_dma_tag_destroy(sc->parent_dma_tag); 14495 return (1); 14496 } 14497 14498 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr; 14499 14500 if ((sc->gz_strm = 14501 malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) { 14502 /* XXX */ 14503 bxe_dma_free(sc, &sc->gz_buf_dma); 14504 sc->gz_buf = NULL; 14505 bxe_dma_free(sc, &sc->spq_dma); 14506 sc->spq = NULL; 14507 bxe_dma_free(sc, &sc->sp_dma); 14508 sc->sp = NULL; 14509 bxe_dma_free(sc, &sc->eq_dma); 14510 sc->eq = NULL; 14511 bxe_dma_free(sc, &sc->def_sb_dma); 14512 sc->def_sb = NULL; 14513 bus_dma_tag_destroy(sc->parent_dma_tag); 14514 return (1); 14515 } 14516 14517 /*************/ 14518 /* FASTPATHS */ 14519 /*************/ 14520 14521 /* allocate DMA memory for each fastpath structure */ 14522 for (i = 0; i < sc->num_queues; i++) { 14523 fp = &sc->fp[i]; 14524 fp->sc = sc; 14525 fp->index = i; 14526 14527 /*******************/ 14528 /* FP STATUS BLOCK */ 14529 /*******************/ 14530 14531 snprintf(buf, sizeof(buf), "fp %d status block", i); 14532 if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block), 14533 &fp->sb_dma, buf) != 0) { 14534 /* XXX unwind and free previous fastpath allocations */ 14535 BLOGE(sc, "Failed to alloc %s\n", buf); 14536 return (1); 14537 } else { 14538 if (CHIP_IS_E2E3(sc)) { 14539 fp->status_block.e2_sb = 14540 (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr; 14541 } else { 14542 fp->status_block.e1x_sb = 14543 (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr; 14544 } 14545 } 14546 14547 /******************/ 14548 /* FP TX BD CHAIN */ 14549 /******************/ 14550 14551 snprintf(buf, sizeof(buf), "fp %d tx bd chain", i); 14552 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES), 14553 &fp->tx_dma, buf) != 0) { 14554 /* XXX unwind and free previous fastpath allocations */ 14555 BLOGE(sc, "Failed to alloc %s\n", buf); 14556 return (1); 14557 } else { 14558 fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr; 14559 } 14560 14561 /* link together the tx bd chain pages */ 14562 for (j = 1; j <= TX_BD_NUM_PAGES; j++) { 14563 /* index into the tx bd chain array to last entry per page */ 14564 struct eth_tx_next_bd *tx_next_bd = 14565 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd; 14566 /* point to the next page and wrap from last page */ 14567 busaddr = (fp->tx_dma.paddr + 14568 (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES))); 14569 tx_next_bd->addr_hi = htole32(U64_HI(busaddr)); 14570 tx_next_bd->addr_lo = htole32(U64_LO(busaddr)); 14571 } 14572 14573 /******************/ 14574 /* FP RX BD CHAIN */ 14575 /******************/ 14576 14577 snprintf(buf, sizeof(buf), "fp %d rx bd chain", i); 14578 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES), 14579 &fp->rx_dma, buf) != 0) { 14580 /* XXX unwind and free previous fastpath allocations */ 14581 BLOGE(sc, "Failed to alloc %s\n", buf); 14582 return (1); 14583 } else { 14584 fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr; 14585 } 14586 14587 /* link together the rx bd chain pages */ 14588 for (j = 1; j <= RX_BD_NUM_PAGES; j++) { 14589 /* index into the rx bd chain array to last entry per page */ 14590 struct eth_rx_bd *rx_bd = 14591 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2]; 14592 /* point to the next page and wrap from last page */ 14593 busaddr = (fp->rx_dma.paddr + 14594 (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES))); 14595 rx_bd->addr_hi = htole32(U64_HI(busaddr)); 14596 rx_bd->addr_lo = htole32(U64_LO(busaddr)); 14597 } 14598 14599 /*******************/ 14600 /* FP RX RCQ CHAIN */ 14601 /*******************/ 14602 14603 snprintf(buf, sizeof(buf), "fp %d rcq chain", i); 14604 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES), 14605 &fp->rcq_dma, buf) != 0) { 14606 /* XXX unwind and free previous fastpath allocations */ 14607 BLOGE(sc, "Failed to alloc %s\n", buf); 14608 return (1); 14609 } else { 14610 fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr; 14611 } 14612 14613 /* link together the rcq chain pages */ 14614 for (j = 1; j <= RCQ_NUM_PAGES; j++) { 14615 /* index into the rcq chain array to last entry per page */ 14616 struct eth_rx_cqe_next_page *rx_cqe_next = 14617 (struct eth_rx_cqe_next_page *) 14618 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1]; 14619 /* point to the next page and wrap from last page */ 14620 busaddr = (fp->rcq_dma.paddr + 14621 (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES))); 14622 rx_cqe_next->addr_hi = htole32(U64_HI(busaddr)); 14623 rx_cqe_next->addr_lo = htole32(U64_LO(busaddr)); 14624 } 14625 14626 /*******************/ 14627 /* FP RX SGE CHAIN */ 14628 /*******************/ 14629 14630 snprintf(buf, sizeof(buf), "fp %d sge chain", i); 14631 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES), 14632 &fp->rx_sge_dma, buf) != 0) { 14633 /* XXX unwind and free previous fastpath allocations */ 14634 BLOGE(sc, "Failed to alloc %s\n", buf); 14635 return (1); 14636 } else { 14637 fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr; 14638 } 14639 14640 /* link together the sge chain pages */ 14641 for (j = 1; j <= RX_SGE_NUM_PAGES; j++) { 14642 /* index into the rcq chain array to last entry per page */ 14643 struct eth_rx_sge *rx_sge = 14644 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2]; 14645 /* point to the next page and wrap from last page */ 14646 busaddr = (fp->rx_sge_dma.paddr + 14647 (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES))); 14648 rx_sge->addr_hi = htole32(U64_HI(busaddr)); 14649 rx_sge->addr_lo = htole32(U64_LO(busaddr)); 14650 } 14651 14652 /***********************/ 14653 /* FP TX MBUF DMA MAPS */ 14654 /***********************/ 14655 14656 /* set required sizes before mapping to conserve resources */ 14657 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 14658 max_size = BXE_TSO_MAX_SIZE; 14659 max_segments = BXE_TSO_MAX_SEGMENTS; 14660 max_seg_size = BXE_TSO_MAX_SEG_SIZE; 14661 } else { 14662 max_size = (MCLBYTES * BXE_MAX_SEGMENTS); 14663 max_segments = BXE_MAX_SEGMENTS; 14664 max_seg_size = MCLBYTES; 14665 } 14666 14667 /* create a dma tag for the tx mbufs */ 14668 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14669 1, /* alignment */ 14670 0, /* boundary limit */ 14671 BUS_SPACE_MAXADDR, /* restricted low */ 14672 BUS_SPACE_MAXADDR, /* restricted hi */ 14673 NULL, /* addr filter() */ 14674 NULL, /* addr filter() arg */ 14675 max_size, /* max map size */ 14676 max_segments, /* num discontinuous */ 14677 max_seg_size, /* max seg size */ 14678 0, /* flags */ 14679 NULL, /* lock() */ 14680 NULL, /* lock() arg */ 14681 &fp->tx_mbuf_tag); /* returned dma tag */ 14682 if (rc != 0) { 14683 /* XXX unwind and free previous fastpath allocations */ 14684 BLOGE(sc, "Failed to create dma tag for " 14685 "'fp %d tx mbufs' (%d)\n", i, rc); 14686 return (1); 14687 } 14688 14689 /* create dma maps for each of the tx mbuf clusters */ 14690 for (j = 0; j < TX_BD_TOTAL; j++) { 14691 if (bus_dmamap_create(fp->tx_mbuf_tag, 14692 BUS_DMA_NOWAIT, 14693 &fp->tx_mbuf_chain[j].m_map)) { 14694 /* XXX unwind and free previous fastpath allocations */ 14695 BLOGE(sc, "Failed to create dma map for " 14696 "'fp %d tx mbuf %d' (%d)\n", i, j, rc); 14697 return (1); 14698 } 14699 } 14700 14701 /***********************/ 14702 /* FP RX MBUF DMA MAPS */ 14703 /***********************/ 14704 14705 /* create a dma tag for the rx mbufs */ 14706 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14707 1, /* alignment */ 14708 0, /* boundary limit */ 14709 BUS_SPACE_MAXADDR, /* restricted low */ 14710 BUS_SPACE_MAXADDR, /* restricted hi */ 14711 NULL, /* addr filter() */ 14712 NULL, /* addr filter() arg */ 14713 MJUM9BYTES, /* max map size */ 14714 1, /* num discontinuous */ 14715 MJUM9BYTES, /* max seg size */ 14716 0, /* flags */ 14717 NULL, /* lock() */ 14718 NULL, /* lock() arg */ 14719 &fp->rx_mbuf_tag); /* returned dma tag */ 14720 if (rc != 0) { 14721 /* XXX unwind and free previous fastpath allocations */ 14722 BLOGE(sc, "Failed to create dma tag for " 14723 "'fp %d rx mbufs' (%d)\n", i, rc); 14724 return (1); 14725 } 14726 14727 /* create dma maps for each of the rx mbuf clusters */ 14728 for (j = 0; j < RX_BD_TOTAL; j++) { 14729 if (bus_dmamap_create(fp->rx_mbuf_tag, 14730 BUS_DMA_NOWAIT, 14731 &fp->rx_mbuf_chain[j].m_map)) { 14732 /* XXX unwind and free previous fastpath allocations */ 14733 BLOGE(sc, "Failed to create dma map for " 14734 "'fp %d rx mbuf %d' (%d)\n", i, j, rc); 14735 return (1); 14736 } 14737 } 14738 14739 /* create dma map for the spare rx mbuf cluster */ 14740 if (bus_dmamap_create(fp->rx_mbuf_tag, 14741 BUS_DMA_NOWAIT, 14742 &fp->rx_mbuf_spare_map)) { 14743 /* XXX unwind and free previous fastpath allocations */ 14744 BLOGE(sc, "Failed to create dma map for " 14745 "'fp %d spare rx mbuf' (%d)\n", i, rc); 14746 return (1); 14747 } 14748 14749 /***************************/ 14750 /* FP RX SGE MBUF DMA MAPS */ 14751 /***************************/ 14752 14753 /* create a dma tag for the rx sge mbufs */ 14754 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14755 1, /* alignment */ 14756 0, /* boundary limit */ 14757 BUS_SPACE_MAXADDR, /* restricted low */ 14758 BUS_SPACE_MAXADDR, /* restricted hi */ 14759 NULL, /* addr filter() */ 14760 NULL, /* addr filter() arg */ 14761 BCM_PAGE_SIZE, /* max map size */ 14762 1, /* num discontinuous */ 14763 BCM_PAGE_SIZE, /* max seg size */ 14764 0, /* flags */ 14765 NULL, /* lock() */ 14766 NULL, /* lock() arg */ 14767 &fp->rx_sge_mbuf_tag); /* returned dma tag */ 14768 if (rc != 0) { 14769 /* XXX unwind and free previous fastpath allocations */ 14770 BLOGE(sc, "Failed to create dma tag for " 14771 "'fp %d rx sge mbufs' (%d)\n", i, rc); 14772 return (1); 14773 } 14774 14775 /* create dma maps for the rx sge mbuf clusters */ 14776 for (j = 0; j < RX_SGE_TOTAL; j++) { 14777 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 14778 BUS_DMA_NOWAIT, 14779 &fp->rx_sge_mbuf_chain[j].m_map)) { 14780 /* XXX unwind and free previous fastpath allocations */ 14781 BLOGE(sc, "Failed to create dma map for " 14782 "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc); 14783 return (1); 14784 } 14785 } 14786 14787 /* create dma map for the spare rx sge mbuf cluster */ 14788 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 14789 BUS_DMA_NOWAIT, 14790 &fp->rx_sge_mbuf_spare_map)) { 14791 /* XXX unwind and free previous fastpath allocations */ 14792 BLOGE(sc, "Failed to create dma map for " 14793 "'fp %d spare rx sge mbuf' (%d)\n", i, rc); 14794 return (1); 14795 } 14796 14797 /***************************/ 14798 /* FP RX TPA MBUF DMA MAPS */ 14799 /***************************/ 14800 14801 /* create dma maps for the rx tpa mbuf clusters */ 14802 max_agg_queues = MAX_AGG_QS(sc); 14803 14804 for (j = 0; j < max_agg_queues; j++) { 14805 if (bus_dmamap_create(fp->rx_mbuf_tag, 14806 BUS_DMA_NOWAIT, 14807 &fp->rx_tpa_info[j].bd.m_map)) { 14808 /* XXX unwind and free previous fastpath allocations */ 14809 BLOGE(sc, "Failed to create dma map for " 14810 "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc); 14811 return (1); 14812 } 14813 } 14814 14815 /* create dma map for the spare rx tpa mbuf cluster */ 14816 if (bus_dmamap_create(fp->rx_mbuf_tag, 14817 BUS_DMA_NOWAIT, 14818 &fp->rx_tpa_info_mbuf_spare_map)) { 14819 /* XXX unwind and free previous fastpath allocations */ 14820 BLOGE(sc, "Failed to create dma map for " 14821 "'fp %d spare rx tpa mbuf' (%d)\n", i, rc); 14822 return (1); 14823 } 14824 14825 bxe_init_sge_ring_bit_mask(fp); 14826 } 14827 14828 return (0); 14829 } 14830 14831 static void 14832 bxe_free_hsi_mem(struct bxe_softc *sc) 14833 { 14834 struct bxe_fastpath *fp; 14835 int max_agg_queues; 14836 int i, j; 14837 14838 if (sc->parent_dma_tag == NULL) { 14839 return; /* assume nothing was allocated */ 14840 } 14841 14842 for (i = 0; i < sc->num_queues; i++) { 14843 fp = &sc->fp[i]; 14844 14845 /*******************/ 14846 /* FP STATUS BLOCK */ 14847 /*******************/ 14848 14849 bxe_dma_free(sc, &fp->sb_dma); 14850 memset(&fp->status_block, 0, sizeof(fp->status_block)); 14851 14852 /******************/ 14853 /* FP TX BD CHAIN */ 14854 /******************/ 14855 14856 bxe_dma_free(sc, &fp->tx_dma); 14857 fp->tx_chain = NULL; 14858 14859 /******************/ 14860 /* FP RX BD CHAIN */ 14861 /******************/ 14862 14863 bxe_dma_free(sc, &fp->rx_dma); 14864 fp->rx_chain = NULL; 14865 14866 /*******************/ 14867 /* FP RX RCQ CHAIN */ 14868 /*******************/ 14869 14870 bxe_dma_free(sc, &fp->rcq_dma); 14871 fp->rcq_chain = NULL; 14872 14873 /*******************/ 14874 /* FP RX SGE CHAIN */ 14875 /*******************/ 14876 14877 bxe_dma_free(sc, &fp->rx_sge_dma); 14878 fp->rx_sge_chain = NULL; 14879 14880 /***********************/ 14881 /* FP TX MBUF DMA MAPS */ 14882 /***********************/ 14883 14884 if (fp->tx_mbuf_tag != NULL) { 14885 for (j = 0; j < TX_BD_TOTAL; j++) { 14886 if (fp->tx_mbuf_chain[j].m_map != NULL) { 14887 bus_dmamap_unload(fp->tx_mbuf_tag, 14888 fp->tx_mbuf_chain[j].m_map); 14889 bus_dmamap_destroy(fp->tx_mbuf_tag, 14890 fp->tx_mbuf_chain[j].m_map); 14891 } 14892 } 14893 14894 bus_dma_tag_destroy(fp->tx_mbuf_tag); 14895 fp->tx_mbuf_tag = NULL; 14896 } 14897 14898 /***********************/ 14899 /* FP RX MBUF DMA MAPS */ 14900 /***********************/ 14901 14902 if (fp->rx_mbuf_tag != NULL) { 14903 for (j = 0; j < RX_BD_TOTAL; j++) { 14904 if (fp->rx_mbuf_chain[j].m_map != NULL) { 14905 bus_dmamap_unload(fp->rx_mbuf_tag, 14906 fp->rx_mbuf_chain[j].m_map); 14907 bus_dmamap_destroy(fp->rx_mbuf_tag, 14908 fp->rx_mbuf_chain[j].m_map); 14909 } 14910 } 14911 14912 if (fp->rx_mbuf_spare_map != NULL) { 14913 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 14914 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 14915 } 14916 14917 /***************************/ 14918 /* FP RX TPA MBUF DMA MAPS */ 14919 /***************************/ 14920 14921 max_agg_queues = MAX_AGG_QS(sc); 14922 14923 for (j = 0; j < max_agg_queues; j++) { 14924 if (fp->rx_tpa_info[j].bd.m_map != NULL) { 14925 bus_dmamap_unload(fp->rx_mbuf_tag, 14926 fp->rx_tpa_info[j].bd.m_map); 14927 bus_dmamap_destroy(fp->rx_mbuf_tag, 14928 fp->rx_tpa_info[j].bd.m_map); 14929 } 14930 } 14931 14932 if (fp->rx_tpa_info_mbuf_spare_map != NULL) { 14933 bus_dmamap_unload(fp->rx_mbuf_tag, 14934 fp->rx_tpa_info_mbuf_spare_map); 14935 bus_dmamap_destroy(fp->rx_mbuf_tag, 14936 fp->rx_tpa_info_mbuf_spare_map); 14937 } 14938 14939 bus_dma_tag_destroy(fp->rx_mbuf_tag); 14940 fp->rx_mbuf_tag = NULL; 14941 } 14942 14943 /***************************/ 14944 /* FP RX SGE MBUF DMA MAPS */ 14945 /***************************/ 14946 14947 if (fp->rx_sge_mbuf_tag != NULL) { 14948 for (j = 0; j < RX_SGE_TOTAL; j++) { 14949 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) { 14950 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 14951 fp->rx_sge_mbuf_chain[j].m_map); 14952 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 14953 fp->rx_sge_mbuf_chain[j].m_map); 14954 } 14955 } 14956 14957 if (fp->rx_sge_mbuf_spare_map != NULL) { 14958 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 14959 fp->rx_sge_mbuf_spare_map); 14960 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 14961 fp->rx_sge_mbuf_spare_map); 14962 } 14963 14964 bus_dma_tag_destroy(fp->rx_sge_mbuf_tag); 14965 fp->rx_sge_mbuf_tag = NULL; 14966 } 14967 } 14968 14969 /***************************/ 14970 /* FW DECOMPRESSION BUFFER */ 14971 /***************************/ 14972 14973 bxe_dma_free(sc, &sc->gz_buf_dma); 14974 sc->gz_buf = NULL; 14975 free(sc->gz_strm, M_DEVBUF); 14976 sc->gz_strm = NULL; 14977 14978 /*******************/ 14979 /* SLOW PATH QUEUE */ 14980 /*******************/ 14981 14982 bxe_dma_free(sc, &sc->spq_dma); 14983 sc->spq = NULL; 14984 14985 /*************/ 14986 /* SLOW PATH */ 14987 /*************/ 14988 14989 bxe_dma_free(sc, &sc->sp_dma); 14990 sc->sp = NULL; 14991 14992 /***************/ 14993 /* EVENT QUEUE */ 14994 /***************/ 14995 14996 bxe_dma_free(sc, &sc->eq_dma); 14997 sc->eq = NULL; 14998 14999 /************************/ 15000 /* DEFAULT STATUS BLOCK */ 15001 /************************/ 15002 15003 bxe_dma_free(sc, &sc->def_sb_dma); 15004 sc->def_sb = NULL; 15005 15006 bus_dma_tag_destroy(sc->parent_dma_tag); 15007 sc->parent_dma_tag = NULL; 15008 } 15009 15010 /* 15011 * Previous driver DMAE transaction may have occurred when pre-boot stage 15012 * ended and boot began. This would invalidate the addresses of the 15013 * transaction, resulting in was-error bit set in the PCI causing all 15014 * hw-to-host PCIe transactions to timeout. If this happened we want to clear 15015 * the interrupt which detected this from the pglueb and the was-done bit 15016 */ 15017 static void 15018 bxe_prev_interrupted_dmae(struct bxe_softc *sc) 15019 { 15020 uint32_t val; 15021 15022 if (!CHIP_IS_E1x(sc)) { 15023 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS); 15024 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { 15025 BLOGD(sc, DBG_LOAD, 15026 "Clearing 'was-error' bit that was set in pglueb"); 15027 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc)); 15028 } 15029 } 15030 } 15031 15032 static int 15033 bxe_prev_mcp_done(struct bxe_softc *sc) 15034 { 15035 uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 15036 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 15037 if (!rc) { 15038 BLOGE(sc, "MCP response failure, aborting\n"); 15039 return (-1); 15040 } 15041 15042 return (0); 15043 } 15044 15045 static struct bxe_prev_list_node * 15046 bxe_prev_path_get_entry(struct bxe_softc *sc) 15047 { 15048 struct bxe_prev_list_node *tmp; 15049 15050 LIST_FOREACH(tmp, &bxe_prev_list, node) { 15051 if ((sc->pcie_bus == tmp->bus) && 15052 (sc->pcie_device == tmp->slot) && 15053 (SC_PATH(sc) == tmp->path)) { 15054 return (tmp); 15055 } 15056 } 15057 15058 return (NULL); 15059 } 15060 15061 static uint8_t 15062 bxe_prev_is_path_marked(struct bxe_softc *sc) 15063 { 15064 struct bxe_prev_list_node *tmp; 15065 int rc = FALSE; 15066 15067 mtx_lock(&bxe_prev_mtx); 15068 15069 tmp = bxe_prev_path_get_entry(sc); 15070 if (tmp) { 15071 if (tmp->aer) { 15072 BLOGD(sc, DBG_LOAD, 15073 "Path %d/%d/%d was marked by AER\n", 15074 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15075 } else { 15076 rc = TRUE; 15077 BLOGD(sc, DBG_LOAD, 15078 "Path %d/%d/%d was already cleaned from previous drivers\n", 15079 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15080 } 15081 } 15082 15083 mtx_unlock(&bxe_prev_mtx); 15084 15085 return (rc); 15086 } 15087 15088 static int 15089 bxe_prev_mark_path(struct bxe_softc *sc, 15090 uint8_t after_undi) 15091 { 15092 struct bxe_prev_list_node *tmp; 15093 15094 mtx_lock(&bxe_prev_mtx); 15095 15096 /* Check whether the entry for this path already exists */ 15097 tmp = bxe_prev_path_get_entry(sc); 15098 if (tmp) { 15099 if (!tmp->aer) { 15100 BLOGD(sc, DBG_LOAD, 15101 "Re-marking AER in path %d/%d/%d\n", 15102 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15103 } else { 15104 BLOGD(sc, DBG_LOAD, 15105 "Removing AER indication from path %d/%d/%d\n", 15106 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15107 tmp->aer = 0; 15108 } 15109 15110 mtx_unlock(&bxe_prev_mtx); 15111 return (0); 15112 } 15113 15114 mtx_unlock(&bxe_prev_mtx); 15115 15116 /* Create an entry for this path and add it */ 15117 tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF, 15118 (M_NOWAIT | M_ZERO)); 15119 if (!tmp) { 15120 BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n"); 15121 return (-1); 15122 } 15123 15124 tmp->bus = sc->pcie_bus; 15125 tmp->slot = sc->pcie_device; 15126 tmp->path = SC_PATH(sc); 15127 tmp->aer = 0; 15128 tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0; 15129 15130 mtx_lock(&bxe_prev_mtx); 15131 15132 BLOGD(sc, DBG_LOAD, 15133 "Marked path %d/%d/%d - finished previous unload\n", 15134 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15135 LIST_INSERT_HEAD(&bxe_prev_list, tmp, node); 15136 15137 mtx_unlock(&bxe_prev_mtx); 15138 15139 return (0); 15140 } 15141 15142 static int 15143 bxe_do_flr(struct bxe_softc *sc) 15144 { 15145 int i; 15146 15147 /* only E2 and onwards support FLR */ 15148 if (CHIP_IS_E1x(sc)) { 15149 BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n"); 15150 return (-1); 15151 } 15152 15153 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 15154 if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 15155 BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n", 15156 sc->devinfo.bc_ver); 15157 return (-1); 15158 } 15159 15160 /* Wait for Transaction Pending bit clean */ 15161 for (i = 0; i < 4; i++) { 15162 if (i) { 15163 DELAY(((1 << (i - 1)) * 100) * 1000); 15164 } 15165 15166 if (!bxe_is_pcie_pending(sc)) { 15167 goto clear; 15168 } 15169 } 15170 15171 BLOGE(sc, "PCIE transaction is not cleared, " 15172 "proceeding with reset anyway\n"); 15173 15174 clear: 15175 15176 BLOGD(sc, DBG_LOAD, "Initiating FLR\n"); 15177 bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0); 15178 15179 return (0); 15180 } 15181 15182 struct bxe_mac_vals { 15183 uint32_t xmac_addr; 15184 uint32_t xmac_val; 15185 uint32_t emac_addr; 15186 uint32_t emac_val; 15187 uint32_t umac_addr; 15188 uint32_t umac_val; 15189 uint32_t bmac_addr; 15190 uint32_t bmac_val[2]; 15191 }; 15192 15193 static void 15194 bxe_prev_unload_close_mac(struct bxe_softc *sc, 15195 struct bxe_mac_vals *vals) 15196 { 15197 uint32_t val, base_addr, offset, mask, reset_reg; 15198 uint8_t mac_stopped = FALSE; 15199 uint8_t port = SC_PORT(sc); 15200 uint32_t wb_data[2]; 15201 15202 /* reset addresses as they also mark which values were changed */ 15203 vals->bmac_addr = 0; 15204 vals->umac_addr = 0; 15205 vals->xmac_addr = 0; 15206 vals->emac_addr = 0; 15207 15208 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2); 15209 15210 if (!CHIP_IS_E3(sc)) { 15211 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 15212 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 15213 if ((mask & reset_reg) && val) { 15214 BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n"); 15215 base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM 15216 : NIG_REG_INGRESS_BMAC0_MEM; 15217 offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL 15218 : BIGMAC_REGISTER_BMAC_CONTROL; 15219 15220 /* 15221 * use rd/wr since we cannot use dmae. This is safe 15222 * since MCP won't access the bus due to the request 15223 * to unload, and no function on the path can be 15224 * loaded at this time. 15225 */ 15226 wb_data[0] = REG_RD(sc, base_addr + offset); 15227 wb_data[1] = REG_RD(sc, base_addr + offset + 0x4); 15228 vals->bmac_addr = base_addr + offset; 15229 vals->bmac_val[0] = wb_data[0]; 15230 vals->bmac_val[1] = wb_data[1]; 15231 wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE; 15232 REG_WR(sc, vals->bmac_addr, wb_data[0]); 15233 REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]); 15234 } 15235 15236 BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n"); 15237 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4; 15238 vals->emac_val = REG_RD(sc, vals->emac_addr); 15239 REG_WR(sc, vals->emac_addr, 0); 15240 mac_stopped = TRUE; 15241 } else { 15242 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 15243 BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n"); 15244 base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 15245 val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI); 15246 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1)); 15247 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1)); 15248 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 15249 vals->xmac_val = REG_RD(sc, vals->xmac_addr); 15250 REG_WR(sc, vals->xmac_addr, 0); 15251 mac_stopped = TRUE; 15252 } 15253 15254 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 15255 if (mask & reset_reg) { 15256 BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n"); 15257 base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 15258 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; 15259 vals->umac_val = REG_RD(sc, vals->umac_addr); 15260 REG_WR(sc, vals->umac_addr, 0); 15261 mac_stopped = TRUE; 15262 } 15263 } 15264 15265 if (mac_stopped) { 15266 DELAY(20000); 15267 } 15268 } 15269 15270 #define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 15271 #define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff) 15272 #define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 15273 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 15274 15275 static void 15276 bxe_prev_unload_undi_inc(struct bxe_softc *sc, 15277 uint8_t port, 15278 uint8_t inc) 15279 { 15280 uint16_t rcq, bd; 15281 uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port)); 15282 15283 rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc; 15284 bd = BXE_PREV_UNDI_BD(tmp_reg) + inc; 15285 15286 tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd); 15287 REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg); 15288 15289 BLOGD(sc, DBG_LOAD, 15290 "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n", 15291 port, bd, rcq); 15292 } 15293 15294 static int 15295 bxe_prev_unload_common(struct bxe_softc *sc) 15296 { 15297 uint32_t reset_reg, tmp_reg = 0, rc; 15298 uint8_t prev_undi = FALSE; 15299 struct bxe_mac_vals mac_vals; 15300 uint32_t timer_count = 1000; 15301 uint32_t prev_brb; 15302 15303 /* 15304 * It is possible a previous function received 'common' answer, 15305 * but hasn't loaded yet, therefore creating a scenario of 15306 * multiple functions receiving 'common' on the same path. 15307 */ 15308 BLOGD(sc, DBG_LOAD, "Common unload Flow\n"); 15309 15310 memset(&mac_vals, 0, sizeof(mac_vals)); 15311 15312 if (bxe_prev_is_path_marked(sc)) { 15313 return (bxe_prev_mcp_done(sc)); 15314 } 15315 15316 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1); 15317 15318 /* Reset should be performed after BRB is emptied */ 15319 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 15320 /* Close the MAC Rx to prevent BRB from filling up */ 15321 bxe_prev_unload_close_mac(sc, &mac_vals); 15322 15323 /* close LLH filters towards the BRB */ 15324 elink_set_rx_filter(&sc->link_params, 0); 15325 15326 /* 15327 * Check if the UNDI driver was previously loaded. 15328 * UNDI driver initializes CID offset for normal bell to 0x7 15329 */ 15330 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { 15331 tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST); 15332 if (tmp_reg == 0x7) { 15333 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n"); 15334 prev_undi = TRUE; 15335 /* clear the UNDI indication */ 15336 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0); 15337 /* clear possible idle check errors */ 15338 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0); 15339 } 15340 } 15341 15342 /* wait until BRB is empty */ 15343 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15344 while (timer_count) { 15345 prev_brb = tmp_reg; 15346 15347 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15348 if (!tmp_reg) { 15349 break; 15350 } 15351 15352 BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg); 15353 15354 /* reset timer as long as BRB actually gets emptied */ 15355 if (prev_brb > tmp_reg) { 15356 timer_count = 1000; 15357 } else { 15358 timer_count--; 15359 } 15360 15361 /* If UNDI resides in memory, manually increment it */ 15362 if (prev_undi) { 15363 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1); 15364 } 15365 15366 DELAY(10); 15367 } 15368 15369 if (!timer_count) { 15370 BLOGE(sc, "Failed to empty BRB\n"); 15371 } 15372 } 15373 15374 /* No packets are in the pipeline, path is ready for reset */ 15375 bxe_reset_common(sc); 15376 15377 if (mac_vals.xmac_addr) { 15378 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val); 15379 } 15380 if (mac_vals.umac_addr) { 15381 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val); 15382 } 15383 if (mac_vals.emac_addr) { 15384 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val); 15385 } 15386 if (mac_vals.bmac_addr) { 15387 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 15388 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 15389 } 15390 15391 rc = bxe_prev_mark_path(sc, prev_undi); 15392 if (rc) { 15393 bxe_prev_mcp_done(sc); 15394 return (rc); 15395 } 15396 15397 return (bxe_prev_mcp_done(sc)); 15398 } 15399 15400 static int 15401 bxe_prev_unload_uncommon(struct bxe_softc *sc) 15402 { 15403 int rc; 15404 15405 BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n"); 15406 15407 /* Test if previous unload process was already finished for this path */ 15408 if (bxe_prev_is_path_marked(sc)) { 15409 return (bxe_prev_mcp_done(sc)); 15410 } 15411 15412 BLOGD(sc, DBG_LOAD, "Path is unmarked\n"); 15413 15414 /* 15415 * If function has FLR capabilities, and existing FW version matches 15416 * the one required, then FLR will be sufficient to clean any residue 15417 * left by previous driver 15418 */ 15419 rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION); 15420 if (!rc) { 15421 /* fw version is good */ 15422 BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n"); 15423 rc = bxe_do_flr(sc); 15424 } 15425 15426 if (!rc) { 15427 /* FLR was performed */ 15428 BLOGD(sc, DBG_LOAD, "FLR successful\n"); 15429 return (0); 15430 } 15431 15432 BLOGD(sc, DBG_LOAD, "Could not FLR\n"); 15433 15434 /* Close the MCP request, return failure*/ 15435 rc = bxe_prev_mcp_done(sc); 15436 if (!rc) { 15437 rc = BXE_PREV_WAIT_NEEDED; 15438 } 15439 15440 return (rc); 15441 } 15442 15443 static int 15444 bxe_prev_unload(struct bxe_softc *sc) 15445 { 15446 int time_counter = 10; 15447 uint32_t fw, hw_lock_reg, hw_lock_val; 15448 uint32_t rc = 0; 15449 15450 /* 15451 * Clear HW from errors which may have resulted from an interrupted 15452 * DMAE transaction. 15453 */ 15454 bxe_prev_interrupted_dmae(sc); 15455 15456 /* Release previously held locks */ 15457 hw_lock_reg = 15458 (SC_FUNC(sc) <= 5) ? 15459 (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) : 15460 (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8); 15461 15462 hw_lock_val = (REG_RD(sc, hw_lock_reg)); 15463 if (hw_lock_val) { 15464 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 15465 BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n"); 15466 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 15467 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc))); 15468 } 15469 BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n"); 15470 REG_WR(sc, hw_lock_reg, 0xffffffff); 15471 } else { 15472 BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n"); 15473 } 15474 15475 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) { 15476 BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n"); 15477 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0); 15478 } 15479 15480 do { 15481 /* Lock MCP using an unload request */ 15482 fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 15483 if (!fw) { 15484 BLOGE(sc, "MCP response failure, aborting\n"); 15485 rc = -1; 15486 break; 15487 } 15488 15489 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) { 15490 rc = bxe_prev_unload_common(sc); 15491 break; 15492 } 15493 15494 /* non-common reply from MCP night require looping */ 15495 rc = bxe_prev_unload_uncommon(sc); 15496 if (rc != BXE_PREV_WAIT_NEEDED) { 15497 break; 15498 } 15499 15500 DELAY(20000); 15501 } while (--time_counter); 15502 15503 if (!time_counter || rc) { 15504 BLOGE(sc, "Failed to unload previous driver!" 15505 " time_counter %d rc %d\n", time_counter, rc); 15506 rc = -1; 15507 } 15508 15509 return (rc); 15510 } 15511 15512 void 15513 bxe_dcbx_set_state(struct bxe_softc *sc, 15514 uint8_t dcb_on, 15515 uint32_t dcbx_enabled) 15516 { 15517 if (!CHIP_IS_E1x(sc)) { 15518 sc->dcb_state = dcb_on; 15519 sc->dcbx_enabled = dcbx_enabled; 15520 } else { 15521 sc->dcb_state = FALSE; 15522 sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID; 15523 } 15524 BLOGD(sc, DBG_LOAD, 15525 "DCB state [%s:%s]\n", 15526 dcb_on ? "ON" : "OFF", 15527 (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" : 15528 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" : 15529 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ? 15530 "on-chip with negotiation" : "invalid"); 15531 } 15532 15533 /* must be called after sriov-enable */ 15534 static int 15535 bxe_set_qm_cid_count(struct bxe_softc *sc) 15536 { 15537 int cid_count = BXE_L2_MAX_CID(sc); 15538 15539 if (IS_SRIOV(sc)) { 15540 cid_count += BXE_VF_CIDS; 15541 } 15542 15543 if (CNIC_SUPPORT(sc)) { 15544 cid_count += CNIC_CID_MAX; 15545 } 15546 15547 return (roundup(cid_count, QM_CID_ROUND)); 15548 } 15549 15550 static void 15551 bxe_init_multi_cos(struct bxe_softc *sc) 15552 { 15553 int pri, cos; 15554 15555 uint32_t pri_map = 0; /* XXX change to user config */ 15556 15557 for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) { 15558 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4)); 15559 if (cos < sc->max_cos) { 15560 sc->prio_to_cos[pri] = cos; 15561 } else { 15562 BLOGW(sc, "Invalid COS %d for priority %d " 15563 "(max COS is %d), setting to 0\n", 15564 cos, pri, (sc->max_cos - 1)); 15565 sc->prio_to_cos[pri] = 0; 15566 } 15567 } 15568 } 15569 15570 static int 15571 bxe_sysctl_state(SYSCTL_HANDLER_ARGS) 15572 { 15573 struct bxe_softc *sc; 15574 int error, result; 15575 15576 result = 0; 15577 error = sysctl_handle_int(oidp, &result, 0, req); 15578 15579 if (error || !req->newptr) { 15580 return (error); 15581 } 15582 15583 if (result == 1) { 15584 uint32_t temp; 15585 sc = (struct bxe_softc *)arg1; 15586 15587 BLOGI(sc, "... dumping driver state ...\n"); 15588 temp = SHMEM2_RD(sc, temperature_in_half_celsius); 15589 BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2)); 15590 } 15591 15592 return (error); 15593 } 15594 15595 static int 15596 bxe_sysctl_trigger_grcdump(SYSCTL_HANDLER_ARGS) 15597 { 15598 struct bxe_softc *sc; 15599 int error, result; 15600 15601 result = 0; 15602 error = sysctl_handle_int(oidp, &result, 0, req); 15603 15604 if (error || !req->newptr) { 15605 return (error); 15606 } 15607 15608 if (result == 1) { 15609 sc = (struct bxe_softc *)arg1; 15610 15611 BLOGI(sc, "... grcdump start ...\n"); 15612 bxe_grc_dump(sc); 15613 BLOGI(sc, "... grcdump done ...\n"); 15614 } 15615 15616 return (error); 15617 } 15618 15619 static int 15620 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS) 15621 { 15622 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15623 uint32_t *eth_stats = (uint32_t *)&sc->eth_stats; 15624 uint32_t *offset; 15625 uint64_t value = 0; 15626 int index = (int)arg2; 15627 15628 if (index >= BXE_NUM_ETH_STATS) { 15629 BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index); 15630 return (-1); 15631 } 15632 15633 offset = (eth_stats + bxe_eth_stats_arr[index].offset); 15634 15635 switch (bxe_eth_stats_arr[index].size) { 15636 case 4: 15637 value = (uint64_t)*offset; 15638 break; 15639 case 8: 15640 value = HILO_U64(*offset, *(offset + 1)); 15641 break; 15642 default: 15643 BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n", 15644 index, bxe_eth_stats_arr[index].size); 15645 return (-1); 15646 } 15647 15648 return (sysctl_handle_64(oidp, &value, 0, req)); 15649 } 15650 15651 static int 15652 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS) 15653 { 15654 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15655 uint32_t *eth_stats; 15656 uint32_t *offset; 15657 uint64_t value = 0; 15658 uint32_t q_stat = (uint32_t)arg2; 15659 uint32_t fp_index = ((q_stat >> 16) & 0xffff); 15660 uint32_t index = (q_stat & 0xffff); 15661 15662 eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats; 15663 15664 if (index >= BXE_NUM_ETH_Q_STATS) { 15665 BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index); 15666 return (-1); 15667 } 15668 15669 offset = (eth_stats + bxe_eth_q_stats_arr[index].offset); 15670 15671 switch (bxe_eth_q_stats_arr[index].size) { 15672 case 4: 15673 value = (uint64_t)*offset; 15674 break; 15675 case 8: 15676 value = HILO_U64(*offset, *(offset + 1)); 15677 break; 15678 default: 15679 BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n", 15680 index, bxe_eth_q_stats_arr[index].size); 15681 return (-1); 15682 } 15683 15684 return (sysctl_handle_64(oidp, &value, 0, req)); 15685 } 15686 15687 static void 15688 bxe_add_sysctls(struct bxe_softc *sc) 15689 { 15690 struct sysctl_ctx_list *ctx; 15691 struct sysctl_oid_list *children; 15692 struct sysctl_oid *queue_top, *queue; 15693 struct sysctl_oid_list *queue_top_children, *queue_children; 15694 char queue_num_buf[32]; 15695 uint32_t q_stat; 15696 int i, j; 15697 15698 ctx = device_get_sysctl_ctx(sc->dev); 15699 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 15700 15701 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version", 15702 CTLFLAG_RD, BXE_DRIVER_VERSION, 0, 15703 "version"); 15704 15705 snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d", 15706 BCM_5710_FW_MAJOR_VERSION, 15707 BCM_5710_FW_MINOR_VERSION, 15708 BCM_5710_FW_REVISION_VERSION, 15709 BCM_5710_FW_ENGINEERING_VERSION); 15710 15711 snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s", 15712 ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" : 15713 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" : 15714 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" : 15715 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" : 15716 "Unknown")); 15717 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics", 15718 CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0, 15719 "multifunction vnics per port"); 15720 15721 snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d", 15722 ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" : 15723 (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" : 15724 (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" : 15725 "???GT/s"), 15726 sc->devinfo.pcie_link_width); 15727 15728 sc->debug = bxe_debug; 15729 15730 #if __FreeBSD_version >= 900000 15731 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 15732 CTLFLAG_RD, sc->devinfo.bc_ver_str, 0, 15733 "bootcode version"); 15734 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 15735 CTLFLAG_RD, sc->fw_ver_str, 0, 15736 "firmware version"); 15737 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 15738 CTLFLAG_RD, sc->mf_mode_str, 0, 15739 "multifunction mode"); 15740 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 15741 CTLFLAG_RD, sc->mac_addr_str, 0, 15742 "mac address"); 15743 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 15744 CTLFLAG_RD, sc->pci_link_str, 0, 15745 "pci link status"); 15746 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug", 15747 CTLFLAG_RW, &sc->debug, 15748 "debug logging mode"); 15749 #else 15750 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 15751 CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0, 15752 "bootcode version"); 15753 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 15754 CTLFLAG_RD, &sc->fw_ver_str, 0, 15755 "firmware version"); 15756 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 15757 CTLFLAG_RD, &sc->mf_mode_str, 0, 15758 "multifunction mode"); 15759 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 15760 CTLFLAG_RD, &sc->mac_addr_str, 0, 15761 "mac address"); 15762 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 15763 CTLFLAG_RD, &sc->pci_link_str, 0, 15764 "pci link status"); 15765 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug", 15766 CTLFLAG_RW, &sc->debug, 0, 15767 "debug logging mode"); 15768 #endif /* #if __FreeBSD_version >= 900000 */ 15769 15770 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "trigger_grcdump", 15771 CTLTYPE_UINT | CTLFLAG_RW, sc, 0, 15772 bxe_sysctl_trigger_grcdump, "IU", 15773 "set by driver when a grcdump is needed"); 15774 15775 sc->grcdump_done = 0; 15776 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done", 15777 CTLFLAG_RW, &sc->grcdump_done, 0, 15778 "set by driver when grcdump is done"); 15779 15780 sc->rx_budget = bxe_rx_budget; 15781 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget", 15782 CTLFLAG_RW, &sc->rx_budget, 0, 15783 "rx processing budget"); 15784 15785 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state", 15786 CTLTYPE_UINT | CTLFLAG_RW, sc, 0, 15787 bxe_sysctl_state, "IU", "dump driver state"); 15788 15789 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 15790 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 15791 bxe_eth_stats_arr[i].string, 15792 CTLTYPE_U64 | CTLFLAG_RD, sc, i, 15793 bxe_sysctl_eth_stat, "LU", 15794 bxe_eth_stats_arr[i].string); 15795 } 15796 15797 /* add a new parent node for all queues "dev.bxe.#.queue" */ 15798 queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue", 15799 CTLFLAG_RD, NULL, "queue"); 15800 queue_top_children = SYSCTL_CHILDREN(queue_top); 15801 15802 for (i = 0; i < sc->num_queues; i++) { 15803 /* add a new parent node for a single queue "dev.bxe.#.queue.#" */ 15804 snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i); 15805 queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO, 15806 queue_num_buf, CTLFLAG_RD, NULL, 15807 "single queue"); 15808 queue_children = SYSCTL_CHILDREN(queue); 15809 15810 for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) { 15811 q_stat = ((i << 16) | j); 15812 SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO, 15813 bxe_eth_q_stats_arr[j].string, 15814 CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat, 15815 bxe_sysctl_eth_q_stat, "LU", 15816 bxe_eth_q_stats_arr[j].string); 15817 } 15818 } 15819 } 15820 15821 static int 15822 bxe_alloc_buf_rings(struct bxe_softc *sc) 15823 { 15824 #if __FreeBSD_version >= 800000 15825 15826 int i; 15827 struct bxe_fastpath *fp; 15828 15829 for (i = 0; i < sc->num_queues; i++) { 15830 15831 fp = &sc->fp[i]; 15832 15833 fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF, 15834 M_NOWAIT, &fp->tx_mtx); 15835 if (fp->tx_br == NULL) 15836 return (-1); 15837 } 15838 #endif 15839 return (0); 15840 } 15841 15842 static void 15843 bxe_free_buf_rings(struct bxe_softc *sc) 15844 { 15845 #if __FreeBSD_version >= 800000 15846 15847 int i; 15848 struct bxe_fastpath *fp; 15849 15850 for (i = 0; i < sc->num_queues; i++) { 15851 15852 fp = &sc->fp[i]; 15853 15854 if (fp->tx_br) { 15855 buf_ring_free(fp->tx_br, M_DEVBUF); 15856 fp->tx_br = NULL; 15857 } 15858 } 15859 15860 #endif 15861 } 15862 15863 static void 15864 bxe_init_fp_mutexs(struct bxe_softc *sc) 15865 { 15866 int i; 15867 struct bxe_fastpath *fp; 15868 15869 for (i = 0; i < sc->num_queues; i++) { 15870 15871 fp = &sc->fp[i]; 15872 15873 snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name), 15874 "bxe%d_fp%d_tx_lock", sc->unit, i); 15875 mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF); 15876 15877 snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name), 15878 "bxe%d_fp%d_rx_lock", sc->unit, i); 15879 mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF); 15880 } 15881 } 15882 15883 static void 15884 bxe_destroy_fp_mutexs(struct bxe_softc *sc) 15885 { 15886 int i; 15887 struct bxe_fastpath *fp; 15888 15889 for (i = 0; i < sc->num_queues; i++) { 15890 15891 fp = &sc->fp[i]; 15892 15893 if (mtx_initialized(&fp->tx_mtx)) { 15894 mtx_destroy(&fp->tx_mtx); 15895 } 15896 15897 if (mtx_initialized(&fp->rx_mtx)) { 15898 mtx_destroy(&fp->rx_mtx); 15899 } 15900 } 15901 } 15902 15903 15904 /* 15905 * Device attach function. 15906 * 15907 * Allocates device resources, performs secondary chip identification, and 15908 * initializes driver instance variables. This function is called from driver 15909 * load after a successful probe. 15910 * 15911 * Returns: 15912 * 0 = Success, >0 = Failure 15913 */ 15914 static int 15915 bxe_attach(device_t dev) 15916 { 15917 struct bxe_softc *sc; 15918 15919 sc = device_get_softc(dev); 15920 15921 BLOGD(sc, DBG_LOAD, "Starting attach...\n"); 15922 15923 sc->state = BXE_STATE_CLOSED; 15924 15925 sc->dev = dev; 15926 sc->unit = device_get_unit(dev); 15927 15928 BLOGD(sc, DBG_LOAD, "softc = %p\n", sc); 15929 15930 sc->pcie_bus = pci_get_bus(dev); 15931 sc->pcie_device = pci_get_slot(dev); 15932 sc->pcie_func = pci_get_function(dev); 15933 15934 /* enable bus master capability */ 15935 pci_enable_busmaster(dev); 15936 15937 /* get the BARs */ 15938 if (bxe_allocate_bars(sc) != 0) { 15939 return (ENXIO); 15940 } 15941 15942 /* initialize the mutexes */ 15943 bxe_init_mutexes(sc); 15944 15945 /* prepare the periodic callout */ 15946 callout_init(&sc->periodic_callout, 0); 15947 15948 /* prepare the chip taskqueue */ 15949 sc->chip_tq_flags = CHIP_TQ_NONE; 15950 snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name), 15951 "bxe%d_chip_tq", sc->unit); 15952 TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc); 15953 sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT, 15954 taskqueue_thread_enqueue, 15955 &sc->chip_tq); 15956 taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */ 15957 "%s", sc->chip_tq_name); 15958 15959 /* get device info and set params */ 15960 if (bxe_get_device_info(sc) != 0) { 15961 BLOGE(sc, "getting device info\n"); 15962 bxe_deallocate_bars(sc); 15963 pci_disable_busmaster(dev); 15964 return (ENXIO); 15965 } 15966 15967 /* get final misc params */ 15968 bxe_get_params(sc); 15969 15970 /* set the default MTU (changed via ifconfig) */ 15971 sc->mtu = ETHERMTU; 15972 15973 bxe_set_modes_bitmap(sc); 15974 15975 /* XXX 15976 * If in AFEX mode and the function is configured for FCoE 15977 * then bail... no L2 allowed. 15978 */ 15979 15980 /* get phy settings from shmem and 'and' against admin settings */ 15981 bxe_get_phy_info(sc); 15982 15983 /* initialize the FreeBSD ifnet interface */ 15984 if (bxe_init_ifnet(sc) != 0) { 15985 bxe_release_mutexes(sc); 15986 bxe_deallocate_bars(sc); 15987 pci_disable_busmaster(dev); 15988 return (ENXIO); 15989 } 15990 15991 if (bxe_add_cdev(sc) != 0) { 15992 if (sc->ifp != NULL) { 15993 ether_ifdetach(sc->ifp); 15994 } 15995 ifmedia_removeall(&sc->ifmedia); 15996 bxe_release_mutexes(sc); 15997 bxe_deallocate_bars(sc); 15998 pci_disable_busmaster(dev); 15999 return (ENXIO); 16000 } 16001 16002 /* allocate device interrupts */ 16003 if (bxe_interrupt_alloc(sc) != 0) { 16004 bxe_del_cdev(sc); 16005 if (sc->ifp != NULL) { 16006 ether_ifdetach(sc->ifp); 16007 } 16008 ifmedia_removeall(&sc->ifmedia); 16009 bxe_release_mutexes(sc); 16010 bxe_deallocate_bars(sc); 16011 pci_disable_busmaster(dev); 16012 return (ENXIO); 16013 } 16014 16015 bxe_init_fp_mutexs(sc); 16016 16017 if (bxe_alloc_buf_rings(sc) != 0) { 16018 bxe_free_buf_rings(sc); 16019 bxe_interrupt_free(sc); 16020 bxe_del_cdev(sc); 16021 if (sc->ifp != NULL) { 16022 ether_ifdetach(sc->ifp); 16023 } 16024 ifmedia_removeall(&sc->ifmedia); 16025 bxe_release_mutexes(sc); 16026 bxe_deallocate_bars(sc); 16027 pci_disable_busmaster(dev); 16028 return (ENXIO); 16029 } 16030 16031 /* allocate ilt */ 16032 if (bxe_alloc_ilt_mem(sc) != 0) { 16033 bxe_free_buf_rings(sc); 16034 bxe_interrupt_free(sc); 16035 bxe_del_cdev(sc); 16036 if (sc->ifp != NULL) { 16037 ether_ifdetach(sc->ifp); 16038 } 16039 ifmedia_removeall(&sc->ifmedia); 16040 bxe_release_mutexes(sc); 16041 bxe_deallocate_bars(sc); 16042 pci_disable_busmaster(dev); 16043 return (ENXIO); 16044 } 16045 16046 /* allocate the host hardware/software hsi structures */ 16047 if (bxe_alloc_hsi_mem(sc) != 0) { 16048 bxe_free_ilt_mem(sc); 16049 bxe_free_buf_rings(sc); 16050 bxe_interrupt_free(sc); 16051 bxe_del_cdev(sc); 16052 if (sc->ifp != NULL) { 16053 ether_ifdetach(sc->ifp); 16054 } 16055 ifmedia_removeall(&sc->ifmedia); 16056 bxe_release_mutexes(sc); 16057 bxe_deallocate_bars(sc); 16058 pci_disable_busmaster(dev); 16059 return (ENXIO); 16060 } 16061 16062 /* need to reset chip if UNDI was active */ 16063 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 16064 /* init fw_seq */ 16065 sc->fw_seq = 16066 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 16067 DRV_MSG_SEQ_NUMBER_MASK); 16068 BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq); 16069 bxe_prev_unload(sc); 16070 } 16071 16072 #if 1 16073 /* XXX */ 16074 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16075 #else 16076 if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) && 16077 SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) && 16078 SHMEM2_RD(sc, dcbx_lldp_params_offset) && 16079 SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) { 16080 bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON); 16081 bxe_dcbx_init_params(sc); 16082 } else { 16083 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16084 } 16085 #endif 16086 16087 /* calculate qm_cid_count */ 16088 sc->qm_cid_count = bxe_set_qm_cid_count(sc); 16089 BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count); 16090 16091 sc->max_cos = 1; 16092 bxe_init_multi_cos(sc); 16093 16094 bxe_add_sysctls(sc); 16095 16096 return (0); 16097 } 16098 16099 /* 16100 * Device detach function. 16101 * 16102 * Stops the controller, resets the controller, and releases resources. 16103 * 16104 * Returns: 16105 * 0 = Success, >0 = Failure 16106 */ 16107 static int 16108 bxe_detach(device_t dev) 16109 { 16110 struct bxe_softc *sc; 16111 if_t ifp; 16112 16113 sc = device_get_softc(dev); 16114 16115 BLOGD(sc, DBG_LOAD, "Starting detach...\n"); 16116 16117 ifp = sc->ifp; 16118 if (ifp != NULL && if_vlantrunkinuse(ifp)) { 16119 BLOGE(sc, "Cannot detach while VLANs are in use.\n"); 16120 return(EBUSY); 16121 } 16122 16123 bxe_del_cdev(sc); 16124 16125 /* stop the periodic callout */ 16126 bxe_periodic_stop(sc); 16127 16128 /* stop the chip taskqueue */ 16129 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE); 16130 if (sc->chip_tq) { 16131 taskqueue_drain(sc->chip_tq, &sc->chip_tq_task); 16132 taskqueue_free(sc->chip_tq); 16133 sc->chip_tq = NULL; 16134 } 16135 16136 /* stop and reset the controller if it was open */ 16137 if (sc->state != BXE_STATE_CLOSED) { 16138 BXE_CORE_LOCK(sc); 16139 bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE); 16140 BXE_CORE_UNLOCK(sc); 16141 } 16142 16143 /* release the network interface */ 16144 if (ifp != NULL) { 16145 ether_ifdetach(ifp); 16146 } 16147 ifmedia_removeall(&sc->ifmedia); 16148 16149 /* XXX do the following based on driver state... */ 16150 16151 /* free the host hardware/software hsi structures */ 16152 bxe_free_hsi_mem(sc); 16153 16154 /* free ilt */ 16155 bxe_free_ilt_mem(sc); 16156 16157 bxe_free_buf_rings(sc); 16158 16159 /* release the interrupts */ 16160 bxe_interrupt_free(sc); 16161 16162 /* Release the mutexes*/ 16163 bxe_destroy_fp_mutexs(sc); 16164 bxe_release_mutexes(sc); 16165 16166 16167 /* Release the PCIe BAR mapped memory */ 16168 bxe_deallocate_bars(sc); 16169 16170 /* Release the FreeBSD interface. */ 16171 if (sc->ifp != NULL) { 16172 if_free(sc->ifp); 16173 } 16174 16175 pci_disable_busmaster(dev); 16176 16177 return (0); 16178 } 16179 16180 /* 16181 * Device shutdown function. 16182 * 16183 * Stops and resets the controller. 16184 * 16185 * Returns: 16186 * Nothing 16187 */ 16188 static int 16189 bxe_shutdown(device_t dev) 16190 { 16191 struct bxe_softc *sc; 16192 16193 sc = device_get_softc(dev); 16194 16195 BLOGD(sc, DBG_LOAD, "Starting shutdown...\n"); 16196 16197 /* stop the periodic callout */ 16198 bxe_periodic_stop(sc); 16199 16200 BXE_CORE_LOCK(sc); 16201 bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE); 16202 BXE_CORE_UNLOCK(sc); 16203 16204 return (0); 16205 } 16206 16207 void 16208 bxe_igu_ack_sb(struct bxe_softc *sc, 16209 uint8_t igu_sb_id, 16210 uint8_t segment, 16211 uint16_t index, 16212 uint8_t op, 16213 uint8_t update) 16214 { 16215 uint32_t igu_addr = sc->igu_base_addr; 16216 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 16217 bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr); 16218 } 16219 16220 static void 16221 bxe_igu_clear_sb_gen(struct bxe_softc *sc, 16222 uint8_t func, 16223 uint8_t idu_sb_id, 16224 uint8_t is_pf) 16225 { 16226 uint32_t data, ctl, cnt = 100; 16227 uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 16228 uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 16229 uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 16230 uint32_t sb_bit = 1 << (idu_sb_id%32); 16231 uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 16232 uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 16233 16234 /* Not supported in BC mode */ 16235 if (CHIP_INT_MODE_IS_BC(sc)) { 16236 return; 16237 } 16238 16239 data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup << 16240 IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 16241 IGU_REGULAR_CLEANUP_SET | 16242 IGU_REGULAR_BCLEANUP); 16243 16244 ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) | 16245 (func_encode << IGU_CTRL_REG_FID_SHIFT) | 16246 (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT)); 16247 16248 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16249 data, igu_addr_data); 16250 REG_WR(sc, igu_addr_data, data); 16251 16252 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16253 BUS_SPACE_BARRIER_WRITE); 16254 mb(); 16255 16256 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16257 ctl, igu_addr_ctl); 16258 REG_WR(sc, igu_addr_ctl, ctl); 16259 16260 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16261 BUS_SPACE_BARRIER_WRITE); 16262 mb(); 16263 16264 /* wait for clean up to finish */ 16265 while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) { 16266 DELAY(20000); 16267 } 16268 16269 if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) { 16270 BLOGD(sc, DBG_LOAD, 16271 "Unable to finish IGU cleanup: " 16272 "idu_sb_id %d offset %d bit %d (cnt %d)\n", 16273 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 16274 } 16275 } 16276 16277 static void 16278 bxe_igu_clear_sb(struct bxe_softc *sc, 16279 uint8_t idu_sb_id) 16280 { 16281 bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/); 16282 } 16283 16284 16285 16286 16287 16288 16289 16290 /*******************/ 16291 /* ECORE CALLBACKS */ 16292 /*******************/ 16293 16294 static void 16295 bxe_reset_common(struct bxe_softc *sc) 16296 { 16297 uint32_t val = 0x1400; 16298 16299 /* reset_common */ 16300 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f); 16301 16302 if (CHIP_IS_E3(sc)) { 16303 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16304 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16305 } 16306 16307 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val); 16308 } 16309 16310 static void 16311 bxe_common_init_phy(struct bxe_softc *sc) 16312 { 16313 uint32_t shmem_base[2]; 16314 uint32_t shmem2_base[2]; 16315 16316 /* Avoid common init in case MFW supports LFA */ 16317 if (SHMEM2_RD(sc, size) > 16318 (uint32_t)offsetof(struct shmem2_region, 16319 lfa_host_addr[SC_PORT(sc)])) { 16320 return; 16321 } 16322 16323 shmem_base[0] = sc->devinfo.shmem_base; 16324 shmem2_base[0] = sc->devinfo.shmem2_base; 16325 16326 if (!CHIP_IS_E1x(sc)) { 16327 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr); 16328 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr); 16329 } 16330 16331 bxe_acquire_phy_lock(sc); 16332 elink_common_init_phy(sc, shmem_base, shmem2_base, 16333 sc->devinfo.chip_id, 0); 16334 bxe_release_phy_lock(sc); 16335 } 16336 16337 static void 16338 bxe_pf_disable(struct bxe_softc *sc) 16339 { 16340 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 16341 16342 val &= ~IGU_PF_CONF_FUNC_EN; 16343 16344 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 16345 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16346 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0); 16347 } 16348 16349 static void 16350 bxe_init_pxp(struct bxe_softc *sc) 16351 { 16352 uint16_t devctl; 16353 int r_order, w_order; 16354 16355 devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2); 16356 16357 BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl); 16358 16359 w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5); 16360 16361 if (sc->mrrs == -1) { 16362 r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12); 16363 } else { 16364 BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs); 16365 r_order = sc->mrrs; 16366 } 16367 16368 ecore_init_pxp_arb(sc, r_order, w_order); 16369 } 16370 16371 static uint32_t 16372 bxe_get_pretend_reg(struct bxe_softc *sc) 16373 { 16374 uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0; 16375 uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base); 16376 return (base + (SC_ABS_FUNC(sc)) * stride); 16377 } 16378 16379 /* 16380 * Called only on E1H or E2. 16381 * When pretending to be PF, the pretend value is the function number 0..7. 16382 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 16383 * combination. 16384 */ 16385 static int 16386 bxe_pretend_func(struct bxe_softc *sc, 16387 uint16_t pretend_func_val) 16388 { 16389 uint32_t pretend_reg; 16390 16391 if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) { 16392 return (-1); 16393 } 16394 16395 /* get my own pretend register */ 16396 pretend_reg = bxe_get_pretend_reg(sc); 16397 REG_WR(sc, pretend_reg, pretend_func_val); 16398 REG_RD(sc, pretend_reg); 16399 return (0); 16400 } 16401 16402 static void 16403 bxe_iov_init_dmae(struct bxe_softc *sc) 16404 { 16405 return; 16406 } 16407 16408 static void 16409 bxe_iov_init_dq(struct bxe_softc *sc) 16410 { 16411 return; 16412 } 16413 16414 /* send a NIG loopback debug packet */ 16415 static void 16416 bxe_lb_pckt(struct bxe_softc *sc) 16417 { 16418 uint32_t wb_write[3]; 16419 16420 /* Ethernet source and destination addresses */ 16421 wb_write[0] = 0x55555555; 16422 wb_write[1] = 0x55555555; 16423 wb_write[2] = 0x20; /* SOP */ 16424 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16425 16426 /* NON-IP protocol */ 16427 wb_write[0] = 0x09000000; 16428 wb_write[1] = 0x55555555; 16429 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 16430 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16431 } 16432 16433 /* 16434 * Some of the internal memories are not directly readable from the driver. 16435 * To test them we send debug packets. 16436 */ 16437 static int 16438 bxe_int_mem_test(struct bxe_softc *sc) 16439 { 16440 int factor; 16441 int count, i; 16442 uint32_t val = 0; 16443 16444 if (CHIP_REV_IS_FPGA(sc)) { 16445 factor = 120; 16446 } else if (CHIP_REV_IS_EMUL(sc)) { 16447 factor = 200; 16448 } else { 16449 factor = 1; 16450 } 16451 16452 /* disable inputs of parser neighbor blocks */ 16453 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16454 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16455 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16456 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16457 16458 /* write 0 to parser credits for CFC search request */ 16459 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16460 16461 /* send Ethernet packet */ 16462 bxe_lb_pckt(sc); 16463 16464 /* TODO do i reset NIG statistic? */ 16465 /* Wait until NIG register shows 1 packet of size 0x10 */ 16466 count = 1000 * factor; 16467 while (count) { 16468 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16469 val = *BXE_SP(sc, wb_data[0]); 16470 if (val == 0x10) { 16471 break; 16472 } 16473 16474 DELAY(10000); 16475 count--; 16476 } 16477 16478 if (val != 0x10) { 16479 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16480 return (-1); 16481 } 16482 16483 /* wait until PRS register shows 1 packet */ 16484 count = (1000 * factor); 16485 while (count) { 16486 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16487 if (val == 1) { 16488 break; 16489 } 16490 16491 DELAY(10000); 16492 count--; 16493 } 16494 16495 if (val != 0x1) { 16496 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16497 return (-2); 16498 } 16499 16500 /* Reset and init BRB, PRS */ 16501 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16502 DELAY(50000); 16503 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16504 DELAY(50000); 16505 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16506 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16507 16508 /* Disable inputs of parser neighbor blocks */ 16509 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16510 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16511 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16512 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16513 16514 /* Write 0 to parser credits for CFC search request */ 16515 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16516 16517 /* send 10 Ethernet packets */ 16518 for (i = 0; i < 10; i++) { 16519 bxe_lb_pckt(sc); 16520 } 16521 16522 /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */ 16523 count = (1000 * factor); 16524 while (count) { 16525 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16526 val = *BXE_SP(sc, wb_data[0]); 16527 if (val == 0xb0) { 16528 break; 16529 } 16530 16531 DELAY(10000); 16532 count--; 16533 } 16534 16535 if (val != 0xb0) { 16536 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16537 return (-3); 16538 } 16539 16540 /* Wait until PRS register shows 2 packets */ 16541 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16542 if (val != 2) { 16543 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16544 } 16545 16546 /* Write 1 to parser credits for CFC search request */ 16547 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 16548 16549 /* Wait until PRS register shows 3 packets */ 16550 DELAY(10000 * factor); 16551 16552 /* Wait until NIG register shows 1 packet of size 0x10 */ 16553 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16554 if (val != 3) { 16555 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16556 } 16557 16558 /* clear NIG EOP FIFO */ 16559 for (i = 0; i < 11; i++) { 16560 REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO); 16561 } 16562 16563 val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY); 16564 if (val != 1) { 16565 BLOGE(sc, "clear of NIG failed val=0x%x\n", val); 16566 return (-4); 16567 } 16568 16569 /* Reset and init BRB, PRS, NIG */ 16570 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16571 DELAY(50000); 16572 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16573 DELAY(50000); 16574 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16575 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16576 if (!CNIC_SUPPORT(sc)) { 16577 /* set NIC mode */ 16578 REG_WR(sc, PRS_REG_NIC_MODE, 1); 16579 } 16580 16581 /* Enable inputs of parser neighbor blocks */ 16582 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff); 16583 REG_WR(sc, TCM_REG_PRS_IFEN, 0x1); 16584 REG_WR(sc, CFC_REG_DEBUG0, 0x0); 16585 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1); 16586 16587 return (0); 16588 } 16589 16590 static void 16591 bxe_setup_fan_failure_detection(struct bxe_softc *sc) 16592 { 16593 int is_required; 16594 uint32_t val; 16595 int port; 16596 16597 is_required = 0; 16598 val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) & 16599 SHARED_HW_CFG_FAN_FAILURE_MASK); 16600 16601 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) { 16602 is_required = 1; 16603 } 16604 /* 16605 * The fan failure mechanism is usually related to the PHY type since 16606 * the power consumption of the board is affected by the PHY. Currently, 16607 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 16608 */ 16609 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) { 16610 for (port = PORT_0; port < PORT_MAX; port++) { 16611 is_required |= elink_fan_failure_det_req(sc, 16612 sc->devinfo.shmem_base, 16613 sc->devinfo.shmem2_base, 16614 port); 16615 } 16616 } 16617 16618 BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required); 16619 16620 if (is_required == 0) { 16621 return; 16622 } 16623 16624 /* Fan failure is indicated by SPIO 5 */ 16625 bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 16626 16627 /* set to active low mode */ 16628 val = REG_RD(sc, MISC_REG_SPIO_INT); 16629 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 16630 REG_WR(sc, MISC_REG_SPIO_INT, val); 16631 16632 /* enable interrupt to signal the IGU */ 16633 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 16634 val |= MISC_SPIO_SPIO5; 16635 REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val); 16636 } 16637 16638 static void 16639 bxe_enable_blocks_attention(struct bxe_softc *sc) 16640 { 16641 uint32_t val; 16642 16643 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 16644 if (!CHIP_IS_E1x(sc)) { 16645 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40); 16646 } else { 16647 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0); 16648 } 16649 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 16650 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 16651 /* 16652 * mask read length error interrupts in brb for parser 16653 * (parsing unit and 'checksum and crc' unit) 16654 * these errors are legal (PU reads fixed length and CAC can cause 16655 * read length error on truncated packets) 16656 */ 16657 REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00); 16658 REG_WR(sc, QM_REG_QM_INT_MASK, 0); 16659 REG_WR(sc, TM_REG_TM_INT_MASK, 0); 16660 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0); 16661 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0); 16662 REG_WR(sc, XCM_REG_XCM_INT_MASK, 0); 16663 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */ 16664 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */ 16665 REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0); 16666 REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0); 16667 REG_WR(sc, UCM_REG_UCM_INT_MASK, 0); 16668 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */ 16669 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */ 16670 REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 16671 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0); 16672 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0); 16673 REG_WR(sc, CCM_REG_CCM_INT_MASK, 0); 16674 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */ 16675 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */ 16676 16677 val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 16678 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 16679 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN); 16680 if (!CHIP_IS_E1x(sc)) { 16681 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 16682 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED); 16683 } 16684 REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val); 16685 16686 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0); 16687 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0); 16688 REG_WR(sc, TCM_REG_TCM_INT_MASK, 0); 16689 /* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */ 16690 16691 if (!CHIP_IS_E1x(sc)) { 16692 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 16693 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 16694 } 16695 16696 REG_WR(sc, CDU_REG_CDU_INT_MASK, 0); 16697 REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0); 16698 /* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */ 16699 REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 16700 } 16701 16702 /** 16703 * bxe_init_hw_common - initialize the HW at the COMMON phase. 16704 * 16705 * @sc: driver handle 16706 */ 16707 static int 16708 bxe_init_hw_common(struct bxe_softc *sc) 16709 { 16710 uint8_t abs_func_id; 16711 uint32_t val; 16712 16713 BLOGD(sc, DBG_LOAD, "starting common init for func %d\n", 16714 SC_ABS_FUNC(sc)); 16715 16716 /* 16717 * take the RESET lock to protect undi_unload flow from accessing 16718 * registers while we are resetting the chip 16719 */ 16720 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 16721 16722 bxe_reset_common(sc); 16723 16724 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff); 16725 16726 val = 0xfffc; 16727 if (CHIP_IS_E3(sc)) { 16728 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16729 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16730 } 16731 16732 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val); 16733 16734 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 16735 16736 ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON); 16737 BLOGD(sc, DBG_LOAD, "after misc block init\n"); 16738 16739 if (!CHIP_IS_E1x(sc)) { 16740 /* 16741 * 4-port mode or 2-port mode we need to turn off master-enable for 16742 * everyone. After that we turn it back on for self. So, we disregard 16743 * multi-function, and always disable all functions on the given path, 16744 * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1 16745 */ 16746 for (abs_func_id = SC_PATH(sc); 16747 abs_func_id < (E2_FUNC_MAX * 2); 16748 abs_func_id += 2) { 16749 if (abs_func_id == SC_ABS_FUNC(sc)) { 16750 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 16751 continue; 16752 } 16753 16754 bxe_pretend_func(sc, abs_func_id); 16755 16756 /* clear pf enable */ 16757 bxe_pf_disable(sc); 16758 16759 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 16760 } 16761 } 16762 16763 BLOGD(sc, DBG_LOAD, "after pf disable\n"); 16764 16765 ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON); 16766 16767 if (CHIP_IS_E1(sc)) { 16768 /* 16769 * enable HW interrupt from PXP on USDM overflow 16770 * bit 16 on INT_MASK_0 16771 */ 16772 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 16773 } 16774 16775 ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON); 16776 bxe_init_pxp(sc); 16777 16778 #ifdef __BIG_ENDIAN 16779 REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1); 16780 REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1); 16781 REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1); 16782 REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1); 16783 REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1); 16784 /* make sure this value is 0 */ 16785 REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0); 16786 16787 //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1); 16788 REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1); 16789 REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1); 16790 REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1); 16791 REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1); 16792 #endif 16793 16794 ecore_ilt_init_page_size(sc, INITOP_SET); 16795 16796 if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) { 16797 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 16798 } 16799 16800 /* let the HW do it's magic... */ 16801 DELAY(100000); 16802 16803 /* finish PXP init */ 16804 val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE); 16805 if (val != 1) { 16806 BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n", 16807 val); 16808 return (-1); 16809 } 16810 val = REG_RD(sc, PXP2_REG_RD_INIT_DONE); 16811 if (val != 1) { 16812 BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val); 16813 return (-1); 16814 } 16815 16816 BLOGD(sc, DBG_LOAD, "after pxp init\n"); 16817 16818 /* 16819 * Timer bug workaround for E2 only. We need to set the entire ILT to have 16820 * entries with value "0" and valid bit on. This needs to be done by the 16821 * first PF that is loaded in a path (i.e. common phase) 16822 */ 16823 if (!CHIP_IS_E1x(sc)) { 16824 /* 16825 * In E2 there is a bug in the timers block that can cause function 6 / 7 16826 * (i.e. vnic3) to start even if it is marked as "scan-off". 16827 * This occurs when a different function (func2,3) is being marked 16828 * as "scan-off". Real-life scenario for example: if a driver is being 16829 * load-unloaded while func6,7 are down. This will cause the timer to access 16830 * the ilt, translate to a logical address and send a request to read/write. 16831 * Since the ilt for the function that is down is not valid, this will cause 16832 * a translation error which is unrecoverable. 16833 * The Workaround is intended to make sure that when this happens nothing 16834 * fatal will occur. The workaround: 16835 * 1. First PF driver which loads on a path will: 16836 * a. After taking the chip out of reset, by using pretend, 16837 * it will write "0" to the following registers of 16838 * the other vnics. 16839 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16840 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 16841 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 16842 * And for itself it will write '1' to 16843 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 16844 * dmae-operations (writing to pram for example.) 16845 * note: can be done for only function 6,7 but cleaner this 16846 * way. 16847 * b. Write zero+valid to the entire ILT. 16848 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 16849 * VNIC3 (of that port). The range allocated will be the 16850 * entire ILT. This is needed to prevent ILT range error. 16851 * 2. Any PF driver load flow: 16852 * a. ILT update with the physical addresses of the allocated 16853 * logical pages. 16854 * b. Wait 20msec. - note that this timeout is needed to make 16855 * sure there are no requests in one of the PXP internal 16856 * queues with "old" ILT addresses. 16857 * c. PF enable in the PGLC. 16858 * d. Clear the was_error of the PF in the PGLC. (could have 16859 * occurred while driver was down) 16860 * e. PF enable in the CFC (WEAK + STRONG) 16861 * f. Timers scan enable 16862 * 3. PF driver unload flow: 16863 * a. Clear the Timers scan_en. 16864 * b. Polling for scan_on=0 for that PF. 16865 * c. Clear the PF enable bit in the PXP. 16866 * d. Clear the PF enable in the CFC (WEAK + STRONG) 16867 * e. Write zero+valid to all ILT entries (The valid bit must 16868 * stay set) 16869 * f. If this is VNIC 3 of a port then also init 16870 * first_timers_ilt_entry to zero and last_timers_ilt_entry 16871 * to the last enrty in the ILT. 16872 * 16873 * Notes: 16874 * Currently the PF error in the PGLC is non recoverable. 16875 * In the future the there will be a recovery routine for this error. 16876 * Currently attention is masked. 16877 * Having an MCP lock on the load/unload process does not guarantee that 16878 * there is no Timer disable during Func6/7 enable. This is because the 16879 * Timers scan is currently being cleared by the MCP on FLR. 16880 * Step 2.d can be done only for PF6/7 and the driver can also check if 16881 * there is error before clearing it. But the flow above is simpler and 16882 * more general. 16883 * All ILT entries are written by zero+valid and not just PF6/7 16884 * ILT entries since in the future the ILT entries allocation for 16885 * PF-s might be dynamic. 16886 */ 16887 struct ilt_client_info ilt_cli; 16888 struct ecore_ilt ilt; 16889 16890 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 16891 memset(&ilt, 0, sizeof(struct ecore_ilt)); 16892 16893 /* initialize dummy TM client */ 16894 ilt_cli.start = 0; 16895 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 16896 ilt_cli.client_num = ILT_CLIENT_TM; 16897 16898 /* 16899 * Step 1: set zeroes to all ilt page entries with valid bit on 16900 * Step 2: set the timers first/last ilt entry to point 16901 * to the entire range to prevent ILT range error for 3rd/4th 16902 * vnic (this code assumes existence of the vnic) 16903 * 16904 * both steps performed by call to ecore_ilt_client_init_op() 16905 * with dummy TM client 16906 * 16907 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 16908 * and his brother are split registers 16909 */ 16910 16911 bxe_pretend_func(sc, (SC_PATH(sc) + 6)); 16912 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR); 16913 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 16914 16915 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN); 16916 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN); 16917 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 16918 } 16919 16920 REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0); 16921 REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0); 16922 16923 if (!CHIP_IS_E1x(sc)) { 16924 int factor = CHIP_REV_IS_EMUL(sc) ? 1000 : 16925 (CHIP_REV_IS_FPGA(sc) ? 400 : 0); 16926 16927 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON); 16928 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON); 16929 16930 /* let the HW do it's magic... */ 16931 do { 16932 DELAY(200000); 16933 val = REG_RD(sc, ATC_REG_ATC_INIT_DONE); 16934 } while (factor-- && (val != 1)); 16935 16936 if (val != 1) { 16937 BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val); 16938 return (-1); 16939 } 16940 } 16941 16942 BLOGD(sc, DBG_LOAD, "after pglue and atc init\n"); 16943 16944 ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON); 16945 16946 bxe_iov_init_dmae(sc); 16947 16948 /* clean the DMAE memory */ 16949 sc->dmae_ready = 1; 16950 ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1); 16951 16952 ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON); 16953 16954 ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON); 16955 16956 ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON); 16957 16958 ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON); 16959 16960 bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3); 16961 bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3); 16962 bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3); 16963 bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3); 16964 16965 ecore_init_block(sc, BLOCK_QM, PHASE_COMMON); 16966 16967 /* QM queues pointers table */ 16968 ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET); 16969 16970 /* soft reset pulse */ 16971 REG_WR(sc, QM_REG_SOFT_RESET, 1); 16972 REG_WR(sc, QM_REG_SOFT_RESET, 0); 16973 16974 if (CNIC_SUPPORT(sc)) 16975 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON); 16976 16977 ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON); 16978 REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT); 16979 if (!CHIP_REV_IS_SLOW(sc)) { 16980 /* enable hw interrupt from doorbell Q */ 16981 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 16982 } 16983 16984 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16985 16986 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16987 REG_WR(sc, PRS_REG_A_PRSU_20, 0xf); 16988 16989 if (!CHIP_IS_E1(sc)) { 16990 REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan); 16991 } 16992 16993 if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) { 16994 if (IS_MF_AFEX(sc)) { 16995 /* 16996 * configure that AFEX and VLAN headers must be 16997 * received in AFEX mode 16998 */ 16999 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE); 17000 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA); 17001 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 17002 REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 17003 REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4); 17004 } else { 17005 /* 17006 * Bit-map indicating which L2 hdrs may appear 17007 * after the basic Ethernet header 17008 */ 17009 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 17010 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17011 } 17012 } 17013 17014 ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON); 17015 ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON); 17016 ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON); 17017 ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON); 17018 17019 if (!CHIP_IS_E1x(sc)) { 17020 /* reset VFC memories */ 17021 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17022 VFC_MEMORIES_RST_REG_CAM_RST | 17023 VFC_MEMORIES_RST_REG_RAM_RST); 17024 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17025 VFC_MEMORIES_RST_REG_CAM_RST | 17026 VFC_MEMORIES_RST_REG_RAM_RST); 17027 17028 DELAY(20000); 17029 } 17030 17031 ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON); 17032 ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON); 17033 ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON); 17034 ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON); 17035 17036 /* sync semi rtc */ 17037 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 17038 0x80000000); 17039 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 17040 0x80000000); 17041 17042 ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON); 17043 ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON); 17044 ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON); 17045 17046 if (!CHIP_IS_E1x(sc)) { 17047 if (IS_MF_AFEX(sc)) { 17048 /* 17049 * configure that AFEX and VLAN headers must be 17050 * sent in AFEX mode 17051 */ 17052 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE); 17053 REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA); 17054 REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 17055 REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 17056 REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4); 17057 } else { 17058 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 17059 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17060 } 17061 } 17062 17063 REG_WR(sc, SRC_REG_SOFT_RST, 1); 17064 17065 ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON); 17066 17067 if (CNIC_SUPPORT(sc)) { 17068 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672); 17069 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 17070 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b); 17071 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a); 17072 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116); 17073 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 17074 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf); 17075 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 17076 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f); 17077 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7); 17078 } 17079 REG_WR(sc, SRC_REG_SOFT_RST, 0); 17080 17081 if (sizeof(union cdu_context) != 1024) { 17082 /* we currently assume that a context is 1024 bytes */ 17083 BLOGE(sc, "please adjust the size of cdu_context(%ld)\n", 17084 (long)sizeof(union cdu_context)); 17085 } 17086 17087 ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON); 17088 val = (4 << 24) + (0 << 12) + 1024; 17089 REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val); 17090 17091 ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON); 17092 17093 REG_WR(sc, CFC_REG_INIT_REG, 0x7FF); 17094 /* enable context validation interrupt from CFC */ 17095 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 17096 17097 /* set the thresholds to prevent CFC/CDU race */ 17098 REG_WR(sc, CFC_REG_DEBUG0, 0x20020000); 17099 ecore_init_block(sc, BLOCK_HC, PHASE_COMMON); 17100 17101 if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) { 17102 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36); 17103 } 17104 17105 ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON); 17106 ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON); 17107 17108 /* Reset PCIE errors for debug */ 17109 REG_WR(sc, 0x2814, 0xffffffff); 17110 REG_WR(sc, 0x3820, 0xffffffff); 17111 17112 if (!CHIP_IS_E1x(sc)) { 17113 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 17114 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 17115 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 17116 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 17117 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 17118 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 17119 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 17120 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 17121 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 17122 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 17123 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 17124 } 17125 17126 ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON); 17127 17128 if (!CHIP_IS_E1(sc)) { 17129 /* in E3 this done in per-port section */ 17130 if (!CHIP_IS_E3(sc)) 17131 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17132 } 17133 17134 if (CHIP_IS_E1H(sc)) { 17135 /* not applicable for E2 (and above ...) */ 17136 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc)); 17137 } 17138 17139 if (CHIP_REV_IS_SLOW(sc)) { 17140 DELAY(200000); 17141 } 17142 17143 /* finish CFC init */ 17144 val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10); 17145 if (val != 1) { 17146 BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val); 17147 return (-1); 17148 } 17149 val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10); 17150 if (val != 1) { 17151 BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val); 17152 return (-1); 17153 } 17154 val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 17155 if (val != 1) { 17156 BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val); 17157 return (-1); 17158 } 17159 REG_WR(sc, CFC_REG_DEBUG0, 0); 17160 17161 if (CHIP_IS_E1(sc)) { 17162 /* read NIG statistic to see if this is our first up since powerup */ 17163 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 17164 val = *BXE_SP(sc, wb_data[0]); 17165 17166 /* do internal memory self test */ 17167 if ((val == 0) && bxe_int_mem_test(sc)) { 17168 BLOGE(sc, "internal mem self test failed val=0x%x\n", val); 17169 return (-1); 17170 } 17171 } 17172 17173 bxe_setup_fan_failure_detection(sc); 17174 17175 /* clear PXP2 attentions */ 17176 REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 17177 17178 bxe_enable_blocks_attention(sc); 17179 17180 if (!CHIP_REV_IS_SLOW(sc)) { 17181 ecore_enable_blocks_parity(sc); 17182 } 17183 17184 if (!BXE_NOMCP(sc)) { 17185 if (CHIP_IS_E1x(sc)) { 17186 bxe_common_init_phy(sc); 17187 } 17188 } 17189 17190 return (0); 17191 } 17192 17193 /** 17194 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase. 17195 * 17196 * @sc: driver handle 17197 */ 17198 static int 17199 bxe_init_hw_common_chip(struct bxe_softc *sc) 17200 { 17201 int rc = bxe_init_hw_common(sc); 17202 17203 if (rc) { 17204 BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc); 17205 return (rc); 17206 } 17207 17208 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 17209 if (!BXE_NOMCP(sc)) { 17210 bxe_common_init_phy(sc); 17211 } 17212 17213 return (0); 17214 } 17215 17216 static int 17217 bxe_init_hw_port(struct bxe_softc *sc) 17218 { 17219 int port = SC_PORT(sc); 17220 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 17221 uint32_t low, high; 17222 uint32_t val; 17223 17224 BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port); 17225 17226 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 17227 17228 ecore_init_block(sc, BLOCK_MISC, init_phase); 17229 ecore_init_block(sc, BLOCK_PXP, init_phase); 17230 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17231 17232 /* 17233 * Timers bug workaround: disables the pf_master bit in pglue at 17234 * common phase, we need to enable it here before any dmae access are 17235 * attempted. Therefore we manually added the enable-master to the 17236 * port phase (it also happens in the function phase) 17237 */ 17238 if (!CHIP_IS_E1x(sc)) { 17239 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17240 } 17241 17242 ecore_init_block(sc, BLOCK_ATC, init_phase); 17243 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17244 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17245 ecore_init_block(sc, BLOCK_QM, init_phase); 17246 17247 ecore_init_block(sc, BLOCK_TCM, init_phase); 17248 ecore_init_block(sc, BLOCK_UCM, init_phase); 17249 ecore_init_block(sc, BLOCK_CCM, init_phase); 17250 ecore_init_block(sc, BLOCK_XCM, init_phase); 17251 17252 /* QM cid (connection) count */ 17253 ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET); 17254 17255 if (CNIC_SUPPORT(sc)) { 17256 ecore_init_block(sc, BLOCK_TM, init_phase); 17257 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20); 17258 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 17259 } 17260 17261 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17262 17263 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17264 17265 if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) { 17266 if (IS_MF(sc)) { 17267 low = (BXE_ONE_PORT(sc) ? 160 : 246); 17268 } else if (sc->mtu > 4096) { 17269 if (BXE_ONE_PORT(sc)) { 17270 low = 160; 17271 } else { 17272 val = sc->mtu; 17273 /* (24*1024 + val*4)/256 */ 17274 low = (96 + (val / 64) + ((val % 64) ? 1 : 0)); 17275 } 17276 } else { 17277 low = (BXE_ONE_PORT(sc) ? 80 : 160); 17278 } 17279 high = (low + 56); /* 14*1024/256 */ 17280 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 17281 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 17282 } 17283 17284 if (CHIP_IS_MODE_4_PORT(sc)) { 17285 REG_WR(sc, SC_PORT(sc) ? 17286 BRB1_REG_MAC_GUARANTIED_1 : 17287 BRB1_REG_MAC_GUARANTIED_0, 40); 17288 } 17289 17290 ecore_init_block(sc, BLOCK_PRS, init_phase); 17291 if (CHIP_IS_E3B0(sc)) { 17292 if (IS_MF_AFEX(sc)) { 17293 /* configure headers for AFEX mode */ 17294 REG_WR(sc, SC_PORT(sc) ? 17295 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17296 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 17297 REG_WR(sc, SC_PORT(sc) ? 17298 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 17299 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 17300 REG_WR(sc, SC_PORT(sc) ? 17301 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 17302 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 17303 } else { 17304 /* Ovlan exists only if we are in multi-function + 17305 * switch-dependent mode, in switch-independent there 17306 * is no ovlan headers 17307 */ 17308 REG_WR(sc, SC_PORT(sc) ? 17309 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17310 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 17311 (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6)); 17312 } 17313 } 17314 17315 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17316 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17317 ecore_init_block(sc, BLOCK_USDM, init_phase); 17318 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17319 17320 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17321 ecore_init_block(sc, BLOCK_USEM, init_phase); 17322 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17323 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17324 17325 ecore_init_block(sc, BLOCK_UPB, init_phase); 17326 ecore_init_block(sc, BLOCK_XPB, init_phase); 17327 17328 ecore_init_block(sc, BLOCK_PBF, init_phase); 17329 17330 if (CHIP_IS_E1x(sc)) { 17331 /* configure PBF to work without PAUSE mtu 9000 */ 17332 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 17333 17334 /* update threshold */ 17335 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 17336 /* update init credit */ 17337 REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 17338 17339 /* probe changes */ 17340 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1); 17341 DELAY(50); 17342 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0); 17343 } 17344 17345 if (CNIC_SUPPORT(sc)) { 17346 ecore_init_block(sc, BLOCK_SRC, init_phase); 17347 } 17348 17349 ecore_init_block(sc, BLOCK_CDU, init_phase); 17350 ecore_init_block(sc, BLOCK_CFC, init_phase); 17351 17352 if (CHIP_IS_E1(sc)) { 17353 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17354 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17355 } 17356 ecore_init_block(sc, BLOCK_HC, init_phase); 17357 17358 ecore_init_block(sc, BLOCK_IGU, init_phase); 17359 17360 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17361 /* init aeu_mask_attn_func_0/1: 17362 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use 17363 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF 17364 * bits 4-7 are used for "per vn group attention" */ 17365 val = IS_MF(sc) ? 0xF7 : 0x7; 17366 /* Enable DCBX attention for all but E1 */ 17367 val |= CHIP_IS_E1(sc) ? 0 : 0x10; 17368 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 17369 17370 ecore_init_block(sc, BLOCK_NIG, init_phase); 17371 17372 if (!CHIP_IS_E1x(sc)) { 17373 /* Bit-map indicating which L2 hdrs may appear after the 17374 * basic Ethernet header 17375 */ 17376 if (IS_MF_AFEX(sc)) { 17377 REG_WR(sc, SC_PORT(sc) ? 17378 NIG_REG_P1_HDRS_AFTER_BASIC : 17379 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 17380 } else { 17381 REG_WR(sc, SC_PORT(sc) ? 17382 NIG_REG_P1_HDRS_AFTER_BASIC : 17383 NIG_REG_P0_HDRS_AFTER_BASIC, 17384 IS_MF_SD(sc) ? 7 : 6); 17385 } 17386 17387 if (CHIP_IS_E3(sc)) { 17388 REG_WR(sc, SC_PORT(sc) ? 17389 NIG_REG_LLH1_MF_MODE : 17390 NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17391 } 17392 } 17393 if (!CHIP_IS_E3(sc)) { 17394 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 17395 } 17396 17397 if (!CHIP_IS_E1(sc)) { 17398 /* 0x2 disable mf_ov, 0x1 enable */ 17399 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 17400 (IS_MF_SD(sc) ? 0x1 : 0x2)); 17401 17402 if (!CHIP_IS_E1x(sc)) { 17403 val = 0; 17404 switch (sc->devinfo.mf_info.mf_mode) { 17405 case MULTI_FUNCTION_SD: 17406 val = 1; 17407 break; 17408 case MULTI_FUNCTION_SI: 17409 case MULTI_FUNCTION_AFEX: 17410 val = 2; 17411 break; 17412 } 17413 17414 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE : 17415 NIG_REG_LLH0_CLS_TYPE), val); 17416 } 17417 REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 17418 REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 17419 REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 17420 } 17421 17422 /* If SPIO5 is set to generate interrupts, enable it for this port */ 17423 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17424 if (val & MISC_SPIO_SPIO5) { 17425 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 17426 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 17427 val = REG_RD(sc, reg_addr); 17428 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 17429 REG_WR(sc, reg_addr, val); 17430 } 17431 17432 return (0); 17433 } 17434 17435 static uint32_t 17436 bxe_flr_clnup_reg_poll(struct bxe_softc *sc, 17437 uint32_t reg, 17438 uint32_t expected, 17439 uint32_t poll_count) 17440 { 17441 uint32_t cur_cnt = poll_count; 17442 uint32_t val; 17443 17444 while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) { 17445 DELAY(FLR_WAIT_INTERVAL); 17446 } 17447 17448 return (val); 17449 } 17450 17451 static int 17452 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc, 17453 uint32_t reg, 17454 char *msg, 17455 uint32_t poll_cnt) 17456 { 17457 uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt); 17458 17459 if (val != 0) { 17460 BLOGE(sc, "%s usage count=%d\n", msg, val); 17461 return (1); 17462 } 17463 17464 return (0); 17465 } 17466 17467 /* Common routines with VF FLR cleanup */ 17468 static uint32_t 17469 bxe_flr_clnup_poll_count(struct bxe_softc *sc) 17470 { 17471 /* adjust polling timeout */ 17472 if (CHIP_REV_IS_EMUL(sc)) { 17473 return (FLR_POLL_CNT * 2000); 17474 } 17475 17476 if (CHIP_REV_IS_FPGA(sc)) { 17477 return (FLR_POLL_CNT * 120); 17478 } 17479 17480 return (FLR_POLL_CNT); 17481 } 17482 17483 static int 17484 bxe_poll_hw_usage_counters(struct bxe_softc *sc, 17485 uint32_t poll_cnt) 17486 { 17487 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 17488 if (bxe_flr_clnup_poll_hw_counter(sc, 17489 CFC_REG_NUM_LCIDS_INSIDE_PF, 17490 "CFC PF usage counter timed out", 17491 poll_cnt)) { 17492 return (1); 17493 } 17494 17495 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 17496 if (bxe_flr_clnup_poll_hw_counter(sc, 17497 DORQ_REG_PF_USAGE_CNT, 17498 "DQ PF usage counter timed out", 17499 poll_cnt)) { 17500 return (1); 17501 } 17502 17503 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 17504 if (bxe_flr_clnup_poll_hw_counter(sc, 17505 QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc), 17506 "QM PF usage counter timed out", 17507 poll_cnt)) { 17508 return (1); 17509 } 17510 17511 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 17512 if (bxe_flr_clnup_poll_hw_counter(sc, 17513 TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc), 17514 "Timers VNIC usage counter timed out", 17515 poll_cnt)) { 17516 return (1); 17517 } 17518 17519 if (bxe_flr_clnup_poll_hw_counter(sc, 17520 TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc), 17521 "Timers NUM_SCANS usage counter timed out", 17522 poll_cnt)) { 17523 return (1); 17524 } 17525 17526 /* Wait DMAE PF usage counter to zero */ 17527 if (bxe_flr_clnup_poll_hw_counter(sc, 17528 dmae_reg_go_c[INIT_DMAE_C(sc)], 17529 "DMAE dommand register timed out", 17530 poll_cnt)) { 17531 return (1); 17532 } 17533 17534 return (0); 17535 } 17536 17537 #define OP_GEN_PARAM(param) \ 17538 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 17539 #define OP_GEN_TYPE(type) \ 17540 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 17541 #define OP_GEN_AGG_VECT(index) \ 17542 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 17543 17544 static int 17545 bxe_send_final_clnup(struct bxe_softc *sc, 17546 uint8_t clnup_func, 17547 uint32_t poll_cnt) 17548 { 17549 uint32_t op_gen_command = 0; 17550 uint32_t comp_addr = (BAR_CSTRORM_INTMEM + 17551 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func)); 17552 int ret = 0; 17553 17554 if (REG_RD(sc, comp_addr)) { 17555 BLOGE(sc, "Cleanup complete was not 0 before sending\n"); 17556 return (1); 17557 } 17558 17559 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 17560 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 17561 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 17562 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 17563 17564 BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n"); 17565 REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command); 17566 17567 if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) { 17568 BLOGE(sc, "FW final cleanup did not succeed\n"); 17569 BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n", 17570 (REG_RD(sc, comp_addr))); 17571 bxe_panic(sc, ("FLR cleanup failed\n")); 17572 return (1); 17573 } 17574 17575 /* Zero completion for nxt FLR */ 17576 REG_WR(sc, comp_addr, 0); 17577 17578 return (ret); 17579 } 17580 17581 static void 17582 bxe_pbf_pN_buf_flushed(struct bxe_softc *sc, 17583 struct pbf_pN_buf_regs *regs, 17584 uint32_t poll_count) 17585 { 17586 uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start; 17587 uint32_t cur_cnt = poll_count; 17588 17589 crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed); 17590 crd = crd_start = REG_RD(sc, regs->crd); 17591 init_crd = REG_RD(sc, regs->init_crd); 17592 17593 BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 17594 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd); 17595 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 17596 17597 while ((crd != init_crd) && 17598 ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) < 17599 (init_crd - crd_start))) { 17600 if (cur_cnt--) { 17601 DELAY(FLR_WAIT_INTERVAL); 17602 crd = REG_RD(sc, regs->crd); 17603 crd_freed = REG_RD(sc, regs->crd_freed); 17604 } else { 17605 BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN); 17606 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd); 17607 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed); 17608 break; 17609 } 17610 } 17611 17612 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n", 17613 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 17614 } 17615 17616 static void 17617 bxe_pbf_pN_cmd_flushed(struct bxe_softc *sc, 17618 struct pbf_pN_cmd_regs *regs, 17619 uint32_t poll_count) 17620 { 17621 uint32_t occup, to_free, freed, freed_start; 17622 uint32_t cur_cnt = poll_count; 17623 17624 occup = to_free = REG_RD(sc, regs->lines_occup); 17625 freed = freed_start = REG_RD(sc, regs->lines_freed); 17626 17627 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 17628 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 17629 17630 while (occup && 17631 ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) { 17632 if (cur_cnt--) { 17633 DELAY(FLR_WAIT_INTERVAL); 17634 occup = REG_RD(sc, regs->lines_occup); 17635 freed = REG_RD(sc, regs->lines_freed); 17636 } else { 17637 BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN); 17638 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 17639 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 17640 break; 17641 } 17642 } 17643 17644 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n", 17645 poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 17646 } 17647 17648 static void 17649 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count) 17650 { 17651 struct pbf_pN_cmd_regs cmd_regs[] = { 17652 {0, (CHIP_IS_E3B0(sc)) ? 17653 PBF_REG_TQ_OCCUPANCY_Q0 : 17654 PBF_REG_P0_TQ_OCCUPANCY, 17655 (CHIP_IS_E3B0(sc)) ? 17656 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 17657 PBF_REG_P0_TQ_LINES_FREED_CNT}, 17658 {1, (CHIP_IS_E3B0(sc)) ? 17659 PBF_REG_TQ_OCCUPANCY_Q1 : 17660 PBF_REG_P1_TQ_OCCUPANCY, 17661 (CHIP_IS_E3B0(sc)) ? 17662 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 17663 PBF_REG_P1_TQ_LINES_FREED_CNT}, 17664 {4, (CHIP_IS_E3B0(sc)) ? 17665 PBF_REG_TQ_OCCUPANCY_LB_Q : 17666 PBF_REG_P4_TQ_OCCUPANCY, 17667 (CHIP_IS_E3B0(sc)) ? 17668 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 17669 PBF_REG_P4_TQ_LINES_FREED_CNT} 17670 }; 17671 17672 struct pbf_pN_buf_regs buf_regs[] = { 17673 {0, (CHIP_IS_E3B0(sc)) ? 17674 PBF_REG_INIT_CRD_Q0 : 17675 PBF_REG_P0_INIT_CRD , 17676 (CHIP_IS_E3B0(sc)) ? 17677 PBF_REG_CREDIT_Q0 : 17678 PBF_REG_P0_CREDIT, 17679 (CHIP_IS_E3B0(sc)) ? 17680 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 17681 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 17682 {1, (CHIP_IS_E3B0(sc)) ? 17683 PBF_REG_INIT_CRD_Q1 : 17684 PBF_REG_P1_INIT_CRD, 17685 (CHIP_IS_E3B0(sc)) ? 17686 PBF_REG_CREDIT_Q1 : 17687 PBF_REG_P1_CREDIT, 17688 (CHIP_IS_E3B0(sc)) ? 17689 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 17690 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 17691 {4, (CHIP_IS_E3B0(sc)) ? 17692 PBF_REG_INIT_CRD_LB_Q : 17693 PBF_REG_P4_INIT_CRD, 17694 (CHIP_IS_E3B0(sc)) ? 17695 PBF_REG_CREDIT_LB_Q : 17696 PBF_REG_P4_CREDIT, 17697 (CHIP_IS_E3B0(sc)) ? 17698 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 17699 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 17700 }; 17701 17702 int i; 17703 17704 /* Verify the command queues are flushed P0, P1, P4 */ 17705 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) { 17706 bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count); 17707 } 17708 17709 /* Verify the transmission buffers are flushed P0, P1, P4 */ 17710 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) { 17711 bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count); 17712 } 17713 } 17714 17715 static void 17716 bxe_hw_enable_status(struct bxe_softc *sc) 17717 { 17718 uint32_t val; 17719 17720 val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF); 17721 BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 17722 17723 val = REG_RD(sc, PBF_REG_DISABLE_PF); 17724 BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val); 17725 17726 val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN); 17727 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 17728 17729 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN); 17730 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 17731 17732 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 17733 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 17734 17735 val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 17736 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 17737 17738 val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 17739 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 17740 17741 val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 17742 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val); 17743 } 17744 17745 static int 17746 bxe_pf_flr_clnup(struct bxe_softc *sc) 17747 { 17748 uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc); 17749 17750 BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc)); 17751 17752 /* Re-enable PF target read access */ 17753 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 17754 17755 /* Poll HW usage counters */ 17756 BLOGD(sc, DBG_LOAD, "Polling usage counters\n"); 17757 if (bxe_poll_hw_usage_counters(sc, poll_cnt)) { 17758 return (-1); 17759 } 17760 17761 /* Zero the igu 'trailing edge' and 'leading edge' */ 17762 17763 /* Send the FW cleanup command */ 17764 if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) { 17765 return (-1); 17766 } 17767 17768 /* ATC cleanup */ 17769 17770 /* Verify TX hw is flushed */ 17771 bxe_tx_hw_flushed(sc, poll_cnt); 17772 17773 /* Wait 100ms (not adjusted according to platform) */ 17774 DELAY(100000); 17775 17776 /* Verify no pending pci transactions */ 17777 if (bxe_is_pcie_pending(sc)) { 17778 BLOGE(sc, "PCIE Transactions still pending\n"); 17779 } 17780 17781 /* Debug */ 17782 bxe_hw_enable_status(sc); 17783 17784 /* 17785 * Master enable - Due to WB DMAE writes performed before this 17786 * register is re-initialized as part of the regular function init 17787 */ 17788 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17789 17790 return (0); 17791 } 17792 17793 static int 17794 bxe_init_hw_func(struct bxe_softc *sc) 17795 { 17796 int port = SC_PORT(sc); 17797 int func = SC_FUNC(sc); 17798 int init_phase = PHASE_PF0 + func; 17799 struct ecore_ilt *ilt = sc->ilt; 17800 uint16_t cdu_ilt_start; 17801 uint32_t addr, val; 17802 uint32_t main_mem_base, main_mem_size, main_mem_prty_clr; 17803 int i, main_mem_width, rc; 17804 17805 BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func); 17806 17807 /* FLR cleanup */ 17808 if (!CHIP_IS_E1x(sc)) { 17809 rc = bxe_pf_flr_clnup(sc); 17810 if (rc) { 17811 BLOGE(sc, "FLR cleanup failed!\n"); 17812 // XXX bxe_fw_dump(sc); 17813 // XXX bxe_idle_chk(sc); 17814 return (rc); 17815 } 17816 } 17817 17818 /* set MSI reconfigure capability */ 17819 if (sc->devinfo.int_block == INT_BLOCK_HC) { 17820 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 17821 val = REG_RD(sc, addr); 17822 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 17823 REG_WR(sc, addr, val); 17824 } 17825 17826 ecore_init_block(sc, BLOCK_PXP, init_phase); 17827 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17828 17829 ilt = sc->ilt; 17830 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 17831 17832 for (i = 0; i < L2_ILT_LINES(sc); i++) { 17833 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt; 17834 ilt->lines[cdu_ilt_start + i].page_mapping = 17835 sc->context[i].vcxt_dma.paddr; 17836 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size; 17837 } 17838 ecore_ilt_init_op(sc, INITOP_SET); 17839 17840 /* Set NIC mode */ 17841 REG_WR(sc, PRS_REG_NIC_MODE, 1); 17842 BLOGD(sc, DBG_LOAD, "NIC MODE configured\n"); 17843 17844 if (!CHIP_IS_E1x(sc)) { 17845 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN; 17846 17847 /* Turn on a single ISR mode in IGU if driver is going to use 17848 * INT#x or MSI 17849 */ 17850 if (sc->interrupt_mode != INTR_MODE_MSIX) { 17851 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 17852 } 17853 17854 /* 17855 * Timers workaround bug: function init part. 17856 * Need to wait 20msec after initializing ILT, 17857 * needed to make sure there are no requests in 17858 * one of the PXP internal queues with "old" ILT addresses 17859 */ 17860 DELAY(20000); 17861 17862 /* 17863 * Master enable - Due to WB DMAE writes performed before this 17864 * register is re-initialized as part of the regular function 17865 * init 17866 */ 17867 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17868 /* Enable the function in IGU */ 17869 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf); 17870 } 17871 17872 sc->dmae_ready = 1; 17873 17874 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17875 17876 if (!CHIP_IS_E1x(sc)) 17877 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); 17878 17879 ecore_init_block(sc, BLOCK_ATC, init_phase); 17880 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17881 ecore_init_block(sc, BLOCK_NIG, init_phase); 17882 ecore_init_block(sc, BLOCK_SRC, init_phase); 17883 ecore_init_block(sc, BLOCK_MISC, init_phase); 17884 ecore_init_block(sc, BLOCK_TCM, init_phase); 17885 ecore_init_block(sc, BLOCK_UCM, init_phase); 17886 ecore_init_block(sc, BLOCK_CCM, init_phase); 17887 ecore_init_block(sc, BLOCK_XCM, init_phase); 17888 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17889 ecore_init_block(sc, BLOCK_USEM, init_phase); 17890 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17891 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17892 17893 if (!CHIP_IS_E1x(sc)) 17894 REG_WR(sc, QM_REG_PF_EN, 1); 17895 17896 if (!CHIP_IS_E1x(sc)) { 17897 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17898 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17899 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17900 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17901 } 17902 ecore_init_block(sc, BLOCK_QM, init_phase); 17903 17904 ecore_init_block(sc, BLOCK_TM, init_phase); 17905 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17906 17907 bxe_iov_init_dq(sc); 17908 17909 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17910 ecore_init_block(sc, BLOCK_PRS, init_phase); 17911 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17912 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17913 ecore_init_block(sc, BLOCK_USDM, init_phase); 17914 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17915 ecore_init_block(sc, BLOCK_UPB, init_phase); 17916 ecore_init_block(sc, BLOCK_XPB, init_phase); 17917 ecore_init_block(sc, BLOCK_PBF, init_phase); 17918 if (!CHIP_IS_E1x(sc)) 17919 REG_WR(sc, PBF_REG_DISABLE_PF, 0); 17920 17921 ecore_init_block(sc, BLOCK_CDU, init_phase); 17922 17923 ecore_init_block(sc, BLOCK_CFC, init_phase); 17924 17925 if (!CHIP_IS_E1x(sc)) 17926 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1); 17927 17928 if (IS_MF(sc)) { 17929 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 17930 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc)); 17931 } 17932 17933 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17934 17935 /* HC init per function */ 17936 if (sc->devinfo.int_block == INT_BLOCK_HC) { 17937 if (CHIP_IS_E1H(sc)) { 17938 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 17939 17940 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17941 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17942 } 17943 ecore_init_block(sc, BLOCK_HC, init_phase); 17944 17945 } else { 17946 int num_segs, sb_idx, prod_offset; 17947 17948 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 17949 17950 if (!CHIP_IS_E1x(sc)) { 17951 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 17952 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 17953 } 17954 17955 ecore_init_block(sc, BLOCK_IGU, init_phase); 17956 17957 if (!CHIP_IS_E1x(sc)) { 17958 int dsb_idx = 0; 17959 /** 17960 * Producer memory: 17961 * E2 mode: address 0-135 match to the mapping memory; 17962 * 136 - PF0 default prod; 137 - PF1 default prod; 17963 * 138 - PF2 default prod; 139 - PF3 default prod; 17964 * 140 - PF0 attn prod; 141 - PF1 attn prod; 17965 * 142 - PF2 attn prod; 143 - PF3 attn prod; 17966 * 144-147 reserved. 17967 * 17968 * E1.5 mode - In backward compatible mode; 17969 * for non default SB; each even line in the memory 17970 * holds the U producer and each odd line hold 17971 * the C producer. The first 128 producers are for 17972 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 17973 * producers are for the DSB for each PF. 17974 * Each PF has five segments: (the order inside each 17975 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 17976 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 17977 * 144-147 attn prods; 17978 */ 17979 /* non-default-status-blocks */ 17980 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 17981 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 17982 for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) { 17983 prod_offset = (sc->igu_base_sb + sb_idx) * 17984 num_segs; 17985 17986 for (i = 0; i < num_segs; i++) { 17987 addr = IGU_REG_PROD_CONS_MEMORY + 17988 (prod_offset + i) * 4; 17989 REG_WR(sc, addr, 0); 17990 } 17991 /* send consumer update with value 0 */ 17992 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx, 17993 USTORM_ID, 0, IGU_INT_NOP, 1); 17994 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx); 17995 } 17996 17997 /* default-status-blocks */ 17998 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 17999 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 18000 18001 if (CHIP_IS_MODE_4_PORT(sc)) 18002 dsb_idx = SC_FUNC(sc); 18003 else 18004 dsb_idx = SC_VN(sc); 18005 18006 prod_offset = (CHIP_INT_MODE_IS_BC(sc) ? 18007 IGU_BC_BASE_DSB_PROD + dsb_idx : 18008 IGU_NORM_BASE_DSB_PROD + dsb_idx); 18009 18010 /* 18011 * igu prods come in chunks of E1HVN_MAX (4) - 18012 * does not matters what is the current chip mode 18013 */ 18014 for (i = 0; i < (num_segs * E1HVN_MAX); 18015 i += E1HVN_MAX) { 18016 addr = IGU_REG_PROD_CONS_MEMORY + 18017 (prod_offset + i)*4; 18018 REG_WR(sc, addr, 0); 18019 } 18020 /* send consumer update with 0 */ 18021 if (CHIP_INT_MODE_IS_BC(sc)) { 18022 bxe_ack_sb(sc, sc->igu_dsb_id, 18023 USTORM_ID, 0, IGU_INT_NOP, 1); 18024 bxe_ack_sb(sc, sc->igu_dsb_id, 18025 CSTORM_ID, 0, IGU_INT_NOP, 1); 18026 bxe_ack_sb(sc, sc->igu_dsb_id, 18027 XSTORM_ID, 0, IGU_INT_NOP, 1); 18028 bxe_ack_sb(sc, sc->igu_dsb_id, 18029 TSTORM_ID, 0, IGU_INT_NOP, 1); 18030 bxe_ack_sb(sc, sc->igu_dsb_id, 18031 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18032 } else { 18033 bxe_ack_sb(sc, sc->igu_dsb_id, 18034 USTORM_ID, 0, IGU_INT_NOP, 1); 18035 bxe_ack_sb(sc, sc->igu_dsb_id, 18036 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18037 } 18038 bxe_igu_clear_sb(sc, sc->igu_dsb_id); 18039 18040 /* !!! these should become driver const once 18041 rf-tool supports split-68 const */ 18042 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 18043 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 18044 REG_WR(sc, IGU_REG_SB_MASK_LSB, 0); 18045 REG_WR(sc, IGU_REG_SB_MASK_MSB, 0); 18046 REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0); 18047 REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0); 18048 } 18049 } 18050 18051 /* Reset PCIE errors for debug */ 18052 REG_WR(sc, 0x2114, 0xffffffff); 18053 REG_WR(sc, 0x2120, 0xffffffff); 18054 18055 if (CHIP_IS_E1x(sc)) { 18056 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 18057 main_mem_base = HC_REG_MAIN_MEMORY + 18058 SC_PORT(sc) * (main_mem_size * 4); 18059 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 18060 main_mem_width = 8; 18061 18062 val = REG_RD(sc, main_mem_prty_clr); 18063 if (val) { 18064 BLOGD(sc, DBG_LOAD, 18065 "Parity errors in HC block during function init (0x%x)!\n", 18066 val); 18067 } 18068 18069 /* Clear "false" parity errors in MSI-X table */ 18070 for (i = main_mem_base; 18071 i < main_mem_base + main_mem_size * 4; 18072 i += main_mem_width) { 18073 bxe_read_dmae(sc, i, main_mem_width / 4); 18074 bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), 18075 i, main_mem_width / 4); 18076 } 18077 /* Clear HC parity attention */ 18078 REG_RD(sc, main_mem_prty_clr); 18079 } 18080 18081 #if 1 18082 /* Enable STORMs SP logging */ 18083 REG_WR8(sc, BAR_USTRORM_INTMEM + 18084 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18085 REG_WR8(sc, BAR_TSTRORM_INTMEM + 18086 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18087 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18088 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18089 REG_WR8(sc, BAR_XSTRORM_INTMEM + 18090 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18091 #endif 18092 18093 elink_phy_probe(&sc->link_params); 18094 18095 return (0); 18096 } 18097 18098 static void 18099 bxe_link_reset(struct bxe_softc *sc) 18100 { 18101 if (!BXE_NOMCP(sc)) { 18102 bxe_acquire_phy_lock(sc); 18103 elink_lfa_reset(&sc->link_params, &sc->link_vars); 18104 bxe_release_phy_lock(sc); 18105 } else { 18106 if (!CHIP_REV_IS_SLOW(sc)) { 18107 BLOGW(sc, "Bootcode is missing - cannot reset link\n"); 18108 } 18109 } 18110 } 18111 18112 static void 18113 bxe_reset_port(struct bxe_softc *sc) 18114 { 18115 int port = SC_PORT(sc); 18116 uint32_t val; 18117 18118 /* reset physical Link */ 18119 bxe_link_reset(sc); 18120 18121 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 18122 18123 /* Do not rcv packets to BRB */ 18124 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 18125 /* Do not direct rcv packets that are not for MCP to the BRB */ 18126 REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 18127 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 18128 18129 /* Configure AEU */ 18130 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 18131 18132 DELAY(100000); 18133 18134 /* Check for BRB port occupancy */ 18135 val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 18136 if (val) { 18137 BLOGD(sc, DBG_LOAD, 18138 "BRB1 is not empty, %d blocks are occupied\n", val); 18139 } 18140 18141 /* TODO: Close Doorbell port? */ 18142 } 18143 18144 static void 18145 bxe_ilt_wr(struct bxe_softc *sc, 18146 uint32_t index, 18147 bus_addr_t addr) 18148 { 18149 int reg; 18150 uint32_t wb_write[2]; 18151 18152 if (CHIP_IS_E1(sc)) { 18153 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 18154 } else { 18155 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 18156 } 18157 18158 wb_write[0] = ONCHIP_ADDR1(addr); 18159 wb_write[1] = ONCHIP_ADDR2(addr); 18160 REG_WR_DMAE(sc, reg, wb_write, 2); 18161 } 18162 18163 static void 18164 bxe_clear_func_ilt(struct bxe_softc *sc, 18165 uint32_t func) 18166 { 18167 uint32_t i, base = FUNC_ILT_BASE(func); 18168 for (i = base; i < base + ILT_PER_FUNC; i++) { 18169 bxe_ilt_wr(sc, i, 0); 18170 } 18171 } 18172 18173 static void 18174 bxe_reset_func(struct bxe_softc *sc) 18175 { 18176 struct bxe_fastpath *fp; 18177 int port = SC_PORT(sc); 18178 int func = SC_FUNC(sc); 18179 int i; 18180 18181 /* Disable the function in the FW */ 18182 REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 18183 REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 18184 REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 18185 REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 18186 18187 /* FP SBs */ 18188 FOR_EACH_ETH_QUEUE(sc, i) { 18189 fp = &sc->fp[i]; 18190 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18191 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 18192 SB_DISABLED); 18193 } 18194 18195 /* SP SB */ 18196 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18197 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 18198 SB_DISABLED); 18199 18200 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) { 18201 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0); 18202 } 18203 18204 /* Configure IGU */ 18205 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18206 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18207 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18208 } else { 18209 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18210 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18211 } 18212 18213 if (CNIC_LOADED(sc)) { 18214 /* Disable Timer scan */ 18215 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 18216 /* 18217 * Wait for at least 10ms and up to 2 second for the timers 18218 * scan to complete 18219 */ 18220 for (i = 0; i < 200; i++) { 18221 DELAY(10000); 18222 if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4)) 18223 break; 18224 } 18225 } 18226 18227 /* Clear ILT */ 18228 bxe_clear_func_ilt(sc, func); 18229 18230 /* 18231 * Timers workaround bug for E2: if this is vnic-3, 18232 * we need to set the entire ilt range for this timers. 18233 */ 18234 if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) { 18235 struct ilt_client_info ilt_cli; 18236 /* use dummy TM client */ 18237 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 18238 ilt_cli.start = 0; 18239 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 18240 ilt_cli.client_num = ILT_CLIENT_TM; 18241 18242 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR); 18243 } 18244 18245 /* this assumes that reset_port() called before reset_func()*/ 18246 if (!CHIP_IS_E1x(sc)) { 18247 bxe_pf_disable(sc); 18248 } 18249 18250 sc->dmae_ready = 0; 18251 } 18252 18253 static int 18254 bxe_gunzip_init(struct bxe_softc *sc) 18255 { 18256 return (0); 18257 } 18258 18259 static void 18260 bxe_gunzip_end(struct bxe_softc *sc) 18261 { 18262 return; 18263 } 18264 18265 static int 18266 bxe_init_firmware(struct bxe_softc *sc) 18267 { 18268 if (CHIP_IS_E1(sc)) { 18269 ecore_init_e1_firmware(sc); 18270 sc->iro_array = e1_iro_arr; 18271 } else if (CHIP_IS_E1H(sc)) { 18272 ecore_init_e1h_firmware(sc); 18273 sc->iro_array = e1h_iro_arr; 18274 } else if (!CHIP_IS_E1x(sc)) { 18275 ecore_init_e2_firmware(sc); 18276 sc->iro_array = e2_iro_arr; 18277 } else { 18278 BLOGE(sc, "Unsupported chip revision\n"); 18279 return (-1); 18280 } 18281 18282 return (0); 18283 } 18284 18285 static void 18286 bxe_release_firmware(struct bxe_softc *sc) 18287 { 18288 /* Do nothing */ 18289 return; 18290 } 18291 18292 static int 18293 ecore_gunzip(struct bxe_softc *sc, 18294 const uint8_t *zbuf, 18295 int len) 18296 { 18297 /* XXX : Implement... */ 18298 BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n"); 18299 return (FALSE); 18300 } 18301 18302 static void 18303 ecore_reg_wr_ind(struct bxe_softc *sc, 18304 uint32_t addr, 18305 uint32_t val) 18306 { 18307 bxe_reg_wr_ind(sc, addr, val); 18308 } 18309 18310 static void 18311 ecore_write_dmae_phys_len(struct bxe_softc *sc, 18312 bus_addr_t phys_addr, 18313 uint32_t addr, 18314 uint32_t len) 18315 { 18316 bxe_write_dmae_phys_len(sc, phys_addr, addr, len); 18317 } 18318 18319 void 18320 ecore_storm_memset_struct(struct bxe_softc *sc, 18321 uint32_t addr, 18322 size_t size, 18323 uint32_t *data) 18324 { 18325 uint8_t i; 18326 for (i = 0; i < size/4; i++) { 18327 REG_WR(sc, addr + (i * 4), data[i]); 18328 } 18329 } 18330 18331 18332 /* 18333 * character device - ioctl interface definitions 18334 */ 18335 18336 18337 #include "bxe_dump.h" 18338 #include "bxe_ioctl.h" 18339 #include <sys/conf.h> 18340 18341 static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 18342 struct thread *td); 18343 18344 static struct cdevsw bxe_cdevsw = { 18345 .d_version = D_VERSION, 18346 .d_ioctl = bxe_eioctl, 18347 .d_name = "bxecnic", 18348 }; 18349 18350 #define BXE_PATH(sc) (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1)) 18351 18352 18353 #define DUMP_ALL_PRESETS 0x1FFF 18354 #define DUMP_MAX_PRESETS 13 18355 #define IS_E1_REG(chips) ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1) 18356 #define IS_E1H_REG(chips) ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H) 18357 #define IS_E2_REG(chips) ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2) 18358 #define IS_E3A0_REG(chips) ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0) 18359 #define IS_E3B0_REG(chips) ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0) 18360 18361 #define IS_REG_IN_PRESET(presets, idx) \ 18362 ((presets & (1 << (idx-1))) == (1 << (idx-1))) 18363 18364 18365 static int 18366 bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset) 18367 { 18368 if (CHIP_IS_E1(sc)) 18369 return dump_num_registers[0][preset-1]; 18370 else if (CHIP_IS_E1H(sc)) 18371 return dump_num_registers[1][preset-1]; 18372 else if (CHIP_IS_E2(sc)) 18373 return dump_num_registers[2][preset-1]; 18374 else if (CHIP_IS_E3A0(sc)) 18375 return dump_num_registers[3][preset-1]; 18376 else if (CHIP_IS_E3B0(sc)) 18377 return dump_num_registers[4][preset-1]; 18378 else 18379 return 0; 18380 } 18381 18382 static int 18383 bxe_get_total_regs_len32(struct bxe_softc *sc) 18384 { 18385 uint32_t preset_idx; 18386 int regdump_len32 = 0; 18387 18388 18389 /* Calculate the total preset regs length */ 18390 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { 18391 regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx); 18392 } 18393 18394 return regdump_len32; 18395 } 18396 18397 static const uint32_t * 18398 __bxe_get_page_addr_ar(struct bxe_softc *sc) 18399 { 18400 if (CHIP_IS_E2(sc)) 18401 return page_vals_e2; 18402 else if (CHIP_IS_E3(sc)) 18403 return page_vals_e3; 18404 else 18405 return NULL; 18406 } 18407 18408 static uint32_t 18409 __bxe_get_page_reg_num(struct bxe_softc *sc) 18410 { 18411 if (CHIP_IS_E2(sc)) 18412 return PAGE_MODE_VALUES_E2; 18413 else if (CHIP_IS_E3(sc)) 18414 return PAGE_MODE_VALUES_E3; 18415 else 18416 return 0; 18417 } 18418 18419 static const uint32_t * 18420 __bxe_get_page_write_ar(struct bxe_softc *sc) 18421 { 18422 if (CHIP_IS_E2(sc)) 18423 return page_write_regs_e2; 18424 else if (CHIP_IS_E3(sc)) 18425 return page_write_regs_e3; 18426 else 18427 return NULL; 18428 } 18429 18430 static uint32_t 18431 __bxe_get_page_write_num(struct bxe_softc *sc) 18432 { 18433 if (CHIP_IS_E2(sc)) 18434 return PAGE_WRITE_REGS_E2; 18435 else if (CHIP_IS_E3(sc)) 18436 return PAGE_WRITE_REGS_E3; 18437 else 18438 return 0; 18439 } 18440 18441 static const struct reg_addr * 18442 __bxe_get_page_read_ar(struct bxe_softc *sc) 18443 { 18444 if (CHIP_IS_E2(sc)) 18445 return page_read_regs_e2; 18446 else if (CHIP_IS_E3(sc)) 18447 return page_read_regs_e3; 18448 else 18449 return NULL; 18450 } 18451 18452 static uint32_t 18453 __bxe_get_page_read_num(struct bxe_softc *sc) 18454 { 18455 if (CHIP_IS_E2(sc)) 18456 return PAGE_READ_REGS_E2; 18457 else if (CHIP_IS_E3(sc)) 18458 return PAGE_READ_REGS_E3; 18459 else 18460 return 0; 18461 } 18462 18463 static bool 18464 bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info) 18465 { 18466 if (CHIP_IS_E1(sc)) 18467 return IS_E1_REG(reg_info->chips); 18468 else if (CHIP_IS_E1H(sc)) 18469 return IS_E1H_REG(reg_info->chips); 18470 else if (CHIP_IS_E2(sc)) 18471 return IS_E2_REG(reg_info->chips); 18472 else if (CHIP_IS_E3A0(sc)) 18473 return IS_E3A0_REG(reg_info->chips); 18474 else if (CHIP_IS_E3B0(sc)) 18475 return IS_E3B0_REG(reg_info->chips); 18476 else 18477 return 0; 18478 } 18479 18480 static bool 18481 bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info) 18482 { 18483 if (CHIP_IS_E1(sc)) 18484 return IS_E1_REG(wreg_info->chips); 18485 else if (CHIP_IS_E1H(sc)) 18486 return IS_E1H_REG(wreg_info->chips); 18487 else if (CHIP_IS_E2(sc)) 18488 return IS_E2_REG(wreg_info->chips); 18489 else if (CHIP_IS_E3A0(sc)) 18490 return IS_E3A0_REG(wreg_info->chips); 18491 else if (CHIP_IS_E3B0(sc)) 18492 return IS_E3B0_REG(wreg_info->chips); 18493 else 18494 return 0; 18495 } 18496 18497 /** 18498 * bxe_read_pages_regs - read "paged" registers 18499 * 18500 * @bp device handle 18501 * @p output buffer 18502 * 18503 * Reads "paged" memories: memories that may only be read by first writing to a 18504 * specific address ("write address") and then reading from a specific address 18505 * ("read address"). There may be more than one write address per "page" and 18506 * more than one read address per write address. 18507 */ 18508 static void 18509 bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset) 18510 { 18511 uint32_t i, j, k, n; 18512 18513 /* addresses of the paged registers */ 18514 const uint32_t *page_addr = __bxe_get_page_addr_ar(sc); 18515 /* number of paged registers */ 18516 int num_pages = __bxe_get_page_reg_num(sc); 18517 /* write addresses */ 18518 const uint32_t *write_addr = __bxe_get_page_write_ar(sc); 18519 /* number of write addresses */ 18520 int write_num = __bxe_get_page_write_num(sc); 18521 /* read addresses info */ 18522 const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc); 18523 /* number of read addresses */ 18524 int read_num = __bxe_get_page_read_num(sc); 18525 uint32_t addr, size; 18526 18527 for (i = 0; i < num_pages; i++) { 18528 for (j = 0; j < write_num; j++) { 18529 REG_WR(sc, write_addr[j], page_addr[i]); 18530 18531 for (k = 0; k < read_num; k++) { 18532 if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) { 18533 size = read_addr[k].size; 18534 for (n = 0; n < size; n++) { 18535 addr = read_addr[k].addr + n*4; 18536 *p++ = REG_RD(sc, addr); 18537 } 18538 } 18539 } 18540 } 18541 } 18542 return; 18543 } 18544 18545 18546 static int 18547 bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset) 18548 { 18549 uint32_t i, j, addr; 18550 const struct wreg_addr *wreg_addr_p = NULL; 18551 18552 if (CHIP_IS_E1(sc)) 18553 wreg_addr_p = &wreg_addr_e1; 18554 else if (CHIP_IS_E1H(sc)) 18555 wreg_addr_p = &wreg_addr_e1h; 18556 else if (CHIP_IS_E2(sc)) 18557 wreg_addr_p = &wreg_addr_e2; 18558 else if (CHIP_IS_E3A0(sc)) 18559 wreg_addr_p = &wreg_addr_e3; 18560 else if (CHIP_IS_E3B0(sc)) 18561 wreg_addr_p = &wreg_addr_e3b0; 18562 else 18563 return (-1); 18564 18565 /* Read the idle_chk registers */ 18566 for (i = 0; i < IDLE_REGS_COUNT; i++) { 18567 if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) && 18568 IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) { 18569 for (j = 0; j < idle_reg_addrs[i].size; j++) 18570 *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4); 18571 } 18572 } 18573 18574 /* Read the regular registers */ 18575 for (i = 0; i < REGS_COUNT; i++) { 18576 if (bxe_is_reg_in_chip(sc, ®_addrs[i]) && 18577 IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) { 18578 for (j = 0; j < reg_addrs[i].size; j++) 18579 *p++ = REG_RD(sc, reg_addrs[i].addr + j*4); 18580 } 18581 } 18582 18583 /* Read the CAM registers */ 18584 if (bxe_is_wreg_in_chip(sc, wreg_addr_p) && 18585 IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) { 18586 for (i = 0; i < wreg_addr_p->size; i++) { 18587 *p++ = REG_RD(sc, wreg_addr_p->addr + i*4); 18588 18589 /* In case of wreg_addr register, read additional 18590 registers from read_regs array 18591 */ 18592 for (j = 0; j < wreg_addr_p->read_regs_count; j++) { 18593 addr = *(wreg_addr_p->read_regs); 18594 *p++ = REG_RD(sc, addr + j*4); 18595 } 18596 } 18597 } 18598 18599 /* Paged registers are supported in E2 & E3 only */ 18600 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 18601 /* Read "paged" registers */ 18602 bxe_read_pages_regs(sc, p, preset); 18603 } 18604 18605 return 0; 18606 } 18607 18608 static int 18609 bxe_grc_dump(struct bxe_softc *sc) 18610 { 18611 int rval = 0; 18612 uint32_t preset_idx; 18613 uint8_t *buf; 18614 uint32_t size; 18615 struct dump_header *d_hdr; 18616 18617 if (sc->grcdump_done) 18618 return (rval); 18619 18620 ecore_disable_blocks_parity(sc); 18621 18622 buf = sc->grc_dump; 18623 d_hdr = sc->grc_dump; 18624 18625 d_hdr->header_size = (sizeof(struct dump_header) >> 2) - 1; 18626 d_hdr->version = BNX2X_DUMP_VERSION; 18627 d_hdr->preset = DUMP_ALL_PRESETS; 18628 18629 if (CHIP_IS_E1(sc)) { 18630 d_hdr->dump_meta_data = DUMP_CHIP_E1; 18631 } else if (CHIP_IS_E1H(sc)) { 18632 d_hdr->dump_meta_data = DUMP_CHIP_E1H; 18633 } else if (CHIP_IS_E2(sc)) { 18634 d_hdr->dump_meta_data = DUMP_CHIP_E2 | 18635 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18636 } else if (CHIP_IS_E3A0(sc)) { 18637 d_hdr->dump_meta_data = DUMP_CHIP_E3A0 | 18638 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18639 } else if (CHIP_IS_E3B0(sc)) { 18640 d_hdr->dump_meta_data = DUMP_CHIP_E3B0 | 18641 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18642 } 18643 18644 buf += sizeof(struct dump_header); 18645 18646 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { 18647 18648 /* Skip presets with IOR */ 18649 if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) || 18650 (preset_idx == 11)) 18651 continue; 18652 18653 rval = bxe_get_preset_regs(sc, sc->grc_dump, preset_idx); 18654 18655 if (rval) 18656 break; 18657 18658 size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t)); 18659 18660 buf += size; 18661 } 18662 18663 ecore_clear_blocks_parity(sc); 18664 ecore_enable_blocks_parity(sc); 18665 18666 sc->grcdump_done = 1; 18667 return(rval); 18668 } 18669 18670 static int 18671 bxe_add_cdev(struct bxe_softc *sc) 18672 { 18673 int grc_dump_size; 18674 18675 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 18676 sizeof(struct dump_header); 18677 18678 sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT); 18679 18680 if (sc->grc_dump == NULL) 18681 return (-1); 18682 18683 sc->ioctl_dev = make_dev(&bxe_cdevsw, 18684 sc->ifp->if_dunit, 18685 UID_ROOT, 18686 GID_WHEEL, 18687 0600, 18688 "%s", 18689 if_name(sc->ifp)); 18690 18691 if (sc->ioctl_dev == NULL) { 18692 18693 free(sc->grc_dump, M_DEVBUF); 18694 18695 return (-1); 18696 } 18697 18698 sc->ioctl_dev->si_drv1 = sc; 18699 18700 return (0); 18701 } 18702 18703 static void 18704 bxe_del_cdev(struct bxe_softc *sc) 18705 { 18706 if (sc->ioctl_dev != NULL) 18707 destroy_dev(sc->ioctl_dev); 18708 18709 if (sc->grc_dump == NULL) 18710 free(sc->grc_dump, M_DEVBUF); 18711 18712 return; 18713 } 18714 18715 static int 18716 bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 18717 struct thread *td) 18718 { 18719 struct bxe_softc *sc; 18720 int rval = 0; 18721 device_t pci_dev; 18722 bxe_grcdump_t *dump = NULL; 18723 int grc_dump_size; 18724 18725 if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL) 18726 return ENXIO; 18727 18728 pci_dev= sc->dev; 18729 18730 dump = (bxe_grcdump_t *)data; 18731 18732 switch(cmd) { 18733 18734 case BXE_GRC_DUMP_SIZE: 18735 dump->pci_func = sc->pcie_func; 18736 dump->grcdump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 18737 sizeof(struct dump_header); 18738 break; 18739 18740 case BXE_GRC_DUMP: 18741 18742 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 18743 sizeof(struct dump_header); 18744 18745 if ((sc->grc_dump == NULL) || (dump->grcdump == NULL) || 18746 (dump->grcdump_size < grc_dump_size) || (!sc->grcdump_done)) { 18747 rval = EINVAL; 18748 break; 18749 } 18750 dump->grcdump_dwords = grc_dump_size >> 2; 18751 rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size); 18752 sc->grcdump_done = 0; 18753 18754 break; 18755 18756 default: 18757 break; 18758 } 18759 18760 return (rval); 18761 } 18762