xref: /freebsd/sys/dev/bxe/bxe.c (revision 342af4d5efec74bb4bc11261fdd9991c53616f54)
1 /*-
2  * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24  * THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #define BXE_DRIVER_VERSION "1.78.81"
31 
32 #include "bxe.h"
33 #include "ecore_sp.h"
34 #include "ecore_init.h"
35 #include "ecore_init_ops.h"
36 
37 #include "57710_int_offsets.h"
38 #include "57711_int_offsets.h"
39 #include "57712_int_offsets.h"
40 
41 /*
42  * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
43  * explicitly here for older kernels that don't include this changeset.
44  */
45 #ifndef CTLTYPE_U64
46 #define CTLTYPE_U64      CTLTYPE_QUAD
47 #define sysctl_handle_64 sysctl_handle_quad
48 #endif
49 
50 /*
51  * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
52  * here as zero(0) for older kernels that don't include this changeset
53  * thereby masking the functionality.
54  */
55 #ifndef CSUM_TCP_IPV6
56 #define CSUM_TCP_IPV6 0
57 #define CSUM_UDP_IPV6 0
58 #endif
59 
60 /*
61  * pci_find_cap was added in r219865. Re-define this at pci_find_extcap
62  * for older kernels that don't include this changeset.
63  */
64 #if __FreeBSD_version < 900035
65 #define pci_find_cap pci_find_extcap
66 #endif
67 
68 #define BXE_DEF_SB_ATT_IDX 0x0001
69 #define BXE_DEF_SB_IDX     0x0002
70 
71 /*
72  * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
73  * function HW initialization.
74  */
75 #define FLR_WAIT_USEC     10000 /* 10 msecs */
76 #define FLR_WAIT_INTERVAL 50    /* usecs */
77 #define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
78 
79 struct pbf_pN_buf_regs {
80     int pN;
81     uint32_t init_crd;
82     uint32_t crd;
83     uint32_t crd_freed;
84 };
85 
86 struct pbf_pN_cmd_regs {
87     int pN;
88     uint32_t lines_occup;
89     uint32_t lines_freed;
90 };
91 
92 /*
93  * PCI Device ID Table used by bxe_probe().
94  */
95 #define BXE_DEVDESC_MAX 64
96 static struct bxe_device_type bxe_devs[] = {
97     {
98         BRCM_VENDORID,
99         CHIP_NUM_57710,
100         PCI_ANY_ID, PCI_ANY_ID,
101         "QLogic NetXtreme II BCM57710 10GbE"
102     },
103     {
104         BRCM_VENDORID,
105         CHIP_NUM_57711,
106         PCI_ANY_ID, PCI_ANY_ID,
107         "QLogic NetXtreme II BCM57711 10GbE"
108     },
109     {
110         BRCM_VENDORID,
111         CHIP_NUM_57711E,
112         PCI_ANY_ID, PCI_ANY_ID,
113         "QLogic NetXtreme II BCM57711E 10GbE"
114     },
115     {
116         BRCM_VENDORID,
117         CHIP_NUM_57712,
118         PCI_ANY_ID, PCI_ANY_ID,
119         "QLogic NetXtreme II BCM57712 10GbE"
120     },
121     {
122         BRCM_VENDORID,
123         CHIP_NUM_57712_MF,
124         PCI_ANY_ID, PCI_ANY_ID,
125         "QLogic NetXtreme II BCM57712 MF 10GbE"
126     },
127     {
128         BRCM_VENDORID,
129         CHIP_NUM_57800,
130         PCI_ANY_ID, PCI_ANY_ID,
131         "QLogic NetXtreme II BCM57800 10GbE"
132     },
133     {
134         BRCM_VENDORID,
135         CHIP_NUM_57800_MF,
136         PCI_ANY_ID, PCI_ANY_ID,
137         "QLogic NetXtreme II BCM57800 MF 10GbE"
138     },
139     {
140         BRCM_VENDORID,
141         CHIP_NUM_57810,
142         PCI_ANY_ID, PCI_ANY_ID,
143         "QLogic NetXtreme II BCM57810 10GbE"
144     },
145     {
146         BRCM_VENDORID,
147         CHIP_NUM_57810_MF,
148         PCI_ANY_ID, PCI_ANY_ID,
149         "QLogic NetXtreme II BCM57810 MF 10GbE"
150     },
151     {
152         BRCM_VENDORID,
153         CHIP_NUM_57811,
154         PCI_ANY_ID, PCI_ANY_ID,
155         "QLogic NetXtreme II BCM57811 10GbE"
156     },
157     {
158         BRCM_VENDORID,
159         CHIP_NUM_57811_MF,
160         PCI_ANY_ID, PCI_ANY_ID,
161         "QLogic NetXtreme II BCM57811 MF 10GbE"
162     },
163     {
164         BRCM_VENDORID,
165         CHIP_NUM_57840_4_10,
166         PCI_ANY_ID, PCI_ANY_ID,
167         "QLogic NetXtreme II BCM57840 4x10GbE"
168     },
169     {
170         BRCM_VENDORID,
171         CHIP_NUM_57840_MF,
172         PCI_ANY_ID, PCI_ANY_ID,
173         "QLogic NetXtreme II BCM57840 MF 10GbE"
174     },
175     {
176         0, 0, 0, 0, NULL
177     }
178 };
179 
180 MALLOC_DECLARE(M_BXE_ILT);
181 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
182 
183 /*
184  * FreeBSD device entry points.
185  */
186 static int bxe_probe(device_t);
187 static int bxe_attach(device_t);
188 static int bxe_detach(device_t);
189 static int bxe_shutdown(device_t);
190 
191 /*
192  * FreeBSD KLD module/device interface event handler method.
193  */
194 static device_method_t bxe_methods[] = {
195     /* Device interface (device_if.h) */
196     DEVMETHOD(device_probe,     bxe_probe),
197     DEVMETHOD(device_attach,    bxe_attach),
198     DEVMETHOD(device_detach,    bxe_detach),
199     DEVMETHOD(device_shutdown,  bxe_shutdown),
200     /* Bus interface (bus_if.h) */
201     DEVMETHOD(bus_print_child,  bus_generic_print_child),
202     DEVMETHOD(bus_driver_added, bus_generic_driver_added),
203     KOBJMETHOD_END
204 };
205 
206 /*
207  * FreeBSD KLD Module data declaration
208  */
209 static driver_t bxe_driver = {
210     "bxe",                   /* module name */
211     bxe_methods,             /* event handler */
212     sizeof(struct bxe_softc) /* extra data */
213 };
214 
215 /*
216  * FreeBSD dev class is needed to manage dev instances and
217  * to associate with a bus type
218  */
219 static devclass_t bxe_devclass;
220 
221 MODULE_DEPEND(bxe, pci, 1, 1, 1);
222 MODULE_DEPEND(bxe, ether, 1, 1, 1);
223 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0);
224 
225 /* resources needed for unloading a previously loaded device */
226 
227 #define BXE_PREV_WAIT_NEEDED 1
228 struct mtx bxe_prev_mtx;
229 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
230 struct bxe_prev_list_node {
231     LIST_ENTRY(bxe_prev_list_node) node;
232     uint8_t bus;
233     uint8_t slot;
234     uint8_t path;
235     uint8_t aer; /* XXX automatic error recovery */
236     uint8_t undi;
237 };
238 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
239 
240 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
241 
242 /* Tunable device values... */
243 
244 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters");
245 
246 /* Debug */
247 unsigned long bxe_debug = 0;
248 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN,
249              &bxe_debug, 0, "Debug logging mode");
250 
251 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
252 static int bxe_interrupt_mode = INTR_MODE_MSIX;
253 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
254            &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
255 
256 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
257 static int bxe_queue_count = 4;
258 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
259            &bxe_queue_count, 0, "Multi-Queue queue count");
260 
261 /* max number of buffers per queue (default RX_BD_USABLE) */
262 static int bxe_max_rx_bufs = 0;
263 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
264            &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
265 
266 /* Host interrupt coalescing RX tick timer (usecs) */
267 static int bxe_hc_rx_ticks = 25;
268 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
269            &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
270 
271 /* Host interrupt coalescing TX tick timer (usecs) */
272 static int bxe_hc_tx_ticks = 50;
273 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
274            &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
275 
276 /* Maximum number of Rx packets to process at a time */
277 static int bxe_rx_budget = 0xffffffff;
278 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
279            &bxe_rx_budget, 0, "Rx processing budget");
280 
281 /* Maximum LRO aggregation size */
282 static int bxe_max_aggregation_size = 0;
283 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
284            &bxe_max_aggregation_size, 0, "max aggregation size");
285 
286 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
287 static int bxe_mrrs = -1;
288 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
289            &bxe_mrrs, 0, "PCIe maximum read request size");
290 
291 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
292 static int bxe_autogreeen = 0;
293 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
294            &bxe_autogreeen, 0, "AutoGrEEEn support");
295 
296 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
297 static int bxe_udp_rss = 0;
298 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
299            &bxe_udp_rss, 0, "UDP RSS support");
300 
301 
302 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
303 
304 #define STATS_OFFSET32(stat_name)                   \
305     (offsetof(struct bxe_eth_stats, stat_name) / 4)
306 
307 #define Q_STATS_OFFSET32(stat_name)                   \
308     (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
309 
310 static const struct {
311     uint32_t offset;
312     uint32_t size;
313     uint32_t flags;
314 #define STATS_FLAGS_PORT  1
315 #define STATS_FLAGS_FUNC  2 /* MF only cares about function stats */
316 #define STATS_FLAGS_BOTH  (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
317     char string[STAT_NAME_LEN];
318 } bxe_eth_stats_arr[] = {
319     { STATS_OFFSET32(total_bytes_received_hi),
320                 8, STATS_FLAGS_BOTH, "rx_bytes" },
321     { STATS_OFFSET32(error_bytes_received_hi),
322                 8, STATS_FLAGS_BOTH, "rx_error_bytes" },
323     { STATS_OFFSET32(total_unicast_packets_received_hi),
324                 8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
325     { STATS_OFFSET32(total_multicast_packets_received_hi),
326                 8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
327     { STATS_OFFSET32(total_broadcast_packets_received_hi),
328                 8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
329     { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
330                 8, STATS_FLAGS_PORT, "rx_crc_errors" },
331     { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
332                 8, STATS_FLAGS_PORT, "rx_align_errors" },
333     { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
334                 8, STATS_FLAGS_PORT, "rx_undersize_packets" },
335     { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
336                 8, STATS_FLAGS_PORT, "rx_oversize_packets" },
337     { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
338                 8, STATS_FLAGS_PORT, "rx_fragments" },
339     { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
340                 8, STATS_FLAGS_PORT, "rx_jabbers" },
341     { STATS_OFFSET32(no_buff_discard_hi),
342                 8, STATS_FLAGS_BOTH, "rx_discards" },
343     { STATS_OFFSET32(mac_filter_discard),
344                 4, STATS_FLAGS_PORT, "rx_filtered_packets" },
345     { STATS_OFFSET32(mf_tag_discard),
346                 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
347     { STATS_OFFSET32(pfc_frames_received_hi),
348                 8, STATS_FLAGS_PORT, "pfc_frames_received" },
349     { STATS_OFFSET32(pfc_frames_sent_hi),
350                 8, STATS_FLAGS_PORT, "pfc_frames_sent" },
351     { STATS_OFFSET32(brb_drop_hi),
352                 8, STATS_FLAGS_PORT, "rx_brb_discard" },
353     { STATS_OFFSET32(brb_truncate_hi),
354                 8, STATS_FLAGS_PORT, "rx_brb_truncate" },
355     { STATS_OFFSET32(pause_frames_received_hi),
356                 8, STATS_FLAGS_PORT, "rx_pause_frames" },
357     { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
358                 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
359     { STATS_OFFSET32(nig_timer_max),
360                 4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
361     { STATS_OFFSET32(total_bytes_transmitted_hi),
362                 8, STATS_FLAGS_BOTH, "tx_bytes" },
363     { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
364                 8, STATS_FLAGS_PORT, "tx_error_bytes" },
365     { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
366                 8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
367     { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
368                 8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
369     { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
370                 8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
371     { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
372                 8, STATS_FLAGS_PORT, "tx_mac_errors" },
373     { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
374                 8, STATS_FLAGS_PORT, "tx_carrier_errors" },
375     { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
376                 8, STATS_FLAGS_PORT, "tx_single_collisions" },
377     { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
378                 8, STATS_FLAGS_PORT, "tx_multi_collisions" },
379     { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
380                 8, STATS_FLAGS_PORT, "tx_deferred" },
381     { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
382                 8, STATS_FLAGS_PORT, "tx_excess_collisions" },
383     { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
384                 8, STATS_FLAGS_PORT, "tx_late_collisions" },
385     { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
386                 8, STATS_FLAGS_PORT, "tx_total_collisions" },
387     { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
388                 8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
389     { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
390                 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
391     { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
392                 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
393     { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
394                 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
395     { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
396                 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
397     { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
398                 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
399     { STATS_OFFSET32(etherstatspktsover1522octets_hi),
400                 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
401     { STATS_OFFSET32(pause_frames_sent_hi),
402                 8, STATS_FLAGS_PORT, "tx_pause_frames" },
403     { STATS_OFFSET32(total_tpa_aggregations_hi),
404                 8, STATS_FLAGS_FUNC, "tpa_aggregations" },
405     { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
406                 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
407     { STATS_OFFSET32(total_tpa_bytes_hi),
408                 8, STATS_FLAGS_FUNC, "tpa_bytes"},
409     { STATS_OFFSET32(eee_tx_lpi),
410                 4, STATS_FLAGS_PORT, "eee_tx_lpi"},
411     { STATS_OFFSET32(rx_calls),
412                 4, STATS_FLAGS_FUNC, "rx_calls"},
413     { STATS_OFFSET32(rx_pkts),
414                 4, STATS_FLAGS_FUNC, "rx_pkts"},
415     { STATS_OFFSET32(rx_tpa_pkts),
416                 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
417     { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
418                 4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"},
419     { STATS_OFFSET32(rx_bxe_service_rxsgl),
420                 4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"},
421     { STATS_OFFSET32(rx_jumbo_sge_pkts),
422                 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"},
423     { STATS_OFFSET32(rx_soft_errors),
424                 4, STATS_FLAGS_FUNC, "rx_soft_errors"},
425     { STATS_OFFSET32(rx_hw_csum_errors),
426                 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
427     { STATS_OFFSET32(rx_ofld_frames_csum_ip),
428                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
429     { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
430                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
431     { STATS_OFFSET32(rx_budget_reached),
432                 4, STATS_FLAGS_FUNC, "rx_budget_reached"},
433     { STATS_OFFSET32(tx_pkts),
434                 4, STATS_FLAGS_FUNC, "tx_pkts"},
435     { STATS_OFFSET32(tx_soft_errors),
436                 4, STATS_FLAGS_FUNC, "tx_soft_errors"},
437     { STATS_OFFSET32(tx_ofld_frames_csum_ip),
438                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
439     { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
440                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
441     { STATS_OFFSET32(tx_ofld_frames_csum_udp),
442                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
443     { STATS_OFFSET32(tx_ofld_frames_lso),
444                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
445     { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
446                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
447     { STATS_OFFSET32(tx_encap_failures),
448                 4, STATS_FLAGS_FUNC, "tx_encap_failures"},
449     { STATS_OFFSET32(tx_hw_queue_full),
450                 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
451     { STATS_OFFSET32(tx_hw_max_queue_depth),
452                 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
453     { STATS_OFFSET32(tx_dma_mapping_failure),
454                 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
455     { STATS_OFFSET32(tx_max_drbr_queue_depth),
456                 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
457     { STATS_OFFSET32(tx_window_violation_std),
458                 4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
459     { STATS_OFFSET32(tx_window_violation_tso),
460                 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
461     { STATS_OFFSET32(tx_chain_lost_mbuf),
462                 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
463     { STATS_OFFSET32(tx_frames_deferred),
464                 4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
465     { STATS_OFFSET32(tx_queue_xoff),
466                 4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
467     { STATS_OFFSET32(mbuf_defrag_attempts),
468                 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
469     { STATS_OFFSET32(mbuf_defrag_failures),
470                 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
471     { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
472                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
473     { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
474                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
475     { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
476                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
477     { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
478                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
479     { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
480                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
481     { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
482                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
483     { STATS_OFFSET32(mbuf_alloc_tx),
484                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
485     { STATS_OFFSET32(mbuf_alloc_rx),
486                 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
487     { STATS_OFFSET32(mbuf_alloc_sge),
488                 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
489     { STATS_OFFSET32(mbuf_alloc_tpa),
490                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}
491 };
492 
493 static const struct {
494     uint32_t offset;
495     uint32_t size;
496     char string[STAT_NAME_LEN];
497 } bxe_eth_q_stats_arr[] = {
498     { Q_STATS_OFFSET32(total_bytes_received_hi),
499                 8, "rx_bytes" },
500     { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
501                 8, "rx_ucast_packets" },
502     { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
503                 8, "rx_mcast_packets" },
504     { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
505                 8, "rx_bcast_packets" },
506     { Q_STATS_OFFSET32(no_buff_discard_hi),
507                 8, "rx_discards" },
508     { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
509                 8, "tx_bytes" },
510     { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
511                 8, "tx_ucast_packets" },
512     { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
513                 8, "tx_mcast_packets" },
514     { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
515                 8, "tx_bcast_packets" },
516     { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
517                 8, "tpa_aggregations" },
518     { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
519                 8, "tpa_aggregated_frames"},
520     { Q_STATS_OFFSET32(total_tpa_bytes_hi),
521                 8, "tpa_bytes"},
522     { Q_STATS_OFFSET32(rx_calls),
523                 4, "rx_calls"},
524     { Q_STATS_OFFSET32(rx_pkts),
525                 4, "rx_pkts"},
526     { Q_STATS_OFFSET32(rx_tpa_pkts),
527                 4, "rx_tpa_pkts"},
528     { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
529                 4, "rx_erroneous_jumbo_sge_pkts"},
530     { Q_STATS_OFFSET32(rx_bxe_service_rxsgl),
531                 4, "rx_bxe_service_rxsgl"},
532     { Q_STATS_OFFSET32(rx_jumbo_sge_pkts),
533                 4, "rx_jumbo_sge_pkts"},
534     { Q_STATS_OFFSET32(rx_soft_errors),
535                 4, "rx_soft_errors"},
536     { Q_STATS_OFFSET32(rx_hw_csum_errors),
537                 4, "rx_hw_csum_errors"},
538     { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
539                 4, "rx_ofld_frames_csum_ip"},
540     { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
541                 4, "rx_ofld_frames_csum_tcp_udp"},
542     { Q_STATS_OFFSET32(rx_budget_reached),
543                 4, "rx_budget_reached"},
544     { Q_STATS_OFFSET32(tx_pkts),
545                 4, "tx_pkts"},
546     { Q_STATS_OFFSET32(tx_soft_errors),
547                 4, "tx_soft_errors"},
548     { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
549                 4, "tx_ofld_frames_csum_ip"},
550     { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
551                 4, "tx_ofld_frames_csum_tcp"},
552     { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
553                 4, "tx_ofld_frames_csum_udp"},
554     { Q_STATS_OFFSET32(tx_ofld_frames_lso),
555                 4, "tx_ofld_frames_lso"},
556     { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
557                 4, "tx_ofld_frames_lso_hdr_splits"},
558     { Q_STATS_OFFSET32(tx_encap_failures),
559                 4, "tx_encap_failures"},
560     { Q_STATS_OFFSET32(tx_hw_queue_full),
561                 4, "tx_hw_queue_full"},
562     { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
563                 4, "tx_hw_max_queue_depth"},
564     { Q_STATS_OFFSET32(tx_dma_mapping_failure),
565                 4, "tx_dma_mapping_failure"},
566     { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
567                 4, "tx_max_drbr_queue_depth"},
568     { Q_STATS_OFFSET32(tx_window_violation_std),
569                 4, "tx_window_violation_std"},
570     { Q_STATS_OFFSET32(tx_window_violation_tso),
571                 4, "tx_window_violation_tso"},
572     { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
573                 4, "tx_chain_lost_mbuf"},
574     { Q_STATS_OFFSET32(tx_frames_deferred),
575                 4, "tx_frames_deferred"},
576     { Q_STATS_OFFSET32(tx_queue_xoff),
577                 4, "tx_queue_xoff"},
578     { Q_STATS_OFFSET32(mbuf_defrag_attempts),
579                 4, "mbuf_defrag_attempts"},
580     { Q_STATS_OFFSET32(mbuf_defrag_failures),
581                 4, "mbuf_defrag_failures"},
582     { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
583                 4, "mbuf_rx_bd_alloc_failed"},
584     { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
585                 4, "mbuf_rx_bd_mapping_failed"},
586     { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
587                 4, "mbuf_rx_tpa_alloc_failed"},
588     { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
589                 4, "mbuf_rx_tpa_mapping_failed"},
590     { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
591                 4, "mbuf_rx_sge_alloc_failed"},
592     { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
593                 4, "mbuf_rx_sge_mapping_failed"},
594     { Q_STATS_OFFSET32(mbuf_alloc_tx),
595                 4, "mbuf_alloc_tx"},
596     { Q_STATS_OFFSET32(mbuf_alloc_rx),
597                 4, "mbuf_alloc_rx"},
598     { Q_STATS_OFFSET32(mbuf_alloc_sge),
599                 4, "mbuf_alloc_sge"},
600     { Q_STATS_OFFSET32(mbuf_alloc_tpa),
601                 4, "mbuf_alloc_tpa"}
602 };
603 
604 #define BXE_NUM_ETH_STATS   ARRAY_SIZE(bxe_eth_stats_arr)
605 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
606 
607 
608 static void    bxe_cmng_fns_init(struct bxe_softc *sc,
609                                  uint8_t          read_cfg,
610                                  uint8_t          cmng_type);
611 static int     bxe_get_cmng_fns_mode(struct bxe_softc *sc);
612 static void    storm_memset_cmng(struct bxe_softc *sc,
613                                  struct cmng_init *cmng,
614                                  uint8_t          port);
615 static void    bxe_set_reset_global(struct bxe_softc *sc);
616 static void    bxe_set_reset_in_progress(struct bxe_softc *sc);
617 static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
618                                  int              engine);
619 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
620 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
621                                    uint8_t          *global,
622                                    uint8_t          print);
623 static void    bxe_int_disable(struct bxe_softc *sc);
624 static int     bxe_release_leader_lock(struct bxe_softc *sc);
625 static void    bxe_pf_disable(struct bxe_softc *sc);
626 static void    bxe_free_fp_buffers(struct bxe_softc *sc);
627 static inline void bxe_update_rx_prod(struct bxe_softc    *sc,
628                                       struct bxe_fastpath *fp,
629                                       uint16_t            rx_bd_prod,
630                                       uint16_t            rx_cq_prod,
631                                       uint16_t            rx_sge_prod);
632 static void    bxe_link_report_locked(struct bxe_softc *sc);
633 static void    bxe_link_report(struct bxe_softc *sc);
634 static void    bxe_link_status_update(struct bxe_softc *sc);
635 static void    bxe_periodic_callout_func(void *xsc);
636 static void    bxe_periodic_start(struct bxe_softc *sc);
637 static void    bxe_periodic_stop(struct bxe_softc *sc);
638 static int     bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
639                                     uint16_t prev_index,
640                                     uint16_t index);
641 static int     bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
642                                      int                 queue);
643 static int     bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
644                                      uint16_t            index);
645 static uint8_t bxe_txeof(struct bxe_softc *sc,
646                          struct bxe_fastpath *fp);
647 static void    bxe_task_fp(struct bxe_fastpath *fp);
648 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
649                                      struct mbuf      *m,
650                                      uint8_t          contents);
651 static int     bxe_alloc_mem(struct bxe_softc *sc);
652 static void    bxe_free_mem(struct bxe_softc *sc);
653 static int     bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
654 static void    bxe_free_fw_stats_mem(struct bxe_softc *sc);
655 static int     bxe_interrupt_attach(struct bxe_softc *sc);
656 static void    bxe_interrupt_detach(struct bxe_softc *sc);
657 static void    bxe_set_rx_mode(struct bxe_softc *sc);
658 static int     bxe_init_locked(struct bxe_softc *sc);
659 static int     bxe_stop_locked(struct bxe_softc *sc);
660 static __noinline int bxe_nic_load(struct bxe_softc *sc,
661                                    int              load_mode);
662 static __noinline int bxe_nic_unload(struct bxe_softc *sc,
663                                      uint32_t         unload_mode,
664                                      uint8_t          keep_link);
665 
666 static void bxe_handle_sp_tq(void *context, int pending);
667 static void bxe_handle_fp_tq(void *context, int pending);
668 
669 static int bxe_add_cdev(struct bxe_softc *sc);
670 static void bxe_del_cdev(struct bxe_softc *sc);
671 static int bxe_grc_dump(struct bxe_softc *sc);
672 
673 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
674 uint32_t
675 calc_crc32(uint8_t  *crc32_packet,
676            uint32_t crc32_length,
677            uint32_t crc32_seed,
678            uint8_t  complement)
679 {
680    uint32_t byte         = 0;
681    uint32_t bit          = 0;
682    uint8_t  msb          = 0;
683    uint32_t temp         = 0;
684    uint32_t shft         = 0;
685    uint8_t  current_byte = 0;
686    uint32_t crc32_result = crc32_seed;
687    const uint32_t CRC32_POLY = 0x1edc6f41;
688 
689    if ((crc32_packet == NULL) ||
690        (crc32_length == 0) ||
691        ((crc32_length % 8) != 0))
692     {
693         return (crc32_result);
694     }
695 
696     for (byte = 0; byte < crc32_length; byte = byte + 1)
697     {
698         current_byte = crc32_packet[byte];
699         for (bit = 0; bit < 8; bit = bit + 1)
700         {
701             /* msb = crc32_result[31]; */
702             msb = (uint8_t)(crc32_result >> 31);
703 
704             crc32_result = crc32_result << 1;
705 
706             /* it (msb != current_byte[bit]) */
707             if (msb != (0x1 & (current_byte >> bit)))
708             {
709                 crc32_result = crc32_result ^ CRC32_POLY;
710                 /* crc32_result[0] = 1 */
711                 crc32_result |= 1;
712             }
713         }
714     }
715 
716     /* Last step is to:
717      * 1. "mirror" every bit
718      * 2. swap the 4 bytes
719      * 3. complement each bit
720      */
721 
722     /* Mirror */
723     temp = crc32_result;
724     shft = sizeof(crc32_result) * 8 - 1;
725 
726     for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
727     {
728         temp <<= 1;
729         temp |= crc32_result & 1;
730         shft-- ;
731     }
732 
733     /* temp[31-bit] = crc32_result[bit] */
734     temp <<= shft;
735 
736     /* Swap */
737     /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
738     {
739         uint32_t t0, t1, t2, t3;
740         t0 = (0x000000ff & (temp >> 24));
741         t1 = (0x0000ff00 & (temp >> 8));
742         t2 = (0x00ff0000 & (temp << 8));
743         t3 = (0xff000000 & (temp << 24));
744         crc32_result = t0 | t1 | t2 | t3;
745     }
746 
747     /* Complement */
748     if (complement)
749     {
750         crc32_result = ~crc32_result;
751     }
752 
753     return (crc32_result);
754 }
755 
756 int
757 bxe_test_bit(int                    nr,
758              volatile unsigned long *addr)
759 {
760     return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
761 }
762 
763 void
764 bxe_set_bit(unsigned int           nr,
765             volatile unsigned long *addr)
766 {
767     atomic_set_acq_long(addr, (1 << nr));
768 }
769 
770 void
771 bxe_clear_bit(int                    nr,
772               volatile unsigned long *addr)
773 {
774     atomic_clear_acq_long(addr, (1 << nr));
775 }
776 
777 int
778 bxe_test_and_set_bit(int                    nr,
779                        volatile unsigned long *addr)
780 {
781     unsigned long x;
782     nr = (1 << nr);
783     do {
784         x = *addr;
785     } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
786     // if (x & nr) bit_was_set; else bit_was_not_set;
787     return (x & nr);
788 }
789 
790 int
791 bxe_test_and_clear_bit(int                    nr,
792                        volatile unsigned long *addr)
793 {
794     unsigned long x;
795     nr = (1 << nr);
796     do {
797         x = *addr;
798     } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
799     // if (x & nr) bit_was_set; else bit_was_not_set;
800     return (x & nr);
801 }
802 
803 int
804 bxe_cmpxchg(volatile int *addr,
805             int          old,
806             int          new)
807 {
808     int x;
809     do {
810         x = *addr;
811     } while (atomic_cmpset_acq_int(addr, old, new) == 0);
812     return (x);
813 }
814 
815 /*
816  * Get DMA memory from the OS.
817  *
818  * Validates that the OS has provided DMA buffers in response to a
819  * bus_dmamap_load call and saves the physical address of those buffers.
820  * When the callback is used the OS will return 0 for the mapping function
821  * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
822  * failures back to the caller.
823  *
824  * Returns:
825  *   Nothing.
826  */
827 static void
828 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
829 {
830     struct bxe_dma *dma = arg;
831 
832     if (error) {
833         dma->paddr = 0;
834         dma->nseg  = 0;
835         BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
836     } else {
837         dma->paddr = segs->ds_addr;
838         dma->nseg  = nseg;
839     }
840 }
841 
842 /*
843  * Allocate a block of memory and map it for DMA. No partial completions
844  * allowed and release any resources acquired if we can't acquire all
845  * resources.
846  *
847  * Returns:
848  *   0 = Success, !0 = Failure
849  */
850 int
851 bxe_dma_alloc(struct bxe_softc *sc,
852               bus_size_t       size,
853               struct bxe_dma   *dma,
854               const char       *msg)
855 {
856     int rc;
857 
858     if (dma->size > 0) {
859         BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
860               (unsigned long)dma->size);
861         return (1);
862     }
863 
864     memset(dma, 0, sizeof(*dma)); /* sanity */
865     dma->sc   = sc;
866     dma->size = size;
867     snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
868 
869     rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
870                             BCM_PAGE_SIZE,      /* alignment */
871                             0,                  /* boundary limit */
872                             BUS_SPACE_MAXADDR,  /* restricted low */
873                             BUS_SPACE_MAXADDR,  /* restricted hi */
874                             NULL,               /* addr filter() */
875                             NULL,               /* addr filter() arg */
876                             size,               /* max map size */
877                             1,                  /* num discontinuous */
878                             size,               /* max seg size */
879                             BUS_DMA_ALLOCNOW,   /* flags */
880                             NULL,               /* lock() */
881                             NULL,               /* lock() arg */
882                             &dma->tag);         /* returned dma tag */
883     if (rc != 0) {
884         BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
885         memset(dma, 0, sizeof(*dma));
886         return (1);
887     }
888 
889     rc = bus_dmamem_alloc(dma->tag,
890                           (void **)&dma->vaddr,
891                           (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
892                           &dma->map);
893     if (rc != 0) {
894         BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
895         bus_dma_tag_destroy(dma->tag);
896         memset(dma, 0, sizeof(*dma));
897         return (1);
898     }
899 
900     rc = bus_dmamap_load(dma->tag,
901                          dma->map,
902                          dma->vaddr,
903                          size,
904                          bxe_dma_map_addr, /* BLOGD in here */
905                          dma,
906                          BUS_DMA_NOWAIT);
907     if (rc != 0) {
908         BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
909         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
910         bus_dma_tag_destroy(dma->tag);
911         memset(dma, 0, sizeof(*dma));
912         return (1);
913     }
914 
915     return (0);
916 }
917 
918 void
919 bxe_dma_free(struct bxe_softc *sc,
920              struct bxe_dma   *dma)
921 {
922     if (dma->size > 0) {
923         DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
924 
925         bus_dmamap_sync(dma->tag, dma->map,
926                         (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
927         bus_dmamap_unload(dma->tag, dma->map);
928         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
929         bus_dma_tag_destroy(dma->tag);
930     }
931 
932     memset(dma, 0, sizeof(*dma));
933 }
934 
935 /*
936  * These indirect read and write routines are only during init.
937  * The locking is handled by the MCP.
938  */
939 
940 void
941 bxe_reg_wr_ind(struct bxe_softc *sc,
942                uint32_t         addr,
943                uint32_t         val)
944 {
945     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
946     pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
947     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
948 }
949 
950 uint32_t
951 bxe_reg_rd_ind(struct bxe_softc *sc,
952                uint32_t         addr)
953 {
954     uint32_t val;
955 
956     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
957     val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
958     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
959 
960     return (val);
961 }
962 
963 static int
964 bxe_acquire_hw_lock(struct bxe_softc *sc,
965                     uint32_t         resource)
966 {
967     uint32_t lock_status;
968     uint32_t resource_bit = (1 << resource);
969     int func = SC_FUNC(sc);
970     uint32_t hw_lock_control_reg;
971     int cnt;
972 
973     /* validate the resource is within range */
974     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
975         BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
976             " resource_bit 0x%x\n", resource, resource_bit);
977         return (-1);
978     }
979 
980     if (func <= 5) {
981         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
982     } else {
983         hw_lock_control_reg =
984                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
985     }
986 
987     /* validate the resource is not already taken */
988     lock_status = REG_RD(sc, hw_lock_control_reg);
989     if (lock_status & resource_bit) {
990         BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n",
991               resource, lock_status, resource_bit);
992         return (-1);
993     }
994 
995     /* try every 5ms for 5 seconds */
996     for (cnt = 0; cnt < 1000; cnt++) {
997         REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
998         lock_status = REG_RD(sc, hw_lock_control_reg);
999         if (lock_status & resource_bit) {
1000             return (0);
1001         }
1002         DELAY(5000);
1003     }
1004 
1005     BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n",
1006         resource, resource_bit);
1007     return (-1);
1008 }
1009 
1010 static int
1011 bxe_release_hw_lock(struct bxe_softc *sc,
1012                     uint32_t         resource)
1013 {
1014     uint32_t lock_status;
1015     uint32_t resource_bit = (1 << resource);
1016     int func = SC_FUNC(sc);
1017     uint32_t hw_lock_control_reg;
1018 
1019     /* validate the resource is within range */
1020     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1021         BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
1022             " resource_bit 0x%x\n", resource, resource_bit);
1023         return (-1);
1024     }
1025 
1026     if (func <= 5) {
1027         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1028     } else {
1029         hw_lock_control_reg =
1030                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1031     }
1032 
1033     /* validate the resource is currently taken */
1034     lock_status = REG_RD(sc, hw_lock_control_reg);
1035     if (!(lock_status & resource_bit)) {
1036         BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n",
1037               resource, lock_status, resource_bit);
1038         return (-1);
1039     }
1040 
1041     REG_WR(sc, hw_lock_control_reg, resource_bit);
1042     return (0);
1043 }
1044 static void bxe_acquire_phy_lock(struct bxe_softc *sc)
1045 {
1046 	BXE_PHY_LOCK(sc);
1047 	bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1048 }
1049 
1050 static void bxe_release_phy_lock(struct bxe_softc *sc)
1051 {
1052 	bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1053 	BXE_PHY_UNLOCK(sc);
1054 }
1055 /*
1056  * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1057  * had we done things the other way around, if two pfs from the same port
1058  * would attempt to access nvram at the same time, we could run into a
1059  * scenario such as:
1060  * pf A takes the port lock.
1061  * pf B succeeds in taking the same lock since they are from the same port.
1062  * pf A takes the per pf misc lock. Performs eeprom access.
1063  * pf A finishes. Unlocks the per pf misc lock.
1064  * Pf B takes the lock and proceeds to perform it's own access.
1065  * pf A unlocks the per port lock, while pf B is still working (!).
1066  * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1067  * access corrupted by pf B).*
1068  */
1069 static int
1070 bxe_acquire_nvram_lock(struct bxe_softc *sc)
1071 {
1072     int port = SC_PORT(sc);
1073     int count, i;
1074     uint32_t val = 0;
1075 
1076     /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1077     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1078 
1079     /* adjust timeout for emulation/FPGA */
1080     count = NVRAM_TIMEOUT_COUNT;
1081     if (CHIP_REV_IS_SLOW(sc)) {
1082         count *= 100;
1083     }
1084 
1085     /* request access to nvram interface */
1086     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1087            (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1088 
1089     for (i = 0; i < count*10; i++) {
1090         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1091         if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1092             break;
1093         }
1094 
1095         DELAY(5);
1096     }
1097 
1098     if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1099         BLOGE(sc, "Cannot get access to nvram interface "
1100             "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
1101             port, val);
1102         return (-1);
1103     }
1104 
1105     return (0);
1106 }
1107 
1108 static int
1109 bxe_release_nvram_lock(struct bxe_softc *sc)
1110 {
1111     int port = SC_PORT(sc);
1112     int count, i;
1113     uint32_t val = 0;
1114 
1115     /* adjust timeout for emulation/FPGA */
1116     count = NVRAM_TIMEOUT_COUNT;
1117     if (CHIP_REV_IS_SLOW(sc)) {
1118         count *= 100;
1119     }
1120 
1121     /* relinquish nvram interface */
1122     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1123            (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1124 
1125     for (i = 0; i < count*10; i++) {
1126         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1127         if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1128             break;
1129         }
1130 
1131         DELAY(5);
1132     }
1133 
1134     if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1135         BLOGE(sc, "Cannot free access to nvram interface "
1136             "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
1137             port, val);
1138         return (-1);
1139     }
1140 
1141     /* release HW lock: protect against other PFs in PF Direct Assignment */
1142     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1143 
1144     return (0);
1145 }
1146 
1147 static void
1148 bxe_enable_nvram_access(struct bxe_softc *sc)
1149 {
1150     uint32_t val;
1151 
1152     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1153 
1154     /* enable both bits, even on read */
1155     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1156            (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1157 }
1158 
1159 static void
1160 bxe_disable_nvram_access(struct bxe_softc *sc)
1161 {
1162     uint32_t val;
1163 
1164     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1165 
1166     /* disable both bits, even after read */
1167     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1168            (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1169                     MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1170 }
1171 
1172 static int
1173 bxe_nvram_read_dword(struct bxe_softc *sc,
1174                      uint32_t         offset,
1175                      uint32_t         *ret_val,
1176                      uint32_t         cmd_flags)
1177 {
1178     int count, i, rc;
1179     uint32_t val;
1180 
1181     /* build the command word */
1182     cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1183 
1184     /* need to clear DONE bit separately */
1185     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1186 
1187     /* address of the NVRAM to read from */
1188     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1189            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1190 
1191     /* issue a read command */
1192     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1193 
1194     /* adjust timeout for emulation/FPGA */
1195     count = NVRAM_TIMEOUT_COUNT;
1196     if (CHIP_REV_IS_SLOW(sc)) {
1197         count *= 100;
1198     }
1199 
1200     /* wait for completion */
1201     *ret_val = 0;
1202     rc = -1;
1203     for (i = 0; i < count; i++) {
1204         DELAY(5);
1205         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1206 
1207         if (val & MCPR_NVM_COMMAND_DONE) {
1208             val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1209             /* we read nvram data in cpu order
1210              * but ethtool sees it as an array of bytes
1211              * converting to big-endian will do the work
1212              */
1213             *ret_val = htobe32(val);
1214             rc = 0;
1215             break;
1216         }
1217     }
1218 
1219     if (rc == -1) {
1220         BLOGE(sc, "nvram read timeout expired "
1221             "(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
1222             offset, cmd_flags, val);
1223     }
1224 
1225     return (rc);
1226 }
1227 
1228 static int
1229 bxe_nvram_read(struct bxe_softc *sc,
1230                uint32_t         offset,
1231                uint8_t          *ret_buf,
1232                int              buf_size)
1233 {
1234     uint32_t cmd_flags;
1235     uint32_t val;
1236     int rc;
1237 
1238     if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1239         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1240               offset, buf_size);
1241         return (-1);
1242     }
1243 
1244     if ((offset + buf_size) > sc->devinfo.flash_size) {
1245         BLOGE(sc, "Invalid parameter, "
1246                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1247               offset, buf_size, sc->devinfo.flash_size);
1248         return (-1);
1249     }
1250 
1251     /* request access to nvram interface */
1252     rc = bxe_acquire_nvram_lock(sc);
1253     if (rc) {
1254         return (rc);
1255     }
1256 
1257     /* enable access to nvram interface */
1258     bxe_enable_nvram_access(sc);
1259 
1260     /* read the first word(s) */
1261     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1262     while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1263         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1264         memcpy(ret_buf, &val, 4);
1265 
1266         /* advance to the next dword */
1267         offset += sizeof(uint32_t);
1268         ret_buf += sizeof(uint32_t);
1269         buf_size -= sizeof(uint32_t);
1270         cmd_flags = 0;
1271     }
1272 
1273     if (rc == 0) {
1274         cmd_flags |= MCPR_NVM_COMMAND_LAST;
1275         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1276         memcpy(ret_buf, &val, 4);
1277     }
1278 
1279     /* disable access to nvram interface */
1280     bxe_disable_nvram_access(sc);
1281     bxe_release_nvram_lock(sc);
1282 
1283     return (rc);
1284 }
1285 
1286 static int
1287 bxe_nvram_write_dword(struct bxe_softc *sc,
1288                       uint32_t         offset,
1289                       uint32_t         val,
1290                       uint32_t         cmd_flags)
1291 {
1292     int count, i, rc;
1293 
1294     /* build the command word */
1295     cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1296 
1297     /* need to clear DONE bit separately */
1298     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1299 
1300     /* write the data */
1301     REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1302 
1303     /* address of the NVRAM to write to */
1304     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1305            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1306 
1307     /* issue the write command */
1308     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1309 
1310     /* adjust timeout for emulation/FPGA */
1311     count = NVRAM_TIMEOUT_COUNT;
1312     if (CHIP_REV_IS_SLOW(sc)) {
1313         count *= 100;
1314     }
1315 
1316     /* wait for completion */
1317     rc = -1;
1318     for (i = 0; i < count; i++) {
1319         DELAY(5);
1320         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1321         if (val & MCPR_NVM_COMMAND_DONE) {
1322             rc = 0;
1323             break;
1324         }
1325     }
1326 
1327     if (rc == -1) {
1328         BLOGE(sc, "nvram write timeout expired "
1329             "(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
1330             offset, cmd_flags, val);
1331     }
1332 
1333     return (rc);
1334 }
1335 
1336 #define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1337 
1338 static int
1339 bxe_nvram_write1(struct bxe_softc *sc,
1340                  uint32_t         offset,
1341                  uint8_t          *data_buf,
1342                  int              buf_size)
1343 {
1344     uint32_t cmd_flags;
1345     uint32_t align_offset;
1346     uint32_t val;
1347     int rc;
1348 
1349     if ((offset + buf_size) > sc->devinfo.flash_size) {
1350         BLOGE(sc, "Invalid parameter, "
1351                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1352               offset, buf_size, sc->devinfo.flash_size);
1353         return (-1);
1354     }
1355 
1356     /* request access to nvram interface */
1357     rc = bxe_acquire_nvram_lock(sc);
1358     if (rc) {
1359         return (rc);
1360     }
1361 
1362     /* enable access to nvram interface */
1363     bxe_enable_nvram_access(sc);
1364 
1365     cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1366     align_offset = (offset & ~0x03);
1367     rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1368 
1369     if (rc == 0) {
1370         val &= ~(0xff << BYTE_OFFSET(offset));
1371         val |= (*data_buf << BYTE_OFFSET(offset));
1372 
1373         /* nvram data is returned as an array of bytes
1374          * convert it back to cpu order
1375          */
1376         val = be32toh(val);
1377 
1378         rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1379     }
1380 
1381     /* disable access to nvram interface */
1382     bxe_disable_nvram_access(sc);
1383     bxe_release_nvram_lock(sc);
1384 
1385     return (rc);
1386 }
1387 
1388 static int
1389 bxe_nvram_write(struct bxe_softc *sc,
1390                 uint32_t         offset,
1391                 uint8_t          *data_buf,
1392                 int              buf_size)
1393 {
1394     uint32_t cmd_flags;
1395     uint32_t val;
1396     uint32_t written_so_far;
1397     int rc;
1398 
1399     if (buf_size == 1) {
1400         return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1401     }
1402 
1403     if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1404         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1405               offset, buf_size);
1406         return (-1);
1407     }
1408 
1409     if (buf_size == 0) {
1410         return (0); /* nothing to do */
1411     }
1412 
1413     if ((offset + buf_size) > sc->devinfo.flash_size) {
1414         BLOGE(sc, "Invalid parameter, "
1415                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1416               offset, buf_size, sc->devinfo.flash_size);
1417         return (-1);
1418     }
1419 
1420     /* request access to nvram interface */
1421     rc = bxe_acquire_nvram_lock(sc);
1422     if (rc) {
1423         return (rc);
1424     }
1425 
1426     /* enable access to nvram interface */
1427     bxe_enable_nvram_access(sc);
1428 
1429     written_so_far = 0;
1430     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1431     while ((written_so_far < buf_size) && (rc == 0)) {
1432         if (written_so_far == (buf_size - sizeof(uint32_t))) {
1433             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1434         } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1435             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1436         } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1437             cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1438         }
1439 
1440         memcpy(&val, data_buf, 4);
1441 
1442         rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1443 
1444         /* advance to the next dword */
1445         offset += sizeof(uint32_t);
1446         data_buf += sizeof(uint32_t);
1447         written_so_far += sizeof(uint32_t);
1448         cmd_flags = 0;
1449     }
1450 
1451     /* disable access to nvram interface */
1452     bxe_disable_nvram_access(sc);
1453     bxe_release_nvram_lock(sc);
1454 
1455     return (rc);
1456 }
1457 
1458 /* copy command into DMAE command memory and set DMAE command Go */
1459 void
1460 bxe_post_dmae(struct bxe_softc    *sc,
1461               struct dmae_cmd *dmae,
1462               int                 idx)
1463 {
1464     uint32_t cmd_offset;
1465     int i;
1466 
1467     cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx));
1468     for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) {
1469         REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1470     }
1471 
1472     REG_WR(sc, dmae_reg_go_c[idx], 1);
1473 }
1474 
1475 uint32_t
1476 bxe_dmae_opcode_add_comp(uint32_t opcode,
1477                          uint8_t  comp_type)
1478 {
1479     return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) |
1480                       DMAE_CMD_C_TYPE_ENABLE));
1481 }
1482 
1483 uint32_t
1484 bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1485 {
1486     return (opcode & ~DMAE_CMD_SRC_RESET);
1487 }
1488 
1489 uint32_t
1490 bxe_dmae_opcode(struct bxe_softc *sc,
1491                 uint8_t          src_type,
1492                 uint8_t          dst_type,
1493                 uint8_t          with_comp,
1494                 uint8_t          comp_type)
1495 {
1496     uint32_t opcode = 0;
1497 
1498     opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) |
1499                (dst_type << DMAE_CMD_DST_SHIFT));
1500 
1501     opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
1502 
1503     opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1504 
1505     opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) |
1506                (SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT));
1507 
1508     opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT);
1509 
1510 #ifdef __BIG_ENDIAN
1511     opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1512 #else
1513     opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1514 #endif
1515 
1516     if (with_comp) {
1517         opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1518     }
1519 
1520     return (opcode);
1521 }
1522 
1523 static void
1524 bxe_prep_dmae_with_comp(struct bxe_softc    *sc,
1525                         struct dmae_cmd *dmae,
1526                         uint8_t             src_type,
1527                         uint8_t             dst_type)
1528 {
1529     memset(dmae, 0, sizeof(struct dmae_cmd));
1530 
1531     /* set the opcode */
1532     dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1533                                    TRUE, DMAE_COMP_PCI);
1534 
1535     /* fill in the completion parameters */
1536     dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1537     dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1538     dmae->comp_val     = DMAE_COMP_VAL;
1539 }
1540 
1541 /* issue a DMAE command over the init channel and wait for completion */
1542 static int
1543 bxe_issue_dmae_with_comp(struct bxe_softc    *sc,
1544                          struct dmae_cmd *dmae)
1545 {
1546     uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1547     int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1548 
1549     BXE_DMAE_LOCK(sc);
1550 
1551     /* reset completion */
1552     *wb_comp = 0;
1553 
1554     /* post the command on the channel used for initializations */
1555     bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1556 
1557     /* wait for completion */
1558     DELAY(5);
1559 
1560     while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1561         if (!timeout ||
1562             (sc->recovery_state != BXE_RECOVERY_DONE &&
1563              sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1564             BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n",
1565                 *wb_comp, sc->recovery_state);
1566             BXE_DMAE_UNLOCK(sc);
1567             return (DMAE_TIMEOUT);
1568         }
1569 
1570         timeout--;
1571         DELAY(50);
1572     }
1573 
1574     if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1575         BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n",
1576                 *wb_comp, sc->recovery_state);
1577         BXE_DMAE_UNLOCK(sc);
1578         return (DMAE_PCI_ERROR);
1579     }
1580 
1581     BXE_DMAE_UNLOCK(sc);
1582     return (0);
1583 }
1584 
1585 void
1586 bxe_read_dmae(struct bxe_softc *sc,
1587               uint32_t         src_addr,
1588               uint32_t         len32)
1589 {
1590     struct dmae_cmd dmae;
1591     uint32_t *data;
1592     int i, rc;
1593 
1594     DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1595 
1596     if (!sc->dmae_ready) {
1597         data = BXE_SP(sc, wb_data[0]);
1598 
1599         for (i = 0; i < len32; i++) {
1600             data[i] = (CHIP_IS_E1(sc)) ?
1601                           bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1602                           REG_RD(sc, (src_addr + (i * 4)));
1603         }
1604 
1605         return;
1606     }
1607 
1608     /* set opcode and fixed command fields */
1609     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1610 
1611     /* fill in addresses and len */
1612     dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1613     dmae.src_addr_hi = 0;
1614     dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1615     dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1616     dmae.len         = len32;
1617 
1618     /* issue the command and wait for completion */
1619     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1620         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1621     };
1622 }
1623 
1624 void
1625 bxe_write_dmae(struct bxe_softc *sc,
1626                bus_addr_t       dma_addr,
1627                uint32_t         dst_addr,
1628                uint32_t         len32)
1629 {
1630     struct dmae_cmd dmae;
1631     int rc;
1632 
1633     if (!sc->dmae_ready) {
1634         DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1635 
1636         if (CHIP_IS_E1(sc)) {
1637             ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1638         } else {
1639             ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1640         }
1641 
1642         return;
1643     }
1644 
1645     /* set opcode and fixed command fields */
1646     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1647 
1648     /* fill in addresses and len */
1649     dmae.src_addr_lo = U64_LO(dma_addr);
1650     dmae.src_addr_hi = U64_HI(dma_addr);
1651     dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1652     dmae.dst_addr_hi = 0;
1653     dmae.len         = len32;
1654 
1655     /* issue the command and wait for completion */
1656     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1657         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1658     }
1659 }
1660 
1661 void
1662 bxe_write_dmae_phys_len(struct bxe_softc *sc,
1663                         bus_addr_t       phys_addr,
1664                         uint32_t         addr,
1665                         uint32_t         len)
1666 {
1667     int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1668     int offset = 0;
1669 
1670     while (len > dmae_wr_max) {
1671         bxe_write_dmae(sc,
1672                        (phys_addr + offset), /* src DMA address */
1673                        (addr + offset),      /* dst GRC address */
1674                        dmae_wr_max);
1675         offset += (dmae_wr_max * 4);
1676         len -= dmae_wr_max;
1677     }
1678 
1679     bxe_write_dmae(sc,
1680                    (phys_addr + offset), /* src DMA address */
1681                    (addr + offset),      /* dst GRC address */
1682                    len);
1683 }
1684 
1685 void
1686 bxe_set_ctx_validation(struct bxe_softc   *sc,
1687                        struct eth_context *cxt,
1688                        uint32_t           cid)
1689 {
1690     /* ustorm cxt validation */
1691     cxt->ustorm_ag_context.cdu_usage =
1692         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1693             CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1694     /* xcontext validation */
1695     cxt->xstorm_ag_context.cdu_reserved =
1696         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1697             CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1698 }
1699 
1700 static void
1701 bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1702                             uint8_t          port,
1703                             uint8_t          fw_sb_id,
1704                             uint8_t          sb_index,
1705                             uint8_t          ticks)
1706 {
1707     uint32_t addr =
1708         (BAR_CSTRORM_INTMEM +
1709          CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1710 
1711     REG_WR8(sc, addr, ticks);
1712 
1713     BLOGD(sc, DBG_LOAD,
1714           "port %d fw_sb_id %d sb_index %d ticks %d\n",
1715           port, fw_sb_id, sb_index, ticks);
1716 }
1717 
1718 static void
1719 bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1720                             uint8_t          port,
1721                             uint16_t         fw_sb_id,
1722                             uint8_t          sb_index,
1723                             uint8_t          disable)
1724 {
1725     uint32_t enable_flag =
1726         (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1727     uint32_t addr =
1728         (BAR_CSTRORM_INTMEM +
1729          CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1730     uint8_t flags;
1731 
1732     /* clear and set */
1733     flags = REG_RD8(sc, addr);
1734     flags &= ~HC_INDEX_DATA_HC_ENABLED;
1735     flags |= enable_flag;
1736     REG_WR8(sc, addr, flags);
1737 
1738     BLOGD(sc, DBG_LOAD,
1739           "port %d fw_sb_id %d sb_index %d disable %d\n",
1740           port, fw_sb_id, sb_index, disable);
1741 }
1742 
1743 void
1744 bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1745                              uint8_t          fw_sb_id,
1746                              uint8_t          sb_index,
1747                              uint8_t          disable,
1748                              uint16_t         usec)
1749 {
1750     int port = SC_PORT(sc);
1751     uint8_t ticks = (usec / 4); /* XXX ??? */
1752 
1753     bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1754 
1755     disable = (disable) ? 1 : ((usec) ? 0 : 1);
1756     bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1757 }
1758 
1759 void
1760 elink_cb_udelay(struct bxe_softc *sc,
1761                 uint32_t         usecs)
1762 {
1763     DELAY(usecs);
1764 }
1765 
1766 uint32_t
1767 elink_cb_reg_read(struct bxe_softc *sc,
1768                   uint32_t         reg_addr)
1769 {
1770     return (REG_RD(sc, reg_addr));
1771 }
1772 
1773 void
1774 elink_cb_reg_write(struct bxe_softc *sc,
1775                    uint32_t         reg_addr,
1776                    uint32_t         val)
1777 {
1778     REG_WR(sc, reg_addr, val);
1779 }
1780 
1781 void
1782 elink_cb_reg_wb_write(struct bxe_softc *sc,
1783                       uint32_t         offset,
1784                       uint32_t         *wb_write,
1785                       uint16_t         len)
1786 {
1787     REG_WR_DMAE(sc, offset, wb_write, len);
1788 }
1789 
1790 void
1791 elink_cb_reg_wb_read(struct bxe_softc *sc,
1792                      uint32_t         offset,
1793                      uint32_t         *wb_write,
1794                      uint16_t         len)
1795 {
1796     REG_RD_DMAE(sc, offset, wb_write, len);
1797 }
1798 
1799 uint8_t
1800 elink_cb_path_id(struct bxe_softc *sc)
1801 {
1802     return (SC_PATH(sc));
1803 }
1804 
1805 void
1806 elink_cb_event_log(struct bxe_softc     *sc,
1807                    const elink_log_id_t elink_log_id,
1808                    ...)
1809 {
1810     /* XXX */
1811     BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1812 }
1813 
1814 static int
1815 bxe_set_spio(struct bxe_softc *sc,
1816              int              spio,
1817              uint32_t         mode)
1818 {
1819     uint32_t spio_reg;
1820 
1821     /* Only 2 SPIOs are configurable */
1822     if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1823         BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode);
1824         return (-1);
1825     }
1826 
1827     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1828 
1829     /* read SPIO and mask except the float bits */
1830     spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1831 
1832     switch (mode) {
1833     case MISC_SPIO_OUTPUT_LOW:
1834         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1835         /* clear FLOAT and set CLR */
1836         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1837         spio_reg |=  (spio << MISC_SPIO_CLR_POS);
1838         break;
1839 
1840     case MISC_SPIO_OUTPUT_HIGH:
1841         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1842         /* clear FLOAT and set SET */
1843         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1844         spio_reg |=  (spio << MISC_SPIO_SET_POS);
1845         break;
1846 
1847     case MISC_SPIO_INPUT_HI_Z:
1848         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1849         /* set FLOAT */
1850         spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1851         break;
1852 
1853     default:
1854         break;
1855     }
1856 
1857     REG_WR(sc, MISC_REG_SPIO, spio_reg);
1858     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1859 
1860     return (0);
1861 }
1862 
1863 static int
1864 bxe_gpio_read(struct bxe_softc *sc,
1865               int              gpio_num,
1866               uint8_t          port)
1867 {
1868     /* The GPIO should be swapped if swap register is set and active */
1869     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1870                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1871     int gpio_shift = (gpio_num +
1872                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1873     uint32_t gpio_mask = (1 << gpio_shift);
1874     uint32_t gpio_reg;
1875 
1876     if (gpio_num > MISC_REGISTERS_GPIO_3) {
1877         BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d"
1878             " gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift,
1879             gpio_mask);
1880         return (-1);
1881     }
1882 
1883     /* read GPIO value */
1884     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
1885 
1886     /* get the requested pin value */
1887     return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
1888 }
1889 
1890 static int
1891 bxe_gpio_write(struct bxe_softc *sc,
1892                int              gpio_num,
1893                uint32_t         mode,
1894                uint8_t          port)
1895 {
1896     /* The GPIO should be swapped if swap register is set and active */
1897     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1898                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1899     int gpio_shift = (gpio_num +
1900                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1901     uint32_t gpio_mask = (1 << gpio_shift);
1902     uint32_t gpio_reg;
1903 
1904     if (gpio_num > MISC_REGISTERS_GPIO_3) {
1905         BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
1906             " gpio_shift %d gpio_mask 0x%x\n",
1907             gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
1908         return (-1);
1909     }
1910 
1911     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1912 
1913     /* read GPIO and mask except the float bits */
1914     gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1915 
1916     switch (mode) {
1917     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1918         BLOGD(sc, DBG_PHY,
1919               "Set GPIO %d (shift %d) -> output low\n",
1920               gpio_num, gpio_shift);
1921         /* clear FLOAT and set CLR */
1922         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1923         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1924         break;
1925 
1926     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1927         BLOGD(sc, DBG_PHY,
1928               "Set GPIO %d (shift %d) -> output high\n",
1929               gpio_num, gpio_shift);
1930         /* clear FLOAT and set SET */
1931         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1932         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1933         break;
1934 
1935     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1936         BLOGD(sc, DBG_PHY,
1937               "Set GPIO %d (shift %d) -> input\n",
1938               gpio_num, gpio_shift);
1939         /* set FLOAT */
1940         gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1941         break;
1942 
1943     default:
1944         break;
1945     }
1946 
1947     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
1948     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1949 
1950     return (0);
1951 }
1952 
1953 static int
1954 bxe_gpio_mult_write(struct bxe_softc *sc,
1955                     uint8_t          pins,
1956                     uint32_t         mode)
1957 {
1958     uint32_t gpio_reg;
1959 
1960     /* any port swapping should be handled by caller */
1961 
1962     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1963 
1964     /* read GPIO and mask except the float bits */
1965     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
1966     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1967     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
1968     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
1969 
1970     switch (mode) {
1971     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1972         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
1973         /* set CLR */
1974         gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
1975         break;
1976 
1977     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1978         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
1979         /* set SET */
1980         gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
1981         break;
1982 
1983     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1984         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
1985         /* set FLOAT */
1986         gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1987         break;
1988 
1989     default:
1990         BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x"
1991             " gpio_reg 0x%x\n", pins, mode, gpio_reg);
1992         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1993         return (-1);
1994     }
1995 
1996     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
1997     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1998 
1999     return (0);
2000 }
2001 
2002 static int
2003 bxe_gpio_int_write(struct bxe_softc *sc,
2004                    int              gpio_num,
2005                    uint32_t         mode,
2006                    uint8_t          port)
2007 {
2008     /* The GPIO should be swapped if swap register is set and active */
2009     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2010                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2011     int gpio_shift = (gpio_num +
2012                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2013     uint32_t gpio_mask = (1 << gpio_shift);
2014     uint32_t gpio_reg;
2015 
2016     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2017         BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
2018             " gpio_shift %d gpio_mask 0x%x\n",
2019             gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
2020         return (-1);
2021     }
2022 
2023     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2024 
2025     /* read GPIO int */
2026     gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2027 
2028     switch (mode) {
2029     case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2030         BLOGD(sc, DBG_PHY,
2031               "Clear GPIO INT %d (shift %d) -> output low\n",
2032               gpio_num, gpio_shift);
2033         /* clear SET and set CLR */
2034         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2035         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2036         break;
2037 
2038     case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2039         BLOGD(sc, DBG_PHY,
2040               "Set GPIO INT %d (shift %d) -> output high\n",
2041               gpio_num, gpio_shift);
2042         /* clear CLR and set SET */
2043         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2044         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2045         break;
2046 
2047     default:
2048         break;
2049     }
2050 
2051     REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2052     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2053 
2054     return (0);
2055 }
2056 
2057 uint32_t
2058 elink_cb_gpio_read(struct bxe_softc *sc,
2059                    uint16_t         gpio_num,
2060                    uint8_t          port)
2061 {
2062     return (bxe_gpio_read(sc, gpio_num, port));
2063 }
2064 
2065 uint8_t
2066 elink_cb_gpio_write(struct bxe_softc *sc,
2067                     uint16_t         gpio_num,
2068                     uint8_t          mode, /* 0=low 1=high */
2069                     uint8_t          port)
2070 {
2071     return (bxe_gpio_write(sc, gpio_num, mode, port));
2072 }
2073 
2074 uint8_t
2075 elink_cb_gpio_mult_write(struct bxe_softc *sc,
2076                          uint8_t          pins,
2077                          uint8_t          mode) /* 0=low 1=high */
2078 {
2079     return (bxe_gpio_mult_write(sc, pins, mode));
2080 }
2081 
2082 uint8_t
2083 elink_cb_gpio_int_write(struct bxe_softc *sc,
2084                         uint16_t         gpio_num,
2085                         uint8_t          mode, /* 0=low 1=high */
2086                         uint8_t          port)
2087 {
2088     return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2089 }
2090 
2091 void
2092 elink_cb_notify_link_changed(struct bxe_softc *sc)
2093 {
2094     REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2095                 (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2096 }
2097 
2098 /* send the MCP a request, block until there is a reply */
2099 uint32_t
2100 elink_cb_fw_command(struct bxe_softc *sc,
2101                     uint32_t         command,
2102                     uint32_t         param)
2103 {
2104     int mb_idx = SC_FW_MB_IDX(sc);
2105     uint32_t seq;
2106     uint32_t rc = 0;
2107     uint32_t cnt = 1;
2108     uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2109 
2110     BXE_FWMB_LOCK(sc);
2111 
2112     seq = ++sc->fw_seq;
2113     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2114     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2115 
2116     BLOGD(sc, DBG_PHY,
2117           "wrote command 0x%08x to FW MB param 0x%08x\n",
2118           (command | seq), param);
2119 
2120     /* Let the FW do it's magic. GIve it up to 5 seconds... */
2121     do {
2122         DELAY(delay * 1000);
2123         rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2124     } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2125 
2126     BLOGD(sc, DBG_PHY,
2127           "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2128           cnt*delay, rc, seq);
2129 
2130     /* is this a reply to our command? */
2131     if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2132         rc &= FW_MSG_CODE_MASK;
2133     } else {
2134         /* Ruh-roh! */
2135         BLOGE(sc, "FW failed to respond!\n");
2136         // XXX bxe_fw_dump(sc);
2137         rc = 0;
2138     }
2139 
2140     BXE_FWMB_UNLOCK(sc);
2141     return (rc);
2142 }
2143 
2144 static uint32_t
2145 bxe_fw_command(struct bxe_softc *sc,
2146                uint32_t         command,
2147                uint32_t         param)
2148 {
2149     return (elink_cb_fw_command(sc, command, param));
2150 }
2151 
2152 static void
2153 __storm_memset_dma_mapping(struct bxe_softc *sc,
2154                            uint32_t         addr,
2155                            bus_addr_t       mapping)
2156 {
2157     REG_WR(sc, addr, U64_LO(mapping));
2158     REG_WR(sc, (addr + 4), U64_HI(mapping));
2159 }
2160 
2161 static void
2162 storm_memset_spq_addr(struct bxe_softc *sc,
2163                       bus_addr_t       mapping,
2164                       uint16_t         abs_fid)
2165 {
2166     uint32_t addr = (XSEM_REG_FAST_MEMORY +
2167                      XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2168     __storm_memset_dma_mapping(sc, addr, mapping);
2169 }
2170 
2171 static void
2172 storm_memset_vf_to_pf(struct bxe_softc *sc,
2173                       uint16_t         abs_fid,
2174                       uint16_t         pf_id)
2175 {
2176     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2177     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2178     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2179     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2180 }
2181 
2182 static void
2183 storm_memset_func_en(struct bxe_softc *sc,
2184                      uint16_t         abs_fid,
2185                      uint8_t          enable)
2186 {
2187     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2188     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2189     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2190     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2191 }
2192 
2193 static void
2194 storm_memset_eq_data(struct bxe_softc       *sc,
2195                      struct event_ring_data *eq_data,
2196                      uint16_t               pfid)
2197 {
2198     uint32_t addr;
2199     size_t size;
2200 
2201     addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2202     size = sizeof(struct event_ring_data);
2203     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2204 }
2205 
2206 static void
2207 storm_memset_eq_prod(struct bxe_softc *sc,
2208                      uint16_t         eq_prod,
2209                      uint16_t         pfid)
2210 {
2211     uint32_t addr = (BAR_CSTRORM_INTMEM +
2212                      CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2213     REG_WR16(sc, addr, eq_prod);
2214 }
2215 
2216 /*
2217  * Post a slowpath command.
2218  *
2219  * A slowpath command is used to propogate a configuration change through
2220  * the controller in a controlled manner, allowing each STORM processor and
2221  * other H/W blocks to phase in the change.  The commands sent on the
2222  * slowpath are referred to as ramrods.  Depending on the ramrod used the
2223  * completion of the ramrod will occur in different ways.  Here's a
2224  * breakdown of ramrods and how they complete:
2225  *
2226  * RAMROD_CMD_ID_ETH_PORT_SETUP
2227  *   Used to setup the leading connection on a port.  Completes on the
2228  *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
2229  *
2230  * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2231  *   Used to setup an additional connection on a port.  Completes on the
2232  *   RCQ of the multi-queue/RSS connection being initialized.
2233  *
2234  * RAMROD_CMD_ID_ETH_STAT_QUERY
2235  *   Used to force the storm processors to update the statistics database
2236  *   in host memory.  This ramrod is send on the leading connection CID and
2237  *   completes as an index increment of the CSTORM on the default status
2238  *   block.
2239  *
2240  * RAMROD_CMD_ID_ETH_UPDATE
2241  *   Used to update the state of the leading connection, usually to udpate
2242  *   the RSS indirection table.  Completes on the RCQ of the leading
2243  *   connection. (Not currently used under FreeBSD until OS support becomes
2244  *   available.)
2245  *
2246  * RAMROD_CMD_ID_ETH_HALT
2247  *   Used when tearing down a connection prior to driver unload.  Completes
2248  *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
2249  *   use this on the leading connection.
2250  *
2251  * RAMROD_CMD_ID_ETH_SET_MAC
2252  *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
2253  *   the RCQ of the leading connection.
2254  *
2255  * RAMROD_CMD_ID_ETH_CFC_DEL
2256  *   Used when tearing down a conneciton prior to driver unload.  Completes
2257  *   on the RCQ of the leading connection (since the current connection
2258  *   has been completely removed from controller memory).
2259  *
2260  * RAMROD_CMD_ID_ETH_PORT_DEL
2261  *   Used to tear down the leading connection prior to driver unload,
2262  *   typically fp[0].  Completes as an index increment of the CSTORM on the
2263  *   default status block.
2264  *
2265  * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2266  *   Used for connection offload.  Completes on the RCQ of the multi-queue
2267  *   RSS connection that is being offloaded.  (Not currently used under
2268  *   FreeBSD.)
2269  *
2270  * There can only be one command pending per function.
2271  *
2272  * Returns:
2273  *   0 = Success, !0 = Failure.
2274  */
2275 
2276 /* must be called under the spq lock */
2277 static inline
2278 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2279 {
2280     struct eth_spe *next_spe = sc->spq_prod_bd;
2281 
2282     if (sc->spq_prod_bd == sc->spq_last_bd) {
2283         /* wrap back to the first eth_spq */
2284         sc->spq_prod_bd = sc->spq;
2285         sc->spq_prod_idx = 0;
2286     } else {
2287         sc->spq_prod_bd++;
2288         sc->spq_prod_idx++;
2289     }
2290 
2291     return (next_spe);
2292 }
2293 
2294 /* must be called under the spq lock */
2295 static inline
2296 void bxe_sp_prod_update(struct bxe_softc *sc)
2297 {
2298     int func = SC_FUNC(sc);
2299 
2300     /*
2301      * Make sure that BD data is updated before writing the producer.
2302      * BD data is written to the memory, the producer is read from the
2303      * memory, thus we need a full memory barrier to ensure the ordering.
2304      */
2305     mb();
2306 
2307     REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2308              sc->spq_prod_idx);
2309 
2310     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2311                       BUS_SPACE_BARRIER_WRITE);
2312 }
2313 
2314 /**
2315  * bxe_is_contextless_ramrod - check if the current command ends on EQ
2316  *
2317  * @cmd:      command to check
2318  * @cmd_type: command type
2319  */
2320 static inline
2321 int bxe_is_contextless_ramrod(int cmd,
2322                               int cmd_type)
2323 {
2324     if ((cmd_type == NONE_CONNECTION_TYPE) ||
2325         (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2326         (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2327         (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2328         (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2329         (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2330         (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2331         return (TRUE);
2332     } else {
2333         return (FALSE);
2334     }
2335 }
2336 
2337 /**
2338  * bxe_sp_post - place a single command on an SP ring
2339  *
2340  * @sc:         driver handle
2341  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
2342  * @cid:        SW CID the command is related to
2343  * @data_hi:    command private data address (high 32 bits)
2344  * @data_lo:    command private data address (low 32 bits)
2345  * @cmd_type:   command type (e.g. NONE, ETH)
2346  *
2347  * SP data is handled as if it's always an address pair, thus data fields are
2348  * not swapped to little endian in upper functions. Instead this function swaps
2349  * data as if it's two uint32 fields.
2350  */
2351 int
2352 bxe_sp_post(struct bxe_softc *sc,
2353             int              command,
2354             int              cid,
2355             uint32_t         data_hi,
2356             uint32_t         data_lo,
2357             int              cmd_type)
2358 {
2359     struct eth_spe *spe;
2360     uint16_t type;
2361     int common;
2362 
2363     common = bxe_is_contextless_ramrod(command, cmd_type);
2364 
2365     BXE_SP_LOCK(sc);
2366 
2367     if (common) {
2368         if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2369             BLOGE(sc, "EQ ring is full!\n");
2370             BXE_SP_UNLOCK(sc);
2371             return (-1);
2372         }
2373     } else {
2374         if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2375             BLOGE(sc, "SPQ ring is full!\n");
2376             BXE_SP_UNLOCK(sc);
2377             return (-1);
2378         }
2379     }
2380 
2381     spe = bxe_sp_get_next(sc);
2382 
2383     /* CID needs port number to be encoded int it */
2384     spe->hdr.conn_and_cmd_data =
2385         htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid));
2386 
2387     type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE;
2388 
2389     /* TBD: Check if it works for VFs */
2390     type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) &
2391              SPE_HDR_T_FUNCTION_ID);
2392 
2393     spe->hdr.type = htole16(type);
2394 
2395     spe->data.update_data_addr.hi = htole32(data_hi);
2396     spe->data.update_data_addr.lo = htole32(data_lo);
2397 
2398     /*
2399      * It's ok if the actual decrement is issued towards the memory
2400      * somewhere between the lock and unlock. Thus no more explict
2401      * memory barrier is needed.
2402      */
2403     if (common) {
2404         atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2405     } else {
2406         atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2407     }
2408 
2409     BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2410     BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2411           BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2412     BLOGD(sc, DBG_SP,
2413           "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2414           sc->spq_prod_idx,
2415           (uint32_t)U64_HI(sc->spq_dma.paddr),
2416           (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2417           command,
2418           common,
2419           HW_CID(sc, cid),
2420           data_hi,
2421           data_lo,
2422           type,
2423           atomic_load_acq_long(&sc->cq_spq_left),
2424           atomic_load_acq_long(&sc->eq_spq_left));
2425 
2426     bxe_sp_prod_update(sc);
2427 
2428     BXE_SP_UNLOCK(sc);
2429     return (0);
2430 }
2431 
2432 /**
2433  * bxe_debug_print_ind_table - prints the indirection table configuration.
2434  *
2435  * @sc: driver hanlde
2436  * @p:  pointer to rss configuration
2437  */
2438 
2439 /*
2440  * FreeBSD Device probe function.
2441  *
2442  * Compares the device found to the driver's list of supported devices and
2443  * reports back to the bsd loader whether this is the right driver for the device.
2444  * This is the driver entry function called from the "kldload" command.
2445  *
2446  * Returns:
2447  *   BUS_PROBE_DEFAULT on success, positive value on failure.
2448  */
2449 static int
2450 bxe_probe(device_t dev)
2451 {
2452     struct bxe_softc *sc;
2453     struct bxe_device_type *t;
2454     char *descbuf;
2455     uint16_t did, sdid, svid, vid;
2456 
2457     /* Find our device structure */
2458     sc = device_get_softc(dev);
2459     sc->dev = dev;
2460     t = bxe_devs;
2461 
2462     /* Get the data for the device to be probed. */
2463     vid  = pci_get_vendor(dev);
2464     did  = pci_get_device(dev);
2465     svid = pci_get_subvendor(dev);
2466     sdid = pci_get_subdevice(dev);
2467 
2468     BLOGD(sc, DBG_LOAD,
2469           "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
2470           "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
2471 
2472     /* Look through the list of known devices for a match. */
2473     while (t->bxe_name != NULL) {
2474         if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2475             ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2476             ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2477             descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
2478             if (descbuf == NULL)
2479                 return (ENOMEM);
2480 
2481             /* Print out the device identity. */
2482             snprintf(descbuf, BXE_DEVDESC_MAX,
2483                      "%s (%c%d) BXE v:%s\n", t->bxe_name,
2484                      (((pci_read_config(dev, PCIR_REVID, 4) &
2485                         0xf0) >> 4) + 'A'),
2486                      (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2487                      BXE_DRIVER_VERSION);
2488 
2489             device_set_desc_copy(dev, descbuf);
2490             free(descbuf, M_TEMP);
2491             return (BUS_PROBE_DEFAULT);
2492         }
2493         t++;
2494     }
2495 
2496     return (ENXIO);
2497 }
2498 
2499 static void
2500 bxe_init_mutexes(struct bxe_softc *sc)
2501 {
2502 #ifdef BXE_CORE_LOCK_SX
2503     snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2504              "bxe%d_core_lock", sc->unit);
2505     sx_init(&sc->core_sx, sc->core_sx_name);
2506 #else
2507     snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2508              "bxe%d_core_lock", sc->unit);
2509     mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2510 #endif
2511 
2512     snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2513              "bxe%d_sp_lock", sc->unit);
2514     mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2515 
2516     snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2517              "bxe%d_dmae_lock", sc->unit);
2518     mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2519 
2520     snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2521              "bxe%d_phy_lock", sc->unit);
2522     mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2523 
2524     snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2525              "bxe%d_fwmb_lock", sc->unit);
2526     mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2527 
2528     snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2529              "bxe%d_print_lock", sc->unit);
2530     mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2531 
2532     snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2533              "bxe%d_stats_lock", sc->unit);
2534     mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2535 
2536     snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2537              "bxe%d_mcast_lock", sc->unit);
2538     mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2539 }
2540 
2541 static void
2542 bxe_release_mutexes(struct bxe_softc *sc)
2543 {
2544 #ifdef BXE_CORE_LOCK_SX
2545     sx_destroy(&sc->core_sx);
2546 #else
2547     if (mtx_initialized(&sc->core_mtx)) {
2548         mtx_destroy(&sc->core_mtx);
2549     }
2550 #endif
2551 
2552     if (mtx_initialized(&sc->sp_mtx)) {
2553         mtx_destroy(&sc->sp_mtx);
2554     }
2555 
2556     if (mtx_initialized(&sc->dmae_mtx)) {
2557         mtx_destroy(&sc->dmae_mtx);
2558     }
2559 
2560     if (mtx_initialized(&sc->port.phy_mtx)) {
2561         mtx_destroy(&sc->port.phy_mtx);
2562     }
2563 
2564     if (mtx_initialized(&sc->fwmb_mtx)) {
2565         mtx_destroy(&sc->fwmb_mtx);
2566     }
2567 
2568     if (mtx_initialized(&sc->print_mtx)) {
2569         mtx_destroy(&sc->print_mtx);
2570     }
2571 
2572     if (mtx_initialized(&sc->stats_mtx)) {
2573         mtx_destroy(&sc->stats_mtx);
2574     }
2575 
2576     if (mtx_initialized(&sc->mcast_mtx)) {
2577         mtx_destroy(&sc->mcast_mtx);
2578     }
2579 }
2580 
2581 static void
2582 bxe_tx_disable(struct bxe_softc* sc)
2583 {
2584     if_t ifp = sc->ifp;
2585 
2586     /* tell the stack the driver is stopped and TX queue is full */
2587     if (ifp !=  NULL) {
2588         if_setdrvflags(ifp, 0);
2589     }
2590 }
2591 
2592 static void
2593 bxe_drv_pulse(struct bxe_softc *sc)
2594 {
2595     SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2596              sc->fw_drv_pulse_wr_seq);
2597 }
2598 
2599 static inline uint16_t
2600 bxe_tx_avail(struct bxe_softc *sc,
2601              struct bxe_fastpath *fp)
2602 {
2603     int16_t  used;
2604     uint16_t prod;
2605     uint16_t cons;
2606 
2607     prod = fp->tx_bd_prod;
2608     cons = fp->tx_bd_cons;
2609 
2610     used = SUB_S16(prod, cons);
2611 
2612     return (int16_t)(sc->tx_ring_size) - used;
2613 }
2614 
2615 static inline int
2616 bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2617 {
2618     uint16_t hw_cons;
2619 
2620     mb(); /* status block fields can change */
2621     hw_cons = le16toh(*fp->tx_cons_sb);
2622     return (hw_cons != fp->tx_pkt_cons);
2623 }
2624 
2625 static inline uint8_t
2626 bxe_has_tx_work(struct bxe_fastpath *fp)
2627 {
2628     /* expand this for multi-cos if ever supported */
2629     return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2630 }
2631 
2632 static inline int
2633 bxe_has_rx_work(struct bxe_fastpath *fp)
2634 {
2635     uint16_t rx_cq_cons_sb;
2636 
2637     mb(); /* status block fields can change */
2638     rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2639     if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2640         rx_cq_cons_sb++;
2641     return (fp->rx_cq_cons != rx_cq_cons_sb);
2642 }
2643 
2644 static void
2645 bxe_sp_event(struct bxe_softc    *sc,
2646              struct bxe_fastpath *fp,
2647              union eth_rx_cqe    *rr_cqe)
2648 {
2649     int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2650     int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2651     enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2652     struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2653 
2654     BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2655           fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2656 
2657     switch (command) {
2658     case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2659         BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2660         drv_cmd = ECORE_Q_CMD_UPDATE;
2661         break;
2662 
2663     case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2664         BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2665         drv_cmd = ECORE_Q_CMD_SETUP;
2666         break;
2667 
2668     case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2669         BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2670         drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2671         break;
2672 
2673     case (RAMROD_CMD_ID_ETH_HALT):
2674         BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2675         drv_cmd = ECORE_Q_CMD_HALT;
2676         break;
2677 
2678     case (RAMROD_CMD_ID_ETH_TERMINATE):
2679         BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2680         drv_cmd = ECORE_Q_CMD_TERMINATE;
2681         break;
2682 
2683     case (RAMROD_CMD_ID_ETH_EMPTY):
2684         BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2685         drv_cmd = ECORE_Q_CMD_EMPTY;
2686         break;
2687 
2688     default:
2689         BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2690               command, fp->index);
2691         return;
2692     }
2693 
2694     if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2695         q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2696         /*
2697          * q_obj->complete_cmd() failure means that this was
2698          * an unexpected completion.
2699          *
2700          * In this case we don't want to increase the sc->spq_left
2701          * because apparently we haven't sent this command the first
2702          * place.
2703          */
2704         // bxe_panic(sc, ("Unexpected SP completion\n"));
2705         return;
2706     }
2707 
2708     atomic_add_acq_long(&sc->cq_spq_left, 1);
2709 
2710     BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2711           atomic_load_acq_long(&sc->cq_spq_left));
2712 }
2713 
2714 /*
2715  * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2716  * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2717  * the current aggregation queue as in-progress.
2718  */
2719 static void
2720 bxe_tpa_start(struct bxe_softc            *sc,
2721               struct bxe_fastpath         *fp,
2722               uint16_t                    queue,
2723               uint16_t                    cons,
2724               uint16_t                    prod,
2725               struct eth_fast_path_rx_cqe *cqe)
2726 {
2727     struct bxe_sw_rx_bd tmp_bd;
2728     struct bxe_sw_rx_bd *rx_buf;
2729     struct eth_rx_bd *rx_bd;
2730     int max_agg_queues;
2731     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2732     uint16_t index;
2733 
2734     BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2735                        "cons=%d prod=%d\n",
2736           fp->index, queue, cons, prod);
2737 
2738     max_agg_queues = MAX_AGG_QS(sc);
2739 
2740     KASSERT((queue < max_agg_queues),
2741             ("fp[%02d] invalid aggr queue (%d >= %d)!",
2742              fp->index, queue, max_agg_queues));
2743 
2744     KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2745             ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2746              fp->index, queue));
2747 
2748     /* copy the existing mbuf and mapping from the TPA pool */
2749     tmp_bd = tpa_info->bd;
2750 
2751     if (tmp_bd.m == NULL) {
2752         uint32_t *tmp;
2753 
2754         tmp = (uint32_t *)cqe;
2755 
2756         BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n",
2757               fp->index, queue, cons, prod);
2758         BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
2759             *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
2760 
2761         /* XXX Error handling? */
2762         return;
2763     }
2764 
2765     /* change the TPA queue to the start state */
2766     tpa_info->state            = BXE_TPA_STATE_START;
2767     tpa_info->placement_offset = cqe->placement_offset;
2768     tpa_info->parsing_flags    = le16toh(cqe->pars_flags.flags);
2769     tpa_info->vlan_tag         = le16toh(cqe->vlan_tag);
2770     tpa_info->len_on_bd        = le16toh(cqe->len_on_bd);
2771 
2772     fp->rx_tpa_queue_used |= (1 << queue);
2773 
2774     /*
2775      * If all the buffer descriptors are filled with mbufs then fill in
2776      * the current consumer index with a new BD. Else if a maximum Rx
2777      * buffer limit is imposed then fill in the next producer index.
2778      */
2779     index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2780                 prod : cons;
2781 
2782     /* move the received mbuf and mapping to TPA pool */
2783     tpa_info->bd = fp->rx_mbuf_chain[cons];
2784 
2785     /* release any existing RX BD mbuf mappings */
2786     if (cons != index) {
2787         rx_buf = &fp->rx_mbuf_chain[cons];
2788 
2789         if (rx_buf->m_map != NULL) {
2790             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2791                             BUS_DMASYNC_POSTREAD);
2792             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2793         }
2794 
2795         /*
2796          * We get here when the maximum number of rx buffers is less than
2797          * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2798          * it out here without concern of a memory leak.
2799          */
2800         fp->rx_mbuf_chain[cons].m = NULL;
2801     }
2802 
2803     /* update the Rx SW BD with the mbuf info from the TPA pool */
2804     fp->rx_mbuf_chain[index] = tmp_bd;
2805 
2806     /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2807     rx_bd = &fp->rx_chain[index];
2808     rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2809     rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
2810 }
2811 
2812 /*
2813  * When a TPA aggregation is completed, loop through the individual mbufs
2814  * of the aggregation, combining them into a single mbuf which will be sent
2815  * up the stack. Refill all freed SGEs with mbufs as we go along.
2816  */
2817 static int
2818 bxe_fill_frag_mbuf(struct bxe_softc          *sc,
2819                    struct bxe_fastpath       *fp,
2820                    struct bxe_sw_tpa_info    *tpa_info,
2821                    uint16_t                  queue,
2822                    uint16_t                  pages,
2823                    struct mbuf               *m,
2824 			       struct eth_end_agg_rx_cqe *cqe,
2825                    uint16_t                  cqe_idx)
2826 {
2827     struct mbuf *m_frag;
2828     uint32_t frag_len, frag_size, i;
2829     uint16_t sge_idx;
2830     int rc = 0;
2831     int j;
2832 
2833     frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
2834 
2835     BLOGD(sc, DBG_LRO,
2836           "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
2837           fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
2838 
2839     /* make sure the aggregated frame is not too big to handle */
2840     if (pages > 8 * PAGES_PER_SGE) {
2841 
2842         uint32_t *tmp = (uint32_t *)cqe;
2843 
2844         BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
2845                   "pkt_len=%d len_on_bd=%d frag_size=%d\n",
2846               fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
2847               tpa_info->len_on_bd, frag_size);
2848 
2849         BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
2850             *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
2851 
2852         bxe_panic(sc, ("sge page count error\n"));
2853         return (EINVAL);
2854     }
2855 
2856     /*
2857      * Scan through the scatter gather list pulling individual mbufs into a
2858      * single mbuf for the host stack.
2859      */
2860     for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
2861         sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
2862 
2863         /*
2864          * Firmware gives the indices of the SGE as if the ring is an array
2865          * (meaning that the "next" element will consume 2 indices).
2866          */
2867         frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
2868 
2869         BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
2870                            "sge_idx=%d frag_size=%d frag_len=%d\n",
2871               fp->index, queue, i, j, sge_idx, frag_size, frag_len);
2872 
2873         m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
2874 
2875         /* allocate a new mbuf for the SGE */
2876         rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
2877         if (rc) {
2878             /* Leave all remaining SGEs in the ring! */
2879             return (rc);
2880         }
2881 
2882         /* update the fragment length */
2883         m_frag->m_len = frag_len;
2884 
2885         /* concatenate the fragment to the head mbuf */
2886         m_cat(m, m_frag);
2887         fp->eth_q_stats.mbuf_alloc_sge--;
2888 
2889         /* update the TPA mbuf size and remaining fragment size */
2890         m->m_pkthdr.len += frag_len;
2891         frag_size -= frag_len;
2892     }
2893 
2894     BLOGD(sc, DBG_LRO,
2895           "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
2896           fp->index, queue, frag_size);
2897 
2898     return (rc);
2899 }
2900 
2901 static inline void
2902 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
2903 {
2904     int i, j;
2905 
2906     for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
2907         int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
2908 
2909         for (j = 0; j < 2; j++) {
2910             BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
2911             idx--;
2912         }
2913     }
2914 }
2915 
2916 static inline void
2917 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
2918 {
2919     /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
2920     memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
2921 
2922     /*
2923      * Clear the two last indices in the page to 1. These are the indices that
2924      * correspond to the "next" element, hence will never be indicated and
2925      * should be removed from the calculations.
2926      */
2927     bxe_clear_sge_mask_next_elems(fp);
2928 }
2929 
2930 static inline void
2931 bxe_update_last_max_sge(struct bxe_fastpath *fp,
2932                         uint16_t            idx)
2933 {
2934     uint16_t last_max = fp->last_max_sge;
2935 
2936     if (SUB_S16(idx, last_max) > 0) {
2937         fp->last_max_sge = idx;
2938     }
2939 }
2940 
2941 static inline void
2942 bxe_update_sge_prod(struct bxe_softc          *sc,
2943                     struct bxe_fastpath       *fp,
2944                     uint16_t                  sge_len,
2945                     union eth_sgl_or_raw_data *cqe)
2946 {
2947     uint16_t last_max, last_elem, first_elem;
2948     uint16_t delta = 0;
2949     uint16_t i;
2950 
2951     if (!sge_len) {
2952         return;
2953     }
2954 
2955     /* first mark all used pages */
2956     for (i = 0; i < sge_len; i++) {
2957         BIT_VEC64_CLEAR_BIT(fp->sge_mask,
2958                             RX_SGE(le16toh(cqe->sgl[i])));
2959     }
2960 
2961     BLOGD(sc, DBG_LRO,
2962           "fp[%02d] fp_cqe->sgl[%d] = %d\n",
2963           fp->index, sge_len - 1,
2964           le16toh(cqe->sgl[sge_len - 1]));
2965 
2966     /* assume that the last SGE index is the biggest */
2967     bxe_update_last_max_sge(fp,
2968                             le16toh(cqe->sgl[sge_len - 1]));
2969 
2970     last_max = RX_SGE(fp->last_max_sge);
2971     last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
2972     first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
2973 
2974     /* if ring is not full */
2975     if (last_elem + 1 != first_elem) {
2976         last_elem++;
2977     }
2978 
2979     /* now update the prod */
2980     for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
2981         if (__predict_true(fp->sge_mask[i])) {
2982             break;
2983         }
2984 
2985         fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
2986         delta += BIT_VEC64_ELEM_SZ;
2987     }
2988 
2989     if (delta > 0) {
2990         fp->rx_sge_prod += delta;
2991         /* clear page-end entries */
2992         bxe_clear_sge_mask_next_elems(fp);
2993     }
2994 
2995     BLOGD(sc, DBG_LRO,
2996           "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
2997           fp->index, fp->last_max_sge, fp->rx_sge_prod);
2998 }
2999 
3000 /*
3001  * The aggregation on the current TPA queue has completed. Pull the individual
3002  * mbuf fragments together into a single mbuf, perform all necessary checksum
3003  * calculations, and send the resuting mbuf to the stack.
3004  */
3005 static void
3006 bxe_tpa_stop(struct bxe_softc          *sc,
3007              struct bxe_fastpath       *fp,
3008              struct bxe_sw_tpa_info    *tpa_info,
3009              uint16_t                  queue,
3010              uint16_t                  pages,
3011 			 struct eth_end_agg_rx_cqe *cqe,
3012              uint16_t                  cqe_idx)
3013 {
3014     if_t ifp = sc->ifp;
3015     struct mbuf *m;
3016     int rc = 0;
3017 
3018     BLOGD(sc, DBG_LRO,
3019           "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3020           fp->index, queue, tpa_info->placement_offset,
3021           le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3022 
3023     m = tpa_info->bd.m;
3024 
3025     /* allocate a replacement before modifying existing mbuf */
3026     rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3027     if (rc) {
3028         /* drop the frame and log an error */
3029         fp->eth_q_stats.rx_soft_errors++;
3030         goto bxe_tpa_stop_exit;
3031     }
3032 
3033     /* we have a replacement, fixup the current mbuf */
3034     m_adj(m, tpa_info->placement_offset);
3035     m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3036 
3037     /* mark the checksums valid (taken care of by the firmware) */
3038     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3039     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3040     m->m_pkthdr.csum_data = 0xffff;
3041     m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3042                                CSUM_IP_VALID   |
3043                                CSUM_DATA_VALID |
3044                                CSUM_PSEUDO_HDR);
3045 
3046     /* aggregate all of the SGEs into a single mbuf */
3047     rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3048     if (rc) {
3049         /* drop the packet and log an error */
3050         fp->eth_q_stats.rx_soft_errors++;
3051         m_freem(m);
3052     } else {
3053         if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
3054             m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3055             m->m_flags |= M_VLANTAG;
3056         }
3057 
3058         /* assign packet to this interface interface */
3059         if_setrcvif(m, ifp);
3060 
3061 #if __FreeBSD_version >= 800000
3062         /* specify what RSS queue was used for this flow */
3063         m->m_pkthdr.flowid = fp->index;
3064         M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE);
3065 #endif
3066 
3067         if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3068         fp->eth_q_stats.rx_tpa_pkts++;
3069 
3070         /* pass the frame to the stack */
3071         if_input(ifp, m);
3072     }
3073 
3074     /* we passed an mbuf up the stack or dropped the frame */
3075     fp->eth_q_stats.mbuf_alloc_tpa--;
3076 
3077 bxe_tpa_stop_exit:
3078 
3079     fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3080     fp->rx_tpa_queue_used &= ~(1 << queue);
3081 }
3082 
3083 static uint8_t
3084 bxe_service_rxsgl(
3085                  struct bxe_fastpath *fp,
3086                  uint16_t len,
3087                  uint16_t lenonbd,
3088                  struct mbuf *m,
3089                  struct eth_fast_path_rx_cqe *cqe_fp)
3090 {
3091     struct mbuf *m_frag;
3092     uint16_t frags, frag_len;
3093     uint16_t sge_idx = 0;
3094     uint16_t j;
3095     uint8_t i, rc = 0;
3096     uint32_t frag_size;
3097 
3098     /* adjust the mbuf */
3099     m->m_len = lenonbd;
3100 
3101     frag_size =  len - lenonbd;
3102     frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3103 
3104     for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) {
3105         sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j]));
3106 
3107         m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3108         frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE));
3109         m_frag->m_len = frag_len;
3110 
3111        /* allocate a new mbuf for the SGE */
3112         rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3113         if (rc) {
3114             /* Leave all remaining SGEs in the ring! */
3115             return (rc);
3116         }
3117         fp->eth_q_stats.mbuf_alloc_sge--;
3118 
3119         /* concatenate the fragment to the head mbuf */
3120         m_cat(m, m_frag);
3121 
3122         frag_size -= frag_len;
3123     }
3124 
3125     bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data);
3126 
3127     return rc;
3128 }
3129 
3130 static uint8_t
3131 bxe_rxeof(struct bxe_softc    *sc,
3132           struct bxe_fastpath *fp)
3133 {
3134     if_t ifp = sc->ifp;
3135     uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3136     uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3137     int rx_pkts = 0;
3138     int rc = 0;
3139 
3140     BXE_FP_RX_LOCK(fp);
3141 
3142     /* CQ "next element" is of the size of the regular element */
3143     hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3144     if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3145         hw_cq_cons++;
3146     }
3147 
3148     bd_cons = fp->rx_bd_cons;
3149     bd_prod = fp->rx_bd_prod;
3150     bd_prod_fw = bd_prod;
3151     sw_cq_cons = fp->rx_cq_cons;
3152     sw_cq_prod = fp->rx_cq_prod;
3153 
3154     /*
3155      * Memory barrier necessary as speculative reads of the rx
3156      * buffer can be ahead of the index in the status block
3157      */
3158     rmb();
3159 
3160     BLOGD(sc, DBG_RX,
3161           "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3162           fp->index, hw_cq_cons, sw_cq_cons);
3163 
3164     while (sw_cq_cons != hw_cq_cons) {
3165         struct bxe_sw_rx_bd *rx_buf = NULL;
3166         union eth_rx_cqe *cqe;
3167         struct eth_fast_path_rx_cqe *cqe_fp;
3168         uint8_t cqe_fp_flags;
3169         enum eth_rx_cqe_type cqe_fp_type;
3170         uint16_t len, lenonbd,  pad;
3171         struct mbuf *m = NULL;
3172 
3173         comp_ring_cons = RCQ(sw_cq_cons);
3174         bd_prod = RX_BD(bd_prod);
3175         bd_cons = RX_BD(bd_cons);
3176 
3177         cqe          = &fp->rcq_chain[comp_ring_cons];
3178         cqe_fp       = &cqe->fast_path_cqe;
3179         cqe_fp_flags = cqe_fp->type_error_flags;
3180         cqe_fp_type  = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3181 
3182         BLOGD(sc, DBG_RX,
3183               "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3184               "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3185               "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n",
3186               fp->index,
3187               hw_cq_cons,
3188               sw_cq_cons,
3189               bd_prod,
3190               bd_cons,
3191               CQE_TYPE(cqe_fp_flags),
3192               cqe_fp_flags,
3193               cqe_fp->status_flags,
3194               le32toh(cqe_fp->rss_hash_result),
3195               le16toh(cqe_fp->vlan_tag),
3196               le16toh(cqe_fp->pkt_len_or_gro_seg_len),
3197               le16toh(cqe_fp->len_on_bd));
3198 
3199         /* is this a slowpath msg? */
3200         if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3201             bxe_sp_event(sc, fp, cqe);
3202             goto next_cqe;
3203         }
3204 
3205         rx_buf = &fp->rx_mbuf_chain[bd_cons];
3206 
3207         if (!CQE_TYPE_FAST(cqe_fp_type)) {
3208             struct bxe_sw_tpa_info *tpa_info;
3209             uint16_t frag_size, pages;
3210             uint8_t queue;
3211 
3212             if (CQE_TYPE_START(cqe_fp_type)) {
3213                 bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3214                               bd_cons, bd_prod, cqe_fp);
3215                 m = NULL; /* packet not ready yet */
3216                 goto next_rx;
3217             }
3218 
3219             KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3220                     ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3221 
3222             queue = cqe->end_agg_cqe.queue_index;
3223             tpa_info = &fp->rx_tpa_info[queue];
3224 
3225             BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3226                   fp->index, queue);
3227 
3228             frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3229                          tpa_info->len_on_bd);
3230             pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3231 
3232             bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3233                          &cqe->end_agg_cqe, comp_ring_cons);
3234 
3235             bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data);
3236 
3237             goto next_cqe;
3238         }
3239 
3240         /* non TPA */
3241 
3242         /* is this an error packet? */
3243         if (__predict_false(cqe_fp_flags &
3244                             ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3245             BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3246             fp->eth_q_stats.rx_soft_errors++;
3247             goto next_rx;
3248         }
3249 
3250         len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3251         lenonbd = le16toh(cqe_fp->len_on_bd);
3252         pad = cqe_fp->placement_offset;
3253 
3254         m = rx_buf->m;
3255 
3256         if (__predict_false(m == NULL)) {
3257             BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3258                   bd_cons, fp->index);
3259             goto next_rx;
3260         }
3261 
3262         /* XXX double copy if packet length under a threshold */
3263 
3264         /*
3265          * If all the buffer descriptors are filled with mbufs then fill in
3266          * the current consumer index with a new BD. Else if a maximum Rx
3267          * buffer limit is imposed then fill in the next producer index.
3268          */
3269         rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3270                                   (sc->max_rx_bufs != RX_BD_USABLE) ?
3271                                       bd_prod : bd_cons);
3272         if (rc != 0) {
3273 
3274             /* we simply reuse the received mbuf and don't post it to the stack */
3275             m = NULL;
3276 
3277             BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3278                   fp->index, rc);
3279             fp->eth_q_stats.rx_soft_errors++;
3280 
3281             if (sc->max_rx_bufs != RX_BD_USABLE) {
3282                 /* copy this consumer index to the producer index */
3283                 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3284                        sizeof(struct bxe_sw_rx_bd));
3285                 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3286             }
3287 
3288             goto next_rx;
3289         }
3290 
3291         /* current mbuf was detached from the bd */
3292         fp->eth_q_stats.mbuf_alloc_rx--;
3293 
3294         /* we allocated a replacement mbuf, fixup the current one */
3295         m_adj(m, pad);
3296         m->m_pkthdr.len = m->m_len = len;
3297 
3298         if ((len > 60) && (len > lenonbd)) {
3299             fp->eth_q_stats.rx_bxe_service_rxsgl++;
3300             rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp);
3301             if (rc)
3302                 break;
3303             fp->eth_q_stats.rx_jumbo_sge_pkts++;
3304         } else if (lenonbd < len) {
3305             fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++;
3306         }
3307 
3308         /* assign packet to this interface interface */
3309 	if_setrcvif(m, ifp);
3310 
3311         /* assume no hardware checksum has complated */
3312         m->m_pkthdr.csum_flags = 0;
3313 
3314         /* validate checksum if offload enabled */
3315         if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3316             /* check for a valid IP frame */
3317             if (!(cqe->fast_path_cqe.status_flags &
3318                   ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3319                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3320                 if (__predict_false(cqe_fp_flags &
3321                                     ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3322                     fp->eth_q_stats.rx_hw_csum_errors++;
3323                 } else {
3324                     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3325                     m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3326                 }
3327             }
3328 
3329             /* check for a valid TCP/UDP frame */
3330             if (!(cqe->fast_path_cqe.status_flags &
3331                   ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3332                 if (__predict_false(cqe_fp_flags &
3333                                     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3334                     fp->eth_q_stats.rx_hw_csum_errors++;
3335                 } else {
3336                     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3337                     m->m_pkthdr.csum_data = 0xFFFF;
3338                     m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3339                                                CSUM_PSEUDO_HDR);
3340                 }
3341             }
3342         }
3343 
3344         /* if there is a VLAN tag then flag that info */
3345         if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
3346             m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3347             m->m_flags |= M_VLANTAG;
3348         }
3349 
3350 #if __FreeBSD_version >= 800000
3351         /* specify what RSS queue was used for this flow */
3352         m->m_pkthdr.flowid = fp->index;
3353         M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE);
3354 #endif
3355 
3356 next_rx:
3357 
3358         bd_cons    = RX_BD_NEXT(bd_cons);
3359         bd_prod    = RX_BD_NEXT(bd_prod);
3360         bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3361 
3362         /* pass the frame to the stack */
3363         if (__predict_true(m != NULL)) {
3364             if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3365             rx_pkts++;
3366             if_input(ifp, m);
3367         }
3368 
3369 next_cqe:
3370 
3371         sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3372         sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3373 
3374         /* limit spinning on the queue */
3375         if (rc != 0)
3376             break;
3377 
3378         if (rx_pkts == sc->rx_budget) {
3379             fp->eth_q_stats.rx_budget_reached++;
3380             break;
3381         }
3382     } /* while work to do */
3383 
3384     fp->rx_bd_cons = bd_cons;
3385     fp->rx_bd_prod = bd_prod_fw;
3386     fp->rx_cq_cons = sw_cq_cons;
3387     fp->rx_cq_prod = sw_cq_prod;
3388 
3389     /* Update producers */
3390     bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3391 
3392     fp->eth_q_stats.rx_pkts += rx_pkts;
3393     fp->eth_q_stats.rx_calls++;
3394 
3395     BXE_FP_RX_UNLOCK(fp);
3396 
3397     return (sw_cq_cons != hw_cq_cons);
3398 }
3399 
3400 static uint16_t
3401 bxe_free_tx_pkt(struct bxe_softc    *sc,
3402                 struct bxe_fastpath *fp,
3403                 uint16_t            idx)
3404 {
3405     struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3406     struct eth_tx_start_bd *tx_start_bd;
3407     uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3408     uint16_t new_cons;
3409     int nbd;
3410 
3411     /* unmap the mbuf from non-paged memory */
3412     bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3413 
3414     tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3415     nbd = le16toh(tx_start_bd->nbd) - 1;
3416 
3417     new_cons = (tx_buf->first_bd + nbd);
3418 
3419     /* free the mbuf */
3420     if (__predict_true(tx_buf->m != NULL)) {
3421         m_freem(tx_buf->m);
3422         fp->eth_q_stats.mbuf_alloc_tx--;
3423     } else {
3424         fp->eth_q_stats.tx_chain_lost_mbuf++;
3425     }
3426 
3427     tx_buf->m = NULL;
3428     tx_buf->first_bd = 0;
3429 
3430     return (new_cons);
3431 }
3432 
3433 /* transmit timeout watchdog */
3434 static int
3435 bxe_watchdog(struct bxe_softc    *sc,
3436              struct bxe_fastpath *fp)
3437 {
3438     BXE_FP_TX_LOCK(fp);
3439 
3440     if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3441         BXE_FP_TX_UNLOCK(fp);
3442         return (0);
3443     }
3444 
3445     BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3446 
3447     BXE_FP_TX_UNLOCK(fp);
3448 
3449     atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
3450     taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
3451 
3452     return (-1);
3453 }
3454 
3455 /* processes transmit completions */
3456 static uint8_t
3457 bxe_txeof(struct bxe_softc    *sc,
3458           struct bxe_fastpath *fp)
3459 {
3460     if_t ifp = sc->ifp;
3461     uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3462     uint16_t tx_bd_avail;
3463 
3464     BXE_FP_TX_LOCK_ASSERT(fp);
3465 
3466     bd_cons = fp->tx_bd_cons;
3467     hw_cons = le16toh(*fp->tx_cons_sb);
3468     sw_cons = fp->tx_pkt_cons;
3469 
3470     while (sw_cons != hw_cons) {
3471         pkt_cons = TX_BD(sw_cons);
3472 
3473         BLOGD(sc, DBG_TX,
3474               "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3475               fp->index, hw_cons, sw_cons, pkt_cons);
3476 
3477         bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3478 
3479         sw_cons++;
3480     }
3481 
3482     fp->tx_pkt_cons = sw_cons;
3483     fp->tx_bd_cons  = bd_cons;
3484 
3485     BLOGD(sc, DBG_TX,
3486           "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3487           fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3488 
3489     mb();
3490 
3491     tx_bd_avail = bxe_tx_avail(sc, fp);
3492 
3493     if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3494         if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
3495     } else {
3496         if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3497     }
3498 
3499     if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3500         /* reset the watchdog timer if there are pending transmits */
3501         fp->watchdog_timer = BXE_TX_TIMEOUT;
3502         return (TRUE);
3503     } else {
3504         /* clear watchdog when there are no pending transmits */
3505         fp->watchdog_timer = 0;
3506         return (FALSE);
3507     }
3508 }
3509 
3510 static void
3511 bxe_drain_tx_queues(struct bxe_softc *sc)
3512 {
3513     struct bxe_fastpath *fp;
3514     int i, count;
3515 
3516     /* wait until all TX fastpath tasks have completed */
3517     for (i = 0; i < sc->num_queues; i++) {
3518         fp = &sc->fp[i];
3519 
3520         count = 1000;
3521 
3522         while (bxe_has_tx_work(fp)) {
3523 
3524             BXE_FP_TX_LOCK(fp);
3525             bxe_txeof(sc, fp);
3526             BXE_FP_TX_UNLOCK(fp);
3527 
3528             if (count == 0) {
3529                 BLOGE(sc, "Timeout waiting for fp[%d] "
3530                           "transmits to complete!\n", i);
3531                 bxe_panic(sc, ("tx drain failure\n"));
3532                 return;
3533             }
3534 
3535             count--;
3536             DELAY(1000);
3537             rmb();
3538         }
3539     }
3540 
3541     return;
3542 }
3543 
3544 static int
3545 bxe_del_all_macs(struct bxe_softc          *sc,
3546                  struct ecore_vlan_mac_obj *mac_obj,
3547                  int                       mac_type,
3548                  uint8_t                   wait_for_comp)
3549 {
3550     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3551     int rc;
3552 
3553     /* wait for completion of requested */
3554     if (wait_for_comp) {
3555         bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3556     }
3557 
3558     /* Set the mac type of addresses we want to clear */
3559     bxe_set_bit(mac_type, &vlan_mac_flags);
3560 
3561     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3562     if (rc < 0) {
3563         BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n",
3564             rc, mac_type, wait_for_comp);
3565     }
3566 
3567     return (rc);
3568 }
3569 
3570 static int
3571 bxe_fill_accept_flags(struct bxe_softc *sc,
3572                       uint32_t         rx_mode,
3573                       unsigned long    *rx_accept_flags,
3574                       unsigned long    *tx_accept_flags)
3575 {
3576     /* Clear the flags first */
3577     *rx_accept_flags = 0;
3578     *tx_accept_flags = 0;
3579 
3580     switch (rx_mode) {
3581     case BXE_RX_MODE_NONE:
3582         /*
3583          * 'drop all' supersedes any accept flags that may have been
3584          * passed to the function.
3585          */
3586         break;
3587 
3588     case BXE_RX_MODE_NORMAL:
3589         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3590         bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3591         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3592 
3593         /* internal switching mode */
3594         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3595         bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3596         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3597 
3598         break;
3599 
3600     case BXE_RX_MODE_ALLMULTI:
3601         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3602         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3603         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3604 
3605         /* internal switching mode */
3606         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3607         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3608         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3609 
3610         break;
3611 
3612     case BXE_RX_MODE_PROMISC:
3613         /*
3614          * According to deffinition of SI mode, iface in promisc mode
3615          * should receive matched and unmatched (in resolution of port)
3616          * unicast packets.
3617          */
3618         bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3619         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3620         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3621         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3622 
3623         /* internal switching mode */
3624         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3625         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3626 
3627         if (IS_MF_SI(sc)) {
3628             bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3629         } else {
3630             bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3631         }
3632 
3633         break;
3634 
3635     default:
3636         BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode);
3637         return (-1);
3638     }
3639 
3640     /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3641     if (rx_mode != BXE_RX_MODE_NONE) {
3642         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3643         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3644     }
3645 
3646     return (0);
3647 }
3648 
3649 static int
3650 bxe_set_q_rx_mode(struct bxe_softc *sc,
3651                   uint8_t          cl_id,
3652                   unsigned long    rx_mode_flags,
3653                   unsigned long    rx_accept_flags,
3654                   unsigned long    tx_accept_flags,
3655                   unsigned long    ramrod_flags)
3656 {
3657     struct ecore_rx_mode_ramrod_params ramrod_param;
3658     int rc;
3659 
3660     memset(&ramrod_param, 0, sizeof(ramrod_param));
3661 
3662     /* Prepare ramrod parameters */
3663     ramrod_param.cid = 0;
3664     ramrod_param.cl_id = cl_id;
3665     ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3666     ramrod_param.func_id = SC_FUNC(sc);
3667 
3668     ramrod_param.pstate = &sc->sp_state;
3669     ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3670 
3671     ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3672     ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3673 
3674     bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3675 
3676     ramrod_param.ramrod_flags = ramrod_flags;
3677     ramrod_param.rx_mode_flags = rx_mode_flags;
3678 
3679     ramrod_param.rx_accept_flags = rx_accept_flags;
3680     ramrod_param.tx_accept_flags = tx_accept_flags;
3681 
3682     rc = ecore_config_rx_mode(sc, &ramrod_param);
3683     if (rc < 0) {
3684         BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x "
3685             "rx_accept_flags 0x%x tx_accept_flags 0x%x "
3686             "ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id,
3687             (uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags,
3688             (uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc);
3689         return (rc);
3690     }
3691 
3692     return (0);
3693 }
3694 
3695 static int
3696 bxe_set_storm_rx_mode(struct bxe_softc *sc)
3697 {
3698     unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3699     unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3700     int rc;
3701 
3702     rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3703                                &tx_accept_flags);
3704     if (rc) {
3705         return (rc);
3706     }
3707 
3708     bxe_set_bit(RAMROD_RX, &ramrod_flags);
3709     bxe_set_bit(RAMROD_TX, &ramrod_flags);
3710 
3711     /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3712     return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3713                               rx_accept_flags, tx_accept_flags,
3714                               ramrod_flags));
3715 }
3716 
3717 /* returns the "mcp load_code" according to global load_count array */
3718 static int
3719 bxe_nic_load_no_mcp(struct bxe_softc *sc)
3720 {
3721     int path = SC_PATH(sc);
3722     int port = SC_PORT(sc);
3723 
3724     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3725           path, load_count[path][0], load_count[path][1],
3726           load_count[path][2]);
3727     load_count[path][0]++;
3728     load_count[path][1 + port]++;
3729     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3730           path, load_count[path][0], load_count[path][1],
3731           load_count[path][2]);
3732     if (load_count[path][0] == 1) {
3733         return (FW_MSG_CODE_DRV_LOAD_COMMON);
3734     } else if (load_count[path][1 + port] == 1) {
3735         return (FW_MSG_CODE_DRV_LOAD_PORT);
3736     } else {
3737         return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3738     }
3739 }
3740 
3741 /* returns the "mcp load_code" according to global load_count array */
3742 static int
3743 bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3744 {
3745     int port = SC_PORT(sc);
3746     int path = SC_PATH(sc);
3747 
3748     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3749           path, load_count[path][0], load_count[path][1],
3750           load_count[path][2]);
3751     load_count[path][0]--;
3752     load_count[path][1 + port]--;
3753     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3754           path, load_count[path][0], load_count[path][1],
3755           load_count[path][2]);
3756     if (load_count[path][0] == 0) {
3757         return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3758     } else if (load_count[path][1 + port] == 0) {
3759         return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3760     } else {
3761         return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3762     }
3763 }
3764 
3765 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3766 static uint32_t
3767 bxe_send_unload_req(struct bxe_softc *sc,
3768                     int              unload_mode)
3769 {
3770     uint32_t reset_code = 0;
3771 
3772     /* Select the UNLOAD request mode */
3773     if (unload_mode == UNLOAD_NORMAL) {
3774         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3775     } else {
3776         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3777     }
3778 
3779     /* Send the request to the MCP */
3780     if (!BXE_NOMCP(sc)) {
3781         reset_code = bxe_fw_command(sc, reset_code, 0);
3782     } else {
3783         reset_code = bxe_nic_unload_no_mcp(sc);
3784     }
3785 
3786     return (reset_code);
3787 }
3788 
3789 /* send UNLOAD_DONE command to the MCP */
3790 static void
3791 bxe_send_unload_done(struct bxe_softc *sc,
3792                      uint8_t          keep_link)
3793 {
3794     uint32_t reset_param =
3795         keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
3796 
3797     /* Report UNLOAD_DONE to MCP */
3798     if (!BXE_NOMCP(sc)) {
3799         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
3800     }
3801 }
3802 
3803 static int
3804 bxe_func_wait_started(struct bxe_softc *sc)
3805 {
3806     int tout = 50;
3807 
3808     if (!sc->port.pmf) {
3809         return (0);
3810     }
3811 
3812     /*
3813      * (assumption: No Attention from MCP at this stage)
3814      * PMF probably in the middle of TX disable/enable transaction
3815      * 1. Sync IRS for default SB
3816      * 2. Sync SP queue - this guarantees us that attention handling started
3817      * 3. Wait, that TX disable/enable transaction completes
3818      *
3819      * 1+2 guarantee that if DCBX attention was scheduled it already changed
3820      * pending bit of transaction from STARTED-->TX_STOPPED, if we already
3821      * received completion for the transaction the state is TX_STOPPED.
3822      * State will return to STARTED after completion of TX_STOPPED-->STARTED
3823      * transaction.
3824      */
3825 
3826     /* XXX make sure default SB ISR is done */
3827     /* need a way to synchronize an irq (intr_mtx?) */
3828 
3829     /* XXX flush any work queues */
3830 
3831     while (ecore_func_get_state(sc, &sc->func_obj) !=
3832            ECORE_F_STATE_STARTED && tout--) {
3833         DELAY(20000);
3834     }
3835 
3836     if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
3837         /*
3838          * Failed to complete the transaction in a "good way"
3839          * Force both transactions with CLR bit.
3840          */
3841         struct ecore_func_state_params func_params = { NULL };
3842 
3843         BLOGE(sc, "Unexpected function state! "
3844                   "Forcing STARTED-->TX_STOPPED-->STARTED\n");
3845 
3846         func_params.f_obj = &sc->func_obj;
3847         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
3848 
3849         /* STARTED-->TX_STOPPED */
3850         func_params.cmd = ECORE_F_CMD_TX_STOP;
3851         ecore_func_state_change(sc, &func_params);
3852 
3853         /* TX_STOPPED-->STARTED */
3854         func_params.cmd = ECORE_F_CMD_TX_START;
3855         return (ecore_func_state_change(sc, &func_params));
3856     }
3857 
3858     return (0);
3859 }
3860 
3861 static int
3862 bxe_stop_queue(struct bxe_softc *sc,
3863                int              index)
3864 {
3865     struct bxe_fastpath *fp = &sc->fp[index];
3866     struct ecore_queue_state_params q_params = { NULL };
3867     int rc;
3868 
3869     BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
3870 
3871     q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
3872     /* We want to wait for completion in this context */
3873     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
3874 
3875     /* Stop the primary connection: */
3876 
3877     /* ...halt the connection */
3878     q_params.cmd = ECORE_Q_CMD_HALT;
3879     rc = ecore_queue_state_change(sc, &q_params);
3880     if (rc) {
3881         return (rc);
3882     }
3883 
3884     /* ...terminate the connection */
3885     q_params.cmd = ECORE_Q_CMD_TERMINATE;
3886     memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
3887     q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
3888     rc = ecore_queue_state_change(sc, &q_params);
3889     if (rc) {
3890         return (rc);
3891     }
3892 
3893     /* ...delete cfc entry */
3894     q_params.cmd = ECORE_Q_CMD_CFC_DEL;
3895     memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
3896     q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
3897     return (ecore_queue_state_change(sc, &q_params));
3898 }
3899 
3900 /* wait for the outstanding SP commands */
3901 static inline uint8_t
3902 bxe_wait_sp_comp(struct bxe_softc *sc,
3903                  unsigned long    mask)
3904 {
3905     unsigned long tmp;
3906     int tout = 5000; /* wait for 5 secs tops */
3907 
3908     while (tout--) {
3909         mb();
3910         if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
3911             return (TRUE);
3912         }
3913 
3914         DELAY(1000);
3915     }
3916 
3917     mb();
3918 
3919     tmp = atomic_load_acq_long(&sc->sp_state);
3920     if (tmp & mask) {
3921         BLOGE(sc, "Filtering completion timed out: "
3922                   "sp_state 0x%lx, mask 0x%lx\n",
3923               tmp, mask);
3924         return (FALSE);
3925     }
3926 
3927     return (FALSE);
3928 }
3929 
3930 static int
3931 bxe_func_stop(struct bxe_softc *sc)
3932 {
3933     struct ecore_func_state_params func_params = { NULL };
3934     int rc;
3935 
3936     /* prepare parameters for function state transitions */
3937     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
3938     func_params.f_obj = &sc->func_obj;
3939     func_params.cmd = ECORE_F_CMD_STOP;
3940 
3941     /*
3942      * Try to stop the function the 'good way'. If it fails (in case
3943      * of a parity error during bxe_chip_cleanup()) and we are
3944      * not in a debug mode, perform a state transaction in order to
3945      * enable further HW_RESET transaction.
3946      */
3947     rc = ecore_func_state_change(sc, &func_params);
3948     if (rc) {
3949         BLOGE(sc, "FUNC_STOP ramrod failed. "
3950                   "Running a dry transaction (%d)\n", rc);
3951         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
3952         return (ecore_func_state_change(sc, &func_params));
3953     }
3954 
3955     return (0);
3956 }
3957 
3958 static int
3959 bxe_reset_hw(struct bxe_softc *sc,
3960              uint32_t         load_code)
3961 {
3962     struct ecore_func_state_params func_params = { NULL };
3963 
3964     /* Prepare parameters for function state transitions */
3965     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
3966 
3967     func_params.f_obj = &sc->func_obj;
3968     func_params.cmd = ECORE_F_CMD_HW_RESET;
3969 
3970     func_params.params.hw_init.load_phase = load_code;
3971 
3972     return (ecore_func_state_change(sc, &func_params));
3973 }
3974 
3975 static void
3976 bxe_int_disable_sync(struct bxe_softc *sc,
3977                      int              disable_hw)
3978 {
3979     if (disable_hw) {
3980         /* prevent the HW from sending interrupts */
3981         bxe_int_disable(sc);
3982     }
3983 
3984     /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
3985     /* make sure all ISRs are done */
3986 
3987     /* XXX make sure sp_task is not running */
3988     /* cancel and flush work queues */
3989 }
3990 
3991 static void
3992 bxe_chip_cleanup(struct bxe_softc *sc,
3993                  uint32_t         unload_mode,
3994                  uint8_t          keep_link)
3995 {
3996     int port = SC_PORT(sc);
3997     struct ecore_mcast_ramrod_params rparam = { NULL };
3998     uint32_t reset_code;
3999     int i, rc = 0;
4000 
4001     bxe_drain_tx_queues(sc);
4002 
4003     /* give HW time to discard old tx messages */
4004     DELAY(1000);
4005 
4006     /* Clean all ETH MACs */
4007     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4008     if (rc < 0) {
4009         BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4010     }
4011 
4012     /* Clean up UC list  */
4013     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4014     if (rc < 0) {
4015         BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4016     }
4017 
4018     /* Disable LLH */
4019     if (!CHIP_IS_E1(sc)) {
4020         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4021     }
4022 
4023     /* Set "drop all" to stop Rx */
4024 
4025     /*
4026      * We need to take the BXE_MCAST_LOCK() here in order to prevent
4027      * a race between the completion code and this code.
4028      */
4029     BXE_MCAST_LOCK(sc);
4030 
4031     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4032         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4033     } else {
4034         bxe_set_storm_rx_mode(sc);
4035     }
4036 
4037     /* Clean up multicast configuration */
4038     rparam.mcast_obj = &sc->mcast_obj;
4039     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4040     if (rc < 0) {
4041         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4042     }
4043 
4044     BXE_MCAST_UNLOCK(sc);
4045 
4046     // XXX bxe_iov_chip_cleanup(sc);
4047 
4048     /*
4049      * Send the UNLOAD_REQUEST to the MCP. This will return if
4050      * this function should perform FUNCTION, PORT, or COMMON HW
4051      * reset.
4052      */
4053     reset_code = bxe_send_unload_req(sc, unload_mode);
4054 
4055     /*
4056      * (assumption: No Attention from MCP at this stage)
4057      * PMF probably in the middle of TX disable/enable transaction
4058      */
4059     rc = bxe_func_wait_started(sc);
4060     if (rc) {
4061         BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc);
4062     }
4063 
4064     /*
4065      * Close multi and leading connections
4066      * Completions for ramrods are collected in a synchronous way
4067      */
4068     for (i = 0; i < sc->num_queues; i++) {
4069         if (bxe_stop_queue(sc, i)) {
4070             goto unload_error;
4071         }
4072     }
4073 
4074     /*
4075      * If SP settings didn't get completed so far - something
4076      * very wrong has happen.
4077      */
4078     if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4079         BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc);
4080     }
4081 
4082 unload_error:
4083 
4084     rc = bxe_func_stop(sc);
4085     if (rc) {
4086         BLOGE(sc, "Function stop failed!(%d)\n", rc);
4087     }
4088 
4089     /* disable HW interrupts */
4090     bxe_int_disable_sync(sc, TRUE);
4091 
4092     /* detach interrupts */
4093     bxe_interrupt_detach(sc);
4094 
4095     /* Reset the chip */
4096     rc = bxe_reset_hw(sc, reset_code);
4097     if (rc) {
4098         BLOGE(sc, "Hardware reset failed(%d)\n", rc);
4099     }
4100 
4101     /* Report UNLOAD_DONE to MCP */
4102     bxe_send_unload_done(sc, keep_link);
4103 }
4104 
4105 static void
4106 bxe_disable_close_the_gate(struct bxe_softc *sc)
4107 {
4108     uint32_t val;
4109     int port = SC_PORT(sc);
4110 
4111     BLOGD(sc, DBG_LOAD,
4112           "Disabling 'close the gates'\n");
4113 
4114     if (CHIP_IS_E1(sc)) {
4115         uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4116                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
4117         val = REG_RD(sc, addr);
4118         val &= ~(0x300);
4119         REG_WR(sc, addr, val);
4120     } else {
4121         val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4122         val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4123                  MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4124         REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4125     }
4126 }
4127 
4128 /*
4129  * Cleans the object that have internal lists without sending
4130  * ramrods. Should be run when interrutps are disabled.
4131  */
4132 static void
4133 bxe_squeeze_objects(struct bxe_softc *sc)
4134 {
4135     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4136     struct ecore_mcast_ramrod_params rparam = { NULL };
4137     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4138     int rc;
4139 
4140     /* Cleanup MACs' object first... */
4141 
4142     /* Wait for completion of requested */
4143     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4144     /* Perform a dry cleanup */
4145     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4146 
4147     /* Clean ETH primary MAC */
4148     bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4149     rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4150                              &ramrod_flags);
4151     if (rc != 0) {
4152         BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4153     }
4154 
4155     /* Cleanup UC list */
4156     vlan_mac_flags = 0;
4157     bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4158     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4159                              &ramrod_flags);
4160     if (rc != 0) {
4161         BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4162     }
4163 
4164     /* Now clean mcast object... */
4165 
4166     rparam.mcast_obj = &sc->mcast_obj;
4167     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4168 
4169     /* Add a DEL command... */
4170     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4171     if (rc < 0) {
4172         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4173     }
4174 
4175     /* now wait until all pending commands are cleared */
4176 
4177     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4178     while (rc != 0) {
4179         if (rc < 0) {
4180             BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4181             return;
4182         }
4183 
4184         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4185     }
4186 }
4187 
4188 /* stop the controller */
4189 static __noinline int
4190 bxe_nic_unload(struct bxe_softc *sc,
4191                uint32_t         unload_mode,
4192                uint8_t          keep_link)
4193 {
4194     uint8_t global = FALSE;
4195     uint32_t val;
4196 
4197     BXE_CORE_LOCK_ASSERT(sc);
4198 
4199     BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4200 
4201     /* mark driver as unloaded in shmem2 */
4202     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4203         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4204         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4205                   val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4206     }
4207 
4208     if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4209         (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4210         /*
4211          * We can get here if the driver has been unloaded
4212          * during parity error recovery and is either waiting for a
4213          * leader to complete or for other functions to unload and
4214          * then ifconfig down has been issued. In this case we want to
4215          * unload and let other functions to complete a recovery
4216          * process.
4217          */
4218         sc->recovery_state = BXE_RECOVERY_DONE;
4219         sc->is_leader = 0;
4220         bxe_release_leader_lock(sc);
4221         mb();
4222 
4223         BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4224         BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x"
4225             " state = 0x%x\n", sc->recovery_state, sc->state);
4226         return (-1);
4227     }
4228 
4229     /*
4230      * Nothing to do during unload if previous bxe_nic_load()
4231      * did not completed succesfully - all resourses are released.
4232      */
4233     if ((sc->state == BXE_STATE_CLOSED) ||
4234         (sc->state == BXE_STATE_ERROR)) {
4235         return (0);
4236     }
4237 
4238     sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4239     mb();
4240 
4241     /* stop tx */
4242     bxe_tx_disable(sc);
4243 
4244     sc->rx_mode = BXE_RX_MODE_NONE;
4245     /* XXX set rx mode ??? */
4246 
4247     if (IS_PF(sc) && !sc->grcdump_done) {
4248         /* set ALWAYS_ALIVE bit in shmem */
4249         sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4250 
4251         bxe_drv_pulse(sc);
4252 
4253         bxe_stats_handle(sc, STATS_EVENT_STOP);
4254         bxe_save_statistics(sc);
4255     }
4256 
4257     /* wait till consumers catch up with producers in all queues */
4258     bxe_drain_tx_queues(sc);
4259 
4260     /* if VF indicate to PF this function is going down (PF will delete sp
4261      * elements and clear initializations
4262      */
4263     if (IS_VF(sc)) {
4264         ; /* bxe_vfpf_close_vf(sc); */
4265     } else if (unload_mode != UNLOAD_RECOVERY) {
4266         /* if this is a normal/close unload need to clean up chip */
4267         if (!sc->grcdump_done)
4268             bxe_chip_cleanup(sc, unload_mode, keep_link);
4269     } else {
4270         /* Send the UNLOAD_REQUEST to the MCP */
4271         bxe_send_unload_req(sc, unload_mode);
4272 
4273         /*
4274          * Prevent transactions to host from the functions on the
4275          * engine that doesn't reset global blocks in case of global
4276          * attention once gloabl blocks are reset and gates are opened
4277          * (the engine which leader will perform the recovery
4278          * last).
4279          */
4280         if (!CHIP_IS_E1x(sc)) {
4281             bxe_pf_disable(sc);
4282         }
4283 
4284         /* disable HW interrupts */
4285         bxe_int_disable_sync(sc, TRUE);
4286 
4287         /* detach interrupts */
4288         bxe_interrupt_detach(sc);
4289 
4290         /* Report UNLOAD_DONE to MCP */
4291         bxe_send_unload_done(sc, FALSE);
4292     }
4293 
4294     /*
4295      * At this stage no more interrupts will arrive so we may safely clean
4296      * the queue'able objects here in case they failed to get cleaned so far.
4297      */
4298     if (IS_PF(sc)) {
4299         bxe_squeeze_objects(sc);
4300     }
4301 
4302     /* There should be no more pending SP commands at this stage */
4303     sc->sp_state = 0;
4304 
4305     sc->port.pmf = 0;
4306 
4307     bxe_free_fp_buffers(sc);
4308 
4309     if (IS_PF(sc)) {
4310         bxe_free_mem(sc);
4311     }
4312 
4313     bxe_free_fw_stats_mem(sc);
4314 
4315     sc->state = BXE_STATE_CLOSED;
4316 
4317     /*
4318      * Check if there are pending parity attentions. If there are - set
4319      * RECOVERY_IN_PROGRESS.
4320      */
4321     if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4322         bxe_set_reset_in_progress(sc);
4323 
4324         /* Set RESET_IS_GLOBAL if needed */
4325         if (global) {
4326             bxe_set_reset_global(sc);
4327         }
4328     }
4329 
4330     /*
4331      * The last driver must disable a "close the gate" if there is no
4332      * parity attention or "process kill" pending.
4333      */
4334     if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4335         bxe_reset_is_done(sc, SC_PATH(sc))) {
4336         bxe_disable_close_the_gate(sc);
4337     }
4338 
4339     BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4340 
4341     return (0);
4342 }
4343 
4344 /*
4345  * Called by the OS to set various media options (i.e. link, speed, etc.) when
4346  * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4347  */
4348 static int
4349 bxe_ifmedia_update(struct ifnet  *ifp)
4350 {
4351     struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp);
4352     struct ifmedia *ifm;
4353 
4354     ifm = &sc->ifmedia;
4355 
4356     /* We only support Ethernet media type. */
4357     if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4358         return (EINVAL);
4359     }
4360 
4361     switch (IFM_SUBTYPE(ifm->ifm_media)) {
4362     case IFM_AUTO:
4363          break;
4364     case IFM_10G_CX4:
4365     case IFM_10G_SR:
4366     case IFM_10G_T:
4367     case IFM_10G_TWINAX:
4368     default:
4369         /* We don't support changing the media type. */
4370         BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4371               IFM_SUBTYPE(ifm->ifm_media));
4372         return (EINVAL);
4373     }
4374 
4375     return (0);
4376 }
4377 
4378 /*
4379  * Called by the OS to get the current media status (i.e. link, speed, etc.).
4380  */
4381 static void
4382 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
4383 {
4384     struct bxe_softc *sc = if_getsoftc(ifp);
4385 
4386     /* Report link down if the driver isn't running. */
4387     if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4388         ifmr->ifm_active |= IFM_NONE;
4389         return;
4390     }
4391 
4392     /* Setup the default interface info. */
4393     ifmr->ifm_status = IFM_AVALID;
4394     ifmr->ifm_active = IFM_ETHER;
4395 
4396     if (sc->link_vars.link_up) {
4397         ifmr->ifm_status |= IFM_ACTIVE;
4398     } else {
4399         ifmr->ifm_active |= IFM_NONE;
4400         return;
4401     }
4402 
4403     ifmr->ifm_active |= sc->media;
4404 
4405     if (sc->link_vars.duplex == DUPLEX_FULL) {
4406         ifmr->ifm_active |= IFM_FDX;
4407     } else {
4408         ifmr->ifm_active |= IFM_HDX;
4409     }
4410 }
4411 
4412 static int
4413 bxe_ioctl_nvram(struct bxe_softc *sc,
4414                 uint32_t         priv_op,
4415                 struct ifreq     *ifr)
4416 {
4417     struct bxe_nvram_data nvdata_base;
4418     struct bxe_nvram_data *nvdata;
4419     int len;
4420     int error = 0;
4421 
4422     copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base));
4423 
4424     len = (sizeof(struct bxe_nvram_data) +
4425            nvdata_base.len -
4426            sizeof(uint32_t));
4427 
4428     if (len > sizeof(struct bxe_nvram_data)) {
4429         if ((nvdata = (struct bxe_nvram_data *)
4430                  malloc(len, M_DEVBUF,
4431                         (M_NOWAIT | M_ZERO))) == NULL) {
4432             BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed priv_op 0x%x "
4433                 " len = 0x%x\n", priv_op, len);
4434             return (1);
4435         }
4436         memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data));
4437     } else {
4438         nvdata = &nvdata_base;
4439     }
4440 
4441     if (priv_op == BXE_IOC_RD_NVRAM) {
4442         BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n",
4443               nvdata->offset, nvdata->len);
4444         error = bxe_nvram_read(sc,
4445                                nvdata->offset,
4446                                (uint8_t *)nvdata->value,
4447                                nvdata->len);
4448         copyout(nvdata, ifr->ifr_data, len);
4449     } else { /* BXE_IOC_WR_NVRAM */
4450         BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n",
4451               nvdata->offset, nvdata->len);
4452         copyin(ifr->ifr_data, nvdata, len);
4453         error = bxe_nvram_write(sc,
4454                                 nvdata->offset,
4455                                 (uint8_t *)nvdata->value,
4456                                 nvdata->len);
4457     }
4458 
4459     if (len > sizeof(struct bxe_nvram_data)) {
4460         free(nvdata, M_DEVBUF);
4461     }
4462 
4463     return (error);
4464 }
4465 
4466 static int
4467 bxe_ioctl_stats_show(struct bxe_softc *sc,
4468                      uint32_t         priv_op,
4469                      struct ifreq     *ifr)
4470 {
4471     const size_t str_size   = (BXE_NUM_ETH_STATS * STAT_NAME_LEN);
4472     const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t));
4473     caddr_t p_tmp;
4474     uint32_t *offset;
4475     int i;
4476 
4477     switch (priv_op)
4478     {
4479     case BXE_IOC_STATS_SHOW_NUM:
4480         memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data));
4481         ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num =
4482             BXE_NUM_ETH_STATS;
4483         ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len =
4484             STAT_NAME_LEN;
4485         return (0);
4486 
4487     case BXE_IOC_STATS_SHOW_STR:
4488         memset(ifr->ifr_data, 0, str_size);
4489         p_tmp = ifr->ifr_data;
4490         for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4491             strcpy(p_tmp, bxe_eth_stats_arr[i].string);
4492             p_tmp += STAT_NAME_LEN;
4493         }
4494         return (0);
4495 
4496     case BXE_IOC_STATS_SHOW_CNT:
4497         memset(ifr->ifr_data, 0, stats_size);
4498         p_tmp = ifr->ifr_data;
4499         for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4500             offset = ((uint32_t *)&sc->eth_stats +
4501                       bxe_eth_stats_arr[i].offset);
4502             switch (bxe_eth_stats_arr[i].size) {
4503             case 4:
4504                 *((uint64_t *)p_tmp) = (uint64_t)*offset;
4505                 break;
4506             case 8:
4507                 *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1));
4508                 break;
4509             default:
4510                 *((uint64_t *)p_tmp) = 0;
4511             }
4512             p_tmp += sizeof(uint64_t);
4513         }
4514         return (0);
4515 
4516     default:
4517         return (-1);
4518     }
4519 }
4520 
4521 static void
4522 bxe_handle_chip_tq(void *context,
4523                    int  pending)
4524 {
4525     struct bxe_softc *sc = (struct bxe_softc *)context;
4526     long work = atomic_load_acq_long(&sc->chip_tq_flags);
4527 
4528     switch (work)
4529     {
4530 
4531     case CHIP_TQ_REINIT:
4532         if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
4533             /* restart the interface */
4534             BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4535             bxe_periodic_stop(sc);
4536             BXE_CORE_LOCK(sc);
4537             bxe_stop_locked(sc);
4538             bxe_init_locked(sc);
4539             BXE_CORE_UNLOCK(sc);
4540         }
4541         break;
4542 
4543     default:
4544         break;
4545     }
4546 }
4547 
4548 /*
4549  * Handles any IOCTL calls from the operating system.
4550  *
4551  * Returns:
4552  *   0 = Success, >0 Failure
4553  */
4554 static int
4555 bxe_ioctl(if_t ifp,
4556           u_long       command,
4557           caddr_t      data)
4558 {
4559     struct bxe_softc *sc = if_getsoftc(ifp);
4560     struct ifreq *ifr = (struct ifreq *)data;
4561     struct bxe_nvram_data *nvdata;
4562     uint32_t priv_op;
4563     int mask = 0;
4564     int reinit = 0;
4565     int error = 0;
4566 
4567     int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4568     int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4569 
4570     switch (command)
4571     {
4572     case SIOCSIFMTU:
4573         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4574               ifr->ifr_mtu);
4575 
4576         if (sc->mtu == ifr->ifr_mtu) {
4577             /* nothing to change */
4578             break;
4579         }
4580 
4581         if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4582             BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4583                   ifr->ifr_mtu, mtu_min, mtu_max);
4584             error = EINVAL;
4585             break;
4586         }
4587 
4588         atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4589                              (unsigned long)ifr->ifr_mtu);
4590 	/*
4591         atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp),
4592                               (unsigned long)ifr->ifr_mtu);
4593 	XXX - Not sure why it needs to be atomic
4594 	*/
4595 	if_setmtu(ifp, ifr->ifr_mtu);
4596         reinit = 1;
4597         break;
4598 
4599     case SIOCSIFFLAGS:
4600         /* toggle the interface state up or down */
4601         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4602 
4603 	BXE_CORE_LOCK(sc);
4604         /* check if the interface is up */
4605         if (if_getflags(ifp) & IFF_UP) {
4606             if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4607                 /* set the receive mode flags */
4608                 bxe_set_rx_mode(sc);
4609             } else {
4610 		bxe_init_locked(sc);
4611             }
4612         } else {
4613             if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4614 		bxe_periodic_stop(sc);
4615 		bxe_stop_locked(sc);
4616             }
4617         }
4618 	BXE_CORE_UNLOCK(sc);
4619 
4620         break;
4621 
4622     case SIOCADDMULTI:
4623     case SIOCDELMULTI:
4624         /* add/delete multicast addresses */
4625         BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4626 
4627         /* check if the interface is up */
4628         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4629             /* set the receive mode flags */
4630 	    BXE_CORE_LOCK(sc);
4631             bxe_set_rx_mode(sc);
4632 	    BXE_CORE_UNLOCK(sc);
4633         }
4634 
4635         break;
4636 
4637     case SIOCSIFCAP:
4638         /* find out which capabilities have changed */
4639         mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp));
4640 
4641         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4642               mask);
4643 
4644         /* toggle the LRO capabilites enable flag */
4645         if (mask & IFCAP_LRO) {
4646 	    if_togglecapenable(ifp, IFCAP_LRO);
4647             BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4648                   (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF");
4649             reinit = 1;
4650         }
4651 
4652         /* toggle the TXCSUM checksum capabilites enable flag */
4653         if (mask & IFCAP_TXCSUM) {
4654 	    if_togglecapenable(ifp, IFCAP_TXCSUM);
4655             BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4656                   (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF");
4657             if (if_getcapenable(ifp) & IFCAP_TXCSUM) {
4658                 if_sethwassistbits(ifp, (CSUM_IP      |
4659                                     CSUM_TCP      |
4660                                     CSUM_UDP      |
4661                                     CSUM_TSO      |
4662                                     CSUM_TCP_IPV6 |
4663                                     CSUM_UDP_IPV6), 0);
4664             } else {
4665 		if_clearhwassist(ifp); /* XXX */
4666             }
4667         }
4668 
4669         /* toggle the RXCSUM checksum capabilities enable flag */
4670         if (mask & IFCAP_RXCSUM) {
4671 	    if_togglecapenable(ifp, IFCAP_RXCSUM);
4672             BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4673                   (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF");
4674             if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
4675                 if_sethwassistbits(ifp, (CSUM_IP      |
4676                                     CSUM_TCP      |
4677                                     CSUM_UDP      |
4678                                     CSUM_TSO      |
4679                                     CSUM_TCP_IPV6 |
4680                                     CSUM_UDP_IPV6), 0);
4681             } else {
4682 		if_clearhwassist(ifp); /* XXX */
4683             }
4684         }
4685 
4686         /* toggle TSO4 capabilities enabled flag */
4687         if (mask & IFCAP_TSO4) {
4688             if_togglecapenable(ifp, IFCAP_TSO4);
4689             BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4690                   (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF");
4691         }
4692 
4693         /* toggle TSO6 capabilities enabled flag */
4694         if (mask & IFCAP_TSO6) {
4695 	    if_togglecapenable(ifp, IFCAP_TSO6);
4696             BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4697                   (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF");
4698         }
4699 
4700         /* toggle VLAN_HWTSO capabilities enabled flag */
4701         if (mask & IFCAP_VLAN_HWTSO) {
4702 
4703 	    if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
4704             BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4705                   (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4706         }
4707 
4708         /* toggle VLAN_HWCSUM capabilities enabled flag */
4709         if (mask & IFCAP_VLAN_HWCSUM) {
4710             /* XXX investigate this... */
4711             BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4712             error = EINVAL;
4713         }
4714 
4715         /* toggle VLAN_MTU capabilities enable flag */
4716         if (mask & IFCAP_VLAN_MTU) {
4717             /* XXX investigate this... */
4718             BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4719             error = EINVAL;
4720         }
4721 
4722         /* toggle VLAN_HWTAGGING capabilities enabled flag */
4723         if (mask & IFCAP_VLAN_HWTAGGING) {
4724             /* XXX investigate this... */
4725             BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4726             error = EINVAL;
4727         }
4728 
4729         /* toggle VLAN_HWFILTER capabilities enabled flag */
4730         if (mask & IFCAP_VLAN_HWFILTER) {
4731             /* XXX investigate this... */
4732             BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4733             error = EINVAL;
4734         }
4735 
4736         /* XXX not yet...
4737          * IFCAP_WOL_MAGIC
4738          */
4739 
4740         break;
4741 
4742     case SIOCSIFMEDIA:
4743     case SIOCGIFMEDIA:
4744         /* set/get interface media */
4745         BLOGD(sc, DBG_IOCTL,
4746               "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4747               (command & 0xff));
4748         error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
4749         break;
4750 
4751     case SIOCGPRIVATE_0:
4752         copyin(ifr->ifr_data, &priv_op, sizeof(priv_op));
4753 
4754         switch (priv_op)
4755         {
4756         case BXE_IOC_RD_NVRAM:
4757         case BXE_IOC_WR_NVRAM:
4758             nvdata = (struct bxe_nvram_data *)ifr->ifr_data;
4759             BLOGD(sc, DBG_IOCTL,
4760                   "Received Private NVRAM ioctl addr=0x%x size=%u\n",
4761                   nvdata->offset, nvdata->len);
4762             error = bxe_ioctl_nvram(sc, priv_op, ifr);
4763             break;
4764 
4765         case BXE_IOC_STATS_SHOW_NUM:
4766         case BXE_IOC_STATS_SHOW_STR:
4767         case BXE_IOC_STATS_SHOW_CNT:
4768             BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n",
4769                   priv_op);
4770             error = bxe_ioctl_stats_show(sc, priv_op, ifr);
4771             break;
4772 
4773         default:
4774             BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op);
4775             error = EINVAL;
4776             break;
4777         }
4778 
4779         break;
4780 
4781     default:
4782         BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
4783               (command & 0xff));
4784         error = ether_ioctl(ifp, command, data);
4785         break;
4786     }
4787 
4788     if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
4789         BLOGD(sc, DBG_LOAD | DBG_IOCTL,
4790               "Re-initializing hardware from IOCTL change\n");
4791 	bxe_periodic_stop(sc);
4792 	BXE_CORE_LOCK(sc);
4793 	bxe_stop_locked(sc);
4794 	bxe_init_locked(sc);
4795 	BXE_CORE_UNLOCK(sc);
4796     }
4797 
4798     return (error);
4799 }
4800 
4801 static __noinline void
4802 bxe_dump_mbuf(struct bxe_softc *sc,
4803               struct mbuf      *m,
4804               uint8_t          contents)
4805 {
4806     char * type;
4807     int i = 0;
4808 
4809     if (!(sc->debug & DBG_MBUF)) {
4810         return;
4811     }
4812 
4813     if (m == NULL) {
4814         BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
4815         return;
4816     }
4817 
4818     while (m) {
4819         BLOGD(sc, DBG_MBUF,
4820               "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
4821               i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
4822 
4823         if (m->m_flags & M_PKTHDR) {
4824              BLOGD(sc, DBG_MBUF,
4825                    "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
4826                    i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
4827                    (int)m->m_pkthdr.csum_flags, CSUM_BITS);
4828         }
4829 
4830         if (m->m_flags & M_EXT) {
4831             switch (m->m_ext.ext_type) {
4832             case EXT_CLUSTER:    type = "EXT_CLUSTER";    break;
4833             case EXT_SFBUF:      type = "EXT_SFBUF";      break;
4834             case EXT_JUMBOP:     type = "EXT_JUMBOP";     break;
4835             case EXT_JUMBO9:     type = "EXT_JUMBO9";     break;
4836             case EXT_JUMBO16:    type = "EXT_JUMBO16";    break;
4837             case EXT_PACKET:     type = "EXT_PACKET";     break;
4838             case EXT_MBUF:       type = "EXT_MBUF";       break;
4839             case EXT_NET_DRV:    type = "EXT_NET_DRV";    break;
4840             case EXT_MOD_TYPE:   type = "EXT_MOD_TYPE";   break;
4841             case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
4842             case EXT_EXTREF:     type = "EXT_EXTREF";     break;
4843             default:             type = "UNKNOWN";        break;
4844             }
4845 
4846             BLOGD(sc, DBG_MBUF,
4847                   "%02d: - m_ext: %p ext_size=%d type=%s\n",
4848                   i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
4849         }
4850 
4851         if (contents) {
4852             bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
4853         }
4854 
4855         m = m->m_next;
4856         i++;
4857     }
4858 }
4859 
4860 /*
4861  * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
4862  * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
4863  * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
4864  * The headers comes in a seperate bd in FreeBSD so 13-3=10.
4865  * Returns: 0 if OK to send, 1 if packet needs further defragmentation
4866  */
4867 static int
4868 bxe_chktso_window(struct bxe_softc  *sc,
4869                   int               nsegs,
4870                   bus_dma_segment_t *segs,
4871                   struct mbuf       *m)
4872 {
4873     uint32_t num_wnds, wnd_size, wnd_sum;
4874     int32_t frag_idx, wnd_idx;
4875     unsigned short lso_mss;
4876     int defrag;
4877 
4878     defrag = 0;
4879     wnd_sum = 0;
4880     wnd_size = 10;
4881     num_wnds = nsegs - wnd_size;
4882     lso_mss = htole16(m->m_pkthdr.tso_segsz);
4883 
4884     /*
4885      * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
4886      * first window sum of data while skipping the first assuming it is the
4887      * header in FreeBSD.
4888      */
4889     for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
4890         wnd_sum += htole16(segs[frag_idx].ds_len);
4891     }
4892 
4893     /* check the first 10 bd window size */
4894     if (wnd_sum < lso_mss) {
4895         return (1);
4896     }
4897 
4898     /* run through the windows */
4899     for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
4900         /* subtract the first mbuf->m_len of the last wndw(-header) */
4901         wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
4902         /* add the next mbuf len to the len of our new window */
4903         wnd_sum += htole16(segs[frag_idx].ds_len);
4904         if (wnd_sum < lso_mss) {
4905             return (1);
4906         }
4907     }
4908 
4909     return (0);
4910 }
4911 
4912 static uint8_t
4913 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
4914                     struct mbuf         *m,
4915                     uint32_t            *parsing_data)
4916 {
4917     struct ether_vlan_header *eh = NULL;
4918     struct ip *ip4 = NULL;
4919     struct ip6_hdr *ip6 = NULL;
4920     caddr_t ip = NULL;
4921     struct tcphdr *th = NULL;
4922     int e_hlen, ip_hlen, l4_off;
4923     uint16_t proto;
4924 
4925     if (m->m_pkthdr.csum_flags == CSUM_IP) {
4926         /* no L4 checksum offload needed */
4927         return (0);
4928     }
4929 
4930     /* get the Ethernet header */
4931     eh = mtod(m, struct ether_vlan_header *);
4932 
4933     /* handle VLAN encapsulation if present */
4934     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
4935         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
4936         proto  = ntohs(eh->evl_proto);
4937     } else {
4938         e_hlen = ETHER_HDR_LEN;
4939         proto  = ntohs(eh->evl_encap_proto);
4940     }
4941 
4942     switch (proto) {
4943     case ETHERTYPE_IP:
4944         /* get the IP header, if mbuf len < 20 then header in next mbuf */
4945         ip4 = (m->m_len < sizeof(struct ip)) ?
4946                   (struct ip *)m->m_next->m_data :
4947                   (struct ip *)(m->m_data + e_hlen);
4948         /* ip_hl is number of 32-bit words */
4949         ip_hlen = (ip4->ip_hl << 2);
4950         ip = (caddr_t)ip4;
4951         break;
4952     case ETHERTYPE_IPV6:
4953         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
4954         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
4955                   (struct ip6_hdr *)m->m_next->m_data :
4956                   (struct ip6_hdr *)(m->m_data + e_hlen);
4957         /* XXX cannot support offload with IPv6 extensions */
4958         ip_hlen = sizeof(struct ip6_hdr);
4959         ip = (caddr_t)ip6;
4960         break;
4961     default:
4962         /* We can't offload in this case... */
4963         /* XXX error stat ??? */
4964         return (0);
4965     }
4966 
4967     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
4968     l4_off = (e_hlen + ip_hlen);
4969 
4970     *parsing_data |=
4971         (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
4972          ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
4973 
4974     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4975                                   CSUM_TSO |
4976                                   CSUM_TCP_IPV6)) {
4977         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
4978         th = (struct tcphdr *)(ip + ip_hlen);
4979         /* th_off is number of 32-bit words */
4980         *parsing_data |= ((th->th_off <<
4981                            ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
4982                           ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
4983         return (l4_off + (th->th_off << 2)); /* entire header length */
4984     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4985                                          CSUM_UDP_IPV6)) {
4986         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
4987         return (l4_off + sizeof(struct udphdr)); /* entire header length */
4988     } else {
4989         /* XXX error stat ??? */
4990         return (0);
4991     }
4992 }
4993 
4994 static uint8_t
4995 bxe_set_pbd_csum(struct bxe_fastpath        *fp,
4996                  struct mbuf                *m,
4997                  struct eth_tx_parse_bd_e1x *pbd)
4998 {
4999     struct ether_vlan_header *eh = NULL;
5000     struct ip *ip4 = NULL;
5001     struct ip6_hdr *ip6 = NULL;
5002     caddr_t ip = NULL;
5003     struct tcphdr *th = NULL;
5004     struct udphdr *uh = NULL;
5005     int e_hlen, ip_hlen;
5006     uint16_t proto;
5007     uint8_t hlen;
5008     uint16_t tmp_csum;
5009     uint32_t *tmp_uh;
5010 
5011     /* get the Ethernet header */
5012     eh = mtod(m, struct ether_vlan_header *);
5013 
5014     /* handle VLAN encapsulation if present */
5015     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5016         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5017         proto  = ntohs(eh->evl_proto);
5018     } else {
5019         e_hlen = ETHER_HDR_LEN;
5020         proto  = ntohs(eh->evl_encap_proto);
5021     }
5022 
5023     switch (proto) {
5024     case ETHERTYPE_IP:
5025         /* get the IP header, if mbuf len < 20 then header in next mbuf */
5026         ip4 = (m->m_len < sizeof(struct ip)) ?
5027                   (struct ip *)m->m_next->m_data :
5028                   (struct ip *)(m->m_data + e_hlen);
5029         /* ip_hl is number of 32-bit words */
5030         ip_hlen = (ip4->ip_hl << 1);
5031         ip = (caddr_t)ip4;
5032         break;
5033     case ETHERTYPE_IPV6:
5034         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5035         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5036                   (struct ip6_hdr *)m->m_next->m_data :
5037                   (struct ip6_hdr *)(m->m_data + e_hlen);
5038         /* XXX cannot support offload with IPv6 extensions */
5039         ip_hlen = (sizeof(struct ip6_hdr) >> 1);
5040         ip = (caddr_t)ip6;
5041         break;
5042     default:
5043         /* We can't offload in this case... */
5044         /* XXX error stat ??? */
5045         return (0);
5046     }
5047 
5048     hlen = (e_hlen >> 1);
5049 
5050     /* note that rest of global_data is indirectly zeroed here */
5051     if (m->m_flags & M_VLANTAG) {
5052         pbd->global_data =
5053             htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
5054     } else {
5055         pbd->global_data = htole16(hlen);
5056     }
5057 
5058     pbd->ip_hlen_w = ip_hlen;
5059 
5060     hlen += pbd->ip_hlen_w;
5061 
5062     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5063 
5064     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5065                                   CSUM_TSO |
5066                                   CSUM_TCP_IPV6)) {
5067         th = (struct tcphdr *)(ip + (ip_hlen << 1));
5068         /* th_off is number of 32-bit words */
5069         hlen += (uint16_t)(th->th_off << 1);
5070     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5071                                          CSUM_UDP_IPV6)) {
5072         uh = (struct udphdr *)(ip + (ip_hlen << 1));
5073         hlen += (sizeof(struct udphdr) / 2);
5074     } else {
5075         /* valid case as only CSUM_IP was set */
5076         return (0);
5077     }
5078 
5079     pbd->total_hlen_w = htole16(hlen);
5080 
5081     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5082                                   CSUM_TSO |
5083                                   CSUM_TCP_IPV6)) {
5084         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5085         pbd->tcp_pseudo_csum = ntohs(th->th_sum);
5086     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5087                                          CSUM_UDP_IPV6)) {
5088         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5089 
5090         /*
5091          * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
5092          * checksums and does not know anything about the UDP header and where
5093          * the checksum field is located. It only knows about TCP. Therefore
5094          * we "lie" to the hardware for outgoing UDP packets w/ checksum
5095          * offload. Since the checksum field offset for TCP is 16 bytes and
5096          * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
5097          * bytes less than the start of the UDP header. This allows the
5098          * hardware to write the checksum in the correct spot. But the
5099          * hardware will compute a checksum which includes the last 10 bytes
5100          * of the IP header. To correct this we tweak the stack computed
5101          * pseudo checksum by folding in the calculation of the inverse
5102          * checksum for those final 10 bytes of the IP header. This allows
5103          * the correct checksum to be computed by the hardware.
5104          */
5105 
5106         /* set pointer 10 bytes before UDP header */
5107         tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5108 
5109         /* calculate a pseudo header checksum over the first 10 bytes */
5110         tmp_csum = in_pseudo(*tmp_uh,
5111                              *(tmp_uh + 1),
5112                              *(uint16_t *)(tmp_uh + 2));
5113 
5114         pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5115     }
5116 
5117     return (hlen * 2); /* entire header length, number of bytes */
5118 }
5119 
5120 static void
5121 bxe_set_pbd_lso_e2(struct mbuf *m,
5122                    uint32_t    *parsing_data)
5123 {
5124     *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5125                        ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5126                       ETH_TX_PARSE_BD_E2_LSO_MSS);
5127 
5128     /* XXX test for IPv6 with extension header... */
5129 }
5130 
5131 static void
5132 bxe_set_pbd_lso(struct mbuf                *m,
5133                 struct eth_tx_parse_bd_e1x *pbd)
5134 {
5135     struct ether_vlan_header *eh = NULL;
5136     struct ip *ip = NULL;
5137     struct tcphdr *th = NULL;
5138     int e_hlen;
5139 
5140     /* get the Ethernet header */
5141     eh = mtod(m, struct ether_vlan_header *);
5142 
5143     /* handle VLAN encapsulation if present */
5144     e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5145                  (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5146 
5147     /* get the IP and TCP header, with LSO entire header in first mbuf */
5148     /* XXX assuming IPv4 */
5149     ip = (struct ip *)(m->m_data + e_hlen);
5150     th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5151 
5152     pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5153     pbd->tcp_send_seq = ntohl(th->th_seq);
5154     pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5155 
5156 #if 1
5157         /* XXX IPv4 */
5158         pbd->ip_id = ntohs(ip->ip_id);
5159         pbd->tcp_pseudo_csum =
5160             ntohs(in_pseudo(ip->ip_src.s_addr,
5161                             ip->ip_dst.s_addr,
5162                             htons(IPPROTO_TCP)));
5163 #else
5164         /* XXX IPv6 */
5165         pbd->tcp_pseudo_csum =
5166             ntohs(in_pseudo(&ip6->ip6_src,
5167                             &ip6->ip6_dst,
5168                             htons(IPPROTO_TCP)));
5169 #endif
5170 
5171     pbd->global_data |=
5172         htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5173 }
5174 
5175 /*
5176  * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5177  * visible to the controller.
5178  *
5179  * If an mbuf is submitted to this routine and cannot be given to the
5180  * controller (e.g. it has too many fragments) then the function may free
5181  * the mbuf and return to the caller.
5182  *
5183  * Returns:
5184  *   0 = Success, !0 = Failure
5185  *   Note the side effect that an mbuf may be freed if it causes a problem.
5186  */
5187 static int
5188 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5189 {
5190     bus_dma_segment_t segs[32];
5191     struct mbuf *m0;
5192     struct bxe_sw_tx_bd *tx_buf;
5193     struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5194     struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5195     /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5196     struct eth_tx_bd *tx_data_bd;
5197     struct eth_tx_bd *tx_total_pkt_size_bd;
5198     struct eth_tx_start_bd *tx_start_bd;
5199     uint16_t bd_prod, pkt_prod, total_pkt_size;
5200     uint8_t mac_type;
5201     int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5202     struct bxe_softc *sc;
5203     uint16_t tx_bd_avail;
5204     struct ether_vlan_header *eh;
5205     uint32_t pbd_e2_parsing_data = 0;
5206     uint8_t hlen = 0;
5207     int tmp_bd;
5208     int i;
5209 
5210     sc = fp->sc;
5211 
5212     M_ASSERTPKTHDR(*m_head);
5213 
5214     m0 = *m_head;
5215     rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5216     tx_start_bd = NULL;
5217     tx_data_bd = NULL;
5218     tx_total_pkt_size_bd = NULL;
5219 
5220     /* get the H/W pointer for packets and BDs */
5221     pkt_prod = fp->tx_pkt_prod;
5222     bd_prod = fp->tx_bd_prod;
5223 
5224     mac_type = UNICAST_ADDRESS;
5225 
5226     /* map the mbuf into the next open DMAable memory */
5227     tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5228     error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5229                                     tx_buf->m_map, m0,
5230                                     segs, &nsegs, BUS_DMA_NOWAIT);
5231 
5232     /* mapping errors */
5233     if(__predict_false(error != 0)) {
5234         fp->eth_q_stats.tx_dma_mapping_failure++;
5235         if (error == ENOMEM) {
5236             /* resource issue, try again later */
5237             rc = ENOMEM;
5238         } else if (error == EFBIG) {
5239             /* possibly recoverable with defragmentation */
5240             fp->eth_q_stats.mbuf_defrag_attempts++;
5241             m0 = m_defrag(*m_head, M_NOWAIT);
5242             if (m0 == NULL) {
5243                 fp->eth_q_stats.mbuf_defrag_failures++;
5244                 rc = ENOBUFS;
5245             } else {
5246                 /* defrag successful, try mapping again */
5247                 *m_head = m0;
5248                 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5249                                                 tx_buf->m_map, m0,
5250                                                 segs, &nsegs, BUS_DMA_NOWAIT);
5251                 if (error) {
5252                     fp->eth_q_stats.tx_dma_mapping_failure++;
5253                     rc = error;
5254                 }
5255             }
5256         } else {
5257             /* unknown, unrecoverable mapping error */
5258             BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5259             bxe_dump_mbuf(sc, m0, FALSE);
5260             rc = error;
5261         }
5262 
5263         goto bxe_tx_encap_continue;
5264     }
5265 
5266     tx_bd_avail = bxe_tx_avail(sc, fp);
5267 
5268     /* make sure there is enough room in the send queue */
5269     if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5270         /* Recoverable, try again later. */
5271         fp->eth_q_stats.tx_hw_queue_full++;
5272         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5273         rc = ENOMEM;
5274         goto bxe_tx_encap_continue;
5275     }
5276 
5277     /* capture the current H/W TX chain high watermark */
5278     if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5279                         (TX_BD_USABLE - tx_bd_avail))) {
5280         fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5281     }
5282 
5283     /* make sure it fits in the packet window */
5284     if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5285         /*
5286          * The mbuf may be to big for the controller to handle. If the frame
5287          * is a TSO frame we'll need to do an additional check.
5288          */
5289         if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5290             if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5291                 goto bxe_tx_encap_continue; /* OK to send */
5292             } else {
5293                 fp->eth_q_stats.tx_window_violation_tso++;
5294             }
5295         } else {
5296             fp->eth_q_stats.tx_window_violation_std++;
5297         }
5298 
5299         /* lets try to defragment this mbuf and remap it */
5300         fp->eth_q_stats.mbuf_defrag_attempts++;
5301         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5302 
5303         m0 = m_defrag(*m_head, M_NOWAIT);
5304         if (m0 == NULL) {
5305             fp->eth_q_stats.mbuf_defrag_failures++;
5306             /* Ugh, just drop the frame... :( */
5307             rc = ENOBUFS;
5308         } else {
5309             /* defrag successful, try mapping again */
5310             *m_head = m0;
5311             error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5312                                             tx_buf->m_map, m0,
5313                                             segs, &nsegs, BUS_DMA_NOWAIT);
5314             if (error) {
5315                 fp->eth_q_stats.tx_dma_mapping_failure++;
5316                 /* No sense in trying to defrag/copy chain, drop it. :( */
5317                 rc = error;
5318             }
5319             else {
5320                 /* if the chain is still too long then drop it */
5321                 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5322                     bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5323                     rc = ENODEV;
5324                 }
5325             }
5326         }
5327     }
5328 
5329 bxe_tx_encap_continue:
5330 
5331     /* Check for errors */
5332     if (rc) {
5333         if (rc == ENOMEM) {
5334             /* recoverable try again later  */
5335         } else {
5336             fp->eth_q_stats.tx_soft_errors++;
5337             fp->eth_q_stats.mbuf_alloc_tx--;
5338             m_freem(*m_head);
5339             *m_head = NULL;
5340         }
5341 
5342         return (rc);
5343     }
5344 
5345     /* set flag according to packet type (UNICAST_ADDRESS is default) */
5346     if (m0->m_flags & M_BCAST) {
5347         mac_type = BROADCAST_ADDRESS;
5348     } else if (m0->m_flags & M_MCAST) {
5349         mac_type = MULTICAST_ADDRESS;
5350     }
5351 
5352     /* store the mbuf into the mbuf ring */
5353     tx_buf->m        = m0;
5354     tx_buf->first_bd = fp->tx_bd_prod;
5355     tx_buf->flags    = 0;
5356 
5357     /* prepare the first transmit (start) BD for the mbuf */
5358     tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5359 
5360     BLOGD(sc, DBG_TX,
5361           "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5362           pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5363 
5364     tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5365     tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5366     tx_start_bd->nbytes  = htole16(segs[0].ds_len);
5367     total_pkt_size += tx_start_bd->nbytes;
5368     tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5369 
5370     tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5371 
5372     /* all frames have at least Start BD + Parsing BD */
5373     nbds = nsegs + 1;
5374     tx_start_bd->nbd = htole16(nbds);
5375 
5376     if (m0->m_flags & M_VLANTAG) {
5377         tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5378         tx_start_bd->bd_flags.as_bitfield |=
5379             (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5380     } else {
5381         /* vf tx, start bd must hold the ethertype for fw to enforce it */
5382         if (IS_VF(sc)) {
5383             /* map ethernet header to find type and header length */
5384             eh = mtod(m0, struct ether_vlan_header *);
5385             tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5386         } else {
5387             /* used by FW for packet accounting */
5388             tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5389         }
5390     }
5391 
5392     /*
5393      * add a parsing BD from the chain. The parsing BD is always added
5394      * though it is only used for TSO and chksum
5395      */
5396     bd_prod = TX_BD_NEXT(bd_prod);
5397 
5398     if (m0->m_pkthdr.csum_flags) {
5399         if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5400             fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5401             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5402         }
5403 
5404         if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5405             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5406                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5407         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5408             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6   |
5409                                                   ETH_TX_BD_FLAGS_IS_UDP |
5410                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5411         } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5412                    (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5413             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5414         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5415             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5416                                                   ETH_TX_BD_FLAGS_IS_UDP);
5417         }
5418     }
5419 
5420     if (!CHIP_IS_E1x(sc)) {
5421         pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5422         memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5423 
5424         if (m0->m_pkthdr.csum_flags) {
5425             hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5426         }
5427 
5428         SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5429                  mac_type);
5430     } else {
5431         uint16_t global_data = 0;
5432 
5433         pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5434         memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5435 
5436         if (m0->m_pkthdr.csum_flags) {
5437             hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5438         }
5439 
5440         SET_FLAG(global_data,
5441                  ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5442         pbd_e1x->global_data |= htole16(global_data);
5443     }
5444 
5445     /* setup the parsing BD with TSO specific info */
5446     if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5447         fp->eth_q_stats.tx_ofld_frames_lso++;
5448         tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5449 
5450         if (__predict_false(tx_start_bd->nbytes > hlen)) {
5451             fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5452 
5453             /* split the first BD into header/data making the fw job easy */
5454             nbds++;
5455             tx_start_bd->nbd = htole16(nbds);
5456             tx_start_bd->nbytes = htole16(hlen);
5457 
5458             bd_prod = TX_BD_NEXT(bd_prod);
5459 
5460             /* new transmit BD after the tx_parse_bd */
5461             tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5462             tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5463             tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5464             tx_data_bd->nbytes  = htole16(segs[0].ds_len - hlen);
5465             if (tx_total_pkt_size_bd == NULL) {
5466                 tx_total_pkt_size_bd = tx_data_bd;
5467             }
5468 
5469             BLOGD(sc, DBG_TX,
5470                   "TSO split header size is %d (%x:%x) nbds %d\n",
5471                   le16toh(tx_start_bd->nbytes),
5472                   le32toh(tx_start_bd->addr_hi),
5473                   le32toh(tx_start_bd->addr_lo),
5474                   nbds);
5475         }
5476 
5477         if (!CHIP_IS_E1x(sc)) {
5478             bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5479         } else {
5480             bxe_set_pbd_lso(m0, pbd_e1x);
5481         }
5482     }
5483 
5484     if (pbd_e2_parsing_data) {
5485         pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5486     }
5487 
5488     /* prepare remaining BDs, start tx bd contains first seg/frag */
5489     for (i = 1; i < nsegs ; i++) {
5490         bd_prod = TX_BD_NEXT(bd_prod);
5491         tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5492         tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5493         tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5494         tx_data_bd->nbytes  = htole16(segs[i].ds_len);
5495         if (tx_total_pkt_size_bd == NULL) {
5496             tx_total_pkt_size_bd = tx_data_bd;
5497         }
5498         total_pkt_size += tx_data_bd->nbytes;
5499     }
5500 
5501     BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5502 
5503     if (tx_total_pkt_size_bd != NULL) {
5504         tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5505     }
5506 
5507     if (__predict_false(sc->debug & DBG_TX)) {
5508         tmp_bd = tx_buf->first_bd;
5509         for (i = 0; i < nbds; i++)
5510         {
5511             if (i == 0) {
5512                 BLOGD(sc, DBG_TX,
5513                       "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5514                       "bd_flags=0x%x hdr_nbds=%d\n",
5515                       tx_start_bd,
5516                       tmp_bd,
5517                       le16toh(tx_start_bd->nbd),
5518                       le16toh(tx_start_bd->vlan_or_ethertype),
5519                       tx_start_bd->bd_flags.as_bitfield,
5520                       (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5521             } else if (i == 1) {
5522                 if (pbd_e1x) {
5523                     BLOGD(sc, DBG_TX,
5524                           "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5525                           "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5526                           "tcp_seq=%u total_hlen_w=%u\n",
5527                           pbd_e1x,
5528                           tmp_bd,
5529                           pbd_e1x->global_data,
5530                           pbd_e1x->ip_hlen_w,
5531                           pbd_e1x->ip_id,
5532                           pbd_e1x->lso_mss,
5533                           pbd_e1x->tcp_flags,
5534                           pbd_e1x->tcp_pseudo_csum,
5535                           pbd_e1x->tcp_send_seq,
5536                           le16toh(pbd_e1x->total_hlen_w));
5537                 } else { /* if (pbd_e2) */
5538                     BLOGD(sc, DBG_TX,
5539                           "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5540                           "src=%02x:%02x:%02x parsing_data=0x%x\n",
5541                           pbd_e2,
5542                           tmp_bd,
5543                           pbd_e2->data.mac_addr.dst_hi,
5544                           pbd_e2->data.mac_addr.dst_mid,
5545                           pbd_e2->data.mac_addr.dst_lo,
5546                           pbd_e2->data.mac_addr.src_hi,
5547                           pbd_e2->data.mac_addr.src_mid,
5548                           pbd_e2->data.mac_addr.src_lo,
5549                           pbd_e2->parsing_data);
5550                 }
5551             }
5552 
5553             if (i != 1) { /* skip parse db as it doesn't hold data */
5554                 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5555                 BLOGD(sc, DBG_TX,
5556                       "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5557                       tx_data_bd,
5558                       tmp_bd,
5559                       le16toh(tx_data_bd->nbytes),
5560                       le32toh(tx_data_bd->addr_hi),
5561                       le32toh(tx_data_bd->addr_lo));
5562             }
5563 
5564             tmp_bd = TX_BD_NEXT(tmp_bd);
5565         }
5566     }
5567 
5568     BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5569 
5570     /* update TX BD producer index value for next TX */
5571     bd_prod = TX_BD_NEXT(bd_prod);
5572 
5573     /*
5574      * If the chain of tx_bd's describing this frame is adjacent to or spans
5575      * an eth_tx_next_bd element then we need to increment the nbds value.
5576      */
5577     if (TX_BD_IDX(bd_prod) < nbds) {
5578         nbds++;
5579     }
5580 
5581     /* don't allow reordering of writes for nbd and packets */
5582     mb();
5583 
5584     fp->tx_db.data.prod += nbds;
5585 
5586     /* producer points to the next free tx_bd at this point */
5587     fp->tx_pkt_prod++;
5588     fp->tx_bd_prod = bd_prod;
5589 
5590     DOORBELL(sc, fp->index, fp->tx_db.raw);
5591 
5592     fp->eth_q_stats.tx_pkts++;
5593 
5594     /* Prevent speculative reads from getting ahead of the status block. */
5595     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5596                       0, 0, BUS_SPACE_BARRIER_READ);
5597 
5598     /* Prevent speculative reads from getting ahead of the doorbell. */
5599     bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5600                       0, 0, BUS_SPACE_BARRIER_READ);
5601 
5602     return (0);
5603 }
5604 
5605 static void
5606 bxe_tx_start_locked(struct bxe_softc *sc,
5607                     if_t ifp,
5608                     struct bxe_fastpath *fp)
5609 {
5610     struct mbuf *m = NULL;
5611     int tx_count = 0;
5612     uint16_t tx_bd_avail;
5613 
5614     BXE_FP_TX_LOCK_ASSERT(fp);
5615 
5616     /* keep adding entries while there are frames to send */
5617     while (!if_sendq_empty(ifp)) {
5618 
5619         /*
5620          * check for any frames to send
5621          * dequeue can still be NULL even if queue is not empty
5622          */
5623         m = if_dequeue(ifp);
5624         if (__predict_false(m == NULL)) {
5625             break;
5626         }
5627 
5628         /* the mbuf now belongs to us */
5629         fp->eth_q_stats.mbuf_alloc_tx++;
5630 
5631         /*
5632          * Put the frame into the transmit ring. If we don't have room,
5633          * place the mbuf back at the head of the TX queue, set the
5634          * OACTIVE flag, and wait for the NIC to drain the chain.
5635          */
5636         if (__predict_false(bxe_tx_encap(fp, &m))) {
5637             fp->eth_q_stats.tx_encap_failures++;
5638             if (m != NULL) {
5639                 /* mark the TX queue as full and return the frame */
5640                 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5641 		if_sendq_prepend(ifp, m);
5642                 fp->eth_q_stats.mbuf_alloc_tx--;
5643                 fp->eth_q_stats.tx_queue_xoff++;
5644             }
5645 
5646             /* stop looking for more work */
5647             break;
5648         }
5649 
5650         /* the frame was enqueued successfully */
5651         tx_count++;
5652 
5653         /* send a copy of the frame to any BPF listeners. */
5654         if_etherbpfmtap(ifp, m);
5655 
5656         tx_bd_avail = bxe_tx_avail(sc, fp);
5657 
5658         /* handle any completions if we're running low */
5659         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5660             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5661             bxe_txeof(sc, fp);
5662             if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5663                 break;
5664             }
5665         }
5666     }
5667 
5668     /* all TX packets were dequeued and/or the tx ring is full */
5669     if (tx_count > 0) {
5670         /* reset the TX watchdog timeout timer */
5671         fp->watchdog_timer = BXE_TX_TIMEOUT;
5672     }
5673 }
5674 
5675 /* Legacy (non-RSS) dispatch routine */
5676 static void
5677 bxe_tx_start(if_t ifp)
5678 {
5679     struct bxe_softc *sc;
5680     struct bxe_fastpath *fp;
5681 
5682     sc = if_getsoftc(ifp);
5683 
5684     if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5685         BLOGW(sc, "Interface not running, ignoring transmit request\n");
5686         return;
5687     }
5688 
5689     if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5690         BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
5691         return;
5692     }
5693 
5694     if (!sc->link_vars.link_up) {
5695         BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5696         return;
5697     }
5698 
5699     fp = &sc->fp[0];
5700 
5701     BXE_FP_TX_LOCK(fp);
5702     bxe_tx_start_locked(sc, ifp, fp);
5703     BXE_FP_TX_UNLOCK(fp);
5704 }
5705 
5706 #if __FreeBSD_version >= 800000
5707 
5708 static int
5709 bxe_tx_mq_start_locked(struct bxe_softc    *sc,
5710                        if_t                ifp,
5711                        struct bxe_fastpath *fp,
5712                        struct mbuf         *m)
5713 {
5714     struct buf_ring *tx_br = fp->tx_br;
5715     struct mbuf *next;
5716     int depth, rc, tx_count;
5717     uint16_t tx_bd_avail;
5718 
5719     rc = tx_count = 0;
5720 
5721     BXE_FP_TX_LOCK_ASSERT(fp);
5722 
5723     if (!tx_br) {
5724         BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
5725         return (EINVAL);
5726     }
5727 
5728     if (!sc->link_vars.link_up ||
5729         (ifp->if_drv_flags &
5730         (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) {
5731         rc = drbr_enqueue_drv(ifp, tx_br, m);
5732         goto bxe_tx_mq_start_locked_exit;
5733     }
5734 
5735     /* fetch the depth of the driver queue */
5736     depth = drbr_inuse_drv(ifp, tx_br);
5737     if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
5738         fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
5739     }
5740 
5741     if (m == NULL) {
5742         /* no new work, check for pending frames */
5743         next = drbr_dequeue_drv(ifp, tx_br);
5744     } else if (drbr_needs_enqueue_drv(ifp, tx_br)) {
5745         /* have both new and pending work, maintain packet order */
5746         rc = drbr_enqueue_drv(ifp, tx_br, m);
5747         if (rc != 0) {
5748             fp->eth_q_stats.tx_soft_errors++;
5749             goto bxe_tx_mq_start_locked_exit;
5750         }
5751         next = drbr_dequeue_drv(ifp, tx_br);
5752     } else {
5753         /* new work only and nothing pending */
5754         next = m;
5755     }
5756 
5757     /* keep adding entries while there are frames to send */
5758     while (next != NULL) {
5759 
5760         /* the mbuf now belongs to us */
5761         fp->eth_q_stats.mbuf_alloc_tx++;
5762 
5763         /*
5764          * Put the frame into the transmit ring. If we don't have room,
5765          * place the mbuf back at the head of the TX queue, set the
5766          * OACTIVE flag, and wait for the NIC to drain the chain.
5767          */
5768         rc = bxe_tx_encap(fp, &next);
5769         if (__predict_false(rc != 0)) {
5770             fp->eth_q_stats.tx_encap_failures++;
5771             if (next != NULL) {
5772                 /* mark the TX queue as full and save the frame */
5773                 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5774                 /* XXX this may reorder the frame */
5775                 rc = drbr_enqueue_drv(ifp, tx_br, next);
5776                 fp->eth_q_stats.mbuf_alloc_tx--;
5777                 fp->eth_q_stats.tx_frames_deferred++;
5778             }
5779 
5780             /* stop looking for more work */
5781             break;
5782         }
5783 
5784         /* the transmit frame was enqueued successfully */
5785         tx_count++;
5786 
5787         /* send a copy of the frame to any BPF listeners */
5788 	if_etherbpfmtap(ifp, next);
5789 
5790         tx_bd_avail = bxe_tx_avail(sc, fp);
5791 
5792         /* handle any completions if we're running low */
5793         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5794             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5795             bxe_txeof(sc, fp);
5796             if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5797                 break;
5798             }
5799         }
5800 
5801         next = drbr_dequeue_drv(ifp, tx_br);
5802     }
5803 
5804     /* all TX packets were dequeued and/or the tx ring is full */
5805     if (tx_count > 0) {
5806         /* reset the TX watchdog timeout timer */
5807         fp->watchdog_timer = BXE_TX_TIMEOUT;
5808     }
5809 
5810 bxe_tx_mq_start_locked_exit:
5811 
5812     return (rc);
5813 }
5814 
5815 /* Multiqueue (TSS) dispatch routine. */
5816 static int
5817 bxe_tx_mq_start(struct ifnet *ifp,
5818                 struct mbuf  *m)
5819 {
5820     struct bxe_softc *sc = if_getsoftc(ifp);
5821     struct bxe_fastpath *fp;
5822     int fp_index, rc;
5823 
5824     fp_index = 0; /* default is the first queue */
5825 
5826     /* check if flowid is set */
5827     if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
5828         fp_index = (m->m_pkthdr.flowid % sc->num_queues);
5829 
5830     fp = &sc->fp[fp_index];
5831 
5832     if (BXE_FP_TX_TRYLOCK(fp)) {
5833         rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
5834         BXE_FP_TX_UNLOCK(fp);
5835     } else
5836         rc = drbr_enqueue_drv(ifp, fp->tx_br, m);
5837 
5838     return (rc);
5839 }
5840 
5841 static void
5842 bxe_mq_flush(struct ifnet *ifp)
5843 {
5844     struct bxe_softc *sc = if_getsoftc(ifp);
5845     struct bxe_fastpath *fp;
5846     struct mbuf *m;
5847     int i;
5848 
5849     for (i = 0; i < sc->num_queues; i++) {
5850         fp = &sc->fp[i];
5851 
5852         if (fp->state != BXE_FP_STATE_OPEN) {
5853             BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
5854                   fp->index, fp->state);
5855             continue;
5856         }
5857 
5858         if (fp->tx_br != NULL) {
5859             BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
5860             BXE_FP_TX_LOCK(fp);
5861             while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
5862                 m_freem(m);
5863             }
5864             BXE_FP_TX_UNLOCK(fp);
5865         }
5866     }
5867 
5868     if_qflush(ifp);
5869 }
5870 
5871 #endif /* FreeBSD_version >= 800000 */
5872 
5873 static uint16_t
5874 bxe_cid_ilt_lines(struct bxe_softc *sc)
5875 {
5876     if (IS_SRIOV(sc)) {
5877         return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
5878     }
5879     return (L2_ILT_LINES(sc));
5880 }
5881 
5882 static void
5883 bxe_ilt_set_info(struct bxe_softc *sc)
5884 {
5885     struct ilt_client_info *ilt_client;
5886     struct ecore_ilt *ilt = sc->ilt;
5887     uint16_t line = 0;
5888 
5889     ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
5890     BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
5891 
5892     /* CDU */
5893     ilt_client = &ilt->clients[ILT_CLIENT_CDU];
5894     ilt_client->client_num = ILT_CLIENT_CDU;
5895     ilt_client->page_size = CDU_ILT_PAGE_SZ;
5896     ilt_client->flags = ILT_CLIENT_SKIP_MEM;
5897     ilt_client->start = line;
5898     line += bxe_cid_ilt_lines(sc);
5899 
5900     if (CNIC_SUPPORT(sc)) {
5901         line += CNIC_ILT_LINES;
5902     }
5903 
5904     ilt_client->end = (line - 1);
5905 
5906     BLOGD(sc, DBG_LOAD,
5907           "ilt client[CDU]: start %d, end %d, "
5908           "psz 0x%x, flags 0x%x, hw psz %d\n",
5909           ilt_client->start, ilt_client->end,
5910           ilt_client->page_size,
5911           ilt_client->flags,
5912           ilog2(ilt_client->page_size >> 12));
5913 
5914     /* QM */
5915     if (QM_INIT(sc->qm_cid_count)) {
5916         ilt_client = &ilt->clients[ILT_CLIENT_QM];
5917         ilt_client->client_num = ILT_CLIENT_QM;
5918         ilt_client->page_size = QM_ILT_PAGE_SZ;
5919         ilt_client->flags = 0;
5920         ilt_client->start = line;
5921 
5922         /* 4 bytes for each cid */
5923         line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
5924                              QM_ILT_PAGE_SZ);
5925 
5926         ilt_client->end = (line - 1);
5927 
5928         BLOGD(sc, DBG_LOAD,
5929               "ilt client[QM]: start %d, end %d, "
5930               "psz 0x%x, flags 0x%x, hw psz %d\n",
5931               ilt_client->start, ilt_client->end,
5932               ilt_client->page_size, ilt_client->flags,
5933               ilog2(ilt_client->page_size >> 12));
5934     }
5935 
5936     if (CNIC_SUPPORT(sc)) {
5937         /* SRC */
5938         ilt_client = &ilt->clients[ILT_CLIENT_SRC];
5939         ilt_client->client_num = ILT_CLIENT_SRC;
5940         ilt_client->page_size = SRC_ILT_PAGE_SZ;
5941         ilt_client->flags = 0;
5942         ilt_client->start = line;
5943         line += SRC_ILT_LINES;
5944         ilt_client->end = (line - 1);
5945 
5946         BLOGD(sc, DBG_LOAD,
5947               "ilt client[SRC]: start %d, end %d, "
5948               "psz 0x%x, flags 0x%x, hw psz %d\n",
5949               ilt_client->start, ilt_client->end,
5950               ilt_client->page_size, ilt_client->flags,
5951               ilog2(ilt_client->page_size >> 12));
5952 
5953         /* TM */
5954         ilt_client = &ilt->clients[ILT_CLIENT_TM];
5955         ilt_client->client_num = ILT_CLIENT_TM;
5956         ilt_client->page_size = TM_ILT_PAGE_SZ;
5957         ilt_client->flags = 0;
5958         ilt_client->start = line;
5959         line += TM_ILT_LINES;
5960         ilt_client->end = (line - 1);
5961 
5962         BLOGD(sc, DBG_LOAD,
5963               "ilt client[TM]: start %d, end %d, "
5964               "psz 0x%x, flags 0x%x, hw psz %d\n",
5965               ilt_client->start, ilt_client->end,
5966               ilt_client->page_size, ilt_client->flags,
5967               ilog2(ilt_client->page_size >> 12));
5968     }
5969 
5970     KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
5971 }
5972 
5973 static void
5974 bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
5975 {
5976     int i;
5977     uint32_t rx_buf_size;
5978 
5979     rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
5980 
5981     for (i = 0; i < sc->num_queues; i++) {
5982         if(rx_buf_size <= MCLBYTES){
5983             sc->fp[i].rx_buf_size = rx_buf_size;
5984             sc->fp[i].mbuf_alloc_size = MCLBYTES;
5985         }else if (rx_buf_size <= MJUMPAGESIZE){
5986             sc->fp[i].rx_buf_size = rx_buf_size;
5987             sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
5988         }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){
5989             sc->fp[i].rx_buf_size = MCLBYTES;
5990             sc->fp[i].mbuf_alloc_size = MCLBYTES;
5991         }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){
5992             sc->fp[i].rx_buf_size = MJUMPAGESIZE;
5993             sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
5994         }else {
5995             sc->fp[i].rx_buf_size = MCLBYTES;
5996             sc->fp[i].mbuf_alloc_size = MCLBYTES;
5997         }
5998     }
5999 }
6000 
6001 static int
6002 bxe_alloc_ilt_mem(struct bxe_softc *sc)
6003 {
6004     int rc = 0;
6005 
6006     if ((sc->ilt =
6007          (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
6008                                     M_BXE_ILT,
6009                                     (M_NOWAIT | M_ZERO))) == NULL) {
6010         rc = 1;
6011     }
6012 
6013     return (rc);
6014 }
6015 
6016 static int
6017 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
6018 {
6019     int rc = 0;
6020 
6021     if ((sc->ilt->lines =
6022          (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
6023                                     M_BXE_ILT,
6024                                     (M_NOWAIT | M_ZERO))) == NULL) {
6025         rc = 1;
6026     }
6027 
6028     return (rc);
6029 }
6030 
6031 static void
6032 bxe_free_ilt_mem(struct bxe_softc *sc)
6033 {
6034     if (sc->ilt != NULL) {
6035         free(sc->ilt, M_BXE_ILT);
6036         sc->ilt = NULL;
6037     }
6038 }
6039 
6040 static void
6041 bxe_free_ilt_lines_mem(struct bxe_softc *sc)
6042 {
6043     if (sc->ilt->lines != NULL) {
6044         free(sc->ilt->lines, M_BXE_ILT);
6045         sc->ilt->lines = NULL;
6046     }
6047 }
6048 
6049 static void
6050 bxe_free_mem(struct bxe_softc *sc)
6051 {
6052     int i;
6053 
6054     for (i = 0; i < L2_ILT_LINES(sc); i++) {
6055         bxe_dma_free(sc, &sc->context[i].vcxt_dma);
6056         sc->context[i].vcxt = NULL;
6057         sc->context[i].size = 0;
6058     }
6059 
6060     ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
6061 
6062     bxe_free_ilt_lines_mem(sc);
6063 
6064 }
6065 
6066 static int
6067 bxe_alloc_mem(struct bxe_softc *sc)
6068 {
6069     int context_size;
6070     int allocated;
6071     int i;
6072 
6073     /*
6074      * Allocate memory for CDU context:
6075      * This memory is allocated separately and not in the generic ILT
6076      * functions because CDU differs in few aspects:
6077      * 1. There can be multiple entities allocating memory for context -
6078      * regular L2, CNIC, and SRIOV drivers. Each separately controls
6079      * its own ILT lines.
6080      * 2. Since CDU page-size is not a single 4KB page (which is the case
6081      * for the other ILT clients), to be efficient we want to support
6082      * allocation of sub-page-size in the last entry.
6083      * 3. Context pointers are used by the driver to pass to FW / update
6084      * the context (for the other ILT clients the pointers are used just to
6085      * free the memory during unload).
6086      */
6087     context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
6088     for (i = 0, allocated = 0; allocated < context_size; i++) {
6089         sc->context[i].size = min(CDU_ILT_PAGE_SZ,
6090                                   (context_size - allocated));
6091 
6092         if (bxe_dma_alloc(sc, sc->context[i].size,
6093                           &sc->context[i].vcxt_dma,
6094                           "cdu context") != 0) {
6095             bxe_free_mem(sc);
6096             return (-1);
6097         }
6098 
6099         sc->context[i].vcxt =
6100             (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
6101 
6102         allocated += sc->context[i].size;
6103     }
6104 
6105     bxe_alloc_ilt_lines_mem(sc);
6106 
6107     BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6108           sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6109     {
6110         for (i = 0; i < 4; i++) {
6111             BLOGD(sc, DBG_LOAD,
6112                   "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6113                   i,
6114                   sc->ilt->clients[i].page_size,
6115                   sc->ilt->clients[i].start,
6116                   sc->ilt->clients[i].end,
6117                   sc->ilt->clients[i].client_num,
6118                   sc->ilt->clients[i].flags);
6119         }
6120     }
6121     if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6122         BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6123         bxe_free_mem(sc);
6124         return (-1);
6125     }
6126 
6127     return (0);
6128 }
6129 
6130 static void
6131 bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6132 {
6133     struct bxe_softc *sc;
6134     int i;
6135 
6136     sc = fp->sc;
6137 
6138     if (fp->rx_mbuf_tag == NULL) {
6139         return;
6140     }
6141 
6142     /* free all mbufs and unload all maps */
6143     for (i = 0; i < RX_BD_TOTAL; i++) {
6144         if (fp->rx_mbuf_chain[i].m_map != NULL) {
6145             bus_dmamap_sync(fp->rx_mbuf_tag,
6146                             fp->rx_mbuf_chain[i].m_map,
6147                             BUS_DMASYNC_POSTREAD);
6148             bus_dmamap_unload(fp->rx_mbuf_tag,
6149                               fp->rx_mbuf_chain[i].m_map);
6150         }
6151 
6152         if (fp->rx_mbuf_chain[i].m != NULL) {
6153             m_freem(fp->rx_mbuf_chain[i].m);
6154             fp->rx_mbuf_chain[i].m = NULL;
6155             fp->eth_q_stats.mbuf_alloc_rx--;
6156         }
6157     }
6158 }
6159 
6160 static void
6161 bxe_free_tpa_pool(struct bxe_fastpath *fp)
6162 {
6163     struct bxe_softc *sc;
6164     int i, max_agg_queues;
6165 
6166     sc = fp->sc;
6167 
6168     if (fp->rx_mbuf_tag == NULL) {
6169         return;
6170     }
6171 
6172     max_agg_queues = MAX_AGG_QS(sc);
6173 
6174     /* release all mbufs and unload all DMA maps in the TPA pool */
6175     for (i = 0; i < max_agg_queues; i++) {
6176         if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6177             bus_dmamap_sync(fp->rx_mbuf_tag,
6178                             fp->rx_tpa_info[i].bd.m_map,
6179                             BUS_DMASYNC_POSTREAD);
6180             bus_dmamap_unload(fp->rx_mbuf_tag,
6181                               fp->rx_tpa_info[i].bd.m_map);
6182         }
6183 
6184         if (fp->rx_tpa_info[i].bd.m != NULL) {
6185             m_freem(fp->rx_tpa_info[i].bd.m);
6186             fp->rx_tpa_info[i].bd.m = NULL;
6187             fp->eth_q_stats.mbuf_alloc_tpa--;
6188         }
6189     }
6190 }
6191 
6192 static void
6193 bxe_free_sge_chain(struct bxe_fastpath *fp)
6194 {
6195     struct bxe_softc *sc;
6196     int i;
6197 
6198     sc = fp->sc;
6199 
6200     if (fp->rx_sge_mbuf_tag == NULL) {
6201         return;
6202     }
6203 
6204     /* rree all mbufs and unload all maps */
6205     for (i = 0; i < RX_SGE_TOTAL; i++) {
6206         if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6207             bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6208                             fp->rx_sge_mbuf_chain[i].m_map,
6209                             BUS_DMASYNC_POSTREAD);
6210             bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6211                               fp->rx_sge_mbuf_chain[i].m_map);
6212         }
6213 
6214         if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6215             m_freem(fp->rx_sge_mbuf_chain[i].m);
6216             fp->rx_sge_mbuf_chain[i].m = NULL;
6217             fp->eth_q_stats.mbuf_alloc_sge--;
6218         }
6219     }
6220 }
6221 
6222 static void
6223 bxe_free_fp_buffers(struct bxe_softc *sc)
6224 {
6225     struct bxe_fastpath *fp;
6226     int i;
6227 
6228     for (i = 0; i < sc->num_queues; i++) {
6229         fp = &sc->fp[i];
6230 
6231 #if __FreeBSD_version >= 800000
6232         if (fp->tx_br != NULL) {
6233             /* just in case bxe_mq_flush() wasn't called */
6234             if (mtx_initialized(&fp->tx_mtx)) {
6235                 struct mbuf *m;
6236 
6237                 BXE_FP_TX_LOCK(fp);
6238                 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL)
6239                     m_freem(m);
6240                 BXE_FP_TX_UNLOCK(fp);
6241             }
6242             buf_ring_free(fp->tx_br, M_DEVBUF);
6243             fp->tx_br = NULL;
6244         }
6245 #endif
6246 
6247         /* free all RX buffers */
6248         bxe_free_rx_bd_chain(fp);
6249         bxe_free_tpa_pool(fp);
6250         bxe_free_sge_chain(fp);
6251 
6252         if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6253             BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6254                   fp->eth_q_stats.mbuf_alloc_rx);
6255         }
6256 
6257         if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6258             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6259                   fp->eth_q_stats.mbuf_alloc_sge);
6260         }
6261 
6262         if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6263             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6264                   fp->eth_q_stats.mbuf_alloc_tpa);
6265         }
6266 
6267         if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6268             BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6269                   fp->eth_q_stats.mbuf_alloc_tx);
6270         }
6271 
6272         /* XXX verify all mbufs were reclaimed */
6273 
6274         if (mtx_initialized(&fp->tx_mtx)) {
6275             mtx_destroy(&fp->tx_mtx);
6276         }
6277 
6278         if (mtx_initialized(&fp->rx_mtx)) {
6279             mtx_destroy(&fp->rx_mtx);
6280         }
6281     }
6282 }
6283 
6284 static int
6285 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6286                      uint16_t            prev_index,
6287                      uint16_t            index)
6288 {
6289     struct bxe_sw_rx_bd *rx_buf;
6290     struct eth_rx_bd *rx_bd;
6291     bus_dma_segment_t segs[1];
6292     bus_dmamap_t map;
6293     struct mbuf *m;
6294     int nsegs, rc;
6295 
6296     rc = 0;
6297 
6298     /* allocate the new RX BD mbuf */
6299     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6300     if (__predict_false(m == NULL)) {
6301         fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6302         return (ENOBUFS);
6303     }
6304 
6305     fp->eth_q_stats.mbuf_alloc_rx++;
6306 
6307     /* initialize the mbuf buffer length */
6308     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6309 
6310     /* map the mbuf into non-paged pool */
6311     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6312                                  fp->rx_mbuf_spare_map,
6313                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6314     if (__predict_false(rc != 0)) {
6315         fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6316         m_freem(m);
6317         fp->eth_q_stats.mbuf_alloc_rx--;
6318         return (rc);
6319     }
6320 
6321     /* all mbufs must map to a single segment */
6322     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6323 
6324     /* release any existing RX BD mbuf mappings */
6325 
6326     if (prev_index != index) {
6327         rx_buf = &fp->rx_mbuf_chain[prev_index];
6328 
6329         if (rx_buf->m_map != NULL) {
6330             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6331                             BUS_DMASYNC_POSTREAD);
6332             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6333         }
6334 
6335         /*
6336          * We only get here from bxe_rxeof() when the maximum number
6337          * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6338          * holds the mbuf in the prev_index so it's OK to NULL it out
6339          * here without concern of a memory leak.
6340          */
6341         fp->rx_mbuf_chain[prev_index].m = NULL;
6342     }
6343 
6344     rx_buf = &fp->rx_mbuf_chain[index];
6345 
6346     if (rx_buf->m_map != NULL) {
6347         bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6348                         BUS_DMASYNC_POSTREAD);
6349         bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6350     }
6351 
6352     /* save the mbuf and mapping info for a future packet */
6353     map = (prev_index != index) ?
6354               fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6355     rx_buf->m_map = fp->rx_mbuf_spare_map;
6356     fp->rx_mbuf_spare_map = map;
6357     bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6358                     BUS_DMASYNC_PREREAD);
6359     rx_buf->m = m;
6360 
6361     rx_bd = &fp->rx_chain[index];
6362     rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6363     rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6364 
6365     return (rc);
6366 }
6367 
6368 static int
6369 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6370                       int                 queue)
6371 {
6372     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6373     bus_dma_segment_t segs[1];
6374     bus_dmamap_t map;
6375     struct mbuf *m;
6376     int nsegs;
6377     int rc = 0;
6378 
6379     /* allocate the new TPA mbuf */
6380     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6381     if (__predict_false(m == NULL)) {
6382         fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6383         return (ENOBUFS);
6384     }
6385 
6386     fp->eth_q_stats.mbuf_alloc_tpa++;
6387 
6388     /* initialize the mbuf buffer length */
6389     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6390 
6391     /* map the mbuf into non-paged pool */
6392     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6393                                  fp->rx_tpa_info_mbuf_spare_map,
6394                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6395     if (__predict_false(rc != 0)) {
6396         fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6397         m_free(m);
6398         fp->eth_q_stats.mbuf_alloc_tpa--;
6399         return (rc);
6400     }
6401 
6402     /* all mbufs must map to a single segment */
6403     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6404 
6405     /* release any existing TPA mbuf mapping */
6406     if (tpa_info->bd.m_map != NULL) {
6407         bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6408                         BUS_DMASYNC_POSTREAD);
6409         bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6410     }
6411 
6412     /* save the mbuf and mapping info for the TPA mbuf */
6413     map = tpa_info->bd.m_map;
6414     tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6415     fp->rx_tpa_info_mbuf_spare_map = map;
6416     bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6417                     BUS_DMASYNC_PREREAD);
6418     tpa_info->bd.m = m;
6419     tpa_info->seg = segs[0];
6420 
6421     return (rc);
6422 }
6423 
6424 /*
6425  * Allocate an mbuf and assign it to the receive scatter gather chain. The
6426  * caller must take care to save a copy of the existing mbuf in the SG mbuf
6427  * chain.
6428  */
6429 static int
6430 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6431                       uint16_t            index)
6432 {
6433     struct bxe_sw_rx_bd *sge_buf;
6434     struct eth_rx_sge *sge;
6435     bus_dma_segment_t segs[1];
6436     bus_dmamap_t map;
6437     struct mbuf *m;
6438     int nsegs;
6439     int rc = 0;
6440 
6441     /* allocate a new SGE mbuf */
6442     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6443     if (__predict_false(m == NULL)) {
6444         fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6445         return (ENOMEM);
6446     }
6447 
6448     fp->eth_q_stats.mbuf_alloc_sge++;
6449 
6450     /* initialize the mbuf buffer length */
6451     m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6452 
6453     /* map the SGE mbuf into non-paged pool */
6454     rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6455                                  fp->rx_sge_mbuf_spare_map,
6456                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6457     if (__predict_false(rc != 0)) {
6458         fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6459         m_freem(m);
6460         fp->eth_q_stats.mbuf_alloc_sge--;
6461         return (rc);
6462     }
6463 
6464     /* all mbufs must map to a single segment */
6465     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6466 
6467     sge_buf = &fp->rx_sge_mbuf_chain[index];
6468 
6469     /* release any existing SGE mbuf mapping */
6470     if (sge_buf->m_map != NULL) {
6471         bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6472                         BUS_DMASYNC_POSTREAD);
6473         bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6474     }
6475 
6476     /* save the mbuf and mapping info for a future packet */
6477     map = sge_buf->m_map;
6478     sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6479     fp->rx_sge_mbuf_spare_map = map;
6480     bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6481                     BUS_DMASYNC_PREREAD);
6482     sge_buf->m = m;
6483 
6484     sge = &fp->rx_sge_chain[index];
6485     sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6486     sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6487 
6488     return (rc);
6489 }
6490 
6491 static __noinline int
6492 bxe_alloc_fp_buffers(struct bxe_softc *sc)
6493 {
6494     struct bxe_fastpath *fp;
6495     int i, j, rc = 0;
6496     int ring_prod, cqe_ring_prod;
6497     int max_agg_queues;
6498 
6499     for (i = 0; i < sc->num_queues; i++) {
6500         fp = &sc->fp[i];
6501 
6502 #if __FreeBSD_version >= 800000
6503         fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
6504                                    M_NOWAIT, &fp->tx_mtx);
6505         if (fp->tx_br == NULL) {
6506             BLOGE(sc, "buf_ring alloc fail for fp[%02d]\n", i);
6507             goto bxe_alloc_fp_buffers_error;
6508         }
6509 #endif
6510 
6511         ring_prod = cqe_ring_prod = 0;
6512         fp->rx_bd_cons = 0;
6513         fp->rx_cq_cons = 0;
6514 
6515         /* allocate buffers for the RX BDs in RX BD chain */
6516         for (j = 0; j < sc->max_rx_bufs; j++) {
6517             rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6518             if (rc != 0) {
6519                 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6520                       i, rc);
6521                 goto bxe_alloc_fp_buffers_error;
6522             }
6523 
6524             ring_prod     = RX_BD_NEXT(ring_prod);
6525             cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6526         }
6527 
6528         fp->rx_bd_prod = ring_prod;
6529         fp->rx_cq_prod = cqe_ring_prod;
6530         fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6531 
6532         max_agg_queues = MAX_AGG_QS(sc);
6533 
6534         fp->tpa_enable = TRUE;
6535 
6536         /* fill the TPA pool */
6537         for (j = 0; j < max_agg_queues; j++) {
6538             rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6539             if (rc != 0) {
6540                 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6541                           i, j);
6542                 fp->tpa_enable = FALSE;
6543                 goto bxe_alloc_fp_buffers_error;
6544             }
6545 
6546             fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6547         }
6548 
6549         if (fp->tpa_enable) {
6550             /* fill the RX SGE chain */
6551             ring_prod = 0;
6552             for (j = 0; j < RX_SGE_USABLE; j++) {
6553                 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6554                 if (rc != 0) {
6555                     BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6556                               i, ring_prod);
6557                     fp->tpa_enable = FALSE;
6558                     ring_prod = 0;
6559                     goto bxe_alloc_fp_buffers_error;
6560                 }
6561 
6562                 ring_prod = RX_SGE_NEXT(ring_prod);
6563             }
6564 
6565             fp->rx_sge_prod = ring_prod;
6566         }
6567     }
6568 
6569     return (0);
6570 
6571 bxe_alloc_fp_buffers_error:
6572 
6573     /* unwind what was already allocated */
6574     bxe_free_rx_bd_chain(fp);
6575     bxe_free_tpa_pool(fp);
6576     bxe_free_sge_chain(fp);
6577 
6578     return (ENOBUFS);
6579 }
6580 
6581 static void
6582 bxe_free_fw_stats_mem(struct bxe_softc *sc)
6583 {
6584     bxe_dma_free(sc, &sc->fw_stats_dma);
6585 
6586     sc->fw_stats_num = 0;
6587 
6588     sc->fw_stats_req_size = 0;
6589     sc->fw_stats_req = NULL;
6590     sc->fw_stats_req_mapping = 0;
6591 
6592     sc->fw_stats_data_size = 0;
6593     sc->fw_stats_data = NULL;
6594     sc->fw_stats_data_mapping = 0;
6595 }
6596 
6597 static int
6598 bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6599 {
6600     uint8_t num_queue_stats;
6601     int num_groups;
6602 
6603     /* number of queues for statistics is number of eth queues */
6604     num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6605 
6606     /*
6607      * Total number of FW statistics requests =
6608      *   1 for port stats + 1 for PF stats + num of queues
6609      */
6610     sc->fw_stats_num = (2 + num_queue_stats);
6611 
6612     /*
6613      * Request is built from stats_query_header and an array of
6614      * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6615      * rules. The real number or requests is configured in the
6616      * stats_query_header.
6617      */
6618     num_groups =
6619         ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6620          ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6621 
6622     BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6623           sc->fw_stats_num, num_groups);
6624 
6625     sc->fw_stats_req_size =
6626         (sizeof(struct stats_query_header) +
6627          (num_groups * sizeof(struct stats_query_cmd_group)));
6628 
6629     /*
6630      * Data for statistics requests + stats_counter.
6631      * stats_counter holds per-STORM counters that are incremented when
6632      * STORM has finished with the current request. Memory for FCoE
6633      * offloaded statistics are counted anyway, even if they will not be sent.
6634      * VF stats are not accounted for here as the data of VF stats is stored
6635      * in memory allocated by the VF, not here.
6636      */
6637     sc->fw_stats_data_size =
6638         (sizeof(struct stats_counter) +
6639          sizeof(struct per_port_stats) +
6640          sizeof(struct per_pf_stats) +
6641          /* sizeof(struct fcoe_statistics_params) + */
6642          (sizeof(struct per_queue_stats) * num_queue_stats));
6643 
6644     if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6645                       &sc->fw_stats_dma, "fw stats") != 0) {
6646         bxe_free_fw_stats_mem(sc);
6647         return (-1);
6648     }
6649 
6650     /* set up the shortcuts */
6651 
6652     sc->fw_stats_req =
6653         (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6654     sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6655 
6656     sc->fw_stats_data =
6657         (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6658                                      sc->fw_stats_req_size);
6659     sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6660                                  sc->fw_stats_req_size);
6661 
6662     BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6663           (uintmax_t)sc->fw_stats_req_mapping);
6664 
6665     BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6666           (uintmax_t)sc->fw_stats_data_mapping);
6667 
6668     return (0);
6669 }
6670 
6671 /*
6672  * Bits map:
6673  * 0-7  - Engine0 load counter.
6674  * 8-15 - Engine1 load counter.
6675  * 16   - Engine0 RESET_IN_PROGRESS bit.
6676  * 17   - Engine1 RESET_IN_PROGRESS bit.
6677  * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
6678  *        function on the engine
6679  * 19   - Engine1 ONE_IS_LOADED.
6680  * 20   - Chip reset flow bit. When set none-leader must wait for both engines
6681  *        leader to complete (check for both RESET_IN_PROGRESS bits and not
6682  *        for just the one belonging to its engine).
6683  */
6684 #define BXE_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
6685 #define BXE_PATH0_LOAD_CNT_MASK   0x000000ff
6686 #define BXE_PATH0_LOAD_CNT_SHIFT  0
6687 #define BXE_PATH1_LOAD_CNT_MASK   0x0000ff00
6688 #define BXE_PATH1_LOAD_CNT_SHIFT  8
6689 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
6690 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
6691 #define BXE_GLOBAL_RESET_BIT      0x00040000
6692 
6693 /* set the GLOBAL_RESET bit, should be run under rtnl lock */
6694 static void
6695 bxe_set_reset_global(struct bxe_softc *sc)
6696 {
6697     uint32_t val;
6698     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6699     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6700     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
6701     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6702 }
6703 
6704 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */
6705 static void
6706 bxe_clear_reset_global(struct bxe_softc *sc)
6707 {
6708     uint32_t val;
6709     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6710     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6711     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
6712     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6713 }
6714 
6715 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */
6716 static uint8_t
6717 bxe_reset_is_global(struct bxe_softc *sc)
6718 {
6719     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6720     BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
6721     return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
6722 }
6723 
6724 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
6725 static void
6726 bxe_set_reset_done(struct bxe_softc *sc)
6727 {
6728     uint32_t val;
6729     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6730                                  BXE_PATH0_RST_IN_PROG_BIT;
6731 
6732     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6733 
6734     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6735     /* Clear the bit */
6736     val &= ~bit;
6737     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6738 
6739     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6740 }
6741 
6742 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
6743 static void
6744 bxe_set_reset_in_progress(struct bxe_softc *sc)
6745 {
6746     uint32_t val;
6747     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6748                                  BXE_PATH0_RST_IN_PROG_BIT;
6749 
6750     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6751 
6752     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6753     /* Set the bit */
6754     val |= bit;
6755     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6756 
6757     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6758 }
6759 
6760 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
6761 static uint8_t
6762 bxe_reset_is_done(struct bxe_softc *sc,
6763                   int              engine)
6764 {
6765     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6766     uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
6767                             BXE_PATH0_RST_IN_PROG_BIT;
6768 
6769     /* return false if bit is set */
6770     return (val & bit) ? FALSE : TRUE;
6771 }
6772 
6773 /* get the load status for an engine, should be run under rtnl lock */
6774 static uint8_t
6775 bxe_get_load_status(struct bxe_softc *sc,
6776                     int              engine)
6777 {
6778     uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
6779                              BXE_PATH0_LOAD_CNT_MASK;
6780     uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
6781                               BXE_PATH0_LOAD_CNT_SHIFT;
6782     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6783 
6784     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
6785 
6786     val = ((val & mask) >> shift);
6787 
6788     BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
6789 
6790     return (val != 0);
6791 }
6792 
6793 /* set pf load mark */
6794 /* XXX needs to be under rtnl lock */
6795 static void
6796 bxe_set_pf_load(struct bxe_softc *sc)
6797 {
6798     uint32_t val;
6799     uint32_t val1;
6800     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
6801                                   BXE_PATH0_LOAD_CNT_MASK;
6802     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
6803                                    BXE_PATH0_LOAD_CNT_SHIFT;
6804 
6805     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6806 
6807     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6808     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
6809 
6810     /* get the current counter value */
6811     val1 = ((val & mask) >> shift);
6812 
6813     /* set bit of this PF */
6814     val1 |= (1 << SC_ABS_FUNC(sc));
6815 
6816     /* clear the old value */
6817     val &= ~mask;
6818 
6819     /* set the new one */
6820     val |= ((val1 << shift) & mask);
6821 
6822     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6823 
6824     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6825 }
6826 
6827 /* clear pf load mark */
6828 /* XXX needs to be under rtnl lock */
6829 static uint8_t
6830 bxe_clear_pf_load(struct bxe_softc *sc)
6831 {
6832     uint32_t val1, val;
6833     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
6834                                   BXE_PATH0_LOAD_CNT_MASK;
6835     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
6836                                    BXE_PATH0_LOAD_CNT_SHIFT;
6837 
6838     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6839     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6840     BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
6841 
6842     /* get the current counter value */
6843     val1 = (val & mask) >> shift;
6844 
6845     /* clear bit of that PF */
6846     val1 &= ~(1 << SC_ABS_FUNC(sc));
6847 
6848     /* clear the old value */
6849     val &= ~mask;
6850 
6851     /* set the new one */
6852     val |= ((val1 << shift) & mask);
6853 
6854     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6855     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6856     return (val1 != 0);
6857 }
6858 
6859 /* send load requrest to mcp and analyze response */
6860 static int
6861 bxe_nic_load_request(struct bxe_softc *sc,
6862                      uint32_t         *load_code)
6863 {
6864     /* init fw_seq */
6865     sc->fw_seq =
6866         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
6867          DRV_MSG_SEQ_NUMBER_MASK);
6868 
6869     BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
6870 
6871     /* get the current FW pulse sequence */
6872     sc->fw_drv_pulse_wr_seq =
6873         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
6874          DRV_PULSE_SEQ_MASK);
6875 
6876     BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
6877           sc->fw_drv_pulse_wr_seq);
6878 
6879     /* load request */
6880     (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
6881                                   DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
6882 
6883     /* if the MCP fails to respond we must abort */
6884     if (!(*load_code)) {
6885         BLOGE(sc, "MCP response failure!\n");
6886         return (-1);
6887     }
6888 
6889     /* if MCP refused then must abort */
6890     if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
6891         BLOGE(sc, "MCP refused load request\n");
6892         return (-1);
6893     }
6894 
6895     return (0);
6896 }
6897 
6898 /*
6899  * Check whether another PF has already loaded FW to chip. In virtualized
6900  * environments a pf from anoth VM may have already initialized the device
6901  * including loading FW.
6902  */
6903 static int
6904 bxe_nic_load_analyze_req(struct bxe_softc *sc,
6905                          uint32_t         load_code)
6906 {
6907     uint32_t my_fw, loaded_fw;
6908 
6909     /* is another pf loaded on this engine? */
6910     if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
6911         (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
6912         /* build my FW version dword */
6913         my_fw = (BCM_5710_FW_MAJOR_VERSION +
6914                  (BCM_5710_FW_MINOR_VERSION << 8 ) +
6915                  (BCM_5710_FW_REVISION_VERSION << 16) +
6916                  (BCM_5710_FW_ENGINEERING_VERSION << 24));
6917 
6918         /* read loaded FW from chip */
6919         loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
6920         BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
6921               loaded_fw, my_fw);
6922 
6923         /* abort nic load if version mismatch */
6924         if (my_fw != loaded_fw) {
6925             BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
6926                   loaded_fw, my_fw);
6927             return (-1);
6928         }
6929     }
6930 
6931     return (0);
6932 }
6933 
6934 /* mark PMF if applicable */
6935 static void
6936 bxe_nic_load_pmf(struct bxe_softc *sc,
6937                  uint32_t         load_code)
6938 {
6939     uint32_t ncsi_oem_data_addr;
6940 
6941     if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
6942         (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
6943         (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
6944         /*
6945          * Barrier here for ordering between the writing to sc->port.pmf here
6946          * and reading it from the periodic task.
6947          */
6948         sc->port.pmf = 1;
6949         mb();
6950     } else {
6951         sc->port.pmf = 0;
6952     }
6953 
6954     BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
6955 
6956     /* XXX needed? */
6957     if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
6958         if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
6959             ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
6960             if (ncsi_oem_data_addr) {
6961                 REG_WR(sc,
6962                        (ncsi_oem_data_addr +
6963                         offsetof(struct glob_ncsi_oem_data, driver_version)),
6964                        0);
6965             }
6966         }
6967     }
6968 }
6969 
6970 static void
6971 bxe_read_mf_cfg(struct bxe_softc *sc)
6972 {
6973     int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
6974     int abs_func;
6975     int vn;
6976 
6977     if (BXE_NOMCP(sc)) {
6978         return; /* what should be the default bvalue in this case */
6979     }
6980 
6981     /*
6982      * The formula for computing the absolute function number is...
6983      * For 2 port configuration (4 functions per port):
6984      *   abs_func = 2 * vn + SC_PORT + SC_PATH
6985      * For 4 port configuration (2 functions per port):
6986      *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
6987      */
6988     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
6989         abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
6990         if (abs_func >= E1H_FUNC_MAX) {
6991             break;
6992         }
6993         sc->devinfo.mf_info.mf_config[vn] =
6994             MFCFG_RD(sc, func_mf_config[abs_func].config);
6995     }
6996 
6997     if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
6998         FUNC_MF_CFG_FUNC_DISABLED) {
6999         BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
7000         sc->flags |= BXE_MF_FUNC_DIS;
7001     } else {
7002         BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
7003         sc->flags &= ~BXE_MF_FUNC_DIS;
7004     }
7005 }
7006 
7007 /* acquire split MCP access lock register */
7008 static int bxe_acquire_alr(struct bxe_softc *sc)
7009 {
7010     uint32_t j, val;
7011 
7012     for (j = 0; j < 1000; j++) {
7013         val = (1UL << 31);
7014         REG_WR(sc, GRCBASE_MCP + 0x9c, val);
7015         val = REG_RD(sc, GRCBASE_MCP + 0x9c);
7016         if (val & (1L << 31))
7017             break;
7018 
7019         DELAY(5000);
7020     }
7021 
7022     if (!(val & (1L << 31))) {
7023         BLOGE(sc, "Cannot acquire MCP access lock register\n");
7024         return (-1);
7025     }
7026 
7027     return (0);
7028 }
7029 
7030 /* release split MCP access lock register */
7031 static void bxe_release_alr(struct bxe_softc *sc)
7032 {
7033     REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
7034 }
7035 
7036 static void
7037 bxe_fan_failure(struct bxe_softc *sc)
7038 {
7039     int port = SC_PORT(sc);
7040     uint32_t ext_phy_config;
7041 
7042     /* mark the failure */
7043     ext_phy_config =
7044         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
7045 
7046     ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
7047     ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
7048     SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
7049              ext_phy_config);
7050 
7051     /* log the failure */
7052     BLOGW(sc, "Fan Failure has caused the driver to shutdown "
7053               "the card to prevent permanent damage. "
7054               "Please contact OEM Support for assistance\n");
7055 
7056     /* XXX */
7057 #if 1
7058     bxe_panic(sc, ("Schedule task to handle fan failure\n"));
7059 #else
7060     /*
7061      * Schedule device reset (unload)
7062      * This is due to some boards consuming sufficient power when driver is
7063      * up to overheat if fan fails.
7064      */
7065     bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
7066     schedule_delayed_work(&sc->sp_rtnl_task, 0);
7067 #endif
7068 }
7069 
7070 /* this function is called upon a link interrupt */
7071 static void
7072 bxe_link_attn(struct bxe_softc *sc)
7073 {
7074     uint32_t pause_enabled = 0;
7075     struct host_port_stats *pstats;
7076     int cmng_fns;
7077 
7078     /* Make sure that we are synced with the current statistics */
7079     bxe_stats_handle(sc, STATS_EVENT_STOP);
7080 
7081     elink_link_update(&sc->link_params, &sc->link_vars);
7082 
7083     if (sc->link_vars.link_up) {
7084 
7085         /* dropless flow control */
7086         if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
7087             pause_enabled = 0;
7088 
7089             if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
7090                 pause_enabled = 1;
7091             }
7092 
7093             REG_WR(sc,
7094                    (BAR_USTRORM_INTMEM +
7095                     USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
7096                    pause_enabled);
7097         }
7098 
7099         if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
7100             pstats = BXE_SP(sc, port_stats);
7101             /* reset old mac stats */
7102             memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
7103         }
7104 
7105         if (sc->state == BXE_STATE_OPEN) {
7106             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
7107         }
7108     }
7109 
7110     if (sc->link_vars.link_up && sc->link_vars.line_speed) {
7111         cmng_fns = bxe_get_cmng_fns_mode(sc);
7112 
7113         if (cmng_fns != CMNG_FNS_NONE) {
7114             bxe_cmng_fns_init(sc, FALSE, cmng_fns);
7115             storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7116         } else {
7117             /* rate shaping and fairness are disabled */
7118             BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
7119         }
7120     }
7121 
7122     bxe_link_report_locked(sc);
7123 
7124     if (IS_MF(sc)) {
7125         ; // XXX bxe_link_sync_notify(sc);
7126     }
7127 }
7128 
7129 static void
7130 bxe_attn_int_asserted(struct bxe_softc *sc,
7131                       uint32_t         asserted)
7132 {
7133     int port = SC_PORT(sc);
7134     uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7135                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
7136     uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7137                                         NIG_REG_MASK_INTERRUPT_PORT0;
7138     uint32_t aeu_mask;
7139     uint32_t nig_mask = 0;
7140     uint32_t reg_addr;
7141     uint32_t igu_acked;
7142     uint32_t cnt;
7143 
7144     if (sc->attn_state & asserted) {
7145         BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7146     }
7147 
7148     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7149 
7150     aeu_mask = REG_RD(sc, aeu_addr);
7151 
7152     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7153           aeu_mask, asserted);
7154 
7155     aeu_mask &= ~(asserted & 0x3ff);
7156 
7157     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7158 
7159     REG_WR(sc, aeu_addr, aeu_mask);
7160 
7161     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7162 
7163     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7164     sc->attn_state |= asserted;
7165     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7166 
7167     if (asserted & ATTN_HARD_WIRED_MASK) {
7168         if (asserted & ATTN_NIG_FOR_FUNC) {
7169 
7170 	    bxe_acquire_phy_lock(sc);
7171             /* save nig interrupt mask */
7172             nig_mask = REG_RD(sc, nig_int_mask_addr);
7173 
7174             /* If nig_mask is not set, no need to call the update function */
7175             if (nig_mask) {
7176                 REG_WR(sc, nig_int_mask_addr, 0);
7177 
7178                 bxe_link_attn(sc);
7179             }
7180 
7181             /* handle unicore attn? */
7182         }
7183 
7184         if (asserted & ATTN_SW_TIMER_4_FUNC) {
7185             BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7186         }
7187 
7188         if (asserted & GPIO_2_FUNC) {
7189             BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7190         }
7191 
7192         if (asserted & GPIO_3_FUNC) {
7193             BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7194         }
7195 
7196         if (asserted & GPIO_4_FUNC) {
7197             BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7198         }
7199 
7200         if (port == 0) {
7201             if (asserted & ATTN_GENERAL_ATTN_1) {
7202                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7203                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7204             }
7205             if (asserted & ATTN_GENERAL_ATTN_2) {
7206                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7207                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7208             }
7209             if (asserted & ATTN_GENERAL_ATTN_3) {
7210                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7211                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7212             }
7213         } else {
7214             if (asserted & ATTN_GENERAL_ATTN_4) {
7215                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7216                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7217             }
7218             if (asserted & ATTN_GENERAL_ATTN_5) {
7219                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7220                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7221             }
7222             if (asserted & ATTN_GENERAL_ATTN_6) {
7223                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7224                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7225             }
7226         }
7227     } /* hardwired */
7228 
7229     if (sc->devinfo.int_block == INT_BLOCK_HC) {
7230         reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7231     } else {
7232         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7233     }
7234 
7235     BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7236           asserted,
7237           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7238     REG_WR(sc, reg_addr, asserted);
7239 
7240     /* now set back the mask */
7241     if (asserted & ATTN_NIG_FOR_FUNC) {
7242         /*
7243          * Verify that IGU ack through BAR was written before restoring
7244          * NIG mask. This loop should exit after 2-3 iterations max.
7245          */
7246         if (sc->devinfo.int_block != INT_BLOCK_HC) {
7247             cnt = 0;
7248 
7249             do {
7250                 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7251             } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7252                      (++cnt < MAX_IGU_ATTN_ACK_TO));
7253 
7254             if (!igu_acked) {
7255                 BLOGE(sc, "Failed to verify IGU ack on time\n");
7256             }
7257 
7258             mb();
7259         }
7260 
7261         REG_WR(sc, nig_int_mask_addr, nig_mask);
7262 
7263 	bxe_release_phy_lock(sc);
7264     }
7265 }
7266 
7267 static void
7268 bxe_print_next_block(struct bxe_softc *sc,
7269                      int              idx,
7270                      const char       *blk)
7271 {
7272     BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7273 }
7274 
7275 static int
7276 bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7277                               uint32_t         sig,
7278                               int              par_num,
7279                               uint8_t          print)
7280 {
7281     uint32_t cur_bit = 0;
7282     int i = 0;
7283 
7284     for (i = 0; sig; i++) {
7285         cur_bit = ((uint32_t)0x1 << i);
7286         if (sig & cur_bit) {
7287             switch (cur_bit) {
7288             case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7289                 if (print)
7290                     bxe_print_next_block(sc, par_num++, "BRB");
7291                 break;
7292             case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7293                 if (print)
7294                     bxe_print_next_block(sc, par_num++, "PARSER");
7295                 break;
7296             case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7297                 if (print)
7298                     bxe_print_next_block(sc, par_num++, "TSDM");
7299                 break;
7300             case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7301                 if (print)
7302                     bxe_print_next_block(sc, par_num++, "SEARCHER");
7303                 break;
7304             case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7305                 if (print)
7306                     bxe_print_next_block(sc, par_num++, "TCM");
7307                 break;
7308             case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7309                 if (print)
7310                     bxe_print_next_block(sc, par_num++, "TSEMI");
7311                 break;
7312             case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7313                 if (print)
7314                     bxe_print_next_block(sc, par_num++, "XPB");
7315                 break;
7316             }
7317 
7318             /* Clear the bit */
7319             sig &= ~cur_bit;
7320         }
7321     }
7322 
7323     return (par_num);
7324 }
7325 
7326 static int
7327 bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7328                               uint32_t         sig,
7329                               int              par_num,
7330                               uint8_t          *global,
7331                               uint8_t          print)
7332 {
7333     int i = 0;
7334     uint32_t cur_bit = 0;
7335     for (i = 0; sig; i++) {
7336         cur_bit = ((uint32_t)0x1 << i);
7337         if (sig & cur_bit) {
7338             switch (cur_bit) {
7339             case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7340                 if (print)
7341                     bxe_print_next_block(sc, par_num++, "PBF");
7342                 break;
7343             case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7344                 if (print)
7345                     bxe_print_next_block(sc, par_num++, "QM");
7346                 break;
7347             case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7348                 if (print)
7349                     bxe_print_next_block(sc, par_num++, "TM");
7350                 break;
7351             case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7352                 if (print)
7353                     bxe_print_next_block(sc, par_num++, "XSDM");
7354                 break;
7355             case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7356                 if (print)
7357                     bxe_print_next_block(sc, par_num++, "XCM");
7358                 break;
7359             case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7360                 if (print)
7361                     bxe_print_next_block(sc, par_num++, "XSEMI");
7362                 break;
7363             case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7364                 if (print)
7365                     bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7366                 break;
7367             case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7368                 if (print)
7369                     bxe_print_next_block(sc, par_num++, "NIG");
7370                 break;
7371             case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7372                 if (print)
7373                     bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7374                 *global = TRUE;
7375                 break;
7376             case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7377                 if (print)
7378                     bxe_print_next_block(sc, par_num++, "DEBUG");
7379                 break;
7380             case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7381                 if (print)
7382                     bxe_print_next_block(sc, par_num++, "USDM");
7383                 break;
7384             case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7385                 if (print)
7386                     bxe_print_next_block(sc, par_num++, "UCM");
7387                 break;
7388             case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7389                 if (print)
7390                     bxe_print_next_block(sc, par_num++, "USEMI");
7391                 break;
7392             case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7393                 if (print)
7394                     bxe_print_next_block(sc, par_num++, "UPB");
7395                 break;
7396             case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7397                 if (print)
7398                     bxe_print_next_block(sc, par_num++, "CSDM");
7399                 break;
7400             case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7401                 if (print)
7402                     bxe_print_next_block(sc, par_num++, "CCM");
7403                 break;
7404             }
7405 
7406             /* Clear the bit */
7407             sig &= ~cur_bit;
7408         }
7409     }
7410 
7411     return (par_num);
7412 }
7413 
7414 static int
7415 bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7416                               uint32_t         sig,
7417                               int              par_num,
7418                               uint8_t          print)
7419 {
7420     uint32_t cur_bit = 0;
7421     int i = 0;
7422 
7423     for (i = 0; sig; i++) {
7424         cur_bit = ((uint32_t)0x1 << i);
7425         if (sig & cur_bit) {
7426             switch (cur_bit) {
7427             case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7428                 if (print)
7429                     bxe_print_next_block(sc, par_num++, "CSEMI");
7430                 break;
7431             case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7432                 if (print)
7433                     bxe_print_next_block(sc, par_num++, "PXP");
7434                 break;
7435             case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7436                 if (print)
7437                     bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7438                 break;
7439             case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7440                 if (print)
7441                     bxe_print_next_block(sc, par_num++, "CFC");
7442                 break;
7443             case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7444                 if (print)
7445                     bxe_print_next_block(sc, par_num++, "CDU");
7446                 break;
7447             case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7448                 if (print)
7449                     bxe_print_next_block(sc, par_num++, "DMAE");
7450                 break;
7451             case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7452                 if (print)
7453                     bxe_print_next_block(sc, par_num++, "IGU");
7454                 break;
7455             case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7456                 if (print)
7457                     bxe_print_next_block(sc, par_num++, "MISC");
7458                 break;
7459             }
7460 
7461             /* Clear the bit */
7462             sig &= ~cur_bit;
7463         }
7464     }
7465 
7466     return (par_num);
7467 }
7468 
7469 static int
7470 bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7471                               uint32_t         sig,
7472                               int              par_num,
7473                               uint8_t          *global,
7474                               uint8_t          print)
7475 {
7476     uint32_t cur_bit = 0;
7477     int i = 0;
7478 
7479     for (i = 0; sig; i++) {
7480         cur_bit = ((uint32_t)0x1 << i);
7481         if (sig & cur_bit) {
7482             switch (cur_bit) {
7483             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7484                 if (print)
7485                     bxe_print_next_block(sc, par_num++, "MCP ROM");
7486                 *global = TRUE;
7487                 break;
7488             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7489                 if (print)
7490                     bxe_print_next_block(sc, par_num++,
7491                               "MCP UMP RX");
7492                 *global = TRUE;
7493                 break;
7494             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7495                 if (print)
7496                     bxe_print_next_block(sc, par_num++,
7497                               "MCP UMP TX");
7498                 *global = TRUE;
7499                 break;
7500             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7501                 if (print)
7502                     bxe_print_next_block(sc, par_num++,
7503                               "MCP SCPAD");
7504                 *global = TRUE;
7505                 break;
7506             }
7507 
7508             /* Clear the bit */
7509             sig &= ~cur_bit;
7510         }
7511     }
7512 
7513     return (par_num);
7514 }
7515 
7516 static int
7517 bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7518                               uint32_t         sig,
7519                               int              par_num,
7520                               uint8_t          print)
7521 {
7522     uint32_t cur_bit = 0;
7523     int i = 0;
7524 
7525     for (i = 0; sig; i++) {
7526         cur_bit = ((uint32_t)0x1 << i);
7527         if (sig & cur_bit) {
7528             switch (cur_bit) {
7529             case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7530                 if (print)
7531                     bxe_print_next_block(sc, par_num++, "PGLUE_B");
7532                 break;
7533             case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7534                 if (print)
7535                     bxe_print_next_block(sc, par_num++, "ATC");
7536                 break;
7537             }
7538 
7539             /* Clear the bit */
7540             sig &= ~cur_bit;
7541         }
7542     }
7543 
7544     return (par_num);
7545 }
7546 
7547 static uint8_t
7548 bxe_parity_attn(struct bxe_softc *sc,
7549                 uint8_t          *global,
7550                 uint8_t          print,
7551                 uint32_t         *sig)
7552 {
7553     int par_num = 0;
7554 
7555     if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7556         (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7557         (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7558         (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7559         (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7560         BLOGE(sc, "Parity error: HW block parity attention:\n"
7561                   "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7562               (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7563               (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7564               (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7565               (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7566               (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7567 
7568         if (print)
7569             BLOGI(sc, "Parity errors detected in blocks: ");
7570 
7571         par_num =
7572             bxe_check_blocks_with_parity0(sc, sig[0] &
7573                                           HW_PRTY_ASSERT_SET_0,
7574                                           par_num, print);
7575         par_num =
7576             bxe_check_blocks_with_parity1(sc, sig[1] &
7577                                           HW_PRTY_ASSERT_SET_1,
7578                                           par_num, global, print);
7579         par_num =
7580             bxe_check_blocks_with_parity2(sc, sig[2] &
7581                                           HW_PRTY_ASSERT_SET_2,
7582                                           par_num, print);
7583         par_num =
7584             bxe_check_blocks_with_parity3(sc, sig[3] &
7585                                           HW_PRTY_ASSERT_SET_3,
7586                                           par_num, global, print);
7587         par_num =
7588             bxe_check_blocks_with_parity4(sc, sig[4] &
7589                                           HW_PRTY_ASSERT_SET_4,
7590                                           par_num, print);
7591 
7592         if (print)
7593             BLOGI(sc, "\n");
7594 
7595         return (TRUE);
7596     }
7597 
7598     return (FALSE);
7599 }
7600 
7601 static uint8_t
7602 bxe_chk_parity_attn(struct bxe_softc *sc,
7603                     uint8_t          *global,
7604                     uint8_t          print)
7605 {
7606     struct attn_route attn = { {0} };
7607     int port = SC_PORT(sc);
7608 
7609     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7610     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7611     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7612     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7613 
7614     /*
7615      * Since MCP attentions can't be disabled inside the block, we need to
7616      * read AEU registers to see whether they're currently disabled
7617      */
7618     attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
7619                                       : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) &
7620                          MISC_AEU_ENABLE_MCP_PRTY_BITS) |
7621                         ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
7622 
7623 
7624     if (!CHIP_IS_E1x(sc))
7625         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7626 
7627     return (bxe_parity_attn(sc, global, print, attn.sig));
7628 }
7629 
7630 static void
7631 bxe_attn_int_deasserted4(struct bxe_softc *sc,
7632                          uint32_t         attn)
7633 {
7634     uint32_t val;
7635 
7636     if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7637         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7638         BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7639         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7640             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7641         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7642             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7643         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7644             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7645         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7646             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7647         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7648             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7649         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7650             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7651         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7652             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7653         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7654             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7655         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7656             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7657     }
7658 
7659     if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7660         val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7661         BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7662         if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7663             BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7664         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7665             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7666         if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7667             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7668         if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7669             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7670         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7671             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7672         if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7673             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7674     }
7675 
7676     if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7677                 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7678         BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7679               (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7680                                  AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7681     }
7682 }
7683 
7684 static void
7685 bxe_e1h_disable(struct bxe_softc *sc)
7686 {
7687     int port = SC_PORT(sc);
7688 
7689     bxe_tx_disable(sc);
7690 
7691     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7692 }
7693 
7694 static void
7695 bxe_e1h_enable(struct bxe_softc *sc)
7696 {
7697     int port = SC_PORT(sc);
7698 
7699     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7700 
7701     // XXX bxe_tx_enable(sc);
7702 }
7703 
7704 /*
7705  * called due to MCP event (on pmf):
7706  *   reread new bandwidth configuration
7707  *   configure FW
7708  *   notify others function about the change
7709  */
7710 static void
7711 bxe_config_mf_bw(struct bxe_softc *sc)
7712 {
7713     if (sc->link_vars.link_up) {
7714         bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
7715         // XXX bxe_link_sync_notify(sc);
7716     }
7717 
7718     storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7719 }
7720 
7721 static void
7722 bxe_set_mf_bw(struct bxe_softc *sc)
7723 {
7724     bxe_config_mf_bw(sc);
7725     bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
7726 }
7727 
7728 static void
7729 bxe_handle_eee_event(struct bxe_softc *sc)
7730 {
7731     BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
7732     bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
7733 }
7734 
7735 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
7736 
7737 static void
7738 bxe_drv_info_ether_stat(struct bxe_softc *sc)
7739 {
7740     struct eth_stats_info *ether_stat =
7741         &sc->sp->drv_info_to_mcp.ether_stat;
7742 
7743     strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
7744             ETH_STAT_INFO_VERSION_LEN);
7745 
7746     /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
7747     sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
7748                                           DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
7749                                           ether_stat->mac_local + MAC_PAD,
7750                                           MAC_PAD, ETH_ALEN);
7751 
7752     ether_stat->mtu_size = sc->mtu;
7753 
7754     ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
7755     if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
7756         ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
7757     }
7758 
7759     // XXX ether_stat->feature_flags |= ???;
7760 
7761     ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
7762 
7763     ether_stat->txq_size = sc->tx_ring_size;
7764     ether_stat->rxq_size = sc->rx_ring_size;
7765 }
7766 
7767 static void
7768 bxe_handle_drv_info_req(struct bxe_softc *sc)
7769 {
7770     enum drv_info_opcode op_code;
7771     uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
7772 
7773     /* if drv_info version supported by MFW doesn't match - send NACK */
7774     if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
7775         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
7776         return;
7777     }
7778 
7779     op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
7780                DRV_INFO_CONTROL_OP_CODE_SHIFT);
7781 
7782     memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
7783 
7784     switch (op_code) {
7785     case ETH_STATS_OPCODE:
7786         bxe_drv_info_ether_stat(sc);
7787         break;
7788     case FCOE_STATS_OPCODE:
7789     case ISCSI_STATS_OPCODE:
7790     default:
7791         /* if op code isn't supported - send NACK */
7792         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
7793         return;
7794     }
7795 
7796     /*
7797      * If we got drv_info attn from MFW then these fields are defined in
7798      * shmem2 for sure
7799      */
7800     SHMEM2_WR(sc, drv_info_host_addr_lo,
7801               U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
7802     SHMEM2_WR(sc, drv_info_host_addr_hi,
7803               U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
7804 
7805     bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
7806 }
7807 
7808 static void
7809 bxe_dcc_event(struct bxe_softc *sc,
7810               uint32_t         dcc_event)
7811 {
7812     BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
7813 
7814     if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
7815         /*
7816          * This is the only place besides the function initialization
7817          * where the sc->flags can change so it is done without any
7818          * locks
7819          */
7820         if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
7821             BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
7822             sc->flags |= BXE_MF_FUNC_DIS;
7823             bxe_e1h_disable(sc);
7824         } else {
7825             BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
7826             sc->flags &= ~BXE_MF_FUNC_DIS;
7827             bxe_e1h_enable(sc);
7828         }
7829         dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
7830     }
7831 
7832     if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
7833         bxe_config_mf_bw(sc);
7834         dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
7835     }
7836 
7837     /* Report results to MCP */
7838     if (dcc_event)
7839         bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
7840     else
7841         bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
7842 }
7843 
7844 static void
7845 bxe_pmf_update(struct bxe_softc *sc)
7846 {
7847     int port = SC_PORT(sc);
7848     uint32_t val;
7849 
7850     sc->port.pmf = 1;
7851     BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
7852 
7853     /*
7854      * We need the mb() to ensure the ordering between the writing to
7855      * sc->port.pmf here and reading it from the bxe_periodic_task().
7856      */
7857     mb();
7858 
7859     /* queue a periodic task */
7860     // XXX schedule task...
7861 
7862     // XXX bxe_dcbx_pmf_update(sc);
7863 
7864     /* enable nig attention */
7865     val = (0xff0f | (1 << (SC_VN(sc) + 4)));
7866     if (sc->devinfo.int_block == INT_BLOCK_HC) {
7867         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
7868         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
7869     } else if (!CHIP_IS_E1x(sc)) {
7870         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
7871         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
7872     }
7873 
7874     bxe_stats_handle(sc, STATS_EVENT_PMF);
7875 }
7876 
7877 static int
7878 bxe_mc_assert(struct bxe_softc *sc)
7879 {
7880     char last_idx;
7881     int i, rc = 0;
7882     uint32_t row0, row1, row2, row3;
7883 
7884     /* XSTORM */
7885     last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
7886     if (last_idx)
7887         BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7888 
7889     /* print the asserts */
7890     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7891 
7892         row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
7893         row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
7894         row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
7895         row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
7896 
7897         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7898             BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7899                   i, row3, row2, row1, row0);
7900             rc++;
7901         } else {
7902             break;
7903         }
7904     }
7905 
7906     /* TSTORM */
7907     last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
7908     if (last_idx) {
7909         BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7910     }
7911 
7912     /* print the asserts */
7913     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7914 
7915         row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
7916         row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
7917         row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
7918         row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
7919 
7920         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7921             BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7922                   i, row3, row2, row1, row0);
7923             rc++;
7924         } else {
7925             break;
7926         }
7927     }
7928 
7929     /* CSTORM */
7930     last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
7931     if (last_idx) {
7932         BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7933     }
7934 
7935     /* print the asserts */
7936     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7937 
7938         row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
7939         row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
7940         row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
7941         row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
7942 
7943         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7944             BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7945                   i, row3, row2, row1, row0);
7946             rc++;
7947         } else {
7948             break;
7949         }
7950     }
7951 
7952     /* USTORM */
7953     last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
7954     if (last_idx) {
7955         BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7956     }
7957 
7958     /* print the asserts */
7959     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7960 
7961         row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
7962         row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
7963         row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
7964         row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
7965 
7966         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7967             BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7968                   i, row3, row2, row1, row0);
7969             rc++;
7970         } else {
7971             break;
7972         }
7973     }
7974 
7975     return (rc);
7976 }
7977 
7978 static void
7979 bxe_attn_int_deasserted3(struct bxe_softc *sc,
7980                          uint32_t         attn)
7981 {
7982     int func = SC_FUNC(sc);
7983     uint32_t val;
7984 
7985     if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
7986 
7987         if (attn & BXE_PMF_LINK_ASSERT(sc)) {
7988 
7989             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7990             bxe_read_mf_cfg(sc);
7991             sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
7992                 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
7993             val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
7994 
7995             if (val & DRV_STATUS_DCC_EVENT_MASK)
7996                 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
7997 
7998             if (val & DRV_STATUS_SET_MF_BW)
7999                 bxe_set_mf_bw(sc);
8000 
8001             if (val & DRV_STATUS_DRV_INFO_REQ)
8002                 bxe_handle_drv_info_req(sc);
8003 
8004             if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
8005                 bxe_pmf_update(sc);
8006 
8007             if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
8008                 bxe_handle_eee_event(sc);
8009 
8010             if (sc->link_vars.periodic_flags &
8011                 ELINK_PERIODIC_FLAGS_LINK_EVENT) {
8012                 /* sync with link */
8013 		bxe_acquire_phy_lock(sc);
8014                 sc->link_vars.periodic_flags &=
8015                     ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
8016 		bxe_release_phy_lock(sc);
8017                 if (IS_MF(sc))
8018                     ; // XXX bxe_link_sync_notify(sc);
8019                 bxe_link_report(sc);
8020             }
8021 
8022             /*
8023              * Always call it here: bxe_link_report() will
8024              * prevent the link indication duplication.
8025              */
8026             bxe_link_status_update(sc);
8027 
8028         } else if (attn & BXE_MC_ASSERT_BITS) {
8029 
8030             BLOGE(sc, "MC assert!\n");
8031             bxe_mc_assert(sc);
8032             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
8033             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
8034             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
8035             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
8036             bxe_panic(sc, ("MC assert!\n"));
8037 
8038         } else if (attn & BXE_MCP_ASSERT) {
8039 
8040             BLOGE(sc, "MCP assert!\n");
8041             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
8042             // XXX bxe_fw_dump(sc);
8043 
8044         } else {
8045             BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
8046         }
8047     }
8048 
8049     if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
8050         BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
8051         if (attn & BXE_GRC_TIMEOUT) {
8052             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
8053             BLOGE(sc, "GRC time-out 0x%08x\n", val);
8054         }
8055         if (attn & BXE_GRC_RSV) {
8056             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
8057             BLOGE(sc, "GRC reserved 0x%08x\n", val);
8058         }
8059         REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
8060     }
8061 }
8062 
8063 static void
8064 bxe_attn_int_deasserted2(struct bxe_softc *sc,
8065                          uint32_t         attn)
8066 {
8067     int port = SC_PORT(sc);
8068     int reg_offset;
8069     uint32_t val0, mask0, val1, mask1;
8070     uint32_t val;
8071 
8072     if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
8073         val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
8074         BLOGE(sc, "CFC hw attention 0x%08x\n", val);
8075         /* CFC error attention */
8076         if (val & 0x2) {
8077             BLOGE(sc, "FATAL error from CFC\n");
8078         }
8079     }
8080 
8081     if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
8082         val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
8083         BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
8084         /* RQ_USDMDP_FIFO_OVERFLOW */
8085         if (val & 0x18000) {
8086             BLOGE(sc, "FATAL error from PXP\n");
8087         }
8088 
8089         if (!CHIP_IS_E1x(sc)) {
8090             val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
8091             BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
8092         }
8093     }
8094 
8095 #define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
8096 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
8097 
8098     if (attn & AEU_PXP2_HW_INT_BIT) {
8099         /*  CQ47854 workaround do not panic on
8100          *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8101          */
8102         if (!CHIP_IS_E1x(sc)) {
8103             mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
8104             val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
8105             mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
8106             val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
8107             /*
8108              * If the olny PXP2_EOP_ERROR_BIT is set in
8109              * STS0 and STS1 - clear it
8110              *
8111              * probably we lose additional attentions between
8112              * STS0 and STS_CLR0, in this case user will not
8113              * be notified about them
8114              */
8115             if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
8116                 !(val1 & mask1))
8117                 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
8118 
8119             /* print the register, since no one can restore it */
8120             BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8121 
8122             /*
8123              * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8124              * then notify
8125              */
8126             if (val0 & PXP2_EOP_ERROR_BIT) {
8127                 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8128 
8129                 /*
8130                  * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8131                  * set then clear attention from PXP2 block without panic
8132                  */
8133                 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8134                     ((val1 & mask1) == 0))
8135                     attn &= ~AEU_PXP2_HW_INT_BIT;
8136             }
8137         }
8138     }
8139 
8140     if (attn & HW_INTERRUT_ASSERT_SET_2) {
8141         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8142                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8143 
8144         val = REG_RD(sc, reg_offset);
8145         val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8146         REG_WR(sc, reg_offset, val);
8147 
8148         BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8149               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8150         bxe_panic(sc, ("HW block attention set2\n"));
8151     }
8152 }
8153 
8154 static void
8155 bxe_attn_int_deasserted1(struct bxe_softc *sc,
8156                          uint32_t         attn)
8157 {
8158     int port = SC_PORT(sc);
8159     int reg_offset;
8160     uint32_t val;
8161 
8162     if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8163         val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8164         BLOGE(sc, "DB hw attention 0x%08x\n", val);
8165         /* DORQ discard attention */
8166         if (val & 0x2) {
8167             BLOGE(sc, "FATAL error from DORQ\n");
8168         }
8169     }
8170 
8171     if (attn & HW_INTERRUT_ASSERT_SET_1) {
8172         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8173                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8174 
8175         val = REG_RD(sc, reg_offset);
8176         val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8177         REG_WR(sc, reg_offset, val);
8178 
8179         BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8180               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8181         bxe_panic(sc, ("HW block attention set1\n"));
8182     }
8183 }
8184 
8185 static void
8186 bxe_attn_int_deasserted0(struct bxe_softc *sc,
8187                          uint32_t         attn)
8188 {
8189     int port = SC_PORT(sc);
8190     int reg_offset;
8191     uint32_t val;
8192 
8193     reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8194                           MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8195 
8196     if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8197         val = REG_RD(sc, reg_offset);
8198         val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8199         REG_WR(sc, reg_offset, val);
8200 
8201         BLOGW(sc, "SPIO5 hw attention\n");
8202 
8203         /* Fan failure attention */
8204         elink_hw_reset_phy(&sc->link_params);
8205         bxe_fan_failure(sc);
8206     }
8207 
8208     if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8209 	bxe_acquire_phy_lock(sc);
8210         elink_handle_module_detect_int(&sc->link_params);
8211 	bxe_release_phy_lock(sc);
8212     }
8213 
8214     if (attn & HW_INTERRUT_ASSERT_SET_0) {
8215         val = REG_RD(sc, reg_offset);
8216         val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8217         REG_WR(sc, reg_offset, val);
8218 
8219         bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8220                        (attn & HW_INTERRUT_ASSERT_SET_0)));
8221     }
8222 }
8223 
8224 static void
8225 bxe_attn_int_deasserted(struct bxe_softc *sc,
8226                         uint32_t         deasserted)
8227 {
8228     struct attn_route attn;
8229     struct attn_route *group_mask;
8230     int port = SC_PORT(sc);
8231     int index;
8232     uint32_t reg_addr;
8233     uint32_t val;
8234     uint32_t aeu_mask;
8235     uint8_t global = FALSE;
8236 
8237     /*
8238      * Need to take HW lock because MCP or other port might also
8239      * try to handle this event.
8240      */
8241     bxe_acquire_alr(sc);
8242 
8243     if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8244         /* XXX
8245          * In case of parity errors don't handle attentions so that
8246          * other function would "see" parity errors.
8247          */
8248         sc->recovery_state = BXE_RECOVERY_INIT;
8249         // XXX schedule a recovery task...
8250         /* disable HW interrupts */
8251         bxe_int_disable(sc);
8252         bxe_release_alr(sc);
8253         return;
8254     }
8255 
8256     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8257     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8258     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8259     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8260     if (!CHIP_IS_E1x(sc)) {
8261         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8262     } else {
8263         attn.sig[4] = 0;
8264     }
8265 
8266     BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8267           attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8268 
8269     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8270         if (deasserted & (1 << index)) {
8271             group_mask = &sc->attn_group[index];
8272 
8273             BLOGD(sc, DBG_INTR,
8274                   "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8275                   group_mask->sig[0], group_mask->sig[1],
8276                   group_mask->sig[2], group_mask->sig[3],
8277                   group_mask->sig[4]);
8278 
8279             bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8280             bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8281             bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8282             bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8283             bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8284         }
8285     }
8286 
8287     bxe_release_alr(sc);
8288 
8289     if (sc->devinfo.int_block == INT_BLOCK_HC) {
8290         reg_addr = (HC_REG_COMMAND_REG + port*32 +
8291                     COMMAND_REG_ATTN_BITS_CLR);
8292     } else {
8293         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8294     }
8295 
8296     val = ~deasserted;
8297     BLOGD(sc, DBG_INTR,
8298           "about to mask 0x%08x at %s addr 0x%08x\n", val,
8299           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8300     REG_WR(sc, reg_addr, val);
8301 
8302     if (~sc->attn_state & deasserted) {
8303         BLOGE(sc, "IGU error\n");
8304     }
8305 
8306     reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8307                       MISC_REG_AEU_MASK_ATTN_FUNC_0;
8308 
8309     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8310 
8311     aeu_mask = REG_RD(sc, reg_addr);
8312 
8313     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8314           aeu_mask, deasserted);
8315     aeu_mask |= (deasserted & 0x3ff);
8316     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8317 
8318     REG_WR(sc, reg_addr, aeu_mask);
8319     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8320 
8321     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8322     sc->attn_state &= ~deasserted;
8323     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8324 }
8325 
8326 static void
8327 bxe_attn_int(struct bxe_softc *sc)
8328 {
8329     /* read local copy of bits */
8330     uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8331     uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8332     uint32_t attn_state = sc->attn_state;
8333 
8334     /* look for changed bits */
8335     uint32_t asserted   =  attn_bits & ~attn_ack & ~attn_state;
8336     uint32_t deasserted = ~attn_bits &  attn_ack &  attn_state;
8337 
8338     BLOGD(sc, DBG_INTR,
8339           "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8340           attn_bits, attn_ack, asserted, deasserted);
8341 
8342     if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8343         BLOGE(sc, "BAD attention state\n");
8344     }
8345 
8346     /* handle bits that were raised */
8347     if (asserted) {
8348         bxe_attn_int_asserted(sc, asserted);
8349     }
8350 
8351     if (deasserted) {
8352         bxe_attn_int_deasserted(sc, deasserted);
8353     }
8354 }
8355 
8356 static uint16_t
8357 bxe_update_dsb_idx(struct bxe_softc *sc)
8358 {
8359     struct host_sp_status_block *def_sb = sc->def_sb;
8360     uint16_t rc = 0;
8361 
8362     mb(); /* status block is written to by the chip */
8363 
8364     if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8365         sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8366         rc |= BXE_DEF_SB_ATT_IDX;
8367     }
8368 
8369     if (sc->def_idx != def_sb->sp_sb.running_index) {
8370         sc->def_idx = def_sb->sp_sb.running_index;
8371         rc |= BXE_DEF_SB_IDX;
8372     }
8373 
8374     mb();
8375 
8376     return (rc);
8377 }
8378 
8379 static inline struct ecore_queue_sp_obj *
8380 bxe_cid_to_q_obj(struct bxe_softc *sc,
8381                  uint32_t         cid)
8382 {
8383     BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8384     return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8385 }
8386 
8387 static void
8388 bxe_handle_mcast_eqe(struct bxe_softc *sc)
8389 {
8390     struct ecore_mcast_ramrod_params rparam;
8391     int rc;
8392 
8393     memset(&rparam, 0, sizeof(rparam));
8394 
8395     rparam.mcast_obj = &sc->mcast_obj;
8396 
8397     BXE_MCAST_LOCK(sc);
8398 
8399     /* clear pending state for the last command */
8400     sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8401 
8402     /* if there are pending mcast commands - send them */
8403     if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8404         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8405         if (rc < 0) {
8406             BLOGD(sc, DBG_SP,
8407                 "ERROR: Failed to send pending mcast commands (%d)\n", rc);
8408         }
8409     }
8410 
8411     BXE_MCAST_UNLOCK(sc);
8412 }
8413 
8414 static void
8415 bxe_handle_classification_eqe(struct bxe_softc      *sc,
8416                               union event_ring_elem *elem)
8417 {
8418     unsigned long ramrod_flags = 0;
8419     int rc = 0;
8420     uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8421     struct ecore_vlan_mac_obj *vlan_mac_obj;
8422 
8423     /* always push next commands out, don't wait here */
8424     bit_set(&ramrod_flags, RAMROD_CONT);
8425 
8426     switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8427     case ECORE_FILTER_MAC_PENDING:
8428         BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8429         vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8430         break;
8431 
8432     case ECORE_FILTER_MCAST_PENDING:
8433         BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8434         /*
8435          * This is only relevant for 57710 where multicast MACs are
8436          * configured as unicast MACs using the same ramrod.
8437          */
8438         bxe_handle_mcast_eqe(sc);
8439         return;
8440 
8441     default:
8442         BLOGE(sc, "Unsupported classification command: %d\n",
8443               elem->message.data.eth_event.echo);
8444         return;
8445     }
8446 
8447     rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8448 
8449     if (rc < 0) {
8450         BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8451     } else if (rc > 0) {
8452         BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8453     }
8454 }
8455 
8456 static void
8457 bxe_handle_rx_mode_eqe(struct bxe_softc      *sc,
8458                        union event_ring_elem *elem)
8459 {
8460     bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8461 
8462     /* send rx_mode command again if was requested */
8463     if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8464                                &sc->sp_state)) {
8465         bxe_set_storm_rx_mode(sc);
8466     }
8467 }
8468 
8469 static void
8470 bxe_update_eq_prod(struct bxe_softc *sc,
8471                    uint16_t         prod)
8472 {
8473     storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8474     wmb(); /* keep prod updates ordered */
8475 }
8476 
8477 static void
8478 bxe_eq_int(struct bxe_softc *sc)
8479 {
8480     uint16_t hw_cons, sw_cons, sw_prod;
8481     union event_ring_elem *elem;
8482     uint8_t echo;
8483     uint32_t cid;
8484     uint8_t opcode;
8485     int spqe_cnt = 0;
8486     struct ecore_queue_sp_obj *q_obj;
8487     struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8488     struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8489 
8490     hw_cons = le16toh(*sc->eq_cons_sb);
8491 
8492     /*
8493      * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8494      * when we get to the next-page we need to adjust so the loop
8495      * condition below will be met. The next element is the size of a
8496      * regular element and hence incrementing by 1
8497      */
8498     if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8499         hw_cons++;
8500     }
8501 
8502     /*
8503      * This function may never run in parallel with itself for a
8504      * specific sc and no need for a read memory barrier here.
8505      */
8506     sw_cons = sc->eq_cons;
8507     sw_prod = sc->eq_prod;
8508 
8509     BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8510           hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8511 
8512     for (;
8513          sw_cons != hw_cons;
8514          sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8515 
8516         elem = &sc->eq[EQ_DESC(sw_cons)];
8517 
8518         /* elem CID originates from FW, actually LE */
8519         cid = SW_CID(elem->message.data.cfc_del_event.cid);
8520         opcode = elem->message.opcode;
8521 
8522         /* handle eq element */
8523         switch (opcode) {
8524 
8525         case EVENT_RING_OPCODE_STAT_QUERY:
8526             BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8527                   sc->stats_comp++);
8528             /* nothing to do with stats comp */
8529             goto next_spqe;
8530 
8531         case EVENT_RING_OPCODE_CFC_DEL:
8532             /* handle according to cid range */
8533             /* we may want to verify here that the sc state is HALTING */
8534             BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8535             q_obj = bxe_cid_to_q_obj(sc, cid);
8536             if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8537                 break;
8538             }
8539             goto next_spqe;
8540 
8541         case EVENT_RING_OPCODE_STOP_TRAFFIC:
8542             BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8543             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8544                 break;
8545             }
8546             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8547             goto next_spqe;
8548 
8549         case EVENT_RING_OPCODE_START_TRAFFIC:
8550             BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8551             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8552                 break;
8553             }
8554             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8555             goto next_spqe;
8556 
8557         case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8558             echo = elem->message.data.function_update_event.echo;
8559             if (echo == SWITCH_UPDATE) {
8560                 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8561                 if (f_obj->complete_cmd(sc, f_obj,
8562                                         ECORE_F_CMD_SWITCH_UPDATE)) {
8563                     break;
8564                 }
8565             }
8566             else {
8567                 BLOGD(sc, DBG_SP,
8568                       "AFEX: ramrod completed FUNCTION_UPDATE\n");
8569             }
8570             goto next_spqe;
8571 
8572         case EVENT_RING_OPCODE_FORWARD_SETUP:
8573             q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8574             if (q_obj->complete_cmd(sc, q_obj,
8575                                     ECORE_Q_CMD_SETUP_TX_ONLY)) {
8576                 break;
8577             }
8578             goto next_spqe;
8579 
8580         case EVENT_RING_OPCODE_FUNCTION_START:
8581             BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8582             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8583                 break;
8584             }
8585             goto next_spqe;
8586 
8587         case EVENT_RING_OPCODE_FUNCTION_STOP:
8588             BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8589             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8590                 break;
8591             }
8592             goto next_spqe;
8593         }
8594 
8595         switch (opcode | sc->state) {
8596         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8597         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8598             cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8599             BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8600             rss_raw->clear_pending(rss_raw);
8601             break;
8602 
8603         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8604         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8605         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8606         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8607         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8608         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8609             BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8610             bxe_handle_classification_eqe(sc, elem);
8611             break;
8612 
8613         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8614         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8615         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8616             BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8617             bxe_handle_mcast_eqe(sc);
8618             break;
8619 
8620         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8621         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8622         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8623             BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8624             bxe_handle_rx_mode_eqe(sc, elem);
8625             break;
8626 
8627         default:
8628             /* unknown event log error and continue */
8629             BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8630                   elem->message.opcode, sc->state);
8631         }
8632 
8633 next_spqe:
8634         spqe_cnt++;
8635     } /* for */
8636 
8637     mb();
8638     atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
8639 
8640     sc->eq_cons = sw_cons;
8641     sc->eq_prod = sw_prod;
8642 
8643     /* make sure that above mem writes were issued towards the memory */
8644     wmb();
8645 
8646     /* update producer */
8647     bxe_update_eq_prod(sc, sc->eq_prod);
8648 }
8649 
8650 static void
8651 bxe_handle_sp_tq(void *context,
8652                  int  pending)
8653 {
8654     struct bxe_softc *sc = (struct bxe_softc *)context;
8655     uint16_t status;
8656 
8657     BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
8658 
8659     /* what work needs to be performed? */
8660     status = bxe_update_dsb_idx(sc);
8661 
8662     BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
8663 
8664     /* HW attentions */
8665     if (status & BXE_DEF_SB_ATT_IDX) {
8666         BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
8667         bxe_attn_int(sc);
8668         status &= ~BXE_DEF_SB_ATT_IDX;
8669     }
8670 
8671     /* SP events: STAT_QUERY and others */
8672     if (status & BXE_DEF_SB_IDX) {
8673         /* handle EQ completions */
8674         BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
8675         bxe_eq_int(sc);
8676         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
8677                    le16toh(sc->def_idx), IGU_INT_NOP, 1);
8678         status &= ~BXE_DEF_SB_IDX;
8679     }
8680 
8681     /* if status is non zero then something went wrong */
8682     if (__predict_false(status)) {
8683         BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
8684     }
8685 
8686     /* ack status block only if something was actually handled */
8687     bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
8688                le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
8689 
8690     /*
8691      * Must be called after the EQ processing (since eq leads to sriov
8692      * ramrod completion flows).
8693      * This flow may have been scheduled by the arrival of a ramrod
8694      * completion, or by the sriov code rescheduling itself.
8695      */
8696     // XXX bxe_iov_sp_task(sc);
8697 
8698 }
8699 
8700 static void
8701 bxe_handle_fp_tq(void *context,
8702                  int  pending)
8703 {
8704     struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
8705     struct bxe_softc *sc = fp->sc;
8706     uint8_t more_tx = FALSE;
8707     uint8_t more_rx = FALSE;
8708 
8709     BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
8710 
8711     /* XXX
8712      * IFF_DRV_RUNNING state can't be checked here since we process
8713      * slowpath events on a client queue during setup. Instead
8714      * we need to add a "process/continue" flag here that the driver
8715      * can use to tell the task here not to do anything.
8716      */
8717 #if 0
8718     if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
8719         return;
8720     }
8721 #endif
8722 
8723     /* update the fastpath index */
8724     bxe_update_fp_sb_idx(fp);
8725 
8726     /* XXX add loop here if ever support multiple tx CoS */
8727     /* fp->txdata[cos] */
8728     if (bxe_has_tx_work(fp)) {
8729         BXE_FP_TX_LOCK(fp);
8730         more_tx = bxe_txeof(sc, fp);
8731         BXE_FP_TX_UNLOCK(fp);
8732     }
8733 
8734     if (bxe_has_rx_work(fp)) {
8735         more_rx = bxe_rxeof(sc, fp);
8736     }
8737 
8738     if (more_rx /*|| more_tx*/) {
8739         /* still more work to do */
8740         taskqueue_enqueue(fp->tq, &fp->tq_task);
8741         return;
8742     }
8743 
8744     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
8745                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
8746 }
8747 
8748 static void
8749 bxe_task_fp(struct bxe_fastpath *fp)
8750 {
8751     struct bxe_softc *sc = fp->sc;
8752     uint8_t more_tx = FALSE;
8753     uint8_t more_rx = FALSE;
8754 
8755     BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
8756 
8757     /* update the fastpath index */
8758     bxe_update_fp_sb_idx(fp);
8759 
8760     /* XXX add loop here if ever support multiple tx CoS */
8761     /* fp->txdata[cos] */
8762     if (bxe_has_tx_work(fp)) {
8763         BXE_FP_TX_LOCK(fp);
8764         more_tx = bxe_txeof(sc, fp);
8765         BXE_FP_TX_UNLOCK(fp);
8766     }
8767 
8768     if (bxe_has_rx_work(fp)) {
8769         more_rx = bxe_rxeof(sc, fp);
8770     }
8771 
8772     if (more_rx /*|| more_tx*/) {
8773         /* still more work to do, bail out if this ISR and process later */
8774         taskqueue_enqueue(fp->tq, &fp->tq_task);
8775         return;
8776     }
8777 
8778     /*
8779      * Here we write the fastpath index taken before doing any tx or rx work.
8780      * It is very well possible other hw events occurred up to this point and
8781      * they were actually processed accordingly above. Since we're going to
8782      * write an older fastpath index, an interrupt is coming which we might
8783      * not do any work in.
8784      */
8785     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
8786                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
8787 }
8788 
8789 /*
8790  * Legacy interrupt entry point.
8791  *
8792  * Verifies that the controller generated the interrupt and
8793  * then calls a separate routine to handle the various
8794  * interrupt causes: link, RX, and TX.
8795  */
8796 static void
8797 bxe_intr_legacy(void *xsc)
8798 {
8799     struct bxe_softc *sc = (struct bxe_softc *)xsc;
8800     struct bxe_fastpath *fp;
8801     uint16_t status, mask;
8802     int i;
8803 
8804     BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
8805 
8806     /*
8807      * 0 for ustorm, 1 for cstorm
8808      * the bits returned from ack_int() are 0-15
8809      * bit 0 = attention status block
8810      * bit 1 = fast path status block
8811      * a mask of 0x2 or more = tx/rx event
8812      * a mask of 1 = slow path event
8813      */
8814 
8815     status = bxe_ack_int(sc);
8816 
8817     /* the interrupt is not for us */
8818     if (__predict_false(status == 0)) {
8819         BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
8820         return;
8821     }
8822 
8823     BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
8824 
8825     FOR_EACH_ETH_QUEUE(sc, i) {
8826         fp = &sc->fp[i];
8827         mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
8828         if (status & mask) {
8829             /* acknowledge and disable further fastpath interrupts */
8830             bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8831             bxe_task_fp(fp);
8832             status &= ~mask;
8833         }
8834     }
8835 
8836     if (__predict_false(status & 0x1)) {
8837         /* acknowledge and disable further slowpath interrupts */
8838         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8839 
8840         /* schedule slowpath handler */
8841         taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8842 
8843         status &= ~0x1;
8844     }
8845 
8846     if (__predict_false(status)) {
8847         BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
8848     }
8849 }
8850 
8851 /* slowpath interrupt entry point */
8852 static void
8853 bxe_intr_sp(void *xsc)
8854 {
8855     struct bxe_softc *sc = (struct bxe_softc *)xsc;
8856 
8857     BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
8858 
8859     /* acknowledge and disable further slowpath interrupts */
8860     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8861 
8862     /* schedule slowpath handler */
8863     taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8864 }
8865 
8866 /* fastpath interrupt entry point */
8867 static void
8868 bxe_intr_fp(void *xfp)
8869 {
8870     struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
8871     struct bxe_softc *sc = fp->sc;
8872 
8873     BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
8874 
8875     BLOGD(sc, DBG_INTR,
8876           "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
8877           curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
8878 
8879     /* acknowledge and disable further fastpath interrupts */
8880     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8881 
8882     bxe_task_fp(fp);
8883 }
8884 
8885 /* Release all interrupts allocated by the driver. */
8886 static void
8887 bxe_interrupt_free(struct bxe_softc *sc)
8888 {
8889     int i;
8890 
8891     switch (sc->interrupt_mode) {
8892     case INTR_MODE_INTX:
8893         BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
8894         if (sc->intr[0].resource != NULL) {
8895             bus_release_resource(sc->dev,
8896                                  SYS_RES_IRQ,
8897                                  sc->intr[0].rid,
8898                                  sc->intr[0].resource);
8899         }
8900         break;
8901     case INTR_MODE_MSI:
8902         for (i = 0; i < sc->intr_count; i++) {
8903             BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
8904             if (sc->intr[i].resource && sc->intr[i].rid) {
8905                 bus_release_resource(sc->dev,
8906                                      SYS_RES_IRQ,
8907                                      sc->intr[i].rid,
8908                                      sc->intr[i].resource);
8909             }
8910         }
8911         pci_release_msi(sc->dev);
8912         break;
8913     case INTR_MODE_MSIX:
8914         for (i = 0; i < sc->intr_count; i++) {
8915             BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
8916             if (sc->intr[i].resource && sc->intr[i].rid) {
8917                 bus_release_resource(sc->dev,
8918                                      SYS_RES_IRQ,
8919                                      sc->intr[i].rid,
8920                                      sc->intr[i].resource);
8921             }
8922         }
8923         pci_release_msi(sc->dev);
8924         break;
8925     default:
8926         /* nothing to do as initial allocation failed */
8927         break;
8928     }
8929 }
8930 
8931 /*
8932  * This function determines and allocates the appropriate
8933  * interrupt based on system capabilites and user request.
8934  *
8935  * The user may force a particular interrupt mode, specify
8936  * the number of receive queues, specify the method for
8937  * distribuitng received frames to receive queues, or use
8938  * the default settings which will automatically select the
8939  * best supported combination.  In addition, the OS may or
8940  * may not support certain combinations of these settings.
8941  * This routine attempts to reconcile the settings requested
8942  * by the user with the capabilites available from the system
8943  * to select the optimal combination of features.
8944  *
8945  * Returns:
8946  *   0 = Success, !0 = Failure.
8947  */
8948 static int
8949 bxe_interrupt_alloc(struct bxe_softc *sc)
8950 {
8951     int msix_count = 0;
8952     int msi_count = 0;
8953     int num_requested = 0;
8954     int num_allocated = 0;
8955     int rid, i, j;
8956     int rc;
8957 
8958     /* get the number of available MSI/MSI-X interrupts from the OS */
8959     if (sc->interrupt_mode > 0) {
8960         if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
8961             msix_count = pci_msix_count(sc->dev);
8962         }
8963 
8964         if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
8965             msi_count = pci_msi_count(sc->dev);
8966         }
8967 
8968         BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
8969               msi_count, msix_count);
8970     }
8971 
8972     do { /* try allocating MSI-X interrupt resources (at least 2) */
8973         if (sc->interrupt_mode != INTR_MODE_MSIX) {
8974             break;
8975         }
8976 
8977         if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
8978             (msix_count < 2)) {
8979             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8980             break;
8981         }
8982 
8983         /* ask for the necessary number of MSI-X vectors */
8984         num_requested = min((sc->num_queues + 1), msix_count);
8985 
8986         BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
8987 
8988         num_allocated = num_requested;
8989         if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
8990             BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
8991             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8992             break;
8993         }
8994 
8995         if (num_allocated < 2) { /* possible? */
8996             BLOGE(sc, "MSI-X allocation less than 2!\n");
8997             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8998             pci_release_msi(sc->dev);
8999             break;
9000         }
9001 
9002         BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
9003               num_requested, num_allocated);
9004 
9005         /* best effort so use the number of vectors allocated to us */
9006         sc->intr_count = num_allocated;
9007         sc->num_queues = num_allocated - 1;
9008 
9009         rid = 1; /* initial resource identifier */
9010 
9011         /* allocate the MSI-X vectors */
9012         for (i = 0; i < num_allocated; i++) {
9013             sc->intr[i].rid = (rid + i);
9014 
9015             if ((sc->intr[i].resource =
9016                  bus_alloc_resource_any(sc->dev,
9017                                         SYS_RES_IRQ,
9018                                         &sc->intr[i].rid,
9019                                         RF_ACTIVE)) == NULL) {
9020                 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
9021                       i, (rid + i));
9022 
9023                 for (j = (i - 1); j >= 0; j--) {
9024                     bus_release_resource(sc->dev,
9025                                          SYS_RES_IRQ,
9026                                          sc->intr[j].rid,
9027                                          sc->intr[j].resource);
9028                 }
9029 
9030                 sc->intr_count = 0;
9031                 sc->num_queues = 0;
9032                 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9033                 pci_release_msi(sc->dev);
9034                 break;
9035             }
9036 
9037             BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
9038         }
9039     } while (0);
9040 
9041     do { /* try allocating MSI vector resources (at least 2) */
9042         if (sc->interrupt_mode != INTR_MODE_MSI) {
9043             break;
9044         }
9045 
9046         if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
9047             (msi_count < 1)) {
9048             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9049             break;
9050         }
9051 
9052         /* ask for a single MSI vector */
9053         num_requested = 1;
9054 
9055         BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
9056 
9057         num_allocated = num_requested;
9058         if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
9059             BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
9060             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9061             break;
9062         }
9063 
9064         if (num_allocated != 1) { /* possible? */
9065             BLOGE(sc, "MSI allocation is not 1!\n");
9066             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9067             pci_release_msi(sc->dev);
9068             break;
9069         }
9070 
9071         BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
9072               num_requested, num_allocated);
9073 
9074         /* best effort so use the number of vectors allocated to us */
9075         sc->intr_count = num_allocated;
9076         sc->num_queues = num_allocated;
9077 
9078         rid = 1; /* initial resource identifier */
9079 
9080         sc->intr[0].rid = rid;
9081 
9082         if ((sc->intr[0].resource =
9083              bus_alloc_resource_any(sc->dev,
9084                                     SYS_RES_IRQ,
9085                                     &sc->intr[0].rid,
9086                                     RF_ACTIVE)) == NULL) {
9087             BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid);
9088             sc->intr_count = 0;
9089             sc->num_queues = 0;
9090             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9091             pci_release_msi(sc->dev);
9092             break;
9093         }
9094 
9095         BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid);
9096     } while (0);
9097 
9098     do { /* try allocating INTx vector resources */
9099         if (sc->interrupt_mode != INTR_MODE_INTX) {
9100             break;
9101         }
9102 
9103         BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
9104 
9105         /* only one vector for INTx */
9106         sc->intr_count = 1;
9107         sc->num_queues = 1;
9108 
9109         rid = 0; /* initial resource identifier */
9110 
9111         sc->intr[0].rid = rid;
9112 
9113         if ((sc->intr[0].resource =
9114              bus_alloc_resource_any(sc->dev,
9115                                     SYS_RES_IRQ,
9116                                     &sc->intr[0].rid,
9117                                     (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
9118             BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
9119             sc->intr_count = 0;
9120             sc->num_queues = 0;
9121             sc->interrupt_mode = -1; /* Failed! */
9122             break;
9123         }
9124 
9125         BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9126     } while (0);
9127 
9128     if (sc->interrupt_mode == -1) {
9129         BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9130         rc = 1;
9131     } else {
9132         BLOGD(sc, DBG_LOAD,
9133               "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9134               sc->interrupt_mode, sc->num_queues);
9135         rc = 0;
9136     }
9137 
9138     return (rc);
9139 }
9140 
9141 static void
9142 bxe_interrupt_detach(struct bxe_softc *sc)
9143 {
9144     struct bxe_fastpath *fp;
9145     int i;
9146 
9147     /* release interrupt resources */
9148     for (i = 0; i < sc->intr_count; i++) {
9149         if (sc->intr[i].resource && sc->intr[i].tag) {
9150             BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9151             bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9152         }
9153     }
9154 
9155     for (i = 0; i < sc->num_queues; i++) {
9156         fp = &sc->fp[i];
9157         if (fp->tq) {
9158             taskqueue_drain(fp->tq, &fp->tq_task);
9159             taskqueue_free(fp->tq);
9160             fp->tq = NULL;
9161         }
9162     }
9163 
9164 
9165     if (sc->sp_tq) {
9166         taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9167         taskqueue_free(sc->sp_tq);
9168         sc->sp_tq = NULL;
9169     }
9170 }
9171 
9172 /*
9173  * Enables interrupts and attach to the ISR.
9174  *
9175  * When using multiple MSI/MSI-X vectors the first vector
9176  * is used for slowpath operations while all remaining
9177  * vectors are used for fastpath operations.  If only a
9178  * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9179  * ISR must look for both slowpath and fastpath completions.
9180  */
9181 static int
9182 bxe_interrupt_attach(struct bxe_softc *sc)
9183 {
9184     struct bxe_fastpath *fp;
9185     int rc = 0;
9186     int i;
9187 
9188     snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9189              "bxe%d_sp_tq", sc->unit);
9190     TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9191     sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT,
9192                                       taskqueue_thread_enqueue,
9193                                       &sc->sp_tq);
9194     taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9195                             "%s", sc->sp_tq_name);
9196 
9197 
9198     for (i = 0; i < sc->num_queues; i++) {
9199         fp = &sc->fp[i];
9200         snprintf(fp->tq_name, sizeof(fp->tq_name),
9201                  "bxe%d_fp%d_tq", sc->unit, i);
9202         TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9203         fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT,
9204                                        taskqueue_thread_enqueue,
9205                                        &fp->tq);
9206         taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9207                                 "%s", fp->tq_name);
9208     }
9209 
9210     /* setup interrupt handlers */
9211     if (sc->interrupt_mode == INTR_MODE_MSIX) {
9212         BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9213 
9214         /*
9215          * Setup the interrupt handler. Note that we pass the driver instance
9216          * to the interrupt handler for the slowpath.
9217          */
9218         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9219                                  (INTR_TYPE_NET | INTR_MPSAFE),
9220                                  NULL, bxe_intr_sp, sc,
9221                                  &sc->intr[0].tag)) != 0) {
9222             BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9223             goto bxe_interrupt_attach_exit;
9224         }
9225 
9226         bus_describe_intr(sc->dev, sc->intr[0].resource,
9227                           sc->intr[0].tag, "sp");
9228 
9229         /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9230 
9231         /* initialize the fastpath vectors (note the first was used for sp) */
9232         for (i = 0; i < sc->num_queues; i++) {
9233             fp = &sc->fp[i];
9234             BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9235 
9236             /*
9237              * Setup the interrupt handler. Note that we pass the
9238              * fastpath context to the interrupt handler in this
9239              * case.
9240              */
9241             if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9242                                      (INTR_TYPE_NET | INTR_MPSAFE),
9243                                      NULL, bxe_intr_fp, fp,
9244                                      &sc->intr[i + 1].tag)) != 0) {
9245                 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9246                       (i + 1), rc);
9247                 goto bxe_interrupt_attach_exit;
9248             }
9249 
9250             bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9251                               sc->intr[i + 1].tag, "fp%02d", i);
9252 
9253             /* bind the fastpath instance to a cpu */
9254             if (sc->num_queues > 1) {
9255                 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9256             }
9257 
9258             fp->state = BXE_FP_STATE_IRQ;
9259         }
9260     } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9261         BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n");
9262 
9263         /*
9264          * Setup the interrupt handler. Note that we pass the
9265          * driver instance to the interrupt handler which
9266          * will handle both the slowpath and fastpath.
9267          */
9268         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9269                                  (INTR_TYPE_NET | INTR_MPSAFE),
9270                                  NULL, bxe_intr_legacy, sc,
9271                                  &sc->intr[0].tag)) != 0) {
9272             BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9273             goto bxe_interrupt_attach_exit;
9274         }
9275 
9276     } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9277         BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9278 
9279         /*
9280          * Setup the interrupt handler. Note that we pass the
9281          * driver instance to the interrupt handler which
9282          * will handle both the slowpath and fastpath.
9283          */
9284         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9285                                  (INTR_TYPE_NET | INTR_MPSAFE),
9286                                  NULL, bxe_intr_legacy, sc,
9287                                  &sc->intr[0].tag)) != 0) {
9288             BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9289             goto bxe_interrupt_attach_exit;
9290         }
9291     }
9292 
9293 bxe_interrupt_attach_exit:
9294 
9295     return (rc);
9296 }
9297 
9298 static int  bxe_init_hw_common_chip(struct bxe_softc *sc);
9299 static int  bxe_init_hw_common(struct bxe_softc *sc);
9300 static int  bxe_init_hw_port(struct bxe_softc *sc);
9301 static int  bxe_init_hw_func(struct bxe_softc *sc);
9302 static void bxe_reset_common(struct bxe_softc *sc);
9303 static void bxe_reset_port(struct bxe_softc *sc);
9304 static void bxe_reset_func(struct bxe_softc *sc);
9305 static int  bxe_gunzip_init(struct bxe_softc *sc);
9306 static void bxe_gunzip_end(struct bxe_softc *sc);
9307 static int  bxe_init_firmware(struct bxe_softc *sc);
9308 static void bxe_release_firmware(struct bxe_softc *sc);
9309 
9310 static struct
9311 ecore_func_sp_drv_ops bxe_func_sp_drv = {
9312     .init_hw_cmn_chip = bxe_init_hw_common_chip,
9313     .init_hw_cmn      = bxe_init_hw_common,
9314     .init_hw_port     = bxe_init_hw_port,
9315     .init_hw_func     = bxe_init_hw_func,
9316 
9317     .reset_hw_cmn     = bxe_reset_common,
9318     .reset_hw_port    = bxe_reset_port,
9319     .reset_hw_func    = bxe_reset_func,
9320 
9321     .gunzip_init      = bxe_gunzip_init,
9322     .gunzip_end       = bxe_gunzip_end,
9323 
9324     .init_fw          = bxe_init_firmware,
9325     .release_fw       = bxe_release_firmware,
9326 };
9327 
9328 static void
9329 bxe_init_func_obj(struct bxe_softc *sc)
9330 {
9331     sc->dmae_ready = 0;
9332 
9333     ecore_init_func_obj(sc,
9334                         &sc->func_obj,
9335                         BXE_SP(sc, func_rdata),
9336                         BXE_SP_MAPPING(sc, func_rdata),
9337                         BXE_SP(sc, func_afex_rdata),
9338                         BXE_SP_MAPPING(sc, func_afex_rdata),
9339                         &bxe_func_sp_drv);
9340 }
9341 
9342 static int
9343 bxe_init_hw(struct bxe_softc *sc,
9344             uint32_t         load_code)
9345 {
9346     struct ecore_func_state_params func_params = { NULL };
9347     int rc;
9348 
9349     /* prepare the parameters for function state transitions */
9350     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9351 
9352     func_params.f_obj = &sc->func_obj;
9353     func_params.cmd = ECORE_F_CMD_HW_INIT;
9354 
9355     func_params.params.hw_init.load_phase = load_code;
9356 
9357     /*
9358      * Via a plethora of function pointers, we will eventually reach
9359      * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9360      */
9361     rc = ecore_func_state_change(sc, &func_params);
9362 
9363     return (rc);
9364 }
9365 
9366 static void
9367 bxe_fill(struct bxe_softc *sc,
9368          uint32_t         addr,
9369          int              fill,
9370          uint32_t         len)
9371 {
9372     uint32_t i;
9373 
9374     if (!(len % 4) && !(addr % 4)) {
9375         for (i = 0; i < len; i += 4) {
9376             REG_WR(sc, (addr + i), fill);
9377         }
9378     } else {
9379         for (i = 0; i < len; i++) {
9380             REG_WR8(sc, (addr + i), fill);
9381         }
9382     }
9383 }
9384 
9385 /* writes FP SP data to FW - data_size in dwords */
9386 static void
9387 bxe_wr_fp_sb_data(struct bxe_softc *sc,
9388                   int              fw_sb_id,
9389                   uint32_t         *sb_data_p,
9390                   uint32_t         data_size)
9391 {
9392     int index;
9393 
9394     for (index = 0; index < data_size; index++) {
9395         REG_WR(sc,
9396                (BAR_CSTRORM_INTMEM +
9397                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9398                 (sizeof(uint32_t) * index)),
9399                *(sb_data_p + index));
9400     }
9401 }
9402 
9403 static void
9404 bxe_zero_fp_sb(struct bxe_softc *sc,
9405                int              fw_sb_id)
9406 {
9407     struct hc_status_block_data_e2 sb_data_e2;
9408     struct hc_status_block_data_e1x sb_data_e1x;
9409     uint32_t *sb_data_p;
9410     uint32_t data_size = 0;
9411 
9412     if (!CHIP_IS_E1x(sc)) {
9413         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9414         sb_data_e2.common.state = SB_DISABLED;
9415         sb_data_e2.common.p_func.vf_valid = FALSE;
9416         sb_data_p = (uint32_t *)&sb_data_e2;
9417         data_size = (sizeof(struct hc_status_block_data_e2) /
9418                      sizeof(uint32_t));
9419     } else {
9420         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9421         sb_data_e1x.common.state = SB_DISABLED;
9422         sb_data_e1x.common.p_func.vf_valid = FALSE;
9423         sb_data_p = (uint32_t *)&sb_data_e1x;
9424         data_size = (sizeof(struct hc_status_block_data_e1x) /
9425                      sizeof(uint32_t));
9426     }
9427 
9428     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9429 
9430     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9431              0, CSTORM_STATUS_BLOCK_SIZE);
9432     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9433              0, CSTORM_SYNC_BLOCK_SIZE);
9434 }
9435 
9436 static void
9437 bxe_wr_sp_sb_data(struct bxe_softc               *sc,
9438                   struct hc_sp_status_block_data *sp_sb_data)
9439 {
9440     int i;
9441 
9442     for (i = 0;
9443          i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9444          i++) {
9445         REG_WR(sc,
9446                (BAR_CSTRORM_INTMEM +
9447                 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9448                 (i * sizeof(uint32_t))),
9449                *((uint32_t *)sp_sb_data + i));
9450     }
9451 }
9452 
9453 static void
9454 bxe_zero_sp_sb(struct bxe_softc *sc)
9455 {
9456     struct hc_sp_status_block_data sp_sb_data;
9457 
9458     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9459 
9460     sp_sb_data.state           = SB_DISABLED;
9461     sp_sb_data.p_func.vf_valid = FALSE;
9462 
9463     bxe_wr_sp_sb_data(sc, &sp_sb_data);
9464 
9465     bxe_fill(sc,
9466              (BAR_CSTRORM_INTMEM +
9467               CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9468               0, CSTORM_SP_STATUS_BLOCK_SIZE);
9469     bxe_fill(sc,
9470              (BAR_CSTRORM_INTMEM +
9471               CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9472               0, CSTORM_SP_SYNC_BLOCK_SIZE);
9473 }
9474 
9475 static void
9476 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9477                              int                       igu_sb_id,
9478                              int                       igu_seg_id)
9479 {
9480     hc_sm->igu_sb_id      = igu_sb_id;
9481     hc_sm->igu_seg_id     = igu_seg_id;
9482     hc_sm->timer_value    = 0xFF;
9483     hc_sm->time_to_expire = 0xFFFFFFFF;
9484 }
9485 
9486 static void
9487 bxe_map_sb_state_machines(struct hc_index_data *index_data)
9488 {
9489     /* zero out state machine indices */
9490 
9491     /* rx indices */
9492     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9493 
9494     /* tx indices */
9495     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags      &= ~HC_INDEX_DATA_SM_ID;
9496     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9497     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9498     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9499 
9500     /* map indices */
9501 
9502     /* rx indices */
9503     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9504         (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9505 
9506     /* tx indices */
9507     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9508         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9509     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9510         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9511     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9512         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9513     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9514         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9515 }
9516 
9517 static void
9518 bxe_init_sb(struct bxe_softc *sc,
9519             bus_addr_t       busaddr,
9520             int              vfid,
9521             uint8_t          vf_valid,
9522             int              fw_sb_id,
9523             int              igu_sb_id)
9524 {
9525     struct hc_status_block_data_e2  sb_data_e2;
9526     struct hc_status_block_data_e1x sb_data_e1x;
9527     struct hc_status_block_sm       *hc_sm_p;
9528     uint32_t *sb_data_p;
9529     int igu_seg_id;
9530     int data_size;
9531 
9532     if (CHIP_INT_MODE_IS_BC(sc)) {
9533         igu_seg_id = HC_SEG_ACCESS_NORM;
9534     } else {
9535         igu_seg_id = IGU_SEG_ACCESS_NORM;
9536     }
9537 
9538     bxe_zero_fp_sb(sc, fw_sb_id);
9539 
9540     if (!CHIP_IS_E1x(sc)) {
9541         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9542         sb_data_e2.common.state = SB_ENABLED;
9543         sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9544         sb_data_e2.common.p_func.vf_id = vfid;
9545         sb_data_e2.common.p_func.vf_valid = vf_valid;
9546         sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9547         sb_data_e2.common.same_igu_sb_1b = TRUE;
9548         sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9549         sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9550         hc_sm_p = sb_data_e2.common.state_machine;
9551         sb_data_p = (uint32_t *)&sb_data_e2;
9552         data_size = (sizeof(struct hc_status_block_data_e2) /
9553                      sizeof(uint32_t));
9554         bxe_map_sb_state_machines(sb_data_e2.index_data);
9555     } else {
9556         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9557         sb_data_e1x.common.state = SB_ENABLED;
9558         sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9559         sb_data_e1x.common.p_func.vf_id = 0xff;
9560         sb_data_e1x.common.p_func.vf_valid = FALSE;
9561         sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9562         sb_data_e1x.common.same_igu_sb_1b = TRUE;
9563         sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9564         sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9565         hc_sm_p = sb_data_e1x.common.state_machine;
9566         sb_data_p = (uint32_t *)&sb_data_e1x;
9567         data_size = (sizeof(struct hc_status_block_data_e1x) /
9568                      sizeof(uint32_t));
9569         bxe_map_sb_state_machines(sb_data_e1x.index_data);
9570     }
9571 
9572     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9573     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9574 
9575     BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9576 
9577     /* write indices to HW - PCI guarantees endianity of regpairs */
9578     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9579 }
9580 
9581 static inline uint8_t
9582 bxe_fp_qzone_id(struct bxe_fastpath *fp)
9583 {
9584     if (CHIP_IS_E1x(fp->sc)) {
9585         return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9586     } else {
9587         return (fp->cl_id);
9588     }
9589 }
9590 
9591 static inline uint32_t
9592 bxe_rx_ustorm_prods_offset(struct bxe_softc    *sc,
9593                            struct bxe_fastpath *fp)
9594 {
9595     uint32_t offset = BAR_USTRORM_INTMEM;
9596 
9597     if (!CHIP_IS_E1x(sc)) {
9598         offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
9599     } else {
9600         offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
9601     }
9602 
9603     return (offset);
9604 }
9605 
9606 static void
9607 bxe_init_eth_fp(struct bxe_softc *sc,
9608                 int              idx)
9609 {
9610     struct bxe_fastpath *fp = &sc->fp[idx];
9611     uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
9612     unsigned long q_type = 0;
9613     int cos;
9614 
9615     fp->sc    = sc;
9616     fp->index = idx;
9617 
9618     snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
9619              "bxe%d_fp%d_tx_lock", sc->unit, idx);
9620     mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
9621 
9622     snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
9623              "bxe%d_fp%d_rx_lock", sc->unit, idx);
9624     mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
9625 
9626     fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
9627     fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
9628 
9629     fp->cl_id = (CHIP_IS_E1x(sc)) ?
9630                     (SC_L_ID(sc) + idx) :
9631                     /* want client ID same as IGU SB ID for non-E1 */
9632                     fp->igu_sb_id;
9633     fp->cl_qzone_id = bxe_fp_qzone_id(fp);
9634 
9635     /* setup sb indices */
9636     if (!CHIP_IS_E1x(sc)) {
9637         fp->sb_index_values  = fp->status_block.e2_sb->sb.index_values;
9638         fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
9639     } else {
9640         fp->sb_index_values  = fp->status_block.e1x_sb->sb.index_values;
9641         fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
9642     }
9643 
9644     /* init shortcut */
9645     fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
9646 
9647     fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
9648 
9649     /*
9650      * XXX If multiple CoS is ever supported then each fastpath structure
9651      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
9652      */
9653     for (cos = 0; cos < sc->max_cos; cos++) {
9654         cids[cos] = idx;
9655     }
9656     fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
9657 
9658     /* nothing more for a VF to do */
9659     if (IS_VF(sc)) {
9660         return;
9661     }
9662 
9663     bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
9664                 fp->fw_sb_id, fp->igu_sb_id);
9665 
9666     bxe_update_fp_sb_idx(fp);
9667 
9668     /* Configure Queue State object */
9669     bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
9670     bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
9671 
9672     ecore_init_queue_obj(sc,
9673                          &sc->sp_objs[idx].q_obj,
9674                          fp->cl_id,
9675                          cids,
9676                          sc->max_cos,
9677                          SC_FUNC(sc),
9678                          BXE_SP(sc, q_rdata),
9679                          BXE_SP_MAPPING(sc, q_rdata),
9680                          q_type);
9681 
9682     /* configure classification DBs */
9683     ecore_init_mac_obj(sc,
9684                        &sc->sp_objs[idx].mac_obj,
9685                        fp->cl_id,
9686                        idx,
9687                        SC_FUNC(sc),
9688                        BXE_SP(sc, mac_rdata),
9689                        BXE_SP_MAPPING(sc, mac_rdata),
9690                        ECORE_FILTER_MAC_PENDING,
9691                        &sc->sp_state,
9692                        ECORE_OBJ_TYPE_RX_TX,
9693                        &sc->macs_pool);
9694 
9695     BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
9696           idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
9697 }
9698 
9699 static inline void
9700 bxe_update_rx_prod(struct bxe_softc    *sc,
9701                    struct bxe_fastpath *fp,
9702                    uint16_t            rx_bd_prod,
9703                    uint16_t            rx_cq_prod,
9704                    uint16_t            rx_sge_prod)
9705 {
9706     struct ustorm_eth_rx_producers rx_prods = { 0 };
9707     uint32_t i;
9708 
9709     /* update producers */
9710     rx_prods.bd_prod  = rx_bd_prod;
9711     rx_prods.cqe_prod = rx_cq_prod;
9712     rx_prods.sge_prod = rx_sge_prod;
9713 
9714     /*
9715      * Make sure that the BD and SGE data is updated before updating the
9716      * producers since FW might read the BD/SGE right after the producer
9717      * is updated.
9718      * This is only applicable for weak-ordered memory model archs such
9719      * as IA-64. The following barrier is also mandatory since FW will
9720      * assumes BDs must have buffers.
9721      */
9722     wmb();
9723 
9724     for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
9725         REG_WR(sc,
9726                (fp->ustorm_rx_prods_offset + (i * 4)),
9727                ((uint32_t *)&rx_prods)[i]);
9728     }
9729 
9730     wmb(); /* keep prod updates ordered */
9731 
9732     BLOGD(sc, DBG_RX,
9733           "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
9734           fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
9735 }
9736 
9737 static void
9738 bxe_init_rx_rings(struct bxe_softc *sc)
9739 {
9740     struct bxe_fastpath *fp;
9741     int i;
9742 
9743     for (i = 0; i < sc->num_queues; i++) {
9744         fp = &sc->fp[i];
9745 
9746         fp->rx_bd_cons = 0;
9747 
9748         /*
9749          * Activate the BD ring...
9750          * Warning, this will generate an interrupt (to the TSTORM)
9751          * so this can only be done after the chip is initialized
9752          */
9753         bxe_update_rx_prod(sc, fp,
9754                            fp->rx_bd_prod,
9755                            fp->rx_cq_prod,
9756                            fp->rx_sge_prod);
9757 
9758         if (i != 0) {
9759             continue;
9760         }
9761 
9762         if (CHIP_IS_E1(sc)) {
9763             REG_WR(sc,
9764                    (BAR_USTRORM_INTMEM +
9765                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
9766                    U64_LO(fp->rcq_dma.paddr));
9767             REG_WR(sc,
9768                    (BAR_USTRORM_INTMEM +
9769                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
9770                    U64_HI(fp->rcq_dma.paddr));
9771         }
9772     }
9773 }
9774 
9775 static void
9776 bxe_init_tx_ring_one(struct bxe_fastpath *fp)
9777 {
9778     SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1);
9779     fp->tx_db.data.zero_fill1 = 0;
9780     fp->tx_db.data.prod = 0;
9781 
9782     fp->tx_pkt_prod = 0;
9783     fp->tx_pkt_cons = 0;
9784     fp->tx_bd_prod = 0;
9785     fp->tx_bd_cons = 0;
9786     fp->eth_q_stats.tx_pkts = 0;
9787 }
9788 
9789 static inline void
9790 bxe_init_tx_rings(struct bxe_softc *sc)
9791 {
9792     int i;
9793 
9794     for (i = 0; i < sc->num_queues; i++) {
9795         bxe_init_tx_ring_one(&sc->fp[i]);
9796     }
9797 }
9798 
9799 static void
9800 bxe_init_def_sb(struct bxe_softc *sc)
9801 {
9802     struct host_sp_status_block *def_sb = sc->def_sb;
9803     bus_addr_t mapping = sc->def_sb_dma.paddr;
9804     int igu_sp_sb_index;
9805     int igu_seg_id;
9806     int port = SC_PORT(sc);
9807     int func = SC_FUNC(sc);
9808     int reg_offset, reg_offset_en5;
9809     uint64_t section;
9810     int index, sindex;
9811     struct hc_sp_status_block_data sp_sb_data;
9812 
9813     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9814 
9815     if (CHIP_INT_MODE_IS_BC(sc)) {
9816         igu_sp_sb_index = DEF_SB_IGU_ID;
9817         igu_seg_id = HC_SEG_ACCESS_DEF;
9818     } else {
9819         igu_sp_sb_index = sc->igu_dsb_id;
9820         igu_seg_id = IGU_SEG_ACCESS_DEF;
9821     }
9822 
9823     /* attentions */
9824     section = ((uint64_t)mapping +
9825                offsetof(struct host_sp_status_block, atten_status_block));
9826     def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
9827     sc->attn_state = 0;
9828 
9829     reg_offset = (port) ?
9830                      MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
9831                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
9832     reg_offset_en5 = (port) ?
9833                          MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
9834                          MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
9835 
9836     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
9837         /* take care of sig[0]..sig[4] */
9838         for (sindex = 0; sindex < 4; sindex++) {
9839             sc->attn_group[index].sig[sindex] =
9840                 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
9841         }
9842 
9843         if (!CHIP_IS_E1x(sc)) {
9844             /*
9845              * enable5 is separate from the rest of the registers,
9846              * and the address skip is 4 and not 16 between the
9847              * different groups
9848              */
9849             sc->attn_group[index].sig[4] =
9850                 REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
9851         } else {
9852             sc->attn_group[index].sig[4] = 0;
9853         }
9854     }
9855 
9856     if (sc->devinfo.int_block == INT_BLOCK_HC) {
9857         reg_offset = (port) ?
9858                          HC_REG_ATTN_MSG1_ADDR_L :
9859                          HC_REG_ATTN_MSG0_ADDR_L;
9860         REG_WR(sc, reg_offset, U64_LO(section));
9861         REG_WR(sc, (reg_offset + 4), U64_HI(section));
9862     } else if (!CHIP_IS_E1x(sc)) {
9863         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
9864         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
9865     }
9866 
9867     section = ((uint64_t)mapping +
9868                offsetof(struct host_sp_status_block, sp_sb));
9869 
9870     bxe_zero_sp_sb(sc);
9871 
9872     /* PCI guarantees endianity of regpair */
9873     sp_sb_data.state           = SB_ENABLED;
9874     sp_sb_data.host_sb_addr.lo = U64_LO(section);
9875     sp_sb_data.host_sb_addr.hi = U64_HI(section);
9876     sp_sb_data.igu_sb_id       = igu_sp_sb_index;
9877     sp_sb_data.igu_seg_id      = igu_seg_id;
9878     sp_sb_data.p_func.pf_id    = func;
9879     sp_sb_data.p_func.vnic_id  = SC_VN(sc);
9880     sp_sb_data.p_func.vf_id    = 0xff;
9881 
9882     bxe_wr_sp_sb_data(sc, &sp_sb_data);
9883 
9884     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
9885 }
9886 
9887 static void
9888 bxe_init_sp_ring(struct bxe_softc *sc)
9889 {
9890     atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
9891     sc->spq_prod_idx = 0;
9892     sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
9893     sc->spq_prod_bd = sc->spq;
9894     sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
9895 }
9896 
9897 static void
9898 bxe_init_eq_ring(struct bxe_softc *sc)
9899 {
9900     union event_ring_elem *elem;
9901     int i;
9902 
9903     for (i = 1; i <= NUM_EQ_PAGES; i++) {
9904         elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
9905 
9906         elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
9907                                                  BCM_PAGE_SIZE *
9908                                                  (i % NUM_EQ_PAGES)));
9909         elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
9910                                                  BCM_PAGE_SIZE *
9911                                                  (i % NUM_EQ_PAGES)));
9912     }
9913 
9914     sc->eq_cons    = 0;
9915     sc->eq_prod    = NUM_EQ_DESC;
9916     sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
9917 
9918     atomic_store_rel_long(&sc->eq_spq_left,
9919                           (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
9920                                NUM_EQ_DESC) - 1));
9921 }
9922 
9923 static void
9924 bxe_init_internal_common(struct bxe_softc *sc)
9925 {
9926     int i;
9927 
9928     if (IS_MF_SI(sc)) {
9929         /*
9930          * In switch independent mode, the TSTORM needs to accept
9931          * packets that failed classification, since approximate match
9932          * mac addresses aren't written to NIG LLH.
9933          */
9934         REG_WR8(sc,
9935                 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
9936                 2);
9937     } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */
9938         REG_WR8(sc,
9939                 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
9940                 0);
9941     }
9942 
9943     /*
9944      * Zero this manually as its initialization is currently missing
9945      * in the initTool.
9946      */
9947     for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
9948         REG_WR(sc,
9949                (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
9950                0);
9951     }
9952 
9953     if (!CHIP_IS_E1x(sc)) {
9954         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
9955                 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
9956     }
9957 }
9958 
9959 static void
9960 bxe_init_internal(struct bxe_softc *sc,
9961                   uint32_t         load_code)
9962 {
9963     switch (load_code) {
9964     case FW_MSG_CODE_DRV_LOAD_COMMON:
9965     case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
9966         bxe_init_internal_common(sc);
9967         /* no break */
9968 
9969     case FW_MSG_CODE_DRV_LOAD_PORT:
9970         /* nothing to do */
9971         /* no break */
9972 
9973     case FW_MSG_CODE_DRV_LOAD_FUNCTION:
9974         /* internal memory per function is initialized inside bxe_pf_init */
9975         break;
9976 
9977     default:
9978         BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
9979         break;
9980     }
9981 }
9982 
9983 static void
9984 storm_memset_func_cfg(struct bxe_softc                         *sc,
9985                       struct tstorm_eth_function_common_config *tcfg,
9986                       uint16_t                                  abs_fid)
9987 {
9988     uint32_t addr;
9989     size_t size;
9990 
9991     addr = (BAR_TSTRORM_INTMEM +
9992             TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
9993     size = sizeof(struct tstorm_eth_function_common_config);
9994     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
9995 }
9996 
9997 static void
9998 bxe_func_init(struct bxe_softc            *sc,
9999               struct bxe_func_init_params *p)
10000 {
10001     struct tstorm_eth_function_common_config tcfg = { 0 };
10002 
10003     if (CHIP_IS_E1x(sc)) {
10004         storm_memset_func_cfg(sc, &tcfg, p->func_id);
10005     }
10006 
10007     /* Enable the function in the FW */
10008     storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
10009     storm_memset_func_en(sc, p->func_id, 1);
10010 
10011     /* spq */
10012     if (p->func_flgs & FUNC_FLG_SPQ) {
10013         storm_memset_spq_addr(sc, p->spq_map, p->func_id);
10014         REG_WR(sc,
10015                (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
10016                p->spq_prod);
10017     }
10018 }
10019 
10020 /*
10021  * Calculates the sum of vn_min_rates.
10022  * It's needed for further normalizing of the min_rates.
10023  * Returns:
10024  *   sum of vn_min_rates.
10025  *     or
10026  *   0 - if all the min_rates are 0.
10027  * In the later case fainess algorithm should be deactivated.
10028  * If all min rates are not zero then those that are zeroes will be set to 1.
10029  */
10030 static void
10031 bxe_calc_vn_min(struct bxe_softc       *sc,
10032                 struct cmng_init_input *input)
10033 {
10034     uint32_t vn_cfg;
10035     uint32_t vn_min_rate;
10036     int all_zero = 1;
10037     int vn;
10038 
10039     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10040         vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10041         vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
10042                         FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
10043 
10044         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10045             /* skip hidden VNs */
10046             vn_min_rate = 0;
10047         } else if (!vn_min_rate) {
10048             /* If min rate is zero - set it to 100 */
10049             vn_min_rate = DEF_MIN_RATE;
10050         } else {
10051             all_zero = 0;
10052         }
10053 
10054         input->vnic_min_rate[vn] = vn_min_rate;
10055     }
10056 
10057     /* if ETS or all min rates are zeros - disable fairness */
10058     if (BXE_IS_ETS_ENABLED(sc)) {
10059         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10060         BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
10061     } else if (all_zero) {
10062         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10063         BLOGD(sc, DBG_LOAD,
10064               "Fariness disabled (all MIN values are zeroes)\n");
10065     } else {
10066         input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10067     }
10068 }
10069 
10070 static inline uint16_t
10071 bxe_extract_max_cfg(struct bxe_softc *sc,
10072                     uint32_t         mf_cfg)
10073 {
10074     uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
10075                         FUNC_MF_CFG_MAX_BW_SHIFT);
10076 
10077     if (!max_cfg) {
10078         BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
10079         max_cfg = 100;
10080     }
10081 
10082     return (max_cfg);
10083 }
10084 
10085 static void
10086 bxe_calc_vn_max(struct bxe_softc       *sc,
10087                 int                    vn,
10088                 struct cmng_init_input *input)
10089 {
10090     uint16_t vn_max_rate;
10091     uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10092     uint32_t max_cfg;
10093 
10094     if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10095         vn_max_rate = 0;
10096     } else {
10097         max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
10098 
10099         if (IS_MF_SI(sc)) {
10100             /* max_cfg in percents of linkspeed */
10101             vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
10102         } else { /* SD modes */
10103             /* max_cfg is absolute in 100Mb units */
10104             vn_max_rate = (max_cfg * 100);
10105         }
10106     }
10107 
10108     BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
10109 
10110     input->vnic_max_rate[vn] = vn_max_rate;
10111 }
10112 
10113 static void
10114 bxe_cmng_fns_init(struct bxe_softc *sc,
10115                   uint8_t          read_cfg,
10116                   uint8_t          cmng_type)
10117 {
10118     struct cmng_init_input input;
10119     int vn;
10120 
10121     memset(&input, 0, sizeof(struct cmng_init_input));
10122 
10123     input.port_rate = sc->link_vars.line_speed;
10124 
10125     if (cmng_type == CMNG_FNS_MINMAX) {
10126         /* read mf conf from shmem */
10127         if (read_cfg) {
10128             bxe_read_mf_cfg(sc);
10129         }
10130 
10131         /* get VN min rate and enable fairness if not 0 */
10132         bxe_calc_vn_min(sc, &input);
10133 
10134         /* get VN max rate */
10135         if (sc->port.pmf) {
10136             for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10137                 bxe_calc_vn_max(sc, vn, &input);
10138             }
10139         }
10140 
10141         /* always enable rate shaping and fairness */
10142         input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
10143 
10144         ecore_init_cmng(&input, &sc->cmng);
10145         return;
10146     }
10147 
10148     /* rate shaping and fairness are disabled */
10149     BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10150 }
10151 
10152 static int
10153 bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10154 {
10155     if (CHIP_REV_IS_SLOW(sc)) {
10156         return (CMNG_FNS_NONE);
10157     }
10158 
10159     if (IS_MF(sc)) {
10160         return (CMNG_FNS_MINMAX);
10161     }
10162 
10163     return (CMNG_FNS_NONE);
10164 }
10165 
10166 static void
10167 storm_memset_cmng(struct bxe_softc *sc,
10168                   struct cmng_init *cmng,
10169                   uint8_t          port)
10170 {
10171     int vn;
10172     int func;
10173     uint32_t addr;
10174     size_t size;
10175 
10176     addr = (BAR_XSTRORM_INTMEM +
10177             XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10178     size = sizeof(struct cmng_struct_per_port);
10179     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10180 
10181     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10182         func = func_by_vn(sc, vn);
10183 
10184         addr = (BAR_XSTRORM_INTMEM +
10185                 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10186         size = sizeof(struct rate_shaping_vars_per_vn);
10187         ecore_storm_memset_struct(sc, addr, size,
10188                                   (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10189 
10190         addr = (BAR_XSTRORM_INTMEM +
10191                 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10192         size = sizeof(struct fairness_vars_per_vn);
10193         ecore_storm_memset_struct(sc, addr, size,
10194                                   (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10195     }
10196 }
10197 
10198 static void
10199 bxe_pf_init(struct bxe_softc *sc)
10200 {
10201     struct bxe_func_init_params func_init = { 0 };
10202     struct event_ring_data eq_data = { { 0 } };
10203     uint16_t flags;
10204 
10205     if (!CHIP_IS_E1x(sc)) {
10206         /* reset IGU PF statistics: MSIX + ATTN */
10207         /* PF */
10208         REG_WR(sc,
10209                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10210                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10211                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10212                0);
10213         /* ATTN */
10214         REG_WR(sc,
10215                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10216                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10217                 (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10218                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10219                0);
10220     }
10221 
10222     /* function setup flags */
10223     flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10224 
10225     /*
10226      * This flag is relevant for E1x only.
10227      * E2 doesn't have a TPA configuration in a function level.
10228      */
10229     flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10230 
10231     func_init.func_flgs = flags;
10232     func_init.pf_id     = SC_FUNC(sc);
10233     func_init.func_id   = SC_FUNC(sc);
10234     func_init.spq_map   = sc->spq_dma.paddr;
10235     func_init.spq_prod  = sc->spq_prod_idx;
10236 
10237     bxe_func_init(sc, &func_init);
10238 
10239     memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10240 
10241     /*
10242      * Congestion management values depend on the link rate.
10243      * There is no active link so initial link rate is set to 10Gbps.
10244      * When the link comes up the congestion management values are
10245      * re-calculated according to the actual link rate.
10246      */
10247     sc->link_vars.line_speed = SPEED_10000;
10248     bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10249 
10250     /* Only the PMF sets the HW */
10251     if (sc->port.pmf) {
10252         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10253     }
10254 
10255     /* init Event Queue - PCI bus guarantees correct endainity */
10256     eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10257     eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10258     eq_data.producer     = sc->eq_prod;
10259     eq_data.index_id     = HC_SP_INDEX_EQ_CONS;
10260     eq_data.sb_id        = DEF_SB_ID;
10261     storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10262 }
10263 
10264 static void
10265 bxe_hc_int_enable(struct bxe_softc *sc)
10266 {
10267     int port = SC_PORT(sc);
10268     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10269     uint32_t val = REG_RD(sc, addr);
10270     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10271     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10272                            (sc->intr_count == 1)) ? TRUE : FALSE;
10273     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10274 
10275     if (msix) {
10276         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10277                  HC_CONFIG_0_REG_INT_LINE_EN_0);
10278         val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10279                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10280         if (single_msix) {
10281             val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10282         }
10283     } else if (msi) {
10284         val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10285         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10286                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10287                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10288     } else {
10289         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10290                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10291                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10292                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10293 
10294         if (!CHIP_IS_E1(sc)) {
10295             BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10296                   val, port, addr);
10297 
10298             REG_WR(sc, addr, val);
10299 
10300             val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10301         }
10302     }
10303 
10304     if (CHIP_IS_E1(sc)) {
10305         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10306     }
10307 
10308     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10309           val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10310 
10311     REG_WR(sc, addr, val);
10312 
10313     /* ensure that HC_CONFIG is written before leading/trailing edge config */
10314     mb();
10315 
10316     if (!CHIP_IS_E1(sc)) {
10317         /* init leading/trailing edge */
10318         if (IS_MF(sc)) {
10319             val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10320             if (sc->port.pmf) {
10321                 /* enable nig and gpio3 attention */
10322                 val |= 0x1100;
10323             }
10324         } else {
10325             val = 0xffff;
10326         }
10327 
10328         REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10329         REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10330     }
10331 
10332     /* make sure that interrupts are indeed enabled from here on */
10333     mb();
10334 }
10335 
10336 static void
10337 bxe_igu_int_enable(struct bxe_softc *sc)
10338 {
10339     uint32_t val;
10340     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10341     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10342                            (sc->intr_count == 1)) ? TRUE : FALSE;
10343     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10344 
10345     val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10346 
10347     if (msix) {
10348         val &= ~(IGU_PF_CONF_INT_LINE_EN |
10349                  IGU_PF_CONF_SINGLE_ISR_EN);
10350         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10351                 IGU_PF_CONF_ATTN_BIT_EN);
10352         if (single_msix) {
10353             val |= IGU_PF_CONF_SINGLE_ISR_EN;
10354         }
10355     } else if (msi) {
10356         val &= ~IGU_PF_CONF_INT_LINE_EN;
10357         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10358                 IGU_PF_CONF_ATTN_BIT_EN |
10359                 IGU_PF_CONF_SINGLE_ISR_EN);
10360     } else {
10361         val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10362         val |= (IGU_PF_CONF_INT_LINE_EN |
10363                 IGU_PF_CONF_ATTN_BIT_EN |
10364                 IGU_PF_CONF_SINGLE_ISR_EN);
10365     }
10366 
10367     /* clean previous status - need to configure igu prior to ack*/
10368     if ((!msix) || single_msix) {
10369         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10370         bxe_ack_int(sc);
10371     }
10372 
10373     val |= IGU_PF_CONF_FUNC_EN;
10374 
10375     BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10376           val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10377 
10378     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10379 
10380     mb();
10381 
10382     /* init leading/trailing edge */
10383     if (IS_MF(sc)) {
10384         val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10385         if (sc->port.pmf) {
10386             /* enable nig and gpio3 attention */
10387             val |= 0x1100;
10388         }
10389     } else {
10390         val = 0xffff;
10391     }
10392 
10393     REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10394     REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10395 
10396     /* make sure that interrupts are indeed enabled from here on */
10397     mb();
10398 }
10399 
10400 static void
10401 bxe_int_enable(struct bxe_softc *sc)
10402 {
10403     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10404         bxe_hc_int_enable(sc);
10405     } else {
10406         bxe_igu_int_enable(sc);
10407     }
10408 }
10409 
10410 static void
10411 bxe_hc_int_disable(struct bxe_softc *sc)
10412 {
10413     int port = SC_PORT(sc);
10414     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10415     uint32_t val = REG_RD(sc, addr);
10416 
10417     /*
10418      * In E1 we must use only PCI configuration space to disable MSI/MSIX
10419      * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10420      * block
10421      */
10422     if (CHIP_IS_E1(sc)) {
10423         /*
10424          * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10425          * to prevent from HC sending interrupts after we exit the function
10426          */
10427         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10428 
10429         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10430                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10431                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10432     } else {
10433         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10434                  HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10435                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10436                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10437     }
10438 
10439     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10440 
10441     /* flush all outstanding writes */
10442     mb();
10443 
10444     REG_WR(sc, addr, val);
10445     if (REG_RD(sc, addr) != val) {
10446         BLOGE(sc, "proper val not read from HC IGU!\n");
10447     }
10448 }
10449 
10450 static void
10451 bxe_igu_int_disable(struct bxe_softc *sc)
10452 {
10453     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10454 
10455     val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10456              IGU_PF_CONF_INT_LINE_EN |
10457              IGU_PF_CONF_ATTN_BIT_EN);
10458 
10459     BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10460 
10461     /* flush all outstanding writes */
10462     mb();
10463 
10464     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10465     if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10466         BLOGE(sc, "proper val not read from IGU!\n");
10467     }
10468 }
10469 
10470 static void
10471 bxe_int_disable(struct bxe_softc *sc)
10472 {
10473     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10474         bxe_hc_int_disable(sc);
10475     } else {
10476         bxe_igu_int_disable(sc);
10477     }
10478 }
10479 
10480 static void
10481 bxe_nic_init(struct bxe_softc *sc,
10482              int              load_code)
10483 {
10484     int i;
10485 
10486     for (i = 0; i < sc->num_queues; i++) {
10487         bxe_init_eth_fp(sc, i);
10488     }
10489 
10490     rmb(); /* ensure status block indices were read */
10491 
10492     bxe_init_rx_rings(sc);
10493     bxe_init_tx_rings(sc);
10494 
10495     if (IS_VF(sc)) {
10496         return;
10497     }
10498 
10499     /* initialize MOD_ABS interrupts */
10500     elink_init_mod_abs_int(sc, &sc->link_vars,
10501                            sc->devinfo.chip_id,
10502                            sc->devinfo.shmem_base,
10503                            sc->devinfo.shmem2_base,
10504                            SC_PORT(sc));
10505 
10506     bxe_init_def_sb(sc);
10507     bxe_update_dsb_idx(sc);
10508     bxe_init_sp_ring(sc);
10509     bxe_init_eq_ring(sc);
10510     bxe_init_internal(sc, load_code);
10511     bxe_pf_init(sc);
10512     bxe_stats_init(sc);
10513 
10514     /* flush all before enabling interrupts */
10515     mb();
10516 
10517     bxe_int_enable(sc);
10518 
10519     /* check for SPIO5 */
10520     bxe_attn_int_deasserted0(sc,
10521                              REG_RD(sc,
10522                                     (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10523                                      SC_PORT(sc)*4)) &
10524                              AEU_INPUTS_ATTN_BITS_SPIO5);
10525 }
10526 
10527 static inline void
10528 bxe_init_objs(struct bxe_softc *sc)
10529 {
10530     /* mcast rules must be added to tx if tx switching is enabled */
10531     ecore_obj_type o_type =
10532         (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10533                                          ECORE_OBJ_TYPE_RX;
10534 
10535     /* RX_MODE controlling object */
10536     ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10537 
10538     /* multicast configuration controlling object */
10539     ecore_init_mcast_obj(sc,
10540                          &sc->mcast_obj,
10541                          sc->fp[0].cl_id,
10542                          sc->fp[0].index,
10543                          SC_FUNC(sc),
10544                          SC_FUNC(sc),
10545                          BXE_SP(sc, mcast_rdata),
10546                          BXE_SP_MAPPING(sc, mcast_rdata),
10547                          ECORE_FILTER_MCAST_PENDING,
10548                          &sc->sp_state,
10549                          o_type);
10550 
10551     /* Setup CAM credit pools */
10552     ecore_init_mac_credit_pool(sc,
10553                                &sc->macs_pool,
10554                                SC_FUNC(sc),
10555                                CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10556                                                  VNICS_PER_PATH(sc));
10557 
10558     ecore_init_vlan_credit_pool(sc,
10559                                 &sc->vlans_pool,
10560                                 SC_ABS_FUNC(sc) >> 1,
10561                                 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10562                                                   VNICS_PER_PATH(sc));
10563 
10564     /* RSS configuration object */
10565     ecore_init_rss_config_obj(sc,
10566                               &sc->rss_conf_obj,
10567                               sc->fp[0].cl_id,
10568                               sc->fp[0].index,
10569                               SC_FUNC(sc),
10570                               SC_FUNC(sc),
10571                               BXE_SP(sc, rss_rdata),
10572                               BXE_SP_MAPPING(sc, rss_rdata),
10573                               ECORE_FILTER_RSS_CONF_PENDING,
10574                               &sc->sp_state, ECORE_OBJ_TYPE_RX);
10575 }
10576 
10577 /*
10578  * Initialize the function. This must be called before sending CLIENT_SETUP
10579  * for the first client.
10580  */
10581 static inline int
10582 bxe_func_start(struct bxe_softc *sc)
10583 {
10584     struct ecore_func_state_params func_params = { NULL };
10585     struct ecore_func_start_params *start_params = &func_params.params.start;
10586 
10587     /* Prepare parameters for function state transitions */
10588     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
10589 
10590     func_params.f_obj = &sc->func_obj;
10591     func_params.cmd = ECORE_F_CMD_START;
10592 
10593     /* Function parameters */
10594     start_params->mf_mode     = sc->devinfo.mf_info.mf_mode;
10595     start_params->sd_vlan_tag = OVLAN(sc);
10596 
10597     if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
10598         start_params->network_cos_mode = STATIC_COS;
10599     } else { /* CHIP_IS_E1X */
10600         start_params->network_cos_mode = FW_WRR;
10601     }
10602 
10603     //start_params->gre_tunnel_mode = 0;
10604     //start_params->gre_tunnel_rss  = 0;
10605 
10606     return (ecore_func_state_change(sc, &func_params));
10607 }
10608 
10609 static int
10610 bxe_set_power_state(struct bxe_softc *sc,
10611                     uint8_t          state)
10612 {
10613     uint16_t pmcsr;
10614 
10615     /* If there is no power capability, silently succeed */
10616     if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
10617         BLOGW(sc, "No power capability\n");
10618         return (0);
10619     }
10620 
10621     pmcsr = pci_read_config(sc->dev,
10622                             (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10623                             2);
10624 
10625     switch (state) {
10626     case PCI_PM_D0:
10627         pci_write_config(sc->dev,
10628                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10629                          ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
10630 
10631         if (pmcsr & PCIM_PSTAT_DMASK) {
10632             /* delay required during transition out of D3hot */
10633             DELAY(20000);
10634         }
10635 
10636         break;
10637 
10638     case PCI_PM_D3hot:
10639         /* XXX if there are other clients above don't shut down the power */
10640 
10641         /* don't shut down the power for emulation and FPGA */
10642         if (CHIP_REV_IS_SLOW(sc)) {
10643             return (0);
10644         }
10645 
10646         pmcsr &= ~PCIM_PSTAT_DMASK;
10647         pmcsr |= PCIM_PSTAT_D3;
10648 
10649         if (sc->wol) {
10650             pmcsr |= PCIM_PSTAT_PMEENABLE;
10651         }
10652 
10653         pci_write_config(sc->dev,
10654                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10655                          pmcsr, 4);
10656 
10657         /*
10658          * No more memory access after this point until device is brought back
10659          * to D0 state.
10660          */
10661         break;
10662 
10663     default:
10664         BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n",
10665             state, pmcsr);
10666         return (-1);
10667     }
10668 
10669     return (0);
10670 }
10671 
10672 
10673 /* return true if succeeded to acquire the lock */
10674 static uint8_t
10675 bxe_trylock_hw_lock(struct bxe_softc *sc,
10676                     uint32_t         resource)
10677 {
10678     uint32_t lock_status;
10679     uint32_t resource_bit = (1 << resource);
10680     int func = SC_FUNC(sc);
10681     uint32_t hw_lock_control_reg;
10682 
10683     BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
10684 
10685     /* Validating that the resource is within range */
10686     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
10687         BLOGD(sc, DBG_LOAD,
10688               "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
10689               resource, HW_LOCK_MAX_RESOURCE_VALUE);
10690         return (FALSE);
10691     }
10692 
10693     if (func <= 5) {
10694         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
10695     } else {
10696         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
10697     }
10698 
10699     /* try to acquire the lock */
10700     REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
10701     lock_status = REG_RD(sc, hw_lock_control_reg);
10702     if (lock_status & resource_bit) {
10703         return (TRUE);
10704     }
10705 
10706     BLOGE(sc, "Failed to get a resource lock 0x%x func %d "
10707         "lock_status 0x%x resource_bit 0x%x\n", resource, func,
10708         lock_status, resource_bit);
10709 
10710     return (FALSE);
10711 }
10712 
10713 /*
10714  * Get the recovery leader resource id according to the engine this function
10715  * belongs to. Currently only only 2 engines is supported.
10716  */
10717 static int
10718 bxe_get_leader_lock_resource(struct bxe_softc *sc)
10719 {
10720     if (SC_PATH(sc)) {
10721         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
10722     } else {
10723         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
10724     }
10725 }
10726 
10727 /* try to acquire a leader lock for current engine */
10728 static uint8_t
10729 bxe_trylock_leader_lock(struct bxe_softc *sc)
10730 {
10731     return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
10732 }
10733 
10734 static int
10735 bxe_release_leader_lock(struct bxe_softc *sc)
10736 {
10737     return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
10738 }
10739 
10740 /* close gates #2, #3 and #4 */
10741 static void
10742 bxe_set_234_gates(struct bxe_softc *sc,
10743                   uint8_t          close)
10744 {
10745     uint32_t val;
10746 
10747     /* gates #2 and #4a are closed/opened for "not E1" only */
10748     if (!CHIP_IS_E1(sc)) {
10749         /* #4 */
10750         REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
10751         /* #2 */
10752         REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
10753     }
10754 
10755     /* #3 */
10756     if (CHIP_IS_E1x(sc)) {
10757         /* prevent interrupts from HC on both ports */
10758         val = REG_RD(sc, HC_REG_CONFIG_1);
10759         REG_WR(sc, HC_REG_CONFIG_1,
10760                (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
10761                (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
10762 
10763         val = REG_RD(sc, HC_REG_CONFIG_0);
10764         REG_WR(sc, HC_REG_CONFIG_0,
10765                (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
10766                (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
10767     } else {
10768         /* Prevent incomming interrupts in IGU */
10769         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
10770 
10771         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
10772                (!close) ?
10773                (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
10774                (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
10775     }
10776 
10777     BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
10778           close ? "closing" : "opening");
10779 
10780     wmb();
10781 }
10782 
10783 /* poll for pending writes bit, it should get cleared in no more than 1s */
10784 static int
10785 bxe_er_poll_igu_vq(struct bxe_softc *sc)
10786 {
10787     uint32_t cnt = 1000;
10788     uint32_t pend_bits = 0;
10789 
10790     do {
10791         pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
10792 
10793         if (pend_bits == 0) {
10794             break;
10795         }
10796 
10797         DELAY(1000);
10798     } while (--cnt > 0);
10799 
10800     if (cnt == 0) {
10801         BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
10802         return (-1);
10803     }
10804 
10805     return (0);
10806 }
10807 
10808 #define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
10809 
10810 static void
10811 bxe_clp_reset_prep(struct bxe_softc *sc,
10812                    uint32_t         *magic_val)
10813 {
10814     /* Do some magic... */
10815     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10816     *magic_val = val & SHARED_MF_CLP_MAGIC;
10817     MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
10818 }
10819 
10820 /* restore the value of the 'magic' bit */
10821 static void
10822 bxe_clp_reset_done(struct bxe_softc *sc,
10823                    uint32_t         magic_val)
10824 {
10825     /* Restore the 'magic' bit value... */
10826     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10827     MFCFG_WR(sc, shared_mf_config.clp_mb,
10828               (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
10829 }
10830 
10831 /* prepare for MCP reset, takes care of CLP configurations */
10832 static void
10833 bxe_reset_mcp_prep(struct bxe_softc *sc,
10834                    uint32_t         *magic_val)
10835 {
10836     uint32_t shmem;
10837     uint32_t validity_offset;
10838 
10839     /* set `magic' bit in order to save MF config */
10840     if (!CHIP_IS_E1(sc)) {
10841         bxe_clp_reset_prep(sc, magic_val);
10842     }
10843 
10844     /* get shmem offset */
10845     shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10846     validity_offset =
10847         offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
10848 
10849     /* Clear validity map flags */
10850     if (shmem > 0) {
10851         REG_WR(sc, shmem + validity_offset, 0);
10852     }
10853 }
10854 
10855 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
10856 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
10857 
10858 static void
10859 bxe_mcp_wait_one(struct bxe_softc *sc)
10860 {
10861     /* special handling for emulation and FPGA (10 times longer) */
10862     if (CHIP_REV_IS_SLOW(sc)) {
10863         DELAY((MCP_ONE_TIMEOUT*10) * 1000);
10864     } else {
10865         DELAY((MCP_ONE_TIMEOUT) * 1000);
10866     }
10867 }
10868 
10869 /* initialize shmem_base and waits for validity signature to appear */
10870 static int
10871 bxe_init_shmem(struct bxe_softc *sc)
10872 {
10873     int cnt = 0;
10874     uint32_t val = 0;
10875 
10876     do {
10877         sc->devinfo.shmem_base     =
10878         sc->link_params.shmem_base =
10879             REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10880 
10881         if (sc->devinfo.shmem_base) {
10882             val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
10883             if (val & SHR_MEM_VALIDITY_MB)
10884                 return (0);
10885         }
10886 
10887         bxe_mcp_wait_one(sc);
10888 
10889     } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
10890 
10891     BLOGE(sc, "BAD MCP validity signature\n");
10892 
10893     return (-1);
10894 }
10895 
10896 static int
10897 bxe_reset_mcp_comp(struct bxe_softc *sc,
10898                    uint32_t         magic_val)
10899 {
10900     int rc = bxe_init_shmem(sc);
10901 
10902     /* Restore the `magic' bit value */
10903     if (!CHIP_IS_E1(sc)) {
10904         bxe_clp_reset_done(sc, magic_val);
10905     }
10906 
10907     return (rc);
10908 }
10909 
10910 static void
10911 bxe_pxp_prep(struct bxe_softc *sc)
10912 {
10913     if (!CHIP_IS_E1(sc)) {
10914         REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
10915         REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
10916         wmb();
10917     }
10918 }
10919 
10920 /*
10921  * Reset the whole chip except for:
10922  *      - PCIE core
10923  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
10924  *      - IGU
10925  *      - MISC (including AEU)
10926  *      - GRC
10927  *      - RBCN, RBCP
10928  */
10929 static void
10930 bxe_process_kill_chip_reset(struct bxe_softc *sc,
10931                             uint8_t          global)
10932 {
10933     uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
10934     uint32_t global_bits2, stay_reset2;
10935 
10936     /*
10937      * Bits that have to be set in reset_mask2 if we want to reset 'global'
10938      * (per chip) blocks.
10939      */
10940     global_bits2 =
10941         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
10942         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
10943 
10944     /*
10945      * Don't reset the following blocks.
10946      * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
10947      *            reset, as in 4 port device they might still be owned
10948      *            by the MCP (there is only one leader per path).
10949      */
10950     not_reset_mask1 =
10951         MISC_REGISTERS_RESET_REG_1_RST_HC |
10952         MISC_REGISTERS_RESET_REG_1_RST_PXPV |
10953         MISC_REGISTERS_RESET_REG_1_RST_PXP;
10954 
10955     not_reset_mask2 =
10956         MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
10957         MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
10958         MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
10959         MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
10960         MISC_REGISTERS_RESET_REG_2_RST_RBCN |
10961         MISC_REGISTERS_RESET_REG_2_RST_GRC  |
10962         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
10963         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
10964         MISC_REGISTERS_RESET_REG_2_RST_ATC |
10965         MISC_REGISTERS_RESET_REG_2_PGLC |
10966         MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
10967         MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
10968         MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
10969         MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
10970         MISC_REGISTERS_RESET_REG_2_UMAC0 |
10971         MISC_REGISTERS_RESET_REG_2_UMAC1;
10972 
10973     /*
10974      * Keep the following blocks in reset:
10975      *  - all xxMACs are handled by the elink code.
10976      */
10977     stay_reset2 =
10978         MISC_REGISTERS_RESET_REG_2_XMAC |
10979         MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
10980 
10981     /* Full reset masks according to the chip */
10982     reset_mask1 = 0xffffffff;
10983 
10984     if (CHIP_IS_E1(sc))
10985         reset_mask2 = 0xffff;
10986     else if (CHIP_IS_E1H(sc))
10987         reset_mask2 = 0x1ffff;
10988     else if (CHIP_IS_E2(sc))
10989         reset_mask2 = 0xfffff;
10990     else /* CHIP_IS_E3 */
10991         reset_mask2 = 0x3ffffff;
10992 
10993     /* Don't reset global blocks unless we need to */
10994     if (!global)
10995         reset_mask2 &= ~global_bits2;
10996 
10997     /*
10998      * In case of attention in the QM, we need to reset PXP
10999      * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
11000      * because otherwise QM reset would release 'close the gates' shortly
11001      * before resetting the PXP, then the PSWRQ would send a write
11002      * request to PGLUE. Then when PXP is reset, PGLUE would try to
11003      * read the payload data from PSWWR, but PSWWR would not
11004      * respond. The write queue in PGLUE would stuck, dmae commands
11005      * would not return. Therefore it's important to reset the second
11006      * reset register (containing the
11007      * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
11008      * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
11009      * bit).
11010      */
11011     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
11012            reset_mask2 & (~not_reset_mask2));
11013 
11014     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
11015            reset_mask1 & (~not_reset_mask1));
11016 
11017     mb();
11018     wmb();
11019 
11020     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
11021            reset_mask2 & (~stay_reset2));
11022 
11023     mb();
11024     wmb();
11025 
11026     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
11027     wmb();
11028 }
11029 
11030 static int
11031 bxe_process_kill(struct bxe_softc *sc,
11032                  uint8_t          global)
11033 {
11034     int cnt = 1000;
11035     uint32_t val = 0;
11036     uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
11037     uint32_t tags_63_32 = 0;
11038 
11039     /* Empty the Tetris buffer, wait for 1s */
11040     do {
11041         sr_cnt  = REG_RD(sc, PXP2_REG_RD_SR_CNT);
11042         blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
11043         port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
11044         port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
11045         pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
11046         if (CHIP_IS_E3(sc)) {
11047             tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
11048         }
11049 
11050         if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
11051             ((port_is_idle_0 & 0x1) == 0x1) &&
11052             ((port_is_idle_1 & 0x1) == 0x1) &&
11053             (pgl_exp_rom2 == 0xffffffff) &&
11054             (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
11055             break;
11056         DELAY(1000);
11057     } while (cnt-- > 0);
11058 
11059     if (cnt <= 0) {
11060         BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
11061                   "are still outstanding read requests after 1s! "
11062                   "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
11063                   "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
11064               sr_cnt, blk_cnt, port_is_idle_0,
11065               port_is_idle_1, pgl_exp_rom2);
11066         return (-1);
11067     }
11068 
11069     mb();
11070 
11071     /* Close gates #2, #3 and #4 */
11072     bxe_set_234_gates(sc, TRUE);
11073 
11074     /* Poll for IGU VQs for 57712 and newer chips */
11075     if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
11076         return (-1);
11077     }
11078 
11079     /* XXX indicate that "process kill" is in progress to MCP */
11080 
11081     /* clear "unprepared" bit */
11082     REG_WR(sc, MISC_REG_UNPREPARED, 0);
11083     mb();
11084 
11085     /* Make sure all is written to the chip before the reset */
11086     wmb();
11087 
11088     /*
11089      * Wait for 1ms to empty GLUE and PCI-E core queues,
11090      * PSWHST, GRC and PSWRD Tetris buffer.
11091      */
11092     DELAY(1000);
11093 
11094     /* Prepare to chip reset: */
11095     /* MCP */
11096     if (global) {
11097         bxe_reset_mcp_prep(sc, &val);
11098     }
11099 
11100     /* PXP */
11101     bxe_pxp_prep(sc);
11102     mb();
11103 
11104     /* reset the chip */
11105     bxe_process_kill_chip_reset(sc, global);
11106     mb();
11107 
11108     /* clear errors in PGB */
11109     if (!CHIP_IS_E1(sc))
11110         REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
11111 
11112     /* Recover after reset: */
11113     /* MCP */
11114     if (global && bxe_reset_mcp_comp(sc, val)) {
11115         return (-1);
11116     }
11117 
11118     /* XXX add resetting the NO_MCP mode DB here */
11119 
11120     /* Open the gates #2, #3 and #4 */
11121     bxe_set_234_gates(sc, FALSE);
11122 
11123     /* XXX
11124      * IGU/AEU preparation bring back the AEU/IGU to a reset state
11125      * re-enable attentions
11126      */
11127 
11128     return (0);
11129 }
11130 
11131 static int
11132 bxe_leader_reset(struct bxe_softc *sc)
11133 {
11134     int rc = 0;
11135     uint8_t global = bxe_reset_is_global(sc);
11136     uint32_t load_code;
11137 
11138     /*
11139      * If not going to reset MCP, load "fake" driver to reset HW while
11140      * driver is owner of the HW.
11141      */
11142     if (!global && !BXE_NOMCP(sc)) {
11143         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11144                                    DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11145         if (!load_code) {
11146             BLOGE(sc, "MCP response failure, aborting\n");
11147             rc = -1;
11148             goto exit_leader_reset;
11149         }
11150 
11151         if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11152             (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11153             BLOGE(sc, "MCP unexpected response, aborting\n");
11154             rc = -1;
11155             goto exit_leader_reset2;
11156         }
11157 
11158         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11159         if (!load_code) {
11160             BLOGE(sc, "MCP response failure, aborting\n");
11161             rc = -1;
11162             goto exit_leader_reset2;
11163         }
11164     }
11165 
11166     /* try to recover after the failure */
11167     if (bxe_process_kill(sc, global)) {
11168         BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11169         rc = -1;
11170         goto exit_leader_reset2;
11171     }
11172 
11173     /*
11174      * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11175      * state.
11176      */
11177     bxe_set_reset_done(sc);
11178     if (global) {
11179         bxe_clear_reset_global(sc);
11180     }
11181 
11182 exit_leader_reset2:
11183 
11184     /* unload "fake driver" if it was loaded */
11185     if (!global && !BXE_NOMCP(sc)) {
11186         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11187         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11188     }
11189 
11190 exit_leader_reset:
11191 
11192     sc->is_leader = 0;
11193     bxe_release_leader_lock(sc);
11194 
11195     mb();
11196     return (rc);
11197 }
11198 
11199 /*
11200  * prepare INIT transition, parameters configured:
11201  *   - HC configuration
11202  *   - Queue's CDU context
11203  */
11204 static void
11205 bxe_pf_q_prep_init(struct bxe_softc               *sc,
11206                    struct bxe_fastpath            *fp,
11207                    struct ecore_queue_init_params *init_params)
11208 {
11209     uint8_t cos;
11210     int cxt_index, cxt_offset;
11211 
11212     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11213     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11214 
11215     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11216     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11217 
11218     /* HC rate */
11219     init_params->rx.hc_rate =
11220         sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11221     init_params->tx.hc_rate =
11222         sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11223 
11224     /* FW SB ID */
11225     init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11226 
11227     /* CQ index among the SB indices */
11228     init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11229     init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11230 
11231     /* set maximum number of COSs supported by this queue */
11232     init_params->max_cos = sc->max_cos;
11233 
11234     BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11235           fp->index, init_params->max_cos);
11236 
11237     /* set the context pointers queue object */
11238     for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11239         /* XXX change index/cid here if ever support multiple tx CoS */
11240         /* fp->txdata[cos]->cid */
11241         cxt_index = fp->index / ILT_PAGE_CIDS;
11242         cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11243         init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11244     }
11245 }
11246 
11247 /* set flags that are common for the Tx-only and not normal connections */
11248 static unsigned long
11249 bxe_get_common_flags(struct bxe_softc    *sc,
11250                      struct bxe_fastpath *fp,
11251                      uint8_t             zero_stats)
11252 {
11253     unsigned long flags = 0;
11254 
11255     /* PF driver will always initialize the Queue to an ACTIVE state */
11256     bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11257 
11258     /*
11259      * tx only connections collect statistics (on the same index as the
11260      * parent connection). The statistics are zeroed when the parent
11261      * connection is initialized.
11262      */
11263 
11264     bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11265     if (zero_stats) {
11266         bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11267     }
11268 
11269     /*
11270      * tx only connections can support tx-switching, though their
11271      * CoS-ness doesn't survive the loopback
11272      */
11273     if (sc->flags & BXE_TX_SWITCHING) {
11274         bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11275     }
11276 
11277     bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11278 
11279     return (flags);
11280 }
11281 
11282 static unsigned long
11283 bxe_get_q_flags(struct bxe_softc    *sc,
11284                 struct bxe_fastpath *fp,
11285                 uint8_t             leading)
11286 {
11287     unsigned long flags = 0;
11288 
11289     if (IS_MF_SD(sc)) {
11290         bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11291     }
11292 
11293     if (if_getcapenable(sc->ifp) & IFCAP_LRO) {
11294         bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11295         bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11296     }
11297 
11298     if (leading) {
11299         bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11300         bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11301     }
11302 
11303     bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11304 
11305     /* merge with common flags */
11306     return (flags | bxe_get_common_flags(sc, fp, TRUE));
11307 }
11308 
11309 static void
11310 bxe_pf_q_prep_general(struct bxe_softc                  *sc,
11311                       struct bxe_fastpath               *fp,
11312                       struct ecore_general_setup_params *gen_init,
11313                       uint8_t                           cos)
11314 {
11315     gen_init->stat_id = bxe_stats_id(fp);
11316     gen_init->spcl_id = fp->cl_id;
11317     gen_init->mtu = sc->mtu;
11318     gen_init->cos = cos;
11319 }
11320 
11321 static void
11322 bxe_pf_rx_q_prep(struct bxe_softc              *sc,
11323                  struct bxe_fastpath           *fp,
11324                  struct rxq_pause_params       *pause,
11325                  struct ecore_rxq_setup_params *rxq_init)
11326 {
11327     uint8_t max_sge = 0;
11328     uint16_t sge_sz = 0;
11329     uint16_t tpa_agg_size = 0;
11330 
11331     pause->sge_th_lo = SGE_TH_LO(sc);
11332     pause->sge_th_hi = SGE_TH_HI(sc);
11333 
11334     /* validate SGE ring has enough to cross high threshold */
11335     if (sc->dropless_fc &&
11336             (pause->sge_th_hi + FW_PREFETCH_CNT) >
11337             (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11338         BLOGW(sc, "sge ring threshold limit\n");
11339     }
11340 
11341     /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11342     tpa_agg_size = (2 * sc->mtu);
11343     if (tpa_agg_size < sc->max_aggregation_size) {
11344         tpa_agg_size = sc->max_aggregation_size;
11345     }
11346 
11347     max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11348     max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11349                    (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11350     sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11351 
11352     /* pause - not for e1 */
11353     if (!CHIP_IS_E1(sc)) {
11354         pause->bd_th_lo = BD_TH_LO(sc);
11355         pause->bd_th_hi = BD_TH_HI(sc);
11356 
11357         pause->rcq_th_lo = RCQ_TH_LO(sc);
11358         pause->rcq_th_hi = RCQ_TH_HI(sc);
11359 
11360         /* validate rings have enough entries to cross high thresholds */
11361         if (sc->dropless_fc &&
11362             pause->bd_th_hi + FW_PREFETCH_CNT >
11363             sc->rx_ring_size) {
11364             BLOGW(sc, "rx bd ring threshold limit\n");
11365         }
11366 
11367         if (sc->dropless_fc &&
11368             pause->rcq_th_hi + FW_PREFETCH_CNT >
11369             RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11370             BLOGW(sc, "rcq ring threshold limit\n");
11371         }
11372 
11373         pause->pri_map = 1;
11374     }
11375 
11376     /* rxq setup */
11377     rxq_init->dscr_map   = fp->rx_dma.paddr;
11378     rxq_init->sge_map    = fp->rx_sge_dma.paddr;
11379     rxq_init->rcq_map    = fp->rcq_dma.paddr;
11380     rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11381 
11382     /*
11383      * This should be a maximum number of data bytes that may be
11384      * placed on the BD (not including paddings).
11385      */
11386     rxq_init->buf_sz = (fp->rx_buf_size -
11387                         IP_HEADER_ALIGNMENT_PADDING);
11388 
11389     rxq_init->cl_qzone_id     = fp->cl_qzone_id;
11390     rxq_init->tpa_agg_sz      = tpa_agg_size;
11391     rxq_init->sge_buf_sz      = sge_sz;
11392     rxq_init->max_sges_pkt    = max_sge;
11393     rxq_init->rss_engine_id   = SC_FUNC(sc);
11394     rxq_init->mcast_engine_id = SC_FUNC(sc);
11395 
11396     /*
11397      * Maximum number or simultaneous TPA aggregation for this Queue.
11398      * For PF Clients it should be the maximum available number.
11399      * VF driver(s) may want to define it to a smaller value.
11400      */
11401     rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11402 
11403     rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11404     rxq_init->fw_sb_id = fp->fw_sb_id;
11405 
11406     rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11407 
11408     /*
11409      * configure silent vlan removal
11410      * if multi function mode is afex, then mask default vlan
11411      */
11412     if (IS_MF_AFEX(sc)) {
11413         rxq_init->silent_removal_value =
11414             sc->devinfo.mf_info.afex_def_vlan_tag;
11415         rxq_init->silent_removal_mask = EVL_VLID_MASK;
11416     }
11417 }
11418 
11419 static void
11420 bxe_pf_tx_q_prep(struct bxe_softc              *sc,
11421                  struct bxe_fastpath           *fp,
11422                  struct ecore_txq_setup_params *txq_init,
11423                  uint8_t                       cos)
11424 {
11425     /*
11426      * XXX If multiple CoS is ever supported then each fastpath structure
11427      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11428      * fp->txdata[cos]->tx_dma.paddr;
11429      */
11430     txq_init->dscr_map     = fp->tx_dma.paddr;
11431     txq_init->sb_cq_index  = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11432     txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11433     txq_init->fw_sb_id     = fp->fw_sb_id;
11434 
11435     /*
11436      * set the TSS leading client id for TX classfication to the
11437      * leading RSS client id
11438      */
11439     txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11440 }
11441 
11442 /*
11443  * This function performs 2 steps in a queue state machine:
11444  *   1) RESET->INIT
11445  *   2) INIT->SETUP
11446  */
11447 static int
11448 bxe_setup_queue(struct bxe_softc    *sc,
11449                 struct bxe_fastpath *fp,
11450                 uint8_t             leading)
11451 {
11452     struct ecore_queue_state_params q_params = { NULL };
11453     struct ecore_queue_setup_params *setup_params =
11454                         &q_params.params.setup;
11455     int rc;
11456 
11457     BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11458 
11459     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11460 
11461     q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11462 
11463     /* we want to wait for completion in this context */
11464     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11465 
11466     /* prepare the INIT parameters */
11467     bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11468 
11469     /* Set the command */
11470     q_params.cmd = ECORE_Q_CMD_INIT;
11471 
11472     /* Change the state to INIT */
11473     rc = ecore_queue_state_change(sc, &q_params);
11474     if (rc) {
11475         BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc);
11476         return (rc);
11477     }
11478 
11479     BLOGD(sc, DBG_LOAD, "init complete\n");
11480 
11481     /* now move the Queue to the SETUP state */
11482     memset(setup_params, 0, sizeof(*setup_params));
11483 
11484     /* set Queue flags */
11485     setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11486 
11487     /* set general SETUP parameters */
11488     bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11489                           FIRST_TX_COS_INDEX);
11490 
11491     bxe_pf_rx_q_prep(sc, fp,
11492                      &setup_params->pause_params,
11493                      &setup_params->rxq_params);
11494 
11495     bxe_pf_tx_q_prep(sc, fp,
11496                      &setup_params->txq_params,
11497                      FIRST_TX_COS_INDEX);
11498 
11499     /* Set the command */
11500     q_params.cmd = ECORE_Q_CMD_SETUP;
11501 
11502     /* change the state to SETUP */
11503     rc = ecore_queue_state_change(sc, &q_params);
11504     if (rc) {
11505         BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc);
11506         return (rc);
11507     }
11508 
11509     return (rc);
11510 }
11511 
11512 static int
11513 bxe_setup_leading(struct bxe_softc *sc)
11514 {
11515     return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11516 }
11517 
11518 static int
11519 bxe_config_rss_pf(struct bxe_softc            *sc,
11520                   struct ecore_rss_config_obj *rss_obj,
11521                   uint8_t                     config_hash)
11522 {
11523     struct ecore_config_rss_params params = { NULL };
11524     int i;
11525 
11526     /*
11527      * Although RSS is meaningless when there is a single HW queue we
11528      * still need it enabled in order to have HW Rx hash generated.
11529      */
11530 
11531     params.rss_obj = rss_obj;
11532 
11533     bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11534 
11535     bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11536 
11537     /* RSS configuration */
11538     bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11539     bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11540     bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11541     bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11542     if (rss_obj->udp_rss_v4) {
11543         bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11544     }
11545     if (rss_obj->udp_rss_v6) {
11546         bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11547     }
11548 
11549     /* Hash bits */
11550     params.rss_result_mask = MULTI_MASK;
11551 
11552     memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
11553 
11554     if (config_hash) {
11555         /* RSS keys */
11556         for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
11557             params.rss_key[i] = arc4random();
11558         }
11559 
11560         bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
11561     }
11562 
11563     return (ecore_config_rss(sc, &params));
11564 }
11565 
11566 static int
11567 bxe_config_rss_eth(struct bxe_softc *sc,
11568                    uint8_t          config_hash)
11569 {
11570     return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
11571 }
11572 
11573 static int
11574 bxe_init_rss_pf(struct bxe_softc *sc)
11575 {
11576     uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
11577     int i;
11578 
11579     /*
11580      * Prepare the initial contents of the indirection table if
11581      * RSS is enabled
11582      */
11583     for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
11584         sc->rss_conf_obj.ind_table[i] =
11585             (sc->fp->cl_id + (i % num_eth_queues));
11586     }
11587 
11588     if (sc->udp_rss) {
11589         sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
11590     }
11591 
11592     /*
11593      * For 57710 and 57711 SEARCHER configuration (rss_keys) is
11594      * per-port, so if explicit configuration is needed, do it only
11595      * for a PMF.
11596      *
11597      * For 57712 and newer it's a per-function configuration.
11598      */
11599     return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
11600 }
11601 
11602 static int
11603 bxe_set_mac_one(struct bxe_softc          *sc,
11604                 uint8_t                   *mac,
11605                 struct ecore_vlan_mac_obj *obj,
11606                 uint8_t                   set,
11607                 int                       mac_type,
11608                 unsigned long             *ramrod_flags)
11609 {
11610     struct ecore_vlan_mac_ramrod_params ramrod_param;
11611     int rc;
11612 
11613     memset(&ramrod_param, 0, sizeof(ramrod_param));
11614 
11615     /* fill in general parameters */
11616     ramrod_param.vlan_mac_obj = obj;
11617     ramrod_param.ramrod_flags = *ramrod_flags;
11618 
11619     /* fill a user request section if needed */
11620     if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
11621         memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
11622 
11623         bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
11624 
11625         /* Set the command: ADD or DEL */
11626         ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
11627                                             ECORE_VLAN_MAC_DEL;
11628     }
11629 
11630     rc = ecore_config_vlan_mac(sc, &ramrod_param);
11631 
11632     if (rc == ECORE_EXISTS) {
11633         BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
11634         /* do not treat adding same MAC as error */
11635         rc = 0;
11636     } else if (rc < 0) {
11637         BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
11638     }
11639 
11640     return (rc);
11641 }
11642 
11643 static int
11644 bxe_set_eth_mac(struct bxe_softc *sc,
11645                 uint8_t          set)
11646 {
11647     unsigned long ramrod_flags = 0;
11648 
11649     BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
11650 
11651     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11652 
11653     /* Eth MAC is set on RSS leading client (fp[0]) */
11654     return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
11655                             &sc->sp_objs->mac_obj,
11656                             set, ECORE_ETH_MAC, &ramrod_flags));
11657 }
11658 
11659 static int
11660 bxe_get_cur_phy_idx(struct bxe_softc *sc)
11661 {
11662     uint32_t sel_phy_idx = 0;
11663 
11664     if (sc->link_params.num_phys <= 1) {
11665         return (ELINK_INT_PHY);
11666     }
11667 
11668     if (sc->link_vars.link_up) {
11669         sel_phy_idx = ELINK_EXT_PHY1;
11670         /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
11671         if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
11672             (sc->link_params.phy[ELINK_EXT_PHY2].supported &
11673              ELINK_SUPPORTED_FIBRE))
11674             sel_phy_idx = ELINK_EXT_PHY2;
11675     } else {
11676         switch (elink_phy_selection(&sc->link_params)) {
11677         case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
11678         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
11679         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
11680                sel_phy_idx = ELINK_EXT_PHY1;
11681                break;
11682         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
11683         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
11684                sel_phy_idx = ELINK_EXT_PHY2;
11685                break;
11686         }
11687     }
11688 
11689     return (sel_phy_idx);
11690 }
11691 
11692 static int
11693 bxe_get_link_cfg_idx(struct bxe_softc *sc)
11694 {
11695     uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
11696 
11697     /*
11698      * The selected activated PHY is always after swapping (in case PHY
11699      * swapping is enabled). So when swapping is enabled, we need to reverse
11700      * the configuration
11701      */
11702 
11703     if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11704         if (sel_phy_idx == ELINK_EXT_PHY1)
11705             sel_phy_idx = ELINK_EXT_PHY2;
11706         else if (sel_phy_idx == ELINK_EXT_PHY2)
11707             sel_phy_idx = ELINK_EXT_PHY1;
11708     }
11709 
11710     return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
11711 }
11712 
11713 static void
11714 bxe_set_requested_fc(struct bxe_softc *sc)
11715 {
11716     /*
11717      * Initialize link parameters structure variables
11718      * It is recommended to turn off RX FC for jumbo frames
11719      * for better performance
11720      */
11721     if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
11722         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
11723     } else {
11724         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
11725     }
11726 }
11727 
11728 static void
11729 bxe_calc_fc_adv(struct bxe_softc *sc)
11730 {
11731     uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
11732     switch (sc->link_vars.ieee_fc &
11733             MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
11734     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
11735     default:
11736         sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
11737                                            ADVERTISED_Pause);
11738         break;
11739 
11740     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
11741         sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
11742                                           ADVERTISED_Pause);
11743         break;
11744 
11745     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
11746         sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
11747         break;
11748     }
11749 }
11750 
11751 static uint16_t
11752 bxe_get_mf_speed(struct bxe_softc *sc)
11753 {
11754     uint16_t line_speed = sc->link_vars.line_speed;
11755     if (IS_MF(sc)) {
11756         uint16_t maxCfg =
11757             bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
11758 
11759         /* calculate the current MAX line speed limit for the MF devices */
11760         if (IS_MF_SI(sc)) {
11761             line_speed = (line_speed * maxCfg) / 100;
11762         } else { /* SD mode */
11763             uint16_t vn_max_rate = maxCfg * 100;
11764 
11765             if (vn_max_rate < line_speed) {
11766                 line_speed = vn_max_rate;
11767             }
11768         }
11769     }
11770 
11771     return (line_speed);
11772 }
11773 
11774 static void
11775 bxe_fill_report_data(struct bxe_softc            *sc,
11776                      struct bxe_link_report_data *data)
11777 {
11778     uint16_t line_speed = bxe_get_mf_speed(sc);
11779 
11780     memset(data, 0, sizeof(*data));
11781 
11782     /* fill the report data with the effective line speed */
11783     data->line_speed = line_speed;
11784 
11785     /* Link is down */
11786     if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
11787         bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
11788     }
11789 
11790     /* Full DUPLEX */
11791     if (sc->link_vars.duplex == DUPLEX_FULL) {
11792         bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
11793     }
11794 
11795     /* Rx Flow Control is ON */
11796     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
11797         bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
11798     }
11799 
11800     /* Tx Flow Control is ON */
11801     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
11802         bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
11803     }
11804 }
11805 
11806 /* report link status to OS, should be called under phy_lock */
11807 static void
11808 bxe_link_report_locked(struct bxe_softc *sc)
11809 {
11810     struct bxe_link_report_data cur_data;
11811 
11812     /* reread mf_cfg */
11813     if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
11814         bxe_read_mf_cfg(sc);
11815     }
11816 
11817     /* Read the current link report info */
11818     bxe_fill_report_data(sc, &cur_data);
11819 
11820     /* Don't report link down or exactly the same link status twice */
11821     if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
11822         (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11823                       &sc->last_reported_link.link_report_flags) &&
11824          bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11825                       &cur_data.link_report_flags))) {
11826         return;
11827     }
11828 
11829     sc->link_cnt++;
11830 
11831     /* report new link params and remember the state for the next time */
11832     memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
11833 
11834     if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11835                      &cur_data.link_report_flags)) {
11836         if_link_state_change(sc->ifp, LINK_STATE_DOWN);
11837         BLOGI(sc, "NIC Link is Down\n");
11838     } else {
11839         const char *duplex;
11840         const char *flow;
11841 
11842         if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
11843                                    &cur_data.link_report_flags)) {
11844             duplex = "full";
11845         } else {
11846             duplex = "half";
11847         }
11848 
11849         /*
11850          * Handle the FC at the end so that only these flags would be
11851          * possibly set. This way we may easily check if there is no FC
11852          * enabled.
11853          */
11854         if (cur_data.link_report_flags) {
11855             if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11856                              &cur_data.link_report_flags) &&
11857                 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11858                              &cur_data.link_report_flags)) {
11859                 flow = "ON - receive & transmit";
11860             } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11861                                     &cur_data.link_report_flags) &&
11862                        !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11863                                      &cur_data.link_report_flags)) {
11864                 flow = "ON - receive";
11865             } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11866                                      &cur_data.link_report_flags) &&
11867                        bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11868                                     &cur_data.link_report_flags)) {
11869                 flow = "ON - transmit";
11870             } else {
11871                 flow = "none"; /* possible? */
11872             }
11873         } else {
11874             flow = "none";
11875         }
11876 
11877         if_link_state_change(sc->ifp, LINK_STATE_UP);
11878         BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
11879               cur_data.line_speed, duplex, flow);
11880     }
11881 }
11882 
11883 static void
11884 bxe_link_report(struct bxe_softc *sc)
11885 {
11886     bxe_acquire_phy_lock(sc);
11887     bxe_link_report_locked(sc);
11888     bxe_release_phy_lock(sc);
11889 }
11890 
11891 static void
11892 bxe_link_status_update(struct bxe_softc *sc)
11893 {
11894     if (sc->state != BXE_STATE_OPEN) {
11895         return;
11896     }
11897 
11898     if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
11899         elink_link_status_update(&sc->link_params, &sc->link_vars);
11900     } else {
11901         sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
11902                                   ELINK_SUPPORTED_10baseT_Full |
11903                                   ELINK_SUPPORTED_100baseT_Half |
11904                                   ELINK_SUPPORTED_100baseT_Full |
11905                                   ELINK_SUPPORTED_1000baseT_Full |
11906                                   ELINK_SUPPORTED_2500baseX_Full |
11907                                   ELINK_SUPPORTED_10000baseT_Full |
11908                                   ELINK_SUPPORTED_TP |
11909                                   ELINK_SUPPORTED_FIBRE |
11910                                   ELINK_SUPPORTED_Autoneg |
11911                                   ELINK_SUPPORTED_Pause |
11912                                   ELINK_SUPPORTED_Asym_Pause);
11913         sc->port.advertising[0] = sc->port.supported[0];
11914 
11915         sc->link_params.sc                = sc;
11916         sc->link_params.port              = SC_PORT(sc);
11917         sc->link_params.req_duplex[0]     = DUPLEX_FULL;
11918         sc->link_params.req_flow_ctrl[0]  = ELINK_FLOW_CTRL_NONE;
11919         sc->link_params.req_line_speed[0] = SPEED_10000;
11920         sc->link_params.speed_cap_mask[0] = 0x7f0000;
11921         sc->link_params.switch_cfg        = ELINK_SWITCH_CFG_10G;
11922 
11923         if (CHIP_REV_IS_FPGA(sc)) {
11924             sc->link_vars.mac_type    = ELINK_MAC_TYPE_EMAC;
11925             sc->link_vars.line_speed  = ELINK_SPEED_1000;
11926             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
11927                                          LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
11928         } else {
11929             sc->link_vars.mac_type    = ELINK_MAC_TYPE_BMAC;
11930             sc->link_vars.line_speed  = ELINK_SPEED_10000;
11931             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
11932                                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
11933         }
11934 
11935         sc->link_vars.link_up = 1;
11936 
11937         sc->link_vars.duplex    = DUPLEX_FULL;
11938         sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
11939 
11940         if (IS_PF(sc)) {
11941             REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
11942             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11943             bxe_link_report(sc);
11944         }
11945     }
11946 
11947     if (IS_PF(sc)) {
11948         if (sc->link_vars.link_up) {
11949             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11950         } else {
11951             bxe_stats_handle(sc, STATS_EVENT_STOP);
11952         }
11953         bxe_link_report(sc);
11954     } else {
11955         bxe_link_report(sc);
11956         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11957     }
11958 }
11959 
11960 static int
11961 bxe_initial_phy_init(struct bxe_softc *sc,
11962                      int              load_mode)
11963 {
11964     int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
11965     uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
11966     struct elink_params *lp = &sc->link_params;
11967 
11968     bxe_set_requested_fc(sc);
11969 
11970     if (CHIP_REV_IS_SLOW(sc)) {
11971         uint32_t bond = CHIP_BOND_ID(sc);
11972         uint32_t feat = 0;
11973 
11974         if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
11975             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
11976         } else if (bond & 0x4) {
11977             if (CHIP_IS_E3(sc)) {
11978                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
11979             } else {
11980                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
11981             }
11982         } else if (bond & 0x8) {
11983             if (CHIP_IS_E3(sc)) {
11984                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
11985             } else {
11986                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
11987             }
11988         }
11989 
11990         /* disable EMAC for E3 and above */
11991         if (bond & 0x2) {
11992             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
11993         }
11994 
11995         sc->link_params.feature_config_flags |= feat;
11996     }
11997 
11998     bxe_acquire_phy_lock(sc);
11999 
12000     if (load_mode == LOAD_DIAG) {
12001         lp->loopback_mode = ELINK_LOOPBACK_XGXS;
12002         /* Prefer doing PHY loopback at 10G speed, if possible */
12003         if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
12004             if (lp->speed_cap_mask[cfg_idx] &
12005                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
12006                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
12007             } else {
12008                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
12009             }
12010         }
12011     }
12012 
12013     if (load_mode == LOAD_LOOPBACK_EXT) {
12014         lp->loopback_mode = ELINK_LOOPBACK_EXT;
12015     }
12016 
12017     rc = elink_phy_init(&sc->link_params, &sc->link_vars);
12018 
12019     bxe_release_phy_lock(sc);
12020 
12021     bxe_calc_fc_adv(sc);
12022 
12023     if (sc->link_vars.link_up) {
12024         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12025         bxe_link_report(sc);
12026     }
12027 
12028     if (!CHIP_REV_IS_SLOW(sc)) {
12029         bxe_periodic_start(sc);
12030     }
12031 
12032     sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
12033     return (rc);
12034 }
12035 
12036 /* must be called under IF_ADDR_LOCK */
12037 
12038 static int
12039 bxe_set_mc_list(struct bxe_softc *sc)
12040 {
12041     struct ecore_mcast_ramrod_params rparam = { NULL };
12042     int rc = 0;
12043     int mc_count = 0;
12044     int mcnt, i;
12045     struct ecore_mcast_list_elem *mc_mac, *mc_mac_start;
12046     unsigned char *mta;
12047     if_t ifp = sc->ifp;
12048 
12049     mc_count = if_multiaddr_count(ifp, -1);/* XXX they don't have a limit */
12050     if (!mc_count)
12051         return (0);
12052 
12053     mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN *
12054             mc_count, M_DEVBUF, M_NOWAIT);
12055 
12056     if(mta == NULL) {
12057         BLOGE(sc, "Failed to allocate temp mcast list\n");
12058         return (-1);
12059     }
12060     bzero(mta, (sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count));
12061 
12062     mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, (M_NOWAIT | M_ZERO));
12063     mc_mac_start = mc_mac;
12064 
12065     if (!mc_mac) {
12066         free(mta, M_DEVBUF);
12067         BLOGE(sc, "Failed to allocate temp mcast list\n");
12068         return (-1);
12069     }
12070     bzero(mc_mac, (sizeof(*mc_mac) * mc_count));
12071 
12072     /* mta and mcnt not expected to be  different */
12073     if_multiaddr_array(ifp, mta, &mcnt, mc_count);
12074 
12075 
12076     rparam.mcast_obj = &sc->mcast_obj;
12077     ECORE_LIST_INIT(&rparam.mcast_list);
12078 
12079     for(i=0; i< mcnt; i++) {
12080 
12081         mc_mac->mac = (uint8_t *)(mta + (i * ETHER_ADDR_LEN));
12082         ECORE_LIST_PUSH_TAIL(&mc_mac->link, &rparam.mcast_list);
12083 
12084         BLOGD(sc, DBG_LOAD,
12085               "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n",
12086               mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2],
12087               mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]);
12088 
12089         mc_mac++;
12090     }
12091     rparam.mcast_list_len = mc_count;
12092 
12093     BXE_MCAST_LOCK(sc);
12094 
12095     /* first, clear all configured multicast MACs */
12096     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
12097     if (rc < 0) {
12098         BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
12099         BXE_MCAST_UNLOCK(sc);
12100     	free(mc_mac_start, M_DEVBUF);
12101         free(mta, M_DEVBUF);
12102         return (rc);
12103     }
12104 
12105     /* Now add the new MACs */
12106     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
12107     if (rc < 0) {
12108         BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
12109     }
12110 
12111     BXE_MCAST_UNLOCK(sc);
12112 
12113     free(mc_mac_start, M_DEVBUF);
12114     free(mta, M_DEVBUF);
12115 
12116     return (rc);
12117 }
12118 
12119 static int
12120 bxe_set_uc_list(struct bxe_softc *sc)
12121 {
12122     if_t ifp = sc->ifp;
12123     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
12124     struct ifaddr *ifa;
12125     unsigned long ramrod_flags = 0;
12126     int rc;
12127 
12128 #if __FreeBSD_version < 800000
12129     IF_ADDR_LOCK(ifp);
12130 #else
12131     if_addr_rlock(ifp);
12132 #endif
12133 
12134     /* first schedule a cleanup up of old configuration */
12135     rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
12136     if (rc < 0) {
12137         BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
12138 #if __FreeBSD_version < 800000
12139         IF_ADDR_UNLOCK(ifp);
12140 #else
12141         if_addr_runlock(ifp);
12142 #endif
12143         return (rc);
12144     }
12145 
12146     ifa = if_getifaddr(ifp); /* XXX Is this structure */
12147     while (ifa) {
12148         if (ifa->ifa_addr->sa_family != AF_LINK) {
12149             ifa = TAILQ_NEXT(ifa, ifa_link);
12150             continue;
12151         }
12152 
12153         rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
12154                              mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags);
12155         if (rc == -EEXIST) {
12156             BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12157             /* do not treat adding same MAC as an error */
12158             rc = 0;
12159         } else if (rc < 0) {
12160             BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc);
12161 #if __FreeBSD_version < 800000
12162             IF_ADDR_UNLOCK(ifp);
12163 #else
12164             if_addr_runlock(ifp);
12165 #endif
12166             return (rc);
12167         }
12168 
12169         ifa = TAILQ_NEXT(ifa, ifa_link);
12170     }
12171 
12172 #if __FreeBSD_version < 800000
12173     IF_ADDR_UNLOCK(ifp);
12174 #else
12175     if_addr_runlock(ifp);
12176 #endif
12177 
12178     /* Execute the pending commands */
12179     bit_set(&ramrod_flags, RAMROD_CONT);
12180     return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12181                             ECORE_UC_LIST_MAC, &ramrod_flags));
12182 }
12183 
12184 static void
12185 bxe_set_rx_mode(struct bxe_softc *sc)
12186 {
12187     if_t ifp = sc->ifp;
12188     uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12189 
12190     if (sc->state != BXE_STATE_OPEN) {
12191         BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12192         return;
12193     }
12194 
12195     BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp));
12196 
12197     if (if_getflags(ifp) & IFF_PROMISC) {
12198         rx_mode = BXE_RX_MODE_PROMISC;
12199     } else if ((if_getflags(ifp) & IFF_ALLMULTI) ||
12200                ((if_getamcount(ifp) > BXE_MAX_MULTICAST) &&
12201                 CHIP_IS_E1(sc))) {
12202         rx_mode = BXE_RX_MODE_ALLMULTI;
12203     } else {
12204         if (IS_PF(sc)) {
12205             /* some multicasts */
12206             if (bxe_set_mc_list(sc) < 0) {
12207                 rx_mode = BXE_RX_MODE_ALLMULTI;
12208             }
12209             if (bxe_set_uc_list(sc) < 0) {
12210                 rx_mode = BXE_RX_MODE_PROMISC;
12211             }
12212         }
12213     }
12214 
12215     sc->rx_mode = rx_mode;
12216 
12217     /* schedule the rx_mode command */
12218     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12219         BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12220         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12221         return;
12222     }
12223 
12224     if (IS_PF(sc)) {
12225         bxe_set_storm_rx_mode(sc);
12226     }
12227 }
12228 
12229 
12230 /* update flags in shmem */
12231 static void
12232 bxe_update_drv_flags(struct bxe_softc *sc,
12233                      uint32_t         flags,
12234                      uint32_t         set)
12235 {
12236     uint32_t drv_flags;
12237 
12238     if (SHMEM2_HAS(sc, drv_flags)) {
12239         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12240         drv_flags = SHMEM2_RD(sc, drv_flags);
12241 
12242         if (set) {
12243             SET_FLAGS(drv_flags, flags);
12244         } else {
12245             RESET_FLAGS(drv_flags, flags);
12246         }
12247 
12248         SHMEM2_WR(sc, drv_flags, drv_flags);
12249         BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12250 
12251         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12252     }
12253 }
12254 
12255 /* periodic timer callout routine, only runs when the interface is up */
12256 
12257 static void
12258 bxe_periodic_callout_func(void *xsc)
12259 {
12260     struct bxe_softc *sc = (struct bxe_softc *)xsc;
12261     int i;
12262 
12263     if (!BXE_CORE_TRYLOCK(sc)) {
12264         /* just bail and try again next time */
12265 
12266         if ((sc->state == BXE_STATE_OPEN) &&
12267             (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12268             /* schedule the next periodic callout */
12269             callout_reset(&sc->periodic_callout, hz,
12270                           bxe_periodic_callout_func, sc);
12271         }
12272 
12273         return;
12274     }
12275 
12276     if ((sc->state != BXE_STATE_OPEN) ||
12277         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12278         BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12279         BXE_CORE_UNLOCK(sc);
12280         return;
12281     }
12282 
12283     /* Check for TX timeouts on any fastpath. */
12284     FOR_EACH_QUEUE(sc, i) {
12285         if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12286             /* Ruh-Roh, chip was reset! */
12287             break;
12288         }
12289     }
12290 
12291     if (!CHIP_REV_IS_SLOW(sc)) {
12292         /*
12293          * This barrier is needed to ensure the ordering between the writing
12294          * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12295          * the reading here.
12296          */
12297         mb();
12298         if (sc->port.pmf) {
12299 	    bxe_acquire_phy_lock(sc);
12300             elink_period_func(&sc->link_params, &sc->link_vars);
12301 	    bxe_release_phy_lock(sc);
12302         }
12303     }
12304 
12305     if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) {
12306         int mb_idx = SC_FW_MB_IDX(sc);
12307         uint32_t drv_pulse;
12308         uint32_t mcp_pulse;
12309 
12310         ++sc->fw_drv_pulse_wr_seq;
12311         sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12312 
12313         drv_pulse = sc->fw_drv_pulse_wr_seq;
12314         bxe_drv_pulse(sc);
12315 
12316         mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12317                      MCP_PULSE_SEQ_MASK);
12318 
12319         /*
12320          * The delta between driver pulse and mcp response should
12321          * be 1 (before mcp response) or 0 (after mcp response).
12322          */
12323         if ((drv_pulse != mcp_pulse) &&
12324             (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12325             /* someone lost a heartbeat... */
12326             BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12327                   drv_pulse, mcp_pulse);
12328         }
12329     }
12330 
12331     /* state is BXE_STATE_OPEN */
12332     bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12333 
12334     BXE_CORE_UNLOCK(sc);
12335 
12336     if ((sc->state == BXE_STATE_OPEN) &&
12337         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12338         /* schedule the next periodic callout */
12339         callout_reset(&sc->periodic_callout, hz,
12340                       bxe_periodic_callout_func, sc);
12341     }
12342 }
12343 
12344 static void
12345 bxe_periodic_start(struct bxe_softc *sc)
12346 {
12347     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12348     callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12349 }
12350 
12351 static void
12352 bxe_periodic_stop(struct bxe_softc *sc)
12353 {
12354     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12355     callout_drain(&sc->periodic_callout);
12356 }
12357 
12358 /* start the controller */
12359 static __noinline int
12360 bxe_nic_load(struct bxe_softc *sc,
12361              int              load_mode)
12362 {
12363     uint32_t val;
12364     int load_code = 0;
12365     int i, rc = 0;
12366 
12367     BXE_CORE_LOCK_ASSERT(sc);
12368 
12369     BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12370 
12371     sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12372 
12373     if (IS_PF(sc)) {
12374         /* must be called before memory allocation and HW init */
12375         bxe_ilt_set_info(sc);
12376     }
12377 
12378     sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12379 
12380     bxe_set_fp_rx_buf_size(sc);
12381 
12382     if (bxe_alloc_fp_buffers(sc) != 0) {
12383         BLOGE(sc, "Failed to allocate fastpath memory\n");
12384         sc->state = BXE_STATE_CLOSED;
12385         rc = ENOMEM;
12386         goto bxe_nic_load_error0;
12387     }
12388 
12389     if (bxe_alloc_mem(sc) != 0) {
12390         sc->state = BXE_STATE_CLOSED;
12391         rc = ENOMEM;
12392         goto bxe_nic_load_error0;
12393     }
12394 
12395     if (bxe_alloc_fw_stats_mem(sc) != 0) {
12396         sc->state = BXE_STATE_CLOSED;
12397         rc = ENOMEM;
12398         goto bxe_nic_load_error0;
12399     }
12400 
12401     if (IS_PF(sc)) {
12402         /* set pf load just before approaching the MCP */
12403         bxe_set_pf_load(sc);
12404 
12405         /* if MCP exists send load request and analyze response */
12406         if (!BXE_NOMCP(sc)) {
12407             /* attempt to load pf */
12408             if (bxe_nic_load_request(sc, &load_code) != 0) {
12409                 sc->state = BXE_STATE_CLOSED;
12410                 rc = ENXIO;
12411                 goto bxe_nic_load_error1;
12412             }
12413 
12414             /* what did the MCP say? */
12415             if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12416                 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12417                 sc->state = BXE_STATE_CLOSED;
12418                 rc = ENXIO;
12419                 goto bxe_nic_load_error2;
12420             }
12421         } else {
12422             BLOGI(sc, "Device has no MCP!\n");
12423             load_code = bxe_nic_load_no_mcp(sc);
12424         }
12425 
12426         /* mark PMF if applicable */
12427         bxe_nic_load_pmf(sc, load_code);
12428 
12429         /* Init Function state controlling object */
12430         bxe_init_func_obj(sc);
12431 
12432         /* Initialize HW */
12433         if (bxe_init_hw(sc, load_code) != 0) {
12434             BLOGE(sc, "HW init failed\n");
12435             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12436             sc->state = BXE_STATE_CLOSED;
12437             rc = ENXIO;
12438             goto bxe_nic_load_error2;
12439         }
12440     }
12441 
12442     /* set ALWAYS_ALIVE bit in shmem */
12443     sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
12444     bxe_drv_pulse(sc);
12445     sc->flags |= BXE_NO_PULSE;
12446 
12447     /* attach interrupts */
12448     if (bxe_interrupt_attach(sc) != 0) {
12449         sc->state = BXE_STATE_CLOSED;
12450         rc = ENXIO;
12451         goto bxe_nic_load_error2;
12452     }
12453 
12454     bxe_nic_init(sc, load_code);
12455 
12456     /* Init per-function objects */
12457     if (IS_PF(sc)) {
12458         bxe_init_objs(sc);
12459         // XXX bxe_iov_nic_init(sc);
12460 
12461         /* set AFEX default VLAN tag to an invalid value */
12462         sc->devinfo.mf_info.afex_def_vlan_tag = -1;
12463         // XXX bxe_nic_load_afex_dcc(sc, load_code);
12464 
12465         sc->state = BXE_STATE_OPENING_WAITING_PORT;
12466         rc = bxe_func_start(sc);
12467         if (rc) {
12468             BLOGE(sc, "Function start failed! rc = %d\n", rc);
12469             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12470             sc->state = BXE_STATE_ERROR;
12471             goto bxe_nic_load_error3;
12472         }
12473 
12474         /* send LOAD_DONE command to MCP */
12475         if (!BXE_NOMCP(sc)) {
12476             load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12477             if (!load_code) {
12478                 BLOGE(sc, "MCP response failure, aborting\n");
12479                 sc->state = BXE_STATE_ERROR;
12480                 rc = ENXIO;
12481                 goto bxe_nic_load_error3;
12482             }
12483         }
12484 
12485         rc = bxe_setup_leading(sc);
12486         if (rc) {
12487             BLOGE(sc, "Setup leading failed! rc = %d\n", rc);
12488             sc->state = BXE_STATE_ERROR;
12489             goto bxe_nic_load_error3;
12490         }
12491 
12492         FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
12493             rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
12494             if (rc) {
12495                 BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc);
12496                 sc->state = BXE_STATE_ERROR;
12497                 goto bxe_nic_load_error3;
12498             }
12499         }
12500 
12501         rc = bxe_init_rss_pf(sc);
12502         if (rc) {
12503             BLOGE(sc, "PF RSS init failed\n");
12504             sc->state = BXE_STATE_ERROR;
12505             goto bxe_nic_load_error3;
12506         }
12507     }
12508     /* XXX VF */
12509 
12510     /* now when Clients are configured we are ready to work */
12511     sc->state = BXE_STATE_OPEN;
12512 
12513     /* Configure a ucast MAC */
12514     if (IS_PF(sc)) {
12515         rc = bxe_set_eth_mac(sc, TRUE);
12516     }
12517     if (rc) {
12518         BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc);
12519         sc->state = BXE_STATE_ERROR;
12520         goto bxe_nic_load_error3;
12521     }
12522 
12523     if (sc->port.pmf) {
12524         rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
12525         if (rc) {
12526             sc->state = BXE_STATE_ERROR;
12527             goto bxe_nic_load_error3;
12528         }
12529     }
12530 
12531     sc->link_params.feature_config_flags &=
12532         ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
12533 
12534     /* start fast path */
12535 
12536     /* Initialize Rx filter */
12537     bxe_set_rx_mode(sc);
12538 
12539     /* start the Tx */
12540     switch (/* XXX load_mode */LOAD_OPEN) {
12541     case LOAD_NORMAL:
12542     case LOAD_OPEN:
12543         break;
12544 
12545     case LOAD_DIAG:
12546     case LOAD_LOOPBACK_EXT:
12547         sc->state = BXE_STATE_DIAG;
12548         break;
12549 
12550     default:
12551         break;
12552     }
12553 
12554     if (sc->port.pmf) {
12555         bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
12556     } else {
12557         bxe_link_status_update(sc);
12558     }
12559 
12560     /* start the periodic timer callout */
12561     bxe_periodic_start(sc);
12562 
12563     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
12564         /* mark driver is loaded in shmem2 */
12565         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
12566         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
12567                   (val |
12568                    DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
12569                    DRV_FLAGS_CAPABILITIES_LOADED_L2));
12570     }
12571 
12572     /* wait for all pending SP commands to complete */
12573     if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
12574         BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
12575         bxe_periodic_stop(sc);
12576         bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
12577         return (ENXIO);
12578     }
12579 
12580     /* Tell the stack the driver is running! */
12581     if_setdrvflags(sc->ifp, IFF_DRV_RUNNING);
12582 
12583     BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
12584 
12585     return (0);
12586 
12587 bxe_nic_load_error3:
12588 
12589     if (IS_PF(sc)) {
12590         bxe_int_disable_sync(sc, 1);
12591 
12592         /* clean out queued objects */
12593         bxe_squeeze_objects(sc);
12594     }
12595 
12596     bxe_interrupt_detach(sc);
12597 
12598 bxe_nic_load_error2:
12599 
12600     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
12601         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
12602         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
12603     }
12604 
12605     sc->port.pmf = 0;
12606 
12607 bxe_nic_load_error1:
12608 
12609     /* clear pf_load status, as it was already set */
12610     if (IS_PF(sc)) {
12611         bxe_clear_pf_load(sc);
12612     }
12613 
12614 bxe_nic_load_error0:
12615 
12616     bxe_free_fw_stats_mem(sc);
12617     bxe_free_fp_buffers(sc);
12618     bxe_free_mem(sc);
12619 
12620     return (rc);
12621 }
12622 
12623 static int
12624 bxe_init_locked(struct bxe_softc *sc)
12625 {
12626     int other_engine = SC_PATH(sc) ? 0 : 1;
12627     uint8_t other_load_status, load_status;
12628     uint8_t global = FALSE;
12629     int rc;
12630 
12631     BXE_CORE_LOCK_ASSERT(sc);
12632 
12633     /* check if the driver is already running */
12634     if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
12635         BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
12636         return (0);
12637     }
12638 
12639     bxe_set_power_state(sc, PCI_PM_D0);
12640 
12641     /*
12642      * If parity occurred during the unload, then attentions and/or
12643      * RECOVERY_IN_PROGRES may still be set. If so we want the first function
12644      * loaded on the current engine to complete the recovery. Parity recovery
12645      * is only relevant for PF driver.
12646      */
12647     if (IS_PF(sc)) {
12648         other_load_status = bxe_get_load_status(sc, other_engine);
12649         load_status = bxe_get_load_status(sc, SC_PATH(sc));
12650 
12651         if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
12652             bxe_chk_parity_attn(sc, &global, TRUE)) {
12653             do {
12654                 /*
12655                  * If there are attentions and they are in global blocks, set
12656                  * the GLOBAL_RESET bit regardless whether it will be this
12657                  * function that will complete the recovery or not.
12658                  */
12659                 if (global) {
12660                     bxe_set_reset_global(sc);
12661                 }
12662 
12663                 /*
12664                  * Only the first function on the current engine should try
12665                  * to recover in open. In case of attentions in global blocks
12666                  * only the first in the chip should try to recover.
12667                  */
12668                 if ((!load_status && (!global || !other_load_status)) &&
12669                     bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
12670                     BLOGI(sc, "Recovered during init\n");
12671                     break;
12672                 }
12673 
12674                 /* recovery has failed... */
12675                 bxe_set_power_state(sc, PCI_PM_D3hot);
12676                 sc->recovery_state = BXE_RECOVERY_FAILED;
12677 
12678                 BLOGE(sc, "Recovery flow hasn't properly "
12679                           "completed yet, try again later. "
12680                           "If you still see this message after a "
12681                           "few retries then power cycle is required.\n");
12682 
12683                 rc = ENXIO;
12684                 goto bxe_init_locked_done;
12685             } while (0);
12686         }
12687     }
12688 
12689     sc->recovery_state = BXE_RECOVERY_DONE;
12690 
12691     rc = bxe_nic_load(sc, LOAD_OPEN);
12692 
12693 bxe_init_locked_done:
12694 
12695     if (rc) {
12696         /* Tell the stack the driver is NOT running! */
12697         BLOGE(sc, "Initialization failed, "
12698                   "stack notified driver is NOT running!\n");
12699 	if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
12700     }
12701 
12702     return (rc);
12703 }
12704 
12705 static int
12706 bxe_stop_locked(struct bxe_softc *sc)
12707 {
12708     BXE_CORE_LOCK_ASSERT(sc);
12709     return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
12710 }
12711 
12712 /*
12713  * Handles controller initialization when called from an unlocked routine.
12714  * ifconfig calls this function.
12715  *
12716  * Returns:
12717  *   void
12718  */
12719 static void
12720 bxe_init(void *xsc)
12721 {
12722     struct bxe_softc *sc = (struct bxe_softc *)xsc;
12723 
12724     BXE_CORE_LOCK(sc);
12725     bxe_init_locked(sc);
12726     BXE_CORE_UNLOCK(sc);
12727 }
12728 
12729 static int
12730 bxe_init_ifnet(struct bxe_softc *sc)
12731 {
12732     if_t ifp;
12733     int capabilities;
12734 
12735     /* ifconfig entrypoint for media type/status reporting */
12736     ifmedia_init(&sc->ifmedia, IFM_IMASK,
12737                  bxe_ifmedia_update,
12738                  bxe_ifmedia_status);
12739 
12740     /* set the default interface values */
12741     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
12742     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
12743     ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
12744 
12745     sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
12746 
12747     /* allocate the ifnet structure */
12748     if ((ifp = if_gethandle(IFT_ETHER)) == NULL) {
12749         BLOGE(sc, "Interface allocation failed!\n");
12750         return (ENXIO);
12751     }
12752 
12753     if_setsoftc(ifp, sc);
12754     if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
12755     if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST));
12756     if_setioctlfn(ifp, bxe_ioctl);
12757     if_setstartfn(ifp, bxe_tx_start);
12758     if_setgetcounterfn(ifp, bxe_get_counter);
12759 #if __FreeBSD_version >= 800000
12760     if_settransmitfn(ifp, bxe_tx_mq_start);
12761     if_setqflushfn(ifp, bxe_mq_flush);
12762 #endif
12763 #ifdef FreeBSD8_0
12764     if_settimer(ifp, 0);
12765 #endif
12766     if_setinitfn(ifp, bxe_init);
12767     if_setmtu(ifp, sc->mtu);
12768     if_sethwassist(ifp, (CSUM_IP      |
12769                         CSUM_TCP      |
12770                         CSUM_UDP      |
12771                         CSUM_TSO      |
12772                         CSUM_TCP_IPV6 |
12773                         CSUM_UDP_IPV6));
12774 
12775     capabilities =
12776 #if __FreeBSD_version < 700000
12777         (IFCAP_VLAN_MTU       |
12778          IFCAP_VLAN_HWTAGGING |
12779          IFCAP_HWCSUM         |
12780          IFCAP_JUMBO_MTU      |
12781          IFCAP_LRO);
12782 #else
12783         (IFCAP_VLAN_MTU       |
12784          IFCAP_VLAN_HWTAGGING |
12785          IFCAP_VLAN_HWTSO     |
12786          IFCAP_VLAN_HWFILTER  |
12787          IFCAP_VLAN_HWCSUM    |
12788          IFCAP_HWCSUM         |
12789          IFCAP_JUMBO_MTU      |
12790          IFCAP_LRO            |
12791          IFCAP_TSO4           |
12792          IFCAP_TSO6           |
12793          IFCAP_WOL_MAGIC);
12794 #endif
12795     if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */
12796     if_setbaudrate(ifp, IF_Gbps(10));
12797 /* XXX */
12798     if_setsendqlen(ifp, sc->tx_ring_size);
12799     if_setsendqready(ifp);
12800 /* XXX */
12801 
12802     sc->ifp = ifp;
12803 
12804     /* attach to the Ethernet interface list */
12805     ether_ifattach(ifp, sc->link_params.mac_addr);
12806 
12807     return (0);
12808 }
12809 
12810 static void
12811 bxe_deallocate_bars(struct bxe_softc *sc)
12812 {
12813     int i;
12814 
12815     for (i = 0; i < MAX_BARS; i++) {
12816         if (sc->bar[i].resource != NULL) {
12817             bus_release_resource(sc->dev,
12818                                  SYS_RES_MEMORY,
12819                                  sc->bar[i].rid,
12820                                  sc->bar[i].resource);
12821             BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
12822                   i, PCIR_BAR(i));
12823         }
12824     }
12825 }
12826 
12827 static int
12828 bxe_allocate_bars(struct bxe_softc *sc)
12829 {
12830     u_int flags;
12831     int i;
12832 
12833     memset(sc->bar, 0, sizeof(sc->bar));
12834 
12835     for (i = 0; i < MAX_BARS; i++) {
12836 
12837         /* memory resources reside at BARs 0, 2, 4 */
12838         /* Run `pciconf -lb` to see mappings */
12839         if ((i != 0) && (i != 2) && (i != 4)) {
12840             continue;
12841         }
12842 
12843         sc->bar[i].rid = PCIR_BAR(i);
12844 
12845         flags = RF_ACTIVE;
12846         if (i == 0) {
12847             flags |= RF_SHAREABLE;
12848         }
12849 
12850         if ((sc->bar[i].resource =
12851              bus_alloc_resource_any(sc->dev,
12852                                     SYS_RES_MEMORY,
12853                                     &sc->bar[i].rid,
12854                                     flags)) == NULL) {
12855             return (0);
12856         }
12857 
12858         sc->bar[i].tag    = rman_get_bustag(sc->bar[i].resource);
12859         sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
12860         sc->bar[i].kva    = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
12861 
12862         BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%ld) -> %p\n",
12863               i, PCIR_BAR(i),
12864               (void *)rman_get_start(sc->bar[i].resource),
12865               (void *)rman_get_end(sc->bar[i].resource),
12866               rman_get_size(sc->bar[i].resource),
12867               (void *)sc->bar[i].kva);
12868     }
12869 
12870     return (0);
12871 }
12872 
12873 static void
12874 bxe_get_function_num(struct bxe_softc *sc)
12875 {
12876     uint32_t val = 0;
12877 
12878     /*
12879      * Read the ME register to get the function number. The ME register
12880      * holds the relative-function number and absolute-function number. The
12881      * absolute-function number appears only in E2 and above. Before that
12882      * these bits always contained zero, therefore we cannot blindly use them.
12883      */
12884 
12885     val = REG_RD(sc, BAR_ME_REGISTER);
12886 
12887     sc->pfunc_rel =
12888         (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
12889     sc->path_id =
12890         (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
12891 
12892     if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
12893         sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
12894     } else {
12895         sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
12896     }
12897 
12898     BLOGD(sc, DBG_LOAD,
12899           "Relative function %d, Absolute function %d, Path %d\n",
12900           sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
12901 }
12902 
12903 static uint32_t
12904 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
12905 {
12906     uint32_t shmem2_size;
12907     uint32_t offset;
12908     uint32_t mf_cfg_offset_value;
12909 
12910     /* Non 57712 */
12911     offset = (SHMEM_RD(sc, func_mb) +
12912               (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
12913 
12914     /* 57712 plus */
12915     if (sc->devinfo.shmem2_base != 0) {
12916         shmem2_size = SHMEM2_RD(sc, size);
12917         if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
12918             mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
12919             if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
12920                 offset = mf_cfg_offset_value;
12921             }
12922         }
12923     }
12924 
12925     return (offset);
12926 }
12927 
12928 static uint32_t
12929 bxe_pcie_capability_read(struct bxe_softc *sc,
12930                          int    reg,
12931                          int    width)
12932 {
12933     int pcie_reg;
12934 
12935     /* ensure PCIe capability is enabled */
12936     if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
12937         if (pcie_reg != 0) {
12938             BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
12939             return (pci_read_config(sc->dev, (pcie_reg + reg), width));
12940         }
12941     }
12942 
12943     BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
12944 
12945     return (0);
12946 }
12947 
12948 static uint8_t
12949 bxe_is_pcie_pending(struct bxe_softc *sc)
12950 {
12951     return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) &
12952             PCIM_EXP_STA_TRANSACTION_PND);
12953 }
12954 
12955 /*
12956  * Walk the PCI capabiites list for the device to find what features are
12957  * supported. These capabilites may be enabled/disabled by firmware so it's
12958  * best to walk the list rather than make assumptions.
12959  */
12960 static void
12961 bxe_probe_pci_caps(struct bxe_softc *sc)
12962 {
12963     uint16_t link_status;
12964     int reg;
12965 
12966     /* check if PCI Power Management is enabled */
12967     if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
12968         if (reg != 0) {
12969             BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
12970 
12971             sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
12972             sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
12973         }
12974     }
12975 
12976     link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2);
12977 
12978     /* handle PCIe 2.0 workarounds for 57710 */
12979     if (CHIP_IS_E1(sc)) {
12980         /* workaround for 57710 errata E4_57710_27462 */
12981         sc->devinfo.pcie_link_speed =
12982             (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
12983 
12984         /* workaround for 57710 errata E4_57710_27488 */
12985         sc->devinfo.pcie_link_width =
12986             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
12987         if (sc->devinfo.pcie_link_speed > 1) {
12988             sc->devinfo.pcie_link_width =
12989                 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1;
12990         }
12991     } else {
12992         sc->devinfo.pcie_link_speed =
12993             (link_status & PCIM_LINK_STA_SPEED);
12994         sc->devinfo.pcie_link_width =
12995             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
12996     }
12997 
12998     BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
12999           sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
13000 
13001     sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
13002     sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
13003 
13004     /* check if MSI capability is enabled */
13005     if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
13006         if (reg != 0) {
13007             BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
13008 
13009             sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
13010             sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
13011         }
13012     }
13013 
13014     /* check if MSI-X capability is enabled */
13015     if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
13016         if (reg != 0) {
13017             BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
13018 
13019             sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
13020             sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
13021         }
13022     }
13023 }
13024 
13025 static int
13026 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
13027 {
13028     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13029     uint32_t val;
13030 
13031     /* get the outer vlan if we're in switch-dependent mode */
13032 
13033     val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13034     mf_info->ext_id = (uint16_t)val;
13035 
13036     mf_info->multi_vnics_mode = 1;
13037 
13038     if (!VALID_OVLAN(mf_info->ext_id)) {
13039         BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
13040         return (1);
13041     }
13042 
13043     /* get the capabilities */
13044     if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13045         FUNC_MF_CFG_PROTOCOL_ISCSI) {
13046         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
13047     } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13048                FUNC_MF_CFG_PROTOCOL_FCOE) {
13049         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
13050     } else {
13051         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
13052     }
13053 
13054     mf_info->vnics_per_port =
13055         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13056 
13057     return (0);
13058 }
13059 
13060 static uint32_t
13061 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
13062 {
13063     uint32_t retval = 0;
13064     uint32_t val;
13065 
13066     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13067 
13068     if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
13069         if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
13070             retval |= MF_PROTO_SUPPORT_ETHERNET;
13071         }
13072         if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
13073             retval |= MF_PROTO_SUPPORT_ISCSI;
13074         }
13075         if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
13076             retval |= MF_PROTO_SUPPORT_FCOE;
13077         }
13078     }
13079 
13080     return (retval);
13081 }
13082 
13083 static int
13084 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
13085 {
13086     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13087     uint32_t val;
13088 
13089     /*
13090      * There is no outer vlan if we're in switch-independent mode.
13091      * If the mac is valid then assume multi-function.
13092      */
13093 
13094     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13095 
13096     mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
13097 
13098     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13099 
13100     mf_info->vnics_per_port =
13101         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13102 
13103     return (0);
13104 }
13105 
13106 static int
13107 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13108 {
13109     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13110     uint32_t e1hov_tag;
13111     uint32_t func_config;
13112     uint32_t niv_config;
13113 
13114     mf_info->multi_vnics_mode = 1;
13115 
13116     e1hov_tag   = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13117     func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13118     niv_config  = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13119 
13120     mf_info->ext_id =
13121         (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13122                    FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13123 
13124     mf_info->default_vlan =
13125         (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13126                    FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13127 
13128     mf_info->niv_allowed_priorities =
13129         (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13130                   FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13131 
13132     mf_info->niv_default_cos =
13133         (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13134                   FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13135 
13136     mf_info->afex_vlan_mode =
13137         ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13138          FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13139 
13140     mf_info->niv_mba_enabled =
13141         ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13142          FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13143 
13144     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13145 
13146     mf_info->vnics_per_port =
13147         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13148 
13149     return (0);
13150 }
13151 
13152 static int
13153 bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13154 {
13155     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13156     uint32_t mf_cfg1;
13157     uint32_t mf_cfg2;
13158     uint32_t ovlan1;
13159     uint32_t ovlan2;
13160     uint8_t i, j;
13161 
13162     BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13163           SC_PORT(sc));
13164     BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13165           mf_info->mf_config[SC_VN(sc)]);
13166     BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13167           mf_info->multi_vnics_mode);
13168     BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13169           mf_info->vnics_per_port);
13170     BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13171           mf_info->ext_id);
13172     BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13173           mf_info->min_bw[0], mf_info->min_bw[1],
13174           mf_info->min_bw[2], mf_info->min_bw[3]);
13175     BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13176           mf_info->max_bw[0], mf_info->max_bw[1],
13177           mf_info->max_bw[2], mf_info->max_bw[3]);
13178     BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13179           sc->mac_addr_str);
13180 
13181     /* various MF mode sanity checks... */
13182 
13183     if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13184         BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13185               SC_PORT(sc));
13186         return (1);
13187     }
13188 
13189     if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13190         BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13191               mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13192         return (1);
13193     }
13194 
13195     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13196         /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13197         if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13198             BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13199                   SC_VN(sc), OVLAN(sc));
13200             return (1);
13201         }
13202 
13203         if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13204             BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13205                   mf_info->multi_vnics_mode, OVLAN(sc));
13206             return (1);
13207         }
13208 
13209         /*
13210          * Verify all functions are either MF or SF mode. If MF, make sure
13211          * sure that all non-hidden functions have a valid ovlan. If SF,
13212          * make sure that all non-hidden functions have an invalid ovlan.
13213          */
13214         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13215             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13216             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13217             if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13218                 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13219                  ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13220                 BLOGE(sc, "mf_mode=SD function %d MF config "
13221                           "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13222                       i, mf_info->multi_vnics_mode, ovlan1);
13223                 return (1);
13224             }
13225         }
13226 
13227         /* Verify all funcs on the same port each have a different ovlan. */
13228         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13229             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13230             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13231             /* iterate from the next function on the port to the max func */
13232             for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13233                 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13234                 ovlan2  = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13235                 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13236                     VALID_OVLAN(ovlan1) &&
13237                     !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13238                     VALID_OVLAN(ovlan2) &&
13239                     (ovlan1 == ovlan2)) {
13240                     BLOGE(sc, "mf_mode=SD functions %d and %d "
13241                               "have the same ovlan (%d)\n",
13242                           i, j, ovlan1);
13243                     return (1);
13244                 }
13245             }
13246         }
13247     } /* MULTI_FUNCTION_SD */
13248 
13249     return (0);
13250 }
13251 
13252 static int
13253 bxe_get_mf_cfg_info(struct bxe_softc *sc)
13254 {
13255     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13256     uint32_t val, mac_upper;
13257     uint8_t i, vnic;
13258 
13259     /* initialize mf_info defaults */
13260     mf_info->vnics_per_port   = 1;
13261     mf_info->multi_vnics_mode = FALSE;
13262     mf_info->path_has_ovlan   = FALSE;
13263     mf_info->mf_mode          = SINGLE_FUNCTION;
13264 
13265     if (!CHIP_IS_MF_CAP(sc)) {
13266         return (0);
13267     }
13268 
13269     if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13270         BLOGE(sc, "Invalid mf_cfg_base!\n");
13271         return (1);
13272     }
13273 
13274     /* get the MF mode (switch dependent / independent / single-function) */
13275 
13276     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13277 
13278     switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13279     {
13280     case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13281 
13282         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13283 
13284         /* check for legal upper mac bytes */
13285         if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13286             mf_info->mf_mode = MULTI_FUNCTION_SI;
13287         } else {
13288             BLOGE(sc, "Invalid config for Switch Independent mode\n");
13289         }
13290 
13291         break;
13292 
13293     case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13294     case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13295 
13296         /* get outer vlan configuration */
13297         val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13298 
13299         if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13300             FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13301             mf_info->mf_mode = MULTI_FUNCTION_SD;
13302         } else {
13303             BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13304         }
13305 
13306         break;
13307 
13308     case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13309 
13310         /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13311         return (0);
13312 
13313     case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13314 
13315         /*
13316          * Mark MF mode as NIV if MCP version includes NPAR-SD support
13317          * and the MAC address is valid.
13318          */
13319         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13320 
13321         if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13322             (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13323             mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13324         } else {
13325             BLOGE(sc, "Invalid config for AFEX mode\n");
13326         }
13327 
13328         break;
13329 
13330     default:
13331 
13332         BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13333               (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13334 
13335         return (1);
13336     }
13337 
13338     /* set path mf_mode (which could be different than function mf_mode) */
13339     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13340         mf_info->path_has_ovlan = TRUE;
13341     } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13342         /*
13343          * Decide on path multi vnics mode. If we're not in MF mode and in
13344          * 4-port mode, this is good enough to check vnic-0 of the other port
13345          * on the same path
13346          */
13347         if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13348             uint8_t other_port = !(PORT_ID(sc) & 1);
13349             uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13350 
13351             val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13352 
13353             mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13354         }
13355     }
13356 
13357     if (mf_info->mf_mode == SINGLE_FUNCTION) {
13358         /* invalid MF config */
13359         if (SC_VN(sc) >= 1) {
13360             BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13361             return (1);
13362         }
13363 
13364         return (0);
13365     }
13366 
13367     /* get the MF configuration */
13368     mf_info->mf_config[SC_VN(sc)] =
13369         MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13370 
13371     switch(mf_info->mf_mode)
13372     {
13373     case MULTI_FUNCTION_SD:
13374 
13375         bxe_get_shmem_mf_cfg_info_sd(sc);
13376         break;
13377 
13378     case MULTI_FUNCTION_SI:
13379 
13380         bxe_get_shmem_mf_cfg_info_si(sc);
13381         break;
13382 
13383     case MULTI_FUNCTION_AFEX:
13384 
13385         bxe_get_shmem_mf_cfg_info_niv(sc);
13386         break;
13387 
13388     default:
13389 
13390         BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13391               mf_info->mf_mode);
13392         return (1);
13393     }
13394 
13395     /* get the congestion management parameters */
13396 
13397     vnic = 0;
13398     FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13399         /* get min/max bw */
13400         val = MFCFG_RD(sc, func_mf_config[i].config);
13401         mf_info->min_bw[vnic] =
13402             ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13403         mf_info->max_bw[vnic] =
13404             ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13405         vnic++;
13406     }
13407 
13408     return (bxe_check_valid_mf_cfg(sc));
13409 }
13410 
13411 static int
13412 bxe_get_shmem_info(struct bxe_softc *sc)
13413 {
13414     int port;
13415     uint32_t mac_hi, mac_lo, val;
13416 
13417     port = SC_PORT(sc);
13418     mac_hi = mac_lo = 0;
13419 
13420     sc->link_params.sc   = sc;
13421     sc->link_params.port = port;
13422 
13423     /* get the hardware config info */
13424     sc->devinfo.hw_config =
13425         SHMEM_RD(sc, dev_info.shared_hw_config.config);
13426     sc->devinfo.hw_config2 =
13427         SHMEM_RD(sc, dev_info.shared_hw_config.config2);
13428 
13429     sc->link_params.hw_led_mode =
13430         ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
13431          SHARED_HW_CFG_LED_MODE_SHIFT);
13432 
13433     /* get the port feature config */
13434     sc->port.config =
13435         SHMEM_RD(sc, dev_info.port_feature_config[port].config),
13436 
13437     /* get the link params */
13438     sc->link_params.speed_cap_mask[0] =
13439         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
13440     sc->link_params.speed_cap_mask[1] =
13441         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
13442 
13443     /* get the lane config */
13444     sc->link_params.lane_config =
13445         SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
13446 
13447     /* get the link config */
13448     val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
13449     sc->port.link_config[ELINK_INT_PHY] = val;
13450     sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
13451     sc->port.link_config[ELINK_EXT_PHY1] =
13452         SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
13453 
13454     /* get the override preemphasis flag and enable it or turn it off */
13455     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13456     if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
13457         sc->link_params.feature_config_flags |=
13458             ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13459     } else {
13460         sc->link_params.feature_config_flags &=
13461             ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13462     }
13463 
13464     /* get the initial value of the link params */
13465     sc->link_params.multi_phy_config =
13466         SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
13467 
13468     /* get external phy info */
13469     sc->port.ext_phy_config =
13470         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
13471 
13472     /* get the multifunction configuration */
13473     bxe_get_mf_cfg_info(sc);
13474 
13475     /* get the mac address */
13476     if (IS_MF(sc)) {
13477         mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13478         mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
13479     } else {
13480         mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
13481         mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
13482     }
13483 
13484     if ((mac_lo == 0) && (mac_hi == 0)) {
13485         *sc->mac_addr_str = 0;
13486         BLOGE(sc, "No Ethernet address programmed!\n");
13487     } else {
13488         sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
13489         sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
13490         sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
13491         sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
13492         sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
13493         sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
13494         snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
13495                  "%02x:%02x:%02x:%02x:%02x:%02x",
13496                  sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
13497                  sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
13498                  sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
13499         BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
13500     }
13501 
13502     return (0);
13503 }
13504 
13505 static void
13506 bxe_get_tunable_params(struct bxe_softc *sc)
13507 {
13508     /* sanity checks */
13509 
13510     if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
13511         (bxe_interrupt_mode != INTR_MODE_MSI)  &&
13512         (bxe_interrupt_mode != INTR_MODE_MSIX)) {
13513         BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
13514         bxe_interrupt_mode = INTR_MODE_MSIX;
13515     }
13516 
13517     if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
13518         BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
13519         bxe_queue_count = 0;
13520     }
13521 
13522     if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
13523         if (bxe_max_rx_bufs == 0) {
13524             bxe_max_rx_bufs = RX_BD_USABLE;
13525         } else {
13526             BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
13527             bxe_max_rx_bufs = 2048;
13528         }
13529     }
13530 
13531     if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
13532         BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
13533         bxe_hc_rx_ticks = 25;
13534     }
13535 
13536     if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
13537         BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
13538         bxe_hc_tx_ticks = 50;
13539     }
13540 
13541     if (bxe_max_aggregation_size == 0) {
13542         bxe_max_aggregation_size = TPA_AGG_SIZE;
13543     }
13544 
13545     if (bxe_max_aggregation_size > 0xffff) {
13546         BLOGW(sc, "invalid max_aggregation_size (%d)\n",
13547               bxe_max_aggregation_size);
13548         bxe_max_aggregation_size = TPA_AGG_SIZE;
13549     }
13550 
13551     if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
13552         BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
13553         bxe_mrrs = -1;
13554     }
13555 
13556     if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
13557         BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
13558         bxe_autogreeen = 0;
13559     }
13560 
13561     if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
13562         BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
13563         bxe_udp_rss = 0;
13564     }
13565 
13566     /* pull in user settings */
13567 
13568     sc->interrupt_mode       = bxe_interrupt_mode;
13569     sc->max_rx_bufs          = bxe_max_rx_bufs;
13570     sc->hc_rx_ticks          = bxe_hc_rx_ticks;
13571     sc->hc_tx_ticks          = bxe_hc_tx_ticks;
13572     sc->max_aggregation_size = bxe_max_aggregation_size;
13573     sc->mrrs                 = bxe_mrrs;
13574     sc->autogreeen           = bxe_autogreeen;
13575     sc->udp_rss              = bxe_udp_rss;
13576 
13577     if (bxe_interrupt_mode == INTR_MODE_INTX) {
13578         sc->num_queues = 1;
13579     } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
13580         sc->num_queues =
13581             min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
13582                 MAX_RSS_CHAINS);
13583         if (sc->num_queues > mp_ncpus) {
13584             sc->num_queues = mp_ncpus;
13585         }
13586     }
13587 
13588     BLOGD(sc, DBG_LOAD,
13589           "User Config: "
13590           "debug=0x%lx "
13591           "interrupt_mode=%d "
13592           "queue_count=%d "
13593           "hc_rx_ticks=%d "
13594           "hc_tx_ticks=%d "
13595           "rx_budget=%d "
13596           "max_aggregation_size=%d "
13597           "mrrs=%d "
13598           "autogreeen=%d "
13599           "udp_rss=%d\n",
13600           bxe_debug,
13601           sc->interrupt_mode,
13602           sc->num_queues,
13603           sc->hc_rx_ticks,
13604           sc->hc_tx_ticks,
13605           bxe_rx_budget,
13606           sc->max_aggregation_size,
13607           sc->mrrs,
13608           sc->autogreeen,
13609           sc->udp_rss);
13610 }
13611 
13612 static void
13613 bxe_media_detect(struct bxe_softc *sc)
13614 {
13615     uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
13616     switch (sc->link_params.phy[phy_idx].media_type) {
13617     case ELINK_ETH_PHY_SFPP_10G_FIBER:
13618     case ELINK_ETH_PHY_XFP_FIBER:
13619         BLOGI(sc, "Found 10Gb Fiber media.\n");
13620         sc->media = IFM_10G_SR;
13621         break;
13622     case ELINK_ETH_PHY_SFP_1G_FIBER:
13623         BLOGI(sc, "Found 1Gb Fiber media.\n");
13624         sc->media = IFM_1000_SX;
13625         break;
13626     case ELINK_ETH_PHY_KR:
13627     case ELINK_ETH_PHY_CX4:
13628         BLOGI(sc, "Found 10GBase-CX4 media.\n");
13629         sc->media = IFM_10G_CX4;
13630         break;
13631     case ELINK_ETH_PHY_DA_TWINAX:
13632         BLOGI(sc, "Found 10Gb Twinax media.\n");
13633         sc->media = IFM_10G_TWINAX;
13634         break;
13635     case ELINK_ETH_PHY_BASE_T:
13636         if (sc->link_params.speed_cap_mask[0] &
13637             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
13638             BLOGI(sc, "Found 10GBase-T media.\n");
13639             sc->media = IFM_10G_T;
13640         } else {
13641             BLOGI(sc, "Found 1000Base-T media.\n");
13642             sc->media = IFM_1000_T;
13643         }
13644         break;
13645     case ELINK_ETH_PHY_NOT_PRESENT:
13646         BLOGI(sc, "Media not present.\n");
13647         sc->media = 0;
13648         break;
13649     case ELINK_ETH_PHY_UNSPECIFIED:
13650     default:
13651         BLOGI(sc, "Unknown media!\n");
13652         sc->media = 0;
13653         break;
13654     }
13655 }
13656 
13657 #define GET_FIELD(value, fname)                     \
13658     (((value) & (fname##_MASK)) >> (fname##_SHIFT))
13659 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
13660 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
13661 
13662 static int
13663 bxe_get_igu_cam_info(struct bxe_softc *sc)
13664 {
13665     int pfid = SC_FUNC(sc);
13666     int igu_sb_id;
13667     uint32_t val;
13668     uint8_t fid, igu_sb_cnt = 0;
13669 
13670     sc->igu_base_sb = 0xff;
13671 
13672     if (CHIP_INT_MODE_IS_BC(sc)) {
13673         int vn = SC_VN(sc);
13674         igu_sb_cnt = sc->igu_sb_cnt;
13675         sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
13676                            FP_SB_MAX_E1x);
13677         sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
13678                           (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
13679         return (0);
13680     }
13681 
13682     /* IGU in normal mode - read CAM */
13683     for (igu_sb_id = 0;
13684          igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
13685          igu_sb_id++) {
13686         val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
13687         if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
13688             continue;
13689         }
13690         fid = IGU_FID(val);
13691         if ((fid & IGU_FID_ENCODE_IS_PF)) {
13692             if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
13693                 continue;
13694             }
13695             if (IGU_VEC(val) == 0) {
13696                 /* default status block */
13697                 sc->igu_dsb_id = igu_sb_id;
13698             } else {
13699                 if (sc->igu_base_sb == 0xff) {
13700                     sc->igu_base_sb = igu_sb_id;
13701                 }
13702                 igu_sb_cnt++;
13703             }
13704         }
13705     }
13706 
13707     /*
13708      * Due to new PF resource allocation by MFW T7.4 and above, it's optional
13709      * that number of CAM entries will not be equal to the value advertised in
13710      * PCI. Driver should use the minimal value of both as the actual status
13711      * block count
13712      */
13713     sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
13714 
13715     if (igu_sb_cnt == 0) {
13716         BLOGE(sc, "CAM configuration error\n");
13717         return (-1);
13718     }
13719 
13720     return (0);
13721 }
13722 
13723 /*
13724  * Gather various information from the device config space, the device itself,
13725  * shmem, and the user input.
13726  */
13727 static int
13728 bxe_get_device_info(struct bxe_softc *sc)
13729 {
13730     uint32_t val;
13731     int rc;
13732 
13733     /* Get the data for the device */
13734     sc->devinfo.vendor_id    = pci_get_vendor(sc->dev);
13735     sc->devinfo.device_id    = pci_get_device(sc->dev);
13736     sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
13737     sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
13738 
13739     /* get the chip revision (chip metal comes from pci config space) */
13740     sc->devinfo.chip_id     =
13741     sc->link_params.chip_id =
13742         (((REG_RD(sc, MISC_REG_CHIP_NUM)                   & 0xffff) << 16) |
13743          ((REG_RD(sc, MISC_REG_CHIP_REV)                   & 0xf)    << 12) |
13744          (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf)    << 4)  |
13745          ((REG_RD(sc, MISC_REG_BOND_ID)                    & 0xf)    << 0));
13746 
13747     /* force 57811 according to MISC register */
13748     if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
13749         if (CHIP_IS_57810(sc)) {
13750             sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
13751                                    (sc->devinfo.chip_id & 0x0000ffff));
13752         } else if (CHIP_IS_57810_MF(sc)) {
13753             sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
13754                                    (sc->devinfo.chip_id & 0x0000ffff));
13755         }
13756         sc->devinfo.chip_id |= 0x1;
13757     }
13758 
13759     BLOGD(sc, DBG_LOAD,
13760           "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
13761           sc->devinfo.chip_id,
13762           ((sc->devinfo.chip_id >> 16) & 0xffff),
13763           ((sc->devinfo.chip_id >> 12) & 0xf),
13764           ((sc->devinfo.chip_id >>  4) & 0xff),
13765           ((sc->devinfo.chip_id >>  0) & 0xf));
13766 
13767     val = (REG_RD(sc, 0x2874) & 0x55);
13768     if ((sc->devinfo.chip_id & 0x1) ||
13769         (CHIP_IS_E1(sc) && val) ||
13770         (CHIP_IS_E1H(sc) && (val == 0x55))) {
13771         sc->flags |= BXE_ONE_PORT_FLAG;
13772         BLOGD(sc, DBG_LOAD, "single port device\n");
13773     }
13774 
13775     /* set the doorbell size */
13776     sc->doorbell_size = (1 << BXE_DB_SHIFT);
13777 
13778     /* determine whether the device is in 2 port or 4 port mode */
13779     sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
13780     if (CHIP_IS_E2E3(sc)) {
13781         /*
13782          * Read port4mode_en_ovwr[0]:
13783          *   If 1, four port mode is in port4mode_en_ovwr[1].
13784          *   If 0, four port mode is in port4mode_en[0].
13785          */
13786         val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
13787         if (val & 1) {
13788             val = ((val >> 1) & 1);
13789         } else {
13790             val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
13791         }
13792 
13793         sc->devinfo.chip_port_mode =
13794             (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
13795 
13796         BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
13797     }
13798 
13799     /* get the function and path info for the device */
13800     bxe_get_function_num(sc);
13801 
13802     /* get the shared memory base address */
13803     sc->devinfo.shmem_base     =
13804     sc->link_params.shmem_base =
13805         REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
13806     sc->devinfo.shmem2_base =
13807         REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
13808                                   MISC_REG_GENERIC_CR_0));
13809 
13810     BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
13811           sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
13812 
13813     if (!sc->devinfo.shmem_base) {
13814         /* this should ONLY prevent upcoming shmem reads */
13815         BLOGI(sc, "MCP not active\n");
13816         sc->flags |= BXE_NO_MCP_FLAG;
13817         return (0);
13818     }
13819 
13820     /* make sure the shared memory contents are valid */
13821     val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
13822     if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
13823         (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
13824         BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
13825         return (0);
13826     }
13827     BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
13828 
13829     /* get the bootcode version */
13830     sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
13831     snprintf(sc->devinfo.bc_ver_str,
13832              sizeof(sc->devinfo.bc_ver_str),
13833              "%d.%d.%d",
13834              ((sc->devinfo.bc_ver >> 24) & 0xff),
13835              ((sc->devinfo.bc_ver >> 16) & 0xff),
13836              ((sc->devinfo.bc_ver >>  8) & 0xff));
13837     BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
13838 
13839     /* get the bootcode shmem address */
13840     sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
13841     BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
13842 
13843     /* clean indirect addresses as they're not used */
13844     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
13845     if (IS_PF(sc)) {
13846         REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
13847         REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
13848         REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
13849         REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
13850         if (CHIP_IS_E1x(sc)) {
13851             REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
13852             REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
13853             REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
13854             REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
13855         }
13856 
13857         /*
13858          * Enable internal target-read (in case we are probed after PF
13859          * FLR). Must be done prior to any BAR read access. Only for
13860          * 57712 and up
13861          */
13862         if (!CHIP_IS_E1x(sc)) {
13863             REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13864         }
13865     }
13866 
13867     /* get the nvram size */
13868     val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
13869     sc->devinfo.flash_size =
13870         (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
13871     BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
13872 
13873     /* get PCI capabilites */
13874     bxe_probe_pci_caps(sc);
13875 
13876     bxe_set_power_state(sc, PCI_PM_D0);
13877 
13878     /* get various configuration parameters from shmem */
13879     bxe_get_shmem_info(sc);
13880 
13881     if (sc->devinfo.pcie_msix_cap_reg != 0) {
13882         val = pci_read_config(sc->dev,
13883                               (sc->devinfo.pcie_msix_cap_reg +
13884                                PCIR_MSIX_CTRL),
13885                               2);
13886         sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
13887     } else {
13888         sc->igu_sb_cnt = 1;
13889     }
13890 
13891     sc->igu_base_addr = BAR_IGU_INTMEM;
13892 
13893     /* initialize IGU parameters */
13894     if (CHIP_IS_E1x(sc)) {
13895         sc->devinfo.int_block = INT_BLOCK_HC;
13896         sc->igu_dsb_id = DEF_SB_IGU_ID;
13897         sc->igu_base_sb = 0;
13898     } else {
13899         sc->devinfo.int_block = INT_BLOCK_IGU;
13900 
13901         /* do not allow device reset during IGU info preocessing */
13902         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
13903 
13904         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
13905 
13906         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
13907             int tout = 5000;
13908 
13909             BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
13910 
13911             val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
13912             REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
13913             REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
13914 
13915             while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
13916                 tout--;
13917                 DELAY(1000);
13918             }
13919 
13920             if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
13921                 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
13922                 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
13923                 return (-1);
13924             }
13925         }
13926 
13927         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
13928             BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
13929             sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
13930         } else {
13931             BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
13932         }
13933 
13934         rc = bxe_get_igu_cam_info(sc);
13935 
13936         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
13937 
13938         if (rc) {
13939             return (rc);
13940         }
13941     }
13942 
13943     /*
13944      * Get base FW non-default (fast path) status block ID. This value is
13945      * used to initialize the fw_sb_id saved on the fp/queue structure to
13946      * determine the id used by the FW.
13947      */
13948     if (CHIP_IS_E1x(sc)) {
13949         sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
13950     } else {
13951         /*
13952          * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
13953          * the same queue are indicated on the same IGU SB). So we prefer
13954          * FW and IGU SBs to be the same value.
13955          */
13956         sc->base_fw_ndsb = sc->igu_base_sb;
13957     }
13958 
13959     BLOGD(sc, DBG_LOAD,
13960           "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
13961           sc->igu_dsb_id, sc->igu_base_sb,
13962           sc->igu_sb_cnt, sc->base_fw_ndsb);
13963 
13964     elink_phy_probe(&sc->link_params);
13965 
13966     return (0);
13967 }
13968 
13969 static void
13970 bxe_link_settings_supported(struct bxe_softc *sc,
13971                             uint32_t         switch_cfg)
13972 {
13973     uint32_t cfg_size = 0;
13974     uint32_t idx;
13975     uint8_t port = SC_PORT(sc);
13976 
13977     /* aggregation of supported attributes of all external phys */
13978     sc->port.supported[0] = 0;
13979     sc->port.supported[1] = 0;
13980 
13981     switch (sc->link_params.num_phys) {
13982     case 1:
13983         sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
13984         cfg_size = 1;
13985         break;
13986     case 2:
13987         sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
13988         cfg_size = 1;
13989         break;
13990     case 3:
13991         if (sc->link_params.multi_phy_config &
13992             PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
13993             sc->port.supported[1] =
13994                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
13995             sc->port.supported[0] =
13996                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
13997         } else {
13998             sc->port.supported[0] =
13999                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
14000             sc->port.supported[1] =
14001                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
14002         }
14003         cfg_size = 2;
14004         break;
14005     }
14006 
14007     if (!(sc->port.supported[0] || sc->port.supported[1])) {
14008         BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
14009               SHMEM_RD(sc,
14010                        dev_info.port_hw_config[port].external_phy_config),
14011               SHMEM_RD(sc,
14012                        dev_info.port_hw_config[port].external_phy_config2));
14013         return;
14014     }
14015 
14016     if (CHIP_IS_E3(sc))
14017         sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
14018     else {
14019         switch (switch_cfg) {
14020         case ELINK_SWITCH_CFG_1G:
14021             sc->port.phy_addr =
14022                 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
14023             break;
14024         case ELINK_SWITCH_CFG_10G:
14025             sc->port.phy_addr =
14026                 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
14027             break;
14028         default:
14029             BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
14030                   sc->port.link_config[0]);
14031             return;
14032         }
14033     }
14034 
14035     BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
14036 
14037     /* mask what we support according to speed_cap_mask per configuration */
14038     for (idx = 0; idx < cfg_size; idx++) {
14039         if (!(sc->link_params.speed_cap_mask[idx] &
14040               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
14041             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
14042         }
14043 
14044         if (!(sc->link_params.speed_cap_mask[idx] &
14045               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
14046             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
14047         }
14048 
14049         if (!(sc->link_params.speed_cap_mask[idx] &
14050               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
14051             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
14052         }
14053 
14054         if (!(sc->link_params.speed_cap_mask[idx] &
14055               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
14056             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
14057         }
14058 
14059         if (!(sc->link_params.speed_cap_mask[idx] &
14060               PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
14061             sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
14062         }
14063 
14064         if (!(sc->link_params.speed_cap_mask[idx] &
14065               PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
14066             sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
14067         }
14068 
14069         if (!(sc->link_params.speed_cap_mask[idx] &
14070               PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
14071             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
14072         }
14073 
14074         if (!(sc->link_params.speed_cap_mask[idx] &
14075               PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
14076             sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
14077         }
14078     }
14079 
14080     BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
14081           sc->port.supported[0], sc->port.supported[1]);
14082 }
14083 
14084 static void
14085 bxe_link_settings_requested(struct bxe_softc *sc)
14086 {
14087     uint32_t link_config;
14088     uint32_t idx;
14089     uint32_t cfg_size = 0;
14090 
14091     sc->port.advertising[0] = 0;
14092     sc->port.advertising[1] = 0;
14093 
14094     switch (sc->link_params.num_phys) {
14095     case 1:
14096     case 2:
14097         cfg_size = 1;
14098         break;
14099     case 3:
14100         cfg_size = 2;
14101         break;
14102     }
14103 
14104     for (idx = 0; idx < cfg_size; idx++) {
14105         sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14106         link_config = sc->port.link_config[idx];
14107 
14108         switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14109         case PORT_FEATURE_LINK_SPEED_AUTO:
14110             if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14111                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14112                 sc->port.advertising[idx] |= sc->port.supported[idx];
14113                 if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14114                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14115                     sc->port.advertising[idx] |=
14116                         (ELINK_SUPPORTED_100baseT_Half |
14117                          ELINK_SUPPORTED_100baseT_Full);
14118             } else {
14119                 /* force 10G, no AN */
14120                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14121                 sc->port.advertising[idx] |=
14122                     (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14123                 continue;
14124             }
14125             break;
14126 
14127         case PORT_FEATURE_LINK_SPEED_10M_FULL:
14128             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14129                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14130                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14131                                               ADVERTISED_TP);
14132             } else {
14133                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14134                           "speed_cap_mask=0x%08x\n",
14135                       link_config, sc->link_params.speed_cap_mask[idx]);
14136                 return;
14137             }
14138             break;
14139 
14140         case PORT_FEATURE_LINK_SPEED_10M_HALF:
14141             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14142                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14143                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14144                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14145                                               ADVERTISED_TP);
14146             } else {
14147                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14148                           "speed_cap_mask=0x%08x\n",
14149                       link_config, sc->link_params.speed_cap_mask[idx]);
14150                 return;
14151             }
14152             break;
14153 
14154         case PORT_FEATURE_LINK_SPEED_100M_FULL:
14155             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14156                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14157                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14158                                               ADVERTISED_TP);
14159             } else {
14160                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14161                           "speed_cap_mask=0x%08x\n",
14162                       link_config, sc->link_params.speed_cap_mask[idx]);
14163                 return;
14164             }
14165             break;
14166 
14167         case PORT_FEATURE_LINK_SPEED_100M_HALF:
14168             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14169                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14170                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14171                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14172                                               ADVERTISED_TP);
14173             } else {
14174                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14175                           "speed_cap_mask=0x%08x\n",
14176                       link_config, sc->link_params.speed_cap_mask[idx]);
14177                 return;
14178             }
14179             break;
14180 
14181         case PORT_FEATURE_LINK_SPEED_1G:
14182             if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14183                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14184                 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14185                                               ADVERTISED_TP);
14186             } else {
14187                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14188                           "speed_cap_mask=0x%08x\n",
14189                       link_config, sc->link_params.speed_cap_mask[idx]);
14190                 return;
14191             }
14192             break;
14193 
14194         case PORT_FEATURE_LINK_SPEED_2_5G:
14195             if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14196                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14197                 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14198                                               ADVERTISED_TP);
14199             } else {
14200                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14201                           "speed_cap_mask=0x%08x\n",
14202                       link_config, sc->link_params.speed_cap_mask[idx]);
14203                 return;
14204             }
14205             break;
14206 
14207         case PORT_FEATURE_LINK_SPEED_10G_CX4:
14208             if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14209                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14210                 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14211                                               ADVERTISED_FIBRE);
14212             } else {
14213                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14214                           "speed_cap_mask=0x%08x\n",
14215                       link_config, sc->link_params.speed_cap_mask[idx]);
14216                 return;
14217             }
14218             break;
14219 
14220         case PORT_FEATURE_LINK_SPEED_20G:
14221             sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14222             break;
14223 
14224         default:
14225             BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14226                       "speed_cap_mask=0x%08x\n",
14227                   link_config, sc->link_params.speed_cap_mask[idx]);
14228             sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14229             sc->port.advertising[idx] = sc->port.supported[idx];
14230             break;
14231         }
14232 
14233         sc->link_params.req_flow_ctrl[idx] =
14234             (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14235 
14236         if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14237             if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14238                 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14239             } else {
14240                 bxe_set_requested_fc(sc);
14241             }
14242         }
14243 
14244         BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14245                             "req_flow_ctrl=0x%x advertising=0x%x\n",
14246               sc->link_params.req_line_speed[idx],
14247               sc->link_params.req_duplex[idx],
14248               sc->link_params.req_flow_ctrl[idx],
14249               sc->port.advertising[idx]);
14250     }
14251 }
14252 
14253 static void
14254 bxe_get_phy_info(struct bxe_softc *sc)
14255 {
14256     uint8_t port = SC_PORT(sc);
14257     uint32_t config = sc->port.config;
14258     uint32_t eee_mode;
14259 
14260     /* shmem data already read in bxe_get_shmem_info() */
14261 
14262     BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14263                         "link_config0=0x%08x\n",
14264                sc->link_params.lane_config,
14265                sc->link_params.speed_cap_mask[0],
14266                sc->port.link_config[0]);
14267 
14268     bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14269     bxe_link_settings_requested(sc);
14270 
14271     if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14272         sc->link_params.feature_config_flags |=
14273             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14274     } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14275         sc->link_params.feature_config_flags &=
14276             ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14277     } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14278         sc->link_params.feature_config_flags |=
14279             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14280     }
14281 
14282     /* configure link feature according to nvram value */
14283     eee_mode =
14284         (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14285           PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14286          PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14287     if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14288         sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14289                                     ELINK_EEE_MODE_ENABLE_LPI |
14290                                     ELINK_EEE_MODE_OUTPUT_TIME);
14291     } else {
14292         sc->link_params.eee_mode = 0;
14293     }
14294 
14295     /* get the media type */
14296     bxe_media_detect(sc);
14297 }
14298 
14299 static void
14300 bxe_get_params(struct bxe_softc *sc)
14301 {
14302     /* get user tunable params */
14303     bxe_get_tunable_params(sc);
14304 
14305     /* select the RX and TX ring sizes */
14306     sc->tx_ring_size = TX_BD_USABLE;
14307     sc->rx_ring_size = RX_BD_USABLE;
14308 
14309     /* XXX disable WoL */
14310     sc->wol = 0;
14311 }
14312 
14313 static void
14314 bxe_set_modes_bitmap(struct bxe_softc *sc)
14315 {
14316     uint32_t flags = 0;
14317 
14318     if (CHIP_REV_IS_FPGA(sc)) {
14319         SET_FLAGS(flags, MODE_FPGA);
14320     } else if (CHIP_REV_IS_EMUL(sc)) {
14321         SET_FLAGS(flags, MODE_EMUL);
14322     } else {
14323         SET_FLAGS(flags, MODE_ASIC);
14324     }
14325 
14326     if (CHIP_IS_MODE_4_PORT(sc)) {
14327         SET_FLAGS(flags, MODE_PORT4);
14328     } else {
14329         SET_FLAGS(flags, MODE_PORT2);
14330     }
14331 
14332     if (CHIP_IS_E2(sc)) {
14333         SET_FLAGS(flags, MODE_E2);
14334     } else if (CHIP_IS_E3(sc)) {
14335         SET_FLAGS(flags, MODE_E3);
14336         if (CHIP_REV(sc) == CHIP_REV_Ax) {
14337             SET_FLAGS(flags, MODE_E3_A0);
14338         } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14339             SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14340         }
14341     }
14342 
14343     if (IS_MF(sc)) {
14344         SET_FLAGS(flags, MODE_MF);
14345         switch (sc->devinfo.mf_info.mf_mode) {
14346         case MULTI_FUNCTION_SD:
14347             SET_FLAGS(flags, MODE_MF_SD);
14348             break;
14349         case MULTI_FUNCTION_SI:
14350             SET_FLAGS(flags, MODE_MF_SI);
14351             break;
14352         case MULTI_FUNCTION_AFEX:
14353             SET_FLAGS(flags, MODE_MF_AFEX);
14354             break;
14355         }
14356     } else {
14357         SET_FLAGS(flags, MODE_SF);
14358     }
14359 
14360 #if defined(__LITTLE_ENDIAN)
14361     SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14362 #else /* __BIG_ENDIAN */
14363     SET_FLAGS(flags, MODE_BIG_ENDIAN);
14364 #endif
14365 
14366     INIT_MODE_FLAGS(sc) = flags;
14367 }
14368 
14369 static int
14370 bxe_alloc_hsi_mem(struct bxe_softc *sc)
14371 {
14372     struct bxe_fastpath *fp;
14373     bus_addr_t busaddr;
14374     int max_agg_queues;
14375     int max_segments;
14376     bus_size_t max_size;
14377     bus_size_t max_seg_size;
14378     char buf[32];
14379     int rc;
14380     int i, j;
14381 
14382     /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14383 
14384     /* allocate the parent bus DMA tag */
14385     rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14386                             1,                        /* alignment */
14387                             0,                        /* boundary limit */
14388                             BUS_SPACE_MAXADDR,        /* restricted low */
14389                             BUS_SPACE_MAXADDR,        /* restricted hi */
14390                             NULL,                     /* addr filter() */
14391                             NULL,                     /* addr filter() arg */
14392                             BUS_SPACE_MAXSIZE_32BIT,  /* max map size */
14393                             BUS_SPACE_UNRESTRICTED,   /* num discontinuous */
14394                             BUS_SPACE_MAXSIZE_32BIT,  /* max seg size */
14395                             0,                        /* flags */
14396                             NULL,                     /* lock() */
14397                             NULL,                     /* lock() arg */
14398                             &sc->parent_dma_tag);     /* returned dma tag */
14399     if (rc != 0) {
14400         BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14401         return (1);
14402     }
14403 
14404     /************************/
14405     /* DEFAULT STATUS BLOCK */
14406     /************************/
14407 
14408     if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14409                       &sc->def_sb_dma, "default status block") != 0) {
14410         /* XXX */
14411         bus_dma_tag_destroy(sc->parent_dma_tag);
14412         return (1);
14413     }
14414 
14415     sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
14416 
14417     /***************/
14418     /* EVENT QUEUE */
14419     /***************/
14420 
14421     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14422                       &sc->eq_dma, "event queue") != 0) {
14423         /* XXX */
14424         bxe_dma_free(sc, &sc->def_sb_dma);
14425         sc->def_sb = NULL;
14426         bus_dma_tag_destroy(sc->parent_dma_tag);
14427         return (1);
14428     }
14429 
14430     sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
14431 
14432     /*************/
14433     /* SLOW PATH */
14434     /*************/
14435 
14436     if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
14437                       &sc->sp_dma, "slow path") != 0) {
14438         /* XXX */
14439         bxe_dma_free(sc, &sc->eq_dma);
14440         sc->eq = NULL;
14441         bxe_dma_free(sc, &sc->def_sb_dma);
14442         sc->def_sb = NULL;
14443         bus_dma_tag_destroy(sc->parent_dma_tag);
14444         return (1);
14445     }
14446 
14447     sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
14448 
14449     /*******************/
14450     /* SLOW PATH QUEUE */
14451     /*******************/
14452 
14453     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14454                       &sc->spq_dma, "slow path queue") != 0) {
14455         /* XXX */
14456         bxe_dma_free(sc, &sc->sp_dma);
14457         sc->sp = NULL;
14458         bxe_dma_free(sc, &sc->eq_dma);
14459         sc->eq = NULL;
14460         bxe_dma_free(sc, &sc->def_sb_dma);
14461         sc->def_sb = NULL;
14462         bus_dma_tag_destroy(sc->parent_dma_tag);
14463         return (1);
14464     }
14465 
14466     sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
14467 
14468     /***************************/
14469     /* FW DECOMPRESSION BUFFER */
14470     /***************************/
14471 
14472     if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
14473                       "fw decompression buffer") != 0) {
14474         /* XXX */
14475         bxe_dma_free(sc, &sc->spq_dma);
14476         sc->spq = NULL;
14477         bxe_dma_free(sc, &sc->sp_dma);
14478         sc->sp = NULL;
14479         bxe_dma_free(sc, &sc->eq_dma);
14480         sc->eq = NULL;
14481         bxe_dma_free(sc, &sc->def_sb_dma);
14482         sc->def_sb = NULL;
14483         bus_dma_tag_destroy(sc->parent_dma_tag);
14484         return (1);
14485     }
14486 
14487     sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
14488 
14489     if ((sc->gz_strm =
14490          malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
14491         /* XXX */
14492         bxe_dma_free(sc, &sc->gz_buf_dma);
14493         sc->gz_buf = NULL;
14494         bxe_dma_free(sc, &sc->spq_dma);
14495         sc->spq = NULL;
14496         bxe_dma_free(sc, &sc->sp_dma);
14497         sc->sp = NULL;
14498         bxe_dma_free(sc, &sc->eq_dma);
14499         sc->eq = NULL;
14500         bxe_dma_free(sc, &sc->def_sb_dma);
14501         sc->def_sb = NULL;
14502         bus_dma_tag_destroy(sc->parent_dma_tag);
14503         return (1);
14504     }
14505 
14506     /*************/
14507     /* FASTPATHS */
14508     /*************/
14509 
14510     /* allocate DMA memory for each fastpath structure */
14511     for (i = 0; i < sc->num_queues; i++) {
14512         fp = &sc->fp[i];
14513         fp->sc    = sc;
14514         fp->index = i;
14515 
14516         /*******************/
14517         /* FP STATUS BLOCK */
14518         /*******************/
14519 
14520         snprintf(buf, sizeof(buf), "fp %d status block", i);
14521         if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
14522                           &fp->sb_dma, buf) != 0) {
14523             /* XXX unwind and free previous fastpath allocations */
14524             BLOGE(sc, "Failed to alloc %s\n", buf);
14525             return (1);
14526         } else {
14527             if (CHIP_IS_E2E3(sc)) {
14528                 fp->status_block.e2_sb =
14529                     (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
14530             } else {
14531                 fp->status_block.e1x_sb =
14532                     (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
14533             }
14534         }
14535 
14536         /******************/
14537         /* FP TX BD CHAIN */
14538         /******************/
14539 
14540         snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
14541         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
14542                           &fp->tx_dma, buf) != 0) {
14543             /* XXX unwind and free previous fastpath allocations */
14544             BLOGE(sc, "Failed to alloc %s\n", buf);
14545             return (1);
14546         } else {
14547             fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
14548         }
14549 
14550         /* link together the tx bd chain pages */
14551         for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
14552             /* index into the tx bd chain array to last entry per page */
14553             struct eth_tx_next_bd *tx_next_bd =
14554                 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
14555             /* point to the next page and wrap from last page */
14556             busaddr = (fp->tx_dma.paddr +
14557                        (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
14558             tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
14559             tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
14560         }
14561 
14562         /******************/
14563         /* FP RX BD CHAIN */
14564         /******************/
14565 
14566         snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
14567         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
14568                           &fp->rx_dma, buf) != 0) {
14569             /* XXX unwind and free previous fastpath allocations */
14570             BLOGE(sc, "Failed to alloc %s\n", buf);
14571             return (1);
14572         } else {
14573             fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
14574         }
14575 
14576         /* link together the rx bd chain pages */
14577         for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
14578             /* index into the rx bd chain array to last entry per page */
14579             struct eth_rx_bd *rx_bd =
14580                 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
14581             /* point to the next page and wrap from last page */
14582             busaddr = (fp->rx_dma.paddr +
14583                        (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
14584             rx_bd->addr_hi = htole32(U64_HI(busaddr));
14585             rx_bd->addr_lo = htole32(U64_LO(busaddr));
14586         }
14587 
14588         /*******************/
14589         /* FP RX RCQ CHAIN */
14590         /*******************/
14591 
14592         snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
14593         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
14594                           &fp->rcq_dma, buf) != 0) {
14595             /* XXX unwind and free previous fastpath allocations */
14596             BLOGE(sc, "Failed to alloc %s\n", buf);
14597             return (1);
14598         } else {
14599             fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
14600         }
14601 
14602         /* link together the rcq chain pages */
14603         for (j = 1; j <= RCQ_NUM_PAGES; j++) {
14604             /* index into the rcq chain array to last entry per page */
14605             struct eth_rx_cqe_next_page *rx_cqe_next =
14606                 (struct eth_rx_cqe_next_page *)
14607                 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
14608             /* point to the next page and wrap from last page */
14609             busaddr = (fp->rcq_dma.paddr +
14610                        (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
14611             rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
14612             rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
14613         }
14614 
14615         /*******************/
14616         /* FP RX SGE CHAIN */
14617         /*******************/
14618 
14619         snprintf(buf, sizeof(buf), "fp %d sge chain", i);
14620         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
14621                           &fp->rx_sge_dma, buf) != 0) {
14622             /* XXX unwind and free previous fastpath allocations */
14623             BLOGE(sc, "Failed to alloc %s\n", buf);
14624             return (1);
14625         } else {
14626             fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
14627         }
14628 
14629         /* link together the sge chain pages */
14630         for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
14631             /* index into the rcq chain array to last entry per page */
14632             struct eth_rx_sge *rx_sge =
14633                 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
14634             /* point to the next page and wrap from last page */
14635             busaddr = (fp->rx_sge_dma.paddr +
14636                        (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
14637             rx_sge->addr_hi = htole32(U64_HI(busaddr));
14638             rx_sge->addr_lo = htole32(U64_LO(busaddr));
14639         }
14640 
14641         /***********************/
14642         /* FP TX MBUF DMA MAPS */
14643         /***********************/
14644 
14645         /* set required sizes before mapping to conserve resources */
14646         if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
14647             max_size     = BXE_TSO_MAX_SIZE;
14648             max_segments = BXE_TSO_MAX_SEGMENTS;
14649             max_seg_size = BXE_TSO_MAX_SEG_SIZE;
14650         } else {
14651             max_size     = (MCLBYTES * BXE_MAX_SEGMENTS);
14652             max_segments = BXE_MAX_SEGMENTS;
14653             max_seg_size = MCLBYTES;
14654         }
14655 
14656         /* create a dma tag for the tx mbufs */
14657         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14658                                 1,                  /* alignment */
14659                                 0,                  /* boundary limit */
14660                                 BUS_SPACE_MAXADDR,  /* restricted low */
14661                                 BUS_SPACE_MAXADDR,  /* restricted hi */
14662                                 NULL,               /* addr filter() */
14663                                 NULL,               /* addr filter() arg */
14664                                 max_size,           /* max map size */
14665                                 max_segments,       /* num discontinuous */
14666                                 max_seg_size,       /* max seg size */
14667                                 0,                  /* flags */
14668                                 NULL,               /* lock() */
14669                                 NULL,               /* lock() arg */
14670                                 &fp->tx_mbuf_tag);  /* returned dma tag */
14671         if (rc != 0) {
14672             /* XXX unwind and free previous fastpath allocations */
14673             BLOGE(sc, "Failed to create dma tag for "
14674                       "'fp %d tx mbufs' (%d)\n", i, rc);
14675             return (1);
14676         }
14677 
14678         /* create dma maps for each of the tx mbuf clusters */
14679         for (j = 0; j < TX_BD_TOTAL; j++) {
14680             if (bus_dmamap_create(fp->tx_mbuf_tag,
14681                                   BUS_DMA_NOWAIT,
14682                                   &fp->tx_mbuf_chain[j].m_map)) {
14683                 /* XXX unwind and free previous fastpath allocations */
14684                 BLOGE(sc, "Failed to create dma map for "
14685                           "'fp %d tx mbuf %d' (%d)\n", i, j, rc);
14686                 return (1);
14687             }
14688         }
14689 
14690         /***********************/
14691         /* FP RX MBUF DMA MAPS */
14692         /***********************/
14693 
14694         /* create a dma tag for the rx mbufs */
14695         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14696                                 1,                  /* alignment */
14697                                 0,                  /* boundary limit */
14698                                 BUS_SPACE_MAXADDR,  /* restricted low */
14699                                 BUS_SPACE_MAXADDR,  /* restricted hi */
14700                                 NULL,               /* addr filter() */
14701                                 NULL,               /* addr filter() arg */
14702                                 MJUM9BYTES,         /* max map size */
14703                                 1,                  /* num discontinuous */
14704                                 MJUM9BYTES,         /* max seg size */
14705                                 0,                  /* flags */
14706                                 NULL,               /* lock() */
14707                                 NULL,               /* lock() arg */
14708                                 &fp->rx_mbuf_tag);  /* returned dma tag */
14709         if (rc != 0) {
14710             /* XXX unwind and free previous fastpath allocations */
14711             BLOGE(sc, "Failed to create dma tag for "
14712                       "'fp %d rx mbufs' (%d)\n", i, rc);
14713             return (1);
14714         }
14715 
14716         /* create dma maps for each of the rx mbuf clusters */
14717         for (j = 0; j < RX_BD_TOTAL; j++) {
14718             if (bus_dmamap_create(fp->rx_mbuf_tag,
14719                                   BUS_DMA_NOWAIT,
14720                                   &fp->rx_mbuf_chain[j].m_map)) {
14721                 /* XXX unwind and free previous fastpath allocations */
14722                 BLOGE(sc, "Failed to create dma map for "
14723                           "'fp %d rx mbuf %d' (%d)\n", i, j, rc);
14724                 return (1);
14725             }
14726         }
14727 
14728         /* create dma map for the spare rx mbuf cluster */
14729         if (bus_dmamap_create(fp->rx_mbuf_tag,
14730                               BUS_DMA_NOWAIT,
14731                               &fp->rx_mbuf_spare_map)) {
14732             /* XXX unwind and free previous fastpath allocations */
14733             BLOGE(sc, "Failed to create dma map for "
14734                       "'fp %d spare rx mbuf' (%d)\n", i, rc);
14735             return (1);
14736         }
14737 
14738         /***************************/
14739         /* FP RX SGE MBUF DMA MAPS */
14740         /***************************/
14741 
14742         /* create a dma tag for the rx sge mbufs */
14743         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14744                                 1,                  /* alignment */
14745                                 0,                  /* boundary limit */
14746                                 BUS_SPACE_MAXADDR,  /* restricted low */
14747                                 BUS_SPACE_MAXADDR,  /* restricted hi */
14748                                 NULL,               /* addr filter() */
14749                                 NULL,               /* addr filter() arg */
14750                                 BCM_PAGE_SIZE,      /* max map size */
14751                                 1,                  /* num discontinuous */
14752                                 BCM_PAGE_SIZE,      /* max seg size */
14753                                 0,                  /* flags */
14754                                 NULL,               /* lock() */
14755                                 NULL,               /* lock() arg */
14756                                 &fp->rx_sge_mbuf_tag); /* returned dma tag */
14757         if (rc != 0) {
14758             /* XXX unwind and free previous fastpath allocations */
14759             BLOGE(sc, "Failed to create dma tag for "
14760                       "'fp %d rx sge mbufs' (%d)\n", i, rc);
14761             return (1);
14762         }
14763 
14764         /* create dma maps for the rx sge mbuf clusters */
14765         for (j = 0; j < RX_SGE_TOTAL; j++) {
14766             if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
14767                                   BUS_DMA_NOWAIT,
14768                                   &fp->rx_sge_mbuf_chain[j].m_map)) {
14769                 /* XXX unwind and free previous fastpath allocations */
14770                 BLOGE(sc, "Failed to create dma map for "
14771                           "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc);
14772                 return (1);
14773             }
14774         }
14775 
14776         /* create dma map for the spare rx sge mbuf cluster */
14777         if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
14778                               BUS_DMA_NOWAIT,
14779                               &fp->rx_sge_mbuf_spare_map)) {
14780             /* XXX unwind and free previous fastpath allocations */
14781             BLOGE(sc, "Failed to create dma map for "
14782                       "'fp %d spare rx sge mbuf' (%d)\n", i, rc);
14783             return (1);
14784         }
14785 
14786         /***************************/
14787         /* FP RX TPA MBUF DMA MAPS */
14788         /***************************/
14789 
14790         /* create dma maps for the rx tpa mbuf clusters */
14791         max_agg_queues = MAX_AGG_QS(sc);
14792 
14793         for (j = 0; j < max_agg_queues; j++) {
14794             if (bus_dmamap_create(fp->rx_mbuf_tag,
14795                                   BUS_DMA_NOWAIT,
14796                                   &fp->rx_tpa_info[j].bd.m_map)) {
14797                 /* XXX unwind and free previous fastpath allocations */
14798                 BLOGE(sc, "Failed to create dma map for "
14799                           "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc);
14800                 return (1);
14801             }
14802         }
14803 
14804         /* create dma map for the spare rx tpa mbuf cluster */
14805         if (bus_dmamap_create(fp->rx_mbuf_tag,
14806                               BUS_DMA_NOWAIT,
14807                               &fp->rx_tpa_info_mbuf_spare_map)) {
14808             /* XXX unwind and free previous fastpath allocations */
14809             BLOGE(sc, "Failed to create dma map for "
14810                       "'fp %d spare rx tpa mbuf' (%d)\n", i, rc);
14811             return (1);
14812         }
14813 
14814         bxe_init_sge_ring_bit_mask(fp);
14815     }
14816 
14817     return (0);
14818 }
14819 
14820 static void
14821 bxe_free_hsi_mem(struct bxe_softc *sc)
14822 {
14823     struct bxe_fastpath *fp;
14824     int max_agg_queues;
14825     int i, j;
14826 
14827     if (sc->parent_dma_tag == NULL) {
14828         return; /* assume nothing was allocated */
14829     }
14830 
14831     for (i = 0; i < sc->num_queues; i++) {
14832         fp = &sc->fp[i];
14833 
14834         /*******************/
14835         /* FP STATUS BLOCK */
14836         /*******************/
14837 
14838         bxe_dma_free(sc, &fp->sb_dma);
14839         memset(&fp->status_block, 0, sizeof(fp->status_block));
14840 
14841         /******************/
14842         /* FP TX BD CHAIN */
14843         /******************/
14844 
14845         bxe_dma_free(sc, &fp->tx_dma);
14846         fp->tx_chain = NULL;
14847 
14848         /******************/
14849         /* FP RX BD CHAIN */
14850         /******************/
14851 
14852         bxe_dma_free(sc, &fp->rx_dma);
14853         fp->rx_chain = NULL;
14854 
14855         /*******************/
14856         /* FP RX RCQ CHAIN */
14857         /*******************/
14858 
14859         bxe_dma_free(sc, &fp->rcq_dma);
14860         fp->rcq_chain = NULL;
14861 
14862         /*******************/
14863         /* FP RX SGE CHAIN */
14864         /*******************/
14865 
14866         bxe_dma_free(sc, &fp->rx_sge_dma);
14867         fp->rx_sge_chain = NULL;
14868 
14869         /***********************/
14870         /* FP TX MBUF DMA MAPS */
14871         /***********************/
14872 
14873         if (fp->tx_mbuf_tag != NULL) {
14874             for (j = 0; j < TX_BD_TOTAL; j++) {
14875                 if (fp->tx_mbuf_chain[j].m_map != NULL) {
14876                     bus_dmamap_unload(fp->tx_mbuf_tag,
14877                                       fp->tx_mbuf_chain[j].m_map);
14878                     bus_dmamap_destroy(fp->tx_mbuf_tag,
14879                                        fp->tx_mbuf_chain[j].m_map);
14880                 }
14881             }
14882 
14883             bus_dma_tag_destroy(fp->tx_mbuf_tag);
14884             fp->tx_mbuf_tag = NULL;
14885         }
14886 
14887         /***********************/
14888         /* FP RX MBUF DMA MAPS */
14889         /***********************/
14890 
14891         if (fp->rx_mbuf_tag != NULL) {
14892             for (j = 0; j < RX_BD_TOTAL; j++) {
14893                 if (fp->rx_mbuf_chain[j].m_map != NULL) {
14894                     bus_dmamap_unload(fp->rx_mbuf_tag,
14895                                       fp->rx_mbuf_chain[j].m_map);
14896                     bus_dmamap_destroy(fp->rx_mbuf_tag,
14897                                        fp->rx_mbuf_chain[j].m_map);
14898                 }
14899             }
14900 
14901             if (fp->rx_mbuf_spare_map != NULL) {
14902                 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
14903                 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
14904             }
14905 
14906             /***************************/
14907             /* FP RX TPA MBUF DMA MAPS */
14908             /***************************/
14909 
14910             max_agg_queues = MAX_AGG_QS(sc);
14911 
14912             for (j = 0; j < max_agg_queues; j++) {
14913                 if (fp->rx_tpa_info[j].bd.m_map != NULL) {
14914                     bus_dmamap_unload(fp->rx_mbuf_tag,
14915                                       fp->rx_tpa_info[j].bd.m_map);
14916                     bus_dmamap_destroy(fp->rx_mbuf_tag,
14917                                        fp->rx_tpa_info[j].bd.m_map);
14918                 }
14919             }
14920 
14921             if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
14922                 bus_dmamap_unload(fp->rx_mbuf_tag,
14923                                   fp->rx_tpa_info_mbuf_spare_map);
14924                 bus_dmamap_destroy(fp->rx_mbuf_tag,
14925                                    fp->rx_tpa_info_mbuf_spare_map);
14926             }
14927 
14928             bus_dma_tag_destroy(fp->rx_mbuf_tag);
14929             fp->rx_mbuf_tag = NULL;
14930         }
14931 
14932         /***************************/
14933         /* FP RX SGE MBUF DMA MAPS */
14934         /***************************/
14935 
14936         if (fp->rx_sge_mbuf_tag != NULL) {
14937             for (j = 0; j < RX_SGE_TOTAL; j++) {
14938                 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
14939                     bus_dmamap_unload(fp->rx_sge_mbuf_tag,
14940                                       fp->rx_sge_mbuf_chain[j].m_map);
14941                     bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
14942                                        fp->rx_sge_mbuf_chain[j].m_map);
14943                 }
14944             }
14945 
14946             if (fp->rx_sge_mbuf_spare_map != NULL) {
14947                 bus_dmamap_unload(fp->rx_sge_mbuf_tag,
14948                                   fp->rx_sge_mbuf_spare_map);
14949                 bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
14950                                    fp->rx_sge_mbuf_spare_map);
14951             }
14952 
14953             bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
14954             fp->rx_sge_mbuf_tag = NULL;
14955         }
14956     }
14957 
14958     /***************************/
14959     /* FW DECOMPRESSION BUFFER */
14960     /***************************/
14961 
14962     bxe_dma_free(sc, &sc->gz_buf_dma);
14963     sc->gz_buf = NULL;
14964     free(sc->gz_strm, M_DEVBUF);
14965     sc->gz_strm = NULL;
14966 
14967     /*******************/
14968     /* SLOW PATH QUEUE */
14969     /*******************/
14970 
14971     bxe_dma_free(sc, &sc->spq_dma);
14972     sc->spq = NULL;
14973 
14974     /*************/
14975     /* SLOW PATH */
14976     /*************/
14977 
14978     bxe_dma_free(sc, &sc->sp_dma);
14979     sc->sp = NULL;
14980 
14981     /***************/
14982     /* EVENT QUEUE */
14983     /***************/
14984 
14985     bxe_dma_free(sc, &sc->eq_dma);
14986     sc->eq = NULL;
14987 
14988     /************************/
14989     /* DEFAULT STATUS BLOCK */
14990     /************************/
14991 
14992     bxe_dma_free(sc, &sc->def_sb_dma);
14993     sc->def_sb = NULL;
14994 
14995     bus_dma_tag_destroy(sc->parent_dma_tag);
14996     sc->parent_dma_tag = NULL;
14997 }
14998 
14999 /*
15000  * Previous driver DMAE transaction may have occurred when pre-boot stage
15001  * ended and boot began. This would invalidate the addresses of the
15002  * transaction, resulting in was-error bit set in the PCI causing all
15003  * hw-to-host PCIe transactions to timeout. If this happened we want to clear
15004  * the interrupt which detected this from the pglueb and the was-done bit
15005  */
15006 static void
15007 bxe_prev_interrupted_dmae(struct bxe_softc *sc)
15008 {
15009     uint32_t val;
15010 
15011     if (!CHIP_IS_E1x(sc)) {
15012         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
15013         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
15014             BLOGD(sc, DBG_LOAD,
15015                   "Clearing 'was-error' bit that was set in pglueb");
15016             REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
15017         }
15018     }
15019 }
15020 
15021 static int
15022 bxe_prev_mcp_done(struct bxe_softc *sc)
15023 {
15024     uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
15025                                  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
15026     if (!rc) {
15027         BLOGE(sc, "MCP response failure, aborting\n");
15028         return (-1);
15029     }
15030 
15031     return (0);
15032 }
15033 
15034 static struct bxe_prev_list_node *
15035 bxe_prev_path_get_entry(struct bxe_softc *sc)
15036 {
15037     struct bxe_prev_list_node *tmp;
15038 
15039     LIST_FOREACH(tmp, &bxe_prev_list, node) {
15040         if ((sc->pcie_bus == tmp->bus) &&
15041             (sc->pcie_device == tmp->slot) &&
15042             (SC_PATH(sc) == tmp->path)) {
15043             return (tmp);
15044         }
15045     }
15046 
15047     return (NULL);
15048 }
15049 
15050 static uint8_t
15051 bxe_prev_is_path_marked(struct bxe_softc *sc)
15052 {
15053     struct bxe_prev_list_node *tmp;
15054     int rc = FALSE;
15055 
15056     mtx_lock(&bxe_prev_mtx);
15057 
15058     tmp = bxe_prev_path_get_entry(sc);
15059     if (tmp) {
15060         if (tmp->aer) {
15061             BLOGD(sc, DBG_LOAD,
15062                   "Path %d/%d/%d was marked by AER\n",
15063                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15064         } else {
15065             rc = TRUE;
15066             BLOGD(sc, DBG_LOAD,
15067                   "Path %d/%d/%d was already cleaned from previous drivers\n",
15068                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15069         }
15070     }
15071 
15072     mtx_unlock(&bxe_prev_mtx);
15073 
15074     return (rc);
15075 }
15076 
15077 static int
15078 bxe_prev_mark_path(struct bxe_softc *sc,
15079                    uint8_t          after_undi)
15080 {
15081     struct bxe_prev_list_node *tmp;
15082 
15083     mtx_lock(&bxe_prev_mtx);
15084 
15085     /* Check whether the entry for this path already exists */
15086     tmp = bxe_prev_path_get_entry(sc);
15087     if (tmp) {
15088         if (!tmp->aer) {
15089             BLOGD(sc, DBG_LOAD,
15090                   "Re-marking AER in path %d/%d/%d\n",
15091                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15092         } else {
15093             BLOGD(sc, DBG_LOAD,
15094                   "Removing AER indication from path %d/%d/%d\n",
15095                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15096             tmp->aer = 0;
15097         }
15098 
15099         mtx_unlock(&bxe_prev_mtx);
15100         return (0);
15101     }
15102 
15103     mtx_unlock(&bxe_prev_mtx);
15104 
15105     /* Create an entry for this path and add it */
15106     tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15107                  (M_NOWAIT | M_ZERO));
15108     if (!tmp) {
15109         BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15110         return (-1);
15111     }
15112 
15113     tmp->bus  = sc->pcie_bus;
15114     tmp->slot = sc->pcie_device;
15115     tmp->path = SC_PATH(sc);
15116     tmp->aer  = 0;
15117     tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15118 
15119     mtx_lock(&bxe_prev_mtx);
15120 
15121     BLOGD(sc, DBG_LOAD,
15122           "Marked path %d/%d/%d - finished previous unload\n",
15123           sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15124     LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15125 
15126     mtx_unlock(&bxe_prev_mtx);
15127 
15128     return (0);
15129 }
15130 
15131 static int
15132 bxe_do_flr(struct bxe_softc *sc)
15133 {
15134     int i;
15135 
15136     /* only E2 and onwards support FLR */
15137     if (CHIP_IS_E1x(sc)) {
15138         BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15139         return (-1);
15140     }
15141 
15142     /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15143     if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15144         BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15145               sc->devinfo.bc_ver);
15146         return (-1);
15147     }
15148 
15149     /* Wait for Transaction Pending bit clean */
15150     for (i = 0; i < 4; i++) {
15151         if (i) {
15152             DELAY(((1 << (i - 1)) * 100) * 1000);
15153         }
15154 
15155         if (!bxe_is_pcie_pending(sc)) {
15156             goto clear;
15157         }
15158     }
15159 
15160     BLOGE(sc, "PCIE transaction is not cleared, "
15161               "proceeding with reset anyway\n");
15162 
15163 clear:
15164 
15165     BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15166     bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15167 
15168     return (0);
15169 }
15170 
15171 struct bxe_mac_vals {
15172     uint32_t xmac_addr;
15173     uint32_t xmac_val;
15174     uint32_t emac_addr;
15175     uint32_t emac_val;
15176     uint32_t umac_addr;
15177     uint32_t umac_val;
15178     uint32_t bmac_addr;
15179     uint32_t bmac_val[2];
15180 };
15181 
15182 static void
15183 bxe_prev_unload_close_mac(struct bxe_softc *sc,
15184                           struct bxe_mac_vals *vals)
15185 {
15186     uint32_t val, base_addr, offset, mask, reset_reg;
15187     uint8_t mac_stopped = FALSE;
15188     uint8_t port = SC_PORT(sc);
15189     uint32_t wb_data[2];
15190 
15191     /* reset addresses as they also mark which values were changed */
15192     vals->bmac_addr = 0;
15193     vals->umac_addr = 0;
15194     vals->xmac_addr = 0;
15195     vals->emac_addr = 0;
15196 
15197     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15198 
15199     if (!CHIP_IS_E3(sc)) {
15200         val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15201         mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15202         if ((mask & reset_reg) && val) {
15203             BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15204             base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15205                                     : NIG_REG_INGRESS_BMAC0_MEM;
15206             offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15207                                     : BIGMAC_REGISTER_BMAC_CONTROL;
15208 
15209             /*
15210              * use rd/wr since we cannot use dmae. This is safe
15211              * since MCP won't access the bus due to the request
15212              * to unload, and no function on the path can be
15213              * loaded at this time.
15214              */
15215             wb_data[0] = REG_RD(sc, base_addr + offset);
15216             wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15217             vals->bmac_addr = base_addr + offset;
15218             vals->bmac_val[0] = wb_data[0];
15219             vals->bmac_val[1] = wb_data[1];
15220             wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15221             REG_WR(sc, vals->bmac_addr, wb_data[0]);
15222             REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15223         }
15224 
15225         BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15226         vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15227         vals->emac_val = REG_RD(sc, vals->emac_addr);
15228         REG_WR(sc, vals->emac_addr, 0);
15229         mac_stopped = TRUE;
15230     } else {
15231         if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15232             BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15233             base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15234             val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15235             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15236             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15237             vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15238             vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15239             REG_WR(sc, vals->xmac_addr, 0);
15240             mac_stopped = TRUE;
15241         }
15242 
15243         mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15244         if (mask & reset_reg) {
15245             BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15246             base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15247             vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15248             vals->umac_val = REG_RD(sc, vals->umac_addr);
15249             REG_WR(sc, vals->umac_addr, 0);
15250             mac_stopped = TRUE;
15251         }
15252     }
15253 
15254     if (mac_stopped) {
15255         DELAY(20000);
15256     }
15257 }
15258 
15259 #define BXE_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15260 #define BXE_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
15261 #define BXE_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
15262 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15263 
15264 static void
15265 bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15266                          uint8_t          port,
15267                          uint8_t          inc)
15268 {
15269     uint16_t rcq, bd;
15270     uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15271 
15272     rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15273     bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15274 
15275     tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15276     REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15277 
15278     BLOGD(sc, DBG_LOAD,
15279           "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15280           port, bd, rcq);
15281 }
15282 
15283 static int
15284 bxe_prev_unload_common(struct bxe_softc *sc)
15285 {
15286     uint32_t reset_reg, tmp_reg = 0, rc;
15287     uint8_t prev_undi = FALSE;
15288     struct bxe_mac_vals mac_vals;
15289     uint32_t timer_count = 1000;
15290     uint32_t prev_brb;
15291 
15292     /*
15293      * It is possible a previous function received 'common' answer,
15294      * but hasn't loaded yet, therefore creating a scenario of
15295      * multiple functions receiving 'common' on the same path.
15296      */
15297     BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15298 
15299     memset(&mac_vals, 0, sizeof(mac_vals));
15300 
15301     if (bxe_prev_is_path_marked(sc)) {
15302         return (bxe_prev_mcp_done(sc));
15303     }
15304 
15305     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15306 
15307     /* Reset should be performed after BRB is emptied */
15308     if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15309         /* Close the MAC Rx to prevent BRB from filling up */
15310         bxe_prev_unload_close_mac(sc, &mac_vals);
15311 
15312         /* close LLH filters towards the BRB */
15313         elink_set_rx_filter(&sc->link_params, 0);
15314 
15315         /*
15316          * Check if the UNDI driver was previously loaded.
15317          * UNDI driver initializes CID offset for normal bell to 0x7
15318          */
15319         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15320             tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15321             if (tmp_reg == 0x7) {
15322                 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15323                 prev_undi = TRUE;
15324                 /* clear the UNDI indication */
15325                 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15326                 /* clear possible idle check errors */
15327                 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15328             }
15329         }
15330 
15331         /* wait until BRB is empty */
15332         tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15333         while (timer_count) {
15334             prev_brb = tmp_reg;
15335 
15336             tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15337             if (!tmp_reg) {
15338                 break;
15339             }
15340 
15341             BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15342 
15343             /* reset timer as long as BRB actually gets emptied */
15344             if (prev_brb > tmp_reg) {
15345                 timer_count = 1000;
15346             } else {
15347                 timer_count--;
15348             }
15349 
15350             /* If UNDI resides in memory, manually increment it */
15351             if (prev_undi) {
15352                 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15353             }
15354 
15355             DELAY(10);
15356         }
15357 
15358         if (!timer_count) {
15359             BLOGE(sc, "Failed to empty BRB\n");
15360         }
15361     }
15362 
15363     /* No packets are in the pipeline, path is ready for reset */
15364     bxe_reset_common(sc);
15365 
15366     if (mac_vals.xmac_addr) {
15367         REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15368     }
15369     if (mac_vals.umac_addr) {
15370         REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15371     }
15372     if (mac_vals.emac_addr) {
15373         REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15374     }
15375     if (mac_vals.bmac_addr) {
15376         REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15377         REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15378     }
15379 
15380     rc = bxe_prev_mark_path(sc, prev_undi);
15381     if (rc) {
15382         bxe_prev_mcp_done(sc);
15383         return (rc);
15384     }
15385 
15386     return (bxe_prev_mcp_done(sc));
15387 }
15388 
15389 static int
15390 bxe_prev_unload_uncommon(struct bxe_softc *sc)
15391 {
15392     int rc;
15393 
15394     BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15395 
15396     /* Test if previous unload process was already finished for this path */
15397     if (bxe_prev_is_path_marked(sc)) {
15398         return (bxe_prev_mcp_done(sc));
15399     }
15400 
15401     BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15402 
15403     /*
15404      * If function has FLR capabilities, and existing FW version matches
15405      * the one required, then FLR will be sufficient to clean any residue
15406      * left by previous driver
15407      */
15408     rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
15409     if (!rc) {
15410         /* fw version is good */
15411         BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
15412         rc = bxe_do_flr(sc);
15413     }
15414 
15415     if (!rc) {
15416         /* FLR was performed */
15417         BLOGD(sc, DBG_LOAD, "FLR successful\n");
15418         return (0);
15419     }
15420 
15421     BLOGD(sc, DBG_LOAD, "Could not FLR\n");
15422 
15423     /* Close the MCP request, return failure*/
15424     rc = bxe_prev_mcp_done(sc);
15425     if (!rc) {
15426         rc = BXE_PREV_WAIT_NEEDED;
15427     }
15428 
15429     return (rc);
15430 }
15431 
15432 static int
15433 bxe_prev_unload(struct bxe_softc *sc)
15434 {
15435     int time_counter = 10;
15436     uint32_t fw, hw_lock_reg, hw_lock_val;
15437     uint32_t rc = 0;
15438 
15439     /*
15440      * Clear HW from errors which may have resulted from an interrupted
15441      * DMAE transaction.
15442      */
15443     bxe_prev_interrupted_dmae(sc);
15444 
15445     /* Release previously held locks */
15446     hw_lock_reg =
15447         (SC_FUNC(sc) <= 5) ?
15448             (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
15449             (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
15450 
15451     hw_lock_val = (REG_RD(sc, hw_lock_reg));
15452     if (hw_lock_val) {
15453         if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
15454             BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
15455             REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
15456                    (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
15457         }
15458         BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
15459         REG_WR(sc, hw_lock_reg, 0xffffffff);
15460     } else {
15461         BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
15462     }
15463 
15464     if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
15465         BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
15466         REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
15467     }
15468 
15469     do {
15470         /* Lock MCP using an unload request */
15471         fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
15472         if (!fw) {
15473             BLOGE(sc, "MCP response failure, aborting\n");
15474             rc = -1;
15475             break;
15476         }
15477 
15478         if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
15479             rc = bxe_prev_unload_common(sc);
15480             break;
15481         }
15482 
15483         /* non-common reply from MCP night require looping */
15484         rc = bxe_prev_unload_uncommon(sc);
15485         if (rc != BXE_PREV_WAIT_NEEDED) {
15486             break;
15487         }
15488 
15489         DELAY(20000);
15490     } while (--time_counter);
15491 
15492     if (!time_counter || rc) {
15493         BLOGE(sc, "Failed to unload previous driver!"
15494             " time_counter %d rc %d\n", time_counter, rc);
15495         rc = -1;
15496     }
15497 
15498     return (rc);
15499 }
15500 
15501 void
15502 bxe_dcbx_set_state(struct bxe_softc *sc,
15503                    uint8_t          dcb_on,
15504                    uint32_t         dcbx_enabled)
15505 {
15506     if (!CHIP_IS_E1x(sc)) {
15507         sc->dcb_state = dcb_on;
15508         sc->dcbx_enabled = dcbx_enabled;
15509     } else {
15510         sc->dcb_state = FALSE;
15511         sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
15512     }
15513     BLOGD(sc, DBG_LOAD,
15514           "DCB state [%s:%s]\n",
15515           dcb_on ? "ON" : "OFF",
15516           (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
15517           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
15518           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
15519           "on-chip with negotiation" : "invalid");
15520 }
15521 
15522 /* must be called after sriov-enable */
15523 static int
15524 bxe_set_qm_cid_count(struct bxe_softc *sc)
15525 {
15526     int cid_count = BXE_L2_MAX_CID(sc);
15527 
15528     if (IS_SRIOV(sc)) {
15529         cid_count += BXE_VF_CIDS;
15530     }
15531 
15532     if (CNIC_SUPPORT(sc)) {
15533         cid_count += CNIC_CID_MAX;
15534     }
15535 
15536     return (roundup(cid_count, QM_CID_ROUND));
15537 }
15538 
15539 static void
15540 bxe_init_multi_cos(struct bxe_softc *sc)
15541 {
15542     int pri, cos;
15543 
15544     uint32_t pri_map = 0; /* XXX change to user config */
15545 
15546     for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
15547         cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
15548         if (cos < sc->max_cos) {
15549             sc->prio_to_cos[pri] = cos;
15550         } else {
15551             BLOGW(sc, "Invalid COS %d for priority %d "
15552                       "(max COS is %d), setting to 0\n",
15553                   cos, pri, (sc->max_cos - 1));
15554             sc->prio_to_cos[pri] = 0;
15555         }
15556     }
15557 }
15558 
15559 static int
15560 bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
15561 {
15562     struct bxe_softc *sc;
15563     int error, result;
15564 
15565     result = 0;
15566     error = sysctl_handle_int(oidp, &result, 0, req);
15567 
15568     if (error || !req->newptr) {
15569         return (error);
15570     }
15571 
15572     if (result == 1) {
15573         uint32_t  temp;
15574         sc = (struct bxe_softc *)arg1;
15575 
15576         BLOGI(sc, "... dumping driver state ...\n");
15577         temp = SHMEM2_RD(sc, temperature_in_half_celsius);
15578         BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2));
15579     }
15580 
15581     return (error);
15582 }
15583 
15584 static int
15585 bxe_sysctl_trigger_grcdump(SYSCTL_HANDLER_ARGS)
15586 {
15587     struct bxe_softc *sc;
15588     int error, result;
15589 
15590     result = 0;
15591     error = sysctl_handle_int(oidp, &result, 0, req);
15592 
15593     if (error || !req->newptr) {
15594         return (error);
15595     }
15596 
15597     if (result == 1) {
15598         sc = (struct bxe_softc *)arg1;
15599 
15600         BLOGI(sc, "... grcdump start ...\n");
15601         bxe_grc_dump(sc);
15602         BLOGI(sc, "... grcdump done ...\n");
15603     }
15604 
15605     return (error);
15606 }
15607 
15608 static int
15609 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
15610 {
15611     struct bxe_softc *sc = (struct bxe_softc *)arg1;
15612     uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
15613     uint32_t *offset;
15614     uint64_t value = 0;
15615     int index = (int)arg2;
15616 
15617     if (index >= BXE_NUM_ETH_STATS) {
15618         BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
15619         return (-1);
15620     }
15621 
15622     offset = (eth_stats + bxe_eth_stats_arr[index].offset);
15623 
15624     switch (bxe_eth_stats_arr[index].size) {
15625     case 4:
15626         value = (uint64_t)*offset;
15627         break;
15628     case 8:
15629         value = HILO_U64(*offset, *(offset + 1));
15630         break;
15631     default:
15632         BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
15633               index, bxe_eth_stats_arr[index].size);
15634         return (-1);
15635     }
15636 
15637     return (sysctl_handle_64(oidp, &value, 0, req));
15638 }
15639 
15640 static int
15641 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
15642 {
15643     struct bxe_softc *sc = (struct bxe_softc *)arg1;
15644     uint32_t *eth_stats;
15645     uint32_t *offset;
15646     uint64_t value = 0;
15647     uint32_t q_stat = (uint32_t)arg2;
15648     uint32_t fp_index = ((q_stat >> 16) & 0xffff);
15649     uint32_t index = (q_stat & 0xffff);
15650 
15651     eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
15652 
15653     if (index >= BXE_NUM_ETH_Q_STATS) {
15654         BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
15655         return (-1);
15656     }
15657 
15658     offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
15659 
15660     switch (bxe_eth_q_stats_arr[index].size) {
15661     case 4:
15662         value = (uint64_t)*offset;
15663         break;
15664     case 8:
15665         value = HILO_U64(*offset, *(offset + 1));
15666         break;
15667     default:
15668         BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
15669               index, bxe_eth_q_stats_arr[index].size);
15670         return (-1);
15671     }
15672 
15673     return (sysctl_handle_64(oidp, &value, 0, req));
15674 }
15675 
15676 static void
15677 bxe_add_sysctls(struct bxe_softc *sc)
15678 {
15679     struct sysctl_ctx_list *ctx;
15680     struct sysctl_oid_list *children;
15681     struct sysctl_oid *queue_top, *queue;
15682     struct sysctl_oid_list *queue_top_children, *queue_children;
15683     char queue_num_buf[32];
15684     uint32_t q_stat;
15685     int i, j;
15686 
15687     ctx = device_get_sysctl_ctx(sc->dev);
15688     children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
15689 
15690     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
15691                       CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
15692                       "version");
15693 
15694     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
15695                       CTLFLAG_RD, sc->devinfo.bc_ver_str, 0,
15696                       "bootcode version");
15697 
15698     snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
15699              BCM_5710_FW_MAJOR_VERSION,
15700              BCM_5710_FW_MINOR_VERSION,
15701              BCM_5710_FW_REVISION_VERSION,
15702              BCM_5710_FW_ENGINEERING_VERSION);
15703     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
15704                       CTLFLAG_RD, sc->fw_ver_str, 0,
15705                       "firmware version");
15706 
15707     snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
15708         ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION)     ? "Single"  :
15709          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)   ? "MF-SD"   :
15710          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)   ? "MF-SI"   :
15711          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
15712                                                                 "Unknown"));
15713     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
15714                       CTLFLAG_RD, sc->mf_mode_str, 0,
15715                       "multifunction mode");
15716 
15717     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
15718                     CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
15719                     "multifunction vnics per port");
15720 
15721     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
15722                       CTLFLAG_RD, sc->mac_addr_str, 0,
15723                       "mac address");
15724 
15725     snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
15726         ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
15727          (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
15728          (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
15729                                               "???GT/s"),
15730         sc->devinfo.pcie_link_width);
15731     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
15732                       CTLFLAG_RD, sc->pci_link_str, 0,
15733                       "pci link status");
15734 
15735     sc->debug = bxe_debug;
15736     SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug",
15737                     CTLFLAG_RW, &sc->debug,
15738                     "debug logging mode");
15739 
15740     SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "trigger_grcdump",
15741                     CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
15742                     bxe_sysctl_trigger_grcdump, "IU",
15743                     "set by driver when a grcdump is needed");
15744 
15745     sc->grcdump_done = 0;
15746     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done",
15747                    CTLFLAG_RW, &sc->grcdump_done, 0,
15748                    "set by driver when grcdump is done");
15749 
15750     sc->rx_budget = bxe_rx_budget;
15751     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
15752                     CTLFLAG_RW, &sc->rx_budget, 0,
15753                     "rx processing budget");
15754 
15755     SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
15756                     CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
15757                     bxe_sysctl_state, "IU", "dump driver state");
15758 
15759     for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
15760         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
15761                         bxe_eth_stats_arr[i].string,
15762                         CTLTYPE_U64 | CTLFLAG_RD, sc, i,
15763                         bxe_sysctl_eth_stat, "LU",
15764                         bxe_eth_stats_arr[i].string);
15765     }
15766 
15767     /* add a new parent node for all queues "dev.bxe.#.queue" */
15768     queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
15769                                 CTLFLAG_RD, NULL, "queue");
15770     queue_top_children = SYSCTL_CHILDREN(queue_top);
15771 
15772     for (i = 0; i < sc->num_queues; i++) {
15773         /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
15774         snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
15775         queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
15776                                 queue_num_buf, CTLFLAG_RD, NULL,
15777                                 "single queue");
15778         queue_children = SYSCTL_CHILDREN(queue);
15779 
15780         for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
15781             q_stat = ((i << 16) | j);
15782             SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
15783                             bxe_eth_q_stats_arr[j].string,
15784                             CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat,
15785                             bxe_sysctl_eth_q_stat, "LU",
15786                             bxe_eth_q_stats_arr[j].string);
15787         }
15788     }
15789 }
15790 
15791 /*
15792  * Device attach function.
15793  *
15794  * Allocates device resources, performs secondary chip identification, and
15795  * initializes driver instance variables. This function is called from driver
15796  * load after a successful probe.
15797  *
15798  * Returns:
15799  *   0 = Success, >0 = Failure
15800  */
15801 static int
15802 bxe_attach(device_t dev)
15803 {
15804     struct bxe_softc *sc;
15805 
15806     sc = device_get_softc(dev);
15807 
15808     BLOGD(sc, DBG_LOAD, "Starting attach...\n");
15809 
15810     sc->state = BXE_STATE_CLOSED;
15811 
15812     sc->dev  = dev;
15813     sc->unit = device_get_unit(dev);
15814 
15815     BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
15816 
15817     sc->pcie_bus    = pci_get_bus(dev);
15818     sc->pcie_device = pci_get_slot(dev);
15819     sc->pcie_func   = pci_get_function(dev);
15820 
15821     /* enable bus master capability */
15822     pci_enable_busmaster(dev);
15823 
15824     /* get the BARs */
15825     if (bxe_allocate_bars(sc) != 0) {
15826         return (ENXIO);
15827     }
15828 
15829     /* initialize the mutexes */
15830     bxe_init_mutexes(sc);
15831 
15832     /* prepare the periodic callout */
15833     callout_init(&sc->periodic_callout, 0);
15834 
15835     /* prepare the chip taskqueue */
15836     sc->chip_tq_flags = CHIP_TQ_NONE;
15837     snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
15838              "bxe%d_chip_tq", sc->unit);
15839     TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
15840     sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
15841                                    taskqueue_thread_enqueue,
15842                                    &sc->chip_tq);
15843     taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
15844                             "%s", sc->chip_tq_name);
15845 
15846     /* get device info and set params */
15847     if (bxe_get_device_info(sc) != 0) {
15848         BLOGE(sc, "getting device info\n");
15849         bxe_deallocate_bars(sc);
15850         pci_disable_busmaster(dev);
15851         return (ENXIO);
15852     }
15853 
15854     /* get final misc params */
15855     bxe_get_params(sc);
15856 
15857     /* set the default MTU (changed via ifconfig) */
15858     sc->mtu = ETHERMTU;
15859 
15860     bxe_set_modes_bitmap(sc);
15861 
15862     /* XXX
15863      * If in AFEX mode and the function is configured for FCoE
15864      * then bail... no L2 allowed.
15865      */
15866 
15867     /* get phy settings from shmem and 'and' against admin settings */
15868     bxe_get_phy_info(sc);
15869 
15870     /* initialize the FreeBSD ifnet interface */
15871     if (bxe_init_ifnet(sc) != 0) {
15872         bxe_release_mutexes(sc);
15873         bxe_deallocate_bars(sc);
15874         pci_disable_busmaster(dev);
15875         return (ENXIO);
15876     }
15877 
15878     if (bxe_add_cdev(sc) != 0) {
15879         if (sc->ifp != NULL) {
15880             ether_ifdetach(sc->ifp);
15881         }
15882         ifmedia_removeall(&sc->ifmedia);
15883         bxe_release_mutexes(sc);
15884         bxe_deallocate_bars(sc);
15885         pci_disable_busmaster(dev);
15886         return (ENXIO);
15887     }
15888 
15889     /* allocate device interrupts */
15890     if (bxe_interrupt_alloc(sc) != 0) {
15891         bxe_del_cdev(sc);
15892         if (sc->ifp != NULL) {
15893             ether_ifdetach(sc->ifp);
15894         }
15895         ifmedia_removeall(&sc->ifmedia);
15896         bxe_release_mutexes(sc);
15897         bxe_deallocate_bars(sc);
15898         pci_disable_busmaster(dev);
15899         return (ENXIO);
15900     }
15901 
15902     /* allocate ilt */
15903     if (bxe_alloc_ilt_mem(sc) != 0) {
15904         bxe_interrupt_free(sc);
15905         bxe_del_cdev(sc);
15906         if (sc->ifp != NULL) {
15907             ether_ifdetach(sc->ifp);
15908         }
15909         ifmedia_removeall(&sc->ifmedia);
15910         bxe_release_mutexes(sc);
15911         bxe_deallocate_bars(sc);
15912         pci_disable_busmaster(dev);
15913         return (ENXIO);
15914     }
15915 
15916     /* allocate the host hardware/software hsi structures */
15917     if (bxe_alloc_hsi_mem(sc) != 0) {
15918         bxe_free_ilt_mem(sc);
15919         bxe_interrupt_free(sc);
15920         bxe_del_cdev(sc);
15921         if (sc->ifp != NULL) {
15922             ether_ifdetach(sc->ifp);
15923         }
15924         ifmedia_removeall(&sc->ifmedia);
15925         bxe_release_mutexes(sc);
15926         bxe_deallocate_bars(sc);
15927         pci_disable_busmaster(dev);
15928         return (ENXIO);
15929     }
15930 
15931     /* need to reset chip if UNDI was active */
15932     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
15933         /* init fw_seq */
15934         sc->fw_seq =
15935             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
15936              DRV_MSG_SEQ_NUMBER_MASK);
15937         BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
15938         bxe_prev_unload(sc);
15939     }
15940 
15941 #if 1
15942     /* XXX */
15943     bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
15944 #else
15945     if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
15946         SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
15947         SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
15948         SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
15949         bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
15950         bxe_dcbx_init_params(sc);
15951     } else {
15952         bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
15953     }
15954 #endif
15955 
15956     /* calculate qm_cid_count */
15957     sc->qm_cid_count = bxe_set_qm_cid_count(sc);
15958     BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
15959 
15960     sc->max_cos = 1;
15961     bxe_init_multi_cos(sc);
15962 
15963     bxe_add_sysctls(sc);
15964 
15965     return (0);
15966 }
15967 
15968 /*
15969  * Device detach function.
15970  *
15971  * Stops the controller, resets the controller, and releases resources.
15972  *
15973  * Returns:
15974  *   0 = Success, >0 = Failure
15975  */
15976 static int
15977 bxe_detach(device_t dev)
15978 {
15979     struct bxe_softc *sc;
15980     if_t ifp;
15981 
15982     sc = device_get_softc(dev);
15983 
15984     BLOGD(sc, DBG_LOAD, "Starting detach...\n");
15985 
15986     ifp = sc->ifp;
15987     if (ifp != NULL && if_vlantrunkinuse(ifp)) {
15988         BLOGE(sc, "Cannot detach while VLANs are in use.\n");
15989         return(EBUSY);
15990     }
15991 
15992     bxe_del_cdev(sc);
15993 
15994     /* stop the periodic callout */
15995     bxe_periodic_stop(sc);
15996 
15997     /* stop the chip taskqueue */
15998     atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
15999     if (sc->chip_tq) {
16000         taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16001         taskqueue_free(sc->chip_tq);
16002         sc->chip_tq = NULL;
16003     }
16004 
16005     /* stop and reset the controller if it was open */
16006     if (sc->state != BXE_STATE_CLOSED) {
16007         BXE_CORE_LOCK(sc);
16008         bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16009         BXE_CORE_UNLOCK(sc);
16010     }
16011 
16012     /* release the network interface */
16013     if (ifp != NULL) {
16014         ether_ifdetach(ifp);
16015     }
16016     ifmedia_removeall(&sc->ifmedia);
16017 
16018     /* XXX do the following based on driver state... */
16019 
16020     /* free the host hardware/software hsi structures */
16021     bxe_free_hsi_mem(sc);
16022 
16023     /* free ilt */
16024     bxe_free_ilt_mem(sc);
16025 
16026     /* release the interrupts */
16027     bxe_interrupt_free(sc);
16028 
16029     /* Release the mutexes*/
16030     bxe_release_mutexes(sc);
16031 
16032     /* Release the PCIe BAR mapped memory */
16033     bxe_deallocate_bars(sc);
16034 
16035     /* Release the FreeBSD interface. */
16036     if (sc->ifp != NULL) {
16037         if_free(sc->ifp);
16038     }
16039 
16040     pci_disable_busmaster(dev);
16041 
16042     return (0);
16043 }
16044 
16045 /*
16046  * Device shutdown function.
16047  *
16048  * Stops and resets the controller.
16049  *
16050  * Returns:
16051  *   Nothing
16052  */
16053 static int
16054 bxe_shutdown(device_t dev)
16055 {
16056     struct bxe_softc *sc;
16057 
16058     sc = device_get_softc(dev);
16059 
16060     BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16061 
16062     /* stop the periodic callout */
16063     bxe_periodic_stop(sc);
16064 
16065     BXE_CORE_LOCK(sc);
16066     bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16067     BXE_CORE_UNLOCK(sc);
16068 
16069     return (0);
16070 }
16071 
16072 void
16073 bxe_igu_ack_sb(struct bxe_softc *sc,
16074                uint8_t          igu_sb_id,
16075                uint8_t          segment,
16076                uint16_t         index,
16077                uint8_t          op,
16078                uint8_t          update)
16079 {
16080     uint32_t igu_addr = sc->igu_base_addr;
16081     igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16082     bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16083 }
16084 
16085 static void
16086 bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16087                      uint8_t          func,
16088                      uint8_t          idu_sb_id,
16089                      uint8_t          is_pf)
16090 {
16091     uint32_t data, ctl, cnt = 100;
16092     uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16093     uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16094     uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16095     uint32_t sb_bit =  1 << (idu_sb_id%32);
16096     uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16097     uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16098 
16099     /* Not supported in BC mode */
16100     if (CHIP_INT_MODE_IS_BC(sc)) {
16101         return;
16102     }
16103 
16104     data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16105              IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16106             IGU_REGULAR_CLEANUP_SET |
16107             IGU_REGULAR_BCLEANUP);
16108 
16109     ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16110            (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16111            (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16112 
16113     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16114             data, igu_addr_data);
16115     REG_WR(sc, igu_addr_data, data);
16116 
16117     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16118                       BUS_SPACE_BARRIER_WRITE);
16119     mb();
16120 
16121     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16122             ctl, igu_addr_ctl);
16123     REG_WR(sc, igu_addr_ctl, ctl);
16124 
16125     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16126                       BUS_SPACE_BARRIER_WRITE);
16127     mb();
16128 
16129     /* wait for clean up to finish */
16130     while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16131         DELAY(20000);
16132     }
16133 
16134     if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16135         BLOGD(sc, DBG_LOAD,
16136               "Unable to finish IGU cleanup: "
16137               "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16138               idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16139     }
16140 }
16141 
16142 static void
16143 bxe_igu_clear_sb(struct bxe_softc *sc,
16144                  uint8_t          idu_sb_id)
16145 {
16146     bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16147 }
16148 
16149 
16150 
16151 
16152 
16153 
16154 
16155 /*******************/
16156 /* ECORE CALLBACKS */
16157 /*******************/
16158 
16159 static void
16160 bxe_reset_common(struct bxe_softc *sc)
16161 {
16162     uint32_t val = 0x1400;
16163 
16164     /* reset_common */
16165     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16166 
16167     if (CHIP_IS_E3(sc)) {
16168         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16169         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16170     }
16171 
16172     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16173 }
16174 
16175 static void
16176 bxe_common_init_phy(struct bxe_softc *sc)
16177 {
16178     uint32_t shmem_base[2];
16179     uint32_t shmem2_base[2];
16180 
16181     /* Avoid common init in case MFW supports LFA */
16182     if (SHMEM2_RD(sc, size) >
16183         (uint32_t)offsetof(struct shmem2_region,
16184                            lfa_host_addr[SC_PORT(sc)])) {
16185         return;
16186     }
16187 
16188     shmem_base[0]  = sc->devinfo.shmem_base;
16189     shmem2_base[0] = sc->devinfo.shmem2_base;
16190 
16191     if (!CHIP_IS_E1x(sc)) {
16192         shmem_base[1]  = SHMEM2_RD(sc, other_shmem_base_addr);
16193         shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16194     }
16195 
16196     bxe_acquire_phy_lock(sc);
16197     elink_common_init_phy(sc, shmem_base, shmem2_base,
16198                           sc->devinfo.chip_id, 0);
16199     bxe_release_phy_lock(sc);
16200 }
16201 
16202 static void
16203 bxe_pf_disable(struct bxe_softc *sc)
16204 {
16205     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16206 
16207     val &= ~IGU_PF_CONF_FUNC_EN;
16208 
16209     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16210     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16211     REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16212 }
16213 
16214 static void
16215 bxe_init_pxp(struct bxe_softc *sc)
16216 {
16217     uint16_t devctl;
16218     int r_order, w_order;
16219 
16220     devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2);
16221 
16222     BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16223 
16224     w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
16225 
16226     if (sc->mrrs == -1) {
16227         r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
16228     } else {
16229         BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16230         r_order = sc->mrrs;
16231     }
16232 
16233     ecore_init_pxp_arb(sc, r_order, w_order);
16234 }
16235 
16236 static uint32_t
16237 bxe_get_pretend_reg(struct bxe_softc *sc)
16238 {
16239     uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16240     uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16241     return (base + (SC_ABS_FUNC(sc)) * stride);
16242 }
16243 
16244 /*
16245  * Called only on E1H or E2.
16246  * When pretending to be PF, the pretend value is the function number 0..7.
16247  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16248  * combination.
16249  */
16250 static int
16251 bxe_pretend_func(struct bxe_softc *sc,
16252                  uint16_t         pretend_func_val)
16253 {
16254     uint32_t pretend_reg;
16255 
16256     if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16257         return (-1);
16258     }
16259 
16260     /* get my own pretend register */
16261     pretend_reg = bxe_get_pretend_reg(sc);
16262     REG_WR(sc, pretend_reg, pretend_func_val);
16263     REG_RD(sc, pretend_reg);
16264     return (0);
16265 }
16266 
16267 static void
16268 bxe_iov_init_dmae(struct bxe_softc *sc)
16269 {
16270     return;
16271 }
16272 
16273 static void
16274 bxe_iov_init_dq(struct bxe_softc *sc)
16275 {
16276     return;
16277 }
16278 
16279 /* send a NIG loopback debug packet */
16280 static void
16281 bxe_lb_pckt(struct bxe_softc *sc)
16282 {
16283     uint32_t wb_write[3];
16284 
16285     /* Ethernet source and destination addresses */
16286     wb_write[0] = 0x55555555;
16287     wb_write[1] = 0x55555555;
16288     wb_write[2] = 0x20;     /* SOP */
16289     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16290 
16291     /* NON-IP protocol */
16292     wb_write[0] = 0x09000000;
16293     wb_write[1] = 0x55555555;
16294     wb_write[2] = 0x10;     /* EOP, eop_bvalid = 0 */
16295     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16296 }
16297 
16298 /*
16299  * Some of the internal memories are not directly readable from the driver.
16300  * To test them we send debug packets.
16301  */
16302 static int
16303 bxe_int_mem_test(struct bxe_softc *sc)
16304 {
16305     int factor;
16306     int count, i;
16307     uint32_t val = 0;
16308 
16309     if (CHIP_REV_IS_FPGA(sc)) {
16310         factor = 120;
16311     } else if (CHIP_REV_IS_EMUL(sc)) {
16312         factor = 200;
16313     } else {
16314         factor = 1;
16315     }
16316 
16317     /* disable inputs of parser neighbor blocks */
16318     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16319     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16320     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16321     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16322 
16323     /*  write 0 to parser credits for CFC search request */
16324     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16325 
16326     /* send Ethernet packet */
16327     bxe_lb_pckt(sc);
16328 
16329     /* TODO do i reset NIG statistic? */
16330     /* Wait until NIG register shows 1 packet of size 0x10 */
16331     count = 1000 * factor;
16332     while (count) {
16333         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16334         val = *BXE_SP(sc, wb_data[0]);
16335         if (val == 0x10) {
16336             break;
16337         }
16338 
16339         DELAY(10000);
16340         count--;
16341     }
16342 
16343     if (val != 0x10) {
16344         BLOGE(sc, "NIG timeout val=0x%x\n", val);
16345         return (-1);
16346     }
16347 
16348     /* wait until PRS register shows 1 packet */
16349     count = (1000 * factor);
16350     while (count) {
16351         val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16352         if (val == 1) {
16353             break;
16354         }
16355 
16356         DELAY(10000);
16357         count--;
16358     }
16359 
16360     if (val != 0x1) {
16361         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16362         return (-2);
16363     }
16364 
16365     /* Reset and init BRB, PRS */
16366     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16367     DELAY(50000);
16368     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16369     DELAY(50000);
16370     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16371     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16372 
16373     /* Disable inputs of parser neighbor blocks */
16374     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16375     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16376     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16377     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16378 
16379     /* Write 0 to parser credits for CFC search request */
16380     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16381 
16382     /* send 10 Ethernet packets */
16383     for (i = 0; i < 10; i++) {
16384         bxe_lb_pckt(sc);
16385     }
16386 
16387     /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
16388     count = (1000 * factor);
16389     while (count) {
16390         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16391         val = *BXE_SP(sc, wb_data[0]);
16392         if (val == 0xb0) {
16393             break;
16394         }
16395 
16396         DELAY(10000);
16397         count--;
16398     }
16399 
16400     if (val != 0xb0) {
16401         BLOGE(sc, "NIG timeout val=0x%x\n", val);
16402         return (-3);
16403     }
16404 
16405     /* Wait until PRS register shows 2 packets */
16406     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16407     if (val != 2) {
16408         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16409     }
16410 
16411     /* Write 1 to parser credits for CFC search request */
16412     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
16413 
16414     /* Wait until PRS register shows 3 packets */
16415     DELAY(10000 * factor);
16416 
16417     /* Wait until NIG register shows 1 packet of size 0x10 */
16418     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16419     if (val != 3) {
16420         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16421     }
16422 
16423     /* clear NIG EOP FIFO */
16424     for (i = 0; i < 11; i++) {
16425         REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
16426     }
16427 
16428     val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
16429     if (val != 1) {
16430         BLOGE(sc, "clear of NIG failed val=0x%x\n", val);
16431         return (-4);
16432     }
16433 
16434     /* Reset and init BRB, PRS, NIG */
16435     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16436     DELAY(50000);
16437     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16438     DELAY(50000);
16439     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16440     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16441     if (!CNIC_SUPPORT(sc)) {
16442         /* set NIC mode */
16443         REG_WR(sc, PRS_REG_NIC_MODE, 1);
16444     }
16445 
16446     /* Enable inputs of parser neighbor blocks */
16447     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
16448     REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
16449     REG_WR(sc, CFC_REG_DEBUG0, 0x0);
16450     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
16451 
16452     return (0);
16453 }
16454 
16455 static void
16456 bxe_setup_fan_failure_detection(struct bxe_softc *sc)
16457 {
16458     int is_required;
16459     uint32_t val;
16460     int port;
16461 
16462     is_required = 0;
16463     val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
16464            SHARED_HW_CFG_FAN_FAILURE_MASK);
16465 
16466     if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
16467         is_required = 1;
16468     }
16469     /*
16470      * The fan failure mechanism is usually related to the PHY type since
16471      * the power consumption of the board is affected by the PHY. Currently,
16472      * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
16473      */
16474     else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
16475         for (port = PORT_0; port < PORT_MAX; port++) {
16476             is_required |= elink_fan_failure_det_req(sc,
16477                                                      sc->devinfo.shmem_base,
16478                                                      sc->devinfo.shmem2_base,
16479                                                      port);
16480         }
16481     }
16482 
16483     BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
16484 
16485     if (is_required == 0) {
16486         return;
16487     }
16488 
16489     /* Fan failure is indicated by SPIO 5 */
16490     bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
16491 
16492     /* set to active low mode */
16493     val = REG_RD(sc, MISC_REG_SPIO_INT);
16494     val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
16495     REG_WR(sc, MISC_REG_SPIO_INT, val);
16496 
16497     /* enable interrupt to signal the IGU */
16498     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
16499     val |= MISC_SPIO_SPIO5;
16500     REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
16501 }
16502 
16503 static void
16504 bxe_enable_blocks_attention(struct bxe_softc *sc)
16505 {
16506     uint32_t val;
16507 
16508     REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
16509     if (!CHIP_IS_E1x(sc)) {
16510         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
16511     } else {
16512         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
16513     }
16514     REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
16515     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
16516     /*
16517      * mask read length error interrupts in brb for parser
16518      * (parsing unit and 'checksum and crc' unit)
16519      * these errors are legal (PU reads fixed length and CAC can cause
16520      * read length error on truncated packets)
16521      */
16522     REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
16523     REG_WR(sc, QM_REG_QM_INT_MASK, 0);
16524     REG_WR(sc, TM_REG_TM_INT_MASK, 0);
16525     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
16526     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
16527     REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
16528 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
16529 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
16530     REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
16531     REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
16532     REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
16533 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
16534 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
16535     REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
16536     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
16537     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
16538     REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
16539 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
16540 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
16541 
16542     val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
16543            PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
16544            PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
16545     if (!CHIP_IS_E1x(sc)) {
16546         val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
16547                 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
16548     }
16549     REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
16550 
16551     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
16552     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
16553     REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
16554 /*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
16555 
16556     if (!CHIP_IS_E1x(sc)) {
16557         /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
16558         REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
16559     }
16560 
16561     REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
16562     REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
16563 /*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
16564     REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18);     /* bit 3,4 masked */
16565 }
16566 
16567 /**
16568  * bxe_init_hw_common - initialize the HW at the COMMON phase.
16569  *
16570  * @sc:     driver handle
16571  */
16572 static int
16573 bxe_init_hw_common(struct bxe_softc *sc)
16574 {
16575     uint8_t abs_func_id;
16576     uint32_t val;
16577 
16578     BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
16579           SC_ABS_FUNC(sc));
16580 
16581     /*
16582      * take the RESET lock to protect undi_unload flow from accessing
16583      * registers while we are resetting the chip
16584      */
16585     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
16586 
16587     bxe_reset_common(sc);
16588 
16589     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
16590 
16591     val = 0xfffc;
16592     if (CHIP_IS_E3(sc)) {
16593         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16594         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16595     }
16596 
16597     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
16598 
16599     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
16600 
16601     ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
16602     BLOGD(sc, DBG_LOAD, "after misc block init\n");
16603 
16604     if (!CHIP_IS_E1x(sc)) {
16605         /*
16606          * 4-port mode or 2-port mode we need to turn off master-enable for
16607          * everyone. After that we turn it back on for self. So, we disregard
16608          * multi-function, and always disable all functions on the given path,
16609          * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
16610          */
16611         for (abs_func_id = SC_PATH(sc);
16612              abs_func_id < (E2_FUNC_MAX * 2);
16613              abs_func_id += 2) {
16614             if (abs_func_id == SC_ABS_FUNC(sc)) {
16615                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
16616                 continue;
16617             }
16618 
16619             bxe_pretend_func(sc, abs_func_id);
16620 
16621             /* clear pf enable */
16622             bxe_pf_disable(sc);
16623 
16624             bxe_pretend_func(sc, SC_ABS_FUNC(sc));
16625         }
16626     }
16627 
16628     BLOGD(sc, DBG_LOAD, "after pf disable\n");
16629 
16630     ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
16631 
16632     if (CHIP_IS_E1(sc)) {
16633         /*
16634          * enable HW interrupt from PXP on USDM overflow
16635          * bit 16 on INT_MASK_0
16636          */
16637         REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
16638     }
16639 
16640     ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
16641     bxe_init_pxp(sc);
16642 
16643 #ifdef __BIG_ENDIAN
16644     REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
16645     REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
16646     REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
16647     REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
16648     REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
16649     /* make sure this value is 0 */
16650     REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
16651 
16652     //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
16653     REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
16654     REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
16655     REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
16656     REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
16657 #endif
16658 
16659     ecore_ilt_init_page_size(sc, INITOP_SET);
16660 
16661     if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
16662         REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
16663     }
16664 
16665     /* let the HW do it's magic... */
16666     DELAY(100000);
16667 
16668     /* finish PXP init */
16669     val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
16670     if (val != 1) {
16671         BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n",
16672             val);
16673         return (-1);
16674     }
16675     val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
16676     if (val != 1) {
16677         BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val);
16678         return (-1);
16679     }
16680 
16681     BLOGD(sc, DBG_LOAD, "after pxp init\n");
16682 
16683     /*
16684      * Timer bug workaround for E2 only. We need to set the entire ILT to have
16685      * entries with value "0" and valid bit on. This needs to be done by the
16686      * first PF that is loaded in a path (i.e. common phase)
16687      */
16688     if (!CHIP_IS_E1x(sc)) {
16689 /*
16690  * In E2 there is a bug in the timers block that can cause function 6 / 7
16691  * (i.e. vnic3) to start even if it is marked as "scan-off".
16692  * This occurs when a different function (func2,3) is being marked
16693  * as "scan-off". Real-life scenario for example: if a driver is being
16694  * load-unloaded while func6,7 are down. This will cause the timer to access
16695  * the ilt, translate to a logical address and send a request to read/write.
16696  * Since the ilt for the function that is down is not valid, this will cause
16697  * a translation error which is unrecoverable.
16698  * The Workaround is intended to make sure that when this happens nothing
16699  * fatal will occur. The workaround:
16700  *  1.  First PF driver which loads on a path will:
16701  *      a.  After taking the chip out of reset, by using pretend,
16702  *          it will write "0" to the following registers of
16703  *          the other vnics.
16704  *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16705  *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
16706  *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
16707  *          And for itself it will write '1' to
16708  *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
16709  *          dmae-operations (writing to pram for example.)
16710  *          note: can be done for only function 6,7 but cleaner this
16711  *            way.
16712  *      b.  Write zero+valid to the entire ILT.
16713  *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
16714  *          VNIC3 (of that port). The range allocated will be the
16715  *          entire ILT. This is needed to prevent  ILT range error.
16716  *  2.  Any PF driver load flow:
16717  *      a.  ILT update with the physical addresses of the allocated
16718  *          logical pages.
16719  *      b.  Wait 20msec. - note that this timeout is needed to make
16720  *          sure there are no requests in one of the PXP internal
16721  *          queues with "old" ILT addresses.
16722  *      c.  PF enable in the PGLC.
16723  *      d.  Clear the was_error of the PF in the PGLC. (could have
16724  *          occurred while driver was down)
16725  *      e.  PF enable in the CFC (WEAK + STRONG)
16726  *      f.  Timers scan enable
16727  *  3.  PF driver unload flow:
16728  *      a.  Clear the Timers scan_en.
16729  *      b.  Polling for scan_on=0 for that PF.
16730  *      c.  Clear the PF enable bit in the PXP.
16731  *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
16732  *      e.  Write zero+valid to all ILT entries (The valid bit must
16733  *          stay set)
16734  *      f.  If this is VNIC 3 of a port then also init
16735  *          first_timers_ilt_entry to zero and last_timers_ilt_entry
16736  *          to the last enrty in the ILT.
16737  *
16738  *      Notes:
16739  *      Currently the PF error in the PGLC is non recoverable.
16740  *      In the future the there will be a recovery routine for this error.
16741  *      Currently attention is masked.
16742  *      Having an MCP lock on the load/unload process does not guarantee that
16743  *      there is no Timer disable during Func6/7 enable. This is because the
16744  *      Timers scan is currently being cleared by the MCP on FLR.
16745  *      Step 2.d can be done only for PF6/7 and the driver can also check if
16746  *      there is error before clearing it. But the flow above is simpler and
16747  *      more general.
16748  *      All ILT entries are written by zero+valid and not just PF6/7
16749  *      ILT entries since in the future the ILT entries allocation for
16750  *      PF-s might be dynamic.
16751  */
16752         struct ilt_client_info ilt_cli;
16753         struct ecore_ilt ilt;
16754 
16755         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
16756         memset(&ilt, 0, sizeof(struct ecore_ilt));
16757 
16758         /* initialize dummy TM client */
16759         ilt_cli.start      = 0;
16760         ilt_cli.end        = ILT_NUM_PAGE_ENTRIES - 1;
16761         ilt_cli.client_num = ILT_CLIENT_TM;
16762 
16763         /*
16764          * Step 1: set zeroes to all ilt page entries with valid bit on
16765          * Step 2: set the timers first/last ilt entry to point
16766          * to the entire range to prevent ILT range error for 3rd/4th
16767          * vnic (this code assumes existence of the vnic)
16768          *
16769          * both steps performed by call to ecore_ilt_client_init_op()
16770          * with dummy TM client
16771          *
16772          * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
16773          * and his brother are split registers
16774          */
16775 
16776         bxe_pretend_func(sc, (SC_PATH(sc) + 6));
16777         ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
16778         bxe_pretend_func(sc, SC_ABS_FUNC(sc));
16779 
16780         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
16781         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
16782         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
16783     }
16784 
16785     REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
16786     REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
16787 
16788     if (!CHIP_IS_E1x(sc)) {
16789         int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
16790                      (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
16791 
16792         ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
16793         ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
16794 
16795         /* let the HW do it's magic... */
16796         do {
16797             DELAY(200000);
16798             val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
16799         } while (factor-- && (val != 1));
16800 
16801         if (val != 1) {
16802             BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val);
16803             return (-1);
16804         }
16805     }
16806 
16807     BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
16808 
16809     ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
16810 
16811     bxe_iov_init_dmae(sc);
16812 
16813     /* clean the DMAE memory */
16814     sc->dmae_ready = 1;
16815     ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
16816 
16817     ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
16818 
16819     ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
16820 
16821     ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
16822 
16823     ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
16824 
16825     bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
16826     bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
16827     bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
16828     bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
16829 
16830     ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
16831 
16832     /* QM queues pointers table */
16833     ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
16834 
16835     /* soft reset pulse */
16836     REG_WR(sc, QM_REG_SOFT_RESET, 1);
16837     REG_WR(sc, QM_REG_SOFT_RESET, 0);
16838 
16839     if (CNIC_SUPPORT(sc))
16840         ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
16841 
16842     ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
16843     REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
16844     if (!CHIP_REV_IS_SLOW(sc)) {
16845         /* enable hw interrupt from doorbell Q */
16846         REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
16847     }
16848 
16849     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16850 
16851     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16852     REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
16853 
16854     if (!CHIP_IS_E1(sc)) {
16855         REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
16856     }
16857 
16858     if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
16859         if (IS_MF_AFEX(sc)) {
16860             /*
16861              * configure that AFEX and VLAN headers must be
16862              * received in AFEX mode
16863              */
16864             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
16865             REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
16866             REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
16867             REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
16868             REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
16869         } else {
16870             /*
16871              * Bit-map indicating which L2 hdrs may appear
16872              * after the basic Ethernet header
16873              */
16874             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
16875                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
16876         }
16877     }
16878 
16879     ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
16880     ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
16881     ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
16882     ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
16883 
16884     if (!CHIP_IS_E1x(sc)) {
16885         /* reset VFC memories */
16886         REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
16887                VFC_MEMORIES_RST_REG_CAM_RST |
16888                VFC_MEMORIES_RST_REG_RAM_RST);
16889         REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
16890                VFC_MEMORIES_RST_REG_CAM_RST |
16891                VFC_MEMORIES_RST_REG_RAM_RST);
16892 
16893         DELAY(20000);
16894     }
16895 
16896     ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
16897     ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
16898     ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
16899     ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
16900 
16901     /* sync semi rtc */
16902     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
16903            0x80000000);
16904     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
16905            0x80000000);
16906 
16907     ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
16908     ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
16909     ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
16910 
16911     if (!CHIP_IS_E1x(sc)) {
16912         if (IS_MF_AFEX(sc)) {
16913             /*
16914              * configure that AFEX and VLAN headers must be
16915              * sent in AFEX mode
16916              */
16917             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
16918             REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
16919             REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
16920             REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
16921             REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
16922         } else {
16923             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
16924                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
16925         }
16926     }
16927 
16928     REG_WR(sc, SRC_REG_SOFT_RST, 1);
16929 
16930     ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
16931 
16932     if (CNIC_SUPPORT(sc)) {
16933         REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
16934         REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
16935         REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
16936         REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
16937         REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
16938         REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
16939         REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
16940         REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
16941         REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
16942         REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
16943     }
16944     REG_WR(sc, SRC_REG_SOFT_RST, 0);
16945 
16946     if (sizeof(union cdu_context) != 1024) {
16947         /* we currently assume that a context is 1024 bytes */
16948         BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
16949               (long)sizeof(union cdu_context));
16950     }
16951 
16952     ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
16953     val = (4 << 24) + (0 << 12) + 1024;
16954     REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
16955 
16956     ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
16957 
16958     REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
16959     /* enable context validation interrupt from CFC */
16960     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
16961 
16962     /* set the thresholds to prevent CFC/CDU race */
16963     REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
16964     ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
16965 
16966     if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
16967         REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
16968     }
16969 
16970     ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
16971     ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
16972 
16973     /* Reset PCIE errors for debug */
16974     REG_WR(sc, 0x2814, 0xffffffff);
16975     REG_WR(sc, 0x3820, 0xffffffff);
16976 
16977     if (!CHIP_IS_E1x(sc)) {
16978         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
16979                (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
16980                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
16981         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
16982                (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
16983                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
16984                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
16985         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
16986                (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
16987                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
16988                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
16989     }
16990 
16991     ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
16992 
16993     if (!CHIP_IS_E1(sc)) {
16994         /* in E3 this done in per-port section */
16995         if (!CHIP_IS_E3(sc))
16996             REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
16997     }
16998 
16999     if (CHIP_IS_E1H(sc)) {
17000         /* not applicable for E2 (and above ...) */
17001         REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17002     }
17003 
17004     if (CHIP_REV_IS_SLOW(sc)) {
17005         DELAY(200000);
17006     }
17007 
17008     /* finish CFC init */
17009     val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17010     if (val != 1) {
17011         BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val);
17012         return (-1);
17013     }
17014     val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17015     if (val != 1) {
17016         BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val);
17017         return (-1);
17018     }
17019     val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17020     if (val != 1) {
17021         BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val);
17022         return (-1);
17023     }
17024     REG_WR(sc, CFC_REG_DEBUG0, 0);
17025 
17026     if (CHIP_IS_E1(sc)) {
17027         /* read NIG statistic to see if this is our first up since powerup */
17028         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17029         val = *BXE_SP(sc, wb_data[0]);
17030 
17031         /* do internal memory self test */
17032         if ((val == 0) && bxe_int_mem_test(sc)) {
17033             BLOGE(sc, "internal mem self test failed val=0x%x\n", val);
17034             return (-1);
17035         }
17036     }
17037 
17038     bxe_setup_fan_failure_detection(sc);
17039 
17040     /* clear PXP2 attentions */
17041     REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17042 
17043     bxe_enable_blocks_attention(sc);
17044 
17045     if (!CHIP_REV_IS_SLOW(sc)) {
17046         ecore_enable_blocks_parity(sc);
17047     }
17048 
17049     if (!BXE_NOMCP(sc)) {
17050         if (CHIP_IS_E1x(sc)) {
17051             bxe_common_init_phy(sc);
17052         }
17053     }
17054 
17055     return (0);
17056 }
17057 
17058 /**
17059  * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17060  *
17061  * @sc:     driver handle
17062  */
17063 static int
17064 bxe_init_hw_common_chip(struct bxe_softc *sc)
17065 {
17066     int rc = bxe_init_hw_common(sc);
17067 
17068     if (rc) {
17069         BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc);
17070         return (rc);
17071     }
17072 
17073     /* In E2 2-PORT mode, same ext phy is used for the two paths */
17074     if (!BXE_NOMCP(sc)) {
17075         bxe_common_init_phy(sc);
17076     }
17077 
17078     return (0);
17079 }
17080 
17081 static int
17082 bxe_init_hw_port(struct bxe_softc *sc)
17083 {
17084     int port = SC_PORT(sc);
17085     int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17086     uint32_t low, high;
17087     uint32_t val;
17088 
17089     BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17090 
17091     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17092 
17093     ecore_init_block(sc, BLOCK_MISC, init_phase);
17094     ecore_init_block(sc, BLOCK_PXP, init_phase);
17095     ecore_init_block(sc, BLOCK_PXP2, init_phase);
17096 
17097     /*
17098      * Timers bug workaround: disables the pf_master bit in pglue at
17099      * common phase, we need to enable it here before any dmae access are
17100      * attempted. Therefore we manually added the enable-master to the
17101      * port phase (it also happens in the function phase)
17102      */
17103     if (!CHIP_IS_E1x(sc)) {
17104         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17105     }
17106 
17107     ecore_init_block(sc, BLOCK_ATC, init_phase);
17108     ecore_init_block(sc, BLOCK_DMAE, init_phase);
17109     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17110     ecore_init_block(sc, BLOCK_QM, init_phase);
17111 
17112     ecore_init_block(sc, BLOCK_TCM, init_phase);
17113     ecore_init_block(sc, BLOCK_UCM, init_phase);
17114     ecore_init_block(sc, BLOCK_CCM, init_phase);
17115     ecore_init_block(sc, BLOCK_XCM, init_phase);
17116 
17117     /* QM cid (connection) count */
17118     ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17119 
17120     if (CNIC_SUPPORT(sc)) {
17121         ecore_init_block(sc, BLOCK_TM, init_phase);
17122         REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17123         REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17124     }
17125 
17126     ecore_init_block(sc, BLOCK_DORQ, init_phase);
17127 
17128     ecore_init_block(sc, BLOCK_BRB1, init_phase);
17129 
17130     if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17131         if (IS_MF(sc)) {
17132             low = (BXE_ONE_PORT(sc) ? 160 : 246);
17133         } else if (sc->mtu > 4096) {
17134             if (BXE_ONE_PORT(sc)) {
17135                 low = 160;
17136             } else {
17137                 val = sc->mtu;
17138                 /* (24*1024 + val*4)/256 */
17139                 low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17140             }
17141         } else {
17142             low = (BXE_ONE_PORT(sc) ? 80 : 160);
17143         }
17144         high = (low + 56); /* 14*1024/256 */
17145         REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17146         REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17147     }
17148 
17149     if (CHIP_IS_MODE_4_PORT(sc)) {
17150         REG_WR(sc, SC_PORT(sc) ?
17151                BRB1_REG_MAC_GUARANTIED_1 :
17152                BRB1_REG_MAC_GUARANTIED_0, 40);
17153     }
17154 
17155     ecore_init_block(sc, BLOCK_PRS, init_phase);
17156     if (CHIP_IS_E3B0(sc)) {
17157         if (IS_MF_AFEX(sc)) {
17158             /* configure headers for AFEX mode */
17159             REG_WR(sc, SC_PORT(sc) ?
17160                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17161                    PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17162             REG_WR(sc, SC_PORT(sc) ?
17163                    PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17164                    PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17165             REG_WR(sc, SC_PORT(sc) ?
17166                    PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17167                    PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17168         } else {
17169             /* Ovlan exists only if we are in multi-function +
17170              * switch-dependent mode, in switch-independent there
17171              * is no ovlan headers
17172              */
17173             REG_WR(sc, SC_PORT(sc) ?
17174                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17175                    PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17176                    (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17177         }
17178     }
17179 
17180     ecore_init_block(sc, BLOCK_TSDM, init_phase);
17181     ecore_init_block(sc, BLOCK_CSDM, init_phase);
17182     ecore_init_block(sc, BLOCK_USDM, init_phase);
17183     ecore_init_block(sc, BLOCK_XSDM, init_phase);
17184 
17185     ecore_init_block(sc, BLOCK_TSEM, init_phase);
17186     ecore_init_block(sc, BLOCK_USEM, init_phase);
17187     ecore_init_block(sc, BLOCK_CSEM, init_phase);
17188     ecore_init_block(sc, BLOCK_XSEM, init_phase);
17189 
17190     ecore_init_block(sc, BLOCK_UPB, init_phase);
17191     ecore_init_block(sc, BLOCK_XPB, init_phase);
17192 
17193     ecore_init_block(sc, BLOCK_PBF, init_phase);
17194 
17195     if (CHIP_IS_E1x(sc)) {
17196         /* configure PBF to work without PAUSE mtu 9000 */
17197         REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17198 
17199         /* update threshold */
17200         REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17201         /* update init credit */
17202         REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17203 
17204         /* probe changes */
17205         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17206         DELAY(50);
17207         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17208     }
17209 
17210     if (CNIC_SUPPORT(sc)) {
17211         ecore_init_block(sc, BLOCK_SRC, init_phase);
17212     }
17213 
17214     ecore_init_block(sc, BLOCK_CDU, init_phase);
17215     ecore_init_block(sc, BLOCK_CFC, init_phase);
17216 
17217     if (CHIP_IS_E1(sc)) {
17218         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17219         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17220     }
17221     ecore_init_block(sc, BLOCK_HC, init_phase);
17222 
17223     ecore_init_block(sc, BLOCK_IGU, init_phase);
17224 
17225     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17226     /* init aeu_mask_attn_func_0/1:
17227      *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17228      *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17229      *             bits 4-7 are used for "per vn group attention" */
17230     val = IS_MF(sc) ? 0xF7 : 0x7;
17231     /* Enable DCBX attention for all but E1 */
17232     val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17233     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17234 
17235     ecore_init_block(sc, BLOCK_NIG, init_phase);
17236 
17237     if (!CHIP_IS_E1x(sc)) {
17238         /* Bit-map indicating which L2 hdrs may appear after the
17239          * basic Ethernet header
17240          */
17241         if (IS_MF_AFEX(sc)) {
17242             REG_WR(sc, SC_PORT(sc) ?
17243                    NIG_REG_P1_HDRS_AFTER_BASIC :
17244                    NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17245         } else {
17246             REG_WR(sc, SC_PORT(sc) ?
17247                    NIG_REG_P1_HDRS_AFTER_BASIC :
17248                    NIG_REG_P0_HDRS_AFTER_BASIC,
17249                    IS_MF_SD(sc) ? 7 : 6);
17250         }
17251 
17252         if (CHIP_IS_E3(sc)) {
17253             REG_WR(sc, SC_PORT(sc) ?
17254                    NIG_REG_LLH1_MF_MODE :
17255                    NIG_REG_LLH_MF_MODE, IS_MF(sc));
17256         }
17257     }
17258     if (!CHIP_IS_E3(sc)) {
17259         REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17260     }
17261 
17262     if (!CHIP_IS_E1(sc)) {
17263         /* 0x2 disable mf_ov, 0x1 enable */
17264         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17265                (IS_MF_SD(sc) ? 0x1 : 0x2));
17266 
17267         if (!CHIP_IS_E1x(sc)) {
17268             val = 0;
17269             switch (sc->devinfo.mf_info.mf_mode) {
17270             case MULTI_FUNCTION_SD:
17271                 val = 1;
17272                 break;
17273             case MULTI_FUNCTION_SI:
17274             case MULTI_FUNCTION_AFEX:
17275                 val = 2;
17276                 break;
17277             }
17278 
17279             REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17280                         NIG_REG_LLH0_CLS_TYPE), val);
17281         }
17282         REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17283         REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17284         REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17285     }
17286 
17287     /* If SPIO5 is set to generate interrupts, enable it for this port */
17288     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17289     if (val & MISC_SPIO_SPIO5) {
17290         uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17291                                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17292         val = REG_RD(sc, reg_addr);
17293         val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17294         REG_WR(sc, reg_addr, val);
17295     }
17296 
17297     return (0);
17298 }
17299 
17300 static uint32_t
17301 bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17302                        uint32_t         reg,
17303                        uint32_t         expected,
17304                        uint32_t         poll_count)
17305 {
17306     uint32_t cur_cnt = poll_count;
17307     uint32_t val;
17308 
17309     while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17310         DELAY(FLR_WAIT_INTERVAL);
17311     }
17312 
17313     return (val);
17314 }
17315 
17316 static int
17317 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17318                               uint32_t         reg,
17319                               char             *msg,
17320                               uint32_t         poll_cnt)
17321 {
17322     uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17323 
17324     if (val != 0) {
17325         BLOGE(sc, "%s usage count=%d\n", msg, val);
17326         return (1);
17327     }
17328 
17329     return (0);
17330 }
17331 
17332 /* Common routines with VF FLR cleanup */
17333 static uint32_t
17334 bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17335 {
17336     /* adjust polling timeout */
17337     if (CHIP_REV_IS_EMUL(sc)) {
17338         return (FLR_POLL_CNT * 2000);
17339     }
17340 
17341     if (CHIP_REV_IS_FPGA(sc)) {
17342         return (FLR_POLL_CNT * 120);
17343     }
17344 
17345     return (FLR_POLL_CNT);
17346 }
17347 
17348 static int
17349 bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17350                            uint32_t         poll_cnt)
17351 {
17352     /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17353     if (bxe_flr_clnup_poll_hw_counter(sc,
17354                                       CFC_REG_NUM_LCIDS_INSIDE_PF,
17355                                       "CFC PF usage counter timed out",
17356                                       poll_cnt)) {
17357         return (1);
17358     }
17359 
17360     /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17361     if (bxe_flr_clnup_poll_hw_counter(sc,
17362                                       DORQ_REG_PF_USAGE_CNT,
17363                                       "DQ PF usage counter timed out",
17364                                       poll_cnt)) {
17365         return (1);
17366     }
17367 
17368     /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17369     if (bxe_flr_clnup_poll_hw_counter(sc,
17370                                       QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17371                                       "QM PF usage counter timed out",
17372                                       poll_cnt)) {
17373         return (1);
17374     }
17375 
17376     /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17377     if (bxe_flr_clnup_poll_hw_counter(sc,
17378                                       TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
17379                                       "Timers VNIC usage counter timed out",
17380                                       poll_cnt)) {
17381         return (1);
17382     }
17383 
17384     if (bxe_flr_clnup_poll_hw_counter(sc,
17385                                       TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
17386                                       "Timers NUM_SCANS usage counter timed out",
17387                                       poll_cnt)) {
17388         return (1);
17389     }
17390 
17391     /* Wait DMAE PF usage counter to zero */
17392     if (bxe_flr_clnup_poll_hw_counter(sc,
17393                                       dmae_reg_go_c[INIT_DMAE_C(sc)],
17394                                       "DMAE dommand register timed out",
17395                                       poll_cnt)) {
17396         return (1);
17397     }
17398 
17399     return (0);
17400 }
17401 
17402 #define OP_GEN_PARAM(param)                                            \
17403     (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
17404 #define OP_GEN_TYPE(type)                                           \
17405     (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
17406 #define OP_GEN_AGG_VECT(index)                                             \
17407     (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
17408 
17409 static int
17410 bxe_send_final_clnup(struct bxe_softc *sc,
17411                      uint8_t          clnup_func,
17412                      uint32_t         poll_cnt)
17413 {
17414     uint32_t op_gen_command = 0;
17415     uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
17416                           CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
17417     int ret = 0;
17418 
17419     if (REG_RD(sc, comp_addr)) {
17420         BLOGE(sc, "Cleanup complete was not 0 before sending\n");
17421         return (1);
17422     }
17423 
17424     op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
17425     op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
17426     op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
17427     op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
17428 
17429     BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
17430     REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
17431 
17432     if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
17433         BLOGE(sc, "FW final cleanup did not succeed\n");
17434         BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
17435               (REG_RD(sc, comp_addr)));
17436         bxe_panic(sc, ("FLR cleanup failed\n"));
17437         return (1);
17438     }
17439 
17440     /* Zero completion for nxt FLR */
17441     REG_WR(sc, comp_addr, 0);
17442 
17443     return (ret);
17444 }
17445 
17446 static void
17447 bxe_pbf_pN_buf_flushed(struct bxe_softc       *sc,
17448                        struct pbf_pN_buf_regs *regs,
17449                        uint32_t               poll_count)
17450 {
17451     uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
17452     uint32_t cur_cnt = poll_count;
17453 
17454     crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
17455     crd = crd_start = REG_RD(sc, regs->crd);
17456     init_crd = REG_RD(sc, regs->init_crd);
17457 
17458     BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
17459     BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
17460     BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
17461 
17462     while ((crd != init_crd) &&
17463            ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
17464             (init_crd - crd_start))) {
17465         if (cur_cnt--) {
17466             DELAY(FLR_WAIT_INTERVAL);
17467             crd = REG_RD(sc, regs->crd);
17468             crd_freed = REG_RD(sc, regs->crd_freed);
17469         } else {
17470             BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
17471             BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : c:%x\n", regs->pN, crd);
17472             BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
17473             break;
17474         }
17475     }
17476 
17477     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
17478           poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17479 }
17480 
17481 static void
17482 bxe_pbf_pN_cmd_flushed(struct bxe_softc       *sc,
17483                        struct pbf_pN_cmd_regs *regs,
17484                        uint32_t               poll_count)
17485 {
17486     uint32_t occup, to_free, freed, freed_start;
17487     uint32_t cur_cnt = poll_count;
17488 
17489     occup = to_free = REG_RD(sc, regs->lines_occup);
17490     freed = freed_start = REG_RD(sc, regs->lines_freed);
17491 
17492     BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
17493     BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17494 
17495     while (occup &&
17496            ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
17497         if (cur_cnt--) {
17498             DELAY(FLR_WAIT_INTERVAL);
17499             occup = REG_RD(sc, regs->lines_occup);
17500             freed = REG_RD(sc, regs->lines_freed);
17501         } else {
17502             BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
17503             BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
17504             BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17505             break;
17506         }
17507     }
17508 
17509     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
17510           poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17511 }
17512 
17513 static void
17514 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
17515 {
17516     struct pbf_pN_cmd_regs cmd_regs[] = {
17517         {0, (CHIP_IS_E3B0(sc)) ?
17518             PBF_REG_TQ_OCCUPANCY_Q0 :
17519             PBF_REG_P0_TQ_OCCUPANCY,
17520             (CHIP_IS_E3B0(sc)) ?
17521             PBF_REG_TQ_LINES_FREED_CNT_Q0 :
17522             PBF_REG_P0_TQ_LINES_FREED_CNT},
17523         {1, (CHIP_IS_E3B0(sc)) ?
17524             PBF_REG_TQ_OCCUPANCY_Q1 :
17525             PBF_REG_P1_TQ_OCCUPANCY,
17526             (CHIP_IS_E3B0(sc)) ?
17527             PBF_REG_TQ_LINES_FREED_CNT_Q1 :
17528             PBF_REG_P1_TQ_LINES_FREED_CNT},
17529         {4, (CHIP_IS_E3B0(sc)) ?
17530             PBF_REG_TQ_OCCUPANCY_LB_Q :
17531             PBF_REG_P4_TQ_OCCUPANCY,
17532             (CHIP_IS_E3B0(sc)) ?
17533             PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
17534             PBF_REG_P4_TQ_LINES_FREED_CNT}
17535     };
17536 
17537     struct pbf_pN_buf_regs buf_regs[] = {
17538         {0, (CHIP_IS_E3B0(sc)) ?
17539             PBF_REG_INIT_CRD_Q0 :
17540             PBF_REG_P0_INIT_CRD ,
17541             (CHIP_IS_E3B0(sc)) ?
17542             PBF_REG_CREDIT_Q0 :
17543             PBF_REG_P0_CREDIT,
17544             (CHIP_IS_E3B0(sc)) ?
17545             PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
17546             PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
17547         {1, (CHIP_IS_E3B0(sc)) ?
17548             PBF_REG_INIT_CRD_Q1 :
17549             PBF_REG_P1_INIT_CRD,
17550             (CHIP_IS_E3B0(sc)) ?
17551             PBF_REG_CREDIT_Q1 :
17552             PBF_REG_P1_CREDIT,
17553             (CHIP_IS_E3B0(sc)) ?
17554             PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
17555             PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
17556         {4, (CHIP_IS_E3B0(sc)) ?
17557             PBF_REG_INIT_CRD_LB_Q :
17558             PBF_REG_P4_INIT_CRD,
17559             (CHIP_IS_E3B0(sc)) ?
17560             PBF_REG_CREDIT_LB_Q :
17561             PBF_REG_P4_CREDIT,
17562             (CHIP_IS_E3B0(sc)) ?
17563             PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
17564             PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
17565     };
17566 
17567     int i;
17568 
17569     /* Verify the command queues are flushed P0, P1, P4 */
17570     for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
17571         bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
17572     }
17573 
17574     /* Verify the transmission buffers are flushed P0, P1, P4 */
17575     for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
17576         bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
17577     }
17578 }
17579 
17580 static void
17581 bxe_hw_enable_status(struct bxe_softc *sc)
17582 {
17583     uint32_t val;
17584 
17585     val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
17586     BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
17587 
17588     val = REG_RD(sc, PBF_REG_DISABLE_PF);
17589     BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
17590 
17591     val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
17592     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
17593 
17594     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
17595     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
17596 
17597     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
17598     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
17599 
17600     val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
17601     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
17602 
17603     val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
17604     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
17605 
17606     val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
17607     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
17608 }
17609 
17610 static int
17611 bxe_pf_flr_clnup(struct bxe_softc *sc)
17612 {
17613     uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
17614 
17615     BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
17616 
17617     /* Re-enable PF target read access */
17618     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
17619 
17620     /* Poll HW usage counters */
17621     BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
17622     if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
17623         return (-1);
17624     }
17625 
17626     /* Zero the igu 'trailing edge' and 'leading edge' */
17627 
17628     /* Send the FW cleanup command */
17629     if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
17630         return (-1);
17631     }
17632 
17633     /* ATC cleanup */
17634 
17635     /* Verify TX hw is flushed */
17636     bxe_tx_hw_flushed(sc, poll_cnt);
17637 
17638     /* Wait 100ms (not adjusted according to platform) */
17639     DELAY(100000);
17640 
17641     /* Verify no pending pci transactions */
17642     if (bxe_is_pcie_pending(sc)) {
17643         BLOGE(sc, "PCIE Transactions still pending\n");
17644     }
17645 
17646     /* Debug */
17647     bxe_hw_enable_status(sc);
17648 
17649     /*
17650      * Master enable - Due to WB DMAE writes performed before this
17651      * register is re-initialized as part of the regular function init
17652      */
17653     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17654 
17655     return (0);
17656 }
17657 
17658 static int
17659 bxe_init_hw_func(struct bxe_softc *sc)
17660 {
17661     int port = SC_PORT(sc);
17662     int func = SC_FUNC(sc);
17663     int init_phase = PHASE_PF0 + func;
17664     struct ecore_ilt *ilt = sc->ilt;
17665     uint16_t cdu_ilt_start;
17666     uint32_t addr, val;
17667     uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
17668     int i, main_mem_width, rc;
17669 
17670     BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
17671 
17672     /* FLR cleanup */
17673     if (!CHIP_IS_E1x(sc)) {
17674         rc = bxe_pf_flr_clnup(sc);
17675         if (rc) {
17676             BLOGE(sc, "FLR cleanup failed!\n");
17677             // XXX bxe_fw_dump(sc);
17678             // XXX bxe_idle_chk(sc);
17679             return (rc);
17680         }
17681     }
17682 
17683     /* set MSI reconfigure capability */
17684     if (sc->devinfo.int_block == INT_BLOCK_HC) {
17685         addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
17686         val = REG_RD(sc, addr);
17687         val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
17688         REG_WR(sc, addr, val);
17689     }
17690 
17691     ecore_init_block(sc, BLOCK_PXP, init_phase);
17692     ecore_init_block(sc, BLOCK_PXP2, init_phase);
17693 
17694     ilt = sc->ilt;
17695     cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
17696 
17697     for (i = 0; i < L2_ILT_LINES(sc); i++) {
17698         ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
17699         ilt->lines[cdu_ilt_start + i].page_mapping =
17700             sc->context[i].vcxt_dma.paddr;
17701         ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
17702     }
17703     ecore_ilt_init_op(sc, INITOP_SET);
17704 
17705     /* Set NIC mode */
17706     REG_WR(sc, PRS_REG_NIC_MODE, 1);
17707     BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
17708 
17709     if (!CHIP_IS_E1x(sc)) {
17710         uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
17711 
17712         /* Turn on a single ISR mode in IGU if driver is going to use
17713          * INT#x or MSI
17714          */
17715         if (sc->interrupt_mode != INTR_MODE_MSIX) {
17716             pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
17717         }
17718 
17719         /*
17720          * Timers workaround bug: function init part.
17721          * Need to wait 20msec after initializing ILT,
17722          * needed to make sure there are no requests in
17723          * one of the PXP internal queues with "old" ILT addresses
17724          */
17725         DELAY(20000);
17726 
17727         /*
17728          * Master enable - Due to WB DMAE writes performed before this
17729          * register is re-initialized as part of the regular function
17730          * init
17731          */
17732         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17733         /* Enable the function in IGU */
17734         REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
17735     }
17736 
17737     sc->dmae_ready = 1;
17738 
17739     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17740 
17741     if (!CHIP_IS_E1x(sc))
17742         REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
17743 
17744     ecore_init_block(sc, BLOCK_ATC, init_phase);
17745     ecore_init_block(sc, BLOCK_DMAE, init_phase);
17746     ecore_init_block(sc, BLOCK_NIG, init_phase);
17747     ecore_init_block(sc, BLOCK_SRC, init_phase);
17748     ecore_init_block(sc, BLOCK_MISC, init_phase);
17749     ecore_init_block(sc, BLOCK_TCM, init_phase);
17750     ecore_init_block(sc, BLOCK_UCM, init_phase);
17751     ecore_init_block(sc, BLOCK_CCM, init_phase);
17752     ecore_init_block(sc, BLOCK_XCM, init_phase);
17753     ecore_init_block(sc, BLOCK_TSEM, init_phase);
17754     ecore_init_block(sc, BLOCK_USEM, init_phase);
17755     ecore_init_block(sc, BLOCK_CSEM, init_phase);
17756     ecore_init_block(sc, BLOCK_XSEM, init_phase);
17757 
17758     if (!CHIP_IS_E1x(sc))
17759         REG_WR(sc, QM_REG_PF_EN, 1);
17760 
17761     if (!CHIP_IS_E1x(sc)) {
17762         REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17763         REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17764         REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17765         REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17766     }
17767     ecore_init_block(sc, BLOCK_QM, init_phase);
17768 
17769     ecore_init_block(sc, BLOCK_TM, init_phase);
17770     ecore_init_block(sc, BLOCK_DORQ, init_phase);
17771 
17772     bxe_iov_init_dq(sc);
17773 
17774     ecore_init_block(sc, BLOCK_BRB1, init_phase);
17775     ecore_init_block(sc, BLOCK_PRS, init_phase);
17776     ecore_init_block(sc, BLOCK_TSDM, init_phase);
17777     ecore_init_block(sc, BLOCK_CSDM, init_phase);
17778     ecore_init_block(sc, BLOCK_USDM, init_phase);
17779     ecore_init_block(sc, BLOCK_XSDM, init_phase);
17780     ecore_init_block(sc, BLOCK_UPB, init_phase);
17781     ecore_init_block(sc, BLOCK_XPB, init_phase);
17782     ecore_init_block(sc, BLOCK_PBF, init_phase);
17783     if (!CHIP_IS_E1x(sc))
17784         REG_WR(sc, PBF_REG_DISABLE_PF, 0);
17785 
17786     ecore_init_block(sc, BLOCK_CDU, init_phase);
17787 
17788     ecore_init_block(sc, BLOCK_CFC, init_phase);
17789 
17790     if (!CHIP_IS_E1x(sc))
17791         REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
17792 
17793     if (IS_MF(sc)) {
17794         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
17795         REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
17796     }
17797 
17798     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17799 
17800     /* HC init per function */
17801     if (sc->devinfo.int_block == INT_BLOCK_HC) {
17802         if (CHIP_IS_E1H(sc)) {
17803             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
17804 
17805             REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17806             REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17807         }
17808         ecore_init_block(sc, BLOCK_HC, init_phase);
17809 
17810     } else {
17811         int num_segs, sb_idx, prod_offset;
17812 
17813         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
17814 
17815         if (!CHIP_IS_E1x(sc)) {
17816             REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
17817             REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
17818         }
17819 
17820         ecore_init_block(sc, BLOCK_IGU, init_phase);
17821 
17822         if (!CHIP_IS_E1x(sc)) {
17823             int dsb_idx = 0;
17824             /**
17825              * Producer memory:
17826              * E2 mode: address 0-135 match to the mapping memory;
17827              * 136 - PF0 default prod; 137 - PF1 default prod;
17828              * 138 - PF2 default prod; 139 - PF3 default prod;
17829              * 140 - PF0 attn prod;    141 - PF1 attn prod;
17830              * 142 - PF2 attn prod;    143 - PF3 attn prod;
17831              * 144-147 reserved.
17832              *
17833              * E1.5 mode - In backward compatible mode;
17834              * for non default SB; each even line in the memory
17835              * holds the U producer and each odd line hold
17836              * the C producer. The first 128 producers are for
17837              * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
17838              * producers are for the DSB for each PF.
17839              * Each PF has five segments: (the order inside each
17840              * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
17841              * 132-135 C prods; 136-139 X prods; 140-143 T prods;
17842              * 144-147 attn prods;
17843              */
17844             /* non-default-status-blocks */
17845             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
17846                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
17847             for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
17848                 prod_offset = (sc->igu_base_sb + sb_idx) *
17849                     num_segs;
17850 
17851                 for (i = 0; i < num_segs; i++) {
17852                     addr = IGU_REG_PROD_CONS_MEMORY +
17853                             (prod_offset + i) * 4;
17854                     REG_WR(sc, addr, 0);
17855                 }
17856                 /* send consumer update with value 0 */
17857                 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
17858                            USTORM_ID, 0, IGU_INT_NOP, 1);
17859                 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
17860             }
17861 
17862             /* default-status-blocks */
17863             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
17864                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
17865 
17866             if (CHIP_IS_MODE_4_PORT(sc))
17867                 dsb_idx = SC_FUNC(sc);
17868             else
17869                 dsb_idx = SC_VN(sc);
17870 
17871             prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
17872                        IGU_BC_BASE_DSB_PROD + dsb_idx :
17873                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
17874 
17875             /*
17876              * igu prods come in chunks of E1HVN_MAX (4) -
17877              * does not matters what is the current chip mode
17878              */
17879             for (i = 0; i < (num_segs * E1HVN_MAX);
17880                  i += E1HVN_MAX) {
17881                 addr = IGU_REG_PROD_CONS_MEMORY +
17882                             (prod_offset + i)*4;
17883                 REG_WR(sc, addr, 0);
17884             }
17885             /* send consumer update with 0 */
17886             if (CHIP_INT_MODE_IS_BC(sc)) {
17887                 bxe_ack_sb(sc, sc->igu_dsb_id,
17888                            USTORM_ID, 0, IGU_INT_NOP, 1);
17889                 bxe_ack_sb(sc, sc->igu_dsb_id,
17890                            CSTORM_ID, 0, IGU_INT_NOP, 1);
17891                 bxe_ack_sb(sc, sc->igu_dsb_id,
17892                            XSTORM_ID, 0, IGU_INT_NOP, 1);
17893                 bxe_ack_sb(sc, sc->igu_dsb_id,
17894                            TSTORM_ID, 0, IGU_INT_NOP, 1);
17895                 bxe_ack_sb(sc, sc->igu_dsb_id,
17896                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
17897             } else {
17898                 bxe_ack_sb(sc, sc->igu_dsb_id,
17899                            USTORM_ID, 0, IGU_INT_NOP, 1);
17900                 bxe_ack_sb(sc, sc->igu_dsb_id,
17901                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
17902             }
17903             bxe_igu_clear_sb(sc, sc->igu_dsb_id);
17904 
17905             /* !!! these should become driver const once
17906                rf-tool supports split-68 const */
17907             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
17908             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
17909             REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
17910             REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
17911             REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
17912             REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
17913         }
17914     }
17915 
17916     /* Reset PCIE errors for debug */
17917     REG_WR(sc, 0x2114, 0xffffffff);
17918     REG_WR(sc, 0x2120, 0xffffffff);
17919 
17920     if (CHIP_IS_E1x(sc)) {
17921         main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
17922         main_mem_base = HC_REG_MAIN_MEMORY +
17923                 SC_PORT(sc) * (main_mem_size * 4);
17924         main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
17925         main_mem_width = 8;
17926 
17927         val = REG_RD(sc, main_mem_prty_clr);
17928         if (val) {
17929             BLOGD(sc, DBG_LOAD,
17930                   "Parity errors in HC block during function init (0x%x)!\n",
17931                   val);
17932         }
17933 
17934         /* Clear "false" parity errors in MSI-X table */
17935         for (i = main_mem_base;
17936              i < main_mem_base + main_mem_size * 4;
17937              i += main_mem_width) {
17938             bxe_read_dmae(sc, i, main_mem_width / 4);
17939             bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
17940                            i, main_mem_width / 4);
17941         }
17942         /* Clear HC parity attention */
17943         REG_RD(sc, main_mem_prty_clr);
17944     }
17945 
17946 #if 1
17947     /* Enable STORMs SP logging */
17948     REG_WR8(sc, BAR_USTRORM_INTMEM +
17949            USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
17950     REG_WR8(sc, BAR_TSTRORM_INTMEM +
17951            TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
17952     REG_WR8(sc, BAR_CSTRORM_INTMEM +
17953            CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
17954     REG_WR8(sc, BAR_XSTRORM_INTMEM +
17955            XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
17956 #endif
17957 
17958     elink_phy_probe(&sc->link_params);
17959 
17960     return (0);
17961 }
17962 
17963 static void
17964 bxe_link_reset(struct bxe_softc *sc)
17965 {
17966     if (!BXE_NOMCP(sc)) {
17967 	bxe_acquire_phy_lock(sc);
17968         elink_lfa_reset(&sc->link_params, &sc->link_vars);
17969 	bxe_release_phy_lock(sc);
17970     } else {
17971         if (!CHIP_REV_IS_SLOW(sc)) {
17972             BLOGW(sc, "Bootcode is missing - cannot reset link\n");
17973         }
17974     }
17975 }
17976 
17977 static void
17978 bxe_reset_port(struct bxe_softc *sc)
17979 {
17980     int port = SC_PORT(sc);
17981     uint32_t val;
17982 
17983     /* reset physical Link */
17984     bxe_link_reset(sc);
17985 
17986     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17987 
17988     /* Do not rcv packets to BRB */
17989     REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
17990     /* Do not direct rcv packets that are not for MCP to the BRB */
17991     REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
17992                NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
17993 
17994     /* Configure AEU */
17995     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
17996 
17997     DELAY(100000);
17998 
17999     /* Check for BRB port occupancy */
18000     val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18001     if (val) {
18002         BLOGD(sc, DBG_LOAD,
18003               "BRB1 is not empty, %d blocks are occupied\n", val);
18004     }
18005 
18006     /* TODO: Close Doorbell port? */
18007 }
18008 
18009 static void
18010 bxe_ilt_wr(struct bxe_softc *sc,
18011            uint32_t         index,
18012            bus_addr_t       addr)
18013 {
18014     int reg;
18015     uint32_t wb_write[2];
18016 
18017     if (CHIP_IS_E1(sc)) {
18018         reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18019     } else {
18020         reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18021     }
18022 
18023     wb_write[0] = ONCHIP_ADDR1(addr);
18024     wb_write[1] = ONCHIP_ADDR2(addr);
18025     REG_WR_DMAE(sc, reg, wb_write, 2);
18026 }
18027 
18028 static void
18029 bxe_clear_func_ilt(struct bxe_softc *sc,
18030                    uint32_t         func)
18031 {
18032     uint32_t i, base = FUNC_ILT_BASE(func);
18033     for (i = base; i < base + ILT_PER_FUNC; i++) {
18034         bxe_ilt_wr(sc, i, 0);
18035     }
18036 }
18037 
18038 static void
18039 bxe_reset_func(struct bxe_softc *sc)
18040 {
18041     struct bxe_fastpath *fp;
18042     int port = SC_PORT(sc);
18043     int func = SC_FUNC(sc);
18044     int i;
18045 
18046     /* Disable the function in the FW */
18047     REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18048     REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18049     REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18050     REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18051 
18052     /* FP SBs */
18053     FOR_EACH_ETH_QUEUE(sc, i) {
18054         fp = &sc->fp[i];
18055         REG_WR8(sc, BAR_CSTRORM_INTMEM +
18056                 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18057                 SB_DISABLED);
18058     }
18059 
18060     /* SP SB */
18061     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18062             CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18063             SB_DISABLED);
18064 
18065     for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18066         REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18067     }
18068 
18069     /* Configure IGU */
18070     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18071         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18072         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18073     } else {
18074         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18075         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18076     }
18077 
18078     if (CNIC_LOADED(sc)) {
18079         /* Disable Timer scan */
18080         REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18081         /*
18082          * Wait for at least 10ms and up to 2 second for the timers
18083          * scan to complete
18084          */
18085         for (i = 0; i < 200; i++) {
18086             DELAY(10000);
18087             if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18088                 break;
18089         }
18090     }
18091 
18092     /* Clear ILT */
18093     bxe_clear_func_ilt(sc, func);
18094 
18095     /*
18096      * Timers workaround bug for E2: if this is vnic-3,
18097      * we need to set the entire ilt range for this timers.
18098      */
18099     if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18100         struct ilt_client_info ilt_cli;
18101         /* use dummy TM client */
18102         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18103         ilt_cli.start = 0;
18104         ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18105         ilt_cli.client_num = ILT_CLIENT_TM;
18106 
18107         ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18108     }
18109 
18110     /* this assumes that reset_port() called before reset_func()*/
18111     if (!CHIP_IS_E1x(sc)) {
18112         bxe_pf_disable(sc);
18113     }
18114 
18115     sc->dmae_ready = 0;
18116 }
18117 
18118 static int
18119 bxe_gunzip_init(struct bxe_softc *sc)
18120 {
18121     return (0);
18122 }
18123 
18124 static void
18125 bxe_gunzip_end(struct bxe_softc *sc)
18126 {
18127     return;
18128 }
18129 
18130 static int
18131 bxe_init_firmware(struct bxe_softc *sc)
18132 {
18133     if (CHIP_IS_E1(sc)) {
18134         ecore_init_e1_firmware(sc);
18135         sc->iro_array = e1_iro_arr;
18136     } else if (CHIP_IS_E1H(sc)) {
18137         ecore_init_e1h_firmware(sc);
18138         sc->iro_array = e1h_iro_arr;
18139     } else if (!CHIP_IS_E1x(sc)) {
18140         ecore_init_e2_firmware(sc);
18141         sc->iro_array = e2_iro_arr;
18142     } else {
18143         BLOGE(sc, "Unsupported chip revision\n");
18144         return (-1);
18145     }
18146 
18147     return (0);
18148 }
18149 
18150 static void
18151 bxe_release_firmware(struct bxe_softc *sc)
18152 {
18153     /* Do nothing */
18154     return;
18155 }
18156 
18157 static int
18158 ecore_gunzip(struct bxe_softc *sc,
18159              const uint8_t    *zbuf,
18160              int              len)
18161 {
18162     /* XXX : Implement... */
18163     BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18164     return (FALSE);
18165 }
18166 
18167 static void
18168 ecore_reg_wr_ind(struct bxe_softc *sc,
18169                  uint32_t         addr,
18170                  uint32_t         val)
18171 {
18172     bxe_reg_wr_ind(sc, addr, val);
18173 }
18174 
18175 static void
18176 ecore_write_dmae_phys_len(struct bxe_softc *sc,
18177                           bus_addr_t       phys_addr,
18178                           uint32_t         addr,
18179                           uint32_t         len)
18180 {
18181     bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18182 }
18183 
18184 void
18185 ecore_storm_memset_struct(struct bxe_softc *sc,
18186                           uint32_t         addr,
18187                           size_t           size,
18188                           uint32_t         *data)
18189 {
18190     uint8_t i;
18191     for (i = 0; i < size/4; i++) {
18192         REG_WR(sc, addr + (i * 4), data[i]);
18193     }
18194 }
18195 
18196 
18197 /*
18198  * character device - ioctl interface definitions
18199  */
18200 
18201 
18202 #include "bxe_dump.h"
18203 #include "bxe_ioctl.h"
18204 #include <sys/conf.h>
18205 
18206 static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
18207                 struct thread *td);
18208 
18209 static struct cdevsw bxe_cdevsw = {
18210     .d_version = D_VERSION,
18211     .d_ioctl = bxe_eioctl,
18212     .d_name = "bxecnic",
18213 };
18214 
18215 #define BXE_PATH(sc)    (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1))
18216 
18217 
18218 #define DUMP_ALL_PRESETS        0x1FFF
18219 #define DUMP_MAX_PRESETS        13
18220 #define IS_E1_REG(chips)        ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1)
18221 #define IS_E1H_REG(chips)       ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H)
18222 #define IS_E2_REG(chips)        ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2)
18223 #define IS_E3A0_REG(chips)      ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0)
18224 #define IS_E3B0_REG(chips)      ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0)
18225 
18226 #define IS_REG_IN_PRESET(presets, idx)  \
18227                 ((presets & (1 << (idx-1))) == (1 << (idx-1)))
18228 
18229 
18230 static int
18231 bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset)
18232 {
18233     if (CHIP_IS_E1(sc))
18234         return dump_num_registers[0][preset-1];
18235     else if (CHIP_IS_E1H(sc))
18236         return dump_num_registers[1][preset-1];
18237     else if (CHIP_IS_E2(sc))
18238         return dump_num_registers[2][preset-1];
18239     else if (CHIP_IS_E3A0(sc))
18240         return dump_num_registers[3][preset-1];
18241     else if (CHIP_IS_E3B0(sc))
18242         return dump_num_registers[4][preset-1];
18243     else
18244         return 0;
18245 }
18246 
18247 static int
18248 bxe_get_total_regs_len32(struct bxe_softc *sc)
18249 {
18250     uint32_t preset_idx;
18251     int regdump_len32 = 0;
18252 
18253 
18254     /* Calculate the total preset regs length */
18255     for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18256         regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx);
18257     }
18258 
18259     return regdump_len32;
18260 }
18261 
18262 static const uint32_t *
18263 __bxe_get_page_addr_ar(struct bxe_softc *sc)
18264 {
18265     if (CHIP_IS_E2(sc))
18266         return page_vals_e2;
18267     else if (CHIP_IS_E3(sc))
18268         return page_vals_e3;
18269     else
18270         return NULL;
18271 }
18272 
18273 static uint32_t
18274 __bxe_get_page_reg_num(struct bxe_softc *sc)
18275 {
18276     if (CHIP_IS_E2(sc))
18277         return PAGE_MODE_VALUES_E2;
18278     else if (CHIP_IS_E3(sc))
18279         return PAGE_MODE_VALUES_E3;
18280     else
18281         return 0;
18282 }
18283 
18284 static const uint32_t *
18285 __bxe_get_page_write_ar(struct bxe_softc *sc)
18286 {
18287     if (CHIP_IS_E2(sc))
18288         return page_write_regs_e2;
18289     else if (CHIP_IS_E3(sc))
18290         return page_write_regs_e3;
18291     else
18292         return NULL;
18293 }
18294 
18295 static uint32_t
18296 __bxe_get_page_write_num(struct bxe_softc *sc)
18297 {
18298     if (CHIP_IS_E2(sc))
18299         return PAGE_WRITE_REGS_E2;
18300     else if (CHIP_IS_E3(sc))
18301         return PAGE_WRITE_REGS_E3;
18302     else
18303         return 0;
18304 }
18305 
18306 static const struct reg_addr *
18307 __bxe_get_page_read_ar(struct bxe_softc *sc)
18308 {
18309     if (CHIP_IS_E2(sc))
18310         return page_read_regs_e2;
18311     else if (CHIP_IS_E3(sc))
18312         return page_read_regs_e3;
18313     else
18314         return NULL;
18315 }
18316 
18317 static uint32_t
18318 __bxe_get_page_read_num(struct bxe_softc *sc)
18319 {
18320     if (CHIP_IS_E2(sc))
18321         return PAGE_READ_REGS_E2;
18322     else if (CHIP_IS_E3(sc))
18323         return PAGE_READ_REGS_E3;
18324     else
18325         return 0;
18326 }
18327 
18328 static bool
18329 bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info)
18330 {
18331     if (CHIP_IS_E1(sc))
18332         return IS_E1_REG(reg_info->chips);
18333     else if (CHIP_IS_E1H(sc))
18334         return IS_E1H_REG(reg_info->chips);
18335     else if (CHIP_IS_E2(sc))
18336         return IS_E2_REG(reg_info->chips);
18337     else if (CHIP_IS_E3A0(sc))
18338         return IS_E3A0_REG(reg_info->chips);
18339     else if (CHIP_IS_E3B0(sc))
18340         return IS_E3B0_REG(reg_info->chips);
18341     else
18342         return 0;
18343 }
18344 
18345 static bool
18346 bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info)
18347 {
18348     if (CHIP_IS_E1(sc))
18349         return IS_E1_REG(wreg_info->chips);
18350     else if (CHIP_IS_E1H(sc))
18351         return IS_E1H_REG(wreg_info->chips);
18352     else if (CHIP_IS_E2(sc))
18353         return IS_E2_REG(wreg_info->chips);
18354     else if (CHIP_IS_E3A0(sc))
18355         return IS_E3A0_REG(wreg_info->chips);
18356     else if (CHIP_IS_E3B0(sc))
18357         return IS_E3B0_REG(wreg_info->chips);
18358     else
18359         return 0;
18360 }
18361 
18362 /**
18363  * bxe_read_pages_regs - read "paged" registers
18364  *
18365  * @bp          device handle
18366  * @p           output buffer
18367  *
18368  * Reads "paged" memories: memories that may only be read by first writing to a
18369  * specific address ("write address") and then reading from a specific address
18370  * ("read address"). There may be more than one write address per "page" and
18371  * more than one read address per write address.
18372  */
18373 static void
18374 bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18375 {
18376     uint32_t i, j, k, n;
18377 
18378     /* addresses of the paged registers */
18379     const uint32_t *page_addr = __bxe_get_page_addr_ar(sc);
18380     /* number of paged registers */
18381     int num_pages = __bxe_get_page_reg_num(sc);
18382     /* write addresses */
18383     const uint32_t *write_addr = __bxe_get_page_write_ar(sc);
18384     /* number of write addresses */
18385     int write_num = __bxe_get_page_write_num(sc);
18386     /* read addresses info */
18387     const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc);
18388     /* number of read addresses */
18389     int read_num = __bxe_get_page_read_num(sc);
18390     uint32_t addr, size;
18391 
18392     for (i = 0; i < num_pages; i++) {
18393         for (j = 0; j < write_num; j++) {
18394             REG_WR(sc, write_addr[j], page_addr[i]);
18395 
18396             for (k = 0; k < read_num; k++) {
18397                 if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) {
18398                     size = read_addr[k].size;
18399                     for (n = 0; n < size; n++) {
18400                         addr = read_addr[k].addr + n*4;
18401                         *p++ = REG_RD(sc, addr);
18402                     }
18403                 }
18404             }
18405         }
18406     }
18407     return;
18408 }
18409 
18410 
18411 static int
18412 bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18413 {
18414     uint32_t i, j, addr;
18415     const struct wreg_addr *wreg_addr_p = NULL;
18416 
18417     if (CHIP_IS_E1(sc))
18418         wreg_addr_p = &wreg_addr_e1;
18419     else if (CHIP_IS_E1H(sc))
18420         wreg_addr_p = &wreg_addr_e1h;
18421     else if (CHIP_IS_E2(sc))
18422         wreg_addr_p = &wreg_addr_e2;
18423     else if (CHIP_IS_E3A0(sc))
18424         wreg_addr_p = &wreg_addr_e3;
18425     else if (CHIP_IS_E3B0(sc))
18426         wreg_addr_p = &wreg_addr_e3b0;
18427     else
18428         return (-1);
18429 
18430     /* Read the idle_chk registers */
18431     for (i = 0; i < IDLE_REGS_COUNT; i++) {
18432         if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) &&
18433             IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) {
18434             for (j = 0; j < idle_reg_addrs[i].size; j++)
18435                 *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4);
18436         }
18437     }
18438 
18439     /* Read the regular registers */
18440     for (i = 0; i < REGS_COUNT; i++) {
18441         if (bxe_is_reg_in_chip(sc, &reg_addrs[i]) &&
18442             IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) {
18443             for (j = 0; j < reg_addrs[i].size; j++)
18444                 *p++ = REG_RD(sc, reg_addrs[i].addr + j*4);
18445         }
18446     }
18447 
18448     /* Read the CAM registers */
18449     if (bxe_is_wreg_in_chip(sc, wreg_addr_p) &&
18450         IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) {
18451         for (i = 0; i < wreg_addr_p->size; i++) {
18452             *p++ = REG_RD(sc, wreg_addr_p->addr + i*4);
18453 
18454             /* In case of wreg_addr register, read additional
18455                registers from read_regs array
18456              */
18457             for (j = 0; j < wreg_addr_p->read_regs_count; j++) {
18458                 addr = *(wreg_addr_p->read_regs);
18459                 *p++ = REG_RD(sc, addr + j*4);
18460             }
18461         }
18462     }
18463 
18464     /* Paged registers are supported in E2 & E3 only */
18465     if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
18466         /* Read "paged" registers */
18467         bxe_read_pages_regs(sc, p, preset);
18468     }
18469 
18470     return 0;
18471 }
18472 
18473 static int
18474 bxe_grc_dump(struct bxe_softc *sc)
18475 {
18476     int rval = 0;
18477     uint32_t preset_idx;
18478     uint8_t *buf;
18479     uint32_t size;
18480     struct  dump_header *d_hdr;
18481 
18482     if (sc->grcdump_done)
18483 	return (rval);
18484 
18485     ecore_disable_blocks_parity(sc);
18486 
18487     buf = sc->grc_dump;
18488     d_hdr = sc->grc_dump;
18489 
18490     d_hdr->header_size = (sizeof(struct  dump_header) >> 2) - 1;
18491     d_hdr->version = BNX2X_DUMP_VERSION;
18492     d_hdr->preset = DUMP_ALL_PRESETS;
18493 
18494     if (CHIP_IS_E1(sc)) {
18495         d_hdr->dump_meta_data = DUMP_CHIP_E1;
18496     } else if (CHIP_IS_E1H(sc)) {
18497         d_hdr->dump_meta_data = DUMP_CHIP_E1H;
18498     } else if (CHIP_IS_E2(sc)) {
18499         d_hdr->dump_meta_data = DUMP_CHIP_E2 |
18500                 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18501     } else if (CHIP_IS_E3A0(sc)) {
18502         d_hdr->dump_meta_data = DUMP_CHIP_E3A0 |
18503                 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18504     } else if (CHIP_IS_E3B0(sc)) {
18505         d_hdr->dump_meta_data = DUMP_CHIP_E3B0 |
18506                 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18507     }
18508 
18509     buf += sizeof(struct  dump_header);
18510 
18511     for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18512 
18513         /* Skip presets with IOR */
18514         if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) ||
18515             (preset_idx == 11))
18516             continue;
18517 
18518         rval = bxe_get_preset_regs(sc, sc->grc_dump, preset_idx);
18519 
18520 	if (rval)
18521             break;
18522 
18523         size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t));
18524 
18525         buf += size;
18526     }
18527 
18528     ecore_clear_blocks_parity(sc);
18529     ecore_enable_blocks_parity(sc);
18530 
18531     sc->grcdump_done = 1;
18532     return(rval);
18533 }
18534 
18535 static int
18536 bxe_add_cdev(struct bxe_softc *sc)
18537 {
18538     int grc_dump_size;
18539 
18540     grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
18541 				sizeof(struct  dump_header);
18542 
18543     sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT);
18544 
18545     if (sc->grc_dump == NULL)
18546         return (-1);
18547 
18548     sc->ioctl_dev = make_dev(&bxe_cdevsw,
18549                             sc->ifp->if_dunit,
18550                             UID_ROOT,
18551                             GID_WHEEL,
18552                             0600,
18553                             "%s",
18554                             if_name(sc->ifp));
18555 
18556     if (sc->ioctl_dev == NULL) {
18557 
18558         free(sc->grc_dump, M_DEVBUF);
18559 
18560         return (-1);
18561     }
18562 
18563     sc->ioctl_dev->si_drv1 = sc;
18564 
18565     return (0);
18566 }
18567 
18568 static void
18569 bxe_del_cdev(struct bxe_softc *sc)
18570 {
18571     if (sc->ioctl_dev != NULL)
18572         destroy_dev(sc->ioctl_dev);
18573 
18574     if (sc->grc_dump == NULL)
18575         free(sc->grc_dump, M_DEVBUF);
18576 
18577     return;
18578 }
18579 
18580 static int
18581 bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
18582         struct thread *td)
18583 {
18584     struct bxe_softc    *sc;
18585     int                 rval = 0;
18586     device_t            pci_dev;
18587     bxe_grcdump_t       *dump = NULL;
18588     int grc_dump_size;
18589 
18590     if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL)
18591         return ENXIO;
18592 
18593     pci_dev= sc->dev;
18594 
18595     dump = (bxe_grcdump_t *)data;
18596 
18597     switch(cmd) {
18598 
18599         case BXE_GRC_DUMP_SIZE:
18600             dump->pci_func = sc->pcie_func;
18601             dump->grcdump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
18602 					sizeof(struct  dump_header);
18603             break;
18604 
18605         case BXE_GRC_DUMP:
18606 
18607             grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
18608 				sizeof(struct  dump_header);
18609 
18610             if ((sc->grc_dump == NULL) || (dump->grcdump == NULL) ||
18611                 (dump->grcdump_size < grc_dump_size) || (!sc->grcdump_done)) {
18612                 rval = EINVAL;
18613                 break;
18614             }
18615 	    dump->grcdump_dwords = grc_dump_size >> 2;
18616             rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size);
18617             sc->grcdump_done = 0;
18618 
18619             break;
18620 
18621         default:
18622             break;
18623     }
18624 
18625     return (rval);
18626 }
18627