1 /*- 2 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 15 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 18 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 19 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 20 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 21 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 22 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 23 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 24 * THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #define BXE_DRIVER_VERSION "1.78.81" 31 32 #include "bxe.h" 33 #include "ecore_sp.h" 34 #include "ecore_init.h" 35 #include "ecore_init_ops.h" 36 37 #include "57710_int_offsets.h" 38 #include "57711_int_offsets.h" 39 #include "57712_int_offsets.h" 40 41 /* 42 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these 43 * explicitly here for older kernels that don't include this changeset. 44 */ 45 #ifndef CTLTYPE_U64 46 #define CTLTYPE_U64 CTLTYPE_QUAD 47 #define sysctl_handle_64 sysctl_handle_quad 48 #endif 49 50 /* 51 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these 52 * here as zero(0) for older kernels that don't include this changeset 53 * thereby masking the functionality. 54 */ 55 #ifndef CSUM_TCP_IPV6 56 #define CSUM_TCP_IPV6 0 57 #define CSUM_UDP_IPV6 0 58 #endif 59 60 /* 61 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap 62 * for older kernels that don't include this changeset. 63 */ 64 #if __FreeBSD_version < 900035 65 #define pci_find_cap pci_find_extcap 66 #endif 67 68 #define BXE_DEF_SB_ATT_IDX 0x0001 69 #define BXE_DEF_SB_IDX 0x0002 70 71 /* 72 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per 73 * function HW initialization. 74 */ 75 #define FLR_WAIT_USEC 10000 /* 10 msecs */ 76 #define FLR_WAIT_INTERVAL 50 /* usecs */ 77 #define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */ 78 79 struct pbf_pN_buf_regs { 80 int pN; 81 uint32_t init_crd; 82 uint32_t crd; 83 uint32_t crd_freed; 84 }; 85 86 struct pbf_pN_cmd_regs { 87 int pN; 88 uint32_t lines_occup; 89 uint32_t lines_freed; 90 }; 91 92 /* 93 * PCI Device ID Table used by bxe_probe(). 94 */ 95 #define BXE_DEVDESC_MAX 64 96 static struct bxe_device_type bxe_devs[] = { 97 { 98 BRCM_VENDORID, 99 CHIP_NUM_57710, 100 PCI_ANY_ID, PCI_ANY_ID, 101 "QLogic NetXtreme II BCM57710 10GbE" 102 }, 103 { 104 BRCM_VENDORID, 105 CHIP_NUM_57711, 106 PCI_ANY_ID, PCI_ANY_ID, 107 "QLogic NetXtreme II BCM57711 10GbE" 108 }, 109 { 110 BRCM_VENDORID, 111 CHIP_NUM_57711E, 112 PCI_ANY_ID, PCI_ANY_ID, 113 "QLogic NetXtreme II BCM57711E 10GbE" 114 }, 115 { 116 BRCM_VENDORID, 117 CHIP_NUM_57712, 118 PCI_ANY_ID, PCI_ANY_ID, 119 "QLogic NetXtreme II BCM57712 10GbE" 120 }, 121 { 122 BRCM_VENDORID, 123 CHIP_NUM_57712_MF, 124 PCI_ANY_ID, PCI_ANY_ID, 125 "QLogic NetXtreme II BCM57712 MF 10GbE" 126 }, 127 { 128 BRCM_VENDORID, 129 CHIP_NUM_57800, 130 PCI_ANY_ID, PCI_ANY_ID, 131 "QLogic NetXtreme II BCM57800 10GbE" 132 }, 133 { 134 BRCM_VENDORID, 135 CHIP_NUM_57800_MF, 136 PCI_ANY_ID, PCI_ANY_ID, 137 "QLogic NetXtreme II BCM57800 MF 10GbE" 138 }, 139 { 140 BRCM_VENDORID, 141 CHIP_NUM_57810, 142 PCI_ANY_ID, PCI_ANY_ID, 143 "QLogic NetXtreme II BCM57810 10GbE" 144 }, 145 { 146 BRCM_VENDORID, 147 CHIP_NUM_57810_MF, 148 PCI_ANY_ID, PCI_ANY_ID, 149 "QLogic NetXtreme II BCM57810 MF 10GbE" 150 }, 151 { 152 BRCM_VENDORID, 153 CHIP_NUM_57811, 154 PCI_ANY_ID, PCI_ANY_ID, 155 "QLogic NetXtreme II BCM57811 10GbE" 156 }, 157 { 158 BRCM_VENDORID, 159 CHIP_NUM_57811_MF, 160 PCI_ANY_ID, PCI_ANY_ID, 161 "QLogic NetXtreme II BCM57811 MF 10GbE" 162 }, 163 { 164 BRCM_VENDORID, 165 CHIP_NUM_57840_4_10, 166 PCI_ANY_ID, PCI_ANY_ID, 167 "QLogic NetXtreme II BCM57840 4x10GbE" 168 }, 169 { 170 BRCM_VENDORID, 171 CHIP_NUM_57840_MF, 172 PCI_ANY_ID, PCI_ANY_ID, 173 "QLogic NetXtreme II BCM57840 MF 10GbE" 174 }, 175 { 176 0, 0, 0, 0, NULL 177 } 178 }; 179 180 MALLOC_DECLARE(M_BXE_ILT); 181 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer"); 182 183 /* 184 * FreeBSD device entry points. 185 */ 186 static int bxe_probe(device_t); 187 static int bxe_attach(device_t); 188 static int bxe_detach(device_t); 189 static int bxe_shutdown(device_t); 190 191 /* 192 * FreeBSD KLD module/device interface event handler method. 193 */ 194 static device_method_t bxe_methods[] = { 195 /* Device interface (device_if.h) */ 196 DEVMETHOD(device_probe, bxe_probe), 197 DEVMETHOD(device_attach, bxe_attach), 198 DEVMETHOD(device_detach, bxe_detach), 199 DEVMETHOD(device_shutdown, bxe_shutdown), 200 /* Bus interface (bus_if.h) */ 201 DEVMETHOD(bus_print_child, bus_generic_print_child), 202 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 203 KOBJMETHOD_END 204 }; 205 206 /* 207 * FreeBSD KLD Module data declaration 208 */ 209 static driver_t bxe_driver = { 210 "bxe", /* module name */ 211 bxe_methods, /* event handler */ 212 sizeof(struct bxe_softc) /* extra data */ 213 }; 214 215 /* 216 * FreeBSD dev class is needed to manage dev instances and 217 * to associate with a bus type 218 */ 219 static devclass_t bxe_devclass; 220 221 MODULE_DEPEND(bxe, pci, 1, 1, 1); 222 MODULE_DEPEND(bxe, ether, 1, 1, 1); 223 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0); 224 225 /* resources needed for unloading a previously loaded device */ 226 227 #define BXE_PREV_WAIT_NEEDED 1 228 struct mtx bxe_prev_mtx; 229 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF); 230 struct bxe_prev_list_node { 231 LIST_ENTRY(bxe_prev_list_node) node; 232 uint8_t bus; 233 uint8_t slot; 234 uint8_t path; 235 uint8_t aer; /* XXX automatic error recovery */ 236 uint8_t undi; 237 }; 238 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list); 239 240 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 241 242 /* Tunable device values... */ 243 244 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters"); 245 246 /* Debug */ 247 unsigned long bxe_debug = 0; 248 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN, 249 &bxe_debug, 0, "Debug logging mode"); 250 251 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 252 static int bxe_interrupt_mode = INTR_MODE_MSIX; 253 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN, 254 &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode"); 255 256 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */ 257 static int bxe_queue_count = 4; 258 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN, 259 &bxe_queue_count, 0, "Multi-Queue queue count"); 260 261 /* max number of buffers per queue (default RX_BD_USABLE) */ 262 static int bxe_max_rx_bufs = 0; 263 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN, 264 &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue"); 265 266 /* Host interrupt coalescing RX tick timer (usecs) */ 267 static int bxe_hc_rx_ticks = 25; 268 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN, 269 &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks"); 270 271 /* Host interrupt coalescing TX tick timer (usecs) */ 272 static int bxe_hc_tx_ticks = 50; 273 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN, 274 &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks"); 275 276 /* Maximum number of Rx packets to process at a time */ 277 static int bxe_rx_budget = 0xffffffff; 278 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN, 279 &bxe_rx_budget, 0, "Rx processing budget"); 280 281 /* Maximum LRO aggregation size */ 282 static int bxe_max_aggregation_size = 0; 283 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN, 284 &bxe_max_aggregation_size, 0, "max aggregation size"); 285 286 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */ 287 static int bxe_mrrs = -1; 288 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN, 289 &bxe_mrrs, 0, "PCIe maximum read request size"); 290 291 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */ 292 static int bxe_autogreeen = 0; 293 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN, 294 &bxe_autogreeen, 0, "AutoGrEEEn support"); 295 296 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */ 297 static int bxe_udp_rss = 0; 298 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN, 299 &bxe_udp_rss, 0, "UDP RSS support"); 300 301 302 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */ 303 304 #define STATS_OFFSET32(stat_name) \ 305 (offsetof(struct bxe_eth_stats, stat_name) / 4) 306 307 #define Q_STATS_OFFSET32(stat_name) \ 308 (offsetof(struct bxe_eth_q_stats, stat_name) / 4) 309 310 static const struct { 311 uint32_t offset; 312 uint32_t size; 313 uint32_t flags; 314 #define STATS_FLAGS_PORT 1 315 #define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */ 316 #define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT) 317 char string[STAT_NAME_LEN]; 318 } bxe_eth_stats_arr[] = { 319 { STATS_OFFSET32(total_bytes_received_hi), 320 8, STATS_FLAGS_BOTH, "rx_bytes" }, 321 { STATS_OFFSET32(error_bytes_received_hi), 322 8, STATS_FLAGS_BOTH, "rx_error_bytes" }, 323 { STATS_OFFSET32(total_unicast_packets_received_hi), 324 8, STATS_FLAGS_BOTH, "rx_ucast_packets" }, 325 { STATS_OFFSET32(total_multicast_packets_received_hi), 326 8, STATS_FLAGS_BOTH, "rx_mcast_packets" }, 327 { STATS_OFFSET32(total_broadcast_packets_received_hi), 328 8, STATS_FLAGS_BOTH, "rx_bcast_packets" }, 329 { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi), 330 8, STATS_FLAGS_PORT, "rx_crc_errors" }, 331 { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi), 332 8, STATS_FLAGS_PORT, "rx_align_errors" }, 333 { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi), 334 8, STATS_FLAGS_PORT, "rx_undersize_packets" }, 335 { STATS_OFFSET32(etherstatsoverrsizepkts_hi), 336 8, STATS_FLAGS_PORT, "rx_oversize_packets" }, 337 { STATS_OFFSET32(rx_stat_etherstatsfragments_hi), 338 8, STATS_FLAGS_PORT, "rx_fragments" }, 339 { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi), 340 8, STATS_FLAGS_PORT, "rx_jabbers" }, 341 { STATS_OFFSET32(no_buff_discard_hi), 342 8, STATS_FLAGS_BOTH, "rx_discards" }, 343 { STATS_OFFSET32(mac_filter_discard), 344 4, STATS_FLAGS_PORT, "rx_filtered_packets" }, 345 { STATS_OFFSET32(mf_tag_discard), 346 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" }, 347 { STATS_OFFSET32(pfc_frames_received_hi), 348 8, STATS_FLAGS_PORT, "pfc_frames_received" }, 349 { STATS_OFFSET32(pfc_frames_sent_hi), 350 8, STATS_FLAGS_PORT, "pfc_frames_sent" }, 351 { STATS_OFFSET32(brb_drop_hi), 352 8, STATS_FLAGS_PORT, "rx_brb_discard" }, 353 { STATS_OFFSET32(brb_truncate_hi), 354 8, STATS_FLAGS_PORT, "rx_brb_truncate" }, 355 { STATS_OFFSET32(pause_frames_received_hi), 356 8, STATS_FLAGS_PORT, "rx_pause_frames" }, 357 { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi), 358 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" }, 359 { STATS_OFFSET32(nig_timer_max), 360 4, STATS_FLAGS_PORT, "rx_constant_pause_events" }, 361 { STATS_OFFSET32(total_bytes_transmitted_hi), 362 8, STATS_FLAGS_BOTH, "tx_bytes" }, 363 { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi), 364 8, STATS_FLAGS_PORT, "tx_error_bytes" }, 365 { STATS_OFFSET32(total_unicast_packets_transmitted_hi), 366 8, STATS_FLAGS_BOTH, "tx_ucast_packets" }, 367 { STATS_OFFSET32(total_multicast_packets_transmitted_hi), 368 8, STATS_FLAGS_BOTH, "tx_mcast_packets" }, 369 { STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 370 8, STATS_FLAGS_BOTH, "tx_bcast_packets" }, 371 { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi), 372 8, STATS_FLAGS_PORT, "tx_mac_errors" }, 373 { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi), 374 8, STATS_FLAGS_PORT, "tx_carrier_errors" }, 375 { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi), 376 8, STATS_FLAGS_PORT, "tx_single_collisions" }, 377 { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi), 378 8, STATS_FLAGS_PORT, "tx_multi_collisions" }, 379 { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi), 380 8, STATS_FLAGS_PORT, "tx_deferred" }, 381 { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi), 382 8, STATS_FLAGS_PORT, "tx_excess_collisions" }, 383 { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi), 384 8, STATS_FLAGS_PORT, "tx_late_collisions" }, 385 { STATS_OFFSET32(tx_stat_etherstatscollisions_hi), 386 8, STATS_FLAGS_PORT, "tx_total_collisions" }, 387 { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi), 388 8, STATS_FLAGS_PORT, "tx_64_byte_packets" }, 389 { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi), 390 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" }, 391 { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi), 392 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" }, 393 { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi), 394 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" }, 395 { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi), 396 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" }, 397 { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi), 398 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" }, 399 { STATS_OFFSET32(etherstatspktsover1522octets_hi), 400 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" }, 401 { STATS_OFFSET32(pause_frames_sent_hi), 402 8, STATS_FLAGS_PORT, "tx_pause_frames" }, 403 { STATS_OFFSET32(total_tpa_aggregations_hi), 404 8, STATS_FLAGS_FUNC, "tpa_aggregations" }, 405 { STATS_OFFSET32(total_tpa_aggregated_frames_hi), 406 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"}, 407 { STATS_OFFSET32(total_tpa_bytes_hi), 408 8, STATS_FLAGS_FUNC, "tpa_bytes"}, 409 { STATS_OFFSET32(eee_tx_lpi), 410 4, STATS_FLAGS_PORT, "eee_tx_lpi"}, 411 { STATS_OFFSET32(rx_calls), 412 4, STATS_FLAGS_FUNC, "rx_calls"}, 413 { STATS_OFFSET32(rx_pkts), 414 4, STATS_FLAGS_FUNC, "rx_pkts"}, 415 { STATS_OFFSET32(rx_tpa_pkts), 416 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"}, 417 { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts), 418 4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"}, 419 { STATS_OFFSET32(rx_bxe_service_rxsgl), 420 4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"}, 421 { STATS_OFFSET32(rx_jumbo_sge_pkts), 422 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"}, 423 { STATS_OFFSET32(rx_soft_errors), 424 4, STATS_FLAGS_FUNC, "rx_soft_errors"}, 425 { STATS_OFFSET32(rx_hw_csum_errors), 426 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"}, 427 { STATS_OFFSET32(rx_ofld_frames_csum_ip), 428 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"}, 429 { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 430 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"}, 431 { STATS_OFFSET32(rx_budget_reached), 432 4, STATS_FLAGS_FUNC, "rx_budget_reached"}, 433 { STATS_OFFSET32(tx_pkts), 434 4, STATS_FLAGS_FUNC, "tx_pkts"}, 435 { STATS_OFFSET32(tx_soft_errors), 436 4, STATS_FLAGS_FUNC, "tx_soft_errors"}, 437 { STATS_OFFSET32(tx_ofld_frames_csum_ip), 438 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"}, 439 { STATS_OFFSET32(tx_ofld_frames_csum_tcp), 440 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"}, 441 { STATS_OFFSET32(tx_ofld_frames_csum_udp), 442 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"}, 443 { STATS_OFFSET32(tx_ofld_frames_lso), 444 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"}, 445 { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 446 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"}, 447 { STATS_OFFSET32(tx_encap_failures), 448 4, STATS_FLAGS_FUNC, "tx_encap_failures"}, 449 { STATS_OFFSET32(tx_hw_queue_full), 450 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"}, 451 { STATS_OFFSET32(tx_hw_max_queue_depth), 452 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"}, 453 { STATS_OFFSET32(tx_dma_mapping_failure), 454 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"}, 455 { STATS_OFFSET32(tx_max_drbr_queue_depth), 456 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"}, 457 { STATS_OFFSET32(tx_window_violation_std), 458 4, STATS_FLAGS_FUNC, "tx_window_violation_std"}, 459 { STATS_OFFSET32(tx_window_violation_tso), 460 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"}, 461 { STATS_OFFSET32(tx_chain_lost_mbuf), 462 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"}, 463 { STATS_OFFSET32(tx_frames_deferred), 464 4, STATS_FLAGS_FUNC, "tx_frames_deferred"}, 465 { STATS_OFFSET32(tx_queue_xoff), 466 4, STATS_FLAGS_FUNC, "tx_queue_xoff"}, 467 { STATS_OFFSET32(mbuf_defrag_attempts), 468 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"}, 469 { STATS_OFFSET32(mbuf_defrag_failures), 470 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"}, 471 { STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 472 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"}, 473 { STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 474 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"}, 475 { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 476 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"}, 477 { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 478 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"}, 479 { STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 480 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"}, 481 { STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 482 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"}, 483 { STATS_OFFSET32(mbuf_alloc_tx), 484 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"}, 485 { STATS_OFFSET32(mbuf_alloc_rx), 486 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"}, 487 { STATS_OFFSET32(mbuf_alloc_sge), 488 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"}, 489 { STATS_OFFSET32(mbuf_alloc_tpa), 490 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"} 491 }; 492 493 static const struct { 494 uint32_t offset; 495 uint32_t size; 496 char string[STAT_NAME_LEN]; 497 } bxe_eth_q_stats_arr[] = { 498 { Q_STATS_OFFSET32(total_bytes_received_hi), 499 8, "rx_bytes" }, 500 { Q_STATS_OFFSET32(total_unicast_packets_received_hi), 501 8, "rx_ucast_packets" }, 502 { Q_STATS_OFFSET32(total_multicast_packets_received_hi), 503 8, "rx_mcast_packets" }, 504 { Q_STATS_OFFSET32(total_broadcast_packets_received_hi), 505 8, "rx_bcast_packets" }, 506 { Q_STATS_OFFSET32(no_buff_discard_hi), 507 8, "rx_discards" }, 508 { Q_STATS_OFFSET32(total_bytes_transmitted_hi), 509 8, "tx_bytes" }, 510 { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi), 511 8, "tx_ucast_packets" }, 512 { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi), 513 8, "tx_mcast_packets" }, 514 { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 515 8, "tx_bcast_packets" }, 516 { Q_STATS_OFFSET32(total_tpa_aggregations_hi), 517 8, "tpa_aggregations" }, 518 { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi), 519 8, "tpa_aggregated_frames"}, 520 { Q_STATS_OFFSET32(total_tpa_bytes_hi), 521 8, "tpa_bytes"}, 522 { Q_STATS_OFFSET32(rx_calls), 523 4, "rx_calls"}, 524 { Q_STATS_OFFSET32(rx_pkts), 525 4, "rx_pkts"}, 526 { Q_STATS_OFFSET32(rx_tpa_pkts), 527 4, "rx_tpa_pkts"}, 528 { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts), 529 4, "rx_erroneous_jumbo_sge_pkts"}, 530 { Q_STATS_OFFSET32(rx_bxe_service_rxsgl), 531 4, "rx_bxe_service_rxsgl"}, 532 { Q_STATS_OFFSET32(rx_jumbo_sge_pkts), 533 4, "rx_jumbo_sge_pkts"}, 534 { Q_STATS_OFFSET32(rx_soft_errors), 535 4, "rx_soft_errors"}, 536 { Q_STATS_OFFSET32(rx_hw_csum_errors), 537 4, "rx_hw_csum_errors"}, 538 { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip), 539 4, "rx_ofld_frames_csum_ip"}, 540 { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 541 4, "rx_ofld_frames_csum_tcp_udp"}, 542 { Q_STATS_OFFSET32(rx_budget_reached), 543 4, "rx_budget_reached"}, 544 { Q_STATS_OFFSET32(tx_pkts), 545 4, "tx_pkts"}, 546 { Q_STATS_OFFSET32(tx_soft_errors), 547 4, "tx_soft_errors"}, 548 { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip), 549 4, "tx_ofld_frames_csum_ip"}, 550 { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp), 551 4, "tx_ofld_frames_csum_tcp"}, 552 { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp), 553 4, "tx_ofld_frames_csum_udp"}, 554 { Q_STATS_OFFSET32(tx_ofld_frames_lso), 555 4, "tx_ofld_frames_lso"}, 556 { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 557 4, "tx_ofld_frames_lso_hdr_splits"}, 558 { Q_STATS_OFFSET32(tx_encap_failures), 559 4, "tx_encap_failures"}, 560 { Q_STATS_OFFSET32(tx_hw_queue_full), 561 4, "tx_hw_queue_full"}, 562 { Q_STATS_OFFSET32(tx_hw_max_queue_depth), 563 4, "tx_hw_max_queue_depth"}, 564 { Q_STATS_OFFSET32(tx_dma_mapping_failure), 565 4, "tx_dma_mapping_failure"}, 566 { Q_STATS_OFFSET32(tx_max_drbr_queue_depth), 567 4, "tx_max_drbr_queue_depth"}, 568 { Q_STATS_OFFSET32(tx_window_violation_std), 569 4, "tx_window_violation_std"}, 570 { Q_STATS_OFFSET32(tx_window_violation_tso), 571 4, "tx_window_violation_tso"}, 572 { Q_STATS_OFFSET32(tx_chain_lost_mbuf), 573 4, "tx_chain_lost_mbuf"}, 574 { Q_STATS_OFFSET32(tx_frames_deferred), 575 4, "tx_frames_deferred"}, 576 { Q_STATS_OFFSET32(tx_queue_xoff), 577 4, "tx_queue_xoff"}, 578 { Q_STATS_OFFSET32(mbuf_defrag_attempts), 579 4, "mbuf_defrag_attempts"}, 580 { Q_STATS_OFFSET32(mbuf_defrag_failures), 581 4, "mbuf_defrag_failures"}, 582 { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 583 4, "mbuf_rx_bd_alloc_failed"}, 584 { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 585 4, "mbuf_rx_bd_mapping_failed"}, 586 { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 587 4, "mbuf_rx_tpa_alloc_failed"}, 588 { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 589 4, "mbuf_rx_tpa_mapping_failed"}, 590 { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 591 4, "mbuf_rx_sge_alloc_failed"}, 592 { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 593 4, "mbuf_rx_sge_mapping_failed"}, 594 { Q_STATS_OFFSET32(mbuf_alloc_tx), 595 4, "mbuf_alloc_tx"}, 596 { Q_STATS_OFFSET32(mbuf_alloc_rx), 597 4, "mbuf_alloc_rx"}, 598 { Q_STATS_OFFSET32(mbuf_alloc_sge), 599 4, "mbuf_alloc_sge"}, 600 { Q_STATS_OFFSET32(mbuf_alloc_tpa), 601 4, "mbuf_alloc_tpa"} 602 }; 603 604 #define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr) 605 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr) 606 607 608 static void bxe_cmng_fns_init(struct bxe_softc *sc, 609 uint8_t read_cfg, 610 uint8_t cmng_type); 611 static int bxe_get_cmng_fns_mode(struct bxe_softc *sc); 612 static void storm_memset_cmng(struct bxe_softc *sc, 613 struct cmng_init *cmng, 614 uint8_t port); 615 static void bxe_set_reset_global(struct bxe_softc *sc); 616 static void bxe_set_reset_in_progress(struct bxe_softc *sc); 617 static uint8_t bxe_reset_is_done(struct bxe_softc *sc, 618 int engine); 619 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc); 620 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc, 621 uint8_t *global, 622 uint8_t print); 623 static void bxe_int_disable(struct bxe_softc *sc); 624 static int bxe_release_leader_lock(struct bxe_softc *sc); 625 static void bxe_pf_disable(struct bxe_softc *sc); 626 static void bxe_free_fp_buffers(struct bxe_softc *sc); 627 static inline void bxe_update_rx_prod(struct bxe_softc *sc, 628 struct bxe_fastpath *fp, 629 uint16_t rx_bd_prod, 630 uint16_t rx_cq_prod, 631 uint16_t rx_sge_prod); 632 static void bxe_link_report_locked(struct bxe_softc *sc); 633 static void bxe_link_report(struct bxe_softc *sc); 634 static void bxe_link_status_update(struct bxe_softc *sc); 635 static void bxe_periodic_callout_func(void *xsc); 636 static void bxe_periodic_start(struct bxe_softc *sc); 637 static void bxe_periodic_stop(struct bxe_softc *sc); 638 static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 639 uint16_t prev_index, 640 uint16_t index); 641 static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 642 int queue); 643 static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 644 uint16_t index); 645 static uint8_t bxe_txeof(struct bxe_softc *sc, 646 struct bxe_fastpath *fp); 647 static void bxe_task_fp(struct bxe_fastpath *fp); 648 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc, 649 struct mbuf *m, 650 uint8_t contents); 651 static int bxe_alloc_mem(struct bxe_softc *sc); 652 static void bxe_free_mem(struct bxe_softc *sc); 653 static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc); 654 static void bxe_free_fw_stats_mem(struct bxe_softc *sc); 655 static int bxe_interrupt_attach(struct bxe_softc *sc); 656 static void bxe_interrupt_detach(struct bxe_softc *sc); 657 static void bxe_set_rx_mode(struct bxe_softc *sc); 658 static int bxe_init_locked(struct bxe_softc *sc); 659 static int bxe_stop_locked(struct bxe_softc *sc); 660 static __noinline int bxe_nic_load(struct bxe_softc *sc, 661 int load_mode); 662 static __noinline int bxe_nic_unload(struct bxe_softc *sc, 663 uint32_t unload_mode, 664 uint8_t keep_link); 665 666 static void bxe_handle_sp_tq(void *context, int pending); 667 static void bxe_handle_fp_tq(void *context, int pending); 668 669 static int bxe_add_cdev(struct bxe_softc *sc); 670 static void bxe_del_cdev(struct bxe_softc *sc); 671 static int bxe_grc_dump(struct bxe_softc *sc); 672 673 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */ 674 uint32_t 675 calc_crc32(uint8_t *crc32_packet, 676 uint32_t crc32_length, 677 uint32_t crc32_seed, 678 uint8_t complement) 679 { 680 uint32_t byte = 0; 681 uint32_t bit = 0; 682 uint8_t msb = 0; 683 uint32_t temp = 0; 684 uint32_t shft = 0; 685 uint8_t current_byte = 0; 686 uint32_t crc32_result = crc32_seed; 687 const uint32_t CRC32_POLY = 0x1edc6f41; 688 689 if ((crc32_packet == NULL) || 690 (crc32_length == 0) || 691 ((crc32_length % 8) != 0)) 692 { 693 return (crc32_result); 694 } 695 696 for (byte = 0; byte < crc32_length; byte = byte + 1) 697 { 698 current_byte = crc32_packet[byte]; 699 for (bit = 0; bit < 8; bit = bit + 1) 700 { 701 /* msb = crc32_result[31]; */ 702 msb = (uint8_t)(crc32_result >> 31); 703 704 crc32_result = crc32_result << 1; 705 706 /* it (msb != current_byte[bit]) */ 707 if (msb != (0x1 & (current_byte >> bit))) 708 { 709 crc32_result = crc32_result ^ CRC32_POLY; 710 /* crc32_result[0] = 1 */ 711 crc32_result |= 1; 712 } 713 } 714 } 715 716 /* Last step is to: 717 * 1. "mirror" every bit 718 * 2. swap the 4 bytes 719 * 3. complement each bit 720 */ 721 722 /* Mirror */ 723 temp = crc32_result; 724 shft = sizeof(crc32_result) * 8 - 1; 725 726 for (crc32_result >>= 1; crc32_result; crc32_result >>= 1) 727 { 728 temp <<= 1; 729 temp |= crc32_result & 1; 730 shft-- ; 731 } 732 733 /* temp[31-bit] = crc32_result[bit] */ 734 temp <<= shft; 735 736 /* Swap */ 737 /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */ 738 { 739 uint32_t t0, t1, t2, t3; 740 t0 = (0x000000ff & (temp >> 24)); 741 t1 = (0x0000ff00 & (temp >> 8)); 742 t2 = (0x00ff0000 & (temp << 8)); 743 t3 = (0xff000000 & (temp << 24)); 744 crc32_result = t0 | t1 | t2 | t3; 745 } 746 747 /* Complement */ 748 if (complement) 749 { 750 crc32_result = ~crc32_result; 751 } 752 753 return (crc32_result); 754 } 755 756 int 757 bxe_test_bit(int nr, 758 volatile unsigned long *addr) 759 { 760 return ((atomic_load_acq_long(addr) & (1 << nr)) != 0); 761 } 762 763 void 764 bxe_set_bit(unsigned int nr, 765 volatile unsigned long *addr) 766 { 767 atomic_set_acq_long(addr, (1 << nr)); 768 } 769 770 void 771 bxe_clear_bit(int nr, 772 volatile unsigned long *addr) 773 { 774 atomic_clear_acq_long(addr, (1 << nr)); 775 } 776 777 int 778 bxe_test_and_set_bit(int nr, 779 volatile unsigned long *addr) 780 { 781 unsigned long x; 782 nr = (1 << nr); 783 do { 784 x = *addr; 785 } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0); 786 // if (x & nr) bit_was_set; else bit_was_not_set; 787 return (x & nr); 788 } 789 790 int 791 bxe_test_and_clear_bit(int nr, 792 volatile unsigned long *addr) 793 { 794 unsigned long x; 795 nr = (1 << nr); 796 do { 797 x = *addr; 798 } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0); 799 // if (x & nr) bit_was_set; else bit_was_not_set; 800 return (x & nr); 801 } 802 803 int 804 bxe_cmpxchg(volatile int *addr, 805 int old, 806 int new) 807 { 808 int x; 809 do { 810 x = *addr; 811 } while (atomic_cmpset_acq_int(addr, old, new) == 0); 812 return (x); 813 } 814 815 /* 816 * Get DMA memory from the OS. 817 * 818 * Validates that the OS has provided DMA buffers in response to a 819 * bus_dmamap_load call and saves the physical address of those buffers. 820 * When the callback is used the OS will return 0 for the mapping function 821 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any 822 * failures back to the caller. 823 * 824 * Returns: 825 * Nothing. 826 */ 827 static void 828 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 829 { 830 struct bxe_dma *dma = arg; 831 832 if (error) { 833 dma->paddr = 0; 834 dma->nseg = 0; 835 BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error); 836 } else { 837 dma->paddr = segs->ds_addr; 838 dma->nseg = nseg; 839 } 840 } 841 842 /* 843 * Allocate a block of memory and map it for DMA. No partial completions 844 * allowed and release any resources acquired if we can't acquire all 845 * resources. 846 * 847 * Returns: 848 * 0 = Success, !0 = Failure 849 */ 850 int 851 bxe_dma_alloc(struct bxe_softc *sc, 852 bus_size_t size, 853 struct bxe_dma *dma, 854 const char *msg) 855 { 856 int rc; 857 858 if (dma->size > 0) { 859 BLOGE(sc, "dma block '%s' already has size %lu\n", msg, 860 (unsigned long)dma->size); 861 return (1); 862 } 863 864 memset(dma, 0, sizeof(*dma)); /* sanity */ 865 dma->sc = sc; 866 dma->size = size; 867 snprintf(dma->msg, sizeof(dma->msg), "%s", msg); 868 869 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 870 BCM_PAGE_SIZE, /* alignment */ 871 0, /* boundary limit */ 872 BUS_SPACE_MAXADDR, /* restricted low */ 873 BUS_SPACE_MAXADDR, /* restricted hi */ 874 NULL, /* addr filter() */ 875 NULL, /* addr filter() arg */ 876 size, /* max map size */ 877 1, /* num discontinuous */ 878 size, /* max seg size */ 879 BUS_DMA_ALLOCNOW, /* flags */ 880 NULL, /* lock() */ 881 NULL, /* lock() arg */ 882 &dma->tag); /* returned dma tag */ 883 if (rc != 0) { 884 BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc); 885 memset(dma, 0, sizeof(*dma)); 886 return (1); 887 } 888 889 rc = bus_dmamem_alloc(dma->tag, 890 (void **)&dma->vaddr, 891 (BUS_DMA_NOWAIT | BUS_DMA_ZERO), 892 &dma->map); 893 if (rc != 0) { 894 BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc); 895 bus_dma_tag_destroy(dma->tag); 896 memset(dma, 0, sizeof(*dma)); 897 return (1); 898 } 899 900 rc = bus_dmamap_load(dma->tag, 901 dma->map, 902 dma->vaddr, 903 size, 904 bxe_dma_map_addr, /* BLOGD in here */ 905 dma, 906 BUS_DMA_NOWAIT); 907 if (rc != 0) { 908 BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc); 909 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 910 bus_dma_tag_destroy(dma->tag); 911 memset(dma, 0, sizeof(*dma)); 912 return (1); 913 } 914 915 return (0); 916 } 917 918 void 919 bxe_dma_free(struct bxe_softc *sc, 920 struct bxe_dma *dma) 921 { 922 if (dma->size > 0) { 923 DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL")); 924 925 bus_dmamap_sync(dma->tag, dma->map, 926 (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)); 927 bus_dmamap_unload(dma->tag, dma->map); 928 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 929 bus_dma_tag_destroy(dma->tag); 930 } 931 932 memset(dma, 0, sizeof(*dma)); 933 } 934 935 /* 936 * These indirect read and write routines are only during init. 937 * The locking is handled by the MCP. 938 */ 939 940 void 941 bxe_reg_wr_ind(struct bxe_softc *sc, 942 uint32_t addr, 943 uint32_t val) 944 { 945 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 946 pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4); 947 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 948 } 949 950 uint32_t 951 bxe_reg_rd_ind(struct bxe_softc *sc, 952 uint32_t addr) 953 { 954 uint32_t val; 955 956 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 957 val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4); 958 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 959 960 return (val); 961 } 962 963 static int 964 bxe_acquire_hw_lock(struct bxe_softc *sc, 965 uint32_t resource) 966 { 967 uint32_t lock_status; 968 uint32_t resource_bit = (1 << resource); 969 int func = SC_FUNC(sc); 970 uint32_t hw_lock_control_reg; 971 int cnt; 972 973 /* validate the resource is within range */ 974 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 975 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)" 976 " resource_bit 0x%x\n", resource, resource_bit); 977 return (-1); 978 } 979 980 if (func <= 5) { 981 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 982 } else { 983 hw_lock_control_reg = 984 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 985 } 986 987 /* validate the resource is not already taken */ 988 lock_status = REG_RD(sc, hw_lock_control_reg); 989 if (lock_status & resource_bit) { 990 BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n", 991 resource, lock_status, resource_bit); 992 return (-1); 993 } 994 995 /* try every 5ms for 5 seconds */ 996 for (cnt = 0; cnt < 1000; cnt++) { 997 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit); 998 lock_status = REG_RD(sc, hw_lock_control_reg); 999 if (lock_status & resource_bit) { 1000 return (0); 1001 } 1002 DELAY(5000); 1003 } 1004 1005 BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n", 1006 resource, resource_bit); 1007 return (-1); 1008 } 1009 1010 static int 1011 bxe_release_hw_lock(struct bxe_softc *sc, 1012 uint32_t resource) 1013 { 1014 uint32_t lock_status; 1015 uint32_t resource_bit = (1 << resource); 1016 int func = SC_FUNC(sc); 1017 uint32_t hw_lock_control_reg; 1018 1019 /* validate the resource is within range */ 1020 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1021 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)" 1022 " resource_bit 0x%x\n", resource, resource_bit); 1023 return (-1); 1024 } 1025 1026 if (func <= 5) { 1027 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1028 } else { 1029 hw_lock_control_reg = 1030 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1031 } 1032 1033 /* validate the resource is currently taken */ 1034 lock_status = REG_RD(sc, hw_lock_control_reg); 1035 if (!(lock_status & resource_bit)) { 1036 BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n", 1037 resource, lock_status, resource_bit); 1038 return (-1); 1039 } 1040 1041 REG_WR(sc, hw_lock_control_reg, resource_bit); 1042 return (0); 1043 } 1044 static void bxe_acquire_phy_lock(struct bxe_softc *sc) 1045 { 1046 BXE_PHY_LOCK(sc); 1047 bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1048 } 1049 1050 static void bxe_release_phy_lock(struct bxe_softc *sc) 1051 { 1052 bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1053 BXE_PHY_UNLOCK(sc); 1054 } 1055 /* 1056 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise, 1057 * had we done things the other way around, if two pfs from the same port 1058 * would attempt to access nvram at the same time, we could run into a 1059 * scenario such as: 1060 * pf A takes the port lock. 1061 * pf B succeeds in taking the same lock since they are from the same port. 1062 * pf A takes the per pf misc lock. Performs eeprom access. 1063 * pf A finishes. Unlocks the per pf misc lock. 1064 * Pf B takes the lock and proceeds to perform it's own access. 1065 * pf A unlocks the per port lock, while pf B is still working (!). 1066 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own 1067 * access corrupted by pf B).* 1068 */ 1069 static int 1070 bxe_acquire_nvram_lock(struct bxe_softc *sc) 1071 { 1072 int port = SC_PORT(sc); 1073 int count, i; 1074 uint32_t val = 0; 1075 1076 /* acquire HW lock: protect against other PFs in PF Direct Assignment */ 1077 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1078 1079 /* adjust timeout for emulation/FPGA */ 1080 count = NVRAM_TIMEOUT_COUNT; 1081 if (CHIP_REV_IS_SLOW(sc)) { 1082 count *= 100; 1083 } 1084 1085 /* request access to nvram interface */ 1086 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1087 (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port)); 1088 1089 for (i = 0; i < count*10; i++) { 1090 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1091 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1092 break; 1093 } 1094 1095 DELAY(5); 1096 } 1097 1098 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1099 BLOGE(sc, "Cannot get access to nvram interface " 1100 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n", 1101 port, val); 1102 return (-1); 1103 } 1104 1105 return (0); 1106 } 1107 1108 static int 1109 bxe_release_nvram_lock(struct bxe_softc *sc) 1110 { 1111 int port = SC_PORT(sc); 1112 int count, i; 1113 uint32_t val = 0; 1114 1115 /* adjust timeout for emulation/FPGA */ 1116 count = NVRAM_TIMEOUT_COUNT; 1117 if (CHIP_REV_IS_SLOW(sc)) { 1118 count *= 100; 1119 } 1120 1121 /* relinquish nvram interface */ 1122 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1123 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port)); 1124 1125 for (i = 0; i < count*10; i++) { 1126 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1127 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1128 break; 1129 } 1130 1131 DELAY(5); 1132 } 1133 1134 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1135 BLOGE(sc, "Cannot free access to nvram interface " 1136 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n", 1137 port, val); 1138 return (-1); 1139 } 1140 1141 /* release HW lock: protect against other PFs in PF Direct Assignment */ 1142 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1143 1144 return (0); 1145 } 1146 1147 static void 1148 bxe_enable_nvram_access(struct bxe_softc *sc) 1149 { 1150 uint32_t val; 1151 1152 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1153 1154 /* enable both bits, even on read */ 1155 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1156 (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN)); 1157 } 1158 1159 static void 1160 bxe_disable_nvram_access(struct bxe_softc *sc) 1161 { 1162 uint32_t val; 1163 1164 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1165 1166 /* disable both bits, even after read */ 1167 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1168 (val & ~(MCPR_NVM_ACCESS_ENABLE_EN | 1169 MCPR_NVM_ACCESS_ENABLE_WR_EN))); 1170 } 1171 1172 static int 1173 bxe_nvram_read_dword(struct bxe_softc *sc, 1174 uint32_t offset, 1175 uint32_t *ret_val, 1176 uint32_t cmd_flags) 1177 { 1178 int count, i, rc; 1179 uint32_t val; 1180 1181 /* build the command word */ 1182 cmd_flags |= MCPR_NVM_COMMAND_DOIT; 1183 1184 /* need to clear DONE bit separately */ 1185 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1186 1187 /* address of the NVRAM to read from */ 1188 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1189 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1190 1191 /* issue a read command */ 1192 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1193 1194 /* adjust timeout for emulation/FPGA */ 1195 count = NVRAM_TIMEOUT_COUNT; 1196 if (CHIP_REV_IS_SLOW(sc)) { 1197 count *= 100; 1198 } 1199 1200 /* wait for completion */ 1201 *ret_val = 0; 1202 rc = -1; 1203 for (i = 0; i < count; i++) { 1204 DELAY(5); 1205 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1206 1207 if (val & MCPR_NVM_COMMAND_DONE) { 1208 val = REG_RD(sc, MCP_REG_MCPR_NVM_READ); 1209 /* we read nvram data in cpu order 1210 * but ethtool sees it as an array of bytes 1211 * converting to big-endian will do the work 1212 */ 1213 *ret_val = htobe32(val); 1214 rc = 0; 1215 break; 1216 } 1217 } 1218 1219 if (rc == -1) { 1220 BLOGE(sc, "nvram read timeout expired " 1221 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n", 1222 offset, cmd_flags, val); 1223 } 1224 1225 return (rc); 1226 } 1227 1228 static int 1229 bxe_nvram_read(struct bxe_softc *sc, 1230 uint32_t offset, 1231 uint8_t *ret_buf, 1232 int buf_size) 1233 { 1234 uint32_t cmd_flags; 1235 uint32_t val; 1236 int rc; 1237 1238 if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) { 1239 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1240 offset, buf_size); 1241 return (-1); 1242 } 1243 1244 if ((offset + buf_size) > sc->devinfo.flash_size) { 1245 BLOGE(sc, "Invalid parameter, " 1246 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1247 offset, buf_size, sc->devinfo.flash_size); 1248 return (-1); 1249 } 1250 1251 /* request access to nvram interface */ 1252 rc = bxe_acquire_nvram_lock(sc); 1253 if (rc) { 1254 return (rc); 1255 } 1256 1257 /* enable access to nvram interface */ 1258 bxe_enable_nvram_access(sc); 1259 1260 /* read the first word(s) */ 1261 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1262 while ((buf_size > sizeof(uint32_t)) && (rc == 0)) { 1263 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1264 memcpy(ret_buf, &val, 4); 1265 1266 /* advance to the next dword */ 1267 offset += sizeof(uint32_t); 1268 ret_buf += sizeof(uint32_t); 1269 buf_size -= sizeof(uint32_t); 1270 cmd_flags = 0; 1271 } 1272 1273 if (rc == 0) { 1274 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1275 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1276 memcpy(ret_buf, &val, 4); 1277 } 1278 1279 /* disable access to nvram interface */ 1280 bxe_disable_nvram_access(sc); 1281 bxe_release_nvram_lock(sc); 1282 1283 return (rc); 1284 } 1285 1286 static int 1287 bxe_nvram_write_dword(struct bxe_softc *sc, 1288 uint32_t offset, 1289 uint32_t val, 1290 uint32_t cmd_flags) 1291 { 1292 int count, i, rc; 1293 1294 /* build the command word */ 1295 cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR); 1296 1297 /* need to clear DONE bit separately */ 1298 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1299 1300 /* write the data */ 1301 REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val); 1302 1303 /* address of the NVRAM to write to */ 1304 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1305 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1306 1307 /* issue the write command */ 1308 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1309 1310 /* adjust timeout for emulation/FPGA */ 1311 count = NVRAM_TIMEOUT_COUNT; 1312 if (CHIP_REV_IS_SLOW(sc)) { 1313 count *= 100; 1314 } 1315 1316 /* wait for completion */ 1317 rc = -1; 1318 for (i = 0; i < count; i++) { 1319 DELAY(5); 1320 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1321 if (val & MCPR_NVM_COMMAND_DONE) { 1322 rc = 0; 1323 break; 1324 } 1325 } 1326 1327 if (rc == -1) { 1328 BLOGE(sc, "nvram write timeout expired " 1329 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n", 1330 offset, cmd_flags, val); 1331 } 1332 1333 return (rc); 1334 } 1335 1336 #define BYTE_OFFSET(offset) (8 * (offset & 0x03)) 1337 1338 static int 1339 bxe_nvram_write1(struct bxe_softc *sc, 1340 uint32_t offset, 1341 uint8_t *data_buf, 1342 int buf_size) 1343 { 1344 uint32_t cmd_flags; 1345 uint32_t align_offset; 1346 uint32_t val; 1347 int rc; 1348 1349 if ((offset + buf_size) > sc->devinfo.flash_size) { 1350 BLOGE(sc, "Invalid parameter, " 1351 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1352 offset, buf_size, sc->devinfo.flash_size); 1353 return (-1); 1354 } 1355 1356 /* request access to nvram interface */ 1357 rc = bxe_acquire_nvram_lock(sc); 1358 if (rc) { 1359 return (rc); 1360 } 1361 1362 /* enable access to nvram interface */ 1363 bxe_enable_nvram_access(sc); 1364 1365 cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST); 1366 align_offset = (offset & ~0x03); 1367 rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags); 1368 1369 if (rc == 0) { 1370 val &= ~(0xff << BYTE_OFFSET(offset)); 1371 val |= (*data_buf << BYTE_OFFSET(offset)); 1372 1373 /* nvram data is returned as an array of bytes 1374 * convert it back to cpu order 1375 */ 1376 val = be32toh(val); 1377 1378 rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags); 1379 } 1380 1381 /* disable access to nvram interface */ 1382 bxe_disable_nvram_access(sc); 1383 bxe_release_nvram_lock(sc); 1384 1385 return (rc); 1386 } 1387 1388 static int 1389 bxe_nvram_write(struct bxe_softc *sc, 1390 uint32_t offset, 1391 uint8_t *data_buf, 1392 int buf_size) 1393 { 1394 uint32_t cmd_flags; 1395 uint32_t val; 1396 uint32_t written_so_far; 1397 int rc; 1398 1399 if (buf_size == 1) { 1400 return (bxe_nvram_write1(sc, offset, data_buf, buf_size)); 1401 } 1402 1403 if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) { 1404 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1405 offset, buf_size); 1406 return (-1); 1407 } 1408 1409 if (buf_size == 0) { 1410 return (0); /* nothing to do */ 1411 } 1412 1413 if ((offset + buf_size) > sc->devinfo.flash_size) { 1414 BLOGE(sc, "Invalid parameter, " 1415 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1416 offset, buf_size, sc->devinfo.flash_size); 1417 return (-1); 1418 } 1419 1420 /* request access to nvram interface */ 1421 rc = bxe_acquire_nvram_lock(sc); 1422 if (rc) { 1423 return (rc); 1424 } 1425 1426 /* enable access to nvram interface */ 1427 bxe_enable_nvram_access(sc); 1428 1429 written_so_far = 0; 1430 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1431 while ((written_so_far < buf_size) && (rc == 0)) { 1432 if (written_so_far == (buf_size - sizeof(uint32_t))) { 1433 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1434 } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) { 1435 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1436 } else if ((offset % NVRAM_PAGE_SIZE) == 0) { 1437 cmd_flags |= MCPR_NVM_COMMAND_FIRST; 1438 } 1439 1440 memcpy(&val, data_buf, 4); 1441 1442 rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags); 1443 1444 /* advance to the next dword */ 1445 offset += sizeof(uint32_t); 1446 data_buf += sizeof(uint32_t); 1447 written_so_far += sizeof(uint32_t); 1448 cmd_flags = 0; 1449 } 1450 1451 /* disable access to nvram interface */ 1452 bxe_disable_nvram_access(sc); 1453 bxe_release_nvram_lock(sc); 1454 1455 return (rc); 1456 } 1457 1458 /* copy command into DMAE command memory and set DMAE command Go */ 1459 void 1460 bxe_post_dmae(struct bxe_softc *sc, 1461 struct dmae_cmd *dmae, 1462 int idx) 1463 { 1464 uint32_t cmd_offset; 1465 int i; 1466 1467 cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx)); 1468 for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) { 1469 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i)); 1470 } 1471 1472 REG_WR(sc, dmae_reg_go_c[idx], 1); 1473 } 1474 1475 uint32_t 1476 bxe_dmae_opcode_add_comp(uint32_t opcode, 1477 uint8_t comp_type) 1478 { 1479 return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) | 1480 DMAE_CMD_C_TYPE_ENABLE)); 1481 } 1482 1483 uint32_t 1484 bxe_dmae_opcode_clr_src_reset(uint32_t opcode) 1485 { 1486 return (opcode & ~DMAE_CMD_SRC_RESET); 1487 } 1488 1489 uint32_t 1490 bxe_dmae_opcode(struct bxe_softc *sc, 1491 uint8_t src_type, 1492 uint8_t dst_type, 1493 uint8_t with_comp, 1494 uint8_t comp_type) 1495 { 1496 uint32_t opcode = 0; 1497 1498 opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) | 1499 (dst_type << DMAE_CMD_DST_SHIFT)); 1500 1501 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET); 1502 1503 opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 1504 1505 opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) | 1506 (SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT)); 1507 1508 opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT); 1509 1510 #ifdef __BIG_ENDIAN 1511 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 1512 #else 1513 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 1514 #endif 1515 1516 if (with_comp) { 1517 opcode = bxe_dmae_opcode_add_comp(opcode, comp_type); 1518 } 1519 1520 return (opcode); 1521 } 1522 1523 static void 1524 bxe_prep_dmae_with_comp(struct bxe_softc *sc, 1525 struct dmae_cmd *dmae, 1526 uint8_t src_type, 1527 uint8_t dst_type) 1528 { 1529 memset(dmae, 0, sizeof(struct dmae_cmd)); 1530 1531 /* set the opcode */ 1532 dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type, 1533 TRUE, DMAE_COMP_PCI); 1534 1535 /* fill in the completion parameters */ 1536 dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp)); 1537 dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp)); 1538 dmae->comp_val = DMAE_COMP_VAL; 1539 } 1540 1541 /* issue a DMAE command over the init channel and wait for completion */ 1542 static int 1543 bxe_issue_dmae_with_comp(struct bxe_softc *sc, 1544 struct dmae_cmd *dmae) 1545 { 1546 uint32_t *wb_comp = BXE_SP(sc, wb_comp); 1547 int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000; 1548 1549 BXE_DMAE_LOCK(sc); 1550 1551 /* reset completion */ 1552 *wb_comp = 0; 1553 1554 /* post the command on the channel used for initializations */ 1555 bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc)); 1556 1557 /* wait for completion */ 1558 DELAY(5); 1559 1560 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 1561 if (!timeout || 1562 (sc->recovery_state != BXE_RECOVERY_DONE && 1563 sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) { 1564 BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n", 1565 *wb_comp, sc->recovery_state); 1566 BXE_DMAE_UNLOCK(sc); 1567 return (DMAE_TIMEOUT); 1568 } 1569 1570 timeout--; 1571 DELAY(50); 1572 } 1573 1574 if (*wb_comp & DMAE_PCI_ERR_FLAG) { 1575 BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n", 1576 *wb_comp, sc->recovery_state); 1577 BXE_DMAE_UNLOCK(sc); 1578 return (DMAE_PCI_ERROR); 1579 } 1580 1581 BXE_DMAE_UNLOCK(sc); 1582 return (0); 1583 } 1584 1585 void 1586 bxe_read_dmae(struct bxe_softc *sc, 1587 uint32_t src_addr, 1588 uint32_t len32) 1589 { 1590 struct dmae_cmd dmae; 1591 uint32_t *data; 1592 int i, rc; 1593 1594 DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32)); 1595 1596 if (!sc->dmae_ready) { 1597 data = BXE_SP(sc, wb_data[0]); 1598 1599 for (i = 0; i < len32; i++) { 1600 data[i] = (CHIP_IS_E1(sc)) ? 1601 bxe_reg_rd_ind(sc, (src_addr + (i * 4))) : 1602 REG_RD(sc, (src_addr + (i * 4))); 1603 } 1604 1605 return; 1606 } 1607 1608 /* set opcode and fixed command fields */ 1609 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 1610 1611 /* fill in addresses and len */ 1612 dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */ 1613 dmae.src_addr_hi = 0; 1614 dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data)); 1615 dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data)); 1616 dmae.len = len32; 1617 1618 /* issue the command and wait for completion */ 1619 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1620 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1621 }; 1622 } 1623 1624 void 1625 bxe_write_dmae(struct bxe_softc *sc, 1626 bus_addr_t dma_addr, 1627 uint32_t dst_addr, 1628 uint32_t len32) 1629 { 1630 struct dmae_cmd dmae; 1631 int rc; 1632 1633 if (!sc->dmae_ready) { 1634 DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32)); 1635 1636 if (CHIP_IS_E1(sc)) { 1637 ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1638 } else { 1639 ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1640 } 1641 1642 return; 1643 } 1644 1645 /* set opcode and fixed command fields */ 1646 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 1647 1648 /* fill in addresses and len */ 1649 dmae.src_addr_lo = U64_LO(dma_addr); 1650 dmae.src_addr_hi = U64_HI(dma_addr); 1651 dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */ 1652 dmae.dst_addr_hi = 0; 1653 dmae.len = len32; 1654 1655 /* issue the command and wait for completion */ 1656 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1657 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1658 } 1659 } 1660 1661 void 1662 bxe_write_dmae_phys_len(struct bxe_softc *sc, 1663 bus_addr_t phys_addr, 1664 uint32_t addr, 1665 uint32_t len) 1666 { 1667 int dmae_wr_max = DMAE_LEN32_WR_MAX(sc); 1668 int offset = 0; 1669 1670 while (len > dmae_wr_max) { 1671 bxe_write_dmae(sc, 1672 (phys_addr + offset), /* src DMA address */ 1673 (addr + offset), /* dst GRC address */ 1674 dmae_wr_max); 1675 offset += (dmae_wr_max * 4); 1676 len -= dmae_wr_max; 1677 } 1678 1679 bxe_write_dmae(sc, 1680 (phys_addr + offset), /* src DMA address */ 1681 (addr + offset), /* dst GRC address */ 1682 len); 1683 } 1684 1685 void 1686 bxe_set_ctx_validation(struct bxe_softc *sc, 1687 struct eth_context *cxt, 1688 uint32_t cid) 1689 { 1690 /* ustorm cxt validation */ 1691 cxt->ustorm_ag_context.cdu_usage = 1692 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1693 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 1694 /* xcontext validation */ 1695 cxt->xstorm_ag_context.cdu_reserved = 1696 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1697 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 1698 } 1699 1700 static void 1701 bxe_storm_memset_hc_timeout(struct bxe_softc *sc, 1702 uint8_t port, 1703 uint8_t fw_sb_id, 1704 uint8_t sb_index, 1705 uint8_t ticks) 1706 { 1707 uint32_t addr = 1708 (BAR_CSTRORM_INTMEM + 1709 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index)); 1710 1711 REG_WR8(sc, addr, ticks); 1712 1713 BLOGD(sc, DBG_LOAD, 1714 "port %d fw_sb_id %d sb_index %d ticks %d\n", 1715 port, fw_sb_id, sb_index, ticks); 1716 } 1717 1718 static void 1719 bxe_storm_memset_hc_disable(struct bxe_softc *sc, 1720 uint8_t port, 1721 uint16_t fw_sb_id, 1722 uint8_t sb_index, 1723 uint8_t disable) 1724 { 1725 uint32_t enable_flag = 1726 (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 1727 uint32_t addr = 1728 (BAR_CSTRORM_INTMEM + 1729 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index)); 1730 uint8_t flags; 1731 1732 /* clear and set */ 1733 flags = REG_RD8(sc, addr); 1734 flags &= ~HC_INDEX_DATA_HC_ENABLED; 1735 flags |= enable_flag; 1736 REG_WR8(sc, addr, flags); 1737 1738 BLOGD(sc, DBG_LOAD, 1739 "port %d fw_sb_id %d sb_index %d disable %d\n", 1740 port, fw_sb_id, sb_index, disable); 1741 } 1742 1743 void 1744 bxe_update_coalesce_sb_index(struct bxe_softc *sc, 1745 uint8_t fw_sb_id, 1746 uint8_t sb_index, 1747 uint8_t disable, 1748 uint16_t usec) 1749 { 1750 int port = SC_PORT(sc); 1751 uint8_t ticks = (usec / 4); /* XXX ??? */ 1752 1753 bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks); 1754 1755 disable = (disable) ? 1 : ((usec) ? 0 : 1); 1756 bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable); 1757 } 1758 1759 void 1760 elink_cb_udelay(struct bxe_softc *sc, 1761 uint32_t usecs) 1762 { 1763 DELAY(usecs); 1764 } 1765 1766 uint32_t 1767 elink_cb_reg_read(struct bxe_softc *sc, 1768 uint32_t reg_addr) 1769 { 1770 return (REG_RD(sc, reg_addr)); 1771 } 1772 1773 void 1774 elink_cb_reg_write(struct bxe_softc *sc, 1775 uint32_t reg_addr, 1776 uint32_t val) 1777 { 1778 REG_WR(sc, reg_addr, val); 1779 } 1780 1781 void 1782 elink_cb_reg_wb_write(struct bxe_softc *sc, 1783 uint32_t offset, 1784 uint32_t *wb_write, 1785 uint16_t len) 1786 { 1787 REG_WR_DMAE(sc, offset, wb_write, len); 1788 } 1789 1790 void 1791 elink_cb_reg_wb_read(struct bxe_softc *sc, 1792 uint32_t offset, 1793 uint32_t *wb_write, 1794 uint16_t len) 1795 { 1796 REG_RD_DMAE(sc, offset, wb_write, len); 1797 } 1798 1799 uint8_t 1800 elink_cb_path_id(struct bxe_softc *sc) 1801 { 1802 return (SC_PATH(sc)); 1803 } 1804 1805 void 1806 elink_cb_event_log(struct bxe_softc *sc, 1807 const elink_log_id_t elink_log_id, 1808 ...) 1809 { 1810 /* XXX */ 1811 BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id); 1812 } 1813 1814 static int 1815 bxe_set_spio(struct bxe_softc *sc, 1816 int spio, 1817 uint32_t mode) 1818 { 1819 uint32_t spio_reg; 1820 1821 /* Only 2 SPIOs are configurable */ 1822 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 1823 BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode); 1824 return (-1); 1825 } 1826 1827 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1828 1829 /* read SPIO and mask except the float bits */ 1830 spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 1831 1832 switch (mode) { 1833 case MISC_SPIO_OUTPUT_LOW: 1834 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio); 1835 /* clear FLOAT and set CLR */ 1836 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1837 spio_reg |= (spio << MISC_SPIO_CLR_POS); 1838 break; 1839 1840 case MISC_SPIO_OUTPUT_HIGH: 1841 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio); 1842 /* clear FLOAT and set SET */ 1843 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1844 spio_reg |= (spio << MISC_SPIO_SET_POS); 1845 break; 1846 1847 case MISC_SPIO_INPUT_HI_Z: 1848 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio); 1849 /* set FLOAT */ 1850 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 1851 break; 1852 1853 default: 1854 break; 1855 } 1856 1857 REG_WR(sc, MISC_REG_SPIO, spio_reg); 1858 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1859 1860 return (0); 1861 } 1862 1863 static int 1864 bxe_gpio_read(struct bxe_softc *sc, 1865 int gpio_num, 1866 uint8_t port) 1867 { 1868 /* The GPIO should be swapped if swap register is set and active */ 1869 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1870 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1871 int gpio_shift = (gpio_num + 1872 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1873 uint32_t gpio_mask = (1 << gpio_shift); 1874 uint32_t gpio_reg; 1875 1876 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1877 BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d" 1878 " gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift, 1879 gpio_mask); 1880 return (-1); 1881 } 1882 1883 /* read GPIO value */ 1884 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 1885 1886 /* get the requested pin value */ 1887 return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0; 1888 } 1889 1890 static int 1891 bxe_gpio_write(struct bxe_softc *sc, 1892 int gpio_num, 1893 uint32_t mode, 1894 uint8_t port) 1895 { 1896 /* The GPIO should be swapped if swap register is set and active */ 1897 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1898 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1899 int gpio_shift = (gpio_num + 1900 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1901 uint32_t gpio_mask = (1 << gpio_shift); 1902 uint32_t gpio_reg; 1903 1904 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1905 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d" 1906 " gpio_shift %d gpio_mask 0x%x\n", 1907 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask); 1908 return (-1); 1909 } 1910 1911 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1912 1913 /* read GPIO and mask except the float bits */ 1914 gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 1915 1916 switch (mode) { 1917 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 1918 BLOGD(sc, DBG_PHY, 1919 "Set GPIO %d (shift %d) -> output low\n", 1920 gpio_num, gpio_shift); 1921 /* clear FLOAT and set CLR */ 1922 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1923 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 1924 break; 1925 1926 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 1927 BLOGD(sc, DBG_PHY, 1928 "Set GPIO %d (shift %d) -> output high\n", 1929 gpio_num, gpio_shift); 1930 /* clear FLOAT and set SET */ 1931 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1932 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 1933 break; 1934 1935 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 1936 BLOGD(sc, DBG_PHY, 1937 "Set GPIO %d (shift %d) -> input\n", 1938 gpio_num, gpio_shift); 1939 /* set FLOAT */ 1940 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1941 break; 1942 1943 default: 1944 break; 1945 } 1946 1947 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 1948 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1949 1950 return (0); 1951 } 1952 1953 static int 1954 bxe_gpio_mult_write(struct bxe_softc *sc, 1955 uint8_t pins, 1956 uint32_t mode) 1957 { 1958 uint32_t gpio_reg; 1959 1960 /* any port swapping should be handled by caller */ 1961 1962 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1963 1964 /* read GPIO and mask except the float bits */ 1965 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 1966 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 1967 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 1968 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 1969 1970 switch (mode) { 1971 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 1972 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins); 1973 /* set CLR */ 1974 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 1975 break; 1976 1977 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 1978 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins); 1979 /* set SET */ 1980 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 1981 break; 1982 1983 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 1984 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins); 1985 /* set FLOAT */ 1986 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 1987 break; 1988 1989 default: 1990 BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x" 1991 " gpio_reg 0x%x\n", pins, mode, gpio_reg); 1992 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1993 return (-1); 1994 } 1995 1996 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 1997 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1998 1999 return (0); 2000 } 2001 2002 static int 2003 bxe_gpio_int_write(struct bxe_softc *sc, 2004 int gpio_num, 2005 uint32_t mode, 2006 uint8_t port) 2007 { 2008 /* The GPIO should be swapped if swap register is set and active */ 2009 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2010 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2011 int gpio_shift = (gpio_num + 2012 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2013 uint32_t gpio_mask = (1 << gpio_shift); 2014 uint32_t gpio_reg; 2015 2016 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2017 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d" 2018 " gpio_shift %d gpio_mask 0x%x\n", 2019 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask); 2020 return (-1); 2021 } 2022 2023 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2024 2025 /* read GPIO int */ 2026 gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT); 2027 2028 switch (mode) { 2029 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2030 BLOGD(sc, DBG_PHY, 2031 "Clear GPIO INT %d (shift %d) -> output low\n", 2032 gpio_num, gpio_shift); 2033 /* clear SET and set CLR */ 2034 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2035 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2036 break; 2037 2038 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2039 BLOGD(sc, DBG_PHY, 2040 "Set GPIO INT %d (shift %d) -> output high\n", 2041 gpio_num, gpio_shift); 2042 /* clear CLR and set SET */ 2043 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2044 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2045 break; 2046 2047 default: 2048 break; 2049 } 2050 2051 REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg); 2052 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2053 2054 return (0); 2055 } 2056 2057 uint32_t 2058 elink_cb_gpio_read(struct bxe_softc *sc, 2059 uint16_t gpio_num, 2060 uint8_t port) 2061 { 2062 return (bxe_gpio_read(sc, gpio_num, port)); 2063 } 2064 2065 uint8_t 2066 elink_cb_gpio_write(struct bxe_softc *sc, 2067 uint16_t gpio_num, 2068 uint8_t mode, /* 0=low 1=high */ 2069 uint8_t port) 2070 { 2071 return (bxe_gpio_write(sc, gpio_num, mode, port)); 2072 } 2073 2074 uint8_t 2075 elink_cb_gpio_mult_write(struct bxe_softc *sc, 2076 uint8_t pins, 2077 uint8_t mode) /* 0=low 1=high */ 2078 { 2079 return (bxe_gpio_mult_write(sc, pins, mode)); 2080 } 2081 2082 uint8_t 2083 elink_cb_gpio_int_write(struct bxe_softc *sc, 2084 uint16_t gpio_num, 2085 uint8_t mode, /* 0=low 1=high */ 2086 uint8_t port) 2087 { 2088 return (bxe_gpio_int_write(sc, gpio_num, mode, port)); 2089 } 2090 2091 void 2092 elink_cb_notify_link_changed(struct bxe_softc *sc) 2093 { 2094 REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 + 2095 (SC_FUNC(sc) * sizeof(uint32_t))), 1); 2096 } 2097 2098 /* send the MCP a request, block until there is a reply */ 2099 uint32_t 2100 elink_cb_fw_command(struct bxe_softc *sc, 2101 uint32_t command, 2102 uint32_t param) 2103 { 2104 int mb_idx = SC_FW_MB_IDX(sc); 2105 uint32_t seq; 2106 uint32_t rc = 0; 2107 uint32_t cnt = 1; 2108 uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10; 2109 2110 BXE_FWMB_LOCK(sc); 2111 2112 seq = ++sc->fw_seq; 2113 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param); 2114 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq)); 2115 2116 BLOGD(sc, DBG_PHY, 2117 "wrote command 0x%08x to FW MB param 0x%08x\n", 2118 (command | seq), param); 2119 2120 /* Let the FW do it's magic. GIve it up to 5 seconds... */ 2121 do { 2122 DELAY(delay * 1000); 2123 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header); 2124 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 2125 2126 BLOGD(sc, DBG_PHY, 2127 "[after %d ms] read 0x%x seq 0x%x from FW MB\n", 2128 cnt*delay, rc, seq); 2129 2130 /* is this a reply to our command? */ 2131 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) { 2132 rc &= FW_MSG_CODE_MASK; 2133 } else { 2134 /* Ruh-roh! */ 2135 BLOGE(sc, "FW failed to respond!\n"); 2136 // XXX bxe_fw_dump(sc); 2137 rc = 0; 2138 } 2139 2140 BXE_FWMB_UNLOCK(sc); 2141 return (rc); 2142 } 2143 2144 static uint32_t 2145 bxe_fw_command(struct bxe_softc *sc, 2146 uint32_t command, 2147 uint32_t param) 2148 { 2149 return (elink_cb_fw_command(sc, command, param)); 2150 } 2151 2152 static void 2153 __storm_memset_dma_mapping(struct bxe_softc *sc, 2154 uint32_t addr, 2155 bus_addr_t mapping) 2156 { 2157 REG_WR(sc, addr, U64_LO(mapping)); 2158 REG_WR(sc, (addr + 4), U64_HI(mapping)); 2159 } 2160 2161 static void 2162 storm_memset_spq_addr(struct bxe_softc *sc, 2163 bus_addr_t mapping, 2164 uint16_t abs_fid) 2165 { 2166 uint32_t addr = (XSEM_REG_FAST_MEMORY + 2167 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid)); 2168 __storm_memset_dma_mapping(sc, addr, mapping); 2169 } 2170 2171 static void 2172 storm_memset_vf_to_pf(struct bxe_softc *sc, 2173 uint16_t abs_fid, 2174 uint16_t pf_id) 2175 { 2176 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2177 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2178 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2179 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2180 } 2181 2182 static void 2183 storm_memset_func_en(struct bxe_softc *sc, 2184 uint16_t abs_fid, 2185 uint8_t enable) 2186 { 2187 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2188 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2189 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2190 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2191 } 2192 2193 static void 2194 storm_memset_eq_data(struct bxe_softc *sc, 2195 struct event_ring_data *eq_data, 2196 uint16_t pfid) 2197 { 2198 uint32_t addr; 2199 size_t size; 2200 2201 addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid)); 2202 size = sizeof(struct event_ring_data); 2203 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data); 2204 } 2205 2206 static void 2207 storm_memset_eq_prod(struct bxe_softc *sc, 2208 uint16_t eq_prod, 2209 uint16_t pfid) 2210 { 2211 uint32_t addr = (BAR_CSTRORM_INTMEM + 2212 CSTORM_EVENT_RING_PROD_OFFSET(pfid)); 2213 REG_WR16(sc, addr, eq_prod); 2214 } 2215 2216 /* 2217 * Post a slowpath command. 2218 * 2219 * A slowpath command is used to propogate a configuration change through 2220 * the controller in a controlled manner, allowing each STORM processor and 2221 * other H/W blocks to phase in the change. The commands sent on the 2222 * slowpath are referred to as ramrods. Depending on the ramrod used the 2223 * completion of the ramrod will occur in different ways. Here's a 2224 * breakdown of ramrods and how they complete: 2225 * 2226 * RAMROD_CMD_ID_ETH_PORT_SETUP 2227 * Used to setup the leading connection on a port. Completes on the 2228 * Receive Completion Queue (RCQ) of that port (typically fp[0]). 2229 * 2230 * RAMROD_CMD_ID_ETH_CLIENT_SETUP 2231 * Used to setup an additional connection on a port. Completes on the 2232 * RCQ of the multi-queue/RSS connection being initialized. 2233 * 2234 * RAMROD_CMD_ID_ETH_STAT_QUERY 2235 * Used to force the storm processors to update the statistics database 2236 * in host memory. This ramrod is send on the leading connection CID and 2237 * completes as an index increment of the CSTORM on the default status 2238 * block. 2239 * 2240 * RAMROD_CMD_ID_ETH_UPDATE 2241 * Used to update the state of the leading connection, usually to udpate 2242 * the RSS indirection table. Completes on the RCQ of the leading 2243 * connection. (Not currently used under FreeBSD until OS support becomes 2244 * available.) 2245 * 2246 * RAMROD_CMD_ID_ETH_HALT 2247 * Used when tearing down a connection prior to driver unload. Completes 2248 * on the RCQ of the multi-queue/RSS connection being torn down. Don't 2249 * use this on the leading connection. 2250 * 2251 * RAMROD_CMD_ID_ETH_SET_MAC 2252 * Sets the Unicast/Broadcast/Multicast used by the port. Completes on 2253 * the RCQ of the leading connection. 2254 * 2255 * RAMROD_CMD_ID_ETH_CFC_DEL 2256 * Used when tearing down a conneciton prior to driver unload. Completes 2257 * on the RCQ of the leading connection (since the current connection 2258 * has been completely removed from controller memory). 2259 * 2260 * RAMROD_CMD_ID_ETH_PORT_DEL 2261 * Used to tear down the leading connection prior to driver unload, 2262 * typically fp[0]. Completes as an index increment of the CSTORM on the 2263 * default status block. 2264 * 2265 * RAMROD_CMD_ID_ETH_FORWARD_SETUP 2266 * Used for connection offload. Completes on the RCQ of the multi-queue 2267 * RSS connection that is being offloaded. (Not currently used under 2268 * FreeBSD.) 2269 * 2270 * There can only be one command pending per function. 2271 * 2272 * Returns: 2273 * 0 = Success, !0 = Failure. 2274 */ 2275 2276 /* must be called under the spq lock */ 2277 static inline 2278 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc) 2279 { 2280 struct eth_spe *next_spe = sc->spq_prod_bd; 2281 2282 if (sc->spq_prod_bd == sc->spq_last_bd) { 2283 /* wrap back to the first eth_spq */ 2284 sc->spq_prod_bd = sc->spq; 2285 sc->spq_prod_idx = 0; 2286 } else { 2287 sc->spq_prod_bd++; 2288 sc->spq_prod_idx++; 2289 } 2290 2291 return (next_spe); 2292 } 2293 2294 /* must be called under the spq lock */ 2295 static inline 2296 void bxe_sp_prod_update(struct bxe_softc *sc) 2297 { 2298 int func = SC_FUNC(sc); 2299 2300 /* 2301 * Make sure that BD data is updated before writing the producer. 2302 * BD data is written to the memory, the producer is read from the 2303 * memory, thus we need a full memory barrier to ensure the ordering. 2304 */ 2305 mb(); 2306 2307 REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)), 2308 sc->spq_prod_idx); 2309 2310 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 2311 BUS_SPACE_BARRIER_WRITE); 2312 } 2313 2314 /** 2315 * bxe_is_contextless_ramrod - check if the current command ends on EQ 2316 * 2317 * @cmd: command to check 2318 * @cmd_type: command type 2319 */ 2320 static inline 2321 int bxe_is_contextless_ramrod(int cmd, 2322 int cmd_type) 2323 { 2324 if ((cmd_type == NONE_CONNECTION_TYPE) || 2325 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 2326 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 2327 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 2328 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 2329 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 2330 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) { 2331 return (TRUE); 2332 } else { 2333 return (FALSE); 2334 } 2335 } 2336 2337 /** 2338 * bxe_sp_post - place a single command on an SP ring 2339 * 2340 * @sc: driver handle 2341 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 2342 * @cid: SW CID the command is related to 2343 * @data_hi: command private data address (high 32 bits) 2344 * @data_lo: command private data address (low 32 bits) 2345 * @cmd_type: command type (e.g. NONE, ETH) 2346 * 2347 * SP data is handled as if it's always an address pair, thus data fields are 2348 * not swapped to little endian in upper functions. Instead this function swaps 2349 * data as if it's two uint32 fields. 2350 */ 2351 int 2352 bxe_sp_post(struct bxe_softc *sc, 2353 int command, 2354 int cid, 2355 uint32_t data_hi, 2356 uint32_t data_lo, 2357 int cmd_type) 2358 { 2359 struct eth_spe *spe; 2360 uint16_t type; 2361 int common; 2362 2363 common = bxe_is_contextless_ramrod(command, cmd_type); 2364 2365 BXE_SP_LOCK(sc); 2366 2367 if (common) { 2368 if (!atomic_load_acq_long(&sc->eq_spq_left)) { 2369 BLOGE(sc, "EQ ring is full!\n"); 2370 BXE_SP_UNLOCK(sc); 2371 return (-1); 2372 } 2373 } else { 2374 if (!atomic_load_acq_long(&sc->cq_spq_left)) { 2375 BLOGE(sc, "SPQ ring is full!\n"); 2376 BXE_SP_UNLOCK(sc); 2377 return (-1); 2378 } 2379 } 2380 2381 spe = bxe_sp_get_next(sc); 2382 2383 /* CID needs port number to be encoded int it */ 2384 spe->hdr.conn_and_cmd_data = 2385 htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid)); 2386 2387 type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE; 2388 2389 /* TBD: Check if it works for VFs */ 2390 type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) & 2391 SPE_HDR_T_FUNCTION_ID); 2392 2393 spe->hdr.type = htole16(type); 2394 2395 spe->data.update_data_addr.hi = htole32(data_hi); 2396 spe->data.update_data_addr.lo = htole32(data_lo); 2397 2398 /* 2399 * It's ok if the actual decrement is issued towards the memory 2400 * somewhere between the lock and unlock. Thus no more explict 2401 * memory barrier is needed. 2402 */ 2403 if (common) { 2404 atomic_subtract_acq_long(&sc->eq_spq_left, 1); 2405 } else { 2406 atomic_subtract_acq_long(&sc->cq_spq_left, 1); 2407 } 2408 2409 BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr); 2410 BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n", 2411 BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata)); 2412 BLOGD(sc, DBG_SP, 2413 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n", 2414 sc->spq_prod_idx, 2415 (uint32_t)U64_HI(sc->spq_dma.paddr), 2416 (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq), 2417 command, 2418 common, 2419 HW_CID(sc, cid), 2420 data_hi, 2421 data_lo, 2422 type, 2423 atomic_load_acq_long(&sc->cq_spq_left), 2424 atomic_load_acq_long(&sc->eq_spq_left)); 2425 2426 bxe_sp_prod_update(sc); 2427 2428 BXE_SP_UNLOCK(sc); 2429 return (0); 2430 } 2431 2432 /** 2433 * bxe_debug_print_ind_table - prints the indirection table configuration. 2434 * 2435 * @sc: driver hanlde 2436 * @p: pointer to rss configuration 2437 */ 2438 2439 /* 2440 * FreeBSD Device probe function. 2441 * 2442 * Compares the device found to the driver's list of supported devices and 2443 * reports back to the bsd loader whether this is the right driver for the device. 2444 * This is the driver entry function called from the "kldload" command. 2445 * 2446 * Returns: 2447 * BUS_PROBE_DEFAULT on success, positive value on failure. 2448 */ 2449 static int 2450 bxe_probe(device_t dev) 2451 { 2452 struct bxe_softc *sc; 2453 struct bxe_device_type *t; 2454 char *descbuf; 2455 uint16_t did, sdid, svid, vid; 2456 2457 /* Find our device structure */ 2458 sc = device_get_softc(dev); 2459 sc->dev = dev; 2460 t = bxe_devs; 2461 2462 /* Get the data for the device to be probed. */ 2463 vid = pci_get_vendor(dev); 2464 did = pci_get_device(dev); 2465 svid = pci_get_subvendor(dev); 2466 sdid = pci_get_subdevice(dev); 2467 2468 BLOGD(sc, DBG_LOAD, 2469 "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, " 2470 "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid); 2471 2472 /* Look through the list of known devices for a match. */ 2473 while (t->bxe_name != NULL) { 2474 if ((vid == t->bxe_vid) && (did == t->bxe_did) && 2475 ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) && 2476 ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) { 2477 descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 2478 if (descbuf == NULL) 2479 return (ENOMEM); 2480 2481 /* Print out the device identity. */ 2482 snprintf(descbuf, BXE_DEVDESC_MAX, 2483 "%s (%c%d) BXE v:%s\n", t->bxe_name, 2484 (((pci_read_config(dev, PCIR_REVID, 4) & 2485 0xf0) >> 4) + 'A'), 2486 (pci_read_config(dev, PCIR_REVID, 4) & 0xf), 2487 BXE_DRIVER_VERSION); 2488 2489 device_set_desc_copy(dev, descbuf); 2490 free(descbuf, M_TEMP); 2491 return (BUS_PROBE_DEFAULT); 2492 } 2493 t++; 2494 } 2495 2496 return (ENXIO); 2497 } 2498 2499 static void 2500 bxe_init_mutexes(struct bxe_softc *sc) 2501 { 2502 #ifdef BXE_CORE_LOCK_SX 2503 snprintf(sc->core_sx_name, sizeof(sc->core_sx_name), 2504 "bxe%d_core_lock", sc->unit); 2505 sx_init(&sc->core_sx, sc->core_sx_name); 2506 #else 2507 snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name), 2508 "bxe%d_core_lock", sc->unit); 2509 mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF); 2510 #endif 2511 2512 snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name), 2513 "bxe%d_sp_lock", sc->unit); 2514 mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF); 2515 2516 snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name), 2517 "bxe%d_dmae_lock", sc->unit); 2518 mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF); 2519 2520 snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name), 2521 "bxe%d_phy_lock", sc->unit); 2522 mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF); 2523 2524 snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name), 2525 "bxe%d_fwmb_lock", sc->unit); 2526 mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF); 2527 2528 snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name), 2529 "bxe%d_print_lock", sc->unit); 2530 mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF); 2531 2532 snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name), 2533 "bxe%d_stats_lock", sc->unit); 2534 mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF); 2535 2536 snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name), 2537 "bxe%d_mcast_lock", sc->unit); 2538 mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF); 2539 } 2540 2541 static void 2542 bxe_release_mutexes(struct bxe_softc *sc) 2543 { 2544 #ifdef BXE_CORE_LOCK_SX 2545 sx_destroy(&sc->core_sx); 2546 #else 2547 if (mtx_initialized(&sc->core_mtx)) { 2548 mtx_destroy(&sc->core_mtx); 2549 } 2550 #endif 2551 2552 if (mtx_initialized(&sc->sp_mtx)) { 2553 mtx_destroy(&sc->sp_mtx); 2554 } 2555 2556 if (mtx_initialized(&sc->dmae_mtx)) { 2557 mtx_destroy(&sc->dmae_mtx); 2558 } 2559 2560 if (mtx_initialized(&sc->port.phy_mtx)) { 2561 mtx_destroy(&sc->port.phy_mtx); 2562 } 2563 2564 if (mtx_initialized(&sc->fwmb_mtx)) { 2565 mtx_destroy(&sc->fwmb_mtx); 2566 } 2567 2568 if (mtx_initialized(&sc->print_mtx)) { 2569 mtx_destroy(&sc->print_mtx); 2570 } 2571 2572 if (mtx_initialized(&sc->stats_mtx)) { 2573 mtx_destroy(&sc->stats_mtx); 2574 } 2575 2576 if (mtx_initialized(&sc->mcast_mtx)) { 2577 mtx_destroy(&sc->mcast_mtx); 2578 } 2579 } 2580 2581 static void 2582 bxe_tx_disable(struct bxe_softc* sc) 2583 { 2584 if_t ifp = sc->ifp; 2585 2586 /* tell the stack the driver is stopped and TX queue is full */ 2587 if (ifp != NULL) { 2588 if_setdrvflags(ifp, 0); 2589 } 2590 } 2591 2592 static void 2593 bxe_drv_pulse(struct bxe_softc *sc) 2594 { 2595 SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb, 2596 sc->fw_drv_pulse_wr_seq); 2597 } 2598 2599 static inline uint16_t 2600 bxe_tx_avail(struct bxe_softc *sc, 2601 struct bxe_fastpath *fp) 2602 { 2603 int16_t used; 2604 uint16_t prod; 2605 uint16_t cons; 2606 2607 prod = fp->tx_bd_prod; 2608 cons = fp->tx_bd_cons; 2609 2610 used = SUB_S16(prod, cons); 2611 2612 return (int16_t)(sc->tx_ring_size) - used; 2613 } 2614 2615 static inline int 2616 bxe_tx_queue_has_work(struct bxe_fastpath *fp) 2617 { 2618 uint16_t hw_cons; 2619 2620 mb(); /* status block fields can change */ 2621 hw_cons = le16toh(*fp->tx_cons_sb); 2622 return (hw_cons != fp->tx_pkt_cons); 2623 } 2624 2625 static inline uint8_t 2626 bxe_has_tx_work(struct bxe_fastpath *fp) 2627 { 2628 /* expand this for multi-cos if ever supported */ 2629 return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE; 2630 } 2631 2632 static inline int 2633 bxe_has_rx_work(struct bxe_fastpath *fp) 2634 { 2635 uint16_t rx_cq_cons_sb; 2636 2637 mb(); /* status block fields can change */ 2638 rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb); 2639 if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX) 2640 rx_cq_cons_sb++; 2641 return (fp->rx_cq_cons != rx_cq_cons_sb); 2642 } 2643 2644 static void 2645 bxe_sp_event(struct bxe_softc *sc, 2646 struct bxe_fastpath *fp, 2647 union eth_rx_cqe *rr_cqe) 2648 { 2649 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2650 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2651 enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX; 2652 struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 2653 2654 BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n", 2655 fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type); 2656 2657 switch (command) { 2658 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 2659 BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid); 2660 drv_cmd = ECORE_Q_CMD_UPDATE; 2661 break; 2662 2663 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 2664 BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid); 2665 drv_cmd = ECORE_Q_CMD_SETUP; 2666 break; 2667 2668 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 2669 BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 2670 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY; 2671 break; 2672 2673 case (RAMROD_CMD_ID_ETH_HALT): 2674 BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid); 2675 drv_cmd = ECORE_Q_CMD_HALT; 2676 break; 2677 2678 case (RAMROD_CMD_ID_ETH_TERMINATE): 2679 BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid); 2680 drv_cmd = ECORE_Q_CMD_TERMINATE; 2681 break; 2682 2683 case (RAMROD_CMD_ID_ETH_EMPTY): 2684 BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid); 2685 drv_cmd = ECORE_Q_CMD_EMPTY; 2686 break; 2687 2688 default: 2689 BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n", 2690 command, fp->index); 2691 return; 2692 } 2693 2694 if ((drv_cmd != ECORE_Q_CMD_MAX) && 2695 q_obj->complete_cmd(sc, q_obj, drv_cmd)) { 2696 /* 2697 * q_obj->complete_cmd() failure means that this was 2698 * an unexpected completion. 2699 * 2700 * In this case we don't want to increase the sc->spq_left 2701 * because apparently we haven't sent this command the first 2702 * place. 2703 */ 2704 // bxe_panic(sc, ("Unexpected SP completion\n")); 2705 return; 2706 } 2707 2708 atomic_add_acq_long(&sc->cq_spq_left, 1); 2709 2710 BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n", 2711 atomic_load_acq_long(&sc->cq_spq_left)); 2712 } 2713 2714 /* 2715 * The current mbuf is part of an aggregation. Move the mbuf into the TPA 2716 * aggregation queue, put an empty mbuf back onto the receive chain, and mark 2717 * the current aggregation queue as in-progress. 2718 */ 2719 static void 2720 bxe_tpa_start(struct bxe_softc *sc, 2721 struct bxe_fastpath *fp, 2722 uint16_t queue, 2723 uint16_t cons, 2724 uint16_t prod, 2725 struct eth_fast_path_rx_cqe *cqe) 2726 { 2727 struct bxe_sw_rx_bd tmp_bd; 2728 struct bxe_sw_rx_bd *rx_buf; 2729 struct eth_rx_bd *rx_bd; 2730 int max_agg_queues; 2731 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 2732 uint16_t index; 2733 2734 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START " 2735 "cons=%d prod=%d\n", 2736 fp->index, queue, cons, prod); 2737 2738 max_agg_queues = MAX_AGG_QS(sc); 2739 2740 KASSERT((queue < max_agg_queues), 2741 ("fp[%02d] invalid aggr queue (%d >= %d)!", 2742 fp->index, queue, max_agg_queues)); 2743 2744 KASSERT((tpa_info->state == BXE_TPA_STATE_STOP), 2745 ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!", 2746 fp->index, queue)); 2747 2748 /* copy the existing mbuf and mapping from the TPA pool */ 2749 tmp_bd = tpa_info->bd; 2750 2751 if (tmp_bd.m == NULL) { 2752 uint32_t *tmp; 2753 2754 tmp = (uint32_t *)cqe; 2755 2756 BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n", 2757 fp->index, queue, cons, prod); 2758 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n", 2759 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 2760 2761 /* XXX Error handling? */ 2762 return; 2763 } 2764 2765 /* change the TPA queue to the start state */ 2766 tpa_info->state = BXE_TPA_STATE_START; 2767 tpa_info->placement_offset = cqe->placement_offset; 2768 tpa_info->parsing_flags = le16toh(cqe->pars_flags.flags); 2769 tpa_info->vlan_tag = le16toh(cqe->vlan_tag); 2770 tpa_info->len_on_bd = le16toh(cqe->len_on_bd); 2771 2772 fp->rx_tpa_queue_used |= (1 << queue); 2773 2774 /* 2775 * If all the buffer descriptors are filled with mbufs then fill in 2776 * the current consumer index with a new BD. Else if a maximum Rx 2777 * buffer limit is imposed then fill in the next producer index. 2778 */ 2779 index = (sc->max_rx_bufs != RX_BD_USABLE) ? 2780 prod : cons; 2781 2782 /* move the received mbuf and mapping to TPA pool */ 2783 tpa_info->bd = fp->rx_mbuf_chain[cons]; 2784 2785 /* release any existing RX BD mbuf mappings */ 2786 if (cons != index) { 2787 rx_buf = &fp->rx_mbuf_chain[cons]; 2788 2789 if (rx_buf->m_map != NULL) { 2790 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 2791 BUS_DMASYNC_POSTREAD); 2792 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 2793 } 2794 2795 /* 2796 * We get here when the maximum number of rx buffers is less than 2797 * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL 2798 * it out here without concern of a memory leak. 2799 */ 2800 fp->rx_mbuf_chain[cons].m = NULL; 2801 } 2802 2803 /* update the Rx SW BD with the mbuf info from the TPA pool */ 2804 fp->rx_mbuf_chain[index] = tmp_bd; 2805 2806 /* update the Rx BD with the empty mbuf phys address from the TPA pool */ 2807 rx_bd = &fp->rx_chain[index]; 2808 rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr)); 2809 rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr)); 2810 } 2811 2812 /* 2813 * When a TPA aggregation is completed, loop through the individual mbufs 2814 * of the aggregation, combining them into a single mbuf which will be sent 2815 * up the stack. Refill all freed SGEs with mbufs as we go along. 2816 */ 2817 static int 2818 bxe_fill_frag_mbuf(struct bxe_softc *sc, 2819 struct bxe_fastpath *fp, 2820 struct bxe_sw_tpa_info *tpa_info, 2821 uint16_t queue, 2822 uint16_t pages, 2823 struct mbuf *m, 2824 struct eth_end_agg_rx_cqe *cqe, 2825 uint16_t cqe_idx) 2826 { 2827 struct mbuf *m_frag; 2828 uint32_t frag_len, frag_size, i; 2829 uint16_t sge_idx; 2830 int rc = 0; 2831 int j; 2832 2833 frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd; 2834 2835 BLOGD(sc, DBG_LRO, 2836 "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n", 2837 fp->index, queue, tpa_info->len_on_bd, frag_size, pages); 2838 2839 /* make sure the aggregated frame is not too big to handle */ 2840 if (pages > 8 * PAGES_PER_SGE) { 2841 2842 uint32_t *tmp = (uint32_t *)cqe; 2843 2844 BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! " 2845 "pkt_len=%d len_on_bd=%d frag_size=%d\n", 2846 fp->index, cqe_idx, pages, le16toh(cqe->pkt_len), 2847 tpa_info->len_on_bd, frag_size); 2848 2849 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n", 2850 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 2851 2852 bxe_panic(sc, ("sge page count error\n")); 2853 return (EINVAL); 2854 } 2855 2856 /* 2857 * Scan through the scatter gather list pulling individual mbufs into a 2858 * single mbuf for the host stack. 2859 */ 2860 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 2861 sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j])); 2862 2863 /* 2864 * Firmware gives the indices of the SGE as if the ring is an array 2865 * (meaning that the "next" element will consume 2 indices). 2866 */ 2867 frag_len = min(frag_size, (uint32_t)(SGE_PAGES)); 2868 2869 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d " 2870 "sge_idx=%d frag_size=%d frag_len=%d\n", 2871 fp->index, queue, i, j, sge_idx, frag_size, frag_len); 2872 2873 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 2874 2875 /* allocate a new mbuf for the SGE */ 2876 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 2877 if (rc) { 2878 /* Leave all remaining SGEs in the ring! */ 2879 return (rc); 2880 } 2881 2882 /* update the fragment length */ 2883 m_frag->m_len = frag_len; 2884 2885 /* concatenate the fragment to the head mbuf */ 2886 m_cat(m, m_frag); 2887 fp->eth_q_stats.mbuf_alloc_sge--; 2888 2889 /* update the TPA mbuf size and remaining fragment size */ 2890 m->m_pkthdr.len += frag_len; 2891 frag_size -= frag_len; 2892 } 2893 2894 BLOGD(sc, DBG_LRO, 2895 "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n", 2896 fp->index, queue, frag_size); 2897 2898 return (rc); 2899 } 2900 2901 static inline void 2902 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp) 2903 { 2904 int i, j; 2905 2906 for (i = 1; i <= RX_SGE_NUM_PAGES; i++) { 2907 int idx = RX_SGE_TOTAL_PER_PAGE * i - 1; 2908 2909 for (j = 0; j < 2; j++) { 2910 BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx); 2911 idx--; 2912 } 2913 } 2914 } 2915 2916 static inline void 2917 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp) 2918 { 2919 /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */ 2920 memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask)); 2921 2922 /* 2923 * Clear the two last indices in the page to 1. These are the indices that 2924 * correspond to the "next" element, hence will never be indicated and 2925 * should be removed from the calculations. 2926 */ 2927 bxe_clear_sge_mask_next_elems(fp); 2928 } 2929 2930 static inline void 2931 bxe_update_last_max_sge(struct bxe_fastpath *fp, 2932 uint16_t idx) 2933 { 2934 uint16_t last_max = fp->last_max_sge; 2935 2936 if (SUB_S16(idx, last_max) > 0) { 2937 fp->last_max_sge = idx; 2938 } 2939 } 2940 2941 static inline void 2942 bxe_update_sge_prod(struct bxe_softc *sc, 2943 struct bxe_fastpath *fp, 2944 uint16_t sge_len, 2945 union eth_sgl_or_raw_data *cqe) 2946 { 2947 uint16_t last_max, last_elem, first_elem; 2948 uint16_t delta = 0; 2949 uint16_t i; 2950 2951 if (!sge_len) { 2952 return; 2953 } 2954 2955 /* first mark all used pages */ 2956 for (i = 0; i < sge_len; i++) { 2957 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 2958 RX_SGE(le16toh(cqe->sgl[i]))); 2959 } 2960 2961 BLOGD(sc, DBG_LRO, 2962 "fp[%02d] fp_cqe->sgl[%d] = %d\n", 2963 fp->index, sge_len - 1, 2964 le16toh(cqe->sgl[sge_len - 1])); 2965 2966 /* assume that the last SGE index is the biggest */ 2967 bxe_update_last_max_sge(fp, 2968 le16toh(cqe->sgl[sge_len - 1])); 2969 2970 last_max = RX_SGE(fp->last_max_sge); 2971 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 2972 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 2973 2974 /* if ring is not full */ 2975 if (last_elem + 1 != first_elem) { 2976 last_elem++; 2977 } 2978 2979 /* now update the prod */ 2980 for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) { 2981 if (__predict_true(fp->sge_mask[i])) { 2982 break; 2983 } 2984 2985 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 2986 delta += BIT_VEC64_ELEM_SZ; 2987 } 2988 2989 if (delta > 0) { 2990 fp->rx_sge_prod += delta; 2991 /* clear page-end entries */ 2992 bxe_clear_sge_mask_next_elems(fp); 2993 } 2994 2995 BLOGD(sc, DBG_LRO, 2996 "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n", 2997 fp->index, fp->last_max_sge, fp->rx_sge_prod); 2998 } 2999 3000 /* 3001 * The aggregation on the current TPA queue has completed. Pull the individual 3002 * mbuf fragments together into a single mbuf, perform all necessary checksum 3003 * calculations, and send the resuting mbuf to the stack. 3004 */ 3005 static void 3006 bxe_tpa_stop(struct bxe_softc *sc, 3007 struct bxe_fastpath *fp, 3008 struct bxe_sw_tpa_info *tpa_info, 3009 uint16_t queue, 3010 uint16_t pages, 3011 struct eth_end_agg_rx_cqe *cqe, 3012 uint16_t cqe_idx) 3013 { 3014 if_t ifp = sc->ifp; 3015 struct mbuf *m; 3016 int rc = 0; 3017 3018 BLOGD(sc, DBG_LRO, 3019 "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n", 3020 fp->index, queue, tpa_info->placement_offset, 3021 le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag); 3022 3023 m = tpa_info->bd.m; 3024 3025 /* allocate a replacement before modifying existing mbuf */ 3026 rc = bxe_alloc_rx_tpa_mbuf(fp, queue); 3027 if (rc) { 3028 /* drop the frame and log an error */ 3029 fp->eth_q_stats.rx_soft_errors++; 3030 goto bxe_tpa_stop_exit; 3031 } 3032 3033 /* we have a replacement, fixup the current mbuf */ 3034 m_adj(m, tpa_info->placement_offset); 3035 m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd; 3036 3037 /* mark the checksums valid (taken care of by the firmware) */ 3038 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3039 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3040 m->m_pkthdr.csum_data = 0xffff; 3041 m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | 3042 CSUM_IP_VALID | 3043 CSUM_DATA_VALID | 3044 CSUM_PSEUDO_HDR); 3045 3046 /* aggregate all of the SGEs into a single mbuf */ 3047 rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx); 3048 if (rc) { 3049 /* drop the packet and log an error */ 3050 fp->eth_q_stats.rx_soft_errors++; 3051 m_freem(m); 3052 } else { 3053 if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) { 3054 m->m_pkthdr.ether_vtag = tpa_info->vlan_tag; 3055 m->m_flags |= M_VLANTAG; 3056 } 3057 3058 /* assign packet to this interface interface */ 3059 if_setrcvif(m, ifp); 3060 3061 #if __FreeBSD_version >= 800000 3062 /* specify what RSS queue was used for this flow */ 3063 m->m_pkthdr.flowid = fp->index; 3064 M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE); 3065 #endif 3066 3067 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3068 fp->eth_q_stats.rx_tpa_pkts++; 3069 3070 /* pass the frame to the stack */ 3071 if_input(ifp, m); 3072 } 3073 3074 /* we passed an mbuf up the stack or dropped the frame */ 3075 fp->eth_q_stats.mbuf_alloc_tpa--; 3076 3077 bxe_tpa_stop_exit: 3078 3079 fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP; 3080 fp->rx_tpa_queue_used &= ~(1 << queue); 3081 } 3082 3083 static uint8_t 3084 bxe_service_rxsgl( 3085 struct bxe_fastpath *fp, 3086 uint16_t len, 3087 uint16_t lenonbd, 3088 struct mbuf *m, 3089 struct eth_fast_path_rx_cqe *cqe_fp) 3090 { 3091 struct mbuf *m_frag; 3092 uint16_t frags, frag_len; 3093 uint16_t sge_idx = 0; 3094 uint16_t j; 3095 uint8_t i, rc = 0; 3096 uint32_t frag_size; 3097 3098 /* adjust the mbuf */ 3099 m->m_len = lenonbd; 3100 3101 frag_size = len - lenonbd; 3102 frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3103 3104 for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) { 3105 sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j])); 3106 3107 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 3108 frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE)); 3109 m_frag->m_len = frag_len; 3110 3111 /* allocate a new mbuf for the SGE */ 3112 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 3113 if (rc) { 3114 /* Leave all remaining SGEs in the ring! */ 3115 return (rc); 3116 } 3117 fp->eth_q_stats.mbuf_alloc_sge--; 3118 3119 /* concatenate the fragment to the head mbuf */ 3120 m_cat(m, m_frag); 3121 3122 frag_size -= frag_len; 3123 } 3124 3125 bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data); 3126 3127 return rc; 3128 } 3129 3130 static uint8_t 3131 bxe_rxeof(struct bxe_softc *sc, 3132 struct bxe_fastpath *fp) 3133 { 3134 if_t ifp = sc->ifp; 3135 uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 3136 uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod; 3137 int rx_pkts = 0; 3138 int rc = 0; 3139 3140 BXE_FP_RX_LOCK(fp); 3141 3142 /* CQ "next element" is of the size of the regular element */ 3143 hw_cq_cons = le16toh(*fp->rx_cq_cons_sb); 3144 if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) { 3145 hw_cq_cons++; 3146 } 3147 3148 bd_cons = fp->rx_bd_cons; 3149 bd_prod = fp->rx_bd_prod; 3150 bd_prod_fw = bd_prod; 3151 sw_cq_cons = fp->rx_cq_cons; 3152 sw_cq_prod = fp->rx_cq_prod; 3153 3154 /* 3155 * Memory barrier necessary as speculative reads of the rx 3156 * buffer can be ahead of the index in the status block 3157 */ 3158 rmb(); 3159 3160 BLOGD(sc, DBG_RX, 3161 "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n", 3162 fp->index, hw_cq_cons, sw_cq_cons); 3163 3164 while (sw_cq_cons != hw_cq_cons) { 3165 struct bxe_sw_rx_bd *rx_buf = NULL; 3166 union eth_rx_cqe *cqe; 3167 struct eth_fast_path_rx_cqe *cqe_fp; 3168 uint8_t cqe_fp_flags; 3169 enum eth_rx_cqe_type cqe_fp_type; 3170 uint16_t len, lenonbd, pad; 3171 struct mbuf *m = NULL; 3172 3173 comp_ring_cons = RCQ(sw_cq_cons); 3174 bd_prod = RX_BD(bd_prod); 3175 bd_cons = RX_BD(bd_cons); 3176 3177 cqe = &fp->rcq_chain[comp_ring_cons]; 3178 cqe_fp = &cqe->fast_path_cqe; 3179 cqe_fp_flags = cqe_fp->type_error_flags; 3180 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 3181 3182 BLOGD(sc, DBG_RX, 3183 "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d " 3184 "BD prod=%d cons=%d CQE type=0x%x err=0x%x " 3185 "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n", 3186 fp->index, 3187 hw_cq_cons, 3188 sw_cq_cons, 3189 bd_prod, 3190 bd_cons, 3191 CQE_TYPE(cqe_fp_flags), 3192 cqe_fp_flags, 3193 cqe_fp->status_flags, 3194 le32toh(cqe_fp->rss_hash_result), 3195 le16toh(cqe_fp->vlan_tag), 3196 le16toh(cqe_fp->pkt_len_or_gro_seg_len), 3197 le16toh(cqe_fp->len_on_bd)); 3198 3199 /* is this a slowpath msg? */ 3200 if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) { 3201 bxe_sp_event(sc, fp, cqe); 3202 goto next_cqe; 3203 } 3204 3205 rx_buf = &fp->rx_mbuf_chain[bd_cons]; 3206 3207 if (!CQE_TYPE_FAST(cqe_fp_type)) { 3208 struct bxe_sw_tpa_info *tpa_info; 3209 uint16_t frag_size, pages; 3210 uint8_t queue; 3211 3212 if (CQE_TYPE_START(cqe_fp_type)) { 3213 bxe_tpa_start(sc, fp, cqe_fp->queue_index, 3214 bd_cons, bd_prod, cqe_fp); 3215 m = NULL; /* packet not ready yet */ 3216 goto next_rx; 3217 } 3218 3219 KASSERT(CQE_TYPE_STOP(cqe_fp_type), 3220 ("CQE type is not STOP! (0x%x)\n", cqe_fp_type)); 3221 3222 queue = cqe->end_agg_cqe.queue_index; 3223 tpa_info = &fp->rx_tpa_info[queue]; 3224 3225 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n", 3226 fp->index, queue); 3227 3228 frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) - 3229 tpa_info->len_on_bd); 3230 pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3231 3232 bxe_tpa_stop(sc, fp, tpa_info, queue, pages, 3233 &cqe->end_agg_cqe, comp_ring_cons); 3234 3235 bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data); 3236 3237 goto next_cqe; 3238 } 3239 3240 /* non TPA */ 3241 3242 /* is this an error packet? */ 3243 if (__predict_false(cqe_fp_flags & 3244 ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) { 3245 BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons); 3246 fp->eth_q_stats.rx_soft_errors++; 3247 goto next_rx; 3248 } 3249 3250 len = le16toh(cqe_fp->pkt_len_or_gro_seg_len); 3251 lenonbd = le16toh(cqe_fp->len_on_bd); 3252 pad = cqe_fp->placement_offset; 3253 3254 m = rx_buf->m; 3255 3256 if (__predict_false(m == NULL)) { 3257 BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n", 3258 bd_cons, fp->index); 3259 goto next_rx; 3260 } 3261 3262 /* XXX double copy if packet length under a threshold */ 3263 3264 /* 3265 * If all the buffer descriptors are filled with mbufs then fill in 3266 * the current consumer index with a new BD. Else if a maximum Rx 3267 * buffer limit is imposed then fill in the next producer index. 3268 */ 3269 rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons, 3270 (sc->max_rx_bufs != RX_BD_USABLE) ? 3271 bd_prod : bd_cons); 3272 if (rc != 0) { 3273 3274 /* we simply reuse the received mbuf and don't post it to the stack */ 3275 m = NULL; 3276 3277 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 3278 fp->index, rc); 3279 fp->eth_q_stats.rx_soft_errors++; 3280 3281 if (sc->max_rx_bufs != RX_BD_USABLE) { 3282 /* copy this consumer index to the producer index */ 3283 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf, 3284 sizeof(struct bxe_sw_rx_bd)); 3285 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd)); 3286 } 3287 3288 goto next_rx; 3289 } 3290 3291 /* current mbuf was detached from the bd */ 3292 fp->eth_q_stats.mbuf_alloc_rx--; 3293 3294 /* we allocated a replacement mbuf, fixup the current one */ 3295 m_adj(m, pad); 3296 m->m_pkthdr.len = m->m_len = len; 3297 3298 if ((len > 60) && (len > lenonbd)) { 3299 fp->eth_q_stats.rx_bxe_service_rxsgl++; 3300 rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp); 3301 if (rc) 3302 break; 3303 fp->eth_q_stats.rx_jumbo_sge_pkts++; 3304 } else if (lenonbd < len) { 3305 fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++; 3306 } 3307 3308 /* assign packet to this interface interface */ 3309 if_setrcvif(m, ifp); 3310 3311 /* assume no hardware checksum has complated */ 3312 m->m_pkthdr.csum_flags = 0; 3313 3314 /* validate checksum if offload enabled */ 3315 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 3316 /* check for a valid IP frame */ 3317 if (!(cqe->fast_path_cqe.status_flags & 3318 ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) { 3319 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3320 if (__predict_false(cqe_fp_flags & 3321 ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) { 3322 fp->eth_q_stats.rx_hw_csum_errors++; 3323 } else { 3324 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3325 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3326 } 3327 } 3328 3329 /* check for a valid TCP/UDP frame */ 3330 if (!(cqe->fast_path_cqe.status_flags & 3331 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) { 3332 if (__predict_false(cqe_fp_flags & 3333 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) { 3334 fp->eth_q_stats.rx_hw_csum_errors++; 3335 } else { 3336 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3337 m->m_pkthdr.csum_data = 0xFFFF; 3338 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | 3339 CSUM_PSEUDO_HDR); 3340 } 3341 } 3342 } 3343 3344 /* if there is a VLAN tag then flag that info */ 3345 if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) { 3346 m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag; 3347 m->m_flags |= M_VLANTAG; 3348 } 3349 3350 #if __FreeBSD_version >= 800000 3351 /* specify what RSS queue was used for this flow */ 3352 m->m_pkthdr.flowid = fp->index; 3353 M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE); 3354 #endif 3355 3356 next_rx: 3357 3358 bd_cons = RX_BD_NEXT(bd_cons); 3359 bd_prod = RX_BD_NEXT(bd_prod); 3360 bd_prod_fw = RX_BD_NEXT(bd_prod_fw); 3361 3362 /* pass the frame to the stack */ 3363 if (__predict_true(m != NULL)) { 3364 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3365 rx_pkts++; 3366 if_input(ifp, m); 3367 } 3368 3369 next_cqe: 3370 3371 sw_cq_prod = RCQ_NEXT(sw_cq_prod); 3372 sw_cq_cons = RCQ_NEXT(sw_cq_cons); 3373 3374 /* limit spinning on the queue */ 3375 if (rc != 0) 3376 break; 3377 3378 if (rx_pkts == sc->rx_budget) { 3379 fp->eth_q_stats.rx_budget_reached++; 3380 break; 3381 } 3382 } /* while work to do */ 3383 3384 fp->rx_bd_cons = bd_cons; 3385 fp->rx_bd_prod = bd_prod_fw; 3386 fp->rx_cq_cons = sw_cq_cons; 3387 fp->rx_cq_prod = sw_cq_prod; 3388 3389 /* Update producers */ 3390 bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod); 3391 3392 fp->eth_q_stats.rx_pkts += rx_pkts; 3393 fp->eth_q_stats.rx_calls++; 3394 3395 BXE_FP_RX_UNLOCK(fp); 3396 3397 return (sw_cq_cons != hw_cq_cons); 3398 } 3399 3400 static uint16_t 3401 bxe_free_tx_pkt(struct bxe_softc *sc, 3402 struct bxe_fastpath *fp, 3403 uint16_t idx) 3404 { 3405 struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx]; 3406 struct eth_tx_start_bd *tx_start_bd; 3407 uint16_t bd_idx = TX_BD(tx_buf->first_bd); 3408 uint16_t new_cons; 3409 int nbd; 3410 3411 /* unmap the mbuf from non-paged memory */ 3412 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 3413 3414 tx_start_bd = &fp->tx_chain[bd_idx].start_bd; 3415 nbd = le16toh(tx_start_bd->nbd) - 1; 3416 3417 new_cons = (tx_buf->first_bd + nbd); 3418 3419 /* free the mbuf */ 3420 if (__predict_true(tx_buf->m != NULL)) { 3421 m_freem(tx_buf->m); 3422 fp->eth_q_stats.mbuf_alloc_tx--; 3423 } else { 3424 fp->eth_q_stats.tx_chain_lost_mbuf++; 3425 } 3426 3427 tx_buf->m = NULL; 3428 tx_buf->first_bd = 0; 3429 3430 return (new_cons); 3431 } 3432 3433 /* transmit timeout watchdog */ 3434 static int 3435 bxe_watchdog(struct bxe_softc *sc, 3436 struct bxe_fastpath *fp) 3437 { 3438 BXE_FP_TX_LOCK(fp); 3439 3440 if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) { 3441 BXE_FP_TX_UNLOCK(fp); 3442 return (0); 3443 } 3444 3445 BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index); 3446 3447 BXE_FP_TX_UNLOCK(fp); 3448 3449 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT); 3450 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 3451 3452 return (-1); 3453 } 3454 3455 /* processes transmit completions */ 3456 static uint8_t 3457 bxe_txeof(struct bxe_softc *sc, 3458 struct bxe_fastpath *fp) 3459 { 3460 if_t ifp = sc->ifp; 3461 uint16_t bd_cons, hw_cons, sw_cons, pkt_cons; 3462 uint16_t tx_bd_avail; 3463 3464 BXE_FP_TX_LOCK_ASSERT(fp); 3465 3466 bd_cons = fp->tx_bd_cons; 3467 hw_cons = le16toh(*fp->tx_cons_sb); 3468 sw_cons = fp->tx_pkt_cons; 3469 3470 while (sw_cons != hw_cons) { 3471 pkt_cons = TX_BD(sw_cons); 3472 3473 BLOGD(sc, DBG_TX, 3474 "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n", 3475 fp->index, hw_cons, sw_cons, pkt_cons); 3476 3477 bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons); 3478 3479 sw_cons++; 3480 } 3481 3482 fp->tx_pkt_cons = sw_cons; 3483 fp->tx_bd_cons = bd_cons; 3484 3485 BLOGD(sc, DBG_TX, 3486 "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n", 3487 fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod); 3488 3489 mb(); 3490 3491 tx_bd_avail = bxe_tx_avail(sc, fp); 3492 3493 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 3494 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 3495 } else { 3496 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 3497 } 3498 3499 if (fp->tx_pkt_prod != fp->tx_pkt_cons) { 3500 /* reset the watchdog timer if there are pending transmits */ 3501 fp->watchdog_timer = BXE_TX_TIMEOUT; 3502 return (TRUE); 3503 } else { 3504 /* clear watchdog when there are no pending transmits */ 3505 fp->watchdog_timer = 0; 3506 return (FALSE); 3507 } 3508 } 3509 3510 static void 3511 bxe_drain_tx_queues(struct bxe_softc *sc) 3512 { 3513 struct bxe_fastpath *fp; 3514 int i, count; 3515 3516 /* wait until all TX fastpath tasks have completed */ 3517 for (i = 0; i < sc->num_queues; i++) { 3518 fp = &sc->fp[i]; 3519 3520 count = 1000; 3521 3522 while (bxe_has_tx_work(fp)) { 3523 3524 BXE_FP_TX_LOCK(fp); 3525 bxe_txeof(sc, fp); 3526 BXE_FP_TX_UNLOCK(fp); 3527 3528 if (count == 0) { 3529 BLOGE(sc, "Timeout waiting for fp[%d] " 3530 "transmits to complete!\n", i); 3531 bxe_panic(sc, ("tx drain failure\n")); 3532 return; 3533 } 3534 3535 count--; 3536 DELAY(1000); 3537 rmb(); 3538 } 3539 } 3540 3541 return; 3542 } 3543 3544 static int 3545 bxe_del_all_macs(struct bxe_softc *sc, 3546 struct ecore_vlan_mac_obj *mac_obj, 3547 int mac_type, 3548 uint8_t wait_for_comp) 3549 { 3550 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 3551 int rc; 3552 3553 /* wait for completion of requested */ 3554 if (wait_for_comp) { 3555 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 3556 } 3557 3558 /* Set the mac type of addresses we want to clear */ 3559 bxe_set_bit(mac_type, &vlan_mac_flags); 3560 3561 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags); 3562 if (rc < 0) { 3563 BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n", 3564 rc, mac_type, wait_for_comp); 3565 } 3566 3567 return (rc); 3568 } 3569 3570 static int 3571 bxe_fill_accept_flags(struct bxe_softc *sc, 3572 uint32_t rx_mode, 3573 unsigned long *rx_accept_flags, 3574 unsigned long *tx_accept_flags) 3575 { 3576 /* Clear the flags first */ 3577 *rx_accept_flags = 0; 3578 *tx_accept_flags = 0; 3579 3580 switch (rx_mode) { 3581 case BXE_RX_MODE_NONE: 3582 /* 3583 * 'drop all' supersedes any accept flags that may have been 3584 * passed to the function. 3585 */ 3586 break; 3587 3588 case BXE_RX_MODE_NORMAL: 3589 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3590 bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags); 3591 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3592 3593 /* internal switching mode */ 3594 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3595 bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags); 3596 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3597 3598 break; 3599 3600 case BXE_RX_MODE_ALLMULTI: 3601 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3602 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3603 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3604 3605 /* internal switching mode */ 3606 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3607 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3608 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3609 3610 break; 3611 3612 case BXE_RX_MODE_PROMISC: 3613 /* 3614 * According to deffinition of SI mode, iface in promisc mode 3615 * should receive matched and unmatched (in resolution of port) 3616 * unicast packets. 3617 */ 3618 bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags); 3619 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3620 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3621 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3622 3623 /* internal switching mode */ 3624 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3625 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3626 3627 if (IS_MF_SI(sc)) { 3628 bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags); 3629 } else { 3630 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3631 } 3632 3633 break; 3634 3635 default: 3636 BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode); 3637 return (-1); 3638 } 3639 3640 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ 3641 if (rx_mode != BXE_RX_MODE_NONE) { 3642 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags); 3643 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags); 3644 } 3645 3646 return (0); 3647 } 3648 3649 static int 3650 bxe_set_q_rx_mode(struct bxe_softc *sc, 3651 uint8_t cl_id, 3652 unsigned long rx_mode_flags, 3653 unsigned long rx_accept_flags, 3654 unsigned long tx_accept_flags, 3655 unsigned long ramrod_flags) 3656 { 3657 struct ecore_rx_mode_ramrod_params ramrod_param; 3658 int rc; 3659 3660 memset(&ramrod_param, 0, sizeof(ramrod_param)); 3661 3662 /* Prepare ramrod parameters */ 3663 ramrod_param.cid = 0; 3664 ramrod_param.cl_id = cl_id; 3665 ramrod_param.rx_mode_obj = &sc->rx_mode_obj; 3666 ramrod_param.func_id = SC_FUNC(sc); 3667 3668 ramrod_param.pstate = &sc->sp_state; 3669 ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING; 3670 3671 ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata); 3672 ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata); 3673 3674 bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 3675 3676 ramrod_param.ramrod_flags = ramrod_flags; 3677 ramrod_param.rx_mode_flags = rx_mode_flags; 3678 3679 ramrod_param.rx_accept_flags = rx_accept_flags; 3680 ramrod_param.tx_accept_flags = tx_accept_flags; 3681 3682 rc = ecore_config_rx_mode(sc, &ramrod_param); 3683 if (rc < 0) { 3684 BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x " 3685 "rx_accept_flags 0x%x tx_accept_flags 0x%x " 3686 "ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id, 3687 (uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags, 3688 (uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc); 3689 return (rc); 3690 } 3691 3692 return (0); 3693 } 3694 3695 static int 3696 bxe_set_storm_rx_mode(struct bxe_softc *sc) 3697 { 3698 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 3699 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 3700 int rc; 3701 3702 rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags, 3703 &tx_accept_flags); 3704 if (rc) { 3705 return (rc); 3706 } 3707 3708 bxe_set_bit(RAMROD_RX, &ramrod_flags); 3709 bxe_set_bit(RAMROD_TX, &ramrod_flags); 3710 3711 /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */ 3712 return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags, 3713 rx_accept_flags, tx_accept_flags, 3714 ramrod_flags)); 3715 } 3716 3717 /* returns the "mcp load_code" according to global load_count array */ 3718 static int 3719 bxe_nic_load_no_mcp(struct bxe_softc *sc) 3720 { 3721 int path = SC_PATH(sc); 3722 int port = SC_PORT(sc); 3723 3724 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3725 path, load_count[path][0], load_count[path][1], 3726 load_count[path][2]); 3727 load_count[path][0]++; 3728 load_count[path][1 + port]++; 3729 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3730 path, load_count[path][0], load_count[path][1], 3731 load_count[path][2]); 3732 if (load_count[path][0] == 1) { 3733 return (FW_MSG_CODE_DRV_LOAD_COMMON); 3734 } else if (load_count[path][1 + port] == 1) { 3735 return (FW_MSG_CODE_DRV_LOAD_PORT); 3736 } else { 3737 return (FW_MSG_CODE_DRV_LOAD_FUNCTION); 3738 } 3739 } 3740 3741 /* returns the "mcp load_code" according to global load_count array */ 3742 static int 3743 bxe_nic_unload_no_mcp(struct bxe_softc *sc) 3744 { 3745 int port = SC_PORT(sc); 3746 int path = SC_PATH(sc); 3747 3748 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3749 path, load_count[path][0], load_count[path][1], 3750 load_count[path][2]); 3751 load_count[path][0]--; 3752 load_count[path][1 + port]--; 3753 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3754 path, load_count[path][0], load_count[path][1], 3755 load_count[path][2]); 3756 if (load_count[path][0] == 0) { 3757 return (FW_MSG_CODE_DRV_UNLOAD_COMMON); 3758 } else if (load_count[path][1 + port] == 0) { 3759 return (FW_MSG_CODE_DRV_UNLOAD_PORT); 3760 } else { 3761 return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION); 3762 } 3763 } 3764 3765 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */ 3766 static uint32_t 3767 bxe_send_unload_req(struct bxe_softc *sc, 3768 int unload_mode) 3769 { 3770 uint32_t reset_code = 0; 3771 3772 /* Select the UNLOAD request mode */ 3773 if (unload_mode == UNLOAD_NORMAL) { 3774 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3775 } else { 3776 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3777 } 3778 3779 /* Send the request to the MCP */ 3780 if (!BXE_NOMCP(sc)) { 3781 reset_code = bxe_fw_command(sc, reset_code, 0); 3782 } else { 3783 reset_code = bxe_nic_unload_no_mcp(sc); 3784 } 3785 3786 return (reset_code); 3787 } 3788 3789 /* send UNLOAD_DONE command to the MCP */ 3790 static void 3791 bxe_send_unload_done(struct bxe_softc *sc, 3792 uint8_t keep_link) 3793 { 3794 uint32_t reset_param = 3795 keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 3796 3797 /* Report UNLOAD_DONE to MCP */ 3798 if (!BXE_NOMCP(sc)) { 3799 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 3800 } 3801 } 3802 3803 static int 3804 bxe_func_wait_started(struct bxe_softc *sc) 3805 { 3806 int tout = 50; 3807 3808 if (!sc->port.pmf) { 3809 return (0); 3810 } 3811 3812 /* 3813 * (assumption: No Attention from MCP at this stage) 3814 * PMF probably in the middle of TX disable/enable transaction 3815 * 1. Sync IRS for default SB 3816 * 2. Sync SP queue - this guarantees us that attention handling started 3817 * 3. Wait, that TX disable/enable transaction completes 3818 * 3819 * 1+2 guarantee that if DCBX attention was scheduled it already changed 3820 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 3821 * received completion for the transaction the state is TX_STOPPED. 3822 * State will return to STARTED after completion of TX_STOPPED-->STARTED 3823 * transaction. 3824 */ 3825 3826 /* XXX make sure default SB ISR is done */ 3827 /* need a way to synchronize an irq (intr_mtx?) */ 3828 3829 /* XXX flush any work queues */ 3830 3831 while (ecore_func_get_state(sc, &sc->func_obj) != 3832 ECORE_F_STATE_STARTED && tout--) { 3833 DELAY(20000); 3834 } 3835 3836 if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) { 3837 /* 3838 * Failed to complete the transaction in a "good way" 3839 * Force both transactions with CLR bit. 3840 */ 3841 struct ecore_func_state_params func_params = { NULL }; 3842 3843 BLOGE(sc, "Unexpected function state! " 3844 "Forcing STARTED-->TX_STOPPED-->STARTED\n"); 3845 3846 func_params.f_obj = &sc->func_obj; 3847 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 3848 3849 /* STARTED-->TX_STOPPED */ 3850 func_params.cmd = ECORE_F_CMD_TX_STOP; 3851 ecore_func_state_change(sc, &func_params); 3852 3853 /* TX_STOPPED-->STARTED */ 3854 func_params.cmd = ECORE_F_CMD_TX_START; 3855 return (ecore_func_state_change(sc, &func_params)); 3856 } 3857 3858 return (0); 3859 } 3860 3861 static int 3862 bxe_stop_queue(struct bxe_softc *sc, 3863 int index) 3864 { 3865 struct bxe_fastpath *fp = &sc->fp[index]; 3866 struct ecore_queue_state_params q_params = { NULL }; 3867 int rc; 3868 3869 BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index); 3870 3871 q_params.q_obj = &sc->sp_objs[fp->index].q_obj; 3872 /* We want to wait for completion in this context */ 3873 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 3874 3875 /* Stop the primary connection: */ 3876 3877 /* ...halt the connection */ 3878 q_params.cmd = ECORE_Q_CMD_HALT; 3879 rc = ecore_queue_state_change(sc, &q_params); 3880 if (rc) { 3881 return (rc); 3882 } 3883 3884 /* ...terminate the connection */ 3885 q_params.cmd = ECORE_Q_CMD_TERMINATE; 3886 memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate)); 3887 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 3888 rc = ecore_queue_state_change(sc, &q_params); 3889 if (rc) { 3890 return (rc); 3891 } 3892 3893 /* ...delete cfc entry */ 3894 q_params.cmd = ECORE_Q_CMD_CFC_DEL; 3895 memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del)); 3896 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 3897 return (ecore_queue_state_change(sc, &q_params)); 3898 } 3899 3900 /* wait for the outstanding SP commands */ 3901 static inline uint8_t 3902 bxe_wait_sp_comp(struct bxe_softc *sc, 3903 unsigned long mask) 3904 { 3905 unsigned long tmp; 3906 int tout = 5000; /* wait for 5 secs tops */ 3907 3908 while (tout--) { 3909 mb(); 3910 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) { 3911 return (TRUE); 3912 } 3913 3914 DELAY(1000); 3915 } 3916 3917 mb(); 3918 3919 tmp = atomic_load_acq_long(&sc->sp_state); 3920 if (tmp & mask) { 3921 BLOGE(sc, "Filtering completion timed out: " 3922 "sp_state 0x%lx, mask 0x%lx\n", 3923 tmp, mask); 3924 return (FALSE); 3925 } 3926 3927 return (FALSE); 3928 } 3929 3930 static int 3931 bxe_func_stop(struct bxe_softc *sc) 3932 { 3933 struct ecore_func_state_params func_params = { NULL }; 3934 int rc; 3935 3936 /* prepare parameters for function state transitions */ 3937 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 3938 func_params.f_obj = &sc->func_obj; 3939 func_params.cmd = ECORE_F_CMD_STOP; 3940 3941 /* 3942 * Try to stop the function the 'good way'. If it fails (in case 3943 * of a parity error during bxe_chip_cleanup()) and we are 3944 * not in a debug mode, perform a state transaction in order to 3945 * enable further HW_RESET transaction. 3946 */ 3947 rc = ecore_func_state_change(sc, &func_params); 3948 if (rc) { 3949 BLOGE(sc, "FUNC_STOP ramrod failed. " 3950 "Running a dry transaction (%d)\n", rc); 3951 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 3952 return (ecore_func_state_change(sc, &func_params)); 3953 } 3954 3955 return (0); 3956 } 3957 3958 static int 3959 bxe_reset_hw(struct bxe_softc *sc, 3960 uint32_t load_code) 3961 { 3962 struct ecore_func_state_params func_params = { NULL }; 3963 3964 /* Prepare parameters for function state transitions */ 3965 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 3966 3967 func_params.f_obj = &sc->func_obj; 3968 func_params.cmd = ECORE_F_CMD_HW_RESET; 3969 3970 func_params.params.hw_init.load_phase = load_code; 3971 3972 return (ecore_func_state_change(sc, &func_params)); 3973 } 3974 3975 static void 3976 bxe_int_disable_sync(struct bxe_softc *sc, 3977 int disable_hw) 3978 { 3979 if (disable_hw) { 3980 /* prevent the HW from sending interrupts */ 3981 bxe_int_disable(sc); 3982 } 3983 3984 /* XXX need a way to synchronize ALL irqs (intr_mtx?) */ 3985 /* make sure all ISRs are done */ 3986 3987 /* XXX make sure sp_task is not running */ 3988 /* cancel and flush work queues */ 3989 } 3990 3991 static void 3992 bxe_chip_cleanup(struct bxe_softc *sc, 3993 uint32_t unload_mode, 3994 uint8_t keep_link) 3995 { 3996 int port = SC_PORT(sc); 3997 struct ecore_mcast_ramrod_params rparam = { NULL }; 3998 uint32_t reset_code; 3999 int i, rc = 0; 4000 4001 bxe_drain_tx_queues(sc); 4002 4003 /* give HW time to discard old tx messages */ 4004 DELAY(1000); 4005 4006 /* Clean all ETH MACs */ 4007 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE); 4008 if (rc < 0) { 4009 BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc); 4010 } 4011 4012 /* Clean up UC list */ 4013 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE); 4014 if (rc < 0) { 4015 BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc); 4016 } 4017 4018 /* Disable LLH */ 4019 if (!CHIP_IS_E1(sc)) { 4020 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 4021 } 4022 4023 /* Set "drop all" to stop Rx */ 4024 4025 /* 4026 * We need to take the BXE_MCAST_LOCK() here in order to prevent 4027 * a race between the completion code and this code. 4028 */ 4029 BXE_MCAST_LOCK(sc); 4030 4031 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 4032 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 4033 } else { 4034 bxe_set_storm_rx_mode(sc); 4035 } 4036 4037 /* Clean up multicast configuration */ 4038 rparam.mcast_obj = &sc->mcast_obj; 4039 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4040 if (rc < 0) { 4041 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4042 } 4043 4044 BXE_MCAST_UNLOCK(sc); 4045 4046 // XXX bxe_iov_chip_cleanup(sc); 4047 4048 /* 4049 * Send the UNLOAD_REQUEST to the MCP. This will return if 4050 * this function should perform FUNCTION, PORT, or COMMON HW 4051 * reset. 4052 */ 4053 reset_code = bxe_send_unload_req(sc, unload_mode); 4054 4055 /* 4056 * (assumption: No Attention from MCP at this stage) 4057 * PMF probably in the middle of TX disable/enable transaction 4058 */ 4059 rc = bxe_func_wait_started(sc); 4060 if (rc) { 4061 BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc); 4062 } 4063 4064 /* 4065 * Close multi and leading connections 4066 * Completions for ramrods are collected in a synchronous way 4067 */ 4068 for (i = 0; i < sc->num_queues; i++) { 4069 if (bxe_stop_queue(sc, i)) { 4070 goto unload_error; 4071 } 4072 } 4073 4074 /* 4075 * If SP settings didn't get completed so far - something 4076 * very wrong has happen. 4077 */ 4078 if (!bxe_wait_sp_comp(sc, ~0x0UL)) { 4079 BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc); 4080 } 4081 4082 unload_error: 4083 4084 rc = bxe_func_stop(sc); 4085 if (rc) { 4086 BLOGE(sc, "Function stop failed!(%d)\n", rc); 4087 } 4088 4089 /* disable HW interrupts */ 4090 bxe_int_disable_sync(sc, TRUE); 4091 4092 /* detach interrupts */ 4093 bxe_interrupt_detach(sc); 4094 4095 /* Reset the chip */ 4096 rc = bxe_reset_hw(sc, reset_code); 4097 if (rc) { 4098 BLOGE(sc, "Hardware reset failed(%d)\n", rc); 4099 } 4100 4101 /* Report UNLOAD_DONE to MCP */ 4102 bxe_send_unload_done(sc, keep_link); 4103 } 4104 4105 static void 4106 bxe_disable_close_the_gate(struct bxe_softc *sc) 4107 { 4108 uint32_t val; 4109 int port = SC_PORT(sc); 4110 4111 BLOGD(sc, DBG_LOAD, 4112 "Disabling 'close the gates'\n"); 4113 4114 if (CHIP_IS_E1(sc)) { 4115 uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 4116 MISC_REG_AEU_MASK_ATTN_FUNC_0; 4117 val = REG_RD(sc, addr); 4118 val &= ~(0x300); 4119 REG_WR(sc, addr, val); 4120 } else { 4121 val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK); 4122 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 4123 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 4124 REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val); 4125 } 4126 } 4127 4128 /* 4129 * Cleans the object that have internal lists without sending 4130 * ramrods. Should be run when interrutps are disabled. 4131 */ 4132 static void 4133 bxe_squeeze_objects(struct bxe_softc *sc) 4134 { 4135 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 4136 struct ecore_mcast_ramrod_params rparam = { NULL }; 4137 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 4138 int rc; 4139 4140 /* Cleanup MACs' object first... */ 4141 4142 /* Wait for completion of requested */ 4143 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 4144 /* Perform a dry cleanup */ 4145 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 4146 4147 /* Clean ETH primary MAC */ 4148 bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags); 4149 rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags, 4150 &ramrod_flags); 4151 if (rc != 0) { 4152 BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc); 4153 } 4154 4155 /* Cleanup UC list */ 4156 vlan_mac_flags = 0; 4157 bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags); 4158 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, 4159 &ramrod_flags); 4160 if (rc != 0) { 4161 BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc); 4162 } 4163 4164 /* Now clean mcast object... */ 4165 4166 rparam.mcast_obj = &sc->mcast_obj; 4167 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 4168 4169 /* Add a DEL command... */ 4170 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4171 if (rc < 0) { 4172 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4173 } 4174 4175 /* now wait until all pending commands are cleared */ 4176 4177 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4178 while (rc != 0) { 4179 if (rc < 0) { 4180 BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc); 4181 return; 4182 } 4183 4184 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4185 } 4186 } 4187 4188 /* stop the controller */ 4189 static __noinline int 4190 bxe_nic_unload(struct bxe_softc *sc, 4191 uint32_t unload_mode, 4192 uint8_t keep_link) 4193 { 4194 uint8_t global = FALSE; 4195 uint32_t val; 4196 4197 BXE_CORE_LOCK_ASSERT(sc); 4198 4199 BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n"); 4200 4201 /* mark driver as unloaded in shmem2 */ 4202 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 4203 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 4204 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 4205 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 4206 } 4207 4208 if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE && 4209 (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) { 4210 /* 4211 * We can get here if the driver has been unloaded 4212 * during parity error recovery and is either waiting for a 4213 * leader to complete or for other functions to unload and 4214 * then ifconfig down has been issued. In this case we want to 4215 * unload and let other functions to complete a recovery 4216 * process. 4217 */ 4218 sc->recovery_state = BXE_RECOVERY_DONE; 4219 sc->is_leader = 0; 4220 bxe_release_leader_lock(sc); 4221 mb(); 4222 4223 BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n"); 4224 BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x" 4225 " state = 0x%x\n", sc->recovery_state, sc->state); 4226 return (-1); 4227 } 4228 4229 /* 4230 * Nothing to do during unload if previous bxe_nic_load() 4231 * did not completed succesfully - all resourses are released. 4232 */ 4233 if ((sc->state == BXE_STATE_CLOSED) || 4234 (sc->state == BXE_STATE_ERROR)) { 4235 return (0); 4236 } 4237 4238 sc->state = BXE_STATE_CLOSING_WAITING_HALT; 4239 mb(); 4240 4241 /* stop tx */ 4242 bxe_tx_disable(sc); 4243 4244 sc->rx_mode = BXE_RX_MODE_NONE; 4245 /* XXX set rx mode ??? */ 4246 4247 if (IS_PF(sc) && !sc->grcdump_done) { 4248 /* set ALWAYS_ALIVE bit in shmem */ 4249 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 4250 4251 bxe_drv_pulse(sc); 4252 4253 bxe_stats_handle(sc, STATS_EVENT_STOP); 4254 bxe_save_statistics(sc); 4255 } 4256 4257 /* wait till consumers catch up with producers in all queues */ 4258 bxe_drain_tx_queues(sc); 4259 4260 /* if VF indicate to PF this function is going down (PF will delete sp 4261 * elements and clear initializations 4262 */ 4263 if (IS_VF(sc)) { 4264 ; /* bxe_vfpf_close_vf(sc); */ 4265 } else if (unload_mode != UNLOAD_RECOVERY) { 4266 /* if this is a normal/close unload need to clean up chip */ 4267 if (!sc->grcdump_done) 4268 bxe_chip_cleanup(sc, unload_mode, keep_link); 4269 } else { 4270 /* Send the UNLOAD_REQUEST to the MCP */ 4271 bxe_send_unload_req(sc, unload_mode); 4272 4273 /* 4274 * Prevent transactions to host from the functions on the 4275 * engine that doesn't reset global blocks in case of global 4276 * attention once gloabl blocks are reset and gates are opened 4277 * (the engine which leader will perform the recovery 4278 * last). 4279 */ 4280 if (!CHIP_IS_E1x(sc)) { 4281 bxe_pf_disable(sc); 4282 } 4283 4284 /* disable HW interrupts */ 4285 bxe_int_disable_sync(sc, TRUE); 4286 4287 /* detach interrupts */ 4288 bxe_interrupt_detach(sc); 4289 4290 /* Report UNLOAD_DONE to MCP */ 4291 bxe_send_unload_done(sc, FALSE); 4292 } 4293 4294 /* 4295 * At this stage no more interrupts will arrive so we may safely clean 4296 * the queue'able objects here in case they failed to get cleaned so far. 4297 */ 4298 if (IS_PF(sc)) { 4299 bxe_squeeze_objects(sc); 4300 } 4301 4302 /* There should be no more pending SP commands at this stage */ 4303 sc->sp_state = 0; 4304 4305 sc->port.pmf = 0; 4306 4307 bxe_free_fp_buffers(sc); 4308 4309 if (IS_PF(sc)) { 4310 bxe_free_mem(sc); 4311 } 4312 4313 bxe_free_fw_stats_mem(sc); 4314 4315 sc->state = BXE_STATE_CLOSED; 4316 4317 /* 4318 * Check if there are pending parity attentions. If there are - set 4319 * RECOVERY_IN_PROGRESS. 4320 */ 4321 if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) { 4322 bxe_set_reset_in_progress(sc); 4323 4324 /* Set RESET_IS_GLOBAL if needed */ 4325 if (global) { 4326 bxe_set_reset_global(sc); 4327 } 4328 } 4329 4330 /* 4331 * The last driver must disable a "close the gate" if there is no 4332 * parity attention or "process kill" pending. 4333 */ 4334 if (IS_PF(sc) && !bxe_clear_pf_load(sc) && 4335 bxe_reset_is_done(sc, SC_PATH(sc))) { 4336 bxe_disable_close_the_gate(sc); 4337 } 4338 4339 BLOGD(sc, DBG_LOAD, "Ended NIC unload\n"); 4340 4341 return (0); 4342 } 4343 4344 /* 4345 * Called by the OS to set various media options (i.e. link, speed, etc.) when 4346 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...". 4347 */ 4348 static int 4349 bxe_ifmedia_update(struct ifnet *ifp) 4350 { 4351 struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp); 4352 struct ifmedia *ifm; 4353 4354 ifm = &sc->ifmedia; 4355 4356 /* We only support Ethernet media type. */ 4357 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) { 4358 return (EINVAL); 4359 } 4360 4361 switch (IFM_SUBTYPE(ifm->ifm_media)) { 4362 case IFM_AUTO: 4363 break; 4364 case IFM_10G_CX4: 4365 case IFM_10G_SR: 4366 case IFM_10G_T: 4367 case IFM_10G_TWINAX: 4368 default: 4369 /* We don't support changing the media type. */ 4370 BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n", 4371 IFM_SUBTYPE(ifm->ifm_media)); 4372 return (EINVAL); 4373 } 4374 4375 return (0); 4376 } 4377 4378 /* 4379 * Called by the OS to get the current media status (i.e. link, speed, etc.). 4380 */ 4381 static void 4382 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr) 4383 { 4384 struct bxe_softc *sc = if_getsoftc(ifp); 4385 4386 /* Report link down if the driver isn't running. */ 4387 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { 4388 ifmr->ifm_active |= IFM_NONE; 4389 return; 4390 } 4391 4392 /* Setup the default interface info. */ 4393 ifmr->ifm_status = IFM_AVALID; 4394 ifmr->ifm_active = IFM_ETHER; 4395 4396 if (sc->link_vars.link_up) { 4397 ifmr->ifm_status |= IFM_ACTIVE; 4398 } else { 4399 ifmr->ifm_active |= IFM_NONE; 4400 return; 4401 } 4402 4403 ifmr->ifm_active |= sc->media; 4404 4405 if (sc->link_vars.duplex == DUPLEX_FULL) { 4406 ifmr->ifm_active |= IFM_FDX; 4407 } else { 4408 ifmr->ifm_active |= IFM_HDX; 4409 } 4410 } 4411 4412 static int 4413 bxe_ioctl_nvram(struct bxe_softc *sc, 4414 uint32_t priv_op, 4415 struct ifreq *ifr) 4416 { 4417 struct bxe_nvram_data nvdata_base; 4418 struct bxe_nvram_data *nvdata; 4419 int len; 4420 int error = 0; 4421 4422 copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base)); 4423 4424 len = (sizeof(struct bxe_nvram_data) + 4425 nvdata_base.len - 4426 sizeof(uint32_t)); 4427 4428 if (len > sizeof(struct bxe_nvram_data)) { 4429 if ((nvdata = (struct bxe_nvram_data *) 4430 malloc(len, M_DEVBUF, 4431 (M_NOWAIT | M_ZERO))) == NULL) { 4432 BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed priv_op 0x%x " 4433 " len = 0x%x\n", priv_op, len); 4434 return (1); 4435 } 4436 memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data)); 4437 } else { 4438 nvdata = &nvdata_base; 4439 } 4440 4441 if (priv_op == BXE_IOC_RD_NVRAM) { 4442 BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n", 4443 nvdata->offset, nvdata->len); 4444 error = bxe_nvram_read(sc, 4445 nvdata->offset, 4446 (uint8_t *)nvdata->value, 4447 nvdata->len); 4448 copyout(nvdata, ifr->ifr_data, len); 4449 } else { /* BXE_IOC_WR_NVRAM */ 4450 BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n", 4451 nvdata->offset, nvdata->len); 4452 copyin(ifr->ifr_data, nvdata, len); 4453 error = bxe_nvram_write(sc, 4454 nvdata->offset, 4455 (uint8_t *)nvdata->value, 4456 nvdata->len); 4457 } 4458 4459 if (len > sizeof(struct bxe_nvram_data)) { 4460 free(nvdata, M_DEVBUF); 4461 } 4462 4463 return (error); 4464 } 4465 4466 static int 4467 bxe_ioctl_stats_show(struct bxe_softc *sc, 4468 uint32_t priv_op, 4469 struct ifreq *ifr) 4470 { 4471 const size_t str_size = (BXE_NUM_ETH_STATS * STAT_NAME_LEN); 4472 const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t)); 4473 caddr_t p_tmp; 4474 uint32_t *offset; 4475 int i; 4476 4477 switch (priv_op) 4478 { 4479 case BXE_IOC_STATS_SHOW_NUM: 4480 memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data)); 4481 ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num = 4482 BXE_NUM_ETH_STATS; 4483 ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len = 4484 STAT_NAME_LEN; 4485 return (0); 4486 4487 case BXE_IOC_STATS_SHOW_STR: 4488 memset(ifr->ifr_data, 0, str_size); 4489 p_tmp = ifr->ifr_data; 4490 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 4491 strcpy(p_tmp, bxe_eth_stats_arr[i].string); 4492 p_tmp += STAT_NAME_LEN; 4493 } 4494 return (0); 4495 4496 case BXE_IOC_STATS_SHOW_CNT: 4497 memset(ifr->ifr_data, 0, stats_size); 4498 p_tmp = ifr->ifr_data; 4499 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 4500 offset = ((uint32_t *)&sc->eth_stats + 4501 bxe_eth_stats_arr[i].offset); 4502 switch (bxe_eth_stats_arr[i].size) { 4503 case 4: 4504 *((uint64_t *)p_tmp) = (uint64_t)*offset; 4505 break; 4506 case 8: 4507 *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1)); 4508 break; 4509 default: 4510 *((uint64_t *)p_tmp) = 0; 4511 } 4512 p_tmp += sizeof(uint64_t); 4513 } 4514 return (0); 4515 4516 default: 4517 return (-1); 4518 } 4519 } 4520 4521 static void 4522 bxe_handle_chip_tq(void *context, 4523 int pending) 4524 { 4525 struct bxe_softc *sc = (struct bxe_softc *)context; 4526 long work = atomic_load_acq_long(&sc->chip_tq_flags); 4527 4528 switch (work) 4529 { 4530 4531 case CHIP_TQ_REINIT: 4532 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 4533 /* restart the interface */ 4534 BLOGD(sc, DBG_LOAD, "Restarting the interface...\n"); 4535 bxe_periodic_stop(sc); 4536 BXE_CORE_LOCK(sc); 4537 bxe_stop_locked(sc); 4538 bxe_init_locked(sc); 4539 BXE_CORE_UNLOCK(sc); 4540 } 4541 break; 4542 4543 default: 4544 break; 4545 } 4546 } 4547 4548 /* 4549 * Handles any IOCTL calls from the operating system. 4550 * 4551 * Returns: 4552 * 0 = Success, >0 Failure 4553 */ 4554 static int 4555 bxe_ioctl(if_t ifp, 4556 u_long command, 4557 caddr_t data) 4558 { 4559 struct bxe_softc *sc = if_getsoftc(ifp); 4560 struct ifreq *ifr = (struct ifreq *)data; 4561 struct bxe_nvram_data *nvdata; 4562 uint32_t priv_op; 4563 int mask = 0; 4564 int reinit = 0; 4565 int error = 0; 4566 4567 int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN); 4568 int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING); 4569 4570 switch (command) 4571 { 4572 case SIOCSIFMTU: 4573 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n", 4574 ifr->ifr_mtu); 4575 4576 if (sc->mtu == ifr->ifr_mtu) { 4577 /* nothing to change */ 4578 break; 4579 } 4580 4581 if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) { 4582 BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n", 4583 ifr->ifr_mtu, mtu_min, mtu_max); 4584 error = EINVAL; 4585 break; 4586 } 4587 4588 atomic_store_rel_int((volatile unsigned int *)&sc->mtu, 4589 (unsigned long)ifr->ifr_mtu); 4590 /* 4591 atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp), 4592 (unsigned long)ifr->ifr_mtu); 4593 XXX - Not sure why it needs to be atomic 4594 */ 4595 if_setmtu(ifp, ifr->ifr_mtu); 4596 reinit = 1; 4597 break; 4598 4599 case SIOCSIFFLAGS: 4600 /* toggle the interface state up or down */ 4601 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n"); 4602 4603 BXE_CORE_LOCK(sc); 4604 /* check if the interface is up */ 4605 if (if_getflags(ifp) & IFF_UP) { 4606 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4607 /* set the receive mode flags */ 4608 bxe_set_rx_mode(sc); 4609 } else { 4610 bxe_init_locked(sc); 4611 } 4612 } else { 4613 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4614 bxe_periodic_stop(sc); 4615 bxe_stop_locked(sc); 4616 } 4617 } 4618 BXE_CORE_UNLOCK(sc); 4619 4620 break; 4621 4622 case SIOCADDMULTI: 4623 case SIOCDELMULTI: 4624 /* add/delete multicast addresses */ 4625 BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n"); 4626 4627 /* check if the interface is up */ 4628 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4629 /* set the receive mode flags */ 4630 BXE_CORE_LOCK(sc); 4631 bxe_set_rx_mode(sc); 4632 BXE_CORE_UNLOCK(sc); 4633 } 4634 4635 break; 4636 4637 case SIOCSIFCAP: 4638 /* find out which capabilities have changed */ 4639 mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp)); 4640 4641 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n", 4642 mask); 4643 4644 /* toggle the LRO capabilites enable flag */ 4645 if (mask & IFCAP_LRO) { 4646 if_togglecapenable(ifp, IFCAP_LRO); 4647 BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n", 4648 (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF"); 4649 reinit = 1; 4650 } 4651 4652 /* toggle the TXCSUM checksum capabilites enable flag */ 4653 if (mask & IFCAP_TXCSUM) { 4654 if_togglecapenable(ifp, IFCAP_TXCSUM); 4655 BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n", 4656 (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF"); 4657 if (if_getcapenable(ifp) & IFCAP_TXCSUM) { 4658 if_sethwassistbits(ifp, (CSUM_IP | 4659 CSUM_TCP | 4660 CSUM_UDP | 4661 CSUM_TSO | 4662 CSUM_TCP_IPV6 | 4663 CSUM_UDP_IPV6), 0); 4664 } else { 4665 if_clearhwassist(ifp); /* XXX */ 4666 } 4667 } 4668 4669 /* toggle the RXCSUM checksum capabilities enable flag */ 4670 if (mask & IFCAP_RXCSUM) { 4671 if_togglecapenable(ifp, IFCAP_RXCSUM); 4672 BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n", 4673 (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF"); 4674 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 4675 if_sethwassistbits(ifp, (CSUM_IP | 4676 CSUM_TCP | 4677 CSUM_UDP | 4678 CSUM_TSO | 4679 CSUM_TCP_IPV6 | 4680 CSUM_UDP_IPV6), 0); 4681 } else { 4682 if_clearhwassist(ifp); /* XXX */ 4683 } 4684 } 4685 4686 /* toggle TSO4 capabilities enabled flag */ 4687 if (mask & IFCAP_TSO4) { 4688 if_togglecapenable(ifp, IFCAP_TSO4); 4689 BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n", 4690 (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF"); 4691 } 4692 4693 /* toggle TSO6 capabilities enabled flag */ 4694 if (mask & IFCAP_TSO6) { 4695 if_togglecapenable(ifp, IFCAP_TSO6); 4696 BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n", 4697 (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF"); 4698 } 4699 4700 /* toggle VLAN_HWTSO capabilities enabled flag */ 4701 if (mask & IFCAP_VLAN_HWTSO) { 4702 4703 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 4704 BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n", 4705 (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF"); 4706 } 4707 4708 /* toggle VLAN_HWCSUM capabilities enabled flag */ 4709 if (mask & IFCAP_VLAN_HWCSUM) { 4710 /* XXX investigate this... */ 4711 BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n"); 4712 error = EINVAL; 4713 } 4714 4715 /* toggle VLAN_MTU capabilities enable flag */ 4716 if (mask & IFCAP_VLAN_MTU) { 4717 /* XXX investigate this... */ 4718 BLOGE(sc, "Changing VLAN_MTU is not supported!\n"); 4719 error = EINVAL; 4720 } 4721 4722 /* toggle VLAN_HWTAGGING capabilities enabled flag */ 4723 if (mask & IFCAP_VLAN_HWTAGGING) { 4724 /* XXX investigate this... */ 4725 BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n"); 4726 error = EINVAL; 4727 } 4728 4729 /* toggle VLAN_HWFILTER capabilities enabled flag */ 4730 if (mask & IFCAP_VLAN_HWFILTER) { 4731 /* XXX investigate this... */ 4732 BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n"); 4733 error = EINVAL; 4734 } 4735 4736 /* XXX not yet... 4737 * IFCAP_WOL_MAGIC 4738 */ 4739 4740 break; 4741 4742 case SIOCSIFMEDIA: 4743 case SIOCGIFMEDIA: 4744 /* set/get interface media */ 4745 BLOGD(sc, DBG_IOCTL, 4746 "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n", 4747 (command & 0xff)); 4748 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); 4749 break; 4750 4751 case SIOCGPRIVATE_0: 4752 copyin(ifr->ifr_data, &priv_op, sizeof(priv_op)); 4753 4754 switch (priv_op) 4755 { 4756 case BXE_IOC_RD_NVRAM: 4757 case BXE_IOC_WR_NVRAM: 4758 nvdata = (struct bxe_nvram_data *)ifr->ifr_data; 4759 BLOGD(sc, DBG_IOCTL, 4760 "Received Private NVRAM ioctl addr=0x%x size=%u\n", 4761 nvdata->offset, nvdata->len); 4762 error = bxe_ioctl_nvram(sc, priv_op, ifr); 4763 break; 4764 4765 case BXE_IOC_STATS_SHOW_NUM: 4766 case BXE_IOC_STATS_SHOW_STR: 4767 case BXE_IOC_STATS_SHOW_CNT: 4768 BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n", 4769 priv_op); 4770 error = bxe_ioctl_stats_show(sc, priv_op, ifr); 4771 break; 4772 4773 default: 4774 BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op); 4775 error = EINVAL; 4776 break; 4777 } 4778 4779 break; 4780 4781 default: 4782 BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n", 4783 (command & 0xff)); 4784 error = ether_ioctl(ifp, command, data); 4785 break; 4786 } 4787 4788 if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 4789 BLOGD(sc, DBG_LOAD | DBG_IOCTL, 4790 "Re-initializing hardware from IOCTL change\n"); 4791 bxe_periodic_stop(sc); 4792 BXE_CORE_LOCK(sc); 4793 bxe_stop_locked(sc); 4794 bxe_init_locked(sc); 4795 BXE_CORE_UNLOCK(sc); 4796 } 4797 4798 return (error); 4799 } 4800 4801 static __noinline void 4802 bxe_dump_mbuf(struct bxe_softc *sc, 4803 struct mbuf *m, 4804 uint8_t contents) 4805 { 4806 char * type; 4807 int i = 0; 4808 4809 if (!(sc->debug & DBG_MBUF)) { 4810 return; 4811 } 4812 4813 if (m == NULL) { 4814 BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n"); 4815 return; 4816 } 4817 4818 while (m) { 4819 BLOGD(sc, DBG_MBUF, 4820 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 4821 i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data); 4822 4823 if (m->m_flags & M_PKTHDR) { 4824 BLOGD(sc, DBG_MBUF, 4825 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 4826 i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS, 4827 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 4828 } 4829 4830 if (m->m_flags & M_EXT) { 4831 switch (m->m_ext.ext_type) { 4832 case EXT_CLUSTER: type = "EXT_CLUSTER"; break; 4833 case EXT_SFBUF: type = "EXT_SFBUF"; break; 4834 case EXT_JUMBOP: type = "EXT_JUMBOP"; break; 4835 case EXT_JUMBO9: type = "EXT_JUMBO9"; break; 4836 case EXT_JUMBO16: type = "EXT_JUMBO16"; break; 4837 case EXT_PACKET: type = "EXT_PACKET"; break; 4838 case EXT_MBUF: type = "EXT_MBUF"; break; 4839 case EXT_NET_DRV: type = "EXT_NET_DRV"; break; 4840 case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break; 4841 case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break; 4842 case EXT_EXTREF: type = "EXT_EXTREF"; break; 4843 default: type = "UNKNOWN"; break; 4844 } 4845 4846 BLOGD(sc, DBG_MBUF, 4847 "%02d: - m_ext: %p ext_size=%d type=%s\n", 4848 i, m->m_ext.ext_buf, m->m_ext.ext_size, type); 4849 } 4850 4851 if (contents) { 4852 bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE); 4853 } 4854 4855 m = m->m_next; 4856 i++; 4857 } 4858 } 4859 4860 /* 4861 * Checks to ensure the 13 bd sliding window is >= MSS for TSO. 4862 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS. 4863 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD 4864 * The headers comes in a seperate bd in FreeBSD so 13-3=10. 4865 * Returns: 0 if OK to send, 1 if packet needs further defragmentation 4866 */ 4867 static int 4868 bxe_chktso_window(struct bxe_softc *sc, 4869 int nsegs, 4870 bus_dma_segment_t *segs, 4871 struct mbuf *m) 4872 { 4873 uint32_t num_wnds, wnd_size, wnd_sum; 4874 int32_t frag_idx, wnd_idx; 4875 unsigned short lso_mss; 4876 int defrag; 4877 4878 defrag = 0; 4879 wnd_sum = 0; 4880 wnd_size = 10; 4881 num_wnds = nsegs - wnd_size; 4882 lso_mss = htole16(m->m_pkthdr.tso_segsz); 4883 4884 /* 4885 * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the 4886 * first window sum of data while skipping the first assuming it is the 4887 * header in FreeBSD. 4888 */ 4889 for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) { 4890 wnd_sum += htole16(segs[frag_idx].ds_len); 4891 } 4892 4893 /* check the first 10 bd window size */ 4894 if (wnd_sum < lso_mss) { 4895 return (1); 4896 } 4897 4898 /* run through the windows */ 4899 for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) { 4900 /* subtract the first mbuf->m_len of the last wndw(-header) */ 4901 wnd_sum -= htole16(segs[wnd_idx+1].ds_len); 4902 /* add the next mbuf len to the len of our new window */ 4903 wnd_sum += htole16(segs[frag_idx].ds_len); 4904 if (wnd_sum < lso_mss) { 4905 return (1); 4906 } 4907 } 4908 4909 return (0); 4910 } 4911 4912 static uint8_t 4913 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp, 4914 struct mbuf *m, 4915 uint32_t *parsing_data) 4916 { 4917 struct ether_vlan_header *eh = NULL; 4918 struct ip *ip4 = NULL; 4919 struct ip6_hdr *ip6 = NULL; 4920 caddr_t ip = NULL; 4921 struct tcphdr *th = NULL; 4922 int e_hlen, ip_hlen, l4_off; 4923 uint16_t proto; 4924 4925 if (m->m_pkthdr.csum_flags == CSUM_IP) { 4926 /* no L4 checksum offload needed */ 4927 return (0); 4928 } 4929 4930 /* get the Ethernet header */ 4931 eh = mtod(m, struct ether_vlan_header *); 4932 4933 /* handle VLAN encapsulation if present */ 4934 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 4935 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 4936 proto = ntohs(eh->evl_proto); 4937 } else { 4938 e_hlen = ETHER_HDR_LEN; 4939 proto = ntohs(eh->evl_encap_proto); 4940 } 4941 4942 switch (proto) { 4943 case ETHERTYPE_IP: 4944 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 4945 ip4 = (m->m_len < sizeof(struct ip)) ? 4946 (struct ip *)m->m_next->m_data : 4947 (struct ip *)(m->m_data + e_hlen); 4948 /* ip_hl is number of 32-bit words */ 4949 ip_hlen = (ip4->ip_hl << 2); 4950 ip = (caddr_t)ip4; 4951 break; 4952 case ETHERTYPE_IPV6: 4953 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 4954 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 4955 (struct ip6_hdr *)m->m_next->m_data : 4956 (struct ip6_hdr *)(m->m_data + e_hlen); 4957 /* XXX cannot support offload with IPv6 extensions */ 4958 ip_hlen = sizeof(struct ip6_hdr); 4959 ip = (caddr_t)ip6; 4960 break; 4961 default: 4962 /* We can't offload in this case... */ 4963 /* XXX error stat ??? */ 4964 return (0); 4965 } 4966 4967 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 4968 l4_off = (e_hlen + ip_hlen); 4969 4970 *parsing_data |= 4971 (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 4972 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W); 4973 4974 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 4975 CSUM_TSO | 4976 CSUM_TCP_IPV6)) { 4977 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 4978 th = (struct tcphdr *)(ip + ip_hlen); 4979 /* th_off is number of 32-bit words */ 4980 *parsing_data |= ((th->th_off << 4981 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 4982 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW); 4983 return (l4_off + (th->th_off << 2)); /* entire header length */ 4984 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 4985 CSUM_UDP_IPV6)) { 4986 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 4987 return (l4_off + sizeof(struct udphdr)); /* entire header length */ 4988 } else { 4989 /* XXX error stat ??? */ 4990 return (0); 4991 } 4992 } 4993 4994 static uint8_t 4995 bxe_set_pbd_csum(struct bxe_fastpath *fp, 4996 struct mbuf *m, 4997 struct eth_tx_parse_bd_e1x *pbd) 4998 { 4999 struct ether_vlan_header *eh = NULL; 5000 struct ip *ip4 = NULL; 5001 struct ip6_hdr *ip6 = NULL; 5002 caddr_t ip = NULL; 5003 struct tcphdr *th = NULL; 5004 struct udphdr *uh = NULL; 5005 int e_hlen, ip_hlen; 5006 uint16_t proto; 5007 uint8_t hlen; 5008 uint16_t tmp_csum; 5009 uint32_t *tmp_uh; 5010 5011 /* get the Ethernet header */ 5012 eh = mtod(m, struct ether_vlan_header *); 5013 5014 /* handle VLAN encapsulation if present */ 5015 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 5016 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 5017 proto = ntohs(eh->evl_proto); 5018 } else { 5019 e_hlen = ETHER_HDR_LEN; 5020 proto = ntohs(eh->evl_encap_proto); 5021 } 5022 5023 switch (proto) { 5024 case ETHERTYPE_IP: 5025 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 5026 ip4 = (m->m_len < sizeof(struct ip)) ? 5027 (struct ip *)m->m_next->m_data : 5028 (struct ip *)(m->m_data + e_hlen); 5029 /* ip_hl is number of 32-bit words */ 5030 ip_hlen = (ip4->ip_hl << 1); 5031 ip = (caddr_t)ip4; 5032 break; 5033 case ETHERTYPE_IPV6: 5034 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 5035 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 5036 (struct ip6_hdr *)m->m_next->m_data : 5037 (struct ip6_hdr *)(m->m_data + e_hlen); 5038 /* XXX cannot support offload with IPv6 extensions */ 5039 ip_hlen = (sizeof(struct ip6_hdr) >> 1); 5040 ip = (caddr_t)ip6; 5041 break; 5042 default: 5043 /* We can't offload in this case... */ 5044 /* XXX error stat ??? */ 5045 return (0); 5046 } 5047 5048 hlen = (e_hlen >> 1); 5049 5050 /* note that rest of global_data is indirectly zeroed here */ 5051 if (m->m_flags & M_VLANTAG) { 5052 pbd->global_data = 5053 htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 5054 } else { 5055 pbd->global_data = htole16(hlen); 5056 } 5057 5058 pbd->ip_hlen_w = ip_hlen; 5059 5060 hlen += pbd->ip_hlen_w; 5061 5062 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 5063 5064 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5065 CSUM_TSO | 5066 CSUM_TCP_IPV6)) { 5067 th = (struct tcphdr *)(ip + (ip_hlen << 1)); 5068 /* th_off is number of 32-bit words */ 5069 hlen += (uint16_t)(th->th_off << 1); 5070 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5071 CSUM_UDP_IPV6)) { 5072 uh = (struct udphdr *)(ip + (ip_hlen << 1)); 5073 hlen += (sizeof(struct udphdr) / 2); 5074 } else { 5075 /* valid case as only CSUM_IP was set */ 5076 return (0); 5077 } 5078 5079 pbd->total_hlen_w = htole16(hlen); 5080 5081 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5082 CSUM_TSO | 5083 CSUM_TCP_IPV6)) { 5084 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 5085 pbd->tcp_pseudo_csum = ntohs(th->th_sum); 5086 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5087 CSUM_UDP_IPV6)) { 5088 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 5089 5090 /* 5091 * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP 5092 * checksums and does not know anything about the UDP header and where 5093 * the checksum field is located. It only knows about TCP. Therefore 5094 * we "lie" to the hardware for outgoing UDP packets w/ checksum 5095 * offload. Since the checksum field offset for TCP is 16 bytes and 5096 * for UDP it is 6 bytes we pass a pointer to the hardware that is 10 5097 * bytes less than the start of the UDP header. This allows the 5098 * hardware to write the checksum in the correct spot. But the 5099 * hardware will compute a checksum which includes the last 10 bytes 5100 * of the IP header. To correct this we tweak the stack computed 5101 * pseudo checksum by folding in the calculation of the inverse 5102 * checksum for those final 10 bytes of the IP header. This allows 5103 * the correct checksum to be computed by the hardware. 5104 */ 5105 5106 /* set pointer 10 bytes before UDP header */ 5107 tmp_uh = (uint32_t *)((uint8_t *)uh - 10); 5108 5109 /* calculate a pseudo header checksum over the first 10 bytes */ 5110 tmp_csum = in_pseudo(*tmp_uh, 5111 *(tmp_uh + 1), 5112 *(uint16_t *)(tmp_uh + 2)); 5113 5114 pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum)); 5115 } 5116 5117 return (hlen * 2); /* entire header length, number of bytes */ 5118 } 5119 5120 static void 5121 bxe_set_pbd_lso_e2(struct mbuf *m, 5122 uint32_t *parsing_data) 5123 { 5124 *parsing_data |= ((m->m_pkthdr.tso_segsz << 5125 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 5126 ETH_TX_PARSE_BD_E2_LSO_MSS); 5127 5128 /* XXX test for IPv6 with extension header... */ 5129 } 5130 5131 static void 5132 bxe_set_pbd_lso(struct mbuf *m, 5133 struct eth_tx_parse_bd_e1x *pbd) 5134 { 5135 struct ether_vlan_header *eh = NULL; 5136 struct ip *ip = NULL; 5137 struct tcphdr *th = NULL; 5138 int e_hlen; 5139 5140 /* get the Ethernet header */ 5141 eh = mtod(m, struct ether_vlan_header *); 5142 5143 /* handle VLAN encapsulation if present */ 5144 e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ? 5145 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN; 5146 5147 /* get the IP and TCP header, with LSO entire header in first mbuf */ 5148 /* XXX assuming IPv4 */ 5149 ip = (struct ip *)(m->m_data + e_hlen); 5150 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 5151 5152 pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz); 5153 pbd->tcp_send_seq = ntohl(th->th_seq); 5154 pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff); 5155 5156 #if 1 5157 /* XXX IPv4 */ 5158 pbd->ip_id = ntohs(ip->ip_id); 5159 pbd->tcp_pseudo_csum = 5160 ntohs(in_pseudo(ip->ip_src.s_addr, 5161 ip->ip_dst.s_addr, 5162 htons(IPPROTO_TCP))); 5163 #else 5164 /* XXX IPv6 */ 5165 pbd->tcp_pseudo_csum = 5166 ntohs(in_pseudo(&ip6->ip6_src, 5167 &ip6->ip6_dst, 5168 htons(IPPROTO_TCP))); 5169 #endif 5170 5171 pbd->global_data |= 5172 htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 5173 } 5174 5175 /* 5176 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory 5177 * visible to the controller. 5178 * 5179 * If an mbuf is submitted to this routine and cannot be given to the 5180 * controller (e.g. it has too many fragments) then the function may free 5181 * the mbuf and return to the caller. 5182 * 5183 * Returns: 5184 * 0 = Success, !0 = Failure 5185 * Note the side effect that an mbuf may be freed if it causes a problem. 5186 */ 5187 static int 5188 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head) 5189 { 5190 bus_dma_segment_t segs[32]; 5191 struct mbuf *m0; 5192 struct bxe_sw_tx_bd *tx_buf; 5193 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 5194 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 5195 /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */ 5196 struct eth_tx_bd *tx_data_bd; 5197 struct eth_tx_bd *tx_total_pkt_size_bd; 5198 struct eth_tx_start_bd *tx_start_bd; 5199 uint16_t bd_prod, pkt_prod, total_pkt_size; 5200 uint8_t mac_type; 5201 int defragged, error, nsegs, rc, nbds, vlan_off, ovlan; 5202 struct bxe_softc *sc; 5203 uint16_t tx_bd_avail; 5204 struct ether_vlan_header *eh; 5205 uint32_t pbd_e2_parsing_data = 0; 5206 uint8_t hlen = 0; 5207 int tmp_bd; 5208 int i; 5209 5210 sc = fp->sc; 5211 5212 M_ASSERTPKTHDR(*m_head); 5213 5214 m0 = *m_head; 5215 rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0; 5216 tx_start_bd = NULL; 5217 tx_data_bd = NULL; 5218 tx_total_pkt_size_bd = NULL; 5219 5220 /* get the H/W pointer for packets and BDs */ 5221 pkt_prod = fp->tx_pkt_prod; 5222 bd_prod = fp->tx_bd_prod; 5223 5224 mac_type = UNICAST_ADDRESS; 5225 5226 /* map the mbuf into the next open DMAable memory */ 5227 tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)]; 5228 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5229 tx_buf->m_map, m0, 5230 segs, &nsegs, BUS_DMA_NOWAIT); 5231 5232 /* mapping errors */ 5233 if(__predict_false(error != 0)) { 5234 fp->eth_q_stats.tx_dma_mapping_failure++; 5235 if (error == ENOMEM) { 5236 /* resource issue, try again later */ 5237 rc = ENOMEM; 5238 } else if (error == EFBIG) { 5239 /* possibly recoverable with defragmentation */ 5240 fp->eth_q_stats.mbuf_defrag_attempts++; 5241 m0 = m_defrag(*m_head, M_NOWAIT); 5242 if (m0 == NULL) { 5243 fp->eth_q_stats.mbuf_defrag_failures++; 5244 rc = ENOBUFS; 5245 } else { 5246 /* defrag successful, try mapping again */ 5247 *m_head = m0; 5248 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5249 tx_buf->m_map, m0, 5250 segs, &nsegs, BUS_DMA_NOWAIT); 5251 if (error) { 5252 fp->eth_q_stats.tx_dma_mapping_failure++; 5253 rc = error; 5254 } 5255 } 5256 } else { 5257 /* unknown, unrecoverable mapping error */ 5258 BLOGE(sc, "Unknown TX mapping error rc=%d\n", error); 5259 bxe_dump_mbuf(sc, m0, FALSE); 5260 rc = error; 5261 } 5262 5263 goto bxe_tx_encap_continue; 5264 } 5265 5266 tx_bd_avail = bxe_tx_avail(sc, fp); 5267 5268 /* make sure there is enough room in the send queue */ 5269 if (__predict_false(tx_bd_avail < (nsegs + 2))) { 5270 /* Recoverable, try again later. */ 5271 fp->eth_q_stats.tx_hw_queue_full++; 5272 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5273 rc = ENOMEM; 5274 goto bxe_tx_encap_continue; 5275 } 5276 5277 /* capture the current H/W TX chain high watermark */ 5278 if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth < 5279 (TX_BD_USABLE - tx_bd_avail))) { 5280 fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail); 5281 } 5282 5283 /* make sure it fits in the packet window */ 5284 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5285 /* 5286 * The mbuf may be to big for the controller to handle. If the frame 5287 * is a TSO frame we'll need to do an additional check. 5288 */ 5289 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5290 if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) { 5291 goto bxe_tx_encap_continue; /* OK to send */ 5292 } else { 5293 fp->eth_q_stats.tx_window_violation_tso++; 5294 } 5295 } else { 5296 fp->eth_q_stats.tx_window_violation_std++; 5297 } 5298 5299 /* lets try to defragment this mbuf and remap it */ 5300 fp->eth_q_stats.mbuf_defrag_attempts++; 5301 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5302 5303 m0 = m_defrag(*m_head, M_NOWAIT); 5304 if (m0 == NULL) { 5305 fp->eth_q_stats.mbuf_defrag_failures++; 5306 /* Ugh, just drop the frame... :( */ 5307 rc = ENOBUFS; 5308 } else { 5309 /* defrag successful, try mapping again */ 5310 *m_head = m0; 5311 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5312 tx_buf->m_map, m0, 5313 segs, &nsegs, BUS_DMA_NOWAIT); 5314 if (error) { 5315 fp->eth_q_stats.tx_dma_mapping_failure++; 5316 /* No sense in trying to defrag/copy chain, drop it. :( */ 5317 rc = error; 5318 } 5319 else { 5320 /* if the chain is still too long then drop it */ 5321 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5322 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5323 rc = ENODEV; 5324 } 5325 } 5326 } 5327 } 5328 5329 bxe_tx_encap_continue: 5330 5331 /* Check for errors */ 5332 if (rc) { 5333 if (rc == ENOMEM) { 5334 /* recoverable try again later */ 5335 } else { 5336 fp->eth_q_stats.tx_soft_errors++; 5337 fp->eth_q_stats.mbuf_alloc_tx--; 5338 m_freem(*m_head); 5339 *m_head = NULL; 5340 } 5341 5342 return (rc); 5343 } 5344 5345 /* set flag according to packet type (UNICAST_ADDRESS is default) */ 5346 if (m0->m_flags & M_BCAST) { 5347 mac_type = BROADCAST_ADDRESS; 5348 } else if (m0->m_flags & M_MCAST) { 5349 mac_type = MULTICAST_ADDRESS; 5350 } 5351 5352 /* store the mbuf into the mbuf ring */ 5353 tx_buf->m = m0; 5354 tx_buf->first_bd = fp->tx_bd_prod; 5355 tx_buf->flags = 0; 5356 5357 /* prepare the first transmit (start) BD for the mbuf */ 5358 tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd; 5359 5360 BLOGD(sc, DBG_TX, 5361 "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n", 5362 pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd); 5363 5364 tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 5365 tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 5366 tx_start_bd->nbytes = htole16(segs[0].ds_len); 5367 total_pkt_size += tx_start_bd->nbytes; 5368 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 5369 5370 tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT); 5371 5372 /* all frames have at least Start BD + Parsing BD */ 5373 nbds = nsegs + 1; 5374 tx_start_bd->nbd = htole16(nbds); 5375 5376 if (m0->m_flags & M_VLANTAG) { 5377 tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag); 5378 tx_start_bd->bd_flags.as_bitfield |= 5379 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 5380 } else { 5381 /* vf tx, start bd must hold the ethertype for fw to enforce it */ 5382 if (IS_VF(sc)) { 5383 /* map ethernet header to find type and header length */ 5384 eh = mtod(m0, struct ether_vlan_header *); 5385 tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto; 5386 } else { 5387 /* used by FW for packet accounting */ 5388 tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod); 5389 } 5390 } 5391 5392 /* 5393 * add a parsing BD from the chain. The parsing BD is always added 5394 * though it is only used for TSO and chksum 5395 */ 5396 bd_prod = TX_BD_NEXT(bd_prod); 5397 5398 if (m0->m_pkthdr.csum_flags) { 5399 if (m0->m_pkthdr.csum_flags & CSUM_IP) { 5400 fp->eth_q_stats.tx_ofld_frames_csum_ip++; 5401 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM; 5402 } 5403 5404 if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) { 5405 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5406 ETH_TX_BD_FLAGS_L4_CSUM); 5407 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) { 5408 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5409 ETH_TX_BD_FLAGS_IS_UDP | 5410 ETH_TX_BD_FLAGS_L4_CSUM); 5411 } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) || 5412 (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5413 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 5414 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) { 5415 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM | 5416 ETH_TX_BD_FLAGS_IS_UDP); 5417 } 5418 } 5419 5420 if (!CHIP_IS_E1x(sc)) { 5421 pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2; 5422 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 5423 5424 if (m0->m_pkthdr.csum_flags) { 5425 hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data); 5426 } 5427 5428 SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, 5429 mac_type); 5430 } else { 5431 uint16_t global_data = 0; 5432 5433 pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x; 5434 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 5435 5436 if (m0->m_pkthdr.csum_flags) { 5437 hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x); 5438 } 5439 5440 SET_FLAG(global_data, 5441 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 5442 pbd_e1x->global_data |= htole16(global_data); 5443 } 5444 5445 /* setup the parsing BD with TSO specific info */ 5446 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5447 fp->eth_q_stats.tx_ofld_frames_lso++; 5448 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 5449 5450 if (__predict_false(tx_start_bd->nbytes > hlen)) { 5451 fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++; 5452 5453 /* split the first BD into header/data making the fw job easy */ 5454 nbds++; 5455 tx_start_bd->nbd = htole16(nbds); 5456 tx_start_bd->nbytes = htole16(hlen); 5457 5458 bd_prod = TX_BD_NEXT(bd_prod); 5459 5460 /* new transmit BD after the tx_parse_bd */ 5461 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5462 tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen)); 5463 tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen)); 5464 tx_data_bd->nbytes = htole16(segs[0].ds_len - hlen); 5465 if (tx_total_pkt_size_bd == NULL) { 5466 tx_total_pkt_size_bd = tx_data_bd; 5467 } 5468 5469 BLOGD(sc, DBG_TX, 5470 "TSO split header size is %d (%x:%x) nbds %d\n", 5471 le16toh(tx_start_bd->nbytes), 5472 le32toh(tx_start_bd->addr_hi), 5473 le32toh(tx_start_bd->addr_lo), 5474 nbds); 5475 } 5476 5477 if (!CHIP_IS_E1x(sc)) { 5478 bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data); 5479 } else { 5480 bxe_set_pbd_lso(m0, pbd_e1x); 5481 } 5482 } 5483 5484 if (pbd_e2_parsing_data) { 5485 pbd_e2->parsing_data = htole32(pbd_e2_parsing_data); 5486 } 5487 5488 /* prepare remaining BDs, start tx bd contains first seg/frag */ 5489 for (i = 1; i < nsegs ; i++) { 5490 bd_prod = TX_BD_NEXT(bd_prod); 5491 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5492 tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr)); 5493 tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr)); 5494 tx_data_bd->nbytes = htole16(segs[i].ds_len); 5495 if (tx_total_pkt_size_bd == NULL) { 5496 tx_total_pkt_size_bd = tx_data_bd; 5497 } 5498 total_pkt_size += tx_data_bd->nbytes; 5499 } 5500 5501 BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd); 5502 5503 if (tx_total_pkt_size_bd != NULL) { 5504 tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size; 5505 } 5506 5507 if (__predict_false(sc->debug & DBG_TX)) { 5508 tmp_bd = tx_buf->first_bd; 5509 for (i = 0; i < nbds; i++) 5510 { 5511 if (i == 0) { 5512 BLOGD(sc, DBG_TX, 5513 "TX Strt: %p bd=%d nbd=%d vlan=0x%x " 5514 "bd_flags=0x%x hdr_nbds=%d\n", 5515 tx_start_bd, 5516 tmp_bd, 5517 le16toh(tx_start_bd->nbd), 5518 le16toh(tx_start_bd->vlan_or_ethertype), 5519 tx_start_bd->bd_flags.as_bitfield, 5520 (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS)); 5521 } else if (i == 1) { 5522 if (pbd_e1x) { 5523 BLOGD(sc, DBG_TX, 5524 "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u " 5525 "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x " 5526 "tcp_seq=%u total_hlen_w=%u\n", 5527 pbd_e1x, 5528 tmp_bd, 5529 pbd_e1x->global_data, 5530 pbd_e1x->ip_hlen_w, 5531 pbd_e1x->ip_id, 5532 pbd_e1x->lso_mss, 5533 pbd_e1x->tcp_flags, 5534 pbd_e1x->tcp_pseudo_csum, 5535 pbd_e1x->tcp_send_seq, 5536 le16toh(pbd_e1x->total_hlen_w)); 5537 } else { /* if (pbd_e2) */ 5538 BLOGD(sc, DBG_TX, 5539 "-> Parse: %p bd=%d dst=%02x:%02x:%02x " 5540 "src=%02x:%02x:%02x parsing_data=0x%x\n", 5541 pbd_e2, 5542 tmp_bd, 5543 pbd_e2->data.mac_addr.dst_hi, 5544 pbd_e2->data.mac_addr.dst_mid, 5545 pbd_e2->data.mac_addr.dst_lo, 5546 pbd_e2->data.mac_addr.src_hi, 5547 pbd_e2->data.mac_addr.src_mid, 5548 pbd_e2->data.mac_addr.src_lo, 5549 pbd_e2->parsing_data); 5550 } 5551 } 5552 5553 if (i != 1) { /* skip parse db as it doesn't hold data */ 5554 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd; 5555 BLOGD(sc, DBG_TX, 5556 "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n", 5557 tx_data_bd, 5558 tmp_bd, 5559 le16toh(tx_data_bd->nbytes), 5560 le32toh(tx_data_bd->addr_hi), 5561 le32toh(tx_data_bd->addr_lo)); 5562 } 5563 5564 tmp_bd = TX_BD_NEXT(tmp_bd); 5565 } 5566 } 5567 5568 BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod); 5569 5570 /* update TX BD producer index value for next TX */ 5571 bd_prod = TX_BD_NEXT(bd_prod); 5572 5573 /* 5574 * If the chain of tx_bd's describing this frame is adjacent to or spans 5575 * an eth_tx_next_bd element then we need to increment the nbds value. 5576 */ 5577 if (TX_BD_IDX(bd_prod) < nbds) { 5578 nbds++; 5579 } 5580 5581 /* don't allow reordering of writes for nbd and packets */ 5582 mb(); 5583 5584 fp->tx_db.data.prod += nbds; 5585 5586 /* producer points to the next free tx_bd at this point */ 5587 fp->tx_pkt_prod++; 5588 fp->tx_bd_prod = bd_prod; 5589 5590 DOORBELL(sc, fp->index, fp->tx_db.raw); 5591 5592 fp->eth_q_stats.tx_pkts++; 5593 5594 /* Prevent speculative reads from getting ahead of the status block. */ 5595 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 5596 0, 0, BUS_SPACE_BARRIER_READ); 5597 5598 /* Prevent speculative reads from getting ahead of the doorbell. */ 5599 bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle, 5600 0, 0, BUS_SPACE_BARRIER_READ); 5601 5602 return (0); 5603 } 5604 5605 static void 5606 bxe_tx_start_locked(struct bxe_softc *sc, 5607 if_t ifp, 5608 struct bxe_fastpath *fp) 5609 { 5610 struct mbuf *m = NULL; 5611 int tx_count = 0; 5612 uint16_t tx_bd_avail; 5613 5614 BXE_FP_TX_LOCK_ASSERT(fp); 5615 5616 /* keep adding entries while there are frames to send */ 5617 while (!if_sendq_empty(ifp)) { 5618 5619 /* 5620 * check for any frames to send 5621 * dequeue can still be NULL even if queue is not empty 5622 */ 5623 m = if_dequeue(ifp); 5624 if (__predict_false(m == NULL)) { 5625 break; 5626 } 5627 5628 /* the mbuf now belongs to us */ 5629 fp->eth_q_stats.mbuf_alloc_tx++; 5630 5631 /* 5632 * Put the frame into the transmit ring. If we don't have room, 5633 * place the mbuf back at the head of the TX queue, set the 5634 * OACTIVE flag, and wait for the NIC to drain the chain. 5635 */ 5636 if (__predict_false(bxe_tx_encap(fp, &m))) { 5637 fp->eth_q_stats.tx_encap_failures++; 5638 if (m != NULL) { 5639 /* mark the TX queue as full and return the frame */ 5640 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5641 if_sendq_prepend(ifp, m); 5642 fp->eth_q_stats.mbuf_alloc_tx--; 5643 fp->eth_q_stats.tx_queue_xoff++; 5644 } 5645 5646 /* stop looking for more work */ 5647 break; 5648 } 5649 5650 /* the frame was enqueued successfully */ 5651 tx_count++; 5652 5653 /* send a copy of the frame to any BPF listeners. */ 5654 if_etherbpfmtap(ifp, m); 5655 5656 tx_bd_avail = bxe_tx_avail(sc, fp); 5657 5658 /* handle any completions if we're running low */ 5659 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5660 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5661 bxe_txeof(sc, fp); 5662 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5663 break; 5664 } 5665 } 5666 } 5667 5668 /* all TX packets were dequeued and/or the tx ring is full */ 5669 if (tx_count > 0) { 5670 /* reset the TX watchdog timeout timer */ 5671 fp->watchdog_timer = BXE_TX_TIMEOUT; 5672 } 5673 } 5674 5675 /* Legacy (non-RSS) dispatch routine */ 5676 static void 5677 bxe_tx_start(if_t ifp) 5678 { 5679 struct bxe_softc *sc; 5680 struct bxe_fastpath *fp; 5681 5682 sc = if_getsoftc(ifp); 5683 5684 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 5685 BLOGW(sc, "Interface not running, ignoring transmit request\n"); 5686 return; 5687 } 5688 5689 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5690 BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n"); 5691 return; 5692 } 5693 5694 if (!sc->link_vars.link_up) { 5695 BLOGW(sc, "Interface link is down, ignoring transmit request\n"); 5696 return; 5697 } 5698 5699 fp = &sc->fp[0]; 5700 5701 BXE_FP_TX_LOCK(fp); 5702 bxe_tx_start_locked(sc, ifp, fp); 5703 BXE_FP_TX_UNLOCK(fp); 5704 } 5705 5706 #if __FreeBSD_version >= 800000 5707 5708 static int 5709 bxe_tx_mq_start_locked(struct bxe_softc *sc, 5710 if_t ifp, 5711 struct bxe_fastpath *fp, 5712 struct mbuf *m) 5713 { 5714 struct buf_ring *tx_br = fp->tx_br; 5715 struct mbuf *next; 5716 int depth, rc, tx_count; 5717 uint16_t tx_bd_avail; 5718 5719 rc = tx_count = 0; 5720 5721 BXE_FP_TX_LOCK_ASSERT(fp); 5722 5723 if (!tx_br) { 5724 BLOGE(sc, "Multiqueue TX and no buf_ring!\n"); 5725 return (EINVAL); 5726 } 5727 5728 if (!sc->link_vars.link_up || 5729 (ifp->if_drv_flags & 5730 (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) { 5731 rc = drbr_enqueue_drv(ifp, tx_br, m); 5732 goto bxe_tx_mq_start_locked_exit; 5733 } 5734 5735 /* fetch the depth of the driver queue */ 5736 depth = drbr_inuse_drv(ifp, tx_br); 5737 if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) { 5738 fp->eth_q_stats.tx_max_drbr_queue_depth = depth; 5739 } 5740 5741 if (m == NULL) { 5742 /* no new work, check for pending frames */ 5743 next = drbr_dequeue_drv(ifp, tx_br); 5744 } else if (drbr_needs_enqueue_drv(ifp, tx_br)) { 5745 /* have both new and pending work, maintain packet order */ 5746 rc = drbr_enqueue_drv(ifp, tx_br, m); 5747 if (rc != 0) { 5748 fp->eth_q_stats.tx_soft_errors++; 5749 goto bxe_tx_mq_start_locked_exit; 5750 } 5751 next = drbr_dequeue_drv(ifp, tx_br); 5752 } else { 5753 /* new work only and nothing pending */ 5754 next = m; 5755 } 5756 5757 /* keep adding entries while there are frames to send */ 5758 while (next != NULL) { 5759 5760 /* the mbuf now belongs to us */ 5761 fp->eth_q_stats.mbuf_alloc_tx++; 5762 5763 /* 5764 * Put the frame into the transmit ring. If we don't have room, 5765 * place the mbuf back at the head of the TX queue, set the 5766 * OACTIVE flag, and wait for the NIC to drain the chain. 5767 */ 5768 rc = bxe_tx_encap(fp, &next); 5769 if (__predict_false(rc != 0)) { 5770 fp->eth_q_stats.tx_encap_failures++; 5771 if (next != NULL) { 5772 /* mark the TX queue as full and save the frame */ 5773 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5774 /* XXX this may reorder the frame */ 5775 rc = drbr_enqueue_drv(ifp, tx_br, next); 5776 fp->eth_q_stats.mbuf_alloc_tx--; 5777 fp->eth_q_stats.tx_frames_deferred++; 5778 } 5779 5780 /* stop looking for more work */ 5781 break; 5782 } 5783 5784 /* the transmit frame was enqueued successfully */ 5785 tx_count++; 5786 5787 /* send a copy of the frame to any BPF listeners */ 5788 if_etherbpfmtap(ifp, next); 5789 5790 tx_bd_avail = bxe_tx_avail(sc, fp); 5791 5792 /* handle any completions if we're running low */ 5793 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5794 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5795 bxe_txeof(sc, fp); 5796 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5797 break; 5798 } 5799 } 5800 5801 next = drbr_dequeue_drv(ifp, tx_br); 5802 } 5803 5804 /* all TX packets were dequeued and/or the tx ring is full */ 5805 if (tx_count > 0) { 5806 /* reset the TX watchdog timeout timer */ 5807 fp->watchdog_timer = BXE_TX_TIMEOUT; 5808 } 5809 5810 bxe_tx_mq_start_locked_exit: 5811 5812 return (rc); 5813 } 5814 5815 /* Multiqueue (TSS) dispatch routine. */ 5816 static int 5817 bxe_tx_mq_start(struct ifnet *ifp, 5818 struct mbuf *m) 5819 { 5820 struct bxe_softc *sc = if_getsoftc(ifp); 5821 struct bxe_fastpath *fp; 5822 int fp_index, rc; 5823 5824 fp_index = 0; /* default is the first queue */ 5825 5826 /* check if flowid is set */ 5827 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 5828 fp_index = (m->m_pkthdr.flowid % sc->num_queues); 5829 5830 fp = &sc->fp[fp_index]; 5831 5832 if (BXE_FP_TX_TRYLOCK(fp)) { 5833 rc = bxe_tx_mq_start_locked(sc, ifp, fp, m); 5834 BXE_FP_TX_UNLOCK(fp); 5835 } else 5836 rc = drbr_enqueue_drv(ifp, fp->tx_br, m); 5837 5838 return (rc); 5839 } 5840 5841 static void 5842 bxe_mq_flush(struct ifnet *ifp) 5843 { 5844 struct bxe_softc *sc = if_getsoftc(ifp); 5845 struct bxe_fastpath *fp; 5846 struct mbuf *m; 5847 int i; 5848 5849 for (i = 0; i < sc->num_queues; i++) { 5850 fp = &sc->fp[i]; 5851 5852 if (fp->state != BXE_FP_STATE_OPEN) { 5853 BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n", 5854 fp->index, fp->state); 5855 continue; 5856 } 5857 5858 if (fp->tx_br != NULL) { 5859 BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index); 5860 BXE_FP_TX_LOCK(fp); 5861 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { 5862 m_freem(m); 5863 } 5864 BXE_FP_TX_UNLOCK(fp); 5865 } 5866 } 5867 5868 if_qflush(ifp); 5869 } 5870 5871 #endif /* FreeBSD_version >= 800000 */ 5872 5873 static uint16_t 5874 bxe_cid_ilt_lines(struct bxe_softc *sc) 5875 { 5876 if (IS_SRIOV(sc)) { 5877 return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS); 5878 } 5879 return (L2_ILT_LINES(sc)); 5880 } 5881 5882 static void 5883 bxe_ilt_set_info(struct bxe_softc *sc) 5884 { 5885 struct ilt_client_info *ilt_client; 5886 struct ecore_ilt *ilt = sc->ilt; 5887 uint16_t line = 0; 5888 5889 ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc)); 5890 BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line); 5891 5892 /* CDU */ 5893 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 5894 ilt_client->client_num = ILT_CLIENT_CDU; 5895 ilt_client->page_size = CDU_ILT_PAGE_SZ; 5896 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 5897 ilt_client->start = line; 5898 line += bxe_cid_ilt_lines(sc); 5899 5900 if (CNIC_SUPPORT(sc)) { 5901 line += CNIC_ILT_LINES; 5902 } 5903 5904 ilt_client->end = (line - 1); 5905 5906 BLOGD(sc, DBG_LOAD, 5907 "ilt client[CDU]: start %d, end %d, " 5908 "psz 0x%x, flags 0x%x, hw psz %d\n", 5909 ilt_client->start, ilt_client->end, 5910 ilt_client->page_size, 5911 ilt_client->flags, 5912 ilog2(ilt_client->page_size >> 12)); 5913 5914 /* QM */ 5915 if (QM_INIT(sc->qm_cid_count)) { 5916 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 5917 ilt_client->client_num = ILT_CLIENT_QM; 5918 ilt_client->page_size = QM_ILT_PAGE_SZ; 5919 ilt_client->flags = 0; 5920 ilt_client->start = line; 5921 5922 /* 4 bytes for each cid */ 5923 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 5924 QM_ILT_PAGE_SZ); 5925 5926 ilt_client->end = (line - 1); 5927 5928 BLOGD(sc, DBG_LOAD, 5929 "ilt client[QM]: start %d, end %d, " 5930 "psz 0x%x, flags 0x%x, hw psz %d\n", 5931 ilt_client->start, ilt_client->end, 5932 ilt_client->page_size, ilt_client->flags, 5933 ilog2(ilt_client->page_size >> 12)); 5934 } 5935 5936 if (CNIC_SUPPORT(sc)) { 5937 /* SRC */ 5938 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 5939 ilt_client->client_num = ILT_CLIENT_SRC; 5940 ilt_client->page_size = SRC_ILT_PAGE_SZ; 5941 ilt_client->flags = 0; 5942 ilt_client->start = line; 5943 line += SRC_ILT_LINES; 5944 ilt_client->end = (line - 1); 5945 5946 BLOGD(sc, DBG_LOAD, 5947 "ilt client[SRC]: start %d, end %d, " 5948 "psz 0x%x, flags 0x%x, hw psz %d\n", 5949 ilt_client->start, ilt_client->end, 5950 ilt_client->page_size, ilt_client->flags, 5951 ilog2(ilt_client->page_size >> 12)); 5952 5953 /* TM */ 5954 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 5955 ilt_client->client_num = ILT_CLIENT_TM; 5956 ilt_client->page_size = TM_ILT_PAGE_SZ; 5957 ilt_client->flags = 0; 5958 ilt_client->start = line; 5959 line += TM_ILT_LINES; 5960 ilt_client->end = (line - 1); 5961 5962 BLOGD(sc, DBG_LOAD, 5963 "ilt client[TM]: start %d, end %d, " 5964 "psz 0x%x, flags 0x%x, hw psz %d\n", 5965 ilt_client->start, ilt_client->end, 5966 ilt_client->page_size, ilt_client->flags, 5967 ilog2(ilt_client->page_size >> 12)); 5968 } 5969 5970 KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!")); 5971 } 5972 5973 static void 5974 bxe_set_fp_rx_buf_size(struct bxe_softc *sc) 5975 { 5976 int i; 5977 uint32_t rx_buf_size; 5978 5979 rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu); 5980 5981 for (i = 0; i < sc->num_queues; i++) { 5982 if(rx_buf_size <= MCLBYTES){ 5983 sc->fp[i].rx_buf_size = rx_buf_size; 5984 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5985 }else if (rx_buf_size <= MJUMPAGESIZE){ 5986 sc->fp[i].rx_buf_size = rx_buf_size; 5987 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 5988 }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){ 5989 sc->fp[i].rx_buf_size = MCLBYTES; 5990 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5991 }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){ 5992 sc->fp[i].rx_buf_size = MJUMPAGESIZE; 5993 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 5994 }else { 5995 sc->fp[i].rx_buf_size = MCLBYTES; 5996 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5997 } 5998 } 5999 } 6000 6001 static int 6002 bxe_alloc_ilt_mem(struct bxe_softc *sc) 6003 { 6004 int rc = 0; 6005 6006 if ((sc->ilt = 6007 (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt), 6008 M_BXE_ILT, 6009 (M_NOWAIT | M_ZERO))) == NULL) { 6010 rc = 1; 6011 } 6012 6013 return (rc); 6014 } 6015 6016 static int 6017 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc) 6018 { 6019 int rc = 0; 6020 6021 if ((sc->ilt->lines = 6022 (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES), 6023 M_BXE_ILT, 6024 (M_NOWAIT | M_ZERO))) == NULL) { 6025 rc = 1; 6026 } 6027 6028 return (rc); 6029 } 6030 6031 static void 6032 bxe_free_ilt_mem(struct bxe_softc *sc) 6033 { 6034 if (sc->ilt != NULL) { 6035 free(sc->ilt, M_BXE_ILT); 6036 sc->ilt = NULL; 6037 } 6038 } 6039 6040 static void 6041 bxe_free_ilt_lines_mem(struct bxe_softc *sc) 6042 { 6043 if (sc->ilt->lines != NULL) { 6044 free(sc->ilt->lines, M_BXE_ILT); 6045 sc->ilt->lines = NULL; 6046 } 6047 } 6048 6049 static void 6050 bxe_free_mem(struct bxe_softc *sc) 6051 { 6052 int i; 6053 6054 for (i = 0; i < L2_ILT_LINES(sc); i++) { 6055 bxe_dma_free(sc, &sc->context[i].vcxt_dma); 6056 sc->context[i].vcxt = NULL; 6057 sc->context[i].size = 0; 6058 } 6059 6060 ecore_ilt_mem_op(sc, ILT_MEMOP_FREE); 6061 6062 bxe_free_ilt_lines_mem(sc); 6063 6064 } 6065 6066 static int 6067 bxe_alloc_mem(struct bxe_softc *sc) 6068 { 6069 int context_size; 6070 int allocated; 6071 int i; 6072 6073 /* 6074 * Allocate memory for CDU context: 6075 * This memory is allocated separately and not in the generic ILT 6076 * functions because CDU differs in few aspects: 6077 * 1. There can be multiple entities allocating memory for context - 6078 * regular L2, CNIC, and SRIOV drivers. Each separately controls 6079 * its own ILT lines. 6080 * 2. Since CDU page-size is not a single 4KB page (which is the case 6081 * for the other ILT clients), to be efficient we want to support 6082 * allocation of sub-page-size in the last entry. 6083 * 3. Context pointers are used by the driver to pass to FW / update 6084 * the context (for the other ILT clients the pointers are used just to 6085 * free the memory during unload). 6086 */ 6087 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc)); 6088 for (i = 0, allocated = 0; allocated < context_size; i++) { 6089 sc->context[i].size = min(CDU_ILT_PAGE_SZ, 6090 (context_size - allocated)); 6091 6092 if (bxe_dma_alloc(sc, sc->context[i].size, 6093 &sc->context[i].vcxt_dma, 6094 "cdu context") != 0) { 6095 bxe_free_mem(sc); 6096 return (-1); 6097 } 6098 6099 sc->context[i].vcxt = 6100 (union cdu_context *)sc->context[i].vcxt_dma.vaddr; 6101 6102 allocated += sc->context[i].size; 6103 } 6104 6105 bxe_alloc_ilt_lines_mem(sc); 6106 6107 BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n", 6108 sc->ilt, sc->ilt->start_line, sc->ilt->lines); 6109 { 6110 for (i = 0; i < 4; i++) { 6111 BLOGD(sc, DBG_LOAD, 6112 "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n", 6113 i, 6114 sc->ilt->clients[i].page_size, 6115 sc->ilt->clients[i].start, 6116 sc->ilt->clients[i].end, 6117 sc->ilt->clients[i].client_num, 6118 sc->ilt->clients[i].flags); 6119 } 6120 } 6121 if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) { 6122 BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n"); 6123 bxe_free_mem(sc); 6124 return (-1); 6125 } 6126 6127 return (0); 6128 } 6129 6130 static void 6131 bxe_free_rx_bd_chain(struct bxe_fastpath *fp) 6132 { 6133 struct bxe_softc *sc; 6134 int i; 6135 6136 sc = fp->sc; 6137 6138 if (fp->rx_mbuf_tag == NULL) { 6139 return; 6140 } 6141 6142 /* free all mbufs and unload all maps */ 6143 for (i = 0; i < RX_BD_TOTAL; i++) { 6144 if (fp->rx_mbuf_chain[i].m_map != NULL) { 6145 bus_dmamap_sync(fp->rx_mbuf_tag, 6146 fp->rx_mbuf_chain[i].m_map, 6147 BUS_DMASYNC_POSTREAD); 6148 bus_dmamap_unload(fp->rx_mbuf_tag, 6149 fp->rx_mbuf_chain[i].m_map); 6150 } 6151 6152 if (fp->rx_mbuf_chain[i].m != NULL) { 6153 m_freem(fp->rx_mbuf_chain[i].m); 6154 fp->rx_mbuf_chain[i].m = NULL; 6155 fp->eth_q_stats.mbuf_alloc_rx--; 6156 } 6157 } 6158 } 6159 6160 static void 6161 bxe_free_tpa_pool(struct bxe_fastpath *fp) 6162 { 6163 struct bxe_softc *sc; 6164 int i, max_agg_queues; 6165 6166 sc = fp->sc; 6167 6168 if (fp->rx_mbuf_tag == NULL) { 6169 return; 6170 } 6171 6172 max_agg_queues = MAX_AGG_QS(sc); 6173 6174 /* release all mbufs and unload all DMA maps in the TPA pool */ 6175 for (i = 0; i < max_agg_queues; i++) { 6176 if (fp->rx_tpa_info[i].bd.m_map != NULL) { 6177 bus_dmamap_sync(fp->rx_mbuf_tag, 6178 fp->rx_tpa_info[i].bd.m_map, 6179 BUS_DMASYNC_POSTREAD); 6180 bus_dmamap_unload(fp->rx_mbuf_tag, 6181 fp->rx_tpa_info[i].bd.m_map); 6182 } 6183 6184 if (fp->rx_tpa_info[i].bd.m != NULL) { 6185 m_freem(fp->rx_tpa_info[i].bd.m); 6186 fp->rx_tpa_info[i].bd.m = NULL; 6187 fp->eth_q_stats.mbuf_alloc_tpa--; 6188 } 6189 } 6190 } 6191 6192 static void 6193 bxe_free_sge_chain(struct bxe_fastpath *fp) 6194 { 6195 struct bxe_softc *sc; 6196 int i; 6197 6198 sc = fp->sc; 6199 6200 if (fp->rx_sge_mbuf_tag == NULL) { 6201 return; 6202 } 6203 6204 /* rree all mbufs and unload all maps */ 6205 for (i = 0; i < RX_SGE_TOTAL; i++) { 6206 if (fp->rx_sge_mbuf_chain[i].m_map != NULL) { 6207 bus_dmamap_sync(fp->rx_sge_mbuf_tag, 6208 fp->rx_sge_mbuf_chain[i].m_map, 6209 BUS_DMASYNC_POSTREAD); 6210 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 6211 fp->rx_sge_mbuf_chain[i].m_map); 6212 } 6213 6214 if (fp->rx_sge_mbuf_chain[i].m != NULL) { 6215 m_freem(fp->rx_sge_mbuf_chain[i].m); 6216 fp->rx_sge_mbuf_chain[i].m = NULL; 6217 fp->eth_q_stats.mbuf_alloc_sge--; 6218 } 6219 } 6220 } 6221 6222 static void 6223 bxe_free_fp_buffers(struct bxe_softc *sc) 6224 { 6225 struct bxe_fastpath *fp; 6226 int i; 6227 6228 for (i = 0; i < sc->num_queues; i++) { 6229 fp = &sc->fp[i]; 6230 6231 #if __FreeBSD_version >= 800000 6232 if (fp->tx_br != NULL) { 6233 /* just in case bxe_mq_flush() wasn't called */ 6234 if (mtx_initialized(&fp->tx_mtx)) { 6235 struct mbuf *m; 6236 6237 BXE_FP_TX_LOCK(fp); 6238 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) 6239 m_freem(m); 6240 BXE_FP_TX_UNLOCK(fp); 6241 } 6242 buf_ring_free(fp->tx_br, M_DEVBUF); 6243 fp->tx_br = NULL; 6244 } 6245 #endif 6246 6247 /* free all RX buffers */ 6248 bxe_free_rx_bd_chain(fp); 6249 bxe_free_tpa_pool(fp); 6250 bxe_free_sge_chain(fp); 6251 6252 if (fp->eth_q_stats.mbuf_alloc_rx != 0) { 6253 BLOGE(sc, "failed to claim all rx mbufs (%d left)\n", 6254 fp->eth_q_stats.mbuf_alloc_rx); 6255 } 6256 6257 if (fp->eth_q_stats.mbuf_alloc_sge != 0) { 6258 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6259 fp->eth_q_stats.mbuf_alloc_sge); 6260 } 6261 6262 if (fp->eth_q_stats.mbuf_alloc_tpa != 0) { 6263 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6264 fp->eth_q_stats.mbuf_alloc_tpa); 6265 } 6266 6267 if (fp->eth_q_stats.mbuf_alloc_tx != 0) { 6268 BLOGE(sc, "failed to release tx mbufs (%d left)\n", 6269 fp->eth_q_stats.mbuf_alloc_tx); 6270 } 6271 6272 /* XXX verify all mbufs were reclaimed */ 6273 6274 if (mtx_initialized(&fp->tx_mtx)) { 6275 mtx_destroy(&fp->tx_mtx); 6276 } 6277 6278 if (mtx_initialized(&fp->rx_mtx)) { 6279 mtx_destroy(&fp->rx_mtx); 6280 } 6281 } 6282 } 6283 6284 static int 6285 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 6286 uint16_t prev_index, 6287 uint16_t index) 6288 { 6289 struct bxe_sw_rx_bd *rx_buf; 6290 struct eth_rx_bd *rx_bd; 6291 bus_dma_segment_t segs[1]; 6292 bus_dmamap_t map; 6293 struct mbuf *m; 6294 int nsegs, rc; 6295 6296 rc = 0; 6297 6298 /* allocate the new RX BD mbuf */ 6299 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6300 if (__predict_false(m == NULL)) { 6301 fp->eth_q_stats.mbuf_rx_bd_alloc_failed++; 6302 return (ENOBUFS); 6303 } 6304 6305 fp->eth_q_stats.mbuf_alloc_rx++; 6306 6307 /* initialize the mbuf buffer length */ 6308 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6309 6310 /* map the mbuf into non-paged pool */ 6311 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6312 fp->rx_mbuf_spare_map, 6313 m, segs, &nsegs, BUS_DMA_NOWAIT); 6314 if (__predict_false(rc != 0)) { 6315 fp->eth_q_stats.mbuf_rx_bd_mapping_failed++; 6316 m_freem(m); 6317 fp->eth_q_stats.mbuf_alloc_rx--; 6318 return (rc); 6319 } 6320 6321 /* all mbufs must map to a single segment */ 6322 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6323 6324 /* release any existing RX BD mbuf mappings */ 6325 6326 if (prev_index != index) { 6327 rx_buf = &fp->rx_mbuf_chain[prev_index]; 6328 6329 if (rx_buf->m_map != NULL) { 6330 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6331 BUS_DMASYNC_POSTREAD); 6332 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6333 } 6334 6335 /* 6336 * We only get here from bxe_rxeof() when the maximum number 6337 * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already 6338 * holds the mbuf in the prev_index so it's OK to NULL it out 6339 * here without concern of a memory leak. 6340 */ 6341 fp->rx_mbuf_chain[prev_index].m = NULL; 6342 } 6343 6344 rx_buf = &fp->rx_mbuf_chain[index]; 6345 6346 if (rx_buf->m_map != NULL) { 6347 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6348 BUS_DMASYNC_POSTREAD); 6349 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6350 } 6351 6352 /* save the mbuf and mapping info for a future packet */ 6353 map = (prev_index != index) ? 6354 fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map; 6355 rx_buf->m_map = fp->rx_mbuf_spare_map; 6356 fp->rx_mbuf_spare_map = map; 6357 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6358 BUS_DMASYNC_PREREAD); 6359 rx_buf->m = m; 6360 6361 rx_bd = &fp->rx_chain[index]; 6362 rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6363 rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6364 6365 return (rc); 6366 } 6367 6368 static int 6369 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 6370 int queue) 6371 { 6372 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 6373 bus_dma_segment_t segs[1]; 6374 bus_dmamap_t map; 6375 struct mbuf *m; 6376 int nsegs; 6377 int rc = 0; 6378 6379 /* allocate the new TPA mbuf */ 6380 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6381 if (__predict_false(m == NULL)) { 6382 fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++; 6383 return (ENOBUFS); 6384 } 6385 6386 fp->eth_q_stats.mbuf_alloc_tpa++; 6387 6388 /* initialize the mbuf buffer length */ 6389 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6390 6391 /* map the mbuf into non-paged pool */ 6392 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6393 fp->rx_tpa_info_mbuf_spare_map, 6394 m, segs, &nsegs, BUS_DMA_NOWAIT); 6395 if (__predict_false(rc != 0)) { 6396 fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++; 6397 m_free(m); 6398 fp->eth_q_stats.mbuf_alloc_tpa--; 6399 return (rc); 6400 } 6401 6402 /* all mbufs must map to a single segment */ 6403 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6404 6405 /* release any existing TPA mbuf mapping */ 6406 if (tpa_info->bd.m_map != NULL) { 6407 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6408 BUS_DMASYNC_POSTREAD); 6409 bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map); 6410 } 6411 6412 /* save the mbuf and mapping info for the TPA mbuf */ 6413 map = tpa_info->bd.m_map; 6414 tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map; 6415 fp->rx_tpa_info_mbuf_spare_map = map; 6416 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6417 BUS_DMASYNC_PREREAD); 6418 tpa_info->bd.m = m; 6419 tpa_info->seg = segs[0]; 6420 6421 return (rc); 6422 } 6423 6424 /* 6425 * Allocate an mbuf and assign it to the receive scatter gather chain. The 6426 * caller must take care to save a copy of the existing mbuf in the SG mbuf 6427 * chain. 6428 */ 6429 static int 6430 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 6431 uint16_t index) 6432 { 6433 struct bxe_sw_rx_bd *sge_buf; 6434 struct eth_rx_sge *sge; 6435 bus_dma_segment_t segs[1]; 6436 bus_dmamap_t map; 6437 struct mbuf *m; 6438 int nsegs; 6439 int rc = 0; 6440 6441 /* allocate a new SGE mbuf */ 6442 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE); 6443 if (__predict_false(m == NULL)) { 6444 fp->eth_q_stats.mbuf_rx_sge_alloc_failed++; 6445 return (ENOMEM); 6446 } 6447 6448 fp->eth_q_stats.mbuf_alloc_sge++; 6449 6450 /* initialize the mbuf buffer length */ 6451 m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE; 6452 6453 /* map the SGE mbuf into non-paged pool */ 6454 rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag, 6455 fp->rx_sge_mbuf_spare_map, 6456 m, segs, &nsegs, BUS_DMA_NOWAIT); 6457 if (__predict_false(rc != 0)) { 6458 fp->eth_q_stats.mbuf_rx_sge_mapping_failed++; 6459 m_freem(m); 6460 fp->eth_q_stats.mbuf_alloc_sge--; 6461 return (rc); 6462 } 6463 6464 /* all mbufs must map to a single segment */ 6465 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6466 6467 sge_buf = &fp->rx_sge_mbuf_chain[index]; 6468 6469 /* release any existing SGE mbuf mapping */ 6470 if (sge_buf->m_map != NULL) { 6471 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6472 BUS_DMASYNC_POSTREAD); 6473 bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map); 6474 } 6475 6476 /* save the mbuf and mapping info for a future packet */ 6477 map = sge_buf->m_map; 6478 sge_buf->m_map = fp->rx_sge_mbuf_spare_map; 6479 fp->rx_sge_mbuf_spare_map = map; 6480 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6481 BUS_DMASYNC_PREREAD); 6482 sge_buf->m = m; 6483 6484 sge = &fp->rx_sge_chain[index]; 6485 sge->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6486 sge->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6487 6488 return (rc); 6489 } 6490 6491 static __noinline int 6492 bxe_alloc_fp_buffers(struct bxe_softc *sc) 6493 { 6494 struct bxe_fastpath *fp; 6495 int i, j, rc = 0; 6496 int ring_prod, cqe_ring_prod; 6497 int max_agg_queues; 6498 6499 for (i = 0; i < sc->num_queues; i++) { 6500 fp = &sc->fp[i]; 6501 6502 #if __FreeBSD_version >= 800000 6503 fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF, 6504 M_NOWAIT, &fp->tx_mtx); 6505 if (fp->tx_br == NULL) { 6506 BLOGE(sc, "buf_ring alloc fail for fp[%02d]\n", i); 6507 goto bxe_alloc_fp_buffers_error; 6508 } 6509 #endif 6510 6511 ring_prod = cqe_ring_prod = 0; 6512 fp->rx_bd_cons = 0; 6513 fp->rx_cq_cons = 0; 6514 6515 /* allocate buffers for the RX BDs in RX BD chain */ 6516 for (j = 0; j < sc->max_rx_bufs; j++) { 6517 rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod); 6518 if (rc != 0) { 6519 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 6520 i, rc); 6521 goto bxe_alloc_fp_buffers_error; 6522 } 6523 6524 ring_prod = RX_BD_NEXT(ring_prod); 6525 cqe_ring_prod = RCQ_NEXT(cqe_ring_prod); 6526 } 6527 6528 fp->rx_bd_prod = ring_prod; 6529 fp->rx_cq_prod = cqe_ring_prod; 6530 fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0; 6531 6532 max_agg_queues = MAX_AGG_QS(sc); 6533 6534 fp->tpa_enable = TRUE; 6535 6536 /* fill the TPA pool */ 6537 for (j = 0; j < max_agg_queues; j++) { 6538 rc = bxe_alloc_rx_tpa_mbuf(fp, j); 6539 if (rc != 0) { 6540 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n", 6541 i, j); 6542 fp->tpa_enable = FALSE; 6543 goto bxe_alloc_fp_buffers_error; 6544 } 6545 6546 fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP; 6547 } 6548 6549 if (fp->tpa_enable) { 6550 /* fill the RX SGE chain */ 6551 ring_prod = 0; 6552 for (j = 0; j < RX_SGE_USABLE; j++) { 6553 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod); 6554 if (rc != 0) { 6555 BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n", 6556 i, ring_prod); 6557 fp->tpa_enable = FALSE; 6558 ring_prod = 0; 6559 goto bxe_alloc_fp_buffers_error; 6560 } 6561 6562 ring_prod = RX_SGE_NEXT(ring_prod); 6563 } 6564 6565 fp->rx_sge_prod = ring_prod; 6566 } 6567 } 6568 6569 return (0); 6570 6571 bxe_alloc_fp_buffers_error: 6572 6573 /* unwind what was already allocated */ 6574 bxe_free_rx_bd_chain(fp); 6575 bxe_free_tpa_pool(fp); 6576 bxe_free_sge_chain(fp); 6577 6578 return (ENOBUFS); 6579 } 6580 6581 static void 6582 bxe_free_fw_stats_mem(struct bxe_softc *sc) 6583 { 6584 bxe_dma_free(sc, &sc->fw_stats_dma); 6585 6586 sc->fw_stats_num = 0; 6587 6588 sc->fw_stats_req_size = 0; 6589 sc->fw_stats_req = NULL; 6590 sc->fw_stats_req_mapping = 0; 6591 6592 sc->fw_stats_data_size = 0; 6593 sc->fw_stats_data = NULL; 6594 sc->fw_stats_data_mapping = 0; 6595 } 6596 6597 static int 6598 bxe_alloc_fw_stats_mem(struct bxe_softc *sc) 6599 { 6600 uint8_t num_queue_stats; 6601 int num_groups; 6602 6603 /* number of queues for statistics is number of eth queues */ 6604 num_queue_stats = BXE_NUM_ETH_QUEUES(sc); 6605 6606 /* 6607 * Total number of FW statistics requests = 6608 * 1 for port stats + 1 for PF stats + num of queues 6609 */ 6610 sc->fw_stats_num = (2 + num_queue_stats); 6611 6612 /* 6613 * Request is built from stats_query_header and an array of 6614 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT 6615 * rules. The real number or requests is configured in the 6616 * stats_query_header. 6617 */ 6618 num_groups = 6619 ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) + 6620 ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0)); 6621 6622 BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n", 6623 sc->fw_stats_num, num_groups); 6624 6625 sc->fw_stats_req_size = 6626 (sizeof(struct stats_query_header) + 6627 (num_groups * sizeof(struct stats_query_cmd_group))); 6628 6629 /* 6630 * Data for statistics requests + stats_counter. 6631 * stats_counter holds per-STORM counters that are incremented when 6632 * STORM has finished with the current request. Memory for FCoE 6633 * offloaded statistics are counted anyway, even if they will not be sent. 6634 * VF stats are not accounted for here as the data of VF stats is stored 6635 * in memory allocated by the VF, not here. 6636 */ 6637 sc->fw_stats_data_size = 6638 (sizeof(struct stats_counter) + 6639 sizeof(struct per_port_stats) + 6640 sizeof(struct per_pf_stats) + 6641 /* sizeof(struct fcoe_statistics_params) + */ 6642 (sizeof(struct per_queue_stats) * num_queue_stats)); 6643 6644 if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size), 6645 &sc->fw_stats_dma, "fw stats") != 0) { 6646 bxe_free_fw_stats_mem(sc); 6647 return (-1); 6648 } 6649 6650 /* set up the shortcuts */ 6651 6652 sc->fw_stats_req = 6653 (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr; 6654 sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr; 6655 6656 sc->fw_stats_data = 6657 (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr + 6658 sc->fw_stats_req_size); 6659 sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr + 6660 sc->fw_stats_req_size); 6661 6662 BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n", 6663 (uintmax_t)sc->fw_stats_req_mapping); 6664 6665 BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n", 6666 (uintmax_t)sc->fw_stats_data_mapping); 6667 6668 return (0); 6669 } 6670 6671 /* 6672 * Bits map: 6673 * 0-7 - Engine0 load counter. 6674 * 8-15 - Engine1 load counter. 6675 * 16 - Engine0 RESET_IN_PROGRESS bit. 6676 * 17 - Engine1 RESET_IN_PROGRESS bit. 6677 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active 6678 * function on the engine 6679 * 19 - Engine1 ONE_IS_LOADED. 6680 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 6681 * leader to complete (check for both RESET_IN_PROGRESS bits and not 6682 * for just the one belonging to its engine). 6683 */ 6684 #define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 6685 #define BXE_PATH0_LOAD_CNT_MASK 0x000000ff 6686 #define BXE_PATH0_LOAD_CNT_SHIFT 0 6687 #define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00 6688 #define BXE_PATH1_LOAD_CNT_SHIFT 8 6689 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000 6690 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000 6691 #define BXE_GLOBAL_RESET_BIT 0x00040000 6692 6693 /* set the GLOBAL_RESET bit, should be run under rtnl lock */ 6694 static void 6695 bxe_set_reset_global(struct bxe_softc *sc) 6696 { 6697 uint32_t val; 6698 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6699 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6700 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT); 6701 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6702 } 6703 6704 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */ 6705 static void 6706 bxe_clear_reset_global(struct bxe_softc *sc) 6707 { 6708 uint32_t val; 6709 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6710 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6711 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT)); 6712 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6713 } 6714 6715 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */ 6716 static uint8_t 6717 bxe_reset_is_global(struct bxe_softc *sc) 6718 { 6719 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6720 BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val); 6721 return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE; 6722 } 6723 6724 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */ 6725 static void 6726 bxe_set_reset_done(struct bxe_softc *sc) 6727 { 6728 uint32_t val; 6729 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6730 BXE_PATH0_RST_IN_PROG_BIT; 6731 6732 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6733 6734 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6735 /* Clear the bit */ 6736 val &= ~bit; 6737 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6738 6739 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6740 } 6741 6742 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */ 6743 static void 6744 bxe_set_reset_in_progress(struct bxe_softc *sc) 6745 { 6746 uint32_t val; 6747 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6748 BXE_PATH0_RST_IN_PROG_BIT; 6749 6750 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6751 6752 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6753 /* Set the bit */ 6754 val |= bit; 6755 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6756 6757 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6758 } 6759 6760 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */ 6761 static uint8_t 6762 bxe_reset_is_done(struct bxe_softc *sc, 6763 int engine) 6764 { 6765 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6766 uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT : 6767 BXE_PATH0_RST_IN_PROG_BIT; 6768 6769 /* return false if bit is set */ 6770 return (val & bit) ? FALSE : TRUE; 6771 } 6772 6773 /* get the load status for an engine, should be run under rtnl lock */ 6774 static uint8_t 6775 bxe_get_load_status(struct bxe_softc *sc, 6776 int engine) 6777 { 6778 uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK : 6779 BXE_PATH0_LOAD_CNT_MASK; 6780 uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT : 6781 BXE_PATH0_LOAD_CNT_SHIFT; 6782 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6783 6784 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 6785 6786 val = ((val & mask) >> shift); 6787 6788 BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val); 6789 6790 return (val != 0); 6791 } 6792 6793 /* set pf load mark */ 6794 /* XXX needs to be under rtnl lock */ 6795 static void 6796 bxe_set_pf_load(struct bxe_softc *sc) 6797 { 6798 uint32_t val; 6799 uint32_t val1; 6800 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 6801 BXE_PATH0_LOAD_CNT_MASK; 6802 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 6803 BXE_PATH0_LOAD_CNT_SHIFT; 6804 6805 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6806 6807 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6808 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 6809 6810 /* get the current counter value */ 6811 val1 = ((val & mask) >> shift); 6812 6813 /* set bit of this PF */ 6814 val1 |= (1 << SC_ABS_FUNC(sc)); 6815 6816 /* clear the old value */ 6817 val &= ~mask; 6818 6819 /* set the new one */ 6820 val |= ((val1 << shift) & mask); 6821 6822 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6823 6824 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6825 } 6826 6827 /* clear pf load mark */ 6828 /* XXX needs to be under rtnl lock */ 6829 static uint8_t 6830 bxe_clear_pf_load(struct bxe_softc *sc) 6831 { 6832 uint32_t val1, val; 6833 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 6834 BXE_PATH0_LOAD_CNT_MASK; 6835 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 6836 BXE_PATH0_LOAD_CNT_SHIFT; 6837 6838 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6839 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6840 BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val); 6841 6842 /* get the current counter value */ 6843 val1 = (val & mask) >> shift; 6844 6845 /* clear bit of that PF */ 6846 val1 &= ~(1 << SC_ABS_FUNC(sc)); 6847 6848 /* clear the old value */ 6849 val &= ~mask; 6850 6851 /* set the new one */ 6852 val |= ((val1 << shift) & mask); 6853 6854 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6855 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6856 return (val1 != 0); 6857 } 6858 6859 /* send load requrest to mcp and analyze response */ 6860 static int 6861 bxe_nic_load_request(struct bxe_softc *sc, 6862 uint32_t *load_code) 6863 { 6864 /* init fw_seq */ 6865 sc->fw_seq = 6866 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 6867 DRV_MSG_SEQ_NUMBER_MASK); 6868 6869 BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq); 6870 6871 /* get the current FW pulse sequence */ 6872 sc->fw_drv_pulse_wr_seq = 6873 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) & 6874 DRV_PULSE_SEQ_MASK); 6875 6876 BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n", 6877 sc->fw_drv_pulse_wr_seq); 6878 6879 /* load request */ 6880 (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 6881 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 6882 6883 /* if the MCP fails to respond we must abort */ 6884 if (!(*load_code)) { 6885 BLOGE(sc, "MCP response failure!\n"); 6886 return (-1); 6887 } 6888 6889 /* if MCP refused then must abort */ 6890 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 6891 BLOGE(sc, "MCP refused load request\n"); 6892 return (-1); 6893 } 6894 6895 return (0); 6896 } 6897 6898 /* 6899 * Check whether another PF has already loaded FW to chip. In virtualized 6900 * environments a pf from anoth VM may have already initialized the device 6901 * including loading FW. 6902 */ 6903 static int 6904 bxe_nic_load_analyze_req(struct bxe_softc *sc, 6905 uint32_t load_code) 6906 { 6907 uint32_t my_fw, loaded_fw; 6908 6909 /* is another pf loaded on this engine? */ 6910 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 6911 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 6912 /* build my FW version dword */ 6913 my_fw = (BCM_5710_FW_MAJOR_VERSION + 6914 (BCM_5710_FW_MINOR_VERSION << 8 ) + 6915 (BCM_5710_FW_REVISION_VERSION << 16) + 6916 (BCM_5710_FW_ENGINEERING_VERSION << 24)); 6917 6918 /* read loaded FW from chip */ 6919 loaded_fw = REG_RD(sc, XSEM_REG_PRAM); 6920 BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n", 6921 loaded_fw, my_fw); 6922 6923 /* abort nic load if version mismatch */ 6924 if (my_fw != loaded_fw) { 6925 BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)", 6926 loaded_fw, my_fw); 6927 return (-1); 6928 } 6929 } 6930 6931 return (0); 6932 } 6933 6934 /* mark PMF if applicable */ 6935 static void 6936 bxe_nic_load_pmf(struct bxe_softc *sc, 6937 uint32_t load_code) 6938 { 6939 uint32_t ncsi_oem_data_addr; 6940 6941 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 6942 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 6943 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 6944 /* 6945 * Barrier here for ordering between the writing to sc->port.pmf here 6946 * and reading it from the periodic task. 6947 */ 6948 sc->port.pmf = 1; 6949 mb(); 6950 } else { 6951 sc->port.pmf = 0; 6952 } 6953 6954 BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf); 6955 6956 /* XXX needed? */ 6957 if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) { 6958 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) { 6959 ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr); 6960 if (ncsi_oem_data_addr) { 6961 REG_WR(sc, 6962 (ncsi_oem_data_addr + 6963 offsetof(struct glob_ncsi_oem_data, driver_version)), 6964 0); 6965 } 6966 } 6967 } 6968 } 6969 6970 static void 6971 bxe_read_mf_cfg(struct bxe_softc *sc) 6972 { 6973 int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1); 6974 int abs_func; 6975 int vn; 6976 6977 if (BXE_NOMCP(sc)) { 6978 return; /* what should be the default bvalue in this case */ 6979 } 6980 6981 /* 6982 * The formula for computing the absolute function number is... 6983 * For 2 port configuration (4 functions per port): 6984 * abs_func = 2 * vn + SC_PORT + SC_PATH 6985 * For 4 port configuration (2 functions per port): 6986 * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH 6987 */ 6988 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 6989 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc)); 6990 if (abs_func >= E1H_FUNC_MAX) { 6991 break; 6992 } 6993 sc->devinfo.mf_info.mf_config[vn] = 6994 MFCFG_RD(sc, func_mf_config[abs_func].config); 6995 } 6996 6997 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & 6998 FUNC_MF_CFG_FUNC_DISABLED) { 6999 BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n"); 7000 sc->flags |= BXE_MF_FUNC_DIS; 7001 } else { 7002 BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n"); 7003 sc->flags &= ~BXE_MF_FUNC_DIS; 7004 } 7005 } 7006 7007 /* acquire split MCP access lock register */ 7008 static int bxe_acquire_alr(struct bxe_softc *sc) 7009 { 7010 uint32_t j, val; 7011 7012 for (j = 0; j < 1000; j++) { 7013 val = (1UL << 31); 7014 REG_WR(sc, GRCBASE_MCP + 0x9c, val); 7015 val = REG_RD(sc, GRCBASE_MCP + 0x9c); 7016 if (val & (1L << 31)) 7017 break; 7018 7019 DELAY(5000); 7020 } 7021 7022 if (!(val & (1L << 31))) { 7023 BLOGE(sc, "Cannot acquire MCP access lock register\n"); 7024 return (-1); 7025 } 7026 7027 return (0); 7028 } 7029 7030 /* release split MCP access lock register */ 7031 static void bxe_release_alr(struct bxe_softc *sc) 7032 { 7033 REG_WR(sc, GRCBASE_MCP + 0x9c, 0); 7034 } 7035 7036 static void 7037 bxe_fan_failure(struct bxe_softc *sc) 7038 { 7039 int port = SC_PORT(sc); 7040 uint32_t ext_phy_config; 7041 7042 /* mark the failure */ 7043 ext_phy_config = 7044 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 7045 7046 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 7047 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 7048 SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config, 7049 ext_phy_config); 7050 7051 /* log the failure */ 7052 BLOGW(sc, "Fan Failure has caused the driver to shutdown " 7053 "the card to prevent permanent damage. " 7054 "Please contact OEM Support for assistance\n"); 7055 7056 /* XXX */ 7057 #if 1 7058 bxe_panic(sc, ("Schedule task to handle fan failure\n")); 7059 #else 7060 /* 7061 * Schedule device reset (unload) 7062 * This is due to some boards consuming sufficient power when driver is 7063 * up to overheat if fan fails. 7064 */ 7065 bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state); 7066 schedule_delayed_work(&sc->sp_rtnl_task, 0); 7067 #endif 7068 } 7069 7070 /* this function is called upon a link interrupt */ 7071 static void 7072 bxe_link_attn(struct bxe_softc *sc) 7073 { 7074 uint32_t pause_enabled = 0; 7075 struct host_port_stats *pstats; 7076 int cmng_fns; 7077 7078 /* Make sure that we are synced with the current statistics */ 7079 bxe_stats_handle(sc, STATS_EVENT_STOP); 7080 7081 elink_link_update(&sc->link_params, &sc->link_vars); 7082 7083 if (sc->link_vars.link_up) { 7084 7085 /* dropless flow control */ 7086 if (!CHIP_IS_E1(sc) && sc->dropless_fc) { 7087 pause_enabled = 0; 7088 7089 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 7090 pause_enabled = 1; 7091 } 7092 7093 REG_WR(sc, 7094 (BAR_USTRORM_INTMEM + 7095 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))), 7096 pause_enabled); 7097 } 7098 7099 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) { 7100 pstats = BXE_SP(sc, port_stats); 7101 /* reset old mac stats */ 7102 memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx)); 7103 } 7104 7105 if (sc->state == BXE_STATE_OPEN) { 7106 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 7107 } 7108 } 7109 7110 if (sc->link_vars.link_up && sc->link_vars.line_speed) { 7111 cmng_fns = bxe_get_cmng_fns_mode(sc); 7112 7113 if (cmng_fns != CMNG_FNS_NONE) { 7114 bxe_cmng_fns_init(sc, FALSE, cmng_fns); 7115 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7116 } else { 7117 /* rate shaping and fairness are disabled */ 7118 BLOGD(sc, DBG_LOAD, "single function mode without fairness\n"); 7119 } 7120 } 7121 7122 bxe_link_report_locked(sc); 7123 7124 if (IS_MF(sc)) { 7125 ; // XXX bxe_link_sync_notify(sc); 7126 } 7127 } 7128 7129 static void 7130 bxe_attn_int_asserted(struct bxe_softc *sc, 7131 uint32_t asserted) 7132 { 7133 int port = SC_PORT(sc); 7134 uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 7135 MISC_REG_AEU_MASK_ATTN_FUNC_0; 7136 uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 7137 NIG_REG_MASK_INTERRUPT_PORT0; 7138 uint32_t aeu_mask; 7139 uint32_t nig_mask = 0; 7140 uint32_t reg_addr; 7141 uint32_t igu_acked; 7142 uint32_t cnt; 7143 7144 if (sc->attn_state & asserted) { 7145 BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted); 7146 } 7147 7148 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7149 7150 aeu_mask = REG_RD(sc, aeu_addr); 7151 7152 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n", 7153 aeu_mask, asserted); 7154 7155 aeu_mask &= ~(asserted & 0x3ff); 7156 7157 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 7158 7159 REG_WR(sc, aeu_addr, aeu_mask); 7160 7161 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7162 7163 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 7164 sc->attn_state |= asserted; 7165 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 7166 7167 if (asserted & ATTN_HARD_WIRED_MASK) { 7168 if (asserted & ATTN_NIG_FOR_FUNC) { 7169 7170 bxe_acquire_phy_lock(sc); 7171 /* save nig interrupt mask */ 7172 nig_mask = REG_RD(sc, nig_int_mask_addr); 7173 7174 /* If nig_mask is not set, no need to call the update function */ 7175 if (nig_mask) { 7176 REG_WR(sc, nig_int_mask_addr, 0); 7177 7178 bxe_link_attn(sc); 7179 } 7180 7181 /* handle unicore attn? */ 7182 } 7183 7184 if (asserted & ATTN_SW_TIMER_4_FUNC) { 7185 BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n"); 7186 } 7187 7188 if (asserted & GPIO_2_FUNC) { 7189 BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n"); 7190 } 7191 7192 if (asserted & GPIO_3_FUNC) { 7193 BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n"); 7194 } 7195 7196 if (asserted & GPIO_4_FUNC) { 7197 BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n"); 7198 } 7199 7200 if (port == 0) { 7201 if (asserted & ATTN_GENERAL_ATTN_1) { 7202 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n"); 7203 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 7204 } 7205 if (asserted & ATTN_GENERAL_ATTN_2) { 7206 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n"); 7207 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 7208 } 7209 if (asserted & ATTN_GENERAL_ATTN_3) { 7210 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n"); 7211 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 7212 } 7213 } else { 7214 if (asserted & ATTN_GENERAL_ATTN_4) { 7215 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n"); 7216 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 7217 } 7218 if (asserted & ATTN_GENERAL_ATTN_5) { 7219 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n"); 7220 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 7221 } 7222 if (asserted & ATTN_GENERAL_ATTN_6) { 7223 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n"); 7224 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 7225 } 7226 } 7227 } /* hardwired */ 7228 7229 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7230 reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET); 7231 } else { 7232 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 7233 } 7234 7235 BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n", 7236 asserted, 7237 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 7238 REG_WR(sc, reg_addr, asserted); 7239 7240 /* now set back the mask */ 7241 if (asserted & ATTN_NIG_FOR_FUNC) { 7242 /* 7243 * Verify that IGU ack through BAR was written before restoring 7244 * NIG mask. This loop should exit after 2-3 iterations max. 7245 */ 7246 if (sc->devinfo.int_block != INT_BLOCK_HC) { 7247 cnt = 0; 7248 7249 do { 7250 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS); 7251 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 7252 (++cnt < MAX_IGU_ATTN_ACK_TO)); 7253 7254 if (!igu_acked) { 7255 BLOGE(sc, "Failed to verify IGU ack on time\n"); 7256 } 7257 7258 mb(); 7259 } 7260 7261 REG_WR(sc, nig_int_mask_addr, nig_mask); 7262 7263 bxe_release_phy_lock(sc); 7264 } 7265 } 7266 7267 static void 7268 bxe_print_next_block(struct bxe_softc *sc, 7269 int idx, 7270 const char *blk) 7271 { 7272 BLOGI(sc, "%s%s", idx ? ", " : "", blk); 7273 } 7274 7275 static int 7276 bxe_check_blocks_with_parity0(struct bxe_softc *sc, 7277 uint32_t sig, 7278 int par_num, 7279 uint8_t print) 7280 { 7281 uint32_t cur_bit = 0; 7282 int i = 0; 7283 7284 for (i = 0; sig; i++) { 7285 cur_bit = ((uint32_t)0x1 << i); 7286 if (sig & cur_bit) { 7287 switch (cur_bit) { 7288 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 7289 if (print) 7290 bxe_print_next_block(sc, par_num++, "BRB"); 7291 break; 7292 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 7293 if (print) 7294 bxe_print_next_block(sc, par_num++, "PARSER"); 7295 break; 7296 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 7297 if (print) 7298 bxe_print_next_block(sc, par_num++, "TSDM"); 7299 break; 7300 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 7301 if (print) 7302 bxe_print_next_block(sc, par_num++, "SEARCHER"); 7303 break; 7304 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 7305 if (print) 7306 bxe_print_next_block(sc, par_num++, "TCM"); 7307 break; 7308 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 7309 if (print) 7310 bxe_print_next_block(sc, par_num++, "TSEMI"); 7311 break; 7312 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 7313 if (print) 7314 bxe_print_next_block(sc, par_num++, "XPB"); 7315 break; 7316 } 7317 7318 /* Clear the bit */ 7319 sig &= ~cur_bit; 7320 } 7321 } 7322 7323 return (par_num); 7324 } 7325 7326 static int 7327 bxe_check_blocks_with_parity1(struct bxe_softc *sc, 7328 uint32_t sig, 7329 int par_num, 7330 uint8_t *global, 7331 uint8_t print) 7332 { 7333 int i = 0; 7334 uint32_t cur_bit = 0; 7335 for (i = 0; sig; i++) { 7336 cur_bit = ((uint32_t)0x1 << i); 7337 if (sig & cur_bit) { 7338 switch (cur_bit) { 7339 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 7340 if (print) 7341 bxe_print_next_block(sc, par_num++, "PBF"); 7342 break; 7343 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 7344 if (print) 7345 bxe_print_next_block(sc, par_num++, "QM"); 7346 break; 7347 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 7348 if (print) 7349 bxe_print_next_block(sc, par_num++, "TM"); 7350 break; 7351 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 7352 if (print) 7353 bxe_print_next_block(sc, par_num++, "XSDM"); 7354 break; 7355 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 7356 if (print) 7357 bxe_print_next_block(sc, par_num++, "XCM"); 7358 break; 7359 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 7360 if (print) 7361 bxe_print_next_block(sc, par_num++, "XSEMI"); 7362 break; 7363 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 7364 if (print) 7365 bxe_print_next_block(sc, par_num++, "DOORBELLQ"); 7366 break; 7367 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 7368 if (print) 7369 bxe_print_next_block(sc, par_num++, "NIG"); 7370 break; 7371 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 7372 if (print) 7373 bxe_print_next_block(sc, par_num++, "VAUX PCI CORE"); 7374 *global = TRUE; 7375 break; 7376 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 7377 if (print) 7378 bxe_print_next_block(sc, par_num++, "DEBUG"); 7379 break; 7380 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 7381 if (print) 7382 bxe_print_next_block(sc, par_num++, "USDM"); 7383 break; 7384 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 7385 if (print) 7386 bxe_print_next_block(sc, par_num++, "UCM"); 7387 break; 7388 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 7389 if (print) 7390 bxe_print_next_block(sc, par_num++, "USEMI"); 7391 break; 7392 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 7393 if (print) 7394 bxe_print_next_block(sc, par_num++, "UPB"); 7395 break; 7396 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 7397 if (print) 7398 bxe_print_next_block(sc, par_num++, "CSDM"); 7399 break; 7400 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 7401 if (print) 7402 bxe_print_next_block(sc, par_num++, "CCM"); 7403 break; 7404 } 7405 7406 /* Clear the bit */ 7407 sig &= ~cur_bit; 7408 } 7409 } 7410 7411 return (par_num); 7412 } 7413 7414 static int 7415 bxe_check_blocks_with_parity2(struct bxe_softc *sc, 7416 uint32_t sig, 7417 int par_num, 7418 uint8_t print) 7419 { 7420 uint32_t cur_bit = 0; 7421 int i = 0; 7422 7423 for (i = 0; sig; i++) { 7424 cur_bit = ((uint32_t)0x1 << i); 7425 if (sig & cur_bit) { 7426 switch (cur_bit) { 7427 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 7428 if (print) 7429 bxe_print_next_block(sc, par_num++, "CSEMI"); 7430 break; 7431 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 7432 if (print) 7433 bxe_print_next_block(sc, par_num++, "PXP"); 7434 break; 7435 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 7436 if (print) 7437 bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT"); 7438 break; 7439 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 7440 if (print) 7441 bxe_print_next_block(sc, par_num++, "CFC"); 7442 break; 7443 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 7444 if (print) 7445 bxe_print_next_block(sc, par_num++, "CDU"); 7446 break; 7447 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 7448 if (print) 7449 bxe_print_next_block(sc, par_num++, "DMAE"); 7450 break; 7451 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 7452 if (print) 7453 bxe_print_next_block(sc, par_num++, "IGU"); 7454 break; 7455 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 7456 if (print) 7457 bxe_print_next_block(sc, par_num++, "MISC"); 7458 break; 7459 } 7460 7461 /* Clear the bit */ 7462 sig &= ~cur_bit; 7463 } 7464 } 7465 7466 return (par_num); 7467 } 7468 7469 static int 7470 bxe_check_blocks_with_parity3(struct bxe_softc *sc, 7471 uint32_t sig, 7472 int par_num, 7473 uint8_t *global, 7474 uint8_t print) 7475 { 7476 uint32_t cur_bit = 0; 7477 int i = 0; 7478 7479 for (i = 0; sig; i++) { 7480 cur_bit = ((uint32_t)0x1 << i); 7481 if (sig & cur_bit) { 7482 switch (cur_bit) { 7483 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 7484 if (print) 7485 bxe_print_next_block(sc, par_num++, "MCP ROM"); 7486 *global = TRUE; 7487 break; 7488 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 7489 if (print) 7490 bxe_print_next_block(sc, par_num++, 7491 "MCP UMP RX"); 7492 *global = TRUE; 7493 break; 7494 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 7495 if (print) 7496 bxe_print_next_block(sc, par_num++, 7497 "MCP UMP TX"); 7498 *global = TRUE; 7499 break; 7500 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 7501 if (print) 7502 bxe_print_next_block(sc, par_num++, 7503 "MCP SCPAD"); 7504 *global = TRUE; 7505 break; 7506 } 7507 7508 /* Clear the bit */ 7509 sig &= ~cur_bit; 7510 } 7511 } 7512 7513 return (par_num); 7514 } 7515 7516 static int 7517 bxe_check_blocks_with_parity4(struct bxe_softc *sc, 7518 uint32_t sig, 7519 int par_num, 7520 uint8_t print) 7521 { 7522 uint32_t cur_bit = 0; 7523 int i = 0; 7524 7525 for (i = 0; sig; i++) { 7526 cur_bit = ((uint32_t)0x1 << i); 7527 if (sig & cur_bit) { 7528 switch (cur_bit) { 7529 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 7530 if (print) 7531 bxe_print_next_block(sc, par_num++, "PGLUE_B"); 7532 break; 7533 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 7534 if (print) 7535 bxe_print_next_block(sc, par_num++, "ATC"); 7536 break; 7537 } 7538 7539 /* Clear the bit */ 7540 sig &= ~cur_bit; 7541 } 7542 } 7543 7544 return (par_num); 7545 } 7546 7547 static uint8_t 7548 bxe_parity_attn(struct bxe_softc *sc, 7549 uint8_t *global, 7550 uint8_t print, 7551 uint32_t *sig) 7552 { 7553 int par_num = 0; 7554 7555 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 7556 (sig[1] & HW_PRTY_ASSERT_SET_1) || 7557 (sig[2] & HW_PRTY_ASSERT_SET_2) || 7558 (sig[3] & HW_PRTY_ASSERT_SET_3) || 7559 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 7560 BLOGE(sc, "Parity error: HW block parity attention:\n" 7561 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 7562 (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0), 7563 (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1), 7564 (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2), 7565 (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3), 7566 (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4)); 7567 7568 if (print) 7569 BLOGI(sc, "Parity errors detected in blocks: "); 7570 7571 par_num = 7572 bxe_check_blocks_with_parity0(sc, sig[0] & 7573 HW_PRTY_ASSERT_SET_0, 7574 par_num, print); 7575 par_num = 7576 bxe_check_blocks_with_parity1(sc, sig[1] & 7577 HW_PRTY_ASSERT_SET_1, 7578 par_num, global, print); 7579 par_num = 7580 bxe_check_blocks_with_parity2(sc, sig[2] & 7581 HW_PRTY_ASSERT_SET_2, 7582 par_num, print); 7583 par_num = 7584 bxe_check_blocks_with_parity3(sc, sig[3] & 7585 HW_PRTY_ASSERT_SET_3, 7586 par_num, global, print); 7587 par_num = 7588 bxe_check_blocks_with_parity4(sc, sig[4] & 7589 HW_PRTY_ASSERT_SET_4, 7590 par_num, print); 7591 7592 if (print) 7593 BLOGI(sc, "\n"); 7594 7595 return (TRUE); 7596 } 7597 7598 return (FALSE); 7599 } 7600 7601 static uint8_t 7602 bxe_chk_parity_attn(struct bxe_softc *sc, 7603 uint8_t *global, 7604 uint8_t print) 7605 { 7606 struct attn_route attn = { {0} }; 7607 int port = SC_PORT(sc); 7608 7609 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 7610 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 7611 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 7612 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 7613 7614 /* 7615 * Since MCP attentions can't be disabled inside the block, we need to 7616 * read AEU registers to see whether they're currently disabled 7617 */ 7618 attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0 7619 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) & 7620 MISC_AEU_ENABLE_MCP_PRTY_BITS) | 7621 ~MISC_AEU_ENABLE_MCP_PRTY_BITS); 7622 7623 7624 if (!CHIP_IS_E1x(sc)) 7625 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 7626 7627 return (bxe_parity_attn(sc, global, print, attn.sig)); 7628 } 7629 7630 static void 7631 bxe_attn_int_deasserted4(struct bxe_softc *sc, 7632 uint32_t attn) 7633 { 7634 uint32_t val; 7635 7636 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 7637 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 7638 BLOGE(sc, "PGLUE hw attention 0x%08x\n", val); 7639 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 7640 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 7641 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 7642 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 7643 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 7644 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 7645 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 7646 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 7647 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 7648 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 7649 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 7650 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 7651 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 7652 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 7653 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 7654 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 7655 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 7656 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 7657 } 7658 7659 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 7660 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR); 7661 BLOGE(sc, "ATC hw attention 0x%08x\n", val); 7662 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 7663 BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 7664 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 7665 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 7666 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 7667 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 7668 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 7669 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 7670 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 7671 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 7672 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 7673 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 7674 } 7675 7676 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7677 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 7678 BLOGE(sc, "FATAL parity attention set4 0x%08x\n", 7679 (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7680 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 7681 } 7682 } 7683 7684 static void 7685 bxe_e1h_disable(struct bxe_softc *sc) 7686 { 7687 int port = SC_PORT(sc); 7688 7689 bxe_tx_disable(sc); 7690 7691 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 7692 } 7693 7694 static void 7695 bxe_e1h_enable(struct bxe_softc *sc) 7696 { 7697 int port = SC_PORT(sc); 7698 7699 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 7700 7701 // XXX bxe_tx_enable(sc); 7702 } 7703 7704 /* 7705 * called due to MCP event (on pmf): 7706 * reread new bandwidth configuration 7707 * configure FW 7708 * notify others function about the change 7709 */ 7710 static void 7711 bxe_config_mf_bw(struct bxe_softc *sc) 7712 { 7713 if (sc->link_vars.link_up) { 7714 bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX); 7715 // XXX bxe_link_sync_notify(sc); 7716 } 7717 7718 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7719 } 7720 7721 static void 7722 bxe_set_mf_bw(struct bxe_softc *sc) 7723 { 7724 bxe_config_mf_bw(sc); 7725 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 7726 } 7727 7728 static void 7729 bxe_handle_eee_event(struct bxe_softc *sc) 7730 { 7731 BLOGD(sc, DBG_INTR, "EEE - LLDP event\n"); 7732 bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 7733 } 7734 7735 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 7736 7737 static void 7738 bxe_drv_info_ether_stat(struct bxe_softc *sc) 7739 { 7740 struct eth_stats_info *ether_stat = 7741 &sc->sp->drv_info_to_mcp.ether_stat; 7742 7743 strlcpy(ether_stat->version, BXE_DRIVER_VERSION, 7744 ETH_STAT_INFO_VERSION_LEN); 7745 7746 /* XXX (+ MAC_PAD) taken from other driver... verify this is right */ 7747 sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj, 7748 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 7749 ether_stat->mac_local + MAC_PAD, 7750 MAC_PAD, ETH_ALEN); 7751 7752 ether_stat->mtu_size = sc->mtu; 7753 7754 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 7755 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 7756 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 7757 } 7758 7759 // XXX ether_stat->feature_flags |= ???; 7760 7761 ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0; 7762 7763 ether_stat->txq_size = sc->tx_ring_size; 7764 ether_stat->rxq_size = sc->rx_ring_size; 7765 } 7766 7767 static void 7768 bxe_handle_drv_info_req(struct bxe_softc *sc) 7769 { 7770 enum drv_info_opcode op_code; 7771 uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control); 7772 7773 /* if drv_info version supported by MFW doesn't match - send NACK */ 7774 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 7775 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 7776 return; 7777 } 7778 7779 op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 7780 DRV_INFO_CONTROL_OP_CODE_SHIFT); 7781 7782 memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp)); 7783 7784 switch (op_code) { 7785 case ETH_STATS_OPCODE: 7786 bxe_drv_info_ether_stat(sc); 7787 break; 7788 case FCOE_STATS_OPCODE: 7789 case ISCSI_STATS_OPCODE: 7790 default: 7791 /* if op code isn't supported - send NACK */ 7792 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 7793 return; 7794 } 7795 7796 /* 7797 * If we got drv_info attn from MFW then these fields are defined in 7798 * shmem2 for sure 7799 */ 7800 SHMEM2_WR(sc, drv_info_host_addr_lo, 7801 U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 7802 SHMEM2_WR(sc, drv_info_host_addr_hi, 7803 U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 7804 7805 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0); 7806 } 7807 7808 static void 7809 bxe_dcc_event(struct bxe_softc *sc, 7810 uint32_t dcc_event) 7811 { 7812 BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event); 7813 7814 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { 7815 /* 7816 * This is the only place besides the function initialization 7817 * where the sc->flags can change so it is done without any 7818 * locks 7819 */ 7820 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) { 7821 BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n"); 7822 sc->flags |= BXE_MF_FUNC_DIS; 7823 bxe_e1h_disable(sc); 7824 } else { 7825 BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n"); 7826 sc->flags &= ~BXE_MF_FUNC_DIS; 7827 bxe_e1h_enable(sc); 7828 } 7829 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; 7830 } 7831 7832 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { 7833 bxe_config_mf_bw(sc); 7834 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; 7835 } 7836 7837 /* Report results to MCP */ 7838 if (dcc_event) 7839 bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0); 7840 else 7841 bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0); 7842 } 7843 7844 static void 7845 bxe_pmf_update(struct bxe_softc *sc) 7846 { 7847 int port = SC_PORT(sc); 7848 uint32_t val; 7849 7850 sc->port.pmf = 1; 7851 BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf); 7852 7853 /* 7854 * We need the mb() to ensure the ordering between the writing to 7855 * sc->port.pmf here and reading it from the bxe_periodic_task(). 7856 */ 7857 mb(); 7858 7859 /* queue a periodic task */ 7860 // XXX schedule task... 7861 7862 // XXX bxe_dcbx_pmf_update(sc); 7863 7864 /* enable nig attention */ 7865 val = (0xff0f | (1 << (SC_VN(sc) + 4))); 7866 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7867 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val); 7868 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val); 7869 } else if (!CHIP_IS_E1x(sc)) { 7870 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 7871 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 7872 } 7873 7874 bxe_stats_handle(sc, STATS_EVENT_PMF); 7875 } 7876 7877 static int 7878 bxe_mc_assert(struct bxe_softc *sc) 7879 { 7880 char last_idx; 7881 int i, rc = 0; 7882 uint32_t row0, row1, row2, row3; 7883 7884 /* XSTORM */ 7885 last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET); 7886 if (last_idx) 7887 BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7888 7889 /* print the asserts */ 7890 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7891 7892 row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i)); 7893 row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4); 7894 row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8); 7895 row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12); 7896 7897 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7898 BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7899 i, row3, row2, row1, row0); 7900 rc++; 7901 } else { 7902 break; 7903 } 7904 } 7905 7906 /* TSTORM */ 7907 last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET); 7908 if (last_idx) { 7909 BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7910 } 7911 7912 /* print the asserts */ 7913 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7914 7915 row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i)); 7916 row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4); 7917 row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8); 7918 row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12); 7919 7920 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7921 BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7922 i, row3, row2, row1, row0); 7923 rc++; 7924 } else { 7925 break; 7926 } 7927 } 7928 7929 /* CSTORM */ 7930 last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET); 7931 if (last_idx) { 7932 BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7933 } 7934 7935 /* print the asserts */ 7936 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7937 7938 row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i)); 7939 row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4); 7940 row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8); 7941 row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12); 7942 7943 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7944 BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7945 i, row3, row2, row1, row0); 7946 rc++; 7947 } else { 7948 break; 7949 } 7950 } 7951 7952 /* USTORM */ 7953 last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET); 7954 if (last_idx) { 7955 BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7956 } 7957 7958 /* print the asserts */ 7959 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7960 7961 row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i)); 7962 row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4); 7963 row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8); 7964 row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12); 7965 7966 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7967 BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7968 i, row3, row2, row1, row0); 7969 rc++; 7970 } else { 7971 break; 7972 } 7973 } 7974 7975 return (rc); 7976 } 7977 7978 static void 7979 bxe_attn_int_deasserted3(struct bxe_softc *sc, 7980 uint32_t attn) 7981 { 7982 int func = SC_FUNC(sc); 7983 uint32_t val; 7984 7985 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 7986 7987 if (attn & BXE_PMF_LINK_ASSERT(sc)) { 7988 7989 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 7990 bxe_read_mf_cfg(sc); 7991 sc->devinfo.mf_info.mf_config[SC_VN(sc)] = 7992 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 7993 val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status); 7994 7995 if (val & DRV_STATUS_DCC_EVENT_MASK) 7996 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK)); 7997 7998 if (val & DRV_STATUS_SET_MF_BW) 7999 bxe_set_mf_bw(sc); 8000 8001 if (val & DRV_STATUS_DRV_INFO_REQ) 8002 bxe_handle_drv_info_req(sc); 8003 8004 if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF)) 8005 bxe_pmf_update(sc); 8006 8007 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 8008 bxe_handle_eee_event(sc); 8009 8010 if (sc->link_vars.periodic_flags & 8011 ELINK_PERIODIC_FLAGS_LINK_EVENT) { 8012 /* sync with link */ 8013 bxe_acquire_phy_lock(sc); 8014 sc->link_vars.periodic_flags &= 8015 ~ELINK_PERIODIC_FLAGS_LINK_EVENT; 8016 bxe_release_phy_lock(sc); 8017 if (IS_MF(sc)) 8018 ; // XXX bxe_link_sync_notify(sc); 8019 bxe_link_report(sc); 8020 } 8021 8022 /* 8023 * Always call it here: bxe_link_report() will 8024 * prevent the link indication duplication. 8025 */ 8026 bxe_link_status_update(sc); 8027 8028 } else if (attn & BXE_MC_ASSERT_BITS) { 8029 8030 BLOGE(sc, "MC assert!\n"); 8031 bxe_mc_assert(sc); 8032 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0); 8033 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0); 8034 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0); 8035 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0); 8036 bxe_panic(sc, ("MC assert!\n")); 8037 8038 } else if (attn & BXE_MCP_ASSERT) { 8039 8040 BLOGE(sc, "MCP assert!\n"); 8041 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0); 8042 // XXX bxe_fw_dump(sc); 8043 8044 } else { 8045 BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn); 8046 } 8047 } 8048 8049 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 8050 BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn); 8051 if (attn & BXE_GRC_TIMEOUT) { 8052 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN); 8053 BLOGE(sc, "GRC time-out 0x%08x\n", val); 8054 } 8055 if (attn & BXE_GRC_RSV) { 8056 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN); 8057 BLOGE(sc, "GRC reserved 0x%08x\n", val); 8058 } 8059 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 8060 } 8061 } 8062 8063 static void 8064 bxe_attn_int_deasserted2(struct bxe_softc *sc, 8065 uint32_t attn) 8066 { 8067 int port = SC_PORT(sc); 8068 int reg_offset; 8069 uint32_t val0, mask0, val1, mask1; 8070 uint32_t val; 8071 8072 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 8073 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR); 8074 BLOGE(sc, "CFC hw attention 0x%08x\n", val); 8075 /* CFC error attention */ 8076 if (val & 0x2) { 8077 BLOGE(sc, "FATAL error from CFC\n"); 8078 } 8079 } 8080 8081 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 8082 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0); 8083 BLOGE(sc, "PXP hw attention-0 0x%08x\n", val); 8084 /* RQ_USDMDP_FIFO_OVERFLOW */ 8085 if (val & 0x18000) { 8086 BLOGE(sc, "FATAL error from PXP\n"); 8087 } 8088 8089 if (!CHIP_IS_E1x(sc)) { 8090 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1); 8091 BLOGE(sc, "PXP hw attention-1 0x%08x\n", val); 8092 } 8093 } 8094 8095 #define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR 8096 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT 8097 8098 if (attn & AEU_PXP2_HW_INT_BIT) { 8099 /* CQ47854 workaround do not panic on 8100 * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8101 */ 8102 if (!CHIP_IS_E1x(sc)) { 8103 mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0); 8104 val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1); 8105 mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1); 8106 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0); 8107 /* 8108 * If the olny PXP2_EOP_ERROR_BIT is set in 8109 * STS0 and STS1 - clear it 8110 * 8111 * probably we lose additional attentions between 8112 * STS0 and STS_CLR0, in this case user will not 8113 * be notified about them 8114 */ 8115 if (val0 & mask0 & PXP2_EOP_ERROR_BIT && 8116 !(val1 & mask1)) 8117 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 8118 8119 /* print the register, since no one can restore it */ 8120 BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0); 8121 8122 /* 8123 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8124 * then notify 8125 */ 8126 if (val0 & PXP2_EOP_ERROR_BIT) { 8127 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n"); 8128 8129 /* 8130 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is 8131 * set then clear attention from PXP2 block without panic 8132 */ 8133 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) && 8134 ((val1 & mask1) == 0)) 8135 attn &= ~AEU_PXP2_HW_INT_BIT; 8136 } 8137 } 8138 } 8139 8140 if (attn & HW_INTERRUT_ASSERT_SET_2) { 8141 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 8142 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 8143 8144 val = REG_RD(sc, reg_offset); 8145 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); 8146 REG_WR(sc, reg_offset, val); 8147 8148 BLOGE(sc, "FATAL HW block attention set2 0x%x\n", 8149 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2)); 8150 bxe_panic(sc, ("HW block attention set2\n")); 8151 } 8152 } 8153 8154 static void 8155 bxe_attn_int_deasserted1(struct bxe_softc *sc, 8156 uint32_t attn) 8157 { 8158 int port = SC_PORT(sc); 8159 int reg_offset; 8160 uint32_t val; 8161 8162 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 8163 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR); 8164 BLOGE(sc, "DB hw attention 0x%08x\n", val); 8165 /* DORQ discard attention */ 8166 if (val & 0x2) { 8167 BLOGE(sc, "FATAL error from DORQ\n"); 8168 } 8169 } 8170 8171 if (attn & HW_INTERRUT_ASSERT_SET_1) { 8172 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 8173 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 8174 8175 val = REG_RD(sc, reg_offset); 8176 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); 8177 REG_WR(sc, reg_offset, val); 8178 8179 BLOGE(sc, "FATAL HW block attention set1 0x%08x\n", 8180 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1)); 8181 bxe_panic(sc, ("HW block attention set1\n")); 8182 } 8183 } 8184 8185 static void 8186 bxe_attn_int_deasserted0(struct bxe_softc *sc, 8187 uint32_t attn) 8188 { 8189 int port = SC_PORT(sc); 8190 int reg_offset; 8191 uint32_t val; 8192 8193 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 8194 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 8195 8196 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 8197 val = REG_RD(sc, reg_offset); 8198 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 8199 REG_WR(sc, reg_offset, val); 8200 8201 BLOGW(sc, "SPIO5 hw attention\n"); 8202 8203 /* Fan failure attention */ 8204 elink_hw_reset_phy(&sc->link_params); 8205 bxe_fan_failure(sc); 8206 } 8207 8208 if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) { 8209 bxe_acquire_phy_lock(sc); 8210 elink_handle_module_detect_int(&sc->link_params); 8211 bxe_release_phy_lock(sc); 8212 } 8213 8214 if (attn & HW_INTERRUT_ASSERT_SET_0) { 8215 val = REG_RD(sc, reg_offset); 8216 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); 8217 REG_WR(sc, reg_offset, val); 8218 8219 bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n", 8220 (attn & HW_INTERRUT_ASSERT_SET_0))); 8221 } 8222 } 8223 8224 static void 8225 bxe_attn_int_deasserted(struct bxe_softc *sc, 8226 uint32_t deasserted) 8227 { 8228 struct attn_route attn; 8229 struct attn_route *group_mask; 8230 int port = SC_PORT(sc); 8231 int index; 8232 uint32_t reg_addr; 8233 uint32_t val; 8234 uint32_t aeu_mask; 8235 uint8_t global = FALSE; 8236 8237 /* 8238 * Need to take HW lock because MCP or other port might also 8239 * try to handle this event. 8240 */ 8241 bxe_acquire_alr(sc); 8242 8243 if (bxe_chk_parity_attn(sc, &global, TRUE)) { 8244 /* XXX 8245 * In case of parity errors don't handle attentions so that 8246 * other function would "see" parity errors. 8247 */ 8248 sc->recovery_state = BXE_RECOVERY_INIT; 8249 // XXX schedule a recovery task... 8250 /* disable HW interrupts */ 8251 bxe_int_disable(sc); 8252 bxe_release_alr(sc); 8253 return; 8254 } 8255 8256 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 8257 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 8258 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 8259 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 8260 if (!CHIP_IS_E1x(sc)) { 8261 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 8262 } else { 8263 attn.sig[4] = 0; 8264 } 8265 8266 BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", 8267 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 8268 8269 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 8270 if (deasserted & (1 << index)) { 8271 group_mask = &sc->attn_group[index]; 8272 8273 BLOGD(sc, DBG_INTR, 8274 "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index, 8275 group_mask->sig[0], group_mask->sig[1], 8276 group_mask->sig[2], group_mask->sig[3], 8277 group_mask->sig[4]); 8278 8279 bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]); 8280 bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]); 8281 bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]); 8282 bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]); 8283 bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]); 8284 } 8285 } 8286 8287 bxe_release_alr(sc); 8288 8289 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8290 reg_addr = (HC_REG_COMMAND_REG + port*32 + 8291 COMMAND_REG_ATTN_BITS_CLR); 8292 } else { 8293 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 8294 } 8295 8296 val = ~deasserted; 8297 BLOGD(sc, DBG_INTR, 8298 "about to mask 0x%08x at %s addr 0x%08x\n", val, 8299 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 8300 REG_WR(sc, reg_addr, val); 8301 8302 if (~sc->attn_state & deasserted) { 8303 BLOGE(sc, "IGU error\n"); 8304 } 8305 8306 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 8307 MISC_REG_AEU_MASK_ATTN_FUNC_0; 8308 8309 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8310 8311 aeu_mask = REG_RD(sc, reg_addr); 8312 8313 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n", 8314 aeu_mask, deasserted); 8315 aeu_mask |= (deasserted & 0x3ff); 8316 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 8317 8318 REG_WR(sc, reg_addr, aeu_mask); 8319 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8320 8321 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 8322 sc->attn_state &= ~deasserted; 8323 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 8324 } 8325 8326 static void 8327 bxe_attn_int(struct bxe_softc *sc) 8328 { 8329 /* read local copy of bits */ 8330 uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits); 8331 uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack); 8332 uint32_t attn_state = sc->attn_state; 8333 8334 /* look for changed bits */ 8335 uint32_t asserted = attn_bits & ~attn_ack & ~attn_state; 8336 uint32_t deasserted = ~attn_bits & attn_ack & attn_state; 8337 8338 BLOGD(sc, DBG_INTR, 8339 "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n", 8340 attn_bits, attn_ack, asserted, deasserted); 8341 8342 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) { 8343 BLOGE(sc, "BAD attention state\n"); 8344 } 8345 8346 /* handle bits that were raised */ 8347 if (asserted) { 8348 bxe_attn_int_asserted(sc, asserted); 8349 } 8350 8351 if (deasserted) { 8352 bxe_attn_int_deasserted(sc, deasserted); 8353 } 8354 } 8355 8356 static uint16_t 8357 bxe_update_dsb_idx(struct bxe_softc *sc) 8358 { 8359 struct host_sp_status_block *def_sb = sc->def_sb; 8360 uint16_t rc = 0; 8361 8362 mb(); /* status block is written to by the chip */ 8363 8364 if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 8365 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index; 8366 rc |= BXE_DEF_SB_ATT_IDX; 8367 } 8368 8369 if (sc->def_idx != def_sb->sp_sb.running_index) { 8370 sc->def_idx = def_sb->sp_sb.running_index; 8371 rc |= BXE_DEF_SB_IDX; 8372 } 8373 8374 mb(); 8375 8376 return (rc); 8377 } 8378 8379 static inline struct ecore_queue_sp_obj * 8380 bxe_cid_to_q_obj(struct bxe_softc *sc, 8381 uint32_t cid) 8382 { 8383 BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid); 8384 return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj); 8385 } 8386 8387 static void 8388 bxe_handle_mcast_eqe(struct bxe_softc *sc) 8389 { 8390 struct ecore_mcast_ramrod_params rparam; 8391 int rc; 8392 8393 memset(&rparam, 0, sizeof(rparam)); 8394 8395 rparam.mcast_obj = &sc->mcast_obj; 8396 8397 BXE_MCAST_LOCK(sc); 8398 8399 /* clear pending state for the last command */ 8400 sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw); 8401 8402 /* if there are pending mcast commands - send them */ 8403 if (sc->mcast_obj.check_pending(&sc->mcast_obj)) { 8404 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 8405 if (rc < 0) { 8406 BLOGD(sc, DBG_SP, 8407 "ERROR: Failed to send pending mcast commands (%d)\n", rc); 8408 } 8409 } 8410 8411 BXE_MCAST_UNLOCK(sc); 8412 } 8413 8414 static void 8415 bxe_handle_classification_eqe(struct bxe_softc *sc, 8416 union event_ring_elem *elem) 8417 { 8418 unsigned long ramrod_flags = 0; 8419 int rc = 0; 8420 uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8421 struct ecore_vlan_mac_obj *vlan_mac_obj; 8422 8423 /* always push next commands out, don't wait here */ 8424 bit_set(&ramrod_flags, RAMROD_CONT); 8425 8426 switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) { 8427 case ECORE_FILTER_MAC_PENDING: 8428 BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n"); 8429 vlan_mac_obj = &sc->sp_objs[cid].mac_obj; 8430 break; 8431 8432 case ECORE_FILTER_MCAST_PENDING: 8433 BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n"); 8434 /* 8435 * This is only relevant for 57710 where multicast MACs are 8436 * configured as unicast MACs using the same ramrod. 8437 */ 8438 bxe_handle_mcast_eqe(sc); 8439 return; 8440 8441 default: 8442 BLOGE(sc, "Unsupported classification command: %d\n", 8443 elem->message.data.eth_event.echo); 8444 return; 8445 } 8446 8447 rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags); 8448 8449 if (rc < 0) { 8450 BLOGE(sc, "Failed to schedule new commands (%d)\n", rc); 8451 } else if (rc > 0) { 8452 BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n"); 8453 } 8454 } 8455 8456 static void 8457 bxe_handle_rx_mode_eqe(struct bxe_softc *sc, 8458 union event_ring_elem *elem) 8459 { 8460 bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 8461 8462 /* send rx_mode command again if was requested */ 8463 if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, 8464 &sc->sp_state)) { 8465 bxe_set_storm_rx_mode(sc); 8466 } 8467 } 8468 8469 static void 8470 bxe_update_eq_prod(struct bxe_softc *sc, 8471 uint16_t prod) 8472 { 8473 storm_memset_eq_prod(sc, prod, SC_FUNC(sc)); 8474 wmb(); /* keep prod updates ordered */ 8475 } 8476 8477 static void 8478 bxe_eq_int(struct bxe_softc *sc) 8479 { 8480 uint16_t hw_cons, sw_cons, sw_prod; 8481 union event_ring_elem *elem; 8482 uint8_t echo; 8483 uint32_t cid; 8484 uint8_t opcode; 8485 int spqe_cnt = 0; 8486 struct ecore_queue_sp_obj *q_obj; 8487 struct ecore_func_sp_obj *f_obj = &sc->func_obj; 8488 struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw; 8489 8490 hw_cons = le16toh(*sc->eq_cons_sb); 8491 8492 /* 8493 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256. 8494 * when we get to the next-page we need to adjust so the loop 8495 * condition below will be met. The next element is the size of a 8496 * regular element and hence incrementing by 1 8497 */ 8498 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) { 8499 hw_cons++; 8500 } 8501 8502 /* 8503 * This function may never run in parallel with itself for a 8504 * specific sc and no need for a read memory barrier here. 8505 */ 8506 sw_cons = sc->eq_cons; 8507 sw_prod = sc->eq_prod; 8508 8509 BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n", 8510 hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left)); 8511 8512 for (; 8513 sw_cons != hw_cons; 8514 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 8515 8516 elem = &sc->eq[EQ_DESC(sw_cons)]; 8517 8518 /* elem CID originates from FW, actually LE */ 8519 cid = SW_CID(elem->message.data.cfc_del_event.cid); 8520 opcode = elem->message.opcode; 8521 8522 /* handle eq element */ 8523 switch (opcode) { 8524 8525 case EVENT_RING_OPCODE_STAT_QUERY: 8526 BLOGD(sc, DBG_SP, "got statistics completion event %d\n", 8527 sc->stats_comp++); 8528 /* nothing to do with stats comp */ 8529 goto next_spqe; 8530 8531 case EVENT_RING_OPCODE_CFC_DEL: 8532 /* handle according to cid range */ 8533 /* we may want to verify here that the sc state is HALTING */ 8534 BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid); 8535 q_obj = bxe_cid_to_q_obj(sc, cid); 8536 if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) { 8537 break; 8538 } 8539 goto next_spqe; 8540 8541 case EVENT_RING_OPCODE_STOP_TRAFFIC: 8542 BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n"); 8543 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) { 8544 break; 8545 } 8546 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED); 8547 goto next_spqe; 8548 8549 case EVENT_RING_OPCODE_START_TRAFFIC: 8550 BLOGD(sc, DBG_SP, "got START TRAFFIC\n"); 8551 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) { 8552 break; 8553 } 8554 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED); 8555 goto next_spqe; 8556 8557 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 8558 echo = elem->message.data.function_update_event.echo; 8559 if (echo == SWITCH_UPDATE) { 8560 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n"); 8561 if (f_obj->complete_cmd(sc, f_obj, 8562 ECORE_F_CMD_SWITCH_UPDATE)) { 8563 break; 8564 } 8565 } 8566 else { 8567 BLOGD(sc, DBG_SP, 8568 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 8569 } 8570 goto next_spqe; 8571 8572 case EVENT_RING_OPCODE_FORWARD_SETUP: 8573 q_obj = &bxe_fwd_sp_obj(sc, q_obj); 8574 if (q_obj->complete_cmd(sc, q_obj, 8575 ECORE_Q_CMD_SETUP_TX_ONLY)) { 8576 break; 8577 } 8578 goto next_spqe; 8579 8580 case EVENT_RING_OPCODE_FUNCTION_START: 8581 BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n"); 8582 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) { 8583 break; 8584 } 8585 goto next_spqe; 8586 8587 case EVENT_RING_OPCODE_FUNCTION_STOP: 8588 BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n"); 8589 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) { 8590 break; 8591 } 8592 goto next_spqe; 8593 } 8594 8595 switch (opcode | sc->state) { 8596 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN): 8597 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT): 8598 cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8599 BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid); 8600 rss_raw->clear_pending(rss_raw); 8601 break; 8602 8603 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN): 8604 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG): 8605 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT): 8606 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN): 8607 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG): 8608 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8609 BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n"); 8610 bxe_handle_classification_eqe(sc, elem); 8611 break; 8612 8613 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN): 8614 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG): 8615 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8616 BLOGD(sc, DBG_SP, "got mcast ramrod\n"); 8617 bxe_handle_mcast_eqe(sc); 8618 break; 8619 8620 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN): 8621 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG): 8622 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8623 BLOGD(sc, DBG_SP, "got rx_mode ramrod\n"); 8624 bxe_handle_rx_mode_eqe(sc, elem); 8625 break; 8626 8627 default: 8628 /* unknown event log error and continue */ 8629 BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n", 8630 elem->message.opcode, sc->state); 8631 } 8632 8633 next_spqe: 8634 spqe_cnt++; 8635 } /* for */ 8636 8637 mb(); 8638 atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt); 8639 8640 sc->eq_cons = sw_cons; 8641 sc->eq_prod = sw_prod; 8642 8643 /* make sure that above mem writes were issued towards the memory */ 8644 wmb(); 8645 8646 /* update producer */ 8647 bxe_update_eq_prod(sc, sc->eq_prod); 8648 } 8649 8650 static void 8651 bxe_handle_sp_tq(void *context, 8652 int pending) 8653 { 8654 struct bxe_softc *sc = (struct bxe_softc *)context; 8655 uint16_t status; 8656 8657 BLOGD(sc, DBG_SP, "---> SP TASK <---\n"); 8658 8659 /* what work needs to be performed? */ 8660 status = bxe_update_dsb_idx(sc); 8661 8662 BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status); 8663 8664 /* HW attentions */ 8665 if (status & BXE_DEF_SB_ATT_IDX) { 8666 BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n"); 8667 bxe_attn_int(sc); 8668 status &= ~BXE_DEF_SB_ATT_IDX; 8669 } 8670 8671 /* SP events: STAT_QUERY and others */ 8672 if (status & BXE_DEF_SB_IDX) { 8673 /* handle EQ completions */ 8674 BLOGD(sc, DBG_SP, "---> EQ INTR <---\n"); 8675 bxe_eq_int(sc); 8676 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 8677 le16toh(sc->def_idx), IGU_INT_NOP, 1); 8678 status &= ~BXE_DEF_SB_IDX; 8679 } 8680 8681 /* if status is non zero then something went wrong */ 8682 if (__predict_false(status)) { 8683 BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status); 8684 } 8685 8686 /* ack status block only if something was actually handled */ 8687 bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID, 8688 le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1); 8689 8690 /* 8691 * Must be called after the EQ processing (since eq leads to sriov 8692 * ramrod completion flows). 8693 * This flow may have been scheduled by the arrival of a ramrod 8694 * completion, or by the sriov code rescheduling itself. 8695 */ 8696 // XXX bxe_iov_sp_task(sc); 8697 8698 } 8699 8700 static void 8701 bxe_handle_fp_tq(void *context, 8702 int pending) 8703 { 8704 struct bxe_fastpath *fp = (struct bxe_fastpath *)context; 8705 struct bxe_softc *sc = fp->sc; 8706 uint8_t more_tx = FALSE; 8707 uint8_t more_rx = FALSE; 8708 8709 BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index); 8710 8711 /* XXX 8712 * IFF_DRV_RUNNING state can't be checked here since we process 8713 * slowpath events on a client queue during setup. Instead 8714 * we need to add a "process/continue" flag here that the driver 8715 * can use to tell the task here not to do anything. 8716 */ 8717 #if 0 8718 if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 8719 return; 8720 } 8721 #endif 8722 8723 /* update the fastpath index */ 8724 bxe_update_fp_sb_idx(fp); 8725 8726 /* XXX add loop here if ever support multiple tx CoS */ 8727 /* fp->txdata[cos] */ 8728 if (bxe_has_tx_work(fp)) { 8729 BXE_FP_TX_LOCK(fp); 8730 more_tx = bxe_txeof(sc, fp); 8731 BXE_FP_TX_UNLOCK(fp); 8732 } 8733 8734 if (bxe_has_rx_work(fp)) { 8735 more_rx = bxe_rxeof(sc, fp); 8736 } 8737 8738 if (more_rx /*|| more_tx*/) { 8739 /* still more work to do */ 8740 taskqueue_enqueue(fp->tq, &fp->tq_task); 8741 return; 8742 } 8743 8744 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 8745 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 8746 } 8747 8748 static void 8749 bxe_task_fp(struct bxe_fastpath *fp) 8750 { 8751 struct bxe_softc *sc = fp->sc; 8752 uint8_t more_tx = FALSE; 8753 uint8_t more_rx = FALSE; 8754 8755 BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index); 8756 8757 /* update the fastpath index */ 8758 bxe_update_fp_sb_idx(fp); 8759 8760 /* XXX add loop here if ever support multiple tx CoS */ 8761 /* fp->txdata[cos] */ 8762 if (bxe_has_tx_work(fp)) { 8763 BXE_FP_TX_LOCK(fp); 8764 more_tx = bxe_txeof(sc, fp); 8765 BXE_FP_TX_UNLOCK(fp); 8766 } 8767 8768 if (bxe_has_rx_work(fp)) { 8769 more_rx = bxe_rxeof(sc, fp); 8770 } 8771 8772 if (more_rx /*|| more_tx*/) { 8773 /* still more work to do, bail out if this ISR and process later */ 8774 taskqueue_enqueue(fp->tq, &fp->tq_task); 8775 return; 8776 } 8777 8778 /* 8779 * Here we write the fastpath index taken before doing any tx or rx work. 8780 * It is very well possible other hw events occurred up to this point and 8781 * they were actually processed accordingly above. Since we're going to 8782 * write an older fastpath index, an interrupt is coming which we might 8783 * not do any work in. 8784 */ 8785 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 8786 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 8787 } 8788 8789 /* 8790 * Legacy interrupt entry point. 8791 * 8792 * Verifies that the controller generated the interrupt and 8793 * then calls a separate routine to handle the various 8794 * interrupt causes: link, RX, and TX. 8795 */ 8796 static void 8797 bxe_intr_legacy(void *xsc) 8798 { 8799 struct bxe_softc *sc = (struct bxe_softc *)xsc; 8800 struct bxe_fastpath *fp; 8801 uint16_t status, mask; 8802 int i; 8803 8804 BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n"); 8805 8806 /* 8807 * 0 for ustorm, 1 for cstorm 8808 * the bits returned from ack_int() are 0-15 8809 * bit 0 = attention status block 8810 * bit 1 = fast path status block 8811 * a mask of 0x2 or more = tx/rx event 8812 * a mask of 1 = slow path event 8813 */ 8814 8815 status = bxe_ack_int(sc); 8816 8817 /* the interrupt is not for us */ 8818 if (__predict_false(status == 0)) { 8819 BLOGD(sc, DBG_INTR, "Not our interrupt!\n"); 8820 return; 8821 } 8822 8823 BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status); 8824 8825 FOR_EACH_ETH_QUEUE(sc, i) { 8826 fp = &sc->fp[i]; 8827 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc))); 8828 if (status & mask) { 8829 /* acknowledge and disable further fastpath interrupts */ 8830 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8831 bxe_task_fp(fp); 8832 status &= ~mask; 8833 } 8834 } 8835 8836 if (__predict_false(status & 0x1)) { 8837 /* acknowledge and disable further slowpath interrupts */ 8838 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8839 8840 /* schedule slowpath handler */ 8841 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8842 8843 status &= ~0x1; 8844 } 8845 8846 if (__predict_false(status)) { 8847 BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status); 8848 } 8849 } 8850 8851 /* slowpath interrupt entry point */ 8852 static void 8853 bxe_intr_sp(void *xsc) 8854 { 8855 struct bxe_softc *sc = (struct bxe_softc *)xsc; 8856 8857 BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n"); 8858 8859 /* acknowledge and disable further slowpath interrupts */ 8860 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8861 8862 /* schedule slowpath handler */ 8863 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8864 } 8865 8866 /* fastpath interrupt entry point */ 8867 static void 8868 bxe_intr_fp(void *xfp) 8869 { 8870 struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp; 8871 struct bxe_softc *sc = fp->sc; 8872 8873 BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index); 8874 8875 BLOGD(sc, DBG_INTR, 8876 "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n", 8877 curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id); 8878 8879 /* acknowledge and disable further fastpath interrupts */ 8880 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8881 8882 bxe_task_fp(fp); 8883 } 8884 8885 /* Release all interrupts allocated by the driver. */ 8886 static void 8887 bxe_interrupt_free(struct bxe_softc *sc) 8888 { 8889 int i; 8890 8891 switch (sc->interrupt_mode) { 8892 case INTR_MODE_INTX: 8893 BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n"); 8894 if (sc->intr[0].resource != NULL) { 8895 bus_release_resource(sc->dev, 8896 SYS_RES_IRQ, 8897 sc->intr[0].rid, 8898 sc->intr[0].resource); 8899 } 8900 break; 8901 case INTR_MODE_MSI: 8902 for (i = 0; i < sc->intr_count; i++) { 8903 BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i); 8904 if (sc->intr[i].resource && sc->intr[i].rid) { 8905 bus_release_resource(sc->dev, 8906 SYS_RES_IRQ, 8907 sc->intr[i].rid, 8908 sc->intr[i].resource); 8909 } 8910 } 8911 pci_release_msi(sc->dev); 8912 break; 8913 case INTR_MODE_MSIX: 8914 for (i = 0; i < sc->intr_count; i++) { 8915 BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i); 8916 if (sc->intr[i].resource && sc->intr[i].rid) { 8917 bus_release_resource(sc->dev, 8918 SYS_RES_IRQ, 8919 sc->intr[i].rid, 8920 sc->intr[i].resource); 8921 } 8922 } 8923 pci_release_msi(sc->dev); 8924 break; 8925 default: 8926 /* nothing to do as initial allocation failed */ 8927 break; 8928 } 8929 } 8930 8931 /* 8932 * This function determines and allocates the appropriate 8933 * interrupt based on system capabilites and user request. 8934 * 8935 * The user may force a particular interrupt mode, specify 8936 * the number of receive queues, specify the method for 8937 * distribuitng received frames to receive queues, or use 8938 * the default settings which will automatically select the 8939 * best supported combination. In addition, the OS may or 8940 * may not support certain combinations of these settings. 8941 * This routine attempts to reconcile the settings requested 8942 * by the user with the capabilites available from the system 8943 * to select the optimal combination of features. 8944 * 8945 * Returns: 8946 * 0 = Success, !0 = Failure. 8947 */ 8948 static int 8949 bxe_interrupt_alloc(struct bxe_softc *sc) 8950 { 8951 int msix_count = 0; 8952 int msi_count = 0; 8953 int num_requested = 0; 8954 int num_allocated = 0; 8955 int rid, i, j; 8956 int rc; 8957 8958 /* get the number of available MSI/MSI-X interrupts from the OS */ 8959 if (sc->interrupt_mode > 0) { 8960 if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) { 8961 msix_count = pci_msix_count(sc->dev); 8962 } 8963 8964 if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) { 8965 msi_count = pci_msi_count(sc->dev); 8966 } 8967 8968 BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n", 8969 msi_count, msix_count); 8970 } 8971 8972 do { /* try allocating MSI-X interrupt resources (at least 2) */ 8973 if (sc->interrupt_mode != INTR_MODE_MSIX) { 8974 break; 8975 } 8976 8977 if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) || 8978 (msix_count < 2)) { 8979 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8980 break; 8981 } 8982 8983 /* ask for the necessary number of MSI-X vectors */ 8984 num_requested = min((sc->num_queues + 1), msix_count); 8985 8986 BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested); 8987 8988 num_allocated = num_requested; 8989 if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) { 8990 BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc); 8991 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8992 break; 8993 } 8994 8995 if (num_allocated < 2) { /* possible? */ 8996 BLOGE(sc, "MSI-X allocation less than 2!\n"); 8997 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8998 pci_release_msi(sc->dev); 8999 break; 9000 } 9001 9002 BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n", 9003 num_requested, num_allocated); 9004 9005 /* best effort so use the number of vectors allocated to us */ 9006 sc->intr_count = num_allocated; 9007 sc->num_queues = num_allocated - 1; 9008 9009 rid = 1; /* initial resource identifier */ 9010 9011 /* allocate the MSI-X vectors */ 9012 for (i = 0; i < num_allocated; i++) { 9013 sc->intr[i].rid = (rid + i); 9014 9015 if ((sc->intr[i].resource = 9016 bus_alloc_resource_any(sc->dev, 9017 SYS_RES_IRQ, 9018 &sc->intr[i].rid, 9019 RF_ACTIVE)) == NULL) { 9020 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n", 9021 i, (rid + i)); 9022 9023 for (j = (i - 1); j >= 0; j--) { 9024 bus_release_resource(sc->dev, 9025 SYS_RES_IRQ, 9026 sc->intr[j].rid, 9027 sc->intr[j].resource); 9028 } 9029 9030 sc->intr_count = 0; 9031 sc->num_queues = 0; 9032 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9033 pci_release_msi(sc->dev); 9034 break; 9035 } 9036 9037 BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i)); 9038 } 9039 } while (0); 9040 9041 do { /* try allocating MSI vector resources (at least 2) */ 9042 if (sc->interrupt_mode != INTR_MODE_MSI) { 9043 break; 9044 } 9045 9046 if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) || 9047 (msi_count < 1)) { 9048 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9049 break; 9050 } 9051 9052 /* ask for a single MSI vector */ 9053 num_requested = 1; 9054 9055 BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested); 9056 9057 num_allocated = num_requested; 9058 if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) { 9059 BLOGE(sc, "MSI alloc failed (%d)!\n", rc); 9060 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9061 break; 9062 } 9063 9064 if (num_allocated != 1) { /* possible? */ 9065 BLOGE(sc, "MSI allocation is not 1!\n"); 9066 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9067 pci_release_msi(sc->dev); 9068 break; 9069 } 9070 9071 BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n", 9072 num_requested, num_allocated); 9073 9074 /* best effort so use the number of vectors allocated to us */ 9075 sc->intr_count = num_allocated; 9076 sc->num_queues = num_allocated; 9077 9078 rid = 1; /* initial resource identifier */ 9079 9080 sc->intr[0].rid = rid; 9081 9082 if ((sc->intr[0].resource = 9083 bus_alloc_resource_any(sc->dev, 9084 SYS_RES_IRQ, 9085 &sc->intr[0].rid, 9086 RF_ACTIVE)) == NULL) { 9087 BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid); 9088 sc->intr_count = 0; 9089 sc->num_queues = 0; 9090 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9091 pci_release_msi(sc->dev); 9092 break; 9093 } 9094 9095 BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid); 9096 } while (0); 9097 9098 do { /* try allocating INTx vector resources */ 9099 if (sc->interrupt_mode != INTR_MODE_INTX) { 9100 break; 9101 } 9102 9103 BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n"); 9104 9105 /* only one vector for INTx */ 9106 sc->intr_count = 1; 9107 sc->num_queues = 1; 9108 9109 rid = 0; /* initial resource identifier */ 9110 9111 sc->intr[0].rid = rid; 9112 9113 if ((sc->intr[0].resource = 9114 bus_alloc_resource_any(sc->dev, 9115 SYS_RES_IRQ, 9116 &sc->intr[0].rid, 9117 (RF_ACTIVE | RF_SHAREABLE))) == NULL) { 9118 BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid); 9119 sc->intr_count = 0; 9120 sc->num_queues = 0; 9121 sc->interrupt_mode = -1; /* Failed! */ 9122 break; 9123 } 9124 9125 BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid); 9126 } while (0); 9127 9128 if (sc->interrupt_mode == -1) { 9129 BLOGE(sc, "Interrupt Allocation: FAILED!!!\n"); 9130 rc = 1; 9131 } else { 9132 BLOGD(sc, DBG_LOAD, 9133 "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n", 9134 sc->interrupt_mode, sc->num_queues); 9135 rc = 0; 9136 } 9137 9138 return (rc); 9139 } 9140 9141 static void 9142 bxe_interrupt_detach(struct bxe_softc *sc) 9143 { 9144 struct bxe_fastpath *fp; 9145 int i; 9146 9147 /* release interrupt resources */ 9148 for (i = 0; i < sc->intr_count; i++) { 9149 if (sc->intr[i].resource && sc->intr[i].tag) { 9150 BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i); 9151 bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag); 9152 } 9153 } 9154 9155 for (i = 0; i < sc->num_queues; i++) { 9156 fp = &sc->fp[i]; 9157 if (fp->tq) { 9158 taskqueue_drain(fp->tq, &fp->tq_task); 9159 taskqueue_free(fp->tq); 9160 fp->tq = NULL; 9161 } 9162 } 9163 9164 9165 if (sc->sp_tq) { 9166 taskqueue_drain(sc->sp_tq, &sc->sp_tq_task); 9167 taskqueue_free(sc->sp_tq); 9168 sc->sp_tq = NULL; 9169 } 9170 } 9171 9172 /* 9173 * Enables interrupts and attach to the ISR. 9174 * 9175 * When using multiple MSI/MSI-X vectors the first vector 9176 * is used for slowpath operations while all remaining 9177 * vectors are used for fastpath operations. If only a 9178 * single MSI/MSI-X vector is used (SINGLE_ISR) then the 9179 * ISR must look for both slowpath and fastpath completions. 9180 */ 9181 static int 9182 bxe_interrupt_attach(struct bxe_softc *sc) 9183 { 9184 struct bxe_fastpath *fp; 9185 int rc = 0; 9186 int i; 9187 9188 snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name), 9189 "bxe%d_sp_tq", sc->unit); 9190 TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc); 9191 sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT, 9192 taskqueue_thread_enqueue, 9193 &sc->sp_tq); 9194 taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */ 9195 "%s", sc->sp_tq_name); 9196 9197 9198 for (i = 0; i < sc->num_queues; i++) { 9199 fp = &sc->fp[i]; 9200 snprintf(fp->tq_name, sizeof(fp->tq_name), 9201 "bxe%d_fp%d_tq", sc->unit, i); 9202 TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp); 9203 fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT, 9204 taskqueue_thread_enqueue, 9205 &fp->tq); 9206 taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */ 9207 "%s", fp->tq_name); 9208 } 9209 9210 /* setup interrupt handlers */ 9211 if (sc->interrupt_mode == INTR_MODE_MSIX) { 9212 BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n"); 9213 9214 /* 9215 * Setup the interrupt handler. Note that we pass the driver instance 9216 * to the interrupt handler for the slowpath. 9217 */ 9218 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9219 (INTR_TYPE_NET | INTR_MPSAFE), 9220 NULL, bxe_intr_sp, sc, 9221 &sc->intr[0].tag)) != 0) { 9222 BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc); 9223 goto bxe_interrupt_attach_exit; 9224 } 9225 9226 bus_describe_intr(sc->dev, sc->intr[0].resource, 9227 sc->intr[0].tag, "sp"); 9228 9229 /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */ 9230 9231 /* initialize the fastpath vectors (note the first was used for sp) */ 9232 for (i = 0; i < sc->num_queues; i++) { 9233 fp = &sc->fp[i]; 9234 BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1)); 9235 9236 /* 9237 * Setup the interrupt handler. Note that we pass the 9238 * fastpath context to the interrupt handler in this 9239 * case. 9240 */ 9241 if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource, 9242 (INTR_TYPE_NET | INTR_MPSAFE), 9243 NULL, bxe_intr_fp, fp, 9244 &sc->intr[i + 1].tag)) != 0) { 9245 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n", 9246 (i + 1), rc); 9247 goto bxe_interrupt_attach_exit; 9248 } 9249 9250 bus_describe_intr(sc->dev, sc->intr[i + 1].resource, 9251 sc->intr[i + 1].tag, "fp%02d", i); 9252 9253 /* bind the fastpath instance to a cpu */ 9254 if (sc->num_queues > 1) { 9255 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i); 9256 } 9257 9258 fp->state = BXE_FP_STATE_IRQ; 9259 } 9260 } else if (sc->interrupt_mode == INTR_MODE_MSI) { 9261 BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n"); 9262 9263 /* 9264 * Setup the interrupt handler. Note that we pass the 9265 * driver instance to the interrupt handler which 9266 * will handle both the slowpath and fastpath. 9267 */ 9268 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9269 (INTR_TYPE_NET | INTR_MPSAFE), 9270 NULL, bxe_intr_legacy, sc, 9271 &sc->intr[0].tag)) != 0) { 9272 BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc); 9273 goto bxe_interrupt_attach_exit; 9274 } 9275 9276 } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */ 9277 BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n"); 9278 9279 /* 9280 * Setup the interrupt handler. Note that we pass the 9281 * driver instance to the interrupt handler which 9282 * will handle both the slowpath and fastpath. 9283 */ 9284 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9285 (INTR_TYPE_NET | INTR_MPSAFE), 9286 NULL, bxe_intr_legacy, sc, 9287 &sc->intr[0].tag)) != 0) { 9288 BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc); 9289 goto bxe_interrupt_attach_exit; 9290 } 9291 } 9292 9293 bxe_interrupt_attach_exit: 9294 9295 return (rc); 9296 } 9297 9298 static int bxe_init_hw_common_chip(struct bxe_softc *sc); 9299 static int bxe_init_hw_common(struct bxe_softc *sc); 9300 static int bxe_init_hw_port(struct bxe_softc *sc); 9301 static int bxe_init_hw_func(struct bxe_softc *sc); 9302 static void bxe_reset_common(struct bxe_softc *sc); 9303 static void bxe_reset_port(struct bxe_softc *sc); 9304 static void bxe_reset_func(struct bxe_softc *sc); 9305 static int bxe_gunzip_init(struct bxe_softc *sc); 9306 static void bxe_gunzip_end(struct bxe_softc *sc); 9307 static int bxe_init_firmware(struct bxe_softc *sc); 9308 static void bxe_release_firmware(struct bxe_softc *sc); 9309 9310 static struct 9311 ecore_func_sp_drv_ops bxe_func_sp_drv = { 9312 .init_hw_cmn_chip = bxe_init_hw_common_chip, 9313 .init_hw_cmn = bxe_init_hw_common, 9314 .init_hw_port = bxe_init_hw_port, 9315 .init_hw_func = bxe_init_hw_func, 9316 9317 .reset_hw_cmn = bxe_reset_common, 9318 .reset_hw_port = bxe_reset_port, 9319 .reset_hw_func = bxe_reset_func, 9320 9321 .gunzip_init = bxe_gunzip_init, 9322 .gunzip_end = bxe_gunzip_end, 9323 9324 .init_fw = bxe_init_firmware, 9325 .release_fw = bxe_release_firmware, 9326 }; 9327 9328 static void 9329 bxe_init_func_obj(struct bxe_softc *sc) 9330 { 9331 sc->dmae_ready = 0; 9332 9333 ecore_init_func_obj(sc, 9334 &sc->func_obj, 9335 BXE_SP(sc, func_rdata), 9336 BXE_SP_MAPPING(sc, func_rdata), 9337 BXE_SP(sc, func_afex_rdata), 9338 BXE_SP_MAPPING(sc, func_afex_rdata), 9339 &bxe_func_sp_drv); 9340 } 9341 9342 static int 9343 bxe_init_hw(struct bxe_softc *sc, 9344 uint32_t load_code) 9345 { 9346 struct ecore_func_state_params func_params = { NULL }; 9347 int rc; 9348 9349 /* prepare the parameters for function state transitions */ 9350 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 9351 9352 func_params.f_obj = &sc->func_obj; 9353 func_params.cmd = ECORE_F_CMD_HW_INIT; 9354 9355 func_params.params.hw_init.load_phase = load_code; 9356 9357 /* 9358 * Via a plethora of function pointers, we will eventually reach 9359 * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func(). 9360 */ 9361 rc = ecore_func_state_change(sc, &func_params); 9362 9363 return (rc); 9364 } 9365 9366 static void 9367 bxe_fill(struct bxe_softc *sc, 9368 uint32_t addr, 9369 int fill, 9370 uint32_t len) 9371 { 9372 uint32_t i; 9373 9374 if (!(len % 4) && !(addr % 4)) { 9375 for (i = 0; i < len; i += 4) { 9376 REG_WR(sc, (addr + i), fill); 9377 } 9378 } else { 9379 for (i = 0; i < len; i++) { 9380 REG_WR8(sc, (addr + i), fill); 9381 } 9382 } 9383 } 9384 9385 /* writes FP SP data to FW - data_size in dwords */ 9386 static void 9387 bxe_wr_fp_sb_data(struct bxe_softc *sc, 9388 int fw_sb_id, 9389 uint32_t *sb_data_p, 9390 uint32_t data_size) 9391 { 9392 int index; 9393 9394 for (index = 0; index < data_size; index++) { 9395 REG_WR(sc, 9396 (BAR_CSTRORM_INTMEM + 9397 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 9398 (sizeof(uint32_t) * index)), 9399 *(sb_data_p + index)); 9400 } 9401 } 9402 9403 static void 9404 bxe_zero_fp_sb(struct bxe_softc *sc, 9405 int fw_sb_id) 9406 { 9407 struct hc_status_block_data_e2 sb_data_e2; 9408 struct hc_status_block_data_e1x sb_data_e1x; 9409 uint32_t *sb_data_p; 9410 uint32_t data_size = 0; 9411 9412 if (!CHIP_IS_E1x(sc)) { 9413 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9414 sb_data_e2.common.state = SB_DISABLED; 9415 sb_data_e2.common.p_func.vf_valid = FALSE; 9416 sb_data_p = (uint32_t *)&sb_data_e2; 9417 data_size = (sizeof(struct hc_status_block_data_e2) / 9418 sizeof(uint32_t)); 9419 } else { 9420 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9421 sb_data_e1x.common.state = SB_DISABLED; 9422 sb_data_e1x.common.p_func.vf_valid = FALSE; 9423 sb_data_p = (uint32_t *)&sb_data_e1x; 9424 data_size = (sizeof(struct hc_status_block_data_e1x) / 9425 sizeof(uint32_t)); 9426 } 9427 9428 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9429 9430 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 9431 0, CSTORM_STATUS_BLOCK_SIZE); 9432 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)), 9433 0, CSTORM_SYNC_BLOCK_SIZE); 9434 } 9435 9436 static void 9437 bxe_wr_sp_sb_data(struct bxe_softc *sc, 9438 struct hc_sp_status_block_data *sp_sb_data) 9439 { 9440 int i; 9441 9442 for (i = 0; 9443 i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t)); 9444 i++) { 9445 REG_WR(sc, 9446 (BAR_CSTRORM_INTMEM + 9447 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) + 9448 (i * sizeof(uint32_t))), 9449 *((uint32_t *)sp_sb_data + i)); 9450 } 9451 } 9452 9453 static void 9454 bxe_zero_sp_sb(struct bxe_softc *sc) 9455 { 9456 struct hc_sp_status_block_data sp_sb_data; 9457 9458 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9459 9460 sp_sb_data.state = SB_DISABLED; 9461 sp_sb_data.p_func.vf_valid = FALSE; 9462 9463 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9464 9465 bxe_fill(sc, 9466 (BAR_CSTRORM_INTMEM + 9467 CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))), 9468 0, CSTORM_SP_STATUS_BLOCK_SIZE); 9469 bxe_fill(sc, 9470 (BAR_CSTRORM_INTMEM + 9471 CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))), 9472 0, CSTORM_SP_SYNC_BLOCK_SIZE); 9473 } 9474 9475 static void 9476 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 9477 int igu_sb_id, 9478 int igu_seg_id) 9479 { 9480 hc_sm->igu_sb_id = igu_sb_id; 9481 hc_sm->igu_seg_id = igu_seg_id; 9482 hc_sm->timer_value = 0xFF; 9483 hc_sm->time_to_expire = 0xFFFFFFFF; 9484 } 9485 9486 static void 9487 bxe_map_sb_state_machines(struct hc_index_data *index_data) 9488 { 9489 /* zero out state machine indices */ 9490 9491 /* rx indices */ 9492 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9493 9494 /* tx indices */ 9495 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9496 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 9497 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 9498 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 9499 9500 /* map indices */ 9501 9502 /* rx indices */ 9503 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 9504 (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9505 9506 /* tx indices */ 9507 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 9508 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9509 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 9510 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9511 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 9512 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9513 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 9514 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9515 } 9516 9517 static void 9518 bxe_init_sb(struct bxe_softc *sc, 9519 bus_addr_t busaddr, 9520 int vfid, 9521 uint8_t vf_valid, 9522 int fw_sb_id, 9523 int igu_sb_id) 9524 { 9525 struct hc_status_block_data_e2 sb_data_e2; 9526 struct hc_status_block_data_e1x sb_data_e1x; 9527 struct hc_status_block_sm *hc_sm_p; 9528 uint32_t *sb_data_p; 9529 int igu_seg_id; 9530 int data_size; 9531 9532 if (CHIP_INT_MODE_IS_BC(sc)) { 9533 igu_seg_id = HC_SEG_ACCESS_NORM; 9534 } else { 9535 igu_seg_id = IGU_SEG_ACCESS_NORM; 9536 } 9537 9538 bxe_zero_fp_sb(sc, fw_sb_id); 9539 9540 if (!CHIP_IS_E1x(sc)) { 9541 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9542 sb_data_e2.common.state = SB_ENABLED; 9543 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc); 9544 sb_data_e2.common.p_func.vf_id = vfid; 9545 sb_data_e2.common.p_func.vf_valid = vf_valid; 9546 sb_data_e2.common.p_func.vnic_id = SC_VN(sc); 9547 sb_data_e2.common.same_igu_sb_1b = TRUE; 9548 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr); 9549 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr); 9550 hc_sm_p = sb_data_e2.common.state_machine; 9551 sb_data_p = (uint32_t *)&sb_data_e2; 9552 data_size = (sizeof(struct hc_status_block_data_e2) / 9553 sizeof(uint32_t)); 9554 bxe_map_sb_state_machines(sb_data_e2.index_data); 9555 } else { 9556 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9557 sb_data_e1x.common.state = SB_ENABLED; 9558 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc); 9559 sb_data_e1x.common.p_func.vf_id = 0xff; 9560 sb_data_e1x.common.p_func.vf_valid = FALSE; 9561 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc); 9562 sb_data_e1x.common.same_igu_sb_1b = TRUE; 9563 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr); 9564 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr); 9565 hc_sm_p = sb_data_e1x.common.state_machine; 9566 sb_data_p = (uint32_t *)&sb_data_e1x; 9567 data_size = (sizeof(struct hc_status_block_data_e1x) / 9568 sizeof(uint32_t)); 9569 bxe_map_sb_state_machines(sb_data_e1x.index_data); 9570 } 9571 9572 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id); 9573 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id); 9574 9575 BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id); 9576 9577 /* write indices to HW - PCI guarantees endianity of regpairs */ 9578 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9579 } 9580 9581 static inline uint8_t 9582 bxe_fp_qzone_id(struct bxe_fastpath *fp) 9583 { 9584 if (CHIP_IS_E1x(fp->sc)) { 9585 return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H); 9586 } else { 9587 return (fp->cl_id); 9588 } 9589 } 9590 9591 static inline uint32_t 9592 bxe_rx_ustorm_prods_offset(struct bxe_softc *sc, 9593 struct bxe_fastpath *fp) 9594 { 9595 uint32_t offset = BAR_USTRORM_INTMEM; 9596 9597 if (!CHIP_IS_E1x(sc)) { 9598 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 9599 } else { 9600 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id); 9601 } 9602 9603 return (offset); 9604 } 9605 9606 static void 9607 bxe_init_eth_fp(struct bxe_softc *sc, 9608 int idx) 9609 { 9610 struct bxe_fastpath *fp = &sc->fp[idx]; 9611 uint32_t cids[ECORE_MULTI_TX_COS] = { 0 }; 9612 unsigned long q_type = 0; 9613 int cos; 9614 9615 fp->sc = sc; 9616 fp->index = idx; 9617 9618 snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name), 9619 "bxe%d_fp%d_tx_lock", sc->unit, idx); 9620 mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF); 9621 9622 snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name), 9623 "bxe%d_fp%d_rx_lock", sc->unit, idx); 9624 mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF); 9625 9626 fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc)); 9627 fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc)); 9628 9629 fp->cl_id = (CHIP_IS_E1x(sc)) ? 9630 (SC_L_ID(sc) + idx) : 9631 /* want client ID same as IGU SB ID for non-E1 */ 9632 fp->igu_sb_id; 9633 fp->cl_qzone_id = bxe_fp_qzone_id(fp); 9634 9635 /* setup sb indices */ 9636 if (!CHIP_IS_E1x(sc)) { 9637 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values; 9638 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index; 9639 } else { 9640 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values; 9641 fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index; 9642 } 9643 9644 /* init shortcut */ 9645 fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp); 9646 9647 fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]; 9648 9649 /* 9650 * XXX If multiple CoS is ever supported then each fastpath structure 9651 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 9652 */ 9653 for (cos = 0; cos < sc->max_cos; cos++) { 9654 cids[cos] = idx; 9655 } 9656 fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]; 9657 9658 /* nothing more for a VF to do */ 9659 if (IS_VF(sc)) { 9660 return; 9661 } 9662 9663 bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE, 9664 fp->fw_sb_id, fp->igu_sb_id); 9665 9666 bxe_update_fp_sb_idx(fp); 9667 9668 /* Configure Queue State object */ 9669 bit_set(&q_type, ECORE_Q_TYPE_HAS_RX); 9670 bit_set(&q_type, ECORE_Q_TYPE_HAS_TX); 9671 9672 ecore_init_queue_obj(sc, 9673 &sc->sp_objs[idx].q_obj, 9674 fp->cl_id, 9675 cids, 9676 sc->max_cos, 9677 SC_FUNC(sc), 9678 BXE_SP(sc, q_rdata), 9679 BXE_SP_MAPPING(sc, q_rdata), 9680 q_type); 9681 9682 /* configure classification DBs */ 9683 ecore_init_mac_obj(sc, 9684 &sc->sp_objs[idx].mac_obj, 9685 fp->cl_id, 9686 idx, 9687 SC_FUNC(sc), 9688 BXE_SP(sc, mac_rdata), 9689 BXE_SP_MAPPING(sc, mac_rdata), 9690 ECORE_FILTER_MAC_PENDING, 9691 &sc->sp_state, 9692 ECORE_OBJ_TYPE_RX_TX, 9693 &sc->macs_pool); 9694 9695 BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n", 9696 idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id); 9697 } 9698 9699 static inline void 9700 bxe_update_rx_prod(struct bxe_softc *sc, 9701 struct bxe_fastpath *fp, 9702 uint16_t rx_bd_prod, 9703 uint16_t rx_cq_prod, 9704 uint16_t rx_sge_prod) 9705 { 9706 struct ustorm_eth_rx_producers rx_prods = { 0 }; 9707 uint32_t i; 9708 9709 /* update producers */ 9710 rx_prods.bd_prod = rx_bd_prod; 9711 rx_prods.cqe_prod = rx_cq_prod; 9712 rx_prods.sge_prod = rx_sge_prod; 9713 9714 /* 9715 * Make sure that the BD and SGE data is updated before updating the 9716 * producers since FW might read the BD/SGE right after the producer 9717 * is updated. 9718 * This is only applicable for weak-ordered memory model archs such 9719 * as IA-64. The following barrier is also mandatory since FW will 9720 * assumes BDs must have buffers. 9721 */ 9722 wmb(); 9723 9724 for (i = 0; i < (sizeof(rx_prods) / 4); i++) { 9725 REG_WR(sc, 9726 (fp->ustorm_rx_prods_offset + (i * 4)), 9727 ((uint32_t *)&rx_prods)[i]); 9728 } 9729 9730 wmb(); /* keep prod updates ordered */ 9731 9732 BLOGD(sc, DBG_RX, 9733 "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n", 9734 fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod); 9735 } 9736 9737 static void 9738 bxe_init_rx_rings(struct bxe_softc *sc) 9739 { 9740 struct bxe_fastpath *fp; 9741 int i; 9742 9743 for (i = 0; i < sc->num_queues; i++) { 9744 fp = &sc->fp[i]; 9745 9746 fp->rx_bd_cons = 0; 9747 9748 /* 9749 * Activate the BD ring... 9750 * Warning, this will generate an interrupt (to the TSTORM) 9751 * so this can only be done after the chip is initialized 9752 */ 9753 bxe_update_rx_prod(sc, fp, 9754 fp->rx_bd_prod, 9755 fp->rx_cq_prod, 9756 fp->rx_sge_prod); 9757 9758 if (i != 0) { 9759 continue; 9760 } 9761 9762 if (CHIP_IS_E1(sc)) { 9763 REG_WR(sc, 9764 (BAR_USTRORM_INTMEM + 9765 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))), 9766 U64_LO(fp->rcq_dma.paddr)); 9767 REG_WR(sc, 9768 (BAR_USTRORM_INTMEM + 9769 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4), 9770 U64_HI(fp->rcq_dma.paddr)); 9771 } 9772 } 9773 } 9774 9775 static void 9776 bxe_init_tx_ring_one(struct bxe_fastpath *fp) 9777 { 9778 SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1); 9779 fp->tx_db.data.zero_fill1 = 0; 9780 fp->tx_db.data.prod = 0; 9781 9782 fp->tx_pkt_prod = 0; 9783 fp->tx_pkt_cons = 0; 9784 fp->tx_bd_prod = 0; 9785 fp->tx_bd_cons = 0; 9786 fp->eth_q_stats.tx_pkts = 0; 9787 } 9788 9789 static inline void 9790 bxe_init_tx_rings(struct bxe_softc *sc) 9791 { 9792 int i; 9793 9794 for (i = 0; i < sc->num_queues; i++) { 9795 bxe_init_tx_ring_one(&sc->fp[i]); 9796 } 9797 } 9798 9799 static void 9800 bxe_init_def_sb(struct bxe_softc *sc) 9801 { 9802 struct host_sp_status_block *def_sb = sc->def_sb; 9803 bus_addr_t mapping = sc->def_sb_dma.paddr; 9804 int igu_sp_sb_index; 9805 int igu_seg_id; 9806 int port = SC_PORT(sc); 9807 int func = SC_FUNC(sc); 9808 int reg_offset, reg_offset_en5; 9809 uint64_t section; 9810 int index, sindex; 9811 struct hc_sp_status_block_data sp_sb_data; 9812 9813 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9814 9815 if (CHIP_INT_MODE_IS_BC(sc)) { 9816 igu_sp_sb_index = DEF_SB_IGU_ID; 9817 igu_seg_id = HC_SEG_ACCESS_DEF; 9818 } else { 9819 igu_sp_sb_index = sc->igu_dsb_id; 9820 igu_seg_id = IGU_SEG_ACCESS_DEF; 9821 } 9822 9823 /* attentions */ 9824 section = ((uint64_t)mapping + 9825 offsetof(struct host_sp_status_block, atten_status_block)); 9826 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 9827 sc->attn_state = 0; 9828 9829 reg_offset = (port) ? 9830 MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 9831 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 9832 reg_offset_en5 = (port) ? 9833 MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 9834 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0; 9835 9836 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 9837 /* take care of sig[0]..sig[4] */ 9838 for (sindex = 0; sindex < 4; sindex++) { 9839 sc->attn_group[index].sig[sindex] = 9840 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index))); 9841 } 9842 9843 if (!CHIP_IS_E1x(sc)) { 9844 /* 9845 * enable5 is separate from the rest of the registers, 9846 * and the address skip is 4 and not 16 between the 9847 * different groups 9848 */ 9849 sc->attn_group[index].sig[4] = 9850 REG_RD(sc, (reg_offset_en5 + (0x4 * index))); 9851 } else { 9852 sc->attn_group[index].sig[4] = 0; 9853 } 9854 } 9855 9856 if (sc->devinfo.int_block == INT_BLOCK_HC) { 9857 reg_offset = (port) ? 9858 HC_REG_ATTN_MSG1_ADDR_L : 9859 HC_REG_ATTN_MSG0_ADDR_L; 9860 REG_WR(sc, reg_offset, U64_LO(section)); 9861 REG_WR(sc, (reg_offset + 4), U64_HI(section)); 9862 } else if (!CHIP_IS_E1x(sc)) { 9863 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 9864 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 9865 } 9866 9867 section = ((uint64_t)mapping + 9868 offsetof(struct host_sp_status_block, sp_sb)); 9869 9870 bxe_zero_sp_sb(sc); 9871 9872 /* PCI guarantees endianity of regpair */ 9873 sp_sb_data.state = SB_ENABLED; 9874 sp_sb_data.host_sb_addr.lo = U64_LO(section); 9875 sp_sb_data.host_sb_addr.hi = U64_HI(section); 9876 sp_sb_data.igu_sb_id = igu_sp_sb_index; 9877 sp_sb_data.igu_seg_id = igu_seg_id; 9878 sp_sb_data.p_func.pf_id = func; 9879 sp_sb_data.p_func.vnic_id = SC_VN(sc); 9880 sp_sb_data.p_func.vf_id = 0xff; 9881 9882 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9883 9884 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 9885 } 9886 9887 static void 9888 bxe_init_sp_ring(struct bxe_softc *sc) 9889 { 9890 atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING); 9891 sc->spq_prod_idx = 0; 9892 sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS]; 9893 sc->spq_prod_bd = sc->spq; 9894 sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT); 9895 } 9896 9897 static void 9898 bxe_init_eq_ring(struct bxe_softc *sc) 9899 { 9900 union event_ring_elem *elem; 9901 int i; 9902 9903 for (i = 1; i <= NUM_EQ_PAGES; i++) { 9904 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1]; 9905 9906 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr + 9907 BCM_PAGE_SIZE * 9908 (i % NUM_EQ_PAGES))); 9909 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr + 9910 BCM_PAGE_SIZE * 9911 (i % NUM_EQ_PAGES))); 9912 } 9913 9914 sc->eq_cons = 0; 9915 sc->eq_prod = NUM_EQ_DESC; 9916 sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS]; 9917 9918 atomic_store_rel_long(&sc->eq_spq_left, 9919 (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING), 9920 NUM_EQ_DESC) - 1)); 9921 } 9922 9923 static void 9924 bxe_init_internal_common(struct bxe_softc *sc) 9925 { 9926 int i; 9927 9928 if (IS_MF_SI(sc)) { 9929 /* 9930 * In switch independent mode, the TSTORM needs to accept 9931 * packets that failed classification, since approximate match 9932 * mac addresses aren't written to NIG LLH. 9933 */ 9934 REG_WR8(sc, 9935 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 9936 2); 9937 } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */ 9938 REG_WR8(sc, 9939 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 9940 0); 9941 } 9942 9943 /* 9944 * Zero this manually as its initialization is currently missing 9945 * in the initTool. 9946 */ 9947 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) { 9948 REG_WR(sc, 9949 (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)), 9950 0); 9951 } 9952 9953 if (!CHIP_IS_E1x(sc)) { 9954 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET), 9955 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 9956 } 9957 } 9958 9959 static void 9960 bxe_init_internal(struct bxe_softc *sc, 9961 uint32_t load_code) 9962 { 9963 switch (load_code) { 9964 case FW_MSG_CODE_DRV_LOAD_COMMON: 9965 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 9966 bxe_init_internal_common(sc); 9967 /* no break */ 9968 9969 case FW_MSG_CODE_DRV_LOAD_PORT: 9970 /* nothing to do */ 9971 /* no break */ 9972 9973 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 9974 /* internal memory per function is initialized inside bxe_pf_init */ 9975 break; 9976 9977 default: 9978 BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code); 9979 break; 9980 } 9981 } 9982 9983 static void 9984 storm_memset_func_cfg(struct bxe_softc *sc, 9985 struct tstorm_eth_function_common_config *tcfg, 9986 uint16_t abs_fid) 9987 { 9988 uint32_t addr; 9989 size_t size; 9990 9991 addr = (BAR_TSTRORM_INTMEM + 9992 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid)); 9993 size = sizeof(struct tstorm_eth_function_common_config); 9994 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg); 9995 } 9996 9997 static void 9998 bxe_func_init(struct bxe_softc *sc, 9999 struct bxe_func_init_params *p) 10000 { 10001 struct tstorm_eth_function_common_config tcfg = { 0 }; 10002 10003 if (CHIP_IS_E1x(sc)) { 10004 storm_memset_func_cfg(sc, &tcfg, p->func_id); 10005 } 10006 10007 /* Enable the function in the FW */ 10008 storm_memset_vf_to_pf(sc, p->func_id, p->pf_id); 10009 storm_memset_func_en(sc, p->func_id, 1); 10010 10011 /* spq */ 10012 if (p->func_flgs & FUNC_FLG_SPQ) { 10013 storm_memset_spq_addr(sc, p->spq_map, p->func_id); 10014 REG_WR(sc, 10015 (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)), 10016 p->spq_prod); 10017 } 10018 } 10019 10020 /* 10021 * Calculates the sum of vn_min_rates. 10022 * It's needed for further normalizing of the min_rates. 10023 * Returns: 10024 * sum of vn_min_rates. 10025 * or 10026 * 0 - if all the min_rates are 0. 10027 * In the later case fainess algorithm should be deactivated. 10028 * If all min rates are not zero then those that are zeroes will be set to 1. 10029 */ 10030 static void 10031 bxe_calc_vn_min(struct bxe_softc *sc, 10032 struct cmng_init_input *input) 10033 { 10034 uint32_t vn_cfg; 10035 uint32_t vn_min_rate; 10036 int all_zero = 1; 10037 int vn; 10038 10039 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10040 vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10041 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 10042 FUNC_MF_CFG_MIN_BW_SHIFT) * 100); 10043 10044 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10045 /* skip hidden VNs */ 10046 vn_min_rate = 0; 10047 } else if (!vn_min_rate) { 10048 /* If min rate is zero - set it to 100 */ 10049 vn_min_rate = DEF_MIN_RATE; 10050 } else { 10051 all_zero = 0; 10052 } 10053 10054 input->vnic_min_rate[vn] = vn_min_rate; 10055 } 10056 10057 /* if ETS or all min rates are zeros - disable fairness */ 10058 if (BXE_IS_ETS_ENABLED(sc)) { 10059 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10060 BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n"); 10061 } else if (all_zero) { 10062 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10063 BLOGD(sc, DBG_LOAD, 10064 "Fariness disabled (all MIN values are zeroes)\n"); 10065 } else { 10066 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10067 } 10068 } 10069 10070 static inline uint16_t 10071 bxe_extract_max_cfg(struct bxe_softc *sc, 10072 uint32_t mf_cfg) 10073 { 10074 uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >> 10075 FUNC_MF_CFG_MAX_BW_SHIFT); 10076 10077 if (!max_cfg) { 10078 BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n"); 10079 max_cfg = 100; 10080 } 10081 10082 return (max_cfg); 10083 } 10084 10085 static void 10086 bxe_calc_vn_max(struct bxe_softc *sc, 10087 int vn, 10088 struct cmng_init_input *input) 10089 { 10090 uint16_t vn_max_rate; 10091 uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10092 uint32_t max_cfg; 10093 10094 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10095 vn_max_rate = 0; 10096 } else { 10097 max_cfg = bxe_extract_max_cfg(sc, vn_cfg); 10098 10099 if (IS_MF_SI(sc)) { 10100 /* max_cfg in percents of linkspeed */ 10101 vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100); 10102 } else { /* SD modes */ 10103 /* max_cfg is absolute in 100Mb units */ 10104 vn_max_rate = (max_cfg * 100); 10105 } 10106 } 10107 10108 BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 10109 10110 input->vnic_max_rate[vn] = vn_max_rate; 10111 } 10112 10113 static void 10114 bxe_cmng_fns_init(struct bxe_softc *sc, 10115 uint8_t read_cfg, 10116 uint8_t cmng_type) 10117 { 10118 struct cmng_init_input input; 10119 int vn; 10120 10121 memset(&input, 0, sizeof(struct cmng_init_input)); 10122 10123 input.port_rate = sc->link_vars.line_speed; 10124 10125 if (cmng_type == CMNG_FNS_MINMAX) { 10126 /* read mf conf from shmem */ 10127 if (read_cfg) { 10128 bxe_read_mf_cfg(sc); 10129 } 10130 10131 /* get VN min rate and enable fairness if not 0 */ 10132 bxe_calc_vn_min(sc, &input); 10133 10134 /* get VN max rate */ 10135 if (sc->port.pmf) { 10136 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10137 bxe_calc_vn_max(sc, vn, &input); 10138 } 10139 } 10140 10141 /* always enable rate shaping and fairness */ 10142 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 10143 10144 ecore_init_cmng(&input, &sc->cmng); 10145 return; 10146 } 10147 10148 /* rate shaping and fairness are disabled */ 10149 BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n"); 10150 } 10151 10152 static int 10153 bxe_get_cmng_fns_mode(struct bxe_softc *sc) 10154 { 10155 if (CHIP_REV_IS_SLOW(sc)) { 10156 return (CMNG_FNS_NONE); 10157 } 10158 10159 if (IS_MF(sc)) { 10160 return (CMNG_FNS_MINMAX); 10161 } 10162 10163 return (CMNG_FNS_NONE); 10164 } 10165 10166 static void 10167 storm_memset_cmng(struct bxe_softc *sc, 10168 struct cmng_init *cmng, 10169 uint8_t port) 10170 { 10171 int vn; 10172 int func; 10173 uint32_t addr; 10174 size_t size; 10175 10176 addr = (BAR_XSTRORM_INTMEM + 10177 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port)); 10178 size = sizeof(struct cmng_struct_per_port); 10179 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port); 10180 10181 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10182 func = func_by_vn(sc, vn); 10183 10184 addr = (BAR_XSTRORM_INTMEM + 10185 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func)); 10186 size = sizeof(struct rate_shaping_vars_per_vn); 10187 ecore_storm_memset_struct(sc, addr, size, 10188 (uint32_t *)&cmng->vnic.vnic_max_rate[vn]); 10189 10190 addr = (BAR_XSTRORM_INTMEM + 10191 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func)); 10192 size = sizeof(struct fairness_vars_per_vn); 10193 ecore_storm_memset_struct(sc, addr, size, 10194 (uint32_t *)&cmng->vnic.vnic_min_rate[vn]); 10195 } 10196 } 10197 10198 static void 10199 bxe_pf_init(struct bxe_softc *sc) 10200 { 10201 struct bxe_func_init_params func_init = { 0 }; 10202 struct event_ring_data eq_data = { { 0 } }; 10203 uint16_t flags; 10204 10205 if (!CHIP_IS_E1x(sc)) { 10206 /* reset IGU PF statistics: MSIX + ATTN */ 10207 /* PF */ 10208 REG_WR(sc, 10209 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10210 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10211 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10212 0); 10213 /* ATTN */ 10214 REG_WR(sc, 10215 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10216 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10217 (BXE_IGU_STAS_MSG_PF_CNT * 4) + 10218 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10219 0); 10220 } 10221 10222 /* function setup flags */ 10223 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); 10224 10225 /* 10226 * This flag is relevant for E1x only. 10227 * E2 doesn't have a TPA configuration in a function level. 10228 */ 10229 flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0; 10230 10231 func_init.func_flgs = flags; 10232 func_init.pf_id = SC_FUNC(sc); 10233 func_init.func_id = SC_FUNC(sc); 10234 func_init.spq_map = sc->spq_dma.paddr; 10235 func_init.spq_prod = sc->spq_prod_idx; 10236 10237 bxe_func_init(sc, &func_init); 10238 10239 memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port)); 10240 10241 /* 10242 * Congestion management values depend on the link rate. 10243 * There is no active link so initial link rate is set to 10Gbps. 10244 * When the link comes up the congestion management values are 10245 * re-calculated according to the actual link rate. 10246 */ 10247 sc->link_vars.line_speed = SPEED_10000; 10248 bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc)); 10249 10250 /* Only the PMF sets the HW */ 10251 if (sc->port.pmf) { 10252 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 10253 } 10254 10255 /* init Event Queue - PCI bus guarantees correct endainity */ 10256 eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr); 10257 eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr); 10258 eq_data.producer = sc->eq_prod; 10259 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 10260 eq_data.sb_id = DEF_SB_ID; 10261 storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc)); 10262 } 10263 10264 static void 10265 bxe_hc_int_enable(struct bxe_softc *sc) 10266 { 10267 int port = SC_PORT(sc); 10268 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10269 uint32_t val = REG_RD(sc, addr); 10270 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10271 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10272 (sc->intr_count == 1)) ? TRUE : FALSE; 10273 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10274 10275 if (msix) { 10276 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10277 HC_CONFIG_0_REG_INT_LINE_EN_0); 10278 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10279 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10280 if (single_msix) { 10281 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 10282 } 10283 } else if (msi) { 10284 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 10285 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10286 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10287 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10288 } else { 10289 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10290 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10291 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10292 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10293 10294 if (!CHIP_IS_E1(sc)) { 10295 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", 10296 val, port, addr); 10297 10298 REG_WR(sc, addr, val); 10299 10300 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 10301 } 10302 } 10303 10304 if (CHIP_IS_E1(sc)) { 10305 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF); 10306 } 10307 10308 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n", 10309 val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10310 10311 REG_WR(sc, addr, val); 10312 10313 /* ensure that HC_CONFIG is written before leading/trailing edge config */ 10314 mb(); 10315 10316 if (!CHIP_IS_E1(sc)) { 10317 /* init leading/trailing edge */ 10318 if (IS_MF(sc)) { 10319 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10320 if (sc->port.pmf) { 10321 /* enable nig and gpio3 attention */ 10322 val |= 0x1100; 10323 } 10324 } else { 10325 val = 0xffff; 10326 } 10327 10328 REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val); 10329 REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val); 10330 } 10331 10332 /* make sure that interrupts are indeed enabled from here on */ 10333 mb(); 10334 } 10335 10336 static void 10337 bxe_igu_int_enable(struct bxe_softc *sc) 10338 { 10339 uint32_t val; 10340 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10341 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10342 (sc->intr_count == 1)) ? TRUE : FALSE; 10343 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10344 10345 val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10346 10347 if (msix) { 10348 val &= ~(IGU_PF_CONF_INT_LINE_EN | 10349 IGU_PF_CONF_SINGLE_ISR_EN); 10350 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10351 IGU_PF_CONF_ATTN_BIT_EN); 10352 if (single_msix) { 10353 val |= IGU_PF_CONF_SINGLE_ISR_EN; 10354 } 10355 } else if (msi) { 10356 val &= ~IGU_PF_CONF_INT_LINE_EN; 10357 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10358 IGU_PF_CONF_ATTN_BIT_EN | 10359 IGU_PF_CONF_SINGLE_ISR_EN); 10360 } else { 10361 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 10362 val |= (IGU_PF_CONF_INT_LINE_EN | 10363 IGU_PF_CONF_ATTN_BIT_EN | 10364 IGU_PF_CONF_SINGLE_ISR_EN); 10365 } 10366 10367 /* clean previous status - need to configure igu prior to ack*/ 10368 if ((!msix) || single_msix) { 10369 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10370 bxe_ack_int(sc); 10371 } 10372 10373 val |= IGU_PF_CONF_FUNC_EN; 10374 10375 BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n", 10376 val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10377 10378 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10379 10380 mb(); 10381 10382 /* init leading/trailing edge */ 10383 if (IS_MF(sc)) { 10384 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10385 if (sc->port.pmf) { 10386 /* enable nig and gpio3 attention */ 10387 val |= 0x1100; 10388 } 10389 } else { 10390 val = 0xffff; 10391 } 10392 10393 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 10394 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 10395 10396 /* make sure that interrupts are indeed enabled from here on */ 10397 mb(); 10398 } 10399 10400 static void 10401 bxe_int_enable(struct bxe_softc *sc) 10402 { 10403 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10404 bxe_hc_int_enable(sc); 10405 } else { 10406 bxe_igu_int_enable(sc); 10407 } 10408 } 10409 10410 static void 10411 bxe_hc_int_disable(struct bxe_softc *sc) 10412 { 10413 int port = SC_PORT(sc); 10414 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10415 uint32_t val = REG_RD(sc, addr); 10416 10417 /* 10418 * In E1 we must use only PCI configuration space to disable MSI/MSIX 10419 * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC 10420 * block 10421 */ 10422 if (CHIP_IS_E1(sc)) { 10423 /* 10424 * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register 10425 * to prevent from HC sending interrupts after we exit the function 10426 */ 10427 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0); 10428 10429 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10430 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10431 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10432 } else { 10433 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10434 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10435 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10436 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10437 } 10438 10439 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr); 10440 10441 /* flush all outstanding writes */ 10442 mb(); 10443 10444 REG_WR(sc, addr, val); 10445 if (REG_RD(sc, addr) != val) { 10446 BLOGE(sc, "proper val not read from HC IGU!\n"); 10447 } 10448 } 10449 10450 static void 10451 bxe_igu_int_disable(struct bxe_softc *sc) 10452 { 10453 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10454 10455 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 10456 IGU_PF_CONF_INT_LINE_EN | 10457 IGU_PF_CONF_ATTN_BIT_EN); 10458 10459 BLOGD(sc, DBG_INTR, "write %x to IGU\n", val); 10460 10461 /* flush all outstanding writes */ 10462 mb(); 10463 10464 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10465 if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) { 10466 BLOGE(sc, "proper val not read from IGU!\n"); 10467 } 10468 } 10469 10470 static void 10471 bxe_int_disable(struct bxe_softc *sc) 10472 { 10473 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10474 bxe_hc_int_disable(sc); 10475 } else { 10476 bxe_igu_int_disable(sc); 10477 } 10478 } 10479 10480 static void 10481 bxe_nic_init(struct bxe_softc *sc, 10482 int load_code) 10483 { 10484 int i; 10485 10486 for (i = 0; i < sc->num_queues; i++) { 10487 bxe_init_eth_fp(sc, i); 10488 } 10489 10490 rmb(); /* ensure status block indices were read */ 10491 10492 bxe_init_rx_rings(sc); 10493 bxe_init_tx_rings(sc); 10494 10495 if (IS_VF(sc)) { 10496 return; 10497 } 10498 10499 /* initialize MOD_ABS interrupts */ 10500 elink_init_mod_abs_int(sc, &sc->link_vars, 10501 sc->devinfo.chip_id, 10502 sc->devinfo.shmem_base, 10503 sc->devinfo.shmem2_base, 10504 SC_PORT(sc)); 10505 10506 bxe_init_def_sb(sc); 10507 bxe_update_dsb_idx(sc); 10508 bxe_init_sp_ring(sc); 10509 bxe_init_eq_ring(sc); 10510 bxe_init_internal(sc, load_code); 10511 bxe_pf_init(sc); 10512 bxe_stats_init(sc); 10513 10514 /* flush all before enabling interrupts */ 10515 mb(); 10516 10517 bxe_int_enable(sc); 10518 10519 /* check for SPIO5 */ 10520 bxe_attn_int_deasserted0(sc, 10521 REG_RD(sc, 10522 (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 10523 SC_PORT(sc)*4)) & 10524 AEU_INPUTS_ATTN_BITS_SPIO5); 10525 } 10526 10527 static inline void 10528 bxe_init_objs(struct bxe_softc *sc) 10529 { 10530 /* mcast rules must be added to tx if tx switching is enabled */ 10531 ecore_obj_type o_type = 10532 (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX : 10533 ECORE_OBJ_TYPE_RX; 10534 10535 /* RX_MODE controlling object */ 10536 ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj); 10537 10538 /* multicast configuration controlling object */ 10539 ecore_init_mcast_obj(sc, 10540 &sc->mcast_obj, 10541 sc->fp[0].cl_id, 10542 sc->fp[0].index, 10543 SC_FUNC(sc), 10544 SC_FUNC(sc), 10545 BXE_SP(sc, mcast_rdata), 10546 BXE_SP_MAPPING(sc, mcast_rdata), 10547 ECORE_FILTER_MCAST_PENDING, 10548 &sc->sp_state, 10549 o_type); 10550 10551 /* Setup CAM credit pools */ 10552 ecore_init_mac_credit_pool(sc, 10553 &sc->macs_pool, 10554 SC_FUNC(sc), 10555 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10556 VNICS_PER_PATH(sc)); 10557 10558 ecore_init_vlan_credit_pool(sc, 10559 &sc->vlans_pool, 10560 SC_ABS_FUNC(sc) >> 1, 10561 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10562 VNICS_PER_PATH(sc)); 10563 10564 /* RSS configuration object */ 10565 ecore_init_rss_config_obj(sc, 10566 &sc->rss_conf_obj, 10567 sc->fp[0].cl_id, 10568 sc->fp[0].index, 10569 SC_FUNC(sc), 10570 SC_FUNC(sc), 10571 BXE_SP(sc, rss_rdata), 10572 BXE_SP_MAPPING(sc, rss_rdata), 10573 ECORE_FILTER_RSS_CONF_PENDING, 10574 &sc->sp_state, ECORE_OBJ_TYPE_RX); 10575 } 10576 10577 /* 10578 * Initialize the function. This must be called before sending CLIENT_SETUP 10579 * for the first client. 10580 */ 10581 static inline int 10582 bxe_func_start(struct bxe_softc *sc) 10583 { 10584 struct ecore_func_state_params func_params = { NULL }; 10585 struct ecore_func_start_params *start_params = &func_params.params.start; 10586 10587 /* Prepare parameters for function state transitions */ 10588 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 10589 10590 func_params.f_obj = &sc->func_obj; 10591 func_params.cmd = ECORE_F_CMD_START; 10592 10593 /* Function parameters */ 10594 start_params->mf_mode = sc->devinfo.mf_info.mf_mode; 10595 start_params->sd_vlan_tag = OVLAN(sc); 10596 10597 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 10598 start_params->network_cos_mode = STATIC_COS; 10599 } else { /* CHIP_IS_E1X */ 10600 start_params->network_cos_mode = FW_WRR; 10601 } 10602 10603 //start_params->gre_tunnel_mode = 0; 10604 //start_params->gre_tunnel_rss = 0; 10605 10606 return (ecore_func_state_change(sc, &func_params)); 10607 } 10608 10609 static int 10610 bxe_set_power_state(struct bxe_softc *sc, 10611 uint8_t state) 10612 { 10613 uint16_t pmcsr; 10614 10615 /* If there is no power capability, silently succeed */ 10616 if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) { 10617 BLOGW(sc, "No power capability\n"); 10618 return (0); 10619 } 10620 10621 pmcsr = pci_read_config(sc->dev, 10622 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10623 2); 10624 10625 switch (state) { 10626 case PCI_PM_D0: 10627 pci_write_config(sc->dev, 10628 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10629 ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2); 10630 10631 if (pmcsr & PCIM_PSTAT_DMASK) { 10632 /* delay required during transition out of D3hot */ 10633 DELAY(20000); 10634 } 10635 10636 break; 10637 10638 case PCI_PM_D3hot: 10639 /* XXX if there are other clients above don't shut down the power */ 10640 10641 /* don't shut down the power for emulation and FPGA */ 10642 if (CHIP_REV_IS_SLOW(sc)) { 10643 return (0); 10644 } 10645 10646 pmcsr &= ~PCIM_PSTAT_DMASK; 10647 pmcsr |= PCIM_PSTAT_D3; 10648 10649 if (sc->wol) { 10650 pmcsr |= PCIM_PSTAT_PMEENABLE; 10651 } 10652 10653 pci_write_config(sc->dev, 10654 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10655 pmcsr, 4); 10656 10657 /* 10658 * No more memory access after this point until device is brought back 10659 * to D0 state. 10660 */ 10661 break; 10662 10663 default: 10664 BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n", 10665 state, pmcsr); 10666 return (-1); 10667 } 10668 10669 return (0); 10670 } 10671 10672 10673 /* return true if succeeded to acquire the lock */ 10674 static uint8_t 10675 bxe_trylock_hw_lock(struct bxe_softc *sc, 10676 uint32_t resource) 10677 { 10678 uint32_t lock_status; 10679 uint32_t resource_bit = (1 << resource); 10680 int func = SC_FUNC(sc); 10681 uint32_t hw_lock_control_reg; 10682 10683 BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource); 10684 10685 /* Validating that the resource is within range */ 10686 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 10687 BLOGD(sc, DBG_LOAD, 10688 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 10689 resource, HW_LOCK_MAX_RESOURCE_VALUE); 10690 return (FALSE); 10691 } 10692 10693 if (func <= 5) { 10694 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 10695 } else { 10696 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 10697 } 10698 10699 /* try to acquire the lock */ 10700 REG_WR(sc, hw_lock_control_reg + 4, resource_bit); 10701 lock_status = REG_RD(sc, hw_lock_control_reg); 10702 if (lock_status & resource_bit) { 10703 return (TRUE); 10704 } 10705 10706 BLOGE(sc, "Failed to get a resource lock 0x%x func %d " 10707 "lock_status 0x%x resource_bit 0x%x\n", resource, func, 10708 lock_status, resource_bit); 10709 10710 return (FALSE); 10711 } 10712 10713 /* 10714 * Get the recovery leader resource id according to the engine this function 10715 * belongs to. Currently only only 2 engines is supported. 10716 */ 10717 static int 10718 bxe_get_leader_lock_resource(struct bxe_softc *sc) 10719 { 10720 if (SC_PATH(sc)) { 10721 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1); 10722 } else { 10723 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0); 10724 } 10725 } 10726 10727 /* try to acquire a leader lock for current engine */ 10728 static uint8_t 10729 bxe_trylock_leader_lock(struct bxe_softc *sc) 10730 { 10731 return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 10732 } 10733 10734 static int 10735 bxe_release_leader_lock(struct bxe_softc *sc) 10736 { 10737 return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 10738 } 10739 10740 /* close gates #2, #3 and #4 */ 10741 static void 10742 bxe_set_234_gates(struct bxe_softc *sc, 10743 uint8_t close) 10744 { 10745 uint32_t val; 10746 10747 /* gates #2 and #4a are closed/opened for "not E1" only */ 10748 if (!CHIP_IS_E1(sc)) { 10749 /* #4 */ 10750 REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 10751 /* #2 */ 10752 REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 10753 } 10754 10755 /* #3 */ 10756 if (CHIP_IS_E1x(sc)) { 10757 /* prevent interrupts from HC on both ports */ 10758 val = REG_RD(sc, HC_REG_CONFIG_1); 10759 REG_WR(sc, HC_REG_CONFIG_1, 10760 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 10761 (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 10762 10763 val = REG_RD(sc, HC_REG_CONFIG_0); 10764 REG_WR(sc, HC_REG_CONFIG_0, 10765 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 10766 (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 10767 } else { 10768 /* Prevent incomming interrupts in IGU */ 10769 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 10770 10771 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, 10772 (!close) ? 10773 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 10774 (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 10775 } 10776 10777 BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n", 10778 close ? "closing" : "opening"); 10779 10780 wmb(); 10781 } 10782 10783 /* poll for pending writes bit, it should get cleared in no more than 1s */ 10784 static int 10785 bxe_er_poll_igu_vq(struct bxe_softc *sc) 10786 { 10787 uint32_t cnt = 1000; 10788 uint32_t pend_bits = 0; 10789 10790 do { 10791 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS); 10792 10793 if (pend_bits == 0) { 10794 break; 10795 } 10796 10797 DELAY(1000); 10798 } while (--cnt > 0); 10799 10800 if (cnt == 0) { 10801 BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits); 10802 return (-1); 10803 } 10804 10805 return (0); 10806 } 10807 10808 #define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */ 10809 10810 static void 10811 bxe_clp_reset_prep(struct bxe_softc *sc, 10812 uint32_t *magic_val) 10813 { 10814 /* Do some magic... */ 10815 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 10816 *magic_val = val & SHARED_MF_CLP_MAGIC; 10817 MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 10818 } 10819 10820 /* restore the value of the 'magic' bit */ 10821 static void 10822 bxe_clp_reset_done(struct bxe_softc *sc, 10823 uint32_t magic_val) 10824 { 10825 /* Restore the 'magic' bit value... */ 10826 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 10827 MFCFG_WR(sc, shared_mf_config.clp_mb, 10828 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 10829 } 10830 10831 /* prepare for MCP reset, takes care of CLP configurations */ 10832 static void 10833 bxe_reset_mcp_prep(struct bxe_softc *sc, 10834 uint32_t *magic_val) 10835 { 10836 uint32_t shmem; 10837 uint32_t validity_offset; 10838 10839 /* set `magic' bit in order to save MF config */ 10840 if (!CHIP_IS_E1(sc)) { 10841 bxe_clp_reset_prep(sc, magic_val); 10842 } 10843 10844 /* get shmem offset */ 10845 shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 10846 validity_offset = 10847 offsetof(struct shmem_region, validity_map[SC_PORT(sc)]); 10848 10849 /* Clear validity map flags */ 10850 if (shmem > 0) { 10851 REG_WR(sc, shmem + validity_offset, 0); 10852 } 10853 } 10854 10855 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 10856 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 10857 10858 static void 10859 bxe_mcp_wait_one(struct bxe_softc *sc) 10860 { 10861 /* special handling for emulation and FPGA (10 times longer) */ 10862 if (CHIP_REV_IS_SLOW(sc)) { 10863 DELAY((MCP_ONE_TIMEOUT*10) * 1000); 10864 } else { 10865 DELAY((MCP_ONE_TIMEOUT) * 1000); 10866 } 10867 } 10868 10869 /* initialize shmem_base and waits for validity signature to appear */ 10870 static int 10871 bxe_init_shmem(struct bxe_softc *sc) 10872 { 10873 int cnt = 0; 10874 uint32_t val = 0; 10875 10876 do { 10877 sc->devinfo.shmem_base = 10878 sc->link_params.shmem_base = 10879 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 10880 10881 if (sc->devinfo.shmem_base) { 10882 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 10883 if (val & SHR_MEM_VALIDITY_MB) 10884 return (0); 10885 } 10886 10887 bxe_mcp_wait_one(sc); 10888 10889 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 10890 10891 BLOGE(sc, "BAD MCP validity signature\n"); 10892 10893 return (-1); 10894 } 10895 10896 static int 10897 bxe_reset_mcp_comp(struct bxe_softc *sc, 10898 uint32_t magic_val) 10899 { 10900 int rc = bxe_init_shmem(sc); 10901 10902 /* Restore the `magic' bit value */ 10903 if (!CHIP_IS_E1(sc)) { 10904 bxe_clp_reset_done(sc, magic_val); 10905 } 10906 10907 return (rc); 10908 } 10909 10910 static void 10911 bxe_pxp_prep(struct bxe_softc *sc) 10912 { 10913 if (!CHIP_IS_E1(sc)) { 10914 REG_WR(sc, PXP2_REG_RD_START_INIT, 0); 10915 REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0); 10916 wmb(); 10917 } 10918 } 10919 10920 /* 10921 * Reset the whole chip except for: 10922 * - PCIE core 10923 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit) 10924 * - IGU 10925 * - MISC (including AEU) 10926 * - GRC 10927 * - RBCN, RBCP 10928 */ 10929 static void 10930 bxe_process_kill_chip_reset(struct bxe_softc *sc, 10931 uint8_t global) 10932 { 10933 uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 10934 uint32_t global_bits2, stay_reset2; 10935 10936 /* 10937 * Bits that have to be set in reset_mask2 if we want to reset 'global' 10938 * (per chip) blocks. 10939 */ 10940 global_bits2 = 10941 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 10942 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 10943 10944 /* 10945 * Don't reset the following blocks. 10946 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 10947 * reset, as in 4 port device they might still be owned 10948 * by the MCP (there is only one leader per path). 10949 */ 10950 not_reset_mask1 = 10951 MISC_REGISTERS_RESET_REG_1_RST_HC | 10952 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 10953 MISC_REGISTERS_RESET_REG_1_RST_PXP; 10954 10955 not_reset_mask2 = 10956 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 10957 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 10958 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 10959 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 10960 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 10961 MISC_REGISTERS_RESET_REG_2_RST_GRC | 10962 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 10963 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 10964 MISC_REGISTERS_RESET_REG_2_RST_ATC | 10965 MISC_REGISTERS_RESET_REG_2_PGLC | 10966 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 10967 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 10968 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 10969 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 10970 MISC_REGISTERS_RESET_REG_2_UMAC0 | 10971 MISC_REGISTERS_RESET_REG_2_UMAC1; 10972 10973 /* 10974 * Keep the following blocks in reset: 10975 * - all xxMACs are handled by the elink code. 10976 */ 10977 stay_reset2 = 10978 MISC_REGISTERS_RESET_REG_2_XMAC | 10979 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 10980 10981 /* Full reset masks according to the chip */ 10982 reset_mask1 = 0xffffffff; 10983 10984 if (CHIP_IS_E1(sc)) 10985 reset_mask2 = 0xffff; 10986 else if (CHIP_IS_E1H(sc)) 10987 reset_mask2 = 0x1ffff; 10988 else if (CHIP_IS_E2(sc)) 10989 reset_mask2 = 0xfffff; 10990 else /* CHIP_IS_E3 */ 10991 reset_mask2 = 0x3ffffff; 10992 10993 /* Don't reset global blocks unless we need to */ 10994 if (!global) 10995 reset_mask2 &= ~global_bits2; 10996 10997 /* 10998 * In case of attention in the QM, we need to reset PXP 10999 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 11000 * because otherwise QM reset would release 'close the gates' shortly 11001 * before resetting the PXP, then the PSWRQ would send a write 11002 * request to PGLUE. Then when PXP is reset, PGLUE would try to 11003 * read the payload data from PSWWR, but PSWWR would not 11004 * respond. The write queue in PGLUE would stuck, dmae commands 11005 * would not return. Therefore it's important to reset the second 11006 * reset register (containing the 11007 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 11008 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 11009 * bit). 11010 */ 11011 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 11012 reset_mask2 & (~not_reset_mask2)); 11013 11014 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 11015 reset_mask1 & (~not_reset_mask1)); 11016 11017 mb(); 11018 wmb(); 11019 11020 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 11021 reset_mask2 & (~stay_reset2)); 11022 11023 mb(); 11024 wmb(); 11025 11026 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 11027 wmb(); 11028 } 11029 11030 static int 11031 bxe_process_kill(struct bxe_softc *sc, 11032 uint8_t global) 11033 { 11034 int cnt = 1000; 11035 uint32_t val = 0; 11036 uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 11037 uint32_t tags_63_32 = 0; 11038 11039 /* Empty the Tetris buffer, wait for 1s */ 11040 do { 11041 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT); 11042 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT); 11043 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0); 11044 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1); 11045 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2); 11046 if (CHIP_IS_E3(sc)) { 11047 tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32); 11048 } 11049 11050 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 11051 ((port_is_idle_0 & 0x1) == 0x1) && 11052 ((port_is_idle_1 & 0x1) == 0x1) && 11053 (pgl_exp_rom2 == 0xffffffff) && 11054 (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff))) 11055 break; 11056 DELAY(1000); 11057 } while (cnt-- > 0); 11058 11059 if (cnt <= 0) { 11060 BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there " 11061 "are still outstanding read requests after 1s! " 11062 "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, " 11063 "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 11064 sr_cnt, blk_cnt, port_is_idle_0, 11065 port_is_idle_1, pgl_exp_rom2); 11066 return (-1); 11067 } 11068 11069 mb(); 11070 11071 /* Close gates #2, #3 and #4 */ 11072 bxe_set_234_gates(sc, TRUE); 11073 11074 /* Poll for IGU VQs for 57712 and newer chips */ 11075 if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) { 11076 return (-1); 11077 } 11078 11079 /* XXX indicate that "process kill" is in progress to MCP */ 11080 11081 /* clear "unprepared" bit */ 11082 REG_WR(sc, MISC_REG_UNPREPARED, 0); 11083 mb(); 11084 11085 /* Make sure all is written to the chip before the reset */ 11086 wmb(); 11087 11088 /* 11089 * Wait for 1ms to empty GLUE and PCI-E core queues, 11090 * PSWHST, GRC and PSWRD Tetris buffer. 11091 */ 11092 DELAY(1000); 11093 11094 /* Prepare to chip reset: */ 11095 /* MCP */ 11096 if (global) { 11097 bxe_reset_mcp_prep(sc, &val); 11098 } 11099 11100 /* PXP */ 11101 bxe_pxp_prep(sc); 11102 mb(); 11103 11104 /* reset the chip */ 11105 bxe_process_kill_chip_reset(sc, global); 11106 mb(); 11107 11108 /* clear errors in PGB */ 11109 if (!CHIP_IS_E1(sc)) 11110 REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f); 11111 11112 /* Recover after reset: */ 11113 /* MCP */ 11114 if (global && bxe_reset_mcp_comp(sc, val)) { 11115 return (-1); 11116 } 11117 11118 /* XXX add resetting the NO_MCP mode DB here */ 11119 11120 /* Open the gates #2, #3 and #4 */ 11121 bxe_set_234_gates(sc, FALSE); 11122 11123 /* XXX 11124 * IGU/AEU preparation bring back the AEU/IGU to a reset state 11125 * re-enable attentions 11126 */ 11127 11128 return (0); 11129 } 11130 11131 static int 11132 bxe_leader_reset(struct bxe_softc *sc) 11133 { 11134 int rc = 0; 11135 uint8_t global = bxe_reset_is_global(sc); 11136 uint32_t load_code; 11137 11138 /* 11139 * If not going to reset MCP, load "fake" driver to reset HW while 11140 * driver is owner of the HW. 11141 */ 11142 if (!global && !BXE_NOMCP(sc)) { 11143 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 11144 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 11145 if (!load_code) { 11146 BLOGE(sc, "MCP response failure, aborting\n"); 11147 rc = -1; 11148 goto exit_leader_reset; 11149 } 11150 11151 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 11152 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 11153 BLOGE(sc, "MCP unexpected response, aborting\n"); 11154 rc = -1; 11155 goto exit_leader_reset2; 11156 } 11157 11158 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 11159 if (!load_code) { 11160 BLOGE(sc, "MCP response failure, aborting\n"); 11161 rc = -1; 11162 goto exit_leader_reset2; 11163 } 11164 } 11165 11166 /* try to recover after the failure */ 11167 if (bxe_process_kill(sc, global)) { 11168 BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc)); 11169 rc = -1; 11170 goto exit_leader_reset2; 11171 } 11172 11173 /* 11174 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver 11175 * state. 11176 */ 11177 bxe_set_reset_done(sc); 11178 if (global) { 11179 bxe_clear_reset_global(sc); 11180 } 11181 11182 exit_leader_reset2: 11183 11184 /* unload "fake driver" if it was loaded */ 11185 if (!global && !BXE_NOMCP(sc)) { 11186 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 11187 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 11188 } 11189 11190 exit_leader_reset: 11191 11192 sc->is_leader = 0; 11193 bxe_release_leader_lock(sc); 11194 11195 mb(); 11196 return (rc); 11197 } 11198 11199 /* 11200 * prepare INIT transition, parameters configured: 11201 * - HC configuration 11202 * - Queue's CDU context 11203 */ 11204 static void 11205 bxe_pf_q_prep_init(struct bxe_softc *sc, 11206 struct bxe_fastpath *fp, 11207 struct ecore_queue_init_params *init_params) 11208 { 11209 uint8_t cos; 11210 int cxt_index, cxt_offset; 11211 11212 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags); 11213 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags); 11214 11215 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags); 11216 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags); 11217 11218 /* HC rate */ 11219 init_params->rx.hc_rate = 11220 sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0; 11221 init_params->tx.hc_rate = 11222 sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0; 11223 11224 /* FW SB ID */ 11225 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id; 11226 11227 /* CQ index among the SB indices */ 11228 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11229 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 11230 11231 /* set maximum number of COSs supported by this queue */ 11232 init_params->max_cos = sc->max_cos; 11233 11234 BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n", 11235 fp->index, init_params->max_cos); 11236 11237 /* set the context pointers queue object */ 11238 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 11239 /* XXX change index/cid here if ever support multiple tx CoS */ 11240 /* fp->txdata[cos]->cid */ 11241 cxt_index = fp->index / ILT_PAGE_CIDS; 11242 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS); 11243 init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth; 11244 } 11245 } 11246 11247 /* set flags that are common for the Tx-only and not normal connections */ 11248 static unsigned long 11249 bxe_get_common_flags(struct bxe_softc *sc, 11250 struct bxe_fastpath *fp, 11251 uint8_t zero_stats) 11252 { 11253 unsigned long flags = 0; 11254 11255 /* PF driver will always initialize the Queue to an ACTIVE state */ 11256 bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags); 11257 11258 /* 11259 * tx only connections collect statistics (on the same index as the 11260 * parent connection). The statistics are zeroed when the parent 11261 * connection is initialized. 11262 */ 11263 11264 bxe_set_bit(ECORE_Q_FLG_STATS, &flags); 11265 if (zero_stats) { 11266 bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags); 11267 } 11268 11269 /* 11270 * tx only connections can support tx-switching, though their 11271 * CoS-ness doesn't survive the loopback 11272 */ 11273 if (sc->flags & BXE_TX_SWITCHING) { 11274 bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags); 11275 } 11276 11277 bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags); 11278 11279 return (flags); 11280 } 11281 11282 static unsigned long 11283 bxe_get_q_flags(struct bxe_softc *sc, 11284 struct bxe_fastpath *fp, 11285 uint8_t leading) 11286 { 11287 unsigned long flags = 0; 11288 11289 if (IS_MF_SD(sc)) { 11290 bxe_set_bit(ECORE_Q_FLG_OV, &flags); 11291 } 11292 11293 if (if_getcapenable(sc->ifp) & IFCAP_LRO) { 11294 bxe_set_bit(ECORE_Q_FLG_TPA, &flags); 11295 bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags); 11296 } 11297 11298 if (leading) { 11299 bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags); 11300 bxe_set_bit(ECORE_Q_FLG_MCAST, &flags); 11301 } 11302 11303 bxe_set_bit(ECORE_Q_FLG_VLAN, &flags); 11304 11305 /* merge with common flags */ 11306 return (flags | bxe_get_common_flags(sc, fp, TRUE)); 11307 } 11308 11309 static void 11310 bxe_pf_q_prep_general(struct bxe_softc *sc, 11311 struct bxe_fastpath *fp, 11312 struct ecore_general_setup_params *gen_init, 11313 uint8_t cos) 11314 { 11315 gen_init->stat_id = bxe_stats_id(fp); 11316 gen_init->spcl_id = fp->cl_id; 11317 gen_init->mtu = sc->mtu; 11318 gen_init->cos = cos; 11319 } 11320 11321 static void 11322 bxe_pf_rx_q_prep(struct bxe_softc *sc, 11323 struct bxe_fastpath *fp, 11324 struct rxq_pause_params *pause, 11325 struct ecore_rxq_setup_params *rxq_init) 11326 { 11327 uint8_t max_sge = 0; 11328 uint16_t sge_sz = 0; 11329 uint16_t tpa_agg_size = 0; 11330 11331 pause->sge_th_lo = SGE_TH_LO(sc); 11332 pause->sge_th_hi = SGE_TH_HI(sc); 11333 11334 /* validate SGE ring has enough to cross high threshold */ 11335 if (sc->dropless_fc && 11336 (pause->sge_th_hi + FW_PREFETCH_CNT) > 11337 (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) { 11338 BLOGW(sc, "sge ring threshold limit\n"); 11339 } 11340 11341 /* minimum max_aggregation_size is 2*MTU (two full buffers) */ 11342 tpa_agg_size = (2 * sc->mtu); 11343 if (tpa_agg_size < sc->max_aggregation_size) { 11344 tpa_agg_size = sc->max_aggregation_size; 11345 } 11346 11347 max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT; 11348 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 11349 (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT; 11350 sge_sz = (uint16_t)min(SGE_PAGES, 0xffff); 11351 11352 /* pause - not for e1 */ 11353 if (!CHIP_IS_E1(sc)) { 11354 pause->bd_th_lo = BD_TH_LO(sc); 11355 pause->bd_th_hi = BD_TH_HI(sc); 11356 11357 pause->rcq_th_lo = RCQ_TH_LO(sc); 11358 pause->rcq_th_hi = RCQ_TH_HI(sc); 11359 11360 /* validate rings have enough entries to cross high thresholds */ 11361 if (sc->dropless_fc && 11362 pause->bd_th_hi + FW_PREFETCH_CNT > 11363 sc->rx_ring_size) { 11364 BLOGW(sc, "rx bd ring threshold limit\n"); 11365 } 11366 11367 if (sc->dropless_fc && 11368 pause->rcq_th_hi + FW_PREFETCH_CNT > 11369 RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) { 11370 BLOGW(sc, "rcq ring threshold limit\n"); 11371 } 11372 11373 pause->pri_map = 1; 11374 } 11375 11376 /* rxq setup */ 11377 rxq_init->dscr_map = fp->rx_dma.paddr; 11378 rxq_init->sge_map = fp->rx_sge_dma.paddr; 11379 rxq_init->rcq_map = fp->rcq_dma.paddr; 11380 rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE); 11381 11382 /* 11383 * This should be a maximum number of data bytes that may be 11384 * placed on the BD (not including paddings). 11385 */ 11386 rxq_init->buf_sz = (fp->rx_buf_size - 11387 IP_HEADER_ALIGNMENT_PADDING); 11388 11389 rxq_init->cl_qzone_id = fp->cl_qzone_id; 11390 rxq_init->tpa_agg_sz = tpa_agg_size; 11391 rxq_init->sge_buf_sz = sge_sz; 11392 rxq_init->max_sges_pkt = max_sge; 11393 rxq_init->rss_engine_id = SC_FUNC(sc); 11394 rxq_init->mcast_engine_id = SC_FUNC(sc); 11395 11396 /* 11397 * Maximum number or simultaneous TPA aggregation for this Queue. 11398 * For PF Clients it should be the maximum available number. 11399 * VF driver(s) may want to define it to a smaller value. 11400 */ 11401 rxq_init->max_tpa_queues = MAX_AGG_QS(sc); 11402 11403 rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT; 11404 rxq_init->fw_sb_id = fp->fw_sb_id; 11405 11406 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11407 11408 /* 11409 * configure silent vlan removal 11410 * if multi function mode is afex, then mask default vlan 11411 */ 11412 if (IS_MF_AFEX(sc)) { 11413 rxq_init->silent_removal_value = 11414 sc->devinfo.mf_info.afex_def_vlan_tag; 11415 rxq_init->silent_removal_mask = EVL_VLID_MASK; 11416 } 11417 } 11418 11419 static void 11420 bxe_pf_tx_q_prep(struct bxe_softc *sc, 11421 struct bxe_fastpath *fp, 11422 struct ecore_txq_setup_params *txq_init, 11423 uint8_t cos) 11424 { 11425 /* 11426 * XXX If multiple CoS is ever supported then each fastpath structure 11427 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 11428 * fp->txdata[cos]->tx_dma.paddr; 11429 */ 11430 txq_init->dscr_map = fp->tx_dma.paddr; 11431 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 11432 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 11433 txq_init->fw_sb_id = fp->fw_sb_id; 11434 11435 /* 11436 * set the TSS leading client id for TX classfication to the 11437 * leading RSS client id 11438 */ 11439 txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id); 11440 } 11441 11442 /* 11443 * This function performs 2 steps in a queue state machine: 11444 * 1) RESET->INIT 11445 * 2) INIT->SETUP 11446 */ 11447 static int 11448 bxe_setup_queue(struct bxe_softc *sc, 11449 struct bxe_fastpath *fp, 11450 uint8_t leading) 11451 { 11452 struct ecore_queue_state_params q_params = { NULL }; 11453 struct ecore_queue_setup_params *setup_params = 11454 &q_params.params.setup; 11455 int rc; 11456 11457 BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index); 11458 11459 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 11460 11461 q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 11462 11463 /* we want to wait for completion in this context */ 11464 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 11465 11466 /* prepare the INIT parameters */ 11467 bxe_pf_q_prep_init(sc, fp, &q_params.params.init); 11468 11469 /* Set the command */ 11470 q_params.cmd = ECORE_Q_CMD_INIT; 11471 11472 /* Change the state to INIT */ 11473 rc = ecore_queue_state_change(sc, &q_params); 11474 if (rc) { 11475 BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc); 11476 return (rc); 11477 } 11478 11479 BLOGD(sc, DBG_LOAD, "init complete\n"); 11480 11481 /* now move the Queue to the SETUP state */ 11482 memset(setup_params, 0, sizeof(*setup_params)); 11483 11484 /* set Queue flags */ 11485 setup_params->flags = bxe_get_q_flags(sc, fp, leading); 11486 11487 /* set general SETUP parameters */ 11488 bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params, 11489 FIRST_TX_COS_INDEX); 11490 11491 bxe_pf_rx_q_prep(sc, fp, 11492 &setup_params->pause_params, 11493 &setup_params->rxq_params); 11494 11495 bxe_pf_tx_q_prep(sc, fp, 11496 &setup_params->txq_params, 11497 FIRST_TX_COS_INDEX); 11498 11499 /* Set the command */ 11500 q_params.cmd = ECORE_Q_CMD_SETUP; 11501 11502 /* change the state to SETUP */ 11503 rc = ecore_queue_state_change(sc, &q_params); 11504 if (rc) { 11505 BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc); 11506 return (rc); 11507 } 11508 11509 return (rc); 11510 } 11511 11512 static int 11513 bxe_setup_leading(struct bxe_softc *sc) 11514 { 11515 return (bxe_setup_queue(sc, &sc->fp[0], TRUE)); 11516 } 11517 11518 static int 11519 bxe_config_rss_pf(struct bxe_softc *sc, 11520 struct ecore_rss_config_obj *rss_obj, 11521 uint8_t config_hash) 11522 { 11523 struct ecore_config_rss_params params = { NULL }; 11524 int i; 11525 11526 /* 11527 * Although RSS is meaningless when there is a single HW queue we 11528 * still need it enabled in order to have HW Rx hash generated. 11529 */ 11530 11531 params.rss_obj = rss_obj; 11532 11533 bxe_set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 11534 11535 bxe_set_bit(ECORE_RSS_MODE_REGULAR, ¶ms.rss_flags); 11536 11537 /* RSS configuration */ 11538 bxe_set_bit(ECORE_RSS_IPV4, ¶ms.rss_flags); 11539 bxe_set_bit(ECORE_RSS_IPV4_TCP, ¶ms.rss_flags); 11540 bxe_set_bit(ECORE_RSS_IPV6, ¶ms.rss_flags); 11541 bxe_set_bit(ECORE_RSS_IPV6_TCP, ¶ms.rss_flags); 11542 if (rss_obj->udp_rss_v4) { 11543 bxe_set_bit(ECORE_RSS_IPV4_UDP, ¶ms.rss_flags); 11544 } 11545 if (rss_obj->udp_rss_v6) { 11546 bxe_set_bit(ECORE_RSS_IPV6_UDP, ¶ms.rss_flags); 11547 } 11548 11549 /* Hash bits */ 11550 params.rss_result_mask = MULTI_MASK; 11551 11552 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 11553 11554 if (config_hash) { 11555 /* RSS keys */ 11556 for (i = 0; i < sizeof(params.rss_key) / 4; i++) { 11557 params.rss_key[i] = arc4random(); 11558 } 11559 11560 bxe_set_bit(ECORE_RSS_SET_SRCH, ¶ms.rss_flags); 11561 } 11562 11563 return (ecore_config_rss(sc, ¶ms)); 11564 } 11565 11566 static int 11567 bxe_config_rss_eth(struct bxe_softc *sc, 11568 uint8_t config_hash) 11569 { 11570 return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash)); 11571 } 11572 11573 static int 11574 bxe_init_rss_pf(struct bxe_softc *sc) 11575 { 11576 uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc); 11577 int i; 11578 11579 /* 11580 * Prepare the initial contents of the indirection table if 11581 * RSS is enabled 11582 */ 11583 for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) { 11584 sc->rss_conf_obj.ind_table[i] = 11585 (sc->fp->cl_id + (i % num_eth_queues)); 11586 } 11587 11588 if (sc->udp_rss) { 11589 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1; 11590 } 11591 11592 /* 11593 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 11594 * per-port, so if explicit configuration is needed, do it only 11595 * for a PMF. 11596 * 11597 * For 57712 and newer it's a per-function configuration. 11598 */ 11599 return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc))); 11600 } 11601 11602 static int 11603 bxe_set_mac_one(struct bxe_softc *sc, 11604 uint8_t *mac, 11605 struct ecore_vlan_mac_obj *obj, 11606 uint8_t set, 11607 int mac_type, 11608 unsigned long *ramrod_flags) 11609 { 11610 struct ecore_vlan_mac_ramrod_params ramrod_param; 11611 int rc; 11612 11613 memset(&ramrod_param, 0, sizeof(ramrod_param)); 11614 11615 /* fill in general parameters */ 11616 ramrod_param.vlan_mac_obj = obj; 11617 ramrod_param.ramrod_flags = *ramrod_flags; 11618 11619 /* fill a user request section if needed */ 11620 if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) { 11621 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 11622 11623 bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 11624 11625 /* Set the command: ADD or DEL */ 11626 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD : 11627 ECORE_VLAN_MAC_DEL; 11628 } 11629 11630 rc = ecore_config_vlan_mac(sc, &ramrod_param); 11631 11632 if (rc == ECORE_EXISTS) { 11633 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 11634 /* do not treat adding same MAC as error */ 11635 rc = 0; 11636 } else if (rc < 0) { 11637 BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc); 11638 } 11639 11640 return (rc); 11641 } 11642 11643 static int 11644 bxe_set_eth_mac(struct bxe_softc *sc, 11645 uint8_t set) 11646 { 11647 unsigned long ramrod_flags = 0; 11648 11649 BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n"); 11650 11651 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 11652 11653 /* Eth MAC is set on RSS leading client (fp[0]) */ 11654 return (bxe_set_mac_one(sc, sc->link_params.mac_addr, 11655 &sc->sp_objs->mac_obj, 11656 set, ECORE_ETH_MAC, &ramrod_flags)); 11657 } 11658 11659 static int 11660 bxe_get_cur_phy_idx(struct bxe_softc *sc) 11661 { 11662 uint32_t sel_phy_idx = 0; 11663 11664 if (sc->link_params.num_phys <= 1) { 11665 return (ELINK_INT_PHY); 11666 } 11667 11668 if (sc->link_vars.link_up) { 11669 sel_phy_idx = ELINK_EXT_PHY1; 11670 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */ 11671 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 11672 (sc->link_params.phy[ELINK_EXT_PHY2].supported & 11673 ELINK_SUPPORTED_FIBRE)) 11674 sel_phy_idx = ELINK_EXT_PHY2; 11675 } else { 11676 switch (elink_phy_selection(&sc->link_params)) { 11677 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 11678 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 11679 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 11680 sel_phy_idx = ELINK_EXT_PHY1; 11681 break; 11682 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 11683 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 11684 sel_phy_idx = ELINK_EXT_PHY2; 11685 break; 11686 } 11687 } 11688 11689 return (sel_phy_idx); 11690 } 11691 11692 static int 11693 bxe_get_link_cfg_idx(struct bxe_softc *sc) 11694 { 11695 uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc); 11696 11697 /* 11698 * The selected activated PHY is always after swapping (in case PHY 11699 * swapping is enabled). So when swapping is enabled, we need to reverse 11700 * the configuration 11701 */ 11702 11703 if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 11704 if (sel_phy_idx == ELINK_EXT_PHY1) 11705 sel_phy_idx = ELINK_EXT_PHY2; 11706 else if (sel_phy_idx == ELINK_EXT_PHY2) 11707 sel_phy_idx = ELINK_EXT_PHY1; 11708 } 11709 11710 return (ELINK_LINK_CONFIG_IDX(sel_phy_idx)); 11711 } 11712 11713 static void 11714 bxe_set_requested_fc(struct bxe_softc *sc) 11715 { 11716 /* 11717 * Initialize link parameters structure variables 11718 * It is recommended to turn off RX FC for jumbo frames 11719 * for better performance 11720 */ 11721 if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) { 11722 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX; 11723 } else { 11724 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH; 11725 } 11726 } 11727 11728 static void 11729 bxe_calc_fc_adv(struct bxe_softc *sc) 11730 { 11731 uint8_t cfg_idx = bxe_get_link_cfg_idx(sc); 11732 switch (sc->link_vars.ieee_fc & 11733 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 11734 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE: 11735 default: 11736 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 11737 ADVERTISED_Pause); 11738 break; 11739 11740 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 11741 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 11742 ADVERTISED_Pause); 11743 break; 11744 11745 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 11746 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 11747 break; 11748 } 11749 } 11750 11751 static uint16_t 11752 bxe_get_mf_speed(struct bxe_softc *sc) 11753 { 11754 uint16_t line_speed = sc->link_vars.line_speed; 11755 if (IS_MF(sc)) { 11756 uint16_t maxCfg = 11757 bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]); 11758 11759 /* calculate the current MAX line speed limit for the MF devices */ 11760 if (IS_MF_SI(sc)) { 11761 line_speed = (line_speed * maxCfg) / 100; 11762 } else { /* SD mode */ 11763 uint16_t vn_max_rate = maxCfg * 100; 11764 11765 if (vn_max_rate < line_speed) { 11766 line_speed = vn_max_rate; 11767 } 11768 } 11769 } 11770 11771 return (line_speed); 11772 } 11773 11774 static void 11775 bxe_fill_report_data(struct bxe_softc *sc, 11776 struct bxe_link_report_data *data) 11777 { 11778 uint16_t line_speed = bxe_get_mf_speed(sc); 11779 11780 memset(data, 0, sizeof(*data)); 11781 11782 /* fill the report data with the effective line speed */ 11783 data->line_speed = line_speed; 11784 11785 /* Link is down */ 11786 if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) { 11787 bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags); 11788 } 11789 11790 /* Full DUPLEX */ 11791 if (sc->link_vars.duplex == DUPLEX_FULL) { 11792 bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags); 11793 } 11794 11795 /* Rx Flow Control is ON */ 11796 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) { 11797 bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags); 11798 } 11799 11800 /* Tx Flow Control is ON */ 11801 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 11802 bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags); 11803 } 11804 } 11805 11806 /* report link status to OS, should be called under phy_lock */ 11807 static void 11808 bxe_link_report_locked(struct bxe_softc *sc) 11809 { 11810 struct bxe_link_report_data cur_data; 11811 11812 /* reread mf_cfg */ 11813 if (IS_PF(sc) && !CHIP_IS_E1(sc)) { 11814 bxe_read_mf_cfg(sc); 11815 } 11816 11817 /* Read the current link report info */ 11818 bxe_fill_report_data(sc, &cur_data); 11819 11820 /* Don't report link down or exactly the same link status twice */ 11821 if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) || 11822 (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11823 &sc->last_reported_link.link_report_flags) && 11824 bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11825 &cur_data.link_report_flags))) { 11826 return; 11827 } 11828 11829 sc->link_cnt++; 11830 11831 /* report new link params and remember the state for the next time */ 11832 memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data)); 11833 11834 if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11835 &cur_data.link_report_flags)) { 11836 if_link_state_change(sc->ifp, LINK_STATE_DOWN); 11837 BLOGI(sc, "NIC Link is Down\n"); 11838 } else { 11839 const char *duplex; 11840 const char *flow; 11841 11842 if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX, 11843 &cur_data.link_report_flags)) { 11844 duplex = "full"; 11845 } else { 11846 duplex = "half"; 11847 } 11848 11849 /* 11850 * Handle the FC at the end so that only these flags would be 11851 * possibly set. This way we may easily check if there is no FC 11852 * enabled. 11853 */ 11854 if (cur_data.link_report_flags) { 11855 if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11856 &cur_data.link_report_flags) && 11857 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11858 &cur_data.link_report_flags)) { 11859 flow = "ON - receive & transmit"; 11860 } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11861 &cur_data.link_report_flags) && 11862 !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11863 &cur_data.link_report_flags)) { 11864 flow = "ON - receive"; 11865 } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11866 &cur_data.link_report_flags) && 11867 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11868 &cur_data.link_report_flags)) { 11869 flow = "ON - transmit"; 11870 } else { 11871 flow = "none"; /* possible? */ 11872 } 11873 } else { 11874 flow = "none"; 11875 } 11876 11877 if_link_state_change(sc->ifp, LINK_STATE_UP); 11878 BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 11879 cur_data.line_speed, duplex, flow); 11880 } 11881 } 11882 11883 static void 11884 bxe_link_report(struct bxe_softc *sc) 11885 { 11886 bxe_acquire_phy_lock(sc); 11887 bxe_link_report_locked(sc); 11888 bxe_release_phy_lock(sc); 11889 } 11890 11891 static void 11892 bxe_link_status_update(struct bxe_softc *sc) 11893 { 11894 if (sc->state != BXE_STATE_OPEN) { 11895 return; 11896 } 11897 11898 if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) { 11899 elink_link_status_update(&sc->link_params, &sc->link_vars); 11900 } else { 11901 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half | 11902 ELINK_SUPPORTED_10baseT_Full | 11903 ELINK_SUPPORTED_100baseT_Half | 11904 ELINK_SUPPORTED_100baseT_Full | 11905 ELINK_SUPPORTED_1000baseT_Full | 11906 ELINK_SUPPORTED_2500baseX_Full | 11907 ELINK_SUPPORTED_10000baseT_Full | 11908 ELINK_SUPPORTED_TP | 11909 ELINK_SUPPORTED_FIBRE | 11910 ELINK_SUPPORTED_Autoneg | 11911 ELINK_SUPPORTED_Pause | 11912 ELINK_SUPPORTED_Asym_Pause); 11913 sc->port.advertising[0] = sc->port.supported[0]; 11914 11915 sc->link_params.sc = sc; 11916 sc->link_params.port = SC_PORT(sc); 11917 sc->link_params.req_duplex[0] = DUPLEX_FULL; 11918 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE; 11919 sc->link_params.req_line_speed[0] = SPEED_10000; 11920 sc->link_params.speed_cap_mask[0] = 0x7f0000; 11921 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G; 11922 11923 if (CHIP_REV_IS_FPGA(sc)) { 11924 sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC; 11925 sc->link_vars.line_speed = ELINK_SPEED_1000; 11926 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 11927 LINK_STATUS_SPEED_AND_DUPLEX_1000TFD); 11928 } else { 11929 sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC; 11930 sc->link_vars.line_speed = ELINK_SPEED_10000; 11931 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 11932 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 11933 } 11934 11935 sc->link_vars.link_up = 1; 11936 11937 sc->link_vars.duplex = DUPLEX_FULL; 11938 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE; 11939 11940 if (IS_PF(sc)) { 11941 REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0); 11942 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11943 bxe_link_report(sc); 11944 } 11945 } 11946 11947 if (IS_PF(sc)) { 11948 if (sc->link_vars.link_up) { 11949 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11950 } else { 11951 bxe_stats_handle(sc, STATS_EVENT_STOP); 11952 } 11953 bxe_link_report(sc); 11954 } else { 11955 bxe_link_report(sc); 11956 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11957 } 11958 } 11959 11960 static int 11961 bxe_initial_phy_init(struct bxe_softc *sc, 11962 int load_mode) 11963 { 11964 int rc, cfg_idx = bxe_get_link_cfg_idx(sc); 11965 uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx]; 11966 struct elink_params *lp = &sc->link_params; 11967 11968 bxe_set_requested_fc(sc); 11969 11970 if (CHIP_REV_IS_SLOW(sc)) { 11971 uint32_t bond = CHIP_BOND_ID(sc); 11972 uint32_t feat = 0; 11973 11974 if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) { 11975 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 11976 } else if (bond & 0x4) { 11977 if (CHIP_IS_E3(sc)) { 11978 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC; 11979 } else { 11980 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 11981 } 11982 } else if (bond & 0x8) { 11983 if (CHIP_IS_E3(sc)) { 11984 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC; 11985 } else { 11986 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 11987 } 11988 } 11989 11990 /* disable EMAC for E3 and above */ 11991 if (bond & 0x2) { 11992 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 11993 } 11994 11995 sc->link_params.feature_config_flags |= feat; 11996 } 11997 11998 bxe_acquire_phy_lock(sc); 11999 12000 if (load_mode == LOAD_DIAG) { 12001 lp->loopback_mode = ELINK_LOOPBACK_XGXS; 12002 /* Prefer doing PHY loopback at 10G speed, if possible */ 12003 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) { 12004 if (lp->speed_cap_mask[cfg_idx] & 12005 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 12006 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000; 12007 } else { 12008 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000; 12009 } 12010 } 12011 } 12012 12013 if (load_mode == LOAD_LOOPBACK_EXT) { 12014 lp->loopback_mode = ELINK_LOOPBACK_EXT; 12015 } 12016 12017 rc = elink_phy_init(&sc->link_params, &sc->link_vars); 12018 12019 bxe_release_phy_lock(sc); 12020 12021 bxe_calc_fc_adv(sc); 12022 12023 if (sc->link_vars.link_up) { 12024 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12025 bxe_link_report(sc); 12026 } 12027 12028 if (!CHIP_REV_IS_SLOW(sc)) { 12029 bxe_periodic_start(sc); 12030 } 12031 12032 sc->link_params.req_line_speed[cfg_idx] = req_line_speed; 12033 return (rc); 12034 } 12035 12036 /* must be called under IF_ADDR_LOCK */ 12037 12038 static int 12039 bxe_set_mc_list(struct bxe_softc *sc) 12040 { 12041 struct ecore_mcast_ramrod_params rparam = { NULL }; 12042 int rc = 0; 12043 int mc_count = 0; 12044 int mcnt, i; 12045 struct ecore_mcast_list_elem *mc_mac, *mc_mac_start; 12046 unsigned char *mta; 12047 if_t ifp = sc->ifp; 12048 12049 mc_count = if_multiaddr_count(ifp, -1);/* XXX they don't have a limit */ 12050 if (!mc_count) 12051 return (0); 12052 12053 mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN * 12054 mc_count, M_DEVBUF, M_NOWAIT); 12055 12056 if(mta == NULL) { 12057 BLOGE(sc, "Failed to allocate temp mcast list\n"); 12058 return (-1); 12059 } 12060 bzero(mta, (sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count)); 12061 12062 mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, (M_NOWAIT | M_ZERO)); 12063 mc_mac_start = mc_mac; 12064 12065 if (!mc_mac) { 12066 free(mta, M_DEVBUF); 12067 BLOGE(sc, "Failed to allocate temp mcast list\n"); 12068 return (-1); 12069 } 12070 bzero(mc_mac, (sizeof(*mc_mac) * mc_count)); 12071 12072 /* mta and mcnt not expected to be different */ 12073 if_multiaddr_array(ifp, mta, &mcnt, mc_count); 12074 12075 12076 rparam.mcast_obj = &sc->mcast_obj; 12077 ECORE_LIST_INIT(&rparam.mcast_list); 12078 12079 for(i=0; i< mcnt; i++) { 12080 12081 mc_mac->mac = (uint8_t *)(mta + (i * ETHER_ADDR_LEN)); 12082 ECORE_LIST_PUSH_TAIL(&mc_mac->link, &rparam.mcast_list); 12083 12084 BLOGD(sc, DBG_LOAD, 12085 "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n", 12086 mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2], 12087 mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]); 12088 12089 mc_mac++; 12090 } 12091 rparam.mcast_list_len = mc_count; 12092 12093 BXE_MCAST_LOCK(sc); 12094 12095 /* first, clear all configured multicast MACs */ 12096 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 12097 if (rc < 0) { 12098 BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc); 12099 BXE_MCAST_UNLOCK(sc); 12100 free(mc_mac_start, M_DEVBUF); 12101 free(mta, M_DEVBUF); 12102 return (rc); 12103 } 12104 12105 /* Now add the new MACs */ 12106 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD); 12107 if (rc < 0) { 12108 BLOGE(sc, "Failed to set new mcast config (%d)\n", rc); 12109 } 12110 12111 BXE_MCAST_UNLOCK(sc); 12112 12113 free(mc_mac_start, M_DEVBUF); 12114 free(mta, M_DEVBUF); 12115 12116 return (rc); 12117 } 12118 12119 static int 12120 bxe_set_uc_list(struct bxe_softc *sc) 12121 { 12122 if_t ifp = sc->ifp; 12123 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 12124 struct ifaddr *ifa; 12125 unsigned long ramrod_flags = 0; 12126 int rc; 12127 12128 #if __FreeBSD_version < 800000 12129 IF_ADDR_LOCK(ifp); 12130 #else 12131 if_addr_rlock(ifp); 12132 #endif 12133 12134 /* first schedule a cleanup up of old configuration */ 12135 rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE); 12136 if (rc < 0) { 12137 BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc); 12138 #if __FreeBSD_version < 800000 12139 IF_ADDR_UNLOCK(ifp); 12140 #else 12141 if_addr_runlock(ifp); 12142 #endif 12143 return (rc); 12144 } 12145 12146 ifa = if_getifaddr(ifp); /* XXX Is this structure */ 12147 while (ifa) { 12148 if (ifa->ifa_addr->sa_family != AF_LINK) { 12149 ifa = TAILQ_NEXT(ifa, ifa_link); 12150 continue; 12151 } 12152 12153 rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr), 12154 mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags); 12155 if (rc == -EEXIST) { 12156 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12157 /* do not treat adding same MAC as an error */ 12158 rc = 0; 12159 } else if (rc < 0) { 12160 BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc); 12161 #if __FreeBSD_version < 800000 12162 IF_ADDR_UNLOCK(ifp); 12163 #else 12164 if_addr_runlock(ifp); 12165 #endif 12166 return (rc); 12167 } 12168 12169 ifa = TAILQ_NEXT(ifa, ifa_link); 12170 } 12171 12172 #if __FreeBSD_version < 800000 12173 IF_ADDR_UNLOCK(ifp); 12174 #else 12175 if_addr_runlock(ifp); 12176 #endif 12177 12178 /* Execute the pending commands */ 12179 bit_set(&ramrod_flags, RAMROD_CONT); 12180 return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */, 12181 ECORE_UC_LIST_MAC, &ramrod_flags)); 12182 } 12183 12184 static void 12185 bxe_set_rx_mode(struct bxe_softc *sc) 12186 { 12187 if_t ifp = sc->ifp; 12188 uint32_t rx_mode = BXE_RX_MODE_NORMAL; 12189 12190 if (sc->state != BXE_STATE_OPEN) { 12191 BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state); 12192 return; 12193 } 12194 12195 BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp)); 12196 12197 if (if_getflags(ifp) & IFF_PROMISC) { 12198 rx_mode = BXE_RX_MODE_PROMISC; 12199 } else if ((if_getflags(ifp) & IFF_ALLMULTI) || 12200 ((if_getamcount(ifp) > BXE_MAX_MULTICAST) && 12201 CHIP_IS_E1(sc))) { 12202 rx_mode = BXE_RX_MODE_ALLMULTI; 12203 } else { 12204 if (IS_PF(sc)) { 12205 /* some multicasts */ 12206 if (bxe_set_mc_list(sc) < 0) { 12207 rx_mode = BXE_RX_MODE_ALLMULTI; 12208 } 12209 if (bxe_set_uc_list(sc) < 0) { 12210 rx_mode = BXE_RX_MODE_PROMISC; 12211 } 12212 } 12213 } 12214 12215 sc->rx_mode = rx_mode; 12216 12217 /* schedule the rx_mode command */ 12218 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 12219 BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n"); 12220 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 12221 return; 12222 } 12223 12224 if (IS_PF(sc)) { 12225 bxe_set_storm_rx_mode(sc); 12226 } 12227 } 12228 12229 12230 /* update flags in shmem */ 12231 static void 12232 bxe_update_drv_flags(struct bxe_softc *sc, 12233 uint32_t flags, 12234 uint32_t set) 12235 { 12236 uint32_t drv_flags; 12237 12238 if (SHMEM2_HAS(sc, drv_flags)) { 12239 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12240 drv_flags = SHMEM2_RD(sc, drv_flags); 12241 12242 if (set) { 12243 SET_FLAGS(drv_flags, flags); 12244 } else { 12245 RESET_FLAGS(drv_flags, flags); 12246 } 12247 12248 SHMEM2_WR(sc, drv_flags, drv_flags); 12249 BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags); 12250 12251 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12252 } 12253 } 12254 12255 /* periodic timer callout routine, only runs when the interface is up */ 12256 12257 static void 12258 bxe_periodic_callout_func(void *xsc) 12259 { 12260 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12261 int i; 12262 12263 if (!BXE_CORE_TRYLOCK(sc)) { 12264 /* just bail and try again next time */ 12265 12266 if ((sc->state == BXE_STATE_OPEN) && 12267 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12268 /* schedule the next periodic callout */ 12269 callout_reset(&sc->periodic_callout, hz, 12270 bxe_periodic_callout_func, sc); 12271 } 12272 12273 return; 12274 } 12275 12276 if ((sc->state != BXE_STATE_OPEN) || 12277 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) { 12278 BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state); 12279 BXE_CORE_UNLOCK(sc); 12280 return; 12281 } 12282 12283 /* Check for TX timeouts on any fastpath. */ 12284 FOR_EACH_QUEUE(sc, i) { 12285 if (bxe_watchdog(sc, &sc->fp[i]) != 0) { 12286 /* Ruh-Roh, chip was reset! */ 12287 break; 12288 } 12289 } 12290 12291 if (!CHIP_REV_IS_SLOW(sc)) { 12292 /* 12293 * This barrier is needed to ensure the ordering between the writing 12294 * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and 12295 * the reading here. 12296 */ 12297 mb(); 12298 if (sc->port.pmf) { 12299 bxe_acquire_phy_lock(sc); 12300 elink_period_func(&sc->link_params, &sc->link_vars); 12301 bxe_release_phy_lock(sc); 12302 } 12303 } 12304 12305 if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) { 12306 int mb_idx = SC_FW_MB_IDX(sc); 12307 uint32_t drv_pulse; 12308 uint32_t mcp_pulse; 12309 12310 ++sc->fw_drv_pulse_wr_seq; 12311 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 12312 12313 drv_pulse = sc->fw_drv_pulse_wr_seq; 12314 bxe_drv_pulse(sc); 12315 12316 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) & 12317 MCP_PULSE_SEQ_MASK); 12318 12319 /* 12320 * The delta between driver pulse and mcp response should 12321 * be 1 (before mcp response) or 0 (after mcp response). 12322 */ 12323 if ((drv_pulse != mcp_pulse) && 12324 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) { 12325 /* someone lost a heartbeat... */ 12326 BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 12327 drv_pulse, mcp_pulse); 12328 } 12329 } 12330 12331 /* state is BXE_STATE_OPEN */ 12332 bxe_stats_handle(sc, STATS_EVENT_UPDATE); 12333 12334 BXE_CORE_UNLOCK(sc); 12335 12336 if ((sc->state == BXE_STATE_OPEN) && 12337 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12338 /* schedule the next periodic callout */ 12339 callout_reset(&sc->periodic_callout, hz, 12340 bxe_periodic_callout_func, sc); 12341 } 12342 } 12343 12344 static void 12345 bxe_periodic_start(struct bxe_softc *sc) 12346 { 12347 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO); 12348 callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc); 12349 } 12350 12351 static void 12352 bxe_periodic_stop(struct bxe_softc *sc) 12353 { 12354 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP); 12355 callout_drain(&sc->periodic_callout); 12356 } 12357 12358 /* start the controller */ 12359 static __noinline int 12360 bxe_nic_load(struct bxe_softc *sc, 12361 int load_mode) 12362 { 12363 uint32_t val; 12364 int load_code = 0; 12365 int i, rc = 0; 12366 12367 BXE_CORE_LOCK_ASSERT(sc); 12368 12369 BLOGD(sc, DBG_LOAD, "Starting NIC load...\n"); 12370 12371 sc->state = BXE_STATE_OPENING_WAITING_LOAD; 12372 12373 if (IS_PF(sc)) { 12374 /* must be called before memory allocation and HW init */ 12375 bxe_ilt_set_info(sc); 12376 } 12377 12378 sc->last_reported_link_state = LINK_STATE_UNKNOWN; 12379 12380 bxe_set_fp_rx_buf_size(sc); 12381 12382 if (bxe_alloc_fp_buffers(sc) != 0) { 12383 BLOGE(sc, "Failed to allocate fastpath memory\n"); 12384 sc->state = BXE_STATE_CLOSED; 12385 rc = ENOMEM; 12386 goto bxe_nic_load_error0; 12387 } 12388 12389 if (bxe_alloc_mem(sc) != 0) { 12390 sc->state = BXE_STATE_CLOSED; 12391 rc = ENOMEM; 12392 goto bxe_nic_load_error0; 12393 } 12394 12395 if (bxe_alloc_fw_stats_mem(sc) != 0) { 12396 sc->state = BXE_STATE_CLOSED; 12397 rc = ENOMEM; 12398 goto bxe_nic_load_error0; 12399 } 12400 12401 if (IS_PF(sc)) { 12402 /* set pf load just before approaching the MCP */ 12403 bxe_set_pf_load(sc); 12404 12405 /* if MCP exists send load request and analyze response */ 12406 if (!BXE_NOMCP(sc)) { 12407 /* attempt to load pf */ 12408 if (bxe_nic_load_request(sc, &load_code) != 0) { 12409 sc->state = BXE_STATE_CLOSED; 12410 rc = ENXIO; 12411 goto bxe_nic_load_error1; 12412 } 12413 12414 /* what did the MCP say? */ 12415 if (bxe_nic_load_analyze_req(sc, load_code) != 0) { 12416 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12417 sc->state = BXE_STATE_CLOSED; 12418 rc = ENXIO; 12419 goto bxe_nic_load_error2; 12420 } 12421 } else { 12422 BLOGI(sc, "Device has no MCP!\n"); 12423 load_code = bxe_nic_load_no_mcp(sc); 12424 } 12425 12426 /* mark PMF if applicable */ 12427 bxe_nic_load_pmf(sc, load_code); 12428 12429 /* Init Function state controlling object */ 12430 bxe_init_func_obj(sc); 12431 12432 /* Initialize HW */ 12433 if (bxe_init_hw(sc, load_code) != 0) { 12434 BLOGE(sc, "HW init failed\n"); 12435 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12436 sc->state = BXE_STATE_CLOSED; 12437 rc = ENXIO; 12438 goto bxe_nic_load_error2; 12439 } 12440 } 12441 12442 /* set ALWAYS_ALIVE bit in shmem */ 12443 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 12444 bxe_drv_pulse(sc); 12445 sc->flags |= BXE_NO_PULSE; 12446 12447 /* attach interrupts */ 12448 if (bxe_interrupt_attach(sc) != 0) { 12449 sc->state = BXE_STATE_CLOSED; 12450 rc = ENXIO; 12451 goto bxe_nic_load_error2; 12452 } 12453 12454 bxe_nic_init(sc, load_code); 12455 12456 /* Init per-function objects */ 12457 if (IS_PF(sc)) { 12458 bxe_init_objs(sc); 12459 // XXX bxe_iov_nic_init(sc); 12460 12461 /* set AFEX default VLAN tag to an invalid value */ 12462 sc->devinfo.mf_info.afex_def_vlan_tag = -1; 12463 // XXX bxe_nic_load_afex_dcc(sc, load_code); 12464 12465 sc->state = BXE_STATE_OPENING_WAITING_PORT; 12466 rc = bxe_func_start(sc); 12467 if (rc) { 12468 BLOGE(sc, "Function start failed! rc = %d\n", rc); 12469 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12470 sc->state = BXE_STATE_ERROR; 12471 goto bxe_nic_load_error3; 12472 } 12473 12474 /* send LOAD_DONE command to MCP */ 12475 if (!BXE_NOMCP(sc)) { 12476 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12477 if (!load_code) { 12478 BLOGE(sc, "MCP response failure, aborting\n"); 12479 sc->state = BXE_STATE_ERROR; 12480 rc = ENXIO; 12481 goto bxe_nic_load_error3; 12482 } 12483 } 12484 12485 rc = bxe_setup_leading(sc); 12486 if (rc) { 12487 BLOGE(sc, "Setup leading failed! rc = %d\n", rc); 12488 sc->state = BXE_STATE_ERROR; 12489 goto bxe_nic_load_error3; 12490 } 12491 12492 FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) { 12493 rc = bxe_setup_queue(sc, &sc->fp[i], FALSE); 12494 if (rc) { 12495 BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc); 12496 sc->state = BXE_STATE_ERROR; 12497 goto bxe_nic_load_error3; 12498 } 12499 } 12500 12501 rc = bxe_init_rss_pf(sc); 12502 if (rc) { 12503 BLOGE(sc, "PF RSS init failed\n"); 12504 sc->state = BXE_STATE_ERROR; 12505 goto bxe_nic_load_error3; 12506 } 12507 } 12508 /* XXX VF */ 12509 12510 /* now when Clients are configured we are ready to work */ 12511 sc->state = BXE_STATE_OPEN; 12512 12513 /* Configure a ucast MAC */ 12514 if (IS_PF(sc)) { 12515 rc = bxe_set_eth_mac(sc, TRUE); 12516 } 12517 if (rc) { 12518 BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc); 12519 sc->state = BXE_STATE_ERROR; 12520 goto bxe_nic_load_error3; 12521 } 12522 12523 if (sc->port.pmf) { 12524 rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN); 12525 if (rc) { 12526 sc->state = BXE_STATE_ERROR; 12527 goto bxe_nic_load_error3; 12528 } 12529 } 12530 12531 sc->link_params.feature_config_flags &= 12532 ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN; 12533 12534 /* start fast path */ 12535 12536 /* Initialize Rx filter */ 12537 bxe_set_rx_mode(sc); 12538 12539 /* start the Tx */ 12540 switch (/* XXX load_mode */LOAD_OPEN) { 12541 case LOAD_NORMAL: 12542 case LOAD_OPEN: 12543 break; 12544 12545 case LOAD_DIAG: 12546 case LOAD_LOOPBACK_EXT: 12547 sc->state = BXE_STATE_DIAG; 12548 break; 12549 12550 default: 12551 break; 12552 } 12553 12554 if (sc->port.pmf) { 12555 bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0); 12556 } else { 12557 bxe_link_status_update(sc); 12558 } 12559 12560 /* start the periodic timer callout */ 12561 bxe_periodic_start(sc); 12562 12563 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 12564 /* mark driver is loaded in shmem2 */ 12565 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 12566 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 12567 (val | 12568 DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 12569 DRV_FLAGS_CAPABILITIES_LOADED_L2)); 12570 } 12571 12572 /* wait for all pending SP commands to complete */ 12573 if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) { 12574 BLOGE(sc, "Timeout waiting for all SPs to complete!\n"); 12575 bxe_periodic_stop(sc); 12576 bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE); 12577 return (ENXIO); 12578 } 12579 12580 /* Tell the stack the driver is running! */ 12581 if_setdrvflags(sc->ifp, IFF_DRV_RUNNING); 12582 12583 BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n"); 12584 12585 return (0); 12586 12587 bxe_nic_load_error3: 12588 12589 if (IS_PF(sc)) { 12590 bxe_int_disable_sync(sc, 1); 12591 12592 /* clean out queued objects */ 12593 bxe_squeeze_objects(sc); 12594 } 12595 12596 bxe_interrupt_detach(sc); 12597 12598 bxe_nic_load_error2: 12599 12600 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 12601 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 12602 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 12603 } 12604 12605 sc->port.pmf = 0; 12606 12607 bxe_nic_load_error1: 12608 12609 /* clear pf_load status, as it was already set */ 12610 if (IS_PF(sc)) { 12611 bxe_clear_pf_load(sc); 12612 } 12613 12614 bxe_nic_load_error0: 12615 12616 bxe_free_fw_stats_mem(sc); 12617 bxe_free_fp_buffers(sc); 12618 bxe_free_mem(sc); 12619 12620 return (rc); 12621 } 12622 12623 static int 12624 bxe_init_locked(struct bxe_softc *sc) 12625 { 12626 int other_engine = SC_PATH(sc) ? 0 : 1; 12627 uint8_t other_load_status, load_status; 12628 uint8_t global = FALSE; 12629 int rc; 12630 12631 BXE_CORE_LOCK_ASSERT(sc); 12632 12633 /* check if the driver is already running */ 12634 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 12635 BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n"); 12636 return (0); 12637 } 12638 12639 bxe_set_power_state(sc, PCI_PM_D0); 12640 12641 /* 12642 * If parity occurred during the unload, then attentions and/or 12643 * RECOVERY_IN_PROGRES may still be set. If so we want the first function 12644 * loaded on the current engine to complete the recovery. Parity recovery 12645 * is only relevant for PF driver. 12646 */ 12647 if (IS_PF(sc)) { 12648 other_load_status = bxe_get_load_status(sc, other_engine); 12649 load_status = bxe_get_load_status(sc, SC_PATH(sc)); 12650 12651 if (!bxe_reset_is_done(sc, SC_PATH(sc)) || 12652 bxe_chk_parity_attn(sc, &global, TRUE)) { 12653 do { 12654 /* 12655 * If there are attentions and they are in global blocks, set 12656 * the GLOBAL_RESET bit regardless whether it will be this 12657 * function that will complete the recovery or not. 12658 */ 12659 if (global) { 12660 bxe_set_reset_global(sc); 12661 } 12662 12663 /* 12664 * Only the first function on the current engine should try 12665 * to recover in open. In case of attentions in global blocks 12666 * only the first in the chip should try to recover. 12667 */ 12668 if ((!load_status && (!global || !other_load_status)) && 12669 bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) { 12670 BLOGI(sc, "Recovered during init\n"); 12671 break; 12672 } 12673 12674 /* recovery has failed... */ 12675 bxe_set_power_state(sc, PCI_PM_D3hot); 12676 sc->recovery_state = BXE_RECOVERY_FAILED; 12677 12678 BLOGE(sc, "Recovery flow hasn't properly " 12679 "completed yet, try again later. " 12680 "If you still see this message after a " 12681 "few retries then power cycle is required.\n"); 12682 12683 rc = ENXIO; 12684 goto bxe_init_locked_done; 12685 } while (0); 12686 } 12687 } 12688 12689 sc->recovery_state = BXE_RECOVERY_DONE; 12690 12691 rc = bxe_nic_load(sc, LOAD_OPEN); 12692 12693 bxe_init_locked_done: 12694 12695 if (rc) { 12696 /* Tell the stack the driver is NOT running! */ 12697 BLOGE(sc, "Initialization failed, " 12698 "stack notified driver is NOT running!\n"); 12699 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 12700 } 12701 12702 return (rc); 12703 } 12704 12705 static int 12706 bxe_stop_locked(struct bxe_softc *sc) 12707 { 12708 BXE_CORE_LOCK_ASSERT(sc); 12709 return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE)); 12710 } 12711 12712 /* 12713 * Handles controller initialization when called from an unlocked routine. 12714 * ifconfig calls this function. 12715 * 12716 * Returns: 12717 * void 12718 */ 12719 static void 12720 bxe_init(void *xsc) 12721 { 12722 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12723 12724 BXE_CORE_LOCK(sc); 12725 bxe_init_locked(sc); 12726 BXE_CORE_UNLOCK(sc); 12727 } 12728 12729 static int 12730 bxe_init_ifnet(struct bxe_softc *sc) 12731 { 12732 if_t ifp; 12733 int capabilities; 12734 12735 /* ifconfig entrypoint for media type/status reporting */ 12736 ifmedia_init(&sc->ifmedia, IFM_IMASK, 12737 bxe_ifmedia_update, 12738 bxe_ifmedia_status); 12739 12740 /* set the default interface values */ 12741 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL); 12742 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL); 12743 ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO)); 12744 12745 sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */ 12746 12747 /* allocate the ifnet structure */ 12748 if ((ifp = if_gethandle(IFT_ETHER)) == NULL) { 12749 BLOGE(sc, "Interface allocation failed!\n"); 12750 return (ENXIO); 12751 } 12752 12753 if_setsoftc(ifp, sc); 12754 if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); 12755 if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST)); 12756 if_setioctlfn(ifp, bxe_ioctl); 12757 if_setstartfn(ifp, bxe_tx_start); 12758 if_setgetcounterfn(ifp, bxe_get_counter); 12759 #if __FreeBSD_version >= 800000 12760 if_settransmitfn(ifp, bxe_tx_mq_start); 12761 if_setqflushfn(ifp, bxe_mq_flush); 12762 #endif 12763 #ifdef FreeBSD8_0 12764 if_settimer(ifp, 0); 12765 #endif 12766 if_setinitfn(ifp, bxe_init); 12767 if_setmtu(ifp, sc->mtu); 12768 if_sethwassist(ifp, (CSUM_IP | 12769 CSUM_TCP | 12770 CSUM_UDP | 12771 CSUM_TSO | 12772 CSUM_TCP_IPV6 | 12773 CSUM_UDP_IPV6)); 12774 12775 capabilities = 12776 #if __FreeBSD_version < 700000 12777 (IFCAP_VLAN_MTU | 12778 IFCAP_VLAN_HWTAGGING | 12779 IFCAP_HWCSUM | 12780 IFCAP_JUMBO_MTU | 12781 IFCAP_LRO); 12782 #else 12783 (IFCAP_VLAN_MTU | 12784 IFCAP_VLAN_HWTAGGING | 12785 IFCAP_VLAN_HWTSO | 12786 IFCAP_VLAN_HWFILTER | 12787 IFCAP_VLAN_HWCSUM | 12788 IFCAP_HWCSUM | 12789 IFCAP_JUMBO_MTU | 12790 IFCAP_LRO | 12791 IFCAP_TSO4 | 12792 IFCAP_TSO6 | 12793 IFCAP_WOL_MAGIC); 12794 #endif 12795 if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */ 12796 if_setbaudrate(ifp, IF_Gbps(10)); 12797 /* XXX */ 12798 if_setsendqlen(ifp, sc->tx_ring_size); 12799 if_setsendqready(ifp); 12800 /* XXX */ 12801 12802 sc->ifp = ifp; 12803 12804 /* attach to the Ethernet interface list */ 12805 ether_ifattach(ifp, sc->link_params.mac_addr); 12806 12807 return (0); 12808 } 12809 12810 static void 12811 bxe_deallocate_bars(struct bxe_softc *sc) 12812 { 12813 int i; 12814 12815 for (i = 0; i < MAX_BARS; i++) { 12816 if (sc->bar[i].resource != NULL) { 12817 bus_release_resource(sc->dev, 12818 SYS_RES_MEMORY, 12819 sc->bar[i].rid, 12820 sc->bar[i].resource); 12821 BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n", 12822 i, PCIR_BAR(i)); 12823 } 12824 } 12825 } 12826 12827 static int 12828 bxe_allocate_bars(struct bxe_softc *sc) 12829 { 12830 u_int flags; 12831 int i; 12832 12833 memset(sc->bar, 0, sizeof(sc->bar)); 12834 12835 for (i = 0; i < MAX_BARS; i++) { 12836 12837 /* memory resources reside at BARs 0, 2, 4 */ 12838 /* Run `pciconf -lb` to see mappings */ 12839 if ((i != 0) && (i != 2) && (i != 4)) { 12840 continue; 12841 } 12842 12843 sc->bar[i].rid = PCIR_BAR(i); 12844 12845 flags = RF_ACTIVE; 12846 if (i == 0) { 12847 flags |= RF_SHAREABLE; 12848 } 12849 12850 if ((sc->bar[i].resource = 12851 bus_alloc_resource_any(sc->dev, 12852 SYS_RES_MEMORY, 12853 &sc->bar[i].rid, 12854 flags)) == NULL) { 12855 return (0); 12856 } 12857 12858 sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource); 12859 sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource); 12860 sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource); 12861 12862 BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%ld) -> %p\n", 12863 i, PCIR_BAR(i), 12864 (void *)rman_get_start(sc->bar[i].resource), 12865 (void *)rman_get_end(sc->bar[i].resource), 12866 rman_get_size(sc->bar[i].resource), 12867 (void *)sc->bar[i].kva); 12868 } 12869 12870 return (0); 12871 } 12872 12873 static void 12874 bxe_get_function_num(struct bxe_softc *sc) 12875 { 12876 uint32_t val = 0; 12877 12878 /* 12879 * Read the ME register to get the function number. The ME register 12880 * holds the relative-function number and absolute-function number. The 12881 * absolute-function number appears only in E2 and above. Before that 12882 * these bits always contained zero, therefore we cannot blindly use them. 12883 */ 12884 12885 val = REG_RD(sc, BAR_ME_REGISTER); 12886 12887 sc->pfunc_rel = 12888 (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT); 12889 sc->path_id = 12890 (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1; 12891 12892 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 12893 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id); 12894 } else { 12895 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id); 12896 } 12897 12898 BLOGD(sc, DBG_LOAD, 12899 "Relative function %d, Absolute function %d, Path %d\n", 12900 sc->pfunc_rel, sc->pfunc_abs, sc->path_id); 12901 } 12902 12903 static uint32_t 12904 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc) 12905 { 12906 uint32_t shmem2_size; 12907 uint32_t offset; 12908 uint32_t mf_cfg_offset_value; 12909 12910 /* Non 57712 */ 12911 offset = (SHMEM_RD(sc, func_mb) + 12912 (MAX_FUNC_NUM * sizeof(struct drv_func_mb))); 12913 12914 /* 57712 plus */ 12915 if (sc->devinfo.shmem2_base != 0) { 12916 shmem2_size = SHMEM2_RD(sc, size); 12917 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) { 12918 mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr); 12919 if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) { 12920 offset = mf_cfg_offset_value; 12921 } 12922 } 12923 } 12924 12925 return (offset); 12926 } 12927 12928 static uint32_t 12929 bxe_pcie_capability_read(struct bxe_softc *sc, 12930 int reg, 12931 int width) 12932 { 12933 int pcie_reg; 12934 12935 /* ensure PCIe capability is enabled */ 12936 if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) { 12937 if (pcie_reg != 0) { 12938 BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg); 12939 return (pci_read_config(sc->dev, (pcie_reg + reg), width)); 12940 } 12941 } 12942 12943 BLOGE(sc, "PCIe capability NOT FOUND!!!\n"); 12944 12945 return (0); 12946 } 12947 12948 static uint8_t 12949 bxe_is_pcie_pending(struct bxe_softc *sc) 12950 { 12951 return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) & 12952 PCIM_EXP_STA_TRANSACTION_PND); 12953 } 12954 12955 /* 12956 * Walk the PCI capabiites list for the device to find what features are 12957 * supported. These capabilites may be enabled/disabled by firmware so it's 12958 * best to walk the list rather than make assumptions. 12959 */ 12960 static void 12961 bxe_probe_pci_caps(struct bxe_softc *sc) 12962 { 12963 uint16_t link_status; 12964 int reg; 12965 12966 /* check if PCI Power Management is enabled */ 12967 if (pci_find_cap(sc->dev, PCIY_PMG, ®) == 0) { 12968 if (reg != 0) { 12969 BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg); 12970 12971 sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG; 12972 sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg; 12973 } 12974 } 12975 12976 link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2); 12977 12978 /* handle PCIe 2.0 workarounds for 57710 */ 12979 if (CHIP_IS_E1(sc)) { 12980 /* workaround for 57710 errata E4_57710_27462 */ 12981 sc->devinfo.pcie_link_speed = 12982 (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1; 12983 12984 /* workaround for 57710 errata E4_57710_27488 */ 12985 sc->devinfo.pcie_link_width = 12986 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 12987 if (sc->devinfo.pcie_link_speed > 1) { 12988 sc->devinfo.pcie_link_width = 12989 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1; 12990 } 12991 } else { 12992 sc->devinfo.pcie_link_speed = 12993 (link_status & PCIM_LINK_STA_SPEED); 12994 sc->devinfo.pcie_link_width = 12995 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 12996 } 12997 12998 BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n", 12999 sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width); 13000 13001 sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG; 13002 sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg; 13003 13004 /* check if MSI capability is enabled */ 13005 if (pci_find_cap(sc->dev, PCIY_MSI, ®) == 0) { 13006 if (reg != 0) { 13007 BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg); 13008 13009 sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG; 13010 sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg; 13011 } 13012 } 13013 13014 /* check if MSI-X capability is enabled */ 13015 if (pci_find_cap(sc->dev, PCIY_MSIX, ®) == 0) { 13016 if (reg != 0) { 13017 BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg); 13018 13019 sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG; 13020 sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg; 13021 } 13022 } 13023 } 13024 13025 static int 13026 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc) 13027 { 13028 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13029 uint32_t val; 13030 13031 /* get the outer vlan if we're in switch-dependent mode */ 13032 13033 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13034 mf_info->ext_id = (uint16_t)val; 13035 13036 mf_info->multi_vnics_mode = 1; 13037 13038 if (!VALID_OVLAN(mf_info->ext_id)) { 13039 BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id); 13040 return (1); 13041 } 13042 13043 /* get the capabilities */ 13044 if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13045 FUNC_MF_CFG_PROTOCOL_ISCSI) { 13046 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI; 13047 } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13048 FUNC_MF_CFG_PROTOCOL_FCOE) { 13049 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE; 13050 } else { 13051 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET; 13052 } 13053 13054 mf_info->vnics_per_port = 13055 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13056 13057 return (0); 13058 } 13059 13060 static uint32_t 13061 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc) 13062 { 13063 uint32_t retval = 0; 13064 uint32_t val; 13065 13066 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13067 13068 if (val & MACP_FUNC_CFG_FLAGS_ENABLED) { 13069 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) { 13070 retval |= MF_PROTO_SUPPORT_ETHERNET; 13071 } 13072 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 13073 retval |= MF_PROTO_SUPPORT_ISCSI; 13074 } 13075 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 13076 retval |= MF_PROTO_SUPPORT_FCOE; 13077 } 13078 } 13079 13080 return (retval); 13081 } 13082 13083 static int 13084 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc) 13085 { 13086 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13087 uint32_t val; 13088 13089 /* 13090 * There is no outer vlan if we're in switch-independent mode. 13091 * If the mac is valid then assume multi-function. 13092 */ 13093 13094 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13095 13096 mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0); 13097 13098 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13099 13100 mf_info->vnics_per_port = 13101 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13102 13103 return (0); 13104 } 13105 13106 static int 13107 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc) 13108 { 13109 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13110 uint32_t e1hov_tag; 13111 uint32_t func_config; 13112 uint32_t niv_config; 13113 13114 mf_info->multi_vnics_mode = 1; 13115 13116 e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13117 func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13118 niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config); 13119 13120 mf_info->ext_id = 13121 (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >> 13122 FUNC_MF_CFG_E1HOV_TAG_SHIFT); 13123 13124 mf_info->default_vlan = 13125 (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >> 13126 FUNC_MF_CFG_AFEX_VLAN_SHIFT); 13127 13128 mf_info->niv_allowed_priorities = 13129 (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 13130 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT); 13131 13132 mf_info->niv_default_cos = 13133 (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 13134 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT); 13135 13136 mf_info->afex_vlan_mode = 13137 ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 13138 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT); 13139 13140 mf_info->niv_mba_enabled = 13141 ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >> 13142 FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT); 13143 13144 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13145 13146 mf_info->vnics_per_port = 13147 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13148 13149 return (0); 13150 } 13151 13152 static int 13153 bxe_check_valid_mf_cfg(struct bxe_softc *sc) 13154 { 13155 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13156 uint32_t mf_cfg1; 13157 uint32_t mf_cfg2; 13158 uint32_t ovlan1; 13159 uint32_t ovlan2; 13160 uint8_t i, j; 13161 13162 BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n", 13163 SC_PORT(sc)); 13164 BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n", 13165 mf_info->mf_config[SC_VN(sc)]); 13166 BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n", 13167 mf_info->multi_vnics_mode); 13168 BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n", 13169 mf_info->vnics_per_port); 13170 BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n", 13171 mf_info->ext_id); 13172 BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n", 13173 mf_info->min_bw[0], mf_info->min_bw[1], 13174 mf_info->min_bw[2], mf_info->min_bw[3]); 13175 BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n", 13176 mf_info->max_bw[0], mf_info->max_bw[1], 13177 mf_info->max_bw[2], mf_info->max_bw[3]); 13178 BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n", 13179 sc->mac_addr_str); 13180 13181 /* various MF mode sanity checks... */ 13182 13183 if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) { 13184 BLOGE(sc, "Enumerated function %d is marked as hidden\n", 13185 SC_PORT(sc)); 13186 return (1); 13187 } 13188 13189 if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) { 13190 BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n", 13191 mf_info->vnics_per_port, mf_info->multi_vnics_mode); 13192 return (1); 13193 } 13194 13195 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13196 /* vnic id > 0 must have valid ovlan in switch-dependent mode */ 13197 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) { 13198 BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n", 13199 SC_VN(sc), OVLAN(sc)); 13200 return (1); 13201 } 13202 13203 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) { 13204 BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n", 13205 mf_info->multi_vnics_mode, OVLAN(sc)); 13206 return (1); 13207 } 13208 13209 /* 13210 * Verify all functions are either MF or SF mode. If MF, make sure 13211 * sure that all non-hidden functions have a valid ovlan. If SF, 13212 * make sure that all non-hidden functions have an invalid ovlan. 13213 */ 13214 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13215 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13216 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13217 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13218 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) || 13219 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) { 13220 BLOGE(sc, "mf_mode=SD function %d MF config " 13221 "mismatch, multi_vnics_mode=%d ovlan=%d\n", 13222 i, mf_info->multi_vnics_mode, ovlan1); 13223 return (1); 13224 } 13225 } 13226 13227 /* Verify all funcs on the same port each have a different ovlan. */ 13228 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13229 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13230 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13231 /* iterate from the next function on the port to the max func */ 13232 for (j = i + 2; j < MAX_FUNC_NUM; j += 2) { 13233 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config); 13234 ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag); 13235 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13236 VALID_OVLAN(ovlan1) && 13237 !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) && 13238 VALID_OVLAN(ovlan2) && 13239 (ovlan1 == ovlan2)) { 13240 BLOGE(sc, "mf_mode=SD functions %d and %d " 13241 "have the same ovlan (%d)\n", 13242 i, j, ovlan1); 13243 return (1); 13244 } 13245 } 13246 } 13247 } /* MULTI_FUNCTION_SD */ 13248 13249 return (0); 13250 } 13251 13252 static int 13253 bxe_get_mf_cfg_info(struct bxe_softc *sc) 13254 { 13255 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13256 uint32_t val, mac_upper; 13257 uint8_t i, vnic; 13258 13259 /* initialize mf_info defaults */ 13260 mf_info->vnics_per_port = 1; 13261 mf_info->multi_vnics_mode = FALSE; 13262 mf_info->path_has_ovlan = FALSE; 13263 mf_info->mf_mode = SINGLE_FUNCTION; 13264 13265 if (!CHIP_IS_MF_CAP(sc)) { 13266 return (0); 13267 } 13268 13269 if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) { 13270 BLOGE(sc, "Invalid mf_cfg_base!\n"); 13271 return (1); 13272 } 13273 13274 /* get the MF mode (switch dependent / independent / single-function) */ 13275 13276 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13277 13278 switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) 13279 { 13280 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 13281 13282 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13283 13284 /* check for legal upper mac bytes */ 13285 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) { 13286 mf_info->mf_mode = MULTI_FUNCTION_SI; 13287 } else { 13288 BLOGE(sc, "Invalid config for Switch Independent mode\n"); 13289 } 13290 13291 break; 13292 13293 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 13294 case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4: 13295 13296 /* get outer vlan configuration */ 13297 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13298 13299 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) != 13300 FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 13301 mf_info->mf_mode = MULTI_FUNCTION_SD; 13302 } else { 13303 BLOGE(sc, "Invalid config for Switch Dependent mode\n"); 13304 } 13305 13306 break; 13307 13308 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 13309 13310 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */ 13311 return (0); 13312 13313 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 13314 13315 /* 13316 * Mark MF mode as NIV if MCP version includes NPAR-SD support 13317 * and the MAC address is valid. 13318 */ 13319 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13320 13321 if ((SHMEM2_HAS(sc, afex_driver_support)) && 13322 (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) { 13323 mf_info->mf_mode = MULTI_FUNCTION_AFEX; 13324 } else { 13325 BLOGE(sc, "Invalid config for AFEX mode\n"); 13326 } 13327 13328 break; 13329 13330 default: 13331 13332 BLOGE(sc, "Unknown MF mode (0x%08x)\n", 13333 (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)); 13334 13335 return (1); 13336 } 13337 13338 /* set path mf_mode (which could be different than function mf_mode) */ 13339 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13340 mf_info->path_has_ovlan = TRUE; 13341 } else if (mf_info->mf_mode == SINGLE_FUNCTION) { 13342 /* 13343 * Decide on path multi vnics mode. If we're not in MF mode and in 13344 * 4-port mode, this is good enough to check vnic-0 of the other port 13345 * on the same path 13346 */ 13347 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13348 uint8_t other_port = !(PORT_ID(sc) & 1); 13349 uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port)); 13350 13351 val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag); 13352 13353 mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0; 13354 } 13355 } 13356 13357 if (mf_info->mf_mode == SINGLE_FUNCTION) { 13358 /* invalid MF config */ 13359 if (SC_VN(sc) >= 1) { 13360 BLOGE(sc, "VNIC ID >= 1 in SF mode\n"); 13361 return (1); 13362 } 13363 13364 return (0); 13365 } 13366 13367 /* get the MF configuration */ 13368 mf_info->mf_config[SC_VN(sc)] = 13369 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13370 13371 switch(mf_info->mf_mode) 13372 { 13373 case MULTI_FUNCTION_SD: 13374 13375 bxe_get_shmem_mf_cfg_info_sd(sc); 13376 break; 13377 13378 case MULTI_FUNCTION_SI: 13379 13380 bxe_get_shmem_mf_cfg_info_si(sc); 13381 break; 13382 13383 case MULTI_FUNCTION_AFEX: 13384 13385 bxe_get_shmem_mf_cfg_info_niv(sc); 13386 break; 13387 13388 default: 13389 13390 BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n", 13391 mf_info->mf_mode); 13392 return (1); 13393 } 13394 13395 /* get the congestion management parameters */ 13396 13397 vnic = 0; 13398 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13399 /* get min/max bw */ 13400 val = MFCFG_RD(sc, func_mf_config[i].config); 13401 mf_info->min_bw[vnic] = 13402 ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT); 13403 mf_info->max_bw[vnic] = 13404 ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT); 13405 vnic++; 13406 } 13407 13408 return (bxe_check_valid_mf_cfg(sc)); 13409 } 13410 13411 static int 13412 bxe_get_shmem_info(struct bxe_softc *sc) 13413 { 13414 int port; 13415 uint32_t mac_hi, mac_lo, val; 13416 13417 port = SC_PORT(sc); 13418 mac_hi = mac_lo = 0; 13419 13420 sc->link_params.sc = sc; 13421 sc->link_params.port = port; 13422 13423 /* get the hardware config info */ 13424 sc->devinfo.hw_config = 13425 SHMEM_RD(sc, dev_info.shared_hw_config.config); 13426 sc->devinfo.hw_config2 = 13427 SHMEM_RD(sc, dev_info.shared_hw_config.config2); 13428 13429 sc->link_params.hw_led_mode = 13430 ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >> 13431 SHARED_HW_CFG_LED_MODE_SHIFT); 13432 13433 /* get the port feature config */ 13434 sc->port.config = 13435 SHMEM_RD(sc, dev_info.port_feature_config[port].config), 13436 13437 /* get the link params */ 13438 sc->link_params.speed_cap_mask[0] = 13439 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask); 13440 sc->link_params.speed_cap_mask[1] = 13441 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2); 13442 13443 /* get the lane config */ 13444 sc->link_params.lane_config = 13445 SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config); 13446 13447 /* get the link config */ 13448 val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config); 13449 sc->port.link_config[ELINK_INT_PHY] = val; 13450 sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK); 13451 sc->port.link_config[ELINK_EXT_PHY1] = 13452 SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2); 13453 13454 /* get the override preemphasis flag and enable it or turn it off */ 13455 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13456 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) { 13457 sc->link_params.feature_config_flags |= 13458 ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13459 } else { 13460 sc->link_params.feature_config_flags &= 13461 ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13462 } 13463 13464 /* get the initial value of the link params */ 13465 sc->link_params.multi_phy_config = 13466 SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config); 13467 13468 /* get external phy info */ 13469 sc->port.ext_phy_config = 13470 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 13471 13472 /* get the multifunction configuration */ 13473 bxe_get_mf_cfg_info(sc); 13474 13475 /* get the mac address */ 13476 if (IS_MF(sc)) { 13477 mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13478 mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower); 13479 } else { 13480 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper); 13481 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower); 13482 } 13483 13484 if ((mac_lo == 0) && (mac_hi == 0)) { 13485 *sc->mac_addr_str = 0; 13486 BLOGE(sc, "No Ethernet address programmed!\n"); 13487 } else { 13488 sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8); 13489 sc->link_params.mac_addr[1] = (uint8_t)(mac_hi); 13490 sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24); 13491 sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16); 13492 sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8); 13493 sc->link_params.mac_addr[5] = (uint8_t)(mac_lo); 13494 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str), 13495 "%02x:%02x:%02x:%02x:%02x:%02x", 13496 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1], 13497 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3], 13498 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]); 13499 BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str); 13500 } 13501 13502 return (0); 13503 } 13504 13505 static void 13506 bxe_get_tunable_params(struct bxe_softc *sc) 13507 { 13508 /* sanity checks */ 13509 13510 if ((bxe_interrupt_mode != INTR_MODE_INTX) && 13511 (bxe_interrupt_mode != INTR_MODE_MSI) && 13512 (bxe_interrupt_mode != INTR_MODE_MSIX)) { 13513 BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode); 13514 bxe_interrupt_mode = INTR_MODE_MSIX; 13515 } 13516 13517 if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) { 13518 BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count); 13519 bxe_queue_count = 0; 13520 } 13521 13522 if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) { 13523 if (bxe_max_rx_bufs == 0) { 13524 bxe_max_rx_bufs = RX_BD_USABLE; 13525 } else { 13526 BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs); 13527 bxe_max_rx_bufs = 2048; 13528 } 13529 } 13530 13531 if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) { 13532 BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks); 13533 bxe_hc_rx_ticks = 25; 13534 } 13535 13536 if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) { 13537 BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks); 13538 bxe_hc_tx_ticks = 50; 13539 } 13540 13541 if (bxe_max_aggregation_size == 0) { 13542 bxe_max_aggregation_size = TPA_AGG_SIZE; 13543 } 13544 13545 if (bxe_max_aggregation_size > 0xffff) { 13546 BLOGW(sc, "invalid max_aggregation_size (%d)\n", 13547 bxe_max_aggregation_size); 13548 bxe_max_aggregation_size = TPA_AGG_SIZE; 13549 } 13550 13551 if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) { 13552 BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs); 13553 bxe_mrrs = -1; 13554 } 13555 13556 if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) { 13557 BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen); 13558 bxe_autogreeen = 0; 13559 } 13560 13561 if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) { 13562 BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss); 13563 bxe_udp_rss = 0; 13564 } 13565 13566 /* pull in user settings */ 13567 13568 sc->interrupt_mode = bxe_interrupt_mode; 13569 sc->max_rx_bufs = bxe_max_rx_bufs; 13570 sc->hc_rx_ticks = bxe_hc_rx_ticks; 13571 sc->hc_tx_ticks = bxe_hc_tx_ticks; 13572 sc->max_aggregation_size = bxe_max_aggregation_size; 13573 sc->mrrs = bxe_mrrs; 13574 sc->autogreeen = bxe_autogreeen; 13575 sc->udp_rss = bxe_udp_rss; 13576 13577 if (bxe_interrupt_mode == INTR_MODE_INTX) { 13578 sc->num_queues = 1; 13579 } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */ 13580 sc->num_queues = 13581 min((bxe_queue_count ? bxe_queue_count : mp_ncpus), 13582 MAX_RSS_CHAINS); 13583 if (sc->num_queues > mp_ncpus) { 13584 sc->num_queues = mp_ncpus; 13585 } 13586 } 13587 13588 BLOGD(sc, DBG_LOAD, 13589 "User Config: " 13590 "debug=0x%lx " 13591 "interrupt_mode=%d " 13592 "queue_count=%d " 13593 "hc_rx_ticks=%d " 13594 "hc_tx_ticks=%d " 13595 "rx_budget=%d " 13596 "max_aggregation_size=%d " 13597 "mrrs=%d " 13598 "autogreeen=%d " 13599 "udp_rss=%d\n", 13600 bxe_debug, 13601 sc->interrupt_mode, 13602 sc->num_queues, 13603 sc->hc_rx_ticks, 13604 sc->hc_tx_ticks, 13605 bxe_rx_budget, 13606 sc->max_aggregation_size, 13607 sc->mrrs, 13608 sc->autogreeen, 13609 sc->udp_rss); 13610 } 13611 13612 static void 13613 bxe_media_detect(struct bxe_softc *sc) 13614 { 13615 uint32_t phy_idx = bxe_get_cur_phy_idx(sc); 13616 switch (sc->link_params.phy[phy_idx].media_type) { 13617 case ELINK_ETH_PHY_SFPP_10G_FIBER: 13618 case ELINK_ETH_PHY_XFP_FIBER: 13619 BLOGI(sc, "Found 10Gb Fiber media.\n"); 13620 sc->media = IFM_10G_SR; 13621 break; 13622 case ELINK_ETH_PHY_SFP_1G_FIBER: 13623 BLOGI(sc, "Found 1Gb Fiber media.\n"); 13624 sc->media = IFM_1000_SX; 13625 break; 13626 case ELINK_ETH_PHY_KR: 13627 case ELINK_ETH_PHY_CX4: 13628 BLOGI(sc, "Found 10GBase-CX4 media.\n"); 13629 sc->media = IFM_10G_CX4; 13630 break; 13631 case ELINK_ETH_PHY_DA_TWINAX: 13632 BLOGI(sc, "Found 10Gb Twinax media.\n"); 13633 sc->media = IFM_10G_TWINAX; 13634 break; 13635 case ELINK_ETH_PHY_BASE_T: 13636 if (sc->link_params.speed_cap_mask[0] & 13637 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 13638 BLOGI(sc, "Found 10GBase-T media.\n"); 13639 sc->media = IFM_10G_T; 13640 } else { 13641 BLOGI(sc, "Found 1000Base-T media.\n"); 13642 sc->media = IFM_1000_T; 13643 } 13644 break; 13645 case ELINK_ETH_PHY_NOT_PRESENT: 13646 BLOGI(sc, "Media not present.\n"); 13647 sc->media = 0; 13648 break; 13649 case ELINK_ETH_PHY_UNSPECIFIED: 13650 default: 13651 BLOGI(sc, "Unknown media!\n"); 13652 sc->media = 0; 13653 break; 13654 } 13655 } 13656 13657 #define GET_FIELD(value, fname) \ 13658 (((value) & (fname##_MASK)) >> (fname##_SHIFT)) 13659 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 13660 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 13661 13662 static int 13663 bxe_get_igu_cam_info(struct bxe_softc *sc) 13664 { 13665 int pfid = SC_FUNC(sc); 13666 int igu_sb_id; 13667 uint32_t val; 13668 uint8_t fid, igu_sb_cnt = 0; 13669 13670 sc->igu_base_sb = 0xff; 13671 13672 if (CHIP_INT_MODE_IS_BC(sc)) { 13673 int vn = SC_VN(sc); 13674 igu_sb_cnt = sc->igu_sb_cnt; 13675 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) * 13676 FP_SB_MAX_E1x); 13677 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x + 13678 (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn)); 13679 return (0); 13680 } 13681 13682 /* IGU in normal mode - read CAM */ 13683 for (igu_sb_id = 0; 13684 igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 13685 igu_sb_id++) { 13686 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 13687 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) { 13688 continue; 13689 } 13690 fid = IGU_FID(val); 13691 if ((fid & IGU_FID_ENCODE_IS_PF)) { 13692 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) { 13693 continue; 13694 } 13695 if (IGU_VEC(val) == 0) { 13696 /* default status block */ 13697 sc->igu_dsb_id = igu_sb_id; 13698 } else { 13699 if (sc->igu_base_sb == 0xff) { 13700 sc->igu_base_sb = igu_sb_id; 13701 } 13702 igu_sb_cnt++; 13703 } 13704 } 13705 } 13706 13707 /* 13708 * Due to new PF resource allocation by MFW T7.4 and above, it's optional 13709 * that number of CAM entries will not be equal to the value advertised in 13710 * PCI. Driver should use the minimal value of both as the actual status 13711 * block count 13712 */ 13713 sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt); 13714 13715 if (igu_sb_cnt == 0) { 13716 BLOGE(sc, "CAM configuration error\n"); 13717 return (-1); 13718 } 13719 13720 return (0); 13721 } 13722 13723 /* 13724 * Gather various information from the device config space, the device itself, 13725 * shmem, and the user input. 13726 */ 13727 static int 13728 bxe_get_device_info(struct bxe_softc *sc) 13729 { 13730 uint32_t val; 13731 int rc; 13732 13733 /* Get the data for the device */ 13734 sc->devinfo.vendor_id = pci_get_vendor(sc->dev); 13735 sc->devinfo.device_id = pci_get_device(sc->dev); 13736 sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev); 13737 sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev); 13738 13739 /* get the chip revision (chip metal comes from pci config space) */ 13740 sc->devinfo.chip_id = 13741 sc->link_params.chip_id = 13742 (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) | 13743 ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) | 13744 (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) | 13745 ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0)); 13746 13747 /* force 57811 according to MISC register */ 13748 if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 13749 if (CHIP_IS_57810(sc)) { 13750 sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) | 13751 (sc->devinfo.chip_id & 0x0000ffff)); 13752 } else if (CHIP_IS_57810_MF(sc)) { 13753 sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) | 13754 (sc->devinfo.chip_id & 0x0000ffff)); 13755 } 13756 sc->devinfo.chip_id |= 0x1; 13757 } 13758 13759 BLOGD(sc, DBG_LOAD, 13760 "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n", 13761 sc->devinfo.chip_id, 13762 ((sc->devinfo.chip_id >> 16) & 0xffff), 13763 ((sc->devinfo.chip_id >> 12) & 0xf), 13764 ((sc->devinfo.chip_id >> 4) & 0xff), 13765 ((sc->devinfo.chip_id >> 0) & 0xf)); 13766 13767 val = (REG_RD(sc, 0x2874) & 0x55); 13768 if ((sc->devinfo.chip_id & 0x1) || 13769 (CHIP_IS_E1(sc) && val) || 13770 (CHIP_IS_E1H(sc) && (val == 0x55))) { 13771 sc->flags |= BXE_ONE_PORT_FLAG; 13772 BLOGD(sc, DBG_LOAD, "single port device\n"); 13773 } 13774 13775 /* set the doorbell size */ 13776 sc->doorbell_size = (1 << BXE_DB_SHIFT); 13777 13778 /* determine whether the device is in 2 port or 4 port mode */ 13779 sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/ 13780 if (CHIP_IS_E2E3(sc)) { 13781 /* 13782 * Read port4mode_en_ovwr[0]: 13783 * If 1, four port mode is in port4mode_en_ovwr[1]. 13784 * If 0, four port mode is in port4mode_en[0]. 13785 */ 13786 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR); 13787 if (val & 1) { 13788 val = ((val >> 1) & 1); 13789 } else { 13790 val = REG_RD(sc, MISC_REG_PORT4MODE_EN); 13791 } 13792 13793 sc->devinfo.chip_port_mode = 13794 (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE; 13795 13796 BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2"); 13797 } 13798 13799 /* get the function and path info for the device */ 13800 bxe_get_function_num(sc); 13801 13802 /* get the shared memory base address */ 13803 sc->devinfo.shmem_base = 13804 sc->link_params.shmem_base = 13805 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 13806 sc->devinfo.shmem2_base = 13807 REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 : 13808 MISC_REG_GENERIC_CR_0)); 13809 13810 BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n", 13811 sc->devinfo.shmem_base, sc->devinfo.shmem2_base); 13812 13813 if (!sc->devinfo.shmem_base) { 13814 /* this should ONLY prevent upcoming shmem reads */ 13815 BLOGI(sc, "MCP not active\n"); 13816 sc->flags |= BXE_NO_MCP_FLAG; 13817 return (0); 13818 } 13819 13820 /* make sure the shared memory contents are valid */ 13821 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 13822 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) != 13823 (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) { 13824 BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val); 13825 return (0); 13826 } 13827 BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val); 13828 13829 /* get the bootcode version */ 13830 sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev); 13831 snprintf(sc->devinfo.bc_ver_str, 13832 sizeof(sc->devinfo.bc_ver_str), 13833 "%d.%d.%d", 13834 ((sc->devinfo.bc_ver >> 24) & 0xff), 13835 ((sc->devinfo.bc_ver >> 16) & 0xff), 13836 ((sc->devinfo.bc_ver >> 8) & 0xff)); 13837 BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str); 13838 13839 /* get the bootcode shmem address */ 13840 sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc); 13841 BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base); 13842 13843 /* clean indirect addresses as they're not used */ 13844 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 13845 if (IS_PF(sc)) { 13846 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0); 13847 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0); 13848 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0); 13849 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0); 13850 if (CHIP_IS_E1x(sc)) { 13851 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0); 13852 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0); 13853 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0); 13854 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0); 13855 } 13856 13857 /* 13858 * Enable internal target-read (in case we are probed after PF 13859 * FLR). Must be done prior to any BAR read access. Only for 13860 * 57712 and up 13861 */ 13862 if (!CHIP_IS_E1x(sc)) { 13863 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 13864 } 13865 } 13866 13867 /* get the nvram size */ 13868 val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4); 13869 sc->devinfo.flash_size = 13870 (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE)); 13871 BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size); 13872 13873 /* get PCI capabilites */ 13874 bxe_probe_pci_caps(sc); 13875 13876 bxe_set_power_state(sc, PCI_PM_D0); 13877 13878 /* get various configuration parameters from shmem */ 13879 bxe_get_shmem_info(sc); 13880 13881 if (sc->devinfo.pcie_msix_cap_reg != 0) { 13882 val = pci_read_config(sc->dev, 13883 (sc->devinfo.pcie_msix_cap_reg + 13884 PCIR_MSIX_CTRL), 13885 2); 13886 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE); 13887 } else { 13888 sc->igu_sb_cnt = 1; 13889 } 13890 13891 sc->igu_base_addr = BAR_IGU_INTMEM; 13892 13893 /* initialize IGU parameters */ 13894 if (CHIP_IS_E1x(sc)) { 13895 sc->devinfo.int_block = INT_BLOCK_HC; 13896 sc->igu_dsb_id = DEF_SB_IGU_ID; 13897 sc->igu_base_sb = 0; 13898 } else { 13899 sc->devinfo.int_block = INT_BLOCK_IGU; 13900 13901 /* do not allow device reset during IGU info preocessing */ 13902 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 13903 13904 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 13905 13906 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 13907 int tout = 5000; 13908 13909 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n"); 13910 13911 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 13912 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val); 13913 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f); 13914 13915 while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 13916 tout--; 13917 DELAY(1000); 13918 } 13919 13920 if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 13921 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n"); 13922 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 13923 return (-1); 13924 } 13925 } 13926 13927 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 13928 BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n"); 13929 sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP; 13930 } else { 13931 BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n"); 13932 } 13933 13934 rc = bxe_get_igu_cam_info(sc); 13935 13936 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 13937 13938 if (rc) { 13939 return (rc); 13940 } 13941 } 13942 13943 /* 13944 * Get base FW non-default (fast path) status block ID. This value is 13945 * used to initialize the fw_sb_id saved on the fp/queue structure to 13946 * determine the id used by the FW. 13947 */ 13948 if (CHIP_IS_E1x(sc)) { 13949 sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc)); 13950 } else { 13951 /* 13952 * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of 13953 * the same queue are indicated on the same IGU SB). So we prefer 13954 * FW and IGU SBs to be the same value. 13955 */ 13956 sc->base_fw_ndsb = sc->igu_base_sb; 13957 } 13958 13959 BLOGD(sc, DBG_LOAD, 13960 "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n", 13961 sc->igu_dsb_id, sc->igu_base_sb, 13962 sc->igu_sb_cnt, sc->base_fw_ndsb); 13963 13964 elink_phy_probe(&sc->link_params); 13965 13966 return (0); 13967 } 13968 13969 static void 13970 bxe_link_settings_supported(struct bxe_softc *sc, 13971 uint32_t switch_cfg) 13972 { 13973 uint32_t cfg_size = 0; 13974 uint32_t idx; 13975 uint8_t port = SC_PORT(sc); 13976 13977 /* aggregation of supported attributes of all external phys */ 13978 sc->port.supported[0] = 0; 13979 sc->port.supported[1] = 0; 13980 13981 switch (sc->link_params.num_phys) { 13982 case 1: 13983 sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported; 13984 cfg_size = 1; 13985 break; 13986 case 2: 13987 sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported; 13988 cfg_size = 1; 13989 break; 13990 case 3: 13991 if (sc->link_params.multi_phy_config & 13992 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 13993 sc->port.supported[1] = 13994 sc->link_params.phy[ELINK_EXT_PHY1].supported; 13995 sc->port.supported[0] = 13996 sc->link_params.phy[ELINK_EXT_PHY2].supported; 13997 } else { 13998 sc->port.supported[0] = 13999 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14000 sc->port.supported[1] = 14001 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14002 } 14003 cfg_size = 2; 14004 break; 14005 } 14006 14007 if (!(sc->port.supported[0] || sc->port.supported[1])) { 14008 BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n", 14009 SHMEM_RD(sc, 14010 dev_info.port_hw_config[port].external_phy_config), 14011 SHMEM_RD(sc, 14012 dev_info.port_hw_config[port].external_phy_config2)); 14013 return; 14014 } 14015 14016 if (CHIP_IS_E3(sc)) 14017 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR); 14018 else { 14019 switch (switch_cfg) { 14020 case ELINK_SWITCH_CFG_1G: 14021 sc->port.phy_addr = 14022 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 14023 break; 14024 case ELINK_SWITCH_CFG_10G: 14025 sc->port.phy_addr = 14026 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 14027 break; 14028 default: 14029 BLOGE(sc, "Invalid switch config in link_config=0x%08x\n", 14030 sc->port.link_config[0]); 14031 return; 14032 } 14033 } 14034 14035 BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr); 14036 14037 /* mask what we support according to speed_cap_mask per configuration */ 14038 for (idx = 0; idx < cfg_size; idx++) { 14039 if (!(sc->link_params.speed_cap_mask[idx] & 14040 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) { 14041 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half; 14042 } 14043 14044 if (!(sc->link_params.speed_cap_mask[idx] & 14045 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) { 14046 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full; 14047 } 14048 14049 if (!(sc->link_params.speed_cap_mask[idx] & 14050 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) { 14051 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half; 14052 } 14053 14054 if (!(sc->link_params.speed_cap_mask[idx] & 14055 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) { 14056 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full; 14057 } 14058 14059 if (!(sc->link_params.speed_cap_mask[idx] & 14060 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) { 14061 sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full; 14062 } 14063 14064 if (!(sc->link_params.speed_cap_mask[idx] & 14065 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) { 14066 sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full; 14067 } 14068 14069 if (!(sc->link_params.speed_cap_mask[idx] & 14070 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) { 14071 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full; 14072 } 14073 14074 if (!(sc->link_params.speed_cap_mask[idx] & 14075 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) { 14076 sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full; 14077 } 14078 } 14079 14080 BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n", 14081 sc->port.supported[0], sc->port.supported[1]); 14082 } 14083 14084 static void 14085 bxe_link_settings_requested(struct bxe_softc *sc) 14086 { 14087 uint32_t link_config; 14088 uint32_t idx; 14089 uint32_t cfg_size = 0; 14090 14091 sc->port.advertising[0] = 0; 14092 sc->port.advertising[1] = 0; 14093 14094 switch (sc->link_params.num_phys) { 14095 case 1: 14096 case 2: 14097 cfg_size = 1; 14098 break; 14099 case 3: 14100 cfg_size = 2; 14101 break; 14102 } 14103 14104 for (idx = 0; idx < cfg_size; idx++) { 14105 sc->link_params.req_duplex[idx] = DUPLEX_FULL; 14106 link_config = sc->port.link_config[idx]; 14107 14108 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 14109 case PORT_FEATURE_LINK_SPEED_AUTO: 14110 if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) { 14111 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14112 sc->port.advertising[idx] |= sc->port.supported[idx]; 14113 if (sc->link_params.phy[ELINK_EXT_PHY1].type == 14114 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 14115 sc->port.advertising[idx] |= 14116 (ELINK_SUPPORTED_100baseT_Half | 14117 ELINK_SUPPORTED_100baseT_Full); 14118 } else { 14119 /* force 10G, no AN */ 14120 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14121 sc->port.advertising[idx] |= 14122 (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); 14123 continue; 14124 } 14125 break; 14126 14127 case PORT_FEATURE_LINK_SPEED_10M_FULL: 14128 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) { 14129 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14130 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full | 14131 ADVERTISED_TP); 14132 } else { 14133 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14134 "speed_cap_mask=0x%08x\n", 14135 link_config, sc->link_params.speed_cap_mask[idx]); 14136 return; 14137 } 14138 break; 14139 14140 case PORT_FEATURE_LINK_SPEED_10M_HALF: 14141 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) { 14142 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14143 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14144 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half | 14145 ADVERTISED_TP); 14146 } else { 14147 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14148 "speed_cap_mask=0x%08x\n", 14149 link_config, sc->link_params.speed_cap_mask[idx]); 14150 return; 14151 } 14152 break; 14153 14154 case PORT_FEATURE_LINK_SPEED_100M_FULL: 14155 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) { 14156 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14157 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full | 14158 ADVERTISED_TP); 14159 } else { 14160 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14161 "speed_cap_mask=0x%08x\n", 14162 link_config, sc->link_params.speed_cap_mask[idx]); 14163 return; 14164 } 14165 break; 14166 14167 case PORT_FEATURE_LINK_SPEED_100M_HALF: 14168 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) { 14169 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14170 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14171 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half | 14172 ADVERTISED_TP); 14173 } else { 14174 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14175 "speed_cap_mask=0x%08x\n", 14176 link_config, sc->link_params.speed_cap_mask[idx]); 14177 return; 14178 } 14179 break; 14180 14181 case PORT_FEATURE_LINK_SPEED_1G: 14182 if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) { 14183 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000; 14184 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full | 14185 ADVERTISED_TP); 14186 } else { 14187 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14188 "speed_cap_mask=0x%08x\n", 14189 link_config, sc->link_params.speed_cap_mask[idx]); 14190 return; 14191 } 14192 break; 14193 14194 case PORT_FEATURE_LINK_SPEED_2_5G: 14195 if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) { 14196 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500; 14197 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full | 14198 ADVERTISED_TP); 14199 } else { 14200 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14201 "speed_cap_mask=0x%08x\n", 14202 link_config, sc->link_params.speed_cap_mask[idx]); 14203 return; 14204 } 14205 break; 14206 14207 case PORT_FEATURE_LINK_SPEED_10G_CX4: 14208 if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) { 14209 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14210 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full | 14211 ADVERTISED_FIBRE); 14212 } else { 14213 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14214 "speed_cap_mask=0x%08x\n", 14215 link_config, sc->link_params.speed_cap_mask[idx]); 14216 return; 14217 } 14218 break; 14219 14220 case PORT_FEATURE_LINK_SPEED_20G: 14221 sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000; 14222 break; 14223 14224 default: 14225 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14226 "speed_cap_mask=0x%08x\n", 14227 link_config, sc->link_params.speed_cap_mask[idx]); 14228 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14229 sc->port.advertising[idx] = sc->port.supported[idx]; 14230 break; 14231 } 14232 14233 sc->link_params.req_flow_ctrl[idx] = 14234 (link_config & PORT_FEATURE_FLOW_CONTROL_MASK); 14235 14236 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) { 14237 if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) { 14238 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE; 14239 } else { 14240 bxe_set_requested_fc(sc); 14241 } 14242 } 14243 14244 BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d " 14245 "req_flow_ctrl=0x%x advertising=0x%x\n", 14246 sc->link_params.req_line_speed[idx], 14247 sc->link_params.req_duplex[idx], 14248 sc->link_params.req_flow_ctrl[idx], 14249 sc->port.advertising[idx]); 14250 } 14251 } 14252 14253 static void 14254 bxe_get_phy_info(struct bxe_softc *sc) 14255 { 14256 uint8_t port = SC_PORT(sc); 14257 uint32_t config = sc->port.config; 14258 uint32_t eee_mode; 14259 14260 /* shmem data already read in bxe_get_shmem_info() */ 14261 14262 BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x " 14263 "link_config0=0x%08x\n", 14264 sc->link_params.lane_config, 14265 sc->link_params.speed_cap_mask[0], 14266 sc->port.link_config[0]); 14267 14268 bxe_link_settings_supported(sc, sc->link_params.switch_cfg); 14269 bxe_link_settings_requested(sc); 14270 14271 if (sc->autogreeen == AUTO_GREEN_FORCE_ON) { 14272 sc->link_params.feature_config_flags |= 14273 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14274 } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) { 14275 sc->link_params.feature_config_flags &= 14276 ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14277 } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) { 14278 sc->link_params.feature_config_flags |= 14279 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14280 } 14281 14282 /* configure link feature according to nvram value */ 14283 eee_mode = 14284 (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) & 14285 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 14286 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 14287 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 14288 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI | 14289 ELINK_EEE_MODE_ENABLE_LPI | 14290 ELINK_EEE_MODE_OUTPUT_TIME); 14291 } else { 14292 sc->link_params.eee_mode = 0; 14293 } 14294 14295 /* get the media type */ 14296 bxe_media_detect(sc); 14297 } 14298 14299 static void 14300 bxe_get_params(struct bxe_softc *sc) 14301 { 14302 /* get user tunable params */ 14303 bxe_get_tunable_params(sc); 14304 14305 /* select the RX and TX ring sizes */ 14306 sc->tx_ring_size = TX_BD_USABLE; 14307 sc->rx_ring_size = RX_BD_USABLE; 14308 14309 /* XXX disable WoL */ 14310 sc->wol = 0; 14311 } 14312 14313 static void 14314 bxe_set_modes_bitmap(struct bxe_softc *sc) 14315 { 14316 uint32_t flags = 0; 14317 14318 if (CHIP_REV_IS_FPGA(sc)) { 14319 SET_FLAGS(flags, MODE_FPGA); 14320 } else if (CHIP_REV_IS_EMUL(sc)) { 14321 SET_FLAGS(flags, MODE_EMUL); 14322 } else { 14323 SET_FLAGS(flags, MODE_ASIC); 14324 } 14325 14326 if (CHIP_IS_MODE_4_PORT(sc)) { 14327 SET_FLAGS(flags, MODE_PORT4); 14328 } else { 14329 SET_FLAGS(flags, MODE_PORT2); 14330 } 14331 14332 if (CHIP_IS_E2(sc)) { 14333 SET_FLAGS(flags, MODE_E2); 14334 } else if (CHIP_IS_E3(sc)) { 14335 SET_FLAGS(flags, MODE_E3); 14336 if (CHIP_REV(sc) == CHIP_REV_Ax) { 14337 SET_FLAGS(flags, MODE_E3_A0); 14338 } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ { 14339 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 14340 } 14341 } 14342 14343 if (IS_MF(sc)) { 14344 SET_FLAGS(flags, MODE_MF); 14345 switch (sc->devinfo.mf_info.mf_mode) { 14346 case MULTI_FUNCTION_SD: 14347 SET_FLAGS(flags, MODE_MF_SD); 14348 break; 14349 case MULTI_FUNCTION_SI: 14350 SET_FLAGS(flags, MODE_MF_SI); 14351 break; 14352 case MULTI_FUNCTION_AFEX: 14353 SET_FLAGS(flags, MODE_MF_AFEX); 14354 break; 14355 } 14356 } else { 14357 SET_FLAGS(flags, MODE_SF); 14358 } 14359 14360 #if defined(__LITTLE_ENDIAN) 14361 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 14362 #else /* __BIG_ENDIAN */ 14363 SET_FLAGS(flags, MODE_BIG_ENDIAN); 14364 #endif 14365 14366 INIT_MODE_FLAGS(sc) = flags; 14367 } 14368 14369 static int 14370 bxe_alloc_hsi_mem(struct bxe_softc *sc) 14371 { 14372 struct bxe_fastpath *fp; 14373 bus_addr_t busaddr; 14374 int max_agg_queues; 14375 int max_segments; 14376 bus_size_t max_size; 14377 bus_size_t max_seg_size; 14378 char buf[32]; 14379 int rc; 14380 int i, j; 14381 14382 /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */ 14383 14384 /* allocate the parent bus DMA tag */ 14385 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */ 14386 1, /* alignment */ 14387 0, /* boundary limit */ 14388 BUS_SPACE_MAXADDR, /* restricted low */ 14389 BUS_SPACE_MAXADDR, /* restricted hi */ 14390 NULL, /* addr filter() */ 14391 NULL, /* addr filter() arg */ 14392 BUS_SPACE_MAXSIZE_32BIT, /* max map size */ 14393 BUS_SPACE_UNRESTRICTED, /* num discontinuous */ 14394 BUS_SPACE_MAXSIZE_32BIT, /* max seg size */ 14395 0, /* flags */ 14396 NULL, /* lock() */ 14397 NULL, /* lock() arg */ 14398 &sc->parent_dma_tag); /* returned dma tag */ 14399 if (rc != 0) { 14400 BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc); 14401 return (1); 14402 } 14403 14404 /************************/ 14405 /* DEFAULT STATUS BLOCK */ 14406 /************************/ 14407 14408 if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block), 14409 &sc->def_sb_dma, "default status block") != 0) { 14410 /* XXX */ 14411 bus_dma_tag_destroy(sc->parent_dma_tag); 14412 return (1); 14413 } 14414 14415 sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr; 14416 14417 /***************/ 14418 /* EVENT QUEUE */ 14419 /***************/ 14420 14421 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14422 &sc->eq_dma, "event queue") != 0) { 14423 /* XXX */ 14424 bxe_dma_free(sc, &sc->def_sb_dma); 14425 sc->def_sb = NULL; 14426 bus_dma_tag_destroy(sc->parent_dma_tag); 14427 return (1); 14428 } 14429 14430 sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr; 14431 14432 /*************/ 14433 /* SLOW PATH */ 14434 /*************/ 14435 14436 if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath), 14437 &sc->sp_dma, "slow path") != 0) { 14438 /* XXX */ 14439 bxe_dma_free(sc, &sc->eq_dma); 14440 sc->eq = NULL; 14441 bxe_dma_free(sc, &sc->def_sb_dma); 14442 sc->def_sb = NULL; 14443 bus_dma_tag_destroy(sc->parent_dma_tag); 14444 return (1); 14445 } 14446 14447 sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr; 14448 14449 /*******************/ 14450 /* SLOW PATH QUEUE */ 14451 /*******************/ 14452 14453 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14454 &sc->spq_dma, "slow path queue") != 0) { 14455 /* XXX */ 14456 bxe_dma_free(sc, &sc->sp_dma); 14457 sc->sp = NULL; 14458 bxe_dma_free(sc, &sc->eq_dma); 14459 sc->eq = NULL; 14460 bxe_dma_free(sc, &sc->def_sb_dma); 14461 sc->def_sb = NULL; 14462 bus_dma_tag_destroy(sc->parent_dma_tag); 14463 return (1); 14464 } 14465 14466 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr; 14467 14468 /***************************/ 14469 /* FW DECOMPRESSION BUFFER */ 14470 /***************************/ 14471 14472 if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma, 14473 "fw decompression buffer") != 0) { 14474 /* XXX */ 14475 bxe_dma_free(sc, &sc->spq_dma); 14476 sc->spq = NULL; 14477 bxe_dma_free(sc, &sc->sp_dma); 14478 sc->sp = NULL; 14479 bxe_dma_free(sc, &sc->eq_dma); 14480 sc->eq = NULL; 14481 bxe_dma_free(sc, &sc->def_sb_dma); 14482 sc->def_sb = NULL; 14483 bus_dma_tag_destroy(sc->parent_dma_tag); 14484 return (1); 14485 } 14486 14487 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr; 14488 14489 if ((sc->gz_strm = 14490 malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) { 14491 /* XXX */ 14492 bxe_dma_free(sc, &sc->gz_buf_dma); 14493 sc->gz_buf = NULL; 14494 bxe_dma_free(sc, &sc->spq_dma); 14495 sc->spq = NULL; 14496 bxe_dma_free(sc, &sc->sp_dma); 14497 sc->sp = NULL; 14498 bxe_dma_free(sc, &sc->eq_dma); 14499 sc->eq = NULL; 14500 bxe_dma_free(sc, &sc->def_sb_dma); 14501 sc->def_sb = NULL; 14502 bus_dma_tag_destroy(sc->parent_dma_tag); 14503 return (1); 14504 } 14505 14506 /*************/ 14507 /* FASTPATHS */ 14508 /*************/ 14509 14510 /* allocate DMA memory for each fastpath structure */ 14511 for (i = 0; i < sc->num_queues; i++) { 14512 fp = &sc->fp[i]; 14513 fp->sc = sc; 14514 fp->index = i; 14515 14516 /*******************/ 14517 /* FP STATUS BLOCK */ 14518 /*******************/ 14519 14520 snprintf(buf, sizeof(buf), "fp %d status block", i); 14521 if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block), 14522 &fp->sb_dma, buf) != 0) { 14523 /* XXX unwind and free previous fastpath allocations */ 14524 BLOGE(sc, "Failed to alloc %s\n", buf); 14525 return (1); 14526 } else { 14527 if (CHIP_IS_E2E3(sc)) { 14528 fp->status_block.e2_sb = 14529 (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr; 14530 } else { 14531 fp->status_block.e1x_sb = 14532 (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr; 14533 } 14534 } 14535 14536 /******************/ 14537 /* FP TX BD CHAIN */ 14538 /******************/ 14539 14540 snprintf(buf, sizeof(buf), "fp %d tx bd chain", i); 14541 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES), 14542 &fp->tx_dma, buf) != 0) { 14543 /* XXX unwind and free previous fastpath allocations */ 14544 BLOGE(sc, "Failed to alloc %s\n", buf); 14545 return (1); 14546 } else { 14547 fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr; 14548 } 14549 14550 /* link together the tx bd chain pages */ 14551 for (j = 1; j <= TX_BD_NUM_PAGES; j++) { 14552 /* index into the tx bd chain array to last entry per page */ 14553 struct eth_tx_next_bd *tx_next_bd = 14554 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd; 14555 /* point to the next page and wrap from last page */ 14556 busaddr = (fp->tx_dma.paddr + 14557 (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES))); 14558 tx_next_bd->addr_hi = htole32(U64_HI(busaddr)); 14559 tx_next_bd->addr_lo = htole32(U64_LO(busaddr)); 14560 } 14561 14562 /******************/ 14563 /* FP RX BD CHAIN */ 14564 /******************/ 14565 14566 snprintf(buf, sizeof(buf), "fp %d rx bd chain", i); 14567 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES), 14568 &fp->rx_dma, buf) != 0) { 14569 /* XXX unwind and free previous fastpath allocations */ 14570 BLOGE(sc, "Failed to alloc %s\n", buf); 14571 return (1); 14572 } else { 14573 fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr; 14574 } 14575 14576 /* link together the rx bd chain pages */ 14577 for (j = 1; j <= RX_BD_NUM_PAGES; j++) { 14578 /* index into the rx bd chain array to last entry per page */ 14579 struct eth_rx_bd *rx_bd = 14580 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2]; 14581 /* point to the next page and wrap from last page */ 14582 busaddr = (fp->rx_dma.paddr + 14583 (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES))); 14584 rx_bd->addr_hi = htole32(U64_HI(busaddr)); 14585 rx_bd->addr_lo = htole32(U64_LO(busaddr)); 14586 } 14587 14588 /*******************/ 14589 /* FP RX RCQ CHAIN */ 14590 /*******************/ 14591 14592 snprintf(buf, sizeof(buf), "fp %d rcq chain", i); 14593 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES), 14594 &fp->rcq_dma, buf) != 0) { 14595 /* XXX unwind and free previous fastpath allocations */ 14596 BLOGE(sc, "Failed to alloc %s\n", buf); 14597 return (1); 14598 } else { 14599 fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr; 14600 } 14601 14602 /* link together the rcq chain pages */ 14603 for (j = 1; j <= RCQ_NUM_PAGES; j++) { 14604 /* index into the rcq chain array to last entry per page */ 14605 struct eth_rx_cqe_next_page *rx_cqe_next = 14606 (struct eth_rx_cqe_next_page *) 14607 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1]; 14608 /* point to the next page and wrap from last page */ 14609 busaddr = (fp->rcq_dma.paddr + 14610 (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES))); 14611 rx_cqe_next->addr_hi = htole32(U64_HI(busaddr)); 14612 rx_cqe_next->addr_lo = htole32(U64_LO(busaddr)); 14613 } 14614 14615 /*******************/ 14616 /* FP RX SGE CHAIN */ 14617 /*******************/ 14618 14619 snprintf(buf, sizeof(buf), "fp %d sge chain", i); 14620 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES), 14621 &fp->rx_sge_dma, buf) != 0) { 14622 /* XXX unwind and free previous fastpath allocations */ 14623 BLOGE(sc, "Failed to alloc %s\n", buf); 14624 return (1); 14625 } else { 14626 fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr; 14627 } 14628 14629 /* link together the sge chain pages */ 14630 for (j = 1; j <= RX_SGE_NUM_PAGES; j++) { 14631 /* index into the rcq chain array to last entry per page */ 14632 struct eth_rx_sge *rx_sge = 14633 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2]; 14634 /* point to the next page and wrap from last page */ 14635 busaddr = (fp->rx_sge_dma.paddr + 14636 (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES))); 14637 rx_sge->addr_hi = htole32(U64_HI(busaddr)); 14638 rx_sge->addr_lo = htole32(U64_LO(busaddr)); 14639 } 14640 14641 /***********************/ 14642 /* FP TX MBUF DMA MAPS */ 14643 /***********************/ 14644 14645 /* set required sizes before mapping to conserve resources */ 14646 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 14647 max_size = BXE_TSO_MAX_SIZE; 14648 max_segments = BXE_TSO_MAX_SEGMENTS; 14649 max_seg_size = BXE_TSO_MAX_SEG_SIZE; 14650 } else { 14651 max_size = (MCLBYTES * BXE_MAX_SEGMENTS); 14652 max_segments = BXE_MAX_SEGMENTS; 14653 max_seg_size = MCLBYTES; 14654 } 14655 14656 /* create a dma tag for the tx mbufs */ 14657 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14658 1, /* alignment */ 14659 0, /* boundary limit */ 14660 BUS_SPACE_MAXADDR, /* restricted low */ 14661 BUS_SPACE_MAXADDR, /* restricted hi */ 14662 NULL, /* addr filter() */ 14663 NULL, /* addr filter() arg */ 14664 max_size, /* max map size */ 14665 max_segments, /* num discontinuous */ 14666 max_seg_size, /* max seg size */ 14667 0, /* flags */ 14668 NULL, /* lock() */ 14669 NULL, /* lock() arg */ 14670 &fp->tx_mbuf_tag); /* returned dma tag */ 14671 if (rc != 0) { 14672 /* XXX unwind and free previous fastpath allocations */ 14673 BLOGE(sc, "Failed to create dma tag for " 14674 "'fp %d tx mbufs' (%d)\n", i, rc); 14675 return (1); 14676 } 14677 14678 /* create dma maps for each of the tx mbuf clusters */ 14679 for (j = 0; j < TX_BD_TOTAL; j++) { 14680 if (bus_dmamap_create(fp->tx_mbuf_tag, 14681 BUS_DMA_NOWAIT, 14682 &fp->tx_mbuf_chain[j].m_map)) { 14683 /* XXX unwind and free previous fastpath allocations */ 14684 BLOGE(sc, "Failed to create dma map for " 14685 "'fp %d tx mbuf %d' (%d)\n", i, j, rc); 14686 return (1); 14687 } 14688 } 14689 14690 /***********************/ 14691 /* FP RX MBUF DMA MAPS */ 14692 /***********************/ 14693 14694 /* create a dma tag for the rx mbufs */ 14695 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14696 1, /* alignment */ 14697 0, /* boundary limit */ 14698 BUS_SPACE_MAXADDR, /* restricted low */ 14699 BUS_SPACE_MAXADDR, /* restricted hi */ 14700 NULL, /* addr filter() */ 14701 NULL, /* addr filter() arg */ 14702 MJUM9BYTES, /* max map size */ 14703 1, /* num discontinuous */ 14704 MJUM9BYTES, /* max seg size */ 14705 0, /* flags */ 14706 NULL, /* lock() */ 14707 NULL, /* lock() arg */ 14708 &fp->rx_mbuf_tag); /* returned dma tag */ 14709 if (rc != 0) { 14710 /* XXX unwind and free previous fastpath allocations */ 14711 BLOGE(sc, "Failed to create dma tag for " 14712 "'fp %d rx mbufs' (%d)\n", i, rc); 14713 return (1); 14714 } 14715 14716 /* create dma maps for each of the rx mbuf clusters */ 14717 for (j = 0; j < RX_BD_TOTAL; j++) { 14718 if (bus_dmamap_create(fp->rx_mbuf_tag, 14719 BUS_DMA_NOWAIT, 14720 &fp->rx_mbuf_chain[j].m_map)) { 14721 /* XXX unwind and free previous fastpath allocations */ 14722 BLOGE(sc, "Failed to create dma map for " 14723 "'fp %d rx mbuf %d' (%d)\n", i, j, rc); 14724 return (1); 14725 } 14726 } 14727 14728 /* create dma map for the spare rx mbuf cluster */ 14729 if (bus_dmamap_create(fp->rx_mbuf_tag, 14730 BUS_DMA_NOWAIT, 14731 &fp->rx_mbuf_spare_map)) { 14732 /* XXX unwind and free previous fastpath allocations */ 14733 BLOGE(sc, "Failed to create dma map for " 14734 "'fp %d spare rx mbuf' (%d)\n", i, rc); 14735 return (1); 14736 } 14737 14738 /***************************/ 14739 /* FP RX SGE MBUF DMA MAPS */ 14740 /***************************/ 14741 14742 /* create a dma tag for the rx sge mbufs */ 14743 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14744 1, /* alignment */ 14745 0, /* boundary limit */ 14746 BUS_SPACE_MAXADDR, /* restricted low */ 14747 BUS_SPACE_MAXADDR, /* restricted hi */ 14748 NULL, /* addr filter() */ 14749 NULL, /* addr filter() arg */ 14750 BCM_PAGE_SIZE, /* max map size */ 14751 1, /* num discontinuous */ 14752 BCM_PAGE_SIZE, /* max seg size */ 14753 0, /* flags */ 14754 NULL, /* lock() */ 14755 NULL, /* lock() arg */ 14756 &fp->rx_sge_mbuf_tag); /* returned dma tag */ 14757 if (rc != 0) { 14758 /* XXX unwind and free previous fastpath allocations */ 14759 BLOGE(sc, "Failed to create dma tag for " 14760 "'fp %d rx sge mbufs' (%d)\n", i, rc); 14761 return (1); 14762 } 14763 14764 /* create dma maps for the rx sge mbuf clusters */ 14765 for (j = 0; j < RX_SGE_TOTAL; j++) { 14766 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 14767 BUS_DMA_NOWAIT, 14768 &fp->rx_sge_mbuf_chain[j].m_map)) { 14769 /* XXX unwind and free previous fastpath allocations */ 14770 BLOGE(sc, "Failed to create dma map for " 14771 "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc); 14772 return (1); 14773 } 14774 } 14775 14776 /* create dma map for the spare rx sge mbuf cluster */ 14777 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 14778 BUS_DMA_NOWAIT, 14779 &fp->rx_sge_mbuf_spare_map)) { 14780 /* XXX unwind and free previous fastpath allocations */ 14781 BLOGE(sc, "Failed to create dma map for " 14782 "'fp %d spare rx sge mbuf' (%d)\n", i, rc); 14783 return (1); 14784 } 14785 14786 /***************************/ 14787 /* FP RX TPA MBUF DMA MAPS */ 14788 /***************************/ 14789 14790 /* create dma maps for the rx tpa mbuf clusters */ 14791 max_agg_queues = MAX_AGG_QS(sc); 14792 14793 for (j = 0; j < max_agg_queues; j++) { 14794 if (bus_dmamap_create(fp->rx_mbuf_tag, 14795 BUS_DMA_NOWAIT, 14796 &fp->rx_tpa_info[j].bd.m_map)) { 14797 /* XXX unwind and free previous fastpath allocations */ 14798 BLOGE(sc, "Failed to create dma map for " 14799 "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc); 14800 return (1); 14801 } 14802 } 14803 14804 /* create dma map for the spare rx tpa mbuf cluster */ 14805 if (bus_dmamap_create(fp->rx_mbuf_tag, 14806 BUS_DMA_NOWAIT, 14807 &fp->rx_tpa_info_mbuf_spare_map)) { 14808 /* XXX unwind and free previous fastpath allocations */ 14809 BLOGE(sc, "Failed to create dma map for " 14810 "'fp %d spare rx tpa mbuf' (%d)\n", i, rc); 14811 return (1); 14812 } 14813 14814 bxe_init_sge_ring_bit_mask(fp); 14815 } 14816 14817 return (0); 14818 } 14819 14820 static void 14821 bxe_free_hsi_mem(struct bxe_softc *sc) 14822 { 14823 struct bxe_fastpath *fp; 14824 int max_agg_queues; 14825 int i, j; 14826 14827 if (sc->parent_dma_tag == NULL) { 14828 return; /* assume nothing was allocated */ 14829 } 14830 14831 for (i = 0; i < sc->num_queues; i++) { 14832 fp = &sc->fp[i]; 14833 14834 /*******************/ 14835 /* FP STATUS BLOCK */ 14836 /*******************/ 14837 14838 bxe_dma_free(sc, &fp->sb_dma); 14839 memset(&fp->status_block, 0, sizeof(fp->status_block)); 14840 14841 /******************/ 14842 /* FP TX BD CHAIN */ 14843 /******************/ 14844 14845 bxe_dma_free(sc, &fp->tx_dma); 14846 fp->tx_chain = NULL; 14847 14848 /******************/ 14849 /* FP RX BD CHAIN */ 14850 /******************/ 14851 14852 bxe_dma_free(sc, &fp->rx_dma); 14853 fp->rx_chain = NULL; 14854 14855 /*******************/ 14856 /* FP RX RCQ CHAIN */ 14857 /*******************/ 14858 14859 bxe_dma_free(sc, &fp->rcq_dma); 14860 fp->rcq_chain = NULL; 14861 14862 /*******************/ 14863 /* FP RX SGE CHAIN */ 14864 /*******************/ 14865 14866 bxe_dma_free(sc, &fp->rx_sge_dma); 14867 fp->rx_sge_chain = NULL; 14868 14869 /***********************/ 14870 /* FP TX MBUF DMA MAPS */ 14871 /***********************/ 14872 14873 if (fp->tx_mbuf_tag != NULL) { 14874 for (j = 0; j < TX_BD_TOTAL; j++) { 14875 if (fp->tx_mbuf_chain[j].m_map != NULL) { 14876 bus_dmamap_unload(fp->tx_mbuf_tag, 14877 fp->tx_mbuf_chain[j].m_map); 14878 bus_dmamap_destroy(fp->tx_mbuf_tag, 14879 fp->tx_mbuf_chain[j].m_map); 14880 } 14881 } 14882 14883 bus_dma_tag_destroy(fp->tx_mbuf_tag); 14884 fp->tx_mbuf_tag = NULL; 14885 } 14886 14887 /***********************/ 14888 /* FP RX MBUF DMA MAPS */ 14889 /***********************/ 14890 14891 if (fp->rx_mbuf_tag != NULL) { 14892 for (j = 0; j < RX_BD_TOTAL; j++) { 14893 if (fp->rx_mbuf_chain[j].m_map != NULL) { 14894 bus_dmamap_unload(fp->rx_mbuf_tag, 14895 fp->rx_mbuf_chain[j].m_map); 14896 bus_dmamap_destroy(fp->rx_mbuf_tag, 14897 fp->rx_mbuf_chain[j].m_map); 14898 } 14899 } 14900 14901 if (fp->rx_mbuf_spare_map != NULL) { 14902 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 14903 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 14904 } 14905 14906 /***************************/ 14907 /* FP RX TPA MBUF DMA MAPS */ 14908 /***************************/ 14909 14910 max_agg_queues = MAX_AGG_QS(sc); 14911 14912 for (j = 0; j < max_agg_queues; j++) { 14913 if (fp->rx_tpa_info[j].bd.m_map != NULL) { 14914 bus_dmamap_unload(fp->rx_mbuf_tag, 14915 fp->rx_tpa_info[j].bd.m_map); 14916 bus_dmamap_destroy(fp->rx_mbuf_tag, 14917 fp->rx_tpa_info[j].bd.m_map); 14918 } 14919 } 14920 14921 if (fp->rx_tpa_info_mbuf_spare_map != NULL) { 14922 bus_dmamap_unload(fp->rx_mbuf_tag, 14923 fp->rx_tpa_info_mbuf_spare_map); 14924 bus_dmamap_destroy(fp->rx_mbuf_tag, 14925 fp->rx_tpa_info_mbuf_spare_map); 14926 } 14927 14928 bus_dma_tag_destroy(fp->rx_mbuf_tag); 14929 fp->rx_mbuf_tag = NULL; 14930 } 14931 14932 /***************************/ 14933 /* FP RX SGE MBUF DMA MAPS */ 14934 /***************************/ 14935 14936 if (fp->rx_sge_mbuf_tag != NULL) { 14937 for (j = 0; j < RX_SGE_TOTAL; j++) { 14938 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) { 14939 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 14940 fp->rx_sge_mbuf_chain[j].m_map); 14941 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 14942 fp->rx_sge_mbuf_chain[j].m_map); 14943 } 14944 } 14945 14946 if (fp->rx_sge_mbuf_spare_map != NULL) { 14947 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 14948 fp->rx_sge_mbuf_spare_map); 14949 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 14950 fp->rx_sge_mbuf_spare_map); 14951 } 14952 14953 bus_dma_tag_destroy(fp->rx_sge_mbuf_tag); 14954 fp->rx_sge_mbuf_tag = NULL; 14955 } 14956 } 14957 14958 /***************************/ 14959 /* FW DECOMPRESSION BUFFER */ 14960 /***************************/ 14961 14962 bxe_dma_free(sc, &sc->gz_buf_dma); 14963 sc->gz_buf = NULL; 14964 free(sc->gz_strm, M_DEVBUF); 14965 sc->gz_strm = NULL; 14966 14967 /*******************/ 14968 /* SLOW PATH QUEUE */ 14969 /*******************/ 14970 14971 bxe_dma_free(sc, &sc->spq_dma); 14972 sc->spq = NULL; 14973 14974 /*************/ 14975 /* SLOW PATH */ 14976 /*************/ 14977 14978 bxe_dma_free(sc, &sc->sp_dma); 14979 sc->sp = NULL; 14980 14981 /***************/ 14982 /* EVENT QUEUE */ 14983 /***************/ 14984 14985 bxe_dma_free(sc, &sc->eq_dma); 14986 sc->eq = NULL; 14987 14988 /************************/ 14989 /* DEFAULT STATUS BLOCK */ 14990 /************************/ 14991 14992 bxe_dma_free(sc, &sc->def_sb_dma); 14993 sc->def_sb = NULL; 14994 14995 bus_dma_tag_destroy(sc->parent_dma_tag); 14996 sc->parent_dma_tag = NULL; 14997 } 14998 14999 /* 15000 * Previous driver DMAE transaction may have occurred when pre-boot stage 15001 * ended and boot began. This would invalidate the addresses of the 15002 * transaction, resulting in was-error bit set in the PCI causing all 15003 * hw-to-host PCIe transactions to timeout. If this happened we want to clear 15004 * the interrupt which detected this from the pglueb and the was-done bit 15005 */ 15006 static void 15007 bxe_prev_interrupted_dmae(struct bxe_softc *sc) 15008 { 15009 uint32_t val; 15010 15011 if (!CHIP_IS_E1x(sc)) { 15012 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS); 15013 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { 15014 BLOGD(sc, DBG_LOAD, 15015 "Clearing 'was-error' bit that was set in pglueb"); 15016 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc)); 15017 } 15018 } 15019 } 15020 15021 static int 15022 bxe_prev_mcp_done(struct bxe_softc *sc) 15023 { 15024 uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 15025 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 15026 if (!rc) { 15027 BLOGE(sc, "MCP response failure, aborting\n"); 15028 return (-1); 15029 } 15030 15031 return (0); 15032 } 15033 15034 static struct bxe_prev_list_node * 15035 bxe_prev_path_get_entry(struct bxe_softc *sc) 15036 { 15037 struct bxe_prev_list_node *tmp; 15038 15039 LIST_FOREACH(tmp, &bxe_prev_list, node) { 15040 if ((sc->pcie_bus == tmp->bus) && 15041 (sc->pcie_device == tmp->slot) && 15042 (SC_PATH(sc) == tmp->path)) { 15043 return (tmp); 15044 } 15045 } 15046 15047 return (NULL); 15048 } 15049 15050 static uint8_t 15051 bxe_prev_is_path_marked(struct bxe_softc *sc) 15052 { 15053 struct bxe_prev_list_node *tmp; 15054 int rc = FALSE; 15055 15056 mtx_lock(&bxe_prev_mtx); 15057 15058 tmp = bxe_prev_path_get_entry(sc); 15059 if (tmp) { 15060 if (tmp->aer) { 15061 BLOGD(sc, DBG_LOAD, 15062 "Path %d/%d/%d was marked by AER\n", 15063 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15064 } else { 15065 rc = TRUE; 15066 BLOGD(sc, DBG_LOAD, 15067 "Path %d/%d/%d was already cleaned from previous drivers\n", 15068 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15069 } 15070 } 15071 15072 mtx_unlock(&bxe_prev_mtx); 15073 15074 return (rc); 15075 } 15076 15077 static int 15078 bxe_prev_mark_path(struct bxe_softc *sc, 15079 uint8_t after_undi) 15080 { 15081 struct bxe_prev_list_node *tmp; 15082 15083 mtx_lock(&bxe_prev_mtx); 15084 15085 /* Check whether the entry for this path already exists */ 15086 tmp = bxe_prev_path_get_entry(sc); 15087 if (tmp) { 15088 if (!tmp->aer) { 15089 BLOGD(sc, DBG_LOAD, 15090 "Re-marking AER in path %d/%d/%d\n", 15091 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15092 } else { 15093 BLOGD(sc, DBG_LOAD, 15094 "Removing AER indication from path %d/%d/%d\n", 15095 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15096 tmp->aer = 0; 15097 } 15098 15099 mtx_unlock(&bxe_prev_mtx); 15100 return (0); 15101 } 15102 15103 mtx_unlock(&bxe_prev_mtx); 15104 15105 /* Create an entry for this path and add it */ 15106 tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF, 15107 (M_NOWAIT | M_ZERO)); 15108 if (!tmp) { 15109 BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n"); 15110 return (-1); 15111 } 15112 15113 tmp->bus = sc->pcie_bus; 15114 tmp->slot = sc->pcie_device; 15115 tmp->path = SC_PATH(sc); 15116 tmp->aer = 0; 15117 tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0; 15118 15119 mtx_lock(&bxe_prev_mtx); 15120 15121 BLOGD(sc, DBG_LOAD, 15122 "Marked path %d/%d/%d - finished previous unload\n", 15123 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15124 LIST_INSERT_HEAD(&bxe_prev_list, tmp, node); 15125 15126 mtx_unlock(&bxe_prev_mtx); 15127 15128 return (0); 15129 } 15130 15131 static int 15132 bxe_do_flr(struct bxe_softc *sc) 15133 { 15134 int i; 15135 15136 /* only E2 and onwards support FLR */ 15137 if (CHIP_IS_E1x(sc)) { 15138 BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n"); 15139 return (-1); 15140 } 15141 15142 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 15143 if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 15144 BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n", 15145 sc->devinfo.bc_ver); 15146 return (-1); 15147 } 15148 15149 /* Wait for Transaction Pending bit clean */ 15150 for (i = 0; i < 4; i++) { 15151 if (i) { 15152 DELAY(((1 << (i - 1)) * 100) * 1000); 15153 } 15154 15155 if (!bxe_is_pcie_pending(sc)) { 15156 goto clear; 15157 } 15158 } 15159 15160 BLOGE(sc, "PCIE transaction is not cleared, " 15161 "proceeding with reset anyway\n"); 15162 15163 clear: 15164 15165 BLOGD(sc, DBG_LOAD, "Initiating FLR\n"); 15166 bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0); 15167 15168 return (0); 15169 } 15170 15171 struct bxe_mac_vals { 15172 uint32_t xmac_addr; 15173 uint32_t xmac_val; 15174 uint32_t emac_addr; 15175 uint32_t emac_val; 15176 uint32_t umac_addr; 15177 uint32_t umac_val; 15178 uint32_t bmac_addr; 15179 uint32_t bmac_val[2]; 15180 }; 15181 15182 static void 15183 bxe_prev_unload_close_mac(struct bxe_softc *sc, 15184 struct bxe_mac_vals *vals) 15185 { 15186 uint32_t val, base_addr, offset, mask, reset_reg; 15187 uint8_t mac_stopped = FALSE; 15188 uint8_t port = SC_PORT(sc); 15189 uint32_t wb_data[2]; 15190 15191 /* reset addresses as they also mark which values were changed */ 15192 vals->bmac_addr = 0; 15193 vals->umac_addr = 0; 15194 vals->xmac_addr = 0; 15195 vals->emac_addr = 0; 15196 15197 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2); 15198 15199 if (!CHIP_IS_E3(sc)) { 15200 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 15201 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 15202 if ((mask & reset_reg) && val) { 15203 BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n"); 15204 base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM 15205 : NIG_REG_INGRESS_BMAC0_MEM; 15206 offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL 15207 : BIGMAC_REGISTER_BMAC_CONTROL; 15208 15209 /* 15210 * use rd/wr since we cannot use dmae. This is safe 15211 * since MCP won't access the bus due to the request 15212 * to unload, and no function on the path can be 15213 * loaded at this time. 15214 */ 15215 wb_data[0] = REG_RD(sc, base_addr + offset); 15216 wb_data[1] = REG_RD(sc, base_addr + offset + 0x4); 15217 vals->bmac_addr = base_addr + offset; 15218 vals->bmac_val[0] = wb_data[0]; 15219 vals->bmac_val[1] = wb_data[1]; 15220 wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE; 15221 REG_WR(sc, vals->bmac_addr, wb_data[0]); 15222 REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]); 15223 } 15224 15225 BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n"); 15226 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4; 15227 vals->emac_val = REG_RD(sc, vals->emac_addr); 15228 REG_WR(sc, vals->emac_addr, 0); 15229 mac_stopped = TRUE; 15230 } else { 15231 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 15232 BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n"); 15233 base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 15234 val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI); 15235 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1)); 15236 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1)); 15237 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 15238 vals->xmac_val = REG_RD(sc, vals->xmac_addr); 15239 REG_WR(sc, vals->xmac_addr, 0); 15240 mac_stopped = TRUE; 15241 } 15242 15243 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 15244 if (mask & reset_reg) { 15245 BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n"); 15246 base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 15247 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; 15248 vals->umac_val = REG_RD(sc, vals->umac_addr); 15249 REG_WR(sc, vals->umac_addr, 0); 15250 mac_stopped = TRUE; 15251 } 15252 } 15253 15254 if (mac_stopped) { 15255 DELAY(20000); 15256 } 15257 } 15258 15259 #define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 15260 #define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff) 15261 #define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 15262 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 15263 15264 static void 15265 bxe_prev_unload_undi_inc(struct bxe_softc *sc, 15266 uint8_t port, 15267 uint8_t inc) 15268 { 15269 uint16_t rcq, bd; 15270 uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port)); 15271 15272 rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc; 15273 bd = BXE_PREV_UNDI_BD(tmp_reg) + inc; 15274 15275 tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd); 15276 REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg); 15277 15278 BLOGD(sc, DBG_LOAD, 15279 "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n", 15280 port, bd, rcq); 15281 } 15282 15283 static int 15284 bxe_prev_unload_common(struct bxe_softc *sc) 15285 { 15286 uint32_t reset_reg, tmp_reg = 0, rc; 15287 uint8_t prev_undi = FALSE; 15288 struct bxe_mac_vals mac_vals; 15289 uint32_t timer_count = 1000; 15290 uint32_t prev_brb; 15291 15292 /* 15293 * It is possible a previous function received 'common' answer, 15294 * but hasn't loaded yet, therefore creating a scenario of 15295 * multiple functions receiving 'common' on the same path. 15296 */ 15297 BLOGD(sc, DBG_LOAD, "Common unload Flow\n"); 15298 15299 memset(&mac_vals, 0, sizeof(mac_vals)); 15300 15301 if (bxe_prev_is_path_marked(sc)) { 15302 return (bxe_prev_mcp_done(sc)); 15303 } 15304 15305 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1); 15306 15307 /* Reset should be performed after BRB is emptied */ 15308 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 15309 /* Close the MAC Rx to prevent BRB from filling up */ 15310 bxe_prev_unload_close_mac(sc, &mac_vals); 15311 15312 /* close LLH filters towards the BRB */ 15313 elink_set_rx_filter(&sc->link_params, 0); 15314 15315 /* 15316 * Check if the UNDI driver was previously loaded. 15317 * UNDI driver initializes CID offset for normal bell to 0x7 15318 */ 15319 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { 15320 tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST); 15321 if (tmp_reg == 0x7) { 15322 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n"); 15323 prev_undi = TRUE; 15324 /* clear the UNDI indication */ 15325 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0); 15326 /* clear possible idle check errors */ 15327 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0); 15328 } 15329 } 15330 15331 /* wait until BRB is empty */ 15332 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15333 while (timer_count) { 15334 prev_brb = tmp_reg; 15335 15336 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15337 if (!tmp_reg) { 15338 break; 15339 } 15340 15341 BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg); 15342 15343 /* reset timer as long as BRB actually gets emptied */ 15344 if (prev_brb > tmp_reg) { 15345 timer_count = 1000; 15346 } else { 15347 timer_count--; 15348 } 15349 15350 /* If UNDI resides in memory, manually increment it */ 15351 if (prev_undi) { 15352 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1); 15353 } 15354 15355 DELAY(10); 15356 } 15357 15358 if (!timer_count) { 15359 BLOGE(sc, "Failed to empty BRB\n"); 15360 } 15361 } 15362 15363 /* No packets are in the pipeline, path is ready for reset */ 15364 bxe_reset_common(sc); 15365 15366 if (mac_vals.xmac_addr) { 15367 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val); 15368 } 15369 if (mac_vals.umac_addr) { 15370 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val); 15371 } 15372 if (mac_vals.emac_addr) { 15373 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val); 15374 } 15375 if (mac_vals.bmac_addr) { 15376 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 15377 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 15378 } 15379 15380 rc = bxe_prev_mark_path(sc, prev_undi); 15381 if (rc) { 15382 bxe_prev_mcp_done(sc); 15383 return (rc); 15384 } 15385 15386 return (bxe_prev_mcp_done(sc)); 15387 } 15388 15389 static int 15390 bxe_prev_unload_uncommon(struct bxe_softc *sc) 15391 { 15392 int rc; 15393 15394 BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n"); 15395 15396 /* Test if previous unload process was already finished for this path */ 15397 if (bxe_prev_is_path_marked(sc)) { 15398 return (bxe_prev_mcp_done(sc)); 15399 } 15400 15401 BLOGD(sc, DBG_LOAD, "Path is unmarked\n"); 15402 15403 /* 15404 * If function has FLR capabilities, and existing FW version matches 15405 * the one required, then FLR will be sufficient to clean any residue 15406 * left by previous driver 15407 */ 15408 rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION); 15409 if (!rc) { 15410 /* fw version is good */ 15411 BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n"); 15412 rc = bxe_do_flr(sc); 15413 } 15414 15415 if (!rc) { 15416 /* FLR was performed */ 15417 BLOGD(sc, DBG_LOAD, "FLR successful\n"); 15418 return (0); 15419 } 15420 15421 BLOGD(sc, DBG_LOAD, "Could not FLR\n"); 15422 15423 /* Close the MCP request, return failure*/ 15424 rc = bxe_prev_mcp_done(sc); 15425 if (!rc) { 15426 rc = BXE_PREV_WAIT_NEEDED; 15427 } 15428 15429 return (rc); 15430 } 15431 15432 static int 15433 bxe_prev_unload(struct bxe_softc *sc) 15434 { 15435 int time_counter = 10; 15436 uint32_t fw, hw_lock_reg, hw_lock_val; 15437 uint32_t rc = 0; 15438 15439 /* 15440 * Clear HW from errors which may have resulted from an interrupted 15441 * DMAE transaction. 15442 */ 15443 bxe_prev_interrupted_dmae(sc); 15444 15445 /* Release previously held locks */ 15446 hw_lock_reg = 15447 (SC_FUNC(sc) <= 5) ? 15448 (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) : 15449 (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8); 15450 15451 hw_lock_val = (REG_RD(sc, hw_lock_reg)); 15452 if (hw_lock_val) { 15453 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 15454 BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n"); 15455 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 15456 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc))); 15457 } 15458 BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n"); 15459 REG_WR(sc, hw_lock_reg, 0xffffffff); 15460 } else { 15461 BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n"); 15462 } 15463 15464 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) { 15465 BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n"); 15466 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0); 15467 } 15468 15469 do { 15470 /* Lock MCP using an unload request */ 15471 fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 15472 if (!fw) { 15473 BLOGE(sc, "MCP response failure, aborting\n"); 15474 rc = -1; 15475 break; 15476 } 15477 15478 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) { 15479 rc = bxe_prev_unload_common(sc); 15480 break; 15481 } 15482 15483 /* non-common reply from MCP night require looping */ 15484 rc = bxe_prev_unload_uncommon(sc); 15485 if (rc != BXE_PREV_WAIT_NEEDED) { 15486 break; 15487 } 15488 15489 DELAY(20000); 15490 } while (--time_counter); 15491 15492 if (!time_counter || rc) { 15493 BLOGE(sc, "Failed to unload previous driver!" 15494 " time_counter %d rc %d\n", time_counter, rc); 15495 rc = -1; 15496 } 15497 15498 return (rc); 15499 } 15500 15501 void 15502 bxe_dcbx_set_state(struct bxe_softc *sc, 15503 uint8_t dcb_on, 15504 uint32_t dcbx_enabled) 15505 { 15506 if (!CHIP_IS_E1x(sc)) { 15507 sc->dcb_state = dcb_on; 15508 sc->dcbx_enabled = dcbx_enabled; 15509 } else { 15510 sc->dcb_state = FALSE; 15511 sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID; 15512 } 15513 BLOGD(sc, DBG_LOAD, 15514 "DCB state [%s:%s]\n", 15515 dcb_on ? "ON" : "OFF", 15516 (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" : 15517 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" : 15518 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ? 15519 "on-chip with negotiation" : "invalid"); 15520 } 15521 15522 /* must be called after sriov-enable */ 15523 static int 15524 bxe_set_qm_cid_count(struct bxe_softc *sc) 15525 { 15526 int cid_count = BXE_L2_MAX_CID(sc); 15527 15528 if (IS_SRIOV(sc)) { 15529 cid_count += BXE_VF_CIDS; 15530 } 15531 15532 if (CNIC_SUPPORT(sc)) { 15533 cid_count += CNIC_CID_MAX; 15534 } 15535 15536 return (roundup(cid_count, QM_CID_ROUND)); 15537 } 15538 15539 static void 15540 bxe_init_multi_cos(struct bxe_softc *sc) 15541 { 15542 int pri, cos; 15543 15544 uint32_t pri_map = 0; /* XXX change to user config */ 15545 15546 for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) { 15547 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4)); 15548 if (cos < sc->max_cos) { 15549 sc->prio_to_cos[pri] = cos; 15550 } else { 15551 BLOGW(sc, "Invalid COS %d for priority %d " 15552 "(max COS is %d), setting to 0\n", 15553 cos, pri, (sc->max_cos - 1)); 15554 sc->prio_to_cos[pri] = 0; 15555 } 15556 } 15557 } 15558 15559 static int 15560 bxe_sysctl_state(SYSCTL_HANDLER_ARGS) 15561 { 15562 struct bxe_softc *sc; 15563 int error, result; 15564 15565 result = 0; 15566 error = sysctl_handle_int(oidp, &result, 0, req); 15567 15568 if (error || !req->newptr) { 15569 return (error); 15570 } 15571 15572 if (result == 1) { 15573 uint32_t temp; 15574 sc = (struct bxe_softc *)arg1; 15575 15576 BLOGI(sc, "... dumping driver state ...\n"); 15577 temp = SHMEM2_RD(sc, temperature_in_half_celsius); 15578 BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2)); 15579 } 15580 15581 return (error); 15582 } 15583 15584 static int 15585 bxe_sysctl_trigger_grcdump(SYSCTL_HANDLER_ARGS) 15586 { 15587 struct bxe_softc *sc; 15588 int error, result; 15589 15590 result = 0; 15591 error = sysctl_handle_int(oidp, &result, 0, req); 15592 15593 if (error || !req->newptr) { 15594 return (error); 15595 } 15596 15597 if (result == 1) { 15598 sc = (struct bxe_softc *)arg1; 15599 15600 BLOGI(sc, "... grcdump start ...\n"); 15601 bxe_grc_dump(sc); 15602 BLOGI(sc, "... grcdump done ...\n"); 15603 } 15604 15605 return (error); 15606 } 15607 15608 static int 15609 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS) 15610 { 15611 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15612 uint32_t *eth_stats = (uint32_t *)&sc->eth_stats; 15613 uint32_t *offset; 15614 uint64_t value = 0; 15615 int index = (int)arg2; 15616 15617 if (index >= BXE_NUM_ETH_STATS) { 15618 BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index); 15619 return (-1); 15620 } 15621 15622 offset = (eth_stats + bxe_eth_stats_arr[index].offset); 15623 15624 switch (bxe_eth_stats_arr[index].size) { 15625 case 4: 15626 value = (uint64_t)*offset; 15627 break; 15628 case 8: 15629 value = HILO_U64(*offset, *(offset + 1)); 15630 break; 15631 default: 15632 BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n", 15633 index, bxe_eth_stats_arr[index].size); 15634 return (-1); 15635 } 15636 15637 return (sysctl_handle_64(oidp, &value, 0, req)); 15638 } 15639 15640 static int 15641 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS) 15642 { 15643 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15644 uint32_t *eth_stats; 15645 uint32_t *offset; 15646 uint64_t value = 0; 15647 uint32_t q_stat = (uint32_t)arg2; 15648 uint32_t fp_index = ((q_stat >> 16) & 0xffff); 15649 uint32_t index = (q_stat & 0xffff); 15650 15651 eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats; 15652 15653 if (index >= BXE_NUM_ETH_Q_STATS) { 15654 BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index); 15655 return (-1); 15656 } 15657 15658 offset = (eth_stats + bxe_eth_q_stats_arr[index].offset); 15659 15660 switch (bxe_eth_q_stats_arr[index].size) { 15661 case 4: 15662 value = (uint64_t)*offset; 15663 break; 15664 case 8: 15665 value = HILO_U64(*offset, *(offset + 1)); 15666 break; 15667 default: 15668 BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n", 15669 index, bxe_eth_q_stats_arr[index].size); 15670 return (-1); 15671 } 15672 15673 return (sysctl_handle_64(oidp, &value, 0, req)); 15674 } 15675 15676 static void 15677 bxe_add_sysctls(struct bxe_softc *sc) 15678 { 15679 struct sysctl_ctx_list *ctx; 15680 struct sysctl_oid_list *children; 15681 struct sysctl_oid *queue_top, *queue; 15682 struct sysctl_oid_list *queue_top_children, *queue_children; 15683 char queue_num_buf[32]; 15684 uint32_t q_stat; 15685 int i, j; 15686 15687 ctx = device_get_sysctl_ctx(sc->dev); 15688 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 15689 15690 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version", 15691 CTLFLAG_RD, BXE_DRIVER_VERSION, 0, 15692 "version"); 15693 15694 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 15695 CTLFLAG_RD, sc->devinfo.bc_ver_str, 0, 15696 "bootcode version"); 15697 15698 snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d", 15699 BCM_5710_FW_MAJOR_VERSION, 15700 BCM_5710_FW_MINOR_VERSION, 15701 BCM_5710_FW_REVISION_VERSION, 15702 BCM_5710_FW_ENGINEERING_VERSION); 15703 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 15704 CTLFLAG_RD, sc->fw_ver_str, 0, 15705 "firmware version"); 15706 15707 snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s", 15708 ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" : 15709 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" : 15710 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" : 15711 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" : 15712 "Unknown")); 15713 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 15714 CTLFLAG_RD, sc->mf_mode_str, 0, 15715 "multifunction mode"); 15716 15717 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics", 15718 CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0, 15719 "multifunction vnics per port"); 15720 15721 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 15722 CTLFLAG_RD, sc->mac_addr_str, 0, 15723 "mac address"); 15724 15725 snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d", 15726 ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" : 15727 (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" : 15728 (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" : 15729 "???GT/s"), 15730 sc->devinfo.pcie_link_width); 15731 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 15732 CTLFLAG_RD, sc->pci_link_str, 0, 15733 "pci link status"); 15734 15735 sc->debug = bxe_debug; 15736 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug", 15737 CTLFLAG_RW, &sc->debug, 15738 "debug logging mode"); 15739 15740 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "trigger_grcdump", 15741 CTLTYPE_UINT | CTLFLAG_RW, sc, 0, 15742 bxe_sysctl_trigger_grcdump, "IU", 15743 "set by driver when a grcdump is needed"); 15744 15745 sc->grcdump_done = 0; 15746 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done", 15747 CTLFLAG_RW, &sc->grcdump_done, 0, 15748 "set by driver when grcdump is done"); 15749 15750 sc->rx_budget = bxe_rx_budget; 15751 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget", 15752 CTLFLAG_RW, &sc->rx_budget, 0, 15753 "rx processing budget"); 15754 15755 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state", 15756 CTLTYPE_UINT | CTLFLAG_RW, sc, 0, 15757 bxe_sysctl_state, "IU", "dump driver state"); 15758 15759 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 15760 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 15761 bxe_eth_stats_arr[i].string, 15762 CTLTYPE_U64 | CTLFLAG_RD, sc, i, 15763 bxe_sysctl_eth_stat, "LU", 15764 bxe_eth_stats_arr[i].string); 15765 } 15766 15767 /* add a new parent node for all queues "dev.bxe.#.queue" */ 15768 queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue", 15769 CTLFLAG_RD, NULL, "queue"); 15770 queue_top_children = SYSCTL_CHILDREN(queue_top); 15771 15772 for (i = 0; i < sc->num_queues; i++) { 15773 /* add a new parent node for a single queue "dev.bxe.#.queue.#" */ 15774 snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i); 15775 queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO, 15776 queue_num_buf, CTLFLAG_RD, NULL, 15777 "single queue"); 15778 queue_children = SYSCTL_CHILDREN(queue); 15779 15780 for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) { 15781 q_stat = ((i << 16) | j); 15782 SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO, 15783 bxe_eth_q_stats_arr[j].string, 15784 CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat, 15785 bxe_sysctl_eth_q_stat, "LU", 15786 bxe_eth_q_stats_arr[j].string); 15787 } 15788 } 15789 } 15790 15791 /* 15792 * Device attach function. 15793 * 15794 * Allocates device resources, performs secondary chip identification, and 15795 * initializes driver instance variables. This function is called from driver 15796 * load after a successful probe. 15797 * 15798 * Returns: 15799 * 0 = Success, >0 = Failure 15800 */ 15801 static int 15802 bxe_attach(device_t dev) 15803 { 15804 struct bxe_softc *sc; 15805 15806 sc = device_get_softc(dev); 15807 15808 BLOGD(sc, DBG_LOAD, "Starting attach...\n"); 15809 15810 sc->state = BXE_STATE_CLOSED; 15811 15812 sc->dev = dev; 15813 sc->unit = device_get_unit(dev); 15814 15815 BLOGD(sc, DBG_LOAD, "softc = %p\n", sc); 15816 15817 sc->pcie_bus = pci_get_bus(dev); 15818 sc->pcie_device = pci_get_slot(dev); 15819 sc->pcie_func = pci_get_function(dev); 15820 15821 /* enable bus master capability */ 15822 pci_enable_busmaster(dev); 15823 15824 /* get the BARs */ 15825 if (bxe_allocate_bars(sc) != 0) { 15826 return (ENXIO); 15827 } 15828 15829 /* initialize the mutexes */ 15830 bxe_init_mutexes(sc); 15831 15832 /* prepare the periodic callout */ 15833 callout_init(&sc->periodic_callout, 0); 15834 15835 /* prepare the chip taskqueue */ 15836 sc->chip_tq_flags = CHIP_TQ_NONE; 15837 snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name), 15838 "bxe%d_chip_tq", sc->unit); 15839 TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc); 15840 sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT, 15841 taskqueue_thread_enqueue, 15842 &sc->chip_tq); 15843 taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */ 15844 "%s", sc->chip_tq_name); 15845 15846 /* get device info and set params */ 15847 if (bxe_get_device_info(sc) != 0) { 15848 BLOGE(sc, "getting device info\n"); 15849 bxe_deallocate_bars(sc); 15850 pci_disable_busmaster(dev); 15851 return (ENXIO); 15852 } 15853 15854 /* get final misc params */ 15855 bxe_get_params(sc); 15856 15857 /* set the default MTU (changed via ifconfig) */ 15858 sc->mtu = ETHERMTU; 15859 15860 bxe_set_modes_bitmap(sc); 15861 15862 /* XXX 15863 * If in AFEX mode and the function is configured for FCoE 15864 * then bail... no L2 allowed. 15865 */ 15866 15867 /* get phy settings from shmem and 'and' against admin settings */ 15868 bxe_get_phy_info(sc); 15869 15870 /* initialize the FreeBSD ifnet interface */ 15871 if (bxe_init_ifnet(sc) != 0) { 15872 bxe_release_mutexes(sc); 15873 bxe_deallocate_bars(sc); 15874 pci_disable_busmaster(dev); 15875 return (ENXIO); 15876 } 15877 15878 if (bxe_add_cdev(sc) != 0) { 15879 if (sc->ifp != NULL) { 15880 ether_ifdetach(sc->ifp); 15881 } 15882 ifmedia_removeall(&sc->ifmedia); 15883 bxe_release_mutexes(sc); 15884 bxe_deallocate_bars(sc); 15885 pci_disable_busmaster(dev); 15886 return (ENXIO); 15887 } 15888 15889 /* allocate device interrupts */ 15890 if (bxe_interrupt_alloc(sc) != 0) { 15891 bxe_del_cdev(sc); 15892 if (sc->ifp != NULL) { 15893 ether_ifdetach(sc->ifp); 15894 } 15895 ifmedia_removeall(&sc->ifmedia); 15896 bxe_release_mutexes(sc); 15897 bxe_deallocate_bars(sc); 15898 pci_disable_busmaster(dev); 15899 return (ENXIO); 15900 } 15901 15902 /* allocate ilt */ 15903 if (bxe_alloc_ilt_mem(sc) != 0) { 15904 bxe_interrupt_free(sc); 15905 bxe_del_cdev(sc); 15906 if (sc->ifp != NULL) { 15907 ether_ifdetach(sc->ifp); 15908 } 15909 ifmedia_removeall(&sc->ifmedia); 15910 bxe_release_mutexes(sc); 15911 bxe_deallocate_bars(sc); 15912 pci_disable_busmaster(dev); 15913 return (ENXIO); 15914 } 15915 15916 /* allocate the host hardware/software hsi structures */ 15917 if (bxe_alloc_hsi_mem(sc) != 0) { 15918 bxe_free_ilt_mem(sc); 15919 bxe_interrupt_free(sc); 15920 bxe_del_cdev(sc); 15921 if (sc->ifp != NULL) { 15922 ether_ifdetach(sc->ifp); 15923 } 15924 ifmedia_removeall(&sc->ifmedia); 15925 bxe_release_mutexes(sc); 15926 bxe_deallocate_bars(sc); 15927 pci_disable_busmaster(dev); 15928 return (ENXIO); 15929 } 15930 15931 /* need to reset chip if UNDI was active */ 15932 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 15933 /* init fw_seq */ 15934 sc->fw_seq = 15935 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 15936 DRV_MSG_SEQ_NUMBER_MASK); 15937 BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq); 15938 bxe_prev_unload(sc); 15939 } 15940 15941 #if 1 15942 /* XXX */ 15943 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 15944 #else 15945 if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) && 15946 SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) && 15947 SHMEM2_RD(sc, dcbx_lldp_params_offset) && 15948 SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) { 15949 bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON); 15950 bxe_dcbx_init_params(sc); 15951 } else { 15952 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 15953 } 15954 #endif 15955 15956 /* calculate qm_cid_count */ 15957 sc->qm_cid_count = bxe_set_qm_cid_count(sc); 15958 BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count); 15959 15960 sc->max_cos = 1; 15961 bxe_init_multi_cos(sc); 15962 15963 bxe_add_sysctls(sc); 15964 15965 return (0); 15966 } 15967 15968 /* 15969 * Device detach function. 15970 * 15971 * Stops the controller, resets the controller, and releases resources. 15972 * 15973 * Returns: 15974 * 0 = Success, >0 = Failure 15975 */ 15976 static int 15977 bxe_detach(device_t dev) 15978 { 15979 struct bxe_softc *sc; 15980 if_t ifp; 15981 15982 sc = device_get_softc(dev); 15983 15984 BLOGD(sc, DBG_LOAD, "Starting detach...\n"); 15985 15986 ifp = sc->ifp; 15987 if (ifp != NULL && if_vlantrunkinuse(ifp)) { 15988 BLOGE(sc, "Cannot detach while VLANs are in use.\n"); 15989 return(EBUSY); 15990 } 15991 15992 bxe_del_cdev(sc); 15993 15994 /* stop the periodic callout */ 15995 bxe_periodic_stop(sc); 15996 15997 /* stop the chip taskqueue */ 15998 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE); 15999 if (sc->chip_tq) { 16000 taskqueue_drain(sc->chip_tq, &sc->chip_tq_task); 16001 taskqueue_free(sc->chip_tq); 16002 sc->chip_tq = NULL; 16003 } 16004 16005 /* stop and reset the controller if it was open */ 16006 if (sc->state != BXE_STATE_CLOSED) { 16007 BXE_CORE_LOCK(sc); 16008 bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE); 16009 BXE_CORE_UNLOCK(sc); 16010 } 16011 16012 /* release the network interface */ 16013 if (ifp != NULL) { 16014 ether_ifdetach(ifp); 16015 } 16016 ifmedia_removeall(&sc->ifmedia); 16017 16018 /* XXX do the following based on driver state... */ 16019 16020 /* free the host hardware/software hsi structures */ 16021 bxe_free_hsi_mem(sc); 16022 16023 /* free ilt */ 16024 bxe_free_ilt_mem(sc); 16025 16026 /* release the interrupts */ 16027 bxe_interrupt_free(sc); 16028 16029 /* Release the mutexes*/ 16030 bxe_release_mutexes(sc); 16031 16032 /* Release the PCIe BAR mapped memory */ 16033 bxe_deallocate_bars(sc); 16034 16035 /* Release the FreeBSD interface. */ 16036 if (sc->ifp != NULL) { 16037 if_free(sc->ifp); 16038 } 16039 16040 pci_disable_busmaster(dev); 16041 16042 return (0); 16043 } 16044 16045 /* 16046 * Device shutdown function. 16047 * 16048 * Stops and resets the controller. 16049 * 16050 * Returns: 16051 * Nothing 16052 */ 16053 static int 16054 bxe_shutdown(device_t dev) 16055 { 16056 struct bxe_softc *sc; 16057 16058 sc = device_get_softc(dev); 16059 16060 BLOGD(sc, DBG_LOAD, "Starting shutdown...\n"); 16061 16062 /* stop the periodic callout */ 16063 bxe_periodic_stop(sc); 16064 16065 BXE_CORE_LOCK(sc); 16066 bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE); 16067 BXE_CORE_UNLOCK(sc); 16068 16069 return (0); 16070 } 16071 16072 void 16073 bxe_igu_ack_sb(struct bxe_softc *sc, 16074 uint8_t igu_sb_id, 16075 uint8_t segment, 16076 uint16_t index, 16077 uint8_t op, 16078 uint8_t update) 16079 { 16080 uint32_t igu_addr = sc->igu_base_addr; 16081 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 16082 bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr); 16083 } 16084 16085 static void 16086 bxe_igu_clear_sb_gen(struct bxe_softc *sc, 16087 uint8_t func, 16088 uint8_t idu_sb_id, 16089 uint8_t is_pf) 16090 { 16091 uint32_t data, ctl, cnt = 100; 16092 uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 16093 uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 16094 uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 16095 uint32_t sb_bit = 1 << (idu_sb_id%32); 16096 uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 16097 uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 16098 16099 /* Not supported in BC mode */ 16100 if (CHIP_INT_MODE_IS_BC(sc)) { 16101 return; 16102 } 16103 16104 data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup << 16105 IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 16106 IGU_REGULAR_CLEANUP_SET | 16107 IGU_REGULAR_BCLEANUP); 16108 16109 ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) | 16110 (func_encode << IGU_CTRL_REG_FID_SHIFT) | 16111 (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT)); 16112 16113 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16114 data, igu_addr_data); 16115 REG_WR(sc, igu_addr_data, data); 16116 16117 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16118 BUS_SPACE_BARRIER_WRITE); 16119 mb(); 16120 16121 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16122 ctl, igu_addr_ctl); 16123 REG_WR(sc, igu_addr_ctl, ctl); 16124 16125 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16126 BUS_SPACE_BARRIER_WRITE); 16127 mb(); 16128 16129 /* wait for clean up to finish */ 16130 while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) { 16131 DELAY(20000); 16132 } 16133 16134 if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) { 16135 BLOGD(sc, DBG_LOAD, 16136 "Unable to finish IGU cleanup: " 16137 "idu_sb_id %d offset %d bit %d (cnt %d)\n", 16138 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 16139 } 16140 } 16141 16142 static void 16143 bxe_igu_clear_sb(struct bxe_softc *sc, 16144 uint8_t idu_sb_id) 16145 { 16146 bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/); 16147 } 16148 16149 16150 16151 16152 16153 16154 16155 /*******************/ 16156 /* ECORE CALLBACKS */ 16157 /*******************/ 16158 16159 static void 16160 bxe_reset_common(struct bxe_softc *sc) 16161 { 16162 uint32_t val = 0x1400; 16163 16164 /* reset_common */ 16165 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f); 16166 16167 if (CHIP_IS_E3(sc)) { 16168 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16169 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16170 } 16171 16172 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val); 16173 } 16174 16175 static void 16176 bxe_common_init_phy(struct bxe_softc *sc) 16177 { 16178 uint32_t shmem_base[2]; 16179 uint32_t shmem2_base[2]; 16180 16181 /* Avoid common init in case MFW supports LFA */ 16182 if (SHMEM2_RD(sc, size) > 16183 (uint32_t)offsetof(struct shmem2_region, 16184 lfa_host_addr[SC_PORT(sc)])) { 16185 return; 16186 } 16187 16188 shmem_base[0] = sc->devinfo.shmem_base; 16189 shmem2_base[0] = sc->devinfo.shmem2_base; 16190 16191 if (!CHIP_IS_E1x(sc)) { 16192 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr); 16193 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr); 16194 } 16195 16196 bxe_acquire_phy_lock(sc); 16197 elink_common_init_phy(sc, shmem_base, shmem2_base, 16198 sc->devinfo.chip_id, 0); 16199 bxe_release_phy_lock(sc); 16200 } 16201 16202 static void 16203 bxe_pf_disable(struct bxe_softc *sc) 16204 { 16205 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 16206 16207 val &= ~IGU_PF_CONF_FUNC_EN; 16208 16209 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 16210 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16211 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0); 16212 } 16213 16214 static void 16215 bxe_init_pxp(struct bxe_softc *sc) 16216 { 16217 uint16_t devctl; 16218 int r_order, w_order; 16219 16220 devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2); 16221 16222 BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl); 16223 16224 w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5); 16225 16226 if (sc->mrrs == -1) { 16227 r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12); 16228 } else { 16229 BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs); 16230 r_order = sc->mrrs; 16231 } 16232 16233 ecore_init_pxp_arb(sc, r_order, w_order); 16234 } 16235 16236 static uint32_t 16237 bxe_get_pretend_reg(struct bxe_softc *sc) 16238 { 16239 uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0; 16240 uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base); 16241 return (base + (SC_ABS_FUNC(sc)) * stride); 16242 } 16243 16244 /* 16245 * Called only on E1H or E2. 16246 * When pretending to be PF, the pretend value is the function number 0..7. 16247 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 16248 * combination. 16249 */ 16250 static int 16251 bxe_pretend_func(struct bxe_softc *sc, 16252 uint16_t pretend_func_val) 16253 { 16254 uint32_t pretend_reg; 16255 16256 if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) { 16257 return (-1); 16258 } 16259 16260 /* get my own pretend register */ 16261 pretend_reg = bxe_get_pretend_reg(sc); 16262 REG_WR(sc, pretend_reg, pretend_func_val); 16263 REG_RD(sc, pretend_reg); 16264 return (0); 16265 } 16266 16267 static void 16268 bxe_iov_init_dmae(struct bxe_softc *sc) 16269 { 16270 return; 16271 } 16272 16273 static void 16274 bxe_iov_init_dq(struct bxe_softc *sc) 16275 { 16276 return; 16277 } 16278 16279 /* send a NIG loopback debug packet */ 16280 static void 16281 bxe_lb_pckt(struct bxe_softc *sc) 16282 { 16283 uint32_t wb_write[3]; 16284 16285 /* Ethernet source and destination addresses */ 16286 wb_write[0] = 0x55555555; 16287 wb_write[1] = 0x55555555; 16288 wb_write[2] = 0x20; /* SOP */ 16289 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16290 16291 /* NON-IP protocol */ 16292 wb_write[0] = 0x09000000; 16293 wb_write[1] = 0x55555555; 16294 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 16295 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16296 } 16297 16298 /* 16299 * Some of the internal memories are not directly readable from the driver. 16300 * To test them we send debug packets. 16301 */ 16302 static int 16303 bxe_int_mem_test(struct bxe_softc *sc) 16304 { 16305 int factor; 16306 int count, i; 16307 uint32_t val = 0; 16308 16309 if (CHIP_REV_IS_FPGA(sc)) { 16310 factor = 120; 16311 } else if (CHIP_REV_IS_EMUL(sc)) { 16312 factor = 200; 16313 } else { 16314 factor = 1; 16315 } 16316 16317 /* disable inputs of parser neighbor blocks */ 16318 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16319 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16320 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16321 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16322 16323 /* write 0 to parser credits for CFC search request */ 16324 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16325 16326 /* send Ethernet packet */ 16327 bxe_lb_pckt(sc); 16328 16329 /* TODO do i reset NIG statistic? */ 16330 /* Wait until NIG register shows 1 packet of size 0x10 */ 16331 count = 1000 * factor; 16332 while (count) { 16333 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16334 val = *BXE_SP(sc, wb_data[0]); 16335 if (val == 0x10) { 16336 break; 16337 } 16338 16339 DELAY(10000); 16340 count--; 16341 } 16342 16343 if (val != 0x10) { 16344 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16345 return (-1); 16346 } 16347 16348 /* wait until PRS register shows 1 packet */ 16349 count = (1000 * factor); 16350 while (count) { 16351 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16352 if (val == 1) { 16353 break; 16354 } 16355 16356 DELAY(10000); 16357 count--; 16358 } 16359 16360 if (val != 0x1) { 16361 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16362 return (-2); 16363 } 16364 16365 /* Reset and init BRB, PRS */ 16366 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16367 DELAY(50000); 16368 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16369 DELAY(50000); 16370 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16371 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16372 16373 /* Disable inputs of parser neighbor blocks */ 16374 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16375 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16376 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16377 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16378 16379 /* Write 0 to parser credits for CFC search request */ 16380 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16381 16382 /* send 10 Ethernet packets */ 16383 for (i = 0; i < 10; i++) { 16384 bxe_lb_pckt(sc); 16385 } 16386 16387 /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */ 16388 count = (1000 * factor); 16389 while (count) { 16390 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16391 val = *BXE_SP(sc, wb_data[0]); 16392 if (val == 0xb0) { 16393 break; 16394 } 16395 16396 DELAY(10000); 16397 count--; 16398 } 16399 16400 if (val != 0xb0) { 16401 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16402 return (-3); 16403 } 16404 16405 /* Wait until PRS register shows 2 packets */ 16406 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16407 if (val != 2) { 16408 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16409 } 16410 16411 /* Write 1 to parser credits for CFC search request */ 16412 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 16413 16414 /* Wait until PRS register shows 3 packets */ 16415 DELAY(10000 * factor); 16416 16417 /* Wait until NIG register shows 1 packet of size 0x10 */ 16418 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16419 if (val != 3) { 16420 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16421 } 16422 16423 /* clear NIG EOP FIFO */ 16424 for (i = 0; i < 11; i++) { 16425 REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO); 16426 } 16427 16428 val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY); 16429 if (val != 1) { 16430 BLOGE(sc, "clear of NIG failed val=0x%x\n", val); 16431 return (-4); 16432 } 16433 16434 /* Reset and init BRB, PRS, NIG */ 16435 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16436 DELAY(50000); 16437 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16438 DELAY(50000); 16439 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16440 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16441 if (!CNIC_SUPPORT(sc)) { 16442 /* set NIC mode */ 16443 REG_WR(sc, PRS_REG_NIC_MODE, 1); 16444 } 16445 16446 /* Enable inputs of parser neighbor blocks */ 16447 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff); 16448 REG_WR(sc, TCM_REG_PRS_IFEN, 0x1); 16449 REG_WR(sc, CFC_REG_DEBUG0, 0x0); 16450 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1); 16451 16452 return (0); 16453 } 16454 16455 static void 16456 bxe_setup_fan_failure_detection(struct bxe_softc *sc) 16457 { 16458 int is_required; 16459 uint32_t val; 16460 int port; 16461 16462 is_required = 0; 16463 val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) & 16464 SHARED_HW_CFG_FAN_FAILURE_MASK); 16465 16466 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) { 16467 is_required = 1; 16468 } 16469 /* 16470 * The fan failure mechanism is usually related to the PHY type since 16471 * the power consumption of the board is affected by the PHY. Currently, 16472 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 16473 */ 16474 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) { 16475 for (port = PORT_0; port < PORT_MAX; port++) { 16476 is_required |= elink_fan_failure_det_req(sc, 16477 sc->devinfo.shmem_base, 16478 sc->devinfo.shmem2_base, 16479 port); 16480 } 16481 } 16482 16483 BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required); 16484 16485 if (is_required == 0) { 16486 return; 16487 } 16488 16489 /* Fan failure is indicated by SPIO 5 */ 16490 bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 16491 16492 /* set to active low mode */ 16493 val = REG_RD(sc, MISC_REG_SPIO_INT); 16494 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 16495 REG_WR(sc, MISC_REG_SPIO_INT, val); 16496 16497 /* enable interrupt to signal the IGU */ 16498 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 16499 val |= MISC_SPIO_SPIO5; 16500 REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val); 16501 } 16502 16503 static void 16504 bxe_enable_blocks_attention(struct bxe_softc *sc) 16505 { 16506 uint32_t val; 16507 16508 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 16509 if (!CHIP_IS_E1x(sc)) { 16510 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40); 16511 } else { 16512 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0); 16513 } 16514 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 16515 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 16516 /* 16517 * mask read length error interrupts in brb for parser 16518 * (parsing unit and 'checksum and crc' unit) 16519 * these errors are legal (PU reads fixed length and CAC can cause 16520 * read length error on truncated packets) 16521 */ 16522 REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00); 16523 REG_WR(sc, QM_REG_QM_INT_MASK, 0); 16524 REG_WR(sc, TM_REG_TM_INT_MASK, 0); 16525 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0); 16526 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0); 16527 REG_WR(sc, XCM_REG_XCM_INT_MASK, 0); 16528 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */ 16529 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */ 16530 REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0); 16531 REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0); 16532 REG_WR(sc, UCM_REG_UCM_INT_MASK, 0); 16533 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */ 16534 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */ 16535 REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 16536 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0); 16537 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0); 16538 REG_WR(sc, CCM_REG_CCM_INT_MASK, 0); 16539 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */ 16540 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */ 16541 16542 val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 16543 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 16544 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN); 16545 if (!CHIP_IS_E1x(sc)) { 16546 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 16547 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED); 16548 } 16549 REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val); 16550 16551 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0); 16552 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0); 16553 REG_WR(sc, TCM_REG_TCM_INT_MASK, 0); 16554 /* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */ 16555 16556 if (!CHIP_IS_E1x(sc)) { 16557 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 16558 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 16559 } 16560 16561 REG_WR(sc, CDU_REG_CDU_INT_MASK, 0); 16562 REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0); 16563 /* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */ 16564 REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 16565 } 16566 16567 /** 16568 * bxe_init_hw_common - initialize the HW at the COMMON phase. 16569 * 16570 * @sc: driver handle 16571 */ 16572 static int 16573 bxe_init_hw_common(struct bxe_softc *sc) 16574 { 16575 uint8_t abs_func_id; 16576 uint32_t val; 16577 16578 BLOGD(sc, DBG_LOAD, "starting common init for func %d\n", 16579 SC_ABS_FUNC(sc)); 16580 16581 /* 16582 * take the RESET lock to protect undi_unload flow from accessing 16583 * registers while we are resetting the chip 16584 */ 16585 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 16586 16587 bxe_reset_common(sc); 16588 16589 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff); 16590 16591 val = 0xfffc; 16592 if (CHIP_IS_E3(sc)) { 16593 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16594 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16595 } 16596 16597 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val); 16598 16599 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 16600 16601 ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON); 16602 BLOGD(sc, DBG_LOAD, "after misc block init\n"); 16603 16604 if (!CHIP_IS_E1x(sc)) { 16605 /* 16606 * 4-port mode or 2-port mode we need to turn off master-enable for 16607 * everyone. After that we turn it back on for self. So, we disregard 16608 * multi-function, and always disable all functions on the given path, 16609 * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1 16610 */ 16611 for (abs_func_id = SC_PATH(sc); 16612 abs_func_id < (E2_FUNC_MAX * 2); 16613 abs_func_id += 2) { 16614 if (abs_func_id == SC_ABS_FUNC(sc)) { 16615 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 16616 continue; 16617 } 16618 16619 bxe_pretend_func(sc, abs_func_id); 16620 16621 /* clear pf enable */ 16622 bxe_pf_disable(sc); 16623 16624 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 16625 } 16626 } 16627 16628 BLOGD(sc, DBG_LOAD, "after pf disable\n"); 16629 16630 ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON); 16631 16632 if (CHIP_IS_E1(sc)) { 16633 /* 16634 * enable HW interrupt from PXP on USDM overflow 16635 * bit 16 on INT_MASK_0 16636 */ 16637 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 16638 } 16639 16640 ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON); 16641 bxe_init_pxp(sc); 16642 16643 #ifdef __BIG_ENDIAN 16644 REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1); 16645 REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1); 16646 REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1); 16647 REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1); 16648 REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1); 16649 /* make sure this value is 0 */ 16650 REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0); 16651 16652 //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1); 16653 REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1); 16654 REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1); 16655 REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1); 16656 REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1); 16657 #endif 16658 16659 ecore_ilt_init_page_size(sc, INITOP_SET); 16660 16661 if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) { 16662 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 16663 } 16664 16665 /* let the HW do it's magic... */ 16666 DELAY(100000); 16667 16668 /* finish PXP init */ 16669 val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE); 16670 if (val != 1) { 16671 BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n", 16672 val); 16673 return (-1); 16674 } 16675 val = REG_RD(sc, PXP2_REG_RD_INIT_DONE); 16676 if (val != 1) { 16677 BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val); 16678 return (-1); 16679 } 16680 16681 BLOGD(sc, DBG_LOAD, "after pxp init\n"); 16682 16683 /* 16684 * Timer bug workaround for E2 only. We need to set the entire ILT to have 16685 * entries with value "0" and valid bit on. This needs to be done by the 16686 * first PF that is loaded in a path (i.e. common phase) 16687 */ 16688 if (!CHIP_IS_E1x(sc)) { 16689 /* 16690 * In E2 there is a bug in the timers block that can cause function 6 / 7 16691 * (i.e. vnic3) to start even if it is marked as "scan-off". 16692 * This occurs when a different function (func2,3) is being marked 16693 * as "scan-off". Real-life scenario for example: if a driver is being 16694 * load-unloaded while func6,7 are down. This will cause the timer to access 16695 * the ilt, translate to a logical address and send a request to read/write. 16696 * Since the ilt for the function that is down is not valid, this will cause 16697 * a translation error which is unrecoverable. 16698 * The Workaround is intended to make sure that when this happens nothing 16699 * fatal will occur. The workaround: 16700 * 1. First PF driver which loads on a path will: 16701 * a. After taking the chip out of reset, by using pretend, 16702 * it will write "0" to the following registers of 16703 * the other vnics. 16704 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16705 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 16706 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 16707 * And for itself it will write '1' to 16708 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 16709 * dmae-operations (writing to pram for example.) 16710 * note: can be done for only function 6,7 but cleaner this 16711 * way. 16712 * b. Write zero+valid to the entire ILT. 16713 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 16714 * VNIC3 (of that port). The range allocated will be the 16715 * entire ILT. This is needed to prevent ILT range error. 16716 * 2. Any PF driver load flow: 16717 * a. ILT update with the physical addresses of the allocated 16718 * logical pages. 16719 * b. Wait 20msec. - note that this timeout is needed to make 16720 * sure there are no requests in one of the PXP internal 16721 * queues with "old" ILT addresses. 16722 * c. PF enable in the PGLC. 16723 * d. Clear the was_error of the PF in the PGLC. (could have 16724 * occurred while driver was down) 16725 * e. PF enable in the CFC (WEAK + STRONG) 16726 * f. Timers scan enable 16727 * 3. PF driver unload flow: 16728 * a. Clear the Timers scan_en. 16729 * b. Polling for scan_on=0 for that PF. 16730 * c. Clear the PF enable bit in the PXP. 16731 * d. Clear the PF enable in the CFC (WEAK + STRONG) 16732 * e. Write zero+valid to all ILT entries (The valid bit must 16733 * stay set) 16734 * f. If this is VNIC 3 of a port then also init 16735 * first_timers_ilt_entry to zero and last_timers_ilt_entry 16736 * to the last enrty in the ILT. 16737 * 16738 * Notes: 16739 * Currently the PF error in the PGLC is non recoverable. 16740 * In the future the there will be a recovery routine for this error. 16741 * Currently attention is masked. 16742 * Having an MCP lock on the load/unload process does not guarantee that 16743 * there is no Timer disable during Func6/7 enable. This is because the 16744 * Timers scan is currently being cleared by the MCP on FLR. 16745 * Step 2.d can be done only for PF6/7 and the driver can also check if 16746 * there is error before clearing it. But the flow above is simpler and 16747 * more general. 16748 * All ILT entries are written by zero+valid and not just PF6/7 16749 * ILT entries since in the future the ILT entries allocation for 16750 * PF-s might be dynamic. 16751 */ 16752 struct ilt_client_info ilt_cli; 16753 struct ecore_ilt ilt; 16754 16755 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 16756 memset(&ilt, 0, sizeof(struct ecore_ilt)); 16757 16758 /* initialize dummy TM client */ 16759 ilt_cli.start = 0; 16760 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 16761 ilt_cli.client_num = ILT_CLIENT_TM; 16762 16763 /* 16764 * Step 1: set zeroes to all ilt page entries with valid bit on 16765 * Step 2: set the timers first/last ilt entry to point 16766 * to the entire range to prevent ILT range error for 3rd/4th 16767 * vnic (this code assumes existence of the vnic) 16768 * 16769 * both steps performed by call to ecore_ilt_client_init_op() 16770 * with dummy TM client 16771 * 16772 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 16773 * and his brother are split registers 16774 */ 16775 16776 bxe_pretend_func(sc, (SC_PATH(sc) + 6)); 16777 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR); 16778 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 16779 16780 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN); 16781 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN); 16782 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 16783 } 16784 16785 REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0); 16786 REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0); 16787 16788 if (!CHIP_IS_E1x(sc)) { 16789 int factor = CHIP_REV_IS_EMUL(sc) ? 1000 : 16790 (CHIP_REV_IS_FPGA(sc) ? 400 : 0); 16791 16792 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON); 16793 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON); 16794 16795 /* let the HW do it's magic... */ 16796 do { 16797 DELAY(200000); 16798 val = REG_RD(sc, ATC_REG_ATC_INIT_DONE); 16799 } while (factor-- && (val != 1)); 16800 16801 if (val != 1) { 16802 BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val); 16803 return (-1); 16804 } 16805 } 16806 16807 BLOGD(sc, DBG_LOAD, "after pglue and atc init\n"); 16808 16809 ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON); 16810 16811 bxe_iov_init_dmae(sc); 16812 16813 /* clean the DMAE memory */ 16814 sc->dmae_ready = 1; 16815 ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1); 16816 16817 ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON); 16818 16819 ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON); 16820 16821 ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON); 16822 16823 ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON); 16824 16825 bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3); 16826 bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3); 16827 bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3); 16828 bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3); 16829 16830 ecore_init_block(sc, BLOCK_QM, PHASE_COMMON); 16831 16832 /* QM queues pointers table */ 16833 ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET); 16834 16835 /* soft reset pulse */ 16836 REG_WR(sc, QM_REG_SOFT_RESET, 1); 16837 REG_WR(sc, QM_REG_SOFT_RESET, 0); 16838 16839 if (CNIC_SUPPORT(sc)) 16840 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON); 16841 16842 ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON); 16843 REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT); 16844 if (!CHIP_REV_IS_SLOW(sc)) { 16845 /* enable hw interrupt from doorbell Q */ 16846 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 16847 } 16848 16849 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16850 16851 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16852 REG_WR(sc, PRS_REG_A_PRSU_20, 0xf); 16853 16854 if (!CHIP_IS_E1(sc)) { 16855 REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan); 16856 } 16857 16858 if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) { 16859 if (IS_MF_AFEX(sc)) { 16860 /* 16861 * configure that AFEX and VLAN headers must be 16862 * received in AFEX mode 16863 */ 16864 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE); 16865 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA); 16866 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 16867 REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 16868 REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4); 16869 } else { 16870 /* 16871 * Bit-map indicating which L2 hdrs may appear 16872 * after the basic Ethernet header 16873 */ 16874 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 16875 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 16876 } 16877 } 16878 16879 ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON); 16880 ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON); 16881 ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON); 16882 ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON); 16883 16884 if (!CHIP_IS_E1x(sc)) { 16885 /* reset VFC memories */ 16886 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 16887 VFC_MEMORIES_RST_REG_CAM_RST | 16888 VFC_MEMORIES_RST_REG_RAM_RST); 16889 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 16890 VFC_MEMORIES_RST_REG_CAM_RST | 16891 VFC_MEMORIES_RST_REG_RAM_RST); 16892 16893 DELAY(20000); 16894 } 16895 16896 ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON); 16897 ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON); 16898 ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON); 16899 ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON); 16900 16901 /* sync semi rtc */ 16902 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 16903 0x80000000); 16904 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 16905 0x80000000); 16906 16907 ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON); 16908 ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON); 16909 ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON); 16910 16911 if (!CHIP_IS_E1x(sc)) { 16912 if (IS_MF_AFEX(sc)) { 16913 /* 16914 * configure that AFEX and VLAN headers must be 16915 * sent in AFEX mode 16916 */ 16917 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE); 16918 REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA); 16919 REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 16920 REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 16921 REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4); 16922 } else { 16923 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 16924 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 16925 } 16926 } 16927 16928 REG_WR(sc, SRC_REG_SOFT_RST, 1); 16929 16930 ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON); 16931 16932 if (CNIC_SUPPORT(sc)) { 16933 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672); 16934 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 16935 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b); 16936 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a); 16937 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116); 16938 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 16939 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf); 16940 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 16941 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f); 16942 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7); 16943 } 16944 REG_WR(sc, SRC_REG_SOFT_RST, 0); 16945 16946 if (sizeof(union cdu_context) != 1024) { 16947 /* we currently assume that a context is 1024 bytes */ 16948 BLOGE(sc, "please adjust the size of cdu_context(%ld)\n", 16949 (long)sizeof(union cdu_context)); 16950 } 16951 16952 ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON); 16953 val = (4 << 24) + (0 << 12) + 1024; 16954 REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val); 16955 16956 ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON); 16957 16958 REG_WR(sc, CFC_REG_INIT_REG, 0x7FF); 16959 /* enable context validation interrupt from CFC */ 16960 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 16961 16962 /* set the thresholds to prevent CFC/CDU race */ 16963 REG_WR(sc, CFC_REG_DEBUG0, 0x20020000); 16964 ecore_init_block(sc, BLOCK_HC, PHASE_COMMON); 16965 16966 if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) { 16967 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36); 16968 } 16969 16970 ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON); 16971 ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON); 16972 16973 /* Reset PCIE errors for debug */ 16974 REG_WR(sc, 0x2814, 0xffffffff); 16975 REG_WR(sc, 0x3820, 0xffffffff); 16976 16977 if (!CHIP_IS_E1x(sc)) { 16978 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 16979 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 16980 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 16981 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 16982 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 16983 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 16984 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 16985 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 16986 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 16987 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 16988 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 16989 } 16990 16991 ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON); 16992 16993 if (!CHIP_IS_E1(sc)) { 16994 /* in E3 this done in per-port section */ 16995 if (!CHIP_IS_E3(sc)) 16996 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc)); 16997 } 16998 16999 if (CHIP_IS_E1H(sc)) { 17000 /* not applicable for E2 (and above ...) */ 17001 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc)); 17002 } 17003 17004 if (CHIP_REV_IS_SLOW(sc)) { 17005 DELAY(200000); 17006 } 17007 17008 /* finish CFC init */ 17009 val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10); 17010 if (val != 1) { 17011 BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val); 17012 return (-1); 17013 } 17014 val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10); 17015 if (val != 1) { 17016 BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val); 17017 return (-1); 17018 } 17019 val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 17020 if (val != 1) { 17021 BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val); 17022 return (-1); 17023 } 17024 REG_WR(sc, CFC_REG_DEBUG0, 0); 17025 17026 if (CHIP_IS_E1(sc)) { 17027 /* read NIG statistic to see if this is our first up since powerup */ 17028 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 17029 val = *BXE_SP(sc, wb_data[0]); 17030 17031 /* do internal memory self test */ 17032 if ((val == 0) && bxe_int_mem_test(sc)) { 17033 BLOGE(sc, "internal mem self test failed val=0x%x\n", val); 17034 return (-1); 17035 } 17036 } 17037 17038 bxe_setup_fan_failure_detection(sc); 17039 17040 /* clear PXP2 attentions */ 17041 REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 17042 17043 bxe_enable_blocks_attention(sc); 17044 17045 if (!CHIP_REV_IS_SLOW(sc)) { 17046 ecore_enable_blocks_parity(sc); 17047 } 17048 17049 if (!BXE_NOMCP(sc)) { 17050 if (CHIP_IS_E1x(sc)) { 17051 bxe_common_init_phy(sc); 17052 } 17053 } 17054 17055 return (0); 17056 } 17057 17058 /** 17059 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase. 17060 * 17061 * @sc: driver handle 17062 */ 17063 static int 17064 bxe_init_hw_common_chip(struct bxe_softc *sc) 17065 { 17066 int rc = bxe_init_hw_common(sc); 17067 17068 if (rc) { 17069 BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc); 17070 return (rc); 17071 } 17072 17073 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 17074 if (!BXE_NOMCP(sc)) { 17075 bxe_common_init_phy(sc); 17076 } 17077 17078 return (0); 17079 } 17080 17081 static int 17082 bxe_init_hw_port(struct bxe_softc *sc) 17083 { 17084 int port = SC_PORT(sc); 17085 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 17086 uint32_t low, high; 17087 uint32_t val; 17088 17089 BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port); 17090 17091 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 17092 17093 ecore_init_block(sc, BLOCK_MISC, init_phase); 17094 ecore_init_block(sc, BLOCK_PXP, init_phase); 17095 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17096 17097 /* 17098 * Timers bug workaround: disables the pf_master bit in pglue at 17099 * common phase, we need to enable it here before any dmae access are 17100 * attempted. Therefore we manually added the enable-master to the 17101 * port phase (it also happens in the function phase) 17102 */ 17103 if (!CHIP_IS_E1x(sc)) { 17104 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17105 } 17106 17107 ecore_init_block(sc, BLOCK_ATC, init_phase); 17108 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17109 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17110 ecore_init_block(sc, BLOCK_QM, init_phase); 17111 17112 ecore_init_block(sc, BLOCK_TCM, init_phase); 17113 ecore_init_block(sc, BLOCK_UCM, init_phase); 17114 ecore_init_block(sc, BLOCK_CCM, init_phase); 17115 ecore_init_block(sc, BLOCK_XCM, init_phase); 17116 17117 /* QM cid (connection) count */ 17118 ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET); 17119 17120 if (CNIC_SUPPORT(sc)) { 17121 ecore_init_block(sc, BLOCK_TM, init_phase); 17122 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20); 17123 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 17124 } 17125 17126 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17127 17128 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17129 17130 if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) { 17131 if (IS_MF(sc)) { 17132 low = (BXE_ONE_PORT(sc) ? 160 : 246); 17133 } else if (sc->mtu > 4096) { 17134 if (BXE_ONE_PORT(sc)) { 17135 low = 160; 17136 } else { 17137 val = sc->mtu; 17138 /* (24*1024 + val*4)/256 */ 17139 low = (96 + (val / 64) + ((val % 64) ? 1 : 0)); 17140 } 17141 } else { 17142 low = (BXE_ONE_PORT(sc) ? 80 : 160); 17143 } 17144 high = (low + 56); /* 14*1024/256 */ 17145 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 17146 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 17147 } 17148 17149 if (CHIP_IS_MODE_4_PORT(sc)) { 17150 REG_WR(sc, SC_PORT(sc) ? 17151 BRB1_REG_MAC_GUARANTIED_1 : 17152 BRB1_REG_MAC_GUARANTIED_0, 40); 17153 } 17154 17155 ecore_init_block(sc, BLOCK_PRS, init_phase); 17156 if (CHIP_IS_E3B0(sc)) { 17157 if (IS_MF_AFEX(sc)) { 17158 /* configure headers for AFEX mode */ 17159 REG_WR(sc, SC_PORT(sc) ? 17160 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17161 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 17162 REG_WR(sc, SC_PORT(sc) ? 17163 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 17164 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 17165 REG_WR(sc, SC_PORT(sc) ? 17166 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 17167 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 17168 } else { 17169 /* Ovlan exists only if we are in multi-function + 17170 * switch-dependent mode, in switch-independent there 17171 * is no ovlan headers 17172 */ 17173 REG_WR(sc, SC_PORT(sc) ? 17174 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17175 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 17176 (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6)); 17177 } 17178 } 17179 17180 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17181 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17182 ecore_init_block(sc, BLOCK_USDM, init_phase); 17183 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17184 17185 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17186 ecore_init_block(sc, BLOCK_USEM, init_phase); 17187 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17188 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17189 17190 ecore_init_block(sc, BLOCK_UPB, init_phase); 17191 ecore_init_block(sc, BLOCK_XPB, init_phase); 17192 17193 ecore_init_block(sc, BLOCK_PBF, init_phase); 17194 17195 if (CHIP_IS_E1x(sc)) { 17196 /* configure PBF to work without PAUSE mtu 9000 */ 17197 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 17198 17199 /* update threshold */ 17200 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 17201 /* update init credit */ 17202 REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 17203 17204 /* probe changes */ 17205 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1); 17206 DELAY(50); 17207 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0); 17208 } 17209 17210 if (CNIC_SUPPORT(sc)) { 17211 ecore_init_block(sc, BLOCK_SRC, init_phase); 17212 } 17213 17214 ecore_init_block(sc, BLOCK_CDU, init_phase); 17215 ecore_init_block(sc, BLOCK_CFC, init_phase); 17216 17217 if (CHIP_IS_E1(sc)) { 17218 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17219 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17220 } 17221 ecore_init_block(sc, BLOCK_HC, init_phase); 17222 17223 ecore_init_block(sc, BLOCK_IGU, init_phase); 17224 17225 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17226 /* init aeu_mask_attn_func_0/1: 17227 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use 17228 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF 17229 * bits 4-7 are used for "per vn group attention" */ 17230 val = IS_MF(sc) ? 0xF7 : 0x7; 17231 /* Enable DCBX attention for all but E1 */ 17232 val |= CHIP_IS_E1(sc) ? 0 : 0x10; 17233 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 17234 17235 ecore_init_block(sc, BLOCK_NIG, init_phase); 17236 17237 if (!CHIP_IS_E1x(sc)) { 17238 /* Bit-map indicating which L2 hdrs may appear after the 17239 * basic Ethernet header 17240 */ 17241 if (IS_MF_AFEX(sc)) { 17242 REG_WR(sc, SC_PORT(sc) ? 17243 NIG_REG_P1_HDRS_AFTER_BASIC : 17244 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 17245 } else { 17246 REG_WR(sc, SC_PORT(sc) ? 17247 NIG_REG_P1_HDRS_AFTER_BASIC : 17248 NIG_REG_P0_HDRS_AFTER_BASIC, 17249 IS_MF_SD(sc) ? 7 : 6); 17250 } 17251 17252 if (CHIP_IS_E3(sc)) { 17253 REG_WR(sc, SC_PORT(sc) ? 17254 NIG_REG_LLH1_MF_MODE : 17255 NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17256 } 17257 } 17258 if (!CHIP_IS_E3(sc)) { 17259 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 17260 } 17261 17262 if (!CHIP_IS_E1(sc)) { 17263 /* 0x2 disable mf_ov, 0x1 enable */ 17264 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 17265 (IS_MF_SD(sc) ? 0x1 : 0x2)); 17266 17267 if (!CHIP_IS_E1x(sc)) { 17268 val = 0; 17269 switch (sc->devinfo.mf_info.mf_mode) { 17270 case MULTI_FUNCTION_SD: 17271 val = 1; 17272 break; 17273 case MULTI_FUNCTION_SI: 17274 case MULTI_FUNCTION_AFEX: 17275 val = 2; 17276 break; 17277 } 17278 17279 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE : 17280 NIG_REG_LLH0_CLS_TYPE), val); 17281 } 17282 REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 17283 REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 17284 REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 17285 } 17286 17287 /* If SPIO5 is set to generate interrupts, enable it for this port */ 17288 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17289 if (val & MISC_SPIO_SPIO5) { 17290 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 17291 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 17292 val = REG_RD(sc, reg_addr); 17293 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 17294 REG_WR(sc, reg_addr, val); 17295 } 17296 17297 return (0); 17298 } 17299 17300 static uint32_t 17301 bxe_flr_clnup_reg_poll(struct bxe_softc *sc, 17302 uint32_t reg, 17303 uint32_t expected, 17304 uint32_t poll_count) 17305 { 17306 uint32_t cur_cnt = poll_count; 17307 uint32_t val; 17308 17309 while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) { 17310 DELAY(FLR_WAIT_INTERVAL); 17311 } 17312 17313 return (val); 17314 } 17315 17316 static int 17317 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc, 17318 uint32_t reg, 17319 char *msg, 17320 uint32_t poll_cnt) 17321 { 17322 uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt); 17323 17324 if (val != 0) { 17325 BLOGE(sc, "%s usage count=%d\n", msg, val); 17326 return (1); 17327 } 17328 17329 return (0); 17330 } 17331 17332 /* Common routines with VF FLR cleanup */ 17333 static uint32_t 17334 bxe_flr_clnup_poll_count(struct bxe_softc *sc) 17335 { 17336 /* adjust polling timeout */ 17337 if (CHIP_REV_IS_EMUL(sc)) { 17338 return (FLR_POLL_CNT * 2000); 17339 } 17340 17341 if (CHIP_REV_IS_FPGA(sc)) { 17342 return (FLR_POLL_CNT * 120); 17343 } 17344 17345 return (FLR_POLL_CNT); 17346 } 17347 17348 static int 17349 bxe_poll_hw_usage_counters(struct bxe_softc *sc, 17350 uint32_t poll_cnt) 17351 { 17352 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 17353 if (bxe_flr_clnup_poll_hw_counter(sc, 17354 CFC_REG_NUM_LCIDS_INSIDE_PF, 17355 "CFC PF usage counter timed out", 17356 poll_cnt)) { 17357 return (1); 17358 } 17359 17360 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 17361 if (bxe_flr_clnup_poll_hw_counter(sc, 17362 DORQ_REG_PF_USAGE_CNT, 17363 "DQ PF usage counter timed out", 17364 poll_cnt)) { 17365 return (1); 17366 } 17367 17368 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 17369 if (bxe_flr_clnup_poll_hw_counter(sc, 17370 QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc), 17371 "QM PF usage counter timed out", 17372 poll_cnt)) { 17373 return (1); 17374 } 17375 17376 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 17377 if (bxe_flr_clnup_poll_hw_counter(sc, 17378 TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc), 17379 "Timers VNIC usage counter timed out", 17380 poll_cnt)) { 17381 return (1); 17382 } 17383 17384 if (bxe_flr_clnup_poll_hw_counter(sc, 17385 TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc), 17386 "Timers NUM_SCANS usage counter timed out", 17387 poll_cnt)) { 17388 return (1); 17389 } 17390 17391 /* Wait DMAE PF usage counter to zero */ 17392 if (bxe_flr_clnup_poll_hw_counter(sc, 17393 dmae_reg_go_c[INIT_DMAE_C(sc)], 17394 "DMAE dommand register timed out", 17395 poll_cnt)) { 17396 return (1); 17397 } 17398 17399 return (0); 17400 } 17401 17402 #define OP_GEN_PARAM(param) \ 17403 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 17404 #define OP_GEN_TYPE(type) \ 17405 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 17406 #define OP_GEN_AGG_VECT(index) \ 17407 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 17408 17409 static int 17410 bxe_send_final_clnup(struct bxe_softc *sc, 17411 uint8_t clnup_func, 17412 uint32_t poll_cnt) 17413 { 17414 uint32_t op_gen_command = 0; 17415 uint32_t comp_addr = (BAR_CSTRORM_INTMEM + 17416 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func)); 17417 int ret = 0; 17418 17419 if (REG_RD(sc, comp_addr)) { 17420 BLOGE(sc, "Cleanup complete was not 0 before sending\n"); 17421 return (1); 17422 } 17423 17424 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 17425 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 17426 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 17427 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 17428 17429 BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n"); 17430 REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command); 17431 17432 if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) { 17433 BLOGE(sc, "FW final cleanup did not succeed\n"); 17434 BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n", 17435 (REG_RD(sc, comp_addr))); 17436 bxe_panic(sc, ("FLR cleanup failed\n")); 17437 return (1); 17438 } 17439 17440 /* Zero completion for nxt FLR */ 17441 REG_WR(sc, comp_addr, 0); 17442 17443 return (ret); 17444 } 17445 17446 static void 17447 bxe_pbf_pN_buf_flushed(struct bxe_softc *sc, 17448 struct pbf_pN_buf_regs *regs, 17449 uint32_t poll_count) 17450 { 17451 uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start; 17452 uint32_t cur_cnt = poll_count; 17453 17454 crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed); 17455 crd = crd_start = REG_RD(sc, regs->crd); 17456 init_crd = REG_RD(sc, regs->init_crd); 17457 17458 BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 17459 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd); 17460 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 17461 17462 while ((crd != init_crd) && 17463 ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) < 17464 (init_crd - crd_start))) { 17465 if (cur_cnt--) { 17466 DELAY(FLR_WAIT_INTERVAL); 17467 crd = REG_RD(sc, regs->crd); 17468 crd_freed = REG_RD(sc, regs->crd_freed); 17469 } else { 17470 BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN); 17471 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd); 17472 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed); 17473 break; 17474 } 17475 } 17476 17477 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n", 17478 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 17479 } 17480 17481 static void 17482 bxe_pbf_pN_cmd_flushed(struct bxe_softc *sc, 17483 struct pbf_pN_cmd_regs *regs, 17484 uint32_t poll_count) 17485 { 17486 uint32_t occup, to_free, freed, freed_start; 17487 uint32_t cur_cnt = poll_count; 17488 17489 occup = to_free = REG_RD(sc, regs->lines_occup); 17490 freed = freed_start = REG_RD(sc, regs->lines_freed); 17491 17492 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 17493 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 17494 17495 while (occup && 17496 ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) { 17497 if (cur_cnt--) { 17498 DELAY(FLR_WAIT_INTERVAL); 17499 occup = REG_RD(sc, regs->lines_occup); 17500 freed = REG_RD(sc, regs->lines_freed); 17501 } else { 17502 BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN); 17503 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 17504 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 17505 break; 17506 } 17507 } 17508 17509 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n", 17510 poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 17511 } 17512 17513 static void 17514 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count) 17515 { 17516 struct pbf_pN_cmd_regs cmd_regs[] = { 17517 {0, (CHIP_IS_E3B0(sc)) ? 17518 PBF_REG_TQ_OCCUPANCY_Q0 : 17519 PBF_REG_P0_TQ_OCCUPANCY, 17520 (CHIP_IS_E3B0(sc)) ? 17521 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 17522 PBF_REG_P0_TQ_LINES_FREED_CNT}, 17523 {1, (CHIP_IS_E3B0(sc)) ? 17524 PBF_REG_TQ_OCCUPANCY_Q1 : 17525 PBF_REG_P1_TQ_OCCUPANCY, 17526 (CHIP_IS_E3B0(sc)) ? 17527 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 17528 PBF_REG_P1_TQ_LINES_FREED_CNT}, 17529 {4, (CHIP_IS_E3B0(sc)) ? 17530 PBF_REG_TQ_OCCUPANCY_LB_Q : 17531 PBF_REG_P4_TQ_OCCUPANCY, 17532 (CHIP_IS_E3B0(sc)) ? 17533 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 17534 PBF_REG_P4_TQ_LINES_FREED_CNT} 17535 }; 17536 17537 struct pbf_pN_buf_regs buf_regs[] = { 17538 {0, (CHIP_IS_E3B0(sc)) ? 17539 PBF_REG_INIT_CRD_Q0 : 17540 PBF_REG_P0_INIT_CRD , 17541 (CHIP_IS_E3B0(sc)) ? 17542 PBF_REG_CREDIT_Q0 : 17543 PBF_REG_P0_CREDIT, 17544 (CHIP_IS_E3B0(sc)) ? 17545 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 17546 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 17547 {1, (CHIP_IS_E3B0(sc)) ? 17548 PBF_REG_INIT_CRD_Q1 : 17549 PBF_REG_P1_INIT_CRD, 17550 (CHIP_IS_E3B0(sc)) ? 17551 PBF_REG_CREDIT_Q1 : 17552 PBF_REG_P1_CREDIT, 17553 (CHIP_IS_E3B0(sc)) ? 17554 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 17555 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 17556 {4, (CHIP_IS_E3B0(sc)) ? 17557 PBF_REG_INIT_CRD_LB_Q : 17558 PBF_REG_P4_INIT_CRD, 17559 (CHIP_IS_E3B0(sc)) ? 17560 PBF_REG_CREDIT_LB_Q : 17561 PBF_REG_P4_CREDIT, 17562 (CHIP_IS_E3B0(sc)) ? 17563 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 17564 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 17565 }; 17566 17567 int i; 17568 17569 /* Verify the command queues are flushed P0, P1, P4 */ 17570 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) { 17571 bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count); 17572 } 17573 17574 /* Verify the transmission buffers are flushed P0, P1, P4 */ 17575 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) { 17576 bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count); 17577 } 17578 } 17579 17580 static void 17581 bxe_hw_enable_status(struct bxe_softc *sc) 17582 { 17583 uint32_t val; 17584 17585 val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF); 17586 BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 17587 17588 val = REG_RD(sc, PBF_REG_DISABLE_PF); 17589 BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val); 17590 17591 val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN); 17592 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 17593 17594 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN); 17595 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 17596 17597 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 17598 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 17599 17600 val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 17601 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 17602 17603 val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 17604 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 17605 17606 val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 17607 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val); 17608 } 17609 17610 static int 17611 bxe_pf_flr_clnup(struct bxe_softc *sc) 17612 { 17613 uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc); 17614 17615 BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc)); 17616 17617 /* Re-enable PF target read access */ 17618 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 17619 17620 /* Poll HW usage counters */ 17621 BLOGD(sc, DBG_LOAD, "Polling usage counters\n"); 17622 if (bxe_poll_hw_usage_counters(sc, poll_cnt)) { 17623 return (-1); 17624 } 17625 17626 /* Zero the igu 'trailing edge' and 'leading edge' */ 17627 17628 /* Send the FW cleanup command */ 17629 if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) { 17630 return (-1); 17631 } 17632 17633 /* ATC cleanup */ 17634 17635 /* Verify TX hw is flushed */ 17636 bxe_tx_hw_flushed(sc, poll_cnt); 17637 17638 /* Wait 100ms (not adjusted according to platform) */ 17639 DELAY(100000); 17640 17641 /* Verify no pending pci transactions */ 17642 if (bxe_is_pcie_pending(sc)) { 17643 BLOGE(sc, "PCIE Transactions still pending\n"); 17644 } 17645 17646 /* Debug */ 17647 bxe_hw_enable_status(sc); 17648 17649 /* 17650 * Master enable - Due to WB DMAE writes performed before this 17651 * register is re-initialized as part of the regular function init 17652 */ 17653 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17654 17655 return (0); 17656 } 17657 17658 static int 17659 bxe_init_hw_func(struct bxe_softc *sc) 17660 { 17661 int port = SC_PORT(sc); 17662 int func = SC_FUNC(sc); 17663 int init_phase = PHASE_PF0 + func; 17664 struct ecore_ilt *ilt = sc->ilt; 17665 uint16_t cdu_ilt_start; 17666 uint32_t addr, val; 17667 uint32_t main_mem_base, main_mem_size, main_mem_prty_clr; 17668 int i, main_mem_width, rc; 17669 17670 BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func); 17671 17672 /* FLR cleanup */ 17673 if (!CHIP_IS_E1x(sc)) { 17674 rc = bxe_pf_flr_clnup(sc); 17675 if (rc) { 17676 BLOGE(sc, "FLR cleanup failed!\n"); 17677 // XXX bxe_fw_dump(sc); 17678 // XXX bxe_idle_chk(sc); 17679 return (rc); 17680 } 17681 } 17682 17683 /* set MSI reconfigure capability */ 17684 if (sc->devinfo.int_block == INT_BLOCK_HC) { 17685 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 17686 val = REG_RD(sc, addr); 17687 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 17688 REG_WR(sc, addr, val); 17689 } 17690 17691 ecore_init_block(sc, BLOCK_PXP, init_phase); 17692 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17693 17694 ilt = sc->ilt; 17695 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 17696 17697 for (i = 0; i < L2_ILT_LINES(sc); i++) { 17698 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt; 17699 ilt->lines[cdu_ilt_start + i].page_mapping = 17700 sc->context[i].vcxt_dma.paddr; 17701 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size; 17702 } 17703 ecore_ilt_init_op(sc, INITOP_SET); 17704 17705 /* Set NIC mode */ 17706 REG_WR(sc, PRS_REG_NIC_MODE, 1); 17707 BLOGD(sc, DBG_LOAD, "NIC MODE configured\n"); 17708 17709 if (!CHIP_IS_E1x(sc)) { 17710 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN; 17711 17712 /* Turn on a single ISR mode in IGU if driver is going to use 17713 * INT#x or MSI 17714 */ 17715 if (sc->interrupt_mode != INTR_MODE_MSIX) { 17716 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 17717 } 17718 17719 /* 17720 * Timers workaround bug: function init part. 17721 * Need to wait 20msec after initializing ILT, 17722 * needed to make sure there are no requests in 17723 * one of the PXP internal queues with "old" ILT addresses 17724 */ 17725 DELAY(20000); 17726 17727 /* 17728 * Master enable - Due to WB DMAE writes performed before this 17729 * register is re-initialized as part of the regular function 17730 * init 17731 */ 17732 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17733 /* Enable the function in IGU */ 17734 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf); 17735 } 17736 17737 sc->dmae_ready = 1; 17738 17739 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17740 17741 if (!CHIP_IS_E1x(sc)) 17742 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); 17743 17744 ecore_init_block(sc, BLOCK_ATC, init_phase); 17745 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17746 ecore_init_block(sc, BLOCK_NIG, init_phase); 17747 ecore_init_block(sc, BLOCK_SRC, init_phase); 17748 ecore_init_block(sc, BLOCK_MISC, init_phase); 17749 ecore_init_block(sc, BLOCK_TCM, init_phase); 17750 ecore_init_block(sc, BLOCK_UCM, init_phase); 17751 ecore_init_block(sc, BLOCK_CCM, init_phase); 17752 ecore_init_block(sc, BLOCK_XCM, init_phase); 17753 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17754 ecore_init_block(sc, BLOCK_USEM, init_phase); 17755 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17756 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17757 17758 if (!CHIP_IS_E1x(sc)) 17759 REG_WR(sc, QM_REG_PF_EN, 1); 17760 17761 if (!CHIP_IS_E1x(sc)) { 17762 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17763 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17764 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17765 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17766 } 17767 ecore_init_block(sc, BLOCK_QM, init_phase); 17768 17769 ecore_init_block(sc, BLOCK_TM, init_phase); 17770 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17771 17772 bxe_iov_init_dq(sc); 17773 17774 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17775 ecore_init_block(sc, BLOCK_PRS, init_phase); 17776 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17777 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17778 ecore_init_block(sc, BLOCK_USDM, init_phase); 17779 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17780 ecore_init_block(sc, BLOCK_UPB, init_phase); 17781 ecore_init_block(sc, BLOCK_XPB, init_phase); 17782 ecore_init_block(sc, BLOCK_PBF, init_phase); 17783 if (!CHIP_IS_E1x(sc)) 17784 REG_WR(sc, PBF_REG_DISABLE_PF, 0); 17785 17786 ecore_init_block(sc, BLOCK_CDU, init_phase); 17787 17788 ecore_init_block(sc, BLOCK_CFC, init_phase); 17789 17790 if (!CHIP_IS_E1x(sc)) 17791 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1); 17792 17793 if (IS_MF(sc)) { 17794 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 17795 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc)); 17796 } 17797 17798 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17799 17800 /* HC init per function */ 17801 if (sc->devinfo.int_block == INT_BLOCK_HC) { 17802 if (CHIP_IS_E1H(sc)) { 17803 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 17804 17805 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17806 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17807 } 17808 ecore_init_block(sc, BLOCK_HC, init_phase); 17809 17810 } else { 17811 int num_segs, sb_idx, prod_offset; 17812 17813 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 17814 17815 if (!CHIP_IS_E1x(sc)) { 17816 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 17817 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 17818 } 17819 17820 ecore_init_block(sc, BLOCK_IGU, init_phase); 17821 17822 if (!CHIP_IS_E1x(sc)) { 17823 int dsb_idx = 0; 17824 /** 17825 * Producer memory: 17826 * E2 mode: address 0-135 match to the mapping memory; 17827 * 136 - PF0 default prod; 137 - PF1 default prod; 17828 * 138 - PF2 default prod; 139 - PF3 default prod; 17829 * 140 - PF0 attn prod; 141 - PF1 attn prod; 17830 * 142 - PF2 attn prod; 143 - PF3 attn prod; 17831 * 144-147 reserved. 17832 * 17833 * E1.5 mode - In backward compatible mode; 17834 * for non default SB; each even line in the memory 17835 * holds the U producer and each odd line hold 17836 * the C producer. The first 128 producers are for 17837 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 17838 * producers are for the DSB for each PF. 17839 * Each PF has five segments: (the order inside each 17840 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 17841 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 17842 * 144-147 attn prods; 17843 */ 17844 /* non-default-status-blocks */ 17845 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 17846 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 17847 for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) { 17848 prod_offset = (sc->igu_base_sb + sb_idx) * 17849 num_segs; 17850 17851 for (i = 0; i < num_segs; i++) { 17852 addr = IGU_REG_PROD_CONS_MEMORY + 17853 (prod_offset + i) * 4; 17854 REG_WR(sc, addr, 0); 17855 } 17856 /* send consumer update with value 0 */ 17857 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx, 17858 USTORM_ID, 0, IGU_INT_NOP, 1); 17859 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx); 17860 } 17861 17862 /* default-status-blocks */ 17863 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 17864 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 17865 17866 if (CHIP_IS_MODE_4_PORT(sc)) 17867 dsb_idx = SC_FUNC(sc); 17868 else 17869 dsb_idx = SC_VN(sc); 17870 17871 prod_offset = (CHIP_INT_MODE_IS_BC(sc) ? 17872 IGU_BC_BASE_DSB_PROD + dsb_idx : 17873 IGU_NORM_BASE_DSB_PROD + dsb_idx); 17874 17875 /* 17876 * igu prods come in chunks of E1HVN_MAX (4) - 17877 * does not matters what is the current chip mode 17878 */ 17879 for (i = 0; i < (num_segs * E1HVN_MAX); 17880 i += E1HVN_MAX) { 17881 addr = IGU_REG_PROD_CONS_MEMORY + 17882 (prod_offset + i)*4; 17883 REG_WR(sc, addr, 0); 17884 } 17885 /* send consumer update with 0 */ 17886 if (CHIP_INT_MODE_IS_BC(sc)) { 17887 bxe_ack_sb(sc, sc->igu_dsb_id, 17888 USTORM_ID, 0, IGU_INT_NOP, 1); 17889 bxe_ack_sb(sc, sc->igu_dsb_id, 17890 CSTORM_ID, 0, IGU_INT_NOP, 1); 17891 bxe_ack_sb(sc, sc->igu_dsb_id, 17892 XSTORM_ID, 0, IGU_INT_NOP, 1); 17893 bxe_ack_sb(sc, sc->igu_dsb_id, 17894 TSTORM_ID, 0, IGU_INT_NOP, 1); 17895 bxe_ack_sb(sc, sc->igu_dsb_id, 17896 ATTENTION_ID, 0, IGU_INT_NOP, 1); 17897 } else { 17898 bxe_ack_sb(sc, sc->igu_dsb_id, 17899 USTORM_ID, 0, IGU_INT_NOP, 1); 17900 bxe_ack_sb(sc, sc->igu_dsb_id, 17901 ATTENTION_ID, 0, IGU_INT_NOP, 1); 17902 } 17903 bxe_igu_clear_sb(sc, sc->igu_dsb_id); 17904 17905 /* !!! these should become driver const once 17906 rf-tool supports split-68 const */ 17907 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 17908 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 17909 REG_WR(sc, IGU_REG_SB_MASK_LSB, 0); 17910 REG_WR(sc, IGU_REG_SB_MASK_MSB, 0); 17911 REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0); 17912 REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0); 17913 } 17914 } 17915 17916 /* Reset PCIE errors for debug */ 17917 REG_WR(sc, 0x2114, 0xffffffff); 17918 REG_WR(sc, 0x2120, 0xffffffff); 17919 17920 if (CHIP_IS_E1x(sc)) { 17921 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 17922 main_mem_base = HC_REG_MAIN_MEMORY + 17923 SC_PORT(sc) * (main_mem_size * 4); 17924 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 17925 main_mem_width = 8; 17926 17927 val = REG_RD(sc, main_mem_prty_clr); 17928 if (val) { 17929 BLOGD(sc, DBG_LOAD, 17930 "Parity errors in HC block during function init (0x%x)!\n", 17931 val); 17932 } 17933 17934 /* Clear "false" parity errors in MSI-X table */ 17935 for (i = main_mem_base; 17936 i < main_mem_base + main_mem_size * 4; 17937 i += main_mem_width) { 17938 bxe_read_dmae(sc, i, main_mem_width / 4); 17939 bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), 17940 i, main_mem_width / 4); 17941 } 17942 /* Clear HC parity attention */ 17943 REG_RD(sc, main_mem_prty_clr); 17944 } 17945 17946 #if 1 17947 /* Enable STORMs SP logging */ 17948 REG_WR8(sc, BAR_USTRORM_INTMEM + 17949 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 17950 REG_WR8(sc, BAR_TSTRORM_INTMEM + 17951 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 17952 REG_WR8(sc, BAR_CSTRORM_INTMEM + 17953 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 17954 REG_WR8(sc, BAR_XSTRORM_INTMEM + 17955 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 17956 #endif 17957 17958 elink_phy_probe(&sc->link_params); 17959 17960 return (0); 17961 } 17962 17963 static void 17964 bxe_link_reset(struct bxe_softc *sc) 17965 { 17966 if (!BXE_NOMCP(sc)) { 17967 bxe_acquire_phy_lock(sc); 17968 elink_lfa_reset(&sc->link_params, &sc->link_vars); 17969 bxe_release_phy_lock(sc); 17970 } else { 17971 if (!CHIP_REV_IS_SLOW(sc)) { 17972 BLOGW(sc, "Bootcode is missing - cannot reset link\n"); 17973 } 17974 } 17975 } 17976 17977 static void 17978 bxe_reset_port(struct bxe_softc *sc) 17979 { 17980 int port = SC_PORT(sc); 17981 uint32_t val; 17982 17983 /* reset physical Link */ 17984 bxe_link_reset(sc); 17985 17986 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 17987 17988 /* Do not rcv packets to BRB */ 17989 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 17990 /* Do not direct rcv packets that are not for MCP to the BRB */ 17991 REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 17992 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 17993 17994 /* Configure AEU */ 17995 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 17996 17997 DELAY(100000); 17998 17999 /* Check for BRB port occupancy */ 18000 val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 18001 if (val) { 18002 BLOGD(sc, DBG_LOAD, 18003 "BRB1 is not empty, %d blocks are occupied\n", val); 18004 } 18005 18006 /* TODO: Close Doorbell port? */ 18007 } 18008 18009 static void 18010 bxe_ilt_wr(struct bxe_softc *sc, 18011 uint32_t index, 18012 bus_addr_t addr) 18013 { 18014 int reg; 18015 uint32_t wb_write[2]; 18016 18017 if (CHIP_IS_E1(sc)) { 18018 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 18019 } else { 18020 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 18021 } 18022 18023 wb_write[0] = ONCHIP_ADDR1(addr); 18024 wb_write[1] = ONCHIP_ADDR2(addr); 18025 REG_WR_DMAE(sc, reg, wb_write, 2); 18026 } 18027 18028 static void 18029 bxe_clear_func_ilt(struct bxe_softc *sc, 18030 uint32_t func) 18031 { 18032 uint32_t i, base = FUNC_ILT_BASE(func); 18033 for (i = base; i < base + ILT_PER_FUNC; i++) { 18034 bxe_ilt_wr(sc, i, 0); 18035 } 18036 } 18037 18038 static void 18039 bxe_reset_func(struct bxe_softc *sc) 18040 { 18041 struct bxe_fastpath *fp; 18042 int port = SC_PORT(sc); 18043 int func = SC_FUNC(sc); 18044 int i; 18045 18046 /* Disable the function in the FW */ 18047 REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 18048 REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 18049 REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 18050 REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 18051 18052 /* FP SBs */ 18053 FOR_EACH_ETH_QUEUE(sc, i) { 18054 fp = &sc->fp[i]; 18055 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18056 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 18057 SB_DISABLED); 18058 } 18059 18060 /* SP SB */ 18061 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18062 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 18063 SB_DISABLED); 18064 18065 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) { 18066 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0); 18067 } 18068 18069 /* Configure IGU */ 18070 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18071 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18072 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18073 } else { 18074 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18075 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18076 } 18077 18078 if (CNIC_LOADED(sc)) { 18079 /* Disable Timer scan */ 18080 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 18081 /* 18082 * Wait for at least 10ms and up to 2 second for the timers 18083 * scan to complete 18084 */ 18085 for (i = 0; i < 200; i++) { 18086 DELAY(10000); 18087 if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4)) 18088 break; 18089 } 18090 } 18091 18092 /* Clear ILT */ 18093 bxe_clear_func_ilt(sc, func); 18094 18095 /* 18096 * Timers workaround bug for E2: if this is vnic-3, 18097 * we need to set the entire ilt range for this timers. 18098 */ 18099 if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) { 18100 struct ilt_client_info ilt_cli; 18101 /* use dummy TM client */ 18102 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 18103 ilt_cli.start = 0; 18104 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 18105 ilt_cli.client_num = ILT_CLIENT_TM; 18106 18107 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR); 18108 } 18109 18110 /* this assumes that reset_port() called before reset_func()*/ 18111 if (!CHIP_IS_E1x(sc)) { 18112 bxe_pf_disable(sc); 18113 } 18114 18115 sc->dmae_ready = 0; 18116 } 18117 18118 static int 18119 bxe_gunzip_init(struct bxe_softc *sc) 18120 { 18121 return (0); 18122 } 18123 18124 static void 18125 bxe_gunzip_end(struct bxe_softc *sc) 18126 { 18127 return; 18128 } 18129 18130 static int 18131 bxe_init_firmware(struct bxe_softc *sc) 18132 { 18133 if (CHIP_IS_E1(sc)) { 18134 ecore_init_e1_firmware(sc); 18135 sc->iro_array = e1_iro_arr; 18136 } else if (CHIP_IS_E1H(sc)) { 18137 ecore_init_e1h_firmware(sc); 18138 sc->iro_array = e1h_iro_arr; 18139 } else if (!CHIP_IS_E1x(sc)) { 18140 ecore_init_e2_firmware(sc); 18141 sc->iro_array = e2_iro_arr; 18142 } else { 18143 BLOGE(sc, "Unsupported chip revision\n"); 18144 return (-1); 18145 } 18146 18147 return (0); 18148 } 18149 18150 static void 18151 bxe_release_firmware(struct bxe_softc *sc) 18152 { 18153 /* Do nothing */ 18154 return; 18155 } 18156 18157 static int 18158 ecore_gunzip(struct bxe_softc *sc, 18159 const uint8_t *zbuf, 18160 int len) 18161 { 18162 /* XXX : Implement... */ 18163 BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n"); 18164 return (FALSE); 18165 } 18166 18167 static void 18168 ecore_reg_wr_ind(struct bxe_softc *sc, 18169 uint32_t addr, 18170 uint32_t val) 18171 { 18172 bxe_reg_wr_ind(sc, addr, val); 18173 } 18174 18175 static void 18176 ecore_write_dmae_phys_len(struct bxe_softc *sc, 18177 bus_addr_t phys_addr, 18178 uint32_t addr, 18179 uint32_t len) 18180 { 18181 bxe_write_dmae_phys_len(sc, phys_addr, addr, len); 18182 } 18183 18184 void 18185 ecore_storm_memset_struct(struct bxe_softc *sc, 18186 uint32_t addr, 18187 size_t size, 18188 uint32_t *data) 18189 { 18190 uint8_t i; 18191 for (i = 0; i < size/4; i++) { 18192 REG_WR(sc, addr + (i * 4), data[i]); 18193 } 18194 } 18195 18196 18197 /* 18198 * character device - ioctl interface definitions 18199 */ 18200 18201 18202 #include "bxe_dump.h" 18203 #include "bxe_ioctl.h" 18204 #include <sys/conf.h> 18205 18206 static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 18207 struct thread *td); 18208 18209 static struct cdevsw bxe_cdevsw = { 18210 .d_version = D_VERSION, 18211 .d_ioctl = bxe_eioctl, 18212 .d_name = "bxecnic", 18213 }; 18214 18215 #define BXE_PATH(sc) (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1)) 18216 18217 18218 #define DUMP_ALL_PRESETS 0x1FFF 18219 #define DUMP_MAX_PRESETS 13 18220 #define IS_E1_REG(chips) ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1) 18221 #define IS_E1H_REG(chips) ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H) 18222 #define IS_E2_REG(chips) ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2) 18223 #define IS_E3A0_REG(chips) ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0) 18224 #define IS_E3B0_REG(chips) ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0) 18225 18226 #define IS_REG_IN_PRESET(presets, idx) \ 18227 ((presets & (1 << (idx-1))) == (1 << (idx-1))) 18228 18229 18230 static int 18231 bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset) 18232 { 18233 if (CHIP_IS_E1(sc)) 18234 return dump_num_registers[0][preset-1]; 18235 else if (CHIP_IS_E1H(sc)) 18236 return dump_num_registers[1][preset-1]; 18237 else if (CHIP_IS_E2(sc)) 18238 return dump_num_registers[2][preset-1]; 18239 else if (CHIP_IS_E3A0(sc)) 18240 return dump_num_registers[3][preset-1]; 18241 else if (CHIP_IS_E3B0(sc)) 18242 return dump_num_registers[4][preset-1]; 18243 else 18244 return 0; 18245 } 18246 18247 static int 18248 bxe_get_total_regs_len32(struct bxe_softc *sc) 18249 { 18250 uint32_t preset_idx; 18251 int regdump_len32 = 0; 18252 18253 18254 /* Calculate the total preset regs length */ 18255 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { 18256 regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx); 18257 } 18258 18259 return regdump_len32; 18260 } 18261 18262 static const uint32_t * 18263 __bxe_get_page_addr_ar(struct bxe_softc *sc) 18264 { 18265 if (CHIP_IS_E2(sc)) 18266 return page_vals_e2; 18267 else if (CHIP_IS_E3(sc)) 18268 return page_vals_e3; 18269 else 18270 return NULL; 18271 } 18272 18273 static uint32_t 18274 __bxe_get_page_reg_num(struct bxe_softc *sc) 18275 { 18276 if (CHIP_IS_E2(sc)) 18277 return PAGE_MODE_VALUES_E2; 18278 else if (CHIP_IS_E3(sc)) 18279 return PAGE_MODE_VALUES_E3; 18280 else 18281 return 0; 18282 } 18283 18284 static const uint32_t * 18285 __bxe_get_page_write_ar(struct bxe_softc *sc) 18286 { 18287 if (CHIP_IS_E2(sc)) 18288 return page_write_regs_e2; 18289 else if (CHIP_IS_E3(sc)) 18290 return page_write_regs_e3; 18291 else 18292 return NULL; 18293 } 18294 18295 static uint32_t 18296 __bxe_get_page_write_num(struct bxe_softc *sc) 18297 { 18298 if (CHIP_IS_E2(sc)) 18299 return PAGE_WRITE_REGS_E2; 18300 else if (CHIP_IS_E3(sc)) 18301 return PAGE_WRITE_REGS_E3; 18302 else 18303 return 0; 18304 } 18305 18306 static const struct reg_addr * 18307 __bxe_get_page_read_ar(struct bxe_softc *sc) 18308 { 18309 if (CHIP_IS_E2(sc)) 18310 return page_read_regs_e2; 18311 else if (CHIP_IS_E3(sc)) 18312 return page_read_regs_e3; 18313 else 18314 return NULL; 18315 } 18316 18317 static uint32_t 18318 __bxe_get_page_read_num(struct bxe_softc *sc) 18319 { 18320 if (CHIP_IS_E2(sc)) 18321 return PAGE_READ_REGS_E2; 18322 else if (CHIP_IS_E3(sc)) 18323 return PAGE_READ_REGS_E3; 18324 else 18325 return 0; 18326 } 18327 18328 static bool 18329 bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info) 18330 { 18331 if (CHIP_IS_E1(sc)) 18332 return IS_E1_REG(reg_info->chips); 18333 else if (CHIP_IS_E1H(sc)) 18334 return IS_E1H_REG(reg_info->chips); 18335 else if (CHIP_IS_E2(sc)) 18336 return IS_E2_REG(reg_info->chips); 18337 else if (CHIP_IS_E3A0(sc)) 18338 return IS_E3A0_REG(reg_info->chips); 18339 else if (CHIP_IS_E3B0(sc)) 18340 return IS_E3B0_REG(reg_info->chips); 18341 else 18342 return 0; 18343 } 18344 18345 static bool 18346 bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info) 18347 { 18348 if (CHIP_IS_E1(sc)) 18349 return IS_E1_REG(wreg_info->chips); 18350 else if (CHIP_IS_E1H(sc)) 18351 return IS_E1H_REG(wreg_info->chips); 18352 else if (CHIP_IS_E2(sc)) 18353 return IS_E2_REG(wreg_info->chips); 18354 else if (CHIP_IS_E3A0(sc)) 18355 return IS_E3A0_REG(wreg_info->chips); 18356 else if (CHIP_IS_E3B0(sc)) 18357 return IS_E3B0_REG(wreg_info->chips); 18358 else 18359 return 0; 18360 } 18361 18362 /** 18363 * bxe_read_pages_regs - read "paged" registers 18364 * 18365 * @bp device handle 18366 * @p output buffer 18367 * 18368 * Reads "paged" memories: memories that may only be read by first writing to a 18369 * specific address ("write address") and then reading from a specific address 18370 * ("read address"). There may be more than one write address per "page" and 18371 * more than one read address per write address. 18372 */ 18373 static void 18374 bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset) 18375 { 18376 uint32_t i, j, k, n; 18377 18378 /* addresses of the paged registers */ 18379 const uint32_t *page_addr = __bxe_get_page_addr_ar(sc); 18380 /* number of paged registers */ 18381 int num_pages = __bxe_get_page_reg_num(sc); 18382 /* write addresses */ 18383 const uint32_t *write_addr = __bxe_get_page_write_ar(sc); 18384 /* number of write addresses */ 18385 int write_num = __bxe_get_page_write_num(sc); 18386 /* read addresses info */ 18387 const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc); 18388 /* number of read addresses */ 18389 int read_num = __bxe_get_page_read_num(sc); 18390 uint32_t addr, size; 18391 18392 for (i = 0; i < num_pages; i++) { 18393 for (j = 0; j < write_num; j++) { 18394 REG_WR(sc, write_addr[j], page_addr[i]); 18395 18396 for (k = 0; k < read_num; k++) { 18397 if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) { 18398 size = read_addr[k].size; 18399 for (n = 0; n < size; n++) { 18400 addr = read_addr[k].addr + n*4; 18401 *p++ = REG_RD(sc, addr); 18402 } 18403 } 18404 } 18405 } 18406 } 18407 return; 18408 } 18409 18410 18411 static int 18412 bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset) 18413 { 18414 uint32_t i, j, addr; 18415 const struct wreg_addr *wreg_addr_p = NULL; 18416 18417 if (CHIP_IS_E1(sc)) 18418 wreg_addr_p = &wreg_addr_e1; 18419 else if (CHIP_IS_E1H(sc)) 18420 wreg_addr_p = &wreg_addr_e1h; 18421 else if (CHIP_IS_E2(sc)) 18422 wreg_addr_p = &wreg_addr_e2; 18423 else if (CHIP_IS_E3A0(sc)) 18424 wreg_addr_p = &wreg_addr_e3; 18425 else if (CHIP_IS_E3B0(sc)) 18426 wreg_addr_p = &wreg_addr_e3b0; 18427 else 18428 return (-1); 18429 18430 /* Read the idle_chk registers */ 18431 for (i = 0; i < IDLE_REGS_COUNT; i++) { 18432 if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) && 18433 IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) { 18434 for (j = 0; j < idle_reg_addrs[i].size; j++) 18435 *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4); 18436 } 18437 } 18438 18439 /* Read the regular registers */ 18440 for (i = 0; i < REGS_COUNT; i++) { 18441 if (bxe_is_reg_in_chip(sc, ®_addrs[i]) && 18442 IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) { 18443 for (j = 0; j < reg_addrs[i].size; j++) 18444 *p++ = REG_RD(sc, reg_addrs[i].addr + j*4); 18445 } 18446 } 18447 18448 /* Read the CAM registers */ 18449 if (bxe_is_wreg_in_chip(sc, wreg_addr_p) && 18450 IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) { 18451 for (i = 0; i < wreg_addr_p->size; i++) { 18452 *p++ = REG_RD(sc, wreg_addr_p->addr + i*4); 18453 18454 /* In case of wreg_addr register, read additional 18455 registers from read_regs array 18456 */ 18457 for (j = 0; j < wreg_addr_p->read_regs_count; j++) { 18458 addr = *(wreg_addr_p->read_regs); 18459 *p++ = REG_RD(sc, addr + j*4); 18460 } 18461 } 18462 } 18463 18464 /* Paged registers are supported in E2 & E3 only */ 18465 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 18466 /* Read "paged" registers */ 18467 bxe_read_pages_regs(sc, p, preset); 18468 } 18469 18470 return 0; 18471 } 18472 18473 static int 18474 bxe_grc_dump(struct bxe_softc *sc) 18475 { 18476 int rval = 0; 18477 uint32_t preset_idx; 18478 uint8_t *buf; 18479 uint32_t size; 18480 struct dump_header *d_hdr; 18481 18482 if (sc->grcdump_done) 18483 return (rval); 18484 18485 ecore_disable_blocks_parity(sc); 18486 18487 buf = sc->grc_dump; 18488 d_hdr = sc->grc_dump; 18489 18490 d_hdr->header_size = (sizeof(struct dump_header) >> 2) - 1; 18491 d_hdr->version = BNX2X_DUMP_VERSION; 18492 d_hdr->preset = DUMP_ALL_PRESETS; 18493 18494 if (CHIP_IS_E1(sc)) { 18495 d_hdr->dump_meta_data = DUMP_CHIP_E1; 18496 } else if (CHIP_IS_E1H(sc)) { 18497 d_hdr->dump_meta_data = DUMP_CHIP_E1H; 18498 } else if (CHIP_IS_E2(sc)) { 18499 d_hdr->dump_meta_data = DUMP_CHIP_E2 | 18500 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18501 } else if (CHIP_IS_E3A0(sc)) { 18502 d_hdr->dump_meta_data = DUMP_CHIP_E3A0 | 18503 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18504 } else if (CHIP_IS_E3B0(sc)) { 18505 d_hdr->dump_meta_data = DUMP_CHIP_E3B0 | 18506 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18507 } 18508 18509 buf += sizeof(struct dump_header); 18510 18511 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { 18512 18513 /* Skip presets with IOR */ 18514 if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) || 18515 (preset_idx == 11)) 18516 continue; 18517 18518 rval = bxe_get_preset_regs(sc, sc->grc_dump, preset_idx); 18519 18520 if (rval) 18521 break; 18522 18523 size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t)); 18524 18525 buf += size; 18526 } 18527 18528 ecore_clear_blocks_parity(sc); 18529 ecore_enable_blocks_parity(sc); 18530 18531 sc->grcdump_done = 1; 18532 return(rval); 18533 } 18534 18535 static int 18536 bxe_add_cdev(struct bxe_softc *sc) 18537 { 18538 int grc_dump_size; 18539 18540 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 18541 sizeof(struct dump_header); 18542 18543 sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT); 18544 18545 if (sc->grc_dump == NULL) 18546 return (-1); 18547 18548 sc->ioctl_dev = make_dev(&bxe_cdevsw, 18549 sc->ifp->if_dunit, 18550 UID_ROOT, 18551 GID_WHEEL, 18552 0600, 18553 "%s", 18554 if_name(sc->ifp)); 18555 18556 if (sc->ioctl_dev == NULL) { 18557 18558 free(sc->grc_dump, M_DEVBUF); 18559 18560 return (-1); 18561 } 18562 18563 sc->ioctl_dev->si_drv1 = sc; 18564 18565 return (0); 18566 } 18567 18568 static void 18569 bxe_del_cdev(struct bxe_softc *sc) 18570 { 18571 if (sc->ioctl_dev != NULL) 18572 destroy_dev(sc->ioctl_dev); 18573 18574 if (sc->grc_dump == NULL) 18575 free(sc->grc_dump, M_DEVBUF); 18576 18577 return; 18578 } 18579 18580 static int 18581 bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 18582 struct thread *td) 18583 { 18584 struct bxe_softc *sc; 18585 int rval = 0; 18586 device_t pci_dev; 18587 bxe_grcdump_t *dump = NULL; 18588 int grc_dump_size; 18589 18590 if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL) 18591 return ENXIO; 18592 18593 pci_dev= sc->dev; 18594 18595 dump = (bxe_grcdump_t *)data; 18596 18597 switch(cmd) { 18598 18599 case BXE_GRC_DUMP_SIZE: 18600 dump->pci_func = sc->pcie_func; 18601 dump->grcdump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 18602 sizeof(struct dump_header); 18603 break; 18604 18605 case BXE_GRC_DUMP: 18606 18607 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 18608 sizeof(struct dump_header); 18609 18610 if ((sc->grc_dump == NULL) || (dump->grcdump == NULL) || 18611 (dump->grcdump_size < grc_dump_size) || (!sc->grcdump_done)) { 18612 rval = EINVAL; 18613 break; 18614 } 18615 dump->grcdump_dwords = grc_dump_size >> 2; 18616 rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size); 18617 sc->grcdump_done = 0; 18618 18619 break; 18620 18621 default: 18622 break; 18623 } 18624 18625 return (rval); 18626 } 18627